xref: /openbmc/linux/net/ipv4/tcp_input.c (revision fd589a8f)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #include <linux/mm.h>
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
67 #include <linux/kernel.h>
68 #include <net/dst.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74 
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly = 2;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84 
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly = 2;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91 
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
94 
95 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
96 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
97 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
98 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
99 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
100 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
101 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
102 #define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
103 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
107 #define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
108 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
109 
110 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
111 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
112 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
113 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
114 #define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
115 
116 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
117 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
118 
119 /* Adapt the MSS value used to make delayed ack decision to the
120  * real world.
121  */
122 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
123 {
124 	struct inet_connection_sock *icsk = inet_csk(sk);
125 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
126 	unsigned int len;
127 
128 	icsk->icsk_ack.last_seg_size = 0;
129 
130 	/* skb->len may jitter because of SACKs, even if peer
131 	 * sends good full-sized frames.
132 	 */
133 	len = skb_shinfo(skb)->gso_size ? : skb->len;
134 	if (len >= icsk->icsk_ack.rcv_mss) {
135 		icsk->icsk_ack.rcv_mss = len;
136 	} else {
137 		/* Otherwise, we make more careful check taking into account,
138 		 * that SACKs block is variable.
139 		 *
140 		 * "len" is invariant segment length, including TCP header.
141 		 */
142 		len += skb->data - skb_transport_header(skb);
143 		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
144 		    /* If PSH is not set, packet should be
145 		     * full sized, provided peer TCP is not badly broken.
146 		     * This observation (if it is correct 8)) allows
147 		     * to handle super-low mtu links fairly.
148 		     */
149 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
150 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
151 			/* Subtract also invariant (if peer is RFC compliant),
152 			 * tcp header plus fixed timestamp option length.
153 			 * Resulting "len" is MSS free of SACK jitter.
154 			 */
155 			len -= tcp_sk(sk)->tcp_header_len;
156 			icsk->icsk_ack.last_seg_size = len;
157 			if (len == lss) {
158 				icsk->icsk_ack.rcv_mss = len;
159 				return;
160 			}
161 		}
162 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
163 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
164 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
165 	}
166 }
167 
168 static void tcp_incr_quickack(struct sock *sk)
169 {
170 	struct inet_connection_sock *icsk = inet_csk(sk);
171 	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
172 
173 	if (quickacks == 0)
174 		quickacks = 2;
175 	if (quickacks > icsk->icsk_ack.quick)
176 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
177 }
178 
179 void tcp_enter_quickack_mode(struct sock *sk)
180 {
181 	struct inet_connection_sock *icsk = inet_csk(sk);
182 	tcp_incr_quickack(sk);
183 	icsk->icsk_ack.pingpong = 0;
184 	icsk->icsk_ack.ato = TCP_ATO_MIN;
185 }
186 
187 /* Send ACKs quickly, if "quick" count is not exhausted
188  * and the session is not interactive.
189  */
190 
191 static inline int tcp_in_quickack_mode(const struct sock *sk)
192 {
193 	const struct inet_connection_sock *icsk = inet_csk(sk);
194 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
195 }
196 
197 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
198 {
199 	if (tp->ecn_flags & TCP_ECN_OK)
200 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
201 }
202 
203 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
204 {
205 	if (tcp_hdr(skb)->cwr)
206 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
207 }
208 
209 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
210 {
211 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
212 }
213 
214 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
215 {
216 	if (tp->ecn_flags & TCP_ECN_OK) {
217 		if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
218 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
219 		/* Funny extension: if ECT is not set on a segment,
220 		 * it is surely retransmit. It is not in ECN RFC,
221 		 * but Linux follows this rule. */
222 		else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
223 			tcp_enter_quickack_mode((struct sock *)tp);
224 	}
225 }
226 
227 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
228 {
229 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
230 		tp->ecn_flags &= ~TCP_ECN_OK;
231 }
232 
233 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
234 {
235 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
236 		tp->ecn_flags &= ~TCP_ECN_OK;
237 }
238 
239 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
240 {
241 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
242 		return 1;
243 	return 0;
244 }
245 
246 /* Buffer size and advertised window tuning.
247  *
248  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
249  */
250 
251 static void tcp_fixup_sndbuf(struct sock *sk)
252 {
253 	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
254 		     sizeof(struct sk_buff);
255 
256 	if (sk->sk_sndbuf < 3 * sndmem)
257 		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
258 }
259 
260 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
261  *
262  * All tcp_full_space() is split to two parts: "network" buffer, allocated
263  * forward and advertised in receiver window (tp->rcv_wnd) and
264  * "application buffer", required to isolate scheduling/application
265  * latencies from network.
266  * window_clamp is maximal advertised window. It can be less than
267  * tcp_full_space(), in this case tcp_full_space() - window_clamp
268  * is reserved for "application" buffer. The less window_clamp is
269  * the smoother our behaviour from viewpoint of network, but the lower
270  * throughput and the higher sensitivity of the connection to losses. 8)
271  *
272  * rcv_ssthresh is more strict window_clamp used at "slow start"
273  * phase to predict further behaviour of this connection.
274  * It is used for two goals:
275  * - to enforce header prediction at sender, even when application
276  *   requires some significant "application buffer". It is check #1.
277  * - to prevent pruning of receive queue because of misprediction
278  *   of receiver window. Check #2.
279  *
280  * The scheme does not work when sender sends good segments opening
281  * window and then starts to feed us spaghetti. But it should work
282  * in common situations. Otherwise, we have to rely on queue collapsing.
283  */
284 
285 /* Slow part of check#2. */
286 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
287 {
288 	struct tcp_sock *tp = tcp_sk(sk);
289 	/* Optimize this! */
290 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
291 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
292 
293 	while (tp->rcv_ssthresh <= window) {
294 		if (truesize <= skb->len)
295 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
296 
297 		truesize >>= 1;
298 		window >>= 1;
299 	}
300 	return 0;
301 }
302 
303 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
304 {
305 	struct tcp_sock *tp = tcp_sk(sk);
306 
307 	/* Check #1 */
308 	if (tp->rcv_ssthresh < tp->window_clamp &&
309 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
310 	    !tcp_memory_pressure) {
311 		int incr;
312 
313 		/* Check #2. Increase window, if skb with such overhead
314 		 * will fit to rcvbuf in future.
315 		 */
316 		if (tcp_win_from_space(skb->truesize) <= skb->len)
317 			incr = 2 * tp->advmss;
318 		else
319 			incr = __tcp_grow_window(sk, skb);
320 
321 		if (incr) {
322 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
323 					       tp->window_clamp);
324 			inet_csk(sk)->icsk_ack.quick |= 1;
325 		}
326 	}
327 }
328 
329 /* 3. Tuning rcvbuf, when connection enters established state. */
330 
331 static void tcp_fixup_rcvbuf(struct sock *sk)
332 {
333 	struct tcp_sock *tp = tcp_sk(sk);
334 	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
335 
336 	/* Try to select rcvbuf so that 4 mss-sized segments
337 	 * will fit to window and corresponding skbs will fit to our rcvbuf.
338 	 * (was 3; 4 is minimum to allow fast retransmit to work.)
339 	 */
340 	while (tcp_win_from_space(rcvmem) < tp->advmss)
341 		rcvmem += 128;
342 	if (sk->sk_rcvbuf < 4 * rcvmem)
343 		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
344 }
345 
346 /* 4. Try to fixup all. It is made immediately after connection enters
347  *    established state.
348  */
349 static void tcp_init_buffer_space(struct sock *sk)
350 {
351 	struct tcp_sock *tp = tcp_sk(sk);
352 	int maxwin;
353 
354 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
355 		tcp_fixup_rcvbuf(sk);
356 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
357 		tcp_fixup_sndbuf(sk);
358 
359 	tp->rcvq_space.space = tp->rcv_wnd;
360 
361 	maxwin = tcp_full_space(sk);
362 
363 	if (tp->window_clamp >= maxwin) {
364 		tp->window_clamp = maxwin;
365 
366 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
367 			tp->window_clamp = max(maxwin -
368 					       (maxwin >> sysctl_tcp_app_win),
369 					       4 * tp->advmss);
370 	}
371 
372 	/* Force reservation of one segment. */
373 	if (sysctl_tcp_app_win &&
374 	    tp->window_clamp > 2 * tp->advmss &&
375 	    tp->window_clamp + tp->advmss > maxwin)
376 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
377 
378 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
379 	tp->snd_cwnd_stamp = tcp_time_stamp;
380 }
381 
382 /* 5. Recalculate window clamp after socket hit its memory bounds. */
383 static void tcp_clamp_window(struct sock *sk)
384 {
385 	struct tcp_sock *tp = tcp_sk(sk);
386 	struct inet_connection_sock *icsk = inet_csk(sk);
387 
388 	icsk->icsk_ack.quick = 0;
389 
390 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
391 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
392 	    !tcp_memory_pressure &&
393 	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
394 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
395 				    sysctl_tcp_rmem[2]);
396 	}
397 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
398 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
399 }
400 
401 /* Initialize RCV_MSS value.
402  * RCV_MSS is an our guess about MSS used by the peer.
403  * We haven't any direct information about the MSS.
404  * It's better to underestimate the RCV_MSS rather than overestimate.
405  * Overestimations make us ACKing less frequently than needed.
406  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
407  */
408 void tcp_initialize_rcv_mss(struct sock *sk)
409 {
410 	struct tcp_sock *tp = tcp_sk(sk);
411 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
412 
413 	hint = min(hint, tp->rcv_wnd / 2);
414 	hint = min(hint, TCP_MIN_RCVMSS);
415 	hint = max(hint, TCP_MIN_MSS);
416 
417 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
418 }
419 
420 /* Receiver "autotuning" code.
421  *
422  * The algorithm for RTT estimation w/o timestamps is based on
423  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
424  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
425  *
426  * More detail on this code can be found at
427  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
428  * though this reference is out of date.  A new paper
429  * is pending.
430  */
431 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
432 {
433 	u32 new_sample = tp->rcv_rtt_est.rtt;
434 	long m = sample;
435 
436 	if (m == 0)
437 		m = 1;
438 
439 	if (new_sample != 0) {
440 		/* If we sample in larger samples in the non-timestamp
441 		 * case, we could grossly overestimate the RTT especially
442 		 * with chatty applications or bulk transfer apps which
443 		 * are stalled on filesystem I/O.
444 		 *
445 		 * Also, since we are only going for a minimum in the
446 		 * non-timestamp case, we do not smooth things out
447 		 * else with timestamps disabled convergence takes too
448 		 * long.
449 		 */
450 		if (!win_dep) {
451 			m -= (new_sample >> 3);
452 			new_sample += m;
453 		} else if (m < new_sample)
454 			new_sample = m << 3;
455 	} else {
456 		/* No previous measure. */
457 		new_sample = m << 3;
458 	}
459 
460 	if (tp->rcv_rtt_est.rtt != new_sample)
461 		tp->rcv_rtt_est.rtt = new_sample;
462 }
463 
464 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
465 {
466 	if (tp->rcv_rtt_est.time == 0)
467 		goto new_measure;
468 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
469 		return;
470 	tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
471 
472 new_measure:
473 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
474 	tp->rcv_rtt_est.time = tcp_time_stamp;
475 }
476 
477 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
478 					  const struct sk_buff *skb)
479 {
480 	struct tcp_sock *tp = tcp_sk(sk);
481 	if (tp->rx_opt.rcv_tsecr &&
482 	    (TCP_SKB_CB(skb)->end_seq -
483 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
484 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
485 }
486 
487 /*
488  * This function should be called every time data is copied to user space.
489  * It calculates the appropriate TCP receive buffer space.
490  */
491 void tcp_rcv_space_adjust(struct sock *sk)
492 {
493 	struct tcp_sock *tp = tcp_sk(sk);
494 	int time;
495 	int space;
496 
497 	if (tp->rcvq_space.time == 0)
498 		goto new_measure;
499 
500 	time = tcp_time_stamp - tp->rcvq_space.time;
501 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
502 		return;
503 
504 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
505 
506 	space = max(tp->rcvq_space.space, space);
507 
508 	if (tp->rcvq_space.space != space) {
509 		int rcvmem;
510 
511 		tp->rcvq_space.space = space;
512 
513 		if (sysctl_tcp_moderate_rcvbuf &&
514 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
515 			int new_clamp = space;
516 
517 			/* Receive space grows, normalize in order to
518 			 * take into account packet headers and sk_buff
519 			 * structure overhead.
520 			 */
521 			space /= tp->advmss;
522 			if (!space)
523 				space = 1;
524 			rcvmem = (tp->advmss + MAX_TCP_HEADER +
525 				  16 + sizeof(struct sk_buff));
526 			while (tcp_win_from_space(rcvmem) < tp->advmss)
527 				rcvmem += 128;
528 			space *= rcvmem;
529 			space = min(space, sysctl_tcp_rmem[2]);
530 			if (space > sk->sk_rcvbuf) {
531 				sk->sk_rcvbuf = space;
532 
533 				/* Make the window clamp follow along.  */
534 				tp->window_clamp = new_clamp;
535 			}
536 		}
537 	}
538 
539 new_measure:
540 	tp->rcvq_space.seq = tp->copied_seq;
541 	tp->rcvq_space.time = tcp_time_stamp;
542 }
543 
544 /* There is something which you must keep in mind when you analyze the
545  * behavior of the tp->ato delayed ack timeout interval.  When a
546  * connection starts up, we want to ack as quickly as possible.  The
547  * problem is that "good" TCP's do slow start at the beginning of data
548  * transmission.  The means that until we send the first few ACK's the
549  * sender will sit on his end and only queue most of his data, because
550  * he can only send snd_cwnd unacked packets at any given time.  For
551  * each ACK we send, he increments snd_cwnd and transmits more of his
552  * queue.  -DaveM
553  */
554 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
555 {
556 	struct tcp_sock *tp = tcp_sk(sk);
557 	struct inet_connection_sock *icsk = inet_csk(sk);
558 	u32 now;
559 
560 	inet_csk_schedule_ack(sk);
561 
562 	tcp_measure_rcv_mss(sk, skb);
563 
564 	tcp_rcv_rtt_measure(tp);
565 
566 	now = tcp_time_stamp;
567 
568 	if (!icsk->icsk_ack.ato) {
569 		/* The _first_ data packet received, initialize
570 		 * delayed ACK engine.
571 		 */
572 		tcp_incr_quickack(sk);
573 		icsk->icsk_ack.ato = TCP_ATO_MIN;
574 	} else {
575 		int m = now - icsk->icsk_ack.lrcvtime;
576 
577 		if (m <= TCP_ATO_MIN / 2) {
578 			/* The fastest case is the first. */
579 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
580 		} else if (m < icsk->icsk_ack.ato) {
581 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
582 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
583 				icsk->icsk_ack.ato = icsk->icsk_rto;
584 		} else if (m > icsk->icsk_rto) {
585 			/* Too long gap. Apparently sender failed to
586 			 * restart window, so that we send ACKs quickly.
587 			 */
588 			tcp_incr_quickack(sk);
589 			sk_mem_reclaim(sk);
590 		}
591 	}
592 	icsk->icsk_ack.lrcvtime = now;
593 
594 	TCP_ECN_check_ce(tp, skb);
595 
596 	if (skb->len >= 128)
597 		tcp_grow_window(sk, skb);
598 }
599 
600 /* Called to compute a smoothed rtt estimate. The data fed to this
601  * routine either comes from timestamps, or from segments that were
602  * known _not_ to have been retransmitted [see Karn/Partridge
603  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
604  * piece by Van Jacobson.
605  * NOTE: the next three routines used to be one big routine.
606  * To save cycles in the RFC 1323 implementation it was better to break
607  * it up into three procedures. -- erics
608  */
609 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
610 {
611 	struct tcp_sock *tp = tcp_sk(sk);
612 	long m = mrtt; /* RTT */
613 
614 	/*	The following amusing code comes from Jacobson's
615 	 *	article in SIGCOMM '88.  Note that rtt and mdev
616 	 *	are scaled versions of rtt and mean deviation.
617 	 *	This is designed to be as fast as possible
618 	 *	m stands for "measurement".
619 	 *
620 	 *	On a 1990 paper the rto value is changed to:
621 	 *	RTO = rtt + 4 * mdev
622 	 *
623 	 * Funny. This algorithm seems to be very broken.
624 	 * These formulae increase RTO, when it should be decreased, increase
625 	 * too slowly, when it should be increased quickly, decrease too quickly
626 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
627 	 * does not matter how to _calculate_ it. Seems, it was trap
628 	 * that VJ failed to avoid. 8)
629 	 */
630 	if (m == 0)
631 		m = 1;
632 	if (tp->srtt != 0) {
633 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
634 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
635 		if (m < 0) {
636 			m = -m;		/* m is now abs(error) */
637 			m -= (tp->mdev >> 2);   /* similar update on mdev */
638 			/* This is similar to one of Eifel findings.
639 			 * Eifel blocks mdev updates when rtt decreases.
640 			 * This solution is a bit different: we use finer gain
641 			 * for mdev in this case (alpha*beta).
642 			 * Like Eifel it also prevents growth of rto,
643 			 * but also it limits too fast rto decreases,
644 			 * happening in pure Eifel.
645 			 */
646 			if (m > 0)
647 				m >>= 3;
648 		} else {
649 			m -= (tp->mdev >> 2);   /* similar update on mdev */
650 		}
651 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
652 		if (tp->mdev > tp->mdev_max) {
653 			tp->mdev_max = tp->mdev;
654 			if (tp->mdev_max > tp->rttvar)
655 				tp->rttvar = tp->mdev_max;
656 		}
657 		if (after(tp->snd_una, tp->rtt_seq)) {
658 			if (tp->mdev_max < tp->rttvar)
659 				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
660 			tp->rtt_seq = tp->snd_nxt;
661 			tp->mdev_max = tcp_rto_min(sk);
662 		}
663 	} else {
664 		/* no previous measure. */
665 		tp->srtt = m << 3;	/* take the measured time to be rtt */
666 		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
667 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
668 		tp->rtt_seq = tp->snd_nxt;
669 	}
670 }
671 
672 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
673  * routine referred to above.
674  */
675 static inline void tcp_set_rto(struct sock *sk)
676 {
677 	const struct tcp_sock *tp = tcp_sk(sk);
678 	/* Old crap is replaced with new one. 8)
679 	 *
680 	 * More seriously:
681 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
682 	 *    It cannot be less due to utterly erratic ACK generation made
683 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
684 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
685 	 *    is invisible. Actually, Linux-2.4 also generates erratic
686 	 *    ACKs in some circumstances.
687 	 */
688 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
689 
690 	/* 2. Fixups made earlier cannot be right.
691 	 *    If we do not estimate RTO correctly without them,
692 	 *    all the algo is pure shit and should be replaced
693 	 *    with correct one. It is exactly, which we pretend to do.
694 	 */
695 
696 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
697 	 * guarantees that rto is higher.
698 	 */
699 	tcp_bound_rto(sk);
700 }
701 
702 /* Save metrics learned by this TCP session.
703    This function is called only, when TCP finishes successfully
704    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
705  */
706 void tcp_update_metrics(struct sock *sk)
707 {
708 	struct tcp_sock *tp = tcp_sk(sk);
709 	struct dst_entry *dst = __sk_dst_get(sk);
710 
711 	if (sysctl_tcp_nometrics_save)
712 		return;
713 
714 	dst_confirm(dst);
715 
716 	if (dst && (dst->flags & DST_HOST)) {
717 		const struct inet_connection_sock *icsk = inet_csk(sk);
718 		int m;
719 		unsigned long rtt;
720 
721 		if (icsk->icsk_backoff || !tp->srtt) {
722 			/* This session failed to estimate rtt. Why?
723 			 * Probably, no packets returned in time.
724 			 * Reset our results.
725 			 */
726 			if (!(dst_metric_locked(dst, RTAX_RTT)))
727 				dst->metrics[RTAX_RTT - 1] = 0;
728 			return;
729 		}
730 
731 		rtt = dst_metric_rtt(dst, RTAX_RTT);
732 		m = rtt - tp->srtt;
733 
734 		/* If newly calculated rtt larger than stored one,
735 		 * store new one. Otherwise, use EWMA. Remember,
736 		 * rtt overestimation is always better than underestimation.
737 		 */
738 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
739 			if (m <= 0)
740 				set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
741 			else
742 				set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
743 		}
744 
745 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
746 			unsigned long var;
747 			if (m < 0)
748 				m = -m;
749 
750 			/* Scale deviation to rttvar fixed point */
751 			m >>= 1;
752 			if (m < tp->mdev)
753 				m = tp->mdev;
754 
755 			var = dst_metric_rtt(dst, RTAX_RTTVAR);
756 			if (m >= var)
757 				var = m;
758 			else
759 				var -= (var - m) >> 2;
760 
761 			set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
762 		}
763 
764 		if (tcp_in_initial_slowstart(tp)) {
765 			/* Slow start still did not finish. */
766 			if (dst_metric(dst, RTAX_SSTHRESH) &&
767 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
768 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
769 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
770 			if (!dst_metric_locked(dst, RTAX_CWND) &&
771 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
772 				dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
773 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
774 			   icsk->icsk_ca_state == TCP_CA_Open) {
775 			/* Cong. avoidance phase, cwnd is reliable. */
776 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
777 				dst->metrics[RTAX_SSTHRESH-1] =
778 					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
779 			if (!dst_metric_locked(dst, RTAX_CWND))
780 				dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
781 		} else {
782 			/* Else slow start did not finish, cwnd is non-sense,
783 			   ssthresh may be also invalid.
784 			 */
785 			if (!dst_metric_locked(dst, RTAX_CWND))
786 				dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
787 			if (dst_metric(dst, RTAX_SSTHRESH) &&
788 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
789 			    tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
790 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
791 		}
792 
793 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
794 			if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
795 			    tp->reordering != sysctl_tcp_reordering)
796 				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
797 		}
798 	}
799 }
800 
801 /* Numbers are taken from RFC3390.
802  *
803  * John Heffner states:
804  *
805  *	The RFC specifies a window of no more than 4380 bytes
806  *	unless 2*MSS > 4380.  Reading the pseudocode in the RFC
807  *	is a bit misleading because they use a clamp at 4380 bytes
808  *	rather than use a multiplier in the relevant range.
