xref: /openbmc/linux/net/ipv4/tcp_input.c (revision f519cd13)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 
83 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
84 
85 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
86 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
87 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
88 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
89 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
90 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
91 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
92 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
93 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
94 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
95 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
96 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
97 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
98 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
99 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
100 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
101 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
102 
103 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
104 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
105 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
106 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
107 
108 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
109 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
110 
111 #define REXMIT_NONE	0 /* no loss recovery to do */
112 #define REXMIT_LOST	1 /* retransmit packets marked lost */
113 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
114 
115 #if IS_ENABLED(CONFIG_TLS_DEVICE)
116 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
117 
118 void clean_acked_data_enable(struct inet_connection_sock *icsk,
119 			     void (*cad)(struct sock *sk, u32 ack_seq))
120 {
121 	icsk->icsk_clean_acked = cad;
122 	static_branch_deferred_inc(&clean_acked_data_enabled);
123 }
124 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
125 
126 void clean_acked_data_disable(struct inet_connection_sock *icsk)
127 {
128 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
129 	icsk->icsk_clean_acked = NULL;
130 }
131 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
132 
133 void clean_acked_data_flush(void)
134 {
135 	static_key_deferred_flush(&clean_acked_data_enabled);
136 }
137 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
138 #endif
139 
140 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
141 			     unsigned int len)
142 {
143 	static bool __once __read_mostly;
144 
145 	if (!__once) {
146 		struct net_device *dev;
147 
148 		__once = true;
149 
150 		rcu_read_lock();
151 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
152 		if (!dev || len >= dev->mtu)
153 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
154 				dev ? dev->name : "Unknown driver");
155 		rcu_read_unlock();
156 	}
157 }
158 
159 /* Adapt the MSS value used to make delayed ack decision to the
160  * real world.
161  */
162 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
163 {
164 	struct inet_connection_sock *icsk = inet_csk(sk);
165 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
166 	unsigned int len;
167 
168 	icsk->icsk_ack.last_seg_size = 0;
169 
170 	/* skb->len may jitter because of SACKs, even if peer
171 	 * sends good full-sized frames.
172 	 */
173 	len = skb_shinfo(skb)->gso_size ? : skb->len;
174 	if (len >= icsk->icsk_ack.rcv_mss) {
175 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
176 					       tcp_sk(sk)->advmss);
177 		/* Account for possibly-removed options */
178 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
179 				   MAX_TCP_OPTION_SPACE))
180 			tcp_gro_dev_warn(sk, skb, len);
181 	} else {
182 		/* Otherwise, we make more careful check taking into account,
183 		 * that SACKs block is variable.
184 		 *
185 		 * "len" is invariant segment length, including TCP header.
186 		 */
187 		len += skb->data - skb_transport_header(skb);
188 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
189 		    /* If PSH is not set, packet should be
190 		     * full sized, provided peer TCP is not badly broken.
191 		     * This observation (if it is correct 8)) allows
192 		     * to handle super-low mtu links fairly.
193 		     */
194 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
195 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
196 			/* Subtract also invariant (if peer is RFC compliant),
197 			 * tcp header plus fixed timestamp option length.
198 			 * Resulting "len" is MSS free of SACK jitter.
199 			 */
200 			len -= tcp_sk(sk)->tcp_header_len;
201 			icsk->icsk_ack.last_seg_size = len;
202 			if (len == lss) {
203 				icsk->icsk_ack.rcv_mss = len;
204 				return;
205 			}
206 		}
207 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
208 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
209 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
210 	}
211 }
212 
213 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
214 {
215 	struct inet_connection_sock *icsk = inet_csk(sk);
216 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
217 
218 	if (quickacks == 0)
219 		quickacks = 2;
220 	quickacks = min(quickacks, max_quickacks);
221 	if (quickacks > icsk->icsk_ack.quick)
222 		icsk->icsk_ack.quick = quickacks;
223 }
224 
225 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
226 {
227 	struct inet_connection_sock *icsk = inet_csk(sk);
228 
229 	tcp_incr_quickack(sk, max_quickacks);
230 	inet_csk_exit_pingpong_mode(sk);
231 	icsk->icsk_ack.ato = TCP_ATO_MIN;
232 }
233 EXPORT_SYMBOL(tcp_enter_quickack_mode);
234 
235 /* Send ACKs quickly, if "quick" count is not exhausted
236  * and the session is not interactive.
237  */
238 
239 static bool tcp_in_quickack_mode(struct sock *sk)
240 {
241 	const struct inet_connection_sock *icsk = inet_csk(sk);
242 	const struct dst_entry *dst = __sk_dst_get(sk);
243 
244 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
245 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
246 }
247 
248 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
249 {
250 	if (tp->ecn_flags & TCP_ECN_OK)
251 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
252 }
253 
254 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
255 {
256 	if (tcp_hdr(skb)->cwr) {
257 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
258 
259 		/* If the sender is telling us it has entered CWR, then its
260 		 * cwnd may be very low (even just 1 packet), so we should ACK
261 		 * immediately.
262 		 */
263 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
264 	}
265 }
266 
267 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
268 {
269 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
270 }
271 
272 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
273 {
274 	struct tcp_sock *tp = tcp_sk(sk);
275 
276 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
277 	case INET_ECN_NOT_ECT:
278 		/* Funny extension: if ECT is not set on a segment,
279 		 * and we already seen ECT on a previous segment,
280 		 * it is probably a retransmit.
281 		 */
282 		if (tp->ecn_flags & TCP_ECN_SEEN)
283 			tcp_enter_quickack_mode(sk, 2);
284 		break;
285 	case INET_ECN_CE:
286 		if (tcp_ca_needs_ecn(sk))
287 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
288 
289 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
290 			/* Better not delay acks, sender can have a very low cwnd */
291 			tcp_enter_quickack_mode(sk, 2);
292 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
293 		}
294 		tp->ecn_flags |= TCP_ECN_SEEN;
295 		break;
296 	default:
297 		if (tcp_ca_needs_ecn(sk))
298 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
299 		tp->ecn_flags |= TCP_ECN_SEEN;
300 		break;
301 	}
302 }
303 
304 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
305 {
306 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
307 		__tcp_ecn_check_ce(sk, skb);
308 }
309 
310 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
311 {
312 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
313 		tp->ecn_flags &= ~TCP_ECN_OK;
314 }
315 
316 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
317 {
318 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
319 		tp->ecn_flags &= ~TCP_ECN_OK;
320 }
321 
322 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
323 {
324 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
325 		return true;
326 	return false;
327 }
328 
329 /* Buffer size and advertised window tuning.
330  *
331  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
332  */
333 
334 static void tcp_sndbuf_expand(struct sock *sk)
335 {
336 	const struct tcp_sock *tp = tcp_sk(sk);
337 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
338 	int sndmem, per_mss;
339 	u32 nr_segs;
340 
341 	/* Worst case is non GSO/TSO : each frame consumes one skb
342 	 * and skb->head is kmalloced using power of two area of memory
343 	 */
344 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
345 		  MAX_TCP_HEADER +
346 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
347 
348 	per_mss = roundup_pow_of_two(per_mss) +
349 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
350 
351 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
352 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
353 
354 	/* Fast Recovery (RFC 5681 3.2) :
355 	 * Cubic needs 1.7 factor, rounded to 2 to include
356 	 * extra cushion (application might react slowly to EPOLLOUT)
357 	 */
358 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
359 	sndmem *= nr_segs * per_mss;
360 
361 	if (sk->sk_sndbuf < sndmem)
362 		WRITE_ONCE(sk->sk_sndbuf,
363 			   min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]));
364 }
365 
366 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
367  *
368  * All tcp_full_space() is split to two parts: "network" buffer, allocated
369  * forward and advertised in receiver window (tp->rcv_wnd) and
370  * "application buffer", required to isolate scheduling/application
371  * latencies from network.
372  * window_clamp is maximal advertised window. It can be less than
373  * tcp_full_space(), in this case tcp_full_space() - window_clamp
374  * is reserved for "application" buffer. The less window_clamp is
375  * the smoother our behaviour from viewpoint of network, but the lower
376  * throughput and the higher sensitivity of the connection to losses. 8)
377  *
378  * rcv_ssthresh is more strict window_clamp used at "slow start"
379  * phase to predict further behaviour of this connection.
380  * It is used for two goals:
381  * - to enforce header prediction at sender, even when application
382  *   requires some significant "application buffer". It is check #1.
383  * - to prevent pruning of receive queue because of misprediction
384  *   of receiver window. Check #2.
385  *
386  * The scheme does not work when sender sends good segments opening
387  * window and then starts to feed us spaghetti. But it should work
388  * in common situations. Otherwise, we have to rely on queue collapsing.
389  */
390 
391 /* Slow part of check#2. */
392 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
393 {
394 	struct tcp_sock *tp = tcp_sk(sk);
395 	/* Optimize this! */
396 	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
397 	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
398 
399 	while (tp->rcv_ssthresh <= window) {
400 		if (truesize <= skb->len)
401 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
402 
403 		truesize >>= 1;
404 		window >>= 1;
405 	}
406 	return 0;
407 }
408 
409 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
410 {
411 	struct tcp_sock *tp = tcp_sk(sk);
412 	int room;
413 
414 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
415 
416 	/* Check #1 */
417 	if (room > 0 && !tcp_under_memory_pressure(sk)) {
418 		int incr;
419 
420 		/* Check #2. Increase window, if skb with such overhead
421 		 * will fit to rcvbuf in future.
422 		 */
423 		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
424 			incr = 2 * tp->advmss;
425 		else
426 			incr = __tcp_grow_window(sk, skb);
427 
428 		if (incr) {
429 			incr = max_t(int, incr, 2 * skb->len);
430 			tp->rcv_ssthresh += min(room, incr);
431 			inet_csk(sk)->icsk_ack.quick |= 1;
432 		}
433 	}
434 }
435 
436 /* 3. Try to fixup all. It is made immediately after connection enters
437  *    established state.
438  */
439 void tcp_init_buffer_space(struct sock *sk)
440 {
441 	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
442 	struct tcp_sock *tp = tcp_sk(sk);
443 	int maxwin;
444 
445 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
446 		tcp_sndbuf_expand(sk);
447 
448 	tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss);
449 	tcp_mstamp_refresh(tp);
450 	tp->rcvq_space.time = tp->tcp_mstamp;
451 	tp->rcvq_space.seq = tp->copied_seq;
452 
453 	maxwin = tcp_full_space(sk);
454 
455 	if (tp->window_clamp >= maxwin) {
456 		tp->window_clamp = maxwin;
457 
458 		if (tcp_app_win && maxwin > 4 * tp->advmss)
459 			tp->window_clamp = max(maxwin -
460 					       (maxwin >> tcp_app_win),
461 					       4 * tp->advmss);
462 	}
463 
464 	/* Force reservation of one segment. */
465 	if (tcp_app_win &&
466 	    tp->window_clamp > 2 * tp->advmss &&
467 	    tp->window_clamp + tp->advmss > maxwin)
468 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
469 
470 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
471 	tp->snd_cwnd_stamp = tcp_jiffies32;
472 }
473 
474 /* 4. Recalculate window clamp after socket hit its memory bounds. */
475 static void tcp_clamp_window(struct sock *sk)
476 {
477 	struct tcp_sock *tp = tcp_sk(sk);
478 	struct inet_connection_sock *icsk = inet_csk(sk);
479 	struct net *net = sock_net(sk);
480 
481 	icsk->icsk_ack.quick = 0;
482 
483 	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
484 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
485 	    !tcp_under_memory_pressure(sk) &&
486 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
487 		WRITE_ONCE(sk->sk_rcvbuf,
488 			   min(atomic_read(&sk->sk_rmem_alloc),
489 			       net->ipv4.sysctl_tcp_rmem[2]));
490 	}
491 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
492 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
493 }
494 
495 /* Initialize RCV_MSS value.
496  * RCV_MSS is an our guess about MSS used by the peer.
497  * We haven't any direct information about the MSS.
498  * It's better to underestimate the RCV_MSS rather than overestimate.
499  * Overestimations make us ACKing less frequently than needed.
500  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
501  */
502 void tcp_initialize_rcv_mss(struct sock *sk)
503 {
504 	const struct tcp_sock *tp = tcp_sk(sk);
505 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
506 
507 	hint = min(hint, tp->rcv_wnd / 2);
508 	hint = min(hint, TCP_MSS_DEFAULT);
509 	hint = max(hint, TCP_MIN_MSS);
510 
511 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
512 }
513 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
514 
515 /* Receiver "autotuning" code.
516  *
517  * The algorithm for RTT estimation w/o timestamps is based on
518  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
519  * <http://public.lanl.gov/radiant/pubs.html#DRS>
520  *
521  * More detail on this code can be found at
522  * <http://staff.psc.edu/jheffner/>,
523  * though this reference is out of date.  A new paper
524  * is pending.
525  */
526 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
527 {
528 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
529 	long m = sample;
530 
531 	if (new_sample != 0) {
532 		/* If we sample in larger samples in the non-timestamp
533 		 * case, we could grossly overestimate the RTT especially
534 		 * with chatty applications or bulk transfer apps which
535 		 * are stalled on filesystem I/O.
536 		 *
537 		 * Also, since we are only going for a minimum in the
538 		 * non-timestamp case, we do not smooth things out
539 		 * else with timestamps disabled convergence takes too
540 		 * long.
541 		 */
542 		if (!win_dep) {
543 			m -= (new_sample >> 3);
544 			new_sample += m;
545 		} else {
546 			m <<= 3;
547 			if (m < new_sample)
548 				new_sample = m;
549 		}
550 	} else {
551 		/* No previous measure. */
552 		new_sample = m << 3;
553 	}
554 
555 	tp->rcv_rtt_est.rtt_us = new_sample;
556 }
557 
558 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
559 {
560 	u32 delta_us;
561 
562 	if (tp->rcv_rtt_est.time == 0)
563 		goto new_measure;
564 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
565 		return;
566 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
567 	if (!delta_us)
568 		delta_us = 1;
569 	tcp_rcv_rtt_update(tp, delta_us, 1);
570 
571 new_measure:
572 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
573 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
574 }
575 
576 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
577 					  const struct sk_buff *skb)
578 {
579 	struct tcp_sock *tp = tcp_sk(sk);
580 
581 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
582 		return;
583 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
584 
585 	if (TCP_SKB_CB(skb)->end_seq -
586 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
587 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
588 		u32 delta_us;
589 
590 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
591 			if (!delta)
592 				delta = 1;
593 			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
594 			tcp_rcv_rtt_update(tp, delta_us, 0);
595 		}
596 	}
597 }
598 
599 /*
600  * This function should be called every time data is copied to user space.
601  * It calculates the appropriate TCP receive buffer space.
602  */
603 void tcp_rcv_space_adjust(struct sock *sk)
604 {
605 	struct tcp_sock *tp = tcp_sk(sk);
606 	u32 copied;
607 	int time;
608 
609 	trace_tcp_rcv_space_adjust(sk);
610 
611 	tcp_mstamp_refresh(tp);
612 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
613 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
614 		return;
615 
616 	/* Number of bytes copied to user in last RTT */
617 	copied = tp->copied_seq - tp->rcvq_space.seq;
618 	if (copied <= tp->rcvq_space.space)
619 		goto new_measure;
620 
621 	/* A bit of theory :
622 	 * copied = bytes received in previous RTT, our base window
623 	 * To cope with packet losses, we need a 2x factor
624 	 * To cope with slow start, and sender growing its cwin by 100 %
625 	 * every RTT, we need a 4x factor, because the ACK we are sending
626 	 * now is for the next RTT, not the current one :
627 	 * <prev RTT . ><current RTT .. ><next RTT .... >
628 	 */
629 
630 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
631 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
632 		int rcvmem, rcvbuf;
633 		u64 rcvwin, grow;
634 
635 		/* minimal window to cope with packet losses, assuming
636 		 * steady state. Add some cushion because of small variations.
637 		 */
638 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
639 
640 		/* Accommodate for sender rate increase (eg. slow start) */
641 		grow = rcvwin * (copied - tp->rcvq_space.space);
642 		do_div(grow, tp->rcvq_space.space);
643 		rcvwin += (grow << 1);
644 
645 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
646 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
647 			rcvmem += 128;
648 
649 		do_div(rcvwin, tp->advmss);
650 		rcvbuf = min_t(u64, rcvwin * rcvmem,
651 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
652 		if (rcvbuf > sk->sk_rcvbuf) {
653 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
654 
655 			/* Make the window clamp follow along.  */
656 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
657 		}
658 	}
659 	tp->rcvq_space.space = copied;
660 
661 new_measure:
662 	tp->rcvq_space.seq = tp->copied_seq;
663 	tp->rcvq_space.time = tp->tcp_mstamp;
664 }
665 
666 /* There is something which you must keep in mind when you analyze the
667  * behavior of the tp->ato delayed ack timeout interval.  When a
668  * connection starts up, we want to ack as quickly as possible.  The
669  * problem is that "good" TCP's do slow start at the beginning of data
670  * transmission.  The means that until we send the first few ACK's the
671  * sender will sit on his end and only queue most of his data, because
672  * he can only send snd_cwnd unacked packets at any given time.  For
673  * each ACK we send, he increments snd_cwnd and transmits more of his
674  * queue.  -DaveM
675  */
676 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
677 {
678 	struct tcp_sock *tp = tcp_sk(sk);
679 	struct inet_connection_sock *icsk = inet_csk(sk);
680 	u32 now;
681 
682 	inet_csk_schedule_ack(sk);
683 
684 	tcp_measure_rcv_mss(sk, skb);
685 
686 	tcp_rcv_rtt_measure(tp);
687 
688 	now = tcp_jiffies32;
689 
690 	if (!icsk->icsk_ack.ato) {
691 		/* The _first_ data packet received, initialize
692 		 * delayed ACK engine.
693 		 */
694 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
695 		icsk->icsk_ack.ato = TCP_ATO_MIN;
696 	} else {
697 		int m = now - icsk->icsk_ack.lrcvtime;
698 
699 		if (m <= TCP_ATO_MIN / 2) {
700 			/* The fastest case is the first. */
701 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
702 		} else if (m < icsk->icsk_ack.ato) {
703 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
704 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
705 				icsk->icsk_ack.ato = icsk->icsk_rto;
706 		} else if (m > icsk->icsk_rto) {
707 			/* Too long gap. Apparently sender failed to
708 			 * restart window, so that we send ACKs quickly.
709 			 */
710 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
711 			sk_mem_reclaim(sk);
712 		}
713 	}
714 	icsk->icsk_ack.lrcvtime = now;
715 
716 	tcp_ecn_check_ce(sk, skb);
717 
718 	if (skb->len >= 128)
719 		tcp_grow_window(sk, skb);
720 }
721 
722 /* Called to compute a smoothed rtt estimate. The data fed to this
723  * routine either comes from timestamps, or from segments that were
724  * known _not_ to have been retransmitted [see Karn/Partridge
725  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
726  * piece by Van Jacobson.
727  * NOTE: the next three routines used to be one big routine.
728  * To save cycles in the RFC 1323 implementation it was better to break
729  * it up into three procedures. -- erics
730  */
731 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
732 {
733 	struct tcp_sock *tp = tcp_sk(sk);
734 	long m = mrtt_us; /* RTT */
735 	u32 srtt = tp->srtt_us;
736 
737 	/*	The following amusing code comes from Jacobson's
738 	 *	article in SIGCOMM '88.  Note that rtt and mdev
739 	 *	are scaled versions of rtt and mean deviation.
740 	 *	This is designed to be as fast as possible
741 	 *	m stands for "measurement".
742 	 *
743 	 *	On a 1990 paper the rto value is changed to:
744 	 *	RTO = rtt + 4 * mdev
745 	 *
746 	 * Funny. This algorithm seems to be very broken.
747 	 * These formulae increase RTO, when it should be decreased, increase
748 	 * too slowly, when it should be increased quickly, decrease too quickly
749 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
750 	 * does not matter how to _calculate_ it. Seems, it was trap
751 	 * that VJ failed to avoid. 8)
752 	 */
753 	if (srtt != 0) {
754 		m -= (srtt >> 3);	/* m is now error in rtt est */
755 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
756 		if (m < 0) {
757 			m = -m;		/* m is now abs(error) */
758 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
759 			/* This is similar to one of Eifel findings.
760 			 * Eifel blocks mdev updates when rtt decreases.
761 			 * This solution is a bit different: we use finer gain
762 			 * for mdev in this case (alpha*beta).
763 			 * Like Eifel it also prevents growth of rto,
764 			 * but also it limits too fast rto decreases,
765 			 * happening in pure Eifel.
766 			 */
767 			if (m > 0)
768 				m >>= 3;
769 		} else {
770 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
771 		}
772 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
773 		if (tp->mdev_us > tp->mdev_max_us) {
774 			tp->mdev_max_us = tp->mdev_us;
775 			if (tp->mdev_max_us > tp->rttvar_us)
776 				tp->rttvar_us = tp->mdev_max_us;
777 		}
778 		if (after(tp->snd_una, tp->rtt_seq)) {
779 			if (tp->mdev_max_us < tp->rttvar_us)
780 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
781 			tp->rtt_seq = tp->snd_nxt;
782 			tp->mdev_max_us = tcp_rto_min_us(sk);
783 
784 			tcp_bpf_rtt(sk);
785 		}
786 	} else {
787 		/* no previous measure. */
788 		srtt = m << 3;		/* take the measured time to be rtt */
789 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
790 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
791 		tp->mdev_max_us = tp->rttvar_us;
792 		tp->rtt_seq = tp->snd_nxt;
793 
794 		tcp_bpf_rtt(sk);
795 	}
796 	tp->srtt_us = max(1U, srtt);
797 }
798 
799 static void tcp_update_pacing_rate(struct sock *sk)
800 {
801 	const struct tcp_sock *tp = tcp_sk(sk);
802 	u64 rate;
803 
804 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
805 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
806 
807 	/* current rate is (cwnd * mss) / srtt
808 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
809 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
810 	 *
811 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
812 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
813 	 *	 end of slow start and should slow down.
814 	 */
815 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
816 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
817 	else
818 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
819 
820 	rate *= max(tp->snd_cwnd, tp->packets_out);
821 
822 	if (likely(tp->srtt_us))
823 		do_div(rate, tp->srtt_us);
824 
825 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
826 	 * without any lock. We want to make sure compiler wont store
827 	 * intermediate values in this location.
828 	 */
829 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
830 					     sk->sk_max_pacing_rate));
831 }
832 
833 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
834  * routine referred to above.
835  */
836 static void tcp_set_rto(struct sock *sk)
837 {
838 	const struct tcp_sock *tp = tcp_sk(sk);
839 	/* Old crap is replaced with new one. 8)
840 	 *
841 	 * More seriously:
842 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
843 	 *    It cannot be less due to utterly erratic ACK generation made
844 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
845 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
846 	 *    is invisible. Actually, Linux-2.4 also generates erratic
847 	 *    ACKs in some circumstances.
848 	 */
849 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
850 
851 	/* 2. Fixups made earlier cannot be right.
852 	 *    If we do not estimate RTO correctly without them,
853 	 *    all the algo is pure shit and should be replaced
854 	 *    with correct one. It is exactly, which we pretend to do.
855 	 */
856 
857 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
858 	 * guarantees that rto is higher.
859 	 */
860 	tcp_bound_rto(sk);
861 }
862 
863 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
864 {
865 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
866 
867 	if (!cwnd)
868 		cwnd = TCP_INIT_CWND;
869 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
870 }
871 
872 /* Take a notice that peer is sending D-SACKs */
873 static void tcp_dsack_seen(struct tcp_sock *tp)
874 {
875 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
876 	tp->rack.dsack_seen = 1;
877 	tp->dsack_dups++;
878 }
879 
880 /* It's reordering when higher sequence was delivered (i.e. sacked) before
881  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
882  * distance is approximated in full-mss packet distance ("reordering").
883  */
884 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
885 				      const int ts)
886 {
887 	struct tcp_sock *tp = tcp_sk(sk);
888 	const u32 mss = tp->mss_cache;
889 	u32 fack, metric;
890 
891 	fack = tcp_highest_sack_seq(tp);
892 	if (!before(low_seq, fack))
893 		return;
894 
895 	metric = fack - low_seq;
896 	if ((metric > tp->reordering * mss) && mss) {
897 #if FASTRETRANS_DEBUG > 1
898 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
899 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
900 			 tp->reordering,
901 			 0,
902 			 tp->sacked_out,
903 			 tp->undo_marker ? tp->undo_retrans : 0);
904 #endif
905 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
906 				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
907 	}
908 
909 	/* This exciting event is worth to be remembered. 8) */
910 	tp->reord_seen++;
911 	NET_INC_STATS(sock_net(sk),
912 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
913 }
914 
915 /* This must be called before lost_out is incremented */
916 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
917 {
918 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
919 	    (tp->retransmit_skb_hint &&
920 	     before(TCP_SKB_CB(skb)->seq,
921 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
922 		tp->retransmit_skb_hint = skb;
923 }
924 
925 /* Sum the number of packets on the wire we have marked as lost.
926  * There are two cases we care about here:
927  * a) Packet hasn't been marked lost (nor retransmitted),
928  *    and this is the first loss.
929  * b) Packet has been marked both lost and retransmitted,
930  *    and this means we think it was lost again.
931  */
932 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
933 {
934 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
935 
936 	if (!(sacked & TCPCB_LOST) ||
937 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
938 		tp->lost += tcp_skb_pcount(skb);
939 }
940 
941 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
942 {
943 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
944 		tcp_verify_retransmit_hint(tp, skb);
945 
946 		tp->lost_out += tcp_skb_pcount(skb);
947 		tcp_sum_lost(tp, skb);
948 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
949 	}
950 }
951 
952 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
953 {
954 	tcp_verify_retransmit_hint(tp, skb);
955 
956 	tcp_sum_lost(tp, skb);
957 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
958 		tp->lost_out += tcp_skb_pcount(skb);
959 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
960 	}
961 }
962 
963 /* This procedure tags the retransmission queue when SACKs arrive.
