xref: /openbmc/linux/net/ipv4/tcp_input.c (revision fa0a497b)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #define pr_fmt(fmt) "TCP: " fmt
65 
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
78 
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly = 1;
83 int sysctl_tcp_max_reordering __read_mostly = 300;
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88 
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 100;
91 
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
96 int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
97 
98 int sysctl_tcp_thin_dupack __read_mostly;
99 
100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101 int sysctl_tcp_early_retrans __read_mostly = 3;
102 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
103 
104 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
105 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
106 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
107 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
108 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
109 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
110 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
111 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
112 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
113 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
114 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
115 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
116 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
117 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
118 
119 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
120 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
121 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
122 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
123 
124 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
125 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
126 
127 #define REXMIT_NONE	0 /* no loss recovery to do */
128 #define REXMIT_LOST	1 /* retransmit packets marked lost */
129 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
130 
131 /* Adapt the MSS value used to make delayed ack decision to the
132  * real world.
133  */
134 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
135 {
136 	struct inet_connection_sock *icsk = inet_csk(sk);
137 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
138 	unsigned int len;
139 
140 	icsk->icsk_ack.last_seg_size = 0;
141 
142 	/* skb->len may jitter because of SACKs, even if peer
143 	 * sends good full-sized frames.
144 	 */
145 	len = skb_shinfo(skb)->gso_size ? : skb->len;
146 	if (len >= icsk->icsk_ack.rcv_mss) {
147 		icsk->icsk_ack.rcv_mss = len;
148 	} else {
149 		/* Otherwise, we make more careful check taking into account,
150 		 * that SACKs block is variable.
151 		 *
152 		 * "len" is invariant segment length, including TCP header.
153 		 */
154 		len += skb->data - skb_transport_header(skb);
155 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
156 		    /* If PSH is not set, packet should be
157 		     * full sized, provided peer TCP is not badly broken.
158 		     * This observation (if it is correct 8)) allows
159 		     * to handle super-low mtu links fairly.
160 		     */
161 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
162 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
163 			/* Subtract also invariant (if peer is RFC compliant),
164 			 * tcp header plus fixed timestamp option length.
165 			 * Resulting "len" is MSS free of SACK jitter.
166 			 */
167 			len -= tcp_sk(sk)->tcp_header_len;
168 			icsk->icsk_ack.last_seg_size = len;
169 			if (len == lss) {
170 				icsk->icsk_ack.rcv_mss = len;
171 				return;
172 			}
173 		}
174 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
175 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
176 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
177 	}
178 }
179 
180 static void tcp_incr_quickack(struct sock *sk)
181 {
182 	struct inet_connection_sock *icsk = inet_csk(sk);
183 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
184 
185 	if (quickacks == 0)
186 		quickacks = 2;
187 	if (quickacks > icsk->icsk_ack.quick)
188 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
189 }
190 
191 static void tcp_enter_quickack_mode(struct sock *sk)
192 {
193 	struct inet_connection_sock *icsk = inet_csk(sk);
194 	tcp_incr_quickack(sk);
195 	icsk->icsk_ack.pingpong = 0;
196 	icsk->icsk_ack.ato = TCP_ATO_MIN;
197 }
198 
199 /* Send ACKs quickly, if "quick" count is not exhausted
200  * and the session is not interactive.
201  */
202 
203 static bool tcp_in_quickack_mode(struct sock *sk)
204 {
205 	const struct inet_connection_sock *icsk = inet_csk(sk);
206 	const struct dst_entry *dst = __sk_dst_get(sk);
207 
208 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
209 		(icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
210 }
211 
212 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
213 {
214 	if (tp->ecn_flags & TCP_ECN_OK)
215 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
216 }
217 
218 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
219 {
220 	if (tcp_hdr(skb)->cwr)
221 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
222 }
223 
224 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
225 {
226 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
227 }
228 
229 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
230 {
231 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
232 	case INET_ECN_NOT_ECT:
233 		/* Funny extension: if ECT is not set on a segment,
234 		 * and we already seen ECT on a previous segment,
235 		 * it is probably a retransmit.
236 		 */
237 		if (tp->ecn_flags & TCP_ECN_SEEN)
238 			tcp_enter_quickack_mode((struct sock *)tp);
239 		break;
240 	case INET_ECN_CE:
241 		if (tcp_ca_needs_ecn((struct sock *)tp))
242 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
243 
244 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
245 			/* Better not delay acks, sender can have a very low cwnd */
246 			tcp_enter_quickack_mode((struct sock *)tp);
247 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
248 		}
249 		tp->ecn_flags |= TCP_ECN_SEEN;
250 		break;
251 	default:
252 		if (tcp_ca_needs_ecn((struct sock *)tp))
253 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
254 		tp->ecn_flags |= TCP_ECN_SEEN;
255 		break;
256 	}
257 }
258 
259 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
260 {
261 	if (tp->ecn_flags & TCP_ECN_OK)
262 		__tcp_ecn_check_ce(tp, skb);
263 }
264 
265 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
266 {
267 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
268 		tp->ecn_flags &= ~TCP_ECN_OK;
269 }
270 
271 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
272 {
273 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
274 		tp->ecn_flags &= ~TCP_ECN_OK;
275 }
276 
277 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
278 {
279 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
280 		return true;
281 	return false;
282 }
283 
284 /* Buffer size and advertised window tuning.
285  *
286  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
287  */
288 
289 static void tcp_sndbuf_expand(struct sock *sk)
290 {
291 	const struct tcp_sock *tp = tcp_sk(sk);
292 	int sndmem, per_mss;
293 	u32 nr_segs;
294 
295 	/* Worst case is non GSO/TSO : each frame consumes one skb
296 	 * and skb->head is kmalloced using power of two area of memory
297 	 */
298 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
299 		  MAX_TCP_HEADER +
300 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
301 
302 	per_mss = roundup_pow_of_two(per_mss) +
303 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
304 
305 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
306 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
307 
308 	/* Fast Recovery (RFC 5681 3.2) :
309 	 * Cubic needs 1.7 factor, rounded to 2 to include
310 	 * extra cushion (application might react slowly to POLLOUT)
311 	 */
312 	sndmem = 2 * nr_segs * per_mss;
313 
314 	if (sk->sk_sndbuf < sndmem)
315 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
316 }
317 
318 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
319  *
320  * All tcp_full_space() is split to two parts: "network" buffer, allocated
321  * forward and advertised in receiver window (tp->rcv_wnd) and
322  * "application buffer", required to isolate scheduling/application
323  * latencies from network.
324  * window_clamp is maximal advertised window. It can be less than
325  * tcp_full_space(), in this case tcp_full_space() - window_clamp
326  * is reserved for "application" buffer. The less window_clamp is
327  * the smoother our behaviour from viewpoint of network, but the lower
328  * throughput and the higher sensitivity of the connection to losses. 8)
329  *
330  * rcv_ssthresh is more strict window_clamp used at "slow start"
331  * phase to predict further behaviour of this connection.
332  * It is used for two goals:
333  * - to enforce header prediction at sender, even when application
334  *   requires some significant "application buffer". It is check #1.
335  * - to prevent pruning of receive queue because of misprediction
336  *   of receiver window. Check #2.
337  *
338  * The scheme does not work when sender sends good segments opening
339  * window and then starts to feed us spaghetti. But it should work
340  * in common situations. Otherwise, we have to rely on queue collapsing.
341  */
342 
343 /* Slow part of check#2. */
344 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
345 {
346 	struct tcp_sock *tp = tcp_sk(sk);
347 	/* Optimize this! */
348 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
349 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
350 
351 	while (tp->rcv_ssthresh <= window) {
352 		if (truesize <= skb->len)
353 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
354 
355 		truesize >>= 1;
356 		window >>= 1;
357 	}
358 	return 0;
359 }
360 
361 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
362 {
363 	struct tcp_sock *tp = tcp_sk(sk);
364 
365 	/* Check #1 */
366 	if (tp->rcv_ssthresh < tp->window_clamp &&
367 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
368 	    !tcp_under_memory_pressure(sk)) {
369 		int incr;
370 
371 		/* Check #2. Increase window, if skb with such overhead
372 		 * will fit to rcvbuf in future.
373 		 */
374 		if (tcp_win_from_space(skb->truesize) <= skb->len)
375 			incr = 2 * tp->advmss;
376 		else
377 			incr = __tcp_grow_window(sk, skb);
378 
379 		if (incr) {
380 			incr = max_t(int, incr, 2 * skb->len);
381 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
382 					       tp->window_clamp);
383 			inet_csk(sk)->icsk_ack.quick |= 1;
384 		}
385 	}
386 }
387 
388 /* 3. Tuning rcvbuf, when connection enters established state. */
389 static void tcp_fixup_rcvbuf(struct sock *sk)
390 {
391 	u32 mss = tcp_sk(sk)->advmss;
392 	int rcvmem;
393 
394 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
395 		 tcp_default_init_rwnd(mss);
396 
397 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
398 	 * Allow enough cushion so that sender is not limited by our window
399 	 */
400 	if (sysctl_tcp_moderate_rcvbuf)
401 		rcvmem <<= 2;
402 
403 	if (sk->sk_rcvbuf < rcvmem)
404 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
405 }
406 
407 /* 4. Try to fixup all. It is made immediately after connection enters
408  *    established state.
409  */
410 void tcp_init_buffer_space(struct sock *sk)
411 {
412 	struct tcp_sock *tp = tcp_sk(sk);
413 	int maxwin;
414 
415 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
416 		tcp_fixup_rcvbuf(sk);
417 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
418 		tcp_sndbuf_expand(sk);
419 
420 	tp->rcvq_space.space = tp->rcv_wnd;
421 	tp->rcvq_space.time = tcp_time_stamp;
422 	tp->rcvq_space.seq = tp->copied_seq;
423 
424 	maxwin = tcp_full_space(sk);
425 
426 	if (tp->window_clamp >= maxwin) {
427 		tp->window_clamp = maxwin;
428 
429 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
430 			tp->window_clamp = max(maxwin -
431 					       (maxwin >> sysctl_tcp_app_win),
432 					       4 * tp->advmss);
433 	}
434 
435 	/* Force reservation of one segment. */
436 	if (sysctl_tcp_app_win &&
437 	    tp->window_clamp > 2 * tp->advmss &&
438 	    tp->window_clamp + tp->advmss > maxwin)
439 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
440 
441 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
442 	tp->snd_cwnd_stamp = tcp_time_stamp;
443 }
444 
445 /* 5. Recalculate window clamp after socket hit its memory bounds. */
446 static void tcp_clamp_window(struct sock *sk)
447 {
448 	struct tcp_sock *tp = tcp_sk(sk);
449 	struct inet_connection_sock *icsk = inet_csk(sk);
450 
451 	icsk->icsk_ack.quick = 0;
452 
453 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
454 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
455 	    !tcp_under_memory_pressure(sk) &&
456 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
457 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
458 				    sysctl_tcp_rmem[2]);
459 	}
460 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
461 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
462 }
463 
464 /* Initialize RCV_MSS value.
465  * RCV_MSS is an our guess about MSS used by the peer.
466  * We haven't any direct information about the MSS.
467  * It's better to underestimate the RCV_MSS rather than overestimate.
468  * Overestimations make us ACKing less frequently than needed.
469  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
470  */
471 void tcp_initialize_rcv_mss(struct sock *sk)
472 {
473 	const struct tcp_sock *tp = tcp_sk(sk);
474 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
475 
476 	hint = min(hint, tp->rcv_wnd / 2);
477 	hint = min(hint, TCP_MSS_DEFAULT);
478 	hint = max(hint, TCP_MIN_MSS);
479 
480 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
481 }
482 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
483 
484 /* Receiver "autotuning" code.
485  *
486  * The algorithm for RTT estimation w/o timestamps is based on
487  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
488  * <http://public.lanl.gov/radiant/pubs.html#DRS>
489  *
490  * More detail on this code can be found at
491  * <http://staff.psc.edu/jheffner/>,
492  * though this reference is out of date.  A new paper
493  * is pending.
494  */
495 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
496 {
497 	u32 new_sample = tp->rcv_rtt_est.rtt;
498 	long m = sample;
499 
500 	if (m == 0)
501 		m = 1;
502 
503 	if (new_sample != 0) {
504 		/* If we sample in larger samples in the non-timestamp
505 		 * case, we could grossly overestimate the RTT especially
506 		 * with chatty applications or bulk transfer apps which
507 		 * are stalled on filesystem I/O.
508 		 *
509 		 * Also, since we are only going for a minimum in the
510 		 * non-timestamp case, we do not smooth things out
511 		 * else with timestamps disabled convergence takes too
512 		 * long.
513 		 */
514 		if (!win_dep) {
515 			m -= (new_sample >> 3);
516 			new_sample += m;
517 		} else {
518 			m <<= 3;
519 			if (m < new_sample)
520 				new_sample = m;
521 		}
522 	} else {
523 		/* No previous measure. */
524 		new_sample = m << 3;
525 	}
526 
527 	if (tp->rcv_rtt_est.rtt != new_sample)
528 		tp->rcv_rtt_est.rtt = new_sample;
529 }
530 
531 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
532 {
533 	if (tp->rcv_rtt_est.time == 0)
534 		goto new_measure;
535 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
536 		return;
537 	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
538 
539 new_measure:
540 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
541 	tp->rcv_rtt_est.time = tcp_time_stamp;
542 }
543 
544 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
545 					  const struct sk_buff *skb)
546 {
547 	struct tcp_sock *tp = tcp_sk(sk);
548 	if (tp->rx_opt.rcv_tsecr &&
549 	    (TCP_SKB_CB(skb)->end_seq -
550 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
551 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
552 }
553 
554 /*
555  * This function should be called every time data is copied to user space.
556  * It calculates the appropriate TCP receive buffer space.
557  */
558 void tcp_rcv_space_adjust(struct sock *sk)
559 {
560 	struct tcp_sock *tp = tcp_sk(sk);
561 	int time;
562 	int copied;
563 
564 	time = tcp_time_stamp - tp->rcvq_space.time;
565 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
566 		return;
567 
568 	/* Number of bytes copied to user in last RTT */
569 	copied = tp->copied_seq - tp->rcvq_space.seq;
570 	if (copied <= tp->rcvq_space.space)
571 		goto new_measure;
572 
573 	/* A bit of theory :
574 	 * copied = bytes received in previous RTT, our base window
575 	 * To cope with packet losses, we need a 2x factor
576 	 * To cope with slow start, and sender growing its cwin by 100 %
577 	 * every RTT, we need a 4x factor, because the ACK we are sending
578 	 * now is for the next RTT, not the current one :
579 	 * <prev RTT . ><current RTT .. ><next RTT .... >
580 	 */
581 
582 	if (sysctl_tcp_moderate_rcvbuf &&
583 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
584 		int rcvwin, rcvmem, rcvbuf;
585 
586 		/* minimal window to cope with packet losses, assuming
587 		 * steady state. Add some cushion because of small variations.
588 		 */
589 		rcvwin = (copied << 1) + 16 * tp->advmss;
590 
591 		/* If rate increased by 25%,
592 		 *	assume slow start, rcvwin = 3 * copied
593 		 * If rate increased by 50%,
594 		 *	assume sender can use 2x growth, rcvwin = 4 * copied
595 		 */
596 		if (copied >=
597 		    tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
598 			if (copied >=
599 			    tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
600 				rcvwin <<= 1;
601 			else
602 				rcvwin += (rcvwin >> 1);
603 		}
604 
605 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
606 		while (tcp_win_from_space(rcvmem) < tp->advmss)
607 			rcvmem += 128;
608 
609 		rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
610 		if (rcvbuf > sk->sk_rcvbuf) {
611 			sk->sk_rcvbuf = rcvbuf;
612 
613 			/* Make the window clamp follow along.  */
614 			tp->window_clamp = rcvwin;
615 		}
616 	}
617 	tp->rcvq_space.space = copied;
618 
619 new_measure:
620 	tp->rcvq_space.seq = tp->copied_seq;
621 	tp->rcvq_space.time = tcp_time_stamp;
622 }
623 
624 /* There is something which you must keep in mind when you analyze the
625  * behavior of the tp->ato delayed ack timeout interval.  When a
626  * connection starts up, we want to ack as quickly as possible.  The
627  * problem is that "good" TCP's do slow start at the beginning of data
628  * transmission.  The means that until we send the first few ACK's the
629  * sender will sit on his end and only queue most of his data, because
630  * he can only send snd_cwnd unacked packets at any given time.  For
631  * each ACK we send, he increments snd_cwnd and transmits more of his
632  * queue.  -DaveM
633  */
634 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
635 {
636 	struct tcp_sock *tp = tcp_sk(sk);
637 	struct inet_connection_sock *icsk = inet_csk(sk);
638 	u32 now;
639 
640 	inet_csk_schedule_ack(sk);
641 
642 	tcp_measure_rcv_mss(sk, skb);
643 
644 	tcp_rcv_rtt_measure(tp);
645 
646 	now = tcp_time_stamp;
647 
648 	if (!icsk->icsk_ack.ato) {
649 		/* The _first_ data packet received, initialize
650 		 * delayed ACK engine.
651 		 */
652 		tcp_incr_quickack(sk);
653 		icsk->icsk_ack.ato = TCP_ATO_MIN;
654 	} else {
655 		int m = now - icsk->icsk_ack.lrcvtime;
656 
657 		if (m <= TCP_ATO_MIN / 2) {
658 			/* The fastest case is the first. */
659 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
660 		} else if (m < icsk->icsk_ack.ato) {
661 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
662 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
663 				icsk->icsk_ack.ato = icsk->icsk_rto;
664 		} else if (m > icsk->icsk_rto) {
665 			/* Too long gap. Apparently sender failed to
666 			 * restart window, so that we send ACKs quickly.
667 			 */
668 			tcp_incr_quickack(sk);
669 			sk_mem_reclaim(sk);
670 		}
671 	}
672 	icsk->icsk_ack.lrcvtime = now;
673 
674 	tcp_ecn_check_ce(tp, skb);
675 
676 	if (skb->len >= 128)
677 		tcp_grow_window(sk, skb);
678 }
679 
680 /* Called to compute a smoothed rtt estimate. The data fed to this
681  * routine either comes from timestamps, or from segments that were
682  * known _not_ to have been retransmitted [see Karn/Partridge
683  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
684  * piece by Van Jacobson.
685  * NOTE: the next three routines used to be one big routine.
686  * To save cycles in the RFC 1323 implementation it was better to break
687  * it up into three procedures. -- erics
688  */
689 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
690 {
691 	struct tcp_sock *tp = tcp_sk(sk);
692 	long m = mrtt_us; /* RTT */
693 	u32 srtt = tp->srtt_us;
694 
695 	/*	The following amusing code comes from Jacobson's
696 	 *	article in SIGCOMM '88.  Note that rtt and mdev
697 	 *	are scaled versions of rtt and mean deviation.
698 	 *	This is designed to be as fast as possible
699 	 *	m stands for "measurement".
700 	 *
701 	 *	On a 1990 paper the rto value is changed to:
702 	 *	RTO = rtt + 4 * mdev
703 	 *
704 	 * Funny. This algorithm seems to be very broken.
705 	 * These formulae increase RTO, when it should be decreased, increase
706 	 * too slowly, when it should be increased quickly, decrease too quickly
707 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
708 	 * does not matter how to _calculate_ it. Seems, it was trap
709 	 * that VJ failed to avoid. 8)
710 	 */
711 	if (srtt != 0) {
712 		m -= (srtt >> 3);	/* m is now error in rtt est */
713 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
714 		if (m < 0) {
715 			m = -m;		/* m is now abs(error) */
716 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
717 			/* This is similar to one of Eifel findings.
718 			 * Eifel blocks mdev updates when rtt decreases.
719 			 * This solution is a bit different: we use finer gain
720 			 * for mdev in this case (alpha*beta).
721 			 * Like Eifel it also prevents growth of rto,
722 			 * but also it limits too fast rto decreases,
723 			 * happening in pure Eifel.
724 			 */
725 			if (m > 0)
726 				m >>= 3;
727 		} else {
728 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
729 		}
730 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
731 		if (tp->mdev_us > tp->mdev_max_us) {
732 			tp->mdev_max_us = tp->mdev_us;
733 			if (tp->mdev_max_us > tp->rttvar_us)
734 				tp->rttvar_us = tp->mdev_max_us;
735 		}
736 		if (after(tp->snd_una, tp->rtt_seq)) {
737 			if (tp->mdev_max_us < tp->rttvar_us)
738 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
739 			tp->rtt_seq = tp->snd_nxt;
740 			tp->mdev_max_us = tcp_rto_min_us(sk);
741 		}
742 	} else {
743 		/* no previous measure. */
744 		srtt = m << 3;		/* take the measured time to be rtt */
745 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
746 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
747 		tp->mdev_max_us = tp->rttvar_us;
748 		tp->rtt_seq = tp->snd_nxt;
749 	}
750 	tp->srtt_us = max(1U, srtt);
751 }
752 
753 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
754  * Note: TCP stack does not yet implement pacing.
755  * FQ packet scheduler can be used to implement cheap but effective
756  * TCP pacing, to smooth the burst on large writes when packets
757  * in flight is significantly lower than cwnd (or rwin)
758  */
759 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
760 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
761 
762 static void tcp_update_pacing_rate(struct sock *sk)
763 {
764 	const struct tcp_sock *tp = tcp_sk(sk);
765 	u64 rate;
766 
767 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
768 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
769 
770 	/* current rate is (cwnd * mss) / srtt
771 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
772 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
773 	 *
774 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
775 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
776 	 *	 end of slow start and should slow down.
777 	 */
778 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
779 		rate *= sysctl_tcp_pacing_ss_ratio;
780 	else
781 		rate *= sysctl_tcp_pacing_ca_ratio;
782 
783 	rate *= max(tp->snd_cwnd, tp->packets_out);
784 
785 	if (likely(tp->srtt_us))
786 		do_div(rate, tp->srtt_us);
787 
788 	/* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
789 	 * without any lock. We want to make sure compiler wont store
790 	 * intermediate values in this location.
791 	 */
792 	ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
793 						sk->sk_max_pacing_rate);
794 }
795 
796 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
797  * routine referred to above.
798  */
799 static void tcp_set_rto(struct sock *sk)
800 {
801 	const struct tcp_sock *tp = tcp_sk(sk);
802 	/* Old crap is replaced with new one. 8)
803 	 *
804 	 * More seriously:
805 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
806 	 *    It cannot be less due to utterly erratic ACK generation made
807 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
808 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
809 	 *    is invisible. Actually, Linux-2.4 also generates erratic
810 	 *    ACKs in some circumstances.
811 	 */
812 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
813 
814 	/* 2. Fixups made earlier cannot be right.
815 	 *    If we do not estimate RTO correctly without them,
816 	 *    all the algo is pure shit and should be replaced
817 	 *    with correct one. It is exactly, which we pretend to do.
818 	 */
819 
820 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
821 	 * guarantees that rto is higher.
822 	 */
823 	tcp_bound_rto(sk);
824 }
825 
826 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
827 {
828 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
829 
830 	if (!cwnd)
831 		cwnd = TCP_INIT_CWND;
832 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
833 }
834 
835 /*
836  * Packet counting of FACK is based on in-order assumptions, therefore TCP
837  * disables it when reordering is detected
838  */
839 void tcp_disable_fack(struct tcp_sock *tp)
840 {
841 	/* RFC3517 uses different metric in lost marker => reset on change */
842 	if (tcp_is_fack(tp))
843 		tp->lost_skb_hint = NULL;
844 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
845 }
846 
847 /* Take a notice that peer is sending D-SACKs */
848 static void tcp_dsack_seen(struct tcp_sock *tp)
849 {
850 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
851 }
852 
853 static void tcp_update_reordering(struct sock *sk, const int metric,
854 				  const int ts)
855 {
856 	struct tcp_sock *tp = tcp_sk(sk);
857 	if (metric > tp->reordering) {
858 		int mib_idx;
859 
860 		tp->reordering = min(sysctl_tcp_max_reordering, metric);
861 
862 		/* This exciting event is worth to be remembered. 8) */
863 		if (ts)
864 			mib_idx = LINUX_MIB_TCPTSREORDER;
865 		else if (tcp_is_reno(tp))
866 			mib_idx = LINUX_MIB_TCPRENOREORDER;
867 		else if (tcp_is_fack(tp))
868 			mib_idx = LINUX_MIB_TCPFACKREORDER;
869 		else
870 			mib_idx = LINUX_MIB_TCPSACKREORDER;
871 
872 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
873 #if FASTRETRANS_DEBUG > 1
874 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
875 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
876 			 tp->reordering,
877 			 tp->fackets_out,
878 			 tp->sacked_out,
879 			 tp->undo_marker ? tp->undo_retrans : 0);
880 #endif
881 		tcp_disable_fack(tp);
882 	}
883 
884 	if (metric > 0)
885 		tcp_disable_early_retrans(tp);
886 	tp->rack.reord = 1;
887 }
888 
889 /* This must be called before lost_out is incremented */
890 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
891 {
892 	if (!tp->retransmit_skb_hint ||
893 	    before(TCP_SKB_CB(skb)->seq,
894 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
895 		tp->retransmit_skb_hint = skb;
896 
897 	if (!tp->lost_out ||
898 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
899 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
900 }
901 
902 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
903 {
904 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
905 		tcp_verify_retransmit_hint(tp, skb);
906 
907 		tp->lost_out += tcp_skb_pcount(skb);
908 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
909 	}
910 }
911 
912 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
913 {
914 	tcp_verify_retransmit_hint(tp, skb);
915 
916 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
917 		tp->lost_out += tcp_skb_pcount(skb);
918 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
919 	}
920 }
921 
922 /* This procedure tags the retransmission queue when SACKs arrive.
