xref: /openbmc/linux/net/ipv4/tcp_input.c (revision f15cbe6f1a4b4d9df59142fc8e4abb973302cf44)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #include <linux/mm.h>
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
67 #include <net/dst.h>
68 #include <net/tcp.h>
69 #include <net/inet_common.h>
70 #include <linux/ipsec.h>
71 #include <asm/unaligned.h>
72 #include <net/netdma.h>
73 
74 int sysctl_tcp_timestamps __read_mostly = 1;
75 int sysctl_tcp_window_scaling __read_mostly = 1;
76 int sysctl_tcp_sack __read_mostly = 1;
77 int sysctl_tcp_fack __read_mostly = 1;
78 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
79 int sysctl_tcp_ecn __read_mostly;
80 int sysctl_tcp_dsack __read_mostly = 1;
81 int sysctl_tcp_app_win __read_mostly = 31;
82 int sysctl_tcp_adv_win_scale __read_mostly = 2;
83 
84 int sysctl_tcp_stdurg __read_mostly;
85 int sysctl_tcp_rfc1337 __read_mostly;
86 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
87 int sysctl_tcp_frto __read_mostly = 2;
88 int sysctl_tcp_frto_response __read_mostly;
89 int sysctl_tcp_nometrics_save __read_mostly;
90 
91 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92 int sysctl_tcp_abc __read_mostly;
93 
94 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
95 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
96 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
97 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
98 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
99 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
100 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
101 #define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
102 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
103 #define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
104 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
105 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
106 #define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
107 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
108 
109 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114 
115 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
116 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
117 
118 /* Adapt the MSS value used to make delayed ack decision to the
119  * real world.
120  */
121 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
122 {
123 	struct inet_connection_sock *icsk = inet_csk(sk);
124 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
125 	unsigned int len;
126 
127 	icsk->icsk_ack.last_seg_size = 0;
128 
129 	/* skb->len may jitter because of SACKs, even if peer
130 	 * sends good full-sized frames.
131 	 */
132 	len = skb_shinfo(skb)->gso_size ? : skb->len;
133 	if (len >= icsk->icsk_ack.rcv_mss) {
134 		icsk->icsk_ack.rcv_mss = len;
135 	} else {
136 		/* Otherwise, we make more careful check taking into account,
137 		 * that SACKs block is variable.
138 		 *
139 		 * "len" is invariant segment length, including TCP header.
140 		 */
141 		len += skb->data - skb_transport_header(skb);
142 		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
143 		    /* If PSH is not set, packet should be
144 		     * full sized, provided peer TCP is not badly broken.
145 		     * This observation (if it is correct 8)) allows
146 		     * to handle super-low mtu links fairly.
147 		     */
148 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
149 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
150 			/* Subtract also invariant (if peer is RFC compliant),
151 			 * tcp header plus fixed timestamp option length.
152 			 * Resulting "len" is MSS free of SACK jitter.
153 			 */
154 			len -= tcp_sk(sk)->tcp_header_len;
155 			icsk->icsk_ack.last_seg_size = len;
156 			if (len == lss) {
157 				icsk->icsk_ack.rcv_mss = len;
158 				return;
159 			}
160 		}
161 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
162 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
163 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
164 	}
165 }
166 
167 static void tcp_incr_quickack(struct sock *sk)
168 {
169 	struct inet_connection_sock *icsk = inet_csk(sk);
170 	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
171 
172 	if (quickacks == 0)
173 		quickacks = 2;
174 	if (quickacks > icsk->icsk_ack.quick)
175 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
176 }
177 
178 void tcp_enter_quickack_mode(struct sock *sk)
179 {
180 	struct inet_connection_sock *icsk = inet_csk(sk);
181 	tcp_incr_quickack(sk);
182 	icsk->icsk_ack.pingpong = 0;
183 	icsk->icsk_ack.ato = TCP_ATO_MIN;
184 }
185 
186 /* Send ACKs quickly, if "quick" count is not exhausted
187  * and the session is not interactive.
188  */
189 
190 static inline int tcp_in_quickack_mode(const struct sock *sk)
191 {
192 	const struct inet_connection_sock *icsk = inet_csk(sk);
193 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
194 }
195 
196 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
197 {
198 	if (tp->ecn_flags & TCP_ECN_OK)
199 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
200 }
201 
202 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
203 {
204 	if (tcp_hdr(skb)->cwr)
205 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
206 }
207 
208 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
209 {
210 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
211 }
212 
213 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
214 {
215 	if (tp->ecn_flags & TCP_ECN_OK) {
216 		if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
217 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
218 		/* Funny extension: if ECT is not set on a segment,
219 		 * it is surely retransmit. It is not in ECN RFC,
220 		 * but Linux follows this rule. */
221 		else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
222 			tcp_enter_quickack_mode((struct sock *)tp);
223 	}
224 }
225 
226 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
227 {
228 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
229 		tp->ecn_flags &= ~TCP_ECN_OK;
230 }
231 
232 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
233 {
234 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
235 		tp->ecn_flags &= ~TCP_ECN_OK;
236 }
237 
238 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
239 {
240 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
241 		return 1;
242 	return 0;
243 }
244 
245 /* Buffer size and advertised window tuning.
246  *
247  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
248  */
249 
250 static void tcp_fixup_sndbuf(struct sock *sk)
251 {
252 	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
253 		     sizeof(struct sk_buff);
254 
255 	if (sk->sk_sndbuf < 3 * sndmem)
256 		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
257 }
258 
259 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
260  *
261  * All tcp_full_space() is split to two parts: "network" buffer, allocated
262  * forward and advertised in receiver window (tp->rcv_wnd) and
263  * "application buffer", required to isolate scheduling/application
264  * latencies from network.
265  * window_clamp is maximal advertised window. It can be less than
266  * tcp_full_space(), in this case tcp_full_space() - window_clamp
267  * is reserved for "application" buffer. The less window_clamp is
268  * the smoother our behaviour from viewpoint of network, but the lower
269  * throughput and the higher sensitivity of the connection to losses. 8)
270  *
271  * rcv_ssthresh is more strict window_clamp used at "slow start"
272  * phase to predict further behaviour of this connection.
273  * It is used for two goals:
274  * - to enforce header prediction at sender, even when application
275  *   requires some significant "application buffer". It is check #1.
276  * - to prevent pruning of receive queue because of misprediction
277  *   of receiver window. Check #2.
278  *
279  * The scheme does not work when sender sends good segments opening
280  * window and then starts to feed us spaghetti. But it should work
281  * in common situations. Otherwise, we have to rely on queue collapsing.
282  */
283 
284 /* Slow part of check#2. */
285 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
286 {
287 	struct tcp_sock *tp = tcp_sk(sk);
288 	/* Optimize this! */
289 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
290 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
291 
292 	while (tp->rcv_ssthresh <= window) {
293 		if (truesize <= skb->len)
294 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
295 
296 		truesize >>= 1;
297 		window >>= 1;
298 	}
299 	return 0;
300 }
301 
302 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
303 {
304 	struct tcp_sock *tp = tcp_sk(sk);
305 
306 	/* Check #1 */
307 	if (tp->rcv_ssthresh < tp->window_clamp &&
308 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
309 	    !tcp_memory_pressure) {
310 		int incr;
311 
312 		/* Check #2. Increase window, if skb with such overhead
313 		 * will fit to rcvbuf in future.
314 		 */
315 		if (tcp_win_from_space(skb->truesize) <= skb->len)
316 			incr = 2 * tp->advmss;
317 		else
318 			incr = __tcp_grow_window(sk, skb);
319 
320 		if (incr) {
321 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
322 					       tp->window_clamp);
323 			inet_csk(sk)->icsk_ack.quick |= 1;
324 		}
325 	}
326 }
327 
328 /* 3. Tuning rcvbuf, when connection enters established state. */
329 
330 static void tcp_fixup_rcvbuf(struct sock *sk)
331 {
332 	struct tcp_sock *tp = tcp_sk(sk);
333 	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
334 
335 	/* Try to select rcvbuf so that 4 mss-sized segments
336 	 * will fit to window and corresponding skbs will fit to our rcvbuf.
337 	 * (was 3; 4 is minimum to allow fast retransmit to work.)
338 	 */
339 	while (tcp_win_from_space(rcvmem) < tp->advmss)
340 		rcvmem += 128;
341 	if (sk->sk_rcvbuf < 4 * rcvmem)
342 		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
343 }
344 
345 /* 4. Try to fixup all. It is made immediately after connection enters
346  *    established state.
347  */
348 static void tcp_init_buffer_space(struct sock *sk)
349 {
350 	struct tcp_sock *tp = tcp_sk(sk);
351 	int maxwin;
352 
353 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
354 		tcp_fixup_rcvbuf(sk);
355 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
356 		tcp_fixup_sndbuf(sk);
357 
358 	tp->rcvq_space.space = tp->rcv_wnd;
359 
360 	maxwin = tcp_full_space(sk);
361 
362 	if (tp->window_clamp >= maxwin) {
363 		tp->window_clamp = maxwin;
364 
365 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
366 			tp->window_clamp = max(maxwin -
367 					       (maxwin >> sysctl_tcp_app_win),
368 					       4 * tp->advmss);
369 	}
370 
371 	/* Force reservation of one segment. */
372 	if (sysctl_tcp_app_win &&
373 	    tp->window_clamp > 2 * tp->advmss &&
374 	    tp->window_clamp + tp->advmss > maxwin)
375 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
376 
377 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
378 	tp->snd_cwnd_stamp = tcp_time_stamp;
379 }
380 
381 /* 5. Recalculate window clamp after socket hit its memory bounds. */
382 static void tcp_clamp_window(struct sock *sk)
383 {
384 	struct tcp_sock *tp = tcp_sk(sk);
385 	struct inet_connection_sock *icsk = inet_csk(sk);
386 
387 	icsk->icsk_ack.quick = 0;
388 
389 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
390 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
391 	    !tcp_memory_pressure &&
392 	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
393 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
394 				    sysctl_tcp_rmem[2]);
395 	}
396 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
397 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
398 }
399 
400 /* Initialize RCV_MSS value.
401  * RCV_MSS is an our guess about MSS used by the peer.
402  * We haven't any direct information about the MSS.
403  * It's better to underestimate the RCV_MSS rather than overestimate.
404  * Overestimations make us ACKing less frequently than needed.
405  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
406  */
407 void tcp_initialize_rcv_mss(struct sock *sk)
408 {
409 	struct tcp_sock *tp = tcp_sk(sk);
410 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
411 
412 	hint = min(hint, tp->rcv_wnd / 2);
413 	hint = min(hint, TCP_MIN_RCVMSS);
414 	hint = max(hint, TCP_MIN_MSS);
415 
416 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
417 }
418 
419 /* Receiver "autotuning" code.
420  *
421  * The algorithm for RTT estimation w/o timestamps is based on
422  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
423  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
424  *
425  * More detail on this code can be found at
426  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
427  * though this reference is out of date.  A new paper
428  * is pending.
429  */
430 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
431 {
432 	u32 new_sample = tp->rcv_rtt_est.rtt;
433 	long m = sample;
434 
435 	if (m == 0)
436 		m = 1;
437 
438 	if (new_sample != 0) {
439 		/* If we sample in larger samples in the non-timestamp
440 		 * case, we could grossly overestimate the RTT especially
441 		 * with chatty applications or bulk transfer apps which
442 		 * are stalled on filesystem I/O.
443 		 *
444 		 * Also, since we are only going for a minimum in the
445 		 * non-timestamp case, we do not smooth things out
446 		 * else with timestamps disabled convergence takes too
447 		 * long.
448 		 */
449 		if (!win_dep) {
450 			m -= (new_sample >> 3);
451 			new_sample += m;
452 		} else if (m < new_sample)
453 			new_sample = m << 3;
454 	} else {
455 		/* No previous measure. */
456 		new_sample = m << 3;
457 	}
458 
459 	if (tp->rcv_rtt_est.rtt != new_sample)
460 		tp->rcv_rtt_est.rtt = new_sample;
461 }
462 
463 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
464 {
465 	if (tp->rcv_rtt_est.time == 0)
466 		goto new_measure;
467 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
468 		return;
469 	tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
470 
471 new_measure:
472 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
473 	tp->rcv_rtt_est.time = tcp_time_stamp;
474 }
475 
476 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
477 					  const struct sk_buff *skb)
478 {
479 	struct tcp_sock *tp = tcp_sk(sk);
480 	if (tp->rx_opt.rcv_tsecr &&
481 	    (TCP_SKB_CB(skb)->end_seq -
482 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
483 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
484 }
485 
486 /*
487  * This function should be called every time data is copied to user space.
488  * It calculates the appropriate TCP receive buffer space.
489  */
490 void tcp_rcv_space_adjust(struct sock *sk)
491 {
492 	struct tcp_sock *tp = tcp_sk(sk);
493 	int time;
494 	int space;
495 
496 	if (tp->rcvq_space.time == 0)
497 		goto new_measure;
498 
499 	time = tcp_time_stamp - tp->rcvq_space.time;
500 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
501 		return;
502 
503 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
504 
505 	space = max(tp->rcvq_space.space, space);
506 
507 	if (tp->rcvq_space.space != space) {
508 		int rcvmem;
509 
510 		tp->rcvq_space.space = space;
511 
512 		if (sysctl_tcp_moderate_rcvbuf &&
513 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
514 			int new_clamp = space;
515 
516 			/* Receive space grows, normalize in order to
517 			 * take into account packet headers and sk_buff
518 			 * structure overhead.
519 			 */
520 			space /= tp->advmss;
521 			if (!space)
522 				space = 1;
523 			rcvmem = (tp->advmss + MAX_TCP_HEADER +
524 				  16 + sizeof(struct sk_buff));
525 			while (tcp_win_from_space(rcvmem) < tp->advmss)
526 				rcvmem += 128;
527 			space *= rcvmem;
528 			space = min(space, sysctl_tcp_rmem[2]);
529 			if (space > sk->sk_rcvbuf) {
530 				sk->sk_rcvbuf = space;
531 
532 				/* Make the window clamp follow along.  */
533 				tp->window_clamp = new_clamp;
534 			}
535 		}
536 	}
537 
538 new_measure:
539 	tp->rcvq_space.seq = tp->copied_seq;
540 	tp->rcvq_space.time = tcp_time_stamp;
541 }
542 
543 /* There is something which you must keep in mind when you analyze the
544  * behavior of the tp->ato delayed ack timeout interval.  When a
545  * connection starts up, we want to ack as quickly as possible.  The
546  * problem is that "good" TCP's do slow start at the beginning of data
547  * transmission.  The means that until we send the first few ACK's the
548  * sender will sit on his end and only queue most of his data, because
549  * he can only send snd_cwnd unacked packets at any given time.  For
550  * each ACK we send, he increments snd_cwnd and transmits more of his
551  * queue.  -DaveM
552  */
553 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
554 {
555 	struct tcp_sock *tp = tcp_sk(sk);
556 	struct inet_connection_sock *icsk = inet_csk(sk);
557 	u32 now;
558 
559 	inet_csk_schedule_ack(sk);
560 
561 	tcp_measure_rcv_mss(sk, skb);
562 
563 	tcp_rcv_rtt_measure(tp);
564 
565 	now = tcp_time_stamp;
566 
567 	if (!icsk->icsk_ack.ato) {
568 		/* The _first_ data packet received, initialize
569 		 * delayed ACK engine.
570 		 */
571 		tcp_incr_quickack(sk);
572 		icsk->icsk_ack.ato = TCP_ATO_MIN;
573 	} else {
574 		int m = now - icsk->icsk_ack.lrcvtime;
575 
576 		if (m <= TCP_ATO_MIN / 2) {
577 			/* The fastest case is the first. */
578 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
579 		} else if (m < icsk->icsk_ack.ato) {
580 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
581 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
582 				icsk->icsk_ack.ato = icsk->icsk_rto;
583 		} else if (m > icsk->icsk_rto) {
584 			/* Too long gap. Apparently sender failed to
585 			 * restart window, so that we send ACKs quickly.
586 			 */
587 			tcp_incr_quickack(sk);
588 			sk_mem_reclaim(sk);
589 		}
590 	}
591 	icsk->icsk_ack.lrcvtime = now;
592 
593 	TCP_ECN_check_ce(tp, skb);
594 
595 	if (skb->len >= 128)
596 		tcp_grow_window(sk, skb);
597 }
598 
599 static u32 tcp_rto_min(struct sock *sk)
600 {
601 	struct dst_entry *dst = __sk_dst_get(sk);
602 	u32 rto_min = TCP_RTO_MIN;
603 
604 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
605 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
606 	return rto_min;
607 }
608 
609 /* Called to compute a smoothed rtt estimate. The data fed to this
610  * routine either comes from timestamps, or from segments that were
611  * known _not_ to have been retransmitted [see Karn/Partridge
612  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
613  * piece by Van Jacobson.
614  * NOTE: the next three routines used to be one big routine.
615  * To save cycles in the RFC 1323 implementation it was better to break
616  * it up into three procedures. -- erics
617  */
618 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
619 {
620 	struct tcp_sock *tp = tcp_sk(sk);
621 	long m = mrtt; /* RTT */
622 
623 	/*	The following amusing code comes from Jacobson's
624 	 *	article in SIGCOMM '88.  Note that rtt and mdev
625 	 *	are scaled versions of rtt and mean deviation.
626 	 *	This is designed to be as fast as possible
627 	 *	m stands for "measurement".
628 	 *
629 	 *	On a 1990 paper the rto value is changed to:
630 	 *	RTO = rtt + 4 * mdev
631 	 *
632 	 * Funny. This algorithm seems to be very broken.
633 	 * These formulae increase RTO, when it should be decreased, increase
634 	 * too slowly, when it should be increased quickly, decrease too quickly
635 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
636 	 * does not matter how to _calculate_ it. Seems, it was trap
637 	 * that VJ failed to avoid. 8)
638 	 */
639 	if (m == 0)
640 		m = 1;
641 	if (tp->srtt != 0) {
642 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
643 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
644 		if (m < 0) {
645 			m = -m;		/* m is now abs(error) */
646 			m -= (tp->mdev >> 2);   /* similar update on mdev */
647 			/* This is similar to one of Eifel findings.
648 			 * Eifel blocks mdev updates when rtt decreases.
649 			 * This solution is a bit different: we use finer gain
650 			 * for mdev in this case (alpha*beta).
651 			 * Like Eifel it also prevents growth of rto,
652 			 * but also it limits too fast rto decreases,
653 			 * happening in pure Eifel.
654 			 */
655 			if (m > 0)
656 				m >>= 3;
657 		} else {
658 			m -= (tp->mdev >> 2);   /* similar update on mdev */
659 		}
660 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
661 		if (tp->mdev > tp->mdev_max) {
662 			tp->mdev_max = tp->mdev;
663 			if (tp->mdev_max > tp->rttvar)
664 				tp->rttvar = tp->mdev_max;
665 		}
666 		if (after(tp->snd_una, tp->rtt_seq)) {
667 			if (tp->mdev_max < tp->rttvar)
668 				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
669 			tp->rtt_seq = tp->snd_nxt;
670 			tp->mdev_max = tcp_rto_min(sk);
671 		}
672 	} else {
673 		/* no previous measure. */
674 		tp->srtt = m << 3;	/* take the measured time to be rtt */
675 		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
676 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
677 		tp->rtt_seq = tp->snd_nxt;
678 	}
679 }
680 
681 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
682  * routine referred to above.
683  */
684 static inline void tcp_set_rto(struct sock *sk)
685 {
686 	const struct tcp_sock *tp = tcp_sk(sk);
687 	/* Old crap is replaced with new one. 8)
688 	 *
689 	 * More seriously:
690 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
691 	 *    It cannot be less due to utterly erratic ACK generation made
692 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
693 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
694 	 *    is invisible. Actually, Linux-2.4 also generates erratic
695 	 *    ACKs in some circumstances.
696 	 */
697 	inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
698 
699 	/* 2. Fixups made earlier cannot be right.
700 	 *    If we do not estimate RTO correctly without them,
701 	 *    all the algo is pure shit and should be replaced
702 	 *    with correct one. It is exactly, which we pretend to do.
703 	 */
704 }
705 
706 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707  * guarantees that rto is higher.
708  */
709 static inline void tcp_bound_rto(struct sock *sk)
710 {
711 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
712 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
713 }
714 
715 /* Save metrics learned by this TCP session.
716    This function is called only, when TCP finishes successfully
717    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
718  */
719 void tcp_update_metrics(struct sock *sk)
720 {
721 	struct tcp_sock *tp = tcp_sk(sk);
722 	struct dst_entry *dst = __sk_dst_get(sk);
723 
724 	if (sysctl_tcp_nometrics_save)
725 		return;
726 
727 	dst_confirm(dst);
728 
729 	if (dst && (dst->flags & DST_HOST)) {
730 		const struct inet_connection_sock *icsk = inet_csk(sk);
731 		int m;
732 		unsigned long rtt;
733 
734 		if (icsk->icsk_backoff || !tp->srtt) {
735 			/* This session failed to estimate rtt. Why?
736 			 * Probably, no packets returned in time.
737 			 * Reset our results.
738 			 */
739 			if (!(dst_metric_locked(dst, RTAX_RTT)))
740 				dst->metrics[RTAX_RTT - 1] = 0;
741 			return;
742 		}
743 
744 		rtt = dst_metric_rtt(dst, RTAX_RTT);
745 		m = rtt - tp->srtt;
746 
747 		/* If newly calculated rtt larger than stored one,
748 		 * store new one. Otherwise, use EWMA. Remember,
749 		 * rtt overestimation is always better than underestimation.