964  *
965  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
966  * Packets in queue with these bits set are counted in variables
967  * sacked_out, retrans_out and lost_out, correspondingly.
968  *
969  * Valid combinations are:
970  * Tag  InFlight	Description
971  * 0	1		- orig segment is in flight.
972  * S	0		- nothing flies, orig reached receiver.
973  * L	0		- nothing flies, orig lost by net.
974  * R	2		- both orig and retransmit are in flight.
975  * L|R	1		- orig is lost, retransmit is in flight.
976  * S|R  1		- orig reached receiver, retrans is still in flight.
977  * (L|S|R is logically valid, it could occur when L|R is sacked,
978  *  but it is equivalent to plain S and code short-curcuits it to S.
979  *  L|S is logically invalid, it would mean -1 packet in flight 8))
980  *
981  * These 6 states form finite state machine, controlled by the following events:
982  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
983  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
984  * 3. Loss detection event of two flavors:
985  *	A. Scoreboard estimator decided the packet is lost.
986  *	   A'. Reno "three dupacks" marks head of queue lost.
987  *	B. SACK arrives sacking SND.NXT at the moment, when the
988  *	   segment was retransmitted.
989  * 4. D-SACK added new rule: D-SACK changes any tag to S.
990  *
991  * It is pleasant to note, that state diagram turns out to be commutative,
992  * so that we are allowed not to be bothered by order of our actions,
993  * when multiple events arrive simultaneously. (see the function below).
994  *
995  * Reordering detection.
996  * --------------------
997  * Reordering metric is maximal distance, which a packet can be displaced
998  * in packet stream. With SACKs we can estimate it:
999  *
1000  * 1. SACK fills old hole and the corresponding segment was not
1001  *    ever retransmitted -> reordering. Alas, we cannot use it
1002  *    when segment was retransmitted.
1003  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1004  *    for retransmitted and already SACKed segment -> reordering..
1005  * Both of these heuristics are not used in Loss state, when we cannot
1006  * account for retransmits accurately.
1007  *
1008  * SACK block validation.
1009  * ----------------------
1010  *
1011  * SACK block range validation checks that the received SACK block fits to
1012  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1013  * Note that SND.UNA is not included to the range though being valid because
1014  * it means that the receiver is rather inconsistent with itself reporting
1015  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1016  * perfectly valid, however, in light of RFC2018 which explicitly states
1017  * that "SACK block MUST reflect the newest segment.  Even if the newest
1018  * segment is going to be discarded ...", not that it looks very clever
1019  * in case of head skb. Due to potentional receiver driven attacks, we
1020  * choose to avoid immediate execution of a walk in write queue due to
1021  * reneging and defer head skb's loss recovery to standard loss recovery
1022  * procedure that will eventually trigger (nothing forbids us doing this).
1023  *
1024  * Implements also blockage to start_seq wrap-around. Problem lies in the
1025  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1026  * there's no guarantee that it will be before snd_nxt (n). The problem
1027  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1028  * wrap (s_w):
1029  *
1030  *         <- outs wnd ->                          <- wrapzone ->
1031  *         u     e      n                         u_w   e_w  s n_w
1032  *         |     |      |                          |     |   |  |
1033  * |<------------+------+----- TCP seqno space --------------+---------->|
1034  * ...-- <2^31 ->|                                           |<--------...
1035  * ...---- >2^31 ------>|                                    |<--------...
1036  *
1037  * Current code wouldn't be vulnerable but it's better still to discard such
1038  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1039  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1040  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1041  * equal to the ideal case (infinite seqno space without wrap caused issues).
1042  *
1043  * With D-SACK the lower bound is extended to cover sequence space below
1044  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1045  * again, D-SACK block must not to go across snd_una (for the same reason as
1046  * for the normal SACK blocks, explained above). But there all simplicity
1047  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1048  * fully below undo_marker they do not affect behavior in anyway and can
1049  * therefore be safely ignored. In rare cases (which are more or less
1050  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1051  * fragmentation and packet reordering past skb's retransmission. To consider
1052  * them correctly, the acceptable range must be extended even more though
1053  * the exact amount is rather hard to quantify. However, tp->max_window can
1054  * be used as an exaggerated estimate.
1055  */
1056 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1057 				   u32 start_seq, u32 end_seq)
1058 {
1059 	/* Too far in future, or reversed (interpretation is ambiguous) */
1060 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1061 		return false;
1062 
1063 	/* Nasty start_seq wrap-around check (see comments above) */
1064 	if (!before(start_seq, tp->snd_nxt))
1065 		return false;
1066 
1067 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1068 	 * start_seq == snd_una is non-sensical (see comments above)
1069 	 */
1070 	if (after(start_seq, tp->snd_una))
1071 		return true;
1072 
1073 	if (!is_dsack || !tp->undo_marker)
1074 		return false;
1075 
1076 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1077 	if (after(end_seq, tp->snd_una))
1078 		return false;
1079 
1080 	if (!before(start_seq, tp->undo_marker))
1081 		return true;
1082 
1083 	/* Too old */
1084 	if (!after(end_seq, tp->undo_marker))
1085 		return false;
1086 
1087 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1088 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1089 	 */
1090 	return !before(start_seq, end_seq - tp->max_window);
1091 }
1092 
1093 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1094 			    struct tcp_sack_block_wire *sp, int num_sacks,
1095 			    u32 prior_snd_una)
1096 {
1097 	struct tcp_sock *tp = tcp_sk(sk);
1098 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1099 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1100 	bool dup_sack = false;
1101 
1102 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1103 		dup_sack = true;
1104 		tcp_dsack_seen(tp);
1105 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1106 	} else if (num_sacks > 1) {
1107 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1108 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1109 
1110 		if (!after(end_seq_0, end_seq_1) &&
1111 		    !before(start_seq_0, start_seq_1)) {
1112 			dup_sack = true;
1113 			tcp_dsack_seen(tp);
1114 			NET_INC_STATS(sock_net(sk),
1115 					LINUX_MIB_TCPDSACKOFORECV);
1116 		}
1117 	}
1118 
1119 	/* D-SACK for already forgotten data... Do dumb counting. */
1120 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1121 	    !after(end_seq_0, prior_snd_una) &&
1122 	    after(end_seq_0, tp->undo_marker))
1123 		tp->undo_retrans--;
1124 
1125 	return dup_sack;
1126 }
1127 
1128 struct tcp_sacktag_state {
1129 	u32	reord;
1130 	/* Timestamps for earliest and latest never-retransmitted segment
1131 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1132 	 * but congestion control should still get an accurate delay signal.
1133 	 */
1134 	u64	first_sackt;
1135 	u64	last_sackt;
1136 	struct rate_sample *rate;
1137 	int	flag;
1138 	unsigned int mss_now;
1139 };
1140 
1141 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1142  * the incoming SACK may not exactly match but we can find smaller MSS
1143  * aligned portion of it that matches. Therefore we might need to fragment
1144  * which may fail and creates some hassle (caller must handle error case
1145  * returns).
1146  *
1147  * FIXME: this could be merged to shift decision code
1148  */
1149 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1150 				  u32 start_seq, u32 end_seq)
1151 {
1152 	int err;
1153 	bool in_sack;
1154 	unsigned int pkt_len;
1155 	unsigned int mss;
1156 
1157 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1158 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1159 
1160 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1161 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1162 		mss = tcp_skb_mss(skb);
1163 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1164 
1165 		if (!in_sack) {
1166 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1167 			if (pkt_len < mss)
1168 				pkt_len = mss;
1169 		} else {
1170 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1171 			if (pkt_len < mss)
1172 				return -EINVAL;
1173 		}
1174 
1175 		/* Round if necessary so that SACKs cover only full MSSes
1176 		 * and/or the remaining small portion (if present)
1177 		 */
1178 		if (pkt_len > mss) {
1179 			unsigned int new_len = (pkt_len / mss) * mss;
1180 			if (!in_sack && new_len < pkt_len)
1181 				new_len += mss;
1182 			pkt_len = new_len;
1183 		}
1184 
1185 		if (pkt_len >= skb->len && !in_sack)
1186 			return 0;
1187 
1188 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1189 				   pkt_len, mss, GFP_ATOMIC);
1190 		if (err < 0)
1191 			return err;
1192 	}
1193 
1194 	return in_sack;
1195 }
1196 
1197 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1198 static u8 tcp_sacktag_one(struct sock *sk,
1199 			  struct tcp_sacktag_state *state, u8 sacked,
1200 			  u32 start_seq, u32 end_seq,
1201 			  int dup_sack, int pcount,
1202 			  u64 xmit_time)
1203 {
1204 	struct tcp_sock *tp = tcp_sk(sk);
1205 
1206 	/* Account D-SACK for retransmitted packet. */
1207 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1208 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1209 		    after(end_seq, tp->undo_marker))
1210 			tp->undo_retrans--;
1211 		if ((sacked & TCPCB_SACKED_ACKED) &&
1212 		    before(start_seq, state->reord))
1213 				state->reord = start_seq;
1214 	}
1215 
1216 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1217 	if (!after(end_seq, tp->snd_una))
1218 		return sacked;
1219 
1220 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1221 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1222 
1223 		if (sacked & TCPCB_SACKED_RETRANS) {
1224 			/* If the segment is not tagged as lost,
1225 			 * we do not clear RETRANS, believing
1226 			 * that retransmission is still in flight.
1227 			 */
1228 			if (sacked & TCPCB_LOST) {
1229 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1230 				tp->lost_out -= pcount;
1231 				tp->retrans_out -= pcount;
1232 			}
1233 		} else {
1234 			if (!(sacked & TCPCB_RETRANS)) {
1235 				/* New sack for not retransmitted frame,
1236 				 * which was in hole. It is reordering.
1237 				 */
1238 				if (before(start_seq,
1239 					   tcp_highest_sack_seq(tp)) &&
1240 				    before(start_seq, state->reord))
1241 					state->reord = start_seq;
1242 
1243 				if (!after(end_seq, tp->high_seq))
1244 					state->flag |= FLAG_ORIG_SACK_ACKED;
1245 				if (state->first_sackt == 0)
1246 					state->first_sackt = xmit_time;
1247 				state->last_sackt = xmit_time;
1248 			}
1249 
1250 			if (sacked & TCPCB_LOST) {
1251 				sacked &= ~TCPCB_LOST;
1252 				tp->lost_out -= pcount;
1253 			}
1254 		}
1255 
1256 		sacked |= TCPCB_SACKED_ACKED;
1257 		state->flag |= FLAG_DATA_SACKED;
1258 		tp->sacked_out += pcount;
1259 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1260 
1261 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1262 		if (tp->lost_skb_hint &&
1263 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1264 			tp->lost_cnt_hint += pcount;
1265 	}
1266 
1267 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1268 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1269 	 * are accounted above as well.
1270 	 */
1271 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1272 		sacked &= ~TCPCB_SACKED_RETRANS;
1273 		tp->retrans_out -= pcount;
1274 	}
1275 
1276 	return sacked;
1277 }
1278 
1279 /* Shift newly-SACKed bytes from this skb to the immediately previous
1280  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1281  */
1282 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1283 			    struct sk_buff *skb,
1284 			    struct tcp_sacktag_state *state,
1285 			    unsigned int pcount, int shifted, int mss,
1286 			    bool dup_sack)
1287 {
1288 	struct tcp_sock *tp = tcp_sk(sk);
1289 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1290 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1291 
1292 	BUG_ON(!pcount);
1293 
1294 	/* Adjust counters and hints for the newly sacked sequence
1295 	 * range but discard the return value since prev is already
1296 	 * marked. We must tag the range first because the seq
1297 	 * advancement below implicitly advances
1298 	 * tcp_highest_sack_seq() when skb is highest_sack.
1299 	 */
1300 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1301 			start_seq, end_seq, dup_sack, pcount,
1302 			tcp_skb_timestamp_us(skb));
1303 	tcp_rate_skb_delivered(sk, skb, state->rate);
1304 
1305 	if (skb == tp->lost_skb_hint)
1306 		tp->lost_cnt_hint += pcount;
1307 
1308 	TCP_SKB_CB(prev)->end_seq += shifted;
1309 	TCP_SKB_CB(skb)->seq += shifted;
1310 
1311 	tcp_skb_pcount_add(prev, pcount);
1312 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1313 	tcp_skb_pcount_add(skb, -pcount);
1314 
1315 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1316 	 * in theory this shouldn't be necessary but as long as DSACK
1317 	 * code can come after this skb later on it's better to keep
1318 	 * setting gso_size to something.
1319 	 */
1320 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1321 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1322 
1323 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1324 	if (tcp_skb_pcount(skb) <= 1)
1325 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1326 
1327 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1328 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1329 
1330 	if (skb->len > 0) {
1331 		BUG_ON(!tcp_skb_pcount(skb));
1332 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1333 		return false;
1334 	}
1335 
1336 	/* Whole SKB was eaten :-) */
1337 
1338 	if (skb == tp->retransmit_skb_hint)
1339 		tp->retransmit_skb_hint = prev;
1340 	if (skb == tp->lost_skb_hint) {
1341 		tp->lost_skb_hint = prev;
1342 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1343 	}
1344 
1345 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1346 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1347 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1348 		TCP_SKB_CB(prev)->end_seq++;
1349 
1350 	if (skb == tcp_highest_sack(sk))
1351 		tcp_advance_highest_sack(sk, skb);
1352 
1353 	tcp_skb_collapse_tstamp(prev, skb);
1354 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1355 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1356 
1357 	tcp_rtx_queue_unlink_and_free(skb, sk);
1358 
1359 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1360 
1361 	return true;
1362 }
1363 
1364 /* I wish gso_size would have a bit more sane initialization than
1365  * something-or-zero which complicates things
1366  */
1367 static int tcp_skb_seglen(const struct sk_buff *skb)
1368 {
1369 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1370 }
1371 
1372 /* Shifting pages past head area doesn't work */
1373 static int skb_can_shift(const struct sk_buff *skb)
1374 {
1375 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1376 }
1377 
1378 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1379 		  int pcount, int shiftlen)
1380 {
1381 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1382 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1383 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1384 	 * even if current MSS is bigger.
1385 	 */
1386 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1387 		return 0;
1388 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1389 		return 0;
1390 	return skb_shift(to, from, shiftlen);
1391 }
1392 
1393 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1394  * skb.
1395  */
1396 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1397 					  struct tcp_sacktag_state *state,
1398 					  u32 start_seq, u32 end_seq,
1399 					  bool dup_sack)
1400 {
1401 	struct tcp_sock *tp = tcp_sk(sk);
1402 	struct sk_buff *prev;
1403 	int mss;
1404 	int pcount = 0;
1405 	int len;
1406 	int in_sack;
1407 
1408 	/* Normally R but no L won't result in plain S */
1409 	if (!dup_sack &&
1410 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1411 		goto fallback;
1412 	if (!skb_can_shift(skb))
1413 		goto fallback;
1414 	/* This frame is about to be dropped (was ACKed). */
1415 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1416 		goto fallback;
1417 
1418 	/* Can only happen with delayed DSACK + discard craziness */
1419 	prev = skb_rb_prev(skb);
1420 	if (!prev)
1421 		goto fallback;
1422 
1423 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1424 		goto fallback;
1425 
1426 	if (!tcp_skb_can_collapse_to(prev))
1427 		goto fallback;
1428 
1429 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1430 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1431 
1432 	if (in_sack) {
1433 		len = skb->len;
1434 		pcount = tcp_skb_pcount(skb);
1435 		mss = tcp_skb_seglen(skb);
1436 
1437 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1438 		 * drop this restriction as unnecessary
1439 		 */
1440 		if (mss != tcp_skb_seglen(prev))
1441 			goto fallback;
1442 	} else {
1443 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1444 			goto noop;
1445 		/* CHECKME: This is non-MSS split case only?, this will
1446 		 * cause skipped skbs due to advancing loop btw, original
1447 		 * has that feature too
1448 		 */
1449 		if (tcp_skb_pcount(skb) <= 1)
1450 			goto noop;
1451 
1452 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1453 		if (!in_sack) {
1454 			/* TODO: head merge to next could be attempted here
1455 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1456 			 * though it might not be worth of the additional hassle
1457 			 *
1458 			 * ...we can probably just fallback to what was done
1459 			 * previously. We could try merging non-SACKed ones
1460 			 * as well but it probably isn't going to buy off
1461 			 * because later SACKs might again split them, and
1462 			 * it would make skb timestamp tracking considerably
1463 			 * harder problem.
1464 			 */
1465 			goto fallback;
1466 		}
1467 
1468 		len = end_seq - TCP_SKB_CB(skb)->seq;
1469 		BUG_ON(len < 0);
1470 		BUG_ON(len > skb->len);
1471 
1472 		/* MSS boundaries should be honoured or else pcount will
1473 		 * severely break even though it makes things bit trickier.
1474 		 * Optimize common case to avoid most of the divides
1475 		 */
1476 		mss = tcp_skb_mss(skb);
1477 
1478 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1479 		 * drop this restriction as unnecessary
1480 		 */
1481 		if (mss != tcp_skb_seglen(prev))
1482 			goto fallback;
1483 
1484 		if (len == mss) {
1485 			pcount = 1;
1486 		} else if (len < mss) {
1487 			goto noop;
1488 		} else {
1489 			pcount = len / mss;
1490 			len = pcount * mss;
1491 		}
1492 	}
1493 
1494 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1495 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1496 		goto fallback;
1497 
1498 	if (!tcp_skb_shift(prev, skb, pcount, len))
1499 		goto fallback;
1500 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1501 		goto out;
1502 
1503 	/* Hole filled allows collapsing with the next as well, this is very
1504 	 * useful when hole on every nth skb pattern happens
1505 	 */
1506 	skb = skb_rb_next(prev);
1507 	if (!skb)
1508 		goto out;
1509 
1510 	if (!skb_can_shift(skb) ||
1511 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1512 	    (mss != tcp_skb_seglen(skb)))
1513 		goto out;
1514 
1515 	len = skb->len;
1516 	pcount = tcp_skb_pcount(skb);
1517 	if (tcp_skb_shift(prev, skb, pcount, len))
1518 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1519 				len, mss, 0);
1520 
1521 out:
1522 	return prev;
1523 
1524 noop:
1525 	return skb;
1526 
1527 fallback:
1528 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1529 	return NULL;
1530 }
1531 
1532 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1533 					struct tcp_sack_block *next_dup,
1534 					struct tcp_sacktag_state *state,
1535 					u32 start_seq, u32 end_seq,
1536 					bool dup_sack_in)
1537 {
1538 	struct tcp_sock *tp = tcp_sk(sk);
1539 	struct sk_buff *tmp;
1540 
1541 	skb_rbtree_walk_from(skb) {
1542 		int in_sack = 0;
1543 		bool dup_sack = dup_sack_in;
1544 
1545 		/* queue is in-order => we can short-circuit the walk early */
1546 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1547 			break;
1548 
1549 		if (next_dup  &&
1550 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1551 			in_sack = tcp_match_skb_to_sack(sk, skb,
1552 							next_dup->start_seq,
1553 							next_dup->end_seq);
1554 			if (in_sack > 0)
1555 				dup_sack = true;
1556 		}
1557 
1558 		/* skb reference here is a bit tricky to get right, since
1559 		 * shifting can eat and free both this skb and the next,
1560 		 * so not even _safe variant of the loop is enough.
1561 		 */
1562 		if (in_sack <= 0) {
1563 			tmp = tcp_shift_skb_data(sk, skb, state,
1564 						 start_seq, end_seq, dup_sack);
1565 			if (tmp) {
1566 				if (tmp != skb) {
1567 					skb = tmp;
1568 					continue;
1569 				}
1570 
1571 				in_sack = 0;
1572 			} else {
1573 				in_sack = tcp_match_skb_to_sack(sk, skb,
1574 								start_seq,
1575 								end_seq);
1576 			}
1577 		}
1578 
1579 		if (unlikely(in_sack < 0))
1580 			break;
1581 
1582 		if (in_sack) {
1583 			TCP_SKB_CB(skb)->sacked =
1584 				tcp_sacktag_one(sk,
1585 						state,
1586 						TCP_SKB_CB(skb)->sacked,
1587 						TCP_SKB_CB(skb)->seq,
1588 						TCP_SKB_CB(skb)->end_seq,
1589 						dup_sack,
1590 						tcp_skb_pcount(skb),
1591 						tcp_skb_timestamp_us(skb));
1592 			tcp_rate_skb_delivered(sk, skb, state->rate);
1593 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1594 				list_del_init(&skb->tcp_tsorted_anchor);
1595 
1596 			if (!before(TCP_SKB_CB(skb)->seq,
1597 				    tcp_highest_sack_seq(tp)))
1598 				tcp_advance_highest_sack(sk, skb);
1599 		}
1600 	}
1601 	return skb;
1602 }
1603 
1604 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1605 {
1606 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1607 	struct sk_buff *skb;
1608 
1609 	while (*p) {
1610 		parent = *p;
1611 		skb = rb_to_skb(parent);
1612 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1613 			p = &parent->rb_left;
1614 			continue;
1615 		}
1616 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1617 			p = &parent->rb_right;
1618 			continue;
1619 		}
1620 		return skb;
1621 	}
1622 	return NULL;
1623 }
1624 
1625 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1626 					u32 skip_to_seq)
1627 {
1628 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1629 		return skb;
1630 
1631 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1632 }
1633 
1634 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1635 						struct sock *sk,
1636 						struct tcp_sack_block *next_dup,
1637 						struct tcp_sacktag_state *state,
1638 						u32 skip_to_seq)
1639 {
1640 	if (!next_dup)
1641 		return skb;
1642 
1643 	if (before(next_dup->start_seq, skip_to_seq)) {
1644 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1645 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1646 				       next_dup->start_seq, next_dup->end_seq,
1647 				       1);
1648 	}
1649 
1650 	return skb;
1651 }
1652 
1653 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1654 {
1655 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1656 }
1657 
1658 static int
1659 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1660 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1661 {
1662 	struct tcp_sock *tp = tcp_sk(sk);
1663 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1664 				    TCP_SKB_CB(ack_skb)->sacked);
1665 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1666 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1667 	struct tcp_sack_block *cache;
1668 	struct sk_buff *skb;
1669 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1670 	int used_sacks;
1671 	bool found_dup_sack = false;
1672 	int i, j;
1673 	int first_sack_index;
1674 
1675 	state->flag = 0;
1676 	state->reord = tp->snd_nxt;
1677 
1678 	if (!tp->sacked_out)
1679 		tcp_highest_sack_reset(sk);
1680 
1681 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1682 					 num_sacks, prior_snd_una);
1683 	if (found_dup_sack) {
1684 		state->flag |= FLAG_DSACKING_ACK;
1685 		tp->delivered++; /* A spurious retransmission is delivered */
1686 	}
1687 
1688 	/* Eliminate too old ACKs, but take into
1689 	 * account more or less fresh ones, they can
1690 	 * contain valid SACK info.
1691 	 */
1692 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1693 		return 0;
1694 
1695 	if (!tp->packets_out)
1696 		goto out;
1697 
1698 	used_sacks = 0;
1699 	first_sack_index = 0;
1700 	for (i = 0; i < num_sacks; i++) {
1701 		bool dup_sack = !i && found_dup_sack;
1702 
1703 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1704 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1705 
1706 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1707 					    sp[used_sacks].start_seq,
1708 					    sp[used_sacks].end_seq)) {
1709 			int mib_idx;
1710 
1711 			if (dup_sack) {
1712 				if (!tp->undo_marker)
1713 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1714 				else
1715 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1716 			} else {
1717 				/* Don't count olds caused by ACK reordering */
1718 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1719 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1720 					continue;
1721 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1722 			}
1723 
1724 			NET_INC_STATS(sock_net(sk), mib_idx);
1725 			if (i == 0)
1726 				first_sack_index = -1;
1727 			continue;
1728 		}
1729 
1730 		/* Ignore very old stuff early */
1731 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1732 			if (i == 0)
1733 				first_sack_index = -1;
1734 			continue;
1735 		}
1736 
1737 		used_sacks++;
1738 	}
1739 
1740 	/* order SACK blocks to allow in order walk of the retrans queue */
1741 	for (i = used_sacks - 1; i > 0; i--) {
1742 		for (j = 0; j < i; j++) {
1743 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1744 				swap(sp[j], sp[j + 1]);
1745 
1746 				/* Track where the first SACK block goes to */
1747 				if (j == first_sack_index)
1748 					first_sack_index = j + 1;
1749 			}
1750 		}
1751 	}
1752 
1753 	state->mss_now = tcp_current_mss(sk);
1754 	skb = NULL;
1755 	i = 0;
1756 
1757 	if (!tp->sacked_out) {
1758 		/* It's already past, so skip checking against it */
1759 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1760 	} else {
1761 		cache = tp->recv_sack_cache;
1762 		/* Skip empty blocks in at head of the cache */
1763 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1764 		       !cache->end_seq)
1765 			cache++;
1766 	}
1767 
1768 	while (i < used_sacks) {
1769 		u32 start_seq = sp[i].start_seq;
1770 		u32 end_seq = sp[i].end_seq;
1771 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1772 		struct tcp_sack_block *next_dup = NULL;
1773 
1774 		if (found_dup_sack && ((i + 1) == first_sack_index))
1775 			next_dup = &sp[i + 1];
1776 
1777 		/* Skip too early cached blocks */
1778 		while (tcp_sack_cache_ok(tp, cache) &&
1779 		       !before(start_seq, cache->end_seq))
1780 			cache++;
1781 
1782 		/* Can skip some work by looking recv_sack_cache? */
1783 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1784 		    after(end_seq, cache->start_seq)) {
1785 
1786 			/* Head todo? */
1787 			if (before(start_seq, cache->start_seq)) {
1788 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1789 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1790 						       state,
1791 						       start_seq,
1792 						       cache->start_seq,
1793 						       dup_sack);
1794 			}
1795 
1796 			/* Rest of the block already fully processed? */
1797 			if (!after(end_seq, cache->end_seq))
1798 				goto advance_sp;
1799 
1800 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1801 						       state,
1802 						       cache->end_seq);
1803 
1804 			/* ...tail remains todo... */
1805 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1806 				/* ...but better entrypoint exists! */
1807 				skb = tcp_highest_sack(sk);
1808 				if (!skb)
1809 					break;
1810 				cache++;
1811 				goto walk;
1812 			}
1813 
1814 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1815 			/* Check overlap against next cached too (past this one already) */
1816 			cache++;
1817 			continue;
1818 		}
1819 
1820 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1821 			skb = tcp_highest_sack(sk);
1822 			if (!skb)
1823 				break;
1824 		}
1825 		skb = tcp_sacktag_skip(skb, sk, start_seq);
1826 
1827 walk:
1828 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1829 				       start_seq, end_seq, dup_sack);
1830 
1831 advance_sp:
1832 		i++;
1833 	}
1834 
1835 	/* Clear the head of the cache sack blocks so we can skip it next time */
1836 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1837 		tp->recv_sack_cache[i].start_seq = 0;
1838 		tp->recv_sack_cache[i].end_seq = 0;
1839 	}
1840 	for (j = 0; j < used_sacks; j++)
1841 		tp->recv_sack_cache[i++] = sp[j];
1842 
1843 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1844 		tcp_check_sack_reordering(sk, state->reord, 0);
1845 
1846 	tcp_verify_left_out(tp);
1847 out:
1848 
1849 #if FASTRETRANS_DEBUG > 0
1850 	WARN_ON((int)tp->sacked_out < 0);
1851 	WARN_ON((int)tp->lost_out < 0);
1852 	WARN_ON((int)tp->retrans_out < 0);
1853 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1854 #endif
1855 	return state->flag;
1856 }
1857 
1858 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1859  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1860  */
1861 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1862 {
1863 	u32 holes;
1864 
1865 	holes = max(tp->lost_out, 1U);
1866 	holes = min(holes, tp->packets_out);
1867 
1868 	if ((tp->sacked_out + holes) > tp->packets_out) {
1869 		tp->sacked_out = tp->packets_out - holes;
1870 		return true;
1871 	}
1872 	return false;
1873 }
1874 
1875 /* If we receive more dupacks than we expected counting segments
1876  * in assumption of absent reordering, interpret this as reordering.
