1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #define pr_fmt(fmt) "TCP: " fmt 65 66 #include <linux/mm.h> 67 #include <linux/slab.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <linux/kernel.h> 71 #include <net/dst.h> 72 #include <net/tcp.h> 73 #include <net/inet_common.h> 74 #include <linux/ipsec.h> 75 #include <asm/unaligned.h> 76 #include <net/netdma.h> 77 78 int sysctl_tcp_timestamps __read_mostly = 1; 79 int sysctl_tcp_window_scaling __read_mostly = 1; 80 int sysctl_tcp_sack __read_mostly = 1; 81 int sysctl_tcp_fack __read_mostly = 1; 82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; 83 EXPORT_SYMBOL(sysctl_tcp_reordering); 84 int sysctl_tcp_dsack __read_mostly = 1; 85 int sysctl_tcp_app_win __read_mostly = 31; 86 int sysctl_tcp_adv_win_scale __read_mostly = 1; 87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 88 89 /* rfc5961 challenge ack rate limiting */ 90 int sysctl_tcp_challenge_ack_limit = 100; 91 92 int sysctl_tcp_stdurg __read_mostly; 93 int sysctl_tcp_rfc1337 __read_mostly; 94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 95 int sysctl_tcp_frto __read_mostly = 2; 96 97 int sysctl_tcp_thin_dupack __read_mostly; 98 99 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 100 int sysctl_tcp_early_retrans __read_mostly = 3; 101 102 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 103 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 104 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 105 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 106 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 107 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 108 #define FLAG_ECE 0x40 /* ECE in this ACK */ 109 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 110 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 111 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 112 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 113 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 114 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 115 116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 120 121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 123 124 /* Adapt the MSS value used to make delayed ack decision to the 125 * real world. 126 */ 127 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 128 { 129 struct inet_connection_sock *icsk = inet_csk(sk); 130 const unsigned int lss = icsk->icsk_ack.last_seg_size; 131 unsigned int len; 132 133 icsk->icsk_ack.last_seg_size = 0; 134 135 /* skb->len may jitter because of SACKs, even if peer 136 * sends good full-sized frames. 137 */ 138 len = skb_shinfo(skb)->gso_size ? : skb->len; 139 if (len >= icsk->icsk_ack.rcv_mss) { 140 icsk->icsk_ack.rcv_mss = len; 141 } else { 142 /* Otherwise, we make more careful check taking into account, 143 * that SACKs block is variable. 144 * 145 * "len" is invariant segment length, including TCP header. 146 */ 147 len += skb->data - skb_transport_header(skb); 148 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 149 /* If PSH is not set, packet should be 150 * full sized, provided peer TCP is not badly broken. 151 * This observation (if it is correct 8)) allows 152 * to handle super-low mtu links fairly. 153 */ 154 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 155 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 156 /* Subtract also invariant (if peer is RFC compliant), 157 * tcp header plus fixed timestamp option length. 158 * Resulting "len" is MSS free of SACK jitter. 159 */ 160 len -= tcp_sk(sk)->tcp_header_len; 161 icsk->icsk_ack.last_seg_size = len; 162 if (len == lss) { 163 icsk->icsk_ack.rcv_mss = len; 164 return; 165 } 166 } 167 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 168 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 170 } 171 } 172 173 static void tcp_incr_quickack(struct sock *sk) 174 { 175 struct inet_connection_sock *icsk = inet_csk(sk); 176 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 177 178 if (quickacks == 0) 179 quickacks = 2; 180 if (quickacks > icsk->icsk_ack.quick) 181 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 182 } 183 184 static void tcp_enter_quickack_mode(struct sock *sk) 185 { 186 struct inet_connection_sock *icsk = inet_csk(sk); 187 tcp_incr_quickack(sk); 188 icsk->icsk_ack.pingpong = 0; 189 icsk->icsk_ack.ato = TCP_ATO_MIN; 190 } 191 192 /* Send ACKs quickly, if "quick" count is not exhausted 193 * and the session is not interactive. 194 */ 195 196 static inline bool tcp_in_quickack_mode(const struct sock *sk) 197 { 198 const struct inet_connection_sock *icsk = inet_csk(sk); 199 200 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 201 } 202 203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp) 204 { 205 if (tp->ecn_flags & TCP_ECN_OK) 206 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 207 } 208 209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 210 { 211 if (tcp_hdr(skb)->cwr) 212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 213 } 214 215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp) 216 { 217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 218 } 219 220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 221 { 222 if (!(tp->ecn_flags & TCP_ECN_OK)) 223 return; 224 225 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 226 case INET_ECN_NOT_ECT: 227 /* Funny extension: if ECT is not set on a segment, 228 * and we already seen ECT on a previous segment, 229 * it is probably a retransmit. 230 */ 231 if (tp->ecn_flags & TCP_ECN_SEEN) 232 tcp_enter_quickack_mode((struct sock *)tp); 233 break; 234 case INET_ECN_CE: 235 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 236 /* Better not delay acks, sender can have a very low cwnd */ 237 tcp_enter_quickack_mode((struct sock *)tp); 238 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 239 } 240 /* fallinto */ 241 default: 242 tp->ecn_flags |= TCP_ECN_SEEN; 243 } 244 } 245 246 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 247 { 248 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 249 tp->ecn_flags &= ~TCP_ECN_OK; 250 } 251 252 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 253 { 254 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 255 tp->ecn_flags &= ~TCP_ECN_OK; 256 } 257 258 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 259 { 260 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 261 return true; 262 return false; 263 } 264 265 /* Buffer size and advertised window tuning. 266 * 267 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 268 */ 269 270 static void tcp_sndbuf_expand(struct sock *sk) 271 { 272 const struct tcp_sock *tp = tcp_sk(sk); 273 int sndmem, per_mss; 274 u32 nr_segs; 275 276 /* Worst case is non GSO/TSO : each frame consumes one skb 277 * and skb->head is kmalloced using power of two area of memory 278 */ 279 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 280 MAX_TCP_HEADER + 281 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 282 283 per_mss = roundup_pow_of_two(per_mss) + 284 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 285 286 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 287 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 288 289 /* Fast Recovery (RFC 5681 3.2) : 290 * Cubic needs 1.7 factor, rounded to 2 to include 291 * extra cushion (application might react slowly to POLLOUT) 292 */ 293 sndmem = 2 * nr_segs * per_mss; 294 295 if (sk->sk_sndbuf < sndmem) 296 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 297 } 298 299 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 300 * 301 * All tcp_full_space() is split to two parts: "network" buffer, allocated 302 * forward and advertised in receiver window (tp->rcv_wnd) and 303 * "application buffer", required to isolate scheduling/application 304 * latencies from network. 305 * window_clamp is maximal advertised window. It can be less than 306 * tcp_full_space(), in this case tcp_full_space() - window_clamp 307 * is reserved for "application" buffer. The less window_clamp is 308 * the smoother our behaviour from viewpoint of network, but the lower 309 * throughput and the higher sensitivity of the connection to losses. 8) 310 * 311 * rcv_ssthresh is more strict window_clamp used at "slow start" 312 * phase to predict further behaviour of this connection. 313 * It is used for two goals: 314 * - to enforce header prediction at sender, even when application 315 * requires some significant "application buffer". It is check #1. 316 * - to prevent pruning of receive queue because of misprediction 317 * of receiver window. Check #2. 318 * 319 * The scheme does not work when sender sends good segments opening 320 * window and then starts to feed us spaghetti. But it should work 321 * in common situations. Otherwise, we have to rely on queue collapsing. 322 */ 323 324 /* Slow part of check#2. */ 325 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 326 { 327 struct tcp_sock *tp = tcp_sk(sk); 328 /* Optimize this! */ 329 int truesize = tcp_win_from_space(skb->truesize) >> 1; 330 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 331 332 while (tp->rcv_ssthresh <= window) { 333 if (truesize <= skb->len) 334 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 335 336 truesize >>= 1; 337 window >>= 1; 338 } 339 return 0; 340 } 341 342 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 343 { 344 struct tcp_sock *tp = tcp_sk(sk); 345 346 /* Check #1 */ 347 if (tp->rcv_ssthresh < tp->window_clamp && 348 (int)tp->rcv_ssthresh < tcp_space(sk) && 349 !sk_under_memory_pressure(sk)) { 350 int incr; 351 352 /* Check #2. Increase window, if skb with such overhead 353 * will fit to rcvbuf in future. 354 */ 355 if (tcp_win_from_space(skb->truesize) <= skb->len) 356 incr = 2 * tp->advmss; 357 else 358 incr = __tcp_grow_window(sk, skb); 359 360 if (incr) { 361 incr = max_t(int, incr, 2 * skb->len); 362 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 363 tp->window_clamp); 364 inet_csk(sk)->icsk_ack.quick |= 1; 365 } 366 } 367 } 368 369 /* 3. Tuning rcvbuf, when connection enters established state. */ 370 static void tcp_fixup_rcvbuf(struct sock *sk) 371 { 372 u32 mss = tcp_sk(sk)->advmss; 373 int rcvmem; 374 375 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 376 tcp_default_init_rwnd(mss); 377 378 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 379 * Allow enough cushion so that sender is not limited by our window 380 */ 381 if (sysctl_tcp_moderate_rcvbuf) 382 rcvmem <<= 2; 383 384 if (sk->sk_rcvbuf < rcvmem) 385 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); 386 } 387 388 /* 4. Try to fixup all. It is made immediately after connection enters 389 * established state. 390 */ 391 void tcp_init_buffer_space(struct sock *sk) 392 { 393 struct tcp_sock *tp = tcp_sk(sk); 394 int maxwin; 395 396 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 397 tcp_fixup_rcvbuf(sk); 398 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 399 tcp_sndbuf_expand(sk); 400 401 tp->rcvq_space.space = tp->rcv_wnd; 402 tp->rcvq_space.time = tcp_time_stamp; 403 tp->rcvq_space.seq = tp->copied_seq; 404 405 maxwin = tcp_full_space(sk); 406 407 if (tp->window_clamp >= maxwin) { 408 tp->window_clamp = maxwin; 409 410 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 411 tp->window_clamp = max(maxwin - 412 (maxwin >> sysctl_tcp_app_win), 413 4 * tp->advmss); 414 } 415 416 /* Force reservation of one segment. */ 417 if (sysctl_tcp_app_win && 418 tp->window_clamp > 2 * tp->advmss && 419 tp->window_clamp + tp->advmss > maxwin) 420 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 421 422 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 423 tp->snd_cwnd_stamp = tcp_time_stamp; 424 } 425 426 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 427 static void tcp_clamp_window(struct sock *sk) 428 { 429 struct tcp_sock *tp = tcp_sk(sk); 430 struct inet_connection_sock *icsk = inet_csk(sk); 431 432 icsk->icsk_ack.quick = 0; 433 434 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 435 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 436 !sk_under_memory_pressure(sk) && 437 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 438 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 439 sysctl_tcp_rmem[2]); 440 } 441 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 442 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 443 } 444 445 /* Initialize RCV_MSS value. 446 * RCV_MSS is an our guess about MSS used by the peer. 447 * We haven't any direct information about the MSS. 448 * It's better to underestimate the RCV_MSS rather than overestimate. 449 * Overestimations make us ACKing less frequently than needed. 450 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 451 */ 452 void tcp_initialize_rcv_mss(struct sock *sk) 453 { 454 const struct tcp_sock *tp = tcp_sk(sk); 455 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 456 457 hint = min(hint, tp->rcv_wnd / 2); 458 hint = min(hint, TCP_MSS_DEFAULT); 459 hint = max(hint, TCP_MIN_MSS); 460 461 inet_csk(sk)->icsk_ack.rcv_mss = hint; 462 } 463 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 464 465 /* Receiver "autotuning" code. 466 * 467 * The algorithm for RTT estimation w/o timestamps is based on 468 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 469 * <http://public.lanl.gov/radiant/pubs.html#DRS> 470 * 471 * More detail on this code can be found at 472 * <http://staff.psc.edu/jheffner/>, 473 * though this reference is out of date. A new paper 474 * is pending. 475 */ 476 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 477 { 478 u32 new_sample = tp->rcv_rtt_est.rtt; 479 long m = sample; 480 481 if (m == 0) 482 m = 1; 483 484 if (new_sample != 0) { 485 /* If we sample in larger samples in the non-timestamp 486 * case, we could grossly overestimate the RTT especially 487 * with chatty applications or bulk transfer apps which 488 * are stalled on filesystem I/O. 489 * 490 * Also, since we are only going for a minimum in the 491 * non-timestamp case, we do not smooth things out 492 * else with timestamps disabled convergence takes too 493 * long. 494 */ 495 if (!win_dep) { 496 m -= (new_sample >> 3); 497 new_sample += m; 498 } else { 499 m <<= 3; 500 if (m < new_sample) 501 new_sample = m; 502 } 503 } else { 504 /* No previous measure. */ 505 new_sample = m << 3; 506 } 507 508 if (tp->rcv_rtt_est.rtt != new_sample) 509 tp->rcv_rtt_est.rtt = new_sample; 510 } 511 512 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 513 { 514 if (tp->rcv_rtt_est.time == 0) 515 goto new_measure; 516 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 517 return; 518 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1); 519 520 new_measure: 521 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 522 tp->rcv_rtt_est.time = tcp_time_stamp; 523 } 524 525 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 526 const struct sk_buff *skb) 527 { 528 struct tcp_sock *tp = tcp_sk(sk); 529 if (tp->rx_opt.rcv_tsecr && 530 (TCP_SKB_CB(skb)->end_seq - 531 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 532 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 533 } 534 535 /* 536 * This function should be called every time data is copied to user space. 537 * It calculates the appropriate TCP receive buffer space. 538 */ 539 void tcp_rcv_space_adjust(struct sock *sk) 540 { 541 struct tcp_sock *tp = tcp_sk(sk); 542 int time; 543 int copied; 544 545 time = tcp_time_stamp - tp->rcvq_space.time; 546 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 547 return; 548 549 /* Number of bytes copied to user in last RTT */ 550 copied = tp->copied_seq - tp->rcvq_space.seq; 551 if (copied <= tp->rcvq_space.space) 552 goto new_measure; 553 554 /* A bit of theory : 555 * copied = bytes received in previous RTT, our base window 556 * To cope with packet losses, we need a 2x factor 557 * To cope with slow start, and sender growing its cwin by 100 % 558 * every RTT, we need a 4x factor, because the ACK we are sending 559 * now is for the next RTT, not the current one : 560 * <prev RTT . ><current RTT .. ><next RTT .... > 561 */ 562 563 if (sysctl_tcp_moderate_rcvbuf && 564 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 565 int rcvwin, rcvmem, rcvbuf; 566 567 /* minimal window to cope with packet losses, assuming 568 * steady state. Add some cushion because of small variations. 569 */ 570 rcvwin = (copied << 1) + 16 * tp->advmss; 571 572 /* If rate increased by 25%, 573 * assume slow start, rcvwin = 3 * copied 574 * If rate increased by 50%, 575 * assume sender can use 2x growth, rcvwin = 4 * copied 576 */ 577 if (copied >= 578 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) { 579 if (copied >= 580 tp->rcvq_space.space + (tp->rcvq_space.space >> 1)) 581 rcvwin <<= 1; 582 else 583 rcvwin += (rcvwin >> 1); 584 } 585 586 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 587 while (tcp_win_from_space(rcvmem) < tp->advmss) 588 rcvmem += 128; 589 590 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]); 591 if (rcvbuf > sk->sk_rcvbuf) { 592 sk->sk_rcvbuf = rcvbuf; 593 594 /* Make the window clamp follow along. */ 595 tp->window_clamp = rcvwin; 596 } 597 } 598 tp->rcvq_space.space = copied; 599 600 new_measure: 601 tp->rcvq_space.seq = tp->copied_seq; 602 tp->rcvq_space.time = tcp_time_stamp; 603 } 604 605 /* There is something which you must keep in mind when you analyze the 606 * behavior of the tp->ato delayed ack timeout interval. When a 607 * connection starts up, we want to ack as quickly as possible. The 608 * problem is that "good" TCP's do slow start at the beginning of data 609 * transmission. The means that until we send the first few ACK's the 610 * sender will sit on his end and only queue most of his data, because 611 * he can only send snd_cwnd unacked packets at any given time. For 612 * each ACK we send, he increments snd_cwnd and transmits more of his 613 * queue. -DaveM 614 */ 615 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 616 { 617 struct tcp_sock *tp = tcp_sk(sk); 618 struct inet_connection_sock *icsk = inet_csk(sk); 619 u32 now; 620 621 inet_csk_schedule_ack(sk); 622 623 tcp_measure_rcv_mss(sk, skb); 624 625 tcp_rcv_rtt_measure(tp); 626 627 now = tcp_time_stamp; 628 629 if (!icsk->icsk_ack.ato) { 630 /* The _first_ data packet received, initialize 631 * delayed ACK engine. 632 */ 633 tcp_incr_quickack(sk); 634 icsk->icsk_ack.ato = TCP_ATO_MIN; 635 } else { 636 int m = now - icsk->icsk_ack.lrcvtime; 637 638 if (m <= TCP_ATO_MIN / 2) { 639 /* The fastest case is the first. */ 640 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 641 } else if (m < icsk->icsk_ack.ato) { 642 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 643 if (icsk->icsk_ack.ato > icsk->icsk_rto) 644 icsk->icsk_ack.ato = icsk->icsk_rto; 645 } else if (m > icsk->icsk_rto) { 646 /* Too long gap. Apparently sender failed to 647 * restart window, so that we send ACKs quickly. 648 */ 649 tcp_incr_quickack(sk); 650 sk_mem_reclaim(sk); 651 } 652 } 653 icsk->icsk_ack.lrcvtime = now; 654 655 TCP_ECN_check_ce(tp, skb); 656 657 if (skb->len >= 128) 658 tcp_grow_window(sk, skb); 659 } 660 661 /* Called to compute a smoothed rtt estimate. The data fed to this 662 * routine either comes from timestamps, or from segments that were 663 * known _not_ to have been retransmitted [see Karn/Partridge 664 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 665 * piece by Van Jacobson. 666 * NOTE: the next three routines used to be one big routine. 667 * To save cycles in the RFC 1323 implementation it was better to break 668 * it up into three procedures. -- erics 669 */ 670 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt) 671 { 672 struct tcp_sock *tp = tcp_sk(sk); 673 long m = mrtt; /* RTT */ 674 u32 srtt = tp->srtt; 675 676 /* The following amusing code comes from Jacobson's 677 * article in SIGCOMM '88. Note that rtt and mdev 678 * are scaled versions of rtt and mean deviation. 679 * This is designed to be as fast as possible 680 * m stands for "measurement". 681 * 682 * On a 1990 paper the rto value is changed to: 683 * RTO = rtt + 4 * mdev 684 * 685 * Funny. This algorithm seems to be very broken. 686 * These formulae increase RTO, when it should be decreased, increase 687 * too slowly, when it should be increased quickly, decrease too quickly 688 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 689 * does not matter how to _calculate_ it. Seems, it was trap 690 * that VJ failed to avoid. 8) 691 */ 692 if (srtt != 0) { 693 m -= (srtt >> 3); /* m is now error in rtt est */ 694 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 695 if (m < 0) { 696 m = -m; /* m is now abs(error) */ 697 m -= (tp->mdev >> 2); /* similar update on mdev */ 698 /* This is similar to one of Eifel findings. 699 * Eifel blocks mdev updates when rtt decreases. 700 * This solution is a bit different: we use finer gain 701 * for mdev in this case (alpha*beta). 702 * Like Eifel it also prevents growth of rto, 703 * but also it limits too fast rto decreases, 704 * happening in pure Eifel. 705 */ 706 if (m > 0) 707 m >>= 3; 708 } else { 709 m -= (tp->mdev >> 2); /* similar update on mdev */ 710 } 711 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */ 712 if (tp->mdev > tp->mdev_max) { 713 tp->mdev_max = tp->mdev; 714 if (tp->mdev_max > tp->rttvar) 715 tp->rttvar = tp->mdev_max; 716 } 717 if (after(tp->snd_una, tp->rtt_seq)) { 718 if (tp->mdev_max < tp->rttvar) 719 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2; 720 tp->rtt_seq = tp->snd_nxt; 721 tp->mdev_max = tcp_rto_min(sk); 722 } 723 } else { 724 /* no previous measure. */ 725 srtt = m << 3; /* take the measured time to be rtt */ 726 tp->mdev = m << 1; /* make sure rto = 3*rtt */ 727 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 728 tp->rtt_seq = tp->snd_nxt; 729 } 730 tp->srtt = max(1U, srtt); 731 } 732 733 /* Set the sk_pacing_rate to allow proper sizing of TSO packets. 734 * Note: TCP stack does not yet implement pacing. 735 * FQ packet scheduler can be used to implement cheap but effective 736 * TCP pacing, to smooth the burst on large writes when packets 737 * in flight is significantly lower than cwnd (or rwin) 738 */ 739 static void tcp_update_pacing_rate(struct sock *sk) 740 { 741 const struct tcp_sock *tp = tcp_sk(sk); 742 u64 rate; 743 744 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 745 rate = (u64)tp->mss_cache * 2 * (HZ << 3); 746 747 rate *= max(tp->snd_cwnd, tp->packets_out); 748 749 /* Correction for small srtt and scheduling constraints. 750 * For small rtt, consider noise is too high, and use 751 * the minimal value (srtt = 1 -> 125 us for HZ=1000) 752 * 753 * We probably need usec resolution in the future. 754 * Note: This also takes care of possible srtt=0 case, 755 * when tcp_rtt_estimator() was not yet called. 