xref: /openbmc/linux/net/ipv4/tcp_input.c (revision f2d8e15b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83 
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85 
86 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
87 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
88 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
89 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
90 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
91 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
92 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
93 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
96 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
102 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
103 #define FLAG_DSACK_TLP		0x20000 /* DSACK for tail loss probe */
104 
105 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
106 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
107 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
108 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
109 
110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
112 
113 #define REXMIT_NONE	0 /* no loss recovery to do */
114 #define REXMIT_LOST	1 /* retransmit packets marked lost */
115 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
116 
117 #if IS_ENABLED(CONFIG_TLS_DEVICE)
118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
119 
120 void clean_acked_data_enable(struct inet_connection_sock *icsk,
121 			     void (*cad)(struct sock *sk, u32 ack_seq))
122 {
123 	icsk->icsk_clean_acked = cad;
124 	static_branch_deferred_inc(&clean_acked_data_enabled);
125 }
126 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
127 
128 void clean_acked_data_disable(struct inet_connection_sock *icsk)
129 {
130 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
131 	icsk->icsk_clean_acked = NULL;
132 }
133 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
134 
135 void clean_acked_data_flush(void)
136 {
137 	static_key_deferred_flush(&clean_acked_data_enabled);
138 }
139 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
140 #endif
141 
142 #ifdef CONFIG_CGROUP_BPF
143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
144 {
145 	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
146 		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
147 				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
148 	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
149 						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
150 	struct bpf_sock_ops_kern sock_ops;
151 
152 	if (likely(!unknown_opt && !parse_all_opt))
153 		return;
154 
155 	/* The skb will be handled in the
156 	 * bpf_skops_established() or
157 	 * bpf_skops_write_hdr_opt().
158 	 */
159 	switch (sk->sk_state) {
160 	case TCP_SYN_RECV:
161 	case TCP_SYN_SENT:
162 	case TCP_LISTEN:
163 		return;
164 	}
165 
166 	sock_owned_by_me(sk);
167 
168 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
169 	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
170 	sock_ops.is_fullsock = 1;
171 	sock_ops.sk = sk;
172 	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
173 
174 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
175 }
176 
177 static void bpf_skops_established(struct sock *sk, int bpf_op,
178 				  struct sk_buff *skb)
179 {
180 	struct bpf_sock_ops_kern sock_ops;
181 
182 	sock_owned_by_me(sk);
183 
184 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
185 	sock_ops.op = bpf_op;
186 	sock_ops.is_fullsock = 1;
187 	sock_ops.sk = sk;
188 	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
189 	if (skb)
190 		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
191 
192 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
193 }
194 #else
195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
196 {
197 }
198 
199 static void bpf_skops_established(struct sock *sk, int bpf_op,
200 				  struct sk_buff *skb)
201 {
202 }
203 #endif
204 
205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
206 			     unsigned int len)
207 {
208 	static bool __once __read_mostly;
209 
210 	if (!__once) {
211 		struct net_device *dev;
212 
213 		__once = true;
214 
215 		rcu_read_lock();
216 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
217 		if (!dev || len >= dev->mtu)
218 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
219 				dev ? dev->name : "Unknown driver");
220 		rcu_read_unlock();
221 	}
222 }
223 
224 /* Adapt the MSS value used to make delayed ack decision to the
225  * real world.
226  */
227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
228 {
229 	struct inet_connection_sock *icsk = inet_csk(sk);
230 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
231 	unsigned int len;
232 
233 	icsk->icsk_ack.last_seg_size = 0;
234 
235 	/* skb->len may jitter because of SACKs, even if peer
236 	 * sends good full-sized frames.
237 	 */
238 	len = skb_shinfo(skb)->gso_size ? : skb->len;
239 	if (len >= icsk->icsk_ack.rcv_mss) {
240 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
241 					       tcp_sk(sk)->advmss);
242 		/* Account for possibly-removed options */
243 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
244 				   MAX_TCP_OPTION_SPACE))
245 			tcp_gro_dev_warn(sk, skb, len);
246 	} else {
247 		/* Otherwise, we make more careful check taking into account,
248 		 * that SACKs block is variable.
249 		 *
250 		 * "len" is invariant segment length, including TCP header.
251 		 */
252 		len += skb->data - skb_transport_header(skb);
253 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
254 		    /* If PSH is not set, packet should be
255 		     * full sized, provided peer TCP is not badly broken.
256 		     * This observation (if it is correct 8)) allows
257 		     * to handle super-low mtu links fairly.
258 		     */
259 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
260 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
261 			/* Subtract also invariant (if peer is RFC compliant),
262 			 * tcp header plus fixed timestamp option length.
263 			 * Resulting "len" is MSS free of SACK jitter.
264 			 */
265 			len -= tcp_sk(sk)->tcp_header_len;
266 			icsk->icsk_ack.last_seg_size = len;
267 			if (len == lss) {
268 				icsk->icsk_ack.rcv_mss = len;
269 				return;
270 			}
271 		}
272 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
273 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
274 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
275 	}
276 }
277 
278 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
279 {
280 	struct inet_connection_sock *icsk = inet_csk(sk);
281 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
282 
283 	if (quickacks == 0)
284 		quickacks = 2;
285 	quickacks = min(quickacks, max_quickacks);
286 	if (quickacks > icsk->icsk_ack.quick)
287 		icsk->icsk_ack.quick = quickacks;
288 }
289 
290 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
291 {
292 	struct inet_connection_sock *icsk = inet_csk(sk);
293 
294 	tcp_incr_quickack(sk, max_quickacks);
295 	inet_csk_exit_pingpong_mode(sk);
296 	icsk->icsk_ack.ato = TCP_ATO_MIN;
297 }
298 EXPORT_SYMBOL(tcp_enter_quickack_mode);
299 
300 /* Send ACKs quickly, if "quick" count is not exhausted
301  * and the session is not interactive.
302  */
303 
304 static bool tcp_in_quickack_mode(struct sock *sk)
305 {
306 	const struct inet_connection_sock *icsk = inet_csk(sk);
307 	const struct dst_entry *dst = __sk_dst_get(sk);
308 
309 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
310 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
311 }
312 
313 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
314 {
315 	if (tp->ecn_flags & TCP_ECN_OK)
316 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
317 }
318 
319 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
320 {
321 	if (tcp_hdr(skb)->cwr) {
322 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
323 
324 		/* If the sender is telling us it has entered CWR, then its
325 		 * cwnd may be very low (even just 1 packet), so we should ACK
326 		 * immediately.
327 		 */
328 		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
329 			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
330 	}
331 }
332 
333 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
334 {
335 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
336 }
337 
338 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
339 {
340 	struct tcp_sock *tp = tcp_sk(sk);
341 
342 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
343 	case INET_ECN_NOT_ECT:
344 		/* Funny extension: if ECT is not set on a segment,
345 		 * and we already seen ECT on a previous segment,
346 		 * it is probably a retransmit.
347 		 */
348 		if (tp->ecn_flags & TCP_ECN_SEEN)
349 			tcp_enter_quickack_mode(sk, 2);
350 		break;
351 	case INET_ECN_CE:
352 		if (tcp_ca_needs_ecn(sk))
353 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
354 
355 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
356 			/* Better not delay acks, sender can have a very low cwnd */
357 			tcp_enter_quickack_mode(sk, 2);
358 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
359 		}
360 		tp->ecn_flags |= TCP_ECN_SEEN;
361 		break;
362 	default:
363 		if (tcp_ca_needs_ecn(sk))
364 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
365 		tp->ecn_flags |= TCP_ECN_SEEN;
366 		break;
367 	}
368 }
369 
370 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
371 {
372 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
373 		__tcp_ecn_check_ce(sk, skb);
374 }
375 
376 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
377 {
378 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
379 		tp->ecn_flags &= ~TCP_ECN_OK;
380 }
381 
382 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
383 {
384 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
385 		tp->ecn_flags &= ~TCP_ECN_OK;
386 }
387 
388 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
389 {
390 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
391 		return true;
392 	return false;
393 }
394 
395 /* Buffer size and advertised window tuning.
396  *
397  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
398  */
399 
400 static void tcp_sndbuf_expand(struct sock *sk)
401 {
402 	const struct tcp_sock *tp = tcp_sk(sk);
403 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
404 	int sndmem, per_mss;
405 	u32 nr_segs;
406 
407 	/* Worst case is non GSO/TSO : each frame consumes one skb
408 	 * and skb->head is kmalloced using power of two area of memory
409 	 */
410 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
411 		  MAX_TCP_HEADER +
412 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
413 
414 	per_mss = roundup_pow_of_two(per_mss) +
415 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
416 
417 	nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
418 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
419 
420 	/* Fast Recovery (RFC 5681 3.2) :
421 	 * Cubic needs 1.7 factor, rounded to 2 to include
422 	 * extra cushion (application might react slowly to EPOLLOUT)
423 	 */
424 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
425 	sndmem *= nr_segs * per_mss;
426 
427 	if (sk->sk_sndbuf < sndmem)
428 		WRITE_ONCE(sk->sk_sndbuf,
429 			   min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
430 }
431 
432 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
433  *
434  * All tcp_full_space() is split to two parts: "network" buffer, allocated
435  * forward and advertised in receiver window (tp->rcv_wnd) and
436  * "application buffer", required to isolate scheduling/application
437  * latencies from network.
438  * window_clamp is maximal advertised window. It can be less than
439  * tcp_full_space(), in this case tcp_full_space() - window_clamp
440  * is reserved for "application" buffer. The less window_clamp is
441  * the smoother our behaviour from viewpoint of network, but the lower
442  * throughput and the higher sensitivity of the connection to losses. 8)
443  *
444  * rcv_ssthresh is more strict window_clamp used at "slow start"
445  * phase to predict further behaviour of this connection.
446  * It is used for two goals:
447  * - to enforce header prediction at sender, even when application
448  *   requires some significant "application buffer". It is check #1.
449  * - to prevent pruning of receive queue because of misprediction
450  *   of receiver window. Check #2.
451  *
452  * The scheme does not work when sender sends good segments opening
453  * window and then starts to feed us spaghetti. But it should work
454  * in common situations. Otherwise, we have to rely on queue collapsing.
455  */
456 
457 /* Slow part of check#2. */
458 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
459 			     unsigned int skbtruesize)
460 {
461 	struct tcp_sock *tp = tcp_sk(sk);
462 	/* Optimize this! */
463 	int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
464 	int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
465 
466 	while (tp->rcv_ssthresh <= window) {
467 		if (truesize <= skb->len)
468 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
469 
470 		truesize >>= 1;
471 		window >>= 1;
472 	}
473 	return 0;
474 }
475 
476 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
477  * can play nice with us, as sk_buff and skb->head might be either
478  * freed or shared with up to MAX_SKB_FRAGS segments.
479  * Only give a boost to drivers using page frag(s) to hold the frame(s),
480  * and if no payload was pulled in skb->head before reaching us.
481  */
482 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
483 {
484 	u32 truesize = skb->truesize;
485 
486 	if (adjust && !skb_headlen(skb)) {
487 		truesize -= SKB_TRUESIZE(skb_end_offset(skb));
488 		/* paranoid check, some drivers might be buggy */
489 		if (unlikely((int)truesize < (int)skb->len))
490 			truesize = skb->truesize;
491 	}
492 	return truesize;
493 }
494 
495 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
496 			    bool adjust)
497 {
498 	struct tcp_sock *tp = tcp_sk(sk);
499 	int room;
500 
501 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
502 
503 	if (room <= 0)
504 		return;
505 
506 	/* Check #1 */
507 	if (!tcp_under_memory_pressure(sk)) {
508 		unsigned int truesize = truesize_adjust(adjust, skb);
509 		int incr;
510 
511 		/* Check #2. Increase window, if skb with such overhead
512 		 * will fit to rcvbuf in future.
513 		 */
514 		if (tcp_win_from_space(sk, truesize) <= skb->len)
515 			incr = 2 * tp->advmss;
516 		else
517 			incr = __tcp_grow_window(sk, skb, truesize);
518 
519 		if (incr) {
520 			incr = max_t(int, incr, 2 * skb->len);
521 			tp->rcv_ssthresh += min(room, incr);
522 			inet_csk(sk)->icsk_ack.quick |= 1;
523 		}
524 	} else {
525 		/* Under pressure:
526 		 * Adjust rcv_ssthresh according to reserved mem
527 		 */
528 		tcp_adjust_rcv_ssthresh(sk);
529 	}
530 }
531 
532 /* 3. Try to fixup all. It is made immediately after connection enters
533  *    established state.
534  */
535 static void tcp_init_buffer_space(struct sock *sk)
536 {
537 	int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
538 	struct tcp_sock *tp = tcp_sk(sk);
539 	int maxwin;
540 
541 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
542 		tcp_sndbuf_expand(sk);
543 
544 	tcp_mstamp_refresh(tp);
545 	tp->rcvq_space.time = tp->tcp_mstamp;
546 	tp->rcvq_space.seq = tp->copied_seq;
547 
548 	maxwin = tcp_full_space(sk);
549 
550 	if (tp->window_clamp >= maxwin) {
551 		tp->window_clamp = maxwin;
552 
553 		if (tcp_app_win && maxwin > 4 * tp->advmss)
554 			tp->window_clamp = max(maxwin -
555 					       (maxwin >> tcp_app_win),
556 					       4 * tp->advmss);
557 	}
558 
559 	/* Force reservation of one segment. */
560 	if (tcp_app_win &&
561 	    tp->window_clamp > 2 * tp->advmss &&
562 	    tp->window_clamp + tp->advmss > maxwin)
563 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
564 
565 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
566 	tp->snd_cwnd_stamp = tcp_jiffies32;
567 	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
568 				    (u32)TCP_INIT_CWND * tp->advmss);
569 }
570 
571 /* 4. Recalculate window clamp after socket hit its memory bounds. */
572 static void tcp_clamp_window(struct sock *sk)
573 {
574 	struct tcp_sock *tp = tcp_sk(sk);
575 	struct inet_connection_sock *icsk = inet_csk(sk);
576 	struct net *net = sock_net(sk);
577 	int rmem2;
578 
579 	icsk->icsk_ack.quick = 0;
580 	rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
581 
582 	if (sk->sk_rcvbuf < rmem2 &&
583 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
584 	    !tcp_under_memory_pressure(sk) &&
585 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
586 		WRITE_ONCE(sk->sk_rcvbuf,
587 			   min(atomic_read(&sk->sk_rmem_alloc), rmem2));
588 	}
589 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
590 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
591 }
592 
593 /* Initialize RCV_MSS value.
594  * RCV_MSS is an our guess about MSS used by the peer.
595  * We haven't any direct information about the MSS.
596  * It's better to underestimate the RCV_MSS rather than overestimate.
597  * Overestimations make us ACKing less frequently than needed.
598  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
599  */
600 void tcp_initialize_rcv_mss(struct sock *sk)
601 {
602 	const struct tcp_sock *tp = tcp_sk(sk);
603 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
604 
605 	hint = min(hint, tp->rcv_wnd / 2);
606 	hint = min(hint, TCP_MSS_DEFAULT);
607 	hint = max(hint, TCP_MIN_MSS);
608 
609 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
610 }
611 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
612 
613 /* Receiver "autotuning" code.
614  *
615  * The algorithm for RTT estimation w/o timestamps is based on
616  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
617  * <https://public.lanl.gov/radiant/pubs.html#DRS>
618  *
619  * More detail on this code can be found at
620  * <http://staff.psc.edu/jheffner/>,
621  * though this reference is out of date.  A new paper
622  * is pending.
623  */
624 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
625 {
626 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
627 	long m = sample;
628 
629 	if (new_sample != 0) {
630 		/* If we sample in larger samples in the non-timestamp
631 		 * case, we could grossly overestimate the RTT especially
632 		 * with chatty applications or bulk transfer apps which
633 		 * are stalled on filesystem I/O.
634 		 *
635 		 * Also, since we are only going for a minimum in the
636 		 * non-timestamp case, we do not smooth things out
637 		 * else with timestamps disabled convergence takes too
638 		 * long.
639 		 */
640 		if (!win_dep) {
641 			m -= (new_sample >> 3);
642 			new_sample += m;
643 		} else {
644 			m <<= 3;
645 			if (m < new_sample)
646 				new_sample = m;
647 		}
648 	} else {
649 		/* No previous measure. */
650 		new_sample = m << 3;
651 	}
652 
653 	tp->rcv_rtt_est.rtt_us = new_sample;
654 }
655 
656 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
657 {
658 	u32 delta_us;
659 
660 	if (tp->rcv_rtt_est.time == 0)
661 		goto new_measure;
662 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
663 		return;
664 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
665 	if (!delta_us)
666 		delta_us = 1;
667 	tcp_rcv_rtt_update(tp, delta_us, 1);
668 
669 new_measure:
670 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
671 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
672 }
673 
674 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
675 					  const struct sk_buff *skb)
676 {
677 	struct tcp_sock *tp = tcp_sk(sk);
678 
679 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
680 		return;
681 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
682 
683 	if (TCP_SKB_CB(skb)->end_seq -
684 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
685 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
686 		u32 delta_us;
687 
688 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
689 			if (!delta)
690 				delta = 1;
691 			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
692 			tcp_rcv_rtt_update(tp, delta_us, 0);
693 		}
694 	}
695 }
696 
697 /*
698  * This function should be called every time data is copied to user space.
699  * It calculates the appropriate TCP receive buffer space.
700  */
701 void tcp_rcv_space_adjust(struct sock *sk)
702 {
703 	struct tcp_sock *tp = tcp_sk(sk);
704 	u32 copied;
705 	int time;
706 
707 	trace_tcp_rcv_space_adjust(sk);
708 
709 	tcp_mstamp_refresh(tp);
710 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
711 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
712 		return;
713 
714 	/* Number of bytes copied to user in last RTT */
715 	copied = tp->copied_seq - tp->rcvq_space.seq;
716 	if (copied <= tp->rcvq_space.space)
717 		goto new_measure;
718 
719 	/* A bit of theory :
720 	 * copied = bytes received in previous RTT, our base window
721 	 * To cope with packet losses, we need a 2x factor
722 	 * To cope with slow start, and sender growing its cwin by 100 %
723 	 * every RTT, we need a 4x factor, because the ACK we are sending
724 	 * now is for the next RTT, not the current one :
725 	 * <prev RTT . ><current RTT .. ><next RTT .... >
726 	 */
727 
728 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
729 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
730 		int rcvmem, rcvbuf;
731 		u64 rcvwin, grow;
732 
733 		/* minimal window to cope with packet losses, assuming
734 		 * steady state. Add some cushion because of small variations.
735 		 */
736 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
737 
738 		/* Accommodate for sender rate increase (eg. slow start) */
739 		grow = rcvwin * (copied - tp->rcvq_space.space);
740 		do_div(grow, tp->rcvq_space.space);
741 		rcvwin += (grow << 1);
742 
743 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
744 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
745 			rcvmem += 128;
746 
747 		do_div(rcvwin, tp->advmss);
748 		rcvbuf = min_t(u64, rcvwin * rcvmem,
749 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
750 		if (rcvbuf > sk->sk_rcvbuf) {
751 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
752 
753 			/* Make the window clamp follow along.  */
754 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
755 		}
756 	}
757 	tp->rcvq_space.space = copied;
758 
759 new_measure:
760 	tp->rcvq_space.seq = tp->copied_seq;
761 	tp->rcvq_space.time = tp->tcp_mstamp;
762 }
763 
764 /* There is something which you must keep in mind when you analyze the
765  * behavior of the tp->ato delayed ack timeout interval.  When a
766  * connection starts up, we want to ack as quickly as possible.  The
767  * problem is that "good" TCP's do slow start at the beginning of data
768  * transmission.  The means that until we send the first few ACK's the
769  * sender will sit on his end and only queue most of his data, because
770  * he can only send snd_cwnd unacked packets at any given time.  For
771  * each ACK we send, he increments snd_cwnd and transmits more of his
772  * queue.  -DaveM
773  */
774 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
775 {
776 	struct tcp_sock *tp = tcp_sk(sk);
777 	struct inet_connection_sock *icsk = inet_csk(sk);
778 	u32 now;
779 
780 	inet_csk_schedule_ack(sk);
781 
782 	tcp_measure_rcv_mss(sk, skb);
783 
784 	tcp_rcv_rtt_measure(tp);
785 
786 	now = tcp_jiffies32;
787 
788 	if (!icsk->icsk_ack.ato) {
789 		/* The _first_ data packet received, initialize
790 		 * delayed ACK engine.
791 		 */
792 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
793 		icsk->icsk_ack.ato = TCP_ATO_MIN;
794 	} else {
795 		int m = now - icsk->icsk_ack.lrcvtime;
796 
797 		if (m <= TCP_ATO_MIN / 2) {
798 			/* The fastest case is the first. */
799 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
800 		} else if (m < icsk->icsk_ack.ato) {
801 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
802 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
803 				icsk->icsk_ack.ato = icsk->icsk_rto;
804 		} else if (m > icsk->icsk_rto) {
805 			/* Too long gap. Apparently sender failed to
806 			 * restart window, so that we send ACKs quickly.
807 			 */
808 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
809 		}
810 	}
811 	icsk->icsk_ack.lrcvtime = now;
812 
813 	tcp_ecn_check_ce(sk, skb);
814 
815 	if (skb->len >= 128)
816 		tcp_grow_window(sk, skb, true);
817 }
818 
819 /* Called to compute a smoothed rtt estimate. The data fed to this
820  * routine either comes from timestamps, or from segments that were
821  * known _not_ to have been retransmitted [see Karn/Partridge
822  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
823  * piece by Van Jacobson.
824  * NOTE: the next three routines used to be one big routine.
825  * To save cycles in the RFC 1323 implementation it was better to break
826  * it up into three procedures. -- erics
827  */
828 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
829 {
830 	struct tcp_sock *tp = tcp_sk(sk);
831 	long m = mrtt_us; /* RTT */
832 	u32 srtt = tp->srtt_us;
833 
834 	/*	The following amusing code comes from Jacobson's
835 	 *	article in SIGCOMM '88.  Note that rtt and mdev
836 	 *	are scaled versions of rtt and mean deviation.
837 	 *	This is designed to be as fast as possible
838 	 *	m stands for "measurement".
839 	 *
840 	 *	On a 1990 paper the rto value is changed to:
841 	 *	RTO = rtt + 4 * mdev
842 	 *
843 	 * Funny. This algorithm seems to be very broken.
844 	 * These formulae increase RTO, when it should be decreased, increase
845 	 * too slowly, when it should be increased quickly, decrease too quickly
846 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
847 	 * does not matter how to _calculate_ it. Seems, it was trap
848 	 * that VJ failed to avoid. 8)
849 	 */
850 	if (srtt != 0) {
851 		m -= (srtt >> 3);	/* m is now error in rtt est */
852 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
853 		if (m < 0) {
854 			m = -m;		/* m is now abs(error) */
855 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
856 			/* This is similar to one of Eifel findings.
857 			 * Eifel blocks mdev updates when rtt decreases.
858 			 * This solution is a bit different: we use finer gain
859 			 * for mdev in this case (alpha*beta).
860 			 * Like Eifel it also prevents growth of rto,
861 			 * but also it limits too fast rto decreases,
862 			 * happening in pure Eifel.
863 			 */
864 			if (m > 0)
865 				m >>= 3;
866 		} else {
867 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
868 		}
869 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
870 		if (tp->mdev_us > tp->mdev_max_us) {
871 			tp->mdev_max_us = tp->mdev_us;
872 			if (tp->mdev_max_us > tp->rttvar_us)
873 				tp->rttvar_us = tp->mdev_max_us;
874 		}
875 		if (after(tp->snd_una, tp->rtt_seq)) {
876 			if (tp->mdev_max_us < tp->rttvar_us)
877 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
878 			tp->rtt_seq = tp->snd_nxt;
879 			tp->mdev_max_us = tcp_rto_min_us(sk);
880 
881 			tcp_bpf_rtt(sk);
882 		}
883 	} else {
884 		/* no previous measure. */
885 		srtt = m << 3;		/* take the measured time to be rtt */
886 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
887 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
888 		tp->mdev_max_us = tp->rttvar_us;
889 		tp->rtt_seq = tp->snd_nxt;
890 
891 		tcp_bpf_rtt(sk);
892 	}
893 	tp->srtt_us = max(1U, srtt);
894 }
895 
896 static void tcp_update_pacing_rate(struct sock *sk)
897 {
898 	const struct tcp_sock *tp = tcp_sk(sk);
899 	u64 rate;
900 
901 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
902 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
903 
904 	/* current rate is (cwnd * mss) / srtt
905 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
906 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
907 	 *
908 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
909 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
910 	 *	 end of slow start and should slow down.
911 	 */
912 	if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
913 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
914 	else
915 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
916 
917 	rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
918 
919 	if (likely(tp->srtt_us))
920 		do_div(rate, tp->srtt_us);
921 
922 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
923 	 * without any lock. We want to make sure compiler wont store
924 	 * intermediate values in this location.
925 	 */
926 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
927 					     sk->sk_max_pacing_rate));
928 }
929 
930 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
931  * routine referred to above.
932  */
933 static void tcp_set_rto(struct sock *sk)
934 {
935 	const struct tcp_sock *tp = tcp_sk(sk);
936 	/* Old crap is replaced with new one. 8)
937 	 *
938 	 * More seriously:
939 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
940 	 *    It cannot be less due to utterly erratic ACK generation made
941 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
942 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
943 	 *    is invisible. Actually, Linux-2.4 also generates erratic
944 	 *    ACKs in some circumstances.
945 	 */
946 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
947 
948 	/* 2. Fixups made earlier cannot be right.
949 	 *    If we do not estimate RTO correctly without them,
950 	 *    all the algo is pure shit and should be replaced
951 	 *    with correct one. It is exactly, which we pretend to do.
952 	 */
953 
954 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
955 	 * guarantees that rto is higher.
956 	 */
957 	tcp_bound_rto(sk);
958 }
959 
960 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
961 {
962 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
963 
964 	if (!cwnd)
965 		cwnd = TCP_INIT_CWND;
966 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
967 }
968 
969 struct tcp_sacktag_state {
970 	/* Timestamps for earliest and latest never-retransmitted segment
971 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
972 	 * but congestion control should still get an accurate delay signal.
973 	 */
974 	u64	first_sackt;
975 	u64	last_sackt;
976 	u32	reord;
977 	u32	sack_delivered;
978 	int	flag;
979 	unsigned int mss_now;
980 	struct rate_sample *rate;
981 };
982 
983 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
984  * and spurious retransmission information if this DSACK is unlikely caused by
985  * sender's action:
986  * - DSACKed sequence range is larger than maximum receiver's window.
987  * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
988  */
989 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
990 			  u32 end_seq, struct tcp_sacktag_state *state)
991 {
992 	u32 seq_len, dup_segs = 1;
993 
994 	if (!before(start_seq, end_seq))
995 		return 0;
996 
997 	seq_len = end_seq - start_seq;
998 	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
999 	if (seq_len > tp->max_window)
1000 		return 0;
1001 	if (seq_len > tp->mss_cache)
1002 		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1003 	else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1004 		state->flag |= FLAG_DSACK_TLP;
1005 
1006 	tp->dsack_dups += dup_segs;
1007 	/* Skip the DSACK if dup segs weren't retransmitted by sender */
1008 	if (tp->dsack_dups > tp->total_retrans)
1009 		return 0;
1010 
1011 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1012 	/* We increase the RACK ordering window in rounds where we receive
1013 	 * DSACKs that may have been due to reordering causing RACK to trigger
1014 	 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1015 	 * without having seen reordering, or that match TLP probes (TLP
1016 	 * is timer-driven, not triggered by RACK).
