xref: /openbmc/linux/net/ipv4/tcp_input.c (revision f69e98a91a01fd7c5755dd710e94a17d6e9f583f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83 
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85 
86 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
87 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
88 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
89 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
90 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
91 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
92 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
93 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
96 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
102 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
103 #define FLAG_DSACK_TLP		0x20000 /* DSACK for tail loss probe */
104 
105 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
106 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
107 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
108 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
109 
110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
112 
113 #define REXMIT_NONE	0 /* no loss recovery to do */
114 #define REXMIT_LOST	1 /* retransmit packets marked lost */
115 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
116 
117 #if IS_ENABLED(CONFIG_TLS_DEVICE)
118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
119 
120 void clean_acked_data_enable(struct inet_connection_sock *icsk,
121 			     void (*cad)(struct sock *sk, u32 ack_seq))
122 {
123 	icsk->icsk_clean_acked = cad;
124 	static_branch_deferred_inc(&clean_acked_data_enabled);
125 }
126 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
127 
128 void clean_acked_data_disable(struct inet_connection_sock *icsk)
129 {
130 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
131 	icsk->icsk_clean_acked = NULL;
132 }
133 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
134 
135 void clean_acked_data_flush(void)
136 {
137 	static_key_deferred_flush(&clean_acked_data_enabled);
138 }
139 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
140 #endif
141 
142 #ifdef CONFIG_CGROUP_BPF
143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
144 {
145 	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
146 		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
147 				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
148 	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
149 						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
150 	struct bpf_sock_ops_kern sock_ops;
151 
152 	if (likely(!unknown_opt && !parse_all_opt))
153 		return;
154 
155 	/* The skb will be handled in the
156 	 * bpf_skops_established() or
157 	 * bpf_skops_write_hdr_opt().
158 	 */
159 	switch (sk->sk_state) {
160 	case TCP_SYN_RECV:
161 	case TCP_SYN_SENT:
162 	case TCP_LISTEN:
163 		return;
164 	}
165 
166 	sock_owned_by_me(sk);
167 
168 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
169 	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
170 	sock_ops.is_fullsock = 1;
171 	sock_ops.sk = sk;
172 	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
173 
174 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
175 }
176 
177 static void bpf_skops_established(struct sock *sk, int bpf_op,
178 				  struct sk_buff *skb)
179 {
180 	struct bpf_sock_ops_kern sock_ops;
181 
182 	sock_owned_by_me(sk);
183 
184 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
185 	sock_ops.op = bpf_op;
186 	sock_ops.is_fullsock = 1;
187 	sock_ops.sk = sk;
188 	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
189 	if (skb)
190 		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
191 
192 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
193 }
194 #else
195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
196 {
197 }
198 
199 static void bpf_skops_established(struct sock *sk, int bpf_op,
200 				  struct sk_buff *skb)
201 {
202 }
203 #endif
204 
205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
206 			     unsigned int len)
207 {
208 	static bool __once __read_mostly;
209 
210 	if (!__once) {
211 		struct net_device *dev;
212 
213 		__once = true;
214 
215 		rcu_read_lock();
216 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
217 		if (!dev || len >= dev->mtu)
218 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
219 				dev ? dev->name : "Unknown driver");
220 		rcu_read_unlock();
221 	}
222 }
223 
224 /* Adapt the MSS value used to make delayed ack decision to the
225  * real world.
226  */
227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
228 {
229 	struct inet_connection_sock *icsk = inet_csk(sk);
230 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
231 	unsigned int len;
232 
233 	icsk->icsk_ack.last_seg_size = 0;
234 
235 	/* skb->len may jitter because of SACKs, even if peer
236 	 * sends good full-sized frames.
237 	 */
238 	len = skb_shinfo(skb)->gso_size ? : skb->len;
239 	if (len >= icsk->icsk_ack.rcv_mss) {
240 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
241 					       tcp_sk(sk)->advmss);
242 		/* Account for possibly-removed options */
243 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
244 				   MAX_TCP_OPTION_SPACE))
245 			tcp_gro_dev_warn(sk, skb, len);
246 	} else {
247 		/* Otherwise, we make more careful check taking into account,
248 		 * that SACKs block is variable.
249 		 *
250 		 * "len" is invariant segment length, including TCP header.
251 		 */
252 		len += skb->data - skb_transport_header(skb);
253 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
254 		    /* If PSH is not set, packet should be
255 		     * full sized, provided peer TCP is not badly broken.
256 		     * This observation (if it is correct 8)) allows
257 		     * to handle super-low mtu links fairly.
258 		     */
259 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
260 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
261 			/* Subtract also invariant (if peer is RFC compliant),
262 			 * tcp header plus fixed timestamp option length.
263 			 * Resulting "len" is MSS free of SACK jitter.
264 			 */
265 			len -= tcp_sk(sk)->tcp_header_len;
266 			icsk->icsk_ack.last_seg_size = len;
267 			if (len == lss) {
268 				icsk->icsk_ack.rcv_mss = len;
269 				return;
270 			}
271 		}
272 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
273 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
274 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
275 	}
276 }
277 
278 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
279 {
280 	struct inet_connection_sock *icsk = inet_csk(sk);
281 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
282 
283 	if (quickacks == 0)
284 		quickacks = 2;
285 	quickacks = min(quickacks, max_quickacks);
286 	if (quickacks > icsk->icsk_ack.quick)
287 		icsk->icsk_ack.quick = quickacks;
288 }
289 
290 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
291 {
292 	struct inet_connection_sock *icsk = inet_csk(sk);
293 
294 	tcp_incr_quickack(sk, max_quickacks);
295 	inet_csk_exit_pingpong_mode(sk);
296 	icsk->icsk_ack.ato = TCP_ATO_MIN;
297 }
298 EXPORT_SYMBOL(tcp_enter_quickack_mode);
299 
300 /* Send ACKs quickly, if "quick" count is not exhausted
301  * and the session is not interactive.
302  */
303 
304 static bool tcp_in_quickack_mode(struct sock *sk)
305 {
306 	const struct inet_connection_sock *icsk = inet_csk(sk);
307 	const struct dst_entry *dst = __sk_dst_get(sk);
308 
309 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
310 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
311 }
312 
313 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
314 {
315 	if (tp->ecn_flags & TCP_ECN_OK)
316 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
317 }
318 
319 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
320 {
321 	if (tcp_hdr(skb)->cwr) {
322 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
323 
324 		/* If the sender is telling us it has entered CWR, then its
325 		 * cwnd may be very low (even just 1 packet), so we should ACK
326 		 * immediately.
327 		 */
328 		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
329 			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
330 	}
331 }
332 
333 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
334 {
335 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
336 }
337 
338 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
339 {
340 	struct tcp_sock *tp = tcp_sk(sk);
341 
342 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
343 	case INET_ECN_NOT_ECT:
344 		/* Funny extension: if ECT is not set on a segment,
345 		 * and we already seen ECT on a previous segment,
346 		 * it is probably a retransmit.
347 		 */
348 		if (tp->ecn_flags & TCP_ECN_SEEN)
349 			tcp_enter_quickack_mode(sk, 2);
350 		break;
351 	case INET_ECN_CE:
352 		if (tcp_ca_needs_ecn(sk))
353 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
354 
355 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
356 			/* Better not delay acks, sender can have a very low cwnd */
357 			tcp_enter_quickack_mode(sk, 2);
358 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
359 		}
360 		tp->ecn_flags |= TCP_ECN_SEEN;
361 		break;
362 	default:
363 		if (tcp_ca_needs_ecn(sk))
364 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
365 		tp->ecn_flags |= TCP_ECN_SEEN;
366 		break;
367 	}
368 }
369 
370 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
371 {
372 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
373 		__tcp_ecn_check_ce(sk, skb);
374 }
375 
376 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
377 {
378 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
379 		tp->ecn_flags &= ~TCP_ECN_OK;
380 }
381 
382 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
383 {
384 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
385 		tp->ecn_flags &= ~TCP_ECN_OK;
386 }
387 
388 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
389 {
390 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
391 		return true;
392 	return false;
393 }
394 
395 /* Buffer size and advertised window tuning.
396  *
397  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
398  */
399 
400 static void tcp_sndbuf_expand(struct sock *sk)
401 {
402 	const struct tcp_sock *tp = tcp_sk(sk);
403 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
404 	int sndmem, per_mss;
405 	u32 nr_segs;
406 
407 	/* Worst case is non GSO/TSO : each frame consumes one skb
408 	 * and skb->head is kmalloced using power of two area of memory
409 	 */
410 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
411 		  MAX_TCP_HEADER +
412 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
413 
414 	per_mss = roundup_pow_of_two(per_mss) +
415 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
416 
417 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
418 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
419 
420 	/* Fast Recovery (RFC 5681 3.2) :
421 	 * Cubic needs 1.7 factor, rounded to 2 to include
422 	 * extra cushion (application might react slowly to EPOLLOUT)
423 	 */
424 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
425 	sndmem *= nr_segs * per_mss;
426 
427 	if (sk->sk_sndbuf < sndmem)
428 		WRITE_ONCE(sk->sk_sndbuf,
429 			   min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]));
430 }
431 
432 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
433  *
434  * All tcp_full_space() is split to two parts: "network" buffer, allocated
435  * forward and advertised in receiver window (tp->rcv_wnd) and
436  * "application buffer", required to isolate scheduling/application
437  * latencies from network.
438  * window_clamp is maximal advertised window. It can be less than
439  * tcp_full_space(), in this case tcp_full_space() - window_clamp
440  * is reserved for "application" buffer. The less window_clamp is
441  * the smoother our behaviour from viewpoint of network, but the lower
442  * throughput and the higher sensitivity of the connection to losses. 8)
443  *
444  * rcv_ssthresh is more strict window_clamp used at "slow start"
445  * phase to predict further behaviour of this connection.
446  * It is used for two goals:
447  * - to enforce header prediction at sender, even when application
448  *   requires some significant "application buffer". It is check #1.
449  * - to prevent pruning of receive queue because of misprediction
450  *   of receiver window. Check #2.
451  *
452  * The scheme does not work when sender sends good segments opening
453  * window and then starts to feed us spaghetti. But it should work
454  * in common situations. Otherwise, we have to rely on queue collapsing.
455  */
456 
457 /* Slow part of check#2. */
458 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
459 			     unsigned int skbtruesize)
460 {
461 	struct tcp_sock *tp = tcp_sk(sk);
462 	/* Optimize this! */
463 	int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
464 	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
465 
466 	while (tp->rcv_ssthresh <= window) {
467 		if (truesize <= skb->len)
468 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
469 
470 		truesize >>= 1;
471 		window >>= 1;
472 	}
473 	return 0;
474 }
475 
476 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
477  * can play nice with us, as sk_buff and skb->head might be either
478  * freed or shared with up to MAX_SKB_FRAGS segments.
479  * Only give a boost to drivers using page frag(s) to hold the frame(s),
480  * and if no payload was pulled in skb->head before reaching us.
481  */
482 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
483 {
484 	u32 truesize = skb->truesize;
485 
486 	if (adjust && !skb_headlen(skb)) {
487 		truesize -= SKB_TRUESIZE(skb_end_offset(skb));
488 		/* paranoid check, some drivers might be buggy */
489 		if (unlikely((int)truesize < (int)skb->len))
490 			truesize = skb->truesize;
491 	}
492 	return truesize;
493 }
494 
495 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
496 			    bool adjust)
497 {
498 	struct tcp_sock *tp = tcp_sk(sk);
499 	int room;
500 
501 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
502 
503 	if (room <= 0)
504 		return;
505 
506 	/* Check #1 */
507 	if (!tcp_under_memory_pressure(sk)) {
508 		unsigned int truesize = truesize_adjust(adjust, skb);
509 		int incr;
510 
511 		/* Check #2. Increase window, if skb with such overhead
512 		 * will fit to rcvbuf in future.
513 		 */
514 		if (tcp_win_from_space(sk, truesize) <= skb->len)
515 			incr = 2 * tp->advmss;
516 		else
517 			incr = __tcp_grow_window(sk, skb, truesize);
518 
519 		if (incr) {
520 			incr = max_t(int, incr, 2 * skb->len);
521 			tp->rcv_ssthresh += min(room, incr);
522 			inet_csk(sk)->icsk_ack.quick |= 1;
523 		}
524 	} else {
525 		/* Under pressure:
526 		 * Adjust rcv_ssthresh according to reserved mem
527 		 */
528 		tcp_adjust_rcv_ssthresh(sk);
529 	}
530 }
531 
532 /* 3. Try to fixup all. It is made immediately after connection enters
533  *    established state.
534  */
535 static void tcp_init_buffer_space(struct sock *sk)
536 {
537 	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
538 	struct tcp_sock *tp = tcp_sk(sk);
539 	int maxwin;
540 
541 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
542 		tcp_sndbuf_expand(sk);
543 
544 	tcp_mstamp_refresh(tp);
545 	tp->rcvq_space.time = tp->tcp_mstamp;
546 	tp->rcvq_space.seq = tp->copied_seq;
547 
548 	maxwin = tcp_full_space(sk);
549 
550 	if (tp->window_clamp >= maxwin) {
551 		tp->window_clamp = maxwin;
552 
553 		if (tcp_app_win && maxwin > 4 * tp->advmss)
554 			tp->window_clamp = max(maxwin -
555 					       (maxwin >> tcp_app_win),
556 					       4 * tp->advmss);
557 	}
558 
559 	/* Force reservation of one segment. */
560 	if (tcp_app_win &&
561 	    tp->window_clamp > 2 * tp->advmss &&
562 	    tp->window_clamp + tp->advmss > maxwin)
563 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
564 
565 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
566 	tp->snd_cwnd_stamp = tcp_jiffies32;
567 	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
568 				    (u32)TCP_INIT_CWND * tp->advmss);
569 }
570 
571 /* 4. Recalculate window clamp after socket hit its memory bounds. */
572 static void tcp_clamp_window(struct sock *sk)
573 {
574 	struct tcp_sock *tp = tcp_sk(sk);
575 	struct inet_connection_sock *icsk = inet_csk(sk);
576 	struct net *net = sock_net(sk);
577 
578 	icsk->icsk_ack.quick = 0;
579 
580 	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
581 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
582 	    !tcp_under_memory_pressure(sk) &&
583 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
584 		WRITE_ONCE(sk->sk_rcvbuf,
585 			   min(atomic_read(&sk->sk_rmem_alloc),
586 			       net->ipv4.sysctl_tcp_rmem[2]));
587 	}
588 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
589 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
590 }
591 
592 /* Initialize RCV_MSS value.
593  * RCV_MSS is an our guess about MSS used by the peer.
594  * We haven't any direct information about the MSS.
595  * It's better to underestimate the RCV_MSS rather than overestimate.
596  * Overestimations make us ACKing less frequently than needed.
597  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
598  */
599 void tcp_initialize_rcv_mss(struct sock *sk)
600 {
601 	const struct tcp_sock *tp = tcp_sk(sk);
602 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
603 
604 	hint = min(hint, tp->rcv_wnd / 2);
605 	hint = min(hint, TCP_MSS_DEFAULT);
606 	hint = max(hint, TCP_MIN_MSS);
607 
608 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
609 }
610 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
611 
612 /* Receiver "autotuning" code.
613  *
614  * The algorithm for RTT estimation w/o timestamps is based on
615  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
616  * <https://public.lanl.gov/radiant/pubs.html#DRS>
617  *
618  * More detail on this code can be found at
619  * <http://staff.psc.edu/jheffner/>,
620  * though this reference is out of date.  A new paper
621  * is pending.
622  */
623 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
624 {
625 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
626 	long m = sample;
627 
628 	if (new_sample != 0) {
629 		/* If we sample in larger samples in the non-timestamp
630 		 * case, we could grossly overestimate the RTT especially
631 		 * with chatty applications or bulk transfer apps which
632 		 * are stalled on filesystem I/O.
633 		 *
634 		 * Also, since we are only going for a minimum in the
635 		 * non-timestamp case, we do not smooth things out
636 		 * else with timestamps disabled convergence takes too
637 		 * long.
638 		 */
639 		if (!win_dep) {
640 			m -= (new_sample >> 3);
641 			new_sample += m;
642 		} else {
643 			m <<= 3;
644 			if (m < new_sample)
645 				new_sample = m;
646 		}
647 	} else {
648 		/* No previous measure. */
649 		new_sample = m << 3;
650 	}
651 
652 	tp->rcv_rtt_est.rtt_us = new_sample;
653 }
654 
655 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
656 {
657 	u32 delta_us;
658 
659 	if (tp->rcv_rtt_est.time == 0)
660 		goto new_measure;
661 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
662 		return;
663 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
664 	if (!delta_us)
665 		delta_us = 1;
666 	tcp_rcv_rtt_update(tp, delta_us, 1);
667 
668 new_measure:
669 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
670 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
671 }
672 
673 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
674 					  const struct sk_buff *skb)
675 {
676 	struct tcp_sock *tp = tcp_sk(sk);
677 
678 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
679 		return;
680 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
681 
682 	if (TCP_SKB_CB(skb)->end_seq -
683 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
684 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
685 		u32 delta_us;
686 
687 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
688 			if (!delta)
689 				delta = 1;
690 			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
691 			tcp_rcv_rtt_update(tp, delta_us, 0);
692 		}
693 	}
694 }
695 
696 /*
697  * This function should be called every time data is copied to user space.
698  * It calculates the appropriate TCP receive buffer space.
699  */
700 void tcp_rcv_space_adjust(struct sock *sk)
701 {
702 	struct tcp_sock *tp = tcp_sk(sk);
703 	u32 copied;
704 	int time;
705 
706 	trace_tcp_rcv_space_adjust(sk);
707 
708 	tcp_mstamp_refresh(tp);
709 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
710 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
711 		return;
712 
713 	/* Number of bytes copied to user in last RTT */
714 	copied = tp->copied_seq - tp->rcvq_space.seq;
715 	if (copied <= tp->rcvq_space.space)
716 		goto new_measure;
717 
718 	/* A bit of theory :
719 	 * copied = bytes received in previous RTT, our base window
720 	 * To cope with packet losses, we need a 2x factor
721 	 * To cope with slow start, and sender growing its cwin by 100 %
722 	 * every RTT, we need a 4x factor, because the ACK we are sending
723 	 * now is for the next RTT, not the current one :
724 	 * <prev RTT . ><current RTT .. ><next RTT .... >
725 	 */
726 
727 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
728 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
729 		int rcvmem, rcvbuf;
730 		u64 rcvwin, grow;
731 
732 		/* minimal window to cope with packet losses, assuming
733 		 * steady state. Add some cushion because of small variations.
734 		 */
735 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
736 
737 		/* Accommodate for sender rate increase (eg. slow start) */
738 		grow = rcvwin * (copied - tp->rcvq_space.space);
739 		do_div(grow, tp->rcvq_space.space);
740 		rcvwin += (grow << 1);
741 
742 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
743 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
744 			rcvmem += 128;
745 
746 		do_div(rcvwin, tp->advmss);
747 		rcvbuf = min_t(u64, rcvwin * rcvmem,
748 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
749 		if (rcvbuf > sk->sk_rcvbuf) {
750 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
751 
752 			/* Make the window clamp follow along.  */
753 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
754 		}
755 	}
756 	tp->rcvq_space.space = copied;
757 
758 new_measure:
759 	tp->rcvq_space.seq = tp->copied_seq;
760 	tp->rcvq_space.time = tp->tcp_mstamp;
761 }
762 
763 /* There is something which you must keep in mind when you analyze the
764  * behavior of the tp->ato delayed ack timeout interval.  When a
765  * connection starts up, we want to ack as quickly as possible.  The
766  * problem is that "good" TCP's do slow start at the beginning of data
767  * transmission.  The means that until we send the first few ACK's the
768  * sender will sit on his end and only queue most of his data, because
769  * he can only send snd_cwnd unacked packets at any given time.  For
770  * each ACK we send, he increments snd_cwnd and transmits more of his
771  * queue.  -DaveM
772  */
773 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
774 {
775 	struct tcp_sock *tp = tcp_sk(sk);
776 	struct inet_connection_sock *icsk = inet_csk(sk);
777 	u32 now;
778 
779 	inet_csk_schedule_ack(sk);
780 
781 	tcp_measure_rcv_mss(sk, skb);
782 
783 	tcp_rcv_rtt_measure(tp);
784 
785 	now = tcp_jiffies32;
786 
787 	if (!icsk->icsk_ack.ato) {
788 		/* The _first_ data packet received, initialize
789 		 * delayed ACK engine.
790 		 */
791 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
792 		icsk->icsk_ack.ato = TCP_ATO_MIN;
793 	} else {
794 		int m = now - icsk->icsk_ack.lrcvtime;
795 
796 		if (m <= TCP_ATO_MIN / 2) {
797 			/* The fastest case is the first. */
798 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
799 		} else if (m < icsk->icsk_ack.ato) {
800 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
801 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
802 				icsk->icsk_ack.ato = icsk->icsk_rto;
803 		} else if (m > icsk->icsk_rto) {
804 			/* Too long gap. Apparently sender failed to
805 			 * restart window, so that we send ACKs quickly.
806 			 */
807 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
808 			sk_mem_reclaim(sk);
809 		}
810 	}
811 	icsk->icsk_ack.lrcvtime = now;
812 
813 	tcp_ecn_check_ce(sk, skb);
814 
815 	if (skb->len >= 128)
816 		tcp_grow_window(sk, skb, true);
817 }
818 
819 /* Called to compute a smoothed rtt estimate. The data fed to this
820  * routine either comes from timestamps, or from segments that were
821  * known _not_ to have been retransmitted [see Karn/Partridge
822  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
823  * piece by Van Jacobson.
824  * NOTE: the next three routines used to be one big routine.
825  * To save cycles in the RFC 1323 implementation it was better to break
826  * it up into three procedures. -- erics
827  */
828 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
829 {
830 	struct tcp_sock *tp = tcp_sk(sk);
831 	long m = mrtt_us; /* RTT */
832 	u32 srtt = tp->srtt_us;
833 
834 	/*	The following amusing code comes from Jacobson's
835 	 *	article in SIGCOMM '88.  Note that rtt and mdev
836 	 *	are scaled versions of rtt and mean deviation.
837 	 *	This is designed to be as fast as possible
838 	 *	m stands for "measurement".
839 	 *
840 	 *	On a 1990 paper the rto value is changed to:
841 	 *	RTO = rtt + 4 * mdev
842 	 *
843 	 * Funny. This algorithm seems to be very broken.
844 	 * These formulae increase RTO, when it should be decreased, increase
845 	 * too slowly, when it should be increased quickly, decrease too quickly
846 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
847 	 * does not matter how to _calculate_ it. Seems, it was trap
848 	 * that VJ failed to avoid. 8)
849 	 */
850 	if (srtt != 0) {
851 		m -= (srtt >> 3);	/* m is now error in rtt est */
852 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
853 		if (m < 0) {
854 			m = -m;		/* m is now abs(error) */
855 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
856 			/* This is similar to one of Eifel findings.
857 			 * Eifel blocks mdev updates when rtt decreases.
858 			 * This solution is a bit different: we use finer gain
859 			 * for mdev in this case (alpha*beta).
860 			 * Like Eifel it also prevents growth of rto,
861 			 * but also it limits too fast rto decreases,
862 			 * happening in pure Eifel.
863 			 */
864 			if (m > 0)
865 				m >>= 3;
866 		} else {
867 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
868 		}
869 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
870 		if (tp->mdev_us > tp->mdev_max_us) {
871 			tp->mdev_max_us = tp->mdev_us;
872 			if (tp->mdev_max_us > tp->rttvar_us)
873 				tp->rttvar_us = tp->mdev_max_us;
874 		}
875 		if (after(tp->snd_una, tp->rtt_seq)) {
876 			if (tp->mdev_max_us < tp->rttvar_us)
877 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
878 			tp->rtt_seq = tp->snd_nxt;
879 			tp->mdev_max_us = tcp_rto_min_us(sk);
880 
881 			tcp_bpf_rtt(sk);
882 		}
883 	} else {
884 		/* no previous measure. */
885 		srtt = m << 3;		/* take the measured time to be rtt */
886 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
887 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
888 		tp->mdev_max_us = tp->rttvar_us;
889 		tp->rtt_seq = tp->snd_nxt;
890 
891 		tcp_bpf_rtt(sk);
892 	}
893 	tp->srtt_us = max(1U, srtt);
894 }
895 
896 static void tcp_update_pacing_rate(struct sock *sk)
897 {
898 	const struct tcp_sock *tp = tcp_sk(sk);
899 	u64 rate;
900 
901 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
902 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
903 
904 	/* current rate is (cwnd * mss) / srtt
905 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
906 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
907 	 *
908 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
909 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
910 	 *	 end of slow start and should slow down.
911 	 */
912 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
913 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
914 	else
915 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
916 
917 	rate *= max(tp->snd_cwnd, tp->packets_out);
918 
919 	if (likely(tp->srtt_us))
920 		do_div(rate, tp->srtt_us);
921 
922 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
923 	 * without any lock. We want to make sure compiler wont store
924 	 * intermediate values in this location.
925 	 */
926 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
927 					     sk->sk_max_pacing_rate));
928 }
929 
930 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
931  * routine referred to above.
932  */
933 static void tcp_set_rto(struct sock *sk)
934 {
935 	const struct tcp_sock *tp = tcp_sk(sk);
936 	/* Old crap is replaced with new one. 8)
937 	 *
938 	 * More seriously:
939 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
940 	 *    It cannot be less due to utterly erratic ACK generation made
941 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
942 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
943 	 *    is invisible. Actually, Linux-2.4 also generates erratic
944 	 *    ACKs in some circumstances.
945 	 */
946 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
947 
948 	/* 2. Fixups made earlier cannot be right.
949 	 *    If we do not estimate RTO correctly without them,
950 	 *    all the algo is pure shit and should be replaced
951 	 *    with correct one. It is exactly, which we pretend to do.
952 	 */
953 
954 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
955 	 * guarantees that rto is higher.
956 	 */
957 	tcp_bound_rto(sk);
958 }
959 
960 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
961 {
962 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
963 
964 	if (!cwnd)
965 		cwnd = TCP_INIT_CWND;
966 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
967 }
968 
969 struct tcp_sacktag_state {
970 	/* Timestamps for earliest and latest never-retransmitted segment
971 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
972 	 * but congestion control should still get an accurate delay signal.
973 	 */
974 	u64	first_sackt;
975 	u64	last_sackt;
976 	u32	reord;
977 	u32	sack_delivered;
978 	int	flag;
979 	unsigned int mss_now;
980 	struct rate_sample *rate;
981 };
982 
983 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
984  * and spurious retransmission information if this DSACK is unlikely caused by
985  * sender's action:
986  * - DSACKed sequence range is larger than maximum receiver's window.