756 */ 757 if (tp->srtt > 8 + 2) 758 do_div(rate, tp->srtt); 759 760 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate 761 * without any lock. We want to make sure compiler wont store 762 * intermediate values in this location. 763 */ 764 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate, 765 sk->sk_max_pacing_rate); 766 } 767 768 /* Calculate rto without backoff. This is the second half of Van Jacobson's 769 * routine referred to above. 770 */ 771 static void tcp_set_rto(struct sock *sk) 772 { 773 const struct tcp_sock *tp = tcp_sk(sk); 774 /* Old crap is replaced with new one. 8) 775 * 776 * More seriously: 777 * 1. If rtt variance happened to be less 50msec, it is hallucination. 778 * It cannot be less due to utterly erratic ACK generation made 779 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 780 * to do with delayed acks, because at cwnd>2 true delack timeout 781 * is invisible. Actually, Linux-2.4 also generates erratic 782 * ACKs in some circumstances. 783 */ 784 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 785 786 /* 2. Fixups made earlier cannot be right. 787 * If we do not estimate RTO correctly without them, 788 * all the algo is pure shit and should be replaced 789 * with correct one. It is exactly, which we pretend to do. 790 */ 791 792 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 793 * guarantees that rto is higher. 794 */ 795 tcp_bound_rto(sk); 796 } 797 798 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 799 { 800 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 801 802 if (!cwnd) 803 cwnd = TCP_INIT_CWND; 804 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 805 } 806 807 /* 808 * Packet counting of FACK is based on in-order assumptions, therefore TCP 809 * disables it when reordering is detected 810 */ 811 void tcp_disable_fack(struct tcp_sock *tp) 812 { 813 /* RFC3517 uses different metric in lost marker => reset on change */ 814 if (tcp_is_fack(tp)) 815 tp->lost_skb_hint = NULL; 816 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; 817 } 818 819 /* Take a notice that peer is sending D-SACKs */ 820 static void tcp_dsack_seen(struct tcp_sock *tp) 821 { 822 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 823 } 824 825 static void tcp_update_reordering(struct sock *sk, const int metric, 826 const int ts) 827 { 828 struct tcp_sock *tp = tcp_sk(sk); 829 if (metric > tp->reordering) { 830 int mib_idx; 831 832 tp->reordering = min(TCP_MAX_REORDERING, metric); 833 834 /* This exciting event is worth to be remembered. 8) */ 835 if (ts) 836 mib_idx = LINUX_MIB_TCPTSREORDER; 837 else if (tcp_is_reno(tp)) 838 mib_idx = LINUX_MIB_TCPRENOREORDER; 839 else if (tcp_is_fack(tp)) 840 mib_idx = LINUX_MIB_TCPFACKREORDER; 841 else 842 mib_idx = LINUX_MIB_TCPSACKREORDER; 843 844 NET_INC_STATS_BH(sock_net(sk), mib_idx); 845 #if FASTRETRANS_DEBUG > 1 846 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 847 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 848 tp->reordering, 849 tp->fackets_out, 850 tp->sacked_out, 851 tp->undo_marker ? tp->undo_retrans : 0); 852 #endif 853 tcp_disable_fack(tp); 854 } 855 856 if (metric > 0) 857 tcp_disable_early_retrans(tp); 858 } 859 860 /* This must be called before lost_out is incremented */ 861 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 862 { 863 if ((tp->retransmit_skb_hint == NULL) || 864 before(TCP_SKB_CB(skb)->seq, 865 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 866 tp->retransmit_skb_hint = skb; 867 868 if (!tp->lost_out || 869 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high)) 870 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 871 } 872 873 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 874 { 875 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 876 tcp_verify_retransmit_hint(tp, skb); 877 878 tp->lost_out += tcp_skb_pcount(skb); 879 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 880 } 881 } 882 883 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, 884 struct sk_buff *skb) 885 { 886 tcp_verify_retransmit_hint(tp, skb); 887 888 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 889 tp->lost_out += tcp_skb_pcount(skb); 890 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 891 } 892 } 893 894 /* This procedure tags the retransmission queue when SACKs arrive. 895 * 896 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 897 * Packets in queue with these bits set are counted in variables 898 * sacked_out, retrans_out and lost_out, correspondingly. 899 * 900 * Valid combinations are: 901 * Tag InFlight Description 902 * 0 1 - orig segment is in flight. 903 * S 0 - nothing flies, orig reached receiver. 904 * L 0 - nothing flies, orig lost by net. 905 * R 2 - both orig and retransmit are in flight. 906 * L|R 1 - orig is lost, retransmit is in flight. 907 * S|R 1 - orig reached receiver, retrans is still in flight. 908 * (L|S|R is logically valid, it could occur when L|R is sacked, 909 * but it is equivalent to plain S and code short-curcuits it to S. 910 * L|S is logically invalid, it would mean -1 packet in flight 8)) 911 * 912 * These 6 states form finite state machine, controlled by the following events: 913 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 914 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 915 * 3. Loss detection event of two flavors: 916 * A. Scoreboard estimator decided the packet is lost. 917 * A'. Reno "three dupacks" marks head of queue lost. 918 * A''. Its FACK modification, head until snd.fack is lost. 919 * B. SACK arrives sacking SND.NXT at the moment, when the 920 * segment was retransmitted. 921 * 4. D-SACK added new rule: D-SACK changes any tag to S. 922 * 923 * It is pleasant to note, that state diagram turns out to be commutative, 924 * so that we are allowed not to be bothered by order of our actions, 925 * when multiple events arrive simultaneously. (see the function below). 926 * 927 * Reordering detection. 928 * -------------------- 929 * Reordering metric is maximal distance, which a packet can be displaced 930 * in packet stream. With SACKs we can estimate it: 931 * 932 * 1. SACK fills old hole and the corresponding segment was not 933 * ever retransmitted -> reordering. Alas, we cannot use it 934 * when segment was retransmitted. 935 * 2. The last flaw is solved with D-SACK. D-SACK arrives 936 * for retransmitted and already SACKed segment -> reordering.. 937 * Both of these heuristics are not used in Loss state, when we cannot 938 * account for retransmits accurately. 939 * 940 * SACK block validation. 941 * ---------------------- 942 * 943 * SACK block range validation checks that the received SACK block fits to 944 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 945 * Note that SND.UNA is not included to the range though being valid because 946 * it means that the receiver is rather inconsistent with itself reporting 947 * SACK reneging when it should advance SND.UNA. Such SACK block this is 948 * perfectly valid, however, in light of RFC2018 which explicitly states 949 * that "SACK block MUST reflect the newest segment. Even if the newest 950 * segment is going to be discarded ...", not that it looks very clever 951 * in case of head skb. Due to potentional receiver driven attacks, we 952 * choose to avoid immediate execution of a walk in write queue due to 953 * reneging and defer head skb's loss recovery to standard loss recovery 954 * procedure that will eventually trigger (nothing forbids us doing this). 955 * 956 * Implements also blockage to start_seq wrap-around. Problem lies in the 957 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 958 * there's no guarantee that it will be before snd_nxt (n). The problem 959 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 960 * wrap (s_w): 961 * 962 * <- outs wnd -> <- wrapzone -> 963 * u e n u_w e_w s n_w 964 * | | | | | | | 965 * |<------------+------+----- TCP seqno space --------------+---------->| 966 * ...-- <2^31 ->| |<--------... 967 * ...---- >2^31 ------>| |<--------... 968 * 969 * Current code wouldn't be vulnerable but it's better still to discard such 970 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 971 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 972 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 973 * equal to the ideal case (infinite seqno space without wrap caused issues). 974 * 975 * With D-SACK the lower bound is extended to cover sequence space below 976 * SND.UNA down to undo_marker, which is the last point of interest. Yet 977 * again, D-SACK block must not to go across snd_una (for the same reason as 978 * for the normal SACK blocks, explained above). But there all simplicity 979 * ends, TCP might receive valid D-SACKs below that. As long as they reside 980 * fully below undo_marker they do not affect behavior in anyway and can 981 * therefore be safely ignored. In rare cases (which are more or less 982 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 983 * fragmentation and packet reordering past skb's retransmission. To consider 984 * them correctly, the acceptable range must be extended even more though 985 * the exact amount is rather hard to quantify. However, tp->max_window can 986 * be used as an exaggerated estimate. 987 */ 988 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 989 u32 start_seq, u32 end_seq) 990 { 991 /* Too far in future, or reversed (interpretation is ambiguous) */ 992 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 993 return false; 994 995 /* Nasty start_seq wrap-around check (see comments above) */ 996 if (!before(start_seq, tp->snd_nxt)) 997 return false; 998 999 /* In outstanding window? ...This is valid exit for D-SACKs too. 1000 * start_seq == snd_una is non-sensical (see comments above) 1001 */ 1002 if (after(start_seq, tp->snd_una)) 1003 return true; 1004 1005 if (!is_dsack || !tp->undo_marker) 1006 return false; 1007 1008 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1009 if (after(end_seq, tp->snd_una)) 1010 return false; 1011 1012 if (!before(start_seq, tp->undo_marker)) 1013 return true; 1014 1015 /* Too old */ 1016 if (!after(end_seq, tp->undo_marker)) 1017 return false; 1018 1019 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1020 * start_seq < undo_marker and end_seq >= undo_marker. 1021 */ 1022 return !before(start_seq, end_seq - tp->max_window); 1023 } 1024 1025 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving". 1026 * Event "B". Later note: FACK people cheated me again 8), we have to account 1027 * for reordering! Ugly, but should help. 1028 * 1029 * Search retransmitted skbs from write_queue that were sent when snd_nxt was 1030 * less than what is now known to be received by the other end (derived from 1031 * highest SACK block). Also calculate the lowest snd_nxt among the remaining 1032 * retransmitted skbs to avoid some costly processing per ACKs. 1033 */ 1034 static void tcp_mark_lost_retrans(struct sock *sk) 1035 { 1036 const struct inet_connection_sock *icsk = inet_csk(sk); 1037 struct tcp_sock *tp = tcp_sk(sk); 1038 struct sk_buff *skb; 1039 int cnt = 0; 1040 u32 new_low_seq = tp->snd_nxt; 1041 u32 received_upto = tcp_highest_sack_seq(tp); 1042 1043 if (!tcp_is_fack(tp) || !tp->retrans_out || 1044 !after(received_upto, tp->lost_retrans_low) || 1045 icsk->icsk_ca_state != TCP_CA_Recovery) 1046 return; 1047 1048 tcp_for_write_queue(skb, sk) { 1049 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq; 1050 1051 if (skb == tcp_send_head(sk)) 1052 break; 1053 if (cnt == tp->retrans_out) 1054 break; 1055 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1056 continue; 1057 1058 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) 1059 continue; 1060 1061 /* TODO: We would like to get rid of tcp_is_fack(tp) only 1062 * constraint here (see above) but figuring out that at 1063 * least tp->reordering SACK blocks reside between ack_seq 1064 * and received_upto is not easy task to do cheaply with 1065 * the available datastructures. 1066 * 1067 * Whether FACK should check here for tp->reordering segs 1068 * in-between one could argue for either way (it would be 1069 * rather simple to implement as we could count fack_count 1070 * during the walk and do tp->fackets_out - fack_count). 1071 */ 1072 if (after(received_upto, ack_seq)) { 1073 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1074 tp->retrans_out -= tcp_skb_pcount(skb); 1075 1076 tcp_skb_mark_lost_uncond_verify(tp, skb); 1077 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT); 1078 } else { 1079 if (before(ack_seq, new_low_seq)) 1080 new_low_seq = ack_seq; 1081 cnt += tcp_skb_pcount(skb); 1082 } 1083 } 1084 1085 if (tp->retrans_out) 1086 tp->lost_retrans_low = new_low_seq; 1087 } 1088 1089 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1090 struct tcp_sack_block_wire *sp, int num_sacks, 1091 u32 prior_snd_una) 1092 { 1093 struct tcp_sock *tp = tcp_sk(sk); 1094 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1095 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1096 bool dup_sack = false; 1097 1098 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1099 dup_sack = true; 1100 tcp_dsack_seen(tp); 1101 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1102 } else if (num_sacks > 1) { 1103 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1104 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1105 1106 if (!after(end_seq_0, end_seq_1) && 1107 !before(start_seq_0, start_seq_1)) { 1108 dup_sack = true; 1109 tcp_dsack_seen(tp); 1110 NET_INC_STATS_BH(sock_net(sk), 1111 LINUX_MIB_TCPDSACKOFORECV); 1112 } 1113 } 1114 1115 /* D-SACK for already forgotten data... Do dumb counting. */ 1116 if (dup_sack && tp->undo_marker && tp->undo_retrans && 1117 !after(end_seq_0, prior_snd_una) && 1118 after(end_seq_0, tp->undo_marker)) 1119 tp->undo_retrans--; 1120 1121 return dup_sack; 1122 } 1123 1124 struct tcp_sacktag_state { 1125 int reord; 1126 int fack_count; 1127 int flag; 1128 s32 rtt; /* RTT measured by SACKing never-retransmitted data */ 1129 }; 1130 1131 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1132 * the incoming SACK may not exactly match but we can find smaller MSS 1133 * aligned portion of it that matches. Therefore we might need to fragment 1134 * which may fail and creates some hassle (caller must handle error case 1135 * returns). 1136 * 1137 * FIXME: this could be merged to shift decision code 1138 */ 1139 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1140 u32 start_seq, u32 end_seq) 1141 { 1142 int err; 1143 bool in_sack; 1144 unsigned int pkt_len; 1145 unsigned int mss; 1146 1147 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1148 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1149 1150 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1151 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1152 mss = tcp_skb_mss(skb); 1153 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1154 1155 if (!in_sack) { 1156 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1157 if (pkt_len < mss) 1158 pkt_len = mss; 1159 } else { 1160 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1161 if (pkt_len < mss) 1162 return -EINVAL; 1163 } 1164 1165 /* Round if necessary so that SACKs cover only full MSSes 1166 * and/or the remaining small portion (if present) 1167 */ 1168 if (pkt_len > mss) { 1169 unsigned int new_len = (pkt_len / mss) * mss; 1170 if (!in_sack && new_len < pkt_len) { 1171 new_len += mss; 1172 if (new_len > skb->len) 1173 return 0; 1174 } 1175 pkt_len = new_len; 1176 } 1177 err = tcp_fragment(sk, skb, pkt_len, mss); 1178 if (err < 0) 1179 return err; 1180 } 1181 1182 return in_sack; 1183 } 1184 1185 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1186 static u8 tcp_sacktag_one(struct sock *sk, 1187 struct tcp_sacktag_state *state, u8 sacked, 1188 u32 start_seq, u32 end_seq, 1189 int dup_sack, int pcount, u32 xmit_time) 1190 { 1191 struct tcp_sock *tp = tcp_sk(sk); 1192 int fack_count = state->fack_count; 1193 1194 /* Account D-SACK for retransmitted packet. */ 1195 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1196 if (tp->undo_marker && tp->undo_retrans && 1197 after(end_seq, tp->undo_marker)) 1198 tp->undo_retrans--; 1199 if (sacked & TCPCB_SACKED_ACKED) 1200 state->reord = min(fack_count, state->reord); 1201 } 1202 1203 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1204 if (!after(end_seq, tp->snd_una)) 1205 return sacked; 1206 1207 if (!(sacked & TCPCB_SACKED_ACKED)) { 1208 if (sacked & TCPCB_SACKED_RETRANS) { 1209 /* If the segment is not tagged as lost, 1210 * we do not clear RETRANS, believing 1211 * that retransmission is still in flight. 1212 */ 1213 if (sacked & TCPCB_LOST) { 1214 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1215 tp->lost_out -= pcount; 1216 tp->retrans_out -= pcount; 1217 } 1218 } else { 1219 if (!(sacked & TCPCB_RETRANS)) { 1220 /* New sack for not retransmitted frame, 1221 * which was in hole. It is reordering. 1222 */ 1223 if (before(start_seq, 1224 tcp_highest_sack_seq(tp))) 1225 state->reord = min(fack_count, 1226 state->reord); 1227 if (!after(end_seq, tp->high_seq)) 1228 state->flag |= FLAG_ORIG_SACK_ACKED; 1229 /* Pick the earliest sequence sacked for RTT */ 1230 if (state->rtt < 0) 1231 state->rtt = tcp_time_stamp - xmit_time; 1232 } 1233 1234 if (sacked & TCPCB_LOST) { 1235 sacked &= ~TCPCB_LOST; 1236 tp->lost_out -= pcount; 1237 } 1238 } 1239 1240 sacked |= TCPCB_SACKED_ACKED; 1241 state->flag |= FLAG_DATA_SACKED; 1242 tp->sacked_out += pcount; 1243 1244 fack_count += pcount; 1245 1246 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1247 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) && 1248 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1249 tp->lost_cnt_hint += pcount; 1250 1251 if (fack_count > tp->fackets_out) 1252 tp->fackets_out = fack_count; 1253 } 1254 1255 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1256 * frames and clear it. undo_retrans is decreased above, L|R frames 1257 * are accounted above as well. 1258 */ 1259 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1260 sacked &= ~TCPCB_SACKED_RETRANS; 1261 tp->retrans_out -= pcount; 1262 } 1263 1264 return sacked; 1265 } 1266 1267 /* Shift newly-SACKed bytes from this skb to the immediately previous 1268 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1269 */ 1270 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1271 struct tcp_sacktag_state *state, 1272 unsigned int pcount, int shifted, int mss, 1273 bool dup_sack) 1274 { 1275 struct tcp_sock *tp = tcp_sk(sk); 1276 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1277 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1278 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1279 1280 BUG_ON(!pcount); 1281 1282 /* Adjust counters and hints for the newly sacked sequence 1283 * range but discard the return value since prev is already 1284 * marked. We must tag the range first because the seq 1285 * advancement below implicitly advances 1286 * tcp_highest_sack_seq() when skb is highest_sack. 1287 */ 1288 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1289 start_seq, end_seq, dup_sack, pcount, 1290 TCP_SKB_CB(skb)->when); 1291 1292 if (skb == tp->lost_skb_hint) 1293 tp->lost_cnt_hint += pcount; 1294 1295 TCP_SKB_CB(prev)->end_seq += shifted; 1296 TCP_SKB_CB(skb)->seq += shifted; 1297 1298 skb_shinfo(prev)->gso_segs += pcount; 1299 BUG_ON(skb_shinfo(skb)->gso_segs < pcount); 1300 skb_shinfo(skb)->gso_segs -= pcount; 1301 1302 /* When we're adding to gso_segs == 1, gso_size will be zero, 1303 * in theory this shouldn't be necessary but as long as DSACK 1304 * code can come after this skb later on it's better to keep 1305 * setting gso_size to something. 1306 */ 1307 if (!skb_shinfo(prev)->gso_size) { 1308 skb_shinfo(prev)->gso_size = mss; 1309 skb_shinfo(prev)->gso_type = sk->sk_gso_type; 1310 } 1311 1312 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1313 if (skb_shinfo(skb)->gso_segs <= 1) { 1314 skb_shinfo(skb)->gso_size = 0; 1315 skb_shinfo(skb)->gso_type = 0; 1316 } 1317 1318 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1319 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1320 1321 if (skb->len > 0) { 1322 BUG_ON(!tcp_skb_pcount(skb)); 1323 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1324 return false; 1325 } 1326 1327 /* Whole SKB was eaten :-) */ 1328 1329 if (skb == tp->retransmit_skb_hint) 1330 tp->retransmit_skb_hint = prev; 1331 if (skb == tp->lost_skb_hint) { 1332 tp->lost_skb_hint = prev; 1333 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1334 } 1335 1336 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1337 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1338 TCP_SKB_CB(prev)->end_seq++; 1339 1340 if (skb == tcp_highest_sack(sk)) 1341 tcp_advance_highest_sack(sk, skb); 1342 1343 tcp_unlink_write_queue(skb, sk); 1344 sk_wmem_free_skb(sk, skb); 1345 1346 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED); 1347 1348 return true; 1349 } 1350 1351 /* I wish gso_size would have a bit more sane initialization than 1352 * something-or-zero which complicates things 1353 */ 1354 static int tcp_skb_seglen(const struct sk_buff *skb) 1355 { 1356 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1357 } 1358 1359 /* Shifting pages past head area doesn't work */ 1360 static int skb_can_shift(const struct sk_buff *skb) 1361 { 1362 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1363 } 1364 1365 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1366 * skb. 1367 */ 1368 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1369 struct tcp_sacktag_state *state, 1370 u32 start_seq, u32 end_seq, 1371 bool dup_sack) 1372 { 1373 struct tcp_sock *tp = tcp_sk(sk); 1374 struct sk_buff *prev; 1375 int mss; 1376 int pcount = 0; 1377 int len; 1378 int in_sack; 1379 1380 if (!sk_can_gso(sk)) 1381 goto fallback; 1382 1383 /* Normally R but no L won't result in plain S */ 1384 if (!dup_sack && 1385 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1386 goto fallback; 1387 if (!skb_can_shift(skb)) 1388 goto fallback; 1389 /* This frame is about to be dropped (was ACKed). */ 1390 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1391 goto fallback; 1392 1393 /* Can only happen with delayed DSACK + discard craziness */ 1394 if (unlikely(skb == tcp_write_queue_head(sk))) 1395 goto fallback; 1396 prev = tcp_write_queue_prev(sk, skb); 1397 1398 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1399 goto fallback; 1400 1401 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1402 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1403 1404 if (in_sack) { 1405 len = skb->len; 1406 pcount = tcp_skb_pcount(skb); 1407 mss = tcp_skb_seglen(skb); 1408 1409 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1410 * drop this restriction as unnecessary 1411 */ 1412 if (mss != tcp_skb_seglen(prev)) 1413 goto fallback; 1414 } else { 1415 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1416 goto noop; 1417 /* CHECKME: This is non-MSS split case only?, this will 1418 * cause skipped skbs due to advancing loop btw, original 1419 * has that feature too 1420 */ 1421 if (tcp_skb_pcount(skb) <= 1) 1422 goto noop; 1423 1424 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1425 if (!in_sack) { 1426 /* TODO: head merge to next could be attempted here 1427 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1428 * though it might not be worth of the additional hassle 1429 * 1430 * ...we can probably just fallback to what was done 1431 * previously. We could try merging non-SACKed ones 1432 * as well but it probably isn't going to buy off 1433 * because later SACKs might again split them, and 1434 * it would make skb timestamp tracking considerably 1435 * harder problem. 