750 		 */
751 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
752 			if (m <= 0)
753 				set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
754 			else
755 				set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
756 		}
757 
758 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
759 			unsigned long var;
760 			if (m < 0)
761 				m = -m;
762 
763 			/* Scale deviation to rttvar fixed point */
764 			m >>= 1;
765 			if (m < tp->mdev)
766 				m = tp->mdev;
767 
768 			var = dst_metric_rtt(dst, RTAX_RTTVAR);
769 			if (m >= var)
770 				var = m;
771 			else
772 				var -= (var - m) >> 2;
773 
774 			set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
775 		}
776 
777 		if (tp->snd_ssthresh >= 0xFFFF) {
778 			/* Slow start still did not finish. */
779 			if (dst_metric(dst, RTAX_SSTHRESH) &&
780 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
781 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
782 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
783 			if (!dst_metric_locked(dst, RTAX_CWND) &&
784 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
785 				dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
786 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
787 			   icsk->icsk_ca_state == TCP_CA_Open) {
788 			/* Cong. avoidance phase, cwnd is reliable. */
789 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
790 				dst->metrics[RTAX_SSTHRESH-1] =
791 					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
792 			if (!dst_metric_locked(dst, RTAX_CWND))
793 				dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
794 		} else {
795 			/* Else slow start did not finish, cwnd is non-sense,
796 			   ssthresh may be also invalid.
797 			 */
798 			if (!dst_metric_locked(dst, RTAX_CWND))
799 				dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
800 			if (dst_metric(dst, RTAX_SSTHRESH) &&
801 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
802 			    tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
803 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
804 		}
805 
806 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
807 			if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
808 			    tp->reordering != sysctl_tcp_reordering)
809 				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
810 		}
811 	}
812 }
813 
814 /* Numbers are taken from RFC3390.
815  *
816  * John Heffner states:
817  *
818  *	The RFC specifies a window of no more than 4380 bytes
819  *	unless 2*MSS > 4380.  Reading the pseudocode in the RFC
820  *	is a bit misleading because they use a clamp at 4380 bytes
821  *	rather than use a multiplier in the relevant range.
822  */
823 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
824 {
825 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
826 
827 	if (!cwnd) {
828 		if (tp->mss_cache > 1460)
829 			cwnd = 2;
830 		else
831 			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
832 	}
833 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
834 }
835 
836 /* Set slow start threshold and cwnd not falling to slow start */
837 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
838 {
839 	struct tcp_sock *tp = tcp_sk(sk);
840 	const struct inet_connection_sock *icsk = inet_csk(sk);
841 
842 	tp->prior_ssthresh = 0;
843 	tp->bytes_acked = 0;
844 	if (icsk->icsk_ca_state < TCP_CA_CWR) {
845 		tp->undo_marker = 0;
846 		if (set_ssthresh)
847 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
848 		tp->snd_cwnd = min(tp->snd_cwnd,
849 				   tcp_packets_in_flight(tp) + 1U);
850 		tp->snd_cwnd_cnt = 0;
851 		tp->high_seq = tp->snd_nxt;
852 		tp->snd_cwnd_stamp = tcp_time_stamp;
853 		TCP_ECN_queue_cwr(tp);
854 
855 		tcp_set_ca_state(sk, TCP_CA_CWR);
856 	}
857 }
858 
859 /*
860  * Packet counting of FACK is based on in-order assumptions, therefore TCP
861  * disables it when reordering is detected
862  */
863 static void tcp_disable_fack(struct tcp_sock *tp)
864 {
865 	/* RFC3517 uses different metric in lost marker => reset on change */
866 	if (tcp_is_fack(tp))
867 		tp->lost_skb_hint = NULL;
868 	tp->rx_opt.sack_ok &= ~2;
869 }
870 
871 /* Take a notice that peer is sending D-SACKs */
872 static void tcp_dsack_seen(struct tcp_sock *tp)
873 {
874 	tp->rx_opt.sack_ok |= 4;
875 }
876 
877 /* Initialize metrics on socket. */
878 
879 static void tcp_init_metrics(struct sock *sk)
880 {
881 	struct tcp_sock *tp = tcp_sk(sk);
882 	struct dst_entry *dst = __sk_dst_get(sk);
883 
884 	if (dst == NULL)
885 		goto reset;
886 
887 	dst_confirm(dst);
888 
889 	if (dst_metric_locked(dst, RTAX_CWND))
890 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
891 	if (dst_metric(dst, RTAX_SSTHRESH)) {
892 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
893 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
894 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
895 	}
896 	if (dst_metric(dst, RTAX_REORDERING) &&
897 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
898 		tcp_disable_fack(tp);
899 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
900 	}
901 
902 	if (dst_metric(dst, RTAX_RTT) == 0)
903 		goto reset;
904 
905 	if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
906 		goto reset;
907 
908 	/* Initial rtt is determined from SYN,SYN-ACK.
909 	 * The segment is small and rtt may appear much
910 	 * less than real one. Use per-dst memory
911 	 * to make it more realistic.
912 	 *
913 	 * A bit of theory. RTT is time passed after "normal" sized packet
914 	 * is sent until it is ACKed. In normal circumstances sending small
915 	 * packets force peer to delay ACKs and calculation is correct too.
916 	 * The algorithm is adaptive and, provided we follow specs, it
917 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
918 	 * tricks sort of "quick acks" for time long enough to decrease RTT
919 	 * to low value, and then abruptly stops to do it and starts to delay
920 	 * ACKs, wait for troubles.
921 	 */
922 	if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
923 		tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
924 		tp->rtt_seq = tp->snd_nxt;
925 	}
926 	if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
927 		tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
928 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
929 	}
930 	tcp_set_rto(sk);
931 	tcp_bound_rto(sk);
932 	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
933 		goto reset;
934 	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
935 	tp->snd_cwnd_stamp = tcp_time_stamp;
936 	return;
937 
938 reset:
939 	/* Play conservative. If timestamps are not
940 	 * supported, TCP will fail to recalculate correct
941 	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
942 	 */
943 	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
944 		tp->srtt = 0;
945 		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
946 		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
947 	}
948 }
949 
950 static void tcp_update_reordering(struct sock *sk, const int metric,
951 				  const int ts)
952 {
953 	struct tcp_sock *tp = tcp_sk(sk);
954 	if (metric > tp->reordering) {
955 		int mib_idx;
956 
957 		tp->reordering = min(TCP_MAX_REORDERING, metric);
958 
959 		/* This exciting event is worth to be remembered. 8) */
960 		if (ts)
961 			mib_idx = LINUX_MIB_TCPTSREORDER;
962 		else if (tcp_is_reno(tp))
963 			mib_idx = LINUX_MIB_TCPRENOREORDER;
964 		else if (tcp_is_fack(tp))
965 			mib_idx = LINUX_MIB_TCPFACKREORDER;
966 		else
967 			mib_idx = LINUX_MIB_TCPSACKREORDER;
968 
969 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
970 #if FASTRETRANS_DEBUG > 1
971 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
972 		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
973 		       tp->reordering,
974 		       tp->fackets_out,
975 		       tp->sacked_out,
976 		       tp->undo_marker ? tp->undo_retrans : 0);
977 #endif
978 		tcp_disable_fack(tp);
979 	}
980 }
981 
982 /* This procedure tags the retransmission queue when SACKs arrive.
983  *
984  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
985  * Packets in queue with these bits set are counted in variables
986  * sacked_out, retrans_out and lost_out, correspondingly.
987  *
988  * Valid combinations are:
989  * Tag  InFlight	Description
990  * 0	1		- orig segment is in flight.
991  * S	0		- nothing flies, orig reached receiver.
992  * L	0		- nothing flies, orig lost by net.
993  * R	2		- both orig and retransmit are in flight.
994  * L|R	1		- orig is lost, retransmit is in flight.
995  * S|R  1		- orig reached receiver, retrans is still in flight.
996  * (L|S|R is logically valid, it could occur when L|R is sacked,
997  *  but it is equivalent to plain S and code short-curcuits it to S.
998  *  L|S is logically invalid, it would mean -1 packet in flight 8))
999  *
1000  * These 6 states form finite state machine, controlled by the following events:
1001  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1002  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1003  * 3. Loss detection event of one of three flavors:
1004  *	A. Scoreboard estimator decided the packet is lost.
1005  *	   A'. Reno "three dupacks" marks head of queue lost.
1006  *	   A''. Its FACK modfication, head until snd.fack is lost.
1007  *	B. SACK arrives sacking data transmitted after never retransmitted
1008  *	   hole was sent out.
1009  *	C. SACK arrives sacking SND.NXT at the moment, when the
1010  *	   segment was retransmitted.
1011  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1012  *
1013  * It is pleasant to note, that state diagram turns out to be commutative,
1014  * so that we are allowed not to be bothered by order of our actions,
1015  * when multiple events arrive simultaneously. (see the function below).
1016  *
1017  * Reordering detection.
1018  * --------------------
1019  * Reordering metric is maximal distance, which a packet can be displaced
1020  * in packet stream. With SACKs we can estimate it:
1021  *
1022  * 1. SACK fills old hole and the corresponding segment was not
1023  *    ever retransmitted -> reordering. Alas, we cannot use it
1024  *    when segment was retransmitted.
1025  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1026  *    for retransmitted and already SACKed segment -> reordering..
1027  * Both of these heuristics are not used in Loss state, when we cannot
1028  * account for retransmits accurately.
1029  *
1030  * SACK block validation.
1031  * ----------------------
1032  *
1033  * SACK block range validation checks that the received SACK block fits to
1034  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1035  * Note that SND.UNA is not included to the range though being valid because
1036  * it means that the receiver is rather inconsistent with itself reporting
1037  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1038  * perfectly valid, however, in light of RFC2018 which explicitly states
1039  * that "SACK block MUST reflect the newest segment.  Even if the newest
1040  * segment is going to be discarded ...", not that it looks very clever
1041  * in case of head skb. Due to potentional receiver driven attacks, we
1042  * choose to avoid immediate execution of a walk in write queue due to
1043  * reneging and defer head skb's loss recovery to standard loss recovery
1044  * procedure that will eventually trigger (nothing forbids us doing this).
1045  *
1046  * Implements also blockage to start_seq wrap-around. Problem lies in the
1047  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1048  * there's no guarantee that it will be before snd_nxt (n). The problem
1049  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1050  * wrap (s_w):
1051  *
1052  *         <- outs wnd ->                          <- wrapzone ->
1053  *         u     e      n                         u_w   e_w  s n_w
1054  *         |     |      |                          |     |   |  |
1055  * |<------------+------+----- TCP seqno space --------------+---------->|
1056  * ...-- <2^31 ->|                                           |<--------...
1057  * ...---- >2^31 ------>|                                    |<--------...
1058  *
1059  * Current code wouldn't be vulnerable but it's better still to discard such
1060  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1061  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1062  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1063  * equal to the ideal case (infinite seqno space without wrap caused issues).
1064  *
1065  * With D-SACK the lower bound is extended to cover sequence space below
1066  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1067  * again, D-SACK block must not to go across snd_una (for the same reason as
1068  * for the normal SACK blocks, explained above). But there all simplicity
1069  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1070  * fully below undo_marker they do not affect behavior in anyway and can
1071  * therefore be safely ignored. In rare cases (which are more or less
1072  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1073  * fragmentation and packet reordering past skb's retransmission. To consider
1074  * them correctly, the acceptable range must be extended even more though
1075  * the exact amount is rather hard to quantify. However, tp->max_window can
1076  * be used as an exaggerated estimate.
1077  */
1078 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1079 				  u32 start_seq, u32 end_seq)
1080 {
1081 	/* Too far in future, or reversed (interpretation is ambiguous) */
1082 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1083 		return 0;
1084 
1085 	/* Nasty start_seq wrap-around check (see comments above) */
1086 	if (!before(start_seq, tp->snd_nxt))
1087 		return 0;
1088 
1089 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1090 	 * start_seq == snd_una is non-sensical (see comments above)
1091 	 */
1092 	if (after(start_seq, tp->snd_una))
1093 		return 1;
1094 
1095 	if (!is_dsack || !tp->undo_marker)
1096 		return 0;
1097 
1098 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1099 	if (!after(end_seq, tp->snd_una))
1100 		return 0;
1101 
1102 	if (!before(start_seq, tp->undo_marker))
1103 		return 1;
1104 
1105 	/* Too old */
1106 	if (!after(end_seq, tp->undo_marker))
1107 		return 0;
1108 
1109 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1110 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1111 	 */
1112 	return !before(start_seq, end_seq - tp->max_window);
1113 }
1114 
1115 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1116  * Event "C". Later note: FACK people cheated me again 8), we have to account
1117  * for reordering! Ugly, but should help.
1118  *
1119  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1120  * less than what is now known to be received by the other end (derived from
1121  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1122  * retransmitted skbs to avoid some costly processing per ACKs.
1123  */
1124 static void tcp_mark_lost_retrans(struct sock *sk)
1125 {
1126 	const struct inet_connection_sock *icsk = inet_csk(sk);
1127 	struct tcp_sock *tp = tcp_sk(sk);
1128 	struct sk_buff *skb;
1129 	int cnt = 0;
1130 	u32 new_low_seq = tp->snd_nxt;
1131 	u32 received_upto = tcp_highest_sack_seq(tp);
1132 
1133 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1134 	    !after(received_upto, tp->lost_retrans_low) ||
1135 	    icsk->icsk_ca_state != TCP_CA_Recovery)
1136 		return;
1137 
1138 	tcp_for_write_queue(skb, sk) {
1139 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1140 
1141 		if (skb == tcp_send_head(sk))
1142 			break;
1143 		if (cnt == tp->retrans_out)
1144 			break;
1145 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1146 			continue;
1147 
1148 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1149 			continue;
1150 
1151 		if (after(received_upto, ack_seq) &&
1152 		    (tcp_is_fack(tp) ||
1153 		     !before(received_upto,
1154 			     ack_seq + tp->reordering * tp->mss_cache))) {
1155 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1156 			tp->retrans_out -= tcp_skb_pcount(skb);
1157 
1158 			/* clear lost hint */
1159 			tp->retransmit_skb_hint = NULL;
1160 
1161 			if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1162 				tp->lost_out += tcp_skb_pcount(skb);
1163 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1164 			}
1165 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1166 		} else {
1167 			if (before(ack_seq, new_low_seq))
1168 				new_low_seq = ack_seq;
1169 			cnt += tcp_skb_pcount(skb);
1170 		}
1171 	}
1172 
1173 	if (tp->retrans_out)
1174 		tp->lost_retrans_low = new_low_seq;
1175 }
1176 
1177 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1178 			   struct tcp_sack_block_wire *sp, int num_sacks,
1179 			   u32 prior_snd_una)
1180 {
1181 	struct tcp_sock *tp = tcp_sk(sk);
1182 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1183 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1184 	int dup_sack = 0;
1185 
1186 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1187 		dup_sack = 1;
1188 		tcp_dsack_seen(tp);
1189 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1190 	} else if (num_sacks > 1) {
1191 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1192 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1193 
1194 		if (!after(end_seq_0, end_seq_1) &&
1195 		    !before(start_seq_0, start_seq_1)) {
1196 			dup_sack = 1;
1197 			tcp_dsack_seen(tp);
1198 			NET_INC_STATS_BH(sock_net(sk),
1199 					LINUX_MIB_TCPDSACKOFORECV);
1200 		}
1201 	}
1202 
1203 	/* D-SACK for already forgotten data... Do dumb counting. */
1204 	if (dup_sack &&
1205 	    !after(end_seq_0, prior_snd_una) &&
1206 	    after(end_seq_0, tp->undo_marker))
1207 		tp->undo_retrans--;
1208 
1209 	return dup_sack;
1210 }
1211 
1212 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1213  * the incoming SACK may not exactly match but we can find smaller MSS
1214  * aligned portion of it that matches. Therefore we might need to fragment
1215  * which may fail and creates some hassle (caller must handle error case
1216  * returns).
1217  */
1218 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1219 				 u32 start_seq, u32 end_seq)
1220 {
1221 	int in_sack, err;
1222 	unsigned int pkt_len;
1223 
1224 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1225 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1226 
1227 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1228 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1229 
1230 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1231 
1232 		if (!in_sack)
1233 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1234 		else
1235 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1236 		err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1237 		if (err < 0)
1238 			return err;
1239 	}
1240 
1241 	return in_sack;
1242 }
1243 
1244 static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1245 			   int *reord, int dup_sack, int fack_count)
1246 {
1247 	struct tcp_sock *tp = tcp_sk(sk);
1248 	u8 sacked = TCP_SKB_CB(skb)->sacked;
1249 	int flag = 0;
1250 
1251 	/* Account D-SACK for retransmitted packet. */
1252 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1253 		if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1254 			tp->undo_retrans--;
1255 		if (sacked & TCPCB_SACKED_ACKED)
1256 			*reord = min(fack_count, *reord);
1257 	}
1258 
1259 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1260 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1261 		return flag;
1262 
1263 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1264 		if (sacked & TCPCB_SACKED_RETRANS) {
1265 			/* If the segment is not tagged as lost,
1266 			 * we do not clear RETRANS, believing
1267 			 * that retransmission is still in flight.
1268 			 */
1269 			if (sacked & TCPCB_LOST) {
1270 				TCP_SKB_CB(skb)->sacked &=
1271 					~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1272 				tp->lost_out -= tcp_skb_pcount(skb);
1273 				tp->retrans_out -= tcp_skb_pcount(skb);
1274 
1275 				/* clear lost hint */
1276 				tp->retransmit_skb_hint = NULL;
1277 			}
1278 		} else {
1279 			if (!(sacked & TCPCB_RETRANS)) {
1280 				/* New sack for not retransmitted frame,
1281 				 * which was in hole. It is reordering.
1282 				 */
1283 				if (before(TCP_SKB_CB(skb)->seq,
1284 					   tcp_highest_sack_seq(tp)))
1285 					*reord = min(fack_count, *reord);
1286 
1287 				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1288 				if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1289 					flag |= FLAG_ONLY_ORIG_SACKED;
1290 			}
1291 
1292 			if (sacked & TCPCB_LOST) {
1293 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1294 				tp->lost_out -= tcp_skb_pcount(skb);
1295 
1296 				/* clear lost hint */
1297 				tp->retransmit_skb_hint = NULL;
1298 			}
1299 		}
1300 
1301 		TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1302 		flag |= FLAG_DATA_SACKED;
1303 		tp->sacked_out += tcp_skb_pcount(skb);
1304 
1305 		fack_count += tcp_skb_pcount(skb);
1306 
1307 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1308 		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1309 		    before(TCP_SKB_CB(skb)->seq,
1310 			   TCP_SKB_CB(tp->lost_skb_hint)->seq))
1311 			tp->lost_cnt_hint += tcp_skb_pcount(skb);
1312 
1313 		if (fack_count > tp->fackets_out)
1314 			tp->fackets_out = fack_count;
1315 
1316 		if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1317 			tcp_advance_highest_sack(sk, skb);
1318 	}
1319 
1320 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1321 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1322 	 * are accounted above as well.
1323 	 */
1324 	if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
1325 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1326 		tp->retrans_out -= tcp_skb_pcount(skb);
1327 		tp->retransmit_skb_hint = NULL;
1328 	}
1329 
1330 	return flag;
1331 }
1332 
1333 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1334 					struct tcp_sack_block *next_dup,
1335 					u32 start_seq, u32 end_seq,
1336 					int dup_sack_in, int *fack_count,
1337 					int *reord, int *flag)
1338 {
1339 	tcp_for_write_queue_from(skb, sk) {
1340 		int in_sack = 0;
1341 		int dup_sack = dup_sack_in;
1342 
1343 		if (skb == tcp_send_head(sk))
1344 			break;
1345 
1346 		/* queue is in-order => we can short-circuit the walk early */
1347 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1348 			break;
1349 
1350 		if ((next_dup != NULL) &&
1351 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1352 			in_sack = tcp_match_skb_to_sack(sk, skb,
1353 							next_dup->start_seq,
1354 							next_dup->end_seq);
1355 			if (in_sack > 0)
1356 				dup_sack = 1;
1357 		}
1358 
1359 		if (in_sack <= 0)
1360 			in_sack = tcp_match_skb_to_sack(sk, skb, start_seq,
1361 							end_seq);
1362 		if (unlikely(in_sack < 0))
1363 			break;
1364 
1365 		if (in_sack)
1366 			*flag |= tcp_sacktag_one(skb, sk, reord, dup_sack,
1367 						 *fack_count);
1368 
1369 		*fack_count += tcp_skb_pcount(skb);
1370 	}
1371 	return skb;
1372 }
1373 
1374 /* Avoid all extra work that is being done by sacktag while walking in
1375  * a normal way
1376  */
1377 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1378 					u32 skip_to_seq, int *fack_count)
1379 {
1380 	tcp_for_write_queue_from(skb, sk) {
1381 		if (skb == tcp_send_head(sk))
1382 			break;
1383 
1384 		if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1385 			break;
1386 
1387 		*fack_count += tcp_skb_pcount(skb);
1388 	}
1389 	return skb;
1390 }
1391 
1392 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1393 						struct sock *sk,
1394 						struct tcp_sack_block *next_dup,
1395 						u32 skip_to_seq,
1396 						int *fack_count, int *reord,
1397 						int *flag)
1398 {
1399 	if (next_dup == NULL)
1400 		return skb;
1401 
1402 	if (before(next_dup->start_seq, skip_to_seq)) {
1403 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count);
1404 		skb = tcp_sacktag_walk(skb, sk, NULL,
1405 				     next_dup->start_seq, next_dup->end_seq,
1406 				     1, fack_count, reord, flag);
1407 	}
1408 
1409 	return skb;
1410 }
1411 
1412 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1413 {
1414 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1415 }
1416 
1417 static int
1418 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1419 			u32 prior_snd_una)
1420 {
1421 	const struct inet_connection_sock *icsk = inet_csk(sk);
1422 	struct tcp_sock *tp = tcp_sk(sk);
1423 	unsigned char *ptr = (skb_transport_header(ack_skb) +
1424 			      TCP_SKB_CB(ack_skb)->sacked);
1425 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1426 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1427 	struct tcp_sack_block *cache;
1428 	struct sk_buff *skb;
1429 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1430 	int used_sacks;
1431 	int reord = tp->packets_out;
1432 	int flag = 0;
1433 	int found_dup_sack = 0;
1434 	int fack_count;
1435 	int i, j;
1436 	int first_sack_index;
1437 
1438 	if (!tp->sacked_out) {
1439 		if (WARN_ON(tp->fackets_out))
1440 			tp->fackets_out = 0;
1441 		tcp_highest_sack_reset(sk);
1442 	}
1443 
1444 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1445 					 num_sacks, prior_snd_una);
1446 	if (found_dup_sack)
1447 		flag |= FLAG_DSACKING_ACK;
1448 
1449 	/* Eliminate too old ACKs, but take into
1450 	 * account more or less fresh ones, they can
1451 	 * contain valid SACK info.
