xref: /openbmc/linux/net/ipv4/tcp_ipv4.c (revision 05bcf503)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  *		IPv4 specific functions
9  *
10  *
11  *		code split from:
12  *		linux/ipv4/tcp.c
13  *		linux/ipv4/tcp_input.c
14  *		linux/ipv4/tcp_output.c
15  *
16  *		See tcp.c for author information
17  *
18  *	This program is free software; you can redistribute it and/or
19  *      modify it under the terms of the GNU General Public License
20  *      as published by the Free Software Foundation; either version
21  *      2 of the License, or (at your option) any later version.
22  */
23 
24 /*
25  * Changes:
26  *		David S. Miller	:	New socket lookup architecture.
27  *					This code is dedicated to John Dyson.
28  *		David S. Miller :	Change semantics of established hash,
29  *					half is devoted to TIME_WAIT sockets
30  *					and the rest go in the other half.
31  *		Andi Kleen :		Add support for syncookies and fixed
32  *					some bugs: ip options weren't passed to
33  *					the TCP layer, missed a check for an
34  *					ACK bit.
35  *		Andi Kleen :		Implemented fast path mtu discovery.
36  *	     				Fixed many serious bugs in the
37  *					request_sock handling and moved
38  *					most of it into the af independent code.
39  *					Added tail drop and some other bugfixes.
40  *					Added new listen semantics.
41  *		Mike McLagan	:	Routing by source
42  *	Juan Jose Ciarlante:		ip_dynaddr bits
43  *		Andi Kleen:		various fixes.
44  *	Vitaly E. Lavrov	:	Transparent proxy revived after year
45  *					coma.
46  *	Andi Kleen		:	Fix new listen.
47  *	Andi Kleen		:	Fix accept error reporting.
48  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
49  *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
50  *					a single port at the same time.
51  */
52 
53 #define pr_fmt(fmt) "TCP: " fmt
54 
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65 
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/netdma.h>
76 #include <net/secure_seq.h>
77 #include <net/tcp_memcontrol.h>
78 
79 #include <linux/inet.h>
80 #include <linux/ipv6.h>
81 #include <linux/stddef.h>
82 #include <linux/proc_fs.h>
83 #include <linux/seq_file.h>
84 
85 #include <linux/crypto.h>
86 #include <linux/scatterlist.h>
87 
88 int sysctl_tcp_tw_reuse __read_mostly;
89 int sysctl_tcp_low_latency __read_mostly;
90 EXPORT_SYMBOL(sysctl_tcp_low_latency);
91 
92 
93 #ifdef CONFIG_TCP_MD5SIG
94 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
95 			       __be32 daddr, __be32 saddr, const struct tcphdr *th);
96 #endif
97 
98 struct inet_hashinfo tcp_hashinfo;
99 EXPORT_SYMBOL(tcp_hashinfo);
100 
101 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
102 {
103 	return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
104 					  ip_hdr(skb)->saddr,
105 					  tcp_hdr(skb)->dest,
106 					  tcp_hdr(skb)->source);
107 }
108 
109 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
110 {
111 	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
112 	struct tcp_sock *tp = tcp_sk(sk);
113 
114 	/* With PAWS, it is safe from the viewpoint
115 	   of data integrity. Even without PAWS it is safe provided sequence
116 	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
117 
118 	   Actually, the idea is close to VJ's one, only timestamp cache is
119 	   held not per host, but per port pair and TW bucket is used as state
120 	   holder.
121 
122 	   If TW bucket has been already destroyed we fall back to VJ's scheme
123 	   and use initial timestamp retrieved from peer table.
124 	 */
125 	if (tcptw->tw_ts_recent_stamp &&
126 	    (twp == NULL || (sysctl_tcp_tw_reuse &&
127 			     get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
128 		tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
129 		if (tp->write_seq == 0)
130 			tp->write_seq = 1;
131 		tp->rx_opt.ts_recent	   = tcptw->tw_ts_recent;
132 		tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
133 		sock_hold(sktw);
134 		return 1;
135 	}
136 
137 	return 0;
138 }
139 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
140 
141 static int tcp_repair_connect(struct sock *sk)
142 {
143 	tcp_connect_init(sk);
144 	tcp_finish_connect(sk, NULL);
145 
146 	return 0;
147 }
148 
149 /* This will initiate an outgoing connection. */
150 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
151 {
152 	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
153 	struct inet_sock *inet = inet_sk(sk);
154 	struct tcp_sock *tp = tcp_sk(sk);
155 	__be16 orig_sport, orig_dport;
156 	__be32 daddr, nexthop;
157 	struct flowi4 *fl4;
158 	struct rtable *rt;
159 	int err;
160 	struct ip_options_rcu *inet_opt;
161 
162 	if (addr_len < sizeof(struct sockaddr_in))
163 		return -EINVAL;
164 
165 	if (usin->sin_family != AF_INET)
166 		return -EAFNOSUPPORT;
167 
168 	nexthop = daddr = usin->sin_addr.s_addr;
169 	inet_opt = rcu_dereference_protected(inet->inet_opt,
170 					     sock_owned_by_user(sk));
171 	if (inet_opt && inet_opt->opt.srr) {
172 		if (!daddr)
173 			return -EINVAL;
174 		nexthop = inet_opt->opt.faddr;
175 	}
176 
177 	orig_sport = inet->inet_sport;
178 	orig_dport = usin->sin_port;
179 	fl4 = &inet->cork.fl.u.ip4;
180 	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
181 			      RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
182 			      IPPROTO_TCP,
183 			      orig_sport, orig_dport, sk, true);
184 	if (IS_ERR(rt)) {
185 		err = PTR_ERR(rt);
186 		if (err == -ENETUNREACH)
187 			IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
188 		return err;
189 	}
190 
191 	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
192 		ip_rt_put(rt);
193 		return -ENETUNREACH;
194 	}
195 
196 	if (!inet_opt || !inet_opt->opt.srr)
197 		daddr = fl4->daddr;
198 
199 	if (!inet->inet_saddr)
200 		inet->inet_saddr = fl4->saddr;
201 	inet->inet_rcv_saddr = inet->inet_saddr;
202 
203 	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
204 		/* Reset inherited state */
205 		tp->rx_opt.ts_recent	   = 0;
206 		tp->rx_opt.ts_recent_stamp = 0;
207 		if (likely(!tp->repair))
208 			tp->write_seq	   = 0;
209 	}
210 
211 	if (tcp_death_row.sysctl_tw_recycle &&
212 	    !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
213 		tcp_fetch_timewait_stamp(sk, &rt->dst);
214 
215 	inet->inet_dport = usin->sin_port;
216 	inet->inet_daddr = daddr;
217 
218 	inet_csk(sk)->icsk_ext_hdr_len = 0;
219 	if (inet_opt)
220 		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
221 
222 	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
223 
224 	/* Socket identity is still unknown (sport may be zero).
225 	 * However we set state to SYN-SENT and not releasing socket
226 	 * lock select source port, enter ourselves into the hash tables and
227 	 * complete initialization after this.
228 	 */
229 	tcp_set_state(sk, TCP_SYN_SENT);
230 	err = inet_hash_connect(&tcp_death_row, sk);
231 	if (err)
232 		goto failure;
233 
234 	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
235 			       inet->inet_sport, inet->inet_dport, sk);
236 	if (IS_ERR(rt)) {
237 		err = PTR_ERR(rt);
238 		rt = NULL;
239 		goto failure;
240 	}
241 	/* OK, now commit destination to socket.  */
242 	sk->sk_gso_type = SKB_GSO_TCPV4;
243 	sk_setup_caps(sk, &rt->dst);
244 
245 	if (!tp->write_seq && likely(!tp->repair))
246 		tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
247 							   inet->inet_daddr,
248 							   inet->inet_sport,
249 							   usin->sin_port);
250 
251 	inet->inet_id = tp->write_seq ^ jiffies;
252 
253 	if (likely(!tp->repair))
254 		err = tcp_connect(sk);
255 	else
256 		err = tcp_repair_connect(sk);
257 
258 	rt = NULL;
259 	if (err)
260 		goto failure;
261 
262 	return 0;
263 
264 failure:
265 	/*
266 	 * This unhashes the socket and releases the local port,
267 	 * if necessary.
268 	 */
269 	tcp_set_state(sk, TCP_CLOSE);
270 	ip_rt_put(rt);
271 	sk->sk_route_caps = 0;
272 	inet->inet_dport = 0;
273 	return err;
274 }
275 EXPORT_SYMBOL(tcp_v4_connect);
276 
277 /*
278  * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
279  * It can be called through tcp_release_cb() if socket was owned by user
280  * at the time tcp_v4_err() was called to handle ICMP message.
281  */
282 static void tcp_v4_mtu_reduced(struct sock *sk)
283 {
284 	struct dst_entry *dst;
285 	struct inet_sock *inet = inet_sk(sk);
286 	u32 mtu = tcp_sk(sk)->mtu_info;
287 
288 	/* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
289 	 * send out by Linux are always <576bytes so they should go through
290 	 * unfragmented).
291 	 */
292 	if (sk->sk_state == TCP_LISTEN)
293 		return;
294 
295 	dst = inet_csk_update_pmtu(sk, mtu);
296 	if (!dst)
297 		return;
298 
299 	/* Something is about to be wrong... Remember soft error
300 	 * for the case, if this connection will not able to recover.
301 	 */
302 	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
303 		sk->sk_err_soft = EMSGSIZE;
304 
305 	mtu = dst_mtu(dst);
306 
307 	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
308 	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
309 		tcp_sync_mss(sk, mtu);
310 
311 		/* Resend the TCP packet because it's
312 		 * clear that the old packet has been
313 		 * dropped. This is the new "fast" path mtu
314 		 * discovery.
315 		 */
316 		tcp_simple_retransmit(sk);
317 	} /* else let the usual retransmit timer handle it */
318 }
319 
320 static void do_redirect(struct sk_buff *skb, struct sock *sk)
321 {
322 	struct dst_entry *dst = __sk_dst_check(sk, 0);
323 
324 	if (dst)
325 		dst->ops->redirect(dst, sk, skb);
326 }
327 
328 /*
329  * This routine is called by the ICMP module when it gets some
330  * sort of error condition.  If err < 0 then the socket should
331  * be closed and the error returned to the user.  If err > 0
332  * it's just the icmp type << 8 | icmp code.  After adjustment
333  * header points to the first 8 bytes of the tcp header.  We need
334  * to find the appropriate port.
335  *
336  * The locking strategy used here is very "optimistic". When
337  * someone else accesses the socket the ICMP is just dropped
338  * and for some paths there is no check at all.
339  * A more general error queue to queue errors for later handling
340  * is probably better.
341  *
342  */
343 
344 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
345 {
346 	const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
347 	struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
348 	struct inet_connection_sock *icsk;
349 	struct tcp_sock *tp;
350 	struct inet_sock *inet;
351 	const int type = icmp_hdr(icmp_skb)->type;
352 	const int code = icmp_hdr(icmp_skb)->code;
353 	struct sock *sk;
354 	struct sk_buff *skb;
355 	struct request_sock *req;
356 	__u32 seq;
357 	__u32 remaining;
358 	int err;
359 	struct net *net = dev_net(icmp_skb->dev);
360 
361 	if (icmp_skb->len < (iph->ihl << 2) + 8) {
362 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
363 		return;
364 	}
365 
366 	sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
367 			iph->saddr, th->source, inet_iif(icmp_skb));
368 	if (!sk) {
369 		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
370 		return;
371 	}
372 	if (sk->sk_state == TCP_TIME_WAIT) {
373 		inet_twsk_put(inet_twsk(sk));
374 		return;
375 	}
376 
377 	bh_lock_sock(sk);
378 	/* If too many ICMPs get dropped on busy
379 	 * servers this needs to be solved differently.
380 	 * We do take care of PMTU discovery (RFC1191) special case :
381 	 * we can receive locally generated ICMP messages while socket is held.
