1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/jump_label_ratelimit.h> 81 #include <net/busy_poll.h> 82 83 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 84 85 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 86 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 87 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 88 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 89 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 90 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 91 #define FLAG_ECE 0x40 /* ECE in this ACK */ 92 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 93 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 94 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 95 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 96 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 97 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 98 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 99 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 100 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 101 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 102 103 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 104 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 105 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 106 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 107 108 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 109 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 110 111 #define REXMIT_NONE 0 /* no loss recovery to do */ 112 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 113 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 114 115 #if IS_ENABLED(CONFIG_TLS_DEVICE) 116 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 117 118 void clean_acked_data_enable(struct inet_connection_sock *icsk, 119 void (*cad)(struct sock *sk, u32 ack_seq)) 120 { 121 icsk->icsk_clean_acked = cad; 122 static_branch_deferred_inc(&clean_acked_data_enabled); 123 } 124 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 125 126 void clean_acked_data_disable(struct inet_connection_sock *icsk) 127 { 128 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 129 icsk->icsk_clean_acked = NULL; 130 } 131 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 132 133 void clean_acked_data_flush(void) 134 { 135 static_key_deferred_flush(&clean_acked_data_enabled); 136 } 137 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 138 #endif 139 140 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 141 unsigned int len) 142 { 143 static bool __once __read_mostly; 144 145 if (!__once) { 146 struct net_device *dev; 147 148 __once = true; 149 150 rcu_read_lock(); 151 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 152 if (!dev || len >= dev->mtu) 153 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 154 dev ? dev->name : "Unknown driver"); 155 rcu_read_unlock(); 156 } 157 } 158 159 /* Adapt the MSS value used to make delayed ack decision to the 160 * real world. 161 */ 162 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 163 { 164 struct inet_connection_sock *icsk = inet_csk(sk); 165 const unsigned int lss = icsk->icsk_ack.last_seg_size; 166 unsigned int len; 167 168 icsk->icsk_ack.last_seg_size = 0; 169 170 /* skb->len may jitter because of SACKs, even if peer 171 * sends good full-sized frames. 172 */ 173 len = skb_shinfo(skb)->gso_size ? : skb->len; 174 if (len >= icsk->icsk_ack.rcv_mss) { 175 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 176 tcp_sk(sk)->advmss); 177 /* Account for possibly-removed options */ 178 if (unlikely(len > icsk->icsk_ack.rcv_mss + 179 MAX_TCP_OPTION_SPACE)) 180 tcp_gro_dev_warn(sk, skb, len); 181 } else { 182 /* Otherwise, we make more careful check taking into account, 183 * that SACKs block is variable. 184 * 185 * "len" is invariant segment length, including TCP header. 186 */ 187 len += skb->data - skb_transport_header(skb); 188 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 189 /* If PSH is not set, packet should be 190 * full sized, provided peer TCP is not badly broken. 191 * This observation (if it is correct 8)) allows 192 * to handle super-low mtu links fairly. 193 */ 194 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 195 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 196 /* Subtract also invariant (if peer is RFC compliant), 197 * tcp header plus fixed timestamp option length. 198 * Resulting "len" is MSS free of SACK jitter. 199 */ 200 len -= tcp_sk(sk)->tcp_header_len; 201 icsk->icsk_ack.last_seg_size = len; 202 if (len == lss) { 203 icsk->icsk_ack.rcv_mss = len; 204 return; 205 } 206 } 207 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 208 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 209 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 210 } 211 } 212 213 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 214 { 215 struct inet_connection_sock *icsk = inet_csk(sk); 216 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 217 218 if (quickacks == 0) 219 quickacks = 2; 220 quickacks = min(quickacks, max_quickacks); 221 if (quickacks > icsk->icsk_ack.quick) 222 icsk->icsk_ack.quick = quickacks; 223 } 224 225 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 226 { 227 struct inet_connection_sock *icsk = inet_csk(sk); 228 229 tcp_incr_quickack(sk, max_quickacks); 230 inet_csk_exit_pingpong_mode(sk); 231 icsk->icsk_ack.ato = TCP_ATO_MIN; 232 } 233 EXPORT_SYMBOL(tcp_enter_quickack_mode); 234 235 /* Send ACKs quickly, if "quick" count is not exhausted 236 * and the session is not interactive. 237 */ 238 239 static bool tcp_in_quickack_mode(struct sock *sk) 240 { 241 const struct inet_connection_sock *icsk = inet_csk(sk); 242 const struct dst_entry *dst = __sk_dst_get(sk); 243 244 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 245 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 246 } 247 248 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 249 { 250 if (tp->ecn_flags & TCP_ECN_OK) 251 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 252 } 253 254 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 255 { 256 if (tcp_hdr(skb)->cwr) { 257 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 258 259 /* If the sender is telling us it has entered CWR, then its 260 * cwnd may be very low (even just 1 packet), so we should ACK 261 * immediately. 262 */ 263 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 264 } 265 } 266 267 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 268 { 269 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 270 } 271 272 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 273 { 274 struct tcp_sock *tp = tcp_sk(sk); 275 276 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 277 case INET_ECN_NOT_ECT: 278 /* Funny extension: if ECT is not set on a segment, 279 * and we already seen ECT on a previous segment, 280 * it is probably a retransmit. 281 */ 282 if (tp->ecn_flags & TCP_ECN_SEEN) 283 tcp_enter_quickack_mode(sk, 2); 284 break; 285 case INET_ECN_CE: 286 if (tcp_ca_needs_ecn(sk)) 287 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 288 289 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 290 /* Better not delay acks, sender can have a very low cwnd */ 291 tcp_enter_quickack_mode(sk, 2); 292 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 293 } 294 tp->ecn_flags |= TCP_ECN_SEEN; 295 break; 296 default: 297 if (tcp_ca_needs_ecn(sk)) 298 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 299 tp->ecn_flags |= TCP_ECN_SEEN; 300 break; 301 } 302 } 303 304 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 305 { 306 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 307 __tcp_ecn_check_ce(sk, skb); 308 } 309 310 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 311 { 312 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 313 tp->ecn_flags &= ~TCP_ECN_OK; 314 } 315 316 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 317 { 318 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 319 tp->ecn_flags &= ~TCP_ECN_OK; 320 } 321 322 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 323 { 324 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 325 return true; 326 return false; 327 } 328 329 /* Buffer size and advertised window tuning. 330 * 331 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 332 */ 333 334 static void tcp_sndbuf_expand(struct sock *sk) 335 { 336 const struct tcp_sock *tp = tcp_sk(sk); 337 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 338 int sndmem, per_mss; 339 u32 nr_segs; 340 341 /* Worst case is non GSO/TSO : each frame consumes one skb 342 * and skb->head is kmalloced using power of two area of memory 343 */ 344 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 345 MAX_TCP_HEADER + 346 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 347 348 per_mss = roundup_pow_of_two(per_mss) + 349 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 350 351 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 352 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 353 354 /* Fast Recovery (RFC 5681 3.2) : 355 * Cubic needs 1.7 factor, rounded to 2 to include 356 * extra cushion (application might react slowly to EPOLLOUT) 357 */ 358 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 359 sndmem *= nr_segs * per_mss; 360 361 if (sk->sk_sndbuf < sndmem) 362 WRITE_ONCE(sk->sk_sndbuf, 363 min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2])); 364 } 365 366 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 367 * 368 * All tcp_full_space() is split to two parts: "network" buffer, allocated 369 * forward and advertised in receiver window (tp->rcv_wnd) and 370 * "application buffer", required to isolate scheduling/application 371 * latencies from network. 372 * window_clamp is maximal advertised window. It can be less than 373 * tcp_full_space(), in this case tcp_full_space() - window_clamp 374 * is reserved for "application" buffer. The less window_clamp is 375 * the smoother our behaviour from viewpoint of network, but the lower 376 * throughput and the higher sensitivity of the connection to losses. 8) 377 * 378 * rcv_ssthresh is more strict window_clamp used at "slow start" 379 * phase to predict further behaviour of this connection. 380 * It is used for two goals: 381 * - to enforce header prediction at sender, even when application 382 * requires some significant "application buffer". It is check #1. 383 * - to prevent pruning of receive queue because of misprediction 384 * of receiver window. Check #2. 385 * 386 * The scheme does not work when sender sends good segments opening 387 * window and then starts to feed us spaghetti. But it should work 388 * in common situations. Otherwise, we have to rely on queue collapsing. 389 */ 390 391 /* Slow part of check#2. */ 392 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 393 { 394 struct tcp_sock *tp = tcp_sk(sk); 395 /* Optimize this! */ 396 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1; 397 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 398 399 while (tp->rcv_ssthresh <= window) { 400 if (truesize <= skb->len) 401 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 402 403 truesize >>= 1; 404 window >>= 1; 405 } 406 return 0; 407 } 408 409 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 410 { 411 struct tcp_sock *tp = tcp_sk(sk); 412 int room; 413 414 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 415 416 /* Check #1 */ 417 if (room > 0 && !tcp_under_memory_pressure(sk)) { 418 int incr; 419 420 /* Check #2. Increase window, if skb with such overhead 421 * will fit to rcvbuf in future. 422 */ 423 if (tcp_win_from_space(sk, skb->truesize) <= skb->len) 424 incr = 2 * tp->advmss; 425 else 426 incr = __tcp_grow_window(sk, skb); 427 428 if (incr) { 429 incr = max_t(int, incr, 2 * skb->len); 430 tp->rcv_ssthresh += min(room, incr); 431 inet_csk(sk)->icsk_ack.quick |= 1; 432 } 433 } 434 } 435 436 /* 3. Try to fixup all. It is made immediately after connection enters 437 * established state. 438 */ 439 void tcp_init_buffer_space(struct sock *sk) 440 { 441 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win; 442 struct tcp_sock *tp = tcp_sk(sk); 443 int maxwin; 444 445 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 446 tcp_sndbuf_expand(sk); 447 448 tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss); 449 tcp_mstamp_refresh(tp); 450 tp->rcvq_space.time = tp->tcp_mstamp; 451 tp->rcvq_space.seq = tp->copied_seq; 452 453 maxwin = tcp_full_space(sk); 454 455 if (tp->window_clamp >= maxwin) { 456 tp->window_clamp = maxwin; 457 458 if (tcp_app_win && maxwin > 4 * tp->advmss) 459 tp->window_clamp = max(maxwin - 460 (maxwin >> tcp_app_win), 461 4 * tp->advmss); 462 } 463 464 /* Force reservation of one segment. */ 465 if (tcp_app_win && 466 tp->window_clamp > 2 * tp->advmss && 467 tp->window_clamp + tp->advmss > maxwin) 468 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 469 470 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 471 tp->snd_cwnd_stamp = tcp_jiffies32; 472 } 473 474 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 475 static void tcp_clamp_window(struct sock *sk) 476 { 477 struct tcp_sock *tp = tcp_sk(sk); 478 struct inet_connection_sock *icsk = inet_csk(sk); 479 struct net *net = sock_net(sk); 480 481 icsk->icsk_ack.quick = 0; 482 483 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] && 484 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 485 !tcp_under_memory_pressure(sk) && 486 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 487 WRITE_ONCE(sk->sk_rcvbuf, 488 min(atomic_read(&sk->sk_rmem_alloc), 489 net->ipv4.sysctl_tcp_rmem[2])); 490 } 491 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 492 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 493 } 494 495 /* Initialize RCV_MSS value. 496 * RCV_MSS is an our guess about MSS used by the peer. 497 * We haven't any direct information about the MSS. 498 * It's better to underestimate the RCV_MSS rather than overestimate. 499 * Overestimations make us ACKing less frequently than needed. 500 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 501 */ 502 void tcp_initialize_rcv_mss(struct sock *sk) 503 { 504 const struct tcp_sock *tp = tcp_sk(sk); 505 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 506 507 hint = min(hint, tp->rcv_wnd / 2); 508 hint = min(hint, TCP_MSS_DEFAULT); 509 hint = max(hint, TCP_MIN_MSS); 510 511 inet_csk(sk)->icsk_ack.rcv_mss = hint; 512 } 513 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 514 515 /* Receiver "autotuning" code. 516 * 517 * The algorithm for RTT estimation w/o timestamps is based on 518 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 519 * <http://public.lanl.gov/radiant/pubs.html#DRS> 520 * 521 * More detail on this code can be found at 522 * <http://staff.psc.edu/jheffner/>, 523 * though this reference is out of date. A new paper 524 * is pending. 525 */ 526 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 527 { 528 u32 new_sample = tp->rcv_rtt_est.rtt_us; 529 long m = sample; 530 531 if (new_sample != 0) { 532 /* If we sample in larger samples in the non-timestamp 533 * case, we could grossly overestimate the RTT especially 534 * with chatty applications or bulk transfer apps which 535 * are stalled on filesystem I/O. 536 * 537 * Also, since we are only going for a minimum in the 538 * non-timestamp case, we do not smooth things out 539 * else with timestamps disabled convergence takes too 540 * long. 541 */ 542 if (!win_dep) { 543 m -= (new_sample >> 3); 544 new_sample += m; 545 } else { 546 m <<= 3; 547 if (m < new_sample) 548 new_sample = m; 549 } 550 } else { 551 /* No previous measure. */ 552 new_sample = m << 3; 553 } 554 555 tp->rcv_rtt_est.rtt_us = new_sample; 556 } 557 558 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 559 { 560 u32 delta_us; 561 562 if (tp->rcv_rtt_est.time == 0) 563 goto new_measure; 564 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 565 return; 566 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 567 if (!delta_us) 568 delta_us = 1; 569 tcp_rcv_rtt_update(tp, delta_us, 1); 570 571 new_measure: 572 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 573 tp->rcv_rtt_est.time = tp->tcp_mstamp; 574 } 575 576 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 577 const struct sk_buff *skb) 578 { 579 struct tcp_sock *tp = tcp_sk(sk); 580 581 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 582 return; 583 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 584 585 if (TCP_SKB_CB(skb)->end_seq - 586 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 587 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 588 u32 delta_us; 589 590 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 591 if (!delta) 592 delta = 1; 593 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 594 tcp_rcv_rtt_update(tp, delta_us, 0); 595 } 596 } 597 } 598 599 /* 600 * This function should be called every time data is copied to user space. 601 * It calculates the appropriate TCP receive buffer space. 602 */ 603 void tcp_rcv_space_adjust(struct sock *sk) 604 { 605 struct tcp_sock *tp = tcp_sk(sk); 606 u32 copied; 607 int time; 608 609 trace_tcp_rcv_space_adjust(sk); 610 611 tcp_mstamp_refresh(tp); 612 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 613 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 614 return; 615 616 /* Number of bytes copied to user in last RTT */ 617 copied = tp->copied_seq - tp->rcvq_space.seq; 618 if (copied <= tp->rcvq_space.space) 619 goto new_measure; 620 621 /* A bit of theory : 622 * copied = bytes received in previous RTT, our base window 623 * To cope with packet losses, we need a 2x factor 624 * To cope with slow start, and sender growing its cwin by 100 % 625 * every RTT, we need a 4x factor, because the ACK we are sending 626 * now is for the next RTT, not the current one : 627 * <prev RTT . ><current RTT .. ><next RTT .... > 628 */ 629 630 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 631 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 632 int rcvmem, rcvbuf; 633 u64 rcvwin, grow; 634 635 /* minimal window to cope with packet losses, assuming 636 * steady state. Add some cushion because of small variations. 637 */ 638 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 639 640 /* Accommodate for sender rate increase (eg. slow start) */ 641 grow = rcvwin * (copied - tp->rcvq_space.space); 642 do_div(grow, tp->rcvq_space.space); 643 rcvwin += (grow << 1); 644 645 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 646 while (tcp_win_from_space(sk, rcvmem) < tp->advmss) 647 rcvmem += 128; 648 649 do_div(rcvwin, tp->advmss); 650 rcvbuf = min_t(u64, rcvwin * rcvmem, 651 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 652 if (rcvbuf > sk->sk_rcvbuf) { 653 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 654 655 /* Make the window clamp follow along. */ 656 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 657 } 658 } 659 tp->rcvq_space.space = copied; 660 661 new_measure: 662 tp->rcvq_space.seq = tp->copied_seq; 663 tp->rcvq_space.time = tp->tcp_mstamp; 664 } 665 666 /* There is something which you must keep in mind when you analyze the 667 * behavior of the tp->ato delayed ack timeout interval. When a 668 * connection starts up, we want to ack as quickly as possible. The 669 * problem is that "good" TCP's do slow start at the beginning of data 670 * transmission. The means that until we send the first few ACK's the 671 * sender will sit on his end and only queue most of his data, because 672 * he can only send snd_cwnd unacked packets at any given time. For 673 * each ACK we send, he increments snd_cwnd and transmits more of his 674 * queue. -DaveM 675 */ 676 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 677 { 678 struct tcp_sock *tp = tcp_sk(sk); 679 struct inet_connection_sock *icsk = inet_csk(sk); 680 u32 now; 681 682 inet_csk_schedule_ack(sk); 683 684 tcp_measure_rcv_mss(sk, skb); 685 686 tcp_rcv_rtt_measure(tp); 687 688 now = tcp_jiffies32; 689 690 if (!icsk->icsk_ack.ato) { 691 /* The _first_ data packet received, initialize 692 * delayed ACK engine. 693 */ 694 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 695 icsk->icsk_ack.ato = TCP_ATO_MIN; 696 } else { 697 int m = now - icsk->icsk_ack.lrcvtime; 698 699 if (m <= TCP_ATO_MIN / 2) { 700 /* The fastest case is the first. */ 701 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 702 } else if (m < icsk->icsk_ack.ato) { 703 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 704 if (icsk->icsk_ack.ato > icsk->icsk_rto) 705 icsk->icsk_ack.ato = icsk->icsk_rto; 706 } else if (m > icsk->icsk_rto) { 707 /* Too long gap. Apparently sender failed to 708 * restart window, so that we send ACKs quickly. 709 */ 710 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 711 sk_mem_reclaim(sk); 712 } 713 } 714 icsk->icsk_ack.lrcvtime = now; 715 716 tcp_ecn_check_ce(sk, skb); 717 718 if (skb->len >= 128) 719 tcp_grow_window(sk, skb); 720 } 721 722 /* Called to compute a smoothed rtt estimate. The data fed to this 723 * routine either comes from timestamps, or from segments that were 724 * known _not_ to have been retransmitted [see Karn/Partridge 725 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 726 * piece by Van Jacobson. 727 * NOTE: the next three routines used to be one big routine. 728 * To save cycles in the RFC 1323 implementation it was better to break 729 * it up into three procedures. -- erics 730 */ 731 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 732 { 733 struct tcp_sock *tp = tcp_sk(sk); 734 long m = mrtt_us; /* RTT */ 735 u32 srtt = tp->srtt_us; 736 737 /* The following amusing code comes from Jacobson's 738 * article in SIGCOMM '88. Note that rtt and mdev 739 * are scaled versions of rtt and mean deviation. 740 * This is designed to be as fast as possible 741 * m stands for "measurement". 742 * 743 * On a 1990 paper the rto value is changed to: 744 * RTO = rtt + 4 * mdev 745 * 746 * Funny. This algorithm seems to be very broken. 747 * These formulae increase RTO, when it should be decreased, increase 748 * too slowly, when it should be increased quickly, decrease too quickly 749 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 750 * does not matter how to _calculate_ it. Seems, it was trap 751 * that VJ failed to avoid. 8) 752 */ 753 if (srtt != 0) { 754 m -= (srtt >> 3); /* m is now error in rtt est */ 755 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 756 if (m < 0) { 757 m = -m; /* m is now abs(error) */ 758 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 759 /* This is similar to one of Eifel findings. 760 * Eifel blocks mdev updates when rtt decreases. 761 * This solution is a bit different: we use finer gain 762 * for mdev in this case (alpha*beta). 763 * Like Eifel it also prevents growth of rto, 764 * but also it limits too fast rto decreases, 765 * happening in pure Eifel. 766 */ 767 if (m > 0) 768 m >>= 3; 769 } else { 770 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 771 } 772 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 773 if (tp->mdev_us > tp->mdev_max_us) { 774 tp->mdev_max_us = tp->mdev_us; 775 if (tp->mdev_max_us > tp->rttvar_us) 776 tp->rttvar_us = tp->mdev_max_us; 777 } 778 if (after(tp->snd_una, tp->rtt_seq)) { 779 if (tp->mdev_max_us < tp->rttvar_us) 780 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 781 tp->rtt_seq = tp->snd_nxt; 782 tp->mdev_max_us = tcp_rto_min_us(sk); 783 784 tcp_bpf_rtt(sk); 785 } 786 } else { 787 /* no previous measure. */ 788 srtt = m << 3; /* take the measured time to be rtt */ 789 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 790 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 791 tp->mdev_max_us = tp->rttvar_us; 792 tp->rtt_seq = tp->snd_nxt; 793 794 tcp_bpf_rtt(sk); 795 } 796 tp->srtt_us = max(1U, srtt); 797 } 798 799 static void tcp_update_pacing_rate(struct sock *sk) 800 { 801 const struct tcp_sock *tp = tcp_sk(sk); 802 u64 rate; 803 804 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 805 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 806 807 /* current rate is (cwnd * mss) / srtt 808 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 809 * In Congestion Avoidance phase, set it to 120 % the current rate. 810 * 811 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 812 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 813 * end of slow start and should slow down. 814 */ 815 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 816 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio; 817 else 818 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio; 819 820 rate *= max(tp->snd_cwnd, tp->packets_out); 821 822 if (likely(tp->srtt_us)) 823 do_div(rate, tp->srtt_us); 824 825 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 826 * without any lock. We want to make sure compiler wont store 827 * intermediate values in this location. 828 */ 829 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 830 sk->sk_max_pacing_rate)); 831 } 832 833 /* Calculate rto without backoff. This is the second half of Van Jacobson's 834 * routine referred to above. 835 */ 836 static void tcp_set_rto(struct sock *sk) 837 { 838 const struct tcp_sock *tp = tcp_sk(sk); 839 /* Old crap is replaced with new one. 8) 840 * 841 * More seriously: 842 * 1. If rtt variance happened to be less 50msec, it is hallucination. 843 * It cannot be less due to utterly erratic ACK generation made 844 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 845 * to do with delayed acks, because at cwnd>2 true delack timeout 846 * is invisible. Actually, Linux-2.4 also generates erratic 847 * ACKs in some circumstances. 848 */ 849 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 850 851 /* 2. Fixups made earlier cannot be right. 852 * If we do not estimate RTO correctly without them, 853 * all the algo is pure shit and should be replaced 854 * with correct one. It is exactly, which we pretend to do. 855 */ 856 857 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 858 * guarantees that rto is higher. 