1017 	 */
1018 	if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1019 		tp->rack.dsack_seen = 1;
1020 
1021 	state->flag |= FLAG_DSACKING_ACK;
1022 	/* A spurious retransmission is delivered */
1023 	state->sack_delivered += dup_segs;
1024 
1025 	return dup_segs;
1026 }
1027 
1028 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1029  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1030  * distance is approximated in full-mss packet distance ("reordering").
1031  */
1032 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1033 				      const int ts)
1034 {
1035 	struct tcp_sock *tp = tcp_sk(sk);
1036 	const u32 mss = tp->mss_cache;
1037 	u32 fack, metric;
1038 
1039 	fack = tcp_highest_sack_seq(tp);
1040 	if (!before(low_seq, fack))
1041 		return;
1042 
1043 	metric = fack - low_seq;
1044 	if ((metric > tp->reordering * mss) && mss) {
1045 #if FASTRETRANS_DEBUG > 1
1046 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1047 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1048 			 tp->reordering,
1049 			 0,
1050 			 tp->sacked_out,
1051 			 tp->undo_marker ? tp->undo_retrans : 0);
1052 #endif
1053 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1054 				       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1055 	}
1056 
1057 	/* This exciting event is worth to be remembered. 8) */
1058 	tp->reord_seen++;
1059 	NET_INC_STATS(sock_net(sk),
1060 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1061 }
1062 
1063  /* This must be called before lost_out or retrans_out are updated
1064   * on a new loss, because we want to know if all skbs previously
1065   * known to be lost have already been retransmitted, indicating
1066   * that this newly lost skb is our next skb to retransmit.
1067   */
1068 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1069 {
1070 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1071 	    (tp->retransmit_skb_hint &&
1072 	     before(TCP_SKB_CB(skb)->seq,
1073 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1074 		tp->retransmit_skb_hint = skb;
1075 }
1076 
1077 /* Sum the number of packets on the wire we have marked as lost, and
1078  * notify the congestion control module that the given skb was marked lost.
1079  */
1080 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1081 {
1082 	tp->lost += tcp_skb_pcount(skb);
1083 }
1084 
1085 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1086 {
1087 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1088 	struct tcp_sock *tp = tcp_sk(sk);
1089 
1090 	if (sacked & TCPCB_SACKED_ACKED)
1091 		return;
1092 
1093 	tcp_verify_retransmit_hint(tp, skb);
1094 	if (sacked & TCPCB_LOST) {
1095 		if (sacked & TCPCB_SACKED_RETRANS) {
1096 			/* Account for retransmits that are lost again */
1097 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1098 			tp->retrans_out -= tcp_skb_pcount(skb);
1099 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1100 				      tcp_skb_pcount(skb));
1101 			tcp_notify_skb_loss_event(tp, skb);
1102 		}
1103 	} else {
1104 		tp->lost_out += tcp_skb_pcount(skb);
1105 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1106 		tcp_notify_skb_loss_event(tp, skb);
1107 	}
1108 }
1109 
1110 /* Updates the delivered and delivered_ce counts */
1111 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1112 				bool ece_ack)
1113 {
1114 	tp->delivered += delivered;
1115 	if (ece_ack)
1116 		tp->delivered_ce += delivered;
1117 }
1118 
1119 /* This procedure tags the retransmission queue when SACKs arrive.
1120  *
1121  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1122  * Packets in queue with these bits set are counted in variables
1123  * sacked_out, retrans_out and lost_out, correspondingly.
1124  *
1125  * Valid combinations are:
1126  * Tag  InFlight	Description
1127  * 0	1		- orig segment is in flight.
1128  * S	0		- nothing flies, orig reached receiver.
1129  * L	0		- nothing flies, orig lost by net.
1130  * R	2		- both orig and retransmit are in flight.
1131  * L|R	1		- orig is lost, retransmit is in flight.
1132  * S|R  1		- orig reached receiver, retrans is still in flight.
1133  * (L|S|R is logically valid, it could occur when L|R is sacked,
1134  *  but it is equivalent to plain S and code short-curcuits it to S.
1135  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1136  *
1137  * These 6 states form finite state machine, controlled by the following events:
1138  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1139  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1140  * 3. Loss detection event of two flavors:
1141  *	A. Scoreboard estimator decided the packet is lost.
1142  *	   A'. Reno "three dupacks" marks head of queue lost.
1143  *	B. SACK arrives sacking SND.NXT at the moment, when the
1144  *	   segment was retransmitted.
1145  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1146  *
1147  * It is pleasant to note, that state diagram turns out to be commutative,
1148  * so that we are allowed not to be bothered by order of our actions,
1149  * when multiple events arrive simultaneously. (see the function below).
1150  *
1151  * Reordering detection.
1152  * --------------------
1153  * Reordering metric is maximal distance, which a packet can be displaced
1154  * in packet stream. With SACKs we can estimate it:
1155  *
1156  * 1. SACK fills old hole and the corresponding segment was not
1157  *    ever retransmitted -> reordering. Alas, we cannot use it
1158  *    when segment was retransmitted.
1159  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1160  *    for retransmitted and already SACKed segment -> reordering..
1161  * Both of these heuristics are not used in Loss state, when we cannot
1162  * account for retransmits accurately.
1163  *
1164  * SACK block validation.
1165  * ----------------------
1166  *
1167  * SACK block range validation checks that the received SACK block fits to
1168  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1169  * Note that SND.UNA is not included to the range though being valid because
1170  * it means that the receiver is rather inconsistent with itself reporting
1171  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1172  * perfectly valid, however, in light of RFC2018 which explicitly states
1173  * that "SACK block MUST reflect the newest segment.  Even if the newest
1174  * segment is going to be discarded ...", not that it looks very clever
1175  * in case of head skb. Due to potentional receiver driven attacks, we
1176  * choose to avoid immediate execution of a walk in write queue due to
1177  * reneging and defer head skb's loss recovery to standard loss recovery
1178  * procedure that will eventually trigger (nothing forbids us doing this).
1179  *
1180  * Implements also blockage to start_seq wrap-around. Problem lies in the
1181  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1182  * there's no guarantee that it will be before snd_nxt (n). The problem
1183  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1184  * wrap (s_w):
1185  *
1186  *         <- outs wnd ->                          <- wrapzone ->
1187  *         u     e      n                         u_w   e_w  s n_w
1188  *         |     |      |                          |     |   |  |
1189  * |<------------+------+----- TCP seqno space --------------+---------->|
1190  * ...-- <2^31 ->|                                           |<--------...
1191  * ...---- >2^31 ------>|                                    |<--------...
1192  *
1193  * Current code wouldn't be vulnerable but it's better still to discard such
1194  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1195  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1196  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1197  * equal to the ideal case (infinite seqno space without wrap caused issues).
1198  *
1199  * With D-SACK the lower bound is extended to cover sequence space below
1200  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1201  * again, D-SACK block must not to go across snd_una (for the same reason as
1202  * for the normal SACK blocks, explained above). But there all simplicity
1203  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1204  * fully below undo_marker they do not affect behavior in anyway and can
1205  * therefore be safely ignored. In rare cases (which are more or less
1206  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1207  * fragmentation and packet reordering past skb's retransmission. To consider
1208  * them correctly, the acceptable range must be extended even more though
1209  * the exact amount is rather hard to quantify. However, tp->max_window can
1210  * be used as an exaggerated estimate.
1211  */
1212 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1213 				   u32 start_seq, u32 end_seq)
1214 {
1215 	/* Too far in future, or reversed (interpretation is ambiguous) */
1216 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1217 		return false;
1218 
1219 	/* Nasty start_seq wrap-around check (see comments above) */
1220 	if (!before(start_seq, tp->snd_nxt))
1221 		return false;
1222 
1223 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1224 	 * start_seq == snd_una is non-sensical (see comments above)
1225 	 */
1226 	if (after(start_seq, tp->snd_una))
1227 		return true;
1228 
1229 	if (!is_dsack || !tp->undo_marker)
1230 		return false;
1231 
1232 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1233 	if (after(end_seq, tp->snd_una))
1234 		return false;
1235 
1236 	if (!before(start_seq, tp->undo_marker))
1237 		return true;
1238 
1239 	/* Too old */
1240 	if (!after(end_seq, tp->undo_marker))
1241 		return false;
1242 
1243 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1244 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1245 	 */
1246 	return !before(start_seq, end_seq - tp->max_window);
1247 }
1248 
1249 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1250 			    struct tcp_sack_block_wire *sp, int num_sacks,
1251 			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1252 {
1253 	struct tcp_sock *tp = tcp_sk(sk);
1254 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1255 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1256 	u32 dup_segs;
1257 
1258 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1259 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1260 	} else if (num_sacks > 1) {
1261 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1262 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1263 
1264 		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1265 			return false;
1266 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1267 	} else {
1268 		return false;
1269 	}
1270 
1271 	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1272 	if (!dup_segs) {	/* Skip dubious DSACK */
1273 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1274 		return false;
1275 	}
1276 
1277 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1278 
1279 	/* D-SACK for already forgotten data... Do dumb counting. */
1280 	if (tp->undo_marker && tp->undo_retrans > 0 &&
1281 	    !after(end_seq_0, prior_snd_una) &&
1282 	    after(end_seq_0, tp->undo_marker))
1283 		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1284 
1285 	return true;
1286 }
1287 
1288 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1289  * the incoming SACK may not exactly match but we can find smaller MSS
1290  * aligned portion of it that matches. Therefore we might need to fragment
1291  * which may fail and creates some hassle (caller must handle error case
1292  * returns).
1293  *
1294  * FIXME: this could be merged to shift decision code
1295  */
1296 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1297 				  u32 start_seq, u32 end_seq)
1298 {
1299 	int err;
1300 	bool in_sack;
1301 	unsigned int pkt_len;
1302 	unsigned int mss;
1303 
1304 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1305 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1306 
1307 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1308 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1309 		mss = tcp_skb_mss(skb);
1310 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1311 
1312 		if (!in_sack) {
1313 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1314 			if (pkt_len < mss)
1315 				pkt_len = mss;
1316 		} else {
1317 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1318 			if (pkt_len < mss)
1319 				return -EINVAL;
1320 		}
1321 
1322 		/* Round if necessary so that SACKs cover only full MSSes
1323 		 * and/or the remaining small portion (if present)
1324 		 */
1325 		if (pkt_len > mss) {
1326 			unsigned int new_len = (pkt_len / mss) * mss;
1327 			if (!in_sack && new_len < pkt_len)
1328 				new_len += mss;
1329 			pkt_len = new_len;
1330 		}
1331 
1332 		if (pkt_len >= skb->len && !in_sack)
1333 			return 0;
1334 
1335 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1336 				   pkt_len, mss, GFP_ATOMIC);
1337 		if (err < 0)
1338 			return err;
1339 	}
1340 
1341 	return in_sack;
1342 }
1343 
1344 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1345 static u8 tcp_sacktag_one(struct sock *sk,
1346 			  struct tcp_sacktag_state *state, u8 sacked,
1347 			  u32 start_seq, u32 end_seq,
1348 			  int dup_sack, int pcount,
1349 			  u64 xmit_time)
1350 {
1351 	struct tcp_sock *tp = tcp_sk(sk);
1352 
1353 	/* Account D-SACK for retransmitted packet. */
1354 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1355 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1356 		    after(end_seq, tp->undo_marker))
1357 			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1358 		if ((sacked & TCPCB_SACKED_ACKED) &&
1359 		    before(start_seq, state->reord))
1360 				state->reord = start_seq;
1361 	}
1362 
1363 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1364 	if (!after(end_seq, tp->snd_una))
1365 		return sacked;
1366 
1367 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1368 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1369 
1370 		if (sacked & TCPCB_SACKED_RETRANS) {
1371 			/* If the segment is not tagged as lost,
1372 			 * we do not clear RETRANS, believing
1373 			 * that retransmission is still in flight.
1374 			 */
1375 			if (sacked & TCPCB_LOST) {
1376 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1377 				tp->lost_out -= pcount;
1378 				tp->retrans_out -= pcount;
1379 			}
1380 		} else {
1381 			if (!(sacked & TCPCB_RETRANS)) {
1382 				/* New sack for not retransmitted frame,
1383 				 * which was in hole. It is reordering.
1384 				 */
1385 				if (before(start_seq,
1386 					   tcp_highest_sack_seq(tp)) &&
1387 				    before(start_seq, state->reord))
1388 					state->reord = start_seq;
1389 
1390 				if (!after(end_seq, tp->high_seq))
1391 					state->flag |= FLAG_ORIG_SACK_ACKED;
1392 				if (state->first_sackt == 0)
1393 					state->first_sackt = xmit_time;
1394 				state->last_sackt = xmit_time;
1395 			}
1396 
1397 			if (sacked & TCPCB_LOST) {
1398 				sacked &= ~TCPCB_LOST;
1399 				tp->lost_out -= pcount;
1400 			}
1401 		}
1402 
1403 		sacked |= TCPCB_SACKED_ACKED;
1404 		state->flag |= FLAG_DATA_SACKED;
1405 		tp->sacked_out += pcount;
1406 		/* Out-of-order packets delivered */
1407 		state->sack_delivered += pcount;
1408 
1409 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1410 		if (tp->lost_skb_hint &&
1411 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1412 			tp->lost_cnt_hint += pcount;
1413 	}
1414 
1415 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1416 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1417 	 * are accounted above as well.
1418 	 */
1419 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1420 		sacked &= ~TCPCB_SACKED_RETRANS;
1421 		tp->retrans_out -= pcount;
1422 	}
1423 
1424 	return sacked;
1425 }
1426 
1427 /* Shift newly-SACKed bytes from this skb to the immediately previous
1428  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1429  */
1430 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1431 			    struct sk_buff *skb,
1432 			    struct tcp_sacktag_state *state,
1433 			    unsigned int pcount, int shifted, int mss,
1434 			    bool dup_sack)
1435 {
1436 	struct tcp_sock *tp = tcp_sk(sk);
1437 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1438 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1439 
1440 	BUG_ON(!pcount);
1441 
1442 	/* Adjust counters and hints for the newly sacked sequence
1443 	 * range but discard the return value since prev is already
1444 	 * marked. We must tag the range first because the seq
1445 	 * advancement below implicitly advances
1446 	 * tcp_highest_sack_seq() when skb is highest_sack.
1447 	 */
1448 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1449 			start_seq, end_seq, dup_sack, pcount,
1450 			tcp_skb_timestamp_us(skb));
1451 	tcp_rate_skb_delivered(sk, skb, state->rate);
1452 
1453 	if (skb == tp->lost_skb_hint)
1454 		tp->lost_cnt_hint += pcount;
1455 
1456 	TCP_SKB_CB(prev)->end_seq += shifted;
1457 	TCP_SKB_CB(skb)->seq += shifted;
1458 
1459 	tcp_skb_pcount_add(prev, pcount);
1460 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1461 	tcp_skb_pcount_add(skb, -pcount);
1462 
1463 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1464 	 * in theory this shouldn't be necessary but as long as DSACK
1465 	 * code can come after this skb later on it's better to keep
1466 	 * setting gso_size to something.
1467 	 */
1468 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1469 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1470 
1471 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1472 	if (tcp_skb_pcount(skb) <= 1)
1473 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1474 
1475 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1476 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1477 
1478 	if (skb->len > 0) {
1479 		BUG_ON(!tcp_skb_pcount(skb));
1480 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1481 		return false;
1482 	}
1483 
1484 	/* Whole SKB was eaten :-) */
1485 
1486 	if (skb == tp->retransmit_skb_hint)
1487 		tp->retransmit_skb_hint = prev;
1488 	if (skb == tp->lost_skb_hint) {
1489 		tp->lost_skb_hint = prev;
1490 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1491 	}
1492 
1493 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1494 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1495 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1496 		TCP_SKB_CB(prev)->end_seq++;
1497 
1498 	if (skb == tcp_highest_sack(sk))
1499 		tcp_advance_highest_sack(sk, skb);
1500 
1501 	tcp_skb_collapse_tstamp(prev, skb);
1502 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1503 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1504 
1505 	tcp_rtx_queue_unlink_and_free(skb, sk);
1506 
1507 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1508 
1509 	return true;
1510 }
1511 
1512 /* I wish gso_size would have a bit more sane initialization than
1513  * something-or-zero which complicates things
1514  */
1515 static int tcp_skb_seglen(const struct sk_buff *skb)
1516 {
1517 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1518 }
1519 
1520 /* Shifting pages past head area doesn't work */
1521 static int skb_can_shift(const struct sk_buff *skb)
1522 {
1523 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1524 }
1525 
1526 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1527 		  int pcount, int shiftlen)
1528 {
1529 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1530 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1531 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1532 	 * even if current MSS is bigger.
1533 	 */
1534 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1535 		return 0;
1536 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1537 		return 0;
1538 	return skb_shift(to, from, shiftlen);
1539 }
1540 
1541 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1542  * skb.
1543  */
1544 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1545 					  struct tcp_sacktag_state *state,
1546 					  u32 start_seq, u32 end_seq,
1547 					  bool dup_sack)
1548 {
1549 	struct tcp_sock *tp = tcp_sk(sk);
1550 	struct sk_buff *prev;
1551 	int mss;
1552 	int pcount = 0;
1553 	int len;
1554 	int in_sack;
1555 
1556 	/* Normally R but no L won't result in plain S */
1557 	if (!dup_sack &&
1558 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1559 		goto fallback;
1560 	if (!skb_can_shift(skb))
1561 		goto fallback;
1562 	/* This frame is about to be dropped (was ACKed). */
1563 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1564 		goto fallback;
1565 
1566 	/* Can only happen with delayed DSACK + discard craziness */
1567 	prev = skb_rb_prev(skb);
1568 	if (!prev)
1569 		goto fallback;
1570 
1571 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1572 		goto fallback;
1573 
1574 	if (!tcp_skb_can_collapse(prev, skb))
1575 		goto fallback;
1576 
1577 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1578 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1579 
1580 	if (in_sack) {
1581 		len = skb->len;
1582 		pcount = tcp_skb_pcount(skb);
1583 		mss = tcp_skb_seglen(skb);
1584 
1585 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1586 		 * drop this restriction as unnecessary
1587 		 */
1588 		if (mss != tcp_skb_seglen(prev))
1589 			goto fallback;
1590 	} else {
1591 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1592 			goto noop;
1593 		/* CHECKME: This is non-MSS split case only?, this will
1594 		 * cause skipped skbs due to advancing loop btw, original
1595 		 * has that feature too
1596 		 */
1597 		if (tcp_skb_pcount(skb) <= 1)
1598 			goto noop;
1599 
1600 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1601 		if (!in_sack) {
1602 			/* TODO: head merge to next could be attempted here
1603 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1604 			 * though it might not be worth of the additional hassle
1605 			 *
1606 			 * ...we can probably just fallback to what was done
1607 			 * previously. We could try merging non-SACKed ones
1608 			 * as well but it probably isn't going to buy off
1609 			 * because later SACKs might again split them, and
1610 			 * it would make skb timestamp tracking considerably
1611 			 * harder problem.
1612 			 */
1613 			goto fallback;
1614 		}
1615 
1616 		len = end_seq - TCP_SKB_CB(skb)->seq;
1617 		BUG_ON(len < 0);
1618 		BUG_ON(len > skb->len);
1619 
1620 		/* MSS boundaries should be honoured or else pcount will
1621 		 * severely break even though it makes things bit trickier.
1622 		 * Optimize common case to avoid most of the divides
1623 		 */
1624 		mss = tcp_skb_mss(skb);
1625 
1626 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1627 		 * drop this restriction as unnecessary
1628 		 */
1629 		if (mss != tcp_skb_seglen(prev))
1630 			goto fallback;
1631 
1632 		if (len == mss) {
1633 			pcount = 1;
1634 		} else if (len < mss) {
1635 			goto noop;
1636 		} else {
1637 			pcount = len / mss;
1638 			len = pcount * mss;
1639 		}
1640 	}
1641 
1642 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1643 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1644 		goto fallback;
1645 
1646 	if (!tcp_skb_shift(prev, skb, pcount, len))
1647 		goto fallback;
1648 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1649 		goto out;
1650 
1651 	/* Hole filled allows collapsing with the next as well, this is very
1652 	 * useful when hole on every nth skb pattern happens
1653 	 */
1654 	skb = skb_rb_next(prev);
1655 	if (!skb)
1656 		goto out;
1657 
1658 	if (!skb_can_shift(skb) ||
1659 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1660 	    (mss != tcp_skb_seglen(skb)))
1661 		goto out;
1662 
1663 	if (!tcp_skb_can_collapse(prev, skb))
1664 		goto out;
1665 	len = skb->len;
1666 	pcount = tcp_skb_pcount(skb);
1667 	if (tcp_skb_shift(prev, skb, pcount, len))
1668 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1669 				len, mss, 0);
1670 
1671 out:
1672 	return prev;
1673 
1674 noop:
1675 	return skb;
1676 
1677 fallback:
1678 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1679 	return NULL;
1680 }
1681 
1682 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1683 					struct tcp_sack_block *next_dup,
1684 					struct tcp_sacktag_state *state,
1685 					u32 start_seq, u32 end_seq,
1686 					bool dup_sack_in)
1687 {
1688 	struct tcp_sock *tp = tcp_sk(sk);
1689 	struct sk_buff *tmp;
1690 
1691 	skb_rbtree_walk_from(skb) {
1692 		int in_sack = 0;
1693 		bool dup_sack = dup_sack_in;
1694 
1695 		/* queue is in-order => we can short-circuit the walk early */
1696 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1697 			break;
1698 
1699 		if (next_dup  &&
1700 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1701 			in_sack = tcp_match_skb_to_sack(sk, skb,
1702 							next_dup->start_seq,
1703 							next_dup->end_seq);
1704 			if (in_sack > 0)
1705 				dup_sack = true;
1706 		}
1707 
1708 		/* skb reference here is a bit tricky to get right, since
1709 		 * shifting can eat and free both this skb and the next,
1710 		 * so not even _safe variant of the loop is enough.
1711 		 */
1712 		if (in_sack <= 0) {
1713 			tmp = tcp_shift_skb_data(sk, skb, state,
1714 						 start_seq, end_seq, dup_sack);
1715 			if (tmp) {
1716 				if (tmp != skb) {
1717 					skb = tmp;
1718 					continue;
1719 				}
1720 
1721 				in_sack = 0;
1722 			} else {
1723 				in_sack = tcp_match_skb_to_sack(sk, skb,
1724 								start_seq,
1725 								end_seq);
1726 			}
1727 		}
1728 
1729 		if (unlikely(in_sack < 0))
1730 			break;
1731 
1732 		if (in_sack) {
1733 			TCP_SKB_CB(skb)->sacked =
1734 				tcp_sacktag_one(sk,
1735 						state,
1736 						TCP_SKB_CB(skb)->sacked,
1737 						TCP_SKB_CB(skb)->seq,
1738 						TCP_SKB_CB(skb)->end_seq,
1739 						dup_sack,
1740 						tcp_skb_pcount(skb),
1741 						tcp_skb_timestamp_us(skb));
1742 			tcp_rate_skb_delivered(sk, skb, state->rate);
1743 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1744 				list_del_init(&skb->tcp_tsorted_anchor);
1745 
1746 			if (!before(TCP_SKB_CB(skb)->seq,
1747 				    tcp_highest_sack_seq(tp)))
1748 				tcp_advance_highest_sack(sk, skb);
1749 		}
1750 	}
1751 	return skb;
1752 }
1753 
1754 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1755 {
1756 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1757 	struct sk_buff *skb;
1758 
1759 	while (*p) {
1760 		parent = *p;
1761 		skb = rb_to_skb(parent);
1762 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1763 			p = &parent->rb_left;
1764 			continue;
1765 		}
1766 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1767 			p = &parent->rb_right;
1768 			continue;
1769 		}
1770 		return skb;
1771 	}
1772 	return NULL;
1773 }
1774 
1775 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1776 					u32 skip_to_seq)
1777 {
1778 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1779 		return skb;
1780 
1781 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1782 }
1783 
1784 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1785 						struct sock *sk,
1786 						struct tcp_sack_block *next_dup,
1787 						struct tcp_sacktag_state *state,
1788 						u32 skip_to_seq)
1789 {
1790 	if (!next_dup)
1791 		return skb;
1792 
1793 	if (before(next_dup->start_seq, skip_to_seq)) {
1794 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1795 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1796 				       next_dup->start_seq, next_dup->end_seq,
1797 				       1);
1798 	}
1799 
1800 	return skb;
1801 }
1802 
1803 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1804 {
1805 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1806 }
1807 
1808 static int
1809 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1810 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1811 {
1812 	struct tcp_sock *tp = tcp_sk(sk);
1813 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1814 				    TCP_SKB_CB(ack_skb)->sacked);
1815 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1816 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1817 	struct tcp_sack_block *cache;
1818 	struct sk_buff *skb;
1819 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1820 	int used_sacks;
1821 	bool found_dup_sack = false;
1822 	int i, j;
1823 	int first_sack_index;
1824 
1825 	state->flag = 0;
1826 	state->reord = tp->snd_nxt;
1827 
1828 	if (!tp->sacked_out)
1829 		tcp_highest_sack_reset(sk);
1830 
1831 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1832 					 num_sacks, prior_snd_una, state);
1833 
1834 	/* Eliminate too old ACKs, but take into
1835 	 * account more or less fresh ones, they can
1836 	 * contain valid SACK info.
