xref: /openbmc/linux/net/ipv4/tcp_input.c (revision f6723b56)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #define pr_fmt(fmt) "TCP: " fmt
65 
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
77 
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88 
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 100;
91 
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
96 
97 int sysctl_tcp_thin_dupack __read_mostly;
98 
99 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
100 int sysctl_tcp_early_retrans __read_mostly = 3;
101 
102 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
103 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
104 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
105 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
106 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
107 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
108 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
109 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
111 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
114 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
115 
116 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
120 
121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
123 
124 /* Adapt the MSS value used to make delayed ack decision to the
125  * real world.
126  */
127 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
128 {
129 	struct inet_connection_sock *icsk = inet_csk(sk);
130 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
131 	unsigned int len;
132 
133 	icsk->icsk_ack.last_seg_size = 0;
134 
135 	/* skb->len may jitter because of SACKs, even if peer
136 	 * sends good full-sized frames.
137 	 */
138 	len = skb_shinfo(skb)->gso_size ? : skb->len;
139 	if (len >= icsk->icsk_ack.rcv_mss) {
140 		icsk->icsk_ack.rcv_mss = len;
141 	} else {
142 		/* Otherwise, we make more careful check taking into account,
143 		 * that SACKs block is variable.
144 		 *
145 		 * "len" is invariant segment length, including TCP header.
146 		 */
147 		len += skb->data - skb_transport_header(skb);
148 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
149 		    /* If PSH is not set, packet should be
150 		     * full sized, provided peer TCP is not badly broken.
151 		     * This observation (if it is correct 8)) allows
152 		     * to handle super-low mtu links fairly.
153 		     */
154 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
155 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
156 			/* Subtract also invariant (if peer is RFC compliant),
157 			 * tcp header plus fixed timestamp option length.
158 			 * Resulting "len" is MSS free of SACK jitter.
159 			 */
160 			len -= tcp_sk(sk)->tcp_header_len;
161 			icsk->icsk_ack.last_seg_size = len;
162 			if (len == lss) {
163 				icsk->icsk_ack.rcv_mss = len;
164 				return;
165 			}
166 		}
167 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
168 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
169 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
170 	}
171 }
172 
173 static void tcp_incr_quickack(struct sock *sk)
174 {
175 	struct inet_connection_sock *icsk = inet_csk(sk);
176 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
177 
178 	if (quickacks == 0)
179 		quickacks = 2;
180 	if (quickacks > icsk->icsk_ack.quick)
181 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
182 }
183 
184 static void tcp_enter_quickack_mode(struct sock *sk)
185 {
186 	struct inet_connection_sock *icsk = inet_csk(sk);
187 	tcp_incr_quickack(sk);
188 	icsk->icsk_ack.pingpong = 0;
189 	icsk->icsk_ack.ato = TCP_ATO_MIN;
190 }
191 
192 /* Send ACKs quickly, if "quick" count is not exhausted
193  * and the session is not interactive.
194  */
195 
196 static inline bool tcp_in_quickack_mode(const struct sock *sk)
197 {
198 	const struct inet_connection_sock *icsk = inet_csk(sk);
199 
200 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
201 }
202 
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204 {
205 	if (tp->ecn_flags & TCP_ECN_OK)
206 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207 }
208 
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
210 {
211 	if (tcp_hdr(skb)->cwr)
212 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 }
214 
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216 {
217 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218 }
219 
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
221 {
222 	if (!(tp->ecn_flags & TCP_ECN_OK))
223 		return;
224 
225 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
226 	case INET_ECN_NOT_ECT:
227 		/* Funny extension: if ECT is not set on a segment,
228 		 * and we already seen ECT on a previous segment,
229 		 * it is probably a retransmit.
230 		 */
231 		if (tp->ecn_flags & TCP_ECN_SEEN)
232 			tcp_enter_quickack_mode((struct sock *)tp);
233 		break;
234 	case INET_ECN_CE:
235 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
236 			/* Better not delay acks, sender can have a very low cwnd */
237 			tcp_enter_quickack_mode((struct sock *)tp);
238 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
239 		}
240 		/* fallinto */
241 	default:
242 		tp->ecn_flags |= TCP_ECN_SEEN;
243 	}
244 }
245 
246 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
247 {
248 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
249 		tp->ecn_flags &= ~TCP_ECN_OK;
250 }
251 
252 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
253 {
254 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
255 		tp->ecn_flags &= ~TCP_ECN_OK;
256 }
257 
258 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
259 {
260 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
261 		return true;
262 	return false;
263 }
264 
265 /* Buffer size and advertised window tuning.
266  *
267  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
268  */
269 
270 static void tcp_sndbuf_expand(struct sock *sk)
271 {
272 	const struct tcp_sock *tp = tcp_sk(sk);
273 	int sndmem, per_mss;
274 	u32 nr_segs;
275 
276 	/* Worst case is non GSO/TSO : each frame consumes one skb
277 	 * and skb->head is kmalloced using power of two area of memory
278 	 */
279 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
280 		  MAX_TCP_HEADER +
281 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
282 
283 	per_mss = roundup_pow_of_two(per_mss) +
284 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
285 
286 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
287 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
288 
289 	/* Fast Recovery (RFC 5681 3.2) :
290 	 * Cubic needs 1.7 factor, rounded to 2 to include
291 	 * extra cushion (application might react slowly to POLLOUT)
292 	 */
293 	sndmem = 2 * nr_segs * per_mss;
294 
295 	if (sk->sk_sndbuf < sndmem)
296 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
297 }
298 
299 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
300  *
301  * All tcp_full_space() is split to two parts: "network" buffer, allocated
302  * forward and advertised in receiver window (tp->rcv_wnd) and
303  * "application buffer", required to isolate scheduling/application
304  * latencies from network.
305  * window_clamp is maximal advertised window. It can be less than
306  * tcp_full_space(), in this case tcp_full_space() - window_clamp
307  * is reserved for "application" buffer. The less window_clamp is
308  * the smoother our behaviour from viewpoint of network, but the lower
309  * throughput and the higher sensitivity of the connection to losses. 8)
310  *
311  * rcv_ssthresh is more strict window_clamp used at "slow start"
312  * phase to predict further behaviour of this connection.
313  * It is used for two goals:
314  * - to enforce header prediction at sender, even when application
315  *   requires some significant "application buffer". It is check #1.
316  * - to prevent pruning of receive queue because of misprediction
317  *   of receiver window. Check #2.
318  *
319  * The scheme does not work when sender sends good segments opening
320  * window and then starts to feed us spaghetti. But it should work
321  * in common situations. Otherwise, we have to rely on queue collapsing.
322  */
323 
324 /* Slow part of check#2. */
325 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
326 {
327 	struct tcp_sock *tp = tcp_sk(sk);
328 	/* Optimize this! */
329 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
330 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
331 
332 	while (tp->rcv_ssthresh <= window) {
333 		if (truesize <= skb->len)
334 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
335 
336 		truesize >>= 1;
337 		window >>= 1;
338 	}
339 	return 0;
340 }
341 
342 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
343 {
344 	struct tcp_sock *tp = tcp_sk(sk);
345 
346 	/* Check #1 */
347 	if (tp->rcv_ssthresh < tp->window_clamp &&
348 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
349 	    !sk_under_memory_pressure(sk)) {
350 		int incr;
351 
352 		/* Check #2. Increase window, if skb with such overhead
353 		 * will fit to rcvbuf in future.
354 		 */
355 		if (tcp_win_from_space(skb->truesize) <= skb->len)
356 			incr = 2 * tp->advmss;
357 		else
358 			incr = __tcp_grow_window(sk, skb);
359 
360 		if (incr) {
361 			incr = max_t(int, incr, 2 * skb->len);
362 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
363 					       tp->window_clamp);
364 			inet_csk(sk)->icsk_ack.quick |= 1;
365 		}
366 	}
367 }
368 
369 /* 3. Tuning rcvbuf, when connection enters established state. */
370 static void tcp_fixup_rcvbuf(struct sock *sk)
371 {
372 	u32 mss = tcp_sk(sk)->advmss;
373 	int rcvmem;
374 
375 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
376 		 tcp_default_init_rwnd(mss);
377 
378 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
379 	 * Allow enough cushion so that sender is not limited by our window
380 	 */
381 	if (sysctl_tcp_moderate_rcvbuf)
382 		rcvmem <<= 2;
383 
384 	if (sk->sk_rcvbuf < rcvmem)
385 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
386 }
387 
388 /* 4. Try to fixup all. It is made immediately after connection enters
389  *    established state.
390  */
391 void tcp_init_buffer_space(struct sock *sk)
392 {
393 	struct tcp_sock *tp = tcp_sk(sk);
394 	int maxwin;
395 
396 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
397 		tcp_fixup_rcvbuf(sk);
398 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
399 		tcp_sndbuf_expand(sk);
400 
401 	tp->rcvq_space.space = tp->rcv_wnd;
402 	tp->rcvq_space.time = tcp_time_stamp;
403 	tp->rcvq_space.seq = tp->copied_seq;
404 
405 	maxwin = tcp_full_space(sk);
406 
407 	if (tp->window_clamp >= maxwin) {
408 		tp->window_clamp = maxwin;
409 
410 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
411 			tp->window_clamp = max(maxwin -
412 					       (maxwin >> sysctl_tcp_app_win),
413 					       4 * tp->advmss);
414 	}
415 
416 	/* Force reservation of one segment. */
417 	if (sysctl_tcp_app_win &&
418 	    tp->window_clamp > 2 * tp->advmss &&
419 	    tp->window_clamp + tp->advmss > maxwin)
420 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
421 
422 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
423 	tp->snd_cwnd_stamp = tcp_time_stamp;
424 }
425 
426 /* 5. Recalculate window clamp after socket hit its memory bounds. */
427 static void tcp_clamp_window(struct sock *sk)
428 {
429 	struct tcp_sock *tp = tcp_sk(sk);
430 	struct inet_connection_sock *icsk = inet_csk(sk);
431 
432 	icsk->icsk_ack.quick = 0;
433 
434 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
435 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
436 	    !sk_under_memory_pressure(sk) &&
437 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
438 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
439 				    sysctl_tcp_rmem[2]);
440 	}
441 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
442 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
443 }
444 
445 /* Initialize RCV_MSS value.
446  * RCV_MSS is an our guess about MSS used by the peer.
447  * We haven't any direct information about the MSS.
448  * It's better to underestimate the RCV_MSS rather than overestimate.
449  * Overestimations make us ACKing less frequently than needed.
450  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
451  */
452 void tcp_initialize_rcv_mss(struct sock *sk)
453 {
454 	const struct tcp_sock *tp = tcp_sk(sk);
455 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
456 
457 	hint = min(hint, tp->rcv_wnd / 2);
458 	hint = min(hint, TCP_MSS_DEFAULT);
459 	hint = max(hint, TCP_MIN_MSS);
460 
461 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
462 }
463 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
464 
465 /* Receiver "autotuning" code.
466  *
467  * The algorithm for RTT estimation w/o timestamps is based on
468  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
469  * <http://public.lanl.gov/radiant/pubs.html#DRS>
470  *
471  * More detail on this code can be found at
472  * <http://staff.psc.edu/jheffner/>,
473  * though this reference is out of date.  A new paper
474  * is pending.
475  */
476 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
477 {
478 	u32 new_sample = tp->rcv_rtt_est.rtt;
479 	long m = sample;
480 
481 	if (m == 0)
482 		m = 1;
483 
484 	if (new_sample != 0) {
485 		/* If we sample in larger samples in the non-timestamp
486 		 * case, we could grossly overestimate the RTT especially
487 		 * with chatty applications or bulk transfer apps which
488 		 * are stalled on filesystem I/O.
489 		 *
490 		 * Also, since we are only going for a minimum in the
491 		 * non-timestamp case, we do not smooth things out
492 		 * else with timestamps disabled convergence takes too
493 		 * long.
494 		 */
495 		if (!win_dep) {
496 			m -= (new_sample >> 3);
497 			new_sample += m;
498 		} else {
499 			m <<= 3;
500 			if (m < new_sample)
501 				new_sample = m;
502 		}
503 	} else {
504 		/* No previous measure. */
505 		new_sample = m << 3;
506 	}
507 
508 	if (tp->rcv_rtt_est.rtt != new_sample)
509 		tp->rcv_rtt_est.rtt = new_sample;
510 }
511 
512 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
513 {
514 	if (tp->rcv_rtt_est.time == 0)
515 		goto new_measure;
516 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
517 		return;
518 	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
519 
520 new_measure:
521 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
522 	tp->rcv_rtt_est.time = tcp_time_stamp;
523 }
524 
525 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
526 					  const struct sk_buff *skb)
527 {
528 	struct tcp_sock *tp = tcp_sk(sk);
529 	if (tp->rx_opt.rcv_tsecr &&
530 	    (TCP_SKB_CB(skb)->end_seq -
531 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
532 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
533 }
534 
535 /*
536  * This function should be called every time data is copied to user space.
537  * It calculates the appropriate TCP receive buffer space.
538  */
539 void tcp_rcv_space_adjust(struct sock *sk)
540 {
541 	struct tcp_sock *tp = tcp_sk(sk);
542 	int time;
543 	int copied;
544 
545 	time = tcp_time_stamp - tp->rcvq_space.time;
546 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
547 		return;
548 
549 	/* Number of bytes copied to user in last RTT */
550 	copied = tp->copied_seq - tp->rcvq_space.seq;
551 	if (copied <= tp->rcvq_space.space)
552 		goto new_measure;
553 
554 	/* A bit of theory :
555 	 * copied = bytes received in previous RTT, our base window
556 	 * To cope with packet losses, we need a 2x factor
557 	 * To cope with slow start, and sender growing its cwin by 100 %
558 	 * every RTT, we need a 4x factor, because the ACK we are sending
559 	 * now is for the next RTT, not the current one :
560 	 * <prev RTT . ><current RTT .. ><next RTT .... >
561 	 */
562 
563 	if (sysctl_tcp_moderate_rcvbuf &&
564 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
565 		int rcvwin, rcvmem, rcvbuf;
566 
567 		/* minimal window to cope with packet losses, assuming
568 		 * steady state. Add some cushion because of small variations.
569 		 */
570 		rcvwin = (copied << 1) + 16 * tp->advmss;
571 
572 		/* If rate increased by 25%,
573 		 *	assume slow start, rcvwin = 3 * copied
574 		 * If rate increased by 50%,
575 		 *	assume sender can use 2x growth, rcvwin = 4 * copied
576 		 */
577 		if (copied >=
578 		    tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
579 			if (copied >=
580 			    tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
581 				rcvwin <<= 1;
582 			else
583 				rcvwin += (rcvwin >> 1);
584 		}
585 
586 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
587 		while (tcp_win_from_space(rcvmem) < tp->advmss)
588 			rcvmem += 128;
589 
590 		rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
591 		if (rcvbuf > sk->sk_rcvbuf) {
592 			sk->sk_rcvbuf = rcvbuf;
593 
594 			/* Make the window clamp follow along.  */
595 			tp->window_clamp = rcvwin;
596 		}
597 	}
598 	tp->rcvq_space.space = copied;
599 
600 new_measure:
601 	tp->rcvq_space.seq = tp->copied_seq;
602 	tp->rcvq_space.time = tcp_time_stamp;
603 }
604 
605 /* There is something which you must keep in mind when you analyze the
606  * behavior of the tp->ato delayed ack timeout interval.  When a
607  * connection starts up, we want to ack as quickly as possible.  The
608  * problem is that "good" TCP's do slow start at the beginning of data
609  * transmission.  The means that until we send the first few ACK's the
610  * sender will sit on his end and only queue most of his data, because
611  * he can only send snd_cwnd unacked packets at any given time.  For
612  * each ACK we send, he increments snd_cwnd and transmits more of his
613  * queue.  -DaveM
614  */
615 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
616 {
617 	struct tcp_sock *tp = tcp_sk(sk);
618 	struct inet_connection_sock *icsk = inet_csk(sk);
619 	u32 now;
620 
621 	inet_csk_schedule_ack(sk);
622 
623 	tcp_measure_rcv_mss(sk, skb);
624 
625 	tcp_rcv_rtt_measure(tp);
626 
627 	now = tcp_time_stamp;
628 
629 	if (!icsk->icsk_ack.ato) {
630 		/* The _first_ data packet received, initialize
631 		 * delayed ACK engine.
632 		 */
633 		tcp_incr_quickack(sk);
634 		icsk->icsk_ack.ato = TCP_ATO_MIN;
635 	} else {
636 		int m = now - icsk->icsk_ack.lrcvtime;
637 
638 		if (m <= TCP_ATO_MIN / 2) {
639 			/* The fastest case is the first. */
640 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
641 		} else if (m < icsk->icsk_ack.ato) {
642 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
643 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
644 				icsk->icsk_ack.ato = icsk->icsk_rto;
645 		} else if (m > icsk->icsk_rto) {
646 			/* Too long gap. Apparently sender failed to
647 			 * restart window, so that we send ACKs quickly.
648 			 */
649 			tcp_incr_quickack(sk);
650 			sk_mem_reclaim(sk);
651 		}
652 	}
653 	icsk->icsk_ack.lrcvtime = now;
654 
655 	TCP_ECN_check_ce(tp, skb);
656 
657 	if (skb->len >= 128)
658 		tcp_grow_window(sk, skb);
659 }
660 
661 /* Called to compute a smoothed rtt estimate. The data fed to this
662  * routine either comes from timestamps, or from segments that were
663  * known _not_ to have been retransmitted [see Karn/Partridge
664  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
665  * piece by Van Jacobson.
666  * NOTE: the next three routines used to be one big routine.
667  * To save cycles in the RFC 1323 implementation it was better to break
668  * it up into three procedures. -- erics
669  */
670 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
671 {
672 	struct tcp_sock *tp = tcp_sk(sk);
673 	long m = mrtt; /* RTT */
674 	u32 srtt = tp->srtt;
675 
676 	/*	The following amusing code comes from Jacobson's
677 	 *	article in SIGCOMM '88.  Note that rtt and mdev
678 	 *	are scaled versions of rtt and mean deviation.
679 	 *	This is designed to be as fast as possible
680 	 *	m stands for "measurement".
681 	 *
682 	 *	On a 1990 paper the rto value is changed to:
683 	 *	RTO = rtt + 4 * mdev
684 	 *
685 	 * Funny. This algorithm seems to be very broken.
686 	 * These formulae increase RTO, when it should be decreased, increase
687 	 * too slowly, when it should be increased quickly, decrease too quickly
688 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
689 	 * does not matter how to _calculate_ it. Seems, it was trap
690 	 * that VJ failed to avoid. 8)
691 	 */
692 	if (srtt != 0) {
693 		m -= (srtt >> 3);	/* m is now error in rtt est */
694 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
695 		if (m < 0) {
696 			m = -m;		/* m is now abs(error) */
697 			m -= (tp->mdev >> 2);   /* similar update on mdev */
698 			/* This is similar to one of Eifel findings.
699 			 * Eifel blocks mdev updates when rtt decreases.
700 			 * This solution is a bit different: we use finer gain
701 			 * for mdev in this case (alpha*beta).
702 			 * Like Eifel it also prevents growth of rto,
703 			 * but also it limits too fast rto decreases,
704 			 * happening in pure Eifel.
705 			 */
706 			if (m > 0)
707 				m >>= 3;
708 		} else {
709 			m -= (tp->mdev >> 2);   /* similar update on mdev */
710 		}
711 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
712 		if (tp->mdev > tp->mdev_max) {
713 			tp->mdev_max = tp->mdev;
714 			if (tp->mdev_max > tp->rttvar)
715 				tp->rttvar = tp->mdev_max;
716 		}
717 		if (after(tp->snd_una, tp->rtt_seq)) {
718 			if (tp->mdev_max < tp->rttvar)
719 				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
720 			tp->rtt_seq = tp->snd_nxt;
721 			tp->mdev_max = tcp_rto_min(sk);
722 		}
723 	} else {
724 		/* no previous measure. */
725 		srtt = m << 3;		/* take the measured time to be rtt */
726 		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
727 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
728 		tp->rtt_seq = tp->snd_nxt;
729 	}
730 	tp->srtt = max(1U, srtt);
731 }
732 
733 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
734  * Note: TCP stack does not yet implement pacing.
735  * FQ packet scheduler can be used to implement cheap but effective
736  * TCP pacing, to smooth the burst on large writes when packets
737  * in flight is significantly lower than cwnd (or rwin)
738  */
739 static void tcp_update_pacing_rate(struct sock *sk)
740 {
741 	const struct tcp_sock *tp = tcp_sk(sk);
742 	u64 rate;
743 
744 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
745 	rate = (u64)tp->mss_cache * 2 * (HZ << 3);
746 
747 	rate *= max(tp->snd_cwnd, tp->packets_out);
748 
749 	/* Correction for small srtt and scheduling constraints.
750 	 * For small rtt, consider noise is too high, and use
751 	 * the minimal value (srtt = 1 -> 125 us for HZ=1000)
752 	 *
753 	 * We probably need usec resolution in the future.
754 	 * Note: This also takes care of possible srtt=0 case,
755 	 * when tcp_rtt_estimator() was not yet called.
756 	 */
757 	if (tp->srtt > 8 + 2)
758 		do_div(rate, tp->srtt);
759 
760 	/* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
761 	 * without any lock. We want to make sure compiler wont store
762 	 * intermediate values in this location.
763 	 */
764 	ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
765 						sk->sk_max_pacing_rate);
766 }
767 
768 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
769  * routine referred to above.
770  */
771 static void tcp_set_rto(struct sock *sk)
772 {
773 	const struct tcp_sock *tp = tcp_sk(sk);
774 	/* Old crap is replaced with new one. 8)
775 	 *
776 	 * More seriously:
777 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
778 	 *    It cannot be less due to utterly erratic ACK generation made
779 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
780 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
781 	 *    is invisible. Actually, Linux-2.4 also generates erratic
782 	 *    ACKs in some circumstances.
783 	 */
784 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
785 
786 	/* 2. Fixups made earlier cannot be right.
787 	 *    If we do not estimate RTO correctly without them,
788 	 *    all the algo is pure shit and should be replaced
789 	 *    with correct one. It is exactly, which we pretend to do.
790 	 */
791 
792 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
793 	 * guarantees that rto is higher.
