1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/jump_label_ratelimit.h> 81 #include <net/busy_poll.h> 82 #include <net/mptcp.h> 83 84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 85 86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 92 #define FLAG_ECE 0x40 /* ECE in this ACK */ 93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 103 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */ 104 105 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 106 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 107 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 108 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 109 110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 112 113 #define REXMIT_NONE 0 /* no loss recovery to do */ 114 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 115 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 116 117 #if IS_ENABLED(CONFIG_TLS_DEVICE) 118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 119 120 void clean_acked_data_enable(struct inet_connection_sock *icsk, 121 void (*cad)(struct sock *sk, u32 ack_seq)) 122 { 123 icsk->icsk_clean_acked = cad; 124 static_branch_deferred_inc(&clean_acked_data_enabled); 125 } 126 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 127 128 void clean_acked_data_disable(struct inet_connection_sock *icsk) 129 { 130 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 131 icsk->icsk_clean_acked = NULL; 132 } 133 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 134 135 void clean_acked_data_flush(void) 136 { 137 static_key_deferred_flush(&clean_acked_data_enabled); 138 } 139 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 140 #endif 141 142 #ifdef CONFIG_CGROUP_BPF 143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 144 { 145 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown && 146 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 147 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG); 148 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 149 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG); 150 struct bpf_sock_ops_kern sock_ops; 151 152 if (likely(!unknown_opt && !parse_all_opt)) 153 return; 154 155 /* The skb will be handled in the 156 * bpf_skops_established() or 157 * bpf_skops_write_hdr_opt(). 158 */ 159 switch (sk->sk_state) { 160 case TCP_SYN_RECV: 161 case TCP_SYN_SENT: 162 case TCP_LISTEN: 163 return; 164 } 165 166 sock_owned_by_me(sk); 167 168 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 169 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB; 170 sock_ops.is_fullsock = 1; 171 sock_ops.sk = sk; 172 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 173 174 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 175 } 176 177 static void bpf_skops_established(struct sock *sk, int bpf_op, 178 struct sk_buff *skb) 179 { 180 struct bpf_sock_ops_kern sock_ops; 181 182 sock_owned_by_me(sk); 183 184 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 185 sock_ops.op = bpf_op; 186 sock_ops.is_fullsock = 1; 187 sock_ops.sk = sk; 188 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */ 189 if (skb) 190 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 191 192 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 193 } 194 #else 195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 196 { 197 } 198 199 static void bpf_skops_established(struct sock *sk, int bpf_op, 200 struct sk_buff *skb) 201 { 202 } 203 #endif 204 205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 206 unsigned int len) 207 { 208 static bool __once __read_mostly; 209 210 if (!__once) { 211 struct net_device *dev; 212 213 __once = true; 214 215 rcu_read_lock(); 216 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 217 if (!dev || len >= dev->mtu) 218 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 219 dev ? dev->name : "Unknown driver"); 220 rcu_read_unlock(); 221 } 222 } 223 224 /* Adapt the MSS value used to make delayed ack decision to the 225 * real world. 226 */ 227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 228 { 229 struct inet_connection_sock *icsk = inet_csk(sk); 230 const unsigned int lss = icsk->icsk_ack.last_seg_size; 231 unsigned int len; 232 233 icsk->icsk_ack.last_seg_size = 0; 234 235 /* skb->len may jitter because of SACKs, even if peer 236 * sends good full-sized frames. 237 */ 238 len = skb_shinfo(skb)->gso_size ? : skb->len; 239 if (len >= icsk->icsk_ack.rcv_mss) { 240 /* Note: divides are still a bit expensive. 241 * For the moment, only adjust scaling_ratio 242 * when we update icsk_ack.rcv_mss. 243 */ 244 if (unlikely(len != icsk->icsk_ack.rcv_mss)) { 245 u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE; 246 u8 old_ratio = tcp_sk(sk)->scaling_ratio; 247 248 do_div(val, skb->truesize); 249 tcp_sk(sk)->scaling_ratio = val ? val : 1; 250 251 if (old_ratio != tcp_sk(sk)->scaling_ratio) 252 WRITE_ONCE(tcp_sk(sk)->window_clamp, 253 tcp_win_from_space(sk, sk->sk_rcvbuf)); 254 } 255 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 256 tcp_sk(sk)->advmss); 257 /* Account for possibly-removed options */ 258 if (unlikely(len > icsk->icsk_ack.rcv_mss + 259 MAX_TCP_OPTION_SPACE)) 260 tcp_gro_dev_warn(sk, skb, len); 261 /* If the skb has a len of exactly 1*MSS and has the PSH bit 262 * set then it is likely the end of an application write. So 263 * more data may not be arriving soon, and yet the data sender 264 * may be waiting for an ACK if cwnd-bound or using TX zero 265 * copy. So we set ICSK_ACK_PUSHED here so that 266 * tcp_cleanup_rbuf() will send an ACK immediately if the app 267 * reads all of the data and is not ping-pong. If len > MSS 268 * then this logic does not matter (and does not hurt) because 269 * tcp_cleanup_rbuf() will always ACK immediately if the app 270 * reads data and there is more than an MSS of unACKed data. 271 */ 272 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH) 273 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 274 } else { 275 /* Otherwise, we make more careful check taking into account, 276 * that SACKs block is variable. 277 * 278 * "len" is invariant segment length, including TCP header. 279 */ 280 len += skb->data - skb_transport_header(skb); 281 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 282 /* If PSH is not set, packet should be 283 * full sized, provided peer TCP is not badly broken. 284 * This observation (if it is correct 8)) allows 285 * to handle super-low mtu links fairly. 286 */ 287 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 288 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 289 /* Subtract also invariant (if peer is RFC compliant), 290 * tcp header plus fixed timestamp option length. 291 * Resulting "len" is MSS free of SACK jitter. 292 */ 293 len -= tcp_sk(sk)->tcp_header_len; 294 icsk->icsk_ack.last_seg_size = len; 295 if (len == lss) { 296 icsk->icsk_ack.rcv_mss = len; 297 return; 298 } 299 } 300 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 301 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 302 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 303 } 304 } 305 306 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 307 { 308 struct inet_connection_sock *icsk = inet_csk(sk); 309 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 310 311 if (quickacks == 0) 312 quickacks = 2; 313 quickacks = min(quickacks, max_quickacks); 314 if (quickacks > icsk->icsk_ack.quick) 315 icsk->icsk_ack.quick = quickacks; 316 } 317 318 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 319 { 320 struct inet_connection_sock *icsk = inet_csk(sk); 321 322 tcp_incr_quickack(sk, max_quickacks); 323 inet_csk_exit_pingpong_mode(sk); 324 icsk->icsk_ack.ato = TCP_ATO_MIN; 325 } 326 327 /* Send ACKs quickly, if "quick" count is not exhausted 328 * and the session is not interactive. 329 */ 330 331 static bool tcp_in_quickack_mode(struct sock *sk) 332 { 333 const struct inet_connection_sock *icsk = inet_csk(sk); 334 const struct dst_entry *dst = __sk_dst_get(sk); 335 336 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 337 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 338 } 339 340 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 341 { 342 if (tp->ecn_flags & TCP_ECN_OK) 343 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 344 } 345 346 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 347 { 348 if (tcp_hdr(skb)->cwr) { 349 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 350 351 /* If the sender is telling us it has entered CWR, then its 352 * cwnd may be very low (even just 1 packet), so we should ACK 353 * immediately. 354 */ 355 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) 356 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 357 } 358 } 359 360 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 361 { 362 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 363 } 364 365 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 366 { 367 struct tcp_sock *tp = tcp_sk(sk); 368 369 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 370 case INET_ECN_NOT_ECT: 371 /* Funny extension: if ECT is not set on a segment, 372 * and we already seen ECT on a previous segment, 373 * it is probably a retransmit. 374 */ 375 if (tp->ecn_flags & TCP_ECN_SEEN) 376 tcp_enter_quickack_mode(sk, 2); 377 break; 378 case INET_ECN_CE: 379 if (tcp_ca_needs_ecn(sk)) 380 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 381 382 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 383 /* Better not delay acks, sender can have a very low cwnd */ 384 tcp_enter_quickack_mode(sk, 2); 385 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 386 } 387 tp->ecn_flags |= TCP_ECN_SEEN; 388 break; 389 default: 390 if (tcp_ca_needs_ecn(sk)) 391 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 392 tp->ecn_flags |= TCP_ECN_SEEN; 393 break; 394 } 395 } 396 397 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 398 { 399 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 400 __tcp_ecn_check_ce(sk, skb); 401 } 402 403 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 404 { 405 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 406 tp->ecn_flags &= ~TCP_ECN_OK; 407 } 408 409 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 410 { 411 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 412 tp->ecn_flags &= ~TCP_ECN_OK; 413 } 414 415 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 416 { 417 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 418 return true; 419 return false; 420 } 421 422 /* Buffer size and advertised window tuning. 423 * 424 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 425 */ 426 427 static void tcp_sndbuf_expand(struct sock *sk) 428 { 429 const struct tcp_sock *tp = tcp_sk(sk); 430 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 431 int sndmem, per_mss; 432 u32 nr_segs; 433 434 /* Worst case is non GSO/TSO : each frame consumes one skb 435 * and skb->head is kmalloced using power of two area of memory 436 */ 437 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 438 MAX_TCP_HEADER + 439 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 440 441 per_mss = roundup_pow_of_two(per_mss) + 442 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 443 444 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp)); 445 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 446 447 /* Fast Recovery (RFC 5681 3.2) : 448 * Cubic needs 1.7 factor, rounded to 2 to include 449 * extra cushion (application might react slowly to EPOLLOUT) 450 */ 451 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 452 sndmem *= nr_segs * per_mss; 453 454 if (sk->sk_sndbuf < sndmem) 455 WRITE_ONCE(sk->sk_sndbuf, 456 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2]))); 457 } 458 459 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 460 * 461 * All tcp_full_space() is split to two parts: "network" buffer, allocated 462 * forward and advertised in receiver window (tp->rcv_wnd) and 463 * "application buffer", required to isolate scheduling/application 464 * latencies from network. 465 * window_clamp is maximal advertised window. It can be less than 466 * tcp_full_space(), in this case tcp_full_space() - window_clamp 467 * is reserved for "application" buffer. The less window_clamp is 468 * the smoother our behaviour from viewpoint of network, but the lower 469 * throughput and the higher sensitivity of the connection to losses. 8) 470 * 471 * rcv_ssthresh is more strict window_clamp used at "slow start" 472 * phase to predict further behaviour of this connection. 473 * It is used for two goals: 474 * - to enforce header prediction at sender, even when application 475 * requires some significant "application buffer". It is check #1. 476 * - to prevent pruning of receive queue because of misprediction 477 * of receiver window. Check #2. 478 * 479 * The scheme does not work when sender sends good segments opening 480 * window and then starts to feed us spaghetti. But it should work 481 * in common situations. Otherwise, we have to rely on queue collapsing. 482 */ 483 484 /* Slow part of check#2. */ 485 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb, 486 unsigned int skbtruesize) 487 { 488 const struct tcp_sock *tp = tcp_sk(sk); 489 /* Optimize this! */ 490 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1; 491 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1; 492 493 while (tp->rcv_ssthresh <= window) { 494 if (truesize <= skb->len) 495 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 496 497 truesize >>= 1; 498 window >>= 1; 499 } 500 return 0; 501 } 502 503 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing 504 * can play nice with us, as sk_buff and skb->head might be either 505 * freed or shared with up to MAX_SKB_FRAGS segments. 506 * Only give a boost to drivers using page frag(s) to hold the frame(s), 507 * and if no payload was pulled in skb->head before reaching us. 508 */ 509 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb) 510 { 511 u32 truesize = skb->truesize; 512 513 if (adjust && !skb_headlen(skb)) { 514 truesize -= SKB_TRUESIZE(skb_end_offset(skb)); 515 /* paranoid check, some drivers might be buggy */ 516 if (unlikely((int)truesize < (int)skb->len)) 517 truesize = skb->truesize; 518 } 519 return truesize; 520 } 521 522 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb, 523 bool adjust) 524 { 525 struct tcp_sock *tp = tcp_sk(sk); 526 int room; 527 528 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 529 530 if (room <= 0) 531 return; 532 533 /* Check #1 */ 534 if (!tcp_under_memory_pressure(sk)) { 535 unsigned int truesize = truesize_adjust(adjust, skb); 536 int incr; 537 538 /* Check #2. Increase window, if skb with such overhead 539 * will fit to rcvbuf in future. 540 */ 541 if (tcp_win_from_space(sk, truesize) <= skb->len) 542 incr = 2 * tp->advmss; 543 else 544 incr = __tcp_grow_window(sk, skb, truesize); 545 546 if (incr) { 547 incr = max_t(int, incr, 2 * skb->len); 548 tp->rcv_ssthresh += min(room, incr); 549 inet_csk(sk)->icsk_ack.quick |= 1; 550 } 551 } else { 552 /* Under pressure: 553 * Adjust rcv_ssthresh according to reserved mem 554 */ 555 tcp_adjust_rcv_ssthresh(sk); 556 } 557 } 558 559 /* 3. Try to fixup all. It is made immediately after connection enters 560 * established state. 561 */ 562 static void tcp_init_buffer_space(struct sock *sk) 563 { 564 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win); 565 struct tcp_sock *tp = tcp_sk(sk); 566 int maxwin; 567 568 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 569 tcp_sndbuf_expand(sk); 570 571 tcp_mstamp_refresh(tp); 572 tp->rcvq_space.time = tp->tcp_mstamp; 573 tp->rcvq_space.seq = tp->copied_seq; 574 575 maxwin = tcp_full_space(sk); 576 577 if (tp->window_clamp >= maxwin) { 578 WRITE_ONCE(tp->window_clamp, maxwin); 579 580 if (tcp_app_win && maxwin > 4 * tp->advmss) 581 WRITE_ONCE(tp->window_clamp, 582 max(maxwin - (maxwin >> tcp_app_win), 583 4 * tp->advmss)); 584 } 585 586 /* Force reservation of one segment. */ 587 if (tcp_app_win && 588 tp->window_clamp > 2 * tp->advmss && 589 tp->window_clamp + tp->advmss > maxwin) 590 WRITE_ONCE(tp->window_clamp, 591 max(2 * tp->advmss, maxwin - tp->advmss)); 592 593 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 594 tp->snd_cwnd_stamp = tcp_jiffies32; 595 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd, 596 (u32)TCP_INIT_CWND * tp->advmss); 597 } 598 599 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 600 static void tcp_clamp_window(struct sock *sk) 601 { 602 struct tcp_sock *tp = tcp_sk(sk); 603 struct inet_connection_sock *icsk = inet_csk(sk); 604 struct net *net = sock_net(sk); 605 int rmem2; 606 607 icsk->icsk_ack.quick = 0; 608 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 609 610 if (sk->sk_rcvbuf < rmem2 && 611 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 612 !tcp_under_memory_pressure(sk) && 613 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 614 WRITE_ONCE(sk->sk_rcvbuf, 615 min(atomic_read(&sk->sk_rmem_alloc), rmem2)); 616 } 617 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 618 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 619 } 620 621 /* Initialize RCV_MSS value. 622 * RCV_MSS is an our guess about MSS used by the peer. 623 * We haven't any direct information about the MSS. 624 * It's better to underestimate the RCV_MSS rather than overestimate. 625 * Overestimations make us ACKing less frequently than needed. 626 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 627 */ 628 void tcp_initialize_rcv_mss(struct sock *sk) 629 { 630 const struct tcp_sock *tp = tcp_sk(sk); 631 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 632 633 hint = min(hint, tp->rcv_wnd / 2); 634 hint = min(hint, TCP_MSS_DEFAULT); 635 hint = max(hint, TCP_MIN_MSS); 636 637 inet_csk(sk)->icsk_ack.rcv_mss = hint; 638 } 639 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 640 641 /* Receiver "autotuning" code. 642 * 643 * The algorithm for RTT estimation w/o timestamps is based on 644 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 645 * <https://public.lanl.gov/radiant/pubs.html#DRS> 646 * 647 * More detail on this code can be found at 648 * <http://staff.psc.edu/jheffner/>, 649 * though this reference is out of date. A new paper 650 * is pending. 651 */ 652 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 653 { 654 u32 new_sample = tp->rcv_rtt_est.rtt_us; 655 long m = sample; 656 657 if (new_sample != 0) { 658 /* If we sample in larger samples in the non-timestamp 659 * case, we could grossly overestimate the RTT especially 660 * with chatty applications or bulk transfer apps which 661 * are stalled on filesystem I/O. 662 * 663 * Also, since we are only going for a minimum in the 664 * non-timestamp case, we do not smooth things out 665 * else with timestamps disabled convergence takes too 666 * long. 667 */ 668 if (!win_dep) { 669 m -= (new_sample >> 3); 670 new_sample += m; 671 } else { 672 m <<= 3; 673 if (m < new_sample) 674 new_sample = m; 675 } 676 } else { 677 /* No previous measure. */ 678 new_sample = m << 3; 679 } 680 681 tp->rcv_rtt_est.rtt_us = new_sample; 682 } 683 684 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 685 { 686 u32 delta_us; 687 688 if (tp->rcv_rtt_est.time == 0) 689 goto new_measure; 690 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 691 return; 692 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 693 if (!delta_us) 694 delta_us = 1; 695 tcp_rcv_rtt_update(tp, delta_us, 1); 696 697 new_measure: 698 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 699 tp->rcv_rtt_est.time = tp->tcp_mstamp; 700 } 701 702 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 703 const struct sk_buff *skb) 704 { 705 struct tcp_sock *tp = tcp_sk(sk); 706 707 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 708 return; 709 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 710 711 if (TCP_SKB_CB(skb)->end_seq - 712 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 713 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 714 u32 delta_us; 715 716 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 717 if (!delta) 718 delta = 1; 719 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 720 tcp_rcv_rtt_update(tp, delta_us, 0); 721 } 722 } 723 } 724 725 /* 726 * This function should be called every time data is copied to user space. 727 * It calculates the appropriate TCP receive buffer space. 728 */ 729 void tcp_rcv_space_adjust(struct sock *sk) 730 { 731 struct tcp_sock *tp = tcp_sk(sk); 732 u32 copied; 733 int time; 734 735 trace_tcp_rcv_space_adjust(sk); 736 737 tcp_mstamp_refresh(tp); 738 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 739 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 740 return; 741 742 /* Number of bytes copied to user in last RTT */ 743 copied = tp->copied_seq - tp->rcvq_space.seq; 744 if (copied <= tp->rcvq_space.space) 745 goto new_measure; 746 747 /* A bit of theory : 748 * copied = bytes received in previous RTT, our base window 749 * To cope with packet losses, we need a 2x factor 750 * To cope with slow start, and sender growing its cwin by 100 % 751 * every RTT, we need a 4x factor, because the ACK we are sending 752 * now is for the next RTT, not the current one : 753 * <prev RTT . ><current RTT .. ><next RTT .... > 754 */ 755 756 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 757 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 758 u64 rcvwin, grow; 759 int rcvbuf; 760 761 /* minimal window to cope with packet losses, assuming 762 * steady state. Add some cushion because of small variations. 763 */ 764 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 765 766 /* Accommodate for sender rate increase (eg. slow start) */ 767 grow = rcvwin * (copied - tp->rcvq_space.space); 768 do_div(grow, tp->rcvq_space.space); 769 rcvwin += (grow << 1); 770 771 rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin), 772 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 773 if (rcvbuf > sk->sk_rcvbuf) { 774 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 775 776 /* Make the window clamp follow along. */ 777 WRITE_ONCE(tp->window_clamp, 778 tcp_win_from_space(sk, rcvbuf)); 779 } 780 } 781 tp->rcvq_space.space = copied; 782 783 new_measure: 784 tp->rcvq_space.seq = tp->copied_seq; 785 tp->rcvq_space.time = tp->tcp_mstamp; 786 } 787 788 /* There is something which you must keep in mind when you analyze the 789 * behavior of the tp->ato delayed ack timeout interval. When a 790 * connection starts up, we want to ack as quickly as possible. The 791 * problem is that "good" TCP's do slow start at the beginning of data 792 * transmission. The means that until we send the first few ACK's the 793 * sender will sit on his end and only queue most of his data, because 794 * he can only send snd_cwnd unacked packets at any given time. For 795 * each ACK we send, he increments snd_cwnd and transmits more of his 796 * queue. -DaveM 797 */ 798 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 799 { 800 struct tcp_sock *tp = tcp_sk(sk); 801 struct inet_connection_sock *icsk = inet_csk(sk); 802 u32 now; 803 804 inet_csk_schedule_ack(sk); 805 806 tcp_measure_rcv_mss(sk, skb); 807 808 tcp_rcv_rtt_measure(tp); 809 810 now = tcp_jiffies32; 811 812 if (!icsk->icsk_ack.ato) { 813 /* The _first_ data packet received, initialize 814 * delayed ACK engine. 815 */ 816 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 817 icsk->icsk_ack.ato = TCP_ATO_MIN; 818 } else { 819 int m = now - icsk->icsk_ack.lrcvtime; 820 821 if (m <= TCP_ATO_MIN / 2) { 822 /* The fastest case is the first. */ 823 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 824 } else if (m < icsk->icsk_ack.ato) { 825 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 826 if (icsk->icsk_ack.ato > icsk->icsk_rto) 827 icsk->icsk_ack.ato = icsk->icsk_rto; 828 } else if (m > icsk->icsk_rto) { 829 /* Too long gap. Apparently sender failed to 830 * restart window, so that we send ACKs quickly. 831 */ 832 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 833 } 834 } 835 icsk->icsk_ack.lrcvtime = now; 836 837 tcp_ecn_check_ce(sk, skb); 838 839 if (skb->len >= 128) 840 tcp_grow_window(sk, skb, true); 841 } 842 843 /* Called to compute a smoothed rtt estimate. The data fed to this 844 * routine either comes from timestamps, or from segments that were 845 * known _not_ to have been retransmitted [see Karn/Partridge 846 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 847 * piece by Van Jacobson. 848 * NOTE: the next three routines used to be one big routine. 849 * To save cycles in the RFC 1323 implementation it was better to break 850 * it up into three procedures. -- erics 851 */ 852 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 853 { 854 struct tcp_sock *tp = tcp_sk(sk); 855 long m = mrtt_us; /* RTT */ 856 u32 srtt = tp->srtt_us; 857 858 /* The following amusing code comes from Jacobson's 859 * article in SIGCOMM '88. Note that rtt and mdev 860 * are scaled versions of rtt and mean deviation. 861 * This is designed to be as fast as possible 862 * m stands for "measurement". 863 * 864 * On a 1990 paper the rto value is changed to: 865 * RTO = rtt + 4 * mdev 866 * 867 * Funny. This algorithm seems to be very broken. 868 * These formulae increase RTO, when it should be decreased, increase 869 * too slowly, when it should be increased quickly, decrease too quickly 870 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 871 * does not matter how to _calculate_ it. Seems, it was trap 872 * that VJ failed to avoid. 8) 873 */ 874 if (srtt != 0) { 875 m -= (srtt >> 3); /* m is now error in rtt est */ 876 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 877 if (m < 0) { 878 m = -m; /* m is now abs(error) */ 879 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 880 /* This is similar to one of Eifel findings. 881 * Eifel blocks mdev updates when rtt decreases. 882 * This solution is a bit different: we use finer gain 883 * for mdev in this case (alpha*beta). 884 * Like Eifel it also prevents growth of rto, 885 * but also it limits too fast rto decreases, 886 * happening in pure Eifel. 887 */ 888 if (m > 0) 889 m >>= 3; 890 } else { 891 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 892 } 893 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 894 if (tp->mdev_us > tp->mdev_max_us) { 895 tp->mdev_max_us = tp->mdev_us; 896 if (tp->mdev_max_us > tp->rttvar_us) 897 tp->rttvar_us = tp->mdev_max_us; 898 } 899 if (after(tp->snd_una, tp->rtt_seq)) { 900 if (tp->mdev_max_us < tp->rttvar_us) 901 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 902 tp->rtt_seq = tp->snd_nxt; 903 tp->mdev_max_us = tcp_rto_min_us(sk); 904 905 tcp_bpf_rtt(sk); 906 } 907 } else { 908 /* no previous measure. */ 909 srtt = m << 3; /* take the measured time to be rtt */ 910 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 911 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 912 tp->mdev_max_us = tp->rttvar_us; 913 tp->rtt_seq = tp->snd_nxt; 914 915 tcp_bpf_rtt(sk); 916 } 917 tp->srtt_us = max(1U, srtt); 918 } 919 920 static void tcp_update_pacing_rate(struct sock *sk) 921 { 922 const struct tcp_sock *tp = tcp_sk(sk); 923 u64 rate; 924 925 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 926 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 927 928 /* current rate is (cwnd * mss) / srtt 929 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 930 * In Congestion Avoidance phase, set it to 120 % the current rate. 931 * 932 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 933 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 934 * end of slow start and should slow down. 935 */ 936 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2) 937 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio); 938 else 939 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio); 940 941 rate *= max(tcp_snd_cwnd(tp), tp->packets_out); 942 943 if (likely(tp->srtt_us)) 944 do_div(rate, tp->srtt_us); 945 946 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 947 * without any lock. We want to make sure compiler wont store 948 * intermediate values in this location. 