1837 	 */
1838 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1839 		return 0;
1840 
1841 	if (!tp->packets_out)
1842 		goto out;
1843 
1844 	used_sacks = 0;
1845 	first_sack_index = 0;
1846 	for (i = 0; i < num_sacks; i++) {
1847 		bool dup_sack = !i && found_dup_sack;
1848 
1849 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1850 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1851 
1852 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1853 					    sp[used_sacks].start_seq,
1854 					    sp[used_sacks].end_seq)) {
1855 			int mib_idx;
1856 
1857 			if (dup_sack) {
1858 				if (!tp->undo_marker)
1859 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1860 				else
1861 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1862 			} else {
1863 				/* Don't count olds caused by ACK reordering */
1864 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1865 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1866 					continue;
1867 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1868 			}
1869 
1870 			NET_INC_STATS(sock_net(sk), mib_idx);
1871 			if (i == 0)
1872 				first_sack_index = -1;
1873 			continue;
1874 		}
1875 
1876 		/* Ignore very old stuff early */
1877 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1878 			if (i == 0)
1879 				first_sack_index = -1;
1880 			continue;
1881 		}
1882 
1883 		used_sacks++;
1884 	}
1885 
1886 	/* order SACK blocks to allow in order walk of the retrans queue */
1887 	for (i = used_sacks - 1; i > 0; i--) {
1888 		for (j = 0; j < i; j++) {
1889 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1890 				swap(sp[j], sp[j + 1]);
1891 
1892 				/* Track where the first SACK block goes to */
1893 				if (j == first_sack_index)
1894 					first_sack_index = j + 1;
1895 			}
1896 		}
1897 	}
1898 
1899 	state->mss_now = tcp_current_mss(sk);
1900 	skb = NULL;
1901 	i = 0;
1902 
1903 	if (!tp->sacked_out) {
1904 		/* It's already past, so skip checking against it */
1905 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1906 	} else {
1907 		cache = tp->recv_sack_cache;
1908 		/* Skip empty blocks in at head of the cache */
1909 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1910 		       !cache->end_seq)
1911 			cache++;
1912 	}
1913 
1914 	while (i < used_sacks) {
1915 		u32 start_seq = sp[i].start_seq;
1916 		u32 end_seq = sp[i].end_seq;
1917 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1918 		struct tcp_sack_block *next_dup = NULL;
1919 
1920 		if (found_dup_sack && ((i + 1) == first_sack_index))
1921 			next_dup = &sp[i + 1];
1922 
1923 		/* Skip too early cached blocks */
1924 		while (tcp_sack_cache_ok(tp, cache) &&
1925 		       !before(start_seq, cache->end_seq))
1926 			cache++;
1927 
1928 		/* Can skip some work by looking recv_sack_cache? */
1929 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1930 		    after(end_seq, cache->start_seq)) {
1931 
1932 			/* Head todo? */
1933 			if (before(start_seq, cache->start_seq)) {
1934 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1935 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1936 						       state,
1937 						       start_seq,
1938 						       cache->start_seq,
1939 						       dup_sack);
1940 			}
1941 
1942 			/* Rest of the block already fully processed? */
1943 			if (!after(end_seq, cache->end_seq))
1944 				goto advance_sp;
1945 
1946 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1947 						       state,
1948 						       cache->end_seq);
1949 
1950 			/* ...tail remains todo... */
1951 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1952 				/* ...but better entrypoint exists! */
1953 				skb = tcp_highest_sack(sk);
1954 				if (!skb)
1955 					break;
1956 				cache++;
1957 				goto walk;
1958 			}
1959 
1960 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1961 			/* Check overlap against next cached too (past this one already) */
1962 			cache++;
1963 			continue;
1964 		}
1965 
1966 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1967 			skb = tcp_highest_sack(sk);
1968 			if (!skb)
1969 				break;
1970 		}
1971 		skb = tcp_sacktag_skip(skb, sk, start_seq);
1972 
1973 walk:
1974 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1975 				       start_seq, end_seq, dup_sack);
1976 
1977 advance_sp:
1978 		i++;
1979 	}
1980 
1981 	/* Clear the head of the cache sack blocks so we can skip it next time */
1982 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1983 		tp->recv_sack_cache[i].start_seq = 0;
1984 		tp->recv_sack_cache[i].end_seq = 0;
1985 	}
1986 	for (j = 0; j < used_sacks; j++)
1987 		tp->recv_sack_cache[i++] = sp[j];
1988 
1989 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1990 		tcp_check_sack_reordering(sk, state->reord, 0);
1991 
1992 	tcp_verify_left_out(tp);
1993 out:
1994 
1995 #if FASTRETRANS_DEBUG > 0
1996 	WARN_ON((int)tp->sacked_out < 0);
1997 	WARN_ON((int)tp->lost_out < 0);
1998 	WARN_ON((int)tp->retrans_out < 0);
1999 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2000 #endif
2001 	return state->flag;
2002 }
2003 
2004 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2005  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2006  */
2007 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2008 {
2009 	u32 holes;
2010 
2011 	holes = max(tp->lost_out, 1U);
2012 	holes = min(holes, tp->packets_out);
2013 
2014 	if ((tp->sacked_out + holes) > tp->packets_out) {
2015 		tp->sacked_out = tp->packets_out - holes;
2016 		return true;
2017 	}
2018 	return false;
2019 }
2020 
2021 /* If we receive more dupacks than we expected counting segments
2022  * in assumption of absent reordering, interpret this as reordering.
2023  * The only another reason could be bug in receiver TCP.
2024  */
2025 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2026 {
2027 	struct tcp_sock *tp = tcp_sk(sk);
2028 
2029 	if (!tcp_limit_reno_sacked(tp))
2030 		return;
2031 
2032 	tp->reordering = min_t(u32, tp->packets_out + addend,
2033 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2034 	tp->reord_seen++;
2035 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2036 }
2037 
2038 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2039 
2040 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2041 {
2042 	if (num_dupack) {
2043 		struct tcp_sock *tp = tcp_sk(sk);
2044 		u32 prior_sacked = tp->sacked_out;
2045 		s32 delivered;
2046 
2047 		tp->sacked_out += num_dupack;
2048 		tcp_check_reno_reordering(sk, 0);
2049 		delivered = tp->sacked_out - prior_sacked;
2050 		if (delivered > 0)
2051 			tcp_count_delivered(tp, delivered, ece_ack);
2052 		tcp_verify_left_out(tp);
2053 	}
2054 }
2055 
2056 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2057 
2058 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2059 {
2060 	struct tcp_sock *tp = tcp_sk(sk);
2061 
2062 	if (acked > 0) {
2063 		/* One ACK acked hole. The rest eat duplicate ACKs. */
2064 		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2065 				    ece_ack);
2066 		if (acked - 1 >= tp->sacked_out)
2067 			tp->sacked_out = 0;
2068 		else
2069 			tp->sacked_out -= acked - 1;
2070 	}
2071 	tcp_check_reno_reordering(sk, acked);
2072 	tcp_verify_left_out(tp);
2073 }
2074 
2075 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2076 {
2077 	tp->sacked_out = 0;
2078 }
2079 
2080 void tcp_clear_retrans(struct tcp_sock *tp)
2081 {
2082 	tp->retrans_out = 0;
2083 	tp->lost_out = 0;
2084 	tp->undo_marker = 0;
2085 	tp->undo_retrans = -1;
2086 	tp->sacked_out = 0;
2087 }
2088 
2089 static inline void tcp_init_undo(struct tcp_sock *tp)
2090 {
2091 	tp->undo_marker = tp->snd_una;
2092 	/* Retransmission still in flight may cause DSACKs later. */
2093 	tp->undo_retrans = tp->retrans_out ? : -1;
2094 }
2095 
2096 static bool tcp_is_rack(const struct sock *sk)
2097 {
2098 	return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2099 		TCP_RACK_LOSS_DETECTION;
2100 }
2101 
2102 /* If we detect SACK reneging, forget all SACK information
2103  * and reset tags completely, otherwise preserve SACKs. If receiver
2104  * dropped its ofo queue, we will know this due to reneging detection.
2105  */
2106 static void tcp_timeout_mark_lost(struct sock *sk)
2107 {
2108 	struct tcp_sock *tp = tcp_sk(sk);
2109 	struct sk_buff *skb, *head;
2110 	bool is_reneg;			/* is receiver reneging on SACKs? */
2111 
2112 	head = tcp_rtx_queue_head(sk);
2113 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2114 	if (is_reneg) {
2115 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2116 		tp->sacked_out = 0;
2117 		/* Mark SACK reneging until we recover from this loss event. */
2118 		tp->is_sack_reneg = 1;
2119 	} else if (tcp_is_reno(tp)) {
2120 		tcp_reset_reno_sack(tp);
2121 	}
2122 
2123 	skb = head;
2124 	skb_rbtree_walk_from(skb) {
2125 		if (is_reneg)
2126 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2127 		else if (tcp_is_rack(sk) && skb != head &&
2128 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2129 			continue; /* Don't mark recently sent ones lost yet */
2130 		tcp_mark_skb_lost(sk, skb);
2131 	}
2132 	tcp_verify_left_out(tp);
2133 	tcp_clear_all_retrans_hints(tp);
2134 }
2135 
2136 /* Enter Loss state. */
2137 void tcp_enter_loss(struct sock *sk)
2138 {
2139 	const struct inet_connection_sock *icsk = inet_csk(sk);
2140 	struct tcp_sock *tp = tcp_sk(sk);
2141 	struct net *net = sock_net(sk);
2142 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2143 	u8 reordering;
2144 
2145 	tcp_timeout_mark_lost(sk);
2146 
2147 	/* Reduce ssthresh if it has not yet been made inside this window. */
2148 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2149 	    !after(tp->high_seq, tp->snd_una) ||
2150 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2151 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2152 		tp->prior_cwnd = tcp_snd_cwnd(tp);
2153 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2154 		tcp_ca_event(sk, CA_EVENT_LOSS);
2155 		tcp_init_undo(tp);
2156 	}
2157 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2158 	tp->snd_cwnd_cnt   = 0;
2159 	tp->snd_cwnd_stamp = tcp_jiffies32;
2160 
2161 	/* Timeout in disordered state after receiving substantial DUPACKs
2162 	 * suggests that the degree of reordering is over-estimated.
2163 	 */
2164 	reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2165 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2166 	    tp->sacked_out >= reordering)
2167 		tp->reordering = min_t(unsigned int, tp->reordering,
2168 				       reordering);
2169 
2170 	tcp_set_ca_state(sk, TCP_CA_Loss);
2171 	tp->high_seq = tp->snd_nxt;
2172 	tcp_ecn_queue_cwr(tp);
2173 
2174 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2175 	 * loss recovery is underway except recurring timeout(s) on
2176 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2177 	 */
2178 	tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2179 		   (new_recovery || icsk->icsk_retransmits) &&
2180 		   !inet_csk(sk)->icsk_mtup.probe_size;
2181 }
2182 
2183 /* If ACK arrived pointing to a remembered SACK, it means that our
2184  * remembered SACKs do not reflect real state of receiver i.e.
2185  * receiver _host_ is heavily congested (or buggy).
2186  *
2187  * To avoid big spurious retransmission bursts due to transient SACK
2188  * scoreboard oddities that look like reneging, we give the receiver a
2189  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2190  * restore sanity to the SACK scoreboard. If the apparent reneging
2191  * persists until this RTO then we'll clear the SACK scoreboard.
2192  */
2193 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2194 {
2195 	if (flag & FLAG_SACK_RENEGING) {
2196 		struct tcp_sock *tp = tcp_sk(sk);
2197 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2198 					  msecs_to_jiffies(10));
2199 
2200 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2201 					  delay, TCP_RTO_MAX);
2202 		return true;
2203 	}
2204 	return false;
2205 }
2206 
2207 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2208  * counter when SACK is enabled (without SACK, sacked_out is used for
2209  * that purpose).
2210  *
2211  * With reordering, holes may still be in flight, so RFC3517 recovery
2212  * uses pure sacked_out (total number of SACKed segments) even though
2213  * it violates the RFC that uses duplicate ACKs, often these are equal
2214  * but when e.g. out-of-window ACKs or packet duplication occurs,
2215  * they differ. Since neither occurs due to loss, TCP should really
2216  * ignore them.
2217  */
2218 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2219 {
2220 	return tp->sacked_out + 1;
2221 }
2222 
2223 /* Linux NewReno/SACK/ECN state machine.
2224  * --------------------------------------
2225  *
2226  * "Open"	Normal state, no dubious events, fast path.
2227  * "Disorder"   In all the respects it is "Open",
2228  *		but requires a bit more attention. It is entered when
2229  *		we see some SACKs or dupacks. It is split of "Open"
2230  *		mainly to move some processing from fast path to slow one.
2231  * "CWR"	CWND was reduced due to some Congestion Notification event.
2232  *		It can be ECN, ICMP source quench, local device congestion.
2233  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2234  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2235  *
2236  * tcp_fastretrans_alert() is entered:
2237  * - each incoming ACK, if state is not "Open"
2238  * - when arrived ACK is unusual, namely:
2239  *	* SACK
2240  *	* Duplicate ACK.
2241  *	* ECN ECE.
2242  *
2243  * Counting packets in flight is pretty simple.
2244  *
2245  *	in_flight = packets_out - left_out + retrans_out
2246  *
2247  *	packets_out is SND.NXT-SND.UNA counted in packets.
2248  *
2249  *	retrans_out is number of retransmitted segments.
2250  *
2251  *	left_out is number of segments left network, but not ACKed yet.
2252  *
2253  *		left_out = sacked_out + lost_out
2254  *
2255  *     sacked_out: Packets, which arrived to receiver out of order
2256  *		   and hence not ACKed. With SACKs this number is simply
2257  *		   amount of SACKed data. Even without SACKs
2258  *		   it is easy to give pretty reliable estimate of this number,
2259  *		   counting duplicate ACKs.
2260  *
2261  *       lost_out: Packets lost by network. TCP has no explicit
2262  *		   "loss notification" feedback from network (for now).
2263  *		   It means that this number can be only _guessed_.
2264  *		   Actually, it is the heuristics to predict lossage that
2265  *		   distinguishes different algorithms.
2266  *
2267  *	F.e. after RTO, when all the queue is considered as lost,
2268  *	lost_out = packets_out and in_flight = retrans_out.
2269  *
2270  *		Essentially, we have now a few algorithms detecting
2271  *		lost packets.
2272  *
2273  *		If the receiver supports SACK:
2274  *
2275  *		RFC6675/3517: It is the conventional algorithm. A packet is
2276  *		considered lost if the number of higher sequence packets
2277  *		SACKed is greater than or equal the DUPACK thoreshold
2278  *		(reordering). This is implemented in tcp_mark_head_lost and
2279  *		tcp_update_scoreboard.
2280  *
2281  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2282  *		(2017-) that checks timing instead of counting DUPACKs.
2283  *		Essentially a packet is considered lost if it's not S/ACKed
2284  *		after RTT + reordering_window, where both metrics are
2285  *		dynamically measured and adjusted. This is implemented in
2286  *		tcp_rack_mark_lost.
2287  *
2288  *		If the receiver does not support SACK:
2289  *
2290  *		NewReno (RFC6582): in Recovery we assume that one segment
2291  *		is lost (classic Reno). While we are in Recovery and
2292  *		a partial ACK arrives, we assume that one more packet
2293  *		is lost (NewReno). This heuristics are the same in NewReno
2294  *		and SACK.
2295  *
2296  * Really tricky (and requiring careful tuning) part of algorithm
2297  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2298  * The first determines the moment _when_ we should reduce CWND and,
2299  * hence, slow down forward transmission. In fact, it determines the moment
2300  * when we decide that hole is caused by loss, rather than by a reorder.
2301  *
2302  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2303  * holes, caused by lost packets.
2304  *
2305  * And the most logically complicated part of algorithm is undo
2306  * heuristics. We detect false retransmits due to both too early
2307  * fast retransmit (reordering) and underestimated RTO, analyzing
2308  * timestamps and D-SACKs. When we detect that some segments were
2309  * retransmitted by mistake and CWND reduction was wrong, we undo
2310  * window reduction and abort recovery phase. This logic is hidden
2311  * inside several functions named tcp_try_undo_<something>.
2312  */
2313 
2314 /* This function decides, when we should leave Disordered state
2315  * and enter Recovery phase, reducing congestion window.
2316  *
2317  * Main question: may we further continue forward transmission
2318  * with the same cwnd?
2319  */
2320 static bool tcp_time_to_recover(struct sock *sk, int flag)
2321 {
2322 	struct tcp_sock *tp = tcp_sk(sk);
2323 
2324 	/* Trick#1: The loss is proven. */
2325 	if (tp->lost_out)
2326 		return true;
2327 
2328 	/* Not-A-Trick#2 : Classic rule... */
2329 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2330 		return true;
2331 
2332 	return false;
2333 }
2334 
2335 /* Detect loss in event "A" above by marking head of queue up as lost.
2336  * For RFC3517 SACK, a segment is considered lost if it
2337  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2338  * the maximum SACKed segments to pass before reaching this limit.
2339  */
2340 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2341 {
2342 	struct tcp_sock *tp = tcp_sk(sk);
2343 	struct sk_buff *skb;
2344 	int cnt;
2345 	/* Use SACK to deduce losses of new sequences sent during recovery */
2346 	const u32 loss_high = tp->snd_nxt;
2347 
2348 	WARN_ON(packets > tp->packets_out);
2349 	skb = tp->lost_skb_hint;
2350 	if (skb) {
2351 		/* Head already handled? */
2352 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2353 			return;
2354 		cnt = tp->lost_cnt_hint;
2355 	} else {
2356 		skb = tcp_rtx_queue_head(sk);
2357 		cnt = 0;
2358 	}
2359 
2360 	skb_rbtree_walk_from(skb) {
2361 		/* TODO: do this better */
2362 		/* this is not the most efficient way to do this... */
2363 		tp->lost_skb_hint = skb;
2364 		tp->lost_cnt_hint = cnt;
2365 
2366 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2367 			break;
2368 
2369 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2370 			cnt += tcp_skb_pcount(skb);
2371 
2372 		if (cnt > packets)
2373 			break;
2374 
2375 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2376 			tcp_mark_skb_lost(sk, skb);
2377 
2378 		if (mark_head)
2379 			break;
2380 	}
2381 	tcp_verify_left_out(tp);
2382 }
2383 
2384 /* Account newly detected lost packet(s) */
2385 
2386 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2387 {
2388 	struct tcp_sock *tp = tcp_sk(sk);
2389 
2390 	if (tcp_is_sack(tp)) {
2391 		int sacked_upto = tp->sacked_out - tp->reordering;
2392 		if (sacked_upto >= 0)
2393 			tcp_mark_head_lost(sk, sacked_upto, 0);
2394 		else if (fast_rexmit)
2395 			tcp_mark_head_lost(sk, 1, 1);
2396 	}
2397 }
2398 
2399 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2400 {
2401 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2402 	       before(tp->rx_opt.rcv_tsecr, when);
2403 }
2404 
2405 /* skb is spurious retransmitted if the returned timestamp echo
2406  * reply is prior to the skb transmission time
2407  */
2408 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2409 				     const struct sk_buff *skb)
2410 {
2411 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2412 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2413 }
2414 
2415 /* Nothing was retransmitted or returned timestamp is less
2416  * than timestamp of the first retransmission.
2417  */
2418 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2419 {
2420 	return tp->retrans_stamp &&
2421 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2422 }
2423 
2424 /* Undo procedures. */
2425 
2426 /* We can clear retrans_stamp when there are no retransmissions in the
2427  * window. It would seem that it is trivially available for us in
2428  * tp->retrans_out, however, that kind of assumptions doesn't consider
2429  * what will happen if errors occur when sending retransmission for the
2430  * second time. ...It could the that such segment has only
2431  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2432  * the head skb is enough except for some reneging corner cases that
2433  * are not worth the effort.
2434  *
2435  * Main reason for all this complexity is the fact that connection dying
2436  * time now depends on the validity of the retrans_stamp, in particular,
2437  * that successive retransmissions of a segment must not advance
2438  * retrans_stamp under any conditions.
2439  */
2440 static bool tcp_any_retrans_done(const struct sock *sk)
2441 {
2442 	const struct tcp_sock *tp = tcp_sk(sk);
2443 	struct sk_buff *skb;
2444 
2445 	if (tp->retrans_out)
2446 		return true;
2447 
2448 	skb = tcp_rtx_queue_head(sk);
2449 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2450 		return true;
2451 
2452 	return false;
2453 }
2454 
2455 static void DBGUNDO(struct sock *sk, const char *msg)
2456 {
2457 #if FASTRETRANS_DEBUG > 1
2458 	struct tcp_sock *tp = tcp_sk(sk);
2459 	struct inet_sock *inet = inet_sk(sk);
2460 
2461 	if (sk->sk_family == AF_INET) {
2462 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2463 			 msg,
2464 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2465 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2466 			 tp->snd_ssthresh, tp->prior_ssthresh,
2467 			 tp->packets_out);
2468 	}
2469 #if IS_ENABLED(CONFIG_IPV6)
2470 	else if (sk->sk_family == AF_INET6) {
2471 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2472 			 msg,
2473 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2474 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2475 			 tp->snd_ssthresh, tp->prior_ssthresh,
2476 			 tp->packets_out);
2477 	}
2478 #endif
2479 #endif
2480 }
2481 
2482 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2483 {
2484 	struct tcp_sock *tp = tcp_sk(sk);
2485 
2486 	if (unmark_loss) {
2487 		struct sk_buff *skb;
2488 
2489 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2490 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2491 		}
2492 		tp->lost_out = 0;
2493 		tcp_clear_all_retrans_hints(tp);
2494 	}
2495 
2496 	if (tp->prior_ssthresh) {
2497 		const struct inet_connection_sock *icsk = inet_csk(sk);
2498 
2499 		tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2500 
2501 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2502 			tp->snd_ssthresh = tp->prior_ssthresh;
2503 			tcp_ecn_withdraw_cwr(tp);
2504 		}
2505 	}
2506 	tp->snd_cwnd_stamp = tcp_jiffies32;
2507 	tp->undo_marker = 0;
2508 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2509 }
2510 
2511 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2512 {
2513 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2514 }
2515 
2516 /* People celebrate: "We love our President!" */
2517 static bool tcp_try_undo_recovery(struct sock *sk)
2518 {
2519 	struct tcp_sock *tp = tcp_sk(sk);
2520 
2521 	if (tcp_may_undo(tp)) {
2522 		int mib_idx;
2523 
2524 		/* Happy end! We did not retransmit anything
2525 		 * or our original transmission succeeded.
2526 		 */
2527 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2528 		tcp_undo_cwnd_reduction(sk, false);
2529 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2530 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2531 		else
2532 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2533 
2534 		NET_INC_STATS(sock_net(sk), mib_idx);
2535 	} else if (tp->rack.reo_wnd_persist) {
2536 		tp->rack.reo_wnd_persist--;
2537 	}
2538 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2539 		/* Hold old state until something *above* high_seq
2540 		 * is ACKed. For Reno it is MUST to prevent false
2541 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2542 		if (!tcp_any_retrans_done(sk))
2543 			tp->retrans_stamp = 0;
2544 		return true;
2545 	}
2546 	tcp_set_ca_state(sk, TCP_CA_Open);
2547 	tp->is_sack_reneg = 0;
2548 	return false;
2549 }
2550 
2551 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2552 static bool tcp_try_undo_dsack(struct sock *sk)
2553 {
2554 	struct tcp_sock *tp = tcp_sk(sk);
2555 
2556 	if (tp->undo_marker && !tp->undo_retrans) {
2557 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2558 					       tp->rack.reo_wnd_persist + 1);
2559 		DBGUNDO(sk, "D-SACK");
2560 		tcp_undo_cwnd_reduction(sk, false);
2561 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2562 		return true;
2563 	}
2564 	return false;
2565 }
2566 
2567 /* Undo during loss recovery after partial ACK or using F-RTO. */
2568 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2569 {
2570 	struct tcp_sock *tp = tcp_sk(sk);
2571 
2572 	if (frto_undo || tcp_may_undo(tp)) {
2573 		tcp_undo_cwnd_reduction(sk, true);
2574 
2575 		DBGUNDO(sk, "partial loss");
2576 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2577 		if (frto_undo)
2578 			NET_INC_STATS(sock_net(sk),
2579 					LINUX_MIB_TCPSPURIOUSRTOS);
2580 		inet_csk(sk)->icsk_retransmits = 0;
2581 		if (frto_undo || tcp_is_sack(tp)) {
2582 			tcp_set_ca_state(sk, TCP_CA_Open);
2583 			tp->is_sack_reneg = 0;
2584 		}
2585 		return true;
2586 	}
2587 	return false;
2588 }
2589 
2590 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2591  * It computes the number of packets to send (sndcnt) based on packets newly
2592  * delivered:
2593  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2594  *	cwnd reductions across a full RTT.
2595  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2596  *      But when SND_UNA is acked without further losses,
2597  *      slow starts cwnd up to ssthresh to speed up the recovery.
2598  */
2599 static void tcp_init_cwnd_reduction(struct sock *sk)
2600 {
2601 	struct tcp_sock *tp = tcp_sk(sk);
2602 
2603 	tp->high_seq = tp->snd_nxt;
2604 	tp->tlp_high_seq = 0;
2605 	tp->snd_cwnd_cnt = 0;
2606 	tp->prior_cwnd = tcp_snd_cwnd(tp);
2607 	tp->prr_delivered = 0;
2608 	tp->prr_out = 0;
2609 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2610 	tcp_ecn_queue_cwr(tp);
2611 }
2612 
2613 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2614 {
2615 	struct tcp_sock *tp = tcp_sk(sk);
2616 	int sndcnt = 0;
2617 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2618 
2619 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2620 		return;
2621 
2622 	tp->prr_delivered += newly_acked_sacked;
2623 	if (delta < 0) {
2624 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2625 			       tp->prior_cwnd - 1;
2626 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2627 	} else {
2628 		sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2629 			       newly_acked_sacked);
2630 		if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2631 			sndcnt++;
2632 		sndcnt = min(delta, sndcnt);
2633 	}
2634 	/* Force a fast retransmit upon entering fast recovery */
2635 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2636 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2637 }
2638 
2639 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2640 {
2641 	struct tcp_sock *tp = tcp_sk(sk);
2642 
2643 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2644 		return;
2645 
2646 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2647 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2648 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2649 		tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2650 		tp->snd_cwnd_stamp = tcp_jiffies32;
2651 	}
2652 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2653 }
2654 
2655 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2656 void tcp_enter_cwr(struct sock *sk)
2657 {
2658 	struct tcp_sock *tp = tcp_sk(sk);
2659 
2660 	tp->prior_ssthresh = 0;
2661 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2662 		tp->undo_marker = 0;
2663 		tcp_init_cwnd_reduction(sk);
2664 		tcp_set_ca_state(sk, TCP_CA_CWR);
2665 	}
2666 }
2667 EXPORT_SYMBOL(tcp_enter_cwr);
2668 
2669 static void tcp_try_keep_open(struct sock *sk)
2670 {
2671 	struct tcp_sock *tp = tcp_sk(sk);
2672 	int state = TCP_CA_Open;
2673 
2674 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2675 		state = TCP_CA_Disorder;
2676 
2677 	if (inet_csk(sk)->icsk_ca_state != state) {
2678 		tcp_set_ca_state(sk, state);
2679 		tp->high_seq = tp->snd_nxt;
2680 	}
2681 }
2682 
2683 static void tcp_try_to_open(struct sock *sk, int flag)
2684 {
2685 	struct tcp_sock *tp = tcp_sk(sk);
2686 
2687 	tcp_verify_left_out(tp);
2688 
2689 	if (!tcp_any_retrans_done(sk))
2690 		tp->retrans_stamp = 0;
2691 
2692 	if (flag & FLAG_ECE)
2693 		tcp_enter_cwr(sk);
2694 
2695 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2696 		tcp_try_keep_open(sk);
2697 	}
2698 }
2699 
2700 static void tcp_mtup_probe_failed(struct sock *sk)
2701 {
2702 	struct inet_connection_sock *icsk = inet_csk(sk);
2703 
2704 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2705 	icsk->icsk_mtup.probe_size = 0;
2706 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2707 }
2708 
2709 static void tcp_mtup_probe_success(struct sock *sk)
2710 {
2711 	struct tcp_sock *tp = tcp_sk(sk);
2712 	struct inet_connection_sock *icsk = inet_csk(sk);
2713 	u64 val;
2714 
2715 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2716 
2717 	val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2718 	do_div(val, icsk->icsk_mtup.probe_size);
2719 	DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2720 	tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2721 
2722 	tp->snd_cwnd_cnt = 0;
2723 	tp->snd_cwnd_stamp = tcp_jiffies32;
2724 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2725 
2726 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2727 	icsk->icsk_mtup.probe_size = 0;
2728 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2729 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2730 }
2731 
2732 /* Do a simple retransmit without using the backoff mechanisms in
2733  * tcp_timer. This is used for path mtu discovery.
