xref: /openbmc/linux/net/ipv4/tcp_input.c (revision e917ba44)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #define pr_fmt(fmt) "TCP: " fmt
65 
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
77 #include <linux/errqueue.h>
78 
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly = 1;
83 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
84 EXPORT_SYMBOL(sysctl_tcp_reordering);
85 int sysctl_tcp_dsack __read_mostly = 1;
86 int sysctl_tcp_app_win __read_mostly = 31;
87 int sysctl_tcp_adv_win_scale __read_mostly = 1;
88 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
89 
90 /* rfc5961 challenge ack rate limiting */
91 int sysctl_tcp_challenge_ack_limit = 100;
92 
93 int sysctl_tcp_stdurg __read_mostly;
94 int sysctl_tcp_rfc1337 __read_mostly;
95 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
96 int sysctl_tcp_frto __read_mostly = 2;
97 
98 int sysctl_tcp_thin_dupack __read_mostly;
99 
100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101 int sysctl_tcp_early_retrans __read_mostly = 3;
102 
103 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
104 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
105 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
106 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
107 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
108 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
109 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
110 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
111 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
112 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
113 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
114 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
115 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
116 
117 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
118 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
119 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
120 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
121 
122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
124 
125 /* Adapt the MSS value used to make delayed ack decision to the
126  * real world.
127  */
128 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
129 {
130 	struct inet_connection_sock *icsk = inet_csk(sk);
131 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
132 	unsigned int len;
133 
134 	icsk->icsk_ack.last_seg_size = 0;
135 
136 	/* skb->len may jitter because of SACKs, even if peer
137 	 * sends good full-sized frames.
138 	 */
139 	len = skb_shinfo(skb)->gso_size ? : skb->len;
140 	if (len >= icsk->icsk_ack.rcv_mss) {
141 		icsk->icsk_ack.rcv_mss = len;
142 	} else {
143 		/* Otherwise, we make more careful check taking into account,
144 		 * that SACKs block is variable.
145 		 *
146 		 * "len" is invariant segment length, including TCP header.
147 		 */
148 		len += skb->data - skb_transport_header(skb);
149 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
150 		    /* If PSH is not set, packet should be
151 		     * full sized, provided peer TCP is not badly broken.
152 		     * This observation (if it is correct 8)) allows
153 		     * to handle super-low mtu links fairly.
154 		     */
155 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
156 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
157 			/* Subtract also invariant (if peer is RFC compliant),
158 			 * tcp header plus fixed timestamp option length.
159 			 * Resulting "len" is MSS free of SACK jitter.
160 			 */
161 			len -= tcp_sk(sk)->tcp_header_len;
162 			icsk->icsk_ack.last_seg_size = len;
163 			if (len == lss) {
164 				icsk->icsk_ack.rcv_mss = len;
165 				return;
166 			}
167 		}
168 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
169 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
170 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
171 	}
172 }
173 
174 static void tcp_incr_quickack(struct sock *sk)
175 {
176 	struct inet_connection_sock *icsk = inet_csk(sk);
177 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
178 
179 	if (quickacks == 0)
180 		quickacks = 2;
181 	if (quickacks > icsk->icsk_ack.quick)
182 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
183 }
184 
185 static void tcp_enter_quickack_mode(struct sock *sk)
186 {
187 	struct inet_connection_sock *icsk = inet_csk(sk);
188 	tcp_incr_quickack(sk);
189 	icsk->icsk_ack.pingpong = 0;
190 	icsk->icsk_ack.ato = TCP_ATO_MIN;
191 }
192 
193 /* Send ACKs quickly, if "quick" count is not exhausted
194  * and the session is not interactive.
195  */
196 
197 static inline bool tcp_in_quickack_mode(const struct sock *sk)
198 {
199 	const struct inet_connection_sock *icsk = inet_csk(sk);
200 
201 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
202 }
203 
204 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
205 {
206 	if (tp->ecn_flags & TCP_ECN_OK)
207 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
208 }
209 
210 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
211 {
212 	if (tcp_hdr(skb)->cwr)
213 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214 }
215 
216 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
217 {
218 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
219 }
220 
221 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
222 {
223 	if (!(tp->ecn_flags & TCP_ECN_OK))
224 		return;
225 
226 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
227 	case INET_ECN_NOT_ECT:
228 		/* Funny extension: if ECT is not set on a segment,
229 		 * and we already seen ECT on a previous segment,
230 		 * it is probably a retransmit.
231 		 */
232 		if (tp->ecn_flags & TCP_ECN_SEEN)
233 			tcp_enter_quickack_mode((struct sock *)tp);
234 		break;
235 	case INET_ECN_CE:
236 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
237 			/* Better not delay acks, sender can have a very low cwnd */
238 			tcp_enter_quickack_mode((struct sock *)tp);
239 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
240 		}
241 		/* fallinto */
242 	default:
243 		tp->ecn_flags |= TCP_ECN_SEEN;
244 	}
245 }
246 
247 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
248 {
249 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
250 		tp->ecn_flags &= ~TCP_ECN_OK;
251 }
252 
253 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
254 {
255 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
256 		tp->ecn_flags &= ~TCP_ECN_OK;
257 }
258 
259 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
260 {
261 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
262 		return true;
263 	return false;
264 }
265 
266 /* Buffer size and advertised window tuning.
267  *
268  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
269  */
270 
271 static void tcp_sndbuf_expand(struct sock *sk)
272 {
273 	const struct tcp_sock *tp = tcp_sk(sk);
274 	int sndmem, per_mss;
275 	u32 nr_segs;
276 
277 	/* Worst case is non GSO/TSO : each frame consumes one skb
278 	 * and skb->head is kmalloced using power of two area of memory
279 	 */
280 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
281 		  MAX_TCP_HEADER +
282 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
283 
284 	per_mss = roundup_pow_of_two(per_mss) +
285 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
286 
287 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
288 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
289 
290 	/* Fast Recovery (RFC 5681 3.2) :
291 	 * Cubic needs 1.7 factor, rounded to 2 to include
292 	 * extra cushion (application might react slowly to POLLOUT)
293 	 */
294 	sndmem = 2 * nr_segs * per_mss;
295 
296 	if (sk->sk_sndbuf < sndmem)
297 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
298 }
299 
300 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
301  *
302  * All tcp_full_space() is split to two parts: "network" buffer, allocated
303  * forward and advertised in receiver window (tp->rcv_wnd) and
304  * "application buffer", required to isolate scheduling/application
305  * latencies from network.
306  * window_clamp is maximal advertised window. It can be less than
307  * tcp_full_space(), in this case tcp_full_space() - window_clamp
308  * is reserved for "application" buffer. The less window_clamp is
309  * the smoother our behaviour from viewpoint of network, but the lower
310  * throughput and the higher sensitivity of the connection to losses. 8)
311  *
312  * rcv_ssthresh is more strict window_clamp used at "slow start"
313  * phase to predict further behaviour of this connection.
314  * It is used for two goals:
315  * - to enforce header prediction at sender, even when application
316  *   requires some significant "application buffer". It is check #1.
317  * - to prevent pruning of receive queue because of misprediction
318  *   of receiver window. Check #2.
319  *
320  * The scheme does not work when sender sends good segments opening
321  * window and then starts to feed us spaghetti. But it should work
322  * in common situations. Otherwise, we have to rely on queue collapsing.
323  */
324 
325 /* Slow part of check#2. */
326 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
327 {
328 	struct tcp_sock *tp = tcp_sk(sk);
329 	/* Optimize this! */
330 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
331 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
332 
333 	while (tp->rcv_ssthresh <= window) {
334 		if (truesize <= skb->len)
335 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
336 
337 		truesize >>= 1;
338 		window >>= 1;
339 	}
340 	return 0;
341 }
342 
343 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
344 {
345 	struct tcp_sock *tp = tcp_sk(sk);
346 
347 	/* Check #1 */
348 	if (tp->rcv_ssthresh < tp->window_clamp &&
349 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
350 	    !sk_under_memory_pressure(sk)) {
351 		int incr;
352 
353 		/* Check #2. Increase window, if skb with such overhead
354 		 * will fit to rcvbuf in future.
355 		 */
356 		if (tcp_win_from_space(skb->truesize) <= skb->len)
357 			incr = 2 * tp->advmss;
358 		else
359 			incr = __tcp_grow_window(sk, skb);
360 
361 		if (incr) {
362 			incr = max_t(int, incr, 2 * skb->len);
363 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
364 					       tp->window_clamp);
365 			inet_csk(sk)->icsk_ack.quick |= 1;
366 		}
367 	}
368 }
369 
370 /* 3. Tuning rcvbuf, when connection enters established state. */
371 static void tcp_fixup_rcvbuf(struct sock *sk)
372 {
373 	u32 mss = tcp_sk(sk)->advmss;
374 	int rcvmem;
375 
376 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
377 		 tcp_default_init_rwnd(mss);
378 
379 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
380 	 * Allow enough cushion so that sender is not limited by our window
381 	 */
382 	if (sysctl_tcp_moderate_rcvbuf)
383 		rcvmem <<= 2;
384 
385 	if (sk->sk_rcvbuf < rcvmem)
386 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
387 }
388 
389 /* 4. Try to fixup all. It is made immediately after connection enters
390  *    established state.
391  */
392 void tcp_init_buffer_space(struct sock *sk)
393 {
394 	struct tcp_sock *tp = tcp_sk(sk);
395 	int maxwin;
396 
397 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
398 		tcp_fixup_rcvbuf(sk);
399 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
400 		tcp_sndbuf_expand(sk);
401 
402 	tp->rcvq_space.space = tp->rcv_wnd;
403 	tp->rcvq_space.time = tcp_time_stamp;
404 	tp->rcvq_space.seq = tp->copied_seq;
405 
406 	maxwin = tcp_full_space(sk);
407 
408 	if (tp->window_clamp >= maxwin) {
409 		tp->window_clamp = maxwin;
410 
411 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
412 			tp->window_clamp = max(maxwin -
413 					       (maxwin >> sysctl_tcp_app_win),
414 					       4 * tp->advmss);
415 	}
416 
417 	/* Force reservation of one segment. */
418 	if (sysctl_tcp_app_win &&
419 	    tp->window_clamp > 2 * tp->advmss &&
420 	    tp->window_clamp + tp->advmss > maxwin)
421 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
422 
423 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
424 	tp->snd_cwnd_stamp = tcp_time_stamp;
425 }
426 
427 /* 5. Recalculate window clamp after socket hit its memory bounds. */
428 static void tcp_clamp_window(struct sock *sk)
429 {
430 	struct tcp_sock *tp = tcp_sk(sk);
431 	struct inet_connection_sock *icsk = inet_csk(sk);
432 
433 	icsk->icsk_ack.quick = 0;
434 
435 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
436 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
437 	    !sk_under_memory_pressure(sk) &&
438 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
439 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
440 				    sysctl_tcp_rmem[2]);
441 	}
442 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
443 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
444 }
445 
446 /* Initialize RCV_MSS value.
447  * RCV_MSS is an our guess about MSS used by the peer.
448  * We haven't any direct information about the MSS.
449  * It's better to underestimate the RCV_MSS rather than overestimate.
450  * Overestimations make us ACKing less frequently than needed.
451  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
452  */
453 void tcp_initialize_rcv_mss(struct sock *sk)
454 {
455 	const struct tcp_sock *tp = tcp_sk(sk);
456 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
457 
458 	hint = min(hint, tp->rcv_wnd / 2);
459 	hint = min(hint, TCP_MSS_DEFAULT);
460 	hint = max(hint, TCP_MIN_MSS);
461 
462 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
463 }
464 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
465 
466 /* Receiver "autotuning" code.
467  *
468  * The algorithm for RTT estimation w/o timestamps is based on
469  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
470  * <http://public.lanl.gov/radiant/pubs.html#DRS>
471  *
472  * More detail on this code can be found at
473  * <http://staff.psc.edu/jheffner/>,
474  * though this reference is out of date.  A new paper
475  * is pending.
476  */
477 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
478 {
479 	u32 new_sample = tp->rcv_rtt_est.rtt;
480 	long m = sample;
481 
482 	if (m == 0)
483 		m = 1;
484 
485 	if (new_sample != 0) {
486 		/* If we sample in larger samples in the non-timestamp
487 		 * case, we could grossly overestimate the RTT especially
488 		 * with chatty applications or bulk transfer apps which
489 		 * are stalled on filesystem I/O.
490 		 *
491 		 * Also, since we are only going for a minimum in the
492 		 * non-timestamp case, we do not smooth things out
493 		 * else with timestamps disabled convergence takes too
494 		 * long.
495 		 */
496 		if (!win_dep) {
497 			m -= (new_sample >> 3);
498 			new_sample += m;
499 		} else {
500 			m <<= 3;
501 			if (m < new_sample)
502 				new_sample = m;
503 		}
504 	} else {
505 		/* No previous measure. */
506 		new_sample = m << 3;
507 	}
508 
509 	if (tp->rcv_rtt_est.rtt != new_sample)
510 		tp->rcv_rtt_est.rtt = new_sample;
511 }
512 
513 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
514 {
515 	if (tp->rcv_rtt_est.time == 0)
516 		goto new_measure;
517 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
518 		return;
519 	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
520 
521 new_measure:
522 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
523 	tp->rcv_rtt_est.time = tcp_time_stamp;
524 }
525 
526 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
527 					  const struct sk_buff *skb)
528 {
529 	struct tcp_sock *tp = tcp_sk(sk);
530 	if (tp->rx_opt.rcv_tsecr &&
531 	    (TCP_SKB_CB(skb)->end_seq -
532 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
533 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
534 }
535 
536 /*
537  * This function should be called every time data is copied to user space.
538  * It calculates the appropriate TCP receive buffer space.
539  */
540 void tcp_rcv_space_adjust(struct sock *sk)
541 {
542 	struct tcp_sock *tp = tcp_sk(sk);
543 	int time;
544 	int copied;
545 
546 	time = tcp_time_stamp - tp->rcvq_space.time;
547 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
548 		return;
549 
550 	/* Number of bytes copied to user in last RTT */
551 	copied = tp->copied_seq - tp->rcvq_space.seq;
552 	if (copied <= tp->rcvq_space.space)
553 		goto new_measure;
554 
555 	/* A bit of theory :
556 	 * copied = bytes received in previous RTT, our base window
557 	 * To cope with packet losses, we need a 2x factor
558 	 * To cope with slow start, and sender growing its cwin by 100 %
559 	 * every RTT, we need a 4x factor, because the ACK we are sending
560 	 * now is for the next RTT, not the current one :
561 	 * <prev RTT . ><current RTT .. ><next RTT .... >
562 	 */
563 
564 	if (sysctl_tcp_moderate_rcvbuf &&
565 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
566 		int rcvwin, rcvmem, rcvbuf;
567 
568 		/* minimal window to cope with packet losses, assuming
569 		 * steady state. Add some cushion because of small variations.
570 		 */
571 		rcvwin = (copied << 1) + 16 * tp->advmss;
572 
573 		/* If rate increased by 25%,
574 		 *	assume slow start, rcvwin = 3 * copied
575 		 * If rate increased by 50%,
576 		 *	assume sender can use 2x growth, rcvwin = 4 * copied
577 		 */
578 		if (copied >=
579 		    tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
580 			if (copied >=
581 			    tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
582 				rcvwin <<= 1;
583 			else
584 				rcvwin += (rcvwin >> 1);
585 		}
586 
587 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
588 		while (tcp_win_from_space(rcvmem) < tp->advmss)
589 			rcvmem += 128;
590 
591 		rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
592 		if (rcvbuf > sk->sk_rcvbuf) {
593 			sk->sk_rcvbuf = rcvbuf;
594 
595 			/* Make the window clamp follow along.  */
596 			tp->window_clamp = rcvwin;
597 		}
598 	}
599 	tp->rcvq_space.space = copied;
600 
601 new_measure:
602 	tp->rcvq_space.seq = tp->copied_seq;
603 	tp->rcvq_space.time = tcp_time_stamp;
604 }
605 
606 /* There is something which you must keep in mind when you analyze the
607  * behavior of the tp->ato delayed ack timeout interval.  When a
608  * connection starts up, we want to ack as quickly as possible.  The
609  * problem is that "good" TCP's do slow start at the beginning of data
610  * transmission.  The means that until we send the first few ACK's the
611  * sender will sit on his end and only queue most of his data, because
612  * he can only send snd_cwnd unacked packets at any given time.  For
613  * each ACK we send, he increments snd_cwnd and transmits more of his
614  * queue.  -DaveM
615  */
616 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
617 {
618 	struct tcp_sock *tp = tcp_sk(sk);
619 	struct inet_connection_sock *icsk = inet_csk(sk);
620 	u32 now;
621 
622 	inet_csk_schedule_ack(sk);
623 
624 	tcp_measure_rcv_mss(sk, skb);
625 
626 	tcp_rcv_rtt_measure(tp);
627 
628 	now = tcp_time_stamp;
629 
630 	if (!icsk->icsk_ack.ato) {
631 		/* The _first_ data packet received, initialize
632 		 * delayed ACK engine.
633 		 */
634 		tcp_incr_quickack(sk);
635 		icsk->icsk_ack.ato = TCP_ATO_MIN;
636 	} else {
637 		int m = now - icsk->icsk_ack.lrcvtime;
638 
639 		if (m <= TCP_ATO_MIN / 2) {
640 			/* The fastest case is the first. */
641 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
642 		} else if (m < icsk->icsk_ack.ato) {
643 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
644 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
645 				icsk->icsk_ack.ato = icsk->icsk_rto;
646 		} else if (m > icsk->icsk_rto) {
647 			/* Too long gap. Apparently sender failed to
648 			 * restart window, so that we send ACKs quickly.
649 			 */
650 			tcp_incr_quickack(sk);
651 			sk_mem_reclaim(sk);
652 		}
653 	}
654 	icsk->icsk_ack.lrcvtime = now;
655 
656 	TCP_ECN_check_ce(tp, skb);
657 
658 	if (skb->len >= 128)
659 		tcp_grow_window(sk, skb);
660 }
661 
662 /* Called to compute a smoothed rtt estimate. The data fed to this
663  * routine either comes from timestamps, or from segments that were
664  * known _not_ to have been retransmitted [see Karn/Partridge
665  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
666  * piece by Van Jacobson.
667  * NOTE: the next three routines used to be one big routine.
668  * To save cycles in the RFC 1323 implementation it was better to break
669  * it up into three procedures. -- erics
670  */
671 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
672 {
673 	struct tcp_sock *tp = tcp_sk(sk);
674 	long m = mrtt_us; /* RTT */
675 	u32 srtt = tp->srtt_us;
676 
677 	/*	The following amusing code comes from Jacobson's
678 	 *	article in SIGCOMM '88.  Note that rtt and mdev
679 	 *	are scaled versions of rtt and mean deviation.
680 	 *	This is designed to be as fast as possible
681 	 *	m stands for "measurement".
682 	 *
683 	 *	On a 1990 paper the rto value is changed to:
684 	 *	RTO = rtt + 4 * mdev
685 	 *
686 	 * Funny. This algorithm seems to be very broken.
687 	 * These formulae increase RTO, when it should be decreased, increase
688 	 * too slowly, when it should be increased quickly, decrease too quickly
689 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
690 	 * does not matter how to _calculate_ it. Seems, it was trap
691 	 * that VJ failed to avoid. 8)
692 	 */
693 	if (srtt != 0) {
694 		m -= (srtt >> 3);	/* m is now error in rtt est */
695 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
696 		if (m < 0) {
697 			m = -m;		/* m is now abs(error) */
698 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
699 			/* This is similar to one of Eifel findings.
700 			 * Eifel blocks mdev updates when rtt decreases.
701 			 * This solution is a bit different: we use finer gain
702 			 * for mdev in this case (alpha*beta).
703 			 * Like Eifel it also prevents growth of rto,
704 			 * but also it limits too fast rto decreases,
705 			 * happening in pure Eifel.
706 			 */
707 			if (m > 0)
708 				m >>= 3;
709 		} else {
710 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
711 		}
712 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
713 		if (tp->mdev_us > tp->mdev_max_us) {
714 			tp->mdev_max_us = tp->mdev_us;
715 			if (tp->mdev_max_us > tp->rttvar_us)
716 				tp->rttvar_us = tp->mdev_max_us;
717 		}
718 		if (after(tp->snd_una, tp->rtt_seq)) {
719 			if (tp->mdev_max_us < tp->rttvar_us)
720 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
721 			tp->rtt_seq = tp->snd_nxt;
722 			tp->mdev_max_us = tcp_rto_min_us(sk);
723 		}
724 	} else {
725 		/* no previous measure. */
726 		srtt = m << 3;		/* take the measured time to be rtt */
727 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
728 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
729 		tp->mdev_max_us = tp->rttvar_us;
730 		tp->rtt_seq = tp->snd_nxt;
731 	}
732 	tp->srtt_us = max(1U, srtt);
733 }
734 
735 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
736  * Note: TCP stack does not yet implement pacing.
737  * FQ packet scheduler can be used to implement cheap but effective
738  * TCP pacing, to smooth the burst on large writes when packets
739  * in flight is significantly lower than cwnd (or rwin)
740  */
741 static void tcp_update_pacing_rate(struct sock *sk)
742 {
743 	const struct tcp_sock *tp = tcp_sk(sk);
744 	u64 rate;
745 
746 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
747 	rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3);
748 
749 	rate *= max(tp->snd_cwnd, tp->packets_out);
750 
751 	if (likely(tp->srtt_us))
752 		do_div(rate, tp->srtt_us);
753 
754 	/* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
755 	 * without any lock. We want to make sure compiler wont store
756 	 * intermediate values in this location.
757 	 */
758 	ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
759 						sk->sk_max_pacing_rate);
760 }
761 
762 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
763  * routine referred to above.
764  */
765 static void tcp_set_rto(struct sock *sk)
766 {
767 	const struct tcp_sock *tp = tcp_sk(sk);
768 	/* Old crap is replaced with new one. 8)
769 	 *
770 	 * More seriously:
771 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
772 	 *    It cannot be less due to utterly erratic ACK generation made
773 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
774 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
775 	 *    is invisible. Actually, Linux-2.4 also generates erratic
776 	 *    ACKs in some circumstances.
777 	 */
778 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
779 
780 	/* 2. Fixups made earlier cannot be right.
781 	 *    If we do not estimate RTO correctly without them,
782 	 *    all the algo is pure shit and should be replaced
783 	 *    with correct one. It is exactly, which we pretend to do.
784 	 */
785 
786 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
787 	 * guarantees that rto is higher.
788 	 */
789 	tcp_bound_rto(sk);
790 }
791 
792 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
793 {
794 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
795 
796 	if (!cwnd)
797 		cwnd = TCP_INIT_CWND;
798 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
799 }
800 
801 /*
802  * Packet counting of FACK is based on in-order assumptions, therefore TCP
803  * disables it when reordering is detected
804  */
805 void tcp_disable_fack(struct tcp_sock *tp)
806 {
807 	/* RFC3517 uses different metric in lost marker => reset on change */
808 	if (tcp_is_fack(tp))
809 		tp->lost_skb_hint = NULL;
810 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
811 }
812 
813 /* Take a notice that peer is sending D-SACKs */
814 static void tcp_dsack_seen(struct tcp_sock *tp)
815 {
816 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
817 }
818 
819 static void tcp_update_reordering(struct sock *sk, const int metric,
820 				  const int ts)
821 {
822 	struct tcp_sock *tp = tcp_sk(sk);
823 	if (metric > tp->reordering) {
824 		int mib_idx;
825 
826 		tp->reordering = min(TCP_MAX_REORDERING, metric);
827 
828 		/* This exciting event is worth to be remembered. 8) */
829 		if (ts)
830 			mib_idx = LINUX_MIB_TCPTSREORDER;
831 		else if (tcp_is_reno(tp))
832 			mib_idx = LINUX_MIB_TCPRENOREORDER;
833 		else if (tcp_is_fack(tp))
834 			mib_idx = LINUX_MIB_TCPFACKREORDER;
835 		else
836 			mib_idx = LINUX_MIB_TCPSACKREORDER;
837 
838 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
839 #if FASTRETRANS_DEBUG > 1
840 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
841 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
842 			 tp->reordering,
843 			 tp->fackets_out,
844 			 tp->sacked_out,
845 			 tp->undo_marker ? tp->undo_retrans : 0);
846 #endif
847 		tcp_disable_fack(tp);
848 	}
849 
850 	if (metric > 0)
851 		tcp_disable_early_retrans(tp);
852 }
853 
854 /* This must be called before lost_out is incremented */
855 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
856 {
857 	if ((tp->retransmit_skb_hint == NULL) ||
858 	    before(TCP_SKB_CB(skb)->seq,
859 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
860 		tp->retransmit_skb_hint = skb;
861 
862 	if (!tp->lost_out ||
863 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
864 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
865 }
866 
867 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
868 {
869 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
870 		tcp_verify_retransmit_hint(tp, skb);
871 
872 		tp->lost_out += tcp_skb_pcount(skb);
873 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
874 	}
875 }
876 
877 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
878 					    struct sk_buff *skb)
879 {
880 	tcp_verify_retransmit_hint(tp, skb);
881 
882 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
883 		tp->lost_out += tcp_skb_pcount(skb);
884 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
885 	}
886 }
887 
888 /* This procedure tags the retransmission queue when SACKs arrive.