859 */ 860 tcp_bound_rto(sk); 861 } 862 863 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 864 { 865 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 866 867 if (!cwnd) 868 cwnd = TCP_INIT_CWND; 869 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 870 } 871 872 /* Take a notice that peer is sending D-SACKs */ 873 static void tcp_dsack_seen(struct tcp_sock *tp) 874 { 875 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 876 tp->rack.dsack_seen = 1; 877 tp->dsack_dups++; 878 } 879 880 /* It's reordering when higher sequence was delivered (i.e. sacked) before 881 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 882 * distance is approximated in full-mss packet distance ("reordering"). 883 */ 884 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 885 const int ts) 886 { 887 struct tcp_sock *tp = tcp_sk(sk); 888 const u32 mss = tp->mss_cache; 889 u32 fack, metric; 890 891 fack = tcp_highest_sack_seq(tp); 892 if (!before(low_seq, fack)) 893 return; 894 895 metric = fack - low_seq; 896 if ((metric > tp->reordering * mss) && mss) { 897 #if FASTRETRANS_DEBUG > 1 898 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 899 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 900 tp->reordering, 901 0, 902 tp->sacked_out, 903 tp->undo_marker ? tp->undo_retrans : 0); 904 #endif 905 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 906 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 907 } 908 909 /* This exciting event is worth to be remembered. 8) */ 910 tp->reord_seen++; 911 NET_INC_STATS(sock_net(sk), 912 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 913 } 914 915 /* This must be called before lost_out is incremented */ 916 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 917 { 918 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) || 919 (tp->retransmit_skb_hint && 920 before(TCP_SKB_CB(skb)->seq, 921 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))) 922 tp->retransmit_skb_hint = skb; 923 } 924 925 /* Sum the number of packets on the wire we have marked as lost. 926 * There are two cases we care about here: 927 * a) Packet hasn't been marked lost (nor retransmitted), 928 * and this is the first loss. 929 * b) Packet has been marked both lost and retransmitted, 930 * and this means we think it was lost again. 931 */ 932 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 933 { 934 __u8 sacked = TCP_SKB_CB(skb)->sacked; 935 936 if (!(sacked & TCPCB_LOST) || 937 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 938 tp->lost += tcp_skb_pcount(skb); 939 } 940 941 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 942 { 943 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 944 tcp_verify_retransmit_hint(tp, skb); 945 946 tp->lost_out += tcp_skb_pcount(skb); 947 tcp_sum_lost(tp, skb); 948 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 949 } 950 } 951 952 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 953 { 954 tcp_verify_retransmit_hint(tp, skb); 955 956 tcp_sum_lost(tp, skb); 957 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 958 tp->lost_out += tcp_skb_pcount(skb); 959 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 960 } 961 } 962 963 /* This procedure tags the retransmission queue when SACKs arrive. 964 * 965 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 966 * Packets in queue with these bits set are counted in variables 967 * sacked_out, retrans_out and lost_out, correspondingly. 968 * 969 * Valid combinations are: 970 * Tag InFlight Description 971 * 0 1 - orig segment is in flight. 972 * S 0 - nothing flies, orig reached receiver. 973 * L 0 - nothing flies, orig lost by net. 974 * R 2 - both orig and retransmit are in flight. 975 * L|R 1 - orig is lost, retransmit is in flight. 976 * S|R 1 - orig reached receiver, retrans is still in flight. 977 * (L|S|R is logically valid, it could occur when L|R is sacked, 978 * but it is equivalent to plain S and code short-curcuits it to S. 979 * L|S is logically invalid, it would mean -1 packet in flight 8)) 980 * 981 * These 6 states form finite state machine, controlled by the following events: 982 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 983 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 984 * 3. Loss detection event of two flavors: 985 * A. Scoreboard estimator decided the packet is lost. 986 * A'. Reno "three dupacks" marks head of queue lost. 987 * B. SACK arrives sacking SND.NXT at the moment, when the 988 * segment was retransmitted. 989 * 4. D-SACK added new rule: D-SACK changes any tag to S. 990 * 991 * It is pleasant to note, that state diagram turns out to be commutative, 992 * so that we are allowed not to be bothered by order of our actions, 993 * when multiple events arrive simultaneously. (see the function below). 994 * 995 * Reordering detection. 996 * -------------------- 997 * Reordering metric is maximal distance, which a packet can be displaced 998 * in packet stream. With SACKs we can estimate it: 999 * 1000 * 1. SACK fills old hole and the corresponding segment was not 1001 * ever retransmitted -> reordering. Alas, we cannot use it 1002 * when segment was retransmitted. 1003 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1004 * for retransmitted and already SACKed segment -> reordering.. 1005 * Both of these heuristics are not used in Loss state, when we cannot 1006 * account for retransmits accurately. 1007 * 1008 * SACK block validation. 1009 * ---------------------- 1010 * 1011 * SACK block range validation checks that the received SACK block fits to 1012 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1013 * Note that SND.UNA is not included to the range though being valid because 1014 * it means that the receiver is rather inconsistent with itself reporting 1015 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1016 * perfectly valid, however, in light of RFC2018 which explicitly states 1017 * that "SACK block MUST reflect the newest segment. Even if the newest 1018 * segment is going to be discarded ...", not that it looks very clever 1019 * in case of head skb. Due to potentional receiver driven attacks, we 1020 * choose to avoid immediate execution of a walk in write queue due to 1021 * reneging and defer head skb's loss recovery to standard loss recovery 1022 * procedure that will eventually trigger (nothing forbids us doing this). 1023 * 1024 * Implements also blockage to start_seq wrap-around. Problem lies in the 1025 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1026 * there's no guarantee that it will be before snd_nxt (n). The problem 1027 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1028 * wrap (s_w): 1029 * 1030 * <- outs wnd -> <- wrapzone -> 1031 * u e n u_w e_w s n_w 1032 * | | | | | | | 1033 * |<------------+------+----- TCP seqno space --------------+---------->| 1034 * ...-- <2^31 ->| |<--------... 1035 * ...---- >2^31 ------>| |<--------... 1036 * 1037 * Current code wouldn't be vulnerable but it's better still to discard such 1038 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1039 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1040 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1041 * equal to the ideal case (infinite seqno space without wrap caused issues). 1042 * 1043 * With D-SACK the lower bound is extended to cover sequence space below 1044 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1045 * again, D-SACK block must not to go across snd_una (for the same reason as 1046 * for the normal SACK blocks, explained above). But there all simplicity 1047 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1048 * fully below undo_marker they do not affect behavior in anyway and can 1049 * therefore be safely ignored. In rare cases (which are more or less 1050 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1051 * fragmentation and packet reordering past skb's retransmission. To consider 1052 * them correctly, the acceptable range must be extended even more though 1053 * the exact amount is rather hard to quantify. However, tp->max_window can 1054 * be used as an exaggerated estimate. 1055 */ 1056 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1057 u32 start_seq, u32 end_seq) 1058 { 1059 /* Too far in future, or reversed (interpretation is ambiguous) */ 1060 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1061 return false; 1062 1063 /* Nasty start_seq wrap-around check (see comments above) */ 1064 if (!before(start_seq, tp->snd_nxt)) 1065 return false; 1066 1067 /* In outstanding window? ...This is valid exit for D-SACKs too. 1068 * start_seq == snd_una is non-sensical (see comments above) 1069 */ 1070 if (after(start_seq, tp->snd_una)) 1071 return true; 1072 1073 if (!is_dsack || !tp->undo_marker) 1074 return false; 1075 1076 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1077 if (after(end_seq, tp->snd_una)) 1078 return false; 1079 1080 if (!before(start_seq, tp->undo_marker)) 1081 return true; 1082 1083 /* Too old */ 1084 if (!after(end_seq, tp->undo_marker)) 1085 return false; 1086 1087 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1088 * start_seq < undo_marker and end_seq >= undo_marker. 1089 */ 1090 return !before(start_seq, end_seq - tp->max_window); 1091 } 1092 1093 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1094 struct tcp_sack_block_wire *sp, int num_sacks, 1095 u32 prior_snd_una) 1096 { 1097 struct tcp_sock *tp = tcp_sk(sk); 1098 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1099 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1100 bool dup_sack = false; 1101 1102 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1103 dup_sack = true; 1104 tcp_dsack_seen(tp); 1105 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1106 } else if (num_sacks > 1) { 1107 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1108 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1109 1110 if (!after(end_seq_0, end_seq_1) && 1111 !before(start_seq_0, start_seq_1)) { 1112 dup_sack = true; 1113 tcp_dsack_seen(tp); 1114 NET_INC_STATS(sock_net(sk), 1115 LINUX_MIB_TCPDSACKOFORECV); 1116 } 1117 } 1118 1119 /* D-SACK for already forgotten data... Do dumb counting. */ 1120 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1121 !after(end_seq_0, prior_snd_una) && 1122 after(end_seq_0, tp->undo_marker)) 1123 tp->undo_retrans--; 1124 1125 return dup_sack; 1126 } 1127 1128 struct tcp_sacktag_state { 1129 u32 reord; 1130 /* Timestamps for earliest and latest never-retransmitted segment 1131 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1132 * but congestion control should still get an accurate delay signal. 1133 */ 1134 u64 first_sackt; 1135 u64 last_sackt; 1136 struct rate_sample *rate; 1137 int flag; 1138 unsigned int mss_now; 1139 }; 1140 1141 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1142 * the incoming SACK may not exactly match but we can find smaller MSS 1143 * aligned portion of it that matches. Therefore we might need to fragment 1144 * which may fail and creates some hassle (caller must handle error case 1145 * returns). 1146 * 1147 * FIXME: this could be merged to shift decision code 1148 */ 1149 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1150 u32 start_seq, u32 end_seq) 1151 { 1152 int err; 1153 bool in_sack; 1154 unsigned int pkt_len; 1155 unsigned int mss; 1156 1157 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1158 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1159 1160 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1161 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1162 mss = tcp_skb_mss(skb); 1163 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1164 1165 if (!in_sack) { 1166 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1167 if (pkt_len < mss) 1168 pkt_len = mss; 1169 } else { 1170 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1171 if (pkt_len < mss) 1172 return -EINVAL; 1173 } 1174 1175 /* Round if necessary so that SACKs cover only full MSSes 1176 * and/or the remaining small portion (if present) 1177 */ 1178 if (pkt_len > mss) { 1179 unsigned int new_len = (pkt_len / mss) * mss; 1180 if (!in_sack && new_len < pkt_len) 1181 new_len += mss; 1182 pkt_len = new_len; 1183 } 1184 1185 if (pkt_len >= skb->len && !in_sack) 1186 return 0; 1187 1188 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1189 pkt_len, mss, GFP_ATOMIC); 1190 if (err < 0) 1191 return err; 1192 } 1193 1194 return in_sack; 1195 } 1196 1197 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1198 static u8 tcp_sacktag_one(struct sock *sk, 1199 struct tcp_sacktag_state *state, u8 sacked, 1200 u32 start_seq, u32 end_seq, 1201 int dup_sack, int pcount, 1202 u64 xmit_time) 1203 { 1204 struct tcp_sock *tp = tcp_sk(sk); 1205 1206 /* Account D-SACK for retransmitted packet. */ 1207 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1208 if (tp->undo_marker && tp->undo_retrans > 0 && 1209 after(end_seq, tp->undo_marker)) 1210 tp->undo_retrans--; 1211 if ((sacked & TCPCB_SACKED_ACKED) && 1212 before(start_seq, state->reord)) 1213 state->reord = start_seq; 1214 } 1215 1216 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1217 if (!after(end_seq, tp->snd_una)) 1218 return sacked; 1219 1220 if (!(sacked & TCPCB_SACKED_ACKED)) { 1221 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1222 1223 if (sacked & TCPCB_SACKED_RETRANS) { 1224 /* If the segment is not tagged as lost, 1225 * we do not clear RETRANS, believing 1226 * that retransmission is still in flight. 1227 */ 1228 if (sacked & TCPCB_LOST) { 1229 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1230 tp->lost_out -= pcount; 1231 tp->retrans_out -= pcount; 1232 } 1233 } else { 1234 if (!(sacked & TCPCB_RETRANS)) { 1235 /* New sack for not retransmitted frame, 1236 * which was in hole. It is reordering. 1237 */ 1238 if (before(start_seq, 1239 tcp_highest_sack_seq(tp)) && 1240 before(start_seq, state->reord)) 1241 state->reord = start_seq; 1242 1243 if (!after(end_seq, tp->high_seq)) 1244 state->flag |= FLAG_ORIG_SACK_ACKED; 1245 if (state->first_sackt == 0) 1246 state->first_sackt = xmit_time; 1247 state->last_sackt = xmit_time; 1248 } 1249 1250 if (sacked & TCPCB_LOST) { 1251 sacked &= ~TCPCB_LOST; 1252 tp->lost_out -= pcount; 1253 } 1254 } 1255 1256 sacked |= TCPCB_SACKED_ACKED; 1257 state->flag |= FLAG_DATA_SACKED; 1258 tp->sacked_out += pcount; 1259 tp->delivered += pcount; /* Out-of-order packets delivered */ 1260 1261 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1262 if (tp->lost_skb_hint && 1263 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1264 tp->lost_cnt_hint += pcount; 1265 } 1266 1267 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1268 * frames and clear it. undo_retrans is decreased above, L|R frames 1269 * are accounted above as well. 1270 */ 1271 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1272 sacked &= ~TCPCB_SACKED_RETRANS; 1273 tp->retrans_out -= pcount; 1274 } 1275 1276 return sacked; 1277 } 1278 1279 /* Shift newly-SACKed bytes from this skb to the immediately previous 1280 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1281 */ 1282 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1283 struct sk_buff *skb, 1284 struct tcp_sacktag_state *state, 1285 unsigned int pcount, int shifted, int mss, 1286 bool dup_sack) 1287 { 1288 struct tcp_sock *tp = tcp_sk(sk); 1289 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1290 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1291 1292 BUG_ON(!pcount); 1293 1294 /* Adjust counters and hints for the newly sacked sequence 1295 * range but discard the return value since prev is already 1296 * marked. We must tag the range first because the seq 1297 * advancement below implicitly advances 1298 * tcp_highest_sack_seq() when skb is highest_sack. 1299 */ 1300 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1301 start_seq, end_seq, dup_sack, pcount, 1302 tcp_skb_timestamp_us(skb)); 1303 tcp_rate_skb_delivered(sk, skb, state->rate); 1304 1305 if (skb == tp->lost_skb_hint) 1306 tp->lost_cnt_hint += pcount; 1307 1308 TCP_SKB_CB(prev)->end_seq += shifted; 1309 TCP_SKB_CB(skb)->seq += shifted; 1310 1311 tcp_skb_pcount_add(prev, pcount); 1312 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1313 tcp_skb_pcount_add(skb, -pcount); 1314 1315 /* When we're adding to gso_segs == 1, gso_size will be zero, 1316 * in theory this shouldn't be necessary but as long as DSACK 1317 * code can come after this skb later on it's better to keep 1318 * setting gso_size to something. 1319 */ 1320 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1321 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1322 1323 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1324 if (tcp_skb_pcount(skb) <= 1) 1325 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1326 1327 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1328 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1329 1330 if (skb->len > 0) { 1331 BUG_ON(!tcp_skb_pcount(skb)); 1332 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1333 return false; 1334 } 1335 1336 /* Whole SKB was eaten :-) */ 1337 1338 if (skb == tp->retransmit_skb_hint) 1339 tp->retransmit_skb_hint = prev; 1340 if (skb == tp->lost_skb_hint) { 1341 tp->lost_skb_hint = prev; 1342 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1343 } 1344 1345 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1346 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1347 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1348 TCP_SKB_CB(prev)->end_seq++; 1349 1350 if (skb == tcp_highest_sack(sk)) 1351 tcp_advance_highest_sack(sk, skb); 1352 1353 tcp_skb_collapse_tstamp(prev, skb); 1354 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1355 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1356 1357 tcp_rtx_queue_unlink_and_free(skb, sk); 1358 1359 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1360 1361 return true; 1362 } 1363 1364 /* I wish gso_size would have a bit more sane initialization than 1365 * something-or-zero which complicates things 1366 */ 1367 static int tcp_skb_seglen(const struct sk_buff *skb) 1368 { 1369 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1370 } 1371 1372 /* Shifting pages past head area doesn't work */ 1373 static int skb_can_shift(const struct sk_buff *skb) 1374 { 1375 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1376 } 1377 1378 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1379 int pcount, int shiftlen) 1380 { 1381 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1382 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1383 * to make sure not storing more than 65535 * 8 bytes per skb, 1384 * even if current MSS is bigger. 1385 */ 1386 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1387 return 0; 1388 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1389 return 0; 1390 return skb_shift(to, from, shiftlen); 1391 } 1392 1393 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1394 * skb. 1395 */ 1396 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1397 struct tcp_sacktag_state *state, 1398 u32 start_seq, u32 end_seq, 1399 bool dup_sack) 1400 { 1401 struct tcp_sock *tp = tcp_sk(sk); 1402 struct sk_buff *prev; 1403 int mss; 1404 int pcount = 0; 1405 int len; 1406 int in_sack; 1407 1408 /* Normally R but no L won't result in plain S */ 1409 if (!dup_sack && 1410 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1411 goto fallback; 1412 if (!skb_can_shift(skb)) 1413 goto fallback; 1414 /* This frame is about to be dropped (was ACKed). */ 1415 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1416 goto fallback; 1417 1418 /* Can only happen with delayed DSACK + discard craziness */ 1419 prev = skb_rb_prev(skb); 1420 if (!prev) 1421 goto fallback; 1422 1423 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1424 goto fallback; 1425 1426 if (!tcp_skb_can_collapse_to(prev)) 1427 goto fallback; 1428 1429 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1430 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1431 1432 if (in_sack) { 1433 len = skb->len; 1434 pcount = tcp_skb_pcount(skb); 1435 mss = tcp_skb_seglen(skb); 1436 1437 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1438 * drop this restriction as unnecessary 1439 */ 1440 if (mss != tcp_skb_seglen(prev)) 1441 goto fallback; 1442 } else { 1443 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1444 goto noop; 1445 /* CHECKME: This is non-MSS split case only?, this will 1446 * cause skipped skbs due to advancing loop btw, original 1447 * has that feature too 1448 */ 1449 if (tcp_skb_pcount(skb) <= 1) 1450 goto noop; 1451 1452 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1453 if (!in_sack) { 1454 /* TODO: head merge to next could be attempted here 1455 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1456 * though it might not be worth of the additional hassle 1457 * 1458 * ...we can probably just fallback to what was done 1459 * previously. We could try merging non-SACKed ones 1460 * as well but it probably isn't going to buy off 1461 * because later SACKs might again split them, and 1462 * it would make skb timestamp tracking considerably 1463 * harder problem. 1464 */ 1465 goto fallback; 1466 } 1467 1468 len = end_seq - TCP_SKB_CB(skb)->seq; 1469 BUG_ON(len < 0); 1470 BUG_ON(len > skb->len); 1471 1472 /* MSS boundaries should be honoured or else pcount will 1473 * severely break even though it makes things bit trickier. 1474 * Optimize common case to avoid most of the divides 1475 */ 1476 mss = tcp_skb_mss(skb); 1477 1478 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1479 * drop this restriction as unnecessary 1480 */ 1481 if (mss != tcp_skb_seglen(prev)) 1482 goto fallback; 1483 1484 if (len == mss) { 1485 pcount = 1; 1486 } else if (len < mss) { 1487 goto noop; 1488 } else { 1489 pcount = len / mss; 1490 len = pcount * mss; 1491 } 1492 } 1493 1494 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1495 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1496 goto fallback; 1497 1498 if (!tcp_skb_shift(prev, skb, pcount, len)) 1499 goto fallback; 1500 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1501 goto out; 1502 1503 /* Hole filled allows collapsing with the next as well, this is very 1504 * useful when hole on every nth skb pattern happens 1505 */ 1506 skb = skb_rb_next(prev); 1507 if (!skb) 1508 goto out; 1509 1510 if (!skb_can_shift(skb) || 1511 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1512 (mss != tcp_skb_seglen(skb))) 1513 goto out; 1514 1515 len = skb->len; 1516 pcount = tcp_skb_pcount(skb); 1517 if (tcp_skb_shift(prev, skb, pcount, len)) 1518 tcp_shifted_skb(sk, prev, skb, state, pcount, 1519 len, mss, 0); 1520 1521 out: 1522 return prev; 1523 1524 noop: 1525 return skb; 1526 1527 fallback: 1528 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1529 return NULL; 1530 } 1531 1532 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1533 struct tcp_sack_block *next_dup, 1534 struct tcp_sacktag_state *state, 1535 u32 start_seq, u32 end_seq, 1536 bool dup_sack_in) 1537 { 1538 struct tcp_sock *tp = tcp_sk(sk); 1539 struct sk_buff *tmp; 1540 1541 skb_rbtree_walk_from(skb) { 1542 int in_sack = 0; 1543 bool dup_sack = dup_sack_in; 1544 1545 /* queue is in-order => we can short-circuit the walk early */ 1546 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1547 break; 1548 1549 if (next_dup && 1550 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1551 in_sack = tcp_match_skb_to_sack(sk, skb, 1552 next_dup->start_seq, 1553 next_dup->end_seq); 1554 if (in_sack > 0) 1555 dup_sack = true; 1556 } 1557 1558 /* skb reference here is a bit tricky to get right, since 1559 * shifting can eat and free both this skb and the next, 1560 * so not even _safe variant of the loop is enough. 