1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * IPv4 specific functions 9 * 10 * 11 * code split from: 12 * linux/ipv4/tcp.c 13 * linux/ipv4/tcp_input.c 14 * linux/ipv4/tcp_output.c 15 * 16 * See tcp.c for author information 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 */ 23 24 /* 25 * Changes: 26 * David S. Miller : New socket lookup architecture. 27 * This code is dedicated to John Dyson. 28 * David S. Miller : Change semantics of established hash, 29 * half is devoted to TIME_WAIT sockets 30 * and the rest go in the other half. 31 * Andi Kleen : Add support for syncookies and fixed 32 * some bugs: ip options weren't passed to 33 * the TCP layer, missed a check for an 34 * ACK bit. 35 * Andi Kleen : Implemented fast path mtu discovery. 36 * Fixed many serious bugs in the 37 * request_sock handling and moved 38 * most of it into the af independent code. 39 * Added tail drop and some other bugfixes. 40 * Added new listen semantics. 41 * Mike McLagan : Routing by source 42 * Juan Jose Ciarlante: ip_dynaddr bits 43 * Andi Kleen: various fixes. 44 * Vitaly E. Lavrov : Transparent proxy revived after year 45 * coma. 46 * Andi Kleen : Fix new listen. 47 * Andi Kleen : Fix accept error reporting. 48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind 50 * a single port at the same time. 51 */ 52 53 #define pr_fmt(fmt) "TCP: " fmt 54 55 #include <linux/bottom_half.h> 56 #include <linux/types.h> 57 #include <linux/fcntl.h> 58 #include <linux/module.h> 59 #include <linux/random.h> 60 #include <linux/cache.h> 61 #include <linux/jhash.h> 62 #include <linux/init.h> 63 #include <linux/times.h> 64 #include <linux/slab.h> 65 66 #include <net/net_namespace.h> 67 #include <net/icmp.h> 68 #include <net/inet_hashtables.h> 69 #include <net/tcp.h> 70 #include <net/transp_v6.h> 71 #include <net/ipv6.h> 72 #include <net/inet_common.h> 73 #include <net/timewait_sock.h> 74 #include <net/xfrm.h> 75 #include <net/secure_seq.h> 76 #include <net/busy_poll.h> 77 78 #include <linux/inet.h> 79 #include <linux/ipv6.h> 80 #include <linux/stddef.h> 81 #include <linux/proc_fs.h> 82 #include <linux/seq_file.h> 83 #include <linux/inetdevice.h> 84 85 #include <crypto/hash.h> 86 #include <linux/scatterlist.h> 87 88 #include <trace/events/tcp.h> 89 90 #ifdef CONFIG_TCP_MD5SIG 91 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 92 __be32 daddr, __be32 saddr, const struct tcphdr *th); 93 #endif 94 95 struct inet_hashinfo tcp_hashinfo; 96 EXPORT_SYMBOL(tcp_hashinfo); 97 98 static u32 tcp_v4_init_seq(const struct sk_buff *skb) 99 { 100 return secure_tcp_seq(ip_hdr(skb)->daddr, 101 ip_hdr(skb)->saddr, 102 tcp_hdr(skb)->dest, 103 tcp_hdr(skb)->source); 104 } 105 106 static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb) 107 { 108 return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr); 109 } 110 111 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp) 112 { 113 const struct inet_timewait_sock *tw = inet_twsk(sktw); 114 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw); 115 struct tcp_sock *tp = tcp_sk(sk); 116 int reuse = sock_net(sk)->ipv4.sysctl_tcp_tw_reuse; 117 118 if (reuse == 2) { 119 /* Still does not detect *everything* that goes through 120 * lo, since we require a loopback src or dst address 121 * or direct binding to 'lo' interface. 122 */ 123 bool loopback = false; 124 if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX) 125 loopback = true; 126 #if IS_ENABLED(CONFIG_IPV6) 127 if (tw->tw_family == AF_INET6) { 128 if (ipv6_addr_loopback(&tw->tw_v6_daddr) || 129 (ipv6_addr_v4mapped(&tw->tw_v6_daddr) && 130 (tw->tw_v6_daddr.s6_addr[12] == 127)) || 131 ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) || 132 (ipv6_addr_v4mapped(&tw->tw_v6_rcv_saddr) && 133 (tw->tw_v6_rcv_saddr.s6_addr[12] == 127))) 134 loopback = true; 135 } else 136 #endif 137 { 138 if (ipv4_is_loopback(tw->tw_daddr) || 139 ipv4_is_loopback(tw->tw_rcv_saddr)) 140 loopback = true; 141 } 142 if (!loopback) 143 reuse = 0; 144 } 145 146 /* With PAWS, it is safe from the viewpoint 147 of data integrity. Even without PAWS it is safe provided sequence 148 spaces do not overlap i.e. at data rates <= 80Mbit/sec. 149 150 Actually, the idea is close to VJ's one, only timestamp cache is 151 held not per host, but per port pair and TW bucket is used as state 152 holder. 153 154 If TW bucket has been already destroyed we fall back to VJ's scheme 155 and use initial timestamp retrieved from peer table. 156 */ 157 if (tcptw->tw_ts_recent_stamp && 158 (!twp || (reuse && time_after32(ktime_get_seconds(), 159 tcptw->tw_ts_recent_stamp)))) { 160 /* In case of repair and re-using TIME-WAIT sockets we still 161 * want to be sure that it is safe as above but honor the 162 * sequence numbers and time stamps set as part of the repair 163 * process. 164 * 165 * Without this check re-using a TIME-WAIT socket with TCP 166 * repair would accumulate a -1 on the repair assigned 167 * sequence number. The first time it is reused the sequence 168 * is -1, the second time -2, etc. This fixes that issue 169 * without appearing to create any others. 170 */ 171 if (likely(!tp->repair)) { 172 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2; 173 if (tp->write_seq == 0) 174 tp->write_seq = 1; 175 tp->rx_opt.ts_recent = tcptw->tw_ts_recent; 176 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp; 177 } 178 sock_hold(sktw); 179 return 1; 180 } 181 182 return 0; 183 } 184 EXPORT_SYMBOL_GPL(tcp_twsk_unique); 185 186 static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr, 187 int addr_len) 188 { 189 /* This check is replicated from tcp_v4_connect() and intended to 190 * prevent BPF program called below from accessing bytes that are out 191 * of the bound specified by user in addr_len. 192 */ 193 if (addr_len < sizeof(struct sockaddr_in)) 194 return -EINVAL; 195 196 sock_owned_by_me(sk); 197 198 return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr); 199 } 200 201 /* This will initiate an outgoing connection. */ 202 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 203 { 204 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr; 205 struct inet_sock *inet = inet_sk(sk); 206 struct tcp_sock *tp = tcp_sk(sk); 207 __be16 orig_sport, orig_dport; 208 __be32 daddr, nexthop; 209 struct flowi4 *fl4; 210 struct rtable *rt; 211 int err; 212 struct ip_options_rcu *inet_opt; 213 struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row; 214 215 if (addr_len < sizeof(struct sockaddr_in)) 216 return -EINVAL; 217 218 if (usin->sin_family != AF_INET) 219 return -EAFNOSUPPORT; 220 221 nexthop = daddr = usin->sin_addr.s_addr; 222 inet_opt = rcu_dereference_protected(inet->inet_opt, 223 lockdep_sock_is_held(sk)); 224 if (inet_opt && inet_opt->opt.srr) { 225 if (!daddr) 226 return -EINVAL; 227 nexthop = inet_opt->opt.faddr; 228 } 229 230 orig_sport = inet->inet_sport; 231 orig_dport = usin->sin_port; 232 fl4 = &inet->cork.fl.u.ip4; 233 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr, 234 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if, 235 IPPROTO_TCP, 236 orig_sport, orig_dport, sk); 237 if (IS_ERR(rt)) { 238 err = PTR_ERR(rt); 239 if (err == -ENETUNREACH) 240 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES); 241 return err; 242 } 243 244 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) { 245 ip_rt_put(rt); 246 return -ENETUNREACH; 247 } 248 249 if (!inet_opt || !inet_opt->opt.srr) 250 daddr = fl4->daddr; 251 252 if (!inet->inet_saddr) 253 inet->inet_saddr = fl4->saddr; 254 sk_rcv_saddr_set(sk, inet->inet_saddr); 255 256 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) { 257 /* Reset inherited state */ 258 tp->rx_opt.ts_recent = 0; 259 tp->rx_opt.ts_recent_stamp = 0; 260 if (likely(!tp->repair)) 261 tp->write_seq = 0; 262 } 263 264 inet->inet_dport = usin->sin_port; 265 sk_daddr_set(sk, daddr); 266 267 inet_csk(sk)->icsk_ext_hdr_len = 0; 268 if (inet_opt) 269 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 270 271 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT; 272 273 /* Socket identity is still unknown (sport may be zero). 274 * However we set state to SYN-SENT and not releasing socket 275 * lock select source port, enter ourselves into the hash tables and 276 * complete initialization after this. 277 */ 278 tcp_set_state(sk, TCP_SYN_SENT); 279 err = inet_hash_connect(tcp_death_row, sk); 280 if (err) 281 goto failure; 282 283 sk_set_txhash(sk); 284 285 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport, 286 inet->inet_sport, inet->inet_dport, sk); 287 if (IS_ERR(rt)) { 288 err = PTR_ERR(rt); 289 rt = NULL; 290 goto failure; 291 } 292 /* OK, now commit destination to socket. */ 293 sk->sk_gso_type = SKB_GSO_TCPV4; 294 sk_setup_caps(sk, &rt->dst); 295 rt = NULL; 296 297 if (likely(!tp->repair)) { 298 if (!tp->write_seq) 299 tp->write_seq = secure_tcp_seq(inet->inet_saddr, 300 inet->inet_daddr, 301 inet->inet_sport, 302 usin->sin_port); 303 tp->tsoffset = secure_tcp_ts_off(sock_net(sk), 304 inet->inet_saddr, 305 inet->inet_daddr); 306 } 307 308 inet->inet_id = tp->write_seq ^ jiffies; 309 310 if (tcp_fastopen_defer_connect(sk, &err)) 311 return err; 312 if (err) 313 goto failure; 314 315 err = tcp_connect(sk); 316 317 if (err) 318 goto failure; 319 320 return 0; 321 322 failure: 323 /* 324 * This unhashes the socket and releases the local port, 325 * if necessary. 326 */ 327 tcp_set_state(sk, TCP_CLOSE); 328 ip_rt_put(rt); 329 sk->sk_route_caps = 0; 330 inet->inet_dport = 0; 331 return err; 332 } 333 EXPORT_SYMBOL(tcp_v4_connect); 334 335 /* 336 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191. 