889  *
890  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
891  * Packets in queue with these bits set are counted in variables
892  * sacked_out, retrans_out and lost_out, correspondingly.
893  *
894  * Valid combinations are:
895  * Tag  InFlight	Description
896  * 0	1		- orig segment is in flight.
897  * S	0		- nothing flies, orig reached receiver.
898  * L	0		- nothing flies, orig lost by net.
899  * R	2		- both orig and retransmit are in flight.
900  * L|R	1		- orig is lost, retransmit is in flight.
901  * S|R  1		- orig reached receiver, retrans is still in flight.
902  * (L|S|R is logically valid, it could occur when L|R is sacked,
903  *  but it is equivalent to plain S and code short-curcuits it to S.
904  *  L|S is logically invalid, it would mean -1 packet in flight 8))
905  *
906  * These 6 states form finite state machine, controlled by the following events:
907  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
908  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
909  * 3. Loss detection event of two flavors:
910  *	A. Scoreboard estimator decided the packet is lost.
911  *	   A'. Reno "three dupacks" marks head of queue lost.
912  *	   A''. Its FACK modification, head until snd.fack is lost.
913  *	B. SACK arrives sacking SND.NXT at the moment, when the
914  *	   segment was retransmitted.
915  * 4. D-SACK added new rule: D-SACK changes any tag to S.
916  *
917  * It is pleasant to note, that state diagram turns out to be commutative,
918  * so that we are allowed not to be bothered by order of our actions,
919  * when multiple events arrive simultaneously. (see the function below).
920  *
921  * Reordering detection.
922  * --------------------
923  * Reordering metric is maximal distance, which a packet can be displaced
924  * in packet stream. With SACKs we can estimate it:
925  *
926  * 1. SACK fills old hole and the corresponding segment was not
927  *    ever retransmitted -> reordering. Alas, we cannot use it
928  *    when segment was retransmitted.
929  * 2. The last flaw is solved with D-SACK. D-SACK arrives
930  *    for retransmitted and already SACKed segment -> reordering..
931  * Both of these heuristics are not used in Loss state, when we cannot
932  * account for retransmits accurately.
933  *
934  * SACK block validation.
935  * ----------------------
936  *
937  * SACK block range validation checks that the received SACK block fits to
938  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
939  * Note that SND.UNA is not included to the range though being valid because
940  * it means that the receiver is rather inconsistent with itself reporting
941  * SACK reneging when it should advance SND.UNA. Such SACK block this is
942  * perfectly valid, however, in light of RFC2018 which explicitly states
943  * that "SACK block MUST reflect the newest segment.  Even if the newest
944  * segment is going to be discarded ...", not that it looks very clever
945  * in case of head skb. Due to potentional receiver driven attacks, we
946  * choose to avoid immediate execution of a walk in write queue due to
947  * reneging and defer head skb's loss recovery to standard loss recovery
948  * procedure that will eventually trigger (nothing forbids us doing this).
949  *
950  * Implements also blockage to start_seq wrap-around. Problem lies in the
951  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
952  * there's no guarantee that it will be before snd_nxt (n). The problem
953  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
954  * wrap (s_w):
955  *
956  *         <- outs wnd ->                          <- wrapzone ->
957  *         u     e      n                         u_w   e_w  s n_w
958  *         |     |      |                          |     |   |  |
959  * |<------------+------+----- TCP seqno space --------------+---------->|
960  * ...-- <2^31 ->|                                           |<--------...
961  * ...---- >2^31 ------>|                                    |<--------...
962  *
963  * Current code wouldn't be vulnerable but it's better still to discard such
964  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
965  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
966  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
967  * equal to the ideal case (infinite seqno space without wrap caused issues).
968  *
969  * With D-SACK the lower bound is extended to cover sequence space below
970  * SND.UNA down to undo_marker, which is the last point of interest. Yet
971  * again, D-SACK block must not to go across snd_una (for the same reason as
972  * for the normal SACK blocks, explained above). But there all simplicity
973  * ends, TCP might receive valid D-SACKs below that. As long as they reside
974  * fully below undo_marker they do not affect behavior in anyway and can
975  * therefore be safely ignored. In rare cases (which are more or less
976  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
977  * fragmentation and packet reordering past skb's retransmission. To consider
978  * them correctly, the acceptable range must be extended even more though
979  * the exact amount is rather hard to quantify. However, tp->max_window can
980  * be used as an exaggerated estimate.
981  */
982 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
983 				   u32 start_seq, u32 end_seq)
984 {
985 	/* Too far in future, or reversed (interpretation is ambiguous) */
986 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
987 		return false;
988 
989 	/* Nasty start_seq wrap-around check (see comments above) */
990 	if (!before(start_seq, tp->snd_nxt))
991 		return false;
992 
993 	/* In outstanding window? ...This is valid exit for D-SACKs too.
994 	 * start_seq == snd_una is non-sensical (see comments above)
995 	 */
996 	if (after(start_seq, tp->snd_una))
997 		return true;
998 
999 	if (!is_dsack || !tp->undo_marker)
1000 		return false;
1001 
1002 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1003 	if (after(end_seq, tp->snd_una))
1004 		return false;
1005 
1006 	if (!before(start_seq, tp->undo_marker))
1007 		return true;
1008 
1009 	/* Too old */
1010 	if (!after(end_seq, tp->undo_marker))
1011 		return false;
1012 
1013 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1014 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1015 	 */
1016 	return !before(start_seq, end_seq - tp->max_window);
1017 }
1018 
1019 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1020  * Event "B". Later note: FACK people cheated me again 8), we have to account
1021  * for reordering! Ugly, but should help.
1022  *
1023  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1024  * less than what is now known to be received by the other end (derived from
1025  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1026  * retransmitted skbs to avoid some costly processing per ACKs.
1027  */
1028 static void tcp_mark_lost_retrans(struct sock *sk)
1029 {
1030 	const struct inet_connection_sock *icsk = inet_csk(sk);
1031 	struct tcp_sock *tp = tcp_sk(sk);
1032 	struct sk_buff *skb;
1033 	int cnt = 0;
1034 	u32 new_low_seq = tp->snd_nxt;
1035 	u32 received_upto = tcp_highest_sack_seq(tp);
1036 
1037 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1038 	    !after(received_upto, tp->lost_retrans_low) ||
1039 	    icsk->icsk_ca_state != TCP_CA_Recovery)
1040 		return;
1041 
1042 	tcp_for_write_queue(skb, sk) {
1043 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1044 
1045 		if (skb == tcp_send_head(sk))
1046 			break;
1047 		if (cnt == tp->retrans_out)
1048 			break;
1049 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1050 			continue;
1051 
1052 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1053 			continue;
1054 
1055 		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1056 		 * constraint here (see above) but figuring out that at
1057 		 * least tp->reordering SACK blocks reside between ack_seq
1058 		 * and received_upto is not easy task to do cheaply with
1059 		 * the available datastructures.
1060 		 *
1061 		 * Whether FACK should check here for tp->reordering segs
1062 		 * in-between one could argue for either way (it would be
1063 		 * rather simple to implement as we could count fack_count
1064 		 * during the walk and do tp->fackets_out - fack_count).
1065 		 */
1066 		if (after(received_upto, ack_seq)) {
1067 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1068 			tp->retrans_out -= tcp_skb_pcount(skb);
1069 
1070 			tcp_skb_mark_lost_uncond_verify(tp, skb);
1071 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1072 		} else {
1073 			if (before(ack_seq, new_low_seq))
1074 				new_low_seq = ack_seq;
1075 			cnt += tcp_skb_pcount(skb);
1076 		}
1077 	}
1078 
1079 	if (tp->retrans_out)
1080 		tp->lost_retrans_low = new_low_seq;
1081 }
1082 
1083 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1084 			    struct tcp_sack_block_wire *sp, int num_sacks,
1085 			    u32 prior_snd_una)
1086 {
1087 	struct tcp_sock *tp = tcp_sk(sk);
1088 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1089 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1090 	bool dup_sack = false;
1091 
1092 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1093 		dup_sack = true;
1094 		tcp_dsack_seen(tp);
1095 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1096 	} else if (num_sacks > 1) {
1097 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1098 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1099 
1100 		if (!after(end_seq_0, end_seq_1) &&
1101 		    !before(start_seq_0, start_seq_1)) {
1102 			dup_sack = true;
1103 			tcp_dsack_seen(tp);
1104 			NET_INC_STATS_BH(sock_net(sk),
1105 					LINUX_MIB_TCPDSACKOFORECV);
1106 		}
1107 	}
1108 
1109 	/* D-SACK for already forgotten data... Do dumb counting. */
1110 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1111 	    !after(end_seq_0, prior_snd_una) &&
1112 	    after(end_seq_0, tp->undo_marker))
1113 		tp->undo_retrans--;
1114 
1115 	return dup_sack;
1116 }
1117 
1118 struct tcp_sacktag_state {
1119 	int	reord;
1120 	int	fack_count;
1121 	long	rtt_us; /* RTT measured by SACKing never-retransmitted data */
1122 	int	flag;
1123 };
1124 
1125 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1126  * the incoming SACK may not exactly match but we can find smaller MSS
1127  * aligned portion of it that matches. Therefore we might need to fragment
1128  * which may fail and creates some hassle (caller must handle error case
1129  * returns).
1130  *
1131  * FIXME: this could be merged to shift decision code
1132  */
1133 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1134 				  u32 start_seq, u32 end_seq)
1135 {
1136 	int err;
1137 	bool in_sack;
1138 	unsigned int pkt_len;
1139 	unsigned int mss;
1140 
1141 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1142 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1143 
1144 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1145 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1146 		mss = tcp_skb_mss(skb);
1147 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1148 
1149 		if (!in_sack) {
1150 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1151 			if (pkt_len < mss)
1152 				pkt_len = mss;
1153 		} else {
1154 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1155 			if (pkt_len < mss)
1156 				return -EINVAL;
1157 		}
1158 
1159 		/* Round if necessary so that SACKs cover only full MSSes
1160 		 * and/or the remaining small portion (if present)
1161 		 */
1162 		if (pkt_len > mss) {
1163 			unsigned int new_len = (pkt_len / mss) * mss;
1164 			if (!in_sack && new_len < pkt_len) {
1165 				new_len += mss;
1166 				if (new_len >= skb->len)
1167 					return 0;
1168 			}
1169 			pkt_len = new_len;
1170 		}
1171 		err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1172 		if (err < 0)
1173 			return err;
1174 	}
1175 
1176 	return in_sack;
1177 }
1178 
1179 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1180 static u8 tcp_sacktag_one(struct sock *sk,
1181 			  struct tcp_sacktag_state *state, u8 sacked,
1182 			  u32 start_seq, u32 end_seq,
1183 			  int dup_sack, int pcount,
1184 			  const struct skb_mstamp *xmit_time)
1185 {
1186 	struct tcp_sock *tp = tcp_sk(sk);
1187 	int fack_count = state->fack_count;
1188 
1189 	/* Account D-SACK for retransmitted packet. */
1190 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1191 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1192 		    after(end_seq, tp->undo_marker))
1193 			tp->undo_retrans--;
1194 		if (sacked & TCPCB_SACKED_ACKED)
1195 			state->reord = min(fack_count, state->reord);
1196 	}
1197 
1198 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1199 	if (!after(end_seq, tp->snd_una))
1200 		return sacked;
1201 
1202 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1203 		if (sacked & TCPCB_SACKED_RETRANS) {
1204 			/* If the segment is not tagged as lost,
1205 			 * we do not clear RETRANS, believing
1206 			 * that retransmission is still in flight.
1207 			 */
1208 			if (sacked & TCPCB_LOST) {
1209 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1210 				tp->lost_out -= pcount;
1211 				tp->retrans_out -= pcount;
1212 			}
1213 		} else {
1214 			if (!(sacked & TCPCB_RETRANS)) {
1215 				/* New sack for not retransmitted frame,
1216 				 * which was in hole. It is reordering.
1217 				 */
1218 				if (before(start_seq,
1219 					   tcp_highest_sack_seq(tp)))
1220 					state->reord = min(fack_count,
1221 							   state->reord);
1222 				if (!after(end_seq, tp->high_seq))
1223 					state->flag |= FLAG_ORIG_SACK_ACKED;
1224 				/* Pick the earliest sequence sacked for RTT */
1225 				if (state->rtt_us < 0) {
1226 					struct skb_mstamp now;
1227 
1228 					skb_mstamp_get(&now);
1229 					state->rtt_us = skb_mstamp_us_delta(&now,
1230 								xmit_time);
1231 				}
1232 			}
1233 
1234 			if (sacked & TCPCB_LOST) {
1235 				sacked &= ~TCPCB_LOST;
1236 				tp->lost_out -= pcount;
1237 			}
1238 		}
1239 
1240 		sacked |= TCPCB_SACKED_ACKED;
1241 		state->flag |= FLAG_DATA_SACKED;
1242 		tp->sacked_out += pcount;
1243 
1244 		fack_count += pcount;
1245 
1246 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1247 		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1248 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1249 			tp->lost_cnt_hint += pcount;
1250 
1251 		if (fack_count > tp->fackets_out)
1252 			tp->fackets_out = fack_count;
1253 	}
1254 
1255 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1256 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1257 	 * are accounted above as well.
1258 	 */
1259 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1260 		sacked &= ~TCPCB_SACKED_RETRANS;
1261 		tp->retrans_out -= pcount;
1262 	}
1263 
1264 	return sacked;
1265 }
1266 
1267 /* Shift newly-SACKed bytes from this skb to the immediately previous
1268  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1269  */
1270 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1271 			    struct tcp_sacktag_state *state,
1272 			    unsigned int pcount, int shifted, int mss,
1273 			    bool dup_sack)
1274 {
1275 	struct tcp_sock *tp = tcp_sk(sk);
1276 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1277 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1278 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1279 
1280 	BUG_ON(!pcount);
1281 
1282 	/* Adjust counters and hints for the newly sacked sequence
1283 	 * range but discard the return value since prev is already
1284 	 * marked. We must tag the range first because the seq
1285 	 * advancement below implicitly advances
1286 	 * tcp_highest_sack_seq() when skb is highest_sack.
1287 	 */
1288 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1289 			start_seq, end_seq, dup_sack, pcount,
1290 			&skb->skb_mstamp);
1291 
1292 	if (skb == tp->lost_skb_hint)
1293 		tp->lost_cnt_hint += pcount;
1294 
1295 	TCP_SKB_CB(prev)->end_seq += shifted;
1296 	TCP_SKB_CB(skb)->seq += shifted;
1297 
1298 	skb_shinfo(prev)->gso_segs += pcount;
1299 	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1300 	skb_shinfo(skb)->gso_segs -= pcount;
1301 
1302 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1303 	 * in theory this shouldn't be necessary but as long as DSACK
1304 	 * code can come after this skb later on it's better to keep
1305 	 * setting gso_size to something.
1306 	 */
1307 	if (!skb_shinfo(prev)->gso_size) {
1308 		skb_shinfo(prev)->gso_size = mss;
1309 		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1310 	}
1311 
1312 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1313 	if (skb_shinfo(skb)->gso_segs <= 1) {
1314 		skb_shinfo(skb)->gso_size = 0;
1315 		skb_shinfo(skb)->gso_type = 0;
1316 	}
1317 
1318 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1319 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1320 
1321 	if (skb->len > 0) {
1322 		BUG_ON(!tcp_skb_pcount(skb));
1323 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1324 		return false;
1325 	}
1326 
1327 	/* Whole SKB was eaten :-) */
1328 
1329 	if (skb == tp->retransmit_skb_hint)
1330 		tp->retransmit_skb_hint = prev;
1331 	if (skb == tp->lost_skb_hint) {
1332 		tp->lost_skb_hint = prev;
1333 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1334 	}
1335 
1336 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1337 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1338 		TCP_SKB_CB(prev)->end_seq++;
1339 
1340 	if (skb == tcp_highest_sack(sk))
1341 		tcp_advance_highest_sack(sk, skb);
1342 
1343 	tcp_unlink_write_queue(skb, sk);
1344 	sk_wmem_free_skb(sk, skb);
1345 
1346 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1347 
1348 	return true;
1349 }
1350 
1351 /* I wish gso_size would have a bit more sane initialization than
1352  * something-or-zero which complicates things
1353  */
1354 static int tcp_skb_seglen(const struct sk_buff *skb)
1355 {
1356 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1357 }
1358 
1359 /* Shifting pages past head area doesn't work */
1360 static int skb_can_shift(const struct sk_buff *skb)
1361 {
1362 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1363 }
1364 
1365 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1366  * skb.
1367  */
1368 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1369 					  struct tcp_sacktag_state *state,
1370 					  u32 start_seq, u32 end_seq,
1371 					  bool dup_sack)
1372 {
1373 	struct tcp_sock *tp = tcp_sk(sk);
1374 	struct sk_buff *prev;
1375 	int mss;
1376 	int pcount = 0;
1377 	int len;
1378 	int in_sack;
1379 
1380 	if (!sk_can_gso(sk))
1381 		goto fallback;
1382 
1383 	/* Normally R but no L won't result in plain S */
1384 	if (!dup_sack &&
1385 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1386 		goto fallback;
1387 	if (!skb_can_shift(skb))
1388 		goto fallback;
1389 	/* This frame is about to be dropped (was ACKed). */
1390 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1391 		goto fallback;
1392 
1393 	/* Can only happen with delayed DSACK + discard craziness */
1394 	if (unlikely(skb == tcp_write_queue_head(sk)))
1395 		goto fallback;
1396 	prev = tcp_write_queue_prev(sk, skb);
1397 
1398 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1399 		goto fallback;
1400 
1401 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1402 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1403 
1404 	if (in_sack) {
1405 		len = skb->len;
1406 		pcount = tcp_skb_pcount(skb);
1407 		mss = tcp_skb_seglen(skb);
1408 
1409 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1410 		 * drop this restriction as unnecessary
1411 		 */
1412 		if (mss != tcp_skb_seglen(prev))
1413 			goto fallback;
1414 	} else {
1415 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1416 			goto noop;
1417 		/* CHECKME: This is non-MSS split case only?, this will
1418 		 * cause skipped skbs due to advancing loop btw, original
1419 		 * has that feature too
1420 		 */
1421 		if (tcp_skb_pcount(skb) <= 1)
1422 			goto noop;
1423 
1424 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1425 		if (!in_sack) {
1426 			/* TODO: head merge to next could be attempted here
1427 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1428 			 * though it might not be worth of the additional hassle
1429 			 *
1430 			 * ...we can probably just fallback to what was done
1431 			 * previously. We could try merging non-SACKed ones
1432 			 * as well but it probably isn't going to buy off
1433 			 * because later SACKs might again split them, and
1434 			 * it would make skb timestamp tracking considerably
1435 			 * harder problem.
1436 			 */
1437 			goto fallback;
1438 		}
1439 
1440 		len = end_seq - TCP_SKB_CB(skb)->seq;
1441 		BUG_ON(len < 0);
1442 		BUG_ON(len > skb->len);
1443 
1444 		/* MSS boundaries should be honoured or else pcount will
1445 		 * severely break even though it makes things bit trickier.
1446 		 * Optimize common case to avoid most of the divides
1447 		 */
1448 		mss = tcp_skb_mss(skb);
1449 
1450 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1451 		 * drop this restriction as unnecessary
1452 		 */
1453 		if (mss != tcp_skb_seglen(prev))
1454 			goto fallback;
1455 
1456 		if (len == mss) {
1457 			pcount = 1;
1458 		} else if (len < mss) {
1459 			goto noop;
1460 		} else {
1461 			pcount = len / mss;
1462 			len = pcount * mss;
1463 		}
1464 	}
1465 
1466 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1467 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1468 		goto fallback;
1469 
1470 	if (!skb_shift(prev, skb, len))
1471 		goto fallback;
1472 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1473 		goto out;
1474 
1475 	/* Hole filled allows collapsing with the next as well, this is very
1476 	 * useful when hole on every nth skb pattern happens
1477 	 */
1478 	if (prev == tcp_write_queue_tail(sk))
1479 		goto out;
1480 	skb = tcp_write_queue_next(sk, prev);
1481 
1482 	if (!skb_can_shift(skb) ||
1483 	    (skb == tcp_send_head(sk)) ||
1484 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1485 	    (mss != tcp_skb_seglen(skb)))
1486 		goto out;
1487 
1488 	len = skb->len;
1489 	if (skb_shift(prev, skb, len)) {
1490 		pcount += tcp_skb_pcount(skb);
1491 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1492 	}
1493 
1494 out:
1495 	state->fack_count += pcount;
1496 	return prev;
1497 
1498 noop:
1499 	return skb;
1500 
1501 fallback:
1502 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1503 	return NULL;
1504 }
1505 
1506 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1507 					struct tcp_sack_block *next_dup,
1508 					struct tcp_sacktag_state *state,
1509 					u32 start_seq, u32 end_seq,
1510 					bool dup_sack_in)
1511 {
1512 	struct tcp_sock *tp = tcp_sk(sk);
1513 	struct sk_buff *tmp;
1514 
1515 	tcp_for_write_queue_from(skb, sk) {
1516 		int in_sack = 0;
1517 		bool dup_sack = dup_sack_in;
1518 
1519 		if (skb == tcp_send_head(sk))
1520 			break;
1521 
1522 		/* queue is in-order => we can short-circuit the walk early */
1523 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1524 			break;
1525 
1526 		if ((next_dup != NULL) &&
1527 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1528 			in_sack = tcp_match_skb_to_sack(sk, skb,
1529 							next_dup->start_seq,
1530 							next_dup->end_seq);
1531 			if (in_sack > 0)
1532 				dup_sack = true;
1533 		}
1534 
1535 		/* skb reference here is a bit tricky to get right, since
1536 		 * shifting can eat and free both this skb and the next,
1537 		 * so not even _safe variant of the loop is enough.