1561 */ 1562 if (in_sack <= 0) { 1563 tmp = tcp_shift_skb_data(sk, skb, state, 1564 start_seq, end_seq, dup_sack); 1565 if (tmp) { 1566 if (tmp != skb) { 1567 skb = tmp; 1568 continue; 1569 } 1570 1571 in_sack = 0; 1572 } else { 1573 in_sack = tcp_match_skb_to_sack(sk, skb, 1574 start_seq, 1575 end_seq); 1576 } 1577 } 1578 1579 if (unlikely(in_sack < 0)) 1580 break; 1581 1582 if (in_sack) { 1583 TCP_SKB_CB(skb)->sacked = 1584 tcp_sacktag_one(sk, 1585 state, 1586 TCP_SKB_CB(skb)->sacked, 1587 TCP_SKB_CB(skb)->seq, 1588 TCP_SKB_CB(skb)->end_seq, 1589 dup_sack, 1590 tcp_skb_pcount(skb), 1591 tcp_skb_timestamp_us(skb)); 1592 tcp_rate_skb_delivered(sk, skb, state->rate); 1593 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1594 list_del_init(&skb->tcp_tsorted_anchor); 1595 1596 if (!before(TCP_SKB_CB(skb)->seq, 1597 tcp_highest_sack_seq(tp))) 1598 tcp_advance_highest_sack(sk, skb); 1599 } 1600 } 1601 return skb; 1602 } 1603 1604 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1605 { 1606 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1607 struct sk_buff *skb; 1608 1609 while (*p) { 1610 parent = *p; 1611 skb = rb_to_skb(parent); 1612 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1613 p = &parent->rb_left; 1614 continue; 1615 } 1616 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1617 p = &parent->rb_right; 1618 continue; 1619 } 1620 return skb; 1621 } 1622 return NULL; 1623 } 1624 1625 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1626 u32 skip_to_seq) 1627 { 1628 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1629 return skb; 1630 1631 return tcp_sacktag_bsearch(sk, skip_to_seq); 1632 } 1633 1634 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1635 struct sock *sk, 1636 struct tcp_sack_block *next_dup, 1637 struct tcp_sacktag_state *state, 1638 u32 skip_to_seq) 1639 { 1640 if (!next_dup) 1641 return skb; 1642 1643 if (before(next_dup->start_seq, skip_to_seq)) { 1644 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1645 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1646 next_dup->start_seq, next_dup->end_seq, 1647 1); 1648 } 1649 1650 return skb; 1651 } 1652 1653 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1654 { 1655 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1656 } 1657 1658 static int 1659 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1660 u32 prior_snd_una, struct tcp_sacktag_state *state) 1661 { 1662 struct tcp_sock *tp = tcp_sk(sk); 1663 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1664 TCP_SKB_CB(ack_skb)->sacked); 1665 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1666 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1667 struct tcp_sack_block *cache; 1668 struct sk_buff *skb; 1669 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1670 int used_sacks; 1671 bool found_dup_sack = false; 1672 int i, j; 1673 int first_sack_index; 1674 1675 state->flag = 0; 1676 state->reord = tp->snd_nxt; 1677 1678 if (!tp->sacked_out) 1679 tcp_highest_sack_reset(sk); 1680 1681 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1682 num_sacks, prior_snd_una); 1683 if (found_dup_sack) { 1684 state->flag |= FLAG_DSACKING_ACK; 1685 tp->delivered++; /* A spurious retransmission is delivered */ 1686 } 1687 1688 /* Eliminate too old ACKs, but take into 1689 * account more or less fresh ones, they can 1690 * contain valid SACK info. 1691 */ 1692 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1693 return 0; 1694 1695 if (!tp->packets_out) 1696 goto out; 1697 1698 used_sacks = 0; 1699 first_sack_index = 0; 1700 for (i = 0; i < num_sacks; i++) { 1701 bool dup_sack = !i && found_dup_sack; 1702 1703 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1704 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1705 1706 if (!tcp_is_sackblock_valid(tp, dup_sack, 1707 sp[used_sacks].start_seq, 1708 sp[used_sacks].end_seq)) { 1709 int mib_idx; 1710 1711 if (dup_sack) { 1712 if (!tp->undo_marker) 1713 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1714 else 1715 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1716 } else { 1717 /* Don't count olds caused by ACK reordering */ 1718 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1719 !after(sp[used_sacks].end_seq, tp->snd_una)) 1720 continue; 1721 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1722 } 1723 1724 NET_INC_STATS(sock_net(sk), mib_idx); 1725 if (i == 0) 1726 first_sack_index = -1; 1727 continue; 1728 } 1729 1730 /* Ignore very old stuff early */ 1731 if (!after(sp[used_sacks].end_seq, prior_snd_una)) { 1732 if (i == 0) 1733 first_sack_index = -1; 1734 continue; 1735 } 1736 1737 used_sacks++; 1738 } 1739 1740 /* order SACK blocks to allow in order walk of the retrans queue */ 1741 for (i = used_sacks - 1; i > 0; i--) { 1742 for (j = 0; j < i; j++) { 1743 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1744 swap(sp[j], sp[j + 1]); 1745 1746 /* Track where the first SACK block goes to */ 1747 if (j == first_sack_index) 1748 first_sack_index = j + 1; 1749 } 1750 } 1751 } 1752 1753 state->mss_now = tcp_current_mss(sk); 1754 skb = NULL; 1755 i = 0; 1756 1757 if (!tp->sacked_out) { 1758 /* It's already past, so skip checking against it */ 1759 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1760 } else { 1761 cache = tp->recv_sack_cache; 1762 /* Skip empty blocks in at head of the cache */ 1763 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1764 !cache->end_seq) 1765 cache++; 1766 } 1767 1768 while (i < used_sacks) { 1769 u32 start_seq = sp[i].start_seq; 1770 u32 end_seq = sp[i].end_seq; 1771 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1772 struct tcp_sack_block *next_dup = NULL; 1773 1774 if (found_dup_sack && ((i + 1) == first_sack_index)) 1775 next_dup = &sp[i + 1]; 1776 1777 /* Skip too early cached blocks */ 1778 while (tcp_sack_cache_ok(tp, cache) && 1779 !before(start_seq, cache->end_seq)) 1780 cache++; 1781 1782 /* Can skip some work by looking recv_sack_cache? */ 1783 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1784 after(end_seq, cache->start_seq)) { 1785 1786 /* Head todo? */ 1787 if (before(start_seq, cache->start_seq)) { 1788 skb = tcp_sacktag_skip(skb, sk, start_seq); 1789 skb = tcp_sacktag_walk(skb, sk, next_dup, 1790 state, 1791 start_seq, 1792 cache->start_seq, 1793 dup_sack); 1794 } 1795 1796 /* Rest of the block already fully processed? */ 1797 if (!after(end_seq, cache->end_seq)) 1798 goto advance_sp; 1799 1800 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1801 state, 1802 cache->end_seq); 1803 1804 /* ...tail remains todo... */ 1805 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1806 /* ...but better entrypoint exists! */ 1807 skb = tcp_highest_sack(sk); 1808 if (!skb) 1809 break; 1810 cache++; 1811 goto walk; 1812 } 1813 1814 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 1815 /* Check overlap against next cached too (past this one already) */ 1816 cache++; 1817 continue; 1818 } 1819 1820 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1821 skb = tcp_highest_sack(sk); 1822 if (!skb) 1823 break; 1824 } 1825 skb = tcp_sacktag_skip(skb, sk, start_seq); 1826 1827 walk: 1828 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1829 start_seq, end_seq, dup_sack); 1830 1831 advance_sp: 1832 i++; 1833 } 1834 1835 /* Clear the head of the cache sack blocks so we can skip it next time */ 1836 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1837 tp->recv_sack_cache[i].start_seq = 0; 1838 tp->recv_sack_cache[i].end_seq = 0; 1839 } 1840 for (j = 0; j < used_sacks; j++) 1841 tp->recv_sack_cache[i++] = sp[j]; 1842 1843 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 1844 tcp_check_sack_reordering(sk, state->reord, 0); 1845 1846 tcp_verify_left_out(tp); 1847 out: 1848 1849 #if FASTRETRANS_DEBUG > 0 1850 WARN_ON((int)tp->sacked_out < 0); 1851 WARN_ON((int)tp->lost_out < 0); 1852 WARN_ON((int)tp->retrans_out < 0); 1853 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1854 #endif 1855 return state->flag; 1856 } 1857 1858 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1859 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1860 */ 1861 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1862 { 1863 u32 holes; 1864 1865 holes = max(tp->lost_out, 1U); 1866 holes = min(holes, tp->packets_out); 1867 1868 if ((tp->sacked_out + holes) > tp->packets_out) { 1869 tp->sacked_out = tp->packets_out - holes; 1870 return true; 1871 } 1872 return false; 1873 } 1874 1875 /* If we receive more dupacks than we expected counting segments 1876 * in assumption of absent reordering, interpret this as reordering. 1877 * The only another reason could be bug in receiver TCP. 1878 */ 1879 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1880 { 1881 struct tcp_sock *tp = tcp_sk(sk); 1882 1883 if (!tcp_limit_reno_sacked(tp)) 1884 return; 1885 1886 tp->reordering = min_t(u32, tp->packets_out + addend, 1887 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 1888 tp->reord_seen++; 1889 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 1890 } 1891 1892 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1893 1894 static void tcp_add_reno_sack(struct sock *sk, int num_dupack) 1895 { 1896 if (num_dupack) { 1897 struct tcp_sock *tp = tcp_sk(sk); 1898 u32 prior_sacked = tp->sacked_out; 1899 s32 delivered; 1900 1901 tp->sacked_out += num_dupack; 1902 tcp_check_reno_reordering(sk, 0); 1903 delivered = tp->sacked_out - prior_sacked; 1904 if (delivered > 0) 1905 tp->delivered += delivered; 1906 tcp_verify_left_out(tp); 1907 } 1908 } 1909 1910 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1911 1912 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1913 { 1914 struct tcp_sock *tp = tcp_sk(sk); 1915 1916 if (acked > 0) { 1917 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1918 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1919 if (acked - 1 >= tp->sacked_out) 1920 tp->sacked_out = 0; 1921 else 1922 tp->sacked_out -= acked - 1; 1923 } 1924 tcp_check_reno_reordering(sk, acked); 1925 tcp_verify_left_out(tp); 1926 } 1927 1928 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1929 { 1930 tp->sacked_out = 0; 1931 } 1932 1933 void tcp_clear_retrans(struct tcp_sock *tp) 1934 { 1935 tp->retrans_out = 0; 1936 tp->lost_out = 0; 1937 tp->undo_marker = 0; 1938 tp->undo_retrans = -1; 1939 tp->sacked_out = 0; 1940 } 1941 1942 static inline void tcp_init_undo(struct tcp_sock *tp) 1943 { 1944 tp->undo_marker = tp->snd_una; 1945 /* Retransmission still in flight may cause DSACKs later. */ 1946 tp->undo_retrans = tp->retrans_out ? : -1; 1947 } 1948 1949 static bool tcp_is_rack(const struct sock *sk) 1950 { 1951 return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION; 1952 } 1953 1954 /* If we detect SACK reneging, forget all SACK information 1955 * and reset tags completely, otherwise preserve SACKs. If receiver 1956 * dropped its ofo queue, we will know this due to reneging detection. 1957 */ 1958 static void tcp_timeout_mark_lost(struct sock *sk) 1959 { 1960 struct tcp_sock *tp = tcp_sk(sk); 1961 struct sk_buff *skb, *head; 1962 bool is_reneg; /* is receiver reneging on SACKs? */ 1963 1964 head = tcp_rtx_queue_head(sk); 1965 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 1966 if (is_reneg) { 1967 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1968 tp->sacked_out = 0; 1969 /* Mark SACK reneging until we recover from this loss event. */ 1970 tp->is_sack_reneg = 1; 1971 } else if (tcp_is_reno(tp)) { 1972 tcp_reset_reno_sack(tp); 1973 } 1974 1975 skb = head; 1976 skb_rbtree_walk_from(skb) { 1977 if (is_reneg) 1978 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1979 else if (tcp_is_rack(sk) && skb != head && 1980 tcp_rack_skb_timeout(tp, skb, 0) > 0) 1981 continue; /* Don't mark recently sent ones lost yet */ 1982 tcp_mark_skb_lost(sk, skb); 1983 } 1984 tcp_verify_left_out(tp); 1985 tcp_clear_all_retrans_hints(tp); 1986 } 1987 1988 /* Enter Loss state. */ 1989 void tcp_enter_loss(struct sock *sk) 1990 { 1991 const struct inet_connection_sock *icsk = inet_csk(sk); 1992 struct tcp_sock *tp = tcp_sk(sk); 1993 struct net *net = sock_net(sk); 1994 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1995 1996 tcp_timeout_mark_lost(sk); 1997 1998 /* Reduce ssthresh if it has not yet been made inside this window. */ 1999 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 2000 !after(tp->high_seq, tp->snd_una) || 2001 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2002 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2003 tp->prior_cwnd = tp->snd_cwnd; 2004 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2005 tcp_ca_event(sk, CA_EVENT_LOSS); 2006 tcp_init_undo(tp); 2007 } 2008 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1; 2009 tp->snd_cwnd_cnt = 0; 2010 tp->snd_cwnd_stamp = tcp_jiffies32; 2011 2012 /* Timeout in disordered state after receiving substantial DUPACKs 2013 * suggests that the degree of reordering is over-estimated. 2014 */ 2015 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2016 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 2017 tp->reordering = min_t(unsigned int, tp->reordering, 2018 net->ipv4.sysctl_tcp_reordering); 2019 tcp_set_ca_state(sk, TCP_CA_Loss); 2020 tp->high_seq = tp->snd_nxt; 2021 tcp_ecn_queue_cwr(tp); 2022 2023 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2024 * loss recovery is underway except recurring timeout(s) on 2025 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2026 */ 2027 tp->frto = net->ipv4.sysctl_tcp_frto && 2028 (new_recovery || icsk->icsk_retransmits) && 2029 !inet_csk(sk)->icsk_mtup.probe_size; 2030 } 2031 2032 /* If ACK arrived pointing to a remembered SACK, it means that our 2033 * remembered SACKs do not reflect real state of receiver i.e. 2034 * receiver _host_ is heavily congested (or buggy). 2035 * 2036 * To avoid big spurious retransmission bursts due to transient SACK 2037 * scoreboard oddities that look like reneging, we give the receiver a 2038 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2039 * restore sanity to the SACK scoreboard. If the apparent reneging 2040 * persists until this RTO then we'll clear the SACK scoreboard. 2041 */ 2042 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2043 { 2044 if (flag & FLAG_SACK_RENEGING) { 2045 struct tcp_sock *tp = tcp_sk(sk); 2046 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2047 msecs_to_jiffies(10)); 2048 2049 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2050 delay, TCP_RTO_MAX); 2051 return true; 2052 } 2053 return false; 2054 } 2055 2056 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2057 * counter when SACK is enabled (without SACK, sacked_out is used for 2058 * that purpose). 2059 * 2060 * With reordering, holes may still be in flight, so RFC3517 recovery 2061 * uses pure sacked_out (total number of SACKed segments) even though 2062 * it violates the RFC that uses duplicate ACKs, often these are equal 2063 * but when e.g. out-of-window ACKs or packet duplication occurs, 2064 * they differ. Since neither occurs due to loss, TCP should really 2065 * ignore them. 2066 */ 2067 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2068 { 2069 return tp->sacked_out + 1; 2070 } 2071 2072 /* Linux NewReno/SACK/ECN state machine. 2073 * -------------------------------------- 2074 * 2075 * "Open" Normal state, no dubious events, fast path. 2076 * "Disorder" In all the respects it is "Open", 2077 * but requires a bit more attention. It is entered when 2078 * we see some SACKs or dupacks. It is split of "Open" 2079 * mainly to move some processing from fast path to slow one. 2080 * "CWR" CWND was reduced due to some Congestion Notification event. 2081 * It can be ECN, ICMP source quench, local device congestion. 2082 * "Recovery" CWND was reduced, we are fast-retransmitting. 2083 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2084 * 2085 * tcp_fastretrans_alert() is entered: 2086 * - each incoming ACK, if state is not "Open" 2087 * - when arrived ACK is unusual, namely: 2088 * * SACK 2089 * * Duplicate ACK. 2090 * * ECN ECE. 2091 * 2092 * Counting packets in flight is pretty simple. 2093 * 2094 * in_flight = packets_out - left_out + retrans_out 2095 * 2096 * packets_out is SND.NXT-SND.UNA counted in packets. 2097 * 2098 * retrans_out is number of retransmitted segments. 2099 * 2100 * left_out is number of segments left network, but not ACKed yet. 2101 * 2102 * left_out = sacked_out + lost_out 2103 * 2104 * sacked_out: Packets, which arrived to receiver out of order 2105 * and hence not ACKed. With SACKs this number is simply 2106 * amount of SACKed data. Even without SACKs 2107 * it is easy to give pretty reliable estimate of this number, 2108 * counting duplicate ACKs. 2109 * 2110 * lost_out: Packets lost by network. TCP has no explicit 2111 * "loss notification" feedback from network (for now). 2112 * It means that this number can be only _guessed_. 2113 * Actually, it is the heuristics to predict lossage that 2114 * distinguishes different algorithms. 2115 * 2116 * F.e. after RTO, when all the queue is considered as lost, 2117 * lost_out = packets_out and in_flight = retrans_out. 2118 * 2119 * Essentially, we have now a few algorithms detecting 2120 * lost packets. 2121 * 2122 * If the receiver supports SACK: 2123 * 2124 * RFC6675/3517: It is the conventional algorithm. A packet is 2125 * considered lost if the number of higher sequence packets 2126 * SACKed is greater than or equal the DUPACK thoreshold 2127 * (reordering). This is implemented in tcp_mark_head_lost and 2128 * tcp_update_scoreboard. 2129 * 2130 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2131 * (2017-) that checks timing instead of counting DUPACKs. 2132 * Essentially a packet is considered lost if it's not S/ACKed 2133 * after RTT + reordering_window, where both metrics are 2134 * dynamically measured and adjusted. This is implemented in 2135 * tcp_rack_mark_lost. 2136 * 2137 * If the receiver does not support SACK: 2138 * 2139 * NewReno (RFC6582): in Recovery we assume that one segment 2140 * is lost (classic Reno). While we are in Recovery and 2141 * a partial ACK arrives, we assume that one more packet 2142 * is lost (NewReno). This heuristics are the same in NewReno 2143 * and SACK. 2144 * 2145 * Really tricky (and requiring careful tuning) part of algorithm 2146 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2147 * The first determines the moment _when_ we should reduce CWND and, 2148 * hence, slow down forward transmission. In fact, it determines the moment 2149 * when we decide that hole is caused by loss, rather than by a reorder. 2150 * 2151 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2152 * holes, caused by lost packets. 2153 * 2154 * And the most logically complicated part of algorithm is undo 2155 * heuristics. We detect false retransmits due to both too early 2156 * fast retransmit (reordering) and underestimated RTO, analyzing 2157 * timestamps and D-SACKs. When we detect that some segments were 2158 * retransmitted by mistake and CWND reduction was wrong, we undo 2159 * window reduction and abort recovery phase. This logic is hidden 2160 * inside several functions named tcp_try_undo_<something>. 2161 */ 2162 2163 /* This function decides, when we should leave Disordered state 2164 * and enter Recovery phase, reducing congestion window. 2165 * 2166 * Main question: may we further continue forward transmission 2167 * with the same cwnd? 2168 */ 2169 static bool tcp_time_to_recover(struct sock *sk, int flag) 2170 { 2171 struct tcp_sock *tp = tcp_sk(sk); 2172 2173 /* Trick#1: The loss is proven. */ 2174 if (tp->lost_out) 2175 return true; 2176 2177 /* Not-A-Trick#2 : Classic rule... */ 2178 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2179 return true; 2180 2181 return false; 2182 } 2183 2184 /* Detect loss in event "A" above by marking head of queue up as lost. 2185 * For non-SACK(Reno) senders, the first "packets" number of segments 2186 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2187 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2188 * the maximum SACKed segments to pass before reaching this limit. 2189 */ 2190 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2191 { 2192 struct tcp_sock *tp = tcp_sk(sk); 2193 struct sk_buff *skb; 2194 int cnt, oldcnt, lost; 2195 unsigned int mss; 2196 /* Use SACK to deduce losses of new sequences sent during recovery */ 2197 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2198 2199 WARN_ON(packets > tp->packets_out); 2200 skb = tp->lost_skb_hint; 2201 if (skb) { 2202 /* Head already handled? */ 2203 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2204 return; 2205 cnt = tp->lost_cnt_hint; 2206 } else { 2207 skb = tcp_rtx_queue_head(sk); 2208 cnt = 0; 2209 } 2210 2211 skb_rbtree_walk_from(skb) { 2212 /* TODO: do this better */ 2213 /* this is not the most efficient way to do this... */ 2214 tp->lost_skb_hint = skb; 2215 tp->lost_cnt_hint = cnt; 2216 2217 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2218 break; 2219 2220 oldcnt = cnt; 2221 if (tcp_is_reno(tp) || 2222 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2223 cnt += tcp_skb_pcount(skb); 2224 2225 if (cnt > packets) { 2226 if (tcp_is_sack(tp) || 2227 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2228 (oldcnt >= packets)) 2229 break; 2230 2231 mss = tcp_skb_mss(skb); 2232 /* If needed, chop off the prefix to mark as lost. */ 2233 lost = (packets - oldcnt) * mss; 2234 if (lost < skb->len && 2235 tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2236 lost, mss, GFP_ATOMIC) < 0) 2237 break; 2238 cnt = packets; 2239 } 2240 2241 tcp_skb_mark_lost(tp, skb); 2242 2243 if (mark_head) 2244 break; 2245 } 2246 tcp_verify_left_out(tp); 2247 } 2248 2249 /* Account newly detected lost packet(s) */ 2250 2251 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2252 { 2253 struct tcp_sock *tp = tcp_sk(sk); 2254 2255 if (tcp_is_sack(tp)) { 2256 int sacked_upto = tp->sacked_out - tp->reordering; 2257 if (sacked_upto >= 0) 2258 tcp_mark_head_lost(sk, sacked_upto, 0); 2259 else if (fast_rexmit) 2260 tcp_mark_head_lost(sk, 1, 1); 2261 } 2262 } 2263 2264 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2265 { 2266 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2267 before(tp->rx_opt.rcv_tsecr, when); 2268 } 2269 2270 /* skb is spurious retransmitted if the returned timestamp echo 2271 * reply is prior to the skb transmission time 2272 */ 2273 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2274 const struct sk_buff *skb) 2275 { 2276 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2277 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2278 } 2279 2280 /* Nothing was retransmitted or returned timestamp is less 2281 * than timestamp of the first retransmission. 2282 */ 2283 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2284 { 2285 return tp->retrans_stamp && 2286 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2287 } 2288 2289 /* Undo procedures. */ 2290 2291 /* We can clear retrans_stamp when there are no retransmissions in the 2292 * window. It would seem that it is trivially available for us in 2293 * tp->retrans_out, however, that kind of assumptions doesn't consider 2294 * what will happen if errors occur when sending retransmission for the 2295 * second time. ...It could the that such segment has only 2296 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2297 * the head skb is enough except for some reneging corner cases that 2298 * are not worth the effort. 2299 * 2300 * Main reason for all this complexity is the fact that connection dying 2301 * time now depends on the validity of the retrans_stamp, in particular, 2302 * that successive retransmissions of a segment must not advance 2303 * retrans_stamp under any conditions. 2304 */ 2305 static bool tcp_any_retrans_done(const struct sock *sk) 2306 { 2307 const struct tcp_sock *tp = tcp_sk(sk); 2308 struct sk_buff *skb; 2309 2310 if (tp->retrans_out) 2311 return true; 2312 2313 skb = tcp_rtx_queue_head(sk); 2314 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2315 return true; 2316 2317 return false; 2318 } 2319 2320 static void DBGUNDO(struct sock *sk, const char *msg) 2321 { 2322 #if FASTRETRANS_DEBUG > 1 2323 struct tcp_sock *tp = tcp_sk(sk); 2324 struct inet_sock *inet = inet_sk(sk); 2325 2326 if (sk->sk_family == AF_INET) { 2327 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2328 msg, 2329 &inet->inet_daddr, ntohs(inet->inet_dport), 2330 tp->snd_cwnd, tcp_left_out(tp), 2331 tp->snd_ssthresh, tp->prior_ssthresh, 2332 tp->packets_out); 2333 } 2334 #if IS_ENABLED(CONFIG_IPV6) 2335 else if (sk->sk_family == AF_INET6) { 2336 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2337 msg, 2338 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2339 tp->snd_cwnd, tcp_left_out(tp), 2340 tp->snd_ssthresh, tp->prior_ssthresh, 2341 tp->packets_out); 2342 } 2343 #endif 2344 #endif 2345 } 2346 2347 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2348 { 2349 struct tcp_sock *tp = tcp_sk(sk); 2350 2351 if (unmark_loss) { 2352 struct sk_buff *skb; 2353 2354 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2355 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2356 } 2357 tp->lost_out = 0; 2358 tcp_clear_all_retrans_hints(tp); 2359 } 2360 2361 if (tp->prior_ssthresh) { 2362 const struct inet_connection_sock *icsk = inet_csk(sk); 2363 2364 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2365 2366 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2367 tp->snd_ssthresh = tp->prior_ssthresh; 2368 tcp_ecn_withdraw_cwr(tp); 2369 } 2370 } 2371 tp->snd_cwnd_stamp = tcp_jiffies32; 2372 tp->undo_marker = 0; 2373 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2374 } 2375 2376 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2377 { 2378 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2379 } 2380 2381 /* People celebrate: "We love our President!" */ 2382 static bool tcp_try_undo_recovery(struct sock *sk) 2383 { 2384 struct tcp_sock *tp = tcp_sk(sk); 2385 2386 if (tcp_may_undo(tp)) { 2387 int mib_idx; 2388 2389 /* Happy end! We did not retransmit anything 2390 * or our original transmission succeeded. 2391 */ 2392 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2393 tcp_undo_cwnd_reduction(sk, false); 2394 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2395 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2396 else 2397 mib_idx = LINUX_MIB_TCPFULLUNDO; 2398 2399 NET_INC_STATS(sock_net(sk), mib_idx); 2400 } else if (tp->rack.reo_wnd_persist) { 2401 tp->rack.reo_wnd_persist--; 2402 } 2403 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2404 /* Hold old state until something *above* high_seq 2405 * is ACKed. For Reno it is MUST to prevent false 2406 * fast retransmits (RFC2582). SACK TCP is safe. */ 2407 if (!tcp_any_retrans_done(sk)) 2408 tp->retrans_stamp = 0; 2409 return true; 2410 } 2411 tcp_set_ca_state(sk, TCP_CA_Open); 2412 tp->is_sack_reneg = 0; 2413 return false; 2414 } 2415 2416 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2417 static bool tcp_try_undo_dsack(struct sock *sk) 2418 { 2419 struct tcp_sock *tp = tcp_sk(sk); 2420 2421 if (tp->undo_marker && !tp->undo_retrans) { 2422 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2423 tp->rack.reo_wnd_persist + 1); 2424 DBGUNDO(sk, "D-SACK"); 2425 tcp_undo_cwnd_reduction(sk, false); 2426 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2427 return true; 2428 } 2429 return false; 2430 } 2431 2432 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2433 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2434 { 2435 struct tcp_sock *tp = tcp_sk(sk); 2436 2437 if (frto_undo || tcp_may_undo(tp)) { 2438 tcp_undo_cwnd_reduction(sk, true); 2439 2440 DBGUNDO(sk, "partial loss"); 2441 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2442 if (frto_undo) 2443 NET_INC_STATS(sock_net(sk), 2444 LINUX_MIB_TCPSPURIOUSRTOS); 2445 inet_csk(sk)->icsk_retransmits = 0; 2446 if (frto_undo || tcp_is_sack(tp)) { 2447 tcp_set_ca_state(sk, TCP_CA_Open); 2448 tp->is_sack_reneg = 0; 2449 } 2450 return true; 2451 } 2452 return false; 2453 } 2454 2455 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2456 * It computes the number of packets to send (sndcnt) based on packets newly 2457 * delivered: 2458 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2459 * cwnd reductions across a full RTT. 2460 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2461 * But when the retransmits are acked without further losses, PRR 2462 * slow starts cwnd up to ssthresh to speed up the recovery. 