xref: /openbmc/linux/net/ipv4/tcp_input.c (revision f79e4d5f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/static_key.h>
81 
82 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
83 
84 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
85 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
86 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
87 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
88 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
89 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
90 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
91 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
92 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
93 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
94 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
95 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
96 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
97 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
98 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
99 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
100 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
101 
102 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
103 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
104 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
105 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
106 
107 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
108 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
109 
110 #define REXMIT_NONE	0 /* no loss recovery to do */
111 #define REXMIT_LOST	1 /* retransmit packets marked lost */
112 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
113 
114 #if IS_ENABLED(CONFIG_TLS_DEVICE)
115 static DEFINE_STATIC_KEY_FALSE(clean_acked_data_enabled);
116 
117 void clean_acked_data_enable(struct inet_connection_sock *icsk,
118 			     void (*cad)(struct sock *sk, u32 ack_seq))
119 {
120 	icsk->icsk_clean_acked = cad;
121 	static_branch_inc(&clean_acked_data_enabled);
122 }
123 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
124 
125 void clean_acked_data_disable(struct inet_connection_sock *icsk)
126 {
127 	static_branch_dec(&clean_acked_data_enabled);
128 	icsk->icsk_clean_acked = NULL;
129 }
130 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
131 #endif
132 
133 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
134 			     unsigned int len)
135 {
136 	static bool __once __read_mostly;
137 
138 	if (!__once) {
139 		struct net_device *dev;
140 
141 		__once = true;
142 
143 		rcu_read_lock();
144 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
145 		if (!dev || len >= dev->mtu)
146 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
147 				dev ? dev->name : "Unknown driver");
148 		rcu_read_unlock();
149 	}
150 }
151 
152 /* Adapt the MSS value used to make delayed ack decision to the
153  * real world.
154  */
155 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
156 {
157 	struct inet_connection_sock *icsk = inet_csk(sk);
158 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
159 	unsigned int len;
160 
161 	icsk->icsk_ack.last_seg_size = 0;
162 
163 	/* skb->len may jitter because of SACKs, even if peer
164 	 * sends good full-sized frames.
165 	 */
166 	len = skb_shinfo(skb)->gso_size ? : skb->len;
167 	if (len >= icsk->icsk_ack.rcv_mss) {
168 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
169 					       tcp_sk(sk)->advmss);
170 		/* Account for possibly-removed options */
171 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
172 				   MAX_TCP_OPTION_SPACE))
173 			tcp_gro_dev_warn(sk, skb, len);
174 	} else {
175 		/* Otherwise, we make more careful check taking into account,
176 		 * that SACKs block is variable.
177 		 *
178 		 * "len" is invariant segment length, including TCP header.
179 		 */
180 		len += skb->data - skb_transport_header(skb);
181 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
182 		    /* If PSH is not set, packet should be
183 		     * full sized, provided peer TCP is not badly broken.
184 		     * This observation (if it is correct 8)) allows
185 		     * to handle super-low mtu links fairly.
186 		     */
187 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
188 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
189 			/* Subtract also invariant (if peer is RFC compliant),
190 			 * tcp header plus fixed timestamp option length.
191 			 * Resulting "len" is MSS free of SACK jitter.
192 			 */
193 			len -= tcp_sk(sk)->tcp_header_len;
194 			icsk->icsk_ack.last_seg_size = len;
195 			if (len == lss) {
196 				icsk->icsk_ack.rcv_mss = len;
197 				return;
198 			}
199 		}
200 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
201 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
202 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
203 	}
204 }
205 
206 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
207 {
208 	struct inet_connection_sock *icsk = inet_csk(sk);
209 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
210 
211 	if (quickacks == 0)
212 		quickacks = 2;
213 	quickacks = min(quickacks, max_quickacks);
214 	if (quickacks > icsk->icsk_ack.quick)
215 		icsk->icsk_ack.quick = quickacks;
216 }
217 
218 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
219 {
220 	struct inet_connection_sock *icsk = inet_csk(sk);
221 
222 	tcp_incr_quickack(sk, max_quickacks);
223 	icsk->icsk_ack.pingpong = 0;
224 	icsk->icsk_ack.ato = TCP_ATO_MIN;
225 }
226 EXPORT_SYMBOL(tcp_enter_quickack_mode);
227 
228 /* Send ACKs quickly, if "quick" count is not exhausted
229  * and the session is not interactive.
230  */
231 
232 static bool tcp_in_quickack_mode(struct sock *sk)
233 {
234 	const struct inet_connection_sock *icsk = inet_csk(sk);
235 	const struct dst_entry *dst = __sk_dst_get(sk);
236 
237 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
238 		(icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
239 }
240 
241 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
242 {
243 	if (tp->ecn_flags & TCP_ECN_OK)
244 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
245 }
246 
247 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
248 {
249 	if (tcp_hdr(skb)->cwr) {
250 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
251 
252 		/* If the sender is telling us it has entered CWR, then its
253 		 * cwnd may be very low (even just 1 packet), so we should ACK
254 		 * immediately.
255 		 */
256 		tcp_enter_quickack_mode((struct sock *)tp, 2);
257 	}
258 }
259 
260 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
261 {
262 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
263 }
264 
265 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
266 {
267 	struct tcp_sock *tp = tcp_sk(sk);
268 
269 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
270 	case INET_ECN_NOT_ECT:
271 		/* Funny extension: if ECT is not set on a segment,
272 		 * and we already seen ECT on a previous segment,
273 		 * it is probably a retransmit.
274 		 */
275 		if (tp->ecn_flags & TCP_ECN_SEEN)
276 			tcp_enter_quickack_mode(sk, 2);
277 		break;
278 	case INET_ECN_CE:
279 		if (tcp_ca_needs_ecn(sk))
280 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
281 
282 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
283 			/* Better not delay acks, sender can have a very low cwnd */
284 			tcp_enter_quickack_mode(sk, 2);
285 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
286 		}
287 		tp->ecn_flags |= TCP_ECN_SEEN;
288 		break;
289 	default:
290 		if (tcp_ca_needs_ecn(sk))
291 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
292 		tp->ecn_flags |= TCP_ECN_SEEN;
293 		break;
294 	}
295 }
296 
297 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
298 {
299 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
300 		__tcp_ecn_check_ce(sk, skb);
301 }
302 
303 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
304 {
305 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
306 		tp->ecn_flags &= ~TCP_ECN_OK;
307 }
308 
309 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
310 {
311 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
312 		tp->ecn_flags &= ~TCP_ECN_OK;
313 }
314 
315 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
316 {
317 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
318 		return true;
319 	return false;
320 }
321 
322 /* Buffer size and advertised window tuning.
323  *
324  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
325  */
326 
327 static void tcp_sndbuf_expand(struct sock *sk)
328 {
329 	const struct tcp_sock *tp = tcp_sk(sk);
330 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
331 	int sndmem, per_mss;
332 	u32 nr_segs;
333 
334 	/* Worst case is non GSO/TSO : each frame consumes one skb
335 	 * and skb->head is kmalloced using power of two area of memory
336 	 */
337 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
338 		  MAX_TCP_HEADER +
339 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
340 
341 	per_mss = roundup_pow_of_two(per_mss) +
342 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
343 
344 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
345 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
346 
347 	/* Fast Recovery (RFC 5681 3.2) :
348 	 * Cubic needs 1.7 factor, rounded to 2 to include
349 	 * extra cushion (application might react slowly to EPOLLOUT)
350 	 */
351 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
352 	sndmem *= nr_segs * per_mss;
353 
354 	if (sk->sk_sndbuf < sndmem)
355 		sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
356 }
357 
358 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
359  *
360  * All tcp_full_space() is split to two parts: "network" buffer, allocated
361  * forward and advertised in receiver window (tp->rcv_wnd) and
362  * "application buffer", required to isolate scheduling/application
363  * latencies from network.
364  * window_clamp is maximal advertised window. It can be less than
365  * tcp_full_space(), in this case tcp_full_space() - window_clamp
366  * is reserved for "application" buffer. The less window_clamp is
367  * the smoother our behaviour from viewpoint of network, but the lower
368  * throughput and the higher sensitivity of the connection to losses. 8)
369  *
370  * rcv_ssthresh is more strict window_clamp used at "slow start"
371  * phase to predict further behaviour of this connection.
372  * It is used for two goals:
373  * - to enforce header prediction at sender, even when application
374  *   requires some significant "application buffer". It is check #1.
375  * - to prevent pruning of receive queue because of misprediction
376  *   of receiver window. Check #2.
377  *
378  * The scheme does not work when sender sends good segments opening
379  * window and then starts to feed us spaghetti. But it should work
380  * in common situations. Otherwise, we have to rely on queue collapsing.
381  */
382 
383 /* Slow part of check#2. */
384 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
385 {
386 	struct tcp_sock *tp = tcp_sk(sk);
387 	/* Optimize this! */
388 	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
389 	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
390 
391 	while (tp->rcv_ssthresh <= window) {
392 		if (truesize <= skb->len)
393 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
394 
395 		truesize >>= 1;
396 		window >>= 1;
397 	}
398 	return 0;
399 }
400 
401 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
402 {
403 	struct tcp_sock *tp = tcp_sk(sk);
404 
405 	/* Check #1 */
406 	if (tp->rcv_ssthresh < tp->window_clamp &&
407 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
408 	    !tcp_under_memory_pressure(sk)) {
409 		int incr;
410 
411 		/* Check #2. Increase window, if skb with such overhead
412 		 * will fit to rcvbuf in future.
413 		 */
414 		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
415 			incr = 2 * tp->advmss;
416 		else
417 			incr = __tcp_grow_window(sk, skb);
418 
419 		if (incr) {
420 			incr = max_t(int, incr, 2 * skb->len);
421 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
422 					       tp->window_clamp);
423 			inet_csk(sk)->icsk_ack.quick |= 1;
424 		}
425 	}
426 }
427 
428 /* 3. Tuning rcvbuf, when connection enters established state. */
429 static void tcp_fixup_rcvbuf(struct sock *sk)
430 {
431 	u32 mss = tcp_sk(sk)->advmss;
432 	int rcvmem;
433 
434 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
435 		 tcp_default_init_rwnd(mss);
436 
437 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
438 	 * Allow enough cushion so that sender is not limited by our window
439 	 */
440 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf)
441 		rcvmem <<= 2;
442 
443 	if (sk->sk_rcvbuf < rcvmem)
444 		sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
445 }
446 
447 /* 4. Try to fixup all. It is made immediately after connection enters
448  *    established state.
449  */
450 void tcp_init_buffer_space(struct sock *sk)
451 {
452 	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
453 	struct tcp_sock *tp = tcp_sk(sk);
454 	int maxwin;
455 
456 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
457 		tcp_fixup_rcvbuf(sk);
458 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
459 		tcp_sndbuf_expand(sk);
460 
461 	tp->rcvq_space.space = tp->rcv_wnd;
462 	tcp_mstamp_refresh(tp);
463 	tp->rcvq_space.time = tp->tcp_mstamp;
464 	tp->rcvq_space.seq = tp->copied_seq;
465 
466 	maxwin = tcp_full_space(sk);
467 
468 	if (tp->window_clamp >= maxwin) {
469 		tp->window_clamp = maxwin;
470 
471 		if (tcp_app_win && maxwin > 4 * tp->advmss)
472 			tp->window_clamp = max(maxwin -
473 					       (maxwin >> tcp_app_win),
474 					       4 * tp->advmss);
475 	}
476 
477 	/* Force reservation of one segment. */
478 	if (tcp_app_win &&
479 	    tp->window_clamp > 2 * tp->advmss &&
480 	    tp->window_clamp + tp->advmss > maxwin)
481 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
482 
483 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
484 	tp->snd_cwnd_stamp = tcp_jiffies32;
485 }
486 
487 /* 5. Recalculate window clamp after socket hit its memory bounds. */
488 static void tcp_clamp_window(struct sock *sk)
489 {
490 	struct tcp_sock *tp = tcp_sk(sk);
491 	struct inet_connection_sock *icsk = inet_csk(sk);
492 	struct net *net = sock_net(sk);
493 
494 	icsk->icsk_ack.quick = 0;
495 
496 	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
497 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
498 	    !tcp_under_memory_pressure(sk) &&
499 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
500 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
501 				    net->ipv4.sysctl_tcp_rmem[2]);
502 	}
503 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
504 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
505 }
506 
507 /* Initialize RCV_MSS value.
508  * RCV_MSS is an our guess about MSS used by the peer.
509  * We haven't any direct information about the MSS.
510  * It's better to underestimate the RCV_MSS rather than overestimate.
511  * Overestimations make us ACKing less frequently than needed.
512  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
513  */
514 void tcp_initialize_rcv_mss(struct sock *sk)
515 {
516 	const struct tcp_sock *tp = tcp_sk(sk);
517 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
518 
519 	hint = min(hint, tp->rcv_wnd / 2);
520 	hint = min(hint, TCP_MSS_DEFAULT);
521 	hint = max(hint, TCP_MIN_MSS);
522 
523 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
524 }
525 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
526 
527 /* Receiver "autotuning" code.
528  *
529  * The algorithm for RTT estimation w/o timestamps is based on
530  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
531  * <http://public.lanl.gov/radiant/pubs.html#DRS>
532  *
533  * More detail on this code can be found at
534  * <http://staff.psc.edu/jheffner/>,
535  * though this reference is out of date.  A new paper
536  * is pending.
537  */
538 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
539 {
540 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
541 	long m = sample;
542 
543 	if (new_sample != 0) {
544 		/* If we sample in larger samples in the non-timestamp
545 		 * case, we could grossly overestimate the RTT especially
546 		 * with chatty applications or bulk transfer apps which
547 		 * are stalled on filesystem I/O.
548 		 *
549 		 * Also, since we are only going for a minimum in the
550 		 * non-timestamp case, we do not smooth things out
551 		 * else with timestamps disabled convergence takes too
552 		 * long.
553 		 */
554 		if (!win_dep) {
555 			m -= (new_sample >> 3);
556 			new_sample += m;
557 		} else {
558 			m <<= 3;
559 			if (m < new_sample)
560 				new_sample = m;
561 		}
562 	} else {
563 		/* No previous measure. */
564 		new_sample = m << 3;
565 	}
566 
567 	tp->rcv_rtt_est.rtt_us = new_sample;
568 }
569 
570 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
571 {
572 	u32 delta_us;
573 
574 	if (tp->rcv_rtt_est.time == 0)
575 		goto new_measure;
576 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
577 		return;
578 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
579 	if (!delta_us)
580 		delta_us = 1;
581 	tcp_rcv_rtt_update(tp, delta_us, 1);
582 
583 new_measure:
584 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
585 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
586 }
587 
588 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
589 					  const struct sk_buff *skb)
590 {
591 	struct tcp_sock *tp = tcp_sk(sk);
592 
593 	if (tp->rx_opt.rcv_tsecr &&
594 	    (TCP_SKB_CB(skb)->end_seq -
595 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
596 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
597 		u32 delta_us;
598 
599 		if (!delta)
600 			delta = 1;
601 		delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
602 		tcp_rcv_rtt_update(tp, delta_us, 0);
603 	}
604 }
605 
606 /*
607  * This function should be called every time data is copied to user space.
608  * It calculates the appropriate TCP receive buffer space.
609  */
610 void tcp_rcv_space_adjust(struct sock *sk)
611 {
612 	struct tcp_sock *tp = tcp_sk(sk);
613 	u32 copied;
614 	int time;
615 
616 	trace_tcp_rcv_space_adjust(sk);
617 
618 	tcp_mstamp_refresh(tp);
619 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
620 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
621 		return;
622 
623 	/* Number of bytes copied to user in last RTT */
624 	copied = tp->copied_seq - tp->rcvq_space.seq;
625 	if (copied <= tp->rcvq_space.space)
626 		goto new_measure;
627 
628 	/* A bit of theory :
629 	 * copied = bytes received in previous RTT, our base window
630 	 * To cope with packet losses, we need a 2x factor
631 	 * To cope with slow start, and sender growing its cwin by 100 %
632 	 * every RTT, we need a 4x factor, because the ACK we are sending
633 	 * now is for the next RTT, not the current one :
634 	 * <prev RTT . ><current RTT .. ><next RTT .... >
635 	 */
636 
637 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
638 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
639 		int rcvmem, rcvbuf;
640 		u64 rcvwin, grow;
641 
642 		/* minimal window to cope with packet losses, assuming
643 		 * steady state. Add some cushion because of small variations.
644 		 */
645 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
646 
647 		/* Accommodate for sender rate increase (eg. slow start) */
648 		grow = rcvwin * (copied - tp->rcvq_space.space);
649 		do_div(grow, tp->rcvq_space.space);
650 		rcvwin += (grow << 1);
651 
652 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
653 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
654 			rcvmem += 128;
655 
656 		do_div(rcvwin, tp->advmss);
657 		rcvbuf = min_t(u64, rcvwin * rcvmem,
658 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
659 		if (rcvbuf > sk->sk_rcvbuf) {
660 			sk->sk_rcvbuf = rcvbuf;
661 
662 			/* Make the window clamp follow along.  */
663 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
664 		}
665 	}
666 	tp->rcvq_space.space = copied;
667 
668 new_measure:
669 	tp->rcvq_space.seq = tp->copied_seq;
670 	tp->rcvq_space.time = tp->tcp_mstamp;
671 }
672 
673 /* There is something which you must keep in mind when you analyze the
674  * behavior of the tp->ato delayed ack timeout interval.  When a
675  * connection starts up, we want to ack as quickly as possible.  The
676  * problem is that "good" TCP's do slow start at the beginning of data
677  * transmission.  The means that until we send the first few ACK's the
678  * sender will sit on his end and only queue most of his data, because
679  * he can only send snd_cwnd unacked packets at any given time.  For
680  * each ACK we send, he increments snd_cwnd and transmits more of his
681  * queue.  -DaveM
682  */
683 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
684 {
685 	struct tcp_sock *tp = tcp_sk(sk);
686 	struct inet_connection_sock *icsk = inet_csk(sk);
687 	u32 now;
688 
689 	inet_csk_schedule_ack(sk);
690 
691 	tcp_measure_rcv_mss(sk, skb);
692 
693 	tcp_rcv_rtt_measure(tp);
694 
695 	now = tcp_jiffies32;
696 
697 	if (!icsk->icsk_ack.ato) {
698 		/* The _first_ data packet received, initialize
699 		 * delayed ACK engine.
700 		 */
701 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
702 		icsk->icsk_ack.ato = TCP_ATO_MIN;
703 	} else {
704 		int m = now - icsk->icsk_ack.lrcvtime;
705 
706 		if (m <= TCP_ATO_MIN / 2) {
707 			/* The fastest case is the first. */
708 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
709 		} else if (m < icsk->icsk_ack.ato) {
710 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
711 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
712 				icsk->icsk_ack.ato = icsk->icsk_rto;
713 		} else if (m > icsk->icsk_rto) {
714 			/* Too long gap. Apparently sender failed to
715 			 * restart window, so that we send ACKs quickly.
716 			 */
717 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
718 			sk_mem_reclaim(sk);
719 		}
720 	}
721 	icsk->icsk_ack.lrcvtime = now;
722 
723 	tcp_ecn_check_ce(sk, skb);
724 
725 	if (skb->len >= 128)
726 		tcp_grow_window(sk, skb);
727 }
728 
729 /* Called to compute a smoothed rtt estimate. The data fed to this
730  * routine either comes from timestamps, or from segments that were
731  * known _not_ to have been retransmitted [see Karn/Partridge
732  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
733  * piece by Van Jacobson.
734  * NOTE: the next three routines used to be one big routine.
735  * To save cycles in the RFC 1323 implementation it was better to break
736  * it up into three procedures. -- erics
737  */
738 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
739 {
740 	struct tcp_sock *tp = tcp_sk(sk);
741 	long m = mrtt_us; /* RTT */
742 	u32 srtt = tp->srtt_us;
743 
744 	/*	The following amusing code comes from Jacobson's
745 	 *	article in SIGCOMM '88.  Note that rtt and mdev
746 	 *	are scaled versions of rtt and mean deviation.
747 	 *	This is designed to be as fast as possible
748 	 *	m stands for "measurement".
749 	 *
750 	 *	On a 1990 paper the rto value is changed to:
751 	 *	RTO = rtt + 4 * mdev
752 	 *
753 	 * Funny. This algorithm seems to be very broken.
754 	 * These formulae increase RTO, when it should be decreased, increase
755 	 * too slowly, when it should be increased quickly, decrease too quickly
756 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
757 	 * does not matter how to _calculate_ it. Seems, it was trap
758 	 * that VJ failed to avoid. 8)
759 	 */
760 	if (srtt != 0) {
761 		m -= (srtt >> 3);	/* m is now error in rtt est */
762 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
763 		if (m < 0) {
764 			m = -m;		/* m is now abs(error) */
765 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
766 			/* This is similar to one of Eifel findings.
767 			 * Eifel blocks mdev updates when rtt decreases.
768 			 * This solution is a bit different: we use finer gain
769 			 * for mdev in this case (alpha*beta).
770 			 * Like Eifel it also prevents growth of rto,
771 			 * but also it limits too fast rto decreases,
772 			 * happening in pure Eifel.
773 			 */
774 			if (m > 0)
775 				m >>= 3;
776 		} else {
777 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
778 		}
779 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
780 		if (tp->mdev_us > tp->mdev_max_us) {
781 			tp->mdev_max_us = tp->mdev_us;
782 			if (tp->mdev_max_us > tp->rttvar_us)
783 				tp->rttvar_us = tp->mdev_max_us;
784 		}
785 		if (after(tp->snd_una, tp->rtt_seq)) {
786 			if (tp->mdev_max_us < tp->rttvar_us)
787 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
788 			tp->rtt_seq = tp->snd_nxt;
789 			tp->mdev_max_us = tcp_rto_min_us(sk);
790 		}
791 	} else {
792 		/* no previous measure. */
793 		srtt = m << 3;		/* take the measured time to be rtt */
794 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
795 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
796 		tp->mdev_max_us = tp->rttvar_us;
797 		tp->rtt_seq = tp->snd_nxt;
798 	}
799 	tp->srtt_us = max(1U, srtt);
800 }
801 
802 static void tcp_update_pacing_rate(struct sock *sk)
803 {
804 	const struct tcp_sock *tp = tcp_sk(sk);
805 	u64 rate;
806 
807 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
808 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
809 
810 	/* current rate is (cwnd * mss) / srtt
811 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
812 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
813 	 *
814 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
815 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
816 	 *	 end of slow start and should slow down.
817 	 */
818 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
819 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
820 	else
821 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
822 
823 	rate *= max(tp->snd_cwnd, tp->packets_out);
824 
825 	if (likely(tp->srtt_us))
826 		do_div(rate, tp->srtt_us);
827 
828 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
829 	 * without any lock. We want to make sure compiler wont store
830 	 * intermediate values in this location.
831 	 */
832 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
833 					     sk->sk_max_pacing_rate));
834 }
835 
836 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
837  * routine referred to above.
838  */
839 static void tcp_set_rto(struct sock *sk)
840 {
841 	const struct tcp_sock *tp = tcp_sk(sk);
842 	/* Old crap is replaced with new one. 8)
843 	 *
844 	 * More seriously:
845 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
846 	 *    It cannot be less due to utterly erratic ACK generation made
847 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
848 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
849 	 *    is invisible. Actually, Linux-2.4 also generates erratic
850 	 *    ACKs in some circumstances.
851 	 */
852 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
853 
854 	/* 2. Fixups made earlier cannot be right.
855 	 *    If we do not estimate RTO correctly without them,
856 	 *    all the algo is pure shit and should be replaced
857 	 *    with correct one. It is exactly, which we pretend to do.
858 	 */
859 
860 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
861 	 * guarantees that rto is higher.
862 	 */
863 	tcp_bound_rto(sk);
864 }
865 
866 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
867 {
868 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
869 
870 	if (!cwnd)
871 		cwnd = TCP_INIT_CWND;
872 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
873 }
874 
875 /* Take a notice that peer is sending D-SACKs */
876 static void tcp_dsack_seen(struct tcp_sock *tp)
877 {
878 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
879 	tp->rack.dsack_seen = 1;
880 }
881 
882 /* It's reordering when higher sequence was delivered (i.e. sacked) before
883  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
884  * distance is approximated in full-mss packet distance ("reordering").
885  */
886 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
887 				      const int ts)
888 {
889 	struct tcp_sock *tp = tcp_sk(sk);
890 	const u32 mss = tp->mss_cache;
891 	u32 fack, metric;
892 
893 	fack = tcp_highest_sack_seq(tp);
894 	if (!before(low_seq, fack))
895 		return;
896 
897 	metric = fack - low_seq;
898 	if ((metric > tp->reordering * mss) && mss) {
899 #if FASTRETRANS_DEBUG > 1
900 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
901 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
902 			 tp->reordering,
903 			 0,
904 			 tp->sacked_out,
905 			 tp->undo_marker ? tp->undo_retrans : 0);
906 #endif
907 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
908 				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
909 	}
910 
911 	tp->rack.reord = 1;
912 	/* This exciting event is worth to be remembered. 8) */
913 	NET_INC_STATS(sock_net(sk),
914 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
915 }
916 
917 /* This must be called before lost_out is incremented */
918 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
919 {
920 	if (!tp->retransmit_skb_hint ||
921 	    before(TCP_SKB_CB(skb)->seq,
922 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
923 		tp->retransmit_skb_hint = skb;
924 }
925 
926 /* Sum the number of packets on the wire we have marked as lost.