382 	 */
383 	if (sock_owned_by_user(sk) &&
384 	    type != ICMP_DEST_UNREACH &&
385 	    code != ICMP_FRAG_NEEDED)
386 		NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
387 
388 	if (sk->sk_state == TCP_CLOSE)
389 		goto out;
390 
391 	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
392 		NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
393 		goto out;
394 	}
395 
396 	icsk = inet_csk(sk);
397 	tp = tcp_sk(sk);
398 	req = tp->fastopen_rsk;
399 	seq = ntohl(th->seq);
400 	if (sk->sk_state != TCP_LISTEN &&
401 	    !between(seq, tp->snd_una, tp->snd_nxt) &&
402 	    (req == NULL || seq != tcp_rsk(req)->snt_isn)) {
403 		/* For a Fast Open socket, allow seq to be snt_isn. */
404 		NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
405 		goto out;
406 	}
407 
408 	switch (type) {
409 	case ICMP_REDIRECT:
410 		do_redirect(icmp_skb, sk);
411 		goto out;
412 	case ICMP_SOURCE_QUENCH:
413 		/* Just silently ignore these. */
414 		goto out;
415 	case ICMP_PARAMETERPROB:
416 		err = EPROTO;
417 		break;
418 	case ICMP_DEST_UNREACH:
419 		if (code > NR_ICMP_UNREACH)
420 			goto out;
421 
422 		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
423 			tp->mtu_info = info;
424 			if (!sock_owned_by_user(sk)) {
425 				tcp_v4_mtu_reduced(sk);
426 			} else {
427 				if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
428 					sock_hold(sk);
429 			}
430 			goto out;
431 		}
432 
433 		err = icmp_err_convert[code].errno;
434 		/* check if icmp_skb allows revert of backoff
435 		 * (see draft-zimmermann-tcp-lcd) */
436 		if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
437 			break;
438 		if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
439 		    !icsk->icsk_backoff)
440 			break;
441 
442 		/* XXX (TFO) - revisit the following logic for TFO */
443 
444 		if (sock_owned_by_user(sk))
445 			break;
446 
447 		icsk->icsk_backoff--;
448 		inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
449 			TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
450 		tcp_bound_rto(sk);
451 
452 		skb = tcp_write_queue_head(sk);
453 		BUG_ON(!skb);
454 
455 		remaining = icsk->icsk_rto - min(icsk->icsk_rto,
456 				tcp_time_stamp - TCP_SKB_CB(skb)->when);
457 
458 		if (remaining) {
459 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
460 						  remaining, TCP_RTO_MAX);
461 		} else {
462 			/* RTO revert clocked out retransmission.
463 			 * Will retransmit now */
464 			tcp_retransmit_timer(sk);
465 		}
466 
467 		break;
468 	case ICMP_TIME_EXCEEDED:
469 		err = EHOSTUNREACH;
470 		break;
471 	default:
472 		goto out;
473 	}
474 
475 	/* XXX (TFO) - if it's a TFO socket and has been accepted, rather
476 	 * than following the TCP_SYN_RECV case and closing the socket,
477 	 * we ignore the ICMP error and keep trying like a fully established
478 	 * socket. Is this the right thing to do?
479 	 */
480 	if (req && req->sk == NULL)
481 		goto out;
482 
483 	switch (sk->sk_state) {
484 		struct request_sock *req, **prev;
485 	case TCP_LISTEN:
486 		if (sock_owned_by_user(sk))
487 			goto out;
488 
489 		req = inet_csk_search_req(sk, &prev, th->dest,
490 					  iph->daddr, iph->saddr);
491 		if (!req)
492 			goto out;
493 
494 		/* ICMPs are not backlogged, hence we cannot get
495 		   an established socket here.
496 		 */
497 		WARN_ON(req->sk);
498 
499 		if (seq != tcp_rsk(req)->snt_isn) {
500 			NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
501 			goto out;
502 		}
503 
504 		/*
505 		 * Still in SYN_RECV, just remove it silently.
506 		 * There is no good way to pass the error to the newly
507 		 * created socket, and POSIX does not want network
508 		 * errors returned from accept().
509 		 */
510 		inet_csk_reqsk_queue_drop(sk, req, prev);
511 		goto out;
512 
513 	case TCP_SYN_SENT:
514 	case TCP_SYN_RECV:  /* Cannot happen.
515 			       It can f.e. if SYNs crossed,
516 			       or Fast Open.
517 			     */
518 		if (!sock_owned_by_user(sk)) {
519 			sk->sk_err = err;
520 
521 			sk->sk_error_report(sk);
522 
523 			tcp_done(sk);
524 		} else {
525 			sk->sk_err_soft = err;
526 		}
527 		goto out;
528 	}
529 
530 	/* If we've already connected we will keep trying
531 	 * until we time out, or the user gives up.
532 	 *
533 	 * rfc1122 4.2.3.9 allows to consider as hard errors
534 	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
535 	 * but it is obsoleted by pmtu discovery).
536 	 *
537 	 * Note, that in modern internet, where routing is unreliable
538 	 * and in each dark corner broken firewalls sit, sending random
539 	 * errors ordered by their masters even this two messages finally lose
540 	 * their original sense (even Linux sends invalid PORT_UNREACHs)
541 	 *
542 	 * Now we are in compliance with RFCs.
543 	 *							--ANK (980905)
544 	 */
545 
546 	inet = inet_sk(sk);
547 	if (!sock_owned_by_user(sk) && inet->recverr) {
548 		sk->sk_err = err;
549 		sk->sk_error_report(sk);
550 	} else	{ /* Only an error on timeout */
551 		sk->sk_err_soft = err;
552 	}
553 
554 out:
555 	bh_unlock_sock(sk);
556 	sock_put(sk);
557 }
558 
559 static void __tcp_v4_send_check(struct sk_buff *skb,
560 				__be32 saddr, __be32 daddr)
561 {
562 	struct tcphdr *th = tcp_hdr(skb);
563 
564 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
565 		th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
566 		skb->csum_start = skb_transport_header(skb) - skb->head;
567 		skb->csum_offset = offsetof(struct tcphdr, check);
568 	} else {
569 		th->check = tcp_v4_check(skb->len, saddr, daddr,
570 					 csum_partial(th,
571 						      th->doff << 2,
572 						      skb->csum));
573 	}
574 }
575 
576 /* This routine computes an IPv4 TCP checksum. */
577 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
578 {
579 	const struct inet_sock *inet = inet_sk(sk);
580 
581 	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
582 }
583 EXPORT_SYMBOL(tcp_v4_send_check);
584 
585 int tcp_v4_gso_send_check(struct sk_buff *skb)
586 {
587 	const struct iphdr *iph;
588 	struct tcphdr *th;
589 
590 	if (!pskb_may_pull(skb, sizeof(*th)))
591 		return -EINVAL;
592 
593 	iph = ip_hdr(skb);
594 	th = tcp_hdr(skb);
595 
596 	th->check = 0;
597 	skb->ip_summed = CHECKSUM_PARTIAL;
598 	__tcp_v4_send_check(skb, iph->saddr, iph->daddr);
599 	return 0;
600 }
601 
602 /*
603  *	This routine will send an RST to the other tcp.
604  *
605  *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
606  *		      for reset.
607  *	Answer: if a packet caused RST, it is not for a socket
608  *		existing in our system, if it is matched to a socket,
609  *		it is just duplicate segment or bug in other side's TCP.
610  *		So that we build reply only basing on parameters
611  *		arrived with segment.
612  *	Exception: precedence violation. We do not implement it in any case.
613  */
614 
615 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
616 {
617 	const struct tcphdr *th = tcp_hdr(skb);
618 	struct {
619 		struct tcphdr th;
620 #ifdef CONFIG_TCP_MD5SIG
621 		__be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
622 #endif
623 	} rep;
624 	struct ip_reply_arg arg;
625 #ifdef CONFIG_TCP_MD5SIG
626 	struct tcp_md5sig_key *key;
627 	const __u8 *hash_location = NULL;
628 	unsigned char newhash[16];
629 	int genhash;
630 	struct sock *sk1 = NULL;
631 #endif
632 	struct net *net;
633 
634 	/* Never send a reset in response to a reset. */
635 	if (th->rst)
636 		return;
637 
638 	if (skb_rtable(skb)->rt_type != RTN_LOCAL)
639 		return;
640 
641 	/* Swap the send and the receive. */
642 	memset(&rep, 0, sizeof(rep));
643 	rep.th.dest   = th->source;
644 	rep.th.source = th->dest;
645 	rep.th.doff   = sizeof(struct tcphdr) / 4;
646 	rep.th.rst    = 1;
647 
648 	if (th->ack) {
649 		rep.th.seq = th->ack_seq;
650 	} else {
651 		rep.th.ack = 1;
652 		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
653 				       skb->len - (th->doff << 2));
654 	}
655 
656 	memset(&arg, 0, sizeof(arg));
657 	arg.iov[0].iov_base = (unsigned char *)&rep;
658 	arg.iov[0].iov_len  = sizeof(rep.th);
659 
660 #ifdef CONFIG_TCP_MD5SIG
661 	hash_location = tcp_parse_md5sig_option(th);
662 	if (!sk && hash_location) {
663 		/*
664 		 * active side is lost. Try to find listening socket through
665 		 * source port, and then find md5 key through listening socket.
666 		 * we are not loose security here:
667 		 * Incoming packet is checked with md5 hash with finding key,
668 		 * no RST generated if md5 hash doesn't match.
669 		 */
670 		sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
671 					     &tcp_hashinfo, ip_hdr(skb)->daddr,
672 					     ntohs(th->source), inet_iif(skb));
673 		/* don't send rst if it can't find key */
674 		if (!sk1)
675 			return;
676 		rcu_read_lock();
677 		key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
678 					&ip_hdr(skb)->saddr, AF_INET);
679 		if (!key)
680 			goto release_sk1;
681 
682 		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
683 		if (genhash || memcmp(hash_location, newhash, 16) != 0)
684 			goto release_sk1;
685 	} else {
686 		key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
687 					     &ip_hdr(skb)->saddr,
688 					     AF_INET) : NULL;
689 	}
690 
691 	if (key) {
692 		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
693 				   (TCPOPT_NOP << 16) |
694 				   (TCPOPT_MD5SIG << 8) |
695 				   TCPOLEN_MD5SIG);
696 		/* Update length and the length the header thinks exists */
697 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
698 		rep.th.doff = arg.iov[0].iov_len / 4;
699 
700 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
701 				     key, ip_hdr(skb)->saddr,
702 				     ip_hdr(skb)->daddr, &rep.th);
703 	}
704 #endif
705 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
706 				      ip_hdr(skb)->saddr, /* XXX */
707 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
708 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
709 	arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
710 	/* When socket is gone, all binding information is lost.
711 	 * routing might fail in this case. No choice here, if we choose to force
712 	 * input interface, we will misroute in case of asymmetric route.
713 	 */
714 	if (sk)
715 		arg.bound_dev_if = sk->sk_bound_dev_if;
716 
717 	net = dev_net(skb_dst(skb)->dev);
718 	arg.tos = ip_hdr(skb)->tos;
719 	ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
720 			      ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
721 
722 	TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
723 	TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
724 
725 #ifdef CONFIG_TCP_MD5SIG
726 release_sk1:
727 	if (sk1) {
728 		rcu_read_unlock();
729 		sock_put(sk1);
730 	}
731 #endif
732 }
733 
734 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
735    outside socket context is ugly, certainly. What can I do?