2463 */ 2464 static void tcp_init_cwnd_reduction(struct sock *sk) 2465 { 2466 struct tcp_sock *tp = tcp_sk(sk); 2467 2468 tp->high_seq = tp->snd_nxt; 2469 tp->tlp_high_seq = 0; 2470 tp->snd_cwnd_cnt = 0; 2471 tp->prior_cwnd = tp->snd_cwnd; 2472 tp->prr_delivered = 0; 2473 tp->prr_out = 0; 2474 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2475 tcp_ecn_queue_cwr(tp); 2476 } 2477 2478 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2479 { 2480 struct tcp_sock *tp = tcp_sk(sk); 2481 int sndcnt = 0; 2482 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2483 2484 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2485 return; 2486 2487 tp->prr_delivered += newly_acked_sacked; 2488 if (delta < 0) { 2489 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2490 tp->prior_cwnd - 1; 2491 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2492 } else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) == 2493 FLAG_RETRANS_DATA_ACKED) { 2494 sndcnt = min_t(int, delta, 2495 max_t(int, tp->prr_delivered - tp->prr_out, 2496 newly_acked_sacked) + 1); 2497 } else { 2498 sndcnt = min(delta, newly_acked_sacked); 2499 } 2500 /* Force a fast retransmit upon entering fast recovery */ 2501 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2502 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2503 } 2504 2505 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2506 { 2507 struct tcp_sock *tp = tcp_sk(sk); 2508 2509 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2510 return; 2511 2512 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2513 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2514 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2515 tp->snd_cwnd = tp->snd_ssthresh; 2516 tp->snd_cwnd_stamp = tcp_jiffies32; 2517 } 2518 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2519 } 2520 2521 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2522 void tcp_enter_cwr(struct sock *sk) 2523 { 2524 struct tcp_sock *tp = tcp_sk(sk); 2525 2526 tp->prior_ssthresh = 0; 2527 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2528 tp->undo_marker = 0; 2529 tcp_init_cwnd_reduction(sk); 2530 tcp_set_ca_state(sk, TCP_CA_CWR); 2531 } 2532 } 2533 EXPORT_SYMBOL(tcp_enter_cwr); 2534 2535 static void tcp_try_keep_open(struct sock *sk) 2536 { 2537 struct tcp_sock *tp = tcp_sk(sk); 2538 int state = TCP_CA_Open; 2539 2540 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2541 state = TCP_CA_Disorder; 2542 2543 if (inet_csk(sk)->icsk_ca_state != state) { 2544 tcp_set_ca_state(sk, state); 2545 tp->high_seq = tp->snd_nxt; 2546 } 2547 } 2548 2549 static void tcp_try_to_open(struct sock *sk, int flag) 2550 { 2551 struct tcp_sock *tp = tcp_sk(sk); 2552 2553 tcp_verify_left_out(tp); 2554 2555 if (!tcp_any_retrans_done(sk)) 2556 tp->retrans_stamp = 0; 2557 2558 if (flag & FLAG_ECE) 2559 tcp_enter_cwr(sk); 2560 2561 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2562 tcp_try_keep_open(sk); 2563 } 2564 } 2565 2566 static void tcp_mtup_probe_failed(struct sock *sk) 2567 { 2568 struct inet_connection_sock *icsk = inet_csk(sk); 2569 2570 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2571 icsk->icsk_mtup.probe_size = 0; 2572 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2573 } 2574 2575 static void tcp_mtup_probe_success(struct sock *sk) 2576 { 2577 struct tcp_sock *tp = tcp_sk(sk); 2578 struct inet_connection_sock *icsk = inet_csk(sk); 2579 2580 /* FIXME: breaks with very large cwnd */ 2581 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2582 tp->snd_cwnd = tp->snd_cwnd * 2583 tcp_mss_to_mtu(sk, tp->mss_cache) / 2584 icsk->icsk_mtup.probe_size; 2585 tp->snd_cwnd_cnt = 0; 2586 tp->snd_cwnd_stamp = tcp_jiffies32; 2587 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2588 2589 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2590 icsk->icsk_mtup.probe_size = 0; 2591 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2592 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2593 } 2594 2595 /* Do a simple retransmit without using the backoff mechanisms in 2596 * tcp_timer. This is used for path mtu discovery. 2597 * The socket is already locked here. 2598 */ 2599 void tcp_simple_retransmit(struct sock *sk) 2600 { 2601 const struct inet_connection_sock *icsk = inet_csk(sk); 2602 struct tcp_sock *tp = tcp_sk(sk); 2603 struct sk_buff *skb; 2604 unsigned int mss = tcp_current_mss(sk); 2605 2606 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2607 if (tcp_skb_seglen(skb) > mss && 2608 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2609 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2610 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2611 tp->retrans_out -= tcp_skb_pcount(skb); 2612 } 2613 tcp_skb_mark_lost_uncond_verify(tp, skb); 2614 } 2615 } 2616 2617 tcp_clear_retrans_hints_partial(tp); 2618 2619 if (!tp->lost_out) 2620 return; 2621 2622 if (tcp_is_reno(tp)) 2623 tcp_limit_reno_sacked(tp); 2624 2625 tcp_verify_left_out(tp); 2626 2627 /* Don't muck with the congestion window here. 2628 * Reason is that we do not increase amount of _data_ 2629 * in network, but units changed and effective 2630 * cwnd/ssthresh really reduced now. 2631 */ 2632 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2633 tp->high_seq = tp->snd_nxt; 2634 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2635 tp->prior_ssthresh = 0; 2636 tp->undo_marker = 0; 2637 tcp_set_ca_state(sk, TCP_CA_Loss); 2638 } 2639 tcp_xmit_retransmit_queue(sk); 2640 } 2641 EXPORT_SYMBOL(tcp_simple_retransmit); 2642 2643 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2644 { 2645 struct tcp_sock *tp = tcp_sk(sk); 2646 int mib_idx; 2647 2648 if (tcp_is_reno(tp)) 2649 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2650 else 2651 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2652 2653 NET_INC_STATS(sock_net(sk), mib_idx); 2654 2655 tp->prior_ssthresh = 0; 2656 tcp_init_undo(tp); 2657 2658 if (!tcp_in_cwnd_reduction(sk)) { 2659 if (!ece_ack) 2660 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2661 tcp_init_cwnd_reduction(sk); 2662 } 2663 tcp_set_ca_state(sk, TCP_CA_Recovery); 2664 } 2665 2666 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2667 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2668 */ 2669 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2670 int *rexmit) 2671 { 2672 struct tcp_sock *tp = tcp_sk(sk); 2673 bool recovered = !before(tp->snd_una, tp->high_seq); 2674 2675 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 2676 tcp_try_undo_loss(sk, false)) 2677 return; 2678 2679 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2680 /* Step 3.b. A timeout is spurious if not all data are 2681 * lost, i.e., never-retransmitted data are (s)acked. 2682 */ 2683 if ((flag & FLAG_ORIG_SACK_ACKED) && 2684 tcp_try_undo_loss(sk, true)) 2685 return; 2686 2687 if (after(tp->snd_nxt, tp->high_seq)) { 2688 if (flag & FLAG_DATA_SACKED || num_dupack) 2689 tp->frto = 0; /* Step 3.a. loss was real */ 2690 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2691 tp->high_seq = tp->snd_nxt; 2692 /* Step 2.b. Try send new data (but deferred until cwnd 2693 * is updated in tcp_ack()). Otherwise fall back to 2694 * the conventional recovery. 2695 */ 2696 if (!tcp_write_queue_empty(sk) && 2697 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2698 *rexmit = REXMIT_NEW; 2699 return; 2700 } 2701 tp->frto = 0; 2702 } 2703 } 2704 2705 if (recovered) { 2706 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2707 tcp_try_undo_recovery(sk); 2708 return; 2709 } 2710 if (tcp_is_reno(tp)) { 2711 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2712 * delivered. Lower inflight to clock out (re)tranmissions. 2713 */ 2714 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2715 tcp_add_reno_sack(sk, num_dupack); 2716 else if (flag & FLAG_SND_UNA_ADVANCED) 2717 tcp_reset_reno_sack(tp); 2718 } 2719 *rexmit = REXMIT_LOST; 2720 } 2721 2722 /* Undo during fast recovery after partial ACK. */ 2723 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una) 2724 { 2725 struct tcp_sock *tp = tcp_sk(sk); 2726 2727 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2728 /* Plain luck! Hole if filled with delayed 2729 * packet, rather than with a retransmit. Check reordering. 2730 */ 2731 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2732 2733 /* We are getting evidence that the reordering degree is higher 2734 * than we realized. If there are no retransmits out then we 2735 * can undo. Otherwise we clock out new packets but do not 2736 * mark more packets lost or retransmit more. 2737 */ 2738 if (tp->retrans_out) 2739 return true; 2740 2741 if (!tcp_any_retrans_done(sk)) 2742 tp->retrans_stamp = 0; 2743 2744 DBGUNDO(sk, "partial recovery"); 2745 tcp_undo_cwnd_reduction(sk, true); 2746 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2747 tcp_try_keep_open(sk); 2748 return true; 2749 } 2750 return false; 2751 } 2752 2753 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2754 { 2755 struct tcp_sock *tp = tcp_sk(sk); 2756 2757 if (tcp_rtx_queue_empty(sk)) 2758 return; 2759 2760 if (unlikely(tcp_is_reno(tp))) { 2761 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2762 } else if (tcp_is_rack(sk)) { 2763 u32 prior_retrans = tp->retrans_out; 2764 2765 tcp_rack_mark_lost(sk); 2766 if (prior_retrans > tp->retrans_out) 2767 *ack_flag |= FLAG_LOST_RETRANS; 2768 } 2769 } 2770 2771 static bool tcp_force_fast_retransmit(struct sock *sk) 2772 { 2773 struct tcp_sock *tp = tcp_sk(sk); 2774 2775 return after(tcp_highest_sack_seq(tp), 2776 tp->snd_una + tp->reordering * tp->mss_cache); 2777 } 2778 2779 /* Process an event, which can update packets-in-flight not trivially. 2780 * Main goal of this function is to calculate new estimate for left_out, 2781 * taking into account both packets sitting in receiver's buffer and 2782 * packets lost by network. 2783 * 2784 * Besides that it updates the congestion state when packet loss or ECN 2785 * is detected. But it does not reduce the cwnd, it is done by the 2786 * congestion control later. 2787 * 2788 * It does _not_ decide what to send, it is made in function 2789 * tcp_xmit_retransmit_queue(). 2790 */ 2791 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2792 int num_dupack, int *ack_flag, int *rexmit) 2793 { 2794 struct inet_connection_sock *icsk = inet_csk(sk); 2795 struct tcp_sock *tp = tcp_sk(sk); 2796 int fast_rexmit = 0, flag = *ack_flag; 2797 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && 2798 tcp_force_fast_retransmit(sk)); 2799 2800 if (!tp->packets_out && tp->sacked_out) 2801 tp->sacked_out = 0; 2802 2803 /* Now state machine starts. 2804 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2805 if (flag & FLAG_ECE) 2806 tp->prior_ssthresh = 0; 2807 2808 /* B. In all the states check for reneging SACKs. */ 2809 if (tcp_check_sack_reneging(sk, flag)) 2810 return; 2811 2812 /* C. Check consistency of the current state. */ 2813 tcp_verify_left_out(tp); 2814 2815 /* D. Check state exit conditions. State can be terminated 2816 * when high_seq is ACKed. */ 2817 if (icsk->icsk_ca_state == TCP_CA_Open) { 2818 WARN_ON(tp->retrans_out != 0); 2819 tp->retrans_stamp = 0; 2820 } else if (!before(tp->snd_una, tp->high_seq)) { 2821 switch (icsk->icsk_ca_state) { 2822 case TCP_CA_CWR: 2823 /* CWR is to be held something *above* high_seq 2824 * is ACKed for CWR bit to reach receiver. */ 2825 if (tp->snd_una != tp->high_seq) { 2826 tcp_end_cwnd_reduction(sk); 2827 tcp_set_ca_state(sk, TCP_CA_Open); 2828 } 2829 break; 2830 2831 case TCP_CA_Recovery: 2832 if (tcp_is_reno(tp)) 2833 tcp_reset_reno_sack(tp); 2834 if (tcp_try_undo_recovery(sk)) 2835 return; 2836 tcp_end_cwnd_reduction(sk); 2837 break; 2838 } 2839 } 2840 2841 /* E. Process state. */ 2842 switch (icsk->icsk_ca_state) { 2843 case TCP_CA_Recovery: 2844 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2845 if (tcp_is_reno(tp)) 2846 tcp_add_reno_sack(sk, num_dupack); 2847 } else { 2848 if (tcp_try_undo_partial(sk, prior_snd_una)) 2849 return; 2850 /* Partial ACK arrived. Force fast retransmit. */ 2851 do_lost = tcp_is_reno(tp) || 2852 tcp_force_fast_retransmit(sk); 2853 } 2854 if (tcp_try_undo_dsack(sk)) { 2855 tcp_try_keep_open(sk); 2856 return; 2857 } 2858 tcp_identify_packet_loss(sk, ack_flag); 2859 break; 2860 case TCP_CA_Loss: 2861 tcp_process_loss(sk, flag, num_dupack, rexmit); 2862 tcp_identify_packet_loss(sk, ack_flag); 2863 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2864 (*ack_flag & FLAG_LOST_RETRANS))) 2865 return; 2866 /* Change state if cwnd is undone or retransmits are lost */ 2867 /* fall through */ 2868 default: 2869 if (tcp_is_reno(tp)) { 2870 if (flag & FLAG_SND_UNA_ADVANCED) 2871 tcp_reset_reno_sack(tp); 2872 tcp_add_reno_sack(sk, num_dupack); 2873 } 2874 2875 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2876 tcp_try_undo_dsack(sk); 2877 2878 tcp_identify_packet_loss(sk, ack_flag); 2879 if (!tcp_time_to_recover(sk, flag)) { 2880 tcp_try_to_open(sk, flag); 2881 return; 2882 } 2883 2884 /* MTU probe failure: don't reduce cwnd */ 2885 if (icsk->icsk_ca_state < TCP_CA_CWR && 2886 icsk->icsk_mtup.probe_size && 2887 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2888 tcp_mtup_probe_failed(sk); 2889 /* Restores the reduction we did in tcp_mtup_probe() */ 2890 tp->snd_cwnd++; 2891 tcp_simple_retransmit(sk); 2892 return; 2893 } 2894 2895 /* Otherwise enter Recovery state */ 2896 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2897 fast_rexmit = 1; 2898 } 2899 2900 if (!tcp_is_rack(sk) && do_lost) 2901 tcp_update_scoreboard(sk, fast_rexmit); 2902 *rexmit = REXMIT_LOST; 2903 } 2904 2905 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 2906 { 2907 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ; 2908 struct tcp_sock *tp = tcp_sk(sk); 2909 2910 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 2911 /* If the remote keeps returning delayed ACKs, eventually 2912 * the min filter would pick it up and overestimate the 2913 * prop. delay when it expires. Skip suspected delayed ACKs. 2914 */ 2915 return; 2916 } 2917 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 2918 rtt_us ? : jiffies_to_usecs(1)); 2919 } 2920 2921 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2922 long seq_rtt_us, long sack_rtt_us, 2923 long ca_rtt_us, struct rate_sample *rs) 2924 { 2925 const struct tcp_sock *tp = tcp_sk(sk); 2926 2927 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2928 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2929 * Karn's algorithm forbids taking RTT if some retransmitted data 2930 * is acked (RFC6298). 2931 */ 2932 if (seq_rtt_us < 0) 2933 seq_rtt_us = sack_rtt_us; 2934 2935 /* RTTM Rule: A TSecr value received in a segment is used to 2936 * update the averaged RTT measurement only if the segment 2937 * acknowledges some new data, i.e., only if it advances the 2938 * left edge of the send window. 2939 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2940 */ 2941 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2942 flag & FLAG_ACKED) { 2943 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 2944 2945 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 2946 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 2947 ca_rtt_us = seq_rtt_us; 2948 } 2949 } 2950 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 2951 if (seq_rtt_us < 0) 2952 return false; 2953 2954 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2955 * always taken together with ACK, SACK, or TS-opts. Any negative 2956 * values will be skipped with the seq_rtt_us < 0 check above. 2957 */ 2958 tcp_update_rtt_min(sk, ca_rtt_us, flag); 2959 tcp_rtt_estimator(sk, seq_rtt_us); 2960 tcp_set_rto(sk); 2961 2962 /* RFC6298: only reset backoff on valid RTT measurement. */ 2963 inet_csk(sk)->icsk_backoff = 0; 2964 return true; 2965 } 2966 2967 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2968 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2969 { 2970 struct rate_sample rs; 2971 long rtt_us = -1L; 2972 2973 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 2974 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 2975 2976 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 2977 } 2978 2979 2980 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2981 { 2982 const struct inet_connection_sock *icsk = inet_csk(sk); 2983 2984 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2985 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 2986 } 2987 2988 /* Restart timer after forward progress on connection. 2989 * RFC2988 recommends to restart timer to now+rto. 2990 */ 2991 void tcp_rearm_rto(struct sock *sk) 2992 { 2993 const struct inet_connection_sock *icsk = inet_csk(sk); 2994 struct tcp_sock *tp = tcp_sk(sk); 2995 2996 /* If the retrans timer is currently being used by Fast Open 2997 * for SYN-ACK retrans purpose, stay put. 2998 */ 2999 if (rcu_access_pointer(tp->fastopen_rsk)) 3000 return; 3001 3002 if (!tp->packets_out) { 3003 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3004 } else { 3005 u32 rto = inet_csk(sk)->icsk_rto; 3006 /* Offset the time elapsed after installing regular RTO */ 3007 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3008 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3009 s64 delta_us = tcp_rto_delta_us(sk); 3010 /* delta_us may not be positive if the socket is locked 3011 * when the retrans timer fires and is rescheduled. 3012 */ 3013 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3014 } 3015 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3016 TCP_RTO_MAX, tcp_rtx_queue_head(sk)); 3017 } 3018 } 3019 3020 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3021 static void tcp_set_xmit_timer(struct sock *sk) 3022 { 3023 if (!tcp_schedule_loss_probe(sk, true)) 3024 tcp_rearm_rto(sk); 3025 } 3026 3027 /* If we get here, the whole TSO packet has not been acked. */ 3028 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3029 { 3030 struct tcp_sock *tp = tcp_sk(sk); 3031 u32 packets_acked; 3032 3033 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3034 3035 packets_acked = tcp_skb_pcount(skb); 3036 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3037 return 0; 3038 packets_acked -= tcp_skb_pcount(skb); 3039 3040 if (packets_acked) { 3041 BUG_ON(tcp_skb_pcount(skb) == 0); 3042 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3043 } 3044 3045 return packets_acked; 3046 } 3047 3048 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3049 u32 prior_snd_una) 3050 { 3051 const struct skb_shared_info *shinfo; 3052 3053 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3054 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3055 return; 3056 3057 shinfo = skb_shinfo(skb); 3058 if (!before(shinfo->tskey, prior_snd_una) && 3059 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3060 tcp_skb_tsorted_save(skb) { 3061 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3062 } tcp_skb_tsorted_restore(skb); 3063 } 3064 } 3065 3066 /* Remove acknowledged frames from the retransmission queue. If our packet 3067 * is before the ack sequence we can discard it as it's confirmed to have 3068 * arrived at the other end. 3069 */ 3070 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack, 3071 u32 prior_snd_una, 3072 struct tcp_sacktag_state *sack) 3073 { 3074 const struct inet_connection_sock *icsk = inet_csk(sk); 3075 u64 first_ackt, last_ackt; 3076 struct tcp_sock *tp = tcp_sk(sk); 3077 u32 prior_sacked = tp->sacked_out; 3078 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3079 struct sk_buff *skb, *next; 3080 bool fully_acked = true; 3081 long sack_rtt_us = -1L; 3082 long seq_rtt_us = -1L; 3083 long ca_rtt_us = -1L; 3084 u32 pkts_acked = 0; 3085 u32 last_in_flight = 0; 3086 bool rtt_update; 3087 int flag = 0; 3088 3089 first_ackt = 0; 3090 3091 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3092 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3093 const u32 start_seq = scb->seq; 3094 u8 sacked = scb->sacked; 3095 u32 acked_pcount; 3096 3097 tcp_ack_tstamp(sk, skb, prior_snd_una); 3098 3099 /* Determine how many packets and what bytes were acked, tso and else */ 3100 if (after(scb->end_seq, tp->snd_una)) { 3101 if (tcp_skb_pcount(skb) == 1 || 3102 !after(tp->snd_una, scb->seq)) 3103 break; 3104 3105 acked_pcount = tcp_tso_acked(sk, skb); 3106 if (!acked_pcount) 3107 break; 3108 fully_acked = false; 3109 } else { 3110 acked_pcount = tcp_skb_pcount(skb); 3111 } 3112 3113 if (unlikely(sacked & TCPCB_RETRANS)) { 3114 if (sacked & TCPCB_SACKED_RETRANS) 3115 tp->retrans_out -= acked_pcount; 3116 flag |= FLAG_RETRANS_DATA_ACKED; 3117 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3118 last_ackt = tcp_skb_timestamp_us(skb); 3119 WARN_ON_ONCE(last_ackt == 0); 3120 if (!first_ackt) 3121 first_ackt = last_ackt; 3122 3123 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3124 if (before(start_seq, reord)) 3125 reord = start_seq; 3126 if (!after(scb->end_seq, tp->high_seq)) 3127 flag |= FLAG_ORIG_SACK_ACKED; 3128 } 3129 3130 if (sacked & TCPCB_SACKED_ACKED) { 3131 tp->sacked_out -= acked_pcount; 3132 } else if (tcp_is_sack(tp)) { 3133 tp->delivered += acked_pcount; 3134 if (!tcp_skb_spurious_retrans(tp, skb)) 3135 tcp_rack_advance(tp, sacked, scb->end_seq, 3136 tcp_skb_timestamp_us(skb)); 3137 } 3138 if (sacked & TCPCB_LOST) 3139 tp->lost_out -= acked_pcount; 3140 3141 tp->packets_out -= acked_pcount; 3142 pkts_acked += acked_pcount; 3143 tcp_rate_skb_delivered(sk, skb, sack->rate); 3144 3145 /* Initial outgoing SYN's get put onto the write_queue 3146 * just like anything else we transmit. It is not 3147 * true data, and if we misinform our callers that 3148 * this ACK acks real data, we will erroneously exit 3149 * connection startup slow start one packet too 3150 * quickly. This is severely frowned upon behavior. 3151 */ 3152 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3153 flag |= FLAG_DATA_ACKED; 3154 } else { 3155 flag |= FLAG_SYN_ACKED; 3156 tp->retrans_stamp = 0; 3157 } 3158 3159 if (!fully_acked) 3160 break; 3161 3162 next = skb_rb_next(skb); 3163 if (unlikely(skb == tp->retransmit_skb_hint)) 3164 tp->retransmit_skb_hint = NULL; 3165 if (unlikely(skb == tp->lost_skb_hint)) 3166 tp->lost_skb_hint = NULL; 3167 tcp_rtx_queue_unlink_and_free(skb, sk); 3168 } 3169 3170 if (!skb) 3171 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3172 3173 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3174 tp->snd_up = tp->snd_una; 3175 3176 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3177 flag |= FLAG_SACK_RENEGING; 3178 3179 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3180 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3181 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3182 3183 if (pkts_acked == 1 && last_in_flight < tp->mss_cache && 3184 last_in_flight && !prior_sacked && fully_acked && 3185 sack->rate->prior_delivered + 1 == tp->delivered && 3186 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3187 /* Conservatively mark a delayed ACK. It's typically 3188 * from a lone runt packet over the round trip to 3189 * a receiver w/o out-of-order or CE events. 3190 */ 3191 flag |= FLAG_ACK_MAYBE_DELAYED; 3192 } 3193 } 3194 if (sack->first_sackt) { 3195 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3196 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3197 } 3198 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3199 ca_rtt_us, sack->rate); 3200 3201 if (flag & FLAG_ACKED) { 3202 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3203 if (unlikely(icsk->icsk_mtup.probe_size && 3204 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3205 tcp_mtup_probe_success(sk); 3206 } 3207 3208 if (tcp_is_reno(tp)) { 3209 tcp_remove_reno_sacks(sk, pkts_acked); 3210 3211 /* If any of the cumulatively ACKed segments was 3212 * retransmitted, non-SACK case cannot confirm that 3213 * progress was due to original transmission due to 3214 * lack of TCPCB_SACKED_ACKED bits even if some of 3215 * the packets may have been never retransmitted. 3216 */ 3217 if (flag & FLAG_RETRANS_DATA_ACKED) 3218 flag &= ~FLAG_ORIG_SACK_ACKED; 3219 } else { 3220 int delta; 3221 3222 /* Non-retransmitted hole got filled? That's reordering */ 3223 if (before(reord, prior_fack)) 3224 tcp_check_sack_reordering(sk, reord, 0); 3225 3226 delta = prior_sacked - tp->sacked_out; 3227 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3228 } 3229 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3230 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3231 tcp_skb_timestamp_us(skb))) { 3232 /* Do not re-arm RTO if the sack RTT is measured from data sent 3233 * after when the head was last (re)transmitted. Otherwise the 3234 * timeout may continue to extend in loss recovery. 3235 */ 3236 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3237 } 3238 3239 if (icsk->icsk_ca_ops->pkts_acked) { 3240 struct ack_sample sample = { .pkts_acked = pkts_acked, 3241 .rtt_us = sack->rate->rtt_us, 3242 .in_flight = last_in_flight }; 3243 3244 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3245 } 3246 3247 #if FASTRETRANS_DEBUG > 0 3248 WARN_ON((int)tp->sacked_out < 0); 3249 WARN_ON((int)tp->lost_out < 0); 3250 WARN_ON((int)tp->retrans_out < 0); 3251 if (!tp->packets_out && tcp_is_sack(tp)) { 3252 icsk = inet_csk(sk); 3253 if (tp->lost_out) { 3254 pr_debug("Leak l=%u %d\n", 3255 tp->lost_out, icsk->icsk_ca_state); 3256 tp->lost_out = 0; 3257 } 3258 if (tp->sacked_out) { 3259 pr_debug("Leak s=%u %d\n", 3260 tp->sacked_out, icsk->icsk_ca_state); 3261 tp->sacked_out = 0; 3262 } 3263 if (tp->retrans_out) { 3264 pr_debug("Leak r=%u %d\n", 3265 tp->retrans_out, icsk->icsk_ca_state); 3266 tp->retrans_out = 0; 3267 } 3268 } 3269 #endif 3270 return flag; 3271 } 3272 3273 static void tcp_ack_probe(struct sock *sk) 3274 { 3275 struct inet_connection_sock *icsk = inet_csk(sk); 3276 struct sk_buff *head = tcp_send_head(sk); 3277 const struct tcp_sock *tp = tcp_sk(sk); 3278 3279 /* Was it a usable window open? */ 3280 if (!head) 3281 return; 3282 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3283 icsk->icsk_backoff = 0; 3284 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3285 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3286 * This function is not for random using! 