xref: /openbmc/linux/net/ipv4/tcp_input.c (revision f66501dc)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 
83 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
84 
85 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
86 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
87 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
88 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
89 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
90 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
91 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
92 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
93 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
94 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
95 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
96 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
97 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
98 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
99 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
100 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
101 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
102 
103 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
104 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
105 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
106 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
107 
108 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
109 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
110 
111 #define REXMIT_NONE	0 /* no loss recovery to do */
112 #define REXMIT_LOST	1 /* retransmit packets marked lost */
113 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
114 
115 #if IS_ENABLED(CONFIG_TLS_DEVICE)
116 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
117 
118 void clean_acked_data_enable(struct inet_connection_sock *icsk,
119 			     void (*cad)(struct sock *sk, u32 ack_seq))
120 {
121 	icsk->icsk_clean_acked = cad;
122 	static_branch_inc(&clean_acked_data_enabled.key);
123 }
124 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
125 
126 void clean_acked_data_disable(struct inet_connection_sock *icsk)
127 {
128 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
129 	icsk->icsk_clean_acked = NULL;
130 }
131 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
132 
133 void clean_acked_data_flush(void)
134 {
135 	static_key_deferred_flush(&clean_acked_data_enabled);
136 }
137 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
138 #endif
139 
140 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
141 			     unsigned int len)
142 {
143 	static bool __once __read_mostly;
144 
145 	if (!__once) {
146 		struct net_device *dev;
147 
148 		__once = true;
149 
150 		rcu_read_lock();
151 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
152 		if (!dev || len >= dev->mtu)
153 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
154 				dev ? dev->name : "Unknown driver");
155 		rcu_read_unlock();
156 	}
157 }
158 
159 /* Adapt the MSS value used to make delayed ack decision to the
160  * real world.
161  */
162 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
163 {
164 	struct inet_connection_sock *icsk = inet_csk(sk);
165 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
166 	unsigned int len;
167 
168 	icsk->icsk_ack.last_seg_size = 0;
169 
170 	/* skb->len may jitter because of SACKs, even if peer
171 	 * sends good full-sized frames.
172 	 */
173 	len = skb_shinfo(skb)->gso_size ? : skb->len;
174 	if (len >= icsk->icsk_ack.rcv_mss) {
175 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
176 					       tcp_sk(sk)->advmss);
177 		/* Account for possibly-removed options */
178 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
179 				   MAX_TCP_OPTION_SPACE))
180 			tcp_gro_dev_warn(sk, skb, len);
181 	} else {
182 		/* Otherwise, we make more careful check taking into account,
183 		 * that SACKs block is variable.
184 		 *
185 		 * "len" is invariant segment length, including TCP header.
186 		 */
187 		len += skb->data - skb_transport_header(skb);
188 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
189 		    /* If PSH is not set, packet should be
190 		     * full sized, provided peer TCP is not badly broken.
191 		     * This observation (if it is correct 8)) allows
192 		     * to handle super-low mtu links fairly.
193 		     */
194 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
195 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
196 			/* Subtract also invariant (if peer is RFC compliant),
197 			 * tcp header plus fixed timestamp option length.
198 			 * Resulting "len" is MSS free of SACK jitter.
199 			 */
200 			len -= tcp_sk(sk)->tcp_header_len;
201 			icsk->icsk_ack.last_seg_size = len;
202 			if (len == lss) {
203 				icsk->icsk_ack.rcv_mss = len;
204 				return;
205 			}
206 		}
207 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
208 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
209 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
210 	}
211 }
212 
213 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
214 {
215 	struct inet_connection_sock *icsk = inet_csk(sk);
216 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
217 
218 	if (quickacks == 0)
219 		quickacks = 2;
220 	quickacks = min(quickacks, max_quickacks);
221 	if (quickacks > icsk->icsk_ack.quick)
222 		icsk->icsk_ack.quick = quickacks;
223 }
224 
225 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
226 {
227 	struct inet_connection_sock *icsk = inet_csk(sk);
228 
229 	tcp_incr_quickack(sk, max_quickacks);
230 	inet_csk_exit_pingpong_mode(sk);
231 	icsk->icsk_ack.ato = TCP_ATO_MIN;
232 }
233 EXPORT_SYMBOL(tcp_enter_quickack_mode);
234 
235 /* Send ACKs quickly, if "quick" count is not exhausted
236  * and the session is not interactive.
237  */
238 
239 static bool tcp_in_quickack_mode(struct sock *sk)
240 {
241 	const struct inet_connection_sock *icsk = inet_csk(sk);
242 	const struct dst_entry *dst = __sk_dst_get(sk);
243 
244 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
245 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
246 }
247 
248 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
249 {
250 	if (tp->ecn_flags & TCP_ECN_OK)
251 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
252 }
253 
254 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
255 {
256 	if (tcp_hdr(skb)->cwr) {
257 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
258 
259 		/* If the sender is telling us it has entered CWR, then its
260 		 * cwnd may be very low (even just 1 packet), so we should ACK
261 		 * immediately.
262 		 */
263 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
264 	}
265 }
266 
267 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
268 {
269 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
270 }
271 
272 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
273 {
274 	struct tcp_sock *tp = tcp_sk(sk);
275 
276 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
277 	case INET_ECN_NOT_ECT:
278 		/* Funny extension: if ECT is not set on a segment,
279 		 * and we already seen ECT on a previous segment,
280 		 * it is probably a retransmit.
281 		 */
282 		if (tp->ecn_flags & TCP_ECN_SEEN)
283 			tcp_enter_quickack_mode(sk, 2);
284 		break;
285 	case INET_ECN_CE:
286 		if (tcp_ca_needs_ecn(sk))
287 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
288 
289 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
290 			/* Better not delay acks, sender can have a very low cwnd */
291 			tcp_enter_quickack_mode(sk, 2);
292 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
293 		}
294 		tp->ecn_flags |= TCP_ECN_SEEN;
295 		break;
296 	default:
297 		if (tcp_ca_needs_ecn(sk))
298 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
299 		tp->ecn_flags |= TCP_ECN_SEEN;
300 		break;
301 	}
302 }
303 
304 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
305 {
306 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
307 		__tcp_ecn_check_ce(sk, skb);
308 }
309 
310 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
311 {
312 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
313 		tp->ecn_flags &= ~TCP_ECN_OK;
314 }
315 
316 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
317 {
318 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
319 		tp->ecn_flags &= ~TCP_ECN_OK;
320 }
321 
322 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
323 {
324 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
325 		return true;
326 	return false;
327 }
328 
329 /* Buffer size and advertised window tuning.
330  *
331  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
332  */
333 
334 static void tcp_sndbuf_expand(struct sock *sk)
335 {
336 	const struct tcp_sock *tp = tcp_sk(sk);
337 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
338 	int sndmem, per_mss;
339 	u32 nr_segs;
340 
341 	/* Worst case is non GSO/TSO : each frame consumes one skb
342 	 * and skb->head is kmalloced using power of two area of memory
343 	 */
344 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
345 		  MAX_TCP_HEADER +
346 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
347 
348 	per_mss = roundup_pow_of_two(per_mss) +
349 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
350 
351 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
352 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
353 
354 	/* Fast Recovery (RFC 5681 3.2) :
355 	 * Cubic needs 1.7 factor, rounded to 2 to include
356 	 * extra cushion (application might react slowly to EPOLLOUT)
357 	 */
358 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
359 	sndmem *= nr_segs * per_mss;
360 
361 	if (sk->sk_sndbuf < sndmem)
362 		sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
363 }
364 
365 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
366  *
367  * All tcp_full_space() is split to two parts: "network" buffer, allocated
368  * forward and advertised in receiver window (tp->rcv_wnd) and
369  * "application buffer", required to isolate scheduling/application
370  * latencies from network.
371  * window_clamp is maximal advertised window. It can be less than
372  * tcp_full_space(), in this case tcp_full_space() - window_clamp
373  * is reserved for "application" buffer. The less window_clamp is
374  * the smoother our behaviour from viewpoint of network, but the lower
375  * throughput and the higher sensitivity of the connection to losses. 8)
376  *
377  * rcv_ssthresh is more strict window_clamp used at "slow start"
378  * phase to predict further behaviour of this connection.
379  * It is used for two goals:
380  * - to enforce header prediction at sender, even when application
381  *   requires some significant "application buffer". It is check #1.
382  * - to prevent pruning of receive queue because of misprediction
383  *   of receiver window. Check #2.
384  *
385  * The scheme does not work when sender sends good segments opening
386  * window and then starts to feed us spaghetti. But it should work
387  * in common situations. Otherwise, we have to rely on queue collapsing.
388  */
389 
390 /* Slow part of check#2. */
391 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
392 {
393 	struct tcp_sock *tp = tcp_sk(sk);
394 	/* Optimize this! */
395 	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
396 	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
397 
398 	while (tp->rcv_ssthresh <= window) {
399 		if (truesize <= skb->len)
400 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
401 
402 		truesize >>= 1;
403 		window >>= 1;
404 	}
405 	return 0;
406 }
407 
408 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
409 {
410 	struct tcp_sock *tp = tcp_sk(sk);
411 	int room;
412 
413 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
414 
415 	/* Check #1 */
416 	if (room > 0 && !tcp_under_memory_pressure(sk)) {
417 		int incr;
418 
419 		/* Check #2. Increase window, if skb with such overhead
420 		 * will fit to rcvbuf in future.
421 		 */
422 		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
423 			incr = 2 * tp->advmss;
424 		else
425 			incr = __tcp_grow_window(sk, skb);
426 
427 		if (incr) {
428 			incr = max_t(int, incr, 2 * skb->len);
429 			tp->rcv_ssthresh += min(room, incr);
430 			inet_csk(sk)->icsk_ack.quick |= 1;
431 		}
432 	}
433 }
434 
435 /* 3. Try to fixup all. It is made immediately after connection enters
436  *    established state.
437  */
438 void tcp_init_buffer_space(struct sock *sk)
439 {
440 	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
441 	struct tcp_sock *tp = tcp_sk(sk);
442 	int maxwin;
443 
444 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
445 		tcp_sndbuf_expand(sk);
446 
447 	tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss);
448 	tcp_mstamp_refresh(tp);
449 	tp->rcvq_space.time = tp->tcp_mstamp;
450 	tp->rcvq_space.seq = tp->copied_seq;
451 
452 	maxwin = tcp_full_space(sk);
453 
454 	if (tp->window_clamp >= maxwin) {
455 		tp->window_clamp = maxwin;
456 
457 		if (tcp_app_win && maxwin > 4 * tp->advmss)
458 			tp->window_clamp = max(maxwin -
459 					       (maxwin >> tcp_app_win),
460 					       4 * tp->advmss);
461 	}
462 
463 	/* Force reservation of one segment. */
464 	if (tcp_app_win &&
465 	    tp->window_clamp > 2 * tp->advmss &&
466 	    tp->window_clamp + tp->advmss > maxwin)
467 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
468 
469 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
470 	tp->snd_cwnd_stamp = tcp_jiffies32;
471 }
472 
473 /* 4. Recalculate window clamp after socket hit its memory bounds. */
474 static void tcp_clamp_window(struct sock *sk)
475 {
476 	struct tcp_sock *tp = tcp_sk(sk);
477 	struct inet_connection_sock *icsk = inet_csk(sk);
478 	struct net *net = sock_net(sk);
479 
480 	icsk->icsk_ack.quick = 0;
481 
482 	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
483 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
484 	    !tcp_under_memory_pressure(sk) &&
485 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
486 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
487 				    net->ipv4.sysctl_tcp_rmem[2]);
488 	}
489 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
490 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
491 }
492 
493 /* Initialize RCV_MSS value.
494  * RCV_MSS is an our guess about MSS used by the peer.
495  * We haven't any direct information about the MSS.
496  * It's better to underestimate the RCV_MSS rather than overestimate.
497  * Overestimations make us ACKing less frequently than needed.
498  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
499  */
500 void tcp_initialize_rcv_mss(struct sock *sk)
501 {
502 	const struct tcp_sock *tp = tcp_sk(sk);
503 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
504 
505 	hint = min(hint, tp->rcv_wnd / 2);
506 	hint = min(hint, TCP_MSS_DEFAULT);
507 	hint = max(hint, TCP_MIN_MSS);
508 
509 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
510 }
511 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
512 
513 /* Receiver "autotuning" code.
514  *
515  * The algorithm for RTT estimation w/o timestamps is based on
516  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
517  * <http://public.lanl.gov/radiant/pubs.html#DRS>
518  *
519  * More detail on this code can be found at
520  * <http://staff.psc.edu/jheffner/>,
521  * though this reference is out of date.  A new paper
522  * is pending.
523  */
524 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
525 {
526 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
527 	long m = sample;
528 
529 	if (new_sample != 0) {
530 		/* If we sample in larger samples in the non-timestamp
531 		 * case, we could grossly overestimate the RTT especially
532 		 * with chatty applications or bulk transfer apps which
533 		 * are stalled on filesystem I/O.
534 		 *
535 		 * Also, since we are only going for a minimum in the
536 		 * non-timestamp case, we do not smooth things out
537 		 * else with timestamps disabled convergence takes too
538 		 * long.
539 		 */
540 		if (!win_dep) {
541 			m -= (new_sample >> 3);
542 			new_sample += m;
543 		} else {
544 			m <<= 3;
545 			if (m < new_sample)
546 				new_sample = m;
547 		}
548 	} else {
549 		/* No previous measure. */
550 		new_sample = m << 3;
551 	}
552 
553 	tp->rcv_rtt_est.rtt_us = new_sample;
554 }
555 
556 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
557 {
558 	u32 delta_us;
559 
560 	if (tp->rcv_rtt_est.time == 0)
561 		goto new_measure;
562 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
563 		return;
564 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
565 	if (!delta_us)
566 		delta_us = 1;
567 	tcp_rcv_rtt_update(tp, delta_us, 1);
568 
569 new_measure:
570 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
571 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
572 }
573 
574 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
575 					  const struct sk_buff *skb)
576 {
577 	struct tcp_sock *tp = tcp_sk(sk);
578 
579 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
580 		return;
581 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
582 
583 	if (TCP_SKB_CB(skb)->end_seq -
584 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
585 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
586 		u32 delta_us;
587 
588 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
589 			if (!delta)
590 				delta = 1;
591 			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
592 			tcp_rcv_rtt_update(tp, delta_us, 0);
593 		}
594 	}
595 }
596 
597 /*
598  * This function should be called every time data is copied to user space.
599  * It calculates the appropriate TCP receive buffer space.
600  */
601 void tcp_rcv_space_adjust(struct sock *sk)
602 {
603 	struct tcp_sock *tp = tcp_sk(sk);
604 	u32 copied;
605 	int time;
606 
607 	trace_tcp_rcv_space_adjust(sk);
608 
609 	tcp_mstamp_refresh(tp);
610 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
611 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
612 		return;
613 
614 	/* Number of bytes copied to user in last RTT */
615 	copied = tp->copied_seq - tp->rcvq_space.seq;
616 	if (copied <= tp->rcvq_space.space)
617 		goto new_measure;
618 
619 	/* A bit of theory :
620 	 * copied = bytes received in previous RTT, our base window
621 	 * To cope with packet losses, we need a 2x factor
622 	 * To cope with slow start, and sender growing its cwin by 100 %
623 	 * every RTT, we need a 4x factor, because the ACK we are sending
624 	 * now is for the next RTT, not the current one :
625 	 * <prev RTT . ><current RTT .. ><next RTT .... >
626 	 */
627 
628 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
629 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
630 		int rcvmem, rcvbuf;
631 		u64 rcvwin, grow;
632 
633 		/* minimal window to cope with packet losses, assuming
634 		 * steady state. Add some cushion because of small variations.
635 		 */
636 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
637 
638 		/* Accommodate for sender rate increase (eg. slow start) */
639 		grow = rcvwin * (copied - tp->rcvq_space.space);
640 		do_div(grow, tp->rcvq_space.space);
641 		rcvwin += (grow << 1);
642 
643 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
644 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
645 			rcvmem += 128;
646 
647 		do_div(rcvwin, tp->advmss);
648 		rcvbuf = min_t(u64, rcvwin * rcvmem,
649 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
650 		if (rcvbuf > sk->sk_rcvbuf) {
651 			sk->sk_rcvbuf = rcvbuf;
652 
653 			/* Make the window clamp follow along.  */
654 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
655 		}
656 	}
657 	tp->rcvq_space.space = copied;
658 
659 new_measure:
660 	tp->rcvq_space.seq = tp->copied_seq;
661 	tp->rcvq_space.time = tp->tcp_mstamp;
662 }
663 
664 /* There is something which you must keep in mind when you analyze the
665  * behavior of the tp->ato delayed ack timeout interval.  When a
666  * connection starts up, we want to ack as quickly as possible.  The
667  * problem is that "good" TCP's do slow start at the beginning of data
668  * transmission.  The means that until we send the first few ACK's the
669  * sender will sit on his end and only queue most of his data, because
670  * he can only send snd_cwnd unacked packets at any given time.  For
671  * each ACK we send, he increments snd_cwnd and transmits more of his
672  * queue.  -DaveM
673  */
674 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
675 {
676 	struct tcp_sock *tp = tcp_sk(sk);
677 	struct inet_connection_sock *icsk = inet_csk(sk);
678 	u32 now;
679 
680 	inet_csk_schedule_ack(sk);
681 
682 	tcp_measure_rcv_mss(sk, skb);
683 
684 	tcp_rcv_rtt_measure(tp);
685 
686 	now = tcp_jiffies32;
687 
688 	if (!icsk->icsk_ack.ato) {
689 		/* The _first_ data packet received, initialize
690 		 * delayed ACK engine.
691 		 */
692 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
693 		icsk->icsk_ack.ato = TCP_ATO_MIN;
694 	} else {
695 		int m = now - icsk->icsk_ack.lrcvtime;
696 
697 		if (m <= TCP_ATO_MIN / 2) {
698 			/* The fastest case is the first. */
699 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
700 		} else if (m < icsk->icsk_ack.ato) {
701 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
702 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
703 				icsk->icsk_ack.ato = icsk->icsk_rto;
704 		} else if (m > icsk->icsk_rto) {
705 			/* Too long gap. Apparently sender failed to
706 			 * restart window, so that we send ACKs quickly.
707 			 */
708 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
709 			sk_mem_reclaim(sk);
710 		}
711 	}
712 	icsk->icsk_ack.lrcvtime = now;
713 
714 	tcp_ecn_check_ce(sk, skb);
715 
716 	if (skb->len >= 128)
717 		tcp_grow_window(sk, skb);
718 }
719 
720 /* Called to compute a smoothed rtt estimate. The data fed to this
721  * routine either comes from timestamps, or from segments that were
722  * known _not_ to have been retransmitted [see Karn/Partridge
723  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
724  * piece by Van Jacobson.
725  * NOTE: the next three routines used to be one big routine.
726  * To save cycles in the RFC 1323 implementation it was better to break
727  * it up into three procedures. -- erics
728  */
729 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
730 {
731 	struct tcp_sock *tp = tcp_sk(sk);
732 	long m = mrtt_us; /* RTT */
733 	u32 srtt = tp->srtt_us;
734 
735 	/*	The following amusing code comes from Jacobson's
736 	 *	article in SIGCOMM '88.  Note that rtt and mdev
737 	 *	are scaled versions of rtt and mean deviation.
738 	 *	This is designed to be as fast as possible
739 	 *	m stands for "measurement".
740 	 *
741 	 *	On a 1990 paper the rto value is changed to:
742 	 *	RTO = rtt + 4 * mdev
743 	 *
744 	 * Funny. This algorithm seems to be very broken.
745 	 * These formulae increase RTO, when it should be decreased, increase
746 	 * too slowly, when it should be increased quickly, decrease too quickly
747 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
748 	 * does not matter how to _calculate_ it. Seems, it was trap
749 	 * that VJ failed to avoid. 8)
750 	 */
751 	if (srtt != 0) {
752 		m -= (srtt >> 3);	/* m is now error in rtt est */
753 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
754 		if (m < 0) {
755 			m = -m;		/* m is now abs(error) */
756 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
757 			/* This is similar to one of Eifel findings.
758 			 * Eifel blocks mdev updates when rtt decreases.
759 			 * This solution is a bit different: we use finer gain
760 			 * for mdev in this case (alpha*beta).
761 			 * Like Eifel it also prevents growth of rto,
762 			 * but also it limits too fast rto decreases,
763 			 * happening in pure Eifel.
764 			 */
765 			if (m > 0)
766 				m >>= 3;
767 		} else {
768 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
769 		}
770 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
771 		if (tp->mdev_us > tp->mdev_max_us) {
772 			tp->mdev_max_us = tp->mdev_us;
773 			if (tp->mdev_max_us > tp->rttvar_us)
774 				tp->rttvar_us = tp->mdev_max_us;
775 		}
776 		if (after(tp->snd_una, tp->rtt_seq)) {
777 			if (tp->mdev_max_us < tp->rttvar_us)
778 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
779 			tp->rtt_seq = tp->snd_nxt;
780 			tp->mdev_max_us = tcp_rto_min_us(sk);
781 		}
782 	} else {
783 		/* no previous measure. */
784 		srtt = m << 3;		/* take the measured time to be rtt */
785 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
786 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
787 		tp->mdev_max_us = tp->rttvar_us;
788 		tp->rtt_seq = tp->snd_nxt;
789 	}
790 	tp->srtt_us = max(1U, srtt);
791 }
792 
793 static void tcp_update_pacing_rate(struct sock *sk)
794 {
795 	const struct tcp_sock *tp = tcp_sk(sk);
796 	u64 rate;
797 
798 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
799 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
800 
801 	/* current rate is (cwnd * mss) / srtt
802 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
803 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
804 	 *
805 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
806 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
807 	 *	 end of slow start and should slow down.
808 	 */
809 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
810 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
811 	else
812 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
813 
814 	rate *= max(tp->snd_cwnd, tp->packets_out);
815 
816 	if (likely(tp->srtt_us))
817 		do_div(rate, tp->srtt_us);
818 
819 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
820 	 * without any lock. We want to make sure compiler wont store
821 	 * intermediate values in this location.
822 	 */
823 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
824 					     sk->sk_max_pacing_rate));
825 }
826 
827 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
828  * routine referred to above.
829  */
830 static void tcp_set_rto(struct sock *sk)
831 {
832 	const struct tcp_sock *tp = tcp_sk(sk);
833 	/* Old crap is replaced with new one. 8)
834 	 *
835 	 * More seriously:
836 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
837 	 *    It cannot be less due to utterly erratic ACK generation made
838 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
839 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
840 	 *    is invisible. Actually, Linux-2.4 also generates erratic
841 	 *    ACKs in some circumstances.
842 	 */
843 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
844 
845 	/* 2. Fixups made earlier cannot be right.
846 	 *    If we do not estimate RTO correctly without them,
847 	 *    all the algo is pure shit and should be replaced
848 	 *    with correct one. It is exactly, which we pretend to do.
849 	 */
850 
851 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
852 	 * guarantees that rto is higher.
853 	 */
854 	tcp_bound_rto(sk);
855 }
856 
857 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
858 {
859 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
860 
861 	if (!cwnd)
862 		cwnd = TCP_INIT_CWND;
863 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
864 }
865 
866 /* Take a notice that peer is sending D-SACKs */
867 static void tcp_dsack_seen(struct tcp_sock *tp)
868 {
869 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
870 	tp->rack.dsack_seen = 1;
871 	tp->dsack_dups++;
872 }
873 
874 /* It's reordering when higher sequence was delivered (i.e. sacked) before
875  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
876  * distance is approximated in full-mss packet distance ("reordering").
877  */
878 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
879 				      const int ts)
880 {
881 	struct tcp_sock *tp = tcp_sk(sk);
882 	const u32 mss = tp->mss_cache;
883 	u32 fack, metric;
884 
885 	fack = tcp_highest_sack_seq(tp);
886 	if (!before(low_seq, fack))
887 		return;
888 
889 	metric = fack - low_seq;
890 	if ((metric > tp->reordering * mss) && mss) {
891 #if FASTRETRANS_DEBUG > 1
892 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
893 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
894 			 tp->reordering,
895 			 0,
896 			 tp->sacked_out,
897 			 tp->undo_marker ? tp->undo_retrans : 0);
898 #endif
899 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
900 				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
901 	}
902 
903 	/* This exciting event is worth to be remembered. 8) */
904 	tp->reord_seen++;
905 	NET_INC_STATS(sock_net(sk),
906 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
907 }
908 
909 /* This must be called before lost_out is incremented */
910 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
911 {
912 	if (!tp->retransmit_skb_hint ||
913 	    before(TCP_SKB_CB(skb)->seq,
914 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
915 		tp->retransmit_skb_hint = skb;
916 }
917 
918 /* Sum the number of packets on the wire we have marked as lost.
919  * There are two cases we care about here:
920  * a) Packet hasn't been marked lost (nor retransmitted),
921  *    and this is the first loss.
922  * b) Packet has been marked both lost and retransmitted,
923  *    and this means we think it was lost again.
924  */
925 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
926 {
927 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
928 
929 	if (!(sacked & TCPCB_LOST) ||
930 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
931 		tp->lost += tcp_skb_pcount(skb);
932 }
933 
934 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
935 {
936 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
937 		tcp_verify_retransmit_hint(tp, skb);
938 
939 		tp->lost_out += tcp_skb_pcount(skb);
940 		tcp_sum_lost(tp, skb);
941 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
942 	}
943 }
944 
945 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
946 {
947 	tcp_verify_retransmit_hint(tp, skb);
948 
949 	tcp_sum_lost(tp, skb);
950 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
951 		tp->lost_out += tcp_skb_pcount(skb);
952 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
953 	}
954 }
955 
956 /* This procedure tags the retransmission queue when SACKs arrive.