809  */
810 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
811 {
812 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
813 
814 	if (!cwnd) {
815 		if (tp->mss_cache > 1460)
816 			cwnd = 2;
817 		else
818 			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
819 	}
820 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
821 }
822 
823 /* Set slow start threshold and cwnd not falling to slow start */
824 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
825 {
826 	struct tcp_sock *tp = tcp_sk(sk);
827 	const struct inet_connection_sock *icsk = inet_csk(sk);
828 
829 	tp->prior_ssthresh = 0;
830 	tp->bytes_acked = 0;
831 	if (icsk->icsk_ca_state < TCP_CA_CWR) {
832 		tp->undo_marker = 0;
833 		if (set_ssthresh)
834 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
835 		tp->snd_cwnd = min(tp->snd_cwnd,
836 				   tcp_packets_in_flight(tp) + 1U);
837 		tp->snd_cwnd_cnt = 0;
838 		tp->high_seq = tp->snd_nxt;
839 		tp->snd_cwnd_stamp = tcp_time_stamp;
840 		TCP_ECN_queue_cwr(tp);
841 
842 		tcp_set_ca_state(sk, TCP_CA_CWR);
843 	}
844 }
845 
846 /*
847  * Packet counting of FACK is based on in-order assumptions, therefore TCP
848  * disables it when reordering is detected
849  */
850 static void tcp_disable_fack(struct tcp_sock *tp)
851 {
852 	/* RFC3517 uses different metric in lost marker => reset on change */
853 	if (tcp_is_fack(tp))
854 		tp->lost_skb_hint = NULL;
855 	tp->rx_opt.sack_ok &= ~2;
856 }
857 
858 /* Take a notice that peer is sending D-SACKs */
859 static void tcp_dsack_seen(struct tcp_sock *tp)
860 {
861 	tp->rx_opt.sack_ok |= 4;
862 }
863 
864 /* Initialize metrics on socket. */
865 
866 static void tcp_init_metrics(struct sock *sk)
867 {
868 	struct tcp_sock *tp = tcp_sk(sk);
869 	struct dst_entry *dst = __sk_dst_get(sk);
870 
871 	if (dst == NULL)
872 		goto reset;
873 
874 	dst_confirm(dst);
875 
876 	if (dst_metric_locked(dst, RTAX_CWND))
877 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
878 	if (dst_metric(dst, RTAX_SSTHRESH)) {
879 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
880 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
881 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
882 	}
883 	if (dst_metric(dst, RTAX_REORDERING) &&
884 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
885 		tcp_disable_fack(tp);
886 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
887 	}
888 
889 	if (dst_metric(dst, RTAX_RTT) == 0)
890 		goto reset;
891 
892 	if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
893 		goto reset;
894 
895 	/* Initial rtt is determined from SYN,SYN-ACK.
896 	 * The segment is small and rtt may appear much
897 	 * less than real one. Use per-dst memory
898 	 * to make it more realistic.
899 	 *
900 	 * A bit of theory. RTT is time passed after "normal" sized packet
901 	 * is sent until it is ACKed. In normal circumstances sending small
902 	 * packets force peer to delay ACKs and calculation is correct too.
903 	 * The algorithm is adaptive and, provided we follow specs, it
904 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
905 	 * tricks sort of "quick acks" for time long enough to decrease RTT
906 	 * to low value, and then abruptly stops to do it and starts to delay
907 	 * ACKs, wait for troubles.
908 	 */
909 	if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
910 		tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
911 		tp->rtt_seq = tp->snd_nxt;
912 	}
913 	if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
914 		tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
915 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
916 	}
917 	tcp_set_rto(sk);
918 	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
919 		goto reset;
920 
921 cwnd:
922 	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
923 	tp->snd_cwnd_stamp = tcp_time_stamp;
924 	return;
925 
926 reset:
927 	/* Play conservative. If timestamps are not
928 	 * supported, TCP will fail to recalculate correct
929 	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
930 	 */
931 	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
932 		tp->srtt = 0;
933 		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
934 		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
935 	}
936 	goto cwnd;
937 }
938 
939 static void tcp_update_reordering(struct sock *sk, const int metric,
940 				  const int ts)
941 {
942 	struct tcp_sock *tp = tcp_sk(sk);
943 	if (metric > tp->reordering) {
944 		int mib_idx;
945 
946 		tp->reordering = min(TCP_MAX_REORDERING, metric);
947 
948 		/* This exciting event is worth to be remembered. 8) */
949 		if (ts)
950 			mib_idx = LINUX_MIB_TCPTSREORDER;
951 		else if (tcp_is_reno(tp))
952 			mib_idx = LINUX_MIB_TCPRENOREORDER;
953 		else if (tcp_is_fack(tp))
954 			mib_idx = LINUX_MIB_TCPFACKREORDER;
955 		else
956 			mib_idx = LINUX_MIB_TCPSACKREORDER;
957 
958 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
959 #if FASTRETRANS_DEBUG > 1
960 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
961 		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
962 		       tp->reordering,
963 		       tp->fackets_out,
964 		       tp->sacked_out,
965 		       tp->undo_marker ? tp->undo_retrans : 0);
966 #endif
967 		tcp_disable_fack(tp);
968 	}
969 }
970 
971 /* This must be called before lost_out is incremented */
972 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
973 {
974 	if ((tp->retransmit_skb_hint == NULL) ||
975 	    before(TCP_SKB_CB(skb)->seq,
976 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
977 		tp->retransmit_skb_hint = skb;
978 
979 	if (!tp->lost_out ||
980 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
981 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
982 }
983 
984 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
985 {
986 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
987 		tcp_verify_retransmit_hint(tp, skb);
988 
989 		tp->lost_out += tcp_skb_pcount(skb);
990 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
991 	}
992 }
993 
994 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
995 					    struct sk_buff *skb)
996 {
997 	tcp_verify_retransmit_hint(tp, skb);
998 
999 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1000 		tp->lost_out += tcp_skb_pcount(skb);
1001 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1002 	}
1003 }
1004 
1005 /* This procedure tags the retransmission queue when SACKs arrive.
1006  *
1007  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1008  * Packets in queue with these bits set are counted in variables
1009  * sacked_out, retrans_out and lost_out, correspondingly.
1010  *
1011  * Valid combinations are:
1012  * Tag  InFlight	Description
1013  * 0	1		- orig segment is in flight.
1014  * S	0		- nothing flies, orig reached receiver.
1015  * L	0		- nothing flies, orig lost by net.
1016  * R	2		- both orig and retransmit are in flight.
1017  * L|R	1		- orig is lost, retransmit is in flight.
1018  * S|R  1		- orig reached receiver, retrans is still in flight.
1019  * (L|S|R is logically valid, it could occur when L|R is sacked,
1020  *  but it is equivalent to plain S and code short-curcuits it to S.
1021  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1022  *
1023  * These 6 states form finite state machine, controlled by the following events:
1024  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1025  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1026  * 3. Loss detection event of one of three flavors:
1027  *	A. Scoreboard estimator decided the packet is lost.
1028  *	   A'. Reno "three dupacks" marks head of queue lost.
1029  *	   A''. Its FACK modfication, head until snd.fack is lost.
1030  *	B. SACK arrives sacking data transmitted after never retransmitted
1031  *	   hole was sent out.
1032  *	C. SACK arrives sacking SND.NXT at the moment, when the
1033  *	   segment was retransmitted.
1034  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1035  *
1036  * It is pleasant to note, that state diagram turns out to be commutative,
1037  * so that we are allowed not to be bothered by order of our actions,
1038  * when multiple events arrive simultaneously. (see the function below).
1039  *
1040  * Reordering detection.
1041  * --------------------
1042  * Reordering metric is maximal distance, which a packet can be displaced
1043  * in packet stream. With SACKs we can estimate it:
1044  *
1045  * 1. SACK fills old hole and the corresponding segment was not
1046  *    ever retransmitted -> reordering. Alas, we cannot use it
1047  *    when segment was retransmitted.
1048  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1049  *    for retransmitted and already SACKed segment -> reordering..
1050  * Both of these heuristics are not used in Loss state, when we cannot
1051  * account for retransmits accurately.
1052  *
1053  * SACK block validation.
1054  * ----------------------
1055  *
1056  * SACK block range validation checks that the received SACK block fits to
1057  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1058  * Note that SND.UNA is not included to the range though being valid because
1059  * it means that the receiver is rather inconsistent with itself reporting
1060  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1061  * perfectly valid, however, in light of RFC2018 which explicitly states
1062  * that "SACK block MUST reflect the newest segment.  Even if the newest
1063  * segment is going to be discarded ...", not that it looks very clever
1064  * in case of head skb. Due to potentional receiver driven attacks, we
1065  * choose to avoid immediate execution of a walk in write queue due to
1066  * reneging and defer head skb's loss recovery to standard loss recovery
1067  * procedure that will eventually trigger (nothing forbids us doing this).
1068  *
1069  * Implements also blockage to start_seq wrap-around. Problem lies in the
1070  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1071  * there's no guarantee that it will be before snd_nxt (n). The problem
1072  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1073  * wrap (s_w):
1074  *
1075  *         <- outs wnd ->                          <- wrapzone ->
1076  *         u     e      n                         u_w   e_w  s n_w
1077  *         |     |      |                          |     |   |  |
1078  * |<------------+------+----- TCP seqno space --------------+---------->|
1079  * ...-- <2^31 ->|                                           |<--------...
1080  * ...---- >2^31 ------>|                                    |<--------...
1081  *
1082  * Current code wouldn't be vulnerable but it's better still to discard such
1083  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1084  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1085  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1086  * equal to the ideal case (infinite seqno space without wrap caused issues).
1087  *
1088  * With D-SACK the lower bound is extended to cover sequence space below
1089  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1090  * again, D-SACK block must not to go across snd_una (for the same reason as
1091  * for the normal SACK blocks, explained above). But there all simplicity
1092  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1093  * fully below undo_marker they do not affect behavior in anyway and can
1094  * therefore be safely ignored. In rare cases (which are more or less
1095  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1096  * fragmentation and packet reordering past skb's retransmission. To consider
1097  * them correctly, the acceptable range must be extended even more though
1098  * the exact amount is rather hard to quantify. However, tp->max_window can
1099  * be used as an exaggerated estimate.
1100  */
1101 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1102 				  u32 start_seq, u32 end_seq)
1103 {
1104 	/* Too far in future, or reversed (interpretation is ambiguous) */
1105 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1106 		return 0;
1107 
1108 	/* Nasty start_seq wrap-around check (see comments above) */
1109 	if (!before(start_seq, tp->snd_nxt))
1110 		return 0;
1111 
1112 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1113 	 * start_seq == snd_una is non-sensical (see comments above)
1114 	 */
1115 	if (after(start_seq, tp->snd_una))
1116 		return 1;
1117 
1118 	if (!is_dsack || !tp->undo_marker)
1119 		return 0;
1120 
1121 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1122 	if (!after(end_seq, tp->snd_una))
1123 		return 0;
1124 
1125 	if (!before(start_seq, tp->undo_marker))
1126 		return 1;
1127 
1128 	/* Too old */
1129 	if (!after(end_seq, tp->undo_marker))
1130 		return 0;
1131 
1132 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1133 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1134 	 */
1135 	return !before(start_seq, end_seq - tp->max_window);
1136 }
1137 
1138 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1139  * Event "C". Later note: FACK people cheated me again 8), we have to account
1140  * for reordering! Ugly, but should help.
1141  *
1142  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1143  * less than what is now known to be received by the other end (derived from
1144  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1145  * retransmitted skbs to avoid some costly processing per ACKs.
1146  */
1147 static void tcp_mark_lost_retrans(struct sock *sk)
1148 {
1149 	const struct inet_connection_sock *icsk = inet_csk(sk);
1150 	struct tcp_sock *tp = tcp_sk(sk);
1151 	struct sk_buff *skb;
1152 	int cnt = 0;
1153 	u32 new_low_seq = tp->snd_nxt;
1154 	u32 received_upto = tcp_highest_sack_seq(tp);
1155 
1156 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1157 	    !after(received_upto, tp->lost_retrans_low) ||
1158 	    icsk->icsk_ca_state != TCP_CA_Recovery)
1159 		return;
1160 
1161 	tcp_for_write_queue(skb, sk) {
1162 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1163 
1164 		if (skb == tcp_send_head(sk))
1165 			break;
1166 		if (cnt == tp->retrans_out)
1167 			break;
1168 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1169 			continue;
1170 
1171 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1172 			continue;
1173 
1174 		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1175 		 * constraint here (see above) but figuring out that at
1176 		 * least tp->reordering SACK blocks reside between ack_seq
1177 		 * and received_upto is not easy task to do cheaply with
1178 		 * the available datastructures.
1179 		 *
1180 		 * Whether FACK should check here for tp->reordering segs
1181 		 * in-between one could argue for either way (it would be
1182 		 * rather simple to implement as we could count fack_count
1183 		 * during the walk and do tp->fackets_out - fack_count).
1184 		 */
1185 		if (after(received_upto, ack_seq)) {
1186 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1187 			tp->retrans_out -= tcp_skb_pcount(skb);
1188 
1189 			tcp_skb_mark_lost_uncond_verify(tp, skb);
1190 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1191 		} else {
1192 			if (before(ack_seq, new_low_seq))
1193 				new_low_seq = ack_seq;
1194 			cnt += tcp_skb_pcount(skb);
1195 		}
1196 	}
1197 
1198 	if (tp->retrans_out)
1199 		tp->lost_retrans_low = new_low_seq;
1200 }
1201 
1202 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1203 			   struct tcp_sack_block_wire *sp, int num_sacks,
1204 			   u32 prior_snd_una)
1205 {
1206 	struct tcp_sock *tp = tcp_sk(sk);
1207 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1208 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1209 	int dup_sack = 0;
1210 
1211 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1212 		dup_sack = 1;
1213 		tcp_dsack_seen(tp);
1214 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1215 	} else if (num_sacks > 1) {
1216 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1217 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1218 
1219 		if (!after(end_seq_0, end_seq_1) &&
1220 		    !before(start_seq_0, start_seq_1)) {
1221 			dup_sack = 1;
1222 			tcp_dsack_seen(tp);
1223 			NET_INC_STATS_BH(sock_net(sk),
1224 					LINUX_MIB_TCPDSACKOFORECV);
1225 		}
1226 	}
1227 
1228 	/* D-SACK for already forgotten data... Do dumb counting. */
1229 	if (dup_sack &&
1230 	    !after(end_seq_0, prior_snd_una) &&
1231 	    after(end_seq_0, tp->undo_marker))
1232 		tp->undo_retrans--;
1233 
1234 	return dup_sack;
1235 }
1236 
1237 struct tcp_sacktag_state {
1238 	int reord;
1239 	int fack_count;
1240 	int flag;
1241 };
1242 
1243 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1244  * the incoming SACK may not exactly match but we can find smaller MSS
1245  * aligned portion of it that matches. Therefore we might need to fragment
1246  * which may fail and creates some hassle (caller must handle error case
1247  * returns).
1248  *
1249  * FIXME: this could be merged to shift decision code
1250  */
1251 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1252 				 u32 start_seq, u32 end_seq)
1253 {
1254 	int in_sack, err;
1255 	unsigned int pkt_len;
1256 	unsigned int mss;
1257 
1258 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1259 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1260 
1261 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1262 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1263 		mss = tcp_skb_mss(skb);
1264 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1265 
1266 		if (!in_sack) {
1267 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1268 			if (pkt_len < mss)
1269 				pkt_len = mss;
1270 		} else {
1271 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1272 			if (pkt_len < mss)
1273 				return -EINVAL;
1274 		}
1275 
1276 		/* Round if necessary so that SACKs cover only full MSSes
1277 		 * and/or the remaining small portion (if present)
1278 		 */
1279 		if (pkt_len > mss) {
1280 			unsigned int new_len = (pkt_len / mss) * mss;
1281 			if (!in_sack && new_len < pkt_len) {
1282 				new_len += mss;
1283 				if (new_len > skb->len)
1284 					return 0;
1285 			}
1286 			pkt_len = new_len;
1287 		}
1288 		err = tcp_fragment(sk, skb, pkt_len, mss);
1289 		if (err < 0)
1290 			return err;
1291 	}
1292 
1293 	return in_sack;
1294 }
1295 
1296 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1297 			  struct tcp_sacktag_state *state,
1298 			  int dup_sack, int pcount)
1299 {
1300 	struct tcp_sock *tp = tcp_sk(sk);
1301 	u8 sacked = TCP_SKB_CB(skb)->sacked;
1302 	int fack_count = state->fack_count;
1303 
1304 	/* Account D-SACK for retransmitted packet. */
1305 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1306 		if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1307 			tp->undo_retrans--;
1308 		if (sacked & TCPCB_SACKED_ACKED)
1309 			state->reord = min(fack_count, state->reord);
1310 	}
1311 
1312 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1313 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1314 		return sacked;
1315 
1316 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1317 		if (sacked & TCPCB_SACKED_RETRANS) {
1318 			/* If the segment is not tagged as lost,
1319 			 * we do not clear RETRANS, believing
1320 			 * that retransmission is still in flight.
1321 			 */
1322 			if (sacked & TCPCB_LOST) {
1323 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1324 				tp->lost_out -= pcount;
1325 				tp->retrans_out -= pcount;
1326 			}
1327 		} else {
1328 			if (!(sacked & TCPCB_RETRANS)) {
1329 				/* New sack for not retransmitted frame,
1330 				 * which was in hole. It is reordering.
1331 				 */
1332 				if (before(TCP_SKB_CB(skb)->seq,
1333 					   tcp_highest_sack_seq(tp)))
1334 					state->reord = min(fack_count,
1335 							   state->reord);
1336 
1337 				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1338 				if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1339 					state->flag |= FLAG_ONLY_ORIG_SACKED;
1340 			}
1341 
1342 			if (sacked & TCPCB_LOST) {
1343 				sacked &= ~TCPCB_LOST;
1344 				tp->lost_out -= pcount;
1345 			}
1346 		}
1347 
1348 		sacked |= TCPCB_SACKED_ACKED;
1349 		state->flag |= FLAG_DATA_SACKED;
1350 		tp->sacked_out += pcount;
1351 
1352 		fack_count += pcount;
1353 
1354 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1355 		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1356 		    before(TCP_SKB_CB(skb)->seq,
1357 			   TCP_SKB_CB(tp->lost_skb_hint)->seq))
1358 			tp->lost_cnt_hint += pcount;
1359 
1360 		if (fack_count > tp->fackets_out)
1361 			tp->fackets_out = fack_count;
1362 	}
1363 
1364 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1365 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1366 	 * are accounted above as well.
1367 	 */
1368 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1369 		sacked &= ~TCPCB_SACKED_RETRANS;
1370 		tp->retrans_out -= pcount;
1371 	}
1372 
1373 	return sacked;
1374 }
1375 
1376 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1377 			   struct tcp_sacktag_state *state,
1378 			   unsigned int pcount, int shifted, int mss,
1379 			   int dup_sack)
1380 {
1381 	struct tcp_sock *tp = tcp_sk(sk);
1382 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1383 
1384 	BUG_ON(!pcount);
1385 
1386 	/* Tweak before seqno plays */
1387 	if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1388 	    !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1389 		tp->lost_cnt_hint += pcount;
1390 
1391 	TCP_SKB_CB(prev)->end_seq += shifted;
1392 	TCP_SKB_CB(skb)->seq += shifted;
1393 
1394 	skb_shinfo(prev)->gso_segs += pcount;
1395 	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1396 	skb_shinfo(skb)->gso_segs -= pcount;
1397 
1398 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1399 	 * in theory this shouldn't be necessary but as long as DSACK
1400 	 * code can come after this skb later on it's better to keep
1401 	 * setting gso_size to something.
1402 	 */
1403 	if (!skb_shinfo(prev)->gso_size) {
1404 		skb_shinfo(prev)->gso_size = mss;
1405 		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1406 	}
1407 
1408 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1409 	if (skb_shinfo(skb)->gso_segs <= 1) {
1410 		skb_shinfo(skb)->gso_size = 0;
1411 		skb_shinfo(skb)->gso_type = 0;
1412 	}
1413 
1414 	/* We discard results */
1415 	tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1416 
1417 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1418 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1419 
1420 	if (skb->len > 0) {
1421 		BUG_ON(!tcp_skb_pcount(skb));
1422 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1423 		return 0;
1424 	}
1425 
1426 	/* Whole SKB was eaten :-) */
1427 
1428 	if (skb == tp->retransmit_skb_hint)
1429 		tp->retransmit_skb_hint = prev;
1430 	if (skb == tp->scoreboard_skb_hint)
1431 		tp->scoreboard_skb_hint = prev;
1432 	if (skb == tp->lost_skb_hint) {
1433 		tp->lost_skb_hint = prev;
1434 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1435 	}
1436 
1437 	TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1438 	if (skb == tcp_highest_sack(sk))
1439 		tcp_advance_highest_sack(sk, skb);
1440 
1441 	tcp_unlink_write_queue(skb, sk);
1442 	sk_wmem_free_skb(sk, skb);
1443 
1444 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1445 
1446 	return 1;
1447 }
1448 
1449 /* I wish gso_size would have a bit more sane initialization than
1450  * something-or-zero which complicates things
1451  */
1452 static int tcp_skb_seglen(struct sk_buff *skb)
1453 {
1454 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1455 }
1456 
1457 /* Shifting pages past head area doesn't work */
1458 static int skb_can_shift(struct sk_buff *skb)
1459 {
1460 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1461 }
1462 
1463 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1464  * skb.
1465  */
1466 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1467 					  struct tcp_sacktag_state *state,
1468 					  u32 start_seq, u32 end_seq,
1469 					  int dup_sack)
1470 {
1471 	struct tcp_sock *tp = tcp_sk(sk);
1472 	struct sk_buff *prev;
1473 	int mss;
1474 	int pcount = 0;
1475 	int len;
1476 	int in_sack;
1477 
1478 	if (!sk_can_gso(sk))
1479 		goto fallback;
1480 
1481 	/* Normally R but no L won't result in plain S */
1482 	if (!dup_sack &&
1483 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1484 		goto fallback;
1485 	if (!skb_can_shift(skb))
1486 		goto fallback;
1487 	/* This frame is about to be dropped (was ACKed). */
1488 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1489 		goto fallback;
1490 
1491 	/* Can only happen with delayed DSACK + discard craziness */
1492 	if (unlikely(skb == tcp_write_queue_head(sk)))
1493 		goto fallback;
1494 	prev = tcp_write_queue_prev(sk, skb);
1495 
1496 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1497 		goto fallback;
1498 
1499 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1500 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1501 
1502 	if (in_sack) {
1503 		len = skb->len;
1504 		pcount = tcp_skb_pcount(skb);
1505 		mss = tcp_skb_seglen(skb);
1506 
1507 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1508 		 * drop this restriction as unnecessary
1509 		 */
1510 		if (mss != tcp_skb_seglen(prev))
1511 			goto fallback;
1512 	} else {
1513 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1514 			goto noop;
1515 		/* CHECKME: This is non-MSS split case only?, this will
1516 		 * cause skipped skbs due to advancing loop btw, original
1517 		 * has that feature too
1518 		 */
1519 		if (tcp_skb_pcount(skb) <= 1)
1520 			goto noop;
1521 
1522 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1523 		if (!in_sack) {
1524 			/* TODO: head merge to next could be attempted here
1525 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1526 			 * though it might not be worth of the additional hassle
1527 			 *
1528 			 * ...we can probably just fallback to what was done
1529 			 * previously. We could try merging non-SACKed ones
1530 			 * as well but it probably isn't going to buy off
1531 			 * because later SACKs might again split them, and
1532 			 * it would make skb timestamp tracking considerably
1533 			 * harder problem.
1534 			 */
1535 			goto fallback;
1536 		}
1537 
1538 		len = end_seq - TCP_SKB_CB(skb)->seq;
1539 		BUG_ON(len < 0);
1540 		BUG_ON(len > skb->len);
1541 
1542 		/* MSS boundaries should be honoured or else pcount will
1543 		 * severely break even though it makes things bit trickier.