3287 */ 3288 } else { 3289 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3290 3291 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3292 when, TCP_RTO_MAX, NULL); 3293 } 3294 } 3295 3296 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3297 { 3298 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3299 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3300 } 3301 3302 /* Decide wheather to run the increase function of congestion control. */ 3303 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3304 { 3305 /* If reordering is high then always grow cwnd whenever data is 3306 * delivered regardless of its ordering. Otherwise stay conservative 3307 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3308 * new SACK or ECE mark may first advance cwnd here and later reduce 3309 * cwnd in tcp_fastretrans_alert() based on more states. 3310 */ 3311 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3312 return flag & FLAG_FORWARD_PROGRESS; 3313 3314 return flag & FLAG_DATA_ACKED; 3315 } 3316 3317 /* The "ultimate" congestion control function that aims to replace the rigid 3318 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3319 * It's called toward the end of processing an ACK with precise rate 3320 * information. All transmission or retransmission are delayed afterwards. 3321 */ 3322 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3323 int flag, const struct rate_sample *rs) 3324 { 3325 const struct inet_connection_sock *icsk = inet_csk(sk); 3326 3327 if (icsk->icsk_ca_ops->cong_control) { 3328 icsk->icsk_ca_ops->cong_control(sk, rs); 3329 return; 3330 } 3331 3332 if (tcp_in_cwnd_reduction(sk)) { 3333 /* Reduce cwnd if state mandates */ 3334 tcp_cwnd_reduction(sk, acked_sacked, flag); 3335 } else if (tcp_may_raise_cwnd(sk, flag)) { 3336 /* Advance cwnd if state allows */ 3337 tcp_cong_avoid(sk, ack, acked_sacked); 3338 } 3339 tcp_update_pacing_rate(sk); 3340 } 3341 3342 /* Check that window update is acceptable. 3343 * The function assumes that snd_una<=ack<=snd_next. 3344 */ 3345 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3346 const u32 ack, const u32 ack_seq, 3347 const u32 nwin) 3348 { 3349 return after(ack, tp->snd_una) || 3350 after(ack_seq, tp->snd_wl1) || 3351 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3352 } 3353 3354 /* If we update tp->snd_una, also update tp->bytes_acked */ 3355 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3356 { 3357 u32 delta = ack - tp->snd_una; 3358 3359 sock_owned_by_me((struct sock *)tp); 3360 tp->bytes_acked += delta; 3361 tp->snd_una = ack; 3362 } 3363 3364 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3365 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3366 { 3367 u32 delta = seq - tp->rcv_nxt; 3368 3369 sock_owned_by_me((struct sock *)tp); 3370 tp->bytes_received += delta; 3371 WRITE_ONCE(tp->rcv_nxt, seq); 3372 } 3373 3374 /* Update our send window. 3375 * 3376 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3377 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3378 */ 3379 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3380 u32 ack_seq) 3381 { 3382 struct tcp_sock *tp = tcp_sk(sk); 3383 int flag = 0; 3384 u32 nwin = ntohs(tcp_hdr(skb)->window); 3385 3386 if (likely(!tcp_hdr(skb)->syn)) 3387 nwin <<= tp->rx_opt.snd_wscale; 3388 3389 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3390 flag |= FLAG_WIN_UPDATE; 3391 tcp_update_wl(tp, ack_seq); 3392 3393 if (tp->snd_wnd != nwin) { 3394 tp->snd_wnd = nwin; 3395 3396 /* Note, it is the only place, where 3397 * fast path is recovered for sending TCP. 3398 */ 3399 tp->pred_flags = 0; 3400 tcp_fast_path_check(sk); 3401 3402 if (!tcp_write_queue_empty(sk)) 3403 tcp_slow_start_after_idle_check(sk); 3404 3405 if (nwin > tp->max_window) { 3406 tp->max_window = nwin; 3407 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3408 } 3409 } 3410 } 3411 3412 tcp_snd_una_update(tp, ack); 3413 3414 return flag; 3415 } 3416 3417 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3418 u32 *last_oow_ack_time) 3419 { 3420 if (*last_oow_ack_time) { 3421 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3422 3423 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) { 3424 NET_INC_STATS(net, mib_idx); 3425 return true; /* rate-limited: don't send yet! */ 3426 } 3427 } 3428 3429 *last_oow_ack_time = tcp_jiffies32; 3430 3431 return false; /* not rate-limited: go ahead, send dupack now! */ 3432 } 3433 3434 /* Return true if we're currently rate-limiting out-of-window ACKs and 3435 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3436 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3437 * attacks that send repeated SYNs or ACKs for the same connection. To 3438 * do this, we do not send a duplicate SYNACK or ACK if the remote 3439 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3440 */ 3441 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3442 int mib_idx, u32 *last_oow_ack_time) 3443 { 3444 /* Data packets without SYNs are not likely part of an ACK loop. */ 3445 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3446 !tcp_hdr(skb)->syn) 3447 return false; 3448 3449 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3450 } 3451 3452 /* RFC 5961 7 [ACK Throttling] */ 3453 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3454 { 3455 /* unprotected vars, we dont care of overwrites */ 3456 static u32 challenge_timestamp; 3457 static unsigned int challenge_count; 3458 struct tcp_sock *tp = tcp_sk(sk); 3459 struct net *net = sock_net(sk); 3460 u32 count, now; 3461 3462 /* First check our per-socket dupack rate limit. */ 3463 if (__tcp_oow_rate_limited(net, 3464 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3465 &tp->last_oow_ack_time)) 3466 return; 3467 3468 /* Then check host-wide RFC 5961 rate limit. */ 3469 now = jiffies / HZ; 3470 if (now != challenge_timestamp) { 3471 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit; 3472 u32 half = (ack_limit + 1) >> 1; 3473 3474 challenge_timestamp = now; 3475 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit)); 3476 } 3477 count = READ_ONCE(challenge_count); 3478 if (count > 0) { 3479 WRITE_ONCE(challenge_count, count - 1); 3480 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3481 tcp_send_ack(sk); 3482 } 3483 } 3484 3485 static void tcp_store_ts_recent(struct tcp_sock *tp) 3486 { 3487 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3488 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3489 } 3490 3491 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3492 { 3493 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3494 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3495 * extra check below makes sure this can only happen 3496 * for pure ACK frames. -DaveM 3497 * 3498 * Not only, also it occurs for expired timestamps. 3499 */ 3500 3501 if (tcp_paws_check(&tp->rx_opt, 0)) 3502 tcp_store_ts_recent(tp); 3503 } 3504 } 3505 3506 /* This routine deals with acks during a TLP episode. 3507 * We mark the end of a TLP episode on receiving TLP dupack or when 3508 * ack is after tlp_high_seq. 3509 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3510 */ 3511 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3512 { 3513 struct tcp_sock *tp = tcp_sk(sk); 3514 3515 if (before(ack, tp->tlp_high_seq)) 3516 return; 3517 3518 if (flag & FLAG_DSACKING_ACK) { 3519 /* This DSACK means original and TLP probe arrived; no loss */ 3520 tp->tlp_high_seq = 0; 3521 } else if (after(ack, tp->tlp_high_seq)) { 3522 /* ACK advances: there was a loss, so reduce cwnd. Reset 3523 * tlp_high_seq in tcp_init_cwnd_reduction() 3524 */ 3525 tcp_init_cwnd_reduction(sk); 3526 tcp_set_ca_state(sk, TCP_CA_CWR); 3527 tcp_end_cwnd_reduction(sk); 3528 tcp_try_keep_open(sk); 3529 NET_INC_STATS(sock_net(sk), 3530 LINUX_MIB_TCPLOSSPROBERECOVERY); 3531 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3532 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3533 /* Pure dupack: original and TLP probe arrived; no loss */ 3534 tp->tlp_high_seq = 0; 3535 } 3536 } 3537 3538 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3539 { 3540 const struct inet_connection_sock *icsk = inet_csk(sk); 3541 3542 if (icsk->icsk_ca_ops->in_ack_event) 3543 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3544 } 3545 3546 /* Congestion control has updated the cwnd already. So if we're in 3547 * loss recovery then now we do any new sends (for FRTO) or 3548 * retransmits (for CA_Loss or CA_recovery) that make sense. 3549 */ 3550 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3551 { 3552 struct tcp_sock *tp = tcp_sk(sk); 3553 3554 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3555 return; 3556 3557 if (unlikely(rexmit == 2)) { 3558 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3559 TCP_NAGLE_OFF); 3560 if (after(tp->snd_nxt, tp->high_seq)) 3561 return; 3562 tp->frto = 0; 3563 } 3564 tcp_xmit_retransmit_queue(sk); 3565 } 3566 3567 /* Returns the number of packets newly acked or sacked by the current ACK */ 3568 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3569 { 3570 const struct net *net = sock_net(sk); 3571 struct tcp_sock *tp = tcp_sk(sk); 3572 u32 delivered; 3573 3574 delivered = tp->delivered - prior_delivered; 3575 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3576 if (flag & FLAG_ECE) { 3577 tp->delivered_ce += delivered; 3578 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3579 } 3580 return delivered; 3581 } 3582 3583 /* This routine deals with incoming acks, but not outgoing ones. */ 3584 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3585 { 3586 struct inet_connection_sock *icsk = inet_csk(sk); 3587 struct tcp_sock *tp = tcp_sk(sk); 3588 struct tcp_sacktag_state sack_state; 3589 struct rate_sample rs = { .prior_delivered = 0 }; 3590 u32 prior_snd_una = tp->snd_una; 3591 bool is_sack_reneg = tp->is_sack_reneg; 3592 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3593 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3594 int num_dupack = 0; 3595 int prior_packets = tp->packets_out; 3596 u32 delivered = tp->delivered; 3597 u32 lost = tp->lost; 3598 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3599 u32 prior_fack; 3600 3601 sack_state.first_sackt = 0; 3602 sack_state.rate = &rs; 3603 3604 /* We very likely will need to access rtx queue. */ 3605 prefetch(sk->tcp_rtx_queue.rb_node); 3606 3607 /* If the ack is older than previous acks 3608 * then we can probably ignore it. 3609 */ 3610 if (before(ack, prior_snd_una)) { 3611 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3612 if (before(ack, prior_snd_una - tp->max_window)) { 3613 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3614 tcp_send_challenge_ack(sk, skb); 3615 return -1; 3616 } 3617 goto old_ack; 3618 } 3619 3620 /* If the ack includes data we haven't sent yet, discard 3621 * this segment (RFC793 Section 3.9). 3622 */ 3623 if (after(ack, tp->snd_nxt)) 3624 return -1; 3625 3626 if (after(ack, prior_snd_una)) { 3627 flag |= FLAG_SND_UNA_ADVANCED; 3628 icsk->icsk_retransmits = 0; 3629 3630 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3631 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 3632 if (icsk->icsk_clean_acked) 3633 icsk->icsk_clean_acked(sk, ack); 3634 #endif 3635 } 3636 3637 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3638 rs.prior_in_flight = tcp_packets_in_flight(tp); 3639 3640 /* ts_recent update must be made after we are sure that the packet 3641 * is in window. 3642 */ 3643 if (flag & FLAG_UPDATE_TS_RECENT) 3644 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3645 3646 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 3647 FLAG_SND_UNA_ADVANCED) { 3648 /* Window is constant, pure forward advance. 3649 * No more checks are required. 3650 * Note, we use the fact that SND.UNA>=SND.WL2. 3651 */ 3652 tcp_update_wl(tp, ack_seq); 3653 tcp_snd_una_update(tp, ack); 3654 flag |= FLAG_WIN_UPDATE; 3655 3656 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3657 3658 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3659 } else { 3660 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3661 3662 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3663 flag |= FLAG_DATA; 3664 else 3665 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3666 3667 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3668 3669 if (TCP_SKB_CB(skb)->sacked) 3670 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3671 &sack_state); 3672 3673 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3674 flag |= FLAG_ECE; 3675 ack_ev_flags |= CA_ACK_ECE; 3676 } 3677 3678 if (flag & FLAG_WIN_UPDATE) 3679 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3680 3681 tcp_in_ack_event(sk, ack_ev_flags); 3682 } 3683 3684 /* We passed data and got it acked, remove any soft error 3685 * log. Something worked... 3686 */ 3687 sk->sk_err_soft = 0; 3688 icsk->icsk_probes_out = 0; 3689 tp->rcv_tstamp = tcp_jiffies32; 3690 if (!prior_packets) 3691 goto no_queue; 3692 3693 /* See if we can take anything off of the retransmit queue. */ 3694 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state); 3695 3696 tcp_rack_update_reo_wnd(sk, &rs); 3697 3698 if (tp->tlp_high_seq) 3699 tcp_process_tlp_ack(sk, ack, flag); 3700 /* If needed, reset TLP/RTO timer; RACK may later override this. */ 3701 if (flag & FLAG_SET_XMIT_TIMER) 3702 tcp_set_xmit_timer(sk); 3703 3704 if (tcp_ack_is_dubious(sk, flag)) { 3705 if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) { 3706 num_dupack = 1; 3707 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 3708 if (!(flag & FLAG_DATA)) 3709 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 3710 } 3711 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3712 &rexmit); 3713 } 3714 3715 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3716 sk_dst_confirm(sk); 3717 3718 delivered = tcp_newly_delivered(sk, delivered, flag); 3719 lost = tp->lost - lost; /* freshly marked lost */ 3720 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3721 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3722 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3723 tcp_xmit_recovery(sk, rexmit); 3724 return 1; 3725 3726 no_queue: 3727 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3728 if (flag & FLAG_DSACKING_ACK) { 3729 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3730 &rexmit); 3731 tcp_newly_delivered(sk, delivered, flag); 3732 } 3733 /* If this ack opens up a zero window, clear backoff. It was 3734 * being used to time the probes, and is probably far higher than 3735 * it needs to be for normal retransmission. 3736 */ 3737 tcp_ack_probe(sk); 3738 3739 if (tp->tlp_high_seq) 3740 tcp_process_tlp_ack(sk, ack, flag); 3741 return 1; 3742 3743 old_ack: 3744 /* If data was SACKed, tag it and see if we should send more data. 3745 * If data was DSACKed, see if we can undo a cwnd reduction. 3746 */ 3747 if (TCP_SKB_CB(skb)->sacked) { 3748 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3749 &sack_state); 3750 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3751 &rexmit); 3752 tcp_newly_delivered(sk, delivered, flag); 3753 tcp_xmit_recovery(sk, rexmit); 3754 } 3755 3756 return 0; 3757 } 3758 3759 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3760 bool syn, struct tcp_fastopen_cookie *foc, 3761 bool exp_opt) 3762 { 3763 /* Valid only in SYN or SYN-ACK with an even length. */ 3764 if (!foc || !syn || len < 0 || (len & 1)) 3765 return; 3766 3767 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3768 len <= TCP_FASTOPEN_COOKIE_MAX) 3769 memcpy(foc->val, cookie, len); 3770 else if (len != 0) 3771 len = -1; 3772 foc->len = len; 3773 foc->exp = exp_opt; 3774 } 3775 3776 static void smc_parse_options(const struct tcphdr *th, 3777 struct tcp_options_received *opt_rx, 3778 const unsigned char *ptr, 3779 int opsize) 3780 { 3781 #if IS_ENABLED(CONFIG_SMC) 3782 if (static_branch_unlikely(&tcp_have_smc)) { 3783 if (th->syn && !(opsize & 1) && 3784 opsize >= TCPOLEN_EXP_SMC_BASE && 3785 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) 3786 opt_rx->smc_ok = 1; 3787 } 3788 #endif 3789 } 3790 3791 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 3792 * value on success. 3793 */ 3794 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 3795 { 3796 const unsigned char *ptr = (const unsigned char *)(th + 1); 3797 int length = (th->doff * 4) - sizeof(struct tcphdr); 3798 u16 mss = 0; 3799 3800 while (length > 0) { 3801 int opcode = *ptr++; 3802 int opsize; 3803 3804 switch (opcode) { 3805 case TCPOPT_EOL: 3806 return mss; 3807 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3808 length--; 3809 continue; 3810 default: 3811 if (length < 2) 3812 return mss; 3813 opsize = *ptr++; 3814 if (opsize < 2) /* "silly options" */ 3815 return mss; 3816 if (opsize > length) 3817 return mss; /* fail on partial options */ 3818 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 3819 u16 in_mss = get_unaligned_be16(ptr); 3820 3821 if (in_mss) { 3822 if (user_mss && user_mss < in_mss) 3823 in_mss = user_mss; 3824 mss = in_mss; 3825 } 3826 } 3827 ptr += opsize - 2; 3828 length -= opsize; 3829 } 3830 } 3831 return mss; 3832 } 3833 3834 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3835 * But, this can also be called on packets in the established flow when 3836 * the fast version below fails. 3837 */ 3838 void tcp_parse_options(const struct net *net, 3839 const struct sk_buff *skb, 3840 struct tcp_options_received *opt_rx, int estab, 3841 struct tcp_fastopen_cookie *foc) 3842 { 3843 const unsigned char *ptr; 3844 const struct tcphdr *th = tcp_hdr(skb); 3845 int length = (th->doff * 4) - sizeof(struct tcphdr); 3846 3847 ptr = (const unsigned char *)(th + 1); 3848 opt_rx->saw_tstamp = 0; 3849 3850 while (length > 0) { 3851 int opcode = *ptr++; 3852 int opsize; 3853 3854 switch (opcode) { 3855 case TCPOPT_EOL: 3856 return; 3857 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3858 length--; 3859 continue; 3860 default: 3861 if (length < 2) 3862 return; 3863 opsize = *ptr++; 3864 if (opsize < 2) /* "silly options" */ 3865 return; 3866 if (opsize > length) 3867 return; /* don't parse partial options */ 3868 switch (opcode) { 3869 case TCPOPT_MSS: 3870 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3871 u16 in_mss = get_unaligned_be16(ptr); 3872 if (in_mss) { 3873 if (opt_rx->user_mss && 3874 opt_rx->user_mss < in_mss) 3875 in_mss = opt_rx->user_mss; 3876 opt_rx->mss_clamp = in_mss; 3877 } 3878 } 3879 break; 3880 case TCPOPT_WINDOW: 3881 if (opsize == TCPOLEN_WINDOW && th->syn && 3882 !estab && net->ipv4.sysctl_tcp_window_scaling) { 3883 __u8 snd_wscale = *(__u8 *)ptr; 3884 opt_rx->wscale_ok = 1; 3885 if (snd_wscale > TCP_MAX_WSCALE) { 3886 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 3887 __func__, 3888 snd_wscale, 3889 TCP_MAX_WSCALE); 3890 snd_wscale = TCP_MAX_WSCALE; 3891 } 3892 opt_rx->snd_wscale = snd_wscale; 3893 } 3894 break; 3895 case TCPOPT_TIMESTAMP: 3896 if ((opsize == TCPOLEN_TIMESTAMP) && 3897 ((estab && opt_rx->tstamp_ok) || 3898 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 3899 opt_rx->saw_tstamp = 1; 3900 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3901 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3902 } 3903 break; 3904 case TCPOPT_SACK_PERM: 3905 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3906 !estab && net->ipv4.sysctl_tcp_sack) { 3907 opt_rx->sack_ok = TCP_SACK_SEEN; 3908 tcp_sack_reset(opt_rx); 3909 } 3910 break; 3911 3912 case TCPOPT_SACK: 3913 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3914 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3915 opt_rx->sack_ok) { 3916 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3917 } 3918 break; 3919 #ifdef CONFIG_TCP_MD5SIG 3920 case TCPOPT_MD5SIG: 3921 /* 3922 * The MD5 Hash has already been 3923 * checked (see tcp_v{4,6}_do_rcv()). 3924 */ 3925 break; 3926 #endif 3927 case TCPOPT_FASTOPEN: 3928 tcp_parse_fastopen_option( 3929 opsize - TCPOLEN_FASTOPEN_BASE, 3930 ptr, th->syn, foc, false); 3931 break; 3932 3933 case TCPOPT_EXP: 3934 /* Fast Open option shares code 254 using a 3935 * 16 bits magic number. 3936 */ 3937 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3938 get_unaligned_be16(ptr) == 3939 TCPOPT_FASTOPEN_MAGIC) 3940 tcp_parse_fastopen_option(opsize - 3941 TCPOLEN_EXP_FASTOPEN_BASE, 3942 ptr + 2, th->syn, foc, true); 3943 else 3944 smc_parse_options(th, opt_rx, ptr, 3945 opsize); 3946 break; 3947 3948 } 3949 ptr += opsize-2; 3950 length -= opsize; 3951 } 3952 } 3953 } 3954 EXPORT_SYMBOL(tcp_parse_options); 3955 3956 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3957 { 3958 const __be32 *ptr = (const __be32 *)(th + 1); 3959 3960 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3961 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3962 tp->rx_opt.saw_tstamp = 1; 3963 ++ptr; 3964 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3965 ++ptr; 3966 if (*ptr) 3967 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3968 else 3969 tp->rx_opt.rcv_tsecr = 0; 3970 return true; 3971 } 3972 return false; 3973 } 3974 3975 /* Fast parse options. This hopes to only see timestamps. 3976 * If it is wrong it falls back on tcp_parse_options(). 3977 */ 3978 static bool tcp_fast_parse_options(const struct net *net, 3979 const struct sk_buff *skb, 3980 const struct tcphdr *th, struct tcp_sock *tp) 3981 { 3982 /* In the spirit of fast parsing, compare doff directly to constant 3983 * values. Because equality is used, short doff can be ignored here. 3984 */ 3985 if (th->doff == (sizeof(*th) / 4)) { 3986 tp->rx_opt.saw_tstamp = 0; 3987 return false; 3988 } else if (tp->rx_opt.tstamp_ok && 3989 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3990 if (tcp_parse_aligned_timestamp(tp, th)) 3991 return true; 3992 } 3993 3994 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 3995 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3996 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3997 3998 return true; 3999 } 4000 4001 #ifdef CONFIG_TCP_MD5SIG 4002 /* 4003 * Parse MD5 Signature option 4004 */ 4005 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 4006 { 4007 int length = (th->doff << 2) - sizeof(*th); 4008 const u8 *ptr = (const u8 *)(th + 1); 4009 4010 /* If not enough data remaining, we can short cut */ 4011 while (length >= TCPOLEN_MD5SIG) { 4012 int opcode = *ptr++; 4013 int opsize; 4014 4015 switch (opcode) { 4016 case TCPOPT_EOL: 4017 return NULL; 4018 case TCPOPT_NOP: 4019 length--; 4020 continue; 4021 default: 4022 opsize = *ptr++; 4023 if (opsize < 2 || opsize > length) 4024 return NULL; 4025 if (opcode == TCPOPT_MD5SIG) 4026 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 4027 } 4028 ptr += opsize - 2; 4029 length -= opsize; 4030 } 4031 return NULL; 4032 } 4033 EXPORT_SYMBOL(tcp_parse_md5sig_option); 4034 #endif 4035 4036 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4037 * 4038 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4039 * it can pass through stack. So, the following predicate verifies that 4040 * this segment is not used for anything but congestion avoidance or 4041 * fast retransmit. Moreover, we even are able to eliminate most of such 4042 * second order effects, if we apply some small "replay" window (~RTO) 4043 * to timestamp space. 4044 * 4045 * All these measures still do not guarantee that we reject wrapped ACKs 4046 * on networks with high bandwidth, when sequence space is recycled fastly, 4047 * but it guarantees that such events will be very rare and do not affect 4048 * connection seriously. This doesn't look nice, but alas, PAWS is really 4049 * buggy extension. 4050 * 4051 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4052 * states that events when retransmit arrives after original data are rare. 4053 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4054 * the biggest problem on large power networks even with minor reordering. 4055 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4056 * up to bandwidth of 18Gigabit/sec. 8) ] 4057 */ 4058 4059 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 4060 { 4061 const struct tcp_sock *tp = tcp_sk(sk); 4062 const struct tcphdr *th = tcp_hdr(skb); 4063 u32 seq = TCP_SKB_CB(skb)->seq; 4064 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4065 4066 return (/* 1. Pure ACK with correct sequence number. */ 4067 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 4068 4069 /* 2. ... and duplicate ACK. */ 4070 ack == tp->snd_una && 4071 4072 /* 3. ... and does not update window. */ 4073 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4074 4075 /* 4. ... and sits in replay window. */ 4076 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4077 } 4078 4079 static inline bool tcp_paws_discard(const struct sock *sk, 4080 const struct sk_buff *skb) 4081 { 4082 const struct tcp_sock *tp = tcp_sk(sk); 4083 4084 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4085 !tcp_disordered_ack(sk, skb); 4086 } 4087 4088 /* Check segment sequence number for validity. 4089 * 4090 * Segment controls are considered valid, if the segment 4091 * fits to the window after truncation to the window. Acceptability 4092 * of data (and SYN, FIN, of course) is checked separately. 4093 * See tcp_data_queue(), for example. 