xref: /openbmc/linux/net/ipv4/tcp_input.c (revision f7777dcc)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #define pr_fmt(fmt) "TCP: " fmt
65 
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
77 
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88 
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 100;
91 
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
96 
97 int sysctl_tcp_thin_dupack __read_mostly;
98 
99 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
100 int sysctl_tcp_early_retrans __read_mostly = 3;
101 
102 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
103 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
104 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
105 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
106 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
107 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
108 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
109 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
111 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
114 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
115 
116 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
120 
121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
123 
124 /* Adapt the MSS value used to make delayed ack decision to the
125  * real world.
126  */
127 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
128 {
129 	struct inet_connection_sock *icsk = inet_csk(sk);
130 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
131 	unsigned int len;
132 
133 	icsk->icsk_ack.last_seg_size = 0;
134 
135 	/* skb->len may jitter because of SACKs, even if peer
136 	 * sends good full-sized frames.
137 	 */
138 	len = skb_shinfo(skb)->gso_size ? : skb->len;
139 	if (len >= icsk->icsk_ack.rcv_mss) {
140 		icsk->icsk_ack.rcv_mss = len;
141 	} else {
142 		/* Otherwise, we make more careful check taking into account,
143 		 * that SACKs block is variable.
144 		 *
145 		 * "len" is invariant segment length, including TCP header.
146 		 */
147 		len += skb->data - skb_transport_header(skb);
148 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
149 		    /* If PSH is not set, packet should be
150 		     * full sized, provided peer TCP is not badly broken.
151 		     * This observation (if it is correct 8)) allows
152 		     * to handle super-low mtu links fairly.
153 		     */
154 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
155 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
156 			/* Subtract also invariant (if peer is RFC compliant),
157 			 * tcp header plus fixed timestamp option length.
158 			 * Resulting "len" is MSS free of SACK jitter.
159 			 */
160 			len -= tcp_sk(sk)->tcp_header_len;
161 			icsk->icsk_ack.last_seg_size = len;
162 			if (len == lss) {
163 				icsk->icsk_ack.rcv_mss = len;
164 				return;
165 			}
166 		}
167 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
168 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
169 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
170 	}
171 }
172 
173 static void tcp_incr_quickack(struct sock *sk)
174 {
175 	struct inet_connection_sock *icsk = inet_csk(sk);
176 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
177 
178 	if (quickacks == 0)
179 		quickacks = 2;
180 	if (quickacks > icsk->icsk_ack.quick)
181 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
182 }
183 
184 static void tcp_enter_quickack_mode(struct sock *sk)
185 {
186 	struct inet_connection_sock *icsk = inet_csk(sk);
187 	tcp_incr_quickack(sk);
188 	icsk->icsk_ack.pingpong = 0;
189 	icsk->icsk_ack.ato = TCP_ATO_MIN;
190 }
191 
192 /* Send ACKs quickly, if "quick" count is not exhausted
193  * and the session is not interactive.
194  */
195 
196 static inline bool tcp_in_quickack_mode(const struct sock *sk)
197 {
198 	const struct inet_connection_sock *icsk = inet_csk(sk);
199 
200 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
201 }
202 
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204 {
205 	if (tp->ecn_flags & TCP_ECN_OK)
206 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207 }
208 
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
210 {
211 	if (tcp_hdr(skb)->cwr)
212 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 }
214 
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216 {
217 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218 }
219 
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
221 {
222 	if (!(tp->ecn_flags & TCP_ECN_OK))
223 		return;
224 
225 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
226 	case INET_ECN_NOT_ECT:
227 		/* Funny extension: if ECT is not set on a segment,
228 		 * and we already seen ECT on a previous segment,
229 		 * it is probably a retransmit.
230 		 */
231 		if (tp->ecn_flags & TCP_ECN_SEEN)
232 			tcp_enter_quickack_mode((struct sock *)tp);
233 		break;
234 	case INET_ECN_CE:
235 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
236 			/* Better not delay acks, sender can have a very low cwnd */
237 			tcp_enter_quickack_mode((struct sock *)tp);
238 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
239 		}
240 		/* fallinto */
241 	default:
242 		tp->ecn_flags |= TCP_ECN_SEEN;
243 	}
244 }
245 
246 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
247 {
248 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
249 		tp->ecn_flags &= ~TCP_ECN_OK;
250 }
251 
252 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
253 {
254 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
255 		tp->ecn_flags &= ~TCP_ECN_OK;
256 }
257 
258 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
259 {
260 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
261 		return true;
262 	return false;
263 }
264 
265 /* Buffer size and advertised window tuning.
266  *
267  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
268  */
269 
270 static void tcp_fixup_sndbuf(struct sock *sk)
271 {
272 	int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
273 
274 	sndmem *= TCP_INIT_CWND;
275 	if (sk->sk_sndbuf < sndmem)
276 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
277 }
278 
279 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
280  *
281  * All tcp_full_space() is split to two parts: "network" buffer, allocated
282  * forward and advertised in receiver window (tp->rcv_wnd) and
283  * "application buffer", required to isolate scheduling/application
284  * latencies from network.
285  * window_clamp is maximal advertised window. It can be less than
286  * tcp_full_space(), in this case tcp_full_space() - window_clamp
287  * is reserved for "application" buffer. The less window_clamp is
288  * the smoother our behaviour from viewpoint of network, but the lower
289  * throughput and the higher sensitivity of the connection to losses. 8)
290  *
291  * rcv_ssthresh is more strict window_clamp used at "slow start"
292  * phase to predict further behaviour of this connection.
293  * It is used for two goals:
294  * - to enforce header prediction at sender, even when application
295  *   requires some significant "application buffer". It is check #1.
296  * - to prevent pruning of receive queue because of misprediction
297  *   of receiver window. Check #2.
298  *
299  * The scheme does not work when sender sends good segments opening
300  * window and then starts to feed us spaghetti. But it should work
301  * in common situations. Otherwise, we have to rely on queue collapsing.
302  */
303 
304 /* Slow part of check#2. */
305 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
306 {
307 	struct tcp_sock *tp = tcp_sk(sk);
308 	/* Optimize this! */
309 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
310 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
311 
312 	while (tp->rcv_ssthresh <= window) {
313 		if (truesize <= skb->len)
314 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
315 
316 		truesize >>= 1;
317 		window >>= 1;
318 	}
319 	return 0;
320 }
321 
322 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
323 {
324 	struct tcp_sock *tp = tcp_sk(sk);
325 
326 	/* Check #1 */
327 	if (tp->rcv_ssthresh < tp->window_clamp &&
328 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
329 	    !sk_under_memory_pressure(sk)) {
330 		int incr;
331 
332 		/* Check #2. Increase window, if skb with such overhead
333 		 * will fit to rcvbuf in future.
334 		 */
335 		if (tcp_win_from_space(skb->truesize) <= skb->len)
336 			incr = 2 * tp->advmss;
337 		else
338 			incr = __tcp_grow_window(sk, skb);
339 
340 		if (incr) {
341 			incr = max_t(int, incr, 2 * skb->len);
342 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
343 					       tp->window_clamp);
344 			inet_csk(sk)->icsk_ack.quick |= 1;
345 		}
346 	}
347 }
348 
349 /* 3. Tuning rcvbuf, when connection enters established state. */
350 static void tcp_fixup_rcvbuf(struct sock *sk)
351 {
352 	u32 mss = tcp_sk(sk)->advmss;
353 	int rcvmem;
354 
355 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
356 		 tcp_default_init_rwnd(mss);
357 
358 	if (sk->sk_rcvbuf < rcvmem)
359 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
360 }
361 
362 /* 4. Try to fixup all. It is made immediately after connection enters
363  *    established state.
364  */
365 void tcp_init_buffer_space(struct sock *sk)
366 {
367 	struct tcp_sock *tp = tcp_sk(sk);
368 	int maxwin;
369 
370 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
371 		tcp_fixup_rcvbuf(sk);
372 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
373 		tcp_fixup_sndbuf(sk);
374 
375 	tp->rcvq_space.space = tp->rcv_wnd;
376 
377 	maxwin = tcp_full_space(sk);
378 
379 	if (tp->window_clamp >= maxwin) {
380 		tp->window_clamp = maxwin;
381 
382 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
383 			tp->window_clamp = max(maxwin -
384 					       (maxwin >> sysctl_tcp_app_win),
385 					       4 * tp->advmss);
386 	}
387 
388 	/* Force reservation of one segment. */
389 	if (sysctl_tcp_app_win &&
390 	    tp->window_clamp > 2 * tp->advmss &&
391 	    tp->window_clamp + tp->advmss > maxwin)
392 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
393 
394 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
395 	tp->snd_cwnd_stamp = tcp_time_stamp;
396 }
397 
398 /* 5. Recalculate window clamp after socket hit its memory bounds. */
399 static void tcp_clamp_window(struct sock *sk)
400 {
401 	struct tcp_sock *tp = tcp_sk(sk);
402 	struct inet_connection_sock *icsk = inet_csk(sk);
403 
404 	icsk->icsk_ack.quick = 0;
405 
406 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
407 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
408 	    !sk_under_memory_pressure(sk) &&
409 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
410 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
411 				    sysctl_tcp_rmem[2]);
412 	}
413 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
414 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
415 }
416 
417 /* Initialize RCV_MSS value.
418  * RCV_MSS is an our guess about MSS used by the peer.
419  * We haven't any direct information about the MSS.
420  * It's better to underestimate the RCV_MSS rather than overestimate.
421  * Overestimations make us ACKing less frequently than needed.
422  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
423  */
424 void tcp_initialize_rcv_mss(struct sock *sk)
425 {
426 	const struct tcp_sock *tp = tcp_sk(sk);
427 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
428 
429 	hint = min(hint, tp->rcv_wnd / 2);
430 	hint = min(hint, TCP_MSS_DEFAULT);
431 	hint = max(hint, TCP_MIN_MSS);
432 
433 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
434 }
435 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
436 
437 /* Receiver "autotuning" code.
438  *
439  * The algorithm for RTT estimation w/o timestamps is based on
440  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
441  * <http://public.lanl.gov/radiant/pubs.html#DRS>
442  *
443  * More detail on this code can be found at
444  * <http://staff.psc.edu/jheffner/>,
445  * though this reference is out of date.  A new paper
446  * is pending.
447  */
448 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
449 {
450 	u32 new_sample = tp->rcv_rtt_est.rtt;
451 	long m = sample;
452 
453 	if (m == 0)
454 		m = 1;
455 
456 	if (new_sample != 0) {
457 		/* If we sample in larger samples in the non-timestamp
458 		 * case, we could grossly overestimate the RTT especially
459 		 * with chatty applications or bulk transfer apps which
460 		 * are stalled on filesystem I/O.
461 		 *
462 		 * Also, since we are only going for a minimum in the
463 		 * non-timestamp case, we do not smooth things out
464 		 * else with timestamps disabled convergence takes too
465 		 * long.
466 		 */
467 		if (!win_dep) {
468 			m -= (new_sample >> 3);
469 			new_sample += m;
470 		} else {
471 			m <<= 3;
472 			if (m < new_sample)
473 				new_sample = m;
474 		}
475 	} else {
476 		/* No previous measure. */
477 		new_sample = m << 3;
478 	}
479 
480 	if (tp->rcv_rtt_est.rtt != new_sample)
481 		tp->rcv_rtt_est.rtt = new_sample;
482 }
483 
484 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
485 {
486 	if (tp->rcv_rtt_est.time == 0)
487 		goto new_measure;
488 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
489 		return;
490 	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
491 
492 new_measure:
493 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
494 	tp->rcv_rtt_est.time = tcp_time_stamp;
495 }
496 
497 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
498 					  const struct sk_buff *skb)
499 {
500 	struct tcp_sock *tp = tcp_sk(sk);
501 	if (tp->rx_opt.rcv_tsecr &&
502 	    (TCP_SKB_CB(skb)->end_seq -
503 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
504 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
505 }
506 
507 /*
508  * This function should be called every time data is copied to user space.
509  * It calculates the appropriate TCP receive buffer space.
510  */
511 void tcp_rcv_space_adjust(struct sock *sk)
512 {
513 	struct tcp_sock *tp = tcp_sk(sk);
514 	int time;
515 	int space;
516 
517 	if (tp->rcvq_space.time == 0)
518 		goto new_measure;
519 
520 	time = tcp_time_stamp - tp->rcvq_space.time;
521 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
522 		return;
523 
524 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
525 
526 	space = max(tp->rcvq_space.space, space);
527 
528 	if (tp->rcvq_space.space != space) {
529 		int rcvmem;
530 
531 		tp->rcvq_space.space = space;
532 
533 		if (sysctl_tcp_moderate_rcvbuf &&
534 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
535 			int new_clamp = space;
536 
537 			/* Receive space grows, normalize in order to
538 			 * take into account packet headers and sk_buff
539 			 * structure overhead.
540 			 */
541 			space /= tp->advmss;
542 			if (!space)
543 				space = 1;
544 			rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
545 			while (tcp_win_from_space(rcvmem) < tp->advmss)
546 				rcvmem += 128;
547 			space *= rcvmem;
548 			space = min(space, sysctl_tcp_rmem[2]);
549 			if (space > sk->sk_rcvbuf) {
550 				sk->sk_rcvbuf = space;
551 
552 				/* Make the window clamp follow along.  */
553 				tp->window_clamp = new_clamp;
554 			}
555 		}
556 	}
557 
558 new_measure:
559 	tp->rcvq_space.seq = tp->copied_seq;
560 	tp->rcvq_space.time = tcp_time_stamp;
561 }
562 
563 /* There is something which you must keep in mind when you analyze the
564  * behavior of the tp->ato delayed ack timeout interval.  When a
565  * connection starts up, we want to ack as quickly as possible.  The
566  * problem is that "good" TCP's do slow start at the beginning of data
567  * transmission.  The means that until we send the first few ACK's the
568  * sender will sit on his end and only queue most of his data, because
569  * he can only send snd_cwnd unacked packets at any given time.  For
570  * each ACK we send, he increments snd_cwnd and transmits more of his
571  * queue.  -DaveM
572  */
573 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
574 {
575 	struct tcp_sock *tp = tcp_sk(sk);
576 	struct inet_connection_sock *icsk = inet_csk(sk);
577 	u32 now;
578 
579 	inet_csk_schedule_ack(sk);
580 
581 	tcp_measure_rcv_mss(sk, skb);
582 
583 	tcp_rcv_rtt_measure(tp);
584 
585 	now = tcp_time_stamp;
586 
587 	if (!icsk->icsk_ack.ato) {
588 		/* The _first_ data packet received, initialize
589 		 * delayed ACK engine.
590 		 */
591 		tcp_incr_quickack(sk);
592 		icsk->icsk_ack.ato = TCP_ATO_MIN;
593 	} else {
594 		int m = now - icsk->icsk_ack.lrcvtime;
595 
596 		if (m <= TCP_ATO_MIN / 2) {
597 			/* The fastest case is the first. */
598 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
599 		} else if (m < icsk->icsk_ack.ato) {
600 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
601 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
602 				icsk->icsk_ack.ato = icsk->icsk_rto;
603 		} else if (m > icsk->icsk_rto) {
604 			/* Too long gap. Apparently sender failed to
605 			 * restart window, so that we send ACKs quickly.
606 			 */
607 			tcp_incr_quickack(sk);
608 			sk_mem_reclaim(sk);
609 		}
610 	}
611 	icsk->icsk_ack.lrcvtime = now;
612 
613 	TCP_ECN_check_ce(tp, skb);
614 
615 	if (skb->len >= 128)
616 		tcp_grow_window(sk, skb);
617 }
618 
619 /* Called to compute a smoothed rtt estimate. The data fed to this
620  * routine either comes from timestamps, or from segments that were
621  * known _not_ to have been retransmitted [see Karn/Partridge
622  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
623  * piece by Van Jacobson.
624  * NOTE: the next three routines used to be one big routine.
625  * To save cycles in the RFC 1323 implementation it was better to break
626  * it up into three procedures. -- erics
627  */
628 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
629 {
630 	struct tcp_sock *tp = tcp_sk(sk);
631 	long m = mrtt; /* RTT */
632 
633 	/*	The following amusing code comes from Jacobson's
634 	 *	article in SIGCOMM '88.  Note that rtt and mdev
635 	 *	are scaled versions of rtt and mean deviation.
636 	 *	This is designed to be as fast as possible
637 	 *	m stands for "measurement".
638 	 *
639 	 *	On a 1990 paper the rto value is changed to:
640 	 *	RTO = rtt + 4 * mdev
641 	 *
642 	 * Funny. This algorithm seems to be very broken.
643 	 * These formulae increase RTO, when it should be decreased, increase
644 	 * too slowly, when it should be increased quickly, decrease too quickly
645 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
646 	 * does not matter how to _calculate_ it. Seems, it was trap
647 	 * that VJ failed to avoid. 8)
648 	 */
649 	if (m == 0)
650 		m = 1;
651 	if (tp->srtt != 0) {
652 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
653 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
654 		if (m < 0) {
655 			m = -m;		/* m is now abs(error) */
656 			m -= (tp->mdev >> 2);   /* similar update on mdev */
657 			/* This is similar to one of Eifel findings.
658 			 * Eifel blocks mdev updates when rtt decreases.
659 			 * This solution is a bit different: we use finer gain
660 			 * for mdev in this case (alpha*beta).
661 			 * Like Eifel it also prevents growth of rto,
662 			 * but also it limits too fast rto decreases,
663 			 * happening in pure Eifel.
664 			 */
665 			if (m > 0)
666 				m >>= 3;
667 		} else {
668 			m -= (tp->mdev >> 2);   /* similar update on mdev */
669 		}
670 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
671 		if (tp->mdev > tp->mdev_max) {
672 			tp->mdev_max = tp->mdev;
673 			if (tp->mdev_max > tp->rttvar)
674 				tp->rttvar = tp->mdev_max;
675 		}
676 		if (after(tp->snd_una, tp->rtt_seq)) {
677 			if (tp->mdev_max < tp->rttvar)
678 				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
679 			tp->rtt_seq = tp->snd_nxt;
680 			tp->mdev_max = tcp_rto_min(sk);
681 		}
682 	} else {
683 		/* no previous measure. */
684 		tp->srtt = m << 3;	/* take the measured time to be rtt */
685 		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
686 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
687 		tp->rtt_seq = tp->snd_nxt;
688 	}
689 }
690 
691 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
692  * Note: TCP stack does not yet implement pacing.
693  * FQ packet scheduler can be used to implement cheap but effective
694  * TCP pacing, to smooth the burst on large writes when packets
695  * in flight is significantly lower than cwnd (or rwin)
696  */
697 static void tcp_update_pacing_rate(struct sock *sk)
698 {
699 	const struct tcp_sock *tp = tcp_sk(sk);
700 	u64 rate;
701 
702 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
703 	rate = (u64)tp->mss_cache * 2 * (HZ << 3);
704 
705 	rate *= max(tp->snd_cwnd, tp->packets_out);
706 
707 	/* Correction for small srtt : minimum srtt being 8 (1 jiffy << 3),
708 	 * be conservative and assume srtt = 1 (125 us instead of 1.25 ms)
709 	 * We probably need usec resolution in the future.
710 	 * Note: This also takes care of possible srtt=0 case,
711 	 * when tcp_rtt_estimator() was not yet called.
712 	 */
713 	if (tp->srtt > 8 + 2)
714 		do_div(rate, tp->srtt);
715 
716 	sk->sk_pacing_rate = min_t(u64, rate, ~0U);
717 }
718 
719 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
720  * routine referred to above.
721  */
722 void tcp_set_rto(struct sock *sk)
723 {
724 	const struct tcp_sock *tp = tcp_sk(sk);
725 	/* Old crap is replaced with new one. 8)
726 	 *
727 	 * More seriously:
728 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
729 	 *    It cannot be less due to utterly erratic ACK generation made
730 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
731 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
732 	 *    is invisible. Actually, Linux-2.4 also generates erratic
733 	 *    ACKs in some circumstances.
734 	 */
735 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
736 
737 	/* 2. Fixups made earlier cannot be right.
738 	 *    If we do not estimate RTO correctly without them,
739 	 *    all the algo is pure shit and should be replaced
740 	 *    with correct one. It is exactly, which we pretend to do.
741 	 */
742 
743 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
744 	 * guarantees that rto is higher.
745 	 */
746 	tcp_bound_rto(sk);
747 }
748 
749 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
750 {
751 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
752 
753 	if (!cwnd)
754 		cwnd = TCP_INIT_CWND;
755 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
756 }
757 
758 /*
759  * Packet counting of FACK is based on in-order assumptions, therefore TCP
760  * disables it when reordering is detected
761  */
762 void tcp_disable_fack(struct tcp_sock *tp)
763 {
764 	/* RFC3517 uses different metric in lost marker => reset on change */
765 	if (tcp_is_fack(tp))
766 		tp->lost_skb_hint = NULL;
767 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
768 }
769 
770 /* Take a notice that peer is sending D-SACKs */
771 static void tcp_dsack_seen(struct tcp_sock *tp)
772 {
773 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
774 }
775 
776 static void tcp_update_reordering(struct sock *sk, const int metric,
777 				  const int ts)
778 {
779 	struct tcp_sock *tp = tcp_sk(sk);
780 	if (metric > tp->reordering) {
781 		int mib_idx;
782 
783 		tp->reordering = min(TCP_MAX_REORDERING, metric);
784 
785 		/* This exciting event is worth to be remembered. 8) */
786 		if (ts)
787 			mib_idx = LINUX_MIB_TCPTSREORDER;
788 		else if (tcp_is_reno(tp))
789 			mib_idx = LINUX_MIB_TCPRENOREORDER;
790 		else if (tcp_is_fack(tp))
791 			mib_idx = LINUX_MIB_TCPFACKREORDER;
792 		else
793 			mib_idx = LINUX_MIB_TCPSACKREORDER;
794 
795 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
796 #if FASTRETRANS_DEBUG > 1
797 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
798 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
799 			 tp->reordering,
800 			 tp->fackets_out,
801 			 tp->sacked_out,
802 			 tp->undo_marker ? tp->undo_retrans : 0);
803 #endif
804 		tcp_disable_fack(tp);
805 	}
806 
807 	if (metric > 0)
808 		tcp_disable_early_retrans(tp);
809 }
810 
811 /* This must be called before lost_out is incremented */
812 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
813 {
814 	if ((tp->retransmit_skb_hint == NULL) ||
815 	    before(TCP_SKB_CB(skb)->seq,
816 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
817 		tp->retransmit_skb_hint = skb;
818 
819 	if (!tp->lost_out ||
820 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
821 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
822 }
823 
824 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
825 {
826 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
827 		tcp_verify_retransmit_hint(tp, skb);
828 
829 		tp->lost_out += tcp_skb_pcount(skb);
830 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
831 	}
832 }
833 
834 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
835 					    struct sk_buff *skb)
836 {
837 	tcp_verify_retransmit_hint(tp, skb);
838 
839 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
840 		tp->lost_out += tcp_skb_pcount(skb);
841 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
842 	}
843 }
844 
845 /* This procedure tags the retransmission queue when SACKs arrive.