1544 		 * Optimize common case to avoid most of the divides
1545 		 */
1546 		mss = tcp_skb_mss(skb);
1547 
1548 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1549 		 * drop this restriction as unnecessary
1550 		 */
1551 		if (mss != tcp_skb_seglen(prev))
1552 			goto fallback;
1553 
1554 		if (len == mss) {
1555 			pcount = 1;
1556 		} else if (len < mss) {
1557 			goto noop;
1558 		} else {
1559 			pcount = len / mss;
1560 			len = pcount * mss;
1561 		}
1562 	}
1563 
1564 	if (!skb_shift(prev, skb, len))
1565 		goto fallback;
1566 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1567 		goto out;
1568 
1569 	/* Hole filled allows collapsing with the next as well, this is very
1570 	 * useful when hole on every nth skb pattern happens
1571 	 */
1572 	if (prev == tcp_write_queue_tail(sk))
1573 		goto out;
1574 	skb = tcp_write_queue_next(sk, prev);
1575 
1576 	if (!skb_can_shift(skb) ||
1577 	    (skb == tcp_send_head(sk)) ||
1578 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1579 	    (mss != tcp_skb_seglen(skb)))
1580 		goto out;
1581 
1582 	len = skb->len;
1583 	if (skb_shift(prev, skb, len)) {
1584 		pcount += tcp_skb_pcount(skb);
1585 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1586 	}
1587 
1588 out:
1589 	state->fack_count += pcount;
1590 	return prev;
1591 
1592 noop:
1593 	return skb;
1594 
1595 fallback:
1596 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1597 	return NULL;
1598 }
1599 
1600 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1601 					struct tcp_sack_block *next_dup,
1602 					struct tcp_sacktag_state *state,
1603 					u32 start_seq, u32 end_seq,
1604 					int dup_sack_in)
1605 {
1606 	struct tcp_sock *tp = tcp_sk(sk);
1607 	struct sk_buff *tmp;
1608 
1609 	tcp_for_write_queue_from(skb, sk) {
1610 		int in_sack = 0;
1611 		int dup_sack = dup_sack_in;
1612 
1613 		if (skb == tcp_send_head(sk))
1614 			break;
1615 
1616 		/* queue is in-order => we can short-circuit the walk early */
1617 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1618 			break;
1619 
1620 		if ((next_dup != NULL) &&
1621 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1622 			in_sack = tcp_match_skb_to_sack(sk, skb,
1623 							next_dup->start_seq,
1624 							next_dup->end_seq);
1625 			if (in_sack > 0)
1626 				dup_sack = 1;
1627 		}
1628 
1629 		/* skb reference here is a bit tricky to get right, since
1630 		 * shifting can eat and free both this skb and the next,
1631 		 * so not even _safe variant of the loop is enough.
1632 		 */
1633 		if (in_sack <= 0) {
1634 			tmp = tcp_shift_skb_data(sk, skb, state,
1635 						 start_seq, end_seq, dup_sack);
1636 			if (tmp != NULL) {
1637 				if (tmp != skb) {
1638 					skb = tmp;
1639 					continue;
1640 				}
1641 
1642 				in_sack = 0;
1643 			} else {
1644 				in_sack = tcp_match_skb_to_sack(sk, skb,
1645 								start_seq,
1646 								end_seq);
1647 			}
1648 		}
1649 
1650 		if (unlikely(in_sack < 0))
1651 			break;
1652 
1653 		if (in_sack) {
1654 			TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1655 								  state,
1656 								  dup_sack,
1657 								  tcp_skb_pcount(skb));
1658 
1659 			if (!before(TCP_SKB_CB(skb)->seq,
1660 				    tcp_highest_sack_seq(tp)))
1661 				tcp_advance_highest_sack(sk, skb);
1662 		}
1663 
1664 		state->fack_count += tcp_skb_pcount(skb);
1665 	}
1666 	return skb;
1667 }
1668 
1669 /* Avoid all extra work that is being done by sacktag while walking in
1670  * a normal way
1671  */
1672 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1673 					struct tcp_sacktag_state *state,
1674 					u32 skip_to_seq)
1675 {
1676 	tcp_for_write_queue_from(skb, sk) {
1677 		if (skb == tcp_send_head(sk))
1678 			break;
1679 
1680 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1681 			break;
1682 
1683 		state->fack_count += tcp_skb_pcount(skb);
1684 	}
1685 	return skb;
1686 }
1687 
1688 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1689 						struct sock *sk,
1690 						struct tcp_sack_block *next_dup,
1691 						struct tcp_sacktag_state *state,
1692 						u32 skip_to_seq)
1693 {
1694 	if (next_dup == NULL)
1695 		return skb;
1696 
1697 	if (before(next_dup->start_seq, skip_to_seq)) {
1698 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1699 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1700 				       next_dup->start_seq, next_dup->end_seq,
1701 				       1);
1702 	}
1703 
1704 	return skb;
1705 }
1706 
1707 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1708 {
1709 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1710 }
1711 
1712 static int
1713 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1714 			u32 prior_snd_una)
1715 {
1716 	const struct inet_connection_sock *icsk = inet_csk(sk);
1717 	struct tcp_sock *tp = tcp_sk(sk);
1718 	unsigned char *ptr = (skb_transport_header(ack_skb) +
1719 			      TCP_SKB_CB(ack_skb)->sacked);
1720 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1721 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1722 	struct tcp_sack_block *cache;
1723 	struct tcp_sacktag_state state;
1724 	struct sk_buff *skb;
1725 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1726 	int used_sacks;
1727 	int found_dup_sack = 0;
1728 	int i, j;
1729 	int first_sack_index;
1730 
1731 	state.flag = 0;
1732 	state.reord = tp->packets_out;
1733 
1734 	if (!tp->sacked_out) {
1735 		if (WARN_ON(tp->fackets_out))
1736 			tp->fackets_out = 0;
1737 		tcp_highest_sack_reset(sk);
1738 	}
1739 
1740 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1741 					 num_sacks, prior_snd_una);
1742 	if (found_dup_sack)
1743 		state.flag |= FLAG_DSACKING_ACK;
1744 
1745 	/* Eliminate too old ACKs, but take into
1746 	 * account more or less fresh ones, they can
1747 	 * contain valid SACK info.
1748 	 */
1749 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1750 		return 0;
1751 
1752 	if (!tp->packets_out)
1753 		goto out;
1754 
1755 	used_sacks = 0;
1756 	first_sack_index = 0;
1757 	for (i = 0; i < num_sacks; i++) {
1758 		int dup_sack = !i && found_dup_sack;
1759 
1760 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1761 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1762 
1763 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1764 					    sp[used_sacks].start_seq,
1765 					    sp[used_sacks].end_seq)) {
1766 			int mib_idx;
1767 
1768 			if (dup_sack) {
1769 				if (!tp->undo_marker)
1770 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1771 				else
1772 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1773 			} else {
1774 				/* Don't count olds caused by ACK reordering */
1775 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1776 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1777 					continue;
1778 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1779 			}
1780 
1781 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1782 			if (i == 0)
1783 				first_sack_index = -1;
1784 			continue;
1785 		}
1786 
1787 		/* Ignore very old stuff early */
1788 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1789 			continue;
1790 
1791 		used_sacks++;
1792 	}
1793 
1794 	/* order SACK blocks to allow in order walk of the retrans queue */
1795 	for (i = used_sacks - 1; i > 0; i--) {
1796 		for (j = 0; j < i; j++) {
1797 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1798 				swap(sp[j], sp[j + 1]);
1799 
1800 				/* Track where the first SACK block goes to */
1801 				if (j == first_sack_index)
1802 					first_sack_index = j + 1;
1803 			}
1804 		}
1805 	}
1806 
1807 	skb = tcp_write_queue_head(sk);
1808 	state.fack_count = 0;
1809 	i = 0;
1810 
1811 	if (!tp->sacked_out) {
1812 		/* It's already past, so skip checking against it */
1813 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1814 	} else {
1815 		cache = tp->recv_sack_cache;
1816 		/* Skip empty blocks in at head of the cache */
1817 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1818 		       !cache->end_seq)
1819 			cache++;
1820 	}
1821 
1822 	while (i < used_sacks) {
1823 		u32 start_seq = sp[i].start_seq;
1824 		u32 end_seq = sp[i].end_seq;
1825 		int dup_sack = (found_dup_sack && (i == first_sack_index));
1826 		struct tcp_sack_block *next_dup = NULL;
1827 
1828 		if (found_dup_sack && ((i + 1) == first_sack_index))
1829 			next_dup = &sp[i + 1];
1830 
1831 		/* Event "B" in the comment above. */
1832 		if (after(end_seq, tp->high_seq))
1833 			state.flag |= FLAG_DATA_LOST;
1834 
1835 		/* Skip too early cached blocks */
1836 		while (tcp_sack_cache_ok(tp, cache) &&
1837 		       !before(start_seq, cache->end_seq))
1838 			cache++;
1839 
1840 		/* Can skip some work by looking recv_sack_cache? */
1841 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1842 		    after(end_seq, cache->start_seq)) {
1843 
1844 			/* Head todo? */
1845 			if (before(start_seq, cache->start_seq)) {
1846 				skb = tcp_sacktag_skip(skb, sk, &state,
1847 						       start_seq);
1848 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1849 						       &state,
1850 						       start_seq,
1851 						       cache->start_seq,
1852 						       dup_sack);
1853 			}
1854 
1855 			/* Rest of the block already fully processed? */
1856 			if (!after(end_seq, cache->end_seq))
1857 				goto advance_sp;
1858 
1859 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1860 						       &state,
1861 						       cache->end_seq);
1862 
1863 			/* ...tail remains todo... */
1864 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1865 				/* ...but better entrypoint exists! */
1866 				skb = tcp_highest_sack(sk);
1867 				if (skb == NULL)
1868 					break;
1869 				state.fack_count = tp->fackets_out;
1870 				cache++;
1871 				goto walk;
1872 			}
1873 
1874 			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1875 			/* Check overlap against next cached too (past this one already) */
1876 			cache++;
1877 			continue;
1878 		}
1879 
1880 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1881 			skb = tcp_highest_sack(sk);
1882 			if (skb == NULL)
1883 				break;
1884 			state.fack_count = tp->fackets_out;
1885 		}
1886 		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1887 
1888 walk:
1889 		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1890 				       start_seq, end_seq, dup_sack);
1891 
1892 advance_sp:
1893 		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1894 		 * due to in-order walk
1895 		 */
1896 		if (after(end_seq, tp->frto_highmark))
1897 			state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1898 
1899 		i++;
1900 	}
1901 
1902 	/* Clear the head of the cache sack blocks so we can skip it next time */
1903 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1904 		tp->recv_sack_cache[i].start_seq = 0;
1905 		tp->recv_sack_cache[i].end_seq = 0;
1906 	}
1907 	for (j = 0; j < used_sacks; j++)
1908 		tp->recv_sack_cache[i++] = sp[j];
1909 
1910 	tcp_mark_lost_retrans(sk);
1911 
1912 	tcp_verify_left_out(tp);
1913 
1914 	if ((state.reord < tp->fackets_out) &&
1915 	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1916 	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1917 		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1918 
1919 out:
1920 
1921 #if FASTRETRANS_DEBUG > 0
1922 	WARN_ON((int)tp->sacked_out < 0);
1923 	WARN_ON((int)tp->lost_out < 0);
1924 	WARN_ON((int)tp->retrans_out < 0);
1925 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1926 #endif
1927 	return state.flag;
1928 }
1929 
1930 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1931  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1932  */
1933 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1934 {
1935 	u32 holes;
1936 
1937 	holes = max(tp->lost_out, 1U);
1938 	holes = min(holes, tp->packets_out);
1939 
1940 	if ((tp->sacked_out + holes) > tp->packets_out) {
1941 		tp->sacked_out = tp->packets_out - holes;
1942 		return 1;
1943 	}
1944 	return 0;
1945 }
1946 
1947 /* If we receive more dupacks than we expected counting segments
1948  * in assumption of absent reordering, interpret this as reordering.
1949  * The only another reason could be bug in receiver TCP.
1950  */
1951 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1952 {
1953 	struct tcp_sock *tp = tcp_sk(sk);
1954 	if (tcp_limit_reno_sacked(tp))
1955 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1956 }
1957 
1958 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1959 
1960 static void tcp_add_reno_sack(struct sock *sk)
1961 {
1962 	struct tcp_sock *tp = tcp_sk(sk);
1963 	tp->sacked_out++;
1964 	tcp_check_reno_reordering(sk, 0);
1965 	tcp_verify_left_out(tp);
1966 }
1967 
1968 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1969 
1970 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1971 {
1972 	struct tcp_sock *tp = tcp_sk(sk);
1973 
1974 	if (acked > 0) {
1975 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1976 		if (acked - 1 >= tp->sacked_out)
1977 			tp->sacked_out = 0;
1978 		else
1979 			tp->sacked_out -= acked - 1;
1980 	}
1981 	tcp_check_reno_reordering(sk, acked);
1982 	tcp_verify_left_out(tp);
1983 }
1984 
1985 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1986 {
1987 	tp->sacked_out = 0;
1988 }
1989 
1990 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1991 {
1992 	return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1993 }
1994 
1995 /* F-RTO can only be used if TCP has never retransmitted anything other than
1996  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1997  */
1998 int tcp_use_frto(struct sock *sk)
1999 {
2000 	const struct tcp_sock *tp = tcp_sk(sk);
2001 	const struct inet_connection_sock *icsk = inet_csk(sk);
2002 	struct sk_buff *skb;
2003 
2004 	if (!sysctl_tcp_frto)
2005 		return 0;
2006 
2007 	/* MTU probe and F-RTO won't really play nicely along currently */
2008 	if (icsk->icsk_mtup.probe_size)
2009 		return 0;
2010 
2011 	if (tcp_is_sackfrto(tp))
2012 		return 1;
2013 
2014 	/* Avoid expensive walking of rexmit queue if possible */
2015 	if (tp->retrans_out > 1)
2016 		return 0;
2017 
2018 	skb = tcp_write_queue_head(sk);
2019 	if (tcp_skb_is_last(sk, skb))
2020 		return 1;
2021 	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
2022 	tcp_for_write_queue_from(skb, sk) {
2023 		if (skb == tcp_send_head(sk))
2024 			break;
2025 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2026 			return 0;
2027 		/* Short-circuit when first non-SACKed skb has been checked */
2028 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2029 			break;
2030 	}
2031 	return 1;
2032 }
2033 
2034 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2035  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2036  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2037  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2038  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2039  * bits are handled if the Loss state is really to be entered (in
2040  * tcp_enter_frto_loss).
2041  *
2042  * Do like tcp_enter_loss() would; when RTO expires the second time it
2043  * does:
2044  *  "Reduce ssthresh if it has not yet been made inside this window."
2045  */
2046 void tcp_enter_frto(struct sock *sk)
2047 {
2048 	const struct inet_connection_sock *icsk = inet_csk(sk);
2049 	struct tcp_sock *tp = tcp_sk(sk);
2050 	struct sk_buff *skb;
2051 
2052 	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2053 	    tp->snd_una == tp->high_seq ||
2054 	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2055 	     !icsk->icsk_retransmits)) {
2056 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2057 		/* Our state is too optimistic in ssthresh() call because cwnd
2058 		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2059 		 * recovery has not yet completed. Pattern would be this: RTO,
2060 		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2061 		 * up here twice).
2062 		 * RFC4138 should be more specific on what to do, even though
2063 		 * RTO is quite unlikely to occur after the first Cumulative ACK
2064 		 * due to back-off and complexity of triggering events ...
2065 		 */
2066 		if (tp->frto_counter) {
2067 			u32 stored_cwnd;
2068 			stored_cwnd = tp->snd_cwnd;
2069 			tp->snd_cwnd = 2;
2070 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2071 			tp->snd_cwnd = stored_cwnd;
2072 		} else {
2073 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2074 		}
2075 		/* ... in theory, cong.control module could do "any tricks" in
2076 		 * ssthresh(), which means that ca_state, lost bits and lost_out
2077 		 * counter would have to be faked before the call occurs. We
2078 		 * consider that too expensive, unlikely and hacky, so modules
2079 		 * using these in ssthresh() must deal these incompatibility
2080 		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2081 		 */
2082 		tcp_ca_event(sk, CA_EVENT_FRTO);
2083 	}
2084 
2085 	tp->undo_marker = tp->snd_una;
2086 	tp->undo_retrans = 0;
2087 
2088 	skb = tcp_write_queue_head(sk);
2089 	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2090 		tp->undo_marker = 0;
2091 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2092 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2093 		tp->retrans_out -= tcp_skb_pcount(skb);
2094 	}
2095 	tcp_verify_left_out(tp);
2096 
2097 	/* Too bad if TCP was application limited */
2098 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2099 
2100 	/* Earlier loss recovery underway (see RFC4138; Appendix B).
2101 	 * The last condition is necessary at least in tp->frto_counter case.
2102 	 */
2103 	if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2104 	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2105 	    after(tp->high_seq, tp->snd_una)) {
2106 		tp->frto_highmark = tp->high_seq;
2107 	} else {
2108 		tp->frto_highmark = tp->snd_nxt;
2109 	}
2110 	tcp_set_ca_state(sk, TCP_CA_Disorder);
2111 	tp->high_seq = tp->snd_nxt;
2112 	tp->frto_counter = 1;
2113 }
2114 
2115 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2116  * which indicates that we should follow the traditional RTO recovery,
2117  * i.e. mark everything lost and do go-back-N retransmission.
2118  */
2119 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2120 {
2121 	struct tcp_sock *tp = tcp_sk(sk);
2122 	struct sk_buff *skb;
2123 
2124 	tp->lost_out = 0;
2125 	tp->retrans_out = 0;
2126 	if (tcp_is_reno(tp))
2127 		tcp_reset_reno_sack(tp);
2128 
2129 	tcp_for_write_queue(skb, sk) {
2130 		if (skb == tcp_send_head(sk))
2131 			break;
2132 
2133 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2134 		/*
2135 		 * Count the retransmission made on RTO correctly (only when
2136 		 * waiting for the first ACK and did not get it)...
2137 		 */
2138 		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2139 			/* For some reason this R-bit might get cleared? */
2140 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2141 				tp->retrans_out += tcp_skb_pcount(skb);
2142 			/* ...enter this if branch just for the first segment */
2143 			flag |= FLAG_DATA_ACKED;
2144 		} else {
2145 			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2146 				tp->undo_marker = 0;
2147 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2148 		}
2149 
2150 		/* Marking forward transmissions that were made after RTO lost
2151 		 * can cause unnecessary retransmissions in some scenarios,
2152 		 * SACK blocks will mitigate that in some but not in all cases.
2153 		 * We used to not mark them but it was causing break-ups with
2154 		 * receivers that do only in-order receival.
2155 		 *
2156 		 * TODO: we could detect presence of such receiver and select
2157 		 * different behavior per flow.
2158 		 */
2159 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2160 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2161 			tp->lost_out += tcp_skb_pcount(skb);
2162 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2163 		}
2164 	}
2165 	tcp_verify_left_out(tp);
2166 
2167 	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2168 	tp->snd_cwnd_cnt = 0;
2169 	tp->snd_cwnd_stamp = tcp_time_stamp;
2170 	tp->frto_counter = 0;
2171 	tp->bytes_acked = 0;
2172 
2173 	tp->reordering = min_t(unsigned int, tp->reordering,
2174 			       sysctl_tcp_reordering);
2175 	tcp_set_ca_state(sk, TCP_CA_Loss);
2176 	tp->high_seq = tp->snd_nxt;
2177 	TCP_ECN_queue_cwr(tp);
2178 
2179 	tcp_clear_all_retrans_hints(tp);
2180 }
2181 
2182 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2183 {
2184 	tp->retrans_out = 0;
2185 	tp->lost_out = 0;
2186 
2187 	tp->undo_marker = 0;
2188 	tp->undo_retrans = 0;
2189 }
2190 
2191 void tcp_clear_retrans(struct tcp_sock *tp)
2192 {
2193 	tcp_clear_retrans_partial(tp);
2194 
2195 	tp->fackets_out = 0;
2196 	tp->sacked_out = 0;
2197 }
2198 
2199 /* Enter Loss state. If "how" is not zero, forget all SACK information
2200  * and reset tags completely, otherwise preserve SACKs. If receiver
2201  * dropped its ofo queue, we will know this due to reneging detection.
2202  */
2203 void tcp_enter_loss(struct sock *sk, int how)
2204 {
2205 	const struct inet_connection_sock *icsk = inet_csk(sk);
2206 	struct tcp_sock *tp = tcp_sk(sk);
2207 	struct sk_buff *skb;
2208 
2209 	/* Reduce ssthresh if it has not yet been made inside this window. */
2210 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2211 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2212 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2213 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2214 		tcp_ca_event(sk, CA_EVENT_LOSS);
2215 	}
2216 	tp->snd_cwnd	   = 1;
2217 	tp->snd_cwnd_cnt   = 0;
2218 	tp->snd_cwnd_stamp = tcp_time_stamp;
2219 
2220 	tp->bytes_acked = 0;
2221 	tcp_clear_retrans_partial(tp);
2222 
2223 	if (tcp_is_reno(tp))
2224 		tcp_reset_reno_sack(tp);
2225 
2226 	if (!how) {
2227 		/* Push undo marker, if it was plain RTO and nothing
2228 		 * was retransmitted. */
2229 		tp->undo_marker = tp->snd_una;
2230 	} else {
2231 		tp->sacked_out = 0;
2232 		tp->fackets_out = 0;
2233 	}
2234 	tcp_clear_all_retrans_hints(tp);
2235 
2236 	tcp_for_write_queue(skb, sk) {
2237 		if (skb == tcp_send_head(sk))
2238 			break;
2239 
2240 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2241 			tp->undo_marker = 0;
2242 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2243 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2244 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2245 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2246 			tp->lost_out += tcp_skb_pcount(skb);
2247 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2248 		}
2249 	}
2250 	tcp_verify_left_out(tp);
2251 
2252 	tp->reordering = min_t(unsigned int, tp->reordering,
2253 			       sysctl_tcp_reordering);
2254 	tcp_set_ca_state(sk, TCP_CA_Loss);
2255 	tp->high_seq = tp->snd_nxt;
2256 	TCP_ECN_queue_cwr(tp);
2257 	/* Abort F-RTO algorithm if one is in progress */
2258 	tp->frto_counter = 0;
2259 }
2260 
2261 /* If ACK arrived pointing to a remembered SACK, it means that our
2262  * remembered SACKs do not reflect real state of receiver i.e.
2263  * receiver _host_ is heavily congested (or buggy).
2264  *
2265  * Do processing similar to RTO timeout.
2266  */
2267 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2268 {
2269 	if (flag & FLAG_SACK_RENEGING) {
2270 		struct inet_connection_sock *icsk = inet_csk(sk);
2271 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2272 
2273 		tcp_enter_loss(sk, 1);
2274 		icsk->icsk_retransmits++;
2275 		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2276 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2277 					  icsk->icsk_rto, TCP_RTO_MAX);
2278 		return 1;
2279 	}
2280 	return 0;
2281 }
2282 
2283 static inline int tcp_fackets_out(struct tcp_sock *tp)
2284 {
2285 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2286 }
2287 
2288 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2289  * counter when SACK is enabled (without SACK, sacked_out is used for
2290  * that purpose).