1877  * The only another reason could be bug in receiver TCP.
1878  */
1879 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1880 {
1881 	struct tcp_sock *tp = tcp_sk(sk);
1882 
1883 	if (!tcp_limit_reno_sacked(tp))
1884 		return;
1885 
1886 	tp->reordering = min_t(u32, tp->packets_out + addend,
1887 			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1888 	tp->reord_seen++;
1889 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1890 }
1891 
1892 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1893 
1894 static void tcp_add_reno_sack(struct sock *sk, int num_dupack)
1895 {
1896 	if (num_dupack) {
1897 		struct tcp_sock *tp = tcp_sk(sk);
1898 		u32 prior_sacked = tp->sacked_out;
1899 		s32 delivered;
1900 
1901 		tp->sacked_out += num_dupack;
1902 		tcp_check_reno_reordering(sk, 0);
1903 		delivered = tp->sacked_out - prior_sacked;
1904 		if (delivered > 0)
1905 			tp->delivered += delivered;
1906 		tcp_verify_left_out(tp);
1907 	}
1908 }
1909 
1910 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1911 
1912 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1913 {
1914 	struct tcp_sock *tp = tcp_sk(sk);
1915 
1916 	if (acked > 0) {
1917 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1918 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1919 		if (acked - 1 >= tp->sacked_out)
1920 			tp->sacked_out = 0;
1921 		else
1922 			tp->sacked_out -= acked - 1;
1923 	}
1924 	tcp_check_reno_reordering(sk, acked);
1925 	tcp_verify_left_out(tp);
1926 }
1927 
1928 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1929 {
1930 	tp->sacked_out = 0;
1931 }
1932 
1933 void tcp_clear_retrans(struct tcp_sock *tp)
1934 {
1935 	tp->retrans_out = 0;
1936 	tp->lost_out = 0;
1937 	tp->undo_marker = 0;
1938 	tp->undo_retrans = -1;
1939 	tp->sacked_out = 0;
1940 }
1941 
1942 static inline void tcp_init_undo(struct tcp_sock *tp)
1943 {
1944 	tp->undo_marker = tp->snd_una;
1945 	/* Retransmission still in flight may cause DSACKs later. */
1946 	tp->undo_retrans = tp->retrans_out ? : -1;
1947 }
1948 
1949 static bool tcp_is_rack(const struct sock *sk)
1950 {
1951 	return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
1952 }
1953 
1954 /* If we detect SACK reneging, forget all SACK information
1955  * and reset tags completely, otherwise preserve SACKs. If receiver
1956  * dropped its ofo queue, we will know this due to reneging detection.
1957  */
1958 static void tcp_timeout_mark_lost(struct sock *sk)
1959 {
1960 	struct tcp_sock *tp = tcp_sk(sk);
1961 	struct sk_buff *skb, *head;
1962 	bool is_reneg;			/* is receiver reneging on SACKs? */
1963 
1964 	head = tcp_rtx_queue_head(sk);
1965 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
1966 	if (is_reneg) {
1967 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1968 		tp->sacked_out = 0;
1969 		/* Mark SACK reneging until we recover from this loss event. */
1970 		tp->is_sack_reneg = 1;
1971 	} else if (tcp_is_reno(tp)) {
1972 		tcp_reset_reno_sack(tp);
1973 	}
1974 
1975 	skb = head;
1976 	skb_rbtree_walk_from(skb) {
1977 		if (is_reneg)
1978 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1979 		else if (tcp_is_rack(sk) && skb != head &&
1980 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
1981 			continue; /* Don't mark recently sent ones lost yet */
1982 		tcp_mark_skb_lost(sk, skb);
1983 	}
1984 	tcp_verify_left_out(tp);
1985 	tcp_clear_all_retrans_hints(tp);
1986 }
1987 
1988 /* Enter Loss state. */
1989 void tcp_enter_loss(struct sock *sk)
1990 {
1991 	const struct inet_connection_sock *icsk = inet_csk(sk);
1992 	struct tcp_sock *tp = tcp_sk(sk);
1993 	struct net *net = sock_net(sk);
1994 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1995 
1996 	tcp_timeout_mark_lost(sk);
1997 
1998 	/* Reduce ssthresh if it has not yet been made inside this window. */
1999 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2000 	    !after(tp->high_seq, tp->snd_una) ||
2001 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2002 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2003 		tp->prior_cwnd = tp->snd_cwnd;
2004 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2005 		tcp_ca_event(sk, CA_EVENT_LOSS);
2006 		tcp_init_undo(tp);
2007 	}
2008 	tp->snd_cwnd	   = tcp_packets_in_flight(tp) + 1;
2009 	tp->snd_cwnd_cnt   = 0;
2010 	tp->snd_cwnd_stamp = tcp_jiffies32;
2011 
2012 	/* Timeout in disordered state after receiving substantial DUPACKs
2013 	 * suggests that the degree of reordering is over-estimated.
2014 	 */
2015 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2016 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2017 		tp->reordering = min_t(unsigned int, tp->reordering,
2018 				       net->ipv4.sysctl_tcp_reordering);
2019 	tcp_set_ca_state(sk, TCP_CA_Loss);
2020 	tp->high_seq = tp->snd_nxt;
2021 	tcp_ecn_queue_cwr(tp);
2022 
2023 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2024 	 * loss recovery is underway except recurring timeout(s) on
2025 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2026 	 */
2027 	tp->frto = net->ipv4.sysctl_tcp_frto &&
2028 		   (new_recovery || icsk->icsk_retransmits) &&
2029 		   !inet_csk(sk)->icsk_mtup.probe_size;
2030 }
2031 
2032 /* If ACK arrived pointing to a remembered SACK, it means that our
2033  * remembered SACKs do not reflect real state of receiver i.e.
2034  * receiver _host_ is heavily congested (or buggy).
2035  *
2036  * To avoid big spurious retransmission bursts due to transient SACK
2037  * scoreboard oddities that look like reneging, we give the receiver a
2038  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2039  * restore sanity to the SACK scoreboard. If the apparent reneging
2040  * persists until this RTO then we'll clear the SACK scoreboard.
2041  */
2042 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2043 {
2044 	if (flag & FLAG_SACK_RENEGING) {
2045 		struct tcp_sock *tp = tcp_sk(sk);
2046 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2047 					  msecs_to_jiffies(10));
2048 
2049 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2050 					  delay, TCP_RTO_MAX);
2051 		return true;
2052 	}
2053 	return false;
2054 }
2055 
2056 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2057  * counter when SACK is enabled (without SACK, sacked_out is used for
2058  * that purpose).
2059  *
2060  * With reordering, holes may still be in flight, so RFC3517 recovery
2061  * uses pure sacked_out (total number of SACKed segments) even though
2062  * it violates the RFC that uses duplicate ACKs, often these are equal
2063  * but when e.g. out-of-window ACKs or packet duplication occurs,
2064  * they differ. Since neither occurs due to loss, TCP should really
2065  * ignore them.
2066  */
2067 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2068 {
2069 	return tp->sacked_out + 1;
2070 }
2071 
2072 /* Linux NewReno/SACK/ECN state machine.
2073  * --------------------------------------
2074  *
2075  * "Open"	Normal state, no dubious events, fast path.
2076  * "Disorder"   In all the respects it is "Open",
2077  *		but requires a bit more attention. It is entered when
2078  *		we see some SACKs or dupacks. It is split of "Open"
2079  *		mainly to move some processing from fast path to slow one.
2080  * "CWR"	CWND was reduced due to some Congestion Notification event.
2081  *		It can be ECN, ICMP source quench, local device congestion.
2082  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2083  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2084  *
2085  * tcp_fastretrans_alert() is entered:
2086  * - each incoming ACK, if state is not "Open"
2087  * - when arrived ACK is unusual, namely:
2088  *	* SACK
2089  *	* Duplicate ACK.
2090  *	* ECN ECE.
2091  *
2092  * Counting packets in flight is pretty simple.
2093  *
2094  *	in_flight = packets_out - left_out + retrans_out
2095  *
2096  *	packets_out is SND.NXT-SND.UNA counted in packets.
2097  *
2098  *	retrans_out is number of retransmitted segments.
2099  *
2100  *	left_out is number of segments left network, but not ACKed yet.
2101  *
2102  *		left_out = sacked_out + lost_out
2103  *
2104  *     sacked_out: Packets, which arrived to receiver out of order
2105  *		   and hence not ACKed. With SACKs this number is simply
2106  *		   amount of SACKed data. Even without SACKs
2107  *		   it is easy to give pretty reliable estimate of this number,
2108  *		   counting duplicate ACKs.
2109  *
2110  *       lost_out: Packets lost by network. TCP has no explicit
2111  *		   "loss notification" feedback from network (for now).
2112  *		   It means that this number can be only _guessed_.
2113  *		   Actually, it is the heuristics to predict lossage that
2114  *		   distinguishes different algorithms.
2115  *
2116  *	F.e. after RTO, when all the queue is considered as lost,
2117  *	lost_out = packets_out and in_flight = retrans_out.
2118  *
2119  *		Essentially, we have now a few algorithms detecting
2120  *		lost packets.
2121  *
2122  *		If the receiver supports SACK:
2123  *
2124  *		RFC6675/3517: It is the conventional algorithm. A packet is
2125  *		considered lost if the number of higher sequence packets
2126  *		SACKed is greater than or equal the DUPACK thoreshold
2127  *		(reordering). This is implemented in tcp_mark_head_lost and
2128  *		tcp_update_scoreboard.
2129  *
2130  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2131  *		(2017-) that checks timing instead of counting DUPACKs.
2132  *		Essentially a packet is considered lost if it's not S/ACKed
2133  *		after RTT + reordering_window, where both metrics are
2134  *		dynamically measured and adjusted. This is implemented in
2135  *		tcp_rack_mark_lost.
2136  *
2137  *		If the receiver does not support SACK:
2138  *
2139  *		NewReno (RFC6582): in Recovery we assume that one segment
2140  *		is lost (classic Reno). While we are in Recovery and
2141  *		a partial ACK arrives, we assume that one more packet
2142  *		is lost (NewReno). This heuristics are the same in NewReno
2143  *		and SACK.
2144  *
2145  * Really tricky (and requiring careful tuning) part of algorithm
2146  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2147  * The first determines the moment _when_ we should reduce CWND and,
2148  * hence, slow down forward transmission. In fact, it determines the moment
2149  * when we decide that hole is caused by loss, rather than by a reorder.
2150  *
2151  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2152  * holes, caused by lost packets.
2153  *
2154  * And the most logically complicated part of algorithm is undo
2155  * heuristics. We detect false retransmits due to both too early
2156  * fast retransmit (reordering) and underestimated RTO, analyzing
2157  * timestamps and D-SACKs. When we detect that some segments were
2158  * retransmitted by mistake and CWND reduction was wrong, we undo
2159  * window reduction and abort recovery phase. This logic is hidden
2160  * inside several functions named tcp_try_undo_<something>.
2161  */
2162 
2163 /* This function decides, when we should leave Disordered state
2164  * and enter Recovery phase, reducing congestion window.
2165  *
2166  * Main question: may we further continue forward transmission
2167  * with the same cwnd?
2168  */
2169 static bool tcp_time_to_recover(struct sock *sk, int flag)
2170 {
2171 	struct tcp_sock *tp = tcp_sk(sk);
2172 
2173 	/* Trick#1: The loss is proven. */
2174 	if (tp->lost_out)
2175 		return true;
2176 
2177 	/* Not-A-Trick#2 : Classic rule... */
2178 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2179 		return true;
2180 
2181 	return false;
2182 }
2183 
2184 /* Detect loss in event "A" above by marking head of queue up as lost.
2185  * For non-SACK(Reno) senders, the first "packets" number of segments
2186  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2187  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2188  * the maximum SACKed segments to pass before reaching this limit.
2189  */
2190 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2191 {
2192 	struct tcp_sock *tp = tcp_sk(sk);
2193 	struct sk_buff *skb;
2194 	int cnt, oldcnt, lost;
2195 	unsigned int mss;
2196 	/* Use SACK to deduce losses of new sequences sent during recovery */
2197 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2198 
2199 	WARN_ON(packets > tp->packets_out);
2200 	skb = tp->lost_skb_hint;
2201 	if (skb) {
2202 		/* Head already handled? */
2203 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2204 			return;
2205 		cnt = tp->lost_cnt_hint;
2206 	} else {
2207 		skb = tcp_rtx_queue_head(sk);
2208 		cnt = 0;
2209 	}
2210 
2211 	skb_rbtree_walk_from(skb) {
2212 		/* TODO: do this better */
2213 		/* this is not the most efficient way to do this... */
2214 		tp->lost_skb_hint = skb;
2215 		tp->lost_cnt_hint = cnt;
2216 
2217 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2218 			break;
2219 
2220 		oldcnt = cnt;
2221 		if (tcp_is_reno(tp) ||
2222 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2223 			cnt += tcp_skb_pcount(skb);
2224 
2225 		if (cnt > packets) {
2226 			if (tcp_is_sack(tp) ||
2227 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2228 			    (oldcnt >= packets))
2229 				break;
2230 
2231 			mss = tcp_skb_mss(skb);
2232 			/* If needed, chop off the prefix to mark as lost. */
2233 			lost = (packets - oldcnt) * mss;
2234 			if (lost < skb->len &&
2235 			    tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2236 					 lost, mss, GFP_ATOMIC) < 0)
2237 				break;
2238 			cnt = packets;
2239 		}
2240 
2241 		tcp_skb_mark_lost(tp, skb);
2242 
2243 		if (mark_head)
2244 			break;
2245 	}
2246 	tcp_verify_left_out(tp);
2247 }
2248 
2249 /* Account newly detected lost packet(s) */
2250 
2251 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2252 {
2253 	struct tcp_sock *tp = tcp_sk(sk);
2254 
2255 	if (tcp_is_sack(tp)) {
2256 		int sacked_upto = tp->sacked_out - tp->reordering;
2257 		if (sacked_upto >= 0)
2258 			tcp_mark_head_lost(sk, sacked_upto, 0);
2259 		else if (fast_rexmit)
2260 			tcp_mark_head_lost(sk, 1, 1);
2261 	}
2262 }
2263 
2264 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2265 {
2266 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2267 	       before(tp->rx_opt.rcv_tsecr, when);
2268 }
2269 
2270 /* skb is spurious retransmitted if the returned timestamp echo
2271  * reply is prior to the skb transmission time
2272  */
2273 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2274 				     const struct sk_buff *skb)
2275 {
2276 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2277 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2278 }
2279 
2280 /* Nothing was retransmitted or returned timestamp is less
2281  * than timestamp of the first retransmission.
2282  */
2283 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2284 {
2285 	return tp->retrans_stamp &&
2286 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2287 }
2288 
2289 /* Undo procedures. */
2290 
2291 /* We can clear retrans_stamp when there are no retransmissions in the
2292  * window. It would seem that it is trivially available for us in
2293  * tp->retrans_out, however, that kind of assumptions doesn't consider
2294  * what will happen if errors occur when sending retransmission for the
2295  * second time. ...It could the that such segment has only
2296  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2297  * the head skb is enough except for some reneging corner cases that
2298  * are not worth the effort.
2299  *
2300  * Main reason for all this complexity is the fact that connection dying
2301  * time now depends on the validity of the retrans_stamp, in particular,
2302  * that successive retransmissions of a segment must not advance
2303  * retrans_stamp under any conditions.
2304  */
2305 static bool tcp_any_retrans_done(const struct sock *sk)
2306 {
2307 	const struct tcp_sock *tp = tcp_sk(sk);
2308 	struct sk_buff *skb;
2309 
2310 	if (tp->retrans_out)
2311 		return true;
2312 
2313 	skb = tcp_rtx_queue_head(sk);
2314 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2315 		return true;
2316 
2317 	return false;
2318 }
2319 
2320 static void DBGUNDO(struct sock *sk, const char *msg)
2321 {
2322 #if FASTRETRANS_DEBUG > 1
2323 	struct tcp_sock *tp = tcp_sk(sk);
2324 	struct inet_sock *inet = inet_sk(sk);
2325 
2326 	if (sk->sk_family == AF_INET) {
2327 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2328 			 msg,
2329 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2330 			 tp->snd_cwnd, tcp_left_out(tp),
2331 			 tp->snd_ssthresh, tp->prior_ssthresh,
2332 			 tp->packets_out);
2333 	}
2334 #if IS_ENABLED(CONFIG_IPV6)
2335 	else if (sk->sk_family == AF_INET6) {
2336 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2337 			 msg,
2338 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2339 			 tp->snd_cwnd, tcp_left_out(tp),
2340 			 tp->snd_ssthresh, tp->prior_ssthresh,
2341 			 tp->packets_out);
2342 	}
2343 #endif
2344 #endif
2345 }
2346 
2347 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2348 {
2349 	struct tcp_sock *tp = tcp_sk(sk);
2350 
2351 	if (unmark_loss) {
2352 		struct sk_buff *skb;
2353 
2354 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2355 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2356 		}
2357 		tp->lost_out = 0;
2358 		tcp_clear_all_retrans_hints(tp);
2359 	}
2360 
2361 	if (tp->prior_ssthresh) {
2362 		const struct inet_connection_sock *icsk = inet_csk(sk);
2363 
2364 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2365 
2366 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2367 			tp->snd_ssthresh = tp->prior_ssthresh;
2368 			tcp_ecn_withdraw_cwr(tp);
2369 		}
2370 	}
2371 	tp->snd_cwnd_stamp = tcp_jiffies32;
2372 	tp->undo_marker = 0;
2373 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2374 }
2375 
2376 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2377 {
2378 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2379 }
2380 
2381 /* People celebrate: "We love our President!" */
2382 static bool tcp_try_undo_recovery(struct sock *sk)
2383 {
2384 	struct tcp_sock *tp = tcp_sk(sk);
2385 
2386 	if (tcp_may_undo(tp)) {
2387 		int mib_idx;
2388 
2389 		/* Happy end! We did not retransmit anything
2390 		 * or our original transmission succeeded.
2391 		 */
2392 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2393 		tcp_undo_cwnd_reduction(sk, false);
2394 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2395 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2396 		else
2397 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2398 
2399 		NET_INC_STATS(sock_net(sk), mib_idx);
2400 	} else if (tp->rack.reo_wnd_persist) {
2401 		tp->rack.reo_wnd_persist--;
2402 	}
2403 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2404 		/* Hold old state until something *above* high_seq
2405 		 * is ACKed. For Reno it is MUST to prevent false
2406 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2407 		if (!tcp_any_retrans_done(sk))
2408 			tp->retrans_stamp = 0;
2409 		return true;
2410 	}
2411 	tcp_set_ca_state(sk, TCP_CA_Open);
2412 	tp->is_sack_reneg = 0;
2413 	return false;
2414 }
2415 
2416 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2417 static bool tcp_try_undo_dsack(struct sock *sk)
2418 {
2419 	struct tcp_sock *tp = tcp_sk(sk);
2420 
2421 	if (tp->undo_marker && !tp->undo_retrans) {
2422 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2423 					       tp->rack.reo_wnd_persist + 1);
2424 		DBGUNDO(sk, "D-SACK");
2425 		tcp_undo_cwnd_reduction(sk, false);
2426 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2427 		return true;
2428 	}
2429 	return false;
2430 }
2431 
2432 /* Undo during loss recovery after partial ACK or using F-RTO. */
2433 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2434 {
2435 	struct tcp_sock *tp = tcp_sk(sk);
2436 
2437 	if (frto_undo || tcp_may_undo(tp)) {
2438 		tcp_undo_cwnd_reduction(sk, true);
2439 
2440 		DBGUNDO(sk, "partial loss");
2441 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2442 		if (frto_undo)
2443 			NET_INC_STATS(sock_net(sk),
2444 					LINUX_MIB_TCPSPURIOUSRTOS);
2445 		inet_csk(sk)->icsk_retransmits = 0;
2446 		if (frto_undo || tcp_is_sack(tp)) {
2447 			tcp_set_ca_state(sk, TCP_CA_Open);
2448 			tp->is_sack_reneg = 0;
2449 		}
2450 		return true;
2451 	}
2452 	return false;
2453 }
2454 
2455 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2456  * It computes the number of packets to send (sndcnt) based on packets newly
2457  * delivered:
2458  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2459  *	cwnd reductions across a full RTT.
2460  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2461  *      But when the retransmits are acked without further losses, PRR
2462  *      slow starts cwnd up to ssthresh to speed up the recovery.
2463  */
2464 static void tcp_init_cwnd_reduction(struct sock *sk)
2465 {
2466 	struct tcp_sock *tp = tcp_sk(sk);
2467 
2468 	tp->high_seq = tp->snd_nxt;
2469 	tp->tlp_high_seq = 0;
2470 	tp->snd_cwnd_cnt = 0;
2471 	tp->prior_cwnd = tp->snd_cwnd;
2472 	tp->prr_delivered = 0;
2473 	tp->prr_out = 0;
2474 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2475 	tcp_ecn_queue_cwr(tp);
2476 }
2477 
2478 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2479 {
2480 	struct tcp_sock *tp = tcp_sk(sk);
2481 	int sndcnt = 0;
2482 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2483 
2484 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2485 		return;
2486 
2487 	tp->prr_delivered += newly_acked_sacked;
2488 	if (delta < 0) {
2489 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2490 			       tp->prior_cwnd - 1;
2491 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2492 	} else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) ==
2493 		   FLAG_RETRANS_DATA_ACKED) {
2494 		sndcnt = min_t(int, delta,
2495 			       max_t(int, tp->prr_delivered - tp->prr_out,
2496 				     newly_acked_sacked) + 1);
2497 	} else {
2498 		sndcnt = min(delta, newly_acked_sacked);
2499 	}
2500 	/* Force a fast retransmit upon entering fast recovery */
2501 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2502 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2503 }
2504 
2505 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2506 {
2507 	struct tcp_sock *tp = tcp_sk(sk);
2508 
2509 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2510 		return;
2511 
2512 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2513 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2514 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2515 		tp->snd_cwnd = tp->snd_ssthresh;
2516 		tp->snd_cwnd_stamp = tcp_jiffies32;
2517 	}
2518 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2519 }
2520 
2521 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2522 void tcp_enter_cwr(struct sock *sk)
2523 {
2524 	struct tcp_sock *tp = tcp_sk(sk);
2525 
2526 	tp->prior_ssthresh = 0;
2527 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2528 		tp->undo_marker = 0;
2529 		tcp_init_cwnd_reduction(sk);
2530 		tcp_set_ca_state(sk, TCP_CA_CWR);
2531 	}
2532 }
2533 EXPORT_SYMBOL(tcp_enter_cwr);
2534 
2535 static void tcp_try_keep_open(struct sock *sk)
2536 {
2537 	struct tcp_sock *tp = tcp_sk(sk);
2538 	int state = TCP_CA_Open;
2539 
2540 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2541 		state = TCP_CA_Disorder;
2542 
2543 	if (inet_csk(sk)->icsk_ca_state != state) {
2544 		tcp_set_ca_state(sk, state);
2545 		tp->high_seq = tp->snd_nxt;
2546 	}
2547 }
2548 
2549 static void tcp_try_to_open(struct sock *sk, int flag)
2550 {
2551 	struct tcp_sock *tp = tcp_sk(sk);
2552 
2553 	tcp_verify_left_out(tp);
2554 
2555 	if (!tcp_any_retrans_done(sk))
2556 		tp->retrans_stamp = 0;
2557 
2558 	if (flag & FLAG_ECE)
2559 		tcp_enter_cwr(sk);
2560 
2561 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2562 		tcp_try_keep_open(sk);
2563 	}
2564 }
2565 
2566 static void tcp_mtup_probe_failed(struct sock *sk)
2567 {
2568 	struct inet_connection_sock *icsk = inet_csk(sk);
2569 
2570 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2571 	icsk->icsk_mtup.probe_size = 0;
2572 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2573 }
2574 
2575 static void tcp_mtup_probe_success(struct sock *sk)
2576 {
2577 	struct tcp_sock *tp = tcp_sk(sk);
2578 	struct inet_connection_sock *icsk = inet_csk(sk);
2579 
2580 	/* FIXME: breaks with very large cwnd */
2581 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2582 	tp->snd_cwnd = tp->snd_cwnd *
2583 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2584 		       icsk->icsk_mtup.probe_size;
2585 	tp->snd_cwnd_cnt = 0;
2586 	tp->snd_cwnd_stamp = tcp_jiffies32;
2587 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2588 
2589 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2590 	icsk->icsk_mtup.probe_size = 0;
2591 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2592 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2593 }
2594 
2595 /* Do a simple retransmit without using the backoff mechanisms in
2596  * tcp_timer. This is used for path mtu discovery.