337 * It can be called through tcp_release_cb() if socket was owned by user 338 * at the time tcp_v4_err() was called to handle ICMP message. 339 */ 340 void tcp_v4_mtu_reduced(struct sock *sk) 341 { 342 struct inet_sock *inet = inet_sk(sk); 343 struct dst_entry *dst; 344 u32 mtu; 345 346 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) 347 return; 348 mtu = tcp_sk(sk)->mtu_info; 349 dst = inet_csk_update_pmtu(sk, mtu); 350 if (!dst) 351 return; 352 353 /* Something is about to be wrong... Remember soft error 354 * for the case, if this connection will not able to recover. 355 */ 356 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst)) 357 sk->sk_err_soft = EMSGSIZE; 358 359 mtu = dst_mtu(dst); 360 361 if (inet->pmtudisc != IP_PMTUDISC_DONT && 362 ip_sk_accept_pmtu(sk) && 363 inet_csk(sk)->icsk_pmtu_cookie > mtu) { 364 tcp_sync_mss(sk, mtu); 365 366 /* Resend the TCP packet because it's 367 * clear that the old packet has been 368 * dropped. This is the new "fast" path mtu 369 * discovery. 370 */ 371 tcp_simple_retransmit(sk); 372 } /* else let the usual retransmit timer handle it */ 373 } 374 EXPORT_SYMBOL(tcp_v4_mtu_reduced); 375 376 static void do_redirect(struct sk_buff *skb, struct sock *sk) 377 { 378 struct dst_entry *dst = __sk_dst_check(sk, 0); 379 380 if (dst) 381 dst->ops->redirect(dst, sk, skb); 382 } 383 384 385 /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */ 386 void tcp_req_err(struct sock *sk, u32 seq, bool abort) 387 { 388 struct request_sock *req = inet_reqsk(sk); 389 struct net *net = sock_net(sk); 390 391 /* ICMPs are not backlogged, hence we cannot get 392 * an established socket here. 393 */ 394 if (seq != tcp_rsk(req)->snt_isn) { 395 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS); 396 } else if (abort) { 397 /* 398 * Still in SYN_RECV, just remove it silently. 399 * There is no good way to pass the error to the newly 400 * created socket, and POSIX does not want network 401 * errors returned from accept(). 402 */ 403 inet_csk_reqsk_queue_drop(req->rsk_listener, req); 404 tcp_listendrop(req->rsk_listener); 405 } 406 reqsk_put(req); 407 } 408 EXPORT_SYMBOL(tcp_req_err); 409 410 /* 411 * This routine is called by the ICMP module when it gets some 412 * sort of error condition. If err < 0 then the socket should 413 * be closed and the error returned to the user. If err > 0 414 * it's just the icmp type << 8 | icmp code. After adjustment 415 * header points to the first 8 bytes of the tcp header. We need 416 * to find the appropriate port. 417 * 418 * The locking strategy used here is very "optimistic". When 419 * someone else accesses the socket the ICMP is just dropped 420 * and for some paths there is no check at all. 421 * A more general error queue to queue errors for later handling 422 * is probably better. 423 * 424 */ 425 426 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info) 427 { 428 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data; 429 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2)); 430 struct inet_connection_sock *icsk; 431 struct tcp_sock *tp; 432 struct inet_sock *inet; 433 const int type = icmp_hdr(icmp_skb)->type; 434 const int code = icmp_hdr(icmp_skb)->code; 435 struct sock *sk; 436 struct sk_buff *skb; 437 struct request_sock *fastopen; 438 u32 seq, snd_una; 439 s32 remaining; 440 u32 delta_us; 441 int err; 442 struct net *net = dev_net(icmp_skb->dev); 443 444 sk = __inet_lookup_established(net, &tcp_hashinfo, iph->daddr, 445 th->dest, iph->saddr, ntohs(th->source), 446 inet_iif(icmp_skb), 0); 447 if (!sk) { 448 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); 449 return; 450 } 451 if (sk->sk_state == TCP_TIME_WAIT) { 452 inet_twsk_put(inet_twsk(sk)); 453 return; 454 } 455 seq = ntohl(th->seq); 456 if (sk->sk_state == TCP_NEW_SYN_RECV) 457 return tcp_req_err(sk, seq, 458 type == ICMP_PARAMETERPROB || 459 type == ICMP_TIME_EXCEEDED || 460 (type == ICMP_DEST_UNREACH && 461 (code == ICMP_NET_UNREACH || 462 code == ICMP_HOST_UNREACH))); 463 464 bh_lock_sock(sk); 465 /* If too many ICMPs get dropped on busy 466 * servers this needs to be solved differently. 467 * We do take care of PMTU discovery (RFC1191) special case : 468 * we can receive locally generated ICMP messages while socket is held. 469 */ 470 if (sock_owned_by_user(sk)) { 471 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED)) 472 __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS); 473 } 474 if (sk->sk_state == TCP_CLOSE) 475 goto out; 476 477 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) { 478 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP); 479 goto out; 480 } 481 482 icsk = inet_csk(sk); 483 tp = tcp_sk(sk); 484 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */ 485 fastopen = tp->fastopen_rsk; 486 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una; 487 if (sk->sk_state != TCP_LISTEN && 488 !between(seq, snd_una, tp->snd_nxt)) { 489 __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS); 490 goto out; 491 } 492 493 switch (type) { 494 case ICMP_REDIRECT: 495 if (!sock_owned_by_user(sk)) 496 do_redirect(icmp_skb, sk); 497 goto out; 498 case ICMP_SOURCE_QUENCH: 499 /* Just silently ignore these. */ 500 goto out; 501 case ICMP_PARAMETERPROB: 502 err = EPROTO; 503 break; 504 case ICMP_DEST_UNREACH: 505 if (code > NR_ICMP_UNREACH) 506 goto out; 507 508 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */ 509 /* We are not interested in TCP_LISTEN and open_requests 510 * (SYN-ACKs send out by Linux are always <576bytes so 511 * they should go through unfragmented). 512 */ 513 if (sk->sk_state == TCP_LISTEN) 514 goto out; 515 516 tp->mtu_info = info; 517 if (!sock_owned_by_user(sk)) { 518 tcp_v4_mtu_reduced(sk); 519 } else { 520 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags)) 521 sock_hold(sk); 522 } 523 goto out; 524 } 525 526 err = icmp_err_convert[code].errno; 527 /* check if icmp_skb allows revert of backoff 528 * (see draft-zimmermann-tcp-lcd) */ 529 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH) 530 break; 531 if (seq != tp->snd_una || !icsk->icsk_retransmits || 532 !icsk->icsk_backoff || fastopen) 533 break; 534 535 if (sock_owned_by_user(sk)) 536 break; 537 538 icsk->icsk_backoff--; 539 icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : 540 TCP_TIMEOUT_INIT; 541 icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX); 542 543 skb = tcp_rtx_queue_head(sk); 544 BUG_ON(!skb); 545 546 tcp_mstamp_refresh(tp); 547 delta_us = (u32)(tp->tcp_mstamp - skb->skb_mstamp); 548 remaining = icsk->icsk_rto - 549 usecs_to_jiffies(delta_us); 550 551 if (remaining > 0) { 552 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 553 remaining, TCP_RTO_MAX); 554 } else { 555 /* RTO revert clocked out retransmission. 556 * Will retransmit now */ 557 tcp_retransmit_timer(sk); 558 } 559 560 break; 561 case ICMP_TIME_EXCEEDED: 562 err = EHOSTUNREACH; 563 break; 564 default: 565 goto out; 566 } 567 568 switch (sk->sk_state) { 569 case TCP_SYN_SENT: 570 case TCP_SYN_RECV: 571 /* Only in fast or simultaneous open. If a fast open socket is 572 * is already accepted it is treated as a connected one below. 573 */ 574 if (fastopen && !fastopen->sk) 575 break; 576 577 if (!sock_owned_by_user(sk)) { 578 sk->sk_err = err; 579 580 sk->sk_error_report(sk); 581 582 tcp_done(sk); 583 } else { 584 sk->sk_err_soft = err; 585 } 586 goto out; 587 } 588 589 /* If we've already connected we will keep trying 590 * until we time out, or the user gives up. 591 * 592 * rfc1122 4.2.3.9 allows to consider as hard errors 593 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too, 594 * but it is obsoleted by pmtu discovery). 595 * 596 * Note, that in modern internet, where routing is unreliable 597 * and in each dark corner broken firewalls sit, sending random 598 * errors ordered by their masters even this two messages finally lose 599 * their original sense (even Linux sends invalid PORT_UNREACHs) 600 * 601 * Now we are in compliance with RFCs. 602 * --ANK (980905) 603 */ 604 605 inet = inet_sk(sk); 606 if (!sock_owned_by_user(sk) && inet->recverr) { 607 sk->sk_err = err; 608 sk->sk_error_report(sk); 609 } else { /* Only an error on timeout */ 610 sk->sk_err_soft = err; 611 } 612 613 out: 614 bh_unlock_sock(sk); 615 sock_put(sk); 616 } 617 618 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr) 619 { 620 struct tcphdr *th = tcp_hdr(skb); 621 622 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0); 623 skb->csum_start = skb_transport_header(skb) - skb->head; 624 skb->csum_offset = offsetof(struct tcphdr, check); 625 } 626 627 /* This routine computes an IPv4 TCP checksum. */ 628 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb) 629 { 630 const struct inet_sock *inet = inet_sk(sk); 631 632 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr); 633 } 634 EXPORT_SYMBOL(tcp_v4_send_check); 635 636 /* 637 * This routine will send an RST to the other tcp. 638 * 639 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.) 640 * for reset. 641 * Answer: if a packet caused RST, it is not for a socket 642 * existing in our system, if it is matched to a socket, 643 * it is just duplicate segment or bug in other side's TCP. 644 * So that we build reply only basing on parameters 645 * arrived with segment. 