2291  *
2292  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2293  * segments up to the highest received SACK block so far and holes in
2294  * between them.
2295  *
2296  * With reordering, holes may still be in flight, so RFC3517 recovery
2297  * uses pure sacked_out (total number of SACKed segments) even though
2298  * it violates the RFC that uses duplicate ACKs, often these are equal
2299  * but when e.g. out-of-window ACKs or packet duplication occurs,
2300  * they differ. Since neither occurs due to loss, TCP should really
2301  * ignore them.
2302  */
2303 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
2304 {
2305 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2306 }
2307 
2308 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2309 {
2310 	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2311 }
2312 
2313 static inline int tcp_head_timedout(struct sock *sk)
2314 {
2315 	struct tcp_sock *tp = tcp_sk(sk);
2316 
2317 	return tp->packets_out &&
2318 	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2319 }
2320 
2321 /* Linux NewReno/SACK/FACK/ECN state machine.
2322  * --------------------------------------
2323  *
2324  * "Open"	Normal state, no dubious events, fast path.
2325  * "Disorder"   In all the respects it is "Open",
2326  *		but requires a bit more attention. It is entered when
2327  *		we see some SACKs or dupacks. It is split of "Open"
2328  *		mainly to move some processing from fast path to slow one.
2329  * "CWR"	CWND was reduced due to some Congestion Notification event.
2330  *		It can be ECN, ICMP source quench, local device congestion.
2331  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2332  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2333  *
2334  * tcp_fastretrans_alert() is entered:
2335  * - each incoming ACK, if state is not "Open"
2336  * - when arrived ACK is unusual, namely:
2337  *	* SACK
2338  *	* Duplicate ACK.
2339  *	* ECN ECE.
2340  *
2341  * Counting packets in flight is pretty simple.
2342  *
2343  *	in_flight = packets_out - left_out + retrans_out
2344  *
2345  *	packets_out is SND.NXT-SND.UNA counted in packets.
2346  *
2347  *	retrans_out is number of retransmitted segments.
2348  *
2349  *	left_out is number of segments left network, but not ACKed yet.
2350  *
2351  *		left_out = sacked_out + lost_out
2352  *
2353  *     sacked_out: Packets, which arrived to receiver out of order
2354  *		   and hence not ACKed. With SACKs this number is simply
2355  *		   amount of SACKed data. Even without SACKs
2356  *		   it is easy to give pretty reliable estimate of this number,
2357  *		   counting duplicate ACKs.
2358  *
2359  *       lost_out: Packets lost by network. TCP has no explicit
2360  *		   "loss notification" feedback from network (for now).
2361  *		   It means that this number can be only _guessed_.
2362  *		   Actually, it is the heuristics to predict lossage that
2363  *		   distinguishes different algorithms.
2364  *
2365  *	F.e. after RTO, when all the queue is considered as lost,
2366  *	lost_out = packets_out and in_flight = retrans_out.
2367  *
2368  *		Essentially, we have now two algorithms counting
2369  *		lost packets.
2370  *
2371  *		FACK: It is the simplest heuristics. As soon as we decided
2372  *		that something is lost, we decide that _all_ not SACKed
2373  *		packets until the most forward SACK are lost. I.e.
2374  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2375  *		It is absolutely correct estimate, if network does not reorder
2376  *		packets. And it loses any connection to reality when reordering
2377  *		takes place. We use FACK by default until reordering
2378  *		is suspected on the path to this destination.
2379  *
2380  *		NewReno: when Recovery is entered, we assume that one segment
2381  *		is lost (classic Reno). While we are in Recovery and
2382  *		a partial ACK arrives, we assume that one more packet
2383  *		is lost (NewReno). This heuristics are the same in NewReno
2384  *		and SACK.
2385  *
2386  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2387  *  deflation etc. CWND is real congestion window, never inflated, changes
2388  *  only according to classic VJ rules.
2389  *
2390  * Really tricky (and requiring careful tuning) part of algorithm
2391  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2392  * The first determines the moment _when_ we should reduce CWND and,
2393  * hence, slow down forward transmission. In fact, it determines the moment
2394  * when we decide that hole is caused by loss, rather than by a reorder.
2395  *
2396  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2397  * holes, caused by lost packets.
2398  *
2399  * And the most logically complicated part of algorithm is undo
2400  * heuristics. We detect false retransmits due to both too early
2401  * fast retransmit (reordering) and underestimated RTO, analyzing
2402  * timestamps and D-SACKs. When we detect that some segments were
2403  * retransmitted by mistake and CWND reduction was wrong, we undo
2404  * window reduction and abort recovery phase. This logic is hidden
2405  * inside several functions named tcp_try_undo_<something>.
2406  */
2407 
2408 /* This function decides, when we should leave Disordered state
2409  * and enter Recovery phase, reducing congestion window.
2410  *
2411  * Main question: may we further continue forward transmission
2412  * with the same cwnd?
2413  */
2414 static int tcp_time_to_recover(struct sock *sk)
2415 {
2416 	struct tcp_sock *tp = tcp_sk(sk);
2417 	__u32 packets_out;
2418 
2419 	/* Do not perform any recovery during F-RTO algorithm */
2420 	if (tp->frto_counter)
2421 		return 0;
2422 
2423 	/* Trick#1: The loss is proven. */
2424 	if (tp->lost_out)
2425 		return 1;
2426 
2427 	/* Not-A-Trick#2 : Classic rule... */
2428 	if (tcp_dupack_heurestics(tp) > tp->reordering)
2429 		return 1;
2430 
2431 	/* Trick#3 : when we use RFC2988 timer restart, fast
2432 	 * retransmit can be triggered by timeout of queue head.
2433 	 */
2434 	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2435 		return 1;
2436 
2437 	/* Trick#4: It is still not OK... But will it be useful to delay
2438 	 * recovery more?
2439 	 */
2440 	packets_out = tp->packets_out;
2441 	if (packets_out <= tp->reordering &&
2442 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2443 	    !tcp_may_send_now(sk)) {
2444 		/* We have nothing to send. This connection is limited
2445 		 * either by receiver window or by application.
2446 		 */
2447 		return 1;
2448 	}
2449 
2450 	return 0;
2451 }
2452 
2453 /* New heuristics: it is possible only after we switched to restart timer
2454  * each time when something is ACKed. Hence, we can detect timed out packets
2455  * during fast retransmit without falling to slow start.
2456  *
2457  * Usefulness of this as is very questionable, since we should know which of
2458  * the segments is the next to timeout which is relatively expensive to find
2459  * in general case unless we add some data structure just for that. The
2460  * current approach certainly won't find the right one too often and when it
2461  * finally does find _something_ it usually marks large part of the window
2462  * right away (because a retransmission with a larger timestamp blocks the
2463  * loop from advancing). -ij
2464  */
2465 static void tcp_timeout_skbs(struct sock *sk)
2466 {
2467 	struct tcp_sock *tp = tcp_sk(sk);
2468 	struct sk_buff *skb;
2469 
2470 	if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2471 		return;
2472 
2473 	skb = tp->scoreboard_skb_hint;
2474 	if (tp->scoreboard_skb_hint == NULL)
2475 		skb = tcp_write_queue_head(sk);
2476 
2477 	tcp_for_write_queue_from(skb, sk) {
2478 		if (skb == tcp_send_head(sk))
2479 			break;
2480 		if (!tcp_skb_timedout(sk, skb))
2481 			break;
2482 
2483 		tcp_skb_mark_lost(tp, skb);
2484 	}
2485 
2486 	tp->scoreboard_skb_hint = skb;
2487 
2488 	tcp_verify_left_out(tp);
2489 }
2490 
2491 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2492  * is against sacked "cnt", otherwise it's against facked "cnt"
2493  */
2494 static void tcp_mark_head_lost(struct sock *sk, int packets)
2495 {
2496 	struct tcp_sock *tp = tcp_sk(sk);
2497 	struct sk_buff *skb;
2498 	int cnt, oldcnt;
2499 	int err;
2500 	unsigned int mss;
2501 
2502 	WARN_ON(packets > tp->packets_out);
2503 	if (tp->lost_skb_hint) {
2504 		skb = tp->lost_skb_hint;
2505 		cnt = tp->lost_cnt_hint;
2506 	} else {
2507 		skb = tcp_write_queue_head(sk);
2508 		cnt = 0;
2509 	}
2510 
2511 	tcp_for_write_queue_from(skb, sk) {
2512 		if (skb == tcp_send_head(sk))
2513 			break;
2514 		/* TODO: do this better */
2515 		/* this is not the most efficient way to do this... */
2516 		tp->lost_skb_hint = skb;
2517 		tp->lost_cnt_hint = cnt;
2518 
2519 		if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2520 			break;
2521 
2522 		oldcnt = cnt;
2523 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2524 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2525 			cnt += tcp_skb_pcount(skb);
2526 
2527 		if (cnt > packets) {
2528 			if (tcp_is_sack(tp) || (oldcnt >= packets))
2529 				break;
2530 
2531 			mss = skb_shinfo(skb)->gso_size;
2532 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2533 			if (err < 0)
2534 				break;
2535 			cnt = packets;
2536 		}
2537 
2538 		tcp_skb_mark_lost(tp, skb);
2539 	}
2540 	tcp_verify_left_out(tp);
2541 }
2542 
2543 /* Account newly detected lost packet(s) */
2544 
2545 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2546 {
2547 	struct tcp_sock *tp = tcp_sk(sk);
2548 
2549 	if (tcp_is_reno(tp)) {
2550 		tcp_mark_head_lost(sk, 1);
2551 	} else if (tcp_is_fack(tp)) {
2552 		int lost = tp->fackets_out - tp->reordering;
2553 		if (lost <= 0)
2554 			lost = 1;
2555 		tcp_mark_head_lost(sk, lost);
2556 	} else {
2557 		int sacked_upto = tp->sacked_out - tp->reordering;
2558 		if (sacked_upto < fast_rexmit)
2559 			sacked_upto = fast_rexmit;
2560 		tcp_mark_head_lost(sk, sacked_upto);
2561 	}
2562 
2563 	tcp_timeout_skbs(sk);
2564 }
2565 
2566 /* CWND moderation, preventing bursts due to too big ACKs
2567  * in dubious situations.
2568  */
2569 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2570 {
2571 	tp->snd_cwnd = min(tp->snd_cwnd,
2572 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2573 	tp->snd_cwnd_stamp = tcp_time_stamp;
2574 }
2575 
2576 /* Lower bound on congestion window is slow start threshold
2577  * unless congestion avoidance choice decides to overide it.
2578  */
2579 static inline u32 tcp_cwnd_min(const struct sock *sk)
2580 {
2581 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2582 
2583 	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2584 }
2585 
2586 /* Decrease cwnd each second ack. */
2587 static void tcp_cwnd_down(struct sock *sk, int flag)
2588 {
2589 	struct tcp_sock *tp = tcp_sk(sk);
2590 	int decr = tp->snd_cwnd_cnt + 1;
2591 
2592 	if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2593 	    (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2594 		tp->snd_cwnd_cnt = decr & 1;
2595 		decr >>= 1;
2596 
2597 		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2598 			tp->snd_cwnd -= decr;
2599 
2600 		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2601 		tp->snd_cwnd_stamp = tcp_time_stamp;
2602 	}
2603 }
2604 
2605 /* Nothing was retransmitted or returned timestamp is less
2606  * than timestamp of the first retransmission.
2607  */
2608 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2609 {
2610 	return !tp->retrans_stamp ||
2611 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2612 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2613 }
2614 
2615 /* Undo procedures. */
2616 
2617 #if FASTRETRANS_DEBUG > 1
2618 static void DBGUNDO(struct sock *sk, const char *msg)
2619 {
2620 	struct tcp_sock *tp = tcp_sk(sk);
2621 	struct inet_sock *inet = inet_sk(sk);
2622 
2623 	if (sk->sk_family == AF_INET) {
2624 		printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2625 		       msg,
2626 		       &inet->daddr, ntohs(inet->dport),
2627 		       tp->snd_cwnd, tcp_left_out(tp),
2628 		       tp->snd_ssthresh, tp->prior_ssthresh,
2629 		       tp->packets_out);
2630 	}
2631 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2632 	else if (sk->sk_family == AF_INET6) {
2633 		struct ipv6_pinfo *np = inet6_sk(sk);
2634 		printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2635 		       msg,
2636 		       &np->daddr, ntohs(inet->dport),
2637 		       tp->snd_cwnd, tcp_left_out(tp),
2638 		       tp->snd_ssthresh, tp->prior_ssthresh,
2639 		       tp->packets_out);
2640 	}
2641 #endif
2642 }
2643 #else
2644 #define DBGUNDO(x...) do { } while (0)
2645 #endif
2646 
2647 static void tcp_undo_cwr(struct sock *sk, const int undo)
2648 {
2649 	struct tcp_sock *tp = tcp_sk(sk);
2650 
2651 	if (tp->prior_ssthresh) {
2652 		const struct inet_connection_sock *icsk = inet_csk(sk);
2653 
2654 		if (icsk->icsk_ca_ops->undo_cwnd)
2655 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2656 		else
2657 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2658 
2659 		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2660 			tp->snd_ssthresh = tp->prior_ssthresh;
2661 			TCP_ECN_withdraw_cwr(tp);
2662 		}
2663 	} else {
2664 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2665 	}
2666 	tcp_moderate_cwnd(tp);
2667 	tp->snd_cwnd_stamp = tcp_time_stamp;
2668 }
2669 
2670 static inline int tcp_may_undo(struct tcp_sock *tp)
2671 {
2672 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2673 }
2674 
2675 /* People celebrate: "We love our President!" */
2676 static int tcp_try_undo_recovery(struct sock *sk)
2677 {
2678 	struct tcp_sock *tp = tcp_sk(sk);
2679 
2680 	if (tcp_may_undo(tp)) {
2681 		int mib_idx;
2682 
2683 		/* Happy end! We did not retransmit anything
2684 		 * or our original transmission succeeded.
2685 		 */
2686 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2687 		tcp_undo_cwr(sk, 1);
2688 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2689 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2690 		else
2691 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2692 
2693 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2694 		tp->undo_marker = 0;
2695 	}
2696 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2697 		/* Hold old state until something *above* high_seq
2698 		 * is ACKed. For Reno it is MUST to prevent false
2699 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2700 		tcp_moderate_cwnd(tp);
2701 		return 1;
2702 	}
2703 	tcp_set_ca_state(sk, TCP_CA_Open);
2704 	return 0;
2705 }
2706 
2707 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2708 static void tcp_try_undo_dsack(struct sock *sk)
2709 {
2710 	struct tcp_sock *tp = tcp_sk(sk);
2711 
2712 	if (tp->undo_marker && !tp->undo_retrans) {
2713 		DBGUNDO(sk, "D-SACK");
2714 		tcp_undo_cwr(sk, 1);
2715 		tp->undo_marker = 0;
2716 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2717 	}
2718 }
2719 
2720 /* Undo during fast recovery after partial ACK. */
2721 
2722 static int tcp_try_undo_partial(struct sock *sk, int acked)
2723 {
2724 	struct tcp_sock *tp = tcp_sk(sk);
2725 	/* Partial ACK arrived. Force Hoe's retransmit. */
2726 	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2727 
2728 	if (tcp_may_undo(tp)) {
2729 		/* Plain luck! Hole if filled with delayed
2730 		 * packet, rather than with a retransmit.
2731 		 */
2732 		if (tp->retrans_out == 0)
2733 			tp->retrans_stamp = 0;
2734 
2735 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2736 
2737 		DBGUNDO(sk, "Hoe");
2738 		tcp_undo_cwr(sk, 0);
2739 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2740 
2741 		/* So... Do not make Hoe's retransmit yet.
2742 		 * If the first packet was delayed, the rest
2743 		 * ones are most probably delayed as well.
2744 		 */
2745 		failed = 0;
2746 	}
2747 	return failed;
2748 }
2749 
2750 /* Undo during loss recovery after partial ACK. */
2751 static int tcp_try_undo_loss(struct sock *sk)
2752 {
2753 	struct tcp_sock *tp = tcp_sk(sk);
2754 
2755 	if (tcp_may_undo(tp)) {
2756 		struct sk_buff *skb;
2757 		tcp_for_write_queue(skb, sk) {
2758 			if (skb == tcp_send_head(sk))
2759 				break;
2760 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2761 		}
2762 
2763 		tcp_clear_all_retrans_hints(tp);
2764 
2765 		DBGUNDO(sk, "partial loss");
2766 		tp->lost_out = 0;
2767 		tcp_undo_cwr(sk, 1);
2768 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2769 		inet_csk(sk)->icsk_retransmits = 0;
2770 		tp->undo_marker = 0;
2771 		if (tcp_is_sack(tp))
2772 			tcp_set_ca_state(sk, TCP_CA_Open);
2773 		return 1;
2774 	}
2775 	return 0;
2776 }
2777 
2778 static inline void tcp_complete_cwr(struct sock *sk)
2779 {
2780 	struct tcp_sock *tp = tcp_sk(sk);
2781 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2782 	tp->snd_cwnd_stamp = tcp_time_stamp;
2783 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2784 }
2785 
2786 static void tcp_try_keep_open(struct sock *sk)
2787 {
2788 	struct tcp_sock *tp = tcp_sk(sk);
2789 	int state = TCP_CA_Open;
2790 
2791 	if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2792 		state = TCP_CA_Disorder;
2793 
2794 	if (inet_csk(sk)->icsk_ca_state != state) {
2795 		tcp_set_ca_state(sk, state);
2796 		tp->high_seq = tp->snd_nxt;
2797 	}
2798 }
2799 
2800 static void tcp_try_to_open(struct sock *sk, int flag)
2801 {
2802 	struct tcp_sock *tp = tcp_sk(sk);
2803 
2804 	tcp_verify_left_out(tp);
2805 
2806 	if (!tp->frto_counter && tp->retrans_out == 0)
2807 		tp->retrans_stamp = 0;
2808 
2809 	if (flag & FLAG_ECE)
2810 		tcp_enter_cwr(sk, 1);
2811 
2812 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2813 		tcp_try_keep_open(sk);
2814 		tcp_moderate_cwnd(tp);
2815 	} else {
2816 		tcp_cwnd_down(sk, flag);
2817 	}
2818 }
2819 
2820 static void tcp_mtup_probe_failed(struct sock *sk)
2821 {
2822 	struct inet_connection_sock *icsk = inet_csk(sk);
2823 
2824 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2825 	icsk->icsk_mtup.probe_size = 0;
2826 }
2827 
2828 static void tcp_mtup_probe_success(struct sock *sk)
2829 {
2830 	struct tcp_sock *tp = tcp_sk(sk);
2831 	struct inet_connection_sock *icsk = inet_csk(sk);
2832 
2833 	/* FIXME: breaks with very large cwnd */
2834 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2835 	tp->snd_cwnd = tp->snd_cwnd *
2836 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2837 		       icsk->icsk_mtup.probe_size;
2838 	tp->snd_cwnd_cnt = 0;
2839 	tp->snd_cwnd_stamp = tcp_time_stamp;
2840 	tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2841 
2842 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2843 	icsk->icsk_mtup.probe_size = 0;
2844 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2845 }
2846 
2847 /* Do a simple retransmit without using the backoff mechanisms in
2848  * tcp_timer. This is used for path mtu discovery.
2849  * The socket is already locked here.
2850  */
2851 void tcp_simple_retransmit(struct sock *sk)
2852 {
2853 	const struct inet_connection_sock *icsk = inet_csk(sk);
2854 	struct tcp_sock *tp = tcp_sk(sk);
2855 	struct sk_buff *skb;
2856 	unsigned int mss = tcp_current_mss(sk);
2857 	u32 prior_lost = tp->lost_out;
2858 
2859 	tcp_for_write_queue(skb, sk) {
2860 		if (skb == tcp_send_head(sk))
2861 			break;
2862 		if (tcp_skb_seglen(skb) > mss &&
2863 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2864 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2865 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2866 				tp->retrans_out -= tcp_skb_pcount(skb);
2867 			}
2868 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2869 		}
2870 	}
2871 
2872 	tcp_clear_retrans_hints_partial(tp);
2873 
2874 	if (prior_lost == tp->lost_out)
2875 		return;
2876 
2877 	if (tcp_is_reno(tp))
2878 		tcp_limit_reno_sacked(tp);
2879 
2880 	tcp_verify_left_out(tp);
2881 
2882 	/* Don't muck with the congestion window here.
2883 	 * Reason is that we do not increase amount of _data_
2884 	 * in network, but units changed and effective
2885 	 * cwnd/ssthresh really reduced now.
2886 	 */
2887 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2888 		tp->high_seq = tp->snd_nxt;
2889 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2890 		tp->prior_ssthresh = 0;
2891 		tp->undo_marker = 0;
2892 		tcp_set_ca_state(sk, TCP_CA_Loss);
2893 	}
2894 	tcp_xmit_retransmit_queue(sk);
2895 }
2896 
2897 /* Process an event, which can update packets-in-flight not trivially.
2898  * Main goal of this function is to calculate new estimate for left_out,
2899  * taking into account both packets sitting in receiver's buffer and
2900  * packets lost by network.
2901  *
2902  * Besides that it does CWND reduction, when packet loss is detected
2903  * and changes state of machine.
2904  *
2905  * It does _not_ decide what to send, it is made in function
2906  * tcp_xmit_retransmit_queue().
2907  */
2908 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2909 {
2910 	struct inet_connection_sock *icsk = inet_csk(sk);
2911 	struct tcp_sock *tp = tcp_sk(sk);
2912 	int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2913 	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2914 				    (tcp_fackets_out(tp) > tp->reordering));
2915 	int fast_rexmit = 0, mib_idx;
2916 
2917 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2918 		tp->sacked_out = 0;
2919 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2920 		tp->fackets_out = 0;
2921 
2922 	/* Now state machine starts.