2597  * The socket is already locked here.
2598  */
2599 void tcp_simple_retransmit(struct sock *sk)
2600 {
2601 	const struct inet_connection_sock *icsk = inet_csk(sk);
2602 	struct tcp_sock *tp = tcp_sk(sk);
2603 	struct sk_buff *skb;
2604 	unsigned int mss = tcp_current_mss(sk);
2605 
2606 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2607 		if (tcp_skb_seglen(skb) > mss &&
2608 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2609 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2610 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2611 				tp->retrans_out -= tcp_skb_pcount(skb);
2612 			}
2613 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2614 		}
2615 	}
2616 
2617 	tcp_clear_retrans_hints_partial(tp);
2618 
2619 	if (!tp->lost_out)
2620 		return;
2621 
2622 	if (tcp_is_reno(tp))
2623 		tcp_limit_reno_sacked(tp);
2624 
2625 	tcp_verify_left_out(tp);
2626 
2627 	/* Don't muck with the congestion window here.
2628 	 * Reason is that we do not increase amount of _data_
2629 	 * in network, but units changed and effective
2630 	 * cwnd/ssthresh really reduced now.
2631 	 */
2632 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2633 		tp->high_seq = tp->snd_nxt;
2634 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2635 		tp->prior_ssthresh = 0;
2636 		tp->undo_marker = 0;
2637 		tcp_set_ca_state(sk, TCP_CA_Loss);
2638 	}
2639 	tcp_xmit_retransmit_queue(sk);
2640 }
2641 EXPORT_SYMBOL(tcp_simple_retransmit);
2642 
2643 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2644 {
2645 	struct tcp_sock *tp = tcp_sk(sk);
2646 	int mib_idx;
2647 
2648 	if (tcp_is_reno(tp))
2649 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2650 	else
2651 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2652 
2653 	NET_INC_STATS(sock_net(sk), mib_idx);
2654 
2655 	tp->prior_ssthresh = 0;
2656 	tcp_init_undo(tp);
2657 
2658 	if (!tcp_in_cwnd_reduction(sk)) {
2659 		if (!ece_ack)
2660 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2661 		tcp_init_cwnd_reduction(sk);
2662 	}
2663 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2664 }
2665 
2666 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2667  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2668  */
2669 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2670 			     int *rexmit)
2671 {
2672 	struct tcp_sock *tp = tcp_sk(sk);
2673 	bool recovered = !before(tp->snd_una, tp->high_seq);
2674 
2675 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2676 	    tcp_try_undo_loss(sk, false))
2677 		return;
2678 
2679 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2680 		/* Step 3.b. A timeout is spurious if not all data are
2681 		 * lost, i.e., never-retransmitted data are (s)acked.
2682 		 */
2683 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2684 		    tcp_try_undo_loss(sk, true))
2685 			return;
2686 
2687 		if (after(tp->snd_nxt, tp->high_seq)) {
2688 			if (flag & FLAG_DATA_SACKED || num_dupack)
2689 				tp->frto = 0; /* Step 3.a. loss was real */
2690 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2691 			tp->high_seq = tp->snd_nxt;
2692 			/* Step 2.b. Try send new data (but deferred until cwnd
2693 			 * is updated in tcp_ack()). Otherwise fall back to
2694 			 * the conventional recovery.
2695 			 */
2696 			if (!tcp_write_queue_empty(sk) &&
2697 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2698 				*rexmit = REXMIT_NEW;
2699 				return;
2700 			}
2701 			tp->frto = 0;
2702 		}
2703 	}
2704 
2705 	if (recovered) {
2706 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2707 		tcp_try_undo_recovery(sk);
2708 		return;
2709 	}
2710 	if (tcp_is_reno(tp)) {
2711 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2712 		 * delivered. Lower inflight to clock out (re)tranmissions.
2713 		 */
2714 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2715 			tcp_add_reno_sack(sk, num_dupack);
2716 		else if (flag & FLAG_SND_UNA_ADVANCED)
2717 			tcp_reset_reno_sack(tp);
2718 	}
2719 	*rexmit = REXMIT_LOST;
2720 }
2721 
2722 /* Undo during fast recovery after partial ACK. */
2723 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2724 {
2725 	struct tcp_sock *tp = tcp_sk(sk);
2726 
2727 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2728 		/* Plain luck! Hole if filled with delayed
2729 		 * packet, rather than with a retransmit. Check reordering.
2730 		 */
2731 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2732 
2733 		/* We are getting evidence that the reordering degree is higher
2734 		 * than we realized. If there are no retransmits out then we
2735 		 * can undo. Otherwise we clock out new packets but do not
2736 		 * mark more packets lost or retransmit more.
2737 		 */
2738 		if (tp->retrans_out)
2739 			return true;
2740 
2741 		if (!tcp_any_retrans_done(sk))
2742 			tp->retrans_stamp = 0;
2743 
2744 		DBGUNDO(sk, "partial recovery");
2745 		tcp_undo_cwnd_reduction(sk, true);
2746 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2747 		tcp_try_keep_open(sk);
2748 		return true;
2749 	}
2750 	return false;
2751 }
2752 
2753 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2754 {
2755 	struct tcp_sock *tp = tcp_sk(sk);
2756 
2757 	if (tcp_rtx_queue_empty(sk))
2758 		return;
2759 
2760 	if (unlikely(tcp_is_reno(tp))) {
2761 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2762 	} else if (tcp_is_rack(sk)) {
2763 		u32 prior_retrans = tp->retrans_out;
2764 
2765 		tcp_rack_mark_lost(sk);
2766 		if (prior_retrans > tp->retrans_out)
2767 			*ack_flag |= FLAG_LOST_RETRANS;
2768 	}
2769 }
2770 
2771 static bool tcp_force_fast_retransmit(struct sock *sk)
2772 {
2773 	struct tcp_sock *tp = tcp_sk(sk);
2774 
2775 	return after(tcp_highest_sack_seq(tp),
2776 		     tp->snd_una + tp->reordering * tp->mss_cache);
2777 }
2778 
2779 /* Process an event, which can update packets-in-flight not trivially.
2780  * Main goal of this function is to calculate new estimate for left_out,
2781  * taking into account both packets sitting in receiver's buffer and
2782  * packets lost by network.
2783  *
2784  * Besides that it updates the congestion state when packet loss or ECN
2785  * is detected. But it does not reduce the cwnd, it is done by the
2786  * congestion control later.
2787  *
2788  * It does _not_ decide what to send, it is made in function
2789  * tcp_xmit_retransmit_queue().
2790  */
2791 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2792 				  int num_dupack, int *ack_flag, int *rexmit)
2793 {
2794 	struct inet_connection_sock *icsk = inet_csk(sk);
2795 	struct tcp_sock *tp = tcp_sk(sk);
2796 	int fast_rexmit = 0, flag = *ack_flag;
2797 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2798 				      tcp_force_fast_retransmit(sk));
2799 
2800 	if (!tp->packets_out && tp->sacked_out)
2801 		tp->sacked_out = 0;
2802 
2803 	/* Now state machine starts.
2804 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2805 	if (flag & FLAG_ECE)
2806 		tp->prior_ssthresh = 0;
2807 
2808 	/* B. In all the states check for reneging SACKs. */
2809 	if (tcp_check_sack_reneging(sk, flag))
2810 		return;
2811 
2812 	/* C. Check consistency of the current state. */
2813 	tcp_verify_left_out(tp);
2814 
2815 	/* D. Check state exit conditions. State can be terminated
2816 	 *    when high_seq is ACKed. */
2817 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2818 		WARN_ON(tp->retrans_out != 0);
2819 		tp->retrans_stamp = 0;
2820 	} else if (!before(tp->snd_una, tp->high_seq)) {
2821 		switch (icsk->icsk_ca_state) {
2822 		case TCP_CA_CWR:
2823 			/* CWR is to be held something *above* high_seq
2824 			 * is ACKed for CWR bit to reach receiver. */
2825 			if (tp->snd_una != tp->high_seq) {
2826 				tcp_end_cwnd_reduction(sk);
2827 				tcp_set_ca_state(sk, TCP_CA_Open);
2828 			}
2829 			break;
2830 
2831 		case TCP_CA_Recovery:
2832 			if (tcp_is_reno(tp))
2833 				tcp_reset_reno_sack(tp);
2834 			if (tcp_try_undo_recovery(sk))
2835 				return;
2836 			tcp_end_cwnd_reduction(sk);
2837 			break;
2838 		}
2839 	}
2840 
2841 	/* E. Process state. */
2842 	switch (icsk->icsk_ca_state) {
2843 	case TCP_CA_Recovery:
2844 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2845 			if (tcp_is_reno(tp))
2846 				tcp_add_reno_sack(sk, num_dupack);
2847 		} else {
2848 			if (tcp_try_undo_partial(sk, prior_snd_una))
2849 				return;
2850 			/* Partial ACK arrived. Force fast retransmit. */
2851 			do_lost = tcp_is_reno(tp) ||
2852 				  tcp_force_fast_retransmit(sk);
2853 		}
2854 		if (tcp_try_undo_dsack(sk)) {
2855 			tcp_try_keep_open(sk);
2856 			return;
2857 		}
2858 		tcp_identify_packet_loss(sk, ack_flag);
2859 		break;
2860 	case TCP_CA_Loss:
2861 		tcp_process_loss(sk, flag, num_dupack, rexmit);
2862 		tcp_identify_packet_loss(sk, ack_flag);
2863 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2864 		      (*ack_flag & FLAG_LOST_RETRANS)))
2865 			return;
2866 		/* Change state if cwnd is undone or retransmits are lost */
2867 		/* fall through */
2868 	default:
2869 		if (tcp_is_reno(tp)) {
2870 			if (flag & FLAG_SND_UNA_ADVANCED)
2871 				tcp_reset_reno_sack(tp);
2872 			tcp_add_reno_sack(sk, num_dupack);
2873 		}
2874 
2875 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2876 			tcp_try_undo_dsack(sk);
2877 
2878 		tcp_identify_packet_loss(sk, ack_flag);
2879 		if (!tcp_time_to_recover(sk, flag)) {
2880 			tcp_try_to_open(sk, flag);
2881 			return;
2882 		}
2883 
2884 		/* MTU probe failure: don't reduce cwnd */
2885 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2886 		    icsk->icsk_mtup.probe_size &&
2887 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2888 			tcp_mtup_probe_failed(sk);
2889 			/* Restores the reduction we did in tcp_mtup_probe() */
2890 			tp->snd_cwnd++;
2891 			tcp_simple_retransmit(sk);
2892 			return;
2893 		}
2894 
2895 		/* Otherwise enter Recovery state */
2896 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2897 		fast_rexmit = 1;
2898 	}
2899 
2900 	if (!tcp_is_rack(sk) && do_lost)
2901 		tcp_update_scoreboard(sk, fast_rexmit);
2902 	*rexmit = REXMIT_LOST;
2903 }
2904 
2905 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2906 {
2907 	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2908 	struct tcp_sock *tp = tcp_sk(sk);
2909 
2910 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2911 		/* If the remote keeps returning delayed ACKs, eventually
2912 		 * the min filter would pick it up and overestimate the
2913 		 * prop. delay when it expires. Skip suspected delayed ACKs.
2914 		 */
2915 		return;
2916 	}
2917 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2918 			   rtt_us ? : jiffies_to_usecs(1));
2919 }
2920 
2921 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2922 			       long seq_rtt_us, long sack_rtt_us,
2923 			       long ca_rtt_us, struct rate_sample *rs)
2924 {
2925 	const struct tcp_sock *tp = tcp_sk(sk);
2926 
2927 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2928 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2929 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2930 	 * is acked (RFC6298).
2931 	 */
2932 	if (seq_rtt_us < 0)
2933 		seq_rtt_us = sack_rtt_us;
2934 
2935 	/* RTTM Rule: A TSecr value received in a segment is used to
2936 	 * update the averaged RTT measurement only if the segment
2937 	 * acknowledges some new data, i.e., only if it advances the
2938 	 * left edge of the send window.
2939 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2940 	 */
2941 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2942 	    flag & FLAG_ACKED) {
2943 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2944 
2945 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
2946 			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2947 			ca_rtt_us = seq_rtt_us;
2948 		}
2949 	}
2950 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2951 	if (seq_rtt_us < 0)
2952 		return false;
2953 
2954 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2955 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2956 	 * values will be skipped with the seq_rtt_us < 0 check above.
2957 	 */
2958 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
2959 	tcp_rtt_estimator(sk, seq_rtt_us);
2960 	tcp_set_rto(sk);
2961 
2962 	/* RFC6298: only reset backoff on valid RTT measurement. */
2963 	inet_csk(sk)->icsk_backoff = 0;
2964 	return true;
2965 }
2966 
2967 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2968 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2969 {
2970 	struct rate_sample rs;
2971 	long rtt_us = -1L;
2972 
2973 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2974 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2975 
2976 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2977 }
2978 
2979 
2980 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2981 {
2982 	const struct inet_connection_sock *icsk = inet_csk(sk);
2983 
2984 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2985 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2986 }
2987 
2988 /* Restart timer after forward progress on connection.
2989  * RFC2988 recommends to restart timer to now+rto.
2990  */
2991 void tcp_rearm_rto(struct sock *sk)
2992 {
2993 	const struct inet_connection_sock *icsk = inet_csk(sk);
2994 	struct tcp_sock *tp = tcp_sk(sk);
2995 
2996 	/* If the retrans timer is currently being used by Fast Open
2997 	 * for SYN-ACK retrans purpose, stay put.
2998 	 */
2999 	if (rcu_access_pointer(tp->fastopen_rsk))
3000 		return;
3001 
3002 	if (!tp->packets_out) {
3003 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3004 	} else {
3005 		u32 rto = inet_csk(sk)->icsk_rto;
3006 		/* Offset the time elapsed after installing regular RTO */
3007 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3008 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3009 			s64 delta_us = tcp_rto_delta_us(sk);
3010 			/* delta_us may not be positive if the socket is locked
3011 			 * when the retrans timer fires and is rescheduled.
3012 			 */
3013 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3014 		}
3015 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3016 				     TCP_RTO_MAX, tcp_rtx_queue_head(sk));
3017 	}
3018 }
3019 
3020 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3021 static void tcp_set_xmit_timer(struct sock *sk)
3022 {
3023 	if (!tcp_schedule_loss_probe(sk, true))
3024 		tcp_rearm_rto(sk);
3025 }
3026 
3027 /* If we get here, the whole TSO packet has not been acked. */
3028 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3029 {
3030 	struct tcp_sock *tp = tcp_sk(sk);
3031 	u32 packets_acked;
3032 
3033 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3034 
3035 	packets_acked = tcp_skb_pcount(skb);
3036 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3037 		return 0;
3038 	packets_acked -= tcp_skb_pcount(skb);
3039 
3040 	if (packets_acked) {
3041 		BUG_ON(tcp_skb_pcount(skb) == 0);
3042 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3043 	}
3044 
3045 	return packets_acked;
3046 }
3047 
3048 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3049 			   u32 prior_snd_una)
3050 {
3051 	const struct skb_shared_info *shinfo;
3052 
3053 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3054 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3055 		return;
3056 
3057 	shinfo = skb_shinfo(skb);
3058 	if (!before(shinfo->tskey, prior_snd_una) &&
3059 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3060 		tcp_skb_tsorted_save(skb) {
3061 			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3062 		} tcp_skb_tsorted_restore(skb);
3063 	}
3064 }
3065 
3066 /* Remove acknowledged frames from the retransmission queue. If our packet
3067  * is before the ack sequence we can discard it as it's confirmed to have
3068  * arrived at the other end.
3069  */
3070 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3071 			       u32 prior_snd_una,
3072 			       struct tcp_sacktag_state *sack)
3073 {
3074 	const struct inet_connection_sock *icsk = inet_csk(sk);
3075 	u64 first_ackt, last_ackt;
3076 	struct tcp_sock *tp = tcp_sk(sk);
3077 	u32 prior_sacked = tp->sacked_out;
3078 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3079 	struct sk_buff *skb, *next;
3080 	bool fully_acked = true;
3081 	long sack_rtt_us = -1L;
3082 	long seq_rtt_us = -1L;
3083 	long ca_rtt_us = -1L;
3084 	u32 pkts_acked = 0;
3085 	u32 last_in_flight = 0;
3086 	bool rtt_update;
3087 	int flag = 0;
3088 
3089 	first_ackt = 0;
3090 
3091 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3092 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3093 		const u32 start_seq = scb->seq;
3094 		u8 sacked = scb->sacked;
3095 		u32 acked_pcount;
3096 
3097 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3098 
3099 		/* Determine how many packets and what bytes were acked, tso and else */
3100 		if (after(scb->end_seq, tp->snd_una)) {
3101 			if (tcp_skb_pcount(skb) == 1 ||
3102 			    !after(tp->snd_una, scb->seq))
3103 				break;
3104 
3105 			acked_pcount = tcp_tso_acked(sk, skb);
3106 			if (!acked_pcount)
3107 				break;
3108 			fully_acked = false;
3109 		} else {
3110 			acked_pcount = tcp_skb_pcount(skb);
3111 		}
3112 
3113 		if (unlikely(sacked & TCPCB_RETRANS)) {
3114 			if (sacked & TCPCB_SACKED_RETRANS)
3115 				tp->retrans_out -= acked_pcount;
3116 			flag |= FLAG_RETRANS_DATA_ACKED;
3117 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3118 			last_ackt = tcp_skb_timestamp_us(skb);
3119 			WARN_ON_ONCE(last_ackt == 0);
3120 			if (!first_ackt)
3121 				first_ackt = last_ackt;
3122 
3123 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3124 			if (before(start_seq, reord))
3125 				reord = start_seq;
3126 			if (!after(scb->end_seq, tp->high_seq))
3127 				flag |= FLAG_ORIG_SACK_ACKED;
3128 		}
3129 
3130 		if (sacked & TCPCB_SACKED_ACKED) {
3131 			tp->sacked_out -= acked_pcount;
3132 		} else if (tcp_is_sack(tp)) {
3133 			tp->delivered += acked_pcount;
3134 			if (!tcp_skb_spurious_retrans(tp, skb))
3135 				tcp_rack_advance(tp, sacked, scb->end_seq,
3136 						 tcp_skb_timestamp_us(skb));
3137 		}
3138 		if (sacked & TCPCB_LOST)
3139 			tp->lost_out -= acked_pcount;
3140 
3141 		tp->packets_out -= acked_pcount;
3142 		pkts_acked += acked_pcount;
3143 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3144 
3145 		/* Initial outgoing SYN's get put onto the write_queue
3146 		 * just like anything else we transmit.  It is not
3147 		 * true data, and if we misinform our callers that
3148 		 * this ACK acks real data, we will erroneously exit
3149 		 * connection startup slow start one packet too
3150 		 * quickly.  This is severely frowned upon behavior.
3151 		 */
3152 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3153 			flag |= FLAG_DATA_ACKED;
3154 		} else {
3155 			flag |= FLAG_SYN_ACKED;
3156 			tp->retrans_stamp = 0;
3157 		}
3158 
3159 		if (!fully_acked)
3160 			break;
3161 
3162 		next = skb_rb_next(skb);
3163 		if (unlikely(skb == tp->retransmit_skb_hint))
3164 			tp->retransmit_skb_hint = NULL;
3165 		if (unlikely(skb == tp->lost_skb_hint))
3166 			tp->lost_skb_hint = NULL;
3167 		tcp_rtx_queue_unlink_and_free(skb, sk);
3168 	}
3169 
3170 	if (!skb)
3171 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3172 
3173 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3174 		tp->snd_up = tp->snd_una;
3175 
3176 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3177 		flag |= FLAG_SACK_RENEGING;
3178 
3179 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3180 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3181 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3182 
3183 		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3184 		    last_in_flight && !prior_sacked && fully_acked &&
3185 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3186 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3187 			/* Conservatively mark a delayed ACK. It's typically
3188 			 * from a lone runt packet over the round trip to
3189 			 * a receiver w/o out-of-order or CE events.
3190 			 */
3191 			flag |= FLAG_ACK_MAYBE_DELAYED;
3192 		}
3193 	}
3194 	if (sack->first_sackt) {
3195 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3196 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3197 	}
3198 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3199 					ca_rtt_us, sack->rate);
3200 
3201 	if (flag & FLAG_ACKED) {
3202 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3203 		if (unlikely(icsk->icsk_mtup.probe_size &&
3204 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3205 			tcp_mtup_probe_success(sk);
3206 		}
3207 
3208 		if (tcp_is_reno(tp)) {
3209 			tcp_remove_reno_sacks(sk, pkts_acked);
3210 
3211 			/* If any of the cumulatively ACKed segments was
3212 			 * retransmitted, non-SACK case cannot confirm that
3213 			 * progress was due to original transmission due to
3214 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3215 			 * the packets may have been never retransmitted.
3216 			 */
3217 			if (flag & FLAG_RETRANS_DATA_ACKED)
3218 				flag &= ~FLAG_ORIG_SACK_ACKED;
3219 		} else {
3220 			int delta;
3221 
3222 			/* Non-retransmitted hole got filled? That's reordering */
3223 			if (before(reord, prior_fack))
3224 				tcp_check_sack_reordering(sk, reord, 0);
3225 
3226 			delta = prior_sacked - tp->sacked_out;
3227 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3228 		}
3229 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3230 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3231 						    tcp_skb_timestamp_us(skb))) {
3232 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3233 		 * after when the head was last (re)transmitted. Otherwise the
3234 		 * timeout may continue to extend in loss recovery.
3235 		 */
3236 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3237 	}
3238 
3239 	if (icsk->icsk_ca_ops->pkts_acked) {
3240 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3241 					     .rtt_us = sack->rate->rtt_us,
3242 					     .in_flight = last_in_flight };
3243 
3244 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3245 	}
3246 
3247 #if FASTRETRANS_DEBUG > 0
3248 	WARN_ON((int)tp->sacked_out < 0);
3249 	WARN_ON((int)tp->lost_out < 0);
3250 	WARN_ON((int)tp->retrans_out < 0);
3251 	if (!tp->packets_out && tcp_is_sack(tp)) {
3252 		icsk = inet_csk(sk);
3253 		if (tp->lost_out) {
3254 			pr_debug("Leak l=%u %d\n",
3255 				 tp->lost_out, icsk->icsk_ca_state);
3256 			tp->lost_out = 0;
3257 		}
3258 		if (tp->sacked_out) {
3259 			pr_debug("Leak s=%u %d\n",
3260 				 tp->sacked_out, icsk->icsk_ca_state);
3261 			tp->sacked_out = 0;
3262 		}
3263 		if (tp->retrans_out) {
3264 			pr_debug("Leak r=%u %d\n",
3265 				 tp->retrans_out, icsk->icsk_ca_state);
3266 			tp->retrans_out = 0;
3267 		}
3268 	}
3269 #endif
3270 	return flag;
3271 }
3272 
3273 static void tcp_ack_probe(struct sock *sk)
3274 {
3275 	struct inet_connection_sock *icsk = inet_csk(sk);
3276 	struct sk_buff *head = tcp_send_head(sk);
3277 	const struct tcp_sock *tp = tcp_sk(sk);
3278 
3279 	/* Was it a usable window open? */
3280 	if (!head)
3281 		return;
3282 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3283 		icsk->icsk_backoff = 0;
3284 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3285 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3286 		 * This function is not for random using!
3287 		 */
3288 	} else {
3289 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3290 
3291 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3292 				     when, TCP_RTO_MAX, NULL);
3293 	}
3294 }
3295 
3296 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3297 {
3298 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3299 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3300 }
3301 
3302 /* Decide wheather to run the increase function of congestion control. */
3303 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3304 {
3305 	/* If reordering is high then always grow cwnd whenever data is
3306 	 * delivered regardless of its ordering. Otherwise stay conservative
3307 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3308 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3309 	 * cwnd in tcp_fastretrans_alert() based on more states.
3310 	 */
3311 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3312 		return flag & FLAG_FORWARD_PROGRESS;
3313 
3314 	return flag & FLAG_DATA_ACKED;
3315 }
3316 
3317 /* The "ultimate" congestion control function that aims to replace the rigid
3318  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3319  * It's called toward the end of processing an ACK with precise rate
3320  * information. All transmission or retransmission are delayed afterwards.
3321  */
3322 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3323 			     int flag, const struct rate_sample *rs)
3324 {
3325 	const struct inet_connection_sock *icsk = inet_csk(sk);
3326 
3327 	if (icsk->icsk_ca_ops->cong_control) {
3328 		icsk->icsk_ca_ops->cong_control(sk, rs);
3329 		return;
3330 	}
3331 
3332 	if (tcp_in_cwnd_reduction(sk)) {
3333 		/* Reduce cwnd if state mandates */
3334 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3335 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3336 		/* Advance cwnd if state allows */
3337 		tcp_cong_avoid(sk, ack, acked_sacked);
3338 	}
3339 	tcp_update_pacing_rate(sk);
3340 }
3341 
3342 /* Check that window update is acceptable.
