1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/static_key.h> 81 82 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 83 84 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 85 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 86 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 87 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 88 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 89 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 90 #define FLAG_ECE 0x40 /* ECE in this ACK */ 91 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 92 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 93 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 94 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 95 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 96 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 97 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 98 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 99 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 100 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 101 102 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 103 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 104 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 105 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 106 107 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 108 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 109 110 #define REXMIT_NONE 0 /* no loss recovery to do */ 111 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 112 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 113 114 #if IS_ENABLED(CONFIG_TLS_DEVICE) 115 static DEFINE_STATIC_KEY_FALSE(clean_acked_data_enabled); 116 117 void clean_acked_data_enable(struct inet_connection_sock *icsk, 118 void (*cad)(struct sock *sk, u32 ack_seq)) 119 { 120 icsk->icsk_clean_acked = cad; 121 static_branch_inc(&clean_acked_data_enabled); 122 } 123 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 124 125 void clean_acked_data_disable(struct inet_connection_sock *icsk) 126 { 127 static_branch_dec(&clean_acked_data_enabled); 128 icsk->icsk_clean_acked = NULL; 129 } 130 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 131 #endif 132 133 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 134 unsigned int len) 135 { 136 static bool __once __read_mostly; 137 138 if (!__once) { 139 struct net_device *dev; 140 141 __once = true; 142 143 rcu_read_lock(); 144 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 145 if (!dev || len >= dev->mtu) 146 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 147 dev ? dev->name : "Unknown driver"); 148 rcu_read_unlock(); 149 } 150 } 151 152 /* Adapt the MSS value used to make delayed ack decision to the 153 * real world. 154 */ 155 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 156 { 157 struct inet_connection_sock *icsk = inet_csk(sk); 158 const unsigned int lss = icsk->icsk_ack.last_seg_size; 159 unsigned int len; 160 161 icsk->icsk_ack.last_seg_size = 0; 162 163 /* skb->len may jitter because of SACKs, even if peer 164 * sends good full-sized frames. 165 */ 166 len = skb_shinfo(skb)->gso_size ? : skb->len; 167 if (len >= icsk->icsk_ack.rcv_mss) { 168 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 169 tcp_sk(sk)->advmss); 170 /* Account for possibly-removed options */ 171 if (unlikely(len > icsk->icsk_ack.rcv_mss + 172 MAX_TCP_OPTION_SPACE)) 173 tcp_gro_dev_warn(sk, skb, len); 174 } else { 175 /* Otherwise, we make more careful check taking into account, 176 * that SACKs block is variable. 177 * 178 * "len" is invariant segment length, including TCP header. 179 */ 180 len += skb->data - skb_transport_header(skb); 181 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 182 /* If PSH is not set, packet should be 183 * full sized, provided peer TCP is not badly broken. 184 * This observation (if it is correct 8)) allows 185 * to handle super-low mtu links fairly. 186 */ 187 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 188 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 189 /* Subtract also invariant (if peer is RFC compliant), 190 * tcp header plus fixed timestamp option length. 191 * Resulting "len" is MSS free of SACK jitter. 192 */ 193 len -= tcp_sk(sk)->tcp_header_len; 194 icsk->icsk_ack.last_seg_size = len; 195 if (len == lss) { 196 icsk->icsk_ack.rcv_mss = len; 197 return; 198 } 199 } 200 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 201 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 202 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 203 } 204 } 205 206 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 207 { 208 struct inet_connection_sock *icsk = inet_csk(sk); 209 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 210 211 if (quickacks == 0) 212 quickacks = 2; 213 quickacks = min(quickacks, max_quickacks); 214 if (quickacks > icsk->icsk_ack.quick) 215 icsk->icsk_ack.quick = quickacks; 216 } 217 218 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 219 { 220 struct inet_connection_sock *icsk = inet_csk(sk); 221 222 tcp_incr_quickack(sk, max_quickacks); 223 icsk->icsk_ack.pingpong = 0; 224 icsk->icsk_ack.ato = TCP_ATO_MIN; 225 } 226 227 /* Send ACKs quickly, if "quick" count is not exhausted 228 * and the session is not interactive. 229 */ 230 231 static bool tcp_in_quickack_mode(struct sock *sk) 232 { 233 const struct inet_connection_sock *icsk = inet_csk(sk); 234 const struct dst_entry *dst = __sk_dst_get(sk); 235 236 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 237 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong); 238 } 239 240 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 241 { 242 if (tp->ecn_flags & TCP_ECN_OK) 243 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 244 } 245 246 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 247 { 248 if (tcp_hdr(skb)->cwr) 249 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 250 } 251 252 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 253 { 254 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 255 } 256 257 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 258 { 259 struct tcp_sock *tp = tcp_sk(sk); 260 261 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 262 case INET_ECN_NOT_ECT: 263 /* Funny extension: if ECT is not set on a segment, 264 * and we already seen ECT on a previous segment, 265 * it is probably a retransmit. 266 */ 267 if (tp->ecn_flags & TCP_ECN_SEEN) 268 tcp_enter_quickack_mode(sk, 1); 269 break; 270 case INET_ECN_CE: 271 if (tcp_ca_needs_ecn(sk)) 272 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 273 274 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 275 /* Better not delay acks, sender can have a very low cwnd */ 276 tcp_enter_quickack_mode(sk, 1); 277 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 278 } 279 tp->ecn_flags |= TCP_ECN_SEEN; 280 break; 281 default: 282 if (tcp_ca_needs_ecn(sk)) 283 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 284 tp->ecn_flags |= TCP_ECN_SEEN; 285 break; 286 } 287 } 288 289 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 290 { 291 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 292 __tcp_ecn_check_ce(sk, skb); 293 } 294 295 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 296 { 297 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 298 tp->ecn_flags &= ~TCP_ECN_OK; 299 } 300 301 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 302 { 303 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 304 tp->ecn_flags &= ~TCP_ECN_OK; 305 } 306 307 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 308 { 309 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 310 return true; 311 return false; 312 } 313 314 /* Buffer size and advertised window tuning. 315 * 316 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 317 */ 318 319 static void tcp_sndbuf_expand(struct sock *sk) 320 { 321 const struct tcp_sock *tp = tcp_sk(sk); 322 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 323 int sndmem, per_mss; 324 u32 nr_segs; 325 326 /* Worst case is non GSO/TSO : each frame consumes one skb 327 * and skb->head is kmalloced using power of two area of memory 328 */ 329 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 330 MAX_TCP_HEADER + 331 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 332 333 per_mss = roundup_pow_of_two(per_mss) + 334 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 335 336 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 337 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 338 339 /* Fast Recovery (RFC 5681 3.2) : 340 * Cubic needs 1.7 factor, rounded to 2 to include 341 * extra cushion (application might react slowly to EPOLLOUT) 342 */ 343 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 344 sndmem *= nr_segs * per_mss; 345 346 if (sk->sk_sndbuf < sndmem) 347 sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]); 348 } 349 350 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 351 * 352 * All tcp_full_space() is split to two parts: "network" buffer, allocated 353 * forward and advertised in receiver window (tp->rcv_wnd) and 354 * "application buffer", required to isolate scheduling/application 355 * latencies from network. 356 * window_clamp is maximal advertised window. It can be less than 357 * tcp_full_space(), in this case tcp_full_space() - window_clamp 358 * is reserved for "application" buffer. The less window_clamp is 359 * the smoother our behaviour from viewpoint of network, but the lower 360 * throughput and the higher sensitivity of the connection to losses. 8) 361 * 362 * rcv_ssthresh is more strict window_clamp used at "slow start" 363 * phase to predict further behaviour of this connection. 364 * It is used for two goals: 365 * - to enforce header prediction at sender, even when application 366 * requires some significant "application buffer". It is check #1. 367 * - to prevent pruning of receive queue because of misprediction 368 * of receiver window. Check #2. 369 * 370 * The scheme does not work when sender sends good segments opening 371 * window and then starts to feed us spaghetti. But it should work 372 * in common situations. Otherwise, we have to rely on queue collapsing. 373 */ 374 375 /* Slow part of check#2. */ 376 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 377 { 378 struct tcp_sock *tp = tcp_sk(sk); 379 /* Optimize this! */ 380 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1; 381 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 382 383 while (tp->rcv_ssthresh <= window) { 384 if (truesize <= skb->len) 385 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 386 387 truesize >>= 1; 388 window >>= 1; 389 } 390 return 0; 391 } 392 393 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 394 { 395 struct tcp_sock *tp = tcp_sk(sk); 396 397 /* Check #1 */ 398 if (tp->rcv_ssthresh < tp->window_clamp && 399 (int)tp->rcv_ssthresh < tcp_space(sk) && 400 !tcp_under_memory_pressure(sk)) { 401 int incr; 402 403 /* Check #2. Increase window, if skb with such overhead 404 * will fit to rcvbuf in future. 405 */ 406 if (tcp_win_from_space(sk, skb->truesize) <= skb->len) 407 incr = 2 * tp->advmss; 408 else 409 incr = __tcp_grow_window(sk, skb); 410 411 if (incr) { 412 incr = max_t(int, incr, 2 * skb->len); 413 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 414 tp->window_clamp); 415 inet_csk(sk)->icsk_ack.quick |= 1; 416 } 417 } 418 } 419 420 /* 3. Tuning rcvbuf, when connection enters established state. */ 421 static void tcp_fixup_rcvbuf(struct sock *sk) 422 { 423 u32 mss = tcp_sk(sk)->advmss; 424 int rcvmem; 425 426 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 427 tcp_default_init_rwnd(mss); 428 429 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 430 * Allow enough cushion so that sender is not limited by our window 431 */ 432 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) 433 rcvmem <<= 2; 434 435 if (sk->sk_rcvbuf < rcvmem) 436 sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 437 } 438 439 /* 4. Try to fixup all. It is made immediately after connection enters 440 * established state. 441 */ 442 void tcp_init_buffer_space(struct sock *sk) 443 { 444 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win; 445 struct tcp_sock *tp = tcp_sk(sk); 446 int maxwin; 447 448 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 449 tcp_fixup_rcvbuf(sk); 450 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 451 tcp_sndbuf_expand(sk); 452 453 tp->rcvq_space.space = tp->rcv_wnd; 454 tcp_mstamp_refresh(tp); 455 tp->rcvq_space.time = tp->tcp_mstamp; 456 tp->rcvq_space.seq = tp->copied_seq; 457 458 maxwin = tcp_full_space(sk); 459 460 if (tp->window_clamp >= maxwin) { 461 tp->window_clamp = maxwin; 462 463 if (tcp_app_win && maxwin > 4 * tp->advmss) 464 tp->window_clamp = max(maxwin - 465 (maxwin >> tcp_app_win), 466 4 * tp->advmss); 467 } 468 469 /* Force reservation of one segment. */ 470 if (tcp_app_win && 471 tp->window_clamp > 2 * tp->advmss && 472 tp->window_clamp + tp->advmss > maxwin) 473 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 474 475 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 476 tp->snd_cwnd_stamp = tcp_jiffies32; 477 } 478 479 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 480 static void tcp_clamp_window(struct sock *sk) 481 { 482 struct tcp_sock *tp = tcp_sk(sk); 483 struct inet_connection_sock *icsk = inet_csk(sk); 484 struct net *net = sock_net(sk); 485 486 icsk->icsk_ack.quick = 0; 487 488 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] && 489 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 490 !tcp_under_memory_pressure(sk) && 491 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 492 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 493 net->ipv4.sysctl_tcp_rmem[2]); 494 } 495 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 496 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 497 } 498 499 /* Initialize RCV_MSS value. 500 * RCV_MSS is an our guess about MSS used by the peer. 501 * We haven't any direct information about the MSS. 502 * It's better to underestimate the RCV_MSS rather than overestimate. 503 * Overestimations make us ACKing less frequently than needed. 504 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 505 */ 506 void tcp_initialize_rcv_mss(struct sock *sk) 507 { 508 const struct tcp_sock *tp = tcp_sk(sk); 509 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 510 511 hint = min(hint, tp->rcv_wnd / 2); 512 hint = min(hint, TCP_MSS_DEFAULT); 513 hint = max(hint, TCP_MIN_MSS); 514 515 inet_csk(sk)->icsk_ack.rcv_mss = hint; 516 } 517 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 518 519 /* Receiver "autotuning" code. 520 * 521 * The algorithm for RTT estimation w/o timestamps is based on 522 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 523 * <http://public.lanl.gov/radiant/pubs.html#DRS> 524 * 525 * More detail on this code can be found at 526 * <http://staff.psc.edu/jheffner/>, 527 * though this reference is out of date. A new paper 528 * is pending. 529 */ 530 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 531 { 532 u32 new_sample = tp->rcv_rtt_est.rtt_us; 533 long m = sample; 534 535 if (new_sample != 0) { 536 /* If we sample in larger samples in the non-timestamp 537 * case, we could grossly overestimate the RTT especially 538 * with chatty applications or bulk transfer apps which 539 * are stalled on filesystem I/O. 540 * 541 * Also, since we are only going for a minimum in the 542 * non-timestamp case, we do not smooth things out 543 * else with timestamps disabled convergence takes too 544 * long. 545 */ 546 if (!win_dep) { 547 m -= (new_sample >> 3); 548 new_sample += m; 549 } else { 550 m <<= 3; 551 if (m < new_sample) 552 new_sample = m; 553 } 554 } else { 555 /* No previous measure. */ 556 new_sample = m << 3; 557 } 558 559 tp->rcv_rtt_est.rtt_us = new_sample; 560 } 561 562 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 563 { 564 u32 delta_us; 565 566 if (tp->rcv_rtt_est.time == 0) 567 goto new_measure; 568 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 569 return; 570 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 571 if (!delta_us) 572 delta_us = 1; 573 tcp_rcv_rtt_update(tp, delta_us, 1); 574 575 new_measure: 576 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 577 tp->rcv_rtt_est.time = tp->tcp_mstamp; 578 } 579 580 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 581 const struct sk_buff *skb) 582 { 583 struct tcp_sock *tp = tcp_sk(sk); 584 585 if (tp->rx_opt.rcv_tsecr && 586 (TCP_SKB_CB(skb)->end_seq - 587 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) { 588 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 589 u32 delta_us; 590 591 if (!delta) 592 delta = 1; 593 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 594 tcp_rcv_rtt_update(tp, delta_us, 0); 595 } 596 } 597 598 /* 599 * This function should be called every time data is copied to user space. 600 * It calculates the appropriate TCP receive buffer space. 601 */ 602 void tcp_rcv_space_adjust(struct sock *sk) 603 { 604 struct tcp_sock *tp = tcp_sk(sk); 605 u32 copied; 606 int time; 607 608 trace_tcp_rcv_space_adjust(sk); 609 610 tcp_mstamp_refresh(tp); 611 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 612 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 613 return; 614 615 /* Number of bytes copied to user in last RTT */ 616 copied = tp->copied_seq - tp->rcvq_space.seq; 617 if (copied <= tp->rcvq_space.space) 618 goto new_measure; 619 620 /* A bit of theory : 621 * copied = bytes received in previous RTT, our base window 622 * To cope with packet losses, we need a 2x factor 623 * To cope with slow start, and sender growing its cwin by 100 % 624 * every RTT, we need a 4x factor, because the ACK we are sending 625 * now is for the next RTT, not the current one : 626 * <prev RTT . ><current RTT .. ><next RTT .... > 627 */ 628 629 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 630 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 631 int rcvmem, rcvbuf; 632 u64 rcvwin, grow; 633 634 /* minimal window to cope with packet losses, assuming 635 * steady state. Add some cushion because of small variations. 636 */ 637 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 638 639 /* Accommodate for sender rate increase (eg. slow start) */ 640 grow = rcvwin * (copied - tp->rcvq_space.space); 641 do_div(grow, tp->rcvq_space.space); 642 rcvwin += (grow << 1); 643 644 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 645 while (tcp_win_from_space(sk, rcvmem) < tp->advmss) 646 rcvmem += 128; 647 648 do_div(rcvwin, tp->advmss); 649 rcvbuf = min_t(u64, rcvwin * rcvmem, 650 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 651 if (rcvbuf > sk->sk_rcvbuf) { 652 sk->sk_rcvbuf = rcvbuf; 653 654 /* Make the window clamp follow along. */ 655 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 656 } 657 } 658 tp->rcvq_space.space = copied; 659 660 new_measure: 661 tp->rcvq_space.seq = tp->copied_seq; 662 tp->rcvq_space.time = tp->tcp_mstamp; 663 } 664 665 /* There is something which you must keep in mind when you analyze the 666 * behavior of the tp->ato delayed ack timeout interval. When a 667 * connection starts up, we want to ack as quickly as possible. The 668 * problem is that "good" TCP's do slow start at the beginning of data 669 * transmission. The means that until we send the first few ACK's the 670 * sender will sit on his end and only queue most of his data, because 671 * he can only send snd_cwnd unacked packets at any given time. For 672 * each ACK we send, he increments snd_cwnd and transmits more of his 673 * queue. -DaveM 674 */ 675 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 676 { 677 struct tcp_sock *tp = tcp_sk(sk); 678 struct inet_connection_sock *icsk = inet_csk(sk); 679 u32 now; 680 681 inet_csk_schedule_ack(sk); 682 683 tcp_measure_rcv_mss(sk, skb); 684 685 tcp_rcv_rtt_measure(tp); 686 687 now = tcp_jiffies32; 688 689 if (!icsk->icsk_ack.ato) { 690 /* The _first_ data packet received, initialize 691 * delayed ACK engine. 692 */ 693 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 694 icsk->icsk_ack.ato = TCP_ATO_MIN; 695 } else { 696 int m = now - icsk->icsk_ack.lrcvtime; 697 698 if (m <= TCP_ATO_MIN / 2) { 699 /* The fastest case is the first. */ 700 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 701 } else if (m < icsk->icsk_ack.ato) { 702 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 703 if (icsk->icsk_ack.ato > icsk->icsk_rto) 704 icsk->icsk_ack.ato = icsk->icsk_rto; 705 } else if (m > icsk->icsk_rto) { 706 /* Too long gap. Apparently sender failed to 707 * restart window, so that we send ACKs quickly. 708 */ 709 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 710 sk_mem_reclaim(sk); 711 } 712 } 713 icsk->icsk_ack.lrcvtime = now; 714 715 tcp_ecn_check_ce(sk, skb); 716 717 if (skb->len >= 128) 718 tcp_grow_window(sk, skb); 719 } 720 721 /* Called to compute a smoothed rtt estimate. The data fed to this 722 * routine either comes from timestamps, or from segments that were 723 * known _not_ to have been retransmitted [see Karn/Partridge 724 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 725 * piece by Van Jacobson. 726 * NOTE: the next three routines used to be one big routine. 727 * To save cycles in the RFC 1323 implementation it was better to break 728 * it up into three procedures. -- erics 729 */ 730 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 731 { 732 struct tcp_sock *tp = tcp_sk(sk); 733 long m = mrtt_us; /* RTT */ 734 u32 srtt = tp->srtt_us; 735 736 /* The following amusing code comes from Jacobson's 737 * article in SIGCOMM '88. Note that rtt and mdev 738 * are scaled versions of rtt and mean deviation. 739 * This is designed to be as fast as possible 740 * m stands for "measurement". 741 * 742 * On a 1990 paper the rto value is changed to: 743 * RTO = rtt + 4 * mdev 744 * 745 * Funny. This algorithm seems to be very broken. 746 * These formulae increase RTO, when it should be decreased, increase 747 * too slowly, when it should be increased quickly, decrease too quickly 748 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 749 * does not matter how to _calculate_ it. Seems, it was trap 750 * that VJ failed to avoid. 8) 751 */ 752 if (srtt != 0) { 753 m -= (srtt >> 3); /* m is now error in rtt est */ 754 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 755 if (m < 0) { 756 m = -m; /* m is now abs(error) */ 757 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 758 /* This is similar to one of Eifel findings. 759 * Eifel blocks mdev updates when rtt decreases. 760 * This solution is a bit different: we use finer gain 761 * for mdev in this case (alpha*beta). 762 * Like Eifel it also prevents growth of rto, 763 * but also it limits too fast rto decreases, 764 * happening in pure Eifel. 765 */ 766 if (m > 0) 767 m >>= 3; 768 } else { 769 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 770 } 771 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 772 if (tp->mdev_us > tp->mdev_max_us) { 773 tp->mdev_max_us = tp->mdev_us; 774 if (tp->mdev_max_us > tp->rttvar_us) 775 tp->rttvar_us = tp->mdev_max_us; 776 } 777 if (after(tp->snd_una, tp->rtt_seq)) { 778 if (tp->mdev_max_us < tp->rttvar_us) 779 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 780 tp->rtt_seq = tp->snd_nxt; 781 tp->mdev_max_us = tcp_rto_min_us(sk); 782 } 783 } else { 784 /* no previous measure. */ 785 srtt = m << 3; /* take the measured time to be rtt */ 786 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 787 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 788 tp->mdev_max_us = tp->rttvar_us; 789 tp->rtt_seq = tp->snd_nxt; 790 } 791 tp->srtt_us = max(1U, srtt); 792 } 793 794 static void tcp_update_pacing_rate(struct sock *sk) 795 { 796 const struct tcp_sock *tp = tcp_sk(sk); 797 u64 rate; 798 799 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 800 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 801 802 /* current rate is (cwnd * mss) / srtt 803 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 804 * In Congestion Avoidance phase, set it to 120 % the current rate. 805 * 806 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 807 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 808 * end of slow start and should slow down. 809 */ 810 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 811 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio; 812 else 813 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio; 814 815 rate *= max(tp->snd_cwnd, tp->packets_out); 816 817 if (likely(tp->srtt_us)) 818 do_div(rate, tp->srtt_us); 819 820 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 821 * without any lock. We want to make sure compiler wont store 822 * intermediate values in this location. 823 */ 824 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 825 sk->sk_max_pacing_rate)); 826 } 827 828 /* Calculate rto without backoff. This is the second half of Van Jacobson's 829 * routine referred to above. 