949 */ 950 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 951 sk->sk_max_pacing_rate)); 952 } 953 954 /* Calculate rto without backoff. This is the second half of Van Jacobson's 955 * routine referred to above. 956 */ 957 static void tcp_set_rto(struct sock *sk) 958 { 959 const struct tcp_sock *tp = tcp_sk(sk); 960 /* Old crap is replaced with new one. 8) 961 * 962 * More seriously: 963 * 1. If rtt variance happened to be less 50msec, it is hallucination. 964 * It cannot be less due to utterly erratic ACK generation made 965 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 966 * to do with delayed acks, because at cwnd>2 true delack timeout 967 * is invisible. Actually, Linux-2.4 also generates erratic 968 * ACKs in some circumstances. 969 */ 970 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 971 972 /* 2. Fixups made earlier cannot be right. 973 * If we do not estimate RTO correctly without them, 974 * all the algo is pure shit and should be replaced 975 * with correct one. It is exactly, which we pretend to do. 976 */ 977 978 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 979 * guarantees that rto is higher. 980 */ 981 tcp_bound_rto(sk); 982 } 983 984 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 985 { 986 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 987 988 if (!cwnd) 989 cwnd = TCP_INIT_CWND; 990 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 991 } 992 993 struct tcp_sacktag_state { 994 /* Timestamps for earliest and latest never-retransmitted segment 995 * that was SACKed. RTO needs the earliest RTT to stay conservative, 996 * but congestion control should still get an accurate delay signal. 997 */ 998 u64 first_sackt; 999 u64 last_sackt; 1000 u32 reord; 1001 u32 sack_delivered; 1002 int flag; 1003 unsigned int mss_now; 1004 struct rate_sample *rate; 1005 }; 1006 1007 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery 1008 * and spurious retransmission information if this DSACK is unlikely caused by 1009 * sender's action: 1010 * - DSACKed sequence range is larger than maximum receiver's window. 1011 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs. 1012 */ 1013 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq, 1014 u32 end_seq, struct tcp_sacktag_state *state) 1015 { 1016 u32 seq_len, dup_segs = 1; 1017 1018 if (!before(start_seq, end_seq)) 1019 return 0; 1020 1021 seq_len = end_seq - start_seq; 1022 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */ 1023 if (seq_len > tp->max_window) 1024 return 0; 1025 if (seq_len > tp->mss_cache) 1026 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache); 1027 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq) 1028 state->flag |= FLAG_DSACK_TLP; 1029 1030 tp->dsack_dups += dup_segs; 1031 /* Skip the DSACK if dup segs weren't retransmitted by sender */ 1032 if (tp->dsack_dups > tp->total_retrans) 1033 return 0; 1034 1035 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 1036 /* We increase the RACK ordering window in rounds where we receive 1037 * DSACKs that may have been due to reordering causing RACK to trigger 1038 * a spurious fast recovery. Thus RACK ignores DSACKs that happen 1039 * without having seen reordering, or that match TLP probes (TLP 1040 * is timer-driven, not triggered by RACK). 1041 */ 1042 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP)) 1043 tp->rack.dsack_seen = 1; 1044 1045 state->flag |= FLAG_DSACKING_ACK; 1046 /* A spurious retransmission is delivered */ 1047 state->sack_delivered += dup_segs; 1048 1049 return dup_segs; 1050 } 1051 1052 /* It's reordering when higher sequence was delivered (i.e. sacked) before 1053 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 1054 * distance is approximated in full-mss packet distance ("reordering"). 1055 */ 1056 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 1057 const int ts) 1058 { 1059 struct tcp_sock *tp = tcp_sk(sk); 1060 const u32 mss = tp->mss_cache; 1061 u32 fack, metric; 1062 1063 fack = tcp_highest_sack_seq(tp); 1064 if (!before(low_seq, fack)) 1065 return; 1066 1067 metric = fack - low_seq; 1068 if ((metric > tp->reordering * mss) && mss) { 1069 #if FASTRETRANS_DEBUG > 1 1070 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 1071 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 1072 tp->reordering, 1073 0, 1074 tp->sacked_out, 1075 tp->undo_marker ? tp->undo_retrans : 0); 1076 #endif 1077 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 1078 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 1079 } 1080 1081 /* This exciting event is worth to be remembered. 8) */ 1082 tp->reord_seen++; 1083 NET_INC_STATS(sock_net(sk), 1084 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 1085 } 1086 1087 /* This must be called before lost_out or retrans_out are updated 1088 * on a new loss, because we want to know if all skbs previously 1089 * known to be lost have already been retransmitted, indicating 1090 * that this newly lost skb is our next skb to retransmit. 1091 */ 1092 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 1093 { 1094 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) || 1095 (tp->retransmit_skb_hint && 1096 before(TCP_SKB_CB(skb)->seq, 1097 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))) 1098 tp->retransmit_skb_hint = skb; 1099 } 1100 1101 /* Sum the number of packets on the wire we have marked as lost, and 1102 * notify the congestion control module that the given skb was marked lost. 1103 */ 1104 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb) 1105 { 1106 tp->lost += tcp_skb_pcount(skb); 1107 } 1108 1109 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb) 1110 { 1111 __u8 sacked = TCP_SKB_CB(skb)->sacked; 1112 struct tcp_sock *tp = tcp_sk(sk); 1113 1114 if (sacked & TCPCB_SACKED_ACKED) 1115 return; 1116 1117 tcp_verify_retransmit_hint(tp, skb); 1118 if (sacked & TCPCB_LOST) { 1119 if (sacked & TCPCB_SACKED_RETRANS) { 1120 /* Account for retransmits that are lost again */ 1121 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1122 tp->retrans_out -= tcp_skb_pcount(skb); 1123 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT, 1124 tcp_skb_pcount(skb)); 1125 tcp_notify_skb_loss_event(tp, skb); 1126 } 1127 } else { 1128 tp->lost_out += tcp_skb_pcount(skb); 1129 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1130 tcp_notify_skb_loss_event(tp, skb); 1131 } 1132 } 1133 1134 /* Updates the delivered and delivered_ce counts */ 1135 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered, 1136 bool ece_ack) 1137 { 1138 tp->delivered += delivered; 1139 if (ece_ack) 1140 tp->delivered_ce += delivered; 1141 } 1142 1143 /* This procedure tags the retransmission queue when SACKs arrive. 1144 * 1145 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1146 * Packets in queue with these bits set are counted in variables 1147 * sacked_out, retrans_out and lost_out, correspondingly. 1148 * 1149 * Valid combinations are: 1150 * Tag InFlight Description 1151 * 0 1 - orig segment is in flight. 1152 * S 0 - nothing flies, orig reached receiver. 1153 * L 0 - nothing flies, orig lost by net. 1154 * R 2 - both orig and retransmit are in flight. 1155 * L|R 1 - orig is lost, retransmit is in flight. 1156 * S|R 1 - orig reached receiver, retrans is still in flight. 1157 * (L|S|R is logically valid, it could occur when L|R is sacked, 1158 * but it is equivalent to plain S and code short-curcuits it to S. 1159 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1160 * 1161 * These 6 states form finite state machine, controlled by the following events: 1162 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1163 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1164 * 3. Loss detection event of two flavors: 1165 * A. Scoreboard estimator decided the packet is lost. 1166 * A'. Reno "three dupacks" marks head of queue lost. 1167 * B. SACK arrives sacking SND.NXT at the moment, when the 1168 * segment was retransmitted. 1169 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1170 * 1171 * It is pleasant to note, that state diagram turns out to be commutative, 1172 * so that we are allowed not to be bothered by order of our actions, 1173 * when multiple events arrive simultaneously. (see the function below). 1174 * 1175 * Reordering detection. 1176 * -------------------- 1177 * Reordering metric is maximal distance, which a packet can be displaced 1178 * in packet stream. With SACKs we can estimate it: 1179 * 1180 * 1. SACK fills old hole and the corresponding segment was not 1181 * ever retransmitted -> reordering. Alas, we cannot use it 1182 * when segment was retransmitted. 1183 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1184 * for retransmitted and already SACKed segment -> reordering.. 1185 * Both of these heuristics are not used in Loss state, when we cannot 1186 * account for retransmits accurately. 1187 * 1188 * SACK block validation. 1189 * ---------------------- 1190 * 1191 * SACK block range validation checks that the received SACK block fits to 1192 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1193 * Note that SND.UNA is not included to the range though being valid because 1194 * it means that the receiver is rather inconsistent with itself reporting 1195 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1196 * perfectly valid, however, in light of RFC2018 which explicitly states 1197 * that "SACK block MUST reflect the newest segment. Even if the newest 1198 * segment is going to be discarded ...", not that it looks very clever 1199 * in case of head skb. Due to potentional receiver driven attacks, we 1200 * choose to avoid immediate execution of a walk in write queue due to 1201 * reneging and defer head skb's loss recovery to standard loss recovery 1202 * procedure that will eventually trigger (nothing forbids us doing this). 1203 * 1204 * Implements also blockage to start_seq wrap-around. Problem lies in the 1205 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1206 * there's no guarantee that it will be before snd_nxt (n). The problem 1207 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1208 * wrap (s_w): 1209 * 1210 * <- outs wnd -> <- wrapzone -> 1211 * u e n u_w e_w s n_w 1212 * | | | | | | | 1213 * |<------------+------+----- TCP seqno space --------------+---------->| 1214 * ...-- <2^31 ->| |<--------... 1215 * ...---- >2^31 ------>| |<--------... 1216 * 1217 * Current code wouldn't be vulnerable but it's better still to discard such 1218 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1219 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1220 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1221 * equal to the ideal case (infinite seqno space without wrap caused issues). 1222 * 1223 * With D-SACK the lower bound is extended to cover sequence space below 1224 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1225 * again, D-SACK block must not to go across snd_una (for the same reason as 1226 * for the normal SACK blocks, explained above). But there all simplicity 1227 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1228 * fully below undo_marker they do not affect behavior in anyway and can 1229 * therefore be safely ignored. In rare cases (which are more or less 1230 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1231 * fragmentation and packet reordering past skb's retransmission. To consider 1232 * them correctly, the acceptable range must be extended even more though 1233 * the exact amount is rather hard to quantify. However, tp->max_window can 1234 * be used as an exaggerated estimate. 1235 */ 1236 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1237 u32 start_seq, u32 end_seq) 1238 { 1239 /* Too far in future, or reversed (interpretation is ambiguous) */ 1240 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1241 return false; 1242 1243 /* Nasty start_seq wrap-around check (see comments above) */ 1244 if (!before(start_seq, tp->snd_nxt)) 1245 return false; 1246 1247 /* In outstanding window? ...This is valid exit for D-SACKs too. 1248 * start_seq == snd_una is non-sensical (see comments above) 1249 */ 1250 if (after(start_seq, tp->snd_una)) 1251 return true; 1252 1253 if (!is_dsack || !tp->undo_marker) 1254 return false; 1255 1256 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1257 if (after(end_seq, tp->snd_una)) 1258 return false; 1259 1260 if (!before(start_seq, tp->undo_marker)) 1261 return true; 1262 1263 /* Too old */ 1264 if (!after(end_seq, tp->undo_marker)) 1265 return false; 1266 1267 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1268 * start_seq < undo_marker and end_seq >= undo_marker. 1269 */ 1270 return !before(start_seq, end_seq - tp->max_window); 1271 } 1272 1273 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1274 struct tcp_sack_block_wire *sp, int num_sacks, 1275 u32 prior_snd_una, struct tcp_sacktag_state *state) 1276 { 1277 struct tcp_sock *tp = tcp_sk(sk); 1278 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1279 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1280 u32 dup_segs; 1281 1282 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1283 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1284 } else if (num_sacks > 1) { 1285 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1286 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1287 1288 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1)) 1289 return false; 1290 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV); 1291 } else { 1292 return false; 1293 } 1294 1295 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state); 1296 if (!dup_segs) { /* Skip dubious DSACK */ 1297 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS); 1298 return false; 1299 } 1300 1301 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs); 1302 1303 /* D-SACK for already forgotten data... Do dumb counting. */ 1304 if (tp->undo_marker && tp->undo_retrans > 0 && 1305 !after(end_seq_0, prior_snd_una) && 1306 after(end_seq_0, tp->undo_marker)) 1307 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs); 1308 1309 return true; 1310 } 1311 1312 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1313 * the incoming SACK may not exactly match but we can find smaller MSS 1314 * aligned portion of it that matches. Therefore we might need to fragment 1315 * which may fail and creates some hassle (caller must handle error case 1316 * returns). 1317 * 1318 * FIXME: this could be merged to shift decision code 1319 */ 1320 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1321 u32 start_seq, u32 end_seq) 1322 { 1323 int err; 1324 bool in_sack; 1325 unsigned int pkt_len; 1326 unsigned int mss; 1327 1328 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1329 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1330 1331 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1332 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1333 mss = tcp_skb_mss(skb); 1334 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1335 1336 if (!in_sack) { 1337 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1338 if (pkt_len < mss) 1339 pkt_len = mss; 1340 } else { 1341 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1342 if (pkt_len < mss) 1343 return -EINVAL; 1344 } 1345 1346 /* Round if necessary so that SACKs cover only full MSSes 1347 * and/or the remaining small portion (if present) 1348 */ 1349 if (pkt_len > mss) { 1350 unsigned int new_len = (pkt_len / mss) * mss; 1351 if (!in_sack && new_len < pkt_len) 1352 new_len += mss; 1353 pkt_len = new_len; 1354 } 1355 1356 if (pkt_len >= skb->len && !in_sack) 1357 return 0; 1358 1359 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1360 pkt_len, mss, GFP_ATOMIC); 1361 if (err < 0) 1362 return err; 1363 } 1364 1365 return in_sack; 1366 } 1367 1368 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1369 static u8 tcp_sacktag_one(struct sock *sk, 1370 struct tcp_sacktag_state *state, u8 sacked, 1371 u32 start_seq, u32 end_seq, 1372 int dup_sack, int pcount, 1373 u64 xmit_time) 1374 { 1375 struct tcp_sock *tp = tcp_sk(sk); 1376 1377 /* Account D-SACK for retransmitted packet. */ 1378 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1379 if (tp->undo_marker && tp->undo_retrans > 0 && 1380 after(end_seq, tp->undo_marker)) 1381 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount); 1382 if ((sacked & TCPCB_SACKED_ACKED) && 1383 before(start_seq, state->reord)) 1384 state->reord = start_seq; 1385 } 1386 1387 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1388 if (!after(end_seq, tp->snd_una)) 1389 return sacked; 1390 1391 if (!(sacked & TCPCB_SACKED_ACKED)) { 1392 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1393 1394 if (sacked & TCPCB_SACKED_RETRANS) { 1395 /* If the segment is not tagged as lost, 1396 * we do not clear RETRANS, believing 1397 * that retransmission is still in flight. 1398 */ 1399 if (sacked & TCPCB_LOST) { 1400 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1401 tp->lost_out -= pcount; 1402 tp->retrans_out -= pcount; 1403 } 1404 } else { 1405 if (!(sacked & TCPCB_RETRANS)) { 1406 /* New sack for not retransmitted frame, 1407 * which was in hole. It is reordering. 1408 */ 1409 if (before(start_seq, 1410 tcp_highest_sack_seq(tp)) && 1411 before(start_seq, state->reord)) 1412 state->reord = start_seq; 1413 1414 if (!after(end_seq, tp->high_seq)) 1415 state->flag |= FLAG_ORIG_SACK_ACKED; 1416 if (state->first_sackt == 0) 1417 state->first_sackt = xmit_time; 1418 state->last_sackt = xmit_time; 1419 } 1420 1421 if (sacked & TCPCB_LOST) { 1422 sacked &= ~TCPCB_LOST; 1423 tp->lost_out -= pcount; 1424 } 1425 } 1426 1427 sacked |= TCPCB_SACKED_ACKED; 1428 state->flag |= FLAG_DATA_SACKED; 1429 tp->sacked_out += pcount; 1430 /* Out-of-order packets delivered */ 1431 state->sack_delivered += pcount; 1432 1433 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1434 if (tp->lost_skb_hint && 1435 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1436 tp->lost_cnt_hint += pcount; 1437 } 1438 1439 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1440 * frames and clear it. undo_retrans is decreased above, L|R frames 1441 * are accounted above as well. 1442 */ 1443 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1444 sacked &= ~TCPCB_SACKED_RETRANS; 1445 tp->retrans_out -= pcount; 1446 } 1447 1448 return sacked; 1449 } 1450 1451 /* Shift newly-SACKed bytes from this skb to the immediately previous 1452 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1453 */ 1454 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1455 struct sk_buff *skb, 1456 struct tcp_sacktag_state *state, 1457 unsigned int pcount, int shifted, int mss, 1458 bool dup_sack) 1459 { 1460 struct tcp_sock *tp = tcp_sk(sk); 1461 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1462 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1463 1464 BUG_ON(!pcount); 1465 1466 /* Adjust counters and hints for the newly sacked sequence 1467 * range but discard the return value since prev is already 1468 * marked. We must tag the range first because the seq 1469 * advancement below implicitly advances 1470 * tcp_highest_sack_seq() when skb is highest_sack. 1471 */ 1472 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1473 start_seq, end_seq, dup_sack, pcount, 1474 tcp_skb_timestamp_us(skb)); 1475 tcp_rate_skb_delivered(sk, skb, state->rate); 1476 1477 if (skb == tp->lost_skb_hint) 1478 tp->lost_cnt_hint += pcount; 1479 1480 TCP_SKB_CB(prev)->end_seq += shifted; 1481 TCP_SKB_CB(skb)->seq += shifted; 1482 1483 tcp_skb_pcount_add(prev, pcount); 1484 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1485 tcp_skb_pcount_add(skb, -pcount); 1486 1487 /* When we're adding to gso_segs == 1, gso_size will be zero, 1488 * in theory this shouldn't be necessary but as long as DSACK 1489 * code can come after this skb later on it's better to keep 1490 * setting gso_size to something. 1491 */ 1492 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1493 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1494 1495 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1496 if (tcp_skb_pcount(skb) <= 1) 1497 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1498 1499 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1500 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1501 1502 if (skb->len > 0) { 1503 BUG_ON(!tcp_skb_pcount(skb)); 1504 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1505 return false; 1506 } 1507 1508 /* Whole SKB was eaten :-) */ 1509 1510 if (skb == tp->retransmit_skb_hint) 1511 tp->retransmit_skb_hint = prev; 1512 if (skb == tp->lost_skb_hint) { 1513 tp->lost_skb_hint = prev; 1514 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1515 } 1516 1517 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1518 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1519 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1520 TCP_SKB_CB(prev)->end_seq++; 1521 1522 if (skb == tcp_highest_sack(sk)) 1523 tcp_advance_highest_sack(sk, skb); 1524 1525 tcp_skb_collapse_tstamp(prev, skb); 1526 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1527 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1528 1529 tcp_rtx_queue_unlink_and_free(skb, sk); 1530 1531 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1532 1533 return true; 1534 } 1535 1536 /* I wish gso_size would have a bit more sane initialization than 1537 * something-or-zero which complicates things 1538 */ 1539 static int tcp_skb_seglen(const struct sk_buff *skb) 1540 { 1541 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1542 } 1543 1544 /* Shifting pages past head area doesn't work */ 1545 static int skb_can_shift(const struct sk_buff *skb) 1546 { 1547 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1548 } 1549 1550 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1551 int pcount, int shiftlen) 1552 { 1553 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1554 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1555 * to make sure not storing more than 65535 * 8 bytes per skb, 1556 * even if current MSS is bigger. 1557 */ 1558 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1559 return 0; 1560 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1561 return 0; 1562 return skb_shift(to, from, shiftlen); 1563 } 1564 1565 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1566 * skb. 1567 */ 1568 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1569 struct tcp_sacktag_state *state, 1570 u32 start_seq, u32 end_seq, 1571 bool dup_sack) 1572 { 1573 struct tcp_sock *tp = tcp_sk(sk); 1574 struct sk_buff *prev; 1575 int mss; 1576 int pcount = 0; 1577 int len; 1578 int in_sack; 1579 1580 /* Normally R but no L won't result in plain S */ 1581 if (!dup_sack && 1582 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1583 goto fallback; 1584 if (!skb_can_shift(skb)) 1585 goto fallback; 1586 /* This frame is about to be dropped (was ACKed). */ 1587 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1588 goto fallback; 1589 1590 /* Can only happen with delayed DSACK + discard craziness */ 1591 prev = skb_rb_prev(skb); 1592 if (!prev) 1593 goto fallback; 1594 1595 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1596 goto fallback; 1597 1598 if (!tcp_skb_can_collapse(prev, skb)) 1599 goto fallback; 1600 1601 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1602 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1603 1604 if (in_sack) { 1605 len = skb->len; 1606 pcount = tcp_skb_pcount(skb); 1607 mss = tcp_skb_seglen(skb); 1608 1609 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1610 * drop this restriction as unnecessary 1611 */ 1612 if (mss != tcp_skb_seglen(prev)) 1613 goto fallback; 1614 } else { 1615 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1616 goto noop; 1617 /* CHECKME: This is non-MSS split case only?, this will 1618 * cause skipped skbs due to advancing loop btw, original 1619 * has that feature too 1620 */ 1621 if (tcp_skb_pcount(skb) <= 1) 1622 goto noop; 1623 1624 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1625 if (!in_sack) { 1626 /* TODO: head merge to next could be attempted here 1627 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1628 * though it might not be worth of the additional hassle 1629 * 1630 * ...we can probably just fallback to what was done 1631 * previously. We could try merging non-SACKed ones 1632 * as well but it probably isn't going to buy off 1633 * because later SACKs might again split them, and 1634 * it would make skb timestamp tracking considerably 1635 * harder problem. 1636 */ 1637 goto fallback; 1638 } 1639 1640 len = end_seq - TCP_SKB_CB(skb)->seq; 1641 BUG_ON(len < 0); 1642 BUG_ON(len > skb->len); 1643 1644 /* MSS boundaries should be honoured or else pcount will 1645 * severely break even though it makes things bit trickier. 1646 * Optimize common case to avoid most of the divides 1647 */ 1648 mss = tcp_skb_mss(skb); 1649 1650 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1651 * drop this restriction as unnecessary 1652 */ 1653 if (mss != tcp_skb_seglen(prev)) 1654 goto fallback; 1655 1656 if (len == mss) { 1657 pcount = 1; 1658 } else if (len < mss) { 1659 goto noop; 1660 } else { 1661 pcount = len / mss; 1662 len = pcount * mss; 1663 } 1664 } 1665 1666 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1667 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1668 goto fallback; 1669 1670 if (!tcp_skb_shift(prev, skb, pcount, len)) 1671 goto fallback; 1672 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1673 goto out; 1674 1675 /* Hole filled allows collapsing with the next as well, this is very 1676 * useful when hole on every nth skb pattern happens 1677 */ 1678 skb = skb_rb_next(prev); 1679 if (!skb) 1680 goto out; 1681 1682 if (!skb_can_shift(skb) || 1683 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1684 (mss != tcp_skb_seglen(skb))) 1685 goto out; 1686 1687 if (!tcp_skb_can_collapse(prev, skb)) 1688 goto out; 1689 len = skb->len; 1690 pcount = tcp_skb_pcount(skb); 1691 if (tcp_skb_shift(prev, skb, pcount, len)) 1692 tcp_shifted_skb(sk, prev, skb, state, pcount, 1693 len, mss, 0); 1694 1695 out: 1696 return prev; 1697 1698 noop: 1699 return skb; 1700 1701 fallback: 1702 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1703 return NULL; 1704 } 1705 1706 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1707 struct tcp_sack_block *next_dup, 1708 struct tcp_sacktag_state *state, 1709 u32 start_seq, u32 end_seq, 1710 bool dup_sack_in) 1711 { 1712 struct tcp_sock *tp = tcp_sk(sk); 1713 struct sk_buff *tmp; 1714 1715 skb_rbtree_walk_from(skb) { 1716 int in_sack = 0; 1717 bool dup_sack = dup_sack_in; 1718 1719 /* queue is in-order => we can short-circuit the walk early */ 1720 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1721 break; 1722 1723 if (next_dup && 1724 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1725 in_sack = tcp_match_skb_to_sack(sk, skb, 1726 next_dup->start_seq, 1727 next_dup->end_seq); 1728 if (in_sack > 0) 1729 dup_sack = true; 1730 } 1731 1732 /* skb reference here is a bit tricky to get right, since 1733 * shifting can eat and free both this skb and the next, 1734 * so not even _safe variant of the loop is enough. 