846  *
847  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
848  * Packets in queue with these bits set are counted in variables
849  * sacked_out, retrans_out and lost_out, correspondingly.
850  *
851  * Valid combinations are:
852  * Tag  InFlight	Description
853  * 0	1		- orig segment is in flight.
854  * S	0		- nothing flies, orig reached receiver.
855  * L	0		- nothing flies, orig lost by net.
856  * R	2		- both orig and retransmit are in flight.
857  * L|R	1		- orig is lost, retransmit is in flight.
858  * S|R  1		- orig reached receiver, retrans is still in flight.
859  * (L|S|R is logically valid, it could occur when L|R is sacked,
860  *  but it is equivalent to plain S and code short-curcuits it to S.
861  *  L|S is logically invalid, it would mean -1 packet in flight 8))
862  *
863  * These 6 states form finite state machine, controlled by the following events:
864  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
865  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
866  * 3. Loss detection event of two flavors:
867  *	A. Scoreboard estimator decided the packet is lost.
868  *	   A'. Reno "three dupacks" marks head of queue lost.
869  *	   A''. Its FACK modification, head until snd.fack is lost.
870  *	B. SACK arrives sacking SND.NXT at the moment, when the
871  *	   segment was retransmitted.
872  * 4. D-SACK added new rule: D-SACK changes any tag to S.
873  *
874  * It is pleasant to note, that state diagram turns out to be commutative,
875  * so that we are allowed not to be bothered by order of our actions,
876  * when multiple events arrive simultaneously. (see the function below).
877  *
878  * Reordering detection.
879  * --------------------
880  * Reordering metric is maximal distance, which a packet can be displaced
881  * in packet stream. With SACKs we can estimate it:
882  *
883  * 1. SACK fills old hole and the corresponding segment was not
884  *    ever retransmitted -> reordering. Alas, we cannot use it
885  *    when segment was retransmitted.
886  * 2. The last flaw is solved with D-SACK. D-SACK arrives
887  *    for retransmitted and already SACKed segment -> reordering..
888  * Both of these heuristics are not used in Loss state, when we cannot
889  * account for retransmits accurately.
890  *
891  * SACK block validation.
892  * ----------------------
893  *
894  * SACK block range validation checks that the received SACK block fits to
895  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
896  * Note that SND.UNA is not included to the range though being valid because
897  * it means that the receiver is rather inconsistent with itself reporting
898  * SACK reneging when it should advance SND.UNA. Such SACK block this is
899  * perfectly valid, however, in light of RFC2018 which explicitly states
900  * that "SACK block MUST reflect the newest segment.  Even if the newest
901  * segment is going to be discarded ...", not that it looks very clever
902  * in case of head skb. Due to potentional receiver driven attacks, we
903  * choose to avoid immediate execution of a walk in write queue due to
904  * reneging and defer head skb's loss recovery to standard loss recovery
905  * procedure that will eventually trigger (nothing forbids us doing this).
906  *
907  * Implements also blockage to start_seq wrap-around. Problem lies in the
908  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
909  * there's no guarantee that it will be before snd_nxt (n). The problem
910  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
911  * wrap (s_w):
912  *
913  *         <- outs wnd ->                          <- wrapzone ->
914  *         u     e      n                         u_w   e_w  s n_w
915  *         |     |      |                          |     |   |  |
916  * |<------------+------+----- TCP seqno space --------------+---------->|
917  * ...-- <2^31 ->|                                           |<--------...
918  * ...---- >2^31 ------>|                                    |<--------...
919  *
920  * Current code wouldn't be vulnerable but it's better still to discard such
921  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
922  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
923  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
924  * equal to the ideal case (infinite seqno space without wrap caused issues).
925  *
926  * With D-SACK the lower bound is extended to cover sequence space below
927  * SND.UNA down to undo_marker, which is the last point of interest. Yet
928  * again, D-SACK block must not to go across snd_una (for the same reason as
929  * for the normal SACK blocks, explained above). But there all simplicity
930  * ends, TCP might receive valid D-SACKs below that. As long as they reside
931  * fully below undo_marker they do not affect behavior in anyway and can
932  * therefore be safely ignored. In rare cases (which are more or less
933  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
934  * fragmentation and packet reordering past skb's retransmission. To consider
935  * them correctly, the acceptable range must be extended even more though
936  * the exact amount is rather hard to quantify. However, tp->max_window can
937  * be used as an exaggerated estimate.
938  */
939 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
940 				   u32 start_seq, u32 end_seq)
941 {
942 	/* Too far in future, or reversed (interpretation is ambiguous) */
943 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
944 		return false;
945 
946 	/* Nasty start_seq wrap-around check (see comments above) */
947 	if (!before(start_seq, tp->snd_nxt))
948 		return false;
949 
950 	/* In outstanding window? ...This is valid exit for D-SACKs too.
951 	 * start_seq == snd_una is non-sensical (see comments above)
952 	 */
953 	if (after(start_seq, tp->snd_una))
954 		return true;
955 
956 	if (!is_dsack || !tp->undo_marker)
957 		return false;
958 
959 	/* ...Then it's D-SACK, and must reside below snd_una completely */
960 	if (after(end_seq, tp->snd_una))
961 		return false;
962 
963 	if (!before(start_seq, tp->undo_marker))
964 		return true;
965 
966 	/* Too old */
967 	if (!after(end_seq, tp->undo_marker))
968 		return false;
969 
970 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
971 	 *   start_seq < undo_marker and end_seq >= undo_marker.
972 	 */
973 	return !before(start_seq, end_seq - tp->max_window);
974 }
975 
976 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
977  * Event "B". Later note: FACK people cheated me again 8), we have to account
978  * for reordering! Ugly, but should help.
979  *
980  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
981  * less than what is now known to be received by the other end (derived from
982  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
983  * retransmitted skbs to avoid some costly processing per ACKs.
984  */
985 static void tcp_mark_lost_retrans(struct sock *sk)
986 {
987 	const struct inet_connection_sock *icsk = inet_csk(sk);
988 	struct tcp_sock *tp = tcp_sk(sk);
989 	struct sk_buff *skb;
990 	int cnt = 0;
991 	u32 new_low_seq = tp->snd_nxt;
992 	u32 received_upto = tcp_highest_sack_seq(tp);
993 
994 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
995 	    !after(received_upto, tp->lost_retrans_low) ||
996 	    icsk->icsk_ca_state != TCP_CA_Recovery)
997 		return;
998 
999 	tcp_for_write_queue(skb, sk) {
1000 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1001 
1002 		if (skb == tcp_send_head(sk))
1003 			break;
1004 		if (cnt == tp->retrans_out)
1005 			break;
1006 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1007 			continue;
1008 
1009 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1010 			continue;
1011 
1012 		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1013 		 * constraint here (see above) but figuring out that at
1014 		 * least tp->reordering SACK blocks reside between ack_seq
1015 		 * and received_upto is not easy task to do cheaply with
1016 		 * the available datastructures.
1017 		 *
1018 		 * Whether FACK should check here for tp->reordering segs
1019 		 * in-between one could argue for either way (it would be
1020 		 * rather simple to implement as we could count fack_count
1021 		 * during the walk and do tp->fackets_out - fack_count).
1022 		 */
1023 		if (after(received_upto, ack_seq)) {
1024 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1025 			tp->retrans_out -= tcp_skb_pcount(skb);
1026 
1027 			tcp_skb_mark_lost_uncond_verify(tp, skb);
1028 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1029 		} else {
1030 			if (before(ack_seq, new_low_seq))
1031 				new_low_seq = ack_seq;
1032 			cnt += tcp_skb_pcount(skb);
1033 		}
1034 	}
1035 
1036 	if (tp->retrans_out)
1037 		tp->lost_retrans_low = new_low_seq;
1038 }
1039 
1040 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1041 			    struct tcp_sack_block_wire *sp, int num_sacks,
1042 			    u32 prior_snd_una)
1043 {
1044 	struct tcp_sock *tp = tcp_sk(sk);
1045 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1046 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1047 	bool dup_sack = false;
1048 
1049 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1050 		dup_sack = true;
1051 		tcp_dsack_seen(tp);
1052 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1053 	} else if (num_sacks > 1) {
1054 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1055 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1056 
1057 		if (!after(end_seq_0, end_seq_1) &&
1058 		    !before(start_seq_0, start_seq_1)) {
1059 			dup_sack = true;
1060 			tcp_dsack_seen(tp);
1061 			NET_INC_STATS_BH(sock_net(sk),
1062 					LINUX_MIB_TCPDSACKOFORECV);
1063 		}
1064 	}
1065 
1066 	/* D-SACK for already forgotten data... Do dumb counting. */
1067 	if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1068 	    !after(end_seq_0, prior_snd_una) &&
1069 	    after(end_seq_0, tp->undo_marker))
1070 		tp->undo_retrans--;
1071 
1072 	return dup_sack;
1073 }
1074 
1075 struct tcp_sacktag_state {
1076 	int reord;
1077 	int fack_count;
1078 	int flag;
1079 	s32 rtt; /* RTT measured by SACKing never-retransmitted data */
1080 };
1081 
1082 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1083  * the incoming SACK may not exactly match but we can find smaller MSS
1084  * aligned portion of it that matches. Therefore we might need to fragment
1085  * which may fail and creates some hassle (caller must handle error case
1086  * returns).
1087  *
1088  * FIXME: this could be merged to shift decision code
1089  */
1090 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1091 				  u32 start_seq, u32 end_seq)
1092 {
1093 	int err;
1094 	bool in_sack;
1095 	unsigned int pkt_len;
1096 	unsigned int mss;
1097 
1098 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1099 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1100 
1101 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1102 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1103 		mss = tcp_skb_mss(skb);
1104 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1105 
1106 		if (!in_sack) {
1107 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1108 			if (pkt_len < mss)
1109 				pkt_len = mss;
1110 		} else {
1111 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1112 			if (pkt_len < mss)
1113 				return -EINVAL;
1114 		}
1115 
1116 		/* Round if necessary so that SACKs cover only full MSSes
1117 		 * and/or the remaining small portion (if present)
1118 		 */
1119 		if (pkt_len > mss) {
1120 			unsigned int new_len = (pkt_len / mss) * mss;
1121 			if (!in_sack && new_len < pkt_len) {
1122 				new_len += mss;
1123 				if (new_len > skb->len)
1124 					return 0;
1125 			}
1126 			pkt_len = new_len;
1127 		}
1128 		err = tcp_fragment(sk, skb, pkt_len, mss);
1129 		if (err < 0)
1130 			return err;
1131 	}
1132 
1133 	return in_sack;
1134 }
1135 
1136 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1137 static u8 tcp_sacktag_one(struct sock *sk,
1138 			  struct tcp_sacktag_state *state, u8 sacked,
1139 			  u32 start_seq, u32 end_seq,
1140 			  int dup_sack, int pcount, u32 xmit_time)
1141 {
1142 	struct tcp_sock *tp = tcp_sk(sk);
1143 	int fack_count = state->fack_count;
1144 
1145 	/* Account D-SACK for retransmitted packet. */
1146 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1147 		if (tp->undo_marker && tp->undo_retrans &&
1148 		    after(end_seq, tp->undo_marker))
1149 			tp->undo_retrans--;
1150 		if (sacked & TCPCB_SACKED_ACKED)
1151 			state->reord = min(fack_count, state->reord);
1152 	}
1153 
1154 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1155 	if (!after(end_seq, tp->snd_una))
1156 		return sacked;
1157 
1158 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1159 		if (sacked & TCPCB_SACKED_RETRANS) {
1160 			/* If the segment is not tagged as lost,
1161 			 * we do not clear RETRANS, believing
1162 			 * that retransmission is still in flight.
1163 			 */
1164 			if (sacked & TCPCB_LOST) {
1165 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1166 				tp->lost_out -= pcount;
1167 				tp->retrans_out -= pcount;
1168 			}
1169 		} else {
1170 			if (!(sacked & TCPCB_RETRANS)) {
1171 				/* New sack for not retransmitted frame,
1172 				 * which was in hole. It is reordering.
1173 				 */
1174 				if (before(start_seq,
1175 					   tcp_highest_sack_seq(tp)))
1176 					state->reord = min(fack_count,
1177 							   state->reord);
1178 				if (!after(end_seq, tp->high_seq))
1179 					state->flag |= FLAG_ORIG_SACK_ACKED;
1180 				/* Pick the earliest sequence sacked for RTT */
1181 				if (state->rtt < 0)
1182 					state->rtt = tcp_time_stamp - xmit_time;
1183 			}
1184 
1185 			if (sacked & TCPCB_LOST) {
1186 				sacked &= ~TCPCB_LOST;
1187 				tp->lost_out -= pcount;
1188 			}
1189 		}
1190 
1191 		sacked |= TCPCB_SACKED_ACKED;
1192 		state->flag |= FLAG_DATA_SACKED;
1193 		tp->sacked_out += pcount;
1194 
1195 		fack_count += pcount;
1196 
1197 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1198 		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1199 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1200 			tp->lost_cnt_hint += pcount;
1201 
1202 		if (fack_count > tp->fackets_out)
1203 			tp->fackets_out = fack_count;
1204 	}
1205 
1206 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1207 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1208 	 * are accounted above as well.
1209 	 */
1210 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1211 		sacked &= ~TCPCB_SACKED_RETRANS;
1212 		tp->retrans_out -= pcount;
1213 	}
1214 
1215 	return sacked;
1216 }
1217 
1218 /* Shift newly-SACKed bytes from this skb to the immediately previous
1219  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1220  */
1221 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1222 			    struct tcp_sacktag_state *state,
1223 			    unsigned int pcount, int shifted, int mss,
1224 			    bool dup_sack)
1225 {
1226 	struct tcp_sock *tp = tcp_sk(sk);
1227 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1228 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1229 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1230 
1231 	BUG_ON(!pcount);
1232 
1233 	/* Adjust counters and hints for the newly sacked sequence
1234 	 * range but discard the return value since prev is already
1235 	 * marked. We must tag the range first because the seq
1236 	 * advancement below implicitly advances
1237 	 * tcp_highest_sack_seq() when skb is highest_sack.
1238 	 */
1239 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1240 			start_seq, end_seq, dup_sack, pcount,
1241 			TCP_SKB_CB(skb)->when);
1242 
1243 	if (skb == tp->lost_skb_hint)
1244 		tp->lost_cnt_hint += pcount;
1245 
1246 	TCP_SKB_CB(prev)->end_seq += shifted;
1247 	TCP_SKB_CB(skb)->seq += shifted;
1248 
1249 	skb_shinfo(prev)->gso_segs += pcount;
1250 	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1251 	skb_shinfo(skb)->gso_segs -= pcount;
1252 
1253 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1254 	 * in theory this shouldn't be necessary but as long as DSACK
1255 	 * code can come after this skb later on it's better to keep
1256 	 * setting gso_size to something.
1257 	 */
1258 	if (!skb_shinfo(prev)->gso_size) {
1259 		skb_shinfo(prev)->gso_size = mss;
1260 		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1261 	}
1262 
1263 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1264 	if (skb_shinfo(skb)->gso_segs <= 1) {
1265 		skb_shinfo(skb)->gso_size = 0;
1266 		skb_shinfo(skb)->gso_type = 0;
1267 	}
1268 
1269 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1270 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1271 
1272 	if (skb->len > 0) {
1273 		BUG_ON(!tcp_skb_pcount(skb));
1274 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1275 		return false;
1276 	}
1277 
1278 	/* Whole SKB was eaten :-) */
1279 
1280 	if (skb == tp->retransmit_skb_hint)
1281 		tp->retransmit_skb_hint = prev;
1282 	if (skb == tp->lost_skb_hint) {
1283 		tp->lost_skb_hint = prev;
1284 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1285 	}
1286 
1287 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1288 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1289 		TCP_SKB_CB(prev)->end_seq++;
1290 
1291 	if (skb == tcp_highest_sack(sk))
1292 		tcp_advance_highest_sack(sk, skb);
1293 
1294 	tcp_unlink_write_queue(skb, sk);
1295 	sk_wmem_free_skb(sk, skb);
1296 
1297 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1298 
1299 	return true;
1300 }
1301 
1302 /* I wish gso_size would have a bit more sane initialization than
1303  * something-or-zero which complicates things
1304  */
1305 static int tcp_skb_seglen(const struct sk_buff *skb)
1306 {
1307 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1308 }
1309 
1310 /* Shifting pages past head area doesn't work */
1311 static int skb_can_shift(const struct sk_buff *skb)
1312 {
1313 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1314 }
1315 
1316 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1317  * skb.
1318  */
1319 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1320 					  struct tcp_sacktag_state *state,
1321 					  u32 start_seq, u32 end_seq,
1322 					  bool dup_sack)
1323 {
1324 	struct tcp_sock *tp = tcp_sk(sk);
1325 	struct sk_buff *prev;
1326 	int mss;
1327 	int pcount = 0;
1328 	int len;
1329 	int in_sack;
1330 
1331 	if (!sk_can_gso(sk))
1332 		goto fallback;
1333 
1334 	/* Normally R but no L won't result in plain S */
1335 	if (!dup_sack &&
1336 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1337 		goto fallback;
1338 	if (!skb_can_shift(skb))
1339 		goto fallback;
1340 	/* This frame is about to be dropped (was ACKed). */
1341 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1342 		goto fallback;
1343 
1344 	/* Can only happen with delayed DSACK + discard craziness */
1345 	if (unlikely(skb == tcp_write_queue_head(sk)))
1346 		goto fallback;
1347 	prev = tcp_write_queue_prev(sk, skb);
1348 
1349 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1350 		goto fallback;
1351 
1352 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1353 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1354 
1355 	if (in_sack) {
1356 		len = skb->len;
1357 		pcount = tcp_skb_pcount(skb);
1358 		mss = tcp_skb_seglen(skb);
1359 
1360 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1361 		 * drop this restriction as unnecessary
1362 		 */
1363 		if (mss != tcp_skb_seglen(prev))
1364 			goto fallback;
1365 	} else {
1366 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1367 			goto noop;
1368 		/* CHECKME: This is non-MSS split case only?, this will
1369 		 * cause skipped skbs due to advancing loop btw, original
1370 		 * has that feature too
1371 		 */
1372 		if (tcp_skb_pcount(skb) <= 1)
1373 			goto noop;
1374 
1375 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1376 		if (!in_sack) {
1377 			/* TODO: head merge to next could be attempted here
1378 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1379 			 * though it might not be worth of the additional hassle
1380 			 *
1381 			 * ...we can probably just fallback to what was done
1382 			 * previously. We could try merging non-SACKed ones
1383 			 * as well but it probably isn't going to buy off
1384 			 * because later SACKs might again split them, and
1385 			 * it would make skb timestamp tracking considerably
1386 			 * harder problem.
1387 			 */
1388 			goto fallback;
1389 		}
1390 
1391 		len = end_seq - TCP_SKB_CB(skb)->seq;
1392 		BUG_ON(len < 0);
1393 		BUG_ON(len > skb->len);
1394 
1395 		/* MSS boundaries should be honoured or else pcount will
1396 		 * severely break even though it makes things bit trickier.
1397 		 * Optimize common case to avoid most of the divides
1398 		 */
1399 		mss = tcp_skb_mss(skb);
1400 
1401 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1402 		 * drop this restriction as unnecessary
1403 		 */
1404 		if (mss != tcp_skb_seglen(prev))
1405 			goto fallback;
1406 
1407 		if (len == mss) {
1408 			pcount = 1;
1409 		} else if (len < mss) {
1410 			goto noop;
1411 		} else {
1412 			pcount = len / mss;
1413 			len = pcount * mss;
1414 		}
1415 	}
1416 
1417 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1418 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1419 		goto fallback;
1420 
1421 	if (!skb_shift(prev, skb, len))
1422 		goto fallback;
1423 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1424 		goto out;
1425 
1426 	/* Hole filled allows collapsing with the next as well, this is very
1427 	 * useful when hole on every nth skb pattern happens
1428 	 */
1429 	if (prev == tcp_write_queue_tail(sk))
1430 		goto out;
1431 	skb = tcp_write_queue_next(sk, prev);
1432 
1433 	if (!skb_can_shift(skb) ||
1434 	    (skb == tcp_send_head(sk)) ||
1435 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1436 	    (mss != tcp_skb_seglen(skb)))
1437 		goto out;
1438 
1439 	len = skb->len;
1440 	if (skb_shift(prev, skb, len)) {
1441 		pcount += tcp_skb_pcount(skb);
1442 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1443 	}
1444 
1445 out:
1446 	state->fack_count += pcount;
1447 	return prev;
1448 
1449 noop:
1450 	return skb;
1451 
1452 fallback:
1453 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1454 	return NULL;
1455 }
1456 
1457 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1458 					struct tcp_sack_block *next_dup,
1459 					struct tcp_sacktag_state *state,
1460 					u32 start_seq, u32 end_seq,
1461 					bool dup_sack_in)
1462 {
1463 	struct tcp_sock *tp = tcp_sk(sk);
1464 	struct sk_buff *tmp;
1465 
1466 	tcp_for_write_queue_from(skb, sk) {
1467 		int in_sack = 0;
1468 		bool dup_sack = dup_sack_in;
1469 
1470 		if (skb == tcp_send_head(sk))
1471 			break;
1472 
1473 		/* queue is in-order => we can short-circuit the walk early */
1474 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1475 			break;
1476 
1477 		if ((next_dup != NULL) &&
1478 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1479 			in_sack = tcp_match_skb_to_sack(sk, skb,
1480 							next_dup->start_seq,
1481 							next_dup->end_seq);
1482 			if (in_sack > 0)
1483 				dup_sack = true;
1484 		}
1485 
1486 		/* skb reference here is a bit tricky to get right, since
1487 		 * shifting can eat and free both this skb and the next,
1488 		 * so not even _safe variant of the loop is enough.
