1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/jump_label_ratelimit.h> 81 #include <net/busy_poll.h> 82 #include <net/mptcp.h> 83 84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 85 86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 92 #define FLAG_ECE 0x40 /* ECE in this ACK */ 93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 103 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */ 104 105 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 106 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 107 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 108 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 109 110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 112 113 #define REXMIT_NONE 0 /* no loss recovery to do */ 114 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 115 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 116 117 #if IS_ENABLED(CONFIG_TLS_DEVICE) 118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 119 120 void clean_acked_data_enable(struct inet_connection_sock *icsk, 121 void (*cad)(struct sock *sk, u32 ack_seq)) 122 { 123 icsk->icsk_clean_acked = cad; 124 static_branch_deferred_inc(&clean_acked_data_enabled); 125 } 126 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 127 128 void clean_acked_data_disable(struct inet_connection_sock *icsk) 129 { 130 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 131 icsk->icsk_clean_acked = NULL; 132 } 133 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 134 135 void clean_acked_data_flush(void) 136 { 137 static_key_deferred_flush(&clean_acked_data_enabled); 138 } 139 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 140 #endif 141 142 #ifdef CONFIG_CGROUP_BPF 143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 144 { 145 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown && 146 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 147 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG); 148 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 149 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG); 150 struct bpf_sock_ops_kern sock_ops; 151 152 if (likely(!unknown_opt && !parse_all_opt)) 153 return; 154 155 /* The skb will be handled in the 156 * bpf_skops_established() or 157 * bpf_skops_write_hdr_opt(). 158 */ 159 switch (sk->sk_state) { 160 case TCP_SYN_RECV: 161 case TCP_SYN_SENT: 162 case TCP_LISTEN: 163 return; 164 } 165 166 sock_owned_by_me(sk); 167 168 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 169 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB; 170 sock_ops.is_fullsock = 1; 171 sock_ops.sk = sk; 172 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 173 174 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 175 } 176 177 static void bpf_skops_established(struct sock *sk, int bpf_op, 178 struct sk_buff *skb) 179 { 180 struct bpf_sock_ops_kern sock_ops; 181 182 sock_owned_by_me(sk); 183 184 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 185 sock_ops.op = bpf_op; 186 sock_ops.is_fullsock = 1; 187 sock_ops.sk = sk; 188 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */ 189 if (skb) 190 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 191 192 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 193 } 194 #else 195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 196 { 197 } 198 199 static void bpf_skops_established(struct sock *sk, int bpf_op, 200 struct sk_buff *skb) 201 { 202 } 203 #endif 204 205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 206 unsigned int len) 207 { 208 static bool __once __read_mostly; 209 210 if (!__once) { 211 struct net_device *dev; 212 213 __once = true; 214 215 rcu_read_lock(); 216 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 217 if (!dev || len >= dev->mtu) 218 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 219 dev ? dev->name : "Unknown driver"); 220 rcu_read_unlock(); 221 } 222 } 223 224 /* Adapt the MSS value used to make delayed ack decision to the 225 * real world. 226 */ 227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 228 { 229 struct inet_connection_sock *icsk = inet_csk(sk); 230 const unsigned int lss = icsk->icsk_ack.last_seg_size; 231 unsigned int len; 232 233 icsk->icsk_ack.last_seg_size = 0; 234 235 /* skb->len may jitter because of SACKs, even if peer 236 * sends good full-sized frames. 237 */ 238 len = skb_shinfo(skb)->gso_size ? : skb->len; 239 if (len >= icsk->icsk_ack.rcv_mss) { 240 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 241 tcp_sk(sk)->advmss); 242 /* Account for possibly-removed options */ 243 if (unlikely(len > icsk->icsk_ack.rcv_mss + 244 MAX_TCP_OPTION_SPACE)) 245 tcp_gro_dev_warn(sk, skb, len); 246 } else { 247 /* Otherwise, we make more careful check taking into account, 248 * that SACKs block is variable. 249 * 250 * "len" is invariant segment length, including TCP header. 251 */ 252 len += skb->data - skb_transport_header(skb); 253 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 254 /* If PSH is not set, packet should be 255 * full sized, provided peer TCP is not badly broken. 256 * This observation (if it is correct 8)) allows 257 * to handle super-low mtu links fairly. 258 */ 259 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 260 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 261 /* Subtract also invariant (if peer is RFC compliant), 262 * tcp header plus fixed timestamp option length. 263 * Resulting "len" is MSS free of SACK jitter. 264 */ 265 len -= tcp_sk(sk)->tcp_header_len; 266 icsk->icsk_ack.last_seg_size = len; 267 if (len == lss) { 268 icsk->icsk_ack.rcv_mss = len; 269 return; 270 } 271 } 272 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 273 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 274 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 275 } 276 } 277 278 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 279 { 280 struct inet_connection_sock *icsk = inet_csk(sk); 281 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 282 283 if (quickacks == 0) 284 quickacks = 2; 285 quickacks = min(quickacks, max_quickacks); 286 if (quickacks > icsk->icsk_ack.quick) 287 icsk->icsk_ack.quick = quickacks; 288 } 289 290 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 291 { 292 struct inet_connection_sock *icsk = inet_csk(sk); 293 294 tcp_incr_quickack(sk, max_quickacks); 295 inet_csk_exit_pingpong_mode(sk); 296 icsk->icsk_ack.ato = TCP_ATO_MIN; 297 } 298 EXPORT_SYMBOL(tcp_enter_quickack_mode); 299 300 /* Send ACKs quickly, if "quick" count is not exhausted 301 * and the session is not interactive. 302 */ 303 304 static bool tcp_in_quickack_mode(struct sock *sk) 305 { 306 const struct inet_connection_sock *icsk = inet_csk(sk); 307 const struct dst_entry *dst = __sk_dst_get(sk); 308 309 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 310 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 311 } 312 313 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 314 { 315 if (tp->ecn_flags & TCP_ECN_OK) 316 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 317 } 318 319 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 320 { 321 if (tcp_hdr(skb)->cwr) { 322 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 323 324 /* If the sender is telling us it has entered CWR, then its 325 * cwnd may be very low (even just 1 packet), so we should ACK 326 * immediately. 327 */ 328 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) 329 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 330 } 331 } 332 333 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 334 { 335 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 336 } 337 338 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 339 { 340 struct tcp_sock *tp = tcp_sk(sk); 341 342 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 343 case INET_ECN_NOT_ECT: 344 /* Funny extension: if ECT is not set on a segment, 345 * and we already seen ECT on a previous segment, 346 * it is probably a retransmit. 347 */ 348 if (tp->ecn_flags & TCP_ECN_SEEN) 349 tcp_enter_quickack_mode(sk, 2); 350 break; 351 case INET_ECN_CE: 352 if (tcp_ca_needs_ecn(sk)) 353 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 354 355 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 356 /* Better not delay acks, sender can have a very low cwnd */ 357 tcp_enter_quickack_mode(sk, 2); 358 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 359 } 360 tp->ecn_flags |= TCP_ECN_SEEN; 361 break; 362 default: 363 if (tcp_ca_needs_ecn(sk)) 364 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 365 tp->ecn_flags |= TCP_ECN_SEEN; 366 break; 367 } 368 } 369 370 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 371 { 372 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 373 __tcp_ecn_check_ce(sk, skb); 374 } 375 376 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 377 { 378 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 379 tp->ecn_flags &= ~TCP_ECN_OK; 380 } 381 382 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 383 { 384 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 385 tp->ecn_flags &= ~TCP_ECN_OK; 386 } 387 388 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 389 { 390 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 391 return true; 392 return false; 393 } 394 395 /* Buffer size and advertised window tuning. 396 * 397 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 398 */ 399 400 static void tcp_sndbuf_expand(struct sock *sk) 401 { 402 const struct tcp_sock *tp = tcp_sk(sk); 403 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 404 int sndmem, per_mss; 405 u32 nr_segs; 406 407 /* Worst case is non GSO/TSO : each frame consumes one skb 408 * and skb->head is kmalloced using power of two area of memory 409 */ 410 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 411 MAX_TCP_HEADER + 412 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 413 414 per_mss = roundup_pow_of_two(per_mss) + 415 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 416 417 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp)); 418 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 419 420 /* Fast Recovery (RFC 5681 3.2) : 421 * Cubic needs 1.7 factor, rounded to 2 to include 422 * extra cushion (application might react slowly to EPOLLOUT) 423 */ 424 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 425 sndmem *= nr_segs * per_mss; 426 427 if (sk->sk_sndbuf < sndmem) 428 WRITE_ONCE(sk->sk_sndbuf, 429 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2]))); 430 } 431 432 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 433 * 434 * All tcp_full_space() is split to two parts: "network" buffer, allocated 435 * forward and advertised in receiver window (tp->rcv_wnd) and 436 * "application buffer", required to isolate scheduling/application 437 * latencies from network. 438 * window_clamp is maximal advertised window. It can be less than 439 * tcp_full_space(), in this case tcp_full_space() - window_clamp 440 * is reserved for "application" buffer. The less window_clamp is 441 * the smoother our behaviour from viewpoint of network, but the lower 442 * throughput and the higher sensitivity of the connection to losses. 8) 443 * 444 * rcv_ssthresh is more strict window_clamp used at "slow start" 445 * phase to predict further behaviour of this connection. 446 * It is used for two goals: 447 * - to enforce header prediction at sender, even when application 448 * requires some significant "application buffer". It is check #1. 449 * - to prevent pruning of receive queue because of misprediction 450 * of receiver window. Check #2. 451 * 452 * The scheme does not work when sender sends good segments opening 453 * window and then starts to feed us spaghetti. But it should work 454 * in common situations. Otherwise, we have to rely on queue collapsing. 