646 * Exception: precedence violation. We do not implement it in any case. 647 */ 648 649 static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb) 650 { 651 const struct tcphdr *th = tcp_hdr(skb); 652 struct { 653 struct tcphdr th; 654 #ifdef CONFIG_TCP_MD5SIG 655 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)]; 656 #endif 657 } rep; 658 struct ip_reply_arg arg; 659 #ifdef CONFIG_TCP_MD5SIG 660 struct tcp_md5sig_key *key = NULL; 661 const __u8 *hash_location = NULL; 662 unsigned char newhash[16]; 663 int genhash; 664 struct sock *sk1 = NULL; 665 #endif 666 struct net *net; 667 struct sock *ctl_sk; 668 669 /* Never send a reset in response to a reset. */ 670 if (th->rst) 671 return; 672 673 /* If sk not NULL, it means we did a successful lookup and incoming 674 * route had to be correct. prequeue might have dropped our dst. 675 */ 676 if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL) 677 return; 678 679 /* Swap the send and the receive. */ 680 memset(&rep, 0, sizeof(rep)); 681 rep.th.dest = th->source; 682 rep.th.source = th->dest; 683 rep.th.doff = sizeof(struct tcphdr) / 4; 684 rep.th.rst = 1; 685 686 if (th->ack) { 687 rep.th.seq = th->ack_seq; 688 } else { 689 rep.th.ack = 1; 690 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin + 691 skb->len - (th->doff << 2)); 692 } 693 694 memset(&arg, 0, sizeof(arg)); 695 arg.iov[0].iov_base = (unsigned char *)&rep; 696 arg.iov[0].iov_len = sizeof(rep.th); 697 698 net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev); 699 #ifdef CONFIG_TCP_MD5SIG 700 rcu_read_lock(); 701 hash_location = tcp_parse_md5sig_option(th); 702 if (sk && sk_fullsock(sk)) { 703 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *) 704 &ip_hdr(skb)->saddr, AF_INET); 705 } else if (hash_location) { 706 /* 707 * active side is lost. Try to find listening socket through 708 * source port, and then find md5 key through listening socket. 709 * we are not loose security here: 710 * Incoming packet is checked with md5 hash with finding key, 711 * no RST generated if md5 hash doesn't match. 712 */ 713 sk1 = __inet_lookup_listener(net, &tcp_hashinfo, NULL, 0, 714 ip_hdr(skb)->saddr, 715 th->source, ip_hdr(skb)->daddr, 716 ntohs(th->source), inet_iif(skb), 717 tcp_v4_sdif(skb)); 718 /* don't send rst if it can't find key */ 719 if (!sk1) 720 goto out; 721 722 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *) 723 &ip_hdr(skb)->saddr, AF_INET); 724 if (!key) 725 goto out; 726 727 728 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb); 729 if (genhash || memcmp(hash_location, newhash, 16) != 0) 730 goto out; 731 732 } 733 734 if (key) { 735 rep.opt[0] = htonl((TCPOPT_NOP << 24) | 736 (TCPOPT_NOP << 16) | 737 (TCPOPT_MD5SIG << 8) | 738 TCPOLEN_MD5SIG); 739 /* Update length and the length the header thinks exists */ 740 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 741 rep.th.doff = arg.iov[0].iov_len / 4; 742 743 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1], 744 key, ip_hdr(skb)->saddr, 745 ip_hdr(skb)->daddr, &rep.th); 746 } 747 #endif 748 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 749 ip_hdr(skb)->saddr, /* XXX */ 750 arg.iov[0].iov_len, IPPROTO_TCP, 0); 751 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 752 arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0; 753 754 /* When socket is gone, all binding information is lost. 755 * routing might fail in this case. No choice here, if we choose to force 756 * input interface, we will misroute in case of asymmetric route. 757 */ 758 if (sk) { 759 arg.bound_dev_if = sk->sk_bound_dev_if; 760 if (sk_fullsock(sk)) 761 trace_tcp_send_reset(sk, skb); 762 } 763 764 BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) != 765 offsetof(struct inet_timewait_sock, tw_bound_dev_if)); 766 767 arg.tos = ip_hdr(skb)->tos; 768 arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL); 769 local_bh_disable(); 770 ctl_sk = *this_cpu_ptr(net->ipv4.tcp_sk); 771 if (sk) 772 ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ? 773 inet_twsk(sk)->tw_mark : sk->sk_mark; 774 ip_send_unicast_reply(ctl_sk, 775 skb, &TCP_SKB_CB(skb)->header.h4.opt, 776 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 777 &arg, arg.iov[0].iov_len); 778 779 ctl_sk->sk_mark = 0; 780 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS); 781 __TCP_INC_STATS(net, TCP_MIB_OUTRSTS); 782 local_bh_enable(); 783 784 #ifdef CONFIG_TCP_MD5SIG 785 out: 786 rcu_read_unlock(); 787 #endif 788 } 789 790 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states 791 outside socket context is ugly, certainly. What can I do? 792 */ 793 794 static void tcp_v4_send_ack(const struct sock *sk, 795 struct sk_buff *skb, u32 seq, u32 ack, 796 u32 win, u32 tsval, u32 tsecr, int oif, 797 struct tcp_md5sig_key *key, 798 int reply_flags, u8 tos) 799 { 800 const struct tcphdr *th = tcp_hdr(skb); 801 struct { 802 struct tcphdr th; 803 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2) 804 #ifdef CONFIG_TCP_MD5SIG 805 + (TCPOLEN_MD5SIG_ALIGNED >> 2) 806 #endif 807 ]; 808 } rep; 809 struct net *net = sock_net(sk); 810 struct ip_reply_arg arg; 811 struct sock *ctl_sk; 812 813 memset(&rep.th, 0, sizeof(struct tcphdr)); 814 memset(&arg, 0, sizeof(arg)); 815 816 arg.iov[0].iov_base = (unsigned char *)&rep; 817 arg.iov[0].iov_len = sizeof(rep.th); 818 if (tsecr) { 819 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | 820 (TCPOPT_TIMESTAMP << 8) | 821 TCPOLEN_TIMESTAMP); 822 rep.opt[1] = htonl(tsval); 823 rep.opt[2] = htonl(tsecr); 824 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED; 825 } 826 827 /* Swap the send and the receive. */ 828 rep.th.dest = th->source; 829 rep.th.source = th->dest; 830 rep.th.doff = arg.iov[0].iov_len / 4; 831 rep.th.seq = htonl(seq); 832 rep.th.ack_seq = htonl(ack); 833 rep.th.ack = 1; 834 rep.th.window = htons(win); 835 836 #ifdef CONFIG_TCP_MD5SIG 837 if (key) { 838 int offset = (tsecr) ? 3 : 0; 839 840 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) | 841 (TCPOPT_NOP << 16) | 842 (TCPOPT_MD5SIG << 8) | 843 TCPOLEN_MD5SIG); 844 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; 845 rep.th.doff = arg.iov[0].iov_len/4; 846 847 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset], 848 key, ip_hdr(skb)->saddr, 849 ip_hdr(skb)->daddr, &rep.th); 850 } 851 #endif 852 arg.flags = reply_flags; 853 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, 854 ip_hdr(skb)->saddr, /* XXX */ 855 arg.iov[0].iov_len, IPPROTO_TCP, 0); 856 arg.csumoffset = offsetof(struct tcphdr, check) / 2; 857 if (oif) 858 arg.bound_dev_if = oif; 859 arg.tos = tos; 860 arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL); 861 local_bh_disable(); 862 ctl_sk = *this_cpu_ptr(net->ipv4.tcp_sk); 863 if (sk) 864 ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ? 865 inet_twsk(sk)->tw_mark : sk->sk_mark; 866 ip_send_unicast_reply(ctl_sk, 867 skb, &TCP_SKB_CB(skb)->header.h4.opt, 868 ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 869 &arg, arg.iov[0].iov_len); 870 871 ctl_sk->sk_mark = 0; 872 __TCP_INC_STATS(net, TCP_MIB_OUTSEGS); 873 local_bh_enable(); 874 } 875 876 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb) 877 { 878 struct inet_timewait_sock *tw = inet_twsk(sk); 879 struct tcp_timewait_sock *tcptw = tcp_twsk(sk); 880 881 tcp_v4_send_ack(sk, skb, 882 tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt, 883 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale, 884 tcp_time_stamp_raw() + tcptw->tw_ts_offset, 885 tcptw->tw_ts_recent, 886 tw->tw_bound_dev_if, 887 tcp_twsk_md5_key(tcptw), 888 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0, 889 tw->tw_tos 890 ); 891 892 inet_twsk_put(tw); 893 } 894 895 static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb, 896 struct request_sock *req) 897 { 898 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV 899 * sk->sk_state == TCP_SYN_RECV -> for Fast Open. 900 */ 901 u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 : 902 tcp_sk(sk)->snd_nxt; 903 904 /* RFC 7323 2.3 905 * The window field (SEG.WND) of every outgoing segment, with the 906 * exception of <SYN> segments, MUST be right-shifted by 907 * Rcv.Wind.Shift bits: 908 */ 909 tcp_v4_send_ack(sk, skb, seq, 910 tcp_rsk(req)->rcv_nxt, 911 req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale, 912 tcp_time_stamp_raw() + tcp_rsk(req)->ts_off, 913 req->ts_recent, 914 0, 915 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->saddr, 916 AF_INET), 917 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0, 918 ip_hdr(skb)->tos); 919 } 920 921 /* 922 * Send a SYN-ACK after having received a SYN. 923 * This still operates on a request_sock only, not on a big 924 * socket. 925 */ 926 static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst, 927 struct flowi *fl, 928 struct request_sock *req, 929 struct tcp_fastopen_cookie *foc, 930 enum tcp_synack_type synack_type) 931 { 932 const struct inet_request_sock *ireq = inet_rsk(req); 933 struct flowi4 fl4; 934 int err = -1; 935 struct sk_buff *skb; 936 937 /* First, grab a route. */ 938 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL) 939 return -1; 940 941 skb = tcp_make_synack(sk, dst, req, foc, synack_type); 942 943 if (skb) { 944 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr); 945 946 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr, 947 ireq->ir_rmt_addr, 948 ireq_opt_deref(ireq)); 949 err = net_xmit_eval(err); 950 } 951 952 return err; 953 } 954 955 /* 956 * IPv4 request_sock destructor. 957 */ 958 static void tcp_v4_reqsk_destructor(struct request_sock *req) 959 { 960 kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1)); 961 } 962 963 #ifdef CONFIG_TCP_MD5SIG 964 /* 965 * RFC2385 MD5 checksumming requires a mapping of 966 * IP address->MD5 Key. 967 * We need to maintain these in the sk structure. 