923  *
924  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
925  * Packets in queue with these bits set are counted in variables
926  * sacked_out, retrans_out and lost_out, correspondingly.
927  *
928  * Valid combinations are:
929  * Tag  InFlight	Description
930  * 0	1		- orig segment is in flight.
931  * S	0		- nothing flies, orig reached receiver.
932  * L	0		- nothing flies, orig lost by net.
933  * R	2		- both orig and retransmit are in flight.
934  * L|R	1		- orig is lost, retransmit is in flight.
935  * S|R  1		- orig reached receiver, retrans is still in flight.
936  * (L|S|R is logically valid, it could occur when L|R is sacked,
937  *  but it is equivalent to plain S and code short-curcuits it to S.
938  *  L|S is logically invalid, it would mean -1 packet in flight 8))
939  *
940  * These 6 states form finite state machine, controlled by the following events:
941  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
942  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
943  * 3. Loss detection event of two flavors:
944  *	A. Scoreboard estimator decided the packet is lost.
945  *	   A'. Reno "three dupacks" marks head of queue lost.
946  *	   A''. Its FACK modification, head until snd.fack is lost.
947  *	B. SACK arrives sacking SND.NXT at the moment, when the
948  *	   segment was retransmitted.
949  * 4. D-SACK added new rule: D-SACK changes any tag to S.
950  *
951  * It is pleasant to note, that state diagram turns out to be commutative,
952  * so that we are allowed not to be bothered by order of our actions,
953  * when multiple events arrive simultaneously. (see the function below).
954  *
955  * Reordering detection.
956  * --------------------
957  * Reordering metric is maximal distance, which a packet can be displaced
958  * in packet stream. With SACKs we can estimate it:
959  *
960  * 1. SACK fills old hole and the corresponding segment was not
961  *    ever retransmitted -> reordering. Alas, we cannot use it
962  *    when segment was retransmitted.
963  * 2. The last flaw is solved with D-SACK. D-SACK arrives
964  *    for retransmitted and already SACKed segment -> reordering..
965  * Both of these heuristics are not used in Loss state, when we cannot
966  * account for retransmits accurately.
967  *
968  * SACK block validation.
969  * ----------------------
970  *
971  * SACK block range validation checks that the received SACK block fits to
972  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
973  * Note that SND.UNA is not included to the range though being valid because
974  * it means that the receiver is rather inconsistent with itself reporting
975  * SACK reneging when it should advance SND.UNA. Such SACK block this is
976  * perfectly valid, however, in light of RFC2018 which explicitly states
977  * that "SACK block MUST reflect the newest segment.  Even if the newest
978  * segment is going to be discarded ...", not that it looks very clever
979  * in case of head skb. Due to potentional receiver driven attacks, we
980  * choose to avoid immediate execution of a walk in write queue due to
981  * reneging and defer head skb's loss recovery to standard loss recovery
982  * procedure that will eventually trigger (nothing forbids us doing this).
983  *
984  * Implements also blockage to start_seq wrap-around. Problem lies in the
985  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
986  * there's no guarantee that it will be before snd_nxt (n). The problem
987  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
988  * wrap (s_w):
989  *
990  *         <- outs wnd ->                          <- wrapzone ->
991  *         u     e      n                         u_w   e_w  s n_w
992  *         |     |      |                          |     |   |  |
993  * |<------------+------+----- TCP seqno space --------------+---------->|
994  * ...-- <2^31 ->|                                           |<--------...
995  * ...---- >2^31 ------>|                                    |<--------...
996  *
997  * Current code wouldn't be vulnerable but it's better still to discard such
998  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
999  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1000  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1001  * equal to the ideal case (infinite seqno space without wrap caused issues).
1002  *
1003  * With D-SACK the lower bound is extended to cover sequence space below
1004  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1005  * again, D-SACK block must not to go across snd_una (for the same reason as
1006  * for the normal SACK blocks, explained above). But there all simplicity
1007  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1008  * fully below undo_marker they do not affect behavior in anyway and can
1009  * therefore be safely ignored. In rare cases (which are more or less
1010  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1011  * fragmentation and packet reordering past skb's retransmission. To consider
1012  * them correctly, the acceptable range must be extended even more though
1013  * the exact amount is rather hard to quantify. However, tp->max_window can
1014  * be used as an exaggerated estimate.
1015  */
1016 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1017 				   u32 start_seq, u32 end_seq)
1018 {
1019 	/* Too far in future, or reversed (interpretation is ambiguous) */
1020 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1021 		return false;
1022 
1023 	/* Nasty start_seq wrap-around check (see comments above) */
1024 	if (!before(start_seq, tp->snd_nxt))
1025 		return false;
1026 
1027 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1028 	 * start_seq == snd_una is non-sensical (see comments above)
1029 	 */
1030 	if (after(start_seq, tp->snd_una))
1031 		return true;
1032 
1033 	if (!is_dsack || !tp->undo_marker)
1034 		return false;
1035 
1036 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1037 	if (after(end_seq, tp->snd_una))
1038 		return false;
1039 
1040 	if (!before(start_seq, tp->undo_marker))
1041 		return true;
1042 
1043 	/* Too old */
1044 	if (!after(end_seq, tp->undo_marker))
1045 		return false;
1046 
1047 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1048 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1049 	 */
1050 	return !before(start_seq, end_seq - tp->max_window);
1051 }
1052 
1053 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1054 			    struct tcp_sack_block_wire *sp, int num_sacks,
1055 			    u32 prior_snd_una)
1056 {
1057 	struct tcp_sock *tp = tcp_sk(sk);
1058 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1059 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1060 	bool dup_sack = false;
1061 
1062 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1063 		dup_sack = true;
1064 		tcp_dsack_seen(tp);
1065 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1066 	} else if (num_sacks > 1) {
1067 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1068 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1069 
1070 		if (!after(end_seq_0, end_seq_1) &&
1071 		    !before(start_seq_0, start_seq_1)) {
1072 			dup_sack = true;
1073 			tcp_dsack_seen(tp);
1074 			NET_INC_STATS_BH(sock_net(sk),
1075 					LINUX_MIB_TCPDSACKOFORECV);
1076 		}
1077 	}
1078 
1079 	/* D-SACK for already forgotten data... Do dumb counting. */
1080 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1081 	    !after(end_seq_0, prior_snd_una) &&
1082 	    after(end_seq_0, tp->undo_marker))
1083 		tp->undo_retrans--;
1084 
1085 	return dup_sack;
1086 }
1087 
1088 struct tcp_sacktag_state {
1089 	int	reord;
1090 	int	fack_count;
1091 	/* Timestamps for earliest and latest never-retransmitted segment
1092 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1093 	 * but congestion control should still get an accurate delay signal.
1094 	 */
1095 	struct skb_mstamp first_sackt;
1096 	struct skb_mstamp last_sackt;
1097 	int	flag;
1098 };
1099 
1100 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1101  * the incoming SACK may not exactly match but we can find smaller MSS
1102  * aligned portion of it that matches. Therefore we might need to fragment
1103  * which may fail and creates some hassle (caller must handle error case
1104  * returns).
1105  *
1106  * FIXME: this could be merged to shift decision code
1107  */
1108 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1109 				  u32 start_seq, u32 end_seq)
1110 {
1111 	int err;
1112 	bool in_sack;
1113 	unsigned int pkt_len;
1114 	unsigned int mss;
1115 
1116 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1117 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1118 
1119 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1120 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1121 		mss = tcp_skb_mss(skb);
1122 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1123 
1124 		if (!in_sack) {
1125 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1126 			if (pkt_len < mss)
1127 				pkt_len = mss;
1128 		} else {
1129 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1130 			if (pkt_len < mss)
1131 				return -EINVAL;
1132 		}
1133 
1134 		/* Round if necessary so that SACKs cover only full MSSes
1135 		 * and/or the remaining small portion (if present)
1136 		 */
1137 		if (pkt_len > mss) {
1138 			unsigned int new_len = (pkt_len / mss) * mss;
1139 			if (!in_sack && new_len < pkt_len) {
1140 				new_len += mss;
1141 				if (new_len >= skb->len)
1142 					return 0;
1143 			}
1144 			pkt_len = new_len;
1145 		}
1146 		err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1147 		if (err < 0)
1148 			return err;
1149 	}
1150 
1151 	return in_sack;
1152 }
1153 
1154 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1155 static u8 tcp_sacktag_one(struct sock *sk,
1156 			  struct tcp_sacktag_state *state, u8 sacked,
1157 			  u32 start_seq, u32 end_seq,
1158 			  int dup_sack, int pcount,
1159 			  const struct skb_mstamp *xmit_time)
1160 {
1161 	struct tcp_sock *tp = tcp_sk(sk);
1162 	int fack_count = state->fack_count;
1163 
1164 	/* Account D-SACK for retransmitted packet. */
1165 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1166 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1167 		    after(end_seq, tp->undo_marker))
1168 			tp->undo_retrans--;
1169 		if (sacked & TCPCB_SACKED_ACKED)
1170 			state->reord = min(fack_count, state->reord);
1171 	}
1172 
1173 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1174 	if (!after(end_seq, tp->snd_una))
1175 		return sacked;
1176 
1177 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1178 		tcp_rack_advance(tp, xmit_time, sacked);
1179 
1180 		if (sacked & TCPCB_SACKED_RETRANS) {
1181 			/* If the segment is not tagged as lost,
1182 			 * we do not clear RETRANS, believing
1183 			 * that retransmission is still in flight.
1184 			 */
1185 			if (sacked & TCPCB_LOST) {
1186 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1187 				tp->lost_out -= pcount;
1188 				tp->retrans_out -= pcount;
1189 			}
1190 		} else {
1191 			if (!(sacked & TCPCB_RETRANS)) {
1192 				/* New sack for not retransmitted frame,
1193 				 * which was in hole. It is reordering.
1194 				 */
1195 				if (before(start_seq,
1196 					   tcp_highest_sack_seq(tp)))
1197 					state->reord = min(fack_count,
1198 							   state->reord);
1199 				if (!after(end_seq, tp->high_seq))
1200 					state->flag |= FLAG_ORIG_SACK_ACKED;
1201 				if (state->first_sackt.v64 == 0)
1202 					state->first_sackt = *xmit_time;
1203 				state->last_sackt = *xmit_time;
1204 			}
1205 
1206 			if (sacked & TCPCB_LOST) {
1207 				sacked &= ~TCPCB_LOST;
1208 				tp->lost_out -= pcount;
1209 			}
1210 		}
1211 
1212 		sacked |= TCPCB_SACKED_ACKED;
1213 		state->flag |= FLAG_DATA_SACKED;
1214 		tp->sacked_out += pcount;
1215 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1216 
1217 		fack_count += pcount;
1218 
1219 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1220 		if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1221 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1222 			tp->lost_cnt_hint += pcount;
1223 
1224 		if (fack_count > tp->fackets_out)
1225 			tp->fackets_out = fack_count;
1226 	}
1227 
1228 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1229 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1230 	 * are accounted above as well.
1231 	 */
1232 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1233 		sacked &= ~TCPCB_SACKED_RETRANS;
1234 		tp->retrans_out -= pcount;
1235 	}
1236 
1237 	return sacked;
1238 }
1239 
1240 /* Shift newly-SACKed bytes from this skb to the immediately previous
1241  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1242  */
1243 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1244 			    struct tcp_sacktag_state *state,
1245 			    unsigned int pcount, int shifted, int mss,
1246 			    bool dup_sack)
1247 {
1248 	struct tcp_sock *tp = tcp_sk(sk);
1249 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1250 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1251 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1252 
1253 	BUG_ON(!pcount);
1254 
1255 	/* Adjust counters and hints for the newly sacked sequence
1256 	 * range but discard the return value since prev is already
1257 	 * marked. We must tag the range first because the seq
1258 	 * advancement below implicitly advances
1259 	 * tcp_highest_sack_seq() when skb is highest_sack.
1260 	 */
1261 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1262 			start_seq, end_seq, dup_sack, pcount,
1263 			&skb->skb_mstamp);
1264 
1265 	if (skb == tp->lost_skb_hint)
1266 		tp->lost_cnt_hint += pcount;
1267 
1268 	TCP_SKB_CB(prev)->end_seq += shifted;
1269 	TCP_SKB_CB(skb)->seq += shifted;
1270 
1271 	tcp_skb_pcount_add(prev, pcount);
1272 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1273 	tcp_skb_pcount_add(skb, -pcount);
1274 
1275 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1276 	 * in theory this shouldn't be necessary but as long as DSACK
1277 	 * code can come after this skb later on it's better to keep
1278 	 * setting gso_size to something.
1279 	 */
1280 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1281 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1282 
1283 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1284 	if (tcp_skb_pcount(skb) <= 1)
1285 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1286 
1287 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1288 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1289 
1290 	if (skb->len > 0) {
1291 		BUG_ON(!tcp_skb_pcount(skb));
1292 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1293 		return false;
1294 	}
1295 
1296 	/* Whole SKB was eaten :-) */
1297 
1298 	if (skb == tp->retransmit_skb_hint)
1299 		tp->retransmit_skb_hint = prev;
1300 	if (skb == tp->lost_skb_hint) {
1301 		tp->lost_skb_hint = prev;
1302 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1303 	}
1304 
1305 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1306 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1307 		TCP_SKB_CB(prev)->end_seq++;
1308 
1309 	if (skb == tcp_highest_sack(sk))
1310 		tcp_advance_highest_sack(sk, skb);
1311 
1312 	tcp_skb_collapse_tstamp(prev, skb);
1313 	tcp_unlink_write_queue(skb, sk);
1314 	sk_wmem_free_skb(sk, skb);
1315 
1316 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1317 
1318 	return true;
1319 }
1320 
1321 /* I wish gso_size would have a bit more sane initialization than
1322  * something-or-zero which complicates things
1323  */
1324 static int tcp_skb_seglen(const struct sk_buff *skb)
1325 {
1326 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1327 }
1328 
1329 /* Shifting pages past head area doesn't work */
1330 static int skb_can_shift(const struct sk_buff *skb)
1331 {
1332 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1333 }
1334 
1335 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1336  * skb.
1337  */
1338 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1339 					  struct tcp_sacktag_state *state,
1340 					  u32 start_seq, u32 end_seq,
1341 					  bool dup_sack)
1342 {
1343 	struct tcp_sock *tp = tcp_sk(sk);
1344 	struct sk_buff *prev;
1345 	int mss;
1346 	int pcount = 0;
1347 	int len;
1348 	int in_sack;
1349 
1350 	if (!sk_can_gso(sk))
1351 		goto fallback;
1352 
1353 	/* Normally R but no L won't result in plain S */
1354 	if (!dup_sack &&
1355 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1356 		goto fallback;
1357 	if (!skb_can_shift(skb))
1358 		goto fallback;
1359 	/* This frame is about to be dropped (was ACKed). */
1360 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1361 		goto fallback;
1362 
1363 	/* Can only happen with delayed DSACK + discard craziness */
1364 	if (unlikely(skb == tcp_write_queue_head(sk)))
1365 		goto fallback;
1366 	prev = tcp_write_queue_prev(sk, skb);
1367 
1368 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1369 		goto fallback;
1370 
1371 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1372 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1373 
1374 	if (in_sack) {
1375 		len = skb->len;
1376 		pcount = tcp_skb_pcount(skb);
1377 		mss = tcp_skb_seglen(skb);
1378 
1379 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1380 		 * drop this restriction as unnecessary
1381 		 */
1382 		if (mss != tcp_skb_seglen(prev))
1383 			goto fallback;
1384 	} else {
1385 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1386 			goto noop;
1387 		/* CHECKME: This is non-MSS split case only?, this will
1388 		 * cause skipped skbs due to advancing loop btw, original
1389 		 * has that feature too
1390 		 */
1391 		if (tcp_skb_pcount(skb) <= 1)
1392 			goto noop;
1393 
1394 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1395 		if (!in_sack) {
1396 			/* TODO: head merge to next could be attempted here
1397 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1398 			 * though it might not be worth of the additional hassle
1399 			 *
1400 			 * ...we can probably just fallback to what was done
1401 			 * previously. We could try merging non-SACKed ones
1402 			 * as well but it probably isn't going to buy off
1403 			 * because later SACKs might again split them, and
1404 			 * it would make skb timestamp tracking considerably
1405 			 * harder problem.
1406 			 */
1407 			goto fallback;
1408 		}
1409 
1410 		len = end_seq - TCP_SKB_CB(skb)->seq;
1411 		BUG_ON(len < 0);
1412 		BUG_ON(len > skb->len);
1413 
1414 		/* MSS boundaries should be honoured or else pcount will
1415 		 * severely break even though it makes things bit trickier.
1416 		 * Optimize common case to avoid most of the divides
1417 		 */
1418 		mss = tcp_skb_mss(skb);
1419 
1420 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1421 		 * drop this restriction as unnecessary
1422 		 */
1423 		if (mss != tcp_skb_seglen(prev))
1424 			goto fallback;
1425 
1426 		if (len == mss) {
1427 			pcount = 1;
1428 		} else if (len < mss) {
1429 			goto noop;
1430 		} else {
1431 			pcount = len / mss;
1432 			len = pcount * mss;
1433 		}
1434 	}
1435 
1436 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1437 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1438 		goto fallback;
1439 
1440 	if (!skb_shift(prev, skb, len))
1441 		goto fallback;
1442 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1443 		goto out;
1444 
1445 	/* Hole filled allows collapsing with the next as well, this is very
1446 	 * useful when hole on every nth skb pattern happens
1447 	 */
1448 	if (prev == tcp_write_queue_tail(sk))
1449 		goto out;
1450 	skb = tcp_write_queue_next(sk, prev);
1451 
1452 	if (!skb_can_shift(skb) ||
1453 	    (skb == tcp_send_head(sk)) ||
1454 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1455 	    (mss != tcp_skb_seglen(skb)))
1456 		goto out;
1457 
1458 	len = skb->len;
1459 	if (skb_shift(prev, skb, len)) {
1460 		pcount += tcp_skb_pcount(skb);
1461 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1462 	}
1463 
1464 out:
1465 	state->fack_count += pcount;
1466 	return prev;
1467 
1468 noop:
1469 	return skb;
1470 
1471 fallback:
1472 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1473 	return NULL;
1474 }
1475 
1476 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1477 					struct tcp_sack_block *next_dup,
1478 					struct tcp_sacktag_state *state,
1479 					u32 start_seq, u32 end_seq,
1480 					bool dup_sack_in)
1481 {
1482 	struct tcp_sock *tp = tcp_sk(sk);
1483 	struct sk_buff *tmp;
1484 
1485 	tcp_for_write_queue_from(skb, sk) {
1486 		int in_sack = 0;
1487 		bool dup_sack = dup_sack_in;
1488 
1489 		if (skb == tcp_send_head(sk))
1490 			break;
1491 
1492 		/* queue is in-order => we can short-circuit the walk early */
1493 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1494 			break;
1495 
1496 		if (next_dup  &&
1497 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1498 			in_sack = tcp_match_skb_to_sack(sk, skb,
1499 							next_dup->start_seq,
1500 							next_dup->end_seq);
1501 			if (in_sack > 0)
1502 				dup_sack = true;
1503 		}
1504 
1505 		/* skb reference here is a bit tricky to get right, since
1506 		 * shifting can eat and free both this skb and the next,
1507 		 * so not even _safe variant of the loop is enough.
1508 		 */
1509 		if (in_sack <= 0) {
1510 			tmp = tcp_shift_skb_data(sk, skb, state,
1511 						 start_seq, end_seq, dup_sack);
1512 			if (tmp) {
1513 				if (tmp != skb) {
1514 					skb = tmp;
1515 					continue;
1516 				}
1517 
1518 				in_sack = 0;
1519 			} else {
1520 				in_sack = tcp_match_skb_to_sack(sk, skb,
1521 								start_seq,
1522 								end_seq);
1523 			}
1524 		}
1525 
1526 		if (unlikely(in_sack < 0))
1527 			break;
1528 
1529 		if (in_sack) {
1530 			TCP_SKB_CB(skb)->sacked =
1531 				tcp_sacktag_one(sk,
1532 						state,
1533 						TCP_SKB_CB(skb)->sacked,
1534 						TCP_SKB_CB(skb)->seq,
1535 						TCP_SKB_CB(skb)->end_seq,
1536 						dup_sack,
1537 						tcp_skb_pcount(skb),
1538 						&skb->skb_mstamp);
1539 
1540 			if (!before(TCP_SKB_CB(skb)->seq,
1541 				    tcp_highest_sack_seq(tp)))
1542 				tcp_advance_highest_sack(sk, skb);
1543 		}
1544 
1545 		state->fack_count += tcp_skb_pcount(skb);
1546 	}
1547 	return skb;
1548 }
1549 
1550 /* Avoid all extra work that is being done by sacktag while walking in
1551  * a normal way
1552  */
1553 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1554 					struct tcp_sacktag_state *state,
1555 					u32 skip_to_seq)
1556 {
1557 	tcp_for_write_queue_from(skb, sk) {
1558 		if (skb == tcp_send_head(sk))
1559 			break;
1560 
1561 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1562 			break;
1563 
1564 		state->fack_count += tcp_skb_pcount(skb);
1565 	}
1566 	return skb;
1567 }
1568 
1569 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1570 						struct sock *sk,
1571 						struct tcp_sack_block *next_dup,
1572 						struct tcp_sacktag_state *state,
1573 						u32 skip_to_seq)
1574 {
1575 	if (!next_dup)
1576 		return skb;
1577 
1578 	if (before(next_dup->start_seq, skip_to_seq)) {
1579 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1580 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1581 				       next_dup->start_seq, next_dup->end_seq,
1582 				       1);
1583 	}
1584 
1585 	return skb;
1586 }
1587 
1588 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1589 {
1590 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1591 }
1592 
1593 static int
1594 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1595 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1596 {
1597 	struct tcp_sock *tp = tcp_sk(sk);
1598 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1599 				    TCP_SKB_CB(ack_skb)->sacked);
1600 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1601 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1602 	struct tcp_sack_block *cache;
1603 	struct sk_buff *skb;
1604 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1605 	int used_sacks;
1606 	bool found_dup_sack = false;
1607 	int i, j;
1608 	int first_sack_index;
1609 
1610 	state->flag = 0;
1611 	state->reord = tp->packets_out;
1612 
1613 	if (!tp->sacked_out) {
1614 		if (WARN_ON(tp->fackets_out))
1615 			tp->fackets_out = 0;
1616 		tcp_highest_sack_reset(sk);
1617 	}
1618 
1619 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1620 					 num_sacks, prior_snd_una);
1621 	if (found_dup_sack)
1622 		state->flag |= FLAG_DSACKING_ACK;
1623 
1624 	/* Eliminate too old ACKs, but take into
1625 	 * account more or less fresh ones, they can
1626 	 * contain valid SACK info.