2923 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2924 	if (flag & FLAG_ECE)
2925 		tp->prior_ssthresh = 0;
2926 
2927 	/* B. In all the states check for reneging SACKs. */
2928 	if (tcp_check_sack_reneging(sk, flag))
2929 		return;
2930 
2931 	/* C. Process data loss notification, provided it is valid. */
2932 	if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2933 	    before(tp->snd_una, tp->high_seq) &&
2934 	    icsk->icsk_ca_state != TCP_CA_Open &&
2935 	    tp->fackets_out > tp->reordering) {
2936 		tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2937 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2938 	}
2939 
2940 	/* D. Check consistency of the current state. */
2941 	tcp_verify_left_out(tp);
2942 
2943 	/* E. Check state exit conditions. State can be terminated
2944 	 *    when high_seq is ACKed. */
2945 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2946 		WARN_ON(tp->retrans_out != 0);
2947 		tp->retrans_stamp = 0;
2948 	} else if (!before(tp->snd_una, tp->high_seq)) {
2949 		switch (icsk->icsk_ca_state) {
2950 		case TCP_CA_Loss:
2951 			icsk->icsk_retransmits = 0;
2952 			if (tcp_try_undo_recovery(sk))
2953 				return;
2954 			break;
2955 
2956 		case TCP_CA_CWR:
2957 			/* CWR is to be held something *above* high_seq
2958 			 * is ACKed for CWR bit to reach receiver. */
2959 			if (tp->snd_una != tp->high_seq) {
2960 				tcp_complete_cwr(sk);
2961 				tcp_set_ca_state(sk, TCP_CA_Open);
2962 			}
2963 			break;
2964 
2965 		case TCP_CA_Disorder:
2966 			tcp_try_undo_dsack(sk);
2967 			if (!tp->undo_marker ||
2968 			    /* For SACK case do not Open to allow to undo
2969 			     * catching for all duplicate ACKs. */
2970 			    tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2971 				tp->undo_marker = 0;
2972 				tcp_set_ca_state(sk, TCP_CA_Open);
2973 			}
2974 			break;
2975 
2976 		case TCP_CA_Recovery:
2977 			if (tcp_is_reno(tp))
2978 				tcp_reset_reno_sack(tp);
2979 			if (tcp_try_undo_recovery(sk))
2980 				return;
2981 			tcp_complete_cwr(sk);
2982 			break;
2983 		}
2984 	}
2985 
2986 	/* F. Process state. */
2987 	switch (icsk->icsk_ca_state) {
2988 	case TCP_CA_Recovery:
2989 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2990 			if (tcp_is_reno(tp) && is_dupack)
2991 				tcp_add_reno_sack(sk);
2992 		} else
2993 			do_lost = tcp_try_undo_partial(sk, pkts_acked);
2994 		break;
2995 	case TCP_CA_Loss:
2996 		if (flag & FLAG_DATA_ACKED)
2997 			icsk->icsk_retransmits = 0;
2998 		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2999 			tcp_reset_reno_sack(tp);
3000 		if (!tcp_try_undo_loss(sk)) {
3001 			tcp_moderate_cwnd(tp);
3002 			tcp_xmit_retransmit_queue(sk);
3003 			return;
3004 		}
3005 		if (icsk->icsk_ca_state != TCP_CA_Open)
3006 			return;
3007 		/* Loss is undone; fall through to processing in Open state. */
3008 	default:
3009 		if (tcp_is_reno(tp)) {
3010 			if (flag & FLAG_SND_UNA_ADVANCED)
3011 				tcp_reset_reno_sack(tp);
3012 			if (is_dupack)
3013 				tcp_add_reno_sack(sk);
3014 		}
3015 
3016 		if (icsk->icsk_ca_state == TCP_CA_Disorder)
3017 			tcp_try_undo_dsack(sk);
3018 
3019 		if (!tcp_time_to_recover(sk)) {
3020 			tcp_try_to_open(sk, flag);
3021 			return;
3022 		}
3023 
3024 		/* MTU probe failure: don't reduce cwnd */
3025 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3026 		    icsk->icsk_mtup.probe_size &&
3027 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3028 			tcp_mtup_probe_failed(sk);
3029 			/* Restores the reduction we did in tcp_mtup_probe() */
3030 			tp->snd_cwnd++;
3031 			tcp_simple_retransmit(sk);
3032 			return;
3033 		}
3034 
3035 		/* Otherwise enter Recovery state */
3036 
3037 		if (tcp_is_reno(tp))
3038 			mib_idx = LINUX_MIB_TCPRENORECOVERY;
3039 		else
3040 			mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3041 
3042 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
3043 
3044 		tp->high_seq = tp->snd_nxt;
3045 		tp->prior_ssthresh = 0;
3046 		tp->undo_marker = tp->snd_una;
3047 		tp->undo_retrans = tp->retrans_out;
3048 
3049 		if (icsk->icsk_ca_state < TCP_CA_CWR) {
3050 			if (!(flag & FLAG_ECE))
3051 				tp->prior_ssthresh = tcp_current_ssthresh(sk);
3052 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3053 			TCP_ECN_queue_cwr(tp);
3054 		}
3055 
3056 		tp->bytes_acked = 0;
3057 		tp->snd_cwnd_cnt = 0;
3058 		tcp_set_ca_state(sk, TCP_CA_Recovery);
3059 		fast_rexmit = 1;
3060 	}
3061 
3062 	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3063 		tcp_update_scoreboard(sk, fast_rexmit);
3064 	tcp_cwnd_down(sk, flag);
3065 	tcp_xmit_retransmit_queue(sk);
3066 }
3067 
3068 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3069 {
3070 	tcp_rtt_estimator(sk, seq_rtt);
3071 	tcp_set_rto(sk);
3072 	inet_csk(sk)->icsk_backoff = 0;
3073 }
3074 
3075 /* Read draft-ietf-tcplw-high-performance before mucking
3076  * with this code. (Supersedes RFC1323)
3077  */
3078 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3079 {
3080 	/* RTTM Rule: A TSecr value received in a segment is used to
3081 	 * update the averaged RTT measurement only if the segment
3082 	 * acknowledges some new data, i.e., only if it advances the
3083 	 * left edge of the send window.
3084 	 *
3085 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3086 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3087 	 *
3088 	 * Changed: reset backoff as soon as we see the first valid sample.
3089 	 * If we do not, we get strongly overestimated rto. With timestamps
3090 	 * samples are accepted even from very old segments: f.e., when rtt=1
3091 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3092 	 * answer arrives rto becomes 120 seconds! If at least one of segments
3093 	 * in window is lost... Voila.	 			--ANK (010210)
3094 	 */
3095 	struct tcp_sock *tp = tcp_sk(sk);
3096 
3097 	tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3098 }
3099 
3100 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3101 {
3102 	/* We don't have a timestamp. Can only use
3103 	 * packets that are not retransmitted to determine
3104 	 * rtt estimates. Also, we must not reset the
3105 	 * backoff for rto until we get a non-retransmitted
3106 	 * packet. This allows us to deal with a situation
3107 	 * where the network delay has increased suddenly.
3108 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3109 	 */
3110 
3111 	if (flag & FLAG_RETRANS_DATA_ACKED)
3112 		return;
3113 
3114 	tcp_valid_rtt_meas(sk, seq_rtt);
3115 }
3116 
3117 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3118 				      const s32 seq_rtt)
3119 {
3120 	const struct tcp_sock *tp = tcp_sk(sk);
3121 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3122 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3123 		tcp_ack_saw_tstamp(sk, flag);
3124 	else if (seq_rtt >= 0)
3125 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
3126 }
3127 
3128 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3129 {
3130 	const struct inet_connection_sock *icsk = inet_csk(sk);
3131 	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3132 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3133 }
3134 
3135 /* Restart timer after forward progress on connection.
3136  * RFC2988 recommends to restart timer to now+rto.
3137  */
3138 static void tcp_rearm_rto(struct sock *sk)
3139 {
3140 	struct tcp_sock *tp = tcp_sk(sk);
3141 
3142 	if (!tp->packets_out) {
3143 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3144 	} else {
3145 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3146 					  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3147 	}
3148 }
3149 
3150 /* If we get here, the whole TSO packet has not been acked. */
3151 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3152 {
3153 	struct tcp_sock *tp = tcp_sk(sk);
3154 	u32 packets_acked;
3155 
3156 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3157 
3158 	packets_acked = tcp_skb_pcount(skb);
3159 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3160 		return 0;
3161 	packets_acked -= tcp_skb_pcount(skb);
3162 
3163 	if (packets_acked) {
3164 		BUG_ON(tcp_skb_pcount(skb) == 0);
3165 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3166 	}
3167 
3168 	return packets_acked;
3169 }
3170 
3171 /* Remove acknowledged frames from the retransmission queue. If our packet
3172  * is before the ack sequence we can discard it as it's confirmed to have
3173  * arrived at the other end.
3174  */
3175 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3176 			       u32 prior_snd_una)
3177 {
3178 	struct tcp_sock *tp = tcp_sk(sk);
3179 	const struct inet_connection_sock *icsk = inet_csk(sk);
3180 	struct sk_buff *skb;
3181 	u32 now = tcp_time_stamp;
3182 	int fully_acked = 1;
3183 	int flag = 0;
3184 	u32 pkts_acked = 0;
3185 	u32 reord = tp->packets_out;
3186 	u32 prior_sacked = tp->sacked_out;
3187 	s32 seq_rtt = -1;
3188 	s32 ca_seq_rtt = -1;
3189 	ktime_t last_ackt = net_invalid_timestamp();
3190 
3191 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3192 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3193 		u32 acked_pcount;
3194 		u8 sacked = scb->sacked;
3195 
3196 		/* Determine how many packets and what bytes were acked, tso and else */
3197 		if (after(scb->end_seq, tp->snd_una)) {
3198 			if (tcp_skb_pcount(skb) == 1 ||
3199 			    !after(tp->snd_una, scb->seq))
3200 				break;
3201 
3202 			acked_pcount = tcp_tso_acked(sk, skb);
3203 			if (!acked_pcount)
3204 				break;
3205 
3206 			fully_acked = 0;
3207 		} else {
3208 			acked_pcount = tcp_skb_pcount(skb);
3209 		}
3210 
3211 		if (sacked & TCPCB_RETRANS) {
3212 			if (sacked & TCPCB_SACKED_RETRANS)
3213 				tp->retrans_out -= acked_pcount;
3214 			flag |= FLAG_RETRANS_DATA_ACKED;
3215 			ca_seq_rtt = -1;
3216 			seq_rtt = -1;
3217 			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3218 				flag |= FLAG_NONHEAD_RETRANS_ACKED;
3219 		} else {
3220 			ca_seq_rtt = now - scb->when;
3221 			last_ackt = skb->tstamp;
3222 			if (seq_rtt < 0) {
3223 				seq_rtt = ca_seq_rtt;
3224 			}
3225 			if (!(sacked & TCPCB_SACKED_ACKED))
3226 				reord = min(pkts_acked, reord);
3227 		}
3228 
3229 		if (sacked & TCPCB_SACKED_ACKED)
3230 			tp->sacked_out -= acked_pcount;
3231 		if (sacked & TCPCB_LOST)
3232 			tp->lost_out -= acked_pcount;
3233 
3234 		tp->packets_out -= acked_pcount;
3235 		pkts_acked += acked_pcount;
3236 
3237 		/* Initial outgoing SYN's get put onto the write_queue
3238 		 * just like anything else we transmit.  It is not
3239 		 * true data, and if we misinform our callers that
3240 		 * this ACK acks real data, we will erroneously exit
3241 		 * connection startup slow start one packet too
3242 		 * quickly.  This is severely frowned upon behavior.
3243 		 */
3244 		if (!(scb->flags & TCPCB_FLAG_SYN)) {
3245 			flag |= FLAG_DATA_ACKED;
3246 		} else {
3247 			flag |= FLAG_SYN_ACKED;
3248 			tp->retrans_stamp = 0;
3249 		}
3250 
3251 		if (!fully_acked)
3252 			break;
3253 
3254 		tcp_unlink_write_queue(skb, sk);
3255 		sk_wmem_free_skb(sk, skb);
3256 		tp->scoreboard_skb_hint = NULL;
3257 		if (skb == tp->retransmit_skb_hint)
3258 			tp->retransmit_skb_hint = NULL;
3259 		if (skb == tp->lost_skb_hint)
3260 			tp->lost_skb_hint = NULL;
3261 	}
3262 
3263 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3264 		tp->snd_up = tp->snd_una;
3265 
3266 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3267 		flag |= FLAG_SACK_RENEGING;
3268 
3269 	if (flag & FLAG_ACKED) {
3270 		const struct tcp_congestion_ops *ca_ops
3271 			= inet_csk(sk)->icsk_ca_ops;
3272 
3273 		if (unlikely(icsk->icsk_mtup.probe_size &&
3274 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3275 			tcp_mtup_probe_success(sk);
3276 		}
3277 
3278 		tcp_ack_update_rtt(sk, flag, seq_rtt);
3279 		tcp_rearm_rto(sk);
3280 
3281 		if (tcp_is_reno(tp)) {
3282 			tcp_remove_reno_sacks(sk, pkts_acked);
3283 		} else {
3284 			int delta;
3285 
3286 			/* Non-retransmitted hole got filled? That's reordering */
3287 			if (reord < prior_fackets)
3288 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3289 
3290 			delta = tcp_is_fack(tp) ? pkts_acked :
3291 						  prior_sacked - tp->sacked_out;
3292 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3293 		}
3294 
3295 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3296 
3297 		if (ca_ops->pkts_acked) {
3298 			s32 rtt_us = -1;
3299 
3300 			/* Is the ACK triggering packet unambiguous? */
3301 			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3302 				/* High resolution needed and available? */
3303 				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3304 				    !ktime_equal(last_ackt,
3305 						 net_invalid_timestamp()))
3306 					rtt_us = ktime_us_delta(ktime_get_real(),
3307 								last_ackt);
3308 				else if (ca_seq_rtt > 0)
3309 					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3310 			}
3311 
3312 			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3313 		}
3314 	}
3315 
3316 #if FASTRETRANS_DEBUG > 0
3317 	WARN_ON((int)tp->sacked_out < 0);
3318 	WARN_ON((int)tp->lost_out < 0);
3319 	WARN_ON((int)tp->retrans_out < 0);
3320 	if (!tp->packets_out && tcp_is_sack(tp)) {
3321 		icsk = inet_csk(sk);
3322 		if (tp->lost_out) {
3323 			printk(KERN_DEBUG "Leak l=%u %d\n",
3324 			       tp->lost_out, icsk->icsk_ca_state);
3325 			tp->lost_out = 0;
3326 		}
3327 		if (tp->sacked_out) {
3328 			printk(KERN_DEBUG "Leak s=%u %d\n",
3329 			       tp->sacked_out, icsk->icsk_ca_state);
3330 			tp->sacked_out = 0;
3331 		}
3332 		if (tp->retrans_out) {
3333 			printk(KERN_DEBUG "Leak r=%u %d\n",
3334 			       tp->retrans_out, icsk->icsk_ca_state);
3335 			tp->retrans_out = 0;
3336 		}
3337 	}
3338 #endif
3339 	return flag;
3340 }
3341 
3342 static void tcp_ack_probe(struct sock *sk)
3343 {
3344 	const struct tcp_sock *tp = tcp_sk(sk);
3345 	struct inet_connection_sock *icsk = inet_csk(sk);
3346 
3347 	/* Was it a usable window open? */
3348 
3349 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3350 		icsk->icsk_backoff = 0;
3351 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3352 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3353 		 * This function is not for random using!
3354 		 */
3355 	} else {
3356 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3357 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3358 					  TCP_RTO_MAX);
3359 	}
3360 }
3361 
3362 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3363 {
3364 	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3365 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3366 }
3367 
3368 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3369 {
3370 	const struct tcp_sock *tp = tcp_sk(sk);
3371 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3372 		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3373 }
3374 
3375 /* Check that window update is acceptable.
3376  * The function assumes that snd_una<=ack<=snd_next.
3377  */
3378 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3379 					const u32 ack, const u32 ack_seq,
3380 					const u32 nwin)
3381 {
3382 	return (after(ack, tp->snd_una) ||
3383 		after(ack_seq, tp->snd_wl1) ||
3384 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3385 }
3386 
3387 /* Update our send window.
3388  *
3389  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3390  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3391  */
3392 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3393 				 u32 ack_seq)
3394 {
3395 	struct tcp_sock *tp = tcp_sk(sk);
3396 	int flag = 0;
3397 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3398 
3399 	if (likely(!tcp_hdr(skb)->syn))
3400 		nwin <<= tp->rx_opt.snd_wscale;
3401 
3402 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3403 		flag |= FLAG_WIN_UPDATE;
3404 		tcp_update_wl(tp, ack_seq);
3405 
3406 		if (tp->snd_wnd != nwin) {
3407 			tp->snd_wnd = nwin;
3408 
3409 			/* Note, it is the only place, where
3410 			 * fast path is recovered for sending TCP.
3411 			 */
3412 			tp->pred_flags = 0;
3413 			tcp_fast_path_check(sk);
3414 
3415 			if (nwin > tp->max_window) {
3416 				tp->max_window = nwin;
3417 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3418 			}
3419 		}
3420 	}
3421 
3422 	tp->snd_una = ack;
3423 
3424 	return flag;
3425 }
3426 
3427 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3428  * continue in congestion avoidance.
3429  */
3430 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3431 {
3432 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3433 	tp->snd_cwnd_cnt = 0;
3434 	tp->bytes_acked = 0;
3435 	TCP_ECN_queue_cwr(tp);
3436 	tcp_moderate_cwnd(tp);
3437 }
3438 
3439 /* A conservative spurious RTO response algorithm: reduce cwnd using
3440  * rate halving and continue in congestion avoidance.
3441  */
3442 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3443 {
3444 	tcp_enter_cwr(sk, 0);
3445 }
3446 
3447 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3448 {
3449 	if (flag & FLAG_ECE)
3450 		tcp_ratehalving_spur_to_response(sk);
3451 	else
3452 		tcp_undo_cwr(sk, 1);
3453 }
3454 
3455 /* F-RTO spurious RTO detection algorithm (RFC4138)
3456  *
3457  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3458  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3459  * window (but not to or beyond highest sequence sent before RTO):
3460  *   On First ACK,  send two new segments out.
3461  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3462  *                  algorithm is not part of the F-RTO detection algorithm
3463  *                  given in RFC4138 but can be selected separately).
3464  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3465  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3466  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3467  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3468  *
3469  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3470  * original window even after we transmit two new data segments.
3471  *
3472  * SACK version:
3473  *   on first step, wait until first cumulative ACK arrives, then move to
3474  *   the second step. In second step, the next ACK decides.
3475  *
3476  * F-RTO is implemented (mainly) in four functions:
3477  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3478  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3479  *     called when tcp_use_frto() showed green light
3480  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3481  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3482  *     to prove that the RTO is indeed spurious. It transfers the control
3483  *     from F-RTO to the conventional RTO recovery
3484  */
3485 static int tcp_process_frto(struct sock *sk, int flag)
3486 {
3487 	struct tcp_sock *tp = tcp_sk(sk);
3488 
3489 	tcp_verify_left_out(tp);
3490 
3491 	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3492 	if (flag & FLAG_DATA_ACKED)
3493 		inet_csk(sk)->icsk_retransmits = 0;
3494 
3495 	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3496 	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3497 		tp->undo_marker = 0;
3498 
3499 	if (!before(tp->snd_una, tp->frto_highmark)) {
3500 		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3501 		return 1;
3502 	}
3503 
3504 	if (!tcp_is_sackfrto(tp)) {
3505 		/* RFC4138 shortcoming in step 2; should also have case c):
3506 		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3507 		 * data, winupdate
3508 		 */
3509 		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3510 			return 1;
3511 
3512 		if (!(flag & FLAG_DATA_ACKED)) {
3513 			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3514 					    flag);
3515 			return 1;
3516 		}
3517 	} else {
3518 		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3519 			/* Prevent sending of new data. */
3520 			tp->snd_cwnd = min(tp->snd_cwnd,
3521 					   tcp_packets_in_flight(tp));
3522 			return 1;
3523 		}
3524 
3525 		if ((tp->frto_counter >= 2) &&
3526 		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3527 		     ((flag & FLAG_DATA_SACKED) &&
3528 		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3529 			/* RFC4138 shortcoming (see comment above) */
3530 			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3531 			    (flag & FLAG_NOT_DUP))
3532 				return 1;
3533 
3534 			tcp_enter_frto_loss(sk, 3, flag);
3535 			return 1;
3536 		}
3537 	}
3538 
3539 	if (tp->frto_counter == 1) {
3540 		/* tcp_may_send_now needs to see updated state */
3541 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3542 		tp->frto_counter = 2;
3543 
3544 		if (!tcp_may_send_now(sk))
3545 			tcp_enter_frto_loss(sk, 2, flag);
3546 
3547 		return 1;
3548 	} else {
3549 		switch (sysctl_tcp_frto_response) {
3550 		case 2:
3551 			tcp_undo_spur_to_response(sk, flag);
3552 			break;
3553 		case 1:
3554 			tcp_conservative_spur_to_response(tp);
3555 			break;
3556 		default:
3557 			tcp_ratehalving_spur_to_response(sk);
3558 			break;
3559 		}
3560 		tp->frto_counter = 0;
3561 		tp->undo_marker = 0;
3562 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3563 	}
3564 	return 0;
3565 }
3566 
3567 /* This routine deals with incoming acks, but not outgoing ones. */
3568 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3569 {
3570 	struct inet_connection_sock *icsk = inet_csk(sk);
3571 	struct tcp_sock *tp = tcp_sk(sk);
3572 	u32 prior_snd_una = tp->snd_una;
3573 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3574 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3575 	u32 prior_in_flight;
3576 	u32 prior_fackets;
3577 	int prior_packets;
3578 	int frto_cwnd = 0;
3579 
3580 	/* If the ack is older than previous acks
3581 	 * then we can probably ignore it.
3582 	 */
3583 	if (before(ack, prior_snd_una))
3584 		goto old_ack;
3585 
3586 	/* If the ack includes data we haven't sent yet, discard
3587 	 * this segment (RFC793 Section 3.9).
3588 	 */
3589 	if (after(ack, tp->snd_nxt))
3590 		goto invalid_ack;
3591 
3592 	if (after(ack, prior_snd_una))
3593 		flag |= FLAG_SND_UNA_ADVANCED;
3594 
3595 	if (sysctl_tcp_abc) {
3596 		if (icsk->icsk_ca_state < TCP_CA_CWR)
3597 			tp->bytes_acked += ack - prior_snd_una;
3598 		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3599 			/* we assume just one segment left network */
3600 			tp->bytes_acked += min(ack - prior_snd_una,
3601 					       tp->mss_cache);
3602 	}
3603 
3604 	prior_fackets = tp->fackets_out;
3605 	prior_in_flight = tcp_packets_in_flight(tp);
3606 
3607 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3608 		/* Window is constant, pure forward advance.
3609 		 * No more checks are required.
3610 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3611 		 */
3612 		tcp_update_wl(tp, ack_seq);
3613 		tp->snd_una = ack;
3614 		flag |= FLAG_WIN_UPDATE;
3615 
3616 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3617 
3618 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3619 	} else {
3620 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3621 			flag |= FLAG_DATA;
3622 		else
3623 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3624 
3625 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3626 
3627 		if (TCP_SKB_CB(skb)->sacked)
3628 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3629 
3630 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3631 			flag |= FLAG_ECE;
3632 
3633 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3634 	}
3635 
3636 	/* We passed data and got it acked, remove any soft error
3637 	 * log. Something worked...