455 */ 456 457 /* Slow part of check#2. */ 458 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb, 459 unsigned int skbtruesize) 460 { 461 struct tcp_sock *tp = tcp_sk(sk); 462 /* Optimize this! */ 463 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1; 464 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1; 465 466 while (tp->rcv_ssthresh <= window) { 467 if (truesize <= skb->len) 468 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 469 470 truesize >>= 1; 471 window >>= 1; 472 } 473 return 0; 474 } 475 476 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing 477 * can play nice with us, as sk_buff and skb->head might be either 478 * freed or shared with up to MAX_SKB_FRAGS segments. 479 * Only give a boost to drivers using page frag(s) to hold the frame(s), 480 * and if no payload was pulled in skb->head before reaching us. 481 */ 482 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb) 483 { 484 u32 truesize = skb->truesize; 485 486 if (adjust && !skb_headlen(skb)) { 487 truesize -= SKB_TRUESIZE(skb_end_offset(skb)); 488 /* paranoid check, some drivers might be buggy */ 489 if (unlikely((int)truesize < (int)skb->len)) 490 truesize = skb->truesize; 491 } 492 return truesize; 493 } 494 495 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb, 496 bool adjust) 497 { 498 struct tcp_sock *tp = tcp_sk(sk); 499 int room; 500 501 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 502 503 if (room <= 0) 504 return; 505 506 /* Check #1 */ 507 if (!tcp_under_memory_pressure(sk)) { 508 unsigned int truesize = truesize_adjust(adjust, skb); 509 int incr; 510 511 /* Check #2. Increase window, if skb with such overhead 512 * will fit to rcvbuf in future. 513 */ 514 if (tcp_win_from_space(sk, truesize) <= skb->len) 515 incr = 2 * tp->advmss; 516 else 517 incr = __tcp_grow_window(sk, skb, truesize); 518 519 if (incr) { 520 incr = max_t(int, incr, 2 * skb->len); 521 tp->rcv_ssthresh += min(room, incr); 522 inet_csk(sk)->icsk_ack.quick |= 1; 523 } 524 } else { 525 /* Under pressure: 526 * Adjust rcv_ssthresh according to reserved mem 527 */ 528 tcp_adjust_rcv_ssthresh(sk); 529 } 530 } 531 532 /* 3. Try to fixup all. It is made immediately after connection enters 533 * established state. 534 */ 535 static void tcp_init_buffer_space(struct sock *sk) 536 { 537 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win); 538 struct tcp_sock *tp = tcp_sk(sk); 539 int maxwin; 540 541 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 542 tcp_sndbuf_expand(sk); 543 544 tcp_mstamp_refresh(tp); 545 tp->rcvq_space.time = tp->tcp_mstamp; 546 tp->rcvq_space.seq = tp->copied_seq; 547 548 maxwin = tcp_full_space(sk); 549 550 if (tp->window_clamp >= maxwin) { 551 tp->window_clamp = maxwin; 552 553 if (tcp_app_win && maxwin > 4 * tp->advmss) 554 tp->window_clamp = max(maxwin - 555 (maxwin >> tcp_app_win), 556 4 * tp->advmss); 557 } 558 559 /* Force reservation of one segment. */ 560 if (tcp_app_win && 561 tp->window_clamp > 2 * tp->advmss && 562 tp->window_clamp + tp->advmss > maxwin) 563 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 564 565 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 566 tp->snd_cwnd_stamp = tcp_jiffies32; 567 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd, 568 (u32)TCP_INIT_CWND * tp->advmss); 569 } 570 571 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 572 static void tcp_clamp_window(struct sock *sk) 573 { 574 struct tcp_sock *tp = tcp_sk(sk); 575 struct inet_connection_sock *icsk = inet_csk(sk); 576 struct net *net = sock_net(sk); 577 int rmem2; 578 579 icsk->icsk_ack.quick = 0; 580 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 581 582 if (sk->sk_rcvbuf < rmem2 && 583 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 584 !tcp_under_memory_pressure(sk) && 585 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 586 WRITE_ONCE(sk->sk_rcvbuf, 587 min(atomic_read(&sk->sk_rmem_alloc), rmem2)); 588 } 589 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 590 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 591 } 592 593 /* Initialize RCV_MSS value. 594 * RCV_MSS is an our guess about MSS used by the peer. 595 * We haven't any direct information about the MSS. 596 * It's better to underestimate the RCV_MSS rather than overestimate. 597 * Overestimations make us ACKing less frequently than needed. 598 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 599 */ 600 void tcp_initialize_rcv_mss(struct sock *sk) 601 { 602 const struct tcp_sock *tp = tcp_sk(sk); 603 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 604 605 hint = min(hint, tp->rcv_wnd / 2); 606 hint = min(hint, TCP_MSS_DEFAULT); 607 hint = max(hint, TCP_MIN_MSS); 608 609 inet_csk(sk)->icsk_ack.rcv_mss = hint; 610 } 611 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 612 613 /* Receiver "autotuning" code. 614 * 615 * The algorithm for RTT estimation w/o timestamps is based on 616 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 617 * <https://public.lanl.gov/radiant/pubs.html#DRS> 618 * 619 * More detail on this code can be found at 620 * <http://staff.psc.edu/jheffner/>, 621 * though this reference is out of date. A new paper 622 * is pending. 623 */ 624 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 625 { 626 u32 new_sample = tp->rcv_rtt_est.rtt_us; 627 long m = sample; 628 629 if (new_sample != 0) { 630 /* If we sample in larger samples in the non-timestamp 631 * case, we could grossly overestimate the RTT especially 632 * with chatty applications or bulk transfer apps which 633 * are stalled on filesystem I/O. 634 * 635 * Also, since we are only going for a minimum in the 636 * non-timestamp case, we do not smooth things out 637 * else with timestamps disabled convergence takes too 638 * long. 639 */ 640 if (!win_dep) { 641 m -= (new_sample >> 3); 642 new_sample += m; 643 } else { 644 m <<= 3; 645 if (m < new_sample) 646 new_sample = m; 647 } 648 } else { 649 /* No previous measure. */ 650 new_sample = m << 3; 651 } 652 653 tp->rcv_rtt_est.rtt_us = new_sample; 654 } 655 656 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 657 { 658 u32 delta_us; 659 660 if (tp->rcv_rtt_est.time == 0) 661 goto new_measure; 662 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 663 return; 664 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 665 if (!delta_us) 666 delta_us = 1; 667 tcp_rcv_rtt_update(tp, delta_us, 1); 668 669 new_measure: 670 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 671 tp->rcv_rtt_est.time = tp->tcp_mstamp; 672 } 673 674 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 675 const struct sk_buff *skb) 676 { 677 struct tcp_sock *tp = tcp_sk(sk); 678 679 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 680 return; 681 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 682 683 if (TCP_SKB_CB(skb)->end_seq - 684 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 685 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 686 u32 delta_us; 687 688 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 689 if (!delta) 690 delta = 1; 691 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 692 tcp_rcv_rtt_update(tp, delta_us, 0); 693 } 694 } 695 } 696 697 /* 698 * This function should be called every time data is copied to user space. 699 * It calculates the appropriate TCP receive buffer space. 700 */ 701 void tcp_rcv_space_adjust(struct sock *sk) 702 { 703 struct tcp_sock *tp = tcp_sk(sk); 704 u32 copied; 705 int time; 706 707 trace_tcp_rcv_space_adjust(sk); 708 709 tcp_mstamp_refresh(tp); 710 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 711 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 712 return; 713 714 /* Number of bytes copied to user in last RTT */ 715 copied = tp->copied_seq - tp->rcvq_space.seq; 716 if (copied <= tp->rcvq_space.space) 717 goto new_measure; 718 719 /* A bit of theory : 720 * copied = bytes received in previous RTT, our base window 721 * To cope with packet losses, we need a 2x factor 722 * To cope with slow start, and sender growing its cwin by 100 % 723 * every RTT, we need a 4x factor, because the ACK we are sending 724 * now is for the next RTT, not the current one : 725 * <prev RTT . ><current RTT .. ><next RTT .... > 726 */ 727 728 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 729 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 730 int rcvmem, rcvbuf; 731 u64 rcvwin, grow; 732 733 /* minimal window to cope with packet losses, assuming 734 * steady state. Add some cushion because of small variations. 735 */ 736 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 737 738 /* Accommodate for sender rate increase (eg. slow start) */ 739 grow = rcvwin * (copied - tp->rcvq_space.space); 740 do_div(grow, tp->rcvq_space.space); 741 rcvwin += (grow << 1); 742 743 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 744 while (tcp_win_from_space(sk, rcvmem) < tp->advmss) 745 rcvmem += 128; 746 747 do_div(rcvwin, tp->advmss); 748 rcvbuf = min_t(u64, rcvwin * rcvmem, 749 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 750 if (rcvbuf > sk->sk_rcvbuf) { 751 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 752 753 /* Make the window clamp follow along. */ 754 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 755 } 756 } 757 tp->rcvq_space.space = copied; 758 759 new_measure: 760 tp->rcvq_space.seq = tp->copied_seq; 761 tp->rcvq_space.time = tp->tcp_mstamp; 762 } 763 764 /* There is something which you must keep in mind when you analyze the 765 * behavior of the tp->ato delayed ack timeout interval. When a 766 * connection starts up, we want to ack as quickly as possible. The 767 * problem is that "good" TCP's do slow start at the beginning of data 768 * transmission. The means that until we send the first few ACK's the 769 * sender will sit on his end and only queue most of his data, because 770 * he can only send snd_cwnd unacked packets at any given time. For 771 * each ACK we send, he increments snd_cwnd and transmits more of his 772 * queue. -DaveM 773 */ 774 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 775 { 776 struct tcp_sock *tp = tcp_sk(sk); 777 struct inet_connection_sock *icsk = inet_csk(sk); 778 u32 now; 779 780 inet_csk_schedule_ack(sk); 781 782 tcp_measure_rcv_mss(sk, skb); 783 784 tcp_rcv_rtt_measure(tp); 785 786 now = tcp_jiffies32; 787 788 if (!icsk->icsk_ack.ato) { 789 /* The _first_ data packet received, initialize 790 * delayed ACK engine. 791 */ 792 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 793 icsk->icsk_ack.ato = TCP_ATO_MIN; 794 } else { 795 int m = now - icsk->icsk_ack.lrcvtime; 796 797 if (m <= TCP_ATO_MIN / 2) { 798 /* The fastest case is the first. */ 799 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 800 } else if (m < icsk->icsk_ack.ato) { 801 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 802 if (icsk->icsk_ack.ato > icsk->icsk_rto) 803 icsk->icsk_ack.ato = icsk->icsk_rto; 804 } else if (m > icsk->icsk_rto) { 805 /* Too long gap. Apparently sender failed to 806 * restart window, so that we send ACKs quickly. 807 */ 808 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 809 } 810 } 811 icsk->icsk_ack.lrcvtime = now; 812 813 tcp_ecn_check_ce(sk, skb); 814 815 if (skb->len >= 128) 816 tcp_grow_window(sk, skb, true); 817 } 818 819 /* Called to compute a smoothed rtt estimate. The data fed to this 820 * routine either comes from timestamps, or from segments that were 821 * known _not_ to have been retransmitted [see Karn/Partridge 822 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 823 * piece by Van Jacobson. 824 * NOTE: the next three routines used to be one big routine. 825 * To save cycles in the RFC 1323 implementation it was better to break 826 * it up into three procedures. -- erics 827 */ 828 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 829 { 830 struct tcp_sock *tp = tcp_sk(sk); 831 long m = mrtt_us; /* RTT */ 832 u32 srtt = tp->srtt_us; 833 834 /* The following amusing code comes from Jacobson's 835 * article in SIGCOMM '88. Note that rtt and mdev 836 * are scaled versions of rtt and mean deviation. 