2734  * The socket is already locked here.
2735  */
2736 void tcp_simple_retransmit(struct sock *sk)
2737 {
2738 	const struct inet_connection_sock *icsk = inet_csk(sk);
2739 	struct tcp_sock *tp = tcp_sk(sk);
2740 	struct sk_buff *skb;
2741 	int mss;
2742 
2743 	/* A fastopen SYN request is stored as two separate packets within
2744 	 * the retransmit queue, this is done by tcp_send_syn_data().
2745 	 * As a result simply checking the MSS of the frames in the queue
2746 	 * will not work for the SYN packet.
2747 	 *
2748 	 * Us being here is an indication of a path MTU issue so we can
2749 	 * assume that the fastopen SYN was lost and just mark all the
2750 	 * frames in the retransmit queue as lost. We will use an MSS of
2751 	 * -1 to mark all frames as lost, otherwise compute the current MSS.
2752 	 */
2753 	if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2754 		mss = -1;
2755 	else
2756 		mss = tcp_current_mss(sk);
2757 
2758 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2759 		if (tcp_skb_seglen(skb) > mss)
2760 			tcp_mark_skb_lost(sk, skb);
2761 	}
2762 
2763 	tcp_clear_retrans_hints_partial(tp);
2764 
2765 	if (!tp->lost_out)
2766 		return;
2767 
2768 	if (tcp_is_reno(tp))
2769 		tcp_limit_reno_sacked(tp);
2770 
2771 	tcp_verify_left_out(tp);
2772 
2773 	/* Don't muck with the congestion window here.
2774 	 * Reason is that we do not increase amount of _data_
2775 	 * in network, but units changed and effective
2776 	 * cwnd/ssthresh really reduced now.
2777 	 */
2778 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2779 		tp->high_seq = tp->snd_nxt;
2780 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2781 		tp->prior_ssthresh = 0;
2782 		tp->undo_marker = 0;
2783 		tcp_set_ca_state(sk, TCP_CA_Loss);
2784 	}
2785 	tcp_xmit_retransmit_queue(sk);
2786 }
2787 EXPORT_SYMBOL(tcp_simple_retransmit);
2788 
2789 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2790 {
2791 	struct tcp_sock *tp = tcp_sk(sk);
2792 	int mib_idx;
2793 
2794 	if (tcp_is_reno(tp))
2795 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2796 	else
2797 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2798 
2799 	NET_INC_STATS(sock_net(sk), mib_idx);
2800 
2801 	tp->prior_ssthresh = 0;
2802 	tcp_init_undo(tp);
2803 
2804 	if (!tcp_in_cwnd_reduction(sk)) {
2805 		if (!ece_ack)
2806 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2807 		tcp_init_cwnd_reduction(sk);
2808 	}
2809 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2810 }
2811 
2812 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2813  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2814  */
2815 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2816 			     int *rexmit)
2817 {
2818 	struct tcp_sock *tp = tcp_sk(sk);
2819 	bool recovered = !before(tp->snd_una, tp->high_seq);
2820 
2821 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2822 	    tcp_try_undo_loss(sk, false))
2823 		return;
2824 
2825 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2826 		/* Step 3.b. A timeout is spurious if not all data are
2827 		 * lost, i.e., never-retransmitted data are (s)acked.
2828 		 */
2829 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2830 		    tcp_try_undo_loss(sk, true))
2831 			return;
2832 
2833 		if (after(tp->snd_nxt, tp->high_seq)) {
2834 			if (flag & FLAG_DATA_SACKED || num_dupack)
2835 				tp->frto = 0; /* Step 3.a. loss was real */
2836 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2837 			tp->high_seq = tp->snd_nxt;
2838 			/* Step 2.b. Try send new data (but deferred until cwnd
2839 			 * is updated in tcp_ack()). Otherwise fall back to
2840 			 * the conventional recovery.
2841 			 */
2842 			if (!tcp_write_queue_empty(sk) &&
2843 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2844 				*rexmit = REXMIT_NEW;
2845 				return;
2846 			}
2847 			tp->frto = 0;
2848 		}
2849 	}
2850 
2851 	if (recovered) {
2852 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2853 		tcp_try_undo_recovery(sk);
2854 		return;
2855 	}
2856 	if (tcp_is_reno(tp)) {
2857 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2858 		 * delivered. Lower inflight to clock out (re)tranmissions.
2859 		 */
2860 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2861 			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2862 		else if (flag & FLAG_SND_UNA_ADVANCED)
2863 			tcp_reset_reno_sack(tp);
2864 	}
2865 	*rexmit = REXMIT_LOST;
2866 }
2867 
2868 static bool tcp_force_fast_retransmit(struct sock *sk)
2869 {
2870 	struct tcp_sock *tp = tcp_sk(sk);
2871 
2872 	return after(tcp_highest_sack_seq(tp),
2873 		     tp->snd_una + tp->reordering * tp->mss_cache);
2874 }
2875 
2876 /* Undo during fast recovery after partial ACK. */
2877 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2878 				 bool *do_lost)
2879 {
2880 	struct tcp_sock *tp = tcp_sk(sk);
2881 
2882 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2883 		/* Plain luck! Hole if filled with delayed
2884 		 * packet, rather than with a retransmit. Check reordering.
2885 		 */
2886 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2887 
2888 		/* We are getting evidence that the reordering degree is higher
2889 		 * than we realized. If there are no retransmits out then we
2890 		 * can undo. Otherwise we clock out new packets but do not
2891 		 * mark more packets lost or retransmit more.
2892 		 */
2893 		if (tp->retrans_out)
2894 			return true;
2895 
2896 		if (!tcp_any_retrans_done(sk))
2897 			tp->retrans_stamp = 0;
2898 
2899 		DBGUNDO(sk, "partial recovery");
2900 		tcp_undo_cwnd_reduction(sk, true);
2901 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2902 		tcp_try_keep_open(sk);
2903 	} else {
2904 		/* Partial ACK arrived. Force fast retransmit. */
2905 		*do_lost = tcp_force_fast_retransmit(sk);
2906 	}
2907 	return false;
2908 }
2909 
2910 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2911 {
2912 	struct tcp_sock *tp = tcp_sk(sk);
2913 
2914 	if (tcp_rtx_queue_empty(sk))
2915 		return;
2916 
2917 	if (unlikely(tcp_is_reno(tp))) {
2918 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2919 	} else if (tcp_is_rack(sk)) {
2920 		u32 prior_retrans = tp->retrans_out;
2921 
2922 		if (tcp_rack_mark_lost(sk))
2923 			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2924 		if (prior_retrans > tp->retrans_out)
2925 			*ack_flag |= FLAG_LOST_RETRANS;
2926 	}
2927 }
2928 
2929 /* Process an event, which can update packets-in-flight not trivially.
2930  * Main goal of this function is to calculate new estimate for left_out,
2931  * taking into account both packets sitting in receiver's buffer and
2932  * packets lost by network.
2933  *
2934  * Besides that it updates the congestion state when packet loss or ECN
2935  * is detected. But it does not reduce the cwnd, it is done by the
2936  * congestion control later.
2937  *
2938  * It does _not_ decide what to send, it is made in function
2939  * tcp_xmit_retransmit_queue().
2940  */
2941 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2942 				  int num_dupack, int *ack_flag, int *rexmit)
2943 {
2944 	struct inet_connection_sock *icsk = inet_csk(sk);
2945 	struct tcp_sock *tp = tcp_sk(sk);
2946 	int fast_rexmit = 0, flag = *ack_flag;
2947 	bool ece_ack = flag & FLAG_ECE;
2948 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2949 				      tcp_force_fast_retransmit(sk));
2950 
2951 	if (!tp->packets_out && tp->sacked_out)
2952 		tp->sacked_out = 0;
2953 
2954 	/* Now state machine starts.
2955 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2956 	if (ece_ack)
2957 		tp->prior_ssthresh = 0;
2958 
2959 	/* B. In all the states check for reneging SACKs. */
2960 	if (tcp_check_sack_reneging(sk, flag))
2961 		return;
2962 
2963 	/* C. Check consistency of the current state. */
2964 	tcp_verify_left_out(tp);
2965 
2966 	/* D. Check state exit conditions. State can be terminated
2967 	 *    when high_seq is ACKed. */
2968 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2969 		WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
2970 		tp->retrans_stamp = 0;
2971 	} else if (!before(tp->snd_una, tp->high_seq)) {
2972 		switch (icsk->icsk_ca_state) {
2973 		case TCP_CA_CWR:
2974 			/* CWR is to be held something *above* high_seq
2975 			 * is ACKed for CWR bit to reach receiver. */
2976 			if (tp->snd_una != tp->high_seq) {
2977 				tcp_end_cwnd_reduction(sk);
2978 				tcp_set_ca_state(sk, TCP_CA_Open);
2979 			}
2980 			break;
2981 
2982 		case TCP_CA_Recovery:
2983 			if (tcp_is_reno(tp))
2984 				tcp_reset_reno_sack(tp);
2985 			if (tcp_try_undo_recovery(sk))
2986 				return;
2987 			tcp_end_cwnd_reduction(sk);
2988 			break;
2989 		}
2990 	}
2991 
2992 	/* E. Process state. */
2993 	switch (icsk->icsk_ca_state) {
2994 	case TCP_CA_Recovery:
2995 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2996 			if (tcp_is_reno(tp))
2997 				tcp_add_reno_sack(sk, num_dupack, ece_ack);
2998 		} else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
2999 			return;
3000 
3001 		if (tcp_try_undo_dsack(sk))
3002 			tcp_try_keep_open(sk);
3003 
3004 		tcp_identify_packet_loss(sk, ack_flag);
3005 		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3006 			if (!tcp_time_to_recover(sk, flag))
3007 				return;
3008 			/* Undo reverts the recovery state. If loss is evident,
3009 			 * starts a new recovery (e.g. reordering then loss);
3010 			 */
3011 			tcp_enter_recovery(sk, ece_ack);
3012 		}
3013 		break;
3014 	case TCP_CA_Loss:
3015 		tcp_process_loss(sk, flag, num_dupack, rexmit);
3016 		tcp_identify_packet_loss(sk, ack_flag);
3017 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3018 		      (*ack_flag & FLAG_LOST_RETRANS)))
3019 			return;
3020 		/* Change state if cwnd is undone or retransmits are lost */
3021 		fallthrough;
3022 	default:
3023 		if (tcp_is_reno(tp)) {
3024 			if (flag & FLAG_SND_UNA_ADVANCED)
3025 				tcp_reset_reno_sack(tp);
3026 			tcp_add_reno_sack(sk, num_dupack, ece_ack);
3027 		}
3028 
3029 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3030 			tcp_try_undo_dsack(sk);
3031 
3032 		tcp_identify_packet_loss(sk, ack_flag);
3033 		if (!tcp_time_to_recover(sk, flag)) {
3034 			tcp_try_to_open(sk, flag);
3035 			return;
3036 		}
3037 
3038 		/* MTU probe failure: don't reduce cwnd */
3039 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3040 		    icsk->icsk_mtup.probe_size &&
3041 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3042 			tcp_mtup_probe_failed(sk);
3043 			/* Restores the reduction we did in tcp_mtup_probe() */
3044 			tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3045 			tcp_simple_retransmit(sk);
3046 			return;
3047 		}
3048 
3049 		/* Otherwise enter Recovery state */
3050 		tcp_enter_recovery(sk, ece_ack);
3051 		fast_rexmit = 1;
3052 	}
3053 
3054 	if (!tcp_is_rack(sk) && do_lost)
3055 		tcp_update_scoreboard(sk, fast_rexmit);
3056 	*rexmit = REXMIT_LOST;
3057 }
3058 
3059 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3060 {
3061 	u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3062 	struct tcp_sock *tp = tcp_sk(sk);
3063 
3064 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3065 		/* If the remote keeps returning delayed ACKs, eventually
3066 		 * the min filter would pick it up and overestimate the
3067 		 * prop. delay when it expires. Skip suspected delayed ACKs.
3068 		 */
3069 		return;
3070 	}
3071 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3072 			   rtt_us ? : jiffies_to_usecs(1));
3073 }
3074 
3075 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3076 			       long seq_rtt_us, long sack_rtt_us,
3077 			       long ca_rtt_us, struct rate_sample *rs)
3078 {
3079 	const struct tcp_sock *tp = tcp_sk(sk);
3080 
3081 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3082 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3083 	 * Karn's algorithm forbids taking RTT if some retransmitted data
3084 	 * is acked (RFC6298).
3085 	 */
3086 	if (seq_rtt_us < 0)
3087 		seq_rtt_us = sack_rtt_us;
3088 
3089 	/* RTTM Rule: A TSecr value received in a segment is used to
3090 	 * update the averaged RTT measurement only if the segment
3091 	 * acknowledges some new data, i.e., only if it advances the
3092 	 * left edge of the send window.
3093 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3094 	 */
3095 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3096 	    flag & FLAG_ACKED) {
3097 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3098 
3099 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3100 			if (!delta)
3101 				delta = 1;
3102 			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3103 			ca_rtt_us = seq_rtt_us;
3104 		}
3105 	}
3106 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3107 	if (seq_rtt_us < 0)
3108 		return false;
3109 
3110 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3111 	 * always taken together with ACK, SACK, or TS-opts. Any negative
3112 	 * values will be skipped with the seq_rtt_us < 0 check above.
3113 	 */
3114 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3115 	tcp_rtt_estimator(sk, seq_rtt_us);
3116 	tcp_set_rto(sk);
3117 
3118 	/* RFC6298: only reset backoff on valid RTT measurement. */
3119 	inet_csk(sk)->icsk_backoff = 0;
3120 	return true;
3121 }
3122 
3123 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3124 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3125 {
3126 	struct rate_sample rs;
3127 	long rtt_us = -1L;
3128 
3129 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3130 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3131 
3132 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3133 }
3134 
3135 
3136 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3137 {
3138 	const struct inet_connection_sock *icsk = inet_csk(sk);
3139 
3140 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3141 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3142 }
3143 
3144 /* Restart timer after forward progress on connection.
3145  * RFC2988 recommends to restart timer to now+rto.
3146  */
3147 void tcp_rearm_rto(struct sock *sk)
3148 {
3149 	const struct inet_connection_sock *icsk = inet_csk(sk);
3150 	struct tcp_sock *tp = tcp_sk(sk);
3151 
3152 	/* If the retrans timer is currently being used by Fast Open
3153 	 * for SYN-ACK retrans purpose, stay put.
3154 	 */
3155 	if (rcu_access_pointer(tp->fastopen_rsk))
3156 		return;
3157 
3158 	if (!tp->packets_out) {
3159 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3160 	} else {
3161 		u32 rto = inet_csk(sk)->icsk_rto;
3162 		/* Offset the time elapsed after installing regular RTO */
3163 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3164 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3165 			s64 delta_us = tcp_rto_delta_us(sk);
3166 			/* delta_us may not be positive if the socket is locked
3167 			 * when the retrans timer fires and is rescheduled.
3168 			 */
3169 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3170 		}
3171 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3172 				     TCP_RTO_MAX);
3173 	}
3174 }
3175 
3176 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3177 static void tcp_set_xmit_timer(struct sock *sk)
3178 {
3179 	if (!tcp_schedule_loss_probe(sk, true))
3180 		tcp_rearm_rto(sk);
3181 }
3182 
3183 /* If we get here, the whole TSO packet has not been acked. */
3184 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3185 {
3186 	struct tcp_sock *tp = tcp_sk(sk);
3187 	u32 packets_acked;
3188 
3189 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3190 
3191 	packets_acked = tcp_skb_pcount(skb);
3192 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3193 		return 0;
3194 	packets_acked -= tcp_skb_pcount(skb);
3195 
3196 	if (packets_acked) {
3197 		BUG_ON(tcp_skb_pcount(skb) == 0);
3198 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3199 	}
3200 
3201 	return packets_acked;
3202 }
3203 
3204 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3205 			   const struct sk_buff *ack_skb, u32 prior_snd_una)
3206 {
3207 	const struct skb_shared_info *shinfo;
3208 
3209 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3210 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3211 		return;
3212 
3213 	shinfo = skb_shinfo(skb);
3214 	if (!before(shinfo->tskey, prior_snd_una) &&
3215 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3216 		tcp_skb_tsorted_save(skb) {
3217 			__skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3218 		} tcp_skb_tsorted_restore(skb);
3219 	}
3220 }
3221 
3222 /* Remove acknowledged frames from the retransmission queue. If our packet
3223  * is before the ack sequence we can discard it as it's confirmed to have
3224  * arrived at the other end.
3225  */
3226 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3227 			       u32 prior_fack, u32 prior_snd_una,
3228 			       struct tcp_sacktag_state *sack, bool ece_ack)
3229 {
3230 	const struct inet_connection_sock *icsk = inet_csk(sk);
3231 	u64 first_ackt, last_ackt;
3232 	struct tcp_sock *tp = tcp_sk(sk);
3233 	u32 prior_sacked = tp->sacked_out;
3234 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3235 	struct sk_buff *skb, *next;
3236 	bool fully_acked = true;
3237 	long sack_rtt_us = -1L;
3238 	long seq_rtt_us = -1L;
3239 	long ca_rtt_us = -1L;
3240 	u32 pkts_acked = 0;
3241 	bool rtt_update;
3242 	int flag = 0;
3243 
3244 	first_ackt = 0;
3245 
3246 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3247 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3248 		const u32 start_seq = scb->seq;
3249 		u8 sacked = scb->sacked;
3250 		u32 acked_pcount;
3251 
3252 		/* Determine how many packets and what bytes were acked, tso and else */
3253 		if (after(scb->end_seq, tp->snd_una)) {
3254 			if (tcp_skb_pcount(skb) == 1 ||
3255 			    !after(tp->snd_una, scb->seq))
3256 				break;
3257 
3258 			acked_pcount = tcp_tso_acked(sk, skb);
3259 			if (!acked_pcount)
3260 				break;
3261 			fully_acked = false;
3262 		} else {
3263 			acked_pcount = tcp_skb_pcount(skb);
3264 		}
3265 
3266 		if (unlikely(sacked & TCPCB_RETRANS)) {
3267 			if (sacked & TCPCB_SACKED_RETRANS)
3268 				tp->retrans_out -= acked_pcount;
3269 			flag |= FLAG_RETRANS_DATA_ACKED;
3270 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3271 			last_ackt = tcp_skb_timestamp_us(skb);
3272 			WARN_ON_ONCE(last_ackt == 0);
3273 			if (!first_ackt)
3274 				first_ackt = last_ackt;
3275 
3276 			if (before(start_seq, reord))
3277 				reord = start_seq;
3278 			if (!after(scb->end_seq, tp->high_seq))
3279 				flag |= FLAG_ORIG_SACK_ACKED;
3280 		}
3281 
3282 		if (sacked & TCPCB_SACKED_ACKED) {
3283 			tp->sacked_out -= acked_pcount;
3284 		} else if (tcp_is_sack(tp)) {
3285 			tcp_count_delivered(tp, acked_pcount, ece_ack);
3286 			if (!tcp_skb_spurious_retrans(tp, skb))
3287 				tcp_rack_advance(tp, sacked, scb->end_seq,
3288 						 tcp_skb_timestamp_us(skb));
3289 		}
3290 		if (sacked & TCPCB_LOST)
3291 			tp->lost_out -= acked_pcount;
3292 
3293 		tp->packets_out -= acked_pcount;
3294 		pkts_acked += acked_pcount;
3295 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3296 
3297 		/* Initial outgoing SYN's get put onto the write_queue
3298 		 * just like anything else we transmit.  It is not
3299 		 * true data, and if we misinform our callers that
3300 		 * this ACK acks real data, we will erroneously exit
3301 		 * connection startup slow start one packet too
3302 		 * quickly.  This is severely frowned upon behavior.
3303 		 */
3304 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3305 			flag |= FLAG_DATA_ACKED;
3306 		} else {
3307 			flag |= FLAG_SYN_ACKED;
3308 			tp->retrans_stamp = 0;
3309 		}
3310 
3311 		if (!fully_acked)
3312 			break;
3313 
3314 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3315 
3316 		next = skb_rb_next(skb);
3317 		if (unlikely(skb == tp->retransmit_skb_hint))
3318 			tp->retransmit_skb_hint = NULL;
3319 		if (unlikely(skb == tp->lost_skb_hint))
3320 			tp->lost_skb_hint = NULL;
3321 		tcp_highest_sack_replace(sk, skb, next);
3322 		tcp_rtx_queue_unlink_and_free(skb, sk);
3323 	}
3324 
3325 	if (!skb)
3326 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3327 
3328 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3329 		tp->snd_up = tp->snd_una;
3330 
3331 	if (skb) {
3332 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3333 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3334 			flag |= FLAG_SACK_RENEGING;
3335 	}
3336 
3337 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3338 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3339 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3340 
3341 		if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3342 		    (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3343 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3344 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3345 			/* Conservatively mark a delayed ACK. It's typically
3346 			 * from a lone runt packet over the round trip to
3347 			 * a receiver w/o out-of-order or CE events.
3348 			 */
3349 			flag |= FLAG_ACK_MAYBE_DELAYED;
3350 		}
3351 	}
3352 	if (sack->first_sackt) {
3353 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3354 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3355 	}
3356 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3357 					ca_rtt_us, sack->rate);
3358 
3359 	if (flag & FLAG_ACKED) {
3360 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3361 		if (unlikely(icsk->icsk_mtup.probe_size &&
3362 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3363 			tcp_mtup_probe_success(sk);
3364 		}
3365 
3366 		if (tcp_is_reno(tp)) {
3367 			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3368 
3369 			/* If any of the cumulatively ACKed segments was
3370 			 * retransmitted, non-SACK case cannot confirm that
3371 			 * progress was due to original transmission due to
3372 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3373 			 * the packets may have been never retransmitted.
3374 			 */
3375 			if (flag & FLAG_RETRANS_DATA_ACKED)
3376 				flag &= ~FLAG_ORIG_SACK_ACKED;
3377 		} else {
3378 			int delta;
3379 
3380 			/* Non-retransmitted hole got filled? That's reordering */
3381 			if (before(reord, prior_fack))
3382 				tcp_check_sack_reordering(sk, reord, 0);
3383 
3384 			delta = prior_sacked - tp->sacked_out;
3385 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3386 		}
3387 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3388 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3389 						    tcp_skb_timestamp_us(skb))) {
3390 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3391 		 * after when the head was last (re)transmitted. Otherwise the
3392 		 * timeout may continue to extend in loss recovery.
3393 		 */
3394 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3395 	}
3396 
3397 	if (icsk->icsk_ca_ops->pkts_acked) {
3398 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3399 					     .rtt_us = sack->rate->rtt_us };
3400 
3401 		sample.in_flight = tp->mss_cache *
3402 			(tp->delivered - sack->rate->prior_delivered);
3403 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3404 	}
3405 
3406 #if FASTRETRANS_DEBUG > 0
3407 	WARN_ON((int)tp->sacked_out < 0);
3408 	WARN_ON((int)tp->lost_out < 0);
3409 	WARN_ON((int)tp->retrans_out < 0);
3410 	if (!tp->packets_out && tcp_is_sack(tp)) {
3411 		icsk = inet_csk(sk);
3412 		if (tp->lost_out) {
3413 			pr_debug("Leak l=%u %d\n",
3414 				 tp->lost_out, icsk->icsk_ca_state);
3415 			tp->lost_out = 0;
3416 		}
3417 		if (tp->sacked_out) {
3418 			pr_debug("Leak s=%u %d\n",
3419 				 tp->sacked_out, icsk->icsk_ca_state);
3420 			tp->sacked_out = 0;
3421 		}
3422 		if (tp->retrans_out) {
3423 			pr_debug("Leak r=%u %d\n",
3424 				 tp->retrans_out, icsk->icsk_ca_state);
3425 			tp->retrans_out = 0;
3426 		}
3427 	}
3428 #endif
3429 	return flag;
3430 }
3431 
3432 static void tcp_ack_probe(struct sock *sk)
3433 {
3434 	struct inet_connection_sock *icsk = inet_csk(sk);
3435 	struct sk_buff *head = tcp_send_head(sk);
3436 	const struct tcp_sock *tp = tcp_sk(sk);
3437 
3438 	/* Was it a usable window open? */
3439 	if (!head)
3440 		return;
3441 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3442 		icsk->icsk_backoff = 0;
3443 		icsk->icsk_probes_tstamp = 0;
3444 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3445 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3446 		 * This function is not for random using!
3447 		 */
3448 	} else {
3449 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3450 
3451 		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3452 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3453 	}
3454 }
3455 
3456 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3457 {
3458 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3459 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3460 }
3461 
3462 /* Decide wheather to run the increase function of congestion control. */
3463 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3464 {
3465 	/* If reordering is high then always grow cwnd whenever data is
3466 	 * delivered regardless of its ordering. Otherwise stay conservative
3467 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3468 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3469 	 * cwnd in tcp_fastretrans_alert() based on more states.
3470 	 */
3471 	if (tcp_sk(sk)->reordering >
3472 	    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3473 		return flag & FLAG_FORWARD_PROGRESS;
3474 
3475 	return flag & FLAG_DATA_ACKED;
3476 }
3477 
3478 /* The "ultimate" congestion control function that aims to replace the rigid
3479  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3480  * It's called toward the end of processing an ACK with precise rate
3481  * information. All transmission or retransmission are delayed afterwards.
3482  */
3483 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3484 			     int flag, const struct rate_sample *rs)
3485 {
3486 	const struct inet_connection_sock *icsk = inet_csk(sk);
3487 
3488 	if (icsk->icsk_ca_ops->cong_control) {
3489 		icsk->icsk_ca_ops->cong_control(sk, rs);
3490 		return;
3491 	}
3492 
3493 	if (tcp_in_cwnd_reduction(sk)) {
3494 		/* Reduce cwnd if state mandates */
3495 		tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3496 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3497 		/* Advance cwnd if state allows */
3498 		tcp_cong_avoid(sk, ack, acked_sacked);
3499 	}
3500 	tcp_update_pacing_rate(sk);
3501 }
3502 
3503 /* Check that window update is acceptable.
3504  * The function assumes that snd_una<=ack<=snd_next.
3505  */
3506 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3507 					const u32 ack, const u32 ack_seq,
3508 					const u32 nwin)
3509 {
3510 	return	after(ack, tp->snd_una) ||
3511 		after(ack_seq, tp->snd_wl1) ||
3512 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3513 }
3514 
3515 /* If we update tp->snd_una, also update tp->bytes_acked */
3516 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3517 {
3518 	u32 delta = ack - tp->snd_una;
3519 
3520 	sock_owned_by_me((struct sock *)tp);
3521 	tp->bytes_acked += delta;
3522 	tp->snd_una = ack;
3523 }
3524 
3525 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3526 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3527 {
3528 	u32 delta = seq - tp->rcv_nxt;
3529 
3530 	sock_owned_by_me((struct sock *)tp);
3531 	tp->bytes_received += delta;
3532 	WRITE_ONCE(tp->rcv_nxt, seq);
3533 }
3534 
3535 /* Update our send window.