4094 * 4095 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4096 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4097 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4098 * (borrowed from freebsd) 4099 */ 4100 4101 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4102 { 4103 return !before(end_seq, tp->rcv_wup) && 4104 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4105 } 4106 4107 /* When we get a reset we do this. */ 4108 void tcp_reset(struct sock *sk) 4109 { 4110 trace_tcp_receive_reset(sk); 4111 4112 /* We want the right error as BSD sees it (and indeed as we do). */ 4113 switch (sk->sk_state) { 4114 case TCP_SYN_SENT: 4115 sk->sk_err = ECONNREFUSED; 4116 break; 4117 case TCP_CLOSE_WAIT: 4118 sk->sk_err = EPIPE; 4119 break; 4120 case TCP_CLOSE: 4121 return; 4122 default: 4123 sk->sk_err = ECONNRESET; 4124 } 4125 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4126 smp_wmb(); 4127 4128 tcp_write_queue_purge(sk); 4129 tcp_done(sk); 4130 4131 if (!sock_flag(sk, SOCK_DEAD)) 4132 sk->sk_error_report(sk); 4133 } 4134 4135 /* 4136 * Process the FIN bit. This now behaves as it is supposed to work 4137 * and the FIN takes effect when it is validly part of sequence 4138 * space. Not before when we get holes. 4139 * 4140 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4141 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4142 * TIME-WAIT) 4143 * 4144 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4145 * close and we go into CLOSING (and later onto TIME-WAIT) 4146 * 4147 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4148 */ 4149 void tcp_fin(struct sock *sk) 4150 { 4151 struct tcp_sock *tp = tcp_sk(sk); 4152 4153 inet_csk_schedule_ack(sk); 4154 4155 sk->sk_shutdown |= RCV_SHUTDOWN; 4156 sock_set_flag(sk, SOCK_DONE); 4157 4158 switch (sk->sk_state) { 4159 case TCP_SYN_RECV: 4160 case TCP_ESTABLISHED: 4161 /* Move to CLOSE_WAIT */ 4162 tcp_set_state(sk, TCP_CLOSE_WAIT); 4163 inet_csk_enter_pingpong_mode(sk); 4164 break; 4165 4166 case TCP_CLOSE_WAIT: 4167 case TCP_CLOSING: 4168 /* Received a retransmission of the FIN, do 4169 * nothing. 4170 */ 4171 break; 4172 case TCP_LAST_ACK: 4173 /* RFC793: Remain in the LAST-ACK state. */ 4174 break; 4175 4176 case TCP_FIN_WAIT1: 4177 /* This case occurs when a simultaneous close 4178 * happens, we must ack the received FIN and 4179 * enter the CLOSING state. 4180 */ 4181 tcp_send_ack(sk); 4182 tcp_set_state(sk, TCP_CLOSING); 4183 break; 4184 case TCP_FIN_WAIT2: 4185 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4186 tcp_send_ack(sk); 4187 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4188 break; 4189 default: 4190 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4191 * cases we should never reach this piece of code. 4192 */ 4193 pr_err("%s: Impossible, sk->sk_state=%d\n", 4194 __func__, sk->sk_state); 4195 break; 4196 } 4197 4198 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4199 * Probably, we should reset in this case. For now drop them. 4200 */ 4201 skb_rbtree_purge(&tp->out_of_order_queue); 4202 if (tcp_is_sack(tp)) 4203 tcp_sack_reset(&tp->rx_opt); 4204 sk_mem_reclaim(sk); 4205 4206 if (!sock_flag(sk, SOCK_DEAD)) { 4207 sk->sk_state_change(sk); 4208 4209 /* Do not send POLL_HUP for half duplex close. */ 4210 if (sk->sk_shutdown == SHUTDOWN_MASK || 4211 sk->sk_state == TCP_CLOSE) 4212 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4213 else 4214 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4215 } 4216 } 4217 4218 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4219 u32 end_seq) 4220 { 4221 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4222 if (before(seq, sp->start_seq)) 4223 sp->start_seq = seq; 4224 if (after(end_seq, sp->end_seq)) 4225 sp->end_seq = end_seq; 4226 return true; 4227 } 4228 return false; 4229 } 4230 4231 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4232 { 4233 struct tcp_sock *tp = tcp_sk(sk); 4234 4235 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4236 int mib_idx; 4237 4238 if (before(seq, tp->rcv_nxt)) 4239 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4240 else 4241 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4242 4243 NET_INC_STATS(sock_net(sk), mib_idx); 4244 4245 tp->rx_opt.dsack = 1; 4246 tp->duplicate_sack[0].start_seq = seq; 4247 tp->duplicate_sack[0].end_seq = end_seq; 4248 } 4249 } 4250 4251 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4252 { 4253 struct tcp_sock *tp = tcp_sk(sk); 4254 4255 if (!tp->rx_opt.dsack) 4256 tcp_dsack_set(sk, seq, end_seq); 4257 else 4258 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4259 } 4260 4261 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4262 { 4263 /* When the ACK path fails or drops most ACKs, the sender would 4264 * timeout and spuriously retransmit the same segment repeatedly. 4265 * The receiver remembers and reflects via DSACKs. Leverage the 4266 * DSACK state and change the txhash to re-route speculatively. 4267 */ 4268 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq) 4269 sk_rethink_txhash(sk); 4270 } 4271 4272 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4273 { 4274 struct tcp_sock *tp = tcp_sk(sk); 4275 4276 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4277 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4278 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4279 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4280 4281 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4282 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4283 4284 tcp_rcv_spurious_retrans(sk, skb); 4285 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4286 end_seq = tp->rcv_nxt; 4287 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4288 } 4289 } 4290 4291 tcp_send_ack(sk); 4292 } 4293 4294 /* These routines update the SACK block as out-of-order packets arrive or 4295 * in-order packets close up the sequence space. 4296 */ 4297 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4298 { 4299 int this_sack; 4300 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4301 struct tcp_sack_block *swalk = sp + 1; 4302 4303 /* See if the recent change to the first SACK eats into 4304 * or hits the sequence space of other SACK blocks, if so coalesce. 4305 */ 4306 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4307 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4308 int i; 4309 4310 /* Zap SWALK, by moving every further SACK up by one slot. 4311 * Decrease num_sacks. 4312 */ 4313 tp->rx_opt.num_sacks--; 4314 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4315 sp[i] = sp[i + 1]; 4316 continue; 4317 } 4318 this_sack++, swalk++; 4319 } 4320 } 4321 4322 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4323 { 4324 struct tcp_sock *tp = tcp_sk(sk); 4325 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4326 int cur_sacks = tp->rx_opt.num_sacks; 4327 int this_sack; 4328 4329 if (!cur_sacks) 4330 goto new_sack; 4331 4332 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4333 if (tcp_sack_extend(sp, seq, end_seq)) { 4334 /* Rotate this_sack to the first one. */ 4335 for (; this_sack > 0; this_sack--, sp--) 4336 swap(*sp, *(sp - 1)); 4337 if (cur_sacks > 1) 4338 tcp_sack_maybe_coalesce(tp); 4339 return; 4340 } 4341 } 4342 4343 /* Could not find an adjacent existing SACK, build a new one, 4344 * put it at the front, and shift everyone else down. We 4345 * always know there is at least one SACK present already here. 4346 * 4347 * If the sack array is full, forget about the last one. 4348 */ 4349 if (this_sack >= TCP_NUM_SACKS) { 4350 if (tp->compressed_ack > TCP_FASTRETRANS_THRESH) 4351 tcp_send_ack(sk); 4352 this_sack--; 4353 tp->rx_opt.num_sacks--; 4354 sp--; 4355 } 4356 for (; this_sack > 0; this_sack--, sp--) 4357 *sp = *(sp - 1); 4358 4359 new_sack: 4360 /* Build the new head SACK, and we're done. */ 4361 sp->start_seq = seq; 4362 sp->end_seq = end_seq; 4363 tp->rx_opt.num_sacks++; 4364 } 4365 4366 /* RCV.NXT advances, some SACKs should be eaten. */ 4367 4368 static void tcp_sack_remove(struct tcp_sock *tp) 4369 { 4370 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4371 int num_sacks = tp->rx_opt.num_sacks; 4372 int this_sack; 4373 4374 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4375 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4376 tp->rx_opt.num_sacks = 0; 4377 return; 4378 } 4379 4380 for (this_sack = 0; this_sack < num_sacks;) { 4381 /* Check if the start of the sack is covered by RCV.NXT. */ 4382 if (!before(tp->rcv_nxt, sp->start_seq)) { 4383 int i; 4384 4385 /* RCV.NXT must cover all the block! */ 4386 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4387 4388 /* Zap this SACK, by moving forward any other SACKS. */ 4389 for (i = this_sack+1; i < num_sacks; i++) 4390 tp->selective_acks[i-1] = tp->selective_acks[i]; 4391 num_sacks--; 4392 continue; 4393 } 4394 this_sack++; 4395 sp++; 4396 } 4397 tp->rx_opt.num_sacks = num_sacks; 4398 } 4399 4400 /** 4401 * tcp_try_coalesce - try to merge skb to prior one 4402 * @sk: socket 4403 * @dest: destination queue 4404 * @to: prior buffer 4405 * @from: buffer to add in queue 4406 * @fragstolen: pointer to boolean 4407 * 4408 * Before queueing skb @from after @to, try to merge them 4409 * to reduce overall memory use and queue lengths, if cost is small. 4410 * Packets in ofo or receive queues can stay a long time. 4411 * Better try to coalesce them right now to avoid future collapses. 4412 * Returns true if caller should free @from instead of queueing it 4413 */ 4414 static bool tcp_try_coalesce(struct sock *sk, 4415 struct sk_buff *to, 4416 struct sk_buff *from, 4417 bool *fragstolen) 4418 { 4419 int delta; 4420 4421 *fragstolen = false; 4422 4423 /* Its possible this segment overlaps with prior segment in queue */ 4424 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4425 return false; 4426 4427 #ifdef CONFIG_TLS_DEVICE 4428 if (from->decrypted != to->decrypted) 4429 return false; 4430 #endif 4431 4432 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4433 return false; 4434 4435 atomic_add(delta, &sk->sk_rmem_alloc); 4436 sk_mem_charge(sk, delta); 4437 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4438 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4439 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4440 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4441 4442 if (TCP_SKB_CB(from)->has_rxtstamp) { 4443 TCP_SKB_CB(to)->has_rxtstamp = true; 4444 to->tstamp = from->tstamp; 4445 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4446 } 4447 4448 return true; 4449 } 4450 4451 static bool tcp_ooo_try_coalesce(struct sock *sk, 4452 struct sk_buff *to, 4453 struct sk_buff *from, 4454 bool *fragstolen) 4455 { 4456 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4457 4458 /* In case tcp_drop() is called later, update to->gso_segs */ 4459 if (res) { 4460 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4461 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4462 4463 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4464 } 4465 return res; 4466 } 4467 4468 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4469 { 4470 sk_drops_add(sk, skb); 4471 __kfree_skb(skb); 4472 } 4473 4474 /* This one checks to see if we can put data from the 4475 * out_of_order queue into the receive_queue. 4476 */ 4477 static void tcp_ofo_queue(struct sock *sk) 4478 { 4479 struct tcp_sock *tp = tcp_sk(sk); 4480 __u32 dsack_high = tp->rcv_nxt; 4481 bool fin, fragstolen, eaten; 4482 struct sk_buff *skb, *tail; 4483 struct rb_node *p; 4484 4485 p = rb_first(&tp->out_of_order_queue); 4486 while (p) { 4487 skb = rb_to_skb(p); 4488 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4489 break; 4490 4491 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4492 __u32 dsack = dsack_high; 4493 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4494 dsack_high = TCP_SKB_CB(skb)->end_seq; 4495 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4496 } 4497 p = rb_next(p); 4498 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4499 4500 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4501 tcp_drop(sk, skb); 4502 continue; 4503 } 4504 4505 tail = skb_peek_tail(&sk->sk_receive_queue); 4506 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4507 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4508 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4509 if (!eaten) 4510 __skb_queue_tail(&sk->sk_receive_queue, skb); 4511 else 4512 kfree_skb_partial(skb, fragstolen); 4513 4514 if (unlikely(fin)) { 4515 tcp_fin(sk); 4516 /* tcp_fin() purges tp->out_of_order_queue, 4517 * so we must end this loop right now. 4518 */ 4519 break; 4520 } 4521 } 4522 } 4523 4524 static bool tcp_prune_ofo_queue(struct sock *sk); 4525 static int tcp_prune_queue(struct sock *sk); 4526 4527 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4528 unsigned int size) 4529 { 4530 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4531 !sk_rmem_schedule(sk, skb, size)) { 4532 4533 if (tcp_prune_queue(sk) < 0) 4534 return -1; 4535 4536 while (!sk_rmem_schedule(sk, skb, size)) { 4537 if (!tcp_prune_ofo_queue(sk)) 4538 return -1; 4539 } 4540 } 4541 return 0; 4542 } 4543 4544 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4545 { 4546 struct tcp_sock *tp = tcp_sk(sk); 4547 struct rb_node **p, *parent; 4548 struct sk_buff *skb1; 4549 u32 seq, end_seq; 4550 bool fragstolen; 4551 4552 tcp_ecn_check_ce(sk, skb); 4553 4554 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4555 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4556 tcp_drop(sk, skb); 4557 return; 4558 } 4559 4560 /* Disable header prediction. */ 4561 tp->pred_flags = 0; 4562 inet_csk_schedule_ack(sk); 4563 4564 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4565 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4566 seq = TCP_SKB_CB(skb)->seq; 4567 end_seq = TCP_SKB_CB(skb)->end_seq; 4568 4569 p = &tp->out_of_order_queue.rb_node; 4570 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4571 /* Initial out of order segment, build 1 SACK. */ 4572 if (tcp_is_sack(tp)) { 4573 tp->rx_opt.num_sacks = 1; 4574 tp->selective_acks[0].start_seq = seq; 4575 tp->selective_acks[0].end_seq = end_seq; 4576 } 4577 rb_link_node(&skb->rbnode, NULL, p); 4578 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4579 tp->ooo_last_skb = skb; 4580 goto end; 4581 } 4582 4583 /* In the typical case, we are adding an skb to the end of the list. 4584 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4585 */ 4586 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 4587 skb, &fragstolen)) { 4588 coalesce_done: 4589 tcp_grow_window(sk, skb); 4590 kfree_skb_partial(skb, fragstolen); 4591 skb = NULL; 4592 goto add_sack; 4593 } 4594 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4595 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4596 parent = &tp->ooo_last_skb->rbnode; 4597 p = &parent->rb_right; 4598 goto insert; 4599 } 4600 4601 /* Find place to insert this segment. Handle overlaps on the way. */ 4602 parent = NULL; 4603 while (*p) { 4604 parent = *p; 4605 skb1 = rb_to_skb(parent); 4606 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4607 p = &parent->rb_left; 4608 continue; 4609 } 4610 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4611 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4612 /* All the bits are present. Drop. */ 4613 NET_INC_STATS(sock_net(sk), 4614 LINUX_MIB_TCPOFOMERGE); 4615 tcp_drop(sk, skb); 4616 skb = NULL; 4617 tcp_dsack_set(sk, seq, end_seq); 4618 goto add_sack; 4619 } 4620 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4621 /* Partial overlap. */ 4622 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4623 } else { 4624 /* skb's seq == skb1's seq and skb covers skb1. 4625 * Replace skb1 with skb. 4626 */ 4627 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4628 &tp->out_of_order_queue); 4629 tcp_dsack_extend(sk, 4630 TCP_SKB_CB(skb1)->seq, 4631 TCP_SKB_CB(skb1)->end_seq); 4632 NET_INC_STATS(sock_net(sk), 4633 LINUX_MIB_TCPOFOMERGE); 4634 tcp_drop(sk, skb1); 4635 goto merge_right; 4636 } 4637 } else if (tcp_ooo_try_coalesce(sk, skb1, 4638 skb, &fragstolen)) { 4639 goto coalesce_done; 4640 } 4641 p = &parent->rb_right; 4642 } 4643 insert: 4644 /* Insert segment into RB tree. */ 4645 rb_link_node(&skb->rbnode, parent, p); 4646 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4647 4648 merge_right: 4649 /* Remove other segments covered by skb. */ 4650 while ((skb1 = skb_rb_next(skb)) != NULL) { 4651 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4652 break; 4653 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4654 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4655 end_seq); 4656 break; 4657 } 4658 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4659 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4660 TCP_SKB_CB(skb1)->end_seq); 4661 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4662 tcp_drop(sk, skb1); 4663 } 4664 /* If there is no skb after us, we are the last_skb ! */ 4665 if (!skb1) 4666 tp->ooo_last_skb = skb; 4667 4668 add_sack: 4669 if (tcp_is_sack(tp)) 4670 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4671 end: 4672 if (skb) { 4673 tcp_grow_window(sk, skb); 4674 skb_condense(skb); 4675 skb_set_owner_r(skb, sk); 4676 } 4677 } 4678 4679 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 4680 bool *fragstolen) 4681 { 4682 int eaten; 4683 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4684 4685 eaten = (tail && 4686 tcp_try_coalesce(sk, tail, 4687 skb, fragstolen)) ? 1 : 0; 4688 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4689 if (!eaten) { 4690 __skb_queue_tail(&sk->sk_receive_queue, skb); 4691 skb_set_owner_r(skb, sk); 4692 } 4693 return eaten; 4694 } 4695 4696 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4697 { 4698 struct sk_buff *skb; 4699 int err = -ENOMEM; 4700 int data_len = 0; 4701 bool fragstolen; 4702 4703 if (size == 0) 4704 return 0; 4705 4706 if (size > PAGE_SIZE) { 4707 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4708 4709 data_len = npages << PAGE_SHIFT; 4710 size = data_len + (size & ~PAGE_MASK); 4711 } 4712 skb = alloc_skb_with_frags(size - data_len, data_len, 4713 PAGE_ALLOC_COSTLY_ORDER, 4714 &err, sk->sk_allocation); 4715 if (!skb) 4716 goto err; 4717 4718 skb_put(skb, size - data_len); 4719 skb->data_len = data_len; 4720 skb->len = size; 4721 4722 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 4723 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 4724 goto err_free; 4725 } 4726 4727 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4728 if (err) 4729 goto err_free; 4730 4731 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4732 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4733 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4734 4735 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 4736 WARN_ON_ONCE(fragstolen); /* should not happen */ 4737 __kfree_skb(skb); 4738 } 4739 return size; 4740 4741 err_free: 4742 kfree_skb(skb); 4743 err: 4744 return err; 4745 4746 } 4747 4748 void tcp_data_ready(struct sock *sk) 4749 { 4750 const struct tcp_sock *tp = tcp_sk(sk); 4751 int avail = tp->rcv_nxt - tp->copied_seq; 4752 4753 if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE)) 4754 return; 4755 4756 sk->sk_data_ready(sk); 4757 } 4758 4759 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4760 { 4761 struct tcp_sock *tp = tcp_sk(sk); 4762 bool fragstolen; 4763 int eaten; 4764 4765 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4766 __kfree_skb(skb); 4767 return; 4768 } 4769 skb_dst_drop(skb); 4770 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4771 4772 tcp_ecn_accept_cwr(sk, skb); 4773 4774 tp->rx_opt.dsack = 0; 4775 4776 /* Queue data for delivery to the user. 4777 * Packets in sequence go to the receive queue. 4778 * Out of sequence packets to the out_of_order_queue. 4779 */ 4780 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4781 if (tcp_receive_window(tp) == 0) { 4782 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 4783 goto out_of_window; 4784 } 4785 4786 /* Ok. In sequence. In window. */ 4787 queue_and_out: 4788 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4789 sk_forced_mem_schedule(sk, skb->truesize); 4790 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 4791 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 4792 goto drop; 4793 } 4794 4795 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 4796 if (skb->len) 4797 tcp_event_data_recv(sk, skb); 4798 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4799 tcp_fin(sk); 4800 4801 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4802 tcp_ofo_queue(sk); 4803 4804 /* RFC5681. 4.2. SHOULD send immediate ACK, when 4805 * gap in queue is filled. 4806 */ 4807 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4808 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 4809 } 4810 4811 if (tp->rx_opt.num_sacks) 4812 tcp_sack_remove(tp); 4813 4814 tcp_fast_path_check(sk); 4815 4816 if (eaten > 0) 4817 kfree_skb_partial(skb, fragstolen); 4818 if (!sock_flag(sk, SOCK_DEAD)) 4819 tcp_data_ready(sk); 4820 return; 4821 } 4822 4823 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4824 tcp_rcv_spurious_retrans(sk, skb); 4825 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4826 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4827 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4828 4829 out_of_window: 4830 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4831 inet_csk_schedule_ack(sk); 4832 drop: 4833 tcp_drop(sk, skb); 4834 return; 4835 } 4836 4837 /* Out of window. F.e. zero window probe. */ 4838 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4839 goto out_of_window; 4840 4841 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4842 /* Partial packet, seq < rcv_next < end_seq */ 4843 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4844 4845 /* If window is closed, drop tail of packet. But after 4846 * remembering D-SACK for its head made in previous line. 4847 */ 4848 if (!tcp_receive_window(tp)) { 4849 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 4850 goto out_of_window; 4851 } 4852 goto queue_and_out; 4853 } 4854 4855 tcp_data_queue_ofo(sk, skb); 4856 } 4857 4858 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4859 { 4860 if (list) 4861 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4862 4863 return skb_rb_next(skb); 4864 } 4865 4866 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4867 struct sk_buff_head *list, 4868 struct rb_root *root) 4869 { 4870 struct sk_buff *next = tcp_skb_next(skb, list); 4871 4872 if (list) 4873 __skb_unlink(skb, list); 4874 else 4875 rb_erase(&skb->rbnode, root); 4876 4877 __kfree_skb(skb); 4878 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4879 4880 return next; 4881 } 4882 4883 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4884 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4885 { 4886 struct rb_node **p = &root->rb_node; 4887 struct rb_node *parent = NULL; 4888 struct sk_buff *skb1; 4889 4890 while (*p) { 4891 parent = *p; 4892 skb1 = rb_to_skb(parent); 4893 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4894 p = &parent->rb_left; 4895 else 4896 p = &parent->rb_right; 4897 } 4898 rb_link_node(&skb->rbnode, parent, p); 4899 rb_insert_color(&skb->rbnode, root); 4900 } 4901 4902 /* Collapse contiguous sequence of skbs head..tail with 4903 * sequence numbers start..end. 4904 * 4905 * If tail is NULL, this means until the end of the queue. 4906 * 4907 * Segments with FIN/SYN are not collapsed (only because this 4908 * simplifies code) 4909 */ 4910 static void 4911 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4912 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4913 { 4914 struct sk_buff *skb = head, *n; 4915 struct sk_buff_head tmp; 4916 bool end_of_skbs; 4917 4918 /* First, check that queue is collapsible and find 4919 * the point where collapsing can be useful. 4920 */ 4921 restart: 4922 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4923 n = tcp_skb_next(skb, list); 4924 4925 /* No new bits? It is possible on ofo queue. */ 4926 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4927 skb = tcp_collapse_one(sk, skb, list, root); 4928 if (!skb) 4929 break; 4930 goto restart; 4931 } 4932 4933 /* The first skb to collapse is: 4934 * - not SYN/FIN and 4935 * - bloated or contains data before "start" or 4936 * overlaps to the next one. 4937 */ 4938 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4939 (tcp_win_from_space(sk, skb->truesize) > skb->len || 4940 before(TCP_SKB_CB(skb)->seq, start))) { 4941 end_of_skbs = false; 4942 break; 4943 } 4944 4945 if (n && n != tail && 4946 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4947 end_of_skbs = false; 4948 break; 4949 } 4950 4951 /* Decided to skip this, advance start seq. */ 4952 start = TCP_SKB_CB(skb)->end_seq; 4953 } 4954 if (end_of_skbs || 4955 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4956 return; 4957 4958 __skb_queue_head_init(&tmp); 4959 4960 while (before(start, end)) { 4961 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4962 struct sk_buff *nskb; 4963 4964 nskb = alloc_skb(copy, GFP_ATOMIC); 4965 if (!nskb) 4966 break; 4967 4968 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4969 #ifdef CONFIG_TLS_DEVICE 4970 nskb->decrypted = skb->decrypted; 4971 #endif 4972 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4973 if (list) 4974 __skb_queue_before(list, skb, nskb); 4975 else 4976 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 4977 skb_set_owner_r(nskb, sk); 4978 4979 /* Copy data, releasing collapsed skbs. */ 4980 while (copy > 0) { 4981 int offset = start - TCP_SKB_CB(skb)->seq; 4982 int size = TCP_SKB_CB(skb)->end_seq - start; 4983 4984 BUG_ON(offset < 0); 4985 if (size > 0) { 4986 size = min(copy, size); 4987 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4988 BUG(); 4989 TCP_SKB_CB(nskb)->end_seq += size; 4990 copy -= size; 4991 start += size; 4992 } 4993 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4994 skb = tcp_collapse_one(sk, skb, list, root); 4995 if (!skb || 4996 skb == tail || 4997 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4998 goto end; 4999 #ifdef CONFIG_TLS_DEVICE 5000 if (skb->decrypted != nskb->decrypted) 5001 goto end; 5002 #endif 5003 } 5004 } 5005 } 5006 end: 5007 skb_queue_walk_safe(&tmp, skb, n) 5008 tcp_rbtree_insert(root, skb); 5009 } 5010 5011 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5012 * and tcp_collapse() them until all the queue is collapsed. 