957  *
958  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
959  * Packets in queue with these bits set are counted in variables
960  * sacked_out, retrans_out and lost_out, correspondingly.
961  *
962  * Valid combinations are:
963  * Tag  InFlight	Description
964  * 0	1		- orig segment is in flight.
965  * S	0		- nothing flies, orig reached receiver.
966  * L	0		- nothing flies, orig lost by net.
967  * R	2		- both orig and retransmit are in flight.
968  * L|R	1		- orig is lost, retransmit is in flight.
969  * S|R  1		- orig reached receiver, retrans is still in flight.
970  * (L|S|R is logically valid, it could occur when L|R is sacked,
971  *  but it is equivalent to plain S and code short-curcuits it to S.
972  *  L|S is logically invalid, it would mean -1 packet in flight 8))
973  *
974  * These 6 states form finite state machine, controlled by the following events:
975  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
976  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
977  * 3. Loss detection event of two flavors:
978  *	A. Scoreboard estimator decided the packet is lost.
979  *	   A'. Reno "three dupacks" marks head of queue lost.
980  *	B. SACK arrives sacking SND.NXT at the moment, when the
981  *	   segment was retransmitted.
982  * 4. D-SACK added new rule: D-SACK changes any tag to S.
983  *
984  * It is pleasant to note, that state diagram turns out to be commutative,
985  * so that we are allowed not to be bothered by order of our actions,
986  * when multiple events arrive simultaneously. (see the function below).
987  *
988  * Reordering detection.
989  * --------------------
990  * Reordering metric is maximal distance, which a packet can be displaced
991  * in packet stream. With SACKs we can estimate it:
992  *
993  * 1. SACK fills old hole and the corresponding segment was not
994  *    ever retransmitted -> reordering. Alas, we cannot use it
995  *    when segment was retransmitted.
996  * 2. The last flaw is solved with D-SACK. D-SACK arrives
997  *    for retransmitted and already SACKed segment -> reordering..
998  * Both of these heuristics are not used in Loss state, when we cannot
999  * account for retransmits accurately.
1000  *
1001  * SACK block validation.
1002  * ----------------------
1003  *
1004  * SACK block range validation checks that the received SACK block fits to
1005  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1006  * Note that SND.UNA is not included to the range though being valid because
1007  * it means that the receiver is rather inconsistent with itself reporting
1008  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1009  * perfectly valid, however, in light of RFC2018 which explicitly states
1010  * that "SACK block MUST reflect the newest segment.  Even if the newest
1011  * segment is going to be discarded ...", not that it looks very clever
1012  * in case of head skb. Due to potentional receiver driven attacks, we
1013  * choose to avoid immediate execution of a walk in write queue due to
1014  * reneging and defer head skb's loss recovery to standard loss recovery
1015  * procedure that will eventually trigger (nothing forbids us doing this).
1016  *
1017  * Implements also blockage to start_seq wrap-around. Problem lies in the
1018  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1019  * there's no guarantee that it will be before snd_nxt (n). The problem
1020  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1021  * wrap (s_w):
1022  *
1023  *         <- outs wnd ->                          <- wrapzone ->
1024  *         u     e      n                         u_w   e_w  s n_w
1025  *         |     |      |                          |     |   |  |
1026  * |<------------+------+----- TCP seqno space --------------+---------->|
1027  * ...-- <2^31 ->|                                           |<--------...
1028  * ...---- >2^31 ------>|                                    |<--------...
1029  *
1030  * Current code wouldn't be vulnerable but it's better still to discard such
1031  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1032  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1033  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1034  * equal to the ideal case (infinite seqno space without wrap caused issues).
1035  *
1036  * With D-SACK the lower bound is extended to cover sequence space below
1037  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1038  * again, D-SACK block must not to go across snd_una (for the same reason as
1039  * for the normal SACK blocks, explained above). But there all simplicity
1040  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1041  * fully below undo_marker they do not affect behavior in anyway and can
1042  * therefore be safely ignored. In rare cases (which are more or less
1043  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1044  * fragmentation and packet reordering past skb's retransmission. To consider
1045  * them correctly, the acceptable range must be extended even more though
1046  * the exact amount is rather hard to quantify. However, tp->max_window can
1047  * be used as an exaggerated estimate.
1048  */
1049 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1050 				   u32 start_seq, u32 end_seq)
1051 {
1052 	/* Too far in future, or reversed (interpretation is ambiguous) */
1053 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1054 		return false;
1055 
1056 	/* Nasty start_seq wrap-around check (see comments above) */
1057 	if (!before(start_seq, tp->snd_nxt))
1058 		return false;
1059 
1060 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1061 	 * start_seq == snd_una is non-sensical (see comments above)
1062 	 */
1063 	if (after(start_seq, tp->snd_una))
1064 		return true;
1065 
1066 	if (!is_dsack || !tp->undo_marker)
1067 		return false;
1068 
1069 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1070 	if (after(end_seq, tp->snd_una))
1071 		return false;
1072 
1073 	if (!before(start_seq, tp->undo_marker))
1074 		return true;
1075 
1076 	/* Too old */
1077 	if (!after(end_seq, tp->undo_marker))
1078 		return false;
1079 
1080 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1081 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1082 	 */
1083 	return !before(start_seq, end_seq - tp->max_window);
1084 }
1085 
1086 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1087 			    struct tcp_sack_block_wire *sp, int num_sacks,
1088 			    u32 prior_snd_una)
1089 {
1090 	struct tcp_sock *tp = tcp_sk(sk);
1091 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1092 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1093 	bool dup_sack = false;
1094 
1095 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1096 		dup_sack = true;
1097 		tcp_dsack_seen(tp);
1098 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1099 	} else if (num_sacks > 1) {
1100 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1101 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1102 
1103 		if (!after(end_seq_0, end_seq_1) &&
1104 		    !before(start_seq_0, start_seq_1)) {
1105 			dup_sack = true;
1106 			tcp_dsack_seen(tp);
1107 			NET_INC_STATS(sock_net(sk),
1108 					LINUX_MIB_TCPDSACKOFORECV);
1109 		}
1110 	}
1111 
1112 	/* D-SACK for already forgotten data... Do dumb counting. */
1113 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1114 	    !after(end_seq_0, prior_snd_una) &&
1115 	    after(end_seq_0, tp->undo_marker))
1116 		tp->undo_retrans--;
1117 
1118 	return dup_sack;
1119 }
1120 
1121 struct tcp_sacktag_state {
1122 	u32	reord;
1123 	/* Timestamps for earliest and latest never-retransmitted segment
1124 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1125 	 * but congestion control should still get an accurate delay signal.
1126 	 */
1127 	u64	first_sackt;
1128 	u64	last_sackt;
1129 	struct rate_sample *rate;
1130 	int	flag;
1131 	unsigned int mss_now;
1132 };
1133 
1134 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1135  * the incoming SACK may not exactly match but we can find smaller MSS
1136  * aligned portion of it that matches. Therefore we might need to fragment
1137  * which may fail and creates some hassle (caller must handle error case
1138  * returns).
1139  *
1140  * FIXME: this could be merged to shift decision code
1141  */
1142 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1143 				  u32 start_seq, u32 end_seq)
1144 {
1145 	int err;
1146 	bool in_sack;
1147 	unsigned int pkt_len;
1148 	unsigned int mss;
1149 
1150 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1151 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1152 
1153 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1154 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1155 		mss = tcp_skb_mss(skb);
1156 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1157 
1158 		if (!in_sack) {
1159 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1160 			if (pkt_len < mss)
1161 				pkt_len = mss;
1162 		} else {
1163 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1164 			if (pkt_len < mss)
1165 				return -EINVAL;
1166 		}
1167 
1168 		/* Round if necessary so that SACKs cover only full MSSes
1169 		 * and/or the remaining small portion (if present)
1170 		 */
1171 		if (pkt_len > mss) {
1172 			unsigned int new_len = (pkt_len / mss) * mss;
1173 			if (!in_sack && new_len < pkt_len)
1174 				new_len += mss;
1175 			pkt_len = new_len;
1176 		}
1177 
1178 		if (pkt_len >= skb->len && !in_sack)
1179 			return 0;
1180 
1181 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1182 				   pkt_len, mss, GFP_ATOMIC);
1183 		if (err < 0)
1184 			return err;
1185 	}
1186 
1187 	return in_sack;
1188 }
1189 
1190 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1191 static u8 tcp_sacktag_one(struct sock *sk,
1192 			  struct tcp_sacktag_state *state, u8 sacked,
1193 			  u32 start_seq, u32 end_seq,
1194 			  int dup_sack, int pcount,
1195 			  u64 xmit_time)
1196 {
1197 	struct tcp_sock *tp = tcp_sk(sk);
1198 
1199 	/* Account D-SACK for retransmitted packet. */
1200 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1201 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1202 		    after(end_seq, tp->undo_marker))
1203 			tp->undo_retrans--;
1204 		if ((sacked & TCPCB_SACKED_ACKED) &&
1205 		    before(start_seq, state->reord))
1206 				state->reord = start_seq;
1207 	}
1208 
1209 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1210 	if (!after(end_seq, tp->snd_una))
1211 		return sacked;
1212 
1213 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1214 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1215 
1216 		if (sacked & TCPCB_SACKED_RETRANS) {
1217 			/* If the segment is not tagged as lost,
1218 			 * we do not clear RETRANS, believing
1219 			 * that retransmission is still in flight.
1220 			 */
1221 			if (sacked & TCPCB_LOST) {
1222 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1223 				tp->lost_out -= pcount;
1224 				tp->retrans_out -= pcount;
1225 			}
1226 		} else {
1227 			if (!(sacked & TCPCB_RETRANS)) {
1228 				/* New sack for not retransmitted frame,
1229 				 * which was in hole. It is reordering.
1230 				 */
1231 				if (before(start_seq,
1232 					   tcp_highest_sack_seq(tp)) &&
1233 				    before(start_seq, state->reord))
1234 					state->reord = start_seq;
1235 
1236 				if (!after(end_seq, tp->high_seq))
1237 					state->flag |= FLAG_ORIG_SACK_ACKED;
1238 				if (state->first_sackt == 0)
1239 					state->first_sackt = xmit_time;
1240 				state->last_sackt = xmit_time;
1241 			}
1242 
1243 			if (sacked & TCPCB_LOST) {
1244 				sacked &= ~TCPCB_LOST;
1245 				tp->lost_out -= pcount;
1246 			}
1247 		}
1248 
1249 		sacked |= TCPCB_SACKED_ACKED;
1250 		state->flag |= FLAG_DATA_SACKED;
1251 		tp->sacked_out += pcount;
1252 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1253 
1254 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1255 		if (tp->lost_skb_hint &&
1256 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1257 			tp->lost_cnt_hint += pcount;
1258 	}
1259 
1260 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1261 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1262 	 * are accounted above as well.
1263 	 */
1264 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1265 		sacked &= ~TCPCB_SACKED_RETRANS;
1266 		tp->retrans_out -= pcount;
1267 	}
1268 
1269 	return sacked;
1270 }
1271 
1272 /* Shift newly-SACKed bytes from this skb to the immediately previous
1273  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1274  */
1275 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1276 			    struct sk_buff *skb,
1277 			    struct tcp_sacktag_state *state,
1278 			    unsigned int pcount, int shifted, int mss,
1279 			    bool dup_sack)
1280 {
1281 	struct tcp_sock *tp = tcp_sk(sk);
1282 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1283 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1284 
1285 	BUG_ON(!pcount);
1286 
1287 	/* Adjust counters and hints for the newly sacked sequence
1288 	 * range but discard the return value since prev is already
1289 	 * marked. We must tag the range first because the seq
1290 	 * advancement below implicitly advances
1291 	 * tcp_highest_sack_seq() when skb is highest_sack.
1292 	 */
1293 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1294 			start_seq, end_seq, dup_sack, pcount,
1295 			tcp_skb_timestamp_us(skb));
1296 	tcp_rate_skb_delivered(sk, skb, state->rate);
1297 
1298 	if (skb == tp->lost_skb_hint)
1299 		tp->lost_cnt_hint += pcount;
1300 
1301 	TCP_SKB_CB(prev)->end_seq += shifted;
1302 	TCP_SKB_CB(skb)->seq += shifted;
1303 
1304 	tcp_skb_pcount_add(prev, pcount);
1305 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1306 	tcp_skb_pcount_add(skb, -pcount);
1307 
1308 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1309 	 * in theory this shouldn't be necessary but as long as DSACK
1310 	 * code can come after this skb later on it's better to keep
1311 	 * setting gso_size to something.
1312 	 */
1313 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1314 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1315 
1316 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1317 	if (tcp_skb_pcount(skb) <= 1)
1318 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1319 
1320 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1321 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1322 
1323 	if (skb->len > 0) {
1324 		BUG_ON(!tcp_skb_pcount(skb));
1325 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1326 		return false;
1327 	}
1328 
1329 	/* Whole SKB was eaten :-) */
1330 
1331 	if (skb == tp->retransmit_skb_hint)
1332 		tp->retransmit_skb_hint = prev;
1333 	if (skb == tp->lost_skb_hint) {
1334 		tp->lost_skb_hint = prev;
1335 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1336 	}
1337 
1338 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1339 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1340 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1341 		TCP_SKB_CB(prev)->end_seq++;
1342 
1343 	if (skb == tcp_highest_sack(sk))
1344 		tcp_advance_highest_sack(sk, skb);
1345 
1346 	tcp_skb_collapse_tstamp(prev, skb);
1347 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1348 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1349 
1350 	tcp_rtx_queue_unlink_and_free(skb, sk);
1351 
1352 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1353 
1354 	return true;
1355 }
1356 
1357 /* I wish gso_size would have a bit more sane initialization than
1358  * something-or-zero which complicates things
1359  */
1360 static int tcp_skb_seglen(const struct sk_buff *skb)
1361 {
1362 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1363 }
1364 
1365 /* Shifting pages past head area doesn't work */
1366 static int skb_can_shift(const struct sk_buff *skb)
1367 {
1368 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1369 }
1370 
1371 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1372 		  int pcount, int shiftlen)
1373 {
1374 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1375 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1376 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1377 	 * even if current MSS is bigger.
1378 	 */
1379 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1380 		return 0;
1381 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1382 		return 0;
1383 	return skb_shift(to, from, shiftlen);
1384 }
1385 
1386 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1387  * skb.
1388  */
1389 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1390 					  struct tcp_sacktag_state *state,
1391 					  u32 start_seq, u32 end_seq,
1392 					  bool dup_sack)
1393 {
1394 	struct tcp_sock *tp = tcp_sk(sk);
1395 	struct sk_buff *prev;
1396 	int mss;
1397 	int pcount = 0;
1398 	int len;
1399 	int in_sack;
1400 
1401 	/* Normally R but no L won't result in plain S */
1402 	if (!dup_sack &&
1403 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1404 		goto fallback;
1405 	if (!skb_can_shift(skb))
1406 		goto fallback;
1407 	/* This frame is about to be dropped (was ACKed). */
1408 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1409 		goto fallback;
1410 
1411 	/* Can only happen with delayed DSACK + discard craziness */
1412 	prev = skb_rb_prev(skb);
1413 	if (!prev)
1414 		goto fallback;
1415 
1416 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1417 		goto fallback;
1418 
1419 	if (!tcp_skb_can_collapse_to(prev))
1420 		goto fallback;
1421 
1422 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1423 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1424 
1425 	if (in_sack) {
1426 		len = skb->len;
1427 		pcount = tcp_skb_pcount(skb);
1428 		mss = tcp_skb_seglen(skb);
1429 
1430 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1431 		 * drop this restriction as unnecessary
1432 		 */
1433 		if (mss != tcp_skb_seglen(prev))
1434 			goto fallback;
1435 	} else {
1436 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1437 			goto noop;
1438 		/* CHECKME: This is non-MSS split case only?, this will
1439 		 * cause skipped skbs due to advancing loop btw, original
1440 		 * has that feature too
1441 		 */
1442 		if (tcp_skb_pcount(skb) <= 1)
1443 			goto noop;
1444 
1445 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1446 		if (!in_sack) {
1447 			/* TODO: head merge to next could be attempted here
1448 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1449 			 * though it might not be worth of the additional hassle
1450 			 *
1451 			 * ...we can probably just fallback to what was done
1452 			 * previously. We could try merging non-SACKed ones
1453 			 * as well but it probably isn't going to buy off
1454 			 * because later SACKs might again split them, and
1455 			 * it would make skb timestamp tracking considerably
1456 			 * harder problem.
1457 			 */
1458 			goto fallback;
1459 		}
1460 
1461 		len = end_seq - TCP_SKB_CB(skb)->seq;
1462 		BUG_ON(len < 0);
1463 		BUG_ON(len > skb->len);
1464 
1465 		/* MSS boundaries should be honoured or else pcount will
1466 		 * severely break even though it makes things bit trickier.
1467 		 * Optimize common case to avoid most of the divides
1468 		 */
1469 		mss = tcp_skb_mss(skb);
1470 
1471 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1472 		 * drop this restriction as unnecessary
1473 		 */
1474 		if (mss != tcp_skb_seglen(prev))
1475 			goto fallback;
1476 
1477 		if (len == mss) {
1478 			pcount = 1;
1479 		} else if (len < mss) {
1480 			goto noop;
1481 		} else {
1482 			pcount = len / mss;
1483 			len = pcount * mss;
1484 		}
1485 	}
1486 
1487 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1488 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1489 		goto fallback;
1490 
1491 	if (!tcp_skb_shift(prev, skb, pcount, len))
1492 		goto fallback;
1493 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1494 		goto out;
1495 
1496 	/* Hole filled allows collapsing with the next as well, this is very
1497 	 * useful when hole on every nth skb pattern happens
1498 	 */
1499 	skb = skb_rb_next(prev);
1500 	if (!skb)
1501 		goto out;
1502 
1503 	if (!skb_can_shift(skb) ||
1504 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1505 	    (mss != tcp_skb_seglen(skb)))
1506 		goto out;
1507 
1508 	len = skb->len;
1509 	pcount = tcp_skb_pcount(skb);
1510 	if (tcp_skb_shift(prev, skb, pcount, len))
1511 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1512 				len, mss, 0);
1513 
1514 out:
1515 	return prev;
1516 
1517 noop:
1518 	return skb;
1519 
1520 fallback:
1521 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1522 	return NULL;
1523 }
1524 
1525 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1526 					struct tcp_sack_block *next_dup,
1527 					struct tcp_sacktag_state *state,
1528 					u32 start_seq, u32 end_seq,
1529 					bool dup_sack_in)
1530 {
1531 	struct tcp_sock *tp = tcp_sk(sk);
1532 	struct sk_buff *tmp;
1533 
1534 	skb_rbtree_walk_from(skb) {
1535 		int in_sack = 0;
1536 		bool dup_sack = dup_sack_in;
1537 
1538 		/* queue is in-order => we can short-circuit the walk early */
1539 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1540 			break;
1541 
1542 		if (next_dup  &&
1543 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1544 			in_sack = tcp_match_skb_to_sack(sk, skb,
1545 							next_dup->start_seq,
1546 							next_dup->end_seq);
1547 			if (in_sack > 0)
1548 				dup_sack = true;
1549 		}
1550 
1551 		/* skb reference here is a bit tricky to get right, since
1552 		 * shifting can eat and free both this skb and the next,
1553 		 * so not even _safe variant of the loop is enough.
1554 		 */
1555 		if (in_sack <= 0) {
1556 			tmp = tcp_shift_skb_data(sk, skb, state,
1557 						 start_seq, end_seq, dup_sack);
1558 			if (tmp) {
1559 				if (tmp != skb) {
1560 					skb = tmp;
1561 					continue;
1562 				}
1563 
1564 				in_sack = 0;
1565 			} else {
1566 				in_sack = tcp_match_skb_to_sack(sk, skb,
1567 								start_seq,
1568 								end_seq);
1569 			}
1570 		}
1571 
1572 		if (unlikely(in_sack < 0))
1573 			break;
1574 
1575 		if (in_sack) {
1576 			TCP_SKB_CB(skb)->sacked =
1577 				tcp_sacktag_one(sk,
1578 						state,
1579 						TCP_SKB_CB(skb)->sacked,
1580 						TCP_SKB_CB(skb)->seq,
1581 						TCP_SKB_CB(skb)->end_seq,
1582 						dup_sack,
1583 						tcp_skb_pcount(skb),
1584 						tcp_skb_timestamp_us(skb));
1585 			tcp_rate_skb_delivered(sk, skb, state->rate);
1586 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1587 				list_del_init(&skb->tcp_tsorted_anchor);
1588 
1589 			if (!before(TCP_SKB_CB(skb)->seq,
1590 				    tcp_highest_sack_seq(tp)))
1591 				tcp_advance_highest_sack(sk, skb);
1592 		}
1593 	}
1594 	return skb;
1595 }
1596 
1597 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1598 {
1599 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1600 	struct sk_buff *skb;
1601 
1602 	while (*p) {
1603 		parent = *p;
1604 		skb = rb_to_skb(parent);
1605 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1606 			p = &parent->rb_left;
1607 			continue;
1608 		}
1609 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1610 			p = &parent->rb_right;
1611 			continue;
1612 		}
1613 		return skb;
1614 	}
1615 	return NULL;
1616 }
1617 
1618 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1619 					u32 skip_to_seq)
1620 {
1621 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1622 		return skb;
1623 
1624 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1625 }
1626 
1627 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1628 						struct sock *sk,
1629 						struct tcp_sack_block *next_dup,
1630 						struct tcp_sacktag_state *state,
1631 						u32 skip_to_seq)
1632 {
1633 	if (!next_dup)
1634 		return skb;
1635 
1636 	if (before(next_dup->start_seq, skip_to_seq)) {
1637 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1638 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1639 				       next_dup->start_seq, next_dup->end_seq,
1640 				       1);
1641 	}
1642 
1643 	return skb;
1644 }
1645 
1646 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1647 {
1648 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1649 }
1650 
1651 static int
1652 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1653 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1654 {
1655 	struct tcp_sock *tp = tcp_sk(sk);
1656 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1657 				    TCP_SKB_CB(ack_skb)->sacked);
1658 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1659 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1660 	struct tcp_sack_block *cache;
1661 	struct sk_buff *skb;
1662 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1663 	int used_sacks;
1664 	bool found_dup_sack = false;
1665 	int i, j;
1666 	int first_sack_index;
1667 
1668 	state->flag = 0;
1669 	state->reord = tp->snd_nxt;
1670 
1671 	if (!tp->sacked_out)
1672 		tcp_highest_sack_reset(sk);
1673 
1674 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1675 					 num_sacks, prior_snd_una);
1676 	if (found_dup_sack) {
1677 		state->flag |= FLAG_DSACKING_ACK;
1678 		tp->delivered++; /* A spurious retransmission is delivered */
1679 	}
1680 
1681 	/* Eliminate too old ACKs, but take into
1682 	 * account more or less fresh ones, they can
1683 	 * contain valid SACK info.
1684 	 */
1685 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1686 		return 0;
1687 
1688 	if (!tp->packets_out)
1689 		goto out;
1690 
1691 	used_sacks = 0;
1692 	first_sack_index = 0;
1693 	for (i = 0; i < num_sacks; i++) {
1694 		bool dup_sack = !i && found_dup_sack;
1695 
1696 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1697 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1698 
1699 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1700 					    sp[used_sacks].start_seq,
1701 					    sp[used_sacks].end_seq)) {
1702 			int mib_idx;
1703 
1704 			if (dup_sack) {
1705 				if (!tp->undo_marker)
1706 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1707 				else
1708 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1709 			} else {
1710 				/* Don't count olds caused by ACK reordering */
1711 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1712 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1713 					continue;
1714 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1715 			}
1716 
1717 			NET_INC_STATS(sock_net(sk), mib_idx);
1718 			if (i == 0)
1719 				first_sack_index = -1;
1720 			continue;
1721 		}
1722 
1723 		/* Ignore very old stuff early */
1724 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1725 			continue;
1726 
1727 		used_sacks++;
1728 	}
1729 
1730 	/* order SACK blocks to allow in order walk of the retrans queue */
1731 	for (i = used_sacks - 1; i > 0; i--) {
1732 		for (j = 0; j < i; j++) {
1733 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1734 				swap(sp[j], sp[j + 1]);
1735 
1736 				/* Track where the first SACK block goes to */
1737 				if (j == first_sack_index)
1738 					first_sack_index = j + 1;
1739 			}
1740 		}
1741 	}
1742 
1743 	state->mss_now = tcp_current_mss(sk);
1744 	skb = NULL;
1745 	i = 0;
1746 
1747 	if (!tp->sacked_out) {
1748 		/* It's already past, so skip checking against it */
1749 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1750 	} else {
1751 		cache = tp->recv_sack_cache;
1752 		/* Skip empty blocks in at head of the cache */
1753 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1754 		       !cache->end_seq)
1755 			cache++;
1756 	}
1757 
1758 	while (i < used_sacks) {
1759 		u32 start_seq = sp[i].start_seq;
1760 		u32 end_seq = sp[i].end_seq;
1761 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1762 		struct tcp_sack_block *next_dup = NULL;
1763 
1764 		if (found_dup_sack && ((i + 1) == first_sack_index))
1765 			next_dup = &sp[i + 1];
1766 
1767 		/* Skip too early cached blocks */
1768 		while (tcp_sack_cache_ok(tp, cache) &&
1769 		       !before(start_seq, cache->end_seq))
1770 			cache++;
1771 
1772 		/* Can skip some work by looking recv_sack_cache? */
1773 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1774 		    after(end_seq, cache->start_seq)) {
1775 
1776 			/* Head todo? */
1777 			if (before(start_seq, cache->start_seq)) {
1778 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1779 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1780 						       state,
1781 						       start_seq,
1782 						       cache->start_seq,
1783 						       dup_sack);
1784 			}
1785 
1786 			/* Rest of the block already fully processed? */
1787 			if (!after(end_seq, cache->end_seq))
1788 				goto advance_sp;
1789 
1790 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1791 						       state,
1792 						       cache->end_seq);
1793 
1794 			/* ...tail remains todo... */
1795 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1796 				/* ...but better entrypoint exists! */
1797 				skb = tcp_highest_sack(sk);
1798 				if (!skb)
1799 					break;
1800 				cache++;
1801 				goto walk;
1802 			}
1803 
1804 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1805 			/* Check overlap against next cached too (past this one already) */
1806 			cache++;
1807 			continue;
1808 		}
1809 
1810 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1811 			skb = tcp_highest_sack(sk);
1812 			if (!skb)
1813 				break;
1814 		}
1815 		skb = tcp_sacktag_skip(skb, sk, start_seq);
1816 
1817 walk:
1818 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1819 				       start_seq, end_seq, dup_sack);
1820 
1821 advance_sp:
1822 		i++;
1823 	}
1824 
1825 	/* Clear the head of the cache sack blocks so we can skip it next time */
1826 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1827 		tp->recv_sack_cache[i].start_seq = 0;
1828 		tp->recv_sack_cache[i].end_seq = 0;
1829 	}
1830 	for (j = 0; j < used_sacks; j++)
1831 		tp->recv_sack_cache[i++] = sp[j];
1832 
1833 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1834 		tcp_check_sack_reordering(sk, state->reord, 0);
1835 
1836 	tcp_verify_left_out(tp);
1837 out:
1838 
1839 #if FASTRETRANS_DEBUG > 0
1840 	WARN_ON((int)tp->sacked_out < 0);
1841 	WARN_ON((int)tp->lost_out < 0);
1842 	WARN_ON((int)tp->retrans_out < 0);
1843 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1844 #endif
1845 	return state->flag;
1846 }
1847 
1848 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1849  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1850  */
1851 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1852 {
1853 	u32 holes;
1854 
1855 	holes = max(tp->lost_out, 1U);
1856 	holes = min(holes, tp->packets_out);
1857 
1858 	if ((tp->sacked_out + holes) > tp->packets_out) {
1859 		tp->sacked_out = tp->packets_out - holes;
1860 		return true;
1861 	}
1862 	return false;
1863 }
1864 
1865 /* If we receive more dupacks than we expected counting segments
1866  * in assumption of absent reordering, interpret this as reordering.