3536  *
3537  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3538  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3539  */
3540 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3541 				 u32 ack_seq)
3542 {
3543 	struct tcp_sock *tp = tcp_sk(sk);
3544 	int flag = 0;
3545 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3546 
3547 	if (likely(!tcp_hdr(skb)->syn))
3548 		nwin <<= tp->rx_opt.snd_wscale;
3549 
3550 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3551 		flag |= FLAG_WIN_UPDATE;
3552 		tcp_update_wl(tp, ack_seq);
3553 
3554 		if (tp->snd_wnd != nwin) {
3555 			tp->snd_wnd = nwin;
3556 
3557 			/* Note, it is the only place, where
3558 			 * fast path is recovered for sending TCP.
3559 			 */
3560 			tp->pred_flags = 0;
3561 			tcp_fast_path_check(sk);
3562 
3563 			if (!tcp_write_queue_empty(sk))
3564 				tcp_slow_start_after_idle_check(sk);
3565 
3566 			if (nwin > tp->max_window) {
3567 				tp->max_window = nwin;
3568 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3569 			}
3570 		}
3571 	}
3572 
3573 	tcp_snd_una_update(tp, ack);
3574 
3575 	return flag;
3576 }
3577 
3578 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3579 				   u32 *last_oow_ack_time)
3580 {
3581 	if (*last_oow_ack_time) {
3582 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3583 
3584 		if (0 <= elapsed &&
3585 		    elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3586 			NET_INC_STATS(net, mib_idx);
3587 			return true;	/* rate-limited: don't send yet! */
3588 		}
3589 	}
3590 
3591 	*last_oow_ack_time = tcp_jiffies32;
3592 
3593 	return false;	/* not rate-limited: go ahead, send dupack now! */
3594 }
3595 
3596 /* Return true if we're currently rate-limiting out-of-window ACKs and
3597  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3598  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3599  * attacks that send repeated SYNs or ACKs for the same connection. To
3600  * do this, we do not send a duplicate SYNACK or ACK if the remote
3601  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3602  */
3603 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3604 			  int mib_idx, u32 *last_oow_ack_time)
3605 {
3606 	/* Data packets without SYNs are not likely part of an ACK loop. */
3607 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3608 	    !tcp_hdr(skb)->syn)
3609 		return false;
3610 
3611 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3612 }
3613 
3614 /* RFC 5961 7 [ACK Throttling] */
3615 static void tcp_send_challenge_ack(struct sock *sk)
3616 {
3617 	/* unprotected vars, we dont care of overwrites */
3618 	static u32 challenge_timestamp;
3619 	static unsigned int challenge_count;
3620 	struct tcp_sock *tp = tcp_sk(sk);
3621 	struct net *net = sock_net(sk);
3622 	u32 count, now;
3623 
3624 	/* First check our per-socket dupack rate limit. */
3625 	if (__tcp_oow_rate_limited(net,
3626 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3627 				   &tp->last_oow_ack_time))
3628 		return;
3629 
3630 	/* Then check host-wide RFC 5961 rate limit. */
3631 	now = jiffies / HZ;
3632 	if (now != challenge_timestamp) {
3633 		u32 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3634 		u32 half = (ack_limit + 1) >> 1;
3635 
3636 		challenge_timestamp = now;
3637 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3638 	}
3639 	count = READ_ONCE(challenge_count);
3640 	if (count > 0) {
3641 		WRITE_ONCE(challenge_count, count - 1);
3642 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3643 		tcp_send_ack(sk);
3644 	}
3645 }
3646 
3647 static void tcp_store_ts_recent(struct tcp_sock *tp)
3648 {
3649 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3650 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3651 }
3652 
3653 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3654 {
3655 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3656 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3657 		 * extra check below makes sure this can only happen
3658 		 * for pure ACK frames.  -DaveM
3659 		 *
3660 		 * Not only, also it occurs for expired timestamps.
3661 		 */
3662 
3663 		if (tcp_paws_check(&tp->rx_opt, 0))
3664 			tcp_store_ts_recent(tp);
3665 	}
3666 }
3667 
3668 /* This routine deals with acks during a TLP episode and ends an episode by
3669  * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3670  */
3671 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3672 {
3673 	struct tcp_sock *tp = tcp_sk(sk);
3674 
3675 	if (before(ack, tp->tlp_high_seq))
3676 		return;
3677 
3678 	if (!tp->tlp_retrans) {
3679 		/* TLP of new data has been acknowledged */
3680 		tp->tlp_high_seq = 0;
3681 	} else if (flag & FLAG_DSACK_TLP) {
3682 		/* This DSACK means original and TLP probe arrived; no loss */
3683 		tp->tlp_high_seq = 0;
3684 	} else if (after(ack, tp->tlp_high_seq)) {
3685 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3686 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3687 		 */
3688 		tcp_init_cwnd_reduction(sk);
3689 		tcp_set_ca_state(sk, TCP_CA_CWR);
3690 		tcp_end_cwnd_reduction(sk);
3691 		tcp_try_keep_open(sk);
3692 		NET_INC_STATS(sock_net(sk),
3693 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3694 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3695 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3696 		/* Pure dupack: original and TLP probe arrived; no loss */
3697 		tp->tlp_high_seq = 0;
3698 	}
3699 }
3700 
3701 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3702 {
3703 	const struct inet_connection_sock *icsk = inet_csk(sk);
3704 
3705 	if (icsk->icsk_ca_ops->in_ack_event)
3706 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3707 }
3708 
3709 /* Congestion control has updated the cwnd already. So if we're in
3710  * loss recovery then now we do any new sends (for FRTO) or
3711  * retransmits (for CA_Loss or CA_recovery) that make sense.
3712  */
3713 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3714 {
3715 	struct tcp_sock *tp = tcp_sk(sk);
3716 
3717 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3718 		return;
3719 
3720 	if (unlikely(rexmit == REXMIT_NEW)) {
3721 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3722 					  TCP_NAGLE_OFF);
3723 		if (after(tp->snd_nxt, tp->high_seq))
3724 			return;
3725 		tp->frto = 0;
3726 	}
3727 	tcp_xmit_retransmit_queue(sk);
3728 }
3729 
3730 /* Returns the number of packets newly acked or sacked by the current ACK */
3731 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3732 {
3733 	const struct net *net = sock_net(sk);
3734 	struct tcp_sock *tp = tcp_sk(sk);
3735 	u32 delivered;
3736 
3737 	delivered = tp->delivered - prior_delivered;
3738 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3739 	if (flag & FLAG_ECE)
3740 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3741 
3742 	return delivered;
3743 }
3744 
3745 /* This routine deals with incoming acks, but not outgoing ones. */
3746 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3747 {
3748 	struct inet_connection_sock *icsk = inet_csk(sk);
3749 	struct tcp_sock *tp = tcp_sk(sk);
3750 	struct tcp_sacktag_state sack_state;
3751 	struct rate_sample rs = { .prior_delivered = 0 };
3752 	u32 prior_snd_una = tp->snd_una;
3753 	bool is_sack_reneg = tp->is_sack_reneg;
3754 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3755 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3756 	int num_dupack = 0;
3757 	int prior_packets = tp->packets_out;
3758 	u32 delivered = tp->delivered;
3759 	u32 lost = tp->lost;
3760 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3761 	u32 prior_fack;
3762 
3763 	sack_state.first_sackt = 0;
3764 	sack_state.rate = &rs;
3765 	sack_state.sack_delivered = 0;
3766 
3767 	/* We very likely will need to access rtx queue. */
3768 	prefetch(sk->tcp_rtx_queue.rb_node);
3769 
3770 	/* If the ack is older than previous acks
3771 	 * then we can probably ignore it.
3772 	 */
3773 	if (before(ack, prior_snd_una)) {
3774 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3775 		if (before(ack, prior_snd_una - tp->max_window)) {
3776 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3777 				tcp_send_challenge_ack(sk);
3778 			return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
3779 		}
3780 		goto old_ack;
3781 	}
3782 
3783 	/* If the ack includes data we haven't sent yet, discard
3784 	 * this segment (RFC793 Section 3.9).
3785 	 */
3786 	if (after(ack, tp->snd_nxt))
3787 		return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
3788 
3789 	if (after(ack, prior_snd_una)) {
3790 		flag |= FLAG_SND_UNA_ADVANCED;
3791 		icsk->icsk_retransmits = 0;
3792 
3793 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3794 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3795 			if (icsk->icsk_clean_acked)
3796 				icsk->icsk_clean_acked(sk, ack);
3797 #endif
3798 	}
3799 
3800 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3801 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3802 
3803 	/* ts_recent update must be made after we are sure that the packet
3804 	 * is in window.
3805 	 */
3806 	if (flag & FLAG_UPDATE_TS_RECENT)
3807 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3808 
3809 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3810 	    FLAG_SND_UNA_ADVANCED) {
3811 		/* Window is constant, pure forward advance.
3812 		 * No more checks are required.
3813 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3814 		 */
3815 		tcp_update_wl(tp, ack_seq);
3816 		tcp_snd_una_update(tp, ack);
3817 		flag |= FLAG_WIN_UPDATE;
3818 
3819 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3820 
3821 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3822 	} else {
3823 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3824 
3825 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3826 			flag |= FLAG_DATA;
3827 		else
3828 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3829 
3830 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3831 
3832 		if (TCP_SKB_CB(skb)->sacked)
3833 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3834 							&sack_state);
3835 
3836 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3837 			flag |= FLAG_ECE;
3838 			ack_ev_flags |= CA_ACK_ECE;
3839 		}
3840 
3841 		if (sack_state.sack_delivered)
3842 			tcp_count_delivered(tp, sack_state.sack_delivered,
3843 					    flag & FLAG_ECE);
3844 
3845 		if (flag & FLAG_WIN_UPDATE)
3846 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3847 
3848 		tcp_in_ack_event(sk, ack_ev_flags);
3849 	}
3850 
3851 	/* This is a deviation from RFC3168 since it states that:
3852 	 * "When the TCP data sender is ready to set the CWR bit after reducing
3853 	 * the congestion window, it SHOULD set the CWR bit only on the first
3854 	 * new data packet that it transmits."
3855 	 * We accept CWR on pure ACKs to be more robust
3856 	 * with widely-deployed TCP implementations that do this.
3857 	 */
3858 	tcp_ecn_accept_cwr(sk, skb);
3859 
3860 	/* We passed data and got it acked, remove any soft error
3861 	 * log. Something worked...
3862 	 */
3863 	sk->sk_err_soft = 0;
3864 	icsk->icsk_probes_out = 0;
3865 	tp->rcv_tstamp = tcp_jiffies32;
3866 	if (!prior_packets)
3867 		goto no_queue;
3868 
3869 	/* See if we can take anything off of the retransmit queue. */
3870 	flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
3871 				    &sack_state, flag & FLAG_ECE);
3872 
3873 	tcp_rack_update_reo_wnd(sk, &rs);
3874 
3875 	if (tp->tlp_high_seq)
3876 		tcp_process_tlp_ack(sk, ack, flag);
3877 
3878 	if (tcp_ack_is_dubious(sk, flag)) {
3879 		if (!(flag & (FLAG_SND_UNA_ADVANCED |
3880 			      FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
3881 			num_dupack = 1;
3882 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3883 			if (!(flag & FLAG_DATA))
3884 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3885 		}
3886 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3887 				      &rexmit);
3888 	}
3889 
3890 	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
3891 	if (flag & FLAG_SET_XMIT_TIMER)
3892 		tcp_set_xmit_timer(sk);
3893 
3894 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3895 		sk_dst_confirm(sk);
3896 
3897 	delivered = tcp_newly_delivered(sk, delivered, flag);
3898 	lost = tp->lost - lost;			/* freshly marked lost */
3899 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3900 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3901 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3902 	tcp_xmit_recovery(sk, rexmit);
3903 	return 1;
3904 
3905 no_queue:
3906 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3907 	if (flag & FLAG_DSACKING_ACK) {
3908 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3909 				      &rexmit);
3910 		tcp_newly_delivered(sk, delivered, flag);
3911 	}
3912 	/* If this ack opens up a zero window, clear backoff.  It was
3913 	 * being used to time the probes, and is probably far higher than
3914 	 * it needs to be for normal retransmission.
3915 	 */
3916 	tcp_ack_probe(sk);
3917 
3918 	if (tp->tlp_high_seq)
3919 		tcp_process_tlp_ack(sk, ack, flag);
3920 	return 1;
3921 
3922 old_ack:
3923 	/* If data was SACKed, tag it and see if we should send more data.
3924 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3925 	 */
3926 	if (TCP_SKB_CB(skb)->sacked) {
3927 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3928 						&sack_state);
3929 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3930 				      &rexmit);
3931 		tcp_newly_delivered(sk, delivered, flag);
3932 		tcp_xmit_recovery(sk, rexmit);
3933 	}
3934 
3935 	return 0;
3936 }
3937 
3938 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3939 				      bool syn, struct tcp_fastopen_cookie *foc,
3940 				      bool exp_opt)
3941 {
3942 	/* Valid only in SYN or SYN-ACK with an even length.  */
3943 	if (!foc || !syn || len < 0 || (len & 1))
3944 		return;
3945 
3946 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3947 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3948 		memcpy(foc->val, cookie, len);
3949 	else if (len != 0)
3950 		len = -1;
3951 	foc->len = len;
3952 	foc->exp = exp_opt;
3953 }
3954 
3955 static bool smc_parse_options(const struct tcphdr *th,
3956 			      struct tcp_options_received *opt_rx,
3957 			      const unsigned char *ptr,
3958 			      int opsize)
3959 {
3960 #if IS_ENABLED(CONFIG_SMC)
3961 	if (static_branch_unlikely(&tcp_have_smc)) {
3962 		if (th->syn && !(opsize & 1) &&
3963 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3964 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
3965 			opt_rx->smc_ok = 1;
3966 			return true;
3967 		}
3968 	}
3969 #endif
3970 	return false;
3971 }
3972 
3973 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3974  * value on success.
3975  */
3976 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3977 {
3978 	const unsigned char *ptr = (const unsigned char *)(th + 1);
3979 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3980 	u16 mss = 0;
3981 
3982 	while (length > 0) {
3983 		int opcode = *ptr++;
3984 		int opsize;
3985 
3986 		switch (opcode) {
3987 		case TCPOPT_EOL:
3988 			return mss;
3989 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3990 			length--;
3991 			continue;
3992 		default:
3993 			if (length < 2)
3994 				return mss;
3995 			opsize = *ptr++;
3996 			if (opsize < 2) /* "silly options" */
3997 				return mss;
3998 			if (opsize > length)
3999 				return mss;	/* fail on partial options */
4000 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4001 				u16 in_mss = get_unaligned_be16(ptr);
4002 
4003 				if (in_mss) {
4004 					if (user_mss && user_mss < in_mss)
4005 						in_mss = user_mss;
4006 					mss = in_mss;
4007 				}
4008 			}
4009 			ptr += opsize - 2;
4010 			length -= opsize;
4011 		}
4012 	}
4013 	return mss;
4014 }
4015 EXPORT_SYMBOL_GPL(tcp_parse_mss_option);
4016 
4017 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4018  * But, this can also be called on packets in the established flow when
4019  * the fast version below fails.
4020  */
4021 void tcp_parse_options(const struct net *net,
4022 		       const struct sk_buff *skb,
4023 		       struct tcp_options_received *opt_rx, int estab,
4024 		       struct tcp_fastopen_cookie *foc)
4025 {
4026 	const unsigned char *ptr;
4027 	const struct tcphdr *th = tcp_hdr(skb);
4028 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4029 
4030 	ptr = (const unsigned char *)(th + 1);
4031 	opt_rx->saw_tstamp = 0;
4032 	opt_rx->saw_unknown = 0;
4033 
4034 	while (length > 0) {
4035 		int opcode = *ptr++;
4036 		int opsize;
4037 
4038 		switch (opcode) {
4039 		case TCPOPT_EOL:
4040 			return;
4041 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4042 			length--;
4043 			continue;
4044 		default:
4045 			if (length < 2)
4046 				return;
4047 			opsize = *ptr++;
4048 			if (opsize < 2) /* "silly options" */
4049 				return;
4050 			if (opsize > length)
4051 				return;	/* don't parse partial options */
4052 			switch (opcode) {
4053 			case TCPOPT_MSS:
4054 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4055 					u16 in_mss = get_unaligned_be16(ptr);
4056 					if (in_mss) {
4057 						if (opt_rx->user_mss &&
4058 						    opt_rx->user_mss < in_mss)
4059 							in_mss = opt_rx->user_mss;
4060 						opt_rx->mss_clamp = in_mss;
4061 					}
4062 				}
4063 				break;
4064 			case TCPOPT_WINDOW:
4065 				if (opsize == TCPOLEN_WINDOW && th->syn &&
4066 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4067 					__u8 snd_wscale = *(__u8 *)ptr;
4068 					opt_rx->wscale_ok = 1;
4069 					if (snd_wscale > TCP_MAX_WSCALE) {
4070 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4071 								     __func__,
4072 								     snd_wscale,
4073 								     TCP_MAX_WSCALE);
4074 						snd_wscale = TCP_MAX_WSCALE;
4075 					}
4076 					opt_rx->snd_wscale = snd_wscale;
4077 				}
4078 				break;
4079 			case TCPOPT_TIMESTAMP:
4080 				if ((opsize == TCPOLEN_TIMESTAMP) &&
4081 				    ((estab && opt_rx->tstamp_ok) ||
4082 				     (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4083 					opt_rx->saw_tstamp = 1;
4084 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4085 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4086 				}
4087 				break;
4088 			case TCPOPT_SACK_PERM:
4089 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4090 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4091 					opt_rx->sack_ok = TCP_SACK_SEEN;
4092 					tcp_sack_reset(opt_rx);
4093 				}
4094 				break;
4095 
4096 			case TCPOPT_SACK:
4097 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4098 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4099 				   opt_rx->sack_ok) {
4100 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4101 				}
4102 				break;
4103 #ifdef CONFIG_TCP_MD5SIG
4104 			case TCPOPT_MD5SIG:
4105 				/*
4106 				 * The MD5 Hash has already been
4107 				 * checked (see tcp_v{4,6}_do_rcv()).
4108 				 */
4109 				break;
4110 #endif
4111 			case TCPOPT_FASTOPEN:
4112 				tcp_parse_fastopen_option(
4113 					opsize - TCPOLEN_FASTOPEN_BASE,
4114 					ptr, th->syn, foc, false);
4115 				break;
4116 
4117 			case TCPOPT_EXP:
4118 				/* Fast Open option shares code 254 using a
4119 				 * 16 bits magic number.
4120 				 */
4121 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4122 				    get_unaligned_be16(ptr) ==
4123 				    TCPOPT_FASTOPEN_MAGIC) {
4124 					tcp_parse_fastopen_option(opsize -
4125 						TCPOLEN_EXP_FASTOPEN_BASE,
4126 						ptr + 2, th->syn, foc, true);
4127 					break;
4128 				}
4129 
4130 				if (smc_parse_options(th, opt_rx, ptr, opsize))
4131 					break;
4132 
4133 				opt_rx->saw_unknown = 1;
4134 				break;
4135 
4136 			default:
4137 				opt_rx->saw_unknown = 1;
4138 			}
4139 			ptr += opsize-2;
4140 			length -= opsize;
4141 		}
4142 	}
4143 }
4144 EXPORT_SYMBOL(tcp_parse_options);
4145 
4146 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4147 {
4148 	const __be32 *ptr = (const __be32 *)(th + 1);
4149 
4150 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4151 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4152 		tp->rx_opt.saw_tstamp = 1;
4153 		++ptr;
4154 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4155 		++ptr;
4156 		if (*ptr)
4157 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4158 		else
4159 			tp->rx_opt.rcv_tsecr = 0;
4160 		return true;
4161 	}
4162 	return false;
4163 }
4164 
4165 /* Fast parse options. This hopes to only see timestamps.
4166  * If it is wrong it falls back on tcp_parse_options().
4167  */
4168 static bool tcp_fast_parse_options(const struct net *net,
4169 				   const struct sk_buff *skb,
4170 				   const struct tcphdr *th, struct tcp_sock *tp)
4171 {
4172 	/* In the spirit of fast parsing, compare doff directly to constant
4173 	 * values.  Because equality is used, short doff can be ignored here.
4174 	 */
4175 	if (th->doff == (sizeof(*th) / 4)) {
4176 		tp->rx_opt.saw_tstamp = 0;
4177 		return false;
4178 	} else if (tp->rx_opt.tstamp_ok &&
4179 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4180 		if (tcp_parse_aligned_timestamp(tp, th))
4181 			return true;
4182 	}
4183 
4184 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4185 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4186 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4187 
4188 	return true;
4189 }
4190 
4191 #ifdef CONFIG_TCP_MD5SIG
4192 /*
4193  * Parse MD5 Signature option
4194  */
4195 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4196 {
4197 	int length = (th->doff << 2) - sizeof(*th);
4198 	const u8 *ptr = (const u8 *)(th + 1);
4199 
4200 	/* If not enough data remaining, we can short cut */
4201 	while (length >= TCPOLEN_MD5SIG) {
4202 		int opcode = *ptr++;
4203 		int opsize;
4204 
4205 		switch (opcode) {
4206 		case TCPOPT_EOL:
4207 			return NULL;
4208 		case TCPOPT_NOP:
4209 			length--;
4210 			continue;
4211 		default:
4212 			opsize = *ptr++;
4213 			if (opsize < 2 || opsize > length)
4214 				return NULL;
4215 			if (opcode == TCPOPT_MD5SIG)
4216 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4217 		}
4218 		ptr += opsize - 2;
4219 		length -= opsize;
4220 	}
4221 	return NULL;
4222 }
4223 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4224 #endif
4225 
4226 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4227  *
4228  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4229  * it can pass through stack. So, the following predicate verifies that
4230  * this segment is not used for anything but congestion avoidance or
4231  * fast retransmit. Moreover, we even are able to eliminate most of such
4232  * second order effects, if we apply some small "replay" window (~RTO)
4233  * to timestamp space.
4234  *
4235  * All these measures still do not guarantee that we reject wrapped ACKs
4236  * on networks with high bandwidth, when sequence space is recycled fastly,
4237  * but it guarantees that such events will be very rare and do not affect
4238  * connection seriously. This doesn't look nice, but alas, PAWS is really
4239  * buggy extension.
4240  *
4241  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4242  * states that events when retransmit arrives after original data are rare.
4243  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4244  * the biggest problem on large power networks even with minor reordering.
4245  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4246  * up to bandwidth of 18Gigabit/sec. 8) ]
4247  */
4248 
4249 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4250 {
4251 	const struct tcp_sock *tp = tcp_sk(sk);
4252 	const struct tcphdr *th = tcp_hdr(skb);
4253 	u32 seq = TCP_SKB_CB(skb)->seq;
4254 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4255 
4256 	return (/* 1. Pure ACK with correct sequence number. */
4257 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4258 
4259 		/* 2. ... and duplicate ACK. */
4260 		ack == tp->snd_una &&
4261 
4262 		/* 3. ... and does not update window. */
4263 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4264 
4265 		/* 4. ... and sits in replay window. */
4266 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4267 }
4268 
4269 static inline bool tcp_paws_discard(const struct sock *sk,
4270 				   const struct sk_buff *skb)
4271 {
4272 	const struct tcp_sock *tp = tcp_sk(sk);
4273 
4274 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4275 	       !tcp_disordered_ack(sk, skb);
4276 }
4277 
4278 /* Check segment sequence number for validity.
4279  *
4280  * Segment controls are considered valid, if the segment
4281  * fits to the window after truncation to the window. Acceptability
4282  * of data (and SYN, FIN, of course) is checked separately.
4283  * See tcp_data_queue(), for example.
4284  *
4285  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4286  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4287  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4288  * (borrowed from freebsd)
4289  */
4290 
4291 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4292 {
4293 	return	!before(end_seq, tp->rcv_wup) &&
4294 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4295 }
4296 
4297 /* When we get a reset we do this. */
4298 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4299 {
4300 	trace_tcp_receive_reset(sk);
4301 
4302 	/* mptcp can't tell us to ignore reset pkts,
4303 	 * so just ignore the return value of mptcp_incoming_options().
4304 	 */
4305 	if (sk_is_mptcp(sk))
4306 		mptcp_incoming_options(sk, skb);
4307 
4308 	/* We want the right error as BSD sees it (and indeed as we do). */
4309 	switch (sk->sk_state) {
4310 	case TCP_SYN_SENT:
4311 		sk->sk_err = ECONNREFUSED;
4312 		break;
4313 	case TCP_CLOSE_WAIT:
4314 		sk->sk_err = EPIPE;
4315 		break;
4316 	case TCP_CLOSE:
4317 		return;
4318 	default:
4319 		sk->sk_err = ECONNRESET;
4320 	}
4321 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4322 	smp_wmb();
4323 
4324 	tcp_write_queue_purge(sk);
4325 	tcp_done(sk);
4326 
4327 	if (!sock_flag(sk, SOCK_DEAD))
4328 		sk_error_report(sk);
4329 }
4330 
4331 /*
4332  * 	Process the FIN bit. This now behaves as it is supposed to work
4333  *	and the FIN takes effect when it is validly part of sequence
4334  *	space. Not before when we get holes.
4335  *
4336  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4337  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4338  *	TIME-WAIT)
4339  *
4340  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4341  *	close and we go into CLOSING (and later onto TIME-WAIT)
4342  *
4343  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4344  */
4345 void tcp_fin(struct sock *sk)
4346 {
4347 	struct tcp_sock *tp = tcp_sk(sk);
4348 
4349 	inet_csk_schedule_ack(sk);
4350 
4351 	sk->sk_shutdown |= RCV_SHUTDOWN;
4352 	sock_set_flag(sk, SOCK_DONE);
4353 
4354 	switch (sk->sk_state) {
4355 	case TCP_SYN_RECV:
4356 	case TCP_ESTABLISHED:
4357 		/* Move to CLOSE_WAIT */
4358 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4359 		inet_csk_enter_pingpong_mode(sk);
4360 		break;
4361 
4362 	case TCP_CLOSE_WAIT:
4363 	case TCP_CLOSING:
4364 		/* Received a retransmission of the FIN, do
4365 		 * nothing.
4366 		 */
4367 		break;
4368 	case TCP_LAST_ACK:
4369 		/* RFC793: Remain in the LAST-ACK state. */
4370 		break;
4371 
4372 	case TCP_FIN_WAIT1:
4373 		/* This case occurs when a simultaneous close
4374 		 * happens, we must ack the received FIN and
4375 		 * enter the CLOSING state.
4376 		 */
4377 		tcp_send_ack(sk);
4378 		tcp_set_state(sk, TCP_CLOSING);
4379 		break;
4380 	case TCP_FIN_WAIT2:
4381 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4382 		tcp_send_ack(sk);
4383 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4384 		break;
4385 	default:
4386 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4387 		 * cases we should never reach this piece of code.
4388 		 */
4389 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4390 		       __func__, sk->sk_state);
4391 		break;
4392 	}
4393 
4394 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4395 	 * Probably, we should reset in this case. For now drop them.