968 */ 969 970 /* Find the Key structure for an address. */ 971 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk, 972 const union tcp_md5_addr *addr, 973 int family) 974 { 975 const struct tcp_sock *tp = tcp_sk(sk); 976 struct tcp_md5sig_key *key; 977 const struct tcp_md5sig_info *md5sig; 978 __be32 mask; 979 struct tcp_md5sig_key *best_match = NULL; 980 bool match; 981 982 /* caller either holds rcu_read_lock() or socket lock */ 983 md5sig = rcu_dereference_check(tp->md5sig_info, 984 lockdep_sock_is_held(sk)); 985 if (!md5sig) 986 return NULL; 987 988 hlist_for_each_entry_rcu(key, &md5sig->head, node) { 989 if (key->family != family) 990 continue; 991 992 if (family == AF_INET) { 993 mask = inet_make_mask(key->prefixlen); 994 match = (key->addr.a4.s_addr & mask) == 995 (addr->a4.s_addr & mask); 996 #if IS_ENABLED(CONFIG_IPV6) 997 } else if (family == AF_INET6) { 998 match = ipv6_prefix_equal(&key->addr.a6, &addr->a6, 999 key->prefixlen); 1000 #endif 1001 } else { 1002 match = false; 1003 } 1004 1005 if (match && (!best_match || 1006 key->prefixlen > best_match->prefixlen)) 1007 best_match = key; 1008 } 1009 return best_match; 1010 } 1011 EXPORT_SYMBOL(tcp_md5_do_lookup); 1012 1013 static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk, 1014 const union tcp_md5_addr *addr, 1015 int family, u8 prefixlen) 1016 { 1017 const struct tcp_sock *tp = tcp_sk(sk); 1018 struct tcp_md5sig_key *key; 1019 unsigned int size = sizeof(struct in_addr); 1020 const struct tcp_md5sig_info *md5sig; 1021 1022 /* caller either holds rcu_read_lock() or socket lock */ 1023 md5sig = rcu_dereference_check(tp->md5sig_info, 1024 lockdep_sock_is_held(sk)); 1025 if (!md5sig) 1026 return NULL; 1027 #if IS_ENABLED(CONFIG_IPV6) 1028 if (family == AF_INET6) 1029 size = sizeof(struct in6_addr); 1030 #endif 1031 hlist_for_each_entry_rcu(key, &md5sig->head, node) { 1032 if (key->family != family) 1033 continue; 1034 if (!memcmp(&key->addr, addr, size) && 1035 key->prefixlen == prefixlen) 1036 return key; 1037 } 1038 return NULL; 1039 } 1040 1041 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, 1042 const struct sock *addr_sk) 1043 { 1044 const union tcp_md5_addr *addr; 1045 1046 addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr; 1047 return tcp_md5_do_lookup(sk, addr, AF_INET); 1048 } 1049 EXPORT_SYMBOL(tcp_v4_md5_lookup); 1050 1051 /* This can be called on a newly created socket, from other files */ 1052 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, 1053 int family, u8 prefixlen, const u8 *newkey, u8 newkeylen, 1054 gfp_t gfp) 1055 { 1056 /* Add Key to the list */ 1057 struct tcp_md5sig_key *key; 1058 struct tcp_sock *tp = tcp_sk(sk); 1059 struct tcp_md5sig_info *md5sig; 1060 1061 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen); 1062 if (key) { 1063 /* Pre-existing entry - just update that one. */ 1064 memcpy(key->key, newkey, newkeylen); 1065 key->keylen = newkeylen; 1066 return 0; 1067 } 1068 1069 md5sig = rcu_dereference_protected(tp->md5sig_info, 1070 lockdep_sock_is_held(sk)); 1071 if (!md5sig) { 1072 md5sig = kmalloc(sizeof(*md5sig), gfp); 1073 if (!md5sig) 1074 return -ENOMEM; 1075 1076 sk_nocaps_add(sk, NETIF_F_GSO_MASK); 1077 INIT_HLIST_HEAD(&md5sig->head); 1078 rcu_assign_pointer(tp->md5sig_info, md5sig); 1079 } 1080 1081 key = sock_kmalloc(sk, sizeof(*key), gfp); 1082 if (!key) 1083 return -ENOMEM; 1084 if (!tcp_alloc_md5sig_pool()) { 1085 sock_kfree_s(sk, key, sizeof(*key)); 1086 return -ENOMEM; 1087 } 1088 1089 memcpy(key->key, newkey, newkeylen); 1090 key->keylen = newkeylen; 1091 key->family = family; 1092 key->prefixlen = prefixlen; 1093 memcpy(&key->addr, addr, 1094 (family == AF_INET6) ? sizeof(struct in6_addr) : 1095 sizeof(struct in_addr)); 1096 hlist_add_head_rcu(&key->node, &md5sig->head); 1097 return 0; 1098 } 1099 EXPORT_SYMBOL(tcp_md5_do_add); 1100 1101 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family, 1102 u8 prefixlen) 1103 { 1104 struct tcp_md5sig_key *key; 1105 1106 key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen); 1107 if (!key) 1108 return -ENOENT; 1109 hlist_del_rcu(&key->node); 1110 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 1111 kfree_rcu(key, rcu); 1112 return 0; 1113 } 1114 EXPORT_SYMBOL(tcp_md5_do_del); 1115 1116 static void tcp_clear_md5_list(struct sock *sk) 1117 { 1118 struct tcp_sock *tp = tcp_sk(sk); 1119 struct tcp_md5sig_key *key; 1120 struct hlist_node *n; 1121 struct tcp_md5sig_info *md5sig; 1122 1123 md5sig = rcu_dereference_protected(tp->md5sig_info, 1); 1124 1125 hlist_for_each_entry_safe(key, n, &md5sig->head, node) { 1126 hlist_del_rcu(&key->node); 1127 atomic_sub(sizeof(*key), &sk->sk_omem_alloc); 1128 kfree_rcu(key, rcu); 1129 } 1130 } 1131 1132 static int tcp_v4_parse_md5_keys(struct sock *sk, int optname, 1133 char __user *optval, int optlen) 1134 { 1135 struct tcp_md5sig cmd; 1136 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr; 1137 u8 prefixlen = 32; 1138 1139 if (optlen < sizeof(cmd)) 1140 return -EINVAL; 1141 1142 if (copy_from_user(&cmd, optval, sizeof(cmd))) 1143 return -EFAULT; 1144 1145 if (sin->sin_family != AF_INET) 1146 return -EINVAL; 1147 1148 if (optname == TCP_MD5SIG_EXT && 1149 cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) { 1150 prefixlen = cmd.tcpm_prefixlen; 1151 if (prefixlen > 32) 1152 return -EINVAL; 1153 } 1154 1155 if (!cmd.tcpm_keylen) 1156 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr, 1157 AF_INET, prefixlen); 1158 1159 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN) 1160 return -EINVAL; 1161 1162 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr, 1163 AF_INET, prefixlen, cmd.tcpm_key, cmd.tcpm_keylen, 1164 GFP_KERNEL); 1165 } 1166 1167 static int tcp_v4_md5_hash_headers(struct tcp_md5sig_pool *hp, 1168 __be32 daddr, __be32 saddr, 1169 const struct tcphdr *th, int nbytes) 1170 { 1171 struct tcp4_pseudohdr *bp; 1172 struct scatterlist sg; 1173 struct tcphdr *_th; 1174 1175 bp = hp->scratch; 1176 bp->saddr = saddr; 1177 bp->daddr = daddr; 1178 bp->pad = 0; 1179 bp->protocol = IPPROTO_TCP; 1180 bp->len = cpu_to_be16(nbytes); 1181 1182 _th = (struct tcphdr *)(bp + 1); 1183 memcpy(_th, th, sizeof(*th)); 1184 _th->check = 0; 1185 1186 sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th)); 1187 ahash_request_set_crypt(hp->md5_req, &sg, NULL, 1188 sizeof(*bp) + sizeof(*th)); 1189 return crypto_ahash_update(hp->md5_req); 1190 } 1191 1192 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, 1193 __be32 daddr, __be32 saddr, const struct tcphdr *th) 1194 { 1195 struct tcp_md5sig_pool *hp; 1196 struct ahash_request *req; 1197 1198 hp = tcp_get_md5sig_pool(); 1199 if (!hp) 1200 goto clear_hash_noput; 1201 req = hp->md5_req; 1202 1203 if (crypto_ahash_init(req)) 1204 goto clear_hash; 1205 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, th->doff << 2)) 1206 goto clear_hash; 1207 if (tcp_md5_hash_key(hp, key)) 1208 goto clear_hash; 1209 ahash_request_set_crypt(req, NULL, md5_hash, 0); 1210 if (crypto_ahash_final(req)) 1211 goto clear_hash; 1212 1213 tcp_put_md5sig_pool(); 1214 return 0; 1215 1216 clear_hash: 1217 tcp_put_md5sig_pool(); 1218 clear_hash_noput: 1219 memset(md5_hash, 0, 16); 1220 return 1; 1221 } 1222 1223 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, 1224 const struct sock *sk, 1225 const struct sk_buff *skb) 1226 { 1227 struct tcp_md5sig_pool *hp; 1228 struct ahash_request *req; 1229 const struct tcphdr *th = tcp_hdr(skb); 1230 __be32 saddr, daddr; 1231 1232 if (sk) { /* valid for establish/request sockets */ 1233 saddr = sk->sk_rcv_saddr; 1234 daddr = sk->sk_daddr; 1235 } else { 1236 const struct iphdr *iph = ip_hdr(skb); 1237 saddr = iph->saddr; 1238 daddr = iph->daddr; 1239 } 1240 1241 hp = tcp_get_md5sig_pool(); 1242 if (!hp) 1243 goto clear_hash_noput; 1244 req = hp->md5_req; 1245 1246 if (crypto_ahash_init(req)) 1247 goto clear_hash; 1248 1249 if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, skb->len)) 1250 goto clear_hash; 1251 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2)) 1252 goto clear_hash; 1253 if (tcp_md5_hash_key(hp, key)) 1254 goto clear_hash; 1255 ahash_request_set_crypt(req, NULL, md5_hash, 0); 1256 if (crypto_ahash_final(req)) 1257 goto clear_hash; 1258 1259 tcp_put_md5sig_pool(); 1260 return 0; 1261 1262 clear_hash: 1263 tcp_put_md5sig_pool(); 1264 clear_hash_noput: 1265 memset(md5_hash, 0, 16); 1266 return 1; 1267 } 1268 EXPORT_SYMBOL(tcp_v4_md5_hash_skb); 1269 1270 #endif 1271 1272 /* Called with rcu_read_lock() */ 1273 static bool tcp_v4_inbound_md5_hash(const struct sock *sk, 1274 const struct sk_buff *skb) 1275 { 1276 #ifdef CONFIG_TCP_MD5SIG 1277 /* 1278 * This gets called for each TCP segment that arrives 1279 * so we want to be efficient. 1280 * We have 3 drop cases: 1281 * o No MD5 hash and one expected. 1282 * o MD5 hash and we're not expecting one. 1283 * o MD5 hash and its wrong. 1284 */ 1285 const __u8 *hash_location = NULL; 1286 struct tcp_md5sig_key *hash_expected; 1287 const struct iphdr *iph = ip_hdr(skb); 1288 const struct tcphdr *th = tcp_hdr(skb); 1289 int genhash; 1290 unsigned char newhash[16]; 1291 1292 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr, 1293 AF_INET); 1294 hash_location = tcp_parse_md5sig_option(th); 1295 1296 /* We've parsed the options - do we have a hash? */ 1297 if (!hash_expected && !hash_location) 1298 return false; 1299 1300 if (hash_expected && !hash_location) { 1301 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); 1302 return true; 1303 } 1304 1305 if (!hash_expected && hash_location) { 1306 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); 1307 return true; 1308 } 1309 1310 /* Okay, so this is hash_expected and hash_location - 1311 * so we need to calculate the checksum. 