1489 		 */
1490 		if (in_sack <= 0) {
1491 			tmp = tcp_shift_skb_data(sk, skb, state,
1492 						 start_seq, end_seq, dup_sack);
1493 			if (tmp != NULL) {
1494 				if (tmp != skb) {
1495 					skb = tmp;
1496 					continue;
1497 				}
1498 
1499 				in_sack = 0;
1500 			} else {
1501 				in_sack = tcp_match_skb_to_sack(sk, skb,
1502 								start_seq,
1503 								end_seq);
1504 			}
1505 		}
1506 
1507 		if (unlikely(in_sack < 0))
1508 			break;
1509 
1510 		if (in_sack) {
1511 			TCP_SKB_CB(skb)->sacked =
1512 				tcp_sacktag_one(sk,
1513 						state,
1514 						TCP_SKB_CB(skb)->sacked,
1515 						TCP_SKB_CB(skb)->seq,
1516 						TCP_SKB_CB(skb)->end_seq,
1517 						dup_sack,
1518 						tcp_skb_pcount(skb),
1519 						TCP_SKB_CB(skb)->when);
1520 
1521 			if (!before(TCP_SKB_CB(skb)->seq,
1522 				    tcp_highest_sack_seq(tp)))
1523 				tcp_advance_highest_sack(sk, skb);
1524 		}
1525 
1526 		state->fack_count += tcp_skb_pcount(skb);
1527 	}
1528 	return skb;
1529 }
1530 
1531 /* Avoid all extra work that is being done by sacktag while walking in
1532  * a normal way
1533  */
1534 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1535 					struct tcp_sacktag_state *state,
1536 					u32 skip_to_seq)
1537 {
1538 	tcp_for_write_queue_from(skb, sk) {
1539 		if (skb == tcp_send_head(sk))
1540 			break;
1541 
1542 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1543 			break;
1544 
1545 		state->fack_count += tcp_skb_pcount(skb);
1546 	}
1547 	return skb;
1548 }
1549 
1550 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1551 						struct sock *sk,
1552 						struct tcp_sack_block *next_dup,
1553 						struct tcp_sacktag_state *state,
1554 						u32 skip_to_seq)
1555 {
1556 	if (next_dup == NULL)
1557 		return skb;
1558 
1559 	if (before(next_dup->start_seq, skip_to_seq)) {
1560 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1561 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1562 				       next_dup->start_seq, next_dup->end_seq,
1563 				       1);
1564 	}
1565 
1566 	return skb;
1567 }
1568 
1569 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1570 {
1571 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1572 }
1573 
1574 static int
1575 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1576 			u32 prior_snd_una, s32 *sack_rtt)
1577 {
1578 	struct tcp_sock *tp = tcp_sk(sk);
1579 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1580 				    TCP_SKB_CB(ack_skb)->sacked);
1581 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1582 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1583 	struct tcp_sack_block *cache;
1584 	struct tcp_sacktag_state state;
1585 	struct sk_buff *skb;
1586 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1587 	int used_sacks;
1588 	bool found_dup_sack = false;
1589 	int i, j;
1590 	int first_sack_index;
1591 
1592 	state.flag = 0;
1593 	state.reord = tp->packets_out;
1594 	state.rtt = -1;
1595 
1596 	if (!tp->sacked_out) {
1597 		if (WARN_ON(tp->fackets_out))
1598 			tp->fackets_out = 0;
1599 		tcp_highest_sack_reset(sk);
1600 	}
1601 
1602 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1603 					 num_sacks, prior_snd_una);
1604 	if (found_dup_sack)
1605 		state.flag |= FLAG_DSACKING_ACK;
1606 
1607 	/* Eliminate too old ACKs, but take into
1608 	 * account more or less fresh ones, they can
1609 	 * contain valid SACK info.
1610 	 */
1611 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1612 		return 0;
1613 
1614 	if (!tp->packets_out)
1615 		goto out;
1616 
1617 	used_sacks = 0;
1618 	first_sack_index = 0;
1619 	for (i = 0; i < num_sacks; i++) {
1620 		bool dup_sack = !i && found_dup_sack;
1621 
1622 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1623 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1624 
1625 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1626 					    sp[used_sacks].start_seq,
1627 					    sp[used_sacks].end_seq)) {
1628 			int mib_idx;
1629 
1630 			if (dup_sack) {
1631 				if (!tp->undo_marker)
1632 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1633 				else
1634 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1635 			} else {
1636 				/* Don't count olds caused by ACK reordering */
1637 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1638 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1639 					continue;
1640 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1641 			}
1642 
1643 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1644 			if (i == 0)
1645 				first_sack_index = -1;
1646 			continue;
1647 		}
1648 
1649 		/* Ignore very old stuff early */
1650 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1651 			continue;
1652 
1653 		used_sacks++;
1654 	}
1655 
1656 	/* order SACK blocks to allow in order walk of the retrans queue */
1657 	for (i = used_sacks - 1; i > 0; i--) {
1658 		for (j = 0; j < i; j++) {
1659 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1660 				swap(sp[j], sp[j + 1]);
1661 
1662 				/* Track where the first SACK block goes to */
1663 				if (j == first_sack_index)
1664 					first_sack_index = j + 1;
1665 			}
1666 		}
1667 	}
1668 
1669 	skb = tcp_write_queue_head(sk);
1670 	state.fack_count = 0;
1671 	i = 0;
1672 
1673 	if (!tp->sacked_out) {
1674 		/* It's already past, so skip checking against it */
1675 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1676 	} else {
1677 		cache = tp->recv_sack_cache;
1678 		/* Skip empty blocks in at head of the cache */
1679 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1680 		       !cache->end_seq)
1681 			cache++;
1682 	}
1683 
1684 	while (i < used_sacks) {
1685 		u32 start_seq = sp[i].start_seq;
1686 		u32 end_seq = sp[i].end_seq;
1687 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1688 		struct tcp_sack_block *next_dup = NULL;
1689 
1690 		if (found_dup_sack && ((i + 1) == first_sack_index))
1691 			next_dup = &sp[i + 1];
1692 
1693 		/* Skip too early cached blocks */
1694 		while (tcp_sack_cache_ok(tp, cache) &&
1695 		       !before(start_seq, cache->end_seq))
1696 			cache++;
1697 
1698 		/* Can skip some work by looking recv_sack_cache? */
1699 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1700 		    after(end_seq, cache->start_seq)) {
1701 
1702 			/* Head todo? */
1703 			if (before(start_seq, cache->start_seq)) {
1704 				skb = tcp_sacktag_skip(skb, sk, &state,
1705 						       start_seq);
1706 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1707 						       &state,
1708 						       start_seq,
1709 						       cache->start_seq,
1710 						       dup_sack);
1711 			}
1712 
1713 			/* Rest of the block already fully processed? */
1714 			if (!after(end_seq, cache->end_seq))
1715 				goto advance_sp;
1716 
1717 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1718 						       &state,
1719 						       cache->end_seq);
1720 
1721 			/* ...tail remains todo... */
1722 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1723 				/* ...but better entrypoint exists! */
1724 				skb = tcp_highest_sack(sk);
1725 				if (skb == NULL)
1726 					break;
1727 				state.fack_count = tp->fackets_out;
1728 				cache++;
1729 				goto walk;
1730 			}
1731 
1732 			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1733 			/* Check overlap against next cached too (past this one already) */
1734 			cache++;
1735 			continue;
1736 		}
1737 
1738 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1739 			skb = tcp_highest_sack(sk);
1740 			if (skb == NULL)
1741 				break;
1742 			state.fack_count = tp->fackets_out;
1743 		}
1744 		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1745 
1746 walk:
1747 		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1748 				       start_seq, end_seq, dup_sack);
1749 
1750 advance_sp:
1751 		i++;
1752 	}
1753 
1754 	/* Clear the head of the cache sack blocks so we can skip it next time */
1755 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1756 		tp->recv_sack_cache[i].start_seq = 0;
1757 		tp->recv_sack_cache[i].end_seq = 0;
1758 	}
1759 	for (j = 0; j < used_sacks; j++)
1760 		tp->recv_sack_cache[i++] = sp[j];
1761 
1762 	tcp_mark_lost_retrans(sk);
1763 
1764 	tcp_verify_left_out(tp);
1765 
1766 	if ((state.reord < tp->fackets_out) &&
1767 	    ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1768 		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1769 
1770 out:
1771 
1772 #if FASTRETRANS_DEBUG > 0
1773 	WARN_ON((int)tp->sacked_out < 0);
1774 	WARN_ON((int)tp->lost_out < 0);
1775 	WARN_ON((int)tp->retrans_out < 0);
1776 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1777 #endif
1778 	*sack_rtt = state.rtt;
1779 	return state.flag;
1780 }
1781 
1782 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1783  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1784  */
1785 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1786 {
1787 	u32 holes;
1788 
1789 	holes = max(tp->lost_out, 1U);
1790 	holes = min(holes, tp->packets_out);
1791 
1792 	if ((tp->sacked_out + holes) > tp->packets_out) {
1793 		tp->sacked_out = tp->packets_out - holes;
1794 		return true;
1795 	}
1796 	return false;
1797 }
1798 
1799 /* If we receive more dupacks than we expected counting segments
1800  * in assumption of absent reordering, interpret this as reordering.
1801  * The only another reason could be bug in receiver TCP.
1802  */
1803 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1804 {
1805 	struct tcp_sock *tp = tcp_sk(sk);
1806 	if (tcp_limit_reno_sacked(tp))
1807 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1808 }
1809 
1810 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1811 
1812 static void tcp_add_reno_sack(struct sock *sk)
1813 {
1814 	struct tcp_sock *tp = tcp_sk(sk);
1815 	tp->sacked_out++;
1816 	tcp_check_reno_reordering(sk, 0);
1817 	tcp_verify_left_out(tp);
1818 }
1819 
1820 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1821 
1822 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1823 {
1824 	struct tcp_sock *tp = tcp_sk(sk);
1825 
1826 	if (acked > 0) {
1827 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1828 		if (acked - 1 >= tp->sacked_out)
1829 			tp->sacked_out = 0;
1830 		else
1831 			tp->sacked_out -= acked - 1;
1832 	}
1833 	tcp_check_reno_reordering(sk, acked);
1834 	tcp_verify_left_out(tp);
1835 }
1836 
1837 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1838 {
1839 	tp->sacked_out = 0;
1840 }
1841 
1842 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1843 {
1844 	tp->retrans_out = 0;
1845 	tp->lost_out = 0;
1846 
1847 	tp->undo_marker = 0;
1848 	tp->undo_retrans = 0;
1849 }
1850 
1851 void tcp_clear_retrans(struct tcp_sock *tp)
1852 {
1853 	tcp_clear_retrans_partial(tp);
1854 
1855 	tp->fackets_out = 0;
1856 	tp->sacked_out = 0;
1857 }
1858 
1859 /* Enter Loss state. If "how" is not zero, forget all SACK information
1860  * and reset tags completely, otherwise preserve SACKs. If receiver
1861  * dropped its ofo queue, we will know this due to reneging detection.
1862  */
1863 void tcp_enter_loss(struct sock *sk, int how)
1864 {
1865 	const struct inet_connection_sock *icsk = inet_csk(sk);
1866 	struct tcp_sock *tp = tcp_sk(sk);
1867 	struct sk_buff *skb;
1868 	bool new_recovery = false;
1869 
1870 	/* Reduce ssthresh if it has not yet been made inside this window. */
1871 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1872 	    !after(tp->high_seq, tp->snd_una) ||
1873 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1874 		new_recovery = true;
1875 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1876 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1877 		tcp_ca_event(sk, CA_EVENT_LOSS);
1878 	}
1879 	tp->snd_cwnd	   = 1;
1880 	tp->snd_cwnd_cnt   = 0;
1881 	tp->snd_cwnd_stamp = tcp_time_stamp;
1882 
1883 	tcp_clear_retrans_partial(tp);
1884 
1885 	if (tcp_is_reno(tp))
1886 		tcp_reset_reno_sack(tp);
1887 
1888 	tp->undo_marker = tp->snd_una;
1889 	if (how) {
1890 		tp->sacked_out = 0;
1891 		tp->fackets_out = 0;
1892 	}
1893 	tcp_clear_all_retrans_hints(tp);
1894 
1895 	tcp_for_write_queue(skb, sk) {
1896 		if (skb == tcp_send_head(sk))
1897 			break;
1898 
1899 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1900 			tp->undo_marker = 0;
1901 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1902 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1903 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1904 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1905 			tp->lost_out += tcp_skb_pcount(skb);
1906 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1907 		}
1908 	}
1909 	tcp_verify_left_out(tp);
1910 
1911 	/* Timeout in disordered state after receiving substantial DUPACKs
1912 	 * suggests that the degree of reordering is over-estimated.
1913 	 */
1914 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1915 	    tp->sacked_out >= sysctl_tcp_reordering)
1916 		tp->reordering = min_t(unsigned int, tp->reordering,
1917 				       sysctl_tcp_reordering);
1918 	tcp_set_ca_state(sk, TCP_CA_Loss);
1919 	tp->high_seq = tp->snd_nxt;
1920 	TCP_ECN_queue_cwr(tp);
1921 
1922 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1923 	 * loss recovery is underway except recurring timeout(s) on
1924 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1925 	 */
1926 	tp->frto = sysctl_tcp_frto &&
1927 		   (new_recovery || icsk->icsk_retransmits) &&
1928 		   !inet_csk(sk)->icsk_mtup.probe_size;
1929 }
1930 
1931 /* If ACK arrived pointing to a remembered SACK, it means that our
1932  * remembered SACKs do not reflect real state of receiver i.e.
1933  * receiver _host_ is heavily congested (or buggy).
1934  *
1935  * Do processing similar to RTO timeout.
1936  */
1937 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1938 {
1939 	if (flag & FLAG_SACK_RENEGING) {
1940 		struct inet_connection_sock *icsk = inet_csk(sk);
1941 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1942 
1943 		tcp_enter_loss(sk, 1);
1944 		icsk->icsk_retransmits++;
1945 		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1946 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1947 					  icsk->icsk_rto, TCP_RTO_MAX);
1948 		return true;
1949 	}
1950 	return false;
1951 }
1952 
1953 static inline int tcp_fackets_out(const struct tcp_sock *tp)
1954 {
1955 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1956 }
1957 
1958 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1959  * counter when SACK is enabled (without SACK, sacked_out is used for
1960  * that purpose).
1961  *
1962  * Instead, with FACK TCP uses fackets_out that includes both SACKed
1963  * segments up to the highest received SACK block so far and holes in
1964  * between them.
1965  *
1966  * With reordering, holes may still be in flight, so RFC3517 recovery
1967  * uses pure sacked_out (total number of SACKed segments) even though
1968  * it violates the RFC that uses duplicate ACKs, often these are equal
1969  * but when e.g. out-of-window ACKs or packet duplication occurs,
1970  * they differ. Since neither occurs due to loss, TCP should really
1971  * ignore them.
1972  */
1973 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
1974 {
1975 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1976 }
1977 
1978 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
1979 {
1980 	struct tcp_sock *tp = tcp_sk(sk);
1981 	unsigned long delay;
1982 
1983 	/* Delay early retransmit and entering fast recovery for
1984 	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
1985 	 * available, or RTO is scheduled to fire first.
1986 	 */
1987 	if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
1988 	    (flag & FLAG_ECE) || !tp->srtt)
1989 		return false;
1990 
1991 	delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
1992 	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
1993 		return false;
1994 
1995 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
1996 				  TCP_RTO_MAX);
1997 	return true;
1998 }
1999 
2000 /* Linux NewReno/SACK/FACK/ECN state machine.
2001  * --------------------------------------
2002  *
2003  * "Open"	Normal state, no dubious events, fast path.
2004  * "Disorder"   In all the respects it is "Open",
2005  *		but requires a bit more attention. It is entered when
2006  *		we see some SACKs or dupacks. It is split of "Open"
2007  *		mainly to move some processing from fast path to slow one.
2008  * "CWR"	CWND was reduced due to some Congestion Notification event.
2009  *		It can be ECN, ICMP source quench, local device congestion.
2010  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2011  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2012  *
2013  * tcp_fastretrans_alert() is entered:
2014  * - each incoming ACK, if state is not "Open"
2015  * - when arrived ACK is unusual, namely:
2016  *	* SACK
2017  *	* Duplicate ACK.
2018  *	* ECN ECE.
2019  *
2020  * Counting packets in flight is pretty simple.
2021  *
2022  *	in_flight = packets_out - left_out + retrans_out
2023  *
2024  *	packets_out is SND.NXT-SND.UNA counted in packets.
2025  *
2026  *	retrans_out is number of retransmitted segments.
2027  *
2028  *	left_out is number of segments left network, but not ACKed yet.
2029  *
2030  *		left_out = sacked_out + lost_out
2031  *
2032  *     sacked_out: Packets, which arrived to receiver out of order
2033  *		   and hence not ACKed. With SACKs this number is simply
2034  *		   amount of SACKed data. Even without SACKs
2035  *		   it is easy to give pretty reliable estimate of this number,
2036  *		   counting duplicate ACKs.
2037  *
2038  *       lost_out: Packets lost by network. TCP has no explicit
2039  *		   "loss notification" feedback from network (for now).
2040  *		   It means that this number can be only _guessed_.
2041  *		   Actually, it is the heuristics to predict lossage that
2042  *		   distinguishes different algorithms.
2043  *
2044  *	F.e. after RTO, when all the queue is considered as lost,
2045  *	lost_out = packets_out and in_flight = retrans_out.
2046  *
2047  *		Essentially, we have now two algorithms counting
2048  *		lost packets.
2049  *
2050  *		FACK: It is the simplest heuristics. As soon as we decided
2051  *		that something is lost, we decide that _all_ not SACKed
2052  *		packets until the most forward SACK are lost. I.e.
2053  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2054  *		It is absolutely correct estimate, if network does not reorder
2055  *		packets. And it loses any connection to reality when reordering
2056  *		takes place. We use FACK by default until reordering
2057  *		is suspected on the path to this destination.
2058  *
2059  *		NewReno: when Recovery is entered, we assume that one segment
2060  *		is lost (classic Reno). While we are in Recovery and
2061  *		a partial ACK arrives, we assume that one more packet
2062  *		is lost (NewReno). This heuristics are the same in NewReno
2063  *		and SACK.
2064  *
2065  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2066  *  deflation etc. CWND is real congestion window, never inflated, changes
2067  *  only according to classic VJ rules.
2068  *
2069  * Really tricky (and requiring careful tuning) part of algorithm
2070  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2071  * The first determines the moment _when_ we should reduce CWND and,
2072  * hence, slow down forward transmission. In fact, it determines the moment
2073  * when we decide that hole is caused by loss, rather than by a reorder.
2074  *
2075  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2076  * holes, caused by lost packets.
2077  *
2078  * And the most logically complicated part of algorithm is undo
2079  * heuristics. We detect false retransmits due to both too early
2080  * fast retransmit (reordering) and underestimated RTO, analyzing
2081  * timestamps and D-SACKs. When we detect that some segments were
2082  * retransmitted by mistake and CWND reduction was wrong, we undo
2083  * window reduction and abort recovery phase. This logic is hidden
2084  * inside several functions named tcp_try_undo_<something>.
2085  */
2086 
2087 /* This function decides, when we should leave Disordered state
2088  * and enter Recovery phase, reducing congestion window.
2089  *
2090  * Main question: may we further continue forward transmission
2091  * with the same cwnd?
2092  */
2093 static bool tcp_time_to_recover(struct sock *sk, int flag)
2094 {
2095 	struct tcp_sock *tp = tcp_sk(sk);
2096 	__u32 packets_out;
2097 
2098 	/* Trick#1: The loss is proven. */
2099 	if (tp->lost_out)
2100 		return true;
2101 
2102 	/* Not-A-Trick#2 : Classic rule... */
2103 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2104 		return true;
2105 
2106 	/* Trick#4: It is still not OK... But will it be useful to delay
2107 	 * recovery more?
2108 	 */
2109 	packets_out = tp->packets_out;
2110 	if (packets_out <= tp->reordering &&
2111 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2112 	    !tcp_may_send_now(sk)) {
2113 		/* We have nothing to send. This connection is limited
2114 		 * either by receiver window or by application.
2115 		 */
2116 		return true;
2117 	}
2118 
2119 	/* If a thin stream is detected, retransmit after first
2120 	 * received dupack. Employ only if SACK is supported in order
2121 	 * to avoid possible corner-case series of spurious retransmissions
2122 	 * Use only if there are no unsent data.
2123 	 */
2124 	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2125 	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2126 	    tcp_is_sack(tp) && !tcp_send_head(sk))
2127 		return true;
2128 
2129 	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2130 	 * retransmissions due to small network reorderings, we implement
2131 	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2132 	 * interval if appropriate.
2133 	 */
2134 	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2135 	    (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2136 	    !tcp_may_send_now(sk))
2137 		return !tcp_pause_early_retransmit(sk, flag);
2138 
2139 	return false;
2140 }
2141 
2142 /* Detect loss in event "A" above by marking head of queue up as lost.
2143  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2144  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2145  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2146  * the maximum SACKed segments to pass before reaching this limit.
2147  */
2148 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2149 {
2150 	struct tcp_sock *tp = tcp_sk(sk);
2151 	struct sk_buff *skb;
2152 	int cnt, oldcnt;
2153 	int err;
2154 	unsigned int mss;
2155 	/* Use SACK to deduce losses of new sequences sent during recovery */
2156 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2157 
2158 	WARN_ON(packets > tp->packets_out);
2159 	if (tp->lost_skb_hint) {
2160 		skb = tp->lost_skb_hint;
2161 		cnt = tp->lost_cnt_hint;
2162 		/* Head already handled? */
2163 		if (mark_head && skb != tcp_write_queue_head(sk))
2164 			return;
2165 	} else {
2166 		skb = tcp_write_queue_head(sk);
2167 		cnt = 0;
2168 	}
2169 
2170 	tcp_for_write_queue_from(skb, sk) {
2171 		if (skb == tcp_send_head(sk))
2172 			break;
2173 		/* TODO: do this better */
2174 		/* this is not the most efficient way to do this... */
2175 		tp->lost_skb_hint = skb;
2176 		tp->lost_cnt_hint = cnt;
2177 
2178 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2179 			break;
2180 
2181 		oldcnt = cnt;
2182 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2183 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2184 			cnt += tcp_skb_pcount(skb);
2185 
2186 		if (cnt > packets) {
2187 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2188 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2189 			    (oldcnt >= packets))
2190 				break;
2191 
2192 			mss = skb_shinfo(skb)->gso_size;
2193 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2194 			if (err < 0)
2195 				break;
2196 			cnt = packets;
2197 		}
2198 
2199 		tcp_skb_mark_lost(tp, skb);
2200 
2201 		if (mark_head)
2202 			break;
2203 	}
2204 	tcp_verify_left_out(tp);
2205 }
2206 
2207 /* Account newly detected lost packet(s) */
2208 
2209 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2210 {
2211 	struct tcp_sock *tp = tcp_sk(sk);
2212 
2213 	if (tcp_is_reno(tp)) {
2214 		tcp_mark_head_lost(sk, 1, 1);
2215 	} else if (tcp_is_fack(tp)) {
2216 		int lost = tp->fackets_out - tp->reordering;
2217 		if (lost <= 0)
2218 			lost = 1;
2219 		tcp_mark_head_lost(sk, lost, 0);
2220 	} else {
2221 		int sacked_upto = tp->sacked_out - tp->reordering;
2222 		if (sacked_upto >= 0)
2223 			tcp_mark_head_lost(sk, sacked_upto, 0);
2224 		else if (fast_rexmit)
2225 			tcp_mark_head_lost(sk, 1, 1);
2226 	}
2227 }
2228 
2229 /* CWND moderation, preventing bursts due to too big ACKs
2230  * in dubious situations.
2231  */
2232 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2233 {
2234 	tp->snd_cwnd = min(tp->snd_cwnd,
2235 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2236 	tp->snd_cwnd_stamp = tcp_time_stamp;
2237 }
2238 
2239 /* Nothing was retransmitted or returned timestamp is less
2240  * than timestamp of the first retransmission.