1452 	 */
1453 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1454 		return 0;
1455 
1456 	if (!tp->packets_out)
1457 		goto out;
1458 
1459 	used_sacks = 0;
1460 	first_sack_index = 0;
1461 	for (i = 0; i < num_sacks; i++) {
1462 		int dup_sack = !i && found_dup_sack;
1463 
1464 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1465 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1466 
1467 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1468 					    sp[used_sacks].start_seq,
1469 					    sp[used_sacks].end_seq)) {
1470 			int mib_idx;
1471 
1472 			if (dup_sack) {
1473 				if (!tp->undo_marker)
1474 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1475 				else
1476 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1477 			} else {
1478 				/* Don't count olds caused by ACK reordering */
1479 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1480 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1481 					continue;
1482 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1483 			}
1484 
1485 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1486 			if (i == 0)
1487 				first_sack_index = -1;
1488 			continue;
1489 		}
1490 
1491 		/* Ignore very old stuff early */
1492 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1493 			continue;
1494 
1495 		used_sacks++;
1496 	}
1497 
1498 	/* order SACK blocks to allow in order walk of the retrans queue */
1499 	for (i = used_sacks - 1; i > 0; i--) {
1500 		for (j = 0; j < i; j++) {
1501 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1502 				struct tcp_sack_block tmp;
1503 
1504 				tmp = sp[j];
1505 				sp[j] = sp[j + 1];
1506 				sp[j + 1] = tmp;
1507 
1508 				/* Track where the first SACK block goes to */
1509 				if (j == first_sack_index)
1510 					first_sack_index = j + 1;
1511 			}
1512 		}
1513 	}
1514 
1515 	skb = tcp_write_queue_head(sk);
1516 	fack_count = 0;
1517 	i = 0;
1518 
1519 	if (!tp->sacked_out) {
1520 		/* It's already past, so skip checking against it */
1521 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1522 	} else {
1523 		cache = tp->recv_sack_cache;
1524 		/* Skip empty blocks in at head of the cache */
1525 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1526 		       !cache->end_seq)
1527 			cache++;
1528 	}
1529 
1530 	while (i < used_sacks) {
1531 		u32 start_seq = sp[i].start_seq;
1532 		u32 end_seq = sp[i].end_seq;
1533 		int dup_sack = (found_dup_sack && (i == first_sack_index));
1534 		struct tcp_sack_block *next_dup = NULL;
1535 
1536 		if (found_dup_sack && ((i + 1) == first_sack_index))
1537 			next_dup = &sp[i + 1];
1538 
1539 		/* Event "B" in the comment above. */
1540 		if (after(end_seq, tp->high_seq))
1541 			flag |= FLAG_DATA_LOST;
1542 
1543 		/* Skip too early cached blocks */
1544 		while (tcp_sack_cache_ok(tp, cache) &&
1545 		       !before(start_seq, cache->end_seq))
1546 			cache++;
1547 
1548 		/* Can skip some work by looking recv_sack_cache? */
1549 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1550 		    after(end_seq, cache->start_seq)) {
1551 
1552 			/* Head todo? */
1553 			if (before(start_seq, cache->start_seq)) {
1554 				skb = tcp_sacktag_skip(skb, sk, start_seq,
1555 						       &fack_count);
1556 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1557 						       start_seq,
1558 						       cache->start_seq,
1559 						       dup_sack, &fack_count,
1560 						       &reord, &flag);
1561 			}
1562 
1563 			/* Rest of the block already fully processed? */
1564 			if (!after(end_seq, cache->end_seq))
1565 				goto advance_sp;
1566 
1567 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1568 						       cache->end_seq,
1569 						       &fack_count, &reord,
1570 						       &flag);
1571 
1572 			/* ...tail remains todo... */
1573 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1574 				/* ...but better entrypoint exists! */
1575 				skb = tcp_highest_sack(sk);
1576 				if (skb == NULL)
1577 					break;
1578 				fack_count = tp->fackets_out;
1579 				cache++;
1580 				goto walk;
1581 			}
1582 
1583 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq,
1584 					       &fack_count);
1585 			/* Check overlap against next cached too (past this one already) */
1586 			cache++;
1587 			continue;
1588 		}
1589 
1590 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1591 			skb = tcp_highest_sack(sk);
1592 			if (skb == NULL)
1593 				break;
1594 			fack_count = tp->fackets_out;
1595 		}
1596 		skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count);
1597 
1598 walk:
1599 		skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1600 				       dup_sack, &fack_count, &reord, &flag);
1601 
1602 advance_sp:
1603 		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1604 		 * due to in-order walk
1605 		 */
1606 		if (after(end_seq, tp->frto_highmark))
1607 			flag &= ~FLAG_ONLY_ORIG_SACKED;
1608 
1609 		i++;
1610 	}
1611 
1612 	/* Clear the head of the cache sack blocks so we can skip it next time */
1613 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1614 		tp->recv_sack_cache[i].start_seq = 0;
1615 		tp->recv_sack_cache[i].end_seq = 0;
1616 	}
1617 	for (j = 0; j < used_sacks; j++)
1618 		tp->recv_sack_cache[i++] = sp[j];
1619 
1620 	tcp_mark_lost_retrans(sk);
1621 
1622 	tcp_verify_left_out(tp);
1623 
1624 	if ((reord < tp->fackets_out) &&
1625 	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1626 	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1627 		tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1628 
1629 out:
1630 
1631 #if FASTRETRANS_DEBUG > 0
1632 	WARN_ON((int)tp->sacked_out < 0);
1633 	WARN_ON((int)tp->lost_out < 0);
1634 	WARN_ON((int)tp->retrans_out < 0);
1635 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1636 #endif
1637 	return flag;
1638 }
1639 
1640 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1641  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1642  */
1643 int tcp_limit_reno_sacked(struct tcp_sock *tp)
1644 {
1645 	u32 holes;
1646 
1647 	holes = max(tp->lost_out, 1U);
1648 	holes = min(holes, tp->packets_out);
1649 
1650 	if ((tp->sacked_out + holes) > tp->packets_out) {
1651 		tp->sacked_out = tp->packets_out - holes;
1652 		return 1;
1653 	}
1654 	return 0;
1655 }
1656 
1657 /* If we receive more dupacks than we expected counting segments
1658  * in assumption of absent reordering, interpret this as reordering.
1659  * The only another reason could be bug in receiver TCP.
1660  */
1661 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1662 {
1663 	struct tcp_sock *tp = tcp_sk(sk);
1664 	if (tcp_limit_reno_sacked(tp))
1665 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1666 }
1667 
1668 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1669 
1670 static void tcp_add_reno_sack(struct sock *sk)
1671 {
1672 	struct tcp_sock *tp = tcp_sk(sk);
1673 	tp->sacked_out++;
1674 	tcp_check_reno_reordering(sk, 0);
1675 	tcp_verify_left_out(tp);
1676 }
1677 
1678 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1679 
1680 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1681 {
1682 	struct tcp_sock *tp = tcp_sk(sk);
1683 
1684 	if (acked > 0) {
1685 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1686 		if (acked - 1 >= tp->sacked_out)
1687 			tp->sacked_out = 0;
1688 		else
1689 			tp->sacked_out -= acked - 1;
1690 	}
1691 	tcp_check_reno_reordering(sk, acked);
1692 	tcp_verify_left_out(tp);
1693 }
1694 
1695 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1696 {
1697 	tp->sacked_out = 0;
1698 }
1699 
1700 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1701 {
1702 	return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1703 }
1704 
1705 /* F-RTO can only be used if TCP has never retransmitted anything other than
1706  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1707  */
1708 int tcp_use_frto(struct sock *sk)
1709 {
1710 	const struct tcp_sock *tp = tcp_sk(sk);
1711 	const struct inet_connection_sock *icsk = inet_csk(sk);
1712 	struct sk_buff *skb;
1713 
1714 	if (!sysctl_tcp_frto)
1715 		return 0;
1716 
1717 	/* MTU probe and F-RTO won't really play nicely along currently */
1718 	if (icsk->icsk_mtup.probe_size)
1719 		return 0;
1720 
1721 	if (tcp_is_sackfrto(tp))
1722 		return 1;
1723 
1724 	/* Avoid expensive walking of rexmit queue if possible */
1725 	if (tp->retrans_out > 1)
1726 		return 0;
1727 
1728 	skb = tcp_write_queue_head(sk);
1729 	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
1730 	tcp_for_write_queue_from(skb, sk) {
1731 		if (skb == tcp_send_head(sk))
1732 			break;
1733 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1734 			return 0;
1735 		/* Short-circuit when first non-SACKed skb has been checked */
1736 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1737 			break;
1738 	}
1739 	return 1;
1740 }
1741 
1742 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1743  * recovery a bit and use heuristics in tcp_process_frto() to detect if
1744  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1745  * keep retrans_out counting accurate (with SACK F-RTO, other than head
1746  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1747  * bits are handled if the Loss state is really to be entered (in
1748  * tcp_enter_frto_loss).
1749  *
1750  * Do like tcp_enter_loss() would; when RTO expires the second time it
1751  * does:
1752  *  "Reduce ssthresh if it has not yet been made inside this window."
1753  */
1754 void tcp_enter_frto(struct sock *sk)
1755 {
1756 	const struct inet_connection_sock *icsk = inet_csk(sk);
1757 	struct tcp_sock *tp = tcp_sk(sk);
1758 	struct sk_buff *skb;
1759 
1760 	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1761 	    tp->snd_una == tp->high_seq ||
1762 	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1763 	     !icsk->icsk_retransmits)) {
1764 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1765 		/* Our state is too optimistic in ssthresh() call because cwnd
1766 		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1767 		 * recovery has not yet completed. Pattern would be this: RTO,
1768 		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1769 		 * up here twice).
1770 		 * RFC4138 should be more specific on what to do, even though
1771 		 * RTO is quite unlikely to occur after the first Cumulative ACK
1772 		 * due to back-off and complexity of triggering events ...
1773 		 */
1774 		if (tp->frto_counter) {
1775 			u32 stored_cwnd;
1776 			stored_cwnd = tp->snd_cwnd;
1777 			tp->snd_cwnd = 2;
1778 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1779 			tp->snd_cwnd = stored_cwnd;
1780 		} else {
1781 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1782 		}
1783 		/* ... in theory, cong.control module could do "any tricks" in
1784 		 * ssthresh(), which means that ca_state, lost bits and lost_out
1785 		 * counter would have to be faked before the call occurs. We
1786 		 * consider that too expensive, unlikely and hacky, so modules
1787 		 * using these in ssthresh() must deal these incompatibility
1788 		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1789 		 */
1790 		tcp_ca_event(sk, CA_EVENT_FRTO);
1791 	}
1792 
1793 	tp->undo_marker = tp->snd_una;
1794 	tp->undo_retrans = 0;
1795 
1796 	skb = tcp_write_queue_head(sk);
1797 	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1798 		tp->undo_marker = 0;
1799 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1800 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1801 		tp->retrans_out -= tcp_skb_pcount(skb);
1802 	}
1803 	tcp_verify_left_out(tp);
1804 
1805 	/* Too bad if TCP was application limited */
1806 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1807 
1808 	/* Earlier loss recovery underway (see RFC4138; Appendix B).
1809 	 * The last condition is necessary at least in tp->frto_counter case.
1810 	 */
1811 	if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
1812 	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1813 	    after(tp->high_seq, tp->snd_una)) {
1814 		tp->frto_highmark = tp->high_seq;
1815 	} else {
1816 		tp->frto_highmark = tp->snd_nxt;
1817 	}
1818 	tcp_set_ca_state(sk, TCP_CA_Disorder);
1819 	tp->high_seq = tp->snd_nxt;
1820 	tp->frto_counter = 1;
1821 }
1822 
1823 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1824  * which indicates that we should follow the traditional RTO recovery,
1825  * i.e. mark everything lost and do go-back-N retransmission.
1826  */
1827 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1828 {
1829 	struct tcp_sock *tp = tcp_sk(sk);
1830 	struct sk_buff *skb;
1831 
1832 	tp->lost_out = 0;
1833 	tp->retrans_out = 0;
1834 	if (tcp_is_reno(tp))
1835 		tcp_reset_reno_sack(tp);
1836 
1837 	tcp_for_write_queue(skb, sk) {
1838 		if (skb == tcp_send_head(sk))
1839 			break;
1840 
1841 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1842 		/*
1843 		 * Count the retransmission made on RTO correctly (only when
1844 		 * waiting for the first ACK and did not get it)...
1845 		 */
1846 		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
1847 			/* For some reason this R-bit might get cleared? */
1848 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1849 				tp->retrans_out += tcp_skb_pcount(skb);
1850 			/* ...enter this if branch just for the first segment */
1851 			flag |= FLAG_DATA_ACKED;
1852 		} else {
1853 			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1854 				tp->undo_marker = 0;
1855 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1856 		}
1857 
1858 		/* Marking forward transmissions that were made after RTO lost
1859 		 * can cause unnecessary retransmissions in some scenarios,
1860 		 * SACK blocks will mitigate that in some but not in all cases.
1861 		 * We used to not mark them but it was causing break-ups with
1862 		 * receivers that do only in-order receival.
1863 		 *
1864 		 * TODO: we could detect presence of such receiver and select
1865 		 * different behavior per flow.
1866 		 */
1867 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1868 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1869 			tp->lost_out += tcp_skb_pcount(skb);
1870 		}
1871 	}
1872 	tcp_verify_left_out(tp);
1873 
1874 	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1875 	tp->snd_cwnd_cnt = 0;
1876 	tp->snd_cwnd_stamp = tcp_time_stamp;
1877 	tp->frto_counter = 0;
1878 	tp->bytes_acked = 0;
1879 
1880 	tp->reordering = min_t(unsigned int, tp->reordering,
1881 			       sysctl_tcp_reordering);
1882 	tcp_set_ca_state(sk, TCP_CA_Loss);
1883 	tp->high_seq = tp->snd_nxt;
1884 	TCP_ECN_queue_cwr(tp);
1885 
1886 	tcp_clear_retrans_hints_partial(tp);
1887 }
1888 
1889 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1890 {
1891 	tp->retrans_out = 0;
1892 	tp->lost_out = 0;
1893 
1894 	tp->undo_marker = 0;
1895 	tp->undo_retrans = 0;
1896 }
1897 
1898 void tcp_clear_retrans(struct tcp_sock *tp)
1899 {
1900 	tcp_clear_retrans_partial(tp);
1901 
1902 	tp->fackets_out = 0;
1903 	tp->sacked_out = 0;
1904 }
1905 
1906 /* Enter Loss state. If "how" is not zero, forget all SACK information
1907  * and reset tags completely, otherwise preserve SACKs. If receiver
1908  * dropped its ofo queue, we will know this due to reneging detection.
1909  */
1910 void tcp_enter_loss(struct sock *sk, int how)
1911 {
1912 	const struct inet_connection_sock *icsk = inet_csk(sk);
1913 	struct tcp_sock *tp = tcp_sk(sk);
1914 	struct sk_buff *skb;
1915 
1916 	/* Reduce ssthresh if it has not yet been made inside this window. */
1917 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1918 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1919 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1920 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1921 		tcp_ca_event(sk, CA_EVENT_LOSS);
1922 	}
1923 	tp->snd_cwnd	   = 1;
1924 	tp->snd_cwnd_cnt   = 0;
1925 	tp->snd_cwnd_stamp = tcp_time_stamp;
1926 
1927 	tp->bytes_acked = 0;
1928 	tcp_clear_retrans_partial(tp);
1929 
1930 	if (tcp_is_reno(tp))
1931 		tcp_reset_reno_sack(tp);
1932 
1933 	if (!how) {
1934 		/* Push undo marker, if it was plain RTO and nothing
1935 		 * was retransmitted. */
1936 		tp->undo_marker = tp->snd_una;
1937 		tcp_clear_retrans_hints_partial(tp);
1938 	} else {
1939 		tp->sacked_out = 0;
1940 		tp->fackets_out = 0;
1941 		tcp_clear_all_retrans_hints(tp);
1942 	}
1943 
1944 	tcp_for_write_queue(skb, sk) {
1945 		if (skb == tcp_send_head(sk))
1946 			break;
1947 
1948 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1949 			tp->undo_marker = 0;
1950 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1951 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1952 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1953 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1954 			tp->lost_out += tcp_skb_pcount(skb);
1955 		}
1956 	}
1957 	tcp_verify_left_out(tp);
1958 
1959 	tp->reordering = min_t(unsigned int, tp->reordering,
1960 			       sysctl_tcp_reordering);
1961 	tcp_set_ca_state(sk, TCP_CA_Loss);
1962 	tp->high_seq = tp->snd_nxt;
1963 	TCP_ECN_queue_cwr(tp);
1964 	/* Abort F-RTO algorithm if one is in progress */
1965 	tp->frto_counter = 0;
1966 }
1967 
1968 /* If ACK arrived pointing to a remembered SACK, it means that our
1969  * remembered SACKs do not reflect real state of receiver i.e.
1970  * receiver _host_ is heavily congested (or buggy).
1971  *
1972  * Do processing similar to RTO timeout.
1973  */
1974 static int tcp_check_sack_reneging(struct sock *sk, int flag)
1975 {
1976 	if (flag & FLAG_SACK_RENEGING) {
1977 		struct inet_connection_sock *icsk = inet_csk(sk);
1978 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1979 
1980 		tcp_enter_loss(sk, 1);
1981 		icsk->icsk_retransmits++;
1982 		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1983 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1984 					  icsk->icsk_rto, TCP_RTO_MAX);
1985 		return 1;
1986 	}
1987 	return 0;
1988 }
1989 
1990 static inline int tcp_fackets_out(struct tcp_sock *tp)
1991 {
1992 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1993 }
1994 
1995 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1996  * counter when SACK is enabled (without SACK, sacked_out is used for
1997  * that purpose).
1998  *
1999  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2000  * segments up to the highest received SACK block so far and holes in
2001  * between them.
2002  *
2003  * With reordering, holes may still be in flight, so RFC3517 recovery
2004  * uses pure sacked_out (total number of SACKed segments) even though
2005  * it violates the RFC that uses duplicate ACKs, often these are equal
2006  * but when e.g. out-of-window ACKs or packet duplication occurs,
2007  * they differ. Since neither occurs due to loss, TCP should really
2008  * ignore them.
2009  */
2010 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
2011 {
2012 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2013 }
2014 
2015 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2016 {
2017 	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2018 }
2019 
2020 static inline int tcp_head_timedout(struct sock *sk)
2021 {
2022 	struct tcp_sock *tp = tcp_sk(sk);
2023 
2024 	return tp->packets_out &&
2025 	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2026 }
2027 
2028 /* Linux NewReno/SACK/FACK/ECN state machine.
2029  * --------------------------------------
2030  *
2031  * "Open"	Normal state, no dubious events, fast path.
2032  * "Disorder"   In all the respects it is "Open",
2033  *		but requires a bit more attention. It is entered when
2034  *		we see some SACKs or dupacks. It is split of "Open"
2035  *		mainly to move some processing from fast path to slow one.
2036  * "CWR"	CWND was reduced due to some Congestion Notification event.
2037  *		It can be ECN, ICMP source quench, local device congestion.
2038  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2039  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2040  *
2041  * tcp_fastretrans_alert() is entered:
2042  * - each incoming ACK, if state is not "Open"
2043  * - when arrived ACK is unusual, namely:
2044  *	* SACK
2045  *	* Duplicate ACK.
2046  *	* ECN ECE.
2047  *
2048  * Counting packets in flight is pretty simple.
2049  *
2050  *	in_flight = packets_out - left_out + retrans_out
2051  *
2052  *	packets_out is SND.NXT-SND.UNA counted in packets.
2053  *
2054  *	retrans_out is number of retransmitted segments.
2055  *
2056  *	left_out is number of segments left network, but not ACKed yet.
2057  *
2058  *		left_out = sacked_out + lost_out
2059  *
2060  *     sacked_out: Packets, which arrived to receiver out of order
2061  *		   and hence not ACKed. With SACKs this number is simply
2062  *		   amount of SACKed data. Even without SACKs
2063  *		   it is easy to give pretty reliable estimate of this number,
2064  *		   counting duplicate ACKs.
2065  *
2066  *       lost_out: Packets lost by network. TCP has no explicit
2067  *		   "loss notification" feedback from network (for now).
2068  *		   It means that this number can be only _guessed_.
2069  *		   Actually, it is the heuristics to predict lossage that
2070  *		   distinguishes different algorithms.
2071  *
2072  *	F.e. after RTO, when all the queue is considered as lost,
2073  *	lost_out = packets_out and in_flight = retrans_out.
2074  *
2075  *		Essentially, we have now two algorithms counting
2076  *		lost packets.
2077  *
2078  *		FACK: It is the simplest heuristics. As soon as we decided
2079  *		that something is lost, we decide that _all_ not SACKed
2080  *		packets until the most forward SACK are lost. I.e.
2081  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2082  *		It is absolutely correct estimate, if network does not reorder
2083  *		packets. And it loses any connection to reality when reordering
2084  *		takes place. We use FACK by default until reordering
2085  *		is suspected on the path to this destination.
2086  *
2087  *		NewReno: when Recovery is entered, we assume that one segment
2088  *		is lost (classic Reno). While we are in Recovery and
2089  *		a partial ACK arrives, we assume that one more packet
2090  *		is lost (NewReno). This heuristics are the same in NewReno
2091  *		and SACK.
2092  *
2093  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2094  *  deflation etc. CWND is real congestion window, never inflated, changes
2095  *  only according to classic VJ rules.