1312 */ 1313 genhash = tcp_v4_md5_hash_skb(newhash, 1314 hash_expected, 1315 NULL, skb); 1316 1317 if (genhash || memcmp(hash_location, newhash, 16) != 0) { 1318 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); 1319 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n", 1320 &iph->saddr, ntohs(th->source), 1321 &iph->daddr, ntohs(th->dest), 1322 genhash ? " tcp_v4_calc_md5_hash failed" 1323 : ""); 1324 return true; 1325 } 1326 return false; 1327 #endif 1328 return false; 1329 } 1330 1331 static void tcp_v4_init_req(struct request_sock *req, 1332 const struct sock *sk_listener, 1333 struct sk_buff *skb) 1334 { 1335 struct inet_request_sock *ireq = inet_rsk(req); 1336 struct net *net = sock_net(sk_listener); 1337 1338 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr); 1339 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr); 1340 RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb)); 1341 } 1342 1343 static struct dst_entry *tcp_v4_route_req(const struct sock *sk, 1344 struct flowi *fl, 1345 const struct request_sock *req) 1346 { 1347 return inet_csk_route_req(sk, &fl->u.ip4, req); 1348 } 1349 1350 struct request_sock_ops tcp_request_sock_ops __read_mostly = { 1351 .family = PF_INET, 1352 .obj_size = sizeof(struct tcp_request_sock), 1353 .rtx_syn_ack = tcp_rtx_synack, 1354 .send_ack = tcp_v4_reqsk_send_ack, 1355 .destructor = tcp_v4_reqsk_destructor, 1356 .send_reset = tcp_v4_send_reset, 1357 .syn_ack_timeout = tcp_syn_ack_timeout, 1358 }; 1359 1360 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = { 1361 .mss_clamp = TCP_MSS_DEFAULT, 1362 #ifdef CONFIG_TCP_MD5SIG 1363 .req_md5_lookup = tcp_v4_md5_lookup, 1364 .calc_md5_hash = tcp_v4_md5_hash_skb, 1365 #endif 1366 .init_req = tcp_v4_init_req, 1367 #ifdef CONFIG_SYN_COOKIES 1368 .cookie_init_seq = cookie_v4_init_sequence, 1369 #endif 1370 .route_req = tcp_v4_route_req, 1371 .init_seq = tcp_v4_init_seq, 1372 .init_ts_off = tcp_v4_init_ts_off, 1373 .send_synack = tcp_v4_send_synack, 1374 }; 1375 1376 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb) 1377 { 1378 /* Never answer to SYNs send to broadcast or multicast */ 1379 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) 1380 goto drop; 1381 1382 return tcp_conn_request(&tcp_request_sock_ops, 1383 &tcp_request_sock_ipv4_ops, sk, skb); 1384 1385 drop: 1386 tcp_listendrop(sk); 1387 return 0; 1388 } 1389 EXPORT_SYMBOL(tcp_v4_conn_request); 1390 1391 1392 /* 1393 * The three way handshake has completed - we got a valid synack - 1394 * now create the new socket. 1395 */ 1396 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, 1397 struct request_sock *req, 1398 struct dst_entry *dst, 1399 struct request_sock *req_unhash, 1400 bool *own_req) 1401 { 1402 struct inet_request_sock *ireq; 1403 struct inet_sock *newinet; 1404 struct tcp_sock *newtp; 1405 struct sock *newsk; 1406 #ifdef CONFIG_TCP_MD5SIG 1407 struct tcp_md5sig_key *key; 1408 #endif 1409 struct ip_options_rcu *inet_opt; 1410 1411 if (sk_acceptq_is_full(sk)) 1412 goto exit_overflow; 1413 1414 newsk = tcp_create_openreq_child(sk, req, skb); 1415 if (!newsk) 1416 goto exit_nonewsk; 1417 1418 newsk->sk_gso_type = SKB_GSO_TCPV4; 1419 inet_sk_rx_dst_set(newsk, skb); 1420 1421 newtp = tcp_sk(newsk); 1422 newinet = inet_sk(newsk); 1423 ireq = inet_rsk(req); 1424 sk_daddr_set(newsk, ireq->ir_rmt_addr); 1425 sk_rcv_saddr_set(newsk, ireq->ir_loc_addr); 1426 newsk->sk_bound_dev_if = ireq->ir_iif; 1427 newinet->inet_saddr = ireq->ir_loc_addr; 1428 inet_opt = rcu_dereference(ireq->ireq_opt); 1429 RCU_INIT_POINTER(newinet->inet_opt, inet_opt); 1430 newinet->mc_index = inet_iif(skb); 1431 newinet->mc_ttl = ip_hdr(skb)->ttl; 1432 newinet->rcv_tos = ip_hdr(skb)->tos; 1433 inet_csk(newsk)->icsk_ext_hdr_len = 0; 1434 if (inet_opt) 1435 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen; 1436 newinet->inet_id = newtp->write_seq ^ jiffies; 1437 1438 if (!dst) { 1439 dst = inet_csk_route_child_sock(sk, newsk, req); 1440 if (!dst) 1441 goto put_and_exit; 1442 } else { 1443 /* syncookie case : see end of cookie_v4_check() */ 1444 } 1445 sk_setup_caps(newsk, dst); 1446 1447 tcp_ca_openreq_child(newsk, dst); 1448 1449 tcp_sync_mss(newsk, dst_mtu(dst)); 1450 newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst)); 1451 1452 tcp_initialize_rcv_mss(newsk); 1453 1454 #ifdef CONFIG_TCP_MD5SIG 1455 /* Copy over the MD5 key from the original socket */ 1456 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr, 1457 AF_INET); 1458 if (key) { 1459 /* 1460 * We're using one, so create a matching key 1461 * on the newsk structure. If we fail to get 1462 * memory, then we end up not copying the key 1463 * across. Shucks. 1464 */ 1465 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr, 1466 AF_INET, 32, key->key, key->keylen, GFP_ATOMIC); 1467 sk_nocaps_add(newsk, NETIF_F_GSO_MASK); 1468 } 1469 #endif 1470 1471 if (__inet_inherit_port(sk, newsk) < 0) 1472 goto put_and_exit; 1473 *own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash)); 1474 if (likely(*own_req)) { 1475 tcp_move_syn(newtp, req); 1476 ireq->ireq_opt = NULL; 1477 } else { 1478 newinet->inet_opt = NULL; 1479 } 1480 return newsk; 1481 1482 exit_overflow: 1483 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 1484 exit_nonewsk: 1485 dst_release(dst); 1486 exit: 1487 tcp_listendrop(sk); 1488 return NULL; 1489 put_and_exit: 1490 newinet->inet_opt = NULL; 1491 inet_csk_prepare_forced_close(newsk); 1492 tcp_done(newsk); 1493 goto exit; 1494 } 1495 EXPORT_SYMBOL(tcp_v4_syn_recv_sock); 1496 1497 static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb) 1498 { 1499 #ifdef CONFIG_SYN_COOKIES 1500 const struct tcphdr *th = tcp_hdr(skb); 1501 1502 if (!th->syn) 1503 sk = cookie_v4_check(sk, skb); 1504 #endif 1505 return sk; 1506 } 1507 1508 /* The socket must have it's spinlock held when we get 1509 * here, unless it is a TCP_LISTEN socket. 1510 * 1511 * We have a potential double-lock case here, so even when 1512 * doing backlog processing we use the BH locking scheme. 1513 * This is because we cannot sleep with the original spinlock 1514 * held. 1515 */ 1516 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb) 1517 { 1518 struct sock *rsk; 1519 1520 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */ 1521 struct dst_entry *dst = sk->sk_rx_dst; 1522 1523 sock_rps_save_rxhash(sk, skb); 1524 sk_mark_napi_id(sk, skb); 1525 if (dst) { 1526 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif || 1527 !dst->ops->check(dst, 0)) { 1528 dst_release(dst); 1529 sk->sk_rx_dst = NULL; 1530 } 1531 } 1532 tcp_rcv_established(sk, skb); 1533 return 0; 1534 } 1535 1536 if (tcp_checksum_complete(skb)) 1537 goto csum_err; 1538 1539 if (sk->sk_state == TCP_LISTEN) { 1540 struct sock *nsk = tcp_v4_cookie_check(sk, skb); 1541 1542 if (!nsk) 1543 goto discard; 1544 if (nsk != sk) { 1545 if (tcp_child_process(sk, nsk, skb)) { 1546 rsk = nsk; 1547 goto reset; 1548 } 1549 return 0; 1550 } 1551 } else 1552 sock_rps_save_rxhash(sk, skb); 1553 1554 if (tcp_rcv_state_process(sk, skb)) { 1555 rsk = sk; 1556 goto reset; 1557 } 1558 return 0; 1559 1560 reset: 1561 tcp_v4_send_reset(rsk, skb); 1562 discard: 1563 kfree_skb(skb); 1564 /* Be careful here. If this function gets more complicated and 1565 * gcc suffers from register pressure on the x86, sk (in %ebx) 1566 * might be destroyed here. This current version compiles correctly, 1567 * but you have been warned. 1568 */ 1569 return 0; 1570 1571 csum_err: 1572 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 1573 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 1574 goto discard; 1575 } 1576 EXPORT_SYMBOL(tcp_v4_do_rcv); 1577 1578 int tcp_v4_early_demux(struct sk_buff *skb) 1579 { 1580 const struct iphdr *iph; 1581 const struct tcphdr *th; 1582 struct sock *sk; 1583 1584 if (skb->pkt_type != PACKET_HOST) 1585 return 0; 1586 1587 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr))) 1588 return 0; 1589 1590 iph = ip_hdr(skb); 1591 th = tcp_hdr(skb); 1592 1593 if (th->doff < sizeof(struct tcphdr) / 4) 1594 return 0; 1595 1596 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo, 1597 iph->saddr, th->source, 1598 iph->daddr, ntohs(th->dest), 1599 skb->skb_iif, inet_sdif(skb)); 1600 if (sk) { 1601 skb->sk = sk; 1602 skb->destructor = sock_edemux; 1603 if (sk_fullsock(sk)) { 1604 struct dst_entry *dst = READ_ONCE(sk->sk_rx_dst); 1605 1606 if (dst) 1607 dst = dst_check(dst, 0); 1608 if (dst && 1609 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif) 1610 skb_dst_set_noref(skb, dst); 1611 } 1612 } 1613 return 0; 1614 } 1615 1616 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb) 1617 { 1618 u32 limit = sk->sk_rcvbuf + sk->sk_sndbuf; 1619 1620 /* Only socket owner can try to collapse/prune rx queues 1621 * to reduce memory overhead, so add a little headroom here. 1622 * Few sockets backlog are possibly concurrently non empty. 1623 */ 1624 limit += 64*1024; 1625 1626 /* In case all data was pulled from skb frags (in __pskb_pull_tail()), 1627 * we can fix skb->truesize to its real value to avoid future drops. 1628 * This is valid because skb is not yet charged to the socket. 1629 * It has been noticed pure SACK packets were sometimes dropped 1630 * (if cooked by drivers without copybreak feature). 