927  * There are two cases we care about here:
928  * a) Packet hasn't been marked lost (nor retransmitted),
929  *    and this is the first loss.
930  * b) Packet has been marked both lost and retransmitted,
931  *    and this means we think it was lost again.
932  */
933 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
934 {
935 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
936 
937 	if (!(sacked & TCPCB_LOST) ||
938 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
939 		tp->lost += tcp_skb_pcount(skb);
940 }
941 
942 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
943 {
944 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
945 		tcp_verify_retransmit_hint(tp, skb);
946 
947 		tp->lost_out += tcp_skb_pcount(skb);
948 		tcp_sum_lost(tp, skb);
949 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
950 	}
951 }
952 
953 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
954 {
955 	tcp_verify_retransmit_hint(tp, skb);
956 
957 	tcp_sum_lost(tp, skb);
958 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
959 		tp->lost_out += tcp_skb_pcount(skb);
960 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
961 	}
962 }
963 
964 /* This procedure tags the retransmission queue when SACKs arrive.
965  *
966  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
967  * Packets in queue with these bits set are counted in variables
968  * sacked_out, retrans_out and lost_out, correspondingly.
969  *
970  * Valid combinations are:
971  * Tag  InFlight	Description
972  * 0	1		- orig segment is in flight.
973  * S	0		- nothing flies, orig reached receiver.
974  * L	0		- nothing flies, orig lost by net.
975  * R	2		- both orig and retransmit are in flight.
976  * L|R	1		- orig is lost, retransmit is in flight.
977  * S|R  1		- orig reached receiver, retrans is still in flight.
978  * (L|S|R is logically valid, it could occur when L|R is sacked,
979  *  but it is equivalent to plain S and code short-curcuits it to S.
980  *  L|S is logically invalid, it would mean -1 packet in flight 8))
981  *
982  * These 6 states form finite state machine, controlled by the following events:
983  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
984  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
985  * 3. Loss detection event of two flavors:
986  *	A. Scoreboard estimator decided the packet is lost.
987  *	   A'. Reno "three dupacks" marks head of queue lost.
988  *	B. SACK arrives sacking SND.NXT at the moment, when the
989  *	   segment was retransmitted.
990  * 4. D-SACK added new rule: D-SACK changes any tag to S.
991  *
992  * It is pleasant to note, that state diagram turns out to be commutative,
993  * so that we are allowed not to be bothered by order of our actions,
994  * when multiple events arrive simultaneously. (see the function below).
995  *
996  * Reordering detection.
997  * --------------------
998  * Reordering metric is maximal distance, which a packet can be displaced
999  * in packet stream. With SACKs we can estimate it:
1000  *
1001  * 1. SACK fills old hole and the corresponding segment was not
1002  *    ever retransmitted -> reordering. Alas, we cannot use it
1003  *    when segment was retransmitted.
1004  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1005  *    for retransmitted and already SACKed segment -> reordering..
1006  * Both of these heuristics are not used in Loss state, when we cannot
1007  * account for retransmits accurately.
1008  *
1009  * SACK block validation.
1010  * ----------------------
1011  *
1012  * SACK block range validation checks that the received SACK block fits to
1013  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1014  * Note that SND.UNA is not included to the range though being valid because
1015  * it means that the receiver is rather inconsistent with itself reporting
1016  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1017  * perfectly valid, however, in light of RFC2018 which explicitly states
1018  * that "SACK block MUST reflect the newest segment.  Even if the newest
1019  * segment is going to be discarded ...", not that it looks very clever
1020  * in case of head skb. Due to potentional receiver driven attacks, we
1021  * choose to avoid immediate execution of a walk in write queue due to
1022  * reneging and defer head skb's loss recovery to standard loss recovery
1023  * procedure that will eventually trigger (nothing forbids us doing this).
1024  *
1025  * Implements also blockage to start_seq wrap-around. Problem lies in the
1026  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1027  * there's no guarantee that it will be before snd_nxt (n). The problem
1028  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1029  * wrap (s_w):
1030  *
1031  *         <- outs wnd ->                          <- wrapzone ->
1032  *         u     e      n                         u_w   e_w  s n_w
1033  *         |     |      |                          |     |   |  |
1034  * |<------------+------+----- TCP seqno space --------------+---------->|
1035  * ...-- <2^31 ->|                                           |<--------...
1036  * ...---- >2^31 ------>|                                    |<--------...
1037  *
1038  * Current code wouldn't be vulnerable but it's better still to discard such
1039  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1040  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1041  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1042  * equal to the ideal case (infinite seqno space without wrap caused issues).
1043  *
1044  * With D-SACK the lower bound is extended to cover sequence space below
1045  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1046  * again, D-SACK block must not to go across snd_una (for the same reason as
1047  * for the normal SACK blocks, explained above). But there all simplicity
1048  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1049  * fully below undo_marker they do not affect behavior in anyway and can
1050  * therefore be safely ignored. In rare cases (which are more or less
1051  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1052  * fragmentation and packet reordering past skb's retransmission. To consider
1053  * them correctly, the acceptable range must be extended even more though
1054  * the exact amount is rather hard to quantify. However, tp->max_window can
1055  * be used as an exaggerated estimate.
1056  */
1057 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1058 				   u32 start_seq, u32 end_seq)
1059 {
1060 	/* Too far in future, or reversed (interpretation is ambiguous) */
1061 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1062 		return false;
1063 
1064 	/* Nasty start_seq wrap-around check (see comments above) */
1065 	if (!before(start_seq, tp->snd_nxt))
1066 		return false;
1067 
1068 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1069 	 * start_seq == snd_una is non-sensical (see comments above)
1070 	 */
1071 	if (after(start_seq, tp->snd_una))
1072 		return true;
1073 
1074 	if (!is_dsack || !tp->undo_marker)
1075 		return false;
1076 
1077 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1078 	if (after(end_seq, tp->snd_una))
1079 		return false;
1080 
1081 	if (!before(start_seq, tp->undo_marker))
1082 		return true;
1083 
1084 	/* Too old */
1085 	if (!after(end_seq, tp->undo_marker))
1086 		return false;
1087 
1088 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1089 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1090 	 */
1091 	return !before(start_seq, end_seq - tp->max_window);
1092 }
1093 
1094 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1095 			    struct tcp_sack_block_wire *sp, int num_sacks,
1096 			    u32 prior_snd_una)
1097 {
1098 	struct tcp_sock *tp = tcp_sk(sk);
1099 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1100 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1101 	bool dup_sack = false;
1102 
1103 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1104 		dup_sack = true;
1105 		tcp_dsack_seen(tp);
1106 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1107 	} else if (num_sacks > 1) {
1108 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1109 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1110 
1111 		if (!after(end_seq_0, end_seq_1) &&
1112 		    !before(start_seq_0, start_seq_1)) {
1113 			dup_sack = true;
1114 			tcp_dsack_seen(tp);
1115 			NET_INC_STATS(sock_net(sk),
1116 					LINUX_MIB_TCPDSACKOFORECV);
1117 		}
1118 	}
1119 
1120 	/* D-SACK for already forgotten data... Do dumb counting. */
1121 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1122 	    !after(end_seq_0, prior_snd_una) &&
1123 	    after(end_seq_0, tp->undo_marker))
1124 		tp->undo_retrans--;
1125 
1126 	return dup_sack;
1127 }
1128 
1129 struct tcp_sacktag_state {
1130 	u32	reord;
1131 	/* Timestamps for earliest and latest never-retransmitted segment
1132 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1133 	 * but congestion control should still get an accurate delay signal.
1134 	 */
1135 	u64	first_sackt;
1136 	u64	last_sackt;
1137 	struct rate_sample *rate;
1138 	int	flag;
1139 	unsigned int mss_now;
1140 };
1141 
1142 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1143  * the incoming SACK may not exactly match but we can find smaller MSS
1144  * aligned portion of it that matches. Therefore we might need to fragment
1145  * which may fail and creates some hassle (caller must handle error case
1146  * returns).
1147  *
1148  * FIXME: this could be merged to shift decision code
1149  */
1150 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1151 				  u32 start_seq, u32 end_seq)
1152 {
1153 	int err;
1154 	bool in_sack;
1155 	unsigned int pkt_len;
1156 	unsigned int mss;
1157 
1158 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1159 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1160 
1161 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1162 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1163 		mss = tcp_skb_mss(skb);
1164 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1165 
1166 		if (!in_sack) {
1167 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1168 			if (pkt_len < mss)
1169 				pkt_len = mss;
1170 		} else {
1171 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1172 			if (pkt_len < mss)
1173 				return -EINVAL;
1174 		}
1175 
1176 		/* Round if necessary so that SACKs cover only full MSSes
1177 		 * and/or the remaining small portion (if present)
1178 		 */
1179 		if (pkt_len > mss) {
1180 			unsigned int new_len = (pkt_len / mss) * mss;
1181 			if (!in_sack && new_len < pkt_len)
1182 				new_len += mss;
1183 			pkt_len = new_len;
1184 		}
1185 
1186 		if (pkt_len >= skb->len && !in_sack)
1187 			return 0;
1188 
1189 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1190 				   pkt_len, mss, GFP_ATOMIC);
1191 		if (err < 0)
1192 			return err;
1193 	}
1194 
1195 	return in_sack;
1196 }
1197 
1198 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1199 static u8 tcp_sacktag_one(struct sock *sk,
1200 			  struct tcp_sacktag_state *state, u8 sacked,
1201 			  u32 start_seq, u32 end_seq,
1202 			  int dup_sack, int pcount,
1203 			  u64 xmit_time)
1204 {
1205 	struct tcp_sock *tp = tcp_sk(sk);
1206 
1207 	/* Account D-SACK for retransmitted packet. */
1208 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1209 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1210 		    after(end_seq, tp->undo_marker))
1211 			tp->undo_retrans--;
1212 		if ((sacked & TCPCB_SACKED_ACKED) &&
1213 		    before(start_seq, state->reord))
1214 				state->reord = start_seq;
1215 	}
1216 
1217 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1218 	if (!after(end_seq, tp->snd_una))
1219 		return sacked;
1220 
1221 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1222 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1223 
1224 		if (sacked & TCPCB_SACKED_RETRANS) {
1225 			/* If the segment is not tagged as lost,
1226 			 * we do not clear RETRANS, believing
1227 			 * that retransmission is still in flight.
1228 			 */
1229 			if (sacked & TCPCB_LOST) {
1230 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1231 				tp->lost_out -= pcount;
1232 				tp->retrans_out -= pcount;
1233 			}
1234 		} else {
1235 			if (!(sacked & TCPCB_RETRANS)) {
1236 				/* New sack for not retransmitted frame,
1237 				 * which was in hole. It is reordering.
1238 				 */
1239 				if (before(start_seq,
1240 					   tcp_highest_sack_seq(tp)) &&
1241 				    before(start_seq, state->reord))
1242 					state->reord = start_seq;
1243 
1244 				if (!after(end_seq, tp->high_seq))
1245 					state->flag |= FLAG_ORIG_SACK_ACKED;
1246 				if (state->first_sackt == 0)
1247 					state->first_sackt = xmit_time;
1248 				state->last_sackt = xmit_time;
1249 			}
1250 
1251 			if (sacked & TCPCB_LOST) {
1252 				sacked &= ~TCPCB_LOST;
1253 				tp->lost_out -= pcount;
1254 			}
1255 		}
1256 
1257 		sacked |= TCPCB_SACKED_ACKED;
1258 		state->flag |= FLAG_DATA_SACKED;
1259 		tp->sacked_out += pcount;
1260 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1261 
1262 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1263 		if (tp->lost_skb_hint &&
1264 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1265 			tp->lost_cnt_hint += pcount;
1266 	}
1267 
1268 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1269 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1270 	 * are accounted above as well.
1271 	 */
1272 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1273 		sacked &= ~TCPCB_SACKED_RETRANS;
1274 		tp->retrans_out -= pcount;
1275 	}
1276 
1277 	return sacked;
1278 }
1279 
1280 /* Shift newly-SACKed bytes from this skb to the immediately previous
1281  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1282  */
1283 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1284 			    struct sk_buff *skb,
1285 			    struct tcp_sacktag_state *state,
1286 			    unsigned int pcount, int shifted, int mss,
1287 			    bool dup_sack)
1288 {
1289 	struct tcp_sock *tp = tcp_sk(sk);
1290 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1291 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1292 
1293 	BUG_ON(!pcount);
1294 
1295 	/* Adjust counters and hints for the newly sacked sequence
1296 	 * range but discard the return value since prev is already
1297 	 * marked. We must tag the range first because the seq
1298 	 * advancement below implicitly advances
1299 	 * tcp_highest_sack_seq() when skb is highest_sack.
1300 	 */
1301 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1302 			start_seq, end_seq, dup_sack, pcount,
1303 			skb->skb_mstamp);
1304 	tcp_rate_skb_delivered(sk, skb, state->rate);
1305 
1306 	if (skb == tp->lost_skb_hint)
1307 		tp->lost_cnt_hint += pcount;
1308 
1309 	TCP_SKB_CB(prev)->end_seq += shifted;
1310 	TCP_SKB_CB(skb)->seq += shifted;
1311 
1312 	tcp_skb_pcount_add(prev, pcount);
1313 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1314 	tcp_skb_pcount_add(skb, -pcount);
1315 
1316 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1317 	 * in theory this shouldn't be necessary but as long as DSACK
1318 	 * code can come after this skb later on it's better to keep
1319 	 * setting gso_size to something.
1320 	 */
1321 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1322 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1323 
1324 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1325 	if (tcp_skb_pcount(skb) <= 1)
1326 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1327 
1328 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1329 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1330 
1331 	if (skb->len > 0) {
1332 		BUG_ON(!tcp_skb_pcount(skb));
1333 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1334 		return false;
1335 	}
1336 
1337 	/* Whole SKB was eaten :-) */
1338 
1339 	if (skb == tp->retransmit_skb_hint)
1340 		tp->retransmit_skb_hint = prev;
1341 	if (skb == tp->lost_skb_hint) {
1342 		tp->lost_skb_hint = prev;
1343 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1344 	}
1345 
1346 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1347 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1348 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1349 		TCP_SKB_CB(prev)->end_seq++;
1350 
1351 	if (skb == tcp_highest_sack(sk))
1352 		tcp_advance_highest_sack(sk, skb);
1353 
1354 	tcp_skb_collapse_tstamp(prev, skb);
1355 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1356 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1357 
1358 	tcp_rtx_queue_unlink_and_free(skb, sk);
1359 
1360 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1361 
1362 	return true;
1363 }
1364 
1365 /* I wish gso_size would have a bit more sane initialization than
1366  * something-or-zero which complicates things
1367  */
1368 static int tcp_skb_seglen(const struct sk_buff *skb)
1369 {
1370 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1371 }
1372 
1373 /* Shifting pages past head area doesn't work */
1374 static int skb_can_shift(const struct sk_buff *skb)
1375 {
1376 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1377 }
1378 
1379 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1380  * skb.
1381  */
1382 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1383 					  struct tcp_sacktag_state *state,
1384 					  u32 start_seq, u32 end_seq,
1385 					  bool dup_sack)
1386 {
1387 	struct tcp_sock *tp = tcp_sk(sk);
1388 	struct sk_buff *prev;
1389 	int mss;
1390 	int pcount = 0;
1391 	int len;
1392 	int in_sack;
1393 
1394 	/* Normally R but no L won't result in plain S */
1395 	if (!dup_sack &&
1396 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1397 		goto fallback;
1398 	if (!skb_can_shift(skb))
1399 		goto fallback;
1400 	/* This frame is about to be dropped (was ACKed). */
1401 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1402 		goto fallback;
1403 
1404 	/* Can only happen with delayed DSACK + discard craziness */
1405 	prev = skb_rb_prev(skb);
1406 	if (!prev)
1407 		goto fallback;
1408 
1409 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1410 		goto fallback;
1411 
1412 	if (!tcp_skb_can_collapse_to(prev))
1413 		goto fallback;
1414 
1415 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1416 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1417 
1418 	if (in_sack) {
1419 		len = skb->len;
1420 		pcount = tcp_skb_pcount(skb);
1421 		mss = tcp_skb_seglen(skb);
1422 
1423 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1424 		 * drop this restriction as unnecessary
1425 		 */
1426 		if (mss != tcp_skb_seglen(prev))
1427 			goto fallback;
1428 	} else {
1429 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1430 			goto noop;
1431 		/* CHECKME: This is non-MSS split case only?, this will
1432 		 * cause skipped skbs due to advancing loop btw, original
1433 		 * has that feature too
1434 		 */
1435 		if (tcp_skb_pcount(skb) <= 1)
1436 			goto noop;
1437 
1438 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1439 		if (!in_sack) {
1440 			/* TODO: head merge to next could be attempted here
1441 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1442 			 * though it might not be worth of the additional hassle
1443 			 *
1444 			 * ...we can probably just fallback to what was done
1445 			 * previously. We could try merging non-SACKed ones
1446 			 * as well but it probably isn't going to buy off
1447 			 * because later SACKs might again split them, and
1448 			 * it would make skb timestamp tracking considerably
1449 			 * harder problem.
1450 			 */
1451 			goto fallback;
1452 		}
1453 
1454 		len = end_seq - TCP_SKB_CB(skb)->seq;
1455 		BUG_ON(len < 0);
1456 		BUG_ON(len > skb->len);
1457 
1458 		/* MSS boundaries should be honoured or else pcount will
1459 		 * severely break even though it makes things bit trickier.
1460 		 * Optimize common case to avoid most of the divides
1461 		 */
1462 		mss = tcp_skb_mss(skb);
1463 
1464 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1465 		 * drop this restriction as unnecessary
1466 		 */
1467 		if (mss != tcp_skb_seglen(prev))
1468 			goto fallback;
1469 
1470 		if (len == mss) {
1471 			pcount = 1;
1472 		} else if (len < mss) {
1473 			goto noop;
1474 		} else {
1475 			pcount = len / mss;
1476 			len = pcount * mss;
1477 		}
1478 	}
1479 
1480 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1481 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1482 		goto fallback;
1483 
1484 	if (!skb_shift(prev, skb, len))
1485 		goto fallback;
1486 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1487 		goto out;
1488 
1489 	/* Hole filled allows collapsing with the next as well, this is very
1490 	 * useful when hole on every nth skb pattern happens
1491 	 */
1492 	skb = skb_rb_next(prev);
1493 	if (!skb)
1494 		goto out;
1495 
1496 	if (!skb_can_shift(skb) ||
1497 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1498 	    (mss != tcp_skb_seglen(skb)))
1499 		goto out;
1500 
1501 	len = skb->len;
1502 	if (skb_shift(prev, skb, len)) {
1503 		pcount += tcp_skb_pcount(skb);
1504 		tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb),
1505 				len, mss, 0);
1506 	}
1507 
1508 out:
1509 	return prev;
1510 
1511 noop:
1512 	return skb;
1513 
1514 fallback:
1515 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1516 	return NULL;
1517 }
1518 
1519 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1520 					struct tcp_sack_block *next_dup,
1521 					struct tcp_sacktag_state *state,
1522 					u32 start_seq, u32 end_seq,
1523 					bool dup_sack_in)
1524 {
1525 	struct tcp_sock *tp = tcp_sk(sk);
1526 	struct sk_buff *tmp;
1527 
1528 	skb_rbtree_walk_from(skb) {
1529 		int in_sack = 0;
1530 		bool dup_sack = dup_sack_in;
1531 
1532 		/* queue is in-order => we can short-circuit the walk early */
1533 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1534 			break;
1535 
1536 		if (next_dup  &&
1537 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1538 			in_sack = tcp_match_skb_to_sack(sk, skb,
1539 							next_dup->start_seq,
1540 							next_dup->end_seq);
1541 			if (in_sack > 0)
1542 				dup_sack = true;
1543 		}
1544 
1545 		/* skb reference here is a bit tricky to get right, since
1546 		 * shifting can eat and free both this skb and the next,
1547 		 * so not even _safe variant of the loop is enough.
1548 		 */
1549 		if (in_sack <= 0) {
1550 			tmp = tcp_shift_skb_data(sk, skb, state,
1551 						 start_seq, end_seq, dup_sack);
1552 			if (tmp) {
1553 				if (tmp != skb) {
1554 					skb = tmp;
1555 					continue;
1556 				}
1557 
1558 				in_sack = 0;
1559 			} else {
1560 				in_sack = tcp_match_skb_to_sack(sk, skb,
1561 								start_seq,
1562 								end_seq);
1563 			}
1564 		}
1565 
1566 		if (unlikely(in_sack < 0))
1567 			break;
1568 
1569 		if (in_sack) {
1570 			TCP_SKB_CB(skb)->sacked =
1571 				tcp_sacktag_one(sk,
1572 						state,
1573 						TCP_SKB_CB(skb)->sacked,
1574 						TCP_SKB_CB(skb)->seq,
1575 						TCP_SKB_CB(skb)->end_seq,
1576 						dup_sack,
1577 						tcp_skb_pcount(skb),
1578 						skb->skb_mstamp);
1579 			tcp_rate_skb_delivered(sk, skb, state->rate);
1580 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1581 				list_del_init(&skb->tcp_tsorted_anchor);
1582 
1583 			if (!before(TCP_SKB_CB(skb)->seq,
1584 				    tcp_highest_sack_seq(tp)))
1585 				tcp_advance_highest_sack(sk, skb);
1586 		}
1587 	}
1588 	return skb;
1589 }
1590 
1591 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk,
1592 					   struct tcp_sacktag_state *state,
1593 					   u32 seq)
1594 {
1595 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1596 	struct sk_buff *skb;
1597 
1598 	while (*p) {
1599 		parent = *p;
1600 		skb = rb_to_skb(parent);
1601 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1602 			p = &parent->rb_left;
1603 			continue;
1604 		}
1605 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1606 			p = &parent->rb_right;
1607 			continue;
1608 		}
1609 		return skb;
1610 	}
1611 	return NULL;
1612 }
1613 
1614 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1615 					struct tcp_sacktag_state *state,
1616 					u32 skip_to_seq)
1617 {
1618 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1619 		return skb;
1620 
1621 	return tcp_sacktag_bsearch(sk, state, skip_to_seq);
1622 }
1623 
1624 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1625 						struct sock *sk,
1626 						struct tcp_sack_block *next_dup,
1627 						struct tcp_sacktag_state *state,
1628 						u32 skip_to_seq)
1629 {
1630 	if (!next_dup)
1631 		return skb;
1632 
1633 	if (before(next_dup->start_seq, skip_to_seq)) {
1634 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1635 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1636 				       next_dup->start_seq, next_dup->end_seq,
1637 				       1);
1638 	}
1639 
1640 	return skb;
1641 }
1642 
1643 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1644 {
1645 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1646 }
1647 
1648 static int
1649 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1650 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1651 {
1652 	struct tcp_sock *tp = tcp_sk(sk);
1653 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1654 				    TCP_SKB_CB(ack_skb)->sacked);
1655 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1656 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1657 	struct tcp_sack_block *cache;
1658 	struct sk_buff *skb;
1659 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1660 	int used_sacks;
1661 	bool found_dup_sack = false;
1662 	int i, j;
1663 	int first_sack_index;
1664 
1665 	state->flag = 0;
1666 	state->reord = tp->snd_nxt;
1667 
1668 	if (!tp->sacked_out)
1669 		tcp_highest_sack_reset(sk);
1670 
1671 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1672 					 num_sacks, prior_snd_una);
1673 	if (found_dup_sack) {
1674 		state->flag |= FLAG_DSACKING_ACK;
1675 		tp->delivered++; /* A spurious retransmission is delivered */
1676 	}
1677 
1678 	/* Eliminate too old ACKs, but take into
1679 	 * account more or less fresh ones, they can
1680 	 * contain valid SACK info.