1735 */ 1736 if (in_sack <= 0) { 1737 tmp = tcp_shift_skb_data(sk, skb, state, 1738 start_seq, end_seq, dup_sack); 1739 if (tmp) { 1740 if (tmp != skb) { 1741 skb = tmp; 1742 continue; 1743 } 1744 1745 in_sack = 0; 1746 } else { 1747 in_sack = tcp_match_skb_to_sack(sk, skb, 1748 start_seq, 1749 end_seq); 1750 } 1751 } 1752 1753 if (unlikely(in_sack < 0)) 1754 break; 1755 1756 if (in_sack) { 1757 TCP_SKB_CB(skb)->sacked = 1758 tcp_sacktag_one(sk, 1759 state, 1760 TCP_SKB_CB(skb)->sacked, 1761 TCP_SKB_CB(skb)->seq, 1762 TCP_SKB_CB(skb)->end_seq, 1763 dup_sack, 1764 tcp_skb_pcount(skb), 1765 tcp_skb_timestamp_us(skb)); 1766 tcp_rate_skb_delivered(sk, skb, state->rate); 1767 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1768 list_del_init(&skb->tcp_tsorted_anchor); 1769 1770 if (!before(TCP_SKB_CB(skb)->seq, 1771 tcp_highest_sack_seq(tp))) 1772 tcp_advance_highest_sack(sk, skb); 1773 } 1774 } 1775 return skb; 1776 } 1777 1778 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1779 { 1780 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1781 struct sk_buff *skb; 1782 1783 while (*p) { 1784 parent = *p; 1785 skb = rb_to_skb(parent); 1786 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1787 p = &parent->rb_left; 1788 continue; 1789 } 1790 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1791 p = &parent->rb_right; 1792 continue; 1793 } 1794 return skb; 1795 } 1796 return NULL; 1797 } 1798 1799 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1800 u32 skip_to_seq) 1801 { 1802 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1803 return skb; 1804 1805 return tcp_sacktag_bsearch(sk, skip_to_seq); 1806 } 1807 1808 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1809 struct sock *sk, 1810 struct tcp_sack_block *next_dup, 1811 struct tcp_sacktag_state *state, 1812 u32 skip_to_seq) 1813 { 1814 if (!next_dup) 1815 return skb; 1816 1817 if (before(next_dup->start_seq, skip_to_seq)) { 1818 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1819 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1820 next_dup->start_seq, next_dup->end_seq, 1821 1); 1822 } 1823 1824 return skb; 1825 } 1826 1827 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1828 { 1829 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1830 } 1831 1832 static int 1833 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1834 u32 prior_snd_una, struct tcp_sacktag_state *state) 1835 { 1836 struct tcp_sock *tp = tcp_sk(sk); 1837 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1838 TCP_SKB_CB(ack_skb)->sacked); 1839 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1840 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1841 struct tcp_sack_block *cache; 1842 struct sk_buff *skb; 1843 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1844 int used_sacks; 1845 bool found_dup_sack = false; 1846 int i, j; 1847 int first_sack_index; 1848 1849 state->flag = 0; 1850 state->reord = tp->snd_nxt; 1851 1852 if (!tp->sacked_out) 1853 tcp_highest_sack_reset(sk); 1854 1855 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1856 num_sacks, prior_snd_una, state); 1857 1858 /* Eliminate too old ACKs, but take into 1859 * account more or less fresh ones, they can 1860 * contain valid SACK info. 1861 */ 1862 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1863 return 0; 1864 1865 if (!tp->packets_out) 1866 goto out; 1867 1868 used_sacks = 0; 1869 first_sack_index = 0; 1870 for (i = 0; i < num_sacks; i++) { 1871 bool dup_sack = !i && found_dup_sack; 1872 1873 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1874 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1875 1876 if (!tcp_is_sackblock_valid(tp, dup_sack, 1877 sp[used_sacks].start_seq, 1878 sp[used_sacks].end_seq)) { 1879 int mib_idx; 1880 1881 if (dup_sack) { 1882 if (!tp->undo_marker) 1883 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1884 else 1885 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1886 } else { 1887 /* Don't count olds caused by ACK reordering */ 1888 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1889 !after(sp[used_sacks].end_seq, tp->snd_una)) 1890 continue; 1891 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1892 } 1893 1894 NET_INC_STATS(sock_net(sk), mib_idx); 1895 if (i == 0) 1896 first_sack_index = -1; 1897 continue; 1898 } 1899 1900 /* Ignore very old stuff early */ 1901 if (!after(sp[used_sacks].end_seq, prior_snd_una)) { 1902 if (i == 0) 1903 first_sack_index = -1; 1904 continue; 1905 } 1906 1907 used_sacks++; 1908 } 1909 1910 /* order SACK blocks to allow in order walk of the retrans queue */ 1911 for (i = used_sacks - 1; i > 0; i--) { 1912 for (j = 0; j < i; j++) { 1913 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1914 swap(sp[j], sp[j + 1]); 1915 1916 /* Track where the first SACK block goes to */ 1917 if (j == first_sack_index) 1918 first_sack_index = j + 1; 1919 } 1920 } 1921 } 1922 1923 state->mss_now = tcp_current_mss(sk); 1924 skb = NULL; 1925 i = 0; 1926 1927 if (!tp->sacked_out) { 1928 /* It's already past, so skip checking against it */ 1929 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1930 } else { 1931 cache = tp->recv_sack_cache; 1932 /* Skip empty blocks in at head of the cache */ 1933 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1934 !cache->end_seq) 1935 cache++; 1936 } 1937 1938 while (i < used_sacks) { 1939 u32 start_seq = sp[i].start_seq; 1940 u32 end_seq = sp[i].end_seq; 1941 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1942 struct tcp_sack_block *next_dup = NULL; 1943 1944 if (found_dup_sack && ((i + 1) == first_sack_index)) 1945 next_dup = &sp[i + 1]; 1946 1947 /* Skip too early cached blocks */ 1948 while (tcp_sack_cache_ok(tp, cache) && 1949 !before(start_seq, cache->end_seq)) 1950 cache++; 1951 1952 /* Can skip some work by looking recv_sack_cache? */ 1953 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1954 after(end_seq, cache->start_seq)) { 1955 1956 /* Head todo? */ 1957 if (before(start_seq, cache->start_seq)) { 1958 skb = tcp_sacktag_skip(skb, sk, start_seq); 1959 skb = tcp_sacktag_walk(skb, sk, next_dup, 1960 state, 1961 start_seq, 1962 cache->start_seq, 1963 dup_sack); 1964 } 1965 1966 /* Rest of the block already fully processed? */ 1967 if (!after(end_seq, cache->end_seq)) 1968 goto advance_sp; 1969 1970 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1971 state, 1972 cache->end_seq); 1973 1974 /* ...tail remains todo... */ 1975 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1976 /* ...but better entrypoint exists! */ 1977 skb = tcp_highest_sack(sk); 1978 if (!skb) 1979 break; 1980 cache++; 1981 goto walk; 1982 } 1983 1984 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 1985 /* Check overlap against next cached too (past this one already) */ 1986 cache++; 1987 continue; 1988 } 1989 1990 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1991 skb = tcp_highest_sack(sk); 1992 if (!skb) 1993 break; 1994 } 1995 skb = tcp_sacktag_skip(skb, sk, start_seq); 1996 1997 walk: 1998 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1999 start_seq, end_seq, dup_sack); 2000 2001 advance_sp: 2002 i++; 2003 } 2004 2005 /* Clear the head of the cache sack blocks so we can skip it next time */ 2006 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 2007 tp->recv_sack_cache[i].start_seq = 0; 2008 tp->recv_sack_cache[i].end_seq = 0; 2009 } 2010 for (j = 0; j < used_sacks; j++) 2011 tp->recv_sack_cache[i++] = sp[j]; 2012 2013 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 2014 tcp_check_sack_reordering(sk, state->reord, 0); 2015 2016 tcp_verify_left_out(tp); 2017 out: 2018 2019 #if FASTRETRANS_DEBUG > 0 2020 WARN_ON((int)tp->sacked_out < 0); 2021 WARN_ON((int)tp->lost_out < 0); 2022 WARN_ON((int)tp->retrans_out < 0); 2023 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 2024 #endif 2025 return state->flag; 2026 } 2027 2028 /* Limits sacked_out so that sum with lost_out isn't ever larger than 2029 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 2030 */ 2031 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 2032 { 2033 u32 holes; 2034 2035 holes = max(tp->lost_out, 1U); 2036 holes = min(holes, tp->packets_out); 2037 2038 if ((tp->sacked_out + holes) > tp->packets_out) { 2039 tp->sacked_out = tp->packets_out - holes; 2040 return true; 2041 } 2042 return false; 2043 } 2044 2045 /* If we receive more dupacks than we expected counting segments 2046 * in assumption of absent reordering, interpret this as reordering. 2047 * The only another reason could be bug in receiver TCP. 2048 */ 2049 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 2050 { 2051 struct tcp_sock *tp = tcp_sk(sk); 2052 2053 if (!tcp_limit_reno_sacked(tp)) 2054 return; 2055 2056 tp->reordering = min_t(u32, tp->packets_out + addend, 2057 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 2058 tp->reord_seen++; 2059 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 2060 } 2061 2062 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 2063 2064 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack) 2065 { 2066 if (num_dupack) { 2067 struct tcp_sock *tp = tcp_sk(sk); 2068 u32 prior_sacked = tp->sacked_out; 2069 s32 delivered; 2070 2071 tp->sacked_out += num_dupack; 2072 tcp_check_reno_reordering(sk, 0); 2073 delivered = tp->sacked_out - prior_sacked; 2074 if (delivered > 0) 2075 tcp_count_delivered(tp, delivered, ece_ack); 2076 tcp_verify_left_out(tp); 2077 } 2078 } 2079 2080 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 2081 2082 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack) 2083 { 2084 struct tcp_sock *tp = tcp_sk(sk); 2085 2086 if (acked > 0) { 2087 /* One ACK acked hole. The rest eat duplicate ACKs. */ 2088 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1), 2089 ece_ack); 2090 if (acked - 1 >= tp->sacked_out) 2091 tp->sacked_out = 0; 2092 else 2093 tp->sacked_out -= acked - 1; 2094 } 2095 tcp_check_reno_reordering(sk, acked); 2096 tcp_verify_left_out(tp); 2097 } 2098 2099 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 2100 { 2101 tp->sacked_out = 0; 2102 } 2103 2104 void tcp_clear_retrans(struct tcp_sock *tp) 2105 { 2106 tp->retrans_out = 0; 2107 tp->lost_out = 0; 2108 tp->undo_marker = 0; 2109 tp->undo_retrans = -1; 2110 tp->sacked_out = 0; 2111 } 2112 2113 static inline void tcp_init_undo(struct tcp_sock *tp) 2114 { 2115 tp->undo_marker = tp->snd_una; 2116 2117 /* Retransmission still in flight may cause DSACKs later. */ 2118 /* First, account for regular retransmits in flight: */ 2119 tp->undo_retrans = tp->retrans_out; 2120 /* Next, account for TLP retransmits in flight: */ 2121 if (tp->tlp_high_seq && tp->tlp_retrans) 2122 tp->undo_retrans++; 2123 /* Finally, avoid 0, because undo_retrans==0 means "can undo now": */ 2124 if (!tp->undo_retrans) 2125 tp->undo_retrans = -1; 2126 } 2127 2128 static bool tcp_is_rack(const struct sock *sk) 2129 { 2130 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) & 2131 TCP_RACK_LOSS_DETECTION; 2132 } 2133 2134 /* If we detect SACK reneging, forget all SACK information 2135 * and reset tags completely, otherwise preserve SACKs. If receiver 2136 * dropped its ofo queue, we will know this due to reneging detection. 2137 */ 2138 static void tcp_timeout_mark_lost(struct sock *sk) 2139 { 2140 struct tcp_sock *tp = tcp_sk(sk); 2141 struct sk_buff *skb, *head; 2142 bool is_reneg; /* is receiver reneging on SACKs? */ 2143 2144 head = tcp_rtx_queue_head(sk); 2145 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 2146 if (is_reneg) { 2147 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2148 tp->sacked_out = 0; 2149 /* Mark SACK reneging until we recover from this loss event. */ 2150 tp->is_sack_reneg = 1; 2151 } else if (tcp_is_reno(tp)) { 2152 tcp_reset_reno_sack(tp); 2153 } 2154 2155 skb = head; 2156 skb_rbtree_walk_from(skb) { 2157 if (is_reneg) 2158 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2159 else if (tcp_is_rack(sk) && skb != head && 2160 tcp_rack_skb_timeout(tp, skb, 0) > 0) 2161 continue; /* Don't mark recently sent ones lost yet */ 2162 tcp_mark_skb_lost(sk, skb); 2163 } 2164 tcp_verify_left_out(tp); 2165 tcp_clear_all_retrans_hints(tp); 2166 } 2167 2168 /* Enter Loss state. */ 2169 void tcp_enter_loss(struct sock *sk) 2170 { 2171 const struct inet_connection_sock *icsk = inet_csk(sk); 2172 struct tcp_sock *tp = tcp_sk(sk); 2173 struct net *net = sock_net(sk); 2174 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 2175 u8 reordering; 2176 2177 tcp_timeout_mark_lost(sk); 2178 2179 /* Reduce ssthresh if it has not yet been made inside this window. */ 2180 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 2181 !after(tp->high_seq, tp->snd_una) || 2182 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2183 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2184 tp->prior_cwnd = tcp_snd_cwnd(tp); 2185 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2186 tcp_ca_event(sk, CA_EVENT_LOSS); 2187 tcp_init_undo(tp); 2188 } 2189 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1); 2190 tp->snd_cwnd_cnt = 0; 2191 tp->snd_cwnd_stamp = tcp_jiffies32; 2192 2193 /* Timeout in disordered state after receiving substantial DUPACKs 2194 * suggests that the degree of reordering is over-estimated. 2195 */ 2196 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering); 2197 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2198 tp->sacked_out >= reordering) 2199 tp->reordering = min_t(unsigned int, tp->reordering, 2200 reordering); 2201 2202 tcp_set_ca_state(sk, TCP_CA_Loss); 2203 tp->high_seq = tp->snd_nxt; 2204 tp->tlp_high_seq = 0; 2205 tcp_ecn_queue_cwr(tp); 2206 2207 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2208 * loss recovery is underway except recurring timeout(s) on 2209 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2210 */ 2211 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) && 2212 (new_recovery || icsk->icsk_retransmits) && 2213 !inet_csk(sk)->icsk_mtup.probe_size; 2214 } 2215 2216 /* If ACK arrived pointing to a remembered SACK, it means that our 2217 * remembered SACKs do not reflect real state of receiver i.e. 2218 * receiver _host_ is heavily congested (or buggy). 2219 * 2220 * To avoid big spurious retransmission bursts due to transient SACK 2221 * scoreboard oddities that look like reneging, we give the receiver a 2222 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2223 * restore sanity to the SACK scoreboard. If the apparent reneging 2224 * persists until this RTO then we'll clear the SACK scoreboard. 2225 */ 2226 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag) 2227 { 2228 if (*ack_flag & FLAG_SACK_RENEGING && 2229 *ack_flag & FLAG_SND_UNA_ADVANCED) { 2230 struct tcp_sock *tp = tcp_sk(sk); 2231 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2232 msecs_to_jiffies(10)); 2233 2234 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2235 delay, TCP_RTO_MAX); 2236 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 2237 return true; 2238 } 2239 return false; 2240 } 2241 2242 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2243 * counter when SACK is enabled (without SACK, sacked_out is used for 2244 * that purpose). 2245 * 2246 * With reordering, holes may still be in flight, so RFC3517 recovery 2247 * uses pure sacked_out (total number of SACKed segments) even though 2248 * it violates the RFC that uses duplicate ACKs, often these are equal 2249 * but when e.g. out-of-window ACKs or packet duplication occurs, 2250 * they differ. Since neither occurs due to loss, TCP should really 2251 * ignore them. 2252 */ 2253 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2254 { 2255 return tp->sacked_out + 1; 2256 } 2257 2258 /* Linux NewReno/SACK/ECN state machine. 2259 * -------------------------------------- 2260 * 2261 * "Open" Normal state, no dubious events, fast path. 2262 * "Disorder" In all the respects it is "Open", 2263 * but requires a bit more attention. It is entered when 2264 * we see some SACKs or dupacks. It is split of "Open" 2265 * mainly to move some processing from fast path to slow one. 2266 * "CWR" CWND was reduced due to some Congestion Notification event. 2267 * It can be ECN, ICMP source quench, local device congestion. 2268 * "Recovery" CWND was reduced, we are fast-retransmitting. 2269 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2270 * 2271 * tcp_fastretrans_alert() is entered: 2272 * - each incoming ACK, if state is not "Open" 2273 * - when arrived ACK is unusual, namely: 2274 * * SACK 2275 * * Duplicate ACK. 2276 * * ECN ECE. 2277 * 2278 * Counting packets in flight is pretty simple. 2279 * 2280 * in_flight = packets_out - left_out + retrans_out 2281 * 2282 * packets_out is SND.NXT-SND.UNA counted in packets. 2283 * 2284 * retrans_out is number of retransmitted segments. 2285 * 2286 * left_out is number of segments left network, but not ACKed yet. 2287 * 2288 * left_out = sacked_out + lost_out 2289 * 2290 * sacked_out: Packets, which arrived to receiver out of order 2291 * and hence not ACKed. With SACKs this number is simply 2292 * amount of SACKed data. Even without SACKs 2293 * it is easy to give pretty reliable estimate of this number, 2294 * counting duplicate ACKs. 2295 * 2296 * lost_out: Packets lost by network. TCP has no explicit 2297 * "loss notification" feedback from network (for now). 2298 * It means that this number can be only _guessed_. 2299 * Actually, it is the heuristics to predict lossage that 2300 * distinguishes different algorithms. 2301 * 2302 * F.e. after RTO, when all the queue is considered as lost, 2303 * lost_out = packets_out and in_flight = retrans_out. 2304 * 2305 * Essentially, we have now a few algorithms detecting 2306 * lost packets. 2307 * 2308 * If the receiver supports SACK: 2309 * 2310 * RFC6675/3517: It is the conventional algorithm. A packet is 2311 * considered lost if the number of higher sequence packets 2312 * SACKed is greater than or equal the DUPACK thoreshold 2313 * (reordering). This is implemented in tcp_mark_head_lost and 2314 * tcp_update_scoreboard. 2315 * 2316 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2317 * (2017-) that checks timing instead of counting DUPACKs. 2318 * Essentially a packet is considered lost if it's not S/ACKed 2319 * after RTT + reordering_window, where both metrics are 2320 * dynamically measured and adjusted. This is implemented in 2321 * tcp_rack_mark_lost. 2322 * 2323 * If the receiver does not support SACK: 2324 * 2325 * NewReno (RFC6582): in Recovery we assume that one segment 2326 * is lost (classic Reno). While we are in Recovery and 2327 * a partial ACK arrives, we assume that one more packet 2328 * is lost (NewReno). This heuristics are the same in NewReno 2329 * and SACK. 2330 * 2331 * Really tricky (and requiring careful tuning) part of algorithm 2332 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2333 * The first determines the moment _when_ we should reduce CWND and, 2334 * hence, slow down forward transmission. In fact, it determines the moment 2335 * when we decide that hole is caused by loss, rather than by a reorder. 2336 * 2337 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2338 * holes, caused by lost packets. 2339 * 2340 * And the most logically complicated part of algorithm is undo 2341 * heuristics. We detect false retransmits due to both too early 2342 * fast retransmit (reordering) and underestimated RTO, analyzing 2343 * timestamps and D-SACKs. When we detect that some segments were 2344 * retransmitted by mistake and CWND reduction was wrong, we undo 2345 * window reduction and abort recovery phase. This logic is hidden 2346 * inside several functions named tcp_try_undo_<something>. 2347 */ 2348 2349 /* This function decides, when we should leave Disordered state 2350 * and enter Recovery phase, reducing congestion window. 2351 * 2352 * Main question: may we further continue forward transmission 2353 * with the same cwnd? 2354 */ 2355 static bool tcp_time_to_recover(struct sock *sk, int flag) 2356 { 2357 struct tcp_sock *tp = tcp_sk(sk); 2358 2359 /* Trick#1: The loss is proven. */ 2360 if (tp->lost_out) 2361 return true; 2362 2363 /* Not-A-Trick#2 : Classic rule... */ 2364 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2365 return true; 2366 2367 return false; 2368 } 2369 2370 /* Detect loss in event "A" above by marking head of queue up as lost. 2371 * For RFC3517 SACK, a segment is considered lost if it 2372 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2373 * the maximum SACKed segments to pass before reaching this limit. 2374 */ 2375 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2376 { 2377 struct tcp_sock *tp = tcp_sk(sk); 2378 struct sk_buff *skb; 2379 int cnt; 2380 /* Use SACK to deduce losses of new sequences sent during recovery */ 2381 const u32 loss_high = tp->snd_nxt; 2382 2383 WARN_ON(packets > tp->packets_out); 2384 skb = tp->lost_skb_hint; 2385 if (skb) { 2386 /* Head already handled? */ 2387 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2388 return; 2389 cnt = tp->lost_cnt_hint; 2390 } else { 2391 skb = tcp_rtx_queue_head(sk); 2392 cnt = 0; 2393 } 2394 2395 skb_rbtree_walk_from(skb) { 2396 /* TODO: do this better */ 2397 /* this is not the most efficient way to do this... */ 2398 tp->lost_skb_hint = skb; 2399 tp->lost_cnt_hint = cnt; 2400 2401 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2402 break; 2403 2404 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2405 cnt += tcp_skb_pcount(skb); 2406 2407 if (cnt > packets) 2408 break; 2409 2410 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST)) 2411 tcp_mark_skb_lost(sk, skb); 2412 2413 if (mark_head) 2414 break; 2415 } 2416 tcp_verify_left_out(tp); 2417 } 2418 2419 /* Account newly detected lost packet(s) */ 2420 2421 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2422 { 2423 struct tcp_sock *tp = tcp_sk(sk); 2424 2425 if (tcp_is_sack(tp)) { 2426 int sacked_upto = tp->sacked_out - tp->reordering; 2427 if (sacked_upto >= 0) 2428 tcp_mark_head_lost(sk, sacked_upto, 0); 2429 else if (fast_rexmit) 2430 tcp_mark_head_lost(sk, 1, 1); 2431 } 2432 } 2433 2434 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2435 { 2436 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2437 before(tp->rx_opt.rcv_tsecr, when); 2438 } 2439 2440 /* skb is spurious retransmitted if the returned timestamp echo 2441 * reply is prior to the skb transmission time 2442 */ 2443 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2444 const struct sk_buff *skb) 2445 { 2446 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2447 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2448 } 2449 2450 /* Nothing was retransmitted or returned timestamp is less 2451 * than timestamp of the first retransmission. 2452 */ 2453 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2454 { 2455 return tp->retrans_stamp && 2456 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2457 } 2458 2459 /* Undo procedures. */ 2460 2461 /* We can clear retrans_stamp when there are no retransmissions in the 2462 * window. It would seem that it is trivially available for us in 2463 * tp->retrans_out, however, that kind of assumptions doesn't consider 2464 * what will happen if errors occur when sending retransmission for the 2465 * second time. ...It could the that such segment has only 2466 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2467 * the head skb is enough except for some reneging corner cases that 2468 * are not worth the effort. 2469 * 2470 * Main reason for all this complexity is the fact that connection dying 2471 * time now depends on the validity of the retrans_stamp, in particular, 2472 * that successive retransmissions of a segment must not advance 2473 * retrans_stamp under any conditions. 2474 */ 2475 static bool tcp_any_retrans_done(const struct sock *sk) 2476 { 2477 const struct tcp_sock *tp = tcp_sk(sk); 2478 struct sk_buff *skb; 2479 2480 if (tp->retrans_out) 2481 return true; 2482 2483 skb = tcp_rtx_queue_head(sk); 2484 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2485 return true; 2486 2487 return false; 2488 } 2489 2490 static void DBGUNDO(struct sock *sk, const char *msg) 2491 { 2492 #if FASTRETRANS_DEBUG > 1 2493 struct tcp_sock *tp = tcp_sk(sk); 2494 struct inet_sock *inet = inet_sk(sk); 2495 2496 if (sk->sk_family == AF_INET) { 2497 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2498 msg, 2499 &inet->inet_daddr, ntohs(inet->inet_dport), 2500 tcp_snd_cwnd(tp), tcp_left_out(tp), 2501 tp->snd_ssthresh, tp->prior_ssthresh, 2502 tp->packets_out); 2503 } 2504 #if IS_ENABLED(CONFIG_IPV6) 2505 else if (sk->sk_family == AF_INET6) { 2506 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2507 msg, 2508 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2509 tcp_snd_cwnd(tp), tcp_left_out(tp), 2510 tp->snd_ssthresh, tp->prior_ssthresh, 2511 tp->packets_out); 2512 } 2513 #endif 2514 #endif 2515 } 2516 2517 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2518 { 2519 struct tcp_sock *tp = tcp_sk(sk); 2520 2521 if (unmark_loss) { 2522 struct sk_buff *skb; 2523 2524 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2525 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2526 } 2527 tp->lost_out = 0; 2528 tcp_clear_all_retrans_hints(tp); 2529 } 2530 2531 if (tp->prior_ssthresh) { 2532 const struct inet_connection_sock *icsk = inet_csk(sk); 2533 2534 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk)); 2535 2536 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2537 tp->snd_ssthresh = tp->prior_ssthresh; 2538 tcp_ecn_withdraw_cwr(tp); 2539 } 2540 } 2541 tp->snd_cwnd_stamp = tcp_jiffies32; 2542 tp->undo_marker = 0; 2543 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2544 } 2545 2546 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2547 { 2548 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2549 } 2550 2551 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk) 2552 { 2553 struct tcp_sock *tp = tcp_sk(sk); 2554 2555 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2556 /* Hold old state until something *above* high_seq 2557 * is ACKed. For Reno it is MUST to prevent false 2558 * fast retransmits (RFC2582). SACK TCP is safe. */ 2559 if (!tcp_any_retrans_done(sk)) 2560 tp->retrans_stamp = 0; 2561 return true; 2562 } 2563 return false; 2564 } 2565 2566 /* People celebrate: "We love our President!" */ 2567 static bool tcp_try_undo_recovery(struct sock *sk) 2568 { 2569 struct tcp_sock *tp = tcp_sk(sk); 2570 2571 if (tcp_may_undo(tp)) { 2572 int mib_idx; 2573 2574 /* Happy end! We did not retransmit anything 2575 * or our original transmission succeeded. 2576 */ 2577 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2578 tcp_undo_cwnd_reduction(sk, false); 2579 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2580 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2581 else 2582 mib_idx = LINUX_MIB_TCPFULLUNDO; 2583 2584 NET_INC_STATS(sock_net(sk), mib_idx); 2585 } else if (tp->rack.reo_wnd_persist) { 2586 tp->rack.reo_wnd_persist--; 2587 } 2588 if (tcp_is_non_sack_preventing_reopen(sk)) 2589 return true; 2590 tcp_set_ca_state(sk, TCP_CA_Open); 2591 tp->is_sack_reneg = 0; 2592 return false; 2593 } 2594 2595 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2596 static bool tcp_try_undo_dsack(struct sock *sk) 2597 { 2598 struct tcp_sock *tp = tcp_sk(sk); 2599 2600 if (tp->undo_marker && !tp->undo_retrans) { 2601 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2602 tp->rack.reo_wnd_persist + 1); 2603 DBGUNDO(sk, "D-SACK"); 2604 tcp_undo_cwnd_reduction(sk, false); 2605 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2606 return true; 2607 } 2608 return false; 2609 } 2610 2611 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2612 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2613 { 2614 struct tcp_sock *tp = tcp_sk(sk); 2615 2616 if (frto_undo || tcp_may_undo(tp)) { 2617 tcp_undo_cwnd_reduction(sk, true); 2618 2619 DBGUNDO(sk, "partial loss"); 2620 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2621 if (frto_undo) 2622 NET_INC_STATS(sock_net(sk), 2623 LINUX_MIB_TCPSPURIOUSRTOS); 2624 inet_csk(sk)->icsk_retransmits = 0; 2625 if (tcp_is_non_sack_preventing_reopen(sk)) 2626 return true; 2627 if (frto_undo || tcp_is_sack(tp)) { 2628 tcp_set_ca_state(sk, TCP_CA_Open); 2629 tp->is_sack_reneg = 0; 2630 } 2631 return true; 2632 } 2633 return false; 2634 } 2635 2636 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2637 * It computes the number of packets to send (sndcnt) based on packets newly 2638 * delivered: 2639 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2640 * cwnd reductions across a full RTT. 2641 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2642 * But when SND_UNA is acked without further losses, 2643 * slow starts cwnd up to ssthresh to speed up the recovery. 