830 */ 831 static void tcp_set_rto(struct sock *sk) 832 { 833 const struct tcp_sock *tp = tcp_sk(sk); 834 /* Old crap is replaced with new one. 8) 835 * 836 * More seriously: 837 * 1. If rtt variance happened to be less 50msec, it is hallucination. 838 * It cannot be less due to utterly erratic ACK generation made 839 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 840 * to do with delayed acks, because at cwnd>2 true delack timeout 841 * is invisible. Actually, Linux-2.4 also generates erratic 842 * ACKs in some circumstances. 843 */ 844 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 845 846 /* 2. Fixups made earlier cannot be right. 847 * If we do not estimate RTO correctly without them, 848 * all the algo is pure shit and should be replaced 849 * with correct one. It is exactly, which we pretend to do. 850 */ 851 852 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 853 * guarantees that rto is higher. 854 */ 855 tcp_bound_rto(sk); 856 } 857 858 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 859 { 860 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 861 862 if (!cwnd) 863 cwnd = TCP_INIT_CWND; 864 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 865 } 866 867 /* Take a notice that peer is sending D-SACKs */ 868 static void tcp_dsack_seen(struct tcp_sock *tp) 869 { 870 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 871 tp->rack.dsack_seen = 1; 872 } 873 874 /* It's reordering when higher sequence was delivered (i.e. sacked) before 875 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 876 * distance is approximated in full-mss packet distance ("reordering"). 877 */ 878 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 879 const int ts) 880 { 881 struct tcp_sock *tp = tcp_sk(sk); 882 const u32 mss = tp->mss_cache; 883 u32 fack, metric; 884 885 fack = tcp_highest_sack_seq(tp); 886 if (!before(low_seq, fack)) 887 return; 888 889 metric = fack - low_seq; 890 if ((metric > tp->reordering * mss) && mss) { 891 #if FASTRETRANS_DEBUG > 1 892 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 893 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 894 tp->reordering, 895 0, 896 tp->sacked_out, 897 tp->undo_marker ? tp->undo_retrans : 0); 898 #endif 899 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 900 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 901 } 902 903 tp->rack.reord = 1; 904 /* This exciting event is worth to be remembered. 8) */ 905 NET_INC_STATS(sock_net(sk), 906 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 907 } 908 909 /* This must be called before lost_out is incremented */ 910 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 911 { 912 if (!tp->retransmit_skb_hint || 913 before(TCP_SKB_CB(skb)->seq, 914 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 915 tp->retransmit_skb_hint = skb; 916 } 917 918 /* Sum the number of packets on the wire we have marked as lost. 919 * There are two cases we care about here: 920 * a) Packet hasn't been marked lost (nor retransmitted), 921 * and this is the first loss. 922 * b) Packet has been marked both lost and retransmitted, 923 * and this means we think it was lost again. 924 */ 925 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 926 { 927 __u8 sacked = TCP_SKB_CB(skb)->sacked; 928 929 if (!(sacked & TCPCB_LOST) || 930 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 931 tp->lost += tcp_skb_pcount(skb); 932 } 933 934 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 935 { 936 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 937 tcp_verify_retransmit_hint(tp, skb); 938 939 tp->lost_out += tcp_skb_pcount(skb); 940 tcp_sum_lost(tp, skb); 941 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 942 } 943 } 944 945 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 946 { 947 tcp_verify_retransmit_hint(tp, skb); 948 949 tcp_sum_lost(tp, skb); 950 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 951 tp->lost_out += tcp_skb_pcount(skb); 952 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 953 } 954 } 955 956 /* This procedure tags the retransmission queue when SACKs arrive. 957 * 958 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 959 * Packets in queue with these bits set are counted in variables 960 * sacked_out, retrans_out and lost_out, correspondingly. 961 * 962 * Valid combinations are: 963 * Tag InFlight Description 964 * 0 1 - orig segment is in flight. 965 * S 0 - nothing flies, orig reached receiver. 966 * L 0 - nothing flies, orig lost by net. 967 * R 2 - both orig and retransmit are in flight. 968 * L|R 1 - orig is lost, retransmit is in flight. 969 * S|R 1 - orig reached receiver, retrans is still in flight. 970 * (L|S|R is logically valid, it could occur when L|R is sacked, 971 * but it is equivalent to plain S and code short-curcuits it to S. 972 * L|S is logically invalid, it would mean -1 packet in flight 8)) 973 * 974 * These 6 states form finite state machine, controlled by the following events: 975 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 976 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 977 * 3. Loss detection event of two flavors: 978 * A. Scoreboard estimator decided the packet is lost. 979 * A'. Reno "three dupacks" marks head of queue lost. 980 * B. SACK arrives sacking SND.NXT at the moment, when the 981 * segment was retransmitted. 982 * 4. D-SACK added new rule: D-SACK changes any tag to S. 983 * 984 * It is pleasant to note, that state diagram turns out to be commutative, 985 * so that we are allowed not to be bothered by order of our actions, 986 * when multiple events arrive simultaneously. (see the function below). 987 * 988 * Reordering detection. 989 * -------------------- 990 * Reordering metric is maximal distance, which a packet can be displaced 991 * in packet stream. With SACKs we can estimate it: 992 * 993 * 1. SACK fills old hole and the corresponding segment was not 994 * ever retransmitted -> reordering. Alas, we cannot use it 995 * when segment was retransmitted. 996 * 2. The last flaw is solved with D-SACK. D-SACK arrives 997 * for retransmitted and already SACKed segment -> reordering.. 998 * Both of these heuristics are not used in Loss state, when we cannot 999 * account for retransmits accurately. 1000 * 1001 * SACK block validation. 1002 * ---------------------- 1003 * 1004 * SACK block range validation checks that the received SACK block fits to 1005 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1006 * Note that SND.UNA is not included to the range though being valid because 1007 * it means that the receiver is rather inconsistent with itself reporting 1008 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1009 * perfectly valid, however, in light of RFC2018 which explicitly states 1010 * that "SACK block MUST reflect the newest segment. Even if the newest 1011 * segment is going to be discarded ...", not that it looks very clever 1012 * in case of head skb. Due to potentional receiver driven attacks, we 1013 * choose to avoid immediate execution of a walk in write queue due to 1014 * reneging and defer head skb's loss recovery to standard loss recovery 1015 * procedure that will eventually trigger (nothing forbids us doing this). 1016 * 1017 * Implements also blockage to start_seq wrap-around. Problem lies in the 1018 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1019 * there's no guarantee that it will be before snd_nxt (n). The problem 1020 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1021 * wrap (s_w): 1022 * 1023 * <- outs wnd -> <- wrapzone -> 1024 * u e n u_w e_w s n_w 1025 * | | | | | | | 1026 * |<------------+------+----- TCP seqno space --------------+---------->| 1027 * ...-- <2^31 ->| |<--------... 1028 * ...---- >2^31 ------>| |<--------... 1029 * 1030 * Current code wouldn't be vulnerable but it's better still to discard such 1031 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1032 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1033 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1034 * equal to the ideal case (infinite seqno space without wrap caused issues). 1035 * 1036 * With D-SACK the lower bound is extended to cover sequence space below 1037 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1038 * again, D-SACK block must not to go across snd_una (for the same reason as 1039 * for the normal SACK blocks, explained above). But there all simplicity 1040 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1041 * fully below undo_marker they do not affect behavior in anyway and can 1042 * therefore be safely ignored. In rare cases (which are more or less 1043 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1044 * fragmentation and packet reordering past skb's retransmission. To consider 1045 * them correctly, the acceptable range must be extended even more though 1046 * the exact amount is rather hard to quantify. However, tp->max_window can 1047 * be used as an exaggerated estimate. 1048 */ 1049 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1050 u32 start_seq, u32 end_seq) 1051 { 1052 /* Too far in future, or reversed (interpretation is ambiguous) */ 1053 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1054 return false; 1055 1056 /* Nasty start_seq wrap-around check (see comments above) */ 1057 if (!before(start_seq, tp->snd_nxt)) 1058 return false; 1059 1060 /* In outstanding window? ...This is valid exit for D-SACKs too. 1061 * start_seq == snd_una is non-sensical (see comments above) 1062 */ 1063 if (after(start_seq, tp->snd_una)) 1064 return true; 1065 1066 if (!is_dsack || !tp->undo_marker) 1067 return false; 1068 1069 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1070 if (after(end_seq, tp->snd_una)) 1071 return false; 1072 1073 if (!before(start_seq, tp->undo_marker)) 1074 return true; 1075 1076 /* Too old */ 1077 if (!after(end_seq, tp->undo_marker)) 1078 return false; 1079 1080 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1081 * start_seq < undo_marker and end_seq >= undo_marker. 1082 */ 1083 return !before(start_seq, end_seq - tp->max_window); 1084 } 1085 1086 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1087 struct tcp_sack_block_wire *sp, int num_sacks, 1088 u32 prior_snd_una) 1089 { 1090 struct tcp_sock *tp = tcp_sk(sk); 1091 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1092 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1093 bool dup_sack = false; 1094 1095 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1096 dup_sack = true; 1097 tcp_dsack_seen(tp); 1098 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1099 } else if (num_sacks > 1) { 1100 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1101 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1102 1103 if (!after(end_seq_0, end_seq_1) && 1104 !before(start_seq_0, start_seq_1)) { 1105 dup_sack = true; 1106 tcp_dsack_seen(tp); 1107 NET_INC_STATS(sock_net(sk), 1108 LINUX_MIB_TCPDSACKOFORECV); 1109 } 1110 } 1111 1112 /* D-SACK for already forgotten data... Do dumb counting. */ 1113 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1114 !after(end_seq_0, prior_snd_una) && 1115 after(end_seq_0, tp->undo_marker)) 1116 tp->undo_retrans--; 1117 1118 return dup_sack; 1119 } 1120 1121 struct tcp_sacktag_state { 1122 u32 reord; 1123 /* Timestamps for earliest and latest never-retransmitted segment 1124 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1125 * but congestion control should still get an accurate delay signal. 1126 */ 1127 u64 first_sackt; 1128 u64 last_sackt; 1129 struct rate_sample *rate; 1130 int flag; 1131 unsigned int mss_now; 1132 }; 1133 1134 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1135 * the incoming SACK may not exactly match but we can find smaller MSS 1136 * aligned portion of it that matches. Therefore we might need to fragment 1137 * which may fail and creates some hassle (caller must handle error case 1138 * returns). 1139 * 1140 * FIXME: this could be merged to shift decision code 1141 */ 1142 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1143 u32 start_seq, u32 end_seq) 1144 { 1145 int err; 1146 bool in_sack; 1147 unsigned int pkt_len; 1148 unsigned int mss; 1149 1150 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1151 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1152 1153 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1154 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1155 mss = tcp_skb_mss(skb); 1156 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1157 1158 if (!in_sack) { 1159 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1160 if (pkt_len < mss) 1161 pkt_len = mss; 1162 } else { 1163 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1164 if (pkt_len < mss) 1165 return -EINVAL; 1166 } 1167 1168 /* Round if necessary so that SACKs cover only full MSSes 1169 * and/or the remaining small portion (if present) 1170 */ 1171 if (pkt_len > mss) { 1172 unsigned int new_len = (pkt_len / mss) * mss; 1173 if (!in_sack && new_len < pkt_len) 1174 new_len += mss; 1175 pkt_len = new_len; 1176 } 1177 1178 if (pkt_len >= skb->len && !in_sack) 1179 return 0; 1180 1181 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1182 pkt_len, mss, GFP_ATOMIC); 1183 if (err < 0) 1184 return err; 1185 } 1186 1187 return in_sack; 1188 } 1189 1190 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1191 static u8 tcp_sacktag_one(struct sock *sk, 1192 struct tcp_sacktag_state *state, u8 sacked, 1193 u32 start_seq, u32 end_seq, 1194 int dup_sack, int pcount, 1195 u64 xmit_time) 1196 { 1197 struct tcp_sock *tp = tcp_sk(sk); 1198 1199 /* Account D-SACK for retransmitted packet. */ 1200 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1201 if (tp->undo_marker && tp->undo_retrans > 0 && 1202 after(end_seq, tp->undo_marker)) 1203 tp->undo_retrans--; 1204 if ((sacked & TCPCB_SACKED_ACKED) && 1205 before(start_seq, state->reord)) 1206 state->reord = start_seq; 1207 } 1208 1209 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1210 if (!after(end_seq, tp->snd_una)) 1211 return sacked; 1212 1213 if (!(sacked & TCPCB_SACKED_ACKED)) { 1214 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1215 1216 if (sacked & TCPCB_SACKED_RETRANS) { 1217 /* If the segment is not tagged as lost, 1218 * we do not clear RETRANS, believing 1219 * that retransmission is still in flight. 1220 */ 1221 if (sacked & TCPCB_LOST) { 1222 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1223 tp->lost_out -= pcount; 1224 tp->retrans_out -= pcount; 1225 } 1226 } else { 1227 if (!(sacked & TCPCB_RETRANS)) { 1228 /* New sack for not retransmitted frame, 1229 * which was in hole. It is reordering. 1230 */ 1231 if (before(start_seq, 1232 tcp_highest_sack_seq(tp)) && 1233 before(start_seq, state->reord)) 1234 state->reord = start_seq; 1235 1236 if (!after(end_seq, tp->high_seq)) 1237 state->flag |= FLAG_ORIG_SACK_ACKED; 1238 if (state->first_sackt == 0) 1239 state->first_sackt = xmit_time; 1240 state->last_sackt = xmit_time; 1241 } 1242 1243 if (sacked & TCPCB_LOST) { 1244 sacked &= ~TCPCB_LOST; 1245 tp->lost_out -= pcount; 1246 } 1247 } 1248 1249 sacked |= TCPCB_SACKED_ACKED; 1250 state->flag |= FLAG_DATA_SACKED; 1251 tp->sacked_out += pcount; 1252 tp->delivered += pcount; /* Out-of-order packets delivered */ 1253 1254 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1255 if (tp->lost_skb_hint && 1256 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1257 tp->lost_cnt_hint += pcount; 1258 } 1259 1260 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1261 * frames and clear it. undo_retrans is decreased above, L|R frames 1262 * are accounted above as well. 1263 */ 1264 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1265 sacked &= ~TCPCB_SACKED_RETRANS; 1266 tp->retrans_out -= pcount; 1267 } 1268 1269 return sacked; 1270 } 1271 1272 /* Shift newly-SACKed bytes from this skb to the immediately previous 1273 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1274 */ 1275 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1276 struct sk_buff *skb, 1277 struct tcp_sacktag_state *state, 1278 unsigned int pcount, int shifted, int mss, 1279 bool dup_sack) 1280 { 1281 struct tcp_sock *tp = tcp_sk(sk); 1282 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1283 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1284 1285 BUG_ON(!pcount); 1286 1287 /* Adjust counters and hints for the newly sacked sequence 1288 * range but discard the return value since prev is already 1289 * marked. We must tag the range first because the seq 1290 * advancement below implicitly advances 1291 * tcp_highest_sack_seq() when skb is highest_sack. 1292 */ 1293 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1294 start_seq, end_seq, dup_sack, pcount, 1295 skb->skb_mstamp); 1296 tcp_rate_skb_delivered(sk, skb, state->rate); 1297 1298 if (skb == tp->lost_skb_hint) 1299 tp->lost_cnt_hint += pcount; 1300 1301 TCP_SKB_CB(prev)->end_seq += shifted; 1302 TCP_SKB_CB(skb)->seq += shifted; 1303 1304 tcp_skb_pcount_add(prev, pcount); 1305 BUG_ON(tcp_skb_pcount(skb) < pcount); 1306 tcp_skb_pcount_add(skb, -pcount); 1307 1308 /* When we're adding to gso_segs == 1, gso_size will be zero, 1309 * in theory this shouldn't be necessary but as long as DSACK 1310 * code can come after this skb later on it's better to keep 1311 * setting gso_size to something. 1312 */ 1313 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1314 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1315 1316 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1317 if (tcp_skb_pcount(skb) <= 1) 1318 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1319 1320 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1321 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1322 1323 if (skb->len > 0) { 1324 BUG_ON(!tcp_skb_pcount(skb)); 1325 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1326 return false; 1327 } 1328 1329 /* Whole SKB was eaten :-) */ 1330 1331 if (skb == tp->retransmit_skb_hint) 1332 tp->retransmit_skb_hint = prev; 1333 if (skb == tp->lost_skb_hint) { 1334 tp->lost_skb_hint = prev; 1335 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1336 } 1337 1338 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1339 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1340 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1341 TCP_SKB_CB(prev)->end_seq++; 1342 1343 if (skb == tcp_highest_sack(sk)) 1344 tcp_advance_highest_sack(sk, skb); 1345 1346 tcp_skb_collapse_tstamp(prev, skb); 1347 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1348 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1349 1350 tcp_rtx_queue_unlink_and_free(skb, sk); 1351 1352 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1353 1354 return true; 1355 } 1356 1357 /* I wish gso_size would have a bit more sane initialization than 1358 * something-or-zero which complicates things 1359 */ 1360 static int tcp_skb_seglen(const struct sk_buff *skb) 1361 { 1362 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1363 } 1364 1365 /* Shifting pages past head area doesn't work */ 1366 static int skb_can_shift(const struct sk_buff *skb) 1367 { 1368 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1369 } 1370 1371 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1372 * skb. 1373 */ 1374 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1375 struct tcp_sacktag_state *state, 1376 u32 start_seq, u32 end_seq, 1377 bool dup_sack) 1378 { 1379 struct tcp_sock *tp = tcp_sk(sk); 1380 struct sk_buff *prev; 1381 int mss; 1382 int pcount = 0; 1383 int len; 1384 int in_sack; 1385 1386 /* Normally R but no L won't result in plain S */ 1387 if (!dup_sack && 1388 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1389 goto fallback; 1390 if (!skb_can_shift(skb)) 1391 goto fallback; 1392 /* This frame is about to be dropped (was ACKed). */ 1393 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1394 goto fallback; 1395 1396 /* Can only happen with delayed DSACK + discard craziness */ 1397 prev = skb_rb_prev(skb); 1398 if (!prev) 1399 goto fallback; 1400 1401 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1402 goto fallback; 1403 1404 if (!tcp_skb_can_collapse_to(prev)) 1405 goto fallback; 1406 1407 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1408 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1409 1410 if (in_sack) { 1411 len = skb->len; 1412 pcount = tcp_skb_pcount(skb); 1413 mss = tcp_skb_seglen(skb); 1414 1415 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1416 * drop this restriction as unnecessary 1417 */ 1418 if (mss != tcp_skb_seglen(prev)) 1419 goto fallback; 1420 } else { 1421 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1422 goto noop; 1423 /* CHECKME: This is non-MSS split case only?, this will 1424 * cause skipped skbs due to advancing loop btw, original 1425 * has that feature too 1426 */ 1427 if (tcp_skb_pcount(skb) <= 1) 1428 goto noop; 1429 1430 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1431 if (!in_sack) { 1432 /* TODO: head merge to next could be attempted here 1433 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1434 * though it might not be worth of the additional hassle 1435 * 1436 * ...we can probably just fallback to what was done 1437 * previously. We could try merging non-SACKed ones 1438 * as well but it probably isn't going to buy off 1439 * because later SACKs might again split them, and 1440 * it would make skb timestamp tracking considerably 1441 * harder problem. 1442 */ 1443 goto fallback; 1444 } 1445 1446 len = end_seq - TCP_SKB_CB(skb)->seq; 1447 BUG_ON(len < 0); 1448 BUG_ON(len > skb->len); 1449 1450 /* MSS boundaries should be honoured or else pcount will 1451 * severely break even though it makes things bit trickier. 1452 * Optimize common case to avoid most of the divides 1453 */ 1454 mss = tcp_skb_mss(skb); 1455 1456 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1457 * drop this restriction as unnecessary 1458 */ 1459 if (mss != tcp_skb_seglen(prev)) 1460 goto fallback; 1461 1462 if (len == mss) { 1463 pcount = 1; 1464 } else if (len < mss) { 1465 goto noop; 1466 } else { 1467 pcount = len / mss; 1468 len = pcount * mss; 1469 } 1470 } 1471 1472 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1473 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1474 goto fallback; 1475 1476 if (!skb_shift(prev, skb, len)) 1477 goto fallback; 1478 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1479 goto out; 1480 1481 /* Hole filled allows collapsing with the next as well, this is very 1482 * useful when hole on every nth skb pattern happens 1483 */ 1484 skb = skb_rb_next(prev); 1485 if (!skb) 1486 goto out; 1487 1488 if (!skb_can_shift(skb) || 1489 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1490 (mss != tcp_skb_seglen(skb))) 1491 goto out; 1492 1493 len = skb->len; 1494 if (skb_shift(prev, skb, len)) { 1495 pcount += tcp_skb_pcount(skb); 1496 tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb), 1497 len, mss, 0); 1498 } 1499 1500 out: 1501 return prev; 1502 1503 noop: 1504 return skb; 1505 1506 fallback: 1507 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1508 return NULL; 1509 } 1510 1511 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1512 struct tcp_sack_block *next_dup, 1513 struct tcp_sacktag_state *state, 1514 u32 start_seq, u32 end_seq, 1515 bool dup_sack_in) 1516 { 1517 struct tcp_sock *tp = tcp_sk(sk); 1518 struct sk_buff *tmp; 1519 1520 skb_rbtree_walk_from(skb) { 1521 int in_sack = 0; 1522 bool dup_sack = dup_sack_in; 1523 1524 /* queue is in-order => we can short-circuit the walk early */ 1525 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1526 break; 1527 1528 if (next_dup && 1529 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1530 in_sack = tcp_match_skb_to_sack(sk, skb, 1531 next_dup->start_seq, 1532 next_dup->end_seq); 1533 if (in_sack > 0) 1534 dup_sack = true; 1535 } 1536 1537 /* skb reference here is a bit tricky to get right, since 1538 * shifting can eat and free both this skb and the next, 1539 * so not even _safe variant of the loop is enough. 