837 * This is designed to be as fast as possible 838 * m stands for "measurement". 839 * 840 * On a 1990 paper the rto value is changed to: 841 * RTO = rtt + 4 * mdev 842 * 843 * Funny. This algorithm seems to be very broken. 844 * These formulae increase RTO, when it should be decreased, increase 845 * too slowly, when it should be increased quickly, decrease too quickly 846 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 847 * does not matter how to _calculate_ it. Seems, it was trap 848 * that VJ failed to avoid. 8) 849 */ 850 if (srtt != 0) { 851 m -= (srtt >> 3); /* m is now error in rtt est */ 852 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 853 if (m < 0) { 854 m = -m; /* m is now abs(error) */ 855 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 856 /* This is similar to one of Eifel findings. 857 * Eifel blocks mdev updates when rtt decreases. 858 * This solution is a bit different: we use finer gain 859 * for mdev in this case (alpha*beta). 860 * Like Eifel it also prevents growth of rto, 861 * but also it limits too fast rto decreases, 862 * happening in pure Eifel. 863 */ 864 if (m > 0) 865 m >>= 3; 866 } else { 867 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 868 } 869 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 870 if (tp->mdev_us > tp->mdev_max_us) { 871 tp->mdev_max_us = tp->mdev_us; 872 if (tp->mdev_max_us > tp->rttvar_us) 873 tp->rttvar_us = tp->mdev_max_us; 874 } 875 if (after(tp->snd_una, tp->rtt_seq)) { 876 if (tp->mdev_max_us < tp->rttvar_us) 877 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 878 tp->rtt_seq = tp->snd_nxt; 879 tp->mdev_max_us = tcp_rto_min_us(sk); 880 881 tcp_bpf_rtt(sk); 882 } 883 } else { 884 /* no previous measure. */ 885 srtt = m << 3; /* take the measured time to be rtt */ 886 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 887 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 888 tp->mdev_max_us = tp->rttvar_us; 889 tp->rtt_seq = tp->snd_nxt; 890 891 tcp_bpf_rtt(sk); 892 } 893 tp->srtt_us = max(1U, srtt); 894 } 895 896 static void tcp_update_pacing_rate(struct sock *sk) 897 { 898 const struct tcp_sock *tp = tcp_sk(sk); 899 u64 rate; 900 901 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 902 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 903 904 /* current rate is (cwnd * mss) / srtt 905 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 906 * In Congestion Avoidance phase, set it to 120 % the current rate. 907 * 908 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 909 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 910 * end of slow start and should slow down. 911 */ 912 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2) 913 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio); 914 else 915 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio); 916 917 rate *= max(tcp_snd_cwnd(tp), tp->packets_out); 918 919 if (likely(tp->srtt_us)) 920 do_div(rate, tp->srtt_us); 921 922 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 923 * without any lock. We want to make sure compiler wont store 924 * intermediate values in this location. 925 */ 926 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 927 sk->sk_max_pacing_rate)); 928 } 929 930 /* Calculate rto without backoff. This is the second half of Van Jacobson's 931 * routine referred to above. 932 */ 933 static void tcp_set_rto(struct sock *sk) 934 { 935 const struct tcp_sock *tp = tcp_sk(sk); 936 /* Old crap is replaced with new one. 8) 937 * 938 * More seriously: 939 * 1. If rtt variance happened to be less 50msec, it is hallucination. 940 * It cannot be less due to utterly erratic ACK generation made 941 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 942 * to do with delayed acks, because at cwnd>2 true delack timeout 943 * is invisible. Actually, Linux-2.4 also generates erratic 944 * ACKs in some circumstances. 945 */ 946 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 947 948 /* 2. Fixups made earlier cannot be right. 949 * If we do not estimate RTO correctly without them, 950 * all the algo is pure shit and should be replaced 951 * with correct one. It is exactly, which we pretend to do. 952 */ 953 954 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 955 * guarantees that rto is higher. 956 */ 957 tcp_bound_rto(sk); 958 } 959 960 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 961 { 962 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 963 964 if (!cwnd) 965 cwnd = TCP_INIT_CWND; 966 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 967 } 968 969 struct tcp_sacktag_state { 970 /* Timestamps for earliest and latest never-retransmitted segment 971 * that was SACKed. RTO needs the earliest RTT to stay conservative, 972 * but congestion control should still get an accurate delay signal. 973 */ 974 u64 first_sackt; 975 u64 last_sackt; 976 u32 reord; 977 u32 sack_delivered; 978 int flag; 979 unsigned int mss_now; 980 struct rate_sample *rate; 981 }; 982 983 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery 984 * and spurious retransmission information if this DSACK is unlikely caused by 985 * sender's action: 986 * - DSACKed sequence range is larger than maximum receiver's window. 987 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs. 988 */ 989 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq, 990 u32 end_seq, struct tcp_sacktag_state *state) 991 { 992 u32 seq_len, dup_segs = 1; 993 994 if (!before(start_seq, end_seq)) 995 return 0; 996 997 seq_len = end_seq - start_seq; 998 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */ 999 if (seq_len > tp->max_window) 1000 return 0; 1001 if (seq_len > tp->mss_cache) 1002 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache); 1003 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq) 1004 state->flag |= FLAG_DSACK_TLP; 1005 1006 tp->dsack_dups += dup_segs; 1007 /* Skip the DSACK if dup segs weren't retransmitted by sender */ 1008 if (tp->dsack_dups > tp->total_retrans) 1009 return 0; 1010 1011 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 1012 /* We increase the RACK ordering window in rounds where we receive 1013 * DSACKs that may have been due to reordering causing RACK to trigger 1014 * a spurious fast recovery. Thus RACK ignores DSACKs that happen 1015 * without having seen reordering, or that match TLP probes (TLP 1016 * is timer-driven, not triggered by RACK). 1017 */ 1018 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP)) 1019 tp->rack.dsack_seen = 1; 1020 1021 state->flag |= FLAG_DSACKING_ACK; 1022 /* A spurious retransmission is delivered */ 1023 state->sack_delivered += dup_segs; 1024 1025 return dup_segs; 1026 } 1027 1028 /* It's reordering when higher sequence was delivered (i.e. sacked) before 1029 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 1030 * distance is approximated in full-mss packet distance ("reordering"). 1031 */ 1032 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 1033 const int ts) 1034 { 1035 struct tcp_sock *tp = tcp_sk(sk); 1036 const u32 mss = tp->mss_cache; 1037 u32 fack, metric; 1038 1039 fack = tcp_highest_sack_seq(tp); 1040 if (!before(low_seq, fack)) 1041 return; 1042 1043 metric = fack - low_seq; 1044 if ((metric > tp->reordering * mss) && mss) { 1045 #if FASTRETRANS_DEBUG > 1 1046 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 1047 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 1048 tp->reordering, 1049 0, 1050 tp->sacked_out, 1051 tp->undo_marker ? tp->undo_retrans : 0); 1052 #endif 1053 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 1054 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 1055 } 1056 1057 /* This exciting event is worth to be remembered. 8) */ 1058 tp->reord_seen++; 1059 NET_INC_STATS(sock_net(sk), 1060 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 1061 } 1062 1063 /* This must be called before lost_out or retrans_out are updated 1064 * on a new loss, because we want to know if all skbs previously 1065 * known to be lost have already been retransmitted, indicating 1066 * that this newly lost skb is our next skb to retransmit. 1067 */ 1068 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 1069 { 1070 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) || 1071 (tp->retransmit_skb_hint && 1072 before(TCP_SKB_CB(skb)->seq, 1073 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))) 1074 tp->retransmit_skb_hint = skb; 1075 } 1076 1077 /* Sum the number of packets on the wire we have marked as lost, and 1078 * notify the congestion control module that the given skb was marked lost. 1079 */ 1080 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb) 1081 { 1082 tp->lost += tcp_skb_pcount(skb); 1083 } 1084 1085 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb) 1086 { 1087 __u8 sacked = TCP_SKB_CB(skb)->sacked; 1088 struct tcp_sock *tp = tcp_sk(sk); 1089 1090 if (sacked & TCPCB_SACKED_ACKED) 1091 return; 1092 1093 tcp_verify_retransmit_hint(tp, skb); 1094 if (sacked & TCPCB_LOST) { 1095 if (sacked & TCPCB_SACKED_RETRANS) { 1096 /* Account for retransmits that are lost again */ 1097 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1098 tp->retrans_out -= tcp_skb_pcount(skb); 1099 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT, 1100 tcp_skb_pcount(skb)); 1101 tcp_notify_skb_loss_event(tp, skb); 1102 } 1103 } else { 1104 tp->lost_out += tcp_skb_pcount(skb); 1105 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1106 tcp_notify_skb_loss_event(tp, skb); 1107 } 1108 } 1109 1110 /* Updates the delivered and delivered_ce counts */ 1111 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered, 1112 bool ece_ack) 1113 { 1114 tp->delivered += delivered; 1115 if (ece_ack) 1116 tp->delivered_ce += delivered; 1117 } 1118 1119 /* This procedure tags the retransmission queue when SACKs arrive. 1120 * 1121 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1122 * Packets in queue with these bits set are counted in variables 1123 * sacked_out, retrans_out and lost_out, correspondingly. 1124 * 1125 * Valid combinations are: 1126 * Tag InFlight Description 1127 * 0 1 - orig segment is in flight. 1128 * S 0 - nothing flies, orig reached receiver. 1129 * L 0 - nothing flies, orig lost by net. 1130 * R 2 - both orig and retransmit are in flight. 1131 * L|R 1 - orig is lost, retransmit is in flight. 1132 * S|R 1 - orig reached receiver, retrans is still in flight. 1133 * (L|S|R is logically valid, it could occur when L|R is sacked, 1134 * but it is equivalent to plain S and code short-curcuits it to S. 1135 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1136 * 1137 * These 6 states form finite state machine, controlled by the following events: 1138 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1139 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1140 * 3. Loss detection event of two flavors: 1141 * A. Scoreboard estimator decided the packet is lost. 1142 * A'. Reno "three dupacks" marks head of queue lost. 1143 * B. SACK arrives sacking SND.NXT at the moment, when the 1144 * segment was retransmitted. 1145 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1146 * 1147 * It is pleasant to note, that state diagram turns out to be commutative, 1148 * so that we are allowed not to be bothered by order of our actions, 1149 * when multiple events arrive simultaneously. (see the function below). 1150 * 1151 * Reordering detection. 1152 * -------------------- 1153 * Reordering metric is maximal distance, which a packet can be displaced 1154 * in packet stream. With SACKs we can estimate it: 1155 * 1156 * 1. SACK fills old hole and the corresponding segment was not 1157 * ever retransmitted -> reordering. Alas, we cannot use it 1158 * when segment was retransmitted. 