2644 */ 2645 static void tcp_init_cwnd_reduction(struct sock *sk) 2646 { 2647 struct tcp_sock *tp = tcp_sk(sk); 2648 2649 tp->high_seq = tp->snd_nxt; 2650 tp->tlp_high_seq = 0; 2651 tp->snd_cwnd_cnt = 0; 2652 tp->prior_cwnd = tcp_snd_cwnd(tp); 2653 tp->prr_delivered = 0; 2654 tp->prr_out = 0; 2655 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2656 tcp_ecn_queue_cwr(tp); 2657 } 2658 2659 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag) 2660 { 2661 struct tcp_sock *tp = tcp_sk(sk); 2662 int sndcnt = 0; 2663 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2664 2665 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2666 return; 2667 2668 tp->prr_delivered += newly_acked_sacked; 2669 if (delta < 0) { 2670 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2671 tp->prior_cwnd - 1; 2672 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2673 } else { 2674 sndcnt = max_t(int, tp->prr_delivered - tp->prr_out, 2675 newly_acked_sacked); 2676 if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) 2677 sndcnt++; 2678 sndcnt = min(delta, sndcnt); 2679 } 2680 /* Force a fast retransmit upon entering fast recovery */ 2681 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2682 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt); 2683 } 2684 2685 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2686 { 2687 struct tcp_sock *tp = tcp_sk(sk); 2688 2689 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2690 return; 2691 2692 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2693 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2694 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2695 tcp_snd_cwnd_set(tp, tp->snd_ssthresh); 2696 tp->snd_cwnd_stamp = tcp_jiffies32; 2697 } 2698 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2699 } 2700 2701 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2702 void tcp_enter_cwr(struct sock *sk) 2703 { 2704 struct tcp_sock *tp = tcp_sk(sk); 2705 2706 tp->prior_ssthresh = 0; 2707 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2708 tp->undo_marker = 0; 2709 tcp_init_cwnd_reduction(sk); 2710 tcp_set_ca_state(sk, TCP_CA_CWR); 2711 } 2712 } 2713 EXPORT_SYMBOL(tcp_enter_cwr); 2714 2715 static void tcp_try_keep_open(struct sock *sk) 2716 { 2717 struct tcp_sock *tp = tcp_sk(sk); 2718 int state = TCP_CA_Open; 2719 2720 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2721 state = TCP_CA_Disorder; 2722 2723 if (inet_csk(sk)->icsk_ca_state != state) { 2724 tcp_set_ca_state(sk, state); 2725 tp->high_seq = tp->snd_nxt; 2726 } 2727 } 2728 2729 static void tcp_try_to_open(struct sock *sk, int flag) 2730 { 2731 struct tcp_sock *tp = tcp_sk(sk); 2732 2733 tcp_verify_left_out(tp); 2734 2735 if (!tcp_any_retrans_done(sk)) 2736 tp->retrans_stamp = 0; 2737 2738 if (flag & FLAG_ECE) 2739 tcp_enter_cwr(sk); 2740 2741 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2742 tcp_try_keep_open(sk); 2743 } 2744 } 2745 2746 static void tcp_mtup_probe_failed(struct sock *sk) 2747 { 2748 struct inet_connection_sock *icsk = inet_csk(sk); 2749 2750 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2751 icsk->icsk_mtup.probe_size = 0; 2752 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2753 } 2754 2755 static void tcp_mtup_probe_success(struct sock *sk) 2756 { 2757 struct tcp_sock *tp = tcp_sk(sk); 2758 struct inet_connection_sock *icsk = inet_csk(sk); 2759 u64 val; 2760 2761 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2762 2763 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache); 2764 do_div(val, icsk->icsk_mtup.probe_size); 2765 DEBUG_NET_WARN_ON_ONCE((u32)val != val); 2766 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val)); 2767 2768 tp->snd_cwnd_cnt = 0; 2769 tp->snd_cwnd_stamp = tcp_jiffies32; 2770 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2771 2772 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2773 icsk->icsk_mtup.probe_size = 0; 2774 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2775 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2776 } 2777 2778 /* Sometimes we deduce that packets have been dropped due to reasons other than 2779 * congestion, like path MTU reductions or failed client TFO attempts. In these 2780 * cases we call this function to retransmit as many packets as cwnd allows, 2781 * without reducing cwnd. Given that retransmits will set retrans_stamp to a 2782 * non-zero value (and may do so in a later calling context due to TSQ), we 2783 * also enter CA_Loss so that we track when all retransmitted packets are ACKed 2784 * and clear retrans_stamp when that happens (to ensure later recurring RTOs 2785 * are using the correct retrans_stamp and don't declare ETIMEDOUT 2786 * prematurely). 2787 */ 2788 static void tcp_non_congestion_loss_retransmit(struct sock *sk) 2789 { 2790 const struct inet_connection_sock *icsk = inet_csk(sk); 2791 struct tcp_sock *tp = tcp_sk(sk); 2792 2793 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2794 tp->high_seq = tp->snd_nxt; 2795 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2796 tp->prior_ssthresh = 0; 2797 tp->undo_marker = 0; 2798 tcp_set_ca_state(sk, TCP_CA_Loss); 2799 } 2800 tcp_xmit_retransmit_queue(sk); 2801 } 2802 2803 /* Do a simple retransmit without using the backoff mechanisms in 2804 * tcp_timer. This is used for path mtu discovery. 2805 * The socket is already locked here. 2806 */ 2807 void tcp_simple_retransmit(struct sock *sk) 2808 { 2809 struct tcp_sock *tp = tcp_sk(sk); 2810 struct sk_buff *skb; 2811 int mss; 2812 2813 /* A fastopen SYN request is stored as two separate packets within 2814 * the retransmit queue, this is done by tcp_send_syn_data(). 2815 * As a result simply checking the MSS of the frames in the queue 2816 * will not work for the SYN packet. 2817 * 2818 * Us being here is an indication of a path MTU issue so we can 2819 * assume that the fastopen SYN was lost and just mark all the 2820 * frames in the retransmit queue as lost. We will use an MSS of 2821 * -1 to mark all frames as lost, otherwise compute the current MSS. 2822 */ 2823 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT) 2824 mss = -1; 2825 else 2826 mss = tcp_current_mss(sk); 2827 2828 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2829 if (tcp_skb_seglen(skb) > mss) 2830 tcp_mark_skb_lost(sk, skb); 2831 } 2832 2833 tcp_clear_retrans_hints_partial(tp); 2834 2835 if (!tp->lost_out) 2836 return; 2837 2838 if (tcp_is_reno(tp)) 2839 tcp_limit_reno_sacked(tp); 2840 2841 tcp_verify_left_out(tp); 2842 2843 /* Don't muck with the congestion window here. 2844 * Reason is that we do not increase amount of _data_ 2845 * in network, but units changed and effective 2846 * cwnd/ssthresh really reduced now. 2847 */ 2848 tcp_non_congestion_loss_retransmit(sk); 2849 } 2850 EXPORT_SYMBOL(tcp_simple_retransmit); 2851 2852 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2853 { 2854 struct tcp_sock *tp = tcp_sk(sk); 2855 int mib_idx; 2856 2857 if (tcp_is_reno(tp)) 2858 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2859 else 2860 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2861 2862 NET_INC_STATS(sock_net(sk), mib_idx); 2863 2864 tp->prior_ssthresh = 0; 2865 tcp_init_undo(tp); 2866 2867 if (!tcp_in_cwnd_reduction(sk)) { 2868 if (!ece_ack) 2869 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2870 tcp_init_cwnd_reduction(sk); 2871 } 2872 tcp_set_ca_state(sk, TCP_CA_Recovery); 2873 } 2874 2875 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2876 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2877 */ 2878 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2879 int *rexmit) 2880 { 2881 struct tcp_sock *tp = tcp_sk(sk); 2882 bool recovered = !before(tp->snd_una, tp->high_seq); 2883 2884 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 2885 tcp_try_undo_loss(sk, false)) 2886 return; 2887 2888 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2889 /* Step 3.b. A timeout is spurious if not all data are 2890 * lost, i.e., never-retransmitted data are (s)acked. 2891 */ 2892 if ((flag & FLAG_ORIG_SACK_ACKED) && 2893 tcp_try_undo_loss(sk, true)) 2894 return; 2895 2896 if (after(tp->snd_nxt, tp->high_seq)) { 2897 if (flag & FLAG_DATA_SACKED || num_dupack) 2898 tp->frto = 0; /* Step 3.a. loss was real */ 2899 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2900 tp->high_seq = tp->snd_nxt; 2901 /* Step 2.b. Try send new data (but deferred until cwnd 2902 * is updated in tcp_ack()). Otherwise fall back to 2903 * the conventional recovery. 2904 */ 2905 if (!tcp_write_queue_empty(sk) && 2906 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2907 *rexmit = REXMIT_NEW; 2908 return; 2909 } 2910 tp->frto = 0; 2911 } 2912 } 2913 2914 if (recovered) { 2915 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2916 tcp_try_undo_recovery(sk); 2917 return; 2918 } 2919 if (tcp_is_reno(tp)) { 2920 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2921 * delivered. Lower inflight to clock out (re)transmissions. 2922 */ 2923 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2924 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE); 2925 else if (flag & FLAG_SND_UNA_ADVANCED) 2926 tcp_reset_reno_sack(tp); 2927 } 2928 *rexmit = REXMIT_LOST; 2929 } 2930 2931 static bool tcp_force_fast_retransmit(struct sock *sk) 2932 { 2933 struct tcp_sock *tp = tcp_sk(sk); 2934 2935 return after(tcp_highest_sack_seq(tp), 2936 tp->snd_una + tp->reordering * tp->mss_cache); 2937 } 2938 2939 /* Undo during fast recovery after partial ACK. */ 2940 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una, 2941 bool *do_lost) 2942 { 2943 struct tcp_sock *tp = tcp_sk(sk); 2944 2945 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2946 /* Plain luck! Hole if filled with delayed 2947 * packet, rather than with a retransmit. Check reordering. 2948 */ 2949 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2950 2951 /* We are getting evidence that the reordering degree is higher 2952 * than we realized. If there are no retransmits out then we 2953 * can undo. Otherwise we clock out new packets but do not 2954 * mark more packets lost or retransmit more. 2955 */ 2956 if (tp->retrans_out) 2957 return true; 2958 2959 if (!tcp_any_retrans_done(sk)) 2960 tp->retrans_stamp = 0; 2961 2962 DBGUNDO(sk, "partial recovery"); 2963 tcp_undo_cwnd_reduction(sk, true); 2964 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2965 tcp_try_keep_open(sk); 2966 } else { 2967 /* Partial ACK arrived. Force fast retransmit. */ 2968 *do_lost = tcp_force_fast_retransmit(sk); 2969 } 2970 return false; 2971 } 2972 2973 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2974 { 2975 struct tcp_sock *tp = tcp_sk(sk); 2976 2977 if (tcp_rtx_queue_empty(sk)) 2978 return; 2979 2980 if (unlikely(tcp_is_reno(tp))) { 2981 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2982 } else if (tcp_is_rack(sk)) { 2983 u32 prior_retrans = tp->retrans_out; 2984 2985 if (tcp_rack_mark_lost(sk)) 2986 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 2987 if (prior_retrans > tp->retrans_out) 2988 *ack_flag |= FLAG_LOST_RETRANS; 2989 } 2990 } 2991 2992 /* Process an event, which can update packets-in-flight not trivially. 2993 * Main goal of this function is to calculate new estimate for left_out, 2994 * taking into account both packets sitting in receiver's buffer and 2995 * packets lost by network. 2996 * 2997 * Besides that it updates the congestion state when packet loss or ECN 2998 * is detected. But it does not reduce the cwnd, it is done by the 2999 * congestion control later. 3000 * 3001 * It does _not_ decide what to send, it is made in function 3002 * tcp_xmit_retransmit_queue(). 3003 */ 3004 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 3005 int num_dupack, int *ack_flag, int *rexmit) 3006 { 3007 struct inet_connection_sock *icsk = inet_csk(sk); 3008 struct tcp_sock *tp = tcp_sk(sk); 3009 int fast_rexmit = 0, flag = *ack_flag; 3010 bool ece_ack = flag & FLAG_ECE; 3011 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && 3012 tcp_force_fast_retransmit(sk)); 3013 3014 if (!tp->packets_out && tp->sacked_out) 3015 tp->sacked_out = 0; 3016 3017 /* Now state machine starts. 3018 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 3019 if (ece_ack) 3020 tp->prior_ssthresh = 0; 3021 3022 /* B. In all the states check for reneging SACKs. */ 3023 if (tcp_check_sack_reneging(sk, ack_flag)) 3024 return; 3025 3026 /* C. Check consistency of the current state. */ 3027 tcp_verify_left_out(tp); 3028 3029 /* D. Check state exit conditions. State can be terminated 3030 * when high_seq is ACKed. */ 3031 if (icsk->icsk_ca_state == TCP_CA_Open) { 3032 WARN_ON(tp->retrans_out != 0 && !tp->syn_data); 3033 tp->retrans_stamp = 0; 3034 } else if (!before(tp->snd_una, tp->high_seq)) { 3035 switch (icsk->icsk_ca_state) { 3036 case TCP_CA_CWR: 3037 /* CWR is to be held something *above* high_seq 3038 * is ACKed for CWR bit to reach receiver. */ 3039 if (tp->snd_una != tp->high_seq) { 3040 tcp_end_cwnd_reduction(sk); 3041 tcp_set_ca_state(sk, TCP_CA_Open); 3042 } 3043 break; 3044 3045 case TCP_CA_Recovery: 3046 if (tcp_is_reno(tp)) 3047 tcp_reset_reno_sack(tp); 3048 if (tcp_try_undo_recovery(sk)) 3049 return; 3050 tcp_end_cwnd_reduction(sk); 3051 break; 3052 } 3053 } 3054 3055 /* E. Process state. */ 3056 switch (icsk->icsk_ca_state) { 3057 case TCP_CA_Recovery: 3058 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 3059 if (tcp_is_reno(tp)) 3060 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3061 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost)) 3062 return; 3063 3064 if (tcp_try_undo_dsack(sk)) 3065 tcp_try_to_open(sk, flag); 3066 3067 tcp_identify_packet_loss(sk, ack_flag); 3068 if (icsk->icsk_ca_state != TCP_CA_Recovery) { 3069 if (!tcp_time_to_recover(sk, flag)) 3070 return; 3071 /* Undo reverts the recovery state. If loss is evident, 3072 * starts a new recovery (e.g. reordering then loss); 3073 */ 3074 tcp_enter_recovery(sk, ece_ack); 3075 } 3076 break; 3077 case TCP_CA_Loss: 3078 tcp_process_loss(sk, flag, num_dupack, rexmit); 3079 tcp_identify_packet_loss(sk, ack_flag); 3080 if (!(icsk->icsk_ca_state == TCP_CA_Open || 3081 (*ack_flag & FLAG_LOST_RETRANS))) 3082 return; 3083 /* Change state if cwnd is undone or retransmits are lost */ 3084 fallthrough; 3085 default: 3086 if (tcp_is_reno(tp)) { 3087 if (flag & FLAG_SND_UNA_ADVANCED) 3088 tcp_reset_reno_sack(tp); 3089 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3090 } 3091 3092 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 3093 tcp_try_undo_dsack(sk); 3094 3095 tcp_identify_packet_loss(sk, ack_flag); 3096 if (!tcp_time_to_recover(sk, flag)) { 3097 tcp_try_to_open(sk, flag); 3098 return; 3099 } 3100 3101 /* MTU probe failure: don't reduce cwnd */ 3102 if (icsk->icsk_ca_state < TCP_CA_CWR && 3103 icsk->icsk_mtup.probe_size && 3104 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3105 tcp_mtup_probe_failed(sk); 3106 /* Restores the reduction we did in tcp_mtup_probe() */ 3107 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1); 3108 tcp_simple_retransmit(sk); 3109 return; 3110 } 3111 3112 /* Otherwise enter Recovery state */ 3113 tcp_enter_recovery(sk, ece_ack); 3114 fast_rexmit = 1; 3115 } 3116 3117 if (!tcp_is_rack(sk) && do_lost) 3118 tcp_update_scoreboard(sk, fast_rexmit); 3119 *rexmit = REXMIT_LOST; 3120 } 3121 3122 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 3123 { 3124 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ; 3125 struct tcp_sock *tp = tcp_sk(sk); 3126 3127 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 3128 /* If the remote keeps returning delayed ACKs, eventually 3129 * the min filter would pick it up and overestimate the 3130 * prop. delay when it expires. Skip suspected delayed ACKs. 3131 */ 3132 return; 3133 } 3134 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 3135 rtt_us ? : jiffies_to_usecs(1)); 3136 } 3137 3138 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 3139 long seq_rtt_us, long sack_rtt_us, 3140 long ca_rtt_us, struct rate_sample *rs) 3141 { 3142 const struct tcp_sock *tp = tcp_sk(sk); 3143 3144 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 3145 * broken middle-boxes or peers may corrupt TS-ECR fields. But 3146 * Karn's algorithm forbids taking RTT if some retransmitted data 3147 * is acked (RFC6298). 3148 */ 3149 if (seq_rtt_us < 0) 3150 seq_rtt_us = sack_rtt_us; 3151 3152 /* RTTM Rule: A TSecr value received in a segment is used to 3153 * update the averaged RTT measurement only if the segment 3154 * acknowledges some new data, i.e., only if it advances the 3155 * left edge of the send window. 3156 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3157 */ 3158 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 3159 flag & FLAG_ACKED) { 3160 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 3161 3162 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 3163 if (!delta) 3164 delta = 1; 3165 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 3166 ca_rtt_us = seq_rtt_us; 3167 } 3168 } 3169 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 3170 if (seq_rtt_us < 0) 3171 return false; 3172 3173 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 3174 * always taken together with ACK, SACK, or TS-opts. Any negative 3175 * values will be skipped with the seq_rtt_us < 0 check above. 3176 */ 3177 tcp_update_rtt_min(sk, ca_rtt_us, flag); 3178 tcp_rtt_estimator(sk, seq_rtt_us); 3179 tcp_set_rto(sk); 3180 3181 /* RFC6298: only reset backoff on valid RTT measurement. */ 3182 inet_csk(sk)->icsk_backoff = 0; 3183 return true; 3184 } 3185 3186 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 3187 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 3188 { 3189 struct rate_sample rs; 3190 long rtt_us = -1L; 3191 3192 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 3193 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 3194 3195 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 3196 } 3197 3198 3199 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 3200 { 3201 const struct inet_connection_sock *icsk = inet_csk(sk); 3202 3203 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 3204 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 3205 } 3206 3207 /* Restart timer after forward progress on connection. 3208 * RFC2988 recommends to restart timer to now+rto. 3209 */ 3210 void tcp_rearm_rto(struct sock *sk) 3211 { 3212 const struct inet_connection_sock *icsk = inet_csk(sk); 3213 struct tcp_sock *tp = tcp_sk(sk); 3214 3215 /* If the retrans timer is currently being used by Fast Open 3216 * for SYN-ACK retrans purpose, stay put. 3217 */ 3218 if (rcu_access_pointer(tp->fastopen_rsk)) 3219 return; 3220 3221 if (!tp->packets_out) { 3222 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3223 } else { 3224 u32 rto = inet_csk(sk)->icsk_rto; 3225 /* Offset the time elapsed after installing regular RTO */ 3226 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3227 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3228 s64 delta_us = tcp_rto_delta_us(sk); 3229 /* delta_us may not be positive if the socket is locked 3230 * when the retrans timer fires and is rescheduled. 3231 */ 3232 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3233 } 3234 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3235 TCP_RTO_MAX); 3236 } 3237 } 3238 3239 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3240 static void tcp_set_xmit_timer(struct sock *sk) 3241 { 3242 if (!tcp_schedule_loss_probe(sk, true)) 3243 tcp_rearm_rto(sk); 3244 } 3245 3246 /* If we get here, the whole TSO packet has not been acked. */ 3247 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3248 { 3249 struct tcp_sock *tp = tcp_sk(sk); 3250 u32 packets_acked; 3251 3252 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3253 3254 packets_acked = tcp_skb_pcount(skb); 3255 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3256 return 0; 3257 packets_acked -= tcp_skb_pcount(skb); 3258 3259 if (packets_acked) { 3260 BUG_ON(tcp_skb_pcount(skb) == 0); 3261 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3262 } 3263 3264 return packets_acked; 3265 } 3266 3267 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3268 const struct sk_buff *ack_skb, u32 prior_snd_una) 3269 { 3270 const struct skb_shared_info *shinfo; 3271 3272 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3273 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3274 return; 3275 3276 shinfo = skb_shinfo(skb); 3277 if (!before(shinfo->tskey, prior_snd_una) && 3278 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3279 tcp_skb_tsorted_save(skb) { 3280 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK); 3281 } tcp_skb_tsorted_restore(skb); 3282 } 3283 } 3284 3285 /* Remove acknowledged frames from the retransmission queue. If our packet 3286 * is before the ack sequence we can discard it as it's confirmed to have 3287 * arrived at the other end. 3288 */ 3289 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb, 3290 u32 prior_fack, u32 prior_snd_una, 3291 struct tcp_sacktag_state *sack, bool ece_ack) 3292 { 3293 const struct inet_connection_sock *icsk = inet_csk(sk); 3294 u64 first_ackt, last_ackt; 3295 struct tcp_sock *tp = tcp_sk(sk); 3296 u32 prior_sacked = tp->sacked_out; 3297 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3298 struct sk_buff *skb, *next; 3299 bool fully_acked = true; 3300 long sack_rtt_us = -1L; 3301 long seq_rtt_us = -1L; 3302 long ca_rtt_us = -1L; 3303 u32 pkts_acked = 0; 3304 bool rtt_update; 3305 int flag = 0; 3306 3307 first_ackt = 0; 3308 3309 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3310 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3311 const u32 start_seq = scb->seq; 3312 u8 sacked = scb->sacked; 3313 u32 acked_pcount; 3314 3315 /* Determine how many packets and what bytes were acked, tso and else */ 3316 if (after(scb->end_seq, tp->snd_una)) { 3317 if (tcp_skb_pcount(skb) == 1 || 3318 !after(tp->snd_una, scb->seq)) 3319 break; 3320 3321 acked_pcount = tcp_tso_acked(sk, skb); 3322 if (!acked_pcount) 3323 break; 3324 fully_acked = false; 3325 } else { 3326 acked_pcount = tcp_skb_pcount(skb); 3327 } 3328 3329 if (unlikely(sacked & TCPCB_RETRANS)) { 3330 if (sacked & TCPCB_SACKED_RETRANS) 3331 tp->retrans_out -= acked_pcount; 3332 flag |= FLAG_RETRANS_DATA_ACKED; 3333 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3334 last_ackt = tcp_skb_timestamp_us(skb); 3335 WARN_ON_ONCE(last_ackt == 0); 3336 if (!first_ackt) 3337 first_ackt = last_ackt; 3338 3339 if (before(start_seq, reord)) 3340 reord = start_seq; 3341 if (!after(scb->end_seq, tp->high_seq)) 3342 flag |= FLAG_ORIG_SACK_ACKED; 3343 } 3344 3345 if (sacked & TCPCB_SACKED_ACKED) { 3346 tp->sacked_out -= acked_pcount; 3347 } else if (tcp_is_sack(tp)) { 3348 tcp_count_delivered(tp, acked_pcount, ece_ack); 3349 if (!tcp_skb_spurious_retrans(tp, skb)) 3350 tcp_rack_advance(tp, sacked, scb->end_seq, 3351 tcp_skb_timestamp_us(skb)); 3352 } 3353 if (sacked & TCPCB_LOST) 3354 tp->lost_out -= acked_pcount; 3355 3356 tp->packets_out -= acked_pcount; 3357 pkts_acked += acked_pcount; 3358 tcp_rate_skb_delivered(sk, skb, sack->rate); 3359 3360 /* Initial outgoing SYN's get put onto the write_queue 3361 * just like anything else we transmit. It is not 3362 * true data, and if we misinform our callers that 3363 * this ACK acks real data, we will erroneously exit 3364 * connection startup slow start one packet too 3365 * quickly. This is severely frowned upon behavior. 3366 */ 3367 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3368 flag |= FLAG_DATA_ACKED; 3369 } else { 3370 flag |= FLAG_SYN_ACKED; 3371 tp->retrans_stamp = 0; 3372 } 3373 3374 if (!fully_acked) 3375 break; 3376 3377 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3378 3379 next = skb_rb_next(skb); 3380 if (unlikely(skb == tp->retransmit_skb_hint)) 3381 tp->retransmit_skb_hint = NULL; 3382 if (unlikely(skb == tp->lost_skb_hint)) 3383 tp->lost_skb_hint = NULL; 3384 tcp_highest_sack_replace(sk, skb, next); 3385 tcp_rtx_queue_unlink_and_free(skb, sk); 3386 } 3387 3388 if (!skb) 3389 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3390 3391 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3392 tp->snd_up = tp->snd_una; 3393 3394 if (skb) { 3395 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3396 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3397 flag |= FLAG_SACK_RENEGING; 3398 } 3399 3400 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3401 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3402 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3403 3404 if (pkts_acked == 1 && fully_acked && !prior_sacked && 3405 (tp->snd_una - prior_snd_una) < tp->mss_cache && 3406 sack->rate->prior_delivered + 1 == tp->delivered && 3407 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3408 /* Conservatively mark a delayed ACK. It's typically 3409 * from a lone runt packet over the round trip to 3410 * a receiver w/o out-of-order or CE events. 3411 */ 3412 flag |= FLAG_ACK_MAYBE_DELAYED; 3413 } 3414 } 3415 if (sack->first_sackt) { 3416 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3417 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3418 } 3419 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3420 ca_rtt_us, sack->rate); 3421 3422 if (flag & FLAG_ACKED) { 3423 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3424 if (unlikely(icsk->icsk_mtup.probe_size && 3425 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3426 tcp_mtup_probe_success(sk); 3427 } 3428 3429 if (tcp_is_reno(tp)) { 3430 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack); 3431 3432 /* If any of the cumulatively ACKed segments was 3433 * retransmitted, non-SACK case cannot confirm that 3434 * progress was due to original transmission due to 3435 * lack of TCPCB_SACKED_ACKED bits even if some of 3436 * the packets may have been never retransmitted. 3437 */ 3438 if (flag & FLAG_RETRANS_DATA_ACKED) 3439 flag &= ~FLAG_ORIG_SACK_ACKED; 3440 } else { 3441 int delta; 3442 3443 /* Non-retransmitted hole got filled? That's reordering */ 3444 if (before(reord, prior_fack)) 3445 tcp_check_sack_reordering(sk, reord, 0); 3446 3447 delta = prior_sacked - tp->sacked_out; 3448 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3449 } 3450 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3451 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3452 tcp_skb_timestamp_us(skb))) { 3453 /* Do not re-arm RTO if the sack RTT is measured from data sent 3454 * after when the head was last (re)transmitted. Otherwise the 3455 * timeout may continue to extend in loss recovery. 3456 */ 3457 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3458 } 3459 3460 if (icsk->icsk_ca_ops->pkts_acked) { 3461 struct ack_sample sample = { .pkts_acked = pkts_acked, 3462 .rtt_us = sack->rate->rtt_us }; 3463 3464 sample.in_flight = tp->mss_cache * 3465 (tp->delivered - sack->rate->prior_delivered); 3466 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3467 } 3468 3469 #if FASTRETRANS_DEBUG > 0 3470 WARN_ON((int)tp->sacked_out < 0); 3471 WARN_ON((int)tp->lost_out < 0); 3472 WARN_ON((int)tp->retrans_out < 0); 3473 if (!tp->packets_out && tcp_is_sack(tp)) { 3474 icsk = inet_csk(sk); 3475 if (tp->lost_out) { 3476 pr_debug("Leak l=%u %d\n", 3477 tp->lost_out, icsk->icsk_ca_state); 3478 tp->lost_out = 0; 3479 } 3480 if (tp->sacked_out) { 3481 pr_debug("Leak s=%u %d\n", 3482 tp->sacked_out, icsk->icsk_ca_state); 3483 tp->sacked_out = 0; 3484 } 3485 if (tp->retrans_out) { 3486 pr_debug("Leak r=%u %d\n", 3487 tp->retrans_out, icsk->icsk_ca_state); 3488 tp->retrans_out = 0; 3489 } 3490 } 3491 #endif 3492 return flag; 3493 } 3494 3495 static void tcp_ack_probe(struct sock *sk) 3496 { 3497 struct inet_connection_sock *icsk = inet_csk(sk); 3498 struct sk_buff *head = tcp_send_head(sk); 3499 const struct tcp_sock *tp = tcp_sk(sk); 3500 3501 /* Was it a usable window open? */ 3502 if (!head) 3503 return; 3504 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3505 icsk->icsk_backoff = 0; 3506 icsk->icsk_probes_tstamp = 0; 3507 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3508 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3509 * This function is not for random using! 