2241  */
2242 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2243 {
2244 	return !tp->retrans_stamp ||
2245 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2246 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2247 }
2248 
2249 /* Undo procedures. */
2250 
2251 #if FASTRETRANS_DEBUG > 1
2252 static void DBGUNDO(struct sock *sk, const char *msg)
2253 {
2254 	struct tcp_sock *tp = tcp_sk(sk);
2255 	struct inet_sock *inet = inet_sk(sk);
2256 
2257 	if (sk->sk_family == AF_INET) {
2258 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2259 			 msg,
2260 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2261 			 tp->snd_cwnd, tcp_left_out(tp),
2262 			 tp->snd_ssthresh, tp->prior_ssthresh,
2263 			 tp->packets_out);
2264 	}
2265 #if IS_ENABLED(CONFIG_IPV6)
2266 	else if (sk->sk_family == AF_INET6) {
2267 		struct ipv6_pinfo *np = inet6_sk(sk);
2268 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2269 			 msg,
2270 			 &np->daddr, ntohs(inet->inet_dport),
2271 			 tp->snd_cwnd, tcp_left_out(tp),
2272 			 tp->snd_ssthresh, tp->prior_ssthresh,
2273 			 tp->packets_out);
2274 	}
2275 #endif
2276 }
2277 #else
2278 #define DBGUNDO(x...) do { } while (0)
2279 #endif
2280 
2281 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2282 {
2283 	struct tcp_sock *tp = tcp_sk(sk);
2284 
2285 	if (unmark_loss) {
2286 		struct sk_buff *skb;
2287 
2288 		tcp_for_write_queue(skb, sk) {
2289 			if (skb == tcp_send_head(sk))
2290 				break;
2291 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2292 		}
2293 		tp->lost_out = 0;
2294 		tcp_clear_all_retrans_hints(tp);
2295 	}
2296 
2297 	if (tp->prior_ssthresh) {
2298 		const struct inet_connection_sock *icsk = inet_csk(sk);
2299 
2300 		if (icsk->icsk_ca_ops->undo_cwnd)
2301 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2302 		else
2303 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2304 
2305 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2306 			tp->snd_ssthresh = tp->prior_ssthresh;
2307 			TCP_ECN_withdraw_cwr(tp);
2308 		}
2309 	} else {
2310 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2311 	}
2312 	tp->snd_cwnd_stamp = tcp_time_stamp;
2313 	tp->undo_marker = 0;
2314 }
2315 
2316 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2317 {
2318 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2319 }
2320 
2321 /* People celebrate: "We love our President!" */
2322 static bool tcp_try_undo_recovery(struct sock *sk)
2323 {
2324 	struct tcp_sock *tp = tcp_sk(sk);
2325 
2326 	if (tcp_may_undo(tp)) {
2327 		int mib_idx;
2328 
2329 		/* Happy end! We did not retransmit anything
2330 		 * or our original transmission succeeded.
2331 		 */
2332 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2333 		tcp_undo_cwnd_reduction(sk, false);
2334 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2335 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2336 		else
2337 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2338 
2339 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2340 	}
2341 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2342 		/* Hold old state until something *above* high_seq
2343 		 * is ACKed. For Reno it is MUST to prevent false
2344 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2345 		tcp_moderate_cwnd(tp);
2346 		return true;
2347 	}
2348 	tcp_set_ca_state(sk, TCP_CA_Open);
2349 	return false;
2350 }
2351 
2352 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2353 static bool tcp_try_undo_dsack(struct sock *sk)
2354 {
2355 	struct tcp_sock *tp = tcp_sk(sk);
2356 
2357 	if (tp->undo_marker && !tp->undo_retrans) {
2358 		DBGUNDO(sk, "D-SACK");
2359 		tcp_undo_cwnd_reduction(sk, false);
2360 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2361 		return true;
2362 	}
2363 	return false;
2364 }
2365 
2366 /* We can clear retrans_stamp when there are no retransmissions in the
2367  * window. It would seem that it is trivially available for us in
2368  * tp->retrans_out, however, that kind of assumptions doesn't consider
2369  * what will happen if errors occur when sending retransmission for the
2370  * second time. ...It could the that such segment has only
2371  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2372  * the head skb is enough except for some reneging corner cases that
2373  * are not worth the effort.
2374  *
2375  * Main reason for all this complexity is the fact that connection dying
2376  * time now depends on the validity of the retrans_stamp, in particular,
2377  * that successive retransmissions of a segment must not advance
2378  * retrans_stamp under any conditions.
2379  */
2380 static bool tcp_any_retrans_done(const struct sock *sk)
2381 {
2382 	const struct tcp_sock *tp = tcp_sk(sk);
2383 	struct sk_buff *skb;
2384 
2385 	if (tp->retrans_out)
2386 		return true;
2387 
2388 	skb = tcp_write_queue_head(sk);
2389 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2390 		return true;
2391 
2392 	return false;
2393 }
2394 
2395 /* Undo during loss recovery after partial ACK or using F-RTO. */
2396 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2397 {
2398 	struct tcp_sock *tp = tcp_sk(sk);
2399 
2400 	if (frto_undo || tcp_may_undo(tp)) {
2401 		tcp_undo_cwnd_reduction(sk, true);
2402 
2403 		DBGUNDO(sk, "partial loss");
2404 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2405 		if (frto_undo)
2406 			NET_INC_STATS_BH(sock_net(sk),
2407 					 LINUX_MIB_TCPSPURIOUSRTOS);
2408 		inet_csk(sk)->icsk_retransmits = 0;
2409 		if (frto_undo || tcp_is_sack(tp))
2410 			tcp_set_ca_state(sk, TCP_CA_Open);
2411 		return true;
2412 	}
2413 	return false;
2414 }
2415 
2416 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2417  * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2418  * It computes the number of packets to send (sndcnt) based on packets newly
2419  * delivered:
2420  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2421  *	cwnd reductions across a full RTT.
2422  *   2) If packets in flight is lower than ssthresh (such as due to excess
2423  *	losses and/or application stalls), do not perform any further cwnd
2424  *	reductions, but instead slow start up to ssthresh.
2425  */
2426 static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
2427 {
2428 	struct tcp_sock *tp = tcp_sk(sk);
2429 
2430 	tp->high_seq = tp->snd_nxt;
2431 	tp->tlp_high_seq = 0;
2432 	tp->snd_cwnd_cnt = 0;
2433 	tp->prior_cwnd = tp->snd_cwnd;
2434 	tp->prr_delivered = 0;
2435 	tp->prr_out = 0;
2436 	if (set_ssthresh)
2437 		tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2438 	TCP_ECN_queue_cwr(tp);
2439 }
2440 
2441 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2442 			       int fast_rexmit)
2443 {
2444 	struct tcp_sock *tp = tcp_sk(sk);
2445 	int sndcnt = 0;
2446 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2447 	int newly_acked_sacked = prior_unsacked -
2448 				 (tp->packets_out - tp->sacked_out);
2449 
2450 	tp->prr_delivered += newly_acked_sacked;
2451 	if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2452 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2453 			       tp->prior_cwnd - 1;
2454 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2455 	} else {
2456 		sndcnt = min_t(int, delta,
2457 			       max_t(int, tp->prr_delivered - tp->prr_out,
2458 				     newly_acked_sacked) + 1);
2459 	}
2460 
2461 	sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2462 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2463 }
2464 
2465 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2466 {
2467 	struct tcp_sock *tp = tcp_sk(sk);
2468 
2469 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2470 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2471 	    (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2472 		tp->snd_cwnd = tp->snd_ssthresh;
2473 		tp->snd_cwnd_stamp = tcp_time_stamp;
2474 	}
2475 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2476 }
2477 
2478 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2479 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
2480 {
2481 	struct tcp_sock *tp = tcp_sk(sk);
2482 
2483 	tp->prior_ssthresh = 0;
2484 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2485 		tp->undo_marker = 0;
2486 		tcp_init_cwnd_reduction(sk, set_ssthresh);
2487 		tcp_set_ca_state(sk, TCP_CA_CWR);
2488 	}
2489 }
2490 
2491 static void tcp_try_keep_open(struct sock *sk)
2492 {
2493 	struct tcp_sock *tp = tcp_sk(sk);
2494 	int state = TCP_CA_Open;
2495 
2496 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2497 		state = TCP_CA_Disorder;
2498 
2499 	if (inet_csk(sk)->icsk_ca_state != state) {
2500 		tcp_set_ca_state(sk, state);
2501 		tp->high_seq = tp->snd_nxt;
2502 	}
2503 }
2504 
2505 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2506 {
2507 	struct tcp_sock *tp = tcp_sk(sk);
2508 
2509 	tcp_verify_left_out(tp);
2510 
2511 	if (!tcp_any_retrans_done(sk))
2512 		tp->retrans_stamp = 0;
2513 
2514 	if (flag & FLAG_ECE)
2515 		tcp_enter_cwr(sk, 1);
2516 
2517 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2518 		tcp_try_keep_open(sk);
2519 	} else {
2520 		tcp_cwnd_reduction(sk, prior_unsacked, 0);
2521 	}
2522 }
2523 
2524 static void tcp_mtup_probe_failed(struct sock *sk)
2525 {
2526 	struct inet_connection_sock *icsk = inet_csk(sk);
2527 
2528 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2529 	icsk->icsk_mtup.probe_size = 0;
2530 }
2531 
2532 static void tcp_mtup_probe_success(struct sock *sk)
2533 {
2534 	struct tcp_sock *tp = tcp_sk(sk);
2535 	struct inet_connection_sock *icsk = inet_csk(sk);
2536 
2537 	/* FIXME: breaks with very large cwnd */
2538 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2539 	tp->snd_cwnd = tp->snd_cwnd *
2540 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2541 		       icsk->icsk_mtup.probe_size;
2542 	tp->snd_cwnd_cnt = 0;
2543 	tp->snd_cwnd_stamp = tcp_time_stamp;
2544 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2545 
2546 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2547 	icsk->icsk_mtup.probe_size = 0;
2548 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2549 }
2550 
2551 /* Do a simple retransmit without using the backoff mechanisms in
2552  * tcp_timer. This is used for path mtu discovery.
2553  * The socket is already locked here.
2554  */
2555 void tcp_simple_retransmit(struct sock *sk)
2556 {
2557 	const struct inet_connection_sock *icsk = inet_csk(sk);
2558 	struct tcp_sock *tp = tcp_sk(sk);
2559 	struct sk_buff *skb;
2560 	unsigned int mss = tcp_current_mss(sk);
2561 	u32 prior_lost = tp->lost_out;
2562 
2563 	tcp_for_write_queue(skb, sk) {
2564 		if (skb == tcp_send_head(sk))
2565 			break;
2566 		if (tcp_skb_seglen(skb) > mss &&
2567 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2568 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2569 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2570 				tp->retrans_out -= tcp_skb_pcount(skb);
2571 			}
2572 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2573 		}
2574 	}
2575 
2576 	tcp_clear_retrans_hints_partial(tp);
2577 
2578 	if (prior_lost == tp->lost_out)
2579 		return;
2580 
2581 	if (tcp_is_reno(tp))
2582 		tcp_limit_reno_sacked(tp);
2583 
2584 	tcp_verify_left_out(tp);
2585 
2586 	/* Don't muck with the congestion window here.
2587 	 * Reason is that we do not increase amount of _data_
2588 	 * in network, but units changed and effective
2589 	 * cwnd/ssthresh really reduced now.
2590 	 */
2591 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2592 		tp->high_seq = tp->snd_nxt;
2593 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2594 		tp->prior_ssthresh = 0;
2595 		tp->undo_marker = 0;
2596 		tcp_set_ca_state(sk, TCP_CA_Loss);
2597 	}
2598 	tcp_xmit_retransmit_queue(sk);
2599 }
2600 EXPORT_SYMBOL(tcp_simple_retransmit);
2601 
2602 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2603 {
2604 	struct tcp_sock *tp = tcp_sk(sk);
2605 	int mib_idx;
2606 
2607 	if (tcp_is_reno(tp))
2608 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2609 	else
2610 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2611 
2612 	NET_INC_STATS_BH(sock_net(sk), mib_idx);
2613 
2614 	tp->prior_ssthresh = 0;
2615 	tp->undo_marker = tp->snd_una;
2616 	tp->undo_retrans = tp->retrans_out;
2617 
2618 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2619 		if (!ece_ack)
2620 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2621 		tcp_init_cwnd_reduction(sk, true);
2622 	}
2623 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2624 }
2625 
2626 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2627  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2628  */
2629 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2630 {
2631 	struct inet_connection_sock *icsk = inet_csk(sk);
2632 	struct tcp_sock *tp = tcp_sk(sk);
2633 	bool recovered = !before(tp->snd_una, tp->high_seq);
2634 
2635 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2636 		if (flag & FLAG_ORIG_SACK_ACKED) {
2637 			/* Step 3.b. A timeout is spurious if not all data are
2638 			 * lost, i.e., never-retransmitted data are (s)acked.
2639 			 */
2640 			tcp_try_undo_loss(sk, true);
2641 			return;
2642 		}
2643 		if (after(tp->snd_nxt, tp->high_seq) &&
2644 		    (flag & FLAG_DATA_SACKED || is_dupack)) {
2645 			tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
2646 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2647 			tp->high_seq = tp->snd_nxt;
2648 			__tcp_push_pending_frames(sk, tcp_current_mss(sk),
2649 						  TCP_NAGLE_OFF);
2650 			if (after(tp->snd_nxt, tp->high_seq))
2651 				return; /* Step 2.b */
2652 			tp->frto = 0;
2653 		}
2654 	}
2655 
2656 	if (recovered) {
2657 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2658 		icsk->icsk_retransmits = 0;
2659 		tcp_try_undo_recovery(sk);
2660 		return;
2661 	}
2662 	if (flag & FLAG_DATA_ACKED)
2663 		icsk->icsk_retransmits = 0;
2664 	if (tcp_is_reno(tp)) {
2665 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2666 		 * delivered. Lower inflight to clock out (re)tranmissions.
2667 		 */
2668 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2669 			tcp_add_reno_sack(sk);
2670 		else if (flag & FLAG_SND_UNA_ADVANCED)
2671 			tcp_reset_reno_sack(tp);
2672 	}
2673 	if (tcp_try_undo_loss(sk, false))
2674 		return;
2675 	tcp_xmit_retransmit_queue(sk);
2676 }
2677 
2678 /* Undo during fast recovery after partial ACK. */
2679 static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2680 				 const int prior_unsacked)
2681 {
2682 	struct tcp_sock *tp = tcp_sk(sk);
2683 
2684 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2685 		/* Plain luck! Hole if filled with delayed
2686 		 * packet, rather than with a retransmit.
2687 		 */
2688 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2689 
2690 		/* We are getting evidence that the reordering degree is higher
2691 		 * than we realized. If there are no retransmits out then we
2692 		 * can undo. Otherwise we clock out new packets but do not
2693 		 * mark more packets lost or retransmit more.
2694 		 */
2695 		if (tp->retrans_out) {
2696 			tcp_cwnd_reduction(sk, prior_unsacked, 0);
2697 			return true;
2698 		}
2699 
2700 		if (!tcp_any_retrans_done(sk))
2701 			tp->retrans_stamp = 0;
2702 
2703 		DBGUNDO(sk, "partial recovery");
2704 		tcp_undo_cwnd_reduction(sk, true);
2705 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2706 		tcp_try_keep_open(sk);
2707 		return true;
2708 	}
2709 	return false;
2710 }
2711 
2712 /* Process an event, which can update packets-in-flight not trivially.
2713  * Main goal of this function is to calculate new estimate for left_out,
2714  * taking into account both packets sitting in receiver's buffer and
2715  * packets lost by network.
2716  *
2717  * Besides that it does CWND reduction, when packet loss is detected
2718  * and changes state of machine.
2719  *
2720  * It does _not_ decide what to send, it is made in function
2721  * tcp_xmit_retransmit_queue().
2722  */
2723 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2724 				  const int prior_unsacked,
2725 				  bool is_dupack, int flag)
2726 {
2727 	struct inet_connection_sock *icsk = inet_csk(sk);
2728 	struct tcp_sock *tp = tcp_sk(sk);
2729 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2730 				    (tcp_fackets_out(tp) > tp->reordering));
2731 	int fast_rexmit = 0;
2732 
2733 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2734 		tp->sacked_out = 0;
2735 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2736 		tp->fackets_out = 0;
2737 
2738 	/* Now state machine starts.
2739 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2740 	if (flag & FLAG_ECE)
2741 		tp->prior_ssthresh = 0;
2742 
2743 	/* B. In all the states check for reneging SACKs. */
2744 	if (tcp_check_sack_reneging(sk, flag))
2745 		return;
2746 
2747 	/* C. Check consistency of the current state. */
2748 	tcp_verify_left_out(tp);
2749 
2750 	/* D. Check state exit conditions. State can be terminated
2751 	 *    when high_seq is ACKed. */
2752 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2753 		WARN_ON(tp->retrans_out != 0);
2754 		tp->retrans_stamp = 0;
2755 	} else if (!before(tp->snd_una, tp->high_seq)) {
2756 		switch (icsk->icsk_ca_state) {
2757 		case TCP_CA_CWR:
2758 			/* CWR is to be held something *above* high_seq
2759 			 * is ACKed for CWR bit to reach receiver. */
2760 			if (tp->snd_una != tp->high_seq) {
2761 				tcp_end_cwnd_reduction(sk);
2762 				tcp_set_ca_state(sk, TCP_CA_Open);
2763 			}
2764 			break;
2765 
2766 		case TCP_CA_Recovery:
2767 			if (tcp_is_reno(tp))
2768 				tcp_reset_reno_sack(tp);
2769 			if (tcp_try_undo_recovery(sk))
2770 				return;
2771 			tcp_end_cwnd_reduction(sk);
2772 			break;
2773 		}
2774 	}
2775 
2776 	/* E. Process state. */
2777 	switch (icsk->icsk_ca_state) {
2778 	case TCP_CA_Recovery:
2779 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2780 			if (tcp_is_reno(tp) && is_dupack)
2781 				tcp_add_reno_sack(sk);
2782 		} else {
2783 			if (tcp_try_undo_partial(sk, acked, prior_unsacked))
2784 				return;
2785 			/* Partial ACK arrived. Force fast retransmit. */
2786 			do_lost = tcp_is_reno(tp) ||
2787 				  tcp_fackets_out(tp) > tp->reordering;
2788 		}
2789 		if (tcp_try_undo_dsack(sk)) {
2790 			tcp_try_keep_open(sk);
2791 			return;
2792 		}
2793 		break;
2794 	case TCP_CA_Loss:
2795 		tcp_process_loss(sk, flag, is_dupack);
2796 		if (icsk->icsk_ca_state != TCP_CA_Open)
2797 			return;
2798 		/* Fall through to processing in Open state. */
2799 	default:
2800 		if (tcp_is_reno(tp)) {
2801 			if (flag & FLAG_SND_UNA_ADVANCED)
2802 				tcp_reset_reno_sack(tp);
2803 			if (is_dupack)
2804 				tcp_add_reno_sack(sk);
2805 		}
2806 
2807 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2808 			tcp_try_undo_dsack(sk);
2809 
2810 		if (!tcp_time_to_recover(sk, flag)) {
2811 			tcp_try_to_open(sk, flag, prior_unsacked);
2812 			return;
2813 		}
2814 
2815 		/* MTU probe failure: don't reduce cwnd */
2816 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2817 		    icsk->icsk_mtup.probe_size &&
2818 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2819 			tcp_mtup_probe_failed(sk);
2820 			/* Restores the reduction we did in tcp_mtup_probe() */
2821 			tp->snd_cwnd++;
2822 			tcp_simple_retransmit(sk);
2823 			return;
2824 		}
2825 
2826 		/* Otherwise enter Recovery state */
2827 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2828 		fast_rexmit = 1;
2829 	}
2830 
2831 	if (do_lost)
2832 		tcp_update_scoreboard(sk, fast_rexmit);
2833 	tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
2834 	tcp_xmit_retransmit_queue(sk);
2835 }
2836 
2837 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2838 				      s32 seq_rtt, s32 sack_rtt)
2839 {
2840 	const struct tcp_sock *tp = tcp_sk(sk);
2841 
2842 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2843 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2844 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2845 	 * is acked (RFC6298).
2846 	 */
2847 	if (flag & FLAG_RETRANS_DATA_ACKED)
2848 		seq_rtt = -1;
2849 
2850 	if (seq_rtt < 0)
2851 		seq_rtt = sack_rtt;
2852 
2853 	/* RTTM Rule: A TSecr value received in a segment is used to
2854 	 * update the averaged RTT measurement only if the segment
2855 	 * acknowledges some new data, i.e., only if it advances the
2856 	 * left edge of the send window.
2857 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2858 	 */
2859 	if (seq_rtt < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2860 		seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2861 
2862 	if (seq_rtt < 0)
2863 		return false;
2864 
2865 	tcp_rtt_estimator(sk, seq_rtt);
2866 	tcp_set_rto(sk);
2867 
2868 	/* RFC6298: only reset backoff on valid RTT measurement. */
2869 	inet_csk(sk)->icsk_backoff = 0;
2870 	return true;
2871 }
2872 
2873 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2874 static void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2875 {
2876 	struct tcp_sock *tp = tcp_sk(sk);
2877 	s32 seq_rtt = -1;
2878 
2879 	if (tp->lsndtime && !tp->total_retrans)
2880 		seq_rtt = tcp_time_stamp - tp->lsndtime;
2881 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt, -1);
2882 }
2883 
2884 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2885 {
2886 	const struct inet_connection_sock *icsk = inet_csk(sk);
2887 	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2888 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2889 }
2890 
2891 /* Restart timer after forward progress on connection.
2892  * RFC2988 recommends to restart timer to now+rto.
2893  */
2894 void tcp_rearm_rto(struct sock *sk)
2895 {
2896 	const struct inet_connection_sock *icsk = inet_csk(sk);
2897 	struct tcp_sock *tp = tcp_sk(sk);
2898 
2899 	/* If the retrans timer is currently being used by Fast Open
2900 	 * for SYN-ACK retrans purpose, stay put.
2901 	 */
2902 	if (tp->fastopen_rsk)
2903 		return;
2904 
2905 	if (!tp->packets_out) {
2906 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2907 	} else {
2908 		u32 rto = inet_csk(sk)->icsk_rto;
2909 		/* Offset the time elapsed after installing regular RTO */
2910 		if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2911 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2912 			struct sk_buff *skb = tcp_write_queue_head(sk);
2913 			const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
2914 			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2915 			/* delta may not be positive if the socket is locked
2916 			 * when the retrans timer fires and is rescheduled.
2917 			 */
2918 			if (delta > 0)
2919 				rto = delta;
2920 		}
2921 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2922 					  TCP_RTO_MAX);
2923 	}
2924 }
2925 
2926 /* This function is called when the delayed ER timer fires. TCP enters
2927  * fast recovery and performs fast-retransmit.