987  * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
988  */
989 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
990 			  u32 end_seq, struct tcp_sacktag_state *state)
991 {
992 	u32 seq_len, dup_segs = 1;
993 
994 	if (!before(start_seq, end_seq))
995 		return 0;
996 
997 	seq_len = end_seq - start_seq;
998 	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
999 	if (seq_len > tp->max_window)
1000 		return 0;
1001 	if (seq_len > tp->mss_cache)
1002 		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1003 	else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1004 		state->flag |= FLAG_DSACK_TLP;
1005 
1006 	tp->dsack_dups += dup_segs;
1007 	/* Skip the DSACK if dup segs weren't retransmitted by sender */
1008 	if (tp->dsack_dups > tp->total_retrans)
1009 		return 0;
1010 
1011 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1012 	/* We increase the RACK ordering window in rounds where we receive
1013 	 * DSACKs that may have been due to reordering causing RACK to trigger
1014 	 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1015 	 * without having seen reordering, or that match TLP probes (TLP
1016 	 * is timer-driven, not triggered by RACK).
1017 	 */
1018 	if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1019 		tp->rack.dsack_seen = 1;
1020 
1021 	state->flag |= FLAG_DSACKING_ACK;
1022 	/* A spurious retransmission is delivered */
1023 	state->sack_delivered += dup_segs;
1024 
1025 	return dup_segs;
1026 }
1027 
1028 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1029  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1030  * distance is approximated in full-mss packet distance ("reordering").
1031  */
1032 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1033 				      const int ts)
1034 {
1035 	struct tcp_sock *tp = tcp_sk(sk);
1036 	const u32 mss = tp->mss_cache;
1037 	u32 fack, metric;
1038 
1039 	fack = tcp_highest_sack_seq(tp);
1040 	if (!before(low_seq, fack))
1041 		return;
1042 
1043 	metric = fack - low_seq;
1044 	if ((metric > tp->reordering * mss) && mss) {
1045 #if FASTRETRANS_DEBUG > 1
1046 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1047 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1048 			 tp->reordering,
1049 			 0,
1050 			 tp->sacked_out,
1051 			 tp->undo_marker ? tp->undo_retrans : 0);
1052 #endif
1053 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1054 				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1055 	}
1056 
1057 	/* This exciting event is worth to be remembered. 8) */
1058 	tp->reord_seen++;
1059 	NET_INC_STATS(sock_net(sk),
1060 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1061 }
1062 
1063  /* This must be called before lost_out or retrans_out are updated
1064   * on a new loss, because we want to know if all skbs previously
1065   * known to be lost have already been retransmitted, indicating
1066   * that this newly lost skb is our next skb to retransmit.
1067   */
1068 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1069 {
1070 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1071 	    (tp->retransmit_skb_hint &&
1072 	     before(TCP_SKB_CB(skb)->seq,
1073 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1074 		tp->retransmit_skb_hint = skb;
1075 }
1076 
1077 /* Sum the number of packets on the wire we have marked as lost, and
1078  * notify the congestion control module that the given skb was marked lost.
1079  */
1080 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1081 {
1082 	tp->lost += tcp_skb_pcount(skb);
1083 }
1084 
1085 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1086 {
1087 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1088 	struct tcp_sock *tp = tcp_sk(sk);
1089 
1090 	if (sacked & TCPCB_SACKED_ACKED)
1091 		return;
1092 
1093 	tcp_verify_retransmit_hint(tp, skb);
1094 	if (sacked & TCPCB_LOST) {
1095 		if (sacked & TCPCB_SACKED_RETRANS) {
1096 			/* Account for retransmits that are lost again */
1097 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1098 			tp->retrans_out -= tcp_skb_pcount(skb);
1099 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1100 				      tcp_skb_pcount(skb));
1101 			tcp_notify_skb_loss_event(tp, skb);
1102 		}
1103 	} else {
1104 		tp->lost_out += tcp_skb_pcount(skb);
1105 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1106 		tcp_notify_skb_loss_event(tp, skb);
1107 	}
1108 }
1109 
1110 /* Updates the delivered and delivered_ce counts */
1111 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1112 				bool ece_ack)
1113 {
1114 	tp->delivered += delivered;
1115 	if (ece_ack)
1116 		tp->delivered_ce += delivered;
1117 }
1118 
1119 /* This procedure tags the retransmission queue when SACKs arrive.
1120  *
1121  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1122  * Packets in queue with these bits set are counted in variables
1123  * sacked_out, retrans_out and lost_out, correspondingly.
1124  *
1125  * Valid combinations are:
1126  * Tag  InFlight	Description
1127  * 0	1		- orig segment is in flight.
1128  * S	0		- nothing flies, orig reached receiver.
1129  * L	0		- nothing flies, orig lost by net.
1130  * R	2		- both orig and retransmit are in flight.
1131  * L|R	1		- orig is lost, retransmit is in flight.
1132  * S|R  1		- orig reached receiver, retrans is still in flight.
1133  * (L|S|R is logically valid, it could occur when L|R is sacked,
1134  *  but it is equivalent to plain S and code short-curcuits it to S.
1135  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1136  *
1137  * These 6 states form finite state machine, controlled by the following events:
1138  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1139  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1140  * 3. Loss detection event of two flavors:
1141  *	A. Scoreboard estimator decided the packet is lost.
1142  *	   A'. Reno "three dupacks" marks head of queue lost.
1143  *	B. SACK arrives sacking SND.NXT at the moment, when the
1144  *	   segment was retransmitted.
1145  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1146  *
1147  * It is pleasant to note, that state diagram turns out to be commutative,
1148  * so that we are allowed not to be bothered by order of our actions,
1149  * when multiple events arrive simultaneously. (see the function below).
1150  *
1151  * Reordering detection.
1152  * --------------------
1153  * Reordering metric is maximal distance, which a packet can be displaced
1154  * in packet stream. With SACKs we can estimate it:
1155  *
1156  * 1. SACK fills old hole and the corresponding segment was not
1157  *    ever retransmitted -> reordering. Alas, we cannot use it
1158  *    when segment was retransmitted.
1159  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1160  *    for retransmitted and already SACKed segment -> reordering..
1161  * Both of these heuristics are not used in Loss state, when we cannot
1162  * account for retransmits accurately.
1163  *
1164  * SACK block validation.
1165  * ----------------------
1166  *
1167  * SACK block range validation checks that the received SACK block fits to
1168  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1169  * Note that SND.UNA is not included to the range though being valid because
1170  * it means that the receiver is rather inconsistent with itself reporting
1171  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1172  * perfectly valid, however, in light of RFC2018 which explicitly states
1173  * that "SACK block MUST reflect the newest segment.  Even if the newest
1174  * segment is going to be discarded ...", not that it looks very clever
1175  * in case of head skb. Due to potentional receiver driven attacks, we
1176  * choose to avoid immediate execution of a walk in write queue due to
1177  * reneging and defer head skb's loss recovery to standard loss recovery
1178  * procedure that will eventually trigger (nothing forbids us doing this).
1179  *
1180  * Implements also blockage to start_seq wrap-around. Problem lies in the
1181  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1182  * there's no guarantee that it will be before snd_nxt (n). The problem
1183  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1184  * wrap (s_w):
1185  *
1186  *         <- outs wnd ->                          <- wrapzone ->
1187  *         u     e      n                         u_w   e_w  s n_w
1188  *         |     |      |                          |     |   |  |
1189  * |<------------+------+----- TCP seqno space --------------+---------->|
1190  * ...-- <2^31 ->|                                           |<--------...
1191  * ...---- >2^31 ------>|                                    |<--------...
1192  *
1193  * Current code wouldn't be vulnerable but it's better still to discard such
1194  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1195  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1196  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1197  * equal to the ideal case (infinite seqno space without wrap caused issues).
1198  *
1199  * With D-SACK the lower bound is extended to cover sequence space below
1200  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1201  * again, D-SACK block must not to go across snd_una (for the same reason as
1202  * for the normal SACK blocks, explained above). But there all simplicity
1203  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1204  * fully below undo_marker they do not affect behavior in anyway and can
1205  * therefore be safely ignored. In rare cases (which are more or less
1206  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1207  * fragmentation and packet reordering past skb's retransmission. To consider
1208  * them correctly, the acceptable range must be extended even more though
1209  * the exact amount is rather hard to quantify. However, tp->max_window can
1210  * be used as an exaggerated estimate.
1211  */
1212 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1213 				   u32 start_seq, u32 end_seq)
1214 {
1215 	/* Too far in future, or reversed (interpretation is ambiguous) */
1216 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1217 		return false;
1218 
1219 	/* Nasty start_seq wrap-around check (see comments above) */
1220 	if (!before(start_seq, tp->snd_nxt))
1221 		return false;
1222 
1223 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1224 	 * start_seq == snd_una is non-sensical (see comments above)
1225 	 */
1226 	if (after(start_seq, tp->snd_una))
1227 		return true;
1228 
1229 	if (!is_dsack || !tp->undo_marker)
1230 		return false;
1231 
1232 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1233 	if (after(end_seq, tp->snd_una))
1234 		return false;
1235 
1236 	if (!before(start_seq, tp->undo_marker))
1237 		return true;
1238 
1239 	/* Too old */
1240 	if (!after(end_seq, tp->undo_marker))
1241 		return false;
1242 
1243 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1244 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1245 	 */
1246 	return !before(start_seq, end_seq - tp->max_window);
1247 }
1248 
1249 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1250 			    struct tcp_sack_block_wire *sp, int num_sacks,
1251 			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1252 {
1253 	struct tcp_sock *tp = tcp_sk(sk);
1254 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1255 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1256 	u32 dup_segs;
1257 
1258 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1259 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1260 	} else if (num_sacks > 1) {
1261 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1262 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1263 
1264 		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1265 			return false;
1266 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1267 	} else {
1268 		return false;
1269 	}
1270 
1271 	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1272 	if (!dup_segs) {	/* Skip dubious DSACK */
1273 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1274 		return false;
1275 	}
1276 
1277 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1278 
1279 	/* D-SACK for already forgotten data... Do dumb counting. */
1280 	if (tp->undo_marker && tp->undo_retrans > 0 &&
1281 	    !after(end_seq_0, prior_snd_una) &&
1282 	    after(end_seq_0, tp->undo_marker))
1283 		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1284 
1285 	return true;
1286 }
1287 
1288 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1289  * the incoming SACK may not exactly match but we can find smaller MSS
1290  * aligned portion of it that matches. Therefore we might need to fragment
1291  * which may fail and creates some hassle (caller must handle error case
1292  * returns).
1293  *
1294  * FIXME: this could be merged to shift decision code
1295  */
1296 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1297 				  u32 start_seq, u32 end_seq)
1298 {
1299 	int err;
1300 	bool in_sack;
1301 	unsigned int pkt_len;
1302 	unsigned int mss;
1303 
1304 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1305 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1306 
1307 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1308 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1309 		mss = tcp_skb_mss(skb);
1310 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1311 
1312 		if (!in_sack) {
1313 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1314 			if (pkt_len < mss)
1315 				pkt_len = mss;
1316 		} else {
1317 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1318 			if (pkt_len < mss)
1319 				return -EINVAL;
1320 		}
1321 
1322 		/* Round if necessary so that SACKs cover only full MSSes
1323 		 * and/or the remaining small portion (if present)
1324 		 */
1325 		if (pkt_len > mss) {
1326 			unsigned int new_len = (pkt_len / mss) * mss;
1327 			if (!in_sack && new_len < pkt_len)
1328 				new_len += mss;
1329 			pkt_len = new_len;
1330 		}
1331 
1332 		if (pkt_len >= skb->len && !in_sack)
1333 			return 0;
1334 
1335 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1336 				   pkt_len, mss, GFP_ATOMIC);
1337 		if (err < 0)
1338 			return err;
1339 	}
1340 
1341 	return in_sack;
1342 }
1343 
1344 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1345 static u8 tcp_sacktag_one(struct sock *sk,
1346 			  struct tcp_sacktag_state *state, u8 sacked,
1347 			  u32 start_seq, u32 end_seq,
1348 			  int dup_sack, int pcount,
1349 			  u64 xmit_time)
1350 {
1351 	struct tcp_sock *tp = tcp_sk(sk);
1352 
1353 	/* Account D-SACK for retransmitted packet. */
1354 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1355 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1356 		    after(end_seq, tp->undo_marker))
1357 			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1358 		if ((sacked & TCPCB_SACKED_ACKED) &&
1359 		    before(start_seq, state->reord))
1360 				state->reord = start_seq;
1361 	}
1362 
1363 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1364 	if (!after(end_seq, tp->snd_una))
1365 		return sacked;
1366 
1367 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1368 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1369 
1370 		if (sacked & TCPCB_SACKED_RETRANS) {
1371 			/* If the segment is not tagged as lost,
1372 			 * we do not clear RETRANS, believing
1373 			 * that retransmission is still in flight.
1374 			 */
1375 			if (sacked & TCPCB_LOST) {
1376 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1377 				tp->lost_out -= pcount;
1378 				tp->retrans_out -= pcount;
1379 			}
1380 		} else {
1381 			if (!(sacked & TCPCB_RETRANS)) {
1382 				/* New sack for not retransmitted frame,
1383 				 * which was in hole. It is reordering.
1384 				 */
1385 				if (before(start_seq,
1386 					   tcp_highest_sack_seq(tp)) &&
1387 				    before(start_seq, state->reord))
1388 					state->reord = start_seq;
1389 
1390 				if (!after(end_seq, tp->high_seq))
1391 					state->flag |= FLAG_ORIG_SACK_ACKED;
1392 				if (state->first_sackt == 0)
1393 					state->first_sackt = xmit_time;
1394 				state->last_sackt = xmit_time;
1395 			}
1396 
1397 			if (sacked & TCPCB_LOST) {
1398 				sacked &= ~TCPCB_LOST;
1399 				tp->lost_out -= pcount;
1400 			}
1401 		}
1402 
1403 		sacked |= TCPCB_SACKED_ACKED;
1404 		state->flag |= FLAG_DATA_SACKED;
1405 		tp->sacked_out += pcount;
1406 		/* Out-of-order packets delivered */
1407 		state->sack_delivered += pcount;
1408 
1409 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1410 		if (tp->lost_skb_hint &&
1411 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1412 			tp->lost_cnt_hint += pcount;
1413 	}
1414 
1415 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1416 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1417 	 * are accounted above as well.
1418 	 */
1419 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1420 		sacked &= ~TCPCB_SACKED_RETRANS;
1421 		tp->retrans_out -= pcount;
1422 	}
1423 
1424 	return sacked;
1425 }
1426 
1427 /* Shift newly-SACKed bytes from this skb to the immediately previous
1428  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1429  */
1430 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1431 			    struct sk_buff *skb,
1432 			    struct tcp_sacktag_state *state,
1433 			    unsigned int pcount, int shifted, int mss,
1434 			    bool dup_sack)
1435 {
1436 	struct tcp_sock *tp = tcp_sk(sk);
1437 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1438 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1439 
1440 	BUG_ON(!pcount);
1441 
1442 	/* Adjust counters and hints for the newly sacked sequence
1443 	 * range but discard the return value since prev is already
1444 	 * marked. We must tag the range first because the seq
1445 	 * advancement below implicitly advances
1446 	 * tcp_highest_sack_seq() when skb is highest_sack.
1447 	 */
1448 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1449 			start_seq, end_seq, dup_sack, pcount,
1450 			tcp_skb_timestamp_us(skb));
1451 	tcp_rate_skb_delivered(sk, skb, state->rate);
1452 
1453 	if (skb == tp->lost_skb_hint)
1454 		tp->lost_cnt_hint += pcount;
1455 
1456 	TCP_SKB_CB(prev)->end_seq += shifted;
1457 	TCP_SKB_CB(skb)->seq += shifted;
1458 
1459 	tcp_skb_pcount_add(prev, pcount);
1460 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1461 	tcp_skb_pcount_add(skb, -pcount);
1462 
1463 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1464 	 * in theory this shouldn't be necessary but as long as DSACK
1465 	 * code can come after this skb later on it's better to keep
1466 	 * setting gso_size to something.
1467 	 */
1468 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1469 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1470 
1471 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1472 	if (tcp_skb_pcount(skb) <= 1)
1473 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1474 
1475 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1476 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1477 
1478 	if (skb->len > 0) {
1479 		BUG_ON(!tcp_skb_pcount(skb));
1480 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1481 		return false;
1482 	}
1483 
1484 	/* Whole SKB was eaten :-) */
1485 
1486 	if (skb == tp->retransmit_skb_hint)
1487 		tp->retransmit_skb_hint = prev;
1488 	if (skb == tp->lost_skb_hint) {
1489 		tp->lost_skb_hint = prev;
1490 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1491 	}
1492 
1493 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1494 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1495 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1496 		TCP_SKB_CB(prev)->end_seq++;
1497 
1498 	if (skb == tcp_highest_sack(sk))
1499 		tcp_advance_highest_sack(sk, skb);
1500 
1501 	tcp_skb_collapse_tstamp(prev, skb);
1502 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1503 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1504 
1505 	tcp_rtx_queue_unlink_and_free(skb, sk);
1506 
1507 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1508 
1509 	return true;
1510 }
1511 
1512 /* I wish gso_size would have a bit more sane initialization than
1513  * something-or-zero which complicates things
1514  */
1515 static int tcp_skb_seglen(const struct sk_buff *skb)
1516 {
1517 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1518 }
1519 
1520 /* Shifting pages past head area doesn't work */
1521 static int skb_can_shift(const struct sk_buff *skb)
1522 {
1523 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1524 }
1525 
1526 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1527 		  int pcount, int shiftlen)
1528 {
1529 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1530 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1531 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1532 	 * even if current MSS is bigger.
1533 	 */
1534 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1535 		return 0;
1536 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1537 		return 0;
1538 	return skb_shift(to, from, shiftlen);
1539 }
1540 
1541 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1542  * skb.
1543  */
1544 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1545 					  struct tcp_sacktag_state *state,
1546 					  u32 start_seq, u32 end_seq,
1547 					  bool dup_sack)
1548 {
1549 	struct tcp_sock *tp = tcp_sk(sk);
1550 	struct sk_buff *prev;
1551 	int mss;
1552 	int pcount = 0;
1553 	int len;
1554 	int in_sack;
1555 
1556 	/* Normally R but no L won't result in plain S */
1557 	if (!dup_sack &&
1558 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1559 		goto fallback;
1560 	if (!skb_can_shift(skb))
1561 		goto fallback;
1562 	/* This frame is about to be dropped (was ACKed). */
1563 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1564 		goto fallback;
1565 
1566 	/* Can only happen with delayed DSACK + discard craziness */
1567 	prev = skb_rb_prev(skb);
1568 	if (!prev)
1569 		goto fallback;
1570 
1571 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1572 		goto fallback;
1573 
1574 	if (!tcp_skb_can_collapse(prev, skb))
1575 		goto fallback;
1576 
1577 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1578 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1579 
1580 	if (in_sack) {
1581 		len = skb->len;
1582 		pcount = tcp_skb_pcount(skb);
1583 		mss = tcp_skb_seglen(skb);
1584 
1585 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1586 		 * drop this restriction as unnecessary
1587 		 */
1588 		if (mss != tcp_skb_seglen(prev))
1589 			goto fallback;
1590 	} else {
1591 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1592 			goto noop;
1593 		/* CHECKME: This is non-MSS split case only?, this will
1594 		 * cause skipped skbs due to advancing loop btw, original
1595 		 * has that feature too
1596 		 */
1597 		if (tcp_skb_pcount(skb) <= 1)
1598 			goto noop;
1599 
1600 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1601 		if (!in_sack) {
1602 			/* TODO: head merge to next could be attempted here
1603 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1604 			 * though it might not be worth of the additional hassle
1605 			 *
1606 			 * ...we can probably just fallback to what was done
1607 			 * previously. We could try merging non-SACKed ones
1608 			 * as well but it probably isn't going to buy off
1609 			 * because later SACKs might again split them, and
1610 			 * it would make skb timestamp tracking considerably
1611 			 * harder problem.
1612 			 */
1613 			goto fallback;
1614 		}
1615 
1616 		len = end_seq - TCP_SKB_CB(skb)->seq;
1617 		BUG_ON(len < 0);
1618 		BUG_ON(len > skb->len);
1619 
1620 		/* MSS boundaries should be honoured or else pcount will
1621 		 * severely break even though it makes things bit trickier.
1622 		 * Optimize common case to avoid most of the divides
1623 		 */
1624 		mss = tcp_skb_mss(skb);
1625 
1626 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1627 		 * drop this restriction as unnecessary
1628 		 */
1629 		if (mss != tcp_skb_seglen(prev))
1630 			goto fallback;
1631 
1632 		if (len == mss) {
1633 			pcount = 1;
1634 		} else if (len < mss) {
1635 			goto noop;
1636 		} else {
1637 			pcount = len / mss;
1638 			len = pcount * mss;
1639 		}
1640 	}
1641 
1642 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1643 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1644 		goto fallback;
1645 
1646 	if (!tcp_skb_shift(prev, skb, pcount, len))
1647 		goto fallback;
1648 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1649 		goto out;
1650 
1651 	/* Hole filled allows collapsing with the next as well, this is very
1652 	 * useful when hole on every nth skb pattern happens
1653 	 */
1654 	skb = skb_rb_next(prev);
1655 	if (!skb)
1656 		goto out;
1657 
1658 	if (!skb_can_shift(skb) ||
1659 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1660 	    (mss != tcp_skb_seglen(skb)))
1661 		goto out;
1662 
1663 	if (!tcp_skb_can_collapse(prev, skb))
1664 		goto out;
1665 	len = skb->len;
1666 	pcount = tcp_skb_pcount(skb);
1667 	if (tcp_skb_shift(prev, skb, pcount, len))
1668 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1669 				len, mss, 0);
1670 
1671 out:
1672 	return prev;
1673 
1674 noop:
1675 	return skb;
1676 
1677 fallback:
1678 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1679 	return NULL;
1680 }
1681 
1682 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1683 					struct tcp_sack_block *next_dup,
1684 					struct tcp_sacktag_state *state,
1685 					u32 start_seq, u32 end_seq,
1686 					bool dup_sack_in)
1687 {
1688 	struct tcp_sock *tp = tcp_sk(sk);
1689 	struct sk_buff *tmp;
1690 
1691 	skb_rbtree_walk_from(skb) {
1692 		int in_sack = 0;
1693 		bool dup_sack = dup_sack_in;
1694 
1695 		/* queue is in-order => we can short-circuit the walk early */
1696 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1697 			break;
1698 
1699 		if (next_dup  &&
1700 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1701 			in_sack = tcp_match_skb_to_sack(sk, skb,
1702 							next_dup->start_seq,
1703 							next_dup->end_seq);
1704 			if (in_sack > 0)
1705 				dup_sack = true;
1706 		}
1707 
1708 		/* skb reference here is a bit tricky to get right, since
1709 		 * shifting can eat and free both this skb and the next,
1710 		 * so not even _safe variant of the loop is enough.
1711 		 */
1712 		if (in_sack <= 0) {
1713 			tmp = tcp_shift_skb_data(sk, skb, state,
1714 						 start_seq, end_seq, dup_sack);
1715 			if (tmp) {
1716 				if (tmp != skb) {
1717 					skb = tmp;
1718 					continue;
1719 				}
1720 
1721 				in_sack = 0;
1722 			} else {
1723 				in_sack = tcp_match_skb_to_sack(sk, skb,
1724 								start_seq,
1725 								end_seq);
1726 			}
1727 		}
1728 
1729 		if (unlikely(in_sack < 0))
1730 			break;
1731 
1732 		if (in_sack) {
1733 			TCP_SKB_CB(skb)->sacked =
1734 				tcp_sacktag_one(sk,
1735 						state,
1736 						TCP_SKB_CB(skb)->sacked,
1737 						TCP_SKB_CB(skb)->seq,
1738 						TCP_SKB_CB(skb)->end_seq,
1739 						dup_sack,
1740 						tcp_skb_pcount(skb),
1741 						tcp_skb_timestamp_us(skb));
1742 			tcp_rate_skb_delivered(sk, skb, state->rate);
1743 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1744 				list_del_init(&skb->tcp_tsorted_anchor);
1745 
1746 			if (!before(TCP_SKB_CB(skb)->seq,
1747 				    tcp_highest_sack_seq(tp)))
1748 				tcp_advance_highest_sack(sk, skb);
1749 		}
1750 	}
1751 	return skb;
1752 }
1753 
1754 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1755 {
1756 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1757 	struct sk_buff *skb;
1758 
1759 	while (*p) {
1760 		parent = *p;
1761 		skb = rb_to_skb(parent);
1762 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1763 			p = &parent->rb_left;
1764 			continue;
1765 		}
1766 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1767 			p = &parent->rb_right;
1768 			continue;
1769 		}
1770 		return skb;
1771 	}
1772 	return NULL;
1773 }
1774 
1775 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1776 					u32 skip_to_seq)
1777 {
1778 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1779 		return skb;
1780 
1781 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1782 }
1783 
1784 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1785 						struct sock *sk,
1786 						struct tcp_sack_block *next_dup,
1787 						struct tcp_sacktag_state *state,
1788 						u32 skip_to_seq)
1789 {
1790 	if (!next_dup)
1791 		return skb;
1792 
1793 	if (before(next_dup->start_seq, skip_to_seq)) {
1794 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1795 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1796 				       next_dup->start_seq, next_dup->end_seq,
1797 				       1);
1798 	}
1799 
1800 	return skb;
1801 }
1802 
1803 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1804 {
1805 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1806 }
1807 
1808 static int
1809 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1810 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1811 {
1812 	struct tcp_sock *tp = tcp_sk(sk);
1813 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1814 				    TCP_SKB_CB(ack_skb)->sacked);
1815 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1816 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1817 	struct tcp_sack_block *cache;
1818 	struct sk_buff *skb;
1819 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1820 	int used_sacks;
1821 	bool found_dup_sack = false;
1822 	int i, j;
1823 	int first_sack_index;
1824 
1825 	state->flag = 0;
1826 	state->reord = tp->snd_nxt;
1827 
1828 	if (!tp->sacked_out)
1829 		tcp_highest_sack_reset(sk);
1830 
1831 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1832 					 num_sacks, prior_snd_una, state);
1833 
1834 	/* Eliminate too old ACKs, but take into
1835 	 * account more or less fresh ones, they can
1836 	 * contain valid SACK info.