1436 */ 1437 goto fallback; 1438 } 1439 1440 len = end_seq - TCP_SKB_CB(skb)->seq; 1441 BUG_ON(len < 0); 1442 BUG_ON(len > skb->len); 1443 1444 /* MSS boundaries should be honoured or else pcount will 1445 * severely break even though it makes things bit trickier. 1446 * Optimize common case to avoid most of the divides 1447 */ 1448 mss = tcp_skb_mss(skb); 1449 1450 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1451 * drop this restriction as unnecessary 1452 */ 1453 if (mss != tcp_skb_seglen(prev)) 1454 goto fallback; 1455 1456 if (len == mss) { 1457 pcount = 1; 1458 } else if (len < mss) { 1459 goto noop; 1460 } else { 1461 pcount = len / mss; 1462 len = pcount * mss; 1463 } 1464 } 1465 1466 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1467 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1468 goto fallback; 1469 1470 if (!skb_shift(prev, skb, len)) 1471 goto fallback; 1472 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1473 goto out; 1474 1475 /* Hole filled allows collapsing with the next as well, this is very 1476 * useful when hole on every nth skb pattern happens 1477 */ 1478 if (prev == tcp_write_queue_tail(sk)) 1479 goto out; 1480 skb = tcp_write_queue_next(sk, prev); 1481 1482 if (!skb_can_shift(skb) || 1483 (skb == tcp_send_head(sk)) || 1484 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1485 (mss != tcp_skb_seglen(skb))) 1486 goto out; 1487 1488 len = skb->len; 1489 if (skb_shift(prev, skb, len)) { 1490 pcount += tcp_skb_pcount(skb); 1491 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1492 } 1493 1494 out: 1495 state->fack_count += pcount; 1496 return prev; 1497 1498 noop: 1499 return skb; 1500 1501 fallback: 1502 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1503 return NULL; 1504 } 1505 1506 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1507 struct tcp_sack_block *next_dup, 1508 struct tcp_sacktag_state *state, 1509 u32 start_seq, u32 end_seq, 1510 bool dup_sack_in) 1511 { 1512 struct tcp_sock *tp = tcp_sk(sk); 1513 struct sk_buff *tmp; 1514 1515 tcp_for_write_queue_from(skb, sk) { 1516 int in_sack = 0; 1517 bool dup_sack = dup_sack_in; 1518 1519 if (skb == tcp_send_head(sk)) 1520 break; 1521 1522 /* queue is in-order => we can short-circuit the walk early */ 1523 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1524 break; 1525 1526 if ((next_dup != NULL) && 1527 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1528 in_sack = tcp_match_skb_to_sack(sk, skb, 1529 next_dup->start_seq, 1530 next_dup->end_seq); 1531 if (in_sack > 0) 1532 dup_sack = true; 1533 } 1534 1535 /* skb reference here is a bit tricky to get right, since 1536 * shifting can eat and free both this skb and the next, 1537 * so not even _safe variant of the loop is enough. 1538 */ 1539 if (in_sack <= 0) { 1540 tmp = tcp_shift_skb_data(sk, skb, state, 1541 start_seq, end_seq, dup_sack); 1542 if (tmp != NULL) { 1543 if (tmp != skb) { 1544 skb = tmp; 1545 continue; 1546 } 1547 1548 in_sack = 0; 1549 } else { 1550 in_sack = tcp_match_skb_to_sack(sk, skb, 1551 start_seq, 1552 end_seq); 1553 } 1554 } 1555 1556 if (unlikely(in_sack < 0)) 1557 break; 1558 1559 if (in_sack) { 1560 TCP_SKB_CB(skb)->sacked = 1561 tcp_sacktag_one(sk, 1562 state, 1563 TCP_SKB_CB(skb)->sacked, 1564 TCP_SKB_CB(skb)->seq, 1565 TCP_SKB_CB(skb)->end_seq, 1566 dup_sack, 1567 tcp_skb_pcount(skb), 1568 TCP_SKB_CB(skb)->when); 1569 1570 if (!before(TCP_SKB_CB(skb)->seq, 1571 tcp_highest_sack_seq(tp))) 1572 tcp_advance_highest_sack(sk, skb); 1573 } 1574 1575 state->fack_count += tcp_skb_pcount(skb); 1576 } 1577 return skb; 1578 } 1579 1580 /* Avoid all extra work that is being done by sacktag while walking in 1581 * a normal way 1582 */ 1583 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1584 struct tcp_sacktag_state *state, 1585 u32 skip_to_seq) 1586 { 1587 tcp_for_write_queue_from(skb, sk) { 1588 if (skb == tcp_send_head(sk)) 1589 break; 1590 1591 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1592 break; 1593 1594 state->fack_count += tcp_skb_pcount(skb); 1595 } 1596 return skb; 1597 } 1598 1599 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1600 struct sock *sk, 1601 struct tcp_sack_block *next_dup, 1602 struct tcp_sacktag_state *state, 1603 u32 skip_to_seq) 1604 { 1605 if (next_dup == NULL) 1606 return skb; 1607 1608 if (before(next_dup->start_seq, skip_to_seq)) { 1609 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1610 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1611 next_dup->start_seq, next_dup->end_seq, 1612 1); 1613 } 1614 1615 return skb; 1616 } 1617 1618 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1619 { 1620 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1621 } 1622 1623 static int 1624 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1625 u32 prior_snd_una, s32 *sack_rtt) 1626 { 1627 struct tcp_sock *tp = tcp_sk(sk); 1628 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1629 TCP_SKB_CB(ack_skb)->sacked); 1630 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1631 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1632 struct tcp_sack_block *cache; 1633 struct tcp_sacktag_state state; 1634 struct sk_buff *skb; 1635 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1636 int used_sacks; 1637 bool found_dup_sack = false; 1638 int i, j; 1639 int first_sack_index; 1640 1641 state.flag = 0; 1642 state.reord = tp->packets_out; 1643 state.rtt = -1; 1644 1645 if (!tp->sacked_out) { 1646 if (WARN_ON(tp->fackets_out)) 1647 tp->fackets_out = 0; 1648 tcp_highest_sack_reset(sk); 1649 } 1650 1651 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1652 num_sacks, prior_snd_una); 1653 if (found_dup_sack) 1654 state.flag |= FLAG_DSACKING_ACK; 1655 1656 /* Eliminate too old ACKs, but take into 1657 * account more or less fresh ones, they can 1658 * contain valid SACK info. 1659 */ 1660 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1661 return 0; 1662 1663 if (!tp->packets_out) 1664 goto out; 1665 1666 used_sacks = 0; 1667 first_sack_index = 0; 1668 for (i = 0; i < num_sacks; i++) { 1669 bool dup_sack = !i && found_dup_sack; 1670 1671 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1672 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1673 1674 if (!tcp_is_sackblock_valid(tp, dup_sack, 1675 sp[used_sacks].start_seq, 1676 sp[used_sacks].end_seq)) { 1677 int mib_idx; 1678 1679 if (dup_sack) { 1680 if (!tp->undo_marker) 1681 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1682 else 1683 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1684 } else { 1685 /* Don't count olds caused by ACK reordering */ 1686 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1687 !after(sp[used_sacks].end_seq, tp->snd_una)) 1688 continue; 1689 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1690 } 1691 1692 NET_INC_STATS_BH(sock_net(sk), mib_idx); 1693 if (i == 0) 1694 first_sack_index = -1; 1695 continue; 1696 } 1697 1698 /* Ignore very old stuff early */ 1699 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1700 continue; 1701 1702 used_sacks++; 1703 } 1704 1705 /* order SACK blocks to allow in order walk of the retrans queue */ 1706 for (i = used_sacks - 1; i > 0; i--) { 1707 for (j = 0; j < i; j++) { 1708 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1709 swap(sp[j], sp[j + 1]); 1710 1711 /* Track where the first SACK block goes to */ 1712 if (j == first_sack_index) 1713 first_sack_index = j + 1; 1714 } 1715 } 1716 } 1717 1718 skb = tcp_write_queue_head(sk); 1719 state.fack_count = 0; 1720 i = 0; 1721 1722 if (!tp->sacked_out) { 1723 /* It's already past, so skip checking against it */ 1724 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1725 } else { 1726 cache = tp->recv_sack_cache; 1727 /* Skip empty blocks in at head of the cache */ 1728 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1729 !cache->end_seq) 1730 cache++; 1731 } 1732 1733 while (i < used_sacks) { 1734 u32 start_seq = sp[i].start_seq; 1735 u32 end_seq = sp[i].end_seq; 1736 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1737 struct tcp_sack_block *next_dup = NULL; 1738 1739 if (found_dup_sack && ((i + 1) == first_sack_index)) 1740 next_dup = &sp[i + 1]; 1741 1742 /* Skip too early cached blocks */ 1743 while (tcp_sack_cache_ok(tp, cache) && 1744 !before(start_seq, cache->end_seq)) 1745 cache++; 1746 1747 /* Can skip some work by looking recv_sack_cache? */ 1748 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1749 after(end_seq, cache->start_seq)) { 1750 1751 /* Head todo? */ 1752 if (before(start_seq, cache->start_seq)) { 1753 skb = tcp_sacktag_skip(skb, sk, &state, 1754 start_seq); 1755 skb = tcp_sacktag_walk(skb, sk, next_dup, 1756 &state, 1757 start_seq, 1758 cache->start_seq, 1759 dup_sack); 1760 } 1761 1762 /* Rest of the block already fully processed? */ 1763 if (!after(end_seq, cache->end_seq)) 1764 goto advance_sp; 1765 1766 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1767 &state, 1768 cache->end_seq); 1769 1770 /* ...tail remains todo... */ 1771 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1772 /* ...but better entrypoint exists! */ 1773 skb = tcp_highest_sack(sk); 1774 if (skb == NULL) 1775 break; 1776 state.fack_count = tp->fackets_out; 1777 cache++; 1778 goto walk; 1779 } 1780 1781 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq); 1782 /* Check overlap against next cached too (past this one already) */ 1783 cache++; 1784 continue; 1785 } 1786 1787 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1788 skb = tcp_highest_sack(sk); 1789 if (skb == NULL) 1790 break; 1791 state.fack_count = tp->fackets_out; 1792 } 1793 skb = tcp_sacktag_skip(skb, sk, &state, start_seq); 1794 1795 walk: 1796 skb = tcp_sacktag_walk(skb, sk, next_dup, &state, 1797 start_seq, end_seq, dup_sack); 1798 1799 advance_sp: 1800 i++; 1801 } 1802 1803 /* Clear the head of the cache sack blocks so we can skip it next time */ 1804 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1805 tp->recv_sack_cache[i].start_seq = 0; 1806 tp->recv_sack_cache[i].end_seq = 0; 1807 } 1808 for (j = 0; j < used_sacks; j++) 1809 tp->recv_sack_cache[i++] = sp[j]; 1810 1811 tcp_mark_lost_retrans(sk); 1812 1813 tcp_verify_left_out(tp); 1814 1815 if ((state.reord < tp->fackets_out) && 1816 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker)) 1817 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0); 1818 1819 out: 1820 1821 #if FASTRETRANS_DEBUG > 0 1822 WARN_ON((int)tp->sacked_out < 0); 1823 WARN_ON((int)tp->lost_out < 0); 1824 WARN_ON((int)tp->retrans_out < 0); 1825 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1826 #endif 1827 *sack_rtt = state.rtt; 1828 return state.flag; 1829 } 1830 1831 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1832 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1833 */ 1834 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1835 { 1836 u32 holes; 1837 1838 holes = max(tp->lost_out, 1U); 1839 holes = min(holes, tp->packets_out); 1840 1841 if ((tp->sacked_out + holes) > tp->packets_out) { 1842 tp->sacked_out = tp->packets_out - holes; 1843 return true; 1844 } 1845 return false; 1846 } 1847 1848 /* If we receive more dupacks than we expected counting segments 1849 * in assumption of absent reordering, interpret this as reordering. 1850 * The only another reason could be bug in receiver TCP. 1851 */ 1852 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1853 { 1854 struct tcp_sock *tp = tcp_sk(sk); 1855 if (tcp_limit_reno_sacked(tp)) 1856 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1857 } 1858 1859 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1860 1861 static void tcp_add_reno_sack(struct sock *sk) 1862 { 1863 struct tcp_sock *tp = tcp_sk(sk); 1864 tp->sacked_out++; 1865 tcp_check_reno_reordering(sk, 0); 1866 tcp_verify_left_out(tp); 1867 } 1868 1869 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1870 1871 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1872 { 1873 struct tcp_sock *tp = tcp_sk(sk); 1874 1875 if (acked > 0) { 1876 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1877 if (acked - 1 >= tp->sacked_out) 1878 tp->sacked_out = 0; 1879 else 1880 tp->sacked_out -= acked - 1; 1881 } 1882 tcp_check_reno_reordering(sk, acked); 1883 tcp_verify_left_out(tp); 1884 } 1885 1886 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1887 { 1888 tp->sacked_out = 0; 1889 } 1890 1891 static void tcp_clear_retrans_partial(struct tcp_sock *tp) 1892 { 1893 tp->retrans_out = 0; 1894 tp->lost_out = 0; 1895 1896 tp->undo_marker = 0; 1897 tp->undo_retrans = 0; 1898 } 1899 1900 void tcp_clear_retrans(struct tcp_sock *tp) 1901 { 1902 tcp_clear_retrans_partial(tp); 1903 1904 tp->fackets_out = 0; 1905 tp->sacked_out = 0; 1906 } 1907 1908 /* Enter Loss state. If "how" is not zero, forget all SACK information 1909 * and reset tags completely, otherwise preserve SACKs. If receiver 1910 * dropped its ofo queue, we will know this due to reneging detection. 1911 */ 1912 void tcp_enter_loss(struct sock *sk, int how) 1913 { 1914 const struct inet_connection_sock *icsk = inet_csk(sk); 1915 struct tcp_sock *tp = tcp_sk(sk); 1916 struct sk_buff *skb; 1917 bool new_recovery = false; 1918 1919 /* Reduce ssthresh if it has not yet been made inside this window. */ 1920 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1921 !after(tp->high_seq, tp->snd_una) || 1922 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1923 new_recovery = true; 1924 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1925 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1926 tcp_ca_event(sk, CA_EVENT_LOSS); 1927 } 1928 tp->snd_cwnd = 1; 1929 tp->snd_cwnd_cnt = 0; 1930 tp->snd_cwnd_stamp = tcp_time_stamp; 1931 1932 tcp_clear_retrans_partial(tp); 1933 1934 if (tcp_is_reno(tp)) 1935 tcp_reset_reno_sack(tp); 1936 1937 tp->undo_marker = tp->snd_una; 1938 if (how) { 1939 tp->sacked_out = 0; 1940 tp->fackets_out = 0; 1941 } 1942 tcp_clear_all_retrans_hints(tp); 1943 1944 tcp_for_write_queue(skb, sk) { 1945 if (skb == tcp_send_head(sk)) 1946 break; 1947 1948 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 1949 tp->undo_marker = 0; 1950 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1951 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) { 1952 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1953 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1954 tp->lost_out += tcp_skb_pcount(skb); 1955 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 1956 } 1957 } 1958 tcp_verify_left_out(tp); 1959 1960 /* Timeout in disordered state after receiving substantial DUPACKs 1961 * suggests that the degree of reordering is over-estimated. 1962 */ 1963 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1964 tp->sacked_out >= sysctl_tcp_reordering) 1965 tp->reordering = min_t(unsigned int, tp->reordering, 1966 sysctl_tcp_reordering); 1967 tcp_set_ca_state(sk, TCP_CA_Loss); 1968 tp->high_seq = tp->snd_nxt; 1969 TCP_ECN_queue_cwr(tp); 1970 1971 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 1972 * loss recovery is underway except recurring timeout(s) on 1973 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 1974 */ 1975 tp->frto = sysctl_tcp_frto && 1976 (new_recovery || icsk->icsk_retransmits) && 1977 !inet_csk(sk)->icsk_mtup.probe_size; 1978 } 1979 1980 /* If ACK arrived pointing to a remembered SACK, it means that our 1981 * remembered SACKs do not reflect real state of receiver i.e. 1982 * receiver _host_ is heavily congested (or buggy). 1983 * 1984 * Do processing similar to RTO timeout. 1985 */ 1986 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 1987 { 1988 if (flag & FLAG_SACK_RENEGING) { 1989 struct inet_connection_sock *icsk = inet_csk(sk); 1990 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1991 1992 tcp_enter_loss(sk, 1); 1993 icsk->icsk_retransmits++; 1994 tcp_retransmit_skb(sk, tcp_write_queue_head(sk)); 1995 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 1996 icsk->icsk_rto, TCP_RTO_MAX); 1997 return true; 1998 } 1999 return false; 2000 } 2001 2002 static inline int tcp_fackets_out(const struct tcp_sock *tp) 2003 { 2004 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2005 } 2006 2007 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2008 * counter when SACK is enabled (without SACK, sacked_out is used for 2009 * that purpose). 2010 * 2011 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2012 * segments up to the highest received SACK block so far and holes in 2013 * between them. 2014 * 2015 * With reordering, holes may still be in flight, so RFC3517 recovery 2016 * uses pure sacked_out (total number of SACKed segments) even though 2017 * it violates the RFC that uses duplicate ACKs, often these are equal 2018 * but when e.g. out-of-window ACKs or packet duplication occurs, 2019 * they differ. Since neither occurs due to loss, TCP should really 2020 * ignore them. 2021 */ 2022 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2023 { 2024 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2025 } 2026 2027 static bool tcp_pause_early_retransmit(struct sock *sk, int flag) 2028 { 2029 struct tcp_sock *tp = tcp_sk(sk); 2030 unsigned long delay; 2031 2032 /* Delay early retransmit and entering fast recovery for 2033 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples 2034 * available, or RTO is scheduled to fire first. 2035 */ 2036 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 || 2037 (flag & FLAG_ECE) || !tp->srtt) 2038 return false; 2039 2040 delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2)); 2041 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay))) 2042 return false; 2043 2044 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay, 2045 TCP_RTO_MAX); 2046 return true; 2047 } 2048 2049 /* Linux NewReno/SACK/FACK/ECN state machine. 2050 * -------------------------------------- 2051 * 2052 * "Open" Normal state, no dubious events, fast path. 2053 * "Disorder" In all the respects it is "Open", 2054 * but requires a bit more attention. It is entered when 2055 * we see some SACKs or dupacks. It is split of "Open" 2056 * mainly to move some processing from fast path to slow one. 2057 * "CWR" CWND was reduced due to some Congestion Notification event. 2058 * It can be ECN, ICMP source quench, local device congestion. 2059 * "Recovery" CWND was reduced, we are fast-retransmitting. 2060 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2061 * 2062 * tcp_fastretrans_alert() is entered: 2063 * - each incoming ACK, if state is not "Open" 2064 * - when arrived ACK is unusual, namely: 2065 * * SACK 2066 * * Duplicate ACK. 2067 * * ECN ECE. 2068 * 2069 * Counting packets in flight is pretty simple. 2070 * 2071 * in_flight = packets_out - left_out + retrans_out 2072 * 2073 * packets_out is SND.NXT-SND.UNA counted in packets. 2074 * 2075 * retrans_out is number of retransmitted segments. 2076 * 2077 * left_out is number of segments left network, but not ACKed yet. 2078 * 2079 * left_out = sacked_out + lost_out 2080 * 2081 * sacked_out: Packets, which arrived to receiver out of order 2082 * and hence not ACKed. With SACKs this number is simply 2083 * amount of SACKed data. Even without SACKs 2084 * it is easy to give pretty reliable estimate of this number, 2085 * counting duplicate ACKs. 2086 * 2087 * lost_out: Packets lost by network. TCP has no explicit 2088 * "loss notification" feedback from network (for now). 2089 * It means that this number can be only _guessed_. 2090 * Actually, it is the heuristics to predict lossage that 2091 * distinguishes different algorithms. 2092 * 2093 * F.e. after RTO, when all the queue is considered as lost, 2094 * lost_out = packets_out and in_flight = retrans_out. 2095 * 2096 * Essentially, we have now two algorithms counting 2097 * lost packets. 2098 * 2099 * FACK: It is the simplest heuristics. As soon as we decided 2100 * that something is lost, we decide that _all_ not SACKed 2101 * packets until the most forward SACK are lost. I.e. 2102 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2103 * It is absolutely correct estimate, if network does not reorder 2104 * packets. And it loses any connection to reality when reordering 2105 * takes place. We use FACK by default until reordering 2106 * is suspected on the path to this destination. 2107 * 2108 * NewReno: when Recovery is entered, we assume that one segment 2109 * is lost (classic Reno). While we are in Recovery and 2110 * a partial ACK arrives, we assume that one more packet 2111 * is lost (NewReno). This heuristics are the same in NewReno 2112 * and SACK. 2113 * 2114 * Imagine, that's all! Forget about all this shamanism about CWND inflation 2115 * deflation etc. CWND is real congestion window, never inflated, changes 2116 * only according to classic VJ rules. 2117 * 2118 * Really tricky (and requiring careful tuning) part of algorithm 2119 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2120 * The first determines the moment _when_ we should reduce CWND and, 2121 * hence, slow down forward transmission. In fact, it determines the moment 2122 * when we decide that hole is caused by loss, rather than by a reorder. 2123 * 2124 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2125 * holes, caused by lost packets. 2126 * 2127 * And the most logically complicated part of algorithm is undo 2128 * heuristics. We detect false retransmits due to both too early 2129 * fast retransmit (reordering) and underestimated RTO, analyzing 2130 * timestamps and D-SACKs. When we detect that some segments were 2131 * retransmitted by mistake and CWND reduction was wrong, we undo 2132 * window reduction and abort recovery phase. This logic is hidden 2133 * inside several functions named tcp_try_undo_<something>. 2134 */ 2135 2136 /* This function decides, when we should leave Disordered state 2137 * and enter Recovery phase, reducing congestion window. 