3343  * The function assumes that snd_una<=ack<=snd_next.
3344  */
3345 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3346 					const u32 ack, const u32 ack_seq,
3347 					const u32 nwin)
3348 {
3349 	return	after(ack, tp->snd_una) ||
3350 		after(ack_seq, tp->snd_wl1) ||
3351 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3352 }
3353 
3354 /* If we update tp->snd_una, also update tp->bytes_acked */
3355 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3356 {
3357 	u32 delta = ack - tp->snd_una;
3358 
3359 	sock_owned_by_me((struct sock *)tp);
3360 	tp->bytes_acked += delta;
3361 	tp->snd_una = ack;
3362 }
3363 
3364 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3365 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3366 {
3367 	u32 delta = seq - tp->rcv_nxt;
3368 
3369 	sock_owned_by_me((struct sock *)tp);
3370 	tp->bytes_received += delta;
3371 	WRITE_ONCE(tp->rcv_nxt, seq);
3372 }
3373 
3374 /* Update our send window.
3375  *
3376  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3377  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3378  */
3379 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3380 				 u32 ack_seq)
3381 {
3382 	struct tcp_sock *tp = tcp_sk(sk);
3383 	int flag = 0;
3384 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3385 
3386 	if (likely(!tcp_hdr(skb)->syn))
3387 		nwin <<= tp->rx_opt.snd_wscale;
3388 
3389 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3390 		flag |= FLAG_WIN_UPDATE;
3391 		tcp_update_wl(tp, ack_seq);
3392 
3393 		if (tp->snd_wnd != nwin) {
3394 			tp->snd_wnd = nwin;
3395 
3396 			/* Note, it is the only place, where
3397 			 * fast path is recovered for sending TCP.
3398 			 */
3399 			tp->pred_flags = 0;
3400 			tcp_fast_path_check(sk);
3401 
3402 			if (!tcp_write_queue_empty(sk))
3403 				tcp_slow_start_after_idle_check(sk);
3404 
3405 			if (nwin > tp->max_window) {
3406 				tp->max_window = nwin;
3407 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3408 			}
3409 		}
3410 	}
3411 
3412 	tcp_snd_una_update(tp, ack);
3413 
3414 	return flag;
3415 }
3416 
3417 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3418 				   u32 *last_oow_ack_time)
3419 {
3420 	if (*last_oow_ack_time) {
3421 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3422 
3423 		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3424 			NET_INC_STATS(net, mib_idx);
3425 			return true;	/* rate-limited: don't send yet! */
3426 		}
3427 	}
3428 
3429 	*last_oow_ack_time = tcp_jiffies32;
3430 
3431 	return false;	/* not rate-limited: go ahead, send dupack now! */
3432 }
3433 
3434 /* Return true if we're currently rate-limiting out-of-window ACKs and
3435  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3436  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3437  * attacks that send repeated SYNs or ACKs for the same connection. To
3438  * do this, we do not send a duplicate SYNACK or ACK if the remote
3439  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3440  */
3441 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3442 			  int mib_idx, u32 *last_oow_ack_time)
3443 {
3444 	/* Data packets without SYNs are not likely part of an ACK loop. */
3445 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3446 	    !tcp_hdr(skb)->syn)
3447 		return false;
3448 
3449 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3450 }
3451 
3452 /* RFC 5961 7 [ACK Throttling] */
3453 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3454 {
3455 	/* unprotected vars, we dont care of overwrites */
3456 	static u32 challenge_timestamp;
3457 	static unsigned int challenge_count;
3458 	struct tcp_sock *tp = tcp_sk(sk);
3459 	struct net *net = sock_net(sk);
3460 	u32 count, now;
3461 
3462 	/* First check our per-socket dupack rate limit. */
3463 	if (__tcp_oow_rate_limited(net,
3464 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3465 				   &tp->last_oow_ack_time))
3466 		return;
3467 
3468 	/* Then check host-wide RFC 5961 rate limit. */
3469 	now = jiffies / HZ;
3470 	if (now != challenge_timestamp) {
3471 		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3472 		u32 half = (ack_limit + 1) >> 1;
3473 
3474 		challenge_timestamp = now;
3475 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3476 	}
3477 	count = READ_ONCE(challenge_count);
3478 	if (count > 0) {
3479 		WRITE_ONCE(challenge_count, count - 1);
3480 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3481 		tcp_send_ack(sk);
3482 	}
3483 }
3484 
3485 static void tcp_store_ts_recent(struct tcp_sock *tp)
3486 {
3487 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3488 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3489 }
3490 
3491 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3492 {
3493 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3494 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3495 		 * extra check below makes sure this can only happen
3496 		 * for pure ACK frames.  -DaveM
3497 		 *
3498 		 * Not only, also it occurs for expired timestamps.
3499 		 */
3500 
3501 		if (tcp_paws_check(&tp->rx_opt, 0))
3502 			tcp_store_ts_recent(tp);
3503 	}
3504 }
3505 
3506 /* This routine deals with acks during a TLP episode.
3507  * We mark the end of a TLP episode on receiving TLP dupack or when
3508  * ack is after tlp_high_seq.
3509  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3510  */
3511 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3512 {
3513 	struct tcp_sock *tp = tcp_sk(sk);
3514 
3515 	if (before(ack, tp->tlp_high_seq))
3516 		return;
3517 
3518 	if (flag & FLAG_DSACKING_ACK) {
3519 		/* This DSACK means original and TLP probe arrived; no loss */
3520 		tp->tlp_high_seq = 0;
3521 	} else if (after(ack, tp->tlp_high_seq)) {
3522 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3523 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3524 		 */
3525 		tcp_init_cwnd_reduction(sk);
3526 		tcp_set_ca_state(sk, TCP_CA_CWR);
3527 		tcp_end_cwnd_reduction(sk);
3528 		tcp_try_keep_open(sk);
3529 		NET_INC_STATS(sock_net(sk),
3530 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3531 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3532 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3533 		/* Pure dupack: original and TLP probe arrived; no loss */
3534 		tp->tlp_high_seq = 0;
3535 	}
3536 }
3537 
3538 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3539 {
3540 	const struct inet_connection_sock *icsk = inet_csk(sk);
3541 
3542 	if (icsk->icsk_ca_ops->in_ack_event)
3543 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3544 }
3545 
3546 /* Congestion control has updated the cwnd already. So if we're in
3547  * loss recovery then now we do any new sends (for FRTO) or
3548  * retransmits (for CA_Loss or CA_recovery) that make sense.
3549  */
3550 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3551 {
3552 	struct tcp_sock *tp = tcp_sk(sk);
3553 
3554 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3555 		return;
3556 
3557 	if (unlikely(rexmit == 2)) {
3558 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3559 					  TCP_NAGLE_OFF);
3560 		if (after(tp->snd_nxt, tp->high_seq))
3561 			return;
3562 		tp->frto = 0;
3563 	}
3564 	tcp_xmit_retransmit_queue(sk);
3565 }
3566 
3567 /* Returns the number of packets newly acked or sacked by the current ACK */
3568 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3569 {
3570 	const struct net *net = sock_net(sk);
3571 	struct tcp_sock *tp = tcp_sk(sk);
3572 	u32 delivered;
3573 
3574 	delivered = tp->delivered - prior_delivered;
3575 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3576 	if (flag & FLAG_ECE) {
3577 		tp->delivered_ce += delivered;
3578 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3579 	}
3580 	return delivered;
3581 }
3582 
3583 /* This routine deals with incoming acks, but not outgoing ones. */
3584 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3585 {
3586 	struct inet_connection_sock *icsk = inet_csk(sk);
3587 	struct tcp_sock *tp = tcp_sk(sk);
3588 	struct tcp_sacktag_state sack_state;
3589 	struct rate_sample rs = { .prior_delivered = 0 };
3590 	u32 prior_snd_una = tp->snd_una;
3591 	bool is_sack_reneg = tp->is_sack_reneg;
3592 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3593 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3594 	int num_dupack = 0;
3595 	int prior_packets = tp->packets_out;
3596 	u32 delivered = tp->delivered;
3597 	u32 lost = tp->lost;
3598 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3599 	u32 prior_fack;
3600 
3601 	sack_state.first_sackt = 0;
3602 	sack_state.rate = &rs;
3603 
3604 	/* We very likely will need to access rtx queue. */
3605 	prefetch(sk->tcp_rtx_queue.rb_node);
3606 
3607 	/* If the ack is older than previous acks
3608 	 * then we can probably ignore it.
3609 	 */
3610 	if (before(ack, prior_snd_una)) {
3611 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3612 		if (before(ack, prior_snd_una - tp->max_window)) {
3613 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3614 				tcp_send_challenge_ack(sk, skb);
3615 			return -1;
3616 		}
3617 		goto old_ack;
3618 	}
3619 
3620 	/* If the ack includes data we haven't sent yet, discard
3621 	 * this segment (RFC793 Section 3.9).
3622 	 */
3623 	if (after(ack, tp->snd_nxt))
3624 		return -1;
3625 
3626 	if (after(ack, prior_snd_una)) {
3627 		flag |= FLAG_SND_UNA_ADVANCED;
3628 		icsk->icsk_retransmits = 0;
3629 
3630 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3631 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3632 			if (icsk->icsk_clean_acked)
3633 				icsk->icsk_clean_acked(sk, ack);
3634 #endif
3635 	}
3636 
3637 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3638 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3639 
3640 	/* ts_recent update must be made after we are sure that the packet
3641 	 * is in window.
3642 	 */
3643 	if (flag & FLAG_UPDATE_TS_RECENT)
3644 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3645 
3646 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3647 	    FLAG_SND_UNA_ADVANCED) {
3648 		/* Window is constant, pure forward advance.
3649 		 * No more checks are required.
3650 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3651 		 */
3652 		tcp_update_wl(tp, ack_seq);
3653 		tcp_snd_una_update(tp, ack);
3654 		flag |= FLAG_WIN_UPDATE;
3655 
3656 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3657 
3658 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3659 	} else {
3660 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3661 
3662 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3663 			flag |= FLAG_DATA;
3664 		else
3665 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3666 
3667 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3668 
3669 		if (TCP_SKB_CB(skb)->sacked)
3670 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3671 							&sack_state);
3672 
3673 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3674 			flag |= FLAG_ECE;
3675 			ack_ev_flags |= CA_ACK_ECE;
3676 		}
3677 
3678 		if (flag & FLAG_WIN_UPDATE)
3679 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3680 
3681 		tcp_in_ack_event(sk, ack_ev_flags);
3682 	}
3683 
3684 	/* We passed data and got it acked, remove any soft error
3685 	 * log. Something worked...
3686 	 */
3687 	sk->sk_err_soft = 0;
3688 	icsk->icsk_probes_out = 0;
3689 	tp->rcv_tstamp = tcp_jiffies32;
3690 	if (!prior_packets)
3691 		goto no_queue;
3692 
3693 	/* See if we can take anything off of the retransmit queue. */
3694 	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3695 
3696 	tcp_rack_update_reo_wnd(sk, &rs);
3697 
3698 	if (tp->tlp_high_seq)
3699 		tcp_process_tlp_ack(sk, ack, flag);
3700 	/* If needed, reset TLP/RTO timer; RACK may later override this. */
3701 	if (flag & FLAG_SET_XMIT_TIMER)
3702 		tcp_set_xmit_timer(sk);
3703 
3704 	if (tcp_ack_is_dubious(sk, flag)) {
3705 		if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) {
3706 			num_dupack = 1;
3707 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3708 			if (!(flag & FLAG_DATA))
3709 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3710 		}
3711 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3712 				      &rexmit);
3713 	}
3714 
3715 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3716 		sk_dst_confirm(sk);
3717 
3718 	delivered = tcp_newly_delivered(sk, delivered, flag);
3719 	lost = tp->lost - lost;			/* freshly marked lost */
3720 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3721 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3722 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3723 	tcp_xmit_recovery(sk, rexmit);
3724 	return 1;
3725 
3726 no_queue:
3727 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3728 	if (flag & FLAG_DSACKING_ACK) {
3729 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3730 				      &rexmit);
3731 		tcp_newly_delivered(sk, delivered, flag);
3732 	}
3733 	/* If this ack opens up a zero window, clear backoff.  It was
3734 	 * being used to time the probes, and is probably far higher than
3735 	 * it needs to be for normal retransmission.
3736 	 */
3737 	tcp_ack_probe(sk);
3738 
3739 	if (tp->tlp_high_seq)
3740 		tcp_process_tlp_ack(sk, ack, flag);
3741 	return 1;
3742 
3743 old_ack:
3744 	/* If data was SACKed, tag it and see if we should send more data.
3745 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3746 	 */
3747 	if (TCP_SKB_CB(skb)->sacked) {
3748 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3749 						&sack_state);
3750 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3751 				      &rexmit);
3752 		tcp_newly_delivered(sk, delivered, flag);
3753 		tcp_xmit_recovery(sk, rexmit);
3754 	}
3755 
3756 	return 0;
3757 }
3758 
3759 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3760 				      bool syn, struct tcp_fastopen_cookie *foc,
3761 				      bool exp_opt)
3762 {
3763 	/* Valid only in SYN or SYN-ACK with an even length.  */
3764 	if (!foc || !syn || len < 0 || (len & 1))
3765 		return;
3766 
3767 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3768 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3769 		memcpy(foc->val, cookie, len);
3770 	else if (len != 0)
3771 		len = -1;
3772 	foc->len = len;
3773 	foc->exp = exp_opt;
3774 }
3775 
3776 static void smc_parse_options(const struct tcphdr *th,
3777 			      struct tcp_options_received *opt_rx,
3778 			      const unsigned char *ptr,
3779 			      int opsize)
3780 {
3781 #if IS_ENABLED(CONFIG_SMC)
3782 	if (static_branch_unlikely(&tcp_have_smc)) {
3783 		if (th->syn && !(opsize & 1) &&
3784 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3785 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3786 			opt_rx->smc_ok = 1;
3787 	}
3788 #endif
3789 }
3790 
3791 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3792  * value on success.
3793  */
3794 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3795 {
3796 	const unsigned char *ptr = (const unsigned char *)(th + 1);
3797 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3798 	u16 mss = 0;
3799 
3800 	while (length > 0) {
3801 		int opcode = *ptr++;
3802 		int opsize;
3803 
3804 		switch (opcode) {
3805 		case TCPOPT_EOL:
3806 			return mss;
3807 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3808 			length--;
3809 			continue;
3810 		default:
3811 			if (length < 2)
3812 				return mss;
3813 			opsize = *ptr++;
3814 			if (opsize < 2) /* "silly options" */
3815 				return mss;
3816 			if (opsize > length)
3817 				return mss;	/* fail on partial options */
3818 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3819 				u16 in_mss = get_unaligned_be16(ptr);
3820 
3821 				if (in_mss) {
3822 					if (user_mss && user_mss < in_mss)
3823 						in_mss = user_mss;
3824 					mss = in_mss;
3825 				}
3826 			}
3827 			ptr += opsize - 2;
3828 			length -= opsize;
3829 		}
3830 	}
3831 	return mss;
3832 }
3833 
3834 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3835  * But, this can also be called on packets in the established flow when
3836  * the fast version below fails.
3837  */
3838 void tcp_parse_options(const struct net *net,
3839 		       const struct sk_buff *skb,
3840 		       struct tcp_options_received *opt_rx, int estab,
3841 		       struct tcp_fastopen_cookie *foc)
3842 {
3843 	const unsigned char *ptr;
3844 	const struct tcphdr *th = tcp_hdr(skb);
3845 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3846 
3847 	ptr = (const unsigned char *)(th + 1);
3848 	opt_rx->saw_tstamp = 0;
3849 
3850 	while (length > 0) {
3851 		int opcode = *ptr++;
3852 		int opsize;
3853 
3854 		switch (opcode) {
3855 		case TCPOPT_EOL:
3856 			return;
3857 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3858 			length--;
3859 			continue;
3860 		default:
3861 			if (length < 2)
3862 				return;
3863 			opsize = *ptr++;
3864 			if (opsize < 2) /* "silly options" */
3865 				return;
3866 			if (opsize > length)
3867 				return;	/* don't parse partial options */
3868 			switch (opcode) {
3869 			case TCPOPT_MSS:
3870 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3871 					u16 in_mss = get_unaligned_be16(ptr);
3872 					if (in_mss) {
3873 						if (opt_rx->user_mss &&
3874 						    opt_rx->user_mss < in_mss)
3875 							in_mss = opt_rx->user_mss;
3876 						opt_rx->mss_clamp = in_mss;
3877 					}
3878 				}
3879 				break;
3880 			case TCPOPT_WINDOW:
3881 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3882 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3883 					__u8 snd_wscale = *(__u8 *)ptr;
3884 					opt_rx->wscale_ok = 1;
3885 					if (snd_wscale > TCP_MAX_WSCALE) {
3886 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3887 								     __func__,
3888 								     snd_wscale,
3889 								     TCP_MAX_WSCALE);
3890 						snd_wscale = TCP_MAX_WSCALE;
3891 					}
3892 					opt_rx->snd_wscale = snd_wscale;
3893 				}
3894 				break;
3895 			case TCPOPT_TIMESTAMP:
3896 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3897 				    ((estab && opt_rx->tstamp_ok) ||
3898 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3899 					opt_rx->saw_tstamp = 1;
3900 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3901 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3902 				}
3903 				break;
3904 			case TCPOPT_SACK_PERM:
3905 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3906 				    !estab && net->ipv4.sysctl_tcp_sack) {
3907 					opt_rx->sack_ok = TCP_SACK_SEEN;
3908 					tcp_sack_reset(opt_rx);
3909 				}
3910 				break;
3911 
3912 			case TCPOPT_SACK:
3913 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3914 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3915 				   opt_rx->sack_ok) {
3916 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3917 				}
3918 				break;
3919 #ifdef CONFIG_TCP_MD5SIG
3920 			case TCPOPT_MD5SIG:
3921 				/*
3922 				 * The MD5 Hash has already been
3923 				 * checked (see tcp_v{4,6}_do_rcv()).
3924 				 */
3925 				break;
3926 #endif
3927 			case TCPOPT_FASTOPEN:
3928 				tcp_parse_fastopen_option(
3929 					opsize - TCPOLEN_FASTOPEN_BASE,
3930 					ptr, th->syn, foc, false);
3931 				break;
3932 
3933 			case TCPOPT_EXP:
3934 				/* Fast Open option shares code 254 using a
3935 				 * 16 bits magic number.
3936 				 */
3937 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3938 				    get_unaligned_be16(ptr) ==
3939 				    TCPOPT_FASTOPEN_MAGIC)
3940 					tcp_parse_fastopen_option(opsize -
3941 						TCPOLEN_EXP_FASTOPEN_BASE,
3942 						ptr + 2, th->syn, foc, true);
3943 				else
3944 					smc_parse_options(th, opt_rx, ptr,
3945 							  opsize);
3946 				break;
3947 
3948 			}
3949 			ptr += opsize-2;
3950 			length -= opsize;
3951 		}
3952 	}
3953 }
3954 EXPORT_SYMBOL(tcp_parse_options);
3955 
3956 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3957 {
3958 	const __be32 *ptr = (const __be32 *)(th + 1);
3959 
3960 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3961 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3962 		tp->rx_opt.saw_tstamp = 1;
3963 		++ptr;
3964 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3965 		++ptr;
3966 		if (*ptr)
3967 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3968 		else
3969 			tp->rx_opt.rcv_tsecr = 0;
3970 		return true;
3971 	}
3972 	return false;
3973 }
3974 
3975 /* Fast parse options. This hopes to only see timestamps.
3976  * If it is wrong it falls back on tcp_parse_options().
3977  */
3978 static bool tcp_fast_parse_options(const struct net *net,
3979 				   const struct sk_buff *skb,
3980 				   const struct tcphdr *th, struct tcp_sock *tp)
3981 {
3982 	/* In the spirit of fast parsing, compare doff directly to constant
3983 	 * values.  Because equality is used, short doff can be ignored here.
3984 	 */
3985 	if (th->doff == (sizeof(*th) / 4)) {
3986 		tp->rx_opt.saw_tstamp = 0;
3987 		return false;
3988 	} else if (tp->rx_opt.tstamp_ok &&
3989 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3990 		if (tcp_parse_aligned_timestamp(tp, th))
3991 			return true;
3992 	}
3993 
3994 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3995 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3996 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3997 
3998 	return true;
3999 }
4000 
4001 #ifdef CONFIG_TCP_MD5SIG
4002 /*
4003  * Parse MD5 Signature option
4004  */
4005 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4006 {
4007 	int length = (th->doff << 2) - sizeof(*th);
4008 	const u8 *ptr = (const u8 *)(th + 1);
4009 
4010 	/* If not enough data remaining, we can short cut */
4011 	while (length >= TCPOLEN_MD5SIG) {
4012 		int opcode = *ptr++;
4013 		int opsize;
4014 
4015 		switch (opcode) {
4016 		case TCPOPT_EOL:
4017 			return NULL;
4018 		case TCPOPT_NOP:
4019 			length--;
4020 			continue;
4021 		default:
4022 			opsize = *ptr++;
4023 			if (opsize < 2 || opsize > length)
4024 				return NULL;
4025 			if (opcode == TCPOPT_MD5SIG)
4026 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4027 		}
4028 		ptr += opsize - 2;
4029 		length -= opsize;
4030 	}
4031 	return NULL;
4032 }
4033 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4034 #endif
4035 
4036 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4037  *
4038  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4039  * it can pass through stack. So, the following predicate verifies that
4040  * this segment is not used for anything but congestion avoidance or
4041  * fast retransmit. Moreover, we even are able to eliminate most of such
4042  * second order effects, if we apply some small "replay" window (~RTO)
4043  * to timestamp space.
4044  *
4045  * All these measures still do not guarantee that we reject wrapped ACKs
4046  * on networks with high bandwidth, when sequence space is recycled fastly,
4047  * but it guarantees that such events will be very rare and do not affect
4048  * connection seriously. This doesn't look nice, but alas, PAWS is really
4049  * buggy extension.
4050  *
4051  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4052  * states that events when retransmit arrives after original data are rare.
4053  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4054  * the biggest problem on large power networks even with minor reordering.
4055  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4056  * up to bandwidth of 18Gigabit/sec. 8) ]
4057  */
4058 
4059 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4060 {
4061 	const struct tcp_sock *tp = tcp_sk(sk);
4062 	const struct tcphdr *th = tcp_hdr(skb);
4063 	u32 seq = TCP_SKB_CB(skb)->seq;
4064 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4065 
4066 	return (/* 1. Pure ACK with correct sequence number. */
4067 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4068 
4069 		/* 2. ... and duplicate ACK. */
4070 		ack == tp->snd_una &&
4071 
4072 		/* 3. ... and does not update window. */
4073 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4074 
4075 		/* 4. ... and sits in replay window. */
4076 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4077 }
4078 
4079 static inline bool tcp_paws_discard(const struct sock *sk,
4080 				   const struct sk_buff *skb)
4081 {
4082 	const struct tcp_sock *tp = tcp_sk(sk);
4083 
4084 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4085 	       !tcp_disordered_ack(sk, skb);
4086 }
4087 
4088 /* Check segment sequence number for validity.
4089  *
4090  * Segment controls are considered valid, if the segment
4091  * fits to the window after truncation to the window. Acceptability
4092  * of data (and SYN, FIN, of course) is checked separately.
4093  * See tcp_data_queue(), for example.
4094  *
4095  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4096  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4097  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4098  * (borrowed from freebsd)
4099  */
4100 
4101 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4102 {
4103 	return	!before(end_seq, tp->rcv_wup) &&
4104 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4105 }
4106 
4107 /* When we get a reset we do this. */
4108 void tcp_reset(struct sock *sk)
4109 {
4110 	trace_tcp_receive_reset(sk);
4111 
4112 	/* We want the right error as BSD sees it (and indeed as we do). */
4113 	switch (sk->sk_state) {
4114 	case TCP_SYN_SENT:
4115 		sk->sk_err = ECONNREFUSED;
4116 		break;
4117 	case TCP_CLOSE_WAIT:
4118 		sk->sk_err = EPIPE;
4119 		break;
4120 	case TCP_CLOSE:
4121 		return;
4122 	default:
4123 		sk->sk_err = ECONNRESET;
4124 	}
4125 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4126 	smp_wmb();
4127 
4128 	tcp_write_queue_purge(sk);
4129 	tcp_done(sk);
4130 
4131 	if (!sock_flag(sk, SOCK_DEAD))
4132 		sk->sk_error_report(sk);
4133 }
4134 
4135 /*
4136  * 	Process the FIN bit. This now behaves as it is supposed to work
4137  *	and the FIN takes effect when it is validly part of sequence
4138  *	space. Not before when we get holes.
4139  *
4140  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4141  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4142  *	TIME-WAIT)
4143  *
4144  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4145  *	close and we go into CLOSING (and later onto TIME-WAIT)
4146  *
4147  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4148  */
4149 void tcp_fin(struct sock *sk)
4150 {
4151 	struct tcp_sock *tp = tcp_sk(sk);
4152 
4153 	inet_csk_schedule_ack(sk);
4154 
4155 	sk->sk_shutdown |= RCV_SHUTDOWN;
4156 	sock_set_flag(sk, SOCK_DONE);
4157 
4158 	switch (sk->sk_state) {
4159 	case TCP_SYN_RECV:
4160 	case TCP_ESTABLISHED:
4161 		/* Move to CLOSE_WAIT */
4162 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4163 		inet_csk_enter_pingpong_mode(sk);
4164 		break;
4165 
4166 	case TCP_CLOSE_WAIT:
4167 	case TCP_CLOSING:
4168 		/* Received a retransmission of the FIN, do
4169 		 * nothing.