794 	 */
795 	tcp_bound_rto(sk);
796 }
797 
798 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
799 {
800 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
801 
802 	if (!cwnd)
803 		cwnd = TCP_INIT_CWND;
804 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
805 }
806 
807 /*
808  * Packet counting of FACK is based on in-order assumptions, therefore TCP
809  * disables it when reordering is detected
810  */
811 void tcp_disable_fack(struct tcp_sock *tp)
812 {
813 	/* RFC3517 uses different metric in lost marker => reset on change */
814 	if (tcp_is_fack(tp))
815 		tp->lost_skb_hint = NULL;
816 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
817 }
818 
819 /* Take a notice that peer is sending D-SACKs */
820 static void tcp_dsack_seen(struct tcp_sock *tp)
821 {
822 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
823 }
824 
825 static void tcp_update_reordering(struct sock *sk, const int metric,
826 				  const int ts)
827 {
828 	struct tcp_sock *tp = tcp_sk(sk);
829 	if (metric > tp->reordering) {
830 		int mib_idx;
831 
832 		tp->reordering = min(TCP_MAX_REORDERING, metric);
833 
834 		/* This exciting event is worth to be remembered. 8) */
835 		if (ts)
836 			mib_idx = LINUX_MIB_TCPTSREORDER;
837 		else if (tcp_is_reno(tp))
838 			mib_idx = LINUX_MIB_TCPRENOREORDER;
839 		else if (tcp_is_fack(tp))
840 			mib_idx = LINUX_MIB_TCPFACKREORDER;
841 		else
842 			mib_idx = LINUX_MIB_TCPSACKREORDER;
843 
844 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
845 #if FASTRETRANS_DEBUG > 1
846 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
847 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
848 			 tp->reordering,
849 			 tp->fackets_out,
850 			 tp->sacked_out,
851 			 tp->undo_marker ? tp->undo_retrans : 0);
852 #endif
853 		tcp_disable_fack(tp);
854 	}
855 
856 	if (metric > 0)
857 		tcp_disable_early_retrans(tp);
858 }
859 
860 /* This must be called before lost_out is incremented */
861 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
862 {
863 	if ((tp->retransmit_skb_hint == NULL) ||
864 	    before(TCP_SKB_CB(skb)->seq,
865 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
866 		tp->retransmit_skb_hint = skb;
867 
868 	if (!tp->lost_out ||
869 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
870 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
871 }
872 
873 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
874 {
875 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
876 		tcp_verify_retransmit_hint(tp, skb);
877 
878 		tp->lost_out += tcp_skb_pcount(skb);
879 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
880 	}
881 }
882 
883 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
884 					    struct sk_buff *skb)
885 {
886 	tcp_verify_retransmit_hint(tp, skb);
887 
888 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
889 		tp->lost_out += tcp_skb_pcount(skb);
890 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
891 	}
892 }
893 
894 /* This procedure tags the retransmission queue when SACKs arrive.
895  *
896  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
897  * Packets in queue with these bits set are counted in variables
898  * sacked_out, retrans_out and lost_out, correspondingly.
899  *
900  * Valid combinations are:
901  * Tag  InFlight	Description
902  * 0	1		- orig segment is in flight.
903  * S	0		- nothing flies, orig reached receiver.
904  * L	0		- nothing flies, orig lost by net.
905  * R	2		- both orig and retransmit are in flight.
906  * L|R	1		- orig is lost, retransmit is in flight.
907  * S|R  1		- orig reached receiver, retrans is still in flight.
908  * (L|S|R is logically valid, it could occur when L|R is sacked,
909  *  but it is equivalent to plain S and code short-curcuits it to S.
910  *  L|S is logically invalid, it would mean -1 packet in flight 8))
911  *
912  * These 6 states form finite state machine, controlled by the following events:
913  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
914  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
915  * 3. Loss detection event of two flavors:
916  *	A. Scoreboard estimator decided the packet is lost.
917  *	   A'. Reno "three dupacks" marks head of queue lost.
918  *	   A''. Its FACK modification, head until snd.fack is lost.
919  *	B. SACK arrives sacking SND.NXT at the moment, when the
920  *	   segment was retransmitted.
921  * 4. D-SACK added new rule: D-SACK changes any tag to S.
922  *
923  * It is pleasant to note, that state diagram turns out to be commutative,
924  * so that we are allowed not to be bothered by order of our actions,
925  * when multiple events arrive simultaneously. (see the function below).
926  *
927  * Reordering detection.
928  * --------------------
929  * Reordering metric is maximal distance, which a packet can be displaced
930  * in packet stream. With SACKs we can estimate it:
931  *
932  * 1. SACK fills old hole and the corresponding segment was not
933  *    ever retransmitted -> reordering. Alas, we cannot use it
934  *    when segment was retransmitted.
935  * 2. The last flaw is solved with D-SACK. D-SACK arrives
936  *    for retransmitted and already SACKed segment -> reordering..
937  * Both of these heuristics are not used in Loss state, when we cannot
938  * account for retransmits accurately.
939  *
940  * SACK block validation.
941  * ----------------------
942  *
943  * SACK block range validation checks that the received SACK block fits to
944  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
945  * Note that SND.UNA is not included to the range though being valid because
946  * it means that the receiver is rather inconsistent with itself reporting
947  * SACK reneging when it should advance SND.UNA. Such SACK block this is
948  * perfectly valid, however, in light of RFC2018 which explicitly states
949  * that "SACK block MUST reflect the newest segment.  Even if the newest
950  * segment is going to be discarded ...", not that it looks very clever
951  * in case of head skb. Due to potentional receiver driven attacks, we
952  * choose to avoid immediate execution of a walk in write queue due to
953  * reneging and defer head skb's loss recovery to standard loss recovery
954  * procedure that will eventually trigger (nothing forbids us doing this).
955  *
956  * Implements also blockage to start_seq wrap-around. Problem lies in the
957  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
958  * there's no guarantee that it will be before snd_nxt (n). The problem
959  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
960  * wrap (s_w):
961  *
962  *         <- outs wnd ->                          <- wrapzone ->
963  *         u     e      n                         u_w   e_w  s n_w
964  *         |     |      |                          |     |   |  |
965  * |<------------+------+----- TCP seqno space --------------+---------->|
966  * ...-- <2^31 ->|                                           |<--------...
967  * ...---- >2^31 ------>|                                    |<--------...
968  *
969  * Current code wouldn't be vulnerable but it's better still to discard such
970  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
971  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
972  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
973  * equal to the ideal case (infinite seqno space without wrap caused issues).
974  *
975  * With D-SACK the lower bound is extended to cover sequence space below
976  * SND.UNA down to undo_marker, which is the last point of interest. Yet
977  * again, D-SACK block must not to go across snd_una (for the same reason as
978  * for the normal SACK blocks, explained above). But there all simplicity
979  * ends, TCP might receive valid D-SACKs below that. As long as they reside
980  * fully below undo_marker they do not affect behavior in anyway and can
981  * therefore be safely ignored. In rare cases (which are more or less
982  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
983  * fragmentation and packet reordering past skb's retransmission. To consider
984  * them correctly, the acceptable range must be extended even more though
985  * the exact amount is rather hard to quantify. However, tp->max_window can
986  * be used as an exaggerated estimate.
987  */
988 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
989 				   u32 start_seq, u32 end_seq)
990 {
991 	/* Too far in future, or reversed (interpretation is ambiguous) */
992 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
993 		return false;
994 
995 	/* Nasty start_seq wrap-around check (see comments above) */
996 	if (!before(start_seq, tp->snd_nxt))
997 		return false;
998 
999 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1000 	 * start_seq == snd_una is non-sensical (see comments above)
1001 	 */
1002 	if (after(start_seq, tp->snd_una))
1003 		return true;
1004 
1005 	if (!is_dsack || !tp->undo_marker)
1006 		return false;
1007 
1008 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1009 	if (after(end_seq, tp->snd_una))
1010 		return false;
1011 
1012 	if (!before(start_seq, tp->undo_marker))
1013 		return true;
1014 
1015 	/* Too old */
1016 	if (!after(end_seq, tp->undo_marker))
1017 		return false;
1018 
1019 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1020 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1021 	 */
1022 	return !before(start_seq, end_seq - tp->max_window);
1023 }
1024 
1025 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1026  * Event "B". Later note: FACK people cheated me again 8), we have to account
1027  * for reordering! Ugly, but should help.
1028  *
1029  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1030  * less than what is now known to be received by the other end (derived from
1031  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1032  * retransmitted skbs to avoid some costly processing per ACKs.
1033  */
1034 static void tcp_mark_lost_retrans(struct sock *sk)
1035 {
1036 	const struct inet_connection_sock *icsk = inet_csk(sk);
1037 	struct tcp_sock *tp = tcp_sk(sk);
1038 	struct sk_buff *skb;
1039 	int cnt = 0;
1040 	u32 new_low_seq = tp->snd_nxt;
1041 	u32 received_upto = tcp_highest_sack_seq(tp);
1042 
1043 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1044 	    !after(received_upto, tp->lost_retrans_low) ||
1045 	    icsk->icsk_ca_state != TCP_CA_Recovery)
1046 		return;
1047 
1048 	tcp_for_write_queue(skb, sk) {
1049 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1050 
1051 		if (skb == tcp_send_head(sk))
1052 			break;
1053 		if (cnt == tp->retrans_out)
1054 			break;
1055 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1056 			continue;
1057 
1058 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1059 			continue;
1060 
1061 		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1062 		 * constraint here (see above) but figuring out that at
1063 		 * least tp->reordering SACK blocks reside between ack_seq
1064 		 * and received_upto is not easy task to do cheaply with
1065 		 * the available datastructures.
1066 		 *
1067 		 * Whether FACK should check here for tp->reordering segs
1068 		 * in-between one could argue for either way (it would be
1069 		 * rather simple to implement as we could count fack_count
1070 		 * during the walk and do tp->fackets_out - fack_count).
1071 		 */
1072 		if (after(received_upto, ack_seq)) {
1073 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1074 			tp->retrans_out -= tcp_skb_pcount(skb);
1075 
1076 			tcp_skb_mark_lost_uncond_verify(tp, skb);
1077 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1078 		} else {
1079 			if (before(ack_seq, new_low_seq))
1080 				new_low_seq = ack_seq;
1081 			cnt += tcp_skb_pcount(skb);
1082 		}
1083 	}
1084 
1085 	if (tp->retrans_out)
1086 		tp->lost_retrans_low = new_low_seq;
1087 }
1088 
1089 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1090 			    struct tcp_sack_block_wire *sp, int num_sacks,
1091 			    u32 prior_snd_una)
1092 {
1093 	struct tcp_sock *tp = tcp_sk(sk);
1094 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1095 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1096 	bool dup_sack = false;
1097 
1098 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1099 		dup_sack = true;
1100 		tcp_dsack_seen(tp);
1101 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1102 	} else if (num_sacks > 1) {
1103 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1104 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1105 
1106 		if (!after(end_seq_0, end_seq_1) &&
1107 		    !before(start_seq_0, start_seq_1)) {
1108 			dup_sack = true;
1109 			tcp_dsack_seen(tp);
1110 			NET_INC_STATS_BH(sock_net(sk),
1111 					LINUX_MIB_TCPDSACKOFORECV);
1112 		}
1113 	}
1114 
1115 	/* D-SACK for already forgotten data... Do dumb counting. */
1116 	if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1117 	    !after(end_seq_0, prior_snd_una) &&
1118 	    after(end_seq_0, tp->undo_marker))
1119 		tp->undo_retrans--;
1120 
1121 	return dup_sack;
1122 }
1123 
1124 struct tcp_sacktag_state {
1125 	int reord;
1126 	int fack_count;
1127 	int flag;
1128 	s32 rtt; /* RTT measured by SACKing never-retransmitted data */
1129 };
1130 
1131 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1132  * the incoming SACK may not exactly match but we can find smaller MSS
1133  * aligned portion of it that matches. Therefore we might need to fragment
1134  * which may fail and creates some hassle (caller must handle error case
1135  * returns).
1136  *
1137  * FIXME: this could be merged to shift decision code
1138  */
1139 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1140 				  u32 start_seq, u32 end_seq)
1141 {
1142 	int err;
1143 	bool in_sack;
1144 	unsigned int pkt_len;
1145 	unsigned int mss;
1146 
1147 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1148 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1149 
1150 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1151 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1152 		mss = tcp_skb_mss(skb);
1153 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1154 
1155 		if (!in_sack) {
1156 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1157 			if (pkt_len < mss)
1158 				pkt_len = mss;
1159 		} else {
1160 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1161 			if (pkt_len < mss)
1162 				return -EINVAL;
1163 		}
1164 
1165 		/* Round if necessary so that SACKs cover only full MSSes
1166 		 * and/or the remaining small portion (if present)
1167 		 */
1168 		if (pkt_len > mss) {
1169 			unsigned int new_len = (pkt_len / mss) * mss;
1170 			if (!in_sack && new_len < pkt_len) {
1171 				new_len += mss;
1172 				if (new_len > skb->len)
1173 					return 0;
1174 			}
1175 			pkt_len = new_len;
1176 		}
1177 		err = tcp_fragment(sk, skb, pkt_len, mss);
1178 		if (err < 0)
1179 			return err;
1180 	}
1181 
1182 	return in_sack;
1183 }
1184 
1185 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1186 static u8 tcp_sacktag_one(struct sock *sk,
1187 			  struct tcp_sacktag_state *state, u8 sacked,
1188 			  u32 start_seq, u32 end_seq,
1189 			  int dup_sack, int pcount, u32 xmit_time)
1190 {
1191 	struct tcp_sock *tp = tcp_sk(sk);
1192 	int fack_count = state->fack_count;
1193 
1194 	/* Account D-SACK for retransmitted packet. */
1195 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1196 		if (tp->undo_marker && tp->undo_retrans &&
1197 		    after(end_seq, tp->undo_marker))
1198 			tp->undo_retrans--;
1199 		if (sacked & TCPCB_SACKED_ACKED)
1200 			state->reord = min(fack_count, state->reord);
1201 	}
1202 
1203 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1204 	if (!after(end_seq, tp->snd_una))
1205 		return sacked;
1206 
1207 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1208 		if (sacked & TCPCB_SACKED_RETRANS) {
1209 			/* If the segment is not tagged as lost,
1210 			 * we do not clear RETRANS, believing
1211 			 * that retransmission is still in flight.
1212 			 */
1213 			if (sacked & TCPCB_LOST) {
1214 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1215 				tp->lost_out -= pcount;
1216 				tp->retrans_out -= pcount;
1217 			}
1218 		} else {
1219 			if (!(sacked & TCPCB_RETRANS)) {
1220 				/* New sack for not retransmitted frame,
1221 				 * which was in hole. It is reordering.
1222 				 */
1223 				if (before(start_seq,
1224 					   tcp_highest_sack_seq(tp)))
1225 					state->reord = min(fack_count,
1226 							   state->reord);
1227 				if (!after(end_seq, tp->high_seq))
1228 					state->flag |= FLAG_ORIG_SACK_ACKED;
1229 				/* Pick the earliest sequence sacked for RTT */
1230 				if (state->rtt < 0)
1231 					state->rtt = tcp_time_stamp - xmit_time;
1232 			}
1233 
1234 			if (sacked & TCPCB_LOST) {
1235 				sacked &= ~TCPCB_LOST;
1236 				tp->lost_out -= pcount;
1237 			}
1238 		}
1239 
1240 		sacked |= TCPCB_SACKED_ACKED;
1241 		state->flag |= FLAG_DATA_SACKED;
1242 		tp->sacked_out += pcount;
1243 
1244 		fack_count += pcount;
1245 
1246 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1247 		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1248 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1249 			tp->lost_cnt_hint += pcount;
1250 
1251 		if (fack_count > tp->fackets_out)
1252 			tp->fackets_out = fack_count;
1253 	}
1254 
1255 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1256 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1257 	 * are accounted above as well.
1258 	 */
1259 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1260 		sacked &= ~TCPCB_SACKED_RETRANS;
1261 		tp->retrans_out -= pcount;
1262 	}
1263 
1264 	return sacked;
1265 }
1266 
1267 /* Shift newly-SACKed bytes from this skb to the immediately previous
1268  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1269  */
1270 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1271 			    struct tcp_sacktag_state *state,
1272 			    unsigned int pcount, int shifted, int mss,
1273 			    bool dup_sack)
1274 {
1275 	struct tcp_sock *tp = tcp_sk(sk);
1276 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1277 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1278 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1279 
1280 	BUG_ON(!pcount);
1281 
1282 	/* Adjust counters and hints for the newly sacked sequence
1283 	 * range but discard the return value since prev is already
1284 	 * marked. We must tag the range first because the seq
1285 	 * advancement below implicitly advances
1286 	 * tcp_highest_sack_seq() when skb is highest_sack.
1287 	 */
1288 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1289 			start_seq, end_seq, dup_sack, pcount,
1290 			TCP_SKB_CB(skb)->when);
1291 
1292 	if (skb == tp->lost_skb_hint)
1293 		tp->lost_cnt_hint += pcount;
1294 
1295 	TCP_SKB_CB(prev)->end_seq += shifted;
1296 	TCP_SKB_CB(skb)->seq += shifted;
1297 
1298 	skb_shinfo(prev)->gso_segs += pcount;
1299 	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1300 	skb_shinfo(skb)->gso_segs -= pcount;
1301 
1302 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1303 	 * in theory this shouldn't be necessary but as long as DSACK
1304 	 * code can come after this skb later on it's better to keep
1305 	 * setting gso_size to something.
1306 	 */
1307 	if (!skb_shinfo(prev)->gso_size) {
1308 		skb_shinfo(prev)->gso_size = mss;
1309 		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1310 	}
1311 
1312 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1313 	if (skb_shinfo(skb)->gso_segs <= 1) {
1314 		skb_shinfo(skb)->gso_size = 0;
1315 		skb_shinfo(skb)->gso_type = 0;
1316 	}
1317 
1318 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1319 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1320 
1321 	if (skb->len > 0) {
1322 		BUG_ON(!tcp_skb_pcount(skb));
1323 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1324 		return false;
1325 	}
1326 
1327 	/* Whole SKB was eaten :-) */
1328 
1329 	if (skb == tp->retransmit_skb_hint)
1330 		tp->retransmit_skb_hint = prev;
1331 	if (skb == tp->lost_skb_hint) {
1332 		tp->lost_skb_hint = prev;
1333 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1334 	}
1335 
1336 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1337 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1338 		TCP_SKB_CB(prev)->end_seq++;
1339 
1340 	if (skb == tcp_highest_sack(sk))
1341 		tcp_advance_highest_sack(sk, skb);
1342 
1343 	tcp_unlink_write_queue(skb, sk);
1344 	sk_wmem_free_skb(sk, skb);
1345 
1346 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1347 
1348 	return true;
1349 }
1350 
1351 /* I wish gso_size would have a bit more sane initialization than
1352  * something-or-zero which complicates things
1353  */
1354 static int tcp_skb_seglen(const struct sk_buff *skb)
1355 {
1356 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1357 }
1358 
1359 /* Shifting pages past head area doesn't work */
1360 static int skb_can_shift(const struct sk_buff *skb)
1361 {
1362 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1363 }
1364 
1365 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1366  * skb.
1367  */
1368 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1369 					  struct tcp_sacktag_state *state,
1370 					  u32 start_seq, u32 end_seq,
1371 					  bool dup_sack)
1372 {
1373 	struct tcp_sock *tp = tcp_sk(sk);
1374 	struct sk_buff *prev;
1375 	int mss;
1376 	int pcount = 0;
1377 	int len;
1378 	int in_sack;
1379 
1380 	if (!sk_can_gso(sk))
1381 		goto fallback;
1382 
1383 	/* Normally R but no L won't result in plain S */
1384 	if (!dup_sack &&
1385 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1386 		goto fallback;
1387 	if (!skb_can_shift(skb))
1388 		goto fallback;
1389 	/* This frame is about to be dropped (was ACKed). */
1390 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1391 		goto fallback;
1392 
1393 	/* Can only happen with delayed DSACK + discard craziness */
1394 	if (unlikely(skb == tcp_write_queue_head(sk)))
1395 		goto fallback;
1396 	prev = tcp_write_queue_prev(sk, skb);
1397 
1398 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1399 		goto fallback;
1400 
1401 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1402 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1403 
1404 	if (in_sack) {
1405 		len = skb->len;
1406 		pcount = tcp_skb_pcount(skb);
1407 		mss = tcp_skb_seglen(skb);
1408 
1409 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1410 		 * drop this restriction as unnecessary
1411 		 */
1412 		if (mss != tcp_skb_seglen(prev))
1413 			goto fallback;
1414 	} else {
1415 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1416 			goto noop;
1417 		/* CHECKME: This is non-MSS split case only?, this will
1418 		 * cause skipped skbs due to advancing loop btw, original
1419 		 * has that feature too
1420 		 */
1421 		if (tcp_skb_pcount(skb) <= 1)
1422 			goto noop;
1423 
1424 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1425 		if (!in_sack) {
1426 			/* TODO: head merge to next could be attempted here
1427 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1428 			 * though it might not be worth of the additional hassle
1429 			 *
1430 			 * ...we can probably just fallback to what was done
1431 			 * previously. We could try merging non-SACKed ones
1432 			 * as well but it probably isn't going to buy off
1433 			 * because later SACKs might again split them, and
1434 			 * it would make skb timestamp tracking considerably
1435 			 * harder problem.
1436 			 */
1437 			goto fallback;
1438 		}
1439 
1440 		len = end_seq - TCP_SKB_CB(skb)->seq;
1441 		BUG_ON(len < 0);
1442 		BUG_ON(len > skb->len);
1443 
1444 		/* MSS boundaries should be honoured or else pcount will
1445 		 * severely break even though it makes things bit trickier.
1446 		 * Optimize common case to avoid most of the divides
1447 		 */
1448 		mss = tcp_skb_mss(skb);
1449 
1450 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1451 		 * drop this restriction as unnecessary
1452 		 */
1453 		if (mss != tcp_skb_seglen(prev))
1454 			goto fallback;
1455 
1456 		if (len == mss) {
1457 			pcount = 1;
1458 		} else if (len < mss) {
1459 			goto noop;
1460 		} else {
1461 			pcount = len / mss;
1462 			len = pcount * mss;
1463 		}
1464 	}
1465 
1466 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1467 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1468 		goto fallback;
1469 
1470 	if (!skb_shift(prev, skb, len))
1471 		goto fallback;
1472 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1473 		goto out;
1474 
1475 	/* Hole filled allows collapsing with the next as well, this is very
1476 	 * useful when hole on every nth skb pattern happens
1477 	 */
1478 	if (prev == tcp_write_queue_tail(sk))
1479 		goto out;
1480 	skb = tcp_write_queue_next(sk, prev);
1481 
1482 	if (!skb_can_shift(skb) ||
1483 	    (skb == tcp_send_head(sk)) ||
1484 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1485 	    (mss != tcp_skb_seglen(skb)))
1486 		goto out;
1487 
1488 	len = skb->len;
1489 	if (skb_shift(prev, skb, len)) {
1490 		pcount += tcp_skb_pcount(skb);
1491 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1492 	}
1493 
1494 out:
1495 	state->fack_count += pcount;
1496 	return prev;
1497 
1498 noop:
1499 	return skb;
1500 
1501 fallback:
1502 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1503 	return NULL;
1504 }
1505 
1506 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1507 					struct tcp_sack_block *next_dup,
1508 					struct tcp_sacktag_state *state,
1509 					u32 start_seq, u32 end_seq,
1510 					bool dup_sack_in)
1511 {
1512 	struct tcp_sock *tp = tcp_sk(sk);
1513 	struct sk_buff *tmp;
1514 
1515 	tcp_for_write_queue_from(skb, sk) {
1516 		int in_sack = 0;
1517 		bool dup_sack = dup_sack_in;
1518 
1519 		if (skb == tcp_send_head(sk))
1520 			break;
1521 
1522 		/* queue is in-order => we can short-circuit the walk early */
1523 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1524 			break;
1525 
1526 		if ((next_dup != NULL) &&
1527 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1528 			in_sack = tcp_match_skb_to_sack(sk, skb,
1529 							next_dup->start_seq,
1530 							next_dup->end_seq);
1531 			if (in_sack > 0)
1532 				dup_sack = true;
1533 		}
1534 
1535 		/* skb reference here is a bit tricky to get right, since
1536 		 * shifting can eat and free both this skb and the next,
1537 		 * so not even _safe variant of the loop is enough.