2928  */
2929 void tcp_resume_early_retransmit(struct sock *sk)
2930 {
2931 	struct tcp_sock *tp = tcp_sk(sk);
2932 
2933 	tcp_rearm_rto(sk);
2934 
2935 	/* Stop if ER is disabled after the delayed ER timer is scheduled */
2936 	if (!tp->do_early_retrans)
2937 		return;
2938 
2939 	tcp_enter_recovery(sk, false);
2940 	tcp_update_scoreboard(sk, 1);
2941 	tcp_xmit_retransmit_queue(sk);
2942 }
2943 
2944 /* If we get here, the whole TSO packet has not been acked. */
2945 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2946 {
2947 	struct tcp_sock *tp = tcp_sk(sk);
2948 	u32 packets_acked;
2949 
2950 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2951 
2952 	packets_acked = tcp_skb_pcount(skb);
2953 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2954 		return 0;
2955 	packets_acked -= tcp_skb_pcount(skb);
2956 
2957 	if (packets_acked) {
2958 		BUG_ON(tcp_skb_pcount(skb) == 0);
2959 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2960 	}
2961 
2962 	return packets_acked;
2963 }
2964 
2965 /* Remove acknowledged frames from the retransmission queue. If our packet
2966  * is before the ack sequence we can discard it as it's confirmed to have
2967  * arrived at the other end.
2968  */
2969 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
2970 			       u32 prior_snd_una, s32 sack_rtt)
2971 {
2972 	struct tcp_sock *tp = tcp_sk(sk);
2973 	const struct inet_connection_sock *icsk = inet_csk(sk);
2974 	struct sk_buff *skb;
2975 	u32 now = tcp_time_stamp;
2976 	int fully_acked = true;
2977 	int flag = 0;
2978 	u32 pkts_acked = 0;
2979 	u32 reord = tp->packets_out;
2980 	u32 prior_sacked = tp->sacked_out;
2981 	s32 seq_rtt = -1;
2982 	s32 ca_seq_rtt = -1;
2983 	ktime_t last_ackt = net_invalid_timestamp();
2984 
2985 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2986 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2987 		u32 acked_pcount;
2988 		u8 sacked = scb->sacked;
2989 
2990 		/* Determine how many packets and what bytes were acked, tso and else */
2991 		if (after(scb->end_seq, tp->snd_una)) {
2992 			if (tcp_skb_pcount(skb) == 1 ||
2993 			    !after(tp->snd_una, scb->seq))
2994 				break;
2995 
2996 			acked_pcount = tcp_tso_acked(sk, skb);
2997 			if (!acked_pcount)
2998 				break;
2999 
3000 			fully_acked = false;
3001 		} else {
3002 			acked_pcount = tcp_skb_pcount(skb);
3003 		}
3004 
3005 		if (sacked & TCPCB_RETRANS) {
3006 			if (sacked & TCPCB_SACKED_RETRANS)
3007 				tp->retrans_out -= acked_pcount;
3008 			flag |= FLAG_RETRANS_DATA_ACKED;
3009 		} else {
3010 			ca_seq_rtt = now - scb->when;
3011 			last_ackt = skb->tstamp;
3012 			if (seq_rtt < 0) {
3013 				seq_rtt = ca_seq_rtt;
3014 			}
3015 			if (!(sacked & TCPCB_SACKED_ACKED))
3016 				reord = min(pkts_acked, reord);
3017 			if (!after(scb->end_seq, tp->high_seq))
3018 				flag |= FLAG_ORIG_SACK_ACKED;
3019 		}
3020 
3021 		if (sacked & TCPCB_SACKED_ACKED)
3022 			tp->sacked_out -= acked_pcount;
3023 		if (sacked & TCPCB_LOST)
3024 			tp->lost_out -= acked_pcount;
3025 
3026 		tp->packets_out -= acked_pcount;
3027 		pkts_acked += acked_pcount;
3028 
3029 		/* Initial outgoing SYN's get put onto the write_queue
3030 		 * just like anything else we transmit.  It is not
3031 		 * true data, and if we misinform our callers that
3032 		 * this ACK acks real data, we will erroneously exit
3033 		 * connection startup slow start one packet too
3034 		 * quickly.  This is severely frowned upon behavior.
3035 		 */
3036 		if (!(scb->tcp_flags & TCPHDR_SYN)) {
3037 			flag |= FLAG_DATA_ACKED;
3038 		} else {
3039 			flag |= FLAG_SYN_ACKED;
3040 			tp->retrans_stamp = 0;
3041 		}
3042 
3043 		if (!fully_acked)
3044 			break;
3045 
3046 		tcp_unlink_write_queue(skb, sk);
3047 		sk_wmem_free_skb(sk, skb);
3048 		if (skb == tp->retransmit_skb_hint)
3049 			tp->retransmit_skb_hint = NULL;
3050 		if (skb == tp->lost_skb_hint)
3051 			tp->lost_skb_hint = NULL;
3052 	}
3053 
3054 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3055 		tp->snd_up = tp->snd_una;
3056 
3057 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3058 		flag |= FLAG_SACK_RENEGING;
3059 
3060 	if (tcp_ack_update_rtt(sk, flag, seq_rtt, sack_rtt) ||
3061 	    (flag & FLAG_ACKED))
3062 		tcp_rearm_rto(sk);
3063 
3064 	if (flag & FLAG_ACKED) {
3065 		const struct tcp_congestion_ops *ca_ops
3066 			= inet_csk(sk)->icsk_ca_ops;
3067 
3068 		if (unlikely(icsk->icsk_mtup.probe_size &&
3069 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3070 			tcp_mtup_probe_success(sk);
3071 		}
3072 
3073 		if (tcp_is_reno(tp)) {
3074 			tcp_remove_reno_sacks(sk, pkts_acked);
3075 		} else {
3076 			int delta;
3077 
3078 			/* Non-retransmitted hole got filled? That's reordering */
3079 			if (reord < prior_fackets)
3080 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3081 
3082 			delta = tcp_is_fack(tp) ? pkts_acked :
3083 						  prior_sacked - tp->sacked_out;
3084 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3085 		}
3086 
3087 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3088 
3089 		if (ca_ops->pkts_acked) {
3090 			s32 rtt_us = -1;
3091 
3092 			/* Is the ACK triggering packet unambiguous? */
3093 			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3094 				/* High resolution needed and available? */
3095 				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3096 				    !ktime_equal(last_ackt,
3097 						 net_invalid_timestamp()))
3098 					rtt_us = ktime_us_delta(ktime_get_real(),
3099 								last_ackt);
3100 				else if (ca_seq_rtt >= 0)
3101 					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3102 			}
3103 
3104 			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3105 		}
3106 	}
3107 
3108 #if FASTRETRANS_DEBUG > 0
3109 	WARN_ON((int)tp->sacked_out < 0);
3110 	WARN_ON((int)tp->lost_out < 0);
3111 	WARN_ON((int)tp->retrans_out < 0);
3112 	if (!tp->packets_out && tcp_is_sack(tp)) {
3113 		icsk = inet_csk(sk);
3114 		if (tp->lost_out) {
3115 			pr_debug("Leak l=%u %d\n",
3116 				 tp->lost_out, icsk->icsk_ca_state);
3117 			tp->lost_out = 0;
3118 		}
3119 		if (tp->sacked_out) {
3120 			pr_debug("Leak s=%u %d\n",
3121 				 tp->sacked_out, icsk->icsk_ca_state);
3122 			tp->sacked_out = 0;
3123 		}
3124 		if (tp->retrans_out) {
3125 			pr_debug("Leak r=%u %d\n",
3126 				 tp->retrans_out, icsk->icsk_ca_state);
3127 			tp->retrans_out = 0;
3128 		}
3129 	}
3130 #endif
3131 	return flag;
3132 }
3133 
3134 static void tcp_ack_probe(struct sock *sk)
3135 {
3136 	const struct tcp_sock *tp = tcp_sk(sk);
3137 	struct inet_connection_sock *icsk = inet_csk(sk);
3138 
3139 	/* Was it a usable window open? */
3140 
3141 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3142 		icsk->icsk_backoff = 0;
3143 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3144 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3145 		 * This function is not for random using!
3146 		 */
3147 	} else {
3148 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3149 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3150 					  TCP_RTO_MAX);
3151 	}
3152 }
3153 
3154 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3155 {
3156 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3157 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3158 }
3159 
3160 /* Decide wheather to run the increase function of congestion control. */
3161 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3162 {
3163 	if (tcp_in_cwnd_reduction(sk))
3164 		return false;
3165 
3166 	/* If reordering is high then always grow cwnd whenever data is
3167 	 * delivered regardless of its ordering. Otherwise stay conservative
3168 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3169 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3170 	 * cwnd in tcp_fastretrans_alert() based on more states.
3171 	 */
3172 	if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
3173 		return flag & FLAG_FORWARD_PROGRESS;
3174 
3175 	return flag & FLAG_DATA_ACKED;
3176 }
3177 
3178 /* Check that window update is acceptable.
3179  * The function assumes that snd_una<=ack<=snd_next.
3180  */
3181 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3182 					const u32 ack, const u32 ack_seq,
3183 					const u32 nwin)
3184 {
3185 	return	after(ack, tp->snd_una) ||
3186 		after(ack_seq, tp->snd_wl1) ||
3187 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3188 }
3189 
3190 /* Update our send window.
3191  *
3192  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3193  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3194  */
3195 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3196 				 u32 ack_seq)
3197 {
3198 	struct tcp_sock *tp = tcp_sk(sk);
3199 	int flag = 0;
3200 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3201 
3202 	if (likely(!tcp_hdr(skb)->syn))
3203 		nwin <<= tp->rx_opt.snd_wscale;
3204 
3205 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3206 		flag |= FLAG_WIN_UPDATE;
3207 		tcp_update_wl(tp, ack_seq);
3208 
3209 		if (tp->snd_wnd != nwin) {
3210 			tp->snd_wnd = nwin;
3211 
3212 			/* Note, it is the only place, where
3213 			 * fast path is recovered for sending TCP.
3214 			 */
3215 			tp->pred_flags = 0;
3216 			tcp_fast_path_check(sk);
3217 
3218 			if (nwin > tp->max_window) {
3219 				tp->max_window = nwin;
3220 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3221 			}
3222 		}
3223 	}
3224 
3225 	tp->snd_una = ack;
3226 
3227 	return flag;
3228 }
3229 
3230 /* RFC 5961 7 [ACK Throttling] */
3231 static void tcp_send_challenge_ack(struct sock *sk)
3232 {
3233 	/* unprotected vars, we dont care of overwrites */
3234 	static u32 challenge_timestamp;
3235 	static unsigned int challenge_count;
3236 	u32 now = jiffies / HZ;
3237 
3238 	if (now != challenge_timestamp) {
3239 		challenge_timestamp = now;
3240 		challenge_count = 0;
3241 	}
3242 	if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3243 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3244 		tcp_send_ack(sk);
3245 	}
3246 }
3247 
3248 static void tcp_store_ts_recent(struct tcp_sock *tp)
3249 {
3250 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3251 	tp->rx_opt.ts_recent_stamp = get_seconds();
3252 }
3253 
3254 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3255 {
3256 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3257 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3258 		 * extra check below makes sure this can only happen
3259 		 * for pure ACK frames.  -DaveM
3260 		 *
3261 		 * Not only, also it occurs for expired timestamps.
3262 		 */
3263 
3264 		if (tcp_paws_check(&tp->rx_opt, 0))
3265 			tcp_store_ts_recent(tp);
3266 	}
3267 }
3268 
3269 /* This routine deals with acks during a TLP episode.
3270  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3271  */
3272 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3273 {
3274 	struct tcp_sock *tp = tcp_sk(sk);
3275 	bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
3276 			     !(flag & (FLAG_SND_UNA_ADVANCED |
3277 				       FLAG_NOT_DUP | FLAG_DATA_SACKED));
3278 
3279 	/* Mark the end of TLP episode on receiving TLP dupack or when
3280 	 * ack is after tlp_high_seq.
3281 	 */
3282 	if (is_tlp_dupack) {
3283 		tp->tlp_high_seq = 0;
3284 		return;
3285 	}
3286 
3287 	if (after(ack, tp->tlp_high_seq)) {
3288 		tp->tlp_high_seq = 0;
3289 		/* Don't reduce cwnd if DSACK arrives for TLP retrans. */
3290 		if (!(flag & FLAG_DSACKING_ACK)) {
3291 			tcp_init_cwnd_reduction(sk, true);
3292 			tcp_set_ca_state(sk, TCP_CA_CWR);
3293 			tcp_end_cwnd_reduction(sk);
3294 			tcp_try_keep_open(sk);
3295 			NET_INC_STATS_BH(sock_net(sk),
3296 					 LINUX_MIB_TCPLOSSPROBERECOVERY);
3297 		}
3298 	}
3299 }
3300 
3301 /* This routine deals with incoming acks, but not outgoing ones. */
3302 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3303 {
3304 	struct inet_connection_sock *icsk = inet_csk(sk);
3305 	struct tcp_sock *tp = tcp_sk(sk);
3306 	u32 prior_snd_una = tp->snd_una;
3307 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3308 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3309 	bool is_dupack = false;
3310 	u32 prior_in_flight, prior_cwnd = tp->snd_cwnd, prior_rtt = tp->srtt;
3311 	u32 prior_fackets;
3312 	int prior_packets = tp->packets_out;
3313 	const int prior_unsacked = tp->packets_out - tp->sacked_out;
3314 	int acked = 0; /* Number of packets newly acked */
3315 	s32 sack_rtt = -1;
3316 
3317 	/* If the ack is older than previous acks
3318 	 * then we can probably ignore it.
3319 	 */
3320 	if (before(ack, prior_snd_una)) {
3321 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3322 		if (before(ack, prior_snd_una - tp->max_window)) {
3323 			tcp_send_challenge_ack(sk);
3324 			return -1;
3325 		}
3326 		goto old_ack;
3327 	}
3328 
3329 	/* If the ack includes data we haven't sent yet, discard
3330 	 * this segment (RFC793 Section 3.9).
3331 	 */
3332 	if (after(ack, tp->snd_nxt))
3333 		goto invalid_ack;
3334 
3335 	if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3336 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3337 		tcp_rearm_rto(sk);
3338 
3339 	if (after(ack, prior_snd_una))
3340 		flag |= FLAG_SND_UNA_ADVANCED;
3341 
3342 	prior_fackets = tp->fackets_out;
3343 	prior_in_flight = tcp_packets_in_flight(tp);
3344 
3345 	/* ts_recent update must be made after we are sure that the packet
3346 	 * is in window.
3347 	 */
3348 	if (flag & FLAG_UPDATE_TS_RECENT)
3349 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3350 
3351 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3352 		/* Window is constant, pure forward advance.
3353 		 * No more checks are required.
3354 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3355 		 */
3356 		tcp_update_wl(tp, ack_seq);
3357 		tp->snd_una = ack;
3358 		flag |= FLAG_WIN_UPDATE;
3359 
3360 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3361 
3362 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3363 	} else {
3364 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3365 			flag |= FLAG_DATA;
3366 		else
3367 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3368 
3369 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3370 
3371 		if (TCP_SKB_CB(skb)->sacked)
3372 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3373 							&sack_rtt);
3374 
3375 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3376 			flag |= FLAG_ECE;
3377 
3378 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3379 	}
3380 
3381 	/* We passed data and got it acked, remove any soft error
3382 	 * log. Something worked...
3383 	 */
3384 	sk->sk_err_soft = 0;
3385 	icsk->icsk_probes_out = 0;
3386 	tp->rcv_tstamp = tcp_time_stamp;
3387 	if (!prior_packets)
3388 		goto no_queue;
3389 
3390 	/* See if we can take anything off of the retransmit queue. */
3391 	acked = tp->packets_out;
3392 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, sack_rtt);
3393 	acked -= tp->packets_out;
3394 
3395 	/* Advance cwnd if state allows */
3396 	if (tcp_may_raise_cwnd(sk, flag))
3397 		tcp_cong_avoid(sk, ack, prior_in_flight);
3398 
3399 	if (tcp_ack_is_dubious(sk, flag)) {
3400 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3401 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3402 				      is_dupack, flag);
3403 	}
3404 	if (tp->tlp_high_seq)
3405 		tcp_process_tlp_ack(sk, ack, flag);
3406 
3407 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3408 		struct dst_entry *dst = __sk_dst_get(sk);
3409 		if (dst)
3410 			dst_confirm(dst);
3411 	}
3412 
3413 	if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3414 		tcp_schedule_loss_probe(sk);
3415 	if (tp->srtt != prior_rtt || tp->snd_cwnd != prior_cwnd)
3416 		tcp_update_pacing_rate(sk);
3417 	return 1;
3418 
3419 no_queue:
3420 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3421 	if (flag & FLAG_DSACKING_ACK)
3422 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3423 				      is_dupack, flag);
3424 	/* If this ack opens up a zero window, clear backoff.  It was
3425 	 * being used to time the probes, and is probably far higher than
3426 	 * it needs to be for normal retransmission.
3427 	 */
3428 	if (tcp_send_head(sk))
3429 		tcp_ack_probe(sk);
3430 
3431 	if (tp->tlp_high_seq)
3432 		tcp_process_tlp_ack(sk, ack, flag);
3433 	return 1;
3434 
3435 invalid_ack:
3436 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3437 	return -1;
3438 
3439 old_ack:
3440 	/* If data was SACKed, tag it and see if we should send more data.
3441 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3442 	 */
3443 	if (TCP_SKB_CB(skb)->sacked) {
3444 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3445 						&sack_rtt);
3446 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3447 				      is_dupack, flag);
3448 	}
3449 
3450 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3451 	return 0;
3452 }
3453 
3454 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3455  * But, this can also be called on packets in the established flow when
3456  * the fast version below fails.
3457  */
3458 void tcp_parse_options(const struct sk_buff *skb,
3459 		       struct tcp_options_received *opt_rx, int estab,
3460 		       struct tcp_fastopen_cookie *foc)
3461 {
3462 	const unsigned char *ptr;
3463 	const struct tcphdr *th = tcp_hdr(skb);
3464 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3465 
3466 	ptr = (const unsigned char *)(th + 1);
3467 	opt_rx->saw_tstamp = 0;
3468 
3469 	while (length > 0) {
3470 		int opcode = *ptr++;
3471 		int opsize;
3472 
3473 		switch (opcode) {
3474 		case TCPOPT_EOL:
3475 			return;
3476 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3477 			length--;
3478 			continue;
3479 		default:
3480 			opsize = *ptr++;
3481 			if (opsize < 2) /* "silly options" */
3482 				return;
3483 			if (opsize > length)
3484 				return;	/* don't parse partial options */
3485 			switch (opcode) {
3486 			case TCPOPT_MSS:
3487 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3488 					u16 in_mss = get_unaligned_be16(ptr);
3489 					if (in_mss) {
3490 						if (opt_rx->user_mss &&
3491 						    opt_rx->user_mss < in_mss)
3492 							in_mss = opt_rx->user_mss;
3493 						opt_rx->mss_clamp = in_mss;
3494 					}
3495 				}
3496 				break;
3497 			case TCPOPT_WINDOW:
3498 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3499 				    !estab && sysctl_tcp_window_scaling) {
3500 					__u8 snd_wscale = *(__u8 *)ptr;
3501 					opt_rx->wscale_ok = 1;
3502 					if (snd_wscale > 14) {
3503 						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3504 								     __func__,
3505 								     snd_wscale);
3506 						snd_wscale = 14;
3507 					}
3508 					opt_rx->snd_wscale = snd_wscale;
3509 				}
3510 				break;
3511 			case TCPOPT_TIMESTAMP:
3512 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3513 				    ((estab && opt_rx->tstamp_ok) ||
3514 				     (!estab && sysctl_tcp_timestamps))) {
3515 					opt_rx->saw_tstamp = 1;
3516 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3517 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3518 				}
3519 				break;
3520 			case TCPOPT_SACK_PERM:
3521 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3522 				    !estab && sysctl_tcp_sack) {
3523 					opt_rx->sack_ok = TCP_SACK_SEEN;
3524 					tcp_sack_reset(opt_rx);
3525 				}
3526 				break;
3527 
3528 			case TCPOPT_SACK:
3529 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3530 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3531 				   opt_rx->sack_ok) {
3532 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3533 				}
3534 				break;
3535 #ifdef CONFIG_TCP_MD5SIG
3536 			case TCPOPT_MD5SIG:
3537 				/*
3538 				 * The MD5 Hash has already been
3539 				 * checked (see tcp_v{4,6}_do_rcv()).
3540 				 */
3541 				break;
3542 #endif
3543 			case TCPOPT_EXP:
3544 				/* Fast Open option shares code 254 using a
3545 				 * 16 bits magic number. It's valid only in
3546 				 * SYN or SYN-ACK with an even size.
3547 				 */
3548 				if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3549 				    get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3550 				    foc == NULL || !th->syn || (opsize & 1))
3551 					break;
3552 				foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3553 				if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3554 				    foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3555 					memcpy(foc->val, ptr + 2, foc->len);
3556 				else if (foc->len != 0)
3557 					foc->len = -1;
3558 				break;
3559 
3560 			}
3561 			ptr += opsize-2;
3562 			length -= opsize;
3563 		}
3564 	}
3565 }
3566 EXPORT_SYMBOL(tcp_parse_options);
3567 
3568 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3569 {
3570 	const __be32 *ptr = (const __be32 *)(th + 1);
3571 
3572 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3573 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3574 		tp->rx_opt.saw_tstamp = 1;
3575 		++ptr;
3576 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3577 		++ptr;
3578 		if (*ptr)
3579 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3580 		else
3581 			tp->rx_opt.rcv_tsecr = 0;
3582 		return true;
3583 	}
3584 	return false;
3585 }
3586 
3587 /* Fast parse options. This hopes to only see timestamps.
3588  * If it is wrong it falls back on tcp_parse_options().
3589  */
3590 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3591 				   const struct tcphdr *th, struct tcp_sock *tp)
3592 {
3593 	/* In the spirit of fast parsing, compare doff directly to constant
3594 	 * values.  Because equality is used, short doff can be ignored here.
3595 	 */
3596 	if (th->doff == (sizeof(*th) / 4)) {
3597 		tp->rx_opt.saw_tstamp = 0;
3598 		return false;
3599 	} else if (tp->rx_opt.tstamp_ok &&
3600 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3601 		if (tcp_parse_aligned_timestamp(tp, th))
3602 			return true;
3603 	}
3604 
3605 	tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3606 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3607 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3608 
3609 	return true;
3610 }
3611 
3612 #ifdef CONFIG_TCP_MD5SIG
3613 /*
3614  * Parse MD5 Signature option
3615  */
3616 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3617 {
3618 	int length = (th->doff << 2) - sizeof(*th);
3619 	const u8 *ptr = (const u8 *)(th + 1);
3620 
3621 	/* If the TCP option is too short, we can short cut */
3622 	if (length < TCPOLEN_MD5SIG)
3623 		return NULL;
3624 
3625 	while (length > 0) {
3626 		int opcode = *ptr++;
3627 		int opsize;
3628 
3629 		switch(opcode) {
3630 		case TCPOPT_EOL:
3631 			return NULL;
3632 		case TCPOPT_NOP:
3633 			length--;
3634 			continue;
3635 		default:
3636 			opsize = *ptr++;
3637 			if (opsize < 2 || opsize > length)
3638 				return NULL;
3639 			if (opcode == TCPOPT_MD5SIG)
3640 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3641 		}
3642 		ptr += opsize - 2;
3643 		length -= opsize;
3644 	}
3645 	return NULL;
3646 }
3647 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3648 #endif
3649 
3650 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3651  *
3652  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3653  * it can pass through stack. So, the following predicate verifies that
3654  * this segment is not used for anything but congestion avoidance or
3655  * fast retransmit. Moreover, we even are able to eliminate most of such
3656  * second order effects, if we apply some small "replay" window (~RTO)
3657  * to timestamp space.