1681 	 */
1682 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1683 		return 0;
1684 
1685 	if (!tp->packets_out)
1686 		goto out;
1687 
1688 	used_sacks = 0;
1689 	first_sack_index = 0;
1690 	for (i = 0; i < num_sacks; i++) {
1691 		bool dup_sack = !i && found_dup_sack;
1692 
1693 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1694 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1695 
1696 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1697 					    sp[used_sacks].start_seq,
1698 					    sp[used_sacks].end_seq)) {
1699 			int mib_idx;
1700 
1701 			if (dup_sack) {
1702 				if (!tp->undo_marker)
1703 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1704 				else
1705 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1706 			} else {
1707 				/* Don't count olds caused by ACK reordering */
1708 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1709 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1710 					continue;
1711 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1712 			}
1713 
1714 			NET_INC_STATS(sock_net(sk), mib_idx);
1715 			if (i == 0)
1716 				first_sack_index = -1;
1717 			continue;
1718 		}
1719 
1720 		/* Ignore very old stuff early */
1721 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1722 			continue;
1723 
1724 		used_sacks++;
1725 	}
1726 
1727 	/* order SACK blocks to allow in order walk of the retrans queue */
1728 	for (i = used_sacks - 1; i > 0; i--) {
1729 		for (j = 0; j < i; j++) {
1730 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1731 				swap(sp[j], sp[j + 1]);
1732 
1733 				/* Track where the first SACK block goes to */
1734 				if (j == first_sack_index)
1735 					first_sack_index = j + 1;
1736 			}
1737 		}
1738 	}
1739 
1740 	state->mss_now = tcp_current_mss(sk);
1741 	skb = NULL;
1742 	i = 0;
1743 
1744 	if (!tp->sacked_out) {
1745 		/* It's already past, so skip checking against it */
1746 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1747 	} else {
1748 		cache = tp->recv_sack_cache;
1749 		/* Skip empty blocks in at head of the cache */
1750 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1751 		       !cache->end_seq)
1752 			cache++;
1753 	}
1754 
1755 	while (i < used_sacks) {
1756 		u32 start_seq = sp[i].start_seq;
1757 		u32 end_seq = sp[i].end_seq;
1758 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1759 		struct tcp_sack_block *next_dup = NULL;
1760 
1761 		if (found_dup_sack && ((i + 1) == first_sack_index))
1762 			next_dup = &sp[i + 1];
1763 
1764 		/* Skip too early cached blocks */
1765 		while (tcp_sack_cache_ok(tp, cache) &&
1766 		       !before(start_seq, cache->end_seq))
1767 			cache++;
1768 
1769 		/* Can skip some work by looking recv_sack_cache? */
1770 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1771 		    after(end_seq, cache->start_seq)) {
1772 
1773 			/* Head todo? */
1774 			if (before(start_seq, cache->start_seq)) {
1775 				skb = tcp_sacktag_skip(skb, sk, state,
1776 						       start_seq);
1777 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1778 						       state,
1779 						       start_seq,
1780 						       cache->start_seq,
1781 						       dup_sack);
1782 			}
1783 
1784 			/* Rest of the block already fully processed? */
1785 			if (!after(end_seq, cache->end_seq))
1786 				goto advance_sp;
1787 
1788 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1789 						       state,
1790 						       cache->end_seq);
1791 
1792 			/* ...tail remains todo... */
1793 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1794 				/* ...but better entrypoint exists! */
1795 				skb = tcp_highest_sack(sk);
1796 				if (!skb)
1797 					break;
1798 				cache++;
1799 				goto walk;
1800 			}
1801 
1802 			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1803 			/* Check overlap against next cached too (past this one already) */
1804 			cache++;
1805 			continue;
1806 		}
1807 
1808 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1809 			skb = tcp_highest_sack(sk);
1810 			if (!skb)
1811 				break;
1812 		}
1813 		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1814 
1815 walk:
1816 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1817 				       start_seq, end_seq, dup_sack);
1818 
1819 advance_sp:
1820 		i++;
1821 	}
1822 
1823 	/* Clear the head of the cache sack blocks so we can skip it next time */
1824 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1825 		tp->recv_sack_cache[i].start_seq = 0;
1826 		tp->recv_sack_cache[i].end_seq = 0;
1827 	}
1828 	for (j = 0; j < used_sacks; j++)
1829 		tp->recv_sack_cache[i++] = sp[j];
1830 
1831 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1832 		tcp_check_sack_reordering(sk, state->reord, 0);
1833 
1834 	tcp_verify_left_out(tp);
1835 out:
1836 
1837 #if FASTRETRANS_DEBUG > 0
1838 	WARN_ON((int)tp->sacked_out < 0);
1839 	WARN_ON((int)tp->lost_out < 0);
1840 	WARN_ON((int)tp->retrans_out < 0);
1841 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1842 #endif
1843 	return state->flag;
1844 }
1845 
1846 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1847  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1848  */
1849 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1850 {
1851 	u32 holes;
1852 
1853 	holes = max(tp->lost_out, 1U);
1854 	holes = min(holes, tp->packets_out);
1855 
1856 	if ((tp->sacked_out + holes) > tp->packets_out) {
1857 		tp->sacked_out = tp->packets_out - holes;
1858 		return true;
1859 	}
1860 	return false;
1861 }
1862 
1863 /* If we receive more dupacks than we expected counting segments
1864  * in assumption of absent reordering, interpret this as reordering.
1865  * The only another reason could be bug in receiver TCP.
1866  */
1867 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1868 {
1869 	struct tcp_sock *tp = tcp_sk(sk);
1870 
1871 	if (!tcp_limit_reno_sacked(tp))
1872 		return;
1873 
1874 	tp->reordering = min_t(u32, tp->packets_out + addend,
1875 			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1876 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1877 }
1878 
1879 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1880 
1881 static void tcp_add_reno_sack(struct sock *sk)
1882 {
1883 	struct tcp_sock *tp = tcp_sk(sk);
1884 	u32 prior_sacked = tp->sacked_out;
1885 
1886 	tp->sacked_out++;
1887 	tcp_check_reno_reordering(sk, 0);
1888 	if (tp->sacked_out > prior_sacked)
1889 		tp->delivered++; /* Some out-of-order packet is delivered */
1890 	tcp_verify_left_out(tp);
1891 }
1892 
1893 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1894 
1895 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1896 {
1897 	struct tcp_sock *tp = tcp_sk(sk);
1898 
1899 	if (acked > 0) {
1900 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1901 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1902 		if (acked - 1 >= tp->sacked_out)
1903 			tp->sacked_out = 0;
1904 		else
1905 			tp->sacked_out -= acked - 1;
1906 	}
1907 	tcp_check_reno_reordering(sk, acked);
1908 	tcp_verify_left_out(tp);
1909 }
1910 
1911 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1912 {
1913 	tp->sacked_out = 0;
1914 }
1915 
1916 void tcp_clear_retrans(struct tcp_sock *tp)
1917 {
1918 	tp->retrans_out = 0;
1919 	tp->lost_out = 0;
1920 	tp->undo_marker = 0;
1921 	tp->undo_retrans = -1;
1922 	tp->sacked_out = 0;
1923 }
1924 
1925 static inline void tcp_init_undo(struct tcp_sock *tp)
1926 {
1927 	tp->undo_marker = tp->snd_una;
1928 	/* Retransmission still in flight may cause DSACKs later. */
1929 	tp->undo_retrans = tp->retrans_out ? : -1;
1930 }
1931 
1932 static bool tcp_is_rack(const struct sock *sk)
1933 {
1934 	return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
1935 }
1936 
1937 /* If we detect SACK reneging, forget all SACK information
1938  * and reset tags completely, otherwise preserve SACKs. If receiver
1939  * dropped its ofo queue, we will know this due to reneging detection.
1940  */
1941 static void tcp_timeout_mark_lost(struct sock *sk)
1942 {
1943 	struct tcp_sock *tp = tcp_sk(sk);
1944 	struct sk_buff *skb, *head;
1945 	bool is_reneg;			/* is receiver reneging on SACKs? */
1946 
1947 	head = tcp_rtx_queue_head(sk);
1948 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
1949 	if (is_reneg) {
1950 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1951 		tp->sacked_out = 0;
1952 		/* Mark SACK reneging until we recover from this loss event. */
1953 		tp->is_sack_reneg = 1;
1954 	} else if (tcp_is_reno(tp)) {
1955 		tcp_reset_reno_sack(tp);
1956 	}
1957 
1958 	skb = head;
1959 	skb_rbtree_walk_from(skb) {
1960 		if (is_reneg)
1961 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1962 		else if (tcp_is_rack(sk) && skb != head &&
1963 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
1964 			continue; /* Don't mark recently sent ones lost yet */
1965 		tcp_mark_skb_lost(sk, skb);
1966 	}
1967 	tcp_verify_left_out(tp);
1968 	tcp_clear_all_retrans_hints(tp);
1969 }
1970 
1971 /* Enter Loss state. */
1972 void tcp_enter_loss(struct sock *sk)
1973 {
1974 	const struct inet_connection_sock *icsk = inet_csk(sk);
1975 	struct tcp_sock *tp = tcp_sk(sk);
1976 	struct net *net = sock_net(sk);
1977 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1978 
1979 	tcp_timeout_mark_lost(sk);
1980 
1981 	/* Reduce ssthresh if it has not yet been made inside this window. */
1982 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1983 	    !after(tp->high_seq, tp->snd_una) ||
1984 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1985 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1986 		tp->prior_cwnd = tp->snd_cwnd;
1987 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1988 		tcp_ca_event(sk, CA_EVENT_LOSS);
1989 		tcp_init_undo(tp);
1990 	}
1991 	tp->snd_cwnd	   = tcp_packets_in_flight(tp) + 1;
1992 	tp->snd_cwnd_cnt   = 0;
1993 	tp->snd_cwnd_stamp = tcp_jiffies32;
1994 
1995 	/* Timeout in disordered state after receiving substantial DUPACKs
1996 	 * suggests that the degree of reordering is over-estimated.
1997 	 */
1998 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1999 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2000 		tp->reordering = min_t(unsigned int, tp->reordering,
2001 				       net->ipv4.sysctl_tcp_reordering);
2002 	tcp_set_ca_state(sk, TCP_CA_Loss);
2003 	tp->high_seq = tp->snd_nxt;
2004 	tcp_ecn_queue_cwr(tp);
2005 
2006 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2007 	 * loss recovery is underway except recurring timeout(s) on
2008 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2009 	 */
2010 	tp->frto = net->ipv4.sysctl_tcp_frto &&
2011 		   (new_recovery || icsk->icsk_retransmits) &&
2012 		   !inet_csk(sk)->icsk_mtup.probe_size;
2013 }
2014 
2015 /* If ACK arrived pointing to a remembered SACK, it means that our
2016  * remembered SACKs do not reflect real state of receiver i.e.
2017  * receiver _host_ is heavily congested (or buggy).
2018  *
2019  * To avoid big spurious retransmission bursts due to transient SACK
2020  * scoreboard oddities that look like reneging, we give the receiver a
2021  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2022  * restore sanity to the SACK scoreboard. If the apparent reneging
2023  * persists until this RTO then we'll clear the SACK scoreboard.
2024  */
2025 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2026 {
2027 	if (flag & FLAG_SACK_RENEGING) {
2028 		struct tcp_sock *tp = tcp_sk(sk);
2029 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2030 					  msecs_to_jiffies(10));
2031 
2032 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2033 					  delay, TCP_RTO_MAX);
2034 		return true;
2035 	}
2036 	return false;
2037 }
2038 
2039 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2040  * counter when SACK is enabled (without SACK, sacked_out is used for
2041  * that purpose).
2042  *
2043  * With reordering, holes may still be in flight, so RFC3517 recovery
2044  * uses pure sacked_out (total number of SACKed segments) even though
2045  * it violates the RFC that uses duplicate ACKs, often these are equal
2046  * but when e.g. out-of-window ACKs or packet duplication occurs,
2047  * they differ. Since neither occurs due to loss, TCP should really
2048  * ignore them.
2049  */
2050 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2051 {
2052 	return tp->sacked_out + 1;
2053 }
2054 
2055 /* Linux NewReno/SACK/ECN state machine.
2056  * --------------------------------------
2057  *
2058  * "Open"	Normal state, no dubious events, fast path.
2059  * "Disorder"   In all the respects it is "Open",
2060  *		but requires a bit more attention. It is entered when
2061  *		we see some SACKs or dupacks. It is split of "Open"
2062  *		mainly to move some processing from fast path to slow one.
2063  * "CWR"	CWND was reduced due to some Congestion Notification event.
2064  *		It can be ECN, ICMP source quench, local device congestion.
2065  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2066  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2067  *
2068  * tcp_fastretrans_alert() is entered:
2069  * - each incoming ACK, if state is not "Open"
2070  * - when arrived ACK is unusual, namely:
2071  *	* SACK
2072  *	* Duplicate ACK.
2073  *	* ECN ECE.
2074  *
2075  * Counting packets in flight is pretty simple.
2076  *
2077  *	in_flight = packets_out - left_out + retrans_out
2078  *
2079  *	packets_out is SND.NXT-SND.UNA counted in packets.
2080  *
2081  *	retrans_out is number of retransmitted segments.
2082  *
2083  *	left_out is number of segments left network, but not ACKed yet.
2084  *
2085  *		left_out = sacked_out + lost_out
2086  *
2087  *     sacked_out: Packets, which arrived to receiver out of order
2088  *		   and hence not ACKed. With SACKs this number is simply
2089  *		   amount of SACKed data. Even without SACKs
2090  *		   it is easy to give pretty reliable estimate of this number,
2091  *		   counting duplicate ACKs.
2092  *
2093  *       lost_out: Packets lost by network. TCP has no explicit
2094  *		   "loss notification" feedback from network (for now).
2095  *		   It means that this number can be only _guessed_.
2096  *		   Actually, it is the heuristics to predict lossage that
2097  *		   distinguishes different algorithms.
2098  *
2099  *	F.e. after RTO, when all the queue is considered as lost,
2100  *	lost_out = packets_out and in_flight = retrans_out.
2101  *
2102  *		Essentially, we have now a few algorithms detecting
2103  *		lost packets.
2104  *
2105  *		If the receiver supports SACK:
2106  *
2107  *		RFC6675/3517: It is the conventional algorithm. A packet is
2108  *		considered lost if the number of higher sequence packets
2109  *		SACKed is greater than or equal the DUPACK thoreshold
2110  *		(reordering). This is implemented in tcp_mark_head_lost and
2111  *		tcp_update_scoreboard.
2112  *
2113  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2114  *		(2017-) that checks timing instead of counting DUPACKs.
2115  *		Essentially a packet is considered lost if it's not S/ACKed
2116  *		after RTT + reordering_window, where both metrics are
2117  *		dynamically measured and adjusted. This is implemented in
2118  *		tcp_rack_mark_lost.
2119  *
2120  *		If the receiver does not support SACK:
2121  *
2122  *		NewReno (RFC6582): in Recovery we assume that one segment
2123  *		is lost (classic Reno). While we are in Recovery and
2124  *		a partial ACK arrives, we assume that one more packet
2125  *		is lost (NewReno). This heuristics are the same in NewReno
2126  *		and SACK.
2127  *
2128  * Really tricky (and requiring careful tuning) part of algorithm
2129  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2130  * The first determines the moment _when_ we should reduce CWND and,
2131  * hence, slow down forward transmission. In fact, it determines the moment
2132  * when we decide that hole is caused by loss, rather than by a reorder.
2133  *
2134  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2135  * holes, caused by lost packets.
2136  *
2137  * And the most logically complicated part of algorithm is undo
2138  * heuristics. We detect false retransmits due to both too early
2139  * fast retransmit (reordering) and underestimated RTO, analyzing
2140  * timestamps and D-SACKs. When we detect that some segments were
2141  * retransmitted by mistake and CWND reduction was wrong, we undo
2142  * window reduction and abort recovery phase. This logic is hidden
2143  * inside several functions named tcp_try_undo_<something>.
2144  */
2145 
2146 /* This function decides, when we should leave Disordered state
2147  * and enter Recovery phase, reducing congestion window.
2148  *
2149  * Main question: may we further continue forward transmission
2150  * with the same cwnd?
2151  */
2152 static bool tcp_time_to_recover(struct sock *sk, int flag)
2153 {
2154 	struct tcp_sock *tp = tcp_sk(sk);
2155 
2156 	/* Trick#1: The loss is proven. */
2157 	if (tp->lost_out)
2158 		return true;
2159 
2160 	/* Not-A-Trick#2 : Classic rule... */
2161 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2162 		return true;
2163 
2164 	return false;
2165 }
2166 
2167 /* Detect loss in event "A" above by marking head of queue up as lost.
2168  * For non-SACK(Reno) senders, the first "packets" number of segments
2169  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2170  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2171  * the maximum SACKed segments to pass before reaching this limit.
2172  */
2173 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2174 {
2175 	struct tcp_sock *tp = tcp_sk(sk);
2176 	struct sk_buff *skb;
2177 	int cnt, oldcnt, lost;
2178 	unsigned int mss;
2179 	/* Use SACK to deduce losses of new sequences sent during recovery */
2180 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2181 
2182 	WARN_ON(packets > tp->packets_out);
2183 	skb = tp->lost_skb_hint;
2184 	if (skb) {
2185 		/* Head already handled? */
2186 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2187 			return;
2188 		cnt = tp->lost_cnt_hint;
2189 	} else {
2190 		skb = tcp_rtx_queue_head(sk);
2191 		cnt = 0;
2192 	}
2193 
2194 	skb_rbtree_walk_from(skb) {
2195 		/* TODO: do this better */
2196 		/* this is not the most efficient way to do this... */
2197 		tp->lost_skb_hint = skb;
2198 		tp->lost_cnt_hint = cnt;
2199 
2200 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2201 			break;
2202 
2203 		oldcnt = cnt;
2204 		if (tcp_is_reno(tp) ||
2205 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2206 			cnt += tcp_skb_pcount(skb);
2207 
2208 		if (cnt > packets) {
2209 			if (tcp_is_sack(tp) ||
2210 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2211 			    (oldcnt >= packets))
2212 				break;
2213 
2214 			mss = tcp_skb_mss(skb);
2215 			/* If needed, chop off the prefix to mark as lost. */
2216 			lost = (packets - oldcnt) * mss;
2217 			if (lost < skb->len &&
2218 			    tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2219 					 lost, mss, GFP_ATOMIC) < 0)
2220 				break;
2221 			cnt = packets;
2222 		}
2223 
2224 		tcp_skb_mark_lost(tp, skb);
2225 
2226 		if (mark_head)
2227 			break;
2228 	}
2229 	tcp_verify_left_out(tp);
2230 }
2231 
2232 /* Account newly detected lost packet(s) */
2233 
2234 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2235 {
2236 	struct tcp_sock *tp = tcp_sk(sk);
2237 
2238 	if (tcp_is_sack(tp)) {
2239 		int sacked_upto = tp->sacked_out - tp->reordering;
2240 		if (sacked_upto >= 0)
2241 			tcp_mark_head_lost(sk, sacked_upto, 0);
2242 		else if (fast_rexmit)
2243 			tcp_mark_head_lost(sk, 1, 1);
2244 	}
2245 }
2246 
2247 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2248 {
2249 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2250 	       before(tp->rx_opt.rcv_tsecr, when);
2251 }
2252 
2253 /* skb is spurious retransmitted if the returned timestamp echo
2254  * reply is prior to the skb transmission time
2255  */
2256 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2257 				     const struct sk_buff *skb)
2258 {
2259 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2260 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2261 }
2262 
2263 /* Nothing was retransmitted or returned timestamp is less
2264  * than timestamp of the first retransmission.
2265  */
2266 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2267 {
2268 	return !tp->retrans_stamp ||
2269 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2270 }
2271 
2272 /* Undo procedures. */
2273 
2274 /* We can clear retrans_stamp when there are no retransmissions in the
2275  * window. It would seem that it is trivially available for us in
2276  * tp->retrans_out, however, that kind of assumptions doesn't consider
2277  * what will happen if errors occur when sending retransmission for the
2278  * second time. ...It could the that such segment has only
2279  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2280  * the head skb is enough except for some reneging corner cases that
2281  * are not worth the effort.
2282  *
2283  * Main reason for all this complexity is the fact that connection dying
2284  * time now depends on the validity of the retrans_stamp, in particular,
2285  * that successive retransmissions of a segment must not advance
2286  * retrans_stamp under any conditions.
2287  */
2288 static bool tcp_any_retrans_done(const struct sock *sk)
2289 {
2290 	const struct tcp_sock *tp = tcp_sk(sk);
2291 	struct sk_buff *skb;
2292 
2293 	if (tp->retrans_out)
2294 		return true;
2295 
2296 	skb = tcp_rtx_queue_head(sk);
2297 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2298 		return true;
2299 
2300 	return false;
2301 }
2302 
2303 static void DBGUNDO(struct sock *sk, const char *msg)
2304 {
2305 #if FASTRETRANS_DEBUG > 1
2306 	struct tcp_sock *tp = tcp_sk(sk);
2307 	struct inet_sock *inet = inet_sk(sk);
2308 
2309 	if (sk->sk_family == AF_INET) {
2310 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2311 			 msg,
2312 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2313 			 tp->snd_cwnd, tcp_left_out(tp),
2314 			 tp->snd_ssthresh, tp->prior_ssthresh,
2315 			 tp->packets_out);
2316 	}
2317 #if IS_ENABLED(CONFIG_IPV6)
2318 	else if (sk->sk_family == AF_INET6) {
2319 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2320 			 msg,
2321 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2322 			 tp->snd_cwnd, tcp_left_out(tp),
2323 			 tp->snd_ssthresh, tp->prior_ssthresh,
2324 			 tp->packets_out);
2325 	}
2326 #endif
2327 #endif
2328 }
2329 
2330 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2331 {
2332 	struct tcp_sock *tp = tcp_sk(sk);
2333 
2334 	if (unmark_loss) {
2335 		struct sk_buff *skb;
2336 
2337 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2338 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2339 		}
2340 		tp->lost_out = 0;
2341 		tcp_clear_all_retrans_hints(tp);
2342 	}
2343 
2344 	if (tp->prior_ssthresh) {
2345 		const struct inet_connection_sock *icsk = inet_csk(sk);
2346 
2347 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2348 
2349 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2350 			tp->snd_ssthresh = tp->prior_ssthresh;
2351 			tcp_ecn_withdraw_cwr(tp);
2352 		}
2353 	}
2354 	tp->snd_cwnd_stamp = tcp_jiffies32;
2355 	tp->undo_marker = 0;
2356 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2357 }
2358 
2359 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2360 {
2361 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2362 }
2363 
2364 /* People celebrate: "We love our President!" */
2365 static bool tcp_try_undo_recovery(struct sock *sk)
2366 {
2367 	struct tcp_sock *tp = tcp_sk(sk);
2368 
2369 	if (tcp_may_undo(tp)) {
2370 		int mib_idx;
2371 
2372 		/* Happy end! We did not retransmit anything
2373 		 * or our original transmission succeeded.
2374 		 */
2375 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2376 		tcp_undo_cwnd_reduction(sk, false);
2377 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2378 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2379 		else
2380 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2381 
2382 		NET_INC_STATS(sock_net(sk), mib_idx);
2383 	} else if (tp->rack.reo_wnd_persist) {
2384 		tp->rack.reo_wnd_persist--;
2385 	}
2386 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2387 		/* Hold old state until something *above* high_seq
2388 		 * is ACKed. For Reno it is MUST to prevent false
2389 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2390 		if (!tcp_any_retrans_done(sk))
2391 			tp->retrans_stamp = 0;
2392 		return true;
2393 	}
2394 	tcp_set_ca_state(sk, TCP_CA_Open);
2395 	tp->is_sack_reneg = 0;
2396 	return false;
2397 }
2398 
2399 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2400 static bool tcp_try_undo_dsack(struct sock *sk)
2401 {
2402 	struct tcp_sock *tp = tcp_sk(sk);
2403 
2404 	if (tp->undo_marker && !tp->undo_retrans) {
2405 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2406 					       tp->rack.reo_wnd_persist + 1);
2407 		DBGUNDO(sk, "D-SACK");
2408 		tcp_undo_cwnd_reduction(sk, false);
2409 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2410 		return true;
2411 	}
2412 	return false;
2413 }
2414 
2415 /* Undo during loss recovery after partial ACK or using F-RTO. */
2416 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2417 {
2418 	struct tcp_sock *tp = tcp_sk(sk);
2419 
2420 	if (frto_undo || tcp_may_undo(tp)) {
2421 		tcp_undo_cwnd_reduction(sk, true);
2422 
2423 		DBGUNDO(sk, "partial loss");
2424 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2425 		if (frto_undo)
2426 			NET_INC_STATS(sock_net(sk),
2427 					LINUX_MIB_TCPSPURIOUSRTOS);
2428 		inet_csk(sk)->icsk_retransmits = 0;
2429 		if (frto_undo || tcp_is_sack(tp)) {
2430 			tcp_set_ca_state(sk, TCP_CA_Open);
2431 			tp->is_sack_reneg = 0;
2432 		}
2433 		return true;
2434 	}
2435 	return false;
2436 }
2437 
2438 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2439  * It computes the number of packets to send (sndcnt) based on packets newly
2440  * delivered:
2441  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2442  *	cwnd reductions across a full RTT.
2443  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2444  *      But when the retransmits are acked without further losses, PRR
2445  *      slow starts cwnd up to ssthresh to speed up the recovery.