1837 	 */
1838 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1839 		return 0;
1840 
1841 	if (!tp->packets_out)
1842 		goto out;
1843 
1844 	used_sacks = 0;
1845 	first_sack_index = 0;
1846 	for (i = 0; i < num_sacks; i++) {
1847 		bool dup_sack = !i && found_dup_sack;
1848 
1849 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1850 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1851 
1852 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1853 					    sp[used_sacks].start_seq,
1854 					    sp[used_sacks].end_seq)) {
1855 			int mib_idx;
1856 
1857 			if (dup_sack) {
1858 				if (!tp->undo_marker)
1859 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1860 				else
1861 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1862 			} else {
1863 				/* Don't count olds caused by ACK reordering */
1864 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1865 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1866 					continue;
1867 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1868 			}
1869 
1870 			NET_INC_STATS(sock_net(sk), mib_idx);
1871 			if (i == 0)
1872 				first_sack_index = -1;
1873 			continue;
1874 		}
1875 
1876 		/* Ignore very old stuff early */
1877 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1878 			if (i == 0)
1879 				first_sack_index = -1;
1880 			continue;
1881 		}
1882 
1883 		used_sacks++;
1884 	}
1885 
1886 	/* order SACK blocks to allow in order walk of the retrans queue */
1887 	for (i = used_sacks - 1; i > 0; i--) {
1888 		for (j = 0; j < i; j++) {
1889 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1890 				swap(sp[j], sp[j + 1]);
1891 
1892 				/* Track where the first SACK block goes to */
1893 				if (j == first_sack_index)
1894 					first_sack_index = j + 1;
1895 			}
1896 		}
1897 	}
1898 
1899 	state->mss_now = tcp_current_mss(sk);
1900 	skb = NULL;
1901 	i = 0;
1902 
1903 	if (!tp->sacked_out) {
1904 		/* It's already past, so skip checking against it */
1905 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1906 	} else {
1907 		cache = tp->recv_sack_cache;
1908 		/* Skip empty blocks in at head of the cache */
1909 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1910 		       !cache->end_seq)
1911 			cache++;
1912 	}
1913 
1914 	while (i < used_sacks) {
1915 		u32 start_seq = sp[i].start_seq;
1916 		u32 end_seq = sp[i].end_seq;
1917 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1918 		struct tcp_sack_block *next_dup = NULL;
1919 
1920 		if (found_dup_sack && ((i + 1) == first_sack_index))
1921 			next_dup = &sp[i + 1];
1922 
1923 		/* Skip too early cached blocks */
1924 		while (tcp_sack_cache_ok(tp, cache) &&
1925 		       !before(start_seq, cache->end_seq))
1926 			cache++;
1927 
1928 		/* Can skip some work by looking recv_sack_cache? */
1929 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1930 		    after(end_seq, cache->start_seq)) {
1931 
1932 			/* Head todo? */
1933 			if (before(start_seq, cache->start_seq)) {
1934 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1935 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1936 						       state,
1937 						       start_seq,
1938 						       cache->start_seq,
1939 						       dup_sack);
1940 			}
1941 
1942 			/* Rest of the block already fully processed? */
1943 			if (!after(end_seq, cache->end_seq))
1944 				goto advance_sp;
1945 
1946 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1947 						       state,
1948 						       cache->end_seq);
1949 
1950 			/* ...tail remains todo... */
1951 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1952 				/* ...but better entrypoint exists! */
1953 				skb = tcp_highest_sack(sk);
1954 				if (!skb)
1955 					break;
1956 				cache++;
1957 				goto walk;
1958 			}
1959 
1960 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1961 			/* Check overlap against next cached too (past this one already) */
1962 			cache++;
1963 			continue;
1964 		}
1965 
1966 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1967 			skb = tcp_highest_sack(sk);
1968 			if (!skb)
1969 				break;
1970 		}
1971 		skb = tcp_sacktag_skip(skb, sk, start_seq);
1972 
1973 walk:
1974 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1975 				       start_seq, end_seq, dup_sack);
1976 
1977 advance_sp:
1978 		i++;
1979 	}
1980 
1981 	/* Clear the head of the cache sack blocks so we can skip it next time */
1982 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1983 		tp->recv_sack_cache[i].start_seq = 0;
1984 		tp->recv_sack_cache[i].end_seq = 0;
1985 	}
1986 	for (j = 0; j < used_sacks; j++)
1987 		tp->recv_sack_cache[i++] = sp[j];
1988 
1989 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1990 		tcp_check_sack_reordering(sk, state->reord, 0);
1991 
1992 	tcp_verify_left_out(tp);
1993 out:
1994 
1995 #if FASTRETRANS_DEBUG > 0
1996 	WARN_ON((int)tp->sacked_out < 0);
1997 	WARN_ON((int)tp->lost_out < 0);
1998 	WARN_ON((int)tp->retrans_out < 0);
1999 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2000 #endif
2001 	return state->flag;
2002 }
2003 
2004 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2005  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2006  */
2007 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2008 {
2009 	u32 holes;
2010 
2011 	holes = max(tp->lost_out, 1U);
2012 	holes = min(holes, tp->packets_out);
2013 
2014 	if ((tp->sacked_out + holes) > tp->packets_out) {
2015 		tp->sacked_out = tp->packets_out - holes;
2016 		return true;
2017 	}
2018 	return false;
2019 }
2020 
2021 /* If we receive more dupacks than we expected counting segments
2022  * in assumption of absent reordering, interpret this as reordering.
2023  * The only another reason could be bug in receiver TCP.
2024  */
2025 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2026 {
2027 	struct tcp_sock *tp = tcp_sk(sk);
2028 
2029 	if (!tcp_limit_reno_sacked(tp))
2030 		return;
2031 
2032 	tp->reordering = min_t(u32, tp->packets_out + addend,
2033 			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
2034 	tp->reord_seen++;
2035 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2036 }
2037 
2038 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2039 
2040 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2041 {
2042 	if (num_dupack) {
2043 		struct tcp_sock *tp = tcp_sk(sk);
2044 		u32 prior_sacked = tp->sacked_out;
2045 		s32 delivered;
2046 
2047 		tp->sacked_out += num_dupack;
2048 		tcp_check_reno_reordering(sk, 0);
2049 		delivered = tp->sacked_out - prior_sacked;
2050 		if (delivered > 0)
2051 			tcp_count_delivered(tp, delivered, ece_ack);
2052 		tcp_verify_left_out(tp);
2053 	}
2054 }
2055 
2056 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2057 
2058 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2059 {
2060 	struct tcp_sock *tp = tcp_sk(sk);
2061 
2062 	if (acked > 0) {
2063 		/* One ACK acked hole. The rest eat duplicate ACKs. */
2064 		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2065 				    ece_ack);
2066 		if (acked - 1 >= tp->sacked_out)
2067 			tp->sacked_out = 0;
2068 		else
2069 			tp->sacked_out -= acked - 1;
2070 	}
2071 	tcp_check_reno_reordering(sk, acked);
2072 	tcp_verify_left_out(tp);
2073 }
2074 
2075 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2076 {
2077 	tp->sacked_out = 0;
2078 }
2079 
2080 void tcp_clear_retrans(struct tcp_sock *tp)
2081 {
2082 	tp->retrans_out = 0;
2083 	tp->lost_out = 0;
2084 	tp->undo_marker = 0;
2085 	tp->undo_retrans = -1;
2086 	tp->sacked_out = 0;
2087 }
2088 
2089 static inline void tcp_init_undo(struct tcp_sock *tp)
2090 {
2091 	tp->undo_marker = tp->snd_una;
2092 	/* Retransmission still in flight may cause DSACKs later. */
2093 	tp->undo_retrans = tp->retrans_out ? : -1;
2094 }
2095 
2096 static bool tcp_is_rack(const struct sock *sk)
2097 {
2098 	return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
2099 }
2100 
2101 /* If we detect SACK reneging, forget all SACK information
2102  * and reset tags completely, otherwise preserve SACKs. If receiver
2103  * dropped its ofo queue, we will know this due to reneging detection.
2104  */
2105 static void tcp_timeout_mark_lost(struct sock *sk)
2106 {
2107 	struct tcp_sock *tp = tcp_sk(sk);
2108 	struct sk_buff *skb, *head;
2109 	bool is_reneg;			/* is receiver reneging on SACKs? */
2110 
2111 	head = tcp_rtx_queue_head(sk);
2112 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2113 	if (is_reneg) {
2114 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2115 		tp->sacked_out = 0;
2116 		/* Mark SACK reneging until we recover from this loss event. */
2117 		tp->is_sack_reneg = 1;
2118 	} else if (tcp_is_reno(tp)) {
2119 		tcp_reset_reno_sack(tp);
2120 	}
2121 
2122 	skb = head;
2123 	skb_rbtree_walk_from(skb) {
2124 		if (is_reneg)
2125 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2126 		else if (tcp_is_rack(sk) && skb != head &&
2127 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2128 			continue; /* Don't mark recently sent ones lost yet */
2129 		tcp_mark_skb_lost(sk, skb);
2130 	}
2131 	tcp_verify_left_out(tp);
2132 	tcp_clear_all_retrans_hints(tp);
2133 }
2134 
2135 /* Enter Loss state. */
2136 void tcp_enter_loss(struct sock *sk)
2137 {
2138 	const struct inet_connection_sock *icsk = inet_csk(sk);
2139 	struct tcp_sock *tp = tcp_sk(sk);
2140 	struct net *net = sock_net(sk);
2141 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2142 
2143 	tcp_timeout_mark_lost(sk);
2144 
2145 	/* Reduce ssthresh if it has not yet been made inside this window. */
2146 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2147 	    !after(tp->high_seq, tp->snd_una) ||
2148 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2149 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2150 		tp->prior_cwnd = tp->snd_cwnd;
2151 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2152 		tcp_ca_event(sk, CA_EVENT_LOSS);
2153 		tcp_init_undo(tp);
2154 	}
2155 	tp->snd_cwnd	   = tcp_packets_in_flight(tp) + 1;
2156 	tp->snd_cwnd_cnt   = 0;
2157 	tp->snd_cwnd_stamp = tcp_jiffies32;
2158 
2159 	/* Timeout in disordered state after receiving substantial DUPACKs
2160 	 * suggests that the degree of reordering is over-estimated.
2161 	 */
2162 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2163 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2164 		tp->reordering = min_t(unsigned int, tp->reordering,
2165 				       net->ipv4.sysctl_tcp_reordering);
2166 	tcp_set_ca_state(sk, TCP_CA_Loss);
2167 	tp->high_seq = tp->snd_nxt;
2168 	tcp_ecn_queue_cwr(tp);
2169 
2170 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2171 	 * loss recovery is underway except recurring timeout(s) on
2172 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2173 	 */
2174 	tp->frto = net->ipv4.sysctl_tcp_frto &&
2175 		   (new_recovery || icsk->icsk_retransmits) &&
2176 		   !inet_csk(sk)->icsk_mtup.probe_size;
2177 }
2178 
2179 /* If ACK arrived pointing to a remembered SACK, it means that our
2180  * remembered SACKs do not reflect real state of receiver i.e.
2181  * receiver _host_ is heavily congested (or buggy).
2182  *
2183  * To avoid big spurious retransmission bursts due to transient SACK
2184  * scoreboard oddities that look like reneging, we give the receiver a
2185  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2186  * restore sanity to the SACK scoreboard. If the apparent reneging
2187  * persists until this RTO then we'll clear the SACK scoreboard.
2188  */
2189 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2190 {
2191 	if (flag & FLAG_SACK_RENEGING) {
2192 		struct tcp_sock *tp = tcp_sk(sk);
2193 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2194 					  msecs_to_jiffies(10));
2195 
2196 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2197 					  delay, TCP_RTO_MAX);
2198 		return true;
2199 	}
2200 	return false;
2201 }
2202 
2203 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2204  * counter when SACK is enabled (without SACK, sacked_out is used for
2205  * that purpose).
2206  *
2207  * With reordering, holes may still be in flight, so RFC3517 recovery
2208  * uses pure sacked_out (total number of SACKed segments) even though
2209  * it violates the RFC that uses duplicate ACKs, often these are equal
2210  * but when e.g. out-of-window ACKs or packet duplication occurs,
2211  * they differ. Since neither occurs due to loss, TCP should really
2212  * ignore them.
2213  */
2214 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2215 {
2216 	return tp->sacked_out + 1;
2217 }
2218 
2219 /* Linux NewReno/SACK/ECN state machine.
2220  * --------------------------------------
2221  *
2222  * "Open"	Normal state, no dubious events, fast path.
2223  * "Disorder"   In all the respects it is "Open",
2224  *		but requires a bit more attention. It is entered when
2225  *		we see some SACKs or dupacks. It is split of "Open"
2226  *		mainly to move some processing from fast path to slow one.
2227  * "CWR"	CWND was reduced due to some Congestion Notification event.
2228  *		It can be ECN, ICMP source quench, local device congestion.
2229  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2230  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2231  *
2232  * tcp_fastretrans_alert() is entered:
2233  * - each incoming ACK, if state is not "Open"
2234  * - when arrived ACK is unusual, namely:
2235  *	* SACK
2236  *	* Duplicate ACK.
2237  *	* ECN ECE.
2238  *
2239  * Counting packets in flight is pretty simple.
2240  *
2241  *	in_flight = packets_out - left_out + retrans_out
2242  *
2243  *	packets_out is SND.NXT-SND.UNA counted in packets.
2244  *
2245  *	retrans_out is number of retransmitted segments.
2246  *
2247  *	left_out is number of segments left network, but not ACKed yet.
2248  *
2249  *		left_out = sacked_out + lost_out
2250  *
2251  *     sacked_out: Packets, which arrived to receiver out of order
2252  *		   and hence not ACKed. With SACKs this number is simply
2253  *		   amount of SACKed data. Even without SACKs
2254  *		   it is easy to give pretty reliable estimate of this number,
2255  *		   counting duplicate ACKs.
2256  *
2257  *       lost_out: Packets lost by network. TCP has no explicit
2258  *		   "loss notification" feedback from network (for now).
2259  *		   It means that this number can be only _guessed_.
2260  *		   Actually, it is the heuristics to predict lossage that
2261  *		   distinguishes different algorithms.
2262  *
2263  *	F.e. after RTO, when all the queue is considered as lost,
2264  *	lost_out = packets_out and in_flight = retrans_out.
2265  *
2266  *		Essentially, we have now a few algorithms detecting
2267  *		lost packets.
2268  *
2269  *		If the receiver supports SACK:
2270  *
2271  *		RFC6675/3517: It is the conventional algorithm. A packet is
2272  *		considered lost if the number of higher sequence packets
2273  *		SACKed is greater than or equal the DUPACK thoreshold
2274  *		(reordering). This is implemented in tcp_mark_head_lost and
2275  *		tcp_update_scoreboard.
2276  *
2277  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2278  *		(2017-) that checks timing instead of counting DUPACKs.
2279  *		Essentially a packet is considered lost if it's not S/ACKed
2280  *		after RTT + reordering_window, where both metrics are
2281  *		dynamically measured and adjusted. This is implemented in
2282  *		tcp_rack_mark_lost.
2283  *
2284  *		If the receiver does not support SACK:
2285  *
2286  *		NewReno (RFC6582): in Recovery we assume that one segment
2287  *		is lost (classic Reno). While we are in Recovery and
2288  *		a partial ACK arrives, we assume that one more packet
2289  *		is lost (NewReno). This heuristics are the same in NewReno
2290  *		and SACK.
2291  *
2292  * Really tricky (and requiring careful tuning) part of algorithm
2293  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2294  * The first determines the moment _when_ we should reduce CWND and,
2295  * hence, slow down forward transmission. In fact, it determines the moment
2296  * when we decide that hole is caused by loss, rather than by a reorder.
2297  *
2298  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2299  * holes, caused by lost packets.
2300  *
2301  * And the most logically complicated part of algorithm is undo
2302  * heuristics. We detect false retransmits due to both too early
2303  * fast retransmit (reordering) and underestimated RTO, analyzing
2304  * timestamps and D-SACKs. When we detect that some segments were
2305  * retransmitted by mistake and CWND reduction was wrong, we undo
2306  * window reduction and abort recovery phase. This logic is hidden
2307  * inside several functions named tcp_try_undo_<something>.
2308  */
2309 
2310 /* This function decides, when we should leave Disordered state
2311  * and enter Recovery phase, reducing congestion window.
2312  *
2313  * Main question: may we further continue forward transmission
2314  * with the same cwnd?
2315  */
2316 static bool tcp_time_to_recover(struct sock *sk, int flag)
2317 {
2318 	struct tcp_sock *tp = tcp_sk(sk);
2319 
2320 	/* Trick#1: The loss is proven. */
2321 	if (tp->lost_out)
2322 		return true;
2323 
2324 	/* Not-A-Trick#2 : Classic rule... */
2325 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2326 		return true;
2327 
2328 	return false;
2329 }
2330 
2331 /* Detect loss in event "A" above by marking head of queue up as lost.
2332  * For RFC3517 SACK, a segment is considered lost if it
2333  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2334  * the maximum SACKed segments to pass before reaching this limit.
2335  */
2336 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2337 {
2338 	struct tcp_sock *tp = tcp_sk(sk);
2339 	struct sk_buff *skb;
2340 	int cnt;
2341 	/* Use SACK to deduce losses of new sequences sent during recovery */
2342 	const u32 loss_high = tp->snd_nxt;
2343 
2344 	WARN_ON(packets > tp->packets_out);
2345 	skb = tp->lost_skb_hint;
2346 	if (skb) {
2347 		/* Head already handled? */
2348 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2349 			return;
2350 		cnt = tp->lost_cnt_hint;
2351 	} else {
2352 		skb = tcp_rtx_queue_head(sk);
2353 		cnt = 0;
2354 	}
2355 
2356 	skb_rbtree_walk_from(skb) {
2357 		/* TODO: do this better */
2358 		/* this is not the most efficient way to do this... */
2359 		tp->lost_skb_hint = skb;
2360 		tp->lost_cnt_hint = cnt;
2361 
2362 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2363 			break;
2364 
2365 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2366 			cnt += tcp_skb_pcount(skb);
2367 
2368 		if (cnt > packets)
2369 			break;
2370 
2371 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2372 			tcp_mark_skb_lost(sk, skb);
2373 
2374 		if (mark_head)
2375 			break;
2376 	}
2377 	tcp_verify_left_out(tp);
2378 }
2379 
2380 /* Account newly detected lost packet(s) */
2381 
2382 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2383 {
2384 	struct tcp_sock *tp = tcp_sk(sk);
2385 
2386 	if (tcp_is_sack(tp)) {
2387 		int sacked_upto = tp->sacked_out - tp->reordering;
2388 		if (sacked_upto >= 0)
2389 			tcp_mark_head_lost(sk, sacked_upto, 0);
2390 		else if (fast_rexmit)
2391 			tcp_mark_head_lost(sk, 1, 1);
2392 	}
2393 }
2394 
2395 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2396 {
2397 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2398 	       before(tp->rx_opt.rcv_tsecr, when);
2399 }
2400 
2401 /* skb is spurious retransmitted if the returned timestamp echo
2402  * reply is prior to the skb transmission time
2403  */
2404 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2405 				     const struct sk_buff *skb)
2406 {
2407 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2408 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2409 }
2410 
2411 /* Nothing was retransmitted or returned timestamp is less
2412  * than timestamp of the first retransmission.
2413  */
2414 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2415 {
2416 	return tp->retrans_stamp &&
2417 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2418 }
2419 
2420 /* Undo procedures. */
2421 
2422 /* We can clear retrans_stamp when there are no retransmissions in the
2423  * window. It would seem that it is trivially available for us in
2424  * tp->retrans_out, however, that kind of assumptions doesn't consider
2425  * what will happen if errors occur when sending retransmission for the
2426  * second time. ...It could the that such segment has only
2427  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2428  * the head skb is enough except for some reneging corner cases that
2429  * are not worth the effort.
2430  *
2431  * Main reason for all this complexity is the fact that connection dying
2432  * time now depends on the validity of the retrans_stamp, in particular,
2433  * that successive retransmissions of a segment must not advance
2434  * retrans_stamp under any conditions.
2435  */
2436 static bool tcp_any_retrans_done(const struct sock *sk)
2437 {
2438 	const struct tcp_sock *tp = tcp_sk(sk);
2439 	struct sk_buff *skb;
2440 
2441 	if (tp->retrans_out)
2442 		return true;
2443 
2444 	skb = tcp_rtx_queue_head(sk);
2445 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2446 		return true;
2447 
2448 	return false;
2449 }
2450 
2451 static void DBGUNDO(struct sock *sk, const char *msg)
2452 {
2453 #if FASTRETRANS_DEBUG > 1
2454 	struct tcp_sock *tp = tcp_sk(sk);
2455 	struct inet_sock *inet = inet_sk(sk);
2456 
2457 	if (sk->sk_family == AF_INET) {
2458 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2459 			 msg,
2460 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2461 			 tp->snd_cwnd, tcp_left_out(tp),
2462 			 tp->snd_ssthresh, tp->prior_ssthresh,
2463 			 tp->packets_out);
2464 	}
2465 #if IS_ENABLED(CONFIG_IPV6)
2466 	else if (sk->sk_family == AF_INET6) {
2467 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2468 			 msg,
2469 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2470 			 tp->snd_cwnd, tcp_left_out(tp),
2471 			 tp->snd_ssthresh, tp->prior_ssthresh,
2472 			 tp->packets_out);
2473 	}
2474 #endif
2475 #endif
2476 }
2477 
2478 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2479 {
2480 	struct tcp_sock *tp = tcp_sk(sk);
2481 
2482 	if (unmark_loss) {
2483 		struct sk_buff *skb;
2484 
2485 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2486 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2487 		}
2488 		tp->lost_out = 0;
2489 		tcp_clear_all_retrans_hints(tp);
2490 	}
2491 
2492 	if (tp->prior_ssthresh) {
2493 		const struct inet_connection_sock *icsk = inet_csk(sk);
2494 
2495 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2496 
2497 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2498 			tp->snd_ssthresh = tp->prior_ssthresh;
2499 			tcp_ecn_withdraw_cwr(tp);
2500 		}
2501 	}
2502 	tp->snd_cwnd_stamp = tcp_jiffies32;
2503 	tp->undo_marker = 0;
2504 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2505 }
2506 
2507 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2508 {
2509 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2510 }
2511 
2512 /* People celebrate: "We love our President!" */
2513 static bool tcp_try_undo_recovery(struct sock *sk)
2514 {
2515 	struct tcp_sock *tp = tcp_sk(sk);
2516 
2517 	if (tcp_may_undo(tp)) {
2518 		int mib_idx;
2519 
2520 		/* Happy end! We did not retransmit anything
2521 		 * or our original transmission succeeded.
2522 		 */
2523 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2524 		tcp_undo_cwnd_reduction(sk, false);
2525 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2526 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2527 		else
2528 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2529 
2530 		NET_INC_STATS(sock_net(sk), mib_idx);
2531 	} else if (tp->rack.reo_wnd_persist) {
2532 		tp->rack.reo_wnd_persist--;
2533 	}
2534 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2535 		/* Hold old state until something *above* high_seq
2536 		 * is ACKed. For Reno it is MUST to prevent false
2537 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2538 		if (!tcp_any_retrans_done(sk))
2539 			tp->retrans_stamp = 0;
2540 		return true;
2541 	}
2542 	tcp_set_ca_state(sk, TCP_CA_Open);
2543 	tp->is_sack_reneg = 0;
2544 	return false;
2545 }
2546 
2547 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2548 static bool tcp_try_undo_dsack(struct sock *sk)
2549 {
2550 	struct tcp_sock *tp = tcp_sk(sk);
2551 
2552 	if (tp->undo_marker && !tp->undo_retrans) {
2553 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2554 					       tp->rack.reo_wnd_persist + 1);
2555 		DBGUNDO(sk, "D-SACK");
2556 		tcp_undo_cwnd_reduction(sk, false);
2557 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2558 		return true;
2559 	}
2560 	return false;
2561 }
2562 
2563 /* Undo during loss recovery after partial ACK or using F-RTO. */
2564 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2565 {
2566 	struct tcp_sock *tp = tcp_sk(sk);
2567 
2568 	if (frto_undo || tcp_may_undo(tp)) {
2569 		tcp_undo_cwnd_reduction(sk, true);
2570 
2571 		DBGUNDO(sk, "partial loss");
2572 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2573 		if (frto_undo)
2574 			NET_INC_STATS(sock_net(sk),
2575 					LINUX_MIB_TCPSPURIOUSRTOS);
2576 		inet_csk(sk)->icsk_retransmits = 0;
2577 		if (frto_undo || tcp_is_sack(tp)) {
2578 			tcp_set_ca_state(sk, TCP_CA_Open);
2579 			tp->is_sack_reneg = 0;
2580 		}
2581 		return true;
2582 	}
2583 	return false;
2584 }
2585 
2586 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2587  * It computes the number of packets to send (sndcnt) based on packets newly
2588  * delivered:
2589  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2590  *	cwnd reductions across a full RTT.
2591  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2592  *      But when SND_UNA is acked without further losses,
2593  *      slow starts cwnd up to ssthresh to speed up the recovery.
2594  */
2595 static void tcp_init_cwnd_reduction(struct sock *sk)
2596 {
2597 	struct tcp_sock *tp = tcp_sk(sk);
2598 
2599 	tp->high_seq = tp->snd_nxt;
2600 	tp->tlp_high_seq = 0;
2601 	tp->snd_cwnd_cnt = 0;
2602 	tp->prior_cwnd = tp->snd_cwnd;
2603 	tp->prr_delivered = 0;
2604 	tp->prr_out = 0;
2605 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2606 	tcp_ecn_queue_cwr(tp);
2607 }
2608 
2609 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2610 {
2611 	struct tcp_sock *tp = tcp_sk(sk);
2612 	int sndcnt = 0;
2613 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2614 
2615 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2616 		return;
2617 
2618 	tp->prr_delivered += newly_acked_sacked;
2619 	if (delta < 0) {
2620 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2621 			       tp->prior_cwnd - 1;
2622 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2623 	} else if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) {
2624 		sndcnt = min_t(int, delta,
2625 			       max_t(int, tp->prr_delivered - tp->prr_out,
2626 				     newly_acked_sacked) + 1);
2627 	} else {
2628 		sndcnt = min(delta, newly_acked_sacked);
2629 	}
2630 	/* Force a fast retransmit upon entering fast recovery */
2631 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2632 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2633 }
2634 
2635 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2636 {
2637 	struct tcp_sock *tp = tcp_sk(sk);
2638 
2639 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2640 		return;
2641 
2642 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2643 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2644 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2645 		tp->snd_cwnd = tp->snd_ssthresh;
2646 		tp->snd_cwnd_stamp = tcp_jiffies32;
2647 	}
2648 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2649 }
2650 
2651 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2652 void tcp_enter_cwr(struct sock *sk)
2653 {
2654 	struct tcp_sock *tp = tcp_sk(sk);
2655 
2656 	tp->prior_ssthresh = 0;
2657 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2658 		tp->undo_marker = 0;
2659 		tcp_init_cwnd_reduction(sk);
2660 		tcp_set_ca_state(sk, TCP_CA_CWR);
2661 	}
2662 }
2663 EXPORT_SYMBOL(tcp_enter_cwr);
2664 
2665 static void tcp_try_keep_open(struct sock *sk)
2666 {
2667 	struct tcp_sock *tp = tcp_sk(sk);
2668 	int state = TCP_CA_Open;
2669 
2670 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2671 		state = TCP_CA_Disorder;
2672 
2673 	if (inet_csk(sk)->icsk_ca_state != state) {
2674 		tcp_set_ca_state(sk, state);
2675 		tp->high_seq = tp->snd_nxt;
2676 	}
2677 }
2678 
2679 static void tcp_try_to_open(struct sock *sk, int flag)
2680 {
2681 	struct tcp_sock *tp = tcp_sk(sk);
2682 
2683 	tcp_verify_left_out(tp);
2684 
2685 	if (!tcp_any_retrans_done(sk))
2686 		tp->retrans_stamp = 0;
2687 
2688 	if (flag & FLAG_ECE)
2689 		tcp_enter_cwr(sk);
2690 
2691 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2692 		tcp_try_keep_open(sk);
2693 	}
2694 }
2695 
2696 static void tcp_mtup_probe_failed(struct sock *sk)
2697 {
2698 	struct inet_connection_sock *icsk = inet_csk(sk);
2699 
2700 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2701 	icsk->icsk_mtup.probe_size = 0;
2702 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2703 }
2704 
2705 static void tcp_mtup_probe_success(struct sock *sk)
2706 {
2707 	struct tcp_sock *tp = tcp_sk(sk);
2708 	struct inet_connection_sock *icsk = inet_csk(sk);
2709 
2710 	/* FIXME: breaks with very large cwnd */
2711 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2712 	tp->snd_cwnd = tp->snd_cwnd *
2713 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2714 		       icsk->icsk_mtup.probe_size;
2715 	tp->snd_cwnd_cnt = 0;
2716 	tp->snd_cwnd_stamp = tcp_jiffies32;
2717 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2718 
2719 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2720 	icsk->icsk_mtup.probe_size = 0;
2721 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2722 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2723 }
2724 
2725 /* Do a simple retransmit without using the backoff mechanisms in
2726  * tcp_timer. This is used for path mtu discovery.