3510 */ 3511 } else { 3512 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3513 3514 when = tcp_clamp_probe0_to_user_timeout(sk, when); 3515 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX); 3516 } 3517 } 3518 3519 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3520 { 3521 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3522 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3523 } 3524 3525 /* Decide wheather to run the increase function of congestion control. */ 3526 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3527 { 3528 /* If reordering is high then always grow cwnd whenever data is 3529 * delivered regardless of its ordering. Otherwise stay conservative 3530 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3531 * new SACK or ECE mark may first advance cwnd here and later reduce 3532 * cwnd in tcp_fastretrans_alert() based on more states. 3533 */ 3534 if (tcp_sk(sk)->reordering > 3535 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering)) 3536 return flag & FLAG_FORWARD_PROGRESS; 3537 3538 return flag & FLAG_DATA_ACKED; 3539 } 3540 3541 /* The "ultimate" congestion control function that aims to replace the rigid 3542 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3543 * It's called toward the end of processing an ACK with precise rate 3544 * information. All transmission or retransmission are delayed afterwards. 3545 */ 3546 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3547 int flag, const struct rate_sample *rs) 3548 { 3549 const struct inet_connection_sock *icsk = inet_csk(sk); 3550 3551 if (icsk->icsk_ca_ops->cong_control) { 3552 icsk->icsk_ca_ops->cong_control(sk, rs); 3553 return; 3554 } 3555 3556 if (tcp_in_cwnd_reduction(sk)) { 3557 /* Reduce cwnd if state mandates */ 3558 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag); 3559 } else if (tcp_may_raise_cwnd(sk, flag)) { 3560 /* Advance cwnd if state allows */ 3561 tcp_cong_avoid(sk, ack, acked_sacked); 3562 } 3563 tcp_update_pacing_rate(sk); 3564 } 3565 3566 /* Check that window update is acceptable. 3567 * The function assumes that snd_una<=ack<=snd_next. 3568 */ 3569 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3570 const u32 ack, const u32 ack_seq, 3571 const u32 nwin) 3572 { 3573 return after(ack, tp->snd_una) || 3574 after(ack_seq, tp->snd_wl1) || 3575 (ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin)); 3576 } 3577 3578 /* If we update tp->snd_una, also update tp->bytes_acked */ 3579 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3580 { 3581 u32 delta = ack - tp->snd_una; 3582 3583 sock_owned_by_me((struct sock *)tp); 3584 tp->bytes_acked += delta; 3585 tp->snd_una = ack; 3586 } 3587 3588 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3589 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3590 { 3591 u32 delta = seq - tp->rcv_nxt; 3592 3593 sock_owned_by_me((struct sock *)tp); 3594 tp->bytes_received += delta; 3595 WRITE_ONCE(tp->rcv_nxt, seq); 3596 } 3597 3598 /* Update our send window. 3599 * 3600 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3601 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3602 */ 3603 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3604 u32 ack_seq) 3605 { 3606 struct tcp_sock *tp = tcp_sk(sk); 3607 int flag = 0; 3608 u32 nwin = ntohs(tcp_hdr(skb)->window); 3609 3610 if (likely(!tcp_hdr(skb)->syn)) 3611 nwin <<= tp->rx_opt.snd_wscale; 3612 3613 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3614 flag |= FLAG_WIN_UPDATE; 3615 tcp_update_wl(tp, ack_seq); 3616 3617 if (tp->snd_wnd != nwin) { 3618 tp->snd_wnd = nwin; 3619 3620 /* Note, it is the only place, where 3621 * fast path is recovered for sending TCP. 3622 */ 3623 tp->pred_flags = 0; 3624 tcp_fast_path_check(sk); 3625 3626 if (!tcp_write_queue_empty(sk)) 3627 tcp_slow_start_after_idle_check(sk); 3628 3629 if (nwin > tp->max_window) { 3630 tp->max_window = nwin; 3631 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3632 } 3633 } 3634 } 3635 3636 tcp_snd_una_update(tp, ack); 3637 3638 return flag; 3639 } 3640 3641 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3642 u32 *last_oow_ack_time) 3643 { 3644 /* Paired with the WRITE_ONCE() in this function. */ 3645 u32 val = READ_ONCE(*last_oow_ack_time); 3646 3647 if (val) { 3648 s32 elapsed = (s32)(tcp_jiffies32 - val); 3649 3650 if (0 <= elapsed && 3651 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) { 3652 NET_INC_STATS(net, mib_idx); 3653 return true; /* rate-limited: don't send yet! */ 3654 } 3655 } 3656 3657 /* Paired with the prior READ_ONCE() and with itself, 3658 * as we might be lockless. 3659 */ 3660 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32); 3661 3662 return false; /* not rate-limited: go ahead, send dupack now! */ 3663 } 3664 3665 /* Return true if we're currently rate-limiting out-of-window ACKs and 3666 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3667 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3668 * attacks that send repeated SYNs or ACKs for the same connection. To 3669 * do this, we do not send a duplicate SYNACK or ACK if the remote 3670 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3671 */ 3672 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3673 int mib_idx, u32 *last_oow_ack_time) 3674 { 3675 /* Data packets without SYNs are not likely part of an ACK loop. */ 3676 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3677 !tcp_hdr(skb)->syn) 3678 return false; 3679 3680 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3681 } 3682 3683 /* RFC 5961 7 [ACK Throttling] */ 3684 static void tcp_send_challenge_ack(struct sock *sk) 3685 { 3686 struct tcp_sock *tp = tcp_sk(sk); 3687 struct net *net = sock_net(sk); 3688 u32 count, now, ack_limit; 3689 3690 /* First check our per-socket dupack rate limit. */ 3691 if (__tcp_oow_rate_limited(net, 3692 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3693 &tp->last_oow_ack_time)) 3694 return; 3695 3696 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit); 3697 if (ack_limit == INT_MAX) 3698 goto send_ack; 3699 3700 /* Then check host-wide RFC 5961 rate limit. */ 3701 now = jiffies / HZ; 3702 if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) { 3703 u32 half = (ack_limit + 1) >> 1; 3704 3705 WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now); 3706 WRITE_ONCE(net->ipv4.tcp_challenge_count, 3707 get_random_u32_inclusive(half, ack_limit + half - 1)); 3708 } 3709 count = READ_ONCE(net->ipv4.tcp_challenge_count); 3710 if (count > 0) { 3711 WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1); 3712 send_ack: 3713 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3714 tcp_send_ack(sk); 3715 } 3716 } 3717 3718 static void tcp_store_ts_recent(struct tcp_sock *tp) 3719 { 3720 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3721 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3722 } 3723 3724 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3725 { 3726 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3727 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3728 * extra check below makes sure this can only happen 3729 * for pure ACK frames. -DaveM 3730 * 3731 * Not only, also it occurs for expired timestamps. 3732 */ 3733 3734 if (tcp_paws_check(&tp->rx_opt, 0)) 3735 tcp_store_ts_recent(tp); 3736 } 3737 } 3738 3739 /* This routine deals with acks during a TLP episode and ends an episode by 3740 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack 3741 */ 3742 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3743 { 3744 struct tcp_sock *tp = tcp_sk(sk); 3745 3746 if (before(ack, tp->tlp_high_seq)) 3747 return; 3748 3749 if (!tp->tlp_retrans) { 3750 /* TLP of new data has been acknowledged */ 3751 tp->tlp_high_seq = 0; 3752 } else if (flag & FLAG_DSACK_TLP) { 3753 /* This DSACK means original and TLP probe arrived; no loss */ 3754 tp->tlp_high_seq = 0; 3755 } else if (after(ack, tp->tlp_high_seq)) { 3756 /* ACK advances: there was a loss, so reduce cwnd. Reset 3757 * tlp_high_seq in tcp_init_cwnd_reduction() 3758 */ 3759 tcp_init_cwnd_reduction(sk); 3760 tcp_set_ca_state(sk, TCP_CA_CWR); 3761 tcp_end_cwnd_reduction(sk); 3762 tcp_try_keep_open(sk); 3763 NET_INC_STATS(sock_net(sk), 3764 LINUX_MIB_TCPLOSSPROBERECOVERY); 3765 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3766 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3767 /* Pure dupack: original and TLP probe arrived; no loss */ 3768 tp->tlp_high_seq = 0; 3769 } 3770 } 3771 3772 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3773 { 3774 const struct inet_connection_sock *icsk = inet_csk(sk); 3775 3776 if (icsk->icsk_ca_ops->in_ack_event) 3777 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3778 } 3779 3780 /* Congestion control has updated the cwnd already. So if we're in 3781 * loss recovery then now we do any new sends (for FRTO) or 3782 * retransmits (for CA_Loss or CA_recovery) that make sense. 3783 */ 3784 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3785 { 3786 struct tcp_sock *tp = tcp_sk(sk); 3787 3788 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3789 return; 3790 3791 if (unlikely(rexmit == REXMIT_NEW)) { 3792 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3793 TCP_NAGLE_OFF); 3794 if (after(tp->snd_nxt, tp->high_seq)) 3795 return; 3796 tp->frto = 0; 3797 } 3798 tcp_xmit_retransmit_queue(sk); 3799 } 3800 3801 /* Returns the number of packets newly acked or sacked by the current ACK */ 3802 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3803 { 3804 const struct net *net = sock_net(sk); 3805 struct tcp_sock *tp = tcp_sk(sk); 3806 u32 delivered; 3807 3808 delivered = tp->delivered - prior_delivered; 3809 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3810 if (flag & FLAG_ECE) 3811 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3812 3813 return delivered; 3814 } 3815 3816 /* This routine deals with incoming acks, but not outgoing ones. */ 3817 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3818 { 3819 struct inet_connection_sock *icsk = inet_csk(sk); 3820 struct tcp_sock *tp = tcp_sk(sk); 3821 struct tcp_sacktag_state sack_state; 3822 struct rate_sample rs = { .prior_delivered = 0 }; 3823 u32 prior_snd_una = tp->snd_una; 3824 bool is_sack_reneg = tp->is_sack_reneg; 3825 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3826 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3827 int num_dupack = 0; 3828 int prior_packets = tp->packets_out; 3829 u32 delivered = tp->delivered; 3830 u32 lost = tp->lost; 3831 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3832 u32 prior_fack; 3833 3834 sack_state.first_sackt = 0; 3835 sack_state.rate = &rs; 3836 sack_state.sack_delivered = 0; 3837 3838 /* We very likely will need to access rtx queue. */ 3839 prefetch(sk->tcp_rtx_queue.rb_node); 3840 3841 /* If the ack is older than previous acks 3842 * then we can probably ignore it. 3843 */ 3844 if (before(ack, prior_snd_una)) { 3845 u32 max_window; 3846 3847 /* do not accept ACK for bytes we never sent. */ 3848 max_window = min_t(u64, tp->max_window, tp->bytes_acked); 3849 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3850 if (before(ack, prior_snd_una - max_window)) { 3851 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3852 tcp_send_challenge_ack(sk); 3853 return -SKB_DROP_REASON_TCP_TOO_OLD_ACK; 3854 } 3855 goto old_ack; 3856 } 3857 3858 /* If the ack includes data we haven't sent yet, discard 3859 * this segment (RFC793 Section 3.9). 3860 */ 3861 if (after(ack, tp->snd_nxt)) 3862 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA; 3863 3864 if (after(ack, prior_snd_una)) { 3865 flag |= FLAG_SND_UNA_ADVANCED; 3866 icsk->icsk_retransmits = 0; 3867 3868 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3869 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 3870 if (icsk->icsk_clean_acked) 3871 icsk->icsk_clean_acked(sk, ack); 3872 #endif 3873 } 3874 3875 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3876 rs.prior_in_flight = tcp_packets_in_flight(tp); 3877 3878 /* ts_recent update must be made after we are sure that the packet 3879 * is in window. 3880 */ 3881 if (flag & FLAG_UPDATE_TS_RECENT) 3882 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3883 3884 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 3885 FLAG_SND_UNA_ADVANCED) { 3886 /* Window is constant, pure forward advance. 3887 * No more checks are required. 3888 * Note, we use the fact that SND.UNA>=SND.WL2. 3889 */ 3890 tcp_update_wl(tp, ack_seq); 3891 tcp_snd_una_update(tp, ack); 3892 flag |= FLAG_WIN_UPDATE; 3893 3894 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3895 3896 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3897 } else { 3898 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3899 3900 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3901 flag |= FLAG_DATA; 3902 else 3903 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3904 3905 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3906 3907 if (TCP_SKB_CB(skb)->sacked) 3908 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3909 &sack_state); 3910 3911 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3912 flag |= FLAG_ECE; 3913 ack_ev_flags |= CA_ACK_ECE; 3914 } 3915 3916 if (sack_state.sack_delivered) 3917 tcp_count_delivered(tp, sack_state.sack_delivered, 3918 flag & FLAG_ECE); 3919 3920 if (flag & FLAG_WIN_UPDATE) 3921 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3922 3923 tcp_in_ack_event(sk, ack_ev_flags); 3924 } 3925 3926 /* This is a deviation from RFC3168 since it states that: 3927 * "When the TCP data sender is ready to set the CWR bit after reducing 3928 * the congestion window, it SHOULD set the CWR bit only on the first 3929 * new data packet that it transmits." 3930 * We accept CWR on pure ACKs to be more robust 3931 * with widely-deployed TCP implementations that do this. 3932 */ 3933 tcp_ecn_accept_cwr(sk, skb); 3934 3935 /* We passed data and got it acked, remove any soft error 3936 * log. Something worked... 3937 */ 3938 WRITE_ONCE(sk->sk_err_soft, 0); 3939 icsk->icsk_probes_out = 0; 3940 tp->rcv_tstamp = tcp_jiffies32; 3941 if (!prior_packets) 3942 goto no_queue; 3943 3944 /* See if we can take anything off of the retransmit queue. */ 3945 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una, 3946 &sack_state, flag & FLAG_ECE); 3947 3948 tcp_rack_update_reo_wnd(sk, &rs); 3949 3950 if (tp->tlp_high_seq) 3951 tcp_process_tlp_ack(sk, ack, flag); 3952 3953 if (tcp_ack_is_dubious(sk, flag)) { 3954 if (!(flag & (FLAG_SND_UNA_ADVANCED | 3955 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) { 3956 num_dupack = 1; 3957 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 3958 if (!(flag & FLAG_DATA)) 3959 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 3960 } 3961 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3962 &rexmit); 3963 } 3964 3965 /* If needed, reset TLP/RTO timer when RACK doesn't set. */ 3966 if (flag & FLAG_SET_XMIT_TIMER) 3967 tcp_set_xmit_timer(sk); 3968 3969 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3970 sk_dst_confirm(sk); 3971 3972 delivered = tcp_newly_delivered(sk, delivered, flag); 3973 lost = tp->lost - lost; /* freshly marked lost */ 3974 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3975 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3976 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3977 tcp_xmit_recovery(sk, rexmit); 3978 return 1; 3979 3980 no_queue: 3981 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3982 if (flag & FLAG_DSACKING_ACK) { 3983 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3984 &rexmit); 3985 tcp_newly_delivered(sk, delivered, flag); 3986 } 3987 /* If this ack opens up a zero window, clear backoff. It was 3988 * being used to time the probes, and is probably far higher than 3989 * it needs to be for normal retransmission. 3990 */ 3991 tcp_ack_probe(sk); 3992 3993 if (tp->tlp_high_seq) 3994 tcp_process_tlp_ack(sk, ack, flag); 3995 return 1; 3996 3997 old_ack: 3998 /* If data was SACKed, tag it and see if we should send more data. 3999 * If data was DSACKed, see if we can undo a cwnd reduction. 4000 */ 4001 if (TCP_SKB_CB(skb)->sacked) { 4002 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 4003 &sack_state); 4004 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4005 &rexmit); 4006 tcp_newly_delivered(sk, delivered, flag); 4007 tcp_xmit_recovery(sk, rexmit); 4008 } 4009 4010 return 0; 4011 } 4012 4013 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 4014 bool syn, struct tcp_fastopen_cookie *foc, 4015 bool exp_opt) 4016 { 4017 /* Valid only in SYN or SYN-ACK with an even length. */ 4018 if (!foc || !syn || len < 0 || (len & 1)) 4019 return; 4020 4021 if (len >= TCP_FASTOPEN_COOKIE_MIN && 4022 len <= TCP_FASTOPEN_COOKIE_MAX) 4023 memcpy(foc->val, cookie, len); 4024 else if (len != 0) 4025 len = -1; 4026 foc->len = len; 4027 foc->exp = exp_opt; 4028 } 4029 4030 static bool smc_parse_options(const struct tcphdr *th, 4031 struct tcp_options_received *opt_rx, 4032 const unsigned char *ptr, 4033 int opsize) 4034 { 4035 #if IS_ENABLED(CONFIG_SMC) 4036 if (static_branch_unlikely(&tcp_have_smc)) { 4037 if (th->syn && !(opsize & 1) && 4038 opsize >= TCPOLEN_EXP_SMC_BASE && 4039 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) { 4040 opt_rx->smc_ok = 1; 4041 return true; 4042 } 4043 } 4044 #endif 4045 return false; 4046 } 4047 4048 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 4049 * value on success. 4050 */ 4051 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 4052 { 4053 const unsigned char *ptr = (const unsigned char *)(th + 1); 4054 int length = (th->doff * 4) - sizeof(struct tcphdr); 4055 u16 mss = 0; 4056 4057 while (length > 0) { 4058 int opcode = *ptr++; 4059 int opsize; 4060 4061 switch (opcode) { 4062 case TCPOPT_EOL: 4063 return mss; 4064 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4065 length--; 4066 continue; 4067 default: 4068 if (length < 2) 4069 return mss; 4070 opsize = *ptr++; 4071 if (opsize < 2) /* "silly options" */ 4072 return mss; 4073 if (opsize > length) 4074 return mss; /* fail on partial options */ 4075 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 4076 u16 in_mss = get_unaligned_be16(ptr); 4077 4078 if (in_mss) { 4079 if (user_mss && user_mss < in_mss) 4080 in_mss = user_mss; 4081 mss = in_mss; 4082 } 4083 } 4084 ptr += opsize - 2; 4085 length -= opsize; 4086 } 4087 } 4088 return mss; 4089 } 4090 EXPORT_SYMBOL_GPL(tcp_parse_mss_option); 4091 4092 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 4093 * But, this can also be called on packets in the established flow when 4094 * the fast version below fails. 4095 */ 4096 void tcp_parse_options(const struct net *net, 4097 const struct sk_buff *skb, 4098 struct tcp_options_received *opt_rx, int estab, 4099 struct tcp_fastopen_cookie *foc) 4100 { 4101 const unsigned char *ptr; 4102 const struct tcphdr *th = tcp_hdr(skb); 4103 int length = (th->doff * 4) - sizeof(struct tcphdr); 4104 4105 ptr = (const unsigned char *)(th + 1); 4106 opt_rx->saw_tstamp = 0; 4107 opt_rx->saw_unknown = 0; 4108 4109 while (length > 0) { 4110 int opcode = *ptr++; 4111 int opsize; 4112 4113 switch (opcode) { 4114 case TCPOPT_EOL: 4115 return; 4116 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4117 length--; 4118 continue; 4119 default: 4120 if (length < 2) 4121 return; 4122 opsize = *ptr++; 4123 if (opsize < 2) /* "silly options" */ 4124 return; 4125 if (opsize > length) 4126 return; /* don't parse partial options */ 4127 switch (opcode) { 4128 case TCPOPT_MSS: 4129 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 4130 u16 in_mss = get_unaligned_be16(ptr); 4131 if (in_mss) { 4132 if (opt_rx->user_mss && 4133 opt_rx->user_mss < in_mss) 4134 in_mss = opt_rx->user_mss; 4135 opt_rx->mss_clamp = in_mss; 4136 } 4137 } 4138 break; 4139 case TCPOPT_WINDOW: 4140 if (opsize == TCPOLEN_WINDOW && th->syn && 4141 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) { 4142 __u8 snd_wscale = *(__u8 *)ptr; 4143 opt_rx->wscale_ok = 1; 4144 if (snd_wscale > TCP_MAX_WSCALE) { 4145 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 4146 __func__, 4147 snd_wscale, 4148 TCP_MAX_WSCALE); 4149 snd_wscale = TCP_MAX_WSCALE; 4150 } 4151 opt_rx->snd_wscale = snd_wscale; 4152 } 4153 break; 4154 case TCPOPT_TIMESTAMP: 4155 if ((opsize == TCPOLEN_TIMESTAMP) && 4156 ((estab && opt_rx->tstamp_ok) || 4157 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) { 4158 opt_rx->saw_tstamp = 1; 4159 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 4160 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 4161 } 4162 break; 4163 case TCPOPT_SACK_PERM: 4164 if (opsize == TCPOLEN_SACK_PERM && th->syn && 4165 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) { 4166 opt_rx->sack_ok = TCP_SACK_SEEN; 4167 tcp_sack_reset(opt_rx); 4168 } 4169 break; 4170 4171 case TCPOPT_SACK: 4172 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 4173 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 4174 opt_rx->sack_ok) { 4175 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 4176 } 4177 break; 4178 #ifdef CONFIG_TCP_MD5SIG 4179 case TCPOPT_MD5SIG: 4180 /* The MD5 Hash has already been 4181 * checked (see tcp_v{4,6}_rcv()). 4182 */ 4183 break; 4184 #endif 4185 case TCPOPT_FASTOPEN: 4186 tcp_parse_fastopen_option( 4187 opsize - TCPOLEN_FASTOPEN_BASE, 4188 ptr, th->syn, foc, false); 4189 break; 4190 4191 case TCPOPT_EXP: 4192 /* Fast Open option shares code 254 using a 4193 * 16 bits magic number. 4194 */ 4195 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 4196 get_unaligned_be16(ptr) == 4197 TCPOPT_FASTOPEN_MAGIC) { 4198 tcp_parse_fastopen_option(opsize - 4199 TCPOLEN_EXP_FASTOPEN_BASE, 4200 ptr + 2, th->syn, foc, true); 4201 break; 4202 } 4203 4204 if (smc_parse_options(th, opt_rx, ptr, opsize)) 4205 break; 4206 4207 opt_rx->saw_unknown = 1; 4208 break; 4209 4210 default: 4211 opt_rx->saw_unknown = 1; 4212 } 4213 ptr += opsize-2; 4214 length -= opsize; 4215 } 4216 } 4217 } 4218 EXPORT_SYMBOL(tcp_parse_options); 4219 4220 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 4221 { 4222 const __be32 *ptr = (const __be32 *)(th + 1); 4223 4224 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 4225 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 4226 tp->rx_opt.saw_tstamp = 1; 4227 ++ptr; 4228 tp->rx_opt.rcv_tsval = ntohl(*ptr); 4229 ++ptr; 4230 if (*ptr) 4231 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 4232 else 4233 tp->rx_opt.rcv_tsecr = 0; 4234 return true; 4235 } 4236 return false; 4237 } 4238 4239 /* Fast parse options. This hopes to only see timestamps. 4240 * If it is wrong it falls back on tcp_parse_options(). 4241 */ 4242 static bool tcp_fast_parse_options(const struct net *net, 4243 const struct sk_buff *skb, 4244 const struct tcphdr *th, struct tcp_sock *tp) 4245 { 4246 /* In the spirit of fast parsing, compare doff directly to constant 4247 * values. Because equality is used, short doff can be ignored here. 4248 */ 4249 if (th->doff == (sizeof(*th) / 4)) { 4250 tp->rx_opt.saw_tstamp = 0; 4251 return false; 4252 } else if (tp->rx_opt.tstamp_ok && 4253 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 4254 if (tcp_parse_aligned_timestamp(tp, th)) 4255 return true; 4256 } 4257 4258 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 4259 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 4260 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 4261 4262 return true; 4263 } 4264 4265 #ifdef CONFIG_TCP_MD5SIG 4266 /* 4267 * Parse MD5 Signature option 4268 */ 4269 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 4270 { 4271 int length = (th->doff << 2) - sizeof(*th); 4272 const u8 *ptr = (const u8 *)(th + 1); 4273 4274 /* If not enough data remaining, we can short cut */ 4275 while (length >= TCPOLEN_MD5SIG) { 4276 int opcode = *ptr++; 4277 int opsize; 4278 4279 switch (opcode) { 4280 case TCPOPT_EOL: 4281 return NULL; 4282 case TCPOPT_NOP: 4283 length--; 4284 continue; 4285 default: 4286 opsize = *ptr++; 4287 if (opsize < 2 || opsize > length) 4288 return NULL; 4289 if (opcode == TCPOPT_MD5SIG) 4290 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 4291 } 4292 ptr += opsize - 2; 4293 length -= opsize; 4294 } 4295 return NULL; 4296 } 4297 EXPORT_SYMBOL(tcp_parse_md5sig_option); 4298 #endif 4299 4300 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4301 * 4302 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4303 * it can pass through stack. So, the following predicate verifies that 4304 * this segment is not used for anything but congestion avoidance or 4305 * fast retransmit. Moreover, we even are able to eliminate most of such 4306 * second order effects, if we apply some small "replay" window (~RTO) 4307 * to timestamp space. 4308 * 4309 * All these measures still do not guarantee that we reject wrapped ACKs 4310 * on networks with high bandwidth, when sequence space is recycled fastly, 4311 * but it guarantees that such events will be very rare and do not affect 4312 * connection seriously. This doesn't look nice, but alas, PAWS is really 4313 * buggy extension. 4314 * 4315 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4316 * states that events when retransmit arrives after original data are rare. 4317 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4318 * the biggest problem on large power networks even with minor reordering. 4319 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4320 * up to bandwidth of 18Gigabit/sec. 8) ] 4321 */ 4322 4323 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 4324 { 4325 const struct tcp_sock *tp = tcp_sk(sk); 4326 const struct tcphdr *th = tcp_hdr(skb); 4327 u32 seq = TCP_SKB_CB(skb)->seq; 4328 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4329 4330 return (/* 1. Pure ACK with correct sequence number. */ 4331 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 4332 4333 /* 2. ... and duplicate ACK. */ 4334 ack == tp->snd_una && 4335 4336 /* 3. ... and does not update window. */ 4337 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4338 4339 /* 4. ... and sits in replay window. */ 4340 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4341 } 4342 4343 static inline bool tcp_paws_discard(const struct sock *sk, 4344 const struct sk_buff *skb) 4345 { 4346 const struct tcp_sock *tp = tcp_sk(sk); 4347 4348 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4349 !tcp_disordered_ack(sk, skb); 4350 } 4351 4352 /* Check segment sequence number for validity. 4353 * 4354 * Segment controls are considered valid, if the segment 4355 * fits to the window after truncation to the window. Acceptability 4356 * of data (and SYN, FIN, of course) is checked separately. 4357 * See tcp_data_queue(), for example. 4358 * 4359 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4360 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4361 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4362 * (borrowed from freebsd) 4363 */ 4364 4365 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp, 4366 u32 seq, u32 end_seq) 4367 { 4368 if (before(end_seq, tp->rcv_wup)) 4369 return SKB_DROP_REASON_TCP_OLD_SEQUENCE; 4370 4371 if (after(seq, tp->rcv_nxt + tcp_receive_window(tp))) 4372 return SKB_DROP_REASON_TCP_INVALID_SEQUENCE; 4373 4374 return SKB_NOT_DROPPED_YET; 4375 } 4376 4377 4378 void tcp_done_with_error(struct sock *sk, int err) 4379 { 4380 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4381 WRITE_ONCE(sk->sk_err, err); 4382 smp_wmb(); 4383 4384 tcp_write_queue_purge(sk); 4385 tcp_done(sk); 4386 4387 if (!sock_flag(sk, SOCK_DEAD)) 4388 sk_error_report(sk); 4389 } 4390 EXPORT_SYMBOL(tcp_done_with_error); 4391 4392 /* When we get a reset we do this. */ 4393 void tcp_reset(struct sock *sk, struct sk_buff *skb) 4394 { 4395 int err; 4396 4397 trace_tcp_receive_reset(sk); 4398 4399 /* mptcp can't tell us to ignore reset pkts, 4400 * so just ignore the return value of mptcp_incoming_options(). 