1627 	 */
1628 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1629 		return 0;
1630 
1631 	if (!tp->packets_out)
1632 		goto out;
1633 
1634 	used_sacks = 0;
1635 	first_sack_index = 0;
1636 	for (i = 0; i < num_sacks; i++) {
1637 		bool dup_sack = !i && found_dup_sack;
1638 
1639 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1640 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1641 
1642 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1643 					    sp[used_sacks].start_seq,
1644 					    sp[used_sacks].end_seq)) {
1645 			int mib_idx;
1646 
1647 			if (dup_sack) {
1648 				if (!tp->undo_marker)
1649 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1650 				else
1651 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1652 			} else {
1653 				/* Don't count olds caused by ACK reordering */
1654 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1655 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1656 					continue;
1657 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1658 			}
1659 
1660 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1661 			if (i == 0)
1662 				first_sack_index = -1;
1663 			continue;
1664 		}
1665 
1666 		/* Ignore very old stuff early */
1667 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1668 			continue;
1669 
1670 		used_sacks++;
1671 	}
1672 
1673 	/* order SACK blocks to allow in order walk of the retrans queue */
1674 	for (i = used_sacks - 1; i > 0; i--) {
1675 		for (j = 0; j < i; j++) {
1676 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1677 				swap(sp[j], sp[j + 1]);
1678 
1679 				/* Track where the first SACK block goes to */
1680 				if (j == first_sack_index)
1681 					first_sack_index = j + 1;
1682 			}
1683 		}
1684 	}
1685 
1686 	skb = tcp_write_queue_head(sk);
1687 	state->fack_count = 0;
1688 	i = 0;
1689 
1690 	if (!tp->sacked_out) {
1691 		/* It's already past, so skip checking against it */
1692 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1693 	} else {
1694 		cache = tp->recv_sack_cache;
1695 		/* Skip empty blocks in at head of the cache */
1696 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1697 		       !cache->end_seq)
1698 			cache++;
1699 	}
1700 
1701 	while (i < used_sacks) {
1702 		u32 start_seq = sp[i].start_seq;
1703 		u32 end_seq = sp[i].end_seq;
1704 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1705 		struct tcp_sack_block *next_dup = NULL;
1706 
1707 		if (found_dup_sack && ((i + 1) == first_sack_index))
1708 			next_dup = &sp[i + 1];
1709 
1710 		/* Skip too early cached blocks */
1711 		while (tcp_sack_cache_ok(tp, cache) &&
1712 		       !before(start_seq, cache->end_seq))
1713 			cache++;
1714 
1715 		/* Can skip some work by looking recv_sack_cache? */
1716 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1717 		    after(end_seq, cache->start_seq)) {
1718 
1719 			/* Head todo? */
1720 			if (before(start_seq, cache->start_seq)) {
1721 				skb = tcp_sacktag_skip(skb, sk, state,
1722 						       start_seq);
1723 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1724 						       state,
1725 						       start_seq,
1726 						       cache->start_seq,
1727 						       dup_sack);
1728 			}
1729 
1730 			/* Rest of the block already fully processed? */
1731 			if (!after(end_seq, cache->end_seq))
1732 				goto advance_sp;
1733 
1734 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1735 						       state,
1736 						       cache->end_seq);
1737 
1738 			/* ...tail remains todo... */
1739 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1740 				/* ...but better entrypoint exists! */
1741 				skb = tcp_highest_sack(sk);
1742 				if (!skb)
1743 					break;
1744 				state->fack_count = tp->fackets_out;
1745 				cache++;
1746 				goto walk;
1747 			}
1748 
1749 			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1750 			/* Check overlap against next cached too (past this one already) */
1751 			cache++;
1752 			continue;
1753 		}
1754 
1755 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1756 			skb = tcp_highest_sack(sk);
1757 			if (!skb)
1758 				break;
1759 			state->fack_count = tp->fackets_out;
1760 		}
1761 		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1762 
1763 walk:
1764 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1765 				       start_seq, end_seq, dup_sack);
1766 
1767 advance_sp:
1768 		i++;
1769 	}
1770 
1771 	/* Clear the head of the cache sack blocks so we can skip it next time */
1772 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1773 		tp->recv_sack_cache[i].start_seq = 0;
1774 		tp->recv_sack_cache[i].end_seq = 0;
1775 	}
1776 	for (j = 0; j < used_sacks; j++)
1777 		tp->recv_sack_cache[i++] = sp[j];
1778 
1779 	if ((state->reord < tp->fackets_out) &&
1780 	    ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1781 		tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1782 
1783 	tcp_verify_left_out(tp);
1784 out:
1785 
1786 #if FASTRETRANS_DEBUG > 0
1787 	WARN_ON((int)tp->sacked_out < 0);
1788 	WARN_ON((int)tp->lost_out < 0);
1789 	WARN_ON((int)tp->retrans_out < 0);
1790 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1791 #endif
1792 	return state->flag;
1793 }
1794 
1795 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1796  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1797  */
1798 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1799 {
1800 	u32 holes;
1801 
1802 	holes = max(tp->lost_out, 1U);
1803 	holes = min(holes, tp->packets_out);
1804 
1805 	if ((tp->sacked_out + holes) > tp->packets_out) {
1806 		tp->sacked_out = tp->packets_out - holes;
1807 		return true;
1808 	}
1809 	return false;
1810 }
1811 
1812 /* If we receive more dupacks than we expected counting segments
1813  * in assumption of absent reordering, interpret this as reordering.
1814  * The only another reason could be bug in receiver TCP.
1815  */
1816 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1817 {
1818 	struct tcp_sock *tp = tcp_sk(sk);
1819 	if (tcp_limit_reno_sacked(tp))
1820 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1821 }
1822 
1823 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1824 
1825 static void tcp_add_reno_sack(struct sock *sk)
1826 {
1827 	struct tcp_sock *tp = tcp_sk(sk);
1828 	u32 prior_sacked = tp->sacked_out;
1829 
1830 	tp->sacked_out++;
1831 	tcp_check_reno_reordering(sk, 0);
1832 	if (tp->sacked_out > prior_sacked)
1833 		tp->delivered++; /* Some out-of-order packet is delivered */
1834 	tcp_verify_left_out(tp);
1835 }
1836 
1837 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1838 
1839 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1840 {
1841 	struct tcp_sock *tp = tcp_sk(sk);
1842 
1843 	if (acked > 0) {
1844 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1845 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1846 		if (acked - 1 >= tp->sacked_out)
1847 			tp->sacked_out = 0;
1848 		else
1849 			tp->sacked_out -= acked - 1;
1850 	}
1851 	tcp_check_reno_reordering(sk, acked);
1852 	tcp_verify_left_out(tp);
1853 }
1854 
1855 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1856 {
1857 	tp->sacked_out = 0;
1858 }
1859 
1860 void tcp_clear_retrans(struct tcp_sock *tp)
1861 {
1862 	tp->retrans_out = 0;
1863 	tp->lost_out = 0;
1864 	tp->undo_marker = 0;
1865 	tp->undo_retrans = -1;
1866 	tp->fackets_out = 0;
1867 	tp->sacked_out = 0;
1868 }
1869 
1870 static inline void tcp_init_undo(struct tcp_sock *tp)
1871 {
1872 	tp->undo_marker = tp->snd_una;
1873 	/* Retransmission still in flight may cause DSACKs later. */
1874 	tp->undo_retrans = tp->retrans_out ? : -1;
1875 }
1876 
1877 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1878  * and reset tags completely, otherwise preserve SACKs. If receiver
1879  * dropped its ofo queue, we will know this due to reneging detection.
1880  */
1881 void tcp_enter_loss(struct sock *sk)
1882 {
1883 	const struct inet_connection_sock *icsk = inet_csk(sk);
1884 	struct tcp_sock *tp = tcp_sk(sk);
1885 	struct net *net = sock_net(sk);
1886 	struct sk_buff *skb;
1887 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1888 	bool is_reneg;			/* is receiver reneging on SACKs? */
1889 
1890 	/* Reduce ssthresh if it has not yet been made inside this window. */
1891 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1892 	    !after(tp->high_seq, tp->snd_una) ||
1893 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1894 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1895 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1896 		tcp_ca_event(sk, CA_EVENT_LOSS);
1897 		tcp_init_undo(tp);
1898 	}
1899 	tp->snd_cwnd	   = 1;
1900 	tp->snd_cwnd_cnt   = 0;
1901 	tp->snd_cwnd_stamp = tcp_time_stamp;
1902 
1903 	tp->retrans_out = 0;
1904 	tp->lost_out = 0;
1905 
1906 	if (tcp_is_reno(tp))
1907 		tcp_reset_reno_sack(tp);
1908 
1909 	skb = tcp_write_queue_head(sk);
1910 	is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1911 	if (is_reneg) {
1912 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1913 		tp->sacked_out = 0;
1914 		tp->fackets_out = 0;
1915 	}
1916 	tcp_clear_all_retrans_hints(tp);
1917 
1918 	tcp_for_write_queue(skb, sk) {
1919 		if (skb == tcp_send_head(sk))
1920 			break;
1921 
1922 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1923 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
1924 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1925 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1926 			tp->lost_out += tcp_skb_pcount(skb);
1927 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1928 		}
1929 	}
1930 	tcp_verify_left_out(tp);
1931 
1932 	/* Timeout in disordered state after receiving substantial DUPACKs
1933 	 * suggests that the degree of reordering is over-estimated.
1934 	 */
1935 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1936 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1937 		tp->reordering = min_t(unsigned int, tp->reordering,
1938 				       net->ipv4.sysctl_tcp_reordering);
1939 	tcp_set_ca_state(sk, TCP_CA_Loss);
1940 	tp->high_seq = tp->snd_nxt;
1941 	tcp_ecn_queue_cwr(tp);
1942 
1943 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1944 	 * loss recovery is underway except recurring timeout(s) on
1945 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1946 	 */
1947 	tp->frto = sysctl_tcp_frto &&
1948 		   (new_recovery || icsk->icsk_retransmits) &&
1949 		   !inet_csk(sk)->icsk_mtup.probe_size;
1950 }
1951 
1952 /* If ACK arrived pointing to a remembered SACK, it means that our
1953  * remembered SACKs do not reflect real state of receiver i.e.
1954  * receiver _host_ is heavily congested (or buggy).
1955  *
1956  * To avoid big spurious retransmission bursts due to transient SACK
1957  * scoreboard oddities that look like reneging, we give the receiver a
1958  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1959  * restore sanity to the SACK scoreboard. If the apparent reneging
1960  * persists until this RTO then we'll clear the SACK scoreboard.
1961  */
1962 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1963 {
1964 	if (flag & FLAG_SACK_RENEGING) {
1965 		struct tcp_sock *tp = tcp_sk(sk);
1966 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
1967 					  msecs_to_jiffies(10));
1968 
1969 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1970 					  delay, TCP_RTO_MAX);
1971 		return true;
1972 	}
1973 	return false;
1974 }
1975 
1976 static inline int tcp_fackets_out(const struct tcp_sock *tp)
1977 {
1978 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1979 }
1980 
1981 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1982  * counter when SACK is enabled (without SACK, sacked_out is used for
1983  * that purpose).
1984  *
1985  * Instead, with FACK TCP uses fackets_out that includes both SACKed
1986  * segments up to the highest received SACK block so far and holes in
1987  * between them.
1988  *
1989  * With reordering, holes may still be in flight, so RFC3517 recovery
1990  * uses pure sacked_out (total number of SACKed segments) even though
1991  * it violates the RFC that uses duplicate ACKs, often these are equal
1992  * but when e.g. out-of-window ACKs or packet duplication occurs,
1993  * they differ. Since neither occurs due to loss, TCP should really
1994  * ignore them.
1995  */
1996 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
1997 {
1998 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1999 }
2000 
2001 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2002 {
2003 	struct tcp_sock *tp = tcp_sk(sk);
2004 	unsigned long delay;
2005 
2006 	/* Delay early retransmit and entering fast recovery for
2007 	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2008 	 * available, or RTO is scheduled to fire first.
2009 	 */
2010 	if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2011 	    (flag & FLAG_ECE) || !tp->srtt_us)
2012 		return false;
2013 
2014 	delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2015 		    msecs_to_jiffies(2));
2016 
2017 	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2018 		return false;
2019 
2020 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2021 				  TCP_RTO_MAX);
2022 	return true;
2023 }
2024 
2025 /* Linux NewReno/SACK/FACK/ECN state machine.
2026  * --------------------------------------
2027  *
2028  * "Open"	Normal state, no dubious events, fast path.
2029  * "Disorder"   In all the respects it is "Open",
2030  *		but requires a bit more attention. It is entered when
2031  *		we see some SACKs or dupacks. It is split of "Open"
2032  *		mainly to move some processing from fast path to slow one.
2033  * "CWR"	CWND was reduced due to some Congestion Notification event.
2034  *		It can be ECN, ICMP source quench, local device congestion.
2035  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2036  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2037  *
2038  * tcp_fastretrans_alert() is entered:
2039  * - each incoming ACK, if state is not "Open"
2040  * - when arrived ACK is unusual, namely:
2041  *	* SACK
2042  *	* Duplicate ACK.
2043  *	* ECN ECE.
2044  *
2045  * Counting packets in flight is pretty simple.
2046  *
2047  *	in_flight = packets_out - left_out + retrans_out
2048  *
2049  *	packets_out is SND.NXT-SND.UNA counted in packets.
2050  *
2051  *	retrans_out is number of retransmitted segments.
2052  *
2053  *	left_out is number of segments left network, but not ACKed yet.
2054  *
2055  *		left_out = sacked_out + lost_out
2056  *
2057  *     sacked_out: Packets, which arrived to receiver out of order
2058  *		   and hence not ACKed. With SACKs this number is simply
2059  *		   amount of SACKed data. Even without SACKs
2060  *		   it is easy to give pretty reliable estimate of this number,
2061  *		   counting duplicate ACKs.
2062  *
2063  *       lost_out: Packets lost by network. TCP has no explicit
2064  *		   "loss notification" feedback from network (for now).
2065  *		   It means that this number can be only _guessed_.
2066  *		   Actually, it is the heuristics to predict lossage that
2067  *		   distinguishes different algorithms.
2068  *
2069  *	F.e. after RTO, when all the queue is considered as lost,
2070  *	lost_out = packets_out and in_flight = retrans_out.
2071  *
2072  *		Essentially, we have now two algorithms counting
2073  *		lost packets.
2074  *
2075  *		FACK: It is the simplest heuristics. As soon as we decided
2076  *		that something is lost, we decide that _all_ not SACKed
2077  *		packets until the most forward SACK are lost. I.e.
2078  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2079  *		It is absolutely correct estimate, if network does not reorder
2080  *		packets. And it loses any connection to reality when reordering
2081  *		takes place. We use FACK by default until reordering
2082  *		is suspected on the path to this destination.
2083  *
2084  *		NewReno: when Recovery is entered, we assume that one segment
2085  *		is lost (classic Reno). While we are in Recovery and
2086  *		a partial ACK arrives, we assume that one more packet
2087  *		is lost (NewReno). This heuristics are the same in NewReno
2088  *		and SACK.
2089  *
2090  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2091  *  deflation etc. CWND is real congestion window, never inflated, changes
2092  *  only according to classic VJ rules.
2093  *
2094  * Really tricky (and requiring careful tuning) part of algorithm
2095  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2096  * The first determines the moment _when_ we should reduce CWND and,
2097  * hence, slow down forward transmission. In fact, it determines the moment
2098  * when we decide that hole is caused by loss, rather than by a reorder.
2099  *
2100  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2101  * holes, caused by lost packets.
2102  *
2103  * And the most logically complicated part of algorithm is undo
2104  * heuristics. We detect false retransmits due to both too early
2105  * fast retransmit (reordering) and underestimated RTO, analyzing
2106  * timestamps and D-SACKs. When we detect that some segments were
2107  * retransmitted by mistake and CWND reduction was wrong, we undo
2108  * window reduction and abort recovery phase. This logic is hidden
2109  * inside several functions named tcp_try_undo_<something>.
2110  */
2111 
2112 /* This function decides, when we should leave Disordered state
2113  * and enter Recovery phase, reducing congestion window.
2114  *
2115  * Main question: may we further continue forward transmission
2116  * with the same cwnd?
2117  */
2118 static bool tcp_time_to_recover(struct sock *sk, int flag)
2119 {
2120 	struct tcp_sock *tp = tcp_sk(sk);
2121 	__u32 packets_out;
2122 	int tcp_reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
2123 
2124 	/* Trick#1: The loss is proven. */
2125 	if (tp->lost_out)
2126 		return true;
2127 
2128 	/* Not-A-Trick#2 : Classic rule... */
2129 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2130 		return true;
2131 
2132 	/* Trick#4: It is still not OK... But will it be useful to delay
2133 	 * recovery more?
2134 	 */
2135 	packets_out = tp->packets_out;
2136 	if (packets_out <= tp->reordering &&
2137 	    tp->sacked_out >= max_t(__u32, packets_out/2, tcp_reordering) &&
2138 	    !tcp_may_send_now(sk)) {
2139 		/* We have nothing to send. This connection is limited
2140 		 * either by receiver window or by application.
2141 		 */
2142 		return true;
2143 	}
2144 
2145 	/* If a thin stream is detected, retransmit after first
2146 	 * received dupack. Employ only if SACK is supported in order
2147 	 * to avoid possible corner-case series of spurious retransmissions
2148 	 * Use only if there are no unsent data.
2149 	 */
2150 	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2151 	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2152 	    tcp_is_sack(tp) && !tcp_send_head(sk))
2153 		return true;
2154 
2155 	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2156 	 * retransmissions due to small network reorderings, we implement
2157 	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2158 	 * interval if appropriate.
2159 	 */
2160 	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2161 	    (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2162 	    !tcp_may_send_now(sk))
2163 		return !tcp_pause_early_retransmit(sk, flag);
2164 
2165 	return false;
2166 }
2167 
2168 /* Detect loss in event "A" above by marking head of queue up as lost.
2169  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2170  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2171  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2172  * the maximum SACKed segments to pass before reaching this limit.
2173  */
2174 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2175 {
2176 	struct tcp_sock *tp = tcp_sk(sk);
2177 	struct sk_buff *skb;
2178 	int cnt, oldcnt, lost;
2179 	unsigned int mss;
2180 	/* Use SACK to deduce losses of new sequences sent during recovery */
2181 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2182 
2183 	WARN_ON(packets > tp->packets_out);
2184 	if (tp->lost_skb_hint) {
2185 		skb = tp->lost_skb_hint;
2186 		cnt = tp->lost_cnt_hint;
2187 		/* Head already handled? */
2188 		if (mark_head && skb != tcp_write_queue_head(sk))
2189 			return;
2190 	} else {
2191 		skb = tcp_write_queue_head(sk);
2192 		cnt = 0;
2193 	}
2194 
2195 	tcp_for_write_queue_from(skb, sk) {
2196 		if (skb == tcp_send_head(sk))
2197 			break;
2198 		/* TODO: do this better */
2199 		/* this is not the most efficient way to do this... */
2200 		tp->lost_skb_hint = skb;
2201 		tp->lost_cnt_hint = cnt;
2202 
2203 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2204 			break;
2205 
2206 		oldcnt = cnt;
2207 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2208 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2209 			cnt += tcp_skb_pcount(skb);
2210 
2211 		if (cnt > packets) {
2212 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2213 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2214 			    (oldcnt >= packets))
2215 				break;
2216 
2217 			mss = tcp_skb_mss(skb);
2218 			/* If needed, chop off the prefix to mark as lost. */
2219 			lost = (packets - oldcnt) * mss;
2220 			if (lost < skb->len &&
2221 			    tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2222 				break;
2223 			cnt = packets;
2224 		}
2225 
2226 		tcp_skb_mark_lost(tp, skb);
2227 
2228 		if (mark_head)
2229 			break;
2230 	}
2231 	tcp_verify_left_out(tp);
2232 }
2233 
2234 /* Account newly detected lost packet(s) */
2235 
2236 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2237 {
2238 	struct tcp_sock *tp = tcp_sk(sk);
2239 
2240 	if (tcp_is_reno(tp)) {
2241 		tcp_mark_head_lost(sk, 1, 1);
2242 	} else if (tcp_is_fack(tp)) {
2243 		int lost = tp->fackets_out - tp->reordering;
2244 		if (lost <= 0)
2245 			lost = 1;
2246 		tcp_mark_head_lost(sk, lost, 0);
2247 	} else {
2248 		int sacked_upto = tp->sacked_out - tp->reordering;
2249 		if (sacked_upto >= 0)
2250 			tcp_mark_head_lost(sk, sacked_upto, 0);
2251 		else if (fast_rexmit)
2252 			tcp_mark_head_lost(sk, 1, 1);
2253 	}
2254 }
2255 
2256 /* CWND moderation, preventing bursts due to too big ACKs
2257  * in dubious situations.
2258  */
2259 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2260 {
2261 	tp->snd_cwnd = min(tp->snd_cwnd,
2262 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2263 	tp->snd_cwnd_stamp = tcp_time_stamp;
2264 }
2265 
2266 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2267 {
2268 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2269 	       before(tp->rx_opt.rcv_tsecr, when);
2270 }
2271 
2272 /* skb is spurious retransmitted if the returned timestamp echo
2273  * reply is prior to the skb transmission time
2274  */
2275 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2276 				     const struct sk_buff *skb)
2277 {
2278 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2279 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2280 }
2281 
2282 /* Nothing was retransmitted or returned timestamp is less
2283  * than timestamp of the first retransmission.
2284  */
2285 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2286 {
2287 	return !tp->retrans_stamp ||
2288 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2289 }
2290 
2291 /* Undo procedures. */
2292 
2293 /* We can clear retrans_stamp when there are no retransmissions in the
2294  * window. It would seem that it is trivially available for us in
2295  * tp->retrans_out, however, that kind of assumptions doesn't consider
2296  * what will happen if errors occur when sending retransmission for the
2297  * second time. ...It could the that such segment has only
2298  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2299  * the head skb is enough except for some reneging corner cases that
2300  * are not worth the effort.
2301  *
2302  * Main reason for all this complexity is the fact that connection dying
2303  * time now depends on the validity of the retrans_stamp, in particular,
2304  * that successive retransmissions of a segment must not advance
2305  * retrans_stamp under any conditions.
2306  */
2307 static bool tcp_any_retrans_done(const struct sock *sk)
2308 {
2309 	const struct tcp_sock *tp = tcp_sk(sk);
2310 	struct sk_buff *skb;
2311 
2312 	if (tp->retrans_out)
2313 		return true;
2314 
2315 	skb = tcp_write_queue_head(sk);
2316 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2317 		return true;
2318 
2319 	return false;
2320 }
2321 
2322 #if FASTRETRANS_DEBUG > 1
2323 static void DBGUNDO(struct sock *sk, const char *msg)
2324 {
2325 	struct tcp_sock *tp = tcp_sk(sk);
2326 	struct inet_sock *inet = inet_sk(sk);
2327 
2328 	if (sk->sk_family == AF_INET) {
2329 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2330 			 msg,
2331 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2332 			 tp->snd_cwnd, tcp_left_out(tp),
2333 			 tp->snd_ssthresh, tp->prior_ssthresh,
2334 			 tp->packets_out);
2335 	}
2336 #if IS_ENABLED(CONFIG_IPV6)
2337 	else if (sk->sk_family == AF_INET6) {
2338 		struct ipv6_pinfo *np = inet6_sk(sk);
2339 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2340 			 msg,
2341 			 &np->daddr, ntohs(inet->inet_dport),
2342 			 tp->snd_cwnd, tcp_left_out(tp),
2343 			 tp->snd_ssthresh, tp->prior_ssthresh,
2344 			 tp->packets_out);
2345 	}
2346 #endif
2347 }
2348 #else
2349 #define DBGUNDO(x...) do { } while (0)
2350 #endif
2351 
2352 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2353 {
2354 	struct tcp_sock *tp = tcp_sk(sk);
2355 
2356 	if (unmark_loss) {
2357 		struct sk_buff *skb;
2358 
2359 		tcp_for_write_queue(skb, sk) {
2360 			if (skb == tcp_send_head(sk))
2361 				break;
2362 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2363 		}
2364 		tp->lost_out = 0;
2365 		tcp_clear_all_retrans_hints(tp);
2366 	}
2367 
2368 	if (tp->prior_ssthresh) {
2369 		const struct inet_connection_sock *icsk = inet_csk(sk);
2370 
2371 		if (icsk->icsk_ca_ops->undo_cwnd)
2372 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2373 		else
2374 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2375 
2376 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2377 			tp->snd_ssthresh = tp->prior_ssthresh;
2378 			tcp_ecn_withdraw_cwr(tp);
2379 		}
2380 	}
2381 	tp->snd_cwnd_stamp = tcp_time_stamp;
2382 	tp->undo_marker = 0;
2383 }
2384 
2385 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2386 {
2387 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2388 }
2389 
2390 /* People celebrate: "We love our President!" */
2391 static bool tcp_try_undo_recovery(struct sock *sk)
2392 {
2393 	struct tcp_sock *tp = tcp_sk(sk);
2394 
2395 	if (tcp_may_undo(tp)) {
2396 		int mib_idx;
2397 
2398 		/* Happy end! We did not retransmit anything
2399 		 * or our original transmission succeeded.
2400 		 */
2401 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2402 		tcp_undo_cwnd_reduction(sk, false);
2403 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2404 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2405 		else
2406 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2407 
2408 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2409 	}
2410 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2411 		/* Hold old state until something *above* high_seq
2412 		 * is ACKed. For Reno it is MUST to prevent false
2413 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2414 		tcp_moderate_cwnd(tp);
2415 		if (!tcp_any_retrans_done(sk))
2416 			tp->retrans_stamp = 0;
2417 		return true;
2418 	}
2419 	tcp_set_ca_state(sk, TCP_CA_Open);
2420 	return false;
2421 }
2422 
2423 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2424 static bool tcp_try_undo_dsack(struct sock *sk)
2425 {
2426 	struct tcp_sock *tp = tcp_sk(sk);
2427 
2428 	if (tp->undo_marker && !tp->undo_retrans) {
2429 		DBGUNDO(sk, "D-SACK");
2430 		tcp_undo_cwnd_reduction(sk, false);
2431 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2432 		return true;
2433 	}
2434 	return false;
2435 }
2436 
2437 /* Undo during loss recovery after partial ACK or using F-RTO. */
2438 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2439 {
2440 	struct tcp_sock *tp = tcp_sk(sk);
2441 
2442 	if (frto_undo || tcp_may_undo(tp)) {
2443 		tcp_undo_cwnd_reduction(sk, true);
2444 
2445 		DBGUNDO(sk, "partial loss");
2446 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2447 		if (frto_undo)
2448 			NET_INC_STATS_BH(sock_net(sk),
2449 					 LINUX_MIB_TCPSPURIOUSRTOS);
2450 		inet_csk(sk)->icsk_retransmits = 0;
2451 		if (frto_undo || tcp_is_sack(tp))
2452 			tcp_set_ca_state(sk, TCP_CA_Open);
2453 		return true;
2454 	}
2455 	return false;
2456 }
2457 
2458 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2459  * It computes the number of packets to send (sndcnt) based on packets newly
2460  * delivered:
2461  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2462  *	cwnd reductions across a full RTT.