4170 		 */
4171 		break;
4172 	case TCP_LAST_ACK:
4173 		/* RFC793: Remain in the LAST-ACK state. */
4174 		break;
4175 
4176 	case TCP_FIN_WAIT1:
4177 		/* This case occurs when a simultaneous close
4178 		 * happens, we must ack the received FIN and
4179 		 * enter the CLOSING state.
4180 		 */
4181 		tcp_send_ack(sk);
4182 		tcp_set_state(sk, TCP_CLOSING);
4183 		break;
4184 	case TCP_FIN_WAIT2:
4185 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4186 		tcp_send_ack(sk);
4187 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4188 		break;
4189 	default:
4190 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4191 		 * cases we should never reach this piece of code.
4192 		 */
4193 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4194 		       __func__, sk->sk_state);
4195 		break;
4196 	}
4197 
4198 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4199 	 * Probably, we should reset in this case. For now drop them.
4200 	 */
4201 	skb_rbtree_purge(&tp->out_of_order_queue);
4202 	if (tcp_is_sack(tp))
4203 		tcp_sack_reset(&tp->rx_opt);
4204 	sk_mem_reclaim(sk);
4205 
4206 	if (!sock_flag(sk, SOCK_DEAD)) {
4207 		sk->sk_state_change(sk);
4208 
4209 		/* Do not send POLL_HUP for half duplex close. */
4210 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4211 		    sk->sk_state == TCP_CLOSE)
4212 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4213 		else
4214 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4215 	}
4216 }
4217 
4218 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4219 				  u32 end_seq)
4220 {
4221 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4222 		if (before(seq, sp->start_seq))
4223 			sp->start_seq = seq;
4224 		if (after(end_seq, sp->end_seq))
4225 			sp->end_seq = end_seq;
4226 		return true;
4227 	}
4228 	return false;
4229 }
4230 
4231 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4232 {
4233 	struct tcp_sock *tp = tcp_sk(sk);
4234 
4235 	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4236 		int mib_idx;
4237 
4238 		if (before(seq, tp->rcv_nxt))
4239 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4240 		else
4241 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4242 
4243 		NET_INC_STATS(sock_net(sk), mib_idx);
4244 
4245 		tp->rx_opt.dsack = 1;
4246 		tp->duplicate_sack[0].start_seq = seq;
4247 		tp->duplicate_sack[0].end_seq = end_seq;
4248 	}
4249 }
4250 
4251 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4252 {
4253 	struct tcp_sock *tp = tcp_sk(sk);
4254 
4255 	if (!tp->rx_opt.dsack)
4256 		tcp_dsack_set(sk, seq, end_seq);
4257 	else
4258 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4259 }
4260 
4261 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4262 {
4263 	/* When the ACK path fails or drops most ACKs, the sender would
4264 	 * timeout and spuriously retransmit the same segment repeatedly.
4265 	 * The receiver remembers and reflects via DSACKs. Leverage the
4266 	 * DSACK state and change the txhash to re-route speculatively.
4267 	 */
4268 	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq)
4269 		sk_rethink_txhash(sk);
4270 }
4271 
4272 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4273 {
4274 	struct tcp_sock *tp = tcp_sk(sk);
4275 
4276 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4277 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4278 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4279 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4280 
4281 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4282 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4283 
4284 			tcp_rcv_spurious_retrans(sk, skb);
4285 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4286 				end_seq = tp->rcv_nxt;
4287 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4288 		}
4289 	}
4290 
4291 	tcp_send_ack(sk);
4292 }
4293 
4294 /* These routines update the SACK block as out-of-order packets arrive or
4295  * in-order packets close up the sequence space.
4296  */
4297 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4298 {
4299 	int this_sack;
4300 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4301 	struct tcp_sack_block *swalk = sp + 1;
4302 
4303 	/* See if the recent change to the first SACK eats into
4304 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4305 	 */
4306 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4307 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4308 			int i;
4309 
4310 			/* Zap SWALK, by moving every further SACK up by one slot.
4311 			 * Decrease num_sacks.
4312 			 */
4313 			tp->rx_opt.num_sacks--;
4314 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4315 				sp[i] = sp[i + 1];
4316 			continue;
4317 		}
4318 		this_sack++, swalk++;
4319 	}
4320 }
4321 
4322 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4323 {
4324 	struct tcp_sock *tp = tcp_sk(sk);
4325 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4326 	int cur_sacks = tp->rx_opt.num_sacks;
4327 	int this_sack;
4328 
4329 	if (!cur_sacks)
4330 		goto new_sack;
4331 
4332 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4333 		if (tcp_sack_extend(sp, seq, end_seq)) {
4334 			/* Rotate this_sack to the first one. */
4335 			for (; this_sack > 0; this_sack--, sp--)
4336 				swap(*sp, *(sp - 1));
4337 			if (cur_sacks > 1)
4338 				tcp_sack_maybe_coalesce(tp);
4339 			return;
4340 		}
4341 	}
4342 
4343 	/* Could not find an adjacent existing SACK, build a new one,
4344 	 * put it at the front, and shift everyone else down.  We
4345 	 * always know there is at least one SACK present already here.
4346 	 *
4347 	 * If the sack array is full, forget about the last one.
4348 	 */
4349 	if (this_sack >= TCP_NUM_SACKS) {
4350 		if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
4351 			tcp_send_ack(sk);
4352 		this_sack--;
4353 		tp->rx_opt.num_sacks--;
4354 		sp--;
4355 	}
4356 	for (; this_sack > 0; this_sack--, sp--)
4357 		*sp = *(sp - 1);
4358 
4359 new_sack:
4360 	/* Build the new head SACK, and we're done. */
4361 	sp->start_seq = seq;
4362 	sp->end_seq = end_seq;
4363 	tp->rx_opt.num_sacks++;
4364 }
4365 
4366 /* RCV.NXT advances, some SACKs should be eaten. */
4367 
4368 static void tcp_sack_remove(struct tcp_sock *tp)
4369 {
4370 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4371 	int num_sacks = tp->rx_opt.num_sacks;
4372 	int this_sack;
4373 
4374 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4375 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4376 		tp->rx_opt.num_sacks = 0;
4377 		return;
4378 	}
4379 
4380 	for (this_sack = 0; this_sack < num_sacks;) {
4381 		/* Check if the start of the sack is covered by RCV.NXT. */
4382 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4383 			int i;
4384 
4385 			/* RCV.NXT must cover all the block! */
4386 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4387 
4388 			/* Zap this SACK, by moving forward any other SACKS. */
4389 			for (i = this_sack+1; i < num_sacks; i++)
4390 				tp->selective_acks[i-1] = tp->selective_acks[i];
4391 			num_sacks--;
4392 			continue;
4393 		}
4394 		this_sack++;
4395 		sp++;
4396 	}
4397 	tp->rx_opt.num_sacks = num_sacks;
4398 }
4399 
4400 /**
4401  * tcp_try_coalesce - try to merge skb to prior one
4402  * @sk: socket
4403  * @dest: destination queue
4404  * @to: prior buffer
4405  * @from: buffer to add in queue
4406  * @fragstolen: pointer to boolean
4407  *
4408  * Before queueing skb @from after @to, try to merge them
4409  * to reduce overall memory use and queue lengths, if cost is small.
4410  * Packets in ofo or receive queues can stay a long time.
4411  * Better try to coalesce them right now to avoid future collapses.
4412  * Returns true if caller should free @from instead of queueing it
4413  */
4414 static bool tcp_try_coalesce(struct sock *sk,
4415 			     struct sk_buff *to,
4416 			     struct sk_buff *from,
4417 			     bool *fragstolen)
4418 {
4419 	int delta;
4420 
4421 	*fragstolen = false;
4422 
4423 	/* Its possible this segment overlaps with prior segment in queue */
4424 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4425 		return false;
4426 
4427 #ifdef CONFIG_TLS_DEVICE
4428 	if (from->decrypted != to->decrypted)
4429 		return false;
4430 #endif
4431 
4432 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4433 		return false;
4434 
4435 	atomic_add(delta, &sk->sk_rmem_alloc);
4436 	sk_mem_charge(sk, delta);
4437 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4438 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4439 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4440 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4441 
4442 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4443 		TCP_SKB_CB(to)->has_rxtstamp = true;
4444 		to->tstamp = from->tstamp;
4445 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4446 	}
4447 
4448 	return true;
4449 }
4450 
4451 static bool tcp_ooo_try_coalesce(struct sock *sk,
4452 			     struct sk_buff *to,
4453 			     struct sk_buff *from,
4454 			     bool *fragstolen)
4455 {
4456 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4457 
4458 	/* In case tcp_drop() is called later, update to->gso_segs */
4459 	if (res) {
4460 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4461 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4462 
4463 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4464 	}
4465 	return res;
4466 }
4467 
4468 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4469 {
4470 	sk_drops_add(sk, skb);
4471 	__kfree_skb(skb);
4472 }
4473 
4474 /* This one checks to see if we can put data from the
4475  * out_of_order queue into the receive_queue.
4476  */
4477 static void tcp_ofo_queue(struct sock *sk)
4478 {
4479 	struct tcp_sock *tp = tcp_sk(sk);
4480 	__u32 dsack_high = tp->rcv_nxt;
4481 	bool fin, fragstolen, eaten;
4482 	struct sk_buff *skb, *tail;
4483 	struct rb_node *p;
4484 
4485 	p = rb_first(&tp->out_of_order_queue);
4486 	while (p) {
4487 		skb = rb_to_skb(p);
4488 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4489 			break;
4490 
4491 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4492 			__u32 dsack = dsack_high;
4493 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4494 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4495 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4496 		}
4497 		p = rb_next(p);
4498 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4499 
4500 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4501 			tcp_drop(sk, skb);
4502 			continue;
4503 		}
4504 
4505 		tail = skb_peek_tail(&sk->sk_receive_queue);
4506 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4507 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4508 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4509 		if (!eaten)
4510 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4511 		else
4512 			kfree_skb_partial(skb, fragstolen);
4513 
4514 		if (unlikely(fin)) {
4515 			tcp_fin(sk);
4516 			/* tcp_fin() purges tp->out_of_order_queue,
4517 			 * so we must end this loop right now.
4518 			 */
4519 			break;
4520 		}
4521 	}
4522 }
4523 
4524 static bool tcp_prune_ofo_queue(struct sock *sk);
4525 static int tcp_prune_queue(struct sock *sk);
4526 
4527 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4528 				 unsigned int size)
4529 {
4530 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4531 	    !sk_rmem_schedule(sk, skb, size)) {
4532 
4533 		if (tcp_prune_queue(sk) < 0)
4534 			return -1;
4535 
4536 		while (!sk_rmem_schedule(sk, skb, size)) {
4537 			if (!tcp_prune_ofo_queue(sk))
4538 				return -1;
4539 		}
4540 	}
4541 	return 0;
4542 }
4543 
4544 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4545 {
4546 	struct tcp_sock *tp = tcp_sk(sk);
4547 	struct rb_node **p, *parent;
4548 	struct sk_buff *skb1;
4549 	u32 seq, end_seq;
4550 	bool fragstolen;
4551 
4552 	tcp_ecn_check_ce(sk, skb);
4553 
4554 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4555 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4556 		tcp_drop(sk, skb);
4557 		return;
4558 	}
4559 
4560 	/* Disable header prediction. */
4561 	tp->pred_flags = 0;
4562 	inet_csk_schedule_ack(sk);
4563 
4564 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4565 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4566 	seq = TCP_SKB_CB(skb)->seq;
4567 	end_seq = TCP_SKB_CB(skb)->end_seq;
4568 
4569 	p = &tp->out_of_order_queue.rb_node;
4570 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4571 		/* Initial out of order segment, build 1 SACK. */
4572 		if (tcp_is_sack(tp)) {
4573 			tp->rx_opt.num_sacks = 1;
4574 			tp->selective_acks[0].start_seq = seq;
4575 			tp->selective_acks[0].end_seq = end_seq;
4576 		}
4577 		rb_link_node(&skb->rbnode, NULL, p);
4578 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4579 		tp->ooo_last_skb = skb;
4580 		goto end;
4581 	}
4582 
4583 	/* In the typical case, we are adding an skb to the end of the list.
4584 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4585 	 */
4586 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4587 				 skb, &fragstolen)) {
4588 coalesce_done:
4589 		tcp_grow_window(sk, skb);
4590 		kfree_skb_partial(skb, fragstolen);
4591 		skb = NULL;
4592 		goto add_sack;
4593 	}
4594 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4595 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4596 		parent = &tp->ooo_last_skb->rbnode;
4597 		p = &parent->rb_right;
4598 		goto insert;
4599 	}
4600 
4601 	/* Find place to insert this segment. Handle overlaps on the way. */
4602 	parent = NULL;
4603 	while (*p) {
4604 		parent = *p;
4605 		skb1 = rb_to_skb(parent);
4606 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4607 			p = &parent->rb_left;
4608 			continue;
4609 		}
4610 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4611 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4612 				/* All the bits are present. Drop. */
4613 				NET_INC_STATS(sock_net(sk),
4614 					      LINUX_MIB_TCPOFOMERGE);
4615 				tcp_drop(sk, skb);
4616 				skb = NULL;
4617 				tcp_dsack_set(sk, seq, end_seq);
4618 				goto add_sack;
4619 			}
4620 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4621 				/* Partial overlap. */
4622 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4623 			} else {
4624 				/* skb's seq == skb1's seq and skb covers skb1.
4625 				 * Replace skb1 with skb.
4626 				 */
4627 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4628 						&tp->out_of_order_queue);
4629 				tcp_dsack_extend(sk,
4630 						 TCP_SKB_CB(skb1)->seq,
4631 						 TCP_SKB_CB(skb1)->end_seq);
4632 				NET_INC_STATS(sock_net(sk),
4633 					      LINUX_MIB_TCPOFOMERGE);
4634 				tcp_drop(sk, skb1);
4635 				goto merge_right;
4636 			}
4637 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4638 						skb, &fragstolen)) {
4639 			goto coalesce_done;
4640 		}
4641 		p = &parent->rb_right;
4642 	}
4643 insert:
4644 	/* Insert segment into RB tree. */
4645 	rb_link_node(&skb->rbnode, parent, p);
4646 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4647 
4648 merge_right:
4649 	/* Remove other segments covered by skb. */
4650 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4651 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4652 			break;
4653 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4654 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4655 					 end_seq);
4656 			break;
4657 		}
4658 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4659 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4660 				 TCP_SKB_CB(skb1)->end_seq);
4661 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4662 		tcp_drop(sk, skb1);
4663 	}
4664 	/* If there is no skb after us, we are the last_skb ! */
4665 	if (!skb1)
4666 		tp->ooo_last_skb = skb;
4667 
4668 add_sack:
4669 	if (tcp_is_sack(tp))
4670 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4671 end:
4672 	if (skb) {
4673 		tcp_grow_window(sk, skb);
4674 		skb_condense(skb);
4675 		skb_set_owner_r(skb, sk);
4676 	}
4677 }
4678 
4679 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4680 				      bool *fragstolen)
4681 {
4682 	int eaten;
4683 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4684 
4685 	eaten = (tail &&
4686 		 tcp_try_coalesce(sk, tail,
4687 				  skb, fragstolen)) ? 1 : 0;
4688 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4689 	if (!eaten) {
4690 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4691 		skb_set_owner_r(skb, sk);
4692 	}
4693 	return eaten;
4694 }
4695 
4696 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4697 {
4698 	struct sk_buff *skb;
4699 	int err = -ENOMEM;
4700 	int data_len = 0;
4701 	bool fragstolen;
4702 
4703 	if (size == 0)
4704 		return 0;
4705 
4706 	if (size > PAGE_SIZE) {
4707 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4708 
4709 		data_len = npages << PAGE_SHIFT;
4710 		size = data_len + (size & ~PAGE_MASK);
4711 	}
4712 	skb = alloc_skb_with_frags(size - data_len, data_len,
4713 				   PAGE_ALLOC_COSTLY_ORDER,
4714 				   &err, sk->sk_allocation);
4715 	if (!skb)
4716 		goto err;
4717 
4718 	skb_put(skb, size - data_len);
4719 	skb->data_len = data_len;
4720 	skb->len = size;
4721 
4722 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4723 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4724 		goto err_free;
4725 	}
4726 
4727 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4728 	if (err)
4729 		goto err_free;
4730 
4731 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4732 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4733 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4734 
4735 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4736 		WARN_ON_ONCE(fragstolen); /* should not happen */
4737 		__kfree_skb(skb);
4738 	}
4739 	return size;
4740 
4741 err_free:
4742 	kfree_skb(skb);
4743 err:
4744 	return err;
4745 
4746 }
4747 
4748 void tcp_data_ready(struct sock *sk)
4749 {
4750 	const struct tcp_sock *tp = tcp_sk(sk);
4751 	int avail = tp->rcv_nxt - tp->copied_seq;
4752 
4753 	if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE))
4754 		return;
4755 
4756 	sk->sk_data_ready(sk);
4757 }
4758 
4759 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4760 {
4761 	struct tcp_sock *tp = tcp_sk(sk);
4762 	bool fragstolen;
4763 	int eaten;
4764 
4765 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4766 		__kfree_skb(skb);
4767 		return;
4768 	}
4769 	skb_dst_drop(skb);
4770 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4771 
4772 	tcp_ecn_accept_cwr(sk, skb);
4773 
4774 	tp->rx_opt.dsack = 0;
4775 
4776 	/*  Queue data for delivery to the user.
4777 	 *  Packets in sequence go to the receive queue.
4778 	 *  Out of sequence packets to the out_of_order_queue.
4779 	 */
4780 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4781 		if (tcp_receive_window(tp) == 0) {
4782 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4783 			goto out_of_window;
4784 		}
4785 
4786 		/* Ok. In sequence. In window. */
4787 queue_and_out:
4788 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4789 			sk_forced_mem_schedule(sk, skb->truesize);
4790 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4791 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4792 			goto drop;
4793 		}
4794 
4795 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
4796 		if (skb->len)
4797 			tcp_event_data_recv(sk, skb);
4798 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4799 			tcp_fin(sk);
4800 
4801 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4802 			tcp_ofo_queue(sk);
4803 
4804 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
4805 			 * gap in queue is filled.
4806 			 */
4807 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4808 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4809 		}
4810 
4811 		if (tp->rx_opt.num_sacks)
4812 			tcp_sack_remove(tp);
4813 
4814 		tcp_fast_path_check(sk);
4815 
4816 		if (eaten > 0)
4817 			kfree_skb_partial(skb, fragstolen);
4818 		if (!sock_flag(sk, SOCK_DEAD))
4819 			tcp_data_ready(sk);
4820 		return;
4821 	}
4822 
4823 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4824 		tcp_rcv_spurious_retrans(sk, skb);
4825 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4826 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4827 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4828 
4829 out_of_window:
4830 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4831 		inet_csk_schedule_ack(sk);
4832 drop:
4833 		tcp_drop(sk, skb);
4834 		return;
4835 	}
4836 
4837 	/* Out of window. F.e. zero window probe. */
4838 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4839 		goto out_of_window;
4840 
4841 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4842 		/* Partial packet, seq < rcv_next < end_seq */
4843 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4844 
4845 		/* If window is closed, drop tail of packet. But after
4846 		 * remembering D-SACK for its head made in previous line.
4847 		 */
4848 		if (!tcp_receive_window(tp)) {
4849 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4850 			goto out_of_window;
4851 		}
4852 		goto queue_and_out;
4853 	}
4854 
4855 	tcp_data_queue_ofo(sk, skb);
4856 }
4857 
4858 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4859 {
4860 	if (list)
4861 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4862 
4863 	return skb_rb_next(skb);
4864 }
4865 
4866 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4867 					struct sk_buff_head *list,
4868 					struct rb_root *root)
4869 {
4870 	struct sk_buff *next = tcp_skb_next(skb, list);
4871 
4872 	if (list)
4873 		__skb_unlink(skb, list);
4874 	else
4875 		rb_erase(&skb->rbnode, root);
4876 
4877 	__kfree_skb(skb);
4878 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4879 
4880 	return next;
4881 }
4882 
4883 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4884 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4885 {
4886 	struct rb_node **p = &root->rb_node;
4887 	struct rb_node *parent = NULL;
4888 	struct sk_buff *skb1;
4889 
4890 	while (*p) {
4891 		parent = *p;
4892 		skb1 = rb_to_skb(parent);
4893 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4894 			p = &parent->rb_left;
4895 		else
4896 			p = &parent->rb_right;
4897 	}
4898 	rb_link_node(&skb->rbnode, parent, p);
4899 	rb_insert_color(&skb->rbnode, root);
4900 }
4901 
4902 /* Collapse contiguous sequence of skbs head..tail with
4903  * sequence numbers start..end.
4904  *
4905  * If tail is NULL, this means until the end of the queue.
4906  *
4907  * Segments with FIN/SYN are not collapsed (only because this
4908  * simplifies code)
4909  */
4910 static void
4911 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4912 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4913 {
4914 	struct sk_buff *skb = head, *n;
4915 	struct sk_buff_head tmp;
4916 	bool end_of_skbs;
4917 
4918 	/* First, check that queue is collapsible and find
4919 	 * the point where collapsing can be useful.
4920 	 */
4921 restart:
4922 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4923 		n = tcp_skb_next(skb, list);
4924 
4925 		/* No new bits? It is possible on ofo queue. */
4926 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4927 			skb = tcp_collapse_one(sk, skb, list, root);
4928 			if (!skb)
4929 				break;
4930 			goto restart;
4931 		}
4932 
4933 		/* The first skb to collapse is:
4934 		 * - not SYN/FIN and
4935 		 * - bloated or contains data before "start" or
4936 		 *   overlaps to the next one.
4937 		 */
4938 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4939 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4940 		     before(TCP_SKB_CB(skb)->seq, start))) {
4941 			end_of_skbs = false;
4942 			break;
4943 		}
4944 
4945 		if (n && n != tail &&
4946 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4947 			end_of_skbs = false;
4948 			break;
4949 		}
4950 
4951 		/* Decided to skip this, advance start seq. */
4952 		start = TCP_SKB_CB(skb)->end_seq;
4953 	}
4954 	if (end_of_skbs ||
4955 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4956 		return;
4957 
4958 	__skb_queue_head_init(&tmp);
4959 
4960 	while (before(start, end)) {
4961 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4962 		struct sk_buff *nskb;
4963 
4964 		nskb = alloc_skb(copy, GFP_ATOMIC);
4965 		if (!nskb)
4966 			break;
4967 
4968 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4969 #ifdef CONFIG_TLS_DEVICE
4970 		nskb->decrypted = skb->decrypted;
4971 #endif
4972 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4973 		if (list)
4974 			__skb_queue_before(list, skb, nskb);
4975 		else
4976 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4977 		skb_set_owner_r(nskb, sk);
4978 
4979 		/* Copy data, releasing collapsed skbs. */
4980 		while (copy > 0) {
4981 			int offset = start - TCP_SKB_CB(skb)->seq;
4982 			int size = TCP_SKB_CB(skb)->end_seq - start;
4983 
4984 			BUG_ON(offset < 0);
4985 			if (size > 0) {
4986 				size = min(copy, size);
4987 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4988 					BUG();
4989 				TCP_SKB_CB(nskb)->end_seq += size;
4990 				copy -= size;
4991 				start += size;
4992 			}
4993 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4994 				skb = tcp_collapse_one(sk, skb, list, root);
4995 				if (!skb ||
4996 				    skb == tail ||
4997 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4998 					goto end;
4999 #ifdef CONFIG_TLS_DEVICE
5000 				if (skb->decrypted != nskb->decrypted)
5001 					goto end;
5002 #endif
5003 			}
5004 		}
5005 	}
5006 end:
5007 	skb_queue_walk_safe(&tmp, skb, n)
5008 		tcp_rbtree_insert(root, skb);
5009 }
5010 
5011 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5012  * and tcp_collapse() them until all the queue is collapsed.
5013  */
5014 static void tcp_collapse_ofo_queue(struct sock *sk)
5015 {
5016 	struct tcp_sock *tp = tcp_sk(sk);
5017 	u32 range_truesize, sum_tiny = 0;
5018 	struct sk_buff *skb, *head;
5019 	u32 start, end;
5020 
5021 	skb = skb_rb_first(&tp->out_of_order_queue);
5022 new_range:
5023 	if (!skb) {
5024 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5025 		return;
5026 	}
5027 	start = TCP_SKB_CB(skb)->seq;
5028 	end = TCP_SKB_CB(skb)->end_seq;
5029 	range_truesize = skb->truesize;
5030 
5031 	for (head = skb;;) {
5032 		skb = skb_rb_next(skb);
5033 
5034 		/* Range is terminated when we see a gap or when
5035 		 * we are at the queue end.
5036 		 */
5037 		if (!skb ||
5038 		    after(TCP_SKB_CB(skb)->seq, end) ||
5039 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5040 			/* Do not attempt collapsing tiny skbs */
5041 			if (range_truesize != head->truesize ||
5042 			    end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5043 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5044 					     head, skb, start, end);
5045 			} else {
5046 				sum_tiny += range_truesize;
5047 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5048 					return;
5049 			}
5050 			goto new_range;
5051 		}
5052 
5053 		range_truesize += skb->truesize;
5054 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5055 			start = TCP_SKB_CB(skb)->seq;
5056 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5057 			end = TCP_SKB_CB(skb)->end_seq;
5058 	}
5059 }
5060 
5061 /*
5062  * Clean the out-of-order queue to make room.
5063  * We drop high sequences packets to :
5064  * 1) Let a chance for holes to be filled.
5065  * 2) not add too big latencies if thousands of packets sit there.
5066  *    (But if application shrinks SO_RCVBUF, we could still end up
5067  *     freeing whole queue here)
5068  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5069  *
5070  * Return true if queue has shrunk.
