1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #define pr_fmt(fmt) "TCP: " fmt 65 66 #include <linux/mm.h> 67 #include <linux/slab.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <linux/kernel.h> 71 #include <net/dst.h> 72 #include <net/tcp.h> 73 #include <net/inet_common.h> 74 #include <linux/ipsec.h> 75 #include <asm/unaligned.h> 76 #include <net/netdma.h> 77 78 int sysctl_tcp_timestamps __read_mostly = 1; 79 int sysctl_tcp_window_scaling __read_mostly = 1; 80 int sysctl_tcp_sack __read_mostly = 1; 81 int sysctl_tcp_fack __read_mostly = 1; 82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; 83 EXPORT_SYMBOL(sysctl_tcp_reordering); 84 int sysctl_tcp_dsack __read_mostly = 1; 85 int sysctl_tcp_app_win __read_mostly = 31; 86 int sysctl_tcp_adv_win_scale __read_mostly = 1; 87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 88 89 /* rfc5961 challenge ack rate limiting */ 90 int sysctl_tcp_challenge_ack_limit = 100; 91 92 int sysctl_tcp_stdurg __read_mostly; 93 int sysctl_tcp_rfc1337 __read_mostly; 94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 95 int sysctl_tcp_frto __read_mostly = 2; 96 97 int sysctl_tcp_thin_dupack __read_mostly; 98 99 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 100 int sysctl_tcp_early_retrans __read_mostly = 3; 101 102 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 103 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 104 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 105 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 106 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 107 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 108 #define FLAG_ECE 0x40 /* ECE in this ACK */ 109 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 110 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 111 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 112 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 113 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 114 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 115 116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 120 121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 123 124 /* Adapt the MSS value used to make delayed ack decision to the 125 * real world. 126 */ 127 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 128 { 129 struct inet_connection_sock *icsk = inet_csk(sk); 130 const unsigned int lss = icsk->icsk_ack.last_seg_size; 131 unsigned int len; 132 133 icsk->icsk_ack.last_seg_size = 0; 134 135 /* skb->len may jitter because of SACKs, even if peer 136 * sends good full-sized frames. 137 */ 138 len = skb_shinfo(skb)->gso_size ? : skb->len; 139 if (len >= icsk->icsk_ack.rcv_mss) { 140 icsk->icsk_ack.rcv_mss = len; 141 } else { 142 /* Otherwise, we make more careful check taking into account, 143 * that SACKs block is variable. 144 * 145 * "len" is invariant segment length, including TCP header. 146 */ 147 len += skb->data - skb_transport_header(skb); 148 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 149 /* If PSH is not set, packet should be 150 * full sized, provided peer TCP is not badly broken. 151 * This observation (if it is correct 8)) allows 152 * to handle super-low mtu links fairly. 153 */ 154 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 155 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 156 /* Subtract also invariant (if peer is RFC compliant), 157 * tcp header plus fixed timestamp option length. 158 * Resulting "len" is MSS free of SACK jitter. 159 */ 160 len -= tcp_sk(sk)->tcp_header_len; 161 icsk->icsk_ack.last_seg_size = len; 162 if (len == lss) { 163 icsk->icsk_ack.rcv_mss = len; 164 return; 165 } 166 } 167 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 168 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 170 } 171 } 172 173 static void tcp_incr_quickack(struct sock *sk) 174 { 175 struct inet_connection_sock *icsk = inet_csk(sk); 176 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 177 178 if (quickacks == 0) 179 quickacks = 2; 180 if (quickacks > icsk->icsk_ack.quick) 181 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 182 } 183 184 static void tcp_enter_quickack_mode(struct sock *sk) 185 { 186 struct inet_connection_sock *icsk = inet_csk(sk); 187 tcp_incr_quickack(sk); 188 icsk->icsk_ack.pingpong = 0; 189 icsk->icsk_ack.ato = TCP_ATO_MIN; 190 } 191 192 /* Send ACKs quickly, if "quick" count is not exhausted 193 * and the session is not interactive. 194 */ 195 196 static inline bool tcp_in_quickack_mode(const struct sock *sk) 197 { 198 const struct inet_connection_sock *icsk = inet_csk(sk); 199 200 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 201 } 202 203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp) 204 { 205 if (tp->ecn_flags & TCP_ECN_OK) 206 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 207 } 208 209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 210 { 211 if (tcp_hdr(skb)->cwr) 212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 213 } 214 215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp) 216 { 217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 218 } 219 220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 221 { 222 if (!(tp->ecn_flags & TCP_ECN_OK)) 223 return; 224 225 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 226 case INET_ECN_NOT_ECT: 227 /* Funny extension: if ECT is not set on a segment, 228 * and we already seen ECT on a previous segment, 229 * it is probably a retransmit. 230 */ 231 if (tp->ecn_flags & TCP_ECN_SEEN) 232 tcp_enter_quickack_mode((struct sock *)tp); 233 break; 234 case INET_ECN_CE: 235 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 236 /* Better not delay acks, sender can have a very low cwnd */ 237 tcp_enter_quickack_mode((struct sock *)tp); 238 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 239 } 240 /* fallinto */ 241 default: 242 tp->ecn_flags |= TCP_ECN_SEEN; 243 } 244 } 245 246 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 247 { 248 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 249 tp->ecn_flags &= ~TCP_ECN_OK; 250 } 251 252 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 253 { 254 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 255 tp->ecn_flags &= ~TCP_ECN_OK; 256 } 257 258 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 259 { 260 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 261 return true; 262 return false; 263 } 264 265 /* Buffer size and advertised window tuning. 266 * 267 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 268 */ 269 270 static void tcp_fixup_sndbuf(struct sock *sk) 271 { 272 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER); 273 274 sndmem *= TCP_INIT_CWND; 275 if (sk->sk_sndbuf < sndmem) 276 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 277 } 278 279 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 280 * 281 * All tcp_full_space() is split to two parts: "network" buffer, allocated 282 * forward and advertised in receiver window (tp->rcv_wnd) and 283 * "application buffer", required to isolate scheduling/application 284 * latencies from network. 285 * window_clamp is maximal advertised window. It can be less than 286 * tcp_full_space(), in this case tcp_full_space() - window_clamp 287 * is reserved for "application" buffer. The less window_clamp is 288 * the smoother our behaviour from viewpoint of network, but the lower 289 * throughput and the higher sensitivity of the connection to losses. 8) 290 * 291 * rcv_ssthresh is more strict window_clamp used at "slow start" 292 * phase to predict further behaviour of this connection. 293 * It is used for two goals: 294 * - to enforce header prediction at sender, even when application 295 * requires some significant "application buffer". It is check #1. 296 * - to prevent pruning of receive queue because of misprediction 297 * of receiver window. Check #2. 298 * 299 * The scheme does not work when sender sends good segments opening 300 * window and then starts to feed us spaghetti. But it should work 301 * in common situations. Otherwise, we have to rely on queue collapsing. 302 */ 303 304 /* Slow part of check#2. */ 305 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 306 { 307 struct tcp_sock *tp = tcp_sk(sk); 308 /* Optimize this! */ 309 int truesize = tcp_win_from_space(skb->truesize) >> 1; 310 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 311 312 while (tp->rcv_ssthresh <= window) { 313 if (truesize <= skb->len) 314 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 315 316 truesize >>= 1; 317 window >>= 1; 318 } 319 return 0; 320 } 321 322 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 323 { 324 struct tcp_sock *tp = tcp_sk(sk); 325 326 /* Check #1 */ 327 if (tp->rcv_ssthresh < tp->window_clamp && 328 (int)tp->rcv_ssthresh < tcp_space(sk) && 329 !sk_under_memory_pressure(sk)) { 330 int incr; 331 332 /* Check #2. Increase window, if skb with such overhead 333 * will fit to rcvbuf in future. 334 */ 335 if (tcp_win_from_space(skb->truesize) <= skb->len) 336 incr = 2 * tp->advmss; 337 else 338 incr = __tcp_grow_window(sk, skb); 339 340 if (incr) { 341 incr = max_t(int, incr, 2 * skb->len); 342 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 343 tp->window_clamp); 344 inet_csk(sk)->icsk_ack.quick |= 1; 345 } 346 } 347 } 348 349 /* 3. Tuning rcvbuf, when connection enters established state. */ 350 static void tcp_fixup_rcvbuf(struct sock *sk) 351 { 352 u32 mss = tcp_sk(sk)->advmss; 353 int rcvmem; 354 355 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 356 tcp_default_init_rwnd(mss); 357 358 if (sk->sk_rcvbuf < rcvmem) 359 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); 360 } 361 362 /* 4. Try to fixup all. It is made immediately after connection enters 363 * established state. 364 */ 365 void tcp_init_buffer_space(struct sock *sk) 366 { 367 struct tcp_sock *tp = tcp_sk(sk); 368 int maxwin; 369 370 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 371 tcp_fixup_rcvbuf(sk); 372 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 373 tcp_fixup_sndbuf(sk); 374 375 tp->rcvq_space.space = tp->rcv_wnd; 376 377 maxwin = tcp_full_space(sk); 378 379 if (tp->window_clamp >= maxwin) { 380 tp->window_clamp = maxwin; 381 382 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 383 tp->window_clamp = max(maxwin - 384 (maxwin >> sysctl_tcp_app_win), 385 4 * tp->advmss); 386 } 387 388 /* Force reservation of one segment. */ 389 if (sysctl_tcp_app_win && 390 tp->window_clamp > 2 * tp->advmss && 391 tp->window_clamp + tp->advmss > maxwin) 392 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 393 394 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 395 tp->snd_cwnd_stamp = tcp_time_stamp; 396 } 397 398 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 399 static void tcp_clamp_window(struct sock *sk) 400 { 401 struct tcp_sock *tp = tcp_sk(sk); 402 struct inet_connection_sock *icsk = inet_csk(sk); 403 404 icsk->icsk_ack.quick = 0; 405 406 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 407 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 408 !sk_under_memory_pressure(sk) && 409 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 410 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 411 sysctl_tcp_rmem[2]); 412 } 413 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 414 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 415 } 416 417 /* Initialize RCV_MSS value. 418 * RCV_MSS is an our guess about MSS used by the peer. 419 * We haven't any direct information about the MSS. 420 * It's better to underestimate the RCV_MSS rather than overestimate. 421 * Overestimations make us ACKing less frequently than needed. 422 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 423 */ 424 void tcp_initialize_rcv_mss(struct sock *sk) 425 { 426 const struct tcp_sock *tp = tcp_sk(sk); 427 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 428 429 hint = min(hint, tp->rcv_wnd / 2); 430 hint = min(hint, TCP_MSS_DEFAULT); 431 hint = max(hint, TCP_MIN_MSS); 432 433 inet_csk(sk)->icsk_ack.rcv_mss = hint; 434 } 435 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 436 437 /* Receiver "autotuning" code. 438 * 439 * The algorithm for RTT estimation w/o timestamps is based on 440 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 441 * <http://public.lanl.gov/radiant/pubs.html#DRS> 442 * 443 * More detail on this code can be found at 444 * <http://staff.psc.edu/jheffner/>, 445 * though this reference is out of date. A new paper 446 * is pending. 447 */ 448 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 449 { 450 u32 new_sample = tp->rcv_rtt_est.rtt; 451 long m = sample; 452 453 if (m == 0) 454 m = 1; 455 456 if (new_sample != 0) { 457 /* If we sample in larger samples in the non-timestamp 458 * case, we could grossly overestimate the RTT especially 459 * with chatty applications or bulk transfer apps which 460 * are stalled on filesystem I/O. 461 * 462 * Also, since we are only going for a minimum in the 463 * non-timestamp case, we do not smooth things out 464 * else with timestamps disabled convergence takes too 465 * long. 466 */ 467 if (!win_dep) { 468 m -= (new_sample >> 3); 469 new_sample += m; 470 } else { 471 m <<= 3; 472 if (m < new_sample) 473 new_sample = m; 474 } 475 } else { 476 /* No previous measure. */ 477 new_sample = m << 3; 478 } 479 480 if (tp->rcv_rtt_est.rtt != new_sample) 481 tp->rcv_rtt_est.rtt = new_sample; 482 } 483 484 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 485 { 486 if (tp->rcv_rtt_est.time == 0) 487 goto new_measure; 488 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 489 return; 490 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1); 491 492 new_measure: 493 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 494 tp->rcv_rtt_est.time = tcp_time_stamp; 495 } 496 497 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 498 const struct sk_buff *skb) 499 { 500 struct tcp_sock *tp = tcp_sk(sk); 501 if (tp->rx_opt.rcv_tsecr && 502 (TCP_SKB_CB(skb)->end_seq - 503 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 504 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 505 } 506 507 /* 508 * This function should be called every time data is copied to user space. 509 * It calculates the appropriate TCP receive buffer space. 510 */ 511 void tcp_rcv_space_adjust(struct sock *sk) 512 { 513 struct tcp_sock *tp = tcp_sk(sk); 514 int time; 515 int space; 516 517 if (tp->rcvq_space.time == 0) 518 goto new_measure; 519 520 time = tcp_time_stamp - tp->rcvq_space.time; 521 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 522 return; 523 524 space = 2 * (tp->copied_seq - tp->rcvq_space.seq); 525 526 space = max(tp->rcvq_space.space, space); 527 528 if (tp->rcvq_space.space != space) { 529 int rcvmem; 530 531 tp->rcvq_space.space = space; 532 533 if (sysctl_tcp_moderate_rcvbuf && 534 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 535 int new_clamp = space; 536 537 /* Receive space grows, normalize in order to 538 * take into account packet headers and sk_buff 539 * structure overhead. 540 */ 541 space /= tp->advmss; 542 if (!space) 543 space = 1; 544 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 545 while (tcp_win_from_space(rcvmem) < tp->advmss) 546 rcvmem += 128; 547 space *= rcvmem; 548 space = min(space, sysctl_tcp_rmem[2]); 549 if (space > sk->sk_rcvbuf) { 550 sk->sk_rcvbuf = space; 551 552 /* Make the window clamp follow along. */ 553 tp->window_clamp = new_clamp; 554 } 555 } 556 } 557 558 new_measure: 559 tp->rcvq_space.seq = tp->copied_seq; 560 tp->rcvq_space.time = tcp_time_stamp; 561 } 562 563 /* There is something which you must keep in mind when you analyze the 564 * behavior of the tp->ato delayed ack timeout interval. When a 565 * connection starts up, we want to ack as quickly as possible. The 566 * problem is that "good" TCP's do slow start at the beginning of data 567 * transmission. The means that until we send the first few ACK's the 568 * sender will sit on his end and only queue most of his data, because 569 * he can only send snd_cwnd unacked packets at any given time. For 570 * each ACK we send, he increments snd_cwnd and transmits more of his 571 * queue. -DaveM 572 */ 573 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 574 { 575 struct tcp_sock *tp = tcp_sk(sk); 576 struct inet_connection_sock *icsk = inet_csk(sk); 577 u32 now; 578 579 inet_csk_schedule_ack(sk); 580 581 tcp_measure_rcv_mss(sk, skb); 582 583 tcp_rcv_rtt_measure(tp); 584 585 now = tcp_time_stamp; 586 587 if (!icsk->icsk_ack.ato) { 588 /* The _first_ data packet received, initialize 589 * delayed ACK engine. 590 */ 591 tcp_incr_quickack(sk); 592 icsk->icsk_ack.ato = TCP_ATO_MIN; 593 } else { 594 int m = now - icsk->icsk_ack.lrcvtime; 595 596 if (m <= TCP_ATO_MIN / 2) { 597 /* The fastest case is the first. */ 598 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 599 } else if (m < icsk->icsk_ack.ato) { 600 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 601 if (icsk->icsk_ack.ato > icsk->icsk_rto) 602 icsk->icsk_ack.ato = icsk->icsk_rto; 603 } else if (m > icsk->icsk_rto) { 604 /* Too long gap. Apparently sender failed to 605 * restart window, so that we send ACKs quickly. 606 */ 607 tcp_incr_quickack(sk); 608 sk_mem_reclaim(sk); 609 } 610 } 611 icsk->icsk_ack.lrcvtime = now; 612 613 TCP_ECN_check_ce(tp, skb); 614 615 if (skb->len >= 128) 616 tcp_grow_window(sk, skb); 617 } 618 619 /* Called to compute a smoothed rtt estimate. The data fed to this 620 * routine either comes from timestamps, or from segments that were 621 * known _not_ to have been retransmitted [see Karn/Partridge 622 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 623 * piece by Van Jacobson. 624 * NOTE: the next three routines used to be one big routine. 625 * To save cycles in the RFC 1323 implementation it was better to break 626 * it up into three procedures. -- erics 627 */ 628 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt) 629 { 630 struct tcp_sock *tp = tcp_sk(sk); 631 long m = mrtt; /* RTT */ 632 633 /* The following amusing code comes from Jacobson's 634 * article in SIGCOMM '88. Note that rtt and mdev 635 * are scaled versions of rtt and mean deviation. 636 * This is designed to be as fast as possible 637 * m stands for "measurement". 638 * 639 * On a 1990 paper the rto value is changed to: 640 * RTO = rtt + 4 * mdev 641 * 642 * Funny. This algorithm seems to be very broken. 643 * These formulae increase RTO, when it should be decreased, increase 644 * too slowly, when it should be increased quickly, decrease too quickly 645 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 646 * does not matter how to _calculate_ it. Seems, it was trap 647 * that VJ failed to avoid. 8) 648 */ 649 if (m == 0) 650 m = 1; 651 if (tp->srtt != 0) { 652 m -= (tp->srtt >> 3); /* m is now error in rtt est */ 653 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 654 if (m < 0) { 655 m = -m; /* m is now abs(error) */ 656 m -= (tp->mdev >> 2); /* similar update on mdev */ 657 /* This is similar to one of Eifel findings. 658 * Eifel blocks mdev updates when rtt decreases. 659 * This solution is a bit different: we use finer gain 660 * for mdev in this case (alpha*beta). 661 * Like Eifel it also prevents growth of rto, 662 * but also it limits too fast rto decreases, 663 * happening in pure Eifel. 664 */ 665 if (m > 0) 666 m >>= 3; 667 } else { 668 m -= (tp->mdev >> 2); /* similar update on mdev */ 669 } 670 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */ 671 if (tp->mdev > tp->mdev_max) { 672 tp->mdev_max = tp->mdev; 673 if (tp->mdev_max > tp->rttvar) 674 tp->rttvar = tp->mdev_max; 675 } 676 if (after(tp->snd_una, tp->rtt_seq)) { 677 if (tp->mdev_max < tp->rttvar) 678 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2; 679 tp->rtt_seq = tp->snd_nxt; 680 tp->mdev_max = tcp_rto_min(sk); 681 } 682 } else { 683 /* no previous measure. */ 684 tp->srtt = m << 3; /* take the measured time to be rtt */ 685 tp->mdev = m << 1; /* make sure rto = 3*rtt */ 686 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 687 tp->rtt_seq = tp->snd_nxt; 688 } 689 } 690 691 /* Set the sk_pacing_rate to allow proper sizing of TSO packets. 692 * Note: TCP stack does not yet implement pacing. 693 * FQ packet scheduler can be used to implement cheap but effective 694 * TCP pacing, to smooth the burst on large writes when packets 695 * in flight is significantly lower than cwnd (or rwin) 696 */ 697 static void tcp_update_pacing_rate(struct sock *sk) 698 { 699 const struct tcp_sock *tp = tcp_sk(sk); 700 u64 rate; 701 702 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 703 rate = (u64)tp->mss_cache * 2 * (HZ << 3); 704 705 rate *= max(tp->snd_cwnd, tp->packets_out); 706 707 /* Correction for small srtt : minimum srtt being 8 (1 jiffy << 3), 708 * be conservative and assume srtt = 1 (125 us instead of 1.25 ms) 709 * We probably need usec resolution in the future. 710 * Note: This also takes care of possible srtt=0 case, 711 * when tcp_rtt_estimator() was not yet called. 712 */ 713 if (tp->srtt > 8 + 2) 714 do_div(rate, tp->srtt); 715 716 sk->sk_pacing_rate = min_t(u64, rate, ~0U); 717 } 718 719 /* Calculate rto without backoff. This is the second half of Van Jacobson's 720 * routine referred to above. 721 */ 722 void tcp_set_rto(struct sock *sk) 723 { 724 const struct tcp_sock *tp = tcp_sk(sk); 725 /* Old crap is replaced with new one. 8) 726 * 727 * More seriously: 728 * 1. If rtt variance happened to be less 50msec, it is hallucination. 729 * It cannot be less due to utterly erratic ACK generation made 730 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 731 * to do with delayed acks, because at cwnd>2 true delack timeout 732 * is invisible. Actually, Linux-2.4 also generates erratic 733 * ACKs in some circumstances. 734 */ 735 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 736 737 /* 2. Fixups made earlier cannot be right. 738 * If we do not estimate RTO correctly without them, 739 * all the algo is pure shit and should be replaced 740 * with correct one. It is exactly, which we pretend to do. 741 */ 742 743 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 744 * guarantees that rto is higher. 