1540 */ 1541 if (in_sack <= 0) { 1542 tmp = tcp_shift_skb_data(sk, skb, state, 1543 start_seq, end_seq, dup_sack); 1544 if (tmp) { 1545 if (tmp != skb) { 1546 skb = tmp; 1547 continue; 1548 } 1549 1550 in_sack = 0; 1551 } else { 1552 in_sack = tcp_match_skb_to_sack(sk, skb, 1553 start_seq, 1554 end_seq); 1555 } 1556 } 1557 1558 if (unlikely(in_sack < 0)) 1559 break; 1560 1561 if (in_sack) { 1562 TCP_SKB_CB(skb)->sacked = 1563 tcp_sacktag_one(sk, 1564 state, 1565 TCP_SKB_CB(skb)->sacked, 1566 TCP_SKB_CB(skb)->seq, 1567 TCP_SKB_CB(skb)->end_seq, 1568 dup_sack, 1569 tcp_skb_pcount(skb), 1570 skb->skb_mstamp); 1571 tcp_rate_skb_delivered(sk, skb, state->rate); 1572 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1573 list_del_init(&skb->tcp_tsorted_anchor); 1574 1575 if (!before(TCP_SKB_CB(skb)->seq, 1576 tcp_highest_sack_seq(tp))) 1577 tcp_advance_highest_sack(sk, skb); 1578 } 1579 } 1580 return skb; 1581 } 1582 1583 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, 1584 struct tcp_sacktag_state *state, 1585 u32 seq) 1586 { 1587 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1588 struct sk_buff *skb; 1589 1590 while (*p) { 1591 parent = *p; 1592 skb = rb_to_skb(parent); 1593 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1594 p = &parent->rb_left; 1595 continue; 1596 } 1597 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1598 p = &parent->rb_right; 1599 continue; 1600 } 1601 return skb; 1602 } 1603 return NULL; 1604 } 1605 1606 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1607 struct tcp_sacktag_state *state, 1608 u32 skip_to_seq) 1609 { 1610 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1611 return skb; 1612 1613 return tcp_sacktag_bsearch(sk, state, skip_to_seq); 1614 } 1615 1616 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1617 struct sock *sk, 1618 struct tcp_sack_block *next_dup, 1619 struct tcp_sacktag_state *state, 1620 u32 skip_to_seq) 1621 { 1622 if (!next_dup) 1623 return skb; 1624 1625 if (before(next_dup->start_seq, skip_to_seq)) { 1626 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1627 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1628 next_dup->start_seq, next_dup->end_seq, 1629 1); 1630 } 1631 1632 return skb; 1633 } 1634 1635 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1636 { 1637 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1638 } 1639 1640 static int 1641 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1642 u32 prior_snd_una, struct tcp_sacktag_state *state) 1643 { 1644 struct tcp_sock *tp = tcp_sk(sk); 1645 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1646 TCP_SKB_CB(ack_skb)->sacked); 1647 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1648 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1649 struct tcp_sack_block *cache; 1650 struct sk_buff *skb; 1651 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1652 int used_sacks; 1653 bool found_dup_sack = false; 1654 int i, j; 1655 int first_sack_index; 1656 1657 state->flag = 0; 1658 state->reord = tp->snd_nxt; 1659 1660 if (!tp->sacked_out) 1661 tcp_highest_sack_reset(sk); 1662 1663 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1664 num_sacks, prior_snd_una); 1665 if (found_dup_sack) { 1666 state->flag |= FLAG_DSACKING_ACK; 1667 tp->delivered++; /* A spurious retransmission is delivered */ 1668 } 1669 1670 /* Eliminate too old ACKs, but take into 1671 * account more or less fresh ones, they can 1672 * contain valid SACK info. 1673 */ 1674 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1675 return 0; 1676 1677 if (!tp->packets_out) 1678 goto out; 1679 1680 used_sacks = 0; 1681 first_sack_index = 0; 1682 for (i = 0; i < num_sacks; i++) { 1683 bool dup_sack = !i && found_dup_sack; 1684 1685 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1686 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1687 1688 if (!tcp_is_sackblock_valid(tp, dup_sack, 1689 sp[used_sacks].start_seq, 1690 sp[used_sacks].end_seq)) { 1691 int mib_idx; 1692 1693 if (dup_sack) { 1694 if (!tp->undo_marker) 1695 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1696 else 1697 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1698 } else { 1699 /* Don't count olds caused by ACK reordering */ 1700 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1701 !after(sp[used_sacks].end_seq, tp->snd_una)) 1702 continue; 1703 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1704 } 1705 1706 NET_INC_STATS(sock_net(sk), mib_idx); 1707 if (i == 0) 1708 first_sack_index = -1; 1709 continue; 1710 } 1711 1712 /* Ignore very old stuff early */ 1713 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1714 continue; 1715 1716 used_sacks++; 1717 } 1718 1719 /* order SACK blocks to allow in order walk of the retrans queue */ 1720 for (i = used_sacks - 1; i > 0; i--) { 1721 for (j = 0; j < i; j++) { 1722 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1723 swap(sp[j], sp[j + 1]); 1724 1725 /* Track where the first SACK block goes to */ 1726 if (j == first_sack_index) 1727 first_sack_index = j + 1; 1728 } 1729 } 1730 } 1731 1732 state->mss_now = tcp_current_mss(sk); 1733 skb = NULL; 1734 i = 0; 1735 1736 if (!tp->sacked_out) { 1737 /* It's already past, so skip checking against it */ 1738 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1739 } else { 1740 cache = tp->recv_sack_cache; 1741 /* Skip empty blocks in at head of the cache */ 1742 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1743 !cache->end_seq) 1744 cache++; 1745 } 1746 1747 while (i < used_sacks) { 1748 u32 start_seq = sp[i].start_seq; 1749 u32 end_seq = sp[i].end_seq; 1750 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1751 struct tcp_sack_block *next_dup = NULL; 1752 1753 if (found_dup_sack && ((i + 1) == first_sack_index)) 1754 next_dup = &sp[i + 1]; 1755 1756 /* Skip too early cached blocks */ 1757 while (tcp_sack_cache_ok(tp, cache) && 1758 !before(start_seq, cache->end_seq)) 1759 cache++; 1760 1761 /* Can skip some work by looking recv_sack_cache? */ 1762 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1763 after(end_seq, cache->start_seq)) { 1764 1765 /* Head todo? */ 1766 if (before(start_seq, cache->start_seq)) { 1767 skb = tcp_sacktag_skip(skb, sk, state, 1768 start_seq); 1769 skb = tcp_sacktag_walk(skb, sk, next_dup, 1770 state, 1771 start_seq, 1772 cache->start_seq, 1773 dup_sack); 1774 } 1775 1776 /* Rest of the block already fully processed? */ 1777 if (!after(end_seq, cache->end_seq)) 1778 goto advance_sp; 1779 1780 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1781 state, 1782 cache->end_seq); 1783 1784 /* ...tail remains todo... */ 1785 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1786 /* ...but better entrypoint exists! */ 1787 skb = tcp_highest_sack(sk); 1788 if (!skb) 1789 break; 1790 cache++; 1791 goto walk; 1792 } 1793 1794 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq); 1795 /* Check overlap against next cached too (past this one already) */ 1796 cache++; 1797 continue; 1798 } 1799 1800 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1801 skb = tcp_highest_sack(sk); 1802 if (!skb) 1803 break; 1804 } 1805 skb = tcp_sacktag_skip(skb, sk, state, start_seq); 1806 1807 walk: 1808 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1809 start_seq, end_seq, dup_sack); 1810 1811 advance_sp: 1812 i++; 1813 } 1814 1815 /* Clear the head of the cache sack blocks so we can skip it next time */ 1816 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1817 tp->recv_sack_cache[i].start_seq = 0; 1818 tp->recv_sack_cache[i].end_seq = 0; 1819 } 1820 for (j = 0; j < used_sacks; j++) 1821 tp->recv_sack_cache[i++] = sp[j]; 1822 1823 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 1824 tcp_check_sack_reordering(sk, state->reord, 0); 1825 1826 tcp_verify_left_out(tp); 1827 out: 1828 1829 #if FASTRETRANS_DEBUG > 0 1830 WARN_ON((int)tp->sacked_out < 0); 1831 WARN_ON((int)tp->lost_out < 0); 1832 WARN_ON((int)tp->retrans_out < 0); 1833 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1834 #endif 1835 return state->flag; 1836 } 1837 1838 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1839 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1840 */ 1841 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1842 { 1843 u32 holes; 1844 1845 holes = max(tp->lost_out, 1U); 1846 holes = min(holes, tp->packets_out); 1847 1848 if ((tp->sacked_out + holes) > tp->packets_out) { 1849 tp->sacked_out = tp->packets_out - holes; 1850 return true; 1851 } 1852 return false; 1853 } 1854 1855 /* If we receive more dupacks than we expected counting segments 1856 * in assumption of absent reordering, interpret this as reordering. 1857 * The only another reason could be bug in receiver TCP. 1858 */ 1859 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1860 { 1861 struct tcp_sock *tp = tcp_sk(sk); 1862 1863 if (!tcp_limit_reno_sacked(tp)) 1864 return; 1865 1866 tp->reordering = min_t(u32, tp->packets_out + addend, 1867 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 1868 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 1869 } 1870 1871 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1872 1873 static void tcp_add_reno_sack(struct sock *sk) 1874 { 1875 struct tcp_sock *tp = tcp_sk(sk); 1876 u32 prior_sacked = tp->sacked_out; 1877 1878 tp->sacked_out++; 1879 tcp_check_reno_reordering(sk, 0); 1880 if (tp->sacked_out > prior_sacked) 1881 tp->delivered++; /* Some out-of-order packet is delivered */ 1882 tcp_verify_left_out(tp); 1883 } 1884 1885 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1886 1887 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1888 { 1889 struct tcp_sock *tp = tcp_sk(sk); 1890 1891 if (acked > 0) { 1892 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1893 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1894 if (acked - 1 >= tp->sacked_out) 1895 tp->sacked_out = 0; 1896 else 1897 tp->sacked_out -= acked - 1; 1898 } 1899 tcp_check_reno_reordering(sk, acked); 1900 tcp_verify_left_out(tp); 1901 } 1902 1903 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1904 { 1905 tp->sacked_out = 0; 1906 } 1907 1908 void tcp_clear_retrans(struct tcp_sock *tp) 1909 { 1910 tp->retrans_out = 0; 1911 tp->lost_out = 0; 1912 tp->undo_marker = 0; 1913 tp->undo_retrans = -1; 1914 tp->sacked_out = 0; 1915 } 1916 1917 static inline void tcp_init_undo(struct tcp_sock *tp) 1918 { 1919 tp->undo_marker = tp->snd_una; 1920 /* Retransmission still in flight may cause DSACKs later. */ 1921 tp->undo_retrans = tp->retrans_out ? : -1; 1922 } 1923 1924 static bool tcp_is_rack(const struct sock *sk) 1925 { 1926 return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION; 1927 } 1928 1929 /* If we detect SACK reneging, forget all SACK information 1930 * and reset tags completely, otherwise preserve SACKs. If receiver 1931 * dropped its ofo queue, we will know this due to reneging detection. 1932 */ 1933 static void tcp_timeout_mark_lost(struct sock *sk) 1934 { 1935 struct tcp_sock *tp = tcp_sk(sk); 1936 struct sk_buff *skb, *head; 1937 bool is_reneg; /* is receiver reneging on SACKs? */ 1938 1939 head = tcp_rtx_queue_head(sk); 1940 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 1941 if (is_reneg) { 1942 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1943 tp->sacked_out = 0; 1944 /* Mark SACK reneging until we recover from this loss event. */ 1945 tp->is_sack_reneg = 1; 1946 } else if (tcp_is_reno(tp)) { 1947 tcp_reset_reno_sack(tp); 1948 } 1949 1950 skb = head; 1951 skb_rbtree_walk_from(skb) { 1952 if (is_reneg) 1953 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1954 else if (tcp_is_rack(sk) && skb != head && 1955 tcp_rack_skb_timeout(tp, skb, 0) > 0) 1956 continue; /* Don't mark recently sent ones lost yet */ 1957 tcp_mark_skb_lost(sk, skb); 1958 } 1959 tcp_verify_left_out(tp); 1960 tcp_clear_all_retrans_hints(tp); 1961 } 1962 1963 /* Enter Loss state. */ 1964 void tcp_enter_loss(struct sock *sk) 1965 { 1966 const struct inet_connection_sock *icsk = inet_csk(sk); 1967 struct tcp_sock *tp = tcp_sk(sk); 1968 struct net *net = sock_net(sk); 1969 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1970 1971 tcp_timeout_mark_lost(sk); 1972 1973 /* Reduce ssthresh if it has not yet been made inside this window. */ 1974 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1975 !after(tp->high_seq, tp->snd_una) || 1976 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1977 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1978 tp->prior_cwnd = tp->snd_cwnd; 1979 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1980 tcp_ca_event(sk, CA_EVENT_LOSS); 1981 tcp_init_undo(tp); 1982 } 1983 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1; 1984 tp->snd_cwnd_cnt = 0; 1985 tp->snd_cwnd_stamp = tcp_jiffies32; 1986 1987 /* Timeout in disordered state after receiving substantial DUPACKs 1988 * suggests that the degree of reordering is over-estimated. 1989 */ 1990 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1991 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 1992 tp->reordering = min_t(unsigned int, tp->reordering, 1993 net->ipv4.sysctl_tcp_reordering); 1994 tcp_set_ca_state(sk, TCP_CA_Loss); 1995 tp->high_seq = tp->snd_nxt; 1996 tcp_ecn_queue_cwr(tp); 1997 1998 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 1999 * loss recovery is underway except recurring timeout(s) on 2000 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2001 */ 2002 tp->frto = net->ipv4.sysctl_tcp_frto && 2003 (new_recovery || icsk->icsk_retransmits) && 2004 !inet_csk(sk)->icsk_mtup.probe_size; 2005 } 2006 2007 /* If ACK arrived pointing to a remembered SACK, it means that our 2008 * remembered SACKs do not reflect real state of receiver i.e. 2009 * receiver _host_ is heavily congested (or buggy). 2010 * 2011 * To avoid big spurious retransmission bursts due to transient SACK 2012 * scoreboard oddities that look like reneging, we give the receiver a 2013 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2014 * restore sanity to the SACK scoreboard. If the apparent reneging 2015 * persists until this RTO then we'll clear the SACK scoreboard. 2016 */ 2017 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2018 { 2019 if (flag & FLAG_SACK_RENEGING) { 2020 struct tcp_sock *tp = tcp_sk(sk); 2021 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2022 msecs_to_jiffies(10)); 2023 2024 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2025 delay, TCP_RTO_MAX); 2026 return true; 2027 } 2028 return false; 2029 } 2030 2031 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2032 * counter when SACK is enabled (without SACK, sacked_out is used for 2033 * that purpose). 2034 * 2035 * With reordering, holes may still be in flight, so RFC3517 recovery 2036 * uses pure sacked_out (total number of SACKed segments) even though 2037 * it violates the RFC that uses duplicate ACKs, often these are equal 2038 * but when e.g. out-of-window ACKs or packet duplication occurs, 2039 * they differ. Since neither occurs due to loss, TCP should really 2040 * ignore them. 2041 */ 2042 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2043 { 2044 return tp->sacked_out + 1; 2045 } 2046 2047 /* Linux NewReno/SACK/ECN state machine. 2048 * -------------------------------------- 2049 * 2050 * "Open" Normal state, no dubious events, fast path. 2051 * "Disorder" In all the respects it is "Open", 2052 * but requires a bit more attention. It is entered when 2053 * we see some SACKs or dupacks. It is split of "Open" 2054 * mainly to move some processing from fast path to slow one. 2055 * "CWR" CWND was reduced due to some Congestion Notification event. 2056 * It can be ECN, ICMP source quench, local device congestion. 2057 * "Recovery" CWND was reduced, we are fast-retransmitting. 2058 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2059 * 2060 * tcp_fastretrans_alert() is entered: 2061 * - each incoming ACK, if state is not "Open" 2062 * - when arrived ACK is unusual, namely: 2063 * * SACK 2064 * * Duplicate ACK. 2065 * * ECN ECE. 2066 * 2067 * Counting packets in flight is pretty simple. 2068 * 2069 * in_flight = packets_out - left_out + retrans_out 2070 * 2071 * packets_out is SND.NXT-SND.UNA counted in packets. 2072 * 2073 * retrans_out is number of retransmitted segments. 2074 * 2075 * left_out is number of segments left network, but not ACKed yet. 2076 * 2077 * left_out = sacked_out + lost_out 2078 * 2079 * sacked_out: Packets, which arrived to receiver out of order 2080 * and hence not ACKed. With SACKs this number is simply 2081 * amount of SACKed data. Even without SACKs 2082 * it is easy to give pretty reliable estimate of this number, 2083 * counting duplicate ACKs. 2084 * 2085 * lost_out: Packets lost by network. TCP has no explicit 2086 * "loss notification" feedback from network (for now). 2087 * It means that this number can be only _guessed_. 2088 * Actually, it is the heuristics to predict lossage that 2089 * distinguishes different algorithms. 2090 * 2091 * F.e. after RTO, when all the queue is considered as lost, 2092 * lost_out = packets_out and in_flight = retrans_out. 2093 * 2094 * Essentially, we have now a few algorithms detecting 2095 * lost packets. 2096 * 2097 * If the receiver supports SACK: 2098 * 2099 * RFC6675/3517: It is the conventional algorithm. A packet is 2100 * considered lost if the number of higher sequence packets 2101 * SACKed is greater than or equal the DUPACK thoreshold 2102 * (reordering). This is implemented in tcp_mark_head_lost and 2103 * tcp_update_scoreboard. 2104 * 2105 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2106 * (2017-) that checks timing instead of counting DUPACKs. 2107 * Essentially a packet is considered lost if it's not S/ACKed 2108 * after RTT + reordering_window, where both metrics are 2109 * dynamically measured and adjusted. This is implemented in 2110 * tcp_rack_mark_lost. 2111 * 2112 * If the receiver does not support SACK: 2113 * 2114 * NewReno (RFC6582): in Recovery we assume that one segment 2115 * is lost (classic Reno). While we are in Recovery and 2116 * a partial ACK arrives, we assume that one more packet 2117 * is lost (NewReno). This heuristics are the same in NewReno 2118 * and SACK. 2119 * 2120 * Really tricky (and requiring careful tuning) part of algorithm 2121 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2122 * The first determines the moment _when_ we should reduce CWND and, 2123 * hence, slow down forward transmission. In fact, it determines the moment 2124 * when we decide that hole is caused by loss, rather than by a reorder. 2125 * 2126 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2127 * holes, caused by lost packets. 2128 * 2129 * And the most logically complicated part of algorithm is undo 2130 * heuristics. We detect false retransmits due to both too early 2131 * fast retransmit (reordering) and underestimated RTO, analyzing 2132 * timestamps and D-SACKs. When we detect that some segments were 2133 * retransmitted by mistake and CWND reduction was wrong, we undo 2134 * window reduction and abort recovery phase. This logic is hidden 2135 * inside several functions named tcp_try_undo_<something>. 2136 */ 2137 2138 /* This function decides, when we should leave Disordered state 2139 * and enter Recovery phase, reducing congestion window. 2140 * 2141 * Main question: may we further continue forward transmission 2142 * with the same cwnd? 2143 */ 2144 static bool tcp_time_to_recover(struct sock *sk, int flag) 2145 { 2146 struct tcp_sock *tp = tcp_sk(sk); 2147 2148 /* Trick#1: The loss is proven. */ 2149 if (tp->lost_out) 2150 return true; 2151 2152 /* Not-A-Trick#2 : Classic rule... */ 2153 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2154 return true; 2155 2156 return false; 2157 } 2158 2159 /* Detect loss in event "A" above by marking head of queue up as lost. 2160 * For non-SACK(Reno) senders, the first "packets" number of segments 2161 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2162 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2163 * the maximum SACKed segments to pass before reaching this limit. 2164 */ 2165 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2166 { 2167 struct tcp_sock *tp = tcp_sk(sk); 2168 struct sk_buff *skb; 2169 int cnt, oldcnt, lost; 2170 unsigned int mss; 2171 /* Use SACK to deduce losses of new sequences sent during recovery */ 2172 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2173 2174 WARN_ON(packets > tp->packets_out); 2175 skb = tp->lost_skb_hint; 2176 if (skb) { 2177 /* Head already handled? */ 2178 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2179 return; 2180 cnt = tp->lost_cnt_hint; 2181 } else { 2182 skb = tcp_rtx_queue_head(sk); 2183 cnt = 0; 2184 } 2185 2186 skb_rbtree_walk_from(skb) { 2187 /* TODO: do this better */ 2188 /* this is not the most efficient way to do this... */ 2189 tp->lost_skb_hint = skb; 2190 tp->lost_cnt_hint = cnt; 2191 2192 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2193 break; 2194 2195 oldcnt = cnt; 2196 if (tcp_is_reno(tp) || 2197 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2198 cnt += tcp_skb_pcount(skb); 2199 2200 if (cnt > packets) { 2201 if (tcp_is_sack(tp) || 2202 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2203 (oldcnt >= packets)) 2204 break; 2205 2206 mss = tcp_skb_mss(skb); 2207 /* If needed, chop off the prefix to mark as lost. */ 2208 lost = (packets - oldcnt) * mss; 2209 if (lost < skb->len && 2210 tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2211 lost, mss, GFP_ATOMIC) < 0) 2212 break; 2213 cnt = packets; 2214 } 2215 2216 tcp_skb_mark_lost(tp, skb); 2217 2218 if (mark_head) 2219 break; 2220 } 2221 tcp_verify_left_out(tp); 2222 } 2223 2224 /* Account newly detected lost packet(s) */ 2225 2226 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2227 { 2228 struct tcp_sock *tp = tcp_sk(sk); 2229 2230 if (tcp_is_sack(tp)) { 2231 int sacked_upto = tp->sacked_out - tp->reordering; 2232 if (sacked_upto >= 0) 2233 tcp_mark_head_lost(sk, sacked_upto, 0); 2234 else if (fast_rexmit) 2235 tcp_mark_head_lost(sk, 1, 1); 2236 } 2237 } 2238 2239 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2240 { 2241 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2242 before(tp->rx_opt.rcv_tsecr, when); 2243 } 2244 2245 /* skb is spurious retransmitted if the returned timestamp echo 2246 * reply is prior to the skb transmission time 2247 */ 2248 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2249 const struct sk_buff *skb) 2250 { 2251 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2252 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2253 } 2254 2255 /* Nothing was retransmitted or returned timestamp is less 2256 * than timestamp of the first retransmission. 2257 */ 2258 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2259 { 2260 return !tp->retrans_stamp || 2261 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2262 } 2263 2264 /* Undo procedures. */ 2265 2266 /* We can clear retrans_stamp when there are no retransmissions in the 2267 * window. It would seem that it is trivially available for us in 2268 * tp->retrans_out, however, that kind of assumptions doesn't consider 2269 * what will happen if errors occur when sending retransmission for the 2270 * second time. ...It could the that such segment has only 2271 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2272 * the head skb is enough except for some reneging corner cases that 2273 * are not worth the effort. 2274 * 2275 * Main reason for all this complexity is the fact that connection dying 2276 * time now depends on the validity of the retrans_stamp, in particular, 2277 * that successive retransmissions of a segment must not advance 2278 * retrans_stamp under any conditions. 2279 */ 2280 static bool tcp_any_retrans_done(const struct sock *sk) 2281 { 2282 const struct tcp_sock *tp = tcp_sk(sk); 2283 struct sk_buff *skb; 2284 2285 if (tp->retrans_out) 2286 return true; 2287 2288 skb = tcp_rtx_queue_head(sk); 2289 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2290 return true; 2291 2292 return false; 2293 } 2294 2295 static void DBGUNDO(struct sock *sk, const char *msg) 2296 { 2297 #if FASTRETRANS_DEBUG > 1 2298 struct tcp_sock *tp = tcp_sk(sk); 2299 struct inet_sock *inet = inet_sk(sk); 2300 2301 if (sk->sk_family == AF_INET) { 2302 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2303 msg, 2304 &inet->inet_daddr, ntohs(inet->inet_dport), 2305 tp->snd_cwnd, tcp_left_out(tp), 2306 tp->snd_ssthresh, tp->prior_ssthresh, 2307 tp->packets_out); 2308 } 2309 #if IS_ENABLED(CONFIG_IPV6) 2310 else if (sk->sk_family == AF_INET6) { 2311 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2312 msg, 2313 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2314 tp->snd_cwnd, tcp_left_out(tp), 2315 tp->snd_ssthresh, tp->prior_ssthresh, 2316 tp->packets_out); 2317 } 2318 #endif 2319 #endif 2320 } 2321 2322 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2323 { 2324 struct tcp_sock *tp = tcp_sk(sk); 2325 2326 if (unmark_loss) { 2327 struct sk_buff *skb; 2328 2329 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2330 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2331 } 2332 tp->lost_out = 0; 2333 tcp_clear_all_retrans_hints(tp); 2334 } 2335 2336 if (tp->prior_ssthresh) { 2337 const struct inet_connection_sock *icsk = inet_csk(sk); 2338 2339 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2340 2341 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2342 tp->snd_ssthresh = tp->prior_ssthresh; 2343 tcp_ecn_withdraw_cwr(tp); 2344 } 2345 } 2346 tp->snd_cwnd_stamp = tcp_jiffies32; 2347 tp->undo_marker = 0; 2348 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2349 } 2350 2351 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2352 { 2353 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2354 } 2355 2356 /* People celebrate: "We love our President!" */ 2357 static bool tcp_try_undo_recovery(struct sock *sk) 2358 { 2359 struct tcp_sock *tp = tcp_sk(sk); 2360 2361 if (tcp_may_undo(tp)) { 2362 int mib_idx; 2363 2364 /* Happy end! We did not retransmit anything 2365 * or our original transmission succeeded. 