2096  *
2097  * Really tricky (and requiring careful tuning) part of algorithm
2098  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2099  * The first determines the moment _when_ we should reduce CWND and,
2100  * hence, slow down forward transmission. In fact, it determines the moment
2101  * when we decide that hole is caused by loss, rather than by a reorder.
2102  *
2103  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2104  * holes, caused by lost packets.
2105  *
2106  * And the most logically complicated part of algorithm is undo
2107  * heuristics. We detect false retransmits due to both too early
2108  * fast retransmit (reordering) and underestimated RTO, analyzing
2109  * timestamps and D-SACKs. When we detect that some segments were
2110  * retransmitted by mistake and CWND reduction was wrong, we undo
2111  * window reduction and abort recovery phase. This logic is hidden
2112  * inside several functions named tcp_try_undo_<something>.
2113  */
2114 
2115 /* This function decides, when we should leave Disordered state
2116  * and enter Recovery phase, reducing congestion window.
2117  *
2118  * Main question: may we further continue forward transmission
2119  * with the same cwnd?
2120  */
2121 static int tcp_time_to_recover(struct sock *sk)
2122 {
2123 	struct tcp_sock *tp = tcp_sk(sk);
2124 	__u32 packets_out;
2125 
2126 	/* Do not perform any recovery during F-RTO algorithm */
2127 	if (tp->frto_counter)
2128 		return 0;
2129 
2130 	/* Trick#1: The loss is proven. */
2131 	if (tp->lost_out)
2132 		return 1;
2133 
2134 	/* Not-A-Trick#2 : Classic rule... */
2135 	if (tcp_dupack_heurestics(tp) > tp->reordering)
2136 		return 1;
2137 
2138 	/* Trick#3 : when we use RFC2988 timer restart, fast
2139 	 * retransmit can be triggered by timeout of queue head.
2140 	 */
2141 	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2142 		return 1;
2143 
2144 	/* Trick#4: It is still not OK... But will it be useful to delay
2145 	 * recovery more?
2146 	 */
2147 	packets_out = tp->packets_out;
2148 	if (packets_out <= tp->reordering &&
2149 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2150 	    !tcp_may_send_now(sk)) {
2151 		/* We have nothing to send. This connection is limited
2152 		 * either by receiver window or by application.
2153 		 */
2154 		return 1;
2155 	}
2156 
2157 	return 0;
2158 }
2159 
2160 /* RFC: This is from the original, I doubt that this is necessary at all:
2161  * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
2162  * retransmitted past LOST markings in the first place? I'm not fully sure
2163  * about undo and end of connection cases, which can cause R without L?
2164  */
2165 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
2166 {
2167 	if ((tp->retransmit_skb_hint != NULL) &&
2168 	    before(TCP_SKB_CB(skb)->seq,
2169 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
2170 		tp->retransmit_skb_hint = NULL;
2171 }
2172 
2173 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2174  * is against sacked "cnt", otherwise it's against facked "cnt"
2175  */
2176 static void tcp_mark_head_lost(struct sock *sk, int packets)
2177 {
2178 	struct tcp_sock *tp = tcp_sk(sk);
2179 	struct sk_buff *skb;
2180 	int cnt, oldcnt;
2181 	int err;
2182 	unsigned int mss;
2183 
2184 	WARN_ON(packets > tp->packets_out);
2185 	if (tp->lost_skb_hint) {
2186 		skb = tp->lost_skb_hint;
2187 		cnt = tp->lost_cnt_hint;
2188 	} else {
2189 		skb = tcp_write_queue_head(sk);
2190 		cnt = 0;
2191 	}
2192 
2193 	tcp_for_write_queue_from(skb, sk) {
2194 		if (skb == tcp_send_head(sk))
2195 			break;
2196 		/* TODO: do this better */
2197 		/* this is not the most efficient way to do this... */
2198 		tp->lost_skb_hint = skb;
2199 		tp->lost_cnt_hint = cnt;
2200 
2201 		if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2202 			break;
2203 
2204 		oldcnt = cnt;
2205 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2206 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2207 			cnt += tcp_skb_pcount(skb);
2208 
2209 		if (cnt > packets) {
2210 			if (tcp_is_sack(tp) || (oldcnt >= packets))
2211 				break;
2212 
2213 			mss = skb_shinfo(skb)->gso_size;
2214 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2215 			if (err < 0)
2216 				break;
2217 			cnt = packets;
2218 		}
2219 
2220 		if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2221 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2222 			tp->lost_out += tcp_skb_pcount(skb);
2223 			tcp_verify_retransmit_hint(tp, skb);
2224 		}
2225 	}
2226 	tcp_verify_left_out(tp);
2227 }
2228 
2229 /* Account newly detected lost packet(s) */
2230 
2231 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2232 {
2233 	struct tcp_sock *tp = tcp_sk(sk);
2234 
2235 	if (tcp_is_reno(tp)) {
2236 		tcp_mark_head_lost(sk, 1);
2237 	} else if (tcp_is_fack(tp)) {
2238 		int lost = tp->fackets_out - tp->reordering;
2239 		if (lost <= 0)
2240 			lost = 1;
2241 		tcp_mark_head_lost(sk, lost);
2242 	} else {
2243 		int sacked_upto = tp->sacked_out - tp->reordering;
2244 		if (sacked_upto < fast_rexmit)
2245 			sacked_upto = fast_rexmit;
2246 		tcp_mark_head_lost(sk, sacked_upto);
2247 	}
2248 
2249 	/* New heuristics: it is possible only after we switched
2250 	 * to restart timer each time when something is ACKed.
2251 	 * Hence, we can detect timed out packets during fast
2252 	 * retransmit without falling to slow start.
2253 	 */
2254 	if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2255 		struct sk_buff *skb;
2256 
2257 		skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2258 			: tcp_write_queue_head(sk);
2259 
2260 		tcp_for_write_queue_from(skb, sk) {
2261 			if (skb == tcp_send_head(sk))
2262 				break;
2263 			if (!tcp_skb_timedout(sk, skb))
2264 				break;
2265 
2266 			if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2267 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2268 				tp->lost_out += tcp_skb_pcount(skb);
2269 				tcp_verify_retransmit_hint(tp, skb);
2270 			}
2271 		}
2272 
2273 		tp->scoreboard_skb_hint = skb;
2274 
2275 		tcp_verify_left_out(tp);
2276 	}
2277 }
2278 
2279 /* CWND moderation, preventing bursts due to too big ACKs
2280  * in dubious situations.
2281  */
2282 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2283 {
2284 	tp->snd_cwnd = min(tp->snd_cwnd,
2285 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2286 	tp->snd_cwnd_stamp = tcp_time_stamp;
2287 }
2288 
2289 /* Lower bound on congestion window is slow start threshold
2290  * unless congestion avoidance choice decides to overide it.
2291  */
2292 static inline u32 tcp_cwnd_min(const struct sock *sk)
2293 {
2294 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2295 
2296 	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2297 }
2298 
2299 /* Decrease cwnd each second ack. */
2300 static void tcp_cwnd_down(struct sock *sk, int flag)
2301 {
2302 	struct tcp_sock *tp = tcp_sk(sk);
2303 	int decr = tp->snd_cwnd_cnt + 1;
2304 
2305 	if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2306 	    (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2307 		tp->snd_cwnd_cnt = decr & 1;
2308 		decr >>= 1;
2309 
2310 		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2311 			tp->snd_cwnd -= decr;
2312 
2313 		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2314 		tp->snd_cwnd_stamp = tcp_time_stamp;
2315 	}
2316 }
2317 
2318 /* Nothing was retransmitted or returned timestamp is less
2319  * than timestamp of the first retransmission.
2320  */
2321 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2322 {
2323 	return !tp->retrans_stamp ||
2324 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2325 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2326 }
2327 
2328 /* Undo procedures. */
2329 
2330 #if FASTRETRANS_DEBUG > 1
2331 static void DBGUNDO(struct sock *sk, const char *msg)
2332 {
2333 	struct tcp_sock *tp = tcp_sk(sk);
2334 	struct inet_sock *inet = inet_sk(sk);
2335 
2336 	if (sk->sk_family == AF_INET) {
2337 		printk(KERN_DEBUG "Undo %s " NIPQUAD_FMT "/%u c%u l%u ss%u/%u p%u\n",
2338 		       msg,
2339 		       NIPQUAD(inet->daddr), ntohs(inet->dport),
2340 		       tp->snd_cwnd, tcp_left_out(tp),
2341 		       tp->snd_ssthresh, tp->prior_ssthresh,
2342 		       tp->packets_out);
2343 	}
2344 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2345 	else if (sk->sk_family == AF_INET6) {
2346 		struct ipv6_pinfo *np = inet6_sk(sk);
2347 		printk(KERN_DEBUG "Undo %s " NIP6_FMT "/%u c%u l%u ss%u/%u p%u\n",
2348 		       msg,
2349 		       NIP6(np->daddr), ntohs(inet->dport),
2350 		       tp->snd_cwnd, tcp_left_out(tp),
2351 		       tp->snd_ssthresh, tp->prior_ssthresh,
2352 		       tp->packets_out);
2353 	}
2354 #endif
2355 }
2356 #else
2357 #define DBGUNDO(x...) do { } while (0)
2358 #endif
2359 
2360 static void tcp_undo_cwr(struct sock *sk, const int undo)
2361 {
2362 	struct tcp_sock *tp = tcp_sk(sk);
2363 
2364 	if (tp->prior_ssthresh) {
2365 		const struct inet_connection_sock *icsk = inet_csk(sk);
2366 
2367 		if (icsk->icsk_ca_ops->undo_cwnd)
2368 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2369 		else
2370 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2371 
2372 		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2373 			tp->snd_ssthresh = tp->prior_ssthresh;
2374 			TCP_ECN_withdraw_cwr(tp);
2375 		}
2376 	} else {
2377 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2378 	}
2379 	tcp_moderate_cwnd(tp);
2380 	tp->snd_cwnd_stamp = tcp_time_stamp;
2381 
2382 	/* There is something screwy going on with the retrans hints after
2383 	   an undo */
2384 	tcp_clear_all_retrans_hints(tp);
2385 }
2386 
2387 static inline int tcp_may_undo(struct tcp_sock *tp)
2388 {
2389 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2390 }
2391 
2392 /* People celebrate: "We love our President!" */
2393 static int tcp_try_undo_recovery(struct sock *sk)
2394 {
2395 	struct tcp_sock *tp = tcp_sk(sk);
2396 
2397 	if (tcp_may_undo(tp)) {
2398 		int mib_idx;
2399 
2400 		/* Happy end! We did not retransmit anything
2401 		 * or our original transmission succeeded.
2402 		 */
2403 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2404 		tcp_undo_cwr(sk, 1);
2405 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2406 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2407 		else
2408 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2409 
2410 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2411 		tp->undo_marker = 0;
2412 	}
2413 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2414 		/* Hold old state until something *above* high_seq
2415 		 * is ACKed. For Reno it is MUST to prevent false
2416 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2417 		tcp_moderate_cwnd(tp);
2418 		return 1;
2419 	}
2420 	tcp_set_ca_state(sk, TCP_CA_Open);
2421 	return 0;
2422 }
2423 
2424 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2425 static void tcp_try_undo_dsack(struct sock *sk)
2426 {
2427 	struct tcp_sock *tp = tcp_sk(sk);
2428 
2429 	if (tp->undo_marker && !tp->undo_retrans) {
2430 		DBGUNDO(sk, "D-SACK");
2431 		tcp_undo_cwr(sk, 1);
2432 		tp->undo_marker = 0;
2433 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2434 	}
2435 }
2436 
2437 /* Undo during fast recovery after partial ACK. */
2438 
2439 static int tcp_try_undo_partial(struct sock *sk, int acked)
2440 {
2441 	struct tcp_sock *tp = tcp_sk(sk);
2442 	/* Partial ACK arrived. Force Hoe's retransmit. */
2443 	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2444 
2445 	if (tcp_may_undo(tp)) {
2446 		/* Plain luck! Hole if filled with delayed
2447 		 * packet, rather than with a retransmit.
2448 		 */
2449 		if (tp->retrans_out == 0)
2450 			tp->retrans_stamp = 0;
2451 
2452 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2453 
2454 		DBGUNDO(sk, "Hoe");
2455 		tcp_undo_cwr(sk, 0);
2456 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2457 
2458 		/* So... Do not make Hoe's retransmit yet.
2459 		 * If the first packet was delayed, the rest
2460 		 * ones are most probably delayed as well.
2461 		 */
2462 		failed = 0;
2463 	}
2464 	return failed;
2465 }
2466 
2467 /* Undo during loss recovery after partial ACK. */
2468 static int tcp_try_undo_loss(struct sock *sk)
2469 {
2470 	struct tcp_sock *tp = tcp_sk(sk);
2471 
2472 	if (tcp_may_undo(tp)) {
2473 		struct sk_buff *skb;
2474 		tcp_for_write_queue(skb, sk) {
2475 			if (skb == tcp_send_head(sk))
2476 				break;
2477 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2478 		}
2479 
2480 		tcp_clear_all_retrans_hints(tp);
2481 
2482 		DBGUNDO(sk, "partial loss");
2483 		tp->lost_out = 0;
2484 		tcp_undo_cwr(sk, 1);
2485 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2486 		inet_csk(sk)->icsk_retransmits = 0;
2487 		tp->undo_marker = 0;
2488 		if (tcp_is_sack(tp))
2489 			tcp_set_ca_state(sk, TCP_CA_Open);
2490 		return 1;
2491 	}
2492 	return 0;
2493 }
2494 
2495 static inline void tcp_complete_cwr(struct sock *sk)
2496 {
2497 	struct tcp_sock *tp = tcp_sk(sk);
2498 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2499 	tp->snd_cwnd_stamp = tcp_time_stamp;
2500 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2501 }
2502 
2503 static void tcp_try_keep_open(struct sock *sk)
2504 {
2505 	struct tcp_sock *tp = tcp_sk(sk);
2506 	int state = TCP_CA_Open;
2507 
2508 	if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2509 		state = TCP_CA_Disorder;
2510 
2511 	if (inet_csk(sk)->icsk_ca_state != state) {
2512 		tcp_set_ca_state(sk, state);
2513 		tp->high_seq = tp->snd_nxt;
2514 	}
2515 }
2516 
2517 static void tcp_try_to_open(struct sock *sk, int flag)
2518 {
2519 	struct tcp_sock *tp = tcp_sk(sk);
2520 
2521 	tcp_verify_left_out(tp);
2522 
2523 	if (!tp->frto_counter && tp->retrans_out == 0)
2524 		tp->retrans_stamp = 0;
2525 
2526 	if (flag & FLAG_ECE)
2527 		tcp_enter_cwr(sk, 1);
2528 
2529 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2530 		tcp_try_keep_open(sk);
2531 		tcp_moderate_cwnd(tp);
2532 	} else {
2533 		tcp_cwnd_down(sk, flag);
2534 	}
2535 }
2536 
2537 static void tcp_mtup_probe_failed(struct sock *sk)
2538 {
2539 	struct inet_connection_sock *icsk = inet_csk(sk);
2540 
2541 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2542 	icsk->icsk_mtup.probe_size = 0;
2543 }
2544 
2545 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2546 {
2547 	struct tcp_sock *tp = tcp_sk(sk);
2548 	struct inet_connection_sock *icsk = inet_csk(sk);
2549 
2550 	/* FIXME: breaks with very large cwnd */
2551 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2552 	tp->snd_cwnd = tp->snd_cwnd *
2553 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2554 		       icsk->icsk_mtup.probe_size;
2555 	tp->snd_cwnd_cnt = 0;
2556 	tp->snd_cwnd_stamp = tcp_time_stamp;
2557 	tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2558 
2559 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2560 	icsk->icsk_mtup.probe_size = 0;
2561 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2562 }
2563 
2564 /* Process an event, which can update packets-in-flight not trivially.
2565  * Main goal of this function is to calculate new estimate for left_out,
2566  * taking into account both packets sitting in receiver's buffer and
2567  * packets lost by network.
2568  *
2569  * Besides that it does CWND reduction, when packet loss is detected
2570  * and changes state of machine.
2571  *
2572  * It does _not_ decide what to send, it is made in function
2573  * tcp_xmit_retransmit_queue().
2574  */
2575 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2576 {
2577 	struct inet_connection_sock *icsk = inet_csk(sk);
2578 	struct tcp_sock *tp = tcp_sk(sk);
2579 	int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2580 	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2581 				    (tcp_fackets_out(tp) > tp->reordering));
2582 	int fast_rexmit = 0, mib_idx;
2583 
2584 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2585 		tp->sacked_out = 0;
2586 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2587 		tp->fackets_out = 0;
2588 
2589 	/* Now state machine starts.
2590 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2591 	if (flag & FLAG_ECE)
2592 		tp->prior_ssthresh = 0;
2593 
2594 	/* B. In all the states check for reneging SACKs. */
2595 	if (tcp_check_sack_reneging(sk, flag))
2596 		return;
2597 
2598 	/* C. Process data loss notification, provided it is valid. */
2599 	if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2600 	    before(tp->snd_una, tp->high_seq) &&
2601 	    icsk->icsk_ca_state != TCP_CA_Open &&
2602 	    tp->fackets_out > tp->reordering) {
2603 		tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2604 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2605 	}
2606 
2607 	/* D. Check consistency of the current state. */
2608 	tcp_verify_left_out(tp);
2609 
2610 	/* E. Check state exit conditions. State can be terminated
2611 	 *    when high_seq is ACKed. */
2612 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2613 		WARN_ON(tp->retrans_out != 0);
2614 		tp->retrans_stamp = 0;
2615 	} else if (!before(tp->snd_una, tp->high_seq)) {
2616 		switch (icsk->icsk_ca_state) {
2617 		case TCP_CA_Loss:
2618 			icsk->icsk_retransmits = 0;
2619 			if (tcp_try_undo_recovery(sk))
2620 				return;
2621 			break;
2622 
2623 		case TCP_CA_CWR:
2624 			/* CWR is to be held something *above* high_seq
2625 			 * is ACKed for CWR bit to reach receiver. */
2626 			if (tp->snd_una != tp->high_seq) {
2627 				tcp_complete_cwr(sk);
2628 				tcp_set_ca_state(sk, TCP_CA_Open);
2629 			}
2630 			break;
2631 
2632 		case TCP_CA_Disorder:
2633 			tcp_try_undo_dsack(sk);
2634 			if (!tp->undo_marker ||
2635 			    /* For SACK case do not Open to allow to undo
2636 			     * catching for all duplicate ACKs. */
2637 			    tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2638 				tp->undo_marker = 0;
2639 				tcp_set_ca_state(sk, TCP_CA_Open);
2640 			}
2641 			break;
2642 
2643 		case TCP_CA_Recovery:
2644 			if (tcp_is_reno(tp))
2645 				tcp_reset_reno_sack(tp);
2646 			if (tcp_try_undo_recovery(sk))
2647 				return;
2648 			tcp_complete_cwr(sk);
2649 			break;
2650 		}
2651 	}
2652 
2653 	/* F. Process state. */
2654 	switch (icsk->icsk_ca_state) {
2655 	case TCP_CA_Recovery:
2656 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2657 			if (tcp_is_reno(tp) && is_dupack)
2658 				tcp_add_reno_sack(sk);
2659 		} else
2660 			do_lost = tcp_try_undo_partial(sk, pkts_acked);
2661 		break;
2662 	case TCP_CA_Loss:
2663 		if (flag & FLAG_DATA_ACKED)
2664 			icsk->icsk_retransmits = 0;
2665 		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2666 			tcp_reset_reno_sack(tp);
2667 		if (!tcp_try_undo_loss(sk)) {
2668 			tcp_moderate_cwnd(tp);
2669 			tcp_xmit_retransmit_queue(sk);
2670 			return;
2671 		}
2672 		if (icsk->icsk_ca_state != TCP_CA_Open)
2673 			return;
2674 		/* Loss is undone; fall through to processing in Open state. */
2675 	default:
2676 		if (tcp_is_reno(tp)) {
2677 			if (flag & FLAG_SND_UNA_ADVANCED)
2678 				tcp_reset_reno_sack(tp);
2679 			if (is_dupack)
2680 				tcp_add_reno_sack(sk);
2681 		}
2682 
2683 		if (icsk->icsk_ca_state == TCP_CA_Disorder)
2684 			tcp_try_undo_dsack(sk);
2685 
2686 		if (!tcp_time_to_recover(sk)) {
2687 			tcp_try_to_open(sk, flag);
2688 			return;
2689 		}
2690 
2691 		/* MTU probe failure: don't reduce cwnd */
2692 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2693 		    icsk->icsk_mtup.probe_size &&
2694 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2695 			tcp_mtup_probe_failed(sk);
2696 			/* Restores the reduction we did in tcp_mtup_probe() */
2697 			tp->snd_cwnd++;
2698 			tcp_simple_retransmit(sk);
2699 			return;
2700 		}
2701 
2702 		/* Otherwise enter Recovery state */
2703 
2704 		if (tcp_is_reno(tp))
2705 			mib_idx = LINUX_MIB_TCPRENORECOVERY;
2706 		else
2707 			mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2708 
2709 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2710 
2711 		tp->high_seq = tp->snd_nxt;
2712 		tp->prior_ssthresh = 0;
2713 		tp->undo_marker = tp->snd_una;
2714 		tp->undo_retrans = tp->retrans_out;
2715 
2716 		if (icsk->icsk_ca_state < TCP_CA_CWR) {
2717 			if (!(flag & FLAG_ECE))
2718 				tp->prior_ssthresh = tcp_current_ssthresh(sk);
2719 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2720 			TCP_ECN_queue_cwr(tp);
2721 		}
2722 
2723 		tp->bytes_acked = 0;
2724 		tp->snd_cwnd_cnt = 0;
2725 		tcp_set_ca_state(sk, TCP_CA_Recovery);
2726 		fast_rexmit = 1;
2727 	}
2728 
2729 	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2730 		tcp_update_scoreboard(sk, fast_rexmit);
2731 	tcp_cwnd_down(sk, flag);
2732 	tcp_xmit_retransmit_queue(sk);
2733 }
2734 
2735 /* Read draft-ietf-tcplw-high-performance before mucking
2736  * with this code. (Supersedes RFC1323)
2737  */
2738 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2739 {
2740 	/* RTTM Rule: A TSecr value received in a segment is used to
2741 	 * update the averaged RTT measurement only if the segment
2742 	 * acknowledges some new data, i.e., only if it advances the
2743 	 * left edge of the send window.