745 */ 746 tcp_bound_rto(sk); 747 } 748 749 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 750 { 751 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 752 753 if (!cwnd) 754 cwnd = TCP_INIT_CWND; 755 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 756 } 757 758 /* 759 * Packet counting of FACK is based on in-order assumptions, therefore TCP 760 * disables it when reordering is detected 761 */ 762 void tcp_disable_fack(struct tcp_sock *tp) 763 { 764 /* RFC3517 uses different metric in lost marker => reset on change */ 765 if (tcp_is_fack(tp)) 766 tp->lost_skb_hint = NULL; 767 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; 768 } 769 770 /* Take a notice that peer is sending D-SACKs */ 771 static void tcp_dsack_seen(struct tcp_sock *tp) 772 { 773 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 774 } 775 776 static void tcp_update_reordering(struct sock *sk, const int metric, 777 const int ts) 778 { 779 struct tcp_sock *tp = tcp_sk(sk); 780 if (metric > tp->reordering) { 781 int mib_idx; 782 783 tp->reordering = min(TCP_MAX_REORDERING, metric); 784 785 /* This exciting event is worth to be remembered. 8) */ 786 if (ts) 787 mib_idx = LINUX_MIB_TCPTSREORDER; 788 else if (tcp_is_reno(tp)) 789 mib_idx = LINUX_MIB_TCPRENOREORDER; 790 else if (tcp_is_fack(tp)) 791 mib_idx = LINUX_MIB_TCPFACKREORDER; 792 else 793 mib_idx = LINUX_MIB_TCPSACKREORDER; 794 795 NET_INC_STATS_BH(sock_net(sk), mib_idx); 796 #if FASTRETRANS_DEBUG > 1 797 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 798 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 799 tp->reordering, 800 tp->fackets_out, 801 tp->sacked_out, 802 tp->undo_marker ? tp->undo_retrans : 0); 803 #endif 804 tcp_disable_fack(tp); 805 } 806 807 if (metric > 0) 808 tcp_disable_early_retrans(tp); 809 } 810 811 /* This must be called before lost_out is incremented */ 812 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 813 { 814 if ((tp->retransmit_skb_hint == NULL) || 815 before(TCP_SKB_CB(skb)->seq, 816 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 817 tp->retransmit_skb_hint = skb; 818 819 if (!tp->lost_out || 820 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high)) 821 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 822 } 823 824 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 825 { 826 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 827 tcp_verify_retransmit_hint(tp, skb); 828 829 tp->lost_out += tcp_skb_pcount(skb); 830 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 831 } 832 } 833 834 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, 835 struct sk_buff *skb) 836 { 837 tcp_verify_retransmit_hint(tp, skb); 838 839 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 840 tp->lost_out += tcp_skb_pcount(skb); 841 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 842 } 843 } 844 845 /* This procedure tags the retransmission queue when SACKs arrive. 846 * 847 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 848 * Packets in queue with these bits set are counted in variables 849 * sacked_out, retrans_out and lost_out, correspondingly. 850 * 851 * Valid combinations are: 852 * Tag InFlight Description 853 * 0 1 - orig segment is in flight. 854 * S 0 - nothing flies, orig reached receiver. 855 * L 0 - nothing flies, orig lost by net. 856 * R 2 - both orig and retransmit are in flight. 857 * L|R 1 - orig is lost, retransmit is in flight. 858 * S|R 1 - orig reached receiver, retrans is still in flight. 859 * (L|S|R is logically valid, it could occur when L|R is sacked, 860 * but it is equivalent to plain S and code short-curcuits it to S. 861 * L|S is logically invalid, it would mean -1 packet in flight 8)) 862 * 863 * These 6 states form finite state machine, controlled by the following events: 864 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 865 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 866 * 3. Loss detection event of two flavors: 867 * A. Scoreboard estimator decided the packet is lost. 868 * A'. Reno "three dupacks" marks head of queue lost. 869 * A''. Its FACK modification, head until snd.fack is lost. 870 * B. SACK arrives sacking SND.NXT at the moment, when the 871 * segment was retransmitted. 872 * 4. D-SACK added new rule: D-SACK changes any tag to S. 873 * 874 * It is pleasant to note, that state diagram turns out to be commutative, 875 * so that we are allowed not to be bothered by order of our actions, 876 * when multiple events arrive simultaneously. (see the function below). 877 * 878 * Reordering detection. 879 * -------------------- 880 * Reordering metric is maximal distance, which a packet can be displaced 881 * in packet stream. With SACKs we can estimate it: 882 * 883 * 1. SACK fills old hole and the corresponding segment was not 884 * ever retransmitted -> reordering. Alas, we cannot use it 885 * when segment was retransmitted. 886 * 2. The last flaw is solved with D-SACK. D-SACK arrives 887 * for retransmitted and already SACKed segment -> reordering.. 888 * Both of these heuristics are not used in Loss state, when we cannot 889 * account for retransmits accurately. 890 * 891 * SACK block validation. 892 * ---------------------- 893 * 894 * SACK block range validation checks that the received SACK block fits to 895 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 896 * Note that SND.UNA is not included to the range though being valid because 897 * it means that the receiver is rather inconsistent with itself reporting 898 * SACK reneging when it should advance SND.UNA. Such SACK block this is 899 * perfectly valid, however, in light of RFC2018 which explicitly states 900 * that "SACK block MUST reflect the newest segment. Even if the newest 901 * segment is going to be discarded ...", not that it looks very clever 902 * in case of head skb. Due to potentional receiver driven attacks, we 903 * choose to avoid immediate execution of a walk in write queue due to 904 * reneging and defer head skb's loss recovery to standard loss recovery 905 * procedure that will eventually trigger (nothing forbids us doing this). 906 * 907 * Implements also blockage to start_seq wrap-around. Problem lies in the 908 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 909 * there's no guarantee that it will be before snd_nxt (n). The problem 910 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 911 * wrap (s_w): 912 * 913 * <- outs wnd -> <- wrapzone -> 914 * u e n u_w e_w s n_w 915 * | | | | | | | 916 * |<------------+------+----- TCP seqno space --------------+---------->| 917 * ...-- <2^31 ->| |<--------... 918 * ...---- >2^31 ------>| |<--------... 919 * 920 * Current code wouldn't be vulnerable but it's better still to discard such 921 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 922 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 923 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 924 * equal to the ideal case (infinite seqno space without wrap caused issues). 925 * 926 * With D-SACK the lower bound is extended to cover sequence space below 927 * SND.UNA down to undo_marker, which is the last point of interest. Yet 928 * again, D-SACK block must not to go across snd_una (for the same reason as 929 * for the normal SACK blocks, explained above). But there all simplicity 930 * ends, TCP might receive valid D-SACKs below that. As long as they reside 931 * fully below undo_marker they do not affect behavior in anyway and can 932 * therefore be safely ignored. In rare cases (which are more or less 933 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 934 * fragmentation and packet reordering past skb's retransmission. To consider 935 * them correctly, the acceptable range must be extended even more though 936 * the exact amount is rather hard to quantify. However, tp->max_window can 937 * be used as an exaggerated estimate. 938 */ 939 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 940 u32 start_seq, u32 end_seq) 941 { 942 /* Too far in future, or reversed (interpretation is ambiguous) */ 943 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 944 return false; 945 946 /* Nasty start_seq wrap-around check (see comments above) */ 947 if (!before(start_seq, tp->snd_nxt)) 948 return false; 949 950 /* In outstanding window? ...This is valid exit for D-SACKs too. 951 * start_seq == snd_una is non-sensical (see comments above) 952 */ 953 if (after(start_seq, tp->snd_una)) 954 return true; 955 956 if (!is_dsack || !tp->undo_marker) 957 return false; 958 959 /* ...Then it's D-SACK, and must reside below snd_una completely */ 960 if (after(end_seq, tp->snd_una)) 961 return false; 962 963 if (!before(start_seq, tp->undo_marker)) 964 return true; 965 966 /* Too old */ 967 if (!after(end_seq, tp->undo_marker)) 968 return false; 969 970 /* Undo_marker boundary crossing (overestimates a lot). Known already: 971 * start_seq < undo_marker and end_seq >= undo_marker. 972 */ 973 return !before(start_seq, end_seq - tp->max_window); 974 } 975 976 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving". 977 * Event "B". Later note: FACK people cheated me again 8), we have to account 978 * for reordering! Ugly, but should help. 979 * 980 * Search retransmitted skbs from write_queue that were sent when snd_nxt was 981 * less than what is now known to be received by the other end (derived from 982 * highest SACK block). Also calculate the lowest snd_nxt among the remaining 983 * retransmitted skbs to avoid some costly processing per ACKs. 984 */ 985 static void tcp_mark_lost_retrans(struct sock *sk) 986 { 987 const struct inet_connection_sock *icsk = inet_csk(sk); 988 struct tcp_sock *tp = tcp_sk(sk); 989 struct sk_buff *skb; 990 int cnt = 0; 991 u32 new_low_seq = tp->snd_nxt; 992 u32 received_upto = tcp_highest_sack_seq(tp); 993 994 if (!tcp_is_fack(tp) || !tp->retrans_out || 995 !after(received_upto, tp->lost_retrans_low) || 996 icsk->icsk_ca_state != TCP_CA_Recovery) 997 return; 998 999 tcp_for_write_queue(skb, sk) { 1000 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq; 1001 1002 if (skb == tcp_send_head(sk)) 1003 break; 1004 if (cnt == tp->retrans_out) 1005 break; 1006 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1007 continue; 1008 1009 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) 1010 continue; 1011 1012 /* TODO: We would like to get rid of tcp_is_fack(tp) only 1013 * constraint here (see above) but figuring out that at 1014 * least tp->reordering SACK blocks reside between ack_seq 1015 * and received_upto is not easy task to do cheaply with 1016 * the available datastructures. 1017 * 1018 * Whether FACK should check here for tp->reordering segs 1019 * in-between one could argue for either way (it would be 1020 * rather simple to implement as we could count fack_count 1021 * during the walk and do tp->fackets_out - fack_count). 1022 */ 1023 if (after(received_upto, ack_seq)) { 1024 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1025 tp->retrans_out -= tcp_skb_pcount(skb); 1026 1027 tcp_skb_mark_lost_uncond_verify(tp, skb); 1028 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT); 1029 } else { 1030 if (before(ack_seq, new_low_seq)) 1031 new_low_seq = ack_seq; 1032 cnt += tcp_skb_pcount(skb); 1033 } 1034 } 1035 1036 if (tp->retrans_out) 1037 tp->lost_retrans_low = new_low_seq; 1038 } 1039 1040 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1041 struct tcp_sack_block_wire *sp, int num_sacks, 1042 u32 prior_snd_una) 1043 { 1044 struct tcp_sock *tp = tcp_sk(sk); 1045 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1046 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1047 bool dup_sack = false; 1048 1049 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1050 dup_sack = true; 1051 tcp_dsack_seen(tp); 1052 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1053 } else if (num_sacks > 1) { 1054 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1055 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1056 1057 if (!after(end_seq_0, end_seq_1) && 1058 !before(start_seq_0, start_seq_1)) { 1059 dup_sack = true; 1060 tcp_dsack_seen(tp); 1061 NET_INC_STATS_BH(sock_net(sk), 1062 LINUX_MIB_TCPDSACKOFORECV); 1063 } 1064 } 1065 1066 /* D-SACK for already forgotten data... Do dumb counting. */ 1067 if (dup_sack && tp->undo_marker && tp->undo_retrans && 1068 !after(end_seq_0, prior_snd_una) && 1069 after(end_seq_0, tp->undo_marker)) 1070 tp->undo_retrans--; 1071 1072 return dup_sack; 1073 } 1074 1075 struct tcp_sacktag_state { 1076 int reord; 1077 int fack_count; 1078 int flag; 1079 s32 rtt; /* RTT measured by SACKing never-retransmitted data */ 1080 }; 1081 1082 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1083 * the incoming SACK may not exactly match but we can find smaller MSS 1084 * aligned portion of it that matches. Therefore we might need to fragment 1085 * which may fail and creates some hassle (caller must handle error case 1086 * returns). 1087 * 1088 * FIXME: this could be merged to shift decision code 1089 */ 1090 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1091 u32 start_seq, u32 end_seq) 1092 { 1093 int err; 1094 bool in_sack; 1095 unsigned int pkt_len; 1096 unsigned int mss; 1097 1098 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1099 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1100 1101 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1102 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1103 mss = tcp_skb_mss(skb); 1104 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1105 1106 if (!in_sack) { 1107 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1108 if (pkt_len < mss) 1109 pkt_len = mss; 1110 } else { 1111 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1112 if (pkt_len < mss) 1113 return -EINVAL; 1114 } 1115 1116 /* Round if necessary so that SACKs cover only full MSSes 1117 * and/or the remaining small portion (if present) 1118 */ 1119 if (pkt_len > mss) { 1120 unsigned int new_len = (pkt_len / mss) * mss; 1121 if (!in_sack && new_len < pkt_len) { 1122 new_len += mss; 1123 if (new_len > skb->len) 1124 return 0; 1125 } 1126 pkt_len = new_len; 1127 } 1128 err = tcp_fragment(sk, skb, pkt_len, mss); 1129 if (err < 0) 1130 return err; 1131 } 1132 1133 return in_sack; 1134 } 1135 1136 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1137 static u8 tcp_sacktag_one(struct sock *sk, 1138 struct tcp_sacktag_state *state, u8 sacked, 1139 u32 start_seq, u32 end_seq, 1140 int dup_sack, int pcount, u32 xmit_time) 1141 { 1142 struct tcp_sock *tp = tcp_sk(sk); 1143 int fack_count = state->fack_count; 1144 1145 /* Account D-SACK for retransmitted packet. */ 1146 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1147 if (tp->undo_marker && tp->undo_retrans && 1148 after(end_seq, tp->undo_marker)) 1149 tp->undo_retrans--; 1150 if (sacked & TCPCB_SACKED_ACKED) 1151 state->reord = min(fack_count, state->reord); 1152 } 1153 1154 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1155 if (!after(end_seq, tp->snd_una)) 1156 return sacked; 1157 1158 if (!(sacked & TCPCB_SACKED_ACKED)) { 1159 if (sacked & TCPCB_SACKED_RETRANS) { 1160 /* If the segment is not tagged as lost, 1161 * we do not clear RETRANS, believing 1162 * that retransmission is still in flight. 1163 */ 1164 if (sacked & TCPCB_LOST) { 1165 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1166 tp->lost_out -= pcount; 1167 tp->retrans_out -= pcount; 1168 } 1169 } else { 1170 if (!(sacked & TCPCB_RETRANS)) { 1171 /* New sack for not retransmitted frame, 1172 * which was in hole. It is reordering. 1173 */ 1174 if (before(start_seq, 1175 tcp_highest_sack_seq(tp))) 1176 state->reord = min(fack_count, 1177 state->reord); 1178 if (!after(end_seq, tp->high_seq)) 1179 state->flag |= FLAG_ORIG_SACK_ACKED; 1180 /* Pick the earliest sequence sacked for RTT */ 1181 if (state->rtt < 0) 1182 state->rtt = tcp_time_stamp - xmit_time; 1183 } 1184 1185 if (sacked & TCPCB_LOST) { 1186 sacked &= ~TCPCB_LOST; 1187 tp->lost_out -= pcount; 1188 } 1189 } 1190 1191 sacked |= TCPCB_SACKED_ACKED; 1192 state->flag |= FLAG_DATA_SACKED; 1193 tp->sacked_out += pcount; 1194 1195 fack_count += pcount; 1196 1197 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1198 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) && 1199 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1200 tp->lost_cnt_hint += pcount; 1201 1202 if (fack_count > tp->fackets_out) 1203 tp->fackets_out = fack_count; 1204 } 1205 1206 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1207 * frames and clear it. undo_retrans is decreased above, L|R frames 1208 * are accounted above as well. 1209 */ 1210 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1211 sacked &= ~TCPCB_SACKED_RETRANS; 1212 tp->retrans_out -= pcount; 1213 } 1214 1215 return sacked; 1216 } 1217 1218 /* Shift newly-SACKed bytes from this skb to the immediately previous 1219 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1220 */ 1221 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1222 struct tcp_sacktag_state *state, 1223 unsigned int pcount, int shifted, int mss, 1224 bool dup_sack) 1225 { 1226 struct tcp_sock *tp = tcp_sk(sk); 1227 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1228 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1229 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1230 1231 BUG_ON(!pcount); 1232 1233 /* Adjust counters and hints for the newly sacked sequence 1234 * range but discard the return value since prev is already 1235 * marked. We must tag the range first because the seq 1236 * advancement below implicitly advances 1237 * tcp_highest_sack_seq() when skb is highest_sack. 1238 */ 1239 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1240 start_seq, end_seq, dup_sack, pcount, 1241 TCP_SKB_CB(skb)->when); 1242 1243 if (skb == tp->lost_skb_hint) 1244 tp->lost_cnt_hint += pcount; 1245 1246 TCP_SKB_CB(prev)->end_seq += shifted; 1247 TCP_SKB_CB(skb)->seq += shifted; 1248 1249 skb_shinfo(prev)->gso_segs += pcount; 1250 BUG_ON(skb_shinfo(skb)->gso_segs < pcount); 1251 skb_shinfo(skb)->gso_segs -= pcount; 1252 1253 /* When we're adding to gso_segs == 1, gso_size will be zero, 1254 * in theory this shouldn't be necessary but as long as DSACK 1255 * code can come after this skb later on it's better to keep 1256 * setting gso_size to something. 1257 */ 1258 if (!skb_shinfo(prev)->gso_size) { 1259 skb_shinfo(prev)->gso_size = mss; 1260 skb_shinfo(prev)->gso_type = sk->sk_gso_type; 1261 } 1262 1263 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1264 if (skb_shinfo(skb)->gso_segs <= 1) { 1265 skb_shinfo(skb)->gso_size = 0; 1266 skb_shinfo(skb)->gso_type = 0; 1267 } 1268 1269 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1270 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1271 1272 if (skb->len > 0) { 1273 BUG_ON(!tcp_skb_pcount(skb)); 1274 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1275 return false; 1276 } 1277 1278 /* Whole SKB was eaten :-) */ 1279 1280 if (skb == tp->retransmit_skb_hint) 1281 tp->retransmit_skb_hint = prev; 1282 if (skb == tp->lost_skb_hint) { 1283 tp->lost_skb_hint = prev; 1284 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1285 } 1286 1287 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1288 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1289 TCP_SKB_CB(prev)->end_seq++; 1290 1291 if (skb == tcp_highest_sack(sk)) 1292 tcp_advance_highest_sack(sk, skb); 1293 1294 tcp_unlink_write_queue(skb, sk); 1295 sk_wmem_free_skb(sk, skb); 1296 1297 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED); 1298 1299 return true; 1300 } 1301 1302 /* I wish gso_size would have a bit more sane initialization than 1303 * something-or-zero which complicates things 1304 */ 1305 static int tcp_skb_seglen(const struct sk_buff *skb) 1306 { 1307 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1308 } 1309 1310 /* Shifting pages past head area doesn't work */ 1311 static int skb_can_shift(const struct sk_buff *skb) 1312 { 1313 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1314 } 1315 1316 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1317 * skb. 1318 */ 1319 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1320 struct tcp_sacktag_state *state, 1321 u32 start_seq, u32 end_seq, 1322 bool dup_sack) 1323 { 1324 struct tcp_sock *tp = tcp_sk(sk); 1325 struct sk_buff *prev; 1326 int mss; 1327 int pcount = 0; 1328 int len; 1329 int in_sack; 1330 1331 if (!sk_can_gso(sk)) 1332 goto fallback; 1333 1334 /* Normally R but no L won't result in plain S */ 1335 if (!dup_sack && 1336 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1337 goto fallback; 1338 if (!skb_can_shift(skb)) 1339 goto fallback; 1340 /* This frame is about to be dropped (was ACKed). */ 1341 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1342 goto fallback; 1343 1344 /* Can only happen with delayed DSACK + discard craziness */ 1345 if (unlikely(skb == tcp_write_queue_head(sk))) 1346 goto fallback; 1347 prev = tcp_write_queue_prev(sk, skb); 1348 1349 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1350 goto fallback; 1351 1352 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1353 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1354 1355 if (in_sack) { 1356 len = skb->len; 1357 pcount = tcp_skb_pcount(skb); 1358 mss = tcp_skb_seglen(skb); 1359 1360 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1361 * drop this restriction as unnecessary 1362 */ 1363 if (mss != tcp_skb_seglen(prev)) 1364 goto fallback; 1365 } else { 1366 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1367 goto noop; 1368 /* CHECKME: This is non-MSS split case only?, this will 1369 * cause skipped skbs due to advancing loop btw, original 1370 * has that feature too 1371 */ 1372 if (tcp_skb_pcount(skb) <= 1) 1373 goto noop; 1374 1375 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1376 if (!in_sack) { 1377 /* TODO: head merge to next could be attempted here 1378 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1379 * though it might not be worth of the additional hassle 1380 * 1381 * ...we can probably just fallback to what was done 1382 * previously. We could try merging non-SACKed ones 1383 * as well but it probably isn't going to buy off 1384 * because later SACKs might again split them, and 1385 * it would make skb timestamp tracking considerably 1386 * harder problem. 1387 */ 1388 goto fallback; 1389 } 1390 1391 len = end_seq - TCP_SKB_CB(skb)->seq; 1392 BUG_ON(len < 0); 1393 BUG_ON(len > skb->len); 1394 1395 /* MSS boundaries should be honoured or else pcount will 1396 * severely break even though it makes things bit trickier. 