736  */
737 
738 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
739 			    u32 win, u32 ts, int oif,
740 			    struct tcp_md5sig_key *key,
741 			    int reply_flags, u8 tos)
742 {
743 	const struct tcphdr *th = tcp_hdr(skb);
744 	struct {
745 		struct tcphdr th;
746 		__be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
747 #ifdef CONFIG_TCP_MD5SIG
748 			   + (TCPOLEN_MD5SIG_ALIGNED >> 2)
749 #endif
750 			];
751 	} rep;
752 	struct ip_reply_arg arg;
753 	struct net *net = dev_net(skb_dst(skb)->dev);
754 
755 	memset(&rep.th, 0, sizeof(struct tcphdr));
756 	memset(&arg, 0, sizeof(arg));
757 
758 	arg.iov[0].iov_base = (unsigned char *)&rep;
759 	arg.iov[0].iov_len  = sizeof(rep.th);
760 	if (ts) {
761 		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
762 				   (TCPOPT_TIMESTAMP << 8) |
763 				   TCPOLEN_TIMESTAMP);
764 		rep.opt[1] = htonl(tcp_time_stamp);
765 		rep.opt[2] = htonl(ts);
766 		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
767 	}
768 
769 	/* Swap the send and the receive. */
770 	rep.th.dest    = th->source;
771 	rep.th.source  = th->dest;
772 	rep.th.doff    = arg.iov[0].iov_len / 4;
773 	rep.th.seq     = htonl(seq);
774 	rep.th.ack_seq = htonl(ack);
775 	rep.th.ack     = 1;
776 	rep.th.window  = htons(win);
777 
778 #ifdef CONFIG_TCP_MD5SIG
779 	if (key) {
780 		int offset = (ts) ? 3 : 0;
781 
782 		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
783 					  (TCPOPT_NOP << 16) |
784 					  (TCPOPT_MD5SIG << 8) |
785 					  TCPOLEN_MD5SIG);
786 		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
787 		rep.th.doff = arg.iov[0].iov_len/4;
788 
789 		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
790 				    key, ip_hdr(skb)->saddr,
791 				    ip_hdr(skb)->daddr, &rep.th);
792 	}
793 #endif
794 	arg.flags = reply_flags;
795 	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
796 				      ip_hdr(skb)->saddr, /* XXX */
797 				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
798 	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
799 	if (oif)
800 		arg.bound_dev_if = oif;
801 	arg.tos = tos;
802 	ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
803 			      ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
804 
805 	TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
806 }
807 
808 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
809 {
810 	struct inet_timewait_sock *tw = inet_twsk(sk);
811 	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
812 
813 	tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
814 			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
815 			tcptw->tw_ts_recent,
816 			tw->tw_bound_dev_if,
817 			tcp_twsk_md5_key(tcptw),
818 			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
819 			tw->tw_tos
820 			);
821 
822 	inet_twsk_put(tw);
823 }
824 
825 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
826 				  struct request_sock *req)
827 {
828 	/* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
829 	 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
830 	 */
831 	tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ?
832 			tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt,
833 			tcp_rsk(req)->rcv_nxt, req->rcv_wnd,
834 			req->ts_recent,
835 			0,
836 			tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
837 					  AF_INET),
838 			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
839 			ip_hdr(skb)->tos);
840 }
841 
842 /*
843  *	Send a SYN-ACK after having received a SYN.
844  *	This still operates on a request_sock only, not on a big
845  *	socket.
846  */
847 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
848 			      struct request_sock *req,
849 			      struct request_values *rvp,
850 			      u16 queue_mapping,
851 			      bool nocache)
852 {
853 	const struct inet_request_sock *ireq = inet_rsk(req);
854 	struct flowi4 fl4;
855 	int err = -1;
856 	struct sk_buff * skb;
857 
858 	/* First, grab a route. */
859 	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
860 		return -1;
861 
862 	skb = tcp_make_synack(sk, dst, req, rvp, NULL);
863 
864 	if (skb) {
865 		__tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
866 
867 		skb_set_queue_mapping(skb, queue_mapping);
868 		err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
869 					    ireq->rmt_addr,
870 					    ireq->opt);
871 		err = net_xmit_eval(err);
872 		if (!tcp_rsk(req)->snt_synack && !err)
873 			tcp_rsk(req)->snt_synack = tcp_time_stamp;
874 	}
875 
876 	return err;
877 }
878 
879 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
880 			      struct request_values *rvp)
881 {
882 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
883 	return tcp_v4_send_synack(sk, NULL, req, rvp, 0, false);
884 }
885 
886 /*
887  *	IPv4 request_sock destructor.
888  */
889 static void tcp_v4_reqsk_destructor(struct request_sock *req)
890 {
891 	kfree(inet_rsk(req)->opt);
892 }
893 
894 /*
895  * Return true if a syncookie should be sent
896  */
897 bool tcp_syn_flood_action(struct sock *sk,
898 			 const struct sk_buff *skb,
899 			 const char *proto)
900 {
901 	const char *msg = "Dropping request";
902 	bool want_cookie = false;
903 	struct listen_sock *lopt;
904 
905 
906 
907 #ifdef CONFIG_SYN_COOKIES
908 	if (sysctl_tcp_syncookies) {
909 		msg = "Sending cookies";
910 		want_cookie = true;
911 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
912 	} else
913 #endif
914 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
915 
916 	lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
917 	if (!lopt->synflood_warned) {
918 		lopt->synflood_warned = 1;
919 		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
920 			proto, ntohs(tcp_hdr(skb)->dest), msg);
921 	}
922 	return want_cookie;
923 }
924 EXPORT_SYMBOL(tcp_syn_flood_action);
925 
926 /*
927  * Save and compile IPv4 options into the request_sock if needed.
928  */
929 static struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
930 {
931 	const struct ip_options *opt = &(IPCB(skb)->opt);
932 	struct ip_options_rcu *dopt = NULL;
933 
934 	if (opt && opt->optlen) {
935 		int opt_size = sizeof(*dopt) + opt->optlen;
936 
937 		dopt = kmalloc(opt_size, GFP_ATOMIC);
938 		if (dopt) {
939 			if (ip_options_echo(&dopt->opt, skb)) {
940 				kfree(dopt);
941 				dopt = NULL;
942 			}
943 		}
944 	}
945 	return dopt;
946 }
947 
948 #ifdef CONFIG_TCP_MD5SIG
949 /*
950  * RFC2385 MD5 checksumming requires a mapping of
951  * IP address->MD5 Key.
952  * We need to maintain these in the sk structure.
953  */
954 
955 /* Find the Key structure for an address.  */
956 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
957 					 const union tcp_md5_addr *addr,
958 					 int family)
959 {
960 	struct tcp_sock *tp = tcp_sk(sk);
961 	struct tcp_md5sig_key *key;
962 	struct hlist_node *pos;
963 	unsigned int size = sizeof(struct in_addr);
964 	struct tcp_md5sig_info *md5sig;
965 
966 	/* caller either holds rcu_read_lock() or socket lock */
967 	md5sig = rcu_dereference_check(tp->md5sig_info,
968 				       sock_owned_by_user(sk) ||
969 				       lockdep_is_held(&sk->sk_lock.slock));
970 	if (!md5sig)
971 		return NULL;
972 #if IS_ENABLED(CONFIG_IPV6)
973 	if (family == AF_INET6)
974 		size = sizeof(struct in6_addr);
975 #endif
976 	hlist_for_each_entry_rcu(key, pos, &md5sig->head, node) {
977 		if (key->family != family)
978 			continue;
979 		if (!memcmp(&key->addr, addr, size))
980 			return key;
981 	}
982 	return NULL;
983 }
984 EXPORT_SYMBOL(tcp_md5_do_lookup);
985 
986 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
987 					 struct sock *addr_sk)
988 {
989 	union tcp_md5_addr *addr;
990 
991 	addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
992 	return tcp_md5_do_lookup(sk, addr, AF_INET);
993 }
994 EXPORT_SYMBOL(tcp_v4_md5_lookup);
995 
996 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
997 						      struct request_sock *req)
998 {
999 	union tcp_md5_addr *addr;
1000 
1001 	addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
1002 	return tcp_md5_do_lookup(sk, addr, AF_INET);
1003 }
1004 
1005 /* This can be called on a newly created socket, from other files */
1006 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1007 		   int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
1008 {
1009 	/* Add Key to the list */
1010 	struct tcp_md5sig_key *key;
1011 	struct tcp_sock *tp = tcp_sk(sk);
1012 	struct tcp_md5sig_info *md5sig;
1013 
1014 	key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1015 	if (key) {
1016 		/* Pre-existing entry - just update that one. */
1017 		memcpy(key->key, newkey, newkeylen);
1018 		key->keylen = newkeylen;
1019 		return 0;
1020 	}
1021 
1022 	md5sig = rcu_dereference_protected(tp->md5sig_info,
1023 					   sock_owned_by_user(sk));
1024 	if (!md5sig) {
1025 		md5sig = kmalloc(sizeof(*md5sig), gfp);
1026 		if (!md5sig)
1027 			return -ENOMEM;
1028 
1029 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1030 		INIT_HLIST_HEAD(&md5sig->head);
1031 		rcu_assign_pointer(tp->md5sig_info, md5sig);
1032 	}
1033 
1034 	key = sock_kmalloc(sk, sizeof(*key), gfp);
1035 	if (!key)
1036 		return -ENOMEM;
1037 	if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) {
1038 		sock_kfree_s(sk, key, sizeof(*key));
1039 		return -ENOMEM;
1040 	}
1041 
1042 	memcpy(key->key, newkey, newkeylen);
1043 	key->keylen = newkeylen;
1044 	key->family = family;
1045 	memcpy(&key->addr, addr,
1046 	       (family == AF_INET6) ? sizeof(struct in6_addr) :
1047 				      sizeof(struct in_addr));
1048 	hlist_add_head_rcu(&key->node, &md5sig->head);
1049 	return 0;
1050 }
1051 EXPORT_SYMBOL(tcp_md5_do_add);
1052 
1053 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1054 {
1055 	struct tcp_sock *tp = tcp_sk(sk);
1056 	struct tcp_md5sig_key *key;
1057 	struct tcp_md5sig_info *md5sig;
1058 
1059 	key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1060 	if (!key)
1061 		return -ENOENT;
1062 	hlist_del_rcu(&key->node);
1063 	atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1064 	kfree_rcu(key, rcu);
1065 	md5sig = rcu_dereference_protected(tp->md5sig_info,
1066 					   sock_owned_by_user(sk));
1067 	if (hlist_empty(&md5sig->head))
1068 		tcp_free_md5sig_pool();
1069 	return 0;
1070 }
1071 EXPORT_SYMBOL(tcp_md5_do_del);
1072 
1073 void tcp_clear_md5_list(struct sock *sk)
1074 {
1075 	struct tcp_sock *tp = tcp_sk(sk);
1076 	struct tcp_md5sig_key *key;
1077 	struct hlist_node *pos, *n;
1078 	struct tcp_md5sig_info *md5sig;
1079 
1080 	md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1081 
1082 	if (!hlist_empty(&md5sig->head))
1083 		tcp_free_md5sig_pool();
1084 	hlist_for_each_entry_safe(key, pos, n, &md5sig->head, node) {
1085 		hlist_del_rcu(&key->node);
1086 		atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1087 		kfree_rcu(key, rcu);
1088 	}
1089 }
1090 
1091 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1092 				 int optlen)
1093 {
1094 	struct tcp_md5sig cmd;
1095 	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1096 
1097 	if (optlen < sizeof(cmd))
1098 		return -EINVAL;
1099 
1100 	if (copy_from_user(&cmd, optval, sizeof(cmd)))
1101 		return -EFAULT;
1102 
1103 	if (sin->sin_family != AF_INET)
1104 		return -EINVAL;
1105 
1106 	if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1107 		return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1108 				      AF_INET);
1109 
1110 	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1111 		return -EINVAL;
1112 
1113 	return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1114 			      AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1115 			      GFP_KERNEL);
1116 }
1117 
1118 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1119 					__be32 daddr, __be32 saddr, int nbytes)
1120 {
1121 	struct tcp4_pseudohdr *bp;
1122 	struct scatterlist sg;
1123 
1124 	bp = &hp->md5_blk.ip4;
1125 
1126 	/*
1127 	 * 1. the TCP pseudo-header (in the order: source IP address,
1128 	 * destination IP address, zero-padded protocol number, and
1129 	 * segment length)
1130 	 */
1131 	bp->saddr = saddr;
1132 	bp->daddr = daddr;
1133 	bp->pad = 0;
1134 	bp->protocol = IPPROTO_TCP;
1135 	bp->len = cpu_to_be16(nbytes);
1136 
1137 	sg_init_one(&sg, bp, sizeof(*bp));
1138 	return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1139 }
1140 
1141 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1142 			       __be32 daddr, __be32 saddr, const struct tcphdr *th)
1143 {
1144 	struct tcp_md5sig_pool *hp;
1145 	struct hash_desc *desc;
1146 
1147 	hp = tcp_get_md5sig_pool();
1148 	if (!hp)
1149 		goto clear_hash_noput;
1150 	desc = &hp->md5_desc;
1151 
1152 	if (crypto_hash_init(desc))
1153 		goto clear_hash;
1154 	if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1155 		goto clear_hash;
1156 	if (tcp_md5_hash_header(hp, th))
1157 		goto clear_hash;
1158 	if (tcp_md5_hash_key(hp, key))
1159 		goto clear_hash;
1160 	if (crypto_hash_final(desc, md5_hash))
1161 		goto clear_hash;
1162 
1163 	tcp_put_md5sig_pool();
1164 	return 0;
1165 
1166 clear_hash:
1167 	tcp_put_md5sig_pool();
1168 clear_hash_noput:
1169 	memset(md5_hash, 0, 16);
1170 	return 1;
1171 }
1172 
1173 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1174 			const struct sock *sk, const struct request_sock *req,
1175 			const struct sk_buff *skb)
1176 {
1177 	struct tcp_md5sig_pool *hp;
1178 	struct hash_desc *desc;
1179 	const struct tcphdr *th = tcp_hdr(skb);
1180 	__be32 saddr, daddr;
1181 
1182 	if (sk) {
1183 		saddr = inet_sk(sk)->inet_saddr;
1184 		daddr = inet_sk(sk)->inet_daddr;
1185 	} else if (req) {
1186 		saddr = inet_rsk(req)->loc_addr;
1187 		daddr = inet_rsk(req)->rmt_addr;
1188 	} else {
1189 		const struct iphdr *iph = ip_hdr(skb);
1190 		saddr = iph->saddr;
1191 		daddr = iph->daddr;
1192 	}
1193 
1194 	hp = tcp_get_md5sig_pool();
1195 	if (!hp)
1196 		goto clear_hash_noput;
1197 	desc = &hp->md5_desc;
1198 
1199 	if (crypto_hash_init(desc))
1200 		goto clear_hash;
1201 
1202 	if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1203 		goto clear_hash;
1204 	if (tcp_md5_hash_header(hp, th))
1205 		goto clear_hash;
1206 	if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1207 		goto clear_hash;
1208 	if (tcp_md5_hash_key(hp, key))
1209 		goto clear_hash;
1210 	if (crypto_hash_final(desc, md5_hash))
1211 		goto clear_hash;
1212 
1213 	tcp_put_md5sig_pool();
1214 	return 0;
1215 
1216 clear_hash:
1217 	tcp_put_md5sig_pool();
1218 clear_hash_noput:
1219 	memset(md5_hash, 0, 16);
1220 	return 1;
1221 }
1222 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1223 
1224 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1225 {
1226 	/*
1227 	 * This gets called for each TCP segment that arrives
1228 	 * so we want to be efficient.