3638 	 */
3639 	sk->sk_err_soft = 0;
3640 	icsk->icsk_probes_out = 0;
3641 	tp->rcv_tstamp = tcp_time_stamp;
3642 	prior_packets = tp->packets_out;
3643 	if (!prior_packets)
3644 		goto no_queue;
3645 
3646 	/* See if we can take anything off of the retransmit queue. */
3647 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3648 
3649 	if (tp->frto_counter)
3650 		frto_cwnd = tcp_process_frto(sk, flag);
3651 	/* Guarantee sacktag reordering detection against wrap-arounds */
3652 	if (before(tp->frto_highmark, tp->snd_una))
3653 		tp->frto_highmark = 0;
3654 
3655 	if (tcp_ack_is_dubious(sk, flag)) {
3656 		/* Advance CWND, if state allows this. */
3657 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3658 		    tcp_may_raise_cwnd(sk, flag))
3659 			tcp_cong_avoid(sk, ack, prior_in_flight);
3660 		tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3661 				      flag);
3662 	} else {
3663 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3664 			tcp_cong_avoid(sk, ack, prior_in_flight);
3665 	}
3666 
3667 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3668 		dst_confirm(sk->sk_dst_cache);
3669 
3670 	return 1;
3671 
3672 no_queue:
3673 	/* If this ack opens up a zero window, clear backoff.  It was
3674 	 * being used to time the probes, and is probably far higher than
3675 	 * it needs to be for normal retransmission.
3676 	 */
3677 	if (tcp_send_head(sk))
3678 		tcp_ack_probe(sk);
3679 	return 1;
3680 
3681 invalid_ack:
3682 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3683 	return -1;
3684 
3685 old_ack:
3686 	if (TCP_SKB_CB(skb)->sacked) {
3687 		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3688 		if (icsk->icsk_ca_state == TCP_CA_Open)
3689 			tcp_try_keep_open(sk);
3690 	}
3691 
3692 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3693 	return 0;
3694 }
3695 
3696 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3697  * But, this can also be called on packets in the established flow when
3698  * the fast version below fails.
3699  */
3700 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3701 		       int estab)
3702 {
3703 	unsigned char *ptr;
3704 	struct tcphdr *th = tcp_hdr(skb);
3705 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3706 
3707 	ptr = (unsigned char *)(th + 1);
3708 	opt_rx->saw_tstamp = 0;
3709 
3710 	while (length > 0) {
3711 		int opcode = *ptr++;
3712 		int opsize;
3713 
3714 		switch (opcode) {
3715 		case TCPOPT_EOL:
3716 			return;
3717 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3718 			length--;
3719 			continue;
3720 		default:
3721 			opsize = *ptr++;
3722 			if (opsize < 2) /* "silly options" */
3723 				return;
3724 			if (opsize > length)
3725 				return;	/* don't parse partial options */
3726 			switch (opcode) {
3727 			case TCPOPT_MSS:
3728 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3729 					u16 in_mss = get_unaligned_be16(ptr);
3730 					if (in_mss) {
3731 						if (opt_rx->user_mss &&
3732 						    opt_rx->user_mss < in_mss)
3733 							in_mss = opt_rx->user_mss;
3734 						opt_rx->mss_clamp = in_mss;
3735 					}
3736 				}
3737 				break;
3738 			case TCPOPT_WINDOW:
3739 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3740 				    !estab && sysctl_tcp_window_scaling) {
3741 					__u8 snd_wscale = *(__u8 *)ptr;
3742 					opt_rx->wscale_ok = 1;
3743 					if (snd_wscale > 14) {
3744 						if (net_ratelimit())
3745 							printk(KERN_INFO "tcp_parse_options: Illegal window "
3746 							       "scaling value %d >14 received.\n",
3747 							       snd_wscale);
3748 						snd_wscale = 14;
3749 					}
3750 					opt_rx->snd_wscale = snd_wscale;
3751 				}
3752 				break;
3753 			case TCPOPT_TIMESTAMP:
3754 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3755 				    ((estab && opt_rx->tstamp_ok) ||
3756 				     (!estab && sysctl_tcp_timestamps))) {
3757 					opt_rx->saw_tstamp = 1;
3758 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3759 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3760 				}
3761 				break;
3762 			case TCPOPT_SACK_PERM:
3763 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3764 				    !estab && sysctl_tcp_sack) {
3765 					opt_rx->sack_ok = 1;
3766 					tcp_sack_reset(opt_rx);
3767 				}
3768 				break;
3769 
3770 			case TCPOPT_SACK:
3771 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3772 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3773 				   opt_rx->sack_ok) {
3774 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3775 				}
3776 				break;
3777 #ifdef CONFIG_TCP_MD5SIG
3778 			case TCPOPT_MD5SIG:
3779 				/*
3780 				 * The MD5 Hash has already been
3781 				 * checked (see tcp_v{4,6}_do_rcv()).
3782 				 */
3783 				break;
3784 #endif
3785 			}
3786 
3787 			ptr += opsize-2;
3788 			length -= opsize;
3789 		}
3790 	}
3791 }
3792 
3793 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3794 {
3795 	__be32 *ptr = (__be32 *)(th + 1);
3796 
3797 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3798 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3799 		tp->rx_opt.saw_tstamp = 1;
3800 		++ptr;
3801 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3802 		++ptr;
3803 		tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3804 		return 1;
3805 	}
3806 	return 0;
3807 }
3808 
3809 /* Fast parse options. This hopes to only see timestamps.
3810  * If it is wrong it falls back on tcp_parse_options().
3811  */
3812 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3813 				  struct tcp_sock *tp)
3814 {
3815 	if (th->doff == sizeof(struct tcphdr) >> 2) {
3816 		tp->rx_opt.saw_tstamp = 0;
3817 		return 0;
3818 	} else if (tp->rx_opt.tstamp_ok &&
3819 		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3820 		if (tcp_parse_aligned_timestamp(tp, th))
3821 			return 1;
3822 	}
3823 	tcp_parse_options(skb, &tp->rx_opt, 1);
3824 	return 1;
3825 }
3826 
3827 #ifdef CONFIG_TCP_MD5SIG
3828 /*
3829  * Parse MD5 Signature option
3830  */
3831 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3832 {
3833 	int length = (th->doff << 2) - sizeof (*th);
3834 	u8 *ptr = (u8*)(th + 1);
3835 
3836 	/* If the TCP option is too short, we can short cut */
3837 	if (length < TCPOLEN_MD5SIG)
3838 		return NULL;
3839 
3840 	while (length > 0) {
3841 		int opcode = *ptr++;
3842 		int opsize;
3843 
3844 		switch(opcode) {
3845 		case TCPOPT_EOL:
3846 			return NULL;
3847 		case TCPOPT_NOP:
3848 			length--;
3849 			continue;
3850 		default:
3851 			opsize = *ptr++;
3852 			if (opsize < 2 || opsize > length)
3853 				return NULL;
3854 			if (opcode == TCPOPT_MD5SIG)
3855 				return ptr;
3856 		}
3857 		ptr += opsize - 2;
3858 		length -= opsize;
3859 	}
3860 	return NULL;
3861 }
3862 #endif
3863 
3864 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3865 {
3866 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3867 	tp->rx_opt.ts_recent_stamp = get_seconds();
3868 }
3869 
3870 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3871 {
3872 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3873 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3874 		 * extra check below makes sure this can only happen
3875 		 * for pure ACK frames.  -DaveM
3876 		 *
3877 		 * Not only, also it occurs for expired timestamps.
3878 		 */
3879 
3880 		if (tcp_paws_check(&tp->rx_opt, 0))
3881 			tcp_store_ts_recent(tp);
3882 	}
3883 }
3884 
3885 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3886  *
3887  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3888  * it can pass through stack. So, the following predicate verifies that
3889  * this segment is not used for anything but congestion avoidance or
3890  * fast retransmit. Moreover, we even are able to eliminate most of such
3891  * second order effects, if we apply some small "replay" window (~RTO)
3892  * to timestamp space.
3893  *
3894  * All these measures still do not guarantee that we reject wrapped ACKs
3895  * on networks with high bandwidth, when sequence space is recycled fastly,
3896  * but it guarantees that such events will be very rare and do not affect
3897  * connection seriously. This doesn't look nice, but alas, PAWS is really
3898  * buggy extension.
3899  *
3900  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3901  * states that events when retransmit arrives after original data are rare.
3902  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3903  * the biggest problem on large power networks even with minor reordering.
3904  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3905  * up to bandwidth of 18Gigabit/sec. 8) ]
3906  */
3907 
3908 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3909 {
3910 	struct tcp_sock *tp = tcp_sk(sk);
3911 	struct tcphdr *th = tcp_hdr(skb);
3912 	u32 seq = TCP_SKB_CB(skb)->seq;
3913 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3914 
3915 	return (/* 1. Pure ACK with correct sequence number. */
3916 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3917 
3918 		/* 2. ... and duplicate ACK. */
3919 		ack == tp->snd_una &&
3920 
3921 		/* 3. ... and does not update window. */
3922 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3923 
3924 		/* 4. ... and sits in replay window. */
3925 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3926 }
3927 
3928 static inline int tcp_paws_discard(const struct sock *sk,
3929 				   const struct sk_buff *skb)
3930 {
3931 	const struct tcp_sock *tp = tcp_sk(sk);
3932 
3933 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3934 	       !tcp_disordered_ack(sk, skb);
3935 }
3936 
3937 /* Check segment sequence number for validity.
3938  *
3939  * Segment controls are considered valid, if the segment
3940  * fits to the window after truncation to the window. Acceptability
3941  * of data (and SYN, FIN, of course) is checked separately.
3942  * See tcp_data_queue(), for example.
3943  *
3944  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3945  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3946  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3947  * (borrowed from freebsd)
3948  */
3949 
3950 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3951 {
3952 	return	!before(end_seq, tp->rcv_wup) &&
3953 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3954 }
3955 
3956 /* When we get a reset we do this. */
3957 static void tcp_reset(struct sock *sk)
3958 {
3959 	/* We want the right error as BSD sees it (and indeed as we do). */
3960 	switch (sk->sk_state) {
3961 	case TCP_SYN_SENT:
3962 		sk->sk_err = ECONNREFUSED;
3963 		break;
3964 	case TCP_CLOSE_WAIT:
3965 		sk->sk_err = EPIPE;
3966 		break;
3967 	case TCP_CLOSE:
3968 		return;
3969 	default:
3970 		sk->sk_err = ECONNRESET;
3971 	}
3972 
3973 	if (!sock_flag(sk, SOCK_DEAD))
3974 		sk->sk_error_report(sk);
3975 
3976 	tcp_done(sk);
3977 }
3978 
3979 /*
3980  * 	Process the FIN bit. This now behaves as it is supposed to work
3981  *	and the FIN takes effect when it is validly part of sequence
3982  *	space. Not before when we get holes.
3983  *
3984  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3985  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3986  *	TIME-WAIT)
3987  *
3988  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3989  *	close and we go into CLOSING (and later onto TIME-WAIT)
3990  *
3991  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3992  */
3993 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3994 {
3995 	struct tcp_sock *tp = tcp_sk(sk);
3996 
3997 	inet_csk_schedule_ack(sk);
3998 
3999 	sk->sk_shutdown |= RCV_SHUTDOWN;
4000 	sock_set_flag(sk, SOCK_DONE);
4001 
4002 	switch (sk->sk_state) {
4003 	case TCP_SYN_RECV:
4004 	case TCP_ESTABLISHED:
4005 		/* Move to CLOSE_WAIT */
4006 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4007 		inet_csk(sk)->icsk_ack.pingpong = 1;
4008 		break;
4009 
4010 	case TCP_CLOSE_WAIT:
4011 	case TCP_CLOSING:
4012 		/* Received a retransmission of the FIN, do
4013 		 * nothing.
4014 		 */
4015 		break;
4016 	case TCP_LAST_ACK:
4017 		/* RFC793: Remain in the LAST-ACK state. */
4018 		break;
4019 
4020 	case TCP_FIN_WAIT1:
4021 		/* This case occurs when a simultaneous close
4022 		 * happens, we must ack the received FIN and
4023 		 * enter the CLOSING state.
4024 		 */
4025 		tcp_send_ack(sk);
4026 		tcp_set_state(sk, TCP_CLOSING);
4027 		break;
4028 	case TCP_FIN_WAIT2:
4029 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4030 		tcp_send_ack(sk);
4031 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4032 		break;
4033 	default:
4034 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4035 		 * cases we should never reach this piece of code.
4036 		 */
4037 		printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4038 		       __func__, sk->sk_state);
4039 		break;
4040 	}
4041 
4042 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4043 	 * Probably, we should reset in this case. For now drop them.
4044 	 */
4045 	__skb_queue_purge(&tp->out_of_order_queue);
4046 	if (tcp_is_sack(tp))
4047 		tcp_sack_reset(&tp->rx_opt);
4048 	sk_mem_reclaim(sk);
4049 
4050 	if (!sock_flag(sk, SOCK_DEAD)) {
4051 		sk->sk_state_change(sk);
4052 
4053 		/* Do not send POLL_HUP for half duplex close. */
4054 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4055 		    sk->sk_state == TCP_CLOSE)
4056 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4057 		else
4058 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4059 	}
4060 }
4061 
4062 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4063 				  u32 end_seq)
4064 {
4065 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4066 		if (before(seq, sp->start_seq))
4067 			sp->start_seq = seq;
4068 		if (after(end_seq, sp->end_seq))
4069 			sp->end_seq = end_seq;
4070 		return 1;
4071 	}
4072 	return 0;
4073 }
4074 
4075 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4076 {
4077 	struct tcp_sock *tp = tcp_sk(sk);
4078 
4079 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4080 		int mib_idx;
4081 
4082 		if (before(seq, tp->rcv_nxt))
4083 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4084 		else
4085 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4086 
4087 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4088 
4089 		tp->rx_opt.dsack = 1;
4090 		tp->duplicate_sack[0].start_seq = seq;
4091 		tp->duplicate_sack[0].end_seq = end_seq;
4092 	}
4093 }
4094 
4095 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4096 {
4097 	struct tcp_sock *tp = tcp_sk(sk);
4098 
4099 	if (!tp->rx_opt.dsack)
4100 		tcp_dsack_set(sk, seq, end_seq);
4101 	else
4102 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4103 }
4104 
4105 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4106 {
4107 	struct tcp_sock *tp = tcp_sk(sk);
4108 
4109 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4110 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4111 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4112 		tcp_enter_quickack_mode(sk);
4113 
4114 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4115 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4116 
4117 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4118 				end_seq = tp->rcv_nxt;
4119 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4120 		}
4121 	}
4122 
4123 	tcp_send_ack(sk);
4124 }
4125 
4126 /* These routines update the SACK block as out-of-order packets arrive or
4127  * in-order packets close up the sequence space.
4128  */
4129 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4130 {
4131 	int this_sack;
4132 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4133 	struct tcp_sack_block *swalk = sp + 1;
4134 
4135 	/* See if the recent change to the first SACK eats into
4136 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4137 	 */
4138 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4139 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4140 			int i;
4141 
4142 			/* Zap SWALK, by moving every further SACK up by one slot.
4143 			 * Decrease num_sacks.
4144 			 */
4145 			tp->rx_opt.num_sacks--;
4146 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4147 				sp[i] = sp[i + 1];
4148 			continue;
4149 		}
4150 		this_sack++, swalk++;
4151 	}
4152 }
4153 
4154 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4155 {
4156 	struct tcp_sock *tp = tcp_sk(sk);
4157 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4158 	int cur_sacks = tp->rx_opt.num_sacks;
4159 	int this_sack;
4160 
4161 	if (!cur_sacks)
4162 		goto new_sack;
4163 
4164 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4165 		if (tcp_sack_extend(sp, seq, end_seq)) {
4166 			/* Rotate this_sack to the first one. */
4167 			for (; this_sack > 0; this_sack--, sp--)
4168 				swap(*sp, *(sp - 1));
4169 			if (cur_sacks > 1)
4170 				tcp_sack_maybe_coalesce(tp);
4171 			return;
4172 		}
4173 	}
4174 
4175 	/* Could not find an adjacent existing SACK, build a new one,
4176 	 * put it at the front, and shift everyone else down.  We
4177 	 * always know there is at least one SACK present already here.
4178 	 *
4179 	 * If the sack array is full, forget about the last one.
4180 	 */
4181 	if (this_sack >= TCP_NUM_SACKS) {
4182 		this_sack--;
4183 		tp->rx_opt.num_sacks--;
4184 		sp--;
4185 	}
4186 	for (; this_sack > 0; this_sack--, sp--)
4187 		*sp = *(sp - 1);
4188 
4189 new_sack:
4190 	/* Build the new head SACK, and we're done. */
4191 	sp->start_seq = seq;
4192 	sp->end_seq = end_seq;
4193 	tp->rx_opt.num_sacks++;
4194 }
4195 
4196 /* RCV.NXT advances, some SACKs should be eaten. */
4197 
4198 static void tcp_sack_remove(struct tcp_sock *tp)
4199 {
4200 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4201 	int num_sacks = tp->rx_opt.num_sacks;
4202 	int this_sack;
4203 
4204 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4205 	if (skb_queue_empty(&tp->out_of_order_queue)) {
4206 		tp->rx_opt.num_sacks = 0;
4207 		return;
4208 	}
4209 
4210 	for (this_sack = 0; this_sack < num_sacks;) {
4211 		/* Check if the start of the sack is covered by RCV.NXT. */
4212 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4213 			int i;
4214 
4215 			/* RCV.NXT must cover all the block! */
4216 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4217 
4218 			/* Zap this SACK, by moving forward any other SACKS. */
4219 			for (i=this_sack+1; i < num_sacks; i++)
4220 				tp->selective_acks[i-1] = tp->selective_acks[i];
4221 			num_sacks--;
4222 			continue;
4223 		}
4224 		this_sack++;
4225 		sp++;
4226 	}
4227 	tp->rx_opt.num_sacks = num_sacks;
4228 }
4229 
4230 /* This one checks to see if we can put data from the
4231  * out_of_order queue into the receive_queue.
4232  */
4233 static void tcp_ofo_queue(struct sock *sk)
4234 {
4235 	struct tcp_sock *tp = tcp_sk(sk);
4236 	__u32 dsack_high = tp->rcv_nxt;
4237 	struct sk_buff *skb;
4238 
4239 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4240 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4241 			break;
4242 
4243 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4244 			__u32 dsack = dsack_high;
4245 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4246 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4247 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4248 		}
4249 
4250 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4251 			SOCK_DEBUG(sk, "ofo packet was already received \n");
4252 			__skb_unlink(skb, &tp->out_of_order_queue);
4253 			__kfree_skb(skb);
4254 			continue;
4255 		}
4256 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4257 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4258 			   TCP_SKB_CB(skb)->end_seq);
4259 
4260 		__skb_unlink(skb, &tp->out_of_order_queue);
4261 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4262 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4263 		if (tcp_hdr(skb)->fin)
4264 			tcp_fin(skb, sk, tcp_hdr(skb));
4265 	}
4266 }
4267 
4268 static int tcp_prune_ofo_queue(struct sock *sk);
4269 static int tcp_prune_queue(struct sock *sk);
4270 
4271 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4272 {
4273 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4274 	    !sk_rmem_schedule(sk, size)) {
4275 
4276 		if (tcp_prune_queue(sk) < 0)
4277 			return -1;
4278 
4279 		if (!sk_rmem_schedule(sk, size)) {
4280 			if (!tcp_prune_ofo_queue(sk))
4281 				return -1;
4282 
4283 			if (!sk_rmem_schedule(sk, size))
4284 				return -1;
4285 		}
4286 	}
4287 	return 0;
4288 }
4289 
4290 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4291 {
4292 	struct tcphdr *th = tcp_hdr(skb);
4293 	struct tcp_sock *tp = tcp_sk(sk);
4294 	int eaten = -1;
4295 
4296 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4297 		goto drop;
4298 
4299 	__skb_pull(skb, th->doff * 4);
4300 
4301 	TCP_ECN_accept_cwr(tp, skb);
4302 
4303 	tp->rx_opt.dsack = 0;
4304 
4305 	/*  Queue data for delivery to the user.
4306 	 *  Packets in sequence go to the receive queue.
4307 	 *  Out of sequence packets to the out_of_order_queue.
4308 	 */
4309 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4310 		if (tcp_receive_window(tp) == 0)
4311 			goto out_of_window;
4312 
4313 		/* Ok. In sequence. In window. */
4314 		if (tp->ucopy.task == current &&
4315 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4316 		    sock_owned_by_user(sk) && !tp->urg_data) {
4317 			int chunk = min_t(unsigned int, skb->len,
4318 					  tp->ucopy.len);
4319 
4320 			__set_current_state(TASK_RUNNING);
4321 
4322 			local_bh_enable();
4323 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4324 				tp->ucopy.len -= chunk;
4325 				tp->copied_seq += chunk;
4326 				eaten = (chunk == skb->len && !th->fin);
4327 				tcp_rcv_space_adjust(sk);
4328 			}
4329 			local_bh_disable();
4330 		}
4331 
4332 		if (eaten <= 0) {
4333 queue_and_out:
4334 			if (eaten < 0 &&
4335 			    tcp_try_rmem_schedule(sk, skb->truesize))
4336 				goto drop;
4337 
4338 			skb_set_owner_r(skb, sk);
4339 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4340 		}
4341 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4342 		if (skb->len)
4343 			tcp_event_data_recv(sk, skb);
4344 		if (th->fin)
4345 			tcp_fin(skb, sk, th);
4346 
4347 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4348 			tcp_ofo_queue(sk);
4349 
4350 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4351 			 * gap in queue is filled.
4352 			 */
4353 			if (skb_queue_empty(&tp->out_of_order_queue))
4354 				inet_csk(sk)->icsk_ack.pingpong = 0;
4355 		}
4356 
4357 		if (tp->rx_opt.num_sacks)
4358 			tcp_sack_remove(tp);
4359 
4360 		tcp_fast_path_check(sk);
4361 
4362 		if (eaten > 0)
4363 			__kfree_skb(skb);
4364 		else if (!sock_flag(sk, SOCK_DEAD))
4365 			sk->sk_data_ready(sk, 0);
4366 		return;
4367 	}
4368 
4369 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4370 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4371 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4372 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4373 
4374 out_of_window:
4375 		tcp_enter_quickack_mode(sk);
4376 		inet_csk_schedule_ack(sk);
4377 drop:
4378 		__kfree_skb(skb);
4379 		return;
4380 	}
4381 
4382 	/* Out of window. F.e. zero window probe. */
4383 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4384 		goto out_of_window;
4385 
4386 	tcp_enter_quickack_mode(sk);
4387 
4388 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4389 		/* Partial packet, seq < rcv_next < end_seq */
4390 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4391 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4392 			   TCP_SKB_CB(skb)->end_seq);
4393 
4394 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4395 
4396 		/* If window is closed, drop tail of packet. But after
4397 		 * remembering D-SACK for its head made in previous line.