1867  * The only another reason could be bug in receiver TCP.
1868  */
1869 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1870 {
1871 	struct tcp_sock *tp = tcp_sk(sk);
1872 
1873 	if (!tcp_limit_reno_sacked(tp))
1874 		return;
1875 
1876 	tp->reordering = min_t(u32, tp->packets_out + addend,
1877 			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1878 	tp->reord_seen++;
1879 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1880 }
1881 
1882 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1883 
1884 static void tcp_add_reno_sack(struct sock *sk, int num_dupack)
1885 {
1886 	if (num_dupack) {
1887 		struct tcp_sock *tp = tcp_sk(sk);
1888 		u32 prior_sacked = tp->sacked_out;
1889 		s32 delivered;
1890 
1891 		tp->sacked_out += num_dupack;
1892 		tcp_check_reno_reordering(sk, 0);
1893 		delivered = tp->sacked_out - prior_sacked;
1894 		if (delivered > 0)
1895 			tp->delivered += delivered;
1896 		tcp_verify_left_out(tp);
1897 	}
1898 }
1899 
1900 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1901 
1902 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1903 {
1904 	struct tcp_sock *tp = tcp_sk(sk);
1905 
1906 	if (acked > 0) {
1907 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1908 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1909 		if (acked - 1 >= tp->sacked_out)
1910 			tp->sacked_out = 0;
1911 		else
1912 			tp->sacked_out -= acked - 1;
1913 	}
1914 	tcp_check_reno_reordering(sk, acked);
1915 	tcp_verify_left_out(tp);
1916 }
1917 
1918 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1919 {
1920 	tp->sacked_out = 0;
1921 }
1922 
1923 void tcp_clear_retrans(struct tcp_sock *tp)
1924 {
1925 	tp->retrans_out = 0;
1926 	tp->lost_out = 0;
1927 	tp->undo_marker = 0;
1928 	tp->undo_retrans = -1;
1929 	tp->sacked_out = 0;
1930 }
1931 
1932 static inline void tcp_init_undo(struct tcp_sock *tp)
1933 {
1934 	tp->undo_marker = tp->snd_una;
1935 	/* Retransmission still in flight may cause DSACKs later. */
1936 	tp->undo_retrans = tp->retrans_out ? : -1;
1937 }
1938 
1939 static bool tcp_is_rack(const struct sock *sk)
1940 {
1941 	return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
1942 }
1943 
1944 /* If we detect SACK reneging, forget all SACK information
1945  * and reset tags completely, otherwise preserve SACKs. If receiver
1946  * dropped its ofo queue, we will know this due to reneging detection.
1947  */
1948 static void tcp_timeout_mark_lost(struct sock *sk)
1949 {
1950 	struct tcp_sock *tp = tcp_sk(sk);
1951 	struct sk_buff *skb, *head;
1952 	bool is_reneg;			/* is receiver reneging on SACKs? */
1953 
1954 	head = tcp_rtx_queue_head(sk);
1955 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
1956 	if (is_reneg) {
1957 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1958 		tp->sacked_out = 0;
1959 		/* Mark SACK reneging until we recover from this loss event. */
1960 		tp->is_sack_reneg = 1;
1961 	} else if (tcp_is_reno(tp)) {
1962 		tcp_reset_reno_sack(tp);
1963 	}
1964 
1965 	skb = head;
1966 	skb_rbtree_walk_from(skb) {
1967 		if (is_reneg)
1968 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1969 		else if (tcp_is_rack(sk) && skb != head &&
1970 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
1971 			continue; /* Don't mark recently sent ones lost yet */
1972 		tcp_mark_skb_lost(sk, skb);
1973 	}
1974 	tcp_verify_left_out(tp);
1975 	tcp_clear_all_retrans_hints(tp);
1976 }
1977 
1978 /* Enter Loss state. */
1979 void tcp_enter_loss(struct sock *sk)
1980 {
1981 	const struct inet_connection_sock *icsk = inet_csk(sk);
1982 	struct tcp_sock *tp = tcp_sk(sk);
1983 	struct net *net = sock_net(sk);
1984 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1985 
1986 	tcp_timeout_mark_lost(sk);
1987 
1988 	/* Reduce ssthresh if it has not yet been made inside this window. */
1989 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1990 	    !after(tp->high_seq, tp->snd_una) ||
1991 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1992 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1993 		tp->prior_cwnd = tp->snd_cwnd;
1994 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1995 		tcp_ca_event(sk, CA_EVENT_LOSS);
1996 		tcp_init_undo(tp);
1997 	}
1998 	tp->snd_cwnd	   = tcp_packets_in_flight(tp) + 1;
1999 	tp->snd_cwnd_cnt   = 0;
2000 	tp->snd_cwnd_stamp = tcp_jiffies32;
2001 
2002 	/* Timeout in disordered state after receiving substantial DUPACKs
2003 	 * suggests that the degree of reordering is over-estimated.
2004 	 */
2005 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2006 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2007 		tp->reordering = min_t(unsigned int, tp->reordering,
2008 				       net->ipv4.sysctl_tcp_reordering);
2009 	tcp_set_ca_state(sk, TCP_CA_Loss);
2010 	tp->high_seq = tp->snd_nxt;
2011 	tcp_ecn_queue_cwr(tp);
2012 
2013 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2014 	 * loss recovery is underway except recurring timeout(s) on
2015 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2016 	 */
2017 	tp->frto = net->ipv4.sysctl_tcp_frto &&
2018 		   (new_recovery || icsk->icsk_retransmits) &&
2019 		   !inet_csk(sk)->icsk_mtup.probe_size;
2020 }
2021 
2022 /* If ACK arrived pointing to a remembered SACK, it means that our
2023  * remembered SACKs do not reflect real state of receiver i.e.
2024  * receiver _host_ is heavily congested (or buggy).
2025  *
2026  * To avoid big spurious retransmission bursts due to transient SACK
2027  * scoreboard oddities that look like reneging, we give the receiver a
2028  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2029  * restore sanity to the SACK scoreboard. If the apparent reneging
2030  * persists until this RTO then we'll clear the SACK scoreboard.
2031  */
2032 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2033 {
2034 	if (flag & FLAG_SACK_RENEGING) {
2035 		struct tcp_sock *tp = tcp_sk(sk);
2036 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2037 					  msecs_to_jiffies(10));
2038 
2039 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2040 					  delay, TCP_RTO_MAX);
2041 		return true;
2042 	}
2043 	return false;
2044 }
2045 
2046 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2047  * counter when SACK is enabled (without SACK, sacked_out is used for
2048  * that purpose).
2049  *
2050  * With reordering, holes may still be in flight, so RFC3517 recovery
2051  * uses pure sacked_out (total number of SACKed segments) even though
2052  * it violates the RFC that uses duplicate ACKs, often these are equal
2053  * but when e.g. out-of-window ACKs or packet duplication occurs,
2054  * they differ. Since neither occurs due to loss, TCP should really
2055  * ignore them.
2056  */
2057 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2058 {
2059 	return tp->sacked_out + 1;
2060 }
2061 
2062 /* Linux NewReno/SACK/ECN state machine.
2063  * --------------------------------------
2064  *
2065  * "Open"	Normal state, no dubious events, fast path.
2066  * "Disorder"   In all the respects it is "Open",
2067  *		but requires a bit more attention. It is entered when
2068  *		we see some SACKs or dupacks. It is split of "Open"
2069  *		mainly to move some processing from fast path to slow one.
2070  * "CWR"	CWND was reduced due to some Congestion Notification event.
2071  *		It can be ECN, ICMP source quench, local device congestion.
2072  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2073  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2074  *
2075  * tcp_fastretrans_alert() is entered:
2076  * - each incoming ACK, if state is not "Open"
2077  * - when arrived ACK is unusual, namely:
2078  *	* SACK
2079  *	* Duplicate ACK.
2080  *	* ECN ECE.
2081  *
2082  * Counting packets in flight is pretty simple.
2083  *
2084  *	in_flight = packets_out - left_out + retrans_out
2085  *
2086  *	packets_out is SND.NXT-SND.UNA counted in packets.
2087  *
2088  *	retrans_out is number of retransmitted segments.
2089  *
2090  *	left_out is number of segments left network, but not ACKed yet.
2091  *
2092  *		left_out = sacked_out + lost_out
2093  *
2094  *     sacked_out: Packets, which arrived to receiver out of order
2095  *		   and hence not ACKed. With SACKs this number is simply
2096  *		   amount of SACKed data. Even without SACKs
2097  *		   it is easy to give pretty reliable estimate of this number,
2098  *		   counting duplicate ACKs.
2099  *
2100  *       lost_out: Packets lost by network. TCP has no explicit
2101  *		   "loss notification" feedback from network (for now).
2102  *		   It means that this number can be only _guessed_.
2103  *		   Actually, it is the heuristics to predict lossage that
2104  *		   distinguishes different algorithms.
2105  *
2106  *	F.e. after RTO, when all the queue is considered as lost,
2107  *	lost_out = packets_out and in_flight = retrans_out.
2108  *
2109  *		Essentially, we have now a few algorithms detecting
2110  *		lost packets.
2111  *
2112  *		If the receiver supports SACK:
2113  *
2114  *		RFC6675/3517: It is the conventional algorithm. A packet is
2115  *		considered lost if the number of higher sequence packets
2116  *		SACKed is greater than or equal the DUPACK thoreshold
2117  *		(reordering). This is implemented in tcp_mark_head_lost and
2118  *		tcp_update_scoreboard.
2119  *
2120  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2121  *		(2017-) that checks timing instead of counting DUPACKs.
2122  *		Essentially a packet is considered lost if it's not S/ACKed
2123  *		after RTT + reordering_window, where both metrics are
2124  *		dynamically measured and adjusted. This is implemented in
2125  *		tcp_rack_mark_lost.
2126  *
2127  *		If the receiver does not support SACK:
2128  *
2129  *		NewReno (RFC6582): in Recovery we assume that one segment
2130  *		is lost (classic Reno). While we are in Recovery and
2131  *		a partial ACK arrives, we assume that one more packet
2132  *		is lost (NewReno). This heuristics are the same in NewReno
2133  *		and SACK.
2134  *
2135  * Really tricky (and requiring careful tuning) part of algorithm
2136  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2137  * The first determines the moment _when_ we should reduce CWND and,
2138  * hence, slow down forward transmission. In fact, it determines the moment
2139  * when we decide that hole is caused by loss, rather than by a reorder.
2140  *
2141  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2142  * holes, caused by lost packets.
2143  *
2144  * And the most logically complicated part of algorithm is undo
2145  * heuristics. We detect false retransmits due to both too early
2146  * fast retransmit (reordering) and underestimated RTO, analyzing
2147  * timestamps and D-SACKs. When we detect that some segments were
2148  * retransmitted by mistake and CWND reduction was wrong, we undo
2149  * window reduction and abort recovery phase. This logic is hidden
2150  * inside several functions named tcp_try_undo_<something>.
2151  */
2152 
2153 /* This function decides, when we should leave Disordered state
2154  * and enter Recovery phase, reducing congestion window.
2155  *
2156  * Main question: may we further continue forward transmission
2157  * with the same cwnd?
2158  */
2159 static bool tcp_time_to_recover(struct sock *sk, int flag)
2160 {
2161 	struct tcp_sock *tp = tcp_sk(sk);
2162 
2163 	/* Trick#1: The loss is proven. */
2164 	if (tp->lost_out)
2165 		return true;
2166 
2167 	/* Not-A-Trick#2 : Classic rule... */
2168 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2169 		return true;
2170 
2171 	return false;
2172 }
2173 
2174 /* Detect loss in event "A" above by marking head of queue up as lost.
2175  * For non-SACK(Reno) senders, the first "packets" number of segments
2176  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2177  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2178  * the maximum SACKed segments to pass before reaching this limit.
2179  */
2180 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2181 {
2182 	struct tcp_sock *tp = tcp_sk(sk);
2183 	struct sk_buff *skb;
2184 	int cnt, oldcnt, lost;
2185 	unsigned int mss;
2186 	/* Use SACK to deduce losses of new sequences sent during recovery */
2187 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2188 
2189 	WARN_ON(packets > tp->packets_out);
2190 	skb = tp->lost_skb_hint;
2191 	if (skb) {
2192 		/* Head already handled? */
2193 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2194 			return;
2195 		cnt = tp->lost_cnt_hint;
2196 	} else {
2197 		skb = tcp_rtx_queue_head(sk);
2198 		cnt = 0;
2199 	}
2200 
2201 	skb_rbtree_walk_from(skb) {
2202 		/* TODO: do this better */
2203 		/* this is not the most efficient way to do this... */
2204 		tp->lost_skb_hint = skb;
2205 		tp->lost_cnt_hint = cnt;
2206 
2207 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2208 			break;
2209 
2210 		oldcnt = cnt;
2211 		if (tcp_is_reno(tp) ||
2212 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2213 			cnt += tcp_skb_pcount(skb);
2214 
2215 		if (cnt > packets) {
2216 			if (tcp_is_sack(tp) ||
2217 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2218 			    (oldcnt >= packets))
2219 				break;
2220 
2221 			mss = tcp_skb_mss(skb);
2222 			/* If needed, chop off the prefix to mark as lost. */
2223 			lost = (packets - oldcnt) * mss;
2224 			if (lost < skb->len &&
2225 			    tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2226 					 lost, mss, GFP_ATOMIC) < 0)
2227 				break;
2228 			cnt = packets;
2229 		}
2230 
2231 		tcp_skb_mark_lost(tp, skb);
2232 
2233 		if (mark_head)
2234 			break;
2235 	}
2236 	tcp_verify_left_out(tp);
2237 }
2238 
2239 /* Account newly detected lost packet(s) */
2240 
2241 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2242 {
2243 	struct tcp_sock *tp = tcp_sk(sk);
2244 
2245 	if (tcp_is_sack(tp)) {
2246 		int sacked_upto = tp->sacked_out - tp->reordering;
2247 		if (sacked_upto >= 0)
2248 			tcp_mark_head_lost(sk, sacked_upto, 0);
2249 		else if (fast_rexmit)
2250 			tcp_mark_head_lost(sk, 1, 1);
2251 	}
2252 }
2253 
2254 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2255 {
2256 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2257 	       before(tp->rx_opt.rcv_tsecr, when);
2258 }
2259 
2260 /* skb is spurious retransmitted if the returned timestamp echo
2261  * reply is prior to the skb transmission time
2262  */
2263 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2264 				     const struct sk_buff *skb)
2265 {
2266 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2267 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2268 }
2269 
2270 /* Nothing was retransmitted or returned timestamp is less
2271  * than timestamp of the first retransmission.
2272  */
2273 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2274 {
2275 	return tp->retrans_stamp &&
2276 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2277 }
2278 
2279 /* Undo procedures. */
2280 
2281 /* We can clear retrans_stamp when there are no retransmissions in the
2282  * window. It would seem that it is trivially available for us in
2283  * tp->retrans_out, however, that kind of assumptions doesn't consider
2284  * what will happen if errors occur when sending retransmission for the
2285  * second time. ...It could the that such segment has only
2286  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2287  * the head skb is enough except for some reneging corner cases that
2288  * are not worth the effort.
2289  *
2290  * Main reason for all this complexity is the fact that connection dying
2291  * time now depends on the validity of the retrans_stamp, in particular,
2292  * that successive retransmissions of a segment must not advance
2293  * retrans_stamp under any conditions.
2294  */
2295 static bool tcp_any_retrans_done(const struct sock *sk)
2296 {
2297 	const struct tcp_sock *tp = tcp_sk(sk);
2298 	struct sk_buff *skb;
2299 
2300 	if (tp->retrans_out)
2301 		return true;
2302 
2303 	skb = tcp_rtx_queue_head(sk);
2304 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2305 		return true;
2306 
2307 	return false;
2308 }
2309 
2310 static void DBGUNDO(struct sock *sk, const char *msg)
2311 {
2312 #if FASTRETRANS_DEBUG > 1
2313 	struct tcp_sock *tp = tcp_sk(sk);
2314 	struct inet_sock *inet = inet_sk(sk);
2315 
2316 	if (sk->sk_family == AF_INET) {
2317 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2318 			 msg,
2319 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2320 			 tp->snd_cwnd, tcp_left_out(tp),
2321 			 tp->snd_ssthresh, tp->prior_ssthresh,
2322 			 tp->packets_out);
2323 	}
2324 #if IS_ENABLED(CONFIG_IPV6)
2325 	else if (sk->sk_family == AF_INET6) {
2326 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2327 			 msg,
2328 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2329 			 tp->snd_cwnd, tcp_left_out(tp),
2330 			 tp->snd_ssthresh, tp->prior_ssthresh,
2331 			 tp->packets_out);
2332 	}
2333 #endif
2334 #endif
2335 }
2336 
2337 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2338 {
2339 	struct tcp_sock *tp = tcp_sk(sk);
2340 
2341 	if (unmark_loss) {
2342 		struct sk_buff *skb;
2343 
2344 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2345 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2346 		}
2347 		tp->lost_out = 0;
2348 		tcp_clear_all_retrans_hints(tp);
2349 	}
2350 
2351 	if (tp->prior_ssthresh) {
2352 		const struct inet_connection_sock *icsk = inet_csk(sk);
2353 
2354 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2355 
2356 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2357 			tp->snd_ssthresh = tp->prior_ssthresh;
2358 			tcp_ecn_withdraw_cwr(tp);
2359 		}
2360 	}
2361 	tp->snd_cwnd_stamp = tcp_jiffies32;
2362 	tp->undo_marker = 0;
2363 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2364 }
2365 
2366 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2367 {
2368 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2369 }
2370 
2371 /* People celebrate: "We love our President!" */
2372 static bool tcp_try_undo_recovery(struct sock *sk)
2373 {
2374 	struct tcp_sock *tp = tcp_sk(sk);
2375 
2376 	if (tcp_may_undo(tp)) {
2377 		int mib_idx;
2378 
2379 		/* Happy end! We did not retransmit anything
2380 		 * or our original transmission succeeded.
2381 		 */
2382 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2383 		tcp_undo_cwnd_reduction(sk, false);
2384 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2385 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2386 		else
2387 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2388 
2389 		NET_INC_STATS(sock_net(sk), mib_idx);
2390 	} else if (tp->rack.reo_wnd_persist) {
2391 		tp->rack.reo_wnd_persist--;
2392 	}
2393 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2394 		/* Hold old state until something *above* high_seq
2395 		 * is ACKed. For Reno it is MUST to prevent false
2396 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2397 		if (!tcp_any_retrans_done(sk))
2398 			tp->retrans_stamp = 0;
2399 		return true;
2400 	}
2401 	tcp_set_ca_state(sk, TCP_CA_Open);
2402 	tp->is_sack_reneg = 0;
2403 	return false;
2404 }
2405 
2406 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2407 static bool tcp_try_undo_dsack(struct sock *sk)
2408 {
2409 	struct tcp_sock *tp = tcp_sk(sk);
2410 
2411 	if (tp->undo_marker && !tp->undo_retrans) {
2412 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2413 					       tp->rack.reo_wnd_persist + 1);
2414 		DBGUNDO(sk, "D-SACK");
2415 		tcp_undo_cwnd_reduction(sk, false);
2416 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2417 		return true;
2418 	}
2419 	return false;
2420 }
2421 
2422 /* Undo during loss recovery after partial ACK or using F-RTO. */
2423 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2424 {
2425 	struct tcp_sock *tp = tcp_sk(sk);
2426 
2427 	if (frto_undo || tcp_may_undo(tp)) {
2428 		tcp_undo_cwnd_reduction(sk, true);
2429 
2430 		DBGUNDO(sk, "partial loss");
2431 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2432 		if (frto_undo)
2433 			NET_INC_STATS(sock_net(sk),
2434 					LINUX_MIB_TCPSPURIOUSRTOS);
2435 		inet_csk(sk)->icsk_retransmits = 0;
2436 		if (frto_undo || tcp_is_sack(tp)) {
2437 			tcp_set_ca_state(sk, TCP_CA_Open);
2438 			tp->is_sack_reneg = 0;
2439 		}
2440 		return true;
2441 	}
2442 	return false;
2443 }
2444 
2445 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2446  * It computes the number of packets to send (sndcnt) based on packets newly
2447  * delivered:
2448  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2449  *	cwnd reductions across a full RTT.
2450  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2451  *      But when the retransmits are acked without further losses, PRR
2452  *      slow starts cwnd up to ssthresh to speed up the recovery.
2453  */
2454 static void tcp_init_cwnd_reduction(struct sock *sk)
2455 {
2456 	struct tcp_sock *tp = tcp_sk(sk);
2457 
2458 	tp->high_seq = tp->snd_nxt;
2459 	tp->tlp_high_seq = 0;
2460 	tp->snd_cwnd_cnt = 0;
2461 	tp->prior_cwnd = tp->snd_cwnd;
2462 	tp->prr_delivered = 0;
2463 	tp->prr_out = 0;
2464 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2465 	tcp_ecn_queue_cwr(tp);
2466 }
2467 
2468 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2469 {
2470 	struct tcp_sock *tp = tcp_sk(sk);
2471 	int sndcnt = 0;
2472 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2473 
2474 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2475 		return;
2476 
2477 	tp->prr_delivered += newly_acked_sacked;
2478 	if (delta < 0) {
2479 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2480 			       tp->prior_cwnd - 1;
2481 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2482 	} else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) ==
2483 		   FLAG_RETRANS_DATA_ACKED) {
2484 		sndcnt = min_t(int, delta,
2485 			       max_t(int, tp->prr_delivered - tp->prr_out,
2486 				     newly_acked_sacked) + 1);
2487 	} else {
2488 		sndcnt = min(delta, newly_acked_sacked);
2489 	}
2490 	/* Force a fast retransmit upon entering fast recovery */
2491 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2492 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2493 }
2494 
2495 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2496 {
2497 	struct tcp_sock *tp = tcp_sk(sk);
2498 
2499 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2500 		return;
2501 
2502 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2503 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2504 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2505 		tp->snd_cwnd = tp->snd_ssthresh;
2506 		tp->snd_cwnd_stamp = tcp_jiffies32;
2507 	}
2508 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2509 }
2510 
2511 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2512 void tcp_enter_cwr(struct sock *sk)
2513 {
2514 	struct tcp_sock *tp = tcp_sk(sk);
2515 
2516 	tp->prior_ssthresh = 0;
2517 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2518 		tp->undo_marker = 0;
2519 		tcp_init_cwnd_reduction(sk);
2520 		tcp_set_ca_state(sk, TCP_CA_CWR);
2521 	}
2522 }
2523 EXPORT_SYMBOL(tcp_enter_cwr);
2524 
2525 static void tcp_try_keep_open(struct sock *sk)
2526 {
2527 	struct tcp_sock *tp = tcp_sk(sk);
2528 	int state = TCP_CA_Open;
2529 
2530 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2531 		state = TCP_CA_Disorder;
2532 
2533 	if (inet_csk(sk)->icsk_ca_state != state) {
2534 		tcp_set_ca_state(sk, state);
2535 		tp->high_seq = tp->snd_nxt;
2536 	}
2537 }
2538 
2539 static void tcp_try_to_open(struct sock *sk, int flag)
2540 {
2541 	struct tcp_sock *tp = tcp_sk(sk);
2542 
2543 	tcp_verify_left_out(tp);
2544 
2545 	if (!tcp_any_retrans_done(sk))
2546 		tp->retrans_stamp = 0;
2547 
2548 	if (flag & FLAG_ECE)
2549 		tcp_enter_cwr(sk);
2550 
2551 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2552 		tcp_try_keep_open(sk);
2553 	}
2554 }
2555 
2556 static void tcp_mtup_probe_failed(struct sock *sk)
2557 {
2558 	struct inet_connection_sock *icsk = inet_csk(sk);
2559 
2560 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2561 	icsk->icsk_mtup.probe_size = 0;
2562 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2563 }
2564 
2565 static void tcp_mtup_probe_success(struct sock *sk)
2566 {
2567 	struct tcp_sock *tp = tcp_sk(sk);
2568 	struct inet_connection_sock *icsk = inet_csk(sk);
2569 
2570 	/* FIXME: breaks with very large cwnd */
2571 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2572 	tp->snd_cwnd = tp->snd_cwnd *
2573 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2574 		       icsk->icsk_mtup.probe_size;
2575 	tp->snd_cwnd_cnt = 0;
2576 	tp->snd_cwnd_stamp = tcp_jiffies32;
2577 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2578 
2579 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2580 	icsk->icsk_mtup.probe_size = 0;
2581 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2582 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2583 }
2584 
2585 /* Do a simple retransmit without using the backoff mechanisms in
2586  * tcp_timer. This is used for path mtu discovery.