1229 	 * We have 3 drop cases:
1230 	 * o No MD5 hash and one expected.
1231 	 * o MD5 hash and we're not expecting one.
1232 	 * o MD5 hash and its wrong.
1233 	 */
1234 	const __u8 *hash_location = NULL;
1235 	struct tcp_md5sig_key *hash_expected;
1236 	const struct iphdr *iph = ip_hdr(skb);
1237 	const struct tcphdr *th = tcp_hdr(skb);
1238 	int genhash;
1239 	unsigned char newhash[16];
1240 
1241 	hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1242 					  AF_INET);
1243 	hash_location = tcp_parse_md5sig_option(th);
1244 
1245 	/* We've parsed the options - do we have a hash? */
1246 	if (!hash_expected && !hash_location)
1247 		return false;
1248 
1249 	if (hash_expected && !hash_location) {
1250 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1251 		return true;
1252 	}
1253 
1254 	if (!hash_expected && hash_location) {
1255 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1256 		return true;
1257 	}
1258 
1259 	/* Okay, so this is hash_expected and hash_location -
1260 	 * so we need to calculate the checksum.
1261 	 */
1262 	genhash = tcp_v4_md5_hash_skb(newhash,
1263 				      hash_expected,
1264 				      NULL, NULL, skb);
1265 
1266 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1267 		net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1268 				     &iph->saddr, ntohs(th->source),
1269 				     &iph->daddr, ntohs(th->dest),
1270 				     genhash ? " tcp_v4_calc_md5_hash failed"
1271 				     : "");
1272 		return true;
1273 	}
1274 	return false;
1275 }
1276 
1277 #endif
1278 
1279 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1280 	.family		=	PF_INET,
1281 	.obj_size	=	sizeof(struct tcp_request_sock),
1282 	.rtx_syn_ack	=	tcp_v4_rtx_synack,
1283 	.send_ack	=	tcp_v4_reqsk_send_ack,
1284 	.destructor	=	tcp_v4_reqsk_destructor,
1285 	.send_reset	=	tcp_v4_send_reset,
1286 	.syn_ack_timeout = 	tcp_syn_ack_timeout,
1287 };
1288 
1289 #ifdef CONFIG_TCP_MD5SIG
1290 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1291 	.md5_lookup	=	tcp_v4_reqsk_md5_lookup,
1292 	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
1293 };
1294 #endif
1295 
1296 static bool tcp_fastopen_check(struct sock *sk, struct sk_buff *skb,
1297 			       struct request_sock *req,
1298 			       struct tcp_fastopen_cookie *foc,
1299 			       struct tcp_fastopen_cookie *valid_foc)
1300 {
1301 	bool skip_cookie = false;
1302 	struct fastopen_queue *fastopenq;
1303 
1304 	if (likely(!fastopen_cookie_present(foc))) {
1305 		/* See include/net/tcp.h for the meaning of these knobs */
1306 		if ((sysctl_tcp_fastopen & TFO_SERVER_ALWAYS) ||
1307 		    ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD) &&
1308 		    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1)))
1309 			skip_cookie = true; /* no cookie to validate */
1310 		else
1311 			return false;
1312 	}
1313 	fastopenq = inet_csk(sk)->icsk_accept_queue.fastopenq;
1314 	/* A FO option is present; bump the counter. */
1315 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVE);
1316 
1317 	/* Make sure the listener has enabled fastopen, and we don't
1318 	 * exceed the max # of pending TFO requests allowed before trying
1319 	 * to validating the cookie in order to avoid burning CPU cycles
1320 	 * unnecessarily.
1321 	 *
1322 	 * XXX (TFO) - The implication of checking the max_qlen before
1323 	 * processing a cookie request is that clients can't differentiate
1324 	 * between qlen overflow causing Fast Open to be disabled
1325 	 * temporarily vs a server not supporting Fast Open at all.
1326 	 */
1327 	if ((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) == 0 ||
1328 	    fastopenq == NULL || fastopenq->max_qlen == 0)
1329 		return false;
1330 
1331 	if (fastopenq->qlen >= fastopenq->max_qlen) {
1332 		struct request_sock *req1;
1333 		spin_lock(&fastopenq->lock);
1334 		req1 = fastopenq->rskq_rst_head;
1335 		if ((req1 == NULL) || time_after(req1->expires, jiffies)) {
1336 			spin_unlock(&fastopenq->lock);
1337 			NET_INC_STATS_BH(sock_net(sk),
1338 			    LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
1339 			/* Avoid bumping LINUX_MIB_TCPFASTOPENPASSIVEFAIL*/
1340 			foc->len = -1;
1341 			return false;
1342 		}
1343 		fastopenq->rskq_rst_head = req1->dl_next;
1344 		fastopenq->qlen--;
1345 		spin_unlock(&fastopenq->lock);
1346 		reqsk_free(req1);
1347 	}
1348 	if (skip_cookie) {
1349 		tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1350 		return true;
1351 	}
1352 	if (foc->len == TCP_FASTOPEN_COOKIE_SIZE) {
1353 		if ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_CHKED) == 0) {
1354 			tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1355 			if ((valid_foc->len != TCP_FASTOPEN_COOKIE_SIZE) ||
1356 			    memcmp(&foc->val[0], &valid_foc->val[0],
1357 			    TCP_FASTOPEN_COOKIE_SIZE) != 0)
1358 				return false;
1359 			valid_foc->len = -1;
1360 		}
1361 		/* Acknowledge the data received from the peer. */
1362 		tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1363 		return true;
1364 	} else if (foc->len == 0) { /* Client requesting a cookie */
1365 		tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1366 		NET_INC_STATS_BH(sock_net(sk),
1367 		    LINUX_MIB_TCPFASTOPENCOOKIEREQD);
1368 	} else {
1369 		/* Client sent a cookie with wrong size. Treat it
1370 		 * the same as invalid and return a valid one.
1371 		 */
1372 		tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1373 	}
1374 	return false;
1375 }
1376 
1377 static int tcp_v4_conn_req_fastopen(struct sock *sk,
1378 				    struct sk_buff *skb,
1379 				    struct sk_buff *skb_synack,
1380 				    struct request_sock *req,
1381 				    struct request_values *rvp)
1382 {
1383 	struct tcp_sock *tp = tcp_sk(sk);
1384 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1385 	const struct inet_request_sock *ireq = inet_rsk(req);
1386 	struct sock *child;
1387 	int err;
1388 
1389 	req->retrans = 0;
1390 	req->sk = NULL;
1391 
1392 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
1393 	if (child == NULL) {
1394 		NET_INC_STATS_BH(sock_net(sk),
1395 				 LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1396 		kfree_skb(skb_synack);
1397 		return -1;
1398 	}
1399 	err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1400 				    ireq->rmt_addr, ireq->opt);
1401 	err = net_xmit_eval(err);
1402 	if (!err)
1403 		tcp_rsk(req)->snt_synack = tcp_time_stamp;
1404 	/* XXX (TFO) - is it ok to ignore error and continue? */
1405 
1406 	spin_lock(&queue->fastopenq->lock);
1407 	queue->fastopenq->qlen++;
1408 	spin_unlock(&queue->fastopenq->lock);
1409 
1410 	/* Initialize the child socket. Have to fix some values to take
1411 	 * into account the child is a Fast Open socket and is created
1412 	 * only out of the bits carried in the SYN packet.
1413 	 */
1414 	tp = tcp_sk(child);
1415 
1416 	tp->fastopen_rsk = req;
1417 	/* Do a hold on the listner sk so that if the listener is being
1418 	 * closed, the child that has been accepted can live on and still
1419 	 * access listen_lock.
1420 	 */
1421 	sock_hold(sk);
1422 	tcp_rsk(req)->listener = sk;
1423 
1424 	/* RFC1323: The window in SYN & SYN/ACK segments is never
1425 	 * scaled. So correct it appropriately.
1426 	 */
1427 	tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
1428 
1429 	/* Activate the retrans timer so that SYNACK can be retransmitted.
1430 	 * The request socket is not added to the SYN table of the parent
1431 	 * because it's been added to the accept queue directly.
1432 	 */
1433 	inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
1434 	    TCP_TIMEOUT_INIT, TCP_RTO_MAX);
1435 
1436 	/* Add the child socket directly into the accept queue */
1437 	inet_csk_reqsk_queue_add(sk, req, child);
1438 
1439 	/* Now finish processing the fastopen child socket. */
1440 	inet_csk(child)->icsk_af_ops->rebuild_header(child);
1441 	tcp_init_congestion_control(child);
1442 	tcp_mtup_init(child);
1443 	tcp_init_buffer_space(child);
1444 	tcp_init_metrics(child);
1445 
1446 	/* Queue the data carried in the SYN packet. We need to first
1447 	 * bump skb's refcnt because the caller will attempt to free it.
1448 	 *
1449 	 * XXX (TFO) - we honor a zero-payload TFO request for now.
1450 	 * (Any reason not to?)
1451 	 */
1452 	if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq + 1) {
1453 		/* Don't queue the skb if there is no payload in SYN.
1454 		 * XXX (TFO) - How about SYN+FIN?
1455 		 */
1456 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1457 	} else {
1458 		skb = skb_get(skb);
1459 		skb_dst_drop(skb);
1460 		__skb_pull(skb, tcp_hdr(skb)->doff * 4);
1461 		skb_set_owner_r(skb, child);
1462 		__skb_queue_tail(&child->sk_receive_queue, skb);
1463 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1464 		tp->syn_data_acked = 1;
1465 	}
1466 	sk->sk_data_ready(sk, 0);
1467 	bh_unlock_sock(child);
1468 	sock_put(child);
1469 	WARN_ON(req->sk == NULL);
1470 	return 0;
1471 }
1472 
1473 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1474 {
1475 	struct tcp_extend_values tmp_ext;
1476 	struct tcp_options_received tmp_opt;
1477 	const u8 *hash_location;
1478 	struct request_sock *req;
1479 	struct inet_request_sock *ireq;
1480 	struct tcp_sock *tp = tcp_sk(sk);
1481 	struct dst_entry *dst = NULL;
1482 	__be32 saddr = ip_hdr(skb)->saddr;
1483 	__be32 daddr = ip_hdr(skb)->daddr;
1484 	__u32 isn = TCP_SKB_CB(skb)->when;
1485 	bool want_cookie = false;
1486 	struct flowi4 fl4;
1487 	struct tcp_fastopen_cookie foc = { .len = -1 };
1488 	struct tcp_fastopen_cookie valid_foc = { .len = -1 };
1489 	struct sk_buff *skb_synack;
1490 	int do_fastopen;
1491 
1492 	/* Never answer to SYNs send to broadcast or multicast */
1493 	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1494 		goto drop;
1495 
1496 	/* TW buckets are converted to open requests without
1497 	 * limitations, they conserve resources and peer is
1498 	 * evidently real one.