3658  *
3659  * All these measures still do not guarantee that we reject wrapped ACKs
3660  * on networks with high bandwidth, when sequence space is recycled fastly,
3661  * but it guarantees that such events will be very rare and do not affect
3662  * connection seriously. This doesn't look nice, but alas, PAWS is really
3663  * buggy extension.
3664  *
3665  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3666  * states that events when retransmit arrives after original data are rare.
3667  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3668  * the biggest problem on large power networks even with minor reordering.
3669  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3670  * up to bandwidth of 18Gigabit/sec. 8) ]
3671  */
3672 
3673 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3674 {
3675 	const struct tcp_sock *tp = tcp_sk(sk);
3676 	const struct tcphdr *th = tcp_hdr(skb);
3677 	u32 seq = TCP_SKB_CB(skb)->seq;
3678 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3679 
3680 	return (/* 1. Pure ACK with correct sequence number. */
3681 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3682 
3683 		/* 2. ... and duplicate ACK. */
3684 		ack == tp->snd_una &&
3685 
3686 		/* 3. ... and does not update window. */
3687 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3688 
3689 		/* 4. ... and sits in replay window. */
3690 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3691 }
3692 
3693 static inline bool tcp_paws_discard(const struct sock *sk,
3694 				   const struct sk_buff *skb)
3695 {
3696 	const struct tcp_sock *tp = tcp_sk(sk);
3697 
3698 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3699 	       !tcp_disordered_ack(sk, skb);
3700 }
3701 
3702 /* Check segment sequence number for validity.
3703  *
3704  * Segment controls are considered valid, if the segment
3705  * fits to the window after truncation to the window. Acceptability
3706  * of data (and SYN, FIN, of course) is checked separately.
3707  * See tcp_data_queue(), for example.
3708  *
3709  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3710  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3711  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3712  * (borrowed from freebsd)
3713  */
3714 
3715 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3716 {
3717 	return	!before(end_seq, tp->rcv_wup) &&
3718 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3719 }
3720 
3721 /* When we get a reset we do this. */
3722 void tcp_reset(struct sock *sk)
3723 {
3724 	/* We want the right error as BSD sees it (and indeed as we do). */
3725 	switch (sk->sk_state) {
3726 	case TCP_SYN_SENT:
3727 		sk->sk_err = ECONNREFUSED;
3728 		break;
3729 	case TCP_CLOSE_WAIT:
3730 		sk->sk_err = EPIPE;
3731 		break;
3732 	case TCP_CLOSE:
3733 		return;
3734 	default:
3735 		sk->sk_err = ECONNRESET;
3736 	}
3737 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
3738 	smp_wmb();
3739 
3740 	if (!sock_flag(sk, SOCK_DEAD))
3741 		sk->sk_error_report(sk);
3742 
3743 	tcp_done(sk);
3744 }
3745 
3746 /*
3747  * 	Process the FIN bit. This now behaves as it is supposed to work
3748  *	and the FIN takes effect when it is validly part of sequence
3749  *	space. Not before when we get holes.
3750  *
3751  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3752  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3753  *	TIME-WAIT)
3754  *
3755  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3756  *	close and we go into CLOSING (and later onto TIME-WAIT)
3757  *
3758  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3759  */
3760 static void tcp_fin(struct sock *sk)
3761 {
3762 	struct tcp_sock *tp = tcp_sk(sk);
3763 	const struct dst_entry *dst;
3764 
3765 	inet_csk_schedule_ack(sk);
3766 
3767 	sk->sk_shutdown |= RCV_SHUTDOWN;
3768 	sock_set_flag(sk, SOCK_DONE);
3769 
3770 	switch (sk->sk_state) {
3771 	case TCP_SYN_RECV:
3772 	case TCP_ESTABLISHED:
3773 		/* Move to CLOSE_WAIT */
3774 		tcp_set_state(sk, TCP_CLOSE_WAIT);
3775 		dst = __sk_dst_get(sk);
3776 		if (!dst || !dst_metric(dst, RTAX_QUICKACK))
3777 			inet_csk(sk)->icsk_ack.pingpong = 1;
3778 		break;
3779 
3780 	case TCP_CLOSE_WAIT:
3781 	case TCP_CLOSING:
3782 		/* Received a retransmission of the FIN, do
3783 		 * nothing.
3784 		 */
3785 		break;
3786 	case TCP_LAST_ACK:
3787 		/* RFC793: Remain in the LAST-ACK state. */
3788 		break;
3789 
3790 	case TCP_FIN_WAIT1:
3791 		/* This case occurs when a simultaneous close
3792 		 * happens, we must ack the received FIN and
3793 		 * enter the CLOSING state.
3794 		 */
3795 		tcp_send_ack(sk);
3796 		tcp_set_state(sk, TCP_CLOSING);
3797 		break;
3798 	case TCP_FIN_WAIT2:
3799 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
3800 		tcp_send_ack(sk);
3801 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3802 		break;
3803 	default:
3804 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
3805 		 * cases we should never reach this piece of code.
3806 		 */
3807 		pr_err("%s: Impossible, sk->sk_state=%d\n",
3808 		       __func__, sk->sk_state);
3809 		break;
3810 	}
3811 
3812 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
3813 	 * Probably, we should reset in this case. For now drop them.
3814 	 */
3815 	__skb_queue_purge(&tp->out_of_order_queue);
3816 	if (tcp_is_sack(tp))
3817 		tcp_sack_reset(&tp->rx_opt);
3818 	sk_mem_reclaim(sk);
3819 
3820 	if (!sock_flag(sk, SOCK_DEAD)) {
3821 		sk->sk_state_change(sk);
3822 
3823 		/* Do not send POLL_HUP for half duplex close. */
3824 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
3825 		    sk->sk_state == TCP_CLOSE)
3826 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3827 		else
3828 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3829 	}
3830 }
3831 
3832 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3833 				  u32 end_seq)
3834 {
3835 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3836 		if (before(seq, sp->start_seq))
3837 			sp->start_seq = seq;
3838 		if (after(end_seq, sp->end_seq))
3839 			sp->end_seq = end_seq;
3840 		return true;
3841 	}
3842 	return false;
3843 }
3844 
3845 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3846 {
3847 	struct tcp_sock *tp = tcp_sk(sk);
3848 
3849 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3850 		int mib_idx;
3851 
3852 		if (before(seq, tp->rcv_nxt))
3853 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3854 		else
3855 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3856 
3857 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
3858 
3859 		tp->rx_opt.dsack = 1;
3860 		tp->duplicate_sack[0].start_seq = seq;
3861 		tp->duplicate_sack[0].end_seq = end_seq;
3862 	}
3863 }
3864 
3865 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3866 {
3867 	struct tcp_sock *tp = tcp_sk(sk);
3868 
3869 	if (!tp->rx_opt.dsack)
3870 		tcp_dsack_set(sk, seq, end_seq);
3871 	else
3872 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3873 }
3874 
3875 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
3876 {
3877 	struct tcp_sock *tp = tcp_sk(sk);
3878 
3879 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3880 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3881 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3882 		tcp_enter_quickack_mode(sk);
3883 
3884 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3885 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3886 
3887 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3888 				end_seq = tp->rcv_nxt;
3889 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3890 		}
3891 	}
3892 
3893 	tcp_send_ack(sk);
3894 }
3895 
3896 /* These routines update the SACK block as out-of-order packets arrive or
3897  * in-order packets close up the sequence space.
3898  */
3899 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3900 {
3901 	int this_sack;
3902 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3903 	struct tcp_sack_block *swalk = sp + 1;
3904 
3905 	/* See if the recent change to the first SACK eats into
3906 	 * or hits the sequence space of other SACK blocks, if so coalesce.
3907 	 */
3908 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3909 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3910 			int i;
3911 
3912 			/* Zap SWALK, by moving every further SACK up by one slot.
3913 			 * Decrease num_sacks.
3914 			 */
3915 			tp->rx_opt.num_sacks--;
3916 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3917 				sp[i] = sp[i + 1];
3918 			continue;
3919 		}
3920 		this_sack++, swalk++;
3921 	}
3922 }
3923 
3924 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3925 {
3926 	struct tcp_sock *tp = tcp_sk(sk);
3927 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3928 	int cur_sacks = tp->rx_opt.num_sacks;
3929 	int this_sack;
3930 
3931 	if (!cur_sacks)
3932 		goto new_sack;
3933 
3934 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3935 		if (tcp_sack_extend(sp, seq, end_seq)) {
3936 			/* Rotate this_sack to the first one. */
3937 			for (; this_sack > 0; this_sack--, sp--)
3938 				swap(*sp, *(sp - 1));
3939 			if (cur_sacks > 1)
3940 				tcp_sack_maybe_coalesce(tp);
3941 			return;
3942 		}
3943 	}
3944 
3945 	/* Could not find an adjacent existing SACK, build a new one,
3946 	 * put it at the front, and shift everyone else down.  We
3947 	 * always know there is at least one SACK present already here.
3948 	 *
3949 	 * If the sack array is full, forget about the last one.
3950 	 */
3951 	if (this_sack >= TCP_NUM_SACKS) {
3952 		this_sack--;
3953 		tp->rx_opt.num_sacks--;
3954 		sp--;
3955 	}
3956 	for (; this_sack > 0; this_sack--, sp--)
3957 		*sp = *(sp - 1);
3958 
3959 new_sack:
3960 	/* Build the new head SACK, and we're done. */
3961 	sp->start_seq = seq;
3962 	sp->end_seq = end_seq;
3963 	tp->rx_opt.num_sacks++;
3964 }
3965 
3966 /* RCV.NXT advances, some SACKs should be eaten. */
3967 
3968 static void tcp_sack_remove(struct tcp_sock *tp)
3969 {
3970 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3971 	int num_sacks = tp->rx_opt.num_sacks;
3972 	int this_sack;
3973 
3974 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3975 	if (skb_queue_empty(&tp->out_of_order_queue)) {
3976 		tp->rx_opt.num_sacks = 0;
3977 		return;
3978 	}
3979 
3980 	for (this_sack = 0; this_sack < num_sacks;) {
3981 		/* Check if the start of the sack is covered by RCV.NXT. */
3982 		if (!before(tp->rcv_nxt, sp->start_seq)) {
3983 			int i;
3984 
3985 			/* RCV.NXT must cover all the block! */
3986 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
3987 
3988 			/* Zap this SACK, by moving forward any other SACKS. */
3989 			for (i=this_sack+1; i < num_sacks; i++)
3990 				tp->selective_acks[i-1] = tp->selective_acks[i];
3991 			num_sacks--;
3992 			continue;
3993 		}
3994 		this_sack++;
3995 		sp++;
3996 	}
3997 	tp->rx_opt.num_sacks = num_sacks;
3998 }
3999 
4000 /* This one checks to see if we can put data from the
4001  * out_of_order queue into the receive_queue.
4002  */
4003 static void tcp_ofo_queue(struct sock *sk)
4004 {
4005 	struct tcp_sock *tp = tcp_sk(sk);
4006 	__u32 dsack_high = tp->rcv_nxt;
4007 	struct sk_buff *skb;
4008 
4009 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4010 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4011 			break;
4012 
4013 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4014 			__u32 dsack = dsack_high;
4015 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4016 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4017 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4018 		}
4019 
4020 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4021 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4022 			__skb_unlink(skb, &tp->out_of_order_queue);
4023 			__kfree_skb(skb);
4024 			continue;
4025 		}
4026 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4027 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4028 			   TCP_SKB_CB(skb)->end_seq);
4029 
4030 		__skb_unlink(skb, &tp->out_of_order_queue);
4031 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4032 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4033 		if (tcp_hdr(skb)->fin)
4034 			tcp_fin(sk);
4035 	}
4036 }
4037 
4038 static bool tcp_prune_ofo_queue(struct sock *sk);
4039 static int tcp_prune_queue(struct sock *sk);
4040 
4041 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4042 				 unsigned int size)
4043 {
4044 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4045 	    !sk_rmem_schedule(sk, skb, size)) {
4046 
4047 		if (tcp_prune_queue(sk) < 0)
4048 			return -1;
4049 
4050 		if (!sk_rmem_schedule(sk, skb, size)) {
4051 			if (!tcp_prune_ofo_queue(sk))
4052 				return -1;
4053 
4054 			if (!sk_rmem_schedule(sk, skb, size))
4055 				return -1;
4056 		}
4057 	}
4058 	return 0;
4059 }
4060 
4061 /**
4062  * tcp_try_coalesce - try to merge skb to prior one
4063  * @sk: socket
4064  * @to: prior buffer
4065  * @from: buffer to add in queue
4066  * @fragstolen: pointer to boolean
4067  *
4068  * Before queueing skb @from after @to, try to merge them
4069  * to reduce overall memory use and queue lengths, if cost is small.
4070  * Packets in ofo or receive queues can stay a long time.
4071  * Better try to coalesce them right now to avoid future collapses.
4072  * Returns true if caller should free @from instead of queueing it
4073  */
4074 static bool tcp_try_coalesce(struct sock *sk,
4075 			     struct sk_buff *to,
4076 			     struct sk_buff *from,
4077 			     bool *fragstolen)
4078 {
4079 	int delta;
4080 
4081 	*fragstolen = false;
4082 
4083 	if (tcp_hdr(from)->fin)
4084 		return false;
4085 
4086 	/* Its possible this segment overlaps with prior segment in queue */
4087 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4088 		return false;
4089 
4090 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4091 		return false;
4092 
4093 	atomic_add(delta, &sk->sk_rmem_alloc);
4094 	sk_mem_charge(sk, delta);
4095 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4096 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4097 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4098 	return true;
4099 }
4100 
4101 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4102 {
4103 	struct tcp_sock *tp = tcp_sk(sk);
4104 	struct sk_buff *skb1;
4105 	u32 seq, end_seq;
4106 
4107 	TCP_ECN_check_ce(tp, skb);
4108 
4109 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4110 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4111 		__kfree_skb(skb);
4112 		return;
4113 	}
4114 
4115 	/* Disable header prediction. */
4116 	tp->pred_flags = 0;
4117 	inet_csk_schedule_ack(sk);
4118 
4119 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4120 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4121 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4122 
4123 	skb1 = skb_peek_tail(&tp->out_of_order_queue);
4124 	if (!skb1) {
4125 		/* Initial out of order segment, build 1 SACK. */
4126 		if (tcp_is_sack(tp)) {
4127 			tp->rx_opt.num_sacks = 1;
4128 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4129 			tp->selective_acks[0].end_seq =
4130 						TCP_SKB_CB(skb)->end_seq;
4131 		}
4132 		__skb_queue_head(&tp->out_of_order_queue, skb);
4133 		goto end;
4134 	}
4135 
4136 	seq = TCP_SKB_CB(skb)->seq;
4137 	end_seq = TCP_SKB_CB(skb)->end_seq;
4138 
4139 	if (seq == TCP_SKB_CB(skb1)->end_seq) {
4140 		bool fragstolen;
4141 
4142 		if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4143 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4144 		} else {
4145 			tcp_grow_window(sk, skb);
4146 			kfree_skb_partial(skb, fragstolen);
4147 			skb = NULL;
4148 		}
4149 
4150 		if (!tp->rx_opt.num_sacks ||
4151 		    tp->selective_acks[0].end_seq != seq)
4152 			goto add_sack;
4153 
4154 		/* Common case: data arrive in order after hole. */
4155 		tp->selective_acks[0].end_seq = end_seq;
4156 		goto end;
4157 	}
4158 
4159 	/* Find place to insert this segment. */
4160 	while (1) {
4161 		if (!after(TCP_SKB_CB(skb1)->seq, seq))
4162 			break;
4163 		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4164 			skb1 = NULL;
4165 			break;
4166 		}
4167 		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4168 	}
4169 
4170 	/* Do skb overlap to previous one? */
4171 	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4172 		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4173 			/* All the bits are present. Drop. */
4174 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4175 			__kfree_skb(skb);
4176 			skb = NULL;
4177 			tcp_dsack_set(sk, seq, end_seq);
4178 			goto add_sack;
4179 		}
4180 		if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4181 			/* Partial overlap. */
4182 			tcp_dsack_set(sk, seq,
4183 				      TCP_SKB_CB(skb1)->end_seq);
4184 		} else {
4185 			if (skb_queue_is_first(&tp->out_of_order_queue,
4186 					       skb1))
4187 				skb1 = NULL;
4188 			else
4189 				skb1 = skb_queue_prev(
4190 					&tp->out_of_order_queue,
4191 					skb1);
4192 		}
4193 	}
4194 	if (!skb1)
4195 		__skb_queue_head(&tp->out_of_order_queue, skb);
4196 	else
4197 		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4198 
4199 	/* And clean segments covered by new one as whole. */
4200 	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4201 		skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4202 
4203 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4204 			break;
4205 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4206 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4207 					 end_seq);
4208 			break;
4209 		}
4210 		__skb_unlink(skb1, &tp->out_of_order_queue);
4211 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4212 				 TCP_SKB_CB(skb1)->end_seq);
4213 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4214 		__kfree_skb(skb1);
4215 	}
4216 
4217 add_sack:
4218 	if (tcp_is_sack(tp))
4219 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4220 end:
4221 	if (skb) {
4222 		tcp_grow_window(sk, skb);
4223 		skb_set_owner_r(skb, sk);
4224 	}
4225 }
4226 
4227 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4228 		  bool *fragstolen)
4229 {
4230 	int eaten;
4231 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4232 
4233 	__skb_pull(skb, hdrlen);
4234 	eaten = (tail &&
4235 		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4236 	tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4237 	if (!eaten) {
4238 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4239 		skb_set_owner_r(skb, sk);
4240 	}
4241 	return eaten;
4242 }
4243 
4244 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4245 {
4246 	struct sk_buff *skb = NULL;
4247 	struct tcphdr *th;
4248 	bool fragstolen;
4249 
4250 	if (size == 0)
4251 		return 0;
4252 
4253 	skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4254 	if (!skb)
4255 		goto err;
4256 
4257 	if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
4258 		goto err_free;
4259 
4260 	th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4261 	skb_reset_transport_header(skb);
4262 	memset(th, 0, sizeof(*th));
4263 
4264 	if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4265 		goto err_free;
4266 
4267 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4268 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4269 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4270 
4271 	if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4272 		WARN_ON_ONCE(fragstolen); /* should not happen */
4273 		__kfree_skb(skb);
4274 	}
4275 	return size;
4276 
4277 err_free:
4278 	kfree_skb(skb);
4279 err:
4280 	return -ENOMEM;
4281 }
4282 
4283 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4284 {
4285 	const struct tcphdr *th = tcp_hdr(skb);
4286 	struct tcp_sock *tp = tcp_sk(sk);
4287 	int eaten = -1;
4288 	bool fragstolen = false;
4289 
4290 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4291 		goto drop;
4292 
4293 	skb_dst_drop(skb);
4294 	__skb_pull(skb, th->doff * 4);
4295 
4296 	TCP_ECN_accept_cwr(tp, skb);
4297 
4298 	tp->rx_opt.dsack = 0;
4299 
4300 	/*  Queue data for delivery to the user.
4301 	 *  Packets in sequence go to the receive queue.
4302 	 *  Out of sequence packets to the out_of_order_queue.
4303 	 */
4304 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4305 		if (tcp_receive_window(tp) == 0)
4306 			goto out_of_window;
4307 
4308 		/* Ok. In sequence. In window. */
4309 		if (tp->ucopy.task == current &&
4310 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4311 		    sock_owned_by_user(sk) && !tp->urg_data) {
4312 			int chunk = min_t(unsigned int, skb->len,
4313 					  tp->ucopy.len);
4314 
4315 			__set_current_state(TASK_RUNNING);
4316 
4317 			local_bh_enable();
4318 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4319 				tp->ucopy.len -= chunk;
4320 				tp->copied_seq += chunk;
4321 				eaten = (chunk == skb->len);
4322 				tcp_rcv_space_adjust(sk);
4323 			}
4324 			local_bh_disable();
4325 		}
4326 
4327 		if (eaten <= 0) {
4328 queue_and_out:
4329 			if (eaten < 0 &&
4330 			    tcp_try_rmem_schedule(sk, skb, skb->truesize))
4331 				goto drop;
4332 
4333 			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4334 		}
4335 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4336 		if (skb->len)
4337 			tcp_event_data_recv(sk, skb);
4338 		if (th->fin)
4339 			tcp_fin(sk);
4340 
4341 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4342 			tcp_ofo_queue(sk);
4343 
4344 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4345 			 * gap in queue is filled.
4346 			 */
4347 			if (skb_queue_empty(&tp->out_of_order_queue))
4348 				inet_csk(sk)->icsk_ack.pingpong = 0;
4349 		}
4350 
4351 		if (tp->rx_opt.num_sacks)
4352 			tcp_sack_remove(tp);
4353 
4354 		tcp_fast_path_check(sk);
4355 
4356 		if (eaten > 0)
4357 			kfree_skb_partial(skb, fragstolen);
4358 		if (!sock_flag(sk, SOCK_DEAD))
4359 			sk->sk_data_ready(sk, 0);
4360 		return;
4361 	}
4362 
4363 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4364 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4365 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4366 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4367 
4368 out_of_window:
4369 		tcp_enter_quickack_mode(sk);
4370 		inet_csk_schedule_ack(sk);
4371 drop:
4372 		__kfree_skb(skb);
4373 		return;
4374 	}
4375 
4376 	/* Out of window. F.e. zero window probe. */
4377 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4378 		goto out_of_window;
4379 
4380 	tcp_enter_quickack_mode(sk);
4381 
4382 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4383 		/* Partial packet, seq < rcv_next < end_seq */
4384 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4385 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4386 			   TCP_SKB_CB(skb)->end_seq);
4387 
4388 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4389 
4390 		/* If window is closed, drop tail of packet. But after
4391 		 * remembering D-SACK for its head made in previous line.
4392 		 */
4393 		if (!tcp_receive_window(tp))
4394 			goto out_of_window;
4395 		goto queue_and_out;
4396 	}
4397 
4398 	tcp_data_queue_ofo(sk, skb);
4399 }
4400 
4401 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4402 					struct sk_buff_head *list)
4403 {
4404 	struct sk_buff *next = NULL;
4405 
4406 	if (!skb_queue_is_last(list, skb))
4407 		next = skb_queue_next(list, skb);
4408 
4409 	__skb_unlink(skb, list);
4410 	__kfree_skb(skb);
4411 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4412 
4413 	return next;
4414 }
4415 
4416 /* Collapse contiguous sequence of skbs head..tail with
4417  * sequence numbers start..end.
4418  *
4419  * If tail is NULL, this means until the end of the list.