4398 		 */
4399 		if (!tcp_receive_window(tp))
4400 			goto out_of_window;
4401 		goto queue_and_out;
4402 	}
4403 
4404 	TCP_ECN_check_ce(tp, skb);
4405 
4406 	if (tcp_try_rmem_schedule(sk, skb->truesize))
4407 		goto drop;
4408 
4409 	/* Disable header prediction. */
4410 	tp->pred_flags = 0;
4411 	inet_csk_schedule_ack(sk);
4412 
4413 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4414 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4415 
4416 	skb_set_owner_r(skb, sk);
4417 
4418 	if (!skb_peek(&tp->out_of_order_queue)) {
4419 		/* Initial out of order segment, build 1 SACK. */
4420 		if (tcp_is_sack(tp)) {
4421 			tp->rx_opt.num_sacks = 1;
4422 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4423 			tp->selective_acks[0].end_seq =
4424 						TCP_SKB_CB(skb)->end_seq;
4425 		}
4426 		__skb_queue_head(&tp->out_of_order_queue, skb);
4427 	} else {
4428 		struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4429 		u32 seq = TCP_SKB_CB(skb)->seq;
4430 		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4431 
4432 		if (seq == TCP_SKB_CB(skb1)->end_seq) {
4433 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4434 
4435 			if (!tp->rx_opt.num_sacks ||
4436 			    tp->selective_acks[0].end_seq != seq)
4437 				goto add_sack;
4438 
4439 			/* Common case: data arrive in order after hole. */
4440 			tp->selective_acks[0].end_seq = end_seq;
4441 			return;
4442 		}
4443 
4444 		/* Find place to insert this segment. */
4445 		while (1) {
4446 			if (!after(TCP_SKB_CB(skb1)->seq, seq))
4447 				break;
4448 			if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4449 				skb1 = NULL;
4450 				break;
4451 			}
4452 			skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4453 		}
4454 
4455 		/* Do skb overlap to previous one? */
4456 		if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4457 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4458 				/* All the bits are present. Drop. */
4459 				__kfree_skb(skb);
4460 				tcp_dsack_set(sk, seq, end_seq);
4461 				goto add_sack;
4462 			}
4463 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4464 				/* Partial overlap. */
4465 				tcp_dsack_set(sk, seq,
4466 					      TCP_SKB_CB(skb1)->end_seq);
4467 			} else {
4468 				if (skb_queue_is_first(&tp->out_of_order_queue,
4469 						       skb1))
4470 					skb1 = NULL;
4471 				else
4472 					skb1 = skb_queue_prev(
4473 						&tp->out_of_order_queue,
4474 						skb1);
4475 			}
4476 		}
4477 		if (!skb1)
4478 			__skb_queue_head(&tp->out_of_order_queue, skb);
4479 		else
4480 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4481 
4482 		/* And clean segments covered by new one as whole. */
4483 		while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4484 			skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4485 
4486 			if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4487 				break;
4488 			if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4489 				tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4490 						 end_seq);
4491 				break;
4492 			}
4493 			__skb_unlink(skb1, &tp->out_of_order_queue);
4494 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4495 					 TCP_SKB_CB(skb1)->end_seq);
4496 			__kfree_skb(skb1);
4497 		}
4498 
4499 add_sack:
4500 		if (tcp_is_sack(tp))
4501 			tcp_sack_new_ofo_skb(sk, seq, end_seq);
4502 	}
4503 }
4504 
4505 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4506 					struct sk_buff_head *list)
4507 {
4508 	struct sk_buff *next = NULL;
4509 
4510 	if (!skb_queue_is_last(list, skb))
4511 		next = skb_queue_next(list, skb);
4512 
4513 	__skb_unlink(skb, list);
4514 	__kfree_skb(skb);
4515 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4516 
4517 	return next;
4518 }
4519 
4520 /* Collapse contiguous sequence of skbs head..tail with
4521  * sequence numbers start..end.
4522  *
4523  * If tail is NULL, this means until the end of the list.
4524  *
4525  * Segments with FIN/SYN are not collapsed (only because this
4526  * simplifies code)
4527  */
4528 static void
4529 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4530 	     struct sk_buff *head, struct sk_buff *tail,
4531 	     u32 start, u32 end)
4532 {
4533 	struct sk_buff *skb, *n;
4534 	bool end_of_skbs;
4535 
4536 	/* First, check that queue is collapsible and find
4537 	 * the point where collapsing can be useful. */
4538 	skb = head;
4539 restart:
4540 	end_of_skbs = true;
4541 	skb_queue_walk_from_safe(list, skb, n) {
4542 		if (skb == tail)
4543 			break;
4544 		/* No new bits? It is possible on ofo queue. */
4545 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4546 			skb = tcp_collapse_one(sk, skb, list);
4547 			if (!skb)
4548 				break;
4549 			goto restart;
4550 		}
4551 
4552 		/* The first skb to collapse is:
4553 		 * - not SYN/FIN and
4554 		 * - bloated or contains data before "start" or
4555 		 *   overlaps to the next one.
4556 		 */
4557 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4558 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4559 		     before(TCP_SKB_CB(skb)->seq, start))) {
4560 			end_of_skbs = false;
4561 			break;
4562 		}
4563 
4564 		if (!skb_queue_is_last(list, skb)) {
4565 			struct sk_buff *next = skb_queue_next(list, skb);
4566 			if (next != tail &&
4567 			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4568 				end_of_skbs = false;
4569 				break;
4570 			}
4571 		}
4572 
4573 		/* Decided to skip this, advance start seq. */
4574 		start = TCP_SKB_CB(skb)->end_seq;
4575 	}
4576 	if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4577 		return;
4578 
4579 	while (before(start, end)) {
4580 		struct sk_buff *nskb;
4581 		unsigned int header = skb_headroom(skb);
4582 		int copy = SKB_MAX_ORDER(header, 0);
4583 
4584 		/* Too big header? This can happen with IPv6. */
4585 		if (copy < 0)
4586 			return;
4587 		if (end - start < copy)
4588 			copy = end - start;
4589 		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4590 		if (!nskb)
4591 			return;
4592 
4593 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4594 		skb_set_network_header(nskb, (skb_network_header(skb) -
4595 					      skb->head));
4596 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4597 						skb->head));
4598 		skb_reserve(nskb, header);
4599 		memcpy(nskb->head, skb->head, header);
4600 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4601 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4602 		__skb_queue_before(list, skb, nskb);
4603 		skb_set_owner_r(nskb, sk);
4604 
4605 		/* Copy data, releasing collapsed skbs. */
4606 		while (copy > 0) {
4607 			int offset = start - TCP_SKB_CB(skb)->seq;
4608 			int size = TCP_SKB_CB(skb)->end_seq - start;
4609 
4610 			BUG_ON(offset < 0);
4611 			if (size > 0) {
4612 				size = min(copy, size);
4613 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4614 					BUG();
4615 				TCP_SKB_CB(nskb)->end_seq += size;
4616 				copy -= size;
4617 				start += size;
4618 			}
4619 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4620 				skb = tcp_collapse_one(sk, skb, list);
4621 				if (!skb ||
4622 				    skb == tail ||
4623 				    tcp_hdr(skb)->syn ||
4624 				    tcp_hdr(skb)->fin)
4625 					return;
4626 			}
4627 		}
4628 	}
4629 }
4630 
4631 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4632  * and tcp_collapse() them until all the queue is collapsed.
4633  */
4634 static void tcp_collapse_ofo_queue(struct sock *sk)
4635 {
4636 	struct tcp_sock *tp = tcp_sk(sk);
4637 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4638 	struct sk_buff *head;
4639 	u32 start, end;
4640 
4641 	if (skb == NULL)
4642 		return;
4643 
4644 	start = TCP_SKB_CB(skb)->seq;
4645 	end = TCP_SKB_CB(skb)->end_seq;
4646 	head = skb;
4647 
4648 	for (;;) {
4649 		struct sk_buff *next = NULL;
4650 
4651 		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4652 			next = skb_queue_next(&tp->out_of_order_queue, skb);
4653 		skb = next;
4654 
4655 		/* Segment is terminated when we see gap or when
4656 		 * we are at the end of all the queue. */
4657 		if (!skb ||
4658 		    after(TCP_SKB_CB(skb)->seq, end) ||
4659 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4660 			tcp_collapse(sk, &tp->out_of_order_queue,
4661 				     head, skb, start, end);
4662 			head = skb;
4663 			if (!skb)
4664 				break;
4665 			/* Start new segment */
4666 			start = TCP_SKB_CB(skb)->seq;
4667 			end = TCP_SKB_CB(skb)->end_seq;
4668 		} else {
4669 			if (before(TCP_SKB_CB(skb)->seq, start))
4670 				start = TCP_SKB_CB(skb)->seq;
4671 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4672 				end = TCP_SKB_CB(skb)->end_seq;
4673 		}
4674 	}
4675 }
4676 
4677 /*
4678  * Purge the out-of-order queue.
4679  * Return true if queue was pruned.
4680  */
4681 static int tcp_prune_ofo_queue(struct sock *sk)
4682 {
4683 	struct tcp_sock *tp = tcp_sk(sk);
4684 	int res = 0;
4685 
4686 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4687 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4688 		__skb_queue_purge(&tp->out_of_order_queue);
4689 
4690 		/* Reset SACK state.  A conforming SACK implementation will
4691 		 * do the same at a timeout based retransmit.  When a connection
4692 		 * is in a sad state like this, we care only about integrity
4693 		 * of the connection not performance.
4694 		 */
4695 		if (tp->rx_opt.sack_ok)
4696 			tcp_sack_reset(&tp->rx_opt);
4697 		sk_mem_reclaim(sk);
4698 		res = 1;
4699 	}
4700 	return res;
4701 }
4702 
4703 /* Reduce allocated memory if we can, trying to get
4704  * the socket within its memory limits again.
4705  *
4706  * Return less than zero if we should start dropping frames
4707  * until the socket owning process reads some of the data
4708  * to stabilize the situation.
4709  */
4710 static int tcp_prune_queue(struct sock *sk)
4711 {
4712 	struct tcp_sock *tp = tcp_sk(sk);
4713 
4714 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4715 
4716 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4717 
4718 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4719 		tcp_clamp_window(sk);
4720 	else if (tcp_memory_pressure)
4721 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4722 
4723 	tcp_collapse_ofo_queue(sk);
4724 	if (!skb_queue_empty(&sk->sk_receive_queue))
4725 		tcp_collapse(sk, &sk->sk_receive_queue,
4726 			     skb_peek(&sk->sk_receive_queue),
4727 			     NULL,
4728 			     tp->copied_seq, tp->rcv_nxt);
4729 	sk_mem_reclaim(sk);
4730 
4731 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4732 		return 0;
4733 
4734 	/* Collapsing did not help, destructive actions follow.
4735 	 * This must not ever occur. */
4736 
4737 	tcp_prune_ofo_queue(sk);
4738 
4739 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4740 		return 0;
4741 
4742 	/* If we are really being abused, tell the caller to silently
4743 	 * drop receive data on the floor.  It will get retransmitted
4744 	 * and hopefully then we'll have sufficient space.
4745 	 */
4746 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4747 
4748 	/* Massive buffer overcommit. */
4749 	tp->pred_flags = 0;
4750 	return -1;
4751 }
4752 
4753 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4754  * As additional protections, we do not touch cwnd in retransmission phases,
4755  * and if application hit its sndbuf limit recently.
4756  */
4757 void tcp_cwnd_application_limited(struct sock *sk)
4758 {
4759 	struct tcp_sock *tp = tcp_sk(sk);
4760 
4761 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4762 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4763 		/* Limited by application or receiver window. */
4764 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4765 		u32 win_used = max(tp->snd_cwnd_used, init_win);
4766 		if (win_used < tp->snd_cwnd) {
4767 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4768 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4769 		}
4770 		tp->snd_cwnd_used = 0;
4771 	}
4772 	tp->snd_cwnd_stamp = tcp_time_stamp;
4773 }
4774 
4775 static int tcp_should_expand_sndbuf(struct sock *sk)
4776 {
4777 	struct tcp_sock *tp = tcp_sk(sk);
4778 
4779 	/* If the user specified a specific send buffer setting, do
4780 	 * not modify it.
4781 	 */
4782 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4783 		return 0;
4784 
4785 	/* If we are under global TCP memory pressure, do not expand.  */
4786 	if (tcp_memory_pressure)
4787 		return 0;
4788 
4789 	/* If we are under soft global TCP memory pressure, do not expand.  */
4790 	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4791 		return 0;
4792 
4793 	/* If we filled the congestion window, do not expand.  */
4794 	if (tp->packets_out >= tp->snd_cwnd)
4795 		return 0;
4796 
4797 	return 1;
4798 }
4799 
4800 /* When incoming ACK allowed to free some skb from write_queue,
4801  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4802  * on the exit from tcp input handler.
4803  *
4804  * PROBLEM: sndbuf expansion does not work well with largesend.
4805  */
4806 static void tcp_new_space(struct sock *sk)
4807 {
4808 	struct tcp_sock *tp = tcp_sk(sk);
4809 
4810 	if (tcp_should_expand_sndbuf(sk)) {
4811 		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4812 			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4813 		int demanded = max_t(unsigned int, tp->snd_cwnd,
4814 				     tp->reordering + 1);
4815 		sndmem *= 2 * demanded;
4816 		if (sndmem > sk->sk_sndbuf)
4817 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4818 		tp->snd_cwnd_stamp = tcp_time_stamp;
4819 	}
4820 
4821 	sk->sk_write_space(sk);
4822 }
4823 
4824 static void tcp_check_space(struct sock *sk)
4825 {
4826 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4827 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4828 		if (sk->sk_socket &&
4829 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4830 			tcp_new_space(sk);
4831 	}
4832 }
4833 
4834 static inline void tcp_data_snd_check(struct sock *sk)
4835 {
4836 	tcp_push_pending_frames(sk);
4837 	tcp_check_space(sk);
4838 }
4839 
4840 /*
4841  * Check if sending an ack is needed.
4842  */
4843 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4844 {
4845 	struct tcp_sock *tp = tcp_sk(sk);
4846 
4847 	    /* More than one full frame received... */
4848 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4849 	     /* ... and right edge of window advances far enough.
4850 	      * (tcp_recvmsg() will send ACK otherwise). Or...
4851 	      */
4852 	     && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4853 	    /* We ACK each frame or... */
4854 	    tcp_in_quickack_mode(sk) ||
4855 	    /* We have out of order data. */
4856 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4857 		/* Then ack it now */
4858 		tcp_send_ack(sk);
4859 	} else {
4860 		/* Else, send delayed ack. */
4861 		tcp_send_delayed_ack(sk);
4862 	}
4863 }
4864 
4865 static inline void tcp_ack_snd_check(struct sock *sk)
4866 {
4867 	if (!inet_csk_ack_scheduled(sk)) {
4868 		/* We sent a data segment already. */
4869 		return;
4870 	}
4871 	__tcp_ack_snd_check(sk, 1);
4872 }
4873 
4874 /*
4875  *	This routine is only called when we have urgent data
4876  *	signaled. Its the 'slow' part of tcp_urg. It could be
4877  *	moved inline now as tcp_urg is only called from one
4878  *	place. We handle URGent data wrong. We have to - as
4879  *	BSD still doesn't use the correction from RFC961.
4880  *	For 1003.1g we should support a new option TCP_STDURG to permit
4881  *	either form (or just set the sysctl tcp_stdurg).
4882  */
4883 
4884 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4885 {
4886 	struct tcp_sock *tp = tcp_sk(sk);
4887 	u32 ptr = ntohs(th->urg_ptr);
4888 
4889 	if (ptr && !sysctl_tcp_stdurg)
4890 		ptr--;
4891 	ptr += ntohl(th->seq);
4892 
4893 	/* Ignore urgent data that we've already seen and read. */
4894 	if (after(tp->copied_seq, ptr))
4895 		return;
4896 
4897 	/* Do not replay urg ptr.
4898 	 *
4899 	 * NOTE: interesting situation not covered by specs.
4900 	 * Misbehaving sender may send urg ptr, pointing to segment,
4901 	 * which we already have in ofo queue. We are not able to fetch
4902 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4903 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4904 	 * situations. But it is worth to think about possibility of some
4905 	 * DoSes using some hypothetical application level deadlock.
4906 	 */
4907 	if (before(ptr, tp->rcv_nxt))
4908 		return;
4909 
4910 	/* Do we already have a newer (or duplicate) urgent pointer? */
4911 	if (tp->urg_data && !after(ptr, tp->urg_seq))
4912 		return;
4913 
4914 	/* Tell the world about our new urgent pointer. */
4915 	sk_send_sigurg(sk);
4916 
4917 	/* We may be adding urgent data when the last byte read was
4918 	 * urgent. To do this requires some care. We cannot just ignore
4919 	 * tp->copied_seq since we would read the last urgent byte again
4920 	 * as data, nor can we alter copied_seq until this data arrives
4921 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4922 	 *
4923 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4924 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4925 	 * and expect that both A and B disappear from stream. This is _wrong_.
4926 	 * Though this happens in BSD with high probability, this is occasional.
4927 	 * Any application relying on this is buggy. Note also, that fix "works"
4928 	 * only in this artificial test. Insert some normal data between A and B and we will
4929 	 * decline of BSD again. Verdict: it is better to remove to trap
4930 	 * buggy users.
4931 	 */
4932 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4933 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4934 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4935 		tp->copied_seq++;
4936 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4937 			__skb_unlink(skb, &sk->sk_receive_queue);
4938 			__kfree_skb(skb);
4939 		}
4940 	}
4941 
4942 	tp->urg_data = TCP_URG_NOTYET;
4943 	tp->urg_seq = ptr;
4944 
4945 	/* Disable header prediction. */
4946 	tp->pred_flags = 0;
4947 }
4948 
4949 /* This is the 'fast' part of urgent handling. */
4950 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4951 {
4952 	struct tcp_sock *tp = tcp_sk(sk);
4953 
4954 	/* Check if we get a new urgent pointer - normally not. */
4955 	if (th->urg)
4956 		tcp_check_urg(sk, th);
4957 
4958 	/* Do we wait for any urgent data? - normally not... */
4959 	if (tp->urg_data == TCP_URG_NOTYET) {
4960 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4961 			  th->syn;
4962 
4963 		/* Is the urgent pointer pointing into this packet? */
4964 		if (ptr < skb->len) {
4965 			u8 tmp;
4966 			if (skb_copy_bits(skb, ptr, &tmp, 1))
4967 				BUG();
4968 			tp->urg_data = TCP_URG_VALID | tmp;
4969 			if (!sock_flag(sk, SOCK_DEAD))
4970 				sk->sk_data_ready(sk, 0);
4971 		}
4972 	}
4973 }
4974 
4975 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4976 {
4977 	struct tcp_sock *tp = tcp_sk(sk);
4978 	int chunk = skb->len - hlen;
4979 	int err;
4980 
4981 	local_bh_enable();
4982 	if (skb_csum_unnecessary(skb))
4983 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4984 	else
4985 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4986 						       tp->ucopy.iov);
4987 
4988 	if (!err) {
4989 		tp->ucopy.len -= chunk;
4990 		tp->copied_seq += chunk;
4991 		tcp_rcv_space_adjust(sk);
4992 	}
4993 
4994 	local_bh_disable();
4995 	return err;
4996 }
4997 
4998 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4999 					    struct sk_buff *skb)
5000 {
5001 	__sum16 result;
5002 
5003 	if (sock_owned_by_user(sk)) {
5004 		local_bh_enable();
5005 		result = __tcp_checksum_complete(skb);
5006 		local_bh_disable();
5007 	} else {
5008 		result = __tcp_checksum_complete(skb);
5009 	}
5010 	return result;
5011 }
5012 
5013 static inline int tcp_checksum_complete_user(struct sock *sk,
5014 					     struct sk_buff *skb)
5015 {
5016 	return !skb_csum_unnecessary(skb) &&
5017 	       __tcp_checksum_complete_user(sk, skb);
5018 }
5019 
5020 #ifdef CONFIG_NET_DMA
5021 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5022 				  int hlen)
5023 {
5024 	struct tcp_sock *tp = tcp_sk(sk);
5025 	int chunk = skb->len - hlen;
5026 	int dma_cookie;
5027 	int copied_early = 0;
5028 
5029 	if (tp->ucopy.wakeup)
5030 		return 0;
5031 
5032 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5033 		tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5034 
5035 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5036 
5037 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5038 							 skb, hlen,
5039 							 tp->ucopy.iov, chunk,
5040 							 tp->ucopy.pinned_list);
5041 
5042 		if (dma_cookie < 0)
5043 			goto out;
5044 
5045 		tp->ucopy.dma_cookie = dma_cookie;
5046 		copied_early = 1;
5047 
5048 		tp->ucopy.len -= chunk;
5049 		tp->copied_seq += chunk;
5050 		tcp_rcv_space_adjust(sk);
5051 
5052 		if ((tp->ucopy.len == 0) ||
5053 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5054 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5055 			tp->ucopy.wakeup = 1;
5056 			sk->sk_data_ready(sk, 0);
5057 		}
5058 	} else if (chunk > 0) {
5059 		tp->ucopy.wakeup = 1;
5060 		sk->sk_data_ready(sk, 0);
5061 	}
5062 out:
5063 	return copied_early;
5064 }
5065 #endif /* CONFIG_NET_DMA */
5066 
5067 /* Does PAWS and seqno based validation of an incoming segment, flags will
5068  * play significant role here.
5069  */
5070 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5071 			      struct tcphdr *th, int syn_inerr)
5072 {
5073 	struct tcp_sock *tp = tcp_sk(sk);
5074 
5075 	/* RFC1323: H1. Apply PAWS check first. */
5076 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5077 	    tcp_paws_discard(sk, skb)) {
5078 		if (!th->rst) {
5079 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5080 			tcp_send_dupack(sk, skb);
5081 			goto discard;
5082 		}
5083 		/* Reset is accepted even if it did not pass PAWS. */
5084 	}
5085 
5086 	/* Step 1: check sequence number */
5087 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5088 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5089 		 * (RST) segments are validated by checking their SEQ-fields."
5090 		 * And page 69: "If an incoming segment is not acceptable,
5091 		 * an acknowledgment should be sent in reply (unless the RST
5092 		 * bit is set, if so drop the segment and return)".
5093 		 */
5094 		if (!th->rst)
5095 			tcp_send_dupack(sk, skb);
5096 		goto discard;
5097 	}
5098 
5099 	/* Step 2: check RST bit */
5100 	if (th->rst) {
5101 		tcp_reset(sk);
5102 		goto discard;
5103 	}
5104 
5105 	/* ts_recent update must be made after we are sure that the packet
5106 	 * is in window.
5107 	 */
5108 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5109 
5110 	/* step 3: check security and precedence [ignored] */
5111 
5112 	/* step 4: Check for a SYN in window. */
5113 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5114 		if (syn_inerr)
5115 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5116 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5117 		tcp_reset(sk);
5118 		return -1;
5119 	}
5120 
5121 	return 1;
5122 
5123 discard:
5124 	__kfree_skb(skb);
5125 	return 0;
5126 }
5127 
5128 /*
5129  *	TCP receive function for the ESTABLISHED state.
5130  *
5131  *	It is split into a fast path and a slow path. The fast path is
5132  * 	disabled when:
5133  *	- A zero window was announced from us - zero window probing
5134  *        is only handled properly in the slow path.
5135  *	- Out of order segments arrived.
5136  *	- Urgent data is expected.
5137  *	- There is no buffer space left
5138  *	- Unexpected TCP flags/window values/header lengths are received
5139  *	  (detected by checking the TCP header against pred_flags)
5140  *	- Data is sent in both directions. Fast path only supports pure senders
5141  *	  or pure receivers (this means either the sequence number or the ack
5142  *	  value must stay constant)
5143  *	- Unexpected TCP option.