2727  * The socket is already locked here.
2728  */
2729 void tcp_simple_retransmit(struct sock *sk)
2730 {
2731 	const struct inet_connection_sock *icsk = inet_csk(sk);
2732 	struct tcp_sock *tp = tcp_sk(sk);
2733 	struct sk_buff *skb;
2734 	int mss;
2735 
2736 	/* A fastopen SYN request is stored as two separate packets within
2737 	 * the retransmit queue, this is done by tcp_send_syn_data().
2738 	 * As a result simply checking the MSS of the frames in the queue
2739 	 * will not work for the SYN packet.
2740 	 *
2741 	 * Us being here is an indication of a path MTU issue so we can
2742 	 * assume that the fastopen SYN was lost and just mark all the
2743 	 * frames in the retransmit queue as lost. We will use an MSS of
2744 	 * -1 to mark all frames as lost, otherwise compute the current MSS.
2745 	 */
2746 	if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2747 		mss = -1;
2748 	else
2749 		mss = tcp_current_mss(sk);
2750 
2751 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2752 		if (tcp_skb_seglen(skb) > mss)
2753 			tcp_mark_skb_lost(sk, skb);
2754 	}
2755 
2756 	tcp_clear_retrans_hints_partial(tp);
2757 
2758 	if (!tp->lost_out)
2759 		return;
2760 
2761 	if (tcp_is_reno(tp))
2762 		tcp_limit_reno_sacked(tp);
2763 
2764 	tcp_verify_left_out(tp);
2765 
2766 	/* Don't muck with the congestion window here.
2767 	 * Reason is that we do not increase amount of _data_
2768 	 * in network, but units changed and effective
2769 	 * cwnd/ssthresh really reduced now.
2770 	 */
2771 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2772 		tp->high_seq = tp->snd_nxt;
2773 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2774 		tp->prior_ssthresh = 0;
2775 		tp->undo_marker = 0;
2776 		tcp_set_ca_state(sk, TCP_CA_Loss);
2777 	}
2778 	tcp_xmit_retransmit_queue(sk);
2779 }
2780 EXPORT_SYMBOL(tcp_simple_retransmit);
2781 
2782 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2783 {
2784 	struct tcp_sock *tp = tcp_sk(sk);
2785 	int mib_idx;
2786 
2787 	if (tcp_is_reno(tp))
2788 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2789 	else
2790 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2791 
2792 	NET_INC_STATS(sock_net(sk), mib_idx);
2793 
2794 	tp->prior_ssthresh = 0;
2795 	tcp_init_undo(tp);
2796 
2797 	if (!tcp_in_cwnd_reduction(sk)) {
2798 		if (!ece_ack)
2799 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2800 		tcp_init_cwnd_reduction(sk);
2801 	}
2802 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2803 }
2804 
2805 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2806  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2807  */
2808 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2809 			     int *rexmit)
2810 {
2811 	struct tcp_sock *tp = tcp_sk(sk);
2812 	bool recovered = !before(tp->snd_una, tp->high_seq);
2813 
2814 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2815 	    tcp_try_undo_loss(sk, false))
2816 		return;
2817 
2818 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2819 		/* Step 3.b. A timeout is spurious if not all data are
2820 		 * lost, i.e., never-retransmitted data are (s)acked.
2821 		 */
2822 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2823 		    tcp_try_undo_loss(sk, true))
2824 			return;
2825 
2826 		if (after(tp->snd_nxt, tp->high_seq)) {
2827 			if (flag & FLAG_DATA_SACKED || num_dupack)
2828 				tp->frto = 0; /* Step 3.a. loss was real */
2829 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2830 			tp->high_seq = tp->snd_nxt;
2831 			/* Step 2.b. Try send new data (but deferred until cwnd
2832 			 * is updated in tcp_ack()). Otherwise fall back to
2833 			 * the conventional recovery.
2834 			 */
2835 			if (!tcp_write_queue_empty(sk) &&
2836 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2837 				*rexmit = REXMIT_NEW;
2838 				return;
2839 			}
2840 			tp->frto = 0;
2841 		}
2842 	}
2843 
2844 	if (recovered) {
2845 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2846 		tcp_try_undo_recovery(sk);
2847 		return;
2848 	}
2849 	if (tcp_is_reno(tp)) {
2850 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2851 		 * delivered. Lower inflight to clock out (re)tranmissions.
2852 		 */
2853 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2854 			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2855 		else if (flag & FLAG_SND_UNA_ADVANCED)
2856 			tcp_reset_reno_sack(tp);
2857 	}
2858 	*rexmit = REXMIT_LOST;
2859 }
2860 
2861 static bool tcp_force_fast_retransmit(struct sock *sk)
2862 {
2863 	struct tcp_sock *tp = tcp_sk(sk);
2864 
2865 	return after(tcp_highest_sack_seq(tp),
2866 		     tp->snd_una + tp->reordering * tp->mss_cache);
2867 }
2868 
2869 /* Undo during fast recovery after partial ACK. */
2870 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2871 				 bool *do_lost)
2872 {
2873 	struct tcp_sock *tp = tcp_sk(sk);
2874 
2875 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2876 		/* Plain luck! Hole if filled with delayed
2877 		 * packet, rather than with a retransmit. Check reordering.
2878 		 */
2879 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2880 
2881 		/* We are getting evidence that the reordering degree is higher
2882 		 * than we realized. If there are no retransmits out then we
2883 		 * can undo. Otherwise we clock out new packets but do not
2884 		 * mark more packets lost or retransmit more.
2885 		 */
2886 		if (tp->retrans_out)
2887 			return true;
2888 
2889 		if (!tcp_any_retrans_done(sk))
2890 			tp->retrans_stamp = 0;
2891 
2892 		DBGUNDO(sk, "partial recovery");
2893 		tcp_undo_cwnd_reduction(sk, true);
2894 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2895 		tcp_try_keep_open(sk);
2896 	} else {
2897 		/* Partial ACK arrived. Force fast retransmit. */
2898 		*do_lost = tcp_force_fast_retransmit(sk);
2899 	}
2900 	return false;
2901 }
2902 
2903 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2904 {
2905 	struct tcp_sock *tp = tcp_sk(sk);
2906 
2907 	if (tcp_rtx_queue_empty(sk))
2908 		return;
2909 
2910 	if (unlikely(tcp_is_reno(tp))) {
2911 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2912 	} else if (tcp_is_rack(sk)) {
2913 		u32 prior_retrans = tp->retrans_out;
2914 
2915 		if (tcp_rack_mark_lost(sk))
2916 			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2917 		if (prior_retrans > tp->retrans_out)
2918 			*ack_flag |= FLAG_LOST_RETRANS;
2919 	}
2920 }
2921 
2922 /* Process an event, which can update packets-in-flight not trivially.
2923  * Main goal of this function is to calculate new estimate for left_out,
2924  * taking into account both packets sitting in receiver's buffer and
2925  * packets lost by network.
2926  *
2927  * Besides that it updates the congestion state when packet loss or ECN
2928  * is detected. But it does not reduce the cwnd, it is done by the
2929  * congestion control later.
2930  *
2931  * It does _not_ decide what to send, it is made in function
2932  * tcp_xmit_retransmit_queue().
2933  */
2934 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2935 				  int num_dupack, int *ack_flag, int *rexmit)
2936 {
2937 	struct inet_connection_sock *icsk = inet_csk(sk);
2938 	struct tcp_sock *tp = tcp_sk(sk);
2939 	int fast_rexmit = 0, flag = *ack_flag;
2940 	bool ece_ack = flag & FLAG_ECE;
2941 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2942 				      tcp_force_fast_retransmit(sk));
2943 
2944 	if (!tp->packets_out && tp->sacked_out)
2945 		tp->sacked_out = 0;
2946 
2947 	/* Now state machine starts.
2948 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2949 	if (ece_ack)
2950 		tp->prior_ssthresh = 0;
2951 
2952 	/* B. In all the states check for reneging SACKs. */
2953 	if (tcp_check_sack_reneging(sk, flag))
2954 		return;
2955 
2956 	/* C. Check consistency of the current state. */
2957 	tcp_verify_left_out(tp);
2958 
2959 	/* D. Check state exit conditions. State can be terminated
2960 	 *    when high_seq is ACKed. */
2961 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2962 		WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
2963 		tp->retrans_stamp = 0;
2964 	} else if (!before(tp->snd_una, tp->high_seq)) {
2965 		switch (icsk->icsk_ca_state) {
2966 		case TCP_CA_CWR:
2967 			/* CWR is to be held something *above* high_seq
2968 			 * is ACKed for CWR bit to reach receiver. */
2969 			if (tp->snd_una != tp->high_seq) {
2970 				tcp_end_cwnd_reduction(sk);
2971 				tcp_set_ca_state(sk, TCP_CA_Open);
2972 			}
2973 			break;
2974 
2975 		case TCP_CA_Recovery:
2976 			if (tcp_is_reno(tp))
2977 				tcp_reset_reno_sack(tp);
2978 			if (tcp_try_undo_recovery(sk))
2979 				return;
2980 			tcp_end_cwnd_reduction(sk);
2981 			break;
2982 		}
2983 	}
2984 
2985 	/* E. Process state. */
2986 	switch (icsk->icsk_ca_state) {
2987 	case TCP_CA_Recovery:
2988 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2989 			if (tcp_is_reno(tp))
2990 				tcp_add_reno_sack(sk, num_dupack, ece_ack);
2991 		} else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
2992 			return;
2993 
2994 		if (tcp_try_undo_dsack(sk))
2995 			tcp_try_keep_open(sk);
2996 
2997 		tcp_identify_packet_loss(sk, ack_flag);
2998 		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
2999 			if (!tcp_time_to_recover(sk, flag))
3000 				return;
3001 			/* Undo reverts the recovery state. If loss is evident,
3002 			 * starts a new recovery (e.g. reordering then loss);
3003 			 */
3004 			tcp_enter_recovery(sk, ece_ack);
3005 		}
3006 		break;
3007 	case TCP_CA_Loss:
3008 		tcp_process_loss(sk, flag, num_dupack, rexmit);
3009 		tcp_identify_packet_loss(sk, ack_flag);
3010 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3011 		      (*ack_flag & FLAG_LOST_RETRANS)))
3012 			return;
3013 		/* Change state if cwnd is undone or retransmits are lost */
3014 		fallthrough;
3015 	default:
3016 		if (tcp_is_reno(tp)) {
3017 			if (flag & FLAG_SND_UNA_ADVANCED)
3018 				tcp_reset_reno_sack(tp);
3019 			tcp_add_reno_sack(sk, num_dupack, ece_ack);
3020 		}
3021 
3022 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3023 			tcp_try_undo_dsack(sk);
3024 
3025 		tcp_identify_packet_loss(sk, ack_flag);
3026 		if (!tcp_time_to_recover(sk, flag)) {
3027 			tcp_try_to_open(sk, flag);
3028 			return;
3029 		}
3030 
3031 		/* MTU probe failure: don't reduce cwnd */
3032 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3033 		    icsk->icsk_mtup.probe_size &&
3034 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3035 			tcp_mtup_probe_failed(sk);
3036 			/* Restores the reduction we did in tcp_mtup_probe() */
3037 			tp->snd_cwnd++;
3038 			tcp_simple_retransmit(sk);
3039 			return;
3040 		}
3041 
3042 		/* Otherwise enter Recovery state */
3043 		tcp_enter_recovery(sk, ece_ack);
3044 		fast_rexmit = 1;
3045 	}
3046 
3047 	if (!tcp_is_rack(sk) && do_lost)
3048 		tcp_update_scoreboard(sk, fast_rexmit);
3049 	*rexmit = REXMIT_LOST;
3050 }
3051 
3052 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3053 {
3054 	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
3055 	struct tcp_sock *tp = tcp_sk(sk);
3056 
3057 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3058 		/* If the remote keeps returning delayed ACKs, eventually
3059 		 * the min filter would pick it up and overestimate the
3060 		 * prop. delay when it expires. Skip suspected delayed ACKs.
3061 		 */
3062 		return;
3063 	}
3064 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3065 			   rtt_us ? : jiffies_to_usecs(1));
3066 }
3067 
3068 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3069 			       long seq_rtt_us, long sack_rtt_us,
3070 			       long ca_rtt_us, struct rate_sample *rs)
3071 {
3072 	const struct tcp_sock *tp = tcp_sk(sk);
3073 
3074 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3075 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3076 	 * Karn's algorithm forbids taking RTT if some retransmitted data
3077 	 * is acked (RFC6298).
3078 	 */
3079 	if (seq_rtt_us < 0)
3080 		seq_rtt_us = sack_rtt_us;
3081 
3082 	/* RTTM Rule: A TSecr value received in a segment is used to
3083 	 * update the averaged RTT measurement only if the segment
3084 	 * acknowledges some new data, i.e., only if it advances the
3085 	 * left edge of the send window.
3086 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3087 	 */
3088 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3089 	    flag & FLAG_ACKED) {
3090 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3091 
3092 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3093 			if (!delta)
3094 				delta = 1;
3095 			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3096 			ca_rtt_us = seq_rtt_us;
3097 		}
3098 	}
3099 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3100 	if (seq_rtt_us < 0)
3101 		return false;
3102 
3103 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3104 	 * always taken together with ACK, SACK, or TS-opts. Any negative
3105 	 * values will be skipped with the seq_rtt_us < 0 check above.
3106 	 */
3107 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3108 	tcp_rtt_estimator(sk, seq_rtt_us);
3109 	tcp_set_rto(sk);
3110 
3111 	/* RFC6298: only reset backoff on valid RTT measurement. */
3112 	inet_csk(sk)->icsk_backoff = 0;
3113 	return true;
3114 }
3115 
3116 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3117 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3118 {
3119 	struct rate_sample rs;
3120 	long rtt_us = -1L;
3121 
3122 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3123 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3124 
3125 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3126 }
3127 
3128 
3129 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3130 {
3131 	const struct inet_connection_sock *icsk = inet_csk(sk);
3132 
3133 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3134 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3135 }
3136 
3137 /* Restart timer after forward progress on connection.
3138  * RFC2988 recommends to restart timer to now+rto.
3139  */
3140 void tcp_rearm_rto(struct sock *sk)
3141 {
3142 	const struct inet_connection_sock *icsk = inet_csk(sk);
3143 	struct tcp_sock *tp = tcp_sk(sk);
3144 
3145 	/* If the retrans timer is currently being used by Fast Open
3146 	 * for SYN-ACK retrans purpose, stay put.
3147 	 */
3148 	if (rcu_access_pointer(tp->fastopen_rsk))
3149 		return;
3150 
3151 	if (!tp->packets_out) {
3152 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3153 	} else {
3154 		u32 rto = inet_csk(sk)->icsk_rto;
3155 		/* Offset the time elapsed after installing regular RTO */
3156 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3157 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3158 			s64 delta_us = tcp_rto_delta_us(sk);
3159 			/* delta_us may not be positive if the socket is locked
3160 			 * when the retrans timer fires and is rescheduled.
3161 			 */
3162 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3163 		}
3164 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3165 				     TCP_RTO_MAX);
3166 	}
3167 }
3168 
3169 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3170 static void tcp_set_xmit_timer(struct sock *sk)
3171 {
3172 	if (!tcp_schedule_loss_probe(sk, true))
3173 		tcp_rearm_rto(sk);
3174 }
3175 
3176 /* If we get here, the whole TSO packet has not been acked. */
3177 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3178 {
3179 	struct tcp_sock *tp = tcp_sk(sk);
3180 	u32 packets_acked;
3181 
3182 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3183 
3184 	packets_acked = tcp_skb_pcount(skb);
3185 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3186 		return 0;
3187 	packets_acked -= tcp_skb_pcount(skb);
3188 
3189 	if (packets_acked) {
3190 		BUG_ON(tcp_skb_pcount(skb) == 0);
3191 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3192 	}
3193 
3194 	return packets_acked;
3195 }
3196 
3197 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3198 			   const struct sk_buff *ack_skb, u32 prior_snd_una)
3199 {
3200 	const struct skb_shared_info *shinfo;
3201 
3202 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3203 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3204 		return;
3205 
3206 	shinfo = skb_shinfo(skb);
3207 	if (!before(shinfo->tskey, prior_snd_una) &&
3208 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3209 		tcp_skb_tsorted_save(skb) {
3210 			__skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3211 		} tcp_skb_tsorted_restore(skb);
3212 	}
3213 }
3214 
3215 /* Remove acknowledged frames from the retransmission queue. If our packet
3216  * is before the ack sequence we can discard it as it's confirmed to have
3217  * arrived at the other end.
3218  */
3219 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3220 			       u32 prior_fack, u32 prior_snd_una,
3221 			       struct tcp_sacktag_state *sack, bool ece_ack)
3222 {
3223 	const struct inet_connection_sock *icsk = inet_csk(sk);
3224 	u64 first_ackt, last_ackt;
3225 	struct tcp_sock *tp = tcp_sk(sk);
3226 	u32 prior_sacked = tp->sacked_out;
3227 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3228 	struct sk_buff *skb, *next;
3229 	bool fully_acked = true;
3230 	long sack_rtt_us = -1L;
3231 	long seq_rtt_us = -1L;
3232 	long ca_rtt_us = -1L;
3233 	u32 pkts_acked = 0;
3234 	bool rtt_update;
3235 	int flag = 0;
3236 
3237 	first_ackt = 0;
3238 
3239 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3240 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3241 		const u32 start_seq = scb->seq;
3242 		u8 sacked = scb->sacked;
3243 		u32 acked_pcount;
3244 
3245 		/* Determine how many packets and what bytes were acked, tso and else */
3246 		if (after(scb->end_seq, tp->snd_una)) {
3247 			if (tcp_skb_pcount(skb) == 1 ||
3248 			    !after(tp->snd_una, scb->seq))
3249 				break;
3250 
3251 			acked_pcount = tcp_tso_acked(sk, skb);
3252 			if (!acked_pcount)
3253 				break;
3254 			fully_acked = false;
3255 		} else {
3256 			acked_pcount = tcp_skb_pcount(skb);
3257 		}
3258 
3259 		if (unlikely(sacked & TCPCB_RETRANS)) {
3260 			if (sacked & TCPCB_SACKED_RETRANS)
3261 				tp->retrans_out -= acked_pcount;
3262 			flag |= FLAG_RETRANS_DATA_ACKED;
3263 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3264 			last_ackt = tcp_skb_timestamp_us(skb);
3265 			WARN_ON_ONCE(last_ackt == 0);
3266 			if (!first_ackt)
3267 				first_ackt = last_ackt;
3268 
3269 			if (before(start_seq, reord))
3270 				reord = start_seq;
3271 			if (!after(scb->end_seq, tp->high_seq))
3272 				flag |= FLAG_ORIG_SACK_ACKED;
3273 		}
3274 
3275 		if (sacked & TCPCB_SACKED_ACKED) {
3276 			tp->sacked_out -= acked_pcount;
3277 		} else if (tcp_is_sack(tp)) {
3278 			tcp_count_delivered(tp, acked_pcount, ece_ack);
3279 			if (!tcp_skb_spurious_retrans(tp, skb))
3280 				tcp_rack_advance(tp, sacked, scb->end_seq,
3281 						 tcp_skb_timestamp_us(skb));
3282 		}
3283 		if (sacked & TCPCB_LOST)
3284 			tp->lost_out -= acked_pcount;
3285 
3286 		tp->packets_out -= acked_pcount;
3287 		pkts_acked += acked_pcount;
3288 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3289 
3290 		/* Initial outgoing SYN's get put onto the write_queue
3291 		 * just like anything else we transmit.  It is not
3292 		 * true data, and if we misinform our callers that
3293 		 * this ACK acks real data, we will erroneously exit
3294 		 * connection startup slow start one packet too
3295 		 * quickly.  This is severely frowned upon behavior.
3296 		 */
3297 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3298 			flag |= FLAG_DATA_ACKED;
3299 		} else {
3300 			flag |= FLAG_SYN_ACKED;
3301 			tp->retrans_stamp = 0;
3302 		}
3303 
3304 		if (!fully_acked)
3305 			break;
3306 
3307 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3308 
3309 		next = skb_rb_next(skb);
3310 		if (unlikely(skb == tp->retransmit_skb_hint))
3311 			tp->retransmit_skb_hint = NULL;
3312 		if (unlikely(skb == tp->lost_skb_hint))
3313 			tp->lost_skb_hint = NULL;
3314 		tcp_highest_sack_replace(sk, skb, next);
3315 		tcp_rtx_queue_unlink_and_free(skb, sk);
3316 	}
3317 
3318 	if (!skb)
3319 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3320 
3321 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3322 		tp->snd_up = tp->snd_una;
3323 
3324 	if (skb) {
3325 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3326 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3327 			flag |= FLAG_SACK_RENEGING;
3328 	}
3329 
3330 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3331 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3332 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3333 
3334 		if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3335 		    (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3336 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3337 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3338 			/* Conservatively mark a delayed ACK. It's typically
3339 			 * from a lone runt packet over the round trip to
3340 			 * a receiver w/o out-of-order or CE events.
3341 			 */
3342 			flag |= FLAG_ACK_MAYBE_DELAYED;
3343 		}
3344 	}
3345 	if (sack->first_sackt) {
3346 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3347 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3348 	}
3349 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3350 					ca_rtt_us, sack->rate);
3351 
3352 	if (flag & FLAG_ACKED) {
3353 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3354 		if (unlikely(icsk->icsk_mtup.probe_size &&
3355 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3356 			tcp_mtup_probe_success(sk);
3357 		}
3358 
3359 		if (tcp_is_reno(tp)) {
3360 			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3361 
3362 			/* If any of the cumulatively ACKed segments was
3363 			 * retransmitted, non-SACK case cannot confirm that
3364 			 * progress was due to original transmission due to
3365 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3366 			 * the packets may have been never retransmitted.
3367 			 */
3368 			if (flag & FLAG_RETRANS_DATA_ACKED)
3369 				flag &= ~FLAG_ORIG_SACK_ACKED;
3370 		} else {
3371 			int delta;
3372 
3373 			/* Non-retransmitted hole got filled? That's reordering */
3374 			if (before(reord, prior_fack))
3375 				tcp_check_sack_reordering(sk, reord, 0);
3376 
3377 			delta = prior_sacked - tp->sacked_out;
3378 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3379 		}
3380 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3381 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3382 						    tcp_skb_timestamp_us(skb))) {
3383 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3384 		 * after when the head was last (re)transmitted. Otherwise the
3385 		 * timeout may continue to extend in loss recovery.
3386 		 */
3387 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3388 	}
3389 
3390 	if (icsk->icsk_ca_ops->pkts_acked) {
3391 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3392 					     .rtt_us = sack->rate->rtt_us };
3393 
3394 		sample.in_flight = tp->mss_cache *
3395 			(tp->delivered - sack->rate->prior_delivered);
3396 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3397 	}
3398 
3399 #if FASTRETRANS_DEBUG > 0
3400 	WARN_ON((int)tp->sacked_out < 0);
3401 	WARN_ON((int)tp->lost_out < 0);
3402 	WARN_ON((int)tp->retrans_out < 0);
3403 	if (!tp->packets_out && tcp_is_sack(tp)) {
3404 		icsk = inet_csk(sk);
3405 		if (tp->lost_out) {
3406 			pr_debug("Leak l=%u %d\n",
3407 				 tp->lost_out, icsk->icsk_ca_state);
3408 			tp->lost_out = 0;
3409 		}
3410 		if (tp->sacked_out) {
3411 			pr_debug("Leak s=%u %d\n",
3412 				 tp->sacked_out, icsk->icsk_ca_state);
3413 			tp->sacked_out = 0;
3414 		}
3415 		if (tp->retrans_out) {
3416 			pr_debug("Leak r=%u %d\n",
3417 				 tp->retrans_out, icsk->icsk_ca_state);
3418 			tp->retrans_out = 0;
3419 		}
3420 	}
3421 #endif
3422 	return flag;
3423 }
3424 
3425 static void tcp_ack_probe(struct sock *sk)
3426 {
3427 	struct inet_connection_sock *icsk = inet_csk(sk);
3428 	struct sk_buff *head = tcp_send_head(sk);
3429 	const struct tcp_sock *tp = tcp_sk(sk);
3430 
3431 	/* Was it a usable window open? */
3432 	if (!head)
3433 		return;
3434 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3435 		icsk->icsk_backoff = 0;
3436 		icsk->icsk_probes_tstamp = 0;
3437 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3438 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3439 		 * This function is not for random using!
3440 		 */
3441 	} else {
3442 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3443 
3444 		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3445 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3446 	}
3447 }
3448 
3449 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3450 {
3451 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3452 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3453 }
3454 
3455 /* Decide wheather to run the increase function of congestion control. */
3456 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3457 {
3458 	/* If reordering is high then always grow cwnd whenever data is
3459 	 * delivered regardless of its ordering. Otherwise stay conservative
3460 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3461 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3462 	 * cwnd in tcp_fastretrans_alert() based on more states.
3463 	 */
3464 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3465 		return flag & FLAG_FORWARD_PROGRESS;
3466 
3467 	return flag & FLAG_DATA_ACKED;
3468 }
3469 
3470 /* The "ultimate" congestion control function that aims to replace the rigid
3471  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3472  * It's called toward the end of processing an ACK with precise rate
3473  * information. All transmission or retransmission are delayed afterwards.
3474  */
3475 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3476 			     int flag, const struct rate_sample *rs)
3477 {
3478 	const struct inet_connection_sock *icsk = inet_csk(sk);
3479 
3480 	if (icsk->icsk_ca_ops->cong_control) {
3481 		icsk->icsk_ca_ops->cong_control(sk, rs);
3482 		return;
3483 	}
3484 
3485 	if (tcp_in_cwnd_reduction(sk)) {
3486 		/* Reduce cwnd if state mandates */
3487 		tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3488 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3489 		/* Advance cwnd if state allows */
3490 		tcp_cong_avoid(sk, ack, acked_sacked);
3491 	}
3492 	tcp_update_pacing_rate(sk);
3493 }
3494 
3495 /* Check that window update is acceptable.
3496  * The function assumes that snd_una<=ack<=snd_next.