4420  *
4421  * Segments with FIN/SYN are not collapsed (only because this
4422  * simplifies code)
4423  */
4424 static void
4425 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4426 	     struct sk_buff *head, struct sk_buff *tail,
4427 	     u32 start, u32 end)
4428 {
4429 	struct sk_buff *skb, *n;
4430 	bool end_of_skbs;
4431 
4432 	/* First, check that queue is collapsible and find
4433 	 * the point where collapsing can be useful. */
4434 	skb = head;
4435 restart:
4436 	end_of_skbs = true;
4437 	skb_queue_walk_from_safe(list, skb, n) {
4438 		if (skb == tail)
4439 			break;
4440 		/* No new bits? It is possible on ofo queue. */
4441 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4442 			skb = tcp_collapse_one(sk, skb, list);
4443 			if (!skb)
4444 				break;
4445 			goto restart;
4446 		}
4447 
4448 		/* The first skb to collapse is:
4449 		 * - not SYN/FIN and
4450 		 * - bloated or contains data before "start" or
4451 		 *   overlaps to the next one.
4452 		 */
4453 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4454 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4455 		     before(TCP_SKB_CB(skb)->seq, start))) {
4456 			end_of_skbs = false;
4457 			break;
4458 		}
4459 
4460 		if (!skb_queue_is_last(list, skb)) {
4461 			struct sk_buff *next = skb_queue_next(list, skb);
4462 			if (next != tail &&
4463 			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4464 				end_of_skbs = false;
4465 				break;
4466 			}
4467 		}
4468 
4469 		/* Decided to skip this, advance start seq. */
4470 		start = TCP_SKB_CB(skb)->end_seq;
4471 	}
4472 	if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4473 		return;
4474 
4475 	while (before(start, end)) {
4476 		struct sk_buff *nskb;
4477 		unsigned int header = skb_headroom(skb);
4478 		int copy = SKB_MAX_ORDER(header, 0);
4479 
4480 		/* Too big header? This can happen with IPv6. */
4481 		if (copy < 0)
4482 			return;
4483 		if (end - start < copy)
4484 			copy = end - start;
4485 		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4486 		if (!nskb)
4487 			return;
4488 
4489 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4490 		skb_set_network_header(nskb, (skb_network_header(skb) -
4491 					      skb->head));
4492 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4493 						skb->head));
4494 		skb_reserve(nskb, header);
4495 		memcpy(nskb->head, skb->head, header);
4496 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4497 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4498 		__skb_queue_before(list, skb, nskb);
4499 		skb_set_owner_r(nskb, sk);
4500 
4501 		/* Copy data, releasing collapsed skbs. */
4502 		while (copy > 0) {
4503 			int offset = start - TCP_SKB_CB(skb)->seq;
4504 			int size = TCP_SKB_CB(skb)->end_seq - start;
4505 
4506 			BUG_ON(offset < 0);
4507 			if (size > 0) {
4508 				size = min(copy, size);
4509 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4510 					BUG();
4511 				TCP_SKB_CB(nskb)->end_seq += size;
4512 				copy -= size;
4513 				start += size;
4514 			}
4515 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4516 				skb = tcp_collapse_one(sk, skb, list);
4517 				if (!skb ||
4518 				    skb == tail ||
4519 				    tcp_hdr(skb)->syn ||
4520 				    tcp_hdr(skb)->fin)
4521 					return;
4522 			}
4523 		}
4524 	}
4525 }
4526 
4527 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4528  * and tcp_collapse() them until all the queue is collapsed.
4529  */
4530 static void tcp_collapse_ofo_queue(struct sock *sk)
4531 {
4532 	struct tcp_sock *tp = tcp_sk(sk);
4533 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4534 	struct sk_buff *head;
4535 	u32 start, end;
4536 
4537 	if (skb == NULL)
4538 		return;
4539 
4540 	start = TCP_SKB_CB(skb)->seq;
4541 	end = TCP_SKB_CB(skb)->end_seq;
4542 	head = skb;
4543 
4544 	for (;;) {
4545 		struct sk_buff *next = NULL;
4546 
4547 		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4548 			next = skb_queue_next(&tp->out_of_order_queue, skb);
4549 		skb = next;
4550 
4551 		/* Segment is terminated when we see gap or when
4552 		 * we are at the end of all the queue. */
4553 		if (!skb ||
4554 		    after(TCP_SKB_CB(skb)->seq, end) ||
4555 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4556 			tcp_collapse(sk, &tp->out_of_order_queue,
4557 				     head, skb, start, end);
4558 			head = skb;
4559 			if (!skb)
4560 				break;
4561 			/* Start new segment */
4562 			start = TCP_SKB_CB(skb)->seq;
4563 			end = TCP_SKB_CB(skb)->end_seq;
4564 		} else {
4565 			if (before(TCP_SKB_CB(skb)->seq, start))
4566 				start = TCP_SKB_CB(skb)->seq;
4567 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4568 				end = TCP_SKB_CB(skb)->end_seq;
4569 		}
4570 	}
4571 }
4572 
4573 /*
4574  * Purge the out-of-order queue.
4575  * Return true if queue was pruned.
4576  */
4577 static bool tcp_prune_ofo_queue(struct sock *sk)
4578 {
4579 	struct tcp_sock *tp = tcp_sk(sk);
4580 	bool res = false;
4581 
4582 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4583 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4584 		__skb_queue_purge(&tp->out_of_order_queue);
4585 
4586 		/* Reset SACK state.  A conforming SACK implementation will
4587 		 * do the same at a timeout based retransmit.  When a connection
4588 		 * is in a sad state like this, we care only about integrity
4589 		 * of the connection not performance.
4590 		 */
4591 		if (tp->rx_opt.sack_ok)
4592 			tcp_sack_reset(&tp->rx_opt);
4593 		sk_mem_reclaim(sk);
4594 		res = true;
4595 	}
4596 	return res;
4597 }
4598 
4599 /* Reduce allocated memory if we can, trying to get
4600  * the socket within its memory limits again.
4601  *
4602  * Return less than zero if we should start dropping frames
4603  * until the socket owning process reads some of the data
4604  * to stabilize the situation.
4605  */
4606 static int tcp_prune_queue(struct sock *sk)
4607 {
4608 	struct tcp_sock *tp = tcp_sk(sk);
4609 
4610 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4611 
4612 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4613 
4614 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4615 		tcp_clamp_window(sk);
4616 	else if (sk_under_memory_pressure(sk))
4617 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4618 
4619 	tcp_collapse_ofo_queue(sk);
4620 	if (!skb_queue_empty(&sk->sk_receive_queue))
4621 		tcp_collapse(sk, &sk->sk_receive_queue,
4622 			     skb_peek(&sk->sk_receive_queue),
4623 			     NULL,
4624 			     tp->copied_seq, tp->rcv_nxt);
4625 	sk_mem_reclaim(sk);
4626 
4627 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4628 		return 0;
4629 
4630 	/* Collapsing did not help, destructive actions follow.
4631 	 * This must not ever occur. */
4632 
4633 	tcp_prune_ofo_queue(sk);
4634 
4635 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4636 		return 0;
4637 
4638 	/* If we are really being abused, tell the caller to silently
4639 	 * drop receive data on the floor.  It will get retransmitted
4640 	 * and hopefully then we'll have sufficient space.
4641 	 */
4642 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4643 
4644 	/* Massive buffer overcommit. */
4645 	tp->pred_flags = 0;
4646 	return -1;
4647 }
4648 
4649 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4650  * As additional protections, we do not touch cwnd in retransmission phases,
4651  * and if application hit its sndbuf limit recently.
4652  */
4653 void tcp_cwnd_application_limited(struct sock *sk)
4654 {
4655 	struct tcp_sock *tp = tcp_sk(sk);
4656 
4657 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4658 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4659 		/* Limited by application or receiver window. */
4660 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4661 		u32 win_used = max(tp->snd_cwnd_used, init_win);
4662 		if (win_used < tp->snd_cwnd) {
4663 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4664 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4665 		}
4666 		tp->snd_cwnd_used = 0;
4667 	}
4668 	tp->snd_cwnd_stamp = tcp_time_stamp;
4669 }
4670 
4671 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4672 {
4673 	const struct tcp_sock *tp = tcp_sk(sk);
4674 
4675 	/* If the user specified a specific send buffer setting, do
4676 	 * not modify it.
4677 	 */
4678 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4679 		return false;
4680 
4681 	/* If we are under global TCP memory pressure, do not expand.  */
4682 	if (sk_under_memory_pressure(sk))
4683 		return false;
4684 
4685 	/* If we are under soft global TCP memory pressure, do not expand.  */
4686 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4687 		return false;
4688 
4689 	/* If we filled the congestion window, do not expand.  */
4690 	if (tp->packets_out >= tp->snd_cwnd)
4691 		return false;
4692 
4693 	return true;
4694 }
4695 
4696 /* When incoming ACK allowed to free some skb from write_queue,
4697  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4698  * on the exit from tcp input handler.
4699  *
4700  * PROBLEM: sndbuf expansion does not work well with largesend.
4701  */
4702 static void tcp_new_space(struct sock *sk)
4703 {
4704 	struct tcp_sock *tp = tcp_sk(sk);
4705 
4706 	if (tcp_should_expand_sndbuf(sk)) {
4707 		int sndmem = SKB_TRUESIZE(max_t(u32,
4708 						tp->rx_opt.mss_clamp,
4709 						tp->mss_cache) +
4710 					  MAX_TCP_HEADER);
4711 		int demanded = max_t(unsigned int, tp->snd_cwnd,
4712 				     tp->reordering + 1);
4713 		sndmem *= 2 * demanded;
4714 		if (sndmem > sk->sk_sndbuf)
4715 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4716 		tp->snd_cwnd_stamp = tcp_time_stamp;
4717 	}
4718 
4719 	sk->sk_write_space(sk);
4720 }
4721 
4722 static void tcp_check_space(struct sock *sk)
4723 {
4724 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4725 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4726 		if (sk->sk_socket &&
4727 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4728 			tcp_new_space(sk);
4729 	}
4730 }
4731 
4732 static inline void tcp_data_snd_check(struct sock *sk)
4733 {
4734 	tcp_push_pending_frames(sk);
4735 	tcp_check_space(sk);
4736 }
4737 
4738 /*
4739  * Check if sending an ack is needed.
4740  */
4741 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4742 {
4743 	struct tcp_sock *tp = tcp_sk(sk);
4744 
4745 	    /* More than one full frame received... */
4746 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4747 	     /* ... and right edge of window advances far enough.
4748 	      * (tcp_recvmsg() will send ACK otherwise). Or...
4749 	      */
4750 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
4751 	    /* We ACK each frame or... */
4752 	    tcp_in_quickack_mode(sk) ||
4753 	    /* We have out of order data. */
4754 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4755 		/* Then ack it now */
4756 		tcp_send_ack(sk);
4757 	} else {
4758 		/* Else, send delayed ack. */
4759 		tcp_send_delayed_ack(sk);
4760 	}
4761 }
4762 
4763 static inline void tcp_ack_snd_check(struct sock *sk)
4764 {
4765 	if (!inet_csk_ack_scheduled(sk)) {
4766 		/* We sent a data segment already. */
4767 		return;
4768 	}
4769 	__tcp_ack_snd_check(sk, 1);
4770 }
4771 
4772 /*
4773  *	This routine is only called when we have urgent data
4774  *	signaled. Its the 'slow' part of tcp_urg. It could be
4775  *	moved inline now as tcp_urg is only called from one
4776  *	place. We handle URGent data wrong. We have to - as
4777  *	BSD still doesn't use the correction from RFC961.
4778  *	For 1003.1g we should support a new option TCP_STDURG to permit
4779  *	either form (or just set the sysctl tcp_stdurg).
4780  */
4781 
4782 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4783 {
4784 	struct tcp_sock *tp = tcp_sk(sk);
4785 	u32 ptr = ntohs(th->urg_ptr);
4786 
4787 	if (ptr && !sysctl_tcp_stdurg)
4788 		ptr--;
4789 	ptr += ntohl(th->seq);
4790 
4791 	/* Ignore urgent data that we've already seen and read. */
4792 	if (after(tp->copied_seq, ptr))
4793 		return;
4794 
4795 	/* Do not replay urg ptr.
4796 	 *
4797 	 * NOTE: interesting situation not covered by specs.
4798 	 * Misbehaving sender may send urg ptr, pointing to segment,
4799 	 * which we already have in ofo queue. We are not able to fetch
4800 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4801 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4802 	 * situations. But it is worth to think about possibility of some
4803 	 * DoSes using some hypothetical application level deadlock.
4804 	 */
4805 	if (before(ptr, tp->rcv_nxt))
4806 		return;
4807 
4808 	/* Do we already have a newer (or duplicate) urgent pointer? */
4809 	if (tp->urg_data && !after(ptr, tp->urg_seq))
4810 		return;
4811 
4812 	/* Tell the world about our new urgent pointer. */
4813 	sk_send_sigurg(sk);
4814 
4815 	/* We may be adding urgent data when the last byte read was
4816 	 * urgent. To do this requires some care. We cannot just ignore
4817 	 * tp->copied_seq since we would read the last urgent byte again
4818 	 * as data, nor can we alter copied_seq until this data arrives
4819 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4820 	 *
4821 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4822 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4823 	 * and expect that both A and B disappear from stream. This is _wrong_.
4824 	 * Though this happens in BSD with high probability, this is occasional.
4825 	 * Any application relying on this is buggy. Note also, that fix "works"
4826 	 * only in this artificial test. Insert some normal data between A and B and we will
4827 	 * decline of BSD again. Verdict: it is better to remove to trap
4828 	 * buggy users.
4829 	 */
4830 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4831 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4832 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4833 		tp->copied_seq++;
4834 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4835 			__skb_unlink(skb, &sk->sk_receive_queue);
4836 			__kfree_skb(skb);
4837 		}
4838 	}
4839 
4840 	tp->urg_data = TCP_URG_NOTYET;
4841 	tp->urg_seq = ptr;
4842 
4843 	/* Disable header prediction. */
4844 	tp->pred_flags = 0;
4845 }
4846 
4847 /* This is the 'fast' part of urgent handling. */
4848 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4849 {
4850 	struct tcp_sock *tp = tcp_sk(sk);
4851 
4852 	/* Check if we get a new urgent pointer - normally not. */
4853 	if (th->urg)
4854 		tcp_check_urg(sk, th);
4855 
4856 	/* Do we wait for any urgent data? - normally not... */
4857 	if (tp->urg_data == TCP_URG_NOTYET) {
4858 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4859 			  th->syn;
4860 
4861 		/* Is the urgent pointer pointing into this packet? */
4862 		if (ptr < skb->len) {
4863 			u8 tmp;
4864 			if (skb_copy_bits(skb, ptr, &tmp, 1))
4865 				BUG();
4866 			tp->urg_data = TCP_URG_VALID | tmp;
4867 			if (!sock_flag(sk, SOCK_DEAD))
4868 				sk->sk_data_ready(sk, 0);
4869 		}
4870 	}
4871 }
4872 
4873 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4874 {
4875 	struct tcp_sock *tp = tcp_sk(sk);
4876 	int chunk = skb->len - hlen;
4877 	int err;
4878 
4879 	local_bh_enable();
4880 	if (skb_csum_unnecessary(skb))
4881 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4882 	else
4883 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4884 						       tp->ucopy.iov);
4885 
4886 	if (!err) {
4887 		tp->ucopy.len -= chunk;
4888 		tp->copied_seq += chunk;
4889 		tcp_rcv_space_adjust(sk);
4890 	}
4891 
4892 	local_bh_disable();
4893 	return err;
4894 }
4895 
4896 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4897 					    struct sk_buff *skb)
4898 {
4899 	__sum16 result;
4900 
4901 	if (sock_owned_by_user(sk)) {
4902 		local_bh_enable();
4903 		result = __tcp_checksum_complete(skb);
4904 		local_bh_disable();
4905 	} else {
4906 		result = __tcp_checksum_complete(skb);
4907 	}
4908 	return result;
4909 }
4910 
4911 static inline bool tcp_checksum_complete_user(struct sock *sk,
4912 					     struct sk_buff *skb)
4913 {
4914 	return !skb_csum_unnecessary(skb) &&
4915 	       __tcp_checksum_complete_user(sk, skb);
4916 }
4917 
4918 #ifdef CONFIG_NET_DMA
4919 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4920 				  int hlen)
4921 {
4922 	struct tcp_sock *tp = tcp_sk(sk);
4923 	int chunk = skb->len - hlen;
4924 	int dma_cookie;
4925 	bool copied_early = false;
4926 
4927 	if (tp->ucopy.wakeup)
4928 		return false;
4929 
4930 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4931 		tp->ucopy.dma_chan = net_dma_find_channel();
4932 
4933 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4934 
4935 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4936 							 skb, hlen,
4937 							 tp->ucopy.iov, chunk,
4938 							 tp->ucopy.pinned_list);
4939 
4940 		if (dma_cookie < 0)
4941 			goto out;
4942 
4943 		tp->ucopy.dma_cookie = dma_cookie;
4944 		copied_early = true;
4945 
4946 		tp->ucopy.len -= chunk;
4947 		tp->copied_seq += chunk;
4948 		tcp_rcv_space_adjust(sk);
4949 
4950 		if ((tp->ucopy.len == 0) ||
4951 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4952 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4953 			tp->ucopy.wakeup = 1;
4954 			sk->sk_data_ready(sk, 0);
4955 		}
4956 	} else if (chunk > 0) {
4957 		tp->ucopy.wakeup = 1;
4958 		sk->sk_data_ready(sk, 0);
4959 	}
4960 out:
4961 	return copied_early;
4962 }
4963 #endif /* CONFIG_NET_DMA */
4964 
4965 /* Does PAWS and seqno based validation of an incoming segment, flags will
4966  * play significant role here.
4967  */
4968 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
4969 				  const struct tcphdr *th, int syn_inerr)
4970 {
4971 	struct tcp_sock *tp = tcp_sk(sk);
4972 
4973 	/* RFC1323: H1. Apply PAWS check first. */
4974 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4975 	    tcp_paws_discard(sk, skb)) {
4976 		if (!th->rst) {
4977 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
4978 			tcp_send_dupack(sk, skb);
4979 			goto discard;
4980 		}
4981 		/* Reset is accepted even if it did not pass PAWS. */
4982 	}
4983 
4984 	/* Step 1: check sequence number */
4985 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4986 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
4987 		 * (RST) segments are validated by checking their SEQ-fields."
4988 		 * And page 69: "If an incoming segment is not acceptable,
4989 		 * an acknowledgment should be sent in reply (unless the RST
4990 		 * bit is set, if so drop the segment and return)".
4991 		 */
4992 		if (!th->rst) {
4993 			if (th->syn)
4994 				goto syn_challenge;
4995 			tcp_send_dupack(sk, skb);
4996 		}
4997 		goto discard;
4998 	}
4999 
5000 	/* Step 2: check RST bit */
5001 	if (th->rst) {
5002 		/* RFC 5961 3.2 :
5003 		 * If sequence number exactly matches RCV.NXT, then
5004 		 *     RESET the connection
5005 		 * else
5006 		 *     Send a challenge ACK
5007 		 */
5008 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5009 			tcp_reset(sk);
5010 		else
5011 			tcp_send_challenge_ack(sk);
5012 		goto discard;
5013 	}
5014 
5015 	/* step 3: check security and precedence [ignored] */
5016 
5017 	/* step 4: Check for a SYN
5018 	 * RFC 5691 4.2 : Send a challenge ack
5019 	 */
5020 	if (th->syn) {
5021 syn_challenge:
5022 		if (syn_inerr)
5023 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5024 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5025 		tcp_send_challenge_ack(sk);
5026 		goto discard;
5027 	}
5028 
5029 	return true;
5030 
5031 discard:
5032 	__kfree_skb(skb);
5033 	return false;
5034 }
5035 
5036 /*
5037  *	TCP receive function for the ESTABLISHED state.
5038  *
5039  *	It is split into a fast path and a slow path. The fast path is
5040  * 	disabled when:
5041  *	- A zero window was announced from us - zero window probing
5042  *        is only handled properly in the slow path.
5043  *	- Out of order segments arrived.
5044  *	- Urgent data is expected.
5045  *	- There is no buffer space left
5046  *	- Unexpected TCP flags/window values/header lengths are received
5047  *	  (detected by checking the TCP header against pred_flags)
5048  *	- Data is sent in both directions. Fast path only supports pure senders
5049  *	  or pure receivers (this means either the sequence number or the ack
5050  *	  value must stay constant)
5051  *	- Unexpected TCP option.
5052  *
5053  *	When these conditions are not satisfied it drops into a standard
5054  *	receive procedure patterned after RFC793 to handle all cases.
5055  *	The first three cases are guaranteed by proper pred_flags setting,
5056  *	the rest is checked inline. Fast processing is turned on in
5057  *	tcp_data_queue when everything is OK.
5058  */
5059 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5060 			 const struct tcphdr *th, unsigned int len)
5061 {
5062 	struct tcp_sock *tp = tcp_sk(sk);
5063 
5064 	if (unlikely(sk->sk_rx_dst == NULL))
5065 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5066 	/*
5067 	 *	Header prediction.
5068 	 *	The code loosely follows the one in the famous
5069 	 *	"30 instruction TCP receive" Van Jacobson mail.
5070 	 *
5071 	 *	Van's trick is to deposit buffers into socket queue
5072 	 *	on a device interrupt, to call tcp_recv function
5073 	 *	on the receive process context and checksum and copy
5074 	 *	the buffer to user space. smart...
5075 	 *
5076 	 *	Our current scheme is not silly either but we take the
5077 	 *	extra cost of the net_bh soft interrupt processing...
5078 	 *	We do checksum and copy also but from device to kernel.
5079 	 */
5080 
5081 	tp->rx_opt.saw_tstamp = 0;
5082 
5083 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5084 	 *	if header_prediction is to be made
5085 	 *	'S' will always be tp->tcp_header_len >> 2
5086 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5087 	 *  turn it off	(when there are holes in the receive
5088 	 *	 space for instance)
5089 	 *	PSH flag is ignored.
5090 	 */
5091 
5092 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5093 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5094 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5095 		int tcp_header_len = tp->tcp_header_len;
5096 
5097 		/* Timestamp header prediction: tcp_header_len
5098 		 * is automatically equal to th->doff*4 due to pred_flags
5099 		 * match.
5100 		 */
5101 
5102 		/* Check timestamp */
5103 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5104 			/* No? Slow path! */
5105 			if (!tcp_parse_aligned_timestamp(tp, th))
5106 				goto slow_path;
5107 
5108 			/* If PAWS failed, check it more carefully in slow path */
5109 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5110 				goto slow_path;
5111 
5112 			/* DO NOT update ts_recent here, if checksum fails
5113 			 * and timestamp was corrupted part, it will result
5114 			 * in a hung connection since we will drop all
5115 			 * future packets due to the PAWS test.
5116 			 */
5117 		}
5118 
5119 		if (len <= tcp_header_len) {
5120 			/* Bulk data transfer: sender */
5121 			if (len == tcp_header_len) {
5122 				/* Predicted packet is in window by definition.
5123 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5124 				 * Hence, check seq<=rcv_wup reduces to:
5125 				 */
5126 				if (tcp_header_len ==
5127 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5128 				    tp->rcv_nxt == tp->rcv_wup)
5129 					tcp_store_ts_recent(tp);
5130 
5131 				/* We know that such packets are checksummed
5132 				 * on entry.