2587  * The socket is already locked here.
2588  */
2589 void tcp_simple_retransmit(struct sock *sk)
2590 {
2591 	const struct inet_connection_sock *icsk = inet_csk(sk);
2592 	struct tcp_sock *tp = tcp_sk(sk);
2593 	struct sk_buff *skb;
2594 	unsigned int mss = tcp_current_mss(sk);
2595 
2596 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2597 		if (tcp_skb_seglen(skb) > mss &&
2598 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2599 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2600 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2601 				tp->retrans_out -= tcp_skb_pcount(skb);
2602 			}
2603 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2604 		}
2605 	}
2606 
2607 	tcp_clear_retrans_hints_partial(tp);
2608 
2609 	if (!tp->lost_out)
2610 		return;
2611 
2612 	if (tcp_is_reno(tp))
2613 		tcp_limit_reno_sacked(tp);
2614 
2615 	tcp_verify_left_out(tp);
2616 
2617 	/* Don't muck with the congestion window here.
2618 	 * Reason is that we do not increase amount of _data_
2619 	 * in network, but units changed and effective
2620 	 * cwnd/ssthresh really reduced now.
2621 	 */
2622 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2623 		tp->high_seq = tp->snd_nxt;
2624 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2625 		tp->prior_ssthresh = 0;
2626 		tp->undo_marker = 0;
2627 		tcp_set_ca_state(sk, TCP_CA_Loss);
2628 	}
2629 	tcp_xmit_retransmit_queue(sk);
2630 }
2631 EXPORT_SYMBOL(tcp_simple_retransmit);
2632 
2633 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2634 {
2635 	struct tcp_sock *tp = tcp_sk(sk);
2636 	int mib_idx;
2637 
2638 	if (tcp_is_reno(tp))
2639 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2640 	else
2641 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2642 
2643 	NET_INC_STATS(sock_net(sk), mib_idx);
2644 
2645 	tp->prior_ssthresh = 0;
2646 	tcp_init_undo(tp);
2647 
2648 	if (!tcp_in_cwnd_reduction(sk)) {
2649 		if (!ece_ack)
2650 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2651 		tcp_init_cwnd_reduction(sk);
2652 	}
2653 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2654 }
2655 
2656 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2657  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2658  */
2659 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2660 			     int *rexmit)
2661 {
2662 	struct tcp_sock *tp = tcp_sk(sk);
2663 	bool recovered = !before(tp->snd_una, tp->high_seq);
2664 
2665 	if ((flag & FLAG_SND_UNA_ADVANCED || tp->fastopen_rsk) &&
2666 	    tcp_try_undo_loss(sk, false))
2667 		return;
2668 
2669 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2670 		/* Step 3.b. A timeout is spurious if not all data are
2671 		 * lost, i.e., never-retransmitted data are (s)acked.
2672 		 */
2673 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2674 		    tcp_try_undo_loss(sk, true))
2675 			return;
2676 
2677 		if (after(tp->snd_nxt, tp->high_seq)) {
2678 			if (flag & FLAG_DATA_SACKED || num_dupack)
2679 				tp->frto = 0; /* Step 3.a. loss was real */
2680 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2681 			tp->high_seq = tp->snd_nxt;
2682 			/* Step 2.b. Try send new data (but deferred until cwnd
2683 			 * is updated in tcp_ack()). Otherwise fall back to
2684 			 * the conventional recovery.
2685 			 */
2686 			if (!tcp_write_queue_empty(sk) &&
2687 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2688 				*rexmit = REXMIT_NEW;
2689 				return;
2690 			}
2691 			tp->frto = 0;
2692 		}
2693 	}
2694 
2695 	if (recovered) {
2696 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2697 		tcp_try_undo_recovery(sk);
2698 		return;
2699 	}
2700 	if (tcp_is_reno(tp)) {
2701 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2702 		 * delivered. Lower inflight to clock out (re)tranmissions.
2703 		 */
2704 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2705 			tcp_add_reno_sack(sk, num_dupack);
2706 		else if (flag & FLAG_SND_UNA_ADVANCED)
2707 			tcp_reset_reno_sack(tp);
2708 	}
2709 	*rexmit = REXMIT_LOST;
2710 }
2711 
2712 /* Undo during fast recovery after partial ACK. */
2713 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2714 {
2715 	struct tcp_sock *tp = tcp_sk(sk);
2716 
2717 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2718 		/* Plain luck! Hole if filled with delayed
2719 		 * packet, rather than with a retransmit. Check reordering.
2720 		 */
2721 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2722 
2723 		/* We are getting evidence that the reordering degree is higher
2724 		 * than we realized. If there are no retransmits out then we
2725 		 * can undo. Otherwise we clock out new packets but do not
2726 		 * mark more packets lost or retransmit more.
2727 		 */
2728 		if (tp->retrans_out)
2729 			return true;
2730 
2731 		if (!tcp_any_retrans_done(sk))
2732 			tp->retrans_stamp = 0;
2733 
2734 		DBGUNDO(sk, "partial recovery");
2735 		tcp_undo_cwnd_reduction(sk, true);
2736 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2737 		tcp_try_keep_open(sk);
2738 		return true;
2739 	}
2740 	return false;
2741 }
2742 
2743 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2744 {
2745 	struct tcp_sock *tp = tcp_sk(sk);
2746 
2747 	if (tcp_rtx_queue_empty(sk))
2748 		return;
2749 
2750 	if (unlikely(tcp_is_reno(tp))) {
2751 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2752 	} else if (tcp_is_rack(sk)) {
2753 		u32 prior_retrans = tp->retrans_out;
2754 
2755 		tcp_rack_mark_lost(sk);
2756 		if (prior_retrans > tp->retrans_out)
2757 			*ack_flag |= FLAG_LOST_RETRANS;
2758 	}
2759 }
2760 
2761 static bool tcp_force_fast_retransmit(struct sock *sk)
2762 {
2763 	struct tcp_sock *tp = tcp_sk(sk);
2764 
2765 	return after(tcp_highest_sack_seq(tp),
2766 		     tp->snd_una + tp->reordering * tp->mss_cache);
2767 }
2768 
2769 /* Process an event, which can update packets-in-flight not trivially.
2770  * Main goal of this function is to calculate new estimate for left_out,
2771  * taking into account both packets sitting in receiver's buffer and
2772  * packets lost by network.
2773  *
2774  * Besides that it updates the congestion state when packet loss or ECN
2775  * is detected. But it does not reduce the cwnd, it is done by the
2776  * congestion control later.
2777  *
2778  * It does _not_ decide what to send, it is made in function
2779  * tcp_xmit_retransmit_queue().
2780  */
2781 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2782 				  int num_dupack, int *ack_flag, int *rexmit)
2783 {
2784 	struct inet_connection_sock *icsk = inet_csk(sk);
2785 	struct tcp_sock *tp = tcp_sk(sk);
2786 	int fast_rexmit = 0, flag = *ack_flag;
2787 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2788 				      tcp_force_fast_retransmit(sk));
2789 
2790 	if (!tp->packets_out && tp->sacked_out)
2791 		tp->sacked_out = 0;
2792 
2793 	/* Now state machine starts.
2794 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2795 	if (flag & FLAG_ECE)
2796 		tp->prior_ssthresh = 0;
2797 
2798 	/* B. In all the states check for reneging SACKs. */
2799 	if (tcp_check_sack_reneging(sk, flag))
2800 		return;
2801 
2802 	/* C. Check consistency of the current state. */
2803 	tcp_verify_left_out(tp);
2804 
2805 	/* D. Check state exit conditions. State can be terminated
2806 	 *    when high_seq is ACKed. */
2807 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2808 		WARN_ON(tp->retrans_out != 0);
2809 		tp->retrans_stamp = 0;
2810 	} else if (!before(tp->snd_una, tp->high_seq)) {
2811 		switch (icsk->icsk_ca_state) {
2812 		case TCP_CA_CWR:
2813 			/* CWR is to be held something *above* high_seq
2814 			 * is ACKed for CWR bit to reach receiver. */
2815 			if (tp->snd_una != tp->high_seq) {
2816 				tcp_end_cwnd_reduction(sk);
2817 				tcp_set_ca_state(sk, TCP_CA_Open);
2818 			}
2819 			break;
2820 
2821 		case TCP_CA_Recovery:
2822 			if (tcp_is_reno(tp))
2823 				tcp_reset_reno_sack(tp);
2824 			if (tcp_try_undo_recovery(sk))
2825 				return;
2826 			tcp_end_cwnd_reduction(sk);
2827 			break;
2828 		}
2829 	}
2830 
2831 	/* E. Process state. */
2832 	switch (icsk->icsk_ca_state) {
2833 	case TCP_CA_Recovery:
2834 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2835 			if (tcp_is_reno(tp))
2836 				tcp_add_reno_sack(sk, num_dupack);
2837 		} else {
2838 			if (tcp_try_undo_partial(sk, prior_snd_una))
2839 				return;
2840 			/* Partial ACK arrived. Force fast retransmit. */
2841 			do_lost = tcp_is_reno(tp) ||
2842 				  tcp_force_fast_retransmit(sk);
2843 		}
2844 		if (tcp_try_undo_dsack(sk)) {
2845 			tcp_try_keep_open(sk);
2846 			return;
2847 		}
2848 		tcp_identify_packet_loss(sk, ack_flag);
2849 		break;
2850 	case TCP_CA_Loss:
2851 		tcp_process_loss(sk, flag, num_dupack, rexmit);
2852 		tcp_identify_packet_loss(sk, ack_flag);
2853 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2854 		      (*ack_flag & FLAG_LOST_RETRANS)))
2855 			return;
2856 		/* Change state if cwnd is undone or retransmits are lost */
2857 		/* fall through */
2858 	default:
2859 		if (tcp_is_reno(tp)) {
2860 			if (flag & FLAG_SND_UNA_ADVANCED)
2861 				tcp_reset_reno_sack(tp);
2862 			tcp_add_reno_sack(sk, num_dupack);
2863 		}
2864 
2865 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2866 			tcp_try_undo_dsack(sk);
2867 
2868 		tcp_identify_packet_loss(sk, ack_flag);
2869 		if (!tcp_time_to_recover(sk, flag)) {
2870 			tcp_try_to_open(sk, flag);
2871 			return;
2872 		}
2873 
2874 		/* MTU probe failure: don't reduce cwnd */
2875 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2876 		    icsk->icsk_mtup.probe_size &&
2877 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2878 			tcp_mtup_probe_failed(sk);
2879 			/* Restores the reduction we did in tcp_mtup_probe() */
2880 			tp->snd_cwnd++;
2881 			tcp_simple_retransmit(sk);
2882 			return;
2883 		}
2884 
2885 		/* Otherwise enter Recovery state */
2886 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2887 		fast_rexmit = 1;
2888 	}
2889 
2890 	if (!tcp_is_rack(sk) && do_lost)
2891 		tcp_update_scoreboard(sk, fast_rexmit);
2892 	*rexmit = REXMIT_LOST;
2893 }
2894 
2895 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2896 {
2897 	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2898 	struct tcp_sock *tp = tcp_sk(sk);
2899 
2900 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2901 		/* If the remote keeps returning delayed ACKs, eventually
2902 		 * the min filter would pick it up and overestimate the
2903 		 * prop. delay when it expires. Skip suspected delayed ACKs.
2904 		 */
2905 		return;
2906 	}
2907 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2908 			   rtt_us ? : jiffies_to_usecs(1));
2909 }
2910 
2911 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2912 			       long seq_rtt_us, long sack_rtt_us,
2913 			       long ca_rtt_us, struct rate_sample *rs)
2914 {
2915 	const struct tcp_sock *tp = tcp_sk(sk);
2916 
2917 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2918 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2919 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2920 	 * is acked (RFC6298).
2921 	 */
2922 	if (seq_rtt_us < 0)
2923 		seq_rtt_us = sack_rtt_us;
2924 
2925 	/* RTTM Rule: A TSecr value received in a segment is used to
2926 	 * update the averaged RTT measurement only if the segment
2927 	 * acknowledges some new data, i.e., only if it advances the
2928 	 * left edge of the send window.
2929 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2930 	 */
2931 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2932 	    flag & FLAG_ACKED) {
2933 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2934 
2935 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
2936 			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2937 			ca_rtt_us = seq_rtt_us;
2938 		}
2939 	}
2940 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2941 	if (seq_rtt_us < 0)
2942 		return false;
2943 
2944 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2945 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2946 	 * values will be skipped with the seq_rtt_us < 0 check above.
2947 	 */
2948 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
2949 	tcp_rtt_estimator(sk, seq_rtt_us);
2950 	tcp_set_rto(sk);
2951 
2952 	/* RFC6298: only reset backoff on valid RTT measurement. */
2953 	inet_csk(sk)->icsk_backoff = 0;
2954 	return true;
2955 }
2956 
2957 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2958 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2959 {
2960 	struct rate_sample rs;
2961 	long rtt_us = -1L;
2962 
2963 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2964 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2965 
2966 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2967 }
2968 
2969 
2970 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2971 {
2972 	const struct inet_connection_sock *icsk = inet_csk(sk);
2973 
2974 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2975 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2976 }
2977 
2978 /* Restart timer after forward progress on connection.
2979  * RFC2988 recommends to restart timer to now+rto.
2980  */
2981 void tcp_rearm_rto(struct sock *sk)
2982 {
2983 	const struct inet_connection_sock *icsk = inet_csk(sk);
2984 	struct tcp_sock *tp = tcp_sk(sk);
2985 
2986 	/* If the retrans timer is currently being used by Fast Open
2987 	 * for SYN-ACK retrans purpose, stay put.
2988 	 */
2989 	if (tp->fastopen_rsk)
2990 		return;
2991 
2992 	if (!tp->packets_out) {
2993 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2994 	} else {
2995 		u32 rto = inet_csk(sk)->icsk_rto;
2996 		/* Offset the time elapsed after installing regular RTO */
2997 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2998 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2999 			s64 delta_us = tcp_rto_delta_us(sk);
3000 			/* delta_us may not be positive if the socket is locked
3001 			 * when the retrans timer fires and is rescheduled.
3002 			 */
3003 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3004 		}
3005 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3006 				     TCP_RTO_MAX, tcp_rtx_queue_head(sk));
3007 	}
3008 }
3009 
3010 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3011 static void tcp_set_xmit_timer(struct sock *sk)
3012 {
3013 	if (!tcp_schedule_loss_probe(sk, true))
3014 		tcp_rearm_rto(sk);
3015 }
3016 
3017 /* If we get here, the whole TSO packet has not been acked. */
3018 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3019 {
3020 	struct tcp_sock *tp = tcp_sk(sk);
3021 	u32 packets_acked;
3022 
3023 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3024 
3025 	packets_acked = tcp_skb_pcount(skb);
3026 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3027 		return 0;
3028 	packets_acked -= tcp_skb_pcount(skb);
3029 
3030 	if (packets_acked) {
3031 		BUG_ON(tcp_skb_pcount(skb) == 0);
3032 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3033 	}
3034 
3035 	return packets_acked;
3036 }
3037 
3038 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3039 			   u32 prior_snd_una)
3040 {
3041 	const struct skb_shared_info *shinfo;
3042 
3043 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3044 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3045 		return;
3046 
3047 	shinfo = skb_shinfo(skb);
3048 	if (!before(shinfo->tskey, prior_snd_una) &&
3049 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3050 		tcp_skb_tsorted_save(skb) {
3051 			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3052 		} tcp_skb_tsorted_restore(skb);
3053 	}
3054 }
3055 
3056 /* Remove acknowledged frames from the retransmission queue. If our packet
3057  * is before the ack sequence we can discard it as it's confirmed to have
3058  * arrived at the other end.
3059  */
3060 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3061 			       u32 prior_snd_una,
3062 			       struct tcp_sacktag_state *sack)
3063 {
3064 	const struct inet_connection_sock *icsk = inet_csk(sk);
3065 	u64 first_ackt, last_ackt;
3066 	struct tcp_sock *tp = tcp_sk(sk);
3067 	u32 prior_sacked = tp->sacked_out;
3068 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3069 	struct sk_buff *skb, *next;
3070 	bool fully_acked = true;
3071 	long sack_rtt_us = -1L;
3072 	long seq_rtt_us = -1L;
3073 	long ca_rtt_us = -1L;
3074 	u32 pkts_acked = 0;
3075 	u32 last_in_flight = 0;
3076 	bool rtt_update;
3077 	int flag = 0;
3078 
3079 	first_ackt = 0;
3080 
3081 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3082 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3083 		const u32 start_seq = scb->seq;
3084 		u8 sacked = scb->sacked;
3085 		u32 acked_pcount;
3086 
3087 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3088 
3089 		/* Determine how many packets and what bytes were acked, tso and else */
3090 		if (after(scb->end_seq, tp->snd_una)) {
3091 			if (tcp_skb_pcount(skb) == 1 ||
3092 			    !after(tp->snd_una, scb->seq))
3093 				break;
3094 
3095 			acked_pcount = tcp_tso_acked(sk, skb);
3096 			if (!acked_pcount)
3097 				break;
3098 			fully_acked = false;
3099 		} else {
3100 			acked_pcount = tcp_skb_pcount(skb);
3101 		}
3102 
3103 		if (unlikely(sacked & TCPCB_RETRANS)) {
3104 			if (sacked & TCPCB_SACKED_RETRANS)
3105 				tp->retrans_out -= acked_pcount;
3106 			flag |= FLAG_RETRANS_DATA_ACKED;
3107 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3108 			last_ackt = tcp_skb_timestamp_us(skb);
3109 			WARN_ON_ONCE(last_ackt == 0);
3110 			if (!first_ackt)
3111 				first_ackt = last_ackt;
3112 
3113 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3114 			if (before(start_seq, reord))
3115 				reord = start_seq;
3116 			if (!after(scb->end_seq, tp->high_seq))
3117 				flag |= FLAG_ORIG_SACK_ACKED;
3118 		}
3119 
3120 		if (sacked & TCPCB_SACKED_ACKED) {
3121 			tp->sacked_out -= acked_pcount;
3122 		} else if (tcp_is_sack(tp)) {
3123 			tp->delivered += acked_pcount;
3124 			if (!tcp_skb_spurious_retrans(tp, skb))
3125 				tcp_rack_advance(tp, sacked, scb->end_seq,
3126 						 tcp_skb_timestamp_us(skb));
3127 		}
3128 		if (sacked & TCPCB_LOST)
3129 			tp->lost_out -= acked_pcount;
3130 
3131 		tp->packets_out -= acked_pcount;
3132 		pkts_acked += acked_pcount;
3133 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3134 
3135 		/* Initial outgoing SYN's get put onto the write_queue
3136 		 * just like anything else we transmit.  It is not
3137 		 * true data, and if we misinform our callers that
3138 		 * this ACK acks real data, we will erroneously exit
3139 		 * connection startup slow start one packet too
3140 		 * quickly.  This is severely frowned upon behavior.
3141 		 */
3142 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3143 			flag |= FLAG_DATA_ACKED;
3144 		} else {
3145 			flag |= FLAG_SYN_ACKED;
3146 			tp->retrans_stamp = 0;
3147 		}
3148 
3149 		if (!fully_acked)
3150 			break;
3151 
3152 		next = skb_rb_next(skb);
3153 		if (unlikely(skb == tp->retransmit_skb_hint))
3154 			tp->retransmit_skb_hint = NULL;
3155 		if (unlikely(skb == tp->lost_skb_hint))
3156 			tp->lost_skb_hint = NULL;
3157 		tcp_rtx_queue_unlink_and_free(skb, sk);
3158 	}
3159 
3160 	if (!skb)
3161 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3162 
3163 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3164 		tp->snd_up = tp->snd_una;
3165 
3166 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3167 		flag |= FLAG_SACK_RENEGING;
3168 
3169 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3170 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3171 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3172 
3173 		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3174 		    last_in_flight && !prior_sacked && fully_acked &&
3175 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3176 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3177 			/* Conservatively mark a delayed ACK. It's typically
3178 			 * from a lone runt packet over the round trip to
3179 			 * a receiver w/o out-of-order or CE events.
3180 			 */
3181 			flag |= FLAG_ACK_MAYBE_DELAYED;
3182 		}
3183 	}
3184 	if (sack->first_sackt) {
3185 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3186 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3187 	}
3188 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3189 					ca_rtt_us, sack->rate);
3190 
3191 	if (flag & FLAG_ACKED) {
3192 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3193 		if (unlikely(icsk->icsk_mtup.probe_size &&
3194 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3195 			tcp_mtup_probe_success(sk);
3196 		}
3197 
3198 		if (tcp_is_reno(tp)) {
3199 			tcp_remove_reno_sacks(sk, pkts_acked);
3200 
3201 			/* If any of the cumulatively ACKed segments was
3202 			 * retransmitted, non-SACK case cannot confirm that
3203 			 * progress was due to original transmission due to
3204 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3205 			 * the packets may have been never retransmitted.
3206 			 */
3207 			if (flag & FLAG_RETRANS_DATA_ACKED)
3208 				flag &= ~FLAG_ORIG_SACK_ACKED;
3209 		} else {
3210 			int delta;
3211 
3212 			/* Non-retransmitted hole got filled? That's reordering */
3213 			if (before(reord, prior_fack))
3214 				tcp_check_sack_reordering(sk, reord, 0);
3215 
3216 			delta = prior_sacked - tp->sacked_out;
3217 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3218 		}
3219 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3220 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3221 						    tcp_skb_timestamp_us(skb))) {
3222 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3223 		 * after when the head was last (re)transmitted. Otherwise the
3224 		 * timeout may continue to extend in loss recovery.
3225 		 */
3226 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3227 	}
3228 
3229 	if (icsk->icsk_ca_ops->pkts_acked) {
3230 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3231 					     .rtt_us = sack->rate->rtt_us,
3232 					     .in_flight = last_in_flight };
3233 
3234 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3235 	}
3236 
3237 #if FASTRETRANS_DEBUG > 0
3238 	WARN_ON((int)tp->sacked_out < 0);
3239 	WARN_ON((int)tp->lost_out < 0);
3240 	WARN_ON((int)tp->retrans_out < 0);
3241 	if (!tp->packets_out && tcp_is_sack(tp)) {
3242 		icsk = inet_csk(sk);
3243 		if (tp->lost_out) {
3244 			pr_debug("Leak l=%u %d\n",
3245 				 tp->lost_out, icsk->icsk_ca_state);
3246 			tp->lost_out = 0;
3247 		}
3248 		if (tp->sacked_out) {
3249 			pr_debug("Leak s=%u %d\n",
3250 				 tp->sacked_out, icsk->icsk_ca_state);
3251 			tp->sacked_out = 0;
3252 		}
3253 		if (tp->retrans_out) {
3254 			pr_debug("Leak r=%u %d\n",
3255 				 tp->retrans_out, icsk->icsk_ca_state);
3256 			tp->retrans_out = 0;
3257 		}
3258 	}
3259 #endif
3260 	return flag;
3261 }
3262 
3263 static void tcp_ack_probe(struct sock *sk)
3264 {
3265 	struct inet_connection_sock *icsk = inet_csk(sk);
3266 	struct sk_buff *head = tcp_send_head(sk);
3267 	const struct tcp_sock *tp = tcp_sk(sk);
3268 
3269 	/* Was it a usable window open? */
3270 	if (!head)
3271 		return;
3272 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3273 		icsk->icsk_backoff = 0;
3274 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3275 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3276 		 * This function is not for random using!
3277 		 */
3278 	} else {
3279 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3280 
3281 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3282 				     when, TCP_RTO_MAX, NULL);
3283 	}
3284 }
3285 
3286 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3287 {
3288 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3289 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3290 }
3291 
3292 /* Decide wheather to run the increase function of congestion control. */
3293 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3294 {
3295 	/* If reordering is high then always grow cwnd whenever data is
3296 	 * delivered regardless of its ordering. Otherwise stay conservative
3297 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3298 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3299 	 * cwnd in tcp_fastretrans_alert() based on more states.