2463  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2464  *      But when the retransmits are acked without further losses, PRR
2465  *      slow starts cwnd up to ssthresh to speed up the recovery.
2466  */
2467 static void tcp_init_cwnd_reduction(struct sock *sk)
2468 {
2469 	struct tcp_sock *tp = tcp_sk(sk);
2470 
2471 	tp->high_seq = tp->snd_nxt;
2472 	tp->tlp_high_seq = 0;
2473 	tp->snd_cwnd_cnt = 0;
2474 	tp->prior_cwnd = tp->snd_cwnd;
2475 	tp->prr_delivered = 0;
2476 	tp->prr_out = 0;
2477 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2478 	tcp_ecn_queue_cwr(tp);
2479 }
2480 
2481 static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
2482 			       int flag)
2483 {
2484 	struct tcp_sock *tp = tcp_sk(sk);
2485 	int sndcnt = 0;
2486 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2487 
2488 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2489 		return;
2490 
2491 	tp->prr_delivered += newly_acked_sacked;
2492 	if (delta < 0) {
2493 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2494 			       tp->prior_cwnd - 1;
2495 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2496 	} else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2497 		   !(flag & FLAG_LOST_RETRANS)) {
2498 		sndcnt = min_t(int, delta,
2499 			       max_t(int, tp->prr_delivered - tp->prr_out,
2500 				     newly_acked_sacked) + 1);
2501 	} else {
2502 		sndcnt = min(delta, newly_acked_sacked);
2503 	}
2504 	/* Force a fast retransmit upon entering fast recovery */
2505 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2506 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2507 }
2508 
2509 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2510 {
2511 	struct tcp_sock *tp = tcp_sk(sk);
2512 
2513 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2514 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2515 	    (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2516 		tp->snd_cwnd = tp->snd_ssthresh;
2517 		tp->snd_cwnd_stamp = tcp_time_stamp;
2518 	}
2519 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2520 }
2521 
2522 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2523 void tcp_enter_cwr(struct sock *sk)
2524 {
2525 	struct tcp_sock *tp = tcp_sk(sk);
2526 
2527 	tp->prior_ssthresh = 0;
2528 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2529 		tp->undo_marker = 0;
2530 		tcp_init_cwnd_reduction(sk);
2531 		tcp_set_ca_state(sk, TCP_CA_CWR);
2532 	}
2533 }
2534 EXPORT_SYMBOL(tcp_enter_cwr);
2535 
2536 static void tcp_try_keep_open(struct sock *sk)
2537 {
2538 	struct tcp_sock *tp = tcp_sk(sk);
2539 	int state = TCP_CA_Open;
2540 
2541 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2542 		state = TCP_CA_Disorder;
2543 
2544 	if (inet_csk(sk)->icsk_ca_state != state) {
2545 		tcp_set_ca_state(sk, state);
2546 		tp->high_seq = tp->snd_nxt;
2547 	}
2548 }
2549 
2550 static void tcp_try_to_open(struct sock *sk, int flag)
2551 {
2552 	struct tcp_sock *tp = tcp_sk(sk);
2553 
2554 	tcp_verify_left_out(tp);
2555 
2556 	if (!tcp_any_retrans_done(sk))
2557 		tp->retrans_stamp = 0;
2558 
2559 	if (flag & FLAG_ECE)
2560 		tcp_enter_cwr(sk);
2561 
2562 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2563 		tcp_try_keep_open(sk);
2564 	}
2565 }
2566 
2567 static void tcp_mtup_probe_failed(struct sock *sk)
2568 {
2569 	struct inet_connection_sock *icsk = inet_csk(sk);
2570 
2571 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2572 	icsk->icsk_mtup.probe_size = 0;
2573 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2574 }
2575 
2576 static void tcp_mtup_probe_success(struct sock *sk)
2577 {
2578 	struct tcp_sock *tp = tcp_sk(sk);
2579 	struct inet_connection_sock *icsk = inet_csk(sk);
2580 
2581 	/* FIXME: breaks with very large cwnd */
2582 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2583 	tp->snd_cwnd = tp->snd_cwnd *
2584 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2585 		       icsk->icsk_mtup.probe_size;
2586 	tp->snd_cwnd_cnt = 0;
2587 	tp->snd_cwnd_stamp = tcp_time_stamp;
2588 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2589 
2590 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2591 	icsk->icsk_mtup.probe_size = 0;
2592 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2593 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2594 }
2595 
2596 /* Do a simple retransmit without using the backoff mechanisms in
2597  * tcp_timer. This is used for path mtu discovery.
2598  * The socket is already locked here.
2599  */
2600 void tcp_simple_retransmit(struct sock *sk)
2601 {
2602 	const struct inet_connection_sock *icsk = inet_csk(sk);
2603 	struct tcp_sock *tp = tcp_sk(sk);
2604 	struct sk_buff *skb;
2605 	unsigned int mss = tcp_current_mss(sk);
2606 	u32 prior_lost = tp->lost_out;
2607 
2608 	tcp_for_write_queue(skb, sk) {
2609 		if (skb == tcp_send_head(sk))
2610 			break;
2611 		if (tcp_skb_seglen(skb) > mss &&
2612 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2613 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2614 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2615 				tp->retrans_out -= tcp_skb_pcount(skb);
2616 			}
2617 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2618 		}
2619 	}
2620 
2621 	tcp_clear_retrans_hints_partial(tp);
2622 
2623 	if (prior_lost == tp->lost_out)
2624 		return;
2625 
2626 	if (tcp_is_reno(tp))
2627 		tcp_limit_reno_sacked(tp);
2628 
2629 	tcp_verify_left_out(tp);
2630 
2631 	/* Don't muck with the congestion window here.
2632 	 * Reason is that we do not increase amount of _data_
2633 	 * in network, but units changed and effective
2634 	 * cwnd/ssthresh really reduced now.
2635 	 */
2636 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2637 		tp->high_seq = tp->snd_nxt;
2638 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2639 		tp->prior_ssthresh = 0;
2640 		tp->undo_marker = 0;
2641 		tcp_set_ca_state(sk, TCP_CA_Loss);
2642 	}
2643 	tcp_xmit_retransmit_queue(sk);
2644 }
2645 EXPORT_SYMBOL(tcp_simple_retransmit);
2646 
2647 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2648 {
2649 	struct tcp_sock *tp = tcp_sk(sk);
2650 	int mib_idx;
2651 
2652 	if (tcp_is_reno(tp))
2653 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2654 	else
2655 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2656 
2657 	NET_INC_STATS_BH(sock_net(sk), mib_idx);
2658 
2659 	tp->prior_ssthresh = 0;
2660 	tcp_init_undo(tp);
2661 
2662 	if (!tcp_in_cwnd_reduction(sk)) {
2663 		if (!ece_ack)
2664 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2665 		tcp_init_cwnd_reduction(sk);
2666 	}
2667 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2668 }
2669 
2670 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2671  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2672  */
2673 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2674 			     int *rexmit)
2675 {
2676 	struct tcp_sock *tp = tcp_sk(sk);
2677 	bool recovered = !before(tp->snd_una, tp->high_seq);
2678 
2679 	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2680 	    tcp_try_undo_loss(sk, false))
2681 		return;
2682 
2683 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2684 		/* Step 3.b. A timeout is spurious if not all data are
2685 		 * lost, i.e., never-retransmitted data are (s)acked.
2686 		 */
2687 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2688 		    tcp_try_undo_loss(sk, true))
2689 			return;
2690 
2691 		if (after(tp->snd_nxt, tp->high_seq)) {
2692 			if (flag & FLAG_DATA_SACKED || is_dupack)
2693 				tp->frto = 0; /* Step 3.a. loss was real */
2694 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2695 			tp->high_seq = tp->snd_nxt;
2696 			/* Step 2.b. Try send new data (but deferred until cwnd
2697 			 * is updated in tcp_ack()). Otherwise fall back to
2698 			 * the conventional recovery.
2699 			 */
2700 			if (tcp_send_head(sk) &&
2701 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2702 				*rexmit = REXMIT_NEW;
2703 				return;
2704 			}
2705 			tp->frto = 0;
2706 		}
2707 	}
2708 
2709 	if (recovered) {
2710 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2711 		tcp_try_undo_recovery(sk);
2712 		return;
2713 	}
2714 	if (tcp_is_reno(tp)) {
2715 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2716 		 * delivered. Lower inflight to clock out (re)tranmissions.
2717 		 */
2718 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2719 			tcp_add_reno_sack(sk);
2720 		else if (flag & FLAG_SND_UNA_ADVANCED)
2721 			tcp_reset_reno_sack(tp);
2722 	}
2723 	*rexmit = REXMIT_LOST;
2724 }
2725 
2726 /* Undo during fast recovery after partial ACK. */
2727 static bool tcp_try_undo_partial(struct sock *sk, const int acked)
2728 {
2729 	struct tcp_sock *tp = tcp_sk(sk);
2730 
2731 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2732 		/* Plain luck! Hole if filled with delayed
2733 		 * packet, rather than with a retransmit.
2734 		 */
2735 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2736 
2737 		/* We are getting evidence that the reordering degree is higher
2738 		 * than we realized. If there are no retransmits out then we
2739 		 * can undo. Otherwise we clock out new packets but do not
2740 		 * mark more packets lost or retransmit more.
2741 		 */
2742 		if (tp->retrans_out)
2743 			return true;
2744 
2745 		if (!tcp_any_retrans_done(sk))
2746 			tp->retrans_stamp = 0;
2747 
2748 		DBGUNDO(sk, "partial recovery");
2749 		tcp_undo_cwnd_reduction(sk, true);
2750 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2751 		tcp_try_keep_open(sk);
2752 		return true;
2753 	}
2754 	return false;
2755 }
2756 
2757 /* Process an event, which can update packets-in-flight not trivially.
2758  * Main goal of this function is to calculate new estimate for left_out,
2759  * taking into account both packets sitting in receiver's buffer and
2760  * packets lost by network.
2761  *
2762  * Besides that it updates the congestion state when packet loss or ECN
2763  * is detected. But it does not reduce the cwnd, it is done by the
2764  * congestion control later.
2765  *
2766  * It does _not_ decide what to send, it is made in function
2767  * tcp_xmit_retransmit_queue().
2768  */
2769 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2770 				  bool is_dupack, int *ack_flag, int *rexmit)
2771 {
2772 	struct inet_connection_sock *icsk = inet_csk(sk);
2773 	struct tcp_sock *tp = tcp_sk(sk);
2774 	int fast_rexmit = 0, flag = *ack_flag;
2775 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2776 				    (tcp_fackets_out(tp) > tp->reordering));
2777 
2778 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2779 		tp->sacked_out = 0;
2780 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2781 		tp->fackets_out = 0;
2782 
2783 	/* Now state machine starts.
2784 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2785 	if (flag & FLAG_ECE)
2786 		tp->prior_ssthresh = 0;
2787 
2788 	/* B. In all the states check for reneging SACKs. */
2789 	if (tcp_check_sack_reneging(sk, flag))
2790 		return;
2791 
2792 	/* C. Check consistency of the current state. */
2793 	tcp_verify_left_out(tp);
2794 
2795 	/* D. Check state exit conditions. State can be terminated
2796 	 *    when high_seq is ACKed. */
2797 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2798 		WARN_ON(tp->retrans_out != 0);
2799 		tp->retrans_stamp = 0;
2800 	} else if (!before(tp->snd_una, tp->high_seq)) {
2801 		switch (icsk->icsk_ca_state) {
2802 		case TCP_CA_CWR:
2803 			/* CWR is to be held something *above* high_seq
2804 			 * is ACKed for CWR bit to reach receiver. */
2805 			if (tp->snd_una != tp->high_seq) {
2806 				tcp_end_cwnd_reduction(sk);
2807 				tcp_set_ca_state(sk, TCP_CA_Open);
2808 			}
2809 			break;
2810 
2811 		case TCP_CA_Recovery:
2812 			if (tcp_is_reno(tp))
2813 				tcp_reset_reno_sack(tp);
2814 			if (tcp_try_undo_recovery(sk))
2815 				return;
2816 			tcp_end_cwnd_reduction(sk);
2817 			break;
2818 		}
2819 	}
2820 
2821 	/* Use RACK to detect loss */
2822 	if (sysctl_tcp_recovery & TCP_RACK_LOST_RETRANS &&
2823 	    tcp_rack_mark_lost(sk)) {
2824 		flag |= FLAG_LOST_RETRANS;
2825 		*ack_flag |= FLAG_LOST_RETRANS;
2826 	}
2827 
2828 	/* E. Process state. */
2829 	switch (icsk->icsk_ca_state) {
2830 	case TCP_CA_Recovery:
2831 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2832 			if (tcp_is_reno(tp) && is_dupack)
2833 				tcp_add_reno_sack(sk);
2834 		} else {
2835 			if (tcp_try_undo_partial(sk, acked))
2836 				return;
2837 			/* Partial ACK arrived. Force fast retransmit. */
2838 			do_lost = tcp_is_reno(tp) ||
2839 				  tcp_fackets_out(tp) > tp->reordering;
2840 		}
2841 		if (tcp_try_undo_dsack(sk)) {
2842 			tcp_try_keep_open(sk);
2843 			return;
2844 		}
2845 		break;
2846 	case TCP_CA_Loss:
2847 		tcp_process_loss(sk, flag, is_dupack, rexmit);
2848 		if (icsk->icsk_ca_state != TCP_CA_Open &&
2849 		    !(flag & FLAG_LOST_RETRANS))
2850 			return;
2851 		/* Change state if cwnd is undone or retransmits are lost */
2852 	default:
2853 		if (tcp_is_reno(tp)) {
2854 			if (flag & FLAG_SND_UNA_ADVANCED)
2855 				tcp_reset_reno_sack(tp);
2856 			if (is_dupack)
2857 				tcp_add_reno_sack(sk);
2858 		}
2859 
2860 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2861 			tcp_try_undo_dsack(sk);
2862 
2863 		if (!tcp_time_to_recover(sk, flag)) {
2864 			tcp_try_to_open(sk, flag);
2865 			return;
2866 		}
2867 
2868 		/* MTU probe failure: don't reduce cwnd */
2869 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2870 		    icsk->icsk_mtup.probe_size &&
2871 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2872 			tcp_mtup_probe_failed(sk);
2873 			/* Restores the reduction we did in tcp_mtup_probe() */
2874 			tp->snd_cwnd++;
2875 			tcp_simple_retransmit(sk);
2876 			return;
2877 		}
2878 
2879 		/* Otherwise enter Recovery state */
2880 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2881 		fast_rexmit = 1;
2882 	}
2883 
2884 	if (do_lost)
2885 		tcp_update_scoreboard(sk, fast_rexmit);
2886 	*rexmit = REXMIT_LOST;
2887 }
2888 
2889 /* Kathleen Nichols' algorithm for tracking the minimum value of
2890  * a data stream over some fixed time interval. (E.g., the minimum
2891  * RTT over the past five minutes.) It uses constant space and constant
2892  * time per update yet almost always delivers the same minimum as an
2893  * implementation that has to keep all the data in the window.
2894  *
2895  * The algorithm keeps track of the best, 2nd best & 3rd best min
2896  * values, maintaining an invariant that the measurement time of the
2897  * n'th best >= n-1'th best. It also makes sure that the three values
2898  * are widely separated in the time window since that bounds the worse
2899  * case error when that data is monotonically increasing over the window.
2900  *
2901  * Upon getting a new min, we can forget everything earlier because it
2902  * has no value - the new min is <= everything else in the window by
2903  * definition and it's the most recent. So we restart fresh on every new min
2904  * and overwrites 2nd & 3rd choices. The same property holds for 2nd & 3rd
2905  * best.
2906  */
2907 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2908 {
2909 	const u32 now = tcp_time_stamp, wlen = sysctl_tcp_min_rtt_wlen * HZ;
2910 	struct rtt_meas *m = tcp_sk(sk)->rtt_min;
2911 	struct rtt_meas rttm = {
2912 		.rtt = likely(rtt_us) ? rtt_us : jiffies_to_usecs(1),
2913 		.ts = now,
2914 	};
2915 	u32 elapsed;
2916 
2917 	/* Check if the new measurement updates the 1st, 2nd, or 3rd choices */
2918 	if (unlikely(rttm.rtt <= m[0].rtt))
2919 		m[0] = m[1] = m[2] = rttm;
2920 	else if (rttm.rtt <= m[1].rtt)
2921 		m[1] = m[2] = rttm;
2922 	else if (rttm.rtt <= m[2].rtt)
2923 		m[2] = rttm;
2924 
2925 	elapsed = now - m[0].ts;
2926 	if (unlikely(elapsed > wlen)) {
2927 		/* Passed entire window without a new min so make 2nd choice
2928 		 * the new min & 3rd choice the new 2nd. So forth and so on.
2929 		 */
2930 		m[0] = m[1];
2931 		m[1] = m[2];
2932 		m[2] = rttm;
2933 		if (now - m[0].ts > wlen) {
2934 			m[0] = m[1];
2935 			m[1] = rttm;
2936 			if (now - m[0].ts > wlen)
2937 				m[0] = rttm;
2938 		}
2939 	} else if (m[1].ts == m[0].ts && elapsed > wlen / 4) {
2940 		/* Passed a quarter of the window without a new min so
2941 		 * take 2nd choice from the 2nd quarter of the window.
2942 		 */
2943 		m[2] = m[1] = rttm;
2944 	} else if (m[2].ts == m[1].ts && elapsed > wlen / 2) {
2945 		/* Passed half the window without a new min so take the 3rd
2946 		 * choice from the last half of the window.
2947 		 */
2948 		m[2] = rttm;
2949 	}
2950 }
2951 
2952 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2953 				      long seq_rtt_us, long sack_rtt_us,
2954 				      long ca_rtt_us)
2955 {
2956 	const struct tcp_sock *tp = tcp_sk(sk);
2957 
2958 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2959 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2960 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2961 	 * is acked (RFC6298).
2962 	 */
2963 	if (seq_rtt_us < 0)
2964 		seq_rtt_us = sack_rtt_us;
2965 
2966 	/* RTTM Rule: A TSecr value received in a segment is used to
2967 	 * update the averaged RTT measurement only if the segment
2968 	 * acknowledges some new data, i.e., only if it advances the
2969 	 * left edge of the send window.
2970 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2971 	 */
2972 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2973 	    flag & FLAG_ACKED)
2974 		seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp -
2975 							  tp->rx_opt.rcv_tsecr);
2976 	if (seq_rtt_us < 0)
2977 		return false;
2978 
2979 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2980 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2981 	 * values will be skipped with the seq_rtt_us < 0 check above.
2982 	 */
2983 	tcp_update_rtt_min(sk, ca_rtt_us);
2984 	tcp_rtt_estimator(sk, seq_rtt_us);
2985 	tcp_set_rto(sk);
2986 
2987 	/* RFC6298: only reset backoff on valid RTT measurement. */
2988 	inet_csk(sk)->icsk_backoff = 0;
2989 	return true;
2990 }
2991 
2992 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2993 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2994 {
2995 	long rtt_us = -1L;
2996 
2997 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) {
2998 		struct skb_mstamp now;
2999 
3000 		skb_mstamp_get(&now);
3001 		rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack);
3002 	}
3003 
3004 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us);
3005 }
3006 
3007 
3008 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3009 {
3010 	const struct inet_connection_sock *icsk = inet_csk(sk);
3011 
3012 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3013 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3014 }
3015 
3016 /* Restart timer after forward progress on connection.
3017  * RFC2988 recommends to restart timer to now+rto.
3018  */
3019 void tcp_rearm_rto(struct sock *sk)
3020 {
3021 	const struct inet_connection_sock *icsk = inet_csk(sk);
3022 	struct tcp_sock *tp = tcp_sk(sk);
3023 
3024 	/* If the retrans timer is currently being used by Fast Open
3025 	 * for SYN-ACK retrans purpose, stay put.
3026 	 */
3027 	if (tp->fastopen_rsk)
3028 		return;
3029 
3030 	if (!tp->packets_out) {
3031 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3032 	} else {
3033 		u32 rto = inet_csk(sk)->icsk_rto;
3034 		/* Offset the time elapsed after installing regular RTO */
3035 		if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3036 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3037 			struct sk_buff *skb = tcp_write_queue_head(sk);
3038 			const u32 rto_time_stamp =
3039 				tcp_skb_timestamp(skb) + rto;
3040 			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3041 			/* delta may not be positive if the socket is locked
3042 			 * when the retrans timer fires and is rescheduled.
3043 			 */
3044 			if (delta > 0)
3045 				rto = delta;
3046 		}
3047 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3048 					  TCP_RTO_MAX);
3049 	}
3050 }
3051 
3052 /* This function is called when the delayed ER timer fires. TCP enters
3053  * fast recovery and performs fast-retransmit.
3054  */
3055 void tcp_resume_early_retransmit(struct sock *sk)
3056 {
3057 	struct tcp_sock *tp = tcp_sk(sk);
3058 
3059 	tcp_rearm_rto(sk);
3060 
3061 	/* Stop if ER is disabled after the delayed ER timer is scheduled */
3062 	if (!tp->do_early_retrans)
3063 		return;
3064 
3065 	tcp_enter_recovery(sk, false);
3066 	tcp_update_scoreboard(sk, 1);
3067 	tcp_xmit_retransmit_queue(sk);
3068 }
3069 
3070 /* If we get here, the whole TSO packet has not been acked. */
3071 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3072 {
3073 	struct tcp_sock *tp = tcp_sk(sk);
3074 	u32 packets_acked;
3075 
3076 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3077 
3078 	packets_acked = tcp_skb_pcount(skb);
3079 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3080 		return 0;
3081 	packets_acked -= tcp_skb_pcount(skb);
3082 
3083 	if (packets_acked) {
3084 		BUG_ON(tcp_skb_pcount(skb) == 0);
3085 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3086 	}
3087 
3088 	return packets_acked;
3089 }
3090 
3091 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3092 			   u32 prior_snd_una)
3093 {
3094 	const struct skb_shared_info *shinfo;
3095 
3096 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3097 	if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)))
3098 		return;
3099 
3100 	shinfo = skb_shinfo(skb);
3101 	if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) &&
3102 	    !before(shinfo->tskey, prior_snd_una) &&
3103 	    before(shinfo->tskey, tcp_sk(sk)->snd_una))
3104 		__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3105 }
3106 
3107 /* Remove acknowledged frames from the retransmission queue. If our packet
3108  * is before the ack sequence we can discard it as it's confirmed to have
3109  * arrived at the other end.
3110  */
3111 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3112 			       u32 prior_snd_una, int *acked,
3113 			       struct tcp_sacktag_state *sack)
3114 {
3115 	const struct inet_connection_sock *icsk = inet_csk(sk);
3116 	struct skb_mstamp first_ackt, last_ackt, now;
3117 	struct tcp_sock *tp = tcp_sk(sk);
3118 	u32 prior_sacked = tp->sacked_out;
3119 	u32 reord = tp->packets_out;
3120 	bool fully_acked = true;
3121 	long sack_rtt_us = -1L;
3122 	long seq_rtt_us = -1L;
3123 	long ca_rtt_us = -1L;
3124 	struct sk_buff *skb;
3125 	u32 pkts_acked = 0;
3126 	bool rtt_update;
3127 	int flag = 0;
3128 
3129 	first_ackt.v64 = 0;
3130 
3131 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3132 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3133 		u8 sacked = scb->sacked;
3134 		u32 acked_pcount;
3135 
3136 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3137 
3138 		/* Determine how many packets and what bytes were acked, tso and else */
3139 		if (after(scb->end_seq, tp->snd_una)) {
3140 			if (tcp_skb_pcount(skb) == 1 ||
3141 			    !after(tp->snd_una, scb->seq))
3142 				break;
3143 
3144 			acked_pcount = tcp_tso_acked(sk, skb);
3145 			if (!acked_pcount)
3146 				break;
3147 
3148 			fully_acked = false;
3149 		} else {
3150 			/* Speedup tcp_unlink_write_queue() and next loop */
3151 			prefetchw(skb->next);
3152 			acked_pcount = tcp_skb_pcount(skb);
3153 		}
3154 
3155 		if (unlikely(sacked & TCPCB_RETRANS)) {
3156 			if (sacked & TCPCB_SACKED_RETRANS)
3157 				tp->retrans_out -= acked_pcount;
3158 			flag |= FLAG_RETRANS_DATA_ACKED;
3159 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3160 			last_ackt = skb->skb_mstamp;
3161 			WARN_ON_ONCE(last_ackt.v64 == 0);
3162 			if (!first_ackt.v64)
3163 				first_ackt = last_ackt;
3164 
3165 			reord = min(pkts_acked, reord);
3166 			if (!after(scb->end_seq, tp->high_seq))
3167 				flag |= FLAG_ORIG_SACK_ACKED;
3168 		}
3169 
3170 		if (sacked & TCPCB_SACKED_ACKED) {
3171 			tp->sacked_out -= acked_pcount;
3172 		} else if (tcp_is_sack(tp)) {
3173 			tp->delivered += acked_pcount;
3174 			if (!tcp_skb_spurious_retrans(tp, skb))
3175 				tcp_rack_advance(tp, &skb->skb_mstamp, sacked);
3176 		}
3177 		if (sacked & TCPCB_LOST)
3178 			tp->lost_out -= acked_pcount;
3179 
3180 		tp->packets_out -= acked_pcount;
3181 		pkts_acked += acked_pcount;
3182 
3183 		/* Initial outgoing SYN's get put onto the write_queue
3184 		 * just like anything else we transmit.  It is not
3185 		 * true data, and if we misinform our callers that
3186 		 * this ACK acks real data, we will erroneously exit
3187 		 * connection startup slow start one packet too
3188 		 * quickly.  This is severely frowned upon behavior.