2744 	 *
2745 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2746 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2747 	 *
2748 	 * Changed: reset backoff as soon as we see the first valid sample.
2749 	 * If we do not, we get strongly overestimated rto. With timestamps
2750 	 * samples are accepted even from very old segments: f.e., when rtt=1
2751 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2752 	 * answer arrives rto becomes 120 seconds! If at least one of segments
2753 	 * in window is lost... Voila.	 			--ANK (010210)
2754 	 */
2755 	struct tcp_sock *tp = tcp_sk(sk);
2756 	const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2757 	tcp_rtt_estimator(sk, seq_rtt);
2758 	tcp_set_rto(sk);
2759 	inet_csk(sk)->icsk_backoff = 0;
2760 	tcp_bound_rto(sk);
2761 }
2762 
2763 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2764 {
2765 	/* We don't have a timestamp. Can only use
2766 	 * packets that are not retransmitted to determine
2767 	 * rtt estimates. Also, we must not reset the
2768 	 * backoff for rto until we get a non-retransmitted
2769 	 * packet. This allows us to deal with a situation
2770 	 * where the network delay has increased suddenly.
2771 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2772 	 */
2773 
2774 	if (flag & FLAG_RETRANS_DATA_ACKED)
2775 		return;
2776 
2777 	tcp_rtt_estimator(sk, seq_rtt);
2778 	tcp_set_rto(sk);
2779 	inet_csk(sk)->icsk_backoff = 0;
2780 	tcp_bound_rto(sk);
2781 }
2782 
2783 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2784 				      const s32 seq_rtt)
2785 {
2786 	const struct tcp_sock *tp = tcp_sk(sk);
2787 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2788 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2789 		tcp_ack_saw_tstamp(sk, flag);
2790 	else if (seq_rtt >= 0)
2791 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
2792 }
2793 
2794 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2795 {
2796 	const struct inet_connection_sock *icsk = inet_csk(sk);
2797 	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2798 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2799 }
2800 
2801 /* Restart timer after forward progress on connection.
2802  * RFC2988 recommends to restart timer to now+rto.
2803  */
2804 static void tcp_rearm_rto(struct sock *sk)
2805 {
2806 	struct tcp_sock *tp = tcp_sk(sk);
2807 
2808 	if (!tp->packets_out) {
2809 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2810 	} else {
2811 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2812 					  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2813 	}
2814 }
2815 
2816 /* If we get here, the whole TSO packet has not been acked. */
2817 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2818 {
2819 	struct tcp_sock *tp = tcp_sk(sk);
2820 	u32 packets_acked;
2821 
2822 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2823 
2824 	packets_acked = tcp_skb_pcount(skb);
2825 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2826 		return 0;
2827 	packets_acked -= tcp_skb_pcount(skb);
2828 
2829 	if (packets_acked) {
2830 		BUG_ON(tcp_skb_pcount(skb) == 0);
2831 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2832 	}
2833 
2834 	return packets_acked;
2835 }
2836 
2837 /* Remove acknowledged frames from the retransmission queue. If our packet
2838  * is before the ack sequence we can discard it as it's confirmed to have
2839  * arrived at the other end.
2840  */
2841 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets)
2842 {
2843 	struct tcp_sock *tp = tcp_sk(sk);
2844 	const struct inet_connection_sock *icsk = inet_csk(sk);
2845 	struct sk_buff *skb;
2846 	u32 now = tcp_time_stamp;
2847 	int fully_acked = 1;
2848 	int flag = 0;
2849 	u32 pkts_acked = 0;
2850 	u32 reord = tp->packets_out;
2851 	s32 seq_rtt = -1;
2852 	s32 ca_seq_rtt = -1;
2853 	ktime_t last_ackt = net_invalid_timestamp();
2854 
2855 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2856 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2857 		u32 end_seq;
2858 		u32 acked_pcount;
2859 		u8 sacked = scb->sacked;
2860 
2861 		/* Determine how many packets and what bytes were acked, tso and else */
2862 		if (after(scb->end_seq, tp->snd_una)) {
2863 			if (tcp_skb_pcount(skb) == 1 ||
2864 			    !after(tp->snd_una, scb->seq))
2865 				break;
2866 
2867 			acked_pcount = tcp_tso_acked(sk, skb);
2868 			if (!acked_pcount)
2869 				break;
2870 
2871 			fully_acked = 0;
2872 			end_seq = tp->snd_una;
2873 		} else {
2874 			acked_pcount = tcp_skb_pcount(skb);
2875 			end_seq = scb->end_seq;
2876 		}
2877 
2878 		/* MTU probing checks */
2879 		if (fully_acked && icsk->icsk_mtup.probe_size &&
2880 		    !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2881 			tcp_mtup_probe_success(sk, skb);
2882 		}
2883 
2884 		if (sacked & TCPCB_RETRANS) {
2885 			if (sacked & TCPCB_SACKED_RETRANS)
2886 				tp->retrans_out -= acked_pcount;
2887 			flag |= FLAG_RETRANS_DATA_ACKED;
2888 			ca_seq_rtt = -1;
2889 			seq_rtt = -1;
2890 			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
2891 				flag |= FLAG_NONHEAD_RETRANS_ACKED;
2892 		} else {
2893 			ca_seq_rtt = now - scb->when;
2894 			last_ackt = skb->tstamp;
2895 			if (seq_rtt < 0) {
2896 				seq_rtt = ca_seq_rtt;
2897 			}
2898 			if (!(sacked & TCPCB_SACKED_ACKED))
2899 				reord = min(pkts_acked, reord);
2900 		}
2901 
2902 		if (sacked & TCPCB_SACKED_ACKED)
2903 			tp->sacked_out -= acked_pcount;
2904 		if (sacked & TCPCB_LOST)
2905 			tp->lost_out -= acked_pcount;
2906 
2907 		if (unlikely(tp->urg_mode && !before(end_seq, tp->snd_up)))
2908 			tp->urg_mode = 0;
2909 
2910 		tp->packets_out -= acked_pcount;
2911 		pkts_acked += acked_pcount;
2912 
2913 		/* Initial outgoing SYN's get put onto the write_queue
2914 		 * just like anything else we transmit.  It is not
2915 		 * true data, and if we misinform our callers that
2916 		 * this ACK acks real data, we will erroneously exit
2917 		 * connection startup slow start one packet too
2918 		 * quickly.  This is severely frowned upon behavior.
2919 		 */
2920 		if (!(scb->flags & TCPCB_FLAG_SYN)) {
2921 			flag |= FLAG_DATA_ACKED;
2922 		} else {
2923 			flag |= FLAG_SYN_ACKED;
2924 			tp->retrans_stamp = 0;
2925 		}
2926 
2927 		if (!fully_acked)
2928 			break;
2929 
2930 		tcp_unlink_write_queue(skb, sk);
2931 		sk_wmem_free_skb(sk, skb);
2932 		tcp_clear_all_retrans_hints(tp);
2933 	}
2934 
2935 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2936 		flag |= FLAG_SACK_RENEGING;
2937 
2938 	if (flag & FLAG_ACKED) {
2939 		const struct tcp_congestion_ops *ca_ops
2940 			= inet_csk(sk)->icsk_ca_ops;
2941 
2942 		tcp_ack_update_rtt(sk, flag, seq_rtt);
2943 		tcp_rearm_rto(sk);
2944 
2945 		if (tcp_is_reno(tp)) {
2946 			tcp_remove_reno_sacks(sk, pkts_acked);
2947 		} else {
2948 			/* Non-retransmitted hole got filled? That's reordering */
2949 			if (reord < prior_fackets)
2950 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2951 		}
2952 
2953 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2954 
2955 		if (ca_ops->pkts_acked) {
2956 			s32 rtt_us = -1;
2957 
2958 			/* Is the ACK triggering packet unambiguous? */
2959 			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2960 				/* High resolution needed and available? */
2961 				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2962 				    !ktime_equal(last_ackt,
2963 						 net_invalid_timestamp()))
2964 					rtt_us = ktime_us_delta(ktime_get_real(),
2965 								last_ackt);
2966 				else if (ca_seq_rtt > 0)
2967 					rtt_us = jiffies_to_usecs(ca_seq_rtt);
2968 			}
2969 
2970 			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2971 		}
2972 	}
2973 
2974 #if FASTRETRANS_DEBUG > 0
2975 	WARN_ON((int)tp->sacked_out < 0);
2976 	WARN_ON((int)tp->lost_out < 0);
2977 	WARN_ON((int)tp->retrans_out < 0);
2978 	if (!tp->packets_out && tcp_is_sack(tp)) {
2979 		icsk = inet_csk(sk);
2980 		if (tp->lost_out) {
2981 			printk(KERN_DEBUG "Leak l=%u %d\n",
2982 			       tp->lost_out, icsk->icsk_ca_state);
2983 			tp->lost_out = 0;
2984 		}
2985 		if (tp->sacked_out) {
2986 			printk(KERN_DEBUG "Leak s=%u %d\n",
2987 			       tp->sacked_out, icsk->icsk_ca_state);
2988 			tp->sacked_out = 0;
2989 		}
2990 		if (tp->retrans_out) {
2991 			printk(KERN_DEBUG "Leak r=%u %d\n",
2992 			       tp->retrans_out, icsk->icsk_ca_state);
2993 			tp->retrans_out = 0;
2994 		}
2995 	}
2996 #endif
2997 	return flag;
2998 }
2999 
3000 static void tcp_ack_probe(struct sock *sk)
3001 {
3002 	const struct tcp_sock *tp = tcp_sk(sk);
3003 	struct inet_connection_sock *icsk = inet_csk(sk);
3004 
3005 	/* Was it a usable window open? */
3006 
3007 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3008 		icsk->icsk_backoff = 0;
3009 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3010 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3011 		 * This function is not for random using!
3012 		 */
3013 	} else {
3014 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3015 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3016 					  TCP_RTO_MAX);
3017 	}
3018 }
3019 
3020 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3021 {
3022 	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3023 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3024 }
3025 
3026 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3027 {
3028 	const struct tcp_sock *tp = tcp_sk(sk);
3029 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3030 		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3031 }
3032 
3033 /* Check that window update is acceptable.
3034  * The function assumes that snd_una<=ack<=snd_next.
3035  */
3036 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3037 					const u32 ack, const u32 ack_seq,
3038 					const u32 nwin)
3039 {
3040 	return (after(ack, tp->snd_una) ||
3041 		after(ack_seq, tp->snd_wl1) ||
3042 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3043 }
3044 
3045 /* Update our send window.
3046  *
3047  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3048  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3049  */
3050 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3051 				 u32 ack_seq)
3052 {
3053 	struct tcp_sock *tp = tcp_sk(sk);
3054 	int flag = 0;
3055 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3056 
3057 	if (likely(!tcp_hdr(skb)->syn))
3058 		nwin <<= tp->rx_opt.snd_wscale;
3059 
3060 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3061 		flag |= FLAG_WIN_UPDATE;
3062 		tcp_update_wl(tp, ack, ack_seq);
3063 
3064 		if (tp->snd_wnd != nwin) {
3065 			tp->snd_wnd = nwin;
3066 
3067 			/* Note, it is the only place, where
3068 			 * fast path is recovered for sending TCP.
3069 			 */
3070 			tp->pred_flags = 0;
3071 			tcp_fast_path_check(sk);
3072 
3073 			if (nwin > tp->max_window) {
3074 				tp->max_window = nwin;
3075 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3076 			}
3077 		}
3078 	}
3079 
3080 	tp->snd_una = ack;
3081 
3082 	return flag;
3083 }
3084 
3085 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3086  * continue in congestion avoidance.
3087  */
3088 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3089 {
3090 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3091 	tp->snd_cwnd_cnt = 0;
3092 	tp->bytes_acked = 0;
3093 	TCP_ECN_queue_cwr(tp);
3094 	tcp_moderate_cwnd(tp);
3095 }
3096 
3097 /* A conservative spurious RTO response algorithm: reduce cwnd using
3098  * rate halving and continue in congestion avoidance.
3099  */
3100 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3101 {
3102 	tcp_enter_cwr(sk, 0);
3103 }
3104 
3105 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3106 {
3107 	if (flag & FLAG_ECE)
3108 		tcp_ratehalving_spur_to_response(sk);
3109 	else
3110 		tcp_undo_cwr(sk, 1);
3111 }
3112 
3113 /* F-RTO spurious RTO detection algorithm (RFC4138)
3114  *
3115  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3116  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3117  * window (but not to or beyond highest sequence sent before RTO):
3118  *   On First ACK,  send two new segments out.
3119  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3120  *                  algorithm is not part of the F-RTO detection algorithm
3121  *                  given in RFC4138 but can be selected separately).
3122  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3123  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3124  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3125  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3126  *
3127  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3128  * original window even after we transmit two new data segments.
3129  *
3130  * SACK version:
3131  *   on first step, wait until first cumulative ACK arrives, then move to
3132  *   the second step. In second step, the next ACK decides.
3133  *
3134  * F-RTO is implemented (mainly) in four functions:
3135  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3136  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3137  *     called when tcp_use_frto() showed green light
3138  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3139  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3140  *     to prove that the RTO is indeed spurious. It transfers the control
3141  *     from F-RTO to the conventional RTO recovery
3142  */
3143 static int tcp_process_frto(struct sock *sk, int flag)
3144 {
3145 	struct tcp_sock *tp = tcp_sk(sk);
3146 
3147 	tcp_verify_left_out(tp);
3148 
3149 	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3150 	if (flag & FLAG_DATA_ACKED)
3151 		inet_csk(sk)->icsk_retransmits = 0;
3152 
3153 	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3154 	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3155 		tp->undo_marker = 0;
3156 
3157 	if (!before(tp->snd_una, tp->frto_highmark)) {
3158 		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3159 		return 1;
3160 	}
3161 
3162 	if (!tcp_is_sackfrto(tp)) {
3163 		/* RFC4138 shortcoming in step 2; should also have case c):
3164 		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3165 		 * data, winupdate
3166 		 */
3167 		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3168 			return 1;
3169 
3170 		if (!(flag & FLAG_DATA_ACKED)) {
3171 			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3172 					    flag);
3173 			return 1;
3174 		}
3175 	} else {
3176 		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3177 			/* Prevent sending of new data. */
3178 			tp->snd_cwnd = min(tp->snd_cwnd,
3179 					   tcp_packets_in_flight(tp));
3180 			return 1;
3181 		}
3182 
3183 		if ((tp->frto_counter >= 2) &&
3184 		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3185 		     ((flag & FLAG_DATA_SACKED) &&
3186 		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3187 			/* RFC4138 shortcoming (see comment above) */
3188 			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3189 			    (flag & FLAG_NOT_DUP))
3190 				return 1;
3191 
3192 			tcp_enter_frto_loss(sk, 3, flag);
3193 			return 1;
3194 		}
3195 	}
3196 
3197 	if (tp->frto_counter == 1) {
3198 		/* tcp_may_send_now needs to see updated state */
3199 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3200 		tp->frto_counter = 2;
3201 
3202 		if (!tcp_may_send_now(sk))
3203 			tcp_enter_frto_loss(sk, 2, flag);
3204 
3205 		return 1;
3206 	} else {
3207 		switch (sysctl_tcp_frto_response) {
3208 		case 2:
3209 			tcp_undo_spur_to_response(sk, flag);
3210 			break;
3211 		case 1:
3212 			tcp_conservative_spur_to_response(tp);
3213 			break;
3214 		default:
3215 			tcp_ratehalving_spur_to_response(sk);
3216 			break;
3217 		}
3218 		tp->frto_counter = 0;
3219 		tp->undo_marker = 0;
3220 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3221 	}
3222 	return 0;
3223 }
3224 
3225 /* This routine deals with incoming acks, but not outgoing ones. */
3226 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3227 {
3228 	struct inet_connection_sock *icsk = inet_csk(sk);
3229 	struct tcp_sock *tp = tcp_sk(sk);
3230 	u32 prior_snd_una = tp->snd_una;
3231 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3232 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3233 	u32 prior_in_flight;
3234 	u32 prior_fackets;
3235 	int prior_packets;
3236 	int frto_cwnd = 0;
3237 
3238 	/* If the ack is newer than sent or older than previous acks
3239 	 * then we can probably ignore it.
3240 	 */
3241 	if (after(ack, tp->snd_nxt))
3242 		goto uninteresting_ack;
3243 
3244 	if (before(ack, prior_snd_una))
3245 		goto old_ack;
3246 
3247 	if (after(ack, prior_snd_una))
3248 		flag |= FLAG_SND_UNA_ADVANCED;
3249 
3250 	if (sysctl_tcp_abc) {
3251 		if (icsk->icsk_ca_state < TCP_CA_CWR)
3252 			tp->bytes_acked += ack - prior_snd_una;
3253 		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3254 			/* we assume just one segment left network */
3255 			tp->bytes_acked += min(ack - prior_snd_una,
3256 					       tp->mss_cache);
3257 	}
3258 
3259 	prior_fackets = tp->fackets_out;
3260 	prior_in_flight = tcp_packets_in_flight(tp);
3261 
3262 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3263 		/* Window is constant, pure forward advance.
3264 		 * No more checks are required.
3265 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3266 		 */
3267 		tcp_update_wl(tp, ack, ack_seq);
3268 		tp->snd_una = ack;
3269 		flag |= FLAG_WIN_UPDATE;
3270 
3271 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3272 
3273 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3274 	} else {
3275 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3276 			flag |= FLAG_DATA;
3277 		else
3278 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3279 
3280 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3281 
3282 		if (TCP_SKB_CB(skb)->sacked)
3283 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3284 
3285 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3286 			flag |= FLAG_ECE;
3287 
3288 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3289 	}
3290 
3291 	/* We passed data and got it acked, remove any soft error
3292 	 * log. Something worked...
3293 	 */
3294 	sk->sk_err_soft = 0;
3295 	icsk->icsk_probes_out = 0;
3296 	tp->rcv_tstamp = tcp_time_stamp;
3297 	prior_packets = tp->packets_out;
3298 	if (!prior_packets)
3299 		goto no_queue;
3300 
3301 	/* See if we can take anything off of the retransmit queue. */
3302 	flag |= tcp_clean_rtx_queue(sk, prior_fackets);
3303 
3304 	if (tp->frto_counter)
3305 		frto_cwnd = tcp_process_frto(sk, flag);
3306 	/* Guarantee sacktag reordering detection against wrap-arounds */
3307 	if (before(tp->frto_highmark, tp->snd_una))
3308 		tp->frto_highmark = 0;
3309 
3310 	if (tcp_ack_is_dubious(sk, flag)) {
3311 		/* Advance CWND, if state allows this. */
3312 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3313 		    tcp_may_raise_cwnd(sk, flag))
3314 			tcp_cong_avoid(sk, ack, prior_in_flight);
3315 		tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3316 				      flag);
3317 	} else {
3318 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3319 			tcp_cong_avoid(sk, ack, prior_in_flight);
3320 	}
3321 
3322 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3323 		dst_confirm(sk->sk_dst_cache);
3324 
3325 	return 1;
3326 
3327 no_queue:
3328 	/* If this ack opens up a zero window, clear backoff.  It was
3329 	 * being used to time the probes, and is probably far higher than
3330 	 * it needs to be for normal retransmission.
3331 	 */
3332 	if (tcp_send_head(sk))
3333 		tcp_ack_probe(sk);
3334 	return 1;
3335 
3336 old_ack:
3337 	if (TCP_SKB_CB(skb)->sacked) {
3338 		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3339 		if (icsk->icsk_ca_state == TCP_CA_Open)
3340 			tcp_try_keep_open(sk);
3341 	}
3342 
3343 uninteresting_ack:
3344 	SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3345 	return 0;
3346 }
3347 
3348 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3349  * But, this can also be called on packets in the established flow when
3350  * the fast version below fails.
3351  */
3352 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3353 		       int estab)
3354 {
3355 	unsigned char *ptr;
3356 	struct tcphdr *th = tcp_hdr(skb);
3357 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3358 
3359 	ptr = (unsigned char *)(th + 1);
3360 	opt_rx->saw_tstamp = 0;
3361 
3362 	while (length > 0) {
3363 		int opcode = *ptr++;
3364 		int opsize;
3365 
3366 		switch (opcode) {
3367 		case TCPOPT_EOL:
3368 			return;
3369 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3370 			length--;
3371 			continue;
3372 		default:
3373 			opsize = *ptr++;
3374 			if (opsize < 2) /* "silly options" */
3375 				return;
3376 			if (opsize > length)
3377 				return;	/* don't parse partial options */
3378 			switch (opcode) {
3379 			case TCPOPT_MSS:
3380 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3381 					u16 in_mss = get_unaligned_be16(ptr);
3382 					if (in_mss) {
3383 						if (opt_rx->user_mss &&
3384 						    opt_rx->user_mss < in_mss)
3385 							in_mss = opt_rx->user_mss;
3386 						opt_rx->mss_clamp = in_mss;
3387 					}
3388 				}
3389 				break;
3390 			case TCPOPT_WINDOW:
3391 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3392 				    !estab && sysctl_tcp_window_scaling) {
3393 					__u8 snd_wscale = *(__u8 *)ptr;
3394 					opt_rx->wscale_ok = 1;
3395 					if (snd_wscale > 14) {
3396 						if (net_ratelimit())
3397 							printk(KERN_INFO "tcp_parse_options: Illegal window "
3398 							       "scaling value %d >14 received.\n",
3399 							       snd_wscale);
3400 						snd_wscale = 14;
3401 					}
3402 					opt_rx->snd_wscale = snd_wscale;
3403 				}
3404 				break;
3405 			case TCPOPT_TIMESTAMP:
3406 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3407 				    ((estab && opt_rx->tstamp_ok) ||
3408 				     (!estab && sysctl_tcp_timestamps))) {
3409 					opt_rx->saw_tstamp = 1;
3410 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3411 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3412 				}
3413 				break;
3414 			case TCPOPT_SACK_PERM:
3415 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3416 				    !estab && sysctl_tcp_sack) {
3417 					opt_rx->sack_ok = 1;
3418 					tcp_sack_reset(opt_rx);
3419 				}
3420 				break;
3421 
3422 			case TCPOPT_SACK:
3423 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3424 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3425 				   opt_rx->sack_ok) {
3426 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3427 				}
3428 				break;
3429 #ifdef CONFIG_TCP_MD5SIG
3430 			case TCPOPT_MD5SIG:
3431 				/*
3432 				 * The MD5 Hash has already been
3433 				 * checked (see tcp_v{4,6}_do_rcv()).