2366 */ 2367 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2368 tcp_undo_cwnd_reduction(sk, false); 2369 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2370 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2371 else 2372 mib_idx = LINUX_MIB_TCPFULLUNDO; 2373 2374 NET_INC_STATS(sock_net(sk), mib_idx); 2375 } else if (tp->rack.reo_wnd_persist) { 2376 tp->rack.reo_wnd_persist--; 2377 } 2378 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2379 /* Hold old state until something *above* high_seq 2380 * is ACKed. For Reno it is MUST to prevent false 2381 * fast retransmits (RFC2582). SACK TCP is safe. */ 2382 if (!tcp_any_retrans_done(sk)) 2383 tp->retrans_stamp = 0; 2384 return true; 2385 } 2386 tcp_set_ca_state(sk, TCP_CA_Open); 2387 tp->is_sack_reneg = 0; 2388 return false; 2389 } 2390 2391 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2392 static bool tcp_try_undo_dsack(struct sock *sk) 2393 { 2394 struct tcp_sock *tp = tcp_sk(sk); 2395 2396 if (tp->undo_marker && !tp->undo_retrans) { 2397 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2398 tp->rack.reo_wnd_persist + 1); 2399 DBGUNDO(sk, "D-SACK"); 2400 tcp_undo_cwnd_reduction(sk, false); 2401 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2402 return true; 2403 } 2404 return false; 2405 } 2406 2407 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2408 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2409 { 2410 struct tcp_sock *tp = tcp_sk(sk); 2411 2412 if (frto_undo || tcp_may_undo(tp)) { 2413 tcp_undo_cwnd_reduction(sk, true); 2414 2415 DBGUNDO(sk, "partial loss"); 2416 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2417 if (frto_undo) 2418 NET_INC_STATS(sock_net(sk), 2419 LINUX_MIB_TCPSPURIOUSRTOS); 2420 inet_csk(sk)->icsk_retransmits = 0; 2421 if (frto_undo || tcp_is_sack(tp)) { 2422 tcp_set_ca_state(sk, TCP_CA_Open); 2423 tp->is_sack_reneg = 0; 2424 } 2425 return true; 2426 } 2427 return false; 2428 } 2429 2430 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2431 * It computes the number of packets to send (sndcnt) based on packets newly 2432 * delivered: 2433 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2434 * cwnd reductions across a full RTT. 2435 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2436 * But when the retransmits are acked without further losses, PRR 2437 * slow starts cwnd up to ssthresh to speed up the recovery. 2438 */ 2439 static void tcp_init_cwnd_reduction(struct sock *sk) 2440 { 2441 struct tcp_sock *tp = tcp_sk(sk); 2442 2443 tp->high_seq = tp->snd_nxt; 2444 tp->tlp_high_seq = 0; 2445 tp->snd_cwnd_cnt = 0; 2446 tp->prior_cwnd = tp->snd_cwnd; 2447 tp->prr_delivered = 0; 2448 tp->prr_out = 0; 2449 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2450 tcp_ecn_queue_cwr(tp); 2451 } 2452 2453 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2454 { 2455 struct tcp_sock *tp = tcp_sk(sk); 2456 int sndcnt = 0; 2457 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2458 2459 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2460 return; 2461 2462 tp->prr_delivered += newly_acked_sacked; 2463 if (delta < 0) { 2464 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2465 tp->prior_cwnd - 1; 2466 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2467 } else if ((flag & FLAG_RETRANS_DATA_ACKED) && 2468 !(flag & FLAG_LOST_RETRANS)) { 2469 sndcnt = min_t(int, delta, 2470 max_t(int, tp->prr_delivered - tp->prr_out, 2471 newly_acked_sacked) + 1); 2472 } else { 2473 sndcnt = min(delta, newly_acked_sacked); 2474 } 2475 /* Force a fast retransmit upon entering fast recovery */ 2476 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2477 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2478 } 2479 2480 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2481 { 2482 struct tcp_sock *tp = tcp_sk(sk); 2483 2484 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2485 return; 2486 2487 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2488 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2489 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2490 tp->snd_cwnd = tp->snd_ssthresh; 2491 tp->snd_cwnd_stamp = tcp_jiffies32; 2492 } 2493 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2494 } 2495 2496 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2497 void tcp_enter_cwr(struct sock *sk) 2498 { 2499 struct tcp_sock *tp = tcp_sk(sk); 2500 2501 tp->prior_ssthresh = 0; 2502 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2503 tp->undo_marker = 0; 2504 tcp_init_cwnd_reduction(sk); 2505 tcp_set_ca_state(sk, TCP_CA_CWR); 2506 } 2507 } 2508 EXPORT_SYMBOL(tcp_enter_cwr); 2509 2510 static void tcp_try_keep_open(struct sock *sk) 2511 { 2512 struct tcp_sock *tp = tcp_sk(sk); 2513 int state = TCP_CA_Open; 2514 2515 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2516 state = TCP_CA_Disorder; 2517 2518 if (inet_csk(sk)->icsk_ca_state != state) { 2519 tcp_set_ca_state(sk, state); 2520 tp->high_seq = tp->snd_nxt; 2521 } 2522 } 2523 2524 static void tcp_try_to_open(struct sock *sk, int flag) 2525 { 2526 struct tcp_sock *tp = tcp_sk(sk); 2527 2528 tcp_verify_left_out(tp); 2529 2530 if (!tcp_any_retrans_done(sk)) 2531 tp->retrans_stamp = 0; 2532 2533 if (flag & FLAG_ECE) 2534 tcp_enter_cwr(sk); 2535 2536 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2537 tcp_try_keep_open(sk); 2538 } 2539 } 2540 2541 static void tcp_mtup_probe_failed(struct sock *sk) 2542 { 2543 struct inet_connection_sock *icsk = inet_csk(sk); 2544 2545 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2546 icsk->icsk_mtup.probe_size = 0; 2547 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2548 } 2549 2550 static void tcp_mtup_probe_success(struct sock *sk) 2551 { 2552 struct tcp_sock *tp = tcp_sk(sk); 2553 struct inet_connection_sock *icsk = inet_csk(sk); 2554 2555 /* FIXME: breaks with very large cwnd */ 2556 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2557 tp->snd_cwnd = tp->snd_cwnd * 2558 tcp_mss_to_mtu(sk, tp->mss_cache) / 2559 icsk->icsk_mtup.probe_size; 2560 tp->snd_cwnd_cnt = 0; 2561 tp->snd_cwnd_stamp = tcp_jiffies32; 2562 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2563 2564 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2565 icsk->icsk_mtup.probe_size = 0; 2566 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2567 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2568 } 2569 2570 /* Do a simple retransmit without using the backoff mechanisms in 2571 * tcp_timer. This is used for path mtu discovery. 2572 * The socket is already locked here. 2573 */ 2574 void tcp_simple_retransmit(struct sock *sk) 2575 { 2576 const struct inet_connection_sock *icsk = inet_csk(sk); 2577 struct tcp_sock *tp = tcp_sk(sk); 2578 struct sk_buff *skb; 2579 unsigned int mss = tcp_current_mss(sk); 2580 2581 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2582 if (tcp_skb_seglen(skb) > mss && 2583 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2584 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2585 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2586 tp->retrans_out -= tcp_skb_pcount(skb); 2587 } 2588 tcp_skb_mark_lost_uncond_verify(tp, skb); 2589 } 2590 } 2591 2592 tcp_clear_retrans_hints_partial(tp); 2593 2594 if (!tp->lost_out) 2595 return; 2596 2597 if (tcp_is_reno(tp)) 2598 tcp_limit_reno_sacked(tp); 2599 2600 tcp_verify_left_out(tp); 2601 2602 /* Don't muck with the congestion window here. 2603 * Reason is that we do not increase amount of _data_ 2604 * in network, but units changed and effective 2605 * cwnd/ssthresh really reduced now. 2606 */ 2607 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2608 tp->high_seq = tp->snd_nxt; 2609 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2610 tp->prior_ssthresh = 0; 2611 tp->undo_marker = 0; 2612 tcp_set_ca_state(sk, TCP_CA_Loss); 2613 } 2614 tcp_xmit_retransmit_queue(sk); 2615 } 2616 EXPORT_SYMBOL(tcp_simple_retransmit); 2617 2618 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2619 { 2620 struct tcp_sock *tp = tcp_sk(sk); 2621 int mib_idx; 2622 2623 if (tcp_is_reno(tp)) 2624 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2625 else 2626 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2627 2628 NET_INC_STATS(sock_net(sk), mib_idx); 2629 2630 tp->prior_ssthresh = 0; 2631 tcp_init_undo(tp); 2632 2633 if (!tcp_in_cwnd_reduction(sk)) { 2634 if (!ece_ack) 2635 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2636 tcp_init_cwnd_reduction(sk); 2637 } 2638 tcp_set_ca_state(sk, TCP_CA_Recovery); 2639 } 2640 2641 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2642 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2643 */ 2644 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack, 2645 int *rexmit) 2646 { 2647 struct tcp_sock *tp = tcp_sk(sk); 2648 bool recovered = !before(tp->snd_una, tp->high_seq); 2649 2650 if ((flag & FLAG_SND_UNA_ADVANCED) && 2651 tcp_try_undo_loss(sk, false)) 2652 return; 2653 2654 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2655 /* Step 3.b. A timeout is spurious if not all data are 2656 * lost, i.e., never-retransmitted data are (s)acked. 2657 */ 2658 if ((flag & FLAG_ORIG_SACK_ACKED) && 2659 tcp_try_undo_loss(sk, true)) 2660 return; 2661 2662 if (after(tp->snd_nxt, tp->high_seq)) { 2663 if (flag & FLAG_DATA_SACKED || is_dupack) 2664 tp->frto = 0; /* Step 3.a. loss was real */ 2665 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2666 tp->high_seq = tp->snd_nxt; 2667 /* Step 2.b. Try send new data (but deferred until cwnd 2668 * is updated in tcp_ack()). Otherwise fall back to 2669 * the conventional recovery. 2670 */ 2671 if (!tcp_write_queue_empty(sk) && 2672 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2673 *rexmit = REXMIT_NEW; 2674 return; 2675 } 2676 tp->frto = 0; 2677 } 2678 } 2679 2680 if (recovered) { 2681 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2682 tcp_try_undo_recovery(sk); 2683 return; 2684 } 2685 if (tcp_is_reno(tp)) { 2686 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2687 * delivered. Lower inflight to clock out (re)tranmissions. 2688 */ 2689 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2690 tcp_add_reno_sack(sk); 2691 else if (flag & FLAG_SND_UNA_ADVANCED) 2692 tcp_reset_reno_sack(tp); 2693 } 2694 *rexmit = REXMIT_LOST; 2695 } 2696 2697 /* Undo during fast recovery after partial ACK. */ 2698 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una) 2699 { 2700 struct tcp_sock *tp = tcp_sk(sk); 2701 2702 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2703 /* Plain luck! Hole if filled with delayed 2704 * packet, rather than with a retransmit. Check reordering. 2705 */ 2706 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2707 2708 /* We are getting evidence that the reordering degree is higher 2709 * than we realized. If there are no retransmits out then we 2710 * can undo. Otherwise we clock out new packets but do not 2711 * mark more packets lost or retransmit more. 2712 */ 2713 if (tp->retrans_out) 2714 return true; 2715 2716 if (!tcp_any_retrans_done(sk)) 2717 tp->retrans_stamp = 0; 2718 2719 DBGUNDO(sk, "partial recovery"); 2720 tcp_undo_cwnd_reduction(sk, true); 2721 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2722 tcp_try_keep_open(sk); 2723 return true; 2724 } 2725 return false; 2726 } 2727 2728 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2729 { 2730 struct tcp_sock *tp = tcp_sk(sk); 2731 2732 if (tcp_rtx_queue_empty(sk)) 2733 return; 2734 2735 if (unlikely(tcp_is_reno(tp))) { 2736 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2737 } else if (tcp_is_rack(sk)) { 2738 u32 prior_retrans = tp->retrans_out; 2739 2740 tcp_rack_mark_lost(sk); 2741 if (prior_retrans > tp->retrans_out) 2742 *ack_flag |= FLAG_LOST_RETRANS; 2743 } 2744 } 2745 2746 static bool tcp_force_fast_retransmit(struct sock *sk) 2747 { 2748 struct tcp_sock *tp = tcp_sk(sk); 2749 2750 return after(tcp_highest_sack_seq(tp), 2751 tp->snd_una + tp->reordering * tp->mss_cache); 2752 } 2753 2754 /* Process an event, which can update packets-in-flight not trivially. 2755 * Main goal of this function is to calculate new estimate for left_out, 2756 * taking into account both packets sitting in receiver's buffer and 2757 * packets lost by network. 2758 * 2759 * Besides that it updates the congestion state when packet loss or ECN 2760 * is detected. But it does not reduce the cwnd, it is done by the 2761 * congestion control later. 2762 * 2763 * It does _not_ decide what to send, it is made in function 2764 * tcp_xmit_retransmit_queue(). 2765 */ 2766 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2767 bool is_dupack, int *ack_flag, int *rexmit) 2768 { 2769 struct inet_connection_sock *icsk = inet_csk(sk); 2770 struct tcp_sock *tp = tcp_sk(sk); 2771 int fast_rexmit = 0, flag = *ack_flag; 2772 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2773 tcp_force_fast_retransmit(sk)); 2774 2775 if (!tp->packets_out && tp->sacked_out) 2776 tp->sacked_out = 0; 2777 2778 /* Now state machine starts. 2779 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2780 if (flag & FLAG_ECE) 2781 tp->prior_ssthresh = 0; 2782 2783 /* B. In all the states check for reneging SACKs. */ 2784 if (tcp_check_sack_reneging(sk, flag)) 2785 return; 2786 2787 /* C. Check consistency of the current state. */ 2788 tcp_verify_left_out(tp); 2789 2790 /* D. Check state exit conditions. State can be terminated 2791 * when high_seq is ACKed. */ 2792 if (icsk->icsk_ca_state == TCP_CA_Open) { 2793 WARN_ON(tp->retrans_out != 0); 2794 tp->retrans_stamp = 0; 2795 } else if (!before(tp->snd_una, tp->high_seq)) { 2796 switch (icsk->icsk_ca_state) { 2797 case TCP_CA_CWR: 2798 /* CWR is to be held something *above* high_seq 2799 * is ACKed for CWR bit to reach receiver. */ 2800 if (tp->snd_una != tp->high_seq) { 2801 tcp_end_cwnd_reduction(sk); 2802 tcp_set_ca_state(sk, TCP_CA_Open); 2803 } 2804 break; 2805 2806 case TCP_CA_Recovery: 2807 if (tcp_is_reno(tp)) 2808 tcp_reset_reno_sack(tp); 2809 if (tcp_try_undo_recovery(sk)) 2810 return; 2811 tcp_end_cwnd_reduction(sk); 2812 break; 2813 } 2814 } 2815 2816 /* E. Process state. */ 2817 switch (icsk->icsk_ca_state) { 2818 case TCP_CA_Recovery: 2819 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2820 if (tcp_is_reno(tp) && is_dupack) 2821 tcp_add_reno_sack(sk); 2822 } else { 2823 if (tcp_try_undo_partial(sk, prior_snd_una)) 2824 return; 2825 /* Partial ACK arrived. Force fast retransmit. */ 2826 do_lost = tcp_is_reno(tp) || 2827 tcp_force_fast_retransmit(sk); 2828 } 2829 if (tcp_try_undo_dsack(sk)) { 2830 tcp_try_keep_open(sk); 2831 return; 2832 } 2833 tcp_identify_packet_loss(sk, ack_flag); 2834 break; 2835 case TCP_CA_Loss: 2836 tcp_process_loss(sk, flag, is_dupack, rexmit); 2837 tcp_identify_packet_loss(sk, ack_flag); 2838 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2839 (*ack_flag & FLAG_LOST_RETRANS))) 2840 return; 2841 /* Change state if cwnd is undone or retransmits are lost */ 2842 /* fall through */ 2843 default: 2844 if (tcp_is_reno(tp)) { 2845 if (flag & FLAG_SND_UNA_ADVANCED) 2846 tcp_reset_reno_sack(tp); 2847 if (is_dupack) 2848 tcp_add_reno_sack(sk); 2849 } 2850 2851 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2852 tcp_try_undo_dsack(sk); 2853 2854 tcp_identify_packet_loss(sk, ack_flag); 2855 if (!tcp_time_to_recover(sk, flag)) { 2856 tcp_try_to_open(sk, flag); 2857 return; 2858 } 2859 2860 /* MTU probe failure: don't reduce cwnd */ 2861 if (icsk->icsk_ca_state < TCP_CA_CWR && 2862 icsk->icsk_mtup.probe_size && 2863 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2864 tcp_mtup_probe_failed(sk); 2865 /* Restores the reduction we did in tcp_mtup_probe() */ 2866 tp->snd_cwnd++; 2867 tcp_simple_retransmit(sk); 2868 return; 2869 } 2870 2871 /* Otherwise enter Recovery state */ 2872 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2873 fast_rexmit = 1; 2874 } 2875 2876 if (!tcp_is_rack(sk) && do_lost) 2877 tcp_update_scoreboard(sk, fast_rexmit); 2878 *rexmit = REXMIT_LOST; 2879 } 2880 2881 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 2882 { 2883 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ; 2884 struct tcp_sock *tp = tcp_sk(sk); 2885 2886 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 2887 /* If the remote keeps returning delayed ACKs, eventually 2888 * the min filter would pick it up and overestimate the 2889 * prop. delay when it expires. Skip suspected delayed ACKs. 2890 */ 2891 return; 2892 } 2893 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 2894 rtt_us ? : jiffies_to_usecs(1)); 2895 } 2896 2897 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2898 long seq_rtt_us, long sack_rtt_us, 2899 long ca_rtt_us, struct rate_sample *rs) 2900 { 2901 const struct tcp_sock *tp = tcp_sk(sk); 2902 2903 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2904 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2905 * Karn's algorithm forbids taking RTT if some retransmitted data 2906 * is acked (RFC6298). 2907 */ 2908 if (seq_rtt_us < 0) 2909 seq_rtt_us = sack_rtt_us; 2910 2911 /* RTTM Rule: A TSecr value received in a segment is used to 2912 * update the averaged RTT measurement only if the segment 2913 * acknowledges some new data, i.e., only if it advances the 2914 * left edge of the send window. 2915 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2916 */ 2917 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2918 flag & FLAG_ACKED) { 2919 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 2920 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 2921 2922 seq_rtt_us = ca_rtt_us = delta_us; 2923 } 2924 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 2925 if (seq_rtt_us < 0) 2926 return false; 2927 2928 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2929 * always taken together with ACK, SACK, or TS-opts. Any negative 2930 * values will be skipped with the seq_rtt_us < 0 check above. 2931 */ 2932 tcp_update_rtt_min(sk, ca_rtt_us, flag); 2933 tcp_rtt_estimator(sk, seq_rtt_us); 2934 tcp_set_rto(sk); 2935 2936 /* RFC6298: only reset backoff on valid RTT measurement. */ 2937 inet_csk(sk)->icsk_backoff = 0; 2938 return true; 2939 } 2940 2941 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2942 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2943 { 2944 struct rate_sample rs; 2945 long rtt_us = -1L; 2946 2947 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 2948 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 2949 2950 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 2951 } 2952 2953 2954 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2955 { 2956 const struct inet_connection_sock *icsk = inet_csk(sk); 2957 2958 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2959 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 2960 } 2961 2962 /* Restart timer after forward progress on connection. 2963 * RFC2988 recommends to restart timer to now+rto. 2964 */ 2965 void tcp_rearm_rto(struct sock *sk) 2966 { 2967 const struct inet_connection_sock *icsk = inet_csk(sk); 2968 struct tcp_sock *tp = tcp_sk(sk); 2969 2970 /* If the retrans timer is currently being used by Fast Open 2971 * for SYN-ACK retrans purpose, stay put. 2972 */ 2973 if (tp->fastopen_rsk) 2974 return; 2975 2976 if (!tp->packets_out) { 2977 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2978 } else { 2979 u32 rto = inet_csk(sk)->icsk_rto; 2980 /* Offset the time elapsed after installing regular RTO */ 2981 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 2982 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2983 s64 delta_us = tcp_rto_delta_us(sk); 2984 /* delta_us may not be positive if the socket is locked 2985 * when the retrans timer fires and is rescheduled. 2986 */ 2987 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 2988 } 2989 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 2990 TCP_RTO_MAX); 2991 } 2992 } 2993 2994 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 2995 static void tcp_set_xmit_timer(struct sock *sk) 2996 { 2997 if (!tcp_schedule_loss_probe(sk, true)) 2998 tcp_rearm_rto(sk); 2999 } 3000 3001 /* If we get here, the whole TSO packet has not been acked. */ 3002 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3003 { 3004 struct tcp_sock *tp = tcp_sk(sk); 3005 u32 packets_acked; 3006 3007 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3008 3009 packets_acked = tcp_skb_pcount(skb); 3010 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3011 return 0; 3012 packets_acked -= tcp_skb_pcount(skb); 3013 3014 if (packets_acked) { 3015 BUG_ON(tcp_skb_pcount(skb) == 0); 3016 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3017 } 3018 3019 return packets_acked; 3020 } 3021 3022 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3023 u32 prior_snd_una) 3024 { 3025 const struct skb_shared_info *shinfo; 3026 3027 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3028 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3029 return; 3030 3031 shinfo = skb_shinfo(skb); 3032 if (!before(shinfo->tskey, prior_snd_una) && 3033 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3034 tcp_skb_tsorted_save(skb) { 3035 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3036 } tcp_skb_tsorted_restore(skb); 3037 } 3038 } 3039 3040 /* Remove acknowledged frames from the retransmission queue. If our packet 3041 * is before the ack sequence we can discard it as it's confirmed to have 3042 * arrived at the other end. 3043 */ 3044 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack, 3045 u32 prior_snd_una, 3046 struct tcp_sacktag_state *sack) 3047 { 3048 const struct inet_connection_sock *icsk = inet_csk(sk); 3049 u64 first_ackt, last_ackt; 3050 struct tcp_sock *tp = tcp_sk(sk); 3051 u32 prior_sacked = tp->sacked_out; 3052 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3053 struct sk_buff *skb, *next; 3054 bool fully_acked = true; 3055 long sack_rtt_us = -1L; 3056 long seq_rtt_us = -1L; 3057 long ca_rtt_us = -1L; 3058 u32 pkts_acked = 0; 3059 u32 last_in_flight = 0; 3060 bool rtt_update; 3061 int flag = 0; 3062 3063 first_ackt = 0; 3064 3065 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3066 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3067 const u32 start_seq = scb->seq; 3068 u8 sacked = scb->sacked; 3069 u32 acked_pcount; 3070 3071 tcp_ack_tstamp(sk, skb, prior_snd_una); 3072 3073 /* Determine how many packets and what bytes were acked, tso and else */ 3074 if (after(scb->end_seq, tp->snd_una)) { 3075 if (tcp_skb_pcount(skb) == 1 || 3076 !after(tp->snd_una, scb->seq)) 3077 break; 3078 3079 acked_pcount = tcp_tso_acked(sk, skb); 3080 if (!acked_pcount) 3081 break; 3082 fully_acked = false; 3083 } else { 3084 acked_pcount = tcp_skb_pcount(skb); 3085 } 3086 3087 if (unlikely(sacked & TCPCB_RETRANS)) { 3088 if (sacked & TCPCB_SACKED_RETRANS) 3089 tp->retrans_out -= acked_pcount; 3090 flag |= FLAG_RETRANS_DATA_ACKED; 3091 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3092 last_ackt = skb->skb_mstamp; 3093 WARN_ON_ONCE(last_ackt == 0); 3094 if (!first_ackt) 3095 first_ackt = last_ackt; 3096 3097 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3098 if (before(start_seq, reord)) 3099 reord = start_seq; 3100 if (!after(scb->end_seq, tp->high_seq)) 3101 flag |= FLAG_ORIG_SACK_ACKED; 3102 } 3103 3104 if (sacked & TCPCB_SACKED_ACKED) { 3105 tp->sacked_out -= acked_pcount; 3106 } else if (tcp_is_sack(tp)) { 3107 tp->delivered += acked_pcount; 3108 if (!tcp_skb_spurious_retrans(tp, skb)) 3109 tcp_rack_advance(tp, sacked, scb->end_seq, 3110 skb->skb_mstamp); 3111 } 3112 if (sacked & TCPCB_LOST) 3113 tp->lost_out -= acked_pcount; 3114 3115 tp->packets_out -= acked_pcount; 3116 pkts_acked += acked_pcount; 3117 tcp_rate_skb_delivered(sk, skb, sack->rate); 3118 3119 /* Initial outgoing SYN's get put onto the write_queue 3120 * just like anything else we transmit. It is not 3121 * true data, and if we misinform our callers that 3122 * this ACK acks real data, we will erroneously exit 3123 * connection startup slow start one packet too 3124 * quickly. This is severely frowned upon behavior. 3125 */ 3126 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3127 flag |= FLAG_DATA_ACKED; 3128 } else { 3129 flag |= FLAG_SYN_ACKED; 3130 tp->retrans_stamp = 0; 3131 } 3132 3133 if (!fully_acked) 3134 break; 3135 3136 next = skb_rb_next(skb); 3137 if (unlikely(skb == tp->retransmit_skb_hint)) 3138 tp->retransmit_skb_hint = NULL; 3139 if (unlikely(skb == tp->lost_skb_hint)) 3140 tp->lost_skb_hint = NULL; 3141 tcp_rtx_queue_unlink_and_free(skb, sk); 3142 } 3143 3144 if (!skb) 3145 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3146 3147 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3148 tp->snd_up = tp->snd_una; 3149 3150 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3151 flag |= FLAG_SACK_RENEGING; 3152 3153 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3154 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3155 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3156 3157 if (pkts_acked == 1 && last_in_flight < tp->mss_cache && 3158 last_in_flight && !prior_sacked && fully_acked && 3159 sack->rate->prior_delivered + 1 == tp->delivered && 3160 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3161 /* Conservatively mark a delayed ACK. It's typically 3162 * from a lone runt packet over the round trip to 3163 * a receiver w/o out-of-order or CE events. 