1538 		 */
1539 		if (in_sack <= 0) {
1540 			tmp = tcp_shift_skb_data(sk, skb, state,
1541 						 start_seq, end_seq, dup_sack);
1542 			if (tmp != NULL) {
1543 				if (tmp != skb) {
1544 					skb = tmp;
1545 					continue;
1546 				}
1547 
1548 				in_sack = 0;
1549 			} else {
1550 				in_sack = tcp_match_skb_to_sack(sk, skb,
1551 								start_seq,
1552 								end_seq);
1553 			}
1554 		}
1555 
1556 		if (unlikely(in_sack < 0))
1557 			break;
1558 
1559 		if (in_sack) {
1560 			TCP_SKB_CB(skb)->sacked =
1561 				tcp_sacktag_one(sk,
1562 						state,
1563 						TCP_SKB_CB(skb)->sacked,
1564 						TCP_SKB_CB(skb)->seq,
1565 						TCP_SKB_CB(skb)->end_seq,
1566 						dup_sack,
1567 						tcp_skb_pcount(skb),
1568 						TCP_SKB_CB(skb)->when);
1569 
1570 			if (!before(TCP_SKB_CB(skb)->seq,
1571 				    tcp_highest_sack_seq(tp)))
1572 				tcp_advance_highest_sack(sk, skb);
1573 		}
1574 
1575 		state->fack_count += tcp_skb_pcount(skb);
1576 	}
1577 	return skb;
1578 }
1579 
1580 /* Avoid all extra work that is being done by sacktag while walking in
1581  * a normal way
1582  */
1583 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1584 					struct tcp_sacktag_state *state,
1585 					u32 skip_to_seq)
1586 {
1587 	tcp_for_write_queue_from(skb, sk) {
1588 		if (skb == tcp_send_head(sk))
1589 			break;
1590 
1591 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1592 			break;
1593 
1594 		state->fack_count += tcp_skb_pcount(skb);
1595 	}
1596 	return skb;
1597 }
1598 
1599 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1600 						struct sock *sk,
1601 						struct tcp_sack_block *next_dup,
1602 						struct tcp_sacktag_state *state,
1603 						u32 skip_to_seq)
1604 {
1605 	if (next_dup == NULL)
1606 		return skb;
1607 
1608 	if (before(next_dup->start_seq, skip_to_seq)) {
1609 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1610 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1611 				       next_dup->start_seq, next_dup->end_seq,
1612 				       1);
1613 	}
1614 
1615 	return skb;
1616 }
1617 
1618 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1619 {
1620 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1621 }
1622 
1623 static int
1624 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1625 			u32 prior_snd_una, s32 *sack_rtt)
1626 {
1627 	struct tcp_sock *tp = tcp_sk(sk);
1628 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1629 				    TCP_SKB_CB(ack_skb)->sacked);
1630 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1631 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1632 	struct tcp_sack_block *cache;
1633 	struct tcp_sacktag_state state;
1634 	struct sk_buff *skb;
1635 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1636 	int used_sacks;
1637 	bool found_dup_sack = false;
1638 	int i, j;
1639 	int first_sack_index;
1640 
1641 	state.flag = 0;
1642 	state.reord = tp->packets_out;
1643 	state.rtt = -1;
1644 
1645 	if (!tp->sacked_out) {
1646 		if (WARN_ON(tp->fackets_out))
1647 			tp->fackets_out = 0;
1648 		tcp_highest_sack_reset(sk);
1649 	}
1650 
1651 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1652 					 num_sacks, prior_snd_una);
1653 	if (found_dup_sack)
1654 		state.flag |= FLAG_DSACKING_ACK;
1655 
1656 	/* Eliminate too old ACKs, but take into
1657 	 * account more or less fresh ones, they can
1658 	 * contain valid SACK info.
1659 	 */
1660 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1661 		return 0;
1662 
1663 	if (!tp->packets_out)
1664 		goto out;
1665 
1666 	used_sacks = 0;
1667 	first_sack_index = 0;
1668 	for (i = 0; i < num_sacks; i++) {
1669 		bool dup_sack = !i && found_dup_sack;
1670 
1671 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1672 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1673 
1674 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1675 					    sp[used_sacks].start_seq,
1676 					    sp[used_sacks].end_seq)) {
1677 			int mib_idx;
1678 
1679 			if (dup_sack) {
1680 				if (!tp->undo_marker)
1681 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1682 				else
1683 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1684 			} else {
1685 				/* Don't count olds caused by ACK reordering */
1686 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1687 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1688 					continue;
1689 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1690 			}
1691 
1692 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1693 			if (i == 0)
1694 				first_sack_index = -1;
1695 			continue;
1696 		}
1697 
1698 		/* Ignore very old stuff early */
1699 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1700 			continue;
1701 
1702 		used_sacks++;
1703 	}
1704 
1705 	/* order SACK blocks to allow in order walk of the retrans queue */
1706 	for (i = used_sacks - 1; i > 0; i--) {
1707 		for (j = 0; j < i; j++) {
1708 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1709 				swap(sp[j], sp[j + 1]);
1710 
1711 				/* Track where the first SACK block goes to */
1712 				if (j == first_sack_index)
1713 					first_sack_index = j + 1;
1714 			}
1715 		}
1716 	}
1717 
1718 	skb = tcp_write_queue_head(sk);
1719 	state.fack_count = 0;
1720 	i = 0;
1721 
1722 	if (!tp->sacked_out) {
1723 		/* It's already past, so skip checking against it */
1724 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1725 	} else {
1726 		cache = tp->recv_sack_cache;
1727 		/* Skip empty blocks in at head of the cache */
1728 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1729 		       !cache->end_seq)
1730 			cache++;
1731 	}
1732 
1733 	while (i < used_sacks) {
1734 		u32 start_seq = sp[i].start_seq;
1735 		u32 end_seq = sp[i].end_seq;
1736 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1737 		struct tcp_sack_block *next_dup = NULL;
1738 
1739 		if (found_dup_sack && ((i + 1) == first_sack_index))
1740 			next_dup = &sp[i + 1];
1741 
1742 		/* Skip too early cached blocks */
1743 		while (tcp_sack_cache_ok(tp, cache) &&
1744 		       !before(start_seq, cache->end_seq))
1745 			cache++;
1746 
1747 		/* Can skip some work by looking recv_sack_cache? */
1748 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1749 		    after(end_seq, cache->start_seq)) {
1750 
1751 			/* Head todo? */
1752 			if (before(start_seq, cache->start_seq)) {
1753 				skb = tcp_sacktag_skip(skb, sk, &state,
1754 						       start_seq);
1755 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1756 						       &state,
1757 						       start_seq,
1758 						       cache->start_seq,
1759 						       dup_sack);
1760 			}
1761 
1762 			/* Rest of the block already fully processed? */
1763 			if (!after(end_seq, cache->end_seq))
1764 				goto advance_sp;
1765 
1766 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1767 						       &state,
1768 						       cache->end_seq);
1769 
1770 			/* ...tail remains todo... */
1771 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1772 				/* ...but better entrypoint exists! */
1773 				skb = tcp_highest_sack(sk);
1774 				if (skb == NULL)
1775 					break;
1776 				state.fack_count = tp->fackets_out;
1777 				cache++;
1778 				goto walk;
1779 			}
1780 
1781 			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1782 			/* Check overlap against next cached too (past this one already) */
1783 			cache++;
1784 			continue;
1785 		}
1786 
1787 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1788 			skb = tcp_highest_sack(sk);
1789 			if (skb == NULL)
1790 				break;
1791 			state.fack_count = tp->fackets_out;
1792 		}
1793 		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1794 
1795 walk:
1796 		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1797 				       start_seq, end_seq, dup_sack);
1798 
1799 advance_sp:
1800 		i++;
1801 	}
1802 
1803 	/* Clear the head of the cache sack blocks so we can skip it next time */
1804 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1805 		tp->recv_sack_cache[i].start_seq = 0;
1806 		tp->recv_sack_cache[i].end_seq = 0;
1807 	}
1808 	for (j = 0; j < used_sacks; j++)
1809 		tp->recv_sack_cache[i++] = sp[j];
1810 
1811 	tcp_mark_lost_retrans(sk);
1812 
1813 	tcp_verify_left_out(tp);
1814 
1815 	if ((state.reord < tp->fackets_out) &&
1816 	    ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1817 		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1818 
1819 out:
1820 
1821 #if FASTRETRANS_DEBUG > 0
1822 	WARN_ON((int)tp->sacked_out < 0);
1823 	WARN_ON((int)tp->lost_out < 0);
1824 	WARN_ON((int)tp->retrans_out < 0);
1825 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1826 #endif
1827 	*sack_rtt = state.rtt;
1828 	return state.flag;
1829 }
1830 
1831 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1832  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1833  */
1834 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1835 {
1836 	u32 holes;
1837 
1838 	holes = max(tp->lost_out, 1U);
1839 	holes = min(holes, tp->packets_out);
1840 
1841 	if ((tp->sacked_out + holes) > tp->packets_out) {
1842 		tp->sacked_out = tp->packets_out - holes;
1843 		return true;
1844 	}
1845 	return false;
1846 }
1847 
1848 /* If we receive more dupacks than we expected counting segments
1849  * in assumption of absent reordering, interpret this as reordering.
1850  * The only another reason could be bug in receiver TCP.
1851  */
1852 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1853 {
1854 	struct tcp_sock *tp = tcp_sk(sk);
1855 	if (tcp_limit_reno_sacked(tp))
1856 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1857 }
1858 
1859 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1860 
1861 static void tcp_add_reno_sack(struct sock *sk)
1862 {
1863 	struct tcp_sock *tp = tcp_sk(sk);
1864 	tp->sacked_out++;
1865 	tcp_check_reno_reordering(sk, 0);
1866 	tcp_verify_left_out(tp);
1867 }
1868 
1869 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1870 
1871 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1872 {
1873 	struct tcp_sock *tp = tcp_sk(sk);
1874 
1875 	if (acked > 0) {
1876 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1877 		if (acked - 1 >= tp->sacked_out)
1878 			tp->sacked_out = 0;
1879 		else
1880 			tp->sacked_out -= acked - 1;
1881 	}
1882 	tcp_check_reno_reordering(sk, acked);
1883 	tcp_verify_left_out(tp);
1884 }
1885 
1886 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1887 {
1888 	tp->sacked_out = 0;
1889 }
1890 
1891 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1892 {
1893 	tp->retrans_out = 0;
1894 	tp->lost_out = 0;
1895 
1896 	tp->undo_marker = 0;
1897 	tp->undo_retrans = 0;
1898 }
1899 
1900 void tcp_clear_retrans(struct tcp_sock *tp)
1901 {
1902 	tcp_clear_retrans_partial(tp);
1903 
1904 	tp->fackets_out = 0;
1905 	tp->sacked_out = 0;
1906 }
1907 
1908 /* Enter Loss state. If "how" is not zero, forget all SACK information
1909  * and reset tags completely, otherwise preserve SACKs. If receiver
1910  * dropped its ofo queue, we will know this due to reneging detection.
1911  */
1912 void tcp_enter_loss(struct sock *sk, int how)
1913 {
1914 	const struct inet_connection_sock *icsk = inet_csk(sk);
1915 	struct tcp_sock *tp = tcp_sk(sk);
1916 	struct sk_buff *skb;
1917 	bool new_recovery = false;
1918 
1919 	/* Reduce ssthresh if it has not yet been made inside this window. */
1920 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1921 	    !after(tp->high_seq, tp->snd_una) ||
1922 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1923 		new_recovery = true;
1924 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1925 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1926 		tcp_ca_event(sk, CA_EVENT_LOSS);
1927 	}
1928 	tp->snd_cwnd	   = 1;
1929 	tp->snd_cwnd_cnt   = 0;
1930 	tp->snd_cwnd_stamp = tcp_time_stamp;
1931 
1932 	tcp_clear_retrans_partial(tp);
1933 
1934 	if (tcp_is_reno(tp))
1935 		tcp_reset_reno_sack(tp);
1936 
1937 	tp->undo_marker = tp->snd_una;
1938 	if (how) {
1939 		tp->sacked_out = 0;
1940 		tp->fackets_out = 0;
1941 	}
1942 	tcp_clear_all_retrans_hints(tp);
1943 
1944 	tcp_for_write_queue(skb, sk) {
1945 		if (skb == tcp_send_head(sk))
1946 			break;
1947 
1948 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1949 			tp->undo_marker = 0;
1950 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1951 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1952 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1953 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1954 			tp->lost_out += tcp_skb_pcount(skb);
1955 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1956 		}
1957 	}
1958 	tcp_verify_left_out(tp);
1959 
1960 	/* Timeout in disordered state after receiving substantial DUPACKs
1961 	 * suggests that the degree of reordering is over-estimated.
1962 	 */
1963 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1964 	    tp->sacked_out >= sysctl_tcp_reordering)
1965 		tp->reordering = min_t(unsigned int, tp->reordering,
1966 				       sysctl_tcp_reordering);
1967 	tcp_set_ca_state(sk, TCP_CA_Loss);
1968 	tp->high_seq = tp->snd_nxt;
1969 	TCP_ECN_queue_cwr(tp);
1970 
1971 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1972 	 * loss recovery is underway except recurring timeout(s) on
1973 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1974 	 */
1975 	tp->frto = sysctl_tcp_frto &&
1976 		   (new_recovery || icsk->icsk_retransmits) &&
1977 		   !inet_csk(sk)->icsk_mtup.probe_size;
1978 }
1979 
1980 /* If ACK arrived pointing to a remembered SACK, it means that our
1981  * remembered SACKs do not reflect real state of receiver i.e.
1982  * receiver _host_ is heavily congested (or buggy).
1983  *
1984  * Do processing similar to RTO timeout.
1985  */
1986 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1987 {
1988 	if (flag & FLAG_SACK_RENEGING) {
1989 		struct inet_connection_sock *icsk = inet_csk(sk);
1990 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1991 
1992 		tcp_enter_loss(sk, 1);
1993 		icsk->icsk_retransmits++;
1994 		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1995 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1996 					  icsk->icsk_rto, TCP_RTO_MAX);
1997 		return true;
1998 	}
1999 	return false;
2000 }
2001 
2002 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2003 {
2004 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2005 }
2006 
2007 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2008  * counter when SACK is enabled (without SACK, sacked_out is used for
2009  * that purpose).
2010  *
2011  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2012  * segments up to the highest received SACK block so far and holes in
2013  * between them.
2014  *
2015  * With reordering, holes may still be in flight, so RFC3517 recovery
2016  * uses pure sacked_out (total number of SACKed segments) even though
2017  * it violates the RFC that uses duplicate ACKs, often these are equal
2018  * but when e.g. out-of-window ACKs or packet duplication occurs,
2019  * they differ. Since neither occurs due to loss, TCP should really
2020  * ignore them.
2021  */
2022 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2023 {
2024 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2025 }
2026 
2027 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2028 {
2029 	struct tcp_sock *tp = tcp_sk(sk);
2030 	unsigned long delay;
2031 
2032 	/* Delay early retransmit and entering fast recovery for
2033 	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2034 	 * available, or RTO is scheduled to fire first.
2035 	 */
2036 	if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2037 	    (flag & FLAG_ECE) || !tp->srtt)
2038 		return false;
2039 
2040 	delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
2041 	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2042 		return false;
2043 
2044 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2045 				  TCP_RTO_MAX);
2046 	return true;
2047 }
2048 
2049 /* Linux NewReno/SACK/FACK/ECN state machine.
2050  * --------------------------------------
2051  *
2052  * "Open"	Normal state, no dubious events, fast path.
2053  * "Disorder"   In all the respects it is "Open",
2054  *		but requires a bit more attention. It is entered when
2055  *		we see some SACKs or dupacks. It is split of "Open"
2056  *		mainly to move some processing from fast path to slow one.
2057  * "CWR"	CWND was reduced due to some Congestion Notification event.
2058  *		It can be ECN, ICMP source quench, local device congestion.
2059  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2060  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2061  *
2062  * tcp_fastretrans_alert() is entered:
2063  * - each incoming ACK, if state is not "Open"
2064  * - when arrived ACK is unusual, namely:
2065  *	* SACK
2066  *	* Duplicate ACK.
2067  *	* ECN ECE.
2068  *
2069  * Counting packets in flight is pretty simple.
2070  *
2071  *	in_flight = packets_out - left_out + retrans_out
2072  *
2073  *	packets_out is SND.NXT-SND.UNA counted in packets.
2074  *
2075  *	retrans_out is number of retransmitted segments.
2076  *
2077  *	left_out is number of segments left network, but not ACKed yet.
2078  *
2079  *		left_out = sacked_out + lost_out
2080  *
2081  *     sacked_out: Packets, which arrived to receiver out of order
2082  *		   and hence not ACKed. With SACKs this number is simply
2083  *		   amount of SACKed data. Even without SACKs
2084  *		   it is easy to give pretty reliable estimate of this number,
2085  *		   counting duplicate ACKs.
2086  *
2087  *       lost_out: Packets lost by network. TCP has no explicit
2088  *		   "loss notification" feedback from network (for now).
2089  *		   It means that this number can be only _guessed_.
2090  *		   Actually, it is the heuristics to predict lossage that
2091  *		   distinguishes different algorithms.
2092  *
2093  *	F.e. after RTO, when all the queue is considered as lost,
2094  *	lost_out = packets_out and in_flight = retrans_out.
2095  *
2096  *		Essentially, we have now two algorithms counting
2097  *		lost packets.
2098  *
2099  *		FACK: It is the simplest heuristics. As soon as we decided
2100  *		that something is lost, we decide that _all_ not SACKed
2101  *		packets until the most forward SACK are lost. I.e.
2102  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2103  *		It is absolutely correct estimate, if network does not reorder
2104  *		packets. And it loses any connection to reality when reordering
2105  *		takes place. We use FACK by default until reordering
2106  *		is suspected on the path to this destination.
2107  *
2108  *		NewReno: when Recovery is entered, we assume that one segment
2109  *		is lost (classic Reno). While we are in Recovery and
2110  *		a partial ACK arrives, we assume that one more packet
2111  *		is lost (NewReno). This heuristics are the same in NewReno
2112  *		and SACK.
2113  *
2114  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2115  *  deflation etc. CWND is real congestion window, never inflated, changes
2116  *  only according to classic VJ rules.
2117  *
2118  * Really tricky (and requiring careful tuning) part of algorithm
2119  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2120  * The first determines the moment _when_ we should reduce CWND and,
2121  * hence, slow down forward transmission. In fact, it determines the moment
2122  * when we decide that hole is caused by loss, rather than by a reorder.
2123  *
2124  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2125  * holes, caused by lost packets.
2126  *
2127  * And the most logically complicated part of algorithm is undo
2128  * heuristics. We detect false retransmits due to both too early
2129  * fast retransmit (reordering) and underestimated RTO, analyzing
2130  * timestamps and D-SACKs. When we detect that some segments were
2131  * retransmitted by mistake and CWND reduction was wrong, we undo
2132  * window reduction and abort recovery phase. This logic is hidden
2133  * inside several functions named tcp_try_undo_<something>.
2134  */
2135 
2136 /* This function decides, when we should leave Disordered state
2137  * and enter Recovery phase, reducing congestion window.
2138  *
2139  * Main question: may we further continue forward transmission
2140  * with the same cwnd?
2141  */
2142 static bool tcp_time_to_recover(struct sock *sk, int flag)
2143 {
2144 	struct tcp_sock *tp = tcp_sk(sk);
2145 	__u32 packets_out;
2146 
2147 	/* Trick#1: The loss is proven. */
2148 	if (tp->lost_out)
2149 		return true;
2150 
2151 	/* Not-A-Trick#2 : Classic rule... */
2152 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2153 		return true;
2154 
2155 	/* Trick#4: It is still not OK... But will it be useful to delay
2156 	 * recovery more?
2157 	 */
2158 	packets_out = tp->packets_out;
2159 	if (packets_out <= tp->reordering &&
2160 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2161 	    !tcp_may_send_now(sk)) {
2162 		/* We have nothing to send. This connection is limited
2163 		 * either by receiver window or by application.
2164 		 */
2165 		return true;
2166 	}
2167 
2168 	/* If a thin stream is detected, retransmit after first
2169 	 * received dupack. Employ only if SACK is supported in order
2170 	 * to avoid possible corner-case series of spurious retransmissions
2171 	 * Use only if there are no unsent data.
2172 	 */
2173 	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2174 	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2175 	    tcp_is_sack(tp) && !tcp_send_head(sk))
2176 		return true;
2177 
2178 	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2179 	 * retransmissions due to small network reorderings, we implement
2180 	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2181 	 * interval if appropriate.
2182 	 */
2183 	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2184 	    (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2185 	    !tcp_may_send_now(sk))
2186 		return !tcp_pause_early_retransmit(sk, flag);
2187 
2188 	return false;
2189 }
2190 
2191 /* Detect loss in event "A" above by marking head of queue up as lost.
2192  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2193  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2194  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2195  * the maximum SACKed segments to pass before reaching this limit.
2196  */
2197 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2198 {
2199 	struct tcp_sock *tp = tcp_sk(sk);
2200 	struct sk_buff *skb;
2201 	int cnt, oldcnt;
2202 	int err;
2203 	unsigned int mss;
2204 	/* Use SACK to deduce losses of new sequences sent during recovery */
2205 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2206 
2207 	WARN_ON(packets > tp->packets_out);
2208 	if (tp->lost_skb_hint) {
2209 		skb = tp->lost_skb_hint;
2210 		cnt = tp->lost_cnt_hint;
2211 		/* Head already handled? */
2212 		if (mark_head && skb != tcp_write_queue_head(sk))
2213 			return;
2214 	} else {
2215 		skb = tcp_write_queue_head(sk);
2216 		cnt = 0;
2217 	}
2218 
2219 	tcp_for_write_queue_from(skb, sk) {
2220 		if (skb == tcp_send_head(sk))
2221 			break;
2222 		/* TODO: do this better */
2223 		/* this is not the most efficient way to do this... */
2224 		tp->lost_skb_hint = skb;
2225 		tp->lost_cnt_hint = cnt;
2226 
2227 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2228 			break;
2229 
2230 		oldcnt = cnt;
2231 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2232 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2233 			cnt += tcp_skb_pcount(skb);
2234 
2235 		if (cnt > packets) {
2236 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2237 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2238 			    (oldcnt >= packets))
2239 				break;
2240 
2241 			mss = skb_shinfo(skb)->gso_size;
2242 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2243 			if (err < 0)
2244 				break;
2245 			cnt = packets;
2246 		}
2247 
2248 		tcp_skb_mark_lost(tp, skb);
2249 
2250 		if (mark_head)
2251 			break;
2252 	}
2253 	tcp_verify_left_out(tp);
2254 }
2255 
2256 /* Account newly detected lost packet(s) */
2257 
2258 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2259 {
2260 	struct tcp_sock *tp = tcp_sk(sk);
2261 
2262 	if (tcp_is_reno(tp)) {
2263 		tcp_mark_head_lost(sk, 1, 1);
2264 	} else if (tcp_is_fack(tp)) {
2265 		int lost = tp->fackets_out - tp->reordering;
2266 		if (lost <= 0)
2267 			lost = 1;
2268 		tcp_mark_head_lost(sk, lost, 0);
2269 	} else {
2270 		int sacked_upto = tp->sacked_out - tp->reordering;
2271 		if (sacked_upto >= 0)
2272 			tcp_mark_head_lost(sk, sacked_upto, 0);
2273 		else if (fast_rexmit)
2274 			tcp_mark_head_lost(sk, 1, 1);
2275 	}
2276 }
2277 
2278 /* CWND moderation, preventing bursts due to too big ACKs
2279  * in dubious situations.