1159 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1160 * for retransmitted and already SACKed segment -> reordering.. 1161 * Both of these heuristics are not used in Loss state, when we cannot 1162 * account for retransmits accurately. 1163 * 1164 * SACK block validation. 1165 * ---------------------- 1166 * 1167 * SACK block range validation checks that the received SACK block fits to 1168 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1169 * Note that SND.UNA is not included to the range though being valid because 1170 * it means that the receiver is rather inconsistent with itself reporting 1171 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1172 * perfectly valid, however, in light of RFC2018 which explicitly states 1173 * that "SACK block MUST reflect the newest segment. Even if the newest 1174 * segment is going to be discarded ...", not that it looks very clever 1175 * in case of head skb. Due to potentional receiver driven attacks, we 1176 * choose to avoid immediate execution of a walk in write queue due to 1177 * reneging and defer head skb's loss recovery to standard loss recovery 1178 * procedure that will eventually trigger (nothing forbids us doing this). 1179 * 1180 * Implements also blockage to start_seq wrap-around. Problem lies in the 1181 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1182 * there's no guarantee that it will be before snd_nxt (n). The problem 1183 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1184 * wrap (s_w): 1185 * 1186 * <- outs wnd -> <- wrapzone -> 1187 * u e n u_w e_w s n_w 1188 * | | | | | | | 1189 * |<------------+------+----- TCP seqno space --------------+---------->| 1190 * ...-- <2^31 ->| |<--------... 1191 * ...---- >2^31 ------>| |<--------... 1192 * 1193 * Current code wouldn't be vulnerable but it's better still to discard such 1194 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1195 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1196 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1197 * equal to the ideal case (infinite seqno space without wrap caused issues). 1198 * 1199 * With D-SACK the lower bound is extended to cover sequence space below 1200 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1201 * again, D-SACK block must not to go across snd_una (for the same reason as 1202 * for the normal SACK blocks, explained above). But there all simplicity 1203 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1204 * fully below undo_marker they do not affect behavior in anyway and can 1205 * therefore be safely ignored. In rare cases (which are more or less 1206 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1207 * fragmentation and packet reordering past skb's retransmission. To consider 1208 * them correctly, the acceptable range must be extended even more though 1209 * the exact amount is rather hard to quantify. However, tp->max_window can 1210 * be used as an exaggerated estimate. 1211 */ 1212 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1213 u32 start_seq, u32 end_seq) 1214 { 1215 /* Too far in future, or reversed (interpretation is ambiguous) */ 1216 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1217 return false; 1218 1219 /* Nasty start_seq wrap-around check (see comments above) */ 1220 if (!before(start_seq, tp->snd_nxt)) 1221 return false; 1222 1223 /* In outstanding window? ...This is valid exit for D-SACKs too. 1224 * start_seq == snd_una is non-sensical (see comments above) 1225 */ 1226 if (after(start_seq, tp->snd_una)) 1227 return true; 1228 1229 if (!is_dsack || !tp->undo_marker) 1230 return false; 1231 1232 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1233 if (after(end_seq, tp->snd_una)) 1234 return false; 1235 1236 if (!before(start_seq, tp->undo_marker)) 1237 return true; 1238 1239 /* Too old */ 1240 if (!after(end_seq, tp->undo_marker)) 1241 return false; 1242 1243 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1244 * start_seq < undo_marker and end_seq >= undo_marker. 1245 */ 1246 return !before(start_seq, end_seq - tp->max_window); 1247 } 1248 1249 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1250 struct tcp_sack_block_wire *sp, int num_sacks, 1251 u32 prior_snd_una, struct tcp_sacktag_state *state) 1252 { 1253 struct tcp_sock *tp = tcp_sk(sk); 1254 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1255 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1256 u32 dup_segs; 1257 1258 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1259 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1260 } else if (num_sacks > 1) { 1261 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1262 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1263 1264 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1)) 1265 return false; 1266 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV); 1267 } else { 1268 return false; 1269 } 1270 1271 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state); 1272 if (!dup_segs) { /* Skip dubious DSACK */ 1273 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS); 1274 return false; 1275 } 1276 1277 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs); 1278 1279 /* D-SACK for already forgotten data... Do dumb counting. */ 1280 if (tp->undo_marker && tp->undo_retrans > 0 && 1281 !after(end_seq_0, prior_snd_una) && 1282 after(end_seq_0, tp->undo_marker)) 1283 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs); 1284 1285 return true; 1286 } 1287 1288 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1289 * the incoming SACK may not exactly match but we can find smaller MSS 1290 * aligned portion of it that matches. Therefore we might need to fragment 1291 * which may fail and creates some hassle (caller must handle error case 1292 * returns). 1293 * 1294 * FIXME: this could be merged to shift decision code 1295 */ 1296 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1297 u32 start_seq, u32 end_seq) 1298 { 1299 int err; 1300 bool in_sack; 1301 unsigned int pkt_len; 1302 unsigned int mss; 1303 1304 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1305 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1306 1307 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1308 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1309 mss = tcp_skb_mss(skb); 1310 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1311 1312 if (!in_sack) { 1313 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1314 if (pkt_len < mss) 1315 pkt_len = mss; 1316 } else { 1317 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1318 if (pkt_len < mss) 1319 return -EINVAL; 1320 } 1321 1322 /* Round if necessary so that SACKs cover only full MSSes 1323 * and/or the remaining small portion (if present) 1324 */ 1325 if (pkt_len > mss) { 1326 unsigned int new_len = (pkt_len / mss) * mss; 1327 if (!in_sack && new_len < pkt_len) 1328 new_len += mss; 1329 pkt_len = new_len; 1330 } 1331 1332 if (pkt_len >= skb->len && !in_sack) 1333 return 0; 1334 1335 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1336 pkt_len, mss, GFP_ATOMIC); 1337 if (err < 0) 1338 return err; 1339 } 1340 1341 return in_sack; 1342 } 1343 1344 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1345 static u8 tcp_sacktag_one(struct sock *sk, 1346 struct tcp_sacktag_state *state, u8 sacked, 1347 u32 start_seq, u32 end_seq, 1348 int dup_sack, int pcount, 1349 u64 xmit_time) 1350 { 1351 struct tcp_sock *tp = tcp_sk(sk); 1352 1353 /* Account D-SACK for retransmitted packet. */ 1354 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1355 if (tp->undo_marker && tp->undo_retrans > 0 && 1356 after(end_seq, tp->undo_marker)) 1357 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount); 1358 if ((sacked & TCPCB_SACKED_ACKED) && 1359 before(start_seq, state->reord)) 1360 state->reord = start_seq; 1361 } 1362 1363 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1364 if (!after(end_seq, tp->snd_una)) 1365 return sacked; 1366 1367 if (!(sacked & TCPCB_SACKED_ACKED)) { 1368 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1369 1370 if (sacked & TCPCB_SACKED_RETRANS) { 1371 /* If the segment is not tagged as lost, 1372 * we do not clear RETRANS, believing 1373 * that retransmission is still in flight. 1374 */ 1375 if (sacked & TCPCB_LOST) { 1376 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1377 tp->lost_out -= pcount; 1378 tp->retrans_out -= pcount; 1379 } 1380 } else { 1381 if (!(sacked & TCPCB_RETRANS)) { 1382 /* New sack for not retransmitted frame, 1383 * which was in hole. It is reordering. 1384 */ 1385 if (before(start_seq, 1386 tcp_highest_sack_seq(tp)) && 1387 before(start_seq, state->reord)) 1388 state->reord = start_seq; 1389 1390 if (!after(end_seq, tp->high_seq)) 1391 state->flag |= FLAG_ORIG_SACK_ACKED; 1392 if (state->first_sackt == 0) 1393 state->first_sackt = xmit_time; 1394 state->last_sackt = xmit_time; 1395 } 1396 1397 if (sacked & TCPCB_LOST) { 1398 sacked &= ~TCPCB_LOST; 1399 tp->lost_out -= pcount; 1400 } 1401 } 1402 1403 sacked |= TCPCB_SACKED_ACKED; 1404 state->flag |= FLAG_DATA_SACKED; 1405 tp->sacked_out += pcount; 1406 /* Out-of-order packets delivered */ 1407 state->sack_delivered += pcount; 1408 1409 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1410 if (tp->lost_skb_hint && 1411 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1412 tp->lost_cnt_hint += pcount; 1413 } 1414 1415 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1416 * frames and clear it. undo_retrans is decreased above, L|R frames 1417 * are accounted above as well. 1418 */ 1419 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1420 sacked &= ~TCPCB_SACKED_RETRANS; 1421 tp->retrans_out -= pcount; 1422 } 1423 1424 return sacked; 1425 } 1426 1427 /* Shift newly-SACKed bytes from this skb to the immediately previous 1428 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1429 */ 1430 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1431 struct sk_buff *skb, 1432 struct tcp_sacktag_state *state, 1433 unsigned int pcount, int shifted, int mss, 1434 bool dup_sack) 1435 { 1436 struct tcp_sock *tp = tcp_sk(sk); 1437 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1438 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1439 1440 BUG_ON(!pcount); 1441 1442 /* Adjust counters and hints for the newly sacked sequence 1443 * range but discard the return value since prev is already 1444 * marked. We must tag the range first because the seq 1445 * advancement below implicitly advances 1446 * tcp_highest_sack_seq() when skb is highest_sack. 1447 */ 1448 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1449 start_seq, end_seq, dup_sack, pcount, 1450 tcp_skb_timestamp_us(skb)); 1451 tcp_rate_skb_delivered(sk, skb, state->rate); 1452 1453 if (skb == tp->lost_skb_hint) 1454 tp->lost_cnt_hint += pcount; 1455 1456 TCP_SKB_CB(prev)->end_seq += shifted; 1457 TCP_SKB_CB(skb)->seq += shifted; 1458 1459 tcp_skb_pcount_add(prev, pcount); 1460 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1461 tcp_skb_pcount_add(skb, -pcount); 1462 1463 /* When we're adding to gso_segs == 1, gso_size will be zero, 1464 * in theory this shouldn't be necessary but as long as DSACK 1465 * code can come after this skb later on it's better to keep 1466 * setting gso_size to something. 