1631 */ 1632 skb_condense(skb); 1633 1634 if (unlikely(sk_add_backlog(sk, skb, limit))) { 1635 bh_unlock_sock(sk); 1636 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP); 1637 return true; 1638 } 1639 return false; 1640 } 1641 EXPORT_SYMBOL(tcp_add_backlog); 1642 1643 int tcp_filter(struct sock *sk, struct sk_buff *skb) 1644 { 1645 struct tcphdr *th = (struct tcphdr *)skb->data; 1646 unsigned int eaten = skb->len; 1647 int err; 1648 1649 err = sk_filter_trim_cap(sk, skb, th->doff * 4); 1650 if (!err) { 1651 eaten -= skb->len; 1652 TCP_SKB_CB(skb)->end_seq -= eaten; 1653 } 1654 return err; 1655 } 1656 EXPORT_SYMBOL(tcp_filter); 1657 1658 static void tcp_v4_restore_cb(struct sk_buff *skb) 1659 { 1660 memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4, 1661 sizeof(struct inet_skb_parm)); 1662 } 1663 1664 static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph, 1665 const struct tcphdr *th) 1666 { 1667 /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB() 1668 * barrier() makes sure compiler wont play fool^Waliasing games. 1669 */ 1670 memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb), 1671 sizeof(struct inet_skb_parm)); 1672 barrier(); 1673 1674 TCP_SKB_CB(skb)->seq = ntohl(th->seq); 1675 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin + 1676 skb->len - th->doff * 4); 1677 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq); 1678 TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th); 1679 TCP_SKB_CB(skb)->tcp_tw_isn = 0; 1680 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph); 1681 TCP_SKB_CB(skb)->sacked = 0; 1682 TCP_SKB_CB(skb)->has_rxtstamp = 1683 skb->tstamp || skb_hwtstamps(skb)->hwtstamp; 1684 } 1685 1686 /* 1687 * From tcp_input.c 1688 */ 1689 1690 int tcp_v4_rcv(struct sk_buff *skb) 1691 { 1692 struct net *net = dev_net(skb->dev); 1693 int sdif = inet_sdif(skb); 1694 const struct iphdr *iph; 1695 const struct tcphdr *th; 1696 bool refcounted; 1697 struct sock *sk; 1698 int ret; 1699 1700 if (skb->pkt_type != PACKET_HOST) 1701 goto discard_it; 1702 1703 /* Count it even if it's bad */ 1704 __TCP_INC_STATS(net, TCP_MIB_INSEGS); 1705 1706 if (!pskb_may_pull(skb, sizeof(struct tcphdr))) 1707 goto discard_it; 1708 1709 th = (const struct tcphdr *)skb->data; 1710 1711 if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) 1712 goto bad_packet; 1713 if (!pskb_may_pull(skb, th->doff * 4)) 1714 goto discard_it; 1715 1716 /* An explanation is required here, I think. 1717 * Packet length and doff are validated by header prediction, 1718 * provided case of th->doff==0 is eliminated. 1719 * So, we defer the checks. */ 1720 1721 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo)) 1722 goto csum_error; 1723 1724 th = (const struct tcphdr *)skb->data; 1725 iph = ip_hdr(skb); 1726 lookup: 1727 sk = __inet_lookup_skb(&tcp_hashinfo, skb, __tcp_hdrlen(th), th->source, 1728 th->dest, sdif, &refcounted); 1729 if (!sk) 1730 goto no_tcp_socket; 1731 1732 process: 1733 if (sk->sk_state == TCP_TIME_WAIT) 1734 goto do_time_wait; 1735 1736 if (sk->sk_state == TCP_NEW_SYN_RECV) { 1737 struct request_sock *req = inet_reqsk(sk); 1738 bool req_stolen = false; 1739 struct sock *nsk; 1740 1741 sk = req->rsk_listener; 1742 if (unlikely(tcp_v4_inbound_md5_hash(sk, skb))) { 1743 sk_drops_add(sk, skb); 1744 reqsk_put(req); 1745 goto discard_it; 1746 } 1747 if (tcp_checksum_complete(skb)) { 1748 reqsk_put(req); 1749 goto csum_error; 1750 } 1751 if (unlikely(sk->sk_state != TCP_LISTEN)) { 1752 inet_csk_reqsk_queue_drop_and_put(sk, req); 1753 goto lookup; 1754 } 1755 /* We own a reference on the listener, increase it again 1756 * as we might lose it too soon. 1757 */ 1758 sock_hold(sk); 1759 refcounted = true; 1760 nsk = NULL; 1761 if (!tcp_filter(sk, skb)) { 1762 th = (const struct tcphdr *)skb->data; 1763 iph = ip_hdr(skb); 1764 tcp_v4_fill_cb(skb, iph, th); 1765 nsk = tcp_check_req(sk, skb, req, false, &req_stolen); 1766 } 1767 if (!nsk) { 1768 reqsk_put(req); 1769 if (req_stolen) { 1770 /* Another cpu got exclusive access to req 1771 * and created a full blown socket. 1772 * Try to feed this packet to this socket 1773 * instead of discarding it. 1774 */ 1775 tcp_v4_restore_cb(skb); 1776 sock_put(sk); 1777 goto lookup; 1778 } 1779 goto discard_and_relse; 1780 } 1781 if (nsk == sk) { 1782 reqsk_put(req); 1783 tcp_v4_restore_cb(skb); 1784 } else if (tcp_child_process(sk, nsk, skb)) { 1785 tcp_v4_send_reset(nsk, skb); 1786 goto discard_and_relse; 1787 } else { 1788 sock_put(sk); 1789 return 0; 1790 } 1791 } 1792 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) { 1793 __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP); 1794 goto discard_and_relse; 1795 } 1796 1797 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) 1798 goto discard_and_relse; 1799 1800 if (tcp_v4_inbound_md5_hash(sk, skb)) 1801 goto discard_and_relse; 1802 1803 nf_reset(skb); 1804 1805 if (tcp_filter(sk, skb)) 1806 goto discard_and_relse; 1807 th = (const struct tcphdr *)skb->data; 1808 iph = ip_hdr(skb); 1809 tcp_v4_fill_cb(skb, iph, th); 1810 1811 skb->dev = NULL; 1812 1813 if (sk->sk_state == TCP_LISTEN) { 1814 ret = tcp_v4_do_rcv(sk, skb); 1815 goto put_and_return; 1816 } 1817 1818 sk_incoming_cpu_update(sk); 1819 1820 bh_lock_sock_nested(sk); 1821 tcp_segs_in(tcp_sk(sk), skb); 1822 ret = 0; 1823 if (!sock_owned_by_user(sk)) { 1824 ret = tcp_v4_do_rcv(sk, skb); 1825 } else if (tcp_add_backlog(sk, skb)) { 1826 goto discard_and_relse; 1827 } 1828 bh_unlock_sock(sk); 1829 1830 put_and_return: 1831 if (refcounted) 1832 sock_put(sk); 1833 1834 return ret; 1835 1836 no_tcp_socket: 1837 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 1838 goto discard_it; 1839 1840 tcp_v4_fill_cb(skb, iph, th); 1841 1842 if (tcp_checksum_complete(skb)) { 1843 csum_error: 1844 __TCP_INC_STATS(net, TCP_MIB_CSUMERRORS); 1845 bad_packet: 1846 __TCP_INC_STATS(net, TCP_MIB_INERRS); 1847 } else { 1848 tcp_v4_send_reset(NULL, skb); 1849 } 1850 1851 discard_it: 1852 /* Discard frame. */ 1853 kfree_skb(skb); 1854 return 0; 1855 1856 discard_and_relse: 1857 sk_drops_add(sk, skb); 1858 if (refcounted) 1859 sock_put(sk); 1860 goto discard_it; 1861 1862 do_time_wait: 1863 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) { 1864 inet_twsk_put(inet_twsk(sk)); 1865 goto discard_it; 1866 } 1867 1868 tcp_v4_fill_cb(skb, iph, th); 1869 1870 if (tcp_checksum_complete(skb)) { 1871 inet_twsk_put(inet_twsk(sk)); 1872 goto csum_error; 1873 } 1874 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) { 1875 case TCP_TW_SYN: { 1876 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev), 1877 &tcp_hashinfo, skb, 1878 __tcp_hdrlen(th), 1879 iph->saddr, th->source, 1880 iph->daddr, th->dest, 1881 inet_iif(skb), 1882 sdif); 1883 if (sk2) { 1884 inet_twsk_deschedule_put(inet_twsk(sk)); 1885 sk = sk2; 1886 tcp_v4_restore_cb(skb); 1887 refcounted = false; 1888 goto process; 1889 } 1890 } 1891 /* to ACK */ 1892 /* fall through */ 1893 case TCP_TW_ACK: 1894 tcp_v4_timewait_ack(sk, skb); 1895 break; 1896 case TCP_TW_RST: 1897 tcp_v4_send_reset(sk, skb); 1898 inet_twsk_deschedule_put(inet_twsk(sk)); 1899 goto discard_it; 1900 case TCP_TW_SUCCESS:; 1901 } 1902 goto discard_it; 1903 } 1904 1905 static struct timewait_sock_ops tcp_timewait_sock_ops = { 1906 .twsk_obj_size = sizeof(struct tcp_timewait_sock), 1907 .twsk_unique = tcp_twsk_unique, 1908 .twsk_destructor= tcp_twsk_destructor, 1909 }; 1910 1911 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb) 1912 { 1913 struct dst_entry *dst = skb_dst(skb); 1914 1915 if (dst && dst_hold_safe(dst)) { 1916 sk->sk_rx_dst = dst; 1917 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif; 1918 } 1919 } 1920 EXPORT_SYMBOL(inet_sk_rx_dst_set); 1921 1922 const struct inet_connection_sock_af_ops ipv4_specific = { 1923 .queue_xmit = ip_queue_xmit, 1924 .send_check = tcp_v4_send_check, 1925 .rebuild_header = inet_sk_rebuild_header, 1926 .sk_rx_dst_set = inet_sk_rx_dst_set, 1927 .conn_request = tcp_v4_conn_request, 1928 .syn_recv_sock = tcp_v4_syn_recv_sock, 1929 .net_header_len = sizeof(struct iphdr), 1930 .setsockopt = ip_setsockopt, 1931 .getsockopt = ip_getsockopt, 1932 .addr2sockaddr = inet_csk_addr2sockaddr, 1933 .sockaddr_len = sizeof(struct sockaddr_in), 1934 #ifdef CONFIG_COMPAT 1935 .compat_setsockopt = compat_ip_setsockopt, 1936 .compat_getsockopt = compat_ip_getsockopt, 1937 #endif 1938 .mtu_reduced = tcp_v4_mtu_reduced, 1939 }; 1940 EXPORT_SYMBOL(ipv4_specific); 1941 1942 #ifdef CONFIG_TCP_MD5SIG 1943 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = { 1944 .md5_lookup = tcp_v4_md5_lookup, 1945 .calc_md5_hash = tcp_v4_md5_hash_skb, 1946 .md5_parse = tcp_v4_parse_md5_keys, 1947 }; 1948 #endif 1949 1950 /* NOTE: A lot of things set to zero explicitly by call to 1951 * sk_alloc() so need not be done here. 1952 */ 1953 static int tcp_v4_init_sock(struct sock *sk) 1954 { 1955 struct inet_connection_sock *icsk = inet_csk(sk); 1956 1957 tcp_init_sock(sk); 1958 1959 icsk->icsk_af_ops = &ipv4_specific; 1960 1961 #ifdef CONFIG_TCP_MD5SIG 1962 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific; 1963 #endif 1964 1965 return 0; 1966 } 1967 1968 void tcp_v4_destroy_sock(struct sock *sk) 1969 { 1970 struct tcp_sock *tp = tcp_sk(sk); 1971 1972 trace_tcp_destroy_sock(sk); 1973 1974 tcp_clear_xmit_timers(sk); 1975 1976 tcp_cleanup_congestion_control(sk); 1977 1978 tcp_cleanup_ulp(sk); 1979 1980 /* Cleanup up the write buffer. */ 1981 tcp_write_queue_purge(sk); 1982 1983 /* Check if we want to disable active TFO */ 1984 tcp_fastopen_active_disable_ofo_check(sk); 1985 1986 /* Cleans up our, hopefully empty, out_of_order_queue. */ 1987 skb_rbtree_purge(&tp->out_of_order_queue); 1988 1989 #ifdef CONFIG_TCP_MD5SIG 1990 /* Clean up the MD5 key list, if any */ 1991 if (tp->md5sig_info) { 1992 tcp_clear_md5_list(sk); 1993 kfree_rcu(rcu_dereference_protected(tp->md5sig_info, 1), rcu); 1994 tp->md5sig_info = NULL; 1995 } 1996 #endif 1997 1998 /* Clean up a referenced TCP bind bucket. */ 1999 if (inet_csk(sk)->icsk_bind_hash) 2000 inet_put_port(sk); 2001 2002 BUG_ON(tp->fastopen_rsk); 2003 2004 /* If socket is aborted during connect operation */ 2005 tcp_free_fastopen_req(tp); 2006 tcp_fastopen_destroy_cipher(sk); 2007 tcp_saved_syn_free(tp); 2008 2009 sk_sockets_allocated_dec(sk); 2010 } 2011 EXPORT_SYMBOL(tcp_v4_destroy_sock); 2012 2013 #ifdef CONFIG_PROC_FS 2014 /* Proc filesystem TCP sock list dumping. */ 2015 2016 /* 2017 * Get next listener socket follow cur. If cur is NULL, get first socket 2018 * starting from bucket given in st->bucket; when st->bucket is zero the 2019 * very first socket in the hash table is returned. 