4396 	 */
4397 	skb_rbtree_purge(&tp->out_of_order_queue);
4398 	if (tcp_is_sack(tp))
4399 		tcp_sack_reset(&tp->rx_opt);
4400 
4401 	if (!sock_flag(sk, SOCK_DEAD)) {
4402 		sk->sk_state_change(sk);
4403 
4404 		/* Do not send POLL_HUP for half duplex close. */
4405 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4406 		    sk->sk_state == TCP_CLOSE)
4407 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4408 		else
4409 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4410 	}
4411 }
4412 
4413 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4414 				  u32 end_seq)
4415 {
4416 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4417 		if (before(seq, sp->start_seq))
4418 			sp->start_seq = seq;
4419 		if (after(end_seq, sp->end_seq))
4420 			sp->end_seq = end_seq;
4421 		return true;
4422 	}
4423 	return false;
4424 }
4425 
4426 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4427 {
4428 	struct tcp_sock *tp = tcp_sk(sk);
4429 
4430 	if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4431 		int mib_idx;
4432 
4433 		if (before(seq, tp->rcv_nxt))
4434 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4435 		else
4436 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4437 
4438 		NET_INC_STATS(sock_net(sk), mib_idx);
4439 
4440 		tp->rx_opt.dsack = 1;
4441 		tp->duplicate_sack[0].start_seq = seq;
4442 		tp->duplicate_sack[0].end_seq = end_seq;
4443 	}
4444 }
4445 
4446 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4447 {
4448 	struct tcp_sock *tp = tcp_sk(sk);
4449 
4450 	if (!tp->rx_opt.dsack)
4451 		tcp_dsack_set(sk, seq, end_seq);
4452 	else
4453 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4454 }
4455 
4456 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4457 {
4458 	/* When the ACK path fails or drops most ACKs, the sender would
4459 	 * timeout and spuriously retransmit the same segment repeatedly.
4460 	 * The receiver remembers and reflects via DSACKs. Leverage the
4461 	 * DSACK state and change the txhash to re-route speculatively.
4462 	 */
4463 	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4464 	    sk_rethink_txhash(sk))
4465 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4466 }
4467 
4468 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4469 {
4470 	struct tcp_sock *tp = tcp_sk(sk);
4471 
4472 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4473 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4474 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4475 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4476 
4477 		if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4478 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4479 
4480 			tcp_rcv_spurious_retrans(sk, skb);
4481 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4482 				end_seq = tp->rcv_nxt;
4483 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4484 		}
4485 	}
4486 
4487 	tcp_send_ack(sk);
4488 }
4489 
4490 /* These routines update the SACK block as out-of-order packets arrive or
4491  * in-order packets close up the sequence space.
4492  */
4493 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4494 {
4495 	int this_sack;
4496 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4497 	struct tcp_sack_block *swalk = sp + 1;
4498 
4499 	/* See if the recent change to the first SACK eats into
4500 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4501 	 */
4502 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4503 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4504 			int i;
4505 
4506 			/* Zap SWALK, by moving every further SACK up by one slot.
4507 			 * Decrease num_sacks.
4508 			 */
4509 			tp->rx_opt.num_sacks--;
4510 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4511 				sp[i] = sp[i + 1];
4512 			continue;
4513 		}
4514 		this_sack++;
4515 		swalk++;
4516 	}
4517 }
4518 
4519 static void tcp_sack_compress_send_ack(struct sock *sk)
4520 {
4521 	struct tcp_sock *tp = tcp_sk(sk);
4522 
4523 	if (!tp->compressed_ack)
4524 		return;
4525 
4526 	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4527 		__sock_put(sk);
4528 
4529 	/* Since we have to send one ack finally,
4530 	 * substract one from tp->compressed_ack to keep
4531 	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4532 	 */
4533 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4534 		      tp->compressed_ack - 1);
4535 
4536 	tp->compressed_ack = 0;
4537 	tcp_send_ack(sk);
4538 }
4539 
4540 /* Reasonable amount of sack blocks included in TCP SACK option
4541  * The max is 4, but this becomes 3 if TCP timestamps are there.
4542  * Given that SACK packets might be lost, be conservative and use 2.
4543  */
4544 #define TCP_SACK_BLOCKS_EXPECTED 2
4545 
4546 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4547 {
4548 	struct tcp_sock *tp = tcp_sk(sk);
4549 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4550 	int cur_sacks = tp->rx_opt.num_sacks;
4551 	int this_sack;
4552 
4553 	if (!cur_sacks)
4554 		goto new_sack;
4555 
4556 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4557 		if (tcp_sack_extend(sp, seq, end_seq)) {
4558 			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4559 				tcp_sack_compress_send_ack(sk);
4560 			/* Rotate this_sack to the first one. */
4561 			for (; this_sack > 0; this_sack--, sp--)
4562 				swap(*sp, *(sp - 1));
4563 			if (cur_sacks > 1)
4564 				tcp_sack_maybe_coalesce(tp);
4565 			return;
4566 		}
4567 	}
4568 
4569 	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4570 		tcp_sack_compress_send_ack(sk);
4571 
4572 	/* Could not find an adjacent existing SACK, build a new one,
4573 	 * put it at the front, and shift everyone else down.  We
4574 	 * always know there is at least one SACK present already here.
4575 	 *
4576 	 * If the sack array is full, forget about the last one.
4577 	 */
4578 	if (this_sack >= TCP_NUM_SACKS) {
4579 		this_sack--;
4580 		tp->rx_opt.num_sacks--;
4581 		sp--;
4582 	}
4583 	for (; this_sack > 0; this_sack--, sp--)
4584 		*sp = *(sp - 1);
4585 
4586 new_sack:
4587 	/* Build the new head SACK, and we're done. */
4588 	sp->start_seq = seq;
4589 	sp->end_seq = end_seq;
4590 	tp->rx_opt.num_sacks++;
4591 }
4592 
4593 /* RCV.NXT advances, some SACKs should be eaten. */
4594 
4595 static void tcp_sack_remove(struct tcp_sock *tp)
4596 {
4597 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4598 	int num_sacks = tp->rx_opt.num_sacks;
4599 	int this_sack;
4600 
4601 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4602 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4603 		tp->rx_opt.num_sacks = 0;
4604 		return;
4605 	}
4606 
4607 	for (this_sack = 0; this_sack < num_sacks;) {
4608 		/* Check if the start of the sack is covered by RCV.NXT. */
4609 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4610 			int i;
4611 
4612 			/* RCV.NXT must cover all the block! */
4613 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4614 
4615 			/* Zap this SACK, by moving forward any other SACKS. */
4616 			for (i = this_sack+1; i < num_sacks; i++)
4617 				tp->selective_acks[i-1] = tp->selective_acks[i];
4618 			num_sacks--;
4619 			continue;
4620 		}
4621 		this_sack++;
4622 		sp++;
4623 	}
4624 	tp->rx_opt.num_sacks = num_sacks;
4625 }
4626 
4627 /**
4628  * tcp_try_coalesce - try to merge skb to prior one
4629  * @sk: socket
4630  * @to: prior buffer
4631  * @from: buffer to add in queue
4632  * @fragstolen: pointer to boolean
4633  *
4634  * Before queueing skb @from after @to, try to merge them
4635  * to reduce overall memory use and queue lengths, if cost is small.
4636  * Packets in ofo or receive queues can stay a long time.
4637  * Better try to coalesce them right now to avoid future collapses.
4638  * Returns true if caller should free @from instead of queueing it
4639  */
4640 static bool tcp_try_coalesce(struct sock *sk,
4641 			     struct sk_buff *to,
4642 			     struct sk_buff *from,
4643 			     bool *fragstolen)
4644 {
4645 	int delta;
4646 
4647 	*fragstolen = false;
4648 
4649 	/* Its possible this segment overlaps with prior segment in queue */
4650 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4651 		return false;
4652 
4653 	if (!mptcp_skb_can_collapse(to, from))
4654 		return false;
4655 
4656 #ifdef CONFIG_TLS_DEVICE
4657 	if (from->decrypted != to->decrypted)
4658 		return false;
4659 #endif
4660 
4661 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4662 		return false;
4663 
4664 	atomic_add(delta, &sk->sk_rmem_alloc);
4665 	sk_mem_charge(sk, delta);
4666 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4667 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4668 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4669 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4670 
4671 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4672 		TCP_SKB_CB(to)->has_rxtstamp = true;
4673 		to->tstamp = from->tstamp;
4674 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4675 	}
4676 
4677 	return true;
4678 }
4679 
4680 static bool tcp_ooo_try_coalesce(struct sock *sk,
4681 			     struct sk_buff *to,
4682 			     struct sk_buff *from,
4683 			     bool *fragstolen)
4684 {
4685 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4686 
4687 	/* In case tcp_drop_reason() is called later, update to->gso_segs */
4688 	if (res) {
4689 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4690 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4691 
4692 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4693 	}
4694 	return res;
4695 }
4696 
4697 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb,
4698 			    enum skb_drop_reason reason)
4699 {
4700 	sk_drops_add(sk, skb);
4701 	kfree_skb_reason(skb, reason);
4702 }
4703 
4704 /* This one checks to see if we can put data from the
4705  * out_of_order queue into the receive_queue.
4706  */
4707 static void tcp_ofo_queue(struct sock *sk)
4708 {
4709 	struct tcp_sock *tp = tcp_sk(sk);
4710 	__u32 dsack_high = tp->rcv_nxt;
4711 	bool fin, fragstolen, eaten;
4712 	struct sk_buff *skb, *tail;
4713 	struct rb_node *p;
4714 
4715 	p = rb_first(&tp->out_of_order_queue);
4716 	while (p) {
4717 		skb = rb_to_skb(p);
4718 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4719 			break;
4720 
4721 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4722 			__u32 dsack = dsack_high;
4723 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4724 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4725 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4726 		}
4727 		p = rb_next(p);
4728 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4729 
4730 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4731 			tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
4732 			continue;
4733 		}
4734 
4735 		tail = skb_peek_tail(&sk->sk_receive_queue);
4736 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4737 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4738 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4739 		if (!eaten)
4740 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4741 		else
4742 			kfree_skb_partial(skb, fragstolen);
4743 
4744 		if (unlikely(fin)) {
4745 			tcp_fin(sk);
4746 			/* tcp_fin() purges tp->out_of_order_queue,
4747 			 * so we must end this loop right now.
4748 			 */
4749 			break;
4750 		}
4751 	}
4752 }
4753 
4754 static bool tcp_prune_ofo_queue(struct sock *sk);
4755 static int tcp_prune_queue(struct sock *sk);
4756 
4757 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4758 				 unsigned int size)
4759 {
4760 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4761 	    !sk_rmem_schedule(sk, skb, size)) {
4762 
4763 		if (tcp_prune_queue(sk) < 0)
4764 			return -1;
4765 
4766 		while (!sk_rmem_schedule(sk, skb, size)) {
4767 			if (!tcp_prune_ofo_queue(sk))
4768 				return -1;
4769 		}
4770 	}
4771 	return 0;
4772 }
4773 
4774 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4775 {
4776 	struct tcp_sock *tp = tcp_sk(sk);
4777 	struct rb_node **p, *parent;
4778 	struct sk_buff *skb1;
4779 	u32 seq, end_seq;
4780 	bool fragstolen;
4781 
4782 	tcp_ecn_check_ce(sk, skb);
4783 
4784 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4785 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4786 		sk->sk_data_ready(sk);
4787 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
4788 		return;
4789 	}
4790 
4791 	/* Disable header prediction. */
4792 	tp->pred_flags = 0;
4793 	inet_csk_schedule_ack(sk);
4794 
4795 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4796 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4797 	seq = TCP_SKB_CB(skb)->seq;
4798 	end_seq = TCP_SKB_CB(skb)->end_seq;
4799 
4800 	p = &tp->out_of_order_queue.rb_node;
4801 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4802 		/* Initial out of order segment, build 1 SACK. */
4803 		if (tcp_is_sack(tp)) {
4804 			tp->rx_opt.num_sacks = 1;
4805 			tp->selective_acks[0].start_seq = seq;
4806 			tp->selective_acks[0].end_seq = end_seq;
4807 		}
4808 		rb_link_node(&skb->rbnode, NULL, p);
4809 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4810 		tp->ooo_last_skb = skb;
4811 		goto end;
4812 	}
4813 
4814 	/* In the typical case, we are adding an skb to the end of the list.
4815 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4816 	 */
4817 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4818 				 skb, &fragstolen)) {
4819 coalesce_done:
4820 		/* For non sack flows, do not grow window to force DUPACK
4821 		 * and trigger fast retransmit.
4822 		 */
4823 		if (tcp_is_sack(tp))
4824 			tcp_grow_window(sk, skb, true);
4825 		kfree_skb_partial(skb, fragstolen);
4826 		skb = NULL;
4827 		goto add_sack;
4828 	}
4829 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4830 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4831 		parent = &tp->ooo_last_skb->rbnode;
4832 		p = &parent->rb_right;
4833 		goto insert;
4834 	}
4835 
4836 	/* Find place to insert this segment. Handle overlaps on the way. */
4837 	parent = NULL;
4838 	while (*p) {
4839 		parent = *p;
4840 		skb1 = rb_to_skb(parent);
4841 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4842 			p = &parent->rb_left;
4843 			continue;
4844 		}
4845 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4846 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4847 				/* All the bits are present. Drop. */
4848 				NET_INC_STATS(sock_net(sk),
4849 					      LINUX_MIB_TCPOFOMERGE);
4850 				tcp_drop_reason(sk, skb,
4851 						SKB_DROP_REASON_TCP_OFOMERGE);
4852 				skb = NULL;
4853 				tcp_dsack_set(sk, seq, end_seq);
4854 				goto add_sack;
4855 			}
4856 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4857 				/* Partial overlap. */
4858 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4859 			} else {
4860 				/* skb's seq == skb1's seq and skb covers skb1.
4861 				 * Replace skb1 with skb.
4862 				 */
4863 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4864 						&tp->out_of_order_queue);
4865 				tcp_dsack_extend(sk,
4866 						 TCP_SKB_CB(skb1)->seq,
4867 						 TCP_SKB_CB(skb1)->end_seq);
4868 				NET_INC_STATS(sock_net(sk),
4869 					      LINUX_MIB_TCPOFOMERGE);
4870 				tcp_drop_reason(sk, skb1,
4871 						SKB_DROP_REASON_TCP_OFOMERGE);
4872 				goto merge_right;
4873 			}
4874 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4875 						skb, &fragstolen)) {
4876 			goto coalesce_done;
4877 		}
4878 		p = &parent->rb_right;
4879 	}
4880 insert:
4881 	/* Insert segment into RB tree. */
4882 	rb_link_node(&skb->rbnode, parent, p);
4883 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4884 
4885 merge_right:
4886 	/* Remove other segments covered by skb. */
4887 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4888 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4889 			break;
4890 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4891 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4892 					 end_seq);
4893 			break;
4894 		}
4895 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4896 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4897 				 TCP_SKB_CB(skb1)->end_seq);
4898 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4899 		tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
4900 	}
4901 	/* If there is no skb after us, we are the last_skb ! */
4902 	if (!skb1)
4903 		tp->ooo_last_skb = skb;
4904 
4905 add_sack:
4906 	if (tcp_is_sack(tp))
4907 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4908 end:
4909 	if (skb) {
4910 		/* For non sack flows, do not grow window to force DUPACK
4911 		 * and trigger fast retransmit.
4912 		 */
4913 		if (tcp_is_sack(tp))
4914 			tcp_grow_window(sk, skb, false);
4915 		skb_condense(skb);
4916 		skb_set_owner_r(skb, sk);
4917 	}
4918 }
4919 
4920 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4921 				      bool *fragstolen)
4922 {
4923 	int eaten;
4924 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4925 
4926 	eaten = (tail &&
4927 		 tcp_try_coalesce(sk, tail,
4928 				  skb, fragstolen)) ? 1 : 0;
4929 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4930 	if (!eaten) {
4931 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4932 		skb_set_owner_r(skb, sk);
4933 	}
4934 	return eaten;
4935 }
4936 
4937 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4938 {
4939 	struct sk_buff *skb;
4940 	int err = -ENOMEM;
4941 	int data_len = 0;
4942 	bool fragstolen;
4943 
4944 	if (size == 0)
4945 		return 0;
4946 
4947 	if (size > PAGE_SIZE) {
4948 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4949 
4950 		data_len = npages << PAGE_SHIFT;
4951 		size = data_len + (size & ~PAGE_MASK);
4952 	}
4953 	skb = alloc_skb_with_frags(size - data_len, data_len,
4954 				   PAGE_ALLOC_COSTLY_ORDER,
4955 				   &err, sk->sk_allocation);
4956 	if (!skb)
4957 		goto err;
4958 
4959 	skb_put(skb, size - data_len);
4960 	skb->data_len = data_len;
4961 	skb->len = size;
4962 
4963 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4964 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4965 		goto err_free;
4966 	}
4967 
4968 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4969 	if (err)
4970 		goto err_free;
4971 
4972 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4973 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4974 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4975 
4976 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4977 		WARN_ON_ONCE(fragstolen); /* should not happen */
4978 		__kfree_skb(skb);
4979 	}
4980 	return size;
4981 
4982 err_free:
4983 	kfree_skb(skb);
4984 err:
4985 	return err;
4986 
4987 }
4988 
4989 void tcp_data_ready(struct sock *sk)
4990 {
4991 	if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
4992 		sk->sk_data_ready(sk);
4993 }
4994 
4995 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4996 {
4997 	struct tcp_sock *tp = tcp_sk(sk);
4998 	enum skb_drop_reason reason;
4999 	bool fragstolen;
5000 	int eaten;
5001 
5002 	/* If a subflow has been reset, the packet should not continue
5003 	 * to be processed, drop the packet.
5004 	 */
5005 	if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5006 		__kfree_skb(skb);
5007 		return;
5008 	}
5009 
5010 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5011 		__kfree_skb(skb);
5012 		return;
5013 	}
5014 	skb_dst_drop(skb);
5015 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
5016 
5017 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
5018 	tp->rx_opt.dsack = 0;
5019 
5020 	/*  Queue data for delivery to the user.
5021 	 *  Packets in sequence go to the receive queue.
5022 	 *  Out of sequence packets to the out_of_order_queue.
5023 	 */
5024 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5025 		if (tcp_receive_window(tp) == 0) {
5026 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5027 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5028 			goto out_of_window;
5029 		}
5030 
5031 		/* Ok. In sequence. In window. */
5032 queue_and_out:
5033 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
5034 			sk_forced_mem_schedule(sk, skb->truesize);
5035 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5036 			reason = SKB_DROP_REASON_PROTO_MEM;
5037 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5038 			sk->sk_data_ready(sk);
5039 			goto drop;
5040 		}
5041 
5042 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5043 		if (skb->len)
5044 			tcp_event_data_recv(sk, skb);
5045 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5046 			tcp_fin(sk);
5047 
5048 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5049 			tcp_ofo_queue(sk);
5050 
5051 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
5052 			 * gap in queue is filled.
5053 			 */
5054 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5055 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5056 		}
5057 
5058 		if (tp->rx_opt.num_sacks)
5059 			tcp_sack_remove(tp);
5060 
5061 		tcp_fast_path_check(sk);
5062 
5063 		if (eaten > 0)
5064 			kfree_skb_partial(skb, fragstolen);
5065 		if (!sock_flag(sk, SOCK_DEAD))
5066 			tcp_data_ready(sk);
5067 		return;
5068 	}
5069 
5070 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5071 		tcp_rcv_spurious_retrans(sk, skb);
5072 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5073 		reason = SKB_DROP_REASON_TCP_OLD_DATA;
5074 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5075 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5076 
5077 out_of_window:
5078 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5079 		inet_csk_schedule_ack(sk);
5080 drop:
5081 		tcp_drop_reason(sk, skb, reason);
5082 		return;
5083 	}
5084 
5085 	/* Out of window. F.e. zero window probe. */
5086 	if (!before(TCP_SKB_CB(skb)->seq,
5087 		    tp->rcv_nxt + tcp_receive_window(tp))) {
5088 		reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5089 		goto out_of_window;
5090 	}
5091 
5092 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5093 		/* Partial packet, seq < rcv_next < end_seq */
5094 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5095 
5096 		/* If window is closed, drop tail of packet. But after
5097 		 * remembering D-SACK for its head made in previous line.
5098 		 */
5099 		if (!tcp_receive_window(tp)) {
5100 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5101 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5102 			goto out_of_window;
5103 		}
5104 		goto queue_and_out;
5105 	}
5106 
5107 	tcp_data_queue_ofo(sk, skb);
5108 }
5109 
5110 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5111 {
5112 	if (list)
5113 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5114 
5115 	return skb_rb_next(skb);
5116 }
5117 
5118 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5119 					struct sk_buff_head *list,
5120 					struct rb_root *root)
5121 {
5122 	struct sk_buff *next = tcp_skb_next(skb, list);
5123 
5124 	if (list)
5125 		__skb_unlink(skb, list);
5126 	else
5127 		rb_erase(&skb->rbnode, root);
5128 
5129 	__kfree_skb(skb);
5130 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5131 
5132 	return next;
5133 }
5134 
5135 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
5136 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5137 {
5138 	struct rb_node **p = &root->rb_node;
5139 	struct rb_node *parent = NULL;
5140 	struct sk_buff *skb1;
5141 
5142 	while (*p) {
5143 		parent = *p;
5144 		skb1 = rb_to_skb(parent);
5145 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5146 			p = &parent->rb_left;
5147 		else
5148 			p = &parent->rb_right;
5149 	}
5150 	rb_link_node(&skb->rbnode, parent, p);
5151 	rb_insert_color(&skb->rbnode, root);
5152 }
5153 
5154 /* Collapse contiguous sequence of skbs head..tail with
5155  * sequence numbers start..end.
5156  *
5157  * If tail is NULL, this means until the end of the queue.
5158  *
5159  * Segments with FIN/SYN are not collapsed (only because this
5160  * simplifies code)
5161  */
5162 static void
5163 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5164 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5165 {
5166 	struct sk_buff *skb = head, *n;
5167 	struct sk_buff_head tmp;
5168 	bool end_of_skbs;
5169 
5170 	/* First, check that queue is collapsible and find
5171 	 * the point where collapsing can be useful.
5172 	 */
5173 restart:
5174 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5175 		n = tcp_skb_next(skb, list);
5176 
5177 		/* No new bits? It is possible on ofo queue. */
5178 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5179 			skb = tcp_collapse_one(sk, skb, list, root);
5180 			if (!skb)
5181 				break;
5182 			goto restart;
5183 		}
5184 
5185 		/* The first skb to collapse is:
5186 		 * - not SYN/FIN and
5187 		 * - bloated or contains data before "start" or
5188 		 *   overlaps to the next one and mptcp allow collapsing.
5189 		 */
5190 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5191 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5192 		     before(TCP_SKB_CB(skb)->seq, start))) {
5193 			end_of_skbs = false;
5194 			break;
5195 		}
5196 
5197 		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5198 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5199 			end_of_skbs = false;
5200 			break;
5201 		}
5202 
5203 		/* Decided to skip this, advance start seq. */
5204 		start = TCP_SKB_CB(skb)->end_seq;
5205 	}
5206 	if (end_of_skbs ||
5207 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5208 		return;
5209 
5210 	__skb_queue_head_init(&tmp);
5211 
5212 	while (before(start, end)) {
5213 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5214 		struct sk_buff *nskb;
5215 
5216 		nskb = alloc_skb(copy, GFP_ATOMIC);
5217 		if (!nskb)
5218 			break;
5219 
5220 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5221 #ifdef CONFIG_TLS_DEVICE
5222 		nskb->decrypted = skb->decrypted;
5223 #endif
5224 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5225 		if (list)
5226 			__skb_queue_before(list, skb, nskb);
5227 		else
5228 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5229 		skb_set_owner_r(nskb, sk);
5230 		mptcp_skb_ext_move(nskb, skb);
5231 
5232 		/* Copy data, releasing collapsed skbs. */
5233 		while (copy > 0) {
5234 			int offset = start - TCP_SKB_CB(skb)->seq;
5235 			int size = TCP_SKB_CB(skb)->end_seq - start;
5236 
5237 			BUG_ON(offset < 0);
5238 			if (size > 0) {
5239 				size = min(copy, size);
5240 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5241 					BUG();
5242 				TCP_SKB_CB(nskb)->end_seq += size;
5243 				copy -= size;
5244 				start += size;
5245 			}
5246 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5247 				skb = tcp_collapse_one(sk, skb, list, root);
5248 				if (!skb ||
5249 				    skb == tail ||
5250 				    !mptcp_skb_can_collapse(nskb, skb) ||
5251 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5252 					goto end;
5253 #ifdef CONFIG_TLS_DEVICE
5254 				if (skb->decrypted != nskb->decrypted)
5255 					goto end;
5256 #endif
5257 			}
5258 		}
5259 	}
5260 end:
5261 	skb_queue_walk_safe(&tmp, skb, n)
5262 		tcp_rbtree_insert(root, skb);
5263 }
5264 
5265 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5266  * and tcp_collapse() them until all the queue is collapsed.
5267  */
5268 static void tcp_collapse_ofo_queue(struct sock *sk)
5269 {
5270 	struct tcp_sock *tp = tcp_sk(sk);
5271 	u32 range_truesize, sum_tiny = 0;
5272 	struct sk_buff *skb, *head;
5273 	u32 start, end;
5274 
5275 	skb = skb_rb_first(&tp->out_of_order_queue);
5276 new_range:
5277 	if (!skb) {
5278 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5279 		return;
5280 	}
5281 	start = TCP_SKB_CB(skb)->seq;
5282 	end = TCP_SKB_CB(skb)->end_seq;
5283 	range_truesize = skb->truesize;
5284 
5285 	for (head = skb;;) {
5286 		skb = skb_rb_next(skb);
5287 
5288 		/* Range is terminated when we see a gap or when
5289 		 * we are at the queue end.
5290 		 */
5291 		if (!skb ||
5292 		    after(TCP_SKB_CB(skb)->seq, end) ||
5293 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5294 			/* Do not attempt collapsing tiny skbs */
5295 			if (range_truesize != head->truesize ||
5296 			    end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5297 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5298 					     head, skb, start, end);
5299 			} else {
5300 				sum_tiny += range_truesize;
5301 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5302 					return;
5303 			}
5304 			goto new_range;
5305 		}
5306 
5307 		range_truesize += skb->truesize;
5308 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5309 			start = TCP_SKB_CB(skb)->seq;
5310 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5311 			end = TCP_SKB_CB(skb)->end_seq;
5312 	}
5313 }
5314 
5315 /*
5316  * Clean the out-of-order queue to make room.
5317  * We drop high sequences packets to :
5318  * 1) Let a chance for holes to be filled.
5319  * 2) not add too big latencies if thousands of packets sit there.
5320  *    (But if application shrinks SO_RCVBUF, we could still end up
5321  *     freeing whole queue here)
5322  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5323  *
5324  * Return true if queue has shrunk.
5325  */
5326 static bool tcp_prune_ofo_queue(struct sock *sk)
5327 {
5328 	struct tcp_sock *tp = tcp_sk(sk);
5329 	struct rb_node *node, *prev;
5330 	int goal;
5331 
5332 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5333 		return false;
5334 
5335 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5336 	goal = sk->sk_rcvbuf >> 3;
5337 	node = &tp->ooo_last_skb->rbnode;
5338 	do {
5339 		prev = rb_prev(node);
5340 		rb_erase(node, &tp->out_of_order_queue);
5341 		goal -= rb_to_skb(node)->truesize;
5342 		tcp_drop_reason(sk, rb_to_skb(node),
5343 				SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5344 		if (!prev || goal <= 0) {
5345 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5346 			    !tcp_under_memory_pressure(sk))
5347 				break;
5348 			goal = sk->sk_rcvbuf >> 3;
5349 		}
5350 		node = prev;
5351 	} while (node);
5352 	tp->ooo_last_skb = rb_to_skb(prev);
5353 
5354 	/* Reset SACK state.  A conforming SACK implementation will
5355 	 * do the same at a timeout based retransmit.  When a connection
5356 	 * is in a sad state like this, we care only about integrity
5357 	 * of the connection not performance.