1538 		 */
1539 		if (in_sack <= 0) {
1540 			tmp = tcp_shift_skb_data(sk, skb, state,
1541 						 start_seq, end_seq, dup_sack);
1542 			if (tmp != NULL) {
1543 				if (tmp != skb) {
1544 					skb = tmp;
1545 					continue;
1546 				}
1547 
1548 				in_sack = 0;
1549 			} else {
1550 				in_sack = tcp_match_skb_to_sack(sk, skb,
1551 								start_seq,
1552 								end_seq);
1553 			}
1554 		}
1555 
1556 		if (unlikely(in_sack < 0))
1557 			break;
1558 
1559 		if (in_sack) {
1560 			TCP_SKB_CB(skb)->sacked =
1561 				tcp_sacktag_one(sk,
1562 						state,
1563 						TCP_SKB_CB(skb)->sacked,
1564 						TCP_SKB_CB(skb)->seq,
1565 						TCP_SKB_CB(skb)->end_seq,
1566 						dup_sack,
1567 						tcp_skb_pcount(skb),
1568 						&skb->skb_mstamp);
1569 
1570 			if (!before(TCP_SKB_CB(skb)->seq,
1571 				    tcp_highest_sack_seq(tp)))
1572 				tcp_advance_highest_sack(sk, skb);
1573 		}
1574 
1575 		state->fack_count += tcp_skb_pcount(skb);
1576 	}
1577 	return skb;
1578 }
1579 
1580 /* Avoid all extra work that is being done by sacktag while walking in
1581  * a normal way
1582  */
1583 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1584 					struct tcp_sacktag_state *state,
1585 					u32 skip_to_seq)
1586 {
1587 	tcp_for_write_queue_from(skb, sk) {
1588 		if (skb == tcp_send_head(sk))
1589 			break;
1590 
1591 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1592 			break;
1593 
1594 		state->fack_count += tcp_skb_pcount(skb);
1595 	}
1596 	return skb;
1597 }
1598 
1599 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1600 						struct sock *sk,
1601 						struct tcp_sack_block *next_dup,
1602 						struct tcp_sacktag_state *state,
1603 						u32 skip_to_seq)
1604 {
1605 	if (next_dup == NULL)
1606 		return skb;
1607 
1608 	if (before(next_dup->start_seq, skip_to_seq)) {
1609 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1610 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1611 				       next_dup->start_seq, next_dup->end_seq,
1612 				       1);
1613 	}
1614 
1615 	return skb;
1616 }
1617 
1618 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1619 {
1620 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1621 }
1622 
1623 static int
1624 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1625 			u32 prior_snd_una, long *sack_rtt_us)
1626 {
1627 	struct tcp_sock *tp = tcp_sk(sk);
1628 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1629 				    TCP_SKB_CB(ack_skb)->sacked);
1630 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1631 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1632 	struct tcp_sack_block *cache;
1633 	struct tcp_sacktag_state state;
1634 	struct sk_buff *skb;
1635 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1636 	int used_sacks;
1637 	bool found_dup_sack = false;
1638 	int i, j;
1639 	int first_sack_index;
1640 
1641 	state.flag = 0;
1642 	state.reord = tp->packets_out;
1643 	state.rtt_us = -1L;
1644 
1645 	if (!tp->sacked_out) {
1646 		if (WARN_ON(tp->fackets_out))
1647 			tp->fackets_out = 0;
1648 		tcp_highest_sack_reset(sk);
1649 	}
1650 
1651 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1652 					 num_sacks, prior_snd_una);
1653 	if (found_dup_sack)
1654 		state.flag |= FLAG_DSACKING_ACK;
1655 
1656 	/* Eliminate too old ACKs, but take into
1657 	 * account more or less fresh ones, they can
1658 	 * contain valid SACK info.
1659 	 */
1660 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1661 		return 0;
1662 
1663 	if (!tp->packets_out)
1664 		goto out;
1665 
1666 	used_sacks = 0;
1667 	first_sack_index = 0;
1668 	for (i = 0; i < num_sacks; i++) {
1669 		bool dup_sack = !i && found_dup_sack;
1670 
1671 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1672 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1673 
1674 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1675 					    sp[used_sacks].start_seq,
1676 					    sp[used_sacks].end_seq)) {
1677 			int mib_idx;
1678 
1679 			if (dup_sack) {
1680 				if (!tp->undo_marker)
1681 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1682 				else
1683 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1684 			} else {
1685 				/* Don't count olds caused by ACK reordering */
1686 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1687 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1688 					continue;
1689 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1690 			}
1691 
1692 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1693 			if (i == 0)
1694 				first_sack_index = -1;
1695 			continue;
1696 		}
1697 
1698 		/* Ignore very old stuff early */
1699 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1700 			continue;
1701 
1702 		used_sacks++;
1703 	}
1704 
1705 	/* order SACK blocks to allow in order walk of the retrans queue */
1706 	for (i = used_sacks - 1; i > 0; i--) {
1707 		for (j = 0; j < i; j++) {
1708 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1709 				swap(sp[j], sp[j + 1]);
1710 
1711 				/* Track where the first SACK block goes to */
1712 				if (j == first_sack_index)
1713 					first_sack_index = j + 1;
1714 			}
1715 		}
1716 	}
1717 
1718 	skb = tcp_write_queue_head(sk);
1719 	state.fack_count = 0;
1720 	i = 0;
1721 
1722 	if (!tp->sacked_out) {
1723 		/* It's already past, so skip checking against it */
1724 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1725 	} else {
1726 		cache = tp->recv_sack_cache;
1727 		/* Skip empty blocks in at head of the cache */
1728 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1729 		       !cache->end_seq)
1730 			cache++;
1731 	}
1732 
1733 	while (i < used_sacks) {
1734 		u32 start_seq = sp[i].start_seq;
1735 		u32 end_seq = sp[i].end_seq;
1736 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1737 		struct tcp_sack_block *next_dup = NULL;
1738 
1739 		if (found_dup_sack && ((i + 1) == first_sack_index))
1740 			next_dup = &sp[i + 1];
1741 
1742 		/* Skip too early cached blocks */
1743 		while (tcp_sack_cache_ok(tp, cache) &&
1744 		       !before(start_seq, cache->end_seq))
1745 			cache++;
1746 
1747 		/* Can skip some work by looking recv_sack_cache? */
1748 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1749 		    after(end_seq, cache->start_seq)) {
1750 
1751 			/* Head todo? */
1752 			if (before(start_seq, cache->start_seq)) {
1753 				skb = tcp_sacktag_skip(skb, sk, &state,
1754 						       start_seq);
1755 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1756 						       &state,
1757 						       start_seq,
1758 						       cache->start_seq,
1759 						       dup_sack);
1760 			}
1761 
1762 			/* Rest of the block already fully processed? */
1763 			if (!after(end_seq, cache->end_seq))
1764 				goto advance_sp;
1765 
1766 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1767 						       &state,
1768 						       cache->end_seq);
1769 
1770 			/* ...tail remains todo... */
1771 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1772 				/* ...but better entrypoint exists! */
1773 				skb = tcp_highest_sack(sk);
1774 				if (skb == NULL)
1775 					break;
1776 				state.fack_count = tp->fackets_out;
1777 				cache++;
1778 				goto walk;
1779 			}
1780 
1781 			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1782 			/* Check overlap against next cached too (past this one already) */
1783 			cache++;
1784 			continue;
1785 		}
1786 
1787 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1788 			skb = tcp_highest_sack(sk);
1789 			if (skb == NULL)
1790 				break;
1791 			state.fack_count = tp->fackets_out;
1792 		}
1793 		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1794 
1795 walk:
1796 		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1797 				       start_seq, end_seq, dup_sack);
1798 
1799 advance_sp:
1800 		i++;
1801 	}
1802 
1803 	/* Clear the head of the cache sack blocks so we can skip it next time */
1804 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1805 		tp->recv_sack_cache[i].start_seq = 0;
1806 		tp->recv_sack_cache[i].end_seq = 0;
1807 	}
1808 	for (j = 0; j < used_sacks; j++)
1809 		tp->recv_sack_cache[i++] = sp[j];
1810 
1811 	tcp_mark_lost_retrans(sk);
1812 
1813 	tcp_verify_left_out(tp);
1814 
1815 	if ((state.reord < tp->fackets_out) &&
1816 	    ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1817 		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1818 
1819 out:
1820 
1821 #if FASTRETRANS_DEBUG > 0
1822 	WARN_ON((int)tp->sacked_out < 0);
1823 	WARN_ON((int)tp->lost_out < 0);
1824 	WARN_ON((int)tp->retrans_out < 0);
1825 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1826 #endif
1827 	*sack_rtt_us = state.rtt_us;
1828 	return state.flag;
1829 }
1830 
1831 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1832  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1833  */
1834 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1835 {
1836 	u32 holes;
1837 
1838 	holes = max(tp->lost_out, 1U);
1839 	holes = min(holes, tp->packets_out);
1840 
1841 	if ((tp->sacked_out + holes) > tp->packets_out) {
1842 		tp->sacked_out = tp->packets_out - holes;
1843 		return true;
1844 	}
1845 	return false;
1846 }
1847 
1848 /* If we receive more dupacks than we expected counting segments
1849  * in assumption of absent reordering, interpret this as reordering.
1850  * The only another reason could be bug in receiver TCP.
1851  */
1852 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1853 {
1854 	struct tcp_sock *tp = tcp_sk(sk);
1855 	if (tcp_limit_reno_sacked(tp))
1856 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1857 }
1858 
1859 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1860 
1861 static void tcp_add_reno_sack(struct sock *sk)
1862 {
1863 	struct tcp_sock *tp = tcp_sk(sk);
1864 	tp->sacked_out++;
1865 	tcp_check_reno_reordering(sk, 0);
1866 	tcp_verify_left_out(tp);
1867 }
1868 
1869 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1870 
1871 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1872 {
1873 	struct tcp_sock *tp = tcp_sk(sk);
1874 
1875 	if (acked > 0) {
1876 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1877 		if (acked - 1 >= tp->sacked_out)
1878 			tp->sacked_out = 0;
1879 		else
1880 			tp->sacked_out -= acked - 1;
1881 	}
1882 	tcp_check_reno_reordering(sk, acked);
1883 	tcp_verify_left_out(tp);
1884 }
1885 
1886 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1887 {
1888 	tp->sacked_out = 0;
1889 }
1890 
1891 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1892 {
1893 	tp->retrans_out = 0;
1894 	tp->lost_out = 0;
1895 
1896 	tp->undo_marker = 0;
1897 	tp->undo_retrans = -1;
1898 }
1899 
1900 void tcp_clear_retrans(struct tcp_sock *tp)
1901 {
1902 	tcp_clear_retrans_partial(tp);
1903 
1904 	tp->fackets_out = 0;
1905 	tp->sacked_out = 0;
1906 }
1907 
1908 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1909  * and reset tags completely, otherwise preserve SACKs. If receiver
1910  * dropped its ofo queue, we will know this due to reneging detection.
1911  */
1912 void tcp_enter_loss(struct sock *sk)
1913 {
1914 	const struct inet_connection_sock *icsk = inet_csk(sk);
1915 	struct tcp_sock *tp = tcp_sk(sk);
1916 	struct sk_buff *skb;
1917 	bool new_recovery = false;
1918 	bool is_reneg;			/* is receiver reneging on SACKs? */
1919 
1920 	/* Reduce ssthresh if it has not yet been made inside this window. */
1921 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1922 	    !after(tp->high_seq, tp->snd_una) ||
1923 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1924 		new_recovery = true;
1925 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1926 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1927 		tcp_ca_event(sk, CA_EVENT_LOSS);
1928 	}
1929 	tp->snd_cwnd	   = 1;
1930 	tp->snd_cwnd_cnt   = 0;
1931 	tp->snd_cwnd_stamp = tcp_time_stamp;
1932 
1933 	tcp_clear_retrans_partial(tp);
1934 
1935 	if (tcp_is_reno(tp))
1936 		tcp_reset_reno_sack(tp);
1937 
1938 	tp->undo_marker = tp->snd_una;
1939 
1940 	skb = tcp_write_queue_head(sk);
1941 	is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1942 	if (is_reneg) {
1943 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1944 		tp->sacked_out = 0;
1945 		tp->fackets_out = 0;
1946 	}
1947 	tcp_clear_all_retrans_hints(tp);
1948 
1949 	tcp_for_write_queue(skb, sk) {
1950 		if (skb == tcp_send_head(sk))
1951 			break;
1952 
1953 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1954 			tp->undo_marker = 0;
1955 
1956 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1957 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
1958 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1959 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1960 			tp->lost_out += tcp_skb_pcount(skb);
1961 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1962 		}
1963 	}
1964 	tcp_verify_left_out(tp);
1965 
1966 	/* Timeout in disordered state after receiving substantial DUPACKs
1967 	 * suggests that the degree of reordering is over-estimated.
1968 	 */
1969 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1970 	    tp->sacked_out >= sysctl_tcp_reordering)
1971 		tp->reordering = min_t(unsigned int, tp->reordering,
1972 				       sysctl_tcp_reordering);
1973 	tcp_set_ca_state(sk, TCP_CA_Loss);
1974 	tp->high_seq = tp->snd_nxt;
1975 	TCP_ECN_queue_cwr(tp);
1976 
1977 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1978 	 * loss recovery is underway except recurring timeout(s) on
1979 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1980 	 */
1981 	tp->frto = sysctl_tcp_frto &&
1982 		   (new_recovery || icsk->icsk_retransmits) &&
1983 		   !inet_csk(sk)->icsk_mtup.probe_size;
1984 }
1985 
1986 /* If ACK arrived pointing to a remembered SACK, it means that our
1987  * remembered SACKs do not reflect real state of receiver i.e.
1988  * receiver _host_ is heavily congested (or buggy).
1989  *
1990  * To avoid big spurious retransmission bursts due to transient SACK
1991  * scoreboard oddities that look like reneging, we give the receiver a
1992  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1993  * restore sanity to the SACK scoreboard. If the apparent reneging
1994  * persists until this RTO then we'll clear the SACK scoreboard.
1995  */
1996 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1997 {
1998 	if (flag & FLAG_SACK_RENEGING) {
1999 		struct tcp_sock *tp = tcp_sk(sk);
2000 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2001 					  msecs_to_jiffies(10));
2002 
2003 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2004 					  delay, TCP_RTO_MAX);
2005 		return true;
2006 	}
2007 	return false;
2008 }
2009 
2010 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2011 {
2012 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2013 }
2014 
2015 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2016  * counter when SACK is enabled (without SACK, sacked_out is used for
2017  * that purpose).
2018  *
2019  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2020  * segments up to the highest received SACK block so far and holes in
2021  * between them.
2022  *
2023  * With reordering, holes may still be in flight, so RFC3517 recovery
2024  * uses pure sacked_out (total number of SACKed segments) even though
2025  * it violates the RFC that uses duplicate ACKs, often these are equal
2026  * but when e.g. out-of-window ACKs or packet duplication occurs,
2027  * they differ. Since neither occurs due to loss, TCP should really
2028  * ignore them.
2029  */
2030 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2031 {
2032 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2033 }
2034 
2035 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2036 {
2037 	struct tcp_sock *tp = tcp_sk(sk);
2038 	unsigned long delay;
2039 
2040 	/* Delay early retransmit and entering fast recovery for
2041 	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2042 	 * available, or RTO is scheduled to fire first.
2043 	 */
2044 	if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2045 	    (flag & FLAG_ECE) || !tp->srtt_us)
2046 		return false;
2047 
2048 	delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2049 		    msecs_to_jiffies(2));
2050 
2051 	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2052 		return false;
2053 
2054 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2055 				  TCP_RTO_MAX);
2056 	return true;
2057 }
2058 
2059 /* Linux NewReno/SACK/FACK/ECN state machine.
2060  * --------------------------------------
2061  *
2062  * "Open"	Normal state, no dubious events, fast path.
2063  * "Disorder"   In all the respects it is "Open",
2064  *		but requires a bit more attention. It is entered when
2065  *		we see some SACKs or dupacks. It is split of "Open"
2066  *		mainly to move some processing from fast path to slow one.
2067  * "CWR"	CWND was reduced due to some Congestion Notification event.
2068  *		It can be ECN, ICMP source quench, local device congestion.
2069  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2070  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2071  *
2072  * tcp_fastretrans_alert() is entered:
2073  * - each incoming ACK, if state is not "Open"
2074  * - when arrived ACK is unusual, namely:
2075  *	* SACK
2076  *	* Duplicate ACK.
2077  *	* ECN ECE.
2078  *
2079  * Counting packets in flight is pretty simple.
2080  *
2081  *	in_flight = packets_out - left_out + retrans_out
2082  *
2083  *	packets_out is SND.NXT-SND.UNA counted in packets.
2084  *
2085  *	retrans_out is number of retransmitted segments.
2086  *
2087  *	left_out is number of segments left network, but not ACKed yet.
2088  *
2089  *		left_out = sacked_out + lost_out
2090  *
2091  *     sacked_out: Packets, which arrived to receiver out of order
2092  *		   and hence not ACKed. With SACKs this number is simply
2093  *		   amount of SACKed data. Even without SACKs
2094  *		   it is easy to give pretty reliable estimate of this number,
2095  *		   counting duplicate ACKs.
2096  *
2097  *       lost_out: Packets lost by network. TCP has no explicit
2098  *		   "loss notification" feedback from network (for now).
2099  *		   It means that this number can be only _guessed_.
2100  *		   Actually, it is the heuristics to predict lossage that
2101  *		   distinguishes different algorithms.
2102  *
2103  *	F.e. after RTO, when all the queue is considered as lost,
2104  *	lost_out = packets_out and in_flight = retrans_out.
2105  *
2106  *		Essentially, we have now two algorithms counting
2107  *		lost packets.
2108  *
2109  *		FACK: It is the simplest heuristics. As soon as we decided
2110  *		that something is lost, we decide that _all_ not SACKed
2111  *		packets until the most forward SACK are lost. I.e.
2112  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2113  *		It is absolutely correct estimate, if network does not reorder
2114  *		packets. And it loses any connection to reality when reordering
2115  *		takes place. We use FACK by default until reordering
2116  *		is suspected on the path to this destination.
2117  *
2118  *		NewReno: when Recovery is entered, we assume that one segment
2119  *		is lost (classic Reno). While we are in Recovery and
2120  *		a partial ACK arrives, we assume that one more packet
2121  *		is lost (NewReno). This heuristics are the same in NewReno
2122  *		and SACK.
2123  *
2124  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2125  *  deflation etc. CWND is real congestion window, never inflated, changes
2126  *  only according to classic VJ rules.
2127  *
2128  * Really tricky (and requiring careful tuning) part of algorithm
2129  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2130  * The first determines the moment _when_ we should reduce CWND and,
2131  * hence, slow down forward transmission. In fact, it determines the moment
2132  * when we decide that hole is caused by loss, rather than by a reorder.
2133  *
2134  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2135  * holes, caused by lost packets.
2136  *
2137  * And the most logically complicated part of algorithm is undo
2138  * heuristics. We detect false retransmits due to both too early
2139  * fast retransmit (reordering) and underestimated RTO, analyzing
2140  * timestamps and D-SACKs. When we detect that some segments were
2141  * retransmitted by mistake and CWND reduction was wrong, we undo
2142  * window reduction and abort recovery phase. This logic is hidden
2143  * inside several functions named tcp_try_undo_<something>.
2144  */
2145 
2146 /* This function decides, when we should leave Disordered state
2147  * and enter Recovery phase, reducing congestion window.
2148  *
2149  * Main question: may we further continue forward transmission
2150  * with the same cwnd?
2151  */
2152 static bool tcp_time_to_recover(struct sock *sk, int flag)
2153 {
2154 	struct tcp_sock *tp = tcp_sk(sk);
2155 	__u32 packets_out;
2156 
2157 	/* Trick#1: The loss is proven. */
2158 	if (tp->lost_out)
2159 		return true;
2160 
2161 	/* Not-A-Trick#2 : Classic rule... */
2162 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2163 		return true;
2164 
2165 	/* Trick#4: It is still not OK... But will it be useful to delay
2166 	 * recovery more?
2167 	 */
2168 	packets_out = tp->packets_out;
2169 	if (packets_out <= tp->reordering &&
2170 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2171 	    !tcp_may_send_now(sk)) {
2172 		/* We have nothing to send. This connection is limited
2173 		 * either by receiver window or by application.
2174 		 */
2175 		return true;
2176 	}
2177 
2178 	/* If a thin stream is detected, retransmit after first
2179 	 * received dupack. Employ only if SACK is supported in order
2180 	 * to avoid possible corner-case series of spurious retransmissions
2181 	 * Use only if there are no unsent data.
2182 	 */
2183 	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2184 	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2185 	    tcp_is_sack(tp) && !tcp_send_head(sk))
2186 		return true;
2187 
2188 	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2189 	 * retransmissions due to small network reorderings, we implement
2190 	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2191 	 * interval if appropriate.
2192 	 */
2193 	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2194 	    (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2195 	    !tcp_may_send_now(sk))
2196 		return !tcp_pause_early_retransmit(sk, flag);
2197 
2198 	return false;
2199 }
2200 
2201 /* Detect loss in event "A" above by marking head of queue up as lost.
2202  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2203  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2204  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2205  * the maximum SACKed segments to pass before reaching this limit.
2206  */
2207 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2208 {
2209 	struct tcp_sock *tp = tcp_sk(sk);
2210 	struct sk_buff *skb;
2211 	int cnt, oldcnt;
2212 	int err;
2213 	unsigned int mss;
2214 	/* Use SACK to deduce losses of new sequences sent during recovery */
2215 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2216 
2217 	WARN_ON(packets > tp->packets_out);
2218 	if (tp->lost_skb_hint) {
2219 		skb = tp->lost_skb_hint;
2220 		cnt = tp->lost_cnt_hint;
2221 		/* Head already handled? */
2222 		if (mark_head && skb != tcp_write_queue_head(sk))
2223 			return;
2224 	} else {
2225 		skb = tcp_write_queue_head(sk);
2226 		cnt = 0;
2227 	}
2228 
2229 	tcp_for_write_queue_from(skb, sk) {
2230 		if (skb == tcp_send_head(sk))
2231 			break;
2232 		/* TODO: do this better */
2233 		/* this is not the most efficient way to do this... */
2234 		tp->lost_skb_hint = skb;
2235 		tp->lost_cnt_hint = cnt;
2236 
2237 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2238 			break;
2239 
2240 		oldcnt = cnt;
2241 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2242 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2243 			cnt += tcp_skb_pcount(skb);
2244 
2245 		if (cnt > packets) {
2246 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2247 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2248 			    (oldcnt >= packets))
2249 				break;
2250 
2251 			mss = skb_shinfo(skb)->gso_size;
2252 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss,
2253 					   mss, GFP_ATOMIC);
2254 			if (err < 0)
2255 				break;
2256 			cnt = packets;
2257 		}
2258 
2259 		tcp_skb_mark_lost(tp, skb);
2260 
2261 		if (mark_head)
2262 			break;
2263 	}
2264 	tcp_verify_left_out(tp);
2265 }
2266 
2267 /* Account newly detected lost packet(s) */
2268 
2269 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2270 {
2271 	struct tcp_sock *tp = tcp_sk(sk);
2272 
2273 	if (tcp_is_reno(tp)) {
2274 		tcp_mark_head_lost(sk, 1, 1);
2275 	} else if (tcp_is_fack(tp)) {
2276 		int lost = tp->fackets_out - tp->reordering;
2277 		if (lost <= 0)
2278 			lost = 1;
2279 		tcp_mark_head_lost(sk, lost, 0);
2280 	} else {
2281 		int sacked_upto = tp->sacked_out - tp->reordering;
2282 		if (sacked_upto >= 0)
2283 			tcp_mark_head_lost(sk, sacked_upto, 0);
2284 		else if (fast_rexmit)
2285 			tcp_mark_head_lost(sk, 1, 1);
2286 	}
2287 }
2288 
2289 /* CWND moderation, preventing bursts due to too big ACKs
2290  * in dubious situations.
2291  */
2292 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2293 {
2294 	tp->snd_cwnd = min(tp->snd_cwnd,
2295 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2296 	tp->snd_cwnd_stamp = tcp_time_stamp;
2297 }
2298 
2299 /* Nothing was retransmitted or returned timestamp is less
2300  * than timestamp of the first retransmission.