1467 */ 1468 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1469 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1470 1471 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1472 if (tcp_skb_pcount(skb) <= 1) 1473 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1474 1475 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1476 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1477 1478 if (skb->len > 0) { 1479 BUG_ON(!tcp_skb_pcount(skb)); 1480 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1481 return false; 1482 } 1483 1484 /* Whole SKB was eaten :-) */ 1485 1486 if (skb == tp->retransmit_skb_hint) 1487 tp->retransmit_skb_hint = prev; 1488 if (skb == tp->lost_skb_hint) { 1489 tp->lost_skb_hint = prev; 1490 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1491 } 1492 1493 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1494 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1495 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1496 TCP_SKB_CB(prev)->end_seq++; 1497 1498 if (skb == tcp_highest_sack(sk)) 1499 tcp_advance_highest_sack(sk, skb); 1500 1501 tcp_skb_collapse_tstamp(prev, skb); 1502 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1503 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1504 1505 tcp_rtx_queue_unlink_and_free(skb, sk); 1506 1507 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1508 1509 return true; 1510 } 1511 1512 /* I wish gso_size would have a bit more sane initialization than 1513 * something-or-zero which complicates things 1514 */ 1515 static int tcp_skb_seglen(const struct sk_buff *skb) 1516 { 1517 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1518 } 1519 1520 /* Shifting pages past head area doesn't work */ 1521 static int skb_can_shift(const struct sk_buff *skb) 1522 { 1523 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1524 } 1525 1526 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1527 int pcount, int shiftlen) 1528 { 1529 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1530 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1531 * to make sure not storing more than 65535 * 8 bytes per skb, 1532 * even if current MSS is bigger. 1533 */ 1534 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1535 return 0; 1536 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1537 return 0; 1538 return skb_shift(to, from, shiftlen); 1539 } 1540 1541 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1542 * skb. 1543 */ 1544 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1545 struct tcp_sacktag_state *state, 1546 u32 start_seq, u32 end_seq, 1547 bool dup_sack) 1548 { 1549 struct tcp_sock *tp = tcp_sk(sk); 1550 struct sk_buff *prev; 1551 int mss; 1552 int pcount = 0; 1553 int len; 1554 int in_sack; 1555 1556 /* Normally R but no L won't result in plain S */ 1557 if (!dup_sack && 1558 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1559 goto fallback; 1560 if (!skb_can_shift(skb)) 1561 goto fallback; 1562 /* This frame is about to be dropped (was ACKed). */ 1563 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1564 goto fallback; 1565 1566 /* Can only happen with delayed DSACK + discard craziness */ 1567 prev = skb_rb_prev(skb); 1568 if (!prev) 1569 goto fallback; 1570 1571 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1572 goto fallback; 1573 1574 if (!tcp_skb_can_collapse(prev, skb)) 1575 goto fallback; 1576 1577 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1578 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1579 1580 if (in_sack) { 1581 len = skb->len; 1582 pcount = tcp_skb_pcount(skb); 1583 mss = tcp_skb_seglen(skb); 1584 1585 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1586 * drop this restriction as unnecessary 1587 */ 1588 if (mss != tcp_skb_seglen(prev)) 1589 goto fallback; 1590 } else { 1591 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1592 goto noop; 1593 /* CHECKME: This is non-MSS split case only?, this will 1594 * cause skipped skbs due to advancing loop btw, original 1595 * has that feature too 1596 */ 1597 if (tcp_skb_pcount(skb) <= 1) 1598 goto noop; 1599 1600 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1601 if (!in_sack) { 1602 /* TODO: head merge to next could be attempted here 1603 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1604 * though it might not be worth of the additional hassle 1605 * 1606 * ...we can probably just fallback to what was done 1607 * previously. We could try merging non-SACKed ones 1608 * as well but it probably isn't going to buy off 1609 * because later SACKs might again split them, and 1610 * it would make skb timestamp tracking considerably 1611 * harder problem. 1612 */ 1613 goto fallback; 1614 } 1615 1616 len = end_seq - TCP_SKB_CB(skb)->seq; 1617 BUG_ON(len < 0); 1618 BUG_ON(len > skb->len); 1619 1620 /* MSS boundaries should be honoured or else pcount will 1621 * severely break even though it makes things bit trickier. 1622 * Optimize common case to avoid most of the divides 1623 */ 1624 mss = tcp_skb_mss(skb); 1625 1626 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1627 * drop this restriction as unnecessary 1628 */ 1629 if (mss != tcp_skb_seglen(prev)) 1630 goto fallback; 1631 1632 if (len == mss) { 1633 pcount = 1; 1634 } else if (len < mss) { 1635 goto noop; 1636 } else { 1637 pcount = len / mss; 1638 len = pcount * mss; 1639 } 1640 } 1641 1642 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1643 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1644 goto fallback; 1645 1646 if (!tcp_skb_shift(prev, skb, pcount, len)) 1647 goto fallback; 1648 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1649 goto out; 1650 1651 /* Hole filled allows collapsing with the next as well, this is very 1652 * useful when hole on every nth skb pattern happens 1653 */ 1654 skb = skb_rb_next(prev); 1655 if (!skb) 1656 goto out; 1657 1658 if (!skb_can_shift(skb) || 1659 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1660 (mss != tcp_skb_seglen(skb))) 1661 goto out; 1662 1663 if (!tcp_skb_can_collapse(prev, skb)) 1664 goto out; 1665 len = skb->len; 1666 pcount = tcp_skb_pcount(skb); 1667 if (tcp_skb_shift(prev, skb, pcount, len)) 1668 tcp_shifted_skb(sk, prev, skb, state, pcount, 1669 len, mss, 0); 1670 1671 out: 1672 return prev; 1673 1674 noop: 1675 return skb; 1676 1677 fallback: 1678 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1679 return NULL; 1680 } 1681 1682 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1683 struct tcp_sack_block *next_dup, 1684 struct tcp_sacktag_state *state, 1685 u32 start_seq, u32 end_seq, 1686 bool dup_sack_in) 1687 { 1688 struct tcp_sock *tp = tcp_sk(sk); 1689 struct sk_buff *tmp; 1690 1691 skb_rbtree_walk_from(skb) { 1692 int in_sack = 0; 1693 bool dup_sack = dup_sack_in; 1694 1695 /* queue is in-order => we can short-circuit the walk early */ 1696 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1697 break; 1698 1699 if (next_dup && 1700 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1701 in_sack = tcp_match_skb_to_sack(sk, skb, 1702 next_dup->start_seq, 1703 next_dup->end_seq); 1704 if (in_sack > 0) 1705 dup_sack = true; 1706 } 1707 1708 /* skb reference here is a bit tricky to get right, since 1709 * shifting can eat and free both this skb and the next, 1710 * so not even _safe variant of the loop is enough. 1711 */ 1712 if (in_sack <= 0) { 1713 tmp = tcp_shift_skb_data(sk, skb, state, 1714 start_seq, end_seq, dup_sack); 1715 if (tmp) { 1716 if (tmp != skb) { 1717 skb = tmp; 1718 continue; 1719 } 1720 1721 in_sack = 0; 1722 } else { 1723 in_sack = tcp_match_skb_to_sack(sk, skb, 1724 start_seq, 1725 end_seq); 1726 } 1727 } 1728 1729 if (unlikely(in_sack < 0)) 1730 break; 1731 1732 if (in_sack) { 1733 TCP_SKB_CB(skb)->sacked = 1734 tcp_sacktag_one(sk, 1735 state, 1736 TCP_SKB_CB(skb)->sacked, 1737 TCP_SKB_CB(skb)->seq, 1738 TCP_SKB_CB(skb)->end_seq, 1739 dup_sack, 1740 tcp_skb_pcount(skb), 1741 tcp_skb_timestamp_us(skb)); 1742 tcp_rate_skb_delivered(sk, skb, state->rate); 1743 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1744 list_del_init(&skb->tcp_tsorted_anchor); 1745 1746 if (!before(TCP_SKB_CB(skb)->seq, 1747 tcp_highest_sack_seq(tp))) 1748 tcp_advance_highest_sack(sk, skb); 1749 } 1750 } 1751 return skb; 1752 } 1753 1754 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1755 { 1756 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1757 struct sk_buff *skb; 1758 1759 while (*p) { 1760 parent = *p; 1761 skb = rb_to_skb(parent); 1762 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1763 p = &parent->rb_left; 1764 continue; 1765 } 1766 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1767 p = &parent->rb_right; 1768 continue; 1769 } 1770 return skb; 1771 } 1772 return NULL; 1773 } 1774 1775 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1776 u32 skip_to_seq) 1777 { 1778 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1779 return skb; 1780 1781 return tcp_sacktag_bsearch(sk, skip_to_seq); 1782 } 1783 1784 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1785 struct sock *sk, 1786 struct tcp_sack_block *next_dup, 1787 struct tcp_sacktag_state *state, 1788 u32 skip_to_seq) 1789 { 1790 if (!next_dup) 1791 return skb; 1792 1793 if (before(next_dup->start_seq, skip_to_seq)) { 1794 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1795 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1796 next_dup->start_seq, next_dup->end_seq, 1797 1); 1798 } 1799 1800 return skb; 1801 } 1802 1803 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1804 { 1805 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1806 } 1807 1808 static int 1809 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1810 u32 prior_snd_una, struct tcp_sacktag_state *state) 1811 { 1812 struct tcp_sock *tp = tcp_sk(sk); 1813 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1814 TCP_SKB_CB(ack_skb)->sacked); 1815 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1816 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1817 struct tcp_sack_block *cache; 1818 struct sk_buff *skb; 1819 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1820 int used_sacks; 1821 bool found_dup_sack = false; 1822 int i, j; 1823 int first_sack_index; 1824 1825 state->flag = 0; 1826 state->reord = tp->snd_nxt; 1827 1828 if (!tp->sacked_out) 1829 tcp_highest_sack_reset(sk); 1830 1831 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1832 num_sacks, prior_snd_una, state); 1833 1834 /* Eliminate too old ACKs, but take into 1835 * account more or less fresh ones, they can 1836 * contain valid SACK info. 1837 */ 1838 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1839 return 0; 1840 1841 if (!tp->packets_out) 1842 goto out; 1843 1844 used_sacks = 0; 1845 first_sack_index = 0; 1846 for (i = 0; i < num_sacks; i++) { 1847 bool dup_sack = !i && found_dup_sack; 1848 1849 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1850 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1851 1852 if (!tcp_is_sackblock_valid(tp, dup_sack, 1853 sp[used_sacks].start_seq, 1854 sp[used_sacks].end_seq)) { 1855 int mib_idx; 1856 1857 if (dup_sack) { 1858 if (!tp->undo_marker) 1859 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1860 else 1861 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1862 } else { 1863 /* Don't count olds caused by ACK reordering */ 1864 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1865 !after(sp[used_sacks].end_seq, tp->snd_una)) 1866 continue; 1867 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1868 } 1869 1870 NET_INC_STATS(sock_net(sk), mib_idx); 1871 if (i == 0) 1872 first_sack_index = -1; 1873 continue; 1874 } 1875 1876 /* Ignore very old stuff early */ 1877 if (!after(sp[used_sacks].end_seq, prior_snd_una)) { 1878 if (i == 0) 1879 first_sack_index = -1; 1880 continue; 1881 } 1882 1883 used_sacks++; 1884 } 1885 1886 /* order SACK blocks to allow in order walk of the retrans queue */ 1887 for (i = used_sacks - 1; i > 0; i--) { 1888 for (j = 0; j < i; j++) { 1889 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1890 swap(sp[j], sp[j + 1]); 1891 1892 /* Track where the first SACK block goes to */ 1893 if (j == first_sack_index) 1894 first_sack_index = j + 1; 1895 } 1896 } 1897 } 1898 1899 state->mss_now = tcp_current_mss(sk); 1900 skb = NULL; 1901 i = 0; 1902 1903 if (!tp->sacked_out) { 1904 /* It's already past, so skip checking against it */ 1905 