2446  */
2447 static void tcp_init_cwnd_reduction(struct sock *sk)
2448 {
2449 	struct tcp_sock *tp = tcp_sk(sk);
2450 
2451 	tp->high_seq = tp->snd_nxt;
2452 	tp->tlp_high_seq = 0;
2453 	tp->snd_cwnd_cnt = 0;
2454 	tp->prior_cwnd = tp->snd_cwnd;
2455 	tp->prr_delivered = 0;
2456 	tp->prr_out = 0;
2457 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2458 	tcp_ecn_queue_cwr(tp);
2459 }
2460 
2461 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2462 {
2463 	struct tcp_sock *tp = tcp_sk(sk);
2464 	int sndcnt = 0;
2465 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2466 
2467 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2468 		return;
2469 
2470 	tp->prr_delivered += newly_acked_sacked;
2471 	if (delta < 0) {
2472 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2473 			       tp->prior_cwnd - 1;
2474 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2475 	} else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2476 		   !(flag & FLAG_LOST_RETRANS)) {
2477 		sndcnt = min_t(int, delta,
2478 			       max_t(int, tp->prr_delivered - tp->prr_out,
2479 				     newly_acked_sacked) + 1);
2480 	} else {
2481 		sndcnt = min(delta, newly_acked_sacked);
2482 	}
2483 	/* Force a fast retransmit upon entering fast recovery */
2484 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2485 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2486 }
2487 
2488 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2489 {
2490 	struct tcp_sock *tp = tcp_sk(sk);
2491 
2492 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2493 		return;
2494 
2495 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2496 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2497 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2498 		tp->snd_cwnd = tp->snd_ssthresh;
2499 		tp->snd_cwnd_stamp = tcp_jiffies32;
2500 	}
2501 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2502 }
2503 
2504 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2505 void tcp_enter_cwr(struct sock *sk)
2506 {
2507 	struct tcp_sock *tp = tcp_sk(sk);
2508 
2509 	tp->prior_ssthresh = 0;
2510 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2511 		tp->undo_marker = 0;
2512 		tcp_init_cwnd_reduction(sk);
2513 		tcp_set_ca_state(sk, TCP_CA_CWR);
2514 	}
2515 }
2516 EXPORT_SYMBOL(tcp_enter_cwr);
2517 
2518 static void tcp_try_keep_open(struct sock *sk)
2519 {
2520 	struct tcp_sock *tp = tcp_sk(sk);
2521 	int state = TCP_CA_Open;
2522 
2523 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2524 		state = TCP_CA_Disorder;
2525 
2526 	if (inet_csk(sk)->icsk_ca_state != state) {
2527 		tcp_set_ca_state(sk, state);
2528 		tp->high_seq = tp->snd_nxt;
2529 	}
2530 }
2531 
2532 static void tcp_try_to_open(struct sock *sk, int flag)
2533 {
2534 	struct tcp_sock *tp = tcp_sk(sk);
2535 
2536 	tcp_verify_left_out(tp);
2537 
2538 	if (!tcp_any_retrans_done(sk))
2539 		tp->retrans_stamp = 0;
2540 
2541 	if (flag & FLAG_ECE)
2542 		tcp_enter_cwr(sk);
2543 
2544 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2545 		tcp_try_keep_open(sk);
2546 	}
2547 }
2548 
2549 static void tcp_mtup_probe_failed(struct sock *sk)
2550 {
2551 	struct inet_connection_sock *icsk = inet_csk(sk);
2552 
2553 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2554 	icsk->icsk_mtup.probe_size = 0;
2555 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2556 }
2557 
2558 static void tcp_mtup_probe_success(struct sock *sk)
2559 {
2560 	struct tcp_sock *tp = tcp_sk(sk);
2561 	struct inet_connection_sock *icsk = inet_csk(sk);
2562 
2563 	/* FIXME: breaks with very large cwnd */
2564 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2565 	tp->snd_cwnd = tp->snd_cwnd *
2566 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2567 		       icsk->icsk_mtup.probe_size;
2568 	tp->snd_cwnd_cnt = 0;
2569 	tp->snd_cwnd_stamp = tcp_jiffies32;
2570 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2571 
2572 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2573 	icsk->icsk_mtup.probe_size = 0;
2574 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2575 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2576 }
2577 
2578 /* Do a simple retransmit without using the backoff mechanisms in
2579  * tcp_timer. This is used for path mtu discovery.
2580  * The socket is already locked here.
2581  */
2582 void tcp_simple_retransmit(struct sock *sk)
2583 {
2584 	const struct inet_connection_sock *icsk = inet_csk(sk);
2585 	struct tcp_sock *tp = tcp_sk(sk);
2586 	struct sk_buff *skb;
2587 	unsigned int mss = tcp_current_mss(sk);
2588 
2589 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2590 		if (tcp_skb_seglen(skb) > mss &&
2591 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2592 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2593 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2594 				tp->retrans_out -= tcp_skb_pcount(skb);
2595 			}
2596 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2597 		}
2598 	}
2599 
2600 	tcp_clear_retrans_hints_partial(tp);
2601 
2602 	if (!tp->lost_out)
2603 		return;
2604 
2605 	if (tcp_is_reno(tp))
2606 		tcp_limit_reno_sacked(tp);
2607 
2608 	tcp_verify_left_out(tp);
2609 
2610 	/* Don't muck with the congestion window here.
2611 	 * Reason is that we do not increase amount of _data_
2612 	 * in network, but units changed and effective
2613 	 * cwnd/ssthresh really reduced now.
2614 	 */
2615 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2616 		tp->high_seq = tp->snd_nxt;
2617 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2618 		tp->prior_ssthresh = 0;
2619 		tp->undo_marker = 0;
2620 		tcp_set_ca_state(sk, TCP_CA_Loss);
2621 	}
2622 	tcp_xmit_retransmit_queue(sk);
2623 }
2624 EXPORT_SYMBOL(tcp_simple_retransmit);
2625 
2626 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2627 {
2628 	struct tcp_sock *tp = tcp_sk(sk);
2629 	int mib_idx;
2630 
2631 	if (tcp_is_reno(tp))
2632 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2633 	else
2634 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2635 
2636 	NET_INC_STATS(sock_net(sk), mib_idx);
2637 
2638 	tp->prior_ssthresh = 0;
2639 	tcp_init_undo(tp);
2640 
2641 	if (!tcp_in_cwnd_reduction(sk)) {
2642 		if (!ece_ack)
2643 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2644 		tcp_init_cwnd_reduction(sk);
2645 	}
2646 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2647 }
2648 
2649 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2650  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2651  */
2652 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2653 			     int *rexmit)
2654 {
2655 	struct tcp_sock *tp = tcp_sk(sk);
2656 	bool recovered = !before(tp->snd_una, tp->high_seq);
2657 
2658 	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2659 	    tcp_try_undo_loss(sk, false))
2660 		return;
2661 
2662 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2663 		/* Step 3.b. A timeout is spurious if not all data are
2664 		 * lost, i.e., never-retransmitted data are (s)acked.
2665 		 */
2666 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2667 		    tcp_try_undo_loss(sk, true))
2668 			return;
2669 
2670 		if (after(tp->snd_nxt, tp->high_seq)) {
2671 			if (flag & FLAG_DATA_SACKED || is_dupack)
2672 				tp->frto = 0; /* Step 3.a. loss was real */
2673 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2674 			tp->high_seq = tp->snd_nxt;
2675 			/* Step 2.b. Try send new data (but deferred until cwnd
2676 			 * is updated in tcp_ack()). Otherwise fall back to
2677 			 * the conventional recovery.
2678 			 */
2679 			if (!tcp_write_queue_empty(sk) &&
2680 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2681 				*rexmit = REXMIT_NEW;
2682 				return;
2683 			}
2684 			tp->frto = 0;
2685 		}
2686 	}
2687 
2688 	if (recovered) {
2689 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2690 		tcp_try_undo_recovery(sk);
2691 		return;
2692 	}
2693 	if (tcp_is_reno(tp)) {
2694 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2695 		 * delivered. Lower inflight to clock out (re)tranmissions.
2696 		 */
2697 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2698 			tcp_add_reno_sack(sk);
2699 		else if (flag & FLAG_SND_UNA_ADVANCED)
2700 			tcp_reset_reno_sack(tp);
2701 	}
2702 	*rexmit = REXMIT_LOST;
2703 }
2704 
2705 /* Undo during fast recovery after partial ACK. */
2706 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2707 {
2708 	struct tcp_sock *tp = tcp_sk(sk);
2709 
2710 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2711 		/* Plain luck! Hole if filled with delayed
2712 		 * packet, rather than with a retransmit. Check reordering.
2713 		 */
2714 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2715 
2716 		/* We are getting evidence that the reordering degree is higher
2717 		 * than we realized. If there are no retransmits out then we
2718 		 * can undo. Otherwise we clock out new packets but do not
2719 		 * mark more packets lost or retransmit more.
2720 		 */
2721 		if (tp->retrans_out)
2722 			return true;
2723 
2724 		if (!tcp_any_retrans_done(sk))
2725 			tp->retrans_stamp = 0;
2726 
2727 		DBGUNDO(sk, "partial recovery");
2728 		tcp_undo_cwnd_reduction(sk, true);
2729 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2730 		tcp_try_keep_open(sk);
2731 		return true;
2732 	}
2733 	return false;
2734 }
2735 
2736 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2737 {
2738 	struct tcp_sock *tp = tcp_sk(sk);
2739 
2740 	if (tcp_rtx_queue_empty(sk))
2741 		return;
2742 
2743 	if (unlikely(tcp_is_reno(tp))) {
2744 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2745 	} else if (tcp_is_rack(sk)) {
2746 		u32 prior_retrans = tp->retrans_out;
2747 
2748 		tcp_rack_mark_lost(sk);
2749 		if (prior_retrans > tp->retrans_out)
2750 			*ack_flag |= FLAG_LOST_RETRANS;
2751 	}
2752 }
2753 
2754 static bool tcp_force_fast_retransmit(struct sock *sk)
2755 {
2756 	struct tcp_sock *tp = tcp_sk(sk);
2757 
2758 	return after(tcp_highest_sack_seq(tp),
2759 		     tp->snd_una + tp->reordering * tp->mss_cache);
2760 }
2761 
2762 /* Process an event, which can update packets-in-flight not trivially.
2763  * Main goal of this function is to calculate new estimate for left_out,
2764  * taking into account both packets sitting in receiver's buffer and
2765  * packets lost by network.
2766  *
2767  * Besides that it updates the congestion state when packet loss or ECN
2768  * is detected. But it does not reduce the cwnd, it is done by the
2769  * congestion control later.
2770  *
2771  * It does _not_ decide what to send, it is made in function
2772  * tcp_xmit_retransmit_queue().
2773  */
2774 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2775 				  bool is_dupack, int *ack_flag, int *rexmit)
2776 {
2777 	struct inet_connection_sock *icsk = inet_csk(sk);
2778 	struct tcp_sock *tp = tcp_sk(sk);
2779 	int fast_rexmit = 0, flag = *ack_flag;
2780 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2781 				     tcp_force_fast_retransmit(sk));
2782 
2783 	if (!tp->packets_out && tp->sacked_out)
2784 		tp->sacked_out = 0;
2785 
2786 	/* Now state machine starts.
2787 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2788 	if (flag & FLAG_ECE)
2789 		tp->prior_ssthresh = 0;
2790 
2791 	/* B. In all the states check for reneging SACKs. */
2792 	if (tcp_check_sack_reneging(sk, flag))
2793 		return;
2794 
2795 	/* C. Check consistency of the current state. */
2796 	tcp_verify_left_out(tp);
2797 
2798 	/* D. Check state exit conditions. State can be terminated
2799 	 *    when high_seq is ACKed. */
2800 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2801 		WARN_ON(tp->retrans_out != 0);
2802 		tp->retrans_stamp = 0;
2803 	} else if (!before(tp->snd_una, tp->high_seq)) {
2804 		switch (icsk->icsk_ca_state) {
2805 		case TCP_CA_CWR:
2806 			/* CWR is to be held something *above* high_seq
2807 			 * is ACKed for CWR bit to reach receiver. */
2808 			if (tp->snd_una != tp->high_seq) {
2809 				tcp_end_cwnd_reduction(sk);
2810 				tcp_set_ca_state(sk, TCP_CA_Open);
2811 			}
2812 			break;
2813 
2814 		case TCP_CA_Recovery:
2815 			if (tcp_is_reno(tp))
2816 				tcp_reset_reno_sack(tp);
2817 			if (tcp_try_undo_recovery(sk))
2818 				return;
2819 			tcp_end_cwnd_reduction(sk);
2820 			break;
2821 		}
2822 	}
2823 
2824 	/* E. Process state. */
2825 	switch (icsk->icsk_ca_state) {
2826 	case TCP_CA_Recovery:
2827 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2828 			if (tcp_is_reno(tp) && is_dupack)
2829 				tcp_add_reno_sack(sk);
2830 		} else {
2831 			if (tcp_try_undo_partial(sk, prior_snd_una))
2832 				return;
2833 			/* Partial ACK arrived. Force fast retransmit. */
2834 			do_lost = tcp_is_reno(tp) ||
2835 				  tcp_force_fast_retransmit(sk);
2836 		}
2837 		if (tcp_try_undo_dsack(sk)) {
2838 			tcp_try_keep_open(sk);
2839 			return;
2840 		}
2841 		tcp_identify_packet_loss(sk, ack_flag);
2842 		break;
2843 	case TCP_CA_Loss:
2844 		tcp_process_loss(sk, flag, is_dupack, rexmit);
2845 		tcp_identify_packet_loss(sk, ack_flag);
2846 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2847 		      (*ack_flag & FLAG_LOST_RETRANS)))
2848 			return;
2849 		/* Change state if cwnd is undone or retransmits are lost */
2850 		/* fall through */
2851 	default:
2852 		if (tcp_is_reno(tp)) {
2853 			if (flag & FLAG_SND_UNA_ADVANCED)
2854 				tcp_reset_reno_sack(tp);
2855 			if (is_dupack)
2856 				tcp_add_reno_sack(sk);
2857 		}
2858 
2859 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2860 			tcp_try_undo_dsack(sk);
2861 
2862 		tcp_identify_packet_loss(sk, ack_flag);
2863 		if (!tcp_time_to_recover(sk, flag)) {
2864 			tcp_try_to_open(sk, flag);
2865 			return;
2866 		}
2867 
2868 		/* MTU probe failure: don't reduce cwnd */
2869 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2870 		    icsk->icsk_mtup.probe_size &&
2871 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2872 			tcp_mtup_probe_failed(sk);
2873 			/* Restores the reduction we did in tcp_mtup_probe() */
2874 			tp->snd_cwnd++;
2875 			tcp_simple_retransmit(sk);
2876 			return;
2877 		}
2878 
2879 		/* Otherwise enter Recovery state */
2880 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2881 		fast_rexmit = 1;
2882 	}
2883 
2884 	if (!tcp_is_rack(sk) && do_lost)
2885 		tcp_update_scoreboard(sk, fast_rexmit);
2886 	*rexmit = REXMIT_LOST;
2887 }
2888 
2889 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2890 {
2891 	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2892 	struct tcp_sock *tp = tcp_sk(sk);
2893 
2894 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2895 		/* If the remote keeps returning delayed ACKs, eventually
2896 		 * the min filter would pick it up and overestimate the
2897 		 * prop. delay when it expires. Skip suspected delayed ACKs.
2898 		 */
2899 		return;
2900 	}
2901 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2902 			   rtt_us ? : jiffies_to_usecs(1));
2903 }
2904 
2905 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2906 			       long seq_rtt_us, long sack_rtt_us,
2907 			       long ca_rtt_us, struct rate_sample *rs)
2908 {
2909 	const struct tcp_sock *tp = tcp_sk(sk);
2910 
2911 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2912 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2913 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2914 	 * is acked (RFC6298).
2915 	 */
2916 	if (seq_rtt_us < 0)
2917 		seq_rtt_us = sack_rtt_us;
2918 
2919 	/* RTTM Rule: A TSecr value received in a segment is used to
2920 	 * update the averaged RTT measurement only if the segment
2921 	 * acknowledges some new data, i.e., only if it advances the
2922 	 * left edge of the send window.
2923 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2924 	 */
2925 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2926 	    flag & FLAG_ACKED) {
2927 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2928 		u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2929 
2930 		seq_rtt_us = ca_rtt_us = delta_us;
2931 	}
2932 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2933 	if (seq_rtt_us < 0)
2934 		return false;
2935 
2936 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2937 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2938 	 * values will be skipped with the seq_rtt_us < 0 check above.
2939 	 */
2940 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
2941 	tcp_rtt_estimator(sk, seq_rtt_us);
2942 	tcp_set_rto(sk);
2943 
2944 	/* RFC6298: only reset backoff on valid RTT measurement. */
2945 	inet_csk(sk)->icsk_backoff = 0;
2946 	return true;
2947 }
2948 
2949 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2950 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2951 {
2952 	struct rate_sample rs;
2953 	long rtt_us = -1L;
2954 
2955 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2956 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2957 
2958 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2959 }
2960 
2961 
2962 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2963 {
2964 	const struct inet_connection_sock *icsk = inet_csk(sk);
2965 
2966 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2967 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2968 }
2969 
2970 /* Restart timer after forward progress on connection.
2971  * RFC2988 recommends to restart timer to now+rto.
2972  */
2973 void tcp_rearm_rto(struct sock *sk)
2974 {
2975 	const struct inet_connection_sock *icsk = inet_csk(sk);
2976 	struct tcp_sock *tp = tcp_sk(sk);
2977 
2978 	/* If the retrans timer is currently being used by Fast Open
2979 	 * for SYN-ACK retrans purpose, stay put.
2980 	 */
2981 	if (tp->fastopen_rsk)
2982 		return;
2983 
2984 	if (!tp->packets_out) {
2985 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2986 	} else {
2987 		u32 rto = inet_csk(sk)->icsk_rto;
2988 		/* Offset the time elapsed after installing regular RTO */
2989 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2990 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2991 			s64 delta_us = tcp_rto_delta_us(sk);
2992 			/* delta_us may not be positive if the socket is locked
2993 			 * when the retrans timer fires and is rescheduled.
2994 			 */
2995 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
2996 		}
2997 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2998 					  TCP_RTO_MAX);
2999 	}
3000 }
3001 
3002 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3003 static void tcp_set_xmit_timer(struct sock *sk)
3004 {
3005 	if (!tcp_schedule_loss_probe(sk, true))
3006 		tcp_rearm_rto(sk);
3007 }
3008 
3009 /* If we get here, the whole TSO packet has not been acked. */
3010 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3011 {
3012 	struct tcp_sock *tp = tcp_sk(sk);
3013 	u32 packets_acked;
3014 
3015 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3016 
3017 	packets_acked = tcp_skb_pcount(skb);
3018 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3019 		return 0;
3020 	packets_acked -= tcp_skb_pcount(skb);
3021 
3022 	if (packets_acked) {
3023 		BUG_ON(tcp_skb_pcount(skb) == 0);
3024 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3025 	}
3026 
3027 	return packets_acked;
3028 }
3029 
3030 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3031 			   u32 prior_snd_una)
3032 {
3033 	const struct skb_shared_info *shinfo;
3034 
3035 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3036 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3037 		return;
3038 
3039 	shinfo = skb_shinfo(skb);
3040 	if (!before(shinfo->tskey, prior_snd_una) &&
3041 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3042 		tcp_skb_tsorted_save(skb) {
3043 			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3044 		} tcp_skb_tsorted_restore(skb);
3045 	}
3046 }
3047 
3048 /* Remove acknowledged frames from the retransmission queue. If our packet
3049  * is before the ack sequence we can discard it as it's confirmed to have
3050  * arrived at the other end.
3051  */
3052 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3053 			       u32 prior_snd_una,
3054 			       struct tcp_sacktag_state *sack)
3055 {
3056 	const struct inet_connection_sock *icsk = inet_csk(sk);
3057 	u64 first_ackt, last_ackt;
3058 	struct tcp_sock *tp = tcp_sk(sk);
3059 	u32 prior_sacked = tp->sacked_out;
3060 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3061 	struct sk_buff *skb, *next;
3062 	bool fully_acked = true;
3063 	long sack_rtt_us = -1L;
3064 	long seq_rtt_us = -1L;
3065 	long ca_rtt_us = -1L;
3066 	u32 pkts_acked = 0;
3067 	u32 last_in_flight = 0;
3068 	bool rtt_update;
3069 	int flag = 0;
3070 
3071 	first_ackt = 0;
3072 
3073 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3074 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3075 		const u32 start_seq = scb->seq;
3076 		u8 sacked = scb->sacked;
3077 		u32 acked_pcount;
3078 
3079 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3080 
3081 		/* Determine how many packets and what bytes were acked, tso and else */
3082 		if (after(scb->end_seq, tp->snd_una)) {
3083 			if (tcp_skb_pcount(skb) == 1 ||
3084 			    !after(tp->snd_una, scb->seq))
3085 				break;
3086 
3087 			acked_pcount = tcp_tso_acked(sk, skb);
3088 			if (!acked_pcount)
3089 				break;
3090 			fully_acked = false;
3091 		} else {
3092 			acked_pcount = tcp_skb_pcount(skb);
3093 		}
3094 
3095 		if (unlikely(sacked & TCPCB_RETRANS)) {
3096 			if (sacked & TCPCB_SACKED_RETRANS)
3097 				tp->retrans_out -= acked_pcount;
3098 			flag |= FLAG_RETRANS_DATA_ACKED;
3099 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3100 			last_ackt = skb->skb_mstamp;
3101 			WARN_ON_ONCE(last_ackt == 0);
3102 			if (!first_ackt)
3103 				first_ackt = last_ackt;
3104 
3105 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3106 			if (before(start_seq, reord))
3107 				reord = start_seq;
3108 			if (!after(scb->end_seq, tp->high_seq))
3109 				flag |= FLAG_ORIG_SACK_ACKED;
3110 		}
3111 
3112 		if (sacked & TCPCB_SACKED_ACKED) {
3113 			tp->sacked_out -= acked_pcount;
3114 		} else if (tcp_is_sack(tp)) {
3115 			tp->delivered += acked_pcount;
3116 			if (!tcp_skb_spurious_retrans(tp, skb))
3117 				tcp_rack_advance(tp, sacked, scb->end_seq,
3118 						 skb->skb_mstamp);
3119 		}
3120 		if (sacked & TCPCB_LOST)
3121 			tp->lost_out -= acked_pcount;
3122 
3123 		tp->packets_out -= acked_pcount;
3124 		pkts_acked += acked_pcount;
3125 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3126 
3127 		/* Initial outgoing SYN's get put onto the write_queue
3128 		 * just like anything else we transmit.  It is not
3129 		 * true data, and if we misinform our callers that
3130 		 * this ACK acks real data, we will erroneously exit
3131 		 * connection startup slow start one packet too
3132 		 * quickly.  This is severely frowned upon behavior.
3133 		 */
3134 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3135 			flag |= FLAG_DATA_ACKED;
3136 		} else {
3137 			flag |= FLAG_SYN_ACKED;
3138 			tp->retrans_stamp = 0;
3139 		}
3140 
3141 		if (!fully_acked)
3142 			break;
3143 
3144 		next = skb_rb_next(skb);
3145 		if (unlikely(skb == tp->retransmit_skb_hint))
3146 			tp->retransmit_skb_hint = NULL;
3147 		if (unlikely(skb == tp->lost_skb_hint))
3148 			tp->lost_skb_hint = NULL;
3149 		tcp_rtx_queue_unlink_and_free(skb, sk);
3150 	}
3151 
3152 	if (!skb)
3153 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3154 
3155 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3156 		tp->snd_up = tp->snd_una;
3157 
3158 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3159 		flag |= FLAG_SACK_RENEGING;
3160 
3161 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3162 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3163 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3164 
3165 		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3166 		    last_in_flight && !prior_sacked && fully_acked &&
3167 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3168 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3169 			/* Conservatively mark a delayed ACK. It's typically
3170 			 * from a lone runt packet over the round trip to
3171 			 * a receiver w/o out-of-order or CE events.
3172 			 */
3173 			flag |= FLAG_ACK_MAYBE_DELAYED;
3174 		}
3175 	}
3176 	if (sack->first_sackt) {
3177 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3178 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3179 	}
3180 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3181 					ca_rtt_us, sack->rate);
3182 
3183 	if (flag & FLAG_ACKED) {
3184 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3185 		if (unlikely(icsk->icsk_mtup.probe_size &&
3186 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3187 			tcp_mtup_probe_success(sk);
3188 		}
3189 
3190 		if (tcp_is_reno(tp)) {
3191 			tcp_remove_reno_sacks(sk, pkts_acked);
3192 
3193 			/* If any of the cumulatively ACKed segments was
3194 			 * retransmitted, non-SACK case cannot confirm that
3195 			 * progress was due to original transmission due to
3196 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3197 			 * the packets may have been never retransmitted.
3198 			 */
3199 			if (flag & FLAG_RETRANS_DATA_ACKED)
3200 				flag &= ~FLAG_ORIG_SACK_ACKED;
3201 		} else {
3202 			int delta;
3203 
3204 			/* Non-retransmitted hole got filled? That's reordering */
3205 			if (before(reord, prior_fack))
3206 				tcp_check_sack_reordering(sk, reord, 0);
3207 
3208 			delta = prior_sacked - tp->sacked_out;
3209 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3210 		}
3211 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3212 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) {
3213 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3214 		 * after when the head was last (re)transmitted. Otherwise the
3215 		 * timeout may continue to extend in loss recovery.