2020 */ 2021 static void *listening_get_next(struct seq_file *seq, void *cur) 2022 { 2023 struct tcp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2024 struct tcp_iter_state *st = seq->private; 2025 struct net *net = seq_file_net(seq); 2026 struct inet_listen_hashbucket *ilb; 2027 struct sock *sk = cur; 2028 2029 if (!sk) { 2030 get_head: 2031 ilb = &tcp_hashinfo.listening_hash[st->bucket]; 2032 spin_lock(&ilb->lock); 2033 sk = sk_head(&ilb->head); 2034 st->offset = 0; 2035 goto get_sk; 2036 } 2037 ilb = &tcp_hashinfo.listening_hash[st->bucket]; 2038 ++st->num; 2039 ++st->offset; 2040 2041 sk = sk_next(sk); 2042 get_sk: 2043 sk_for_each_from(sk) { 2044 if (!net_eq(sock_net(sk), net)) 2045 continue; 2046 if (sk->sk_family == afinfo->family) 2047 return sk; 2048 } 2049 spin_unlock(&ilb->lock); 2050 st->offset = 0; 2051 if (++st->bucket < INET_LHTABLE_SIZE) 2052 goto get_head; 2053 return NULL; 2054 } 2055 2056 static void *listening_get_idx(struct seq_file *seq, loff_t *pos) 2057 { 2058 struct tcp_iter_state *st = seq->private; 2059 void *rc; 2060 2061 st->bucket = 0; 2062 st->offset = 0; 2063 rc = listening_get_next(seq, NULL); 2064 2065 while (rc && *pos) { 2066 rc = listening_get_next(seq, rc); 2067 --*pos; 2068 } 2069 return rc; 2070 } 2071 2072 static inline bool empty_bucket(const struct tcp_iter_state *st) 2073 { 2074 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain); 2075 } 2076 2077 /* 2078 * Get first established socket starting from bucket given in st->bucket. 2079 * If st->bucket is zero, the very first socket in the hash is returned. 2080 */ 2081 static void *established_get_first(struct seq_file *seq) 2082 { 2083 struct tcp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2084 struct tcp_iter_state *st = seq->private; 2085 struct net *net = seq_file_net(seq); 2086 void *rc = NULL; 2087 2088 st->offset = 0; 2089 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) { 2090 struct sock *sk; 2091 struct hlist_nulls_node *node; 2092 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket); 2093 2094 /* Lockless fast path for the common case of empty buckets */ 2095 if (empty_bucket(st)) 2096 continue; 2097 2098 spin_lock_bh(lock); 2099 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) { 2100 if (sk->sk_family != afinfo->family || 2101 !net_eq(sock_net(sk), net)) { 2102 continue; 2103 } 2104 rc = sk; 2105 goto out; 2106 } 2107 spin_unlock_bh(lock); 2108 } 2109 out: 2110 return rc; 2111 } 2112 2113 static void *established_get_next(struct seq_file *seq, void *cur) 2114 { 2115 struct tcp_seq_afinfo *afinfo = PDE_DATA(file_inode(seq->file)); 2116 struct sock *sk = cur; 2117 struct hlist_nulls_node *node; 2118 struct tcp_iter_state *st = seq->private; 2119 struct net *net = seq_file_net(seq); 2120 2121 ++st->num; 2122 ++st->offset; 2123 2124 sk = sk_nulls_next(sk); 2125 2126 sk_nulls_for_each_from(sk, node) { 2127 if (sk->sk_family == afinfo->family && 2128 net_eq(sock_net(sk), net)) 2129 return sk; 2130 } 2131 2132 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 2133 ++st->bucket; 2134 return established_get_first(seq); 2135 } 2136 2137 static void *established_get_idx(struct seq_file *seq, loff_t pos) 2138 { 2139 struct tcp_iter_state *st = seq->private; 2140 void *rc; 2141 2142 st->bucket = 0; 2143 rc = established_get_first(seq); 2144 2145 while (rc && pos) { 2146 rc = established_get_next(seq, rc); 2147 --pos; 2148 } 2149 return rc; 2150 } 2151 2152 static void *tcp_get_idx(struct seq_file *seq, loff_t pos) 2153 { 2154 void *rc; 2155 struct tcp_iter_state *st = seq->private; 2156 2157 st->state = TCP_SEQ_STATE_LISTENING; 2158 rc = listening_get_idx(seq, &pos); 2159 2160 if (!rc) { 2161 st->state = TCP_SEQ_STATE_ESTABLISHED; 2162 rc = established_get_idx(seq, pos); 2163 } 2164 2165 return rc; 2166 } 2167 2168 static void *tcp_seek_last_pos(struct seq_file *seq) 2169 { 2170 struct tcp_iter_state *st = seq->private; 2171 int offset = st->offset; 2172 int orig_num = st->num; 2173 void *rc = NULL; 2174 2175 switch (st->state) { 2176 case TCP_SEQ_STATE_LISTENING: 2177 if (st->bucket >= INET_LHTABLE_SIZE) 2178 break; 2179 st->state = TCP_SEQ_STATE_LISTENING; 2180 rc = listening_get_next(seq, NULL); 2181 while (offset-- && rc) 2182 rc = listening_get_next(seq, rc); 2183 if (rc) 2184 break; 2185 st->bucket = 0; 2186 st->state = TCP_SEQ_STATE_ESTABLISHED; 2187 /* Fallthrough */ 2188 case TCP_SEQ_STATE_ESTABLISHED: 2189 if (st->bucket > tcp_hashinfo.ehash_mask) 2190 break; 2191 rc = established_get_first(seq); 2192 while (offset-- && rc) 2193 rc = established_get_next(seq, rc); 2194 } 2195 2196 st->num = orig_num; 2197 2198 return rc; 2199 } 2200 2201 void *tcp_seq_start(struct seq_file *seq, loff_t *pos) 2202 { 2203 struct tcp_iter_state *st = seq->private; 2204 void *rc; 2205 2206 if (*pos && *pos == st->last_pos) { 2207 rc = tcp_seek_last_pos(seq); 2208 if (rc) 2209 goto out; 2210 } 2211 2212 st->state = TCP_SEQ_STATE_LISTENING; 2213 st->num = 0; 2214 st->bucket = 0; 2215 st->offset = 0; 2216 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN; 2217 2218 out: 2219 st->last_pos = *pos; 2220 return rc; 2221 } 2222 EXPORT_SYMBOL(tcp_seq_start); 2223 2224 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2225 { 2226 struct tcp_iter_state *st = seq->private; 2227 void *rc = NULL; 2228 2229 if (v == SEQ_START_TOKEN) { 2230 rc = tcp_get_idx(seq, 0); 2231 goto out; 2232 } 2233 2234 switch (st->state) { 2235 case TCP_SEQ_STATE_LISTENING: 2236 rc = listening_get_next(seq, v); 2237 if (!rc) { 2238 st->state = TCP_SEQ_STATE_ESTABLISHED; 2239 st->bucket = 0; 2240 st->offset = 0; 2241 rc = established_get_first(seq); 2242 } 2243 break; 2244 case TCP_SEQ_STATE_ESTABLISHED: 2245 rc = established_get_next(seq, v); 2246 break; 2247 } 2248 out: 2249 ++*pos; 2250 st->last_pos = *pos; 2251 return rc; 2252 } 2253 EXPORT_SYMBOL(tcp_seq_next); 2254 2255 void tcp_seq_stop(struct seq_file *seq, void *v) 2256 { 2257 struct tcp_iter_state *st = seq->private; 2258 2259 switch (st->state) { 2260 case TCP_SEQ_STATE_LISTENING: 2261 if (v != SEQ_START_TOKEN) 2262 spin_unlock(&tcp_hashinfo.listening_hash[st->bucket].lock); 2263 break; 2264 case TCP_SEQ_STATE_ESTABLISHED: 2265 if (v) 2266 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); 2267 break; 2268 } 2269 } 2270 EXPORT_SYMBOL(tcp_seq_stop); 2271 2272 static void get_openreq4(const struct request_sock *req, 2273 struct seq_file *f, int i) 2274 { 2275 const struct inet_request_sock *ireq = inet_rsk(req); 2276 long delta = req->rsk_timer.expires - jiffies; 2277 2278 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2279 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK", 2280 i, 2281 ireq->ir_loc_addr, 2282 ireq->ir_num, 2283 ireq->ir_rmt_addr, 2284 ntohs(ireq->ir_rmt_port), 2285 TCP_SYN_RECV, 2286 0, 0, /* could print option size, but that is af dependent. */ 2287 1, /* timers active (only the expire timer) */ 2288 jiffies_delta_to_clock_t(delta), 2289 req->num_timeout, 2290 from_kuid_munged(seq_user_ns(f), 2291 sock_i_uid(req->rsk_listener)), 2292 0, /* non standard timer */ 2293 0, /* open_requests have no inode */ 2294 0, 2295 req); 2296 } 2297 2298 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i) 2299 { 2300 int timer_active; 2301 unsigned long timer_expires; 2302 const struct tcp_sock *tp = tcp_sk(sk); 2303 const struct inet_connection_sock *icsk = inet_csk(sk); 2304 const struct inet_sock *inet = inet_sk(sk); 2305 const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq; 2306 __be32 dest = inet->inet_daddr; 2307 __be32 src = inet->inet_rcv_saddr; 2308 __u16 destp = ntohs(inet->inet_dport); 2309 __u16 srcp = ntohs(inet->inet_sport); 2310 int rx_queue; 2311 int state; 2312 2313 if (icsk->icsk_pending == ICSK_TIME_RETRANS || 2314 icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 2315 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2316 timer_active = 1; 2317 timer_expires = icsk->icsk_timeout; 2318 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) { 2319 timer_active = 4; 2320 timer_expires = icsk->icsk_timeout; 2321 } else if (timer_pending(&sk->sk_timer)) { 2322 timer_active = 2; 2323 timer_expires = sk->sk_timer.expires; 2324 } else { 2325 timer_active = 0; 2326 timer_expires = jiffies; 2327 } 2328 2329 state = inet_sk_state_load(sk); 2330 if (state == TCP_LISTEN) 2331 rx_queue = sk->sk_ack_backlog; 2332 else 2333 /* Because we don't lock the socket, 2334 * we might find a transient negative value. 2335 */ 2336 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0); 2337 2338 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX " 2339 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d", 2340 i, src, srcp, dest, destp, state, 2341 tp->write_seq - tp->snd_una, 2342 rx_queue, 2343 timer_active, 2344 jiffies_delta_to_clock_t(timer_expires - jiffies), 2345 icsk->icsk_retransmits, 2346 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)), 2347 icsk->icsk_probes_out, 2348 sock_i_ino(sk), 2349 refcount_read(&sk->sk_refcnt), sk, 2350 jiffies_to_clock_t(icsk->icsk_rto), 2351 jiffies_to_clock_t(icsk->icsk_ack.ato), 2352 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong, 2353 tp->snd_cwnd, 2354 state == TCP_LISTEN ? 