1397 * Optimize common case to avoid most of the divides 1398 */ 1399 mss = tcp_skb_mss(skb); 1400 1401 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1402 * drop this restriction as unnecessary 1403 */ 1404 if (mss != tcp_skb_seglen(prev)) 1405 goto fallback; 1406 1407 if (len == mss) { 1408 pcount = 1; 1409 } else if (len < mss) { 1410 goto noop; 1411 } else { 1412 pcount = len / mss; 1413 len = pcount * mss; 1414 } 1415 } 1416 1417 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1418 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1419 goto fallback; 1420 1421 if (!skb_shift(prev, skb, len)) 1422 goto fallback; 1423 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1424 goto out; 1425 1426 /* Hole filled allows collapsing with the next as well, this is very 1427 * useful when hole on every nth skb pattern happens 1428 */ 1429 if (prev == tcp_write_queue_tail(sk)) 1430 goto out; 1431 skb = tcp_write_queue_next(sk, prev); 1432 1433 if (!skb_can_shift(skb) || 1434 (skb == tcp_send_head(sk)) || 1435 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1436 (mss != tcp_skb_seglen(skb))) 1437 goto out; 1438 1439 len = skb->len; 1440 if (skb_shift(prev, skb, len)) { 1441 pcount += tcp_skb_pcount(skb); 1442 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1443 } 1444 1445 out: 1446 state->fack_count += pcount; 1447 return prev; 1448 1449 noop: 1450 return skb; 1451 1452 fallback: 1453 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1454 return NULL; 1455 } 1456 1457 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1458 struct tcp_sack_block *next_dup, 1459 struct tcp_sacktag_state *state, 1460 u32 start_seq, u32 end_seq, 1461 bool dup_sack_in) 1462 { 1463 struct tcp_sock *tp = tcp_sk(sk); 1464 struct sk_buff *tmp; 1465 1466 tcp_for_write_queue_from(skb, sk) { 1467 int in_sack = 0; 1468 bool dup_sack = dup_sack_in; 1469 1470 if (skb == tcp_send_head(sk)) 1471 break; 1472 1473 /* queue is in-order => we can short-circuit the walk early */ 1474 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1475 break; 1476 1477 if ((next_dup != NULL) && 1478 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1479 in_sack = tcp_match_skb_to_sack(sk, skb, 1480 next_dup->start_seq, 1481 next_dup->end_seq); 1482 if (in_sack > 0) 1483 dup_sack = true; 1484 } 1485 1486 /* skb reference here is a bit tricky to get right, since 1487 * shifting can eat and free both this skb and the next, 1488 * so not even _safe variant of the loop is enough. 1489 */ 1490 if (in_sack <= 0) { 1491 tmp = tcp_shift_skb_data(sk, skb, state, 1492 start_seq, end_seq, dup_sack); 1493 if (tmp != NULL) { 1494 if (tmp != skb) { 1495 skb = tmp; 1496 continue; 1497 } 1498 1499 in_sack = 0; 1500 } else { 1501 in_sack = tcp_match_skb_to_sack(sk, skb, 1502 start_seq, 1503 end_seq); 1504 } 1505 } 1506 1507 if (unlikely(in_sack < 0)) 1508 break; 1509 1510 if (in_sack) { 1511 TCP_SKB_CB(skb)->sacked = 1512 tcp_sacktag_one(sk, 1513 state, 1514 TCP_SKB_CB(skb)->sacked, 1515 TCP_SKB_CB(skb)->seq, 1516 TCP_SKB_CB(skb)->end_seq, 1517 dup_sack, 1518 tcp_skb_pcount(skb), 1519 TCP_SKB_CB(skb)->when); 1520 1521 if (!before(TCP_SKB_CB(skb)->seq, 1522 tcp_highest_sack_seq(tp))) 1523 tcp_advance_highest_sack(sk, skb); 1524 } 1525 1526 state->fack_count += tcp_skb_pcount(skb); 1527 } 1528 return skb; 1529 } 1530 1531 /* Avoid all extra work that is being done by sacktag while walking in 1532 * a normal way 1533 */ 1534 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1535 struct tcp_sacktag_state *state, 1536 u32 skip_to_seq) 1537 { 1538 tcp_for_write_queue_from(skb, sk) { 1539 if (skb == tcp_send_head(sk)) 1540 break; 1541 1542 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1543 break; 1544 1545 state->fack_count += tcp_skb_pcount(skb); 1546 } 1547 return skb; 1548 } 1549 1550 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1551 struct sock *sk, 1552 struct tcp_sack_block *next_dup, 1553 struct tcp_sacktag_state *state, 1554 u32 skip_to_seq) 1555 { 1556 if (next_dup == NULL) 1557 return skb; 1558 1559 if (before(next_dup->start_seq, skip_to_seq)) { 1560 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1561 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1562 next_dup->start_seq, next_dup->end_seq, 1563 1); 1564 } 1565 1566 return skb; 1567 } 1568 1569 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1570 { 1571 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1572 } 1573 1574 static int 1575 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1576 u32 prior_snd_una, s32 *sack_rtt) 1577 { 1578 struct tcp_sock *tp = tcp_sk(sk); 1579 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1580 TCP_SKB_CB(ack_skb)->sacked); 1581 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1582 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1583 struct tcp_sack_block *cache; 1584 struct tcp_sacktag_state state; 1585 struct sk_buff *skb; 1586 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1587 int used_sacks; 1588 bool found_dup_sack = false; 1589 int i, j; 1590 int first_sack_index; 1591 1592 state.flag = 0; 1593 state.reord = tp->packets_out; 1594 state.rtt = -1; 1595 1596 if (!tp->sacked_out) { 1597 if (WARN_ON(tp->fackets_out)) 1598 tp->fackets_out = 0; 1599 tcp_highest_sack_reset(sk); 1600 } 1601 1602 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1603 num_sacks, prior_snd_una); 1604 if (found_dup_sack) 1605 state.flag |= FLAG_DSACKING_ACK; 1606 1607 /* Eliminate too old ACKs, but take into 1608 * account more or less fresh ones, they can 1609 * contain valid SACK info. 1610 */ 1611 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1612 return 0; 1613 1614 if (!tp->packets_out) 1615 goto out; 1616 1617 used_sacks = 0; 1618 first_sack_index = 0; 1619 for (i = 0; i < num_sacks; i++) { 1620 bool dup_sack = !i && found_dup_sack; 1621 1622 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1623 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1624 1625 if (!tcp_is_sackblock_valid(tp, dup_sack, 1626 sp[used_sacks].start_seq, 1627 sp[used_sacks].end_seq)) { 1628 int mib_idx; 1629 1630 if (dup_sack) { 1631 if (!tp->undo_marker) 1632 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1633 else 1634 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1635 } else { 1636 /* Don't count olds caused by ACK reordering */ 1637 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1638 !after(sp[used_sacks].end_seq, tp->snd_una)) 1639 continue; 1640 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1641 } 1642 1643 NET_INC_STATS_BH(sock_net(sk), mib_idx); 1644 if (i == 0) 1645 first_sack_index = -1; 1646 continue; 1647 } 1648 1649 /* Ignore very old stuff early */ 1650 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1651 continue; 1652 1653 used_sacks++; 1654 } 1655 1656 /* order SACK blocks to allow in order walk of the retrans queue */ 1657 for (i = used_sacks - 1; i > 0; i--) { 1658 for (j = 0; j < i; j++) { 1659 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1660 swap(sp[j], sp[j + 1]); 1661 1662 /* Track where the first SACK block goes to */ 1663 if (j == first_sack_index) 1664 first_sack_index = j + 1; 1665 } 1666 } 1667 } 1668 1669 skb = tcp_write_queue_head(sk); 1670 state.fack_count = 0; 1671 i = 0; 1672 1673 if (!tp->sacked_out) { 1674 /* It's already past, so skip checking against it */ 1675 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1676 } else { 1677 cache = tp->recv_sack_cache; 1678 /* Skip empty blocks in at head of the cache */ 1679 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1680 !cache->end_seq) 1681 cache++; 1682 } 1683 1684 while (i < used_sacks) { 1685 u32 start_seq = sp[i].start_seq; 1686 u32 end_seq = sp[i].end_seq; 1687 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1688 struct tcp_sack_block *next_dup = NULL; 1689 1690 if (found_dup_sack && ((i + 1) == first_sack_index)) 1691 next_dup = &sp[i + 1]; 1692 1693 /* Skip too early cached blocks */ 1694 while (tcp_sack_cache_ok(tp, cache) && 1695 !before(start_seq, cache->end_seq)) 1696 cache++; 1697 1698 /* Can skip some work by looking recv_sack_cache? */ 1699 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1700 after(end_seq, cache->start_seq)) { 1701 1702 /* Head todo? */ 1703 if (before(start_seq, cache->start_seq)) { 1704 skb = tcp_sacktag_skip(skb, sk, &state, 1705 start_seq); 1706 skb = tcp_sacktag_walk(skb, sk, next_dup, 1707 &state, 1708 start_seq, 1709 cache->start_seq, 1710 dup_sack); 1711 } 1712 1713 /* Rest of the block already fully processed? */ 1714 if (!after(end_seq, cache->end_seq)) 1715 goto advance_sp; 1716 1717 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1718 &state, 1719 cache->end_seq); 1720 1721 /* ...tail remains todo... */ 1722 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1723 /* ...but better entrypoint exists! */ 1724 skb = tcp_highest_sack(sk); 1725 if (skb == NULL) 1726 break; 1727 state.fack_count = tp->fackets_out; 1728 cache++; 1729 goto walk; 1730 } 1731 1732 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq); 1733 /* Check overlap against next cached too (past this one already) */ 1734 cache++; 1735 continue; 1736 } 1737 1738 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1739 skb = tcp_highest_sack(sk); 1740 if (skb == NULL) 1741 break; 1742 state.fack_count = tp->fackets_out; 1743 } 1744 skb = tcp_sacktag_skip(skb, sk, &state, start_seq); 1745 1746 walk: 1747 skb = tcp_sacktag_walk(skb, sk, next_dup, &state, 1748 start_seq, end_seq, dup_sack); 1749 1750 advance_sp: 1751 i++; 1752 } 1753 1754 /* Clear the head of the cache sack blocks so we can skip it next time */ 1755 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1756 tp->recv_sack_cache[i].start_seq = 0; 1757 tp->recv_sack_cache[i].end_seq = 0; 1758 } 1759 for (j = 0; j < used_sacks; j++) 1760 tp->recv_sack_cache[i++] = sp[j]; 1761 1762 tcp_mark_lost_retrans(sk); 1763 1764 tcp_verify_left_out(tp); 1765 1766 if ((state.reord < tp->fackets_out) && 1767 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker)) 1768 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0); 1769 1770 out: 1771 1772 #if FASTRETRANS_DEBUG > 0 1773 WARN_ON((int)tp->sacked_out < 0); 1774 WARN_ON((int)tp->lost_out < 0); 1775 WARN_ON((int)tp->retrans_out < 0); 1776 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1777 #endif 1778 *sack_rtt = state.rtt; 1779 return state.flag; 1780 } 1781 1782 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1783 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1784 */ 1785 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1786 { 1787 u32 holes; 1788 1789 holes = max(tp->lost_out, 1U); 1790 holes = min(holes, tp->packets_out); 1791 1792 if ((tp->sacked_out + holes) > tp->packets_out) { 1793 tp->sacked_out = tp->packets_out - holes; 1794 return true; 1795 } 1796 return false; 1797 } 1798 1799 /* If we receive more dupacks than we expected counting segments 1800 * in assumption of absent reordering, interpret this as reordering. 1801 * The only another reason could be bug in receiver TCP. 1802 */ 1803 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1804 { 1805 struct tcp_sock *tp = tcp_sk(sk); 1806 if (tcp_limit_reno_sacked(tp)) 1807 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1808 } 1809 1810 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1811 1812 static void tcp_add_reno_sack(struct sock *sk) 1813 { 1814 struct tcp_sock *tp = tcp_sk(sk); 1815 tp->sacked_out++; 1816 tcp_check_reno_reordering(sk, 0); 1817 tcp_verify_left_out(tp); 1818 } 1819 1820 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1821 1822 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1823 { 1824 struct tcp_sock *tp = tcp_sk(sk); 1825 1826 if (acked > 0) { 1827 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1828 if (acked - 1 >= tp->sacked_out) 1829 tp->sacked_out = 0; 1830 else 1831 tp->sacked_out -= acked - 1; 1832 } 1833 tcp_check_reno_reordering(sk, acked); 1834 tcp_verify_left_out(tp); 1835 } 1836 1837 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1838 { 1839 tp->sacked_out = 0; 1840 } 1841 1842 static void tcp_clear_retrans_partial(struct tcp_sock *tp) 1843 { 1844 tp->retrans_out = 0; 1845 tp->lost_out = 0; 1846 1847 tp->undo_marker = 0; 1848 tp->undo_retrans = 0; 1849 } 1850 1851 void tcp_clear_retrans(struct tcp_sock *tp) 1852 { 1853 tcp_clear_retrans_partial(tp); 1854 1855 tp->fackets_out = 0; 1856 tp->sacked_out = 0; 1857 } 1858 1859 /* Enter Loss state. If "how" is not zero, forget all SACK information 1860 * and reset tags completely, otherwise preserve SACKs. If receiver 1861 * dropped its ofo queue, we will know this due to reneging detection. 1862 */ 1863 void tcp_enter_loss(struct sock *sk, int how) 1864 { 1865 const struct inet_connection_sock *icsk = inet_csk(sk); 1866 struct tcp_sock *tp = tcp_sk(sk); 1867 struct sk_buff *skb; 1868 bool new_recovery = false; 1869 1870 /* Reduce ssthresh if it has not yet been made inside this window. */ 1871 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1872 !after(tp->high_seq, tp->snd_una) || 1873 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1874 new_recovery = true; 1875 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1876 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1877 tcp_ca_event(sk, CA_EVENT_LOSS); 1878 } 1879 tp->snd_cwnd = 1; 1880 tp->snd_cwnd_cnt = 0; 1881 tp->snd_cwnd_stamp = tcp_time_stamp; 1882 1883 tcp_clear_retrans_partial(tp); 1884 1885 if (tcp_is_reno(tp)) 1886 tcp_reset_reno_sack(tp); 1887 1888 tp->undo_marker = tp->snd_una; 1889 if (how) { 1890 tp->sacked_out = 0; 1891 tp->fackets_out = 0; 1892 } 1893 tcp_clear_all_retrans_hints(tp); 1894 1895 tcp_for_write_queue(skb, sk) { 1896 if (skb == tcp_send_head(sk)) 1897 break; 1898 1899 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 1900 tp->undo_marker = 0; 1901 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1902 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) { 1903 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1904 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1905 tp->lost_out += tcp_skb_pcount(skb); 1906 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 1907 } 1908 } 1909 tcp_verify_left_out(tp); 1910 1911 /* Timeout in disordered state after receiving substantial DUPACKs 1912 * suggests that the degree of reordering is over-estimated. 1913 */ 1914 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1915 tp->sacked_out >= sysctl_tcp_reordering) 1916 tp->reordering = min_t(unsigned int, tp->reordering, 1917 sysctl_tcp_reordering); 1918 tcp_set_ca_state(sk, TCP_CA_Loss); 1919 tp->high_seq = tp->snd_nxt; 1920 TCP_ECN_queue_cwr(tp); 1921 1922 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 1923 * loss recovery is underway except recurring timeout(s) on 1924 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 1925 */ 1926 tp->frto = sysctl_tcp_frto && 1927 (new_recovery || icsk->icsk_retransmits) && 1928 !inet_csk(sk)->icsk_mtup.probe_size; 1929 } 1930 1931 /* If ACK arrived pointing to a remembered SACK, it means that our 1932 * remembered SACKs do not reflect real state of receiver i.e. 1933 * receiver _host_ is heavily congested (or buggy). 1934 * 1935 * Do processing similar to RTO timeout. 1936 */ 1937 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 1938 { 1939 if (flag & FLAG_SACK_RENEGING) { 1940 struct inet_connection_sock *icsk = inet_csk(sk); 1941 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1942 1943 tcp_enter_loss(sk, 1); 1944 icsk->icsk_retransmits++; 1945 tcp_retransmit_skb(sk, tcp_write_queue_head(sk)); 1946 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 1947 icsk->icsk_rto, TCP_RTO_MAX); 1948 return true; 1949 } 1950 return false; 1951 } 1952 1953 static inline int tcp_fackets_out(const struct tcp_sock *tp) 1954 { 1955 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 1956 } 1957 1958 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 1959 * counter when SACK is enabled (without SACK, sacked_out is used for 1960 * that purpose). 1961 * 1962 * Instead, with FACK TCP uses fackets_out that includes both SACKed 1963 * segments up to the highest received SACK block so far and holes in 1964 * between them. 1965 * 1966 * With reordering, holes may still be in flight, so RFC3517 recovery 1967 * uses pure sacked_out (total number of SACKed segments) even though 1968 * it violates the RFC that uses duplicate ACKs, often these are equal 1969 * but when e.g. out-of-window ACKs or packet duplication occurs, 1970 * they differ. Since neither occurs due to loss, TCP should really 1971 * ignore them. 1972 */ 1973 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 1974 { 1975 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 1976 } 1977 1978 static bool tcp_pause_early_retransmit(struct sock *sk, int flag) 1979 { 1980 struct tcp_sock *tp = tcp_sk(sk); 1981 unsigned long delay; 1982 1983 /* Delay early retransmit and entering fast recovery for 1984 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples 1985 * available, or RTO is scheduled to fire first. 1986 */ 1987 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 || 1988 (flag & FLAG_ECE) || !tp->srtt) 1989 return false; 1990 1991 delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2)); 1992 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay))) 1993 return false; 1994 1995 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay, 1996 TCP_RTO_MAX); 1997 return true; 1998 } 1999 2000 /* Linux NewReno/SACK/FACK/ECN state machine. 2001 * -------------------------------------- 2002 * 2003 * "Open" Normal state, no dubious events, fast path. 2004 * "Disorder" In all the respects it is "Open", 2005 * but requires a bit more attention. It is entered when 2006 * we see some SACKs or dupacks. It is split of "Open" 2007 * mainly to move some processing from fast path to slow one. 2008 * "CWR" CWND was reduced due to some Congestion Notification event. 2009 * It can be ECN, ICMP source quench, local device congestion. 2010 * "Recovery" CWND was reduced, we are fast-retransmitting. 2011 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2012 * 2013 * tcp_fastretrans_alert() is entered: 2014 * - each incoming ACK, if state is not "Open" 2015 * - when arrived ACK is unusual, namely: 2016 * * SACK 2017 * * Duplicate ACK. 2018 * * ECN ECE. 2019 * 2020 * Counting packets in flight is pretty simple. 2021 * 2022 * in_flight = packets_out - left_out + retrans_out 2023 * 2024 * packets_out is SND.NXT-SND.UNA counted in packets. 2025 * 2026 * retrans_out is number of retransmitted segments. 2027 * 2028 * left_out is number of segments left network, but not ACKed yet. 2029 * 2030 * left_out = sacked_out + lost_out 2031 * 2032 * sacked_out: Packets, which arrived to receiver out of order 2033 * and hence not ACKed. With SACKs this number is simply 2034 * amount of SACKed data. Even without SACKs 2035 * it is easy to give pretty reliable estimate of this number, 2036 * counting duplicate ACKs. 2037 * 2038 * lost_out: Packets lost by network. TCP has no explicit 2039 * "loss notification" feedback from network (for now). 2040 * It means that this number can be only _guessed_. 2041 * Actually, it is the heuristics to predict lossage that 2042 * distinguishes different algorithms. 2043 * 2044 * F.e. after RTO, when all the queue is considered as lost, 2045 * lost_out = packets_out and in_flight = retrans_out. 2046 * 2047 * Essentially, we have now two algorithms counting 2048 * lost packets. 2049 * 2050 * FACK: It is the simplest heuristics. As soon as we decided 2051 * that something is lost, we decide that _all_ not SACKed 2052 * packets until the most forward SACK are lost. I.e. 2053 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2054 * It is absolutely correct estimate, if network does not reorder 2055 * packets. And it loses any connection to reality when reordering 2056 * takes place. We use FACK by default until reordering 2057 * is suspected on the path to this destination. 2058 * 2059 * NewReno: when Recovery is entered, we assume that one segment 2060 * is lost (classic Reno). While we are in Recovery and 2061 * a partial ACK arrives, we assume that one more packet 2062 * is lost (NewReno). This heuristics are the same in NewReno 2063 * and SACK. 2064 * 2065 * Imagine, that's all! Forget about all this shamanism about CWND inflation 2066 * deflation etc. CWND is real congestion window, never inflated, changes 2067 * only according to classic VJ rules. 2068 * 2069 * Really tricky (and requiring careful tuning) part of algorithm 2070 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2071 * The first determines the moment _when_ we should reduce CWND and, 2072 * hence, slow down forward transmission. In fact, it determines the moment 2073 * when we decide that hole is caused by loss, rather than by a reorder. 2074 * 2075 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2076 * holes, caused by lost packets. 2077 * 2078 * And the most logically complicated part of algorithm is undo 2079 * heuristics. We detect false retransmits due to both too early 2080 * fast retransmit (reordering) and underestimated RTO, analyzing 2081 * timestamps and D-SACKs. When we detect that some segments were 2082 * retransmitted by mistake and CWND reduction was wrong, we undo 2083 * window reduction and abort recovery phase. This logic is hidden 2084 * inside several functions named tcp_try_undo_<something>. 2085 */ 2086 2087 /* This function decides, when we should leave Disordered state 2088 * and enter Recovery phase, reducing congestion window. 2089 * 2090 * Main question: may we further continue forward transmission 2091 * with the same cwnd? 2092 */ 2093 static bool tcp_time_to_recover(struct sock *sk, int flag) 2094 { 2095 struct tcp_sock *tp = tcp_sk(sk); 2096 __u32 packets_out; 2097 2098 /* Trick#1: The loss is proven. */ 2099 if (tp->lost_out) 2100 return true; 2101 2102 /* Not-A-Trick#2 : Classic rule... */ 2103 if (tcp_dupack_heuristics(tp) > tp->reordering) 2104 return true; 2105 2106 /* Trick#4: It is still not OK... But will it be useful to delay 2107 * recovery more? 2108 */ 2109 packets_out = tp->packets_out; 2110 if (packets_out <= tp->reordering && 2111 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 2112 !tcp_may_send_now(sk)) { 2113 /* We have nothing to send. This connection is limited 2114 * either by receiver window or by application. 