2301  */
2302 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2303 {
2304 	return !tp->retrans_stamp ||
2305 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2306 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2307 }
2308 
2309 /* Undo procedures. */
2310 
2311 #if FASTRETRANS_DEBUG > 1
2312 static void DBGUNDO(struct sock *sk, const char *msg)
2313 {
2314 	struct tcp_sock *tp = tcp_sk(sk);
2315 	struct inet_sock *inet = inet_sk(sk);
2316 
2317 	if (sk->sk_family == AF_INET) {
2318 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2319 			 msg,
2320 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2321 			 tp->snd_cwnd, tcp_left_out(tp),
2322 			 tp->snd_ssthresh, tp->prior_ssthresh,
2323 			 tp->packets_out);
2324 	}
2325 #if IS_ENABLED(CONFIG_IPV6)
2326 	else if (sk->sk_family == AF_INET6) {
2327 		struct ipv6_pinfo *np = inet6_sk(sk);
2328 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2329 			 msg,
2330 			 &np->daddr, ntohs(inet->inet_dport),
2331 			 tp->snd_cwnd, tcp_left_out(tp),
2332 			 tp->snd_ssthresh, tp->prior_ssthresh,
2333 			 tp->packets_out);
2334 	}
2335 #endif
2336 }
2337 #else
2338 #define DBGUNDO(x...) do { } while (0)
2339 #endif
2340 
2341 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2342 {
2343 	struct tcp_sock *tp = tcp_sk(sk);
2344 
2345 	if (unmark_loss) {
2346 		struct sk_buff *skb;
2347 
2348 		tcp_for_write_queue(skb, sk) {
2349 			if (skb == tcp_send_head(sk))
2350 				break;
2351 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2352 		}
2353 		tp->lost_out = 0;
2354 		tcp_clear_all_retrans_hints(tp);
2355 	}
2356 
2357 	if (tp->prior_ssthresh) {
2358 		const struct inet_connection_sock *icsk = inet_csk(sk);
2359 
2360 		if (icsk->icsk_ca_ops->undo_cwnd)
2361 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2362 		else
2363 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2364 
2365 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2366 			tp->snd_ssthresh = tp->prior_ssthresh;
2367 			TCP_ECN_withdraw_cwr(tp);
2368 		}
2369 	} else {
2370 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2371 	}
2372 	tp->snd_cwnd_stamp = tcp_time_stamp;
2373 	tp->undo_marker = 0;
2374 }
2375 
2376 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2377 {
2378 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2379 }
2380 
2381 /* People celebrate: "We love our President!" */
2382 static bool tcp_try_undo_recovery(struct sock *sk)
2383 {
2384 	struct tcp_sock *tp = tcp_sk(sk);
2385 
2386 	if (tcp_may_undo(tp)) {
2387 		int mib_idx;
2388 
2389 		/* Happy end! We did not retransmit anything
2390 		 * or our original transmission succeeded.
2391 		 */
2392 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2393 		tcp_undo_cwnd_reduction(sk, false);
2394 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2395 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2396 		else
2397 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2398 
2399 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2400 	}
2401 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2402 		/* Hold old state until something *above* high_seq
2403 		 * is ACKed. For Reno it is MUST to prevent false
2404 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2405 		tcp_moderate_cwnd(tp);
2406 		return true;
2407 	}
2408 	tcp_set_ca_state(sk, TCP_CA_Open);
2409 	return false;
2410 }
2411 
2412 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2413 static bool tcp_try_undo_dsack(struct sock *sk)
2414 {
2415 	struct tcp_sock *tp = tcp_sk(sk);
2416 
2417 	if (tp->undo_marker && !tp->undo_retrans) {
2418 		DBGUNDO(sk, "D-SACK");
2419 		tcp_undo_cwnd_reduction(sk, false);
2420 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2421 		return true;
2422 	}
2423 	return false;
2424 }
2425 
2426 /* We can clear retrans_stamp when there are no retransmissions in the
2427  * window. It would seem that it is trivially available for us in
2428  * tp->retrans_out, however, that kind of assumptions doesn't consider
2429  * what will happen if errors occur when sending retransmission for the
2430  * second time. ...It could the that such segment has only
2431  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2432  * the head skb is enough except for some reneging corner cases that
2433  * are not worth the effort.
2434  *
2435  * Main reason for all this complexity is the fact that connection dying
2436  * time now depends on the validity of the retrans_stamp, in particular,
2437  * that successive retransmissions of a segment must not advance
2438  * retrans_stamp under any conditions.
2439  */
2440 static bool tcp_any_retrans_done(const struct sock *sk)
2441 {
2442 	const struct tcp_sock *tp = tcp_sk(sk);
2443 	struct sk_buff *skb;
2444 
2445 	if (tp->retrans_out)
2446 		return true;
2447 
2448 	skb = tcp_write_queue_head(sk);
2449 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2450 		return true;
2451 
2452 	return false;
2453 }
2454 
2455 /* Undo during loss recovery after partial ACK or using F-RTO. */
2456 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2457 {
2458 	struct tcp_sock *tp = tcp_sk(sk);
2459 
2460 	if (frto_undo || tcp_may_undo(tp)) {
2461 		tcp_undo_cwnd_reduction(sk, true);
2462 
2463 		DBGUNDO(sk, "partial loss");
2464 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2465 		if (frto_undo)
2466 			NET_INC_STATS_BH(sock_net(sk),
2467 					 LINUX_MIB_TCPSPURIOUSRTOS);
2468 		inet_csk(sk)->icsk_retransmits = 0;
2469 		if (frto_undo || tcp_is_sack(tp))
2470 			tcp_set_ca_state(sk, TCP_CA_Open);
2471 		return true;
2472 	}
2473 	return false;
2474 }
2475 
2476 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2477  * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2478  * It computes the number of packets to send (sndcnt) based on packets newly
2479  * delivered:
2480  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2481  *	cwnd reductions across a full RTT.
2482  *   2) If packets in flight is lower than ssthresh (such as due to excess
2483  *	losses and/or application stalls), do not perform any further cwnd
2484  *	reductions, but instead slow start up to ssthresh.
2485  */
2486 static void tcp_init_cwnd_reduction(struct sock *sk)
2487 {
2488 	struct tcp_sock *tp = tcp_sk(sk);
2489 
2490 	tp->high_seq = tp->snd_nxt;
2491 	tp->tlp_high_seq = 0;
2492 	tp->snd_cwnd_cnt = 0;
2493 	tp->prior_cwnd = tp->snd_cwnd;
2494 	tp->prr_delivered = 0;
2495 	tp->prr_out = 0;
2496 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2497 	TCP_ECN_queue_cwr(tp);
2498 }
2499 
2500 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2501 			       int fast_rexmit)
2502 {
2503 	struct tcp_sock *tp = tcp_sk(sk);
2504 	int sndcnt = 0;
2505 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2506 	int newly_acked_sacked = prior_unsacked -
2507 				 (tp->packets_out - tp->sacked_out);
2508 
2509 	tp->prr_delivered += newly_acked_sacked;
2510 	if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2511 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2512 			       tp->prior_cwnd - 1;
2513 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2514 	} else {
2515 		sndcnt = min_t(int, delta,
2516 			       max_t(int, tp->prr_delivered - tp->prr_out,
2517 				     newly_acked_sacked) + 1);
2518 	}
2519 
2520 	sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2521 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2522 }
2523 
2524 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2525 {
2526 	struct tcp_sock *tp = tcp_sk(sk);
2527 
2528 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2529 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2530 	    (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2531 		tp->snd_cwnd = tp->snd_ssthresh;
2532 		tp->snd_cwnd_stamp = tcp_time_stamp;
2533 	}
2534 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2535 }
2536 
2537 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2538 void tcp_enter_cwr(struct sock *sk)
2539 {
2540 	struct tcp_sock *tp = tcp_sk(sk);
2541 
2542 	tp->prior_ssthresh = 0;
2543 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2544 		tp->undo_marker = 0;
2545 		tcp_init_cwnd_reduction(sk);
2546 		tcp_set_ca_state(sk, TCP_CA_CWR);
2547 	}
2548 }
2549 
2550 static void tcp_try_keep_open(struct sock *sk)
2551 {
2552 	struct tcp_sock *tp = tcp_sk(sk);
2553 	int state = TCP_CA_Open;
2554 
2555 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2556 		state = TCP_CA_Disorder;
2557 
2558 	if (inet_csk(sk)->icsk_ca_state != state) {
2559 		tcp_set_ca_state(sk, state);
2560 		tp->high_seq = tp->snd_nxt;
2561 	}
2562 }
2563 
2564 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2565 {
2566 	struct tcp_sock *tp = tcp_sk(sk);
2567 
2568 	tcp_verify_left_out(tp);
2569 
2570 	if (!tcp_any_retrans_done(sk))
2571 		tp->retrans_stamp = 0;
2572 
2573 	if (flag & FLAG_ECE)
2574 		tcp_enter_cwr(sk);
2575 
2576 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2577 		tcp_try_keep_open(sk);
2578 	} else {
2579 		tcp_cwnd_reduction(sk, prior_unsacked, 0);
2580 	}
2581 }
2582 
2583 static void tcp_mtup_probe_failed(struct sock *sk)
2584 {
2585 	struct inet_connection_sock *icsk = inet_csk(sk);
2586 
2587 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2588 	icsk->icsk_mtup.probe_size = 0;
2589 }
2590 
2591 static void tcp_mtup_probe_success(struct sock *sk)
2592 {
2593 	struct tcp_sock *tp = tcp_sk(sk);
2594 	struct inet_connection_sock *icsk = inet_csk(sk);
2595 
2596 	/* FIXME: breaks with very large cwnd */
2597 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2598 	tp->snd_cwnd = tp->snd_cwnd *
2599 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2600 		       icsk->icsk_mtup.probe_size;
2601 	tp->snd_cwnd_cnt = 0;
2602 	tp->snd_cwnd_stamp = tcp_time_stamp;
2603 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2604 
2605 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2606 	icsk->icsk_mtup.probe_size = 0;
2607 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2608 }
2609 
2610 /* Do a simple retransmit without using the backoff mechanisms in
2611  * tcp_timer. This is used for path mtu discovery.
2612  * The socket is already locked here.
2613  */
2614 void tcp_simple_retransmit(struct sock *sk)
2615 {
2616 	const struct inet_connection_sock *icsk = inet_csk(sk);
2617 	struct tcp_sock *tp = tcp_sk(sk);
2618 	struct sk_buff *skb;
2619 	unsigned int mss = tcp_current_mss(sk);
2620 	u32 prior_lost = tp->lost_out;
2621 
2622 	tcp_for_write_queue(skb, sk) {
2623 		if (skb == tcp_send_head(sk))
2624 			break;
2625 		if (tcp_skb_seglen(skb) > mss &&
2626 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2627 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2628 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2629 				tp->retrans_out -= tcp_skb_pcount(skb);
2630 			}
2631 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2632 		}
2633 	}
2634 
2635 	tcp_clear_retrans_hints_partial(tp);
2636 
2637 	if (prior_lost == tp->lost_out)
2638 		return;
2639 
2640 	if (tcp_is_reno(tp))
2641 		tcp_limit_reno_sacked(tp);
2642 
2643 	tcp_verify_left_out(tp);
2644 
2645 	/* Don't muck with the congestion window here.
2646 	 * Reason is that we do not increase amount of _data_
2647 	 * in network, but units changed and effective
2648 	 * cwnd/ssthresh really reduced now.
2649 	 */
2650 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2651 		tp->high_seq = tp->snd_nxt;
2652 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2653 		tp->prior_ssthresh = 0;
2654 		tp->undo_marker = 0;
2655 		tcp_set_ca_state(sk, TCP_CA_Loss);
2656 	}
2657 	tcp_xmit_retransmit_queue(sk);
2658 }
2659 EXPORT_SYMBOL(tcp_simple_retransmit);
2660 
2661 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2662 {
2663 	struct tcp_sock *tp = tcp_sk(sk);
2664 	int mib_idx;
2665 
2666 	if (tcp_is_reno(tp))
2667 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2668 	else
2669 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2670 
2671 	NET_INC_STATS_BH(sock_net(sk), mib_idx);
2672 
2673 	tp->prior_ssthresh = 0;
2674 	tp->undo_marker = tp->snd_una;
2675 	tp->undo_retrans = tp->retrans_out ? : -1;
2676 
2677 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2678 		if (!ece_ack)
2679 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2680 		tcp_init_cwnd_reduction(sk);
2681 	}
2682 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2683 }
2684 
2685 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2686  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2687  */
2688 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2689 {
2690 	struct tcp_sock *tp = tcp_sk(sk);
2691 	bool recovered = !before(tp->snd_una, tp->high_seq);
2692 
2693 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2694 		/* Step 3.b. A timeout is spurious if not all data are
2695 		 * lost, i.e., never-retransmitted data are (s)acked.
2696 		 */
2697 		if (tcp_try_undo_loss(sk, flag & FLAG_ORIG_SACK_ACKED))
2698 			return;
2699 
2700 		if (after(tp->snd_nxt, tp->high_seq) &&
2701 		    (flag & FLAG_DATA_SACKED || is_dupack)) {
2702 			tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
2703 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2704 			tp->high_seq = tp->snd_nxt;
2705 			__tcp_push_pending_frames(sk, tcp_current_mss(sk),
2706 						  TCP_NAGLE_OFF);
2707 			if (after(tp->snd_nxt, tp->high_seq))
2708 				return; /* Step 2.b */
2709 			tp->frto = 0;
2710 		}
2711 	}
2712 
2713 	if (recovered) {
2714 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2715 		tcp_try_undo_recovery(sk);
2716 		return;
2717 	}
2718 	if (tcp_is_reno(tp)) {
2719 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2720 		 * delivered. Lower inflight to clock out (re)tranmissions.
2721 		 */
2722 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2723 			tcp_add_reno_sack(sk);
2724 		else if (flag & FLAG_SND_UNA_ADVANCED)
2725 			tcp_reset_reno_sack(tp);
2726 	}
2727 	if (tcp_try_undo_loss(sk, false))
2728 		return;
2729 	tcp_xmit_retransmit_queue(sk);
2730 }
2731 
2732 /* Undo during fast recovery after partial ACK. */
2733 static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2734 				 const int prior_unsacked)
2735 {
2736 	struct tcp_sock *tp = tcp_sk(sk);
2737 
2738 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2739 		/* Plain luck! Hole if filled with delayed
2740 		 * packet, rather than with a retransmit.
2741 		 */
2742 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2743 
2744 		/* We are getting evidence that the reordering degree is higher
2745 		 * than we realized. If there are no retransmits out then we
2746 		 * can undo. Otherwise we clock out new packets but do not
2747 		 * mark more packets lost or retransmit more.
2748 		 */
2749 		if (tp->retrans_out) {
2750 			tcp_cwnd_reduction(sk, prior_unsacked, 0);
2751 			return true;
2752 		}
2753 
2754 		if (!tcp_any_retrans_done(sk))
2755 			tp->retrans_stamp = 0;
2756 
2757 		DBGUNDO(sk, "partial recovery");
2758 		tcp_undo_cwnd_reduction(sk, true);
2759 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2760 		tcp_try_keep_open(sk);
2761 		return true;
2762 	}
2763 	return false;
2764 }
2765 
2766 /* Process an event, which can update packets-in-flight not trivially.
2767  * Main goal of this function is to calculate new estimate for left_out,
2768  * taking into account both packets sitting in receiver's buffer and
2769  * packets lost by network.
2770  *
2771  * Besides that it does CWND reduction, when packet loss is detected
2772  * and changes state of machine.
2773  *
2774  * It does _not_ decide what to send, it is made in function
2775  * tcp_xmit_retransmit_queue().
2776  */
2777 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2778 				  const int prior_unsacked,
2779 				  bool is_dupack, int flag)
2780 {
2781 	struct inet_connection_sock *icsk = inet_csk(sk);
2782 	struct tcp_sock *tp = tcp_sk(sk);
2783 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2784 				    (tcp_fackets_out(tp) > tp->reordering));
2785 	int fast_rexmit = 0;
2786 
2787 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2788 		tp->sacked_out = 0;
2789 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2790 		tp->fackets_out = 0;
2791 
2792 	/* Now state machine starts.
2793 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2794 	if (flag & FLAG_ECE)
2795 		tp->prior_ssthresh = 0;
2796 
2797 	/* B. In all the states check for reneging SACKs. */
2798 	if (tcp_check_sack_reneging(sk, flag))
2799 		return;
2800 
2801 	/* C. Check consistency of the current state. */
2802 	tcp_verify_left_out(tp);
2803 
2804 	/* D. Check state exit conditions. State can be terminated
2805 	 *    when high_seq is ACKed. */
2806 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2807 		WARN_ON(tp->retrans_out != 0);
2808 		tp->retrans_stamp = 0;
2809 	} else if (!before(tp->snd_una, tp->high_seq)) {
2810 		switch (icsk->icsk_ca_state) {
2811 		case TCP_CA_CWR:
2812 			/* CWR is to be held something *above* high_seq
2813 			 * is ACKed for CWR bit to reach receiver. */
2814 			if (tp->snd_una != tp->high_seq) {
2815 				tcp_end_cwnd_reduction(sk);
2816 				tcp_set_ca_state(sk, TCP_CA_Open);
2817 			}
2818 			break;
2819 
2820 		case TCP_CA_Recovery:
2821 			if (tcp_is_reno(tp))
2822 				tcp_reset_reno_sack(tp);
2823 			if (tcp_try_undo_recovery(sk))
2824 				return;
2825 			tcp_end_cwnd_reduction(sk);
2826 			break;
2827 		}
2828 	}
2829 
2830 	/* E. Process state. */
2831 	switch (icsk->icsk_ca_state) {
2832 	case TCP_CA_Recovery:
2833 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2834 			if (tcp_is_reno(tp) && is_dupack)
2835 				tcp_add_reno_sack(sk);
2836 		} else {
2837 			if (tcp_try_undo_partial(sk, acked, prior_unsacked))
2838 				return;
2839 			/* Partial ACK arrived. Force fast retransmit. */
2840 			do_lost = tcp_is_reno(tp) ||
2841 				  tcp_fackets_out(tp) > tp->reordering;
2842 		}
2843 		if (tcp_try_undo_dsack(sk)) {
2844 			tcp_try_keep_open(sk);
2845 			return;
2846 		}
2847 		break;
2848 	case TCP_CA_Loss:
2849 		tcp_process_loss(sk, flag, is_dupack);
2850 		if (icsk->icsk_ca_state != TCP_CA_Open)
2851 			return;
2852 		/* Fall through to processing in Open state. */
2853 	default:
2854 		if (tcp_is_reno(tp)) {
2855 			if (flag & FLAG_SND_UNA_ADVANCED)
2856 				tcp_reset_reno_sack(tp);
2857 			if (is_dupack)
2858 				tcp_add_reno_sack(sk);
2859 		}
2860 
2861 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2862 			tcp_try_undo_dsack(sk);
2863 
2864 		if (!tcp_time_to_recover(sk, flag)) {
2865 			tcp_try_to_open(sk, flag, prior_unsacked);
2866 			return;
2867 		}
2868 
2869 		/* MTU probe failure: don't reduce cwnd */
2870 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2871 		    icsk->icsk_mtup.probe_size &&
2872 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2873 			tcp_mtup_probe_failed(sk);
2874 			/* Restores the reduction we did in tcp_mtup_probe() */
2875 			tp->snd_cwnd++;
2876 			tcp_simple_retransmit(sk);
2877 			return;
2878 		}
2879 
2880 		/* Otherwise enter Recovery state */
2881 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2882 		fast_rexmit = 1;
2883 	}
2884 
2885 	if (do_lost)
2886 		tcp_update_scoreboard(sk, fast_rexmit);
2887 	tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
2888 	tcp_xmit_retransmit_queue(sk);
2889 }
2890 
2891 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2892 				      long seq_rtt_us, long sack_rtt_us)
2893 {
2894 	const struct tcp_sock *tp = tcp_sk(sk);
2895 
2896 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2897 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2898 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2899 	 * is acked (RFC6298).
2900 	 */
2901 	if (flag & FLAG_RETRANS_DATA_ACKED)
2902 		seq_rtt_us = -1L;
2903 
2904 	if (seq_rtt_us < 0)
2905 		seq_rtt_us = sack_rtt_us;
2906 
2907 	/* RTTM Rule: A TSecr value received in a segment is used to
2908 	 * update the averaged RTT measurement only if the segment
2909 	 * acknowledges some new data, i.e., only if it advances the
2910 	 * left edge of the send window.
2911 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2912 	 */
2913 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2914 	    flag & FLAG_ACKED)
2915 		seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr);
2916 
2917 	if (seq_rtt_us < 0)
2918 		return false;
2919 
2920 	tcp_rtt_estimator(sk, seq_rtt_us);
2921 	tcp_set_rto(sk);
2922 
2923 	/* RFC6298: only reset backoff on valid RTT measurement. */
2924 	inet_csk(sk)->icsk_backoff = 0;
2925 	return true;
2926 }
2927 
2928 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2929 static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp)
2930 {
2931 	struct tcp_sock *tp = tcp_sk(sk);
2932 	long seq_rtt_us = -1L;
2933 
2934 	if (synack_stamp && !tp->total_retrans)
2935 		seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp);
2936 
2937 	/* If the ACK acks both the SYNACK and the (Fast Open'd) data packets
2938 	 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack()
2939 	 */
2940 	if (!tp->srtt_us)
2941 		tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L);
2942 }
2943 
2944 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2945 {
2946 	const struct inet_connection_sock *icsk = inet_csk(sk);
2947 
2948 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2949 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2950 }
2951 
2952 /* Restart timer after forward progress on connection.
2953  * RFC2988 recommends to restart timer to now+rto.
2954  */
2955 void tcp_rearm_rto(struct sock *sk)
2956 {
2957 	const struct inet_connection_sock *icsk = inet_csk(sk);
2958 	struct tcp_sock *tp = tcp_sk(sk);
2959 
2960 	/* If the retrans timer is currently being used by Fast Open
2961 	 * for SYN-ACK retrans purpose, stay put.
2962 	 */
2963 	if (tp->fastopen_rsk)
2964 		return;
2965 
2966 	if (!tp->packets_out) {
2967 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2968 	} else {
2969 		u32 rto = inet_csk(sk)->icsk_rto;
2970 		/* Offset the time elapsed after installing regular RTO */
2971 		if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2972 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2973 			struct sk_buff *skb = tcp_write_queue_head(sk);
2974 			const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
2975 			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2976 			/* delta may not be positive if the socket is locked
2977 			 * when the retrans timer fires and is rescheduled.
2978 			 */
2979 			if (delta > 0)
2980 				rto = delta;
2981 		}
2982 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2983 					  TCP_RTO_MAX);
2984 	}
2985 }
2986 
2987 /* This function is called when the delayed ER timer fires. TCP enters
2988  * fast recovery and performs fast-retransmit.
2989  */
2990 void tcp_resume_early_retransmit(struct sock *sk)
2991 {
2992 	struct tcp_sock *tp = tcp_sk(sk);
2993 
2994 	tcp_rearm_rto(sk);
2995 
2996 	/* Stop if ER is disabled after the delayed ER timer is scheduled */
2997 	if (!tp->do_early_retrans)
2998 		return;
2999 
3000 	tcp_enter_recovery(sk, false);
3001 	tcp_update_scoreboard(sk, 1);
3002 	tcp_xmit_retransmit_queue(sk);
3003 }
3004 
3005 /* If we get here, the whole TSO packet has not been acked. */
3006 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3007 {
3008 	struct tcp_sock *tp = tcp_sk(sk);
3009 	u32 packets_acked;
3010 
3011 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3012 
3013 	packets_acked = tcp_skb_pcount(skb);
3014 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3015 		return 0;
3016 	packets_acked -= tcp_skb_pcount(skb);
3017 
3018 	if (packets_acked) {
3019 		BUG_ON(tcp_skb_pcount(skb) == 0);
3020 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3021 	}
3022 
3023 	return packets_acked;
3024 }
3025 
3026 /* Remove acknowledged frames from the retransmission queue. If our packet
3027  * is before the ack sequence we can discard it as it's confirmed to have
3028  * arrived at the other end.