2138 * 2139 * Main question: may we further continue forward transmission 2140 * with the same cwnd? 2141 */ 2142 static bool tcp_time_to_recover(struct sock *sk, int flag) 2143 { 2144 struct tcp_sock *tp = tcp_sk(sk); 2145 __u32 packets_out; 2146 2147 /* Trick#1: The loss is proven. */ 2148 if (tp->lost_out) 2149 return true; 2150 2151 /* Not-A-Trick#2 : Classic rule... */ 2152 if (tcp_dupack_heuristics(tp) > tp->reordering) 2153 return true; 2154 2155 /* Trick#4: It is still not OK... But will it be useful to delay 2156 * recovery more? 2157 */ 2158 packets_out = tp->packets_out; 2159 if (packets_out <= tp->reordering && 2160 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 2161 !tcp_may_send_now(sk)) { 2162 /* We have nothing to send. This connection is limited 2163 * either by receiver window or by application. 2164 */ 2165 return true; 2166 } 2167 2168 /* If a thin stream is detected, retransmit after first 2169 * received dupack. Employ only if SACK is supported in order 2170 * to avoid possible corner-case series of spurious retransmissions 2171 * Use only if there are no unsent data. 2172 */ 2173 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) && 2174 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 && 2175 tcp_is_sack(tp) && !tcp_send_head(sk)) 2176 return true; 2177 2178 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious 2179 * retransmissions due to small network reorderings, we implement 2180 * Mitigation A.3 in the RFC and delay the retransmission for a short 2181 * interval if appropriate. 2182 */ 2183 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out && 2184 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) && 2185 !tcp_may_send_now(sk)) 2186 return !tcp_pause_early_retransmit(sk, flag); 2187 2188 return false; 2189 } 2190 2191 /* Detect loss in event "A" above by marking head of queue up as lost. 2192 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments 2193 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2194 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2195 * the maximum SACKed segments to pass before reaching this limit. 2196 */ 2197 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2198 { 2199 struct tcp_sock *tp = tcp_sk(sk); 2200 struct sk_buff *skb; 2201 int cnt, oldcnt; 2202 int err; 2203 unsigned int mss; 2204 /* Use SACK to deduce losses of new sequences sent during recovery */ 2205 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2206 2207 WARN_ON(packets > tp->packets_out); 2208 if (tp->lost_skb_hint) { 2209 skb = tp->lost_skb_hint; 2210 cnt = tp->lost_cnt_hint; 2211 /* Head already handled? */ 2212 if (mark_head && skb != tcp_write_queue_head(sk)) 2213 return; 2214 } else { 2215 skb = tcp_write_queue_head(sk); 2216 cnt = 0; 2217 } 2218 2219 tcp_for_write_queue_from(skb, sk) { 2220 if (skb == tcp_send_head(sk)) 2221 break; 2222 /* TODO: do this better */ 2223 /* this is not the most efficient way to do this... */ 2224 tp->lost_skb_hint = skb; 2225 tp->lost_cnt_hint = cnt; 2226 2227 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2228 break; 2229 2230 oldcnt = cnt; 2231 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2232 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2233 cnt += tcp_skb_pcount(skb); 2234 2235 if (cnt > packets) { 2236 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2237 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2238 (oldcnt >= packets)) 2239 break; 2240 2241 mss = skb_shinfo(skb)->gso_size; 2242 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss); 2243 if (err < 0) 2244 break; 2245 cnt = packets; 2246 } 2247 2248 tcp_skb_mark_lost(tp, skb); 2249 2250 if (mark_head) 2251 break; 2252 } 2253 tcp_verify_left_out(tp); 2254 } 2255 2256 /* Account newly detected lost packet(s) */ 2257 2258 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2259 { 2260 struct tcp_sock *tp = tcp_sk(sk); 2261 2262 if (tcp_is_reno(tp)) { 2263 tcp_mark_head_lost(sk, 1, 1); 2264 } else if (tcp_is_fack(tp)) { 2265 int lost = tp->fackets_out - tp->reordering; 2266 if (lost <= 0) 2267 lost = 1; 2268 tcp_mark_head_lost(sk, lost, 0); 2269 } else { 2270 int sacked_upto = tp->sacked_out - tp->reordering; 2271 if (sacked_upto >= 0) 2272 tcp_mark_head_lost(sk, sacked_upto, 0); 2273 else if (fast_rexmit) 2274 tcp_mark_head_lost(sk, 1, 1); 2275 } 2276 } 2277 2278 /* CWND moderation, preventing bursts due to too big ACKs 2279 * in dubious situations. 2280 */ 2281 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 2282 { 2283 tp->snd_cwnd = min(tp->snd_cwnd, 2284 tcp_packets_in_flight(tp) + tcp_max_burst(tp)); 2285 tp->snd_cwnd_stamp = tcp_time_stamp; 2286 } 2287 2288 /* Nothing was retransmitted or returned timestamp is less 2289 * than timestamp of the first retransmission. 2290 */ 2291 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2292 { 2293 return !tp->retrans_stamp || 2294 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2295 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp)); 2296 } 2297 2298 /* Undo procedures. */ 2299 2300 #if FASTRETRANS_DEBUG > 1 2301 static void DBGUNDO(struct sock *sk, const char *msg) 2302 { 2303 struct tcp_sock *tp = tcp_sk(sk); 2304 struct inet_sock *inet = inet_sk(sk); 2305 2306 if (sk->sk_family == AF_INET) { 2307 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2308 msg, 2309 &inet->inet_daddr, ntohs(inet->inet_dport), 2310 tp->snd_cwnd, tcp_left_out(tp), 2311 tp->snd_ssthresh, tp->prior_ssthresh, 2312 tp->packets_out); 2313 } 2314 #if IS_ENABLED(CONFIG_IPV6) 2315 else if (sk->sk_family == AF_INET6) { 2316 struct ipv6_pinfo *np = inet6_sk(sk); 2317 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2318 msg, 2319 &np->daddr, ntohs(inet->inet_dport), 2320 tp->snd_cwnd, tcp_left_out(tp), 2321 tp->snd_ssthresh, tp->prior_ssthresh, 2322 tp->packets_out); 2323 } 2324 #endif 2325 } 2326 #else 2327 #define DBGUNDO(x...) do { } while (0) 2328 #endif 2329 2330 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2331 { 2332 struct tcp_sock *tp = tcp_sk(sk); 2333 2334 if (unmark_loss) { 2335 struct sk_buff *skb; 2336 2337 tcp_for_write_queue(skb, sk) { 2338 if (skb == tcp_send_head(sk)) 2339 break; 2340 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2341 } 2342 tp->lost_out = 0; 2343 tcp_clear_all_retrans_hints(tp); 2344 } 2345 2346 if (tp->prior_ssthresh) { 2347 const struct inet_connection_sock *icsk = inet_csk(sk); 2348 2349 if (icsk->icsk_ca_ops->undo_cwnd) 2350 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2351 else 2352 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1); 2353 2354 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2355 tp->snd_ssthresh = tp->prior_ssthresh; 2356 TCP_ECN_withdraw_cwr(tp); 2357 } 2358 } else { 2359 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 2360 } 2361 tp->snd_cwnd_stamp = tcp_time_stamp; 2362 tp->undo_marker = 0; 2363 } 2364 2365 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2366 { 2367 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2368 } 2369 2370 /* People celebrate: "We love our President!" */ 2371 static bool tcp_try_undo_recovery(struct sock *sk) 2372 { 2373 struct tcp_sock *tp = tcp_sk(sk); 2374 2375 if (tcp_may_undo(tp)) { 2376 int mib_idx; 2377 2378 /* Happy end! We did not retransmit anything 2379 * or our original transmission succeeded. 2380 */ 2381 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2382 tcp_undo_cwnd_reduction(sk, false); 2383 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2384 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2385 else 2386 mib_idx = LINUX_MIB_TCPFULLUNDO; 2387 2388 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2389 } 2390 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2391 /* Hold old state until something *above* high_seq 2392 * is ACKed. For Reno it is MUST to prevent false 2393 * fast retransmits (RFC2582). SACK TCP is safe. */ 2394 tcp_moderate_cwnd(tp); 2395 return true; 2396 } 2397 tcp_set_ca_state(sk, TCP_CA_Open); 2398 return false; 2399 } 2400 2401 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2402 static bool tcp_try_undo_dsack(struct sock *sk) 2403 { 2404 struct tcp_sock *tp = tcp_sk(sk); 2405 2406 if (tp->undo_marker && !tp->undo_retrans) { 2407 DBGUNDO(sk, "D-SACK"); 2408 tcp_undo_cwnd_reduction(sk, false); 2409 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2410 return true; 2411 } 2412 return false; 2413 } 2414 2415 /* We can clear retrans_stamp when there are no retransmissions in the 2416 * window. It would seem that it is trivially available for us in 2417 * tp->retrans_out, however, that kind of assumptions doesn't consider 2418 * what will happen if errors occur when sending retransmission for the 2419 * second time. ...It could the that such segment has only 2420 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2421 * the head skb is enough except for some reneging corner cases that 2422 * are not worth the effort. 2423 * 2424 * Main reason for all this complexity is the fact that connection dying 2425 * time now depends on the validity of the retrans_stamp, in particular, 2426 * that successive retransmissions of a segment must not advance 2427 * retrans_stamp under any conditions. 2428 */ 2429 static bool tcp_any_retrans_done(const struct sock *sk) 2430 { 2431 const struct tcp_sock *tp = tcp_sk(sk); 2432 struct sk_buff *skb; 2433 2434 if (tp->retrans_out) 2435 return true; 2436 2437 skb = tcp_write_queue_head(sk); 2438 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2439 return true; 2440 2441 return false; 2442 } 2443 2444 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2445 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2446 { 2447 struct tcp_sock *tp = tcp_sk(sk); 2448 2449 if (frto_undo || tcp_may_undo(tp)) { 2450 tcp_undo_cwnd_reduction(sk, true); 2451 2452 DBGUNDO(sk, "partial loss"); 2453 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2454 if (frto_undo) 2455 NET_INC_STATS_BH(sock_net(sk), 2456 LINUX_MIB_TCPSPURIOUSRTOS); 2457 inet_csk(sk)->icsk_retransmits = 0; 2458 if (frto_undo || tcp_is_sack(tp)) 2459 tcp_set_ca_state(sk, TCP_CA_Open); 2460 return true; 2461 } 2462 return false; 2463 } 2464 2465 /* The cwnd reduction in CWR and Recovery use the PRR algorithm 2466 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/ 2467 * It computes the number of packets to send (sndcnt) based on packets newly 2468 * delivered: 2469 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2470 * cwnd reductions across a full RTT. 2471 * 2) If packets in flight is lower than ssthresh (such as due to excess 2472 * losses and/or application stalls), do not perform any further cwnd 2473 * reductions, but instead slow start up to ssthresh. 2474 */ 2475 static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh) 2476 { 2477 struct tcp_sock *tp = tcp_sk(sk); 2478 2479 tp->high_seq = tp->snd_nxt; 2480 tp->tlp_high_seq = 0; 2481 tp->snd_cwnd_cnt = 0; 2482 tp->prior_cwnd = tp->snd_cwnd; 2483 tp->prr_delivered = 0; 2484 tp->prr_out = 0; 2485 if (set_ssthresh) 2486 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2487 TCP_ECN_queue_cwr(tp); 2488 } 2489 2490 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked, 2491 int fast_rexmit) 2492 { 2493 struct tcp_sock *tp = tcp_sk(sk); 2494 int sndcnt = 0; 2495 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2496 int newly_acked_sacked = prior_unsacked - 2497 (tp->packets_out - tp->sacked_out); 2498 2499 tp->prr_delivered += newly_acked_sacked; 2500 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) { 2501 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2502 tp->prior_cwnd - 1; 2503 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2504 } else { 2505 sndcnt = min_t(int, delta, 2506 max_t(int, tp->prr_delivered - tp->prr_out, 2507 newly_acked_sacked) + 1); 2508 } 2509 2510 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0)); 2511 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2512 } 2513 2514 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2515 { 2516 struct tcp_sock *tp = tcp_sk(sk); 2517 2518 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2519 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || 2520 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) { 2521 tp->snd_cwnd = tp->snd_ssthresh; 2522 tp->snd_cwnd_stamp = tcp_time_stamp; 2523 } 2524 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2525 } 2526 2527 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2528 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh) 2529 { 2530 struct tcp_sock *tp = tcp_sk(sk); 2531 2532 tp->prior_ssthresh = 0; 2533 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2534 tp->undo_marker = 0; 2535 tcp_init_cwnd_reduction(sk, set_ssthresh); 2536 tcp_set_ca_state(sk, TCP_CA_CWR); 2537 } 2538 } 2539 2540 static void tcp_try_keep_open(struct sock *sk) 2541 { 2542 struct tcp_sock *tp = tcp_sk(sk); 2543 int state = TCP_CA_Open; 2544 2545 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2546 state = TCP_CA_Disorder; 2547 2548 if (inet_csk(sk)->icsk_ca_state != state) { 2549 tcp_set_ca_state(sk, state); 2550 tp->high_seq = tp->snd_nxt; 2551 } 2552 } 2553 2554 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked) 2555 { 2556 struct tcp_sock *tp = tcp_sk(sk); 2557 2558 tcp_verify_left_out(tp); 2559 2560 if (!tcp_any_retrans_done(sk)) 2561 tp->retrans_stamp = 0; 2562 2563 if (flag & FLAG_ECE) 2564 tcp_enter_cwr(sk, 1); 2565 2566 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2567 tcp_try_keep_open(sk); 2568 } else { 2569 tcp_cwnd_reduction(sk, prior_unsacked, 0); 2570 } 2571 } 2572 2573 static void tcp_mtup_probe_failed(struct sock *sk) 2574 { 2575 struct inet_connection_sock *icsk = inet_csk(sk); 2576 2577 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2578 icsk->icsk_mtup.probe_size = 0; 2579 } 2580 2581 static void tcp_mtup_probe_success(struct sock *sk) 2582 { 2583 struct tcp_sock *tp = tcp_sk(sk); 2584 struct inet_connection_sock *icsk = inet_csk(sk); 2585 2586 /* FIXME: breaks with very large cwnd */ 2587 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2588 tp->snd_cwnd = tp->snd_cwnd * 2589 tcp_mss_to_mtu(sk, tp->mss_cache) / 2590 icsk->icsk_mtup.probe_size; 2591 tp->snd_cwnd_cnt = 0; 2592 tp->snd_cwnd_stamp = tcp_time_stamp; 2593 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2594 2595 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2596 icsk->icsk_mtup.probe_size = 0; 2597 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2598 } 2599 2600 /* Do a simple retransmit without using the backoff mechanisms in 2601 * tcp_timer. This is used for path mtu discovery. 2602 * The socket is already locked here. 2603 */ 2604 void tcp_simple_retransmit(struct sock *sk) 2605 { 2606 const struct inet_connection_sock *icsk = inet_csk(sk); 2607 struct tcp_sock *tp = tcp_sk(sk); 2608 struct sk_buff *skb; 2609 unsigned int mss = tcp_current_mss(sk); 2610 u32 prior_lost = tp->lost_out; 2611 2612 tcp_for_write_queue(skb, sk) { 2613 if (skb == tcp_send_head(sk)) 2614 break; 2615 if (tcp_skb_seglen(skb) > mss && 2616 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2617 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2618 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2619 tp->retrans_out -= tcp_skb_pcount(skb); 2620 } 2621 tcp_skb_mark_lost_uncond_verify(tp, skb); 2622 } 2623 } 2624 2625 tcp_clear_retrans_hints_partial(tp); 2626 2627 if (prior_lost == tp->lost_out) 2628 return; 2629 2630 if (tcp_is_reno(tp)) 2631 tcp_limit_reno_sacked(tp); 2632 2633 tcp_verify_left_out(tp); 2634 2635 /* Don't muck with the congestion window here. 2636 * Reason is that we do not increase amount of _data_ 2637 * in network, but units changed and effective 2638 * cwnd/ssthresh really reduced now. 2639 */ 2640 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2641 tp->high_seq = tp->snd_nxt; 2642 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2643 tp->prior_ssthresh = 0; 2644 tp->undo_marker = 0; 2645 tcp_set_ca_state(sk, TCP_CA_Loss); 2646 } 2647 tcp_xmit_retransmit_queue(sk); 2648 } 2649 EXPORT_SYMBOL(tcp_simple_retransmit); 2650 2651 static void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2652 { 2653 struct tcp_sock *tp = tcp_sk(sk); 2654 int mib_idx; 2655 2656 if (tcp_is_reno(tp)) 2657 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2658 else 2659 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2660 2661 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2662 2663 tp->prior_ssthresh = 0; 2664 tp->undo_marker = tp->snd_una; 2665 tp->undo_retrans = tp->retrans_out; 2666 2667 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2668 if (!ece_ack) 2669 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2670 tcp_init_cwnd_reduction(sk, true); 2671 } 2672 tcp_set_ca_state(sk, TCP_CA_Recovery); 2673 } 2674 2675 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2676 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2677 */ 2678 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack) 2679 { 2680 struct inet_connection_sock *icsk = inet_csk(sk); 2681 struct tcp_sock *tp = tcp_sk(sk); 2682 bool recovered = !before(tp->snd_una, tp->high_seq); 2683 2684 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2685 if (flag & FLAG_ORIG_SACK_ACKED) { 2686 /* Step 3.b. A timeout is spurious if not all data are 2687 * lost, i.e., never-retransmitted data are (s)acked. 2688 */ 2689 tcp_try_undo_loss(sk, true); 2690 return; 2691 } 2692 if (after(tp->snd_nxt, tp->high_seq) && 2693 (flag & FLAG_DATA_SACKED || is_dupack)) { 2694 tp->frto = 0; /* Loss was real: 2nd part of step 3.a */ 2695 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2696 tp->high_seq = tp->snd_nxt; 2697 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 2698 TCP_NAGLE_OFF); 2699 if (after(tp->snd_nxt, tp->high_seq)) 2700 return; /* Step 2.b */ 2701 tp->frto = 0; 2702 } 2703 } 2704 2705 if (recovered) { 2706 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2707 icsk->icsk_retransmits = 0; 2708 tcp_try_undo_recovery(sk); 2709 return; 2710 } 2711 if (flag & FLAG_DATA_ACKED) 2712 icsk->icsk_retransmits = 0; 2713 if (tcp_is_reno(tp)) { 2714 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2715 * delivered. Lower inflight to clock out (re)tranmissions. 2716 */ 2717 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2718 tcp_add_reno_sack(sk); 2719 else if (flag & FLAG_SND_UNA_ADVANCED) 2720 tcp_reset_reno_sack(tp); 2721 } 2722 if (tcp_try_undo_loss(sk, false)) 2723 return; 2724 tcp_xmit_retransmit_queue(sk); 2725 } 2726 2727 /* Undo during fast recovery after partial ACK. */ 2728 static bool tcp_try_undo_partial(struct sock *sk, const int acked, 2729 const int prior_unsacked) 2730 { 2731 struct tcp_sock *tp = tcp_sk(sk); 2732 2733 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2734 /* Plain luck! Hole if filled with delayed 2735 * packet, rather than with a retransmit. 2736 */ 2737 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2738 2739 /* We are getting evidence that the reordering degree is higher 2740 * than we realized. If there are no retransmits out then we 2741 * can undo. Otherwise we clock out new packets but do not 2742 * mark more packets lost or retransmit more. 2743 */ 2744 if (tp->retrans_out) { 2745 tcp_cwnd_reduction(sk, prior_unsacked, 0); 2746 return true; 2747 } 2748 2749 if (!tcp_any_retrans_done(sk)) 2750 tp->retrans_stamp = 0; 2751 2752 DBGUNDO(sk, "partial recovery"); 2753 tcp_undo_cwnd_reduction(sk, true); 2754 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2755 tcp_try_keep_open(sk); 2756 return true; 2757 } 2758 return false; 2759 } 2760 2761 /* Process an event, which can update packets-in-flight not trivially. 2762 * Main goal of this function is to calculate new estimate for left_out, 2763 * taking into account both packets sitting in receiver's buffer and 2764 * packets lost by network. 2765 * 2766 * Besides that it does CWND reduction, when packet loss is detected 2767 * and changes state of machine. 2768 * 2769 * It does _not_ decide what to send, it is made in function 2770 * tcp_xmit_retransmit_queue(). 2771 */ 2772 static void tcp_fastretrans_alert(struct sock *sk, const int acked, 2773 const int prior_unsacked, 2774 bool is_dupack, int flag) 2775 { 2776 struct inet_connection_sock *icsk = inet_csk(sk); 2777 struct tcp_sock *tp = tcp_sk(sk); 2778 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2779 (tcp_fackets_out(tp) > tp->reordering)); 2780 int fast_rexmit = 0; 2781 2782 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2783 tp->sacked_out = 0; 2784 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2785 tp->fackets_out = 0; 2786 2787 /* Now state machine starts. 2788 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2789 if (flag & FLAG_ECE) 2790 tp->prior_ssthresh = 0; 2791 2792 /* B. In all the states check for reneging SACKs. */ 2793 if (tcp_check_sack_reneging(sk, flag)) 2794 return; 2795 2796 /* C. Check consistency of the current state. */ 2797 tcp_verify_left_out(tp); 2798 2799 /* D. Check state exit conditions. State can be terminated 2800 * when high_seq is ACKed. */ 2801 if (icsk->icsk_ca_state == TCP_CA_Open) { 2802 WARN_ON(tp->retrans_out != 0); 2803 tp->retrans_stamp = 0; 2804 } else if (!before(tp->snd_una, tp->high_seq)) { 2805 switch (icsk->icsk_ca_state) { 2806 case TCP_CA_CWR: 2807 /* CWR is to be held something *above* high_seq 2808 * is ACKed for CWR bit to reach receiver. */ 2809 if (tp->snd_una != tp->high_seq) { 2810 tcp_end_cwnd_reduction(sk); 2811 tcp_set_ca_state(sk, TCP_CA_Open); 2812 } 2813 break; 2814 2815 case TCP_CA_Recovery: 2816 if (tcp_is_reno(tp)) 2817 tcp_reset_reno_sack(tp); 2818 if (tcp_try_undo_recovery(sk)) 2819 return; 2820 tcp_end_cwnd_reduction(sk); 2821 break; 2822 } 2823 } 2824 2825 /* E. Process state. */ 2826 switch (icsk->icsk_ca_state) { 2827 case TCP_CA_Recovery: 2828 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2829 if (tcp_is_reno(tp) && is_dupack) 2830 tcp_add_reno_sack(sk); 2831 } else { 2832 if (tcp_try_undo_partial(sk, acked, prior_unsacked)) 2833 return; 2834 /* Partial ACK arrived. Force fast retransmit. */ 2835 do_lost = tcp_is_reno(tp) || 2836 tcp_fackets_out(tp) > tp->reordering; 2837 } 2838 if (tcp_try_undo_dsack(sk)) { 2839 tcp_try_keep_open(sk); 2840 return; 2841 } 2842 break; 2843 case TCP_CA_Loss: 2844 tcp_process_loss(sk, flag, is_dupack); 2845 if (icsk->icsk_ca_state != TCP_CA_Open) 2846 return; 2847 /* Fall through to processing in Open state. */ 2848 default: 2849 if (tcp_is_reno(tp)) { 2850 if (flag & FLAG_SND_UNA_ADVANCED) 2851 tcp_reset_reno_sack(tp); 2852 if (is_dupack) 2853 tcp_add_reno_sack(sk); 2854 } 2855 2856 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2857 tcp_try_undo_dsack(sk); 2858 2859 if (!tcp_time_to_recover(sk, flag)) { 2860 tcp_try_to_open(sk, flag, prior_unsacked); 2861 return; 2862 } 2863 2864 /* MTU probe failure: don't reduce cwnd */ 2865 if (icsk->icsk_ca_state < TCP_CA_CWR && 2866 icsk->icsk_mtup.probe_size && 2867 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2868 tcp_mtup_probe_failed(sk); 2869 /* Restores the reduction we did in tcp_mtup_probe() */ 2870 tp->snd_cwnd++; 2871 tcp_simple_retransmit(sk); 2872 return; 2873 } 2874 2875 /* Otherwise enter Recovery state */ 2876 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2877 fast_rexmit = 1; 2878 } 2879 2880 if (do_lost) 2881 tcp_update_scoreboard(sk, fast_rexmit); 2882 tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit); 2883 tcp_xmit_retransmit_queue(sk); 2884 } 2885 2886 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2887 s32 seq_rtt, s32 sack_rtt) 2888 { 2889 const struct tcp_sock *tp = tcp_sk(sk); 2890 2891 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2892 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2893 * Karn's algorithm forbids taking RTT if some retransmitted data 2894 * is acked (RFC6298). 