2115 */ 2116 return true; 2117 } 2118 2119 /* If a thin stream is detected, retransmit after first 2120 * received dupack. Employ only if SACK is supported in order 2121 * to avoid possible corner-case series of spurious retransmissions 2122 * Use only if there are no unsent data. 2123 */ 2124 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) && 2125 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 && 2126 tcp_is_sack(tp) && !tcp_send_head(sk)) 2127 return true; 2128 2129 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious 2130 * retransmissions due to small network reorderings, we implement 2131 * Mitigation A.3 in the RFC and delay the retransmission for a short 2132 * interval if appropriate. 2133 */ 2134 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out && 2135 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) && 2136 !tcp_may_send_now(sk)) 2137 return !tcp_pause_early_retransmit(sk, flag); 2138 2139 return false; 2140 } 2141 2142 /* Detect loss in event "A" above by marking head of queue up as lost. 2143 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments 2144 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2145 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2146 * the maximum SACKed segments to pass before reaching this limit. 2147 */ 2148 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2149 { 2150 struct tcp_sock *tp = tcp_sk(sk); 2151 struct sk_buff *skb; 2152 int cnt, oldcnt; 2153 int err; 2154 unsigned int mss; 2155 /* Use SACK to deduce losses of new sequences sent during recovery */ 2156 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2157 2158 WARN_ON(packets > tp->packets_out); 2159 if (tp->lost_skb_hint) { 2160 skb = tp->lost_skb_hint; 2161 cnt = tp->lost_cnt_hint; 2162 /* Head already handled? */ 2163 if (mark_head && skb != tcp_write_queue_head(sk)) 2164 return; 2165 } else { 2166 skb = tcp_write_queue_head(sk); 2167 cnt = 0; 2168 } 2169 2170 tcp_for_write_queue_from(skb, sk) { 2171 if (skb == tcp_send_head(sk)) 2172 break; 2173 /* TODO: do this better */ 2174 /* this is not the most efficient way to do this... */ 2175 tp->lost_skb_hint = skb; 2176 tp->lost_cnt_hint = cnt; 2177 2178 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2179 break; 2180 2181 oldcnt = cnt; 2182 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2183 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2184 cnt += tcp_skb_pcount(skb); 2185 2186 if (cnt > packets) { 2187 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2188 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2189 (oldcnt >= packets)) 2190 break; 2191 2192 mss = skb_shinfo(skb)->gso_size; 2193 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss); 2194 if (err < 0) 2195 break; 2196 cnt = packets; 2197 } 2198 2199 tcp_skb_mark_lost(tp, skb); 2200 2201 if (mark_head) 2202 break; 2203 } 2204 tcp_verify_left_out(tp); 2205 } 2206 2207 /* Account newly detected lost packet(s) */ 2208 2209 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2210 { 2211 struct tcp_sock *tp = tcp_sk(sk); 2212 2213 if (tcp_is_reno(tp)) { 2214 tcp_mark_head_lost(sk, 1, 1); 2215 } else if (tcp_is_fack(tp)) { 2216 int lost = tp->fackets_out - tp->reordering; 2217 if (lost <= 0) 2218 lost = 1; 2219 tcp_mark_head_lost(sk, lost, 0); 2220 } else { 2221 int sacked_upto = tp->sacked_out - tp->reordering; 2222 if (sacked_upto >= 0) 2223 tcp_mark_head_lost(sk, sacked_upto, 0); 2224 else if (fast_rexmit) 2225 tcp_mark_head_lost(sk, 1, 1); 2226 } 2227 } 2228 2229 /* CWND moderation, preventing bursts due to too big ACKs 2230 * in dubious situations. 2231 */ 2232 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 2233 { 2234 tp->snd_cwnd = min(tp->snd_cwnd, 2235 tcp_packets_in_flight(tp) + tcp_max_burst(tp)); 2236 tp->snd_cwnd_stamp = tcp_time_stamp; 2237 } 2238 2239 /* Nothing was retransmitted or returned timestamp is less 2240 * than timestamp of the first retransmission. 2241 */ 2242 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2243 { 2244 return !tp->retrans_stamp || 2245 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2246 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp)); 2247 } 2248 2249 /* Undo procedures. */ 2250 2251 #if FASTRETRANS_DEBUG > 1 2252 static void DBGUNDO(struct sock *sk, const char *msg) 2253 { 2254 struct tcp_sock *tp = tcp_sk(sk); 2255 struct inet_sock *inet = inet_sk(sk); 2256 2257 if (sk->sk_family == AF_INET) { 2258 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2259 msg, 2260 &inet->inet_daddr, ntohs(inet->inet_dport), 2261 tp->snd_cwnd, tcp_left_out(tp), 2262 tp->snd_ssthresh, tp->prior_ssthresh, 2263 tp->packets_out); 2264 } 2265 #if IS_ENABLED(CONFIG_IPV6) 2266 else if (sk->sk_family == AF_INET6) { 2267 struct ipv6_pinfo *np = inet6_sk(sk); 2268 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2269 msg, 2270 &np->daddr, ntohs(inet->inet_dport), 2271 tp->snd_cwnd, tcp_left_out(tp), 2272 tp->snd_ssthresh, tp->prior_ssthresh, 2273 tp->packets_out); 2274 } 2275 #endif 2276 } 2277 #else 2278 #define DBGUNDO(x...) do { } while (0) 2279 #endif 2280 2281 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2282 { 2283 struct tcp_sock *tp = tcp_sk(sk); 2284 2285 if (unmark_loss) { 2286 struct sk_buff *skb; 2287 2288 tcp_for_write_queue(skb, sk) { 2289 if (skb == tcp_send_head(sk)) 2290 break; 2291 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2292 } 2293 tp->lost_out = 0; 2294 tcp_clear_all_retrans_hints(tp); 2295 } 2296 2297 if (tp->prior_ssthresh) { 2298 const struct inet_connection_sock *icsk = inet_csk(sk); 2299 2300 if (icsk->icsk_ca_ops->undo_cwnd) 2301 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2302 else 2303 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1); 2304 2305 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2306 tp->snd_ssthresh = tp->prior_ssthresh; 2307 TCP_ECN_withdraw_cwr(tp); 2308 } 2309 } else { 2310 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 2311 } 2312 tp->snd_cwnd_stamp = tcp_time_stamp; 2313 tp->undo_marker = 0; 2314 } 2315 2316 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2317 { 2318 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2319 } 2320 2321 /* People celebrate: "We love our President!" */ 2322 static bool tcp_try_undo_recovery(struct sock *sk) 2323 { 2324 struct tcp_sock *tp = tcp_sk(sk); 2325 2326 if (tcp_may_undo(tp)) { 2327 int mib_idx; 2328 2329 /* Happy end! We did not retransmit anything 2330 * or our original transmission succeeded. 2331 */ 2332 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2333 tcp_undo_cwnd_reduction(sk, false); 2334 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2335 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2336 else 2337 mib_idx = LINUX_MIB_TCPFULLUNDO; 2338 2339 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2340 } 2341 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2342 /* Hold old state until something *above* high_seq 2343 * is ACKed. For Reno it is MUST to prevent false 2344 * fast retransmits (RFC2582). SACK TCP is safe. */ 2345 tcp_moderate_cwnd(tp); 2346 return true; 2347 } 2348 tcp_set_ca_state(sk, TCP_CA_Open); 2349 return false; 2350 } 2351 2352 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2353 static bool tcp_try_undo_dsack(struct sock *sk) 2354 { 2355 struct tcp_sock *tp = tcp_sk(sk); 2356 2357 if (tp->undo_marker && !tp->undo_retrans) { 2358 DBGUNDO(sk, "D-SACK"); 2359 tcp_undo_cwnd_reduction(sk, false); 2360 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2361 return true; 2362 } 2363 return false; 2364 } 2365 2366 /* We can clear retrans_stamp when there are no retransmissions in the 2367 * window. It would seem that it is trivially available for us in 2368 * tp->retrans_out, however, that kind of assumptions doesn't consider 2369 * what will happen if errors occur when sending retransmission for the 2370 * second time. ...It could the that such segment has only 2371 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2372 * the head skb is enough except for some reneging corner cases that 2373 * are not worth the effort. 2374 * 2375 * Main reason for all this complexity is the fact that connection dying 2376 * time now depends on the validity of the retrans_stamp, in particular, 2377 * that successive retransmissions of a segment must not advance 2378 * retrans_stamp under any conditions. 2379 */ 2380 static bool tcp_any_retrans_done(const struct sock *sk) 2381 { 2382 const struct tcp_sock *tp = tcp_sk(sk); 2383 struct sk_buff *skb; 2384 2385 if (tp->retrans_out) 2386 return true; 2387 2388 skb = tcp_write_queue_head(sk); 2389 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2390 return true; 2391 2392 return false; 2393 } 2394 2395 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2396 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2397 { 2398 struct tcp_sock *tp = tcp_sk(sk); 2399 2400 if (frto_undo || tcp_may_undo(tp)) { 2401 tcp_undo_cwnd_reduction(sk, true); 2402 2403 DBGUNDO(sk, "partial loss"); 2404 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2405 if (frto_undo) 2406 NET_INC_STATS_BH(sock_net(sk), 2407 LINUX_MIB_TCPSPURIOUSRTOS); 2408 inet_csk(sk)->icsk_retransmits = 0; 2409 if (frto_undo || tcp_is_sack(tp)) 2410 tcp_set_ca_state(sk, TCP_CA_Open); 2411 return true; 2412 } 2413 return false; 2414 } 2415 2416 /* The cwnd reduction in CWR and Recovery use the PRR algorithm 2417 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/ 2418 * It computes the number of packets to send (sndcnt) based on packets newly 2419 * delivered: 2420 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2421 * cwnd reductions across a full RTT. 2422 * 2) If packets in flight is lower than ssthresh (such as due to excess 2423 * losses and/or application stalls), do not perform any further cwnd 2424 * reductions, but instead slow start up to ssthresh. 2425 */ 2426 static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh) 2427 { 2428 struct tcp_sock *tp = tcp_sk(sk); 2429 2430 tp->high_seq = tp->snd_nxt; 2431 tp->tlp_high_seq = 0; 2432 tp->snd_cwnd_cnt = 0; 2433 tp->prior_cwnd = tp->snd_cwnd; 2434 tp->prr_delivered = 0; 2435 tp->prr_out = 0; 2436 if (set_ssthresh) 2437 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2438 TCP_ECN_queue_cwr(tp); 2439 } 2440 2441 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked, 2442 int fast_rexmit) 2443 { 2444 struct tcp_sock *tp = tcp_sk(sk); 2445 int sndcnt = 0; 2446 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2447 int newly_acked_sacked = prior_unsacked - 2448 (tp->packets_out - tp->sacked_out); 2449 2450 tp->prr_delivered += newly_acked_sacked; 2451 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) { 2452 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2453 tp->prior_cwnd - 1; 2454 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2455 } else { 2456 sndcnt = min_t(int, delta, 2457 max_t(int, tp->prr_delivered - tp->prr_out, 2458 newly_acked_sacked) + 1); 2459 } 2460 2461 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0)); 2462 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2463 } 2464 2465 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2466 { 2467 struct tcp_sock *tp = tcp_sk(sk); 2468 2469 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2470 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || 2471 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) { 2472 tp->snd_cwnd = tp->snd_ssthresh; 2473 tp->snd_cwnd_stamp = tcp_time_stamp; 2474 } 2475 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2476 } 2477 2478 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2479 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh) 2480 { 2481 struct tcp_sock *tp = tcp_sk(sk); 2482 2483 tp->prior_ssthresh = 0; 2484 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2485 tp->undo_marker = 0; 2486 tcp_init_cwnd_reduction(sk, set_ssthresh); 2487 tcp_set_ca_state(sk, TCP_CA_CWR); 2488 } 2489 } 2490 2491 static void tcp_try_keep_open(struct sock *sk) 2492 { 2493 struct tcp_sock *tp = tcp_sk(sk); 2494 int state = TCP_CA_Open; 2495 2496 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2497 state = TCP_CA_Disorder; 2498 2499 if (inet_csk(sk)->icsk_ca_state != state) { 2500 tcp_set_ca_state(sk, state); 2501 tp->high_seq = tp->snd_nxt; 2502 } 2503 } 2504 2505 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked) 2506 { 2507 struct tcp_sock *tp = tcp_sk(sk); 2508 2509 tcp_verify_left_out(tp); 2510 2511 if (!tcp_any_retrans_done(sk)) 2512 tp->retrans_stamp = 0; 2513 2514 if (flag & FLAG_ECE) 2515 tcp_enter_cwr(sk, 1); 2516 2517 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2518 tcp_try_keep_open(sk); 2519 } else { 2520 tcp_cwnd_reduction(sk, prior_unsacked, 0); 2521 } 2522 } 2523 2524 static void tcp_mtup_probe_failed(struct sock *sk) 2525 { 2526 struct inet_connection_sock *icsk = inet_csk(sk); 2527 2528 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2529 icsk->icsk_mtup.probe_size = 0; 2530 } 2531 2532 static void tcp_mtup_probe_success(struct sock *sk) 2533 { 2534 struct tcp_sock *tp = tcp_sk(sk); 2535 struct inet_connection_sock *icsk = inet_csk(sk); 2536 2537 /* FIXME: breaks with very large cwnd */ 2538 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2539 tp->snd_cwnd = tp->snd_cwnd * 2540 tcp_mss_to_mtu(sk, tp->mss_cache) / 2541 icsk->icsk_mtup.probe_size; 2542 tp->snd_cwnd_cnt = 0; 2543 tp->snd_cwnd_stamp = tcp_time_stamp; 2544 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2545 2546 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2547 icsk->icsk_mtup.probe_size = 0; 2548 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2549 } 2550 2551 /* Do a simple retransmit without using the backoff mechanisms in 2552 * tcp_timer. This is used for path mtu discovery. 2553 * The socket is already locked here. 2554 */ 2555 void tcp_simple_retransmit(struct sock *sk) 2556 { 2557 const struct inet_connection_sock *icsk = inet_csk(sk); 2558 struct tcp_sock *tp = tcp_sk(sk); 2559 struct sk_buff *skb; 2560 unsigned int mss = tcp_current_mss(sk); 2561 u32 prior_lost = tp->lost_out; 2562 2563 tcp_for_write_queue(skb, sk) { 2564 if (skb == tcp_send_head(sk)) 2565 break; 2566 if (tcp_skb_seglen(skb) > mss && 2567 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2568 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2569 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2570 tp->retrans_out -= tcp_skb_pcount(skb); 2571 } 2572 tcp_skb_mark_lost_uncond_verify(tp, skb); 2573 } 2574 } 2575 2576 tcp_clear_retrans_hints_partial(tp); 2577 2578 if (prior_lost == tp->lost_out) 2579 return; 2580 2581 if (tcp_is_reno(tp)) 2582 tcp_limit_reno_sacked(tp); 2583 2584 tcp_verify_left_out(tp); 2585 2586 /* Don't muck with the congestion window here. 2587 * Reason is that we do not increase amount of _data_ 2588 * in network, but units changed and effective 2589 * cwnd/ssthresh really reduced now. 2590 */ 2591 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2592 tp->high_seq = tp->snd_nxt; 2593 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2594 tp->prior_ssthresh = 0; 2595 tp->undo_marker = 0; 2596 tcp_set_ca_state(sk, TCP_CA_Loss); 2597 } 2598 tcp_xmit_retransmit_queue(sk); 2599 } 2600 EXPORT_SYMBOL(tcp_simple_retransmit); 2601 2602 static void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2603 { 2604 struct tcp_sock *tp = tcp_sk(sk); 2605 int mib_idx; 2606 2607 if (tcp_is_reno(tp)) 2608 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2609 else 2610 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2611 2612 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2613 2614 tp->prior_ssthresh = 0; 2615 tp->undo_marker = tp->snd_una; 2616 tp->undo_retrans = tp->retrans_out; 2617 2618 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2619 if (!ece_ack) 2620 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2621 tcp_init_cwnd_reduction(sk, true); 2622 } 2623 tcp_set_ca_state(sk, TCP_CA_Recovery); 2624 } 2625 2626 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2627 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2628 */ 2629 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack) 2630 { 2631 struct inet_connection_sock *icsk = inet_csk(sk); 2632 struct tcp_sock *tp = tcp_sk(sk); 2633 bool recovered = !before(tp->snd_una, tp->high_seq); 2634 2635 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2636 if (flag & FLAG_ORIG_SACK_ACKED) { 2637 /* Step 3.b. A timeout is spurious if not all data are 2638 * lost, i.e., never-retransmitted data are (s)acked. 2639 */ 2640 tcp_try_undo_loss(sk, true); 2641 return; 2642 } 2643 if (after(tp->snd_nxt, tp->high_seq) && 2644 (flag & FLAG_DATA_SACKED || is_dupack)) { 2645 tp->frto = 0; /* Loss was real: 2nd part of step 3.a */ 2646 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2647 tp->high_seq = tp->snd_nxt; 2648 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 2649 TCP_NAGLE_OFF); 2650 if (after(tp->snd_nxt, tp->high_seq)) 2651 return; /* Step 2.b */ 2652 tp->frto = 0; 2653 } 2654 } 2655 2656 if (recovered) { 2657 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2658 icsk->icsk_retransmits = 0; 2659 tcp_try_undo_recovery(sk); 2660 return; 2661 } 2662 if (flag & FLAG_DATA_ACKED) 2663 icsk->icsk_retransmits = 0; 2664 if (tcp_is_reno(tp)) { 2665 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2666 * delivered. Lower inflight to clock out (re)tranmissions. 2667 */ 2668 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2669 tcp_add_reno_sack(sk); 2670 else if (flag & FLAG_SND_UNA_ADVANCED) 2671 tcp_reset_reno_sack(tp); 2672 } 2673 if (tcp_try_undo_loss(sk, false)) 2674 return; 2675 tcp_xmit_retransmit_queue(sk); 2676 } 2677 2678 /* Undo during fast recovery after partial ACK. */ 2679 static bool tcp_try_undo_partial(struct sock *sk, const int acked, 2680 const int prior_unsacked) 2681 { 2682 struct tcp_sock *tp = tcp_sk(sk); 2683 2684 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2685 /* Plain luck! Hole if filled with delayed 2686 * packet, rather than with a retransmit. 2687 */ 2688 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2689 2690 /* We are getting evidence that the reordering degree is higher 2691 * than we realized. If there are no retransmits out then we 2692 * can undo. Otherwise we clock out new packets but do not 2693 * mark more packets lost or retransmit more. 2694 */ 2695 if (tp->retrans_out) { 2696 tcp_cwnd_reduction(sk, prior_unsacked, 0); 2697 return true; 2698 } 2699 2700 if (!tcp_any_retrans_done(sk)) 2701 tp->retrans_stamp = 0; 2702 2703 DBGUNDO(sk, "partial recovery"); 2704 tcp_undo_cwnd_reduction(sk, true); 2705 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2706 tcp_try_keep_open(sk); 2707 return true; 2708 } 2709 return false; 2710 } 2711 2712 /* Process an event, which can update packets-in-flight not trivially. 2713 * Main goal of this function is to calculate new estimate for left_out, 2714 * taking into account both packets sitting in receiver's buffer and 2715 * packets lost by network. 2716 * 2717 * Besides that it does CWND reduction, when packet loss is detected 2718 * and changes state of machine. 2719 * 2720 * It does _not_ decide what to send, it is made in function 2721 * tcp_xmit_retransmit_queue(). 2722 */ 2723 static void tcp_fastretrans_alert(struct sock *sk, const int acked, 2724 const int prior_unsacked, 2725 bool is_dupack, int flag) 2726 { 2727 struct inet_connection_sock *icsk = inet_csk(sk); 2728 struct tcp_sock *tp = tcp_sk(sk); 2729 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2730 (tcp_fackets_out(tp) > tp->reordering)); 2731 int fast_rexmit = 0; 2732 2733 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2734 tp->sacked_out = 0; 2735 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2736 tp->fackets_out = 0; 2737 2738 /* Now state machine starts. 2739 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2740 if (flag & FLAG_ECE) 2741 tp->prior_ssthresh = 0; 2742 2743 /* B. In all the states check for reneging SACKs. */ 2744 if (tcp_check_sack_reneging(sk, flag)) 2745 return; 2746 2747 /* C. Check consistency of the current state. */ 2748 tcp_verify_left_out(tp); 2749 2750 /* D. Check state exit conditions. State can be terminated 2751 * when high_seq is ACKed. */ 2752 if (icsk->icsk_ca_state == TCP_CA_Open) { 2753 WARN_ON(tp->retrans_out != 0); 2754 tp->retrans_stamp = 0; 2755 } else if (!before(tp->snd_una, tp->high_seq)) { 2756 switch (icsk->icsk_ca_state) { 2757 case TCP_CA_CWR: 2758 /* CWR is to be held something *above* high_seq 2759 * is ACKed for CWR bit to reach receiver. */ 2760 if (tp->snd_una != tp->high_seq) { 2761 tcp_end_cwnd_reduction(sk); 2762 tcp_set_ca_state(sk, TCP_CA_Open); 2763 } 2764 break; 2765 2766 case TCP_CA_Recovery: 2767 if (tcp_is_reno(tp)) 2768 tcp_reset_reno_sack(tp); 2769 if (tcp_try_undo_recovery(sk)) 2770 return; 2771 tcp_end_cwnd_reduction(sk); 2772 break; 2773 } 2774 } 2775 2776 /* E. Process state. */ 2777 switch (icsk->icsk_ca_state) { 2778 case TCP_CA_Recovery: 2779 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2780 if (tcp_is_reno(tp) && is_dupack) 2781 tcp_add_reno_sack(sk); 2782 } else { 2783 if (tcp_try_undo_partial(sk, acked, prior_unsacked)) 2784 return; 2785 /* Partial ACK arrived. Force fast retransmit. */ 2786 do_lost = tcp_is_reno(tp) || 2787 tcp_fackets_out(tp) > tp->reordering; 2788 } 2789 if (tcp_try_undo_dsack(sk)) { 2790 tcp_try_keep_open(sk); 2791 return; 2792 } 2793 break; 2794 case TCP_CA_Loss: 2795 tcp_process_loss(sk, flag, is_dupack); 2796 if (icsk->icsk_ca_state != TCP_CA_Open) 2797 return; 2798 /* Fall through to processing in Open state. */ 2799 default: 2800 if (tcp_is_reno(tp)) { 2801 if (flag & FLAG_SND_UNA_ADVANCED) 2802 tcp_reset_reno_sack(tp); 2803 if (is_dupack) 2804 tcp_add_reno_sack(sk); 2805 } 2806 2807 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2808 tcp_try_undo_dsack(sk); 2809 2810 if (!tcp_time_to_recover(sk, flag)) { 2811 tcp_try_to_open(sk, flag, prior_unsacked); 2812 return; 2813 } 2814 2815 /* MTU probe failure: don't reduce cwnd */ 2816 if (icsk->icsk_ca_state < TCP_CA_CWR && 2817 icsk->icsk_mtup.probe_size && 2818 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2819 tcp_mtup_probe_failed(sk); 2820 /* Restores the reduction we did in tcp_mtup_probe() */ 2821 tp->snd_cwnd++; 2822 tcp_simple_retransmit(sk); 2823 return; 2824 } 2825 2826 /* Otherwise enter Recovery state */ 2827 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2828 fast_rexmit = 1; 2829 } 2830 2831 if (do_lost) 2832 tcp_update_scoreboard(sk, fast_rexmit); 2833 tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit); 2834 tcp_xmit_retransmit_queue(sk); 2835 } 2836 2837 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2838 s32 seq_rtt, s32 sack_rtt) 2839 { 2840 const struct tcp_sock *tp = tcp_sk(sk); 2841 2842 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2843 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2844 * Karn's algorithm forbids taking RTT if some retransmitted data 2845 * is acked (RFC6298). 