5133 				 */
5134 				tcp_ack(sk, skb, 0);
5135 				__kfree_skb(skb);
5136 				tcp_data_snd_check(sk);
5137 				return;
5138 			} else { /* Header too small */
5139 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5140 				goto discard;
5141 			}
5142 		} else {
5143 			int eaten = 0;
5144 			int copied_early = 0;
5145 			bool fragstolen = false;
5146 
5147 			if (tp->copied_seq == tp->rcv_nxt &&
5148 			    len - tcp_header_len <= tp->ucopy.len) {
5149 #ifdef CONFIG_NET_DMA
5150 				if (tp->ucopy.task == current &&
5151 				    sock_owned_by_user(sk) &&
5152 				    tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5153 					copied_early = 1;
5154 					eaten = 1;
5155 				}
5156 #endif
5157 				if (tp->ucopy.task == current &&
5158 				    sock_owned_by_user(sk) && !copied_early) {
5159 					__set_current_state(TASK_RUNNING);
5160 
5161 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5162 						eaten = 1;
5163 				}
5164 				if (eaten) {
5165 					/* Predicted packet is in window by definition.
5166 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5167 					 * Hence, check seq<=rcv_wup reduces to:
5168 					 */
5169 					if (tcp_header_len ==
5170 					    (sizeof(struct tcphdr) +
5171 					     TCPOLEN_TSTAMP_ALIGNED) &&
5172 					    tp->rcv_nxt == tp->rcv_wup)
5173 						tcp_store_ts_recent(tp);
5174 
5175 					tcp_rcv_rtt_measure_ts(sk, skb);
5176 
5177 					__skb_pull(skb, tcp_header_len);
5178 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5179 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5180 				}
5181 				if (copied_early)
5182 					tcp_cleanup_rbuf(sk, skb->len);
5183 			}
5184 			if (!eaten) {
5185 				if (tcp_checksum_complete_user(sk, skb))
5186 					goto csum_error;
5187 
5188 				if ((int)skb->truesize > sk->sk_forward_alloc)
5189 					goto step5;
5190 
5191 				/* Predicted packet is in window by definition.
5192 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5193 				 * Hence, check seq<=rcv_wup reduces to:
5194 				 */
5195 				if (tcp_header_len ==
5196 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5197 				    tp->rcv_nxt == tp->rcv_wup)
5198 					tcp_store_ts_recent(tp);
5199 
5200 				tcp_rcv_rtt_measure_ts(sk, skb);
5201 
5202 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5203 
5204 				/* Bulk data transfer: receiver */
5205 				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5206 						      &fragstolen);
5207 			}
5208 
5209 			tcp_event_data_recv(sk, skb);
5210 
5211 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5212 				/* Well, only one small jumplet in fast path... */
5213 				tcp_ack(sk, skb, FLAG_DATA);
5214 				tcp_data_snd_check(sk);
5215 				if (!inet_csk_ack_scheduled(sk))
5216 					goto no_ack;
5217 			}
5218 
5219 			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5220 				__tcp_ack_snd_check(sk, 0);
5221 no_ack:
5222 #ifdef CONFIG_NET_DMA
5223 			if (copied_early)
5224 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5225 			else
5226 #endif
5227 			if (eaten)
5228 				kfree_skb_partial(skb, fragstolen);
5229 			sk->sk_data_ready(sk, 0);
5230 			return;
5231 		}
5232 	}
5233 
5234 slow_path:
5235 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5236 		goto csum_error;
5237 
5238 	if (!th->ack && !th->rst)
5239 		goto discard;
5240 
5241 	/*
5242 	 *	Standard slow path.
5243 	 */
5244 
5245 	if (!tcp_validate_incoming(sk, skb, th, 1))
5246 		return;
5247 
5248 step5:
5249 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5250 		goto discard;
5251 
5252 	tcp_rcv_rtt_measure_ts(sk, skb);
5253 
5254 	/* Process urgent data. */
5255 	tcp_urg(sk, skb, th);
5256 
5257 	/* step 7: process the segment text */
5258 	tcp_data_queue(sk, skb);
5259 
5260 	tcp_data_snd_check(sk);
5261 	tcp_ack_snd_check(sk);
5262 	return;
5263 
5264 csum_error:
5265 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5266 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5267 
5268 discard:
5269 	__kfree_skb(skb);
5270 }
5271 EXPORT_SYMBOL(tcp_rcv_established);
5272 
5273 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5274 {
5275 	struct tcp_sock *tp = tcp_sk(sk);
5276 	struct inet_connection_sock *icsk = inet_csk(sk);
5277 
5278 	tcp_set_state(sk, TCP_ESTABLISHED);
5279 
5280 	if (skb != NULL) {
5281 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5282 		security_inet_conn_established(sk, skb);
5283 	}
5284 
5285 	/* Make sure socket is routed, for correct metrics.  */
5286 	icsk->icsk_af_ops->rebuild_header(sk);
5287 
5288 	tcp_init_metrics(sk);
5289 
5290 	tcp_init_congestion_control(sk);
5291 
5292 	/* Prevent spurious tcp_cwnd_restart() on first data
5293 	 * packet.
5294 	 */
5295 	tp->lsndtime = tcp_time_stamp;
5296 
5297 	tcp_init_buffer_space(sk);
5298 
5299 	if (sock_flag(sk, SOCK_KEEPOPEN))
5300 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5301 
5302 	if (!tp->rx_opt.snd_wscale)
5303 		__tcp_fast_path_on(tp, tp->snd_wnd);
5304 	else
5305 		tp->pred_flags = 0;
5306 
5307 	if (!sock_flag(sk, SOCK_DEAD)) {
5308 		sk->sk_state_change(sk);
5309 		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5310 	}
5311 }
5312 
5313 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5314 				    struct tcp_fastopen_cookie *cookie)
5315 {
5316 	struct tcp_sock *tp = tcp_sk(sk);
5317 	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5318 	u16 mss = tp->rx_opt.mss_clamp;
5319 	bool syn_drop;
5320 
5321 	if (mss == tp->rx_opt.user_mss) {
5322 		struct tcp_options_received opt;
5323 
5324 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5325 		tcp_clear_options(&opt);
5326 		opt.user_mss = opt.mss_clamp = 0;
5327 		tcp_parse_options(synack, &opt, 0, NULL);
5328 		mss = opt.mss_clamp;
5329 	}
5330 
5331 	if (!tp->syn_fastopen)  /* Ignore an unsolicited cookie */
5332 		cookie->len = -1;
5333 
5334 	/* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5335 	 * the remote receives only the retransmitted (regular) SYNs: either
5336 	 * the original SYN-data or the corresponding SYN-ACK is lost.
5337 	 */
5338 	syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
5339 
5340 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5341 
5342 	if (data) { /* Retransmit unacked data in SYN */
5343 		tcp_for_write_queue_from(data, sk) {
5344 			if (data == tcp_send_head(sk) ||
5345 			    __tcp_retransmit_skb(sk, data))
5346 				break;
5347 		}
5348 		tcp_rearm_rto(sk);
5349 		return true;
5350 	}
5351 	tp->syn_data_acked = tp->syn_data;
5352 	return false;
5353 }
5354 
5355 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5356 					 const struct tcphdr *th, unsigned int len)
5357 {
5358 	struct inet_connection_sock *icsk = inet_csk(sk);
5359 	struct tcp_sock *tp = tcp_sk(sk);
5360 	struct tcp_fastopen_cookie foc = { .len = -1 };
5361 	int saved_clamp = tp->rx_opt.mss_clamp;
5362 
5363 	tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5364 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5365 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5366 
5367 	if (th->ack) {
5368 		/* rfc793:
5369 		 * "If the state is SYN-SENT then
5370 		 *    first check the ACK bit
5371 		 *      If the ACK bit is set
5372 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5373 		 *        a reset (unless the RST bit is set, if so drop
5374 		 *        the segment and return)"
5375 		 */
5376 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5377 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5378 			goto reset_and_undo;
5379 
5380 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5381 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5382 			     tcp_time_stamp)) {
5383 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5384 			goto reset_and_undo;
5385 		}
5386 
5387 		/* Now ACK is acceptable.
5388 		 *
5389 		 * "If the RST bit is set
5390 		 *    If the ACK was acceptable then signal the user "error:
5391 		 *    connection reset", drop the segment, enter CLOSED state,
5392 		 *    delete TCB, and return."
5393 		 */
5394 
5395 		if (th->rst) {
5396 			tcp_reset(sk);
5397 			goto discard;
5398 		}
5399 
5400 		/* rfc793:
5401 		 *   "fifth, if neither of the SYN or RST bits is set then
5402 		 *    drop the segment and return."
5403 		 *
5404 		 *    See note below!
5405 		 *                                        --ANK(990513)
5406 		 */
5407 		if (!th->syn)
5408 			goto discard_and_undo;
5409 
5410 		/* rfc793:
5411 		 *   "If the SYN bit is on ...
5412 		 *    are acceptable then ...
5413 		 *    (our SYN has been ACKed), change the connection
5414 		 *    state to ESTABLISHED..."
5415 		 */
5416 
5417 		TCP_ECN_rcv_synack(tp, th);
5418 
5419 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5420 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5421 
5422 		/* Ok.. it's good. Set up sequence numbers and
5423 		 * move to established.
5424 		 */
5425 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5426 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5427 
5428 		/* RFC1323: The window in SYN & SYN/ACK segments is
5429 		 * never scaled.
5430 		 */
5431 		tp->snd_wnd = ntohs(th->window);
5432 
5433 		if (!tp->rx_opt.wscale_ok) {
5434 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5435 			tp->window_clamp = min(tp->window_clamp, 65535U);
5436 		}
5437 
5438 		if (tp->rx_opt.saw_tstamp) {
5439 			tp->rx_opt.tstamp_ok	   = 1;
5440 			tp->tcp_header_len =
5441 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5442 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5443 			tcp_store_ts_recent(tp);
5444 		} else {
5445 			tp->tcp_header_len = sizeof(struct tcphdr);
5446 		}
5447 
5448 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5449 			tcp_enable_fack(tp);
5450 
5451 		tcp_mtup_init(sk);
5452 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5453 		tcp_initialize_rcv_mss(sk);
5454 
5455 		/* Remember, tcp_poll() does not lock socket!
5456 		 * Change state from SYN-SENT only after copied_seq
5457 		 * is initialized. */
5458 		tp->copied_seq = tp->rcv_nxt;
5459 
5460 		smp_mb();
5461 
5462 		tcp_finish_connect(sk, skb);
5463 
5464 		if ((tp->syn_fastopen || tp->syn_data) &&
5465 		    tcp_rcv_fastopen_synack(sk, skb, &foc))
5466 			return -1;
5467 
5468 		if (sk->sk_write_pending ||
5469 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5470 		    icsk->icsk_ack.pingpong) {
5471 			/* Save one ACK. Data will be ready after
5472 			 * several ticks, if write_pending is set.
5473 			 *
5474 			 * It may be deleted, but with this feature tcpdumps
5475 			 * look so _wonderfully_ clever, that I was not able
5476 			 * to stand against the temptation 8)     --ANK
5477 			 */
5478 			inet_csk_schedule_ack(sk);
5479 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5480 			tcp_enter_quickack_mode(sk);
5481 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5482 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5483 
5484 discard:
5485 			__kfree_skb(skb);
5486 			return 0;
5487 		} else {
5488 			tcp_send_ack(sk);
5489 		}
5490 		return -1;
5491 	}
5492 
5493 	/* No ACK in the segment */
5494 
5495 	if (th->rst) {
5496 		/* rfc793:
5497 		 * "If the RST bit is set
5498 		 *
5499 		 *      Otherwise (no ACK) drop the segment and return."
5500 		 */
5501 
5502 		goto discard_and_undo;
5503 	}
5504 
5505 	/* PAWS check. */
5506 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5507 	    tcp_paws_reject(&tp->rx_opt, 0))
5508 		goto discard_and_undo;
5509 
5510 	if (th->syn) {
5511 		/* We see SYN without ACK. It is attempt of
5512 		 * simultaneous connect with crossed SYNs.
5513 		 * Particularly, it can be connect to self.
5514 		 */
5515 		tcp_set_state(sk, TCP_SYN_RECV);
5516 
5517 		if (tp->rx_opt.saw_tstamp) {
5518 			tp->rx_opt.tstamp_ok = 1;
5519 			tcp_store_ts_recent(tp);
5520 			tp->tcp_header_len =
5521 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5522 		} else {
5523 			tp->tcp_header_len = sizeof(struct tcphdr);
5524 		}
5525 
5526 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5527 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5528 
5529 		/* RFC1323: The window in SYN & SYN/ACK segments is
5530 		 * never scaled.
5531 		 */
5532 		tp->snd_wnd    = ntohs(th->window);
5533 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5534 		tp->max_window = tp->snd_wnd;
5535 
5536 		TCP_ECN_rcv_syn(tp, th);
5537 
5538 		tcp_mtup_init(sk);
5539 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5540 		tcp_initialize_rcv_mss(sk);
5541 
5542 		tcp_send_synack(sk);
5543 #if 0
5544 		/* Note, we could accept data and URG from this segment.
5545 		 * There are no obstacles to make this (except that we must
5546 		 * either change tcp_recvmsg() to prevent it from returning data
5547 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5548 		 *
5549 		 * However, if we ignore data in ACKless segments sometimes,
5550 		 * we have no reasons to accept it sometimes.
5551 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5552 		 * is not flawless. So, discard packet for sanity.
5553 		 * Uncomment this return to process the data.
5554 		 */
5555 		return -1;
5556 #else
5557 		goto discard;
5558 #endif
5559 	}
5560 	/* "fifth, if neither of the SYN or RST bits is set then
5561 	 * drop the segment and return."
5562 	 */
5563 
5564 discard_and_undo:
5565 	tcp_clear_options(&tp->rx_opt);
5566 	tp->rx_opt.mss_clamp = saved_clamp;
5567 	goto discard;
5568 
5569 reset_and_undo:
5570 	tcp_clear_options(&tp->rx_opt);
5571 	tp->rx_opt.mss_clamp = saved_clamp;
5572 	return 1;
5573 }
5574 
5575 /*
5576  *	This function implements the receiving procedure of RFC 793 for
5577  *	all states except ESTABLISHED and TIME_WAIT.
5578  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5579  *	address independent.
5580  */
5581 
5582 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5583 			  const struct tcphdr *th, unsigned int len)
5584 {
5585 	struct tcp_sock *tp = tcp_sk(sk);
5586 	struct inet_connection_sock *icsk = inet_csk(sk);
5587 	struct request_sock *req;
5588 	int queued = 0;
5589 	bool acceptable;
5590 
5591 	tp->rx_opt.saw_tstamp = 0;
5592 
5593 	switch (sk->sk_state) {
5594 	case TCP_CLOSE:
5595 		goto discard;
5596 
5597 	case TCP_LISTEN:
5598 		if (th->ack)
5599 			return 1;
5600 
5601 		if (th->rst)
5602 			goto discard;
5603 
5604 		if (th->syn) {
5605 			if (th->fin)
5606 				goto discard;
5607 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5608 				return 1;
5609 
5610 			/* Now we have several options: In theory there is
5611 			 * nothing else in the frame. KA9Q has an option to
5612 			 * send data with the syn, BSD accepts data with the
5613 			 * syn up to the [to be] advertised window and
5614 			 * Solaris 2.1 gives you a protocol error. For now
5615 			 * we just ignore it, that fits the spec precisely
5616 			 * and avoids incompatibilities. It would be nice in
5617 			 * future to drop through and process the data.
5618 			 *
5619 			 * Now that TTCP is starting to be used we ought to
5620 			 * queue this data.
5621 			 * But, this leaves one open to an easy denial of
5622 			 * service attack, and SYN cookies can't defend
5623 			 * against this problem. So, we drop the data
5624 			 * in the interest of security over speed unless
5625 			 * it's still in use.
5626 			 */
5627 			kfree_skb(skb);
5628 			return 0;
5629 		}
5630 		goto discard;
5631 
5632 	case TCP_SYN_SENT:
5633 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5634 		if (queued >= 0)
5635 			return queued;
5636 
5637 		/* Do step6 onward by hand. */
5638 		tcp_urg(sk, skb, th);
5639 		__kfree_skb(skb);
5640 		tcp_data_snd_check(sk);
5641 		return 0;
5642 	}
5643 
5644 	req = tp->fastopen_rsk;
5645 	if (req != NULL) {
5646 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5647 		    sk->sk_state != TCP_FIN_WAIT1);
5648 
5649 		if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5650 			goto discard;
5651 	}
5652 
5653 	if (!th->ack && !th->rst)
5654 		goto discard;
5655 
5656 	if (!tcp_validate_incoming(sk, skb, th, 0))
5657 		return 0;
5658 
5659 	/* step 5: check the ACK field */
5660 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5661 				      FLAG_UPDATE_TS_RECENT) > 0;
5662 
5663 	switch (sk->sk_state) {
5664 	case TCP_SYN_RECV:
5665 		if (!acceptable)
5666 			return 1;
5667 
5668 		/* Once we leave TCP_SYN_RECV, we no longer need req
5669 		 * so release it.
5670 		 */
5671 		if (req) {
5672 			tp->total_retrans = req->num_retrans;
5673 			reqsk_fastopen_remove(sk, req, false);
5674 		} else {
5675 			/* Make sure socket is routed, for correct metrics. */
5676 			icsk->icsk_af_ops->rebuild_header(sk);
5677 			tcp_init_congestion_control(sk);
5678 
5679 			tcp_mtup_init(sk);
5680 			tcp_init_buffer_space(sk);
5681 			tp->copied_seq = tp->rcv_nxt;
5682 		}
5683 		smp_mb();
5684 		tcp_set_state(sk, TCP_ESTABLISHED);
5685 		sk->sk_state_change(sk);
5686 
5687 		/* Note, that this wakeup is only for marginal crossed SYN case.
5688 		 * Passively open sockets are not waked up, because
5689 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5690 		 */
5691 		if (sk->sk_socket)
5692 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5693 
5694 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5695 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5696 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5697 		tcp_synack_rtt_meas(sk, req);
5698 
5699 		if (tp->rx_opt.tstamp_ok)
5700 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5701 
5702 		if (req) {
5703 			/* Re-arm the timer because data may have been sent out.
5704 			 * This is similar to the regular data transmission case
5705 			 * when new data has just been ack'ed.
5706 			 *
5707 			 * (TFO) - we could try to be more aggressive and
5708 			 * retransmitting any data sooner based on when they
5709 			 * are sent out.
5710 			 */
5711 			tcp_rearm_rto(sk);
5712 		} else
5713 			tcp_init_metrics(sk);
5714 
5715 		tcp_update_pacing_rate(sk);
5716 
5717 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5718 		tp->lsndtime = tcp_time_stamp;
5719 
5720 		tcp_initialize_rcv_mss(sk);
5721 		tcp_fast_path_on(tp);
5722 		break;
5723 
5724 	case TCP_FIN_WAIT1: {
5725 		struct dst_entry *dst;
5726 		int tmo;
5727 
5728 		/* If we enter the TCP_FIN_WAIT1 state and we are a
5729 		 * Fast Open socket and this is the first acceptable
5730 		 * ACK we have received, this would have acknowledged
5731 		 * our SYNACK so stop the SYNACK timer.
5732 		 */
5733 		if (req != NULL) {
5734 			/* Return RST if ack_seq is invalid.
5735 			 * Note that RFC793 only says to generate a
5736 			 * DUPACK for it but for TCP Fast Open it seems
5737 			 * better to treat this case like TCP_SYN_RECV
5738 			 * above.
5739 			 */
5740 			if (!acceptable)
5741 				return 1;
5742 			/* We no longer need the request sock. */
5743 			reqsk_fastopen_remove(sk, req, false);
5744 			tcp_rearm_rto(sk);
5745 		}
5746 		if (tp->snd_una != tp->write_seq)
5747 			break;
5748 
5749 		tcp_set_state(sk, TCP_FIN_WAIT2);
5750 		sk->sk_shutdown |= SEND_SHUTDOWN;
5751 
5752 		dst = __sk_dst_get(sk);
5753 		if (dst)
5754 			dst_confirm(dst);
5755 
5756 		if (!sock_flag(sk, SOCK_DEAD)) {
5757 			/* Wake up lingering close() */
5758 			sk->sk_state_change(sk);
5759 			break;
5760 		}
5761 
5762 		if (tp->linger2 < 0 ||
5763 		    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5764 		     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5765 			tcp_done(sk);
5766 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5767 			return 1;
5768 		}
5769 
5770 		tmo = tcp_fin_time(sk);
5771 		if (tmo > TCP_TIMEWAIT_LEN) {
5772 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5773 		} else if (th->fin || sock_owned_by_user(sk)) {
5774 			/* Bad case. We could lose such FIN otherwise.
5775 			 * It is not a big problem, but it looks confusing
5776 			 * and not so rare event. We still can lose it now,
5777 			 * if it spins in bh_lock_sock(), but it is really
5778 			 * marginal case.
5779 			 */
5780 			inet_csk_reset_keepalive_timer(sk, tmo);
5781 		} else {
5782 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5783 			goto discard;
5784 		}
5785 		break;
5786 	}
5787 
5788 	case TCP_CLOSING:
5789 		if (tp->snd_una == tp->write_seq) {
5790 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5791 			goto discard;
5792 		}
5793 		break;
5794 
5795 	case TCP_LAST_ACK:
5796 		if (tp->snd_una == tp->write_seq) {
5797 			tcp_update_metrics(sk);
5798 			tcp_done(sk);
5799 			goto discard;
5800 		}
5801 		break;
5802 	}
5803 
5804 	/* step 6: check the URG bit */
5805 	tcp_urg(sk, skb, th);
5806 
5807 	/* step 7: process the segment text */
5808 	switch (sk->sk_state) {
5809 	case TCP_CLOSE_WAIT:
5810 	case TCP_CLOSING:
5811 	case TCP_LAST_ACK:
5812 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5813 			break;
5814 	case TCP_FIN_WAIT1:
5815 	case TCP_FIN_WAIT2:
5816 		/* RFC 793 says to queue data in these states,
5817 		 * RFC 1122 says we MUST send a reset.
5818 		 * BSD 4.4 also does reset.
5819 		 */
5820 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5821 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5822 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5823 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5824 				tcp_reset(sk);
5825 				return 1;
5826 			}
5827 		}
5828 		/* Fall through */
5829 	case TCP_ESTABLISHED:
5830 		tcp_data_queue(sk, skb);
5831 		queued = 1;
5832 		break;
5833 	}
5834 
5835 	/* tcp_data could move socket to TIME-WAIT */
5836 	if (sk->sk_state != TCP_CLOSE) {
5837 		tcp_data_snd_check(sk);
5838 		tcp_ack_snd_check(sk);
5839 	}
5840 
5841 	if (!queued) {
5842 discard:
5843 		__kfree_skb(skb);
5844 	}
5845 	return 0;
5846 }
5847 EXPORT_SYMBOL(tcp_rcv_state_process);
5848