2280  */
2281 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2282 {
2283 	tp->snd_cwnd = min(tp->snd_cwnd,
2284 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2285 	tp->snd_cwnd_stamp = tcp_time_stamp;
2286 }
2287 
2288 /* Nothing was retransmitted or returned timestamp is less
2289  * than timestamp of the first retransmission.
2290  */
2291 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2292 {
2293 	return !tp->retrans_stamp ||
2294 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2295 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2296 }
2297 
2298 /* Undo procedures. */
2299 
2300 #if FASTRETRANS_DEBUG > 1
2301 static void DBGUNDO(struct sock *sk, const char *msg)
2302 {
2303 	struct tcp_sock *tp = tcp_sk(sk);
2304 	struct inet_sock *inet = inet_sk(sk);
2305 
2306 	if (sk->sk_family == AF_INET) {
2307 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2308 			 msg,
2309 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2310 			 tp->snd_cwnd, tcp_left_out(tp),
2311 			 tp->snd_ssthresh, tp->prior_ssthresh,
2312 			 tp->packets_out);
2313 	}
2314 #if IS_ENABLED(CONFIG_IPV6)
2315 	else if (sk->sk_family == AF_INET6) {
2316 		struct ipv6_pinfo *np = inet6_sk(sk);
2317 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2318 			 msg,
2319 			 &np->daddr, ntohs(inet->inet_dport),
2320 			 tp->snd_cwnd, tcp_left_out(tp),
2321 			 tp->snd_ssthresh, tp->prior_ssthresh,
2322 			 tp->packets_out);
2323 	}
2324 #endif
2325 }
2326 #else
2327 #define DBGUNDO(x...) do { } while (0)
2328 #endif
2329 
2330 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2331 {
2332 	struct tcp_sock *tp = tcp_sk(sk);
2333 
2334 	if (unmark_loss) {
2335 		struct sk_buff *skb;
2336 
2337 		tcp_for_write_queue(skb, sk) {
2338 			if (skb == tcp_send_head(sk))
2339 				break;
2340 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2341 		}
2342 		tp->lost_out = 0;
2343 		tcp_clear_all_retrans_hints(tp);
2344 	}
2345 
2346 	if (tp->prior_ssthresh) {
2347 		const struct inet_connection_sock *icsk = inet_csk(sk);
2348 
2349 		if (icsk->icsk_ca_ops->undo_cwnd)
2350 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2351 		else
2352 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2353 
2354 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2355 			tp->snd_ssthresh = tp->prior_ssthresh;
2356 			TCP_ECN_withdraw_cwr(tp);
2357 		}
2358 	} else {
2359 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2360 	}
2361 	tp->snd_cwnd_stamp = tcp_time_stamp;
2362 	tp->undo_marker = 0;
2363 }
2364 
2365 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2366 {
2367 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2368 }
2369 
2370 /* People celebrate: "We love our President!" */
2371 static bool tcp_try_undo_recovery(struct sock *sk)
2372 {
2373 	struct tcp_sock *tp = tcp_sk(sk);
2374 
2375 	if (tcp_may_undo(tp)) {
2376 		int mib_idx;
2377 
2378 		/* Happy end! We did not retransmit anything
2379 		 * or our original transmission succeeded.
2380 		 */
2381 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2382 		tcp_undo_cwnd_reduction(sk, false);
2383 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2384 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2385 		else
2386 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2387 
2388 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2389 	}
2390 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2391 		/* Hold old state until something *above* high_seq
2392 		 * is ACKed. For Reno it is MUST to prevent false
2393 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2394 		tcp_moderate_cwnd(tp);
2395 		return true;
2396 	}
2397 	tcp_set_ca_state(sk, TCP_CA_Open);
2398 	return false;
2399 }
2400 
2401 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2402 static bool tcp_try_undo_dsack(struct sock *sk)
2403 {
2404 	struct tcp_sock *tp = tcp_sk(sk);
2405 
2406 	if (tp->undo_marker && !tp->undo_retrans) {
2407 		DBGUNDO(sk, "D-SACK");
2408 		tcp_undo_cwnd_reduction(sk, false);
2409 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2410 		return true;
2411 	}
2412 	return false;
2413 }
2414 
2415 /* We can clear retrans_stamp when there are no retransmissions in the
2416  * window. It would seem that it is trivially available for us in
2417  * tp->retrans_out, however, that kind of assumptions doesn't consider
2418  * what will happen if errors occur when sending retransmission for the
2419  * second time. ...It could the that such segment has only
2420  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2421  * the head skb is enough except for some reneging corner cases that
2422  * are not worth the effort.
2423  *
2424  * Main reason for all this complexity is the fact that connection dying
2425  * time now depends on the validity of the retrans_stamp, in particular,
2426  * that successive retransmissions of a segment must not advance
2427  * retrans_stamp under any conditions.
2428  */
2429 static bool tcp_any_retrans_done(const struct sock *sk)
2430 {
2431 	const struct tcp_sock *tp = tcp_sk(sk);
2432 	struct sk_buff *skb;
2433 
2434 	if (tp->retrans_out)
2435 		return true;
2436 
2437 	skb = tcp_write_queue_head(sk);
2438 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2439 		return true;
2440 
2441 	return false;
2442 }
2443 
2444 /* Undo during loss recovery after partial ACK or using F-RTO. */
2445 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2446 {
2447 	struct tcp_sock *tp = tcp_sk(sk);
2448 
2449 	if (frto_undo || tcp_may_undo(tp)) {
2450 		tcp_undo_cwnd_reduction(sk, true);
2451 
2452 		DBGUNDO(sk, "partial loss");
2453 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2454 		if (frto_undo)
2455 			NET_INC_STATS_BH(sock_net(sk),
2456 					 LINUX_MIB_TCPSPURIOUSRTOS);
2457 		inet_csk(sk)->icsk_retransmits = 0;
2458 		if (frto_undo || tcp_is_sack(tp))
2459 			tcp_set_ca_state(sk, TCP_CA_Open);
2460 		return true;
2461 	}
2462 	return false;
2463 }
2464 
2465 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2466  * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2467  * It computes the number of packets to send (sndcnt) based on packets newly
2468  * delivered:
2469  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2470  *	cwnd reductions across a full RTT.
2471  *   2) If packets in flight is lower than ssthresh (such as due to excess
2472  *	losses and/or application stalls), do not perform any further cwnd
2473  *	reductions, but instead slow start up to ssthresh.
2474  */
2475 static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
2476 {
2477 	struct tcp_sock *tp = tcp_sk(sk);
2478 
2479 	tp->high_seq = tp->snd_nxt;
2480 	tp->tlp_high_seq = 0;
2481 	tp->snd_cwnd_cnt = 0;
2482 	tp->prior_cwnd = tp->snd_cwnd;
2483 	tp->prr_delivered = 0;
2484 	tp->prr_out = 0;
2485 	if (set_ssthresh)
2486 		tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2487 	TCP_ECN_queue_cwr(tp);
2488 }
2489 
2490 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2491 			       int fast_rexmit)
2492 {
2493 	struct tcp_sock *tp = tcp_sk(sk);
2494 	int sndcnt = 0;
2495 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2496 	int newly_acked_sacked = prior_unsacked -
2497 				 (tp->packets_out - tp->sacked_out);
2498 
2499 	tp->prr_delivered += newly_acked_sacked;
2500 	if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2501 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2502 			       tp->prior_cwnd - 1;
2503 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2504 	} else {
2505 		sndcnt = min_t(int, delta,
2506 			       max_t(int, tp->prr_delivered - tp->prr_out,
2507 				     newly_acked_sacked) + 1);
2508 	}
2509 
2510 	sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2511 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2512 }
2513 
2514 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2515 {
2516 	struct tcp_sock *tp = tcp_sk(sk);
2517 
2518 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2519 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2520 	    (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2521 		tp->snd_cwnd = tp->snd_ssthresh;
2522 		tp->snd_cwnd_stamp = tcp_time_stamp;
2523 	}
2524 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2525 }
2526 
2527 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2528 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
2529 {
2530 	struct tcp_sock *tp = tcp_sk(sk);
2531 
2532 	tp->prior_ssthresh = 0;
2533 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2534 		tp->undo_marker = 0;
2535 		tcp_init_cwnd_reduction(sk, set_ssthresh);
2536 		tcp_set_ca_state(sk, TCP_CA_CWR);
2537 	}
2538 }
2539 
2540 static void tcp_try_keep_open(struct sock *sk)
2541 {
2542 	struct tcp_sock *tp = tcp_sk(sk);
2543 	int state = TCP_CA_Open;
2544 
2545 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2546 		state = TCP_CA_Disorder;
2547 
2548 	if (inet_csk(sk)->icsk_ca_state != state) {
2549 		tcp_set_ca_state(sk, state);
2550 		tp->high_seq = tp->snd_nxt;
2551 	}
2552 }
2553 
2554 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2555 {
2556 	struct tcp_sock *tp = tcp_sk(sk);
2557 
2558 	tcp_verify_left_out(tp);
2559 
2560 	if (!tcp_any_retrans_done(sk))
2561 		tp->retrans_stamp = 0;
2562 
2563 	if (flag & FLAG_ECE)
2564 		tcp_enter_cwr(sk, 1);
2565 
2566 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2567 		tcp_try_keep_open(sk);
2568 	} else {
2569 		tcp_cwnd_reduction(sk, prior_unsacked, 0);
2570 	}
2571 }
2572 
2573 static void tcp_mtup_probe_failed(struct sock *sk)
2574 {
2575 	struct inet_connection_sock *icsk = inet_csk(sk);
2576 
2577 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2578 	icsk->icsk_mtup.probe_size = 0;
2579 }
2580 
2581 static void tcp_mtup_probe_success(struct sock *sk)
2582 {
2583 	struct tcp_sock *tp = tcp_sk(sk);
2584 	struct inet_connection_sock *icsk = inet_csk(sk);
2585 
2586 	/* FIXME: breaks with very large cwnd */
2587 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2588 	tp->snd_cwnd = tp->snd_cwnd *
2589 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2590 		       icsk->icsk_mtup.probe_size;
2591 	tp->snd_cwnd_cnt = 0;
2592 	tp->snd_cwnd_stamp = tcp_time_stamp;
2593 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2594 
2595 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2596 	icsk->icsk_mtup.probe_size = 0;
2597 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2598 }
2599 
2600 /* Do a simple retransmit without using the backoff mechanisms in
2601  * tcp_timer. This is used for path mtu discovery.
2602  * The socket is already locked here.
2603  */
2604 void tcp_simple_retransmit(struct sock *sk)
2605 {
2606 	const struct inet_connection_sock *icsk = inet_csk(sk);
2607 	struct tcp_sock *tp = tcp_sk(sk);
2608 	struct sk_buff *skb;
2609 	unsigned int mss = tcp_current_mss(sk);
2610 	u32 prior_lost = tp->lost_out;
2611 
2612 	tcp_for_write_queue(skb, sk) {
2613 		if (skb == tcp_send_head(sk))
2614 			break;
2615 		if (tcp_skb_seglen(skb) > mss &&
2616 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2617 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2618 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2619 				tp->retrans_out -= tcp_skb_pcount(skb);
2620 			}
2621 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2622 		}
2623 	}
2624 
2625 	tcp_clear_retrans_hints_partial(tp);
2626 
2627 	if (prior_lost == tp->lost_out)
2628 		return;
2629 
2630 	if (tcp_is_reno(tp))
2631 		tcp_limit_reno_sacked(tp);
2632 
2633 	tcp_verify_left_out(tp);
2634 
2635 	/* Don't muck with the congestion window here.
2636 	 * Reason is that we do not increase amount of _data_
2637 	 * in network, but units changed and effective
2638 	 * cwnd/ssthresh really reduced now.
2639 	 */
2640 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2641 		tp->high_seq = tp->snd_nxt;
2642 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2643 		tp->prior_ssthresh = 0;
2644 		tp->undo_marker = 0;
2645 		tcp_set_ca_state(sk, TCP_CA_Loss);
2646 	}
2647 	tcp_xmit_retransmit_queue(sk);
2648 }
2649 EXPORT_SYMBOL(tcp_simple_retransmit);
2650 
2651 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2652 {
2653 	struct tcp_sock *tp = tcp_sk(sk);
2654 	int mib_idx;
2655 
2656 	if (tcp_is_reno(tp))
2657 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2658 	else
2659 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2660 
2661 	NET_INC_STATS_BH(sock_net(sk), mib_idx);
2662 
2663 	tp->prior_ssthresh = 0;
2664 	tp->undo_marker = tp->snd_una;
2665 	tp->undo_retrans = tp->retrans_out;
2666 
2667 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2668 		if (!ece_ack)
2669 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2670 		tcp_init_cwnd_reduction(sk, true);
2671 	}
2672 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2673 }
2674 
2675 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2676  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2677  */
2678 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2679 {
2680 	struct inet_connection_sock *icsk = inet_csk(sk);
2681 	struct tcp_sock *tp = tcp_sk(sk);
2682 	bool recovered = !before(tp->snd_una, tp->high_seq);
2683 
2684 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2685 		if (flag & FLAG_ORIG_SACK_ACKED) {
2686 			/* Step 3.b. A timeout is spurious if not all data are
2687 			 * lost, i.e., never-retransmitted data are (s)acked.
2688 			 */
2689 			tcp_try_undo_loss(sk, true);
2690 			return;
2691 		}
2692 		if (after(tp->snd_nxt, tp->high_seq) &&
2693 		    (flag & FLAG_DATA_SACKED || is_dupack)) {
2694 			tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
2695 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2696 			tp->high_seq = tp->snd_nxt;
2697 			__tcp_push_pending_frames(sk, tcp_current_mss(sk),
2698 						  TCP_NAGLE_OFF);
2699 			if (after(tp->snd_nxt, tp->high_seq))
2700 				return; /* Step 2.b */
2701 			tp->frto = 0;
2702 		}
2703 	}
2704 
2705 	if (recovered) {
2706 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2707 		icsk->icsk_retransmits = 0;
2708 		tcp_try_undo_recovery(sk);
2709 		return;
2710 	}
2711 	if (flag & FLAG_DATA_ACKED)
2712 		icsk->icsk_retransmits = 0;
2713 	if (tcp_is_reno(tp)) {
2714 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2715 		 * delivered. Lower inflight to clock out (re)tranmissions.
2716 		 */
2717 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2718 			tcp_add_reno_sack(sk);
2719 		else if (flag & FLAG_SND_UNA_ADVANCED)
2720 			tcp_reset_reno_sack(tp);
2721 	}
2722 	if (tcp_try_undo_loss(sk, false))
2723 		return;
2724 	tcp_xmit_retransmit_queue(sk);
2725 }
2726 
2727 /* Undo during fast recovery after partial ACK. */
2728 static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2729 				 const int prior_unsacked)
2730 {
2731 	struct tcp_sock *tp = tcp_sk(sk);
2732 
2733 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2734 		/* Plain luck! Hole if filled with delayed
2735 		 * packet, rather than with a retransmit.
2736 		 */
2737 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2738 
2739 		/* We are getting evidence that the reordering degree is higher
2740 		 * than we realized. If there are no retransmits out then we
2741 		 * can undo. Otherwise we clock out new packets but do not
2742 		 * mark more packets lost or retransmit more.
2743 		 */
2744 		if (tp->retrans_out) {
2745 			tcp_cwnd_reduction(sk, prior_unsacked, 0);
2746 			return true;
2747 		}
2748 
2749 		if (!tcp_any_retrans_done(sk))
2750 			tp->retrans_stamp = 0;
2751 
2752 		DBGUNDO(sk, "partial recovery");
2753 		tcp_undo_cwnd_reduction(sk, true);
2754 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2755 		tcp_try_keep_open(sk);
2756 		return true;
2757 	}
2758 	return false;
2759 }
2760 
2761 /* Process an event, which can update packets-in-flight not trivially.
2762  * Main goal of this function is to calculate new estimate for left_out,
2763  * taking into account both packets sitting in receiver's buffer and
2764  * packets lost by network.
2765  *
2766  * Besides that it does CWND reduction, when packet loss is detected
2767  * and changes state of machine.
2768  *
2769  * It does _not_ decide what to send, it is made in function
2770  * tcp_xmit_retransmit_queue().
2771  */
2772 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2773 				  const int prior_unsacked,
2774 				  bool is_dupack, int flag)
2775 {
2776 	struct inet_connection_sock *icsk = inet_csk(sk);
2777 	struct tcp_sock *tp = tcp_sk(sk);
2778 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2779 				    (tcp_fackets_out(tp) > tp->reordering));
2780 	int fast_rexmit = 0;
2781 
2782 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2783 		tp->sacked_out = 0;
2784 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2785 		tp->fackets_out = 0;
2786 
2787 	/* Now state machine starts.
2788 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2789 	if (flag & FLAG_ECE)
2790 		tp->prior_ssthresh = 0;
2791 
2792 	/* B. In all the states check for reneging SACKs. */
2793 	if (tcp_check_sack_reneging(sk, flag))
2794 		return;
2795 
2796 	/* C. Check consistency of the current state. */
2797 	tcp_verify_left_out(tp);
2798 
2799 	/* D. Check state exit conditions. State can be terminated
2800 	 *    when high_seq is ACKed. */
2801 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2802 		WARN_ON(tp->retrans_out != 0);
2803 		tp->retrans_stamp = 0;
2804 	} else if (!before(tp->snd_una, tp->high_seq)) {
2805 		switch (icsk->icsk_ca_state) {
2806 		case TCP_CA_CWR:
2807 			/* CWR is to be held something *above* high_seq
2808 			 * is ACKed for CWR bit to reach receiver. */
2809 			if (tp->snd_una != tp->high_seq) {
2810 				tcp_end_cwnd_reduction(sk);
2811 				tcp_set_ca_state(sk, TCP_CA_Open);
2812 			}
2813 			break;
2814 
2815 		case TCP_CA_Recovery:
2816 			if (tcp_is_reno(tp))
2817 				tcp_reset_reno_sack(tp);
2818 			if (tcp_try_undo_recovery(sk))
2819 				return;
2820 			tcp_end_cwnd_reduction(sk);
2821 			break;
2822 		}
2823 	}
2824 
2825 	/* E. Process state. */
2826 	switch (icsk->icsk_ca_state) {
2827 	case TCP_CA_Recovery:
2828 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2829 			if (tcp_is_reno(tp) && is_dupack)
2830 				tcp_add_reno_sack(sk);
2831 		} else {
2832 			if (tcp_try_undo_partial(sk, acked, prior_unsacked))
2833 				return;
2834 			/* Partial ACK arrived. Force fast retransmit. */
2835 			do_lost = tcp_is_reno(tp) ||
2836 				  tcp_fackets_out(tp) > tp->reordering;
2837 		}
2838 		if (tcp_try_undo_dsack(sk)) {
2839 			tcp_try_keep_open(sk);
2840 			return;
2841 		}
2842 		break;
2843 	case TCP_CA_Loss:
2844 		tcp_process_loss(sk, flag, is_dupack);
2845 		if (icsk->icsk_ca_state != TCP_CA_Open)
2846 			return;
2847 		/* Fall through to processing in Open state. */
2848 	default:
2849 		if (tcp_is_reno(tp)) {
2850 			if (flag & FLAG_SND_UNA_ADVANCED)
2851 				tcp_reset_reno_sack(tp);
2852 			if (is_dupack)
2853 				tcp_add_reno_sack(sk);
2854 		}
2855 
2856 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2857 			tcp_try_undo_dsack(sk);
2858 
2859 		if (!tcp_time_to_recover(sk, flag)) {
2860 			tcp_try_to_open(sk, flag, prior_unsacked);
2861 			return;
2862 		}
2863 
2864 		/* MTU probe failure: don't reduce cwnd */
2865 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2866 		    icsk->icsk_mtup.probe_size &&
2867 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2868 			tcp_mtup_probe_failed(sk);
2869 			/* Restores the reduction we did in tcp_mtup_probe() */
2870 			tp->snd_cwnd++;
2871 			tcp_simple_retransmit(sk);
2872 			return;
2873 		}
2874 
2875 		/* Otherwise enter Recovery state */
2876 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2877 		fast_rexmit = 1;
2878 	}
2879 
2880 	if (do_lost)
2881 		tcp_update_scoreboard(sk, fast_rexmit);
2882 	tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
2883 	tcp_xmit_retransmit_queue(sk);
2884 }
2885 
2886 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2887 				      s32 seq_rtt, s32 sack_rtt)
2888 {
2889 	const struct tcp_sock *tp = tcp_sk(sk);
2890 
2891 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2892 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2893 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2894 	 * is acked (RFC6298).
2895 	 */
2896 	if (flag & FLAG_RETRANS_DATA_ACKED)
2897 		seq_rtt = -1;
2898 
2899 	if (seq_rtt < 0)
2900 		seq_rtt = sack_rtt;
2901 
2902 	/* RTTM Rule: A TSecr value received in a segment is used to
2903 	 * update the averaged RTT measurement only if the segment
2904 	 * acknowledges some new data, i.e., only if it advances the
2905 	 * left edge of the send window.
2906 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2907 	 */
2908 	if (seq_rtt < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2909 	    flag & FLAG_ACKED)
2910 		seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2911 
2912 	if (seq_rtt < 0)
2913 		return false;
2914 
2915 	tcp_rtt_estimator(sk, seq_rtt);
2916 	tcp_set_rto(sk);
2917 
2918 	/* RFC6298: only reset backoff on valid RTT measurement. */
2919 	inet_csk(sk)->icsk_backoff = 0;
2920 	return true;
2921 }
2922 
2923 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2924 static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp)
2925 {
2926 	struct tcp_sock *tp = tcp_sk(sk);
2927 	s32 seq_rtt = -1;
2928 
2929 	if (synack_stamp && !tp->total_retrans)
2930 		seq_rtt = tcp_time_stamp - synack_stamp;
2931 
2932 	/* If the ACK acks both the SYNACK and the (Fast Open'd) data packets
2933 	 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack()
2934 	 */
2935 	if (!tp->srtt)
2936 		tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt, -1);
2937 }
2938 
2939 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked, u32 in_flight)
2940 {
2941 	const struct inet_connection_sock *icsk = inet_csk(sk);
2942 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked, in_flight);
2943 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2944 }
2945 
2946 /* Restart timer after forward progress on connection.
2947  * RFC2988 recommends to restart timer to now+rto.
2948  */
2949 void tcp_rearm_rto(struct sock *sk)
2950 {
2951 	const struct inet_connection_sock *icsk = inet_csk(sk);
2952 	struct tcp_sock *tp = tcp_sk(sk);
2953 
2954 	/* If the retrans timer is currently being used by Fast Open
2955 	 * for SYN-ACK retrans purpose, stay put.
2956 	 */
2957 	if (tp->fastopen_rsk)
2958 		return;
2959 
2960 	if (!tp->packets_out) {
2961 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2962 	} else {
2963 		u32 rto = inet_csk(sk)->icsk_rto;
2964 		/* Offset the time elapsed after installing regular RTO */
2965 		if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2966 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2967 			struct sk_buff *skb = tcp_write_queue_head(sk);
2968 			const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
2969 			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2970 			/* delta may not be positive if the socket is locked
2971 			 * when the retrans timer fires and is rescheduled.