2846 */ 2847 if (flag & FLAG_RETRANS_DATA_ACKED) 2848 seq_rtt = -1; 2849 2850 if (seq_rtt < 0) 2851 seq_rtt = sack_rtt; 2852 2853 /* RTTM Rule: A TSecr value received in a segment is used to 2854 * update the averaged RTT measurement only if the segment 2855 * acknowledges some new data, i.e., only if it advances the 2856 * left edge of the send window. 2857 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2858 */ 2859 if (seq_rtt < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 2860 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr; 2861 2862 if (seq_rtt < 0) 2863 return false; 2864 2865 tcp_rtt_estimator(sk, seq_rtt); 2866 tcp_set_rto(sk); 2867 2868 /* RFC6298: only reset backoff on valid RTT measurement. */ 2869 inet_csk(sk)->icsk_backoff = 0; 2870 return true; 2871 } 2872 2873 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2874 static void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2875 { 2876 struct tcp_sock *tp = tcp_sk(sk); 2877 s32 seq_rtt = -1; 2878 2879 if (tp->lsndtime && !tp->total_retrans) 2880 seq_rtt = tcp_time_stamp - tp->lsndtime; 2881 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt, -1); 2882 } 2883 2884 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight) 2885 { 2886 const struct inet_connection_sock *icsk = inet_csk(sk); 2887 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight); 2888 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 2889 } 2890 2891 /* Restart timer after forward progress on connection. 2892 * RFC2988 recommends to restart timer to now+rto. 2893 */ 2894 void tcp_rearm_rto(struct sock *sk) 2895 { 2896 const struct inet_connection_sock *icsk = inet_csk(sk); 2897 struct tcp_sock *tp = tcp_sk(sk); 2898 2899 /* If the retrans timer is currently being used by Fast Open 2900 * for SYN-ACK retrans purpose, stay put. 2901 */ 2902 if (tp->fastopen_rsk) 2903 return; 2904 2905 if (!tp->packets_out) { 2906 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2907 } else { 2908 u32 rto = inet_csk(sk)->icsk_rto; 2909 /* Offset the time elapsed after installing regular RTO */ 2910 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 2911 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2912 struct sk_buff *skb = tcp_write_queue_head(sk); 2913 const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto; 2914 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp); 2915 /* delta may not be positive if the socket is locked 2916 * when the retrans timer fires and is rescheduled. 2917 */ 2918 if (delta > 0) 2919 rto = delta; 2920 } 2921 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 2922 TCP_RTO_MAX); 2923 } 2924 } 2925 2926 /* This function is called when the delayed ER timer fires. TCP enters 2927 * fast recovery and performs fast-retransmit. 2928 */ 2929 void tcp_resume_early_retransmit(struct sock *sk) 2930 { 2931 struct tcp_sock *tp = tcp_sk(sk); 2932 2933 tcp_rearm_rto(sk); 2934 2935 /* Stop if ER is disabled after the delayed ER timer is scheduled */ 2936 if (!tp->do_early_retrans) 2937 return; 2938 2939 tcp_enter_recovery(sk, false); 2940 tcp_update_scoreboard(sk, 1); 2941 tcp_xmit_retransmit_queue(sk); 2942 } 2943 2944 /* If we get here, the whole TSO packet has not been acked. */ 2945 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 2946 { 2947 struct tcp_sock *tp = tcp_sk(sk); 2948 u32 packets_acked; 2949 2950 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 2951 2952 packets_acked = tcp_skb_pcount(skb); 2953 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2954 return 0; 2955 packets_acked -= tcp_skb_pcount(skb); 2956 2957 if (packets_acked) { 2958 BUG_ON(tcp_skb_pcount(skb) == 0); 2959 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 2960 } 2961 2962 return packets_acked; 2963 } 2964 2965 /* Remove acknowledged frames from the retransmission queue. If our packet 2966 * is before the ack sequence we can discard it as it's confirmed to have 2967 * arrived at the other end. 2968 */ 2969 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 2970 u32 prior_snd_una, s32 sack_rtt) 2971 { 2972 struct tcp_sock *tp = tcp_sk(sk); 2973 const struct inet_connection_sock *icsk = inet_csk(sk); 2974 struct sk_buff *skb; 2975 u32 now = tcp_time_stamp; 2976 int fully_acked = true; 2977 int flag = 0; 2978 u32 pkts_acked = 0; 2979 u32 reord = tp->packets_out; 2980 u32 prior_sacked = tp->sacked_out; 2981 s32 seq_rtt = -1; 2982 s32 ca_seq_rtt = -1; 2983 ktime_t last_ackt = net_invalid_timestamp(); 2984 2985 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 2986 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 2987 u32 acked_pcount; 2988 u8 sacked = scb->sacked; 2989 2990 /* Determine how many packets and what bytes were acked, tso and else */ 2991 if (after(scb->end_seq, tp->snd_una)) { 2992 if (tcp_skb_pcount(skb) == 1 || 2993 !after(tp->snd_una, scb->seq)) 2994 break; 2995 2996 acked_pcount = tcp_tso_acked(sk, skb); 2997 if (!acked_pcount) 2998 break; 2999 3000 fully_acked = false; 3001 } else { 3002 acked_pcount = tcp_skb_pcount(skb); 3003 } 3004 3005 if (sacked & TCPCB_RETRANS) { 3006 if (sacked & TCPCB_SACKED_RETRANS) 3007 tp->retrans_out -= acked_pcount; 3008 flag |= FLAG_RETRANS_DATA_ACKED; 3009 } else { 3010 ca_seq_rtt = now - scb->when; 3011 last_ackt = skb->tstamp; 3012 if (seq_rtt < 0) { 3013 seq_rtt = ca_seq_rtt; 3014 } 3015 if (!(sacked & TCPCB_SACKED_ACKED)) 3016 reord = min(pkts_acked, reord); 3017 if (!after(scb->end_seq, tp->high_seq)) 3018 flag |= FLAG_ORIG_SACK_ACKED; 3019 } 3020 3021 if (sacked & TCPCB_SACKED_ACKED) 3022 tp->sacked_out -= acked_pcount; 3023 if (sacked & TCPCB_LOST) 3024 tp->lost_out -= acked_pcount; 3025 3026 tp->packets_out -= acked_pcount; 3027 pkts_acked += acked_pcount; 3028 3029 /* Initial outgoing SYN's get put onto the write_queue 3030 * just like anything else we transmit. It is not 3031 * true data, and if we misinform our callers that 3032 * this ACK acks real data, we will erroneously exit 3033 * connection startup slow start one packet too 3034 * quickly. This is severely frowned upon behavior. 3035 */ 3036 if (!(scb->tcp_flags & TCPHDR_SYN)) { 3037 flag |= FLAG_DATA_ACKED; 3038 } else { 3039 flag |= FLAG_SYN_ACKED; 3040 tp->retrans_stamp = 0; 3041 } 3042 3043 if (!fully_acked) 3044 break; 3045 3046 tcp_unlink_write_queue(skb, sk); 3047 sk_wmem_free_skb(sk, skb); 3048 if (skb == tp->retransmit_skb_hint) 3049 tp->retransmit_skb_hint = NULL; 3050 if (skb == tp->lost_skb_hint) 3051 tp->lost_skb_hint = NULL; 3052 } 3053 3054 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3055 tp->snd_up = tp->snd_una; 3056 3057 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3058 flag |= FLAG_SACK_RENEGING; 3059 3060 if (tcp_ack_update_rtt(sk, flag, seq_rtt, sack_rtt) || 3061 (flag & FLAG_ACKED)) 3062 tcp_rearm_rto(sk); 3063 3064 if (flag & FLAG_ACKED) { 3065 const struct tcp_congestion_ops *ca_ops 3066 = inet_csk(sk)->icsk_ca_ops; 3067 3068 if (unlikely(icsk->icsk_mtup.probe_size && 3069 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3070 tcp_mtup_probe_success(sk); 3071 } 3072 3073 if (tcp_is_reno(tp)) { 3074 tcp_remove_reno_sacks(sk, pkts_acked); 3075 } else { 3076 int delta; 3077 3078 /* Non-retransmitted hole got filled? That's reordering */ 3079 if (reord < prior_fackets) 3080 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3081 3082 delta = tcp_is_fack(tp) ? pkts_acked : 3083 prior_sacked - tp->sacked_out; 3084 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3085 } 3086 3087 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3088 3089 if (ca_ops->pkts_acked) { 3090 s32 rtt_us = -1; 3091 3092 /* Is the ACK triggering packet unambiguous? */ 3093 if (!(flag & FLAG_RETRANS_DATA_ACKED)) { 3094 /* High resolution needed and available? */ 3095 if (ca_ops->flags & TCP_CONG_RTT_STAMP && 3096 !ktime_equal(last_ackt, 3097 net_invalid_timestamp())) 3098 rtt_us = ktime_us_delta(ktime_get_real(), 3099 last_ackt); 3100 else if (ca_seq_rtt >= 0) 3101 rtt_us = jiffies_to_usecs(ca_seq_rtt); 3102 } 3103 3104 ca_ops->pkts_acked(sk, pkts_acked, rtt_us); 3105 } 3106 } 3107 3108 #if FASTRETRANS_DEBUG > 0 3109 WARN_ON((int)tp->sacked_out < 0); 3110 WARN_ON((int)tp->lost_out < 0); 3111 WARN_ON((int)tp->retrans_out < 0); 3112 if (!tp->packets_out && tcp_is_sack(tp)) { 3113 icsk = inet_csk(sk); 3114 if (tp->lost_out) { 3115 pr_debug("Leak l=%u %d\n", 3116 tp->lost_out, icsk->icsk_ca_state); 3117 tp->lost_out = 0; 3118 } 3119 if (tp->sacked_out) { 3120 pr_debug("Leak s=%u %d\n", 3121 tp->sacked_out, icsk->icsk_ca_state); 3122 tp->sacked_out = 0; 3123 } 3124 if (tp->retrans_out) { 3125 pr_debug("Leak r=%u %d\n", 3126 tp->retrans_out, icsk->icsk_ca_state); 3127 tp->retrans_out = 0; 3128 } 3129 } 3130 #endif 3131 return flag; 3132 } 3133 3134 static void tcp_ack_probe(struct sock *sk) 3135 { 3136 const struct tcp_sock *tp = tcp_sk(sk); 3137 struct inet_connection_sock *icsk = inet_csk(sk); 3138 3139 /* Was it a usable window open? */ 3140 3141 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3142 icsk->icsk_backoff = 0; 3143 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3144 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3145 * This function is not for random using! 3146 */ 3147 } else { 3148 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3149 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 3150 TCP_RTO_MAX); 3151 } 3152 } 3153 3154 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3155 { 3156 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3157 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3158 } 3159 3160 /* Decide wheather to run the increase function of congestion control. */ 3161 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3162 { 3163 if (tcp_in_cwnd_reduction(sk)) 3164 return false; 3165 3166 /* If reordering is high then always grow cwnd whenever data is 3167 * delivered regardless of its ordering. Otherwise stay conservative 3168 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3169 * new SACK or ECE mark may first advance cwnd here and later reduce 3170 * cwnd in tcp_fastretrans_alert() based on more states. 3171 */ 3172 if (tcp_sk(sk)->reordering > sysctl_tcp_reordering) 3173 return flag & FLAG_FORWARD_PROGRESS; 3174 3175 return flag & FLAG_DATA_ACKED; 3176 } 3177 3178 /* Check that window update is acceptable. 3179 * The function assumes that snd_una<=ack<=snd_next. 3180 */ 3181 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3182 const u32 ack, const u32 ack_seq, 3183 const u32 nwin) 3184 { 3185 return after(ack, tp->snd_una) || 3186 after(ack_seq, tp->snd_wl1) || 3187 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3188 } 3189 3190 /* Update our send window. 3191 * 3192 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3193 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3194 */ 3195 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3196 u32 ack_seq) 3197 { 3198 struct tcp_sock *tp = tcp_sk(sk); 3199 int flag = 0; 3200 u32 nwin = ntohs(tcp_hdr(skb)->window); 3201 3202 if (likely(!tcp_hdr(skb)->syn)) 3203 nwin <<= tp->rx_opt.snd_wscale; 3204 3205 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3206 flag |= FLAG_WIN_UPDATE; 3207 tcp_update_wl(tp, ack_seq); 3208 3209 if (tp->snd_wnd != nwin) { 3210 tp->snd_wnd = nwin; 3211 3212 /* Note, it is the only place, where 3213 * fast path is recovered for sending TCP. 3214 */ 3215 tp->pred_flags = 0; 3216 tcp_fast_path_check(sk); 3217 3218 if (nwin > tp->max_window) { 3219 tp->max_window = nwin; 3220 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3221 } 3222 } 3223 } 3224 3225 tp->snd_una = ack; 3226 3227 return flag; 3228 } 3229 3230 /* RFC 5961 7 [ACK Throttling] */ 3231 static void tcp_send_challenge_ack(struct sock *sk) 3232 { 3233 /* unprotected vars, we dont care of overwrites */ 3234 static u32 challenge_timestamp; 3235 static unsigned int challenge_count; 3236 u32 now = jiffies / HZ; 3237 3238 if (now != challenge_timestamp) { 3239 challenge_timestamp = now; 3240 challenge_count = 0; 3241 } 3242 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) { 3243 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK); 3244 tcp_send_ack(sk); 3245 } 3246 } 3247 3248 static void tcp_store_ts_recent(struct tcp_sock *tp) 3249 { 3250 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3251 tp->rx_opt.ts_recent_stamp = get_seconds(); 3252 } 3253 3254 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3255 { 3256 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3257 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3258 * extra check below makes sure this can only happen 3259 * for pure ACK frames. -DaveM 3260 * 3261 * Not only, also it occurs for expired timestamps. 3262 */ 3263 3264 if (tcp_paws_check(&tp->rx_opt, 0)) 3265 tcp_store_ts_recent(tp); 3266 } 3267 } 3268 3269 /* This routine deals with acks during a TLP episode. 3270 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3271 */ 3272 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3273 { 3274 struct tcp_sock *tp = tcp_sk(sk); 3275 bool is_tlp_dupack = (ack == tp->tlp_high_seq) && 3276 !(flag & (FLAG_SND_UNA_ADVANCED | 3277 FLAG_NOT_DUP | FLAG_DATA_SACKED)); 3278 3279 /* Mark the end of TLP episode on receiving TLP dupack or when 3280 * ack is after tlp_high_seq. 3281 */ 3282 if (is_tlp_dupack) { 3283 tp->tlp_high_seq = 0; 3284 return; 3285 } 3286 3287 if (after(ack, tp->tlp_high_seq)) { 3288 tp->tlp_high_seq = 0; 3289 /* Don't reduce cwnd if DSACK arrives for TLP retrans. */ 3290 if (!(flag & FLAG_DSACKING_ACK)) { 3291 tcp_init_cwnd_reduction(sk, true); 3292 tcp_set_ca_state(sk, TCP_CA_CWR); 3293 tcp_end_cwnd_reduction(sk); 3294 tcp_try_keep_open(sk); 3295 NET_INC_STATS_BH(sock_net(sk), 3296 LINUX_MIB_TCPLOSSPROBERECOVERY); 3297 } 3298 } 3299 } 3300 3301 /* This routine deals with incoming acks, but not outgoing ones. */ 3302 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3303 { 3304 struct inet_connection_sock *icsk = inet_csk(sk); 3305 struct tcp_sock *tp = tcp_sk(sk); 3306 u32 prior_snd_una = tp->snd_una; 3307 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3308 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3309 bool is_dupack = false; 3310 u32 prior_in_flight, prior_cwnd = tp->snd_cwnd, prior_rtt = tp->srtt; 3311 u32 prior_fackets; 3312 int prior_packets = tp->packets_out; 3313 const int prior_unsacked = tp->packets_out - tp->sacked_out; 3314 int acked = 0; /* Number of packets newly acked */ 3315 s32 sack_rtt = -1; 3316 3317 /* If the ack is older than previous acks 3318 * then we can probably ignore it. 3319 */ 3320 if (before(ack, prior_snd_una)) { 3321 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3322 if (before(ack, prior_snd_una - tp->max_window)) { 3323 tcp_send_challenge_ack(sk); 3324 return -1; 3325 } 3326 goto old_ack; 3327 } 3328 3329 /* If the ack includes data we haven't sent yet, discard 3330 * this segment (RFC793 Section 3.9). 3331 */ 3332 if (after(ack, tp->snd_nxt)) 3333 goto invalid_ack; 3334 3335 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 3336 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 3337 tcp_rearm_rto(sk); 3338 3339 if (after(ack, prior_snd_una)) 3340 flag |= FLAG_SND_UNA_ADVANCED; 3341 3342 prior_fackets = tp->fackets_out; 3343 prior_in_flight = tcp_packets_in_flight(tp); 3344 3345 /* ts_recent update must be made after we are sure that the packet 3346 * is in window. 3347 */ 3348 if (flag & FLAG_UPDATE_TS_RECENT) 3349 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3350 3351 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3352 /* Window is constant, pure forward advance. 3353 * No more checks are required. 3354 * Note, we use the fact that SND.UNA>=SND.WL2. 3355 */ 3356 tcp_update_wl(tp, ack_seq); 3357 tp->snd_una = ack; 3358 flag |= FLAG_WIN_UPDATE; 3359 3360 tcp_ca_event(sk, CA_EVENT_FAST_ACK); 3361 3362 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS); 3363 } else { 3364 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3365 flag |= FLAG_DATA; 3366 else 3367 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3368 3369 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3370 3371 if (TCP_SKB_CB(skb)->sacked) 3372 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3373 &sack_rtt); 3374 3375 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb))) 3376 flag |= FLAG_ECE; 3377 3378 tcp_ca_event(sk, CA_EVENT_SLOW_ACK); 3379 } 3380 3381 /* We passed data and got it acked, remove any soft error 3382 * log. Something worked... 3383 */ 3384 sk->sk_err_soft = 0; 3385 icsk->icsk_probes_out = 0; 3386 tp->rcv_tstamp = tcp_time_stamp; 3387 if (!prior_packets) 3388 goto no_queue; 3389 3390 /* See if we can take anything off of the retransmit queue. */ 3391 acked = tp->packets_out; 3392 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, sack_rtt); 3393 acked -= tp->packets_out; 3394 3395 /* Advance cwnd if state allows */ 3396 if (tcp_may_raise_cwnd(sk, flag)) 3397 tcp_cong_avoid(sk, ack, prior_in_flight); 3398 3399 if (tcp_ack_is_dubious(sk, flag)) { 3400 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3401 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3402 is_dupack, flag); 3403 } 3404 if (tp->tlp_high_seq) 3405 tcp_process_tlp_ack(sk, ack, flag); 3406 3407 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) { 3408 struct dst_entry *dst = __sk_dst_get(sk); 3409 if (dst) 3410 dst_confirm(dst); 3411 } 3412 3413 if (icsk->icsk_pending == ICSK_TIME_RETRANS) 3414 tcp_schedule_loss_probe(sk); 3415 if (tp->srtt != prior_rtt || tp->snd_cwnd != prior_cwnd) 3416 tcp_update_pacing_rate(sk); 3417 return 1; 3418 3419 no_queue: 3420 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3421 if (flag & FLAG_DSACKING_ACK) 3422 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3423 is_dupack, flag); 3424 /* If this ack opens up a zero window, clear backoff. It was 3425 * being used to time the probes, and is probably far higher than 3426 * it needs to be for normal retransmission. 3427 */ 3428 if (tcp_send_head(sk)) 3429 tcp_ack_probe(sk); 3430 3431 if (tp->tlp_high_seq) 3432 tcp_process_tlp_ack(sk, ack, flag); 3433 return 1; 3434 3435 invalid_ack: 3436 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3437 return -1; 3438 3439 old_ack: 3440 /* If data was SACKed, tag it and see if we should send more data. 3441 * If data was DSACKed, see if we can undo a cwnd reduction. 3442 */ 3443 if (TCP_SKB_CB(skb)->sacked) { 3444 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3445 &sack_rtt); 3446 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3447 is_dupack, flag); 3448 } 3449 3450 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3451 return 0; 3452 } 3453 3454 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3455 * But, this can also be called on packets in the established flow when 3456 * the fast version below fails. 3457 */ 3458 void tcp_parse_options(const struct sk_buff *skb, 3459 struct tcp_options_received *opt_rx, int estab, 3460 struct tcp_fastopen_cookie *foc) 3461 { 3462 const unsigned char *ptr; 3463 const struct tcphdr *th = tcp_hdr(skb); 3464 int length = (th->doff * 4) - sizeof(struct tcphdr); 3465 3466 ptr = (const unsigned char *)(th + 1); 3467 opt_rx->saw_tstamp = 0; 3468 3469 while (length > 0) { 3470 int opcode = *ptr++; 3471 int opsize; 3472 3473 switch (opcode) { 3474 case TCPOPT_EOL: 3475 return; 3476 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3477 length--; 3478 continue; 3479 default: 3480 opsize = *ptr++; 3481 if (opsize < 2) /* "silly options" */ 3482 return; 3483 if (opsize > length) 3484 return; /* don't parse partial options */ 3485 switch (opcode) { 3486 case TCPOPT_MSS: 3487 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3488 u16 in_mss = get_unaligned_be16(ptr); 3489 if (in_mss) { 3490 if (opt_rx->user_mss && 3491 opt_rx->user_mss < in_mss) 3492 in_mss = opt_rx->user_mss; 3493 opt_rx->mss_clamp = in_mss; 3494 } 3495 } 3496 break; 3497 case TCPOPT_WINDOW: 3498 if (opsize == TCPOLEN_WINDOW && th->syn && 3499 !estab && sysctl_tcp_window_scaling) { 3500 __u8 snd_wscale = *(__u8 *)ptr; 3501 opt_rx->wscale_ok = 1; 3502 if (snd_wscale > 14) { 3503 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n", 3504 __func__, 3505 snd_wscale); 3506 snd_wscale = 14; 3507 } 3508 opt_rx->snd_wscale = snd_wscale; 3509 } 3510 break; 3511 case TCPOPT_TIMESTAMP: 3512 if ((opsize == TCPOLEN_TIMESTAMP) && 3513 ((estab && opt_rx->tstamp_ok) || 3514 (!estab && sysctl_tcp_timestamps))) { 3515 opt_rx->saw_tstamp = 1; 3516 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3517 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3518 } 3519 break; 3520 case TCPOPT_SACK_PERM: 3521 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3522 !estab && sysctl_tcp_sack) { 3523 opt_rx->sack_ok = TCP_SACK_SEEN; 3524 tcp_sack_reset(opt_rx); 3525 } 3526 break; 3527 3528 case TCPOPT_SACK: 3529 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3530 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3531 opt_rx->sack_ok) { 3532 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3533 } 3534 break; 3535 #ifdef CONFIG_TCP_MD5SIG 3536 case TCPOPT_MD5SIG: 3537 /* 3538 * The MD5 Hash has already been 3539 * checked (see tcp_v{4,6}_do_rcv()). 3540 */ 3541 break; 3542 #endif 3543 case TCPOPT_EXP: 3544 /* Fast Open option shares code 254 using a 3545 * 16 bits magic number. It's valid only in 3546 * SYN or SYN-ACK with an even size. 3547 */ 3548 if (opsize < TCPOLEN_EXP_FASTOPEN_BASE || 3549 get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC || 3550 foc == NULL || !th->syn || (opsize & 1)) 3551 break; 3552 foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE; 3553 if (foc->len >= TCP_FASTOPEN_COOKIE_MIN && 3554 foc->len <= TCP_FASTOPEN_COOKIE_MAX) 3555 memcpy(foc->val, ptr + 2, foc->len); 3556 else if (foc->len != 0) 3557 foc->len = -1; 3558 break; 3559 3560 } 3561 ptr += opsize-2; 3562 length -= opsize; 3563 } 3564 } 3565 } 3566 EXPORT_SYMBOL(tcp_parse_options); 3567 3568 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3569 { 3570 const __be32 *ptr = (const __be32 *)(th + 1); 3571 3572 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3573 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3574 tp->rx_opt.saw_tstamp = 1; 3575 ++ptr; 3576 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3577 ++ptr; 3578 if (*ptr) 3579 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3580 else 3581 tp->rx_opt.rcv_tsecr = 0; 3582 return true; 3583 } 3584 return false; 3585 } 3586 3587 /* Fast parse options. This hopes to only see timestamps. 