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1906 } else { 1907 cache = tp->recv_sack_cache; 1908 /* Skip empty blocks in at head of the cache */ 1909 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1910 !cache->end_seq) 1911 cache++; 1912 } 1913 1914 while (i < used_sacks) { 1915 u32 start_seq = sp[i].start_seq; 1916 u32 end_seq = sp[i].end_seq; 1917 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1918 struct tcp_sack_block *next_dup = NULL; 1919 1920 if (found_dup_sack && ((i + 1) == first_sack_index)) 1921 next_dup = &sp[i + 1]; 1922 1923 /* Skip too early cached blocks */ 1924 while (tcp_sack_cache_ok(tp, cache) && 1925 !before(start_seq, cache->end_seq)) 1926 cache++; 1927 1928 /* Can skip some work by looking recv_sack_cache? */ 1929 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1930 after(end_seq, cache->start_seq)) { 1931 1932 /* Head todo? */ 1933 if (before(start_seq, cache->start_seq)) { 1934 skb = tcp_sacktag_skip(skb, sk, start_seq); 1935 skb = tcp_sacktag_walk(skb, sk, next_dup, 1936 state, 1937 start_seq, 1938 cache->start_seq, 1939 dup_sack); 1940 } 1941 1942 /* Rest of the block already fully processed? */ 1943 if (!after(end_seq, cache->end_seq)) 1944 goto advance_sp; 1945 1946 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1947 state, 1948 cache->end_seq); 1949 1950 /* ...tail remains todo... */ 1951 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1952 /* ...but better entrypoint exists! */ 1953 skb = tcp_highest_sack(sk); 1954 if (!skb) 1955 break; 1956 cache++; 1957 goto walk; 1958 } 1959 1960 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 1961 /* Check overlap against next cached too (past this one already) */ 1962 cache++; 1963 continue; 1964 } 1965 1966 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1967 skb = tcp_highest_sack(sk); 1968 if (!skb) 1969 break; 1970 } 1971 skb = tcp_sacktag_skip(skb, sk, start_seq); 1972 1973 walk: 1974 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1975 start_seq, end_seq, dup_sack); 1976 1977 advance_sp: 1978 i++; 1979 } 1980 1981 /* Clear the head of the cache sack blocks so we can skip it next time */ 1982 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1983 tp->recv_sack_cache[i].start_seq = 0; 1984 tp->recv_sack_cache[i].end_seq = 0; 1985 } 1986 for (j = 0; j < used_sacks; j++) 1987 tp->recv_sack_cache[i++] = sp[j]; 1988 1989 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 1990 tcp_check_sack_reordering(sk, state->reord, 0); 1991 1992 tcp_verify_left_out(tp); 1993 out: 1994 1995 #if FASTRETRANS_DEBUG > 0 1996 WARN_ON((int)tp->sacked_out < 0); 1997 WARN_ON((int)tp->lost_out < 0); 1998 WARN_ON((int)tp->retrans_out < 0); 1999 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 2000 #endif 2001 return state->flag; 2002 } 2003 2004 /* Limits sacked_out so that sum with lost_out isn't ever larger than 2005 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 2006 */ 2007 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 2008 { 2009 u32 holes; 2010 2011 holes = max(tp->lost_out, 1U); 2012 holes = min(holes, tp->packets_out); 2013 2014 if ((tp->sacked_out + holes) > tp->packets_out) { 2015 tp->sacked_out = tp->packets_out - holes; 2016 return true; 2017 } 2018 return false; 2019 } 2020 2021 /* If we receive more dupacks than we expected counting segments 2022 * in assumption of absent reordering, interpret this as reordering. 2023 * The only another reason could be bug in receiver TCP. 2024 */ 2025 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 2026 { 2027 struct tcp_sock *tp = tcp_sk(sk); 2028 2029 if (!tcp_limit_reno_sacked(tp)) 2030 return; 2031 2032 tp->reordering = min_t(u32, tp->packets_out + addend, 2033 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 2034 tp->reord_seen++; 2035 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 2036 } 2037 2038 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 2039 2040 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack) 2041 { 2042 if (num_dupack) { 2043 struct tcp_sock *tp = tcp_sk(sk); 2044 u32 prior_sacked = tp->sacked_out; 2045 s32 delivered; 2046 2047 tp->sacked_out += num_dupack; 2048 tcp_check_reno_reordering(sk, 0); 2049 delivered = tp->sacked_out - prior_sacked; 2050 if (delivered > 0) 2051 tcp_count_delivered(tp, delivered, ece_ack); 2052 tcp_verify_left_out(tp); 2053 } 2054 } 2055 2056 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 2057 2058 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack) 2059 { 2060 struct tcp_sock *tp = tcp_sk(sk); 2061 2062 if (acked > 0) { 2063 /* One ACK acked hole. The rest eat duplicate ACKs. */ 2064 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1), 2065 ece_ack); 2066 if (acked - 1 >= tp->sacked_out) 2067 tp->sacked_out = 0; 2068 else 2069 tp->sacked_out -= acked - 1; 2070 } 2071 tcp_check_reno_reordering(sk, acked); 2072 tcp_verify_left_out(tp); 2073 } 2074 2075 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 2076 { 2077 tp->sacked_out = 0; 2078 } 2079 2080 void tcp_clear_retrans(struct tcp_sock *tp) 2081 { 2082 tp->retrans_out = 0; 2083 tp->lost_out = 0; 2084 tp->undo_marker = 0; 2085 tp->undo_retrans = -1; 2086 tp->sacked_out = 0; 2087 } 2088 2089 static inline void tcp_init_undo(struct tcp_sock *tp) 2090 { 2091 tp->undo_marker = tp->snd_una; 2092 /* Retransmission still in flight may cause DSACKs later. */ 2093 tp->undo_retrans = tp->retrans_out ? : -1; 2094 } 2095 2096 static bool tcp_is_rack(const struct sock *sk) 2097 { 2098 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) & 2099 TCP_RACK_LOSS_DETECTION; 2100 } 2101 2102 /* If we detect SACK reneging, forget all SACK information 2103 * and reset tags completely, otherwise preserve SACKs. If receiver 2104 * dropped its ofo queue, we will know this due to reneging detection. 2105 */ 2106 static void tcp_timeout_mark_lost(struct sock *sk) 2107 { 2108 struct tcp_sock *tp = tcp_sk(sk); 2109 struct sk_buff *skb, *head; 2110 bool is_reneg; /* is receiver reneging on SACKs? */ 2111 2112 head = tcp_rtx_queue_head(sk); 2113 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 2114 if (is_reneg) { 2115 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2116 tp->sacked_out = 0; 2117 /* Mark SACK reneging until we recover from this loss event. */ 2118 tp->is_sack_reneg = 1; 2119 } else if (tcp_is_reno(tp)) { 2120 tcp_reset_reno_sack(tp); 2121 } 2122 2123 skb = head; 2124 skb_rbtree_walk_from(skb) { 2125 if (is_reneg) 2126 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2127 else if (tcp_is_rack(sk) && skb != head && 2128 tcp_rack_skb_timeout(tp, skb, 0) > 0) 2129 continue; /* Don't mark recently sent ones lost yet */ 2130 tcp_mark_skb_lost(sk, skb); 2131 } 2132 tcp_verify_left_out(tp); 2133 tcp_clear_all_retrans_hints(tp); 2134 } 2135 2136 /* Enter Loss state. */ 2137 void tcp_enter_loss(struct sock *sk) 2138 { 2139 const struct inet_connection_sock *icsk = inet_csk(sk); 2140 struct tcp_sock *tp = tcp_sk(sk); 2141 struct net *net = sock_net(sk); 2142 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 2143 u8 reordering; 2144 2145 tcp_timeout_mark_lost(sk); 2146 2147 /* Reduce ssthresh if it has not yet been made inside this window. */ 2148 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 2149 !after(tp->high_seq, tp->snd_una) || 2150 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2151 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2152 tp->prior_cwnd = tcp_snd_cwnd(tp); 2153 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2154 tcp_ca_event(sk, CA_EVENT_LOSS); 2155 tcp_init_undo(tp); 2156 } 2157 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1); 2158 tp->snd_cwnd_cnt = 0; 2159 tp->snd_cwnd_stamp = tcp_jiffies32; 2160 2161 /* Timeout in disordered state after receiving substantial DUPACKs 2162 * suggests that the degree of reordering is over-estimated. 2163 */ 2164 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering); 2165 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2166 tp->sacked_out >= reordering) 2167 tp->reordering = min_t(unsigned int, tp->reordering, 2168 reordering); 2169 2170 tcp_set_ca_state(sk, TCP_CA_Loss); 2171 tp->high_seq = tp->snd_nxt; 2172 tcp_ecn_queue_cwr(tp); 2173 2174 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2175 * loss recovery is underway except recurring timeout(s) on 2176 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2177 */ 2178 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) && 2179 (new_recovery || icsk->icsk_retransmits) && 2180 !inet_csk(sk)->icsk_mtup.probe_size; 2181 } 2182 2183 /* If ACK arrived pointing to a remembered SACK, it means that our 2184 * remembered SACKs do not reflect real state of receiver i.e. 2185 * receiver _host_ is heavily congested (or buggy). 2186 * 2187 * To avoid big spurious retransmission bursts due to transient SACK 2188 * scoreboard oddities that look like reneging, we give the receiver a 2189 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2190 * restore sanity to the SACK scoreboard. If the apparent reneging 2191 * persists until this RTO then we'll clear the SACK scoreboard. 2192 */ 2193 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2194 { 2195 if (flag & FLAG_SACK_RENEGING && 2196 flag & FLAG_SND_UNA_ADVANCED) { 2197 struct tcp_sock *tp = tcp_sk(sk); 2198 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2199 msecs_to_jiffies(10)); 2200 2201 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2202 delay, TCP_RTO_MAX); 2203 return true; 2204 } 2205 return false; 2206 } 2207 2208 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2209 * counter when SACK is enabled (without SACK, sacked_out is used for 2210 * that purpose). 2211 * 2212 * With reordering, holes may still be in flight, so RFC3517 recovery 2213 * uses pure sacked_out (total number of SACKed segments) even though 2214 * it violates the RFC that uses duplicate ACKs, often these are equal 2215 * but when e.g. out-of-window ACKs or packet duplication occurs, 2216 * they differ. Since neither occurs due to loss, TCP should really 2217 * ignore them. 2218 */ 2219 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2220 { 2221 return tp->sacked_out + 1; 2222 } 2223 2224 /* Linux NewReno/SACK/ECN state machine. 2225 * -------------------------------------- 2226 * 2227 * "Open" Normal state, no dubious events, fast path. 2228 * "Disorder" In all the respects it is "Open", 2229 * but requires a bit more attention. It is entered when 2230 * we see some SACKs or dupacks. It is split of "Open" 2231 * mainly to move some processing from fast path to slow one. 2232 * "CWR" CWND was reduced due to some Congestion Notification event. 2233 * It can be ECN, ICMP source quench, local device congestion. 2234 * "Recovery" CWND was reduced, we are fast-retransmitting. 2235 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2236 * 2237 * tcp_fastretrans_alert() is entered: 2238 * - each incoming ACK, if state is not "Open" 2239 * - when arrived ACK is unusual, namely: 2240 * * SACK 2241 * * Duplicate ACK. 2242 * * ECN ECE. 2243 * 2244 * Counting packets in flight is pretty simple. 2245 * 2246 * in_flight = packets_out - left_out + retrans_out 2247 * 2248 * packets_out is SND.NXT-SND.UNA counted in packets. 2249 * 2250 * retrans_out is number of retransmitted segments. 2251 * 2252 * left_out is number of segments left network, but not ACKed yet. 2253 * 2254 * left_out = sacked_out + lost_out 2255 * 2256 * sacked_out: Packets, which arrived to receiver out of order 2257 * and hence not ACKed. With SACKs this number is simply 2258 * amount of SACKed data. Even without SACKs 2259 * it is easy to give pretty reliable estimate of this number, 2260 * counting duplicate ACKs. 2261 * 2262 * lost_out: Packets lost by network. TCP has no explicit 2263 * "loss notification" feedback from network (for now). 