3497  */
3498 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3499 					const u32 ack, const u32 ack_seq,
3500 					const u32 nwin)
3501 {
3502 	return	after(ack, tp->snd_una) ||
3503 		after(ack_seq, tp->snd_wl1) ||
3504 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3505 }
3506 
3507 /* If we update tp->snd_una, also update tp->bytes_acked */
3508 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3509 {
3510 	u32 delta = ack - tp->snd_una;
3511 
3512 	sock_owned_by_me((struct sock *)tp);
3513 	tp->bytes_acked += delta;
3514 	tp->snd_una = ack;
3515 }
3516 
3517 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3518 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3519 {
3520 	u32 delta = seq - tp->rcv_nxt;
3521 
3522 	sock_owned_by_me((struct sock *)tp);
3523 	tp->bytes_received += delta;
3524 	WRITE_ONCE(tp->rcv_nxt, seq);
3525 }
3526 
3527 /* Update our send window.
3528  *
3529  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3530  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3531  */
3532 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3533 				 u32 ack_seq)
3534 {
3535 	struct tcp_sock *tp = tcp_sk(sk);
3536 	int flag = 0;
3537 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3538 
3539 	if (likely(!tcp_hdr(skb)->syn))
3540 		nwin <<= tp->rx_opt.snd_wscale;
3541 
3542 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3543 		flag |= FLAG_WIN_UPDATE;
3544 		tcp_update_wl(tp, ack_seq);
3545 
3546 		if (tp->snd_wnd != nwin) {
3547 			tp->snd_wnd = nwin;
3548 
3549 			/* Note, it is the only place, where
3550 			 * fast path is recovered for sending TCP.
3551 			 */
3552 			tp->pred_flags = 0;
3553 			tcp_fast_path_check(sk);
3554 
3555 			if (!tcp_write_queue_empty(sk))
3556 				tcp_slow_start_after_idle_check(sk);
3557 
3558 			if (nwin > tp->max_window) {
3559 				tp->max_window = nwin;
3560 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3561 			}
3562 		}
3563 	}
3564 
3565 	tcp_snd_una_update(tp, ack);
3566 
3567 	return flag;
3568 }
3569 
3570 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3571 				   u32 *last_oow_ack_time)
3572 {
3573 	if (*last_oow_ack_time) {
3574 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3575 
3576 		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3577 			NET_INC_STATS(net, mib_idx);
3578 			return true;	/* rate-limited: don't send yet! */
3579 		}
3580 	}
3581 
3582 	*last_oow_ack_time = tcp_jiffies32;
3583 
3584 	return false;	/* not rate-limited: go ahead, send dupack now! */
3585 }
3586 
3587 /* Return true if we're currently rate-limiting out-of-window ACKs and
3588  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3589  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3590  * attacks that send repeated SYNs or ACKs for the same connection. To
3591  * do this, we do not send a duplicate SYNACK or ACK if the remote
3592  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3593  */
3594 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3595 			  int mib_idx, u32 *last_oow_ack_time)
3596 {
3597 	/* Data packets without SYNs are not likely part of an ACK loop. */
3598 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3599 	    !tcp_hdr(skb)->syn)
3600 		return false;
3601 
3602 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3603 }
3604 
3605 /* RFC 5961 7 [ACK Throttling] */
3606 static void tcp_send_challenge_ack(struct sock *sk)
3607 {
3608 	/* unprotected vars, we dont care of overwrites */
3609 	static u32 challenge_timestamp;
3610 	static unsigned int challenge_count;
3611 	struct tcp_sock *tp = tcp_sk(sk);
3612 	struct net *net = sock_net(sk);
3613 	u32 count, now;
3614 
3615 	/* First check our per-socket dupack rate limit. */
3616 	if (__tcp_oow_rate_limited(net,
3617 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3618 				   &tp->last_oow_ack_time))
3619 		return;
3620 
3621 	/* Then check host-wide RFC 5961 rate limit. */
3622 	now = jiffies / HZ;
3623 	if (now != challenge_timestamp) {
3624 		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3625 		u32 half = (ack_limit + 1) >> 1;
3626 
3627 		challenge_timestamp = now;
3628 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3629 	}
3630 	count = READ_ONCE(challenge_count);
3631 	if (count > 0) {
3632 		WRITE_ONCE(challenge_count, count - 1);
3633 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3634 		tcp_send_ack(sk);
3635 	}
3636 }
3637 
3638 static void tcp_store_ts_recent(struct tcp_sock *tp)
3639 {
3640 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3641 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3642 }
3643 
3644 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3645 {
3646 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3647 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3648 		 * extra check below makes sure this can only happen
3649 		 * for pure ACK frames.  -DaveM
3650 		 *
3651 		 * Not only, also it occurs for expired timestamps.
3652 		 */
3653 
3654 		if (tcp_paws_check(&tp->rx_opt, 0))
3655 			tcp_store_ts_recent(tp);
3656 	}
3657 }
3658 
3659 /* This routine deals with acks during a TLP episode and ends an episode by
3660  * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3661  */
3662 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3663 {
3664 	struct tcp_sock *tp = tcp_sk(sk);
3665 
3666 	if (before(ack, tp->tlp_high_seq))
3667 		return;
3668 
3669 	if (!tp->tlp_retrans) {
3670 		/* TLP of new data has been acknowledged */
3671 		tp->tlp_high_seq = 0;
3672 	} else if (flag & FLAG_DSACK_TLP) {
3673 		/* This DSACK means original and TLP probe arrived; no loss */
3674 		tp->tlp_high_seq = 0;
3675 	} else if (after(ack, tp->tlp_high_seq)) {
3676 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3677 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3678 		 */
3679 		tcp_init_cwnd_reduction(sk);
3680 		tcp_set_ca_state(sk, TCP_CA_CWR);
3681 		tcp_end_cwnd_reduction(sk);
3682 		tcp_try_keep_open(sk);
3683 		NET_INC_STATS(sock_net(sk),
3684 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3685 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3686 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3687 		/* Pure dupack: original and TLP probe arrived; no loss */
3688 		tp->tlp_high_seq = 0;
3689 	}
3690 }
3691 
3692 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3693 {
3694 	const struct inet_connection_sock *icsk = inet_csk(sk);
3695 
3696 	if (icsk->icsk_ca_ops->in_ack_event)
3697 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3698 }
3699 
3700 /* Congestion control has updated the cwnd already. So if we're in
3701  * loss recovery then now we do any new sends (for FRTO) or
3702  * retransmits (for CA_Loss or CA_recovery) that make sense.
3703  */
3704 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3705 {
3706 	struct tcp_sock *tp = tcp_sk(sk);
3707 
3708 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3709 		return;
3710 
3711 	if (unlikely(rexmit == REXMIT_NEW)) {
3712 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3713 					  TCP_NAGLE_OFF);
3714 		if (after(tp->snd_nxt, tp->high_seq))
3715 			return;
3716 		tp->frto = 0;
3717 	}
3718 	tcp_xmit_retransmit_queue(sk);
3719 }
3720 
3721 /* Returns the number of packets newly acked or sacked by the current ACK */
3722 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3723 {
3724 	const struct net *net = sock_net(sk);
3725 	struct tcp_sock *tp = tcp_sk(sk);
3726 	u32 delivered;
3727 
3728 	delivered = tp->delivered - prior_delivered;
3729 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3730 	if (flag & FLAG_ECE)
3731 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3732 
3733 	return delivered;
3734 }
3735 
3736 /* This routine deals with incoming acks, but not outgoing ones. */
3737 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3738 {
3739 	struct inet_connection_sock *icsk = inet_csk(sk);
3740 	struct tcp_sock *tp = tcp_sk(sk);
3741 	struct tcp_sacktag_state sack_state;
3742 	struct rate_sample rs = { .prior_delivered = 0 };
3743 	u32 prior_snd_una = tp->snd_una;
3744 	bool is_sack_reneg = tp->is_sack_reneg;
3745 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3746 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3747 	int num_dupack = 0;
3748 	int prior_packets = tp->packets_out;
3749 	u32 delivered = tp->delivered;
3750 	u32 lost = tp->lost;
3751 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3752 	u32 prior_fack;
3753 
3754 	sack_state.first_sackt = 0;
3755 	sack_state.rate = &rs;
3756 	sack_state.sack_delivered = 0;
3757 
3758 	/* We very likely will need to access rtx queue. */
3759 	prefetch(sk->tcp_rtx_queue.rb_node);
3760 
3761 	/* If the ack is older than previous acks
3762 	 * then we can probably ignore it.
3763 	 */
3764 	if (before(ack, prior_snd_una)) {
3765 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3766 		if (before(ack, prior_snd_una - tp->max_window)) {
3767 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3768 				tcp_send_challenge_ack(sk);
3769 			return -1;
3770 		}
3771 		goto old_ack;
3772 	}
3773 
3774 	/* If the ack includes data we haven't sent yet, discard
3775 	 * this segment (RFC793 Section 3.9).
3776 	 */
3777 	if (after(ack, tp->snd_nxt))
3778 		return -1;
3779 
3780 	if (after(ack, prior_snd_una)) {
3781 		flag |= FLAG_SND_UNA_ADVANCED;
3782 		icsk->icsk_retransmits = 0;
3783 
3784 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3785 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3786 			if (icsk->icsk_clean_acked)
3787 				icsk->icsk_clean_acked(sk, ack);
3788 #endif
3789 	}
3790 
3791 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3792 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3793 
3794 	/* ts_recent update must be made after we are sure that the packet
3795 	 * is in window.
3796 	 */
3797 	if (flag & FLAG_UPDATE_TS_RECENT)
3798 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3799 
3800 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3801 	    FLAG_SND_UNA_ADVANCED) {
3802 		/* Window is constant, pure forward advance.
3803 		 * No more checks are required.
3804 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3805 		 */
3806 		tcp_update_wl(tp, ack_seq);
3807 		tcp_snd_una_update(tp, ack);
3808 		flag |= FLAG_WIN_UPDATE;
3809 
3810 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3811 
3812 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3813 	} else {
3814 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3815 
3816 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3817 			flag |= FLAG_DATA;
3818 		else
3819 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3820 
3821 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3822 
3823 		if (TCP_SKB_CB(skb)->sacked)
3824 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3825 							&sack_state);
3826 
3827 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3828 			flag |= FLAG_ECE;
3829 			ack_ev_flags |= CA_ACK_ECE;
3830 		}
3831 
3832 		if (sack_state.sack_delivered)
3833 			tcp_count_delivered(tp, sack_state.sack_delivered,
3834 					    flag & FLAG_ECE);
3835 
3836 		if (flag & FLAG_WIN_UPDATE)
3837 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3838 
3839 		tcp_in_ack_event(sk, ack_ev_flags);
3840 	}
3841 
3842 	/* This is a deviation from RFC3168 since it states that:
3843 	 * "When the TCP data sender is ready to set the CWR bit after reducing
3844 	 * the congestion window, it SHOULD set the CWR bit only on the first
3845 	 * new data packet that it transmits."
3846 	 * We accept CWR on pure ACKs to be more robust
3847 	 * with widely-deployed TCP implementations that do this.
3848 	 */
3849 	tcp_ecn_accept_cwr(sk, skb);
3850 
3851 	/* We passed data and got it acked, remove any soft error
3852 	 * log. Something worked...
3853 	 */
3854 	sk->sk_err_soft = 0;
3855 	icsk->icsk_probes_out = 0;
3856 	tp->rcv_tstamp = tcp_jiffies32;
3857 	if (!prior_packets)
3858 		goto no_queue;
3859 
3860 	/* See if we can take anything off of the retransmit queue. */
3861 	flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
3862 				    &sack_state, flag & FLAG_ECE);
3863 
3864 	tcp_rack_update_reo_wnd(sk, &rs);
3865 
3866 	if (tp->tlp_high_seq)
3867 		tcp_process_tlp_ack(sk, ack, flag);
3868 
3869 	if (tcp_ack_is_dubious(sk, flag)) {
3870 		if (!(flag & (FLAG_SND_UNA_ADVANCED |
3871 			      FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
3872 			num_dupack = 1;
3873 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3874 			if (!(flag & FLAG_DATA))
3875 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3876 		}
3877 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3878 				      &rexmit);
3879 	}
3880 
3881 	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
3882 	if (flag & FLAG_SET_XMIT_TIMER)
3883 		tcp_set_xmit_timer(sk);
3884 
3885 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3886 		sk_dst_confirm(sk);
3887 
3888 	delivered = tcp_newly_delivered(sk, delivered, flag);
3889 	lost = tp->lost - lost;			/* freshly marked lost */
3890 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3891 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3892 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3893 	tcp_xmit_recovery(sk, rexmit);
3894 	return 1;
3895 
3896 no_queue:
3897 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3898 	if (flag & FLAG_DSACKING_ACK) {
3899 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3900 				      &rexmit);
3901 		tcp_newly_delivered(sk, delivered, flag);
3902 	}
3903 	/* If this ack opens up a zero window, clear backoff.  It was
3904 	 * being used to time the probes, and is probably far higher than
3905 	 * it needs to be for normal retransmission.
3906 	 */
3907 	tcp_ack_probe(sk);
3908 
3909 	if (tp->tlp_high_seq)
3910 		tcp_process_tlp_ack(sk, ack, flag);
3911 	return 1;
3912 
3913 old_ack:
3914 	/* If data was SACKed, tag it and see if we should send more data.
3915 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3916 	 */
3917 	if (TCP_SKB_CB(skb)->sacked) {
3918 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3919 						&sack_state);
3920 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3921 				      &rexmit);
3922 		tcp_newly_delivered(sk, delivered, flag);
3923 		tcp_xmit_recovery(sk, rexmit);
3924 	}
3925 
3926 	return 0;
3927 }
3928 
3929 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3930 				      bool syn, struct tcp_fastopen_cookie *foc,
3931 				      bool exp_opt)
3932 {
3933 	/* Valid only in SYN or SYN-ACK with an even length.  */
3934 	if (!foc || !syn || len < 0 || (len & 1))
3935 		return;
3936 
3937 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3938 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3939 		memcpy(foc->val, cookie, len);
3940 	else if (len != 0)
3941 		len = -1;
3942 	foc->len = len;
3943 	foc->exp = exp_opt;
3944 }
3945 
3946 static bool smc_parse_options(const struct tcphdr *th,
3947 			      struct tcp_options_received *opt_rx,
3948 			      const unsigned char *ptr,
3949 			      int opsize)
3950 {
3951 #if IS_ENABLED(CONFIG_SMC)
3952 	if (static_branch_unlikely(&tcp_have_smc)) {
3953 		if (th->syn && !(opsize & 1) &&
3954 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3955 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
3956 			opt_rx->smc_ok = 1;
3957 			return true;
3958 		}
3959 	}
3960 #endif
3961 	return false;
3962 }
3963 
3964 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3965  * value on success.
3966  */
3967 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3968 {
3969 	const unsigned char *ptr = (const unsigned char *)(th + 1);
3970 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3971 	u16 mss = 0;
3972 
3973 	while (length > 0) {
3974 		int opcode = *ptr++;
3975 		int opsize;
3976 
3977 		switch (opcode) {
3978 		case TCPOPT_EOL:
3979 			return mss;
3980 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3981 			length--;
3982 			continue;
3983 		default:
3984 			if (length < 2)
3985 				return mss;
3986 			opsize = *ptr++;
3987 			if (opsize < 2) /* "silly options" */
3988 				return mss;
3989 			if (opsize > length)
3990 				return mss;	/* fail on partial options */
3991 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3992 				u16 in_mss = get_unaligned_be16(ptr);
3993 
3994 				if (in_mss) {
3995 					if (user_mss && user_mss < in_mss)
3996 						in_mss = user_mss;
3997 					mss = in_mss;
3998 				}
3999 			}
4000 			ptr += opsize - 2;
4001 			length -= opsize;
4002 		}
4003 	}
4004 	return mss;
4005 }
4006 
4007 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4008  * But, this can also be called on packets in the established flow when
4009  * the fast version below fails.
4010  */
4011 void tcp_parse_options(const struct net *net,
4012 		       const struct sk_buff *skb,
4013 		       struct tcp_options_received *opt_rx, int estab,
4014 		       struct tcp_fastopen_cookie *foc)
4015 {
4016 	const unsigned char *ptr;
4017 	const struct tcphdr *th = tcp_hdr(skb);
4018 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4019 
4020 	ptr = (const unsigned char *)(th + 1);
4021 	opt_rx->saw_tstamp = 0;
4022 	opt_rx->saw_unknown = 0;
4023 
4024 	while (length > 0) {
4025 		int opcode = *ptr++;
4026 		int opsize;
4027 
4028 		switch (opcode) {
4029 		case TCPOPT_EOL:
4030 			return;
4031 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4032 			length--;
4033 			continue;
4034 		default:
4035 			if (length < 2)
4036 				return;
4037 			opsize = *ptr++;
4038 			if (opsize < 2) /* "silly options" */
4039 				return;
4040 			if (opsize > length)
4041 				return;	/* don't parse partial options */
4042 			switch (opcode) {
4043 			case TCPOPT_MSS:
4044 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4045 					u16 in_mss = get_unaligned_be16(ptr);
4046 					if (in_mss) {
4047 						if (opt_rx->user_mss &&
4048 						    opt_rx->user_mss < in_mss)
4049 							in_mss = opt_rx->user_mss;
4050 						opt_rx->mss_clamp = in_mss;
4051 					}
4052 				}
4053 				break;
4054 			case TCPOPT_WINDOW:
4055 				if (opsize == TCPOLEN_WINDOW && th->syn &&
4056 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
4057 					__u8 snd_wscale = *(__u8 *)ptr;
4058 					opt_rx->wscale_ok = 1;
4059 					if (snd_wscale > TCP_MAX_WSCALE) {
4060 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4061 								     __func__,
4062 								     snd_wscale,
4063 								     TCP_MAX_WSCALE);
4064 						snd_wscale = TCP_MAX_WSCALE;
4065 					}
4066 					opt_rx->snd_wscale = snd_wscale;
4067 				}
4068 				break;
4069 			case TCPOPT_TIMESTAMP:
4070 				if ((opsize == TCPOLEN_TIMESTAMP) &&
4071 				    ((estab && opt_rx->tstamp_ok) ||
4072 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
4073 					opt_rx->saw_tstamp = 1;
4074 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4075 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4076 				}
4077 				break;
4078 			case TCPOPT_SACK_PERM:
4079 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4080 				    !estab && net->ipv4.sysctl_tcp_sack) {
4081 					opt_rx->sack_ok = TCP_SACK_SEEN;
4082 					tcp_sack_reset(opt_rx);
4083 				}
4084 				break;
4085 
4086 			case TCPOPT_SACK:
4087 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4088 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4089 				   opt_rx->sack_ok) {
4090 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4091 				}
4092 				break;
4093 #ifdef CONFIG_TCP_MD5SIG
4094 			case TCPOPT_MD5SIG:
4095 				/*
4096 				 * The MD5 Hash has already been
4097 				 * checked (see tcp_v{4,6}_do_rcv()).
4098 				 */
4099 				break;
4100 #endif
4101 			case TCPOPT_FASTOPEN:
4102 				tcp_parse_fastopen_option(
4103 					opsize - TCPOLEN_FASTOPEN_BASE,
4104 					ptr, th->syn, foc, false);
4105 				break;
4106 
4107 			case TCPOPT_EXP:
4108 				/* Fast Open option shares code 254 using a
4109 				 * 16 bits magic number.
4110 				 */
4111 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4112 				    get_unaligned_be16(ptr) ==
4113 				    TCPOPT_FASTOPEN_MAGIC) {
4114 					tcp_parse_fastopen_option(opsize -
4115 						TCPOLEN_EXP_FASTOPEN_BASE,
4116 						ptr + 2, th->syn, foc, true);
4117 					break;
4118 				}
4119 
4120 				if (smc_parse_options(th, opt_rx, ptr, opsize))
4121 					break;
4122 
4123 				opt_rx->saw_unknown = 1;
4124 				break;
4125 
4126 			default:
4127 				opt_rx->saw_unknown = 1;
4128 			}
4129 			ptr += opsize-2;
4130 			length -= opsize;
4131 		}
4132 	}
4133 }
4134 EXPORT_SYMBOL(tcp_parse_options);
4135 
4136 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4137 {
4138 	const __be32 *ptr = (const __be32 *)(th + 1);
4139 
4140 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4141 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4142 		tp->rx_opt.saw_tstamp = 1;
4143 		++ptr;
4144 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4145 		++ptr;
4146 		if (*ptr)
4147 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4148 		else
4149 			tp->rx_opt.rcv_tsecr = 0;
4150 		return true;
4151 	}
4152 	return false;
4153 }
4154 
4155 /* Fast parse options. This hopes to only see timestamps.
4156  * If it is wrong it falls back on tcp_parse_options().
4157  */
4158 static bool tcp_fast_parse_options(const struct net *net,
4159 				   const struct sk_buff *skb,
4160 				   const struct tcphdr *th, struct tcp_sock *tp)
4161 {
4162 	/* In the spirit of fast parsing, compare doff directly to constant
4163 	 * values.  Because equality is used, short doff can be ignored here.
4164 	 */
4165 	if (th->doff == (sizeof(*th) / 4)) {
4166 		tp->rx_opt.saw_tstamp = 0;
4167 		return false;
4168 	} else if (tp->rx_opt.tstamp_ok &&
4169 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4170 		if (tcp_parse_aligned_timestamp(tp, th))
4171 			return true;
4172 	}
4173 
4174 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4175 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4176 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4177 
4178 	return true;
4179 }
4180 
4181 #ifdef CONFIG_TCP_MD5SIG
4182 /*
4183  * Parse MD5 Signature option
4184  */
4185 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4186 {
4187 	int length = (th->doff << 2) - sizeof(*th);
4188 	const u8 *ptr = (const u8 *)(th + 1);
4189 
4190 	/* If not enough data remaining, we can short cut */
4191 	while (length >= TCPOLEN_MD5SIG) {
4192 		int opcode = *ptr++;
4193 		int opsize;
4194 
4195 		switch (opcode) {
4196 		case TCPOPT_EOL:
4197 			return NULL;
4198 		case TCPOPT_NOP:
4199 			length--;
4200 			continue;
4201 		default:
4202 			opsize = *ptr++;
4203 			if (opsize < 2 || opsize > length)
4204 				return NULL;
4205 			if (opcode == TCPOPT_MD5SIG)
4206 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4207 		}
4208 		ptr += opsize - 2;
4209 		length -= opsize;
4210 	}
4211 	return NULL;
4212 }
4213 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4214 #endif
4215 
4216 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4217  *
4218  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4219  * it can pass through stack. So, the following predicate verifies that
4220  * this segment is not used for anything but congestion avoidance or
4221  * fast retransmit. Moreover, we even are able to eliminate most of such
4222  * second order effects, if we apply some small "replay" window (~RTO)
4223  * to timestamp space.
4224  *
4225  * All these measures still do not guarantee that we reject wrapped ACKs
4226  * on networks with high bandwidth, when sequence space is recycled fastly,
4227  * but it guarantees that such events will be very rare and do not affect
4228  * connection seriously. This doesn't look nice, but alas, PAWS is really
4229  * buggy extension.
4230  *
4231  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4232  * states that events when retransmit arrives after original data are rare.
4233  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4234  * the biggest problem on large power networks even with minor reordering.
4235  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4236  * up to bandwidth of 18Gigabit/sec. 8) ]
4237  */
4238 
4239 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4240 {
4241 	const struct tcp_sock *tp = tcp_sk(sk);
4242 	const struct tcphdr *th = tcp_hdr(skb);
4243 	u32 seq = TCP_SKB_CB(skb)->seq;
4244 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4245 
4246 	return (/* 1. Pure ACK with correct sequence number. */
4247 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4248 
4249 		/* 2. ... and duplicate ACK. */
4250 		ack == tp->snd_una &&
4251 
4252 		/* 3. ... and does not update window. */
4253 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4254 
4255 		/* 4. ... and sits in replay window. */
4256 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4257 }
4258 
4259 static inline bool tcp_paws_discard(const struct sock *sk,
4260 				   const struct sk_buff *skb)
4261 {
4262 	const struct tcp_sock *tp = tcp_sk(sk);
4263 
4264 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4265 	       !tcp_disordered_ack(sk, skb);
4266 }
4267 
4268 /* Check segment sequence number for validity.
4269  *
4270  * Segment controls are considered valid, if the segment
4271  * fits to the window after truncation to the window. Acceptability
4272  * of data (and SYN, FIN, of course) is checked separately.
4273  * See tcp_data_queue(), for example.
4274  *
4275  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4276  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4277  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4278  * (borrowed from freebsd)
4279  */
4280 
4281 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4282 {
4283 	return	!before(end_seq, tp->rcv_wup) &&
4284 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4285 }
4286 
4287 /* When we get a reset we do this. */
4288 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4289 {
4290 	trace_tcp_receive_reset(sk);
4291 
4292 	/* mptcp can't tell us to ignore reset pkts,
4293 	 * so just ignore the return value of mptcp_incoming_options().
4294 	 */
4295 	if (sk_is_mptcp(sk))
4296 		mptcp_incoming_options(sk, skb);
4297 
4298 	/* We want the right error as BSD sees it (and indeed as we do). */
4299 	switch (sk->sk_state) {
4300 	case TCP_SYN_SENT:
4301 		sk->sk_err = ECONNREFUSED;
4302 		break;
4303 	case TCP_CLOSE_WAIT:
4304 		sk->sk_err = EPIPE;
4305 		break;
4306 	case TCP_CLOSE:
4307 		return;
4308 	default:
4309 		sk->sk_err = ECONNRESET;
4310 	}
4311 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4312 	smp_wmb();
4313 
4314 	tcp_write_queue_purge(sk);
4315 	tcp_done(sk);
4316 
4317 	if (!sock_flag(sk, SOCK_DEAD))
4318 		sk_error_report(sk);
4319 }
4320 
4321 /*
4322  * 	Process the FIN bit. This now behaves as it is supposed to work
4323  *	and the FIN takes effect when it is validly part of sequence
4324  *	space. Not before when we get holes.
4325  *
4326  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4327  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4328  *	TIME-WAIT)
4329  *
4330  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4331  *	close and we go into CLOSING (and later onto TIME-WAIT)
4332  *
4333  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4334  */
4335 void tcp_fin(struct sock *sk)
4336 {
4337 	struct tcp_sock *tp = tcp_sk(sk);
4338 
4339 	inet_csk_schedule_ack(sk);
4340 
4341 	sk->sk_shutdown |= RCV_SHUTDOWN;
4342 	sock_set_flag(sk, SOCK_DONE);
4343 
4344 	switch (sk->sk_state) {
4345 	case TCP_SYN_RECV:
4346 	case TCP_ESTABLISHED:
4347 		/* Move to CLOSE_WAIT */
4348 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4349 		inet_csk_enter_pingpong_mode(sk);
4350 		break;
4351 
4352 	case TCP_CLOSE_WAIT:
4353 	case TCP_CLOSING:
4354 		/* Received a retransmission of the FIN, do
4355 		 * nothing.
4356 		 */
4357 		break;
4358 	case TCP_LAST_ACK:
4359 		/* RFC793: Remain in the LAST-ACK state. */
4360 		break;
4361 
4362 	case TCP_FIN_WAIT1:
4363 		/* This case occurs when a simultaneous close
4364 		 * happens, we must ack the received FIN and
4365 		 * enter the CLOSING state.