2972 			 */
2973 			if (delta > 0)
2974 				rto = delta;
2975 		}
2976 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2977 					  TCP_RTO_MAX);
2978 	}
2979 }
2980 
2981 /* This function is called when the delayed ER timer fires. TCP enters
2982  * fast recovery and performs fast-retransmit.
2983  */
2984 void tcp_resume_early_retransmit(struct sock *sk)
2985 {
2986 	struct tcp_sock *tp = tcp_sk(sk);
2987 
2988 	tcp_rearm_rto(sk);
2989 
2990 	/* Stop if ER is disabled after the delayed ER timer is scheduled */
2991 	if (!tp->do_early_retrans)
2992 		return;
2993 
2994 	tcp_enter_recovery(sk, false);
2995 	tcp_update_scoreboard(sk, 1);
2996 	tcp_xmit_retransmit_queue(sk);
2997 }
2998 
2999 /* If we get here, the whole TSO packet has not been acked. */
3000 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3001 {
3002 	struct tcp_sock *tp = tcp_sk(sk);
3003 	u32 packets_acked;
3004 
3005 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3006 
3007 	packets_acked = tcp_skb_pcount(skb);
3008 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3009 		return 0;
3010 	packets_acked -= tcp_skb_pcount(skb);
3011 
3012 	if (packets_acked) {
3013 		BUG_ON(tcp_skb_pcount(skb) == 0);
3014 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3015 	}
3016 
3017 	return packets_acked;
3018 }
3019 
3020 /* Remove acknowledged frames from the retransmission queue. If our packet
3021  * is before the ack sequence we can discard it as it's confirmed to have
3022  * arrived at the other end.
3023  */
3024 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3025 			       u32 prior_snd_una, s32 sack_rtt)
3026 {
3027 	struct tcp_sock *tp = tcp_sk(sk);
3028 	const struct inet_connection_sock *icsk = inet_csk(sk);
3029 	struct sk_buff *skb;
3030 	u32 now = tcp_time_stamp;
3031 	bool fully_acked = true;
3032 	int flag = 0;
3033 	u32 pkts_acked = 0;
3034 	u32 reord = tp->packets_out;
3035 	u32 prior_sacked = tp->sacked_out;
3036 	s32 seq_rtt = -1;
3037 	s32 ca_seq_rtt = -1;
3038 	ktime_t last_ackt = net_invalid_timestamp();
3039 	bool rtt_update;
3040 
3041 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3042 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3043 		u32 acked_pcount;
3044 		u8 sacked = scb->sacked;
3045 
3046 		/* Determine how many packets and what bytes were acked, tso and else */
3047 		if (after(scb->end_seq, tp->snd_una)) {
3048 			if (tcp_skb_pcount(skb) == 1 ||
3049 			    !after(tp->snd_una, scb->seq))
3050 				break;
3051 
3052 			acked_pcount = tcp_tso_acked(sk, skb);
3053 			if (!acked_pcount)
3054 				break;
3055 
3056 			fully_acked = false;
3057 		} else {
3058 			acked_pcount = tcp_skb_pcount(skb);
3059 		}
3060 
3061 		if (sacked & TCPCB_RETRANS) {
3062 			if (sacked & TCPCB_SACKED_RETRANS)
3063 				tp->retrans_out -= acked_pcount;
3064 			flag |= FLAG_RETRANS_DATA_ACKED;
3065 		} else {
3066 			ca_seq_rtt = now - scb->when;
3067 			last_ackt = skb->tstamp;
3068 			if (seq_rtt < 0) {
3069 				seq_rtt = ca_seq_rtt;
3070 			}
3071 			if (!(sacked & TCPCB_SACKED_ACKED))
3072 				reord = min(pkts_acked, reord);
3073 			if (!after(scb->end_seq, tp->high_seq))
3074 				flag |= FLAG_ORIG_SACK_ACKED;
3075 		}
3076 
3077 		if (sacked & TCPCB_SACKED_ACKED)
3078 			tp->sacked_out -= acked_pcount;
3079 		if (sacked & TCPCB_LOST)
3080 			tp->lost_out -= acked_pcount;
3081 
3082 		tp->packets_out -= acked_pcount;
3083 		pkts_acked += acked_pcount;
3084 
3085 		/* Initial outgoing SYN's get put onto the write_queue
3086 		 * just like anything else we transmit.  It is not
3087 		 * true data, and if we misinform our callers that
3088 		 * this ACK acks real data, we will erroneously exit
3089 		 * connection startup slow start one packet too
3090 		 * quickly.  This is severely frowned upon behavior.
3091 		 */
3092 		if (!(scb->tcp_flags & TCPHDR_SYN)) {
3093 			flag |= FLAG_DATA_ACKED;
3094 		} else {
3095 			flag |= FLAG_SYN_ACKED;
3096 			tp->retrans_stamp = 0;
3097 		}
3098 
3099 		if (!fully_acked)
3100 			break;
3101 
3102 		tcp_unlink_write_queue(skb, sk);
3103 		sk_wmem_free_skb(sk, skb);
3104 		if (skb == tp->retransmit_skb_hint)
3105 			tp->retransmit_skb_hint = NULL;
3106 		if (skb == tp->lost_skb_hint)
3107 			tp->lost_skb_hint = NULL;
3108 	}
3109 
3110 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3111 		tp->snd_up = tp->snd_una;
3112 
3113 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3114 		flag |= FLAG_SACK_RENEGING;
3115 
3116 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt, sack_rtt);
3117 
3118 	if (flag & FLAG_ACKED) {
3119 		const struct tcp_congestion_ops *ca_ops
3120 			= inet_csk(sk)->icsk_ca_ops;
3121 
3122 		tcp_rearm_rto(sk);
3123 		if (unlikely(icsk->icsk_mtup.probe_size &&
3124 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3125 			tcp_mtup_probe_success(sk);
3126 		}
3127 
3128 		if (tcp_is_reno(tp)) {
3129 			tcp_remove_reno_sacks(sk, pkts_acked);
3130 		} else {
3131 			int delta;
3132 
3133 			/* Non-retransmitted hole got filled? That's reordering */
3134 			if (reord < prior_fackets)
3135 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3136 
3137 			delta = tcp_is_fack(tp) ? pkts_acked :
3138 						  prior_sacked - tp->sacked_out;
3139 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3140 		}
3141 
3142 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3143 
3144 		if (ca_ops->pkts_acked) {
3145 			s32 rtt_us = -1;
3146 
3147 			/* Is the ACK triggering packet unambiguous? */
3148 			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3149 				/* High resolution needed and available? */
3150 				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3151 				    !ktime_equal(last_ackt,
3152 						 net_invalid_timestamp()))
3153 					rtt_us = ktime_us_delta(ktime_get_real(),
3154 								last_ackt);
3155 				else if (ca_seq_rtt >= 0)
3156 					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3157 			}
3158 
3159 			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3160 		}
3161 	} else if (skb && rtt_update && sack_rtt >= 0 &&
3162 		   sack_rtt > (s32)(now - TCP_SKB_CB(skb)->when)) {
3163 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3164 		 * after when the head was last (re)transmitted. Otherwise the
3165 		 * timeout may continue to extend in loss recovery.
3166 		 */
3167 		tcp_rearm_rto(sk);
3168 	}
3169 
3170 #if FASTRETRANS_DEBUG > 0
3171 	WARN_ON((int)tp->sacked_out < 0);
3172 	WARN_ON((int)tp->lost_out < 0);
3173 	WARN_ON((int)tp->retrans_out < 0);
3174 	if (!tp->packets_out && tcp_is_sack(tp)) {
3175 		icsk = inet_csk(sk);
3176 		if (tp->lost_out) {
3177 			pr_debug("Leak l=%u %d\n",
3178 				 tp->lost_out, icsk->icsk_ca_state);
3179 			tp->lost_out = 0;
3180 		}
3181 		if (tp->sacked_out) {
3182 			pr_debug("Leak s=%u %d\n",
3183 				 tp->sacked_out, icsk->icsk_ca_state);
3184 			tp->sacked_out = 0;
3185 		}
3186 		if (tp->retrans_out) {
3187 			pr_debug("Leak r=%u %d\n",
3188 				 tp->retrans_out, icsk->icsk_ca_state);
3189 			tp->retrans_out = 0;
3190 		}
3191 	}
3192 #endif
3193 	return flag;
3194 }
3195 
3196 static void tcp_ack_probe(struct sock *sk)
3197 {
3198 	const struct tcp_sock *tp = tcp_sk(sk);
3199 	struct inet_connection_sock *icsk = inet_csk(sk);
3200 
3201 	/* Was it a usable window open? */
3202 
3203 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3204 		icsk->icsk_backoff = 0;
3205 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3206 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3207 		 * This function is not for random using!
3208 		 */
3209 	} else {
3210 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3211 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3212 					  TCP_RTO_MAX);
3213 	}
3214 }
3215 
3216 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3217 {
3218 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3219 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3220 }
3221 
3222 /* Decide wheather to run the increase function of congestion control. */
3223 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3224 {
3225 	if (tcp_in_cwnd_reduction(sk))
3226 		return false;
3227 
3228 	/* If reordering is high then always grow cwnd whenever data is
3229 	 * delivered regardless of its ordering. Otherwise stay conservative
3230 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3231 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3232 	 * cwnd in tcp_fastretrans_alert() based on more states.
3233 	 */
3234 	if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
3235 		return flag & FLAG_FORWARD_PROGRESS;
3236 
3237 	return flag & FLAG_DATA_ACKED;
3238 }
3239 
3240 /* Check that window update is acceptable.
3241  * The function assumes that snd_una<=ack<=snd_next.
3242  */
3243 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3244 					const u32 ack, const u32 ack_seq,
3245 					const u32 nwin)
3246 {
3247 	return	after(ack, tp->snd_una) ||
3248 		after(ack_seq, tp->snd_wl1) ||
3249 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3250 }
3251 
3252 /* Update our send window.
3253  *
3254  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3255  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3256  */
3257 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3258 				 u32 ack_seq)
3259 {
3260 	struct tcp_sock *tp = tcp_sk(sk);
3261 	int flag = 0;
3262 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3263 
3264 	if (likely(!tcp_hdr(skb)->syn))
3265 		nwin <<= tp->rx_opt.snd_wscale;
3266 
3267 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3268 		flag |= FLAG_WIN_UPDATE;
3269 		tcp_update_wl(tp, ack_seq);
3270 
3271 		if (tp->snd_wnd != nwin) {
3272 			tp->snd_wnd = nwin;
3273 
3274 			/* Note, it is the only place, where
3275 			 * fast path is recovered for sending TCP.
3276 			 */
3277 			tp->pred_flags = 0;
3278 			tcp_fast_path_check(sk);
3279 
3280 			if (nwin > tp->max_window) {
3281 				tp->max_window = nwin;
3282 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3283 			}
3284 		}
3285 	}
3286 
3287 	tp->snd_una = ack;
3288 
3289 	return flag;
3290 }
3291 
3292 /* RFC 5961 7 [ACK Throttling] */
3293 static void tcp_send_challenge_ack(struct sock *sk)
3294 {
3295 	/* unprotected vars, we dont care of overwrites */
3296 	static u32 challenge_timestamp;
3297 	static unsigned int challenge_count;
3298 	u32 now = jiffies / HZ;
3299 
3300 	if (now != challenge_timestamp) {
3301 		challenge_timestamp = now;
3302 		challenge_count = 0;
3303 	}
3304 	if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3305 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3306 		tcp_send_ack(sk);
3307 	}
3308 }
3309 
3310 static void tcp_store_ts_recent(struct tcp_sock *tp)
3311 {
3312 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3313 	tp->rx_opt.ts_recent_stamp = get_seconds();
3314 }
3315 
3316 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3317 {
3318 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3319 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3320 		 * extra check below makes sure this can only happen
3321 		 * for pure ACK frames.  -DaveM
3322 		 *
3323 		 * Not only, also it occurs for expired timestamps.
3324 		 */
3325 
3326 		if (tcp_paws_check(&tp->rx_opt, 0))
3327 			tcp_store_ts_recent(tp);
3328 	}
3329 }
3330 
3331 /* This routine deals with acks during a TLP episode.
3332  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3333  */
3334 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3335 {
3336 	struct tcp_sock *tp = tcp_sk(sk);
3337 	bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
3338 			     !(flag & (FLAG_SND_UNA_ADVANCED |
3339 				       FLAG_NOT_DUP | FLAG_DATA_SACKED));
3340 
3341 	/* Mark the end of TLP episode on receiving TLP dupack or when
3342 	 * ack is after tlp_high_seq.
3343 	 */
3344 	if (is_tlp_dupack) {
3345 		tp->tlp_high_seq = 0;
3346 		return;
3347 	}
3348 
3349 	if (after(ack, tp->tlp_high_seq)) {
3350 		tp->tlp_high_seq = 0;
3351 		/* Don't reduce cwnd if DSACK arrives for TLP retrans. */
3352 		if (!(flag & FLAG_DSACKING_ACK)) {
3353 			tcp_init_cwnd_reduction(sk, true);
3354 			tcp_set_ca_state(sk, TCP_CA_CWR);
3355 			tcp_end_cwnd_reduction(sk);
3356 			tcp_try_keep_open(sk);
3357 			NET_INC_STATS_BH(sock_net(sk),
3358 					 LINUX_MIB_TCPLOSSPROBERECOVERY);
3359 		}
3360 	}
3361 }
3362 
3363 /* This routine deals with incoming acks, but not outgoing ones. */
3364 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3365 {
3366 	struct inet_connection_sock *icsk = inet_csk(sk);
3367 	struct tcp_sock *tp = tcp_sk(sk);
3368 	u32 prior_snd_una = tp->snd_una;
3369 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3370 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3371 	bool is_dupack = false;
3372 	u32 prior_in_flight, prior_cwnd = tp->snd_cwnd, prior_rtt = tp->srtt;
3373 	u32 prior_fackets;
3374 	int prior_packets = tp->packets_out;
3375 	const int prior_unsacked = tp->packets_out - tp->sacked_out;
3376 	int acked = 0; /* Number of packets newly acked */
3377 	s32 sack_rtt = -1;
3378 
3379 	/* If the ack is older than previous acks
3380 	 * then we can probably ignore it.
3381 	 */
3382 	if (before(ack, prior_snd_una)) {
3383 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3384 		if (before(ack, prior_snd_una - tp->max_window)) {
3385 			tcp_send_challenge_ack(sk);
3386 			return -1;
3387 		}
3388 		goto old_ack;
3389 	}
3390 
3391 	/* If the ack includes data we haven't sent yet, discard
3392 	 * this segment (RFC793 Section 3.9).
3393 	 */
3394 	if (after(ack, tp->snd_nxt))
3395 		goto invalid_ack;
3396 
3397 	if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3398 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3399 		tcp_rearm_rto(sk);
3400 
3401 	if (after(ack, prior_snd_una))
3402 		flag |= FLAG_SND_UNA_ADVANCED;
3403 
3404 	prior_fackets = tp->fackets_out;
3405 	prior_in_flight = tcp_packets_in_flight(tp);
3406 
3407 	/* ts_recent update must be made after we are sure that the packet
3408 	 * is in window.
3409 	 */
3410 	if (flag & FLAG_UPDATE_TS_RECENT)
3411 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3412 
3413 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3414 		/* Window is constant, pure forward advance.
3415 		 * No more checks are required.
3416 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3417 		 */
3418 		tcp_update_wl(tp, ack_seq);
3419 		tp->snd_una = ack;
3420 		flag |= FLAG_WIN_UPDATE;
3421 
3422 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3423 
3424 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3425 	} else {
3426 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3427 			flag |= FLAG_DATA;
3428 		else
3429 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3430 
3431 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3432 
3433 		if (TCP_SKB_CB(skb)->sacked)
3434 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3435 							&sack_rtt);
3436 
3437 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3438 			flag |= FLAG_ECE;
3439 
3440 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3441 	}
3442 
3443 	/* We passed data and got it acked, remove any soft error
3444 	 * log. Something worked...
3445 	 */
3446 	sk->sk_err_soft = 0;
3447 	icsk->icsk_probes_out = 0;
3448 	tp->rcv_tstamp = tcp_time_stamp;
3449 	if (!prior_packets)
3450 		goto no_queue;
3451 
3452 	/* See if we can take anything off of the retransmit queue. */
3453 	acked = tp->packets_out;
3454 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, sack_rtt);
3455 	acked -= tp->packets_out;
3456 
3457 	/* Advance cwnd if state allows */
3458 	if (tcp_may_raise_cwnd(sk, flag))
3459 		tcp_cong_avoid(sk, ack, acked, prior_in_flight);
3460 
3461 	if (tcp_ack_is_dubious(sk, flag)) {
3462 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3463 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3464 				      is_dupack, flag);
3465 	}
3466 	if (tp->tlp_high_seq)
3467 		tcp_process_tlp_ack(sk, ack, flag);
3468 
3469 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3470 		struct dst_entry *dst = __sk_dst_get(sk);
3471 		if (dst)
3472 			dst_confirm(dst);
3473 	}
3474 
3475 	if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3476 		tcp_schedule_loss_probe(sk);
3477 	if (tp->srtt != prior_rtt || tp->snd_cwnd != prior_cwnd)
3478 		tcp_update_pacing_rate(sk);
3479 	return 1;
3480 
3481 no_queue:
3482 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3483 	if (flag & FLAG_DSACKING_ACK)
3484 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3485 				      is_dupack, flag);
3486 	/* If this ack opens up a zero window, clear backoff.  It was
3487 	 * being used to time the probes, and is probably far higher than
3488 	 * it needs to be for normal retransmission.
3489 	 */
3490 	if (tcp_send_head(sk))
3491 		tcp_ack_probe(sk);
3492 
3493 	if (tp->tlp_high_seq)
3494 		tcp_process_tlp_ack(sk, ack, flag);
3495 	return 1;
3496 
3497 invalid_ack:
3498 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3499 	return -1;
3500 
3501 old_ack:
3502 	/* If data was SACKed, tag it and see if we should send more data.
3503 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3504 	 */
3505 	if (TCP_SKB_CB(skb)->sacked) {
3506 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3507 						&sack_rtt);
3508 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3509 				      is_dupack, flag);
3510 	}
3511 
3512 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3513 	return 0;
3514 }
3515 
3516 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3517  * But, this can also be called on packets in the established flow when
3518  * the fast version below fails.
3519  */
3520 void tcp_parse_options(const struct sk_buff *skb,
3521 		       struct tcp_options_received *opt_rx, int estab,
3522 		       struct tcp_fastopen_cookie *foc)
3523 {
3524 	const unsigned char *ptr;
3525 	const struct tcphdr *th = tcp_hdr(skb);
3526 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3527 
3528 	ptr = (const unsigned char *)(th + 1);
3529 	opt_rx->saw_tstamp = 0;
3530 
3531 	while (length > 0) {
3532 		int opcode = *ptr++;
3533 		int opsize;
3534 
3535 		switch (opcode) {
3536 		case TCPOPT_EOL:
3537 			return;
3538 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3539 			length--;
3540 			continue;
3541 		default:
3542 			opsize = *ptr++;
3543 			if (opsize < 2) /* "silly options" */
3544 				return;
3545 			if (opsize > length)
3546 				return;	/* don't parse partial options */
3547 			switch (opcode) {
3548 			case TCPOPT_MSS:
3549 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3550 					u16 in_mss = get_unaligned_be16(ptr);
3551 					if (in_mss) {
3552 						if (opt_rx->user_mss &&
3553 						    opt_rx->user_mss < in_mss)
3554 							in_mss = opt_rx->user_mss;
3555 						opt_rx->mss_clamp = in_mss;
3556 					}
3557 				}
3558 				break;
3559 			case TCPOPT_WINDOW:
3560 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3561 				    !estab && sysctl_tcp_window_scaling) {
3562 					__u8 snd_wscale = *(__u8 *)ptr;
3563 					opt_rx->wscale_ok = 1;
3564 					if (snd_wscale > 14) {
3565 						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3566 								     __func__,
3567 								     snd_wscale);
3568 						snd_wscale = 14;
3569 					}
3570 					opt_rx->snd_wscale = snd_wscale;
3571 				}
3572 				break;
3573 			case TCPOPT_TIMESTAMP:
3574 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3575 				    ((estab && opt_rx->tstamp_ok) ||
3576 				     (!estab && sysctl_tcp_timestamps))) {
3577 					opt_rx->saw_tstamp = 1;
3578 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3579 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3580 				}
3581 				break;
3582 			case TCPOPT_SACK_PERM:
3583 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3584 				    !estab && sysctl_tcp_sack) {
3585 					opt_rx->sack_ok = TCP_SACK_SEEN;
3586 					tcp_sack_reset(opt_rx);
3587 				}
3588 				break;
3589 
3590 			case TCPOPT_SACK:
3591 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3592 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3593 				   opt_rx->sack_ok) {
3594 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3595 				}
3596 				break;
3597 #ifdef CONFIG_TCP_MD5SIG
3598 			case TCPOPT_MD5SIG:
3599 				/*
3600 				 * The MD5 Hash has already been
3601 				 * checked (see tcp_v{4,6}_do_rcv()).
3602 				 */
3603 				break;
3604 #endif
3605 			case TCPOPT_EXP:
3606 				/* Fast Open option shares code 254 using a
3607 				 * 16 bits magic number. It's valid only in
3608 				 * SYN or SYN-ACK with an even size.
3609 				 */
3610 				if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3611 				    get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3612 				    foc == NULL || !th->syn || (opsize & 1))
3613 					break;
3614 				foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3615 				if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3616 				    foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3617 					memcpy(foc->val, ptr + 2, foc->len);
3618 				else if (foc->len != 0)
3619 					foc->len = -1;
3620 				break;
3621 
3622 			}
3623 			ptr += opsize-2;
3624 			length -= opsize;
3625 		}
3626 	}
3627 }
3628 EXPORT_SYMBOL(tcp_parse_options);
3629 
3630 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3631 {
3632 	const __be32 *ptr = (const __be32 *)(th + 1);
3633 
3634 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3635 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3636 		tp->rx_opt.saw_tstamp = 1;
3637 		++ptr;
3638 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3639 		++ptr;
3640 		if (*ptr)
3641 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3642 		else
3643 			tp->rx_opt.rcv_tsecr = 0;
3644 		return true;
3645 	}
3646 	return false;
3647 }
3648 
3649 /* Fast parse options. This hopes to only see timestamps.
3650  * If it is wrong it falls back on tcp_parse_options().
3651  */
3652 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3653 				   const struct tcphdr *th, struct tcp_sock *tp)
3654 {
3655 	/* In the spirit of fast parsing, compare doff directly to constant
3656 	 * values.  Because equality is used, short doff can be ignored here.