3588 * If it is wrong it falls back on tcp_parse_options(). 3589 */ 3590 static bool tcp_fast_parse_options(const struct sk_buff *skb, 3591 const struct tcphdr *th, struct tcp_sock *tp) 3592 { 3593 /* In the spirit of fast parsing, compare doff directly to constant 3594 * values. Because equality is used, short doff can be ignored here. 3595 */ 3596 if (th->doff == (sizeof(*th) / 4)) { 3597 tp->rx_opt.saw_tstamp = 0; 3598 return false; 3599 } else if (tp->rx_opt.tstamp_ok && 3600 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3601 if (tcp_parse_aligned_timestamp(tp, th)) 3602 return true; 3603 } 3604 3605 tcp_parse_options(skb, &tp->rx_opt, 1, NULL); 3606 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3607 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3608 3609 return true; 3610 } 3611 3612 #ifdef CONFIG_TCP_MD5SIG 3613 /* 3614 * Parse MD5 Signature option 3615 */ 3616 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3617 { 3618 int length = (th->doff << 2) - sizeof(*th); 3619 const u8 *ptr = (const u8 *)(th + 1); 3620 3621 /* If the TCP option is too short, we can short cut */ 3622 if (length < TCPOLEN_MD5SIG) 3623 return NULL; 3624 3625 while (length > 0) { 3626 int opcode = *ptr++; 3627 int opsize; 3628 3629 switch(opcode) { 3630 case TCPOPT_EOL: 3631 return NULL; 3632 case TCPOPT_NOP: 3633 length--; 3634 continue; 3635 default: 3636 opsize = *ptr++; 3637 if (opsize < 2 || opsize > length) 3638 return NULL; 3639 if (opcode == TCPOPT_MD5SIG) 3640 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3641 } 3642 ptr += opsize - 2; 3643 length -= opsize; 3644 } 3645 return NULL; 3646 } 3647 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3648 #endif 3649 3650 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3651 * 3652 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3653 * it can pass through stack. So, the following predicate verifies that 3654 * this segment is not used for anything but congestion avoidance or 3655 * fast retransmit. Moreover, we even are able to eliminate most of such 3656 * second order effects, if we apply some small "replay" window (~RTO) 3657 * to timestamp space. 3658 * 3659 * All these measures still do not guarantee that we reject wrapped ACKs 3660 * on networks with high bandwidth, when sequence space is recycled fastly, 3661 * but it guarantees that such events will be very rare and do not affect 3662 * connection seriously. This doesn't look nice, but alas, PAWS is really 3663 * buggy extension. 3664 * 3665 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3666 * states that events when retransmit arrives after original data are rare. 3667 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3668 * the biggest problem on large power networks even with minor reordering. 3669 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3670 * up to bandwidth of 18Gigabit/sec. 8) ] 3671 */ 3672 3673 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3674 { 3675 const struct tcp_sock *tp = tcp_sk(sk); 3676 const struct tcphdr *th = tcp_hdr(skb); 3677 u32 seq = TCP_SKB_CB(skb)->seq; 3678 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3679 3680 return (/* 1. Pure ACK with correct sequence number. */ 3681 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3682 3683 /* 2. ... and duplicate ACK. */ 3684 ack == tp->snd_una && 3685 3686 /* 3. ... and does not update window. */ 3687 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3688 3689 /* 4. ... and sits in replay window. */ 3690 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3691 } 3692 3693 static inline bool tcp_paws_discard(const struct sock *sk, 3694 const struct sk_buff *skb) 3695 { 3696 const struct tcp_sock *tp = tcp_sk(sk); 3697 3698 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3699 !tcp_disordered_ack(sk, skb); 3700 } 3701 3702 /* Check segment sequence number for validity. 3703 * 3704 * Segment controls are considered valid, if the segment 3705 * fits to the window after truncation to the window. Acceptability 3706 * of data (and SYN, FIN, of course) is checked separately. 3707 * See tcp_data_queue(), for example. 3708 * 3709 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3710 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3711 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3712 * (borrowed from freebsd) 3713 */ 3714 3715 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 3716 { 3717 return !before(end_seq, tp->rcv_wup) && 3718 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3719 } 3720 3721 /* When we get a reset we do this. */ 3722 void tcp_reset(struct sock *sk) 3723 { 3724 /* We want the right error as BSD sees it (and indeed as we do). */ 3725 switch (sk->sk_state) { 3726 case TCP_SYN_SENT: 3727 sk->sk_err = ECONNREFUSED; 3728 break; 3729 case TCP_CLOSE_WAIT: 3730 sk->sk_err = EPIPE; 3731 break; 3732 case TCP_CLOSE: 3733 return; 3734 default: 3735 sk->sk_err = ECONNRESET; 3736 } 3737 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3738 smp_wmb(); 3739 3740 if (!sock_flag(sk, SOCK_DEAD)) 3741 sk->sk_error_report(sk); 3742 3743 tcp_done(sk); 3744 } 3745 3746 /* 3747 * Process the FIN bit. This now behaves as it is supposed to work 3748 * and the FIN takes effect when it is validly part of sequence 3749 * space. Not before when we get holes. 3750 * 3751 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 3752 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 3753 * TIME-WAIT) 3754 * 3755 * If we are in FINWAIT-1, a received FIN indicates simultaneous 3756 * close and we go into CLOSING (and later onto TIME-WAIT) 3757 * 3758 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 3759 */ 3760 static void tcp_fin(struct sock *sk) 3761 { 3762 struct tcp_sock *tp = tcp_sk(sk); 3763 const struct dst_entry *dst; 3764 3765 inet_csk_schedule_ack(sk); 3766 3767 sk->sk_shutdown |= RCV_SHUTDOWN; 3768 sock_set_flag(sk, SOCK_DONE); 3769 3770 switch (sk->sk_state) { 3771 case TCP_SYN_RECV: 3772 case TCP_ESTABLISHED: 3773 /* Move to CLOSE_WAIT */ 3774 tcp_set_state(sk, TCP_CLOSE_WAIT); 3775 dst = __sk_dst_get(sk); 3776 if (!dst || !dst_metric(dst, RTAX_QUICKACK)) 3777 inet_csk(sk)->icsk_ack.pingpong = 1; 3778 break; 3779 3780 case TCP_CLOSE_WAIT: 3781 case TCP_CLOSING: 3782 /* Received a retransmission of the FIN, do 3783 * nothing. 3784 */ 3785 break; 3786 case TCP_LAST_ACK: 3787 /* RFC793: Remain in the LAST-ACK state. */ 3788 break; 3789 3790 case TCP_FIN_WAIT1: 3791 /* This case occurs when a simultaneous close 3792 * happens, we must ack the received FIN and 3793 * enter the CLOSING state. 3794 */ 3795 tcp_send_ack(sk); 3796 tcp_set_state(sk, TCP_CLOSING); 3797 break; 3798 case TCP_FIN_WAIT2: 3799 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 3800 tcp_send_ack(sk); 3801 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 3802 break; 3803 default: 3804 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 3805 * cases we should never reach this piece of code. 3806 */ 3807 pr_err("%s: Impossible, sk->sk_state=%d\n", 3808 __func__, sk->sk_state); 3809 break; 3810 } 3811 3812 /* It _is_ possible, that we have something out-of-order _after_ FIN. 3813 * Probably, we should reset in this case. For now drop them. 3814 */ 3815 __skb_queue_purge(&tp->out_of_order_queue); 3816 if (tcp_is_sack(tp)) 3817 tcp_sack_reset(&tp->rx_opt); 3818 sk_mem_reclaim(sk); 3819 3820 if (!sock_flag(sk, SOCK_DEAD)) { 3821 sk->sk_state_change(sk); 3822 3823 /* Do not send POLL_HUP for half duplex close. */ 3824 if (sk->sk_shutdown == SHUTDOWN_MASK || 3825 sk->sk_state == TCP_CLOSE) 3826 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 3827 else 3828 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 3829 } 3830 } 3831 3832 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 3833 u32 end_seq) 3834 { 3835 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 3836 if (before(seq, sp->start_seq)) 3837 sp->start_seq = seq; 3838 if (after(end_seq, sp->end_seq)) 3839 sp->end_seq = end_seq; 3840 return true; 3841 } 3842 return false; 3843 } 3844 3845 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 3846 { 3847 struct tcp_sock *tp = tcp_sk(sk); 3848 3849 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 3850 int mib_idx; 3851 3852 if (before(seq, tp->rcv_nxt)) 3853 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 3854 else 3855 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 3856 3857 NET_INC_STATS_BH(sock_net(sk), mib_idx); 3858 3859 tp->rx_opt.dsack = 1; 3860 tp->duplicate_sack[0].start_seq = seq; 3861 tp->duplicate_sack[0].end_seq = end_seq; 3862 } 3863 } 3864 3865 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 3866 { 3867 struct tcp_sock *tp = tcp_sk(sk); 3868 3869 if (!tp->rx_opt.dsack) 3870 tcp_dsack_set(sk, seq, end_seq); 3871 else 3872 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 3873 } 3874 3875 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 3876 { 3877 struct tcp_sock *tp = tcp_sk(sk); 3878 3879 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 3880 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 3881 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 3882 tcp_enter_quickack_mode(sk); 3883 3884 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 3885 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 3886 3887 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 3888 end_seq = tp->rcv_nxt; 3889 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 3890 } 3891 } 3892 3893 tcp_send_ack(sk); 3894 } 3895 3896 /* These routines update the SACK block as out-of-order packets arrive or 3897 * in-order packets close up the sequence space. 3898 */ 3899 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 3900 { 3901 int this_sack; 3902 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3903 struct tcp_sack_block *swalk = sp + 1; 3904 3905 /* See if the recent change to the first SACK eats into 3906 * or hits the sequence space of other SACK blocks, if so coalesce. 3907 */ 3908 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 3909 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 3910 int i; 3911 3912 /* Zap SWALK, by moving every further SACK up by one slot. 3913 * Decrease num_sacks. 3914 */ 3915 tp->rx_opt.num_sacks--; 3916 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 3917 sp[i] = sp[i + 1]; 3918 continue; 3919 } 3920 this_sack++, swalk++; 3921 } 3922 } 3923 3924 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 3925 { 3926 struct tcp_sock *tp = tcp_sk(sk); 3927 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3928 int cur_sacks = tp->rx_opt.num_sacks; 3929 int this_sack; 3930 3931 if (!cur_sacks) 3932 goto new_sack; 3933 3934 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 3935 if (tcp_sack_extend(sp, seq, end_seq)) { 3936 /* Rotate this_sack to the first one. */ 3937 for (; this_sack > 0; this_sack--, sp--) 3938 swap(*sp, *(sp - 1)); 3939 if (cur_sacks > 1) 3940 tcp_sack_maybe_coalesce(tp); 3941 return; 3942 } 3943 } 3944 3945 /* Could not find an adjacent existing SACK, build a new one, 3946 * put it at the front, and shift everyone else down. We 3947 * always know there is at least one SACK present already here. 3948 * 3949 * If the sack array is full, forget about the last one. 3950 */ 3951 if (this_sack >= TCP_NUM_SACKS) { 3952 this_sack--; 3953 tp->rx_opt.num_sacks--; 3954 sp--; 3955 } 3956 for (; this_sack > 0; this_sack--, sp--) 3957 *sp = *(sp - 1); 3958 3959 new_sack: 3960 /* Build the new head SACK, and we're done. */ 3961 sp->start_seq = seq; 3962 sp->end_seq = end_seq; 3963 tp->rx_opt.num_sacks++; 3964 } 3965 3966 /* RCV.NXT advances, some SACKs should be eaten. */ 3967 3968 static void tcp_sack_remove(struct tcp_sock *tp) 3969 { 3970 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3971 int num_sacks = tp->rx_opt.num_sacks; 3972 int this_sack; 3973 3974 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 3975 if (skb_queue_empty(&tp->out_of_order_queue)) { 3976 tp->rx_opt.num_sacks = 0; 3977 return; 3978 } 3979 3980 for (this_sack = 0; this_sack < num_sacks;) { 3981 /* Check if the start of the sack is covered by RCV.NXT. */ 3982 if (!before(tp->rcv_nxt, sp->start_seq)) { 3983 int i; 3984 3985 /* RCV.NXT must cover all the block! */ 3986 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 3987 3988 /* Zap this SACK, by moving forward any other SACKS. */ 3989 for (i=this_sack+1; i < num_sacks; i++) 3990 tp->selective_acks[i-1] = tp->selective_acks[i]; 3991 num_sacks--; 3992 continue; 3993 } 3994 this_sack++; 3995 sp++; 3996 } 3997 tp->rx_opt.num_sacks = num_sacks; 3998 } 3999 4000 /* This one checks to see if we can put data from the 4001 * out_of_order queue into the receive_queue. 4002 */ 4003 static void tcp_ofo_queue(struct sock *sk) 4004 { 4005 struct tcp_sock *tp = tcp_sk(sk); 4006 __u32 dsack_high = tp->rcv_nxt; 4007 struct sk_buff *skb; 4008 4009 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 4010 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4011 break; 4012 4013 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4014 __u32 dsack = dsack_high; 4015 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4016 dsack_high = TCP_SKB_CB(skb)->end_seq; 4017 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4018 } 4019 4020 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4021 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4022 __skb_unlink(skb, &tp->out_of_order_queue); 4023 __kfree_skb(skb); 4024 continue; 4025 } 4026 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4027 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4028 TCP_SKB_CB(skb)->end_seq); 4029 4030 __skb_unlink(skb, &tp->out_of_order_queue); 4031 __skb_queue_tail(&sk->sk_receive_queue, skb); 4032 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4033 if (tcp_hdr(skb)->fin) 4034 tcp_fin(sk); 4035 } 4036 } 4037 4038 static bool tcp_prune_ofo_queue(struct sock *sk); 4039 static int tcp_prune_queue(struct sock *sk); 4040 4041 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4042 unsigned int size) 4043 { 4044 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4045 !sk_rmem_schedule(sk, skb, size)) { 4046 4047 if (tcp_prune_queue(sk) < 0) 4048 return -1; 4049 4050 if (!sk_rmem_schedule(sk, skb, size)) { 4051 if (!tcp_prune_ofo_queue(sk)) 4052 return -1; 4053 4054 if (!sk_rmem_schedule(sk, skb, size)) 4055 return -1; 4056 } 4057 } 4058 return 0; 4059 } 4060 4061 /** 4062 * tcp_try_coalesce - try to merge skb to prior one 4063 * @sk: socket 4064 * @to: prior buffer 4065 * @from: buffer to add in queue 4066 * @fragstolen: pointer to boolean 4067 * 4068 * Before queueing skb @from after @to, try to merge them 4069 * to reduce overall memory use and queue lengths, if cost is small. 4070 * Packets in ofo or receive queues can stay a long time. 4071 * Better try to coalesce them right now to avoid future collapses. 4072 * Returns true if caller should free @from instead of queueing it 4073 */ 4074 static bool tcp_try_coalesce(struct sock *sk, 4075 struct sk_buff *to, 4076 struct sk_buff *from, 4077 bool *fragstolen) 4078 { 4079 int delta; 4080 4081 *fragstolen = false; 4082 4083 if (tcp_hdr(from)->fin) 4084 return false; 4085 4086 /* Its possible this segment overlaps with prior segment in queue */ 4087 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4088 return false; 4089 4090 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4091 return false; 4092 4093 atomic_add(delta, &sk->sk_rmem_alloc); 4094 sk_mem_charge(sk, delta); 4095 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4096 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4097 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4098 return true; 4099 } 4100 4101 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4102 { 4103 struct tcp_sock *tp = tcp_sk(sk); 4104 struct sk_buff *skb1; 4105 u32 seq, end_seq; 4106 4107 TCP_ECN_check_ce(tp, skb); 4108 4109 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4110 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP); 4111 __kfree_skb(skb); 4112 return; 4113 } 4114 4115 /* Disable header prediction. */ 4116 tp->pred_flags = 0; 4117 inet_csk_schedule_ack(sk); 4118 4119 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4120 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4121 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4122 4123 skb1 = skb_peek_tail(&tp->out_of_order_queue); 4124 if (!skb1) { 4125 /* Initial out of order segment, build 1 SACK. */ 4126 if (tcp_is_sack(tp)) { 4127 tp->rx_opt.num_sacks = 1; 4128 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 4129 tp->selective_acks[0].end_seq = 4130 TCP_SKB_CB(skb)->end_seq; 4131 } 4132 __skb_queue_head(&tp->out_of_order_queue, skb); 4133 goto end; 4134 } 4135 4136 seq = TCP_SKB_CB(skb)->seq; 4137 end_seq = TCP_SKB_CB(skb)->end_seq; 4138 4139 if (seq == TCP_SKB_CB(skb1)->end_seq) { 4140 bool fragstolen; 4141 4142 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) { 4143 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4144 } else { 4145 tcp_grow_window(sk, skb); 4146 kfree_skb_partial(skb, fragstolen); 4147 skb = NULL; 4148 } 4149 4150 if (!tp->rx_opt.num_sacks || 4151 tp->selective_acks[0].end_seq != seq) 4152 goto add_sack; 4153 4154 /* Common case: data arrive in order after hole. */ 4155 tp->selective_acks[0].end_seq = end_seq; 4156 goto end; 4157 } 4158 4159 /* Find place to insert this segment. */ 4160 while (1) { 4161 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 4162 break; 4163 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) { 4164 skb1 = NULL; 4165 break; 4166 } 4167 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1); 4168 } 4169 4170 /* Do skb overlap to previous one? */ 4171 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4172 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4173 /* All the bits are present. Drop. */ 4174 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4175 __kfree_skb(skb); 4176 skb = NULL; 4177 tcp_dsack_set(sk, seq, end_seq); 4178 goto add_sack; 4179 } 4180 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4181 /* Partial overlap. */ 4182 tcp_dsack_set(sk, seq, 4183 TCP_SKB_CB(skb1)->end_seq); 4184 } else { 4185 if (skb_queue_is_first(&tp->out_of_order_queue, 4186 skb1)) 4187 skb1 = NULL; 4188 else 4189 skb1 = skb_queue_prev( 4190 &tp->out_of_order_queue, 4191 skb1); 4192 } 4193 } 4194 if (!skb1) 4195 __skb_queue_head(&tp->out_of_order_queue, skb); 4196 else 4197 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4198 4199 /* And clean segments covered by new one as whole. */ 4200 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) { 4201 skb1 = skb_queue_next(&tp->out_of_order_queue, skb); 4202 4203 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4204 break; 4205 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4206 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4207 end_seq); 4208 break; 4209 } 4210 __skb_unlink(skb1, &tp->out_of_order_queue); 4211 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4212 TCP_SKB_CB(skb1)->end_seq); 4213 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4214 __kfree_skb(skb1); 4215 } 4216 4217 add_sack: 4218 if (tcp_is_sack(tp)) 4219 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4220 end: 4221 if (skb) { 4222 tcp_grow_window(sk, skb); 4223 skb_set_owner_r(skb, sk); 4224 } 4225 } 4226 4227 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4228 bool *fragstolen) 4229 { 4230 int eaten; 4231 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4232 4233 __skb_pull(skb, hdrlen); 4234 eaten = (tail && 4235 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0; 4236 tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4237 if (!eaten) { 4238 __skb_queue_tail(&sk->sk_receive_queue, skb); 4239 skb_set_owner_r(skb, sk); 4240 } 4241 return eaten; 4242 } 4243 4244 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4245 { 4246 struct sk_buff *skb = NULL; 4247 struct tcphdr *th; 4248 bool fragstolen; 4249 4250 if (size == 0) 4251 return 0; 4252 4253 skb = alloc_skb(size + sizeof(*th), sk->sk_allocation); 4254 if (!skb) 4255 goto err; 4256 4257 if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th))) 4258 goto err_free; 4259 4260 th = (struct tcphdr *)skb_put(skb, sizeof(*th)); 4261 skb_reset_transport_header(skb); 4262 memset(th, 0, sizeof(*th)); 4263 4264 if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size)) 4265 goto err_free; 4266 4267 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4268 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4269 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4270 4271 if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) { 4272 WARN_ON_ONCE(fragstolen); /* should not happen */ 4273 __kfree_skb(skb); 4274 } 4275 return size; 4276 4277 err_free: 4278 kfree_skb(skb); 4279 err: 4280 return -ENOMEM; 4281 } 4282 4283 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4284 { 4285 const struct tcphdr *th = tcp_hdr(skb); 4286 struct tcp_sock *tp = tcp_sk(sk); 4287 int eaten = -1; 4288 bool fragstolen = false; 4289 4290 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 4291 goto drop; 4292 4293 skb_dst_drop(skb); 4294 __skb_pull(skb, th->doff * 4); 4295 4296 TCP_ECN_accept_cwr(tp, skb); 4297 4298 tp->rx_opt.dsack = 0; 4299 4300 /* Queue data for delivery to the user. 4301 * Packets in sequence go to the receive queue. 4302 * Out of sequence packets to the out_of_order_queue. 4303 */ 4304 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4305 if (tcp_receive_window(tp) == 0) 4306 goto out_of_window; 4307 4308 /* Ok. In sequence. In window. */ 4309 if (tp->ucopy.task == current && 4310 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4311 sock_owned_by_user(sk) && !tp->urg_data) { 4312 int chunk = min_t(unsigned int, skb->len, 4313 tp->ucopy.len); 4314 4315 __set_current_state(TASK_RUNNING); 4316 4317 local_bh_enable(); 4318 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { 4319 tp->ucopy.len -= chunk; 4320 tp->copied_seq += chunk; 4321 eaten = (chunk == skb->len); 4322 tcp_rcv_space_adjust(sk); 4323 } 4324 local_bh_disable(); 4325 } 4326 4327 if (eaten <= 0) { 4328 queue_and_out: 4329 if (eaten < 0 && 4330 tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4331 goto drop; 4332 4333 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4334 } 4335 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4336 if (skb->len) 4337 tcp_event_data_recv(sk, skb); 4338 if (th->fin) 4339 tcp_fin(sk); 4340 4341 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4342 tcp_ofo_queue(sk); 4343 4344 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4345 * gap in queue is filled. 