4401 */ 4402 if (sk_is_mptcp(sk)) 4403 mptcp_incoming_options(sk, skb); 4404 4405 /* We want the right error as BSD sees it (and indeed as we do). */ 4406 switch (sk->sk_state) { 4407 case TCP_SYN_SENT: 4408 err = ECONNREFUSED; 4409 break; 4410 case TCP_CLOSE_WAIT: 4411 err = EPIPE; 4412 break; 4413 case TCP_CLOSE: 4414 return; 4415 default: 4416 err = ECONNRESET; 4417 } 4418 tcp_done_with_error(sk, err); 4419 } 4420 4421 /* 4422 * Process the FIN bit. This now behaves as it is supposed to work 4423 * and the FIN takes effect when it is validly part of sequence 4424 * space. Not before when we get holes. 4425 * 4426 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4427 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4428 * TIME-WAIT) 4429 * 4430 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4431 * close and we go into CLOSING (and later onto TIME-WAIT) 4432 * 4433 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4434 */ 4435 void tcp_fin(struct sock *sk) 4436 { 4437 struct tcp_sock *tp = tcp_sk(sk); 4438 4439 inet_csk_schedule_ack(sk); 4440 4441 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 4442 sock_set_flag(sk, SOCK_DONE); 4443 4444 switch (sk->sk_state) { 4445 case TCP_SYN_RECV: 4446 case TCP_ESTABLISHED: 4447 /* Move to CLOSE_WAIT */ 4448 tcp_set_state(sk, TCP_CLOSE_WAIT); 4449 inet_csk_enter_pingpong_mode(sk); 4450 break; 4451 4452 case TCP_CLOSE_WAIT: 4453 case TCP_CLOSING: 4454 /* Received a retransmission of the FIN, do 4455 * nothing. 4456 */ 4457 break; 4458 case TCP_LAST_ACK: 4459 /* RFC793: Remain in the LAST-ACK state. */ 4460 break; 4461 4462 case TCP_FIN_WAIT1: 4463 /* This case occurs when a simultaneous close 4464 * happens, we must ack the received FIN and 4465 * enter the CLOSING state. 4466 */ 4467 tcp_send_ack(sk); 4468 tcp_set_state(sk, TCP_CLOSING); 4469 break; 4470 case TCP_FIN_WAIT2: 4471 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4472 tcp_send_ack(sk); 4473 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4474 break; 4475 default: 4476 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4477 * cases we should never reach this piece of code. 4478 */ 4479 pr_err("%s: Impossible, sk->sk_state=%d\n", 4480 __func__, sk->sk_state); 4481 break; 4482 } 4483 4484 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4485 * Probably, we should reset in this case. For now drop them. 4486 */ 4487 skb_rbtree_purge(&tp->out_of_order_queue); 4488 if (tcp_is_sack(tp)) 4489 tcp_sack_reset(&tp->rx_opt); 4490 4491 if (!sock_flag(sk, SOCK_DEAD)) { 4492 sk->sk_state_change(sk); 4493 4494 /* Do not send POLL_HUP for half duplex close. */ 4495 if (sk->sk_shutdown == SHUTDOWN_MASK || 4496 sk->sk_state == TCP_CLOSE) 4497 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4498 else 4499 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4500 } 4501 } 4502 4503 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4504 u32 end_seq) 4505 { 4506 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4507 if (before(seq, sp->start_seq)) 4508 sp->start_seq = seq; 4509 if (after(end_seq, sp->end_seq)) 4510 sp->end_seq = end_seq; 4511 return true; 4512 } 4513 return false; 4514 } 4515 4516 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4517 { 4518 struct tcp_sock *tp = tcp_sk(sk); 4519 4520 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4521 int mib_idx; 4522 4523 if (before(seq, tp->rcv_nxt)) 4524 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4525 else 4526 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4527 4528 NET_INC_STATS(sock_net(sk), mib_idx); 4529 4530 tp->rx_opt.dsack = 1; 4531 tp->duplicate_sack[0].start_seq = seq; 4532 tp->duplicate_sack[0].end_seq = end_seq; 4533 } 4534 } 4535 4536 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4537 { 4538 struct tcp_sock *tp = tcp_sk(sk); 4539 4540 if (!tp->rx_opt.dsack) 4541 tcp_dsack_set(sk, seq, end_seq); 4542 else 4543 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4544 } 4545 4546 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4547 { 4548 /* When the ACK path fails or drops most ACKs, the sender would 4549 * timeout and spuriously retransmit the same segment repeatedly. 4550 * The receiver remembers and reflects via DSACKs. Leverage the 4551 * DSACK state and change the txhash to re-route speculatively. 4552 */ 4553 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq && 4554 sk_rethink_txhash(sk)) 4555 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH); 4556 } 4557 4558 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4559 { 4560 struct tcp_sock *tp = tcp_sk(sk); 4561 4562 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4563 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4564 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4565 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4566 4567 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4568 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4569 4570 tcp_rcv_spurious_retrans(sk, skb); 4571 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4572 end_seq = tp->rcv_nxt; 4573 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4574 } 4575 } 4576 4577 tcp_send_ack(sk); 4578 } 4579 4580 /* These routines update the SACK block as out-of-order packets arrive or 4581 * in-order packets close up the sequence space. 4582 */ 4583 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4584 { 4585 int this_sack; 4586 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4587 struct tcp_sack_block *swalk = sp + 1; 4588 4589 /* See if the recent change to the first SACK eats into 4590 * or hits the sequence space of other SACK blocks, if so coalesce. 4591 */ 4592 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4593 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4594 int i; 4595 4596 /* Zap SWALK, by moving every further SACK up by one slot. 4597 * Decrease num_sacks. 4598 */ 4599 tp->rx_opt.num_sacks--; 4600 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4601 sp[i] = sp[i + 1]; 4602 continue; 4603 } 4604 this_sack++; 4605 swalk++; 4606 } 4607 } 4608 4609 void tcp_sack_compress_send_ack(struct sock *sk) 4610 { 4611 struct tcp_sock *tp = tcp_sk(sk); 4612 4613 if (!tp->compressed_ack) 4614 return; 4615 4616 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 4617 __sock_put(sk); 4618 4619 /* Since we have to send one ack finally, 4620 * substract one from tp->compressed_ack to keep 4621 * LINUX_MIB_TCPACKCOMPRESSED accurate. 4622 */ 4623 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 4624 tp->compressed_ack - 1); 4625 4626 tp->compressed_ack = 0; 4627 tcp_send_ack(sk); 4628 } 4629 4630 /* Reasonable amount of sack blocks included in TCP SACK option 4631 * The max is 4, but this becomes 3 if TCP timestamps are there. 4632 * Given that SACK packets might be lost, be conservative and use 2. 4633 */ 4634 #define TCP_SACK_BLOCKS_EXPECTED 2 4635 4636 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4637 { 4638 struct tcp_sock *tp = tcp_sk(sk); 4639 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4640 int cur_sacks = tp->rx_opt.num_sacks; 4641 int this_sack; 4642 4643 if (!cur_sacks) 4644 goto new_sack; 4645 4646 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4647 if (tcp_sack_extend(sp, seq, end_seq)) { 4648 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4649 tcp_sack_compress_send_ack(sk); 4650 /* Rotate this_sack to the first one. */ 4651 for (; this_sack > 0; this_sack--, sp--) 4652 swap(*sp, *(sp - 1)); 4653 if (cur_sacks > 1) 4654 tcp_sack_maybe_coalesce(tp); 4655 return; 4656 } 4657 } 4658 4659 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4660 tcp_sack_compress_send_ack(sk); 4661 4662 /* Could not find an adjacent existing SACK, build a new one, 4663 * put it at the front, and shift everyone else down. We 4664 * always know there is at least one SACK present already here. 4665 * 4666 * If the sack array is full, forget about the last one. 4667 */ 4668 if (this_sack >= TCP_NUM_SACKS) { 4669 this_sack--; 4670 tp->rx_opt.num_sacks--; 4671 sp--; 4672 } 4673 for (; this_sack > 0; this_sack--, sp--) 4674 *sp = *(sp - 1); 4675 4676 new_sack: 4677 /* Build the new head SACK, and we're done. */ 4678 sp->start_seq = seq; 4679 sp->end_seq = end_seq; 4680 tp->rx_opt.num_sacks++; 4681 } 4682 4683 /* RCV.NXT advances, some SACKs should be eaten. */ 4684 4685 static void tcp_sack_remove(struct tcp_sock *tp) 4686 { 4687 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4688 int num_sacks = tp->rx_opt.num_sacks; 4689 int this_sack; 4690 4691 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4692 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4693 tp->rx_opt.num_sacks = 0; 4694 return; 4695 } 4696 4697 for (this_sack = 0; this_sack < num_sacks;) { 4698 /* Check if the start of the sack is covered by RCV.NXT. */ 4699 if (!before(tp->rcv_nxt, sp->start_seq)) { 4700 int i; 4701 4702 /* RCV.NXT must cover all the block! */ 4703 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4704 4705 /* Zap this SACK, by moving forward any other SACKS. */ 4706 for (i = this_sack+1; i < num_sacks; i++) 4707 tp->selective_acks[i-1] = tp->selective_acks[i]; 4708 num_sacks--; 4709 continue; 4710 } 4711 this_sack++; 4712 sp++; 4713 } 4714 tp->rx_opt.num_sacks = num_sacks; 4715 } 4716 4717 /** 4718 * tcp_try_coalesce - try to merge skb to prior one 4719 * @sk: socket 4720 * @to: prior buffer 4721 * @from: buffer to add in queue 4722 * @fragstolen: pointer to boolean 4723 * 4724 * Before queueing skb @from after @to, try to merge them 4725 * to reduce overall memory use and queue lengths, if cost is small. 4726 * Packets in ofo or receive queues can stay a long time. 4727 * Better try to coalesce them right now to avoid future collapses. 4728 * Returns true if caller should free @from instead of queueing it 4729 */ 4730 static bool tcp_try_coalesce(struct sock *sk, 4731 struct sk_buff *to, 4732 struct sk_buff *from, 4733 bool *fragstolen) 4734 { 4735 int delta; 4736 4737 *fragstolen = false; 4738 4739 /* Its possible this segment overlaps with prior segment in queue */ 4740 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4741 return false; 4742 4743 if (!mptcp_skb_can_collapse(to, from)) 4744 return false; 4745 4746 #ifdef CONFIG_TLS_DEVICE 4747 if (from->decrypted != to->decrypted) 4748 return false; 4749 #endif 4750 4751 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4752 return false; 4753 4754 atomic_add(delta, &sk->sk_rmem_alloc); 4755 sk_mem_charge(sk, delta); 4756 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4757 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4758 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4759 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4760 4761 if (TCP_SKB_CB(from)->has_rxtstamp) { 4762 TCP_SKB_CB(to)->has_rxtstamp = true; 4763 to->tstamp = from->tstamp; 4764 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4765 } 4766 4767 return true; 4768 } 4769 4770 static bool tcp_ooo_try_coalesce(struct sock *sk, 4771 struct sk_buff *to, 4772 struct sk_buff *from, 4773 bool *fragstolen) 4774 { 4775 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4776 4777 /* In case tcp_drop_reason() is called later, update to->gso_segs */ 4778 if (res) { 4779 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4780 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4781 4782 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4783 } 4784 return res; 4785 } 4786 4787 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb, 4788 enum skb_drop_reason reason) 4789 { 4790 sk_drops_add(sk, skb); 4791 kfree_skb_reason(skb, reason); 4792 } 4793 4794 /* This one checks to see if we can put data from the 4795 * out_of_order queue into the receive_queue. 4796 */ 4797 static void tcp_ofo_queue(struct sock *sk) 4798 { 4799 struct tcp_sock *tp = tcp_sk(sk); 4800 __u32 dsack_high = tp->rcv_nxt; 4801 bool fin, fragstolen, eaten; 4802 struct sk_buff *skb, *tail; 4803 struct rb_node *p; 4804 4805 p = rb_first(&tp->out_of_order_queue); 4806 while (p) { 4807 skb = rb_to_skb(p); 4808 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4809 break; 4810 4811 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4812 __u32 dsack = dsack_high; 4813 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4814 dsack_high = TCP_SKB_CB(skb)->end_seq; 4815 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4816 } 4817 p = rb_next(p); 4818 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4819 4820 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4821 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP); 4822 continue; 4823 } 4824 4825 tail = skb_peek_tail(&sk->sk_receive_queue); 4826 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4827 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4828 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4829 if (!eaten) 4830 __skb_queue_tail(&sk->sk_receive_queue, skb); 4831 else 4832 kfree_skb_partial(skb, fragstolen); 4833 4834 if (unlikely(fin)) { 4835 tcp_fin(sk); 4836 /* tcp_fin() purges tp->out_of_order_queue, 4837 * so we must end this loop right now. 4838 */ 4839 break; 4840 } 4841 } 4842 } 4843 4844 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb); 4845 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb); 4846 4847 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4848 unsigned int size) 4849 { 4850 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4851 !sk_rmem_schedule(sk, skb, size)) { 4852 4853 if (tcp_prune_queue(sk, skb) < 0) 4854 return -1; 4855 4856 while (!sk_rmem_schedule(sk, skb, size)) { 4857 if (!tcp_prune_ofo_queue(sk, skb)) 4858 return -1; 4859 } 4860 } 4861 return 0; 4862 } 4863 4864 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4865 { 4866 struct tcp_sock *tp = tcp_sk(sk); 4867 struct rb_node **p, *parent; 4868 struct sk_buff *skb1; 4869 u32 seq, end_seq; 4870 bool fragstolen; 4871 4872 tcp_ecn_check_ce(sk, skb); 4873 4874 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4875 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4876 sk->sk_data_ready(sk); 4877 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM); 4878 return; 4879 } 4880 4881 /* Disable header prediction. */ 4882 tp->pred_flags = 0; 4883 inet_csk_schedule_ack(sk); 4884 4885 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4886 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4887 seq = TCP_SKB_CB(skb)->seq; 4888 end_seq = TCP_SKB_CB(skb)->end_seq; 4889 4890 p = &tp->out_of_order_queue.rb_node; 4891 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4892 /* Initial out of order segment, build 1 SACK. */ 4893 if (tcp_is_sack(tp)) { 4894 tp->rx_opt.num_sacks = 1; 4895 tp->selective_acks[0].start_seq = seq; 4896 tp->selective_acks[0].end_seq = end_seq; 4897 } 4898 rb_link_node(&skb->rbnode, NULL, p); 4899 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4900 tp->ooo_last_skb = skb; 4901 goto end; 4902 } 4903 4904 /* In the typical case, we are adding an skb to the end of the list. 4905 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4906 */ 4907 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 4908 skb, &fragstolen)) { 4909 coalesce_done: 4910 /* For non sack flows, do not grow window to force DUPACK 4911 * and trigger fast retransmit. 4912 */ 4913 if (tcp_is_sack(tp)) 4914 tcp_grow_window(sk, skb, true); 4915 kfree_skb_partial(skb, fragstolen); 4916 skb = NULL; 4917 goto add_sack; 4918 } 4919 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4920 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4921 parent = &tp->ooo_last_skb->rbnode; 4922 p = &parent->rb_right; 4923 goto insert; 4924 } 4925 4926 /* Find place to insert this segment. Handle overlaps on the way. */ 4927 parent = NULL; 4928 while (*p) { 4929 parent = *p; 4930 skb1 = rb_to_skb(parent); 4931 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4932 p = &parent->rb_left; 4933 continue; 4934 } 4935 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4936 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4937 /* All the bits are present. Drop. */ 4938 NET_INC_STATS(sock_net(sk), 4939 LINUX_MIB_TCPOFOMERGE); 4940 tcp_drop_reason(sk, skb, 4941 SKB_DROP_REASON_TCP_OFOMERGE); 4942 skb = NULL; 4943 tcp_dsack_set(sk, seq, end_seq); 4944 goto add_sack; 4945 } 4946 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4947 /* Partial overlap. */ 4948 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4949 } else { 4950 /* skb's seq == skb1's seq and skb covers skb1. 4951 * Replace skb1 with skb. 4952 */ 4953 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4954 &tp->out_of_order_queue); 4955 tcp_dsack_extend(sk, 4956 TCP_SKB_CB(skb1)->seq, 4957 TCP_SKB_CB(skb1)->end_seq); 4958 NET_INC_STATS(sock_net(sk), 4959 LINUX_MIB_TCPOFOMERGE); 4960 tcp_drop_reason(sk, skb1, 4961 SKB_DROP_REASON_TCP_OFOMERGE); 4962 goto merge_right; 4963 } 4964 } else if (tcp_ooo_try_coalesce(sk, skb1, 4965 skb, &fragstolen)) { 4966 goto coalesce_done; 4967 } 4968 p = &parent->rb_right; 4969 } 4970 insert: 4971 /* Insert segment into RB tree. */ 4972 rb_link_node(&skb->rbnode, parent, p); 4973 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4974 4975 merge_right: 4976 /* Remove other segments covered by skb. */ 4977 while ((skb1 = skb_rb_next(skb)) != NULL) { 4978 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4979 break; 4980 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4981 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4982 end_seq); 4983 break; 4984 } 4985 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4986 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4987 TCP_SKB_CB(skb1)->end_seq); 4988 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4989 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE); 4990 } 4991 /* If there is no skb after us, we are the last_skb ! */ 4992 if (!skb1) 4993 tp->ooo_last_skb = skb; 4994 4995 add_sack: 4996 if (tcp_is_sack(tp)) 4997 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4998 end: 4999 if (skb) { 5000 /* For non sack flows, do not grow window to force DUPACK 5001 * and trigger fast retransmit. 5002 */ 5003 if (tcp_is_sack(tp)) 5004 tcp_grow_window(sk, skb, false); 5005 skb_condense(skb); 5006 skb_set_owner_r(skb, sk); 5007 } 5008 } 5009 5010 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 5011 bool *fragstolen) 5012 { 5013 int eaten; 5014 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 5015 5016 eaten = (tail && 5017 tcp_try_coalesce(sk, tail, 5018 skb, fragstolen)) ? 1 : 0; 5019 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 5020 if (!eaten) { 5021 __skb_queue_tail(&sk->sk_receive_queue, skb); 5022 skb_set_owner_r(skb, sk); 5023 } 5024 return eaten; 5025 } 5026 5027 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 5028 { 5029 struct sk_buff *skb; 5030 int err = -ENOMEM; 5031 int data_len = 0; 5032 bool fragstolen; 5033 5034 if (size == 0) 5035 return 0; 5036 5037 if (size > PAGE_SIZE) { 5038 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 5039 5040 data_len = npages << PAGE_SHIFT; 5041 size = data_len + (size & ~PAGE_MASK); 5042 } 5043 skb = alloc_skb_with_frags(size - data_len, data_len, 5044 PAGE_ALLOC_COSTLY_ORDER, 5045 &err, sk->sk_allocation); 5046 if (!skb) 5047 goto err; 5048 5049 skb_put(skb, size - data_len); 5050 skb->data_len = data_len; 5051 skb->len = size; 5052 5053 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5054 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5055 goto err_free; 5056 } 5057 5058 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 5059 if (err) 5060 goto err_free; 5061 5062 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 5063 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 5064 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 5065 5066 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 5067 WARN_ON_ONCE(fragstolen); /* should not happen */ 5068 __kfree_skb(skb); 5069 } 5070 return size; 5071 5072 err_free: 5073 kfree_skb(skb); 5074 err: 5075 return err; 5076 5077 } 5078 5079 void tcp_data_ready(struct sock *sk) 5080 { 5081 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE)) 5082 sk->sk_data_ready(sk); 5083 } 5084 5085 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 5086 { 5087 struct tcp_sock *tp = tcp_sk(sk); 5088 enum skb_drop_reason reason; 5089 bool fragstolen; 5090 int eaten; 5091 5092 /* If a subflow has been reset, the packet should not continue 5093 * to be processed, drop the packet. 5094 */ 5095 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) { 5096 __kfree_skb(skb); 5097 return; 5098 } 5099 5100 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 5101 __kfree_skb(skb); 5102 return; 5103 } 5104 skb_dst_drop(skb); 5105 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 5106 5107 reason = SKB_DROP_REASON_NOT_SPECIFIED; 5108 tp->rx_opt.dsack = 0; 5109 5110 /* Queue data for delivery to the user. 5111 * Packets in sequence go to the receive queue. 5112 * Out of sequence packets to the out_of_order_queue. 5113 */ 5114 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 5115 if (tcp_receive_window(tp) == 0) { 5116 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5117 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5118 goto out_of_window; 5119 } 5120 5121 /* Ok. In sequence. In window. */ 5122 queue_and_out: 5123 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5124 /* TODO: maybe ratelimit these WIN 0 ACK ? */ 5125 inet_csk(sk)->icsk_ack.pending |= 5126 (ICSK_ACK_NOMEM | ICSK_ACK_NOW); 5127 inet_csk_schedule_ack(sk); 5128 sk->sk_data_ready(sk); 5129 5130 if (skb_queue_len(&sk->sk_receive_queue)) { 5131 reason = SKB_DROP_REASON_PROTO_MEM; 5132 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5133 goto drop; 5134 } 5135 sk_forced_mem_schedule(sk, skb->truesize); 5136 } 5137 5138 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5139 if (skb->len) 5140 tcp_event_data_recv(sk, skb); 5141 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 5142 tcp_fin(sk); 5143 5144 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5145 tcp_ofo_queue(sk); 5146 5147 /* RFC5681. 4.2. SHOULD send immediate ACK, when 5148 * gap in queue is filled. 5149 */ 5150 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5151 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 5152 } 5153 5154 if (tp->rx_opt.num_sacks) 5155 tcp_sack_remove(tp); 5156 5157 tcp_fast_path_check(sk); 5158 5159 if (eaten > 0) 5160 kfree_skb_partial(skb, fragstolen); 5161 if (!sock_flag(sk, SOCK_DEAD)) 5162 tcp_data_ready(sk); 5163 return; 5164 } 5165 5166 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 5167 tcp_rcv_spurious_retrans(sk, skb); 5168 /* A retransmit, 2nd most common case. Force an immediate ack. */ 5169 reason = SKB_DROP_REASON_TCP_OLD_DATA; 5170 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 5171 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5172 5173 out_of_window: 5174 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5175 inet_csk_schedule_ack(sk); 5176 drop: 5177 tcp_drop_reason(sk, skb, reason); 5178 return; 5179 } 5180 5181 /* Out of window. F.e. zero window probe. */ 5182 if (!before(TCP_SKB_CB(skb)->seq, 5183 tp->rcv_nxt + tcp_receive_window(tp))) { 5184 reason = SKB_DROP_REASON_TCP_OVERWINDOW; 5185 goto out_of_window; 5186 } 5187 5188 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5189 /* Partial packet, seq < rcv_next < end_seq */ 5190 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 5191 5192 /* If window is closed, drop tail of packet. But after 5193 * remembering D-SACK for its head made in previous line. 5194 */ 5195 if (!tcp_receive_window(tp)) { 5196 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5197 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5198 goto out_of_window; 5199 } 5200 goto queue_and_out; 5201 } 5202 5203 tcp_data_queue_ofo(sk, skb); 5204 } 5205 5206 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 5207 { 5208 if (list) 5209 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 5210 5211 return skb_rb_next(skb); 5212 } 5213 5214 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 5215 struct sk_buff_head *list, 5216 struct rb_root *root) 5217 { 5218 struct sk_buff *next = tcp_skb_next(skb, list); 5219 5220 if (list) 5221 __skb_unlink(skb, list); 5222 else 5223 rb_erase(&skb->rbnode, root); 5224 5225 __kfree_skb(skb); 5226 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 5227 5228 return next; 5229 } 5230 5231 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 5232 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 5233 { 5234 struct rb_node **p = &root->rb_node; 5235 struct rb_node *parent = NULL; 5236 struct sk_buff *skb1; 5237 5238 while (*p) { 5239 parent = *p; 5240 skb1 = rb_to_skb(parent); 5241 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 5242 p = &parent->rb_left; 5243 else 5244 p = &parent->rb_right; 5245 } 5246 rb_link_node(&skb->rbnode, parent, p); 5247 rb_insert_color(&skb->rbnode, root); 5248 } 5249 5250 /* Collapse contiguous sequence of skbs head..tail with 5251 * sequence numbers start..end. 5252 * 5253 * If tail is NULL, this means until the end of the queue. 5254 * 5255 * Segments with FIN/SYN are not collapsed (only because this 5256 * simplifies code) 5257 */ 5258 static void 5259 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 5260 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 5261 { 5262 struct sk_buff *skb = head, *n; 5263 struct sk_buff_head tmp; 5264 bool end_of_skbs; 5265 5266 /* First, check that queue is collapsible and find 5267 * the point where collapsing can be useful. 5268 */ 5269 restart: 5270 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 5271 n = tcp_skb_next(skb, list); 5272 5273 /* No new bits? It is possible on ofo queue. */ 5274 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5275 skb = tcp_collapse_one(sk, skb, list, root); 5276 if (!skb) 5277 break; 5278 goto restart; 5279 } 5280 5281 /* The first skb to collapse is: 5282 * - not SYN/FIN and 5283 * - bloated or contains data before "start" or 5284 * overlaps to the next one and mptcp allow collapsing. 5285 */ 5286 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 5287 (tcp_win_from_space(sk, skb->truesize) > skb->len || 5288 before(TCP_SKB_CB(skb)->seq, start))) { 5289 end_of_skbs = false; 5290 break; 5291 } 5292 5293 if (n && n != tail && mptcp_skb_can_collapse(skb, n) && 5294 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 5295 end_of_skbs = false; 5296 break; 5297 } 5298 5299 /* Decided to skip this, advance start seq. */ 5300 start = TCP_SKB_CB(skb)->end_seq; 5301 } 5302 if (end_of_skbs || 5303 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5304 return; 5305 5306 __skb_queue_head_init(&tmp); 5307 5308 while (before(start, end)) { 5309 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 5310 struct sk_buff *nskb; 5311 5312 nskb = alloc_skb(copy, GFP_ATOMIC); 5313 if (!nskb) 5314 break; 5315 5316 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 5317 #ifdef CONFIG_TLS_DEVICE 5318 nskb->decrypted = skb->decrypted; 5319 #endif 5320 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 5321 if (list) 5322 __skb_queue_before(list, skb, nskb); 5323 else 5324 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 5325 skb_set_owner_r(nskb, sk); 5326 mptcp_skb_ext_move(nskb, skb); 5327 5328 /* Copy data, releasing collapsed skbs. */ 5329 while (copy > 0) { 5330 int offset = start - TCP_SKB_CB(skb)->seq; 5331 int size = TCP_SKB_CB(skb)->end_seq - start; 5332 5333 BUG_ON(offset < 0); 5334 if (size > 0) { 5335 size = min(copy, size); 5336 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 5337 BUG(); 5338 TCP_SKB_CB(nskb)->end_seq += size; 5339 copy -= size; 5340 start += size; 5341 } 5342 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5343 skb = tcp_collapse_one(sk, skb, list, root); 5344 if (!skb || 5345 skb == tail || 5346 !mptcp_skb_can_collapse(nskb, skb) || 5347 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5348 goto end; 5349 #ifdef CONFIG_TLS_DEVICE 5350 if (skb->decrypted != nskb->decrypted) 5351 goto end; 5352 #endif 5353 } 5354 } 5355 } 5356 end: 5357 skb_queue_walk_safe(&tmp, skb, n) 5358 tcp_rbtree_insert(root, skb); 5359 } 5360 5361 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5362 * and tcp_collapse() them until all the queue is collapsed. 