3189 		 */
3190 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3191 			flag |= FLAG_DATA_ACKED;
3192 		} else {
3193 			flag |= FLAG_SYN_ACKED;
3194 			tp->retrans_stamp = 0;
3195 		}
3196 
3197 		if (!fully_acked)
3198 			break;
3199 
3200 		tcp_unlink_write_queue(skb, sk);
3201 		sk_wmem_free_skb(sk, skb);
3202 		if (unlikely(skb == tp->retransmit_skb_hint))
3203 			tp->retransmit_skb_hint = NULL;
3204 		if (unlikely(skb == tp->lost_skb_hint))
3205 			tp->lost_skb_hint = NULL;
3206 	}
3207 
3208 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3209 		tp->snd_up = tp->snd_una;
3210 
3211 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3212 		flag |= FLAG_SACK_RENEGING;
3213 
3214 	skb_mstamp_get(&now);
3215 	if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3216 		seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3217 		ca_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3218 	}
3219 	if (sack->first_sackt.v64) {
3220 		sack_rtt_us = skb_mstamp_us_delta(&now, &sack->first_sackt);
3221 		ca_rtt_us = skb_mstamp_us_delta(&now, &sack->last_sackt);
3222 	}
3223 
3224 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3225 					ca_rtt_us);
3226 
3227 	if (flag & FLAG_ACKED) {
3228 		tcp_rearm_rto(sk);
3229 		if (unlikely(icsk->icsk_mtup.probe_size &&
3230 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3231 			tcp_mtup_probe_success(sk);
3232 		}
3233 
3234 		if (tcp_is_reno(tp)) {
3235 			tcp_remove_reno_sacks(sk, pkts_acked);
3236 		} else {
3237 			int delta;
3238 
3239 			/* Non-retransmitted hole got filled? That's reordering */
3240 			if (reord < prior_fackets)
3241 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3242 
3243 			delta = tcp_is_fack(tp) ? pkts_acked :
3244 						  prior_sacked - tp->sacked_out;
3245 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3246 		}
3247 
3248 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3249 
3250 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3251 		   sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
3252 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3253 		 * after when the head was last (re)transmitted. Otherwise the
3254 		 * timeout may continue to extend in loss recovery.
3255 		 */
3256 		tcp_rearm_rto(sk);
3257 	}
3258 
3259 	if (icsk->icsk_ca_ops->pkts_acked)
3260 		icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked, ca_rtt_us);
3261 
3262 #if FASTRETRANS_DEBUG > 0
3263 	WARN_ON((int)tp->sacked_out < 0);
3264 	WARN_ON((int)tp->lost_out < 0);
3265 	WARN_ON((int)tp->retrans_out < 0);
3266 	if (!tp->packets_out && tcp_is_sack(tp)) {
3267 		icsk = inet_csk(sk);
3268 		if (tp->lost_out) {
3269 			pr_debug("Leak l=%u %d\n",
3270 				 tp->lost_out, icsk->icsk_ca_state);
3271 			tp->lost_out = 0;
3272 		}
3273 		if (tp->sacked_out) {
3274 			pr_debug("Leak s=%u %d\n",
3275 				 tp->sacked_out, icsk->icsk_ca_state);
3276 			tp->sacked_out = 0;
3277 		}
3278 		if (tp->retrans_out) {
3279 			pr_debug("Leak r=%u %d\n",
3280 				 tp->retrans_out, icsk->icsk_ca_state);
3281 			tp->retrans_out = 0;
3282 		}
3283 	}
3284 #endif
3285 	*acked = pkts_acked;
3286 	return flag;
3287 }
3288 
3289 static void tcp_ack_probe(struct sock *sk)
3290 {
3291 	const struct tcp_sock *tp = tcp_sk(sk);
3292 	struct inet_connection_sock *icsk = inet_csk(sk);
3293 
3294 	/* Was it a usable window open? */
3295 
3296 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3297 		icsk->icsk_backoff = 0;
3298 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3299 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3300 		 * This function is not for random using!
3301 		 */
3302 	} else {
3303 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3304 
3305 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3306 					  when, TCP_RTO_MAX);
3307 	}
3308 }
3309 
3310 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3311 {
3312 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3313 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3314 }
3315 
3316 /* Decide wheather to run the increase function of congestion control. */
3317 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3318 {
3319 	/* If reordering is high then always grow cwnd whenever data is
3320 	 * delivered regardless of its ordering. Otherwise stay conservative
3321 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3322 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3323 	 * cwnd in tcp_fastretrans_alert() based on more states.
3324 	 */
3325 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3326 		return flag & FLAG_FORWARD_PROGRESS;
3327 
3328 	return flag & FLAG_DATA_ACKED;
3329 }
3330 
3331 /* The "ultimate" congestion control function that aims to replace the rigid
3332  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3333  * It's called toward the end of processing an ACK with precise rate
3334  * information. All transmission or retransmission are delayed afterwards.
3335  */
3336 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3337 			     int flag)
3338 {
3339 	if (tcp_in_cwnd_reduction(sk)) {
3340 		/* Reduce cwnd if state mandates */
3341 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3342 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3343 		/* Advance cwnd if state allows */
3344 		tcp_cong_avoid(sk, ack, acked_sacked);
3345 	}
3346 	tcp_update_pacing_rate(sk);
3347 }
3348 
3349 /* Check that window update is acceptable.
3350  * The function assumes that snd_una<=ack<=snd_next.
3351  */
3352 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3353 					const u32 ack, const u32 ack_seq,
3354 					const u32 nwin)
3355 {
3356 	return	after(ack, tp->snd_una) ||
3357 		after(ack_seq, tp->snd_wl1) ||
3358 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3359 }
3360 
3361 /* If we update tp->snd_una, also update tp->bytes_acked */
3362 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3363 {
3364 	u32 delta = ack - tp->snd_una;
3365 
3366 	u64_stats_update_begin(&tp->syncp);
3367 	tp->bytes_acked += delta;
3368 	u64_stats_update_end(&tp->syncp);
3369 	tp->snd_una = ack;
3370 }
3371 
3372 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3373 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3374 {
3375 	u32 delta = seq - tp->rcv_nxt;
3376 
3377 	u64_stats_update_begin(&tp->syncp);
3378 	tp->bytes_received += delta;
3379 	u64_stats_update_end(&tp->syncp);
3380 	tp->rcv_nxt = seq;
3381 }
3382 
3383 /* Update our send window.
3384  *
3385  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3386  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3387  */
3388 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3389 				 u32 ack_seq)
3390 {
3391 	struct tcp_sock *tp = tcp_sk(sk);
3392 	int flag = 0;
3393 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3394 
3395 	if (likely(!tcp_hdr(skb)->syn))
3396 		nwin <<= tp->rx_opt.snd_wscale;
3397 
3398 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3399 		flag |= FLAG_WIN_UPDATE;
3400 		tcp_update_wl(tp, ack_seq);
3401 
3402 		if (tp->snd_wnd != nwin) {
3403 			tp->snd_wnd = nwin;
3404 
3405 			/* Note, it is the only place, where
3406 			 * fast path is recovered for sending TCP.
3407 			 */
3408 			tp->pred_flags = 0;
3409 			tcp_fast_path_check(sk);
3410 
3411 			if (tcp_send_head(sk))
3412 				tcp_slow_start_after_idle_check(sk);
3413 
3414 			if (nwin > tp->max_window) {
3415 				tp->max_window = nwin;
3416 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3417 			}
3418 		}
3419 	}
3420 
3421 	tcp_snd_una_update(tp, ack);
3422 
3423 	return flag;
3424 }
3425 
3426 /* Return true if we're currently rate-limiting out-of-window ACKs and
3427  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3428  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3429  * attacks that send repeated SYNs or ACKs for the same connection. To
3430  * do this, we do not send a duplicate SYNACK or ACK if the remote
3431  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3432  */
3433 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3434 			  int mib_idx, u32 *last_oow_ack_time)
3435 {
3436 	/* Data packets without SYNs are not likely part of an ACK loop. */
3437 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3438 	    !tcp_hdr(skb)->syn)
3439 		goto not_rate_limited;
3440 
3441 	if (*last_oow_ack_time) {
3442 		s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3443 
3444 		if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3445 			NET_INC_STATS_BH(net, mib_idx);
3446 			return true;	/* rate-limited: don't send yet! */
3447 		}
3448 	}
3449 
3450 	*last_oow_ack_time = tcp_time_stamp;
3451 
3452 not_rate_limited:
3453 	return false;	/* not rate-limited: go ahead, send dupack now! */
3454 }
3455 
3456 /* RFC 5961 7 [ACK Throttling] */
3457 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3458 {
3459 	/* unprotected vars, we dont care of overwrites */
3460 	static u32 challenge_timestamp;
3461 	static unsigned int challenge_count;
3462 	struct tcp_sock *tp = tcp_sk(sk);
3463 	u32 now;
3464 
3465 	/* First check our per-socket dupack rate limit. */
3466 	if (tcp_oow_rate_limited(sock_net(sk), skb,
3467 				 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3468 				 &tp->last_oow_ack_time))
3469 		return;
3470 
3471 	/* Then check the check host-wide RFC 5961 rate limit. */
3472 	now = jiffies / HZ;
3473 	if (now != challenge_timestamp) {
3474 		challenge_timestamp = now;
3475 		challenge_count = 0;
3476 	}
3477 	if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3478 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3479 		tcp_send_ack(sk);
3480 	}
3481 }
3482 
3483 static void tcp_store_ts_recent(struct tcp_sock *tp)
3484 {
3485 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3486 	tp->rx_opt.ts_recent_stamp = get_seconds();
3487 }
3488 
3489 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3490 {
3491 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3492 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3493 		 * extra check below makes sure this can only happen
3494 		 * for pure ACK frames.  -DaveM
3495 		 *
3496 		 * Not only, also it occurs for expired timestamps.
3497 		 */
3498 
3499 		if (tcp_paws_check(&tp->rx_opt, 0))
3500 			tcp_store_ts_recent(tp);
3501 	}
3502 }
3503 
3504 /* This routine deals with acks during a TLP episode.
3505  * We mark the end of a TLP episode on receiving TLP dupack or when
3506  * ack is after tlp_high_seq.
3507  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3508  */
3509 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3510 {
3511 	struct tcp_sock *tp = tcp_sk(sk);
3512 
3513 	if (before(ack, tp->tlp_high_seq))
3514 		return;
3515 
3516 	if (flag & FLAG_DSACKING_ACK) {
3517 		/* This DSACK means original and TLP probe arrived; no loss */
3518 		tp->tlp_high_seq = 0;
3519 	} else if (after(ack, tp->tlp_high_seq)) {
3520 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3521 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3522 		 */
3523 		tcp_init_cwnd_reduction(sk);
3524 		tcp_set_ca_state(sk, TCP_CA_CWR);
3525 		tcp_end_cwnd_reduction(sk);
3526 		tcp_try_keep_open(sk);
3527 		NET_INC_STATS_BH(sock_net(sk),
3528 				 LINUX_MIB_TCPLOSSPROBERECOVERY);
3529 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3530 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3531 		/* Pure dupack: original and TLP probe arrived; no loss */
3532 		tp->tlp_high_seq = 0;
3533 	}
3534 }
3535 
3536 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3537 {
3538 	const struct inet_connection_sock *icsk = inet_csk(sk);
3539 
3540 	if (icsk->icsk_ca_ops->in_ack_event)
3541 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3542 }
3543 
3544 /* Congestion control has updated the cwnd already. So if we're in
3545  * loss recovery then now we do any new sends (for FRTO) or
3546  * retransmits (for CA_Loss or CA_recovery) that make sense.
3547  */
3548 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3549 {
3550 	struct tcp_sock *tp = tcp_sk(sk);
3551 
3552 	if (rexmit == REXMIT_NONE)
3553 		return;
3554 
3555 	if (unlikely(rexmit == 2)) {
3556 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3557 					  TCP_NAGLE_OFF);
3558 		if (after(tp->snd_nxt, tp->high_seq))
3559 			return;
3560 		tp->frto = 0;
3561 	}
3562 	tcp_xmit_retransmit_queue(sk);
3563 }
3564 
3565 /* This routine deals with incoming acks, but not outgoing ones. */
3566 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3567 {
3568 	struct inet_connection_sock *icsk = inet_csk(sk);
3569 	struct tcp_sock *tp = tcp_sk(sk);
3570 	struct tcp_sacktag_state sack_state;
3571 	u32 prior_snd_una = tp->snd_una;
3572 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3573 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3574 	bool is_dupack = false;
3575 	u32 prior_fackets;
3576 	int prior_packets = tp->packets_out;
3577 	u32 prior_delivered = tp->delivered;
3578 	int acked = 0; /* Number of packets newly acked */
3579 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3580 
3581 	sack_state.first_sackt.v64 = 0;
3582 
3583 	/* We very likely will need to access write queue head. */
3584 	prefetchw(sk->sk_write_queue.next);
3585 
3586 	/* If the ack is older than previous acks
3587 	 * then we can probably ignore it.
3588 	 */
3589 	if (before(ack, prior_snd_una)) {
3590 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3591 		if (before(ack, prior_snd_una - tp->max_window)) {
3592 			tcp_send_challenge_ack(sk, skb);
3593 			return -1;
3594 		}
3595 		goto old_ack;
3596 	}
3597 
3598 	/* If the ack includes data we haven't sent yet, discard
3599 	 * this segment (RFC793 Section 3.9).
3600 	 */
3601 	if (after(ack, tp->snd_nxt))
3602 		goto invalid_ack;
3603 
3604 	if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3605 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3606 		tcp_rearm_rto(sk);
3607 
3608 	if (after(ack, prior_snd_una)) {
3609 		flag |= FLAG_SND_UNA_ADVANCED;
3610 		icsk->icsk_retransmits = 0;
3611 	}
3612 
3613 	prior_fackets = tp->fackets_out;
3614 
3615 	/* ts_recent update must be made after we are sure that the packet
3616 	 * is in window.
3617 	 */
3618 	if (flag & FLAG_UPDATE_TS_RECENT)
3619 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3620 
3621 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3622 		/* Window is constant, pure forward advance.
3623 		 * No more checks are required.
3624 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3625 		 */
3626 		tcp_update_wl(tp, ack_seq);
3627 		tcp_snd_una_update(tp, ack);
3628 		flag |= FLAG_WIN_UPDATE;
3629 
3630 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3631 
3632 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3633 	} else {
3634 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3635 
3636 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3637 			flag |= FLAG_DATA;
3638 		else
3639 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3640 
3641 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3642 
3643 		if (TCP_SKB_CB(skb)->sacked)
3644 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3645 							&sack_state);
3646 
3647 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3648 			flag |= FLAG_ECE;
3649 			ack_ev_flags |= CA_ACK_ECE;
3650 		}
3651 
3652 		if (flag & FLAG_WIN_UPDATE)
3653 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3654 
3655 		tcp_in_ack_event(sk, ack_ev_flags);
3656 	}
3657 
3658 	/* We passed data and got it acked, remove any soft error
3659 	 * log. Something worked...
3660 	 */
3661 	sk->sk_err_soft = 0;
3662 	icsk->icsk_probes_out = 0;
3663 	tp->rcv_tstamp = tcp_time_stamp;
3664 	if (!prior_packets)
3665 		goto no_queue;
3666 
3667 	/* See if we can take anything off of the retransmit queue. */
3668 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
3669 				    &sack_state);
3670 
3671 	if (tcp_ack_is_dubious(sk, flag)) {
3672 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3673 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3674 	}
3675 	if (tp->tlp_high_seq)
3676 		tcp_process_tlp_ack(sk, ack, flag);
3677 
3678 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3679 		struct dst_entry *dst = __sk_dst_get(sk);
3680 		if (dst)
3681 			dst_confirm(dst);
3682 	}
3683 
3684 	if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3685 		tcp_schedule_loss_probe(sk);
3686 	tcp_cong_control(sk, ack, tp->delivered - prior_delivered, flag);
3687 	tcp_xmit_recovery(sk, rexmit);
3688 	return 1;
3689 
3690 no_queue:
3691 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3692 	if (flag & FLAG_DSACKING_ACK)
3693 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3694 	/* If this ack opens up a zero window, clear backoff.  It was
3695 	 * being used to time the probes, and is probably far higher than
3696 	 * it needs to be for normal retransmission.
3697 	 */
3698 	if (tcp_send_head(sk))
3699 		tcp_ack_probe(sk);
3700 
3701 	if (tp->tlp_high_seq)
3702 		tcp_process_tlp_ack(sk, ack, flag);
3703 	return 1;
3704 
3705 invalid_ack:
3706 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3707 	return -1;
3708 
3709 old_ack:
3710 	/* If data was SACKed, tag it and see if we should send more data.
3711 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3712 	 */
3713 	if (TCP_SKB_CB(skb)->sacked) {
3714 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3715 						&sack_state);
3716 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3717 		tcp_xmit_recovery(sk, rexmit);
3718 	}
3719 
3720 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3721 	return 0;
3722 }
3723 
3724 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3725 				      bool syn, struct tcp_fastopen_cookie *foc,
3726 				      bool exp_opt)
3727 {
3728 	/* Valid only in SYN or SYN-ACK with an even length.  */
3729 	if (!foc || !syn || len < 0 || (len & 1))
3730 		return;
3731 
3732 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3733 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3734 		memcpy(foc->val, cookie, len);
3735 	else if (len != 0)
3736 		len = -1;
3737 	foc->len = len;
3738 	foc->exp = exp_opt;
3739 }
3740 
3741 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3742  * But, this can also be called on packets in the established flow when
3743  * the fast version below fails.
3744  */
3745 void tcp_parse_options(const struct sk_buff *skb,
3746 		       struct tcp_options_received *opt_rx, int estab,
3747 		       struct tcp_fastopen_cookie *foc)
3748 {
3749 	const unsigned char *ptr;
3750 	const struct tcphdr *th = tcp_hdr(skb);
3751 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3752 
3753 	ptr = (const unsigned char *)(th + 1);
3754 	opt_rx->saw_tstamp = 0;
3755 
3756 	while (length > 0) {
3757 		int opcode = *ptr++;
3758 		int opsize;
3759 
3760 		switch (opcode) {
3761 		case TCPOPT_EOL:
3762 			return;
3763 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3764 			length--;
3765 			continue;
3766 		default:
3767 			opsize = *ptr++;
3768 			if (opsize < 2) /* "silly options" */
3769 				return;
3770 			if (opsize > length)
3771 				return;	/* don't parse partial options */
3772 			switch (opcode) {
3773 			case TCPOPT_MSS:
3774 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3775 					u16 in_mss = get_unaligned_be16(ptr);
3776 					if (in_mss) {
3777 						if (opt_rx->user_mss &&
3778 						    opt_rx->user_mss < in_mss)
3779 							in_mss = opt_rx->user_mss;
3780 						opt_rx->mss_clamp = in_mss;
3781 					}
3782 				}
3783 				break;
3784 			case TCPOPT_WINDOW:
3785 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3786 				    !estab && sysctl_tcp_window_scaling) {
3787 					__u8 snd_wscale = *(__u8 *)ptr;
3788 					opt_rx->wscale_ok = 1;
3789 					if (snd_wscale > 14) {
3790 						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3791 								     __func__,
3792 								     snd_wscale);
3793 						snd_wscale = 14;
3794 					}
3795 					opt_rx->snd_wscale = snd_wscale;
3796 				}
3797 				break;
3798 			case TCPOPT_TIMESTAMP:
3799 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3800 				    ((estab && opt_rx->tstamp_ok) ||
3801 				     (!estab && sysctl_tcp_timestamps))) {
3802 					opt_rx->saw_tstamp = 1;
3803 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3804 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3805 				}
3806 				break;
3807 			case TCPOPT_SACK_PERM:
3808 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3809 				    !estab && sysctl_tcp_sack) {
3810 					opt_rx->sack_ok = TCP_SACK_SEEN;
3811 					tcp_sack_reset(opt_rx);
3812 				}
3813 				break;
3814 
3815 			case TCPOPT_SACK:
3816 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3817 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3818 				   opt_rx->sack_ok) {
3819 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3820 				}
3821 				break;
3822 #ifdef CONFIG_TCP_MD5SIG
3823 			case TCPOPT_MD5SIG:
3824 				/*
3825 				 * The MD5 Hash has already been
3826 				 * checked (see tcp_v{4,6}_do_rcv()).
3827 				 */
3828 				break;
3829 #endif
3830 			case TCPOPT_FASTOPEN:
3831 				tcp_parse_fastopen_option(
3832 					opsize - TCPOLEN_FASTOPEN_BASE,
3833 					ptr, th->syn, foc, false);
3834 				break;
3835 
3836 			case TCPOPT_EXP:
3837 				/* Fast Open option shares code 254 using a
3838 				 * 16 bits magic number.
3839 				 */
3840 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3841 				    get_unaligned_be16(ptr) ==
3842 				    TCPOPT_FASTOPEN_MAGIC)
3843 					tcp_parse_fastopen_option(opsize -
3844 						TCPOLEN_EXP_FASTOPEN_BASE,
3845 						ptr + 2, th->syn, foc, true);
3846 				break;
3847 
3848 			}
3849 			ptr += opsize-2;
3850 			length -= opsize;
3851 		}
3852 	}
3853 }
3854 EXPORT_SYMBOL(tcp_parse_options);
3855 
3856 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3857 {
3858 	const __be32 *ptr = (const __be32 *)(th + 1);
3859 
3860 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3861 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3862 		tp->rx_opt.saw_tstamp = 1;
3863 		++ptr;
3864 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3865 		++ptr;
3866 		if (*ptr)
3867 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3868 		else
3869 			tp->rx_opt.rcv_tsecr = 0;
3870 		return true;
3871 	}
3872 	return false;
3873 }
3874 
3875 /* Fast parse options. This hopes to only see timestamps.
3876  * If it is wrong it falls back on tcp_parse_options().
3877  */
3878 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3879 				   const struct tcphdr *th, struct tcp_sock *tp)
3880 {
3881 	/* In the spirit of fast parsing, compare doff directly to constant
3882 	 * values.  Because equality is used, short doff can be ignored here.
3883 	 */
3884 	if (th->doff == (sizeof(*th) / 4)) {
3885 		tp->rx_opt.saw_tstamp = 0;
3886 		return false;
3887 	} else if (tp->rx_opt.tstamp_ok &&
3888 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3889 		if (tcp_parse_aligned_timestamp(tp, th))
3890 			return true;
3891 	}
3892 
3893 	tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3894 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3895 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3896 
3897 	return true;
3898 }
3899 
3900 #ifdef CONFIG_TCP_MD5SIG
3901 /*
3902  * Parse MD5 Signature option
3903  */
3904 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3905 {
3906 	int length = (th->doff << 2) - sizeof(*th);
3907 	const u8 *ptr = (const u8 *)(th + 1);
3908 
3909 	/* If the TCP option is too short, we can short cut */
3910 	if (length < TCPOLEN_MD5SIG)
3911 		return NULL;
3912 
3913 	while (length > 0) {
3914 		int opcode = *ptr++;
3915 		int opsize;
3916 
3917 		switch (opcode) {
3918 		case TCPOPT_EOL:
3919 			return NULL;
3920 		case TCPOPT_NOP:
3921 			length--;
3922 			continue;
3923 		default:
3924 			opsize = *ptr++;
3925 			if (opsize < 2 || opsize > length)
3926 				return NULL;
3927 			if (opcode == TCPOPT_MD5SIG)
3928 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3929 		}
3930 		ptr += opsize - 2;
3931 		length -= opsize;
3932 	}
3933 	return NULL;
3934 }
3935 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3936 #endif
3937 
3938 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3939  *
3940  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3941  * it can pass through stack. So, the following predicate verifies that
3942  * this segment is not used for anything but congestion avoidance or
3943  * fast retransmit. Moreover, we even are able to eliminate most of such
3944  * second order effects, if we apply some small "replay" window (~RTO)
3945  * to timestamp space.
3946  *
3947  * All these measures still do not guarantee that we reject wrapped ACKs
3948  * on networks with high bandwidth, when sequence space is recycled fastly,
3949  * but it guarantees that such events will be very rare and do not affect
3950  * connection seriously. This doesn't look nice, but alas, PAWS is really
3951  * buggy extension.