4366 		 */
4367 		tcp_send_ack(sk);
4368 		tcp_set_state(sk, TCP_CLOSING);
4369 		break;
4370 	case TCP_FIN_WAIT2:
4371 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4372 		tcp_send_ack(sk);
4373 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4374 		break;
4375 	default:
4376 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4377 		 * cases we should never reach this piece of code.
4378 		 */
4379 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4380 		       __func__, sk->sk_state);
4381 		break;
4382 	}
4383 
4384 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4385 	 * Probably, we should reset in this case. For now drop them.
4386 	 */
4387 	skb_rbtree_purge(&tp->out_of_order_queue);
4388 	if (tcp_is_sack(tp))
4389 		tcp_sack_reset(&tp->rx_opt);
4390 	sk_mem_reclaim(sk);
4391 
4392 	if (!sock_flag(sk, SOCK_DEAD)) {
4393 		sk->sk_state_change(sk);
4394 
4395 		/* Do not send POLL_HUP for half duplex close. */
4396 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4397 		    sk->sk_state == TCP_CLOSE)
4398 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4399 		else
4400 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4401 	}
4402 }
4403 
4404 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4405 				  u32 end_seq)
4406 {
4407 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4408 		if (before(seq, sp->start_seq))
4409 			sp->start_seq = seq;
4410 		if (after(end_seq, sp->end_seq))
4411 			sp->end_seq = end_seq;
4412 		return true;
4413 	}
4414 	return false;
4415 }
4416 
4417 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4418 {
4419 	struct tcp_sock *tp = tcp_sk(sk);
4420 
4421 	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4422 		int mib_idx;
4423 
4424 		if (before(seq, tp->rcv_nxt))
4425 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4426 		else
4427 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4428 
4429 		NET_INC_STATS(sock_net(sk), mib_idx);
4430 
4431 		tp->rx_opt.dsack = 1;
4432 		tp->duplicate_sack[0].start_seq = seq;
4433 		tp->duplicate_sack[0].end_seq = end_seq;
4434 	}
4435 }
4436 
4437 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4438 {
4439 	struct tcp_sock *tp = tcp_sk(sk);
4440 
4441 	if (!tp->rx_opt.dsack)
4442 		tcp_dsack_set(sk, seq, end_seq);
4443 	else
4444 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4445 }
4446 
4447 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4448 {
4449 	/* When the ACK path fails or drops most ACKs, the sender would
4450 	 * timeout and spuriously retransmit the same segment repeatedly.
4451 	 * The receiver remembers and reflects via DSACKs. Leverage the
4452 	 * DSACK state and change the txhash to re-route speculatively.
4453 	 */
4454 	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4455 	    sk_rethink_txhash(sk))
4456 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4457 }
4458 
4459 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4460 {
4461 	struct tcp_sock *tp = tcp_sk(sk);
4462 
4463 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4464 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4465 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4466 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4467 
4468 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4469 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4470 
4471 			tcp_rcv_spurious_retrans(sk, skb);
4472 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4473 				end_seq = tp->rcv_nxt;
4474 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4475 		}
4476 	}
4477 
4478 	tcp_send_ack(sk);
4479 }
4480 
4481 /* These routines update the SACK block as out-of-order packets arrive or
4482  * in-order packets close up the sequence space.
4483  */
4484 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4485 {
4486 	int this_sack;
4487 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4488 	struct tcp_sack_block *swalk = sp + 1;
4489 
4490 	/* See if the recent change to the first SACK eats into
4491 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4492 	 */
4493 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4494 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4495 			int i;
4496 
4497 			/* Zap SWALK, by moving every further SACK up by one slot.
4498 			 * Decrease num_sacks.
4499 			 */
4500 			tp->rx_opt.num_sacks--;
4501 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4502 				sp[i] = sp[i + 1];
4503 			continue;
4504 		}
4505 		this_sack++;
4506 		swalk++;
4507 	}
4508 }
4509 
4510 static void tcp_sack_compress_send_ack(struct sock *sk)
4511 {
4512 	struct tcp_sock *tp = tcp_sk(sk);
4513 
4514 	if (!tp->compressed_ack)
4515 		return;
4516 
4517 	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4518 		__sock_put(sk);
4519 
4520 	/* Since we have to send one ack finally,
4521 	 * substract one from tp->compressed_ack to keep
4522 	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4523 	 */
4524 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4525 		      tp->compressed_ack - 1);
4526 
4527 	tp->compressed_ack = 0;
4528 	tcp_send_ack(sk);
4529 }
4530 
4531 /* Reasonable amount of sack blocks included in TCP SACK option
4532  * The max is 4, but this becomes 3 if TCP timestamps are there.
4533  * Given that SACK packets might be lost, be conservative and use 2.
4534  */
4535 #define TCP_SACK_BLOCKS_EXPECTED 2
4536 
4537 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4538 {
4539 	struct tcp_sock *tp = tcp_sk(sk);
4540 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4541 	int cur_sacks = tp->rx_opt.num_sacks;
4542 	int this_sack;
4543 
4544 	if (!cur_sacks)
4545 		goto new_sack;
4546 
4547 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4548 		if (tcp_sack_extend(sp, seq, end_seq)) {
4549 			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4550 				tcp_sack_compress_send_ack(sk);
4551 			/* Rotate this_sack to the first one. */
4552 			for (; this_sack > 0; this_sack--, sp--)
4553 				swap(*sp, *(sp - 1));
4554 			if (cur_sacks > 1)
4555 				tcp_sack_maybe_coalesce(tp);
4556 			return;
4557 		}
4558 	}
4559 
4560 	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4561 		tcp_sack_compress_send_ack(sk);
4562 
4563 	/* Could not find an adjacent existing SACK, build a new one,
4564 	 * put it at the front, and shift everyone else down.  We
4565 	 * always know there is at least one SACK present already here.
4566 	 *
4567 	 * If the sack array is full, forget about the last one.
4568 	 */
4569 	if (this_sack >= TCP_NUM_SACKS) {
4570 		this_sack--;
4571 		tp->rx_opt.num_sacks--;
4572 		sp--;
4573 	}
4574 	for (; this_sack > 0; this_sack--, sp--)
4575 		*sp = *(sp - 1);
4576 
4577 new_sack:
4578 	/* Build the new head SACK, and we're done. */
4579 	sp->start_seq = seq;
4580 	sp->end_seq = end_seq;
4581 	tp->rx_opt.num_sacks++;
4582 }
4583 
4584 /* RCV.NXT advances, some SACKs should be eaten. */
4585 
4586 static void tcp_sack_remove(struct tcp_sock *tp)
4587 {
4588 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4589 	int num_sacks = tp->rx_opt.num_sacks;
4590 	int this_sack;
4591 
4592 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4593 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4594 		tp->rx_opt.num_sacks = 0;
4595 		return;
4596 	}
4597 
4598 	for (this_sack = 0; this_sack < num_sacks;) {
4599 		/* Check if the start of the sack is covered by RCV.NXT. */
4600 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4601 			int i;
4602 
4603 			/* RCV.NXT must cover all the block! */
4604 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4605 
4606 			/* Zap this SACK, by moving forward any other SACKS. */
4607 			for (i = this_sack+1; i < num_sacks; i++)
4608 				tp->selective_acks[i-1] = tp->selective_acks[i];
4609 			num_sacks--;
4610 			continue;
4611 		}
4612 		this_sack++;
4613 		sp++;
4614 	}
4615 	tp->rx_opt.num_sacks = num_sacks;
4616 }
4617 
4618 /**
4619  * tcp_try_coalesce - try to merge skb to prior one
4620  * @sk: socket
4621  * @to: prior buffer
4622  * @from: buffer to add in queue
4623  * @fragstolen: pointer to boolean
4624  *
4625  * Before queueing skb @from after @to, try to merge them
4626  * to reduce overall memory use and queue lengths, if cost is small.
4627  * Packets in ofo or receive queues can stay a long time.
4628  * Better try to coalesce them right now to avoid future collapses.
4629  * Returns true if caller should free @from instead of queueing it
4630  */
4631 static bool tcp_try_coalesce(struct sock *sk,
4632 			     struct sk_buff *to,
4633 			     struct sk_buff *from,
4634 			     bool *fragstolen)
4635 {
4636 	int delta;
4637 
4638 	*fragstolen = false;
4639 
4640 	/* Its possible this segment overlaps with prior segment in queue */
4641 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4642 		return false;
4643 
4644 	if (!mptcp_skb_can_collapse(to, from))
4645 		return false;
4646 
4647 #ifdef CONFIG_TLS_DEVICE
4648 	if (from->decrypted != to->decrypted)
4649 		return false;
4650 #endif
4651 
4652 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4653 		return false;
4654 
4655 	atomic_add(delta, &sk->sk_rmem_alloc);
4656 	sk_mem_charge(sk, delta);
4657 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4658 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4659 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4660 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4661 
4662 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4663 		TCP_SKB_CB(to)->has_rxtstamp = true;
4664 		to->tstamp = from->tstamp;
4665 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4666 	}
4667 
4668 	return true;
4669 }
4670 
4671 static bool tcp_ooo_try_coalesce(struct sock *sk,
4672 			     struct sk_buff *to,
4673 			     struct sk_buff *from,
4674 			     bool *fragstolen)
4675 {
4676 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4677 
4678 	/* In case tcp_drop() is called later, update to->gso_segs */
4679 	if (res) {
4680 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4681 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4682 
4683 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4684 	}
4685 	return res;
4686 }
4687 
4688 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb,
4689 			    enum skb_drop_reason reason)
4690 {
4691 	sk_drops_add(sk, skb);
4692 	kfree_skb_reason(skb, reason);
4693 }
4694 
4695 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4696 {
4697 	tcp_drop_reason(sk, skb, SKB_DROP_REASON_NOT_SPECIFIED);
4698 }
4699 
4700 /* This one checks to see if we can put data from the
4701  * out_of_order queue into the receive_queue.
4702  */
4703 static void tcp_ofo_queue(struct sock *sk)
4704 {
4705 	struct tcp_sock *tp = tcp_sk(sk);
4706 	__u32 dsack_high = tp->rcv_nxt;
4707 	bool fin, fragstolen, eaten;
4708 	struct sk_buff *skb, *tail;
4709 	struct rb_node *p;
4710 
4711 	p = rb_first(&tp->out_of_order_queue);
4712 	while (p) {
4713 		skb = rb_to_skb(p);
4714 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4715 			break;
4716 
4717 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4718 			__u32 dsack = dsack_high;
4719 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4720 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4721 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4722 		}
4723 		p = rb_next(p);
4724 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4725 
4726 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4727 			tcp_drop(sk, skb);
4728 			continue;
4729 		}
4730 
4731 		tail = skb_peek_tail(&sk->sk_receive_queue);
4732 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4733 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4734 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4735 		if (!eaten)
4736 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4737 		else
4738 			kfree_skb_partial(skb, fragstolen);
4739 
4740 		if (unlikely(fin)) {
4741 			tcp_fin(sk);
4742 			/* tcp_fin() purges tp->out_of_order_queue,
4743 			 * so we must end this loop right now.
4744 			 */
4745 			break;
4746 		}
4747 	}
4748 }
4749 
4750 static bool tcp_prune_ofo_queue(struct sock *sk);
4751 static int tcp_prune_queue(struct sock *sk);
4752 
4753 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4754 				 unsigned int size)
4755 {
4756 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4757 	    !sk_rmem_schedule(sk, skb, size)) {
4758 
4759 		if (tcp_prune_queue(sk) < 0)
4760 			return -1;
4761 
4762 		while (!sk_rmem_schedule(sk, skb, size)) {
4763 			if (!tcp_prune_ofo_queue(sk))
4764 				return -1;
4765 		}
4766 	}
4767 	return 0;
4768 }
4769 
4770 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4771 {
4772 	struct tcp_sock *tp = tcp_sk(sk);
4773 	struct rb_node **p, *parent;
4774 	struct sk_buff *skb1;
4775 	u32 seq, end_seq;
4776 	bool fragstolen;
4777 
4778 	tcp_ecn_check_ce(sk, skb);
4779 
4780 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4781 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4782 		sk->sk_data_ready(sk);
4783 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
4784 		return;
4785 	}
4786 
4787 	/* Disable header prediction. */
4788 	tp->pred_flags = 0;
4789 	inet_csk_schedule_ack(sk);
4790 
4791 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4792 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4793 	seq = TCP_SKB_CB(skb)->seq;
4794 	end_seq = TCP_SKB_CB(skb)->end_seq;
4795 
4796 	p = &tp->out_of_order_queue.rb_node;
4797 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4798 		/* Initial out of order segment, build 1 SACK. */
4799 		if (tcp_is_sack(tp)) {
4800 			tp->rx_opt.num_sacks = 1;
4801 			tp->selective_acks[0].start_seq = seq;
4802 			tp->selective_acks[0].end_seq = end_seq;
4803 		}
4804 		rb_link_node(&skb->rbnode, NULL, p);
4805 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4806 		tp->ooo_last_skb = skb;
4807 		goto end;
4808 	}
4809 
4810 	/* In the typical case, we are adding an skb to the end of the list.
4811 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4812 	 */
4813 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4814 				 skb, &fragstolen)) {
4815 coalesce_done:
4816 		/* For non sack flows, do not grow window to force DUPACK
4817 		 * and trigger fast retransmit.
4818 		 */
4819 		if (tcp_is_sack(tp))
4820 			tcp_grow_window(sk, skb, true);
4821 		kfree_skb_partial(skb, fragstolen);
4822 		skb = NULL;
4823 		goto add_sack;
4824 	}
4825 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4826 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4827 		parent = &tp->ooo_last_skb->rbnode;
4828 		p = &parent->rb_right;
4829 		goto insert;
4830 	}
4831 
4832 	/* Find place to insert this segment. Handle overlaps on the way. */
4833 	parent = NULL;
4834 	while (*p) {
4835 		parent = *p;
4836 		skb1 = rb_to_skb(parent);
4837 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4838 			p = &parent->rb_left;
4839 			continue;
4840 		}
4841 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4842 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4843 				/* All the bits are present. Drop. */
4844 				NET_INC_STATS(sock_net(sk),
4845 					      LINUX_MIB_TCPOFOMERGE);
4846 				tcp_drop_reason(sk, skb,
4847 						SKB_DROP_REASON_TCP_OFOMERGE);
4848 				skb = NULL;
4849 				tcp_dsack_set(sk, seq, end_seq);
4850 				goto add_sack;
4851 			}
4852 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4853 				/* Partial overlap. */
4854 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4855 			} else {
4856 				/* skb's seq == skb1's seq and skb covers skb1.
4857 				 * Replace skb1 with skb.
4858 				 */
4859 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4860 						&tp->out_of_order_queue);
4861 				tcp_dsack_extend(sk,
4862 						 TCP_SKB_CB(skb1)->seq,
4863 						 TCP_SKB_CB(skb1)->end_seq);
4864 				NET_INC_STATS(sock_net(sk),
4865 					      LINUX_MIB_TCPOFOMERGE);
4866 				tcp_drop_reason(sk, skb1,
4867 						SKB_DROP_REASON_TCP_OFOMERGE);
4868 				goto merge_right;
4869 			}
4870 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4871 						skb, &fragstolen)) {
4872 			goto coalesce_done;
4873 		}
4874 		p = &parent->rb_right;
4875 	}
4876 insert:
4877 	/* Insert segment into RB tree. */
4878 	rb_link_node(&skb->rbnode, parent, p);
4879 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4880 
4881 merge_right:
4882 	/* Remove other segments covered by skb. */
4883 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4884 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4885 			break;
4886 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4887 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4888 					 end_seq);
4889 			break;
4890 		}
4891 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4892 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4893 				 TCP_SKB_CB(skb1)->end_seq);
4894 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4895 		tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
4896 	}
4897 	/* If there is no skb after us, we are the last_skb ! */
4898 	if (!skb1)
4899 		tp->ooo_last_skb = skb;
4900 
4901 add_sack:
4902 	if (tcp_is_sack(tp))
4903 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4904 end:
4905 	if (skb) {
4906 		/* For non sack flows, do not grow window to force DUPACK
4907 		 * and trigger fast retransmit.
4908 		 */
4909 		if (tcp_is_sack(tp))
4910 			tcp_grow_window(sk, skb, false);
4911 		skb_condense(skb);
4912 		skb_set_owner_r(skb, sk);
4913 	}
4914 }
4915 
4916 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4917 				      bool *fragstolen)
4918 {
4919 	int eaten;
4920 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4921 
4922 	eaten = (tail &&
4923 		 tcp_try_coalesce(sk, tail,
4924 				  skb, fragstolen)) ? 1 : 0;
4925 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4926 	if (!eaten) {
4927 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4928 		skb_set_owner_r(skb, sk);
4929 	}
4930 	return eaten;
4931 }
4932 
4933 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4934 {
4935 	struct sk_buff *skb;
4936 	int err = -ENOMEM;
4937 	int data_len = 0;
4938 	bool fragstolen;
4939 
4940 	if (size == 0)
4941 		return 0;
4942 
4943 	if (size > PAGE_SIZE) {
4944 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4945 
4946 		data_len = npages << PAGE_SHIFT;
4947 		size = data_len + (size & ~PAGE_MASK);
4948 	}
4949 	skb = alloc_skb_with_frags(size - data_len, data_len,
4950 				   PAGE_ALLOC_COSTLY_ORDER,
4951 				   &err, sk->sk_allocation);
4952 	if (!skb)
4953 		goto err;
4954 
4955 	skb_put(skb, size - data_len);
4956 	skb->data_len = data_len;
4957 	skb->len = size;
4958 
4959 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4960 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4961 		goto err_free;
4962 	}
4963 
4964 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4965 	if (err)
4966 		goto err_free;
4967 
4968 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4969 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4970 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4971 
4972 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4973 		WARN_ON_ONCE(fragstolen); /* should not happen */
4974 		__kfree_skb(skb);
4975 	}
4976 	return size;
4977 
4978 err_free:
4979 	kfree_skb(skb);
4980 err:
4981 	return err;
4982 
4983 }
4984 
4985 void tcp_data_ready(struct sock *sk)
4986 {
4987 	if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
4988 		sk->sk_data_ready(sk);
4989 }
4990 
4991 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4992 {
4993 	struct tcp_sock *tp = tcp_sk(sk);
4994 	enum skb_drop_reason reason;
4995 	bool fragstolen;
4996 	int eaten;
4997 
4998 	/* If a subflow has been reset, the packet should not continue
4999 	 * to be processed, drop the packet.
5000 	 */
5001 	if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5002 		__kfree_skb(skb);
5003 		return;
5004 	}
5005 
5006 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5007 		__kfree_skb(skb);
5008 		return;
5009 	}
5010 	skb_dst_drop(skb);
5011 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
5012 
5013 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
5014 	tp->rx_opt.dsack = 0;
5015 
5016 	/*  Queue data for delivery to the user.
5017 	 *  Packets in sequence go to the receive queue.
5018 	 *  Out of sequence packets to the out_of_order_queue.
5019 	 */
5020 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5021 		if (tcp_receive_window(tp) == 0) {
5022 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5023 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5024 			goto out_of_window;
5025 		}
5026 
5027 		/* Ok. In sequence. In window. */
5028 queue_and_out:
5029 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
5030 			sk_forced_mem_schedule(sk, skb->truesize);
5031 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5032 			reason = SKB_DROP_REASON_PROTO_MEM;
5033 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5034 			sk->sk_data_ready(sk);
5035 			goto drop;
5036 		}
5037 
5038 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5039 		if (skb->len)
5040 			tcp_event_data_recv(sk, skb);
5041 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5042 			tcp_fin(sk);
5043 
5044 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5045 			tcp_ofo_queue(sk);
5046 
5047 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
5048 			 * gap in queue is filled.
5049 			 */
5050 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5051 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5052 		}
5053 
5054 		if (tp->rx_opt.num_sacks)
5055 			tcp_sack_remove(tp);
5056 
5057 		tcp_fast_path_check(sk);
5058 
5059 		if (eaten > 0)
5060 			kfree_skb_partial(skb, fragstolen);
5061 		if (!sock_flag(sk, SOCK_DEAD))
5062 			tcp_data_ready(sk);
5063 		return;
5064 	}
5065 
5066 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5067 		tcp_rcv_spurious_retrans(sk, skb);
5068 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5069 		reason = SKB_DROP_REASON_TCP_OLD_DATA;
5070 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5071 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5072 
5073 out_of_window:
5074 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5075 		inet_csk_schedule_ack(sk);
5076 drop:
5077 		tcp_drop_reason(sk, skb, reason);
5078 		return;
5079 	}
5080 
5081 	/* Out of window. F.e. zero window probe. */
5082 	if (!before(TCP_SKB_CB(skb)->seq,
5083 		    tp->rcv_nxt + tcp_receive_window(tp))) {
5084 		reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5085 		goto out_of_window;
5086 	}
5087 
5088 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5089 		/* Partial packet, seq < rcv_next < end_seq */
5090 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5091 
5092 		/* If window is closed, drop tail of packet. But after
5093 		 * remembering D-SACK for its head made in previous line.
5094 		 */
5095 		if (!tcp_receive_window(tp)) {
5096 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5097 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5098 			goto out_of_window;
5099 		}
5100 		goto queue_and_out;
5101 	}
5102 
5103 	tcp_data_queue_ofo(sk, skb);
5104 }
5105 
5106 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5107 {
5108 	if (list)
5109 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5110 
5111 	return skb_rb_next(skb);
5112 }
5113 
5114 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5115 					struct sk_buff_head *list,
5116 					struct rb_root *root)
5117 {
5118 	struct sk_buff *next = tcp_skb_next(skb, list);
5119 
5120 	if (list)
5121 		__skb_unlink(skb, list);
5122 	else
5123 		rb_erase(&skb->rbnode, root);
5124 
5125 	__kfree_skb(skb);
5126 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5127 
5128 	return next;
5129 }
5130 
5131 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
5132 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5133 {
5134 	struct rb_node **p = &root->rb_node;
5135 	struct rb_node *parent = NULL;
5136 	struct sk_buff *skb1;
5137 
5138 	while (*p) {
5139 		parent = *p;
5140 		skb1 = rb_to_skb(parent);
5141 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5142 			p = &parent->rb_left;
5143 		else
5144 			p = &parent->rb_right;
5145 	}
5146 	rb_link_node(&skb->rbnode, parent, p);
5147 	rb_insert_color(&skb->rbnode, root);
5148 }
5149 
5150 /* Collapse contiguous sequence of skbs head..tail with
5151  * sequence numbers start..end.
5152  *
5153  * If tail is NULL, this means until the end of the queue.
5154  *
5155  * Segments with FIN/SYN are not collapsed (only because this
5156  * simplifies code)
5157  */
5158 static void
5159 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5160 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5161 {
5162 	struct sk_buff *skb = head, *n;
5163 	struct sk_buff_head tmp;
5164 	bool end_of_skbs;
5165 
5166 	/* First, check that queue is collapsible and find
5167 	 * the point where collapsing can be useful.
5168 	 */
5169 restart:
5170 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5171 		n = tcp_skb_next(skb, list);
5172 
5173 		/* No new bits? It is possible on ofo queue. */
5174 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5175 			skb = tcp_collapse_one(sk, skb, list, root);
5176 			if (!skb)
5177 				break;
5178 			goto restart;
5179 		}
5180 
5181 		/* The first skb to collapse is:
5182 		 * - not SYN/FIN and
5183 		 * - bloated or contains data before "start" or
5184 		 *   overlaps to the next one and mptcp allow collapsing.
5185 		 */
5186 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5187 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5188 		     before(TCP_SKB_CB(skb)->seq, start))) {
5189 			end_of_skbs = false;
5190 			break;
5191 		}
5192 
5193 		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5194 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5195 			end_of_skbs = false;
5196 			break;
5197 		}
5198 
5199 		/* Decided to skip this, advance start seq. */
5200 		start = TCP_SKB_CB(skb)->end_seq;
5201 	}
5202 	if (end_of_skbs ||
5203 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5204 		return;
5205 
5206 	__skb_queue_head_init(&tmp);
5207 
5208 	while (before(start, end)) {
5209 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5210 		struct sk_buff *nskb;
5211 
5212 		nskb = alloc_skb(copy, GFP_ATOMIC);
5213 		if (!nskb)
5214 			break;
5215 
5216 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5217 #ifdef CONFIG_TLS_DEVICE
5218 		nskb->decrypted = skb->decrypted;
5219 #endif
5220 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5221 		if (list)
5222 			__skb_queue_before(list, skb, nskb);
5223 		else
5224 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5225 		skb_set_owner_r(nskb, sk);
5226 		mptcp_skb_ext_move(nskb, skb);
5227 
5228 		/* Copy data, releasing collapsed skbs. */
5229 		while (copy > 0) {
5230 			int offset = start - TCP_SKB_CB(skb)->seq;
5231 			int size = TCP_SKB_CB(skb)->end_seq - start;
5232 
5233 			BUG_ON(offset < 0);
5234 			if (size > 0) {
5235 				size = min(copy, size);
5236 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5237 					BUG();
5238 				TCP_SKB_CB(nskb)->end_seq += size;
5239 				copy -= size;
5240 				start += size;
5241 			}
5242 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5243 				skb = tcp_collapse_one(sk, skb, list, root);
5244 				if (!skb ||
5245 				    skb == tail ||
5246 				    !mptcp_skb_can_collapse(nskb, skb) ||
5247 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5248 					goto end;
5249 #ifdef CONFIG_TLS_DEVICE
5250 				if (skb->decrypted != nskb->decrypted)
5251 					goto end;
5252 #endif
5253 			}
5254 		}
5255 	}
5256 end:
5257 	skb_queue_walk_safe(&tmp, skb, n)
5258 		tcp_rbtree_insert(root, skb);
5259 }
5260 
5261 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5262  * and tcp_collapse() them until all the queue is collapsed.
5263  */
5264 static void tcp_collapse_ofo_queue(struct sock *sk)
5265 {
5266 	struct tcp_sock *tp = tcp_sk(sk);
5267 	u32 range_truesize, sum_tiny = 0;
5268 	struct sk_buff *skb, *head;
5269 	u32 start, end;
5270 
5271 	skb = skb_rb_first(&tp->out_of_order_queue);
5272 new_range:
5273 	if (!skb) {
5274 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5275 		return;
5276 	}
5277 	start = TCP_SKB_CB(skb)->seq;
5278 	end = TCP_SKB_CB(skb)->end_seq;
5279 	range_truesize = skb->truesize;
5280 
5281 	for (head = skb;;) {
5282 		skb = skb_rb_next(skb);
5283 
5284 		/* Range is terminated when we see a gap or when
5285 		 * we are at the queue end.
5286 		 */
5287 		if (!skb ||
5288 		    after(TCP_SKB_CB(skb)->seq, end) ||
5289 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5290 			/* Do not attempt collapsing tiny skbs */
5291 			if (range_truesize != head->truesize ||
5292 			    end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5293 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5294 					     head, skb, start, end);
5295 			} else {
5296 				sum_tiny += range_truesize;
5297 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5298 					return;
5299 			}
5300 			goto new_range;
5301 		}
5302 
5303 		range_truesize += skb->truesize;
5304 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5305 			start = TCP_SKB_CB(skb)->seq;
5306 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5307 			end = TCP_SKB_CB(skb)->end_seq;
5308 	}
5309 }
5310 
5311 /*
5312  * Clean the out-of-order queue to make room.