3164 */ 3165 flag |= FLAG_ACK_MAYBE_DELAYED; 3166 } 3167 } 3168 if (sack->first_sackt) { 3169 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3170 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3171 } 3172 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3173 ca_rtt_us, sack->rate); 3174 3175 if (flag & FLAG_ACKED) { 3176 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3177 if (unlikely(icsk->icsk_mtup.probe_size && 3178 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3179 tcp_mtup_probe_success(sk); 3180 } 3181 3182 if (tcp_is_reno(tp)) { 3183 tcp_remove_reno_sacks(sk, pkts_acked); 3184 } else { 3185 int delta; 3186 3187 /* Non-retransmitted hole got filled? That's reordering */ 3188 if (before(reord, prior_fack)) 3189 tcp_check_sack_reordering(sk, reord, 0); 3190 3191 delta = prior_sacked - tp->sacked_out; 3192 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3193 } 3194 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3195 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) { 3196 /* Do not re-arm RTO if the sack RTT is measured from data sent 3197 * after when the head was last (re)transmitted. Otherwise the 3198 * timeout may continue to extend in loss recovery. 3199 */ 3200 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3201 } 3202 3203 if (icsk->icsk_ca_ops->pkts_acked) { 3204 struct ack_sample sample = { .pkts_acked = pkts_acked, 3205 .rtt_us = sack->rate->rtt_us, 3206 .in_flight = last_in_flight }; 3207 3208 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3209 } 3210 3211 #if FASTRETRANS_DEBUG > 0 3212 WARN_ON((int)tp->sacked_out < 0); 3213 WARN_ON((int)tp->lost_out < 0); 3214 WARN_ON((int)tp->retrans_out < 0); 3215 if (!tp->packets_out && tcp_is_sack(tp)) { 3216 icsk = inet_csk(sk); 3217 if (tp->lost_out) { 3218 pr_debug("Leak l=%u %d\n", 3219 tp->lost_out, icsk->icsk_ca_state); 3220 tp->lost_out = 0; 3221 } 3222 if (tp->sacked_out) { 3223 pr_debug("Leak s=%u %d\n", 3224 tp->sacked_out, icsk->icsk_ca_state); 3225 tp->sacked_out = 0; 3226 } 3227 if (tp->retrans_out) { 3228 pr_debug("Leak r=%u %d\n", 3229 tp->retrans_out, icsk->icsk_ca_state); 3230 tp->retrans_out = 0; 3231 } 3232 } 3233 #endif 3234 return flag; 3235 } 3236 3237 static void tcp_ack_probe(struct sock *sk) 3238 { 3239 struct inet_connection_sock *icsk = inet_csk(sk); 3240 struct sk_buff *head = tcp_send_head(sk); 3241 const struct tcp_sock *tp = tcp_sk(sk); 3242 3243 /* Was it a usable window open? */ 3244 if (!head) 3245 return; 3246 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3247 icsk->icsk_backoff = 0; 3248 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3249 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3250 * This function is not for random using! 3251 */ 3252 } else { 3253 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3254 3255 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3256 when, TCP_RTO_MAX); 3257 } 3258 } 3259 3260 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3261 { 3262 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3263 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3264 } 3265 3266 /* Decide wheather to run the increase function of congestion control. */ 3267 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3268 { 3269 /* If reordering is high then always grow cwnd whenever data is 3270 * delivered regardless of its ordering. Otherwise stay conservative 3271 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3272 * new SACK or ECE mark may first advance cwnd here and later reduce 3273 * cwnd in tcp_fastretrans_alert() based on more states. 3274 */ 3275 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3276 return flag & FLAG_FORWARD_PROGRESS; 3277 3278 return flag & FLAG_DATA_ACKED; 3279 } 3280 3281 /* The "ultimate" congestion control function that aims to replace the rigid 3282 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3283 * It's called toward the end of processing an ACK with precise rate 3284 * information. All transmission or retransmission are delayed afterwards. 3285 */ 3286 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3287 int flag, const struct rate_sample *rs) 3288 { 3289 const struct inet_connection_sock *icsk = inet_csk(sk); 3290 3291 if (icsk->icsk_ca_ops->cong_control) { 3292 icsk->icsk_ca_ops->cong_control(sk, rs); 3293 return; 3294 } 3295 3296 if (tcp_in_cwnd_reduction(sk)) { 3297 /* Reduce cwnd if state mandates */ 3298 tcp_cwnd_reduction(sk, acked_sacked, flag); 3299 } else if (tcp_may_raise_cwnd(sk, flag)) { 3300 /* Advance cwnd if state allows */ 3301 tcp_cong_avoid(sk, ack, acked_sacked); 3302 } 3303 tcp_update_pacing_rate(sk); 3304 } 3305 3306 /* Check that window update is acceptable. 3307 * The function assumes that snd_una<=ack<=snd_next. 3308 */ 3309 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3310 const u32 ack, const u32 ack_seq, 3311 const u32 nwin) 3312 { 3313 return after(ack, tp->snd_una) || 3314 after(ack_seq, tp->snd_wl1) || 3315 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3316 } 3317 3318 /* If we update tp->snd_una, also update tp->bytes_acked */ 3319 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3320 { 3321 u32 delta = ack - tp->snd_una; 3322 3323 sock_owned_by_me((struct sock *)tp); 3324 tp->bytes_acked += delta; 3325 tp->snd_una = ack; 3326 } 3327 3328 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3329 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3330 { 3331 u32 delta = seq - tp->rcv_nxt; 3332 3333 sock_owned_by_me((struct sock *)tp); 3334 tp->bytes_received += delta; 3335 tp->rcv_nxt = seq; 3336 } 3337 3338 /* Update our send window. 3339 * 3340 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3341 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3342 */ 3343 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3344 u32 ack_seq) 3345 { 3346 struct tcp_sock *tp = tcp_sk(sk); 3347 int flag = 0; 3348 u32 nwin = ntohs(tcp_hdr(skb)->window); 3349 3350 if (likely(!tcp_hdr(skb)->syn)) 3351 nwin <<= tp->rx_opt.snd_wscale; 3352 3353 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3354 flag |= FLAG_WIN_UPDATE; 3355 tcp_update_wl(tp, ack_seq); 3356 3357 if (tp->snd_wnd != nwin) { 3358 tp->snd_wnd = nwin; 3359 3360 /* Note, it is the only place, where 3361 * fast path is recovered for sending TCP. 3362 */ 3363 tp->pred_flags = 0; 3364 tcp_fast_path_check(sk); 3365 3366 if (!tcp_write_queue_empty(sk)) 3367 tcp_slow_start_after_idle_check(sk); 3368 3369 if (nwin > tp->max_window) { 3370 tp->max_window = nwin; 3371 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3372 } 3373 } 3374 } 3375 3376 tcp_snd_una_update(tp, ack); 3377 3378 return flag; 3379 } 3380 3381 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3382 u32 *last_oow_ack_time) 3383 { 3384 if (*last_oow_ack_time) { 3385 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3386 3387 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) { 3388 NET_INC_STATS(net, mib_idx); 3389 return true; /* rate-limited: don't send yet! */ 3390 } 3391 } 3392 3393 *last_oow_ack_time = tcp_jiffies32; 3394 3395 return false; /* not rate-limited: go ahead, send dupack now! */ 3396 } 3397 3398 /* Return true if we're currently rate-limiting out-of-window ACKs and 3399 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3400 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3401 * attacks that send repeated SYNs or ACKs for the same connection. To 3402 * do this, we do not send a duplicate SYNACK or ACK if the remote 3403 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3404 */ 3405 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3406 int mib_idx, u32 *last_oow_ack_time) 3407 { 3408 /* Data packets without SYNs are not likely part of an ACK loop. */ 3409 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3410 !tcp_hdr(skb)->syn) 3411 return false; 3412 3413 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3414 } 3415 3416 /* RFC 5961 7 [ACK Throttling] */ 3417 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3418 { 3419 /* unprotected vars, we dont care of overwrites */ 3420 static u32 challenge_timestamp; 3421 static unsigned int challenge_count; 3422 struct tcp_sock *tp = tcp_sk(sk); 3423 struct net *net = sock_net(sk); 3424 u32 count, now; 3425 3426 /* First check our per-socket dupack rate limit. */ 3427 if (__tcp_oow_rate_limited(net, 3428 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3429 &tp->last_oow_ack_time)) 3430 return; 3431 3432 /* Then check host-wide RFC 5961 rate limit. */ 3433 now = jiffies / HZ; 3434 if (now != challenge_timestamp) { 3435 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit; 3436 u32 half = (ack_limit + 1) >> 1; 3437 3438 challenge_timestamp = now; 3439 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit)); 3440 } 3441 count = READ_ONCE(challenge_count); 3442 if (count > 0) { 3443 WRITE_ONCE(challenge_count, count - 1); 3444 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3445 tcp_send_ack(sk); 3446 } 3447 } 3448 3449 static void tcp_store_ts_recent(struct tcp_sock *tp) 3450 { 3451 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3452 tp->rx_opt.ts_recent_stamp = get_seconds(); 3453 } 3454 3455 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3456 { 3457 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3458 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3459 * extra check below makes sure this can only happen 3460 * for pure ACK frames. -DaveM 3461 * 3462 * Not only, also it occurs for expired timestamps. 3463 */ 3464 3465 if (tcp_paws_check(&tp->rx_opt, 0)) 3466 tcp_store_ts_recent(tp); 3467 } 3468 } 3469 3470 /* This routine deals with acks during a TLP episode. 3471 * We mark the end of a TLP episode on receiving TLP dupack or when 3472 * ack is after tlp_high_seq. 3473 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3474 */ 3475 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3476 { 3477 struct tcp_sock *tp = tcp_sk(sk); 3478 3479 if (before(ack, tp->tlp_high_seq)) 3480 return; 3481 3482 if (flag & FLAG_DSACKING_ACK) { 3483 /* This DSACK means original and TLP probe arrived; no loss */ 3484 tp->tlp_high_seq = 0; 3485 } else if (after(ack, tp->tlp_high_seq)) { 3486 /* ACK advances: there was a loss, so reduce cwnd. Reset 3487 * tlp_high_seq in tcp_init_cwnd_reduction() 3488 */ 3489 tcp_init_cwnd_reduction(sk); 3490 tcp_set_ca_state(sk, TCP_CA_CWR); 3491 tcp_end_cwnd_reduction(sk); 3492 tcp_try_keep_open(sk); 3493 NET_INC_STATS(sock_net(sk), 3494 LINUX_MIB_TCPLOSSPROBERECOVERY); 3495 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3496 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3497 /* Pure dupack: original and TLP probe arrived; no loss */ 3498 tp->tlp_high_seq = 0; 3499 } 3500 } 3501 3502 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3503 { 3504 const struct inet_connection_sock *icsk = inet_csk(sk); 3505 3506 if (icsk->icsk_ca_ops->in_ack_event) 3507 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3508 } 3509 3510 /* Congestion control has updated the cwnd already. So if we're in 3511 * loss recovery then now we do any new sends (for FRTO) or 3512 * retransmits (for CA_Loss or CA_recovery) that make sense. 3513 */ 3514 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3515 { 3516 struct tcp_sock *tp = tcp_sk(sk); 3517 3518 if (rexmit == REXMIT_NONE) 3519 return; 3520 3521 if (unlikely(rexmit == 2)) { 3522 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3523 TCP_NAGLE_OFF); 3524 if (after(tp->snd_nxt, tp->high_seq)) 3525 return; 3526 tp->frto = 0; 3527 } 3528 tcp_xmit_retransmit_queue(sk); 3529 } 3530 3531 /* Returns the number of packets newly acked or sacked by the current ACK */ 3532 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3533 { 3534 const struct net *net = sock_net(sk); 3535 struct tcp_sock *tp = tcp_sk(sk); 3536 u32 delivered; 3537 3538 delivered = tp->delivered - prior_delivered; 3539 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3540 if (flag & FLAG_ECE) { 3541 tp->delivered_ce += delivered; 3542 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3543 } 3544 return delivered; 3545 } 3546 3547 /* This routine deals with incoming acks, but not outgoing ones. */ 3548 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3549 { 3550 struct inet_connection_sock *icsk = inet_csk(sk); 3551 struct tcp_sock *tp = tcp_sk(sk); 3552 struct tcp_sacktag_state sack_state; 3553 struct rate_sample rs = { .prior_delivered = 0 }; 3554 u32 prior_snd_una = tp->snd_una; 3555 bool is_sack_reneg = tp->is_sack_reneg; 3556 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3557 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3558 bool is_dupack = false; 3559 int prior_packets = tp->packets_out; 3560 u32 delivered = tp->delivered; 3561 u32 lost = tp->lost; 3562 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3563 u32 prior_fack; 3564 3565 sack_state.first_sackt = 0; 3566 sack_state.rate = &rs; 3567 3568 /* We very likely will need to access rtx queue. */ 3569 prefetch(sk->tcp_rtx_queue.rb_node); 3570 3571 /* If the ack is older than previous acks 3572 * then we can probably ignore it. 3573 */ 3574 if (before(ack, prior_snd_una)) { 3575 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3576 if (before(ack, prior_snd_una - tp->max_window)) { 3577 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3578 tcp_send_challenge_ack(sk, skb); 3579 return -1; 3580 } 3581 goto old_ack; 3582 } 3583 3584 /* If the ack includes data we haven't sent yet, discard 3585 * this segment (RFC793 Section 3.9). 3586 */ 3587 if (after(ack, tp->snd_nxt)) 3588 goto invalid_ack; 3589 3590 if (after(ack, prior_snd_una)) { 3591 flag |= FLAG_SND_UNA_ADVANCED; 3592 icsk->icsk_retransmits = 0; 3593 3594 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3595 if (static_branch_unlikely(&clean_acked_data_enabled)) 3596 if (icsk->icsk_clean_acked) 3597 icsk->icsk_clean_acked(sk, ack); 3598 #endif 3599 } 3600 3601 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3602 rs.prior_in_flight = tcp_packets_in_flight(tp); 3603 3604 /* ts_recent update must be made after we are sure that the packet 3605 * is in window. 3606 */ 3607 if (flag & FLAG_UPDATE_TS_RECENT) 3608 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3609 3610 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3611 /* Window is constant, pure forward advance. 3612 * No more checks are required. 3613 * Note, we use the fact that SND.UNA>=SND.WL2. 3614 */ 3615 tcp_update_wl(tp, ack_seq); 3616 tcp_snd_una_update(tp, ack); 3617 flag |= FLAG_WIN_UPDATE; 3618 3619 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3620 3621 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3622 } else { 3623 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3624 3625 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3626 flag |= FLAG_DATA; 3627 else 3628 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3629 3630 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3631 3632 if (TCP_SKB_CB(skb)->sacked) 3633 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3634 &sack_state); 3635 3636 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3637 flag |= FLAG_ECE; 3638 ack_ev_flags |= CA_ACK_ECE; 3639 } 3640 3641 if (flag & FLAG_WIN_UPDATE) 3642 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3643 3644 tcp_in_ack_event(sk, ack_ev_flags); 3645 } 3646 3647 /* We passed data and got it acked, remove any soft error 3648 * log. Something worked... 3649 */ 3650 sk->sk_err_soft = 0; 3651 icsk->icsk_probes_out = 0; 3652 tp->rcv_tstamp = tcp_jiffies32; 3653 if (!prior_packets) 3654 goto no_queue; 3655 3656 /* See if we can take anything off of the retransmit queue. */ 3657 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state); 3658 3659 tcp_rack_update_reo_wnd(sk, &rs); 3660 3661 if (tp->tlp_high_seq) 3662 tcp_process_tlp_ack(sk, ack, flag); 3663 /* If needed, reset TLP/RTO timer; RACK may later override this. */ 3664 if (flag & FLAG_SET_XMIT_TIMER) 3665 tcp_set_xmit_timer(sk); 3666 3667 if (tcp_ack_is_dubious(sk, flag)) { 3668 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3669 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3670 &rexmit); 3671 } 3672 3673 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3674 sk_dst_confirm(sk); 3675 3676 delivered = tcp_newly_delivered(sk, delivered, flag); 3677 lost = tp->lost - lost; /* freshly marked lost */ 3678 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3679 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3680 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3681 tcp_xmit_recovery(sk, rexmit); 3682 return 1; 3683 3684 no_queue: 3685 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3686 if (flag & FLAG_DSACKING_ACK) { 3687 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3688 &rexmit); 3689 tcp_newly_delivered(sk, delivered, flag); 3690 } 3691 /* If this ack opens up a zero window, clear backoff. It was 3692 * being used to time the probes, and is probably far higher than 3693 * it needs to be for normal retransmission. 3694 */ 3695 tcp_ack_probe(sk); 3696 3697 if (tp->tlp_high_seq) 3698 tcp_process_tlp_ack(sk, ack, flag); 3699 return 1; 3700 3701 invalid_ack: 3702 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3703 return -1; 3704 3705 old_ack: 3706 /* If data was SACKed, tag it and see if we should send more data. 3707 * If data was DSACKed, see if we can undo a cwnd reduction. 3708 */ 3709 if (TCP_SKB_CB(skb)->sacked) { 3710 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3711 &sack_state); 3712 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3713 &rexmit); 3714 tcp_newly_delivered(sk, delivered, flag); 3715 tcp_xmit_recovery(sk, rexmit); 3716 } 3717 3718 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3719 return 0; 3720 } 3721 3722 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3723 bool syn, struct tcp_fastopen_cookie *foc, 3724 bool exp_opt) 3725 { 3726 /* Valid only in SYN or SYN-ACK with an even length. */ 3727 if (!foc || !syn || len < 0 || (len & 1)) 3728 return; 3729 3730 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3731 len <= TCP_FASTOPEN_COOKIE_MAX) 3732 memcpy(foc->val, cookie, len); 3733 else if (len != 0) 3734 len = -1; 3735 foc->len = len; 3736 foc->exp = exp_opt; 3737 } 3738 3739 static void smc_parse_options(const struct tcphdr *th, 3740 struct tcp_options_received *opt_rx, 3741 const unsigned char *ptr, 3742 int opsize) 3743 { 3744 #if IS_ENABLED(CONFIG_SMC) 3745 if (static_branch_unlikely(&tcp_have_smc)) { 3746 if (th->syn && !(opsize & 1) && 3747 opsize >= TCPOLEN_EXP_SMC_BASE && 3748 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) 3749 opt_rx->smc_ok = 1; 3750 } 3751 #endif 3752 } 3753 3754 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3755 * But, this can also be called on packets in the established flow when 3756 * the fast version below fails. 3757 */ 3758 void tcp_parse_options(const struct net *net, 3759 const struct sk_buff *skb, 3760 struct tcp_options_received *opt_rx, int estab, 3761 struct tcp_fastopen_cookie *foc) 3762 { 3763 const unsigned char *ptr; 3764 const struct tcphdr *th = tcp_hdr(skb); 3765 int length = (th->doff * 4) - sizeof(struct tcphdr); 3766 3767 ptr = (const unsigned char *)(th + 1); 3768 opt_rx->saw_tstamp = 0; 3769 3770 while (length > 0) { 3771 int opcode = *ptr++; 3772 int opsize; 3773 3774 switch (opcode) { 3775 case TCPOPT_EOL: 3776 return; 3777 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3778 length--; 3779 continue; 3780 default: 3781 opsize = *ptr++; 3782 if (opsize < 2) /* "silly options" */ 3783 return; 3784 if (opsize > length) 3785 return; /* don't parse partial options */ 3786 switch (opcode) { 3787 case TCPOPT_MSS: 3788 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3789 u16 in_mss = get_unaligned_be16(ptr); 3790 if (in_mss) { 3791 if (opt_rx->user_mss && 3792 opt_rx->user_mss < in_mss) 3793 in_mss = opt_rx->user_mss; 3794 opt_rx->mss_clamp = in_mss; 3795 } 3796 } 3797 break; 3798 case TCPOPT_WINDOW: 3799 if (opsize == TCPOLEN_WINDOW && th->syn && 3800 !estab && net->ipv4.sysctl_tcp_window_scaling) { 3801 __u8 snd_wscale = *(__u8 *)ptr; 3802 opt_rx->wscale_ok = 1; 3803 if (snd_wscale > TCP_MAX_WSCALE) { 3804 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 3805 __func__, 3806 snd_wscale, 3807 TCP_MAX_WSCALE); 3808 snd_wscale = TCP_MAX_WSCALE; 3809 } 3810 opt_rx->snd_wscale = snd_wscale; 3811 } 3812 break; 3813 case TCPOPT_TIMESTAMP: 3814 if ((opsize == TCPOLEN_TIMESTAMP) && 3815 ((estab && opt_rx->tstamp_ok) || 3816 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 3817 opt_rx->saw_tstamp = 1; 3818 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3819 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3820 } 3821 break; 3822 case TCPOPT_SACK_PERM: 3823 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3824 !estab && net->ipv4.sysctl_tcp_sack) { 3825 opt_rx->sack_ok = TCP_SACK_SEEN; 3826 tcp_sack_reset(opt_rx); 3827 } 3828 break; 3829 3830 case TCPOPT_SACK: 3831 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3832 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3833 opt_rx->sack_ok) { 3834 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3835 } 3836 break; 3837 #ifdef CONFIG_TCP_MD5SIG 3838 case TCPOPT_MD5SIG: 3839 /* 3840 * The MD5 Hash has already been 3841 * checked (see tcp_v{4,6}_do_rcv()). 3842 */ 3843 break; 3844 #endif 3845 case TCPOPT_FASTOPEN: 3846 tcp_parse_fastopen_option( 3847 opsize - TCPOLEN_FASTOPEN_BASE, 3848 ptr, th->syn, foc, false); 3849 break; 3850 3851 case TCPOPT_EXP: 3852 /* Fast Open option shares code 254 using a 3853 * 16 bits magic number. 3854 */ 3855 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3856 get_unaligned_be16(ptr) == 3857 TCPOPT_FASTOPEN_MAGIC) 3858 tcp_parse_fastopen_option(opsize - 3859 TCPOLEN_EXP_FASTOPEN_BASE, 3860 ptr + 2, th->syn, foc, true); 3861 else 3862 smc_parse_options(th, opt_rx, ptr, 3863 opsize); 3864 break; 3865 3866 } 3867 ptr += opsize-2; 3868 length -= opsize; 3869 } 3870 } 3871 } 3872 EXPORT_SYMBOL(tcp_parse_options); 3873 3874 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3875 { 3876 const __be32 *ptr = (const __be32 *)(th + 1); 3877 3878 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3879 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3880 tp->rx_opt.saw_tstamp = 1; 3881 ++ptr; 3882 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3883 ++ptr; 3884 if (*ptr) 3885 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3886 else 3887 tp->rx_opt.rcv_tsecr = 0; 3888 return true; 3889 } 3890 return false; 3891 } 3892 3893 /* Fast parse options. This hopes to only see timestamps. 3894 * If it is wrong it falls back on tcp_parse_options(). 3895 */ 3896 static bool tcp_fast_parse_options(const struct net *net, 3897 const struct sk_buff *skb, 3898 const struct tcphdr *th, struct tcp_sock *tp) 3899 { 3900 /* In the spirit of fast parsing, compare doff directly to constant 3901 * values. Because equality is used, short doff can be ignored here. 3902 */ 3903 if (th->doff == (sizeof(*th) / 4)) { 3904 tp->rx_opt.saw_tstamp = 0; 3905 return false; 3906 } else if (tp->rx_opt.tstamp_ok && 3907 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3908 if (tcp_parse_aligned_timestamp(tp, th)) 3909 return true; 3910 } 3911 3912 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 3913 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3914 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3915 3916 return true; 3917 } 3918 3919 #ifdef CONFIG_TCP_MD5SIG 3920 /* 3921 * Parse MD5 Signature option 3922 */ 3923 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3924 { 3925 int length = (th->doff << 2) - sizeof(*th); 3926 const u8 *ptr = (const u8 *)(th + 1); 3927 3928 /* If not enough data remaining, we can short cut */ 3929 while (length >= TCPOLEN_MD5SIG) { 3930 int opcode = *ptr++; 3931 int opsize; 3932 3933 switch (opcode) { 3934 case TCPOPT_EOL: 3935 return NULL; 3936 case TCPOPT_NOP: 3937 length--; 3938 continue; 3939 default: 3940 opsize = *ptr++; 3941 if (opsize < 2 || opsize > length) 3942 return NULL; 3943 if (opcode == TCPOPT_MD5SIG) 3944 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3945 } 3946 ptr += opsize - 2; 3947 length -= opsize; 3948 } 3949 return NULL; 3950 } 3951 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3952 #endif 3953 3954 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3955 * 3956 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3957 * it can pass through stack. So, the following predicate verifies that 3958 * this segment is not used for anything but congestion avoidance or 3959 * fast retransmit. Moreover, we even are able to eliminate most of such 3960 * second order effects, if we apply some small "replay" window (~RTO) 3961 * to timestamp space. 