5358 	 */
5359 	if (tp->rx_opt.sack_ok)
5360 		tcp_sack_reset(&tp->rx_opt);
5361 	return true;
5362 }
5363 
5364 /* Reduce allocated memory if we can, trying to get
5365  * the socket within its memory limits again.
5366  *
5367  * Return less than zero if we should start dropping frames
5368  * until the socket owning process reads some of the data
5369  * to stabilize the situation.
5370  */
5371 static int tcp_prune_queue(struct sock *sk)
5372 {
5373 	struct tcp_sock *tp = tcp_sk(sk);
5374 
5375 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5376 
5377 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5378 		tcp_clamp_window(sk);
5379 	else if (tcp_under_memory_pressure(sk))
5380 		tcp_adjust_rcv_ssthresh(sk);
5381 
5382 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5383 		return 0;
5384 
5385 	tcp_collapse_ofo_queue(sk);
5386 	if (!skb_queue_empty(&sk->sk_receive_queue))
5387 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5388 			     skb_peek(&sk->sk_receive_queue),
5389 			     NULL,
5390 			     tp->copied_seq, tp->rcv_nxt);
5391 
5392 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5393 		return 0;
5394 
5395 	/* Collapsing did not help, destructive actions follow.
5396 	 * This must not ever occur. */
5397 
5398 	tcp_prune_ofo_queue(sk);
5399 
5400 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5401 		return 0;
5402 
5403 	/* If we are really being abused, tell the caller to silently
5404 	 * drop receive data on the floor.  It will get retransmitted
5405 	 * and hopefully then we'll have sufficient space.
5406 	 */
5407 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5408 
5409 	/* Massive buffer overcommit. */
5410 	tp->pred_flags = 0;
5411 	return -1;
5412 }
5413 
5414 static bool tcp_should_expand_sndbuf(struct sock *sk)
5415 {
5416 	const struct tcp_sock *tp = tcp_sk(sk);
5417 
5418 	/* If the user specified a specific send buffer setting, do
5419 	 * not modify it.
5420 	 */
5421 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5422 		return false;
5423 
5424 	/* If we are under global TCP memory pressure, do not expand.  */
5425 	if (tcp_under_memory_pressure(sk)) {
5426 		int unused_mem = sk_unused_reserved_mem(sk);
5427 
5428 		/* Adjust sndbuf according to reserved mem. But make sure
5429 		 * it never goes below SOCK_MIN_SNDBUF.
5430 		 * See sk_stream_moderate_sndbuf() for more details.
5431 		 */
5432 		if (unused_mem > SOCK_MIN_SNDBUF)
5433 			WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5434 
5435 		return false;
5436 	}
5437 
5438 	/* If we are under soft global TCP memory pressure, do not expand.  */
5439 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5440 		return false;
5441 
5442 	/* If we filled the congestion window, do not expand.  */
5443 	if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5444 		return false;
5445 
5446 	return true;
5447 }
5448 
5449 static void tcp_new_space(struct sock *sk)
5450 {
5451 	struct tcp_sock *tp = tcp_sk(sk);
5452 
5453 	if (tcp_should_expand_sndbuf(sk)) {
5454 		tcp_sndbuf_expand(sk);
5455 		tp->snd_cwnd_stamp = tcp_jiffies32;
5456 	}
5457 
5458 	INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5459 }
5460 
5461 /* Caller made space either from:
5462  * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5463  * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5464  *
5465  * We might be able to generate EPOLLOUT to the application if:
5466  * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5467  * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5468  *    small enough that tcp_stream_memory_free() decides it
5469  *    is time to generate EPOLLOUT.
5470  */
5471 void tcp_check_space(struct sock *sk)
5472 {
5473 	/* pairs with tcp_poll() */
5474 	smp_mb();
5475 	if (sk->sk_socket &&
5476 	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5477 		tcp_new_space(sk);
5478 		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5479 			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5480 	}
5481 }
5482 
5483 static inline void tcp_data_snd_check(struct sock *sk)
5484 {
5485 	tcp_push_pending_frames(sk);
5486 	tcp_check_space(sk);
5487 }
5488 
5489 /*
5490  * Check if sending an ack is needed.
5491  */
5492 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5493 {
5494 	struct tcp_sock *tp = tcp_sk(sk);
5495 	unsigned long rtt, delay;
5496 
5497 	    /* More than one full frame received... */
5498 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5499 	     /* ... and right edge of window advances far enough.
5500 	      * (tcp_recvmsg() will send ACK otherwise).
5501 	      * If application uses SO_RCVLOWAT, we want send ack now if
5502 	      * we have not received enough bytes to satisfy the condition.
5503 	      */
5504 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5505 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5506 	    /* We ACK each frame or... */
5507 	    tcp_in_quickack_mode(sk) ||
5508 	    /* Protocol state mandates a one-time immediate ACK */
5509 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5510 send_now:
5511 		tcp_send_ack(sk);
5512 		return;
5513 	}
5514 
5515 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5516 		tcp_send_delayed_ack(sk);
5517 		return;
5518 	}
5519 
5520 	if (!tcp_is_sack(tp) ||
5521 	    tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5522 		goto send_now;
5523 
5524 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5525 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5526 		tp->dup_ack_counter = 0;
5527 	}
5528 	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5529 		tp->dup_ack_counter++;
5530 		goto send_now;
5531 	}
5532 	tp->compressed_ack++;
5533 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5534 		return;
5535 
5536 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5537 
5538 	rtt = tp->rcv_rtt_est.rtt_us;
5539 	if (tp->srtt_us && tp->srtt_us < rtt)
5540 		rtt = tp->srtt_us;
5541 
5542 	delay = min_t(unsigned long,
5543 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5544 		      rtt * (NSEC_PER_USEC >> 3)/20);
5545 	sock_hold(sk);
5546 	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5547 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5548 			       HRTIMER_MODE_REL_PINNED_SOFT);
5549 }
5550 
5551 static inline void tcp_ack_snd_check(struct sock *sk)
5552 {
5553 	if (!inet_csk_ack_scheduled(sk)) {
5554 		/* We sent a data segment already. */
5555 		return;
5556 	}
5557 	__tcp_ack_snd_check(sk, 1);
5558 }
5559 
5560 /*
5561  *	This routine is only called when we have urgent data
5562  *	signaled. Its the 'slow' part of tcp_urg. It could be
5563  *	moved inline now as tcp_urg is only called from one
5564  *	place. We handle URGent data wrong. We have to - as
5565  *	BSD still doesn't use the correction from RFC961.
5566  *	For 1003.1g we should support a new option TCP_STDURG to permit
5567  *	either form (or just set the sysctl tcp_stdurg).
5568  */
5569 
5570 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5571 {
5572 	struct tcp_sock *tp = tcp_sk(sk);
5573 	u32 ptr = ntohs(th->urg_ptr);
5574 
5575 	if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5576 		ptr--;
5577 	ptr += ntohl(th->seq);
5578 
5579 	/* Ignore urgent data that we've already seen and read. */
5580 	if (after(tp->copied_seq, ptr))
5581 		return;
5582 
5583 	/* Do not replay urg ptr.
5584 	 *
5585 	 * NOTE: interesting situation not covered by specs.
5586 	 * Misbehaving sender may send urg ptr, pointing to segment,
5587 	 * which we already have in ofo queue. We are not able to fetch
5588 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5589 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5590 	 * situations. But it is worth to think about possibility of some
5591 	 * DoSes using some hypothetical application level deadlock.
5592 	 */
5593 	if (before(ptr, tp->rcv_nxt))
5594 		return;
5595 
5596 	/* Do we already have a newer (or duplicate) urgent pointer? */
5597 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5598 		return;
5599 
5600 	/* Tell the world about our new urgent pointer. */
5601 	sk_send_sigurg(sk);
5602 
5603 	/* We may be adding urgent data when the last byte read was
5604 	 * urgent. To do this requires some care. We cannot just ignore
5605 	 * tp->copied_seq since we would read the last urgent byte again
5606 	 * as data, nor can we alter copied_seq until this data arrives
5607 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5608 	 *
5609 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5610 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5611 	 * and expect that both A and B disappear from stream. This is _wrong_.
5612 	 * Though this happens in BSD with high probability, this is occasional.
5613 	 * Any application relying on this is buggy. Note also, that fix "works"
5614 	 * only in this artificial test. Insert some normal data between A and B and we will
5615 	 * decline of BSD again. Verdict: it is better to remove to trap
5616 	 * buggy users.
5617 	 */
5618 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5619 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5620 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5621 		tp->copied_seq++;
5622 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5623 			__skb_unlink(skb, &sk->sk_receive_queue);
5624 			__kfree_skb(skb);
5625 		}
5626 	}
5627 
5628 	WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5629 	WRITE_ONCE(tp->urg_seq, ptr);
5630 
5631 	/* Disable header prediction. */
5632 	tp->pred_flags = 0;
5633 }
5634 
5635 /* This is the 'fast' part of urgent handling. */
5636 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5637 {
5638 	struct tcp_sock *tp = tcp_sk(sk);
5639 
5640 	/* Check if we get a new urgent pointer - normally not. */
5641 	if (unlikely(th->urg))
5642 		tcp_check_urg(sk, th);
5643 
5644 	/* Do we wait for any urgent data? - normally not... */
5645 	if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5646 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5647 			  th->syn;
5648 
5649 		/* Is the urgent pointer pointing into this packet? */
5650 		if (ptr < skb->len) {
5651 			u8 tmp;
5652 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5653 				BUG();
5654 			WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5655 			if (!sock_flag(sk, SOCK_DEAD))
5656 				sk->sk_data_ready(sk);
5657 		}
5658 	}
5659 }
5660 
5661 /* Accept RST for rcv_nxt - 1 after a FIN.
5662  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5663  * FIN is sent followed by a RST packet. The RST is sent with the same
5664  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5665  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5666  * ACKs on the closed socket. In addition middleboxes can drop either the
5667  * challenge ACK or a subsequent RST.
5668  */
5669 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5670 {
5671 	struct tcp_sock *tp = tcp_sk(sk);
5672 
5673 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5674 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5675 					       TCPF_CLOSING));
5676 }
5677 
5678 /* Does PAWS and seqno based validation of an incoming segment, flags will
5679  * play significant role here.
5680  */
5681 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5682 				  const struct tcphdr *th, int syn_inerr)
5683 {
5684 	struct tcp_sock *tp = tcp_sk(sk);
5685 	SKB_DR(reason);
5686 
5687 	/* RFC1323: H1. Apply PAWS check first. */
5688 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5689 	    tp->rx_opt.saw_tstamp &&
5690 	    tcp_paws_discard(sk, skb)) {
5691 		if (!th->rst) {
5692 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5693 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5694 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5695 						  &tp->last_oow_ack_time))
5696 				tcp_send_dupack(sk, skb);
5697 			SKB_DR_SET(reason, TCP_RFC7323_PAWS);
5698 			goto discard;
5699 		}
5700 		/* Reset is accepted even if it did not pass PAWS. */
5701 	}
5702 
5703 	/* Step 1: check sequence number */
5704 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5705 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5706 		 * (RST) segments are validated by checking their SEQ-fields."
5707 		 * And page 69: "If an incoming segment is not acceptable,
5708 		 * an acknowledgment should be sent in reply (unless the RST
5709 		 * bit is set, if so drop the segment and return)".
5710 		 */
5711 		if (!th->rst) {
5712 			if (th->syn)
5713 				goto syn_challenge;
5714 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5715 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5716 						  &tp->last_oow_ack_time))
5717 				tcp_send_dupack(sk, skb);
5718 		} else if (tcp_reset_check(sk, skb)) {
5719 			goto reset;
5720 		}
5721 		SKB_DR_SET(reason, TCP_INVALID_SEQUENCE);
5722 		goto discard;
5723 	}
5724 
5725 	/* Step 2: check RST bit */
5726 	if (th->rst) {
5727 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5728 		 * FIN and SACK too if available):
5729 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5730 		 * the right-most SACK block,
5731 		 * then
5732 		 *     RESET the connection
5733 		 * else
5734 		 *     Send a challenge ACK
5735 		 */
5736 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5737 		    tcp_reset_check(sk, skb))
5738 			goto reset;
5739 
5740 		if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5741 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5742 			int max_sack = sp[0].end_seq;
5743 			int this_sack;
5744 
5745 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5746 			     ++this_sack) {
5747 				max_sack = after(sp[this_sack].end_seq,
5748 						 max_sack) ?
5749 					sp[this_sack].end_seq : max_sack;
5750 			}
5751 
5752 			if (TCP_SKB_CB(skb)->seq == max_sack)
5753 				goto reset;
5754 		}
5755 
5756 		/* Disable TFO if RST is out-of-order
5757 		 * and no data has been received
5758 		 * for current active TFO socket
5759 		 */
5760 		if (tp->syn_fastopen && !tp->data_segs_in &&
5761 		    sk->sk_state == TCP_ESTABLISHED)
5762 			tcp_fastopen_active_disable(sk);
5763 		tcp_send_challenge_ack(sk);
5764 		SKB_DR_SET(reason, TCP_RESET);
5765 		goto discard;
5766 	}
5767 
5768 	/* step 3: check security and precedence [ignored] */
5769 
5770 	/* step 4: Check for a SYN
5771 	 * RFC 5961 4.2 : Send a challenge ack
5772 	 */
5773 	if (th->syn) {
5774 syn_challenge:
5775 		if (syn_inerr)
5776 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5777 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5778 		tcp_send_challenge_ack(sk);
5779 		SKB_DR_SET(reason, TCP_INVALID_SYN);
5780 		goto discard;
5781 	}
5782 
5783 	bpf_skops_parse_hdr(sk, skb);
5784 
5785 	return true;
5786 
5787 discard:
5788 	tcp_drop_reason(sk, skb, reason);
5789 	return false;
5790 
5791 reset:
5792 	tcp_reset(sk, skb);
5793 	__kfree_skb(skb);
5794 	return false;
5795 }
5796 
5797 /*
5798  *	TCP receive function for the ESTABLISHED state.
5799  *
5800  *	It is split into a fast path and a slow path. The fast path is
5801  * 	disabled when:
5802  *	- A zero window was announced from us - zero window probing
5803  *        is only handled properly in the slow path.
5804  *	- Out of order segments arrived.
5805  *	- Urgent data is expected.
5806  *	- There is no buffer space left
5807  *	- Unexpected TCP flags/window values/header lengths are received
5808  *	  (detected by checking the TCP header against pred_flags)
5809  *	- Data is sent in both directions. Fast path only supports pure senders
5810  *	  or pure receivers (this means either the sequence number or the ack
5811  *	  value must stay constant)
5812  *	- Unexpected TCP option.
5813  *
5814  *	When these conditions are not satisfied it drops into a standard
5815  *	receive procedure patterned after RFC793 to handle all cases.
5816  *	The first three cases are guaranteed by proper pred_flags setting,
5817  *	the rest is checked inline. Fast processing is turned on in
5818  *	tcp_data_queue when everything is OK.
5819  */
5820 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5821 {
5822 	enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
5823 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5824 	struct tcp_sock *tp = tcp_sk(sk);
5825 	unsigned int len = skb->len;
5826 
5827 	/* TCP congestion window tracking */
5828 	trace_tcp_probe(sk, skb);
5829 
5830 	tcp_mstamp_refresh(tp);
5831 	if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
5832 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5833 	/*
5834 	 *	Header prediction.
5835 	 *	The code loosely follows the one in the famous
5836 	 *	"30 instruction TCP receive" Van Jacobson mail.
5837 	 *
5838 	 *	Van's trick is to deposit buffers into socket queue
5839 	 *	on a device interrupt, to call tcp_recv function
5840 	 *	on the receive process context and checksum and copy
5841 	 *	the buffer to user space. smart...
5842 	 *
5843 	 *	Our current scheme is not silly either but we take the
5844 	 *	extra cost of the net_bh soft interrupt processing...
5845 	 *	We do checksum and copy also but from device to kernel.
5846 	 */
5847 
5848 	tp->rx_opt.saw_tstamp = 0;
5849 
5850 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5851 	 *	if header_prediction is to be made
5852 	 *	'S' will always be tp->tcp_header_len >> 2
5853 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5854 	 *  turn it off	(when there are holes in the receive
5855 	 *	 space for instance)
5856 	 *	PSH flag is ignored.
5857 	 */
5858 
5859 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5860 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5861 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5862 		int tcp_header_len = tp->tcp_header_len;
5863 
5864 		/* Timestamp header prediction: tcp_header_len
5865 		 * is automatically equal to th->doff*4 due to pred_flags
5866 		 * match.
5867 		 */
5868 
5869 		/* Check timestamp */
5870 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5871 			/* No? Slow path! */
5872 			if (!tcp_parse_aligned_timestamp(tp, th))
5873 				goto slow_path;
5874 
5875 			/* If PAWS failed, check it more carefully in slow path */
5876 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5877 				goto slow_path;
5878 
5879 			/* DO NOT update ts_recent here, if checksum fails
5880 			 * and timestamp was corrupted part, it will result
5881 			 * in a hung connection since we will drop all
5882 			 * future packets due to the PAWS test.
5883 			 */
5884 		}
5885 
5886 		if (len <= tcp_header_len) {
5887 			/* Bulk data transfer: sender */
5888 			if (len == tcp_header_len) {
5889 				/* Predicted packet is in window by definition.
5890 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5891 				 * Hence, check seq<=rcv_wup reduces to:
5892 				 */
5893 				if (tcp_header_len ==
5894 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5895 				    tp->rcv_nxt == tp->rcv_wup)
5896 					tcp_store_ts_recent(tp);
5897 
5898 				/* We know that such packets are checksummed
5899 				 * on entry.
5900 				 */
5901 				tcp_ack(sk, skb, 0);
5902 				__kfree_skb(skb);
5903 				tcp_data_snd_check(sk);
5904 				/* When receiving pure ack in fast path, update
5905 				 * last ts ecr directly instead of calling
5906 				 * tcp_rcv_rtt_measure_ts()
5907 				 */
5908 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5909 				return;
5910 			} else { /* Header too small */
5911 				reason = SKB_DROP_REASON_PKT_TOO_SMALL;
5912 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5913 				goto discard;
5914 			}
5915 		} else {
5916 			int eaten = 0;
5917 			bool fragstolen = false;
5918 
5919 			if (tcp_checksum_complete(skb))
5920 				goto csum_error;
5921 
5922 			if ((int)skb->truesize > sk->sk_forward_alloc)
5923 				goto step5;
5924 
5925 			/* Predicted packet is in window by definition.
5926 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5927 			 * Hence, check seq<=rcv_wup reduces to:
5928 			 */
5929 			if (tcp_header_len ==
5930 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5931 			    tp->rcv_nxt == tp->rcv_wup)
5932 				tcp_store_ts_recent(tp);
5933 
5934 			tcp_rcv_rtt_measure_ts(sk, skb);
5935 
5936 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5937 
5938 			/* Bulk data transfer: receiver */
5939 			skb_dst_drop(skb);
5940 			__skb_pull(skb, tcp_header_len);
5941 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5942 
5943 			tcp_event_data_recv(sk, skb);
5944 
5945 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5946 				/* Well, only one small jumplet in fast path... */
5947 				tcp_ack(sk, skb, FLAG_DATA);
5948 				tcp_data_snd_check(sk);
5949 				if (!inet_csk_ack_scheduled(sk))
5950 					goto no_ack;
5951 			} else {
5952 				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5953 			}
5954 
5955 			__tcp_ack_snd_check(sk, 0);
5956 no_ack:
5957 			if (eaten)
5958 				kfree_skb_partial(skb, fragstolen);
5959 			tcp_data_ready(sk);
5960 			return;
5961 		}
5962 	}
5963 
5964 slow_path:
5965 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5966 		goto csum_error;
5967 
5968 	if (!th->ack && !th->rst && !th->syn) {
5969 		reason = SKB_DROP_REASON_TCP_FLAGS;
5970 		goto discard;
5971 	}
5972 
5973 	/*
5974 	 *	Standard slow path.
5975 	 */
5976 
5977 	if (!tcp_validate_incoming(sk, skb, th, 1))
5978 		return;
5979 
5980 step5:
5981 	reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
5982 	if ((int)reason < 0) {
5983 		reason = -reason;
5984 		goto discard;
5985 	}
5986 	tcp_rcv_rtt_measure_ts(sk, skb);
5987 
5988 	/* Process urgent data. */
5989 	tcp_urg(sk, skb, th);
5990 
5991 	/* step 7: process the segment text */
5992 	tcp_data_queue(sk, skb);
5993 
5994 	tcp_data_snd_check(sk);
5995 	tcp_ack_snd_check(sk);
5996 	return;
5997 
5998 csum_error:
5999 	reason = SKB_DROP_REASON_TCP_CSUM;
6000 	trace_tcp_bad_csum(skb);
6001 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6002 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6003 
6004 discard:
6005 	tcp_drop_reason(sk, skb, reason);
6006 }
6007 EXPORT_SYMBOL(tcp_rcv_established);
6008 
6009 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6010 {
6011 	struct inet_connection_sock *icsk = inet_csk(sk);
6012 	struct tcp_sock *tp = tcp_sk(sk);
6013 
6014 	tcp_mtup_init(sk);
6015 	icsk->icsk_af_ops->rebuild_header(sk);
6016 	tcp_init_metrics(sk);
6017 
6018 	/* Initialize the congestion window to start the transfer.
6019 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6020 	 * retransmitted. In light of RFC6298 more aggressive 1sec
6021 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6022 	 * retransmission has occurred.
6023 	 */
6024 	if (tp->total_retrans > 1 && tp->undo_marker)
6025 		tcp_snd_cwnd_set(tp, 1);
6026 	else
6027 		tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6028 	tp->snd_cwnd_stamp = tcp_jiffies32;
6029 
6030 	bpf_skops_established(sk, bpf_op, skb);
6031 	/* Initialize congestion control unless BPF initialized it already: */
6032 	if (!icsk->icsk_ca_initialized)
6033 		tcp_init_congestion_control(sk);
6034 	tcp_init_buffer_space(sk);
6035 }
6036 
6037 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6038 {
6039 	struct tcp_sock *tp = tcp_sk(sk);
6040 	struct inet_connection_sock *icsk = inet_csk(sk);
6041 
6042 	tcp_set_state(sk, TCP_ESTABLISHED);
6043 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6044 
6045 	if (skb) {
6046 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6047 		security_inet_conn_established(sk, skb);
6048 		sk_mark_napi_id(sk, skb);
6049 	}
6050 
6051 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6052 
6053 	/* Prevent spurious tcp_cwnd_restart() on first data
6054 	 * packet.
6055 	 */
6056 	tp->lsndtime = tcp_jiffies32;
6057 
6058 	if (sock_flag(sk, SOCK_KEEPOPEN))
6059 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6060 
6061 	if (!tp->rx_opt.snd_wscale)
6062 		__tcp_fast_path_on(tp, tp->snd_wnd);
6063 	else
6064 		tp->pred_flags = 0;
6065 }
6066 
6067 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6068 				    struct tcp_fastopen_cookie *cookie)
6069 {
6070 	struct tcp_sock *tp = tcp_sk(sk);
6071 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6072 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6073 	bool syn_drop = false;
6074 
6075 	if (mss == tp->rx_opt.user_mss) {
6076 		struct tcp_options_received opt;
6077 
6078 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
6079 		tcp_clear_options(&opt);
6080 		opt.user_mss = opt.mss_clamp = 0;
6081 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6082 		mss = opt.mss_clamp;
6083 	}
6084 
6085 	if (!tp->syn_fastopen) {
6086 		/* Ignore an unsolicited cookie */
6087 		cookie->len = -1;
6088 	} else if (tp->total_retrans) {
6089 		/* SYN timed out and the SYN-ACK neither has a cookie nor
6090 		 * acknowledges data. Presumably the remote received only
6091 		 * the retransmitted (regular) SYNs: either the original
6092 		 * SYN-data or the corresponding SYN-ACK was dropped.
6093 		 */
6094 		syn_drop = (cookie->len < 0 && data);
6095 	} else if (cookie->len < 0 && !tp->syn_data) {
6096 		/* We requested a cookie but didn't get it. If we did not use
6097 		 * the (old) exp opt format then try so next time (try_exp=1).
6098 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6099 		 */
6100 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6101 	}
6102 
6103 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6104 
6105 	if (data) { /* Retransmit unacked data in SYN */
6106 		if (tp->total_retrans)
6107 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6108 		else
6109 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6110 		skb_rbtree_walk_from(data)
6111 			 tcp_mark_skb_lost(sk, data);
6112 		tcp_xmit_retransmit_queue(sk);
6113 		NET_INC_STATS(sock_net(sk),
6114 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6115 		return true;
6116 	}
6117 	tp->syn_data_acked = tp->syn_data;
6118 	if (tp->syn_data_acked) {
6119 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6120 		/* SYN-data is counted as two separate packets in tcp_ack() */
6121 		if (tp->delivered > 1)
6122 			--tp->delivered;
6123 	}
6124 
6125 	tcp_fastopen_add_skb(sk, synack);
6126 
6127 	return false;
6128 }
6129 
6130 static void smc_check_reset_syn(struct tcp_sock *tp)
6131 {
6132 #if IS_ENABLED(CONFIG_SMC)
6133 	if (static_branch_unlikely(&tcp_have_smc)) {
6134 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6135 			tp->syn_smc = 0;
6136 	}
6137 #endif
6138 }
6139 
6140 static void tcp_try_undo_spurious_syn(struct sock *sk)
6141 {
6142 	struct tcp_sock *tp = tcp_sk(sk);
6143 	u32 syn_stamp;
6144 
6145 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6146 	 * spurious if the ACK's timestamp option echo value matches the
6147 	 * original SYN timestamp.
6148 	 */
6149 	syn_stamp = tp->retrans_stamp;
6150 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6151 	    syn_stamp == tp->rx_opt.rcv_tsecr)
6152 		tp->undo_marker = 0;
6153 }
6154 
6155 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6156 					 const struct tcphdr *th)
6157 {
6158 	struct inet_connection_sock *icsk = inet_csk(sk);
6159 	struct tcp_sock *tp = tcp_sk(sk);
6160 	struct tcp_fastopen_cookie foc = { .len = -1 };
6161 	int saved_clamp = tp->rx_opt.mss_clamp;
6162 	bool fastopen_fail;
6163 	SKB_DR(reason);
6164 
6165 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6166 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6167 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6168 
6169 	if (th->ack) {
6170 		/* rfc793:
6171 		 * "If the state is SYN-SENT then
6172 		 *    first check the ACK bit
6173 		 *      If the ACK bit is set
6174 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6175 		 *        a reset (unless the RST bit is set, if so drop
6176 		 *        the segment and return)"
6177 		 */
6178 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6179 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6180 			/* Previous FIN/ACK or RST/ACK might be ignored. */
6181 			if (icsk->icsk_retransmits == 0)
6182 				inet_csk_reset_xmit_timer(sk,
6183 						ICSK_TIME_RETRANS,
6184 						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6185 			goto reset_and_undo;
6186 		}
6187 
6188 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6189 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6190 			     tcp_time_stamp(tp))) {
6191 			NET_INC_STATS(sock_net(sk),
6192 					LINUX_MIB_PAWSACTIVEREJECTED);
6193 			goto reset_and_undo;
6194 		}
6195 
6196 		/* Now ACK is acceptable.