3029  */
3030 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3031 			       u32 prior_snd_una, long sack_rtt_us)
3032 {
3033 	const struct inet_connection_sock *icsk = inet_csk(sk);
3034 	struct skb_mstamp first_ackt, last_ackt, now;
3035 	struct tcp_sock *tp = tcp_sk(sk);
3036 	u32 prior_sacked = tp->sacked_out;
3037 	u32 reord = tp->packets_out;
3038 	bool fully_acked = true;
3039 	long ca_seq_rtt_us = -1L;
3040 	long seq_rtt_us = -1L;
3041 	struct sk_buff *skb;
3042 	u32 pkts_acked = 0;
3043 	bool rtt_update;
3044 	int flag = 0;
3045 
3046 	first_ackt.v64 = 0;
3047 
3048 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3049 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3050 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3051 		u8 sacked = scb->sacked;
3052 		u32 acked_pcount;
3053 
3054 		if (unlikely(shinfo->tx_flags & SKBTX_ACK_TSTAMP) &&
3055 		    between(shinfo->tskey, prior_snd_una, tp->snd_una - 1))
3056 			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3057 
3058 		/* Determine how many packets and what bytes were acked, tso and else */
3059 		if (after(scb->end_seq, tp->snd_una)) {
3060 			if (tcp_skb_pcount(skb) == 1 ||
3061 			    !after(tp->snd_una, scb->seq))
3062 				break;
3063 
3064 			acked_pcount = tcp_tso_acked(sk, skb);
3065 			if (!acked_pcount)
3066 				break;
3067 
3068 			fully_acked = false;
3069 		} else {
3070 			acked_pcount = tcp_skb_pcount(skb);
3071 		}
3072 
3073 		if (sacked & TCPCB_RETRANS) {
3074 			if (sacked & TCPCB_SACKED_RETRANS)
3075 				tp->retrans_out -= acked_pcount;
3076 			flag |= FLAG_RETRANS_DATA_ACKED;
3077 		} else {
3078 			last_ackt = skb->skb_mstamp;
3079 			WARN_ON_ONCE(last_ackt.v64 == 0);
3080 			if (!first_ackt.v64)
3081 				first_ackt = last_ackt;
3082 
3083 			if (!(sacked & TCPCB_SACKED_ACKED))
3084 				reord = min(pkts_acked, reord);
3085 			if (!after(scb->end_seq, tp->high_seq))
3086 				flag |= FLAG_ORIG_SACK_ACKED;
3087 		}
3088 
3089 		if (sacked & TCPCB_SACKED_ACKED)
3090 			tp->sacked_out -= acked_pcount;
3091 		if (sacked & TCPCB_LOST)
3092 			tp->lost_out -= acked_pcount;
3093 
3094 		tp->packets_out -= acked_pcount;
3095 		pkts_acked += acked_pcount;
3096 
3097 		/* Initial outgoing SYN's get put onto the write_queue
3098 		 * just like anything else we transmit.  It is not
3099 		 * true data, and if we misinform our callers that
3100 		 * this ACK acks real data, we will erroneously exit
3101 		 * connection startup slow start one packet too
3102 		 * quickly.  This is severely frowned upon behavior.
3103 		 */
3104 		if (!(scb->tcp_flags & TCPHDR_SYN)) {
3105 			flag |= FLAG_DATA_ACKED;
3106 		} else {
3107 			flag |= FLAG_SYN_ACKED;
3108 			tp->retrans_stamp = 0;
3109 		}
3110 
3111 		if (!fully_acked)
3112 			break;
3113 
3114 		tcp_unlink_write_queue(skb, sk);
3115 		sk_wmem_free_skb(sk, skb);
3116 		if (skb == tp->retransmit_skb_hint)
3117 			tp->retransmit_skb_hint = NULL;
3118 		if (skb == tp->lost_skb_hint)
3119 			tp->lost_skb_hint = NULL;
3120 	}
3121 
3122 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3123 		tp->snd_up = tp->snd_una;
3124 
3125 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3126 		flag |= FLAG_SACK_RENEGING;
3127 
3128 	skb_mstamp_get(&now);
3129 	if (first_ackt.v64) {
3130 		seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3131 		ca_seq_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3132 	}
3133 
3134 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us);
3135 
3136 	if (flag & FLAG_ACKED) {
3137 		const struct tcp_congestion_ops *ca_ops
3138 			= inet_csk(sk)->icsk_ca_ops;
3139 
3140 		tcp_rearm_rto(sk);
3141 		if (unlikely(icsk->icsk_mtup.probe_size &&
3142 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3143 			tcp_mtup_probe_success(sk);
3144 		}
3145 
3146 		if (tcp_is_reno(tp)) {
3147 			tcp_remove_reno_sacks(sk, pkts_acked);
3148 		} else {
3149 			int delta;
3150 
3151 			/* Non-retransmitted hole got filled? That's reordering */
3152 			if (reord < prior_fackets)
3153 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3154 
3155 			delta = tcp_is_fack(tp) ? pkts_acked :
3156 						  prior_sacked - tp->sacked_out;
3157 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3158 		}
3159 
3160 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3161 
3162 		if (ca_ops->pkts_acked)
3163 			ca_ops->pkts_acked(sk, pkts_acked, ca_seq_rtt_us);
3164 
3165 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3166 		   sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
3167 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3168 		 * after when the head was last (re)transmitted. Otherwise the
3169 		 * timeout may continue to extend in loss recovery.
3170 		 */
3171 		tcp_rearm_rto(sk);
3172 	}
3173 
3174 #if FASTRETRANS_DEBUG > 0
3175 	WARN_ON((int)tp->sacked_out < 0);
3176 	WARN_ON((int)tp->lost_out < 0);
3177 	WARN_ON((int)tp->retrans_out < 0);
3178 	if (!tp->packets_out && tcp_is_sack(tp)) {
3179 		icsk = inet_csk(sk);
3180 		if (tp->lost_out) {
3181 			pr_debug("Leak l=%u %d\n",
3182 				 tp->lost_out, icsk->icsk_ca_state);
3183 			tp->lost_out = 0;
3184 		}
3185 		if (tp->sacked_out) {
3186 			pr_debug("Leak s=%u %d\n",
3187 				 tp->sacked_out, icsk->icsk_ca_state);
3188 			tp->sacked_out = 0;
3189 		}
3190 		if (tp->retrans_out) {
3191 			pr_debug("Leak r=%u %d\n",
3192 				 tp->retrans_out, icsk->icsk_ca_state);
3193 			tp->retrans_out = 0;
3194 		}
3195 	}
3196 #endif
3197 	return flag;
3198 }
3199 
3200 static void tcp_ack_probe(struct sock *sk)
3201 {
3202 	const struct tcp_sock *tp = tcp_sk(sk);
3203 	struct inet_connection_sock *icsk = inet_csk(sk);
3204 
3205 	/* Was it a usable window open? */
3206 
3207 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3208 		icsk->icsk_backoff = 0;
3209 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3210 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3211 		 * This function is not for random using!
3212 		 */
3213 	} else {
3214 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3215 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3216 					  TCP_RTO_MAX);
3217 	}
3218 }
3219 
3220 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3221 {
3222 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3223 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3224 }
3225 
3226 /* Decide wheather to run the increase function of congestion control. */
3227 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3228 {
3229 	if (tcp_in_cwnd_reduction(sk))
3230 		return false;
3231 
3232 	/* If reordering is high then always grow cwnd whenever data is
3233 	 * delivered regardless of its ordering. Otherwise stay conservative
3234 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3235 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3236 	 * cwnd in tcp_fastretrans_alert() based on more states.
3237 	 */
3238 	if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
3239 		return flag & FLAG_FORWARD_PROGRESS;
3240 
3241 	return flag & FLAG_DATA_ACKED;
3242 }
3243 
3244 /* Check that window update is acceptable.
3245  * The function assumes that snd_una<=ack<=snd_next.
3246  */
3247 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3248 					const u32 ack, const u32 ack_seq,
3249 					const u32 nwin)
3250 {
3251 	return	after(ack, tp->snd_una) ||
3252 		after(ack_seq, tp->snd_wl1) ||
3253 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3254 }
3255 
3256 /* Update our send window.
3257  *
3258  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3259  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3260  */
3261 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3262 				 u32 ack_seq)
3263 {
3264 	struct tcp_sock *tp = tcp_sk(sk);
3265 	int flag = 0;
3266 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3267 
3268 	if (likely(!tcp_hdr(skb)->syn))
3269 		nwin <<= tp->rx_opt.snd_wscale;
3270 
3271 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3272 		flag |= FLAG_WIN_UPDATE;
3273 		tcp_update_wl(tp, ack_seq);
3274 
3275 		if (tp->snd_wnd != nwin) {
3276 			tp->snd_wnd = nwin;
3277 
3278 			/* Note, it is the only place, where
3279 			 * fast path is recovered for sending TCP.
3280 			 */
3281 			tp->pred_flags = 0;
3282 			tcp_fast_path_check(sk);
3283 
3284 			if (nwin > tp->max_window) {
3285 				tp->max_window = nwin;
3286 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3287 			}
3288 		}
3289 	}
3290 
3291 	tp->snd_una = ack;
3292 
3293 	return flag;
3294 }
3295 
3296 /* RFC 5961 7 [ACK Throttling] */
3297 static void tcp_send_challenge_ack(struct sock *sk)
3298 {
3299 	/* unprotected vars, we dont care of overwrites */
3300 	static u32 challenge_timestamp;
3301 	static unsigned int challenge_count;
3302 	u32 now = jiffies / HZ;
3303 
3304 	if (now != challenge_timestamp) {
3305 		challenge_timestamp = now;
3306 		challenge_count = 0;
3307 	}
3308 	if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3309 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3310 		tcp_send_ack(sk);
3311 	}
3312 }
3313 
3314 static void tcp_store_ts_recent(struct tcp_sock *tp)
3315 {
3316 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3317 	tp->rx_opt.ts_recent_stamp = get_seconds();
3318 }
3319 
3320 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3321 {
3322 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3323 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3324 		 * extra check below makes sure this can only happen
3325 		 * for pure ACK frames.  -DaveM
3326 		 *
3327 		 * Not only, also it occurs for expired timestamps.
3328 		 */
3329 
3330 		if (tcp_paws_check(&tp->rx_opt, 0))
3331 			tcp_store_ts_recent(tp);
3332 	}
3333 }
3334 
3335 /* This routine deals with acks during a TLP episode.
3336  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3337  */
3338 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3339 {
3340 	struct tcp_sock *tp = tcp_sk(sk);
3341 	bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
3342 			     !(flag & (FLAG_SND_UNA_ADVANCED |
3343 				       FLAG_NOT_DUP | FLAG_DATA_SACKED));
3344 
3345 	/* Mark the end of TLP episode on receiving TLP dupack or when
3346 	 * ack is after tlp_high_seq.
3347 	 */
3348 	if (is_tlp_dupack) {
3349 		tp->tlp_high_seq = 0;
3350 		return;
3351 	}
3352 
3353 	if (after(ack, tp->tlp_high_seq)) {
3354 		tp->tlp_high_seq = 0;
3355 		/* Don't reduce cwnd if DSACK arrives for TLP retrans. */
3356 		if (!(flag & FLAG_DSACKING_ACK)) {
3357 			tcp_init_cwnd_reduction(sk);
3358 			tcp_set_ca_state(sk, TCP_CA_CWR);
3359 			tcp_end_cwnd_reduction(sk);
3360 			tcp_try_keep_open(sk);
3361 			NET_INC_STATS_BH(sock_net(sk),
3362 					 LINUX_MIB_TCPLOSSPROBERECOVERY);
3363 		}
3364 	}
3365 }
3366 
3367 /* This routine deals with incoming acks, but not outgoing ones. */
3368 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3369 {
3370 	struct inet_connection_sock *icsk = inet_csk(sk);
3371 	struct tcp_sock *tp = tcp_sk(sk);
3372 	u32 prior_snd_una = tp->snd_una;
3373 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3374 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3375 	bool is_dupack = false;
3376 	u32 prior_fackets;
3377 	int prior_packets = tp->packets_out;
3378 	const int prior_unsacked = tp->packets_out - tp->sacked_out;
3379 	int acked = 0; /* Number of packets newly acked */
3380 	long sack_rtt_us = -1L;
3381 
3382 	/* If the ack is older than previous acks
3383 	 * then we can probably ignore it.
3384 	 */
3385 	if (before(ack, prior_snd_una)) {
3386 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3387 		if (before(ack, prior_snd_una - tp->max_window)) {
3388 			tcp_send_challenge_ack(sk);
3389 			return -1;
3390 		}
3391 		goto old_ack;
3392 	}
3393 
3394 	/* If the ack includes data we haven't sent yet, discard
3395 	 * this segment (RFC793 Section 3.9).
3396 	 */
3397 	if (after(ack, tp->snd_nxt))
3398 		goto invalid_ack;
3399 
3400 	if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3401 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3402 		tcp_rearm_rto(sk);
3403 
3404 	if (after(ack, prior_snd_una)) {
3405 		flag |= FLAG_SND_UNA_ADVANCED;
3406 		icsk->icsk_retransmits = 0;
3407 	}
3408 
3409 	prior_fackets = tp->fackets_out;
3410 
3411 	/* ts_recent update must be made after we are sure that the packet
3412 	 * is in window.
3413 	 */
3414 	if (flag & FLAG_UPDATE_TS_RECENT)
3415 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3416 
3417 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3418 		/* Window is constant, pure forward advance.
3419 		 * No more checks are required.
3420 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3421 		 */
3422 		tcp_update_wl(tp, ack_seq);
3423 		tp->snd_una = ack;
3424 		flag |= FLAG_WIN_UPDATE;
3425 
3426 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3427 
3428 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3429 	} else {
3430 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3431 			flag |= FLAG_DATA;
3432 		else
3433 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3434 
3435 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3436 
3437 		if (TCP_SKB_CB(skb)->sacked)
3438 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3439 							&sack_rtt_us);
3440 
3441 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3442 			flag |= FLAG_ECE;
3443 
3444 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3445 	}
3446 
3447 	/* We passed data and got it acked, remove any soft error
3448 	 * log. Something worked...
3449 	 */
3450 	sk->sk_err_soft = 0;
3451 	icsk->icsk_probes_out = 0;
3452 	tp->rcv_tstamp = tcp_time_stamp;
3453 	if (!prior_packets)
3454 		goto no_queue;
3455 
3456 	/* See if we can take anything off of the retransmit queue. */
3457 	acked = tp->packets_out;
3458 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una,
3459 				    sack_rtt_us);
3460 	acked -= tp->packets_out;
3461 
3462 	/* Advance cwnd if state allows */
3463 	if (tcp_may_raise_cwnd(sk, flag))
3464 		tcp_cong_avoid(sk, ack, acked);
3465 
3466 	if (tcp_ack_is_dubious(sk, flag)) {
3467 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3468 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3469 				      is_dupack, flag);
3470 	}
3471 	if (tp->tlp_high_seq)
3472 		tcp_process_tlp_ack(sk, ack, flag);
3473 
3474 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3475 		struct dst_entry *dst = __sk_dst_get(sk);
3476 		if (dst)
3477 			dst_confirm(dst);
3478 	}
3479 
3480 	if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3481 		tcp_schedule_loss_probe(sk);
3482 	tcp_update_pacing_rate(sk);
3483 	return 1;
3484 
3485 no_queue:
3486 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3487 	if (flag & FLAG_DSACKING_ACK)
3488 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3489 				      is_dupack, flag);
3490 	/* If this ack opens up a zero window, clear backoff.  It was
3491 	 * being used to time the probes, and is probably far higher than
3492 	 * it needs to be for normal retransmission.
3493 	 */
3494 	if (tcp_send_head(sk))
3495 		tcp_ack_probe(sk);
3496 
3497 	if (tp->tlp_high_seq)
3498 		tcp_process_tlp_ack(sk, ack, flag);
3499 	return 1;
3500 
3501 invalid_ack:
3502 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3503 	return -1;
3504 
3505 old_ack:
3506 	/* If data was SACKed, tag it and see if we should send more data.
3507 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3508 	 */
3509 	if (TCP_SKB_CB(skb)->sacked) {
3510 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3511 						&sack_rtt_us);
3512 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3513 				      is_dupack, flag);
3514 	}
3515 
3516 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3517 	return 0;
3518 }
3519 
3520 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3521  * But, this can also be called on packets in the established flow when
3522  * the fast version below fails.
3523  */
3524 void tcp_parse_options(const struct sk_buff *skb,
3525 		       struct tcp_options_received *opt_rx, int estab,
3526 		       struct tcp_fastopen_cookie *foc)
3527 {
3528 	const unsigned char *ptr;
3529 	const struct tcphdr *th = tcp_hdr(skb);
3530 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3531 
3532 	ptr = (const unsigned char *)(th + 1);
3533 	opt_rx->saw_tstamp = 0;
3534 
3535 	while (length > 0) {
3536 		int opcode = *ptr++;
3537 		int opsize;
3538 
3539 		switch (opcode) {
3540 		case TCPOPT_EOL:
3541 			return;
3542 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3543 			length--;
3544 			continue;
3545 		default:
3546 			opsize = *ptr++;
3547 			if (opsize < 2) /* "silly options" */
3548 				return;
3549 			if (opsize > length)
3550 				return;	/* don't parse partial options */
3551 			switch (opcode) {
3552 			case TCPOPT_MSS:
3553 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3554 					u16 in_mss = get_unaligned_be16(ptr);
3555 					if (in_mss) {
3556 						if (opt_rx->user_mss &&
3557 						    opt_rx->user_mss < in_mss)
3558 							in_mss = opt_rx->user_mss;
3559 						opt_rx->mss_clamp = in_mss;
3560 					}
3561 				}
3562 				break;
3563 			case TCPOPT_WINDOW:
3564 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3565 				    !estab && sysctl_tcp_window_scaling) {
3566 					__u8 snd_wscale = *(__u8 *)ptr;
3567 					opt_rx->wscale_ok = 1;
3568 					if (snd_wscale > 14) {
3569 						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3570 								     __func__,
3571 								     snd_wscale);
3572 						snd_wscale = 14;
3573 					}
3574 					opt_rx->snd_wscale = snd_wscale;
3575 				}
3576 				break;
3577 			case TCPOPT_TIMESTAMP:
3578 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3579 				    ((estab && opt_rx->tstamp_ok) ||
3580 				     (!estab && sysctl_tcp_timestamps))) {
3581 					opt_rx->saw_tstamp = 1;
3582 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3583 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3584 				}
3585 				break;
3586 			case TCPOPT_SACK_PERM:
3587 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3588 				    !estab && sysctl_tcp_sack) {
3589 					opt_rx->sack_ok = TCP_SACK_SEEN;
3590 					tcp_sack_reset(opt_rx);
3591 				}
3592 				break;
3593 
3594 			case TCPOPT_SACK:
3595 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3596 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3597 				   opt_rx->sack_ok) {
3598 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3599 				}
3600 				break;
3601 #ifdef CONFIG_TCP_MD5SIG
3602 			case TCPOPT_MD5SIG:
3603 				/*
3604 				 * The MD5 Hash has already been
3605 				 * checked (see tcp_v{4,6}_do_rcv()).
3606 				 */
3607 				break;
3608 #endif
3609 			case TCPOPT_EXP:
3610 				/* Fast Open option shares code 254 using a
3611 				 * 16 bits magic number. It's valid only in
3612 				 * SYN or SYN-ACK with an even size.
3613 				 */
3614 				if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3615 				    get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3616 				    foc == NULL || !th->syn || (opsize & 1))
3617 					break;
3618 				foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3619 				if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3620 				    foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3621 					memcpy(foc->val, ptr + 2, foc->len);
3622 				else if (foc->len != 0)
3623 					foc->len = -1;
3624 				break;
3625 
3626 			}
3627 			ptr += opsize-2;
3628 			length -= opsize;
3629 		}
3630 	}
3631 }
3632 EXPORT_SYMBOL(tcp_parse_options);
3633 
3634 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3635 {
3636 	const __be32 *ptr = (const __be32 *)(th + 1);
3637 
3638 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3639 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3640 		tp->rx_opt.saw_tstamp = 1;
3641 		++ptr;
3642 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3643 		++ptr;
3644 		if (*ptr)
3645 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3646 		else
3647 			tp->rx_opt.rcv_tsecr = 0;
3648 		return true;
3649 	}
3650 	return false;
3651 }
3652 
3653 /* Fast parse options. This hopes to only see timestamps.
3654  * If it is wrong it falls back on tcp_parse_options().
3655  */
3656 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3657 				   const struct tcphdr *th, struct tcp_sock *tp)
3658 {
3659 	/* In the spirit of fast parsing, compare doff directly to constant
3660 	 * values.  Because equality is used, short doff can be ignored here.
3661 	 */
3662 	if (th->doff == (sizeof(*th) / 4)) {
3663 		tp->rx_opt.saw_tstamp = 0;
3664 		return false;
3665 	} else if (tp->rx_opt.tstamp_ok &&
3666 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3667 		if (tcp_parse_aligned_timestamp(tp, th))
3668 			return true;
3669 	}
3670 
3671 	tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3672 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3673 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3674 
3675 	return true;
3676 }
3677 
3678 #ifdef CONFIG_TCP_MD5SIG
3679 /*
3680  * Parse MD5 Signature option
3681  */
3682 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3683 {
3684 	int length = (th->doff << 2) - sizeof(*th);
3685 	const u8 *ptr = (const u8 *)(th + 1);
3686 
3687 	/* If the TCP option is too short, we can short cut */
3688 	if (length < TCPOLEN_MD5SIG)
3689 		return NULL;
3690 
3691 	while (length > 0) {
3692 		int opcode = *ptr++;
3693 		int opsize;
3694 
3695 		switch (opcode) {
3696 		case TCPOPT_EOL:
3697 			return NULL;
3698 		case TCPOPT_NOP:
3699 			length--;
3700 			continue;
3701 		default:
3702 			opsize = *ptr++;
3703 			if (opsize < 2 || opsize > length)
3704 				return NULL;
3705 			if (opcode == TCPOPT_MD5SIG)
3706 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3707 		}
3708 		ptr += opsize - 2;
3709 		length -= opsize;
3710 	}
3711 	return NULL;
3712 }
3713 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3714 #endif
3715 
3716 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3717  *
3718  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3719  * it can pass through stack. So, the following predicate verifies that
3720  * this segment is not used for anything but congestion avoidance or
3721  * fast retransmit. Moreover, we even are able to eliminate most of such
3722  * second order effects, if we apply some small "replay" window (~RTO)
3723  * to timestamp space.
3724  *
3725  * All these measures still do not guarantee that we reject wrapped ACKs
3726  * on networks with high bandwidth, when sequence space is recycled fastly,
3727  * but it guarantees that such events will be very rare and do not affect
3728  * connection seriously. This doesn't look nice, but alas, PAWS is really
3729  * buggy extension.
3730  *
3731  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3732  * states that events when retransmit arrives after original data are rare.
3733  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3734  * the biggest problem on large power networks even with minor reordering.
3735  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3736  * up to bandwidth of 18Gigabit/sec. 8) ]
3737  */
3738 
3739 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3740 {
3741 	const struct tcp_sock *tp = tcp_sk(sk);
3742 	const struct tcphdr *th = tcp_hdr(skb);
3743 	u32 seq = TCP_SKB_CB(skb)->seq;
3744 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3745 
3746 	return (/* 1. Pure ACK with correct sequence number. */
3747 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3748 
3749 		/* 2. ... and duplicate ACK. */
3750 		ack == tp->snd_una &&
3751 
3752 		/* 3. ... and does not update window. */
3753 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3754 
3755 		/* 4. ... and sits in replay window. */
3756 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3757 }
3758 
3759 static inline bool tcp_paws_discard(const struct sock *sk,
3760 				   const struct sk_buff *skb)
3761 {
3762 	const struct tcp_sock *tp = tcp_sk(sk);
3763 
3764 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3765 	       !tcp_disordered_ack(sk, skb);
3766 }
3767 
3768 /* Check segment sequence number for validity.
3769  *
3770  * Segment controls are considered valid, if the segment
3771  * fits to the window after truncation to the window. Acceptability
3772  * of data (and SYN, FIN, of course) is checked separately.