5313  * We drop high sequences packets to :
5314  * 1) Let a chance for holes to be filled.
5315  * 2) not add too big latencies if thousands of packets sit there.
5316  *    (But if application shrinks SO_RCVBUF, we could still end up
5317  *     freeing whole queue here)
5318  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5319  *
5320  * Return true if queue has shrunk.
5321  */
5322 static bool tcp_prune_ofo_queue(struct sock *sk)
5323 {
5324 	struct tcp_sock *tp = tcp_sk(sk);
5325 	struct rb_node *node, *prev;
5326 	int goal;
5327 
5328 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5329 		return false;
5330 
5331 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5332 	goal = sk->sk_rcvbuf >> 3;
5333 	node = &tp->ooo_last_skb->rbnode;
5334 	do {
5335 		prev = rb_prev(node);
5336 		rb_erase(node, &tp->out_of_order_queue);
5337 		goal -= rb_to_skb(node)->truesize;
5338 		tcp_drop(sk, rb_to_skb(node));
5339 		if (!prev || goal <= 0) {
5340 			sk_mem_reclaim(sk);
5341 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5342 			    !tcp_under_memory_pressure(sk))
5343 				break;
5344 			goal = sk->sk_rcvbuf >> 3;
5345 		}
5346 		node = prev;
5347 	} while (node);
5348 	tp->ooo_last_skb = rb_to_skb(prev);
5349 
5350 	/* Reset SACK state.  A conforming SACK implementation will
5351 	 * do the same at a timeout based retransmit.  When a connection
5352 	 * is in a sad state like this, we care only about integrity
5353 	 * of the connection not performance.
5354 	 */
5355 	if (tp->rx_opt.sack_ok)
5356 		tcp_sack_reset(&tp->rx_opt);
5357 	return true;
5358 }
5359 
5360 /* Reduce allocated memory if we can, trying to get
5361  * the socket within its memory limits again.
5362  *
5363  * Return less than zero if we should start dropping frames
5364  * until the socket owning process reads some of the data
5365  * to stabilize the situation.
5366  */
5367 static int tcp_prune_queue(struct sock *sk)
5368 {
5369 	struct tcp_sock *tp = tcp_sk(sk);
5370 
5371 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5372 
5373 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5374 		tcp_clamp_window(sk);
5375 	else if (tcp_under_memory_pressure(sk))
5376 		tcp_adjust_rcv_ssthresh(sk);
5377 
5378 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5379 		return 0;
5380 
5381 	tcp_collapse_ofo_queue(sk);
5382 	if (!skb_queue_empty(&sk->sk_receive_queue))
5383 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5384 			     skb_peek(&sk->sk_receive_queue),
5385 			     NULL,
5386 			     tp->copied_seq, tp->rcv_nxt);
5387 	sk_mem_reclaim(sk);
5388 
5389 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5390 		return 0;
5391 
5392 	/* Collapsing did not help, destructive actions follow.
5393 	 * This must not ever occur. */
5394 
5395 	tcp_prune_ofo_queue(sk);
5396 
5397 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5398 		return 0;
5399 
5400 	/* If we are really being abused, tell the caller to silently
5401 	 * drop receive data on the floor.  It will get retransmitted
5402 	 * and hopefully then we'll have sufficient space.
5403 	 */
5404 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5405 
5406 	/* Massive buffer overcommit. */
5407 	tp->pred_flags = 0;
5408 	return -1;
5409 }
5410 
5411 static bool tcp_should_expand_sndbuf(struct sock *sk)
5412 {
5413 	const struct tcp_sock *tp = tcp_sk(sk);
5414 
5415 	/* If the user specified a specific send buffer setting, do
5416 	 * not modify it.
5417 	 */
5418 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5419 		return false;
5420 
5421 	/* If we are under global TCP memory pressure, do not expand.  */
5422 	if (tcp_under_memory_pressure(sk)) {
5423 		int unused_mem = sk_unused_reserved_mem(sk);
5424 
5425 		/* Adjust sndbuf according to reserved mem. But make sure
5426 		 * it never goes below SOCK_MIN_SNDBUF.
5427 		 * See sk_stream_moderate_sndbuf() for more details.
5428 		 */
5429 		if (unused_mem > SOCK_MIN_SNDBUF)
5430 			WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5431 
5432 		return false;
5433 	}
5434 
5435 	/* If we are under soft global TCP memory pressure, do not expand.  */
5436 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5437 		return false;
5438 
5439 	/* If we filled the congestion window, do not expand.  */
5440 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5441 		return false;
5442 
5443 	return true;
5444 }
5445 
5446 static void tcp_new_space(struct sock *sk)
5447 {
5448 	struct tcp_sock *tp = tcp_sk(sk);
5449 
5450 	if (tcp_should_expand_sndbuf(sk)) {
5451 		tcp_sndbuf_expand(sk);
5452 		tp->snd_cwnd_stamp = tcp_jiffies32;
5453 	}
5454 
5455 	INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5456 }
5457 
5458 /* Caller made space either from:
5459  * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5460  * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5461  *
5462  * We might be able to generate EPOLLOUT to the application if:
5463  * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5464  * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5465  *    small enough that tcp_stream_memory_free() decides it
5466  *    is time to generate EPOLLOUT.
5467  */
5468 void tcp_check_space(struct sock *sk)
5469 {
5470 	/* pairs with tcp_poll() */
5471 	smp_mb();
5472 	if (sk->sk_socket &&
5473 	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5474 		tcp_new_space(sk);
5475 		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5476 			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5477 	}
5478 }
5479 
5480 static inline void tcp_data_snd_check(struct sock *sk)
5481 {
5482 	tcp_push_pending_frames(sk);
5483 	tcp_check_space(sk);
5484 }
5485 
5486 /*
5487  * Check if sending an ack is needed.
5488  */
5489 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5490 {
5491 	struct tcp_sock *tp = tcp_sk(sk);
5492 	unsigned long rtt, delay;
5493 
5494 	    /* More than one full frame received... */
5495 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5496 	     /* ... and right edge of window advances far enough.
5497 	      * (tcp_recvmsg() will send ACK otherwise).
5498 	      * If application uses SO_RCVLOWAT, we want send ack now if
5499 	      * we have not received enough bytes to satisfy the condition.
5500 	      */
5501 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5502 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5503 	    /* We ACK each frame or... */
5504 	    tcp_in_quickack_mode(sk) ||
5505 	    /* Protocol state mandates a one-time immediate ACK */
5506 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5507 send_now:
5508 		tcp_send_ack(sk);
5509 		return;
5510 	}
5511 
5512 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5513 		tcp_send_delayed_ack(sk);
5514 		return;
5515 	}
5516 
5517 	if (!tcp_is_sack(tp) ||
5518 	    tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5519 		goto send_now;
5520 
5521 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5522 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5523 		tp->dup_ack_counter = 0;
5524 	}
5525 	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5526 		tp->dup_ack_counter++;
5527 		goto send_now;
5528 	}
5529 	tp->compressed_ack++;
5530 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5531 		return;
5532 
5533 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5534 
5535 	rtt = tp->rcv_rtt_est.rtt_us;
5536 	if (tp->srtt_us && tp->srtt_us < rtt)
5537 		rtt = tp->srtt_us;
5538 
5539 	delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5540 		      rtt * (NSEC_PER_USEC >> 3)/20);
5541 	sock_hold(sk);
5542 	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5543 			       sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns,
5544 			       HRTIMER_MODE_REL_PINNED_SOFT);
5545 }
5546 
5547 static inline void tcp_ack_snd_check(struct sock *sk)
5548 {
5549 	if (!inet_csk_ack_scheduled(sk)) {
5550 		/* We sent a data segment already. */
5551 		return;
5552 	}
5553 	__tcp_ack_snd_check(sk, 1);
5554 }
5555 
5556 /*
5557  *	This routine is only called when we have urgent data
5558  *	signaled. Its the 'slow' part of tcp_urg. It could be
5559  *	moved inline now as tcp_urg is only called from one
5560  *	place. We handle URGent data wrong. We have to - as
5561  *	BSD still doesn't use the correction from RFC961.
5562  *	For 1003.1g we should support a new option TCP_STDURG to permit
5563  *	either form (or just set the sysctl tcp_stdurg).
5564  */
5565 
5566 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5567 {
5568 	struct tcp_sock *tp = tcp_sk(sk);
5569 	u32 ptr = ntohs(th->urg_ptr);
5570 
5571 	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5572 		ptr--;
5573 	ptr += ntohl(th->seq);
5574 
5575 	/* Ignore urgent data that we've already seen and read. */
5576 	if (after(tp->copied_seq, ptr))
5577 		return;
5578 
5579 	/* Do not replay urg ptr.
5580 	 *
5581 	 * NOTE: interesting situation not covered by specs.
5582 	 * Misbehaving sender may send urg ptr, pointing to segment,
5583 	 * which we already have in ofo queue. We are not able to fetch
5584 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5585 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5586 	 * situations. But it is worth to think about possibility of some
5587 	 * DoSes using some hypothetical application level deadlock.
5588 	 */
5589 	if (before(ptr, tp->rcv_nxt))
5590 		return;
5591 
5592 	/* Do we already have a newer (or duplicate) urgent pointer? */
5593 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5594 		return;
5595 
5596 	/* Tell the world about our new urgent pointer. */
5597 	sk_send_sigurg(sk);
5598 
5599 	/* We may be adding urgent data when the last byte read was
5600 	 * urgent. To do this requires some care. We cannot just ignore
5601 	 * tp->copied_seq since we would read the last urgent byte again
5602 	 * as data, nor can we alter copied_seq until this data arrives
5603 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5604 	 *
5605 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5606 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5607 	 * and expect that both A and B disappear from stream. This is _wrong_.
5608 	 * Though this happens in BSD with high probability, this is occasional.
5609 	 * Any application relying on this is buggy. Note also, that fix "works"
5610 	 * only in this artificial test. Insert some normal data between A and B and we will
5611 	 * decline of BSD again. Verdict: it is better to remove to trap
5612 	 * buggy users.
5613 	 */
5614 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5615 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5616 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5617 		tp->copied_seq++;
5618 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5619 			__skb_unlink(skb, &sk->sk_receive_queue);
5620 			__kfree_skb(skb);
5621 		}
5622 	}
5623 
5624 	WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5625 	WRITE_ONCE(tp->urg_seq, ptr);
5626 
5627 	/* Disable header prediction. */
5628 	tp->pred_flags = 0;
5629 }
5630 
5631 /* This is the 'fast' part of urgent handling. */
5632 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5633 {
5634 	struct tcp_sock *tp = tcp_sk(sk);
5635 
5636 	/* Check if we get a new urgent pointer - normally not. */
5637 	if (unlikely(th->urg))
5638 		tcp_check_urg(sk, th);
5639 
5640 	/* Do we wait for any urgent data? - normally not... */
5641 	if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5642 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5643 			  th->syn;
5644 
5645 		/* Is the urgent pointer pointing into this packet? */
5646 		if (ptr < skb->len) {
5647 			u8 tmp;
5648 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5649 				BUG();
5650 			WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5651 			if (!sock_flag(sk, SOCK_DEAD))
5652 				sk->sk_data_ready(sk);
5653 		}
5654 	}
5655 }
5656 
5657 /* Accept RST for rcv_nxt - 1 after a FIN.
5658  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5659  * FIN is sent followed by a RST packet. The RST is sent with the same
5660  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5661  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5662  * ACKs on the closed socket. In addition middleboxes can drop either the
5663  * challenge ACK or a subsequent RST.
5664  */
5665 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5666 {
5667 	struct tcp_sock *tp = tcp_sk(sk);
5668 
5669 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5670 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5671 					       TCPF_CLOSING));
5672 }
5673 
5674 /* Does PAWS and seqno based validation of an incoming segment, flags will
5675  * play significant role here.
5676  */
5677 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5678 				  const struct tcphdr *th, int syn_inerr)
5679 {
5680 	struct tcp_sock *tp = tcp_sk(sk);
5681 	bool rst_seq_match = false;
5682 
5683 	/* RFC1323: H1. Apply PAWS check first. */
5684 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5685 	    tp->rx_opt.saw_tstamp &&
5686 	    tcp_paws_discard(sk, skb)) {
5687 		if (!th->rst) {
5688 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5689 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5690 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5691 						  &tp->last_oow_ack_time))
5692 				tcp_send_dupack(sk, skb);
5693 			goto discard;
5694 		}
5695 		/* Reset is accepted even if it did not pass PAWS. */
5696 	}
5697 
5698 	/* Step 1: check sequence number */
5699 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5700 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5701 		 * (RST) segments are validated by checking their SEQ-fields."
5702 		 * And page 69: "If an incoming segment is not acceptable,
5703 		 * an acknowledgment should be sent in reply (unless the RST
5704 		 * bit is set, if so drop the segment and return)".
5705 		 */
5706 		if (!th->rst) {
5707 			if (th->syn)
5708 				goto syn_challenge;
5709 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5710 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5711 						  &tp->last_oow_ack_time))
5712 				tcp_send_dupack(sk, skb);
5713 		} else if (tcp_reset_check(sk, skb)) {
5714 			tcp_reset(sk, skb);
5715 		}
5716 		goto discard;
5717 	}
5718 
5719 	/* Step 2: check RST bit */
5720 	if (th->rst) {
5721 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5722 		 * FIN and SACK too if available):
5723 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5724 		 * the right-most SACK block,
5725 		 * then
5726 		 *     RESET the connection
5727 		 * else
5728 		 *     Send a challenge ACK
5729 		 */
5730 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5731 		    tcp_reset_check(sk, skb)) {
5732 			rst_seq_match = true;
5733 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5734 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5735 			int max_sack = sp[0].end_seq;
5736 			int this_sack;
5737 
5738 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5739 			     ++this_sack) {
5740 				max_sack = after(sp[this_sack].end_seq,
5741 						 max_sack) ?
5742 					sp[this_sack].end_seq : max_sack;
5743 			}
5744 
5745 			if (TCP_SKB_CB(skb)->seq == max_sack)
5746 				rst_seq_match = true;
5747 		}
5748 
5749 		if (rst_seq_match)
5750 			tcp_reset(sk, skb);
5751 		else {
5752 			/* Disable TFO if RST is out-of-order
5753 			 * and no data has been received
5754 			 * for current active TFO socket
5755 			 */
5756 			if (tp->syn_fastopen && !tp->data_segs_in &&
5757 			    sk->sk_state == TCP_ESTABLISHED)
5758 				tcp_fastopen_active_disable(sk);
5759 			tcp_send_challenge_ack(sk);
5760 		}
5761 		goto discard;
5762 	}
5763 
5764 	/* step 3: check security and precedence [ignored] */
5765 
5766 	/* step 4: Check for a SYN
5767 	 * RFC 5961 4.2 : Send a challenge ack
5768 	 */
5769 	if (th->syn) {
5770 syn_challenge:
5771 		if (syn_inerr)
5772 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5773 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5774 		tcp_send_challenge_ack(sk);
5775 		goto discard;
5776 	}
5777 
5778 	bpf_skops_parse_hdr(sk, skb);
5779 
5780 	return true;
5781 
5782 discard:
5783 	tcp_drop(sk, skb);
5784 	return false;
5785 }
5786 
5787 /*
5788  *	TCP receive function for the ESTABLISHED state.
5789  *
5790  *	It is split into a fast path and a slow path. The fast path is
5791  * 	disabled when:
5792  *	- A zero window was announced from us - zero window probing
5793  *        is only handled properly in the slow path.
5794  *	- Out of order segments arrived.
5795  *	- Urgent data is expected.
5796  *	- There is no buffer space left
5797  *	- Unexpected TCP flags/window values/header lengths are received
5798  *	  (detected by checking the TCP header against pred_flags)
5799  *	- Data is sent in both directions. Fast path only supports pure senders
5800  *	  or pure receivers (this means either the sequence number or the ack
5801  *	  value must stay constant)
5802  *	- Unexpected TCP option.
5803  *
5804  *	When these conditions are not satisfied it drops into a standard
5805  *	receive procedure patterned after RFC793 to handle all cases.
5806  *	The first three cases are guaranteed by proper pred_flags setting,
5807  *	the rest is checked inline. Fast processing is turned on in
5808  *	tcp_data_queue when everything is OK.
5809  */
5810 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5811 {
5812 	enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
5813 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5814 	struct tcp_sock *tp = tcp_sk(sk);
5815 	unsigned int len = skb->len;
5816 
5817 	/* TCP congestion window tracking */
5818 	trace_tcp_probe(sk, skb);
5819 
5820 	tcp_mstamp_refresh(tp);
5821 	if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
5822 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5823 	/*
5824 	 *	Header prediction.
5825 	 *	The code loosely follows the one in the famous
5826 	 *	"30 instruction TCP receive" Van Jacobson mail.
5827 	 *
5828 	 *	Van's trick is to deposit buffers into socket queue
5829 	 *	on a device interrupt, to call tcp_recv function
5830 	 *	on the receive process context and checksum and copy
5831 	 *	the buffer to user space. smart...
5832 	 *
5833 	 *	Our current scheme is not silly either but we take the
5834 	 *	extra cost of the net_bh soft interrupt processing...
5835 	 *	We do checksum and copy also but from device to kernel.
5836 	 */
5837 
5838 	tp->rx_opt.saw_tstamp = 0;
5839 
5840 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5841 	 *	if header_prediction is to be made
5842 	 *	'S' will always be tp->tcp_header_len >> 2
5843 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5844 	 *  turn it off	(when there are holes in the receive
5845 	 *	 space for instance)
5846 	 *	PSH flag is ignored.
5847 	 */
5848 
5849 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5850 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5851 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5852 		int tcp_header_len = tp->tcp_header_len;
5853 
5854 		/* Timestamp header prediction: tcp_header_len
5855 		 * is automatically equal to th->doff*4 due to pred_flags
5856 		 * match.
5857 		 */
5858 
5859 		/* Check timestamp */
5860 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5861 			/* No? Slow path! */
5862 			if (!tcp_parse_aligned_timestamp(tp, th))
5863 				goto slow_path;
5864 
5865 			/* If PAWS failed, check it more carefully in slow path */
5866 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5867 				goto slow_path;
5868 
5869 			/* DO NOT update ts_recent here, if checksum fails
5870 			 * and timestamp was corrupted part, it will result
5871 			 * in a hung connection since we will drop all
5872 			 * future packets due to the PAWS test.
5873 			 */
5874 		}
5875 
5876 		if (len <= tcp_header_len) {
5877 			/* Bulk data transfer: sender */
5878 			if (len == tcp_header_len) {
5879 				/* Predicted packet is in window by definition.
5880 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5881 				 * Hence, check seq<=rcv_wup reduces to:
5882 				 */
5883 				if (tcp_header_len ==
5884 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5885 				    tp->rcv_nxt == tp->rcv_wup)
5886 					tcp_store_ts_recent(tp);
5887 
5888 				/* We know that such packets are checksummed
5889 				 * on entry.
5890 				 */
5891 				tcp_ack(sk, skb, 0);
5892 				__kfree_skb(skb);
5893 				tcp_data_snd_check(sk);
5894 				/* When receiving pure ack in fast path, update
5895 				 * last ts ecr directly instead of calling
5896 				 * tcp_rcv_rtt_measure_ts()
5897 				 */
5898 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5899 				return;
5900 			} else { /* Header too small */
5901 				reason = SKB_DROP_REASON_PKT_TOO_SMALL;
5902 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5903 				goto discard;
5904 			}
5905 		} else {
5906 			int eaten = 0;
5907 			bool fragstolen = false;
5908 
5909 			if (tcp_checksum_complete(skb))
5910 				goto csum_error;
5911 
5912 			if ((int)skb->truesize > sk->sk_forward_alloc)
5913 				goto step5;
5914 
5915 			/* Predicted packet is in window by definition.
5916 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5917 			 * Hence, check seq<=rcv_wup reduces to:
5918 			 */
5919 			if (tcp_header_len ==
5920 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5921 			    tp->rcv_nxt == tp->rcv_wup)
5922 				tcp_store_ts_recent(tp);
5923 
5924 			tcp_rcv_rtt_measure_ts(sk, skb);
5925 
5926 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5927 
5928 			/* Bulk data transfer: receiver */
5929 			__skb_pull(skb, tcp_header_len);
5930 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5931 
5932 			tcp_event_data_recv(sk, skb);
5933 
5934 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5935 				/* Well, only one small jumplet in fast path... */
5936 				tcp_ack(sk, skb, FLAG_DATA);
5937 				tcp_data_snd_check(sk);
5938 				if (!inet_csk_ack_scheduled(sk))
5939 					goto no_ack;
5940 			} else {
5941 				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5942 			}
5943 
5944 			__tcp_ack_snd_check(sk, 0);
5945 no_ack:
5946 			if (eaten)
5947 				kfree_skb_partial(skb, fragstolen);
5948 			tcp_data_ready(sk);
5949 			return;
5950 		}
5951 	}
5952 
5953 slow_path:
5954 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5955 		goto csum_error;
5956 
5957 	if (!th->ack && !th->rst && !th->syn) {
5958 		reason = SKB_DROP_REASON_TCP_FLAGS;
5959 		goto discard;
5960 	}
5961 
5962 	/*
5963 	 *	Standard slow path.
5964 	 */
5965 
5966 	if (!tcp_validate_incoming(sk, skb, th, 1))
5967 		return;
5968 
5969 step5:
5970 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5971 		goto discard;
5972 
5973 	tcp_rcv_rtt_measure_ts(sk, skb);
5974 
5975 	/* Process urgent data. */
5976 	tcp_urg(sk, skb, th);
5977 
5978 	/* step 7: process the segment text */
5979 	tcp_data_queue(sk, skb);
5980 
5981 	tcp_data_snd_check(sk);
5982 	tcp_ack_snd_check(sk);
5983 	return;
5984 
5985 csum_error:
5986 	reason = SKB_DROP_REASON_TCP_CSUM;
5987 	trace_tcp_bad_csum(skb);
5988 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5989 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5990 
5991 discard:
5992 	tcp_drop_reason(sk, skb, reason);
5993 }
5994 EXPORT_SYMBOL(tcp_rcv_established);
5995 
5996 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
5997 {
5998 	struct inet_connection_sock *icsk = inet_csk(sk);
5999 	struct tcp_sock *tp = tcp_sk(sk);
6000 
6001 	tcp_mtup_init(sk);
6002 	icsk->icsk_af_ops->rebuild_header(sk);
6003 	tcp_init_metrics(sk);
6004 
6005 	/* Initialize the congestion window to start the transfer.
6006 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6007 	 * retransmitted. In light of RFC6298 more aggressive 1sec
6008 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6009 	 * retransmission has occurred.
6010 	 */
6011 	if (tp->total_retrans > 1 && tp->undo_marker)
6012 		tp->snd_cwnd = 1;
6013 	else
6014 		tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
6015 	tp->snd_cwnd_stamp = tcp_jiffies32;
6016 
6017 	bpf_skops_established(sk, bpf_op, skb);
6018 	/* Initialize congestion control unless BPF initialized it already: */
6019 	if (!icsk->icsk_ca_initialized)
6020 		tcp_init_congestion_control(sk);
6021 	tcp_init_buffer_space(sk);
6022 }
6023 
6024 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6025 {
6026 	struct tcp_sock *tp = tcp_sk(sk);
6027 	struct inet_connection_sock *icsk = inet_csk(sk);
6028 
6029 	tcp_set_state(sk, TCP_ESTABLISHED);
6030 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6031 
6032 	if (skb) {
6033 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6034 		security_inet_conn_established(sk, skb);
6035 		sk_mark_napi_id(sk, skb);
6036 	}
6037 
6038 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6039 
6040 	/* Prevent spurious tcp_cwnd_restart() on first data
6041 	 * packet.
6042 	 */
6043 	tp->lsndtime = tcp_jiffies32;
6044 
6045 	if (sock_flag(sk, SOCK_KEEPOPEN))
6046 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6047 
6048 	if (!tp->rx_opt.snd_wscale)
6049 		__tcp_fast_path_on(tp, tp->snd_wnd);
6050 	else
6051 		tp->pred_flags = 0;
6052 }
6053 
6054 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6055 				    struct tcp_fastopen_cookie *cookie)
6056 {
6057 	struct tcp_sock *tp = tcp_sk(sk);
6058 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6059 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6060 	bool syn_drop = false;
6061 
6062 	if (mss == tp->rx_opt.user_mss) {
6063 		struct tcp_options_received opt;
6064 
6065 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
6066 		tcp_clear_options(&opt);
6067 		opt.user_mss = opt.mss_clamp = 0;
6068 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6069 		mss = opt.mss_clamp;
6070 	}
6071 
6072 	if (!tp->syn_fastopen) {
6073 		/* Ignore an unsolicited cookie */
6074 		cookie->len = -1;
6075 	} else if (tp->total_retrans) {
6076 		/* SYN timed out and the SYN-ACK neither has a cookie nor
6077 		 * acknowledges data. Presumably the remote received only
6078 		 * the retransmitted (regular) SYNs: either the original
6079 		 * SYN-data or the corresponding SYN-ACK was dropped.
6080 		 */
6081 		syn_drop = (cookie->len < 0 && data);
6082 	} else if (cookie->len < 0 && !tp->syn_data) {
6083 		/* We requested a cookie but didn't get it. If we did not use
6084 		 * the (old) exp opt format then try so next time (try_exp=1).
6085 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6086 		 */
6087 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6088 	}
6089 
6090 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6091 
6092 	if (data) { /* Retransmit unacked data in SYN */
6093 		if (tp->total_retrans)
6094 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6095 		else
6096 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6097 		skb_rbtree_walk_from(data)
6098 			 tcp_mark_skb_lost(sk, data);
6099 		tcp_xmit_retransmit_queue(sk);
6100 		NET_INC_STATS(sock_net(sk),
6101 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6102 		return true;
6103 	}
6104 	tp->syn_data_acked = tp->syn_data;
6105 	if (tp->syn_data_acked) {
6106 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6107 		/* SYN-data is counted as two separate packets in tcp_ack() */
6108 		if (tp->delivered > 1)
6109 			--tp->delivered;
6110 	}
6111 
6112 	tcp_fastopen_add_skb(sk, synack);
6113 
6114 	return false;
6115 }
6116 
6117 static void smc_check_reset_syn(struct tcp_sock *tp)
6118 {
6119 #if IS_ENABLED(CONFIG_SMC)
6120 	if (static_branch_unlikely(&tcp_have_smc)) {
6121 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6122 			tp->syn_smc = 0;
6123 	}
6124 #endif
6125 }
6126 
6127 static void tcp_try_undo_spurious_syn(struct sock *sk)
6128 {
6129 	struct tcp_sock *tp = tcp_sk(sk);
6130 	u32 syn_stamp;
6131 
6132 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6133 	 * spurious if the ACK's timestamp option echo value matches the
6134 	 * original SYN timestamp.