6197 		 *
6198 		 * "If the RST bit is set
6199 		 *    If the ACK was acceptable then signal the user "error:
6200 		 *    connection reset", drop the segment, enter CLOSED state,
6201 		 *    delete TCB, and return."
6202 		 */
6203 
6204 		if (th->rst) {
6205 			tcp_reset(sk, skb);
6206 consume:
6207 			__kfree_skb(skb);
6208 			return 0;
6209 		}
6210 
6211 		/* rfc793:
6212 		 *   "fifth, if neither of the SYN or RST bits is set then
6213 		 *    drop the segment and return."
6214 		 *
6215 		 *    See note below!
6216 		 *                                        --ANK(990513)
6217 		 */
6218 		if (!th->syn) {
6219 			SKB_DR_SET(reason, TCP_FLAGS);
6220 			goto discard_and_undo;
6221 		}
6222 		/* rfc793:
6223 		 *   "If the SYN bit is on ...
6224 		 *    are acceptable then ...
6225 		 *    (our SYN has been ACKed), change the connection
6226 		 *    state to ESTABLISHED..."
6227 		 */
6228 
6229 		tcp_ecn_rcv_synack(tp, th);
6230 
6231 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6232 		tcp_try_undo_spurious_syn(sk);
6233 		tcp_ack(sk, skb, FLAG_SLOWPATH);
6234 
6235 		/* Ok.. it's good. Set up sequence numbers and
6236 		 * move to established.
6237 		 */
6238 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6239 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6240 
6241 		/* RFC1323: The window in SYN & SYN/ACK segments is
6242 		 * never scaled.
6243 		 */
6244 		tp->snd_wnd = ntohs(th->window);
6245 
6246 		if (!tp->rx_opt.wscale_ok) {
6247 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6248 			tp->window_clamp = min(tp->window_clamp, 65535U);
6249 		}
6250 
6251 		if (tp->rx_opt.saw_tstamp) {
6252 			tp->rx_opt.tstamp_ok	   = 1;
6253 			tp->tcp_header_len =
6254 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6255 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6256 			tcp_store_ts_recent(tp);
6257 		} else {
6258 			tp->tcp_header_len = sizeof(struct tcphdr);
6259 		}
6260 
6261 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6262 		tcp_initialize_rcv_mss(sk);
6263 
6264 		/* Remember, tcp_poll() does not lock socket!
6265 		 * Change state from SYN-SENT only after copied_seq
6266 		 * is initialized. */
6267 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6268 
6269 		smc_check_reset_syn(tp);
6270 
6271 		smp_mb();
6272 
6273 		tcp_finish_connect(sk, skb);
6274 
6275 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6276 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6277 
6278 		if (!sock_flag(sk, SOCK_DEAD)) {
6279 			sk->sk_state_change(sk);
6280 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6281 		}
6282 		if (fastopen_fail)
6283 			return -1;
6284 		if (sk->sk_write_pending ||
6285 		    icsk->icsk_accept_queue.rskq_defer_accept ||
6286 		    inet_csk_in_pingpong_mode(sk)) {
6287 			/* Save one ACK. Data will be ready after
6288 			 * several ticks, if write_pending is set.
6289 			 *
6290 			 * It may be deleted, but with this feature tcpdumps
6291 			 * look so _wonderfully_ clever, that I was not able
6292 			 * to stand against the temptation 8)     --ANK
6293 			 */
6294 			inet_csk_schedule_ack(sk);
6295 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6296 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6297 						  TCP_DELACK_MAX, TCP_RTO_MAX);
6298 			goto consume;
6299 		}
6300 		tcp_send_ack(sk);
6301 		return -1;
6302 	}
6303 
6304 	/* No ACK in the segment */
6305 
6306 	if (th->rst) {
6307 		/* rfc793:
6308 		 * "If the RST bit is set
6309 		 *
6310 		 *      Otherwise (no ACK) drop the segment and return."
6311 		 */
6312 		SKB_DR_SET(reason, TCP_RESET);
6313 		goto discard_and_undo;
6314 	}
6315 
6316 	/* PAWS check. */
6317 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6318 	    tcp_paws_reject(&tp->rx_opt, 0)) {
6319 		SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6320 		goto discard_and_undo;
6321 	}
6322 	if (th->syn) {
6323 		/* We see SYN without ACK. It is attempt of
6324 		 * simultaneous connect with crossed SYNs.
6325 		 * Particularly, it can be connect to self.
6326 		 */
6327 		tcp_set_state(sk, TCP_SYN_RECV);
6328 
6329 		if (tp->rx_opt.saw_tstamp) {
6330 			tp->rx_opt.tstamp_ok = 1;
6331 			tcp_store_ts_recent(tp);
6332 			tp->tcp_header_len =
6333 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6334 		} else {
6335 			tp->tcp_header_len = sizeof(struct tcphdr);
6336 		}
6337 
6338 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6339 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6340 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6341 
6342 		/* RFC1323: The window in SYN & SYN/ACK segments is
6343 		 * never scaled.
6344 		 */
6345 		tp->snd_wnd    = ntohs(th->window);
6346 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6347 		tp->max_window = tp->snd_wnd;
6348 
6349 		tcp_ecn_rcv_syn(tp, th);
6350 
6351 		tcp_mtup_init(sk);
6352 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6353 		tcp_initialize_rcv_mss(sk);
6354 
6355 		tcp_send_synack(sk);
6356 #if 0
6357 		/* Note, we could accept data and URG from this segment.
6358 		 * There are no obstacles to make this (except that we must
6359 		 * either change tcp_recvmsg() to prevent it from returning data
6360 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6361 		 *
6362 		 * However, if we ignore data in ACKless segments sometimes,
6363 		 * we have no reasons to accept it sometimes.
6364 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6365 		 * is not flawless. So, discard packet for sanity.
6366 		 * Uncomment this return to process the data.
6367 		 */
6368 		return -1;
6369 #else
6370 		goto consume;
6371 #endif
6372 	}
6373 	/* "fifth, if neither of the SYN or RST bits is set then
6374 	 * drop the segment and return."
6375 	 */
6376 
6377 discard_and_undo:
6378 	tcp_clear_options(&tp->rx_opt);
6379 	tp->rx_opt.mss_clamp = saved_clamp;
6380 	tcp_drop_reason(sk, skb, reason);
6381 	return 0;
6382 
6383 reset_and_undo:
6384 	tcp_clear_options(&tp->rx_opt);
6385 	tp->rx_opt.mss_clamp = saved_clamp;
6386 	return 1;
6387 }
6388 
6389 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6390 {
6391 	struct request_sock *req;
6392 
6393 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6394 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6395 	 */
6396 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
6397 		tcp_try_undo_loss(sk, false);
6398 
6399 	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6400 	tcp_sk(sk)->retrans_stamp = 0;
6401 	inet_csk(sk)->icsk_retransmits = 0;
6402 
6403 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6404 	 * we no longer need req so release it.
6405 	 */
6406 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6407 					lockdep_sock_is_held(sk));
6408 	reqsk_fastopen_remove(sk, req, false);
6409 
6410 	/* Re-arm the timer because data may have been sent out.
6411 	 * This is similar to the regular data transmission case
6412 	 * when new data has just been ack'ed.
6413 	 *
6414 	 * (TFO) - we could try to be more aggressive and
6415 	 * retransmitting any data sooner based on when they
6416 	 * are sent out.
6417 	 */
6418 	tcp_rearm_rto(sk);
6419 }
6420 
6421 /*
6422  *	This function implements the receiving procedure of RFC 793 for
6423  *	all states except ESTABLISHED and TIME_WAIT.
6424  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6425  *	address independent.
6426  */
6427 
6428 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6429 {
6430 	struct tcp_sock *tp = tcp_sk(sk);
6431 	struct inet_connection_sock *icsk = inet_csk(sk);
6432 	const struct tcphdr *th = tcp_hdr(skb);
6433 	struct request_sock *req;
6434 	int queued = 0;
6435 	bool acceptable;
6436 	SKB_DR(reason);
6437 
6438 	switch (sk->sk_state) {
6439 	case TCP_CLOSE:
6440 		SKB_DR_SET(reason, TCP_CLOSE);
6441 		goto discard;
6442 
6443 	case TCP_LISTEN:
6444 		if (th->ack)
6445 			return 1;
6446 
6447 		if (th->rst) {
6448 			SKB_DR_SET(reason, TCP_RESET);
6449 			goto discard;
6450 		}
6451 		if (th->syn) {
6452 			if (th->fin) {
6453 				SKB_DR_SET(reason, TCP_FLAGS);
6454 				goto discard;
6455 			}
6456 			/* It is possible that we process SYN packets from backlog,
6457 			 * so we need to make sure to disable BH and RCU right there.
6458 			 */
6459 			rcu_read_lock();
6460 			local_bh_disable();
6461 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6462 			local_bh_enable();
6463 			rcu_read_unlock();
6464 
6465 			if (!acceptable)
6466 				return 1;
6467 			consume_skb(skb);
6468 			return 0;
6469 		}
6470 		SKB_DR_SET(reason, TCP_FLAGS);
6471 		goto discard;
6472 
6473 	case TCP_SYN_SENT:
6474 		tp->rx_opt.saw_tstamp = 0;
6475 		tcp_mstamp_refresh(tp);
6476 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6477 		if (queued >= 0)
6478 			return queued;
6479 
6480 		/* Do step6 onward by hand. */
6481 		tcp_urg(sk, skb, th);
6482 		__kfree_skb(skb);
6483 		tcp_data_snd_check(sk);
6484 		return 0;
6485 	}
6486 
6487 	tcp_mstamp_refresh(tp);
6488 	tp->rx_opt.saw_tstamp = 0;
6489 	req = rcu_dereference_protected(tp->fastopen_rsk,
6490 					lockdep_sock_is_held(sk));
6491 	if (req) {
6492 		bool req_stolen;
6493 
6494 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6495 		    sk->sk_state != TCP_FIN_WAIT1);
6496 
6497 		if (!tcp_check_req(sk, skb, req, true, &req_stolen)) {
6498 			SKB_DR_SET(reason, TCP_FASTOPEN);
6499 			goto discard;
6500 		}
6501 	}
6502 
6503 	if (!th->ack && !th->rst && !th->syn) {
6504 		SKB_DR_SET(reason, TCP_FLAGS);
6505 		goto discard;
6506 	}
6507 	if (!tcp_validate_incoming(sk, skb, th, 0))
6508 		return 0;
6509 
6510 	/* step 5: check the ACK field */
6511 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6512 				      FLAG_UPDATE_TS_RECENT |
6513 				      FLAG_NO_CHALLENGE_ACK) > 0;
6514 
6515 	if (!acceptable) {
6516 		if (sk->sk_state == TCP_SYN_RECV)
6517 			return 1;	/* send one RST */
6518 		tcp_send_challenge_ack(sk);
6519 		SKB_DR_SET(reason, TCP_OLD_ACK);
6520 		goto discard;
6521 	}
6522 	switch (sk->sk_state) {
6523 	case TCP_SYN_RECV:
6524 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6525 		if (!tp->srtt_us)
6526 			tcp_synack_rtt_meas(sk, req);
6527 
6528 		if (req) {
6529 			tcp_rcv_synrecv_state_fastopen(sk);
6530 		} else {
6531 			tcp_try_undo_spurious_syn(sk);
6532 			tp->retrans_stamp = 0;
6533 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6534 					  skb);
6535 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6536 		}
6537 		smp_mb();
6538 		tcp_set_state(sk, TCP_ESTABLISHED);
6539 		sk->sk_state_change(sk);
6540 
6541 		/* Note, that this wakeup is only for marginal crossed SYN case.
6542 		 * Passively open sockets are not waked up, because
6543 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6544 		 */
6545 		if (sk->sk_socket)
6546 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6547 
6548 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6549 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6550 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6551 
6552 		if (tp->rx_opt.tstamp_ok)
6553 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6554 
6555 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6556 			tcp_update_pacing_rate(sk);
6557 
6558 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6559 		tp->lsndtime = tcp_jiffies32;
6560 
6561 		tcp_initialize_rcv_mss(sk);
6562 		tcp_fast_path_on(tp);
6563 		break;
6564 
6565 	case TCP_FIN_WAIT1: {
6566 		int tmo;
6567 
6568 		if (req)
6569 			tcp_rcv_synrecv_state_fastopen(sk);
6570 
6571 		if (tp->snd_una != tp->write_seq)
6572 			break;
6573 
6574 		tcp_set_state(sk, TCP_FIN_WAIT2);
6575 		sk->sk_shutdown |= SEND_SHUTDOWN;
6576 
6577 		sk_dst_confirm(sk);
6578 
6579 		if (!sock_flag(sk, SOCK_DEAD)) {
6580 			/* Wake up lingering close() */
6581 			sk->sk_state_change(sk);
6582 			break;
6583 		}
6584 
6585 		if (tp->linger2 < 0) {
6586 			tcp_done(sk);
6587 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6588 			return 1;
6589 		}
6590 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6591 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6592 			/* Receive out of order FIN after close() */
6593 			if (tp->syn_fastopen && th->fin)
6594 				tcp_fastopen_active_disable(sk);
6595 			tcp_done(sk);
6596 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6597 			return 1;
6598 		}
6599 
6600 		tmo = tcp_fin_time(sk);
6601 		if (tmo > TCP_TIMEWAIT_LEN) {
6602 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6603 		} else if (th->fin || sock_owned_by_user(sk)) {
6604 			/* Bad case. We could lose such FIN otherwise.
6605 			 * It is not a big problem, but it looks confusing
6606 			 * and not so rare event. We still can lose it now,
6607 			 * if it spins in bh_lock_sock(), but it is really
6608 			 * marginal case.
6609 			 */
6610 			inet_csk_reset_keepalive_timer(sk, tmo);
6611 		} else {
6612 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6613 			goto consume;
6614 		}
6615 		break;
6616 	}
6617 
6618 	case TCP_CLOSING:
6619 		if (tp->snd_una == tp->write_seq) {
6620 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6621 			goto consume;
6622 		}
6623 		break;
6624 
6625 	case TCP_LAST_ACK:
6626 		if (tp->snd_una == tp->write_seq) {
6627 			tcp_update_metrics(sk);
6628 			tcp_done(sk);
6629 			goto consume;
6630 		}
6631 		break;
6632 	}
6633 
6634 	/* step 6: check the URG bit */
6635 	tcp_urg(sk, skb, th);
6636 
6637 	/* step 7: process the segment text */
6638 	switch (sk->sk_state) {
6639 	case TCP_CLOSE_WAIT:
6640 	case TCP_CLOSING:
6641 	case TCP_LAST_ACK:
6642 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6643 			/* If a subflow has been reset, the packet should not
6644 			 * continue to be processed, drop the packet.
6645 			 */
6646 			if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6647 				goto discard;
6648 			break;
6649 		}
6650 		fallthrough;
6651 	case TCP_FIN_WAIT1:
6652 	case TCP_FIN_WAIT2:
6653 		/* RFC 793 says to queue data in these states,
6654 		 * RFC 1122 says we MUST send a reset.
6655 		 * BSD 4.4 also does reset.
6656 		 */
6657 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6658 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6659 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6660 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6661 				tcp_reset(sk, skb);
6662 				return 1;
6663 			}
6664 		}
6665 		fallthrough;
6666 	case TCP_ESTABLISHED:
6667 		tcp_data_queue(sk, skb);
6668 		queued = 1;
6669 		break;
6670 	}
6671 
6672 	/* tcp_data could move socket to TIME-WAIT */
6673 	if (sk->sk_state != TCP_CLOSE) {
6674 		tcp_data_snd_check(sk);
6675 		tcp_ack_snd_check(sk);
6676 	}
6677 
6678 	if (!queued) {
6679 discard:
6680 		tcp_drop_reason(sk, skb, reason);
6681 	}
6682 	return 0;
6683 
6684 consume:
6685 	__kfree_skb(skb);
6686 	return 0;
6687 }
6688 EXPORT_SYMBOL(tcp_rcv_state_process);
6689 
6690 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6691 {
6692 	struct inet_request_sock *ireq = inet_rsk(req);
6693 
6694 	if (family == AF_INET)
6695 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6696 				    &ireq->ir_rmt_addr, port);
6697 #if IS_ENABLED(CONFIG_IPV6)
6698 	else if (family == AF_INET6)
6699 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6700 				    &ireq->ir_v6_rmt_addr, port);
6701 #endif
6702 }
6703 
6704 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6705  *
6706  * If we receive a SYN packet with these bits set, it means a
6707  * network is playing bad games with TOS bits. In order to
6708  * avoid possible false congestion notifications, we disable
6709  * TCP ECN negotiation.
6710  *
6711  * Exception: tcp_ca wants ECN. This is required for DCTCP
6712  * congestion control: Linux DCTCP asserts ECT on all packets,
6713  * including SYN, which is most optimal solution; however,
6714  * others, such as FreeBSD do not.
6715  *
6716  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6717  * set, indicating the use of a future TCP extension (such as AccECN). See
6718  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6719  * extensions.
6720  */
6721 static void tcp_ecn_create_request(struct request_sock *req,
6722 				   const struct sk_buff *skb,
6723 				   const struct sock *listen_sk,
6724 				   const struct dst_entry *dst)
6725 {
6726 	const struct tcphdr *th = tcp_hdr(skb);
6727 	const struct net *net = sock_net(listen_sk);
6728 	bool th_ecn = th->ece && th->cwr;
6729 	bool ect, ecn_ok;
6730 	u32 ecn_ok_dst;
6731 
6732 	if (!th_ecn)
6733 		return;
6734 
6735 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6736 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6737 	ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
6738 
6739 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6740 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6741 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6742 		inet_rsk(req)->ecn_ok = 1;
6743 }
6744 
6745 static void tcp_openreq_init(struct request_sock *req,
6746 			     const struct tcp_options_received *rx_opt,
6747 			     struct sk_buff *skb, const struct sock *sk)
6748 {
6749 	struct inet_request_sock *ireq = inet_rsk(req);
6750 
6751 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6752 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6753 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6754 	tcp_rsk(req)->snt_synack = 0;
6755 	tcp_rsk(req)->last_oow_ack_time = 0;
6756 	req->mss = rx_opt->mss_clamp;
6757 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6758 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6759 	ireq->sack_ok = rx_opt->sack_ok;
6760 	ireq->snd_wscale = rx_opt->snd_wscale;
6761 	ireq->wscale_ok = rx_opt->wscale_ok;
6762 	ireq->acked = 0;
6763 	ireq->ecn_ok = 0;
6764 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6765 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6766 	ireq->ir_mark = inet_request_mark(sk, skb);
6767 #if IS_ENABLED(CONFIG_SMC)
6768 	ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
6769 			tcp_sk(sk)->smc_hs_congested(sk));
6770 #endif
6771 }
6772 
6773 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6774 				      struct sock *sk_listener,
6775 				      bool attach_listener)
6776 {
6777 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6778 					       attach_listener);
6779 
6780 	if (req) {
6781 		struct inet_request_sock *ireq = inet_rsk(req);
6782 
6783 		ireq->ireq_opt = NULL;
6784 #if IS_ENABLED(CONFIG_IPV6)
6785 		ireq->pktopts = NULL;
6786 #endif
6787 		atomic64_set(&ireq->ir_cookie, 0);
6788 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6789 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6790 		ireq->ireq_family = sk_listener->sk_family;
6791 		req->timeout = TCP_TIMEOUT_INIT;
6792 	}
6793 
6794 	return req;
6795 }
6796 EXPORT_SYMBOL(inet_reqsk_alloc);
6797 
6798 /*
6799  * Return true if a syncookie should be sent
6800  */
6801 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6802 {
6803 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6804 	const char *msg = "Dropping request";
6805 	struct net *net = sock_net(sk);
6806 	bool want_cookie = false;
6807 	u8 syncookies;
6808 
6809 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6810 
6811 #ifdef CONFIG_SYN_COOKIES
6812 	if (syncookies) {
6813 		msg = "Sending cookies";
6814 		want_cookie = true;
6815 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6816 	} else
6817 #endif
6818 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6819 
6820 	if (!queue->synflood_warned && syncookies != 2 &&
6821 	    xchg(&queue->synflood_warned, 1) == 0)
6822 		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6823 				     proto, sk->sk_num, msg);
6824 
6825 	return want_cookie;
6826 }
6827 
6828 static void tcp_reqsk_record_syn(const struct sock *sk,
6829 				 struct request_sock *req,
6830 				 const struct sk_buff *skb)
6831 {
6832 	if (tcp_sk(sk)->save_syn) {
6833 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6834 		struct saved_syn *saved_syn;
6835 		u32 mac_hdrlen;
6836 		void *base;
6837 
6838 		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
6839 			base = skb_mac_header(skb);
6840 			mac_hdrlen = skb_mac_header_len(skb);
6841 			len += mac_hdrlen;
6842 		} else {
6843 			base = skb_network_header(skb);
6844 			mac_hdrlen = 0;
6845 		}
6846 
6847 		saved_syn = kmalloc(struct_size(saved_syn, data, len),
6848 				    GFP_ATOMIC);
6849 		if (saved_syn) {
6850 			saved_syn->mac_hdrlen = mac_hdrlen;
6851 			saved_syn->network_hdrlen = skb_network_header_len(skb);
6852 			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
6853 			memcpy(saved_syn->data, base, len);
6854 			req->saved_syn = saved_syn;
6855 		}
6856 	}
6857 }
6858 
6859 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6860  * used for SYN cookie generation.
6861  */
6862 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6863 			  const struct tcp_request_sock_ops *af_ops,
6864 			  struct sock *sk, struct tcphdr *th)
6865 {
6866 	struct tcp_sock *tp = tcp_sk(sk);
6867 	u16 mss;
6868 
6869 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
6870 	    !inet_csk_reqsk_queue_is_full(sk))
6871 		return 0;
6872 
6873 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6874 		return 0;
6875 
6876 	if (sk_acceptq_is_full(sk)) {
6877 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6878 		return 0;
6879 	}
6880 
6881 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6882 	if (!mss)
6883 		mss = af_ops->mss_clamp;
6884 
6885 	return mss;
6886 }
6887 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6888 
6889 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6890 		     const struct tcp_request_sock_ops *af_ops,
6891 		     struct sock *sk, struct sk_buff *skb)
6892 {
6893 	struct tcp_fastopen_cookie foc = { .len = -1 };
6894 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6895 	struct tcp_options_received tmp_opt;
6896 	struct tcp_sock *tp = tcp_sk(sk);
6897 	struct net *net = sock_net(sk);
6898 	struct sock *fastopen_sk = NULL;
6899 	struct request_sock *req;
6900 	bool want_cookie = false;
6901 	struct dst_entry *dst;
6902 	struct flowi fl;
6903 	u8 syncookies;
6904 
6905 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6906 
6907 	/* TW buckets are converted to open requests without
6908 	 * limitations, they conserve resources and peer is
6909 	 * evidently real one.
6910 	 */
6911 	if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6912 		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6913 		if (!want_cookie)
6914 			goto drop;
6915 	}
6916 
6917 	if (sk_acceptq_is_full(sk)) {
6918 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6919 		goto drop;
6920 	}
6921 
6922 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6923 	if (!req)
6924 		goto drop;
6925 
6926 	req->syncookie = want_cookie;
6927 	tcp_rsk(req)->af_specific = af_ops;
6928 	tcp_rsk(req)->ts_off = 0;
6929 #if IS_ENABLED(CONFIG_MPTCP)
6930 	tcp_rsk(req)->is_mptcp = 0;
6931 #endif
6932 
6933 	tcp_clear_options(&tmp_opt);
6934 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6935 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6936 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6937 			  want_cookie ? NULL : &foc);
6938 
6939 	if (want_cookie && !tmp_opt.saw_tstamp)
6940 		tcp_clear_options(&tmp_opt);
6941 
6942 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6943 		tmp_opt.smc_ok = 0;
6944 
6945 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6946 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6947 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6948 
6949 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6950 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6951 
6952 	dst = af_ops->route_req(sk, skb, &fl, req);
6953 	if (!dst)
6954 		goto drop_and_free;
6955 
6956 	if (tmp_opt.tstamp_ok)
6957 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6958 
6959 	if (!want_cookie && !isn) {
6960 		int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
6961 
6962 		/* Kill the following clause, if you dislike this way. */
6963 		if (!syncookies &&
6964 		    (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6965 		     (max_syn_backlog >> 2)) &&
6966 		    !tcp_peer_is_proven(req, dst)) {
6967 			/* Without syncookies last quarter of
6968 			 * backlog is filled with destinations,
6969 			 * proven to be alive.
6970 			 * It means that we continue to communicate
6971 			 * to destinations, already remembered
6972 			 * to the moment of synflood.
6973 			 */
6974 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6975 				    rsk_ops->family);
6976 			goto drop_and_release;
6977 		}
6978 
6979 		isn = af_ops->init_seq(skb);
6980 	}
6981 
6982 	tcp_ecn_create_request(req, skb, sk, dst);
6983 
6984 	if (want_cookie) {
6985 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6986 		if (!tmp_opt.tstamp_ok)
6987 			inet_rsk(req)->ecn_ok = 0;
6988 	}
6989 
6990 	tcp_rsk(req)->snt_isn = isn;
6991 	tcp_rsk(req)->txhash = net_tx_rndhash();
6992 	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
6993 	tcp_openreq_init_rwin(req, sk, dst);
6994 	sk_rx_queue_set(req_to_sk(req), skb);
6995 	if (!want_cookie) {
6996 		tcp_reqsk_record_syn(sk, req, skb);
6997 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6998 	}
6999 	if (fastopen_sk) {
7000 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
7001 				    &foc, TCP_SYNACK_FASTOPEN, skb);
7002 		/* Add the child socket directly into the accept queue */
7003 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7004 			reqsk_fastopen_remove(fastopen_sk, req, false);
7005 			bh_unlock_sock(fastopen_sk);
7006 			sock_put(fastopen_sk);
7007 			goto drop_and_free;
7008 		}
7009 		sk->sk_data_ready(sk);
7010 		bh_unlock_sock(fastopen_sk);
7011 		sock_put(fastopen_sk);
7012 	} else {
7013 		tcp_rsk(req)->tfo_listener = false;
7014 		if (!want_cookie) {
7015 			req->timeout = tcp_timeout_init((struct sock *)req);
7016 			inet_csk_reqsk_queue_hash_add(sk, req, req->timeout);
7017 		}
7018 		af_ops->send_synack(sk, dst, &fl, req, &foc,
7019 				    !want_cookie ? TCP_SYNACK_NORMAL :
7020 						   TCP_SYNACK_COOKIE,
7021 				    skb);
7022 		if (want_cookie) {
7023 			reqsk_free(req);
7024 			return 0;
7025 		}
7026 	}
7027 	reqsk_put(req);
7028 	return 0;
7029 
7030 drop_and_release:
7031 	dst_release(dst);
7032 drop_and_free:
7033 	__reqsk_free(req);
7034 drop:
7035 	tcp_listendrop(sk);
7036 	return 0;
7037 }
7038 EXPORT_SYMBOL(tcp_conn_request);
7039