5071  */
5072 static bool tcp_prune_ofo_queue(struct sock *sk)
5073 {
5074 	struct tcp_sock *tp = tcp_sk(sk);
5075 	struct rb_node *node, *prev;
5076 	int goal;
5077 
5078 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5079 		return false;
5080 
5081 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5082 	goal = sk->sk_rcvbuf >> 3;
5083 	node = &tp->ooo_last_skb->rbnode;
5084 	do {
5085 		prev = rb_prev(node);
5086 		rb_erase(node, &tp->out_of_order_queue);
5087 		goal -= rb_to_skb(node)->truesize;
5088 		tcp_drop(sk, rb_to_skb(node));
5089 		if (!prev || goal <= 0) {
5090 			sk_mem_reclaim(sk);
5091 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5092 			    !tcp_under_memory_pressure(sk))
5093 				break;
5094 			goal = sk->sk_rcvbuf >> 3;
5095 		}
5096 		node = prev;
5097 	} while (node);
5098 	tp->ooo_last_skb = rb_to_skb(prev);
5099 
5100 	/* Reset SACK state.  A conforming SACK implementation will
5101 	 * do the same at a timeout based retransmit.  When a connection
5102 	 * is in a sad state like this, we care only about integrity
5103 	 * of the connection not performance.
5104 	 */
5105 	if (tp->rx_opt.sack_ok)
5106 		tcp_sack_reset(&tp->rx_opt);
5107 	return true;
5108 }
5109 
5110 /* Reduce allocated memory if we can, trying to get
5111  * the socket within its memory limits again.
5112  *
5113  * Return less than zero if we should start dropping frames
5114  * until the socket owning process reads some of the data
5115  * to stabilize the situation.
5116  */
5117 static int tcp_prune_queue(struct sock *sk)
5118 {
5119 	struct tcp_sock *tp = tcp_sk(sk);
5120 
5121 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5122 
5123 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5124 		tcp_clamp_window(sk);
5125 	else if (tcp_under_memory_pressure(sk))
5126 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5127 
5128 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5129 		return 0;
5130 
5131 	tcp_collapse_ofo_queue(sk);
5132 	if (!skb_queue_empty(&sk->sk_receive_queue))
5133 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5134 			     skb_peek(&sk->sk_receive_queue),
5135 			     NULL,
5136 			     tp->copied_seq, tp->rcv_nxt);
5137 	sk_mem_reclaim(sk);
5138 
5139 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5140 		return 0;
5141 
5142 	/* Collapsing did not help, destructive actions follow.
5143 	 * This must not ever occur. */
5144 
5145 	tcp_prune_ofo_queue(sk);
5146 
5147 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5148 		return 0;
5149 
5150 	/* If we are really being abused, tell the caller to silently
5151 	 * drop receive data on the floor.  It will get retransmitted
5152 	 * and hopefully then we'll have sufficient space.
5153 	 */
5154 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5155 
5156 	/* Massive buffer overcommit. */
5157 	tp->pred_flags = 0;
5158 	return -1;
5159 }
5160 
5161 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5162 {
5163 	const struct tcp_sock *tp = tcp_sk(sk);
5164 
5165 	/* If the user specified a specific send buffer setting, do
5166 	 * not modify it.
5167 	 */
5168 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5169 		return false;
5170 
5171 	/* If we are under global TCP memory pressure, do not expand.  */
5172 	if (tcp_under_memory_pressure(sk))
5173 		return false;
5174 
5175 	/* If we are under soft global TCP memory pressure, do not expand.  */
5176 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5177 		return false;
5178 
5179 	/* If we filled the congestion window, do not expand.  */
5180 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5181 		return false;
5182 
5183 	return true;
5184 }
5185 
5186 /* When incoming ACK allowed to free some skb from write_queue,
5187  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5188  * on the exit from tcp input handler.
5189  *
5190  * PROBLEM: sndbuf expansion does not work well with largesend.
5191  */
5192 static void tcp_new_space(struct sock *sk)
5193 {
5194 	struct tcp_sock *tp = tcp_sk(sk);
5195 
5196 	if (tcp_should_expand_sndbuf(sk)) {
5197 		tcp_sndbuf_expand(sk);
5198 		tp->snd_cwnd_stamp = tcp_jiffies32;
5199 	}
5200 
5201 	sk->sk_write_space(sk);
5202 }
5203 
5204 static void tcp_check_space(struct sock *sk)
5205 {
5206 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5207 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5208 		/* pairs with tcp_poll() */
5209 		smp_mb();
5210 		if (sk->sk_socket &&
5211 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5212 			tcp_new_space(sk);
5213 			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5214 				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5215 		}
5216 	}
5217 }
5218 
5219 static inline void tcp_data_snd_check(struct sock *sk)
5220 {
5221 	tcp_push_pending_frames(sk);
5222 	tcp_check_space(sk);
5223 }
5224 
5225 /*
5226  * Check if sending an ack is needed.
5227  */
5228 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5229 {
5230 	struct tcp_sock *tp = tcp_sk(sk);
5231 	unsigned long rtt, delay;
5232 
5233 	    /* More than one full frame received... */
5234 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5235 	     /* ... and right edge of window advances far enough.
5236 	      * (tcp_recvmsg() will send ACK otherwise).
5237 	      * If application uses SO_RCVLOWAT, we want send ack now if
5238 	      * we have not received enough bytes to satisfy the condition.
5239 	      */
5240 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5241 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5242 	    /* We ACK each frame or... */
5243 	    tcp_in_quickack_mode(sk) ||
5244 	    /* Protocol state mandates a one-time immediate ACK */
5245 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5246 send_now:
5247 		tcp_send_ack(sk);
5248 		return;
5249 	}
5250 
5251 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5252 		tcp_send_delayed_ack(sk);
5253 		return;
5254 	}
5255 
5256 	if (!tcp_is_sack(tp) ||
5257 	    tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5258 		goto send_now;
5259 
5260 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5261 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5262 		if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
5263 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
5264 				      tp->compressed_ack - TCP_FASTRETRANS_THRESH);
5265 		tp->compressed_ack = 0;
5266 	}
5267 
5268 	if (++tp->compressed_ack <= TCP_FASTRETRANS_THRESH)
5269 		goto send_now;
5270 
5271 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5272 		return;
5273 
5274 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5275 
5276 	rtt = tp->rcv_rtt_est.rtt_us;
5277 	if (tp->srtt_us && tp->srtt_us < rtt)
5278 		rtt = tp->srtt_us;
5279 
5280 	delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5281 		      rtt * (NSEC_PER_USEC >> 3)/20);
5282 	sock_hold(sk);
5283 	hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay),
5284 		      HRTIMER_MODE_REL_PINNED_SOFT);
5285 }
5286 
5287 static inline void tcp_ack_snd_check(struct sock *sk)
5288 {
5289 	if (!inet_csk_ack_scheduled(sk)) {
5290 		/* We sent a data segment already. */
5291 		return;
5292 	}
5293 	__tcp_ack_snd_check(sk, 1);
5294 }
5295 
5296 /*
5297  *	This routine is only called when we have urgent data
5298  *	signaled. Its the 'slow' part of tcp_urg. It could be
5299  *	moved inline now as tcp_urg is only called from one
5300  *	place. We handle URGent data wrong. We have to - as
5301  *	BSD still doesn't use the correction from RFC961.
5302  *	For 1003.1g we should support a new option TCP_STDURG to permit
5303  *	either form (or just set the sysctl tcp_stdurg).
5304  */
5305 
5306 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5307 {
5308 	struct tcp_sock *tp = tcp_sk(sk);
5309 	u32 ptr = ntohs(th->urg_ptr);
5310 
5311 	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5312 		ptr--;
5313 	ptr += ntohl(th->seq);
5314 
5315 	/* Ignore urgent data that we've already seen and read. */
5316 	if (after(tp->copied_seq, ptr))
5317 		return;
5318 
5319 	/* Do not replay urg ptr.
5320 	 *
5321 	 * NOTE: interesting situation not covered by specs.
5322 	 * Misbehaving sender may send urg ptr, pointing to segment,
5323 	 * which we already have in ofo queue. We are not able to fetch
5324 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5325 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5326 	 * situations. But it is worth to think about possibility of some
5327 	 * DoSes using some hypothetical application level deadlock.
5328 	 */
5329 	if (before(ptr, tp->rcv_nxt))
5330 		return;
5331 
5332 	/* Do we already have a newer (or duplicate) urgent pointer? */
5333 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5334 		return;
5335 
5336 	/* Tell the world about our new urgent pointer. */
5337 	sk_send_sigurg(sk);
5338 
5339 	/* We may be adding urgent data when the last byte read was
5340 	 * urgent. To do this requires some care. We cannot just ignore
5341 	 * tp->copied_seq since we would read the last urgent byte again
5342 	 * as data, nor can we alter copied_seq until this data arrives
5343 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5344 	 *
5345 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5346 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5347 	 * and expect that both A and B disappear from stream. This is _wrong_.
5348 	 * Though this happens in BSD with high probability, this is occasional.
5349 	 * Any application relying on this is buggy. Note also, that fix "works"
5350 	 * only in this artificial test. Insert some normal data between A and B and we will
5351 	 * decline of BSD again. Verdict: it is better to remove to trap
5352 	 * buggy users.
5353 	 */
5354 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5355 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5356 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5357 		tp->copied_seq++;
5358 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5359 			__skb_unlink(skb, &sk->sk_receive_queue);
5360 			__kfree_skb(skb);
5361 		}
5362 	}
5363 
5364 	tp->urg_data = TCP_URG_NOTYET;
5365 	WRITE_ONCE(tp->urg_seq, ptr);
5366 
5367 	/* Disable header prediction. */
5368 	tp->pred_flags = 0;
5369 }
5370 
5371 /* This is the 'fast' part of urgent handling. */
5372 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5373 {
5374 	struct tcp_sock *tp = tcp_sk(sk);
5375 
5376 	/* Check if we get a new urgent pointer - normally not. */
5377 	if (th->urg)
5378 		tcp_check_urg(sk, th);
5379 
5380 	/* Do we wait for any urgent data? - normally not... */
5381 	if (tp->urg_data == TCP_URG_NOTYET) {
5382 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5383 			  th->syn;
5384 
5385 		/* Is the urgent pointer pointing into this packet? */
5386 		if (ptr < skb->len) {
5387 			u8 tmp;
5388 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5389 				BUG();
5390 			tp->urg_data = TCP_URG_VALID | tmp;
5391 			if (!sock_flag(sk, SOCK_DEAD))
5392 				sk->sk_data_ready(sk);
5393 		}
5394 	}
5395 }
5396 
5397 /* Accept RST for rcv_nxt - 1 after a FIN.
5398  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5399  * FIN is sent followed by a RST packet. The RST is sent with the same
5400  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5401  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5402  * ACKs on the closed socket. In addition middleboxes can drop either the
5403  * challenge ACK or a subsequent RST.
5404  */
5405 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5406 {
5407 	struct tcp_sock *tp = tcp_sk(sk);
5408 
5409 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5410 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5411 					       TCPF_CLOSING));
5412 }
5413 
5414 /* Does PAWS and seqno based validation of an incoming segment, flags will
5415  * play significant role here.
5416  */
5417 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5418 				  const struct tcphdr *th, int syn_inerr)
5419 {
5420 	struct tcp_sock *tp = tcp_sk(sk);
5421 	bool rst_seq_match = false;
5422 
5423 	/* RFC1323: H1. Apply PAWS check first. */
5424 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5425 	    tp->rx_opt.saw_tstamp &&
5426 	    tcp_paws_discard(sk, skb)) {
5427 		if (!th->rst) {
5428 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5429 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5430 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5431 						  &tp->last_oow_ack_time))
5432 				tcp_send_dupack(sk, skb);
5433 			goto discard;
5434 		}
5435 		/* Reset is accepted even if it did not pass PAWS. */
5436 	}
5437 
5438 	/* Step 1: check sequence number */
5439 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5440 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5441 		 * (RST) segments are validated by checking their SEQ-fields."
5442 		 * And page 69: "If an incoming segment is not acceptable,
5443 		 * an acknowledgment should be sent in reply (unless the RST
5444 		 * bit is set, if so drop the segment and return)".
5445 		 */
5446 		if (!th->rst) {
5447 			if (th->syn)
5448 				goto syn_challenge;
5449 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5450 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5451 						  &tp->last_oow_ack_time))
5452 				tcp_send_dupack(sk, skb);
5453 		} else if (tcp_reset_check(sk, skb)) {
5454 			tcp_reset(sk);
5455 		}
5456 		goto discard;
5457 	}
5458 
5459 	/* Step 2: check RST bit */
5460 	if (th->rst) {
5461 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5462 		 * FIN and SACK too if available):
5463 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5464 		 * the right-most SACK block,
5465 		 * then
5466 		 *     RESET the connection
5467 		 * else
5468 		 *     Send a challenge ACK
5469 		 */
5470 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5471 		    tcp_reset_check(sk, skb)) {
5472 			rst_seq_match = true;
5473 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5474 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5475 			int max_sack = sp[0].end_seq;
5476 			int this_sack;
5477 
5478 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5479 			     ++this_sack) {
5480 				max_sack = after(sp[this_sack].end_seq,
5481 						 max_sack) ?
5482 					sp[this_sack].end_seq : max_sack;
5483 			}
5484 
5485 			if (TCP_SKB_CB(skb)->seq == max_sack)
5486 				rst_seq_match = true;
5487 		}
5488 
5489 		if (rst_seq_match)
5490 			tcp_reset(sk);
5491 		else {
5492 			/* Disable TFO if RST is out-of-order
5493 			 * and no data has been received
5494 			 * for current active TFO socket
5495 			 */
5496 			if (tp->syn_fastopen && !tp->data_segs_in &&
5497 			    sk->sk_state == TCP_ESTABLISHED)
5498 				tcp_fastopen_active_disable(sk);
5499 			tcp_send_challenge_ack(sk, skb);
5500 		}
5501 		goto discard;
5502 	}
5503 
5504 	/* step 3: check security and precedence [ignored] */
5505 
5506 	/* step 4: Check for a SYN
5507 	 * RFC 5961 4.2 : Send a challenge ack
5508 	 */
5509 	if (th->syn) {
5510 syn_challenge:
5511 		if (syn_inerr)
5512 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5513 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5514 		tcp_send_challenge_ack(sk, skb);
5515 		goto discard;
5516 	}
5517 
5518 	return true;
5519 
5520 discard:
5521 	tcp_drop(sk, skb);
5522 	return false;
5523 }
5524 
5525 /*
5526  *	TCP receive function for the ESTABLISHED state.
5527  *
5528  *	It is split into a fast path and a slow path. The fast path is
5529  * 	disabled when:
5530  *	- A zero window was announced from us - zero window probing
5531  *        is only handled properly in the slow path.
5532  *	- Out of order segments arrived.
5533  *	- Urgent data is expected.
5534  *	- There is no buffer space left
5535  *	- Unexpected TCP flags/window values/header lengths are received
5536  *	  (detected by checking the TCP header against pred_flags)
5537  *	- Data is sent in both directions. Fast path only supports pure senders
5538  *	  or pure receivers (this means either the sequence number or the ack
5539  *	  value must stay constant)
5540  *	- Unexpected TCP option.
5541  *
5542  *	When these conditions are not satisfied it drops into a standard
5543  *	receive procedure patterned after RFC793 to handle all cases.
5544  *	The first three cases are guaranteed by proper pred_flags setting,
5545  *	the rest is checked inline. Fast processing is turned on in
5546  *	tcp_data_queue when everything is OK.
5547  */
5548 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5549 {
5550 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5551 	struct tcp_sock *tp = tcp_sk(sk);
5552 	unsigned int len = skb->len;
5553 
5554 	/* TCP congestion window tracking */
5555 	trace_tcp_probe(sk, skb);
5556 
5557 	tcp_mstamp_refresh(tp);
5558 	if (unlikely(!sk->sk_rx_dst))
5559 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5560 	/*
5561 	 *	Header prediction.
5562 	 *	The code loosely follows the one in the famous
5563 	 *	"30 instruction TCP receive" Van Jacobson mail.
5564 	 *
5565 	 *	Van's trick is to deposit buffers into socket queue
5566 	 *	on a device interrupt, to call tcp_recv function
5567 	 *	on the receive process context and checksum and copy
5568 	 *	the buffer to user space. smart...
5569 	 *
5570 	 *	Our current scheme is not silly either but we take the
5571 	 *	extra cost of the net_bh soft interrupt processing...
5572 	 *	We do checksum and copy also but from device to kernel.
5573 	 */
5574 
5575 	tp->rx_opt.saw_tstamp = 0;
5576 
5577 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5578 	 *	if header_prediction is to be made
5579 	 *	'S' will always be tp->tcp_header_len >> 2
5580 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5581 	 *  turn it off	(when there are holes in the receive
5582 	 *	 space for instance)
5583 	 *	PSH flag is ignored.
5584 	 */
5585 
5586 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5587 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5588 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5589 		int tcp_header_len = tp->tcp_header_len;
5590 
5591 		/* Timestamp header prediction: tcp_header_len
5592 		 * is automatically equal to th->doff*4 due to pred_flags
5593 		 * match.
5594 		 */
5595 
5596 		/* Check timestamp */
5597 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5598 			/* No? Slow path! */
5599 			if (!tcp_parse_aligned_timestamp(tp, th))
5600 				goto slow_path;
5601 
5602 			/* If PAWS failed, check it more carefully in slow path */
5603 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5604 				goto slow_path;
5605 
5606 			/* DO NOT update ts_recent here, if checksum fails
5607 			 * and timestamp was corrupted part, it will result
5608 			 * in a hung connection since we will drop all
5609 			 * future packets due to the PAWS test.
5610 			 */
5611 		}
5612 
5613 		if (len <= tcp_header_len) {
5614 			/* Bulk data transfer: sender */
5615 			if (len == tcp_header_len) {
5616 				/* Predicted packet is in window by definition.
5617 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5618 				 * Hence, check seq<=rcv_wup reduces to:
5619 				 */
5620 				if (tcp_header_len ==
5621 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5622 				    tp->rcv_nxt == tp->rcv_wup)
5623 					tcp_store_ts_recent(tp);
5624 
5625 				/* We know that such packets are checksummed
5626 				 * on entry.
5627 				 */
5628 				tcp_ack(sk, skb, 0);
5629 				__kfree_skb(skb);
5630 				tcp_data_snd_check(sk);
5631 				/* When receiving pure ack in fast path, update
5632 				 * last ts ecr directly instead of calling
5633 				 * tcp_rcv_rtt_measure_ts()
5634 				 */
5635 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5636 				return;
5637 			} else { /* Header too small */
5638 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5639 				goto discard;
5640 			}
5641 		} else {
5642 			int eaten = 0;
5643 			bool fragstolen = false;
5644 
5645 			if (tcp_checksum_complete(skb))
5646 				goto csum_error;
5647 
5648 			if ((int)skb->truesize > sk->sk_forward_alloc)
5649 				goto step5;
5650 
5651 			/* Predicted packet is in window by definition.
5652 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5653 			 * Hence, check seq<=rcv_wup reduces to:
5654 			 */
5655 			if (tcp_header_len ==
5656 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5657 			    tp->rcv_nxt == tp->rcv_wup)
5658 				tcp_store_ts_recent(tp);
5659 
5660 			tcp_rcv_rtt_measure_ts(sk, skb);
5661 
5662 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5663 
5664 			/* Bulk data transfer: receiver */
5665 			__skb_pull(skb, tcp_header_len);
5666 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5667 
5668 			tcp_event_data_recv(sk, skb);
5669 
5670 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5671 				/* Well, only one small jumplet in fast path... */
5672 				tcp_ack(sk, skb, FLAG_DATA);
5673 				tcp_data_snd_check(sk);
5674 				if (!inet_csk_ack_scheduled(sk))
5675 					goto no_ack;
5676 			}
5677 
5678 			__tcp_ack_snd_check(sk, 0);
5679 no_ack:
5680 			if (eaten)
5681 				kfree_skb_partial(skb, fragstolen);
5682 			tcp_data_ready(sk);
5683 			return;
5684 		}
5685 	}
5686 
5687 slow_path:
5688 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5689 		goto csum_error;
5690 
5691 	if (!th->ack && !th->rst && !th->syn)
5692 		goto discard;
5693 
5694 	/*
5695 	 *	Standard slow path.
5696 	 */
5697 
5698 	if (!tcp_validate_incoming(sk, skb, th, 1))
5699 		return;
5700 
5701 step5:
5702 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5703 		goto discard;
5704 
5705 	tcp_rcv_rtt_measure_ts(sk, skb);
5706 
5707 	/* Process urgent data. */
5708 	tcp_urg(sk, skb, th);
5709 
5710 	/* step 7: process the segment text */
5711 	tcp_data_queue(sk, skb);
5712 
5713 	tcp_data_snd_check(sk);
5714 	tcp_ack_snd_check(sk);
5715 	return;
5716 
5717 csum_error:
5718 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5719 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5720 
5721 discard:
5722 	tcp_drop(sk, skb);
5723 }
5724 EXPORT_SYMBOL(tcp_rcv_established);
5725 
5726 void tcp_init_transfer(struct sock *sk, int bpf_op)
5727 {
5728 	struct inet_connection_sock *icsk = inet_csk(sk);
5729 	struct tcp_sock *tp = tcp_sk(sk);
5730 
5731 	tcp_mtup_init(sk);
5732 	icsk->icsk_af_ops->rebuild_header(sk);
5733 	tcp_init_metrics(sk);
5734 
5735 	/* Initialize the congestion window to start the transfer.
5736 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5737 	 * retransmitted. In light of RFC6298 more aggressive 1sec
5738 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5739 	 * retransmission has occurred.
5740 	 */
5741 	if (tp->total_retrans > 1 && tp->undo_marker)
5742 		tp->snd_cwnd = 1;
5743 	else
5744 		tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5745 	tp->snd_cwnd_stamp = tcp_jiffies32;
5746 
5747 	tcp_call_bpf(sk, bpf_op, 0, NULL);
5748 	tcp_init_congestion_control(sk);
5749 	tcp_init_buffer_space(sk);
5750 }
5751 
5752 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5753 {
5754 	struct tcp_sock *tp = tcp_sk(sk);
5755 	struct inet_connection_sock *icsk = inet_csk(sk);
5756 
5757 	tcp_set_state(sk, TCP_ESTABLISHED);
5758 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5759 
5760 	if (skb) {
5761 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5762 		security_inet_conn_established(sk, skb);
5763 		sk_mark_napi_id(sk, skb);
5764 	}
5765 
5766 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5767 
5768 	/* Prevent spurious tcp_cwnd_restart() on first data
5769 	 * packet.
5770 	 */
5771 	tp->lsndtime = tcp_jiffies32;
5772 
5773 	if (sock_flag(sk, SOCK_KEEPOPEN))
5774 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5775 
5776 	if (!tp->rx_opt.snd_wscale)
5777 		__tcp_fast_path_on(tp, tp->snd_wnd);
5778 	else
5779 		tp->pred_flags = 0;
5780 }
5781 
5782 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5783 				    struct tcp_fastopen_cookie *cookie)
5784 {
5785 	struct tcp_sock *tp = tcp_sk(sk);
5786 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5787 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5788 	bool syn_drop = false;
5789 
5790 	if (mss == tp->rx_opt.user_mss) {
5791 		struct tcp_options_received opt;
5792 
5793 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5794 		tcp_clear_options(&opt);
5795 		opt.user_mss = opt.mss_clamp = 0;
5796 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5797 		mss = opt.mss_clamp;
5798 	}
5799 
5800 	if (!tp->syn_fastopen) {
5801 		/* Ignore an unsolicited cookie */
5802 		cookie->len = -1;
5803 	} else if (tp->total_retrans) {
5804 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5805 		 * acknowledges data. Presumably the remote received only
5806 		 * the retransmitted (regular) SYNs: either the original
5807 		 * SYN-data or the corresponding SYN-ACK was dropped.
5808 		 */
5809 		syn_drop = (cookie->len < 0 && data);
5810 	} else if (cookie->len < 0 && !tp->syn_data) {
5811 		/* We requested a cookie but didn't get it. If we did not use
5812 		 * the (old) exp opt format then try so next time (try_exp=1).
5813 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5814 		 */
5815 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5816 	}
5817 
5818 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5819 
5820 	if (data) { /* Retransmit unacked data in SYN */
5821 		if (tp->total_retrans)
5822 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
5823 		else
5824 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
5825 		skb_rbtree_walk_from(data) {
5826 			if (__tcp_retransmit_skb(sk, data, 1))
5827 				break;
5828 		}
5829 		tcp_rearm_rto(sk);
5830 		NET_INC_STATS(sock_net(sk),
5831 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5832 		return true;
5833 	}
5834 	tp->syn_data_acked = tp->syn_data;
5835 	if (tp->syn_data_acked) {
5836 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5837 		/* SYN-data is counted as two separate packets in tcp_ack() */
5838 		if (tp->delivered > 1)
5839 			--tp->delivered;
5840 	}
5841 
5842 	tcp_fastopen_add_skb(sk, synack);
5843 
5844 	return false;
5845 }
5846 
5847 static void smc_check_reset_syn(struct tcp_sock *tp)
5848 {
5849 #if IS_ENABLED(CONFIG_SMC)
5850 	if (static_branch_unlikely(&tcp_have_smc)) {
5851 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
5852 			tp->syn_smc = 0;
5853 	}
5854 #endif
5855 }
5856 
5857 static void tcp_try_undo_spurious_syn(struct sock *sk)
5858 {
5859 	struct tcp_sock *tp = tcp_sk(sk);
5860 	u32 syn_stamp;
5861 
5862 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
5863 	 * spurious if the ACK's timestamp option echo value matches the
5864 	 * original SYN timestamp.