5363 */ 5364 static void tcp_collapse_ofo_queue(struct sock *sk) 5365 { 5366 struct tcp_sock *tp = tcp_sk(sk); 5367 u32 range_truesize, sum_tiny = 0; 5368 struct sk_buff *skb, *head; 5369 u32 start, end; 5370 5371 skb = skb_rb_first(&tp->out_of_order_queue); 5372 new_range: 5373 if (!skb) { 5374 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5375 return; 5376 } 5377 start = TCP_SKB_CB(skb)->seq; 5378 end = TCP_SKB_CB(skb)->end_seq; 5379 range_truesize = skb->truesize; 5380 5381 for (head = skb;;) { 5382 skb = skb_rb_next(skb); 5383 5384 /* Range is terminated when we see a gap or when 5385 * we are at the queue end. 5386 */ 5387 if (!skb || 5388 after(TCP_SKB_CB(skb)->seq, end) || 5389 before(TCP_SKB_CB(skb)->end_seq, start)) { 5390 /* Do not attempt collapsing tiny skbs */ 5391 if (range_truesize != head->truesize || 5392 end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) { 5393 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5394 head, skb, start, end); 5395 } else { 5396 sum_tiny += range_truesize; 5397 if (sum_tiny > sk->sk_rcvbuf >> 3) 5398 return; 5399 } 5400 goto new_range; 5401 } 5402 5403 range_truesize += skb->truesize; 5404 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5405 start = TCP_SKB_CB(skb)->seq; 5406 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5407 end = TCP_SKB_CB(skb)->end_seq; 5408 } 5409 } 5410 5411 /* 5412 * Clean the out-of-order queue to make room. 5413 * We drop high sequences packets to : 5414 * 1) Let a chance for holes to be filled. 5415 * This means we do not drop packets from ooo queue if their sequence 5416 * is before incoming packet sequence. 5417 * 2) not add too big latencies if thousands of packets sit there. 5418 * (But if application shrinks SO_RCVBUF, we could still end up 5419 * freeing whole queue here) 5420 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5421 * 5422 * Return true if queue has shrunk. 5423 */ 5424 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb) 5425 { 5426 struct tcp_sock *tp = tcp_sk(sk); 5427 struct rb_node *node, *prev; 5428 bool pruned = false; 5429 int goal; 5430 5431 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5432 return false; 5433 5434 goal = sk->sk_rcvbuf >> 3; 5435 node = &tp->ooo_last_skb->rbnode; 5436 5437 do { 5438 struct sk_buff *skb = rb_to_skb(node); 5439 5440 /* If incoming skb would land last in ofo queue, stop pruning. */ 5441 if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq)) 5442 break; 5443 pruned = true; 5444 prev = rb_prev(node); 5445 rb_erase(node, &tp->out_of_order_queue); 5446 goal -= skb->truesize; 5447 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE); 5448 tp->ooo_last_skb = rb_to_skb(prev); 5449 if (!prev || goal <= 0) { 5450 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5451 !tcp_under_memory_pressure(sk)) 5452 break; 5453 goal = sk->sk_rcvbuf >> 3; 5454 } 5455 node = prev; 5456 } while (node); 5457 5458 if (pruned) { 5459 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5460 /* Reset SACK state. A conforming SACK implementation will 5461 * do the same at a timeout based retransmit. When a connection 5462 * is in a sad state like this, we care only about integrity 5463 * of the connection not performance. 5464 */ 5465 if (tp->rx_opt.sack_ok) 5466 tcp_sack_reset(&tp->rx_opt); 5467 } 5468 return pruned; 5469 } 5470 5471 /* Reduce allocated memory if we can, trying to get 5472 * the socket within its memory limits again. 5473 * 5474 * Return less than zero if we should start dropping frames 5475 * until the socket owning process reads some of the data 5476 * to stabilize the situation. 5477 */ 5478 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb) 5479 { 5480 struct tcp_sock *tp = tcp_sk(sk); 5481 5482 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5483 5484 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5485 tcp_clamp_window(sk); 5486 else if (tcp_under_memory_pressure(sk)) 5487 tcp_adjust_rcv_ssthresh(sk); 5488 5489 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5490 return 0; 5491 5492 tcp_collapse_ofo_queue(sk); 5493 if (!skb_queue_empty(&sk->sk_receive_queue)) 5494 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5495 skb_peek(&sk->sk_receive_queue), 5496 NULL, 5497 tp->copied_seq, tp->rcv_nxt); 5498 5499 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5500 return 0; 5501 5502 /* Collapsing did not help, destructive actions follow. 5503 * This must not ever occur. */ 5504 5505 tcp_prune_ofo_queue(sk, in_skb); 5506 5507 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5508 return 0; 5509 5510 /* If we are really being abused, tell the caller to silently 5511 * drop receive data on the floor. It will get retransmitted 5512 * and hopefully then we'll have sufficient space. 5513 */ 5514 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5515 5516 /* Massive buffer overcommit. */ 5517 tp->pred_flags = 0; 5518 return -1; 5519 } 5520 5521 static bool tcp_should_expand_sndbuf(struct sock *sk) 5522 { 5523 const struct tcp_sock *tp = tcp_sk(sk); 5524 5525 /* If the user specified a specific send buffer setting, do 5526 * not modify it. 5527 */ 5528 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5529 return false; 5530 5531 /* If we are under global TCP memory pressure, do not expand. */ 5532 if (tcp_under_memory_pressure(sk)) { 5533 int unused_mem = sk_unused_reserved_mem(sk); 5534 5535 /* Adjust sndbuf according to reserved mem. But make sure 5536 * it never goes below SOCK_MIN_SNDBUF. 5537 * See sk_stream_moderate_sndbuf() for more details. 5538 */ 5539 if (unused_mem > SOCK_MIN_SNDBUF) 5540 WRITE_ONCE(sk->sk_sndbuf, unused_mem); 5541 5542 return false; 5543 } 5544 5545 /* If we are under soft global TCP memory pressure, do not expand. */ 5546 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5547 return false; 5548 5549 /* If we filled the congestion window, do not expand. */ 5550 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)) 5551 return false; 5552 5553 return true; 5554 } 5555 5556 static void tcp_new_space(struct sock *sk) 5557 { 5558 struct tcp_sock *tp = tcp_sk(sk); 5559 5560 if (tcp_should_expand_sndbuf(sk)) { 5561 tcp_sndbuf_expand(sk); 5562 tp->snd_cwnd_stamp = tcp_jiffies32; 5563 } 5564 5565 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk); 5566 } 5567 5568 /* Caller made space either from: 5569 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced) 5570 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt) 5571 * 5572 * We might be able to generate EPOLLOUT to the application if: 5573 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2 5574 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became 5575 * small enough that tcp_stream_memory_free() decides it 5576 * is time to generate EPOLLOUT. 5577 */ 5578 void tcp_check_space(struct sock *sk) 5579 { 5580 /* pairs with tcp_poll() */ 5581 smp_mb(); 5582 if (sk->sk_socket && 5583 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5584 tcp_new_space(sk); 5585 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5586 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5587 } 5588 } 5589 5590 static inline void tcp_data_snd_check(struct sock *sk) 5591 { 5592 tcp_push_pending_frames(sk); 5593 tcp_check_space(sk); 5594 } 5595 5596 /* 5597 * Check if sending an ack is needed. 5598 */ 5599 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5600 { 5601 struct tcp_sock *tp = tcp_sk(sk); 5602 unsigned long rtt, delay; 5603 5604 /* More than one full frame received... */ 5605 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5606 /* ... and right edge of window advances far enough. 5607 * (tcp_recvmsg() will send ACK otherwise). 5608 * If application uses SO_RCVLOWAT, we want send ack now if 5609 * we have not received enough bytes to satisfy the condition. 5610 */ 5611 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5612 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5613 /* We ACK each frame or... */ 5614 tcp_in_quickack_mode(sk) || 5615 /* Protocol state mandates a one-time immediate ACK */ 5616 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5617 send_now: 5618 tcp_send_ack(sk); 5619 return; 5620 } 5621 5622 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5623 tcp_send_delayed_ack(sk); 5624 return; 5625 } 5626 5627 if (!tcp_is_sack(tp) || 5628 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)) 5629 goto send_now; 5630 5631 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5632 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5633 tp->dup_ack_counter = 0; 5634 } 5635 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) { 5636 tp->dup_ack_counter++; 5637 goto send_now; 5638 } 5639 tp->compressed_ack++; 5640 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5641 return; 5642 5643 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5644 5645 rtt = tp->rcv_rtt_est.rtt_us; 5646 if (tp->srtt_us && tp->srtt_us < rtt) 5647 rtt = tp->srtt_us; 5648 5649 delay = min_t(unsigned long, 5650 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns), 5651 rtt * (NSEC_PER_USEC >> 3)/20); 5652 sock_hold(sk); 5653 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay), 5654 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns), 5655 HRTIMER_MODE_REL_PINNED_SOFT); 5656 } 5657 5658 static inline void tcp_ack_snd_check(struct sock *sk) 5659 { 5660 if (!inet_csk_ack_scheduled(sk)) { 5661 /* We sent a data segment already. */ 5662 return; 5663 } 5664 __tcp_ack_snd_check(sk, 1); 5665 } 5666 5667 /* 5668 * This routine is only called when we have urgent data 5669 * signaled. Its the 'slow' part of tcp_urg. It could be 5670 * moved inline now as tcp_urg is only called from one 5671 * place. We handle URGent data wrong. We have to - as 5672 * BSD still doesn't use the correction from RFC961. 5673 * For 1003.1g we should support a new option TCP_STDURG to permit 5674 * either form (or just set the sysctl tcp_stdurg). 5675 */ 5676 5677 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5678 { 5679 struct tcp_sock *tp = tcp_sk(sk); 5680 u32 ptr = ntohs(th->urg_ptr); 5681 5682 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg)) 5683 ptr--; 5684 ptr += ntohl(th->seq); 5685 5686 /* Ignore urgent data that we've already seen and read. */ 5687 if (after(tp->copied_seq, ptr)) 5688 return; 5689 5690 /* Do not replay urg ptr. 5691 * 5692 * NOTE: interesting situation not covered by specs. 5693 * Misbehaving sender may send urg ptr, pointing to segment, 5694 * which we already have in ofo queue. We are not able to fetch 5695 * such data and will stay in TCP_URG_NOTYET until will be eaten 5696 * by recvmsg(). Seems, we are not obliged to handle such wicked 5697 * situations. But it is worth to think about possibility of some 5698 * DoSes using some hypothetical application level deadlock. 5699 */ 5700 if (before(ptr, tp->rcv_nxt)) 5701 return; 5702 5703 /* Do we already have a newer (or duplicate) urgent pointer? */ 5704 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5705 return; 5706 5707 /* Tell the world about our new urgent pointer. */ 5708 sk_send_sigurg(sk); 5709 5710 /* We may be adding urgent data when the last byte read was 5711 * urgent. To do this requires some care. We cannot just ignore 5712 * tp->copied_seq since we would read the last urgent byte again 5713 * as data, nor can we alter copied_seq until this data arrives 5714 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5715 * 5716 * NOTE. Double Dutch. Rendering to plain English: author of comment 5717 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5718 * and expect that both A and B disappear from stream. This is _wrong_. 5719 * Though this happens in BSD with high probability, this is occasional. 5720 * Any application relying on this is buggy. Note also, that fix "works" 5721 * only in this artificial test. Insert some normal data between A and B and we will 5722 * decline of BSD again. Verdict: it is better to remove to trap 5723 * buggy users. 5724 */ 5725 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5726 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5727 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5728 tp->copied_seq++; 5729 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5730 __skb_unlink(skb, &sk->sk_receive_queue); 5731 __kfree_skb(skb); 5732 } 5733 } 5734 5735 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET); 5736 WRITE_ONCE(tp->urg_seq, ptr); 5737 5738 /* Disable header prediction. */ 5739 tp->pred_flags = 0; 5740 } 5741 5742 /* This is the 'fast' part of urgent handling. */ 5743 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5744 { 5745 struct tcp_sock *tp = tcp_sk(sk); 5746 5747 /* Check if we get a new urgent pointer - normally not. */ 5748 if (unlikely(th->urg)) 5749 tcp_check_urg(sk, th); 5750 5751 /* Do we wait for any urgent data? - normally not... */ 5752 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) { 5753 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5754 th->syn; 5755 5756 /* Is the urgent pointer pointing into this packet? */ 5757 if (ptr < skb->len) { 5758 u8 tmp; 5759 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5760 BUG(); 5761 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp); 5762 if (!sock_flag(sk, SOCK_DEAD)) 5763 sk->sk_data_ready(sk); 5764 } 5765 } 5766 } 5767 5768 /* Accept RST for rcv_nxt - 1 after a FIN. 5769 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5770 * FIN is sent followed by a RST packet. The RST is sent with the same 5771 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5772 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5773 * ACKs on the closed socket. In addition middleboxes can drop either the 5774 * challenge ACK or a subsequent RST. 5775 */ 5776 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5777 { 5778 const struct tcp_sock *tp = tcp_sk(sk); 5779 5780 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5781 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5782 TCPF_CLOSING)); 5783 } 5784 5785 /* Does PAWS and seqno based validation of an incoming segment, flags will 5786 * play significant role here. 5787 */ 5788 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5789 const struct tcphdr *th, int syn_inerr) 5790 { 5791 struct tcp_sock *tp = tcp_sk(sk); 5792 SKB_DR(reason); 5793 5794 /* RFC1323: H1. Apply PAWS check first. */ 5795 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5796 tp->rx_opt.saw_tstamp && 5797 tcp_paws_discard(sk, skb)) { 5798 if (!th->rst) { 5799 if (unlikely(th->syn)) 5800 goto syn_challenge; 5801 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5802 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5803 LINUX_MIB_TCPACKSKIPPEDPAWS, 5804 &tp->last_oow_ack_time)) 5805 tcp_send_dupack(sk, skb); 5806 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 5807 goto discard; 5808 } 5809 /* Reset is accepted even if it did not pass PAWS. */ 5810 } 5811 5812 /* Step 1: check sequence number */ 5813 reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5814 if (reason) { 5815 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5816 * (RST) segments are validated by checking their SEQ-fields." 5817 * And page 69: "If an incoming segment is not acceptable, 5818 * an acknowledgment should be sent in reply (unless the RST 5819 * bit is set, if so drop the segment and return)". 5820 */ 5821 if (!th->rst) { 5822 if (th->syn) 5823 goto syn_challenge; 5824 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5825 LINUX_MIB_TCPACKSKIPPEDSEQ, 5826 &tp->last_oow_ack_time)) 5827 tcp_send_dupack(sk, skb); 5828 } else if (tcp_reset_check(sk, skb)) { 5829 goto reset; 5830 } 5831 goto discard; 5832 } 5833 5834 /* Step 2: check RST bit */ 5835 if (th->rst) { 5836 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5837 * FIN and SACK too if available): 5838 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5839 * the right-most SACK block, 5840 * then 5841 * RESET the connection 5842 * else 5843 * Send a challenge ACK 5844 */ 5845 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5846 tcp_reset_check(sk, skb)) 5847 goto reset; 5848 5849 if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5850 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5851 int max_sack = sp[0].end_seq; 5852 int this_sack; 5853 5854 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5855 ++this_sack) { 5856 max_sack = after(sp[this_sack].end_seq, 5857 max_sack) ? 5858 sp[this_sack].end_seq : max_sack; 5859 } 5860 5861 if (TCP_SKB_CB(skb)->seq == max_sack) 5862 goto reset; 5863 } 5864 5865 /* Disable TFO if RST is out-of-order 5866 * and no data has been received 5867 * for current active TFO socket 5868 */ 5869 if (tp->syn_fastopen && !tp->data_segs_in && 5870 sk->sk_state == TCP_ESTABLISHED) 5871 tcp_fastopen_active_disable(sk); 5872 tcp_send_challenge_ack(sk); 5873 SKB_DR_SET(reason, TCP_RESET); 5874 goto discard; 5875 } 5876 5877 /* step 3: check security and precedence [ignored] */ 5878 5879 /* step 4: Check for a SYN 5880 * RFC 5961 4.2 : Send a challenge ack 5881 */ 5882 if (th->syn) { 5883 syn_challenge: 5884 if (syn_inerr) 5885 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5886 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5887 tcp_send_challenge_ack(sk); 5888 SKB_DR_SET(reason, TCP_INVALID_SYN); 5889 goto discard; 5890 } 5891 5892 bpf_skops_parse_hdr(sk, skb); 5893 5894 return true; 5895 5896 discard: 5897 tcp_drop_reason(sk, skb, reason); 5898 return false; 5899 5900 reset: 5901 tcp_reset(sk, skb); 5902 __kfree_skb(skb); 5903 return false; 5904 } 5905 5906 /* 5907 * TCP receive function for the ESTABLISHED state. 5908 * 5909 * It is split into a fast path and a slow path. The fast path is 5910 * disabled when: 5911 * - A zero window was announced from us - zero window probing 5912 * is only handled properly in the slow path. 5913 * - Out of order segments arrived. 5914 * - Urgent data is expected. 5915 * - There is no buffer space left 5916 * - Unexpected TCP flags/window values/header lengths are received 5917 * (detected by checking the TCP header against pred_flags) 5918 * - Data is sent in both directions. Fast path only supports pure senders 5919 * or pure receivers (this means either the sequence number or the ack 5920 * value must stay constant) 5921 * - Unexpected TCP option. 5922 * 5923 * When these conditions are not satisfied it drops into a standard 5924 * receive procedure patterned after RFC793 to handle all cases. 5925 * The first three cases are guaranteed by proper pred_flags setting, 5926 * the rest is checked inline. Fast processing is turned on in 5927 * tcp_data_queue when everything is OK. 5928 */ 5929 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5930 { 5931 enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED; 5932 const struct tcphdr *th = (const struct tcphdr *)skb->data; 5933 struct tcp_sock *tp = tcp_sk(sk); 5934 unsigned int len = skb->len; 5935 5936 /* TCP congestion window tracking */ 5937 trace_tcp_probe(sk, skb); 5938 5939 tcp_mstamp_refresh(tp); 5940 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst))) 5941 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5942 /* 5943 * Header prediction. 5944 * The code loosely follows the one in the famous 5945 * "30 instruction TCP receive" Van Jacobson mail. 5946 * 5947 * Van's trick is to deposit buffers into socket queue 5948 * on a device interrupt, to call tcp_recv function 5949 * on the receive process context and checksum and copy 5950 * the buffer to user space. smart... 5951 * 5952 * Our current scheme is not silly either but we take the 5953 * extra cost of the net_bh soft interrupt processing... 5954 * We do checksum and copy also but from device to kernel. 5955 */ 5956 5957 tp->rx_opt.saw_tstamp = 0; 5958 5959 /* pred_flags is 0xS?10 << 16 + snd_wnd 5960 * if header_prediction is to be made 5961 * 'S' will always be tp->tcp_header_len >> 2 5962 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5963 * turn it off (when there are holes in the receive 5964 * space for instance) 5965 * PSH flag is ignored. 5966 */ 5967 5968 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5969 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5970 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5971 int tcp_header_len = tp->tcp_header_len; 5972 5973 /* Timestamp header prediction: tcp_header_len 5974 * is automatically equal to th->doff*4 due to pred_flags 5975 * match. 5976 */ 5977 5978 /* Check timestamp */ 5979 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5980 /* No? Slow path! */ 5981 if (!tcp_parse_aligned_timestamp(tp, th)) 5982 goto slow_path; 5983 5984 /* If PAWS failed, check it more carefully in slow path */ 5985 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5986 goto slow_path; 5987 5988 /* DO NOT update ts_recent here, if checksum fails 5989 * and timestamp was corrupted part, it will result 5990 * in a hung connection since we will drop all 5991 * future packets due to the PAWS test. 5992 */ 5993 } 5994 5995 if (len <= tcp_header_len) { 5996 /* Bulk data transfer: sender */ 5997 if (len == tcp_header_len) { 5998 /* Predicted packet is in window by definition. 5999 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6000 * Hence, check seq<=rcv_wup reduces to: 6001 */ 6002 if (tcp_header_len == 6003 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6004 tp->rcv_nxt == tp->rcv_wup) 6005 tcp_store_ts_recent(tp); 6006 6007 /* We know that such packets are checksummed 6008 * on entry. 6009 */ 6010 tcp_ack(sk, skb, 0); 6011 __kfree_skb(skb); 6012 tcp_data_snd_check(sk); 6013 /* When receiving pure ack in fast path, update 6014 * last ts ecr directly instead of calling 6015 * tcp_rcv_rtt_measure_ts() 6016 */ 6017 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 6018 return; 6019 } else { /* Header too small */ 6020 reason = SKB_DROP_REASON_PKT_TOO_SMALL; 6021 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6022 goto discard; 6023 } 6024 } else { 6025 int eaten = 0; 6026 bool fragstolen = false; 6027 6028 if (tcp_checksum_complete(skb)) 6029 goto csum_error; 6030 6031 if ((int)skb->truesize > sk->sk_forward_alloc) 6032 goto step5; 6033 6034 /* Predicted packet is in window by definition. 6035 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6036 * Hence, check seq<=rcv_wup reduces to: 6037 */ 6038 if (tcp_header_len == 6039 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6040 tp->rcv_nxt == tp->rcv_wup) 6041 tcp_store_ts_recent(tp); 6042 6043 tcp_rcv_rtt_measure_ts(sk, skb); 6044 6045 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 6046 6047 /* Bulk data transfer: receiver */ 6048 skb_dst_drop(skb); 6049 __skb_pull(skb, tcp_header_len); 6050 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 6051 6052 tcp_event_data_recv(sk, skb); 6053 6054 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 6055 /* Well, only one small jumplet in fast path... */ 6056 tcp_ack(sk, skb, FLAG_DATA); 6057 tcp_data_snd_check(sk); 6058 if (!inet_csk_ack_scheduled(sk)) 6059 goto no_ack; 6060 } else { 6061 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq); 6062 } 6063 6064 __tcp_ack_snd_check(sk, 0); 6065 no_ack: 6066 if (eaten) 6067 kfree_skb_partial(skb, fragstolen); 6068 tcp_data_ready(sk); 6069 return; 6070 } 6071 } 6072 6073 slow_path: 6074 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 6075 goto csum_error; 6076 6077 if (!th->ack && !th->rst && !th->syn) { 6078 reason = SKB_DROP_REASON_TCP_FLAGS; 6079 goto discard; 6080 } 6081 6082 /* 6083 * Standard slow path. 6084 */ 6085 6086 if (!tcp_validate_incoming(sk, skb, th, 1)) 6087 return; 6088 6089 step5: 6090 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT); 6091 if ((int)reason < 0) { 6092 reason = -reason; 6093 goto discard; 6094 } 6095 tcp_rcv_rtt_measure_ts(sk, skb); 6096 6097 /* Process urgent data. */ 6098 tcp_urg(sk, skb, th); 6099 6100 /* step 7: process the segment text */ 6101 tcp_data_queue(sk, skb); 6102 6103 tcp_data_snd_check(sk); 6104 tcp_ack_snd_check(sk); 6105 return; 6106 6107 csum_error: 6108 reason = SKB_DROP_REASON_TCP_CSUM; 6109 trace_tcp_bad_csum(skb); 6110 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 6111 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6112 6113 discard: 6114 tcp_drop_reason(sk, skb, reason); 6115 } 6116 EXPORT_SYMBOL(tcp_rcv_established); 6117 6118 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb) 6119 { 6120 struct inet_connection_sock *icsk = inet_csk(sk); 6121 struct tcp_sock *tp = tcp_sk(sk); 6122 6123 tcp_mtup_init(sk); 6124 icsk->icsk_af_ops->rebuild_header(sk); 6125 tcp_init_metrics(sk); 6126 6127 /* Initialize the congestion window to start the transfer. 6128 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 6129 * retransmitted. In light of RFC6298 more aggressive 1sec 6130 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 6131 * retransmission has occurred. 6132 */ 6133 if (tp->total_retrans > 1 && tp->undo_marker) 6134 tcp_snd_cwnd_set(tp, 1); 6135 else 6136 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk))); 6137 tp->snd_cwnd_stamp = tcp_jiffies32; 6138 6139 bpf_skops_established(sk, bpf_op, skb); 6140 /* Initialize congestion control unless BPF initialized it already: */ 6141 if (!icsk->icsk_ca_initialized) 6142 tcp_init_congestion_control(sk); 6143 tcp_init_buffer_space(sk); 6144 } 6145 6146 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 6147 { 6148 struct tcp_sock *tp = tcp_sk(sk); 6149 struct inet_connection_sock *icsk = inet_csk(sk); 6150 6151 tcp_set_state(sk, TCP_ESTABLISHED); 6152 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 6153 6154 if (skb) { 6155 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 6156 security_inet_conn_established(sk, skb); 6157 sk_mark_napi_id(sk, skb); 6158 } 6159 6160 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb); 6161 6162 /* Prevent spurious tcp_cwnd_restart() on first data 6163 * packet. 6164 */ 6165 tp->lsndtime = tcp_jiffies32; 6166 6167 if (sock_flag(sk, SOCK_KEEPOPEN)) 6168 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 6169 6170 if (!tp->rx_opt.snd_wscale) 6171 __tcp_fast_path_on(tp, tp->snd_wnd); 6172 else 6173 tp->pred_flags = 0; 6174 } 6175 6176 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 6177 struct tcp_fastopen_cookie *cookie) 6178 { 6179 struct tcp_sock *tp = tcp_sk(sk); 6180 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 6181 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 6182 bool syn_drop = false; 6183 6184 if (mss == tp->rx_opt.user_mss) { 6185 struct tcp_options_received opt; 6186 6187 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 6188 tcp_clear_options(&opt); 6189 opt.user_mss = opt.mss_clamp = 0; 6190 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 6191 mss = opt.mss_clamp; 6192 } 6193 6194 if (!tp->syn_fastopen) { 6195 /* Ignore an unsolicited cookie */ 6196 cookie->len = -1; 6197 } else if (tp->total_retrans) { 6198 /* SYN timed out and the SYN-ACK neither has a cookie nor 6199 * acknowledges data. Presumably the remote received only 6200 * the retransmitted (regular) SYNs: either the original 6201 * SYN-data or the corresponding SYN-ACK was dropped. 6202 */ 6203 syn_drop = (cookie->len < 0 && data); 6204 } else if (cookie->len < 0 && !tp->syn_data) { 6205 /* We requested a cookie but didn't get it. If we did not use 6206 * the (old) exp opt format then try so next time (try_exp=1). 6207 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 6208 */ 6209 try_exp = tp->syn_fastopen_exp ? 