3657 	 */
3658 	if (th->doff == (sizeof(*th) / 4)) {
3659 		tp->rx_opt.saw_tstamp = 0;
3660 		return false;
3661 	} else if (tp->rx_opt.tstamp_ok &&
3662 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3663 		if (tcp_parse_aligned_timestamp(tp, th))
3664 			return true;
3665 	}
3666 
3667 	tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3668 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3669 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3670 
3671 	return true;
3672 }
3673 
3674 #ifdef CONFIG_TCP_MD5SIG
3675 /*
3676  * Parse MD5 Signature option
3677  */
3678 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3679 {
3680 	int length = (th->doff << 2) - sizeof(*th);
3681 	const u8 *ptr = (const u8 *)(th + 1);
3682 
3683 	/* If the TCP option is too short, we can short cut */
3684 	if (length < TCPOLEN_MD5SIG)
3685 		return NULL;
3686 
3687 	while (length > 0) {
3688 		int opcode = *ptr++;
3689 		int opsize;
3690 
3691 		switch (opcode) {
3692 		case TCPOPT_EOL:
3693 			return NULL;
3694 		case TCPOPT_NOP:
3695 			length--;
3696 			continue;
3697 		default:
3698 			opsize = *ptr++;
3699 			if (opsize < 2 || opsize > length)
3700 				return NULL;
3701 			if (opcode == TCPOPT_MD5SIG)
3702 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3703 		}
3704 		ptr += opsize - 2;
3705 		length -= opsize;
3706 	}
3707 	return NULL;
3708 }
3709 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3710 #endif
3711 
3712 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3713  *
3714  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3715  * it can pass through stack. So, the following predicate verifies that
3716  * this segment is not used for anything but congestion avoidance or
3717  * fast retransmit. Moreover, we even are able to eliminate most of such
3718  * second order effects, if we apply some small "replay" window (~RTO)
3719  * to timestamp space.
3720  *
3721  * All these measures still do not guarantee that we reject wrapped ACKs
3722  * on networks with high bandwidth, when sequence space is recycled fastly,
3723  * but it guarantees that such events will be very rare and do not affect
3724  * connection seriously. This doesn't look nice, but alas, PAWS is really
3725  * buggy extension.
3726  *
3727  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3728  * states that events when retransmit arrives after original data are rare.
3729  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3730  * the biggest problem on large power networks even with minor reordering.
3731  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3732  * up to bandwidth of 18Gigabit/sec. 8) ]
3733  */
3734 
3735 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3736 {
3737 	const struct tcp_sock *tp = tcp_sk(sk);
3738 	const struct tcphdr *th = tcp_hdr(skb);
3739 	u32 seq = TCP_SKB_CB(skb)->seq;
3740 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3741 
3742 	return (/* 1. Pure ACK with correct sequence number. */
3743 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3744 
3745 		/* 2. ... and duplicate ACK. */
3746 		ack == tp->snd_una &&
3747 
3748 		/* 3. ... and does not update window. */
3749 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3750 
3751 		/* 4. ... and sits in replay window. */
3752 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3753 }
3754 
3755 static inline bool tcp_paws_discard(const struct sock *sk,
3756 				   const struct sk_buff *skb)
3757 {
3758 	const struct tcp_sock *tp = tcp_sk(sk);
3759 
3760 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3761 	       !tcp_disordered_ack(sk, skb);
3762 }
3763 
3764 /* Check segment sequence number for validity.
3765  *
3766  * Segment controls are considered valid, if the segment
3767  * fits to the window after truncation to the window. Acceptability
3768  * of data (and SYN, FIN, of course) is checked separately.
3769  * See tcp_data_queue(), for example.
3770  *
3771  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3772  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3773  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3774  * (borrowed from freebsd)
3775  */
3776 
3777 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3778 {
3779 	return	!before(end_seq, tp->rcv_wup) &&
3780 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3781 }
3782 
3783 /* When we get a reset we do this. */
3784 void tcp_reset(struct sock *sk)
3785 {
3786 	/* We want the right error as BSD sees it (and indeed as we do). */
3787 	switch (sk->sk_state) {
3788 	case TCP_SYN_SENT:
3789 		sk->sk_err = ECONNREFUSED;
3790 		break;
3791 	case TCP_CLOSE_WAIT:
3792 		sk->sk_err = EPIPE;
3793 		break;
3794 	case TCP_CLOSE:
3795 		return;
3796 	default:
3797 		sk->sk_err = ECONNRESET;
3798 	}
3799 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
3800 	smp_wmb();
3801 
3802 	if (!sock_flag(sk, SOCK_DEAD))
3803 		sk->sk_error_report(sk);
3804 
3805 	tcp_done(sk);
3806 }
3807 
3808 /*
3809  * 	Process the FIN bit. This now behaves as it is supposed to work
3810  *	and the FIN takes effect when it is validly part of sequence
3811  *	space. Not before when we get holes.
3812  *
3813  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3814  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3815  *	TIME-WAIT)
3816  *
3817  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3818  *	close and we go into CLOSING (and later onto TIME-WAIT)
3819  *
3820  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3821  */
3822 static void tcp_fin(struct sock *sk)
3823 {
3824 	struct tcp_sock *tp = tcp_sk(sk);
3825 	const struct dst_entry *dst;
3826 
3827 	inet_csk_schedule_ack(sk);
3828 
3829 	sk->sk_shutdown |= RCV_SHUTDOWN;
3830 	sock_set_flag(sk, SOCK_DONE);
3831 
3832 	switch (sk->sk_state) {
3833 	case TCP_SYN_RECV:
3834 	case TCP_ESTABLISHED:
3835 		/* Move to CLOSE_WAIT */
3836 		tcp_set_state(sk, TCP_CLOSE_WAIT);
3837 		dst = __sk_dst_get(sk);
3838 		if (!dst || !dst_metric(dst, RTAX_QUICKACK))
3839 			inet_csk(sk)->icsk_ack.pingpong = 1;
3840 		break;
3841 
3842 	case TCP_CLOSE_WAIT:
3843 	case TCP_CLOSING:
3844 		/* Received a retransmission of the FIN, do
3845 		 * nothing.
3846 		 */
3847 		break;
3848 	case TCP_LAST_ACK:
3849 		/* RFC793: Remain in the LAST-ACK state. */
3850 		break;
3851 
3852 	case TCP_FIN_WAIT1:
3853 		/* This case occurs when a simultaneous close
3854 		 * happens, we must ack the received FIN and
3855 		 * enter the CLOSING state.
3856 		 */
3857 		tcp_send_ack(sk);
3858 		tcp_set_state(sk, TCP_CLOSING);
3859 		break;
3860 	case TCP_FIN_WAIT2:
3861 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
3862 		tcp_send_ack(sk);
3863 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3864 		break;
3865 	default:
3866 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
3867 		 * cases we should never reach this piece of code.
3868 		 */
3869 		pr_err("%s: Impossible, sk->sk_state=%d\n",
3870 		       __func__, sk->sk_state);
3871 		break;
3872 	}
3873 
3874 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
3875 	 * Probably, we should reset in this case. For now drop them.
3876 	 */
3877 	__skb_queue_purge(&tp->out_of_order_queue);
3878 	if (tcp_is_sack(tp))
3879 		tcp_sack_reset(&tp->rx_opt);
3880 	sk_mem_reclaim(sk);
3881 
3882 	if (!sock_flag(sk, SOCK_DEAD)) {
3883 		sk->sk_state_change(sk);
3884 
3885 		/* Do not send POLL_HUP for half duplex close. */
3886 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
3887 		    sk->sk_state == TCP_CLOSE)
3888 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3889 		else
3890 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3891 	}
3892 }
3893 
3894 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3895 				  u32 end_seq)
3896 {
3897 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3898 		if (before(seq, sp->start_seq))
3899 			sp->start_seq = seq;
3900 		if (after(end_seq, sp->end_seq))
3901 			sp->end_seq = end_seq;
3902 		return true;
3903 	}
3904 	return false;
3905 }
3906 
3907 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3908 {
3909 	struct tcp_sock *tp = tcp_sk(sk);
3910 
3911 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3912 		int mib_idx;
3913 
3914 		if (before(seq, tp->rcv_nxt))
3915 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3916 		else
3917 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3918 
3919 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
3920 
3921 		tp->rx_opt.dsack = 1;
3922 		tp->duplicate_sack[0].start_seq = seq;
3923 		tp->duplicate_sack[0].end_seq = end_seq;
3924 	}
3925 }
3926 
3927 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3928 {
3929 	struct tcp_sock *tp = tcp_sk(sk);
3930 
3931 	if (!tp->rx_opt.dsack)
3932 		tcp_dsack_set(sk, seq, end_seq);
3933 	else
3934 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3935 }
3936 
3937 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
3938 {
3939 	struct tcp_sock *tp = tcp_sk(sk);
3940 
3941 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3942 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3943 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3944 		tcp_enter_quickack_mode(sk);
3945 
3946 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3947 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3948 
3949 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3950 				end_seq = tp->rcv_nxt;
3951 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3952 		}
3953 	}
3954 
3955 	tcp_send_ack(sk);
3956 }
3957 
3958 /* These routines update the SACK block as out-of-order packets arrive or
3959  * in-order packets close up the sequence space.
3960  */
3961 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3962 {
3963 	int this_sack;
3964 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3965 	struct tcp_sack_block *swalk = sp + 1;
3966 
3967 	/* See if the recent change to the first SACK eats into
3968 	 * or hits the sequence space of other SACK blocks, if so coalesce.
3969 	 */
3970 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3971 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3972 			int i;
3973 
3974 			/* Zap SWALK, by moving every further SACK up by one slot.
3975 			 * Decrease num_sacks.
3976 			 */
3977 			tp->rx_opt.num_sacks--;
3978 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3979 				sp[i] = sp[i + 1];
3980 			continue;
3981 		}
3982 		this_sack++, swalk++;
3983 	}
3984 }
3985 
3986 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3987 {
3988 	struct tcp_sock *tp = tcp_sk(sk);
3989 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3990 	int cur_sacks = tp->rx_opt.num_sacks;
3991 	int this_sack;
3992 
3993 	if (!cur_sacks)
3994 		goto new_sack;
3995 
3996 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3997 		if (tcp_sack_extend(sp, seq, end_seq)) {
3998 			/* Rotate this_sack to the first one. */
3999 			for (; this_sack > 0; this_sack--, sp--)
4000 				swap(*sp, *(sp - 1));
4001 			if (cur_sacks > 1)
4002 				tcp_sack_maybe_coalesce(tp);
4003 			return;
4004 		}
4005 	}
4006 
4007 	/* Could not find an adjacent existing SACK, build a new one,
4008 	 * put it at the front, and shift everyone else down.  We
4009 	 * always know there is at least one SACK present already here.
4010 	 *
4011 	 * If the sack array is full, forget about the last one.
4012 	 */
4013 	if (this_sack >= TCP_NUM_SACKS) {
4014 		this_sack--;
4015 		tp->rx_opt.num_sacks--;
4016 		sp--;
4017 	}
4018 	for (; this_sack > 0; this_sack--, sp--)
4019 		*sp = *(sp - 1);
4020 
4021 new_sack:
4022 	/* Build the new head SACK, and we're done. */
4023 	sp->start_seq = seq;
4024 	sp->end_seq = end_seq;
4025 	tp->rx_opt.num_sacks++;
4026 }
4027 
4028 /* RCV.NXT advances, some SACKs should be eaten. */
4029 
4030 static void tcp_sack_remove(struct tcp_sock *tp)
4031 {
4032 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4033 	int num_sacks = tp->rx_opt.num_sacks;
4034 	int this_sack;
4035 
4036 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4037 	if (skb_queue_empty(&tp->out_of_order_queue)) {
4038 		tp->rx_opt.num_sacks = 0;
4039 		return;
4040 	}
4041 
4042 	for (this_sack = 0; this_sack < num_sacks;) {
4043 		/* Check if the start of the sack is covered by RCV.NXT. */
4044 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4045 			int i;
4046 
4047 			/* RCV.NXT must cover all the block! */
4048 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4049 
4050 			/* Zap this SACK, by moving forward any other SACKS. */
4051 			for (i = this_sack+1; i < num_sacks; i++)
4052 				tp->selective_acks[i-1] = tp->selective_acks[i];
4053 			num_sacks--;
4054 			continue;
4055 		}
4056 		this_sack++;
4057 		sp++;
4058 	}
4059 	tp->rx_opt.num_sacks = num_sacks;
4060 }
4061 
4062 /* This one checks to see if we can put data from the
4063  * out_of_order queue into the receive_queue.
4064  */
4065 static void tcp_ofo_queue(struct sock *sk)
4066 {
4067 	struct tcp_sock *tp = tcp_sk(sk);
4068 	__u32 dsack_high = tp->rcv_nxt;
4069 	struct sk_buff *skb;
4070 
4071 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4072 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4073 			break;
4074 
4075 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4076 			__u32 dsack = dsack_high;
4077 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4078 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4079 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4080 		}
4081 
4082 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4083 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4084 			__skb_unlink(skb, &tp->out_of_order_queue);
4085 			__kfree_skb(skb);
4086 			continue;
4087 		}
4088 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4089 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4090 			   TCP_SKB_CB(skb)->end_seq);
4091 
4092 		__skb_unlink(skb, &tp->out_of_order_queue);
4093 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4094 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4095 		if (tcp_hdr(skb)->fin)
4096 			tcp_fin(sk);
4097 	}
4098 }
4099 
4100 static bool tcp_prune_ofo_queue(struct sock *sk);
4101 static int tcp_prune_queue(struct sock *sk);
4102 
4103 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4104 				 unsigned int size)
4105 {
4106 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4107 	    !sk_rmem_schedule(sk, skb, size)) {
4108 
4109 		if (tcp_prune_queue(sk) < 0)
4110 			return -1;
4111 
4112 		if (!sk_rmem_schedule(sk, skb, size)) {
4113 			if (!tcp_prune_ofo_queue(sk))
4114 				return -1;
4115 
4116 			if (!sk_rmem_schedule(sk, skb, size))
4117 				return -1;
4118 		}
4119 	}
4120 	return 0;
4121 }
4122 
4123 /**
4124  * tcp_try_coalesce - try to merge skb to prior one
4125  * @sk: socket
4126  * @to: prior buffer
4127  * @from: buffer to add in queue
4128  * @fragstolen: pointer to boolean
4129  *
4130  * Before queueing skb @from after @to, try to merge them
4131  * to reduce overall memory use and queue lengths, if cost is small.
4132  * Packets in ofo or receive queues can stay a long time.
4133  * Better try to coalesce them right now to avoid future collapses.
4134  * Returns true if caller should free @from instead of queueing it
4135  */
4136 static bool tcp_try_coalesce(struct sock *sk,
4137 			     struct sk_buff *to,
4138 			     struct sk_buff *from,
4139 			     bool *fragstolen)
4140 {
4141 	int delta;
4142 
4143 	*fragstolen = false;
4144 
4145 	if (tcp_hdr(from)->fin)
4146 		return false;
4147 
4148 	/* Its possible this segment overlaps with prior segment in queue */
4149 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4150 		return false;
4151 
4152 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4153 		return false;
4154 
4155 	atomic_add(delta, &sk->sk_rmem_alloc);
4156 	sk_mem_charge(sk, delta);
4157 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4158 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4159 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4160 	return true;
4161 }
4162 
4163 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4164 {
4165 	struct tcp_sock *tp = tcp_sk(sk);
4166 	struct sk_buff *skb1;
4167 	u32 seq, end_seq;
4168 
4169 	TCP_ECN_check_ce(tp, skb);
4170 
4171 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4172 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4173 		__kfree_skb(skb);
4174 		return;
4175 	}
4176 
4177 	/* Disable header prediction. */
4178 	tp->pred_flags = 0;
4179 	inet_csk_schedule_ack(sk);
4180 
4181 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4182 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4183 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4184 
4185 	skb1 = skb_peek_tail(&tp->out_of_order_queue);
4186 	if (!skb1) {
4187 		/* Initial out of order segment, build 1 SACK. */
4188 		if (tcp_is_sack(tp)) {
4189 			tp->rx_opt.num_sacks = 1;
4190 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4191 			tp->selective_acks[0].end_seq =
4192 						TCP_SKB_CB(skb)->end_seq;
4193 		}
4194 		__skb_queue_head(&tp->out_of_order_queue, skb);
4195 		goto end;
4196 	}
4197 
4198 	seq = TCP_SKB_CB(skb)->seq;
4199 	end_seq = TCP_SKB_CB(skb)->end_seq;
4200 
4201 	if (seq == TCP_SKB_CB(skb1)->end_seq) {
4202 		bool fragstolen;
4203 
4204 		if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4205 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4206 		} else {
4207 			tcp_grow_window(sk, skb);
4208 			kfree_skb_partial(skb, fragstolen);
4209 			skb = NULL;
4210 		}
4211 
4212 		if (!tp->rx_opt.num_sacks ||
4213 		    tp->selective_acks[0].end_seq != seq)
4214 			goto add_sack;
4215 
4216 		/* Common case: data arrive in order after hole. */
4217 		tp->selective_acks[0].end_seq = end_seq;
4218 		goto end;
4219 	}
4220 
4221 	/* Find place to insert this segment. */
4222 	while (1) {
4223 		if (!after(TCP_SKB_CB(skb1)->seq, seq))
4224 			break;
4225 		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4226 			skb1 = NULL;
4227 			break;
4228 		}
4229 		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4230 	}
4231 
4232 	/* Do skb overlap to previous one? */
4233 	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4234 		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4235 			/* All the bits are present. Drop. */
4236 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4237 			__kfree_skb(skb);
4238 			skb = NULL;
4239 			tcp_dsack_set(sk, seq, end_seq);
4240 			goto add_sack;
4241 		}
4242 		if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4243 			/* Partial overlap. */
4244 			tcp_dsack_set(sk, seq,
4245 				      TCP_SKB_CB(skb1)->end_seq);
4246 		} else {
4247 			if (skb_queue_is_first(&tp->out_of_order_queue,
4248 					       skb1))
4249 				skb1 = NULL;
4250 			else
4251 				skb1 = skb_queue_prev(
4252 					&tp->out_of_order_queue,
4253 					skb1);
4254 		}
4255 	}
4256 	if (!skb1)
4257 		__skb_queue_head(&tp->out_of_order_queue, skb);
4258 	else
4259 		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4260 
4261 	/* And clean segments covered by new one as whole. */
4262 	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4263 		skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4264 
4265 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4266 			break;
4267 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4268 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4269 					 end_seq);
4270 			break;
4271 		}
4272 		__skb_unlink(skb1, &tp->out_of_order_queue);
4273 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4274 				 TCP_SKB_CB(skb1)->end_seq);
4275 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4276 		__kfree_skb(skb1);
4277 	}
4278 
4279 add_sack:
4280 	if (tcp_is_sack(tp))
4281 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4282 end:
4283 	if (skb) {
4284 		tcp_grow_window(sk, skb);
4285 		skb_set_owner_r(skb, sk);
4286 	}
4287 }
4288 
4289 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4290 		  bool *fragstolen)
4291 {
4292 	int eaten;
4293 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4294 
4295 	__skb_pull(skb, hdrlen);
4296 	eaten = (tail &&
4297 		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4298 	tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4299 	if (!eaten) {
4300 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4301 		skb_set_owner_r(skb, sk);
4302 	}
4303 	return eaten;
4304 }
4305 
4306 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4307 {
4308 	struct sk_buff *skb = NULL;
4309 	struct tcphdr *th;
4310 	bool fragstolen;
4311 
4312 	if (size == 0)
4313 		return 0;
4314 
4315 	skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4316 	if (!skb)
4317 		goto err;
4318 
4319 	if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
4320 		goto err_free;
4321 
4322 	th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4323 	skb_reset_transport_header(skb);
4324 	memset(th, 0, sizeof(*th));
4325 
4326 	if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4327 		goto err_free;
4328 
4329 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4330 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4331 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4332 
4333 	if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4334 		WARN_ON_ONCE(fragstolen); /* should not happen */
4335 		__kfree_skb(skb);
4336 	}
4337 	return size;
4338 
4339 err_free:
4340 	kfree_skb(skb);
4341 err:
4342 	return -ENOMEM;
4343 }
4344 
4345 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4346 {
4347 	const struct tcphdr *th = tcp_hdr(skb);
4348 	struct tcp_sock *tp = tcp_sk(sk);
4349 	int eaten = -1;
4350 	bool fragstolen = false;
4351 
4352 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4353 		goto drop;
4354 
4355 	skb_dst_drop(skb);
4356 	__skb_pull(skb, th->doff * 4);
4357 
4358 	TCP_ECN_accept_cwr(tp, skb);
4359 
4360 	tp->rx_opt.dsack = 0;
4361 
4362 	/*  Queue data for delivery to the user.
4363 	 *  Packets in sequence go to the receive queue.
4364 	 *  Out of sequence packets to the out_of_order_queue.
4365 	 */
4366 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4367 		if (tcp_receive_window(tp) == 0)
4368 			goto out_of_window;
4369 
4370 		/* Ok. In sequence. In window. */
4371 		if (tp->ucopy.task == current &&
4372 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4373 		    sock_owned_by_user(sk) && !tp->urg_data) {
4374 			int chunk = min_t(unsigned int, skb->len,
4375 					  tp->ucopy.len);
4376 
4377 			__set_current_state(TASK_RUNNING);
4378 
4379 			local_bh_enable();
4380 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4381 				tp->ucopy.len -= chunk;
4382 				tp->copied_seq += chunk;
4383 				eaten = (chunk == skb->len);
4384 				tcp_rcv_space_adjust(sk);
4385 			}
4386 			local_bh_disable();
4387 		}
4388 
4389 		if (eaten <= 0) {
4390 queue_and_out:
4391 			if (eaten < 0 &&
4392 			    tcp_try_rmem_schedule(sk, skb, skb->truesize))
4393 				goto drop;
4394 
4395 			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4396 		}
4397 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4398 		if (skb->len)
4399 			tcp_event_data_recv(sk, skb);
4400 		if (th->fin)
4401 			tcp_fin(sk);
4402 
4403 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4404 			tcp_ofo_queue(sk);
4405 
4406 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4407 			 * gap in queue is filled.
4408 			 */
4409 			if (skb_queue_empty(&tp->out_of_order_queue))
4410 				inet_csk(sk)->icsk_ack.pingpong = 0;
4411 		}
4412 
4413 		if (tp->rx_opt.num_sacks)
4414 			tcp_sack_remove(tp);
4415 
4416 		tcp_fast_path_check(sk);
4417 
4418 		if (eaten > 0)
4419 			kfree_skb_partial(skb, fragstolen);
4420 		if (!sock_flag(sk, SOCK_DEAD))
4421 			sk->sk_data_ready(sk, 0);
4422 		return;
4423 	}
4424 
4425 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4426 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4427 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4428 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4429 
4430 out_of_window:
4431 		tcp_enter_quickack_mode(sk);
4432 		inet_csk_schedule_ack(sk);
4433 drop:
4434 		__kfree_skb(skb);
4435 		return;
4436 	}
4437 
4438 	/* Out of window. F.e. zero window probe. */
4439 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4440 		goto out_of_window;
4441 
4442 	tcp_enter_quickack_mode(sk);
4443 
4444 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4445 		/* Partial packet, seq < rcv_next < end_seq */
4446 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4447 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4448 			   TCP_SKB_CB(skb)->end_seq);
4449 
4450 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4451 
4452 		/* If window is closed, drop tail of packet. But after
4453 		 * remembering D-SACK for its head made in previous line.