6135 	 */
6136 	syn_stamp = tp->retrans_stamp;
6137 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6138 	    syn_stamp == tp->rx_opt.rcv_tsecr)
6139 		tp->undo_marker = 0;
6140 }
6141 
6142 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6143 					 const struct tcphdr *th)
6144 {
6145 	struct inet_connection_sock *icsk = inet_csk(sk);
6146 	struct tcp_sock *tp = tcp_sk(sk);
6147 	struct tcp_fastopen_cookie foc = { .len = -1 };
6148 	int saved_clamp = tp->rx_opt.mss_clamp;
6149 	bool fastopen_fail;
6150 
6151 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6152 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6153 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6154 
6155 	if (th->ack) {
6156 		/* rfc793:
6157 		 * "If the state is SYN-SENT then
6158 		 *    first check the ACK bit
6159 		 *      If the ACK bit is set
6160 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6161 		 *        a reset (unless the RST bit is set, if so drop
6162 		 *        the segment and return)"
6163 		 */
6164 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6165 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6166 			/* Previous FIN/ACK or RST/ACK might be ignored. */
6167 			if (icsk->icsk_retransmits == 0)
6168 				inet_csk_reset_xmit_timer(sk,
6169 						ICSK_TIME_RETRANS,
6170 						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6171 			goto reset_and_undo;
6172 		}
6173 
6174 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6175 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6176 			     tcp_time_stamp(tp))) {
6177 			NET_INC_STATS(sock_net(sk),
6178 					LINUX_MIB_PAWSACTIVEREJECTED);
6179 			goto reset_and_undo;
6180 		}
6181 
6182 		/* Now ACK is acceptable.
6183 		 *
6184 		 * "If the RST bit is set
6185 		 *    If the ACK was acceptable then signal the user "error:
6186 		 *    connection reset", drop the segment, enter CLOSED state,
6187 		 *    delete TCB, and return."
6188 		 */
6189 
6190 		if (th->rst) {
6191 			tcp_reset(sk, skb);
6192 			goto discard;
6193 		}
6194 
6195 		/* rfc793:
6196 		 *   "fifth, if neither of the SYN or RST bits is set then
6197 		 *    drop the segment and return."
6198 		 *
6199 		 *    See note below!
6200 		 *                                        --ANK(990513)
6201 		 */
6202 		if (!th->syn)
6203 			goto discard_and_undo;
6204 
6205 		/* rfc793:
6206 		 *   "If the SYN bit is on ...
6207 		 *    are acceptable then ...
6208 		 *    (our SYN has been ACKed), change the connection
6209 		 *    state to ESTABLISHED..."
6210 		 */
6211 
6212 		tcp_ecn_rcv_synack(tp, th);
6213 
6214 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6215 		tcp_try_undo_spurious_syn(sk);
6216 		tcp_ack(sk, skb, FLAG_SLOWPATH);
6217 
6218 		/* Ok.. it's good. Set up sequence numbers and
6219 		 * move to established.
6220 		 */
6221 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6222 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6223 
6224 		/* RFC1323: The window in SYN & SYN/ACK segments is
6225 		 * never scaled.
6226 		 */
6227 		tp->snd_wnd = ntohs(th->window);
6228 
6229 		if (!tp->rx_opt.wscale_ok) {
6230 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6231 			tp->window_clamp = min(tp->window_clamp, 65535U);
6232 		}
6233 
6234 		if (tp->rx_opt.saw_tstamp) {
6235 			tp->rx_opt.tstamp_ok	   = 1;
6236 			tp->tcp_header_len =
6237 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6238 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6239 			tcp_store_ts_recent(tp);
6240 		} else {
6241 			tp->tcp_header_len = sizeof(struct tcphdr);
6242 		}
6243 
6244 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6245 		tcp_initialize_rcv_mss(sk);
6246 
6247 		/* Remember, tcp_poll() does not lock socket!
6248 		 * Change state from SYN-SENT only after copied_seq
6249 		 * is initialized. */
6250 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6251 
6252 		smc_check_reset_syn(tp);
6253 
6254 		smp_mb();
6255 
6256 		tcp_finish_connect(sk, skb);
6257 
6258 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6259 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6260 
6261 		if (!sock_flag(sk, SOCK_DEAD)) {
6262 			sk->sk_state_change(sk);
6263 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6264 		}
6265 		if (fastopen_fail)
6266 			return -1;
6267 		if (sk->sk_write_pending ||
6268 		    icsk->icsk_accept_queue.rskq_defer_accept ||
6269 		    inet_csk_in_pingpong_mode(sk)) {
6270 			/* Save one ACK. Data will be ready after
6271 			 * several ticks, if write_pending is set.
6272 			 *
6273 			 * It may be deleted, but with this feature tcpdumps
6274 			 * look so _wonderfully_ clever, that I was not able
6275 			 * to stand against the temptation 8)     --ANK
6276 			 */
6277 			inet_csk_schedule_ack(sk);
6278 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6279 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6280 						  TCP_DELACK_MAX, TCP_RTO_MAX);
6281 
6282 discard:
6283 			tcp_drop(sk, skb);
6284 			return 0;
6285 		} else {
6286 			tcp_send_ack(sk);
6287 		}
6288 		return -1;
6289 	}
6290 
6291 	/* No ACK in the segment */
6292 
6293 	if (th->rst) {
6294 		/* rfc793:
6295 		 * "If the RST bit is set
6296 		 *
6297 		 *      Otherwise (no ACK) drop the segment and return."
6298 		 */
6299 
6300 		goto discard_and_undo;
6301 	}
6302 
6303 	/* PAWS check. */
6304 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6305 	    tcp_paws_reject(&tp->rx_opt, 0))
6306 		goto discard_and_undo;
6307 
6308 	if (th->syn) {
6309 		/* We see SYN without ACK. It is attempt of
6310 		 * simultaneous connect with crossed SYNs.
6311 		 * Particularly, it can be connect to self.
6312 		 */
6313 		tcp_set_state(sk, TCP_SYN_RECV);
6314 
6315 		if (tp->rx_opt.saw_tstamp) {
6316 			tp->rx_opt.tstamp_ok = 1;
6317 			tcp_store_ts_recent(tp);
6318 			tp->tcp_header_len =
6319 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6320 		} else {
6321 			tp->tcp_header_len = sizeof(struct tcphdr);
6322 		}
6323 
6324 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6325 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6326 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6327 
6328 		/* RFC1323: The window in SYN & SYN/ACK segments is
6329 		 * never scaled.
6330 		 */
6331 		tp->snd_wnd    = ntohs(th->window);
6332 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6333 		tp->max_window = tp->snd_wnd;
6334 
6335 		tcp_ecn_rcv_syn(tp, th);
6336 
6337 		tcp_mtup_init(sk);
6338 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6339 		tcp_initialize_rcv_mss(sk);
6340 
6341 		tcp_send_synack(sk);
6342 #if 0
6343 		/* Note, we could accept data and URG from this segment.
6344 		 * There are no obstacles to make this (except that we must
6345 		 * either change tcp_recvmsg() to prevent it from returning data
6346 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6347 		 *
6348 		 * However, if we ignore data in ACKless segments sometimes,
6349 		 * we have no reasons to accept it sometimes.
6350 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6351 		 * is not flawless. So, discard packet for sanity.
6352 		 * Uncomment this return to process the data.
6353 		 */
6354 		return -1;
6355 #else
6356 		goto discard;
6357 #endif
6358 	}
6359 	/* "fifth, if neither of the SYN or RST bits is set then
6360 	 * drop the segment and return."
6361 	 */
6362 
6363 discard_and_undo:
6364 	tcp_clear_options(&tp->rx_opt);
6365 	tp->rx_opt.mss_clamp = saved_clamp;
6366 	goto discard;
6367 
6368 reset_and_undo:
6369 	tcp_clear_options(&tp->rx_opt);
6370 	tp->rx_opt.mss_clamp = saved_clamp;
6371 	return 1;
6372 }
6373 
6374 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6375 {
6376 	struct request_sock *req;
6377 
6378 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6379 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6380 	 */
6381 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
6382 		tcp_try_undo_loss(sk, false);
6383 
6384 	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6385 	tcp_sk(sk)->retrans_stamp = 0;
6386 	inet_csk(sk)->icsk_retransmits = 0;
6387 
6388 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6389 	 * we no longer need req so release it.
6390 	 */
6391 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6392 					lockdep_sock_is_held(sk));
6393 	reqsk_fastopen_remove(sk, req, false);
6394 
6395 	/* Re-arm the timer because data may have been sent out.
6396 	 * This is similar to the regular data transmission case
6397 	 * when new data has just been ack'ed.
6398 	 *
6399 	 * (TFO) - we could try to be more aggressive and
6400 	 * retransmitting any data sooner based on when they
6401 	 * are sent out.
6402 	 */
6403 	tcp_rearm_rto(sk);
6404 }
6405 
6406 /*
6407  *	This function implements the receiving procedure of RFC 793 for
6408  *	all states except ESTABLISHED and TIME_WAIT.
6409  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6410  *	address independent.
6411  */
6412 
6413 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6414 {
6415 	struct tcp_sock *tp = tcp_sk(sk);
6416 	struct inet_connection_sock *icsk = inet_csk(sk);
6417 	const struct tcphdr *th = tcp_hdr(skb);
6418 	struct request_sock *req;
6419 	int queued = 0;
6420 	bool acceptable;
6421 
6422 	switch (sk->sk_state) {
6423 	case TCP_CLOSE:
6424 		goto discard;
6425 
6426 	case TCP_LISTEN:
6427 		if (th->ack)
6428 			return 1;
6429 
6430 		if (th->rst)
6431 			goto discard;
6432 
6433 		if (th->syn) {
6434 			if (th->fin)
6435 				goto discard;
6436 			/* It is possible that we process SYN packets from backlog,
6437 			 * so we need to make sure to disable BH and RCU right there.
6438 			 */
6439 			rcu_read_lock();
6440 			local_bh_disable();
6441 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6442 			local_bh_enable();
6443 			rcu_read_unlock();
6444 
6445 			if (!acceptable)
6446 				return 1;
6447 			consume_skb(skb);
6448 			return 0;
6449 		}
6450 		goto discard;
6451 
6452 	case TCP_SYN_SENT:
6453 		tp->rx_opt.saw_tstamp = 0;
6454 		tcp_mstamp_refresh(tp);
6455 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6456 		if (queued >= 0)
6457 			return queued;
6458 
6459 		/* Do step6 onward by hand. */
6460 		tcp_urg(sk, skb, th);
6461 		__kfree_skb(skb);
6462 		tcp_data_snd_check(sk);
6463 		return 0;
6464 	}
6465 
6466 	tcp_mstamp_refresh(tp);
6467 	tp->rx_opt.saw_tstamp = 0;
6468 	req = rcu_dereference_protected(tp->fastopen_rsk,
6469 					lockdep_sock_is_held(sk));
6470 	if (req) {
6471 		bool req_stolen;
6472 
6473 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6474 		    sk->sk_state != TCP_FIN_WAIT1);
6475 
6476 		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6477 			goto discard;
6478 	}
6479 
6480 	if (!th->ack && !th->rst && !th->syn)
6481 		goto discard;
6482 
6483 	if (!tcp_validate_incoming(sk, skb, th, 0))
6484 		return 0;
6485 
6486 	/* step 5: check the ACK field */
6487 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6488 				      FLAG_UPDATE_TS_RECENT |
6489 				      FLAG_NO_CHALLENGE_ACK) > 0;
6490 
6491 	if (!acceptable) {
6492 		if (sk->sk_state == TCP_SYN_RECV)
6493 			return 1;	/* send one RST */
6494 		tcp_send_challenge_ack(sk);
6495 		goto discard;
6496 	}
6497 	switch (sk->sk_state) {
6498 	case TCP_SYN_RECV:
6499 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6500 		if (!tp->srtt_us)
6501 			tcp_synack_rtt_meas(sk, req);
6502 
6503 		if (req) {
6504 			tcp_rcv_synrecv_state_fastopen(sk);
6505 		} else {
6506 			tcp_try_undo_spurious_syn(sk);
6507 			tp->retrans_stamp = 0;
6508 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6509 					  skb);
6510 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6511 		}
6512 		smp_mb();
6513 		tcp_set_state(sk, TCP_ESTABLISHED);
6514 		sk->sk_state_change(sk);
6515 
6516 		/* Note, that this wakeup is only for marginal crossed SYN case.
6517 		 * Passively open sockets are not waked up, because
6518 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6519 		 */
6520 		if (sk->sk_socket)
6521 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6522 
6523 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6524 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6525 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6526 
6527 		if (tp->rx_opt.tstamp_ok)
6528 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6529 
6530 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6531 			tcp_update_pacing_rate(sk);
6532 
6533 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6534 		tp->lsndtime = tcp_jiffies32;
6535 
6536 		tcp_initialize_rcv_mss(sk);
6537 		tcp_fast_path_on(tp);
6538 		break;
6539 
6540 	case TCP_FIN_WAIT1: {
6541 		int tmo;
6542 
6543 		if (req)
6544 			tcp_rcv_synrecv_state_fastopen(sk);
6545 
6546 		if (tp->snd_una != tp->write_seq)
6547 			break;
6548 
6549 		tcp_set_state(sk, TCP_FIN_WAIT2);
6550 		sk->sk_shutdown |= SEND_SHUTDOWN;
6551 
6552 		sk_dst_confirm(sk);
6553 
6554 		if (!sock_flag(sk, SOCK_DEAD)) {
6555 			/* Wake up lingering close() */
6556 			sk->sk_state_change(sk);
6557 			break;
6558 		}
6559 
6560 		if (tp->linger2 < 0) {
6561 			tcp_done(sk);
6562 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6563 			return 1;
6564 		}
6565 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6566 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6567 			/* Receive out of order FIN after close() */
6568 			if (tp->syn_fastopen && th->fin)
6569 				tcp_fastopen_active_disable(sk);
6570 			tcp_done(sk);
6571 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6572 			return 1;
6573 		}
6574 
6575 		tmo = tcp_fin_time(sk);
6576 		if (tmo > TCP_TIMEWAIT_LEN) {
6577 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6578 		} else if (th->fin || sock_owned_by_user(sk)) {
6579 			/* Bad case. We could lose such FIN otherwise.
6580 			 * It is not a big problem, but it looks confusing
6581 			 * and not so rare event. We still can lose it now,
6582 			 * if it spins in bh_lock_sock(), but it is really
6583 			 * marginal case.
6584 			 */
6585 			inet_csk_reset_keepalive_timer(sk, tmo);
6586 		} else {
6587 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6588 			goto discard;
6589 		}
6590 		break;
6591 	}
6592 
6593 	case TCP_CLOSING:
6594 		if (tp->snd_una == tp->write_seq) {
6595 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6596 			goto discard;
6597 		}
6598 		break;
6599 
6600 	case TCP_LAST_ACK:
6601 		if (tp->snd_una == tp->write_seq) {
6602 			tcp_update_metrics(sk);
6603 			tcp_done(sk);
6604 			goto discard;
6605 		}
6606 		break;
6607 	}
6608 
6609 	/* step 6: check the URG bit */
6610 	tcp_urg(sk, skb, th);
6611 
6612 	/* step 7: process the segment text */
6613 	switch (sk->sk_state) {
6614 	case TCP_CLOSE_WAIT:
6615 	case TCP_CLOSING:
6616 	case TCP_LAST_ACK:
6617 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6618 			/* If a subflow has been reset, the packet should not
6619 			 * continue to be processed, drop the packet.
6620 			 */
6621 			if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6622 				goto discard;
6623 			break;
6624 		}
6625 		fallthrough;
6626 	case TCP_FIN_WAIT1:
6627 	case TCP_FIN_WAIT2:
6628 		/* RFC 793 says to queue data in these states,
6629 		 * RFC 1122 says we MUST send a reset.
6630 		 * BSD 4.4 also does reset.
6631 		 */
6632 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6633 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6634 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6635 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6636 				tcp_reset(sk, skb);
6637 				return 1;
6638 			}
6639 		}
6640 		fallthrough;
6641 	case TCP_ESTABLISHED:
6642 		tcp_data_queue(sk, skb);
6643 		queued = 1;
6644 		break;
6645 	}
6646 
6647 	/* tcp_data could move socket to TIME-WAIT */
6648 	if (sk->sk_state != TCP_CLOSE) {
6649 		tcp_data_snd_check(sk);
6650 		tcp_ack_snd_check(sk);
6651 	}
6652 
6653 	if (!queued) {
6654 discard:
6655 		tcp_drop(sk, skb);
6656 	}
6657 	return 0;
6658 }
6659 EXPORT_SYMBOL(tcp_rcv_state_process);
6660 
6661 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6662 {
6663 	struct inet_request_sock *ireq = inet_rsk(req);
6664 
6665 	if (family == AF_INET)
6666 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6667 				    &ireq->ir_rmt_addr, port);
6668 #if IS_ENABLED(CONFIG_IPV6)
6669 	else if (family == AF_INET6)
6670 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6671 				    &ireq->ir_v6_rmt_addr, port);
6672 #endif
6673 }
6674 
6675 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6676  *
6677  * If we receive a SYN packet with these bits set, it means a
6678  * network is playing bad games with TOS bits. In order to
6679  * avoid possible false congestion notifications, we disable
6680  * TCP ECN negotiation.
6681  *
6682  * Exception: tcp_ca wants ECN. This is required for DCTCP
6683  * congestion control: Linux DCTCP asserts ECT on all packets,
6684  * including SYN, which is most optimal solution; however,
6685  * others, such as FreeBSD do not.
6686  *
6687  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6688  * set, indicating the use of a future TCP extension (such as AccECN). See
6689  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6690  * extensions.
6691  */
6692 static void tcp_ecn_create_request(struct request_sock *req,
6693 				   const struct sk_buff *skb,
6694 				   const struct sock *listen_sk,
6695 				   const struct dst_entry *dst)
6696 {
6697 	const struct tcphdr *th = tcp_hdr(skb);
6698 	const struct net *net = sock_net(listen_sk);
6699 	bool th_ecn = th->ece && th->cwr;
6700 	bool ect, ecn_ok;
6701 	u32 ecn_ok_dst;
6702 
6703 	if (!th_ecn)
6704 		return;
6705 
6706 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6707 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6708 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6709 
6710 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6711 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6712 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6713 		inet_rsk(req)->ecn_ok = 1;
6714 }
6715 
6716 static void tcp_openreq_init(struct request_sock *req,
6717 			     const struct tcp_options_received *rx_opt,
6718 			     struct sk_buff *skb, const struct sock *sk)
6719 {
6720 	struct inet_request_sock *ireq = inet_rsk(req);
6721 
6722 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6723 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6724 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6725 	tcp_rsk(req)->snt_synack = 0;
6726 	tcp_rsk(req)->last_oow_ack_time = 0;
6727 	req->mss = rx_opt->mss_clamp;
6728 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6729 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6730 	ireq->sack_ok = rx_opt->sack_ok;
6731 	ireq->snd_wscale = rx_opt->snd_wscale;
6732 	ireq->wscale_ok = rx_opt->wscale_ok;
6733 	ireq->acked = 0;
6734 	ireq->ecn_ok = 0;
6735 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6736 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6737 	ireq->ir_mark = inet_request_mark(sk, skb);
6738 #if IS_ENABLED(CONFIG_SMC)
6739 	ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
6740 			tcp_sk(sk)->smc_hs_congested(sk));
6741 #endif
6742 }
6743 
6744 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6745 				      struct sock *sk_listener,
6746 				      bool attach_listener)
6747 {
6748 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6749 					       attach_listener);
6750 
6751 	if (req) {
6752 		struct inet_request_sock *ireq = inet_rsk(req);
6753 
6754 		ireq->ireq_opt = NULL;
6755 #if IS_ENABLED(CONFIG_IPV6)
6756 		ireq->pktopts = NULL;
6757 #endif
6758 		atomic64_set(&ireq->ir_cookie, 0);
6759 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6760 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6761 		ireq->ireq_family = sk_listener->sk_family;
6762 		req->timeout = TCP_TIMEOUT_INIT;
6763 	}
6764 
6765 	return req;
6766 }
6767 EXPORT_SYMBOL(inet_reqsk_alloc);
6768 
6769 /*
6770  * Return true if a syncookie should be sent
6771  */
6772 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6773 {
6774 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6775 	const char *msg = "Dropping request";
6776 	bool want_cookie = false;
6777 	struct net *net = sock_net(sk);
6778 
6779 #ifdef CONFIG_SYN_COOKIES
6780 	if (net->ipv4.sysctl_tcp_syncookies) {
6781 		msg = "Sending cookies";
6782 		want_cookie = true;
6783 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6784 	} else
6785 #endif
6786 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6787 
6788 	if (!queue->synflood_warned &&
6789 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6790 	    xchg(&queue->synflood_warned, 1) == 0)
6791 		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6792 				     proto, sk->sk_num, msg);
6793 
6794 	return want_cookie;
6795 }
6796 
6797 static void tcp_reqsk_record_syn(const struct sock *sk,
6798 				 struct request_sock *req,
6799 				 const struct sk_buff *skb)
6800 {
6801 	if (tcp_sk(sk)->save_syn) {
6802 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6803 		struct saved_syn *saved_syn;
6804 		u32 mac_hdrlen;
6805 		void *base;
6806 
6807 		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
6808 			base = skb_mac_header(skb);
6809 			mac_hdrlen = skb_mac_header_len(skb);
6810 			len += mac_hdrlen;
6811 		} else {
6812 			base = skb_network_header(skb);
6813 			mac_hdrlen = 0;
6814 		}
6815 
6816 		saved_syn = kmalloc(struct_size(saved_syn, data, len),
6817 				    GFP_ATOMIC);
6818 		if (saved_syn) {
6819 			saved_syn->mac_hdrlen = mac_hdrlen;
6820 			saved_syn->network_hdrlen = skb_network_header_len(skb);
6821 			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
6822 			memcpy(saved_syn->data, base, len);
6823 			req->saved_syn = saved_syn;
6824 		}
6825 	}
6826 }
6827 
6828 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6829  * used for SYN cookie generation.
6830  */
6831 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6832 			  const struct tcp_request_sock_ops *af_ops,
6833 			  struct sock *sk, struct tcphdr *th)
6834 {
6835 	struct tcp_sock *tp = tcp_sk(sk);
6836 	u16 mss;
6837 
6838 	if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 &&
6839 	    !inet_csk_reqsk_queue_is_full(sk))
6840 		return 0;
6841 
6842 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6843 		return 0;
6844 
6845 	if (sk_acceptq_is_full(sk)) {
6846 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6847 		return 0;
6848 	}
6849 
6850 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6851 	if (!mss)
6852 		mss = af_ops->mss_clamp;
6853 
6854 	return mss;
6855 }
6856 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6857 
6858 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6859 		     const struct tcp_request_sock_ops *af_ops,
6860 		     struct sock *sk, struct sk_buff *skb)
6861 {
6862 	struct tcp_fastopen_cookie foc = { .len = -1 };
6863 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6864 	struct tcp_options_received tmp_opt;
6865 	struct tcp_sock *tp = tcp_sk(sk);
6866 	struct net *net = sock_net(sk);
6867 	struct sock *fastopen_sk = NULL;
6868 	struct request_sock *req;
6869 	bool want_cookie = false;
6870 	struct dst_entry *dst;
6871 	struct flowi fl;
6872 
6873 	/* TW buckets are converted to open requests without
6874 	 * limitations, they conserve resources and peer is
6875 	 * evidently real one.
6876 	 */
6877 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6878 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6879 		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6880 		if (!want_cookie)
6881 			goto drop;
6882 	}
6883 
6884 	if (sk_acceptq_is_full(sk)) {
6885 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6886 		goto drop;
6887 	}
6888 
6889 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6890 	if (!req)
6891 		goto drop;
6892 
6893 	req->syncookie = want_cookie;
6894 	tcp_rsk(req)->af_specific = af_ops;
6895 	tcp_rsk(req)->ts_off = 0;
6896 #if IS_ENABLED(CONFIG_MPTCP)
6897 	tcp_rsk(req)->is_mptcp = 0;
6898 #endif
6899 
6900 	tcp_clear_options(&tmp_opt);
6901 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6902 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6903 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6904 			  want_cookie ? NULL : &foc);
6905 
6906 	if (want_cookie && !tmp_opt.saw_tstamp)
6907 		tcp_clear_options(&tmp_opt);
6908 
6909 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6910 		tmp_opt.smc_ok = 0;
6911 
6912 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6913 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6914 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6915 
6916 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6917 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6918 
6919 	dst = af_ops->route_req(sk, skb, &fl, req);
6920 	if (!dst)
6921 		goto drop_and_free;
6922 
6923 	if (tmp_opt.tstamp_ok)
6924 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6925 
6926 	if (!want_cookie && !isn) {
6927 		/* Kill the following clause, if you dislike this way. */
6928 		if (!net->ipv4.sysctl_tcp_syncookies &&
6929 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6930 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6931 		    !tcp_peer_is_proven(req, dst)) {
6932 			/* Without syncookies last quarter of
6933 			 * backlog is filled with destinations,
6934 			 * proven to be alive.
6935 			 * It means that we continue to communicate
6936 			 * to destinations, already remembered
6937 			 * to the moment of synflood.
6938 			 */
6939 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6940 				    rsk_ops->family);
6941 			goto drop_and_release;
6942 		}
6943 
6944 		isn = af_ops->init_seq(skb);
6945 	}
6946 
6947 	tcp_ecn_create_request(req, skb, sk, dst);
6948 
6949 	if (want_cookie) {
6950 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6951 		if (!tmp_opt.tstamp_ok)
6952 			inet_rsk(req)->ecn_ok = 0;
6953 	}
6954 
6955 	tcp_rsk(req)->snt_isn = isn;
6956 	tcp_rsk(req)->txhash = net_tx_rndhash();
6957 	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
6958 	tcp_openreq_init_rwin(req, sk, dst);
6959 	sk_rx_queue_set(req_to_sk(req), skb);
6960 	if (!want_cookie) {
6961 		tcp_reqsk_record_syn(sk, req, skb);
6962 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6963 	}
6964 	if (fastopen_sk) {
6965 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6966 				    &foc, TCP_SYNACK_FASTOPEN, skb);
6967 		/* Add the child socket directly into the accept queue */
6968 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6969 			reqsk_fastopen_remove(fastopen_sk, req, false);
6970 			bh_unlock_sock(fastopen_sk);
6971 			sock_put(fastopen_sk);
6972 			goto drop_and_free;
6973 		}
6974 		sk->sk_data_ready(sk);
6975 		bh_unlock_sock(fastopen_sk);
6976 		sock_put(fastopen_sk);
6977 	} else {
6978 		tcp_rsk(req)->tfo_listener = false;
6979 		if (!want_cookie) {
6980 			req->timeout = tcp_timeout_init((struct sock *)req);
6981 			inet_csk_reqsk_queue_hash_add(sk, req, req->timeout);
6982 		}
6983 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6984 				    !want_cookie ? TCP_SYNACK_NORMAL :
6985 						   TCP_SYNACK_COOKIE,
6986 				    skb);
6987 		if (want_cookie) {
6988 			reqsk_free(req);
6989 			return 0;
6990 		}
6991 	}
6992 	reqsk_put(req);
6993 	return 0;
6994 
6995 drop_and_release:
6996 	dst_release(dst);
6997 drop_and_free:
6998 	__reqsk_free(req);
6999 drop:
7000 	tcp_listendrop(sk);
7001 	return 0;
7002 }
7003 EXPORT_SYMBOL(tcp_conn_request);
7004