4346 */ 4347 if (skb_queue_empty(&tp->out_of_order_queue)) 4348 inet_csk(sk)->icsk_ack.pingpong = 0; 4349 } 4350 4351 if (tp->rx_opt.num_sacks) 4352 tcp_sack_remove(tp); 4353 4354 tcp_fast_path_check(sk); 4355 4356 if (eaten > 0) 4357 kfree_skb_partial(skb, fragstolen); 4358 if (!sock_flag(sk, SOCK_DEAD)) 4359 sk->sk_data_ready(sk, 0); 4360 return; 4361 } 4362 4363 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4364 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4365 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4366 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4367 4368 out_of_window: 4369 tcp_enter_quickack_mode(sk); 4370 inet_csk_schedule_ack(sk); 4371 drop: 4372 __kfree_skb(skb); 4373 return; 4374 } 4375 4376 /* Out of window. F.e. zero window probe. */ 4377 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4378 goto out_of_window; 4379 4380 tcp_enter_quickack_mode(sk); 4381 4382 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4383 /* Partial packet, seq < rcv_next < end_seq */ 4384 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4385 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4386 TCP_SKB_CB(skb)->end_seq); 4387 4388 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4389 4390 /* If window is closed, drop tail of packet. But after 4391 * remembering D-SACK for its head made in previous line. 4392 */ 4393 if (!tcp_receive_window(tp)) 4394 goto out_of_window; 4395 goto queue_and_out; 4396 } 4397 4398 tcp_data_queue_ofo(sk, skb); 4399 } 4400 4401 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4402 struct sk_buff_head *list) 4403 { 4404 struct sk_buff *next = NULL; 4405 4406 if (!skb_queue_is_last(list, skb)) 4407 next = skb_queue_next(list, skb); 4408 4409 __skb_unlink(skb, list); 4410 __kfree_skb(skb); 4411 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4412 4413 return next; 4414 } 4415 4416 /* Collapse contiguous sequence of skbs head..tail with 4417 * sequence numbers start..end. 4418 * 4419 * If tail is NULL, this means until the end of the list. 4420 * 4421 * Segments with FIN/SYN are not collapsed (only because this 4422 * simplifies code) 4423 */ 4424 static void 4425 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 4426 struct sk_buff *head, struct sk_buff *tail, 4427 u32 start, u32 end) 4428 { 4429 struct sk_buff *skb, *n; 4430 bool end_of_skbs; 4431 4432 /* First, check that queue is collapsible and find 4433 * the point where collapsing can be useful. */ 4434 skb = head; 4435 restart: 4436 end_of_skbs = true; 4437 skb_queue_walk_from_safe(list, skb, n) { 4438 if (skb == tail) 4439 break; 4440 /* No new bits? It is possible on ofo queue. */ 4441 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4442 skb = tcp_collapse_one(sk, skb, list); 4443 if (!skb) 4444 break; 4445 goto restart; 4446 } 4447 4448 /* The first skb to collapse is: 4449 * - not SYN/FIN and 4450 * - bloated or contains data before "start" or 4451 * overlaps to the next one. 4452 */ 4453 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin && 4454 (tcp_win_from_space(skb->truesize) > skb->len || 4455 before(TCP_SKB_CB(skb)->seq, start))) { 4456 end_of_skbs = false; 4457 break; 4458 } 4459 4460 if (!skb_queue_is_last(list, skb)) { 4461 struct sk_buff *next = skb_queue_next(list, skb); 4462 if (next != tail && 4463 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) { 4464 end_of_skbs = false; 4465 break; 4466 } 4467 } 4468 4469 /* Decided to skip this, advance start seq. */ 4470 start = TCP_SKB_CB(skb)->end_seq; 4471 } 4472 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin) 4473 return; 4474 4475 while (before(start, end)) { 4476 struct sk_buff *nskb; 4477 unsigned int header = skb_headroom(skb); 4478 int copy = SKB_MAX_ORDER(header, 0); 4479 4480 /* Too big header? This can happen with IPv6. */ 4481 if (copy < 0) 4482 return; 4483 if (end - start < copy) 4484 copy = end - start; 4485 nskb = alloc_skb(copy + header, GFP_ATOMIC); 4486 if (!nskb) 4487 return; 4488 4489 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head); 4490 skb_set_network_header(nskb, (skb_network_header(skb) - 4491 skb->head)); 4492 skb_set_transport_header(nskb, (skb_transport_header(skb) - 4493 skb->head)); 4494 skb_reserve(nskb, header); 4495 memcpy(nskb->head, skb->head, header); 4496 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4497 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4498 __skb_queue_before(list, skb, nskb); 4499 skb_set_owner_r(nskb, sk); 4500 4501 /* Copy data, releasing collapsed skbs. */ 4502 while (copy > 0) { 4503 int offset = start - TCP_SKB_CB(skb)->seq; 4504 int size = TCP_SKB_CB(skb)->end_seq - start; 4505 4506 BUG_ON(offset < 0); 4507 if (size > 0) { 4508 size = min(copy, size); 4509 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4510 BUG(); 4511 TCP_SKB_CB(nskb)->end_seq += size; 4512 copy -= size; 4513 start += size; 4514 } 4515 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4516 skb = tcp_collapse_one(sk, skb, list); 4517 if (!skb || 4518 skb == tail || 4519 tcp_hdr(skb)->syn || 4520 tcp_hdr(skb)->fin) 4521 return; 4522 } 4523 } 4524 } 4525 } 4526 4527 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4528 * and tcp_collapse() them until all the queue is collapsed. 4529 */ 4530 static void tcp_collapse_ofo_queue(struct sock *sk) 4531 { 4532 struct tcp_sock *tp = tcp_sk(sk); 4533 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 4534 struct sk_buff *head; 4535 u32 start, end; 4536 4537 if (skb == NULL) 4538 return; 4539 4540 start = TCP_SKB_CB(skb)->seq; 4541 end = TCP_SKB_CB(skb)->end_seq; 4542 head = skb; 4543 4544 for (;;) { 4545 struct sk_buff *next = NULL; 4546 4547 if (!skb_queue_is_last(&tp->out_of_order_queue, skb)) 4548 next = skb_queue_next(&tp->out_of_order_queue, skb); 4549 skb = next; 4550 4551 /* Segment is terminated when we see gap or when 4552 * we are at the end of all the queue. */ 4553 if (!skb || 4554 after(TCP_SKB_CB(skb)->seq, end) || 4555 before(TCP_SKB_CB(skb)->end_seq, start)) { 4556 tcp_collapse(sk, &tp->out_of_order_queue, 4557 head, skb, start, end); 4558 head = skb; 4559 if (!skb) 4560 break; 4561 /* Start new segment */ 4562 start = TCP_SKB_CB(skb)->seq; 4563 end = TCP_SKB_CB(skb)->end_seq; 4564 } else { 4565 if (before(TCP_SKB_CB(skb)->seq, start)) 4566 start = TCP_SKB_CB(skb)->seq; 4567 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4568 end = TCP_SKB_CB(skb)->end_seq; 4569 } 4570 } 4571 } 4572 4573 /* 4574 * Purge the out-of-order queue. 4575 * Return true if queue was pruned. 4576 */ 4577 static bool tcp_prune_ofo_queue(struct sock *sk) 4578 { 4579 struct tcp_sock *tp = tcp_sk(sk); 4580 bool res = false; 4581 4582 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4583 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED); 4584 __skb_queue_purge(&tp->out_of_order_queue); 4585 4586 /* Reset SACK state. A conforming SACK implementation will 4587 * do the same at a timeout based retransmit. When a connection 4588 * is in a sad state like this, we care only about integrity 4589 * of the connection not performance. 4590 */ 4591 if (tp->rx_opt.sack_ok) 4592 tcp_sack_reset(&tp->rx_opt); 4593 sk_mem_reclaim(sk); 4594 res = true; 4595 } 4596 return res; 4597 } 4598 4599 /* Reduce allocated memory if we can, trying to get 4600 * the socket within its memory limits again. 4601 * 4602 * Return less than zero if we should start dropping frames 4603 * until the socket owning process reads some of the data 4604 * to stabilize the situation. 4605 */ 4606 static int tcp_prune_queue(struct sock *sk) 4607 { 4608 struct tcp_sock *tp = tcp_sk(sk); 4609 4610 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4611 4612 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED); 4613 4614 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4615 tcp_clamp_window(sk); 4616 else if (sk_under_memory_pressure(sk)) 4617 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4618 4619 tcp_collapse_ofo_queue(sk); 4620 if (!skb_queue_empty(&sk->sk_receive_queue)) 4621 tcp_collapse(sk, &sk->sk_receive_queue, 4622 skb_peek(&sk->sk_receive_queue), 4623 NULL, 4624 tp->copied_seq, tp->rcv_nxt); 4625 sk_mem_reclaim(sk); 4626 4627 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4628 return 0; 4629 4630 /* Collapsing did not help, destructive actions follow. 4631 * This must not ever occur. */ 4632 4633 tcp_prune_ofo_queue(sk); 4634 4635 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4636 return 0; 4637 4638 /* If we are really being abused, tell the caller to silently 4639 * drop receive data on the floor. It will get retransmitted 4640 * and hopefully then we'll have sufficient space. 4641 */ 4642 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED); 4643 4644 /* Massive buffer overcommit. */ 4645 tp->pred_flags = 0; 4646 return -1; 4647 } 4648 4649 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 4650 * As additional protections, we do not touch cwnd in retransmission phases, 4651 * and if application hit its sndbuf limit recently. 4652 */ 4653 void tcp_cwnd_application_limited(struct sock *sk) 4654 { 4655 struct tcp_sock *tp = tcp_sk(sk); 4656 4657 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 4658 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 4659 /* Limited by application or receiver window. */ 4660 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 4661 u32 win_used = max(tp->snd_cwnd_used, init_win); 4662 if (win_used < tp->snd_cwnd) { 4663 tp->snd_ssthresh = tcp_current_ssthresh(sk); 4664 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 4665 } 4666 tp->snd_cwnd_used = 0; 4667 } 4668 tp->snd_cwnd_stamp = tcp_time_stamp; 4669 } 4670 4671 static bool tcp_should_expand_sndbuf(const struct sock *sk) 4672 { 4673 const struct tcp_sock *tp = tcp_sk(sk); 4674 4675 /* If the user specified a specific send buffer setting, do 4676 * not modify it. 4677 */ 4678 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4679 return false; 4680 4681 /* If we are under global TCP memory pressure, do not expand. */ 4682 if (sk_under_memory_pressure(sk)) 4683 return false; 4684 4685 /* If we are under soft global TCP memory pressure, do not expand. */ 4686 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 4687 return false; 4688 4689 /* If we filled the congestion window, do not expand. */ 4690 if (tp->packets_out >= tp->snd_cwnd) 4691 return false; 4692 4693 return true; 4694 } 4695 4696 /* When incoming ACK allowed to free some skb from write_queue, 4697 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 4698 * on the exit from tcp input handler. 4699 * 4700 * PROBLEM: sndbuf expansion does not work well with largesend. 4701 */ 4702 static void tcp_new_space(struct sock *sk) 4703 { 4704 struct tcp_sock *tp = tcp_sk(sk); 4705 4706 if (tcp_should_expand_sndbuf(sk)) { 4707 int sndmem = SKB_TRUESIZE(max_t(u32, 4708 tp->rx_opt.mss_clamp, 4709 tp->mss_cache) + 4710 MAX_TCP_HEADER); 4711 int demanded = max_t(unsigned int, tp->snd_cwnd, 4712 tp->reordering + 1); 4713 sndmem *= 2 * demanded; 4714 if (sndmem > sk->sk_sndbuf) 4715 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 4716 tp->snd_cwnd_stamp = tcp_time_stamp; 4717 } 4718 4719 sk->sk_write_space(sk); 4720 } 4721 4722 static void tcp_check_space(struct sock *sk) 4723 { 4724 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 4725 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 4726 if (sk->sk_socket && 4727 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 4728 tcp_new_space(sk); 4729 } 4730 } 4731 4732 static inline void tcp_data_snd_check(struct sock *sk) 4733 { 4734 tcp_push_pending_frames(sk); 4735 tcp_check_space(sk); 4736 } 4737 4738 /* 4739 * Check if sending an ack is needed. 4740 */ 4741 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 4742 { 4743 struct tcp_sock *tp = tcp_sk(sk); 4744 4745 /* More than one full frame received... */ 4746 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 4747 /* ... and right edge of window advances far enough. 4748 * (tcp_recvmsg() will send ACK otherwise). Or... 4749 */ 4750 __tcp_select_window(sk) >= tp->rcv_wnd) || 4751 /* We ACK each frame or... */ 4752 tcp_in_quickack_mode(sk) || 4753 /* We have out of order data. */ 4754 (ofo_possible && skb_peek(&tp->out_of_order_queue))) { 4755 /* Then ack it now */ 4756 tcp_send_ack(sk); 4757 } else { 4758 /* Else, send delayed ack. */ 4759 tcp_send_delayed_ack(sk); 4760 } 4761 } 4762 4763 static inline void tcp_ack_snd_check(struct sock *sk) 4764 { 4765 if (!inet_csk_ack_scheduled(sk)) { 4766 /* We sent a data segment already. */ 4767 return; 4768 } 4769 __tcp_ack_snd_check(sk, 1); 4770 } 4771 4772 /* 4773 * This routine is only called when we have urgent data 4774 * signaled. Its the 'slow' part of tcp_urg. It could be 4775 * moved inline now as tcp_urg is only called from one 4776 * place. We handle URGent data wrong. We have to - as 4777 * BSD still doesn't use the correction from RFC961. 4778 * For 1003.1g we should support a new option TCP_STDURG to permit 4779 * either form (or just set the sysctl tcp_stdurg). 4780 */ 4781 4782 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 4783 { 4784 struct tcp_sock *tp = tcp_sk(sk); 4785 u32 ptr = ntohs(th->urg_ptr); 4786 4787 if (ptr && !sysctl_tcp_stdurg) 4788 ptr--; 4789 ptr += ntohl(th->seq); 4790 4791 /* Ignore urgent data that we've already seen and read. */ 4792 if (after(tp->copied_seq, ptr)) 4793 return; 4794 4795 /* Do not replay urg ptr. 4796 * 4797 * NOTE: interesting situation not covered by specs. 4798 * Misbehaving sender may send urg ptr, pointing to segment, 4799 * which we already have in ofo queue. We are not able to fetch 4800 * such data and will stay in TCP_URG_NOTYET until will be eaten 4801 * by recvmsg(). Seems, we are not obliged to handle such wicked 4802 * situations. But it is worth to think about possibility of some 4803 * DoSes using some hypothetical application level deadlock. 4804 */ 4805 if (before(ptr, tp->rcv_nxt)) 4806 return; 4807 4808 /* Do we already have a newer (or duplicate) urgent pointer? */ 4809 if (tp->urg_data && !after(ptr, tp->urg_seq)) 4810 return; 4811 4812 /* Tell the world about our new urgent pointer. */ 4813 sk_send_sigurg(sk); 4814 4815 /* We may be adding urgent data when the last byte read was 4816 * urgent. To do this requires some care. We cannot just ignore 4817 * tp->copied_seq since we would read the last urgent byte again 4818 * as data, nor can we alter copied_seq until this data arrives 4819 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 4820 * 4821 * NOTE. Double Dutch. Rendering to plain English: author of comment 4822 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 4823 * and expect that both A and B disappear from stream. This is _wrong_. 4824 * Though this happens in BSD with high probability, this is occasional. 4825 * Any application relying on this is buggy. Note also, that fix "works" 4826 * only in this artificial test. Insert some normal data between A and B and we will 4827 * decline of BSD again. Verdict: it is better to remove to trap 4828 * buggy users. 4829 */ 4830 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 4831 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 4832 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 4833 tp->copied_seq++; 4834 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 4835 __skb_unlink(skb, &sk->sk_receive_queue); 4836 __kfree_skb(skb); 4837 } 4838 } 4839 4840 tp->urg_data = TCP_URG_NOTYET; 4841 tp->urg_seq = ptr; 4842 4843 /* Disable header prediction. */ 4844 tp->pred_flags = 0; 4845 } 4846 4847 /* This is the 'fast' part of urgent handling. */ 4848 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 4849 { 4850 struct tcp_sock *tp = tcp_sk(sk); 4851 4852 /* Check if we get a new urgent pointer - normally not. */ 4853 if (th->urg) 4854 tcp_check_urg(sk, th); 4855 4856 /* Do we wait for any urgent data? - normally not... */ 4857 if (tp->urg_data == TCP_URG_NOTYET) { 4858 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 4859 th->syn; 4860 4861 /* Is the urgent pointer pointing into this packet? */ 4862 if (ptr < skb->len) { 4863 u8 tmp; 4864 if (skb_copy_bits(skb, ptr, &tmp, 1)) 4865 BUG(); 4866 tp->urg_data = TCP_URG_VALID | tmp; 4867 if (!sock_flag(sk, SOCK_DEAD)) 4868 sk->sk_data_ready(sk, 0); 4869 } 4870 } 4871 } 4872 4873 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 4874 { 4875 struct tcp_sock *tp = tcp_sk(sk); 4876 int chunk = skb->len - hlen; 4877 int err; 4878 4879 local_bh_enable(); 4880 if (skb_csum_unnecessary(skb)) 4881 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); 4882 else 4883 err = skb_copy_and_csum_datagram_iovec(skb, hlen, 4884 tp->ucopy.iov); 4885 4886 if (!err) { 4887 tp->ucopy.len -= chunk; 4888 tp->copied_seq += chunk; 4889 tcp_rcv_space_adjust(sk); 4890 } 4891 4892 local_bh_disable(); 4893 return err; 4894 } 4895 4896 static __sum16 __tcp_checksum_complete_user(struct sock *sk, 4897 struct sk_buff *skb) 4898 { 4899 __sum16 result; 4900 4901 if (sock_owned_by_user(sk)) { 4902 local_bh_enable(); 4903 result = __tcp_checksum_complete(skb); 4904 local_bh_disable(); 4905 } else { 4906 result = __tcp_checksum_complete(skb); 4907 } 4908 return result; 4909 } 4910 4911 static inline bool tcp_checksum_complete_user(struct sock *sk, 4912 struct sk_buff *skb) 4913 { 4914 return !skb_csum_unnecessary(skb) && 4915 __tcp_checksum_complete_user(sk, skb); 4916 } 4917 4918 #ifdef CONFIG_NET_DMA 4919 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, 4920 int hlen) 4921 { 4922 struct tcp_sock *tp = tcp_sk(sk); 4923 int chunk = skb->len - hlen; 4924 int dma_cookie; 4925 bool copied_early = false; 4926 4927 if (tp->ucopy.wakeup) 4928 return false; 4929 4930 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 4931 tp->ucopy.dma_chan = net_dma_find_channel(); 4932 4933 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) { 4934 4935 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan, 4936 skb, hlen, 4937 tp->ucopy.iov, chunk, 4938 tp->ucopy.pinned_list); 4939 4940 if (dma_cookie < 0) 4941 goto out; 4942 4943 tp->ucopy.dma_cookie = dma_cookie; 4944 copied_early = true; 4945 4946 tp->ucopy.len -= chunk; 4947 tp->copied_seq += chunk; 4948 tcp_rcv_space_adjust(sk); 4949 4950 if ((tp->ucopy.len == 0) || 4951 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) || 4952 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) { 4953 tp->ucopy.wakeup = 1; 4954 sk->sk_data_ready(sk, 0); 4955 } 4956 } else if (chunk > 0) { 4957 tp->ucopy.wakeup = 1; 4958 sk->sk_data_ready(sk, 0); 4959 } 4960 out: 4961 return copied_early; 4962 } 4963 #endif /* CONFIG_NET_DMA */ 4964 4965 /* Does PAWS and seqno based validation of an incoming segment, flags will 4966 * play significant role here. 4967 */ 4968 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 4969 const struct tcphdr *th, int syn_inerr) 4970 { 4971 struct tcp_sock *tp = tcp_sk(sk); 4972 4973 /* RFC1323: H1. Apply PAWS check first. */ 4974 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 4975 tcp_paws_discard(sk, skb)) { 4976 if (!th->rst) { 4977 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 4978 tcp_send_dupack(sk, skb); 4979 goto discard; 4980 } 4981 /* Reset is accepted even if it did not pass PAWS. */ 4982 } 4983 4984 /* Step 1: check sequence number */ 4985 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 4986 /* RFC793, page 37: "In all states except SYN-SENT, all reset 4987 * (RST) segments are validated by checking their SEQ-fields." 4988 * And page 69: "If an incoming segment is not acceptable, 4989 * an acknowledgment should be sent in reply (unless the RST 4990 * bit is set, if so drop the segment and return)". 4991 */ 4992 if (!th->rst) { 4993 if (th->syn) 4994 goto syn_challenge; 4995 tcp_send_dupack(sk, skb); 4996 } 4997 goto discard; 4998 } 4999 5000 /* Step 2: check RST bit */ 5001 if (th->rst) { 5002 /* RFC 5961 3.2 : 5003 * If sequence number exactly matches RCV.NXT, then 5004 * RESET the connection 5005 * else 5006 * Send a challenge ACK 5007 */ 5008 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) 5009 tcp_reset(sk); 5010 else 5011 tcp_send_challenge_ack(sk); 5012 goto discard; 5013 } 5014 5015 /* step 3: check security and precedence [ignored] */ 5016 5017 /* step 4: Check for a SYN 5018 * RFC 5691 4.2 : Send a challenge ack 5019 */ 5020 if (th->syn) { 5021 syn_challenge: 5022 if (syn_inerr) 5023 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5024 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5025 tcp_send_challenge_ack(sk); 5026 goto discard; 5027 } 5028 5029 return true; 5030 5031 discard: 5032 __kfree_skb(skb); 5033 return false; 5034 } 5035 5036 /* 5037 * TCP receive function for the ESTABLISHED state. 5038 * 5039 * It is split into a fast path and a slow path. The fast path is 5040 * disabled when: 5041 * - A zero window was announced from us - zero window probing 5042 * is only handled properly in the slow path. 5043 * - Out of order segments arrived. 5044 * - Urgent data is expected. 5045 * - There is no buffer space left 5046 * - Unexpected TCP flags/window values/header lengths are received 5047 * (detected by checking the TCP header against pred_flags) 5048 * - Data is sent in both directions. Fast path only supports pure senders 5049 * or pure receivers (this means either the sequence number or the ack 5050 * value must stay constant) 5051 * - Unexpected TCP option. 5052 * 5053 * When these conditions are not satisfied it drops into a standard 5054 * receive procedure patterned after RFC793 to handle all cases. 5055 * The first three cases are guaranteed by proper pred_flags setting, 5056 * the rest is checked inline. Fast processing is turned on in 5057 * tcp_data_queue when everything is OK. 5058 */ 5059 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5060 const struct tcphdr *th, unsigned int len) 5061 { 5062 struct tcp_sock *tp = tcp_sk(sk); 5063 5064 if (unlikely(sk->sk_rx_dst == NULL)) 5065 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5066 /* 5067 * Header prediction. 