3300 	 */
3301 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3302 		return flag & FLAG_FORWARD_PROGRESS;
3303 
3304 	return flag & FLAG_DATA_ACKED;
3305 }
3306 
3307 /* The "ultimate" congestion control function that aims to replace the rigid
3308  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3309  * It's called toward the end of processing an ACK with precise rate
3310  * information. All transmission or retransmission are delayed afterwards.
3311  */
3312 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3313 			     int flag, const struct rate_sample *rs)
3314 {
3315 	const struct inet_connection_sock *icsk = inet_csk(sk);
3316 
3317 	if (icsk->icsk_ca_ops->cong_control) {
3318 		icsk->icsk_ca_ops->cong_control(sk, rs);
3319 		return;
3320 	}
3321 
3322 	if (tcp_in_cwnd_reduction(sk)) {
3323 		/* Reduce cwnd if state mandates */
3324 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3325 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3326 		/* Advance cwnd if state allows */
3327 		tcp_cong_avoid(sk, ack, acked_sacked);
3328 	}
3329 	tcp_update_pacing_rate(sk);
3330 }
3331 
3332 /* Check that window update is acceptable.
3333  * The function assumes that snd_una<=ack<=snd_next.
3334  */
3335 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3336 					const u32 ack, const u32 ack_seq,
3337 					const u32 nwin)
3338 {
3339 	return	after(ack, tp->snd_una) ||
3340 		after(ack_seq, tp->snd_wl1) ||
3341 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3342 }
3343 
3344 /* If we update tp->snd_una, also update tp->bytes_acked */
3345 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3346 {
3347 	u32 delta = ack - tp->snd_una;
3348 
3349 	sock_owned_by_me((struct sock *)tp);
3350 	tp->bytes_acked += delta;
3351 	tp->snd_una = ack;
3352 }
3353 
3354 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3355 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3356 {
3357 	u32 delta = seq - tp->rcv_nxt;
3358 
3359 	sock_owned_by_me((struct sock *)tp);
3360 	tp->bytes_received += delta;
3361 	tp->rcv_nxt = seq;
3362 }
3363 
3364 /* Update our send window.
3365  *
3366  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3367  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3368  */
3369 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3370 				 u32 ack_seq)
3371 {
3372 	struct tcp_sock *tp = tcp_sk(sk);
3373 	int flag = 0;
3374 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3375 
3376 	if (likely(!tcp_hdr(skb)->syn))
3377 		nwin <<= tp->rx_opt.snd_wscale;
3378 
3379 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3380 		flag |= FLAG_WIN_UPDATE;
3381 		tcp_update_wl(tp, ack_seq);
3382 
3383 		if (tp->snd_wnd != nwin) {
3384 			tp->snd_wnd = nwin;
3385 
3386 			/* Note, it is the only place, where
3387 			 * fast path is recovered for sending TCP.
3388 			 */
3389 			tp->pred_flags = 0;
3390 			tcp_fast_path_check(sk);
3391 
3392 			if (!tcp_write_queue_empty(sk))
3393 				tcp_slow_start_after_idle_check(sk);
3394 
3395 			if (nwin > tp->max_window) {
3396 				tp->max_window = nwin;
3397 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3398 			}
3399 		}
3400 	}
3401 
3402 	tcp_snd_una_update(tp, ack);
3403 
3404 	return flag;
3405 }
3406 
3407 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3408 				   u32 *last_oow_ack_time)
3409 {
3410 	if (*last_oow_ack_time) {
3411 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3412 
3413 		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3414 			NET_INC_STATS(net, mib_idx);
3415 			return true;	/* rate-limited: don't send yet! */
3416 		}
3417 	}
3418 
3419 	*last_oow_ack_time = tcp_jiffies32;
3420 
3421 	return false;	/* not rate-limited: go ahead, send dupack now! */
3422 }
3423 
3424 /* Return true if we're currently rate-limiting out-of-window ACKs and
3425  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3426  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3427  * attacks that send repeated SYNs or ACKs for the same connection. To
3428  * do this, we do not send a duplicate SYNACK or ACK if the remote
3429  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3430  */
3431 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3432 			  int mib_idx, u32 *last_oow_ack_time)
3433 {
3434 	/* Data packets without SYNs are not likely part of an ACK loop. */
3435 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3436 	    !tcp_hdr(skb)->syn)
3437 		return false;
3438 
3439 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3440 }
3441 
3442 /* RFC 5961 7 [ACK Throttling] */
3443 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3444 {
3445 	/* unprotected vars, we dont care of overwrites */
3446 	static u32 challenge_timestamp;
3447 	static unsigned int challenge_count;
3448 	struct tcp_sock *tp = tcp_sk(sk);
3449 	struct net *net = sock_net(sk);
3450 	u32 count, now;
3451 
3452 	/* First check our per-socket dupack rate limit. */
3453 	if (__tcp_oow_rate_limited(net,
3454 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3455 				   &tp->last_oow_ack_time))
3456 		return;
3457 
3458 	/* Then check host-wide RFC 5961 rate limit. */
3459 	now = jiffies / HZ;
3460 	if (now != challenge_timestamp) {
3461 		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3462 		u32 half = (ack_limit + 1) >> 1;
3463 
3464 		challenge_timestamp = now;
3465 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3466 	}
3467 	count = READ_ONCE(challenge_count);
3468 	if (count > 0) {
3469 		WRITE_ONCE(challenge_count, count - 1);
3470 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3471 		tcp_send_ack(sk);
3472 	}
3473 }
3474 
3475 static void tcp_store_ts_recent(struct tcp_sock *tp)
3476 {
3477 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3478 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3479 }
3480 
3481 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3482 {
3483 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3484 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3485 		 * extra check below makes sure this can only happen
3486 		 * for pure ACK frames.  -DaveM
3487 		 *
3488 		 * Not only, also it occurs for expired timestamps.
3489 		 */
3490 
3491 		if (tcp_paws_check(&tp->rx_opt, 0))
3492 			tcp_store_ts_recent(tp);
3493 	}
3494 }
3495 
3496 /* This routine deals with acks during a TLP episode.
3497  * We mark the end of a TLP episode on receiving TLP dupack or when
3498  * ack is after tlp_high_seq.
3499  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3500  */
3501 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3502 {
3503 	struct tcp_sock *tp = tcp_sk(sk);
3504 
3505 	if (before(ack, tp->tlp_high_seq))
3506 		return;
3507 
3508 	if (flag & FLAG_DSACKING_ACK) {
3509 		/* This DSACK means original and TLP probe arrived; no loss */
3510 		tp->tlp_high_seq = 0;
3511 	} else if (after(ack, tp->tlp_high_seq)) {
3512 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3513 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3514 		 */
3515 		tcp_init_cwnd_reduction(sk);
3516 		tcp_set_ca_state(sk, TCP_CA_CWR);
3517 		tcp_end_cwnd_reduction(sk);
3518 		tcp_try_keep_open(sk);
3519 		NET_INC_STATS(sock_net(sk),
3520 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3521 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3522 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3523 		/* Pure dupack: original and TLP probe arrived; no loss */
3524 		tp->tlp_high_seq = 0;
3525 	}
3526 }
3527 
3528 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3529 {
3530 	const struct inet_connection_sock *icsk = inet_csk(sk);
3531 
3532 	if (icsk->icsk_ca_ops->in_ack_event)
3533 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3534 }
3535 
3536 /* Congestion control has updated the cwnd already. So if we're in
3537  * loss recovery then now we do any new sends (for FRTO) or
3538  * retransmits (for CA_Loss or CA_recovery) that make sense.
3539  */
3540 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3541 {
3542 	struct tcp_sock *tp = tcp_sk(sk);
3543 
3544 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3545 		return;
3546 
3547 	if (unlikely(rexmit == 2)) {
3548 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3549 					  TCP_NAGLE_OFF);
3550 		if (after(tp->snd_nxt, tp->high_seq))
3551 			return;
3552 		tp->frto = 0;
3553 	}
3554 	tcp_xmit_retransmit_queue(sk);
3555 }
3556 
3557 /* Returns the number of packets newly acked or sacked by the current ACK */
3558 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3559 {
3560 	const struct net *net = sock_net(sk);
3561 	struct tcp_sock *tp = tcp_sk(sk);
3562 	u32 delivered;
3563 
3564 	delivered = tp->delivered - prior_delivered;
3565 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3566 	if (flag & FLAG_ECE) {
3567 		tp->delivered_ce += delivered;
3568 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3569 	}
3570 	return delivered;
3571 }
3572 
3573 /* This routine deals with incoming acks, but not outgoing ones. */
3574 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3575 {
3576 	struct inet_connection_sock *icsk = inet_csk(sk);
3577 	struct tcp_sock *tp = tcp_sk(sk);
3578 	struct tcp_sacktag_state sack_state;
3579 	struct rate_sample rs = { .prior_delivered = 0 };
3580 	u32 prior_snd_una = tp->snd_una;
3581 	bool is_sack_reneg = tp->is_sack_reneg;
3582 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3583 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3584 	int num_dupack = 0;
3585 	int prior_packets = tp->packets_out;
3586 	u32 delivered = tp->delivered;
3587 	u32 lost = tp->lost;
3588 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3589 	u32 prior_fack;
3590 
3591 	sack_state.first_sackt = 0;
3592 	sack_state.rate = &rs;
3593 
3594 	/* We very likely will need to access rtx queue. */
3595 	prefetch(sk->tcp_rtx_queue.rb_node);
3596 
3597 	/* If the ack is older than previous acks
3598 	 * then we can probably ignore it.
3599 	 */
3600 	if (before(ack, prior_snd_una)) {
3601 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3602 		if (before(ack, prior_snd_una - tp->max_window)) {
3603 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3604 				tcp_send_challenge_ack(sk, skb);
3605 			return -1;
3606 		}
3607 		goto old_ack;
3608 	}
3609 
3610 	/* If the ack includes data we haven't sent yet, discard
3611 	 * this segment (RFC793 Section 3.9).
3612 	 */
3613 	if (after(ack, tp->snd_nxt))
3614 		return -1;
3615 
3616 	if (after(ack, prior_snd_una)) {
3617 		flag |= FLAG_SND_UNA_ADVANCED;
3618 		icsk->icsk_retransmits = 0;
3619 
3620 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3621 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3622 			if (icsk->icsk_clean_acked)
3623 				icsk->icsk_clean_acked(sk, ack);
3624 #endif
3625 	}
3626 
3627 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3628 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3629 
3630 	/* ts_recent update must be made after we are sure that the packet
3631 	 * is in window.
3632 	 */
3633 	if (flag & FLAG_UPDATE_TS_RECENT)
3634 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3635 
3636 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3637 	    FLAG_SND_UNA_ADVANCED) {
3638 		/* Window is constant, pure forward advance.
3639 		 * No more checks are required.
3640 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3641 		 */
3642 		tcp_update_wl(tp, ack_seq);
3643 		tcp_snd_una_update(tp, ack);
3644 		flag |= FLAG_WIN_UPDATE;
3645 
3646 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3647 
3648 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3649 	} else {
3650 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3651 
3652 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3653 			flag |= FLAG_DATA;
3654 		else
3655 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3656 
3657 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3658 
3659 		if (TCP_SKB_CB(skb)->sacked)
3660 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3661 							&sack_state);
3662 
3663 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3664 			flag |= FLAG_ECE;
3665 			ack_ev_flags |= CA_ACK_ECE;
3666 		}
3667 
3668 		if (flag & FLAG_WIN_UPDATE)
3669 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3670 
3671 		tcp_in_ack_event(sk, ack_ev_flags);
3672 	}
3673 
3674 	/* We passed data and got it acked, remove any soft error
3675 	 * log. Something worked...
3676 	 */
3677 	sk->sk_err_soft = 0;
3678 	icsk->icsk_probes_out = 0;
3679 	tp->rcv_tstamp = tcp_jiffies32;
3680 	if (!prior_packets)
3681 		goto no_queue;
3682 
3683 	/* See if we can take anything off of the retransmit queue. */
3684 	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3685 
3686 	tcp_rack_update_reo_wnd(sk, &rs);
3687 
3688 	if (tp->tlp_high_seq)
3689 		tcp_process_tlp_ack(sk, ack, flag);
3690 	/* If needed, reset TLP/RTO timer; RACK may later override this. */
3691 	if (flag & FLAG_SET_XMIT_TIMER)
3692 		tcp_set_xmit_timer(sk);
3693 
3694 	if (tcp_ack_is_dubious(sk, flag)) {
3695 		if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) {
3696 			num_dupack = 1;
3697 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3698 			if (!(flag & FLAG_DATA))
3699 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3700 		}
3701 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3702 				      &rexmit);
3703 	}
3704 
3705 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3706 		sk_dst_confirm(sk);
3707 
3708 	delivered = tcp_newly_delivered(sk, delivered, flag);
3709 	lost = tp->lost - lost;			/* freshly marked lost */
3710 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3711 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3712 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3713 	tcp_xmit_recovery(sk, rexmit);
3714 	return 1;
3715 
3716 no_queue:
3717 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3718 	if (flag & FLAG_DSACKING_ACK) {
3719 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3720 				      &rexmit);
3721 		tcp_newly_delivered(sk, delivered, flag);
3722 	}
3723 	/* If this ack opens up a zero window, clear backoff.  It was
3724 	 * being used to time the probes, and is probably far higher than
3725 	 * it needs to be for normal retransmission.
3726 	 */
3727 	tcp_ack_probe(sk);
3728 
3729 	if (tp->tlp_high_seq)
3730 		tcp_process_tlp_ack(sk, ack, flag);
3731 	return 1;
3732 
3733 old_ack:
3734 	/* If data was SACKed, tag it and see if we should send more data.
3735 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3736 	 */
3737 	if (TCP_SKB_CB(skb)->sacked) {
3738 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3739 						&sack_state);
3740 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3741 				      &rexmit);
3742 		tcp_newly_delivered(sk, delivered, flag);
3743 		tcp_xmit_recovery(sk, rexmit);
3744 	}
3745 
3746 	return 0;
3747 }
3748 
3749 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3750 				      bool syn, struct tcp_fastopen_cookie *foc,
3751 				      bool exp_opt)
3752 {
3753 	/* Valid only in SYN or SYN-ACK with an even length.  */
3754 	if (!foc || !syn || len < 0 || (len & 1))
3755 		return;
3756 
3757 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3758 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3759 		memcpy(foc->val, cookie, len);
3760 	else if (len != 0)
3761 		len = -1;
3762 	foc->len = len;
3763 	foc->exp = exp_opt;
3764 }
3765 
3766 static void smc_parse_options(const struct tcphdr *th,
3767 			      struct tcp_options_received *opt_rx,
3768 			      const unsigned char *ptr,
3769 			      int opsize)
3770 {
3771 #if IS_ENABLED(CONFIG_SMC)
3772 	if (static_branch_unlikely(&tcp_have_smc)) {
3773 		if (th->syn && !(opsize & 1) &&
3774 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3775 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3776 			opt_rx->smc_ok = 1;
3777 	}
3778 #endif
3779 }
3780 
3781 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3782  * But, this can also be called on packets in the established flow when
3783  * the fast version below fails.
3784  */
3785 void tcp_parse_options(const struct net *net,
3786 		       const struct sk_buff *skb,
3787 		       struct tcp_options_received *opt_rx, int estab,
3788 		       struct tcp_fastopen_cookie *foc)
3789 {
3790 	const unsigned char *ptr;
3791 	const struct tcphdr *th = tcp_hdr(skb);
3792 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3793 
3794 	ptr = (const unsigned char *)(th + 1);
3795 	opt_rx->saw_tstamp = 0;
3796 
3797 	while (length > 0) {
3798 		int opcode = *ptr++;
3799 		int opsize;
3800 
3801 		switch (opcode) {
3802 		case TCPOPT_EOL:
3803 			return;
3804 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3805 			length--;
3806 			continue;
3807 		default:
3808 			if (length < 2)
3809 				return;
3810 			opsize = *ptr++;
3811 			if (opsize < 2) /* "silly options" */
3812 				return;
3813 			if (opsize > length)
3814 				return;	/* don't parse partial options */
3815 			switch (opcode) {
3816 			case TCPOPT_MSS:
3817 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3818 					u16 in_mss = get_unaligned_be16(ptr);
3819 					if (in_mss) {
3820 						if (opt_rx->user_mss &&
3821 						    opt_rx->user_mss < in_mss)
3822 							in_mss = opt_rx->user_mss;
3823 						opt_rx->mss_clamp = in_mss;
3824 					}
3825 				}
3826 				break;
3827 			case TCPOPT_WINDOW:
3828 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3829 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3830 					__u8 snd_wscale = *(__u8 *)ptr;
3831 					opt_rx->wscale_ok = 1;
3832 					if (snd_wscale > TCP_MAX_WSCALE) {
3833 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3834 								     __func__,
3835 								     snd_wscale,
3836 								     TCP_MAX_WSCALE);
3837 						snd_wscale = TCP_MAX_WSCALE;
3838 					}
3839 					opt_rx->snd_wscale = snd_wscale;
3840 				}
3841 				break;
3842 			case TCPOPT_TIMESTAMP:
3843 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3844 				    ((estab && opt_rx->tstamp_ok) ||
3845 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3846 					opt_rx->saw_tstamp = 1;
3847 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3848 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3849 				}
3850 				break;
3851 			case TCPOPT_SACK_PERM:
3852 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3853 				    !estab && net->ipv4.sysctl_tcp_sack) {
3854 					opt_rx->sack_ok = TCP_SACK_SEEN;
3855 					tcp_sack_reset(opt_rx);
3856 				}
3857 				break;
3858 
3859 			case TCPOPT_SACK:
3860 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3861 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3862 				   opt_rx->sack_ok) {
3863 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3864 				}
3865 				break;
3866 #ifdef CONFIG_TCP_MD5SIG
3867 			case TCPOPT_MD5SIG:
3868 				/*
3869 				 * The MD5 Hash has already been
3870 				 * checked (see tcp_v{4,6}_do_rcv()).
3871 				 */
3872 				break;
3873 #endif
3874 			case TCPOPT_FASTOPEN:
3875 				tcp_parse_fastopen_option(
3876 					opsize - TCPOLEN_FASTOPEN_BASE,
3877 					ptr, th->syn, foc, false);
3878 				break;
3879 
3880 			case TCPOPT_EXP:
3881 				/* Fast Open option shares code 254 using a
3882 				 * 16 bits magic number.
3883 				 */
3884 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3885 				    get_unaligned_be16(ptr) ==
3886 				    TCPOPT_FASTOPEN_MAGIC)
3887 					tcp_parse_fastopen_option(opsize -
3888 						TCPOLEN_EXP_FASTOPEN_BASE,
3889 						ptr + 2, th->syn, foc, true);
3890 				else
3891 					smc_parse_options(th, opt_rx, ptr,
3892 							  opsize);
3893 				break;
3894 
3895 			}
3896 			ptr += opsize-2;
3897 			length -= opsize;
3898 		}
3899 	}
3900 }
3901 EXPORT_SYMBOL(tcp_parse_options);
3902 
3903 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3904 {
3905 	const __be32 *ptr = (const __be32 *)(th + 1);
3906 
3907 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3908 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3909 		tp->rx_opt.saw_tstamp = 1;
3910 		++ptr;
3911 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3912 		++ptr;
3913 		if (*ptr)
3914 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3915 		else
3916 			tp->rx_opt.rcv_tsecr = 0;
3917 		return true;
3918 	}
3919 	return false;
3920 }
3921 
3922 /* Fast parse options. This hopes to only see timestamps.
3923  * If it is wrong it falls back on tcp_parse_options().
3924  */
3925 static bool tcp_fast_parse_options(const struct net *net,
3926 				   const struct sk_buff *skb,
3927 				   const struct tcphdr *th, struct tcp_sock *tp)
3928 {
3929 	/* In the spirit of fast parsing, compare doff directly to constant
3930 	 * values.  Because equality is used, short doff can be ignored here.
3931 	 */
3932 	if (th->doff == (sizeof(*th) / 4)) {
3933 		tp->rx_opt.saw_tstamp = 0;
3934 		return false;
3935 	} else if (tp->rx_opt.tstamp_ok &&
3936 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3937 		if (tcp_parse_aligned_timestamp(tp, th))
3938 			return true;
3939 	}
3940 
3941 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3942 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3943 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3944 
3945 	return true;
3946 }
3947 
3948 #ifdef CONFIG_TCP_MD5SIG
3949 /*
3950  * Parse MD5 Signature option
3951  */
3952 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3953 {
3954 	int length = (th->doff << 2) - sizeof(*th);
3955 	const u8 *ptr = (const u8 *)(th + 1);
3956 
3957 	/* If not enough data remaining, we can short cut */
3958 	while (length >= TCPOLEN_MD5SIG) {
3959 		int opcode = *ptr++;
3960 		int opsize;
3961 
3962 		switch (opcode) {
3963 		case TCPOPT_EOL:
3964 			return NULL;
3965 		case TCPOPT_NOP:
3966 			length--;
3967 			continue;
3968 		default:
3969 			opsize = *ptr++;
3970 			if (opsize < 2 || opsize > length)
3971 				return NULL;
3972 			if (opcode == TCPOPT_MD5SIG)
3973 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3974 		}
3975 		ptr += opsize - 2;
3976 		length -= opsize;
3977 	}
3978 	return NULL;
3979 }
3980 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3981 #endif
3982 
3983 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3984  *
3985  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3986  * it can pass through stack. So, the following predicate verifies that
3987  * this segment is not used for anything but congestion avoidance or
3988  * fast retransmit. Moreover, we even are able to eliminate most of such
3989  * second order effects, if we apply some small "replay" window (~RTO)
3990  * to timestamp space.
3991  *
3992  * All these measures still do not guarantee that we reject wrapped ACKs
3993  * on networks with high bandwidth, when sequence space is recycled fastly,
3994  * but it guarantees that such events will be very rare and do not affect
3995  * connection seriously. This doesn't look nice, but alas, PAWS is really
3996  * buggy extension.
3997  *
3998  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3999  * states that events when retransmit arrives after original data are rare.
4000  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4001  * the biggest problem on large power networks even with minor reordering.
4002  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4003  * up to bandwidth of 18Gigabit/sec. 8) ]
4004  */
4005 
4006 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4007 {
4008 	const struct tcp_sock *tp = tcp_sk(sk);
4009 	const struct tcphdr *th = tcp_hdr(skb);
4010 	u32 seq = TCP_SKB_CB(skb)->seq;
4011 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4012 
4013 	return (/* 1. Pure ACK with correct sequence number. */
4014 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4015 
4016 		/* 2. ... and duplicate ACK. */
4017 		ack == tp->snd_una &&
4018 
4019 		/* 3. ... and does not update window. */
4020 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4021 
4022 		/* 4. ... and sits in replay window. */
4023 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4024 }
4025 
4026 static inline bool tcp_paws_discard(const struct sock *sk,
4027 				   const struct sk_buff *skb)
4028 {
4029 	const struct tcp_sock *tp = tcp_sk(sk);
4030 
4031 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4032 	       !tcp_disordered_ack(sk, skb);
4033 }
4034 
4035 /* Check segment sequence number for validity.
4036  *
4037  * Segment controls are considered valid, if the segment
4038  * fits to the window after truncation to the window. Acceptability
4039  * of data (and SYN, FIN, of course) is checked separately.
4040  * See tcp_data_queue(), for example.
4041  *
4042  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4043  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4044  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4045  * (borrowed from freebsd)
4046  */
4047 
4048 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4049 {
4050 	return	!before(end_seq, tp->rcv_wup) &&
4051 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4052 }
4053 
4054 /* When we get a reset we do this. */
4055 void tcp_reset(struct sock *sk)
4056 {
4057 	trace_tcp_receive_reset(sk);
4058 
4059 	/* We want the right error as BSD sees it (and indeed as we do). */
4060 	switch (sk->sk_state) {
4061 	case TCP_SYN_SENT:
4062 		sk->sk_err = ECONNREFUSED;
4063 		break;
4064 	case TCP_CLOSE_WAIT:
4065 		sk->sk_err = EPIPE;
4066 		break;
4067 	case TCP_CLOSE:
4068 		return;
4069 	default:
4070 		sk->sk_err = ECONNRESET;
4071 	}
4072 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4073 	smp_wmb();
4074 
4075 	tcp_write_queue_purge(sk);
4076 	tcp_done(sk);
4077 
4078 	if (!sock_flag(sk, SOCK_DEAD))
4079 		sk->sk_error_report(sk);
4080 }
4081 
4082 /*
4083  * 	Process the FIN bit. This now behaves as it is supposed to work
4084  *	and the FIN takes effect when it is validly part of sequence
4085  *	space. Not before when we get holes.
4086  *
4087  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4088  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4089  *	TIME-WAIT)
4090  *
4091  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4092  *	close and we go into CLOSING (and later onto TIME-WAIT)
4093  *
4094  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4095  */
4096 void tcp_fin(struct sock *sk)
4097 {
4098 	struct tcp_sock *tp = tcp_sk(sk);
4099 
4100 	inet_csk_schedule_ack(sk);
4101 
4102 	sk->sk_shutdown |= RCV_SHUTDOWN;
4103 	sock_set_flag(sk, SOCK_DONE);
4104 
4105 	switch (sk->sk_state) {
4106 	case TCP_SYN_RECV:
4107 	case TCP_ESTABLISHED:
4108 		/* Move to CLOSE_WAIT */
4109 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4110 		inet_csk_enter_pingpong_mode(sk);
4111 		break;
4112 
4113 	case TCP_CLOSE_WAIT:
4114 	case TCP_CLOSING:
4115 		/* Received a retransmission of the FIN, do
4116 		 * nothing.
4117 		 */
4118 		break;
4119 	case TCP_LAST_ACK:
4120 		/* RFC793: Remain in the LAST-ACK state. */
4121 		break;
4122 
4123 	case TCP_FIN_WAIT1:
4124 		/* This case occurs when a simultaneous close
4125 		 * happens, we must ack the received FIN and
4126 		 * enter the CLOSING state.