2895 */ 2896 if (flag & FLAG_RETRANS_DATA_ACKED) 2897 seq_rtt = -1; 2898 2899 if (seq_rtt < 0) 2900 seq_rtt = sack_rtt; 2901 2902 /* RTTM Rule: A TSecr value received in a segment is used to 2903 * update the averaged RTT measurement only if the segment 2904 * acknowledges some new data, i.e., only if it advances the 2905 * left edge of the send window. 2906 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2907 */ 2908 if (seq_rtt < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2909 flag & FLAG_ACKED) 2910 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr; 2911 2912 if (seq_rtt < 0) 2913 return false; 2914 2915 tcp_rtt_estimator(sk, seq_rtt); 2916 tcp_set_rto(sk); 2917 2918 /* RFC6298: only reset backoff on valid RTT measurement. */ 2919 inet_csk(sk)->icsk_backoff = 0; 2920 return true; 2921 } 2922 2923 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2924 static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp) 2925 { 2926 struct tcp_sock *tp = tcp_sk(sk); 2927 s32 seq_rtt = -1; 2928 2929 if (synack_stamp && !tp->total_retrans) 2930 seq_rtt = tcp_time_stamp - synack_stamp; 2931 2932 /* If the ACK acks both the SYNACK and the (Fast Open'd) data packets 2933 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack() 2934 */ 2935 if (!tp->srtt) 2936 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt, -1); 2937 } 2938 2939 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked, u32 in_flight) 2940 { 2941 const struct inet_connection_sock *icsk = inet_csk(sk); 2942 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked, in_flight); 2943 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 2944 } 2945 2946 /* Restart timer after forward progress on connection. 2947 * RFC2988 recommends to restart timer to now+rto. 2948 */ 2949 void tcp_rearm_rto(struct sock *sk) 2950 { 2951 const struct inet_connection_sock *icsk = inet_csk(sk); 2952 struct tcp_sock *tp = tcp_sk(sk); 2953 2954 /* If the retrans timer is currently being used by Fast Open 2955 * for SYN-ACK retrans purpose, stay put. 2956 */ 2957 if (tp->fastopen_rsk) 2958 return; 2959 2960 if (!tp->packets_out) { 2961 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2962 } else { 2963 u32 rto = inet_csk(sk)->icsk_rto; 2964 /* Offset the time elapsed after installing regular RTO */ 2965 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 2966 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2967 struct sk_buff *skb = tcp_write_queue_head(sk); 2968 const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto; 2969 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp); 2970 /* delta may not be positive if the socket is locked 2971 * when the retrans timer fires and is rescheduled. 2972 */ 2973 if (delta > 0) 2974 rto = delta; 2975 } 2976 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 2977 TCP_RTO_MAX); 2978 } 2979 } 2980 2981 /* This function is called when the delayed ER timer fires. TCP enters 2982 * fast recovery and performs fast-retransmit. 2983 */ 2984 void tcp_resume_early_retransmit(struct sock *sk) 2985 { 2986 struct tcp_sock *tp = tcp_sk(sk); 2987 2988 tcp_rearm_rto(sk); 2989 2990 /* Stop if ER is disabled after the delayed ER timer is scheduled */ 2991 if (!tp->do_early_retrans) 2992 return; 2993 2994 tcp_enter_recovery(sk, false); 2995 tcp_update_scoreboard(sk, 1); 2996 tcp_xmit_retransmit_queue(sk); 2997 } 2998 2999 /* If we get here, the whole TSO packet has not been acked. */ 3000 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3001 { 3002 struct tcp_sock *tp = tcp_sk(sk); 3003 u32 packets_acked; 3004 3005 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3006 3007 packets_acked = tcp_skb_pcount(skb); 3008 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3009 return 0; 3010 packets_acked -= tcp_skb_pcount(skb); 3011 3012 if (packets_acked) { 3013 BUG_ON(tcp_skb_pcount(skb) == 0); 3014 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3015 } 3016 3017 return packets_acked; 3018 } 3019 3020 /* Remove acknowledged frames from the retransmission queue. If our packet 3021 * is before the ack sequence we can discard it as it's confirmed to have 3022 * arrived at the other end. 3023 */ 3024 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3025 u32 prior_snd_una, s32 sack_rtt) 3026 { 3027 struct tcp_sock *tp = tcp_sk(sk); 3028 const struct inet_connection_sock *icsk = inet_csk(sk); 3029 struct sk_buff *skb; 3030 u32 now = tcp_time_stamp; 3031 bool fully_acked = true; 3032 int flag = 0; 3033 u32 pkts_acked = 0; 3034 u32 reord = tp->packets_out; 3035 u32 prior_sacked = tp->sacked_out; 3036 s32 seq_rtt = -1; 3037 s32 ca_seq_rtt = -1; 3038 ktime_t last_ackt = net_invalid_timestamp(); 3039 bool rtt_update; 3040 3041 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3042 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3043 u32 acked_pcount; 3044 u8 sacked = scb->sacked; 3045 3046 /* Determine how many packets and what bytes were acked, tso and else */ 3047 if (after(scb->end_seq, tp->snd_una)) { 3048 if (tcp_skb_pcount(skb) == 1 || 3049 !after(tp->snd_una, scb->seq)) 3050 break; 3051 3052 acked_pcount = tcp_tso_acked(sk, skb); 3053 if (!acked_pcount) 3054 break; 3055 3056 fully_acked = false; 3057 } else { 3058 acked_pcount = tcp_skb_pcount(skb); 3059 } 3060 3061 if (sacked & TCPCB_RETRANS) { 3062 if (sacked & TCPCB_SACKED_RETRANS) 3063 tp->retrans_out -= acked_pcount; 3064 flag |= FLAG_RETRANS_DATA_ACKED; 3065 } else { 3066 ca_seq_rtt = now - scb->when; 3067 last_ackt = skb->tstamp; 3068 if (seq_rtt < 0) { 3069 seq_rtt = ca_seq_rtt; 3070 } 3071 if (!(sacked & TCPCB_SACKED_ACKED)) 3072 reord = min(pkts_acked, reord); 3073 if (!after(scb->end_seq, tp->high_seq)) 3074 flag |= FLAG_ORIG_SACK_ACKED; 3075 } 3076 3077 if (sacked & TCPCB_SACKED_ACKED) 3078 tp->sacked_out -= acked_pcount; 3079 if (sacked & TCPCB_LOST) 3080 tp->lost_out -= acked_pcount; 3081 3082 tp->packets_out -= acked_pcount; 3083 pkts_acked += acked_pcount; 3084 3085 /* Initial outgoing SYN's get put onto the write_queue 3086 * just like anything else we transmit. It is not 3087 * true data, and if we misinform our callers that 3088 * this ACK acks real data, we will erroneously exit 3089 * connection startup slow start one packet too 3090 * quickly. This is severely frowned upon behavior. 3091 */ 3092 if (!(scb->tcp_flags & TCPHDR_SYN)) { 3093 flag |= FLAG_DATA_ACKED; 3094 } else { 3095 flag |= FLAG_SYN_ACKED; 3096 tp->retrans_stamp = 0; 3097 } 3098 3099 if (!fully_acked) 3100 break; 3101 3102 tcp_unlink_write_queue(skb, sk); 3103 sk_wmem_free_skb(sk, skb); 3104 if (skb == tp->retransmit_skb_hint) 3105 tp->retransmit_skb_hint = NULL; 3106 if (skb == tp->lost_skb_hint) 3107 tp->lost_skb_hint = NULL; 3108 } 3109 3110 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3111 tp->snd_up = tp->snd_una; 3112 3113 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3114 flag |= FLAG_SACK_RENEGING; 3115 3116 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt, sack_rtt); 3117 3118 if (flag & FLAG_ACKED) { 3119 const struct tcp_congestion_ops *ca_ops 3120 = inet_csk(sk)->icsk_ca_ops; 3121 3122 tcp_rearm_rto(sk); 3123 if (unlikely(icsk->icsk_mtup.probe_size && 3124 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3125 tcp_mtup_probe_success(sk); 3126 } 3127 3128 if (tcp_is_reno(tp)) { 3129 tcp_remove_reno_sacks(sk, pkts_acked); 3130 } else { 3131 int delta; 3132 3133 /* Non-retransmitted hole got filled? That's reordering */ 3134 if (reord < prior_fackets) 3135 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3136 3137 delta = tcp_is_fack(tp) ? pkts_acked : 3138 prior_sacked - tp->sacked_out; 3139 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3140 } 3141 3142 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3143 3144 if (ca_ops->pkts_acked) { 3145 s32 rtt_us = -1; 3146 3147 /* Is the ACK triggering packet unambiguous? */ 3148 if (!(flag & FLAG_RETRANS_DATA_ACKED)) { 3149 /* High resolution needed and available? */ 3150 if (ca_ops->flags & TCP_CONG_RTT_STAMP && 3151 !ktime_equal(last_ackt, 3152 net_invalid_timestamp())) 3153 rtt_us = ktime_us_delta(ktime_get_real(), 3154 last_ackt); 3155 else if (ca_seq_rtt >= 0) 3156 rtt_us = jiffies_to_usecs(ca_seq_rtt); 3157 } 3158 3159 ca_ops->pkts_acked(sk, pkts_acked, rtt_us); 3160 } 3161 } else if (skb && rtt_update && sack_rtt >= 0 && 3162 sack_rtt > (s32)(now - TCP_SKB_CB(skb)->when)) { 3163 /* Do not re-arm RTO if the sack RTT is measured from data sent 3164 * after when the head was last (re)transmitted. Otherwise the 3165 * timeout may continue to extend in loss recovery. 3166 */ 3167 tcp_rearm_rto(sk); 3168 } 3169 3170 #if FASTRETRANS_DEBUG > 0 3171 WARN_ON((int)tp->sacked_out < 0); 3172 WARN_ON((int)tp->lost_out < 0); 3173 WARN_ON((int)tp->retrans_out < 0); 3174 if (!tp->packets_out && tcp_is_sack(tp)) { 3175 icsk = inet_csk(sk); 3176 if (tp->lost_out) { 3177 pr_debug("Leak l=%u %d\n", 3178 tp->lost_out, icsk->icsk_ca_state); 3179 tp->lost_out = 0; 3180 } 3181 if (tp->sacked_out) { 3182 pr_debug("Leak s=%u %d\n", 3183 tp->sacked_out, icsk->icsk_ca_state); 3184 tp->sacked_out = 0; 3185 } 3186 if (tp->retrans_out) { 3187 pr_debug("Leak r=%u %d\n", 3188 tp->retrans_out, icsk->icsk_ca_state); 3189 tp->retrans_out = 0; 3190 } 3191 } 3192 #endif 3193 return flag; 3194 } 3195 3196 static void tcp_ack_probe(struct sock *sk) 3197 { 3198 const struct tcp_sock *tp = tcp_sk(sk); 3199 struct inet_connection_sock *icsk = inet_csk(sk); 3200 3201 /* Was it a usable window open? */ 3202 3203 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3204 icsk->icsk_backoff = 0; 3205 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3206 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3207 * This function is not for random using! 3208 */ 3209 } else { 3210 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3211 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 3212 TCP_RTO_MAX); 3213 } 3214 } 3215 3216 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3217 { 3218 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3219 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3220 } 3221 3222 /* Decide wheather to run the increase function of congestion control. */ 3223 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3224 { 3225 if (tcp_in_cwnd_reduction(sk)) 3226 return false; 3227 3228 /* If reordering is high then always grow cwnd whenever data is 3229 * delivered regardless of its ordering. Otherwise stay conservative 3230 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3231 * new SACK or ECE mark may first advance cwnd here and later reduce 3232 * cwnd in tcp_fastretrans_alert() based on more states. 3233 */ 3234 if (tcp_sk(sk)->reordering > sysctl_tcp_reordering) 3235 return flag & FLAG_FORWARD_PROGRESS; 3236 3237 return flag & FLAG_DATA_ACKED; 3238 } 3239 3240 /* Check that window update is acceptable. 3241 * The function assumes that snd_una<=ack<=snd_next. 3242 */ 3243 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3244 const u32 ack, const u32 ack_seq, 3245 const u32 nwin) 3246 { 3247 return after(ack, tp->snd_una) || 3248 after(ack_seq, tp->snd_wl1) || 3249 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3250 } 3251 3252 /* Update our send window. 3253 * 3254 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3255 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3256 */ 3257 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3258 u32 ack_seq) 3259 { 3260 struct tcp_sock *tp = tcp_sk(sk); 3261 int flag = 0; 3262 u32 nwin = ntohs(tcp_hdr(skb)->window); 3263 3264 if (likely(!tcp_hdr(skb)->syn)) 3265 nwin <<= tp->rx_opt.snd_wscale; 3266 3267 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3268 flag |= FLAG_WIN_UPDATE; 3269 tcp_update_wl(tp, ack_seq); 3270 3271 if (tp->snd_wnd != nwin) { 3272 tp->snd_wnd = nwin; 3273 3274 /* Note, it is the only place, where 3275 * fast path is recovered for sending TCP. 3276 */ 3277 tp->pred_flags = 0; 3278 tcp_fast_path_check(sk); 3279 3280 if (nwin > tp->max_window) { 3281 tp->max_window = nwin; 3282 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3283 } 3284 } 3285 } 3286 3287 tp->snd_una = ack; 3288 3289 return flag; 3290 } 3291 3292 /* RFC 5961 7 [ACK Throttling] */ 3293 static void tcp_send_challenge_ack(struct sock *sk) 3294 { 3295 /* unprotected vars, we dont care of overwrites */ 3296 static u32 challenge_timestamp; 3297 static unsigned int challenge_count; 3298 u32 now = jiffies / HZ; 3299 3300 if (now != challenge_timestamp) { 3301 challenge_timestamp = now; 3302 challenge_count = 0; 3303 } 3304 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) { 3305 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK); 3306 tcp_send_ack(sk); 3307 } 3308 } 3309 3310 static void tcp_store_ts_recent(struct tcp_sock *tp) 3311 { 3312 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3313 tp->rx_opt.ts_recent_stamp = get_seconds(); 3314 } 3315 3316 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3317 { 3318 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3319 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3320 * extra check below makes sure this can only happen 3321 * for pure ACK frames. -DaveM 3322 * 3323 * Not only, also it occurs for expired timestamps. 3324 */ 3325 3326 if (tcp_paws_check(&tp->rx_opt, 0)) 3327 tcp_store_ts_recent(tp); 3328 } 3329 } 3330 3331 /* This routine deals with acks during a TLP episode. 3332 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3333 */ 3334 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3335 { 3336 struct tcp_sock *tp = tcp_sk(sk); 3337 bool is_tlp_dupack = (ack == tp->tlp_high_seq) && 3338 !(flag & (FLAG_SND_UNA_ADVANCED | 3339 FLAG_NOT_DUP | FLAG_DATA_SACKED)); 3340 3341 /* Mark the end of TLP episode on receiving TLP dupack or when 3342 * ack is after tlp_high_seq. 3343 */ 3344 if (is_tlp_dupack) { 3345 tp->tlp_high_seq = 0; 3346 return; 3347 } 3348 3349 if (after(ack, tp->tlp_high_seq)) { 3350 tp->tlp_high_seq = 0; 3351 /* Don't reduce cwnd if DSACK arrives for TLP retrans. */ 3352 if (!(flag & FLAG_DSACKING_ACK)) { 3353 tcp_init_cwnd_reduction(sk, true); 3354 tcp_set_ca_state(sk, TCP_CA_CWR); 3355 tcp_end_cwnd_reduction(sk); 3356 tcp_try_keep_open(sk); 3357 NET_INC_STATS_BH(sock_net(sk), 3358 LINUX_MIB_TCPLOSSPROBERECOVERY); 3359 } 3360 } 3361 } 3362 3363 /* This routine deals with incoming acks, but not outgoing ones. */ 3364 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3365 { 3366 struct inet_connection_sock *icsk = inet_csk(sk); 3367 struct tcp_sock *tp = tcp_sk(sk); 3368 u32 prior_snd_una = tp->snd_una; 3369 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3370 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3371 bool is_dupack = false; 3372 u32 prior_in_flight, prior_cwnd = tp->snd_cwnd, prior_rtt = tp->srtt; 3373 u32 prior_fackets; 3374 int prior_packets = tp->packets_out; 3375 const int prior_unsacked = tp->packets_out - tp->sacked_out; 3376 int acked = 0; /* Number of packets newly acked */ 3377 s32 sack_rtt = -1; 3378 3379 /* If the ack is older than previous acks 3380 * then we can probably ignore it. 3381 */ 3382 if (before(ack, prior_snd_una)) { 3383 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3384 if (before(ack, prior_snd_una - tp->max_window)) { 3385 tcp_send_challenge_ack(sk); 3386 return -1; 3387 } 3388 goto old_ack; 3389 } 3390 3391 /* If the ack includes data we haven't sent yet, discard 3392 * this segment (RFC793 Section 3.9). 3393 */ 3394 if (after(ack, tp->snd_nxt)) 3395 goto invalid_ack; 3396 3397 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 3398 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 3399 tcp_rearm_rto(sk); 3400 3401 if (after(ack, prior_snd_una)) 3402 flag |= FLAG_SND_UNA_ADVANCED; 3403 3404 prior_fackets = tp->fackets_out; 3405 prior_in_flight = tcp_packets_in_flight(tp); 3406 3407 /* ts_recent update must be made after we are sure that the packet 3408 * is in window. 3409 */ 3410 if (flag & FLAG_UPDATE_TS_RECENT) 3411 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3412 3413 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3414 /* Window is constant, pure forward advance. 3415 * No more checks are required. 3416 * Note, we use the fact that SND.UNA>=SND.WL2. 3417 */ 3418 tcp_update_wl(tp, ack_seq); 3419 tp->snd_una = ack; 3420 flag |= FLAG_WIN_UPDATE; 3421 3422 tcp_ca_event(sk, CA_EVENT_FAST_ACK); 3423 3424 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS); 3425 } else { 3426 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3427 flag |= FLAG_DATA; 3428 else 3429 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3430 3431 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3432 3433 if (TCP_SKB_CB(skb)->sacked) 3434 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3435 &sack_rtt); 3436 3437 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb))) 3438 flag |= FLAG_ECE; 3439 3440 tcp_ca_event(sk, CA_EVENT_SLOW_ACK); 3441 } 3442 3443 /* We passed data and got it acked, remove any soft error 3444 * log. Something worked... 3445 */ 3446 sk->sk_err_soft = 0; 3447 icsk->icsk_probes_out = 0; 3448 tp->rcv_tstamp = tcp_time_stamp; 3449 if (!prior_packets) 3450 goto no_queue; 3451 3452 /* See if we can take anything off of the retransmit queue. */ 3453 acked = tp->packets_out; 3454 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, sack_rtt); 3455 acked -= tp->packets_out; 3456 3457 /* Advance cwnd if state allows */ 3458 if (tcp_may_raise_cwnd(sk, flag)) 3459 tcp_cong_avoid(sk, ack, acked, prior_in_flight); 3460 3461 if (tcp_ack_is_dubious(sk, flag)) { 3462 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3463 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3464 is_dupack, flag); 3465 } 3466 if (tp->tlp_high_seq) 3467 tcp_process_tlp_ack(sk, ack, flag); 3468 3469 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) { 3470 struct dst_entry *dst = __sk_dst_get(sk); 3471 if (dst) 3472 dst_confirm(dst); 3473 } 3474 3475 if (icsk->icsk_pending == ICSK_TIME_RETRANS) 3476 tcp_schedule_loss_probe(sk); 3477 if (tp->srtt != prior_rtt || tp->snd_cwnd != prior_cwnd) 3478 tcp_update_pacing_rate(sk); 3479 return 1; 3480 3481 no_queue: 3482 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3483 if (flag & FLAG_DSACKING_ACK) 3484 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3485 is_dupack, flag); 3486 /* If this ack opens up a zero window, clear backoff. It was 3487 * being used to time the probes, and is probably far higher than 3488 * it needs to be for normal retransmission. 3489 */ 3490 if (tcp_send_head(sk)) 3491 tcp_ack_probe(sk); 3492 3493 if (tp->tlp_high_seq) 3494 tcp_process_tlp_ack(sk, ack, flag); 3495 return 1; 3496 3497 invalid_ack: 3498 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3499 return -1; 3500 3501 old_ack: 3502 /* If data was SACKed, tag it and see if we should send more data. 3503 * If data was DSACKed, see if we can undo a cwnd reduction. 3504 */ 3505 if (TCP_SKB_CB(skb)->sacked) { 3506 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3507 &sack_rtt); 3508 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3509 is_dupack, flag); 3510 } 3511 3512 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3513 return 0; 3514 } 3515 3516 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3517 * But, this can also be called on packets in the established flow when 3518 * the fast version below fails. 3519 */ 3520 void tcp_parse_options(const struct sk_buff *skb, 3521 struct tcp_options_received *opt_rx, int estab, 3522 struct tcp_fastopen_cookie *foc) 3523 { 3524 const unsigned char *ptr; 3525 const struct tcphdr *th = tcp_hdr(skb); 3526 int length = (th->doff * 4) - sizeof(struct tcphdr); 3527 3528 ptr = (const unsigned char *)(th + 1); 3529 opt_rx->saw_tstamp = 0; 3530 3531 while (length > 0) { 3532 int opcode = *ptr++; 3533 int opsize; 3534 3535 switch (opcode) { 3536 case TCPOPT_EOL: 3537 return; 3538 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3539 length--; 3540 continue; 3541 default: 3542 opsize = *ptr++; 3543 if (opsize < 2) /* "silly options" */ 3544 return; 3545 if (opsize > length) 3546 return; /* don't parse partial options */ 3547 switch (opcode) { 3548 case TCPOPT_MSS: 3549 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3550 u16 in_mss = get_unaligned_be16(ptr); 3551 if (in_mss) { 3552 if (opt_rx->user_mss && 3553 opt_rx->user_mss < in_mss) 3554 in_mss = opt_rx->user_mss; 3555 opt_rx->mss_clamp = in_mss; 3556 } 3557 } 3558 break; 3559 case TCPOPT_WINDOW: 3560 if (opsize == TCPOLEN_WINDOW && th->syn && 3561 !estab && sysctl_tcp_window_scaling) { 3562 __u8 snd_wscale = *(__u8 *)ptr; 3563 opt_rx->wscale_ok = 1; 3564 if (snd_wscale > 14) { 3565 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n", 3566 __func__, 3567 snd_wscale); 3568 snd_wscale = 14; 3569 } 3570 opt_rx->snd_wscale = snd_wscale; 3571 } 3572 break; 3573 case TCPOPT_TIMESTAMP: 3574 if ((opsize == TCPOLEN_TIMESTAMP) && 3575 ((estab && opt_rx->tstamp_ok) || 3576 (!estab && sysctl_tcp_timestamps))) { 3577 opt_rx->saw_tstamp = 1; 3578 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3579 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3580 } 3581 break; 3582 case TCPOPT_SACK_PERM: 3583 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3584 !estab && sysctl_tcp_sack) { 3585 opt_rx->sack_ok = TCP_SACK_SEEN; 3586 tcp_sack_reset(opt_rx); 3587 } 3588 break; 3589 3590 case TCPOPT_SACK: 3591 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3592 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3593 opt_rx->sack_ok) { 3594 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3595 } 3596 break; 3597 #ifdef CONFIG_TCP_MD5SIG 3598 case TCPOPT_MD5SIG: 3599 /* 3600 * The MD5 Hash has already been 3601 * checked (see tcp_v{4,6}_do_rcv()). 