3773  * See tcp_data_queue(), for example.
3774  *
3775  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3776  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3777  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3778  * (borrowed from freebsd)
3779  */
3780 
3781 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3782 {
3783 	return	!before(end_seq, tp->rcv_wup) &&
3784 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3785 }
3786 
3787 /* When we get a reset we do this. */
3788 void tcp_reset(struct sock *sk)
3789 {
3790 	/* We want the right error as BSD sees it (and indeed as we do). */
3791 	switch (sk->sk_state) {
3792 	case TCP_SYN_SENT:
3793 		sk->sk_err = ECONNREFUSED;
3794 		break;
3795 	case TCP_CLOSE_WAIT:
3796 		sk->sk_err = EPIPE;
3797 		break;
3798 	case TCP_CLOSE:
3799 		return;
3800 	default:
3801 		sk->sk_err = ECONNRESET;
3802 	}
3803 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
3804 	smp_wmb();
3805 
3806 	if (!sock_flag(sk, SOCK_DEAD))
3807 		sk->sk_error_report(sk);
3808 
3809 	tcp_done(sk);
3810 }
3811 
3812 /*
3813  * 	Process the FIN bit. This now behaves as it is supposed to work
3814  *	and the FIN takes effect when it is validly part of sequence
3815  *	space. Not before when we get holes.
3816  *
3817  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3818  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3819  *	TIME-WAIT)
3820  *
3821  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3822  *	close and we go into CLOSING (and later onto TIME-WAIT)
3823  *
3824  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3825  */
3826 static void tcp_fin(struct sock *sk)
3827 {
3828 	struct tcp_sock *tp = tcp_sk(sk);
3829 	const struct dst_entry *dst;
3830 
3831 	inet_csk_schedule_ack(sk);
3832 
3833 	sk->sk_shutdown |= RCV_SHUTDOWN;
3834 	sock_set_flag(sk, SOCK_DONE);
3835 
3836 	switch (sk->sk_state) {
3837 	case TCP_SYN_RECV:
3838 	case TCP_ESTABLISHED:
3839 		/* Move to CLOSE_WAIT */
3840 		tcp_set_state(sk, TCP_CLOSE_WAIT);
3841 		dst = __sk_dst_get(sk);
3842 		if (!dst || !dst_metric(dst, RTAX_QUICKACK))
3843 			inet_csk(sk)->icsk_ack.pingpong = 1;
3844 		break;
3845 
3846 	case TCP_CLOSE_WAIT:
3847 	case TCP_CLOSING:
3848 		/* Received a retransmission of the FIN, do
3849 		 * nothing.
3850 		 */
3851 		break;
3852 	case TCP_LAST_ACK:
3853 		/* RFC793: Remain in the LAST-ACK state. */
3854 		break;
3855 
3856 	case TCP_FIN_WAIT1:
3857 		/* This case occurs when a simultaneous close
3858 		 * happens, we must ack the received FIN and
3859 		 * enter the CLOSING state.
3860 		 */
3861 		tcp_send_ack(sk);
3862 		tcp_set_state(sk, TCP_CLOSING);
3863 		break;
3864 	case TCP_FIN_WAIT2:
3865 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
3866 		tcp_send_ack(sk);
3867 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3868 		break;
3869 	default:
3870 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
3871 		 * cases we should never reach this piece of code.
3872 		 */
3873 		pr_err("%s: Impossible, sk->sk_state=%d\n",
3874 		       __func__, sk->sk_state);
3875 		break;
3876 	}
3877 
3878 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
3879 	 * Probably, we should reset in this case. For now drop them.
3880 	 */
3881 	__skb_queue_purge(&tp->out_of_order_queue);
3882 	if (tcp_is_sack(tp))
3883 		tcp_sack_reset(&tp->rx_opt);
3884 	sk_mem_reclaim(sk);
3885 
3886 	if (!sock_flag(sk, SOCK_DEAD)) {
3887 		sk->sk_state_change(sk);
3888 
3889 		/* Do not send POLL_HUP for half duplex close. */
3890 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
3891 		    sk->sk_state == TCP_CLOSE)
3892 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3893 		else
3894 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3895 	}
3896 }
3897 
3898 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3899 				  u32 end_seq)
3900 {
3901 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3902 		if (before(seq, sp->start_seq))
3903 			sp->start_seq = seq;
3904 		if (after(end_seq, sp->end_seq))
3905 			sp->end_seq = end_seq;
3906 		return true;
3907 	}
3908 	return false;
3909 }
3910 
3911 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3912 {
3913 	struct tcp_sock *tp = tcp_sk(sk);
3914 
3915 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3916 		int mib_idx;
3917 
3918 		if (before(seq, tp->rcv_nxt))
3919 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3920 		else
3921 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3922 
3923 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
3924 
3925 		tp->rx_opt.dsack = 1;
3926 		tp->duplicate_sack[0].start_seq = seq;
3927 		tp->duplicate_sack[0].end_seq = end_seq;
3928 	}
3929 }
3930 
3931 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3932 {
3933 	struct tcp_sock *tp = tcp_sk(sk);
3934 
3935 	if (!tp->rx_opt.dsack)
3936 		tcp_dsack_set(sk, seq, end_seq);
3937 	else
3938 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3939 }
3940 
3941 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
3942 {
3943 	struct tcp_sock *tp = tcp_sk(sk);
3944 
3945 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3946 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3947 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3948 		tcp_enter_quickack_mode(sk);
3949 
3950 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3951 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3952 
3953 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3954 				end_seq = tp->rcv_nxt;
3955 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3956 		}
3957 	}
3958 
3959 	tcp_send_ack(sk);
3960 }
3961 
3962 /* These routines update the SACK block as out-of-order packets arrive or
3963  * in-order packets close up the sequence space.
3964  */
3965 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3966 {
3967 	int this_sack;
3968 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3969 	struct tcp_sack_block *swalk = sp + 1;
3970 
3971 	/* See if the recent change to the first SACK eats into
3972 	 * or hits the sequence space of other SACK blocks, if so coalesce.
3973 	 */
3974 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3975 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3976 			int i;
3977 
3978 			/* Zap SWALK, by moving every further SACK up by one slot.
3979 			 * Decrease num_sacks.
3980 			 */
3981 			tp->rx_opt.num_sacks--;
3982 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3983 				sp[i] = sp[i + 1];
3984 			continue;
3985 		}
3986 		this_sack++, swalk++;
3987 	}
3988 }
3989 
3990 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3991 {
3992 	struct tcp_sock *tp = tcp_sk(sk);
3993 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3994 	int cur_sacks = tp->rx_opt.num_sacks;
3995 	int this_sack;
3996 
3997 	if (!cur_sacks)
3998 		goto new_sack;
3999 
4000 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4001 		if (tcp_sack_extend(sp, seq, end_seq)) {
4002 			/* Rotate this_sack to the first one. */
4003 			for (; this_sack > 0; this_sack--, sp--)
4004 				swap(*sp, *(sp - 1));
4005 			if (cur_sacks > 1)
4006 				tcp_sack_maybe_coalesce(tp);
4007 			return;
4008 		}
4009 	}
4010 
4011 	/* Could not find an adjacent existing SACK, build a new one,
4012 	 * put it at the front, and shift everyone else down.  We
4013 	 * always know there is at least one SACK present already here.
4014 	 *
4015 	 * If the sack array is full, forget about the last one.
4016 	 */
4017 	if (this_sack >= TCP_NUM_SACKS) {
4018 		this_sack--;
4019 		tp->rx_opt.num_sacks--;
4020 		sp--;
4021 	}
4022 	for (; this_sack > 0; this_sack--, sp--)
4023 		*sp = *(sp - 1);
4024 
4025 new_sack:
4026 	/* Build the new head SACK, and we're done. */
4027 	sp->start_seq = seq;
4028 	sp->end_seq = end_seq;
4029 	tp->rx_opt.num_sacks++;
4030 }
4031 
4032 /* RCV.NXT advances, some SACKs should be eaten. */
4033 
4034 static void tcp_sack_remove(struct tcp_sock *tp)
4035 {
4036 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4037 	int num_sacks = tp->rx_opt.num_sacks;
4038 	int this_sack;
4039 
4040 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4041 	if (skb_queue_empty(&tp->out_of_order_queue)) {
4042 		tp->rx_opt.num_sacks = 0;
4043 		return;
4044 	}
4045 
4046 	for (this_sack = 0; this_sack < num_sacks;) {
4047 		/* Check if the start of the sack is covered by RCV.NXT. */
4048 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4049 			int i;
4050 
4051 			/* RCV.NXT must cover all the block! */
4052 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4053 
4054 			/* Zap this SACK, by moving forward any other SACKS. */
4055 			for (i = this_sack+1; i < num_sacks; i++)
4056 				tp->selective_acks[i-1] = tp->selective_acks[i];
4057 			num_sacks--;
4058 			continue;
4059 		}
4060 		this_sack++;
4061 		sp++;
4062 	}
4063 	tp->rx_opt.num_sacks = num_sacks;
4064 }
4065 
4066 /* This one checks to see if we can put data from the
4067  * out_of_order queue into the receive_queue.
4068  */
4069 static void tcp_ofo_queue(struct sock *sk)
4070 {
4071 	struct tcp_sock *tp = tcp_sk(sk);
4072 	__u32 dsack_high = tp->rcv_nxt;
4073 	struct sk_buff *skb;
4074 
4075 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4076 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4077 			break;
4078 
4079 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4080 			__u32 dsack = dsack_high;
4081 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4082 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4083 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4084 		}
4085 
4086 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4087 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4088 			__skb_unlink(skb, &tp->out_of_order_queue);
4089 			__kfree_skb(skb);
4090 			continue;
4091 		}
4092 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4093 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4094 			   TCP_SKB_CB(skb)->end_seq);
4095 
4096 		__skb_unlink(skb, &tp->out_of_order_queue);
4097 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4098 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4099 		if (tcp_hdr(skb)->fin)
4100 			tcp_fin(sk);
4101 	}
4102 }
4103 
4104 static bool tcp_prune_ofo_queue(struct sock *sk);
4105 static int tcp_prune_queue(struct sock *sk);
4106 
4107 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4108 				 unsigned int size)
4109 {
4110 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4111 	    !sk_rmem_schedule(sk, skb, size)) {
4112 
4113 		if (tcp_prune_queue(sk) < 0)
4114 			return -1;
4115 
4116 		if (!sk_rmem_schedule(sk, skb, size)) {
4117 			if (!tcp_prune_ofo_queue(sk))
4118 				return -1;
4119 
4120 			if (!sk_rmem_schedule(sk, skb, size))
4121 				return -1;
4122 		}
4123 	}
4124 	return 0;
4125 }
4126 
4127 /**
4128  * tcp_try_coalesce - try to merge skb to prior one
4129  * @sk: socket
4130  * @to: prior buffer
4131  * @from: buffer to add in queue
4132  * @fragstolen: pointer to boolean
4133  *
4134  * Before queueing skb @from after @to, try to merge them
4135  * to reduce overall memory use and queue lengths, if cost is small.
4136  * Packets in ofo or receive queues can stay a long time.
4137  * Better try to coalesce them right now to avoid future collapses.
4138  * Returns true if caller should free @from instead of queueing it
4139  */
4140 static bool tcp_try_coalesce(struct sock *sk,
4141 			     struct sk_buff *to,
4142 			     struct sk_buff *from,
4143 			     bool *fragstolen)
4144 {
4145 	int delta;
4146 
4147 	*fragstolen = false;
4148 
4149 	if (tcp_hdr(from)->fin)
4150 		return false;
4151 
4152 	/* Its possible this segment overlaps with prior segment in queue */
4153 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4154 		return false;
4155 
4156 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4157 		return false;
4158 
4159 	atomic_add(delta, &sk->sk_rmem_alloc);
4160 	sk_mem_charge(sk, delta);
4161 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4162 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4163 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4164 	return true;
4165 }
4166 
4167 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4168 {
4169 	struct tcp_sock *tp = tcp_sk(sk);
4170 	struct sk_buff *skb1;
4171 	u32 seq, end_seq;
4172 
4173 	TCP_ECN_check_ce(tp, skb);
4174 
4175 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4176 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4177 		__kfree_skb(skb);
4178 		return;
4179 	}
4180 
4181 	/* Disable header prediction. */
4182 	tp->pred_flags = 0;
4183 	inet_csk_schedule_ack(sk);
4184 
4185 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4186 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4187 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4188 
4189 	skb1 = skb_peek_tail(&tp->out_of_order_queue);
4190 	if (!skb1) {
4191 		/* Initial out of order segment, build 1 SACK. */
4192 		if (tcp_is_sack(tp)) {
4193 			tp->rx_opt.num_sacks = 1;
4194 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4195 			tp->selective_acks[0].end_seq =
4196 						TCP_SKB_CB(skb)->end_seq;
4197 		}
4198 		__skb_queue_head(&tp->out_of_order_queue, skb);
4199 		goto end;
4200 	}
4201 
4202 	seq = TCP_SKB_CB(skb)->seq;
4203 	end_seq = TCP_SKB_CB(skb)->end_seq;
4204 
4205 	if (seq == TCP_SKB_CB(skb1)->end_seq) {
4206 		bool fragstolen;
4207 
4208 		if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4209 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4210 		} else {
4211 			tcp_grow_window(sk, skb);
4212 			kfree_skb_partial(skb, fragstolen);
4213 			skb = NULL;
4214 		}
4215 
4216 		if (!tp->rx_opt.num_sacks ||
4217 		    tp->selective_acks[0].end_seq != seq)
4218 			goto add_sack;
4219 
4220 		/* Common case: data arrive in order after hole. */
4221 		tp->selective_acks[0].end_seq = end_seq;
4222 		goto end;
4223 	}
4224 
4225 	/* Find place to insert this segment. */
4226 	while (1) {
4227 		if (!after(TCP_SKB_CB(skb1)->seq, seq))
4228 			break;
4229 		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4230 			skb1 = NULL;
4231 			break;
4232 		}
4233 		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4234 	}
4235 
4236 	/* Do skb overlap to previous one? */
4237 	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4238 		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4239 			/* All the bits are present. Drop. */
4240 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4241 			__kfree_skb(skb);
4242 			skb = NULL;
4243 			tcp_dsack_set(sk, seq, end_seq);
4244 			goto add_sack;
4245 		}
4246 		if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4247 			/* Partial overlap. */
4248 			tcp_dsack_set(sk, seq,
4249 				      TCP_SKB_CB(skb1)->end_seq);
4250 		} else {
4251 			if (skb_queue_is_first(&tp->out_of_order_queue,
4252 					       skb1))
4253 				skb1 = NULL;
4254 			else
4255 				skb1 = skb_queue_prev(
4256 					&tp->out_of_order_queue,
4257 					skb1);
4258 		}
4259 	}
4260 	if (!skb1)
4261 		__skb_queue_head(&tp->out_of_order_queue, skb);
4262 	else
4263 		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4264 
4265 	/* And clean segments covered by new one as whole. */
4266 	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4267 		skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4268 
4269 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4270 			break;
4271 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4272 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4273 					 end_seq);
4274 			break;
4275 		}
4276 		__skb_unlink(skb1, &tp->out_of_order_queue);
4277 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4278 				 TCP_SKB_CB(skb1)->end_seq);
4279 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4280 		__kfree_skb(skb1);
4281 	}
4282 
4283 add_sack:
4284 	if (tcp_is_sack(tp))
4285 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4286 end:
4287 	if (skb) {
4288 		tcp_grow_window(sk, skb);
4289 		skb_set_owner_r(skb, sk);
4290 	}
4291 }
4292 
4293 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4294 		  bool *fragstolen)
4295 {
4296 	int eaten;
4297 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4298 
4299 	__skb_pull(skb, hdrlen);
4300 	eaten = (tail &&
4301 		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4302 	tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4303 	if (!eaten) {
4304 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4305 		skb_set_owner_r(skb, sk);
4306 	}
4307 	return eaten;
4308 }
4309 
4310 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4311 {
4312 	struct sk_buff *skb = NULL;
4313 	struct tcphdr *th;
4314 	bool fragstolen;
4315 
4316 	if (size == 0)
4317 		return 0;
4318 
4319 	skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4320 	if (!skb)
4321 		goto err;
4322 
4323 	if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
4324 		goto err_free;
4325 
4326 	th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4327 	skb_reset_transport_header(skb);
4328 	memset(th, 0, sizeof(*th));
4329 
4330 	if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4331 		goto err_free;
4332 
4333 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4334 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4335 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4336 
4337 	if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4338 		WARN_ON_ONCE(fragstolen); /* should not happen */
4339 		__kfree_skb(skb);
4340 	}
4341 	return size;
4342 
4343 err_free:
4344 	kfree_skb(skb);
4345 err:
4346 	return -ENOMEM;
4347 }
4348 
4349 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4350 {
4351 	const struct tcphdr *th = tcp_hdr(skb);
4352 	struct tcp_sock *tp = tcp_sk(sk);
4353 	int eaten = -1;
4354 	bool fragstolen = false;
4355 
4356 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4357 		goto drop;
4358 
4359 	skb_dst_drop(skb);
4360 	__skb_pull(skb, th->doff * 4);
4361 
4362 	TCP_ECN_accept_cwr(tp, skb);
4363 
4364 	tp->rx_opt.dsack = 0;
4365 
4366 	/*  Queue data for delivery to the user.
4367 	 *  Packets in sequence go to the receive queue.
4368 	 *  Out of sequence packets to the out_of_order_queue.
4369 	 */
4370 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4371 		if (tcp_receive_window(tp) == 0)
4372 			goto out_of_window;
4373 
4374 		/* Ok. In sequence. In window. */
4375 		if (tp->ucopy.task == current &&
4376 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4377 		    sock_owned_by_user(sk) && !tp->urg_data) {
4378 			int chunk = min_t(unsigned int, skb->len,
4379 					  tp->ucopy.len);
4380 
4381 			__set_current_state(TASK_RUNNING);
4382 
4383 			local_bh_enable();
4384 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4385 				tp->ucopy.len -= chunk;
4386 				tp->copied_seq += chunk;
4387 				eaten = (chunk == skb->len);
4388 				tcp_rcv_space_adjust(sk);
4389 			}
4390 			local_bh_disable();
4391 		}
4392 
4393 		if (eaten <= 0) {
4394 queue_and_out:
4395 			if (eaten < 0 &&
4396 			    tcp_try_rmem_schedule(sk, skb, skb->truesize))
4397 				goto drop;
4398 
4399 			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4400 		}
4401 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4402 		if (skb->len)
4403 			tcp_event_data_recv(sk, skb);
4404 		if (th->fin)
4405 			tcp_fin(sk);
4406 
4407 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4408 			tcp_ofo_queue(sk);
4409 
4410 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4411 			 * gap in queue is filled.
4412 			 */
4413 			if (skb_queue_empty(&tp->out_of_order_queue))
4414 				inet_csk(sk)->icsk_ack.pingpong = 0;
4415 		}
4416 
4417 		if (tp->rx_opt.num_sacks)
4418 			tcp_sack_remove(tp);
4419 
4420 		tcp_fast_path_check(sk);
4421 
4422 		if (eaten > 0)
4423 			kfree_skb_partial(skb, fragstolen);
4424 		if (!sock_flag(sk, SOCK_DEAD))
4425 			sk->sk_data_ready(sk);
4426 		return;
4427 	}
4428 
4429 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4430 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4431 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4432 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4433 
4434 out_of_window:
4435 		tcp_enter_quickack_mode(sk);
4436 		inet_csk_schedule_ack(sk);
4437 drop:
4438 		__kfree_skb(skb);
4439 		return;
4440 	}
4441 
4442 	/* Out of window. F.e. zero window probe. */
4443 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4444 		goto out_of_window;
4445 
4446 	tcp_enter_quickack_mode(sk);
4447 
4448 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4449 		/* Partial packet, seq < rcv_next < end_seq */
4450 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4451 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4452 			   TCP_SKB_CB(skb)->end_seq);
4453 
4454 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4455 
4456 		/* If window is closed, drop tail of packet. But after
4457 		 * remembering D-SACK for its head made in previous line.
4458 		 */
4459 		if (!tcp_receive_window(tp))
4460 			goto out_of_window;
4461 		goto queue_and_out;
4462 	}
4463 
4464 	tcp_data_queue_ofo(sk, skb);
4465 }
4466 
4467 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4468 					struct sk_buff_head *list)
4469 {
4470 	struct sk_buff *next = NULL;
4471 
4472 	if (!skb_queue_is_last(list, skb))
4473 		next = skb_queue_next(list, skb);
4474 
4475 	__skb_unlink(skb, list);
4476 	__kfree_skb(skb);
4477 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4478 
4479 	return next;
4480 }
4481 
4482 /* Collapse contiguous sequence of skbs head..tail with
4483  * sequence numbers start..end.
4484  *
4485  * If tail is NULL, this means until the end of the list.
4486  *
4487  * Segments with FIN/SYN are not collapsed (only because this
4488  * simplifies code)
4489  */
4490 static void
4491 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4492 	     struct sk_buff *head, struct sk_buff *tail,
4493 	     u32 start, u32 end)
4494 {
4495 	struct sk_buff *skb, *n;
4496 	bool end_of_skbs;
4497 
4498 	/* First, check that queue is collapsible and find
4499 	 * the point where collapsing can be useful. */
4500 	skb = head;
4501 restart:
4502 	end_of_skbs = true;
4503 	skb_queue_walk_from_safe(list, skb, n) {
4504 		if (skb == tail)
4505 			break;
4506 		/* No new bits? It is possible on ofo queue. */
4507 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4508 			skb = tcp_collapse_one(sk, skb, list);
4509 			if (!skb)
4510 				break;
4511 			goto restart;
4512 		}
4513 
4514 		/* The first skb to collapse is:
4515 		 * - not SYN/FIN and
4516 		 * - bloated or contains data before "start" or
4517 		 *   overlaps to the next one.
4518 		 */
4519 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4520 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4521 		     before(TCP_SKB_CB(skb)->seq, start))) {
4522 			end_of_skbs = false;
4523 			break;
4524 		}
4525 
4526 		if (!skb_queue_is_last(list, skb)) {
4527 			struct sk_buff *next = skb_queue_next(list, skb);
4528 			if (next != tail &&
4529 			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4530 				end_of_skbs = false;
4531 				break;
4532 			}
4533 		}
4534 
4535 		/* Decided to skip this, advance start seq. */
4536 		start = TCP_SKB_CB(skb)->end_seq;
4537 	}
4538 	if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4539 		return;
4540 
4541 	while (before(start, end)) {
4542 		struct sk_buff *nskb;
4543 		unsigned int header = skb_headroom(skb);
4544 		int copy = SKB_MAX_ORDER(header, 0);
4545 
4546 		/* Too big header? This can happen with IPv6. */
4547 		if (copy < 0)
4548 			return;
4549 		if (end - start < copy)
4550 			copy = end - start;
4551 		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4552 		if (!nskb)
4553 			return;
4554 
4555 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4556 		skb_set_network_header(nskb, (skb_network_header(skb) -
4557 					      skb->head));
4558 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4559 						skb->head));
4560 		skb_reserve(nskb, header);
4561 		memcpy(nskb->head, skb->head, header);
4562 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4563 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4564 		__skb_queue_before(list, skb, nskb);
4565 		skb_set_owner_r(nskb, sk);
4566 
4567 		/* Copy data, releasing collapsed skbs. */
4568 		while (copy > 0) {
4569 			int offset = start - TCP_SKB_CB(skb)->seq;
4570 			int size = TCP_SKB_CB(skb)->end_seq - start;
4571 
4572 			BUG_ON(offset < 0);
4573 			if (size > 0) {
4574 				size = min(copy, size);
4575 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4576 					BUG();
4577 				TCP_SKB_CB(nskb)->end_seq += size;
4578 				copy -= size;
4579 				start += size;
4580 			}
4581 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4582 				skb = tcp_collapse_one(sk, skb, list);
4583 				if (!skb ||
4584 				    skb == tail ||
4585 				    tcp_hdr(skb)->syn ||
4586 				    tcp_hdr(skb)->fin)
4587 					return;
4588 			}
4589 		}
4590 	}
4591 }
4592 
4593 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4594  * and tcp_collapse() them until all the queue is collapsed.