3952  *
3953  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3954  * states that events when retransmit arrives after original data are rare.
3955  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3956  * the biggest problem on large power networks even with minor reordering.
3957  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3958  * up to bandwidth of 18Gigabit/sec. 8) ]
3959  */
3960 
3961 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3962 {
3963 	const struct tcp_sock *tp = tcp_sk(sk);
3964 	const struct tcphdr *th = tcp_hdr(skb);
3965 	u32 seq = TCP_SKB_CB(skb)->seq;
3966 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3967 
3968 	return (/* 1. Pure ACK with correct sequence number. */
3969 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3970 
3971 		/* 2. ... and duplicate ACK. */
3972 		ack == tp->snd_una &&
3973 
3974 		/* 3. ... and does not update window. */
3975 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3976 
3977 		/* 4. ... and sits in replay window. */
3978 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3979 }
3980 
3981 static inline bool tcp_paws_discard(const struct sock *sk,
3982 				   const struct sk_buff *skb)
3983 {
3984 	const struct tcp_sock *tp = tcp_sk(sk);
3985 
3986 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3987 	       !tcp_disordered_ack(sk, skb);
3988 }
3989 
3990 /* Check segment sequence number for validity.
3991  *
3992  * Segment controls are considered valid, if the segment
3993  * fits to the window after truncation to the window. Acceptability
3994  * of data (and SYN, FIN, of course) is checked separately.
3995  * See tcp_data_queue(), for example.
3996  *
3997  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3998  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3999  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4000  * (borrowed from freebsd)
4001  */
4002 
4003 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4004 {
4005 	return	!before(end_seq, tp->rcv_wup) &&
4006 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4007 }
4008 
4009 /* When we get a reset we do this. */
4010 void tcp_reset(struct sock *sk)
4011 {
4012 	/* We want the right error as BSD sees it (and indeed as we do). */
4013 	switch (sk->sk_state) {
4014 	case TCP_SYN_SENT:
4015 		sk->sk_err = ECONNREFUSED;
4016 		break;
4017 	case TCP_CLOSE_WAIT:
4018 		sk->sk_err = EPIPE;
4019 		break;
4020 	case TCP_CLOSE:
4021 		return;
4022 	default:
4023 		sk->sk_err = ECONNRESET;
4024 	}
4025 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4026 	smp_wmb();
4027 
4028 	if (!sock_flag(sk, SOCK_DEAD))
4029 		sk->sk_error_report(sk);
4030 
4031 	tcp_done(sk);
4032 }
4033 
4034 /*
4035  * 	Process the FIN bit. This now behaves as it is supposed to work
4036  *	and the FIN takes effect when it is validly part of sequence
4037  *	space. Not before when we get holes.
4038  *
4039  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4040  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4041  *	TIME-WAIT)
4042  *
4043  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4044  *	close and we go into CLOSING (and later onto TIME-WAIT)
4045  *
4046  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4047  */
4048 void tcp_fin(struct sock *sk)
4049 {
4050 	struct tcp_sock *tp = tcp_sk(sk);
4051 
4052 	inet_csk_schedule_ack(sk);
4053 
4054 	sk->sk_shutdown |= RCV_SHUTDOWN;
4055 	sock_set_flag(sk, SOCK_DONE);
4056 
4057 	switch (sk->sk_state) {
4058 	case TCP_SYN_RECV:
4059 	case TCP_ESTABLISHED:
4060 		/* Move to CLOSE_WAIT */
4061 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4062 		inet_csk(sk)->icsk_ack.pingpong = 1;
4063 		break;
4064 
4065 	case TCP_CLOSE_WAIT:
4066 	case TCP_CLOSING:
4067 		/* Received a retransmission of the FIN, do
4068 		 * nothing.
4069 		 */
4070 		break;
4071 	case TCP_LAST_ACK:
4072 		/* RFC793: Remain in the LAST-ACK state. */
4073 		break;
4074 
4075 	case TCP_FIN_WAIT1:
4076 		/* This case occurs when a simultaneous close
4077 		 * happens, we must ack the received FIN and
4078 		 * enter the CLOSING state.
4079 		 */
4080 		tcp_send_ack(sk);
4081 		tcp_set_state(sk, TCP_CLOSING);
4082 		break;
4083 	case TCP_FIN_WAIT2:
4084 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4085 		tcp_send_ack(sk);
4086 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4087 		break;
4088 	default:
4089 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4090 		 * cases we should never reach this piece of code.
4091 		 */
4092 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4093 		       __func__, sk->sk_state);
4094 		break;
4095 	}
4096 
4097 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4098 	 * Probably, we should reset in this case. For now drop them.
4099 	 */
4100 	__skb_queue_purge(&tp->out_of_order_queue);
4101 	if (tcp_is_sack(tp))
4102 		tcp_sack_reset(&tp->rx_opt);
4103 	sk_mem_reclaim(sk);
4104 
4105 	if (!sock_flag(sk, SOCK_DEAD)) {
4106 		sk->sk_state_change(sk);
4107 
4108 		/* Do not send POLL_HUP for half duplex close. */
4109 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4110 		    sk->sk_state == TCP_CLOSE)
4111 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4112 		else
4113 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4114 	}
4115 }
4116 
4117 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4118 				  u32 end_seq)
4119 {
4120 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4121 		if (before(seq, sp->start_seq))
4122 			sp->start_seq = seq;
4123 		if (after(end_seq, sp->end_seq))
4124 			sp->end_seq = end_seq;
4125 		return true;
4126 	}
4127 	return false;
4128 }
4129 
4130 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4131 {
4132 	struct tcp_sock *tp = tcp_sk(sk);
4133 
4134 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4135 		int mib_idx;
4136 
4137 		if (before(seq, tp->rcv_nxt))
4138 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4139 		else
4140 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4141 
4142 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4143 
4144 		tp->rx_opt.dsack = 1;
4145 		tp->duplicate_sack[0].start_seq = seq;
4146 		tp->duplicate_sack[0].end_seq = end_seq;
4147 	}
4148 }
4149 
4150 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4151 {
4152 	struct tcp_sock *tp = tcp_sk(sk);
4153 
4154 	if (!tp->rx_opt.dsack)
4155 		tcp_dsack_set(sk, seq, end_seq);
4156 	else
4157 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4158 }
4159 
4160 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4161 {
4162 	struct tcp_sock *tp = tcp_sk(sk);
4163 
4164 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4165 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4166 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4167 		tcp_enter_quickack_mode(sk);
4168 
4169 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4170 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4171 
4172 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4173 				end_seq = tp->rcv_nxt;
4174 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4175 		}
4176 	}
4177 
4178 	tcp_send_ack(sk);
4179 }
4180 
4181 /* These routines update the SACK block as out-of-order packets arrive or
4182  * in-order packets close up the sequence space.
4183  */
4184 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4185 {
4186 	int this_sack;
4187 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4188 	struct tcp_sack_block *swalk = sp + 1;
4189 
4190 	/* See if the recent change to the first SACK eats into
4191 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4192 	 */
4193 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4194 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4195 			int i;
4196 
4197 			/* Zap SWALK, by moving every further SACK up by one slot.
4198 			 * Decrease num_sacks.
4199 			 */
4200 			tp->rx_opt.num_sacks--;
4201 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4202 				sp[i] = sp[i + 1];
4203 			continue;
4204 		}
4205 		this_sack++, swalk++;
4206 	}
4207 }
4208 
4209 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4210 {
4211 	struct tcp_sock *tp = tcp_sk(sk);
4212 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4213 	int cur_sacks = tp->rx_opt.num_sacks;
4214 	int this_sack;
4215 
4216 	if (!cur_sacks)
4217 		goto new_sack;
4218 
4219 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4220 		if (tcp_sack_extend(sp, seq, end_seq)) {
4221 			/* Rotate this_sack to the first one. */
4222 			for (; this_sack > 0; this_sack--, sp--)
4223 				swap(*sp, *(sp - 1));
4224 			if (cur_sacks > 1)
4225 				tcp_sack_maybe_coalesce(tp);
4226 			return;
4227 		}
4228 	}
4229 
4230 	/* Could not find an adjacent existing SACK, build a new one,
4231 	 * put it at the front, and shift everyone else down.  We
4232 	 * always know there is at least one SACK present already here.
4233 	 *
4234 	 * If the sack array is full, forget about the last one.
4235 	 */
4236 	if (this_sack >= TCP_NUM_SACKS) {
4237 		this_sack--;
4238 		tp->rx_opt.num_sacks--;
4239 		sp--;
4240 	}
4241 	for (; this_sack > 0; this_sack--, sp--)
4242 		*sp = *(sp - 1);
4243 
4244 new_sack:
4245 	/* Build the new head SACK, and we're done. */
4246 	sp->start_seq = seq;
4247 	sp->end_seq = end_seq;
4248 	tp->rx_opt.num_sacks++;
4249 }
4250 
4251 /* RCV.NXT advances, some SACKs should be eaten. */
4252 
4253 static void tcp_sack_remove(struct tcp_sock *tp)
4254 {
4255 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4256 	int num_sacks = tp->rx_opt.num_sacks;
4257 	int this_sack;
4258 
4259 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4260 	if (skb_queue_empty(&tp->out_of_order_queue)) {
4261 		tp->rx_opt.num_sacks = 0;
4262 		return;
4263 	}
4264 
4265 	for (this_sack = 0; this_sack < num_sacks;) {
4266 		/* Check if the start of the sack is covered by RCV.NXT. */
4267 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4268 			int i;
4269 
4270 			/* RCV.NXT must cover all the block! */
4271 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4272 
4273 			/* Zap this SACK, by moving forward any other SACKS. */
4274 			for (i = this_sack+1; i < num_sacks; i++)
4275 				tp->selective_acks[i-1] = tp->selective_acks[i];
4276 			num_sacks--;
4277 			continue;
4278 		}
4279 		this_sack++;
4280 		sp++;
4281 	}
4282 	tp->rx_opt.num_sacks = num_sacks;
4283 }
4284 
4285 /**
4286  * tcp_try_coalesce - try to merge skb to prior one
4287  * @sk: socket
4288  * @to: prior buffer
4289  * @from: buffer to add in queue
4290  * @fragstolen: pointer to boolean
4291  *
4292  * Before queueing skb @from after @to, try to merge them
4293  * to reduce overall memory use and queue lengths, if cost is small.
4294  * Packets in ofo or receive queues can stay a long time.
4295  * Better try to coalesce them right now to avoid future collapses.
4296  * Returns true if caller should free @from instead of queueing it
4297  */
4298 static bool tcp_try_coalesce(struct sock *sk,
4299 			     struct sk_buff *to,
4300 			     struct sk_buff *from,
4301 			     bool *fragstolen)
4302 {
4303 	int delta;
4304 
4305 	*fragstolen = false;
4306 
4307 	/* Its possible this segment overlaps with prior segment in queue */
4308 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4309 		return false;
4310 
4311 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4312 		return false;
4313 
4314 	atomic_add(delta, &sk->sk_rmem_alloc);
4315 	sk_mem_charge(sk, delta);
4316 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4317 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4318 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4319 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4320 	return true;
4321 }
4322 
4323 /* This one checks to see if we can put data from the
4324  * out_of_order queue into the receive_queue.
4325  */
4326 static void tcp_ofo_queue(struct sock *sk)
4327 {
4328 	struct tcp_sock *tp = tcp_sk(sk);
4329 	__u32 dsack_high = tp->rcv_nxt;
4330 	struct sk_buff *skb, *tail;
4331 	bool fragstolen, eaten;
4332 
4333 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4334 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4335 			break;
4336 
4337 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4338 			__u32 dsack = dsack_high;
4339 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4340 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4341 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4342 		}
4343 
4344 		__skb_unlink(skb, &tp->out_of_order_queue);
4345 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4346 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4347 			__kfree_skb(skb);
4348 			continue;
4349 		}
4350 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4351 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4352 			   TCP_SKB_CB(skb)->end_seq);
4353 
4354 		tail = skb_peek_tail(&sk->sk_receive_queue);
4355 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4356 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4357 		if (!eaten)
4358 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4359 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4360 			tcp_fin(sk);
4361 		if (eaten)
4362 			kfree_skb_partial(skb, fragstolen);
4363 	}
4364 }
4365 
4366 static bool tcp_prune_ofo_queue(struct sock *sk);
4367 static int tcp_prune_queue(struct sock *sk);
4368 
4369 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4370 				 unsigned int size)
4371 {
4372 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4373 	    !sk_rmem_schedule(sk, skb, size)) {
4374 
4375 		if (tcp_prune_queue(sk) < 0)
4376 			return -1;
4377 
4378 		if (!sk_rmem_schedule(sk, skb, size)) {
4379 			if (!tcp_prune_ofo_queue(sk))
4380 				return -1;
4381 
4382 			if (!sk_rmem_schedule(sk, skb, size))
4383 				return -1;
4384 		}
4385 	}
4386 	return 0;
4387 }
4388 
4389 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4390 {
4391 	struct tcp_sock *tp = tcp_sk(sk);
4392 	struct sk_buff *skb1;
4393 	u32 seq, end_seq;
4394 
4395 	tcp_ecn_check_ce(tp, skb);
4396 
4397 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4398 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4399 		__kfree_skb(skb);
4400 		return;
4401 	}
4402 
4403 	/* Disable header prediction. */
4404 	tp->pred_flags = 0;
4405 	inet_csk_schedule_ack(sk);
4406 
4407 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4408 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4409 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4410 
4411 	skb1 = skb_peek_tail(&tp->out_of_order_queue);
4412 	if (!skb1) {
4413 		/* Initial out of order segment, build 1 SACK. */
4414 		if (tcp_is_sack(tp)) {
4415 			tp->rx_opt.num_sacks = 1;
4416 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4417 			tp->selective_acks[0].end_seq =
4418 						TCP_SKB_CB(skb)->end_seq;
4419 		}
4420 		__skb_queue_head(&tp->out_of_order_queue, skb);
4421 		goto end;
4422 	}
4423 
4424 	seq = TCP_SKB_CB(skb)->seq;
4425 	end_seq = TCP_SKB_CB(skb)->end_seq;
4426 
4427 	if (seq == TCP_SKB_CB(skb1)->end_seq) {
4428 		bool fragstolen;
4429 
4430 		if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4431 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4432 		} else {
4433 			tcp_grow_window(sk, skb);
4434 			kfree_skb_partial(skb, fragstolen);
4435 			skb = NULL;
4436 		}
4437 
4438 		if (!tp->rx_opt.num_sacks ||
4439 		    tp->selective_acks[0].end_seq != seq)
4440 			goto add_sack;
4441 
4442 		/* Common case: data arrive in order after hole. */
4443 		tp->selective_acks[0].end_seq = end_seq;
4444 		goto end;
4445 	}
4446 
4447 	/* Find place to insert this segment. */
4448 	while (1) {
4449 		if (!after(TCP_SKB_CB(skb1)->seq, seq))
4450 			break;
4451 		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4452 			skb1 = NULL;
4453 			break;
4454 		}
4455 		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4456 	}
4457 
4458 	/* Do skb overlap to previous one? */
4459 	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4460 		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4461 			/* All the bits are present. Drop. */
4462 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4463 			__kfree_skb(skb);
4464 			skb = NULL;
4465 			tcp_dsack_set(sk, seq, end_seq);
4466 			goto add_sack;
4467 		}
4468 		if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4469 			/* Partial overlap. */
4470 			tcp_dsack_set(sk, seq,
4471 				      TCP_SKB_CB(skb1)->end_seq);
4472 		} else {
4473 			if (skb_queue_is_first(&tp->out_of_order_queue,
4474 					       skb1))
4475 				skb1 = NULL;
4476 			else
4477 				skb1 = skb_queue_prev(
4478 					&tp->out_of_order_queue,
4479 					skb1);
4480 		}
4481 	}
4482 	if (!skb1)
4483 		__skb_queue_head(&tp->out_of_order_queue, skb);
4484 	else
4485 		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4486 
4487 	/* And clean segments covered by new one as whole. */
4488 	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4489 		skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4490 
4491 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4492 			break;
4493 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4494 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4495 					 end_seq);
4496 			break;
4497 		}
4498 		__skb_unlink(skb1, &tp->out_of_order_queue);
4499 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4500 				 TCP_SKB_CB(skb1)->end_seq);
4501 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4502 		__kfree_skb(skb1);
4503 	}
4504 
4505 add_sack:
4506 	if (tcp_is_sack(tp))
4507 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4508 end:
4509 	if (skb) {
4510 		tcp_grow_window(sk, skb);
4511 		skb_set_owner_r(skb, sk);
4512 	}
4513 }
4514 
4515 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4516 		  bool *fragstolen)
4517 {
4518 	int eaten;
4519 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4520 
4521 	__skb_pull(skb, hdrlen);
4522 	eaten = (tail &&
4523 		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4524 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4525 	if (!eaten) {
4526 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4527 		skb_set_owner_r(skb, sk);
4528 	}
4529 	return eaten;
4530 }
4531 
4532 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4533 {
4534 	struct sk_buff *skb;
4535 	int err = -ENOMEM;
4536 	int data_len = 0;
4537 	bool fragstolen;
4538 
4539 	if (size == 0)
4540 		return 0;
4541 
4542 	if (size > PAGE_SIZE) {
4543 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4544 
4545 		data_len = npages << PAGE_SHIFT;
4546 		size = data_len + (size & ~PAGE_MASK);
4547 	}
4548 	skb = alloc_skb_with_frags(size - data_len, data_len,
4549 				   PAGE_ALLOC_COSTLY_ORDER,
4550 				   &err, sk->sk_allocation);
4551 	if (!skb)
4552 		goto err;
4553 
4554 	skb_put(skb, size - data_len);
4555 	skb->data_len = data_len;
4556 	skb->len = size;
4557 
4558 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4559 		goto err_free;
4560 
4561 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4562 	if (err)
4563 		goto err_free;
4564 
4565 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4566 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4567 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4568 
4569 	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4570 		WARN_ON_ONCE(fragstolen); /* should not happen */
4571 		__kfree_skb(skb);
4572 	}
4573 	return size;
4574 
4575 err_free:
4576 	kfree_skb(skb);
4577 err:
4578 	return err;
4579 
4580 }
4581 
4582 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4583 {
4584 	struct tcp_sock *tp = tcp_sk(sk);
4585 	int eaten = -1;
4586 	bool fragstolen = false;
4587 
4588 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4589 		goto drop;
4590 
4591 	skb_dst_drop(skb);
4592 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4593 
4594 	tcp_ecn_accept_cwr(tp, skb);
4595 
4596 	tp->rx_opt.dsack = 0;
4597 
4598 	/*  Queue data for delivery to the user.
4599 	 *  Packets in sequence go to the receive queue.
4600 	 *  Out of sequence packets to the out_of_order_queue.
4601 	 */
4602 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4603 		if (tcp_receive_window(tp) == 0)
4604 			goto out_of_window;
4605 
4606 		/* Ok. In sequence. In window. */
4607 		if (tp->ucopy.task == current &&
4608 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4609 		    sock_owned_by_user(sk) && !tp->urg_data) {
4610 			int chunk = min_t(unsigned int, skb->len,
4611 					  tp->ucopy.len);
4612 
4613 			__set_current_state(TASK_RUNNING);
4614 
4615 			local_bh_enable();
4616 			if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4617 				tp->ucopy.len -= chunk;
4618 				tp->copied_seq += chunk;
4619 				eaten = (chunk == skb->len);
4620 				tcp_rcv_space_adjust(sk);
4621 			}
4622 			local_bh_disable();
4623 		}
4624 
4625 		if (eaten <= 0) {
4626 queue_and_out:
4627 			if (eaten < 0) {
4628 				if (skb_queue_len(&sk->sk_receive_queue) == 0)
4629 					sk_forced_mem_schedule(sk, skb->truesize);
4630 				else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4631 					goto drop;
4632 			}
4633 			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4634 		}
4635 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4636 		if (skb->len)
4637 			tcp_event_data_recv(sk, skb);
4638 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4639 			tcp_fin(sk);
4640 
4641 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4642 			tcp_ofo_queue(sk);
4643 
4644 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4645 			 * gap in queue is filled.
4646 			 */
4647 			if (skb_queue_empty(&tp->out_of_order_queue))
4648 				inet_csk(sk)->icsk_ack.pingpong = 0;
4649 		}
4650 
4651 		if (tp->rx_opt.num_sacks)
4652 			tcp_sack_remove(tp);
4653 
4654 		tcp_fast_path_check(sk);
4655 
4656 		if (eaten > 0)
4657 			kfree_skb_partial(skb, fragstolen);
4658 		if (!sock_flag(sk, SOCK_DEAD))
4659 			sk->sk_data_ready(sk);
4660 		return;
4661 	}
4662 
4663 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4664 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4665 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4666 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4667 
4668 out_of_window:
4669 		tcp_enter_quickack_mode(sk);
4670 		inet_csk_schedule_ack(sk);
4671 drop:
4672 		__kfree_skb(skb);
4673 		return;
4674 	}
4675 
4676 	/* Out of window. F.e. zero window probe. */
4677 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4678 		goto out_of_window;
4679 
4680 	tcp_enter_quickack_mode(sk);
4681 
4682 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4683 		/* Partial packet, seq < rcv_next < end_seq */
4684 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4685 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4686 			   TCP_SKB_CB(skb)->end_seq);
4687 
4688 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4689 
4690 		/* If window is closed, drop tail of packet. But after
4691 		 * remembering D-SACK for its head made in previous line.
4692 		 */
4693 		if (!tcp_receive_window(tp))
4694 			goto out_of_window;
4695 		goto queue_and_out;
4696 	}
4697 
4698 	tcp_data_queue_ofo(sk, skb);
4699 }
4700 
4701 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4702 					struct sk_buff_head *list)
4703 {
4704 	struct sk_buff *next = NULL;
4705 
4706 	if (!skb_queue_is_last(list, skb))
4707 		next = skb_queue_next(list, skb);
4708 
4709 	__skb_unlink(skb, list);
4710 	__kfree_skb(skb);
4711 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4712 
4713 	return next;
4714 }
4715 
4716 /* Collapse contiguous sequence of skbs head..tail with
4717  * sequence numbers start..end.
4718  *
4719  * If tail is NULL, this means until the end of the list.
4720  *
4721  * Segments with FIN/SYN are not collapsed (only because this
4722  * simplifies code)
4723  */
4724 static void
4725 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4726 	     struct sk_buff *head, struct sk_buff *tail,
4727 	     u32 start, u32 end)
4728 {
4729 	struct sk_buff *skb, *n;
4730 	bool end_of_skbs;
4731 
4732 	/* First, check that queue is collapsible and find
4733 	 * the point where collapsing can be useful. */
4734 	skb = head;
4735 restart:
4736 	end_of_skbs = true;
4737 	skb_queue_walk_from_safe(list, skb, n) {
4738 		if (skb == tail)
4739 			break;
4740 		/* No new bits? It is possible on ofo queue. */
4741 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4742 			skb = tcp_collapse_one(sk, skb, list);
4743 			if (!skb)
4744 				break;
4745 			goto restart;
4746 		}
4747 
4748 		/* The first skb to collapse is:
4749 		 * - not SYN/FIN and
4750 		 * - bloated or contains data before "start" or
4751 		 *   overlaps to the next one.
4752 		 */
4753 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4754 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4755 		     before(TCP_SKB_CB(skb)->seq, start))) {
4756 			end_of_skbs = false;
4757 			break;
4758 		}
4759 
4760 		if (!skb_queue_is_last(list, skb)) {
4761 			struct sk_buff *next = skb_queue_next(list, skb);
4762 			if (next != tail &&
4763 			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4764 				end_of_skbs = false;
4765 				break;
4766 			}
4767 		}
4768 
4769 		/* Decided to skip this, advance start seq. */
4770 		start = TCP_SKB_CB(skb)->end_seq;
4771 	}
4772 	if (end_of_skbs ||
4773 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4774 		return;
4775 
4776 	while (before(start, end)) {
4777 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4778 		struct sk_buff *nskb;
4779 
4780 		nskb = alloc_skb(copy, GFP_ATOMIC);
4781 		if (!nskb)
4782 			return;
4783 
4784 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4785 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4786 		__skb_queue_before(list, skb, nskb);
4787 		skb_set_owner_r(nskb, sk);
4788 
4789 		/* Copy data, releasing collapsed skbs. */
4790 		while (copy > 0) {
4791 			int offset = start - TCP_SKB_CB(skb)->seq;
4792 			int size = TCP_SKB_CB(skb)->end_seq - start;
4793 
4794 			BUG_ON(offset < 0);
4795 			if (size > 0) {
4796 				size = min(copy, size);
4797 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4798 					BUG();
4799 				TCP_SKB_CB(nskb)->end_seq += size;
4800 				copy -= size;
4801 				start += size;
4802 			}
4803 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4804 				skb = tcp_collapse_one(sk, skb, list);
4805 				if (!skb ||
4806 				    skb == tail ||
4807 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4808 					return;
4809 			}
4810 		}
4811 	}
4812 }
4813 
4814 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4815  * and tcp_collapse() them until all the queue is collapsed.