5013 */ 5014 static void tcp_collapse_ofo_queue(struct sock *sk) 5015 { 5016 struct tcp_sock *tp = tcp_sk(sk); 5017 u32 range_truesize, sum_tiny = 0; 5018 struct sk_buff *skb, *head; 5019 u32 start, end; 5020 5021 skb = skb_rb_first(&tp->out_of_order_queue); 5022 new_range: 5023 if (!skb) { 5024 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5025 return; 5026 } 5027 start = TCP_SKB_CB(skb)->seq; 5028 end = TCP_SKB_CB(skb)->end_seq; 5029 range_truesize = skb->truesize; 5030 5031 for (head = skb;;) { 5032 skb = skb_rb_next(skb); 5033 5034 /* Range is terminated when we see a gap or when 5035 * we are at the queue end. 5036 */ 5037 if (!skb || 5038 after(TCP_SKB_CB(skb)->seq, end) || 5039 before(TCP_SKB_CB(skb)->end_seq, start)) { 5040 /* Do not attempt collapsing tiny skbs */ 5041 if (range_truesize != head->truesize || 5042 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) { 5043 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5044 head, skb, start, end); 5045 } else { 5046 sum_tiny += range_truesize; 5047 if (sum_tiny > sk->sk_rcvbuf >> 3) 5048 return; 5049 } 5050 goto new_range; 5051 } 5052 5053 range_truesize += skb->truesize; 5054 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5055 start = TCP_SKB_CB(skb)->seq; 5056 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5057 end = TCP_SKB_CB(skb)->end_seq; 5058 } 5059 } 5060 5061 /* 5062 * Clean the out-of-order queue to make room. 5063 * We drop high sequences packets to : 5064 * 1) Let a chance for holes to be filled. 5065 * 2) not add too big latencies if thousands of packets sit there. 5066 * (But if application shrinks SO_RCVBUF, we could still end up 5067 * freeing whole queue here) 5068 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5069 * 5070 * Return true if queue has shrunk. 5071 */ 5072 static bool tcp_prune_ofo_queue(struct sock *sk) 5073 { 5074 struct tcp_sock *tp = tcp_sk(sk); 5075 struct rb_node *node, *prev; 5076 int goal; 5077 5078 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5079 return false; 5080 5081 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5082 goal = sk->sk_rcvbuf >> 3; 5083 node = &tp->ooo_last_skb->rbnode; 5084 do { 5085 prev = rb_prev(node); 5086 rb_erase(node, &tp->out_of_order_queue); 5087 goal -= rb_to_skb(node)->truesize; 5088 tcp_drop(sk, rb_to_skb(node)); 5089 if (!prev || goal <= 0) { 5090 sk_mem_reclaim(sk); 5091 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5092 !tcp_under_memory_pressure(sk)) 5093 break; 5094 goal = sk->sk_rcvbuf >> 3; 5095 } 5096 node = prev; 5097 } while (node); 5098 tp->ooo_last_skb = rb_to_skb(prev); 5099 5100 /* Reset SACK state. A conforming SACK implementation will 5101 * do the same at a timeout based retransmit. When a connection 5102 * is in a sad state like this, we care only about integrity 5103 * of the connection not performance. 5104 */ 5105 if (tp->rx_opt.sack_ok) 5106 tcp_sack_reset(&tp->rx_opt); 5107 return true; 5108 } 5109 5110 /* Reduce allocated memory if we can, trying to get 5111 * the socket within its memory limits again. 5112 * 5113 * Return less than zero if we should start dropping frames 5114 * until the socket owning process reads some of the data 5115 * to stabilize the situation. 5116 */ 5117 static int tcp_prune_queue(struct sock *sk) 5118 { 5119 struct tcp_sock *tp = tcp_sk(sk); 5120 5121 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5122 5123 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5124 tcp_clamp_window(sk); 5125 else if (tcp_under_memory_pressure(sk)) 5126 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 5127 5128 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5129 return 0; 5130 5131 tcp_collapse_ofo_queue(sk); 5132 if (!skb_queue_empty(&sk->sk_receive_queue)) 5133 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5134 skb_peek(&sk->sk_receive_queue), 5135 NULL, 5136 tp->copied_seq, tp->rcv_nxt); 5137 sk_mem_reclaim(sk); 5138 5139 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5140 return 0; 5141 5142 /* Collapsing did not help, destructive actions follow. 5143 * This must not ever occur. */ 5144 5145 tcp_prune_ofo_queue(sk); 5146 5147 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5148 return 0; 5149 5150 /* If we are really being abused, tell the caller to silently 5151 * drop receive data on the floor. It will get retransmitted 5152 * and hopefully then we'll have sufficient space. 5153 */ 5154 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5155 5156 /* Massive buffer overcommit. */ 5157 tp->pred_flags = 0; 5158 return -1; 5159 } 5160 5161 static bool tcp_should_expand_sndbuf(const struct sock *sk) 5162 { 5163 const struct tcp_sock *tp = tcp_sk(sk); 5164 5165 /* If the user specified a specific send buffer setting, do 5166 * not modify it. 5167 */ 5168 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5169 return false; 5170 5171 /* If we are under global TCP memory pressure, do not expand. */ 5172 if (tcp_under_memory_pressure(sk)) 5173 return false; 5174 5175 /* If we are under soft global TCP memory pressure, do not expand. */ 5176 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5177 return false; 5178 5179 /* If we filled the congestion window, do not expand. */ 5180 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5181 return false; 5182 5183 return true; 5184 } 5185 5186 /* When incoming ACK allowed to free some skb from write_queue, 5187 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5188 * on the exit from tcp input handler. 5189 * 5190 * PROBLEM: sndbuf expansion does not work well with largesend. 5191 */ 5192 static void tcp_new_space(struct sock *sk) 5193 { 5194 struct tcp_sock *tp = tcp_sk(sk); 5195 5196 if (tcp_should_expand_sndbuf(sk)) { 5197 tcp_sndbuf_expand(sk); 5198 tp->snd_cwnd_stamp = tcp_jiffies32; 5199 } 5200 5201 sk->sk_write_space(sk); 5202 } 5203 5204 static void tcp_check_space(struct sock *sk) 5205 { 5206 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5207 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5208 /* pairs with tcp_poll() */ 5209 smp_mb(); 5210 if (sk->sk_socket && 5211 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5212 tcp_new_space(sk); 5213 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5214 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5215 } 5216 } 5217 } 5218 5219 static inline void tcp_data_snd_check(struct sock *sk) 5220 { 5221 tcp_push_pending_frames(sk); 5222 tcp_check_space(sk); 5223 } 5224 5225 /* 5226 * Check if sending an ack is needed. 5227 */ 5228 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5229 { 5230 struct tcp_sock *tp = tcp_sk(sk); 5231 unsigned long rtt, delay; 5232 5233 /* More than one full frame received... */ 5234 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5235 /* ... and right edge of window advances far enough. 5236 * (tcp_recvmsg() will send ACK otherwise). 5237 * If application uses SO_RCVLOWAT, we want send ack now if 5238 * we have not received enough bytes to satisfy the condition. 5239 */ 5240 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5241 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5242 /* We ACK each frame or... */ 5243 tcp_in_quickack_mode(sk) || 5244 /* Protocol state mandates a one-time immediate ACK */ 5245 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5246 send_now: 5247 tcp_send_ack(sk); 5248 return; 5249 } 5250 5251 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5252 tcp_send_delayed_ack(sk); 5253 return; 5254 } 5255 5256 if (!tcp_is_sack(tp) || 5257 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr) 5258 goto send_now; 5259 5260 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5261 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5262 if (tp->compressed_ack > TCP_FASTRETRANS_THRESH) 5263 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 5264 tp->compressed_ack - TCP_FASTRETRANS_THRESH); 5265 tp->compressed_ack = 0; 5266 } 5267 5268 if (++tp->compressed_ack <= TCP_FASTRETRANS_THRESH) 5269 goto send_now; 5270 5271 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5272 return; 5273 5274 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5275 5276 rtt = tp->rcv_rtt_est.rtt_us; 5277 if (tp->srtt_us && tp->srtt_us < rtt) 5278 rtt = tp->srtt_us; 5279 5280 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns, 5281 rtt * (NSEC_PER_USEC >> 3)/20); 5282 sock_hold(sk); 5283 hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay), 5284 HRTIMER_MODE_REL_PINNED_SOFT); 5285 } 5286 5287 static inline void tcp_ack_snd_check(struct sock *sk) 5288 { 5289 if (!inet_csk_ack_scheduled(sk)) { 5290 /* We sent a data segment already. */ 5291 return; 5292 } 5293 __tcp_ack_snd_check(sk, 1); 5294 } 5295 5296 /* 5297 * This routine is only called when we have urgent data 5298 * signaled. Its the 'slow' part of tcp_urg. It could be 5299 * moved inline now as tcp_urg is only called from one 5300 * place. We handle URGent data wrong. We have to - as 5301 * BSD still doesn't use the correction from RFC961. 5302 * For 1003.1g we should support a new option TCP_STDURG to permit 5303 * either form (or just set the sysctl tcp_stdurg). 5304 */ 5305 5306 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5307 { 5308 struct tcp_sock *tp = tcp_sk(sk); 5309 u32 ptr = ntohs(th->urg_ptr); 5310 5311 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg) 5312 ptr--; 5313 ptr += ntohl(th->seq); 5314 5315 /* Ignore urgent data that we've already seen and read. */ 5316 if (after(tp->copied_seq, ptr)) 5317 return; 5318 5319 /* Do not replay urg ptr. 5320 * 5321 * NOTE: interesting situation not covered by specs. 5322 * Misbehaving sender may send urg ptr, pointing to segment, 5323 * which we already have in ofo queue. We are not able to fetch 5324 * such data and will stay in TCP_URG_NOTYET until will be eaten 5325 * by recvmsg(). Seems, we are not obliged to handle such wicked 5326 * situations. But it is worth to think about possibility of some 5327 * DoSes using some hypothetical application level deadlock. 5328 */ 5329 if (before(ptr, tp->rcv_nxt)) 5330 return; 5331 5332 /* Do we already have a newer (or duplicate) urgent pointer? */ 5333 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5334 return; 5335 5336 /* Tell the world about our new urgent pointer. */ 5337 sk_send_sigurg(sk); 5338 5339 /* We may be adding urgent data when the last byte read was 5340 * urgent. To do this requires some care. We cannot just ignore 5341 * tp->copied_seq since we would read the last urgent byte again 5342 * as data, nor can we alter copied_seq until this data arrives 5343 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5344 * 5345 * NOTE. Double Dutch. Rendering to plain English: author of comment 5346 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5347 * and expect that both A and B disappear from stream. This is _wrong_. 5348 * Though this happens in BSD with high probability, this is occasional. 5349 * Any application relying on this is buggy. Note also, that fix "works" 5350 * only in this artificial test. Insert some normal data between A and B and we will 5351 * decline of BSD again. Verdict: it is better to remove to trap 5352 * buggy users. 5353 */ 5354 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5355 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5356 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5357 tp->copied_seq++; 5358 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5359 __skb_unlink(skb, &sk->sk_receive_queue); 5360 __kfree_skb(skb); 5361 } 5362 } 5363 5364 tp->urg_data = TCP_URG_NOTYET; 5365 WRITE_ONCE(tp->urg_seq, ptr); 5366 5367 /* Disable header prediction. */ 5368 tp->pred_flags = 0; 5369 } 5370 5371 /* This is the 'fast' part of urgent handling. */ 5372 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5373 { 5374 struct tcp_sock *tp = tcp_sk(sk); 5375 5376 /* Check if we get a new urgent pointer - normally not. */ 5377 if (th->urg) 5378 tcp_check_urg(sk, th); 5379 5380 /* Do we wait for any urgent data? - normally not... */ 5381 if (tp->urg_data == TCP_URG_NOTYET) { 5382 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5383 th->syn; 5384 5385 /* Is the urgent pointer pointing into this packet? */ 5386 if (ptr < skb->len) { 5387 u8 tmp; 5388 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5389 BUG(); 5390 tp->urg_data = TCP_URG_VALID | tmp; 5391 if (!sock_flag(sk, SOCK_DEAD)) 5392 sk->sk_data_ready(sk); 5393 } 5394 } 5395 } 5396 5397 /* Accept RST for rcv_nxt - 1 after a FIN. 5398 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5399 * FIN is sent followed by a RST packet. The RST is sent with the same 5400 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5401 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5402 * ACKs on the closed socket. In addition middleboxes can drop either the 5403 * challenge ACK or a subsequent RST. 5404 */ 5405 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5406 { 5407 struct tcp_sock *tp = tcp_sk(sk); 5408 5409 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5410 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5411 TCPF_CLOSING)); 5412 } 5413 5414 /* Does PAWS and seqno based validation of an incoming segment, flags will 5415 * play significant role here. 5416 */ 5417 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5418 const struct tcphdr *th, int syn_inerr) 5419 { 5420 struct tcp_sock *tp = tcp_sk(sk); 5421 bool rst_seq_match = false; 5422 5423 /* RFC1323: H1. Apply PAWS check first. */ 5424 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5425 tp->rx_opt.saw_tstamp && 5426 tcp_paws_discard(sk, skb)) { 5427 if (!th->rst) { 5428 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5429 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5430 LINUX_MIB_TCPACKSKIPPEDPAWS, 5431 &tp->last_oow_ack_time)) 5432 tcp_send_dupack(sk, skb); 5433 goto discard; 5434 } 5435 /* Reset is accepted even if it did not pass PAWS. */ 5436 } 5437 5438 /* Step 1: check sequence number */ 5439 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5440 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5441 * (RST) segments are validated by checking their SEQ-fields." 5442 * And page 69: "If an incoming segment is not acceptable, 5443 * an acknowledgment should be sent in reply (unless the RST 5444 * bit is set, if so drop the segment and return)". 5445 */ 5446 if (!th->rst) { 5447 if (th->syn) 5448 goto syn_challenge; 5449 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5450 LINUX_MIB_TCPACKSKIPPEDSEQ, 5451 &tp->last_oow_ack_time)) 5452 tcp_send_dupack(sk, skb); 5453 } else if (tcp_reset_check(sk, skb)) { 5454 tcp_reset(sk); 5455 } 5456 goto discard; 5457 } 5458 5459 /* Step 2: check RST bit */ 5460 if (th->rst) { 5461 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5462 * FIN and SACK too if available): 5463 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5464 * the right-most SACK block, 5465 * then 5466 * RESET the connection 5467 * else 5468 * Send a challenge ACK 5469 */ 5470 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5471 tcp_reset_check(sk, skb)) { 5472 rst_seq_match = true; 5473 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5474 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5475 int max_sack = sp[0].end_seq; 5476 int this_sack; 5477 5478 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5479 ++this_sack) { 5480 max_sack = after(sp[this_sack].end_seq, 5481 max_sack) ? 5482 sp[this_sack].end_seq : max_sack; 5483 } 5484 5485 if (TCP_SKB_CB(skb)->seq == max_sack) 5486 rst_seq_match = true; 5487 } 5488 5489 if (rst_seq_match) 5490 tcp_reset(sk); 5491 else { 5492 /* Disable TFO if RST is out-of-order 5493 * and no data has been received 5494 * for current active TFO socket 5495 */ 5496 if (tp->syn_fastopen && !tp->data_segs_in && 5497 sk->sk_state == TCP_ESTABLISHED) 5498 tcp_fastopen_active_disable(sk); 5499 tcp_send_challenge_ack(sk, skb); 5500 } 5501 goto discard; 5502 } 5503 5504 /* step 3: check security and precedence [ignored] */ 5505 5506 /* step 4: Check for a SYN 5507 * RFC 5961 4.2 : Send a challenge ack 5508 */ 5509 if (th->syn) { 5510 syn_challenge: 5511 if (syn_inerr) 5512 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5513 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5514 tcp_send_challenge_ack(sk, skb); 5515 goto discard; 5516 } 5517 5518 return true; 5519 5520 discard: 5521 tcp_drop(sk, skb); 5522 return false; 5523 } 5524 5525 /* 5526 * TCP receive function for the ESTABLISHED state. 5527 * 5528 * It is split into a fast path and a slow path. The fast path is 5529 * disabled when: 5530 * - A zero window was announced from us - zero window probing 5531 * is only handled properly in the slow path. 5532 * - Out of order segments arrived. 5533 * - Urgent data is expected. 5534 * - There is no buffer space left 5535 * - Unexpected TCP flags/window values/header lengths are received 5536 * (detected by checking the TCP header against pred_flags) 5537 * - Data is sent in both directions. Fast path only supports pure senders 5538 * or pure receivers (this means either the sequence number or the ack 5539 * value must stay constant) 5540 * - Unexpected TCP option. 5541 * 5542 * When these conditions are not satisfied it drops into a standard 5543 * receive procedure patterned after RFC793 to handle all cases. 5544 * The first three cases are guaranteed by proper pred_flags setting, 5545 * the rest is checked inline. Fast processing is turned on in 5546 * tcp_data_queue when everything is OK. 5547 */ 5548 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5549 { 5550 const struct tcphdr *th = (const struct tcphdr *)skb->data; 5551 struct tcp_sock *tp = tcp_sk(sk); 5552 unsigned int len = skb->len; 5553 5554 /* TCP congestion window tracking */ 5555 trace_tcp_probe(sk, skb); 5556 5557 tcp_mstamp_refresh(tp); 5558 if (unlikely(!sk->sk_rx_dst)) 5559 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5560 /* 5561 * Header prediction. 5562 * The code loosely follows the one in the famous 5563 * "30 instruction TCP receive" Van Jacobson mail. 5564 * 5565 * Van's trick is to deposit buffers into socket queue 5566 * on a device interrupt, to call tcp_recv function 5567 * on the receive process context and checksum and copy 5568 * the buffer to user space. smart... 5569 * 5570 * Our current scheme is not silly either but we take the 5571 * extra cost of the net_bh soft interrupt processing... 5572 * We do checksum and copy also but from device to kernel. 5573 */ 5574 5575 tp->rx_opt.saw_tstamp = 0; 5576 5577 /* pred_flags is 0xS?10 << 16 + snd_wnd 5578 * if header_prediction is to be made 5579 * 'S' will always be tp->tcp_header_len >> 2 5580 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5581 * turn it off (when there are holes in the receive 5582 * space for instance) 5583 * PSH flag is ignored. 5584 */ 5585 5586 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5587 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5588 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5589 int tcp_header_len = tp->tcp_header_len; 5590 5591 /* Timestamp header prediction: tcp_header_len 5592 * is automatically equal to th->doff*4 due to pred_flags 5593 * match. 5594 */ 5595 5596 /* Check timestamp */ 5597 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5598 /* No? Slow path! */ 5599 if (!tcp_parse_aligned_timestamp(tp, th)) 5600 goto slow_path; 5601 5602 /* If PAWS failed, check it more carefully in slow path */ 5603 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5604 goto slow_path; 5605 5606 /* DO NOT update ts_recent here, if checksum fails 5607 * and timestamp was corrupted part, it will result 5608 * in a hung connection since we will drop all 5609 * future packets due to the PAWS test. 5610 */ 5611 } 5612 5613 if (len <= tcp_header_len) { 5614 /* Bulk data transfer: sender */ 5615 if (len == tcp_header_len) { 5616 /* Predicted packet is in window by definition. 5617 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5618 * Hence, check seq<=rcv_wup reduces to: 5619 */ 5620 if (tcp_header_len == 5621 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5622 tp->rcv_nxt == tp->rcv_wup) 5623 tcp_store_ts_recent(tp); 5624 5625 /* We know that such packets are checksummed 5626 * on entry. 5627 */ 5628 tcp_ack(sk, skb, 0); 5629 __kfree_skb(skb); 5630 tcp_data_snd_check(sk); 5631 /* When receiving pure ack in fast path, update 5632 * last ts ecr directly instead of calling 5633 * tcp_rcv_rtt_measure_ts() 5634 */ 5635 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 5636 return; 5637 } else { /* Header too small */ 5638 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5639 goto discard; 5640 } 5641 } else { 5642 int eaten = 0; 5643 bool fragstolen = false; 5644 5645 if (tcp_checksum_complete(skb)) 5646 goto csum_error; 5647 5648 if ((int)skb->truesize > sk->sk_forward_alloc) 5649 goto step5; 5650 5651 /* Predicted packet is in window by definition. 5652 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5653 * Hence, check seq<=rcv_wup reduces to: 5654 */ 5655 if (tcp_header_len == 5656 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5657 tp->rcv_nxt == tp->rcv_wup) 5658 tcp_store_ts_recent(tp); 5659 5660 tcp_rcv_rtt_measure_ts(sk, skb); 5661 5662 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5663 5664 /* Bulk data transfer: receiver */ 5665 __skb_pull(skb, tcp_header_len); 5666 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5667 5668 tcp_event_data_recv(sk, skb); 5669 5670 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5671 /* Well, only one small jumplet in fast path... */ 5672 tcp_ack(sk, skb, FLAG_DATA); 5673 tcp_data_snd_check(sk); 5674 if (!inet_csk_ack_scheduled(sk)) 5675 goto no_ack; 5676 } 5677 5678 __tcp_ack_snd_check(sk, 0); 5679 no_ack: 5680 if (eaten) 5681 kfree_skb_partial(skb, fragstolen); 5682 tcp_data_ready(sk); 5683 return; 5684 } 5685 } 5686 5687 slow_path: 5688 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5689 goto csum_error; 5690 5691 if (!th->ack && !th->rst && !th->syn) 5692 goto discard; 5693 5694 /* 5695 * Standard slow path. 5696 */ 5697 5698 if (!tcp_validate_incoming(sk, skb, th, 1)) 5699 return; 5700 5701 step5: 5702 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5703 goto discard; 5704 5705 tcp_rcv_rtt_measure_ts(sk, skb); 5706 5707 /* Process urgent data. */ 5708 tcp_urg(sk, skb, th); 5709 5710 /* step 7: process the segment text */ 5711 tcp_data_queue(sk, skb); 5712 5713 tcp_data_snd_check(sk); 5714 tcp_ack_snd_check(sk); 5715 return; 5716 5717 csum_error: 5718 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5719 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5720 5721 discard: 5722 tcp_drop(sk, skb); 5723 } 5724 EXPORT_SYMBOL(tcp_rcv_established); 5725 5726 void tcp_init_transfer(struct sock *sk, int bpf_op) 5727 { 5728 struct inet_connection_sock *icsk = inet_csk(sk); 5729 struct tcp_sock *tp = tcp_sk(sk); 5730 5731 tcp_mtup_init(sk); 5732 icsk->icsk_af_ops->rebuild_header(sk); 5733 tcp_init_metrics(sk); 5734 5735 /* Initialize the congestion window to start the transfer. 5736 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 5737 * retransmitted. In light of RFC6298 more aggressive 1sec 5738 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 5739 * retransmission has occurred. 5740 */ 5741 if (tp->total_retrans > 1 && tp->undo_marker) 5742 tp->snd_cwnd = 1; 5743 else 5744 tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 5745 tp->snd_cwnd_stamp = tcp_jiffies32; 5746 5747 tcp_call_bpf(sk, bpf_op, 0, NULL); 5748 tcp_init_congestion_control(sk); 5749 tcp_init_buffer_space(sk); 5750 } 5751 5752 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5753 { 5754 struct tcp_sock *tp = tcp_sk(sk); 5755 struct inet_connection_sock *icsk = inet_csk(sk); 5756 5757 tcp_set_state(sk, TCP_ESTABLISHED); 5758 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5759 5760 if (skb) { 5761 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5762 security_inet_conn_established(sk, skb); 5763 sk_mark_napi_id(sk, skb); 5764 } 5765 5766 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB); 5767 5768 /* Prevent spurious tcp_cwnd_restart() on first data 5769 * packet. 5770 */ 5771 tp->lsndtime = tcp_jiffies32; 5772 5773 if (sock_flag(sk, SOCK_KEEPOPEN)) 5774 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5775 5776 if (!tp->rx_opt.snd_wscale) 5777 __tcp_fast_path_on(tp, tp->snd_wnd); 5778 else 5779 tp->pred_flags = 0; 5780 } 5781 5782 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5783 struct tcp_fastopen_cookie *cookie) 5784 { 5785 struct tcp_sock *tp = tcp_sk(sk); 5786 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 5787 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5788 bool syn_drop = false; 5789 5790 if (mss == tp->rx_opt.user_mss) { 5791 struct tcp_options_received opt; 5792 5793 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5794 tcp_clear_options(&opt); 5795 opt.user_mss = opt.mss_clamp = 0; 5796 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 5797 mss = opt.mss_clamp; 5798 } 5799 5800 if (!tp->syn_fastopen) { 5801 /* Ignore an unsolicited cookie */ 5802 cookie->len = -1; 5803 } else if (tp->total_retrans) { 5804 /* SYN timed out and the SYN-ACK neither has a cookie nor 5805 * acknowledges data. Presumably the remote received only 5806 * the retransmitted (regular) SYNs: either the original 5807 * SYN-data or the corresponding SYN-ACK was dropped. 5808 */ 5809 syn_drop = (cookie->len < 0 && data); 5810 } else if (cookie->len < 0 && !tp->syn_data) { 5811 /* We requested a cookie but didn't get it. If we did not use 5812 * the (old) exp opt format then try so next time (try_exp=1). 