4127 		 */
4128 		tcp_send_ack(sk);
4129 		tcp_set_state(sk, TCP_CLOSING);
4130 		break;
4131 	case TCP_FIN_WAIT2:
4132 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4133 		tcp_send_ack(sk);
4134 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4135 		break;
4136 	default:
4137 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4138 		 * cases we should never reach this piece of code.
4139 		 */
4140 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4141 		       __func__, sk->sk_state);
4142 		break;
4143 	}
4144 
4145 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4146 	 * Probably, we should reset in this case. For now drop them.
4147 	 */
4148 	skb_rbtree_purge(&tp->out_of_order_queue);
4149 	if (tcp_is_sack(tp))
4150 		tcp_sack_reset(&tp->rx_opt);
4151 	sk_mem_reclaim(sk);
4152 
4153 	if (!sock_flag(sk, SOCK_DEAD)) {
4154 		sk->sk_state_change(sk);
4155 
4156 		/* Do not send POLL_HUP for half duplex close. */
4157 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4158 		    sk->sk_state == TCP_CLOSE)
4159 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4160 		else
4161 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4162 	}
4163 }
4164 
4165 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4166 				  u32 end_seq)
4167 {
4168 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4169 		if (before(seq, sp->start_seq))
4170 			sp->start_seq = seq;
4171 		if (after(end_seq, sp->end_seq))
4172 			sp->end_seq = end_seq;
4173 		return true;
4174 	}
4175 	return false;
4176 }
4177 
4178 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4179 {
4180 	struct tcp_sock *tp = tcp_sk(sk);
4181 
4182 	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4183 		int mib_idx;
4184 
4185 		if (before(seq, tp->rcv_nxt))
4186 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4187 		else
4188 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4189 
4190 		NET_INC_STATS(sock_net(sk), mib_idx);
4191 
4192 		tp->rx_opt.dsack = 1;
4193 		tp->duplicate_sack[0].start_seq = seq;
4194 		tp->duplicate_sack[0].end_seq = end_seq;
4195 	}
4196 }
4197 
4198 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4199 {
4200 	struct tcp_sock *tp = tcp_sk(sk);
4201 
4202 	if (!tp->rx_opt.dsack)
4203 		tcp_dsack_set(sk, seq, end_seq);
4204 	else
4205 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4206 }
4207 
4208 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4209 {
4210 	/* When the ACK path fails or drops most ACKs, the sender would
4211 	 * timeout and spuriously retransmit the same segment repeatedly.
4212 	 * The receiver remembers and reflects via DSACKs. Leverage the
4213 	 * DSACK state and change the txhash to re-route speculatively.
4214 	 */
4215 	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq)
4216 		sk_rethink_txhash(sk);
4217 }
4218 
4219 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4220 {
4221 	struct tcp_sock *tp = tcp_sk(sk);
4222 
4223 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4224 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4225 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4226 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4227 
4228 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4229 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4230 
4231 			tcp_rcv_spurious_retrans(sk, skb);
4232 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4233 				end_seq = tp->rcv_nxt;
4234 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4235 		}
4236 	}
4237 
4238 	tcp_send_ack(sk);
4239 }
4240 
4241 /* These routines update the SACK block as out-of-order packets arrive or
4242  * in-order packets close up the sequence space.
4243  */
4244 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4245 {
4246 	int this_sack;
4247 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4248 	struct tcp_sack_block *swalk = sp + 1;
4249 
4250 	/* See if the recent change to the first SACK eats into
4251 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4252 	 */
4253 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4254 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4255 			int i;
4256 
4257 			/* Zap SWALK, by moving every further SACK up by one slot.
4258 			 * Decrease num_sacks.
4259 			 */
4260 			tp->rx_opt.num_sacks--;
4261 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4262 				sp[i] = sp[i + 1];
4263 			continue;
4264 		}
4265 		this_sack++, swalk++;
4266 	}
4267 }
4268 
4269 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4270 {
4271 	struct tcp_sock *tp = tcp_sk(sk);
4272 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4273 	int cur_sacks = tp->rx_opt.num_sacks;
4274 	int this_sack;
4275 
4276 	if (!cur_sacks)
4277 		goto new_sack;
4278 
4279 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4280 		if (tcp_sack_extend(sp, seq, end_seq)) {
4281 			/* Rotate this_sack to the first one. */
4282 			for (; this_sack > 0; this_sack--, sp--)
4283 				swap(*sp, *(sp - 1));
4284 			if (cur_sacks > 1)
4285 				tcp_sack_maybe_coalesce(tp);
4286 			return;
4287 		}
4288 	}
4289 
4290 	/* Could not find an adjacent existing SACK, build a new one,
4291 	 * put it at the front, and shift everyone else down.  We
4292 	 * always know there is at least one SACK present already here.
4293 	 *
4294 	 * If the sack array is full, forget about the last one.
4295 	 */
4296 	if (this_sack >= TCP_NUM_SACKS) {
4297 		if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
4298 			tcp_send_ack(sk);
4299 		this_sack--;
4300 		tp->rx_opt.num_sacks--;
4301 		sp--;
4302 	}
4303 	for (; this_sack > 0; this_sack--, sp--)
4304 		*sp = *(sp - 1);
4305 
4306 new_sack:
4307 	/* Build the new head SACK, and we're done. */
4308 	sp->start_seq = seq;
4309 	sp->end_seq = end_seq;
4310 	tp->rx_opt.num_sacks++;
4311 }
4312 
4313 /* RCV.NXT advances, some SACKs should be eaten. */
4314 
4315 static void tcp_sack_remove(struct tcp_sock *tp)
4316 {
4317 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4318 	int num_sacks = tp->rx_opt.num_sacks;
4319 	int this_sack;
4320 
4321 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4322 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4323 		tp->rx_opt.num_sacks = 0;
4324 		return;
4325 	}
4326 
4327 	for (this_sack = 0; this_sack < num_sacks;) {
4328 		/* Check if the start of the sack is covered by RCV.NXT. */
4329 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4330 			int i;
4331 
4332 			/* RCV.NXT must cover all the block! */
4333 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4334 
4335 			/* Zap this SACK, by moving forward any other SACKS. */
4336 			for (i = this_sack+1; i < num_sacks; i++)
4337 				tp->selective_acks[i-1] = tp->selective_acks[i];
4338 			num_sacks--;
4339 			continue;
4340 		}
4341 		this_sack++;
4342 		sp++;
4343 	}
4344 	tp->rx_opt.num_sacks = num_sacks;
4345 }
4346 
4347 /**
4348  * tcp_try_coalesce - try to merge skb to prior one
4349  * @sk: socket
4350  * @dest: destination queue
4351  * @to: prior buffer
4352  * @from: buffer to add in queue
4353  * @fragstolen: pointer to boolean
4354  *
4355  * Before queueing skb @from after @to, try to merge them
4356  * to reduce overall memory use and queue lengths, if cost is small.
4357  * Packets in ofo or receive queues can stay a long time.
4358  * Better try to coalesce them right now to avoid future collapses.
4359  * Returns true if caller should free @from instead of queueing it
4360  */
4361 static bool tcp_try_coalesce(struct sock *sk,
4362 			     struct sk_buff *to,
4363 			     struct sk_buff *from,
4364 			     bool *fragstolen)
4365 {
4366 	int delta;
4367 
4368 	*fragstolen = false;
4369 
4370 	/* Its possible this segment overlaps with prior segment in queue */
4371 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4372 		return false;
4373 
4374 #ifdef CONFIG_TLS_DEVICE
4375 	if (from->decrypted != to->decrypted)
4376 		return false;
4377 #endif
4378 
4379 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4380 		return false;
4381 
4382 	atomic_add(delta, &sk->sk_rmem_alloc);
4383 	sk_mem_charge(sk, delta);
4384 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4385 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4386 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4387 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4388 
4389 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4390 		TCP_SKB_CB(to)->has_rxtstamp = true;
4391 		to->tstamp = from->tstamp;
4392 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4393 	}
4394 
4395 	return true;
4396 }
4397 
4398 static bool tcp_ooo_try_coalesce(struct sock *sk,
4399 			     struct sk_buff *to,
4400 			     struct sk_buff *from,
4401 			     bool *fragstolen)
4402 {
4403 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4404 
4405 	/* In case tcp_drop() is called later, update to->gso_segs */
4406 	if (res) {
4407 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4408 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4409 
4410 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4411 	}
4412 	return res;
4413 }
4414 
4415 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4416 {
4417 	sk_drops_add(sk, skb);
4418 	__kfree_skb(skb);
4419 }
4420 
4421 /* This one checks to see if we can put data from the
4422  * out_of_order queue into the receive_queue.
4423  */
4424 static void tcp_ofo_queue(struct sock *sk)
4425 {
4426 	struct tcp_sock *tp = tcp_sk(sk);
4427 	__u32 dsack_high = tp->rcv_nxt;
4428 	bool fin, fragstolen, eaten;
4429 	struct sk_buff *skb, *tail;
4430 	struct rb_node *p;
4431 
4432 	p = rb_first(&tp->out_of_order_queue);
4433 	while (p) {
4434 		skb = rb_to_skb(p);
4435 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4436 			break;
4437 
4438 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4439 			__u32 dsack = dsack_high;
4440 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4441 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4442 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4443 		}
4444 		p = rb_next(p);
4445 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4446 
4447 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4448 			tcp_drop(sk, skb);
4449 			continue;
4450 		}
4451 
4452 		tail = skb_peek_tail(&sk->sk_receive_queue);
4453 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4454 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4455 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4456 		if (!eaten)
4457 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4458 		else
4459 			kfree_skb_partial(skb, fragstolen);
4460 
4461 		if (unlikely(fin)) {
4462 			tcp_fin(sk);
4463 			/* tcp_fin() purges tp->out_of_order_queue,
4464 			 * so we must end this loop right now.
4465 			 */
4466 			break;
4467 		}
4468 	}
4469 }
4470 
4471 static bool tcp_prune_ofo_queue(struct sock *sk);
4472 static int tcp_prune_queue(struct sock *sk);
4473 
4474 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4475 				 unsigned int size)
4476 {
4477 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4478 	    !sk_rmem_schedule(sk, skb, size)) {
4479 
4480 		if (tcp_prune_queue(sk) < 0)
4481 			return -1;
4482 
4483 		while (!sk_rmem_schedule(sk, skb, size)) {
4484 			if (!tcp_prune_ofo_queue(sk))
4485 				return -1;
4486 		}
4487 	}
4488 	return 0;
4489 }
4490 
4491 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4492 {
4493 	struct tcp_sock *tp = tcp_sk(sk);
4494 	struct rb_node **p, *parent;
4495 	struct sk_buff *skb1;
4496 	u32 seq, end_seq;
4497 	bool fragstolen;
4498 
4499 	tcp_ecn_check_ce(sk, skb);
4500 
4501 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4502 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4503 		tcp_drop(sk, skb);
4504 		return;
4505 	}
4506 
4507 	/* Disable header prediction. */
4508 	tp->pred_flags = 0;
4509 	inet_csk_schedule_ack(sk);
4510 
4511 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4512 	seq = TCP_SKB_CB(skb)->seq;
4513 	end_seq = TCP_SKB_CB(skb)->end_seq;
4514 
4515 	p = &tp->out_of_order_queue.rb_node;
4516 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4517 		/* Initial out of order segment, build 1 SACK. */
4518 		if (tcp_is_sack(tp)) {
4519 			tp->rx_opt.num_sacks = 1;
4520 			tp->selective_acks[0].start_seq = seq;
4521 			tp->selective_acks[0].end_seq = end_seq;
4522 		}
4523 		rb_link_node(&skb->rbnode, NULL, p);
4524 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4525 		tp->ooo_last_skb = skb;
4526 		goto end;
4527 	}
4528 
4529 	/* In the typical case, we are adding an skb to the end of the list.
4530 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4531 	 */
4532 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4533 				 skb, &fragstolen)) {
4534 coalesce_done:
4535 		tcp_grow_window(sk, skb);
4536 		kfree_skb_partial(skb, fragstolen);
4537 		skb = NULL;
4538 		goto add_sack;
4539 	}
4540 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4541 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4542 		parent = &tp->ooo_last_skb->rbnode;
4543 		p = &parent->rb_right;
4544 		goto insert;
4545 	}
4546 
4547 	/* Find place to insert this segment. Handle overlaps on the way. */
4548 	parent = NULL;
4549 	while (*p) {
4550 		parent = *p;
4551 		skb1 = rb_to_skb(parent);
4552 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4553 			p = &parent->rb_left;
4554 			continue;
4555 		}
4556 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4557 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4558 				/* All the bits are present. Drop. */
4559 				NET_INC_STATS(sock_net(sk),
4560 					      LINUX_MIB_TCPOFOMERGE);
4561 				tcp_drop(sk, skb);
4562 				skb = NULL;
4563 				tcp_dsack_set(sk, seq, end_seq);
4564 				goto add_sack;
4565 			}
4566 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4567 				/* Partial overlap. */
4568 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4569 			} else {
4570 				/* skb's seq == skb1's seq and skb covers skb1.
4571 				 * Replace skb1 with skb.
4572 				 */
4573 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4574 						&tp->out_of_order_queue);
4575 				tcp_dsack_extend(sk,
4576 						 TCP_SKB_CB(skb1)->seq,
4577 						 TCP_SKB_CB(skb1)->end_seq);
4578 				NET_INC_STATS(sock_net(sk),
4579 					      LINUX_MIB_TCPOFOMERGE);
4580 				tcp_drop(sk, skb1);
4581 				goto merge_right;
4582 			}
4583 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4584 						skb, &fragstolen)) {
4585 			goto coalesce_done;
4586 		}
4587 		p = &parent->rb_right;
4588 	}
4589 insert:
4590 	/* Insert segment into RB tree. */
4591 	rb_link_node(&skb->rbnode, parent, p);
4592 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4593 
4594 merge_right:
4595 	/* Remove other segments covered by skb. */
4596 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4597 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4598 			break;
4599 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4600 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4601 					 end_seq);
4602 			break;
4603 		}
4604 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4605 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4606 				 TCP_SKB_CB(skb1)->end_seq);
4607 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4608 		tcp_drop(sk, skb1);
4609 	}
4610 	/* If there is no skb after us, we are the last_skb ! */
4611 	if (!skb1)
4612 		tp->ooo_last_skb = skb;
4613 
4614 add_sack:
4615 	if (tcp_is_sack(tp))
4616 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4617 end:
4618 	if (skb) {
4619 		tcp_grow_window(sk, skb);
4620 		skb_condense(skb);
4621 		skb_set_owner_r(skb, sk);
4622 	}
4623 }
4624 
4625 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4626 				      bool *fragstolen)
4627 {
4628 	int eaten;
4629 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4630 
4631 	eaten = (tail &&
4632 		 tcp_try_coalesce(sk, tail,
4633 				  skb, fragstolen)) ? 1 : 0;
4634 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4635 	if (!eaten) {
4636 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4637 		skb_set_owner_r(skb, sk);
4638 	}
4639 	return eaten;
4640 }
4641 
4642 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4643 {
4644 	struct sk_buff *skb;
4645 	int err = -ENOMEM;
4646 	int data_len = 0;
4647 	bool fragstolen;
4648 
4649 	if (size == 0)
4650 		return 0;
4651 
4652 	if (size > PAGE_SIZE) {
4653 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4654 
4655 		data_len = npages << PAGE_SHIFT;
4656 		size = data_len + (size & ~PAGE_MASK);
4657 	}
4658 	skb = alloc_skb_with_frags(size - data_len, data_len,
4659 				   PAGE_ALLOC_COSTLY_ORDER,
4660 				   &err, sk->sk_allocation);
4661 	if (!skb)
4662 		goto err;
4663 
4664 	skb_put(skb, size - data_len);
4665 	skb->data_len = data_len;
4666 	skb->len = size;
4667 
4668 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4669 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4670 		goto err_free;
4671 	}
4672 
4673 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4674 	if (err)
4675 		goto err_free;
4676 
4677 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4678 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4679 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4680 
4681 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4682 		WARN_ON_ONCE(fragstolen); /* should not happen */
4683 		__kfree_skb(skb);
4684 	}
4685 	return size;
4686 
4687 err_free:
4688 	kfree_skb(skb);
4689 err:
4690 	return err;
4691 
4692 }
4693 
4694 void tcp_data_ready(struct sock *sk)
4695 {
4696 	const struct tcp_sock *tp = tcp_sk(sk);
4697 	int avail = tp->rcv_nxt - tp->copied_seq;
4698 
4699 	if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE))
4700 		return;
4701 
4702 	sk->sk_data_ready(sk);
4703 }
4704 
4705 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4706 {
4707 	struct tcp_sock *tp = tcp_sk(sk);
4708 	bool fragstolen;
4709 	int eaten;
4710 
4711 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4712 		__kfree_skb(skb);
4713 		return;
4714 	}
4715 	skb_dst_drop(skb);
4716 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4717 
4718 	tcp_ecn_accept_cwr(sk, skb);
4719 
4720 	tp->rx_opt.dsack = 0;
4721 
4722 	/*  Queue data for delivery to the user.
4723 	 *  Packets in sequence go to the receive queue.
4724 	 *  Out of sequence packets to the out_of_order_queue.
4725 	 */
4726 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4727 		if (tcp_receive_window(tp) == 0) {
4728 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4729 			goto out_of_window;
4730 		}
4731 
4732 		/* Ok. In sequence. In window. */
4733 queue_and_out:
4734 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4735 			sk_forced_mem_schedule(sk, skb->truesize);
4736 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4737 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4738 			goto drop;
4739 		}
4740 
4741 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
4742 		if (skb->len)
4743 			tcp_event_data_recv(sk, skb);
4744 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4745 			tcp_fin(sk);
4746 
4747 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4748 			tcp_ofo_queue(sk);
4749 
4750 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
4751 			 * gap in queue is filled.
4752 			 */
4753 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4754 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4755 		}
4756 
4757 		if (tp->rx_opt.num_sacks)
4758 			tcp_sack_remove(tp);
4759 
4760 		tcp_fast_path_check(sk);
4761 
4762 		if (eaten > 0)
4763 			kfree_skb_partial(skb, fragstolen);
4764 		if (!sock_flag(sk, SOCK_DEAD))
4765 			tcp_data_ready(sk);
4766 		return;
4767 	}
4768 
4769 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4770 		tcp_rcv_spurious_retrans(sk, skb);
4771 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4772 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4773 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4774 
4775 out_of_window:
4776 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4777 		inet_csk_schedule_ack(sk);
4778 drop:
4779 		tcp_drop(sk, skb);
4780 		return;
4781 	}
4782 
4783 	/* Out of window. F.e. zero window probe. */
4784 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4785 		goto out_of_window;
4786 
4787 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4788 		/* Partial packet, seq < rcv_next < end_seq */
4789 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4790 
4791 		/* If window is closed, drop tail of packet. But after
4792 		 * remembering D-SACK for its head made in previous line.
4793 		 */
4794 		if (!tcp_receive_window(tp)) {
4795 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4796 			goto out_of_window;
4797 		}
4798 		goto queue_and_out;
4799 	}
4800 
4801 	tcp_data_queue_ofo(sk, skb);
4802 }
4803 
4804 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4805 {
4806 	if (list)
4807 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4808 
4809 	return skb_rb_next(skb);
4810 }
4811 
4812 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4813 					struct sk_buff_head *list,
4814 					struct rb_root *root)
4815 {
4816 	struct sk_buff *next = tcp_skb_next(skb, list);
4817 
4818 	if (list)
4819 		__skb_unlink(skb, list);
4820 	else
4821 		rb_erase(&skb->rbnode, root);
4822 
4823 	__kfree_skb(skb);
4824 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4825 
4826 	return next;
4827 }
4828 
4829 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4830 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4831 {
4832 	struct rb_node **p = &root->rb_node;
4833 	struct rb_node *parent = NULL;
4834 	struct sk_buff *skb1;
4835 
4836 	while (*p) {
4837 		parent = *p;
4838 		skb1 = rb_to_skb(parent);
4839 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4840 			p = &parent->rb_left;
4841 		else
4842 			p = &parent->rb_right;
4843 	}
4844 	rb_link_node(&skb->rbnode, parent, p);
4845 	rb_insert_color(&skb->rbnode, root);
4846 }
4847 
4848 /* Collapse contiguous sequence of skbs head..tail with
4849  * sequence numbers start..end.
4850  *
4851  * If tail is NULL, this means until the end of the queue.
4852  *
4853  * Segments with FIN/SYN are not collapsed (only because this
4854  * simplifies code)
4855  */
4856 static void
4857 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4858 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4859 {
4860 	struct sk_buff *skb = head, *n;
4861 	struct sk_buff_head tmp;
4862 	bool end_of_skbs;
4863 
4864 	/* First, check that queue is collapsible and find
4865 	 * the point where collapsing can be useful.
4866 	 */
4867 restart:
4868 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4869 		n = tcp_skb_next(skb, list);
4870 
4871 		/* No new bits? It is possible on ofo queue. */
4872 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4873 			skb = tcp_collapse_one(sk, skb, list, root);
4874 			if (!skb)
4875 				break;
4876 			goto restart;
4877 		}
4878 
4879 		/* The first skb to collapse is:
4880 		 * - not SYN/FIN and
4881 		 * - bloated or contains data before "start" or
4882 		 *   overlaps to the next one.
4883 		 */
4884 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4885 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4886 		     before(TCP_SKB_CB(skb)->seq, start))) {
4887 			end_of_skbs = false;
4888 			break;
4889 		}
4890 
4891 		if (n && n != tail &&
4892 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4893 			end_of_skbs = false;
4894 			break;
4895 		}
4896 
4897 		/* Decided to skip this, advance start seq. */
4898 		start = TCP_SKB_CB(skb)->end_seq;
4899 	}
4900 	if (end_of_skbs ||
4901 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4902 		return;
4903 
4904 	__skb_queue_head_init(&tmp);
4905 
4906 	while (before(start, end)) {
4907 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4908 		struct sk_buff *nskb;
4909 
4910 		nskb = alloc_skb(copy, GFP_ATOMIC);
4911 		if (!nskb)
4912 			break;
4913 
4914 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4915 #ifdef CONFIG_TLS_DEVICE
4916 		nskb->decrypted = skb->decrypted;
4917 #endif
4918 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4919 		if (list)
4920 			__skb_queue_before(list, skb, nskb);
4921 		else
4922 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4923 		skb_set_owner_r(nskb, sk);
4924 
4925 		/* Copy data, releasing collapsed skbs. */
4926 		while (copy > 0) {
4927 			int offset = start - TCP_SKB_CB(skb)->seq;
4928 			int size = TCP_SKB_CB(skb)->end_seq - start;
4929 
4930 			BUG_ON(offset < 0);
4931 			if (size > 0) {
4932 				size = min(copy, size);
4933 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4934 					BUG();
4935 				TCP_SKB_CB(nskb)->end_seq += size;
4936 				copy -= size;
4937 				start += size;
4938 			}
4939 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4940 				skb = tcp_collapse_one(sk, skb, list, root);
4941 				if (!skb ||
4942 				    skb == tail ||
4943 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4944 					goto end;
4945 #ifdef CONFIG_TLS_DEVICE
4946 				if (skb->decrypted != nskb->decrypted)
4947 					goto end;
4948 #endif
4949 			}
4950 		}
4951 	}
4952 end:
4953 	skb_queue_walk_safe(&tmp, skb, n)
4954 		tcp_rbtree_insert(root, skb);
4955 }
4956 
4957 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4958  * and tcp_collapse() them until all the queue is collapsed.
4959  */
4960 static void tcp_collapse_ofo_queue(struct sock *sk)
4961 {
4962 	struct tcp_sock *tp = tcp_sk(sk);
4963 	u32 range_truesize, sum_tiny = 0;
4964 	struct sk_buff *skb, *head;
4965 	u32 start, end;
4966 
4967 	skb = skb_rb_first(&tp->out_of_order_queue);
4968 new_range:
4969 	if (!skb) {
4970 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
4971 		return;
4972 	}
4973 	start = TCP_SKB_CB(skb)->seq;
4974 	end = TCP_SKB_CB(skb)->end_seq;
4975 	range_truesize = skb->truesize;
4976 
4977 	for (head = skb;;) {
4978 		skb = skb_rb_next(skb);
4979 
4980 		/* Range is terminated when we see a gap or when
4981 		 * we are at the queue end.
4982 		 */
4983 		if (!skb ||
4984 		    after(TCP_SKB_CB(skb)->seq, end) ||
4985 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4986 			/* Do not attempt collapsing tiny skbs */
4987 			if (range_truesize != head->truesize ||
4988 			    end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
4989 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4990 					     head, skb, start, end);
4991 			} else {
4992 				sum_tiny += range_truesize;
4993 				if (sum_tiny > sk->sk_rcvbuf >> 3)
4994 					return;
4995 			}
4996 			goto new_range;
4997 		}
4998 
4999 		range_truesize += skb->truesize;
5000 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5001 			start = TCP_SKB_CB(skb)->seq;
5002 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5003 			end = TCP_SKB_CB(skb)->end_seq;
5004 	}
5005 }
5006 
5007 /*
5008  * Clean the out-of-order queue to make room.
5009  * We drop high sequences packets to :
5010  * 1) Let a chance for holes to be filled.
5011  * 2) not add too big latencies if thousands of packets sit there.
5012  *    (But if application shrinks SO_RCVBUF, we could still end up
5013  *     freeing whole queue here)
5014  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5015  *
5016  * Return true if queue has shrunk.