2355 fastopenq->max_qlen : 2356 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh)); 2357 } 2358 2359 static void get_timewait4_sock(const struct inet_timewait_sock *tw, 2360 struct seq_file *f, int i) 2361 { 2362 long delta = tw->tw_timer.expires - jiffies; 2363 __be32 dest, src; 2364 __u16 destp, srcp; 2365 2366 dest = tw->tw_daddr; 2367 src = tw->tw_rcv_saddr; 2368 destp = ntohs(tw->tw_dport); 2369 srcp = ntohs(tw->tw_sport); 2370 2371 seq_printf(f, "%4d: %08X:%04X %08X:%04X" 2372 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK", 2373 i, src, srcp, dest, destp, tw->tw_substate, 0, 0, 2374 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0, 2375 refcount_read(&tw->tw_refcnt), tw); 2376 } 2377 2378 #define TMPSZ 150 2379 2380 static int tcp4_seq_show(struct seq_file *seq, void *v) 2381 { 2382 struct tcp_iter_state *st; 2383 struct sock *sk = v; 2384 2385 seq_setwidth(seq, TMPSZ - 1); 2386 if (v == SEQ_START_TOKEN) { 2387 seq_puts(seq, " sl local_address rem_address st tx_queue " 2388 "rx_queue tr tm->when retrnsmt uid timeout " 2389 "inode"); 2390 goto out; 2391 } 2392 st = seq->private; 2393 2394 if (sk->sk_state == TCP_TIME_WAIT) 2395 get_timewait4_sock(v, seq, st->num); 2396 else if (sk->sk_state == TCP_NEW_SYN_RECV) 2397 get_openreq4(v, seq, st->num); 2398 else 2399 get_tcp4_sock(v, seq, st->num); 2400 out: 2401 seq_pad(seq, '\n'); 2402 return 0; 2403 } 2404 2405 static const struct seq_operations tcp4_seq_ops = { 2406 .show = tcp4_seq_show, 2407 .start = tcp_seq_start, 2408 .next = tcp_seq_next, 2409 .stop = tcp_seq_stop, 2410 }; 2411 2412 static struct tcp_seq_afinfo tcp4_seq_afinfo = { 2413 .family = AF_INET, 2414 }; 2415 2416 static int __net_init tcp4_proc_init_net(struct net *net) 2417 { 2418 if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops, 2419 sizeof(struct tcp_iter_state), &tcp4_seq_afinfo)) 2420 return -ENOMEM; 2421 return 0; 2422 } 2423 2424 static void __net_exit tcp4_proc_exit_net(struct net *net) 2425 { 2426 remove_proc_entry("tcp", net->proc_net); 2427 } 2428 2429 static struct pernet_operations tcp4_net_ops = { 2430 .init = tcp4_proc_init_net, 2431 .exit = tcp4_proc_exit_net, 2432 }; 2433 2434 int __init tcp4_proc_init(void) 2435 { 2436 return register_pernet_subsys(&tcp4_net_ops); 2437 } 2438 2439 void tcp4_proc_exit(void) 2440 { 2441 unregister_pernet_subsys(&tcp4_net_ops); 2442 } 2443 #endif /* CONFIG_PROC_FS */ 2444 2445 struct proto tcp_prot = { 2446 .name = "TCP", 2447 .owner = THIS_MODULE, 2448 .close = tcp_close, 2449 .pre_connect = tcp_v4_pre_connect, 2450 .connect = tcp_v4_connect, 2451 .disconnect = tcp_disconnect, 2452 .accept = inet_csk_accept, 2453 .ioctl = tcp_ioctl, 2454 .init = tcp_v4_init_sock, 2455 .destroy = tcp_v4_destroy_sock, 2456 .shutdown = tcp_shutdown, 2457 .setsockopt = tcp_setsockopt, 2458 .getsockopt = tcp_getsockopt, 2459 .keepalive = tcp_set_keepalive, 2460 .recvmsg = tcp_recvmsg, 2461 .sendmsg = tcp_sendmsg, 2462 .sendpage = tcp_sendpage, 2463 .backlog_rcv = tcp_v4_do_rcv, 2464 .release_cb = tcp_release_cb, 2465 .hash = inet_hash, 2466 .unhash = inet_unhash, 2467 .get_port = inet_csk_get_port, 2468 .enter_memory_pressure = tcp_enter_memory_pressure, 2469 .leave_memory_pressure = tcp_leave_memory_pressure, 2470 .stream_memory_free = tcp_stream_memory_free, 2471 .sockets_allocated = &tcp_sockets_allocated, 2472 .orphan_count = &tcp_orphan_count, 2473 .memory_allocated = &tcp_memory_allocated, 2474 .memory_pressure = &tcp_memory_pressure, 2475 .sysctl_mem = sysctl_tcp_mem, 2476 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 2477 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 2478 .max_header = MAX_TCP_HEADER, 2479 .obj_size = sizeof(struct tcp_sock), 2480 .slab_flags = SLAB_TYPESAFE_BY_RCU, 2481 .twsk_prot = &tcp_timewait_sock_ops, 2482 .rsk_prot = &tcp_request_sock_ops, 2483 .h.hashinfo = &tcp_hashinfo, 2484 .no_autobind = true, 2485 #ifdef CONFIG_COMPAT 2486 .compat_setsockopt = compat_tcp_setsockopt, 2487 .compat_getsockopt = compat_tcp_getsockopt, 2488 #endif 2489 .diag_destroy = tcp_abort, 2490 }; 2491 EXPORT_SYMBOL(tcp_prot); 2492 2493 static void __net_exit tcp_sk_exit(struct net *net) 2494 { 2495 int cpu; 2496 2497 module_put(net->ipv4.tcp_congestion_control->owner); 2498 2499 for_each_possible_cpu(cpu) 2500 inet_ctl_sock_destroy(*per_cpu_ptr(net->ipv4.tcp_sk, cpu)); 2501 free_percpu(net->ipv4.tcp_sk); 2502 } 2503 2504 static int __net_init tcp_sk_init(struct net *net) 2505 { 2506 int res, cpu, cnt; 2507 2508 net->ipv4.tcp_sk = alloc_percpu(struct sock *); 2509 if (!net->ipv4.tcp_sk) 2510 return -ENOMEM; 2511 2512 for_each_possible_cpu(cpu) { 2513 struct sock *sk; 2514 2515 res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW, 2516 IPPROTO_TCP, net); 2517 if (res) 2518 goto fail; 2519 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 2520 2521 /* Please enforce IP_DF and IPID==0 for RST and 2522 * ACK sent in SYN-RECV and TIME-WAIT state. 2523 */ 2524 inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO; 2525 2526 *per_cpu_ptr(net->ipv4.tcp_sk, cpu) = sk; 2527 } 2528 2529 net->ipv4.sysctl_tcp_ecn = 2; 2530 net->ipv4.sysctl_tcp_ecn_fallback = 1; 2531 2532 net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS; 2533 net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD; 2534 net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL; 2535 2536 net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME; 2537 net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES; 2538 net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL; 2539 2540 net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES; 2541 net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES; 2542 net->ipv4.sysctl_tcp_syncookies = 1; 2543 net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH; 2544 net->ipv4.sysctl_tcp_retries1 = TCP_RETR1; 2545 net->ipv4.sysctl_tcp_retries2 = TCP_RETR2; 2546 net->ipv4.sysctl_tcp_orphan_retries = 0; 2547 net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT; 2548 net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX; 2549 net->ipv4.sysctl_tcp_tw_reuse = 2; 2550 2551 cnt = tcp_hashinfo.ehash_mask + 1; 2552 net->ipv4.tcp_death_row.sysctl_max_tw_buckets = cnt / 2; 2553 net->ipv4.tcp_death_row.hashinfo = &tcp_hashinfo; 2554 2555 net->ipv4.sysctl_max_syn_backlog = max(128, cnt / 256); 2556 net->ipv4.sysctl_tcp_sack = 1; 2557 net->ipv4.sysctl_tcp_window_scaling = 1; 2558 net->ipv4.sysctl_tcp_timestamps = 1; 2559 net->ipv4.sysctl_tcp_early_retrans = 3; 2560 net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION; 2561 net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior. */ 2562 net->ipv4.sysctl_tcp_retrans_collapse = 1; 2563 net->ipv4.sysctl_tcp_max_reordering = 300; 2564 net->ipv4.sysctl_tcp_dsack = 1; 2565 net->ipv4.sysctl_tcp_app_win = 31; 2566 net->ipv4.sysctl_tcp_adv_win_scale = 1; 2567 net->ipv4.sysctl_tcp_frto = 2; 2568 net->ipv4.sysctl_tcp_moderate_rcvbuf = 1; 2569 /* This limits the percentage of the congestion window which we 2570 * will allow a single TSO frame to consume. Building TSO frames 2571 * which are too large can cause TCP streams to be bursty. 2572 */ 2573 net->ipv4.sysctl_tcp_tso_win_divisor = 3; 2574 /* Default TSQ limit of four TSO segments */ 2575 net->ipv4.sysctl_tcp_limit_output_bytes = 262144; 2576 /* rfc5961 challenge ack rate limiting */ 2577 net->ipv4.sysctl_tcp_challenge_ack_limit = 1000; 2578 net->ipv4.sysctl_tcp_min_tso_segs = 2; 2579 net->ipv4.sysctl_tcp_min_rtt_wlen = 300; 2580 net->ipv4.sysctl_tcp_autocorking = 1; 2581 net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2; 2582 net->ipv4.sysctl_tcp_pacing_ss_ratio = 200; 2583 net->ipv4.sysctl_tcp_pacing_ca_ratio = 120; 2584 if (net != &init_net) { 2585 memcpy(net->ipv4.sysctl_tcp_rmem, 2586 init_net.ipv4.sysctl_tcp_rmem, 2587 sizeof(init_net.ipv4.sysctl_tcp_rmem)); 2588 memcpy(net->ipv4.sysctl_tcp_wmem, 2589 init_net.ipv4.sysctl_tcp_wmem, 2590 sizeof(init_net.ipv4.sysctl_tcp_wmem)); 2591 } 2592 net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC; 2593 net->ipv4.sysctl_tcp_comp_sack_nr = 44; 2594 net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE; 2595 spin_lock_init(&net->ipv4.tcp_fastopen_ctx_lock); 2596 net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 60 * 60; 2597 atomic_set(&net->ipv4.tfo_active_disable_times, 0); 2598 2599 /* Reno is always built in */ 2600 if (!net_eq(net, &init_net) && 2601 try_module_get(init_net.ipv4.tcp_congestion_control->owner)) 2602 net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control; 2603 else 2604 net->ipv4.tcp_congestion_control = &tcp_reno; 2605 2606 return 0; 2607 fail: 2608 tcp_sk_exit(net); 2609 2610 return res; 2611 } 2612 2613 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list) 2614 { 2615 struct net *net; 2616 2617 inet_twsk_purge(&tcp_hashinfo, AF_INET); 2618 2619 list_for_each_entry(net, net_exit_list, exit_list) 2620 tcp_fastopen_ctx_destroy(net); 2621 } 2622 2623 static struct pernet_operations __net_initdata tcp_sk_ops = { 2624 .init = tcp_sk_init, 2625 .exit = tcp_sk_exit, 2626 .exit_batch = tcp_sk_exit_batch, 2627 }; 2628 2629 void __init tcp_v4_init(void) 2630 { 2631 if (register_pernet_subsys(&tcp_sk_ops)) 2632 panic("Failed to create the TCP control socket.\n"); 2633 } 2634