1499 	 */
1500 	if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1501 		want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1502 		if (!want_cookie)
1503 			goto drop;
1504 	}
1505 
1506 	/* Accept backlog is full. If we have already queued enough
1507 	 * of warm entries in syn queue, drop request. It is better than
1508 	 * clogging syn queue with openreqs with exponentially increasing
1509 	 * timeout.
1510 	 */
1511 	if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1512 		goto drop;
1513 
1514 	req = inet_reqsk_alloc(&tcp_request_sock_ops);
1515 	if (!req)
1516 		goto drop;
1517 
1518 #ifdef CONFIG_TCP_MD5SIG
1519 	tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1520 #endif
1521 
1522 	tcp_clear_options(&tmp_opt);
1523 	tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1524 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
1525 	tcp_parse_options(skb, &tmp_opt, &hash_location, 0,
1526 	    want_cookie ? NULL : &foc);
1527 
1528 	if (tmp_opt.cookie_plus > 0 &&
1529 	    tmp_opt.saw_tstamp &&
1530 	    !tp->rx_opt.cookie_out_never &&
1531 	    (sysctl_tcp_cookie_size > 0 ||
1532 	     (tp->cookie_values != NULL &&
1533 	      tp->cookie_values->cookie_desired > 0))) {
1534 		u8 *c;
1535 		u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1536 		int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1537 
1538 		if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1539 			goto drop_and_release;
1540 
1541 		/* Secret recipe starts with IP addresses */
1542 		*mess++ ^= (__force u32)daddr;
1543 		*mess++ ^= (__force u32)saddr;
1544 
1545 		/* plus variable length Initiator Cookie */
1546 		c = (u8 *)mess;
1547 		while (l-- > 0)
1548 			*c++ ^= *hash_location++;
1549 
1550 		want_cookie = false;	/* not our kind of cookie */
1551 		tmp_ext.cookie_out_never = 0; /* false */
1552 		tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1553 	} else if (!tp->rx_opt.cookie_in_always) {
1554 		/* redundant indications, but ensure initialization. */
1555 		tmp_ext.cookie_out_never = 1; /* true */
1556 		tmp_ext.cookie_plus = 0;
1557 	} else {
1558 		goto drop_and_release;
1559 	}
1560 	tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1561 
1562 	if (want_cookie && !tmp_opt.saw_tstamp)
1563 		tcp_clear_options(&tmp_opt);
1564 
1565 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1566 	tcp_openreq_init(req, &tmp_opt, skb);
1567 
1568 	ireq = inet_rsk(req);
1569 	ireq->loc_addr = daddr;
1570 	ireq->rmt_addr = saddr;
1571 	ireq->no_srccheck = inet_sk(sk)->transparent;
1572 	ireq->opt = tcp_v4_save_options(skb);
1573 
1574 	if (security_inet_conn_request(sk, skb, req))
1575 		goto drop_and_free;
1576 
1577 	if (!want_cookie || tmp_opt.tstamp_ok)
1578 		TCP_ECN_create_request(req, skb);
1579 
1580 	if (want_cookie) {
1581 		isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1582 		req->cookie_ts = tmp_opt.tstamp_ok;
1583 	} else if (!isn) {
1584 		/* VJ's idea. We save last timestamp seen
1585 		 * from the destination in peer table, when entering
1586 		 * state TIME-WAIT, and check against it before
1587 		 * accepting new connection request.
1588 		 *
1589 		 * If "isn" is not zero, this request hit alive
1590 		 * timewait bucket, so that all the necessary checks
1591 		 * are made in the function processing timewait state.
1592 		 */
1593 		if (tmp_opt.saw_tstamp &&
1594 		    tcp_death_row.sysctl_tw_recycle &&
1595 		    (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1596 		    fl4.daddr == saddr) {
1597 			if (!tcp_peer_is_proven(req, dst, true)) {
1598 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1599 				goto drop_and_release;
1600 			}
1601 		}
1602 		/* Kill the following clause, if you dislike this way. */
1603 		else if (!sysctl_tcp_syncookies &&
1604 			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1605 			  (sysctl_max_syn_backlog >> 2)) &&
1606 			 !tcp_peer_is_proven(req, dst, false)) {
1607 			/* Without syncookies last quarter of
1608 			 * backlog is filled with destinations,
1609 			 * proven to be alive.
1610 			 * It means that we continue to communicate
1611 			 * to destinations, already remembered
1612 			 * to the moment of synflood.
1613 			 */
1614 			LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1615 				       &saddr, ntohs(tcp_hdr(skb)->source));
1616 			goto drop_and_release;
1617 		}
1618 
1619 		isn = tcp_v4_init_sequence(skb);
1620 	}
1621 	tcp_rsk(req)->snt_isn = isn;
1622 
1623 	if (dst == NULL) {
1624 		dst = inet_csk_route_req(sk, &fl4, req);
1625 		if (dst == NULL)
1626 			goto drop_and_free;
1627 	}
1628 	do_fastopen = tcp_fastopen_check(sk, skb, req, &foc, &valid_foc);
1629 
1630 	/* We don't call tcp_v4_send_synack() directly because we need
1631 	 * to make sure a child socket can be created successfully before
1632 	 * sending back synack!
1633 	 *
1634 	 * XXX (TFO) - Ideally one would simply call tcp_v4_send_synack()
1635 	 * (or better yet, call tcp_send_synack() in the child context
1636 	 * directly, but will have to fix bunch of other code first)
1637 	 * after syn_recv_sock() except one will need to first fix the
1638 	 * latter to remove its dependency on the current implementation
1639 	 * of tcp_v4_send_synack()->tcp_select_initial_window().
1640 	 */
1641 	skb_synack = tcp_make_synack(sk, dst, req,
1642 	    (struct request_values *)&tmp_ext,
1643 	    fastopen_cookie_present(&valid_foc) ? &valid_foc : NULL);
1644 
1645 	if (skb_synack) {
1646 		__tcp_v4_send_check(skb_synack, ireq->loc_addr, ireq->rmt_addr);
1647 		skb_set_queue_mapping(skb_synack, skb_get_queue_mapping(skb));
1648 	} else
1649 		goto drop_and_free;
1650 
1651 	if (likely(!do_fastopen)) {
1652 		int err;
1653 		err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1654 		     ireq->rmt_addr, ireq->opt);
1655 		err = net_xmit_eval(err);
1656 		if (err || want_cookie)
1657 			goto drop_and_free;
1658 
1659 		tcp_rsk(req)->snt_synack = tcp_time_stamp;
1660 		tcp_rsk(req)->listener = NULL;
1661 		/* Add the request_sock to the SYN table */
1662 		inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1663 		if (fastopen_cookie_present(&foc) && foc.len != 0)
1664 			NET_INC_STATS_BH(sock_net(sk),
1665 			    LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1666 	} else if (tcp_v4_conn_req_fastopen(sk, skb, skb_synack, req,
1667 	    (struct request_values *)&tmp_ext))
1668 		goto drop_and_free;
1669 
1670 	return 0;
1671 
1672 drop_and_release:
1673 	dst_release(dst);
1674 drop_and_free:
1675 	reqsk_free(req);
1676 drop:
1677 	return 0;
1678 }
1679 EXPORT_SYMBOL(tcp_v4_conn_request);
1680 
1681 
1682 /*
1683  * The three way handshake has completed - we got a valid synack -
1684  * now create the new socket.
1685  */
1686 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1687 				  struct request_sock *req,
1688 				  struct dst_entry *dst)
1689 {
1690 	struct inet_request_sock *ireq;
1691 	struct inet_sock *newinet;
1692 	struct tcp_sock *newtp;
1693 	struct sock *newsk;
1694 #ifdef CONFIG_TCP_MD5SIG
1695 	struct tcp_md5sig_key *key;
1696 #endif
1697 	struct ip_options_rcu *inet_opt;
1698 
1699 	if (sk_acceptq_is_full(sk))
1700 		goto exit_overflow;
1701 
1702 	newsk = tcp_create_openreq_child(sk, req, skb);
1703 	if (!newsk)
1704 		goto exit_nonewsk;
1705 
1706 	newsk->sk_gso_type = SKB_GSO_TCPV4;
1707 	inet_sk_rx_dst_set(newsk, skb);
1708 
1709 	newtp		      = tcp_sk(newsk);
1710 	newinet		      = inet_sk(newsk);
1711 	ireq		      = inet_rsk(req);
1712 	newinet->inet_daddr   = ireq->rmt_addr;
1713 	newinet->inet_rcv_saddr = ireq->loc_addr;
1714 	newinet->inet_saddr	      = ireq->loc_addr;
1715 	inet_opt	      = ireq->opt;
1716 	rcu_assign_pointer(newinet->inet_opt, inet_opt);
1717 	ireq->opt	      = NULL;
1718 	newinet->mc_index     = inet_iif(skb);
1719 	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1720 	newinet->rcv_tos      = ip_hdr(skb)->tos;
1721 	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1722 	if (inet_opt)
1723 		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1724 	newinet->inet_id = newtp->write_seq ^ jiffies;
1725 
1726 	if (!dst) {
1727 		dst = inet_csk_route_child_sock(sk, newsk, req);
1728 		if (!dst)
1729 			goto put_and_exit;
1730 	} else {
1731 		/* syncookie case : see end of cookie_v4_check() */
1732 	}
1733 	sk_setup_caps(newsk, dst);
1734 
1735 	tcp_mtup_init(newsk);
1736 	tcp_sync_mss(newsk, dst_mtu(dst));
1737 	newtp->advmss = dst_metric_advmss(dst);
1738 	if (tcp_sk(sk)->rx_opt.user_mss &&
1739 	    tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1740 		newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1741 
1742 	tcp_initialize_rcv_mss(newsk);
1743 	tcp_synack_rtt_meas(newsk, req);
1744 	newtp->total_retrans = req->retrans;
1745 
1746 #ifdef CONFIG_TCP_MD5SIG
1747 	/* Copy over the MD5 key from the original socket */
1748 	key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1749 				AF_INET);
1750 	if (key != NULL) {
1751 		/*
1752 		 * We're using one, so create a matching key
1753 		 * on the newsk structure. If we fail to get
1754 		 * memory, then we end up not copying the key
1755 		 * across. Shucks.
1756 		 */
1757 		tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1758 			       AF_INET, key->key, key->keylen, GFP_ATOMIC);
1759 		sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1760 	}
1761 #endif
1762 
1763 	if (__inet_inherit_port(sk, newsk) < 0)
1764 		goto put_and_exit;
1765 	__inet_hash_nolisten(newsk, NULL);
1766 
1767 	return newsk;
1768 
1769 exit_overflow:
1770 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1771 exit_nonewsk:
1772 	dst_release(dst);
1773 exit:
1774 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1775 	return NULL;
1776 put_and_exit:
1777 	tcp_clear_xmit_timers(newsk);
1778 	tcp_cleanup_congestion_control(newsk);
1779 	bh_unlock_sock(newsk);
1780 	sock_put(newsk);
1781 	goto exit;
1782 }
1783 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1784 
1785 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1786 {
1787 	struct tcphdr *th = tcp_hdr(skb);
1788 	const struct iphdr *iph = ip_hdr(skb);
1789 	struct sock *nsk;
1790 	struct request_sock **prev;
1791 	/* Find possible connection requests. */
1792 	struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1793 						       iph->saddr, iph->daddr);
1794 	if (req)
1795 		return tcp_check_req(sk, skb, req, prev, false);
1796 
1797 	nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1798 			th->source, iph->daddr, th->dest, inet_iif(skb));
1799 
1800 	if (nsk) {
1801 		if (nsk->sk_state != TCP_TIME_WAIT) {
1802 			bh_lock_sock(nsk);
1803 			return nsk;
1804 		}
1805 		inet_twsk_put(inet_twsk(nsk));
1806 		return NULL;
1807 	}
1808 
1809 #ifdef CONFIG_SYN_COOKIES
1810 	if (!th->syn)
1811 		sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1812 #endif
1813 	return sk;
1814 }
1815 
1816 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1817 {
1818 	const struct iphdr *iph = ip_hdr(skb);
1819 
1820 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
1821 		if (!tcp_v4_check(skb->len, iph->saddr,
1822 				  iph->daddr, skb->csum)) {
1823 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1824 			return 0;
1825 		}
1826 	}
1827 
1828 	skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1829 				       skb->len, IPPROTO_TCP, 0);
1830 
1831 	if (skb->len <= 76) {
1832 		return __skb_checksum_complete(skb);
1833 	}
1834 	return 0;
1835 }
1836 
1837 
1838 /* The socket must have it's spinlock held when we get
1839  * here.