5017  */
5018 static bool tcp_prune_ofo_queue(struct sock *sk)
5019 {
5020 	struct tcp_sock *tp = tcp_sk(sk);
5021 	struct rb_node *node, *prev;
5022 	int goal;
5023 
5024 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5025 		return false;
5026 
5027 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5028 	goal = sk->sk_rcvbuf >> 3;
5029 	node = &tp->ooo_last_skb->rbnode;
5030 	do {
5031 		prev = rb_prev(node);
5032 		rb_erase(node, &tp->out_of_order_queue);
5033 		goal -= rb_to_skb(node)->truesize;
5034 		tcp_drop(sk, rb_to_skb(node));
5035 		if (!prev || goal <= 0) {
5036 			sk_mem_reclaim(sk);
5037 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5038 			    !tcp_under_memory_pressure(sk))
5039 				break;
5040 			goal = sk->sk_rcvbuf >> 3;
5041 		}
5042 		node = prev;
5043 	} while (node);
5044 	tp->ooo_last_skb = rb_to_skb(prev);
5045 
5046 	/* Reset SACK state.  A conforming SACK implementation will
5047 	 * do the same at a timeout based retransmit.  When a connection
5048 	 * is in a sad state like this, we care only about integrity
5049 	 * of the connection not performance.
5050 	 */
5051 	if (tp->rx_opt.sack_ok)
5052 		tcp_sack_reset(&tp->rx_opt);
5053 	return true;
5054 }
5055 
5056 /* Reduce allocated memory if we can, trying to get
5057  * the socket within its memory limits again.
5058  *
5059  * Return less than zero if we should start dropping frames
5060  * until the socket owning process reads some of the data
5061  * to stabilize the situation.
5062  */
5063 static int tcp_prune_queue(struct sock *sk)
5064 {
5065 	struct tcp_sock *tp = tcp_sk(sk);
5066 
5067 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5068 
5069 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5070 		tcp_clamp_window(sk);
5071 	else if (tcp_under_memory_pressure(sk))
5072 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5073 
5074 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5075 		return 0;
5076 
5077 	tcp_collapse_ofo_queue(sk);
5078 	if (!skb_queue_empty(&sk->sk_receive_queue))
5079 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5080 			     skb_peek(&sk->sk_receive_queue),
5081 			     NULL,
5082 			     tp->copied_seq, tp->rcv_nxt);
5083 	sk_mem_reclaim(sk);
5084 
5085 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5086 		return 0;
5087 
5088 	/* Collapsing did not help, destructive actions follow.
5089 	 * This must not ever occur. */
5090 
5091 	tcp_prune_ofo_queue(sk);
5092 
5093 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5094 		return 0;
5095 
5096 	/* If we are really being abused, tell the caller to silently
5097 	 * drop receive data on the floor.  It will get retransmitted
5098 	 * and hopefully then we'll have sufficient space.
5099 	 */
5100 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5101 
5102 	/* Massive buffer overcommit. */
5103 	tp->pred_flags = 0;
5104 	return -1;
5105 }
5106 
5107 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5108 {
5109 	const struct tcp_sock *tp = tcp_sk(sk);
5110 
5111 	/* If the user specified a specific send buffer setting, do
5112 	 * not modify it.
5113 	 */
5114 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5115 		return false;
5116 
5117 	/* If we are under global TCP memory pressure, do not expand.  */
5118 	if (tcp_under_memory_pressure(sk))
5119 		return false;
5120 
5121 	/* If we are under soft global TCP memory pressure, do not expand.  */
5122 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5123 		return false;
5124 
5125 	/* If we filled the congestion window, do not expand.  */
5126 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5127 		return false;
5128 
5129 	return true;
5130 }
5131 
5132 /* When incoming ACK allowed to free some skb from write_queue,
5133  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5134  * on the exit from tcp input handler.
5135  *
5136  * PROBLEM: sndbuf expansion does not work well with largesend.
5137  */
5138 static void tcp_new_space(struct sock *sk)
5139 {
5140 	struct tcp_sock *tp = tcp_sk(sk);
5141 
5142 	if (tcp_should_expand_sndbuf(sk)) {
5143 		tcp_sndbuf_expand(sk);
5144 		tp->snd_cwnd_stamp = tcp_jiffies32;
5145 	}
5146 
5147 	sk->sk_write_space(sk);
5148 }
5149 
5150 static void tcp_check_space(struct sock *sk)
5151 {
5152 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5153 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5154 		/* pairs with tcp_poll() */
5155 		smp_mb();
5156 		if (sk->sk_socket &&
5157 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5158 			tcp_new_space(sk);
5159 			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5160 				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5161 		}
5162 	}
5163 }
5164 
5165 static inline void tcp_data_snd_check(struct sock *sk)
5166 {
5167 	tcp_push_pending_frames(sk);
5168 	tcp_check_space(sk);
5169 }
5170 
5171 /*
5172  * Check if sending an ack is needed.
5173  */
5174 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5175 {
5176 	struct tcp_sock *tp = tcp_sk(sk);
5177 	unsigned long rtt, delay;
5178 
5179 	    /* More than one full frame received... */
5180 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5181 	     /* ... and right edge of window advances far enough.
5182 	      * (tcp_recvmsg() will send ACK otherwise).
5183 	      * If application uses SO_RCVLOWAT, we want send ack now if
5184 	      * we have not received enough bytes to satisfy the condition.
5185 	      */
5186 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5187 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5188 	    /* We ACK each frame or... */
5189 	    tcp_in_quickack_mode(sk) ||
5190 	    /* Protocol state mandates a one-time immediate ACK */
5191 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5192 send_now:
5193 		tcp_send_ack(sk);
5194 		return;
5195 	}
5196 
5197 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5198 		tcp_send_delayed_ack(sk);
5199 		return;
5200 	}
5201 
5202 	if (!tcp_is_sack(tp) ||
5203 	    tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5204 		goto send_now;
5205 
5206 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5207 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5208 		if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
5209 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
5210 				      tp->compressed_ack - TCP_FASTRETRANS_THRESH);
5211 		tp->compressed_ack = 0;
5212 	}
5213 
5214 	if (++tp->compressed_ack <= TCP_FASTRETRANS_THRESH)
5215 		goto send_now;
5216 
5217 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5218 		return;
5219 
5220 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5221 
5222 	rtt = tp->rcv_rtt_est.rtt_us;
5223 	if (tp->srtt_us && tp->srtt_us < rtt)
5224 		rtt = tp->srtt_us;
5225 
5226 	delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5227 		      rtt * (NSEC_PER_USEC >> 3)/20);
5228 	sock_hold(sk);
5229 	hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay),
5230 		      HRTIMER_MODE_REL_PINNED_SOFT);
5231 }
5232 
5233 static inline void tcp_ack_snd_check(struct sock *sk)
5234 {
5235 	if (!inet_csk_ack_scheduled(sk)) {
5236 		/* We sent a data segment already. */
5237 		return;
5238 	}
5239 	__tcp_ack_snd_check(sk, 1);
5240 }
5241 
5242 /*
5243  *	This routine is only called when we have urgent data
5244  *	signaled. Its the 'slow' part of tcp_urg. It could be
5245  *	moved inline now as tcp_urg is only called from one
5246  *	place. We handle URGent data wrong. We have to - as
5247  *	BSD still doesn't use the correction from RFC961.
5248  *	For 1003.1g we should support a new option TCP_STDURG to permit
5249  *	either form (or just set the sysctl tcp_stdurg).
5250  */
5251 
5252 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5253 {
5254 	struct tcp_sock *tp = tcp_sk(sk);
5255 	u32 ptr = ntohs(th->urg_ptr);
5256 
5257 	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5258 		ptr--;
5259 	ptr += ntohl(th->seq);
5260 
5261 	/* Ignore urgent data that we've already seen and read. */
5262 	if (after(tp->copied_seq, ptr))
5263 		return;
5264 
5265 	/* Do not replay urg ptr.
5266 	 *
5267 	 * NOTE: interesting situation not covered by specs.
5268 	 * Misbehaving sender may send urg ptr, pointing to segment,
5269 	 * which we already have in ofo queue. We are not able to fetch
5270 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5271 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5272 	 * situations. But it is worth to think about possibility of some
5273 	 * DoSes using some hypothetical application level deadlock.
5274 	 */
5275 	if (before(ptr, tp->rcv_nxt))
5276 		return;
5277 
5278 	/* Do we already have a newer (or duplicate) urgent pointer? */
5279 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5280 		return;
5281 
5282 	/* Tell the world about our new urgent pointer. */
5283 	sk_send_sigurg(sk);
5284 
5285 	/* We may be adding urgent data when the last byte read was
5286 	 * urgent. To do this requires some care. We cannot just ignore
5287 	 * tp->copied_seq since we would read the last urgent byte again
5288 	 * as data, nor can we alter copied_seq until this data arrives
5289 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5290 	 *
5291 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5292 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5293 	 * and expect that both A and B disappear from stream. This is _wrong_.
5294 	 * Though this happens in BSD with high probability, this is occasional.
5295 	 * Any application relying on this is buggy. Note also, that fix "works"
5296 	 * only in this artificial test. Insert some normal data between A and B and we will
5297 	 * decline of BSD again. Verdict: it is better to remove to trap
5298 	 * buggy users.
5299 	 */
5300 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5301 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5302 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5303 		tp->copied_seq++;
5304 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5305 			__skb_unlink(skb, &sk->sk_receive_queue);
5306 			__kfree_skb(skb);
5307 		}
5308 	}
5309 
5310 	tp->urg_data = TCP_URG_NOTYET;
5311 	tp->urg_seq = ptr;
5312 
5313 	/* Disable header prediction. */
5314 	tp->pred_flags = 0;
5315 }
5316 
5317 /* This is the 'fast' part of urgent handling. */
5318 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5319 {
5320 	struct tcp_sock *tp = tcp_sk(sk);
5321 
5322 	/* Check if we get a new urgent pointer - normally not. */
5323 	if (th->urg)
5324 		tcp_check_urg(sk, th);
5325 
5326 	/* Do we wait for any urgent data? - normally not... */
5327 	if (tp->urg_data == TCP_URG_NOTYET) {
5328 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5329 			  th->syn;
5330 
5331 		/* Is the urgent pointer pointing into this packet? */
5332 		if (ptr < skb->len) {
5333 			u8 tmp;
5334 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5335 				BUG();
5336 			tp->urg_data = TCP_URG_VALID | tmp;
5337 			if (!sock_flag(sk, SOCK_DEAD))
5338 				sk->sk_data_ready(sk);
5339 		}
5340 	}
5341 }
5342 
5343 /* Accept RST for rcv_nxt - 1 after a FIN.
5344  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5345  * FIN is sent followed by a RST packet. The RST is sent with the same
5346  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5347  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5348  * ACKs on the closed socket. In addition middleboxes can drop either the
5349  * challenge ACK or a subsequent RST.
5350  */
5351 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5352 {
5353 	struct tcp_sock *tp = tcp_sk(sk);
5354 
5355 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5356 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5357 					       TCPF_CLOSING));
5358 }
5359 
5360 /* Does PAWS and seqno based validation of an incoming segment, flags will
5361  * play significant role here.
5362  */
5363 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5364 				  const struct tcphdr *th, int syn_inerr)
5365 {
5366 	struct tcp_sock *tp = tcp_sk(sk);
5367 	bool rst_seq_match = false;
5368 
5369 	/* RFC1323: H1. Apply PAWS check first. */
5370 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5371 	    tp->rx_opt.saw_tstamp &&
5372 	    tcp_paws_discard(sk, skb)) {
5373 		if (!th->rst) {
5374 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5375 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5376 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5377 						  &tp->last_oow_ack_time))
5378 				tcp_send_dupack(sk, skb);
5379 			goto discard;
5380 		}
5381 		/* Reset is accepted even if it did not pass PAWS. */
5382 	}
5383 
5384 	/* Step 1: check sequence number */
5385 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5386 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5387 		 * (RST) segments are validated by checking their SEQ-fields."
5388 		 * And page 69: "If an incoming segment is not acceptable,
5389 		 * an acknowledgment should be sent in reply (unless the RST
5390 		 * bit is set, if so drop the segment and return)".
5391 		 */
5392 		if (!th->rst) {
5393 			if (th->syn)
5394 				goto syn_challenge;
5395 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5396 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5397 						  &tp->last_oow_ack_time))
5398 				tcp_send_dupack(sk, skb);
5399 		} else if (tcp_reset_check(sk, skb)) {
5400 			tcp_reset(sk);
5401 		}
5402 		goto discard;
5403 	}
5404 
5405 	/* Step 2: check RST bit */
5406 	if (th->rst) {
5407 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5408 		 * FIN and SACK too if available):
5409 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5410 		 * the right-most SACK block,
5411 		 * then
5412 		 *     RESET the connection
5413 		 * else
5414 		 *     Send a challenge ACK
5415 		 */
5416 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5417 		    tcp_reset_check(sk, skb)) {
5418 			rst_seq_match = true;
5419 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5420 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5421 			int max_sack = sp[0].end_seq;
5422 			int this_sack;
5423 
5424 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5425 			     ++this_sack) {
5426 				max_sack = after(sp[this_sack].end_seq,
5427 						 max_sack) ?
5428 					sp[this_sack].end_seq : max_sack;
5429 			}
5430 
5431 			if (TCP_SKB_CB(skb)->seq == max_sack)
5432 				rst_seq_match = true;
5433 		}
5434 
5435 		if (rst_seq_match)
5436 			tcp_reset(sk);
5437 		else {
5438 			/* Disable TFO if RST is out-of-order
5439 			 * and no data has been received
5440 			 * for current active TFO socket
5441 			 */
5442 			if (tp->syn_fastopen && !tp->data_segs_in &&
5443 			    sk->sk_state == TCP_ESTABLISHED)
5444 				tcp_fastopen_active_disable(sk);
5445 			tcp_send_challenge_ack(sk, skb);
5446 		}
5447 		goto discard;
5448 	}
5449 
5450 	/* step 3: check security and precedence [ignored] */
5451 
5452 	/* step 4: Check for a SYN
5453 	 * RFC 5961 4.2 : Send a challenge ack
5454 	 */
5455 	if (th->syn) {
5456 syn_challenge:
5457 		if (syn_inerr)
5458 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5459 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5460 		tcp_send_challenge_ack(sk, skb);
5461 		goto discard;
5462 	}
5463 
5464 	return true;
5465 
5466 discard:
5467 	tcp_drop(sk, skb);
5468 	return false;
5469 }
5470 
5471 /*
5472  *	TCP receive function for the ESTABLISHED state.
5473  *
5474  *	It is split into a fast path and a slow path. The fast path is
5475  * 	disabled when:
5476  *	- A zero window was announced from us - zero window probing
5477  *        is only handled properly in the slow path.
5478  *	- Out of order segments arrived.
5479  *	- Urgent data is expected.
5480  *	- There is no buffer space left
5481  *	- Unexpected TCP flags/window values/header lengths are received
5482  *	  (detected by checking the TCP header against pred_flags)
5483  *	- Data is sent in both directions. Fast path only supports pure senders
5484  *	  or pure receivers (this means either the sequence number or the ack
5485  *	  value must stay constant)
5486  *	- Unexpected TCP option.
5487  *
5488  *	When these conditions are not satisfied it drops into a standard
5489  *	receive procedure patterned after RFC793 to handle all cases.
5490  *	The first three cases are guaranteed by proper pred_flags setting,
5491  *	the rest is checked inline. Fast processing is turned on in
5492  *	tcp_data_queue when everything is OK.
5493  */
5494 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5495 {
5496 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5497 	struct tcp_sock *tp = tcp_sk(sk);
5498 	unsigned int len = skb->len;
5499 
5500 	/* TCP congestion window tracking */
5501 	trace_tcp_probe(sk, skb);
5502 
5503 	tcp_mstamp_refresh(tp);
5504 	if (unlikely(!sk->sk_rx_dst))
5505 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5506 	/*
5507 	 *	Header prediction.
5508 	 *	The code loosely follows the one in the famous
5509 	 *	"30 instruction TCP receive" Van Jacobson mail.
5510 	 *
5511 	 *	Van's trick is to deposit buffers into socket queue
5512 	 *	on a device interrupt, to call tcp_recv function
5513 	 *	on the receive process context and checksum and copy
5514 	 *	the buffer to user space. smart...
5515 	 *
5516 	 *	Our current scheme is not silly either but we take the
5517 	 *	extra cost of the net_bh soft interrupt processing...
5518 	 *	We do checksum and copy also but from device to kernel.
5519 	 */
5520 
5521 	tp->rx_opt.saw_tstamp = 0;
5522 
5523 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5524 	 *	if header_prediction is to be made
5525 	 *	'S' will always be tp->tcp_header_len >> 2
5526 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5527 	 *  turn it off	(when there are holes in the receive
5528 	 *	 space for instance)
5529 	 *	PSH flag is ignored.
5530 	 */
5531 
5532 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5533 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5534 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5535 		int tcp_header_len = tp->tcp_header_len;
5536 
5537 		/* Timestamp header prediction: tcp_header_len
5538 		 * is automatically equal to th->doff*4 due to pred_flags
5539 		 * match.
5540 		 */
5541 
5542 		/* Check timestamp */
5543 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5544 			/* No? Slow path! */
5545 			if (!tcp_parse_aligned_timestamp(tp, th))
5546 				goto slow_path;
5547 
5548 			/* If PAWS failed, check it more carefully in slow path */
5549 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5550 				goto slow_path;
5551 
5552 			/* DO NOT update ts_recent here, if checksum fails
5553 			 * and timestamp was corrupted part, it will result
5554 			 * in a hung connection since we will drop all
5555 			 * future packets due to the PAWS test.
5556 			 */
5557 		}
5558 
5559 		if (len <= tcp_header_len) {
5560 			/* Bulk data transfer: sender */
5561 			if (len == tcp_header_len) {
5562 				/* Predicted packet is in window by definition.
5563 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5564 				 * Hence, check seq<=rcv_wup reduces to:
5565 				 */
5566 				if (tcp_header_len ==
5567 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5568 				    tp->rcv_nxt == tp->rcv_wup)
5569 					tcp_store_ts_recent(tp);
5570 
5571 				/* We know that such packets are checksummed
5572 				 * on entry.
5573 				 */
5574 				tcp_ack(sk, skb, 0);
5575 				__kfree_skb(skb);
5576 				tcp_data_snd_check(sk);
5577 				/* When receiving pure ack in fast path, update
5578 				 * last ts ecr directly instead of calling
5579 				 * tcp_rcv_rtt_measure_ts()
5580 				 */
5581 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5582 				return;
5583 			} else { /* Header too small */
5584 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5585 				goto discard;
5586 			}
5587 		} else {
5588 			int eaten = 0;
5589 			bool fragstolen = false;
5590 
5591 			if (tcp_checksum_complete(skb))
5592 				goto csum_error;
5593 
5594 			if ((int)skb->truesize > sk->sk_forward_alloc)
5595 				goto step5;
5596 
5597 			/* Predicted packet is in window by definition.
5598 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5599 			 * Hence, check seq<=rcv_wup reduces to:
5600 			 */
5601 			if (tcp_header_len ==
5602 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5603 			    tp->rcv_nxt == tp->rcv_wup)
5604 				tcp_store_ts_recent(tp);
5605 
5606 			tcp_rcv_rtt_measure_ts(sk, skb);
5607 
5608 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5609 
5610 			/* Bulk data transfer: receiver */
5611 			__skb_pull(skb, tcp_header_len);
5612 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5613 
5614 			tcp_event_data_recv(sk, skb);
5615 
5616 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5617 				/* Well, only one small jumplet in fast path... */
5618 				tcp_ack(sk, skb, FLAG_DATA);
5619 				tcp_data_snd_check(sk);
5620 				if (!inet_csk_ack_scheduled(sk))
5621 					goto no_ack;
5622 			}
5623 
5624 			__tcp_ack_snd_check(sk, 0);
5625 no_ack:
5626 			if (eaten)
5627 				kfree_skb_partial(skb, fragstolen);
5628 			tcp_data_ready(sk);
5629 			return;
5630 		}
5631 	}
5632 
5633 slow_path:
5634 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5635 		goto csum_error;
5636 
5637 	if (!th->ack && !th->rst && !th->syn)
5638 		goto discard;
5639 
5640 	/*
5641 	 *	Standard slow path.
5642 	 */
5643 
5644 	if (!tcp_validate_incoming(sk, skb, th, 1))
5645 		return;
5646 
5647 step5:
5648 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5649 		goto discard;
5650 
5651 	tcp_rcv_rtt_measure_ts(sk, skb);
5652 
5653 	/* Process urgent data. */
5654 	tcp_urg(sk, skb, th);
5655 
5656 	/* step 7: process the segment text */
5657 	tcp_data_queue(sk, skb);
5658 
5659 	tcp_data_snd_check(sk);
5660 	tcp_ack_snd_check(sk);
5661 	return;
5662 
5663 csum_error:
5664 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5665 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5666 
5667 discard:
5668 	tcp_drop(sk, skb);
5669 }
5670 EXPORT_SYMBOL(tcp_rcv_established);
5671 
5672 void tcp_init_transfer(struct sock *sk, int bpf_op)
5673 {
5674 	struct inet_connection_sock *icsk = inet_csk(sk);
5675 	struct tcp_sock *tp = tcp_sk(sk);
5676 
5677 	tcp_mtup_init(sk);
5678 	icsk->icsk_af_ops->rebuild_header(sk);
5679 	tcp_init_metrics(sk);
5680 
5681 	/* Initialize the congestion window to start the transfer.
5682 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5683 	 * retransmitted. In light of RFC6298 more aggressive 1sec
5684 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5685 	 * retransmission has occurred.
5686 	 */
5687 	if (tp->total_retrans > 1 && tp->undo_marker)
5688 		tp->snd_cwnd = 1;
5689 	else
5690 		tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5691 	tp->snd_cwnd_stamp = tcp_jiffies32;
5692 
5693 	tcp_call_bpf(sk, bpf_op, 0, NULL);
5694 	tcp_init_congestion_control(sk);
5695 	tcp_init_buffer_space(sk);
5696 }
5697 
5698 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5699 {
5700 	struct tcp_sock *tp = tcp_sk(sk);
5701 	struct inet_connection_sock *icsk = inet_csk(sk);
5702 
5703 	tcp_set_state(sk, TCP_ESTABLISHED);
5704 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5705 
5706 	if (skb) {
5707 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5708 		security_inet_conn_established(sk, skb);
5709 		sk_mark_napi_id(sk, skb);
5710 	}
5711 
5712 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5713 
5714 	/* Prevent spurious tcp_cwnd_restart() on first data
5715 	 * packet.
5716 	 */
5717 	tp->lsndtime = tcp_jiffies32;
5718 
5719 	if (sock_flag(sk, SOCK_KEEPOPEN))
5720 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5721 
5722 	if (!tp->rx_opt.snd_wscale)
5723 		__tcp_fast_path_on(tp, tp->snd_wnd);
5724 	else
5725 		tp->pred_flags = 0;
5726 }
5727 
5728 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5729 				    struct tcp_fastopen_cookie *cookie)
5730 {
5731 	struct tcp_sock *tp = tcp_sk(sk);
5732 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5733 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5734 	bool syn_drop = false;
5735 
5736 	if (mss == tp->rx_opt.user_mss) {
5737 		struct tcp_options_received opt;
5738 
5739 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5740 		tcp_clear_options(&opt);
5741 		opt.user_mss = opt.mss_clamp = 0;
5742 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5743 		mss = opt.mss_clamp;
5744 	}
5745 
5746 	if (!tp->syn_fastopen) {
5747 		/* Ignore an unsolicited cookie */
5748 		cookie->len = -1;
5749 	} else if (tp->total_retrans) {
5750 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5751 		 * acknowledges data. Presumably the remote received only
5752 		 * the retransmitted (regular) SYNs: either the original
5753 		 * SYN-data or the corresponding SYN-ACK was dropped.
5754 		 */
5755 		syn_drop = (cookie->len < 0 && data);
5756 	} else if (cookie->len < 0 && !tp->syn_data) {
5757 		/* We requested a cookie but didn't get it. If we did not use
5758 		 * the (old) exp opt format then try so next time (try_exp=1).
5759 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5760 		 */
5761 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5762 	}
5763 
5764 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5765 
5766 	if (data) { /* Retransmit unacked data in SYN */
5767 		skb_rbtree_walk_from(data) {
5768 			if (__tcp_retransmit_skb(sk, data, 1))
5769 				break;
5770 		}
5771 		tcp_rearm_rto(sk);
5772 		NET_INC_STATS(sock_net(sk),
5773 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5774 		return true;
5775 	}
5776 	tp->syn_data_acked = tp->syn_data;
5777 	if (tp->syn_data_acked) {
5778 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5779 		/* SYN-data is counted as two separate packets in tcp_ack() */
5780 		if (tp->delivered > 1)
5781 			--tp->delivered;
5782 	}
5783 
5784 	tcp_fastopen_add_skb(sk, synack);
5785 
5786 	return false;
5787 }
5788 
5789 static void smc_check_reset_syn(struct tcp_sock *tp)
5790 {
5791 #if IS_ENABLED(CONFIG_SMC)
5792 	if (static_branch_unlikely(&tcp_have_smc)) {
5793 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
5794 			tp->syn_smc = 0;
5795 	}
5796 #endif
5797 }
5798 
5799 static void tcp_try_undo_spurious_syn(struct sock *sk)
5800 {
5801 	struct tcp_sock *tp = tcp_sk(sk);
5802 	u32 syn_stamp;
5803 
5804 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
5805 	 * spurious if the ACK's timestamp option echo value matches the
5806 	 * original SYN timestamp.