2264 * It means that this number can be only _guessed_. 2265 * Actually, it is the heuristics to predict lossage that 2266 * distinguishes different algorithms. 2267 * 2268 * F.e. after RTO, when all the queue is considered as lost, 2269 * lost_out = packets_out and in_flight = retrans_out. 2270 * 2271 * Essentially, we have now a few algorithms detecting 2272 * lost packets. 2273 * 2274 * If the receiver supports SACK: 2275 * 2276 * RFC6675/3517: It is the conventional algorithm. A packet is 2277 * considered lost if the number of higher sequence packets 2278 * SACKed is greater than or equal the DUPACK thoreshold 2279 * (reordering). This is implemented in tcp_mark_head_lost and 2280 * tcp_update_scoreboard. 2281 * 2282 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2283 * (2017-) that checks timing instead of counting DUPACKs. 2284 * Essentially a packet is considered lost if it's not S/ACKed 2285 * after RTT + reordering_window, where both metrics are 2286 * dynamically measured and adjusted. This is implemented in 2287 * tcp_rack_mark_lost. 2288 * 2289 * If the receiver does not support SACK: 2290 * 2291 * NewReno (RFC6582): in Recovery we assume that one segment 2292 * is lost (classic Reno). While we are in Recovery and 2293 * a partial ACK arrives, we assume that one more packet 2294 * is lost (NewReno). This heuristics are the same in NewReno 2295 * and SACK. 2296 * 2297 * Really tricky (and requiring careful tuning) part of algorithm 2298 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2299 * The first determines the moment _when_ we should reduce CWND and, 2300 * hence, slow down forward transmission. In fact, it determines the moment 2301 * when we decide that hole is caused by loss, rather than by a reorder. 2302 * 2303 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2304 * holes, caused by lost packets. 2305 * 2306 * And the most logically complicated part of algorithm is undo 2307 * heuristics. We detect false retransmits due to both too early 2308 * fast retransmit (reordering) and underestimated RTO, analyzing 2309 * timestamps and D-SACKs. When we detect that some segments were 2310 * retransmitted by mistake and CWND reduction was wrong, we undo 2311 * window reduction and abort recovery phase. This logic is hidden 2312 * inside several functions named tcp_try_undo_<something>. 2313 */ 2314 2315 /* This function decides, when we should leave Disordered state 2316 * and enter Recovery phase, reducing congestion window. 2317 * 2318 * Main question: may we further continue forward transmission 2319 * with the same cwnd? 2320 */ 2321 static bool tcp_time_to_recover(struct sock *sk, int flag) 2322 { 2323 struct tcp_sock *tp = tcp_sk(sk); 2324 2325 /* Trick#1: The loss is proven. */ 2326 if (tp->lost_out) 2327 return true; 2328 2329 /* Not-A-Trick#2 : Classic rule... */ 2330 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2331 return true; 2332 2333 return false; 2334 } 2335 2336 /* Detect loss in event "A" above by marking head of queue up as lost. 2337 * For RFC3517 SACK, a segment is considered lost if it 2338 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2339 * the maximum SACKed segments to pass before reaching this limit. 2340 */ 2341 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2342 { 2343 struct tcp_sock *tp = tcp_sk(sk); 2344 struct sk_buff *skb; 2345 int cnt; 2346 /* Use SACK to deduce losses of new sequences sent during recovery */ 2347 const u32 loss_high = tp->snd_nxt; 2348 2349 WARN_ON(packets > tp->packets_out); 2350 skb = tp->lost_skb_hint; 2351 if (skb) { 2352 /* Head already handled? */ 2353 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2354 return; 2355 cnt = tp->lost_cnt_hint; 2356 } else { 2357 skb = tcp_rtx_queue_head(sk); 2358 cnt = 0; 2359 } 2360 2361 skb_rbtree_walk_from(skb) { 2362 /* TODO: do this better */ 2363 /* this is not the most efficient way to do this... */ 2364 tp->lost_skb_hint = skb; 2365 tp->lost_cnt_hint = cnt; 2366 2367 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2368 break; 2369 2370 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2371 cnt += tcp_skb_pcount(skb); 2372 2373 if (cnt > packets) 2374 break; 2375 2376 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST)) 2377 tcp_mark_skb_lost(sk, skb); 2378 2379 if (mark_head) 2380 break; 2381 } 2382 tcp_verify_left_out(tp); 2383 } 2384 2385 /* Account newly detected lost packet(s) */ 2386 2387 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2388 { 2389 struct tcp_sock *tp = tcp_sk(sk); 2390 2391 if (tcp_is_sack(tp)) { 2392 int sacked_upto = tp->sacked_out - tp->reordering; 2393 if (sacked_upto >= 0) 2394 tcp_mark_head_lost(sk, sacked_upto, 0); 2395 else if (fast_rexmit) 2396 tcp_mark_head_lost(sk, 1, 1); 2397 } 2398 } 2399 2400 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2401 { 2402 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2403 before(tp->rx_opt.rcv_tsecr, when); 2404 } 2405 2406 /* skb is spurious retransmitted if the returned timestamp echo 2407 * reply is prior to the skb transmission time 2408 */ 2409 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2410 const struct sk_buff *skb) 2411 { 2412 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2413 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2414 } 2415 2416 /* Nothing was retransmitted or returned timestamp is less 2417 * than timestamp of the first retransmission. 2418 */ 2419 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2420 { 2421 return tp->retrans_stamp && 2422 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2423 } 2424 2425 /* Undo procedures. */ 2426 2427 /* We can clear retrans_stamp when there are no retransmissions in the 2428 * window. It would seem that it is trivially available for us in 2429 * tp->retrans_out, however, that kind of assumptions doesn't consider 2430 * what will happen if errors occur when sending retransmission for the 2431 * second time. ...It could the that such segment has only 2432 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2433 * the head skb is enough except for some reneging corner cases that 2434 * are not worth the effort. 2435 * 2436 * Main reason for all this complexity is the fact that connection dying 2437 * time now depends on the validity of the retrans_stamp, in particular, 2438 * that successive retransmissions of a segment must not advance 2439 * retrans_stamp under any conditions. 2440 */ 2441 static bool tcp_any_retrans_done(const struct sock *sk) 2442 { 2443 const struct tcp_sock *tp = tcp_sk(sk); 2444 struct sk_buff *skb; 2445 2446 if (tp->retrans_out) 2447 return true; 2448 2449 skb = tcp_rtx_queue_head(sk); 2450 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2451 return true; 2452 2453 return false; 2454 } 2455 2456 static void DBGUNDO(struct sock *sk, const char *msg) 2457 { 2458 #if FASTRETRANS_DEBUG > 1 2459 struct tcp_sock *tp = tcp_sk(sk); 2460 struct inet_sock *inet = inet_sk(sk); 2461 2462 if (sk->sk_family == AF_INET) { 2463 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2464 msg, 2465 &inet->inet_daddr, ntohs(inet->inet_dport), 2466 tcp_snd_cwnd(tp), tcp_left_out(tp), 2467 tp->snd_ssthresh, tp->prior_ssthresh, 2468 tp->packets_out); 2469 } 2470 #if IS_ENABLED(CONFIG_IPV6) 2471 else if (sk->sk_family == AF_INET6) { 2472 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2473 msg, 2474 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2475 tcp_snd_cwnd(tp), tcp_left_out(tp), 2476 tp->snd_ssthresh, tp->prior_ssthresh, 2477 tp->packets_out); 2478 } 2479 #endif 2480 #endif 2481 } 2482 2483 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2484 { 2485 struct tcp_sock *tp = tcp_sk(sk); 2486 2487 if (unmark_loss) { 2488 struct sk_buff *skb; 2489 2490 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2491 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2492 } 2493 tp->lost_out = 0; 2494 tcp_clear_all_retrans_hints(tp); 2495 } 2496 2497 if (tp->prior_ssthresh) { 2498 const struct inet_connection_sock *icsk = inet_csk(sk); 2499 2500 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk)); 2501 2502 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2503 tp->snd_ssthresh = tp->prior_ssthresh; 2504 tcp_ecn_withdraw_cwr(tp); 2505 } 2506 } 2507 tp->snd_cwnd_stamp = tcp_jiffies32; 2508 tp->undo_marker = 0; 2509 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2510 } 2511 2512 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2513 { 2514 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2515 } 2516 2517 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk) 2518 { 2519 struct tcp_sock *tp = tcp_sk(sk); 2520 2521 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2522 /* Hold old state until something *above* high_seq 2523 * is ACKed. For Reno it is MUST to prevent false 2524 * fast retransmits (RFC2582). SACK TCP is safe. */ 2525 if (!tcp_any_retrans_done(sk)) 2526 tp->retrans_stamp = 0; 2527 return true; 2528 } 2529 return false; 2530 } 2531 2532 /* People celebrate: "We love our President!" */ 2533 static bool tcp_try_undo_recovery(struct sock *sk) 2534 { 2535 struct tcp_sock *tp = tcp_sk(sk); 2536 2537 if (tcp_may_undo(tp)) { 2538 int mib_idx; 2539 2540 /* Happy end! We did not retransmit anything 2541 * or our original transmission succeeded. 2542 */ 2543 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2544 tcp_undo_cwnd_reduction(sk, false); 2545 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2546 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2547 else 2548 mib_idx = LINUX_MIB_TCPFULLUNDO; 2549 2550 NET_INC_STATS(sock_net(sk), mib_idx); 2551 } else if (tp->rack.reo_wnd_persist) { 2552 tp->rack.reo_wnd_persist--; 2553 } 2554 if (tcp_is_non_sack_preventing_reopen(sk)) 2555 return true; 2556 tcp_set_ca_state(sk, TCP_CA_Open); 2557 tp->is_sack_reneg = 0; 2558 return false; 2559 } 2560 2561 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2562 static bool tcp_try_undo_dsack(struct sock *sk) 2563 { 2564 struct tcp_sock *tp = tcp_sk(sk); 2565 2566 if (tp->undo_marker && !tp->undo_retrans) { 2567 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2568 tp->rack.reo_wnd_persist + 1); 2569 DBGUNDO(sk, "D-SACK"); 2570 tcp_undo_cwnd_reduction(sk, false); 2571 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2572 return true; 2573 } 2574 return false; 2575 } 2576 2577 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2578 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2579 { 2580 struct tcp_sock *tp = tcp_sk(sk); 2581 2582 if (frto_undo || tcp_may_undo(tp)) { 2583 tcp_undo_cwnd_reduction(sk, true); 2584 2585 DBGUNDO(sk, "partial loss"); 2586 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2587 if (frto_undo) 2588 NET_INC_STATS(sock_net(sk), 2589 LINUX_MIB_TCPSPURIOUSRTOS); 2590 inet_csk(sk)->icsk_retransmits = 0; 2591 if (tcp_is_non_sack_preventing_reopen(sk)) 2592 return true; 2593 if (frto_undo || tcp_is_sack(tp)) { 2594 tcp_set_ca_state(sk, TCP_CA_Open); 2595 tp->is_sack_reneg = 0; 2596 } 2597 return true; 2598 } 2599 return false; 2600 } 2601 2602 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2603 * It computes the number of packets to send (sndcnt) based on packets newly 2604 * delivered: 2605 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2606 * cwnd reductions across a full RTT. 2607 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2608 * But when SND_UNA is acked without further losses, 2609 * slow starts cwnd up to ssthresh to speed up the recovery. 