1840  *
1841  * We have a potential double-lock case here, so even when
1842  * doing backlog processing we use the BH locking scheme.
1843  * This is because we cannot sleep with the original spinlock
1844  * held.
1845  */
1846 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1847 {
1848 	struct sock *rsk;
1849 #ifdef CONFIG_TCP_MD5SIG
1850 	/*
1851 	 * We really want to reject the packet as early as possible
1852 	 * if:
1853 	 *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1854 	 *  o There is an MD5 option and we're not expecting one
1855 	 */
1856 	if (tcp_v4_inbound_md5_hash(sk, skb))
1857 		goto discard;
1858 #endif
1859 
1860 	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1861 		struct dst_entry *dst = sk->sk_rx_dst;
1862 
1863 		sock_rps_save_rxhash(sk, skb);
1864 		if (dst) {
1865 			if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1866 			    dst->ops->check(dst, 0) == NULL) {
1867 				dst_release(dst);
1868 				sk->sk_rx_dst = NULL;
1869 			}
1870 		}
1871 		if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1872 			rsk = sk;
1873 			goto reset;
1874 		}
1875 		return 0;
1876 	}
1877 
1878 	if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1879 		goto csum_err;
1880 
1881 	if (sk->sk_state == TCP_LISTEN) {
1882 		struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1883 		if (!nsk)
1884 			goto discard;
1885 
1886 		if (nsk != sk) {
1887 			sock_rps_save_rxhash(nsk, skb);
1888 			if (tcp_child_process(sk, nsk, skb)) {
1889 				rsk = nsk;
1890 				goto reset;
1891 			}
1892 			return 0;
1893 		}
1894 	} else
1895 		sock_rps_save_rxhash(sk, skb);
1896 
1897 	if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1898 		rsk = sk;
1899 		goto reset;
1900 	}
1901 	return 0;
1902 
1903 reset:
1904 	tcp_v4_send_reset(rsk, skb);
1905 discard:
1906 	kfree_skb(skb);
1907 	/* Be careful here. If this function gets more complicated and
1908 	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1909 	 * might be destroyed here. This current version compiles correctly,
1910 	 * but you have been warned.
1911 	 */
1912 	return 0;
1913 
1914 csum_err:
1915 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1916 	goto discard;
1917 }
1918 EXPORT_SYMBOL(tcp_v4_do_rcv);
1919 
1920 void tcp_v4_early_demux(struct sk_buff *skb)
1921 {
1922 	struct net *net = dev_net(skb->dev);
1923 	const struct iphdr *iph;
1924 	const struct tcphdr *th;
1925 	struct sock *sk;
1926 
1927 	if (skb->pkt_type != PACKET_HOST)
1928 		return;
1929 
1930 	if (!pskb_may_pull(skb, ip_hdrlen(skb) + sizeof(struct tcphdr)))
1931 		return;
1932 
1933 	iph = ip_hdr(skb);
1934 	th = (struct tcphdr *) ((char *)iph + ip_hdrlen(skb));
1935 
1936 	if (th->doff < sizeof(struct tcphdr) / 4)
1937 		return;
1938 
1939 	sk = __inet_lookup_established(net, &tcp_hashinfo,
1940 				       iph->saddr, th->source,
1941 				       iph->daddr, ntohs(th->dest),
1942 				       skb->skb_iif);
1943 	if (sk) {
1944 		skb->sk = sk;
1945 		skb->destructor = sock_edemux;
1946 		if (sk->sk_state != TCP_TIME_WAIT) {
1947 			struct dst_entry *dst = sk->sk_rx_dst;
1948 
1949 			if (dst)
1950 				dst = dst_check(dst, 0);
1951 			if (dst &&
1952 			    inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1953 				skb_dst_set_noref(skb, dst);
1954 		}
1955 	}
1956 }
1957 
1958 /*
1959  *	From tcp_input.c
1960  */
1961 
1962 int tcp_v4_rcv(struct sk_buff *skb)
1963 {
1964 	const struct iphdr *iph;
1965 	const struct tcphdr *th;
1966 	struct sock *sk;
1967 	int ret;
1968 	struct net *net = dev_net(skb->dev);
1969 
1970 	if (skb->pkt_type != PACKET_HOST)
1971 		goto discard_it;
1972 
1973 	/* Count it even if it's bad */
1974 	TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1975 
1976 	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1977 		goto discard_it;
1978 
1979 	th = tcp_hdr(skb);
1980 
1981 	if (th->doff < sizeof(struct tcphdr) / 4)
1982 		goto bad_packet;
1983 	if (!pskb_may_pull(skb, th->doff * 4))
1984 		goto discard_it;
1985 
1986 	/* An explanation is required here, I think.
1987 	 * Packet length and doff are validated by header prediction,
1988 	 * provided case of th->doff==0 is eliminated.
1989 	 * So, we defer the checks. */
1990 	if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1991 		goto bad_packet;
1992 
1993 	th = tcp_hdr(skb);
1994 	iph = ip_hdr(skb);
1995 	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1996 	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1997 				    skb->len - th->doff * 4);
1998 	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1999 	TCP_SKB_CB(skb)->when	 = 0;
2000 	TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
2001 	TCP_SKB_CB(skb)->sacked	 = 0;
2002 
2003 	sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
2004 	if (!sk)
2005 		goto no_tcp_socket;
2006 
2007 process:
2008 	if (sk->sk_state == TCP_TIME_WAIT)
2009 		goto do_time_wait;
2010 
2011 	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
2012 		NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
2013 		goto discard_and_relse;
2014 	}
2015 
2016 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2017 		goto discard_and_relse;
2018 	nf_reset(skb);
2019 
2020 	if (sk_filter(sk, skb))
2021 		goto discard_and_relse;
2022 
2023 	skb->dev = NULL;
2024 
2025 	bh_lock_sock_nested(sk);
2026 	ret = 0;
2027 	if (!sock_owned_by_user(sk)) {
2028 #ifdef CONFIG_NET_DMA
2029 		struct tcp_sock *tp = tcp_sk(sk);
2030 		if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
2031 			tp->ucopy.dma_chan = net_dma_find_channel();
2032 		if (tp->ucopy.dma_chan)
2033 			ret = tcp_v4_do_rcv(sk, skb);
2034 		else
2035 #endif
2036 		{
2037 			if (!tcp_prequeue(sk, skb))
2038 				ret = tcp_v4_do_rcv(sk, skb);
2039 		}
2040 	} else if (unlikely(sk_add_backlog(sk, skb,
2041 					   sk->sk_rcvbuf + sk->sk_sndbuf))) {
2042 		bh_unlock_sock(sk);
2043 		NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
2044 		goto discard_and_relse;
2045 	}
2046 	bh_unlock_sock(sk);
2047 
2048 	sock_put(sk);
2049 
2050 	return ret;
2051 
2052 no_tcp_socket:
2053 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2054 		goto discard_it;
2055 
2056 	if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2057 bad_packet:
2058 		TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2059 	} else {
2060 		tcp_v4_send_reset(NULL, skb);
2061 	}
2062 
2063 discard_it:
2064 	/* Discard frame. */
2065 	kfree_skb(skb);
2066 	return 0;
2067 
2068 discard_and_relse:
2069 	sock_put(sk);
2070 	goto discard_it;
2071 
2072 do_time_wait:
2073 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2074 		inet_twsk_put(inet_twsk(sk));
2075 		goto discard_it;
2076 	}
2077 
2078 	if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2079 		TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2080 		inet_twsk_put(inet_twsk(sk));
2081 		goto discard_it;
2082 	}
2083 	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2084 	case TCP_TW_SYN: {
2085 		struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
2086 							&tcp_hashinfo,
2087 							iph->daddr, th->dest,
2088 							inet_iif(skb));
2089 		if (sk2) {
2090 			inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
2091 			inet_twsk_put(inet_twsk(sk));
2092 			sk = sk2;
2093 			goto process;
2094 		}
2095 		/* Fall through to ACK */
2096 	}
2097 	case TCP_TW_ACK:
2098 		tcp_v4_timewait_ack(sk, skb);
2099 		break;
2100 	case TCP_TW_RST:
2101 		goto no_tcp_socket;
2102 	case TCP_TW_SUCCESS:;
2103 	}
2104 	goto discard_it;
2105 }
2106 
2107 static struct timewait_sock_ops tcp_timewait_sock_ops = {
2108 	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
2109 	.twsk_unique	= tcp_twsk_unique,
2110 	.twsk_destructor= tcp_twsk_destructor,
2111 };
2112 
2113 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2114 {
2115 	struct dst_entry *dst = skb_dst(skb);
2116 
2117 	dst_hold(dst);
2118 	sk->sk_rx_dst = dst;
2119 	inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
2120 }
2121 EXPORT_SYMBOL(inet_sk_rx_dst_set);
2122 
2123 const struct inet_connection_sock_af_ops ipv4_specific = {
2124 	.queue_xmit	   = ip_queue_xmit,
2125 	.send_check	   = tcp_v4_send_check,
2126 	.rebuild_header	   = inet_sk_rebuild_header,
2127 	.sk_rx_dst_set	   = inet_sk_rx_dst_set,
2128 	.conn_request	   = tcp_v4_conn_request,
2129 	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
2130 	.net_header_len	   = sizeof(struct iphdr),
2131 	.setsockopt	   = ip_setsockopt,
2132 	.getsockopt	   = ip_getsockopt,
2133 	.addr2sockaddr	   = inet_csk_addr2sockaddr,
2134 	.sockaddr_len	   = sizeof(struct sockaddr_in),
2135 	.bind_conflict	   = inet_csk_bind_conflict,
2136 #ifdef CONFIG_COMPAT
2137 	.compat_setsockopt = compat_ip_setsockopt,
2138 	.compat_getsockopt = compat_ip_getsockopt,
2139 #endif
2140 };
2141 EXPORT_SYMBOL(ipv4_specific);
2142 
2143 #ifdef CONFIG_TCP_MD5SIG
2144 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2145 	.md5_lookup		= tcp_v4_md5_lookup,
2146 	.calc_md5_hash		= tcp_v4_md5_hash_skb,
2147 	.md5_parse		= tcp_v4_parse_md5_keys,
2148 };
2149 #endif
2150 
2151 /* NOTE: A lot of things set to zero explicitly by call to
2152  *       sk_alloc() so need not be done here.
2153  */
2154 static int tcp_v4_init_sock(struct sock *sk)
2155 {
2156 	struct inet_connection_sock *icsk = inet_csk(sk);
2157 
2158 	tcp_init_sock(sk);
2159 
2160 	icsk->icsk_af_ops = &ipv4_specific;
2161 
2162 #ifdef CONFIG_TCP_MD5SIG
2163 	tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2164 #endif
2165 
2166 	return 0;
2167 }
2168 
2169 void tcp_v4_destroy_sock(struct sock *sk)
2170 {
2171 	struct tcp_sock *tp = tcp_sk(sk);
2172 
2173 	tcp_clear_xmit_timers(sk);
2174 
2175 	tcp_cleanup_congestion_control(sk);
2176 
2177 	/* Cleanup up the write buffer. */
2178 	tcp_write_queue_purge(sk);
2179 
2180 	/* Cleans up our, hopefully empty, out_of_order_queue. */
2181 	__skb_queue_purge(&tp->out_of_order_queue);
2182 
2183 #ifdef CONFIG_TCP_MD5SIG
2184 	/* Clean up the MD5 key list, if any */
2185 	if (tp->md5sig_info) {
2186 		tcp_clear_md5_list(sk);
2187 		kfree_rcu(tp->md5sig_info, rcu);
2188 		tp->md5sig_info = NULL;
2189 	}
2190 #endif
2191 
2192 #ifdef CONFIG_NET_DMA
2193 	/* Cleans up our sk_async_wait_queue */
2194 	__skb_queue_purge(&sk->sk_async_wait_queue);
2195 #endif
2196 
2197 	/* Clean prequeue, it must be empty really */
2198 	__skb_queue_purge(&tp->ucopy.prequeue);
2199 
2200 	/* Clean up a referenced TCP bind bucket. */
2201 	if (inet_csk(sk)->icsk_bind_hash)
2202 		inet_put_port(sk);
2203 
2204 	/* TCP Cookie Transactions */
2205 	if (tp->cookie_values != NULL) {
2206 		kref_put(&tp->cookie_values->kref,
2207 			 tcp_cookie_values_release);
2208 		tp->cookie_values = NULL;
2209 	}
2210 	BUG_ON(tp->fastopen_rsk != NULL);
2211 
2212 	/* If socket is aborted during connect operation */
2213 	tcp_free_fastopen_req(tp);
2214 
2215 	sk_sockets_allocated_dec(sk);
2216 	sock_release_memcg(sk);
2217 }
2218 EXPORT_SYMBOL(tcp_v4_destroy_sock);
2219 
2220 #ifdef CONFIG_PROC_FS
2221 /* Proc filesystem TCP sock list dumping. */
2222 
2223 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
2224 {
2225 	return hlist_nulls_empty(head) ? NULL :
2226 		list_entry(head->first, struct inet_timewait_sock, tw_node);
2227 }
2228 
2229 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
2230 {
2231 	return !is_a_nulls(tw->tw_node.next) ?