3962 * 3963 * All these measures still do not guarantee that we reject wrapped ACKs 3964 * on networks with high bandwidth, when sequence space is recycled fastly, 3965 * but it guarantees that such events will be very rare and do not affect 3966 * connection seriously. This doesn't look nice, but alas, PAWS is really 3967 * buggy extension. 3968 * 3969 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3970 * states that events when retransmit arrives after original data are rare. 3971 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3972 * the biggest problem on large power networks even with minor reordering. 3973 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3974 * up to bandwidth of 18Gigabit/sec. 8) ] 3975 */ 3976 3977 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3978 { 3979 const struct tcp_sock *tp = tcp_sk(sk); 3980 const struct tcphdr *th = tcp_hdr(skb); 3981 u32 seq = TCP_SKB_CB(skb)->seq; 3982 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3983 3984 return (/* 1. Pure ACK with correct sequence number. */ 3985 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3986 3987 /* 2. ... and duplicate ACK. */ 3988 ack == tp->snd_una && 3989 3990 /* 3. ... and does not update window. */ 3991 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3992 3993 /* 4. ... and sits in replay window. */ 3994 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3995 } 3996 3997 static inline bool tcp_paws_discard(const struct sock *sk, 3998 const struct sk_buff *skb) 3999 { 4000 const struct tcp_sock *tp = tcp_sk(sk); 4001 4002 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4003 !tcp_disordered_ack(sk, skb); 4004 } 4005 4006 /* Check segment sequence number for validity. 4007 * 4008 * Segment controls are considered valid, if the segment 4009 * fits to the window after truncation to the window. Acceptability 4010 * of data (and SYN, FIN, of course) is checked separately. 4011 * See tcp_data_queue(), for example. 4012 * 4013 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4014 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4015 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4016 * (borrowed from freebsd) 4017 */ 4018 4019 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4020 { 4021 return !before(end_seq, tp->rcv_wup) && 4022 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4023 } 4024 4025 /* When we get a reset we do this. */ 4026 void tcp_reset(struct sock *sk) 4027 { 4028 trace_tcp_receive_reset(sk); 4029 4030 /* We want the right error as BSD sees it (and indeed as we do). */ 4031 switch (sk->sk_state) { 4032 case TCP_SYN_SENT: 4033 sk->sk_err = ECONNREFUSED; 4034 break; 4035 case TCP_CLOSE_WAIT: 4036 sk->sk_err = EPIPE; 4037 break; 4038 case TCP_CLOSE: 4039 return; 4040 default: 4041 sk->sk_err = ECONNRESET; 4042 } 4043 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4044 smp_wmb(); 4045 4046 tcp_write_queue_purge(sk); 4047 tcp_done(sk); 4048 4049 if (!sock_flag(sk, SOCK_DEAD)) 4050 sk->sk_error_report(sk); 4051 } 4052 4053 /* 4054 * Process the FIN bit. This now behaves as it is supposed to work 4055 * and the FIN takes effect when it is validly part of sequence 4056 * space. Not before when we get holes. 4057 * 4058 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4059 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4060 * TIME-WAIT) 4061 * 4062 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4063 * close and we go into CLOSING (and later onto TIME-WAIT) 4064 * 4065 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4066 */ 4067 void tcp_fin(struct sock *sk) 4068 { 4069 struct tcp_sock *tp = tcp_sk(sk); 4070 4071 inet_csk_schedule_ack(sk); 4072 4073 sk->sk_shutdown |= RCV_SHUTDOWN; 4074 sock_set_flag(sk, SOCK_DONE); 4075 4076 switch (sk->sk_state) { 4077 case TCP_SYN_RECV: 4078 case TCP_ESTABLISHED: 4079 /* Move to CLOSE_WAIT */ 4080 tcp_set_state(sk, TCP_CLOSE_WAIT); 4081 inet_csk(sk)->icsk_ack.pingpong = 1; 4082 break; 4083 4084 case TCP_CLOSE_WAIT: 4085 case TCP_CLOSING: 4086 /* Received a retransmission of the FIN, do 4087 * nothing. 4088 */ 4089 break; 4090 case TCP_LAST_ACK: 4091 /* RFC793: Remain in the LAST-ACK state. */ 4092 break; 4093 4094 case TCP_FIN_WAIT1: 4095 /* This case occurs when a simultaneous close 4096 * happens, we must ack the received FIN and 4097 * enter the CLOSING state. 4098 */ 4099 tcp_send_ack(sk); 4100 tcp_set_state(sk, TCP_CLOSING); 4101 break; 4102 case TCP_FIN_WAIT2: 4103 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4104 tcp_send_ack(sk); 4105 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4106 break; 4107 default: 4108 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4109 * cases we should never reach this piece of code. 4110 */ 4111 pr_err("%s: Impossible, sk->sk_state=%d\n", 4112 __func__, sk->sk_state); 4113 break; 4114 } 4115 4116 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4117 * Probably, we should reset in this case. For now drop them. 4118 */ 4119 skb_rbtree_purge(&tp->out_of_order_queue); 4120 if (tcp_is_sack(tp)) 4121 tcp_sack_reset(&tp->rx_opt); 4122 sk_mem_reclaim(sk); 4123 4124 if (!sock_flag(sk, SOCK_DEAD)) { 4125 sk->sk_state_change(sk); 4126 4127 /* Do not send POLL_HUP for half duplex close. */ 4128 if (sk->sk_shutdown == SHUTDOWN_MASK || 4129 sk->sk_state == TCP_CLOSE) 4130 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4131 else 4132 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4133 } 4134 } 4135 4136 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4137 u32 end_seq) 4138 { 4139 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4140 if (before(seq, sp->start_seq)) 4141 sp->start_seq = seq; 4142 if (after(end_seq, sp->end_seq)) 4143 sp->end_seq = end_seq; 4144 return true; 4145 } 4146 return false; 4147 } 4148 4149 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4150 { 4151 struct tcp_sock *tp = tcp_sk(sk); 4152 4153 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4154 int mib_idx; 4155 4156 if (before(seq, tp->rcv_nxt)) 4157 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4158 else 4159 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4160 4161 NET_INC_STATS(sock_net(sk), mib_idx); 4162 4163 tp->rx_opt.dsack = 1; 4164 tp->duplicate_sack[0].start_seq = seq; 4165 tp->duplicate_sack[0].end_seq = end_seq; 4166 } 4167 } 4168 4169 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4170 { 4171 struct tcp_sock *tp = tcp_sk(sk); 4172 4173 if (!tp->rx_opt.dsack) 4174 tcp_dsack_set(sk, seq, end_seq); 4175 else 4176 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4177 } 4178 4179 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4180 { 4181 struct tcp_sock *tp = tcp_sk(sk); 4182 4183 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4184 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4185 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4186 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4187 4188 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4189 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4190 4191 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4192 end_seq = tp->rcv_nxt; 4193 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4194 } 4195 } 4196 4197 tcp_send_ack(sk); 4198 } 4199 4200 /* These routines update the SACK block as out-of-order packets arrive or 4201 * in-order packets close up the sequence space. 4202 */ 4203 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4204 { 4205 int this_sack; 4206 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4207 struct tcp_sack_block *swalk = sp + 1; 4208 4209 /* See if the recent change to the first SACK eats into 4210 * or hits the sequence space of other SACK blocks, if so coalesce. 4211 */ 4212 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4213 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4214 int i; 4215 4216 /* Zap SWALK, by moving every further SACK up by one slot. 4217 * Decrease num_sacks. 4218 */ 4219 tp->rx_opt.num_sacks--; 4220 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4221 sp[i] = sp[i + 1]; 4222 continue; 4223 } 4224 this_sack++, swalk++; 4225 } 4226 } 4227 4228 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4229 { 4230 struct tcp_sock *tp = tcp_sk(sk); 4231 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4232 int cur_sacks = tp->rx_opt.num_sacks; 4233 int this_sack; 4234 4235 if (!cur_sacks) 4236 goto new_sack; 4237 4238 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4239 if (tcp_sack_extend(sp, seq, end_seq)) { 4240 /* Rotate this_sack to the first one. */ 4241 for (; this_sack > 0; this_sack--, sp--) 4242 swap(*sp, *(sp - 1)); 4243 if (cur_sacks > 1) 4244 tcp_sack_maybe_coalesce(tp); 4245 return; 4246 } 4247 } 4248 4249 /* Could not find an adjacent existing SACK, build a new one, 4250 * put it at the front, and shift everyone else down. We 4251 * always know there is at least one SACK present already here. 4252 * 4253 * If the sack array is full, forget about the last one. 4254 */ 4255 if (this_sack >= TCP_NUM_SACKS) { 4256 if (tp->compressed_ack) 4257 tcp_send_ack(sk); 4258 this_sack--; 4259 tp->rx_opt.num_sacks--; 4260 sp--; 4261 } 4262 for (; this_sack > 0; this_sack--, sp--) 4263 *sp = *(sp - 1); 4264 4265 new_sack: 4266 /* Build the new head SACK, and we're done. */ 4267 sp->start_seq = seq; 4268 sp->end_seq = end_seq; 4269 tp->rx_opt.num_sacks++; 4270 } 4271 4272 /* RCV.NXT advances, some SACKs should be eaten. */ 4273 4274 static void tcp_sack_remove(struct tcp_sock *tp) 4275 { 4276 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4277 int num_sacks = tp->rx_opt.num_sacks; 4278 int this_sack; 4279 4280 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4281 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4282 tp->rx_opt.num_sacks = 0; 4283 return; 4284 } 4285 4286 for (this_sack = 0; this_sack < num_sacks;) { 4287 /* Check if the start of the sack is covered by RCV.NXT. */ 4288 if (!before(tp->rcv_nxt, sp->start_seq)) { 4289 int i; 4290 4291 /* RCV.NXT must cover all the block! */ 4292 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4293 4294 /* Zap this SACK, by moving forward any other SACKS. */ 4295 for (i = this_sack+1; i < num_sacks; i++) 4296 tp->selective_acks[i-1] = tp->selective_acks[i]; 4297 num_sacks--; 4298 continue; 4299 } 4300 this_sack++; 4301 sp++; 4302 } 4303 tp->rx_opt.num_sacks = num_sacks; 4304 } 4305 4306 /** 4307 * tcp_try_coalesce - try to merge skb to prior one 4308 * @sk: socket 4309 * @dest: destination queue 4310 * @to: prior buffer 4311 * @from: buffer to add in queue 4312 * @fragstolen: pointer to boolean 4313 * 4314 * Before queueing skb @from after @to, try to merge them 4315 * to reduce overall memory use and queue lengths, if cost is small. 4316 * Packets in ofo or receive queues can stay a long time. 4317 * Better try to coalesce them right now to avoid future collapses. 4318 * Returns true if caller should free @from instead of queueing it 4319 */ 4320 static bool tcp_try_coalesce(struct sock *sk, 4321 struct sk_buff *to, 4322 struct sk_buff *from, 4323 bool *fragstolen) 4324 { 4325 int delta; 4326 4327 *fragstolen = false; 4328 4329 /* Its possible this segment overlaps with prior segment in queue */ 4330 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4331 return false; 4332 4333 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4334 return false; 4335 4336 atomic_add(delta, &sk->sk_rmem_alloc); 4337 sk_mem_charge(sk, delta); 4338 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4339 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4340 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4341 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4342 4343 if (TCP_SKB_CB(from)->has_rxtstamp) { 4344 TCP_SKB_CB(to)->has_rxtstamp = true; 4345 to->tstamp = from->tstamp; 4346 } 4347 4348 return true; 4349 } 4350 4351 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4352 { 4353 sk_drops_add(sk, skb); 4354 __kfree_skb(skb); 4355 } 4356 4357 /* This one checks to see if we can put data from the 4358 * out_of_order queue into the receive_queue. 4359 */ 4360 static void tcp_ofo_queue(struct sock *sk) 4361 { 4362 struct tcp_sock *tp = tcp_sk(sk); 4363 __u32 dsack_high = tp->rcv_nxt; 4364 bool fin, fragstolen, eaten; 4365 struct sk_buff *skb, *tail; 4366 struct rb_node *p; 4367 4368 p = rb_first(&tp->out_of_order_queue); 4369 while (p) { 4370 skb = rb_to_skb(p); 4371 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4372 break; 4373 4374 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4375 __u32 dsack = dsack_high; 4376 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4377 dsack_high = TCP_SKB_CB(skb)->end_seq; 4378 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4379 } 4380 p = rb_next(p); 4381 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4382 4383 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4384 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4385 tcp_drop(sk, skb); 4386 continue; 4387 } 4388 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4389 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4390 TCP_SKB_CB(skb)->end_seq); 4391 4392 tail = skb_peek_tail(&sk->sk_receive_queue); 4393 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4394 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4395 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4396 if (!eaten) 4397 __skb_queue_tail(&sk->sk_receive_queue, skb); 4398 else 4399 kfree_skb_partial(skb, fragstolen); 4400 4401 if (unlikely(fin)) { 4402 tcp_fin(sk); 4403 /* tcp_fin() purges tp->out_of_order_queue, 4404 * so we must end this loop right now. 4405 */ 4406 break; 4407 } 4408 } 4409 } 4410 4411 static bool tcp_prune_ofo_queue(struct sock *sk); 4412 static int tcp_prune_queue(struct sock *sk); 4413 4414 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4415 unsigned int size) 4416 { 4417 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4418 !sk_rmem_schedule(sk, skb, size)) { 4419 4420 if (tcp_prune_queue(sk) < 0) 4421 return -1; 4422 4423 while (!sk_rmem_schedule(sk, skb, size)) { 4424 if (!tcp_prune_ofo_queue(sk)) 4425 return -1; 4426 } 4427 } 4428 return 0; 4429 } 4430 4431 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4432 { 4433 struct tcp_sock *tp = tcp_sk(sk); 4434 struct rb_node **p, *parent; 4435 struct sk_buff *skb1; 4436 u32 seq, end_seq; 4437 bool fragstolen; 4438 4439 tcp_ecn_check_ce(sk, skb); 4440 4441 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4442 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4443 tcp_drop(sk, skb); 4444 return; 4445 } 4446 4447 /* Disable header prediction. */ 4448 tp->pred_flags = 0; 4449 inet_csk_schedule_ack(sk); 4450 4451 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4452 seq = TCP_SKB_CB(skb)->seq; 4453 end_seq = TCP_SKB_CB(skb)->end_seq; 4454 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4455 tp->rcv_nxt, seq, end_seq); 4456 4457 p = &tp->out_of_order_queue.rb_node; 4458 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4459 /* Initial out of order segment, build 1 SACK. */ 4460 if (tcp_is_sack(tp)) { 4461 tp->rx_opt.num_sacks = 1; 4462 tp->selective_acks[0].start_seq = seq; 4463 tp->selective_acks[0].end_seq = end_seq; 4464 } 4465 rb_link_node(&skb->rbnode, NULL, p); 4466 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4467 tp->ooo_last_skb = skb; 4468 goto end; 4469 } 4470 4471 /* In the typical case, we are adding an skb to the end of the list. 4472 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4473 */ 4474 if (tcp_try_coalesce(sk, tp->ooo_last_skb, 4475 skb, &fragstolen)) { 4476 coalesce_done: 4477 tcp_grow_window(sk, skb); 4478 kfree_skb_partial(skb, fragstolen); 4479 skb = NULL; 4480 goto add_sack; 4481 } 4482 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4483 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4484 parent = &tp->ooo_last_skb->rbnode; 4485 p = &parent->rb_right; 4486 goto insert; 4487 } 4488 4489 /* Find place to insert this segment. Handle overlaps on the way. */ 4490 parent = NULL; 4491 while (*p) { 4492 parent = *p; 4493 skb1 = rb_to_skb(parent); 4494 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4495 p = &parent->rb_left; 4496 continue; 4497 } 4498 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4499 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4500 /* All the bits are present. Drop. */ 4501 NET_INC_STATS(sock_net(sk), 4502 LINUX_MIB_TCPOFOMERGE); 4503 __kfree_skb(skb); 4504 skb = NULL; 4505 tcp_dsack_set(sk, seq, end_seq); 4506 goto add_sack; 4507 } 4508 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4509 /* Partial overlap. */ 4510 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4511 } else { 4512 /* skb's seq == skb1's seq and skb covers skb1. 4513 * Replace skb1 with skb. 4514 */ 4515 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4516 &tp->out_of_order_queue); 4517 tcp_dsack_extend(sk, 4518 TCP_SKB_CB(skb1)->seq, 4519 TCP_SKB_CB(skb1)->end_seq); 4520 NET_INC_STATS(sock_net(sk), 4521 LINUX_MIB_TCPOFOMERGE); 4522 __kfree_skb(skb1); 4523 goto merge_right; 4524 } 4525 } else if (tcp_try_coalesce(sk, skb1, 4526 skb, &fragstolen)) { 4527 goto coalesce_done; 4528 } 4529 p = &parent->rb_right; 4530 } 4531 insert: 4532 /* Insert segment into RB tree. */ 4533 rb_link_node(&skb->rbnode, parent, p); 4534 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4535 4536 merge_right: 4537 /* Remove other segments covered by skb. */ 4538 while ((skb1 = skb_rb_next(skb)) != NULL) { 4539 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4540 break; 4541 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4542 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4543 end_seq); 4544 break; 4545 } 4546 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4547 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4548 TCP_SKB_CB(skb1)->end_seq); 4549 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4550 tcp_drop(sk, skb1); 4551 } 4552 /* If there is no skb after us, we are the last_skb ! */ 4553 if (!skb1) 4554 tp->ooo_last_skb = skb; 4555 4556 add_sack: 4557 if (tcp_is_sack(tp)) 4558 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4559 end: 4560 if (skb) { 4561 tcp_grow_window(sk, skb); 4562 skb_condense(skb); 4563 skb_set_owner_r(skb, sk); 4564 } 4565 } 4566 4567 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4568 bool *fragstolen) 4569 { 4570 int eaten; 4571 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4572 4573 __skb_pull(skb, hdrlen); 4574 eaten = (tail && 4575 tcp_try_coalesce(sk, tail, 4576 skb, fragstolen)) ? 1 : 0; 4577 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4578 if (!eaten) { 4579 __skb_queue_tail(&sk->sk_receive_queue, skb); 4580 skb_set_owner_r(skb, sk); 4581 } 4582 return eaten; 4583 } 4584 4585 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4586 { 4587 struct sk_buff *skb; 4588 int err = -ENOMEM; 4589 int data_len = 0; 4590 bool fragstolen; 4591 4592 if (size == 0) 4593 return 0; 4594 4595 if (size > PAGE_SIZE) { 4596 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4597 4598 data_len = npages << PAGE_SHIFT; 4599 size = data_len + (size & ~PAGE_MASK); 4600 } 4601 skb = alloc_skb_with_frags(size - data_len, data_len, 4602 PAGE_ALLOC_COSTLY_ORDER, 4603 &err, sk->sk_allocation); 4604 if (!skb) 4605 goto err; 4606 4607 skb_put(skb, size - data_len); 4608 skb->data_len = data_len; 4609 skb->len = size; 4610 4611 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4612 goto err_free; 4613 4614 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4615 if (err) 4616 goto err_free; 4617 4618 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4619 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4620 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4621 4622 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4623 WARN_ON_ONCE(fragstolen); /* should not happen */ 4624 __kfree_skb(skb); 4625 } 4626 return size; 4627 4628 err_free: 4629 kfree_skb(skb); 4630 err: 4631 return err; 4632 4633 } 4634 4635 void tcp_data_ready(struct sock *sk) 4636 { 4637 const struct tcp_sock *tp = tcp_sk(sk); 4638 int avail = tp->rcv_nxt - tp->copied_seq; 4639 4640 if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE)) 4641 return; 4642 4643 sk->sk_data_ready(sk); 4644 } 4645 4646 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4647 { 4648 struct tcp_sock *tp = tcp_sk(sk); 4649 bool fragstolen; 4650 int eaten; 4651 4652 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4653 __kfree_skb(skb); 4654 return; 4655 } 4656 skb_dst_drop(skb); 4657 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4658 4659 tcp_ecn_accept_cwr(tp, skb); 4660 4661 tp->rx_opt.dsack = 0; 4662 4663 /* Queue data for delivery to the user. 4664 * Packets in sequence go to the receive queue. 4665 * Out of sequence packets to the out_of_order_queue. 4666 */ 4667 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4668 if (tcp_receive_window(tp) == 0) 4669 goto out_of_window; 4670 4671 /* Ok. In sequence. In window. */ 4672 queue_and_out: 4673 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4674 sk_forced_mem_schedule(sk, skb->truesize); 4675 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4676 goto drop; 4677 4678 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4679 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4680 if (skb->len) 4681 tcp_event_data_recv(sk, skb); 4682 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4683 tcp_fin(sk); 4684 4685 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4686 tcp_ofo_queue(sk); 4687 4688 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4689 * gap in queue is filled. 4690 */ 4691 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4692 inet_csk(sk)->icsk_ack.pingpong = 0; 4693 } 4694 4695 if (tp->rx_opt.num_sacks) 4696 tcp_sack_remove(tp); 4697 4698 tcp_fast_path_check(sk); 4699 4700 if (eaten > 0) 4701 kfree_skb_partial(skb, fragstolen); 4702 if (!sock_flag(sk, SOCK_DEAD)) 4703 tcp_data_ready(sk); 4704 return; 4705 } 4706 4707 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4708 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4709 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4710 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4711 4712 out_of_window: 4713 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4714 inet_csk_schedule_ack(sk); 4715 drop: 4716 tcp_drop(sk, skb); 4717 return; 4718 } 4719 4720 /* Out of window. F.e. zero window probe. */ 4721 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4722 goto out_of_window; 4723 4724 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4725 /* Partial packet, seq < rcv_next < end_seq */ 4726 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4727 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4728 TCP_SKB_CB(skb)->end_seq); 4729 4730 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4731 4732 /* If window is closed, drop tail of packet. But after 4733 * remembering D-SACK for its head made in previous line. 4734 */ 4735 if (!tcp_receive_window(tp)) 4736 goto out_of_window; 4737 goto queue_and_out; 4738 } 4739 4740 tcp_data_queue_ofo(sk, skb); 4741 } 4742 4743 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4744 { 4745 if (list) 4746 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4747 4748 return skb_rb_next(skb); 4749 } 4750 4751 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4752 struct sk_buff_head *list, 4753 struct rb_root *root) 4754 { 4755 struct sk_buff *next = tcp_skb_next(skb, list); 4756 4757 if (list) 4758 __skb_unlink(skb, list); 4759 else 4760 rb_erase(&skb->rbnode, root); 4761 4762 __kfree_skb(skb); 4763 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4764 4765 return next; 4766 } 4767 4768 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4769 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4770 { 4771 struct rb_node **p = &root->rb_node; 4772 struct rb_node *parent = NULL; 4773 struct sk_buff *skb1; 4774 4775 while (*p) { 4776 parent = *p; 4777 skb1 = rb_to_skb(parent); 4778 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4779 p = &parent->rb_left; 4780 else 4781 p = &parent->rb_right; 4782 } 4783 rb_link_node(&skb->rbnode, parent, p); 4784 rb_insert_color(&skb->rbnode, root); 4785 } 4786 4787 /* Collapse contiguous sequence of skbs head..tail with 4788 * sequence numbers start..end. 4789 * 4790 * If tail is NULL, this means until the end of the queue. 4791 * 4792 * Segments with FIN/SYN are not collapsed (only because this 4793 * simplifies code) 4794 */ 4795 static void 4796 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4797 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4798 { 4799 struct sk_buff *skb = head, *n; 4800 struct sk_buff_head tmp; 4801 bool end_of_skbs; 4802 4803 /* First, check that queue is collapsible and find 4804 * the point where collapsing can be useful. 