3216 		 */
3217 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3218 	}
3219 
3220 	if (icsk->icsk_ca_ops->pkts_acked) {
3221 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3222 					     .rtt_us = sack->rate->rtt_us,
3223 					     .in_flight = last_in_flight };
3224 
3225 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3226 	}
3227 
3228 #if FASTRETRANS_DEBUG > 0
3229 	WARN_ON((int)tp->sacked_out < 0);
3230 	WARN_ON((int)tp->lost_out < 0);
3231 	WARN_ON((int)tp->retrans_out < 0);
3232 	if (!tp->packets_out && tcp_is_sack(tp)) {
3233 		icsk = inet_csk(sk);
3234 		if (tp->lost_out) {
3235 			pr_debug("Leak l=%u %d\n",
3236 				 tp->lost_out, icsk->icsk_ca_state);
3237 			tp->lost_out = 0;
3238 		}
3239 		if (tp->sacked_out) {
3240 			pr_debug("Leak s=%u %d\n",
3241 				 tp->sacked_out, icsk->icsk_ca_state);
3242 			tp->sacked_out = 0;
3243 		}
3244 		if (tp->retrans_out) {
3245 			pr_debug("Leak r=%u %d\n",
3246 				 tp->retrans_out, icsk->icsk_ca_state);
3247 			tp->retrans_out = 0;
3248 		}
3249 	}
3250 #endif
3251 	return flag;
3252 }
3253 
3254 static void tcp_ack_probe(struct sock *sk)
3255 {
3256 	struct inet_connection_sock *icsk = inet_csk(sk);
3257 	struct sk_buff *head = tcp_send_head(sk);
3258 	const struct tcp_sock *tp = tcp_sk(sk);
3259 
3260 	/* Was it a usable window open? */
3261 	if (!head)
3262 		return;
3263 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3264 		icsk->icsk_backoff = 0;
3265 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3266 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3267 		 * This function is not for random using!
3268 		 */
3269 	} else {
3270 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3271 
3272 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3273 					  when, TCP_RTO_MAX);
3274 	}
3275 }
3276 
3277 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3278 {
3279 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3280 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3281 }
3282 
3283 /* Decide wheather to run the increase function of congestion control. */
3284 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3285 {
3286 	/* If reordering is high then always grow cwnd whenever data is
3287 	 * delivered regardless of its ordering. Otherwise stay conservative
3288 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3289 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3290 	 * cwnd in tcp_fastretrans_alert() based on more states.
3291 	 */
3292 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3293 		return flag & FLAG_FORWARD_PROGRESS;
3294 
3295 	return flag & FLAG_DATA_ACKED;
3296 }
3297 
3298 /* The "ultimate" congestion control function that aims to replace the rigid
3299  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3300  * It's called toward the end of processing an ACK with precise rate
3301  * information. All transmission or retransmission are delayed afterwards.
3302  */
3303 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3304 			     int flag, const struct rate_sample *rs)
3305 {
3306 	const struct inet_connection_sock *icsk = inet_csk(sk);
3307 
3308 	if (icsk->icsk_ca_ops->cong_control) {
3309 		icsk->icsk_ca_ops->cong_control(sk, rs);
3310 		return;
3311 	}
3312 
3313 	if (tcp_in_cwnd_reduction(sk)) {
3314 		/* Reduce cwnd if state mandates */
3315 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3316 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3317 		/* Advance cwnd if state allows */
3318 		tcp_cong_avoid(sk, ack, acked_sacked);
3319 	}
3320 	tcp_update_pacing_rate(sk);
3321 }
3322 
3323 /* Check that window update is acceptable.
3324  * The function assumes that snd_una<=ack<=snd_next.
3325  */
3326 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3327 					const u32 ack, const u32 ack_seq,
3328 					const u32 nwin)
3329 {
3330 	return	after(ack, tp->snd_una) ||
3331 		after(ack_seq, tp->snd_wl1) ||
3332 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3333 }
3334 
3335 /* If we update tp->snd_una, also update tp->bytes_acked */
3336 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3337 {
3338 	u32 delta = ack - tp->snd_una;
3339 
3340 	sock_owned_by_me((struct sock *)tp);
3341 	tp->bytes_acked += delta;
3342 	tp->snd_una = ack;
3343 }
3344 
3345 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3346 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3347 {
3348 	u32 delta = seq - tp->rcv_nxt;
3349 
3350 	sock_owned_by_me((struct sock *)tp);
3351 	tp->bytes_received += delta;
3352 	tp->rcv_nxt = seq;
3353 }
3354 
3355 /* Update our send window.
3356  *
3357  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3358  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3359  */
3360 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3361 				 u32 ack_seq)
3362 {
3363 	struct tcp_sock *tp = tcp_sk(sk);
3364 	int flag = 0;
3365 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3366 
3367 	if (likely(!tcp_hdr(skb)->syn))
3368 		nwin <<= tp->rx_opt.snd_wscale;
3369 
3370 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3371 		flag |= FLAG_WIN_UPDATE;
3372 		tcp_update_wl(tp, ack_seq);
3373 
3374 		if (tp->snd_wnd != nwin) {
3375 			tp->snd_wnd = nwin;
3376 
3377 			/* Note, it is the only place, where
3378 			 * fast path is recovered for sending TCP.
3379 			 */
3380 			tp->pred_flags = 0;
3381 			tcp_fast_path_check(sk);
3382 
3383 			if (!tcp_write_queue_empty(sk))
3384 				tcp_slow_start_after_idle_check(sk);
3385 
3386 			if (nwin > tp->max_window) {
3387 				tp->max_window = nwin;
3388 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3389 			}
3390 		}
3391 	}
3392 
3393 	tcp_snd_una_update(tp, ack);
3394 
3395 	return flag;
3396 }
3397 
3398 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3399 				   u32 *last_oow_ack_time)
3400 {
3401 	if (*last_oow_ack_time) {
3402 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3403 
3404 		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3405 			NET_INC_STATS(net, mib_idx);
3406 			return true;	/* rate-limited: don't send yet! */
3407 		}
3408 	}
3409 
3410 	*last_oow_ack_time = tcp_jiffies32;
3411 
3412 	return false;	/* not rate-limited: go ahead, send dupack now! */
3413 }
3414 
3415 /* Return true if we're currently rate-limiting out-of-window ACKs and
3416  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3417  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3418  * attacks that send repeated SYNs or ACKs for the same connection. To
3419  * do this, we do not send a duplicate SYNACK or ACK if the remote
3420  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3421  */
3422 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3423 			  int mib_idx, u32 *last_oow_ack_time)
3424 {
3425 	/* Data packets without SYNs are not likely part of an ACK loop. */
3426 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3427 	    !tcp_hdr(skb)->syn)
3428 		return false;
3429 
3430 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3431 }
3432 
3433 /* RFC 5961 7 [ACK Throttling] */
3434 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3435 {
3436 	/* unprotected vars, we dont care of overwrites */
3437 	static u32 challenge_timestamp;
3438 	static unsigned int challenge_count;
3439 	struct tcp_sock *tp = tcp_sk(sk);
3440 	struct net *net = sock_net(sk);
3441 	u32 count, now;
3442 
3443 	/* First check our per-socket dupack rate limit. */
3444 	if (__tcp_oow_rate_limited(net,
3445 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3446 				   &tp->last_oow_ack_time))
3447 		return;
3448 
3449 	/* Then check host-wide RFC 5961 rate limit. */
3450 	now = jiffies / HZ;
3451 	if (now != challenge_timestamp) {
3452 		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3453 		u32 half = (ack_limit + 1) >> 1;
3454 
3455 		challenge_timestamp = now;
3456 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3457 	}
3458 	count = READ_ONCE(challenge_count);
3459 	if (count > 0) {
3460 		WRITE_ONCE(challenge_count, count - 1);
3461 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3462 		tcp_send_ack(sk);
3463 	}
3464 }
3465 
3466 static void tcp_store_ts_recent(struct tcp_sock *tp)
3467 {
3468 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3469 	tp->rx_opt.ts_recent_stamp = get_seconds();
3470 }
3471 
3472 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3473 {
3474 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3475 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3476 		 * extra check below makes sure this can only happen
3477 		 * for pure ACK frames.  -DaveM
3478 		 *
3479 		 * Not only, also it occurs for expired timestamps.
3480 		 */
3481 
3482 		if (tcp_paws_check(&tp->rx_opt, 0))
3483 			tcp_store_ts_recent(tp);
3484 	}
3485 }
3486 
3487 /* This routine deals with acks during a TLP episode.
3488  * We mark the end of a TLP episode on receiving TLP dupack or when
3489  * ack is after tlp_high_seq.
3490  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3491  */
3492 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3493 {
3494 	struct tcp_sock *tp = tcp_sk(sk);
3495 
3496 	if (before(ack, tp->tlp_high_seq))
3497 		return;
3498 
3499 	if (flag & FLAG_DSACKING_ACK) {
3500 		/* This DSACK means original and TLP probe arrived; no loss */
3501 		tp->tlp_high_seq = 0;
3502 	} else if (after(ack, tp->tlp_high_seq)) {
3503 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3504 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3505 		 */
3506 		tcp_init_cwnd_reduction(sk);
3507 		tcp_set_ca_state(sk, TCP_CA_CWR);
3508 		tcp_end_cwnd_reduction(sk);
3509 		tcp_try_keep_open(sk);
3510 		NET_INC_STATS(sock_net(sk),
3511 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3512 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3513 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3514 		/* Pure dupack: original and TLP probe arrived; no loss */
3515 		tp->tlp_high_seq = 0;
3516 	}
3517 }
3518 
3519 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3520 {
3521 	const struct inet_connection_sock *icsk = inet_csk(sk);
3522 
3523 	if (icsk->icsk_ca_ops->in_ack_event)
3524 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3525 }
3526 
3527 /* Congestion control has updated the cwnd already. So if we're in
3528  * loss recovery then now we do any new sends (for FRTO) or
3529  * retransmits (for CA_Loss or CA_recovery) that make sense.
3530  */
3531 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3532 {
3533 	struct tcp_sock *tp = tcp_sk(sk);
3534 
3535 	if (rexmit == REXMIT_NONE)
3536 		return;
3537 
3538 	if (unlikely(rexmit == 2)) {
3539 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3540 					  TCP_NAGLE_OFF);
3541 		if (after(tp->snd_nxt, tp->high_seq))
3542 			return;
3543 		tp->frto = 0;
3544 	}
3545 	tcp_xmit_retransmit_queue(sk);
3546 }
3547 
3548 /* Returns the number of packets newly acked or sacked by the current ACK */
3549 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3550 {
3551 	const struct net *net = sock_net(sk);
3552 	struct tcp_sock *tp = tcp_sk(sk);
3553 	u32 delivered;
3554 
3555 	delivered = tp->delivered - prior_delivered;
3556 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3557 	if (flag & FLAG_ECE) {
3558 		tp->delivered_ce += delivered;
3559 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3560 	}
3561 	return delivered;
3562 }
3563 
3564 /* This routine deals with incoming acks, but not outgoing ones. */
3565 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3566 {
3567 	struct inet_connection_sock *icsk = inet_csk(sk);
3568 	struct tcp_sock *tp = tcp_sk(sk);
3569 	struct tcp_sacktag_state sack_state;
3570 	struct rate_sample rs = { .prior_delivered = 0 };
3571 	u32 prior_snd_una = tp->snd_una;
3572 	bool is_sack_reneg = tp->is_sack_reneg;
3573 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3574 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3575 	bool is_dupack = false;
3576 	int prior_packets = tp->packets_out;
3577 	u32 delivered = tp->delivered;
3578 	u32 lost = tp->lost;
3579 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3580 	u32 prior_fack;
3581 
3582 	sack_state.first_sackt = 0;
3583 	sack_state.rate = &rs;
3584 
3585 	/* We very likely will need to access rtx queue. */
3586 	prefetch(sk->tcp_rtx_queue.rb_node);
3587 
3588 	/* If the ack is older than previous acks
3589 	 * then we can probably ignore it.
3590 	 */
3591 	if (before(ack, prior_snd_una)) {
3592 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3593 		if (before(ack, prior_snd_una - tp->max_window)) {
3594 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3595 				tcp_send_challenge_ack(sk, skb);
3596 			return -1;
3597 		}
3598 		goto old_ack;
3599 	}
3600 
3601 	/* If the ack includes data we haven't sent yet, discard
3602 	 * this segment (RFC793 Section 3.9).
3603 	 */
3604 	if (after(ack, tp->snd_nxt))
3605 		goto invalid_ack;
3606 
3607 	if (after(ack, prior_snd_una)) {
3608 		flag |= FLAG_SND_UNA_ADVANCED;
3609 		icsk->icsk_retransmits = 0;
3610 
3611 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3612 		if (static_branch_unlikely(&clean_acked_data_enabled))
3613 			if (icsk->icsk_clean_acked)
3614 				icsk->icsk_clean_acked(sk, ack);
3615 #endif
3616 	}
3617 
3618 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3619 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3620 
3621 	/* ts_recent update must be made after we are sure that the packet
3622 	 * is in window.
3623 	 */
3624 	if (flag & FLAG_UPDATE_TS_RECENT)
3625 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3626 
3627 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3628 		/* Window is constant, pure forward advance.
3629 		 * No more checks are required.
3630 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3631 		 */
3632 		tcp_update_wl(tp, ack_seq);
3633 		tcp_snd_una_update(tp, ack);
3634 		flag |= FLAG_WIN_UPDATE;
3635 
3636 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3637 
3638 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3639 	} else {
3640 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3641 
3642 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3643 			flag |= FLAG_DATA;
3644 		else
3645 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3646 
3647 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3648 
3649 		if (TCP_SKB_CB(skb)->sacked)
3650 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3651 							&sack_state);
3652 
3653 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3654 			flag |= FLAG_ECE;
3655 			ack_ev_flags |= CA_ACK_ECE;
3656 		}
3657 
3658 		if (flag & FLAG_WIN_UPDATE)
3659 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3660 
3661 		tcp_in_ack_event(sk, ack_ev_flags);
3662 	}
3663 
3664 	/* We passed data and got it acked, remove any soft error
3665 	 * log. Something worked...
3666 	 */
3667 	sk->sk_err_soft = 0;
3668 	icsk->icsk_probes_out = 0;
3669 	tp->rcv_tstamp = tcp_jiffies32;
3670 	if (!prior_packets)
3671 		goto no_queue;
3672 
3673 	/* See if we can take anything off of the retransmit queue. */
3674 	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3675 
3676 	tcp_rack_update_reo_wnd(sk, &rs);
3677 
3678 	if (tp->tlp_high_seq)
3679 		tcp_process_tlp_ack(sk, ack, flag);
3680 	/* If needed, reset TLP/RTO timer; RACK may later override this. */
3681 	if (flag & FLAG_SET_XMIT_TIMER)
3682 		tcp_set_xmit_timer(sk);
3683 
3684 	if (tcp_ack_is_dubious(sk, flag)) {
3685 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3686 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3687 				      &rexmit);
3688 	}
3689 
3690 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3691 		sk_dst_confirm(sk);
3692 
3693 	delivered = tcp_newly_delivered(sk, delivered, flag);
3694 	lost = tp->lost - lost;			/* freshly marked lost */
3695 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3696 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3697 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3698 	tcp_xmit_recovery(sk, rexmit);
3699 	return 1;
3700 
3701 no_queue:
3702 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3703 	if (flag & FLAG_DSACKING_ACK) {
3704 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3705 				      &rexmit);
3706 		tcp_newly_delivered(sk, delivered, flag);
3707 	}
3708 	/* If this ack opens up a zero window, clear backoff.  It was
3709 	 * being used to time the probes, and is probably far higher than
3710 	 * it needs to be for normal retransmission.
3711 	 */
3712 	tcp_ack_probe(sk);
3713 
3714 	if (tp->tlp_high_seq)
3715 		tcp_process_tlp_ack(sk, ack, flag);
3716 	return 1;
3717 
3718 invalid_ack:
3719 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3720 	return -1;
3721 
3722 old_ack:
3723 	/* If data was SACKed, tag it and see if we should send more data.
3724 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3725 	 */
3726 	if (TCP_SKB_CB(skb)->sacked) {
3727 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3728 						&sack_state);
3729 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3730 				      &rexmit);
3731 		tcp_newly_delivered(sk, delivered, flag);
3732 		tcp_xmit_recovery(sk, rexmit);
3733 	}
3734 
3735 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3736 	return 0;
3737 }
3738 
3739 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3740 				      bool syn, struct tcp_fastopen_cookie *foc,
3741 				      bool exp_opt)
3742 {
3743 	/* Valid only in SYN or SYN-ACK with an even length.  */
3744 	if (!foc || !syn || len < 0 || (len & 1))
3745 		return;
3746 
3747 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3748 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3749 		memcpy(foc->val, cookie, len);
3750 	else if (len != 0)
3751 		len = -1;
3752 	foc->len = len;
3753 	foc->exp = exp_opt;
3754 }
3755 
3756 static void smc_parse_options(const struct tcphdr *th,
3757 			      struct tcp_options_received *opt_rx,
3758 			      const unsigned char *ptr,
3759 			      int opsize)
3760 {
3761 #if IS_ENABLED(CONFIG_SMC)
3762 	if (static_branch_unlikely(&tcp_have_smc)) {
3763 		if (th->syn && !(opsize & 1) &&
3764 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3765 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3766 			opt_rx->smc_ok = 1;
3767 	}
3768 #endif
3769 }
3770 
3771 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3772  * But, this can also be called on packets in the established flow when
3773  * the fast version below fails.
3774  */
3775 void tcp_parse_options(const struct net *net,
3776 		       const struct sk_buff *skb,
3777 		       struct tcp_options_received *opt_rx, int estab,
3778 		       struct tcp_fastopen_cookie *foc)
3779 {
3780 	const unsigned char *ptr;
3781 	const struct tcphdr *th = tcp_hdr(skb);
3782 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3783 
3784 	ptr = (const unsigned char *)(th + 1);
3785 	opt_rx->saw_tstamp = 0;
3786 
3787 	while (length > 0) {
3788 		int opcode = *ptr++;
3789 		int opsize;
3790 
3791 		switch (opcode) {
3792 		case TCPOPT_EOL:
3793 			return;
3794 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3795 			length--;
3796 			continue;
3797 		default:
3798 			opsize = *ptr++;
3799 			if (opsize < 2) /* "silly options" */
3800 				return;
3801 			if (opsize > length)
3802 				return;	/* don't parse partial options */
3803 			switch (opcode) {
3804 			case TCPOPT_MSS:
3805 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3806 					u16 in_mss = get_unaligned_be16(ptr);
3807 					if (in_mss) {
3808 						if (opt_rx->user_mss &&
3809 						    opt_rx->user_mss < in_mss)
3810 							in_mss = opt_rx->user_mss;
3811 						opt_rx->mss_clamp = in_mss;
3812 					}
3813 				}
3814 				break;
3815 			case TCPOPT_WINDOW:
3816 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3817 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3818 					__u8 snd_wscale = *(__u8 *)ptr;
3819 					opt_rx->wscale_ok = 1;
3820 					if (snd_wscale > TCP_MAX_WSCALE) {
3821 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3822 								     __func__,
3823 								     snd_wscale,
3824 								     TCP_MAX_WSCALE);
3825 						snd_wscale = TCP_MAX_WSCALE;
3826 					}
3827 					opt_rx->snd_wscale = snd_wscale;
3828 				}
3829 				break;
3830 			case TCPOPT_TIMESTAMP:
3831 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3832 				    ((estab && opt_rx->tstamp_ok) ||
3833 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3834 					opt_rx->saw_tstamp = 1;
3835 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3836 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3837 				}
3838 				break;
3839 			case TCPOPT_SACK_PERM:
3840 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3841 				    !estab && net->ipv4.sysctl_tcp_sack) {
3842 					opt_rx->sack_ok = TCP_SACK_SEEN;
3843 					tcp_sack_reset(opt_rx);
3844 				}
3845 				break;
3846 
3847 			case TCPOPT_SACK:
3848 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3849 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3850 				   opt_rx->sack_ok) {
3851 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3852 				}
3853 				break;
3854 #ifdef CONFIG_TCP_MD5SIG
3855 			case TCPOPT_MD5SIG:
3856 				/*
3857 				 * The MD5 Hash has already been
3858 				 * checked (see tcp_v{4,6}_do_rcv()).
3859 				 */
3860 				break;
3861 #endif
3862 			case TCPOPT_FASTOPEN:
3863 				tcp_parse_fastopen_option(
3864 					opsize - TCPOLEN_FASTOPEN_BASE,
3865 					ptr, th->syn, foc, false);
3866 				break;
3867 
3868 			case TCPOPT_EXP:
3869 				/* Fast Open option shares code 254 using a
3870 				 * 16 bits magic number.
3871 				 */
3872 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3873 				    get_unaligned_be16(ptr) ==
3874 				    TCPOPT_FASTOPEN_MAGIC)
3875 					tcp_parse_fastopen_option(opsize -
3876 						TCPOLEN_EXP_FASTOPEN_BASE,
3877 						ptr + 2, th->syn, foc, true);
3878 				else
3879 					smc_parse_options(th, opt_rx, ptr,
3880 							  opsize);
3881 				break;
3882 
3883 			}
3884 			ptr += opsize-2;
3885 			length -= opsize;
3886 		}
3887 	}
3888 }
3889 EXPORT_SYMBOL(tcp_parse_options);
3890 
3891 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3892 {
3893 	const __be32 *ptr = (const __be32 *)(th + 1);
3894 
3895 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3896 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3897 		tp->rx_opt.saw_tstamp = 1;
3898 		++ptr;
3899 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3900 		++ptr;
3901 		if (*ptr)
3902 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3903 		else
3904 			tp->rx_opt.rcv_tsecr = 0;
3905 		return true;
3906 	}
3907 	return false;
3908 }
3909 
3910 /* Fast parse options. This hopes to only see timestamps.
3911  * If it is wrong it falls back on tcp_parse_options().
3912  */
3913 static bool tcp_fast_parse_options(const struct net *net,
3914 				   const struct sk_buff *skb,
3915 				   const struct tcphdr *th, struct tcp_sock *tp)
3916 {
3917 	/* In the spirit of fast parsing, compare doff directly to constant
3918 	 * values.  Because equality is used, short doff can be ignored here.
3919 	 */
3920 	if (th->doff == (sizeof(*th) / 4)) {
3921 		tp->rx_opt.saw_tstamp = 0;
3922 		return false;
3923 	} else if (tp->rx_opt.tstamp_ok &&
3924 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3925 		if (tcp_parse_aligned_timestamp(tp, th))
3926 			return true;
3927 	}
3928 
3929 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3930 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3931 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3932 
3933 	return true;
3934 }
3935 
3936 #ifdef CONFIG_TCP_MD5SIG
3937 /*
3938  * Parse MD5 Signature option
3939  */
3940 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3941 {
3942 	int length = (th->doff << 2) - sizeof(*th);
3943 	const u8 *ptr = (const u8 *)(th + 1);
3944 
3945 	/* If not enough data remaining, we can short cut */
3946 	while (length >= TCPOLEN_MD5SIG) {
3947 		int opcode = *ptr++;
3948 		int opsize;
3949 
3950 		switch (opcode) {
3951 		case TCPOPT_EOL:
3952 			return NULL;
3953 		case TCPOPT_NOP:
3954 			length--;
3955 			continue;
3956 		default:
3957 			opsize = *ptr++;
3958 			if (opsize < 2 || opsize > length)
3959 				return NULL;
3960 			if (opcode == TCPOPT_MD5SIG)
3961 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3962 		}
3963 		ptr += opsize - 2;
3964 		length -= opsize;
3965 	}
3966 	return NULL;
3967 }
3968 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3969 #endif
3970 
3971 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3972  *
3973  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3974  * it can pass through stack. So, the following predicate verifies that
3975  * this segment is not used for anything but congestion avoidance or
3976  * fast retransmit. Moreover, we even are able to eliminate most of such
3977  * second order effects, if we apply some small "replay" window (~RTO)
3978  * to timestamp space.
3979  *
3980  * All these measures still do not guarantee that we reject wrapped ACKs
3981  * on networks with high bandwidth, when sequence space is recycled fastly,
3982  * but it guarantees that such events will be very rare and do not affect
3983  * connection seriously. This doesn't look nice, but alas, PAWS is really
3984  * buggy extension.
3985  *
3986  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3987  * states that events when retransmit arrives after original data are rare.
3988  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3989  * the biggest problem on large power networks even with minor reordering.
3990  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3991  * up to bandwidth of 18Gigabit/sec. 8) ]
3992  */
3993 
3994 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3995 {
3996 	const struct tcp_sock *tp = tcp_sk(sk);
3997 	const struct tcphdr *th = tcp_hdr(skb);
3998 	u32 seq = TCP_SKB_CB(skb)->seq;
3999 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4000 
4001 	return (/* 1. Pure ACK with correct sequence number. */
4002 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4003 
4004 		/* 2. ... and duplicate ACK. */
4005 		ack == tp->snd_una &&
4006 
4007 		/* 3. ... and does not update window. */
4008 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4009 
4010 		/* 4. ... and sits in replay window. */
4011 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4012 }
4013 
4014 static inline bool tcp_paws_discard(const struct sock *sk,
4015 				   const struct sk_buff *skb)
4016 {
4017 	const struct tcp_sock *tp = tcp_sk(sk);
4018 
4019 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4020 	       !tcp_disordered_ack(sk, skb);
4021 }
4022 
4023 /* Check segment sequence number for validity.
4024  *
4025  * Segment controls are considered valid, if the segment
4026  * fits to the window after truncation to the window. Acceptability
4027  * of data (and SYN, FIN, of course) is checked separately.
4028  * See tcp_data_queue(), for example.