5865 	 */
5866 	syn_stamp = tp->retrans_stamp;
5867 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
5868 	    syn_stamp == tp->rx_opt.rcv_tsecr)
5869 		tp->undo_marker = 0;
5870 }
5871 
5872 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5873 					 const struct tcphdr *th)
5874 {
5875 	struct inet_connection_sock *icsk = inet_csk(sk);
5876 	struct tcp_sock *tp = tcp_sk(sk);
5877 	struct tcp_fastopen_cookie foc = { .len = -1 };
5878 	int saved_clamp = tp->rx_opt.mss_clamp;
5879 	bool fastopen_fail;
5880 
5881 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5882 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5883 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5884 
5885 	if (th->ack) {
5886 		/* rfc793:
5887 		 * "If the state is SYN-SENT then
5888 		 *    first check the ACK bit
5889 		 *      If the ACK bit is set
5890 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5891 		 *        a reset (unless the RST bit is set, if so drop
5892 		 *        the segment and return)"
5893 		 */
5894 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5895 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5896 			goto reset_and_undo;
5897 
5898 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5899 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5900 			     tcp_time_stamp(tp))) {
5901 			NET_INC_STATS(sock_net(sk),
5902 					LINUX_MIB_PAWSACTIVEREJECTED);
5903 			goto reset_and_undo;
5904 		}
5905 
5906 		/* Now ACK is acceptable.
5907 		 *
5908 		 * "If the RST bit is set
5909 		 *    If the ACK was acceptable then signal the user "error:
5910 		 *    connection reset", drop the segment, enter CLOSED state,
5911 		 *    delete TCB, and return."
5912 		 */
5913 
5914 		if (th->rst) {
5915 			tcp_reset(sk);
5916 			goto discard;
5917 		}
5918 
5919 		/* rfc793:
5920 		 *   "fifth, if neither of the SYN or RST bits is set then
5921 		 *    drop the segment and return."
5922 		 *
5923 		 *    See note below!
5924 		 *                                        --ANK(990513)
5925 		 */
5926 		if (!th->syn)
5927 			goto discard_and_undo;
5928 
5929 		/* rfc793:
5930 		 *   "If the SYN bit is on ...
5931 		 *    are acceptable then ...
5932 		 *    (our SYN has been ACKed), change the connection
5933 		 *    state to ESTABLISHED..."
5934 		 */
5935 
5936 		tcp_ecn_rcv_synack(tp, th);
5937 
5938 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5939 		tcp_try_undo_spurious_syn(sk);
5940 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5941 
5942 		/* Ok.. it's good. Set up sequence numbers and
5943 		 * move to established.
5944 		 */
5945 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
5946 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5947 
5948 		/* RFC1323: The window in SYN & SYN/ACK segments is
5949 		 * never scaled.
5950 		 */
5951 		tp->snd_wnd = ntohs(th->window);
5952 
5953 		if (!tp->rx_opt.wscale_ok) {
5954 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5955 			tp->window_clamp = min(tp->window_clamp, 65535U);
5956 		}
5957 
5958 		if (tp->rx_opt.saw_tstamp) {
5959 			tp->rx_opt.tstamp_ok	   = 1;
5960 			tp->tcp_header_len =
5961 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5962 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5963 			tcp_store_ts_recent(tp);
5964 		} else {
5965 			tp->tcp_header_len = sizeof(struct tcphdr);
5966 		}
5967 
5968 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5969 		tcp_initialize_rcv_mss(sk);
5970 
5971 		/* Remember, tcp_poll() does not lock socket!
5972 		 * Change state from SYN-SENT only after copied_seq
5973 		 * is initialized. */
5974 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
5975 
5976 		smc_check_reset_syn(tp);
5977 
5978 		smp_mb();
5979 
5980 		tcp_finish_connect(sk, skb);
5981 
5982 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5983 				tcp_rcv_fastopen_synack(sk, skb, &foc);
5984 
5985 		if (!sock_flag(sk, SOCK_DEAD)) {
5986 			sk->sk_state_change(sk);
5987 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5988 		}
5989 		if (fastopen_fail)
5990 			return -1;
5991 		if (sk->sk_write_pending ||
5992 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5993 		    inet_csk_in_pingpong_mode(sk)) {
5994 			/* Save one ACK. Data will be ready after
5995 			 * several ticks, if write_pending is set.
5996 			 *
5997 			 * It may be deleted, but with this feature tcpdumps
5998 			 * look so _wonderfully_ clever, that I was not able
5999 			 * to stand against the temptation 8)     --ANK
6000 			 */
6001 			inet_csk_schedule_ack(sk);
6002 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6003 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6004 						  TCP_DELACK_MAX, TCP_RTO_MAX);
6005 
6006 discard:
6007 			tcp_drop(sk, skb);
6008 			return 0;
6009 		} else {
6010 			tcp_send_ack(sk);
6011 		}
6012 		return -1;
6013 	}
6014 
6015 	/* No ACK in the segment */
6016 
6017 	if (th->rst) {
6018 		/* rfc793:
6019 		 * "If the RST bit is set
6020 		 *
6021 		 *      Otherwise (no ACK) drop the segment and return."
6022 		 */
6023 
6024 		goto discard_and_undo;
6025 	}
6026 
6027 	/* PAWS check. */
6028 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6029 	    tcp_paws_reject(&tp->rx_opt, 0))
6030 		goto discard_and_undo;
6031 
6032 	if (th->syn) {
6033 		/* We see SYN without ACK. It is attempt of
6034 		 * simultaneous connect with crossed SYNs.
6035 		 * Particularly, it can be connect to self.
6036 		 */
6037 		tcp_set_state(sk, TCP_SYN_RECV);
6038 
6039 		if (tp->rx_opt.saw_tstamp) {
6040 			tp->rx_opt.tstamp_ok = 1;
6041 			tcp_store_ts_recent(tp);
6042 			tp->tcp_header_len =
6043 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6044 		} else {
6045 			tp->tcp_header_len = sizeof(struct tcphdr);
6046 		}
6047 
6048 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6049 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6050 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6051 
6052 		/* RFC1323: The window in SYN & SYN/ACK segments is
6053 		 * never scaled.
6054 		 */
6055 		tp->snd_wnd    = ntohs(th->window);
6056 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6057 		tp->max_window = tp->snd_wnd;
6058 
6059 		tcp_ecn_rcv_syn(tp, th);
6060 
6061 		tcp_mtup_init(sk);
6062 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6063 		tcp_initialize_rcv_mss(sk);
6064 
6065 		tcp_send_synack(sk);
6066 #if 0
6067 		/* Note, we could accept data and URG from this segment.
6068 		 * There are no obstacles to make this (except that we must
6069 		 * either change tcp_recvmsg() to prevent it from returning data
6070 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6071 		 *
6072 		 * However, if we ignore data in ACKless segments sometimes,
6073 		 * we have no reasons to accept it sometimes.
6074 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6075 		 * is not flawless. So, discard packet for sanity.
6076 		 * Uncomment this return to process the data.
6077 		 */
6078 		return -1;
6079 #else
6080 		goto discard;
6081 #endif
6082 	}
6083 	/* "fifth, if neither of the SYN or RST bits is set then
6084 	 * drop the segment and return."
6085 	 */
6086 
6087 discard_and_undo:
6088 	tcp_clear_options(&tp->rx_opt);
6089 	tp->rx_opt.mss_clamp = saved_clamp;
6090 	goto discard;
6091 
6092 reset_and_undo:
6093 	tcp_clear_options(&tp->rx_opt);
6094 	tp->rx_opt.mss_clamp = saved_clamp;
6095 	return 1;
6096 }
6097 
6098 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6099 {
6100 	struct request_sock *req;
6101 
6102 	tcp_try_undo_loss(sk, false);
6103 
6104 	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6105 	tcp_sk(sk)->retrans_stamp = 0;
6106 	inet_csk(sk)->icsk_retransmits = 0;
6107 
6108 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6109 	 * we no longer need req so release it.
6110 	 */
6111 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6112 					lockdep_sock_is_held(sk));
6113 	reqsk_fastopen_remove(sk, req, false);
6114 
6115 	/* Re-arm the timer because data may have been sent out.
6116 	 * This is similar to the regular data transmission case
6117 	 * when new data has just been ack'ed.
6118 	 *
6119 	 * (TFO) - we could try to be more aggressive and
6120 	 * retransmitting any data sooner based on when they
6121 	 * are sent out.
6122 	 */
6123 	tcp_rearm_rto(sk);
6124 }
6125 
6126 /*
6127  *	This function implements the receiving procedure of RFC 793 for
6128  *	all states except ESTABLISHED and TIME_WAIT.
6129  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6130  *	address independent.
6131  */
6132 
6133 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6134 {
6135 	struct tcp_sock *tp = tcp_sk(sk);
6136 	struct inet_connection_sock *icsk = inet_csk(sk);
6137 	const struct tcphdr *th = tcp_hdr(skb);
6138 	struct request_sock *req;
6139 	int queued = 0;
6140 	bool acceptable;
6141 
6142 	switch (sk->sk_state) {
6143 	case TCP_CLOSE:
6144 		goto discard;
6145 
6146 	case TCP_LISTEN:
6147 		if (th->ack)
6148 			return 1;
6149 
6150 		if (th->rst)
6151 			goto discard;
6152 
6153 		if (th->syn) {
6154 			if (th->fin)
6155 				goto discard;
6156 			/* It is possible that we process SYN packets from backlog,
6157 			 * so we need to make sure to disable BH and RCU right there.
6158 			 */
6159 			rcu_read_lock();
6160 			local_bh_disable();
6161 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6162 			local_bh_enable();
6163 			rcu_read_unlock();
6164 
6165 			if (!acceptable)
6166 				return 1;
6167 			consume_skb(skb);
6168 			return 0;
6169 		}
6170 		goto discard;
6171 
6172 	case TCP_SYN_SENT:
6173 		tp->rx_opt.saw_tstamp = 0;
6174 		tcp_mstamp_refresh(tp);
6175 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6176 		if (queued >= 0)
6177 			return queued;
6178 
6179 		/* Do step6 onward by hand. */
6180 		tcp_urg(sk, skb, th);
6181 		__kfree_skb(skb);
6182 		tcp_data_snd_check(sk);
6183 		return 0;
6184 	}
6185 
6186 	tcp_mstamp_refresh(tp);
6187 	tp->rx_opt.saw_tstamp = 0;
6188 	req = rcu_dereference_protected(tp->fastopen_rsk,
6189 					lockdep_sock_is_held(sk));
6190 	if (req) {
6191 		bool req_stolen;
6192 
6193 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6194 		    sk->sk_state != TCP_FIN_WAIT1);
6195 
6196 		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6197 			goto discard;
6198 	}
6199 
6200 	if (!th->ack && !th->rst && !th->syn)
6201 		goto discard;
6202 
6203 	if (!tcp_validate_incoming(sk, skb, th, 0))
6204 		return 0;
6205 
6206 	/* step 5: check the ACK field */
6207 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6208 				      FLAG_UPDATE_TS_RECENT |
6209 				      FLAG_NO_CHALLENGE_ACK) > 0;
6210 
6211 	if (!acceptable) {
6212 		if (sk->sk_state == TCP_SYN_RECV)
6213 			return 1;	/* send one RST */
6214 		tcp_send_challenge_ack(sk, skb);
6215 		goto discard;
6216 	}
6217 	switch (sk->sk_state) {
6218 	case TCP_SYN_RECV:
6219 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6220 		if (!tp->srtt_us)
6221 			tcp_synack_rtt_meas(sk, req);
6222 
6223 		if (req) {
6224 			tcp_rcv_synrecv_state_fastopen(sk);
6225 		} else {
6226 			tcp_try_undo_spurious_syn(sk);
6227 			tp->retrans_stamp = 0;
6228 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
6229 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6230 		}
6231 		smp_mb();
6232 		tcp_set_state(sk, TCP_ESTABLISHED);
6233 		sk->sk_state_change(sk);
6234 
6235 		/* Note, that this wakeup is only for marginal crossed SYN case.
6236 		 * Passively open sockets are not waked up, because
6237 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6238 		 */
6239 		if (sk->sk_socket)
6240 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6241 
6242 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6243 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6244 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6245 
6246 		if (tp->rx_opt.tstamp_ok)
6247 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6248 
6249 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6250 			tcp_update_pacing_rate(sk);
6251 
6252 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6253 		tp->lsndtime = tcp_jiffies32;
6254 
6255 		tcp_initialize_rcv_mss(sk);
6256 		tcp_fast_path_on(tp);
6257 		break;
6258 
6259 	case TCP_FIN_WAIT1: {
6260 		int tmo;
6261 
6262 		if (req)
6263 			tcp_rcv_synrecv_state_fastopen(sk);
6264 
6265 		if (tp->snd_una != tp->write_seq)
6266 			break;
6267 
6268 		tcp_set_state(sk, TCP_FIN_WAIT2);
6269 		sk->sk_shutdown |= SEND_SHUTDOWN;
6270 
6271 		sk_dst_confirm(sk);
6272 
6273 		if (!sock_flag(sk, SOCK_DEAD)) {
6274 			/* Wake up lingering close() */
6275 			sk->sk_state_change(sk);
6276 			break;
6277 		}
6278 
6279 		if (tp->linger2 < 0) {
6280 			tcp_done(sk);
6281 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6282 			return 1;
6283 		}
6284 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6285 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6286 			/* Receive out of order FIN after close() */
6287 			if (tp->syn_fastopen && th->fin)
6288 				tcp_fastopen_active_disable(sk);
6289 			tcp_done(sk);
6290 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6291 			return 1;
6292 		}
6293 
6294 		tmo = tcp_fin_time(sk);
6295 		if (tmo > TCP_TIMEWAIT_LEN) {
6296 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6297 		} else if (th->fin || sock_owned_by_user(sk)) {
6298 			/* Bad case. We could lose such FIN otherwise.
6299 			 * It is not a big problem, but it looks confusing
6300 			 * and not so rare event. We still can lose it now,
6301 			 * if it spins in bh_lock_sock(), but it is really
6302 			 * marginal case.
6303 			 */
6304 			inet_csk_reset_keepalive_timer(sk, tmo);
6305 		} else {
6306 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6307 			goto discard;
6308 		}
6309 		break;
6310 	}
6311 
6312 	case TCP_CLOSING:
6313 		if (tp->snd_una == tp->write_seq) {
6314 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6315 			goto discard;
6316 		}
6317 		break;
6318 
6319 	case TCP_LAST_ACK:
6320 		if (tp->snd_una == tp->write_seq) {
6321 			tcp_update_metrics(sk);
6322 			tcp_done(sk);
6323 			goto discard;
6324 		}
6325 		break;
6326 	}
6327 
6328 	/* step 6: check the URG bit */
6329 	tcp_urg(sk, skb, th);
6330 
6331 	/* step 7: process the segment text */
6332 	switch (sk->sk_state) {
6333 	case TCP_CLOSE_WAIT:
6334 	case TCP_CLOSING:
6335 	case TCP_LAST_ACK:
6336 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6337 			break;
6338 		/* fall through */
6339 	case TCP_FIN_WAIT1:
6340 	case TCP_FIN_WAIT2:
6341 		/* RFC 793 says to queue data in these states,
6342 		 * RFC 1122 says we MUST send a reset.
6343 		 * BSD 4.4 also does reset.
6344 		 */
6345 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6346 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6347 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6348 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6349 				tcp_reset(sk);
6350 				return 1;
6351 			}
6352 		}
6353 		/* Fall through */
6354 	case TCP_ESTABLISHED:
6355 		tcp_data_queue(sk, skb);
6356 		queued = 1;
6357 		break;
6358 	}
6359 
6360 	/* tcp_data could move socket to TIME-WAIT */
6361 	if (sk->sk_state != TCP_CLOSE) {
6362 		tcp_data_snd_check(sk);
6363 		tcp_ack_snd_check(sk);
6364 	}
6365 
6366 	if (!queued) {
6367 discard:
6368 		tcp_drop(sk, skb);
6369 	}
6370 	return 0;
6371 }
6372 EXPORT_SYMBOL(tcp_rcv_state_process);
6373 
6374 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6375 {
6376 	struct inet_request_sock *ireq = inet_rsk(req);
6377 
6378 	if (family == AF_INET)
6379 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6380 				    &ireq->ir_rmt_addr, port);
6381 #if IS_ENABLED(CONFIG_IPV6)
6382 	else if (family == AF_INET6)
6383 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6384 				    &ireq->ir_v6_rmt_addr, port);
6385 #endif
6386 }
6387 
6388 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6389  *
6390  * If we receive a SYN packet with these bits set, it means a
6391  * network is playing bad games with TOS bits. In order to
6392  * avoid possible false congestion notifications, we disable
6393  * TCP ECN negotiation.
6394  *
6395  * Exception: tcp_ca wants ECN. This is required for DCTCP
6396  * congestion control: Linux DCTCP asserts ECT on all packets,
6397  * including SYN, which is most optimal solution; however,
6398  * others, such as FreeBSD do not.
6399  *
6400  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6401  * set, indicating the use of a future TCP extension (such as AccECN). See
6402  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6403  * extensions.
6404  */
6405 static void tcp_ecn_create_request(struct request_sock *req,
6406 				   const struct sk_buff *skb,
6407 				   const struct sock *listen_sk,
6408 				   const struct dst_entry *dst)
6409 {
6410 	const struct tcphdr *th = tcp_hdr(skb);
6411 	const struct net *net = sock_net(listen_sk);
6412 	bool th_ecn = th->ece && th->cwr;
6413 	bool ect, ecn_ok;
6414 	u32 ecn_ok_dst;
6415 
6416 	if (!th_ecn)
6417 		return;
6418 
6419 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6420 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6421 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6422 
6423 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6424 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6425 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6426 		inet_rsk(req)->ecn_ok = 1;
6427 }
6428 
6429 static void tcp_openreq_init(struct request_sock *req,
6430 			     const struct tcp_options_received *rx_opt,
6431 			     struct sk_buff *skb, const struct sock *sk)
6432 {
6433 	struct inet_request_sock *ireq = inet_rsk(req);
6434 
6435 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6436 	req->cookie_ts = 0;
6437 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6438 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6439 	tcp_rsk(req)->snt_synack = 0;
6440 	tcp_rsk(req)->last_oow_ack_time = 0;
6441 	req->mss = rx_opt->mss_clamp;
6442 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6443 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6444 	ireq->sack_ok = rx_opt->sack_ok;
6445 	ireq->snd_wscale = rx_opt->snd_wscale;
6446 	ireq->wscale_ok = rx_opt->wscale_ok;
6447 	ireq->acked = 0;
6448 	ireq->ecn_ok = 0;
6449 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6450 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6451 	ireq->ir_mark = inet_request_mark(sk, skb);
6452 #if IS_ENABLED(CONFIG_SMC)
6453 	ireq->smc_ok = rx_opt->smc_ok;
6454 #endif
6455 }
6456 
6457 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6458 				      struct sock *sk_listener,
6459 				      bool attach_listener)
6460 {
6461 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6462 					       attach_listener);
6463 
6464 	if (req) {
6465 		struct inet_request_sock *ireq = inet_rsk(req);
6466 
6467 		ireq->ireq_opt = NULL;
6468 #if IS_ENABLED(CONFIG_IPV6)
6469 		ireq->pktopts = NULL;
6470 #endif
6471 		atomic64_set(&ireq->ir_cookie, 0);
6472 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6473 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6474 		ireq->ireq_family = sk_listener->sk_family;
6475 	}
6476 
6477 	return req;
6478 }
6479 EXPORT_SYMBOL(inet_reqsk_alloc);
6480 
6481 /*
6482  * Return true if a syncookie should be sent
6483  */
6484 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6485 {
6486 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6487 	const char *msg = "Dropping request";
6488 	bool want_cookie = false;
6489 	struct net *net = sock_net(sk);
6490 
6491 #ifdef CONFIG_SYN_COOKIES
6492 	if (net->ipv4.sysctl_tcp_syncookies) {
6493 		msg = "Sending cookies";
6494 		want_cookie = true;
6495 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6496 	} else
6497 #endif
6498 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6499 
6500 	if (!queue->synflood_warned &&
6501 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6502 	    xchg(&queue->synflood_warned, 1) == 0)
6503 		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6504 				     proto, sk->sk_num, msg);
6505 
6506 	return want_cookie;
6507 }
6508 
6509 static void tcp_reqsk_record_syn(const struct sock *sk,
6510 				 struct request_sock *req,
6511 				 const struct sk_buff *skb)
6512 {
6513 	if (tcp_sk(sk)->save_syn) {
6514 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6515 		u32 *copy;
6516 
6517 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6518 		if (copy) {
6519 			copy[0] = len;
6520 			memcpy(&copy[1], skb_network_header(skb), len);
6521 			req->saved_syn = copy;
6522 		}
6523 	}
6524 }
6525 
6526 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6527  * used for SYN cookie generation.
6528  */
6529 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6530 			  const struct tcp_request_sock_ops *af_ops,
6531 			  struct sock *sk, struct tcphdr *th)
6532 {
6533 	struct tcp_sock *tp = tcp_sk(sk);
6534 	u16 mss;
6535 
6536 	if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 &&
6537 	    !inet_csk_reqsk_queue_is_full(sk))
6538 		return 0;
6539 
6540 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6541 		return 0;
6542 
6543 	if (sk_acceptq_is_full(sk)) {
6544 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6545 		return 0;
6546 	}
6547 
6548 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6549 	if (!mss)
6550 		mss = af_ops->mss_clamp;
6551 
6552 	return mss;
6553 }
6554 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6555 
6556 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6557 		     const struct tcp_request_sock_ops *af_ops,
6558 		     struct sock *sk, struct sk_buff *skb)
6559 {
6560 	struct tcp_fastopen_cookie foc = { .len = -1 };
6561 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6562 	struct tcp_options_received tmp_opt;
6563 	struct tcp_sock *tp = tcp_sk(sk);
6564 	struct net *net = sock_net(sk);
6565 	struct sock *fastopen_sk = NULL;
6566 	struct request_sock *req;
6567 	bool want_cookie = false;
6568 	struct dst_entry *dst;
6569 	struct flowi fl;
6570 
6571 	/* TW buckets are converted to open requests without
6572 	 * limitations, they conserve resources and peer is
6573 	 * evidently real one.
6574 	 */
6575 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6576 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6577 		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6578 		if (!want_cookie)
6579 			goto drop;
6580 	}
6581 
6582 	if (sk_acceptq_is_full(sk)) {
6583 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6584 		goto drop;
6585 	}
6586 
6587 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6588 	if (!req)
6589 		goto drop;
6590 
6591 	tcp_rsk(req)->af_specific = af_ops;
6592 	tcp_rsk(req)->ts_off = 0;
6593 
6594 	tcp_clear_options(&tmp_opt);
6595 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6596 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6597 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6598 			  want_cookie ? NULL : &foc);
6599 
6600 	if (want_cookie && !tmp_opt.saw_tstamp)
6601 		tcp_clear_options(&tmp_opt);
6602 
6603 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6604 		tmp_opt.smc_ok = 0;
6605 
6606 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6607 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6608 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6609 
6610 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6611 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6612 
6613 	af_ops->init_req(req, sk, skb);
6614 
6615 	if (security_inet_conn_request(sk, skb, req))
6616 		goto drop_and_free;
6617 
6618 	if (tmp_opt.tstamp_ok)
6619 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6620 
6621 	dst = af_ops->route_req(sk, &fl, req);
6622 	if (!dst)
6623 		goto drop_and_free;
6624 
6625 	if (!want_cookie && !isn) {
6626 		/* Kill the following clause, if you dislike this way. */
6627 		if (!net->ipv4.sysctl_tcp_syncookies &&
6628 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6629 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6630 		    !tcp_peer_is_proven(req, dst)) {
6631 			/* Without syncookies last quarter of
6632 			 * backlog is filled with destinations,
6633 			 * proven to be alive.
6634 			 * It means that we continue to communicate
6635 			 * to destinations, already remembered
6636 			 * to the moment of synflood.
6637 			 */
6638 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6639 				    rsk_ops->family);
6640 			goto drop_and_release;
6641 		}
6642 
6643 		isn = af_ops->init_seq(skb);
6644 	}
6645 
6646 	tcp_ecn_create_request(req, skb, sk, dst);
6647 
6648 	if (want_cookie) {
6649 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6650 		req->cookie_ts = tmp_opt.tstamp_ok;
6651 		if (!tmp_opt.tstamp_ok)
6652 			inet_rsk(req)->ecn_ok = 0;
6653 	}
6654 
6655 	tcp_rsk(req)->snt_isn = isn;
6656 	tcp_rsk(req)->txhash = net_tx_rndhash();
6657 	tcp_openreq_init_rwin(req, sk, dst);
6658 	sk_rx_queue_set(req_to_sk(req), skb);
6659 	if (!want_cookie) {
6660 		tcp_reqsk_record_syn(sk, req, skb);
6661 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6662 	}
6663 	if (fastopen_sk) {
6664 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6665 				    &foc, TCP_SYNACK_FASTOPEN);
6666 		/* Add the child socket directly into the accept queue */
6667 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6668 			reqsk_fastopen_remove(fastopen_sk, req, false);
6669 			bh_unlock_sock(fastopen_sk);
6670 			sock_put(fastopen_sk);
6671 			goto drop_and_free;
6672 		}
6673 		sk->sk_data_ready(sk);
6674 		bh_unlock_sock(fastopen_sk);
6675 		sock_put(fastopen_sk);
6676 	} else {
6677 		tcp_rsk(req)->tfo_listener = false;
6678 		if (!want_cookie)
6679 			inet_csk_reqsk_queue_hash_add(sk, req,
6680 				tcp_timeout_init((struct sock *)req));
6681 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6682 				    !want_cookie ? TCP_SYNACK_NORMAL :
6683 						   TCP_SYNACK_COOKIE);
6684 		if (want_cookie) {
6685 			reqsk_free(req);
6686 			return 0;
6687 		}
6688 	}
6689 	reqsk_put(req);
6690 	return 0;
6691 
6692 drop_and_release:
6693 	dst_release(dst);
6694 drop_and_free:
6695 	__reqsk_free(req);
6696 drop:
6697 	tcp_listendrop(sk);
6698 	return 0;
6699 }
6700 EXPORT_SYMBOL(tcp_conn_request);
6701