3434 				 */
3435 				break;
3436 #endif
3437 			}
3438 
3439 			ptr += opsize-2;
3440 			length -= opsize;
3441 		}
3442 	}
3443 }
3444 
3445 /* Fast parse options. This hopes to only see timestamps.
3446  * If it is wrong it falls back on tcp_parse_options().
3447  */
3448 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3449 				  struct tcp_sock *tp)
3450 {
3451 	if (th->doff == sizeof(struct tcphdr) >> 2) {
3452 		tp->rx_opt.saw_tstamp = 0;
3453 		return 0;
3454 	} else if (tp->rx_opt.tstamp_ok &&
3455 		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3456 		__be32 *ptr = (__be32 *)(th + 1);
3457 		if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3458 				  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3459 			tp->rx_opt.saw_tstamp = 1;
3460 			++ptr;
3461 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
3462 			++ptr;
3463 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3464 			return 1;
3465 		}
3466 	}
3467 	tcp_parse_options(skb, &tp->rx_opt, 1);
3468 	return 1;
3469 }
3470 
3471 #ifdef CONFIG_TCP_MD5SIG
3472 /*
3473  * Parse MD5 Signature option
3474  */
3475 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3476 {
3477 	int length = (th->doff << 2) - sizeof (*th);
3478 	u8 *ptr = (u8*)(th + 1);
3479 
3480 	/* If the TCP option is too short, we can short cut */
3481 	if (length < TCPOLEN_MD5SIG)
3482 		return NULL;
3483 
3484 	while (length > 0) {
3485 		int opcode = *ptr++;
3486 		int opsize;
3487 
3488 		switch(opcode) {
3489 		case TCPOPT_EOL:
3490 			return NULL;
3491 		case TCPOPT_NOP:
3492 			length--;
3493 			continue;
3494 		default:
3495 			opsize = *ptr++;
3496 			if (opsize < 2 || opsize > length)
3497 				return NULL;
3498 			if (opcode == TCPOPT_MD5SIG)
3499 				return ptr;
3500 		}
3501 		ptr += opsize - 2;
3502 		length -= opsize;
3503 	}
3504 	return NULL;
3505 }
3506 #endif
3507 
3508 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3509 {
3510 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3511 	tp->rx_opt.ts_recent_stamp = get_seconds();
3512 }
3513 
3514 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3515 {
3516 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3517 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3518 		 * extra check below makes sure this can only happen
3519 		 * for pure ACK frames.  -DaveM
3520 		 *
3521 		 * Not only, also it occurs for expired timestamps.
3522 		 */
3523 
3524 		if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3525 		   get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3526 			tcp_store_ts_recent(tp);
3527 	}
3528 }
3529 
3530 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3531  *
3532  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3533  * it can pass through stack. So, the following predicate verifies that
3534  * this segment is not used for anything but congestion avoidance or
3535  * fast retransmit. Moreover, we even are able to eliminate most of such
3536  * second order effects, if we apply some small "replay" window (~RTO)
3537  * to timestamp space.
3538  *
3539  * All these measures still do not guarantee that we reject wrapped ACKs
3540  * on networks with high bandwidth, when sequence space is recycled fastly,
3541  * but it guarantees that such events will be very rare and do not affect
3542  * connection seriously. This doesn't look nice, but alas, PAWS is really
3543  * buggy extension.
3544  *
3545  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3546  * states that events when retransmit arrives after original data are rare.
3547  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3548  * the biggest problem on large power networks even with minor reordering.
3549  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3550  * up to bandwidth of 18Gigabit/sec. 8) ]
3551  */
3552 
3553 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3554 {
3555 	struct tcp_sock *tp = tcp_sk(sk);
3556 	struct tcphdr *th = tcp_hdr(skb);
3557 	u32 seq = TCP_SKB_CB(skb)->seq;
3558 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3559 
3560 	return (/* 1. Pure ACK with correct sequence number. */
3561 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3562 
3563 		/* 2. ... and duplicate ACK. */
3564 		ack == tp->snd_una &&
3565 
3566 		/* 3. ... and does not update window. */
3567 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3568 
3569 		/* 4. ... and sits in replay window. */
3570 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3571 }
3572 
3573 static inline int tcp_paws_discard(const struct sock *sk,
3574 				   const struct sk_buff *skb)
3575 {
3576 	const struct tcp_sock *tp = tcp_sk(sk);
3577 	return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3578 		get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3579 		!tcp_disordered_ack(sk, skb));
3580 }
3581 
3582 /* Check segment sequence number for validity.
3583  *
3584  * Segment controls are considered valid, if the segment
3585  * fits to the window after truncation to the window. Acceptability
3586  * of data (and SYN, FIN, of course) is checked separately.
3587  * See tcp_data_queue(), for example.
3588  *
3589  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3590  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3591  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3592  * (borrowed from freebsd)
3593  */
3594 
3595 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3596 {
3597 	return	!before(end_seq, tp->rcv_wup) &&
3598 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3599 }
3600 
3601 /* When we get a reset we do this. */
3602 static void tcp_reset(struct sock *sk)
3603 {
3604 	/* We want the right error as BSD sees it (and indeed as we do). */
3605 	switch (sk->sk_state) {
3606 	case TCP_SYN_SENT:
3607 		sk->sk_err = ECONNREFUSED;
3608 		break;
3609 	case TCP_CLOSE_WAIT:
3610 		sk->sk_err = EPIPE;
3611 		break;
3612 	case TCP_CLOSE:
3613 		return;
3614 	default:
3615 		sk->sk_err = ECONNRESET;
3616 	}
3617 
3618 	if (!sock_flag(sk, SOCK_DEAD))
3619 		sk->sk_error_report(sk);
3620 
3621 	tcp_done(sk);
3622 }
3623 
3624 /*
3625  * 	Process the FIN bit. This now behaves as it is supposed to work
3626  *	and the FIN takes effect when it is validly part of sequence
3627  *	space. Not before when we get holes.
3628  *
3629  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3630  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3631  *	TIME-WAIT)
3632  *
3633  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3634  *	close and we go into CLOSING (and later onto TIME-WAIT)
3635  *
3636  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3637  */
3638 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3639 {
3640 	struct tcp_sock *tp = tcp_sk(sk);
3641 
3642 	inet_csk_schedule_ack(sk);
3643 
3644 	sk->sk_shutdown |= RCV_SHUTDOWN;
3645 	sock_set_flag(sk, SOCK_DONE);
3646 
3647 	switch (sk->sk_state) {
3648 	case TCP_SYN_RECV:
3649 	case TCP_ESTABLISHED:
3650 		/* Move to CLOSE_WAIT */
3651 		tcp_set_state(sk, TCP_CLOSE_WAIT);
3652 		inet_csk(sk)->icsk_ack.pingpong = 1;
3653 		break;
3654 
3655 	case TCP_CLOSE_WAIT:
3656 	case TCP_CLOSING:
3657 		/* Received a retransmission of the FIN, do
3658 		 * nothing.
3659 		 */
3660 		break;
3661 	case TCP_LAST_ACK:
3662 		/* RFC793: Remain in the LAST-ACK state. */
3663 		break;
3664 
3665 	case TCP_FIN_WAIT1:
3666 		/* This case occurs when a simultaneous close
3667 		 * happens, we must ack the received FIN and
3668 		 * enter the CLOSING state.
3669 		 */
3670 		tcp_send_ack(sk);
3671 		tcp_set_state(sk, TCP_CLOSING);
3672 		break;
3673 	case TCP_FIN_WAIT2:
3674 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
3675 		tcp_send_ack(sk);
3676 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3677 		break;
3678 	default:
3679 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
3680 		 * cases we should never reach this piece of code.
3681 		 */
3682 		printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3683 		       __func__, sk->sk_state);
3684 		break;
3685 	}
3686 
3687 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
3688 	 * Probably, we should reset in this case. For now drop them.
3689 	 */
3690 	__skb_queue_purge(&tp->out_of_order_queue);
3691 	if (tcp_is_sack(tp))
3692 		tcp_sack_reset(&tp->rx_opt);
3693 	sk_mem_reclaim(sk);
3694 
3695 	if (!sock_flag(sk, SOCK_DEAD)) {
3696 		sk->sk_state_change(sk);
3697 
3698 		/* Do not send POLL_HUP for half duplex close. */
3699 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
3700 		    sk->sk_state == TCP_CLOSE)
3701 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3702 		else
3703 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3704 	}
3705 }
3706 
3707 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3708 				  u32 end_seq)
3709 {
3710 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3711 		if (before(seq, sp->start_seq))
3712 			sp->start_seq = seq;
3713 		if (after(end_seq, sp->end_seq))
3714 			sp->end_seq = end_seq;
3715 		return 1;
3716 	}
3717 	return 0;
3718 }
3719 
3720 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3721 {
3722 	struct tcp_sock *tp = tcp_sk(sk);
3723 
3724 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3725 		int mib_idx;
3726 
3727 		if (before(seq, tp->rcv_nxt))
3728 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3729 		else
3730 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3731 
3732 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
3733 
3734 		tp->rx_opt.dsack = 1;
3735 		tp->duplicate_sack[0].start_seq = seq;
3736 		tp->duplicate_sack[0].end_seq = end_seq;
3737 		tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + 1;
3738 	}
3739 }
3740 
3741 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3742 {
3743 	struct tcp_sock *tp = tcp_sk(sk);
3744 
3745 	if (!tp->rx_opt.dsack)
3746 		tcp_dsack_set(sk, seq, end_seq);
3747 	else
3748 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3749 }
3750 
3751 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3752 {
3753 	struct tcp_sock *tp = tcp_sk(sk);
3754 
3755 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3756 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3757 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3758 		tcp_enter_quickack_mode(sk);
3759 
3760 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3761 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3762 
3763 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3764 				end_seq = tp->rcv_nxt;
3765 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3766 		}
3767 	}
3768 
3769 	tcp_send_ack(sk);
3770 }
3771 
3772 /* These routines update the SACK block as out-of-order packets arrive or
3773  * in-order packets close up the sequence space.
3774  */
3775 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3776 {
3777 	int this_sack;
3778 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3779 	struct tcp_sack_block *swalk = sp + 1;
3780 
3781 	/* See if the recent change to the first SACK eats into
3782 	 * or hits the sequence space of other SACK blocks, if so coalesce.
3783 	 */
3784 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3785 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3786 			int i;
3787 
3788 			/* Zap SWALK, by moving every further SACK up by one slot.
3789 			 * Decrease num_sacks.
3790 			 */
3791 			tp->rx_opt.num_sacks--;
3792 			tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
3793 					       tp->rx_opt.dsack;
3794 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3795 				sp[i] = sp[i + 1];
3796 			continue;
3797 		}
3798 		this_sack++, swalk++;
3799 	}
3800 }
3801 
3802 static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
3803 				 struct tcp_sack_block *sack2)
3804 {
3805 	__u32 tmp;
3806 
3807 	tmp = sack1->start_seq;
3808 	sack1->start_seq = sack2->start_seq;
3809 	sack2->start_seq = tmp;
3810 
3811 	tmp = sack1->end_seq;
3812 	sack1->end_seq = sack2->end_seq;
3813 	sack2->end_seq = tmp;
3814 }
3815 
3816 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3817 {
3818 	struct tcp_sock *tp = tcp_sk(sk);
3819 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3820 	int cur_sacks = tp->rx_opt.num_sacks;
3821 	int this_sack;
3822 
3823 	if (!cur_sacks)
3824 		goto new_sack;
3825 
3826 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3827 		if (tcp_sack_extend(sp, seq, end_seq)) {
3828 			/* Rotate this_sack to the first one. */
3829 			for (; this_sack > 0; this_sack--, sp--)
3830 				tcp_sack_swap(sp, sp - 1);
3831 			if (cur_sacks > 1)
3832 				tcp_sack_maybe_coalesce(tp);
3833 			return;
3834 		}
3835 	}
3836 
3837 	/* Could not find an adjacent existing SACK, build a new one,
3838 	 * put it at the front, and shift everyone else down.  We
3839 	 * always know there is at least one SACK present already here.
3840 	 *
3841 	 * If the sack array is full, forget about the last one.
3842 	 */
3843 	if (this_sack >= TCP_NUM_SACKS) {
3844 		this_sack--;
3845 		tp->rx_opt.num_sacks--;
3846 		sp--;
3847 	}
3848 	for (; this_sack > 0; this_sack--, sp--)
3849 		*sp = *(sp - 1);
3850 
3851 new_sack:
3852 	/* Build the new head SACK, and we're done. */
3853 	sp->start_seq = seq;
3854 	sp->end_seq = end_seq;
3855 	tp->rx_opt.num_sacks++;
3856 	tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
3857 }
3858 
3859 /* RCV.NXT advances, some SACKs should be eaten. */
3860 
3861 static void tcp_sack_remove(struct tcp_sock *tp)
3862 {
3863 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3864 	int num_sacks = tp->rx_opt.num_sacks;
3865 	int this_sack;
3866 
3867 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3868 	if (skb_queue_empty(&tp->out_of_order_queue)) {
3869 		tp->rx_opt.num_sacks = 0;
3870 		tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3871 		return;
3872 	}
3873 
3874 	for (this_sack = 0; this_sack < num_sacks;) {
3875 		/* Check if the start of the sack is covered by RCV.NXT. */
3876 		if (!before(tp->rcv_nxt, sp->start_seq)) {
3877 			int i;
3878 
3879 			/* RCV.NXT must cover all the block! */
3880 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
3881 
3882 			/* Zap this SACK, by moving forward any other SACKS. */
3883 			for (i=this_sack+1; i < num_sacks; i++)
3884 				tp->selective_acks[i-1] = tp->selective_acks[i];
3885 			num_sacks--;
3886 			continue;
3887 		}
3888 		this_sack++;
3889 		sp++;
3890 	}
3891 	if (num_sacks != tp->rx_opt.num_sacks) {
3892 		tp->rx_opt.num_sacks = num_sacks;
3893 		tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
3894 				       tp->rx_opt.dsack;
3895 	}
3896 }
3897 
3898 /* This one checks to see if we can put data from the
3899  * out_of_order queue into the receive_queue.
3900  */
3901 static void tcp_ofo_queue(struct sock *sk)
3902 {
3903 	struct tcp_sock *tp = tcp_sk(sk);
3904 	__u32 dsack_high = tp->rcv_nxt;
3905 	struct sk_buff *skb;
3906 
3907 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3908 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3909 			break;
3910 
3911 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3912 			__u32 dsack = dsack_high;
3913 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3914 				dsack_high = TCP_SKB_CB(skb)->end_seq;
3915 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
3916 		}
3917 
3918 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3919 			SOCK_DEBUG(sk, "ofo packet was already received \n");
3920 			__skb_unlink(skb, &tp->out_of_order_queue);
3921 			__kfree_skb(skb);
3922 			continue;
3923 		}
3924 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3925 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3926 			   TCP_SKB_CB(skb)->end_seq);
3927 
3928 		__skb_unlink(skb, &tp->out_of_order_queue);
3929 		__skb_queue_tail(&sk->sk_receive_queue, skb);
3930 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3931 		if (tcp_hdr(skb)->fin)
3932 			tcp_fin(skb, sk, tcp_hdr(skb));
3933 	}
3934 }
3935 
3936 static int tcp_prune_ofo_queue(struct sock *sk);
3937 static int tcp_prune_queue(struct sock *sk);
3938 
3939 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
3940 {
3941 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3942 	    !sk_rmem_schedule(sk, size)) {
3943 
3944 		if (tcp_prune_queue(sk) < 0)
3945 			return -1;
3946 
3947 		if (!sk_rmem_schedule(sk, size)) {
3948 			if (!tcp_prune_ofo_queue(sk))
3949 				return -1;
3950 
3951 			if (!sk_rmem_schedule(sk, size))
3952 				return -1;
3953 		}
3954 	}
3955 	return 0;
3956 }
3957 
3958 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3959 {
3960 	struct tcphdr *th = tcp_hdr(skb);
3961 	struct tcp_sock *tp = tcp_sk(sk);
3962 	int eaten = -1;
3963 
3964 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3965 		goto drop;
3966 
3967 	__skb_pull(skb, th->doff * 4);
3968 
3969 	TCP_ECN_accept_cwr(tp, skb);
3970 
3971 	if (tp->rx_opt.dsack) {
3972 		tp->rx_opt.dsack = 0;
3973 		tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks;
3974 	}
3975 
3976 	/*  Queue data for delivery to the user.
3977 	 *  Packets in sequence go to the receive queue.
3978 	 *  Out of sequence packets to the out_of_order_queue.
3979 	 */
3980 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3981 		if (tcp_receive_window(tp) == 0)
3982 			goto out_of_window;
3983 
3984 		/* Ok. In sequence. In window. */
3985 		if (tp->ucopy.task == current &&
3986 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3987 		    sock_owned_by_user(sk) && !tp->urg_data) {
3988 			int chunk = min_t(unsigned int, skb->len,
3989 					  tp->ucopy.len);
3990 
3991 			__set_current_state(TASK_RUNNING);
3992 
3993 			local_bh_enable();
3994 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3995 				tp->ucopy.len -= chunk;
3996 				tp->copied_seq += chunk;
3997 				eaten = (chunk == skb->len && !th->fin);
3998 				tcp_rcv_space_adjust(sk);
3999 			}
4000 			local_bh_disable();
4001 		}
4002 
4003 		if (eaten <= 0) {
4004 queue_and_out:
4005 			if (eaten < 0 &&
4006 			    tcp_try_rmem_schedule(sk, skb->truesize))
4007 				goto drop;
4008 
4009 			skb_set_owner_r(skb, sk);
4010 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4011 		}
4012 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4013 		if (skb->len)
4014 			tcp_event_data_recv(sk, skb);
4015 		if (th->fin)
4016 			tcp_fin(skb, sk, th);
4017 
4018 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4019 			tcp_ofo_queue(sk);
4020 
4021 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4022 			 * gap in queue is filled.
4023 			 */
4024 			if (skb_queue_empty(&tp->out_of_order_queue))
4025 				inet_csk(sk)->icsk_ack.pingpong = 0;
4026 		}
4027 
4028 		if (tp->rx_opt.num_sacks)
4029 			tcp_sack_remove(tp);
4030 
4031 		tcp_fast_path_check(sk);
4032 
4033 		if (eaten > 0)
4034 			__kfree_skb(skb);
4035 		else if (!sock_flag(sk, SOCK_DEAD))
4036 			sk->sk_data_ready(sk, 0);
4037 		return;
4038 	}
4039 
4040 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4041 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4042 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4043 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4044 
4045 out_of_window:
4046 		tcp_enter_quickack_mode(sk);
4047 		inet_csk_schedule_ack(sk);
4048 drop:
4049 		__kfree_skb(skb);
4050 		return;
4051 	}
4052 
4053 	/* Out of window. F.e. zero window probe. */
4054 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4055 		goto out_of_window;
4056 
4057 	tcp_enter_quickack_mode(sk);
4058 
4059 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4060 		/* Partial packet, seq < rcv_next < end_seq */
4061 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4062 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4063 			   TCP_SKB_CB(skb)->end_seq);
4064 
4065 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4066 
4067 		/* If window is closed, drop tail of packet. But after
4068 		 * remembering D-SACK for its head made in previous line.
4069 		 */
4070 		if (!tcp_receive_window(tp))
4071 			goto out_of_window;
4072 		goto queue_and_out;
4073 	}
4074 
4075 	TCP_ECN_check_ce(tp, skb);
4076 
4077 	if (tcp_try_rmem_schedule(sk, skb->truesize))
4078 		goto drop;
4079 
4080 	/* Disable header prediction. */
4081 	tp->pred_flags = 0;
4082 	inet_csk_schedule_ack(sk);
4083 
4084 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4085 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4086 
4087 	skb_set_owner_r(skb, sk);
4088 
4089 	if (!skb_peek(&tp->out_of_order_queue)) {
4090 		/* Initial out of order segment, build 1 SACK. */
4091 		if (tcp_is_sack(tp)) {
4092 			tp->rx_opt.num_sacks = 1;
4093 			tp->rx_opt.dsack     = 0;
4094 			tp->rx_opt.eff_sacks = 1;
4095 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4096 			tp->selective_acks[0].end_seq =
4097 						TCP_SKB_CB(skb)->end_seq;
4098 		}
4099 		__skb_queue_head(&tp->out_of_order_queue, skb);
4100 	} else {
4101 		struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4102 		u32 seq = TCP_SKB_CB(skb)->seq;
4103 		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4104 
4105 		if (seq == TCP_SKB_CB(skb1)->end_seq) {
4106 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4107 
4108 			if (!tp->rx_opt.num_sacks ||
4109 			    tp->selective_acks[0].end_seq != seq)
4110 				goto add_sack;
4111 
4112 			/* Common case: data arrive in order after hole. */
4113 			tp->selective_acks[0].end_seq = end_seq;
4114 			return;
4115 		}
4116 
4117 		/* Find place to insert this segment. */
4118 		do {
4119 			if (!after(TCP_SKB_CB(skb1)->seq, seq))
4120 				break;
4121 		} while ((skb1 = skb1->prev) !=
4122 			 (struct sk_buff *)&tp->out_of_order_queue);
4123 
4124 		/* Do skb overlap to previous one? */
4125 		if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4126 		    before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4127 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4128 				/* All the bits are present. Drop. */
4129 				__kfree_skb(skb);
4130 				tcp_dsack_set(sk, seq, end_seq);
4131 				goto add_sack;
4132 			}
4133 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4134 				/* Partial overlap. */
4135 				tcp_dsack_set(sk, seq,
4136 					      TCP_SKB_CB(skb1)->end_seq);
4137 			} else {
4138 				skb1 = skb1->prev;
4139 			}
4140 		}
4141 		__skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
4142 
4143 		/* And clean segments covered by new one as whole. */
4144 		while ((skb1 = skb->next) !=
4145 		       (struct sk_buff *)&tp->out_of_order_queue &&
4146 		       after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4147 			if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4148 				tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4149 						 end_seq);
4150 				break;
4151 			}
4152 			__skb_unlink(skb1, &tp->out_of_order_queue);
4153 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4154 					 TCP_SKB_CB(skb1)->end_seq);
4155 			__kfree_skb(skb1);
4156 		}
4157 
4158 add_sack:
4159 		if (tcp_is_sack(tp))
4160 			tcp_sack_new_ofo_skb(sk, seq, end_seq);
4161 	}
4162 }
4163 
4164 /* Collapse contiguous sequence of skbs head..tail with
4165  * sequence numbers start..end.