3602 */ 3603 break; 3604 #endif 3605 case TCPOPT_EXP: 3606 /* Fast Open option shares code 254 using a 3607 * 16 bits magic number. It's valid only in 3608 * SYN or SYN-ACK with an even size. 3609 */ 3610 if (opsize < TCPOLEN_EXP_FASTOPEN_BASE || 3611 get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC || 3612 foc == NULL || !th->syn || (opsize & 1)) 3613 break; 3614 foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE; 3615 if (foc->len >= TCP_FASTOPEN_COOKIE_MIN && 3616 foc->len <= TCP_FASTOPEN_COOKIE_MAX) 3617 memcpy(foc->val, ptr + 2, foc->len); 3618 else if (foc->len != 0) 3619 foc->len = -1; 3620 break; 3621 3622 } 3623 ptr += opsize-2; 3624 length -= opsize; 3625 } 3626 } 3627 } 3628 EXPORT_SYMBOL(tcp_parse_options); 3629 3630 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3631 { 3632 const __be32 *ptr = (const __be32 *)(th + 1); 3633 3634 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3635 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3636 tp->rx_opt.saw_tstamp = 1; 3637 ++ptr; 3638 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3639 ++ptr; 3640 if (*ptr) 3641 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3642 else 3643 tp->rx_opt.rcv_tsecr = 0; 3644 return true; 3645 } 3646 return false; 3647 } 3648 3649 /* Fast parse options. This hopes to only see timestamps. 3650 * If it is wrong it falls back on tcp_parse_options(). 3651 */ 3652 static bool tcp_fast_parse_options(const struct sk_buff *skb, 3653 const struct tcphdr *th, struct tcp_sock *tp) 3654 { 3655 /* In the spirit of fast parsing, compare doff directly to constant 3656 * values. Because equality is used, short doff can be ignored here. 3657 */ 3658 if (th->doff == (sizeof(*th) / 4)) { 3659 tp->rx_opt.saw_tstamp = 0; 3660 return false; 3661 } else if (tp->rx_opt.tstamp_ok && 3662 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3663 if (tcp_parse_aligned_timestamp(tp, th)) 3664 return true; 3665 } 3666 3667 tcp_parse_options(skb, &tp->rx_opt, 1, NULL); 3668 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3669 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3670 3671 return true; 3672 } 3673 3674 #ifdef CONFIG_TCP_MD5SIG 3675 /* 3676 * Parse MD5 Signature option 3677 */ 3678 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3679 { 3680 int length = (th->doff << 2) - sizeof(*th); 3681 const u8 *ptr = (const u8 *)(th + 1); 3682 3683 /* If the TCP option is too short, we can short cut */ 3684 if (length < TCPOLEN_MD5SIG) 3685 return NULL; 3686 3687 while (length > 0) { 3688 int opcode = *ptr++; 3689 int opsize; 3690 3691 switch (opcode) { 3692 case TCPOPT_EOL: 3693 return NULL; 3694 case TCPOPT_NOP: 3695 length--; 3696 continue; 3697 default: 3698 opsize = *ptr++; 3699 if (opsize < 2 || opsize > length) 3700 return NULL; 3701 if (opcode == TCPOPT_MD5SIG) 3702 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3703 } 3704 ptr += opsize - 2; 3705 length -= opsize; 3706 } 3707 return NULL; 3708 } 3709 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3710 #endif 3711 3712 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3713 * 3714 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3715 * it can pass through stack. So, the following predicate verifies that 3716 * this segment is not used for anything but congestion avoidance or 3717 * fast retransmit. Moreover, we even are able to eliminate most of such 3718 * second order effects, if we apply some small "replay" window (~RTO) 3719 * to timestamp space. 3720 * 3721 * All these measures still do not guarantee that we reject wrapped ACKs 3722 * on networks with high bandwidth, when sequence space is recycled fastly, 3723 * but it guarantees that such events will be very rare and do not affect 3724 * connection seriously. This doesn't look nice, but alas, PAWS is really 3725 * buggy extension. 3726 * 3727 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3728 * states that events when retransmit arrives after original data are rare. 3729 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3730 * the biggest problem on large power networks even with minor reordering. 3731 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3732 * up to bandwidth of 18Gigabit/sec. 8) ] 3733 */ 3734 3735 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3736 { 3737 const struct tcp_sock *tp = tcp_sk(sk); 3738 const struct tcphdr *th = tcp_hdr(skb); 3739 u32 seq = TCP_SKB_CB(skb)->seq; 3740 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3741 3742 return (/* 1. Pure ACK with correct sequence number. */ 3743 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3744 3745 /* 2. ... and duplicate ACK. */ 3746 ack == tp->snd_una && 3747 3748 /* 3. ... and does not update window. */ 3749 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3750 3751 /* 4. ... and sits in replay window. */ 3752 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3753 } 3754 3755 static inline bool tcp_paws_discard(const struct sock *sk, 3756 const struct sk_buff *skb) 3757 { 3758 const struct tcp_sock *tp = tcp_sk(sk); 3759 3760 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3761 !tcp_disordered_ack(sk, skb); 3762 } 3763 3764 /* Check segment sequence number for validity. 3765 * 3766 * Segment controls are considered valid, if the segment 3767 * fits to the window after truncation to the window. Acceptability 3768 * of data (and SYN, FIN, of course) is checked separately. 3769 * See tcp_data_queue(), for example. 3770 * 3771 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3772 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3773 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3774 * (borrowed from freebsd) 3775 */ 3776 3777 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 3778 { 3779 return !before(end_seq, tp->rcv_wup) && 3780 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3781 } 3782 3783 /* When we get a reset we do this. */ 3784 void tcp_reset(struct sock *sk) 3785 { 3786 /* We want the right error as BSD sees it (and indeed as we do). */ 3787 switch (sk->sk_state) { 3788 case TCP_SYN_SENT: 3789 sk->sk_err = ECONNREFUSED; 3790 break; 3791 case TCP_CLOSE_WAIT: 3792 sk->sk_err = EPIPE; 3793 break; 3794 case TCP_CLOSE: 3795 return; 3796 default: 3797 sk->sk_err = ECONNRESET; 3798 } 3799 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3800 smp_wmb(); 3801 3802 if (!sock_flag(sk, SOCK_DEAD)) 3803 sk->sk_error_report(sk); 3804 3805 tcp_done(sk); 3806 } 3807 3808 /* 3809 * Process the FIN bit. This now behaves as it is supposed to work 3810 * and the FIN takes effect when it is validly part of sequence 3811 * space. Not before when we get holes. 3812 * 3813 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 3814 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 3815 * TIME-WAIT) 3816 * 3817 * If we are in FINWAIT-1, a received FIN indicates simultaneous 3818 * close and we go into CLOSING (and later onto TIME-WAIT) 3819 * 3820 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 3821 */ 3822 static void tcp_fin(struct sock *sk) 3823 { 3824 struct tcp_sock *tp = tcp_sk(sk); 3825 const struct dst_entry *dst; 3826 3827 inet_csk_schedule_ack(sk); 3828 3829 sk->sk_shutdown |= RCV_SHUTDOWN; 3830 sock_set_flag(sk, SOCK_DONE); 3831 3832 switch (sk->sk_state) { 3833 case TCP_SYN_RECV: 3834 case TCP_ESTABLISHED: 3835 /* Move to CLOSE_WAIT */ 3836 tcp_set_state(sk, TCP_CLOSE_WAIT); 3837 dst = __sk_dst_get(sk); 3838 if (!dst || !dst_metric(dst, RTAX_QUICKACK)) 3839 inet_csk(sk)->icsk_ack.pingpong = 1; 3840 break; 3841 3842 case TCP_CLOSE_WAIT: 3843 case TCP_CLOSING: 3844 /* Received a retransmission of the FIN, do 3845 * nothing. 3846 */ 3847 break; 3848 case TCP_LAST_ACK: 3849 /* RFC793: Remain in the LAST-ACK state. */ 3850 break; 3851 3852 case TCP_FIN_WAIT1: 3853 /* This case occurs when a simultaneous close 3854 * happens, we must ack the received FIN and 3855 * enter the CLOSING state. 3856 */ 3857 tcp_send_ack(sk); 3858 tcp_set_state(sk, TCP_CLOSING); 3859 break; 3860 case TCP_FIN_WAIT2: 3861 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 3862 tcp_send_ack(sk); 3863 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 3864 break; 3865 default: 3866 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 3867 * cases we should never reach this piece of code. 3868 */ 3869 pr_err("%s: Impossible, sk->sk_state=%d\n", 3870 __func__, sk->sk_state); 3871 break; 3872 } 3873 3874 /* It _is_ possible, that we have something out-of-order _after_ FIN. 3875 * Probably, we should reset in this case. For now drop them. 3876 */ 3877 __skb_queue_purge(&tp->out_of_order_queue); 3878 if (tcp_is_sack(tp)) 3879 tcp_sack_reset(&tp->rx_opt); 3880 sk_mem_reclaim(sk); 3881 3882 if (!sock_flag(sk, SOCK_DEAD)) { 3883 sk->sk_state_change(sk); 3884 3885 /* Do not send POLL_HUP for half duplex close. */ 3886 if (sk->sk_shutdown == SHUTDOWN_MASK || 3887 sk->sk_state == TCP_CLOSE) 3888 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 3889 else 3890 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 3891 } 3892 } 3893 3894 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 3895 u32 end_seq) 3896 { 3897 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 3898 if (before(seq, sp->start_seq)) 3899 sp->start_seq = seq; 3900 if (after(end_seq, sp->end_seq)) 3901 sp->end_seq = end_seq; 3902 return true; 3903 } 3904 return false; 3905 } 3906 3907 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 3908 { 3909 struct tcp_sock *tp = tcp_sk(sk); 3910 3911 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 3912 int mib_idx; 3913 3914 if (before(seq, tp->rcv_nxt)) 3915 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 3916 else 3917 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 3918 3919 NET_INC_STATS_BH(sock_net(sk), mib_idx); 3920 3921 tp->rx_opt.dsack = 1; 3922 tp->duplicate_sack[0].start_seq = seq; 3923 tp->duplicate_sack[0].end_seq = end_seq; 3924 } 3925 } 3926 3927 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 3928 { 3929 struct tcp_sock *tp = tcp_sk(sk); 3930 3931 if (!tp->rx_opt.dsack) 3932 tcp_dsack_set(sk, seq, end_seq); 3933 else 3934 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 3935 } 3936 3937 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 3938 { 3939 struct tcp_sock *tp = tcp_sk(sk); 3940 3941 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 3942 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 3943 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 3944 tcp_enter_quickack_mode(sk); 3945 3946 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 3947 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 3948 3949 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 3950 end_seq = tp->rcv_nxt; 3951 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 3952 } 3953 } 3954 3955 tcp_send_ack(sk); 3956 } 3957 3958 /* These routines update the SACK block as out-of-order packets arrive or 3959 * in-order packets close up the sequence space. 3960 */ 3961 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 3962 { 3963 int this_sack; 3964 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3965 struct tcp_sack_block *swalk = sp + 1; 3966 3967 /* See if the recent change to the first SACK eats into 3968 * or hits the sequence space of other SACK blocks, if so coalesce. 3969 */ 3970 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 3971 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 3972 int i; 3973 3974 /* Zap SWALK, by moving every further SACK up by one slot. 3975 * Decrease num_sacks. 3976 */ 3977 tp->rx_opt.num_sacks--; 3978 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 3979 sp[i] = sp[i + 1]; 3980 continue; 3981 } 3982 this_sack++, swalk++; 3983 } 3984 } 3985 3986 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 3987 { 3988 struct tcp_sock *tp = tcp_sk(sk); 3989 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3990 int cur_sacks = tp->rx_opt.num_sacks; 3991 int this_sack; 3992 3993 if (!cur_sacks) 3994 goto new_sack; 3995 3996 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 3997 if (tcp_sack_extend(sp, seq, end_seq)) { 3998 /* Rotate this_sack to the first one. */ 3999 for (; this_sack > 0; this_sack--, sp--) 4000 swap(*sp, *(sp - 1)); 4001 if (cur_sacks > 1) 4002 tcp_sack_maybe_coalesce(tp); 4003 return; 4004 } 4005 } 4006 4007 /* Could not find an adjacent existing SACK, build a new one, 4008 * put it at the front, and shift everyone else down. We 4009 * always know there is at least one SACK present already here. 4010 * 4011 * If the sack array is full, forget about the last one. 4012 */ 4013 if (this_sack >= TCP_NUM_SACKS) { 4014 this_sack--; 4015 tp->rx_opt.num_sacks--; 4016 sp--; 4017 } 4018 for (; this_sack > 0; this_sack--, sp--) 4019 *sp = *(sp - 1); 4020 4021 new_sack: 4022 /* Build the new head SACK, and we're done. */ 4023 sp->start_seq = seq; 4024 sp->end_seq = end_seq; 4025 tp->rx_opt.num_sacks++; 4026 } 4027 4028 /* RCV.NXT advances, some SACKs should be eaten. */ 4029 4030 static void tcp_sack_remove(struct tcp_sock *tp) 4031 { 4032 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4033 int num_sacks = tp->rx_opt.num_sacks; 4034 int this_sack; 4035 4036 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4037 if (skb_queue_empty(&tp->out_of_order_queue)) { 4038 tp->rx_opt.num_sacks = 0; 4039 return; 4040 } 4041 4042 for (this_sack = 0; this_sack < num_sacks;) { 4043 /* Check if the start of the sack is covered by RCV.NXT. */ 4044 if (!before(tp->rcv_nxt, sp->start_seq)) { 4045 int i; 4046 4047 /* RCV.NXT must cover all the block! */ 4048 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4049 4050 /* Zap this SACK, by moving forward any other SACKS. */ 4051 for (i = this_sack+1; i < num_sacks; i++) 4052 tp->selective_acks[i-1] = tp->selective_acks[i]; 4053 num_sacks--; 4054 continue; 4055 } 4056 this_sack++; 4057 sp++; 4058 } 4059 tp->rx_opt.num_sacks = num_sacks; 4060 } 4061 4062 /* This one checks to see if we can put data from the 4063 * out_of_order queue into the receive_queue. 4064 */ 4065 static void tcp_ofo_queue(struct sock *sk) 4066 { 4067 struct tcp_sock *tp = tcp_sk(sk); 4068 __u32 dsack_high = tp->rcv_nxt; 4069 struct sk_buff *skb; 4070 4071 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 4072 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4073 break; 4074 4075 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4076 __u32 dsack = dsack_high; 4077 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4078 dsack_high = TCP_SKB_CB(skb)->end_seq; 4079 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4080 } 4081 4082 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4083 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4084 __skb_unlink(skb, &tp->out_of_order_queue); 4085 __kfree_skb(skb); 4086 continue; 4087 } 4088 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4089 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4090 TCP_SKB_CB(skb)->end_seq); 4091 4092 __skb_unlink(skb, &tp->out_of_order_queue); 4093 __skb_queue_tail(&sk->sk_receive_queue, skb); 4094 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4095 if (tcp_hdr(skb)->fin) 4096 tcp_fin(sk); 4097 } 4098 } 4099 4100 static bool tcp_prune_ofo_queue(struct sock *sk); 4101 static int tcp_prune_queue(struct sock *sk); 4102 4103 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4104 unsigned int size) 4105 { 4106 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4107 !sk_rmem_schedule(sk, skb, size)) { 4108 4109 if (tcp_prune_queue(sk) < 0) 4110 return -1; 4111 4112 if (!sk_rmem_schedule(sk, skb, size)) { 4113 if (!tcp_prune_ofo_queue(sk)) 4114 return -1; 4115 4116 if (!sk_rmem_schedule(sk, skb, size)) 4117 return -1; 4118 } 4119 } 4120 return 0; 4121 } 4122 4123 /** 4124 * tcp_try_coalesce - try to merge skb to prior one 4125 * @sk: socket 4126 * @to: prior buffer 4127 * @from: buffer to add in queue 4128 * @fragstolen: pointer to boolean 4129 * 4130 * Before queueing skb @from after @to, try to merge them 4131 * to reduce overall memory use and queue lengths, if cost is small. 4132 * Packets in ofo or receive queues can stay a long time. 4133 * Better try to coalesce them right now to avoid future collapses. 4134 * Returns true if caller should free @from instead of queueing it 4135 */ 4136 static bool tcp_try_coalesce(struct sock *sk, 4137 struct sk_buff *to, 4138 struct sk_buff *from, 4139 bool *fragstolen) 4140 { 4141 int delta; 4142 4143 *fragstolen = false; 4144 4145 if (tcp_hdr(from)->fin) 4146 return false; 4147 4148 /* Its possible this segment overlaps with prior segment in queue */ 4149 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4150 return false; 4151 4152 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4153 return false; 4154 4155 atomic_add(delta, &sk->sk_rmem_alloc); 4156 sk_mem_charge(sk, delta); 4157 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4158 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4159 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4160 return true; 4161 } 4162 4163 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4164 { 4165 struct tcp_sock *tp = tcp_sk(sk); 4166 struct sk_buff *skb1; 4167 u32 seq, end_seq; 4168 4169 TCP_ECN_check_ce(tp, skb); 4170 4171 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4172 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP); 4173 __kfree_skb(skb); 4174 return; 4175 } 4176 4177 /* Disable header prediction. */ 4178 tp->pred_flags = 0; 4179 inet_csk_schedule_ack(sk); 4180 4181 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4182 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4183 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4184 4185 skb1 = skb_peek_tail(&tp->out_of_order_queue); 4186 if (!skb1) { 4187 /* Initial out of order segment, build 1 SACK. */ 4188 if (tcp_is_sack(tp)) { 4189 tp->rx_opt.num_sacks = 1; 4190 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 4191 tp->selective_acks[0].end_seq = 4192 TCP_SKB_CB(skb)->end_seq; 4193 } 4194 __skb_queue_head(&tp->out_of_order_queue, skb); 4195 goto end; 4196 } 4197 4198 seq = TCP_SKB_CB(skb)->seq; 4199 end_seq = TCP_SKB_CB(skb)->end_seq; 4200 4201 if (seq == TCP_SKB_CB(skb1)->end_seq) { 4202 bool fragstolen; 4203 4204 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) { 4205 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4206 } else { 4207 tcp_grow_window(sk, skb); 4208 kfree_skb_partial(skb, fragstolen); 4209 skb = NULL; 4210 } 4211 4212 if (!tp->rx_opt.num_sacks || 4213 tp->selective_acks[0].end_seq != seq) 4214 goto add_sack; 4215 4216 /* Common case: data arrive in order after hole. */ 4217 tp->selective_acks[0].end_seq = end_seq; 4218 goto end; 4219 } 4220 4221 /* Find place to insert this segment. */ 4222 while (1) { 4223 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 4224 break; 4225 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) { 4226 skb1 = NULL; 4227 break; 4228 } 4229 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1); 4230 } 4231 4232 /* Do skb overlap to previous one? */ 4233 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4234 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4235 /* All the bits are present. Drop. */ 4236 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4237 __kfree_skb(skb); 4238 skb = NULL; 4239 tcp_dsack_set(sk, seq, end_seq); 4240 goto add_sack; 4241 } 4242 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4243 /* Partial overlap. */ 4244 tcp_dsack_set(sk, seq, 4245 TCP_SKB_CB(skb1)->end_seq); 4246 } else { 4247 if (skb_queue_is_first(&tp->out_of_order_queue, 4248 skb1)) 4249 skb1 = NULL; 4250 else 4251 skb1 = skb_queue_prev( 4252 &tp->out_of_order_queue, 4253 skb1); 4254 } 4255 } 4256 if (!skb1) 4257 __skb_queue_head(&tp->out_of_order_queue, skb); 4258 else 4259 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4260 4261 /* And clean segments covered by new one as whole. */ 4262 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) { 4263 skb1 = skb_queue_next(&tp->out_of_order_queue, skb); 4264 4265 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4266 break; 4267 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4268 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4269 end_seq); 4270 break; 4271 } 4272 __skb_unlink(skb1, &tp->out_of_order_queue); 4273 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4274 TCP_SKB_CB(skb1)->end_seq); 4275 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4276 __kfree_skb(skb1); 4277 } 4278 4279 add_sack: 4280 if (tcp_is_sack(tp)) 4281 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4282 end: 4283 if (skb) { 4284 tcp_grow_window(sk, skb); 4285 skb_set_owner_r(skb, sk); 4286 } 4287 } 4288 4289 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4290 bool *fragstolen) 4291 { 4292 int eaten; 4293 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4294 4295 __skb_pull(skb, hdrlen); 4296 eaten = (tail && 4297 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0; 4298 tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4299 if (!eaten) { 4300 __skb_queue_tail(&sk->sk_receive_queue, skb); 4301 skb_set_owner_r(skb, sk); 4302 } 4303 return eaten; 4304 } 4305 4306 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4307 { 4308 struct sk_buff *skb = NULL; 4309 struct tcphdr *th; 4310 bool fragstolen; 4311 4312 if (size == 0) 4313 return 0; 4314 4315 skb = alloc_skb(size + sizeof(*th), sk->sk_allocation); 4316 if (!skb) 4317 goto err; 4318 4319 if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th))) 4320 goto err_free; 4321 4322 th = (struct tcphdr *)skb_put(skb, sizeof(*th)); 4323 skb_reset_transport_header(skb); 4324 memset(th, 0, sizeof(*th)); 4325 4326 if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size)) 4327 goto err_free; 4328 4329 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4330 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4331 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4332 4333 if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) { 4334 WARN_ON_ONCE(fragstolen); /* should not happen */ 4335 __kfree_skb(skb); 4336 } 4337 return size; 4338 4339 err_free: 4340 kfree_skb(skb); 4341 err: 4342 return -ENOMEM; 4343 } 4344 4345 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4346 { 4347 const struct tcphdr *th = tcp_hdr(skb); 4348 struct tcp_sock *tp = tcp_sk(sk); 4349 int eaten = -1; 4350 bool fragstolen = false; 4351 4352 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 4353 goto drop; 4354 4355 skb_dst_drop(skb); 4356 __skb_pull(skb, th->doff * 4); 4357 4358 TCP_ECN_accept_cwr(tp, skb); 4359 4360 tp->rx_opt.dsack = 0; 4361 4362 /* Queue data for delivery to the user. 4363 * Packets in sequence go to the receive queue. 4364 * Out of sequence packets to the out_of_order_queue. 