4816  */
4817 static void tcp_collapse_ofo_queue(struct sock *sk)
4818 {
4819 	struct tcp_sock *tp = tcp_sk(sk);
4820 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4821 	struct sk_buff *head;
4822 	u32 start, end;
4823 
4824 	if (!skb)
4825 		return;
4826 
4827 	start = TCP_SKB_CB(skb)->seq;
4828 	end = TCP_SKB_CB(skb)->end_seq;
4829 	head = skb;
4830 
4831 	for (;;) {
4832 		struct sk_buff *next = NULL;
4833 
4834 		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4835 			next = skb_queue_next(&tp->out_of_order_queue, skb);
4836 		skb = next;
4837 
4838 		/* Segment is terminated when we see gap or when
4839 		 * we are at the end of all the queue. */
4840 		if (!skb ||
4841 		    after(TCP_SKB_CB(skb)->seq, end) ||
4842 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4843 			tcp_collapse(sk, &tp->out_of_order_queue,
4844 				     head, skb, start, end);
4845 			head = skb;
4846 			if (!skb)
4847 				break;
4848 			/* Start new segment */
4849 			start = TCP_SKB_CB(skb)->seq;
4850 			end = TCP_SKB_CB(skb)->end_seq;
4851 		} else {
4852 			if (before(TCP_SKB_CB(skb)->seq, start))
4853 				start = TCP_SKB_CB(skb)->seq;
4854 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4855 				end = TCP_SKB_CB(skb)->end_seq;
4856 		}
4857 	}
4858 }
4859 
4860 /*
4861  * Purge the out-of-order queue.
4862  * Return true if queue was pruned.
4863  */
4864 static bool tcp_prune_ofo_queue(struct sock *sk)
4865 {
4866 	struct tcp_sock *tp = tcp_sk(sk);
4867 	bool res = false;
4868 
4869 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4870 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4871 		__skb_queue_purge(&tp->out_of_order_queue);
4872 
4873 		/* Reset SACK state.  A conforming SACK implementation will
4874 		 * do the same at a timeout based retransmit.  When a connection
4875 		 * is in a sad state like this, we care only about integrity
4876 		 * of the connection not performance.
4877 		 */
4878 		if (tp->rx_opt.sack_ok)
4879 			tcp_sack_reset(&tp->rx_opt);
4880 		sk_mem_reclaim(sk);
4881 		res = true;
4882 	}
4883 	return res;
4884 }
4885 
4886 /* Reduce allocated memory if we can, trying to get
4887  * the socket within its memory limits again.
4888  *
4889  * Return less than zero if we should start dropping frames
4890  * until the socket owning process reads some of the data
4891  * to stabilize the situation.
4892  */
4893 static int tcp_prune_queue(struct sock *sk)
4894 {
4895 	struct tcp_sock *tp = tcp_sk(sk);
4896 
4897 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4898 
4899 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4900 
4901 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4902 		tcp_clamp_window(sk);
4903 	else if (tcp_under_memory_pressure(sk))
4904 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4905 
4906 	tcp_collapse_ofo_queue(sk);
4907 	if (!skb_queue_empty(&sk->sk_receive_queue))
4908 		tcp_collapse(sk, &sk->sk_receive_queue,
4909 			     skb_peek(&sk->sk_receive_queue),
4910 			     NULL,
4911 			     tp->copied_seq, tp->rcv_nxt);
4912 	sk_mem_reclaim(sk);
4913 
4914 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4915 		return 0;
4916 
4917 	/* Collapsing did not help, destructive actions follow.
4918 	 * This must not ever occur. */
4919 
4920 	tcp_prune_ofo_queue(sk);
4921 
4922 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4923 		return 0;
4924 
4925 	/* If we are really being abused, tell the caller to silently
4926 	 * drop receive data on the floor.  It will get retransmitted
4927 	 * and hopefully then we'll have sufficient space.
4928 	 */
4929 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4930 
4931 	/* Massive buffer overcommit. */
4932 	tp->pred_flags = 0;
4933 	return -1;
4934 }
4935 
4936 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4937 {
4938 	const struct tcp_sock *tp = tcp_sk(sk);
4939 
4940 	/* If the user specified a specific send buffer setting, do
4941 	 * not modify it.
4942 	 */
4943 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4944 		return false;
4945 
4946 	/* If we are under global TCP memory pressure, do not expand.  */
4947 	if (tcp_under_memory_pressure(sk))
4948 		return false;
4949 
4950 	/* If we are under soft global TCP memory pressure, do not expand.  */
4951 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4952 		return false;
4953 
4954 	/* If we filled the congestion window, do not expand.  */
4955 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
4956 		return false;
4957 
4958 	return true;
4959 }
4960 
4961 /* When incoming ACK allowed to free some skb from write_queue,
4962  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4963  * on the exit from tcp input handler.
4964  *
4965  * PROBLEM: sndbuf expansion does not work well with largesend.
4966  */
4967 static void tcp_new_space(struct sock *sk)
4968 {
4969 	struct tcp_sock *tp = tcp_sk(sk);
4970 
4971 	if (tcp_should_expand_sndbuf(sk)) {
4972 		tcp_sndbuf_expand(sk);
4973 		tp->snd_cwnd_stamp = tcp_time_stamp;
4974 	}
4975 
4976 	sk->sk_write_space(sk);
4977 }
4978 
4979 static void tcp_check_space(struct sock *sk)
4980 {
4981 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4982 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4983 		/* pairs with tcp_poll() */
4984 		smp_mb__after_atomic();
4985 		if (sk->sk_socket &&
4986 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4987 			tcp_new_space(sk);
4988 	}
4989 }
4990 
4991 static inline void tcp_data_snd_check(struct sock *sk)
4992 {
4993 	tcp_push_pending_frames(sk);
4994 	tcp_check_space(sk);
4995 }
4996 
4997 /*
4998  * Check if sending an ack is needed.
4999  */
5000 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5001 {
5002 	struct tcp_sock *tp = tcp_sk(sk);
5003 
5004 	    /* More than one full frame received... */
5005 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5006 	     /* ... and right edge of window advances far enough.
5007 	      * (tcp_recvmsg() will send ACK otherwise). Or...
5008 	      */
5009 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
5010 	    /* We ACK each frame or... */
5011 	    tcp_in_quickack_mode(sk) ||
5012 	    /* We have out of order data. */
5013 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5014 		/* Then ack it now */
5015 		tcp_send_ack(sk);
5016 	} else {
5017 		/* Else, send delayed ack. */
5018 		tcp_send_delayed_ack(sk);
5019 	}
5020 }
5021 
5022 static inline void tcp_ack_snd_check(struct sock *sk)
5023 {
5024 	if (!inet_csk_ack_scheduled(sk)) {
5025 		/* We sent a data segment already. */
5026 		return;
5027 	}
5028 	__tcp_ack_snd_check(sk, 1);
5029 }
5030 
5031 /*
5032  *	This routine is only called when we have urgent data
5033  *	signaled. Its the 'slow' part of tcp_urg. It could be
5034  *	moved inline now as tcp_urg is only called from one
5035  *	place. We handle URGent data wrong. We have to - as
5036  *	BSD still doesn't use the correction from RFC961.
5037  *	For 1003.1g we should support a new option TCP_STDURG to permit
5038  *	either form (or just set the sysctl tcp_stdurg).
5039  */
5040 
5041 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5042 {
5043 	struct tcp_sock *tp = tcp_sk(sk);
5044 	u32 ptr = ntohs(th->urg_ptr);
5045 
5046 	if (ptr && !sysctl_tcp_stdurg)
5047 		ptr--;
5048 	ptr += ntohl(th->seq);
5049 
5050 	/* Ignore urgent data that we've already seen and read. */
5051 	if (after(tp->copied_seq, ptr))
5052 		return;
5053 
5054 	/* Do not replay urg ptr.
5055 	 *
5056 	 * NOTE: interesting situation not covered by specs.
5057 	 * Misbehaving sender may send urg ptr, pointing to segment,
5058 	 * which we already have in ofo queue. We are not able to fetch
5059 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5060 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5061 	 * situations. But it is worth to think about possibility of some
5062 	 * DoSes using some hypothetical application level deadlock.
5063 	 */
5064 	if (before(ptr, tp->rcv_nxt))
5065 		return;
5066 
5067 	/* Do we already have a newer (or duplicate) urgent pointer? */
5068 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5069 		return;
5070 
5071 	/* Tell the world about our new urgent pointer. */
5072 	sk_send_sigurg(sk);
5073 
5074 	/* We may be adding urgent data when the last byte read was
5075 	 * urgent. To do this requires some care. We cannot just ignore
5076 	 * tp->copied_seq since we would read the last urgent byte again
5077 	 * as data, nor can we alter copied_seq until this data arrives
5078 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5079 	 *
5080 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5081 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5082 	 * and expect that both A and B disappear from stream. This is _wrong_.
5083 	 * Though this happens in BSD with high probability, this is occasional.
5084 	 * Any application relying on this is buggy. Note also, that fix "works"
5085 	 * only in this artificial test. Insert some normal data between A and B and we will
5086 	 * decline of BSD again. Verdict: it is better to remove to trap
5087 	 * buggy users.
5088 	 */
5089 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5090 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5091 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5092 		tp->copied_seq++;
5093 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5094 			__skb_unlink(skb, &sk->sk_receive_queue);
5095 			__kfree_skb(skb);
5096 		}
5097 	}
5098 
5099 	tp->urg_data = TCP_URG_NOTYET;
5100 	tp->urg_seq = ptr;
5101 
5102 	/* Disable header prediction. */
5103 	tp->pred_flags = 0;
5104 }
5105 
5106 /* This is the 'fast' part of urgent handling. */
5107 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5108 {
5109 	struct tcp_sock *tp = tcp_sk(sk);
5110 
5111 	/* Check if we get a new urgent pointer - normally not. */
5112 	if (th->urg)
5113 		tcp_check_urg(sk, th);
5114 
5115 	/* Do we wait for any urgent data? - normally not... */
5116 	if (tp->urg_data == TCP_URG_NOTYET) {
5117 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5118 			  th->syn;
5119 
5120 		/* Is the urgent pointer pointing into this packet? */
5121 		if (ptr < skb->len) {
5122 			u8 tmp;
5123 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5124 				BUG();
5125 			tp->urg_data = TCP_URG_VALID | tmp;
5126 			if (!sock_flag(sk, SOCK_DEAD))
5127 				sk->sk_data_ready(sk);
5128 		}
5129 	}
5130 }
5131 
5132 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5133 {
5134 	struct tcp_sock *tp = tcp_sk(sk);
5135 	int chunk = skb->len - hlen;
5136 	int err;
5137 
5138 	local_bh_enable();
5139 	if (skb_csum_unnecessary(skb))
5140 		err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5141 	else
5142 		err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5143 
5144 	if (!err) {
5145 		tp->ucopy.len -= chunk;
5146 		tp->copied_seq += chunk;
5147 		tcp_rcv_space_adjust(sk);
5148 	}
5149 
5150 	local_bh_disable();
5151 	return err;
5152 }
5153 
5154 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5155 					    struct sk_buff *skb)
5156 {
5157 	__sum16 result;
5158 
5159 	if (sock_owned_by_user(sk)) {
5160 		local_bh_enable();
5161 		result = __tcp_checksum_complete(skb);
5162 		local_bh_disable();
5163 	} else {
5164 		result = __tcp_checksum_complete(skb);
5165 	}
5166 	return result;
5167 }
5168 
5169 static inline bool tcp_checksum_complete_user(struct sock *sk,
5170 					     struct sk_buff *skb)
5171 {
5172 	return !skb_csum_unnecessary(skb) &&
5173 	       __tcp_checksum_complete_user(sk, skb);
5174 }
5175 
5176 /* Does PAWS and seqno based validation of an incoming segment, flags will
5177  * play significant role here.
5178  */
5179 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5180 				  const struct tcphdr *th, int syn_inerr)
5181 {
5182 	struct tcp_sock *tp = tcp_sk(sk);
5183 
5184 	/* RFC1323: H1. Apply PAWS check first. */
5185 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5186 	    tcp_paws_discard(sk, skb)) {
5187 		if (!th->rst) {
5188 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5189 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5190 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5191 						  &tp->last_oow_ack_time))
5192 				tcp_send_dupack(sk, skb);
5193 			goto discard;
5194 		}
5195 		/* Reset is accepted even if it did not pass PAWS. */
5196 	}
5197 
5198 	/* Step 1: check sequence number */
5199 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5200 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5201 		 * (RST) segments are validated by checking their SEQ-fields."
5202 		 * And page 69: "If an incoming segment is not acceptable,
5203 		 * an acknowledgment should be sent in reply (unless the RST
5204 		 * bit is set, if so drop the segment and return)".
5205 		 */
5206 		if (!th->rst) {
5207 			if (th->syn)
5208 				goto syn_challenge;
5209 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5210 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5211 						  &tp->last_oow_ack_time))
5212 				tcp_send_dupack(sk, skb);
5213 		}
5214 		goto discard;
5215 	}
5216 
5217 	/* Step 2: check RST bit */
5218 	if (th->rst) {
5219 		/* RFC 5961 3.2 :
5220 		 * If sequence number exactly matches RCV.NXT, then
5221 		 *     RESET the connection
5222 		 * else
5223 		 *     Send a challenge ACK
5224 		 */
5225 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5226 			tcp_reset(sk);
5227 		else
5228 			tcp_send_challenge_ack(sk, skb);
5229 		goto discard;
5230 	}
5231 
5232 	/* step 3: check security and precedence [ignored] */
5233 
5234 	/* step 4: Check for a SYN
5235 	 * RFC 5961 4.2 : Send a challenge ack
5236 	 */
5237 	if (th->syn) {
5238 syn_challenge:
5239 		if (syn_inerr)
5240 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5241 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5242 		tcp_send_challenge_ack(sk, skb);
5243 		goto discard;
5244 	}
5245 
5246 	return true;
5247 
5248 discard:
5249 	__kfree_skb(skb);
5250 	return false;
5251 }
5252 
5253 /*
5254  *	TCP receive function for the ESTABLISHED state.
5255  *
5256  *	It is split into a fast path and a slow path. The fast path is
5257  * 	disabled when:
5258  *	- A zero window was announced from us - zero window probing
5259  *        is only handled properly in the slow path.
5260  *	- Out of order segments arrived.
5261  *	- Urgent data is expected.
5262  *	- There is no buffer space left
5263  *	- Unexpected TCP flags/window values/header lengths are received
5264  *	  (detected by checking the TCP header against pred_flags)
5265  *	- Data is sent in both directions. Fast path only supports pure senders
5266  *	  or pure receivers (this means either the sequence number or the ack
5267  *	  value must stay constant)
5268  *	- Unexpected TCP option.
5269  *
5270  *	When these conditions are not satisfied it drops into a standard
5271  *	receive procedure patterned after RFC793 to handle all cases.
5272  *	The first three cases are guaranteed by proper pred_flags setting,
5273  *	the rest is checked inline. Fast processing is turned on in
5274  *	tcp_data_queue when everything is OK.
5275  */
5276 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5277 			 const struct tcphdr *th, unsigned int len)
5278 {
5279 	struct tcp_sock *tp = tcp_sk(sk);
5280 
5281 	if (unlikely(!sk->sk_rx_dst))
5282 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5283 	/*
5284 	 *	Header prediction.
5285 	 *	The code loosely follows the one in the famous
5286 	 *	"30 instruction TCP receive" Van Jacobson mail.
5287 	 *
5288 	 *	Van's trick is to deposit buffers into socket queue
5289 	 *	on a device interrupt, to call tcp_recv function
5290 	 *	on the receive process context and checksum and copy
5291 	 *	the buffer to user space. smart...
5292 	 *
5293 	 *	Our current scheme is not silly either but we take the
5294 	 *	extra cost of the net_bh soft interrupt processing...
5295 	 *	We do checksum and copy also but from device to kernel.
5296 	 */
5297 
5298 	tp->rx_opt.saw_tstamp = 0;
5299 
5300 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5301 	 *	if header_prediction is to be made
5302 	 *	'S' will always be tp->tcp_header_len >> 2
5303 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5304 	 *  turn it off	(when there are holes in the receive
5305 	 *	 space for instance)
5306 	 *	PSH flag is ignored.
5307 	 */
5308 
5309 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5310 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5311 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5312 		int tcp_header_len = tp->tcp_header_len;
5313 
5314 		/* Timestamp header prediction: tcp_header_len
5315 		 * is automatically equal to th->doff*4 due to pred_flags
5316 		 * match.
5317 		 */
5318 
5319 		/* Check timestamp */
5320 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5321 			/* No? Slow path! */
5322 			if (!tcp_parse_aligned_timestamp(tp, th))
5323 				goto slow_path;
5324 
5325 			/* If PAWS failed, check it more carefully in slow path */
5326 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5327 				goto slow_path;
5328 
5329 			/* DO NOT update ts_recent here, if checksum fails
5330 			 * and timestamp was corrupted part, it will result
5331 			 * in a hung connection since we will drop all
5332 			 * future packets due to the PAWS test.
5333 			 */
5334 		}
5335 
5336 		if (len <= tcp_header_len) {
5337 			/* Bulk data transfer: sender */
5338 			if (len == tcp_header_len) {
5339 				/* Predicted packet is in window by definition.
5340 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5341 				 * Hence, check seq<=rcv_wup reduces to:
5342 				 */
5343 				if (tcp_header_len ==
5344 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5345 				    tp->rcv_nxt == tp->rcv_wup)
5346 					tcp_store_ts_recent(tp);
5347 
5348 				/* We know that such packets are checksummed
5349 				 * on entry.
5350 				 */
5351 				tcp_ack(sk, skb, 0);
5352 				__kfree_skb(skb);
5353 				tcp_data_snd_check(sk);
5354 				return;
5355 			} else { /* Header too small */
5356 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5357 				goto discard;
5358 			}
5359 		} else {
5360 			int eaten = 0;
5361 			bool fragstolen = false;
5362 
5363 			if (tp->ucopy.task == current &&
5364 			    tp->copied_seq == tp->rcv_nxt &&
5365 			    len - tcp_header_len <= tp->ucopy.len &&
5366 			    sock_owned_by_user(sk)) {
5367 				__set_current_state(TASK_RUNNING);
5368 
5369 				if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5370 					/* Predicted packet is in window by definition.
5371 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5372 					 * Hence, check seq<=rcv_wup reduces to:
5373 					 */
5374 					if (tcp_header_len ==
5375 					    (sizeof(struct tcphdr) +
5376 					     TCPOLEN_TSTAMP_ALIGNED) &&
5377 					    tp->rcv_nxt == tp->rcv_wup)
5378 						tcp_store_ts_recent(tp);
5379 
5380 					tcp_rcv_rtt_measure_ts(sk, skb);
5381 
5382 					__skb_pull(skb, tcp_header_len);
5383 					tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5384 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5385 					eaten = 1;
5386 				}
5387 			}
5388 			if (!eaten) {
5389 				if (tcp_checksum_complete_user(sk, skb))
5390 					goto csum_error;
5391 
5392 				if ((int)skb->truesize > sk->sk_forward_alloc)
5393 					goto step5;
5394 
5395 				/* Predicted packet is in window by definition.
5396 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5397 				 * Hence, check seq<=rcv_wup reduces to:
5398 				 */
5399 				if (tcp_header_len ==
5400 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5401 				    tp->rcv_nxt == tp->rcv_wup)
5402 					tcp_store_ts_recent(tp);
5403 
5404 				tcp_rcv_rtt_measure_ts(sk, skb);
5405 
5406 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5407 
5408 				/* Bulk data transfer: receiver */
5409 				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5410 						      &fragstolen);
5411 			}
5412 
5413 			tcp_event_data_recv(sk, skb);
5414 
5415 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5416 				/* Well, only one small jumplet in fast path... */
5417 				tcp_ack(sk, skb, FLAG_DATA);
5418 				tcp_data_snd_check(sk);
5419 				if (!inet_csk_ack_scheduled(sk))
5420 					goto no_ack;
5421 			}
5422 
5423 			__tcp_ack_snd_check(sk, 0);
5424 no_ack:
5425 			if (eaten)
5426 				kfree_skb_partial(skb, fragstolen);
5427 			sk->sk_data_ready(sk);
5428 			return;
5429 		}
5430 	}
5431 
5432 slow_path:
5433 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5434 		goto csum_error;
5435 
5436 	if (!th->ack && !th->rst && !th->syn)
5437 		goto discard;
5438 
5439 	/*
5440 	 *	Standard slow path.
5441 	 */
5442 
5443 	if (!tcp_validate_incoming(sk, skb, th, 1))
5444 		return;
5445 
5446 step5:
5447 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5448 		goto discard;
5449 
5450 	tcp_rcv_rtt_measure_ts(sk, skb);
5451 
5452 	/* Process urgent data. */
5453 	tcp_urg(sk, skb, th);
5454 
5455 	/* step 7: process the segment text */
5456 	tcp_data_queue(sk, skb);
5457 
5458 	tcp_data_snd_check(sk);
5459 	tcp_ack_snd_check(sk);
5460 	return;
5461 
5462 csum_error:
5463 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5464 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5465 
5466 discard:
5467 	__kfree_skb(skb);
5468 }
5469 EXPORT_SYMBOL(tcp_rcv_established);
5470 
5471 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5472 {
5473 	struct tcp_sock *tp = tcp_sk(sk);
5474 	struct inet_connection_sock *icsk = inet_csk(sk);
5475 
5476 	tcp_set_state(sk, TCP_ESTABLISHED);
5477 
5478 	if (skb) {
5479 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5480 		security_inet_conn_established(sk, skb);
5481 	}
5482 
5483 	/* Make sure socket is routed, for correct metrics.  */
5484 	icsk->icsk_af_ops->rebuild_header(sk);
5485 
5486 	tcp_init_metrics(sk);
5487 
5488 	tcp_init_congestion_control(sk);
5489 
5490 	/* Prevent spurious tcp_cwnd_restart() on first data
5491 	 * packet.
5492 	 */
5493 	tp->lsndtime = tcp_time_stamp;
5494 
5495 	tcp_init_buffer_space(sk);
5496 
5497 	if (sock_flag(sk, SOCK_KEEPOPEN))
5498 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5499 
5500 	if (!tp->rx_opt.snd_wscale)
5501 		__tcp_fast_path_on(tp, tp->snd_wnd);
5502 	else
5503 		tp->pred_flags = 0;
5504 
5505 	if (!sock_flag(sk, SOCK_DEAD)) {
5506 		sk->sk_state_change(sk);
5507 		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5508 	}
5509 }
5510 
5511 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5512 				    struct tcp_fastopen_cookie *cookie)
5513 {
5514 	struct tcp_sock *tp = tcp_sk(sk);
5515 	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5516 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5517 	bool syn_drop = false;
5518 
5519 	if (mss == tp->rx_opt.user_mss) {
5520 		struct tcp_options_received opt;
5521 
5522 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5523 		tcp_clear_options(&opt);
5524 		opt.user_mss = opt.mss_clamp = 0;
5525 		tcp_parse_options(synack, &opt, 0, NULL);
5526 		mss = opt.mss_clamp;
5527 	}
5528 
5529 	if (!tp->syn_fastopen) {
5530 		/* Ignore an unsolicited cookie */
5531 		cookie->len = -1;
5532 	} else if (tp->total_retrans) {
5533 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5534 		 * acknowledges data. Presumably the remote received only
5535 		 * the retransmitted (regular) SYNs: either the original
5536 		 * SYN-data or the corresponding SYN-ACK was dropped.
5537 		 */
5538 		syn_drop = (cookie->len < 0 && data);
5539 	} else if (cookie->len < 0 && !tp->syn_data) {
5540 		/* We requested a cookie but didn't get it. If we did not use
5541 		 * the (old) exp opt format then try so next time (try_exp=1).
5542 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5543 		 */
5544 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5545 	}
5546 
5547 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5548 
5549 	if (data) { /* Retransmit unacked data in SYN */
5550 		tcp_for_write_queue_from(data, sk) {
5551 			if (data == tcp_send_head(sk) ||
5552 			    __tcp_retransmit_skb(sk, data))
5553 				break;
5554 		}
5555 		tcp_rearm_rto(sk);
5556 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5557 		return true;
5558 	}
5559 	tp->syn_data_acked = tp->syn_data;
5560 	if (tp->syn_data_acked)
5561 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5562 
5563 	tcp_fastopen_add_skb(sk, synack);
5564 
5565 	return false;
5566 }
5567 
5568 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5569 					 const struct tcphdr *th)
5570 {
5571 	struct inet_connection_sock *icsk = inet_csk(sk);
5572 	struct tcp_sock *tp = tcp_sk(sk);
5573 	struct tcp_fastopen_cookie foc = { .len = -1 };
5574 	int saved_clamp = tp->rx_opt.mss_clamp;
5575 
5576 	tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5577 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5578 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5579 
5580 	if (th->ack) {
5581 		/* rfc793:
5582 		 * "If the state is SYN-SENT then
5583 		 *    first check the ACK bit
5584 		 *      If the ACK bit is set
5585 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5586 		 *        a reset (unless the RST bit is set, if so drop
5587 		 *        the segment and return)"
5588 		 */
5589 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5590 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5591 			goto reset_and_undo;
5592 
5593 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5594 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5595 			     tcp_time_stamp)) {
5596 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5597 			goto reset_and_undo;
5598 		}
5599 
5600 		/* Now ACK is acceptable.