4166  * Segments with FIN/SYN are not collapsed (only because this
4167  * simplifies code)
4168  */
4169 static void
4170 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4171 	     struct sk_buff *head, struct sk_buff *tail,
4172 	     u32 start, u32 end)
4173 {
4174 	struct sk_buff *skb;
4175 
4176 	/* First, check that queue is collapsible and find
4177 	 * the point where collapsing can be useful. */
4178 	for (skb = head; skb != tail;) {
4179 		/* No new bits? It is possible on ofo queue. */
4180 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4181 			struct sk_buff *next = skb->next;
4182 			__skb_unlink(skb, list);
4183 			__kfree_skb(skb);
4184 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4185 			skb = next;
4186 			continue;
4187 		}
4188 
4189 		/* The first skb to collapse is:
4190 		 * - not SYN/FIN and
4191 		 * - bloated or contains data before "start" or
4192 		 *   overlaps to the next one.
4193 		 */
4194 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4195 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4196 		     before(TCP_SKB_CB(skb)->seq, start) ||
4197 		     (skb->next != tail &&
4198 		      TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4199 			break;
4200 
4201 		/* Decided to skip this, advance start seq. */
4202 		start = TCP_SKB_CB(skb)->end_seq;
4203 		skb = skb->next;
4204 	}
4205 	if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4206 		return;
4207 
4208 	while (before(start, end)) {
4209 		struct sk_buff *nskb;
4210 		unsigned int header = skb_headroom(skb);
4211 		int copy = SKB_MAX_ORDER(header, 0);
4212 
4213 		/* Too big header? This can happen with IPv6. */
4214 		if (copy < 0)
4215 			return;
4216 		if (end - start < copy)
4217 			copy = end - start;
4218 		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4219 		if (!nskb)
4220 			return;
4221 
4222 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4223 		skb_set_network_header(nskb, (skb_network_header(skb) -
4224 					      skb->head));
4225 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4226 						skb->head));
4227 		skb_reserve(nskb, header);
4228 		memcpy(nskb->head, skb->head, header);
4229 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4230 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4231 		__skb_insert(nskb, skb->prev, skb, list);
4232 		skb_set_owner_r(nskb, sk);
4233 
4234 		/* Copy data, releasing collapsed skbs. */
4235 		while (copy > 0) {
4236 			int offset = start - TCP_SKB_CB(skb)->seq;
4237 			int size = TCP_SKB_CB(skb)->end_seq - start;
4238 
4239 			BUG_ON(offset < 0);
4240 			if (size > 0) {
4241 				size = min(copy, size);
4242 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4243 					BUG();
4244 				TCP_SKB_CB(nskb)->end_seq += size;
4245 				copy -= size;
4246 				start += size;
4247 			}
4248 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4249 				struct sk_buff *next = skb->next;
4250 				__skb_unlink(skb, list);
4251 				__kfree_skb(skb);
4252 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4253 				skb = next;
4254 				if (skb == tail ||
4255 				    tcp_hdr(skb)->syn ||
4256 				    tcp_hdr(skb)->fin)
4257 					return;
4258 			}
4259 		}
4260 	}
4261 }
4262 
4263 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4264  * and tcp_collapse() them until all the queue is collapsed.
4265  */
4266 static void tcp_collapse_ofo_queue(struct sock *sk)
4267 {
4268 	struct tcp_sock *tp = tcp_sk(sk);
4269 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4270 	struct sk_buff *head;
4271 	u32 start, end;
4272 
4273 	if (skb == NULL)
4274 		return;
4275 
4276 	start = TCP_SKB_CB(skb)->seq;
4277 	end = TCP_SKB_CB(skb)->end_seq;
4278 	head = skb;
4279 
4280 	for (;;) {
4281 		skb = skb->next;
4282 
4283 		/* Segment is terminated when we see gap or when
4284 		 * we are at the end of all the queue. */
4285 		if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4286 		    after(TCP_SKB_CB(skb)->seq, end) ||
4287 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4288 			tcp_collapse(sk, &tp->out_of_order_queue,
4289 				     head, skb, start, end);
4290 			head = skb;
4291 			if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4292 				break;
4293 			/* Start new segment */
4294 			start = TCP_SKB_CB(skb)->seq;
4295 			end = TCP_SKB_CB(skb)->end_seq;
4296 		} else {
4297 			if (before(TCP_SKB_CB(skb)->seq, start))
4298 				start = TCP_SKB_CB(skb)->seq;
4299 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4300 				end = TCP_SKB_CB(skb)->end_seq;
4301 		}
4302 	}
4303 }
4304 
4305 /*
4306  * Purge the out-of-order queue.
4307  * Return true if queue was pruned.
4308  */
4309 static int tcp_prune_ofo_queue(struct sock *sk)
4310 {
4311 	struct tcp_sock *tp = tcp_sk(sk);
4312 	int res = 0;
4313 
4314 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4315 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4316 		__skb_queue_purge(&tp->out_of_order_queue);
4317 
4318 		/* Reset SACK state.  A conforming SACK implementation will
4319 		 * do the same at a timeout based retransmit.  When a connection
4320 		 * is in a sad state like this, we care only about integrity
4321 		 * of the connection not performance.
4322 		 */
4323 		if (tp->rx_opt.sack_ok)
4324 			tcp_sack_reset(&tp->rx_opt);
4325 		sk_mem_reclaim(sk);
4326 		res = 1;
4327 	}
4328 	return res;
4329 }
4330 
4331 /* Reduce allocated memory if we can, trying to get
4332  * the socket within its memory limits again.
4333  *
4334  * Return less than zero if we should start dropping frames
4335  * until the socket owning process reads some of the data
4336  * to stabilize the situation.
4337  */
4338 static int tcp_prune_queue(struct sock *sk)
4339 {
4340 	struct tcp_sock *tp = tcp_sk(sk);
4341 
4342 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4343 
4344 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4345 
4346 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4347 		tcp_clamp_window(sk);
4348 	else if (tcp_memory_pressure)
4349 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4350 
4351 	tcp_collapse_ofo_queue(sk);
4352 	tcp_collapse(sk, &sk->sk_receive_queue,
4353 		     sk->sk_receive_queue.next,
4354 		     (struct sk_buff *)&sk->sk_receive_queue,
4355 		     tp->copied_seq, tp->rcv_nxt);
4356 	sk_mem_reclaim(sk);
4357 
4358 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4359 		return 0;
4360 
4361 	/* Collapsing did not help, destructive actions follow.
4362 	 * This must not ever occur. */
4363 
4364 	tcp_prune_ofo_queue(sk);
4365 
4366 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4367 		return 0;
4368 
4369 	/* If we are really being abused, tell the caller to silently
4370 	 * drop receive data on the floor.  It will get retransmitted
4371 	 * and hopefully then we'll have sufficient space.
4372 	 */
4373 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4374 
4375 	/* Massive buffer overcommit. */
4376 	tp->pred_flags = 0;
4377 	return -1;
4378 }
4379 
4380 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4381  * As additional protections, we do not touch cwnd in retransmission phases,
4382  * and if application hit its sndbuf limit recently.
4383  */
4384 void tcp_cwnd_application_limited(struct sock *sk)
4385 {
4386 	struct tcp_sock *tp = tcp_sk(sk);
4387 
4388 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4389 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4390 		/* Limited by application or receiver window. */
4391 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4392 		u32 win_used = max(tp->snd_cwnd_used, init_win);
4393 		if (win_used < tp->snd_cwnd) {
4394 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4395 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4396 		}
4397 		tp->snd_cwnd_used = 0;
4398 	}
4399 	tp->snd_cwnd_stamp = tcp_time_stamp;
4400 }
4401 
4402 static int tcp_should_expand_sndbuf(struct sock *sk)
4403 {
4404 	struct tcp_sock *tp = tcp_sk(sk);
4405 
4406 	/* If the user specified a specific send buffer setting, do
4407 	 * not modify it.
4408 	 */
4409 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4410 		return 0;
4411 
4412 	/* If we are under global TCP memory pressure, do not expand.  */
4413 	if (tcp_memory_pressure)
4414 		return 0;
4415 
4416 	/* If we are under soft global TCP memory pressure, do not expand.  */
4417 	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4418 		return 0;
4419 
4420 	/* If we filled the congestion window, do not expand.  */
4421 	if (tp->packets_out >= tp->snd_cwnd)
4422 		return 0;
4423 
4424 	return 1;
4425 }
4426 
4427 /* When incoming ACK allowed to free some skb from write_queue,
4428  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4429  * on the exit from tcp input handler.
4430  *
4431  * PROBLEM: sndbuf expansion does not work well with largesend.
4432  */
4433 static void tcp_new_space(struct sock *sk)
4434 {
4435 	struct tcp_sock *tp = tcp_sk(sk);
4436 
4437 	if (tcp_should_expand_sndbuf(sk)) {
4438 		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4439 			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4440 		    demanded = max_t(unsigned int, tp->snd_cwnd,
4441 				     tp->reordering + 1);
4442 		sndmem *= 2 * demanded;
4443 		if (sndmem > sk->sk_sndbuf)
4444 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4445 		tp->snd_cwnd_stamp = tcp_time_stamp;
4446 	}
4447 
4448 	sk->sk_write_space(sk);
4449 }
4450 
4451 static void tcp_check_space(struct sock *sk)
4452 {
4453 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4454 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4455 		if (sk->sk_socket &&
4456 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4457 			tcp_new_space(sk);
4458 	}
4459 }
4460 
4461 static inline void tcp_data_snd_check(struct sock *sk)
4462 {
4463 	tcp_push_pending_frames(sk);
4464 	tcp_check_space(sk);
4465 }
4466 
4467 /*
4468  * Check if sending an ack is needed.
4469  */
4470 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4471 {
4472 	struct tcp_sock *tp = tcp_sk(sk);
4473 
4474 	    /* More than one full frame received... */
4475 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4476 	     /* ... and right edge of window advances far enough.
4477 	      * (tcp_recvmsg() will send ACK otherwise). Or...
4478 	      */
4479 	     && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4480 	    /* We ACK each frame or... */
4481 	    tcp_in_quickack_mode(sk) ||
4482 	    /* We have out of order data. */
4483 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4484 		/* Then ack it now */
4485 		tcp_send_ack(sk);
4486 	} else {
4487 		/* Else, send delayed ack. */
4488 		tcp_send_delayed_ack(sk);
4489 	}
4490 }
4491 
4492 static inline void tcp_ack_snd_check(struct sock *sk)
4493 {
4494 	if (!inet_csk_ack_scheduled(sk)) {
4495 		/* We sent a data segment already. */
4496 		return;
4497 	}
4498 	__tcp_ack_snd_check(sk, 1);
4499 }
4500 
4501 /*
4502  *	This routine is only called when we have urgent data
4503  *	signaled. Its the 'slow' part of tcp_urg. It could be
4504  *	moved inline now as tcp_urg is only called from one
4505  *	place. We handle URGent data wrong. We have to - as
4506  *	BSD still doesn't use the correction from RFC961.
4507  *	For 1003.1g we should support a new option TCP_STDURG to permit
4508  *	either form (or just set the sysctl tcp_stdurg).
4509  */
4510 
4511 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4512 {
4513 	struct tcp_sock *tp = tcp_sk(sk);
4514 	u32 ptr = ntohs(th->urg_ptr);
4515 
4516 	if (ptr && !sysctl_tcp_stdurg)
4517 		ptr--;
4518 	ptr += ntohl(th->seq);
4519 
4520 	/* Ignore urgent data that we've already seen and read. */
4521 	if (after(tp->copied_seq, ptr))
4522 		return;
4523 
4524 	/* Do not replay urg ptr.
4525 	 *
4526 	 * NOTE: interesting situation not covered by specs.
4527 	 * Misbehaving sender may send urg ptr, pointing to segment,
4528 	 * which we already have in ofo queue. We are not able to fetch
4529 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4530 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4531 	 * situations. But it is worth to think about possibility of some
4532 	 * DoSes using some hypothetical application level deadlock.
4533 	 */
4534 	if (before(ptr, tp->rcv_nxt))
4535 		return;
4536 
4537 	/* Do we already have a newer (or duplicate) urgent pointer? */
4538 	if (tp->urg_data && !after(ptr, tp->urg_seq))
4539 		return;
4540 
4541 	/* Tell the world about our new urgent pointer. */
4542 	sk_send_sigurg(sk);
4543 
4544 	/* We may be adding urgent data when the last byte read was
4545 	 * urgent. To do this requires some care. We cannot just ignore
4546 	 * tp->copied_seq since we would read the last urgent byte again
4547 	 * as data, nor can we alter copied_seq until this data arrives
4548 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4549 	 *
4550 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4551 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4552 	 * and expect that both A and B disappear from stream. This is _wrong_.
4553 	 * Though this happens in BSD with high probability, this is occasional.
4554 	 * Any application relying on this is buggy. Note also, that fix "works"
4555 	 * only in this artificial test. Insert some normal data between A and B and we will
4556 	 * decline of BSD again. Verdict: it is better to remove to trap
4557 	 * buggy users.
4558 	 */
4559 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4560 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4561 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4562 		tp->copied_seq++;
4563 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4564 			__skb_unlink(skb, &sk->sk_receive_queue);
4565 			__kfree_skb(skb);
4566 		}
4567 	}
4568 
4569 	tp->urg_data = TCP_URG_NOTYET;
4570 	tp->urg_seq = ptr;
4571 
4572 	/* Disable header prediction. */
4573 	tp->pred_flags = 0;
4574 }
4575 
4576 /* This is the 'fast' part of urgent handling. */
4577 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4578 {
4579 	struct tcp_sock *tp = tcp_sk(sk);
4580 
4581 	/* Check if we get a new urgent pointer - normally not. */
4582 	if (th->urg)
4583 		tcp_check_urg(sk, th);
4584 
4585 	/* Do we wait for any urgent data? - normally not... */
4586 	if (tp->urg_data == TCP_URG_NOTYET) {
4587 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4588 			  th->syn;
4589 
4590 		/* Is the urgent pointer pointing into this packet? */
4591 		if (ptr < skb->len) {
4592 			u8 tmp;
4593 			if (skb_copy_bits(skb, ptr, &tmp, 1))
4594 				BUG();
4595 			tp->urg_data = TCP_URG_VALID | tmp;
4596 			if (!sock_flag(sk, SOCK_DEAD))
4597 				sk->sk_data_ready(sk, 0);
4598 		}
4599 	}
4600 }
4601 
4602 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4603 {
4604 	struct tcp_sock *tp = tcp_sk(sk);
4605 	int chunk = skb->len - hlen;
4606 	int err;
4607 
4608 	local_bh_enable();
4609 	if (skb_csum_unnecessary(skb))
4610 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4611 	else
4612 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4613 						       tp->ucopy.iov);
4614 
4615 	if (!err) {
4616 		tp->ucopy.len -= chunk;
4617 		tp->copied_seq += chunk;
4618 		tcp_rcv_space_adjust(sk);
4619 	}
4620 
4621 	local_bh_disable();
4622 	return err;
4623 }
4624 
4625 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4626 					    struct sk_buff *skb)
4627 {
4628 	__sum16 result;
4629 
4630 	if (sock_owned_by_user(sk)) {
4631 		local_bh_enable();
4632 		result = __tcp_checksum_complete(skb);
4633 		local_bh_disable();
4634 	} else {
4635 		result = __tcp_checksum_complete(skb);
4636 	}
4637 	return result;
4638 }
4639 
4640 static inline int tcp_checksum_complete_user(struct sock *sk,
4641 					     struct sk_buff *skb)
4642 {
4643 	return !skb_csum_unnecessary(skb) &&
4644 	       __tcp_checksum_complete_user(sk, skb);
4645 }
4646 
4647 #ifdef CONFIG_NET_DMA
4648 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4649 				  int hlen)
4650 {
4651 	struct tcp_sock *tp = tcp_sk(sk);
4652 	int chunk = skb->len - hlen;
4653 	int dma_cookie;
4654 	int copied_early = 0;
4655 
4656 	if (tp->ucopy.wakeup)
4657 		return 0;
4658 
4659 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4660 		tp->ucopy.dma_chan = get_softnet_dma();
4661 
4662 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4663 
4664 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4665 							 skb, hlen,
4666 							 tp->ucopy.iov, chunk,
4667 							 tp->ucopy.pinned_list);
4668 
4669 		if (dma_cookie < 0)
4670 			goto out;
4671 
4672 		tp->ucopy.dma_cookie = dma_cookie;
4673 		copied_early = 1;
4674 
4675 		tp->ucopy.len -= chunk;
4676 		tp->copied_seq += chunk;
4677 		tcp_rcv_space_adjust(sk);
4678 
4679 		if ((tp->ucopy.len == 0) ||
4680 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4681 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4682 			tp->ucopy.wakeup = 1;
4683 			sk->sk_data_ready(sk, 0);
4684 		}
4685 	} else if (chunk > 0) {
4686 		tp->ucopy.wakeup = 1;
4687 		sk->sk_data_ready(sk, 0);
4688 	}
4689 out:
4690 	return copied_early;
4691 }
4692 #endif /* CONFIG_NET_DMA */
4693 
4694 /*
4695  *	TCP receive function for the ESTABLISHED state.
4696  *
4697  *	It is split into a fast path and a slow path. The fast path is
4698  * 	disabled when:
4699  *	- A zero window was announced from us - zero window probing
4700  *        is only handled properly in the slow path.
4701  *	- Out of order segments arrived.
4702  *	- Urgent data is expected.
4703  *	- There is no buffer space left
4704  *	- Unexpected TCP flags/window values/header lengths are received
4705  *	  (detected by checking the TCP header against pred_flags)
4706  *	- Data is sent in both directions. Fast path only supports pure senders
4707  *	  or pure receivers (this means either the sequence number or the ack
4708  *	  value must stay constant)
4709  *	- Unexpected TCP option.
4710  *
4711  *	When these conditions are not satisfied it drops into a standard
4712  *	receive procedure patterned after RFC793 to handle all cases.
4713  *	The first three cases are guaranteed by proper pred_flags setting,
4714  *	the rest is checked inline. Fast processing is turned on in
4715  *	tcp_data_queue when everything is OK.
4716  */
4717 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4718 			struct tcphdr *th, unsigned len)
4719 {
4720 	struct tcp_sock *tp = tcp_sk(sk);
4721 
4722 	/*
4723 	 *	Header prediction.
4724 	 *	The code loosely follows the one in the famous
4725 	 *	"30 instruction TCP receive" Van Jacobson mail.
4726 	 *
4727 	 *	Van's trick is to deposit buffers into socket queue
4728 	 *	on a device interrupt, to call tcp_recv function
4729 	 *	on the receive process context and checksum and copy
4730 	 *	the buffer to user space. smart...
4731 	 *
4732 	 *	Our current scheme is not silly either but we take the
4733 	 *	extra cost of the net_bh soft interrupt processing...
4734 	 *	We do checksum and copy also but from device to kernel.
4735 	 */
4736 
4737 	tp->rx_opt.saw_tstamp = 0;
4738 
4739 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
4740 	 *	if header_prediction is to be made
4741 	 *	'S' will always be tp->tcp_header_len >> 2
4742 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
4743 	 *  turn it off	(when there are holes in the receive
4744 	 *	 space for instance)
4745 	 *	PSH flag is ignored.
4746 	 */
4747 
4748 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4749 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4750 		int tcp_header_len = tp->tcp_header_len;
4751 
4752 		/* Timestamp header prediction: tcp_header_len
4753 		 * is automatically equal to th->doff*4 due to pred_flags
4754 		 * match.
4755 		 */
4756 
4757 		/* Check timestamp */
4758 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4759 			__be32 *ptr = (__be32 *)(th + 1);
4760 
4761 			/* No? Slow path! */
4762 			if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4763 					  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4764 				goto slow_path;
4765 
4766 			tp->rx_opt.saw_tstamp = 1;
4767 			++ptr;
4768 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
4769 			++ptr;
4770 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4771 
4772 			/* If PAWS failed, check it more carefully in slow path */
4773 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4774 				goto slow_path;
4775 
4776 			/* DO NOT update ts_recent here, if checksum fails
4777 			 * and timestamp was corrupted part, it will result
4778 			 * in a hung connection since we will drop all
4779 			 * future packets due to the PAWS test.
4780 			 */
4781 		}
4782 
4783 		if (len <= tcp_header_len) {
4784 			/* Bulk data transfer: sender */
4785 			if (len == tcp_header_len) {
4786 				/* Predicted packet is in window by definition.
4787 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4788 				 * Hence, check seq<=rcv_wup reduces to:
4789 				 */
4790 				if (tcp_header_len ==
4791 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4792 				    tp->rcv_nxt == tp->rcv_wup)
4793 					tcp_store_ts_recent(tp);
4794 
4795 				/* We know that such packets are checksummed
4796 				 * on entry.