4454 		 */
4455 		if (!tcp_receive_window(tp))
4456 			goto out_of_window;
4457 		goto queue_and_out;
4458 	}
4459 
4460 	tcp_data_queue_ofo(sk, skb);
4461 }
4462 
4463 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4464 					struct sk_buff_head *list)
4465 {
4466 	struct sk_buff *next = NULL;
4467 
4468 	if (!skb_queue_is_last(list, skb))
4469 		next = skb_queue_next(list, skb);
4470 
4471 	__skb_unlink(skb, list);
4472 	__kfree_skb(skb);
4473 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4474 
4475 	return next;
4476 }
4477 
4478 /* Collapse contiguous sequence of skbs head..tail with
4479  * sequence numbers start..end.
4480  *
4481  * If tail is NULL, this means until the end of the list.
4482  *
4483  * Segments with FIN/SYN are not collapsed (only because this
4484  * simplifies code)
4485  */
4486 static void
4487 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4488 	     struct sk_buff *head, struct sk_buff *tail,
4489 	     u32 start, u32 end)
4490 {
4491 	struct sk_buff *skb, *n;
4492 	bool end_of_skbs;
4493 
4494 	/* First, check that queue is collapsible and find
4495 	 * the point where collapsing can be useful. */
4496 	skb = head;
4497 restart:
4498 	end_of_skbs = true;
4499 	skb_queue_walk_from_safe(list, skb, n) {
4500 		if (skb == tail)
4501 			break;
4502 		/* No new bits? It is possible on ofo queue. */
4503 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4504 			skb = tcp_collapse_one(sk, skb, list);
4505 			if (!skb)
4506 				break;
4507 			goto restart;
4508 		}
4509 
4510 		/* The first skb to collapse is:
4511 		 * - not SYN/FIN and
4512 		 * - bloated or contains data before "start" or
4513 		 *   overlaps to the next one.
4514 		 */
4515 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4516 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4517 		     before(TCP_SKB_CB(skb)->seq, start))) {
4518 			end_of_skbs = false;
4519 			break;
4520 		}
4521 
4522 		if (!skb_queue_is_last(list, skb)) {
4523 			struct sk_buff *next = skb_queue_next(list, skb);
4524 			if (next != tail &&
4525 			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4526 				end_of_skbs = false;
4527 				break;
4528 			}
4529 		}
4530 
4531 		/* Decided to skip this, advance start seq. */
4532 		start = TCP_SKB_CB(skb)->end_seq;
4533 	}
4534 	if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4535 		return;
4536 
4537 	while (before(start, end)) {
4538 		struct sk_buff *nskb;
4539 		unsigned int header = skb_headroom(skb);
4540 		int copy = SKB_MAX_ORDER(header, 0);
4541 
4542 		/* Too big header? This can happen with IPv6. */
4543 		if (copy < 0)
4544 			return;
4545 		if (end - start < copy)
4546 			copy = end - start;
4547 		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4548 		if (!nskb)
4549 			return;
4550 
4551 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4552 		skb_set_network_header(nskb, (skb_network_header(skb) -
4553 					      skb->head));
4554 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4555 						skb->head));
4556 		skb_reserve(nskb, header);
4557 		memcpy(nskb->head, skb->head, header);
4558 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4559 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4560 		__skb_queue_before(list, skb, nskb);
4561 		skb_set_owner_r(nskb, sk);
4562 
4563 		/* Copy data, releasing collapsed skbs. */
4564 		while (copy > 0) {
4565 			int offset = start - TCP_SKB_CB(skb)->seq;
4566 			int size = TCP_SKB_CB(skb)->end_seq - start;
4567 
4568 			BUG_ON(offset < 0);
4569 			if (size > 0) {
4570 				size = min(copy, size);
4571 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4572 					BUG();
4573 				TCP_SKB_CB(nskb)->end_seq += size;
4574 				copy -= size;
4575 				start += size;
4576 			}
4577 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4578 				skb = tcp_collapse_one(sk, skb, list);
4579 				if (!skb ||
4580 				    skb == tail ||
4581 				    tcp_hdr(skb)->syn ||
4582 				    tcp_hdr(skb)->fin)
4583 					return;
4584 			}
4585 		}
4586 	}
4587 }
4588 
4589 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4590  * and tcp_collapse() them until all the queue is collapsed.
4591  */
4592 static void tcp_collapse_ofo_queue(struct sock *sk)
4593 {
4594 	struct tcp_sock *tp = tcp_sk(sk);
4595 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4596 	struct sk_buff *head;
4597 	u32 start, end;
4598 
4599 	if (skb == NULL)
4600 		return;
4601 
4602 	start = TCP_SKB_CB(skb)->seq;
4603 	end = TCP_SKB_CB(skb)->end_seq;
4604 	head = skb;
4605 
4606 	for (;;) {
4607 		struct sk_buff *next = NULL;
4608 
4609 		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4610 			next = skb_queue_next(&tp->out_of_order_queue, skb);
4611 		skb = next;
4612 
4613 		/* Segment is terminated when we see gap or when
4614 		 * we are at the end of all the queue. */
4615 		if (!skb ||
4616 		    after(TCP_SKB_CB(skb)->seq, end) ||
4617 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4618 			tcp_collapse(sk, &tp->out_of_order_queue,
4619 				     head, skb, start, end);
4620 			head = skb;
4621 			if (!skb)
4622 				break;
4623 			/* Start new segment */
4624 			start = TCP_SKB_CB(skb)->seq;
4625 			end = TCP_SKB_CB(skb)->end_seq;
4626 		} else {
4627 			if (before(TCP_SKB_CB(skb)->seq, start))
4628 				start = TCP_SKB_CB(skb)->seq;
4629 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4630 				end = TCP_SKB_CB(skb)->end_seq;
4631 		}
4632 	}
4633 }
4634 
4635 /*
4636  * Purge the out-of-order queue.
4637  * Return true if queue was pruned.
4638  */
4639 static bool tcp_prune_ofo_queue(struct sock *sk)
4640 {
4641 	struct tcp_sock *tp = tcp_sk(sk);
4642 	bool res = false;
4643 
4644 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4645 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4646 		__skb_queue_purge(&tp->out_of_order_queue);
4647 
4648 		/* Reset SACK state.  A conforming SACK implementation will
4649 		 * do the same at a timeout based retransmit.  When a connection
4650 		 * is in a sad state like this, we care only about integrity
4651 		 * of the connection not performance.
4652 		 */
4653 		if (tp->rx_opt.sack_ok)
4654 			tcp_sack_reset(&tp->rx_opt);
4655 		sk_mem_reclaim(sk);
4656 		res = true;
4657 	}
4658 	return res;
4659 }
4660 
4661 /* Reduce allocated memory if we can, trying to get
4662  * the socket within its memory limits again.
4663  *
4664  * Return less than zero if we should start dropping frames
4665  * until the socket owning process reads some of the data
4666  * to stabilize the situation.
4667  */
4668 static int tcp_prune_queue(struct sock *sk)
4669 {
4670 	struct tcp_sock *tp = tcp_sk(sk);
4671 
4672 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4673 
4674 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4675 
4676 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4677 		tcp_clamp_window(sk);
4678 	else if (sk_under_memory_pressure(sk))
4679 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4680 
4681 	tcp_collapse_ofo_queue(sk);
4682 	if (!skb_queue_empty(&sk->sk_receive_queue))
4683 		tcp_collapse(sk, &sk->sk_receive_queue,
4684 			     skb_peek(&sk->sk_receive_queue),
4685 			     NULL,
4686 			     tp->copied_seq, tp->rcv_nxt);
4687 	sk_mem_reclaim(sk);
4688 
4689 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4690 		return 0;
4691 
4692 	/* Collapsing did not help, destructive actions follow.
4693 	 * This must not ever occur. */
4694 
4695 	tcp_prune_ofo_queue(sk);
4696 
4697 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4698 		return 0;
4699 
4700 	/* If we are really being abused, tell the caller to silently
4701 	 * drop receive data on the floor.  It will get retransmitted
4702 	 * and hopefully then we'll have sufficient space.
4703 	 */
4704 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4705 
4706 	/* Massive buffer overcommit. */
4707 	tp->pred_flags = 0;
4708 	return -1;
4709 }
4710 
4711 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4712  * As additional protections, we do not touch cwnd in retransmission phases,
4713  * and if application hit its sndbuf limit recently.
4714  */
4715 void tcp_cwnd_application_limited(struct sock *sk)
4716 {
4717 	struct tcp_sock *tp = tcp_sk(sk);
4718 
4719 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4720 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4721 		/* Limited by application or receiver window. */
4722 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4723 		u32 win_used = max(tp->snd_cwnd_used, init_win);
4724 		if (win_used < tp->snd_cwnd) {
4725 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4726 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4727 		}
4728 		tp->snd_cwnd_used = 0;
4729 	}
4730 	tp->snd_cwnd_stamp = tcp_time_stamp;
4731 }
4732 
4733 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4734 {
4735 	const struct tcp_sock *tp = tcp_sk(sk);
4736 
4737 	/* If the user specified a specific send buffer setting, do
4738 	 * not modify it.
4739 	 */
4740 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4741 		return false;
4742 
4743 	/* If we are under global TCP memory pressure, do not expand.  */
4744 	if (sk_under_memory_pressure(sk))
4745 		return false;
4746 
4747 	/* If we are under soft global TCP memory pressure, do not expand.  */
4748 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4749 		return false;
4750 
4751 	/* If we filled the congestion window, do not expand.  */
4752 	if (tp->packets_out >= tp->snd_cwnd)
4753 		return false;
4754 
4755 	return true;
4756 }
4757 
4758 /* When incoming ACK allowed to free some skb from write_queue,
4759  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4760  * on the exit from tcp input handler.
4761  *
4762  * PROBLEM: sndbuf expansion does not work well with largesend.
4763  */
4764 static void tcp_new_space(struct sock *sk)
4765 {
4766 	struct tcp_sock *tp = tcp_sk(sk);
4767 
4768 	if (tcp_should_expand_sndbuf(sk)) {
4769 		tcp_sndbuf_expand(sk);
4770 		tp->snd_cwnd_stamp = tcp_time_stamp;
4771 	}
4772 
4773 	sk->sk_write_space(sk);
4774 }
4775 
4776 static void tcp_check_space(struct sock *sk)
4777 {
4778 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4779 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4780 		if (sk->sk_socket &&
4781 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4782 			tcp_new_space(sk);
4783 	}
4784 }
4785 
4786 static inline void tcp_data_snd_check(struct sock *sk)
4787 {
4788 	tcp_push_pending_frames(sk);
4789 	tcp_check_space(sk);
4790 }
4791 
4792 /*
4793  * Check if sending an ack is needed.
4794  */
4795 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4796 {
4797 	struct tcp_sock *tp = tcp_sk(sk);
4798 
4799 	    /* More than one full frame received... */
4800 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4801 	     /* ... and right edge of window advances far enough.
4802 	      * (tcp_recvmsg() will send ACK otherwise). Or...
4803 	      */
4804 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
4805 	    /* We ACK each frame or... */
4806 	    tcp_in_quickack_mode(sk) ||
4807 	    /* We have out of order data. */
4808 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4809 		/* Then ack it now */
4810 		tcp_send_ack(sk);
4811 	} else {
4812 		/* Else, send delayed ack. */
4813 		tcp_send_delayed_ack(sk);
4814 	}
4815 }
4816 
4817 static inline void tcp_ack_snd_check(struct sock *sk)
4818 {
4819 	if (!inet_csk_ack_scheduled(sk)) {
4820 		/* We sent a data segment already. */
4821 		return;
4822 	}
4823 	__tcp_ack_snd_check(sk, 1);
4824 }
4825 
4826 /*
4827  *	This routine is only called when we have urgent data
4828  *	signaled. Its the 'slow' part of tcp_urg. It could be
4829  *	moved inline now as tcp_urg is only called from one
4830  *	place. We handle URGent data wrong. We have to - as
4831  *	BSD still doesn't use the correction from RFC961.
4832  *	For 1003.1g we should support a new option TCP_STDURG to permit
4833  *	either form (or just set the sysctl tcp_stdurg).
4834  */
4835 
4836 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4837 {
4838 	struct tcp_sock *tp = tcp_sk(sk);
4839 	u32 ptr = ntohs(th->urg_ptr);
4840 
4841 	if (ptr && !sysctl_tcp_stdurg)
4842 		ptr--;
4843 	ptr += ntohl(th->seq);
4844 
4845 	/* Ignore urgent data that we've already seen and read. */
4846 	if (after(tp->copied_seq, ptr))
4847 		return;
4848 
4849 	/* Do not replay urg ptr.
4850 	 *
4851 	 * NOTE: interesting situation not covered by specs.
4852 	 * Misbehaving sender may send urg ptr, pointing to segment,
4853 	 * which we already have in ofo queue. We are not able to fetch
4854 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4855 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4856 	 * situations. But it is worth to think about possibility of some
4857 	 * DoSes using some hypothetical application level deadlock.
4858 	 */
4859 	if (before(ptr, tp->rcv_nxt))
4860 		return;
4861 
4862 	/* Do we already have a newer (or duplicate) urgent pointer? */
4863 	if (tp->urg_data && !after(ptr, tp->urg_seq))
4864 		return;
4865 
4866 	/* Tell the world about our new urgent pointer. */
4867 	sk_send_sigurg(sk);
4868 
4869 	/* We may be adding urgent data when the last byte read was
4870 	 * urgent. To do this requires some care. We cannot just ignore
4871 	 * tp->copied_seq since we would read the last urgent byte again
4872 	 * as data, nor can we alter copied_seq until this data arrives
4873 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4874 	 *
4875 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4876 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4877 	 * and expect that both A and B disappear from stream. This is _wrong_.
4878 	 * Though this happens in BSD with high probability, this is occasional.
4879 	 * Any application relying on this is buggy. Note also, that fix "works"
4880 	 * only in this artificial test. Insert some normal data between A and B and we will
4881 	 * decline of BSD again. Verdict: it is better to remove to trap
4882 	 * buggy users.
4883 	 */
4884 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4885 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4886 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4887 		tp->copied_seq++;
4888 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4889 			__skb_unlink(skb, &sk->sk_receive_queue);
4890 			__kfree_skb(skb);
4891 		}
4892 	}
4893 
4894 	tp->urg_data = TCP_URG_NOTYET;
4895 	tp->urg_seq = ptr;
4896 
4897 	/* Disable header prediction. */
4898 	tp->pred_flags = 0;
4899 }
4900 
4901 /* This is the 'fast' part of urgent handling. */
4902 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4903 {
4904 	struct tcp_sock *tp = tcp_sk(sk);
4905 
4906 	/* Check if we get a new urgent pointer - normally not. */
4907 	if (th->urg)
4908 		tcp_check_urg(sk, th);
4909 
4910 	/* Do we wait for any urgent data? - normally not... */
4911 	if (tp->urg_data == TCP_URG_NOTYET) {
4912 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4913 			  th->syn;
4914 
4915 		/* Is the urgent pointer pointing into this packet? */
4916 		if (ptr < skb->len) {
4917 			u8 tmp;
4918 			if (skb_copy_bits(skb, ptr, &tmp, 1))
4919 				BUG();
4920 			tp->urg_data = TCP_URG_VALID | tmp;
4921 			if (!sock_flag(sk, SOCK_DEAD))
4922 				sk->sk_data_ready(sk, 0);
4923 		}
4924 	}
4925 }
4926 
4927 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4928 {
4929 	struct tcp_sock *tp = tcp_sk(sk);
4930 	int chunk = skb->len - hlen;
4931 	int err;
4932 
4933 	local_bh_enable();
4934 	if (skb_csum_unnecessary(skb))
4935 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4936 	else
4937 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4938 						       tp->ucopy.iov);
4939 
4940 	if (!err) {
4941 		tp->ucopy.len -= chunk;
4942 		tp->copied_seq += chunk;
4943 		tcp_rcv_space_adjust(sk);
4944 	}
4945 
4946 	local_bh_disable();
4947 	return err;
4948 }
4949 
4950 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4951 					    struct sk_buff *skb)
4952 {
4953 	__sum16 result;
4954 
4955 	if (sock_owned_by_user(sk)) {
4956 		local_bh_enable();
4957 		result = __tcp_checksum_complete(skb);
4958 		local_bh_disable();
4959 	} else {
4960 		result = __tcp_checksum_complete(skb);
4961 	}
4962 	return result;
4963 }
4964 
4965 static inline bool tcp_checksum_complete_user(struct sock *sk,
4966 					     struct sk_buff *skb)
4967 {
4968 	return !skb_csum_unnecessary(skb) &&
4969 	       __tcp_checksum_complete_user(sk, skb);
4970 }
4971 
4972 #ifdef CONFIG_NET_DMA
4973 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4974 				  int hlen)
4975 {
4976 	struct tcp_sock *tp = tcp_sk(sk);
4977 	int chunk = skb->len - hlen;
4978 	int dma_cookie;
4979 	bool copied_early = false;
4980 
4981 	if (tp->ucopy.wakeup)
4982 		return false;
4983 
4984 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4985 		tp->ucopy.dma_chan = net_dma_find_channel();
4986 
4987 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4988 
4989 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4990 							 skb, hlen,
4991 							 tp->ucopy.iov, chunk,
4992 							 tp->ucopy.pinned_list);
4993 
4994 		if (dma_cookie < 0)
4995 			goto out;
4996 
4997 		tp->ucopy.dma_cookie = dma_cookie;
4998 		copied_early = true;
4999 
5000 		tp->ucopy.len -= chunk;
5001 		tp->copied_seq += chunk;
5002 		tcp_rcv_space_adjust(sk);
5003 
5004 		if ((tp->ucopy.len == 0) ||
5005 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5006 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5007 			tp->ucopy.wakeup = 1;
5008 			sk->sk_data_ready(sk, 0);
5009 		}
5010 	} else if (chunk > 0) {
5011 		tp->ucopy.wakeup = 1;
5012 		sk->sk_data_ready(sk, 0);
5013 	}
5014 out:
5015 	return copied_early;
5016 }
5017 #endif /* CONFIG_NET_DMA */
5018 
5019 /* Does PAWS and seqno based validation of an incoming segment, flags will
5020  * play significant role here.
5021  */
5022 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5023 				  const struct tcphdr *th, int syn_inerr)
5024 {
5025 	struct tcp_sock *tp = tcp_sk(sk);
5026 
5027 	/* RFC1323: H1. Apply PAWS check first. */
5028 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5029 	    tcp_paws_discard(sk, skb)) {
5030 		if (!th->rst) {
5031 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5032 			tcp_send_dupack(sk, skb);
5033 			goto discard;
5034 		}
5035 		/* Reset is accepted even if it did not pass PAWS. */
5036 	}
5037 
5038 	/* Step 1: check sequence number */
5039 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5040 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5041 		 * (RST) segments are validated by checking their SEQ-fields."
5042 		 * And page 69: "If an incoming segment is not acceptable,
5043 		 * an acknowledgment should be sent in reply (unless the RST
5044 		 * bit is set, if so drop the segment and return)".
5045 		 */
5046 		if (!th->rst) {
5047 			if (th->syn)
5048 				goto syn_challenge;
5049 			tcp_send_dupack(sk, skb);
5050 		}
5051 		goto discard;
5052 	}
5053 
5054 	/* Step 2: check RST bit */
5055 	if (th->rst) {
5056 		/* RFC 5961 3.2 :
5057 		 * If sequence number exactly matches RCV.NXT, then
5058 		 *     RESET the connection
5059 		 * else
5060 		 *     Send a challenge ACK
5061 		 */
5062 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5063 			tcp_reset(sk);
5064 		else
5065 			tcp_send_challenge_ack(sk);
5066 		goto discard;
5067 	}
5068 
5069 	/* step 3: check security and precedence [ignored] */
5070 
5071 	/* step 4: Check for a SYN
5072 	 * RFC 5691 4.2 : Send a challenge ack
5073 	 */
5074 	if (th->syn) {
5075 syn_challenge:
5076 		if (syn_inerr)
5077 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5078 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5079 		tcp_send_challenge_ack(sk);
5080 		goto discard;
5081 	}
5082 
5083 	return true;
5084 
5085 discard:
5086 	__kfree_skb(skb);
5087 	return false;
5088 }
5089 
5090 /*
5091  *	TCP receive function for the ESTABLISHED state.
5092  *
5093  *	It is split into a fast path and a slow path. The fast path is
5094  * 	disabled when:
5095  *	- A zero window was announced from us - zero window probing
5096  *        is only handled properly in the slow path.
5097  *	- Out of order segments arrived.
5098  *	- Urgent data is expected.
5099  *	- There is no buffer space left
5100  *	- Unexpected TCP flags/window values/header lengths are received
5101  *	  (detected by checking the TCP header against pred_flags)
5102  *	- Data is sent in both directions. Fast path only supports pure senders
5103  *	  or pure receivers (this means either the sequence number or the ack
5104  *	  value must stay constant)
5105  *	- Unexpected TCP option.
5106  *
5107  *	When these conditions are not satisfied it drops into a standard
5108  *	receive procedure patterned after RFC793 to handle all cases.
5109  *	The first three cases are guaranteed by proper pred_flags setting,
5110  *	the rest is checked inline. Fast processing is turned on in
5111  *	tcp_data_queue when everything is OK.
5112  */
5113 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5114 			 const struct tcphdr *th, unsigned int len)
5115 {
5116 	struct tcp_sock *tp = tcp_sk(sk);
5117 
5118 	if (unlikely(sk->sk_rx_dst == NULL))
5119 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5120 	/*
5121 	 *	Header prediction.
5122 	 *	The code loosely follows the one in the famous
5123 	 *	"30 instruction TCP receive" Van Jacobson mail.
5124 	 *
5125 	 *	Van's trick is to deposit buffers into socket queue
5126 	 *	on a device interrupt, to call tcp_recv function
5127 	 *	on the receive process context and checksum and copy
5128 	 *	the buffer to user space. smart...
5129 	 *
5130 	 *	Our current scheme is not silly either but we take the
5131 	 *	extra cost of the net_bh soft interrupt processing...
5132 	 *	We do checksum and copy also but from device to kernel.
5133 	 */
5134 
5135 	tp->rx_opt.saw_tstamp = 0;
5136 
5137 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5138 	 *	if header_prediction is to be made
5139 	 *	'S' will always be tp->tcp_header_len >> 2
5140 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5141 	 *  turn it off	(when there are holes in the receive
5142 	 *	 space for instance)
5143 	 *	PSH flag is ignored.
5144 	 */
5145 
5146 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5147 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5148 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5149 		int tcp_header_len = tp->tcp_header_len;
5150 
5151 		/* Timestamp header prediction: tcp_header_len
5152 		 * is automatically equal to th->doff*4 due to pred_flags
5153 		 * match.
5154 		 */
5155 
5156 		/* Check timestamp */
5157 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5158 			/* No? Slow path! */
5159 			if (!tcp_parse_aligned_timestamp(tp, th))
5160 				goto slow_path;
5161 
5162 			/* If PAWS failed, check it more carefully in slow path */
5163 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5164 				goto slow_path;
5165 
5166 			/* DO NOT update ts_recent here, if checksum fails
5167 			 * and timestamp was corrupted part, it will result
5168 			 * in a hung connection since we will drop all
5169 			 * future packets due to the PAWS test.
5170 			 */
5171 		}
5172 
5173 		if (len <= tcp_header_len) {
5174 			/* Bulk data transfer: sender */
5175 			if (len == tcp_header_len) {
5176 				/* Predicted packet is in window by definition.