5144  *
5145  *	When these conditions are not satisfied it drops into a standard
5146  *	receive procedure patterned after RFC793 to handle all cases.
5147  *	The first three cases are guaranteed by proper pred_flags setting,
5148  *	the rest is checked inline. Fast processing is turned on in
5149  *	tcp_data_queue when everything is OK.
5150  */
5151 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5152 			struct tcphdr *th, unsigned len)
5153 {
5154 	struct tcp_sock *tp = tcp_sk(sk);
5155 	int res;
5156 
5157 	/*
5158 	 *	Header prediction.
5159 	 *	The code loosely follows the one in the famous
5160 	 *	"30 instruction TCP receive" Van Jacobson mail.
5161 	 *
5162 	 *	Van's trick is to deposit buffers into socket queue
5163 	 *	on a device interrupt, to call tcp_recv function
5164 	 *	on the receive process context and checksum and copy
5165 	 *	the buffer to user space. smart...
5166 	 *
5167 	 *	Our current scheme is not silly either but we take the
5168 	 *	extra cost of the net_bh soft interrupt processing...
5169 	 *	We do checksum and copy also but from device to kernel.
5170 	 */
5171 
5172 	tp->rx_opt.saw_tstamp = 0;
5173 
5174 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5175 	 *	if header_prediction is to be made
5176 	 *	'S' will always be tp->tcp_header_len >> 2
5177 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5178 	 *  turn it off	(when there are holes in the receive
5179 	 *	 space for instance)
5180 	 *	PSH flag is ignored.
5181 	 */
5182 
5183 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5184 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5185 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5186 		int tcp_header_len = tp->tcp_header_len;
5187 
5188 		/* Timestamp header prediction: tcp_header_len
5189 		 * is automatically equal to th->doff*4 due to pred_flags
5190 		 * match.
5191 		 */
5192 
5193 		/* Check timestamp */
5194 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5195 			/* No? Slow path! */
5196 			if (!tcp_parse_aligned_timestamp(tp, th))
5197 				goto slow_path;
5198 
5199 			/* If PAWS failed, check it more carefully in slow path */
5200 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5201 				goto slow_path;
5202 
5203 			/* DO NOT update ts_recent here, if checksum fails
5204 			 * and timestamp was corrupted part, it will result
5205 			 * in a hung connection since we will drop all
5206 			 * future packets due to the PAWS test.
5207 			 */
5208 		}
5209 
5210 		if (len <= tcp_header_len) {
5211 			/* Bulk data transfer: sender */
5212 			if (len == tcp_header_len) {
5213 				/* Predicted packet is in window by definition.
5214 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5215 				 * Hence, check seq<=rcv_wup reduces to:
5216 				 */
5217 				if (tcp_header_len ==
5218 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5219 				    tp->rcv_nxt == tp->rcv_wup)
5220 					tcp_store_ts_recent(tp);
5221 
5222 				/* We know that such packets are checksummed
5223 				 * on entry.
5224 				 */
5225 				tcp_ack(sk, skb, 0);
5226 				__kfree_skb(skb);
5227 				tcp_data_snd_check(sk);
5228 				return 0;
5229 			} else { /* Header too small */
5230 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5231 				goto discard;
5232 			}
5233 		} else {
5234 			int eaten = 0;
5235 			int copied_early = 0;
5236 
5237 			if (tp->copied_seq == tp->rcv_nxt &&
5238 			    len - tcp_header_len <= tp->ucopy.len) {
5239 #ifdef CONFIG_NET_DMA
5240 				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5241 					copied_early = 1;
5242 					eaten = 1;
5243 				}
5244 #endif
5245 				if (tp->ucopy.task == current &&
5246 				    sock_owned_by_user(sk) && !copied_early) {
5247 					__set_current_state(TASK_RUNNING);
5248 
5249 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5250 						eaten = 1;
5251 				}
5252 				if (eaten) {
5253 					/* Predicted packet is in window by definition.
5254 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5255 					 * Hence, check seq<=rcv_wup reduces to:
5256 					 */
5257 					if (tcp_header_len ==
5258 					    (sizeof(struct tcphdr) +
5259 					     TCPOLEN_TSTAMP_ALIGNED) &&
5260 					    tp->rcv_nxt == tp->rcv_wup)
5261 						tcp_store_ts_recent(tp);
5262 
5263 					tcp_rcv_rtt_measure_ts(sk, skb);
5264 
5265 					__skb_pull(skb, tcp_header_len);
5266 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5267 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5268 				}
5269 				if (copied_early)
5270 					tcp_cleanup_rbuf(sk, skb->len);
5271 			}
5272 			if (!eaten) {
5273 				if (tcp_checksum_complete_user(sk, skb))
5274 					goto csum_error;
5275 
5276 				/* Predicted packet is in window by definition.
5277 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5278 				 * Hence, check seq<=rcv_wup reduces to:
5279 				 */
5280 				if (tcp_header_len ==
5281 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5282 				    tp->rcv_nxt == tp->rcv_wup)
5283 					tcp_store_ts_recent(tp);
5284 
5285 				tcp_rcv_rtt_measure_ts(sk, skb);
5286 
5287 				if ((int)skb->truesize > sk->sk_forward_alloc)
5288 					goto step5;
5289 
5290 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5291 
5292 				/* Bulk data transfer: receiver */
5293 				__skb_pull(skb, tcp_header_len);
5294 				__skb_queue_tail(&sk->sk_receive_queue, skb);
5295 				skb_set_owner_r(skb, sk);
5296 				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5297 			}
5298 
5299 			tcp_event_data_recv(sk, skb);
5300 
5301 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5302 				/* Well, only one small jumplet in fast path... */
5303 				tcp_ack(sk, skb, FLAG_DATA);
5304 				tcp_data_snd_check(sk);
5305 				if (!inet_csk_ack_scheduled(sk))
5306 					goto no_ack;
5307 			}
5308 
5309 			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5310 				__tcp_ack_snd_check(sk, 0);
5311 no_ack:
5312 #ifdef CONFIG_NET_DMA
5313 			if (copied_early)
5314 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5315 			else
5316 #endif
5317 			if (eaten)
5318 				__kfree_skb(skb);
5319 			else
5320 				sk->sk_data_ready(sk, 0);
5321 			return 0;
5322 		}
5323 	}
5324 
5325 slow_path:
5326 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5327 		goto csum_error;
5328 
5329 	/*
5330 	 *	Standard slow path.
5331 	 */
5332 
5333 	res = tcp_validate_incoming(sk, skb, th, 1);
5334 	if (res <= 0)
5335 		return -res;
5336 
5337 step5:
5338 	if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5339 		goto discard;
5340 
5341 	tcp_rcv_rtt_measure_ts(sk, skb);
5342 
5343 	/* Process urgent data. */
5344 	tcp_urg(sk, skb, th);
5345 
5346 	/* step 7: process the segment text */
5347 	tcp_data_queue(sk, skb);
5348 
5349 	tcp_data_snd_check(sk);
5350 	tcp_ack_snd_check(sk);
5351 	return 0;
5352 
5353 csum_error:
5354 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5355 
5356 discard:
5357 	__kfree_skb(skb);
5358 	return 0;
5359 }
5360 
5361 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5362 					 struct tcphdr *th, unsigned len)
5363 {
5364 	struct tcp_sock *tp = tcp_sk(sk);
5365 	struct inet_connection_sock *icsk = inet_csk(sk);
5366 	int saved_clamp = tp->rx_opt.mss_clamp;
5367 
5368 	tcp_parse_options(skb, &tp->rx_opt, 0);
5369 
5370 	if (th->ack) {
5371 		/* rfc793:
5372 		 * "If the state is SYN-SENT then
5373 		 *    first check the ACK bit
5374 		 *      If the ACK bit is set
5375 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5376 		 *        a reset (unless the RST bit is set, if so drop
5377 		 *        the segment and return)"
5378 		 *
5379 		 *  We do not send data with SYN, so that RFC-correct
5380 		 *  test reduces to:
5381 		 */
5382 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5383 			goto reset_and_undo;
5384 
5385 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5386 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5387 			     tcp_time_stamp)) {
5388 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5389 			goto reset_and_undo;
5390 		}
5391 
5392 		/* Now ACK is acceptable.
5393 		 *
5394 		 * "If the RST bit is set
5395 		 *    If the ACK was acceptable then signal the user "error:
5396 		 *    connection reset", drop the segment, enter CLOSED state,
5397 		 *    delete TCB, and return."
5398 		 */
5399 
5400 		if (th->rst) {
5401 			tcp_reset(sk);
5402 			goto discard;
5403 		}
5404 
5405 		/* rfc793:
5406 		 *   "fifth, if neither of the SYN or RST bits is set then
5407 		 *    drop the segment and return."
5408 		 *
5409 		 *    See note below!
5410 		 *                                        --ANK(990513)
5411 		 */
5412 		if (!th->syn)
5413 			goto discard_and_undo;
5414 
5415 		/* rfc793:
5416 		 *   "If the SYN bit is on ...
5417 		 *    are acceptable then ...
5418 		 *    (our SYN has been ACKed), change the connection
5419 		 *    state to ESTABLISHED..."
5420 		 */
5421 
5422 		TCP_ECN_rcv_synack(tp, th);
5423 
5424 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5425 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5426 
5427 		/* Ok.. it's good. Set up sequence numbers and
5428 		 * move to established.
5429 		 */
5430 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5431 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5432 
5433 		/* RFC1323: The window in SYN & SYN/ACK segments is
5434 		 * never scaled.
5435 		 */
5436 		tp->snd_wnd = ntohs(th->window);
5437 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5438 
5439 		if (!tp->rx_opt.wscale_ok) {
5440 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5441 			tp->window_clamp = min(tp->window_clamp, 65535U);
5442 		}
5443 
5444 		if (tp->rx_opt.saw_tstamp) {
5445 			tp->rx_opt.tstamp_ok	   = 1;
5446 			tp->tcp_header_len =
5447 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5448 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5449 			tcp_store_ts_recent(tp);
5450 		} else {
5451 			tp->tcp_header_len = sizeof(struct tcphdr);
5452 		}
5453 
5454 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5455 			tcp_enable_fack(tp);
5456 
5457 		tcp_mtup_init(sk);
5458 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5459 		tcp_initialize_rcv_mss(sk);
5460 
5461 		/* Remember, tcp_poll() does not lock socket!
5462 		 * Change state from SYN-SENT only after copied_seq
5463 		 * is initialized. */
5464 		tp->copied_seq = tp->rcv_nxt;
5465 		smp_mb();
5466 		tcp_set_state(sk, TCP_ESTABLISHED);
5467 
5468 		security_inet_conn_established(sk, skb);
5469 
5470 		/* Make sure socket is routed, for correct metrics.  */
5471 		icsk->icsk_af_ops->rebuild_header(sk);
5472 
5473 		tcp_init_metrics(sk);
5474 
5475 		tcp_init_congestion_control(sk);
5476 
5477 		/* Prevent spurious tcp_cwnd_restart() on first data
5478 		 * packet.
5479 		 */
5480 		tp->lsndtime = tcp_time_stamp;
5481 
5482 		tcp_init_buffer_space(sk);
5483 
5484 		if (sock_flag(sk, SOCK_KEEPOPEN))
5485 			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5486 
5487 		if (!tp->rx_opt.snd_wscale)
5488 			__tcp_fast_path_on(tp, tp->snd_wnd);
5489 		else
5490 			tp->pred_flags = 0;
5491 
5492 		if (!sock_flag(sk, SOCK_DEAD)) {
5493 			sk->sk_state_change(sk);
5494 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5495 		}
5496 
5497 		if (sk->sk_write_pending ||
5498 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5499 		    icsk->icsk_ack.pingpong) {
5500 			/* Save one ACK. Data will be ready after
5501 			 * several ticks, if write_pending is set.
5502 			 *
5503 			 * It may be deleted, but with this feature tcpdumps
5504 			 * look so _wonderfully_ clever, that I was not able
5505 			 * to stand against the temptation 8)     --ANK
5506 			 */
5507 			inet_csk_schedule_ack(sk);
5508 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5509 			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
5510 			tcp_incr_quickack(sk);
5511 			tcp_enter_quickack_mode(sk);
5512 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5513 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5514 
5515 discard:
5516 			__kfree_skb(skb);
5517 			return 0;
5518 		} else {
5519 			tcp_send_ack(sk);
5520 		}
5521 		return -1;
5522 	}
5523 
5524 	/* No ACK in the segment */
5525 
5526 	if (th->rst) {
5527 		/* rfc793:
5528 		 * "If the RST bit is set
5529 		 *
5530 		 *      Otherwise (no ACK) drop the segment and return."
5531 		 */
5532 
5533 		goto discard_and_undo;
5534 	}
5535 
5536 	/* PAWS check. */
5537 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5538 	    tcp_paws_reject(&tp->rx_opt, 0))
5539 		goto discard_and_undo;
5540 
5541 	if (th->syn) {
5542 		/* We see SYN without ACK. It is attempt of
5543 		 * simultaneous connect with crossed SYNs.
5544 		 * Particularly, it can be connect to self.
5545 		 */
5546 		tcp_set_state(sk, TCP_SYN_RECV);
5547 
5548 		if (tp->rx_opt.saw_tstamp) {
5549 			tp->rx_opt.tstamp_ok = 1;
5550 			tcp_store_ts_recent(tp);
5551 			tp->tcp_header_len =
5552 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5553 		} else {
5554 			tp->tcp_header_len = sizeof(struct tcphdr);
5555 		}
5556 
5557 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5558 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5559 
5560 		/* RFC1323: The window in SYN & SYN/ACK segments is
5561 		 * never scaled.
5562 		 */
5563 		tp->snd_wnd    = ntohs(th->window);
5564 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5565 		tp->max_window = tp->snd_wnd;
5566 
5567 		TCP_ECN_rcv_syn(tp, th);
5568 
5569 		tcp_mtup_init(sk);
5570 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5571 		tcp_initialize_rcv_mss(sk);
5572 
5573 		tcp_send_synack(sk);
5574 #if 0
5575 		/* Note, we could accept data and URG from this segment.
5576 		 * There are no obstacles to make this.
5577 		 *
5578 		 * However, if we ignore data in ACKless segments sometimes,
5579 		 * we have no reasons to accept it sometimes.
5580 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5581 		 * is not flawless. So, discard packet for sanity.
5582 		 * Uncomment this return to process the data.
5583 		 */
5584 		return -1;
5585 #else
5586 		goto discard;
5587 #endif
5588 	}
5589 	/* "fifth, if neither of the SYN or RST bits is set then
5590 	 * drop the segment and return."
5591 	 */
5592 
5593 discard_and_undo:
5594 	tcp_clear_options(&tp->rx_opt);
5595 	tp->rx_opt.mss_clamp = saved_clamp;
5596 	goto discard;
5597 
5598 reset_and_undo:
5599 	tcp_clear_options(&tp->rx_opt);
5600 	tp->rx_opt.mss_clamp = saved_clamp;
5601 	return 1;
5602 }
5603 
5604 /*
5605  *	This function implements the receiving procedure of RFC 793 for
5606  *	all states except ESTABLISHED and TIME_WAIT.
5607  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5608  *	address independent.
5609  */
5610 
5611 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5612 			  struct tcphdr *th, unsigned len)
5613 {
5614 	struct tcp_sock *tp = tcp_sk(sk);
5615 	struct inet_connection_sock *icsk = inet_csk(sk);
5616 	int queued = 0;
5617 	int res;
5618 
5619 	tp->rx_opt.saw_tstamp = 0;
5620 
5621 	switch (sk->sk_state) {
5622 	case TCP_CLOSE:
5623 		goto discard;
5624 
5625 	case TCP_LISTEN:
5626 		if (th->ack)
5627 			return 1;
5628 
5629 		if (th->rst)
5630 			goto discard;
5631 
5632 		if (th->syn) {
5633 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5634 				return 1;
5635 
5636 			/* Now we have several options: In theory there is
5637 			 * nothing else in the frame. KA9Q has an option to
5638 			 * send data with the syn, BSD accepts data with the
5639 			 * syn up to the [to be] advertised window and
5640 			 * Solaris 2.1 gives you a protocol error. For now
5641 			 * we just ignore it, that fits the spec precisely
5642 			 * and avoids incompatibilities. It would be nice in
5643 			 * future to drop through and process the data.
5644 			 *
5645 			 * Now that TTCP is starting to be used we ought to
5646 			 * queue this data.
5647 			 * But, this leaves one open to an easy denial of
5648 			 * service attack, and SYN cookies can't defend
5649 			 * against this problem. So, we drop the data
5650 			 * in the interest of security over speed unless
5651 			 * it's still in use.
5652 			 */
5653 			kfree_skb(skb);
5654 			return 0;
5655 		}
5656 		goto discard;
5657 
5658 	case TCP_SYN_SENT:
5659 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5660 		if (queued >= 0)
5661 			return queued;
5662 
5663 		/* Do step6 onward by hand. */
5664 		tcp_urg(sk, skb, th);
5665 		__kfree_skb(skb);
5666 		tcp_data_snd_check(sk);
5667 		return 0;
5668 	}
5669 
5670 	res = tcp_validate_incoming(sk, skb, th, 0);
5671 	if (res <= 0)
5672 		return -res;
5673 
5674 	/* step 5: check the ACK field */
5675 	if (th->ack) {
5676 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5677 
5678 		switch (sk->sk_state) {
5679 		case TCP_SYN_RECV:
5680 			if (acceptable) {
5681 				tp->copied_seq = tp->rcv_nxt;
5682 				smp_mb();
5683 				tcp_set_state(sk, TCP_ESTABLISHED);
5684 				sk->sk_state_change(sk);
5685 
5686 				/* Note, that this wakeup is only for marginal
5687 				 * crossed SYN case. Passively open sockets
5688 				 * are not waked up, because sk->sk_sleep ==
5689 				 * NULL and sk->sk_socket == NULL.
5690 				 */
5691 				if (sk->sk_socket)
5692 					sk_wake_async(sk,
5693 						      SOCK_WAKE_IO, POLL_OUT);
5694 
5695 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5696 				tp->snd_wnd = ntohs(th->window) <<
5697 					      tp->rx_opt.snd_wscale;
5698 				tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5699 
5700 				/* tcp_ack considers this ACK as duplicate
5701 				 * and does not calculate rtt.
5702 				 * Fix it at least with timestamps.
5703 				 */
5704 				if (tp->rx_opt.saw_tstamp &&
5705 				    tp->rx_opt.rcv_tsecr && !tp->srtt)
5706 					tcp_ack_saw_tstamp(sk, 0);
5707 
5708 				if (tp->rx_opt.tstamp_ok)
5709 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5710 
5711 				/* Make sure socket is routed, for
5712 				 * correct metrics.
5713 				 */
5714 				icsk->icsk_af_ops->rebuild_header(sk);
5715 
5716 				tcp_init_metrics(sk);
5717 
5718 				tcp_init_congestion_control(sk);
5719 
5720 				/* Prevent spurious tcp_cwnd_restart() on
5721 				 * first data packet.
5722 				 */
5723 				tp->lsndtime = tcp_time_stamp;
5724 
5725 				tcp_mtup_init(sk);
5726 				tcp_initialize_rcv_mss(sk);
5727 				tcp_init_buffer_space(sk);
5728 				tcp_fast_path_on(tp);
5729 			} else {
5730 				return 1;
5731 			}
5732 			break;
5733 
5734 		case TCP_FIN_WAIT1:
5735 			if (tp->snd_una == tp->write_seq) {
5736 				tcp_set_state(sk, TCP_FIN_WAIT2);
5737 				sk->sk_shutdown |= SEND_SHUTDOWN;
5738 				dst_confirm(sk->sk_dst_cache);
5739 
5740 				if (!sock_flag(sk, SOCK_DEAD))
5741 					/* Wake up lingering close() */
5742 					sk->sk_state_change(sk);
5743 				else {
5744 					int tmo;
5745 
5746 					if (tp->linger2 < 0 ||
5747 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5748 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5749 						tcp_done(sk);
5750 						NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5751 						return 1;
5752 					}
5753 
5754 					tmo = tcp_fin_time(sk);
5755 					if (tmo > TCP_TIMEWAIT_LEN) {
5756 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5757 					} else if (th->fin || sock_owned_by_user(sk)) {
5758 						/* Bad case. We could lose such FIN otherwise.
5759 						 * It is not a big problem, but it looks confusing
5760 						 * and not so rare event. We still can lose it now,
5761 						 * if it spins in bh_lock_sock(), but it is really
5762 						 * marginal case.
5763 						 */
5764 						inet_csk_reset_keepalive_timer(sk, tmo);
5765 					} else {
5766 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5767 						goto discard;
5768 					}
5769 				}
5770 			}
5771 			break;
5772 
5773 		case TCP_CLOSING:
5774 			if (tp->snd_una == tp->write_seq) {
5775 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5776 				goto discard;
5777 			}
5778 			break;
5779 
5780 		case TCP_LAST_ACK:
5781 			if (tp->snd_una == tp->write_seq) {
5782 				tcp_update_metrics(sk);
5783 				tcp_done(sk);
5784 				goto discard;
5785 			}
5786 			break;
5787 		}
5788 	} else
5789 		goto discard;
5790 
5791 	/* step 6: check the URG bit */
5792 	tcp_urg(sk, skb, th);
5793 
5794 	/* step 7: process the segment text */
5795 	switch (sk->sk_state) {
5796 	case TCP_CLOSE_WAIT:
5797 	case TCP_CLOSING:
5798 	case TCP_LAST_ACK:
5799 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5800 			break;
5801 	case TCP_FIN_WAIT1:
5802 	case TCP_FIN_WAIT2:
5803 		/* RFC 793 says to queue data in these states,
5804 		 * RFC 1122 says we MUST send a reset.
5805 		 * BSD 4.4 also does reset.
5806 		 */
5807 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5808 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5809 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5810 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5811 				tcp_reset(sk);
5812 				return 1;
5813 			}
5814 		}
5815 		/* Fall through */
5816 	case TCP_ESTABLISHED:
5817 		tcp_data_queue(sk, skb);
5818 		queued = 1;
5819 		break;
5820 	}
5821 
5822 	/* tcp_data could move socket to TIME-WAIT */
5823 	if (sk->sk_state != TCP_CLOSE) {
5824 		tcp_data_snd_check(sk);
5825 		tcp_ack_snd_check(sk);
5826 	}
5827 
5828 	if (!queued) {
5829 discard:
5830 		__kfree_skb(skb);
5831 	}
5832 	return 0;
5833 }
5834 
5835 EXPORT_SYMBOL(sysctl_tcp_ecn);
5836 EXPORT_SYMBOL(sysctl_tcp_reordering);
5837 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5838 EXPORT_SYMBOL(tcp_parse_options);
5839 #ifdef CONFIG_TCP_MD5SIG
5840 EXPORT_SYMBOL(tcp_parse_md5sig_option);
5841 #endif
5842 EXPORT_SYMBOL(tcp_rcv_established);
5843 EXPORT_SYMBOL(tcp_rcv_state_process);
5844 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
5845