4029  *
4030  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4031  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4032  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4033  * (borrowed from freebsd)
4034  */
4035 
4036 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4037 {
4038 	return	!before(end_seq, tp->rcv_wup) &&
4039 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4040 }
4041 
4042 /* When we get a reset we do this. */
4043 void tcp_reset(struct sock *sk)
4044 {
4045 	trace_tcp_receive_reset(sk);
4046 
4047 	/* We want the right error as BSD sees it (and indeed as we do). */
4048 	switch (sk->sk_state) {
4049 	case TCP_SYN_SENT:
4050 		sk->sk_err = ECONNREFUSED;
4051 		break;
4052 	case TCP_CLOSE_WAIT:
4053 		sk->sk_err = EPIPE;
4054 		break;
4055 	case TCP_CLOSE:
4056 		return;
4057 	default:
4058 		sk->sk_err = ECONNRESET;
4059 	}
4060 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4061 	smp_wmb();
4062 
4063 	tcp_write_queue_purge(sk);
4064 	tcp_done(sk);
4065 
4066 	if (!sock_flag(sk, SOCK_DEAD))
4067 		sk->sk_error_report(sk);
4068 }
4069 
4070 /*
4071  * 	Process the FIN bit. This now behaves as it is supposed to work
4072  *	and the FIN takes effect when it is validly part of sequence
4073  *	space. Not before when we get holes.
4074  *
4075  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4076  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4077  *	TIME-WAIT)
4078  *
4079  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4080  *	close and we go into CLOSING (and later onto TIME-WAIT)
4081  *
4082  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4083  */
4084 void tcp_fin(struct sock *sk)
4085 {
4086 	struct tcp_sock *tp = tcp_sk(sk);
4087 
4088 	inet_csk_schedule_ack(sk);
4089 
4090 	sk->sk_shutdown |= RCV_SHUTDOWN;
4091 	sock_set_flag(sk, SOCK_DONE);
4092 
4093 	switch (sk->sk_state) {
4094 	case TCP_SYN_RECV:
4095 	case TCP_ESTABLISHED:
4096 		/* Move to CLOSE_WAIT */
4097 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4098 		inet_csk(sk)->icsk_ack.pingpong = 1;
4099 		break;
4100 
4101 	case TCP_CLOSE_WAIT:
4102 	case TCP_CLOSING:
4103 		/* Received a retransmission of the FIN, do
4104 		 * nothing.
4105 		 */
4106 		break;
4107 	case TCP_LAST_ACK:
4108 		/* RFC793: Remain in the LAST-ACK state. */
4109 		break;
4110 
4111 	case TCP_FIN_WAIT1:
4112 		/* This case occurs when a simultaneous close
4113 		 * happens, we must ack the received FIN and
4114 		 * enter the CLOSING state.
4115 		 */
4116 		tcp_send_ack(sk);
4117 		tcp_set_state(sk, TCP_CLOSING);
4118 		break;
4119 	case TCP_FIN_WAIT2:
4120 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4121 		tcp_send_ack(sk);
4122 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4123 		break;
4124 	default:
4125 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4126 		 * cases we should never reach this piece of code.
4127 		 */
4128 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4129 		       __func__, sk->sk_state);
4130 		break;
4131 	}
4132 
4133 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4134 	 * Probably, we should reset in this case. For now drop them.
4135 	 */
4136 	skb_rbtree_purge(&tp->out_of_order_queue);
4137 	if (tcp_is_sack(tp))
4138 		tcp_sack_reset(&tp->rx_opt);
4139 	sk_mem_reclaim(sk);
4140 
4141 	if (!sock_flag(sk, SOCK_DEAD)) {
4142 		sk->sk_state_change(sk);
4143 
4144 		/* Do not send POLL_HUP for half duplex close. */
4145 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4146 		    sk->sk_state == TCP_CLOSE)
4147 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4148 		else
4149 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4150 	}
4151 }
4152 
4153 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4154 				  u32 end_seq)
4155 {
4156 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4157 		if (before(seq, sp->start_seq))
4158 			sp->start_seq = seq;
4159 		if (after(end_seq, sp->end_seq))
4160 			sp->end_seq = end_seq;
4161 		return true;
4162 	}
4163 	return false;
4164 }
4165 
4166 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4167 {
4168 	struct tcp_sock *tp = tcp_sk(sk);
4169 
4170 	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4171 		int mib_idx;
4172 
4173 		if (before(seq, tp->rcv_nxt))
4174 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4175 		else
4176 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4177 
4178 		NET_INC_STATS(sock_net(sk), mib_idx);
4179 
4180 		tp->rx_opt.dsack = 1;
4181 		tp->duplicate_sack[0].start_seq = seq;
4182 		tp->duplicate_sack[0].end_seq = end_seq;
4183 	}
4184 }
4185 
4186 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4187 {
4188 	struct tcp_sock *tp = tcp_sk(sk);
4189 
4190 	if (!tp->rx_opt.dsack)
4191 		tcp_dsack_set(sk, seq, end_seq);
4192 	else
4193 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4194 }
4195 
4196 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4197 {
4198 	struct tcp_sock *tp = tcp_sk(sk);
4199 
4200 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4201 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4202 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4203 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4204 
4205 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4206 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4207 
4208 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4209 				end_seq = tp->rcv_nxt;
4210 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4211 		}
4212 	}
4213 
4214 	tcp_send_ack(sk);
4215 }
4216 
4217 /* These routines update the SACK block as out-of-order packets arrive or
4218  * in-order packets close up the sequence space.
4219  */
4220 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4221 {
4222 	int this_sack;
4223 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4224 	struct tcp_sack_block *swalk = sp + 1;
4225 
4226 	/* See if the recent change to the first SACK eats into
4227 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4228 	 */
4229 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4230 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4231 			int i;
4232 
4233 			/* Zap SWALK, by moving every further SACK up by one slot.
4234 			 * Decrease num_sacks.
4235 			 */
4236 			tp->rx_opt.num_sacks--;
4237 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4238 				sp[i] = sp[i + 1];
4239 			continue;
4240 		}
4241 		this_sack++, swalk++;
4242 	}
4243 }
4244 
4245 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4246 {
4247 	struct tcp_sock *tp = tcp_sk(sk);
4248 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4249 	int cur_sacks = tp->rx_opt.num_sacks;
4250 	int this_sack;
4251 
4252 	if (!cur_sacks)
4253 		goto new_sack;
4254 
4255 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4256 		if (tcp_sack_extend(sp, seq, end_seq)) {
4257 			/* Rotate this_sack to the first one. */
4258 			for (; this_sack > 0; this_sack--, sp--)
4259 				swap(*sp, *(sp - 1));
4260 			if (cur_sacks > 1)
4261 				tcp_sack_maybe_coalesce(tp);
4262 			return;
4263 		}
4264 	}
4265 
4266 	/* Could not find an adjacent existing SACK, build a new one,
4267 	 * put it at the front, and shift everyone else down.  We
4268 	 * always know there is at least one SACK present already here.
4269 	 *
4270 	 * If the sack array is full, forget about the last one.
4271 	 */
4272 	if (this_sack >= TCP_NUM_SACKS) {
4273 		if (tp->compressed_ack)
4274 			tcp_send_ack(sk);
4275 		this_sack--;
4276 		tp->rx_opt.num_sacks--;
4277 		sp--;
4278 	}
4279 	for (; this_sack > 0; this_sack--, sp--)
4280 		*sp = *(sp - 1);
4281 
4282 new_sack:
4283 	/* Build the new head SACK, and we're done. */
4284 	sp->start_seq = seq;
4285 	sp->end_seq = end_seq;
4286 	tp->rx_opt.num_sacks++;
4287 }
4288 
4289 /* RCV.NXT advances, some SACKs should be eaten. */
4290 
4291 static void tcp_sack_remove(struct tcp_sock *tp)
4292 {
4293 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4294 	int num_sacks = tp->rx_opt.num_sacks;
4295 	int this_sack;
4296 
4297 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4298 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4299 		tp->rx_opt.num_sacks = 0;
4300 		return;
4301 	}
4302 
4303 	for (this_sack = 0; this_sack < num_sacks;) {
4304 		/* Check if the start of the sack is covered by RCV.NXT. */
4305 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4306 			int i;
4307 
4308 			/* RCV.NXT must cover all the block! */
4309 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4310 
4311 			/* Zap this SACK, by moving forward any other SACKS. */
4312 			for (i = this_sack+1; i < num_sacks; i++)
4313 				tp->selective_acks[i-1] = tp->selective_acks[i];
4314 			num_sacks--;
4315 			continue;
4316 		}
4317 		this_sack++;
4318 		sp++;
4319 	}
4320 	tp->rx_opt.num_sacks = num_sacks;
4321 }
4322 
4323 /**
4324  * tcp_try_coalesce - try to merge skb to prior one
4325  * @sk: socket
4326  * @dest: destination queue
4327  * @to: prior buffer
4328  * @from: buffer to add in queue
4329  * @fragstolen: pointer to boolean
4330  *
4331  * Before queueing skb @from after @to, try to merge them
4332  * to reduce overall memory use and queue lengths, if cost is small.
4333  * Packets in ofo or receive queues can stay a long time.
4334  * Better try to coalesce them right now to avoid future collapses.
4335  * Returns true if caller should free @from instead of queueing it
4336  */
4337 static bool tcp_try_coalesce(struct sock *sk,
4338 			     struct sk_buff *to,
4339 			     struct sk_buff *from,
4340 			     bool *fragstolen)
4341 {
4342 	int delta;
4343 
4344 	*fragstolen = false;
4345 
4346 	/* Its possible this segment overlaps with prior segment in queue */
4347 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4348 		return false;
4349 
4350 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4351 		return false;
4352 
4353 	atomic_add(delta, &sk->sk_rmem_alloc);
4354 	sk_mem_charge(sk, delta);
4355 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4356 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4357 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4358 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4359 
4360 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4361 		TCP_SKB_CB(to)->has_rxtstamp = true;
4362 		to->tstamp = from->tstamp;
4363 	}
4364 
4365 	return true;
4366 }
4367 
4368 static bool tcp_ooo_try_coalesce(struct sock *sk,
4369 			     struct sk_buff *to,
4370 			     struct sk_buff *from,
4371 			     bool *fragstolen)
4372 {
4373 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4374 
4375 	/* In case tcp_drop() is called later, update to->gso_segs */
4376 	if (res) {
4377 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4378 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4379 
4380 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4381 	}
4382 	return res;
4383 }
4384 
4385 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4386 {
4387 	sk_drops_add(sk, skb);
4388 	__kfree_skb(skb);
4389 }
4390 
4391 /* This one checks to see if we can put data from the
4392  * out_of_order queue into the receive_queue.
4393  */
4394 static void tcp_ofo_queue(struct sock *sk)
4395 {
4396 	struct tcp_sock *tp = tcp_sk(sk);
4397 	__u32 dsack_high = tp->rcv_nxt;
4398 	bool fin, fragstolen, eaten;
4399 	struct sk_buff *skb, *tail;
4400 	struct rb_node *p;
4401 
4402 	p = rb_first(&tp->out_of_order_queue);
4403 	while (p) {
4404 		skb = rb_to_skb(p);
4405 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4406 			break;
4407 
4408 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4409 			__u32 dsack = dsack_high;
4410 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4411 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4412 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4413 		}
4414 		p = rb_next(p);
4415 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4416 
4417 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4418 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4419 			tcp_drop(sk, skb);
4420 			continue;
4421 		}
4422 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4423 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4424 			   TCP_SKB_CB(skb)->end_seq);
4425 
4426 		tail = skb_peek_tail(&sk->sk_receive_queue);
4427 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4428 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4429 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4430 		if (!eaten)
4431 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4432 		else
4433 			kfree_skb_partial(skb, fragstolen);
4434 
4435 		if (unlikely(fin)) {
4436 			tcp_fin(sk);
4437 			/* tcp_fin() purges tp->out_of_order_queue,
4438 			 * so we must end this loop right now.
4439 			 */
4440 			break;
4441 		}
4442 	}
4443 }
4444 
4445 static bool tcp_prune_ofo_queue(struct sock *sk);
4446 static int tcp_prune_queue(struct sock *sk);
4447 
4448 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4449 				 unsigned int size)
4450 {
4451 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4452 	    !sk_rmem_schedule(sk, skb, size)) {
4453 
4454 		if (tcp_prune_queue(sk) < 0)
4455 			return -1;
4456 
4457 		while (!sk_rmem_schedule(sk, skb, size)) {
4458 			if (!tcp_prune_ofo_queue(sk))
4459 				return -1;
4460 		}
4461 	}
4462 	return 0;
4463 }
4464 
4465 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4466 {
4467 	struct tcp_sock *tp = tcp_sk(sk);
4468 	struct rb_node **p, *parent;
4469 	struct sk_buff *skb1;
4470 	u32 seq, end_seq;
4471 	bool fragstolen;
4472 
4473 	tcp_ecn_check_ce(sk, skb);
4474 
4475 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4476 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4477 		tcp_drop(sk, skb);
4478 		return;
4479 	}
4480 
4481 	/* Disable header prediction. */
4482 	tp->pred_flags = 0;
4483 	inet_csk_schedule_ack(sk);
4484 
4485 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4486 	seq = TCP_SKB_CB(skb)->seq;
4487 	end_seq = TCP_SKB_CB(skb)->end_seq;
4488 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4489 		   tp->rcv_nxt, seq, end_seq);
4490 
4491 	p = &tp->out_of_order_queue.rb_node;
4492 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4493 		/* Initial out of order segment, build 1 SACK. */
4494 		if (tcp_is_sack(tp)) {
4495 			tp->rx_opt.num_sacks = 1;
4496 			tp->selective_acks[0].start_seq = seq;
4497 			tp->selective_acks[0].end_seq = end_seq;
4498 		}
4499 		rb_link_node(&skb->rbnode, NULL, p);
4500 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4501 		tp->ooo_last_skb = skb;
4502 		goto end;
4503 	}
4504 
4505 	/* In the typical case, we are adding an skb to the end of the list.
4506 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4507 	 */
4508 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4509 				 skb, &fragstolen)) {
4510 coalesce_done:
4511 		tcp_grow_window(sk, skb);
4512 		kfree_skb_partial(skb, fragstolen);
4513 		skb = NULL;
4514 		goto add_sack;
4515 	}
4516 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4517 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4518 		parent = &tp->ooo_last_skb->rbnode;
4519 		p = &parent->rb_right;
4520 		goto insert;
4521 	}
4522 
4523 	/* Find place to insert this segment. Handle overlaps on the way. */
4524 	parent = NULL;
4525 	while (*p) {
4526 		parent = *p;
4527 		skb1 = rb_to_skb(parent);
4528 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4529 			p = &parent->rb_left;
4530 			continue;
4531 		}
4532 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4533 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4534 				/* All the bits are present. Drop. */
4535 				NET_INC_STATS(sock_net(sk),
4536 					      LINUX_MIB_TCPOFOMERGE);
4537 				tcp_drop(sk, skb);
4538 				skb = NULL;
4539 				tcp_dsack_set(sk, seq, end_seq);
4540 				goto add_sack;
4541 			}
4542 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4543 				/* Partial overlap. */
4544 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4545 			} else {
4546 				/* skb's seq == skb1's seq and skb covers skb1.
4547 				 * Replace skb1 with skb.
4548 				 */
4549 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4550 						&tp->out_of_order_queue);
4551 				tcp_dsack_extend(sk,
4552 						 TCP_SKB_CB(skb1)->seq,
4553 						 TCP_SKB_CB(skb1)->end_seq);
4554 				NET_INC_STATS(sock_net(sk),
4555 					      LINUX_MIB_TCPOFOMERGE);
4556 				tcp_drop(sk, skb1);
4557 				goto merge_right;
4558 			}
4559 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4560 						skb, &fragstolen)) {
4561 			goto coalesce_done;
4562 		}
4563 		p = &parent->rb_right;
4564 	}
4565 insert:
4566 	/* Insert segment into RB tree. */
4567 	rb_link_node(&skb->rbnode, parent, p);
4568 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4569 
4570 merge_right:
4571 	/* Remove other segments covered by skb. */
4572 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4573 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4574 			break;
4575 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4576 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4577 					 end_seq);
4578 			break;
4579 		}
4580 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4581 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4582 				 TCP_SKB_CB(skb1)->end_seq);
4583 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4584 		tcp_drop(sk, skb1);
4585 	}
4586 	/* If there is no skb after us, we are the last_skb ! */
4587 	if (!skb1)
4588 		tp->ooo_last_skb = skb;
4589 
4590 add_sack:
4591 	if (tcp_is_sack(tp))
4592 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4593 end:
4594 	if (skb) {
4595 		tcp_grow_window(sk, skb);
4596 		skb_condense(skb);
4597 		skb_set_owner_r(skb, sk);
4598 	}
4599 }
4600 
4601 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4602 		  bool *fragstolen)
4603 {
4604 	int eaten;
4605 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4606 
4607 	__skb_pull(skb, hdrlen);
4608 	eaten = (tail &&
4609 		 tcp_try_coalesce(sk, tail,
4610 				  skb, fragstolen)) ? 1 : 0;
4611 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4612 	if (!eaten) {
4613 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4614 		skb_set_owner_r(skb, sk);
4615 	}
4616 	return eaten;
4617 }
4618 
4619 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4620 {
4621 	struct sk_buff *skb;
4622 	int err = -ENOMEM;
4623 	int data_len = 0;
4624 	bool fragstolen;
4625 
4626 	if (size == 0)
4627 		return 0;
4628 
4629 	if (size > PAGE_SIZE) {
4630 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4631 
4632 		data_len = npages << PAGE_SHIFT;
4633 		size = data_len + (size & ~PAGE_MASK);
4634 	}
4635 	skb = alloc_skb_with_frags(size - data_len, data_len,
4636 				   PAGE_ALLOC_COSTLY_ORDER,
4637 				   &err, sk->sk_allocation);
4638 	if (!skb)
4639 		goto err;
4640 
4641 	skb_put(skb, size - data_len);
4642 	skb->data_len = data_len;
4643 	skb->len = size;
4644 
4645 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4646 		goto err_free;
4647 
4648 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4649 	if (err)
4650 		goto err_free;
4651 
4652 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4653 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4654 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4655 
4656 	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4657 		WARN_ON_ONCE(fragstolen); /* should not happen */
4658 		__kfree_skb(skb);
4659 	}
4660 	return size;
4661 
4662 err_free:
4663 	kfree_skb(skb);
4664 err:
4665 	return err;
4666 
4667 }
4668 
4669 void tcp_data_ready(struct sock *sk)
4670 {
4671 	const struct tcp_sock *tp = tcp_sk(sk);
4672 	int avail = tp->rcv_nxt - tp->copied_seq;
4673 
4674 	if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE))
4675 		return;
4676 
4677 	sk->sk_data_ready(sk);
4678 }
4679 
4680 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4681 {
4682 	struct tcp_sock *tp = tcp_sk(sk);
4683 	bool fragstolen;
4684 	int eaten;
4685 
4686 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4687 		__kfree_skb(skb);
4688 		return;
4689 	}
4690 	skb_dst_drop(skb);
4691 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4692 
4693 	tcp_ecn_accept_cwr(tp, skb);
4694 
4695 	tp->rx_opt.dsack = 0;
4696 
4697 	/*  Queue data for delivery to the user.
4698 	 *  Packets in sequence go to the receive queue.
4699 	 *  Out of sequence packets to the out_of_order_queue.
4700 	 */
4701 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4702 		if (tcp_receive_window(tp) == 0)
4703 			goto out_of_window;
4704 
4705 		/* Ok. In sequence. In window. */
4706 queue_and_out:
4707 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4708 			sk_forced_mem_schedule(sk, skb->truesize);
4709 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4710 			goto drop;
4711 
4712 		eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4713 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4714 		if (skb->len)
4715 			tcp_event_data_recv(sk, skb);
4716 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4717 			tcp_fin(sk);
4718 
4719 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4720 			tcp_ofo_queue(sk);
4721 
4722 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4723 			 * gap in queue is filled.
4724 			 */
4725 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4726 				inet_csk(sk)->icsk_ack.pingpong = 0;
4727 		}
4728 
4729 		if (tp->rx_opt.num_sacks)
4730 			tcp_sack_remove(tp);
4731 
4732 		tcp_fast_path_check(sk);
4733 
4734 		if (eaten > 0)
4735 			kfree_skb_partial(skb, fragstolen);
4736 		if (!sock_flag(sk, SOCK_DEAD))
4737 			tcp_data_ready(sk);
4738 		return;
4739 	}
4740 
4741 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4742 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4743 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4744 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4745 
4746 out_of_window:
4747 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4748 		inet_csk_schedule_ack(sk);
4749 drop:
4750 		tcp_drop(sk, skb);
4751 		return;
4752 	}
4753 
4754 	/* Out of window. F.e. zero window probe. */
4755 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4756 		goto out_of_window;
4757 
4758 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4759 		/* Partial packet, seq < rcv_next < end_seq */
4760 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4761 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4762 			   TCP_SKB_CB(skb)->end_seq);
4763 
4764 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4765 
4766 		/* If window is closed, drop tail of packet. But after
4767 		 * remembering D-SACK for its head made in previous line.
4768 		 */
4769 		if (!tcp_receive_window(tp))
4770 			goto out_of_window;
4771 		goto queue_and_out;
4772 	}
4773 
4774 	tcp_data_queue_ofo(sk, skb);
4775 }
4776 
4777 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4778 {
4779 	if (list)
4780 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4781 
4782 	return skb_rb_next(skb);
4783 }
4784 
4785 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4786 					struct sk_buff_head *list,
4787 					struct rb_root *root)
4788 {
4789 	struct sk_buff *next = tcp_skb_next(skb, list);
4790 
4791 	if (list)
4792 		__skb_unlink(skb, list);
4793 	else
4794 		rb_erase(&skb->rbnode, root);
4795 
4796 	__kfree_skb(skb);
4797 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4798 
4799 	return next;
4800 }
4801 
4802 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4803 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4804 {
4805 	struct rb_node **p = &root->rb_node;
4806 	struct rb_node *parent = NULL;
4807 	struct sk_buff *skb1;
4808 
4809 	while (*p) {
4810 		parent = *p;
4811 		skb1 = rb_to_skb(parent);
4812 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4813 			p = &parent->rb_left;
4814 		else
4815 			p = &parent->rb_right;
4816 	}
4817 	rb_link_node(&skb->rbnode, parent, p);
4818 	rb_insert_color(&skb->rbnode, root);
4819 }
4820 
4821 /* Collapse contiguous sequence of skbs head..tail with
4822  * sequence numbers start..end.
4823  *
4824  * If tail is NULL, this means until the end of the queue.
4825  *
4826  * Segments with FIN/SYN are not collapsed (only because this
4827  * simplifies code)
4828  */
4829 static void
4830 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4831 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4832 {
4833 	struct sk_buff *skb = head, *n;
4834 	struct sk_buff_head tmp;
4835 	bool end_of_skbs;
4836 
4837 	/* First, check that queue is collapsible and find
4838 	 * the point where collapsing can be useful.
4839 	 */
4840 restart:
4841 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4842 		n = tcp_skb_next(skb, list);
4843 
4844 		/* No new bits? It is possible on ofo queue. */
4845 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4846 			skb = tcp_collapse_one(sk, skb, list, root);
4847 			if (!skb)
4848 				break;
4849 			goto restart;
4850 		}
4851 
4852 		/* The first skb to collapse is:
4853 		 * - not SYN/FIN and
4854 		 * - bloated or contains data before "start" or
4855 		 *   overlaps to the next one.
4856 		 */
4857 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4858 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4859 		     before(TCP_SKB_CB(skb)->seq, start))) {
4860 			end_of_skbs = false;
4861 			break;
4862 		}
4863 
4864 		if (n && n != tail &&
4865 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4866 			end_of_skbs = false;
4867 			break;
4868 		}
4869 
4870 		/* Decided to skip this, advance start seq. */
4871 		start = TCP_SKB_CB(skb)->end_seq;
4872 	}
4873 	if (end_of_skbs ||
4874 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4875 		return;
4876 
4877 	__skb_queue_head_init(&tmp);
4878 
4879 	while (before(start, end)) {
4880 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4881 		struct sk_buff *nskb;
4882 
4883 		nskb = alloc_skb(copy, GFP_ATOMIC);
4884 		if (!nskb)
4885 			break;
4886 
4887 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4888 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4889 		if (list)
4890 			__skb_queue_before(list, skb, nskb);
4891 		else
4892 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4893 		skb_set_owner_r(nskb, sk);
4894 
4895 		/* Copy data, releasing collapsed skbs. */
4896 		while (copy > 0) {
4897 			int offset = start - TCP_SKB_CB(skb)->seq;
4898 			int size = TCP_SKB_CB(skb)->end_seq - start;
4899 
4900 			BUG_ON(offset < 0);
4901 			if (size > 0) {
4902 				size = min(copy, size);
4903 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4904 					BUG();
4905 				TCP_SKB_CB(nskb)->end_seq += size;
4906 				copy -= size;
4907 				start += size;
4908 			}
4909 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4910 				skb = tcp_collapse_one(sk, skb, list, root);
4911 				if (!skb ||
4912 				    skb == tail ||
4913 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4914 					goto end;
4915 			}
4916 		}
4917 	}
4918 end:
4919 	skb_queue_walk_safe(&tmp, skb, n)
4920 		tcp_rbtree_insert(root, skb);
4921 }
4922 
4923 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4924  * and tcp_collapse() them until all the queue is collapsed.