5068 * The code loosely follows the one in the famous 5069 * "30 instruction TCP receive" Van Jacobson mail. 5070 * 5071 * Van's trick is to deposit buffers into socket queue 5072 * on a device interrupt, to call tcp_recv function 5073 * on the receive process context and checksum and copy 5074 * the buffer to user space. smart... 5075 * 5076 * Our current scheme is not silly either but we take the 5077 * extra cost of the net_bh soft interrupt processing... 5078 * We do checksum and copy also but from device to kernel. 5079 */ 5080 5081 tp->rx_opt.saw_tstamp = 0; 5082 5083 /* pred_flags is 0xS?10 << 16 + snd_wnd 5084 * if header_prediction is to be made 5085 * 'S' will always be tp->tcp_header_len >> 2 5086 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5087 * turn it off (when there are holes in the receive 5088 * space for instance) 5089 * PSH flag is ignored. 5090 */ 5091 5092 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5093 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5094 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5095 int tcp_header_len = tp->tcp_header_len; 5096 5097 /* Timestamp header prediction: tcp_header_len 5098 * is automatically equal to th->doff*4 due to pred_flags 5099 * match. 5100 */ 5101 5102 /* Check timestamp */ 5103 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5104 /* No? Slow path! */ 5105 if (!tcp_parse_aligned_timestamp(tp, th)) 5106 goto slow_path; 5107 5108 /* If PAWS failed, check it more carefully in slow path */ 5109 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5110 goto slow_path; 5111 5112 /* DO NOT update ts_recent here, if checksum fails 5113 * and timestamp was corrupted part, it will result 5114 * in a hung connection since we will drop all 5115 * future packets due to the PAWS test. 5116 */ 5117 } 5118 5119 if (len <= tcp_header_len) { 5120 /* Bulk data transfer: sender */ 5121 if (len == tcp_header_len) { 5122 /* Predicted packet is in window by definition. 5123 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5124 * Hence, check seq<=rcv_wup reduces to: 5125 */ 5126 if (tcp_header_len == 5127 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5128 tp->rcv_nxt == tp->rcv_wup) 5129 tcp_store_ts_recent(tp); 5130 5131 /* We know that such packets are checksummed 5132 * on entry. 5133 */ 5134 tcp_ack(sk, skb, 0); 5135 __kfree_skb(skb); 5136 tcp_data_snd_check(sk); 5137 return; 5138 } else { /* Header too small */ 5139 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5140 goto discard; 5141 } 5142 } else { 5143 int eaten = 0; 5144 int copied_early = 0; 5145 bool fragstolen = false; 5146 5147 if (tp->copied_seq == tp->rcv_nxt && 5148 len - tcp_header_len <= tp->ucopy.len) { 5149 #ifdef CONFIG_NET_DMA 5150 if (tp->ucopy.task == current && 5151 sock_owned_by_user(sk) && 5152 tcp_dma_try_early_copy(sk, skb, tcp_header_len)) { 5153 copied_early = 1; 5154 eaten = 1; 5155 } 5156 #endif 5157 if (tp->ucopy.task == current && 5158 sock_owned_by_user(sk) && !copied_early) { 5159 __set_current_state(TASK_RUNNING); 5160 5161 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) 5162 eaten = 1; 5163 } 5164 if (eaten) { 5165 /* Predicted packet is in window by definition. 5166 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5167 * Hence, check seq<=rcv_wup reduces to: 5168 */ 5169 if (tcp_header_len == 5170 (sizeof(struct tcphdr) + 5171 TCPOLEN_TSTAMP_ALIGNED) && 5172 tp->rcv_nxt == tp->rcv_wup) 5173 tcp_store_ts_recent(tp); 5174 5175 tcp_rcv_rtt_measure_ts(sk, skb); 5176 5177 __skb_pull(skb, tcp_header_len); 5178 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 5179 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER); 5180 } 5181 if (copied_early) 5182 tcp_cleanup_rbuf(sk, skb->len); 5183 } 5184 if (!eaten) { 5185 if (tcp_checksum_complete_user(sk, skb)) 5186 goto csum_error; 5187 5188 if ((int)skb->truesize > sk->sk_forward_alloc) 5189 goto step5; 5190 5191 /* Predicted packet is in window by definition. 5192 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5193 * Hence, check seq<=rcv_wup reduces to: 5194 */ 5195 if (tcp_header_len == 5196 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5197 tp->rcv_nxt == tp->rcv_wup) 5198 tcp_store_ts_recent(tp); 5199 5200 tcp_rcv_rtt_measure_ts(sk, skb); 5201 5202 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS); 5203 5204 /* Bulk data transfer: receiver */ 5205 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5206 &fragstolen); 5207 } 5208 5209 tcp_event_data_recv(sk, skb); 5210 5211 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5212 /* Well, only one small jumplet in fast path... */ 5213 tcp_ack(sk, skb, FLAG_DATA); 5214 tcp_data_snd_check(sk); 5215 if (!inet_csk_ack_scheduled(sk)) 5216 goto no_ack; 5217 } 5218 5219 if (!copied_early || tp->rcv_nxt != tp->rcv_wup) 5220 __tcp_ack_snd_check(sk, 0); 5221 no_ack: 5222 #ifdef CONFIG_NET_DMA 5223 if (copied_early) 5224 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 5225 else 5226 #endif 5227 if (eaten) 5228 kfree_skb_partial(skb, fragstolen); 5229 sk->sk_data_ready(sk, 0); 5230 return; 5231 } 5232 } 5233 5234 slow_path: 5235 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb)) 5236 goto csum_error; 5237 5238 if (!th->ack && !th->rst) 5239 goto discard; 5240 5241 /* 5242 * Standard slow path. 5243 */ 5244 5245 if (!tcp_validate_incoming(sk, skb, th, 1)) 5246 return; 5247 5248 step5: 5249 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5250 goto discard; 5251 5252 tcp_rcv_rtt_measure_ts(sk, skb); 5253 5254 /* Process urgent data. */ 5255 tcp_urg(sk, skb, th); 5256 5257 /* step 7: process the segment text */ 5258 tcp_data_queue(sk, skb); 5259 5260 tcp_data_snd_check(sk); 5261 tcp_ack_snd_check(sk); 5262 return; 5263 5264 csum_error: 5265 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS); 5266 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5267 5268 discard: 5269 __kfree_skb(skb); 5270 } 5271 EXPORT_SYMBOL(tcp_rcv_established); 5272 5273 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5274 { 5275 struct tcp_sock *tp = tcp_sk(sk); 5276 struct inet_connection_sock *icsk = inet_csk(sk); 5277 5278 tcp_set_state(sk, TCP_ESTABLISHED); 5279 5280 if (skb != NULL) { 5281 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5282 security_inet_conn_established(sk, skb); 5283 } 5284 5285 /* Make sure socket is routed, for correct metrics. */ 5286 icsk->icsk_af_ops->rebuild_header(sk); 5287 5288 tcp_init_metrics(sk); 5289 5290 tcp_init_congestion_control(sk); 5291 5292 /* Prevent spurious tcp_cwnd_restart() on first data 5293 * packet. 5294 */ 5295 tp->lsndtime = tcp_time_stamp; 5296 5297 tcp_init_buffer_space(sk); 5298 5299 if (sock_flag(sk, SOCK_KEEPOPEN)) 5300 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5301 5302 if (!tp->rx_opt.snd_wscale) 5303 __tcp_fast_path_on(tp, tp->snd_wnd); 5304 else 5305 tp->pred_flags = 0; 5306 5307 if (!sock_flag(sk, SOCK_DEAD)) { 5308 sk->sk_state_change(sk); 5309 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5310 } 5311 } 5312 5313 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5314 struct tcp_fastopen_cookie *cookie) 5315 { 5316 struct tcp_sock *tp = tcp_sk(sk); 5317 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL; 5318 u16 mss = tp->rx_opt.mss_clamp; 5319 bool syn_drop; 5320 5321 if (mss == tp->rx_opt.user_mss) { 5322 struct tcp_options_received opt; 5323 5324 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5325 tcp_clear_options(&opt); 5326 opt.user_mss = opt.mss_clamp = 0; 5327 tcp_parse_options(synack, &opt, 0, NULL); 5328 mss = opt.mss_clamp; 5329 } 5330 5331 if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */ 5332 cookie->len = -1; 5333 5334 /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably 5335 * the remote receives only the retransmitted (regular) SYNs: either 5336 * the original SYN-data or the corresponding SYN-ACK is lost. 5337 */ 5338 syn_drop = (cookie->len <= 0 && data && tp->total_retrans); 5339 5340 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop); 5341 5342 if (data) { /* Retransmit unacked data in SYN */ 5343 tcp_for_write_queue_from(data, sk) { 5344 if (data == tcp_send_head(sk) || 5345 __tcp_retransmit_skb(sk, data)) 5346 break; 5347 } 5348 tcp_rearm_rto(sk); 5349 return true; 5350 } 5351 tp->syn_data_acked = tp->syn_data; 5352 return false; 5353 } 5354 5355 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5356 const struct tcphdr *th, unsigned int len) 5357 { 5358 struct inet_connection_sock *icsk = inet_csk(sk); 5359 struct tcp_sock *tp = tcp_sk(sk); 5360 struct tcp_fastopen_cookie foc = { .len = -1 }; 5361 int saved_clamp = tp->rx_opt.mss_clamp; 5362 5363 tcp_parse_options(skb, &tp->rx_opt, 0, &foc); 5364 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5365 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5366 5367 if (th->ack) { 5368 /* rfc793: 5369 * "If the state is SYN-SENT then 5370 * first check the ACK bit 5371 * If the ACK bit is set 5372 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5373 * a reset (unless the RST bit is set, if so drop 5374 * the segment and return)" 5375 */ 5376 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5377 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5378 goto reset_and_undo; 5379 5380 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5381 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5382 tcp_time_stamp)) { 5383 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED); 5384 goto reset_and_undo; 5385 } 5386 5387 /* Now ACK is acceptable. 5388 * 5389 * "If the RST bit is set 5390 * If the ACK was acceptable then signal the user "error: 5391 * connection reset", drop the segment, enter CLOSED state, 5392 * delete TCB, and return." 5393 */ 5394 5395 if (th->rst) { 5396 tcp_reset(sk); 5397 goto discard; 5398 } 5399 5400 /* rfc793: 5401 * "fifth, if neither of the SYN or RST bits is set then 5402 * drop the segment and return." 5403 * 5404 * See note below! 5405 * --ANK(990513) 5406 */ 5407 if (!th->syn) 5408 goto discard_and_undo; 5409 5410 /* rfc793: 5411 * "If the SYN bit is on ... 5412 * are acceptable then ... 5413 * (our SYN has been ACKed), change the connection 5414 * state to ESTABLISHED..." 5415 */ 5416 5417 TCP_ECN_rcv_synack(tp, th); 5418 5419 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5420 tcp_ack(sk, skb, FLAG_SLOWPATH); 5421 5422 /* Ok.. it's good. Set up sequence numbers and 5423 * move to established. 5424 */ 5425 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5426 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5427 5428 /* RFC1323: The window in SYN & SYN/ACK segments is 5429 * never scaled. 5430 */ 5431 tp->snd_wnd = ntohs(th->window); 5432 5433 if (!tp->rx_opt.wscale_ok) { 5434 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5435 tp->window_clamp = min(tp->window_clamp, 65535U); 5436 } 5437 5438 if (tp->rx_opt.saw_tstamp) { 5439 tp->rx_opt.tstamp_ok = 1; 5440 tp->tcp_header_len = 5441 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5442 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5443 tcp_store_ts_recent(tp); 5444 } else { 5445 tp->tcp_header_len = sizeof(struct tcphdr); 5446 } 5447 5448 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5449 tcp_enable_fack(tp); 5450 5451 tcp_mtup_init(sk); 5452 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5453 tcp_initialize_rcv_mss(sk); 5454 5455 /* Remember, tcp_poll() does not lock socket! 5456 * Change state from SYN-SENT only after copied_seq 5457 * is initialized. */ 5458 tp->copied_seq = tp->rcv_nxt; 5459 5460 smp_mb(); 5461 5462 tcp_finish_connect(sk, skb); 5463 5464 if ((tp->syn_fastopen || tp->syn_data) && 5465 tcp_rcv_fastopen_synack(sk, skb, &foc)) 5466 return -1; 5467 5468 if (sk->sk_write_pending || 5469 icsk->icsk_accept_queue.rskq_defer_accept || 5470 icsk->icsk_ack.pingpong) { 5471 /* Save one ACK. Data will be ready after 5472 * several ticks, if write_pending is set. 5473 * 5474 * It may be deleted, but with this feature tcpdumps 5475 * look so _wonderfully_ clever, that I was not able 5476 * to stand against the temptation 8) --ANK 5477 */ 5478 inet_csk_schedule_ack(sk); 5479 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5480 tcp_enter_quickack_mode(sk); 5481 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5482 TCP_DELACK_MAX, TCP_RTO_MAX); 5483 5484 discard: 5485 __kfree_skb(skb); 5486 return 0; 5487 } else { 5488 tcp_send_ack(sk); 5489 } 5490 return -1; 5491 } 5492 5493 /* No ACK in the segment */ 5494 5495 if (th->rst) { 5496 /* rfc793: 5497 * "If the RST bit is set 5498 * 5499 * Otherwise (no ACK) drop the segment and return." 5500 */ 5501 5502 goto discard_and_undo; 5503 } 5504 5505 /* PAWS check. */ 5506 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5507 tcp_paws_reject(&tp->rx_opt, 0)) 5508 goto discard_and_undo; 5509 5510 if (th->syn) { 5511 /* We see SYN without ACK. It is attempt of 5512 * simultaneous connect with crossed SYNs. 5513 * Particularly, it can be connect to self. 5514 */ 5515 tcp_set_state(sk, TCP_SYN_RECV); 5516 5517 if (tp->rx_opt.saw_tstamp) { 5518 tp->rx_opt.tstamp_ok = 1; 5519 tcp_store_ts_recent(tp); 5520 tp->tcp_header_len = 5521 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5522 } else { 5523 tp->tcp_header_len = sizeof(struct tcphdr); 5524 } 5525 5526 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5527 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5528 5529 /* RFC1323: The window in SYN & SYN/ACK segments is 5530 * never scaled. 5531 */ 5532 tp->snd_wnd = ntohs(th->window); 5533 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5534 tp->max_window = tp->snd_wnd; 5535 5536 TCP_ECN_rcv_syn(tp, th); 5537 5538 tcp_mtup_init(sk); 5539 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5540 tcp_initialize_rcv_mss(sk); 5541 5542 tcp_send_synack(sk); 5543 #if 0 5544 /* Note, we could accept data and URG from this segment. 5545 * There are no obstacles to make this (except that we must 5546 * either change tcp_recvmsg() to prevent it from returning data 5547 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5548 * 5549 * However, if we ignore data in ACKless segments sometimes, 5550 * we have no reasons to accept it sometimes. 5551 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5552 * is not flawless. So, discard packet for sanity. 5553 * Uncomment this return to process the data. 5554 */ 5555 return -1; 5556 #else 5557 goto discard; 5558 #endif 5559 } 5560 /* "fifth, if neither of the SYN or RST bits is set then 5561 * drop the segment and return." 5562 */ 5563 5564 discard_and_undo: 5565 tcp_clear_options(&tp->rx_opt); 5566 tp->rx_opt.mss_clamp = saved_clamp; 5567 goto discard; 5568 5569 reset_and_undo: 5570 tcp_clear_options(&tp->rx_opt); 5571 tp->rx_opt.mss_clamp = saved_clamp; 5572 return 1; 5573 } 5574 5575 /* 5576 * This function implements the receiving procedure of RFC 793 for 5577 * all states except ESTABLISHED and TIME_WAIT. 5578 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5579 * address independent. 5580 */ 5581 5582 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 5583 const struct tcphdr *th, unsigned int len) 5584 { 5585 struct tcp_sock *tp = tcp_sk(sk); 5586 struct inet_connection_sock *icsk = inet_csk(sk); 5587 struct request_sock *req; 5588 int queued = 0; 5589 bool acceptable; 5590 5591 tp->rx_opt.saw_tstamp = 0; 5592 5593 switch (sk->sk_state) { 5594 case TCP_CLOSE: 5595 goto discard; 5596 5597 case TCP_LISTEN: 5598 if (th->ack) 5599 return 1; 5600 5601 if (th->rst) 5602 goto discard; 5603 5604 if (th->syn) { 5605 if (th->fin) 5606 goto discard; 5607 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 5608 return 1; 5609 5610 /* Now we have several options: In theory there is 5611 * nothing else in the frame. KA9Q has an option to 5612 * send data with the syn, BSD accepts data with the 5613 * syn up to the [to be] advertised window and 5614 * Solaris 2.1 gives you a protocol error. For now 5615 * we just ignore it, that fits the spec precisely 5616 * and avoids incompatibilities. It would be nice in 5617 * future to drop through and process the data. 5618 * 5619 * Now that TTCP is starting to be used we ought to 5620 * queue this data. 5621 * But, this leaves one open to an easy denial of 5622 * service attack, and SYN cookies can't defend 5623 * against this problem. So, we drop the data 5624 * in the interest of security over speed unless 5625 * it's still in use. 5626 */ 5627 kfree_skb(skb); 5628 return 0; 5629 } 5630 goto discard; 5631 5632 case TCP_SYN_SENT: 5633 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 5634 if (queued >= 0) 5635 return queued; 5636 5637 /* Do step6 onward by hand. */ 5638 tcp_urg(sk, skb, th); 5639 __kfree_skb(skb); 5640 tcp_data_snd_check(sk); 5641 return 0; 5642 } 5643 5644 req = tp->fastopen_rsk; 5645 if (req != NULL) { 5646 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5647 sk->sk_state != TCP_FIN_WAIT1); 5648 5649 if (tcp_check_req(sk, skb, req, NULL, true) == NULL) 5650 goto discard; 5651 } 5652 5653 if (!th->ack && !th->rst) 5654 goto discard; 5655 5656 if (!tcp_validate_incoming(sk, skb, th, 0)) 5657 return 0; 5658 5659 /* step 5: check the ACK field */ 5660 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5661 FLAG_UPDATE_TS_RECENT) > 0; 5662 5663 switch (sk->sk_state) { 5664 case TCP_SYN_RECV: 5665 if (!acceptable) 5666 return 1; 5667 5668 /* Once we leave TCP_SYN_RECV, we no longer need req 5669 * so release it. 5670 */ 5671 if (req) { 5672 tp->total_retrans = req->num_retrans; 5673 reqsk_fastopen_remove(sk, req, false); 5674 } else { 5675 /* Make sure socket is routed, for correct metrics. */ 5676 icsk->icsk_af_ops->rebuild_header(sk); 5677 tcp_init_congestion_control(sk); 5678 5679 tcp_mtup_init(sk); 5680 tcp_init_buffer_space(sk); 5681 tp->copied_seq = tp->rcv_nxt; 5682 } 5683 smp_mb(); 5684 tcp_set_state(sk, TCP_ESTABLISHED); 5685 sk->sk_state_change(sk); 5686 5687 /* Note, that this wakeup is only for marginal crossed SYN case. 5688 * Passively open sockets are not waked up, because 5689 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 5690 */ 5691 if (sk->sk_socket) 5692 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5693 5694 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5695 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 5696 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5697 tcp_synack_rtt_meas(sk, req); 5698 5699 if (tp->rx_opt.tstamp_ok) 5700 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5701 5702 if (req) { 5703 /* Re-arm the timer because data may have been sent out. 5704 * This is similar to the regular data transmission case 5705 * when new data has just been ack'ed. 5706 * 5707 * (TFO) - we could try to be more aggressive and 5708 * retransmitting any data sooner based on when they 5709 * are sent out. 5710 */ 5711 tcp_rearm_rto(sk); 5712 } else 5713 tcp_init_metrics(sk); 5714 5715 tcp_update_pacing_rate(sk); 5716 5717 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 5718 tp->lsndtime = tcp_time_stamp; 5719 5720 tcp_initialize_rcv_mss(sk); 5721 tcp_fast_path_on(tp); 5722 break; 5723 5724 case TCP_FIN_WAIT1: { 5725 struct dst_entry *dst; 5726 int tmo; 5727 5728 /* If we enter the TCP_FIN_WAIT1 state and we are a 5729 * Fast Open socket and this is the first acceptable 5730 * ACK we have received, this would have acknowledged 5731 * our SYNACK so stop the SYNACK timer. 5732 */ 5733 if (req != NULL) { 5734 /* Return RST if ack_seq is invalid. 5735 * Note that RFC793 only says to generate a 5736 * DUPACK for it but for TCP Fast Open it seems 5737 * better to treat this case like TCP_SYN_RECV 5738 * above. 5739 */ 5740 if (!acceptable) 5741 return 1; 5742 /* We no longer need the request sock. */ 5743 reqsk_fastopen_remove(sk, req, false); 5744 tcp_rearm_rto(sk); 5745 } 5746 if (tp->snd_una != tp->write_seq) 5747 break; 5748 5749 tcp_set_state(sk, TCP_FIN_WAIT2); 5750 sk->sk_shutdown |= SEND_SHUTDOWN; 5751 5752 dst = __sk_dst_get(sk); 5753 if (dst) 5754 dst_confirm(dst); 5755 5756 if (!sock_flag(sk, SOCK_DEAD)) { 5757 /* Wake up lingering close() */ 5758 sk->sk_state_change(sk); 5759 break; 5760 } 5761 5762 if (tp->linger2 < 0 || 5763 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5764 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 5765 tcp_done(sk); 5766 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5767 return 1; 5768 } 5769 5770 tmo = tcp_fin_time(sk); 5771 if (tmo > TCP_TIMEWAIT_LEN) { 5772 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 5773 } else if (th->fin || sock_owned_by_user(sk)) { 5774 /* Bad case. We could lose such FIN otherwise. 5775 * It is not a big problem, but it looks confusing 5776 * and not so rare event. We still can lose it now, 5777 * if it spins in bh_lock_sock(), but it is really 5778 * marginal case. 5779 */ 5780 inet_csk_reset_keepalive_timer(sk, tmo); 5781 } else { 5782 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 5783 goto discard; 5784 } 5785 break; 5786 } 5787 5788 case TCP_CLOSING: 5789 if (tp->snd_una == tp->write_seq) { 5790 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 5791 goto discard; 5792 } 5793 break; 5794 5795 case TCP_LAST_ACK: 5796 if (tp->snd_una == tp->write_seq) { 5797 tcp_update_metrics(sk); 5798 tcp_done(sk); 5799 goto discard; 5800 } 5801 break; 5802 } 5803 5804 /* step 6: check the URG bit */ 5805 tcp_urg(sk, skb, th); 5806 5807 /* step 7: process the segment text */ 5808 switch (sk->sk_state) { 5809 case TCP_CLOSE_WAIT: 5810 case TCP_CLOSING: 5811 case TCP_LAST_ACK: 5812 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 5813 break; 5814 case TCP_FIN_WAIT1: 5815 case TCP_FIN_WAIT2: 5816 /* RFC 793 says to queue data in these states, 5817 * RFC 1122 says we MUST send a reset. 5818 * BSD 4.4 also does reset. 5819 */ 5820 if (sk->sk_shutdown & RCV_SHUTDOWN) { 5821 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5822 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 5823 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5824 tcp_reset(sk); 5825 return 1; 5826 } 5827 } 5828 /* Fall through */ 5829 case TCP_ESTABLISHED: 5830 tcp_data_queue(sk, skb); 5831 queued = 1; 5832 break; 5833 } 5834 5835 /* tcp_data could move socket to TIME-WAIT */ 5836 if (sk->sk_state != TCP_CLOSE) { 5837 tcp_data_snd_check(sk); 5838 tcp_ack_snd_check(sk); 5839 } 5840 5841 if (!queued) { 5842 discard: 5843 __kfree_skb(skb); 5844 } 5845 return 0; 5846 } 5847 EXPORT_SYMBOL(tcp_rcv_state_process); 5848