4365 */ 4366 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4367 if (tcp_receive_window(tp) == 0) 4368 goto out_of_window; 4369 4370 /* Ok. In sequence. In window. */ 4371 if (tp->ucopy.task == current && 4372 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4373 sock_owned_by_user(sk) && !tp->urg_data) { 4374 int chunk = min_t(unsigned int, skb->len, 4375 tp->ucopy.len); 4376 4377 __set_current_state(TASK_RUNNING); 4378 4379 local_bh_enable(); 4380 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { 4381 tp->ucopy.len -= chunk; 4382 tp->copied_seq += chunk; 4383 eaten = (chunk == skb->len); 4384 tcp_rcv_space_adjust(sk); 4385 } 4386 local_bh_disable(); 4387 } 4388 4389 if (eaten <= 0) { 4390 queue_and_out: 4391 if (eaten < 0 && 4392 tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4393 goto drop; 4394 4395 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4396 } 4397 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4398 if (skb->len) 4399 tcp_event_data_recv(sk, skb); 4400 if (th->fin) 4401 tcp_fin(sk); 4402 4403 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4404 tcp_ofo_queue(sk); 4405 4406 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4407 * gap in queue is filled. 4408 */ 4409 if (skb_queue_empty(&tp->out_of_order_queue)) 4410 inet_csk(sk)->icsk_ack.pingpong = 0; 4411 } 4412 4413 if (tp->rx_opt.num_sacks) 4414 tcp_sack_remove(tp); 4415 4416 tcp_fast_path_check(sk); 4417 4418 if (eaten > 0) 4419 kfree_skb_partial(skb, fragstolen); 4420 if (!sock_flag(sk, SOCK_DEAD)) 4421 sk->sk_data_ready(sk, 0); 4422 return; 4423 } 4424 4425 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4426 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4427 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4428 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4429 4430 out_of_window: 4431 tcp_enter_quickack_mode(sk); 4432 inet_csk_schedule_ack(sk); 4433 drop: 4434 __kfree_skb(skb); 4435 return; 4436 } 4437 4438 /* Out of window. F.e. zero window probe. */ 4439 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4440 goto out_of_window; 4441 4442 tcp_enter_quickack_mode(sk); 4443 4444 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4445 /* Partial packet, seq < rcv_next < end_seq */ 4446 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4447 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4448 TCP_SKB_CB(skb)->end_seq); 4449 4450 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4451 4452 /* If window is closed, drop tail of packet. But after 4453 * remembering D-SACK for its head made in previous line. 4454 */ 4455 if (!tcp_receive_window(tp)) 4456 goto out_of_window; 4457 goto queue_and_out; 4458 } 4459 4460 tcp_data_queue_ofo(sk, skb); 4461 } 4462 4463 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4464 struct sk_buff_head *list) 4465 { 4466 struct sk_buff *next = NULL; 4467 4468 if (!skb_queue_is_last(list, skb)) 4469 next = skb_queue_next(list, skb); 4470 4471 __skb_unlink(skb, list); 4472 __kfree_skb(skb); 4473 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4474 4475 return next; 4476 } 4477 4478 /* Collapse contiguous sequence of skbs head..tail with 4479 * sequence numbers start..end. 4480 * 4481 * If tail is NULL, this means until the end of the list. 4482 * 4483 * Segments with FIN/SYN are not collapsed (only because this 4484 * simplifies code) 4485 */ 4486 static void 4487 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 4488 struct sk_buff *head, struct sk_buff *tail, 4489 u32 start, u32 end) 4490 { 4491 struct sk_buff *skb, *n; 4492 bool end_of_skbs; 4493 4494 /* First, check that queue is collapsible and find 4495 * the point where collapsing can be useful. */ 4496 skb = head; 4497 restart: 4498 end_of_skbs = true; 4499 skb_queue_walk_from_safe(list, skb, n) { 4500 if (skb == tail) 4501 break; 4502 /* No new bits? It is possible on ofo queue. */ 4503 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4504 skb = tcp_collapse_one(sk, skb, list); 4505 if (!skb) 4506 break; 4507 goto restart; 4508 } 4509 4510 /* The first skb to collapse is: 4511 * - not SYN/FIN and 4512 * - bloated or contains data before "start" or 4513 * overlaps to the next one. 4514 */ 4515 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin && 4516 (tcp_win_from_space(skb->truesize) > skb->len || 4517 before(TCP_SKB_CB(skb)->seq, start))) { 4518 end_of_skbs = false; 4519 break; 4520 } 4521 4522 if (!skb_queue_is_last(list, skb)) { 4523 struct sk_buff *next = skb_queue_next(list, skb); 4524 if (next != tail && 4525 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) { 4526 end_of_skbs = false; 4527 break; 4528 } 4529 } 4530 4531 /* Decided to skip this, advance start seq. */ 4532 start = TCP_SKB_CB(skb)->end_seq; 4533 } 4534 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin) 4535 return; 4536 4537 while (before(start, end)) { 4538 struct sk_buff *nskb; 4539 unsigned int header = skb_headroom(skb); 4540 int copy = SKB_MAX_ORDER(header, 0); 4541 4542 /* Too big header? This can happen with IPv6. */ 4543 if (copy < 0) 4544 return; 4545 if (end - start < copy) 4546 copy = end - start; 4547 nskb = alloc_skb(copy + header, GFP_ATOMIC); 4548 if (!nskb) 4549 return; 4550 4551 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head); 4552 skb_set_network_header(nskb, (skb_network_header(skb) - 4553 skb->head)); 4554 skb_set_transport_header(nskb, (skb_transport_header(skb) - 4555 skb->head)); 4556 skb_reserve(nskb, header); 4557 memcpy(nskb->head, skb->head, header); 4558 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4559 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4560 __skb_queue_before(list, skb, nskb); 4561 skb_set_owner_r(nskb, sk); 4562 4563 /* Copy data, releasing collapsed skbs. */ 4564 while (copy > 0) { 4565 int offset = start - TCP_SKB_CB(skb)->seq; 4566 int size = TCP_SKB_CB(skb)->end_seq - start; 4567 4568 BUG_ON(offset < 0); 4569 if (size > 0) { 4570 size = min(copy, size); 4571 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4572 BUG(); 4573 TCP_SKB_CB(nskb)->end_seq += size; 4574 copy -= size; 4575 start += size; 4576 } 4577 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4578 skb = tcp_collapse_one(sk, skb, list); 4579 if (!skb || 4580 skb == tail || 4581 tcp_hdr(skb)->syn || 4582 tcp_hdr(skb)->fin) 4583 return; 4584 } 4585 } 4586 } 4587 } 4588 4589 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4590 * and tcp_collapse() them until all the queue is collapsed. 4591 */ 4592 static void tcp_collapse_ofo_queue(struct sock *sk) 4593 { 4594 struct tcp_sock *tp = tcp_sk(sk); 4595 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 4596 struct sk_buff *head; 4597 u32 start, end; 4598 4599 if (skb == NULL) 4600 return; 4601 4602 start = TCP_SKB_CB(skb)->seq; 4603 end = TCP_SKB_CB(skb)->end_seq; 4604 head = skb; 4605 4606 for (;;) { 4607 struct sk_buff *next = NULL; 4608 4609 if (!skb_queue_is_last(&tp->out_of_order_queue, skb)) 4610 next = skb_queue_next(&tp->out_of_order_queue, skb); 4611 skb = next; 4612 4613 /* Segment is terminated when we see gap or when 4614 * we are at the end of all the queue. */ 4615 if (!skb || 4616 after(TCP_SKB_CB(skb)->seq, end) || 4617 before(TCP_SKB_CB(skb)->end_seq, start)) { 4618 tcp_collapse(sk, &tp->out_of_order_queue, 4619 head, skb, start, end); 4620 head = skb; 4621 if (!skb) 4622 break; 4623 /* Start new segment */ 4624 start = TCP_SKB_CB(skb)->seq; 4625 end = TCP_SKB_CB(skb)->end_seq; 4626 } else { 4627 if (before(TCP_SKB_CB(skb)->seq, start)) 4628 start = TCP_SKB_CB(skb)->seq; 4629 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4630 end = TCP_SKB_CB(skb)->end_seq; 4631 } 4632 } 4633 } 4634 4635 /* 4636 * Purge the out-of-order queue. 4637 * Return true if queue was pruned. 4638 */ 4639 static bool tcp_prune_ofo_queue(struct sock *sk) 4640 { 4641 struct tcp_sock *tp = tcp_sk(sk); 4642 bool res = false; 4643 4644 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4645 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED); 4646 __skb_queue_purge(&tp->out_of_order_queue); 4647 4648 /* Reset SACK state. A conforming SACK implementation will 4649 * do the same at a timeout based retransmit. When a connection 4650 * is in a sad state like this, we care only about integrity 4651 * of the connection not performance. 4652 */ 4653 if (tp->rx_opt.sack_ok) 4654 tcp_sack_reset(&tp->rx_opt); 4655 sk_mem_reclaim(sk); 4656 res = true; 4657 } 4658 return res; 4659 } 4660 4661 /* Reduce allocated memory if we can, trying to get 4662 * the socket within its memory limits again. 4663 * 4664 * Return less than zero if we should start dropping frames 4665 * until the socket owning process reads some of the data 4666 * to stabilize the situation. 4667 */ 4668 static int tcp_prune_queue(struct sock *sk) 4669 { 4670 struct tcp_sock *tp = tcp_sk(sk); 4671 4672 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4673 4674 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED); 4675 4676 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4677 tcp_clamp_window(sk); 4678 else if (sk_under_memory_pressure(sk)) 4679 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4680 4681 tcp_collapse_ofo_queue(sk); 4682 if (!skb_queue_empty(&sk->sk_receive_queue)) 4683 tcp_collapse(sk, &sk->sk_receive_queue, 4684 skb_peek(&sk->sk_receive_queue), 4685 NULL, 4686 tp->copied_seq, tp->rcv_nxt); 4687 sk_mem_reclaim(sk); 4688 4689 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4690 return 0; 4691 4692 /* Collapsing did not help, destructive actions follow. 4693 * This must not ever occur. */ 4694 4695 tcp_prune_ofo_queue(sk); 4696 4697 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4698 return 0; 4699 4700 /* If we are really being abused, tell the caller to silently 4701 * drop receive data on the floor. It will get retransmitted 4702 * and hopefully then we'll have sufficient space. 4703 */ 4704 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED); 4705 4706 /* Massive buffer overcommit. */ 4707 tp->pred_flags = 0; 4708 return -1; 4709 } 4710 4711 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 4712 * As additional protections, we do not touch cwnd in retransmission phases, 4713 * and if application hit its sndbuf limit recently. 4714 */ 4715 void tcp_cwnd_application_limited(struct sock *sk) 4716 { 4717 struct tcp_sock *tp = tcp_sk(sk); 4718 4719 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 4720 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 4721 /* Limited by application or receiver window. */ 4722 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 4723 u32 win_used = max(tp->snd_cwnd_used, init_win); 4724 if (win_used < tp->snd_cwnd) { 4725 tp->snd_ssthresh = tcp_current_ssthresh(sk); 4726 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 4727 } 4728 tp->snd_cwnd_used = 0; 4729 } 4730 tp->snd_cwnd_stamp = tcp_time_stamp; 4731 } 4732 4733 static bool tcp_should_expand_sndbuf(const struct sock *sk) 4734 { 4735 const struct tcp_sock *tp = tcp_sk(sk); 4736 4737 /* If the user specified a specific send buffer setting, do 4738 * not modify it. 4739 */ 4740 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4741 return false; 4742 4743 /* If we are under global TCP memory pressure, do not expand. */ 4744 if (sk_under_memory_pressure(sk)) 4745 return false; 4746 4747 /* If we are under soft global TCP memory pressure, do not expand. */ 4748 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 4749 return false; 4750 4751 /* If we filled the congestion window, do not expand. */ 4752 if (tp->packets_out >= tp->snd_cwnd) 4753 return false; 4754 4755 return true; 4756 } 4757 4758 /* When incoming ACK allowed to free some skb from write_queue, 4759 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 4760 * on the exit from tcp input handler. 4761 * 4762 * PROBLEM: sndbuf expansion does not work well with largesend. 4763 */ 4764 static void tcp_new_space(struct sock *sk) 4765 { 4766 struct tcp_sock *tp = tcp_sk(sk); 4767 4768 if (tcp_should_expand_sndbuf(sk)) { 4769 tcp_sndbuf_expand(sk); 4770 tp->snd_cwnd_stamp = tcp_time_stamp; 4771 } 4772 4773 sk->sk_write_space(sk); 4774 } 4775 4776 static void tcp_check_space(struct sock *sk) 4777 { 4778 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 4779 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 4780 if (sk->sk_socket && 4781 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 4782 tcp_new_space(sk); 4783 } 4784 } 4785 4786 static inline void tcp_data_snd_check(struct sock *sk) 4787 { 4788 tcp_push_pending_frames(sk); 4789 tcp_check_space(sk); 4790 } 4791 4792 /* 4793 * Check if sending an ack is needed. 4794 */ 4795 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 4796 { 4797 struct tcp_sock *tp = tcp_sk(sk); 4798 4799 /* More than one full frame received... */ 4800 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 4801 /* ... and right edge of window advances far enough. 4802 * (tcp_recvmsg() will send ACK otherwise). Or... 4803 */ 4804 __tcp_select_window(sk) >= tp->rcv_wnd) || 4805 /* We ACK each frame or... */ 4806 tcp_in_quickack_mode(sk) || 4807 /* We have out of order data. */ 4808 (ofo_possible && skb_peek(&tp->out_of_order_queue))) { 4809 /* Then ack it now */ 4810 tcp_send_ack(sk); 4811 } else { 4812 /* Else, send delayed ack. */ 4813 tcp_send_delayed_ack(sk); 4814 } 4815 } 4816 4817 static inline void tcp_ack_snd_check(struct sock *sk) 4818 { 4819 if (!inet_csk_ack_scheduled(sk)) { 4820 /* We sent a data segment already. */ 4821 return; 4822 } 4823 __tcp_ack_snd_check(sk, 1); 4824 } 4825 4826 /* 4827 * This routine is only called when we have urgent data 4828 * signaled. Its the 'slow' part of tcp_urg. It could be 4829 * moved inline now as tcp_urg is only called from one 4830 * place. We handle URGent data wrong. We have to - as 4831 * BSD still doesn't use the correction from RFC961. 4832 * For 1003.1g we should support a new option TCP_STDURG to permit 4833 * either form (or just set the sysctl tcp_stdurg). 4834 */ 4835 4836 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 4837 { 4838 struct tcp_sock *tp = tcp_sk(sk); 4839 u32 ptr = ntohs(th->urg_ptr); 4840 4841 if (ptr && !sysctl_tcp_stdurg) 4842 ptr--; 4843 ptr += ntohl(th->seq); 4844 4845 /* Ignore urgent data that we've already seen and read. */ 4846 if (after(tp->copied_seq, ptr)) 4847 return; 4848 4849 /* Do not replay urg ptr. 4850 * 4851 * NOTE: interesting situation not covered by specs. 4852 * Misbehaving sender may send urg ptr, pointing to segment, 4853 * which we already have in ofo queue. We are not able to fetch 4854 * such data and will stay in TCP_URG_NOTYET until will be eaten 4855 * by recvmsg(). Seems, we are not obliged to handle such wicked 4856 * situations. But it is worth to think about possibility of some 4857 * DoSes using some hypothetical application level deadlock. 4858 */ 4859 if (before(ptr, tp->rcv_nxt)) 4860 return; 4861 4862 /* Do we already have a newer (or duplicate) urgent pointer? */ 4863 if (tp->urg_data && !after(ptr, tp->urg_seq)) 4864 return; 4865 4866 /* Tell the world about our new urgent pointer. */ 4867 sk_send_sigurg(sk); 4868 4869 /* We may be adding urgent data when the last byte read was 4870 * urgent. To do this requires some care. We cannot just ignore 4871 * tp->copied_seq since we would read the last urgent byte again 4872 * as data, nor can we alter copied_seq until this data arrives 4873 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 4874 * 4875 * NOTE. Double Dutch. Rendering to plain English: author of comment 4876 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 4877 * and expect that both A and B disappear from stream. This is _wrong_. 4878 * Though this happens in BSD with high probability, this is occasional. 4879 * Any application relying on this is buggy. Note also, that fix "works" 4880 * only in this artificial test. Insert some normal data between A and B and we will 4881 * decline of BSD again. Verdict: it is better to remove to trap 4882 * buggy users. 4883 */ 4884 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 4885 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 4886 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 4887 tp->copied_seq++; 4888 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 4889 __skb_unlink(skb, &sk->sk_receive_queue); 4890 __kfree_skb(skb); 4891 } 4892 } 4893 4894 tp->urg_data = TCP_URG_NOTYET; 4895 tp->urg_seq = ptr; 4896 4897 /* Disable header prediction. */ 4898 tp->pred_flags = 0; 4899 } 4900 4901 /* This is the 'fast' part of urgent handling. */ 4902 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 4903 { 4904 struct tcp_sock *tp = tcp_sk(sk); 4905 4906 /* Check if we get a new urgent pointer - normally not. */ 4907 if (th->urg) 4908 tcp_check_urg(sk, th); 4909 4910 /* Do we wait for any urgent data? - normally not... */ 4911 if (tp->urg_data == TCP_URG_NOTYET) { 4912 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 4913 th->syn; 4914 4915 /* Is the urgent pointer pointing into this packet? */ 4916 if (ptr < skb->len) { 4917 u8 tmp; 4918 if (skb_copy_bits(skb, ptr, &tmp, 1)) 4919 BUG(); 4920 tp->urg_data = TCP_URG_VALID | tmp; 4921 if (!sock_flag(sk, SOCK_DEAD)) 4922 sk->sk_data_ready(sk, 0); 4923 } 4924 } 4925 } 4926 4927 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 4928 { 4929 struct tcp_sock *tp = tcp_sk(sk); 4930 int chunk = skb->len - hlen; 4931 int err; 4932 4933 local_bh_enable(); 4934 if (skb_csum_unnecessary(skb)) 4935 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); 4936 else 4937 err = skb_copy_and_csum_datagram_iovec(skb, hlen, 4938 tp->ucopy.iov); 4939 4940 if (!err) { 4941 tp->ucopy.len -= chunk; 4942 tp->copied_seq += chunk; 4943 tcp_rcv_space_adjust(sk); 4944 } 4945 4946 local_bh_disable(); 4947 return err; 4948 } 4949 4950 static __sum16 __tcp_checksum_complete_user(struct sock *sk, 4951 struct sk_buff *skb) 4952 { 4953 __sum16 result; 4954 4955 if (sock_owned_by_user(sk)) { 4956 local_bh_enable(); 4957 result = __tcp_checksum_complete(skb); 4958 local_bh_disable(); 4959 } else { 4960 result = __tcp_checksum_complete(skb); 4961 } 4962 return result; 4963 } 4964 4965 static inline bool tcp_checksum_complete_user(struct sock *sk, 4966 struct sk_buff *skb) 4967 { 4968 return !skb_csum_unnecessary(skb) && 4969 __tcp_checksum_complete_user(sk, skb); 4970 } 4971 4972 #ifdef CONFIG_NET_DMA 4973 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, 4974 int hlen) 4975 { 4976 struct tcp_sock *tp = tcp_sk(sk); 4977 int chunk = skb->len - hlen; 4978 int dma_cookie; 4979 bool copied_early = false; 4980 4981 if (tp->ucopy.wakeup) 4982 return false; 4983 4984 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 4985 tp->ucopy.dma_chan = net_dma_find_channel(); 4986 4987 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) { 4988 4989 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan, 4990 skb, hlen, 4991 tp->ucopy.iov, chunk, 4992 tp->ucopy.pinned_list); 4993 4994 if (dma_cookie < 0) 4995 goto out; 4996 4997 tp->ucopy.dma_cookie = dma_cookie; 4998 copied_early = true; 4999 5000 tp->ucopy.len -= chunk; 5001 tp->copied_seq += chunk; 5002 tcp_rcv_space_adjust(sk); 5003 5004 if ((tp->ucopy.len == 0) || 5005 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) || 5006 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) { 5007 tp->ucopy.wakeup = 1; 5008 sk->sk_data_ready(sk, 0); 5009 } 5010 } else if (chunk > 0) { 5011 tp->ucopy.wakeup = 1; 5012 sk->sk_data_ready(sk, 0); 5013 } 5014 out: 5015 return copied_early; 5016 } 5017 #endif /* CONFIG_NET_DMA */ 5018 5019 /* Does PAWS and seqno based validation of an incoming segment, flags will 5020 * play significant role here. 5021 */ 5022 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5023 const struct tcphdr *th, int syn_inerr) 5024 { 5025 struct tcp_sock *tp = tcp_sk(sk); 5026 5027 /* RFC1323: H1. Apply PAWS check first. */ 5028 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 5029 tcp_paws_discard(sk, skb)) { 5030 if (!th->rst) { 5031 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5032 tcp_send_dupack(sk, skb); 5033 goto discard; 5034 } 5035 /* Reset is accepted even if it did not pass PAWS. */ 5036 } 5037 5038 /* Step 1: check sequence number */ 5039 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5040 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5041 * (RST) segments are validated by checking their SEQ-fields." 5042 * And page 69: "If an incoming segment is not acceptable, 5043 * an acknowledgment should be sent in reply (unless the RST 5044 * bit is set, if so drop the segment and return)". 5045 */ 5046 if (!th->rst) { 5047 if (th->syn) 5048 goto syn_challenge; 5049 tcp_send_dupack(sk, skb); 5050 } 5051 goto discard; 5052 } 5053 5054 /* Step 2: check RST bit */ 5055 if (th->rst) { 5056 /* RFC 5961 3.2 : 5057 * If sequence number exactly matches RCV.NXT, then 5058 * RESET the connection 5059 * else 5060 * Send a challenge ACK 5061 */ 5062 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) 5063 tcp_reset(sk); 5064 else 5065 tcp_send_challenge_ack(sk); 5066 goto discard; 5067 } 5068 5069 /* step 3: check security and precedence [ignored] */ 5070 5071 /* step 4: Check for a SYN 5072 * RFC 5691 4.2 : Send a challenge ack 5073 */ 5074 if (th->syn) { 5075 syn_challenge: 5076 if (syn_inerr) 5077 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5078 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5079 tcp_send_challenge_ack(sk); 5080 goto discard; 5081 } 5082 5083 return true; 5084 5085 discard: 5086 __kfree_skb(skb); 5087 return false; 5088 } 5089 5090 /* 5091 * TCP receive function for the ESTABLISHED state. 5092 * 5093 * It is split into a fast path and a slow path. The fast path is 5094 * disabled when: 5095 * - A zero window was announced from us - zero window probing 5096 * is only handled properly in the slow path. 5097 * - Out of order segments arrived. 5098 * - Urgent data is expected. 5099 * - There is no buffer space left 5100 * - Unexpected TCP flags/window values/header lengths are received 5101 * (detected by checking the TCP header against pred_flags) 5102 * - Data is sent in both directions. Fast path only supports pure senders 5103 * or pure receivers (this means either the sequence number or the ack 5104 * value must stay constant) 5105 * - Unexpected TCP option. 5106 * 5107 * When these conditions are not satisfied it drops into a standard 5108 * receive procedure patterned after RFC793 to handle all cases. 5109 * The first three cases are guaranteed by proper pred_flags setting, 5110 * the rest is checked inline. Fast processing is turned on in 5111 * tcp_data_queue when everything is OK. 5112 */ 5113 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5114 const struct tcphdr *th, unsigned int len) 5115 { 5116 struct tcp_sock *tp = tcp_sk(sk); 5117 5118 if (unlikely(sk->sk_rx_dst == NULL)) 5119 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5120 /* 5121 * Header prediction. 