4925  */
4926 static void tcp_collapse_ofo_queue(struct sock *sk)
4927 {
4928 	struct tcp_sock *tp = tcp_sk(sk);
4929 	u32 range_truesize, sum_tiny = 0;
4930 	struct sk_buff *skb, *head;
4931 	u32 start, end;
4932 
4933 	skb = skb_rb_first(&tp->out_of_order_queue);
4934 new_range:
4935 	if (!skb) {
4936 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
4937 		return;
4938 	}
4939 	start = TCP_SKB_CB(skb)->seq;
4940 	end = TCP_SKB_CB(skb)->end_seq;
4941 	range_truesize = skb->truesize;
4942 
4943 	for (head = skb;;) {
4944 		skb = skb_rb_next(skb);
4945 
4946 		/* Range is terminated when we see a gap or when
4947 		 * we are at the queue end.
4948 		 */
4949 		if (!skb ||
4950 		    after(TCP_SKB_CB(skb)->seq, end) ||
4951 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4952 			/* Do not attempt collapsing tiny skbs */
4953 			if (range_truesize != head->truesize ||
4954 			    end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
4955 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4956 					     head, skb, start, end);
4957 			} else {
4958 				sum_tiny += range_truesize;
4959 				if (sum_tiny > sk->sk_rcvbuf >> 3)
4960 					return;
4961 			}
4962 			goto new_range;
4963 		}
4964 
4965 		range_truesize += skb->truesize;
4966 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4967 			start = TCP_SKB_CB(skb)->seq;
4968 		if (after(TCP_SKB_CB(skb)->end_seq, end))
4969 			end = TCP_SKB_CB(skb)->end_seq;
4970 	}
4971 }
4972 
4973 /*
4974  * Clean the out-of-order queue to make room.
4975  * We drop high sequences packets to :
4976  * 1) Let a chance for holes to be filled.
4977  * 2) not add too big latencies if thousands of packets sit there.
4978  *    (But if application shrinks SO_RCVBUF, we could still end up
4979  *     freeing whole queue here)
4980  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
4981  *
4982  * Return true if queue has shrunk.
4983  */
4984 static bool tcp_prune_ofo_queue(struct sock *sk)
4985 {
4986 	struct tcp_sock *tp = tcp_sk(sk);
4987 	struct rb_node *node, *prev;
4988 	int goal;
4989 
4990 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4991 		return false;
4992 
4993 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4994 	goal = sk->sk_rcvbuf >> 3;
4995 	node = &tp->ooo_last_skb->rbnode;
4996 	do {
4997 		prev = rb_prev(node);
4998 		rb_erase(node, &tp->out_of_order_queue);
4999 		goal -= rb_to_skb(node)->truesize;
5000 		tcp_drop(sk, rb_to_skb(node));
5001 		if (!prev || goal <= 0) {
5002 			sk_mem_reclaim(sk);
5003 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5004 			    !tcp_under_memory_pressure(sk))
5005 				break;
5006 			goal = sk->sk_rcvbuf >> 3;
5007 		}
5008 		node = prev;
5009 	} while (node);
5010 	tp->ooo_last_skb = rb_to_skb(prev);
5011 
5012 	/* Reset SACK state.  A conforming SACK implementation will
5013 	 * do the same at a timeout based retransmit.  When a connection
5014 	 * is in a sad state like this, we care only about integrity
5015 	 * of the connection not performance.
5016 	 */
5017 	if (tp->rx_opt.sack_ok)
5018 		tcp_sack_reset(&tp->rx_opt);
5019 	return true;
5020 }
5021 
5022 /* Reduce allocated memory if we can, trying to get
5023  * the socket within its memory limits again.
5024  *
5025  * Return less than zero if we should start dropping frames
5026  * until the socket owning process reads some of the data
5027  * to stabilize the situation.
5028  */
5029 static int tcp_prune_queue(struct sock *sk)
5030 {
5031 	struct tcp_sock *tp = tcp_sk(sk);
5032 
5033 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
5034 
5035 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5036 
5037 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5038 		tcp_clamp_window(sk);
5039 	else if (tcp_under_memory_pressure(sk))
5040 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5041 
5042 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5043 		return 0;
5044 
5045 	tcp_collapse_ofo_queue(sk);
5046 	if (!skb_queue_empty(&sk->sk_receive_queue))
5047 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5048 			     skb_peek(&sk->sk_receive_queue),
5049 			     NULL,
5050 			     tp->copied_seq, tp->rcv_nxt);
5051 	sk_mem_reclaim(sk);
5052 
5053 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5054 		return 0;
5055 
5056 	/* Collapsing did not help, destructive actions follow.
5057 	 * This must not ever occur. */
5058 
5059 	tcp_prune_ofo_queue(sk);
5060 
5061 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5062 		return 0;
5063 
5064 	/* If we are really being abused, tell the caller to silently
5065 	 * drop receive data on the floor.  It will get retransmitted
5066 	 * and hopefully then we'll have sufficient space.
5067 	 */
5068 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5069 
5070 	/* Massive buffer overcommit. */
5071 	tp->pred_flags = 0;
5072 	return -1;
5073 }
5074 
5075 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5076 {
5077 	const struct tcp_sock *tp = tcp_sk(sk);
5078 
5079 	/* If the user specified a specific send buffer setting, do
5080 	 * not modify it.
5081 	 */
5082 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5083 		return false;
5084 
5085 	/* If we are under global TCP memory pressure, do not expand.  */
5086 	if (tcp_under_memory_pressure(sk))
5087 		return false;
5088 
5089 	/* If we are under soft global TCP memory pressure, do not expand.  */
5090 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5091 		return false;
5092 
5093 	/* If we filled the congestion window, do not expand.  */
5094 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5095 		return false;
5096 
5097 	return true;
5098 }
5099 
5100 /* When incoming ACK allowed to free some skb from write_queue,
5101  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5102  * on the exit from tcp input handler.
5103  *
5104  * PROBLEM: sndbuf expansion does not work well with largesend.
5105  */
5106 static void tcp_new_space(struct sock *sk)
5107 {
5108 	struct tcp_sock *tp = tcp_sk(sk);
5109 
5110 	if (tcp_should_expand_sndbuf(sk)) {
5111 		tcp_sndbuf_expand(sk);
5112 		tp->snd_cwnd_stamp = tcp_jiffies32;
5113 	}
5114 
5115 	sk->sk_write_space(sk);
5116 }
5117 
5118 static void tcp_check_space(struct sock *sk)
5119 {
5120 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5121 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5122 		/* pairs with tcp_poll() */
5123 		smp_mb();
5124 		if (sk->sk_socket &&
5125 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5126 			tcp_new_space(sk);
5127 			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5128 				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5129 		}
5130 	}
5131 }
5132 
5133 static inline void tcp_data_snd_check(struct sock *sk)
5134 {
5135 	tcp_push_pending_frames(sk);
5136 	tcp_check_space(sk);
5137 }
5138 
5139 /*
5140  * Check if sending an ack is needed.
5141  */
5142 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5143 {
5144 	struct tcp_sock *tp = tcp_sk(sk);
5145 	unsigned long rtt, delay;
5146 
5147 	    /* More than one full frame received... */
5148 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5149 	     /* ... and right edge of window advances far enough.
5150 	      * (tcp_recvmsg() will send ACK otherwise).
5151 	      * If application uses SO_RCVLOWAT, we want send ack now if
5152 	      * we have not received enough bytes to satisfy the condition.
5153 	      */
5154 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5155 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5156 	    /* We ACK each frame or... */
5157 	    tcp_in_quickack_mode(sk)) {
5158 send_now:
5159 		tcp_send_ack(sk);
5160 		return;
5161 	}
5162 
5163 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5164 		tcp_send_delayed_ack(sk);
5165 		return;
5166 	}
5167 
5168 	if (!tcp_is_sack(tp) ||
5169 	    tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5170 		goto send_now;
5171 	tp->compressed_ack++;
5172 
5173 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5174 		return;
5175 
5176 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5177 
5178 	rtt = tp->rcv_rtt_est.rtt_us;
5179 	if (tp->srtt_us && tp->srtt_us < rtt)
5180 		rtt = tp->srtt_us;
5181 
5182 	delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5183 		      rtt * (NSEC_PER_USEC >> 3)/20);
5184 	sock_hold(sk);
5185 	hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay),
5186 		      HRTIMER_MODE_REL_PINNED_SOFT);
5187 }
5188 
5189 static inline void tcp_ack_snd_check(struct sock *sk)
5190 {
5191 	if (!inet_csk_ack_scheduled(sk)) {
5192 		/* We sent a data segment already. */
5193 		return;
5194 	}
5195 	__tcp_ack_snd_check(sk, 1);
5196 }
5197 
5198 /*
5199  *	This routine is only called when we have urgent data
5200  *	signaled. Its the 'slow' part of tcp_urg. It could be
5201  *	moved inline now as tcp_urg is only called from one
5202  *	place. We handle URGent data wrong. We have to - as
5203  *	BSD still doesn't use the correction from RFC961.
5204  *	For 1003.1g we should support a new option TCP_STDURG to permit
5205  *	either form (or just set the sysctl tcp_stdurg).
5206  */
5207 
5208 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5209 {
5210 	struct tcp_sock *tp = tcp_sk(sk);
5211 	u32 ptr = ntohs(th->urg_ptr);
5212 
5213 	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5214 		ptr--;
5215 	ptr += ntohl(th->seq);
5216 
5217 	/* Ignore urgent data that we've already seen and read. */
5218 	if (after(tp->copied_seq, ptr))
5219 		return;
5220 
5221 	/* Do not replay urg ptr.
5222 	 *
5223 	 * NOTE: interesting situation not covered by specs.
5224 	 * Misbehaving sender may send urg ptr, pointing to segment,
5225 	 * which we already have in ofo queue. We are not able to fetch
5226 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5227 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5228 	 * situations. But it is worth to think about possibility of some
5229 	 * DoSes using some hypothetical application level deadlock.
5230 	 */
5231 	if (before(ptr, tp->rcv_nxt))
5232 		return;
5233 
5234 	/* Do we already have a newer (or duplicate) urgent pointer? */
5235 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5236 		return;
5237 
5238 	/* Tell the world about our new urgent pointer. */
5239 	sk_send_sigurg(sk);
5240 
5241 	/* We may be adding urgent data when the last byte read was
5242 	 * urgent. To do this requires some care. We cannot just ignore
5243 	 * tp->copied_seq since we would read the last urgent byte again
5244 	 * as data, nor can we alter copied_seq until this data arrives
5245 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5246 	 *
5247 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5248 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5249 	 * and expect that both A and B disappear from stream. This is _wrong_.
5250 	 * Though this happens in BSD with high probability, this is occasional.
5251 	 * Any application relying on this is buggy. Note also, that fix "works"
5252 	 * only in this artificial test. Insert some normal data between A and B and we will
5253 	 * decline of BSD again. Verdict: it is better to remove to trap
5254 	 * buggy users.
5255 	 */
5256 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5257 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5258 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5259 		tp->copied_seq++;
5260 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5261 			__skb_unlink(skb, &sk->sk_receive_queue);
5262 			__kfree_skb(skb);
5263 		}
5264 	}
5265 
5266 	tp->urg_data = TCP_URG_NOTYET;
5267 	tp->urg_seq = ptr;
5268 
5269 	/* Disable header prediction. */
5270 	tp->pred_flags = 0;
5271 }
5272 
5273 /* This is the 'fast' part of urgent handling. */
5274 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5275 {
5276 	struct tcp_sock *tp = tcp_sk(sk);
5277 
5278 	/* Check if we get a new urgent pointer - normally not. */
5279 	if (th->urg)
5280 		tcp_check_urg(sk, th);
5281 
5282 	/* Do we wait for any urgent data? - normally not... */
5283 	if (tp->urg_data == TCP_URG_NOTYET) {
5284 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5285 			  th->syn;
5286 
5287 		/* Is the urgent pointer pointing into this packet? */
5288 		if (ptr < skb->len) {
5289 			u8 tmp;
5290 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5291 				BUG();
5292 			tp->urg_data = TCP_URG_VALID | tmp;
5293 			if (!sock_flag(sk, SOCK_DEAD))
5294 				sk->sk_data_ready(sk);
5295 		}
5296 	}
5297 }
5298 
5299 /* Accept RST for rcv_nxt - 1 after a FIN.
5300  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5301  * FIN is sent followed by a RST packet. The RST is sent with the same
5302  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5303  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5304  * ACKs on the closed socket. In addition middleboxes can drop either the
5305  * challenge ACK or a subsequent RST.
5306  */
5307 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5308 {
5309 	struct tcp_sock *tp = tcp_sk(sk);
5310 
5311 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5312 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5313 					       TCPF_CLOSING));
5314 }
5315 
5316 /* Does PAWS and seqno based validation of an incoming segment, flags will
5317  * play significant role here.
5318  */
5319 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5320 				  const struct tcphdr *th, int syn_inerr)
5321 {
5322 	struct tcp_sock *tp = tcp_sk(sk);
5323 	bool rst_seq_match = false;
5324 
5325 	/* RFC1323: H1. Apply PAWS check first. */
5326 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5327 	    tp->rx_opt.saw_tstamp &&
5328 	    tcp_paws_discard(sk, skb)) {
5329 		if (!th->rst) {
5330 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5331 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5332 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5333 						  &tp->last_oow_ack_time))
5334 				tcp_send_dupack(sk, skb);
5335 			goto discard;
5336 		}
5337 		/* Reset is accepted even if it did not pass PAWS. */
5338 	}
5339 
5340 	/* Step 1: check sequence number */
5341 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5342 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5343 		 * (RST) segments are validated by checking their SEQ-fields."
5344 		 * And page 69: "If an incoming segment is not acceptable,
5345 		 * an acknowledgment should be sent in reply (unless the RST
5346 		 * bit is set, if so drop the segment and return)".
5347 		 */
5348 		if (!th->rst) {
5349 			if (th->syn)
5350 				goto syn_challenge;
5351 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5352 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5353 						  &tp->last_oow_ack_time))
5354 				tcp_send_dupack(sk, skb);
5355 		} else if (tcp_reset_check(sk, skb)) {
5356 			tcp_reset(sk);
5357 		}
5358 		goto discard;
5359 	}
5360 
5361 	/* Step 2: check RST bit */
5362 	if (th->rst) {
5363 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5364 		 * FIN and SACK too if available):
5365 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5366 		 * the right-most SACK block,
5367 		 * then
5368 		 *     RESET the connection
5369 		 * else
5370 		 *     Send a challenge ACK
5371 		 */
5372 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5373 		    tcp_reset_check(sk, skb)) {
5374 			rst_seq_match = true;
5375 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5376 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5377 			int max_sack = sp[0].end_seq;
5378 			int this_sack;
5379 
5380 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5381 			     ++this_sack) {
5382 				max_sack = after(sp[this_sack].end_seq,
5383 						 max_sack) ?
5384 					sp[this_sack].end_seq : max_sack;
5385 			}
5386 
5387 			if (TCP_SKB_CB(skb)->seq == max_sack)
5388 				rst_seq_match = true;
5389 		}
5390 
5391 		if (rst_seq_match)
5392 			tcp_reset(sk);
5393 		else {
5394 			/* Disable TFO if RST is out-of-order
5395 			 * and no data has been received
5396 			 * for current active TFO socket
5397 			 */
5398 			if (tp->syn_fastopen && !tp->data_segs_in &&
5399 			    sk->sk_state == TCP_ESTABLISHED)
5400 				tcp_fastopen_active_disable(sk);
5401 			tcp_send_challenge_ack(sk, skb);
5402 		}
5403 		goto discard;
5404 	}
5405 
5406 	/* step 3: check security and precedence [ignored] */
5407 
5408 	/* step 4: Check for a SYN
5409 	 * RFC 5961 4.2 : Send a challenge ack
5410 	 */
5411 	if (th->syn) {
5412 syn_challenge:
5413 		if (syn_inerr)
5414 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5415 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5416 		tcp_send_challenge_ack(sk, skb);
5417 		goto discard;
5418 	}
5419 
5420 	return true;
5421 
5422 discard:
5423 	tcp_drop(sk, skb);
5424 	return false;
5425 }
5426 
5427 /*
5428  *	TCP receive function for the ESTABLISHED state.
5429  *
5430  *	It is split into a fast path and a slow path. The fast path is
5431  * 	disabled when:
5432  *	- A zero window was announced from us - zero window probing
5433  *        is only handled properly in the slow path.
5434  *	- Out of order segments arrived.
5435  *	- Urgent data is expected.
5436  *	- There is no buffer space left
5437  *	- Unexpected TCP flags/window values/header lengths are received
5438  *	  (detected by checking the TCP header against pred_flags)
5439  *	- Data is sent in both directions. Fast path only supports pure senders
5440  *	  or pure receivers (this means either the sequence number or the ack
5441  *	  value must stay constant)
5442  *	- Unexpected TCP option.
5443  *
5444  *	When these conditions are not satisfied it drops into a standard
5445  *	receive procedure patterned after RFC793 to handle all cases.
5446  *	The first three cases are guaranteed by proper pred_flags setting,
5447  *	the rest is checked inline. Fast processing is turned on in
5448  *	tcp_data_queue when everything is OK.
5449  */
5450 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5451 {
5452 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5453 	struct tcp_sock *tp = tcp_sk(sk);
5454 	unsigned int len = skb->len;
5455 
5456 	/* TCP congestion window tracking */
5457 	trace_tcp_probe(sk, skb);
5458 
5459 	tcp_mstamp_refresh(tp);
5460 	if (unlikely(!sk->sk_rx_dst))
5461 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5462 	/*
5463 	 *	Header prediction.
5464 	 *	The code loosely follows the one in the famous
5465 	 *	"30 instruction TCP receive" Van Jacobson mail.
5466 	 *
5467 	 *	Van's trick is to deposit buffers into socket queue
5468 	 *	on a device interrupt, to call tcp_recv function
5469 	 *	on the receive process context and checksum and copy
5470 	 *	the buffer to user space. smart...
5471 	 *
5472 	 *	Our current scheme is not silly either but we take the
5473 	 *	extra cost of the net_bh soft interrupt processing...
5474 	 *	We do checksum and copy also but from device to kernel.
5475 	 */
5476 
5477 	tp->rx_opt.saw_tstamp = 0;
5478 
5479 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5480 	 *	if header_prediction is to be made
5481 	 *	'S' will always be tp->tcp_header_len >> 2
5482 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5483 	 *  turn it off	(when there are holes in the receive
5484 	 *	 space for instance)
5485 	 *	PSH flag is ignored.
5486 	 */
5487 
5488 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5489 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5490 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5491 		int tcp_header_len = tp->tcp_header_len;
5492 
5493 		/* Timestamp header prediction: tcp_header_len
5494 		 * is automatically equal to th->doff*4 due to pred_flags
5495 		 * match.
5496 		 */
5497 
5498 		/* Check timestamp */
5499 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5500 			/* No? Slow path! */
5501 			if (!tcp_parse_aligned_timestamp(tp, th))
5502 				goto slow_path;
5503 
5504 			/* If PAWS failed, check it more carefully in slow path */
5505 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5506 				goto slow_path;
5507 
5508 			/* DO NOT update ts_recent here, if checksum fails
5509 			 * and timestamp was corrupted part, it will result
5510 			 * in a hung connection since we will drop all
5511 			 * future packets due to the PAWS test.
5512 			 */
5513 		}
5514 
5515 		if (len <= tcp_header_len) {
5516 			/* Bulk data transfer: sender */
5517 			if (len == tcp_header_len) {
5518 				/* Predicted packet is in window by definition.
5519 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5520 				 * Hence, check seq<=rcv_wup reduces to:
5521 				 */
5522 				if (tcp_header_len ==
5523 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5524 				    tp->rcv_nxt == tp->rcv_wup)
5525 					tcp_store_ts_recent(tp);
5526 
5527 				/* We know that such packets are checksummed
5528 				 * on entry.
5529 				 */
5530 				tcp_ack(sk, skb, 0);
5531 				__kfree_skb(skb);
5532 				tcp_data_snd_check(sk);
5533 				return;
5534 			} else { /* Header too small */
5535 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5536 				goto discard;
5537 			}
5538 		} else {
5539 			int eaten = 0;
5540 			bool fragstolen = false;
5541 
5542 			if (tcp_checksum_complete(skb))
5543 				goto csum_error;
5544 
5545 			if ((int)skb->truesize > sk->sk_forward_alloc)
5546 				goto step5;
5547 
5548 			/* Predicted packet is in window by definition.
5549 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5550 			 * Hence, check seq<=rcv_wup reduces to:
5551 			 */
5552 			if (tcp_header_len ==
5553 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5554 			    tp->rcv_nxt == tp->rcv_wup)
5555 				tcp_store_ts_recent(tp);
5556 
5557 			tcp_rcv_rtt_measure_ts(sk, skb);
5558 
5559 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5560 
5561 			/* Bulk data transfer: receiver */
5562 			eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5563 					      &fragstolen);
5564 
5565 			tcp_event_data_recv(sk, skb);
5566 
5567 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5568 				/* Well, only one small jumplet in fast path... */
5569 				tcp_ack(sk, skb, FLAG_DATA);
5570 				tcp_data_snd_check(sk);
5571 				if (!inet_csk_ack_scheduled(sk))
5572 					goto no_ack;
5573 			}
5574 
5575 			__tcp_ack_snd_check(sk, 0);
5576 no_ack:
5577 			if (eaten)
5578 				kfree_skb_partial(skb, fragstolen);
5579 			tcp_data_ready(sk);
5580 			return;
5581 		}
5582 	}
5583 
5584 slow_path:
5585 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5586 		goto csum_error;
5587 
5588 	if (!th->ack && !th->rst && !th->syn)
5589 		goto discard;
5590 
5591 	/*
5592 	 *	Standard slow path.
5593 	 */
5594 
5595 	if (!tcp_validate_incoming(sk, skb, th, 1))
5596 		return;
5597 
5598 step5:
5599 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5600 		goto discard;
5601 
5602 	tcp_rcv_rtt_measure_ts(sk, skb);
5603 
5604 	/* Process urgent data. */
5605 	tcp_urg(sk, skb, th);
5606 
5607 	/* step 7: process the segment text */
5608 	tcp_data_queue(sk, skb);
5609 
5610 	tcp_data_snd_check(sk);
5611 	tcp_ack_snd_check(sk);
5612 	return;
5613 
5614 csum_error:
5615 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5616 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5617 
5618 discard:
5619 	tcp_drop(sk, skb);
5620 }
5621 EXPORT_SYMBOL(tcp_rcv_established);
5622 
5623 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5624 {
5625 	struct tcp_sock *tp = tcp_sk(sk);
5626 	struct inet_connection_sock *icsk = inet_csk(sk);
5627 
5628 	tcp_set_state(sk, TCP_ESTABLISHED);
5629 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5630 
5631 	if (skb) {
5632 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5633 		security_inet_conn_established(sk, skb);
5634 	}
5635 
5636 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5637 
5638 	/* Prevent spurious tcp_cwnd_restart() on first data
5639 	 * packet.
5640 	 */
5641 	tp->lsndtime = tcp_jiffies32;
5642 
5643 	if (sock_flag(sk, SOCK_KEEPOPEN))
5644 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5645 
5646 	if (!tp->rx_opt.snd_wscale)
5647 		__tcp_fast_path_on(tp, tp->snd_wnd);
5648 	else
5649 		tp->pred_flags = 0;
5650 }
5651 
5652 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5653 				    struct tcp_fastopen_cookie *cookie)
5654 {
5655 	struct tcp_sock *tp = tcp_sk(sk);
5656 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5657 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5658 	bool syn_drop = false;
5659 
5660 	if (mss == tp->rx_opt.user_mss) {
5661 		struct tcp_options_received opt;
5662 
5663 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5664 		tcp_clear_options(&opt);
5665 		opt.user_mss = opt.mss_clamp = 0;
5666 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5667 		mss = opt.mss_clamp;
5668 	}
5669 
5670 	if (!tp->syn_fastopen) {
5671 		/* Ignore an unsolicited cookie */
5672 		cookie->len = -1;
5673 	} else if (tp->total_retrans) {
5674 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5675 		 * acknowledges data. Presumably the remote received only
5676 		 * the retransmitted (regular) SYNs: either the original
5677 		 * SYN-data or the corresponding SYN-ACK was dropped.
5678 		 */
5679 		syn_drop = (cookie->len < 0 && data);
5680 	} else if (cookie->len < 0 && !tp->syn_data) {
5681 		/* We requested a cookie but didn't get it. If we did not use
5682 		 * the (old) exp opt format then try so next time (try_exp=1).