4805 */ 4806 restart: 4807 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4808 n = tcp_skb_next(skb, list); 4809 4810 /* No new bits? It is possible on ofo queue. */ 4811 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4812 skb = tcp_collapse_one(sk, skb, list, root); 4813 if (!skb) 4814 break; 4815 goto restart; 4816 } 4817 4818 /* The first skb to collapse is: 4819 * - not SYN/FIN and 4820 * - bloated or contains data before "start" or 4821 * overlaps to the next one. 4822 */ 4823 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4824 (tcp_win_from_space(sk, skb->truesize) > skb->len || 4825 before(TCP_SKB_CB(skb)->seq, start))) { 4826 end_of_skbs = false; 4827 break; 4828 } 4829 4830 if (n && n != tail && 4831 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4832 end_of_skbs = false; 4833 break; 4834 } 4835 4836 /* Decided to skip this, advance start seq. */ 4837 start = TCP_SKB_CB(skb)->end_seq; 4838 } 4839 if (end_of_skbs || 4840 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4841 return; 4842 4843 __skb_queue_head_init(&tmp); 4844 4845 while (before(start, end)) { 4846 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4847 struct sk_buff *nskb; 4848 4849 nskb = alloc_skb(copy, GFP_ATOMIC); 4850 if (!nskb) 4851 break; 4852 4853 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4854 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4855 if (list) 4856 __skb_queue_before(list, skb, nskb); 4857 else 4858 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 4859 skb_set_owner_r(nskb, sk); 4860 4861 /* Copy data, releasing collapsed skbs. */ 4862 while (copy > 0) { 4863 int offset = start - TCP_SKB_CB(skb)->seq; 4864 int size = TCP_SKB_CB(skb)->end_seq - start; 4865 4866 BUG_ON(offset < 0); 4867 if (size > 0) { 4868 size = min(copy, size); 4869 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4870 BUG(); 4871 TCP_SKB_CB(nskb)->end_seq += size; 4872 copy -= size; 4873 start += size; 4874 } 4875 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4876 skb = tcp_collapse_one(sk, skb, list, root); 4877 if (!skb || 4878 skb == tail || 4879 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4880 goto end; 4881 } 4882 } 4883 } 4884 end: 4885 skb_queue_walk_safe(&tmp, skb, n) 4886 tcp_rbtree_insert(root, skb); 4887 } 4888 4889 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4890 * and tcp_collapse() them until all the queue is collapsed. 4891 */ 4892 static void tcp_collapse_ofo_queue(struct sock *sk) 4893 { 4894 struct tcp_sock *tp = tcp_sk(sk); 4895 struct sk_buff *skb, *head; 4896 u32 start, end; 4897 4898 skb = skb_rb_first(&tp->out_of_order_queue); 4899 new_range: 4900 if (!skb) { 4901 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 4902 return; 4903 } 4904 start = TCP_SKB_CB(skb)->seq; 4905 end = TCP_SKB_CB(skb)->end_seq; 4906 4907 for (head = skb;;) { 4908 skb = skb_rb_next(skb); 4909 4910 /* Range is terminated when we see a gap or when 4911 * we are at the queue end. 4912 */ 4913 if (!skb || 4914 after(TCP_SKB_CB(skb)->seq, end) || 4915 before(TCP_SKB_CB(skb)->end_seq, start)) { 4916 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 4917 head, skb, start, end); 4918 goto new_range; 4919 } 4920 4921 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 4922 start = TCP_SKB_CB(skb)->seq; 4923 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4924 end = TCP_SKB_CB(skb)->end_seq; 4925 } 4926 } 4927 4928 /* 4929 * Clean the out-of-order queue to make room. 4930 * We drop high sequences packets to : 4931 * 1) Let a chance for holes to be filled. 4932 * 2) not add too big latencies if thousands of packets sit there. 4933 * (But if application shrinks SO_RCVBUF, we could still end up 4934 * freeing whole queue here) 4935 * 4936 * Return true if queue has shrunk. 4937 */ 4938 static bool tcp_prune_ofo_queue(struct sock *sk) 4939 { 4940 struct tcp_sock *tp = tcp_sk(sk); 4941 struct rb_node *node, *prev; 4942 4943 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4944 return false; 4945 4946 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 4947 node = &tp->ooo_last_skb->rbnode; 4948 do { 4949 prev = rb_prev(node); 4950 rb_erase(node, &tp->out_of_order_queue); 4951 tcp_drop(sk, rb_to_skb(node)); 4952 sk_mem_reclaim(sk); 4953 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 4954 !tcp_under_memory_pressure(sk)) 4955 break; 4956 node = prev; 4957 } while (node); 4958 tp->ooo_last_skb = rb_to_skb(prev); 4959 4960 /* Reset SACK state. A conforming SACK implementation will 4961 * do the same at a timeout based retransmit. When a connection 4962 * is in a sad state like this, we care only about integrity 4963 * of the connection not performance. 4964 */ 4965 if (tp->rx_opt.sack_ok) 4966 tcp_sack_reset(&tp->rx_opt); 4967 return true; 4968 } 4969 4970 /* Reduce allocated memory if we can, trying to get 4971 * the socket within its memory limits again. 4972 * 4973 * Return less than zero if we should start dropping frames 4974 * until the socket owning process reads some of the data 4975 * to stabilize the situation. 4976 */ 4977 static int tcp_prune_queue(struct sock *sk) 4978 { 4979 struct tcp_sock *tp = tcp_sk(sk); 4980 4981 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4982 4983 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 4984 4985 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4986 tcp_clamp_window(sk); 4987 else if (tcp_under_memory_pressure(sk)) 4988 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4989 4990 tcp_collapse_ofo_queue(sk); 4991 if (!skb_queue_empty(&sk->sk_receive_queue)) 4992 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 4993 skb_peek(&sk->sk_receive_queue), 4994 NULL, 4995 tp->copied_seq, tp->rcv_nxt); 4996 sk_mem_reclaim(sk); 4997 4998 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4999 return 0; 5000 5001 /* Collapsing did not help, destructive actions follow. 5002 * This must not ever occur. */ 5003 5004 tcp_prune_ofo_queue(sk); 5005 5006 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5007 return 0; 5008 5009 /* If we are really being abused, tell the caller to silently 5010 * drop receive data on the floor. It will get retransmitted 5011 * and hopefully then we'll have sufficient space. 5012 */ 5013 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5014 5015 /* Massive buffer overcommit. */ 5016 tp->pred_flags = 0; 5017 return -1; 5018 } 5019 5020 static bool tcp_should_expand_sndbuf(const struct sock *sk) 5021 { 5022 const struct tcp_sock *tp = tcp_sk(sk); 5023 5024 /* If the user specified a specific send buffer setting, do 5025 * not modify it. 5026 */ 5027 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5028 return false; 5029 5030 /* If we are under global TCP memory pressure, do not expand. */ 5031 if (tcp_under_memory_pressure(sk)) 5032 return false; 5033 5034 /* If we are under soft global TCP memory pressure, do not expand. */ 5035 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5036 return false; 5037 5038 /* If we filled the congestion window, do not expand. */ 5039 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5040 return false; 5041 5042 return true; 5043 } 5044 5045 /* When incoming ACK allowed to free some skb from write_queue, 5046 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5047 * on the exit from tcp input handler. 5048 * 5049 * PROBLEM: sndbuf expansion does not work well with largesend. 5050 */ 5051 static void tcp_new_space(struct sock *sk) 5052 { 5053 struct tcp_sock *tp = tcp_sk(sk); 5054 5055 if (tcp_should_expand_sndbuf(sk)) { 5056 tcp_sndbuf_expand(sk); 5057 tp->snd_cwnd_stamp = tcp_jiffies32; 5058 } 5059 5060 sk->sk_write_space(sk); 5061 } 5062 5063 static void tcp_check_space(struct sock *sk) 5064 { 5065 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5066 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5067 /* pairs with tcp_poll() */ 5068 smp_mb(); 5069 if (sk->sk_socket && 5070 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5071 tcp_new_space(sk); 5072 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5073 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5074 } 5075 } 5076 } 5077 5078 static inline void tcp_data_snd_check(struct sock *sk) 5079 { 5080 tcp_push_pending_frames(sk); 5081 tcp_check_space(sk); 5082 } 5083 5084 /* 5085 * Check if sending an ack is needed. 5086 */ 5087 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5088 { 5089 struct tcp_sock *tp = tcp_sk(sk); 5090 unsigned long rtt, delay; 5091 5092 /* More than one full frame received... */ 5093 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5094 /* ... and right edge of window advances far enough. 5095 * (tcp_recvmsg() will send ACK otherwise). 5096 * If application uses SO_RCVLOWAT, we want send ack now if 5097 * we have not received enough bytes to satisfy the condition. 5098 */ 5099 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5100 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5101 /* We ACK each frame or... */ 5102 tcp_in_quickack_mode(sk)) { 5103 send_now: 5104 tcp_send_ack(sk); 5105 return; 5106 } 5107 5108 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5109 tcp_send_delayed_ack(sk); 5110 return; 5111 } 5112 5113 if (!tcp_is_sack(tp) || 5114 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr) 5115 goto send_now; 5116 tp->compressed_ack++; 5117 5118 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5119 return; 5120 5121 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5122 5123 rtt = tp->rcv_rtt_est.rtt_us; 5124 if (tp->srtt_us && tp->srtt_us < rtt) 5125 rtt = tp->srtt_us; 5126 5127 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns, 5128 rtt * (NSEC_PER_USEC >> 3)/20); 5129 sock_hold(sk); 5130 hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay), 5131 HRTIMER_MODE_REL_PINNED_SOFT); 5132 } 5133 5134 static inline void tcp_ack_snd_check(struct sock *sk) 5135 { 5136 if (!inet_csk_ack_scheduled(sk)) { 5137 /* We sent a data segment already. */ 5138 return; 5139 } 5140 __tcp_ack_snd_check(sk, 1); 5141 } 5142 5143 /* 5144 * This routine is only called when we have urgent data 5145 * signaled. Its the 'slow' part of tcp_urg. It could be 5146 * moved inline now as tcp_urg is only called from one 5147 * place. We handle URGent data wrong. We have to - as 5148 * BSD still doesn't use the correction from RFC961. 5149 * For 1003.1g we should support a new option TCP_STDURG to permit 5150 * either form (or just set the sysctl tcp_stdurg). 5151 */ 5152 5153 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5154 { 5155 struct tcp_sock *tp = tcp_sk(sk); 5156 u32 ptr = ntohs(th->urg_ptr); 5157 5158 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg) 5159 ptr--; 5160 ptr += ntohl(th->seq); 5161 5162 /* Ignore urgent data that we've already seen and read. */ 5163 if (after(tp->copied_seq, ptr)) 5164 return; 5165 5166 /* Do not replay urg ptr. 5167 * 5168 * NOTE: interesting situation not covered by specs. 5169 * Misbehaving sender may send urg ptr, pointing to segment, 5170 * which we already have in ofo queue. We are not able to fetch 5171 * such data and will stay in TCP_URG_NOTYET until will be eaten 5172 * by recvmsg(). Seems, we are not obliged to handle such wicked 5173 * situations. But it is worth to think about possibility of some 5174 * DoSes using some hypothetical application level deadlock. 5175 */ 5176 if (before(ptr, tp->rcv_nxt)) 5177 return; 5178 5179 /* Do we already have a newer (or duplicate) urgent pointer? */ 5180 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5181 return; 5182 5183 /* Tell the world about our new urgent pointer. */ 5184 sk_send_sigurg(sk); 5185 5186 /* We may be adding urgent data when the last byte read was 5187 * urgent. To do this requires some care. We cannot just ignore 5188 * tp->copied_seq since we would read the last urgent byte again 5189 * as data, nor can we alter copied_seq until this data arrives 5190 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5191 * 5192 * NOTE. Double Dutch. Rendering to plain English: author of comment 5193 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5194 * and expect that both A and B disappear from stream. This is _wrong_. 5195 * Though this happens in BSD with high probability, this is occasional. 5196 * Any application relying on this is buggy. Note also, that fix "works" 5197 * only in this artificial test. Insert some normal data between A and B and we will 5198 * decline of BSD again. Verdict: it is better to remove to trap 5199 * buggy users. 5200 */ 5201 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5202 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5203 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5204 tp->copied_seq++; 5205 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5206 __skb_unlink(skb, &sk->sk_receive_queue); 5207 __kfree_skb(skb); 5208 } 5209 } 5210 5211 tp->urg_data = TCP_URG_NOTYET; 5212 tp->urg_seq = ptr; 5213 5214 /* Disable header prediction. */ 5215 tp->pred_flags = 0; 5216 } 5217 5218 /* This is the 'fast' part of urgent handling. */ 5219 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5220 { 5221 struct tcp_sock *tp = tcp_sk(sk); 5222 5223 /* Check if we get a new urgent pointer - normally not. */ 5224 if (th->urg) 5225 tcp_check_urg(sk, th); 5226 5227 /* Do we wait for any urgent data? - normally not... */ 5228 if (tp->urg_data == TCP_URG_NOTYET) { 5229 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5230 th->syn; 5231 5232 /* Is the urgent pointer pointing into this packet? */ 5233 if (ptr < skb->len) { 5234 u8 tmp; 5235 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5236 BUG(); 5237 tp->urg_data = TCP_URG_VALID | tmp; 5238 if (!sock_flag(sk, SOCK_DEAD)) 5239 sk->sk_data_ready(sk); 5240 } 5241 } 5242 } 5243 5244 /* Accept RST for rcv_nxt - 1 after a FIN. 5245 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5246 * FIN is sent followed by a RST packet. The RST is sent with the same 5247 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5248 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5249 * ACKs on the closed socket. In addition middleboxes can drop either the 5250 * challenge ACK or a subsequent RST. 5251 */ 5252 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5253 { 5254 struct tcp_sock *tp = tcp_sk(sk); 5255 5256 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5257 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5258 TCPF_CLOSING)); 5259 } 5260 5261 /* Does PAWS and seqno based validation of an incoming segment, flags will 5262 * play significant role here. 5263 */ 5264 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5265 const struct tcphdr *th, int syn_inerr) 5266 { 5267 struct tcp_sock *tp = tcp_sk(sk); 5268 bool rst_seq_match = false; 5269 5270 /* RFC1323: H1. Apply PAWS check first. */ 5271 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5272 tp->rx_opt.saw_tstamp && 5273 tcp_paws_discard(sk, skb)) { 5274 if (!th->rst) { 5275 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5276 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5277 LINUX_MIB_TCPACKSKIPPEDPAWS, 5278 &tp->last_oow_ack_time)) 5279 tcp_send_dupack(sk, skb); 5280 goto discard; 5281 } 5282 /* Reset is accepted even if it did not pass PAWS. */ 5283 } 5284 5285 /* Step 1: check sequence number */ 5286 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5287 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5288 * (RST) segments are validated by checking their SEQ-fields." 5289 * And page 69: "If an incoming segment is not acceptable, 5290 * an acknowledgment should be sent in reply (unless the RST 5291 * bit is set, if so drop the segment and return)". 5292 */ 5293 if (!th->rst) { 5294 if (th->syn) 5295 goto syn_challenge; 5296 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5297 LINUX_MIB_TCPACKSKIPPEDSEQ, 5298 &tp->last_oow_ack_time)) 5299 tcp_send_dupack(sk, skb); 5300 } else if (tcp_reset_check(sk, skb)) { 5301 tcp_reset(sk); 5302 } 5303 goto discard; 5304 } 5305 5306 /* Step 2: check RST bit */ 5307 if (th->rst) { 5308 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5309 * FIN and SACK too if available): 5310 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5311 * the right-most SACK block, 5312 * then 5313 * RESET the connection 5314 * else 5315 * Send a challenge ACK 5316 */ 5317 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5318 tcp_reset_check(sk, skb)) { 5319 rst_seq_match = true; 5320 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5321 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5322 int max_sack = sp[0].end_seq; 5323 int this_sack; 5324 5325 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5326 ++this_sack) { 5327 max_sack = after(sp[this_sack].end_seq, 5328 max_sack) ? 5329 sp[this_sack].end_seq : max_sack; 5330 } 5331 5332 if (TCP_SKB_CB(skb)->seq == max_sack) 5333 rst_seq_match = true; 5334 } 5335 5336 if (rst_seq_match) 5337 tcp_reset(sk); 5338 else { 5339 /* Disable TFO if RST is out-of-order 5340 * and no data has been received 5341 * for current active TFO socket 5342 */ 5343 if (tp->syn_fastopen && !tp->data_segs_in && 5344 sk->sk_state == TCP_ESTABLISHED) 5345 tcp_fastopen_active_disable(sk); 5346 tcp_send_challenge_ack(sk, skb); 5347 } 5348 goto discard; 5349 } 5350 5351 /* step 3: check security and precedence [ignored] */ 5352 5353 /* step 4: Check for a SYN 5354 * RFC 5961 4.2 : Send a challenge ack 5355 */ 5356 if (th->syn) { 5357 syn_challenge: 5358 if (syn_inerr) 5359 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5360 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5361 tcp_send_challenge_ack(sk, skb); 5362 goto discard; 5363 } 5364 5365 return true; 5366 5367 discard: 5368 tcp_drop(sk, skb); 5369 return false; 5370 } 5371 5372 /* 5373 * TCP receive function for the ESTABLISHED state. 5374 * 5375 * It is split into a fast path and a slow path. The fast path is 5376 * disabled when: 5377 * - A zero window was announced from us - zero window probing 5378 * is only handled properly in the slow path. 5379 * - Out of order segments arrived. 5380 * - Urgent data is expected. 5381 * - There is no buffer space left 5382 * - Unexpected TCP flags/window values/header lengths are received 5383 * (detected by checking the TCP header against pred_flags) 5384 * - Data is sent in both directions. Fast path only supports pure senders 5385 * or pure receivers (this means either the sequence number or the ack 5386 * value must stay constant) 5387 * - Unexpected TCP option. 5388 * 5389 * When these conditions are not satisfied it drops into a standard 5390 * receive procedure patterned after RFC793 to handle all cases. 5391 * The first three cases are guaranteed by proper pred_flags setting, 5392 * the rest is checked inline. Fast processing is turned on in 5393 * tcp_data_queue when everything is OK. 5394 */ 5395 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5396 { 5397 const struct tcphdr *th = (const struct tcphdr *)skb->data; 5398 struct tcp_sock *tp = tcp_sk(sk); 5399 unsigned int len = skb->len; 5400 5401 /* TCP congestion window tracking */ 5402 trace_tcp_probe(sk, skb); 5403 5404 tcp_mstamp_refresh(tp); 5405 if (unlikely(!sk->sk_rx_dst)) 5406 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5407 /* 5408 * Header prediction. 5409 * The code loosely follows the one in the famous 5410 * "30 instruction TCP receive" Van Jacobson mail. 5411 * 5412 * Van's trick is to deposit buffers into socket queue 5413 * on a device interrupt, to call tcp_recv function 5414 * on the receive process context and checksum and copy 5415 * the buffer to user space. smart... 5416 * 5417 * Our current scheme is not silly either but we take the 5418 * extra cost of the net_bh soft interrupt processing... 5419 * We do checksum and copy also but from device to kernel. 5420 */ 5421 5422 tp->rx_opt.saw_tstamp = 0; 5423 5424 /* pred_flags is 0xS?10 << 16 + snd_wnd 5425 * if header_prediction is to be made 5426 * 'S' will always be tp->tcp_header_len >> 2 5427 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5428 * turn it off (when there are holes in the receive 5429 * space for instance) 5430 * PSH flag is ignored. 5431 */ 5432 5433 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5434 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5435 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5436 int tcp_header_len = tp->tcp_header_len; 5437 5438 /* Timestamp header prediction: tcp_header_len 5439 * is automatically equal to th->doff*4 due to pred_flags 5440 * match. 5441 */ 5442 5443 /* Check timestamp */ 5444 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5445 /* No? Slow path! */ 5446 if (!tcp_parse_aligned_timestamp(tp, th)) 5447 goto slow_path; 5448 5449 /* If PAWS failed, check it more carefully in slow path */ 5450 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5451 goto slow_path; 5452 5453 /* DO NOT update ts_recent here, if checksum fails 5454 * and timestamp was corrupted part, it will result 5455 * in a hung connection since we will drop all 5456 * future packets due to the PAWS test. 5457 */ 5458 } 5459 5460 if (len <= tcp_header_len) { 5461 /* Bulk data transfer: sender */ 5462 if (len == tcp_header_len) { 5463 /* Predicted packet is in window by definition. 5464 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5465 * Hence, check seq<=rcv_wup reduces to: 5466 */ 5467 if (tcp_header_len == 5468 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5469 tp->rcv_nxt == tp->rcv_wup) 5470 tcp_store_ts_recent(tp); 5471 5472 /* We know that such packets are checksummed 5473 * on entry. 5474 */ 5475 tcp_ack(sk, skb, 0); 5476 __kfree_skb(skb); 5477 tcp_data_snd_check(sk); 5478 return; 5479 } else { /* Header too small */ 5480 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5481 goto discard; 5482 } 5483 } else { 5484 int eaten = 0; 5485 bool fragstolen = false; 5486 5487 if (tcp_checksum_complete(skb)) 5488 goto csum_error; 5489 5490 if ((int)skb->truesize > sk->sk_forward_alloc) 5491 goto step5; 5492 5493 /* Predicted packet is in window by definition. 5494 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5495 * Hence, check seq<=rcv_wup reduces to: 5496 */ 5497 if (tcp_header_len == 5498 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5499 tp->rcv_nxt == tp->rcv_wup) 5500 tcp_store_ts_recent(tp); 5501 5502 tcp_rcv_rtt_measure_ts(sk, skb); 5503 5504 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5505 5506 /* Bulk data transfer: receiver */ 5507 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5508 &fragstolen); 5509 5510 tcp_event_data_recv(sk, skb); 5511 5512 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5513 /* Well, only one small jumplet in fast path... */ 5514 tcp_ack(sk, skb, FLAG_DATA); 5515 tcp_data_snd_check(sk); 5516 if (!inet_csk_ack_scheduled(sk)) 5517 goto no_ack; 5518 } 5519 5520 __tcp_ack_snd_check(sk, 0); 5521 no_ack: 5522 if (eaten) 5523 kfree_skb_partial(skb, fragstolen); 5524 tcp_data_ready(sk); 5525 return; 5526 } 5527 } 5528 5529 slow_path: 5530 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5531 goto csum_error; 5532 5533 if (!th->ack && !th->rst && !th->syn) 5534 goto discard; 5535 5536 /* 5537 * Standard slow path. 5538 */ 5539 5540 if (!tcp_validate_incoming(sk, skb, th, 1)) 5541 return; 5542 5543 step5: 5544 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5545 goto discard; 5546 5547 tcp_rcv_rtt_measure_ts(sk, skb); 5548 5549 /* Process urgent data. */ 5550 tcp_urg(sk, skb, th); 5551 5552 /* step 7: process the segment text */ 5553 tcp_data_queue(sk, skb); 5554 5555 tcp_data_snd_check(sk); 5556 tcp_ack_snd_check(sk); 5557 return; 5558 5559 csum_error: 5560 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5561 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5562 5563 discard: 5564 tcp_drop(sk, skb); 5565 } 5566 EXPORT_SYMBOL(tcp_rcv_established); 5567 5568 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5569 { 5570 struct tcp_sock *tp = tcp_sk(sk); 5571 struct inet_connection_sock *icsk = inet_csk(sk); 5572 5573 tcp_set_state(sk, TCP_ESTABLISHED); 5574 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5575 5576 if (skb) { 5577 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5578 security_inet_conn_established(sk, skb); 5579 } 5580 5581 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB); 5582 5583 /* Prevent spurious tcp_cwnd_restart() on first data 5584 * packet. 