2232 		hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
2233 }
2234 
2235 /*
2236  * Get next listener socket follow cur.  If cur is NULL, get first socket
2237  * starting from bucket given in st->bucket; when st->bucket is zero the
2238  * very first socket in the hash table is returned.
2239  */
2240 static void *listening_get_next(struct seq_file *seq, void *cur)
2241 {
2242 	struct inet_connection_sock *icsk;
2243 	struct hlist_nulls_node *node;
2244 	struct sock *sk = cur;
2245 	struct inet_listen_hashbucket *ilb;
2246 	struct tcp_iter_state *st = seq->private;
2247 	struct net *net = seq_file_net(seq);
2248 
2249 	if (!sk) {
2250 		ilb = &tcp_hashinfo.listening_hash[st->bucket];
2251 		spin_lock_bh(&ilb->lock);
2252 		sk = sk_nulls_head(&ilb->head);
2253 		st->offset = 0;
2254 		goto get_sk;
2255 	}
2256 	ilb = &tcp_hashinfo.listening_hash[st->bucket];
2257 	++st->num;
2258 	++st->offset;
2259 
2260 	if (st->state == TCP_SEQ_STATE_OPENREQ) {
2261 		struct request_sock *req = cur;
2262 
2263 		icsk = inet_csk(st->syn_wait_sk);
2264 		req = req->dl_next;
2265 		while (1) {
2266 			while (req) {
2267 				if (req->rsk_ops->family == st->family) {
2268 					cur = req;
2269 					goto out;
2270 				}
2271 				req = req->dl_next;
2272 			}
2273 			if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2274 				break;
2275 get_req:
2276 			req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2277 		}
2278 		sk	  = sk_nulls_next(st->syn_wait_sk);
2279 		st->state = TCP_SEQ_STATE_LISTENING;
2280 		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2281 	} else {
2282 		icsk = inet_csk(sk);
2283 		read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2284 		if (reqsk_queue_len(&icsk->icsk_accept_queue))
2285 			goto start_req;
2286 		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2287 		sk = sk_nulls_next(sk);
2288 	}
2289 get_sk:
2290 	sk_nulls_for_each_from(sk, node) {
2291 		if (!net_eq(sock_net(sk), net))
2292 			continue;
2293 		if (sk->sk_family == st->family) {
2294 			cur = sk;
2295 			goto out;
2296 		}
2297 		icsk = inet_csk(sk);
2298 		read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2299 		if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2300 start_req:
2301 			st->uid		= sock_i_uid(sk);
2302 			st->syn_wait_sk = sk;
2303 			st->state	= TCP_SEQ_STATE_OPENREQ;
2304 			st->sbucket	= 0;
2305 			goto get_req;
2306 		}
2307 		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2308 	}
2309 	spin_unlock_bh(&ilb->lock);
2310 	st->offset = 0;
2311 	if (++st->bucket < INET_LHTABLE_SIZE) {
2312 		ilb = &tcp_hashinfo.listening_hash[st->bucket];
2313 		spin_lock_bh(&ilb->lock);
2314 		sk = sk_nulls_head(&ilb->head);
2315 		goto get_sk;
2316 	}
2317 	cur = NULL;
2318 out:
2319 	return cur;
2320 }
2321 
2322 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2323 {
2324 	struct tcp_iter_state *st = seq->private;
2325 	void *rc;
2326 
2327 	st->bucket = 0;
2328 	st->offset = 0;
2329 	rc = listening_get_next(seq, NULL);
2330 
2331 	while (rc && *pos) {
2332 		rc = listening_get_next(seq, rc);
2333 		--*pos;
2334 	}
2335 	return rc;
2336 }
2337 
2338 static inline bool empty_bucket(struct tcp_iter_state *st)
2339 {
2340 	return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2341 		hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2342 }
2343 
2344 /*
2345  * Get first established socket starting from bucket given in st->bucket.
2346  * If st->bucket is zero, the very first socket in the hash is returned.
2347  */
2348 static void *established_get_first(struct seq_file *seq)
2349 {
2350 	struct tcp_iter_state *st = seq->private;
2351 	struct net *net = seq_file_net(seq);
2352 	void *rc = NULL;
2353 
2354 	st->offset = 0;
2355 	for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2356 		struct sock *sk;
2357 		struct hlist_nulls_node *node;
2358 		struct inet_timewait_sock *tw;
2359 		spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2360 
2361 		/* Lockless fast path for the common case of empty buckets */
2362 		if (empty_bucket(st))
2363 			continue;
2364 
2365 		spin_lock_bh(lock);
2366 		sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2367 			if (sk->sk_family != st->family ||
2368 			    !net_eq(sock_net(sk), net)) {
2369 				continue;
2370 			}
2371 			rc = sk;
2372 			goto out;
2373 		}
2374 		st->state = TCP_SEQ_STATE_TIME_WAIT;
2375 		inet_twsk_for_each(tw, node,
2376 				   &tcp_hashinfo.ehash[st->bucket].twchain) {
2377 			if (tw->tw_family != st->family ||
2378 			    !net_eq(twsk_net(tw), net)) {
2379 				continue;
2380 			}
2381 			rc = tw;
2382 			goto out;
2383 		}
2384 		spin_unlock_bh(lock);
2385 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2386 	}
2387 out:
2388 	return rc;
2389 }
2390 
2391 static void *established_get_next(struct seq_file *seq, void *cur)
2392 {
2393 	struct sock *sk = cur;
2394 	struct inet_timewait_sock *tw;
2395 	struct hlist_nulls_node *node;
2396 	struct tcp_iter_state *st = seq->private;
2397 	struct net *net = seq_file_net(seq);
2398 
2399 	++st->num;
2400 	++st->offset;
2401 
2402 	if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2403 		tw = cur;
2404 		tw = tw_next(tw);
2405 get_tw:
2406 		while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2407 			tw = tw_next(tw);
2408 		}
2409 		if (tw) {
2410 			cur = tw;
2411 			goto out;
2412 		}
2413 		spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2414 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2415 
2416 		/* Look for next non empty bucket */
2417 		st->offset = 0;
2418 		while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2419 				empty_bucket(st))
2420 			;
2421 		if (st->bucket > tcp_hashinfo.ehash_mask)
2422 			return NULL;
2423 
2424 		spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2425 		sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2426 	} else
2427 		sk = sk_nulls_next(sk);
2428 
2429 	sk_nulls_for_each_from(sk, node) {
2430 		if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2431 			goto found;
2432 	}
2433 
2434 	st->state = TCP_SEQ_STATE_TIME_WAIT;
2435 	tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2436 	goto get_tw;
2437 found:
2438 	cur = sk;
2439 out:
2440 	return cur;
2441 }
2442 
2443 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2444 {
2445 	struct tcp_iter_state *st = seq->private;
2446 	void *rc;
2447 
2448 	st->bucket = 0;
2449 	rc = established_get_first(seq);
2450 
2451 	while (rc && pos) {
2452 		rc = established_get_next(seq, rc);
2453 		--pos;
2454 	}
2455 	return rc;
2456 }
2457 
2458 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2459 {
2460 	void *rc;
2461 	struct tcp_iter_state *st = seq->private;
2462 
2463 	st->state = TCP_SEQ_STATE_LISTENING;
2464 	rc	  = listening_get_idx(seq, &pos);
2465 
2466 	if (!rc) {
2467 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2468 		rc	  = established_get_idx(seq, pos);
2469 	}
2470 
2471 	return rc;
2472 }
2473 
2474 static void *tcp_seek_last_pos(struct seq_file *seq)
2475 {
2476 	struct tcp_iter_state *st = seq->private;
2477 	int offset = st->offset;
2478 	int orig_num = st->num;
2479 	void *rc = NULL;
2480 
2481 	switch (st->state) {
2482 	case TCP_SEQ_STATE_OPENREQ:
2483 	case TCP_SEQ_STATE_LISTENING:
2484 		if (st->bucket >= INET_LHTABLE_SIZE)
2485 			break;
2486 		st->state = TCP_SEQ_STATE_LISTENING;
2487 		rc = listening_get_next(seq, NULL);
2488 		while (offset-- && rc)
2489 			rc = listening_get_next(seq, rc);
2490 		if (rc)
2491 			break;
2492 		st->bucket = 0;
2493 		/* Fallthrough */
2494 	case TCP_SEQ_STATE_ESTABLISHED:
2495 	case TCP_SEQ_STATE_TIME_WAIT:
2496 		st->state = TCP_SEQ_STATE_ESTABLISHED;
2497 		if (st->bucket > tcp_hashinfo.ehash_mask)
2498 			break;
2499 		rc = established_get_first(seq);
2500 		while (offset-- && rc)
2501 			rc = established_get_next(seq, rc);
2502 	}
2503 
2504 	st->num = orig_num;
2505 
2506 	return rc;
2507 }
2508 
2509 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2510 {
2511 	struct tcp_iter_state *st = seq->private;
2512 	void *rc;
2513 
2514 	if (*pos && *pos == st->last_pos) {
2515 		rc = tcp_seek_last_pos(seq);
2516 		if (rc)
2517 			goto out;
2518 	}
2519 
2520 	st->state = TCP_SEQ_STATE_LISTENING;
2521 	st->num = 0;
2522 	st->bucket = 0;
2523 	st->offset = 0;
2524 	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2525 
2526 out:
2527 	st->last_pos = *pos;
2528 	return rc;
2529 }
2530 
2531 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2532 {
2533 	struct tcp_iter_state *st = seq->private;
2534 	void *rc = NULL;
2535 
2536 	if (v == SEQ_START_TOKEN) {
2537 		rc = tcp_get_idx(seq, 0);
2538 		goto out;
2539 	}
2540 
2541 	switch (st->state) {
2542 	case TCP_SEQ_STATE_OPENREQ:
2543 	case TCP_SEQ_STATE_LISTENING:
2544 		rc = listening_get_next(seq, v);
2545 		if (!rc) {
2546 			st->state = TCP_SEQ_STATE_ESTABLISHED;
2547 			st->bucket = 0;
2548 			st->offset = 0;
2549 			rc	  = established_get_first(seq);
2550 		}
2551 		break;
2552 	case TCP_SEQ_STATE_ESTABLISHED:
2553 	case TCP_SEQ_STATE_TIME_WAIT:
2554 		rc = established_get_next(seq, v);
2555 		break;
2556 	}
2557 out:
2558 	++*pos;
2559 	st->last_pos = *pos;
2560 	return rc;
2561 }
2562 
2563 static void tcp_seq_stop(struct seq_file *seq, void *v)
2564 {
2565 	struct tcp_iter_state *st = seq->private;
2566 
2567 	switch (st->state) {
2568 	case TCP_SEQ_STATE_OPENREQ:
2569 		if (v) {
2570 			struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2571 			read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2572 		}
2573 	case TCP_SEQ_STATE_LISTENING:
2574 		if (v != SEQ_START_TOKEN)
2575 			spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2576 		break;
2577 	case TCP_SEQ_STATE_TIME_WAIT:
2578 	case TCP_SEQ_STATE_ESTABLISHED:
2579 		if (v)
2580 			spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2581 		break;
2582 	}
2583 }
2584 
2585 int tcp_seq_open(struct inode *inode, struct file *file)
2586 {
2587 	struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2588 	struct tcp_iter_state *s;
2589 	int err;
2590 
2591 	err = seq_open_net(inode, file, &afinfo->seq_ops,
2592 			  sizeof(struct tcp_iter_state));
2593 	if (err < 0)