4595  */
4596 static void tcp_collapse_ofo_queue(struct sock *sk)
4597 {
4598 	struct tcp_sock *tp = tcp_sk(sk);
4599 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4600 	struct sk_buff *head;
4601 	u32 start, end;
4602 
4603 	if (skb == NULL)
4604 		return;
4605 
4606 	start = TCP_SKB_CB(skb)->seq;
4607 	end = TCP_SKB_CB(skb)->end_seq;
4608 	head = skb;
4609 
4610 	for (;;) {
4611 		struct sk_buff *next = NULL;
4612 
4613 		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4614 			next = skb_queue_next(&tp->out_of_order_queue, skb);
4615 		skb = next;
4616 
4617 		/* Segment is terminated when we see gap or when
4618 		 * we are at the end of all the queue. */
4619 		if (!skb ||
4620 		    after(TCP_SKB_CB(skb)->seq, end) ||
4621 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4622 			tcp_collapse(sk, &tp->out_of_order_queue,
4623 				     head, skb, start, end);
4624 			head = skb;
4625 			if (!skb)
4626 				break;
4627 			/* Start new segment */
4628 			start = TCP_SKB_CB(skb)->seq;
4629 			end = TCP_SKB_CB(skb)->end_seq;
4630 		} else {
4631 			if (before(TCP_SKB_CB(skb)->seq, start))
4632 				start = TCP_SKB_CB(skb)->seq;
4633 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4634 				end = TCP_SKB_CB(skb)->end_seq;
4635 		}
4636 	}
4637 }
4638 
4639 /*
4640  * Purge the out-of-order queue.
4641  * Return true if queue was pruned.
4642  */
4643 static bool tcp_prune_ofo_queue(struct sock *sk)
4644 {
4645 	struct tcp_sock *tp = tcp_sk(sk);
4646 	bool res = false;
4647 
4648 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4649 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4650 		__skb_queue_purge(&tp->out_of_order_queue);
4651 
4652 		/* Reset SACK state.  A conforming SACK implementation will
4653 		 * do the same at a timeout based retransmit.  When a connection
4654 		 * is in a sad state like this, we care only about integrity
4655 		 * of the connection not performance.
4656 		 */
4657 		if (tp->rx_opt.sack_ok)
4658 			tcp_sack_reset(&tp->rx_opt);
4659 		sk_mem_reclaim(sk);
4660 		res = true;
4661 	}
4662 	return res;
4663 }
4664 
4665 /* Reduce allocated memory if we can, trying to get
4666  * the socket within its memory limits again.
4667  *
4668  * Return less than zero if we should start dropping frames
4669  * until the socket owning process reads some of the data
4670  * to stabilize the situation.
4671  */
4672 static int tcp_prune_queue(struct sock *sk)
4673 {
4674 	struct tcp_sock *tp = tcp_sk(sk);
4675 
4676 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4677 
4678 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4679 
4680 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4681 		tcp_clamp_window(sk);
4682 	else if (sk_under_memory_pressure(sk))
4683 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4684 
4685 	tcp_collapse_ofo_queue(sk);
4686 	if (!skb_queue_empty(&sk->sk_receive_queue))
4687 		tcp_collapse(sk, &sk->sk_receive_queue,
4688 			     skb_peek(&sk->sk_receive_queue),
4689 			     NULL,
4690 			     tp->copied_seq, tp->rcv_nxt);
4691 	sk_mem_reclaim(sk);
4692 
4693 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4694 		return 0;
4695 
4696 	/* Collapsing did not help, destructive actions follow.
4697 	 * This must not ever occur. */
4698 
4699 	tcp_prune_ofo_queue(sk);
4700 
4701 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4702 		return 0;
4703 
4704 	/* If we are really being abused, tell the caller to silently
4705 	 * drop receive data on the floor.  It will get retransmitted
4706 	 * and hopefully then we'll have sufficient space.
4707 	 */
4708 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4709 
4710 	/* Massive buffer overcommit. */
4711 	tp->pred_flags = 0;
4712 	return -1;
4713 }
4714 
4715 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4716 {
4717 	const struct tcp_sock *tp = tcp_sk(sk);
4718 
4719 	/* If the user specified a specific send buffer setting, do
4720 	 * not modify it.
4721 	 */
4722 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4723 		return false;
4724 
4725 	/* If we are under global TCP memory pressure, do not expand.  */
4726 	if (sk_under_memory_pressure(sk))
4727 		return false;
4728 
4729 	/* If we are under soft global TCP memory pressure, do not expand.  */
4730 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4731 		return false;
4732 
4733 	/* If we filled the congestion window, do not expand.  */
4734 	if (tp->packets_out >= tp->snd_cwnd)
4735 		return false;
4736 
4737 	return true;
4738 }
4739 
4740 /* When incoming ACK allowed to free some skb from write_queue,
4741  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4742  * on the exit from tcp input handler.
4743  *
4744  * PROBLEM: sndbuf expansion does not work well with largesend.
4745  */
4746 static void tcp_new_space(struct sock *sk)
4747 {
4748 	struct tcp_sock *tp = tcp_sk(sk);
4749 
4750 	if (tcp_should_expand_sndbuf(sk)) {
4751 		tcp_sndbuf_expand(sk);
4752 		tp->snd_cwnd_stamp = tcp_time_stamp;
4753 	}
4754 
4755 	sk->sk_write_space(sk);
4756 }
4757 
4758 static void tcp_check_space(struct sock *sk)
4759 {
4760 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4761 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4762 		if (sk->sk_socket &&
4763 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4764 			tcp_new_space(sk);
4765 	}
4766 }
4767 
4768 static inline void tcp_data_snd_check(struct sock *sk)
4769 {
4770 	tcp_push_pending_frames(sk);
4771 	tcp_check_space(sk);
4772 }
4773 
4774 /*
4775  * Check if sending an ack is needed.
4776  */
4777 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4778 {
4779 	struct tcp_sock *tp = tcp_sk(sk);
4780 
4781 	    /* More than one full frame received... */
4782 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4783 	     /* ... and right edge of window advances far enough.
4784 	      * (tcp_recvmsg() will send ACK otherwise). Or...
4785 	      */
4786 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
4787 	    /* We ACK each frame or... */
4788 	    tcp_in_quickack_mode(sk) ||
4789 	    /* We have out of order data. */
4790 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4791 		/* Then ack it now */
4792 		tcp_send_ack(sk);
4793 	} else {
4794 		/* Else, send delayed ack. */
4795 		tcp_send_delayed_ack(sk);
4796 	}
4797 }
4798 
4799 static inline void tcp_ack_snd_check(struct sock *sk)
4800 {
4801 	if (!inet_csk_ack_scheduled(sk)) {
4802 		/* We sent a data segment already. */
4803 		return;
4804 	}
4805 	__tcp_ack_snd_check(sk, 1);
4806 }
4807 
4808 /*
4809  *	This routine is only called when we have urgent data
4810  *	signaled. Its the 'slow' part of tcp_urg. It could be
4811  *	moved inline now as tcp_urg is only called from one
4812  *	place. We handle URGent data wrong. We have to - as
4813  *	BSD still doesn't use the correction from RFC961.
4814  *	For 1003.1g we should support a new option TCP_STDURG to permit
4815  *	either form (or just set the sysctl tcp_stdurg).
4816  */
4817 
4818 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4819 {
4820 	struct tcp_sock *tp = tcp_sk(sk);
4821 	u32 ptr = ntohs(th->urg_ptr);
4822 
4823 	if (ptr && !sysctl_tcp_stdurg)
4824 		ptr--;
4825 	ptr += ntohl(th->seq);
4826 
4827 	/* Ignore urgent data that we've already seen and read. */
4828 	if (after(tp->copied_seq, ptr))
4829 		return;
4830 
4831 	/* Do not replay urg ptr.
4832 	 *
4833 	 * NOTE: interesting situation not covered by specs.
4834 	 * Misbehaving sender may send urg ptr, pointing to segment,
4835 	 * which we already have in ofo queue. We are not able to fetch
4836 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4837 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4838 	 * situations. But it is worth to think about possibility of some
4839 	 * DoSes using some hypothetical application level deadlock.
4840 	 */
4841 	if (before(ptr, tp->rcv_nxt))
4842 		return;
4843 
4844 	/* Do we already have a newer (or duplicate) urgent pointer? */
4845 	if (tp->urg_data && !after(ptr, tp->urg_seq))
4846 		return;
4847 
4848 	/* Tell the world about our new urgent pointer. */
4849 	sk_send_sigurg(sk);
4850 
4851 	/* We may be adding urgent data when the last byte read was
4852 	 * urgent. To do this requires some care. We cannot just ignore
4853 	 * tp->copied_seq since we would read the last urgent byte again
4854 	 * as data, nor can we alter copied_seq until this data arrives
4855 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4856 	 *
4857 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4858 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4859 	 * and expect that both A and B disappear from stream. This is _wrong_.
4860 	 * Though this happens in BSD with high probability, this is occasional.
4861 	 * Any application relying on this is buggy. Note also, that fix "works"
4862 	 * only in this artificial test. Insert some normal data between A and B and we will
4863 	 * decline of BSD again. Verdict: it is better to remove to trap
4864 	 * buggy users.
4865 	 */
4866 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4867 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4868 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4869 		tp->copied_seq++;
4870 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4871 			__skb_unlink(skb, &sk->sk_receive_queue);
4872 			__kfree_skb(skb);
4873 		}
4874 	}
4875 
4876 	tp->urg_data = TCP_URG_NOTYET;
4877 	tp->urg_seq = ptr;
4878 
4879 	/* Disable header prediction. */
4880 	tp->pred_flags = 0;
4881 }
4882 
4883 /* This is the 'fast' part of urgent handling. */
4884 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4885 {
4886 	struct tcp_sock *tp = tcp_sk(sk);
4887 
4888 	/* Check if we get a new urgent pointer - normally not. */
4889 	if (th->urg)
4890 		tcp_check_urg(sk, th);
4891 
4892 	/* Do we wait for any urgent data? - normally not... */
4893 	if (tp->urg_data == TCP_URG_NOTYET) {
4894 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4895 			  th->syn;
4896 
4897 		/* Is the urgent pointer pointing into this packet? */
4898 		if (ptr < skb->len) {
4899 			u8 tmp;
4900 			if (skb_copy_bits(skb, ptr, &tmp, 1))
4901 				BUG();
4902 			tp->urg_data = TCP_URG_VALID | tmp;
4903 			if (!sock_flag(sk, SOCK_DEAD))
4904 				sk->sk_data_ready(sk);
4905 		}
4906 	}
4907 }
4908 
4909 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4910 {
4911 	struct tcp_sock *tp = tcp_sk(sk);
4912 	int chunk = skb->len - hlen;
4913 	int err;
4914 
4915 	local_bh_enable();
4916 	if (skb_csum_unnecessary(skb))
4917 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4918 	else
4919 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4920 						       tp->ucopy.iov);
4921 
4922 	if (!err) {
4923 		tp->ucopy.len -= chunk;
4924 		tp->copied_seq += chunk;
4925 		tcp_rcv_space_adjust(sk);
4926 	}
4927 
4928 	local_bh_disable();
4929 	return err;
4930 }
4931 
4932 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4933 					    struct sk_buff *skb)
4934 {
4935 	__sum16 result;
4936 
4937 	if (sock_owned_by_user(sk)) {
4938 		local_bh_enable();
4939 		result = __tcp_checksum_complete(skb);
4940 		local_bh_disable();
4941 	} else {
4942 		result = __tcp_checksum_complete(skb);
4943 	}
4944 	return result;
4945 }
4946 
4947 static inline bool tcp_checksum_complete_user(struct sock *sk,
4948 					     struct sk_buff *skb)
4949 {
4950 	return !skb_csum_unnecessary(skb) &&
4951 	       __tcp_checksum_complete_user(sk, skb);
4952 }
4953 
4954 #ifdef CONFIG_NET_DMA
4955 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4956 				  int hlen)
4957 {
4958 	struct tcp_sock *tp = tcp_sk(sk);
4959 	int chunk = skb->len - hlen;
4960 	int dma_cookie;
4961 	bool copied_early = false;
4962 
4963 	if (tp->ucopy.wakeup)
4964 		return false;
4965 
4966 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4967 		tp->ucopy.dma_chan = net_dma_find_channel();
4968 
4969 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4970 
4971 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4972 							 skb, hlen,
4973 							 tp->ucopy.iov, chunk,
4974 							 tp->ucopy.pinned_list);
4975 
4976 		if (dma_cookie < 0)
4977 			goto out;
4978 
4979 		tp->ucopy.dma_cookie = dma_cookie;
4980 		copied_early = true;
4981 
4982 		tp->ucopy.len -= chunk;
4983 		tp->copied_seq += chunk;
4984 		tcp_rcv_space_adjust(sk);
4985 
4986 		if ((tp->ucopy.len == 0) ||
4987 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4988 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4989 			tp->ucopy.wakeup = 1;
4990 			sk->sk_data_ready(sk);
4991 		}
4992 	} else if (chunk > 0) {
4993 		tp->ucopy.wakeup = 1;
4994 		sk->sk_data_ready(sk);
4995 	}
4996 out:
4997 	return copied_early;
4998 }
4999 #endif /* CONFIG_NET_DMA */
5000 
5001 /* Does PAWS and seqno based validation of an incoming segment, flags will
5002  * play significant role here.
5003  */
5004 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5005 				  const struct tcphdr *th, int syn_inerr)
5006 {
5007 	struct tcp_sock *tp = tcp_sk(sk);
5008 
5009 	/* RFC1323: H1. Apply PAWS check first. */
5010 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5011 	    tcp_paws_discard(sk, skb)) {
5012 		if (!th->rst) {
5013 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5014 			tcp_send_dupack(sk, skb);
5015 			goto discard;
5016 		}
5017 		/* Reset is accepted even if it did not pass PAWS. */
5018 	}
5019 
5020 	/* Step 1: check sequence number */
5021 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5022 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5023 		 * (RST) segments are validated by checking their SEQ-fields."
5024 		 * And page 69: "If an incoming segment is not acceptable,
5025 		 * an acknowledgment should be sent in reply (unless the RST
5026 		 * bit is set, if so drop the segment and return)".
5027 		 */
5028 		if (!th->rst) {
5029 			if (th->syn)
5030 				goto syn_challenge;
5031 			tcp_send_dupack(sk, skb);
5032 		}
5033 		goto discard;
5034 	}
5035 
5036 	/* Step 2: check RST bit */
5037 	if (th->rst) {
5038 		/* RFC 5961 3.2 :
5039 		 * If sequence number exactly matches RCV.NXT, then
5040 		 *     RESET the connection
5041 		 * else
5042 		 *     Send a challenge ACK
5043 		 */
5044 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5045 			tcp_reset(sk);
5046 		else
5047 			tcp_send_challenge_ack(sk);
5048 		goto discard;
5049 	}
5050 
5051 	/* step 3: check security and precedence [ignored] */
5052 
5053 	/* step 4: Check for a SYN
5054 	 * RFC 5691 4.2 : Send a challenge ack
5055 	 */
5056 	if (th->syn) {
5057 syn_challenge:
5058 		if (syn_inerr)
5059 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5060 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5061 		tcp_send_challenge_ack(sk);
5062 		goto discard;
5063 	}
5064 
5065 	return true;
5066 
5067 discard:
5068 	__kfree_skb(skb);
5069 	return false;
5070 }
5071 
5072 /*
5073  *	TCP receive function for the ESTABLISHED state.
5074  *
5075  *	It is split into a fast path and a slow path. The fast path is
5076  * 	disabled when:
5077  *	- A zero window was announced from us - zero window probing
5078  *        is only handled properly in the slow path.
5079  *	- Out of order segments arrived.
5080  *	- Urgent data is expected.
5081  *	- There is no buffer space left
5082  *	- Unexpected TCP flags/window values/header lengths are received
5083  *	  (detected by checking the TCP header against pred_flags)
5084  *	- Data is sent in both directions. Fast path only supports pure senders
5085  *	  or pure receivers (this means either the sequence number or the ack
5086  *	  value must stay constant)
5087  *	- Unexpected TCP option.
5088  *
5089  *	When these conditions are not satisfied it drops into a standard
5090  *	receive procedure patterned after RFC793 to handle all cases.
5091  *	The first three cases are guaranteed by proper pred_flags setting,
5092  *	the rest is checked inline. Fast processing is turned on in
5093  *	tcp_data_queue when everything is OK.
5094  */
5095 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5096 			 const struct tcphdr *th, unsigned int len)
5097 {
5098 	struct tcp_sock *tp = tcp_sk(sk);
5099 
5100 	if (unlikely(sk->sk_rx_dst == NULL))
5101 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5102 	/*
5103 	 *	Header prediction.
5104 	 *	The code loosely follows the one in the famous
5105 	 *	"30 instruction TCP receive" Van Jacobson mail.
5106 	 *
5107 	 *	Van's trick is to deposit buffers into socket queue
5108 	 *	on a device interrupt, to call tcp_recv function
5109 	 *	on the receive process context and checksum and copy
5110 	 *	the buffer to user space. smart...
5111 	 *
5112 	 *	Our current scheme is not silly either but we take the
5113 	 *	extra cost of the net_bh soft interrupt processing...
5114 	 *	We do checksum and copy also but from device to kernel.
5115 	 */
5116 
5117 	tp->rx_opt.saw_tstamp = 0;
5118 
5119 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5120 	 *	if header_prediction is to be made
5121 	 *	'S' will always be tp->tcp_header_len >> 2
5122 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5123 	 *  turn it off	(when there are holes in the receive
5124 	 *	 space for instance)
5125 	 *	PSH flag is ignored.
5126 	 */
5127 
5128 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5129 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5130 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5131 		int tcp_header_len = tp->tcp_header_len;
5132 
5133 		/* Timestamp header prediction: tcp_header_len
5134 		 * is automatically equal to th->doff*4 due to pred_flags
5135 		 * match.
5136 		 */
5137 
5138 		/* Check timestamp */
5139 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5140 			/* No? Slow path! */
5141 			if (!tcp_parse_aligned_timestamp(tp, th))
5142 				goto slow_path;
5143 
5144 			/* If PAWS failed, check it more carefully in slow path */
5145 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5146 				goto slow_path;
5147 
5148 			/* DO NOT update ts_recent here, if checksum fails
5149 			 * and timestamp was corrupted part, it will result
5150 			 * in a hung connection since we will drop all
5151 			 * future packets due to the PAWS test.
5152 			 */
5153 		}
5154 
5155 		if (len <= tcp_header_len) {
5156 			/* Bulk data transfer: sender */
5157 			if (len == tcp_header_len) {
5158 				/* Predicted packet is in window by definition.
5159 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5160 				 * Hence, check seq<=rcv_wup reduces to:
5161 				 */
5162 				if (tcp_header_len ==
5163 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5164 				    tp->rcv_nxt == tp->rcv_wup)
5165 					tcp_store_ts_recent(tp);
5166 
5167 				/* We know that such packets are checksummed
5168 				 * on entry.
5169 				 */
5170 				tcp_ack(sk, skb, 0);
5171 				__kfree_skb(skb);
5172 				tcp_data_snd_check(sk);
5173 				return;
5174 			} else { /* Header too small */
5175 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5176 				goto discard;
5177 			}
5178 		} else {
5179 			int eaten = 0;
5180 			int copied_early = 0;
5181 			bool fragstolen = false;
5182 
5183 			if (tp->copied_seq == tp->rcv_nxt &&
5184 			    len - tcp_header_len <= tp->ucopy.len) {
5185 #ifdef CONFIG_NET_DMA
5186 				if (tp->ucopy.task == current &&
5187 				    sock_owned_by_user(sk) &&
5188 				    tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5189 					copied_early = 1;
5190 					eaten = 1;
5191 				}
5192 #endif
5193 				if (tp->ucopy.task == current &&
5194 				    sock_owned_by_user(sk) && !copied_early) {
5195 					__set_current_state(TASK_RUNNING);
5196 
5197 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5198 						eaten = 1;
5199 				}
5200 				if (eaten) {
5201 					/* Predicted packet is in window by definition.
5202 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5203 					 * Hence, check seq<=rcv_wup reduces to:
5204 					 */
5205 					if (tcp_header_len ==
5206 					    (sizeof(struct tcphdr) +
5207 					     TCPOLEN_TSTAMP_ALIGNED) &&
5208 					    tp->rcv_nxt == tp->rcv_wup)
5209 						tcp_store_ts_recent(tp);
5210 
5211 					tcp_rcv_rtt_measure_ts(sk, skb);
5212 
5213 					__skb_pull(skb, tcp_header_len);
5214 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5215 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5216 				}
5217 				if (copied_early)
5218 					tcp_cleanup_rbuf(sk, skb->len);
5219 			}
5220 			if (!eaten) {
5221 				if (tcp_checksum_complete_user(sk, skb))
5222 					goto csum_error;
5223 
5224 				if ((int)skb->truesize > sk->sk_forward_alloc)
5225 					goto step5;
5226 
5227 				/* Predicted packet is in window by definition.
5228 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5229 				 * Hence, check seq<=rcv_wup reduces to:
5230 				 */
5231 				if (tcp_header_len ==
5232 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5233 				    tp->rcv_nxt == tp->rcv_wup)
5234 					tcp_store_ts_recent(tp);
5235 
5236 				tcp_rcv_rtt_measure_ts(sk, skb);
5237 
5238 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5239 
5240 				/* Bulk data transfer: receiver */
5241 				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5242 						      &fragstolen);
5243 			}
5244 
5245 			tcp_event_data_recv(sk, skb);
5246 
5247 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5248 				/* Well, only one small jumplet in fast path... */
5249 				tcp_ack(sk, skb, FLAG_DATA);
5250 				tcp_data_snd_check(sk);
5251 				if (!inet_csk_ack_scheduled(sk))
5252 					goto no_ack;
5253 			}
5254 
5255 			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5256 				__tcp_ack_snd_check(sk, 0);
5257 no_ack:
5258 #ifdef CONFIG_NET_DMA
5259 			if (copied_early)
5260 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5261 			else
5262 #endif
5263 			if (eaten)
5264 				kfree_skb_partial(skb, fragstolen);
5265 			sk->sk_data_ready(sk);
5266 			return;
5267 		}
5268 	}
5269 
5270 slow_path:
5271 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5272 		goto csum_error;
5273 
5274 	if (!th->ack && !th->rst)
5275 		goto discard;
5276 
5277 	/*
5278 	 *	Standard slow path.
5279 	 */
5280 
5281 	if (!tcp_validate_incoming(sk, skb, th, 1))
5282 		return;
5283 
5284 step5:
5285 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5286 		goto discard;
5287 
5288 	tcp_rcv_rtt_measure_ts(sk, skb);
5289 
5290 	/* Process urgent data. */
5291 	tcp_urg(sk, skb, th);
5292 
5293 	/* step 7: process the segment text */
5294 	tcp_data_queue(sk, skb);
5295 
5296 	tcp_data_snd_check(sk);
5297 	tcp_ack_snd_check(sk);
5298 	return;
5299 
5300 csum_error:
5301 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5302 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5303 
5304 discard:
5305 	__kfree_skb(skb);
5306 }
5307 EXPORT_SYMBOL(tcp_rcv_established);
5308 
5309 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5310 {
5311 	struct tcp_sock *tp = tcp_sk(sk);
5312 	struct inet_connection_sock *icsk = inet_csk(sk);
5313 
5314 	tcp_set_state(sk, TCP_ESTABLISHED);
5315 
5316 	if (skb != NULL) {
5317 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5318 		security_inet_conn_established(sk, skb);
5319 	}
5320 
5321 	/* Make sure socket is routed, for correct metrics.  */
5322 	icsk->icsk_af_ops->rebuild_header(sk);
5323 
5324 	tcp_init_metrics(sk);
5325 
5326 	tcp_init_congestion_control(sk);
5327 
5328 	/* Prevent spurious tcp_cwnd_restart() on first data
5329 	 * packet.