5601 		 *
5602 		 * "If the RST bit is set
5603 		 *    If the ACK was acceptable then signal the user "error:
5604 		 *    connection reset", drop the segment, enter CLOSED state,
5605 		 *    delete TCB, and return."
5606 		 */
5607 
5608 		if (th->rst) {
5609 			tcp_reset(sk);
5610 			goto discard;
5611 		}
5612 
5613 		/* rfc793:
5614 		 *   "fifth, if neither of the SYN or RST bits is set then
5615 		 *    drop the segment and return."
5616 		 *
5617 		 *    See note below!
5618 		 *                                        --ANK(990513)
5619 		 */
5620 		if (!th->syn)
5621 			goto discard_and_undo;
5622 
5623 		/* rfc793:
5624 		 *   "If the SYN bit is on ...
5625 		 *    are acceptable then ...
5626 		 *    (our SYN has been ACKed), change the connection
5627 		 *    state to ESTABLISHED..."
5628 		 */
5629 
5630 		tcp_ecn_rcv_synack(tp, th);
5631 
5632 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5633 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5634 
5635 		/* Ok.. it's good. Set up sequence numbers and
5636 		 * move to established.
5637 		 */
5638 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5639 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5640 
5641 		/* RFC1323: The window in SYN & SYN/ACK segments is
5642 		 * never scaled.
5643 		 */
5644 		tp->snd_wnd = ntohs(th->window);
5645 
5646 		if (!tp->rx_opt.wscale_ok) {
5647 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5648 			tp->window_clamp = min(tp->window_clamp, 65535U);
5649 		}
5650 
5651 		if (tp->rx_opt.saw_tstamp) {
5652 			tp->rx_opt.tstamp_ok	   = 1;
5653 			tp->tcp_header_len =
5654 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5655 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5656 			tcp_store_ts_recent(tp);
5657 		} else {
5658 			tp->tcp_header_len = sizeof(struct tcphdr);
5659 		}
5660 
5661 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5662 			tcp_enable_fack(tp);
5663 
5664 		tcp_mtup_init(sk);
5665 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5666 		tcp_initialize_rcv_mss(sk);
5667 
5668 		/* Remember, tcp_poll() does not lock socket!
5669 		 * Change state from SYN-SENT only after copied_seq
5670 		 * is initialized. */
5671 		tp->copied_seq = tp->rcv_nxt;
5672 
5673 		smp_mb();
5674 
5675 		tcp_finish_connect(sk, skb);
5676 
5677 		if ((tp->syn_fastopen || tp->syn_data) &&
5678 		    tcp_rcv_fastopen_synack(sk, skb, &foc))
5679 			return -1;
5680 
5681 		if (sk->sk_write_pending ||
5682 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5683 		    icsk->icsk_ack.pingpong) {
5684 			/* Save one ACK. Data will be ready after
5685 			 * several ticks, if write_pending is set.
5686 			 *
5687 			 * It may be deleted, but with this feature tcpdumps
5688 			 * look so _wonderfully_ clever, that I was not able
5689 			 * to stand against the temptation 8)     --ANK
5690 			 */
5691 			inet_csk_schedule_ack(sk);
5692 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5693 			tcp_enter_quickack_mode(sk);
5694 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5695 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5696 
5697 discard:
5698 			__kfree_skb(skb);
5699 			return 0;
5700 		} else {
5701 			tcp_send_ack(sk);
5702 		}
5703 		return -1;
5704 	}
5705 
5706 	/* No ACK in the segment */
5707 
5708 	if (th->rst) {
5709 		/* rfc793:
5710 		 * "If the RST bit is set
5711 		 *
5712 		 *      Otherwise (no ACK) drop the segment and return."
5713 		 */
5714 
5715 		goto discard_and_undo;
5716 	}
5717 
5718 	/* PAWS check. */
5719 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5720 	    tcp_paws_reject(&tp->rx_opt, 0))
5721 		goto discard_and_undo;
5722 
5723 	if (th->syn) {
5724 		/* We see SYN without ACK. It is attempt of
5725 		 * simultaneous connect with crossed SYNs.
5726 		 * Particularly, it can be connect to self.
5727 		 */
5728 		tcp_set_state(sk, TCP_SYN_RECV);
5729 
5730 		if (tp->rx_opt.saw_tstamp) {
5731 			tp->rx_opt.tstamp_ok = 1;
5732 			tcp_store_ts_recent(tp);
5733 			tp->tcp_header_len =
5734 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5735 		} else {
5736 			tp->tcp_header_len = sizeof(struct tcphdr);
5737 		}
5738 
5739 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5740 		tp->copied_seq = tp->rcv_nxt;
5741 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5742 
5743 		/* RFC1323: The window in SYN & SYN/ACK segments is
5744 		 * never scaled.
5745 		 */
5746 		tp->snd_wnd    = ntohs(th->window);
5747 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5748 		tp->max_window = tp->snd_wnd;
5749 
5750 		tcp_ecn_rcv_syn(tp, th);
5751 
5752 		tcp_mtup_init(sk);
5753 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5754 		tcp_initialize_rcv_mss(sk);
5755 
5756 		tcp_send_synack(sk);
5757 #if 0
5758 		/* Note, we could accept data and URG from this segment.
5759 		 * There are no obstacles to make this (except that we must
5760 		 * either change tcp_recvmsg() to prevent it from returning data
5761 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5762 		 *
5763 		 * However, if we ignore data in ACKless segments sometimes,
5764 		 * we have no reasons to accept it sometimes.
5765 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5766 		 * is not flawless. So, discard packet for sanity.
5767 		 * Uncomment this return to process the data.
5768 		 */
5769 		return -1;
5770 #else
5771 		goto discard;
5772 #endif
5773 	}
5774 	/* "fifth, if neither of the SYN or RST bits is set then
5775 	 * drop the segment and return."
5776 	 */
5777 
5778 discard_and_undo:
5779 	tcp_clear_options(&tp->rx_opt);
5780 	tp->rx_opt.mss_clamp = saved_clamp;
5781 	goto discard;
5782 
5783 reset_and_undo:
5784 	tcp_clear_options(&tp->rx_opt);
5785 	tp->rx_opt.mss_clamp = saved_clamp;
5786 	return 1;
5787 }
5788 
5789 /*
5790  *	This function implements the receiving procedure of RFC 793 for
5791  *	all states except ESTABLISHED and TIME_WAIT.
5792  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5793  *	address independent.
5794  */
5795 
5796 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5797 {
5798 	struct tcp_sock *tp = tcp_sk(sk);
5799 	struct inet_connection_sock *icsk = inet_csk(sk);
5800 	const struct tcphdr *th = tcp_hdr(skb);
5801 	struct request_sock *req;
5802 	int queued = 0;
5803 	bool acceptable;
5804 
5805 	tp->rx_opt.saw_tstamp = 0;
5806 
5807 	switch (sk->sk_state) {
5808 	case TCP_CLOSE:
5809 		goto discard;
5810 
5811 	case TCP_LISTEN:
5812 		if (th->ack)
5813 			return 1;
5814 
5815 		if (th->rst)
5816 			goto discard;
5817 
5818 		if (th->syn) {
5819 			if (th->fin)
5820 				goto discard;
5821 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5822 				return 1;
5823 
5824 			/* Now we have several options: In theory there is
5825 			 * nothing else in the frame. KA9Q has an option to
5826 			 * send data with the syn, BSD accepts data with the
5827 			 * syn up to the [to be] advertised window and
5828 			 * Solaris 2.1 gives you a protocol error. For now
5829 			 * we just ignore it, that fits the spec precisely
5830 			 * and avoids incompatibilities. It would be nice in
5831 			 * future to drop through and process the data.
5832 			 *
5833 			 * Now that TTCP is starting to be used we ought to
5834 			 * queue this data.
5835 			 * But, this leaves one open to an easy denial of
5836 			 * service attack, and SYN cookies can't defend
5837 			 * against this problem. So, we drop the data
5838 			 * in the interest of security over speed unless
5839 			 * it's still in use.
5840 			 */
5841 			kfree_skb(skb);
5842 			return 0;
5843 		}
5844 		goto discard;
5845 
5846 	case TCP_SYN_SENT:
5847 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
5848 		if (queued >= 0)
5849 			return queued;
5850 
5851 		/* Do step6 onward by hand. */
5852 		tcp_urg(sk, skb, th);
5853 		__kfree_skb(skb);
5854 		tcp_data_snd_check(sk);
5855 		return 0;
5856 	}
5857 
5858 	req = tp->fastopen_rsk;
5859 	if (req) {
5860 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5861 		    sk->sk_state != TCP_FIN_WAIT1);
5862 
5863 		if (!tcp_check_req(sk, skb, req, true))
5864 			goto discard;
5865 	}
5866 
5867 	if (!th->ack && !th->rst && !th->syn)
5868 		goto discard;
5869 
5870 	if (!tcp_validate_incoming(sk, skb, th, 0))
5871 		return 0;
5872 
5873 	/* step 5: check the ACK field */
5874 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5875 				      FLAG_UPDATE_TS_RECENT) > 0;
5876 
5877 	switch (sk->sk_state) {
5878 	case TCP_SYN_RECV:
5879 		if (!acceptable)
5880 			return 1;
5881 
5882 		if (!tp->srtt_us)
5883 			tcp_synack_rtt_meas(sk, req);
5884 
5885 		/* Once we leave TCP_SYN_RECV, we no longer need req
5886 		 * so release it.
5887 		 */
5888 		if (req) {
5889 			tp->total_retrans = req->num_retrans;
5890 			reqsk_fastopen_remove(sk, req, false);
5891 		} else {
5892 			/* Make sure socket is routed, for correct metrics. */
5893 			icsk->icsk_af_ops->rebuild_header(sk);
5894 			tcp_init_congestion_control(sk);
5895 
5896 			tcp_mtup_init(sk);
5897 			tp->copied_seq = tp->rcv_nxt;
5898 			tcp_init_buffer_space(sk);
5899 		}
5900 		smp_mb();
5901 		tcp_set_state(sk, TCP_ESTABLISHED);
5902 		sk->sk_state_change(sk);
5903 
5904 		/* Note, that this wakeup is only for marginal crossed SYN case.
5905 		 * Passively open sockets are not waked up, because
5906 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5907 		 */
5908 		if (sk->sk_socket)
5909 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5910 
5911 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5912 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5913 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5914 
5915 		if (tp->rx_opt.tstamp_ok)
5916 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5917 
5918 		if (req) {
5919 			/* Re-arm the timer because data may have been sent out.
5920 			 * This is similar to the regular data transmission case
5921 			 * when new data has just been ack'ed.
5922 			 *
5923 			 * (TFO) - we could try to be more aggressive and
5924 			 * retransmitting any data sooner based on when they
5925 			 * are sent out.
5926 			 */
5927 			tcp_rearm_rto(sk);
5928 		} else
5929 			tcp_init_metrics(sk);
5930 
5931 		tcp_update_pacing_rate(sk);
5932 
5933 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5934 		tp->lsndtime = tcp_time_stamp;
5935 
5936 		tcp_initialize_rcv_mss(sk);
5937 		tcp_fast_path_on(tp);
5938 		break;
5939 
5940 	case TCP_FIN_WAIT1: {
5941 		struct dst_entry *dst;
5942 		int tmo;
5943 
5944 		/* If we enter the TCP_FIN_WAIT1 state and we are a
5945 		 * Fast Open socket and this is the first acceptable
5946 		 * ACK we have received, this would have acknowledged
5947 		 * our SYNACK so stop the SYNACK timer.
5948 		 */
5949 		if (req) {
5950 			/* Return RST if ack_seq is invalid.
5951 			 * Note that RFC793 only says to generate a
5952 			 * DUPACK for it but for TCP Fast Open it seems
5953 			 * better to treat this case like TCP_SYN_RECV
5954 			 * above.
5955 			 */
5956 			if (!acceptable)
5957 				return 1;
5958 			/* We no longer need the request sock. */
5959 			reqsk_fastopen_remove(sk, req, false);
5960 			tcp_rearm_rto(sk);
5961 		}
5962 		if (tp->snd_una != tp->write_seq)
5963 			break;
5964 
5965 		tcp_set_state(sk, TCP_FIN_WAIT2);
5966 		sk->sk_shutdown |= SEND_SHUTDOWN;
5967 
5968 		dst = __sk_dst_get(sk);
5969 		if (dst)
5970 			dst_confirm(dst);
5971 
5972 		if (!sock_flag(sk, SOCK_DEAD)) {
5973 			/* Wake up lingering close() */
5974 			sk->sk_state_change(sk);
5975 			break;
5976 		}
5977 
5978 		if (tp->linger2 < 0 ||
5979 		    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5980 		     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5981 			tcp_done(sk);
5982 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5983 			return 1;
5984 		}
5985 
5986 		tmo = tcp_fin_time(sk);
5987 		if (tmo > TCP_TIMEWAIT_LEN) {
5988 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5989 		} else if (th->fin || sock_owned_by_user(sk)) {
5990 			/* Bad case. We could lose such FIN otherwise.
5991 			 * It is not a big problem, but it looks confusing
5992 			 * and not so rare event. We still can lose it now,
5993 			 * if it spins in bh_lock_sock(), but it is really
5994 			 * marginal case.
5995 			 */
5996 			inet_csk_reset_keepalive_timer(sk, tmo);
5997 		} else {
5998 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5999 			goto discard;
6000 		}
6001 		break;
6002 	}
6003 
6004 	case TCP_CLOSING:
6005 		if (tp->snd_una == tp->write_seq) {
6006 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6007 			goto discard;
6008 		}
6009 		break;
6010 
6011 	case TCP_LAST_ACK:
6012 		if (tp->snd_una == tp->write_seq) {
6013 			tcp_update_metrics(sk);
6014 			tcp_done(sk);
6015 			goto discard;
6016 		}
6017 		break;
6018 	}
6019 
6020 	/* step 6: check the URG bit */
6021 	tcp_urg(sk, skb, th);
6022 
6023 	/* step 7: process the segment text */
6024 	switch (sk->sk_state) {
6025 	case TCP_CLOSE_WAIT:
6026 	case TCP_CLOSING:
6027 	case TCP_LAST_ACK:
6028 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6029 			break;
6030 	case TCP_FIN_WAIT1:
6031 	case TCP_FIN_WAIT2:
6032 		/* RFC 793 says to queue data in these states,
6033 		 * RFC 1122 says we MUST send a reset.
6034 		 * BSD 4.4 also does reset.
6035 		 */
6036 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6037 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6038 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6039 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6040 				tcp_reset(sk);
6041 				return 1;
6042 			}
6043 		}
6044 		/* Fall through */
6045 	case TCP_ESTABLISHED:
6046 		tcp_data_queue(sk, skb);
6047 		queued = 1;
6048 		break;
6049 	}
6050 
6051 	/* tcp_data could move socket to TIME-WAIT */
6052 	if (sk->sk_state != TCP_CLOSE) {
6053 		tcp_data_snd_check(sk);
6054 		tcp_ack_snd_check(sk);
6055 	}
6056 
6057 	if (!queued) {
6058 discard:
6059 		__kfree_skb(skb);
6060 	}
6061 	return 0;
6062 }
6063 EXPORT_SYMBOL(tcp_rcv_state_process);
6064 
6065 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6066 {
6067 	struct inet_request_sock *ireq = inet_rsk(req);
6068 
6069 	if (family == AF_INET)
6070 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6071 				    &ireq->ir_rmt_addr, port);
6072 #if IS_ENABLED(CONFIG_IPV6)
6073 	else if (family == AF_INET6)
6074 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6075 				    &ireq->ir_v6_rmt_addr, port);
6076 #endif
6077 }
6078 
6079 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6080  *
6081  * If we receive a SYN packet with these bits set, it means a
6082  * network is playing bad games with TOS bits. In order to
6083  * avoid possible false congestion notifications, we disable
6084  * TCP ECN negotiation.
6085  *
6086  * Exception: tcp_ca wants ECN. This is required for DCTCP
6087  * congestion control: Linux DCTCP asserts ECT on all packets,
6088  * including SYN, which is most optimal solution; however,
6089  * others, such as FreeBSD do not.
6090  */
6091 static void tcp_ecn_create_request(struct request_sock *req,
6092 				   const struct sk_buff *skb,
6093 				   const struct sock *listen_sk,
6094 				   const struct dst_entry *dst)
6095 {
6096 	const struct tcphdr *th = tcp_hdr(skb);
6097 	const struct net *net = sock_net(listen_sk);
6098 	bool th_ecn = th->ece && th->cwr;
6099 	bool ect, ecn_ok;
6100 	u32 ecn_ok_dst;
6101 
6102 	if (!th_ecn)
6103 		return;
6104 
6105 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6106 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6107 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6108 
6109 	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6110 	    (ecn_ok_dst & DST_FEATURE_ECN_CA))
6111 		inet_rsk(req)->ecn_ok = 1;
6112 }
6113 
6114 static void tcp_openreq_init(struct request_sock *req,
6115 			     const struct tcp_options_received *rx_opt,
6116 			     struct sk_buff *skb, const struct sock *sk)
6117 {
6118 	struct inet_request_sock *ireq = inet_rsk(req);
6119 
6120 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6121 	req->cookie_ts = 0;
6122 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6123 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6124 	skb_mstamp_get(&tcp_rsk(req)->snt_synack);
6125 	tcp_rsk(req)->last_oow_ack_time = 0;
6126 	req->mss = rx_opt->mss_clamp;
6127 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6128 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6129 	ireq->sack_ok = rx_opt->sack_ok;
6130 	ireq->snd_wscale = rx_opt->snd_wscale;
6131 	ireq->wscale_ok = rx_opt->wscale_ok;
6132 	ireq->acked = 0;
6133 	ireq->ecn_ok = 0;
6134 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6135 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6136 	ireq->ir_mark = inet_request_mark(sk, skb);
6137 }
6138 
6139 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6140 				      struct sock *sk_listener,
6141 				      bool attach_listener)
6142 {
6143 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6144 					       attach_listener);
6145 
6146 	if (req) {
6147 		struct inet_request_sock *ireq = inet_rsk(req);
6148 
6149 		kmemcheck_annotate_bitfield(ireq, flags);
6150 		ireq->opt = NULL;
6151 		atomic64_set(&ireq->ir_cookie, 0);
6152 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6153 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6154 		ireq->ireq_family = sk_listener->sk_family;
6155 	}
6156 
6157 	return req;
6158 }
6159 EXPORT_SYMBOL(inet_reqsk_alloc);
6160 
6161 /*
6162  * Return true if a syncookie should be sent
6163  */
6164 static bool tcp_syn_flood_action(const struct sock *sk,
6165 				 const struct sk_buff *skb,
6166 				 const char *proto)
6167 {
6168 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6169 	const char *msg = "Dropping request";
6170 	bool want_cookie = false;
6171 	struct net *net = sock_net(sk);
6172 
6173 #ifdef CONFIG_SYN_COOKIES
6174 	if (net->ipv4.sysctl_tcp_syncookies) {
6175 		msg = "Sending cookies";
6176 		want_cookie = true;
6177 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6178 	} else
6179 #endif
6180 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6181 
6182 	if (!queue->synflood_warned &&
6183 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6184 	    xchg(&queue->synflood_warned, 1) == 0)
6185 		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6186 			proto, ntohs(tcp_hdr(skb)->dest), msg);
6187 
6188 	return want_cookie;
6189 }
6190 
6191 static void tcp_reqsk_record_syn(const struct sock *sk,
6192 				 struct request_sock *req,
6193 				 const struct sk_buff *skb)
6194 {
6195 	if (tcp_sk(sk)->save_syn) {
6196 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6197 		u32 *copy;
6198 
6199 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6200 		if (copy) {
6201 			copy[0] = len;
6202 			memcpy(&copy[1], skb_network_header(skb), len);
6203 			req->saved_syn = copy;
6204 		}
6205 	}
6206 }
6207 
6208 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6209 		     const struct tcp_request_sock_ops *af_ops,
6210 		     struct sock *sk, struct sk_buff *skb)
6211 {
6212 	struct tcp_fastopen_cookie foc = { .len = -1 };
6213 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6214 	struct tcp_options_received tmp_opt;
6215 	struct tcp_sock *tp = tcp_sk(sk);
6216 	struct net *net = sock_net(sk);
6217 	struct sock *fastopen_sk = NULL;
6218 	struct dst_entry *dst = NULL;
6219 	struct request_sock *req;
6220 	bool want_cookie = false;
6221 	struct flowi fl;
6222 
6223 	/* TW buckets are converted to open requests without
6224 	 * limitations, they conserve resources and peer is
6225 	 * evidently real one.
6226 	 */
6227 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6228 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6229 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6230 		if (!want_cookie)
6231 			goto drop;
6232 	}
6233 
6234 
6235 	/* Accept backlog is full. If we have already queued enough
6236 	 * of warm entries in syn queue, drop request. It is better than
6237 	 * clogging syn queue with openreqs with exponentially increasing
6238 	 * timeout.
6239 	 */
6240 	if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
6241 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6242 		goto drop;
6243 	}
6244 
6245 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6246 	if (!req)
6247 		goto drop;
6248 
6249 	tcp_rsk(req)->af_specific = af_ops;
6250 
6251 	tcp_clear_options(&tmp_opt);
6252 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6253 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6254 	tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6255 
6256 	if (want_cookie && !tmp_opt.saw_tstamp)
6257 		tcp_clear_options(&tmp_opt);
6258 
6259 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6260 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6261 
6262 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6263 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6264 
6265 	af_ops->init_req(req, sk, skb);
6266 
6267 	if (security_inet_conn_request(sk, skb, req))
6268 		goto drop_and_free;
6269 
6270 	if (!want_cookie && !isn) {
6271 		/* VJ's idea. We save last timestamp seen
6272 		 * from the destination in peer table, when entering
6273 		 * state TIME-WAIT, and check against it before
6274 		 * accepting new connection request.
6275 		 *
6276 		 * If "isn" is not zero, this request hit alive
6277 		 * timewait bucket, so that all the necessary checks
6278 		 * are made in the function processing timewait state.
6279 		 */
6280 		if (tcp_death_row.sysctl_tw_recycle) {
6281 			bool strict;
6282 
6283 			dst = af_ops->route_req(sk, &fl, req, &strict);
6284 
6285 			if (dst && strict &&
6286 			    !tcp_peer_is_proven(req, dst, true,
6287 						tmp_opt.saw_tstamp)) {
6288 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6289 				goto drop_and_release;
6290 			}
6291 		}
6292 		/* Kill the following clause, if you dislike this way. */
6293 		else if (!net->ipv4.sysctl_tcp_syncookies &&
6294 			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6295 			  (sysctl_max_syn_backlog >> 2)) &&
6296 			 !tcp_peer_is_proven(req, dst, false,
6297 					     tmp_opt.saw_tstamp)) {
6298 			/* Without syncookies last quarter of
6299 			 * backlog is filled with destinations,
6300 			 * proven to be alive.
6301 			 * It means that we continue to communicate
6302 			 * to destinations, already remembered
6303 			 * to the moment of synflood.
6304 			 */
6305 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6306 				    rsk_ops->family);
6307 			goto drop_and_release;
6308 		}
6309 
6310 		isn = af_ops->init_seq(skb);
6311 	}
6312 	if (!dst) {
6313 		dst = af_ops->route_req(sk, &fl, req, NULL);
6314 		if (!dst)
6315 			goto drop_and_free;
6316 	}
6317 
6318 	tcp_ecn_create_request(req, skb, sk, dst);
6319 
6320 	if (want_cookie) {
6321 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6322 		req->cookie_ts = tmp_opt.tstamp_ok;
6323 		if (!tmp_opt.tstamp_ok)
6324 			inet_rsk(req)->ecn_ok = 0;
6325 	}
6326 
6327 	tcp_rsk(req)->snt_isn = isn;
6328 	tcp_rsk(req)->txhash = net_tx_rndhash();
6329 	tcp_openreq_init_rwin(req, sk, dst);
6330 	if (!want_cookie) {
6331 		tcp_reqsk_record_syn(sk, req, skb);
6332 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6333 	}
6334 	if (fastopen_sk) {
6335 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6336 				    &foc, false);
6337 		/* Add the child socket directly into the accept queue */
6338 		inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6339 		sk->sk_data_ready(sk);
6340 		bh_unlock_sock(fastopen_sk);
6341 		sock_put(fastopen_sk);
6342 	} else {
6343 		tcp_rsk(req)->tfo_listener = false;
6344 		if (!want_cookie)
6345 			inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6346 		af_ops->send_synack(sk, dst, &fl, req,
6347 				    &foc, !want_cookie);
6348 		if (want_cookie)
6349 			goto drop_and_free;
6350 	}
6351 	reqsk_put(req);
6352 	return 0;
6353 
6354 drop_and_release:
6355 	dst_release(dst);
6356 drop_and_free:
6357 	reqsk_free(req);
6358 drop:
6359 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
6360 	return 0;
6361 }
6362 EXPORT_SYMBOL(tcp_conn_request);
6363