2594 		return err;
2595 
2596 	s = ((struct seq_file *)file->private_data)->private;
2597 	s->family		= afinfo->family;
2598 	s->last_pos 		= 0;
2599 	return 0;
2600 }
2601 EXPORT_SYMBOL(tcp_seq_open);
2602 
2603 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2604 {
2605 	int rc = 0;
2606 	struct proc_dir_entry *p;
2607 
2608 	afinfo->seq_ops.start		= tcp_seq_start;
2609 	afinfo->seq_ops.next		= tcp_seq_next;
2610 	afinfo->seq_ops.stop		= tcp_seq_stop;
2611 
2612 	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2613 			     afinfo->seq_fops, afinfo);
2614 	if (!p)
2615 		rc = -ENOMEM;
2616 	return rc;
2617 }
2618 EXPORT_SYMBOL(tcp_proc_register);
2619 
2620 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2621 {
2622 	proc_net_remove(net, afinfo->name);
2623 }
2624 EXPORT_SYMBOL(tcp_proc_unregister);
2625 
2626 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2627 			 struct seq_file *f, int i, kuid_t uid, int *len)
2628 {
2629 	const struct inet_request_sock *ireq = inet_rsk(req);
2630 	long delta = req->expires - jiffies;
2631 
2632 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2633 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2634 		i,
2635 		ireq->loc_addr,
2636 		ntohs(inet_sk(sk)->inet_sport),
2637 		ireq->rmt_addr,
2638 		ntohs(ireq->rmt_port),
2639 		TCP_SYN_RECV,
2640 		0, 0, /* could print option size, but that is af dependent. */
2641 		1,    /* timers active (only the expire timer) */
2642 		jiffies_delta_to_clock_t(delta),
2643 		req->retrans,
2644 		from_kuid_munged(seq_user_ns(f), uid),
2645 		0,  /* non standard timer */
2646 		0, /* open_requests have no inode */
2647 		atomic_read(&sk->sk_refcnt),
2648 		req,
2649 		len);
2650 }
2651 
2652 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2653 {
2654 	int timer_active;
2655 	unsigned long timer_expires;
2656 	const struct tcp_sock *tp = tcp_sk(sk);
2657 	const struct inet_connection_sock *icsk = inet_csk(sk);
2658 	const struct inet_sock *inet = inet_sk(sk);
2659 	struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq;
2660 	__be32 dest = inet->inet_daddr;
2661 	__be32 src = inet->inet_rcv_saddr;
2662 	__u16 destp = ntohs(inet->inet_dport);
2663 	__u16 srcp = ntohs(inet->inet_sport);
2664 	int rx_queue;
2665 
2666 	if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2667 		timer_active	= 1;
2668 		timer_expires	= icsk->icsk_timeout;
2669 	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2670 		timer_active	= 4;
2671 		timer_expires	= icsk->icsk_timeout;
2672 	} else if (timer_pending(&sk->sk_timer)) {
2673 		timer_active	= 2;
2674 		timer_expires	= sk->sk_timer.expires;
2675 	} else {
2676 		timer_active	= 0;
2677 		timer_expires = jiffies;
2678 	}
2679 
2680 	if (sk->sk_state == TCP_LISTEN)
2681 		rx_queue = sk->sk_ack_backlog;
2682 	else
2683 		/*
2684 		 * because we dont lock socket, we might find a transient negative value
2685 		 */
2686 		rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2687 
2688 	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2689 			"%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2690 		i, src, srcp, dest, destp, sk->sk_state,
2691 		tp->write_seq - tp->snd_una,
2692 		rx_queue,
2693 		timer_active,
2694 		jiffies_delta_to_clock_t(timer_expires - jiffies),
2695 		icsk->icsk_retransmits,
2696 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2697 		icsk->icsk_probes_out,
2698 		sock_i_ino(sk),
2699 		atomic_read(&sk->sk_refcnt), sk,
2700 		jiffies_to_clock_t(icsk->icsk_rto),
2701 		jiffies_to_clock_t(icsk->icsk_ack.ato),
2702 		(icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2703 		tp->snd_cwnd,
2704 		sk->sk_state == TCP_LISTEN ?
2705 		    (fastopenq ? fastopenq->max_qlen : 0) :
2706 		    (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh),
2707 		len);
2708 }
2709 
2710 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2711 			       struct seq_file *f, int i, int *len)
2712 {
2713 	__be32 dest, src;
2714 	__u16 destp, srcp;
2715 	long delta = tw->tw_ttd - jiffies;
2716 
2717 	dest  = tw->tw_daddr;
2718 	src   = tw->tw_rcv_saddr;
2719 	destp = ntohs(tw->tw_dport);
2720 	srcp  = ntohs(tw->tw_sport);
2721 
2722 	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2723 		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2724 		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2725 		3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2726 		atomic_read(&tw->tw_refcnt), tw, len);
2727 }
2728 
2729 #define TMPSZ 150
2730 
2731 static int tcp4_seq_show(struct seq_file *seq, void *v)
2732 {
2733 	struct tcp_iter_state *st;
2734 	int len;
2735 
2736 	if (v == SEQ_START_TOKEN) {
2737 		seq_printf(seq, "%-*s\n", TMPSZ - 1,
2738 			   "  sl  local_address rem_address   st tx_queue "
2739 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2740 			   "inode");
2741 		goto out;
2742 	}
2743 	st = seq->private;
2744 
2745 	switch (st->state) {
2746 	case TCP_SEQ_STATE_LISTENING:
2747 	case TCP_SEQ_STATE_ESTABLISHED:
2748 		get_tcp4_sock(v, seq, st->num, &len);
2749 		break;
2750 	case TCP_SEQ_STATE_OPENREQ:
2751 		get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2752 		break;
2753 	case TCP_SEQ_STATE_TIME_WAIT:
2754 		get_timewait4_sock(v, seq, st->num, &len);
2755 		break;
2756 	}
2757 	seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2758 out:
2759 	return 0;
2760 }
2761 
2762 static const struct file_operations tcp_afinfo_seq_fops = {
2763 	.owner   = THIS_MODULE,
2764 	.open    = tcp_seq_open,
2765 	.read    = seq_read,
2766 	.llseek  = seq_lseek,
2767 	.release = seq_release_net
2768 };
2769 
2770 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2771 	.name		= "tcp",
2772 	.family		= AF_INET,
2773 	.seq_fops	= &tcp_afinfo_seq_fops,
2774 	.seq_ops	= {
2775 		.show		= tcp4_seq_show,
2776 	},
2777 };
2778 
2779 static int __net_init tcp4_proc_init_net(struct net *net)
2780 {
2781 	return tcp_proc_register(net, &tcp4_seq_afinfo);
2782 }
2783 
2784 static void __net_exit tcp4_proc_exit_net(struct net *net)
2785 {
2786 	tcp_proc_unregister(net, &tcp4_seq_afinfo);
2787 }
2788 
2789 static struct pernet_operations tcp4_net_ops = {
2790 	.init = tcp4_proc_init_net,
2791 	.exit = tcp4_proc_exit_net,
2792 };
2793 
2794 int __init tcp4_proc_init(void)
2795 {
2796 	return register_pernet_subsys(&tcp4_net_ops);
2797 }
2798 
2799 void tcp4_proc_exit(void)
2800 {
2801 	unregister_pernet_subsys(&tcp4_net_ops);
2802 }
2803 #endif /* CONFIG_PROC_FS */
2804 
2805 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2806 {
2807 	const struct iphdr *iph = skb_gro_network_header(skb);
2808 	__wsum wsum;
2809 	__sum16 sum;
2810 
2811 	switch (skb->ip_summed) {
2812 	case CHECKSUM_COMPLETE:
2813 		if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2814 				  skb->csum)) {
2815 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2816 			break;
2817 		}
2818 flush:
2819 		NAPI_GRO_CB(skb)->flush = 1;
2820 		return NULL;
2821 
2822 	case CHECKSUM_NONE:
2823 		wsum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
2824 					  skb_gro_len(skb), IPPROTO_TCP, 0);
2825 		sum = csum_fold(skb_checksum(skb,
2826 					     skb_gro_offset(skb),
2827 					     skb_gro_len(skb),
2828 					     wsum));
2829 		if (sum)
2830 			goto flush;
2831 
2832 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2833 		break;
2834 	}
2835 
2836 	return tcp_gro_receive(head, skb);
2837 }
2838 
2839 int tcp4_gro_complete(struct sk_buff *skb)
2840 {
2841 	const struct iphdr *iph = ip_hdr(skb);
2842 	struct tcphdr *th = tcp_hdr(skb);
2843 
2844 	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2845 				  iph->saddr, iph->daddr, 0);
2846 	skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2847 
2848 	return tcp_gro_complete(skb);
2849 }
2850 
2851 struct proto tcp_prot = {
2852 	.name			= "TCP",
2853 	.owner			= THIS_MODULE,
2854 	.close			= tcp_close,
2855 	.connect		= tcp_v4_connect,
2856 	.disconnect		= tcp_disconnect,
2857 	.accept			= inet_csk_accept,
2858 	.ioctl			= tcp_ioctl,
2859 	.init			= tcp_v4_init_sock,
2860 	.destroy		= tcp_v4_destroy_sock,
2861 	.shutdown		= tcp_shutdown,
2862 	.setsockopt		= tcp_setsockopt,
2863 	.getsockopt		= tcp_getsockopt,
2864 	.recvmsg		= tcp_recvmsg,
2865 	.sendmsg		= tcp_sendmsg,
2866 	.sendpage		= tcp_sendpage,
2867 	.backlog_rcv		= tcp_v4_do_rcv,
2868 	.release_cb		= tcp_release_cb,
2869 	.mtu_reduced		= tcp_v4_mtu_reduced,
2870 	.hash			= inet_hash,
2871 	.unhash			= inet_unhash,
2872 	.get_port		= inet_csk_get_port,
2873 	.enter_memory_pressure	= tcp_enter_memory_pressure,
2874 	.sockets_allocated	= &tcp_sockets_allocated,
2875 	.orphan_count		= &tcp_orphan_count,
2876 	.memory_allocated	= &tcp_memory_allocated,
2877 	.memory_pressure	= &tcp_memory_pressure,
2878 	.sysctl_wmem		= sysctl_tcp_wmem,
2879 	.sysctl_rmem		= sysctl_tcp_rmem,
2880 	.max_header		= MAX_TCP_HEADER,
2881 	.obj_size		= sizeof(struct tcp_sock),
2882 	.slab_flags		= SLAB_DESTROY_BY_RCU,
2883 	.twsk_prot		= &tcp_timewait_sock_ops,
2884 	.rsk_prot		= &tcp_request_sock_ops,
2885 	.h.hashinfo		= &tcp_hashinfo,
2886 	.no_autobind		= true,
2887 #ifdef CONFIG_COMPAT
2888 	.compat_setsockopt	= compat_tcp_setsockopt,
2889 	.compat_getsockopt	= compat_tcp_getsockopt,
2890 #endif
2891 #ifdef CONFIG_MEMCG_KMEM
2892 	.init_cgroup		= tcp_init_cgroup,
2893 	.destroy_cgroup		= tcp_destroy_cgroup,
2894 	.proto_cgroup		= tcp_proto_cgroup,
2895 #endif
2896 };
2897 EXPORT_SYMBOL(tcp_prot);
2898 
2899 static int __net_init tcp_sk_init(struct net *net)
2900 {
2901 	return 0;
2902 }
2903 
2904 static void __net_exit tcp_sk_exit(struct net *net)
2905 {
2906 }
2907 
2908 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2909 {
2910 	inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2911 }
2912 
2913 static struct pernet_operations __net_initdata tcp_sk_ops = {
2914        .init	   = tcp_sk_init,
2915        .exit	   = tcp_sk_exit,
2916        .exit_batch = tcp_sk_exit_batch,
2917 };
2918 
2919 void __init tcp_v4_init(void)
2920 {
2921 	inet_hashinfo_init(&tcp_hashinfo);
2922 	if (register_pernet_subsys(&tcp_sk_ops))
2923 		panic("Failed to create the TCP control socket.\n");
2924 }
2925