5807 	 */
5808 	syn_stamp = tp->retrans_stamp;
5809 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
5810 	    syn_stamp == tp->rx_opt.rcv_tsecr)
5811 		tp->undo_marker = 0;
5812 }
5813 
5814 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5815 					 const struct tcphdr *th)
5816 {
5817 	struct inet_connection_sock *icsk = inet_csk(sk);
5818 	struct tcp_sock *tp = tcp_sk(sk);
5819 	struct tcp_fastopen_cookie foc = { .len = -1 };
5820 	int saved_clamp = tp->rx_opt.mss_clamp;
5821 	bool fastopen_fail;
5822 
5823 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5824 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5825 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5826 
5827 	if (th->ack) {
5828 		/* rfc793:
5829 		 * "If the state is SYN-SENT then
5830 		 *    first check the ACK bit
5831 		 *      If the ACK bit is set
5832 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5833 		 *        a reset (unless the RST bit is set, if so drop
5834 		 *        the segment and return)"
5835 		 */
5836 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5837 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5838 			goto reset_and_undo;
5839 
5840 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5841 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5842 			     tcp_time_stamp(tp))) {
5843 			NET_INC_STATS(sock_net(sk),
5844 					LINUX_MIB_PAWSACTIVEREJECTED);
5845 			goto reset_and_undo;
5846 		}
5847 
5848 		/* Now ACK is acceptable.
5849 		 *
5850 		 * "If the RST bit is set
5851 		 *    If the ACK was acceptable then signal the user "error:
5852 		 *    connection reset", drop the segment, enter CLOSED state,
5853 		 *    delete TCB, and return."
5854 		 */
5855 
5856 		if (th->rst) {
5857 			tcp_reset(sk);
5858 			goto discard;
5859 		}
5860 
5861 		/* rfc793:
5862 		 *   "fifth, if neither of the SYN or RST bits is set then
5863 		 *    drop the segment and return."
5864 		 *
5865 		 *    See note below!
5866 		 *                                        --ANK(990513)
5867 		 */
5868 		if (!th->syn)
5869 			goto discard_and_undo;
5870 
5871 		/* rfc793:
5872 		 *   "If the SYN bit is on ...
5873 		 *    are acceptable then ...
5874 		 *    (our SYN has been ACKed), change the connection
5875 		 *    state to ESTABLISHED..."
5876 		 */
5877 
5878 		tcp_ecn_rcv_synack(tp, th);
5879 
5880 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5881 		tcp_try_undo_spurious_syn(sk);
5882 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5883 
5884 		/* Ok.. it's good. Set up sequence numbers and
5885 		 * move to established.
5886 		 */
5887 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5888 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5889 
5890 		/* RFC1323: The window in SYN & SYN/ACK segments is
5891 		 * never scaled.
5892 		 */
5893 		tp->snd_wnd = ntohs(th->window);
5894 
5895 		if (!tp->rx_opt.wscale_ok) {
5896 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5897 			tp->window_clamp = min(tp->window_clamp, 65535U);
5898 		}
5899 
5900 		if (tp->rx_opt.saw_tstamp) {
5901 			tp->rx_opt.tstamp_ok	   = 1;
5902 			tp->tcp_header_len =
5903 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5904 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5905 			tcp_store_ts_recent(tp);
5906 		} else {
5907 			tp->tcp_header_len = sizeof(struct tcphdr);
5908 		}
5909 
5910 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5911 		tcp_initialize_rcv_mss(sk);
5912 
5913 		/* Remember, tcp_poll() does not lock socket!
5914 		 * Change state from SYN-SENT only after copied_seq
5915 		 * is initialized. */
5916 		tp->copied_seq = tp->rcv_nxt;
5917 
5918 		smc_check_reset_syn(tp);
5919 
5920 		smp_mb();
5921 
5922 		tcp_finish_connect(sk, skb);
5923 
5924 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5925 				tcp_rcv_fastopen_synack(sk, skb, &foc);
5926 
5927 		if (!sock_flag(sk, SOCK_DEAD)) {
5928 			sk->sk_state_change(sk);
5929 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5930 		}
5931 		if (fastopen_fail)
5932 			return -1;
5933 		if (sk->sk_write_pending ||
5934 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5935 		    inet_csk_in_pingpong_mode(sk)) {
5936 			/* Save one ACK. Data will be ready after
5937 			 * several ticks, if write_pending is set.
5938 			 *
5939 			 * It may be deleted, but with this feature tcpdumps
5940 			 * look so _wonderfully_ clever, that I was not able
5941 			 * to stand against the temptation 8)     --ANK
5942 			 */
5943 			inet_csk_schedule_ack(sk);
5944 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5945 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5946 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5947 
5948 discard:
5949 			tcp_drop(sk, skb);
5950 			return 0;
5951 		} else {
5952 			tcp_send_ack(sk);
5953 		}
5954 		return -1;
5955 	}
5956 
5957 	/* No ACK in the segment */
5958 
5959 	if (th->rst) {
5960 		/* rfc793:
5961 		 * "If the RST bit is set
5962 		 *
5963 		 *      Otherwise (no ACK) drop the segment and return."
5964 		 */
5965 
5966 		goto discard_and_undo;
5967 	}
5968 
5969 	/* PAWS check. */
5970 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5971 	    tcp_paws_reject(&tp->rx_opt, 0))
5972 		goto discard_and_undo;
5973 
5974 	if (th->syn) {
5975 		/* We see SYN without ACK. It is attempt of
5976 		 * simultaneous connect with crossed SYNs.
5977 		 * Particularly, it can be connect to self.
5978 		 */
5979 		tcp_set_state(sk, TCP_SYN_RECV);
5980 
5981 		if (tp->rx_opt.saw_tstamp) {
5982 			tp->rx_opt.tstamp_ok = 1;
5983 			tcp_store_ts_recent(tp);
5984 			tp->tcp_header_len =
5985 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5986 		} else {
5987 			tp->tcp_header_len = sizeof(struct tcphdr);
5988 		}
5989 
5990 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5991 		tp->copied_seq = tp->rcv_nxt;
5992 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5993 
5994 		/* RFC1323: The window in SYN & SYN/ACK segments is
5995 		 * never scaled.
5996 		 */
5997 		tp->snd_wnd    = ntohs(th->window);
5998 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5999 		tp->max_window = tp->snd_wnd;
6000 
6001 		tcp_ecn_rcv_syn(tp, th);
6002 
6003 		tcp_mtup_init(sk);
6004 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6005 		tcp_initialize_rcv_mss(sk);
6006 
6007 		tcp_send_synack(sk);
6008 #if 0
6009 		/* Note, we could accept data and URG from this segment.
6010 		 * There are no obstacles to make this (except that we must
6011 		 * either change tcp_recvmsg() to prevent it from returning data
6012 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6013 		 *
6014 		 * However, if we ignore data in ACKless segments sometimes,
6015 		 * we have no reasons to accept it sometimes.
6016 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6017 		 * is not flawless. So, discard packet for sanity.
6018 		 * Uncomment this return to process the data.
6019 		 */
6020 		return -1;
6021 #else
6022 		goto discard;
6023 #endif
6024 	}
6025 	/* "fifth, if neither of the SYN or RST bits is set then
6026 	 * drop the segment and return."
6027 	 */
6028 
6029 discard_and_undo:
6030 	tcp_clear_options(&tp->rx_opt);
6031 	tp->rx_opt.mss_clamp = saved_clamp;
6032 	goto discard;
6033 
6034 reset_and_undo:
6035 	tcp_clear_options(&tp->rx_opt);
6036 	tp->rx_opt.mss_clamp = saved_clamp;
6037 	return 1;
6038 }
6039 
6040 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6041 {
6042 	tcp_try_undo_loss(sk, false);
6043 
6044 	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6045 	tcp_sk(sk)->retrans_stamp = 0;
6046 	inet_csk(sk)->icsk_retransmits = 0;
6047 
6048 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6049 	 * we no longer need req so release it.
6050 	 */
6051 	reqsk_fastopen_remove(sk, tcp_sk(sk)->fastopen_rsk, false);
6052 
6053 	/* Re-arm the timer because data may have been sent out.
6054 	 * This is similar to the regular data transmission case
6055 	 * when new data has just been ack'ed.
6056 	 *
6057 	 * (TFO) - we could try to be more aggressive and
6058 	 * retransmitting any data sooner based on when they
6059 	 * are sent out.
6060 	 */
6061 	tcp_rearm_rto(sk);
6062 }
6063 
6064 /*
6065  *	This function implements the receiving procedure of RFC 793 for
6066  *	all states except ESTABLISHED and TIME_WAIT.
6067  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6068  *	address independent.
6069  */
6070 
6071 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6072 {
6073 	struct tcp_sock *tp = tcp_sk(sk);
6074 	struct inet_connection_sock *icsk = inet_csk(sk);
6075 	const struct tcphdr *th = tcp_hdr(skb);
6076 	struct request_sock *req;
6077 	int queued = 0;
6078 	bool acceptable;
6079 
6080 	switch (sk->sk_state) {
6081 	case TCP_CLOSE:
6082 		goto discard;
6083 
6084 	case TCP_LISTEN:
6085 		if (th->ack)
6086 			return 1;
6087 
6088 		if (th->rst)
6089 			goto discard;
6090 
6091 		if (th->syn) {
6092 			if (th->fin)
6093 				goto discard;
6094 			/* It is possible that we process SYN packets from backlog,
6095 			 * so we need to make sure to disable BH and RCU right there.
6096 			 */
6097 			rcu_read_lock();
6098 			local_bh_disable();
6099 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6100 			local_bh_enable();
6101 			rcu_read_unlock();
6102 
6103 			if (!acceptable)
6104 				return 1;
6105 			consume_skb(skb);
6106 			return 0;
6107 		}
6108 		goto discard;
6109 
6110 	case TCP_SYN_SENT:
6111 		tp->rx_opt.saw_tstamp = 0;
6112 		tcp_mstamp_refresh(tp);
6113 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6114 		if (queued >= 0)
6115 			return queued;
6116 
6117 		/* Do step6 onward by hand. */
6118 		tcp_urg(sk, skb, th);
6119 		__kfree_skb(skb);
6120 		tcp_data_snd_check(sk);
6121 		return 0;
6122 	}
6123 
6124 	tcp_mstamp_refresh(tp);
6125 	tp->rx_opt.saw_tstamp = 0;
6126 	req = tp->fastopen_rsk;
6127 	if (req) {
6128 		bool req_stolen;
6129 
6130 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6131 		    sk->sk_state != TCP_FIN_WAIT1);
6132 
6133 		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6134 			goto discard;
6135 	}
6136 
6137 	if (!th->ack && !th->rst && !th->syn)
6138 		goto discard;
6139 
6140 	if (!tcp_validate_incoming(sk, skb, th, 0))
6141 		return 0;
6142 
6143 	/* step 5: check the ACK field */
6144 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6145 				      FLAG_UPDATE_TS_RECENT |
6146 				      FLAG_NO_CHALLENGE_ACK) > 0;
6147 
6148 	if (!acceptable) {
6149 		if (sk->sk_state == TCP_SYN_RECV)
6150 			return 1;	/* send one RST */
6151 		tcp_send_challenge_ack(sk, skb);
6152 		goto discard;
6153 	}
6154 	switch (sk->sk_state) {
6155 	case TCP_SYN_RECV:
6156 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6157 		if (!tp->srtt_us)
6158 			tcp_synack_rtt_meas(sk, req);
6159 
6160 		if (req) {
6161 			tcp_rcv_synrecv_state_fastopen(sk);
6162 		} else {
6163 			tcp_try_undo_spurious_syn(sk);
6164 			tp->retrans_stamp = 0;
6165 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
6166 			tp->copied_seq = tp->rcv_nxt;
6167 		}
6168 		smp_mb();
6169 		tcp_set_state(sk, TCP_ESTABLISHED);
6170 		sk->sk_state_change(sk);
6171 
6172 		/* Note, that this wakeup is only for marginal crossed SYN case.
6173 		 * Passively open sockets are not waked up, because
6174 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6175 		 */
6176 		if (sk->sk_socket)
6177 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6178 
6179 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6180 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6181 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6182 
6183 		if (tp->rx_opt.tstamp_ok)
6184 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6185 
6186 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6187 			tcp_update_pacing_rate(sk);
6188 
6189 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6190 		tp->lsndtime = tcp_jiffies32;
6191 
6192 		tcp_initialize_rcv_mss(sk);
6193 		tcp_fast_path_on(tp);
6194 		break;
6195 
6196 	case TCP_FIN_WAIT1: {
6197 		int tmo;
6198 
6199 		if (req)
6200 			tcp_rcv_synrecv_state_fastopen(sk);
6201 
6202 		if (tp->snd_una != tp->write_seq)
6203 			break;
6204 
6205 		tcp_set_state(sk, TCP_FIN_WAIT2);
6206 		sk->sk_shutdown |= SEND_SHUTDOWN;
6207 
6208 		sk_dst_confirm(sk);
6209 
6210 		if (!sock_flag(sk, SOCK_DEAD)) {
6211 			/* Wake up lingering close() */
6212 			sk->sk_state_change(sk);
6213 			break;
6214 		}
6215 
6216 		if (tp->linger2 < 0) {
6217 			tcp_done(sk);
6218 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6219 			return 1;
6220 		}
6221 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6222 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6223 			/* Receive out of order FIN after close() */
6224 			if (tp->syn_fastopen && th->fin)
6225 				tcp_fastopen_active_disable(sk);
6226 			tcp_done(sk);
6227 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6228 			return 1;
6229 		}
6230 
6231 		tmo = tcp_fin_time(sk);
6232 		if (tmo > TCP_TIMEWAIT_LEN) {
6233 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6234 		} else if (th->fin || sock_owned_by_user(sk)) {
6235 			/* Bad case. We could lose such FIN otherwise.
6236 			 * It is not a big problem, but it looks confusing
6237 			 * and not so rare event. We still can lose it now,
6238 			 * if it spins in bh_lock_sock(), but it is really
6239 			 * marginal case.
6240 			 */
6241 			inet_csk_reset_keepalive_timer(sk, tmo);
6242 		} else {
6243 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6244 			goto discard;
6245 		}
6246 		break;
6247 	}
6248 
6249 	case TCP_CLOSING:
6250 		if (tp->snd_una == tp->write_seq) {
6251 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6252 			goto discard;
6253 		}
6254 		break;
6255 
6256 	case TCP_LAST_ACK:
6257 		if (tp->snd_una == tp->write_seq) {
6258 			tcp_update_metrics(sk);
6259 			tcp_done(sk);
6260 			goto discard;
6261 		}
6262 		break;
6263 	}
6264 
6265 	/* step 6: check the URG bit */
6266 	tcp_urg(sk, skb, th);
6267 
6268 	/* step 7: process the segment text */
6269 	switch (sk->sk_state) {
6270 	case TCP_CLOSE_WAIT:
6271 	case TCP_CLOSING:
6272 	case TCP_LAST_ACK:
6273 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6274 			break;
6275 		/* fall through */
6276 	case TCP_FIN_WAIT1:
6277 	case TCP_FIN_WAIT2:
6278 		/* RFC 793 says to queue data in these states,
6279 		 * RFC 1122 says we MUST send a reset.
6280 		 * BSD 4.4 also does reset.
6281 		 */
6282 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6283 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6284 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6285 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6286 				tcp_reset(sk);
6287 				return 1;
6288 			}
6289 		}
6290 		/* Fall through */
6291 	case TCP_ESTABLISHED:
6292 		tcp_data_queue(sk, skb);
6293 		queued = 1;
6294 		break;
6295 	}
6296 
6297 	/* tcp_data could move socket to TIME-WAIT */
6298 	if (sk->sk_state != TCP_CLOSE) {
6299 		tcp_data_snd_check(sk);
6300 		tcp_ack_snd_check(sk);
6301 	}
6302 
6303 	if (!queued) {
6304 discard:
6305 		tcp_drop(sk, skb);
6306 	}
6307 	return 0;
6308 }
6309 EXPORT_SYMBOL(tcp_rcv_state_process);
6310 
6311 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6312 {
6313 	struct inet_request_sock *ireq = inet_rsk(req);
6314 
6315 	if (family == AF_INET)
6316 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6317 				    &ireq->ir_rmt_addr, port);
6318 #if IS_ENABLED(CONFIG_IPV6)
6319 	else if (family == AF_INET6)
6320 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6321 				    &ireq->ir_v6_rmt_addr, port);
6322 #endif
6323 }
6324 
6325 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6326  *
6327  * If we receive a SYN packet with these bits set, it means a
6328  * network is playing bad games with TOS bits. In order to
6329  * avoid possible false congestion notifications, we disable
6330  * TCP ECN negotiation.
6331  *
6332  * Exception: tcp_ca wants ECN. This is required for DCTCP
6333  * congestion control: Linux DCTCP asserts ECT on all packets,
6334  * including SYN, which is most optimal solution; however,
6335  * others, such as FreeBSD do not.
6336  *
6337  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6338  * set, indicating the use of a future TCP extension (such as AccECN). See
6339  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6340  * extensions.
6341  */
6342 static void tcp_ecn_create_request(struct request_sock *req,
6343 				   const struct sk_buff *skb,
6344 				   const struct sock *listen_sk,
6345 				   const struct dst_entry *dst)
6346 {
6347 	const struct tcphdr *th = tcp_hdr(skb);
6348 	const struct net *net = sock_net(listen_sk);
6349 	bool th_ecn = th->ece && th->cwr;
6350 	bool ect, ecn_ok;
6351 	u32 ecn_ok_dst;
6352 
6353 	if (!th_ecn)
6354 		return;
6355 
6356 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6357 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6358 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6359 
6360 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6361 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6362 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6363 		inet_rsk(req)->ecn_ok = 1;
6364 }
6365 
6366 static void tcp_openreq_init(struct request_sock *req,
6367 			     const struct tcp_options_received *rx_opt,
6368 			     struct sk_buff *skb, const struct sock *sk)
6369 {
6370 	struct inet_request_sock *ireq = inet_rsk(req);
6371 
6372 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6373 	req->cookie_ts = 0;
6374 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6375 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6376 	tcp_rsk(req)->snt_synack = 0;
6377 	tcp_rsk(req)->last_oow_ack_time = 0;
6378 	req->mss = rx_opt->mss_clamp;
6379 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6380 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6381 	ireq->sack_ok = rx_opt->sack_ok;
6382 	ireq->snd_wscale = rx_opt->snd_wscale;
6383 	ireq->wscale_ok = rx_opt->wscale_ok;
6384 	ireq->acked = 0;
6385 	ireq->ecn_ok = 0;
6386 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6387 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6388 	ireq->ir_mark = inet_request_mark(sk, skb);
6389 #if IS_ENABLED(CONFIG_SMC)
6390 	ireq->smc_ok = rx_opt->smc_ok;
6391 #endif
6392 }
6393 
6394 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6395 				      struct sock *sk_listener,
6396 				      bool attach_listener)
6397 {
6398 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6399 					       attach_listener);
6400 
6401 	if (req) {
6402 		struct inet_request_sock *ireq = inet_rsk(req);
6403 
6404 		ireq->ireq_opt = NULL;
6405 #if IS_ENABLED(CONFIG_IPV6)
6406 		ireq->pktopts = NULL;
6407 #endif
6408 		atomic64_set(&ireq->ir_cookie, 0);
6409 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6410 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6411 		ireq->ireq_family = sk_listener->sk_family;
6412 	}
6413 
6414 	return req;
6415 }
6416 EXPORT_SYMBOL(inet_reqsk_alloc);
6417 
6418 /*
6419  * Return true if a syncookie should be sent
6420  */
6421 static bool tcp_syn_flood_action(const struct sock *sk,
6422 				 const struct sk_buff *skb,
6423 				 const char *proto)
6424 {
6425 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6426 	const char *msg = "Dropping request";
6427 	bool want_cookie = false;
6428 	struct net *net = sock_net(sk);
6429 
6430 #ifdef CONFIG_SYN_COOKIES
6431 	if (net->ipv4.sysctl_tcp_syncookies) {
6432 		msg = "Sending cookies";
6433 		want_cookie = true;
6434 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6435 	} else
6436 #endif
6437 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6438 
6439 	if (!queue->synflood_warned &&
6440 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6441 	    xchg(&queue->synflood_warned, 1) == 0)
6442 		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6443 				     proto, ntohs(tcp_hdr(skb)->dest), msg);
6444 
6445 	return want_cookie;
6446 }
6447 
6448 static void tcp_reqsk_record_syn(const struct sock *sk,
6449 				 struct request_sock *req,
6450 				 const struct sk_buff *skb)
6451 {
6452 	if (tcp_sk(sk)->save_syn) {
6453 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6454 		u32 *copy;
6455 
6456 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6457 		if (copy) {
6458 			copy[0] = len;
6459 			memcpy(&copy[1], skb_network_header(skb), len);
6460 			req->saved_syn = copy;
6461 		}
6462 	}
6463 }
6464 
6465 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6466 		     const struct tcp_request_sock_ops *af_ops,
6467 		     struct sock *sk, struct sk_buff *skb)
6468 {
6469 	struct tcp_fastopen_cookie foc = { .len = -1 };
6470 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6471 	struct tcp_options_received tmp_opt;
6472 	struct tcp_sock *tp = tcp_sk(sk);
6473 	struct net *net = sock_net(sk);
6474 	struct sock *fastopen_sk = NULL;
6475 	struct request_sock *req;
6476 	bool want_cookie = false;
6477 	struct dst_entry *dst;
6478 	struct flowi fl;
6479 
6480 	/* TW buckets are converted to open requests without
6481 	 * limitations, they conserve resources and peer is
6482 	 * evidently real one.
6483 	 */
6484 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6485 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6486 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6487 		if (!want_cookie)
6488 			goto drop;
6489 	}
6490 
6491 	if (sk_acceptq_is_full(sk)) {
6492 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6493 		goto drop;
6494 	}
6495 
6496 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6497 	if (!req)
6498 		goto drop;
6499 
6500 	tcp_rsk(req)->af_specific = af_ops;
6501 	tcp_rsk(req)->ts_off = 0;
6502 
6503 	tcp_clear_options(&tmp_opt);
6504 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6505 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6506 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6507 			  want_cookie ? NULL : &foc);
6508 
6509 	if (want_cookie && !tmp_opt.saw_tstamp)
6510 		tcp_clear_options(&tmp_opt);
6511 
6512 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6513 		tmp_opt.smc_ok = 0;
6514 
6515 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6516 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6517 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6518 
6519 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6520 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6521 
6522 	af_ops->init_req(req, sk, skb);
6523 
6524 	if (security_inet_conn_request(sk, skb, req))
6525 		goto drop_and_free;
6526 
6527 	if (tmp_opt.tstamp_ok)
6528 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6529 
6530 	dst = af_ops->route_req(sk, &fl, req);
6531 	if (!dst)
6532 		goto drop_and_free;
6533 
6534 	if (!want_cookie && !isn) {
6535 		/* Kill the following clause, if you dislike this way. */
6536 		if (!net->ipv4.sysctl_tcp_syncookies &&
6537 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6538 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6539 		    !tcp_peer_is_proven(req, dst)) {
6540 			/* Without syncookies last quarter of
6541 			 * backlog is filled with destinations,
6542 			 * proven to be alive.
6543 			 * It means that we continue to communicate
6544 			 * to destinations, already remembered
6545 			 * to the moment of synflood.
6546 			 */
6547 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6548 				    rsk_ops->family);
6549 			goto drop_and_release;
6550 		}
6551 
6552 		isn = af_ops->init_seq(skb);
6553 	}
6554 
6555 	tcp_ecn_create_request(req, skb, sk, dst);
6556 
6557 	if (want_cookie) {
6558 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6559 		req->cookie_ts = tmp_opt.tstamp_ok;
6560 		if (!tmp_opt.tstamp_ok)
6561 			inet_rsk(req)->ecn_ok = 0;
6562 	}
6563 
6564 	tcp_rsk(req)->snt_isn = isn;
6565 	tcp_rsk(req)->txhash = net_tx_rndhash();
6566 	tcp_openreq_init_rwin(req, sk, dst);
6567 	sk_rx_queue_set(req_to_sk(req), skb);
6568 	if (!want_cookie) {
6569 		tcp_reqsk_record_syn(sk, req, skb);
6570 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6571 	}
6572 	if (fastopen_sk) {
6573 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6574 				    &foc, TCP_SYNACK_FASTOPEN);
6575 		/* Add the child socket directly into the accept queue */
6576 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6577 			reqsk_fastopen_remove(fastopen_sk, req, false);
6578 			bh_unlock_sock(fastopen_sk);
6579 			sock_put(fastopen_sk);
6580 			goto drop_and_free;
6581 		}
6582 		sk->sk_data_ready(sk);
6583 		bh_unlock_sock(fastopen_sk);
6584 		sock_put(fastopen_sk);
6585 	} else {
6586 		tcp_rsk(req)->tfo_listener = false;
6587 		if (!want_cookie)
6588 			inet_csk_reqsk_queue_hash_add(sk, req,
6589 				tcp_timeout_init((struct sock *)req));
6590 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6591 				    !want_cookie ? TCP_SYNACK_NORMAL :
6592 						   TCP_SYNACK_COOKIE);
6593 		if (want_cookie) {
6594 			reqsk_free(req);
6595 			return 0;
6596 		}
6597 	}
6598 	reqsk_put(req);
6599 	return 0;
6600 
6601 drop_and_release:
6602 	dst_release(dst);
6603 drop_and_free:
6604 	__reqsk_free(req);
6605 drop:
6606 	tcp_listendrop(sk);
6607 	return 0;
6608 }
6609 EXPORT_SYMBOL(tcp_conn_request);
6610