5813 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5814 */ 5815 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5816 } 5817 5818 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5819 5820 if (data) { /* Retransmit unacked data in SYN */ 5821 if (tp->total_retrans) 5822 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 5823 else 5824 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 5825 skb_rbtree_walk_from(data) { 5826 if (__tcp_retransmit_skb(sk, data, 1)) 5827 break; 5828 } 5829 tcp_rearm_rto(sk); 5830 NET_INC_STATS(sock_net(sk), 5831 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5832 return true; 5833 } 5834 tp->syn_data_acked = tp->syn_data; 5835 if (tp->syn_data_acked) { 5836 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 5837 /* SYN-data is counted as two separate packets in tcp_ack() */ 5838 if (tp->delivered > 1) 5839 --tp->delivered; 5840 } 5841 5842 tcp_fastopen_add_skb(sk, synack); 5843 5844 return false; 5845 } 5846 5847 static void smc_check_reset_syn(struct tcp_sock *tp) 5848 { 5849 #if IS_ENABLED(CONFIG_SMC) 5850 if (static_branch_unlikely(&tcp_have_smc)) { 5851 if (tp->syn_smc && !tp->rx_opt.smc_ok) 5852 tp->syn_smc = 0; 5853 } 5854 #endif 5855 } 5856 5857 static void tcp_try_undo_spurious_syn(struct sock *sk) 5858 { 5859 struct tcp_sock *tp = tcp_sk(sk); 5860 u32 syn_stamp; 5861 5862 /* undo_marker is set when SYN or SYNACK times out. The timeout is 5863 * spurious if the ACK's timestamp option echo value matches the 5864 * original SYN timestamp. 5865 */ 5866 syn_stamp = tp->retrans_stamp; 5867 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 5868 syn_stamp == tp->rx_opt.rcv_tsecr) 5869 tp->undo_marker = 0; 5870 } 5871 5872 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5873 const struct tcphdr *th) 5874 { 5875 struct inet_connection_sock *icsk = inet_csk(sk); 5876 struct tcp_sock *tp = tcp_sk(sk); 5877 struct tcp_fastopen_cookie foc = { .len = -1 }; 5878 int saved_clamp = tp->rx_opt.mss_clamp; 5879 bool fastopen_fail; 5880 5881 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 5882 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5883 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5884 5885 if (th->ack) { 5886 /* rfc793: 5887 * "If the state is SYN-SENT then 5888 * first check the ACK bit 5889 * If the ACK bit is set 5890 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5891 * a reset (unless the RST bit is set, if so drop 5892 * the segment and return)" 5893 */ 5894 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5895 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5896 goto reset_and_undo; 5897 5898 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5899 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5900 tcp_time_stamp(tp))) { 5901 NET_INC_STATS(sock_net(sk), 5902 LINUX_MIB_PAWSACTIVEREJECTED); 5903 goto reset_and_undo; 5904 } 5905 5906 /* Now ACK is acceptable. 5907 * 5908 * "If the RST bit is set 5909 * If the ACK was acceptable then signal the user "error: 5910 * connection reset", drop the segment, enter CLOSED state, 5911 * delete TCB, and return." 5912 */ 5913 5914 if (th->rst) { 5915 tcp_reset(sk); 5916 goto discard; 5917 } 5918 5919 /* rfc793: 5920 * "fifth, if neither of the SYN or RST bits is set then 5921 * drop the segment and return." 5922 * 5923 * See note below! 5924 * --ANK(990513) 5925 */ 5926 if (!th->syn) 5927 goto discard_and_undo; 5928 5929 /* rfc793: 5930 * "If the SYN bit is on ... 5931 * are acceptable then ... 5932 * (our SYN has been ACKed), change the connection 5933 * state to ESTABLISHED..." 5934 */ 5935 5936 tcp_ecn_rcv_synack(tp, th); 5937 5938 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5939 tcp_try_undo_spurious_syn(sk); 5940 tcp_ack(sk, skb, FLAG_SLOWPATH); 5941 5942 /* Ok.. it's good. Set up sequence numbers and 5943 * move to established. 5944 */ 5945 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 5946 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5947 5948 /* RFC1323: The window in SYN & SYN/ACK segments is 5949 * never scaled. 5950 */ 5951 tp->snd_wnd = ntohs(th->window); 5952 5953 if (!tp->rx_opt.wscale_ok) { 5954 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5955 tp->window_clamp = min(tp->window_clamp, 65535U); 5956 } 5957 5958 if (tp->rx_opt.saw_tstamp) { 5959 tp->rx_opt.tstamp_ok = 1; 5960 tp->tcp_header_len = 5961 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5962 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5963 tcp_store_ts_recent(tp); 5964 } else { 5965 tp->tcp_header_len = sizeof(struct tcphdr); 5966 } 5967 5968 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5969 tcp_initialize_rcv_mss(sk); 5970 5971 /* Remember, tcp_poll() does not lock socket! 5972 * Change state from SYN-SENT only after copied_seq 5973 * is initialized. */ 5974 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 5975 5976 smc_check_reset_syn(tp); 5977 5978 smp_mb(); 5979 5980 tcp_finish_connect(sk, skb); 5981 5982 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 5983 tcp_rcv_fastopen_synack(sk, skb, &foc); 5984 5985 if (!sock_flag(sk, SOCK_DEAD)) { 5986 sk->sk_state_change(sk); 5987 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5988 } 5989 if (fastopen_fail) 5990 return -1; 5991 if (sk->sk_write_pending || 5992 icsk->icsk_accept_queue.rskq_defer_accept || 5993 inet_csk_in_pingpong_mode(sk)) { 5994 /* Save one ACK. Data will be ready after 5995 * several ticks, if write_pending is set. 5996 * 5997 * It may be deleted, but with this feature tcpdumps 5998 * look so _wonderfully_ clever, that I was not able 5999 * to stand against the temptation 8) --ANK 6000 */ 6001 inet_csk_schedule_ack(sk); 6002 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 6003 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 6004 TCP_DELACK_MAX, TCP_RTO_MAX); 6005 6006 discard: 6007 tcp_drop(sk, skb); 6008 return 0; 6009 } else { 6010 tcp_send_ack(sk); 6011 } 6012 return -1; 6013 } 6014 6015 /* No ACK in the segment */ 6016 6017 if (th->rst) { 6018 /* rfc793: 6019 * "If the RST bit is set 6020 * 6021 * Otherwise (no ACK) drop the segment and return." 6022 */ 6023 6024 goto discard_and_undo; 6025 } 6026 6027 /* PAWS check. */ 6028 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 6029 tcp_paws_reject(&tp->rx_opt, 0)) 6030 goto discard_and_undo; 6031 6032 if (th->syn) { 6033 /* We see SYN without ACK. It is attempt of 6034 * simultaneous connect with crossed SYNs. 6035 * Particularly, it can be connect to self. 6036 */ 6037 tcp_set_state(sk, TCP_SYN_RECV); 6038 6039 if (tp->rx_opt.saw_tstamp) { 6040 tp->rx_opt.tstamp_ok = 1; 6041 tcp_store_ts_recent(tp); 6042 tp->tcp_header_len = 6043 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6044 } else { 6045 tp->tcp_header_len = sizeof(struct tcphdr); 6046 } 6047 6048 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6049 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6050 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6051 6052 /* RFC1323: The window in SYN & SYN/ACK segments is 6053 * never scaled. 6054 */ 6055 tp->snd_wnd = ntohs(th->window); 6056 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6057 tp->max_window = tp->snd_wnd; 6058 6059 tcp_ecn_rcv_syn(tp, th); 6060 6061 tcp_mtup_init(sk); 6062 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6063 tcp_initialize_rcv_mss(sk); 6064 6065 tcp_send_synack(sk); 6066 #if 0 6067 /* Note, we could accept data and URG from this segment. 6068 * There are no obstacles to make this (except that we must 6069 * either change tcp_recvmsg() to prevent it from returning data 6070 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6071 * 6072 * However, if we ignore data in ACKless segments sometimes, 6073 * we have no reasons to accept it sometimes. 6074 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6075 * is not flawless. So, discard packet for sanity. 6076 * Uncomment this return to process the data. 6077 */ 6078 return -1; 6079 #else 6080 goto discard; 6081 #endif 6082 } 6083 /* "fifth, if neither of the SYN or RST bits is set then 6084 * drop the segment and return." 6085 */ 6086 6087 discard_and_undo: 6088 tcp_clear_options(&tp->rx_opt); 6089 tp->rx_opt.mss_clamp = saved_clamp; 6090 goto discard; 6091 6092 reset_and_undo: 6093 tcp_clear_options(&tp->rx_opt); 6094 tp->rx_opt.mss_clamp = saved_clamp; 6095 return 1; 6096 } 6097 6098 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6099 { 6100 struct request_sock *req; 6101 6102 tcp_try_undo_loss(sk, false); 6103 6104 /* Reset rtx states to prevent spurious retransmits_timed_out() */ 6105 tcp_sk(sk)->retrans_stamp = 0; 6106 inet_csk(sk)->icsk_retransmits = 0; 6107 6108 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6109 * we no longer need req so release it. 6110 */ 6111 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 6112 lockdep_sock_is_held(sk)); 6113 reqsk_fastopen_remove(sk, req, false); 6114 6115 /* Re-arm the timer because data may have been sent out. 6116 * This is similar to the regular data transmission case 6117 * when new data has just been ack'ed. 6118 * 6119 * (TFO) - we could try to be more aggressive and 6120 * retransmitting any data sooner based on when they 6121 * are sent out. 6122 */ 6123 tcp_rearm_rto(sk); 6124 } 6125 6126 /* 6127 * This function implements the receiving procedure of RFC 793 for 6128 * all states except ESTABLISHED and TIME_WAIT. 6129 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6130 * address independent. 6131 */ 6132 6133 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6134 { 6135 struct tcp_sock *tp = tcp_sk(sk); 6136 struct inet_connection_sock *icsk = inet_csk(sk); 6137 const struct tcphdr *th = tcp_hdr(skb); 6138 struct request_sock *req; 6139 int queued = 0; 6140 bool acceptable; 6141 6142 switch (sk->sk_state) { 6143 case TCP_CLOSE: 6144 goto discard; 6145 6146 case TCP_LISTEN: 6147 if (th->ack) 6148 return 1; 6149 6150 if (th->rst) 6151 goto discard; 6152 6153 if (th->syn) { 6154 if (th->fin) 6155 goto discard; 6156 /* It is possible that we process SYN packets from backlog, 6157 * so we need to make sure to disable BH and RCU right there. 6158 */ 6159 rcu_read_lock(); 6160 local_bh_disable(); 6161 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 6162 local_bh_enable(); 6163 rcu_read_unlock(); 6164 6165 if (!acceptable) 6166 return 1; 6167 consume_skb(skb); 6168 return 0; 6169 } 6170 goto discard; 6171 6172 case TCP_SYN_SENT: 6173 tp->rx_opt.saw_tstamp = 0; 6174 tcp_mstamp_refresh(tp); 6175 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6176 if (queued >= 0) 6177 return queued; 6178 6179 /* Do step6 onward by hand. */ 6180 tcp_urg(sk, skb, th); 6181 __kfree_skb(skb); 6182 tcp_data_snd_check(sk); 6183 return 0; 6184 } 6185 6186 tcp_mstamp_refresh(tp); 6187 tp->rx_opt.saw_tstamp = 0; 6188 req = rcu_dereference_protected(tp->fastopen_rsk, 6189 lockdep_sock_is_held(sk)); 6190 if (req) { 6191 bool req_stolen; 6192 6193 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6194 sk->sk_state != TCP_FIN_WAIT1); 6195 6196 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) 6197 goto discard; 6198 } 6199 6200 if (!th->ack && !th->rst && !th->syn) 6201 goto discard; 6202 6203 if (!tcp_validate_incoming(sk, skb, th, 0)) 6204 return 0; 6205 6206 /* step 5: check the ACK field */ 6207 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 6208 FLAG_UPDATE_TS_RECENT | 6209 FLAG_NO_CHALLENGE_ACK) > 0; 6210 6211 if (!acceptable) { 6212 if (sk->sk_state == TCP_SYN_RECV) 6213 return 1; /* send one RST */ 6214 tcp_send_challenge_ack(sk, skb); 6215 goto discard; 6216 } 6217 switch (sk->sk_state) { 6218 case TCP_SYN_RECV: 6219 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6220 if (!tp->srtt_us) 6221 tcp_synack_rtt_meas(sk, req); 6222 6223 if (req) { 6224 tcp_rcv_synrecv_state_fastopen(sk); 6225 } else { 6226 tcp_try_undo_spurious_syn(sk); 6227 tp->retrans_stamp = 0; 6228 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB); 6229 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6230 } 6231 smp_mb(); 6232 tcp_set_state(sk, TCP_ESTABLISHED); 6233 sk->sk_state_change(sk); 6234 6235 /* Note, that this wakeup is only for marginal crossed SYN case. 6236 * Passively open sockets are not waked up, because 6237 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6238 */ 6239 if (sk->sk_socket) 6240 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6241 6242 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6243 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6244 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6245 6246 if (tp->rx_opt.tstamp_ok) 6247 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6248 6249 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6250 tcp_update_pacing_rate(sk); 6251 6252 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6253 tp->lsndtime = tcp_jiffies32; 6254 6255 tcp_initialize_rcv_mss(sk); 6256 tcp_fast_path_on(tp); 6257 break; 6258 6259 case TCP_FIN_WAIT1: { 6260 int tmo; 6261 6262 if (req) 6263 tcp_rcv_synrecv_state_fastopen(sk); 6264 6265 if (tp->snd_una != tp->write_seq) 6266 break; 6267 6268 tcp_set_state(sk, TCP_FIN_WAIT2); 6269 sk->sk_shutdown |= SEND_SHUTDOWN; 6270 6271 sk_dst_confirm(sk); 6272 6273 if (!sock_flag(sk, SOCK_DEAD)) { 6274 /* Wake up lingering close() */ 6275 sk->sk_state_change(sk); 6276 break; 6277 } 6278 6279 if (tp->linger2 < 0) { 6280 tcp_done(sk); 6281 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6282 return 1; 6283 } 6284 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6285 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6286 /* Receive out of order FIN after close() */ 6287 if (tp->syn_fastopen && th->fin) 6288 tcp_fastopen_active_disable(sk); 6289 tcp_done(sk); 6290 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6291 return 1; 6292 } 6293 6294 tmo = tcp_fin_time(sk); 6295 if (tmo > TCP_TIMEWAIT_LEN) { 6296 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6297 } else if (th->fin || sock_owned_by_user(sk)) { 6298 /* Bad case. We could lose such FIN otherwise. 6299 * It is not a big problem, but it looks confusing 6300 * and not so rare event. We still can lose it now, 6301 * if it spins in bh_lock_sock(), but it is really 6302 * marginal case. 6303 */ 6304 inet_csk_reset_keepalive_timer(sk, tmo); 6305 } else { 6306 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6307 goto discard; 6308 } 6309 break; 6310 } 6311 6312 case TCP_CLOSING: 6313 if (tp->snd_una == tp->write_seq) { 6314 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6315 goto discard; 6316 } 6317 break; 6318 6319 case TCP_LAST_ACK: 6320 if (tp->snd_una == tp->write_seq) { 6321 tcp_update_metrics(sk); 6322 tcp_done(sk); 6323 goto discard; 6324 } 6325 break; 6326 } 6327 6328 /* step 6: check the URG bit */ 6329 tcp_urg(sk, skb, th); 6330 6331 /* step 7: process the segment text */ 6332 switch (sk->sk_state) { 6333 case TCP_CLOSE_WAIT: 6334 case TCP_CLOSING: 6335 case TCP_LAST_ACK: 6336 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6337 break; 6338 /* fall through */ 6339 case TCP_FIN_WAIT1: 6340 case TCP_FIN_WAIT2: 6341 /* RFC 793 says to queue data in these states, 6342 * RFC 1122 says we MUST send a reset. 6343 * BSD 4.4 also does reset. 6344 */ 6345 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6346 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6347 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6348 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6349 tcp_reset(sk); 6350 return 1; 6351 } 6352 } 6353 /* Fall through */ 6354 case TCP_ESTABLISHED: 6355 tcp_data_queue(sk, skb); 6356 queued = 1; 6357 break; 6358 } 6359 6360 /* tcp_data could move socket to TIME-WAIT */ 6361 if (sk->sk_state != TCP_CLOSE) { 6362 tcp_data_snd_check(sk); 6363 tcp_ack_snd_check(sk); 6364 } 6365 6366 if (!queued) { 6367 discard: 6368 tcp_drop(sk, skb); 6369 } 6370 return 0; 6371 } 6372 EXPORT_SYMBOL(tcp_rcv_state_process); 6373 6374 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6375 { 6376 struct inet_request_sock *ireq = inet_rsk(req); 6377 6378 if (family == AF_INET) 6379 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6380 &ireq->ir_rmt_addr, port); 6381 #if IS_ENABLED(CONFIG_IPV6) 6382 else if (family == AF_INET6) 6383 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6384 &ireq->ir_v6_rmt_addr, port); 6385 #endif 6386 } 6387 6388 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6389 * 6390 * If we receive a SYN packet with these bits set, it means a 6391 * network is playing bad games with TOS bits. In order to 6392 * avoid possible false congestion notifications, we disable 6393 * TCP ECN negotiation. 6394 * 6395 * Exception: tcp_ca wants ECN. This is required for DCTCP 6396 * congestion control: Linux DCTCP asserts ECT on all packets, 6397 * including SYN, which is most optimal solution; however, 6398 * others, such as FreeBSD do not. 6399 * 6400 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 6401 * set, indicating the use of a future TCP extension (such as AccECN). See 6402 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 6403 * extensions. 6404 */ 6405 static void tcp_ecn_create_request(struct request_sock *req, 6406 const struct sk_buff *skb, 6407 const struct sock *listen_sk, 6408 const struct dst_entry *dst) 6409 { 6410 const struct tcphdr *th = tcp_hdr(skb); 6411 const struct net *net = sock_net(listen_sk); 6412 bool th_ecn = th->ece && th->cwr; 6413 bool ect, ecn_ok; 6414 u32 ecn_ok_dst; 6415 6416 if (!th_ecn) 6417 return; 6418 6419 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6420 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6421 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6422 6423 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6424 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6425 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6426 inet_rsk(req)->ecn_ok = 1; 6427 } 6428 6429 static void tcp_openreq_init(struct request_sock *req, 6430 const struct tcp_options_received *rx_opt, 6431 struct sk_buff *skb, const struct sock *sk) 6432 { 6433 struct inet_request_sock *ireq = inet_rsk(req); 6434 6435 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6436 req->cookie_ts = 0; 6437 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6438 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6439 tcp_rsk(req)->snt_synack = 0; 6440 tcp_rsk(req)->last_oow_ack_time = 0; 6441 req->mss = rx_opt->mss_clamp; 6442 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6443 ireq->tstamp_ok = rx_opt->tstamp_ok; 6444 ireq->sack_ok = rx_opt->sack_ok; 6445 ireq->snd_wscale = rx_opt->snd_wscale; 6446 ireq->wscale_ok = rx_opt->wscale_ok; 6447 ireq->acked = 0; 6448 ireq->ecn_ok = 0; 6449 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6450 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6451 ireq->ir_mark = inet_request_mark(sk, skb); 6452 #if IS_ENABLED(CONFIG_SMC) 6453 ireq->smc_ok = rx_opt->smc_ok; 6454 #endif 6455 } 6456 6457 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6458 struct sock *sk_listener, 6459 bool attach_listener) 6460 { 6461 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6462 attach_listener); 6463 6464 if (req) { 6465 struct inet_request_sock *ireq = inet_rsk(req); 6466 6467 ireq->ireq_opt = NULL; 6468 #if IS_ENABLED(CONFIG_IPV6) 6469 ireq->pktopts = NULL; 6470 #endif 6471 atomic64_set(&ireq->ir_cookie, 0); 6472 ireq->ireq_state = TCP_NEW_SYN_RECV; 6473 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6474 ireq->ireq_family = sk_listener->sk_family; 6475 } 6476 6477 return req; 6478 } 6479 EXPORT_SYMBOL(inet_reqsk_alloc); 6480 6481 /* 6482 * Return true if a syncookie should be sent 6483 */ 6484 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto) 6485 { 6486 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6487 const char *msg = "Dropping request"; 6488 bool want_cookie = false; 6489 struct net *net = sock_net(sk); 6490 6491 #ifdef CONFIG_SYN_COOKIES 6492 if (net->ipv4.sysctl_tcp_syncookies) { 6493 msg = "Sending cookies"; 6494 want_cookie = true; 6495 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6496 } else 6497 #endif 6498 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6499 6500 if (!queue->synflood_warned && 6501 net->ipv4.sysctl_tcp_syncookies != 2 && 6502 xchg(&queue->synflood_warned, 1) == 0) 6503 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6504 proto, sk->sk_num, msg); 6505 6506 return want_cookie; 6507 } 6508 6509 static void tcp_reqsk_record_syn(const struct sock *sk, 6510 struct request_sock *req, 6511 const struct sk_buff *skb) 6512 { 6513 if (tcp_sk(sk)->save_syn) { 6514 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6515 u32 *copy; 6516 6517 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6518 if (copy) { 6519 copy[0] = len; 6520 memcpy(©[1], skb_network_header(skb), len); 6521 req->saved_syn = copy; 6522 } 6523 } 6524 } 6525 6526 /* If a SYN cookie is required and supported, returns a clamped MSS value to be 6527 * used for SYN cookie generation. 6528 */ 6529 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 6530 const struct tcp_request_sock_ops *af_ops, 6531 struct sock *sk, struct tcphdr *th) 6532 { 6533 struct tcp_sock *tp = tcp_sk(sk); 6534 u16 mss; 6535 6536 if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 && 6537 !inet_csk_reqsk_queue_is_full(sk)) 6538 return 0; 6539 6540 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 6541 return 0; 6542 6543 if (sk_acceptq_is_full(sk)) { 6544 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6545 return 0; 6546 } 6547 6548 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss); 6549 if (!mss) 6550 mss = af_ops->mss_clamp; 6551 6552 return mss; 6553 } 6554 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss); 6555 6556 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6557 const struct tcp_request_sock_ops *af_ops, 6558 struct sock *sk, struct sk_buff *skb) 6559 { 6560 struct tcp_fastopen_cookie foc = { .len = -1 }; 6561 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6562 struct tcp_options_received tmp_opt; 6563 struct tcp_sock *tp = tcp_sk(sk); 6564 struct net *net = sock_net(sk); 6565 struct sock *fastopen_sk = NULL; 6566 struct request_sock *req; 6567 bool want_cookie = false; 6568 struct dst_entry *dst; 6569 struct flowi fl; 6570 6571 /* TW buckets are converted to open requests without 6572 * limitations, they conserve resources and peer is 6573 * evidently real one. 6574 */ 6575 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6576 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6577 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name); 6578 if (!want_cookie) 6579 goto drop; 6580 } 6581 6582 if (sk_acceptq_is_full(sk)) { 6583 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6584 goto drop; 6585 } 6586 6587 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6588 if (!req) 6589 goto drop; 6590 6591 tcp_rsk(req)->af_specific = af_ops; 6592 tcp_rsk(req)->ts_off = 0; 6593 6594 tcp_clear_options(&tmp_opt); 6595 tmp_opt.mss_clamp = af_ops->mss_clamp; 6596 tmp_opt.user_mss = tp->rx_opt.user_mss; 6597 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6598 want_cookie ? NULL : &foc); 6599 6600 if (want_cookie && !tmp_opt.saw_tstamp) 6601 tcp_clear_options(&tmp_opt); 6602 6603 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 6604 tmp_opt.smc_ok = 0; 6605 6606 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6607 tcp_openreq_init(req, &tmp_opt, skb, sk); 6608 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6609 6610 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6611 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6612 6613 af_ops->init_req(req, sk, skb); 6614 6615 if (security_inet_conn_request(sk, skb, req)) 6616 goto drop_and_free; 6617 6618 if (tmp_opt.tstamp_ok) 6619 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6620 6621 dst = af_ops->route_req(sk, &fl, req); 6622 if (!dst) 6623 goto drop_and_free; 6624 6625 if (!want_cookie && !isn) { 6626 /* Kill the following clause, if you dislike this way. */ 6627 if (!net->ipv4.sysctl_tcp_syncookies && 6628 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6629 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6630 !tcp_peer_is_proven(req, dst)) { 6631 /* Without syncookies last quarter of 6632 * backlog is filled with destinations, 6633 * proven to be alive. 6634 * It means that we continue to communicate 6635 * to destinations, already remembered 6636 * to the moment of synflood. 6637 */ 6638 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6639 rsk_ops->family); 6640 goto drop_and_release; 6641 } 6642 6643 isn = af_ops->init_seq(skb); 6644 } 6645 6646 tcp_ecn_create_request(req, skb, sk, dst); 6647 6648 if (want_cookie) { 6649 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6650 req->cookie_ts = tmp_opt.tstamp_ok; 6651 if (!tmp_opt.tstamp_ok) 6652 inet_rsk(req)->ecn_ok = 0; 6653 } 6654 6655 tcp_rsk(req)->snt_isn = isn; 6656 tcp_rsk(req)->txhash = net_tx_rndhash(); 6657 tcp_openreq_init_rwin(req, sk, dst); 6658 sk_rx_queue_set(req_to_sk(req), skb); 6659 if (!want_cookie) { 6660 tcp_reqsk_record_syn(sk, req, skb); 6661 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6662 } 6663 if (fastopen_sk) { 6664 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6665 &foc, TCP_SYNACK_FASTOPEN); 6666 /* Add the child socket directly into the accept queue */ 6667 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 6668 reqsk_fastopen_remove(fastopen_sk, req, false); 6669 bh_unlock_sock(fastopen_sk); 6670 sock_put(fastopen_sk); 6671 goto drop_and_free; 6672 } 6673 sk->sk_data_ready(sk); 6674 bh_unlock_sock(fastopen_sk); 6675 sock_put(fastopen_sk); 6676 } else { 6677 tcp_rsk(req)->tfo_listener = false; 6678 if (!want_cookie) 6679 inet_csk_reqsk_queue_hash_add(sk, req, 6680 tcp_timeout_init((struct sock *)req)); 6681 af_ops->send_synack(sk, dst, &fl, req, &foc, 6682 !want_cookie ? TCP_SYNACK_NORMAL : 6683 TCP_SYNACK_COOKIE); 6684 if (want_cookie) { 6685 reqsk_free(req); 6686 return 0; 6687 } 6688 } 6689 reqsk_put(req); 6690 return 0; 6691 6692 drop_and_release: 6693 dst_release(dst); 6694 drop_and_free: 6695 __reqsk_free(req); 6696 drop: 6697 tcp_listendrop(sk); 6698 return 0; 6699 } 6700 EXPORT_SYMBOL(tcp_conn_request); 6701