5330 	 */
5331 	tp->lsndtime = tcp_time_stamp;
5332 
5333 	tcp_init_buffer_space(sk);
5334 
5335 	if (sock_flag(sk, SOCK_KEEPOPEN))
5336 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5337 
5338 	if (!tp->rx_opt.snd_wscale)
5339 		__tcp_fast_path_on(tp, tp->snd_wnd);
5340 	else
5341 		tp->pred_flags = 0;
5342 
5343 	if (!sock_flag(sk, SOCK_DEAD)) {
5344 		sk->sk_state_change(sk);
5345 		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5346 	}
5347 }
5348 
5349 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5350 				    struct tcp_fastopen_cookie *cookie)
5351 {
5352 	struct tcp_sock *tp = tcp_sk(sk);
5353 	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5354 	u16 mss = tp->rx_opt.mss_clamp;
5355 	bool syn_drop;
5356 
5357 	if (mss == tp->rx_opt.user_mss) {
5358 		struct tcp_options_received opt;
5359 
5360 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5361 		tcp_clear_options(&opt);
5362 		opt.user_mss = opt.mss_clamp = 0;
5363 		tcp_parse_options(synack, &opt, 0, NULL);
5364 		mss = opt.mss_clamp;
5365 	}
5366 
5367 	if (!tp->syn_fastopen)  /* Ignore an unsolicited cookie */
5368 		cookie->len = -1;
5369 
5370 	/* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5371 	 * the remote receives only the retransmitted (regular) SYNs: either
5372 	 * the original SYN-data or the corresponding SYN-ACK is lost.
5373 	 */
5374 	syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
5375 
5376 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5377 
5378 	if (data) { /* Retransmit unacked data in SYN */
5379 		tcp_for_write_queue_from(data, sk) {
5380 			if (data == tcp_send_head(sk) ||
5381 			    __tcp_retransmit_skb(sk, data))
5382 				break;
5383 		}
5384 		tcp_rearm_rto(sk);
5385 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5386 		return true;
5387 	}
5388 	tp->syn_data_acked = tp->syn_data;
5389 	if (tp->syn_data_acked)
5390 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5391 	return false;
5392 }
5393 
5394 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5395 					 const struct tcphdr *th, unsigned int len)
5396 {
5397 	struct inet_connection_sock *icsk = inet_csk(sk);
5398 	struct tcp_sock *tp = tcp_sk(sk);
5399 	struct tcp_fastopen_cookie foc = { .len = -1 };
5400 	int saved_clamp = tp->rx_opt.mss_clamp;
5401 
5402 	tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5403 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5404 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5405 
5406 	if (th->ack) {
5407 		/* rfc793:
5408 		 * "If the state is SYN-SENT then
5409 		 *    first check the ACK bit
5410 		 *      If the ACK bit is set
5411 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5412 		 *        a reset (unless the RST bit is set, if so drop
5413 		 *        the segment and return)"
5414 		 */
5415 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5416 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5417 			goto reset_and_undo;
5418 
5419 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5420 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5421 			     tcp_time_stamp)) {
5422 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5423 			goto reset_and_undo;
5424 		}
5425 
5426 		/* Now ACK is acceptable.
5427 		 *
5428 		 * "If the RST bit is set
5429 		 *    If the ACK was acceptable then signal the user "error:
5430 		 *    connection reset", drop the segment, enter CLOSED state,
5431 		 *    delete TCB, and return."
5432 		 */
5433 
5434 		if (th->rst) {
5435 			tcp_reset(sk);
5436 			goto discard;
5437 		}
5438 
5439 		/* rfc793:
5440 		 *   "fifth, if neither of the SYN or RST bits is set then
5441 		 *    drop the segment and return."
5442 		 *
5443 		 *    See note below!
5444 		 *                                        --ANK(990513)
5445 		 */
5446 		if (!th->syn)
5447 			goto discard_and_undo;
5448 
5449 		/* rfc793:
5450 		 *   "If the SYN bit is on ...
5451 		 *    are acceptable then ...
5452 		 *    (our SYN has been ACKed), change the connection
5453 		 *    state to ESTABLISHED..."
5454 		 */
5455 
5456 		TCP_ECN_rcv_synack(tp, th);
5457 
5458 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5459 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5460 
5461 		/* Ok.. it's good. Set up sequence numbers and
5462 		 * move to established.
5463 		 */
5464 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5465 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5466 
5467 		/* RFC1323: The window in SYN & SYN/ACK segments is
5468 		 * never scaled.
5469 		 */
5470 		tp->snd_wnd = ntohs(th->window);
5471 
5472 		if (!tp->rx_opt.wscale_ok) {
5473 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5474 			tp->window_clamp = min(tp->window_clamp, 65535U);
5475 		}
5476 
5477 		if (tp->rx_opt.saw_tstamp) {
5478 			tp->rx_opt.tstamp_ok	   = 1;
5479 			tp->tcp_header_len =
5480 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5481 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5482 			tcp_store_ts_recent(tp);
5483 		} else {
5484 			tp->tcp_header_len = sizeof(struct tcphdr);
5485 		}
5486 
5487 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5488 			tcp_enable_fack(tp);
5489 
5490 		tcp_mtup_init(sk);
5491 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5492 		tcp_initialize_rcv_mss(sk);
5493 
5494 		/* Remember, tcp_poll() does not lock socket!
5495 		 * Change state from SYN-SENT only after copied_seq
5496 		 * is initialized. */
5497 		tp->copied_seq = tp->rcv_nxt;
5498 
5499 		smp_mb();
5500 
5501 		tcp_finish_connect(sk, skb);
5502 
5503 		if ((tp->syn_fastopen || tp->syn_data) &&
5504 		    tcp_rcv_fastopen_synack(sk, skb, &foc))
5505 			return -1;
5506 
5507 		if (sk->sk_write_pending ||
5508 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5509 		    icsk->icsk_ack.pingpong) {
5510 			/* Save one ACK. Data will be ready after
5511 			 * several ticks, if write_pending is set.
5512 			 *
5513 			 * It may be deleted, but with this feature tcpdumps
5514 			 * look so _wonderfully_ clever, that I was not able
5515 			 * to stand against the temptation 8)     --ANK
5516 			 */
5517 			inet_csk_schedule_ack(sk);
5518 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5519 			tcp_enter_quickack_mode(sk);
5520 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5521 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5522 
5523 discard:
5524 			__kfree_skb(skb);
5525 			return 0;
5526 		} else {
5527 			tcp_send_ack(sk);
5528 		}
5529 		return -1;
5530 	}
5531 
5532 	/* No ACK in the segment */
5533 
5534 	if (th->rst) {
5535 		/* rfc793:
5536 		 * "If the RST bit is set
5537 		 *
5538 		 *      Otherwise (no ACK) drop the segment and return."
5539 		 */
5540 
5541 		goto discard_and_undo;
5542 	}
5543 
5544 	/* PAWS check. */
5545 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5546 	    tcp_paws_reject(&tp->rx_opt, 0))
5547 		goto discard_and_undo;
5548 
5549 	if (th->syn) {
5550 		/* We see SYN without ACK. It is attempt of
5551 		 * simultaneous connect with crossed SYNs.
5552 		 * Particularly, it can be connect to self.
5553 		 */
5554 		tcp_set_state(sk, TCP_SYN_RECV);
5555 
5556 		if (tp->rx_opt.saw_tstamp) {
5557 			tp->rx_opt.tstamp_ok = 1;
5558 			tcp_store_ts_recent(tp);
5559 			tp->tcp_header_len =
5560 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5561 		} else {
5562 			tp->tcp_header_len = sizeof(struct tcphdr);
5563 		}
5564 
5565 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5566 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5567 
5568 		/* RFC1323: The window in SYN & SYN/ACK segments is
5569 		 * never scaled.
5570 		 */
5571 		tp->snd_wnd    = ntohs(th->window);
5572 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5573 		tp->max_window = tp->snd_wnd;
5574 
5575 		TCP_ECN_rcv_syn(tp, th);
5576 
5577 		tcp_mtup_init(sk);
5578 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5579 		tcp_initialize_rcv_mss(sk);
5580 
5581 		tcp_send_synack(sk);
5582 #if 0
5583 		/* Note, we could accept data and URG from this segment.
5584 		 * There are no obstacles to make this (except that we must
5585 		 * either change tcp_recvmsg() to prevent it from returning data
5586 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5587 		 *
5588 		 * However, if we ignore data in ACKless segments sometimes,
5589 		 * we have no reasons to accept it sometimes.
5590 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5591 		 * is not flawless. So, discard packet for sanity.
5592 		 * Uncomment this return to process the data.
5593 		 */
5594 		return -1;
5595 #else
5596 		goto discard;
5597 #endif
5598 	}
5599 	/* "fifth, if neither of the SYN or RST bits is set then
5600 	 * drop the segment and return."
5601 	 */
5602 
5603 discard_and_undo:
5604 	tcp_clear_options(&tp->rx_opt);
5605 	tp->rx_opt.mss_clamp = saved_clamp;
5606 	goto discard;
5607 
5608 reset_and_undo:
5609 	tcp_clear_options(&tp->rx_opt);
5610 	tp->rx_opt.mss_clamp = saved_clamp;
5611 	return 1;
5612 }
5613 
5614 /*
5615  *	This function implements the receiving procedure of RFC 793 for
5616  *	all states except ESTABLISHED and TIME_WAIT.
5617  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5618  *	address independent.
5619  */
5620 
5621 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5622 			  const struct tcphdr *th, unsigned int len)
5623 {
5624 	struct tcp_sock *tp = tcp_sk(sk);
5625 	struct inet_connection_sock *icsk = inet_csk(sk);
5626 	struct request_sock *req;
5627 	int queued = 0;
5628 	bool acceptable;
5629 	u32 synack_stamp;
5630 
5631 	tp->rx_opt.saw_tstamp = 0;
5632 
5633 	switch (sk->sk_state) {
5634 	case TCP_CLOSE:
5635 		goto discard;
5636 
5637 	case TCP_LISTEN:
5638 		if (th->ack)
5639 			return 1;
5640 
5641 		if (th->rst)
5642 			goto discard;
5643 
5644 		if (th->syn) {
5645 			if (th->fin)
5646 				goto discard;
5647 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5648 				return 1;
5649 
5650 			/* Now we have several options: In theory there is
5651 			 * nothing else in the frame. KA9Q has an option to
5652 			 * send data with the syn, BSD accepts data with the
5653 			 * syn up to the [to be] advertised window and
5654 			 * Solaris 2.1 gives you a protocol error. For now
5655 			 * we just ignore it, that fits the spec precisely
5656 			 * and avoids incompatibilities. It would be nice in
5657 			 * future to drop through and process the data.
5658 			 *
5659 			 * Now that TTCP is starting to be used we ought to
5660 			 * queue this data.
5661 			 * But, this leaves one open to an easy denial of
5662 			 * service attack, and SYN cookies can't defend
5663 			 * against this problem. So, we drop the data
5664 			 * in the interest of security over speed unless
5665 			 * it's still in use.
5666 			 */
5667 			kfree_skb(skb);
5668 			return 0;
5669 		}
5670 		goto discard;
5671 
5672 	case TCP_SYN_SENT:
5673 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5674 		if (queued >= 0)
5675 			return queued;
5676 
5677 		/* Do step6 onward by hand. */
5678 		tcp_urg(sk, skb, th);
5679 		__kfree_skb(skb);
5680 		tcp_data_snd_check(sk);
5681 		return 0;
5682 	}
5683 
5684 	req = tp->fastopen_rsk;
5685 	if (req != NULL) {
5686 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5687 		    sk->sk_state != TCP_FIN_WAIT1);
5688 
5689 		if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5690 			goto discard;
5691 	}
5692 
5693 	if (!th->ack && !th->rst)
5694 		goto discard;
5695 
5696 	if (!tcp_validate_incoming(sk, skb, th, 0))
5697 		return 0;
5698 
5699 	/* step 5: check the ACK field */
5700 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5701 				      FLAG_UPDATE_TS_RECENT) > 0;
5702 
5703 	switch (sk->sk_state) {
5704 	case TCP_SYN_RECV:
5705 		if (!acceptable)
5706 			return 1;
5707 
5708 		/* Once we leave TCP_SYN_RECV, we no longer need req
5709 		 * so release it.
5710 		 */
5711 		if (req) {
5712 			synack_stamp = tcp_rsk(req)->snt_synack;
5713 			tp->total_retrans = req->num_retrans;
5714 			reqsk_fastopen_remove(sk, req, false);
5715 		} else {
5716 			synack_stamp = tp->lsndtime;
5717 			/* Make sure socket is routed, for correct metrics. */
5718 			icsk->icsk_af_ops->rebuild_header(sk);
5719 			tcp_init_congestion_control(sk);
5720 
5721 			tcp_mtup_init(sk);
5722 			tp->copied_seq = tp->rcv_nxt;
5723 			tcp_init_buffer_space(sk);
5724 		}
5725 		smp_mb();
5726 		tcp_set_state(sk, TCP_ESTABLISHED);
5727 		sk->sk_state_change(sk);
5728 
5729 		/* Note, that this wakeup is only for marginal crossed SYN case.
5730 		 * Passively open sockets are not waked up, because
5731 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5732 		 */
5733 		if (sk->sk_socket)
5734 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5735 
5736 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5737 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5738 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5739 		tcp_synack_rtt_meas(sk, synack_stamp);
5740 
5741 		if (tp->rx_opt.tstamp_ok)
5742 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5743 
5744 		if (req) {
5745 			/* Re-arm the timer because data may have been sent out.
5746 			 * This is similar to the regular data transmission case
5747 			 * when new data has just been ack'ed.
5748 			 *
5749 			 * (TFO) - we could try to be more aggressive and
5750 			 * retransmitting any data sooner based on when they
5751 			 * are sent out.
5752 			 */
5753 			tcp_rearm_rto(sk);
5754 		} else
5755 			tcp_init_metrics(sk);
5756 
5757 		tcp_update_pacing_rate(sk);
5758 
5759 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5760 		tp->lsndtime = tcp_time_stamp;
5761 
5762 		tcp_initialize_rcv_mss(sk);
5763 		tcp_fast_path_on(tp);
5764 		break;
5765 
5766 	case TCP_FIN_WAIT1: {
5767 		struct dst_entry *dst;
5768 		int tmo;
5769 
5770 		/* If we enter the TCP_FIN_WAIT1 state and we are a
5771 		 * Fast Open socket and this is the first acceptable
5772 		 * ACK we have received, this would have acknowledged
5773 		 * our SYNACK so stop the SYNACK timer.
5774 		 */
5775 		if (req != NULL) {
5776 			/* Return RST if ack_seq is invalid.
5777 			 * Note that RFC793 only says to generate a
5778 			 * DUPACK for it but for TCP Fast Open it seems
5779 			 * better to treat this case like TCP_SYN_RECV
5780 			 * above.
5781 			 */
5782 			if (!acceptable)
5783 				return 1;
5784 			/* We no longer need the request sock. */
5785 			reqsk_fastopen_remove(sk, req, false);
5786 			tcp_rearm_rto(sk);
5787 		}
5788 		if (tp->snd_una != tp->write_seq)
5789 			break;
5790 
5791 		tcp_set_state(sk, TCP_FIN_WAIT2);
5792 		sk->sk_shutdown |= SEND_SHUTDOWN;
5793 
5794 		dst = __sk_dst_get(sk);
5795 		if (dst)
5796 			dst_confirm(dst);
5797 
5798 		if (!sock_flag(sk, SOCK_DEAD)) {
5799 			/* Wake up lingering close() */
5800 			sk->sk_state_change(sk);
5801 			break;
5802 		}
5803 
5804 		if (tp->linger2 < 0 ||
5805 		    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5806 		     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5807 			tcp_done(sk);
5808 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5809 			return 1;
5810 		}
5811 
5812 		tmo = tcp_fin_time(sk);
5813 		if (tmo > TCP_TIMEWAIT_LEN) {
5814 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5815 		} else if (th->fin || sock_owned_by_user(sk)) {
5816 			/* Bad case. We could lose such FIN otherwise.
5817 			 * It is not a big problem, but it looks confusing
5818 			 * and not so rare event. We still can lose it now,
5819 			 * if it spins in bh_lock_sock(), but it is really
5820 			 * marginal case.
5821 			 */
5822 			inet_csk_reset_keepalive_timer(sk, tmo);
5823 		} else {
5824 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5825 			goto discard;
5826 		}
5827 		break;
5828 	}
5829 
5830 	case TCP_CLOSING:
5831 		if (tp->snd_una == tp->write_seq) {
5832 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5833 			goto discard;
5834 		}
5835 		break;
5836 
5837 	case TCP_LAST_ACK:
5838 		if (tp->snd_una == tp->write_seq) {
5839 			tcp_update_metrics(sk);
5840 			tcp_done(sk);
5841 			goto discard;
5842 		}
5843 		break;
5844 	}
5845 
5846 	/* step 6: check the URG bit */
5847 	tcp_urg(sk, skb, th);
5848 
5849 	/* step 7: process the segment text */
5850 	switch (sk->sk_state) {
5851 	case TCP_CLOSE_WAIT:
5852 	case TCP_CLOSING:
5853 	case TCP_LAST_ACK:
5854 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5855 			break;
5856 	case TCP_FIN_WAIT1:
5857 	case TCP_FIN_WAIT2:
5858 		/* RFC 793 says to queue data in these states,
5859 		 * RFC 1122 says we MUST send a reset.
5860 		 * BSD 4.4 also does reset.
5861 		 */
5862 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5863 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5864 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5865 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5866 				tcp_reset(sk);
5867 				return 1;
5868 			}
5869 		}
5870 		/* Fall through */
5871 	case TCP_ESTABLISHED:
5872 		tcp_data_queue(sk, skb);
5873 		queued = 1;
5874 		break;
5875 	}
5876 
5877 	/* tcp_data could move socket to TIME-WAIT */
5878 	if (sk->sk_state != TCP_CLOSE) {
5879 		tcp_data_snd_check(sk);
5880 		tcp_ack_snd_check(sk);
5881 	}
5882 
5883 	if (!queued) {
5884 discard:
5885 		__kfree_skb(skb);
5886 	}
5887 	return 0;
5888 }
5889 EXPORT_SYMBOL(tcp_rcv_state_process);
5890 
5891 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
5892 {
5893 	struct inet_request_sock *ireq = inet_rsk(req);
5894 
5895 	if (family == AF_INET)
5896 		LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
5897 			       &ireq->ir_rmt_addr, port);
5898 #if IS_ENABLED(CONFIG_IPV6)
5899 	else if (family == AF_INET6)
5900 		LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI6/%u\n"),
5901 			       &ireq->ir_v6_rmt_addr, port);
5902 #endif
5903 }
5904 
5905 int tcp_conn_request(struct request_sock_ops *rsk_ops,
5906 		     const struct tcp_request_sock_ops *af_ops,
5907 		     struct sock *sk, struct sk_buff *skb)
5908 {
5909 	struct tcp_options_received tmp_opt;
5910 	struct request_sock *req;
5911 	struct tcp_sock *tp = tcp_sk(sk);
5912 	struct dst_entry *dst = NULL;
5913 	__u32 isn = TCP_SKB_CB(skb)->when;
5914 	bool want_cookie = false, fastopen;
5915 	struct flowi fl;
5916 	struct tcp_fastopen_cookie foc = { .len = -1 };
5917 	int err;
5918 
5919 
5920 	/* TW buckets are converted to open requests without
5921 	 * limitations, they conserve resources and peer is
5922 	 * evidently real one.
5923 	 */
5924 	if ((sysctl_tcp_syncookies == 2 ||
5925 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
5926 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
5927 		if (!want_cookie)
5928 			goto drop;
5929 	}
5930 
5931 
5932 	/* Accept backlog is full. If we have already queued enough
5933 	 * of warm entries in syn queue, drop request. It is better than
5934 	 * clogging syn queue with openreqs with exponentially increasing
5935 	 * timeout.
5936 	 */
5937 	if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
5938 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
5939 		goto drop;
5940 	}
5941 
5942 	req = inet_reqsk_alloc(rsk_ops);
5943 	if (!req)
5944 		goto drop;
5945 
5946 	tcp_rsk(req)->af_specific = af_ops;
5947 
5948 	tcp_clear_options(&tmp_opt);
5949 	tmp_opt.mss_clamp = af_ops->mss_clamp;
5950 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
5951 	tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
5952 
5953 	if (want_cookie && !tmp_opt.saw_tstamp)
5954 		tcp_clear_options(&tmp_opt);
5955 
5956 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
5957 	tcp_openreq_init(req, &tmp_opt, skb, sk);
5958 
5959 	af_ops->init_req(req, sk, skb);
5960 
5961 	if (security_inet_conn_request(sk, skb, req))
5962 		goto drop_and_free;
5963 
5964 	if (!want_cookie || tmp_opt.tstamp_ok)
5965 		TCP_ECN_create_request(req, skb, sock_net(sk));
5966 
5967 	if (want_cookie) {
5968 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
5969 		req->cookie_ts = tmp_opt.tstamp_ok;
5970 	} else if (!isn) {
5971 		/* VJ's idea. We save last timestamp seen
5972 		 * from the destination in peer table, when entering
5973 		 * state TIME-WAIT, and check against it before
5974 		 * accepting new connection request.
5975 		 *
5976 		 * If "isn" is not zero, this request hit alive
5977 		 * timewait bucket, so that all the necessary checks
5978 		 * are made in the function processing timewait state.
5979 		 */
5980 		if (tcp_death_row.sysctl_tw_recycle) {
5981 			bool strict;
5982 
5983 			dst = af_ops->route_req(sk, &fl, req, &strict);
5984 
5985 			if (dst && strict &&
5986 			    !tcp_peer_is_proven(req, dst, true,
5987 						tmp_opt.saw_tstamp)) {
5988 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
5989 				goto drop_and_release;
5990 			}
5991 		}
5992 		/* Kill the following clause, if you dislike this way. */
5993 		else if (!sysctl_tcp_syncookies &&
5994 			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
5995 			  (sysctl_max_syn_backlog >> 2)) &&
5996 			 !tcp_peer_is_proven(req, dst, false,
5997 					     tmp_opt.saw_tstamp)) {
5998 			/* Without syncookies last quarter of
5999 			 * backlog is filled with destinations,
6000 			 * proven to be alive.
6001 			 * It means that we continue to communicate
6002 			 * to destinations, already remembered
6003 			 * to the moment of synflood.
6004 			 */
6005 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6006 				    rsk_ops->family);
6007 			goto drop_and_release;
6008 		}
6009 
6010 		isn = af_ops->init_seq(skb);
6011 	}
6012 	if (!dst) {
6013 		dst = af_ops->route_req(sk, &fl, req, NULL);
6014 		if (!dst)
6015 			goto drop_and_free;
6016 	}
6017 
6018 	tcp_rsk(req)->snt_isn = isn;
6019 	tcp_openreq_init_rwin(req, sk, dst);
6020 	fastopen = !want_cookie &&
6021 		   tcp_try_fastopen(sk, skb, req, &foc, dst);
6022 	err = af_ops->send_synack(sk, dst, &fl, req,
6023 				  skb_get_queue_mapping(skb), &foc);
6024 	if (!fastopen) {
6025 		if (err || want_cookie)
6026 			goto drop_and_free;
6027 
6028 		tcp_rsk(req)->listener = NULL;
6029 		af_ops->queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6030 	}
6031 
6032 	return 0;
6033 
6034 drop_and_release:
6035 	dst_release(dst);
6036 drop_and_free:
6037 	reqsk_free(req);
6038 drop:
6039 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
6040 	return 0;
6041 }
6042 EXPORT_SYMBOL(tcp_conn_request);
6043