5177 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5178 				 * Hence, check seq<=rcv_wup reduces to:
5179 				 */
5180 				if (tcp_header_len ==
5181 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5182 				    tp->rcv_nxt == tp->rcv_wup)
5183 					tcp_store_ts_recent(tp);
5184 
5185 				/* We know that such packets are checksummed
5186 				 * on entry.
5187 				 */
5188 				tcp_ack(sk, skb, 0);
5189 				__kfree_skb(skb);
5190 				tcp_data_snd_check(sk);
5191 				return;
5192 			} else { /* Header too small */
5193 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5194 				goto discard;
5195 			}
5196 		} else {
5197 			int eaten = 0;
5198 			int copied_early = 0;
5199 			bool fragstolen = false;
5200 
5201 			if (tp->copied_seq == tp->rcv_nxt &&
5202 			    len - tcp_header_len <= tp->ucopy.len) {
5203 #ifdef CONFIG_NET_DMA
5204 				if (tp->ucopy.task == current &&
5205 				    sock_owned_by_user(sk) &&
5206 				    tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5207 					copied_early = 1;
5208 					eaten = 1;
5209 				}
5210 #endif
5211 				if (tp->ucopy.task == current &&
5212 				    sock_owned_by_user(sk) && !copied_early) {
5213 					__set_current_state(TASK_RUNNING);
5214 
5215 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5216 						eaten = 1;
5217 				}
5218 				if (eaten) {
5219 					/* Predicted packet is in window by definition.
5220 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5221 					 * Hence, check seq<=rcv_wup reduces to:
5222 					 */
5223 					if (tcp_header_len ==
5224 					    (sizeof(struct tcphdr) +
5225 					     TCPOLEN_TSTAMP_ALIGNED) &&
5226 					    tp->rcv_nxt == tp->rcv_wup)
5227 						tcp_store_ts_recent(tp);
5228 
5229 					tcp_rcv_rtt_measure_ts(sk, skb);
5230 
5231 					__skb_pull(skb, tcp_header_len);
5232 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5233 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5234 				}
5235 				if (copied_early)
5236 					tcp_cleanup_rbuf(sk, skb->len);
5237 			}
5238 			if (!eaten) {
5239 				if (tcp_checksum_complete_user(sk, skb))
5240 					goto csum_error;
5241 
5242 				if ((int)skb->truesize > sk->sk_forward_alloc)
5243 					goto step5;
5244 
5245 				/* Predicted packet is in window by definition.
5246 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5247 				 * Hence, check seq<=rcv_wup reduces to:
5248 				 */
5249 				if (tcp_header_len ==
5250 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5251 				    tp->rcv_nxt == tp->rcv_wup)
5252 					tcp_store_ts_recent(tp);
5253 
5254 				tcp_rcv_rtt_measure_ts(sk, skb);
5255 
5256 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5257 
5258 				/* Bulk data transfer: receiver */
5259 				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5260 						      &fragstolen);
5261 			}
5262 
5263 			tcp_event_data_recv(sk, skb);
5264 
5265 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5266 				/* Well, only one small jumplet in fast path... */
5267 				tcp_ack(sk, skb, FLAG_DATA);
5268 				tcp_data_snd_check(sk);
5269 				if (!inet_csk_ack_scheduled(sk))
5270 					goto no_ack;
5271 			}
5272 
5273 			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5274 				__tcp_ack_snd_check(sk, 0);
5275 no_ack:
5276 #ifdef CONFIG_NET_DMA
5277 			if (copied_early)
5278 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5279 			else
5280 #endif
5281 			if (eaten)
5282 				kfree_skb_partial(skb, fragstolen);
5283 			sk->sk_data_ready(sk, 0);
5284 			return;
5285 		}
5286 	}
5287 
5288 slow_path:
5289 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5290 		goto csum_error;
5291 
5292 	if (!th->ack && !th->rst)
5293 		goto discard;
5294 
5295 	/*
5296 	 *	Standard slow path.
5297 	 */
5298 
5299 	if (!tcp_validate_incoming(sk, skb, th, 1))
5300 		return;
5301 
5302 step5:
5303 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5304 		goto discard;
5305 
5306 	tcp_rcv_rtt_measure_ts(sk, skb);
5307 
5308 	/* Process urgent data. */
5309 	tcp_urg(sk, skb, th);
5310 
5311 	/* step 7: process the segment text */
5312 	tcp_data_queue(sk, skb);
5313 
5314 	tcp_data_snd_check(sk);
5315 	tcp_ack_snd_check(sk);
5316 	return;
5317 
5318 csum_error:
5319 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5320 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5321 
5322 discard:
5323 	__kfree_skb(skb);
5324 }
5325 EXPORT_SYMBOL(tcp_rcv_established);
5326 
5327 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5328 {
5329 	struct tcp_sock *tp = tcp_sk(sk);
5330 	struct inet_connection_sock *icsk = inet_csk(sk);
5331 
5332 	tcp_set_state(sk, TCP_ESTABLISHED);
5333 
5334 	if (skb != NULL) {
5335 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5336 		security_inet_conn_established(sk, skb);
5337 	}
5338 
5339 	/* Make sure socket is routed, for correct metrics.  */
5340 	icsk->icsk_af_ops->rebuild_header(sk);
5341 
5342 	tcp_init_metrics(sk);
5343 
5344 	tcp_init_congestion_control(sk);
5345 
5346 	/* Prevent spurious tcp_cwnd_restart() on first data
5347 	 * packet.
5348 	 */
5349 	tp->lsndtime = tcp_time_stamp;
5350 
5351 	tcp_init_buffer_space(sk);
5352 
5353 	if (sock_flag(sk, SOCK_KEEPOPEN))
5354 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5355 
5356 	if (!tp->rx_opt.snd_wscale)
5357 		__tcp_fast_path_on(tp, tp->snd_wnd);
5358 	else
5359 		tp->pred_flags = 0;
5360 
5361 	if (!sock_flag(sk, SOCK_DEAD)) {
5362 		sk->sk_state_change(sk);
5363 		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5364 	}
5365 }
5366 
5367 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5368 				    struct tcp_fastopen_cookie *cookie)
5369 {
5370 	struct tcp_sock *tp = tcp_sk(sk);
5371 	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5372 	u16 mss = tp->rx_opt.mss_clamp;
5373 	bool syn_drop;
5374 
5375 	if (mss == tp->rx_opt.user_mss) {
5376 		struct tcp_options_received opt;
5377 
5378 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5379 		tcp_clear_options(&opt);
5380 		opt.user_mss = opt.mss_clamp = 0;
5381 		tcp_parse_options(synack, &opt, 0, NULL);
5382 		mss = opt.mss_clamp;
5383 	}
5384 
5385 	if (!tp->syn_fastopen)  /* Ignore an unsolicited cookie */
5386 		cookie->len = -1;
5387 
5388 	/* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5389 	 * the remote receives only the retransmitted (regular) SYNs: either
5390 	 * the original SYN-data or the corresponding SYN-ACK is lost.
5391 	 */
5392 	syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
5393 
5394 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5395 
5396 	if (data) { /* Retransmit unacked data in SYN */
5397 		tcp_for_write_queue_from(data, sk) {
5398 			if (data == tcp_send_head(sk) ||
5399 			    __tcp_retransmit_skb(sk, data))
5400 				break;
5401 		}
5402 		tcp_rearm_rto(sk);
5403 		return true;
5404 	}
5405 	tp->syn_data_acked = tp->syn_data;
5406 	return false;
5407 }
5408 
5409 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5410 					 const struct tcphdr *th, unsigned int len)
5411 {
5412 	struct inet_connection_sock *icsk = inet_csk(sk);
5413 	struct tcp_sock *tp = tcp_sk(sk);
5414 	struct tcp_fastopen_cookie foc = { .len = -1 };
5415 	int saved_clamp = tp->rx_opt.mss_clamp;
5416 
5417 	tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5418 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5419 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5420 
5421 	if (th->ack) {
5422 		/* rfc793:
5423 		 * "If the state is SYN-SENT then
5424 		 *    first check the ACK bit
5425 		 *      If the ACK bit is set
5426 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5427 		 *        a reset (unless the RST bit is set, if so drop
5428 		 *        the segment and return)"
5429 		 */
5430 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5431 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5432 			goto reset_and_undo;
5433 
5434 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5435 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5436 			     tcp_time_stamp)) {
5437 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5438 			goto reset_and_undo;
5439 		}
5440 
5441 		/* Now ACK is acceptable.
5442 		 *
5443 		 * "If the RST bit is set
5444 		 *    If the ACK was acceptable then signal the user "error:
5445 		 *    connection reset", drop the segment, enter CLOSED state,
5446 		 *    delete TCB, and return."
5447 		 */
5448 
5449 		if (th->rst) {
5450 			tcp_reset(sk);
5451 			goto discard;
5452 		}
5453 
5454 		/* rfc793:
5455 		 *   "fifth, if neither of the SYN or RST bits is set then
5456 		 *    drop the segment and return."
5457 		 *
5458 		 *    See note below!
5459 		 *                                        --ANK(990513)
5460 		 */
5461 		if (!th->syn)
5462 			goto discard_and_undo;
5463 
5464 		/* rfc793:
5465 		 *   "If the SYN bit is on ...
5466 		 *    are acceptable then ...
5467 		 *    (our SYN has been ACKed), change the connection
5468 		 *    state to ESTABLISHED..."
5469 		 */
5470 
5471 		TCP_ECN_rcv_synack(tp, th);
5472 
5473 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5474 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5475 
5476 		/* Ok.. it's good. Set up sequence numbers and
5477 		 * move to established.
5478 		 */
5479 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5480 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5481 
5482 		/* RFC1323: The window in SYN & SYN/ACK segments is
5483 		 * never scaled.
5484 		 */
5485 		tp->snd_wnd = ntohs(th->window);
5486 
5487 		if (!tp->rx_opt.wscale_ok) {
5488 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5489 			tp->window_clamp = min(tp->window_clamp, 65535U);
5490 		}
5491 
5492 		if (tp->rx_opt.saw_tstamp) {
5493 			tp->rx_opt.tstamp_ok	   = 1;
5494 			tp->tcp_header_len =
5495 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5496 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5497 			tcp_store_ts_recent(tp);
5498 		} else {
5499 			tp->tcp_header_len = sizeof(struct tcphdr);
5500 		}
5501 
5502 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5503 			tcp_enable_fack(tp);
5504 
5505 		tcp_mtup_init(sk);
5506 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5507 		tcp_initialize_rcv_mss(sk);
5508 
5509 		/* Remember, tcp_poll() does not lock socket!
5510 		 * Change state from SYN-SENT only after copied_seq
5511 		 * is initialized. */
5512 		tp->copied_seq = tp->rcv_nxt;
5513 
5514 		smp_mb();
5515 
5516 		tcp_finish_connect(sk, skb);
5517 
5518 		if ((tp->syn_fastopen || tp->syn_data) &&
5519 		    tcp_rcv_fastopen_synack(sk, skb, &foc))
5520 			return -1;
5521 
5522 		if (sk->sk_write_pending ||
5523 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5524 		    icsk->icsk_ack.pingpong) {
5525 			/* Save one ACK. Data will be ready after
5526 			 * several ticks, if write_pending is set.
5527 			 *
5528 			 * It may be deleted, but with this feature tcpdumps
5529 			 * look so _wonderfully_ clever, that I was not able
5530 			 * to stand against the temptation 8)     --ANK
5531 			 */
5532 			inet_csk_schedule_ack(sk);
5533 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5534 			tcp_enter_quickack_mode(sk);
5535 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5536 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5537 
5538 discard:
5539 			__kfree_skb(skb);
5540 			return 0;
5541 		} else {
5542 			tcp_send_ack(sk);
5543 		}
5544 		return -1;
5545 	}
5546 
5547 	/* No ACK in the segment */
5548 
5549 	if (th->rst) {
5550 		/* rfc793:
5551 		 * "If the RST bit is set
5552 		 *
5553 		 *      Otherwise (no ACK) drop the segment and return."
5554 		 */
5555 
5556 		goto discard_and_undo;
5557 	}
5558 
5559 	/* PAWS check. */
5560 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5561 	    tcp_paws_reject(&tp->rx_opt, 0))
5562 		goto discard_and_undo;
5563 
5564 	if (th->syn) {
5565 		/* We see SYN without ACK. It is attempt of
5566 		 * simultaneous connect with crossed SYNs.
5567 		 * Particularly, it can be connect to self.
5568 		 */
5569 		tcp_set_state(sk, TCP_SYN_RECV);
5570 
5571 		if (tp->rx_opt.saw_tstamp) {
5572 			tp->rx_opt.tstamp_ok = 1;
5573 			tcp_store_ts_recent(tp);
5574 			tp->tcp_header_len =
5575 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5576 		} else {
5577 			tp->tcp_header_len = sizeof(struct tcphdr);
5578 		}
5579 
5580 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5581 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5582 
5583 		/* RFC1323: The window in SYN & SYN/ACK segments is
5584 		 * never scaled.
5585 		 */
5586 		tp->snd_wnd    = ntohs(th->window);
5587 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5588 		tp->max_window = tp->snd_wnd;
5589 
5590 		TCP_ECN_rcv_syn(tp, th);
5591 
5592 		tcp_mtup_init(sk);
5593 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5594 		tcp_initialize_rcv_mss(sk);
5595 
5596 		tcp_send_synack(sk);
5597 #if 0
5598 		/* Note, we could accept data and URG from this segment.
5599 		 * There are no obstacles to make this (except that we must
5600 		 * either change tcp_recvmsg() to prevent it from returning data
5601 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5602 		 *
5603 		 * However, if we ignore data in ACKless segments sometimes,
5604 		 * we have no reasons to accept it sometimes.
5605 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5606 		 * is not flawless. So, discard packet for sanity.
5607 		 * Uncomment this return to process the data.
5608 		 */
5609 		return -1;
5610 #else
5611 		goto discard;
5612 #endif
5613 	}
5614 	/* "fifth, if neither of the SYN or RST bits is set then
5615 	 * drop the segment and return."
5616 	 */
5617 
5618 discard_and_undo:
5619 	tcp_clear_options(&tp->rx_opt);
5620 	tp->rx_opt.mss_clamp = saved_clamp;
5621 	goto discard;
5622 
5623 reset_and_undo:
5624 	tcp_clear_options(&tp->rx_opt);
5625 	tp->rx_opt.mss_clamp = saved_clamp;
5626 	return 1;
5627 }
5628 
5629 /*
5630  *	This function implements the receiving procedure of RFC 793 for
5631  *	all states except ESTABLISHED and TIME_WAIT.
5632  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5633  *	address independent.
5634  */
5635 
5636 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5637 			  const struct tcphdr *th, unsigned int len)
5638 {
5639 	struct tcp_sock *tp = tcp_sk(sk);
5640 	struct inet_connection_sock *icsk = inet_csk(sk);
5641 	struct request_sock *req;
5642 	int queued = 0;
5643 	bool acceptable;
5644 	u32 synack_stamp;
5645 
5646 	tp->rx_opt.saw_tstamp = 0;
5647 
5648 	switch (sk->sk_state) {
5649 	case TCP_CLOSE:
5650 		goto discard;
5651 
5652 	case TCP_LISTEN:
5653 		if (th->ack)
5654 			return 1;
5655 
5656 		if (th->rst)
5657 			goto discard;
5658 
5659 		if (th->syn) {
5660 			if (th->fin)
5661 				goto discard;
5662 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5663 				return 1;
5664 
5665 			/* Now we have several options: In theory there is
5666 			 * nothing else in the frame. KA9Q has an option to
5667 			 * send data with the syn, BSD accepts data with the
5668 			 * syn up to the [to be] advertised window and
5669 			 * Solaris 2.1 gives you a protocol error. For now
5670 			 * we just ignore it, that fits the spec precisely
5671 			 * and avoids incompatibilities. It would be nice in
5672 			 * future to drop through and process the data.
5673 			 *
5674 			 * Now that TTCP is starting to be used we ought to
5675 			 * queue this data.
5676 			 * But, this leaves one open to an easy denial of
5677 			 * service attack, and SYN cookies can't defend
5678 			 * against this problem. So, we drop the data
5679 			 * in the interest of security over speed unless
5680 			 * it's still in use.
5681 			 */
5682 			kfree_skb(skb);
5683 			return 0;
5684 		}
5685 		goto discard;
5686 
5687 	case TCP_SYN_SENT:
5688 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5689 		if (queued >= 0)
5690 			return queued;
5691 
5692 		/* Do step6 onward by hand. */
5693 		tcp_urg(sk, skb, th);
5694 		__kfree_skb(skb);
5695 		tcp_data_snd_check(sk);
5696 		return 0;
5697 	}
5698 
5699 	req = tp->fastopen_rsk;
5700 	if (req != NULL) {
5701 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5702 		    sk->sk_state != TCP_FIN_WAIT1);
5703 
5704 		if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5705 			goto discard;
5706 	}
5707 
5708 	if (!th->ack && !th->rst)
5709 		goto discard;
5710 
5711 	if (!tcp_validate_incoming(sk, skb, th, 0))
5712 		return 0;
5713 
5714 	/* step 5: check the ACK field */
5715 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5716 				      FLAG_UPDATE_TS_RECENT) > 0;
5717 
5718 	switch (sk->sk_state) {
5719 	case TCP_SYN_RECV:
5720 		if (!acceptable)
5721 			return 1;
5722 
5723 		/* Once we leave TCP_SYN_RECV, we no longer need req
5724 		 * so release it.
5725 		 */
5726 		if (req) {
5727 			synack_stamp = tcp_rsk(req)->snt_synack;
5728 			tp->total_retrans = req->num_retrans;
5729 			reqsk_fastopen_remove(sk, req, false);
5730 		} else {
5731 			synack_stamp = tp->lsndtime;
5732 			/* Make sure socket is routed, for correct metrics. */
5733 			icsk->icsk_af_ops->rebuild_header(sk);
5734 			tcp_init_congestion_control(sk);
5735 
5736 			tcp_mtup_init(sk);
5737 			tp->copied_seq = tp->rcv_nxt;
5738 			tcp_init_buffer_space(sk);
5739 		}
5740 		smp_mb();
5741 		tcp_set_state(sk, TCP_ESTABLISHED);
5742 		sk->sk_state_change(sk);
5743 
5744 		/* Note, that this wakeup is only for marginal crossed SYN case.
5745 		 * Passively open sockets are not waked up, because
5746 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5747 		 */
5748 		if (sk->sk_socket)
5749 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5750 
5751 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5752 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5753 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5754 		tcp_synack_rtt_meas(sk, synack_stamp);
5755 
5756 		if (tp->rx_opt.tstamp_ok)
5757 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5758 
5759 		if (req) {
5760 			/* Re-arm the timer because data may have been sent out.
5761 			 * This is similar to the regular data transmission case
5762 			 * when new data has just been ack'ed.
5763 			 *
5764 			 * (TFO) - we could try to be more aggressive and
5765 			 * retransmitting any data sooner based on when they
5766 			 * are sent out.
5767 			 */
5768 			tcp_rearm_rto(sk);
5769 		} else
5770 			tcp_init_metrics(sk);
5771 
5772 		tcp_update_pacing_rate(sk);
5773 
5774 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5775 		tp->lsndtime = tcp_time_stamp;
5776 
5777 		tcp_initialize_rcv_mss(sk);
5778 		tcp_fast_path_on(tp);
5779 		break;
5780 
5781 	case TCP_FIN_WAIT1: {
5782 		struct dst_entry *dst;
5783 		int tmo;
5784 
5785 		/* If we enter the TCP_FIN_WAIT1 state and we are a
5786 		 * Fast Open socket and this is the first acceptable
5787 		 * ACK we have received, this would have acknowledged
5788 		 * our SYNACK so stop the SYNACK timer.
5789 		 */
5790 		if (req != NULL) {
5791 			/* Return RST if ack_seq is invalid.
5792 			 * Note that RFC793 only says to generate a
5793 			 * DUPACK for it but for TCP Fast Open it seems
5794 			 * better to treat this case like TCP_SYN_RECV
5795 			 * above.
5796 			 */
5797 			if (!acceptable)
5798 				return 1;
5799 			/* We no longer need the request sock. */
5800 			reqsk_fastopen_remove(sk, req, false);
5801 			tcp_rearm_rto(sk);
5802 		}
5803 		if (tp->snd_una != tp->write_seq)
5804 			break;
5805 
5806 		tcp_set_state(sk, TCP_FIN_WAIT2);
5807 		sk->sk_shutdown |= SEND_SHUTDOWN;
5808 
5809 		dst = __sk_dst_get(sk);
5810 		if (dst)
5811 			dst_confirm(dst);
5812 
5813 		if (!sock_flag(sk, SOCK_DEAD)) {
5814 			/* Wake up lingering close() */
5815 			sk->sk_state_change(sk);
5816 			break;
5817 		}
5818 
5819 		if (tp->linger2 < 0 ||
5820 		    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5821 		     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5822 			tcp_done(sk);
5823 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5824 			return 1;
5825 		}
5826 
5827 		tmo = tcp_fin_time(sk);
5828 		if (tmo > TCP_TIMEWAIT_LEN) {
5829 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5830 		} else if (th->fin || sock_owned_by_user(sk)) {
5831 			/* Bad case. We could lose such FIN otherwise.
5832 			 * It is not a big problem, but it looks confusing
5833 			 * and not so rare event. We still can lose it now,
5834 			 * if it spins in bh_lock_sock(), but it is really
5835 			 * marginal case.
5836 			 */
5837 			inet_csk_reset_keepalive_timer(sk, tmo);
5838 		} else {
5839 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5840 			goto discard;
5841 		}
5842 		break;
5843 	}
5844 
5845 	case TCP_CLOSING:
5846 		if (tp->snd_una == tp->write_seq) {
5847 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5848 			goto discard;
5849 		}
5850 		break;
5851 
5852 	case TCP_LAST_ACK:
5853 		if (tp->snd_una == tp->write_seq) {
5854 			tcp_update_metrics(sk);
5855 			tcp_done(sk);
5856 			goto discard;
5857 		}
5858 		break;
5859 	}
5860 
5861 	/* step 6: check the URG bit */
5862 	tcp_urg(sk, skb, th);
5863 
5864 	/* step 7: process the segment text */
5865 	switch (sk->sk_state) {
5866 	case TCP_CLOSE_WAIT:
5867 	case TCP_CLOSING:
5868 	case TCP_LAST_ACK:
5869 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5870 			break;
5871 	case TCP_FIN_WAIT1:
5872 	case TCP_FIN_WAIT2:
5873 		/* RFC 793 says to queue data in these states,
5874 		 * RFC 1122 says we MUST send a reset.
5875 		 * BSD 4.4 also does reset.
5876 		 */
5877 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5878 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5879 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5880 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5881 				tcp_reset(sk);
5882 				return 1;
5883 			}
5884 		}
5885 		/* Fall through */
5886 	case TCP_ESTABLISHED:
5887 		tcp_data_queue(sk, skb);
5888 		queued = 1;
5889 		break;
5890 	}
5891 
5892 	/* tcp_data could move socket to TIME-WAIT */
5893 	if (sk->sk_state != TCP_CLOSE) {
5894 		tcp_data_snd_check(sk);
5895 		tcp_ack_snd_check(sk);
5896 	}
5897 
5898 	if (!queued) {
5899 discard:
5900 		__kfree_skb(skb);
5901 	}
5902 	return 0;
5903 }
5904 EXPORT_SYMBOL(tcp_rcv_state_process);
5905