4797 				 */
4798 				tcp_ack(sk, skb, 0);
4799 				__kfree_skb(skb);
4800 				tcp_data_snd_check(sk);
4801 				return 0;
4802 			} else { /* Header too small */
4803 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
4804 				goto discard;
4805 			}
4806 		} else {
4807 			int eaten = 0;
4808 			int copied_early = 0;
4809 
4810 			if (tp->copied_seq == tp->rcv_nxt &&
4811 			    len - tcp_header_len <= tp->ucopy.len) {
4812 #ifdef CONFIG_NET_DMA
4813 				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4814 					copied_early = 1;
4815 					eaten = 1;
4816 				}
4817 #endif
4818 				if (tp->ucopy.task == current &&
4819 				    sock_owned_by_user(sk) && !copied_early) {
4820 					__set_current_state(TASK_RUNNING);
4821 
4822 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4823 						eaten = 1;
4824 				}
4825 				if (eaten) {
4826 					/* Predicted packet is in window by definition.
4827 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4828 					 * Hence, check seq<=rcv_wup reduces to:
4829 					 */
4830 					if (tcp_header_len ==
4831 					    (sizeof(struct tcphdr) +
4832 					     TCPOLEN_TSTAMP_ALIGNED) &&
4833 					    tp->rcv_nxt == tp->rcv_wup)
4834 						tcp_store_ts_recent(tp);
4835 
4836 					tcp_rcv_rtt_measure_ts(sk, skb);
4837 
4838 					__skb_pull(skb, tcp_header_len);
4839 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4840 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
4841 				}
4842 				if (copied_early)
4843 					tcp_cleanup_rbuf(sk, skb->len);
4844 			}
4845 			if (!eaten) {
4846 				if (tcp_checksum_complete_user(sk, skb))
4847 					goto csum_error;
4848 
4849 				/* Predicted packet is in window by definition.
4850 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4851 				 * Hence, check seq<=rcv_wup reduces to:
4852 				 */
4853 				if (tcp_header_len ==
4854 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4855 				    tp->rcv_nxt == tp->rcv_wup)
4856 					tcp_store_ts_recent(tp);
4857 
4858 				tcp_rcv_rtt_measure_ts(sk, skb);
4859 
4860 				if ((int)skb->truesize > sk->sk_forward_alloc)
4861 					goto step5;
4862 
4863 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
4864 
4865 				/* Bulk data transfer: receiver */
4866 				__skb_pull(skb, tcp_header_len);
4867 				__skb_queue_tail(&sk->sk_receive_queue, skb);
4868 				skb_set_owner_r(skb, sk);
4869 				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4870 			}
4871 
4872 			tcp_event_data_recv(sk, skb);
4873 
4874 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4875 				/* Well, only one small jumplet in fast path... */
4876 				tcp_ack(sk, skb, FLAG_DATA);
4877 				tcp_data_snd_check(sk);
4878 				if (!inet_csk_ack_scheduled(sk))
4879 					goto no_ack;
4880 			}
4881 
4882 			__tcp_ack_snd_check(sk, 0);
4883 no_ack:
4884 #ifdef CONFIG_NET_DMA
4885 			if (copied_early)
4886 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
4887 			else
4888 #endif
4889 			if (eaten)
4890 				__kfree_skb(skb);
4891 			else
4892 				sk->sk_data_ready(sk, 0);
4893 			return 0;
4894 		}
4895 	}
4896 
4897 slow_path:
4898 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
4899 		goto csum_error;
4900 
4901 	/*
4902 	 * RFC1323: H1. Apply PAWS check first.
4903 	 */
4904 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4905 	    tcp_paws_discard(sk, skb)) {
4906 		if (!th->rst) {
4907 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
4908 			tcp_send_dupack(sk, skb);
4909 			goto discard;
4910 		}
4911 		/* Resets are accepted even if PAWS failed.
4912 
4913 		   ts_recent update must be made after we are sure
4914 		   that the packet is in window.
4915 		 */
4916 	}
4917 
4918 	/*
4919 	 *	Standard slow path.
4920 	 */
4921 
4922 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4923 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
4924 		 * (RST) segments are validated by checking their SEQ-fields."
4925 		 * And page 69: "If an incoming segment is not acceptable,
4926 		 * an acknowledgment should be sent in reply (unless the RST bit
4927 		 * is set, if so drop the segment and return)".
4928 		 */
4929 		if (!th->rst)
4930 			tcp_send_dupack(sk, skb);
4931 		goto discard;
4932 	}
4933 
4934 	if (th->rst) {
4935 		tcp_reset(sk);
4936 		goto discard;
4937 	}
4938 
4939 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4940 
4941 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4942 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
4943 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
4944 		tcp_reset(sk);
4945 		return 1;
4946 	}
4947 
4948 step5:
4949 	if (th->ack)
4950 		tcp_ack(sk, skb, FLAG_SLOWPATH);
4951 
4952 	tcp_rcv_rtt_measure_ts(sk, skb);
4953 
4954 	/* Process urgent data. */
4955 	tcp_urg(sk, skb, th);
4956 
4957 	/* step 7: process the segment text */
4958 	tcp_data_queue(sk, skb);
4959 
4960 	tcp_data_snd_check(sk);
4961 	tcp_ack_snd_check(sk);
4962 	return 0;
4963 
4964 csum_error:
4965 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
4966 
4967 discard:
4968 	__kfree_skb(skb);
4969 	return 0;
4970 }
4971 
4972 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4973 					 struct tcphdr *th, unsigned len)
4974 {
4975 	struct tcp_sock *tp = tcp_sk(sk);
4976 	struct inet_connection_sock *icsk = inet_csk(sk);
4977 	int saved_clamp = tp->rx_opt.mss_clamp;
4978 
4979 	tcp_parse_options(skb, &tp->rx_opt, 0);
4980 
4981 	if (th->ack) {
4982 		/* rfc793:
4983 		 * "If the state is SYN-SENT then
4984 		 *    first check the ACK bit
4985 		 *      If the ACK bit is set
4986 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4987 		 *        a reset (unless the RST bit is set, if so drop
4988 		 *        the segment and return)"
4989 		 *
4990 		 *  We do not send data with SYN, so that RFC-correct
4991 		 *  test reduces to:
4992 		 */
4993 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4994 			goto reset_and_undo;
4995 
4996 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4997 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4998 			     tcp_time_stamp)) {
4999 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5000 			goto reset_and_undo;
5001 		}
5002 
5003 		/* Now ACK is acceptable.
5004 		 *
5005 		 * "If the RST bit is set
5006 		 *    If the ACK was acceptable then signal the user "error:
5007 		 *    connection reset", drop the segment, enter CLOSED state,
5008 		 *    delete TCB, and return."
5009 		 */
5010 
5011 		if (th->rst) {
5012 			tcp_reset(sk);
5013 			goto discard;
5014 		}
5015 
5016 		/* rfc793:
5017 		 *   "fifth, if neither of the SYN or RST bits is set then
5018 		 *    drop the segment and return."
5019 		 *
5020 		 *    See note below!
5021 		 *                                        --ANK(990513)
5022 		 */
5023 		if (!th->syn)
5024 			goto discard_and_undo;
5025 
5026 		/* rfc793:
5027 		 *   "If the SYN bit is on ...
5028 		 *    are acceptable then ...
5029 		 *    (our SYN has been ACKed), change the connection
5030 		 *    state to ESTABLISHED..."
5031 		 */
5032 
5033 		TCP_ECN_rcv_synack(tp, th);
5034 
5035 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5036 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5037 
5038 		/* Ok.. it's good. Set up sequence numbers and
5039 		 * move to established.
5040 		 */
5041 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5042 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5043 
5044 		/* RFC1323: The window in SYN & SYN/ACK segments is
5045 		 * never scaled.
5046 		 */
5047 		tp->snd_wnd = ntohs(th->window);
5048 		tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
5049 
5050 		if (!tp->rx_opt.wscale_ok) {
5051 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5052 			tp->window_clamp = min(tp->window_clamp, 65535U);
5053 		}
5054 
5055 		if (tp->rx_opt.saw_tstamp) {
5056 			tp->rx_opt.tstamp_ok	   = 1;
5057 			tp->tcp_header_len =
5058 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5059 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5060 			tcp_store_ts_recent(tp);
5061 		} else {
5062 			tp->tcp_header_len = sizeof(struct tcphdr);
5063 		}
5064 
5065 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5066 			tcp_enable_fack(tp);
5067 
5068 		tcp_mtup_init(sk);
5069 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5070 		tcp_initialize_rcv_mss(sk);
5071 
5072 		/* Remember, tcp_poll() does not lock socket!
5073 		 * Change state from SYN-SENT only after copied_seq
5074 		 * is initialized. */
5075 		tp->copied_seq = tp->rcv_nxt;
5076 		smp_mb();
5077 		tcp_set_state(sk, TCP_ESTABLISHED);
5078 
5079 		security_inet_conn_established(sk, skb);
5080 
5081 		/* Make sure socket is routed, for correct metrics.  */
5082 		icsk->icsk_af_ops->rebuild_header(sk);
5083 
5084 		tcp_init_metrics(sk);
5085 
5086 		tcp_init_congestion_control(sk);
5087 
5088 		/* Prevent spurious tcp_cwnd_restart() on first data
5089 		 * packet.
5090 		 */
5091 		tp->lsndtime = tcp_time_stamp;
5092 
5093 		tcp_init_buffer_space(sk);
5094 
5095 		if (sock_flag(sk, SOCK_KEEPOPEN))
5096 			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5097 
5098 		if (!tp->rx_opt.snd_wscale)
5099 			__tcp_fast_path_on(tp, tp->snd_wnd);
5100 		else
5101 			tp->pred_flags = 0;
5102 
5103 		if (!sock_flag(sk, SOCK_DEAD)) {
5104 			sk->sk_state_change(sk);
5105 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5106 		}
5107 
5108 		if (sk->sk_write_pending ||
5109 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5110 		    icsk->icsk_ack.pingpong) {
5111 			/* Save one ACK. Data will be ready after
5112 			 * several ticks, if write_pending is set.
5113 			 *
5114 			 * It may be deleted, but with this feature tcpdumps
5115 			 * look so _wonderfully_ clever, that I was not able
5116 			 * to stand against the temptation 8)     --ANK
5117 			 */
5118 			inet_csk_schedule_ack(sk);
5119 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5120 			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
5121 			tcp_incr_quickack(sk);
5122 			tcp_enter_quickack_mode(sk);
5123 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5124 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5125 
5126 discard:
5127 			__kfree_skb(skb);
5128 			return 0;
5129 		} else {
5130 			tcp_send_ack(sk);
5131 		}
5132 		return -1;
5133 	}
5134 
5135 	/* No ACK in the segment */
5136 
5137 	if (th->rst) {
5138 		/* rfc793:
5139 		 * "If the RST bit is set
5140 		 *
5141 		 *      Otherwise (no ACK) drop the segment and return."
5142 		 */
5143 
5144 		goto discard_and_undo;
5145 	}
5146 
5147 	/* PAWS check. */
5148 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5149 	    tcp_paws_check(&tp->rx_opt, 0))
5150 		goto discard_and_undo;
5151 
5152 	if (th->syn) {
5153 		/* We see SYN without ACK. It is attempt of
5154 		 * simultaneous connect with crossed SYNs.
5155 		 * Particularly, it can be connect to self.
5156 		 */
5157 		tcp_set_state(sk, TCP_SYN_RECV);
5158 
5159 		if (tp->rx_opt.saw_tstamp) {
5160 			tp->rx_opt.tstamp_ok = 1;
5161 			tcp_store_ts_recent(tp);
5162 			tp->tcp_header_len =
5163 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5164 		} else {
5165 			tp->tcp_header_len = sizeof(struct tcphdr);
5166 		}
5167 
5168 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5169 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5170 
5171 		/* RFC1323: The window in SYN & SYN/ACK segments is
5172 		 * never scaled.
5173 		 */
5174 		tp->snd_wnd    = ntohs(th->window);
5175 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5176 		tp->max_window = tp->snd_wnd;
5177 
5178 		TCP_ECN_rcv_syn(tp, th);
5179 
5180 		tcp_mtup_init(sk);
5181 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5182 		tcp_initialize_rcv_mss(sk);
5183 
5184 		tcp_send_synack(sk);
5185 #if 0
5186 		/* Note, we could accept data and URG from this segment.
5187 		 * There are no obstacles to make this.
5188 		 *
5189 		 * However, if we ignore data in ACKless segments sometimes,
5190 		 * we have no reasons to accept it sometimes.
5191 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5192 		 * is not flawless. So, discard packet for sanity.
5193 		 * Uncomment this return to process the data.
5194 		 */
5195 		return -1;
5196 #else
5197 		goto discard;
5198 #endif
5199 	}
5200 	/* "fifth, if neither of the SYN or RST bits is set then
5201 	 * drop the segment and return."
5202 	 */
5203 
5204 discard_and_undo:
5205 	tcp_clear_options(&tp->rx_opt);
5206 	tp->rx_opt.mss_clamp = saved_clamp;
5207 	goto discard;
5208 
5209 reset_and_undo:
5210 	tcp_clear_options(&tp->rx_opt);
5211 	tp->rx_opt.mss_clamp = saved_clamp;
5212 	return 1;
5213 }
5214 
5215 /*
5216  *	This function implements the receiving procedure of RFC 793 for
5217  *	all states except ESTABLISHED and TIME_WAIT.
5218  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5219  *	address independent.
5220  */
5221 
5222 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5223 			  struct tcphdr *th, unsigned len)
5224 {
5225 	struct tcp_sock *tp = tcp_sk(sk);
5226 	struct inet_connection_sock *icsk = inet_csk(sk);
5227 	int queued = 0;
5228 
5229 	tp->rx_opt.saw_tstamp = 0;
5230 
5231 	switch (sk->sk_state) {
5232 	case TCP_CLOSE:
5233 		goto discard;
5234 
5235 	case TCP_LISTEN:
5236 		if (th->ack)
5237 			return 1;
5238 
5239 		if (th->rst)
5240 			goto discard;
5241 
5242 		if (th->syn) {
5243 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5244 				return 1;
5245 
5246 			/* Now we have several options: In theory there is
5247 			 * nothing else in the frame. KA9Q has an option to
5248 			 * send data with the syn, BSD accepts data with the
5249 			 * syn up to the [to be] advertised window and
5250 			 * Solaris 2.1 gives you a protocol error. For now
5251 			 * we just ignore it, that fits the spec precisely
5252 			 * and avoids incompatibilities. It would be nice in
5253 			 * future to drop through and process the data.
5254 			 *
5255 			 * Now that TTCP is starting to be used we ought to
5256 			 * queue this data.
5257 			 * But, this leaves one open to an easy denial of
5258 			 * service attack, and SYN cookies can't defend
5259 			 * against this problem. So, we drop the data
5260 			 * in the interest of security over speed unless
5261 			 * it's still in use.
5262 			 */
5263 			kfree_skb(skb);
5264 			return 0;
5265 		}
5266 		goto discard;
5267 
5268 	case TCP_SYN_SENT:
5269 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5270 		if (queued >= 0)
5271 			return queued;
5272 
5273 		/* Do step6 onward by hand. */
5274 		tcp_urg(sk, skb, th);
5275 		__kfree_skb(skb);
5276 		tcp_data_snd_check(sk);
5277 		return 0;
5278 	}
5279 
5280 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5281 	    tcp_paws_discard(sk, skb)) {
5282 		if (!th->rst) {
5283 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5284 			tcp_send_dupack(sk, skb);
5285 			goto discard;
5286 		}
5287 		/* Reset is accepted even if it did not pass PAWS. */
5288 	}
5289 
5290 	/* step 1: check sequence number */
5291 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5292 		if (!th->rst)
5293 			tcp_send_dupack(sk, skb);
5294 		goto discard;
5295 	}
5296 
5297 	/* step 2: check RST bit */
5298 	if (th->rst) {
5299 		tcp_reset(sk);
5300 		goto discard;
5301 	}
5302 
5303 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5304 
5305 	/* step 3: check security and precedence [ignored] */
5306 
5307 	/*	step 4:
5308 	 *
5309 	 *	Check for a SYN in window.
5310 	 */
5311 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5312 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5313 		tcp_reset(sk);
5314 		return 1;
5315 	}
5316 
5317 	/* step 5: check the ACK field */
5318 	if (th->ack) {
5319 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5320 
5321 		switch (sk->sk_state) {
5322 		case TCP_SYN_RECV:
5323 			if (acceptable) {
5324 				tp->copied_seq = tp->rcv_nxt;
5325 				smp_mb();
5326 				tcp_set_state(sk, TCP_ESTABLISHED);
5327 				sk->sk_state_change(sk);
5328 
5329 				/* Note, that this wakeup is only for marginal
5330 				 * crossed SYN case. Passively open sockets
5331 				 * are not waked up, because sk->sk_sleep ==
5332 				 * NULL and sk->sk_socket == NULL.
5333 				 */
5334 				if (sk->sk_socket)
5335 					sk_wake_async(sk,
5336 						      SOCK_WAKE_IO, POLL_OUT);
5337 
5338 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5339 				tp->snd_wnd = ntohs(th->window) <<
5340 					      tp->rx_opt.snd_wscale;
5341 				tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5342 					    TCP_SKB_CB(skb)->seq);
5343 
5344 				/* tcp_ack considers this ACK as duplicate
5345 				 * and does not calculate rtt.
5346 				 * Fix it at least with timestamps.
5347 				 */
5348 				if (tp->rx_opt.saw_tstamp &&
5349 				    tp->rx_opt.rcv_tsecr && !tp->srtt)
5350 					tcp_ack_saw_tstamp(sk, 0);
5351 
5352 				if (tp->rx_opt.tstamp_ok)
5353 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5354 
5355 				/* Make sure socket is routed, for
5356 				 * correct metrics.
5357 				 */
5358 				icsk->icsk_af_ops->rebuild_header(sk);
5359 
5360 				tcp_init_metrics(sk);
5361 
5362 				tcp_init_congestion_control(sk);
5363 
5364 				/* Prevent spurious tcp_cwnd_restart() on
5365 				 * first data packet.
5366 				 */
5367 				tp->lsndtime = tcp_time_stamp;
5368 
5369 				tcp_mtup_init(sk);
5370 				tcp_initialize_rcv_mss(sk);
5371 				tcp_init_buffer_space(sk);
5372 				tcp_fast_path_on(tp);
5373 			} else {
5374 				return 1;
5375 			}
5376 			break;
5377 
5378 		case TCP_FIN_WAIT1:
5379 			if (tp->snd_una == tp->write_seq) {
5380 				tcp_set_state(sk, TCP_FIN_WAIT2);
5381 				sk->sk_shutdown |= SEND_SHUTDOWN;
5382 				dst_confirm(sk->sk_dst_cache);
5383 
5384 				if (!sock_flag(sk, SOCK_DEAD))
5385 					/* Wake up lingering close() */
5386 					sk->sk_state_change(sk);
5387 				else {
5388 					int tmo;
5389 
5390 					if (tp->linger2 < 0 ||
5391 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5392 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5393 						tcp_done(sk);
5394 						NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5395 						return 1;
5396 					}
5397 
5398 					tmo = tcp_fin_time(sk);
5399 					if (tmo > TCP_TIMEWAIT_LEN) {
5400 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5401 					} else if (th->fin || sock_owned_by_user(sk)) {
5402 						/* Bad case. We could lose such FIN otherwise.
5403 						 * It is not a big problem, but it looks confusing
5404 						 * and not so rare event. We still can lose it now,
5405 						 * if it spins in bh_lock_sock(), but it is really
5406 						 * marginal case.
5407 						 */
5408 						inet_csk_reset_keepalive_timer(sk, tmo);
5409 					} else {
5410 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5411 						goto discard;
5412 					}
5413 				}
5414 			}
5415 			break;
5416 
5417 		case TCP_CLOSING:
5418 			if (tp->snd_una == tp->write_seq) {
5419 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5420 				goto discard;
5421 			}
5422 			break;
5423 
5424 		case TCP_LAST_ACK:
5425 			if (tp->snd_una == tp->write_seq) {
5426 				tcp_update_metrics(sk);
5427 				tcp_done(sk);
5428 				goto discard;
5429 			}
5430 			break;
5431 		}
5432 	} else
5433 		goto discard;
5434 
5435 	/* step 6: check the URG bit */
5436 	tcp_urg(sk, skb, th);
5437 
5438 	/* step 7: process the segment text */
5439 	switch (sk->sk_state) {
5440 	case TCP_CLOSE_WAIT:
5441 	case TCP_CLOSING:
5442 	case TCP_LAST_ACK:
5443 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5444 			break;
5445 	case TCP_FIN_WAIT1:
5446 	case TCP_FIN_WAIT2:
5447 		/* RFC 793 says to queue data in these states,
5448 		 * RFC 1122 says we MUST send a reset.
5449 		 * BSD 4.4 also does reset.
5450 		 */
5451 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5452 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5453 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5454 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5455 				tcp_reset(sk);
5456 				return 1;
5457 			}
5458 		}
5459 		/* Fall through */
5460 	case TCP_ESTABLISHED:
5461 		tcp_data_queue(sk, skb);
5462 		queued = 1;
5463 		break;
5464 	}
5465 
5466 	/* tcp_data could move socket to TIME-WAIT */
5467 	if (sk->sk_state != TCP_CLOSE) {
5468 		tcp_data_snd_check(sk);
5469 		tcp_ack_snd_check(sk);
5470 	}
5471 
5472 	if (!queued) {
5473 discard:
5474 		__kfree_skb(skb);
5475 	}
5476 	return 0;
5477 }
5478 
5479 EXPORT_SYMBOL(sysctl_tcp_ecn);
5480 EXPORT_SYMBOL(sysctl_tcp_reordering);
5481 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5482 EXPORT_SYMBOL(tcp_parse_options);
5483 #ifdef CONFIG_TCP_MD5SIG
5484 EXPORT_SYMBOL(tcp_parse_md5sig_option);
5485 #endif
5486 EXPORT_SYMBOL(tcp_rcv_established);
5487 EXPORT_SYMBOL(tcp_rcv_state_process);
5488 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
5489