5683 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5684 		 */
5685 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5686 	}
5687 
5688 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5689 
5690 	if (data) { /* Retransmit unacked data in SYN */
5691 		skb_rbtree_walk_from(data) {
5692 			if (__tcp_retransmit_skb(sk, data, 1))
5693 				break;
5694 		}
5695 		tcp_rearm_rto(sk);
5696 		NET_INC_STATS(sock_net(sk),
5697 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5698 		return true;
5699 	}
5700 	tp->syn_data_acked = tp->syn_data;
5701 	if (tp->syn_data_acked) {
5702 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5703 		/* SYN-data is counted as two separate packets in tcp_ack() */
5704 		if (tp->delivered > 1)
5705 			--tp->delivered;
5706 	}
5707 
5708 	tcp_fastopen_add_skb(sk, synack);
5709 
5710 	return false;
5711 }
5712 
5713 static void smc_check_reset_syn(struct tcp_sock *tp)
5714 {
5715 #if IS_ENABLED(CONFIG_SMC)
5716 	if (static_branch_unlikely(&tcp_have_smc)) {
5717 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
5718 			tp->syn_smc = 0;
5719 	}
5720 #endif
5721 }
5722 
5723 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5724 					 const struct tcphdr *th)
5725 {
5726 	struct inet_connection_sock *icsk = inet_csk(sk);
5727 	struct tcp_sock *tp = tcp_sk(sk);
5728 	struct tcp_fastopen_cookie foc = { .len = -1 };
5729 	int saved_clamp = tp->rx_opt.mss_clamp;
5730 	bool fastopen_fail;
5731 
5732 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5733 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5734 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5735 
5736 	if (th->ack) {
5737 		/* rfc793:
5738 		 * "If the state is SYN-SENT then
5739 		 *    first check the ACK bit
5740 		 *      If the ACK bit is set
5741 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5742 		 *        a reset (unless the RST bit is set, if so drop
5743 		 *        the segment and return)"
5744 		 */
5745 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5746 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5747 			goto reset_and_undo;
5748 
5749 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5750 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5751 			     tcp_time_stamp(tp))) {
5752 			NET_INC_STATS(sock_net(sk),
5753 					LINUX_MIB_PAWSACTIVEREJECTED);
5754 			goto reset_and_undo;
5755 		}
5756 
5757 		/* Now ACK is acceptable.
5758 		 *
5759 		 * "If the RST bit is set
5760 		 *    If the ACK was acceptable then signal the user "error:
5761 		 *    connection reset", drop the segment, enter CLOSED state,
5762 		 *    delete TCB, and return."
5763 		 */
5764 
5765 		if (th->rst) {
5766 			tcp_reset(sk);
5767 			goto discard;
5768 		}
5769 
5770 		/* rfc793:
5771 		 *   "fifth, if neither of the SYN or RST bits is set then
5772 		 *    drop the segment and return."
5773 		 *
5774 		 *    See note below!
5775 		 *                                        --ANK(990513)
5776 		 */
5777 		if (!th->syn)
5778 			goto discard_and_undo;
5779 
5780 		/* rfc793:
5781 		 *   "If the SYN bit is on ...
5782 		 *    are acceptable then ...
5783 		 *    (our SYN has been ACKed), change the connection
5784 		 *    state to ESTABLISHED..."
5785 		 */
5786 
5787 		tcp_ecn_rcv_synack(tp, th);
5788 
5789 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5790 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5791 
5792 		/* Ok.. it's good. Set up sequence numbers and
5793 		 * move to established.
5794 		 */
5795 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5796 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5797 
5798 		/* RFC1323: The window in SYN & SYN/ACK segments is
5799 		 * never scaled.
5800 		 */
5801 		tp->snd_wnd = ntohs(th->window);
5802 
5803 		if (!tp->rx_opt.wscale_ok) {
5804 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5805 			tp->window_clamp = min(tp->window_clamp, 65535U);
5806 		}
5807 
5808 		if (tp->rx_opt.saw_tstamp) {
5809 			tp->rx_opt.tstamp_ok	   = 1;
5810 			tp->tcp_header_len =
5811 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5812 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5813 			tcp_store_ts_recent(tp);
5814 		} else {
5815 			tp->tcp_header_len = sizeof(struct tcphdr);
5816 		}
5817 
5818 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5819 		tcp_initialize_rcv_mss(sk);
5820 
5821 		/* Remember, tcp_poll() does not lock socket!
5822 		 * Change state from SYN-SENT only after copied_seq
5823 		 * is initialized. */
5824 		tp->copied_seq = tp->rcv_nxt;
5825 
5826 		smc_check_reset_syn(tp);
5827 
5828 		smp_mb();
5829 
5830 		tcp_finish_connect(sk, skb);
5831 
5832 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5833 				tcp_rcv_fastopen_synack(sk, skb, &foc);
5834 
5835 		if (!sock_flag(sk, SOCK_DEAD)) {
5836 			sk->sk_state_change(sk);
5837 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5838 		}
5839 		if (fastopen_fail)
5840 			return -1;
5841 		if (sk->sk_write_pending ||
5842 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5843 		    icsk->icsk_ack.pingpong) {
5844 			/* Save one ACK. Data will be ready after
5845 			 * several ticks, if write_pending is set.
5846 			 *
5847 			 * It may be deleted, but with this feature tcpdumps
5848 			 * look so _wonderfully_ clever, that I was not able
5849 			 * to stand against the temptation 8)     --ANK
5850 			 */
5851 			inet_csk_schedule_ack(sk);
5852 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5853 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5854 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5855 
5856 discard:
5857 			tcp_drop(sk, skb);
5858 			return 0;
5859 		} else {
5860 			tcp_send_ack(sk);
5861 		}
5862 		return -1;
5863 	}
5864 
5865 	/* No ACK in the segment */
5866 
5867 	if (th->rst) {
5868 		/* rfc793:
5869 		 * "If the RST bit is set
5870 		 *
5871 		 *      Otherwise (no ACK) drop the segment and return."
5872 		 */
5873 
5874 		goto discard_and_undo;
5875 	}
5876 
5877 	/* PAWS check. */
5878 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5879 	    tcp_paws_reject(&tp->rx_opt, 0))
5880 		goto discard_and_undo;
5881 
5882 	if (th->syn) {
5883 		/* We see SYN without ACK. It is attempt of
5884 		 * simultaneous connect with crossed SYNs.
5885 		 * Particularly, it can be connect to self.
5886 		 */
5887 		tcp_set_state(sk, TCP_SYN_RECV);
5888 
5889 		if (tp->rx_opt.saw_tstamp) {
5890 			tp->rx_opt.tstamp_ok = 1;
5891 			tcp_store_ts_recent(tp);
5892 			tp->tcp_header_len =
5893 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5894 		} else {
5895 			tp->tcp_header_len = sizeof(struct tcphdr);
5896 		}
5897 
5898 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5899 		tp->copied_seq = tp->rcv_nxt;
5900 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5901 
5902 		/* RFC1323: The window in SYN & SYN/ACK segments is
5903 		 * never scaled.
5904 		 */
5905 		tp->snd_wnd    = ntohs(th->window);
5906 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5907 		tp->max_window = tp->snd_wnd;
5908 
5909 		tcp_ecn_rcv_syn(tp, th);
5910 
5911 		tcp_mtup_init(sk);
5912 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5913 		tcp_initialize_rcv_mss(sk);
5914 
5915 		tcp_send_synack(sk);
5916 #if 0
5917 		/* Note, we could accept data and URG from this segment.
5918 		 * There are no obstacles to make this (except that we must
5919 		 * either change tcp_recvmsg() to prevent it from returning data
5920 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5921 		 *
5922 		 * However, if we ignore data in ACKless segments sometimes,
5923 		 * we have no reasons to accept it sometimes.
5924 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5925 		 * is not flawless. So, discard packet for sanity.
5926 		 * Uncomment this return to process the data.
5927 		 */
5928 		return -1;
5929 #else
5930 		goto discard;
5931 #endif
5932 	}
5933 	/* "fifth, if neither of the SYN or RST bits is set then
5934 	 * drop the segment and return."
5935 	 */
5936 
5937 discard_and_undo:
5938 	tcp_clear_options(&tp->rx_opt);
5939 	tp->rx_opt.mss_clamp = saved_clamp;
5940 	goto discard;
5941 
5942 reset_and_undo:
5943 	tcp_clear_options(&tp->rx_opt);
5944 	tp->rx_opt.mss_clamp = saved_clamp;
5945 	return 1;
5946 }
5947 
5948 /*
5949  *	This function implements the receiving procedure of RFC 793 for
5950  *	all states except ESTABLISHED and TIME_WAIT.
5951  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5952  *	address independent.
5953  */
5954 
5955 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5956 {
5957 	struct tcp_sock *tp = tcp_sk(sk);
5958 	struct inet_connection_sock *icsk = inet_csk(sk);
5959 	const struct tcphdr *th = tcp_hdr(skb);
5960 	struct request_sock *req;
5961 	int queued = 0;
5962 	bool acceptable;
5963 
5964 	switch (sk->sk_state) {
5965 	case TCP_CLOSE:
5966 		goto discard;
5967 
5968 	case TCP_LISTEN:
5969 		if (th->ack)
5970 			return 1;
5971 
5972 		if (th->rst)
5973 			goto discard;
5974 
5975 		if (th->syn) {
5976 			if (th->fin)
5977 				goto discard;
5978 			/* It is possible that we process SYN packets from backlog,
5979 			 * so we need to make sure to disable BH right there.
5980 			 */
5981 			local_bh_disable();
5982 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
5983 			local_bh_enable();
5984 
5985 			if (!acceptable)
5986 				return 1;
5987 			consume_skb(skb);
5988 			return 0;
5989 		}
5990 		goto discard;
5991 
5992 	case TCP_SYN_SENT:
5993 		tp->rx_opt.saw_tstamp = 0;
5994 		tcp_mstamp_refresh(tp);
5995 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
5996 		if (queued >= 0)
5997 			return queued;
5998 
5999 		/* Do step6 onward by hand. */
6000 		tcp_urg(sk, skb, th);
6001 		__kfree_skb(skb);
6002 		tcp_data_snd_check(sk);
6003 		return 0;
6004 	}
6005 
6006 	tcp_mstamp_refresh(tp);
6007 	tp->rx_opt.saw_tstamp = 0;
6008 	req = tp->fastopen_rsk;
6009 	if (req) {
6010 		bool req_stolen;
6011 
6012 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6013 		    sk->sk_state != TCP_FIN_WAIT1);
6014 
6015 		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6016 			goto discard;
6017 	}
6018 
6019 	if (!th->ack && !th->rst && !th->syn)
6020 		goto discard;
6021 
6022 	if (!tcp_validate_incoming(sk, skb, th, 0))
6023 		return 0;
6024 
6025 	/* step 5: check the ACK field */
6026 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6027 				      FLAG_UPDATE_TS_RECENT |
6028 				      FLAG_NO_CHALLENGE_ACK) > 0;
6029 
6030 	if (!acceptable) {
6031 		if (sk->sk_state == TCP_SYN_RECV)
6032 			return 1;	/* send one RST */
6033 		tcp_send_challenge_ack(sk, skb);
6034 		goto discard;
6035 	}
6036 	switch (sk->sk_state) {
6037 	case TCP_SYN_RECV:
6038 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6039 		if (!tp->srtt_us)
6040 			tcp_synack_rtt_meas(sk, req);
6041 
6042 		/* Once we leave TCP_SYN_RECV, we no longer need req
6043 		 * so release it.
6044 		 */
6045 		if (req) {
6046 			inet_csk(sk)->icsk_retransmits = 0;
6047 			reqsk_fastopen_remove(sk, req, false);
6048 			/* Re-arm the timer because data may have been sent out.
6049 			 * This is similar to the regular data transmission case
6050 			 * when new data has just been ack'ed.
6051 			 *
6052 			 * (TFO) - we could try to be more aggressive and
6053 			 * retransmitting any data sooner based on when they
6054 			 * are sent out.
6055 			 */
6056 			tcp_rearm_rto(sk);
6057 		} else {
6058 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
6059 			tp->copied_seq = tp->rcv_nxt;
6060 		}
6061 		smp_mb();
6062 		tcp_set_state(sk, TCP_ESTABLISHED);
6063 		sk->sk_state_change(sk);
6064 
6065 		/* Note, that this wakeup is only for marginal crossed SYN case.
6066 		 * Passively open sockets are not waked up, because
6067 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6068 		 */
6069 		if (sk->sk_socket)
6070 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6071 
6072 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6073 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6074 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6075 
6076 		if (tp->rx_opt.tstamp_ok)
6077 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6078 
6079 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6080 			tcp_update_pacing_rate(sk);
6081 
6082 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6083 		tp->lsndtime = tcp_jiffies32;
6084 
6085 		tcp_initialize_rcv_mss(sk);
6086 		tcp_fast_path_on(tp);
6087 		break;
6088 
6089 	case TCP_FIN_WAIT1: {
6090 		int tmo;
6091 
6092 		/* If we enter the TCP_FIN_WAIT1 state and we are a
6093 		 * Fast Open socket and this is the first acceptable
6094 		 * ACK we have received, this would have acknowledged
6095 		 * our SYNACK so stop the SYNACK timer.
6096 		 */
6097 		if (req) {
6098 			/* We no longer need the request sock. */
6099 			reqsk_fastopen_remove(sk, req, false);
6100 			tcp_rearm_rto(sk);
6101 		}
6102 		if (tp->snd_una != tp->write_seq)
6103 			break;
6104 
6105 		tcp_set_state(sk, TCP_FIN_WAIT2);
6106 		sk->sk_shutdown |= SEND_SHUTDOWN;
6107 
6108 		sk_dst_confirm(sk);
6109 
6110 		if (!sock_flag(sk, SOCK_DEAD)) {
6111 			/* Wake up lingering close() */
6112 			sk->sk_state_change(sk);
6113 			break;
6114 		}
6115 
6116 		if (tp->linger2 < 0) {
6117 			tcp_done(sk);
6118 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6119 			return 1;
6120 		}
6121 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6122 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6123 			/* Receive out of order FIN after close() */
6124 			if (tp->syn_fastopen && th->fin)
6125 				tcp_fastopen_active_disable(sk);
6126 			tcp_done(sk);
6127 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6128 			return 1;
6129 		}
6130 
6131 		tmo = tcp_fin_time(sk);
6132 		if (tmo > TCP_TIMEWAIT_LEN) {
6133 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6134 		} else if (th->fin || sock_owned_by_user(sk)) {
6135 			/* Bad case. We could lose such FIN otherwise.
6136 			 * It is not a big problem, but it looks confusing
6137 			 * and not so rare event. We still can lose it now,
6138 			 * if it spins in bh_lock_sock(), but it is really
6139 			 * marginal case.
6140 			 */
6141 			inet_csk_reset_keepalive_timer(sk, tmo);
6142 		} else {
6143 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6144 			goto discard;
6145 		}
6146 		break;
6147 	}
6148 
6149 	case TCP_CLOSING:
6150 		if (tp->snd_una == tp->write_seq) {
6151 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6152 			goto discard;
6153 		}
6154 		break;
6155 
6156 	case TCP_LAST_ACK:
6157 		if (tp->snd_una == tp->write_seq) {
6158 			tcp_update_metrics(sk);
6159 			tcp_done(sk);
6160 			goto discard;
6161 		}
6162 		break;
6163 	}
6164 
6165 	/* step 6: check the URG bit */
6166 	tcp_urg(sk, skb, th);
6167 
6168 	/* step 7: process the segment text */
6169 	switch (sk->sk_state) {
6170 	case TCP_CLOSE_WAIT:
6171 	case TCP_CLOSING:
6172 	case TCP_LAST_ACK:
6173 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6174 			break;
6175 		/* fall through */
6176 	case TCP_FIN_WAIT1:
6177 	case TCP_FIN_WAIT2:
6178 		/* RFC 793 says to queue data in these states,
6179 		 * RFC 1122 says we MUST send a reset.
6180 		 * BSD 4.4 also does reset.
6181 		 */
6182 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6183 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6184 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6185 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6186 				tcp_reset(sk);
6187 				return 1;
6188 			}
6189 		}
6190 		/* Fall through */
6191 	case TCP_ESTABLISHED:
6192 		tcp_data_queue(sk, skb);
6193 		queued = 1;
6194 		break;
6195 	}
6196 
6197 	/* tcp_data could move socket to TIME-WAIT */
6198 	if (sk->sk_state != TCP_CLOSE) {
6199 		tcp_data_snd_check(sk);
6200 		tcp_ack_snd_check(sk);
6201 	}
6202 
6203 	if (!queued) {
6204 discard:
6205 		tcp_drop(sk, skb);
6206 	}
6207 	return 0;
6208 }
6209 EXPORT_SYMBOL(tcp_rcv_state_process);
6210 
6211 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6212 {
6213 	struct inet_request_sock *ireq = inet_rsk(req);
6214 
6215 	if (family == AF_INET)
6216 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6217 				    &ireq->ir_rmt_addr, port);
6218 #if IS_ENABLED(CONFIG_IPV6)
6219 	else if (family == AF_INET6)
6220 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6221 				    &ireq->ir_v6_rmt_addr, port);
6222 #endif
6223 }
6224 
6225 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6226  *
6227  * If we receive a SYN packet with these bits set, it means a
6228  * network is playing bad games with TOS bits. In order to
6229  * avoid possible false congestion notifications, we disable
6230  * TCP ECN negotiation.
6231  *
6232  * Exception: tcp_ca wants ECN. This is required for DCTCP
6233  * congestion control: Linux DCTCP asserts ECT on all packets,
6234  * including SYN, which is most optimal solution; however,
6235  * others, such as FreeBSD do not.
6236  */
6237 static void tcp_ecn_create_request(struct request_sock *req,
6238 				   const struct sk_buff *skb,
6239 				   const struct sock *listen_sk,
6240 				   const struct dst_entry *dst)
6241 {
6242 	const struct tcphdr *th = tcp_hdr(skb);
6243 	const struct net *net = sock_net(listen_sk);
6244 	bool th_ecn = th->ece && th->cwr;
6245 	bool ect, ecn_ok;
6246 	u32 ecn_ok_dst;
6247 
6248 	if (!th_ecn)
6249 		return;
6250 
6251 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6252 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6253 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6254 
6255 	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6256 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6257 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6258 		inet_rsk(req)->ecn_ok = 1;
6259 }
6260 
6261 static void tcp_openreq_init(struct request_sock *req,
6262 			     const struct tcp_options_received *rx_opt,
6263 			     struct sk_buff *skb, const struct sock *sk)
6264 {
6265 	struct inet_request_sock *ireq = inet_rsk(req);
6266 
6267 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6268 	req->cookie_ts = 0;
6269 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6270 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6271 	tcp_rsk(req)->snt_synack = tcp_clock_us();
6272 	tcp_rsk(req)->last_oow_ack_time = 0;
6273 	req->mss = rx_opt->mss_clamp;
6274 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6275 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6276 	ireq->sack_ok = rx_opt->sack_ok;
6277 	ireq->snd_wscale = rx_opt->snd_wscale;
6278 	ireq->wscale_ok = rx_opt->wscale_ok;
6279 	ireq->acked = 0;
6280 	ireq->ecn_ok = 0;
6281 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6282 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6283 	ireq->ir_mark = inet_request_mark(sk, skb);
6284 #if IS_ENABLED(CONFIG_SMC)
6285 	ireq->smc_ok = rx_opt->smc_ok;
6286 #endif
6287 }
6288 
6289 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6290 				      struct sock *sk_listener,
6291 				      bool attach_listener)
6292 {
6293 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6294 					       attach_listener);
6295 
6296 	if (req) {
6297 		struct inet_request_sock *ireq = inet_rsk(req);
6298 
6299 		ireq->ireq_opt = NULL;
6300 #if IS_ENABLED(CONFIG_IPV6)
6301 		ireq->pktopts = NULL;
6302 #endif
6303 		atomic64_set(&ireq->ir_cookie, 0);
6304 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6305 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6306 		ireq->ireq_family = sk_listener->sk_family;
6307 	}
6308 
6309 	return req;
6310 }
6311 EXPORT_SYMBOL(inet_reqsk_alloc);
6312 
6313 /*
6314  * Return true if a syncookie should be sent
6315  */
6316 static bool tcp_syn_flood_action(const struct sock *sk,
6317 				 const struct sk_buff *skb,
6318 				 const char *proto)
6319 {
6320 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6321 	const char *msg = "Dropping request";
6322 	bool want_cookie = false;
6323 	struct net *net = sock_net(sk);
6324 
6325 #ifdef CONFIG_SYN_COOKIES
6326 	if (net->ipv4.sysctl_tcp_syncookies) {
6327 		msg = "Sending cookies";
6328 		want_cookie = true;
6329 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6330 	} else
6331 #endif
6332 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6333 
6334 	if (!queue->synflood_warned &&
6335 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6336 	    xchg(&queue->synflood_warned, 1) == 0)
6337 		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6338 			proto, ntohs(tcp_hdr(skb)->dest), msg);
6339 
6340 	return want_cookie;
6341 }
6342 
6343 static void tcp_reqsk_record_syn(const struct sock *sk,
6344 				 struct request_sock *req,
6345 				 const struct sk_buff *skb)
6346 {
6347 	if (tcp_sk(sk)->save_syn) {
6348 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6349 		u32 *copy;
6350 
6351 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6352 		if (copy) {
6353 			copy[0] = len;
6354 			memcpy(&copy[1], skb_network_header(skb), len);
6355 			req->saved_syn = copy;
6356 		}
6357 	}
6358 }
6359 
6360 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6361 		     const struct tcp_request_sock_ops *af_ops,
6362 		     struct sock *sk, struct sk_buff *skb)
6363 {
6364 	struct tcp_fastopen_cookie foc = { .len = -1 };
6365 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6366 	struct tcp_options_received tmp_opt;
6367 	struct tcp_sock *tp = tcp_sk(sk);
6368 	struct net *net = sock_net(sk);
6369 	struct sock *fastopen_sk = NULL;
6370 	struct request_sock *req;
6371 	bool want_cookie = false;
6372 	struct dst_entry *dst;
6373 	struct flowi fl;
6374 
6375 	/* TW buckets are converted to open requests without
6376 	 * limitations, they conserve resources and peer is
6377 	 * evidently real one.
6378 	 */
6379 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6380 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6381 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6382 		if (!want_cookie)
6383 			goto drop;
6384 	}
6385 
6386 	if (sk_acceptq_is_full(sk)) {
6387 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6388 		goto drop;
6389 	}
6390 
6391 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6392 	if (!req)
6393 		goto drop;
6394 
6395 	tcp_rsk(req)->af_specific = af_ops;
6396 	tcp_rsk(req)->ts_off = 0;
6397 
6398 	tcp_clear_options(&tmp_opt);
6399 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6400 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6401 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6402 			  want_cookie ? NULL : &foc);
6403 
6404 	if (want_cookie && !tmp_opt.saw_tstamp)
6405 		tcp_clear_options(&tmp_opt);
6406 
6407 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6408 		tmp_opt.smc_ok = 0;
6409 
6410 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6411 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6412 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6413 
6414 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6415 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6416 
6417 	af_ops->init_req(req, sk, skb);
6418 
6419 	if (security_inet_conn_request(sk, skb, req))
6420 		goto drop_and_free;
6421 
6422 	if (tmp_opt.tstamp_ok)
6423 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6424 
6425 	dst = af_ops->route_req(sk, &fl, req);
6426 	if (!dst)
6427 		goto drop_and_free;
6428 
6429 	if (!want_cookie && !isn) {
6430 		/* Kill the following clause, if you dislike this way. */
6431 		if (!net->ipv4.sysctl_tcp_syncookies &&
6432 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6433 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6434 		    !tcp_peer_is_proven(req, dst)) {
6435 			/* Without syncookies last quarter of
6436 			 * backlog is filled with destinations,
6437 			 * proven to be alive.
6438 			 * It means that we continue to communicate
6439 			 * to destinations, already remembered
6440 			 * to the moment of synflood.
6441 			 */
6442 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6443 				    rsk_ops->family);
6444 			goto drop_and_release;
6445 		}
6446 
6447 		isn = af_ops->init_seq(skb);
6448 	}
6449 
6450 	tcp_ecn_create_request(req, skb, sk, dst);
6451 
6452 	if (want_cookie) {
6453 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6454 		req->cookie_ts = tmp_opt.tstamp_ok;
6455 		if (!tmp_opt.tstamp_ok)
6456 			inet_rsk(req)->ecn_ok = 0;
6457 	}
6458 
6459 	tcp_rsk(req)->snt_isn = isn;
6460 	tcp_rsk(req)->txhash = net_tx_rndhash();
6461 	tcp_openreq_init_rwin(req, sk, dst);
6462 	if (!want_cookie) {
6463 		tcp_reqsk_record_syn(sk, req, skb);
6464 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6465 	}
6466 	if (fastopen_sk) {
6467 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6468 				    &foc, TCP_SYNACK_FASTOPEN);
6469 		/* Add the child socket directly into the accept queue */
6470 		inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6471 		sk->sk_data_ready(sk);
6472 		bh_unlock_sock(fastopen_sk);
6473 		sock_put(fastopen_sk);
6474 	} else {
6475 		tcp_rsk(req)->tfo_listener = false;
6476 		if (!want_cookie)
6477 			inet_csk_reqsk_queue_hash_add(sk, req,
6478 				tcp_timeout_init((struct sock *)req));
6479 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6480 				    !want_cookie ? TCP_SYNACK_NORMAL :
6481 						   TCP_SYNACK_COOKIE);
6482 		if (want_cookie) {
6483 			reqsk_free(req);
6484 			return 0;
6485 		}
6486 	}
6487 	reqsk_put(req);
6488 	return 0;
6489 
6490 drop_and_release:
6491 	dst_release(dst);
6492 drop_and_free:
6493 	reqsk_free(req);
6494 drop:
6495 	tcp_listendrop(sk);
6496 	return 0;
6497 }
6498 EXPORT_SYMBOL(tcp_conn_request);
6499