5585 */ 5586 tp->lsndtime = tcp_jiffies32; 5587 5588 if (sock_flag(sk, SOCK_KEEPOPEN)) 5589 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5590 5591 if (!tp->rx_opt.snd_wscale) 5592 __tcp_fast_path_on(tp, tp->snd_wnd); 5593 else 5594 tp->pred_flags = 0; 5595 } 5596 5597 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5598 struct tcp_fastopen_cookie *cookie) 5599 { 5600 struct tcp_sock *tp = tcp_sk(sk); 5601 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 5602 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5603 bool syn_drop = false; 5604 5605 if (mss == tp->rx_opt.user_mss) { 5606 struct tcp_options_received opt; 5607 5608 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5609 tcp_clear_options(&opt); 5610 opt.user_mss = opt.mss_clamp = 0; 5611 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 5612 mss = opt.mss_clamp; 5613 } 5614 5615 if (!tp->syn_fastopen) { 5616 /* Ignore an unsolicited cookie */ 5617 cookie->len = -1; 5618 } else if (tp->total_retrans) { 5619 /* SYN timed out and the SYN-ACK neither has a cookie nor 5620 * acknowledges data. Presumably the remote received only 5621 * the retransmitted (regular) SYNs: either the original 5622 * SYN-data or the corresponding SYN-ACK was dropped. 5623 */ 5624 syn_drop = (cookie->len < 0 && data); 5625 } else if (cookie->len < 0 && !tp->syn_data) { 5626 /* We requested a cookie but didn't get it. If we did not use 5627 * the (old) exp opt format then try so next time (try_exp=1). 5628 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5629 */ 5630 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5631 } 5632 5633 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5634 5635 if (data) { /* Retransmit unacked data in SYN */ 5636 skb_rbtree_walk_from(data) { 5637 if (__tcp_retransmit_skb(sk, data, 1)) 5638 break; 5639 } 5640 tcp_rearm_rto(sk); 5641 NET_INC_STATS(sock_net(sk), 5642 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5643 return true; 5644 } 5645 tp->syn_data_acked = tp->syn_data; 5646 if (tp->syn_data_acked) { 5647 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 5648 /* SYN-data is counted as two separate packets in tcp_ack() */ 5649 if (tp->delivered > 1) 5650 --tp->delivered; 5651 } 5652 5653 tcp_fastopen_add_skb(sk, synack); 5654 5655 return false; 5656 } 5657 5658 static void smc_check_reset_syn(struct tcp_sock *tp) 5659 { 5660 #if IS_ENABLED(CONFIG_SMC) 5661 if (static_branch_unlikely(&tcp_have_smc)) { 5662 if (tp->syn_smc && !tp->rx_opt.smc_ok) 5663 tp->syn_smc = 0; 5664 } 5665 #endif 5666 } 5667 5668 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5669 const struct tcphdr *th) 5670 { 5671 struct inet_connection_sock *icsk = inet_csk(sk); 5672 struct tcp_sock *tp = tcp_sk(sk); 5673 struct tcp_fastopen_cookie foc = { .len = -1 }; 5674 int saved_clamp = tp->rx_opt.mss_clamp; 5675 bool fastopen_fail; 5676 5677 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 5678 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5679 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5680 5681 if (th->ack) { 5682 /* rfc793: 5683 * "If the state is SYN-SENT then 5684 * first check the ACK bit 5685 * If the ACK bit is set 5686 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5687 * a reset (unless the RST bit is set, if so drop 5688 * the segment and return)" 5689 */ 5690 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5691 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5692 goto reset_and_undo; 5693 5694 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5695 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5696 tcp_time_stamp(tp))) { 5697 NET_INC_STATS(sock_net(sk), 5698 LINUX_MIB_PAWSACTIVEREJECTED); 5699 goto reset_and_undo; 5700 } 5701 5702 /* Now ACK is acceptable. 5703 * 5704 * "If the RST bit is set 5705 * If the ACK was acceptable then signal the user "error: 5706 * connection reset", drop the segment, enter CLOSED state, 5707 * delete TCB, and return." 5708 */ 5709 5710 if (th->rst) { 5711 tcp_reset(sk); 5712 goto discard; 5713 } 5714 5715 /* rfc793: 5716 * "fifth, if neither of the SYN or RST bits is set then 5717 * drop the segment and return." 5718 * 5719 * See note below! 5720 * --ANK(990513) 5721 */ 5722 if (!th->syn) 5723 goto discard_and_undo; 5724 5725 /* rfc793: 5726 * "If the SYN bit is on ... 5727 * are acceptable then ... 5728 * (our SYN has been ACKed), change the connection 5729 * state to ESTABLISHED..." 5730 */ 5731 5732 tcp_ecn_rcv_synack(tp, th); 5733 5734 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5735 tcp_ack(sk, skb, FLAG_SLOWPATH); 5736 5737 /* Ok.. it's good. Set up sequence numbers and 5738 * move to established. 5739 */ 5740 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5741 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5742 5743 /* RFC1323: The window in SYN & SYN/ACK segments is 5744 * never scaled. 5745 */ 5746 tp->snd_wnd = ntohs(th->window); 5747 5748 if (!tp->rx_opt.wscale_ok) { 5749 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5750 tp->window_clamp = min(tp->window_clamp, 65535U); 5751 } 5752 5753 if (tp->rx_opt.saw_tstamp) { 5754 tp->rx_opt.tstamp_ok = 1; 5755 tp->tcp_header_len = 5756 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5757 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5758 tcp_store_ts_recent(tp); 5759 } else { 5760 tp->tcp_header_len = sizeof(struct tcphdr); 5761 } 5762 5763 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5764 tcp_initialize_rcv_mss(sk); 5765 5766 /* Remember, tcp_poll() does not lock socket! 5767 * Change state from SYN-SENT only after copied_seq 5768 * is initialized. */ 5769 tp->copied_seq = tp->rcv_nxt; 5770 5771 smc_check_reset_syn(tp); 5772 5773 smp_mb(); 5774 5775 tcp_finish_connect(sk, skb); 5776 5777 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 5778 tcp_rcv_fastopen_synack(sk, skb, &foc); 5779 5780 if (!sock_flag(sk, SOCK_DEAD)) { 5781 sk->sk_state_change(sk); 5782 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5783 } 5784 if (fastopen_fail) 5785 return -1; 5786 if (sk->sk_write_pending || 5787 icsk->icsk_accept_queue.rskq_defer_accept || 5788 icsk->icsk_ack.pingpong) { 5789 /* Save one ACK. Data will be ready after 5790 * several ticks, if write_pending is set. 5791 * 5792 * It may be deleted, but with this feature tcpdumps 5793 * look so _wonderfully_ clever, that I was not able 5794 * to stand against the temptation 8) --ANK 5795 */ 5796 inet_csk_schedule_ack(sk); 5797 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5798 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5799 TCP_DELACK_MAX, TCP_RTO_MAX); 5800 5801 discard: 5802 tcp_drop(sk, skb); 5803 return 0; 5804 } else { 5805 tcp_send_ack(sk); 5806 } 5807 return -1; 5808 } 5809 5810 /* No ACK in the segment */ 5811 5812 if (th->rst) { 5813 /* rfc793: 5814 * "If the RST bit is set 5815 * 5816 * Otherwise (no ACK) drop the segment and return." 5817 */ 5818 5819 goto discard_and_undo; 5820 } 5821 5822 /* PAWS check. */ 5823 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5824 tcp_paws_reject(&tp->rx_opt, 0)) 5825 goto discard_and_undo; 5826 5827 if (th->syn) { 5828 /* We see SYN without ACK. It is attempt of 5829 * simultaneous connect with crossed SYNs. 5830 * Particularly, it can be connect to self. 5831 */ 5832 tcp_set_state(sk, TCP_SYN_RECV); 5833 5834 if (tp->rx_opt.saw_tstamp) { 5835 tp->rx_opt.tstamp_ok = 1; 5836 tcp_store_ts_recent(tp); 5837 tp->tcp_header_len = 5838 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5839 } else { 5840 tp->tcp_header_len = sizeof(struct tcphdr); 5841 } 5842 5843 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5844 tp->copied_seq = tp->rcv_nxt; 5845 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5846 5847 /* RFC1323: The window in SYN & SYN/ACK segments is 5848 * never scaled. 5849 */ 5850 tp->snd_wnd = ntohs(th->window); 5851 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5852 tp->max_window = tp->snd_wnd; 5853 5854 tcp_ecn_rcv_syn(tp, th); 5855 5856 tcp_mtup_init(sk); 5857 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5858 tcp_initialize_rcv_mss(sk); 5859 5860 tcp_send_synack(sk); 5861 #if 0 5862 /* Note, we could accept data and URG from this segment. 5863 * There are no obstacles to make this (except that we must 5864 * either change tcp_recvmsg() to prevent it from returning data 5865 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5866 * 5867 * However, if we ignore data in ACKless segments sometimes, 5868 * we have no reasons to accept it sometimes. 5869 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5870 * is not flawless. So, discard packet for sanity. 5871 * Uncomment this return to process the data. 5872 */ 5873 return -1; 5874 #else 5875 goto discard; 5876 #endif 5877 } 5878 /* "fifth, if neither of the SYN or RST bits is set then 5879 * drop the segment and return." 5880 */ 5881 5882 discard_and_undo: 5883 tcp_clear_options(&tp->rx_opt); 5884 tp->rx_opt.mss_clamp = saved_clamp; 5885 goto discard; 5886 5887 reset_and_undo: 5888 tcp_clear_options(&tp->rx_opt); 5889 tp->rx_opt.mss_clamp = saved_clamp; 5890 return 1; 5891 } 5892 5893 /* 5894 * This function implements the receiving procedure of RFC 793 for 5895 * all states except ESTABLISHED and TIME_WAIT. 5896 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5897 * address independent. 5898 */ 5899 5900 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 5901 { 5902 struct tcp_sock *tp = tcp_sk(sk); 5903 struct inet_connection_sock *icsk = inet_csk(sk); 5904 const struct tcphdr *th = tcp_hdr(skb); 5905 struct request_sock *req; 5906 int queued = 0; 5907 bool acceptable; 5908 5909 switch (sk->sk_state) { 5910 case TCP_CLOSE: 5911 goto discard; 5912 5913 case TCP_LISTEN: 5914 if (th->ack) 5915 return 1; 5916 5917 if (th->rst) 5918 goto discard; 5919 5920 if (th->syn) { 5921 if (th->fin) 5922 goto discard; 5923 /* It is possible that we process SYN packets from backlog, 5924 * so we need to make sure to disable BH right there. 5925 */ 5926 local_bh_disable(); 5927 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 5928 local_bh_enable(); 5929 5930 if (!acceptable) 5931 return 1; 5932 consume_skb(skb); 5933 return 0; 5934 } 5935 goto discard; 5936 5937 case TCP_SYN_SENT: 5938 tp->rx_opt.saw_tstamp = 0; 5939 tcp_mstamp_refresh(tp); 5940 queued = tcp_rcv_synsent_state_process(sk, skb, th); 5941 if (queued >= 0) 5942 return queued; 5943 5944 /* Do step6 onward by hand. */ 5945 tcp_urg(sk, skb, th); 5946 __kfree_skb(skb); 5947 tcp_data_snd_check(sk); 5948 return 0; 5949 } 5950 5951 tcp_mstamp_refresh(tp); 5952 tp->rx_opt.saw_tstamp = 0; 5953 req = tp->fastopen_rsk; 5954 if (req) { 5955 bool req_stolen; 5956 5957 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5958 sk->sk_state != TCP_FIN_WAIT1); 5959 5960 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) 5961 goto discard; 5962 } 5963 5964 if (!th->ack && !th->rst && !th->syn) 5965 goto discard; 5966 5967 if (!tcp_validate_incoming(sk, skb, th, 0)) 5968 return 0; 5969 5970 /* step 5: check the ACK field */ 5971 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5972 FLAG_UPDATE_TS_RECENT | 5973 FLAG_NO_CHALLENGE_ACK) > 0; 5974 5975 if (!acceptable) { 5976 if (sk->sk_state == TCP_SYN_RECV) 5977 return 1; /* send one RST */ 5978 tcp_send_challenge_ack(sk, skb); 5979 goto discard; 5980 } 5981 switch (sk->sk_state) { 5982 case TCP_SYN_RECV: 5983 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 5984 if (!tp->srtt_us) 5985 tcp_synack_rtt_meas(sk, req); 5986 5987 /* Once we leave TCP_SYN_RECV, we no longer need req 5988 * so release it. 5989 */ 5990 if (req) { 5991 inet_csk(sk)->icsk_retransmits = 0; 5992 reqsk_fastopen_remove(sk, req, false); 5993 /* Re-arm the timer because data may have been sent out. 5994 * This is similar to the regular data transmission case 5995 * when new data has just been ack'ed. 5996 * 5997 * (TFO) - we could try to be more aggressive and 5998 * retransmitting any data sooner based on when they 5999 * are sent out. 6000 */ 6001 tcp_rearm_rto(sk); 6002 } else { 6003 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB); 6004 tp->copied_seq = tp->rcv_nxt; 6005 } 6006 smp_mb(); 6007 tcp_set_state(sk, TCP_ESTABLISHED); 6008 sk->sk_state_change(sk); 6009 6010 /* Note, that this wakeup is only for marginal crossed SYN case. 6011 * Passively open sockets are not waked up, because 6012 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6013 */ 6014 if (sk->sk_socket) 6015 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6016 6017 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6018 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6019 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6020 6021 if (tp->rx_opt.tstamp_ok) 6022 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6023 6024 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6025 tcp_update_pacing_rate(sk); 6026 6027 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6028 tp->lsndtime = tcp_jiffies32; 6029 6030 tcp_initialize_rcv_mss(sk); 6031 tcp_fast_path_on(tp); 6032 break; 6033 6034 case TCP_FIN_WAIT1: { 6035 int tmo; 6036 6037 /* If we enter the TCP_FIN_WAIT1 state and we are a 6038 * Fast Open socket and this is the first acceptable 6039 * ACK we have received, this would have acknowledged 6040 * our SYNACK so stop the SYNACK timer. 6041 */ 6042 if (req) { 6043 /* We no longer need the request sock. */ 6044 reqsk_fastopen_remove(sk, req, false); 6045 tcp_rearm_rto(sk); 6046 } 6047 if (tp->snd_una != tp->write_seq) 6048 break; 6049 6050 tcp_set_state(sk, TCP_FIN_WAIT2); 6051 sk->sk_shutdown |= SEND_SHUTDOWN; 6052 6053 sk_dst_confirm(sk); 6054 6055 if (!sock_flag(sk, SOCK_DEAD)) { 6056 /* Wake up lingering close() */ 6057 sk->sk_state_change(sk); 6058 break; 6059 } 6060 6061 if (tp->linger2 < 0) { 6062 tcp_done(sk); 6063 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6064 return 1; 6065 } 6066 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6067 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6068 /* Receive out of order FIN after close() */ 6069 if (tp->syn_fastopen && th->fin) 6070 tcp_fastopen_active_disable(sk); 6071 tcp_done(sk); 6072 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6073 return 1; 6074 } 6075 6076 tmo = tcp_fin_time(sk); 6077 if (tmo > TCP_TIMEWAIT_LEN) { 6078 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6079 } else if (th->fin || sock_owned_by_user(sk)) { 6080 /* Bad case. We could lose such FIN otherwise. 6081 * It is not a big problem, but it looks confusing 6082 * and not so rare event. We still can lose it now, 6083 * if it spins in bh_lock_sock(), but it is really 6084 * marginal case. 6085 */ 6086 inet_csk_reset_keepalive_timer(sk, tmo); 6087 } else { 6088 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6089 goto discard; 6090 } 6091 break; 6092 } 6093 6094 case TCP_CLOSING: 6095 if (tp->snd_una == tp->write_seq) { 6096 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6097 goto discard; 6098 } 6099 break; 6100 6101 case TCP_LAST_ACK: 6102 if (tp->snd_una == tp->write_seq) { 6103 tcp_update_metrics(sk); 6104 tcp_done(sk); 6105 goto discard; 6106 } 6107 break; 6108 } 6109 6110 /* step 6: check the URG bit */ 6111 tcp_urg(sk, skb, th); 6112 6113 /* step 7: process the segment text */ 6114 switch (sk->sk_state) { 6115 case TCP_CLOSE_WAIT: 6116 case TCP_CLOSING: 6117 case TCP_LAST_ACK: 6118 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6119 break; 6120 /* fall through */ 6121 case TCP_FIN_WAIT1: 6122 case TCP_FIN_WAIT2: 6123 /* RFC 793 says to queue data in these states, 6124 * RFC 1122 says we MUST send a reset. 6125 * BSD 4.4 also does reset. 6126 */ 6127 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6128 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6129 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6130 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6131 tcp_reset(sk); 6132 return 1; 6133 } 6134 } 6135 /* Fall through */ 6136 case TCP_ESTABLISHED: 6137 tcp_data_queue(sk, skb); 6138 queued = 1; 6139 break; 6140 } 6141 6142 /* tcp_data could move socket to TIME-WAIT */ 6143 if (sk->sk_state != TCP_CLOSE) { 6144 tcp_data_snd_check(sk); 6145 tcp_ack_snd_check(sk); 6146 } 6147 6148 if (!queued) { 6149 discard: 6150 tcp_drop(sk, skb); 6151 } 6152 return 0; 6153 } 6154 EXPORT_SYMBOL(tcp_rcv_state_process); 6155 6156 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6157 { 6158 struct inet_request_sock *ireq = inet_rsk(req); 6159 6160 if (family == AF_INET) 6161 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6162 &ireq->ir_rmt_addr, port); 6163 #if IS_ENABLED(CONFIG_IPV6) 6164 else if (family == AF_INET6) 6165 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6166 &ireq->ir_v6_rmt_addr, port); 6167 #endif 6168 } 6169 6170 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6171 * 6172 * If we receive a SYN packet with these bits set, it means a 6173 * network is playing bad games with TOS bits. In order to 6174 * avoid possible false congestion notifications, we disable 6175 * TCP ECN negotiation. 6176 * 6177 * Exception: tcp_ca wants ECN. This is required for DCTCP 6178 * congestion control: Linux DCTCP asserts ECT on all packets, 6179 * including SYN, which is most optimal solution; however, 6180 * others, such as FreeBSD do not. 6181 */ 6182 static void tcp_ecn_create_request(struct request_sock *req, 6183 const struct sk_buff *skb, 6184 const struct sock *listen_sk, 6185 const struct dst_entry *dst) 6186 { 6187 const struct tcphdr *th = tcp_hdr(skb); 6188 const struct net *net = sock_net(listen_sk); 6189 bool th_ecn = th->ece && th->cwr; 6190 bool ect, ecn_ok; 6191 u32 ecn_ok_dst; 6192 6193 if (!th_ecn) 6194 return; 6195 6196 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6197 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6198 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6199 6200 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6201 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6202 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6203 inet_rsk(req)->ecn_ok = 1; 6204 } 6205 6206 static void tcp_openreq_init(struct request_sock *req, 6207 const struct tcp_options_received *rx_opt, 6208 struct sk_buff *skb, const struct sock *sk) 6209 { 6210 struct inet_request_sock *ireq = inet_rsk(req); 6211 6212 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6213 req->cookie_ts = 0; 6214 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6215 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6216 tcp_rsk(req)->snt_synack = tcp_clock_us(); 6217 tcp_rsk(req)->last_oow_ack_time = 0; 6218 req->mss = rx_opt->mss_clamp; 6219 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6220 ireq->tstamp_ok = rx_opt->tstamp_ok; 6221 ireq->sack_ok = rx_opt->sack_ok; 6222 ireq->snd_wscale = rx_opt->snd_wscale; 6223 ireq->wscale_ok = rx_opt->wscale_ok; 6224 ireq->acked = 0; 6225 ireq->ecn_ok = 0; 6226 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6227 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6228 ireq->ir_mark = inet_request_mark(sk, skb); 6229 #if IS_ENABLED(CONFIG_SMC) 6230 ireq->smc_ok = rx_opt->smc_ok; 6231 #endif 6232 } 6233 6234 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6235 struct sock *sk_listener, 6236 bool attach_listener) 6237 { 6238 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6239 attach_listener); 6240 6241 if (req) { 6242 struct inet_request_sock *ireq = inet_rsk(req); 6243 6244 ireq->ireq_opt = NULL; 6245 #if IS_ENABLED(CONFIG_IPV6) 6246 ireq->pktopts = NULL; 6247 #endif 6248 atomic64_set(&ireq->ir_cookie, 0); 6249 ireq->ireq_state = TCP_NEW_SYN_RECV; 6250 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6251 ireq->ireq_family = sk_listener->sk_family; 6252 } 6253 6254 return req; 6255 } 6256 EXPORT_SYMBOL(inet_reqsk_alloc); 6257 6258 /* 6259 * Return true if a syncookie should be sent 6260 */ 6261 static bool tcp_syn_flood_action(const struct sock *sk, 6262 const struct sk_buff *skb, 6263 const char *proto) 6264 { 6265 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6266 const char *msg = "Dropping request"; 6267 bool want_cookie = false; 6268 struct net *net = sock_net(sk); 6269 6270 #ifdef CONFIG_SYN_COOKIES 6271 if (net->ipv4.sysctl_tcp_syncookies) { 6272 msg = "Sending cookies"; 6273 want_cookie = true; 6274 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6275 } else 6276 #endif 6277 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6278 6279 if (!queue->synflood_warned && 6280 net->ipv4.sysctl_tcp_syncookies != 2 && 6281 xchg(&queue->synflood_warned, 1) == 0) 6282 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6283 proto, ntohs(tcp_hdr(skb)->dest), msg); 6284 6285 return want_cookie; 6286 } 6287 6288 static void tcp_reqsk_record_syn(const struct sock *sk, 6289 struct request_sock *req, 6290 const struct sk_buff *skb) 6291 { 6292 if (tcp_sk(sk)->save_syn) { 6293 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6294 u32 *copy; 6295 6296 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6297 if (copy) { 6298 copy[0] = len; 6299 memcpy(©[1], skb_network_header(skb), len); 6300 req->saved_syn = copy; 6301 } 6302 } 6303 } 6304 6305 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6306 const struct tcp_request_sock_ops *af_ops, 6307 struct sock *sk, struct sk_buff *skb) 6308 { 6309 struct tcp_fastopen_cookie foc = { .len = -1 }; 6310 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6311 struct tcp_options_received tmp_opt; 6312 struct tcp_sock *tp = tcp_sk(sk); 6313 struct net *net = sock_net(sk); 6314 struct sock *fastopen_sk = NULL; 6315 struct request_sock *req; 6316 bool want_cookie = false; 6317 struct dst_entry *dst; 6318 struct flowi fl; 6319 6320 /* TW buckets are converted to open requests without 6321 * limitations, they conserve resources and peer is 6322 * evidently real one. 6323 */ 6324 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6325 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6326 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6327 if (!want_cookie) 6328 goto drop; 6329 } 6330 6331 if (sk_acceptq_is_full(sk)) { 6332 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6333 goto drop; 6334 } 6335 6336 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6337 if (!req) 6338 goto drop; 6339 6340 tcp_rsk(req)->af_specific = af_ops; 6341 tcp_rsk(req)->ts_off = 0; 6342 6343 tcp_clear_options(&tmp_opt); 6344 tmp_opt.mss_clamp = af_ops->mss_clamp; 6345 tmp_opt.user_mss = tp->rx_opt.user_mss; 6346 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6347 want_cookie ? NULL : &foc); 6348 6349 if (want_cookie && !tmp_opt.saw_tstamp) 6350 tcp_clear_options(&tmp_opt); 6351 6352 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 6353 tmp_opt.smc_ok = 0; 6354 6355 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6356 tcp_openreq_init(req, &tmp_opt, skb, sk); 6357 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6358 6359 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6360 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6361 6362 af_ops->init_req(req, sk, skb); 6363 6364 if (security_inet_conn_request(sk, skb, req)) 6365 goto drop_and_free; 6366 6367 if (tmp_opt.tstamp_ok) 6368 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6369 6370 dst = af_ops->route_req(sk, &fl, req); 6371 if (!dst) 6372 goto drop_and_free; 6373 6374 if (!want_cookie && !isn) { 6375 /* Kill the following clause, if you dislike this way. */ 6376 if (!net->ipv4.sysctl_tcp_syncookies && 6377 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6378 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6379 !tcp_peer_is_proven(req, dst)) { 6380 /* Without syncookies last quarter of 6381 * backlog is filled with destinations, 6382 * proven to be alive. 6383 * It means that we continue to communicate 6384 * to destinations, already remembered 6385 * to the moment of synflood. 6386 */ 6387 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6388 rsk_ops->family); 6389 goto drop_and_release; 6390 } 6391 6392 isn = af_ops->init_seq(skb); 6393 } 6394 6395 tcp_ecn_create_request(req, skb, sk, dst); 6396 6397 if (want_cookie) { 6398 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6399 req->cookie_ts = tmp_opt.tstamp_ok; 6400 if (!tmp_opt.tstamp_ok) 6401 inet_rsk(req)->ecn_ok = 0; 6402 } 6403 6404 tcp_rsk(req)->snt_isn = isn; 6405 tcp_rsk(req)->txhash = net_tx_rndhash(); 6406 tcp_openreq_init_rwin(req, sk, dst); 6407 if (!want_cookie) { 6408 tcp_reqsk_record_syn(sk, req, skb); 6409 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6410 } 6411 if (fastopen_sk) { 6412 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6413 &foc, TCP_SYNACK_FASTOPEN); 6414 /* Add the child socket directly into the accept queue */ 6415 inet_csk_reqsk_queue_add(sk, req, fastopen_sk); 6416 sk->sk_data_ready(sk); 6417 bh_unlock_sock(fastopen_sk); 6418 sock_put(fastopen_sk); 6419 } else { 6420 tcp_rsk(req)->tfo_listener = false; 6421 if (!want_cookie) 6422 inet_csk_reqsk_queue_hash_add(sk, req, 6423 tcp_timeout_init((struct sock *)req)); 6424 af_ops->send_synack(sk, dst, &fl, req, &foc, 6425 !want_cookie ? TCP_SYNACK_NORMAL : 6426 TCP_SYNACK_COOKIE); 6427 if (want_cookie) { 6428 reqsk_free(req); 6429 return 0; 6430 } 6431 } 6432 reqsk_put(req); 6433 return 0; 6434 6435 drop_and_release: 6436 dst_release(dst); 6437 drop_and_free: 6438 reqsk_free(req); 6439 drop: 6440 tcp_listendrop(sk); 6441 return 0; 6442 } 6443 EXPORT_SYMBOL(tcp_conn_request); 6444