5122 * The code loosely follows the one in the famous 5123 * "30 instruction TCP receive" Van Jacobson mail. 5124 * 5125 * Van's trick is to deposit buffers into socket queue 5126 * on a device interrupt, to call tcp_recv function 5127 * on the receive process context and checksum and copy 5128 * the buffer to user space. smart... 5129 * 5130 * Our current scheme is not silly either but we take the 5131 * extra cost of the net_bh soft interrupt processing... 5132 * We do checksum and copy also but from device to kernel. 5133 */ 5134 5135 tp->rx_opt.saw_tstamp = 0; 5136 5137 /* pred_flags is 0xS?10 << 16 + snd_wnd 5138 * if header_prediction is to be made 5139 * 'S' will always be tp->tcp_header_len >> 2 5140 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5141 * turn it off (when there are holes in the receive 5142 * space for instance) 5143 * PSH flag is ignored. 5144 */ 5145 5146 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5147 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5148 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5149 int tcp_header_len = tp->tcp_header_len; 5150 5151 /* Timestamp header prediction: tcp_header_len 5152 * is automatically equal to th->doff*4 due to pred_flags 5153 * match. 5154 */ 5155 5156 /* Check timestamp */ 5157 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5158 /* No? Slow path! */ 5159 if (!tcp_parse_aligned_timestamp(tp, th)) 5160 goto slow_path; 5161 5162 /* If PAWS failed, check it more carefully in slow path */ 5163 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5164 goto slow_path; 5165 5166 /* DO NOT update ts_recent here, if checksum fails 5167 * and timestamp was corrupted part, it will result 5168 * in a hung connection since we will drop all 5169 * future packets due to the PAWS test. 5170 */ 5171 } 5172 5173 if (len <= tcp_header_len) { 5174 /* Bulk data transfer: sender */ 5175 if (len == tcp_header_len) { 5176 /* Predicted packet is in window by definition. 5177 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5178 * Hence, check seq<=rcv_wup reduces to: 5179 */ 5180 if (tcp_header_len == 5181 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5182 tp->rcv_nxt == tp->rcv_wup) 5183 tcp_store_ts_recent(tp); 5184 5185 /* We know that such packets are checksummed 5186 * on entry. 5187 */ 5188 tcp_ack(sk, skb, 0); 5189 __kfree_skb(skb); 5190 tcp_data_snd_check(sk); 5191 return; 5192 } else { /* Header too small */ 5193 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5194 goto discard; 5195 } 5196 } else { 5197 int eaten = 0; 5198 int copied_early = 0; 5199 bool fragstolen = false; 5200 5201 if (tp->copied_seq == tp->rcv_nxt && 5202 len - tcp_header_len <= tp->ucopy.len) { 5203 #ifdef CONFIG_NET_DMA 5204 if (tp->ucopy.task == current && 5205 sock_owned_by_user(sk) && 5206 tcp_dma_try_early_copy(sk, skb, tcp_header_len)) { 5207 copied_early = 1; 5208 eaten = 1; 5209 } 5210 #endif 5211 if (tp->ucopy.task == current && 5212 sock_owned_by_user(sk) && !copied_early) { 5213 __set_current_state(TASK_RUNNING); 5214 5215 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) 5216 eaten = 1; 5217 } 5218 if (eaten) { 5219 /* Predicted packet is in window by definition. 5220 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5221 * Hence, check seq<=rcv_wup reduces to: 5222 */ 5223 if (tcp_header_len == 5224 (sizeof(struct tcphdr) + 5225 TCPOLEN_TSTAMP_ALIGNED) && 5226 tp->rcv_nxt == tp->rcv_wup) 5227 tcp_store_ts_recent(tp); 5228 5229 tcp_rcv_rtt_measure_ts(sk, skb); 5230 5231 __skb_pull(skb, tcp_header_len); 5232 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 5233 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER); 5234 } 5235 if (copied_early) 5236 tcp_cleanup_rbuf(sk, skb->len); 5237 } 5238 if (!eaten) { 5239 if (tcp_checksum_complete_user(sk, skb)) 5240 goto csum_error; 5241 5242 if ((int)skb->truesize > sk->sk_forward_alloc) 5243 goto step5; 5244 5245 /* Predicted packet is in window by definition. 5246 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5247 * Hence, check seq<=rcv_wup reduces to: 5248 */ 5249 if (tcp_header_len == 5250 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5251 tp->rcv_nxt == tp->rcv_wup) 5252 tcp_store_ts_recent(tp); 5253 5254 tcp_rcv_rtt_measure_ts(sk, skb); 5255 5256 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS); 5257 5258 /* Bulk data transfer: receiver */ 5259 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5260 &fragstolen); 5261 } 5262 5263 tcp_event_data_recv(sk, skb); 5264 5265 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5266 /* Well, only one small jumplet in fast path... */ 5267 tcp_ack(sk, skb, FLAG_DATA); 5268 tcp_data_snd_check(sk); 5269 if (!inet_csk_ack_scheduled(sk)) 5270 goto no_ack; 5271 } 5272 5273 if (!copied_early || tp->rcv_nxt != tp->rcv_wup) 5274 __tcp_ack_snd_check(sk, 0); 5275 no_ack: 5276 #ifdef CONFIG_NET_DMA 5277 if (copied_early) 5278 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 5279 else 5280 #endif 5281 if (eaten) 5282 kfree_skb_partial(skb, fragstolen); 5283 sk->sk_data_ready(sk, 0); 5284 return; 5285 } 5286 } 5287 5288 slow_path: 5289 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb)) 5290 goto csum_error; 5291 5292 if (!th->ack && !th->rst) 5293 goto discard; 5294 5295 /* 5296 * Standard slow path. 5297 */ 5298 5299 if (!tcp_validate_incoming(sk, skb, th, 1)) 5300 return; 5301 5302 step5: 5303 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5304 goto discard; 5305 5306 tcp_rcv_rtt_measure_ts(sk, skb); 5307 5308 /* Process urgent data. */ 5309 tcp_urg(sk, skb, th); 5310 5311 /* step 7: process the segment text */ 5312 tcp_data_queue(sk, skb); 5313 5314 tcp_data_snd_check(sk); 5315 tcp_ack_snd_check(sk); 5316 return; 5317 5318 csum_error: 5319 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS); 5320 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5321 5322 discard: 5323 __kfree_skb(skb); 5324 } 5325 EXPORT_SYMBOL(tcp_rcv_established); 5326 5327 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5328 { 5329 struct tcp_sock *tp = tcp_sk(sk); 5330 struct inet_connection_sock *icsk = inet_csk(sk); 5331 5332 tcp_set_state(sk, TCP_ESTABLISHED); 5333 5334 if (skb != NULL) { 5335 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5336 security_inet_conn_established(sk, skb); 5337 } 5338 5339 /* Make sure socket is routed, for correct metrics. */ 5340 icsk->icsk_af_ops->rebuild_header(sk); 5341 5342 tcp_init_metrics(sk); 5343 5344 tcp_init_congestion_control(sk); 5345 5346 /* Prevent spurious tcp_cwnd_restart() on first data 5347 * packet. 5348 */ 5349 tp->lsndtime = tcp_time_stamp; 5350 5351 tcp_init_buffer_space(sk); 5352 5353 if (sock_flag(sk, SOCK_KEEPOPEN)) 5354 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5355 5356 if (!tp->rx_opt.snd_wscale) 5357 __tcp_fast_path_on(tp, tp->snd_wnd); 5358 else 5359 tp->pred_flags = 0; 5360 5361 if (!sock_flag(sk, SOCK_DEAD)) { 5362 sk->sk_state_change(sk); 5363 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5364 } 5365 } 5366 5367 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5368 struct tcp_fastopen_cookie *cookie) 5369 { 5370 struct tcp_sock *tp = tcp_sk(sk); 5371 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL; 5372 u16 mss = tp->rx_opt.mss_clamp; 5373 bool syn_drop; 5374 5375 if (mss == tp->rx_opt.user_mss) { 5376 struct tcp_options_received opt; 5377 5378 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5379 tcp_clear_options(&opt); 5380 opt.user_mss = opt.mss_clamp = 0; 5381 tcp_parse_options(synack, &opt, 0, NULL); 5382 mss = opt.mss_clamp; 5383 } 5384 5385 if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */ 5386 cookie->len = -1; 5387 5388 /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably 5389 * the remote receives only the retransmitted (regular) SYNs: either 5390 * the original SYN-data or the corresponding SYN-ACK is lost. 5391 */ 5392 syn_drop = (cookie->len <= 0 && data && tp->total_retrans); 5393 5394 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop); 5395 5396 if (data) { /* Retransmit unacked data in SYN */ 5397 tcp_for_write_queue_from(data, sk) { 5398 if (data == tcp_send_head(sk) || 5399 __tcp_retransmit_skb(sk, data)) 5400 break; 5401 } 5402 tcp_rearm_rto(sk); 5403 return true; 5404 } 5405 tp->syn_data_acked = tp->syn_data; 5406 return false; 5407 } 5408 5409 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5410 const struct tcphdr *th, unsigned int len) 5411 { 5412 struct inet_connection_sock *icsk = inet_csk(sk); 5413 struct tcp_sock *tp = tcp_sk(sk); 5414 struct tcp_fastopen_cookie foc = { .len = -1 }; 5415 int saved_clamp = tp->rx_opt.mss_clamp; 5416 5417 tcp_parse_options(skb, &tp->rx_opt, 0, &foc); 5418 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5419 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5420 5421 if (th->ack) { 5422 /* rfc793: 5423 * "If the state is SYN-SENT then 5424 * first check the ACK bit 5425 * If the ACK bit is set 5426 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5427 * a reset (unless the RST bit is set, if so drop 5428 * the segment and return)" 5429 */ 5430 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5431 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5432 goto reset_and_undo; 5433 5434 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5435 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5436 tcp_time_stamp)) { 5437 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED); 5438 goto reset_and_undo; 5439 } 5440 5441 /* Now ACK is acceptable. 5442 * 5443 * "If the RST bit is set 5444 * If the ACK was acceptable then signal the user "error: 5445 * connection reset", drop the segment, enter CLOSED state, 5446 * delete TCB, and return." 5447 */ 5448 5449 if (th->rst) { 5450 tcp_reset(sk); 5451 goto discard; 5452 } 5453 5454 /* rfc793: 5455 * "fifth, if neither of the SYN or RST bits is set then 5456 * drop the segment and return." 5457 * 5458 * See note below! 5459 * --ANK(990513) 5460 */ 5461 if (!th->syn) 5462 goto discard_and_undo; 5463 5464 /* rfc793: 5465 * "If the SYN bit is on ... 5466 * are acceptable then ... 5467 * (our SYN has been ACKed), change the connection 5468 * state to ESTABLISHED..." 5469 */ 5470 5471 TCP_ECN_rcv_synack(tp, th); 5472 5473 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5474 tcp_ack(sk, skb, FLAG_SLOWPATH); 5475 5476 /* Ok.. it's good. Set up sequence numbers and 5477 * move to established. 5478 */ 5479 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5480 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5481 5482 /* RFC1323: The window in SYN & SYN/ACK segments is 5483 * never scaled. 5484 */ 5485 tp->snd_wnd = ntohs(th->window); 5486 5487 if (!tp->rx_opt.wscale_ok) { 5488 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5489 tp->window_clamp = min(tp->window_clamp, 65535U); 5490 } 5491 5492 if (tp->rx_opt.saw_tstamp) { 5493 tp->rx_opt.tstamp_ok = 1; 5494 tp->tcp_header_len = 5495 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5496 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5497 tcp_store_ts_recent(tp); 5498 } else { 5499 tp->tcp_header_len = sizeof(struct tcphdr); 5500 } 5501 5502 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5503 tcp_enable_fack(tp); 5504 5505 tcp_mtup_init(sk); 5506 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5507 tcp_initialize_rcv_mss(sk); 5508 5509 /* Remember, tcp_poll() does not lock socket! 5510 * Change state from SYN-SENT only after copied_seq 5511 * is initialized. */ 5512 tp->copied_seq = tp->rcv_nxt; 5513 5514 smp_mb(); 5515 5516 tcp_finish_connect(sk, skb); 5517 5518 if ((tp->syn_fastopen || tp->syn_data) && 5519 tcp_rcv_fastopen_synack(sk, skb, &foc)) 5520 return -1; 5521 5522 if (sk->sk_write_pending || 5523 icsk->icsk_accept_queue.rskq_defer_accept || 5524 icsk->icsk_ack.pingpong) { 5525 /* Save one ACK. Data will be ready after 5526 * several ticks, if write_pending is set. 5527 * 5528 * It may be deleted, but with this feature tcpdumps 5529 * look so _wonderfully_ clever, that I was not able 5530 * to stand against the temptation 8) --ANK 5531 */ 5532 inet_csk_schedule_ack(sk); 5533 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5534 tcp_enter_quickack_mode(sk); 5535 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5536 TCP_DELACK_MAX, TCP_RTO_MAX); 5537 5538 discard: 5539 __kfree_skb(skb); 5540 return 0; 5541 } else { 5542 tcp_send_ack(sk); 5543 } 5544 return -1; 5545 } 5546 5547 /* No ACK in the segment */ 5548 5549 if (th->rst) { 5550 /* rfc793: 5551 * "If the RST bit is set 5552 * 5553 * Otherwise (no ACK) drop the segment and return." 5554 */ 5555 5556 goto discard_and_undo; 5557 } 5558 5559 /* PAWS check. */ 5560 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5561 tcp_paws_reject(&tp->rx_opt, 0)) 5562 goto discard_and_undo; 5563 5564 if (th->syn) { 5565 /* We see SYN without ACK. It is attempt of 5566 * simultaneous connect with crossed SYNs. 5567 * Particularly, it can be connect to self. 5568 */ 5569 tcp_set_state(sk, TCP_SYN_RECV); 5570 5571 if (tp->rx_opt.saw_tstamp) { 5572 tp->rx_opt.tstamp_ok = 1; 5573 tcp_store_ts_recent(tp); 5574 tp->tcp_header_len = 5575 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5576 } else { 5577 tp->tcp_header_len = sizeof(struct tcphdr); 5578 } 5579 5580 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5581 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5582 5583 /* RFC1323: The window in SYN & SYN/ACK segments is 5584 * never scaled. 5585 */ 5586 tp->snd_wnd = ntohs(th->window); 5587 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5588 tp->max_window = tp->snd_wnd; 5589 5590 TCP_ECN_rcv_syn(tp, th); 5591 5592 tcp_mtup_init(sk); 5593 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5594 tcp_initialize_rcv_mss(sk); 5595 5596 tcp_send_synack(sk); 5597 #if 0 5598 /* Note, we could accept data and URG from this segment. 5599 * There are no obstacles to make this (except that we must 5600 * either change tcp_recvmsg() to prevent it from returning data 5601 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5602 * 5603 * However, if we ignore data in ACKless segments sometimes, 5604 * we have no reasons to accept it sometimes. 5605 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5606 * is not flawless. So, discard packet for sanity. 5607 * Uncomment this return to process the data. 5608 */ 5609 return -1; 5610 #else 5611 goto discard; 5612 #endif 5613 } 5614 /* "fifth, if neither of the SYN or RST bits is set then 5615 * drop the segment and return." 5616 */ 5617 5618 discard_and_undo: 5619 tcp_clear_options(&tp->rx_opt); 5620 tp->rx_opt.mss_clamp = saved_clamp; 5621 goto discard; 5622 5623 reset_and_undo: 5624 tcp_clear_options(&tp->rx_opt); 5625 tp->rx_opt.mss_clamp = saved_clamp; 5626 return 1; 5627 } 5628 5629 /* 5630 * This function implements the receiving procedure of RFC 793 for 5631 * all states except ESTABLISHED and TIME_WAIT. 5632 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5633 * address independent. 5634 */ 5635 5636 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 5637 const struct tcphdr *th, unsigned int len) 5638 { 5639 struct tcp_sock *tp = tcp_sk(sk); 5640 struct inet_connection_sock *icsk = inet_csk(sk); 5641 struct request_sock *req; 5642 int queued = 0; 5643 bool acceptable; 5644 u32 synack_stamp; 5645 5646 tp->rx_opt.saw_tstamp = 0; 5647 5648 switch (sk->sk_state) { 5649 case TCP_CLOSE: 5650 goto discard; 5651 5652 case TCP_LISTEN: 5653 if (th->ack) 5654 return 1; 5655 5656 if (th->rst) 5657 goto discard; 5658 5659 if (th->syn) { 5660 if (th->fin) 5661 goto discard; 5662 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 5663 return 1; 5664 5665 /* Now we have several options: In theory there is 5666 * nothing else in the frame. KA9Q has an option to 5667 * send data with the syn, BSD accepts data with the 5668 * syn up to the [to be] advertised window and 5669 * Solaris 2.1 gives you a protocol error. For now 5670 * we just ignore it, that fits the spec precisely 5671 * and avoids incompatibilities. It would be nice in 5672 * future to drop through and process the data. 5673 * 5674 * Now that TTCP is starting to be used we ought to 5675 * queue this data. 5676 * But, this leaves one open to an easy denial of 5677 * service attack, and SYN cookies can't defend 5678 * against this problem. So, we drop the data 5679 * in the interest of security over speed unless 5680 * it's still in use. 5681 */ 5682 kfree_skb(skb); 5683 return 0; 5684 } 5685 goto discard; 5686 5687 case TCP_SYN_SENT: 5688 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 5689 if (queued >= 0) 5690 return queued; 5691 5692 /* Do step6 onward by hand. */ 5693 tcp_urg(sk, skb, th); 5694 __kfree_skb(skb); 5695 tcp_data_snd_check(sk); 5696 return 0; 5697 } 5698 5699 req = tp->fastopen_rsk; 5700 if (req != NULL) { 5701 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5702 sk->sk_state != TCP_FIN_WAIT1); 5703 5704 if (tcp_check_req(sk, skb, req, NULL, true) == NULL) 5705 goto discard; 5706 } 5707 5708 if (!th->ack && !th->rst) 5709 goto discard; 5710 5711 if (!tcp_validate_incoming(sk, skb, th, 0)) 5712 return 0; 5713 5714 /* step 5: check the ACK field */ 5715 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5716 FLAG_UPDATE_TS_RECENT) > 0; 5717 5718 switch (sk->sk_state) { 5719 case TCP_SYN_RECV: 5720 if (!acceptable) 5721 return 1; 5722 5723 /* Once we leave TCP_SYN_RECV, we no longer need req 5724 * so release it. 5725 */ 5726 if (req) { 5727 synack_stamp = tcp_rsk(req)->snt_synack; 5728 tp->total_retrans = req->num_retrans; 5729 reqsk_fastopen_remove(sk, req, false); 5730 } else { 5731 synack_stamp = tp->lsndtime; 5732 /* Make sure socket is routed, for correct metrics. */ 5733 icsk->icsk_af_ops->rebuild_header(sk); 5734 tcp_init_congestion_control(sk); 5735 5736 tcp_mtup_init(sk); 5737 tp->copied_seq = tp->rcv_nxt; 5738 tcp_init_buffer_space(sk); 5739 } 5740 smp_mb(); 5741 tcp_set_state(sk, TCP_ESTABLISHED); 5742 sk->sk_state_change(sk); 5743 5744 /* Note, that this wakeup is only for marginal crossed SYN case. 5745 * Passively open sockets are not waked up, because 5746 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 5747 */ 5748 if (sk->sk_socket) 5749 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5750 5751 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5752 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 5753 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5754 tcp_synack_rtt_meas(sk, synack_stamp); 5755 5756 if (tp->rx_opt.tstamp_ok) 5757 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5758 5759 if (req) { 5760 /* Re-arm the timer because data may have been sent out. 5761 * This is similar to the regular data transmission case 5762 * when new data has just been ack'ed. 5763 * 5764 * (TFO) - we could try to be more aggressive and 5765 * retransmitting any data sooner based on when they 5766 * are sent out. 5767 */ 5768 tcp_rearm_rto(sk); 5769 } else 5770 tcp_init_metrics(sk); 5771 5772 tcp_update_pacing_rate(sk); 5773 5774 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 5775 tp->lsndtime = tcp_time_stamp; 5776 5777 tcp_initialize_rcv_mss(sk); 5778 tcp_fast_path_on(tp); 5779 break; 5780 5781 case TCP_FIN_WAIT1: { 5782 struct dst_entry *dst; 5783 int tmo; 5784 5785 /* If we enter the TCP_FIN_WAIT1 state and we are a 5786 * Fast Open socket and this is the first acceptable 5787 * ACK we have received, this would have acknowledged 5788 * our SYNACK so stop the SYNACK timer. 5789 */ 5790 if (req != NULL) { 5791 /* Return RST if ack_seq is invalid. 5792 * Note that RFC793 only says to generate a 5793 * DUPACK for it but for TCP Fast Open it seems 5794 * better to treat this case like TCP_SYN_RECV 5795 * above. 5796 */ 5797 if (!acceptable) 5798 return 1; 5799 /* We no longer need the request sock. */ 5800 reqsk_fastopen_remove(sk, req, false); 5801 tcp_rearm_rto(sk); 5802 } 5803 if (tp->snd_una != tp->write_seq) 5804 break; 5805 5806 tcp_set_state(sk, TCP_FIN_WAIT2); 5807 sk->sk_shutdown |= SEND_SHUTDOWN; 5808 5809 dst = __sk_dst_get(sk); 5810 if (dst) 5811 dst_confirm(dst); 5812 5813 if (!sock_flag(sk, SOCK_DEAD)) { 5814 /* Wake up lingering close() */ 5815 sk->sk_state_change(sk); 5816 break; 5817 } 5818 5819 if (tp->linger2 < 0 || 5820 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5821 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 5822 tcp_done(sk); 5823 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5824 return 1; 5825 } 5826 5827 tmo = tcp_fin_time(sk); 5828 if (tmo > TCP_TIMEWAIT_LEN) { 5829 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 5830 } else if (th->fin || sock_owned_by_user(sk)) { 5831 /* Bad case. We could lose such FIN otherwise. 5832 * It is not a big problem, but it looks confusing 5833 * and not so rare event. We still can lose it now, 5834 * if it spins in bh_lock_sock(), but it is really 5835 * marginal case. 5836 */ 5837 inet_csk_reset_keepalive_timer(sk, tmo); 5838 } else { 5839 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 5840 goto discard; 5841 } 5842 break; 5843 } 5844 5845 case TCP_CLOSING: 5846 if (tp->snd_una == tp->write_seq) { 5847 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 5848 goto discard; 5849 } 5850 break; 5851 5852 case TCP_LAST_ACK: 5853 if (tp->snd_una == tp->write_seq) { 5854 tcp_update_metrics(sk); 5855 tcp_done(sk); 5856 goto discard; 5857 } 5858 break; 5859 } 5860 5861 /* step 6: check the URG bit */ 5862 tcp_urg(sk, skb, th); 5863 5864 /* step 7: process the segment text */ 5865 switch (sk->sk_state) { 5866 case TCP_CLOSE_WAIT: 5867 case TCP_CLOSING: 5868 case TCP_LAST_ACK: 5869 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 5870 break; 5871 case TCP_FIN_WAIT1: 5872 case TCP_FIN_WAIT2: 5873 /* RFC 793 says to queue data in these states, 5874 * RFC 1122 says we MUST send a reset. 5875 * BSD 4.4 also does reset. 5876 */ 5877 if (sk->sk_shutdown & RCV_SHUTDOWN) { 5878 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5879 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 5880 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5881 tcp_reset(sk); 5882 return 1; 5883 } 5884 } 5885 /* Fall through */ 5886 case TCP_ESTABLISHED: 5887 tcp_data_queue(sk, skb); 5888 queued = 1; 5889 break; 5890 } 5891 5892 /* tcp_data could move socket to TIME-WAIT */ 5893 if (sk->sk_state != TCP_CLOSE) { 5894 tcp_data_snd_check(sk); 5895 tcp_ack_snd_check(sk); 5896 } 5897 5898 if (!queued) { 5899 discard: 5900 __kfree_skb(skb); 5901 } 5902 return 0; 5903 } 5904 EXPORT_SYMBOL(tcp_rcv_state_process); 5905