2 : 1; 6210 } 6211 6212 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 6213 6214 if (data) { /* Retransmit unacked data in SYN */ 6215 if (tp->total_retrans) 6216 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 6217 else 6218 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 6219 skb_rbtree_walk_from(data) 6220 tcp_mark_skb_lost(sk, data); 6221 tcp_non_congestion_loss_retransmit(sk); 6222 NET_INC_STATS(sock_net(sk), 6223 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 6224 return true; 6225 } 6226 tp->syn_data_acked = tp->syn_data; 6227 if (tp->syn_data_acked) { 6228 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 6229 /* SYN-data is counted as two separate packets in tcp_ack() */ 6230 if (tp->delivered > 1) 6231 --tp->delivered; 6232 } 6233 6234 tcp_fastopen_add_skb(sk, synack); 6235 6236 return false; 6237 } 6238 6239 static void smc_check_reset_syn(struct tcp_sock *tp) 6240 { 6241 #if IS_ENABLED(CONFIG_SMC) 6242 if (static_branch_unlikely(&tcp_have_smc)) { 6243 if (tp->syn_smc && !tp->rx_opt.smc_ok) 6244 tp->syn_smc = 0; 6245 } 6246 #endif 6247 } 6248 6249 static void tcp_try_undo_spurious_syn(struct sock *sk) 6250 { 6251 struct tcp_sock *tp = tcp_sk(sk); 6252 u32 syn_stamp; 6253 6254 /* undo_marker is set when SYN or SYNACK times out. The timeout is 6255 * spurious if the ACK's timestamp option echo value matches the 6256 * original SYN timestamp. 6257 */ 6258 syn_stamp = tp->retrans_stamp; 6259 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 6260 syn_stamp == tp->rx_opt.rcv_tsecr) 6261 tp->undo_marker = 0; 6262 } 6263 6264 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 6265 const struct tcphdr *th) 6266 { 6267 struct inet_connection_sock *icsk = inet_csk(sk); 6268 struct tcp_sock *tp = tcp_sk(sk); 6269 struct tcp_fastopen_cookie foc = { .len = -1 }; 6270 int saved_clamp = tp->rx_opt.mss_clamp; 6271 bool fastopen_fail; 6272 SKB_DR(reason); 6273 6274 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 6275 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 6276 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 6277 6278 if (th->ack) { 6279 /* rfc793: 6280 * "If the state is SYN-SENT then 6281 * first check the ACK bit 6282 * If the ACK bit is set 6283 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 6284 * a reset (unless the RST bit is set, if so drop 6285 * the segment and return)" 6286 */ 6287 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 6288 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6289 /* Previous FIN/ACK or RST/ACK might be ignored. */ 6290 if (icsk->icsk_retransmits == 0) 6291 inet_csk_reset_xmit_timer(sk, 6292 ICSK_TIME_RETRANS, 6293 TCP_TIMEOUT_MIN, TCP_RTO_MAX); 6294 goto reset_and_undo; 6295 } 6296 6297 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 6298 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 6299 tcp_time_stamp(tp))) { 6300 NET_INC_STATS(sock_net(sk), 6301 LINUX_MIB_PAWSACTIVEREJECTED); 6302 goto reset_and_undo; 6303 } 6304 6305 /* Now ACK is acceptable. 6306 * 6307 * "If the RST bit is set 6308 * If the ACK was acceptable then signal the user "error: 6309 * connection reset", drop the segment, enter CLOSED state, 6310 * delete TCB, and return." 6311 */ 6312 6313 if (th->rst) { 6314 tcp_reset(sk, skb); 6315 consume: 6316 __kfree_skb(skb); 6317 return 0; 6318 } 6319 6320 /* rfc793: 6321 * "fifth, if neither of the SYN or RST bits is set then 6322 * drop the segment and return." 6323 * 6324 * See note below! 6325 * --ANK(990513) 6326 */ 6327 if (!th->syn) { 6328 SKB_DR_SET(reason, TCP_FLAGS); 6329 goto discard_and_undo; 6330 } 6331 /* rfc793: 6332 * "If the SYN bit is on ... 6333 * are acceptable then ... 6334 * (our SYN has been ACKed), change the connection 6335 * state to ESTABLISHED..." 6336 */ 6337 6338 tcp_ecn_rcv_synack(tp, th); 6339 6340 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6341 tcp_try_undo_spurious_syn(sk); 6342 tcp_ack(sk, skb, FLAG_SLOWPATH); 6343 6344 /* Ok.. it's good. Set up sequence numbers and 6345 * move to established. 6346 */ 6347 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6348 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6349 6350 /* RFC1323: The window in SYN & SYN/ACK segments is 6351 * never scaled. 6352 */ 6353 tp->snd_wnd = ntohs(th->window); 6354 6355 if (!tp->rx_opt.wscale_ok) { 6356 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 6357 WRITE_ONCE(tp->window_clamp, 6358 min(tp->window_clamp, 65535U)); 6359 } 6360 6361 if (tp->rx_opt.saw_tstamp) { 6362 tp->rx_opt.tstamp_ok = 1; 6363 tp->tcp_header_len = 6364 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6365 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6366 tcp_store_ts_recent(tp); 6367 } else { 6368 tp->tcp_header_len = sizeof(struct tcphdr); 6369 } 6370 6371 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6372 tcp_initialize_rcv_mss(sk); 6373 6374 /* Remember, tcp_poll() does not lock socket! 6375 * Change state from SYN-SENT only after copied_seq 6376 * is initialized. */ 6377 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6378 6379 smc_check_reset_syn(tp); 6380 6381 smp_mb(); 6382 6383 tcp_finish_connect(sk, skb); 6384 6385 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 6386 tcp_rcv_fastopen_synack(sk, skb, &foc); 6387 6388 if (!sock_flag(sk, SOCK_DEAD)) { 6389 sk->sk_state_change(sk); 6390 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6391 } 6392 if (fastopen_fail) 6393 return -1; 6394 if (sk->sk_write_pending || 6395 READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) || 6396 inet_csk_in_pingpong_mode(sk)) { 6397 /* Save one ACK. Data will be ready after 6398 * several ticks, if write_pending is set. 6399 * 6400 * It may be deleted, but with this feature tcpdumps 6401 * look so _wonderfully_ clever, that I was not able 6402 * to stand against the temptation 8) --ANK 6403 */ 6404 inet_csk_schedule_ack(sk); 6405 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 6406 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 6407 TCP_DELACK_MAX, TCP_RTO_MAX); 6408 goto consume; 6409 } 6410 tcp_send_ack(sk); 6411 return -1; 6412 } 6413 6414 /* No ACK in the segment */ 6415 6416 if (th->rst) { 6417 /* rfc793: 6418 * "If the RST bit is set 6419 * 6420 * Otherwise (no ACK) drop the segment and return." 6421 */ 6422 SKB_DR_SET(reason, TCP_RESET); 6423 goto discard_and_undo; 6424 } 6425 6426 /* PAWS check. */ 6427 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 6428 tcp_paws_reject(&tp->rx_opt, 0)) { 6429 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 6430 goto discard_and_undo; 6431 } 6432 if (th->syn) { 6433 /* We see SYN without ACK. It is attempt of 6434 * simultaneous connect with crossed SYNs. 6435 * Particularly, it can be connect to self. 6436 */ 6437 tcp_set_state(sk, TCP_SYN_RECV); 6438 6439 if (tp->rx_opt.saw_tstamp) { 6440 tp->rx_opt.tstamp_ok = 1; 6441 tcp_store_ts_recent(tp); 6442 tp->tcp_header_len = 6443 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6444 } else { 6445 tp->tcp_header_len = sizeof(struct tcphdr); 6446 } 6447 6448 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6449 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6450 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6451 6452 /* RFC1323: The window in SYN & SYN/ACK segments is 6453 * never scaled. 6454 */ 6455 tp->snd_wnd = ntohs(th->window); 6456 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6457 tp->max_window = tp->snd_wnd; 6458 6459 tcp_ecn_rcv_syn(tp, th); 6460 6461 tcp_mtup_init(sk); 6462 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6463 tcp_initialize_rcv_mss(sk); 6464 6465 tcp_send_synack(sk); 6466 #if 0 6467 /* Note, we could accept data and URG from this segment. 6468 * There are no obstacles to make this (except that we must 6469 * either change tcp_recvmsg() to prevent it from returning data 6470 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6471 * 6472 * However, if we ignore data in ACKless segments sometimes, 6473 * we have no reasons to accept it sometimes. 6474 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6475 * is not flawless. So, discard packet for sanity. 6476 * Uncomment this return to process the data. 6477 */ 6478 return -1; 6479 #else 6480 goto consume; 6481 #endif 6482 } 6483 /* "fifth, if neither of the SYN or RST bits is set then 6484 * drop the segment and return." 6485 */ 6486 6487 discard_and_undo: 6488 tcp_clear_options(&tp->rx_opt); 6489 tp->rx_opt.mss_clamp = saved_clamp; 6490 tcp_drop_reason(sk, skb, reason); 6491 return 0; 6492 6493 reset_and_undo: 6494 tcp_clear_options(&tp->rx_opt); 6495 tp->rx_opt.mss_clamp = saved_clamp; 6496 return 1; 6497 } 6498 6499 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6500 { 6501 struct tcp_sock *tp = tcp_sk(sk); 6502 struct request_sock *req; 6503 6504 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows 6505 * undo. If peer SACKs triggered fast recovery, we can't undo here. 6506 */ 6507 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out) 6508 tcp_try_undo_recovery(sk); 6509 6510 /* Reset rtx states to prevent spurious retransmits_timed_out() */ 6511 tp->retrans_stamp = 0; 6512 inet_csk(sk)->icsk_retransmits = 0; 6513 6514 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6515 * we no longer need req so release it. 6516 */ 6517 req = rcu_dereference_protected(tp->fastopen_rsk, 6518 lockdep_sock_is_held(sk)); 6519 reqsk_fastopen_remove(sk, req, false); 6520 6521 /* Re-arm the timer because data may have been sent out. 6522 * This is similar to the regular data transmission case 6523 * when new data has just been ack'ed. 6524 * 6525 * (TFO) - we could try to be more aggressive and 6526 * retransmitting any data sooner based on when they 6527 * are sent out. 6528 */ 6529 tcp_rearm_rto(sk); 6530 } 6531 6532 /* 6533 * This function implements the receiving procedure of RFC 793 for 6534 * all states except ESTABLISHED and TIME_WAIT. 6535 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6536 * address independent. 6537 */ 6538 6539 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6540 { 6541 struct tcp_sock *tp = tcp_sk(sk); 6542 struct inet_connection_sock *icsk = inet_csk(sk); 6543 const struct tcphdr *th = tcp_hdr(skb); 6544 struct request_sock *req; 6545 int queued = 0; 6546 bool acceptable; 6547 SKB_DR(reason); 6548 6549 switch (sk->sk_state) { 6550 case TCP_CLOSE: 6551 SKB_DR_SET(reason, TCP_CLOSE); 6552 goto discard; 6553 6554 case TCP_LISTEN: 6555 if (th->ack) 6556 return 1; 6557 6558 if (th->rst) { 6559 SKB_DR_SET(reason, TCP_RESET); 6560 goto discard; 6561 } 6562 if (th->syn) { 6563 if (th->fin) { 6564 SKB_DR_SET(reason, TCP_FLAGS); 6565 goto discard; 6566 } 6567 /* It is possible that we process SYN packets from backlog, 6568 * so we need to make sure to disable BH and RCU right there. 6569 */ 6570 rcu_read_lock(); 6571 local_bh_disable(); 6572 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 6573 local_bh_enable(); 6574 rcu_read_unlock(); 6575 6576 if (!acceptable) 6577 return 1; 6578 consume_skb(skb); 6579 return 0; 6580 } 6581 SKB_DR_SET(reason, TCP_FLAGS); 6582 goto discard; 6583 6584 case TCP_SYN_SENT: 6585 tp->rx_opt.saw_tstamp = 0; 6586 tcp_mstamp_refresh(tp); 6587 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6588 if (queued >= 0) 6589 return queued; 6590 6591 /* Do step6 onward by hand. */ 6592 tcp_urg(sk, skb, th); 6593 __kfree_skb(skb); 6594 tcp_data_snd_check(sk); 6595 return 0; 6596 } 6597 6598 tcp_mstamp_refresh(tp); 6599 tp->rx_opt.saw_tstamp = 0; 6600 req = rcu_dereference_protected(tp->fastopen_rsk, 6601 lockdep_sock_is_held(sk)); 6602 if (req) { 6603 bool req_stolen; 6604 6605 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6606 sk->sk_state != TCP_FIN_WAIT1); 6607 6608 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) { 6609 SKB_DR_SET(reason, TCP_FASTOPEN); 6610 goto discard; 6611 } 6612 } 6613 6614 if (!th->ack && !th->rst && !th->syn) { 6615 SKB_DR_SET(reason, TCP_FLAGS); 6616 goto discard; 6617 } 6618 if (!tcp_validate_incoming(sk, skb, th, 0)) 6619 return 0; 6620 6621 /* step 5: check the ACK field */ 6622 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 6623 FLAG_UPDATE_TS_RECENT | 6624 FLAG_NO_CHALLENGE_ACK) > 0; 6625 6626 if (!acceptable) { 6627 if (sk->sk_state == TCP_SYN_RECV) 6628 return 1; /* send one RST */ 6629 tcp_send_challenge_ack(sk); 6630 SKB_DR_SET(reason, TCP_OLD_ACK); 6631 goto discard; 6632 } 6633 switch (sk->sk_state) { 6634 case TCP_SYN_RECV: 6635 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6636 if (!tp->srtt_us) 6637 tcp_synack_rtt_meas(sk, req); 6638 6639 if (req) { 6640 tcp_rcv_synrecv_state_fastopen(sk); 6641 } else { 6642 tcp_try_undo_spurious_syn(sk); 6643 tp->retrans_stamp = 0; 6644 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, 6645 skb); 6646 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6647 } 6648 smp_mb(); 6649 tcp_set_state(sk, TCP_ESTABLISHED); 6650 sk->sk_state_change(sk); 6651 6652 /* Note, that this wakeup is only for marginal crossed SYN case. 6653 * Passively open sockets are not waked up, because 6654 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6655 */ 6656 if (sk->sk_socket) 6657 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6658 6659 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6660 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6661 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6662 6663 if (tp->rx_opt.tstamp_ok) 6664 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6665 6666 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6667 tcp_update_pacing_rate(sk); 6668 6669 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6670 tp->lsndtime = tcp_jiffies32; 6671 6672 tcp_initialize_rcv_mss(sk); 6673 tcp_fast_path_on(tp); 6674 if (sk->sk_shutdown & SEND_SHUTDOWN) 6675 tcp_shutdown(sk, SEND_SHUTDOWN); 6676 break; 6677 6678 case TCP_FIN_WAIT1: { 6679 int tmo; 6680 6681 if (req) 6682 tcp_rcv_synrecv_state_fastopen(sk); 6683 6684 if (tp->snd_una != tp->write_seq) 6685 break; 6686 6687 tcp_set_state(sk, TCP_FIN_WAIT2); 6688 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN); 6689 6690 sk_dst_confirm(sk); 6691 6692 if (!sock_flag(sk, SOCK_DEAD)) { 6693 /* Wake up lingering close() */ 6694 sk->sk_state_change(sk); 6695 break; 6696 } 6697 6698 if (READ_ONCE(tp->linger2) < 0) { 6699 tcp_done(sk); 6700 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6701 return 1; 6702 } 6703 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6704 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6705 /* Receive out of order FIN after close() */ 6706 if (tp->syn_fastopen && th->fin) 6707 tcp_fastopen_active_disable(sk); 6708 tcp_done(sk); 6709 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6710 return 1; 6711 } 6712 6713 tmo = tcp_fin_time(sk); 6714 if (tmo > TCP_TIMEWAIT_LEN) { 6715 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6716 } else if (th->fin || sock_owned_by_user(sk)) { 6717 /* Bad case. We could lose such FIN otherwise. 6718 * It is not a big problem, but it looks confusing 6719 * and not so rare event. We still can lose it now, 6720 * if it spins in bh_lock_sock(), but it is really 6721 * marginal case. 6722 */ 6723 inet_csk_reset_keepalive_timer(sk, tmo); 6724 } else { 6725 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6726 goto consume; 6727 } 6728 break; 6729 } 6730 6731 case TCP_CLOSING: 6732 if (tp->snd_una == tp->write_seq) { 6733 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6734 goto consume; 6735 } 6736 break; 6737 6738 case TCP_LAST_ACK: 6739 if (tp->snd_una == tp->write_seq) { 6740 tcp_update_metrics(sk); 6741 tcp_done(sk); 6742 goto consume; 6743 } 6744 break; 6745 } 6746 6747 /* step 6: check the URG bit */ 6748 tcp_urg(sk, skb, th); 6749 6750 /* step 7: process the segment text */ 6751 switch (sk->sk_state) { 6752 case TCP_CLOSE_WAIT: 6753 case TCP_CLOSING: 6754 case TCP_LAST_ACK: 6755 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 6756 /* If a subflow has been reset, the packet should not 6757 * continue to be processed, drop the packet. 6758 */ 6759 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) 6760 goto discard; 6761 break; 6762 } 6763 fallthrough; 6764 case TCP_FIN_WAIT1: 6765 case TCP_FIN_WAIT2: 6766 /* RFC 793 says to queue data in these states, 6767 * RFC 1122 says we MUST send a reset. 6768 * BSD 4.4 also does reset. 6769 */ 6770 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6771 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6772 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6773 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6774 tcp_reset(sk, skb); 6775 return 1; 6776 } 6777 } 6778 fallthrough; 6779 case TCP_ESTABLISHED: 6780 tcp_data_queue(sk, skb); 6781 queued = 1; 6782 break; 6783 } 6784 6785 /* tcp_data could move socket to TIME-WAIT */ 6786 if (sk->sk_state != TCP_CLOSE) { 6787 tcp_data_snd_check(sk); 6788 tcp_ack_snd_check(sk); 6789 } 6790 6791 if (!queued) { 6792 discard: 6793 tcp_drop_reason(sk, skb, reason); 6794 } 6795 return 0; 6796 6797 consume: 6798 __kfree_skb(skb); 6799 return 0; 6800 } 6801 EXPORT_SYMBOL(tcp_rcv_state_process); 6802 6803 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6804 { 6805 struct inet_request_sock *ireq = inet_rsk(req); 6806 6807 if (family == AF_INET) 6808 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6809 &ireq->ir_rmt_addr, port); 6810 #if IS_ENABLED(CONFIG_IPV6) 6811 else if (family == AF_INET6) 6812 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6813 &ireq->ir_v6_rmt_addr, port); 6814 #endif 6815 } 6816 6817 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6818 * 6819 * If we receive a SYN packet with these bits set, it means a 6820 * network is playing bad games with TOS bits. In order to 6821 * avoid possible false congestion notifications, we disable 6822 * TCP ECN negotiation. 6823 * 6824 * Exception: tcp_ca wants ECN. This is required for DCTCP 6825 * congestion control: Linux DCTCP asserts ECT on all packets, 6826 * including SYN, which is most optimal solution; however, 6827 * others, such as FreeBSD do not. 6828 * 6829 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 6830 * set, indicating the use of a future TCP extension (such as AccECN). See 6831 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 6832 * extensions. 6833 */ 6834 static void tcp_ecn_create_request(struct request_sock *req, 6835 const struct sk_buff *skb, 6836 const struct sock *listen_sk, 6837 const struct dst_entry *dst) 6838 { 6839 const struct tcphdr *th = tcp_hdr(skb); 6840 const struct net *net = sock_net(listen_sk); 6841 bool th_ecn = th->ece && th->cwr; 6842 bool ect, ecn_ok; 6843 u32 ecn_ok_dst; 6844 6845 if (!th_ecn) 6846 return; 6847 6848 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6849 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6850 ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst; 6851 6852 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6853 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6854 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6855 inet_rsk(req)->ecn_ok = 1; 6856 } 6857 6858 static void tcp_openreq_init(struct request_sock *req, 6859 const struct tcp_options_received *rx_opt, 6860 struct sk_buff *skb, const struct sock *sk) 6861 { 6862 struct inet_request_sock *ireq = inet_rsk(req); 6863 6864 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6865 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6866 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6867 tcp_rsk(req)->snt_synack = 0; 6868 tcp_rsk(req)->last_oow_ack_time = 0; 6869 req->mss = rx_opt->mss_clamp; 6870 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6871 ireq->tstamp_ok = rx_opt->tstamp_ok; 6872 ireq->sack_ok = rx_opt->sack_ok; 6873 ireq->snd_wscale = rx_opt->snd_wscale; 6874 ireq->wscale_ok = rx_opt->wscale_ok; 6875 ireq->acked = 0; 6876 ireq->ecn_ok = 0; 6877 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6878 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6879 ireq->ir_mark = inet_request_mark(sk, skb); 6880 #if IS_ENABLED(CONFIG_SMC) 6881 ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested && 6882 tcp_sk(sk)->smc_hs_congested(sk)); 6883 #endif 6884 } 6885 6886 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6887 struct sock *sk_listener, 6888 bool attach_listener) 6889 { 6890 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6891 attach_listener); 6892 6893 if (req) { 6894 struct inet_request_sock *ireq = inet_rsk(req); 6895 6896 ireq->ireq_opt = NULL; 6897 #if IS_ENABLED(CONFIG_IPV6) 6898 ireq->pktopts = NULL; 6899 #endif 6900 atomic64_set(&ireq->ir_cookie, 0); 6901 ireq->ireq_state = TCP_NEW_SYN_RECV; 6902 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6903 ireq->ireq_family = sk_listener->sk_family; 6904 req->timeout = TCP_TIMEOUT_INIT; 6905 } 6906 6907 return req; 6908 } 6909 EXPORT_SYMBOL(inet_reqsk_alloc); 6910 6911 /* 6912 * Return true if a syncookie should be sent 6913 */ 6914 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto) 6915 { 6916 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6917 const char *msg = "Dropping request"; 6918 struct net *net = sock_net(sk); 6919 bool want_cookie = false; 6920 u8 syncookies; 6921 6922 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 6923 6924 #ifdef CONFIG_SYN_COOKIES 6925 if (syncookies) { 6926 msg = "Sending cookies"; 6927 want_cookie = true; 6928 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6929 } else 6930 #endif 6931 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6932 6933 if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 && 6934 xchg(&queue->synflood_warned, 1) == 0) { 6935 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) { 6936 net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n", 6937 proto, inet6_rcv_saddr(sk), 6938 sk->sk_num, msg); 6939 } else { 6940 net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n", 6941 proto, &sk->sk_rcv_saddr, 6942 sk->sk_num, msg); 6943 } 6944 } 6945 6946 return want_cookie; 6947 } 6948 6949 static void tcp_reqsk_record_syn(const struct sock *sk, 6950 struct request_sock *req, 6951 const struct sk_buff *skb) 6952 { 6953 if (tcp_sk(sk)->save_syn) { 6954 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6955 struct saved_syn *saved_syn; 6956 u32 mac_hdrlen; 6957 void *base; 6958 6959 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */ 6960 base = skb_mac_header(skb); 6961 mac_hdrlen = skb_mac_header_len(skb); 6962 len += mac_hdrlen; 6963 } else { 6964 base = skb_network_header(skb); 6965 mac_hdrlen = 0; 6966 } 6967 6968 saved_syn = kmalloc(struct_size(saved_syn, data, len), 6969 GFP_ATOMIC); 6970 if (saved_syn) { 6971 saved_syn->mac_hdrlen = mac_hdrlen; 6972 saved_syn->network_hdrlen = skb_network_header_len(skb); 6973 saved_syn->tcp_hdrlen = tcp_hdrlen(skb); 6974 memcpy(saved_syn->data, base, len); 6975 req->saved_syn = saved_syn; 6976 } 6977 } 6978 } 6979 6980 /* If a SYN cookie is required and supported, returns a clamped MSS value to be 6981 * used for SYN cookie generation. 6982 */ 6983 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 6984 const struct tcp_request_sock_ops *af_ops, 6985 struct sock *sk, struct tcphdr *th) 6986 { 6987 struct tcp_sock *tp = tcp_sk(sk); 6988 u16 mss; 6989 6990 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 && 6991 !inet_csk_reqsk_queue_is_full(sk)) 6992 return 0; 6993 6994 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 6995 return 0; 6996 6997 if (sk_acceptq_is_full(sk)) { 6998 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6999 return 0; 7000 } 7001 7002 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss); 7003 if (!mss) 7004 mss = af_ops->mss_clamp; 7005 7006 return mss; 7007 } 7008 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss); 7009 7010 int tcp_conn_request(struct request_sock_ops *rsk_ops, 7011 const struct tcp_request_sock_ops *af_ops, 7012 struct sock *sk, struct sk_buff *skb) 7013 { 7014 struct tcp_fastopen_cookie foc = { .len = -1 }; 7015 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 7016 struct tcp_options_received tmp_opt; 7017 struct tcp_sock *tp = tcp_sk(sk); 7018 struct net *net = sock_net(sk); 7019 struct sock *fastopen_sk = NULL; 7020 struct request_sock *req; 7021 bool want_cookie = false; 7022 struct dst_entry *dst; 7023 struct flowi fl; 7024 u8 syncookies; 7025 7026 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 7027 7028 /* TW buckets are converted to open requests without 7029 * limitations, they conserve resources and peer is 7030 * evidently real one. 7031 */ 7032 if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) { 7033 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name); 7034 if (!want_cookie) 7035 goto drop; 7036 } 7037 7038 if (sk_acceptq_is_full(sk)) { 7039 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 7040 goto drop; 7041 } 7042 7043 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 7044 if (!req) 7045 goto drop; 7046 7047 req->syncookie = want_cookie; 7048 tcp_rsk(req)->af_specific = af_ops; 7049 tcp_rsk(req)->ts_off = 0; 7050 #if IS_ENABLED(CONFIG_MPTCP) 7051 tcp_rsk(req)->is_mptcp = 0; 7052 #endif 7053 7054 tcp_clear_options(&tmp_opt); 7055 tmp_opt.mss_clamp = af_ops->mss_clamp; 7056 tmp_opt.user_mss = tp->rx_opt.user_mss; 7057 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 7058 want_cookie ? NULL : &foc); 7059 7060 if (want_cookie && !tmp_opt.saw_tstamp) 7061 tcp_clear_options(&tmp_opt); 7062 7063 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 7064 tmp_opt.smc_ok = 0; 7065 7066 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 7067 tcp_openreq_init(req, &tmp_opt, skb, sk); 7068 inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk); 7069 7070 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 7071 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 7072 7073 dst = af_ops->route_req(sk, skb, &fl, req); 7074 if (!dst) 7075 goto drop_and_free; 7076 7077 if (tmp_opt.tstamp_ok) 7078 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 7079 7080 if (!want_cookie && !isn) { 7081 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog); 7082 7083 /* Kill the following clause, if you dislike this way. */ 7084 if (!syncookies && 7085 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 7086 (max_syn_backlog >> 2)) && 7087 !tcp_peer_is_proven(req, dst)) { 7088 /* Without syncookies last quarter of 7089 * backlog is filled with destinations, 7090 * proven to be alive. 7091 * It means that we continue to communicate 7092 * to destinations, already remembered 7093 * to the moment of synflood. 7094 */ 7095 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 7096 rsk_ops->family); 7097 goto drop_and_release; 7098 } 7099 7100 isn = af_ops->init_seq(skb); 7101 } 7102 7103 tcp_ecn_create_request(req, skb, sk, dst); 7104 7105 if (want_cookie) { 7106 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 7107 if (!tmp_opt.tstamp_ok) 7108 inet_rsk(req)->ecn_ok = 0; 7109 } 7110 7111 tcp_rsk(req)->snt_isn = isn; 7112 tcp_rsk(req)->txhash = net_tx_rndhash(); 7113 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield; 7114 tcp_openreq_init_rwin(req, sk, dst); 7115 sk_rx_queue_set(req_to_sk(req), skb); 7116 if (!want_cookie) { 7117 tcp_reqsk_record_syn(sk, req, skb); 7118 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 7119 } 7120 if (fastopen_sk) { 7121 af_ops->send_synack(fastopen_sk, dst, &fl, req, 7122 &foc, TCP_SYNACK_FASTOPEN, skb); 7123 /* Add the child socket directly into the accept queue */ 7124 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 7125 reqsk_fastopen_remove(fastopen_sk, req, false); 7126 bh_unlock_sock(fastopen_sk); 7127 sock_put(fastopen_sk); 7128 goto drop_and_free; 7129 } 7130 sk->sk_data_ready(sk); 7131 bh_unlock_sock(fastopen_sk); 7132 sock_put(fastopen_sk); 7133 } else { 7134 tcp_rsk(req)->tfo_listener = false; 7135 if (!want_cookie) { 7136 req->timeout = tcp_timeout_init((struct sock *)req); 7137 if (unlikely(!inet_csk_reqsk_queue_hash_add(sk, req, 7138 req->timeout))) { 7139 reqsk_free(req); 7140 return 0; 7141 } 7142 7143 } 7144 af_ops->send_synack(sk, dst, &fl, req, &foc, 7145 !want_cookie ? TCP_SYNACK_NORMAL : 7146 TCP_SYNACK_COOKIE, 7147 skb); 7148 if (want_cookie) { 7149 reqsk_free(req); 7150 return 0; 7151 } 7152 } 7153 reqsk_put(req); 7154 return 0; 7155 7156 drop_and_release: 7157 dst_release(dst); 7158 drop_and_free: 7159 __reqsk_free(req); 7160 drop: 7161 tcp_listendrop(sk); 7162 return 0; 7163 } 7164 EXPORT_SYMBOL(tcp_conn_request); 7165