2610 */ 2611 static void tcp_init_cwnd_reduction(struct sock *sk) 2612 { 2613 struct tcp_sock *tp = tcp_sk(sk); 2614 2615 tp->high_seq = tp->snd_nxt; 2616 tp->tlp_high_seq = 0; 2617 tp->snd_cwnd_cnt = 0; 2618 tp->prior_cwnd = tcp_snd_cwnd(tp); 2619 tp->prr_delivered = 0; 2620 tp->prr_out = 0; 2621 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2622 tcp_ecn_queue_cwr(tp); 2623 } 2624 2625 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag) 2626 { 2627 struct tcp_sock *tp = tcp_sk(sk); 2628 int sndcnt = 0; 2629 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2630 2631 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2632 return; 2633 2634 tp->prr_delivered += newly_acked_sacked; 2635 if (delta < 0) { 2636 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2637 tp->prior_cwnd - 1; 2638 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2639 } else { 2640 sndcnt = max_t(int, tp->prr_delivered - tp->prr_out, 2641 newly_acked_sacked); 2642 if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) 2643 sndcnt++; 2644 sndcnt = min(delta, sndcnt); 2645 } 2646 /* Force a fast retransmit upon entering fast recovery */ 2647 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2648 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt); 2649 } 2650 2651 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2652 { 2653 struct tcp_sock *tp = tcp_sk(sk); 2654 2655 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2656 return; 2657 2658 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2659 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2660 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2661 tcp_snd_cwnd_set(tp, tp->snd_ssthresh); 2662 tp->snd_cwnd_stamp = tcp_jiffies32; 2663 } 2664 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2665 } 2666 2667 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2668 void tcp_enter_cwr(struct sock *sk) 2669 { 2670 struct tcp_sock *tp = tcp_sk(sk); 2671 2672 tp->prior_ssthresh = 0; 2673 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2674 tp->undo_marker = 0; 2675 tcp_init_cwnd_reduction(sk); 2676 tcp_set_ca_state(sk, TCP_CA_CWR); 2677 } 2678 } 2679 EXPORT_SYMBOL(tcp_enter_cwr); 2680 2681 static void tcp_try_keep_open(struct sock *sk) 2682 { 2683 struct tcp_sock *tp = tcp_sk(sk); 2684 int state = TCP_CA_Open; 2685 2686 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2687 state = TCP_CA_Disorder; 2688 2689 if (inet_csk(sk)->icsk_ca_state != state) { 2690 tcp_set_ca_state(sk, state); 2691 tp->high_seq = tp->snd_nxt; 2692 } 2693 } 2694 2695 static void tcp_try_to_open(struct sock *sk, int flag) 2696 { 2697 struct tcp_sock *tp = tcp_sk(sk); 2698 2699 tcp_verify_left_out(tp); 2700 2701 if (!tcp_any_retrans_done(sk)) 2702 tp->retrans_stamp = 0; 2703 2704 if (flag & FLAG_ECE) 2705 tcp_enter_cwr(sk); 2706 2707 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2708 tcp_try_keep_open(sk); 2709 } 2710 } 2711 2712 static void tcp_mtup_probe_failed(struct sock *sk) 2713 { 2714 struct inet_connection_sock *icsk = inet_csk(sk); 2715 2716 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2717 icsk->icsk_mtup.probe_size = 0; 2718 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2719 } 2720 2721 static void tcp_mtup_probe_success(struct sock *sk) 2722 { 2723 struct tcp_sock *tp = tcp_sk(sk); 2724 struct inet_connection_sock *icsk = inet_csk(sk); 2725 u64 val; 2726 2727 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2728 2729 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache); 2730 do_div(val, icsk->icsk_mtup.probe_size); 2731 DEBUG_NET_WARN_ON_ONCE((u32)val != val); 2732 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val)); 2733 2734 tp->snd_cwnd_cnt = 0; 2735 tp->snd_cwnd_stamp = tcp_jiffies32; 2736 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2737 2738 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2739 icsk->icsk_mtup.probe_size = 0; 2740 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2741 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2742 } 2743 2744 /* Do a simple retransmit without using the backoff mechanisms in 2745 * tcp_timer. This is used for path mtu discovery. 2746 * The socket is already locked here. 2747 */ 2748 void tcp_simple_retransmit(struct sock *sk) 2749 { 2750 const struct inet_connection_sock *icsk = inet_csk(sk); 2751 struct tcp_sock *tp = tcp_sk(sk); 2752 struct sk_buff *skb; 2753 int mss; 2754 2755 /* A fastopen SYN request is stored as two separate packets within 2756 * the retransmit queue, this is done by tcp_send_syn_data(). 2757 * As a result simply checking the MSS of the frames in the queue 2758 * will not work for the SYN packet. 2759 * 2760 * Us being here is an indication of a path MTU issue so we can 2761 * assume that the fastopen SYN was lost and just mark all the 2762 * frames in the retransmit queue as lost. We will use an MSS of 2763 * -1 to mark all frames as lost, otherwise compute the current MSS. 2764 */ 2765 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT) 2766 mss = -1; 2767 else 2768 mss = tcp_current_mss(sk); 2769 2770 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2771 if (tcp_skb_seglen(skb) > mss) 2772 tcp_mark_skb_lost(sk, skb); 2773 } 2774 2775 tcp_clear_retrans_hints_partial(tp); 2776 2777 if (!tp->lost_out) 2778 return; 2779 2780 if (tcp_is_reno(tp)) 2781 tcp_limit_reno_sacked(tp); 2782 2783 tcp_verify_left_out(tp); 2784 2785 /* Don't muck with the congestion window here. 2786 * Reason is that we do not increase amount of _data_ 2787 * in network, but units changed and effective 2788 * cwnd/ssthresh really reduced now. 2789 */ 2790 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2791 tp->high_seq = tp->snd_nxt; 2792 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2793 tp->prior_ssthresh = 0; 2794 tp->undo_marker = 0; 2795 tcp_set_ca_state(sk, TCP_CA_Loss); 2796 } 2797 tcp_xmit_retransmit_queue(sk); 2798 } 2799 EXPORT_SYMBOL(tcp_simple_retransmit); 2800 2801 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2802 { 2803 struct tcp_sock *tp = tcp_sk(sk); 2804 int mib_idx; 2805 2806 if (tcp_is_reno(tp)) 2807 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2808 else 2809 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2810 2811 NET_INC_STATS(sock_net(sk), mib_idx); 2812 2813 tp->prior_ssthresh = 0; 2814 tcp_init_undo(tp); 2815 2816 if (!tcp_in_cwnd_reduction(sk)) { 2817 if (!ece_ack) 2818 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2819 tcp_init_cwnd_reduction(sk); 2820 } 2821 tcp_set_ca_state(sk, TCP_CA_Recovery); 2822 } 2823 2824 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2825 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2826 */ 2827 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2828 int *rexmit) 2829 { 2830 struct tcp_sock *tp = tcp_sk(sk); 2831 bool recovered = !before(tp->snd_una, tp->high_seq); 2832 2833 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 2834 tcp_try_undo_loss(sk, false)) 2835 return; 2836 2837 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2838 /* Step 3.b. A timeout is spurious if not all data are 2839 * lost, i.e., never-retransmitted data are (s)acked. 2840 */ 2841 if ((flag & FLAG_ORIG_SACK_ACKED) && 2842 tcp_try_undo_loss(sk, true)) 2843 return; 2844 2845 if (after(tp->snd_nxt, tp->high_seq)) { 2846 if (flag & FLAG_DATA_SACKED || num_dupack) 2847 tp->frto = 0; /* Step 3.a. loss was real */ 2848 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2849 tp->high_seq = tp->snd_nxt; 2850 /* Step 2.b. Try send new data (but deferred until cwnd 2851 * is updated in tcp_ack()). Otherwise fall back to 2852 * the conventional recovery. 2853 */ 2854 if (!tcp_write_queue_empty(sk) && 2855 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2856 *rexmit = REXMIT_NEW; 2857 return; 2858 } 2859 tp->frto = 0; 2860 } 2861 } 2862 2863 if (recovered) { 2864 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2865 tcp_try_undo_recovery(sk); 2866 return; 2867 } 2868 if (tcp_is_reno(tp)) { 2869 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2870 * delivered. Lower inflight to clock out (re)tranmissions. 2871 */ 2872 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2873 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE); 2874 else if (flag & FLAG_SND_UNA_ADVANCED) 2875 tcp_reset_reno_sack(tp); 2876 } 2877 *rexmit = REXMIT_LOST; 2878 } 2879 2880 static bool tcp_force_fast_retransmit(struct sock *sk) 2881 { 2882 struct tcp_sock *tp = tcp_sk(sk); 2883 2884 return after(tcp_highest_sack_seq(tp), 2885 tp->snd_una + tp->reordering * tp->mss_cache); 2886 } 2887 2888 /* Undo during fast recovery after partial ACK. */ 2889 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una, 2890 bool *do_lost) 2891 { 2892 struct tcp_sock *tp = tcp_sk(sk); 2893 2894 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2895 /* Plain luck! Hole if filled with delayed 2896 * packet, rather than with a retransmit. Check reordering. 2897 */ 2898 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2899 2900 /* We are getting evidence that the reordering degree is higher 2901 * than we realized. If there are no retransmits out then we 2902 * can undo. Otherwise we clock out new packets but do not 2903 * mark more packets lost or retransmit more. 2904 */ 2905 if (tp->retrans_out) 2906 return true; 2907 2908 if (!tcp_any_retrans_done(sk)) 2909 tp->retrans_stamp = 0; 2910 2911 DBGUNDO(sk, "partial recovery"); 2912 tcp_undo_cwnd_reduction(sk, true); 2913 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2914 tcp_try_keep_open(sk); 2915 } else { 2916 /* Partial ACK arrived. Force fast retransmit. */ 2917 *do_lost = tcp_force_fast_retransmit(sk); 2918 } 2919 return false; 2920 } 2921 2922 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2923 { 2924 struct tcp_sock *tp = tcp_sk(sk); 2925 2926 if (tcp_rtx_queue_empty(sk)) 2927 return; 2928 2929 if (unlikely(tcp_is_reno(tp))) { 2930 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2931 } else if (tcp_is_rack(sk)) { 2932 u32 prior_retrans = tp->retrans_out; 2933 2934 if (tcp_rack_mark_lost(sk)) 2935 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 2936 if (prior_retrans > tp->retrans_out) 2937 *ack_flag |= FLAG_LOST_RETRANS; 2938 } 2939 } 2940 2941 /* Process an event, which can update packets-in-flight not trivially. 2942 * Main goal of this function is to calculate new estimate for left_out, 2943 * taking into account both packets sitting in receiver's buffer and 2944 * packets lost by network. 2945 * 2946 * Besides that it updates the congestion state when packet loss or ECN 2947 * is detected. But it does not reduce the cwnd, it is done by the 2948 * congestion control later. 2949 * 2950 * It does _not_ decide what to send, it is made in function 2951 * tcp_xmit_retransmit_queue(). 2952 */ 2953 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2954 int num_dupack, int *ack_flag, int *rexmit) 2955 { 2956 struct inet_connection_sock *icsk = inet_csk(sk); 2957 struct tcp_sock *tp = tcp_sk(sk); 2958 int fast_rexmit = 0, flag = *ack_flag; 2959 bool ece_ack = flag & FLAG_ECE; 2960 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && 2961 tcp_force_fast_retransmit(sk)); 2962 2963 if (!tp->packets_out && tp->sacked_out) 2964 tp->sacked_out = 0; 2965 2966 /* Now state machine starts. 2967 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2968 if (ece_ack) 2969 tp->prior_ssthresh = 0; 2970 2971 /* B. In all the states check for reneging SACKs. */ 2972 if (tcp_check_sack_reneging(sk, flag)) 2973 return; 2974 2975 /* C. Check consistency of the current state. */ 2976 tcp_verify_left_out(tp); 2977 2978 /* D. Check state exit conditions. State can be terminated 2979 * when high_seq is ACKed. */ 2980 if (icsk->icsk_ca_state == TCP_CA_Open) { 2981 WARN_ON(tp->retrans_out != 0 && !tp->syn_data); 2982 tp->retrans_stamp = 0; 2983 } else if (!before(tp->snd_una, tp->high_seq)) { 2984 switch (icsk->icsk_ca_state) { 2985 case TCP_CA_CWR: 2986 /* CWR is to be held something *above* high_seq 2987 * is ACKed for CWR bit to reach receiver. */ 2988 if (tp->snd_una != tp->high_seq) { 2989 tcp_end_cwnd_reduction(sk); 2990 tcp_set_ca_state(sk, TCP_CA_Open); 2991 } 2992 break; 2993 2994 case TCP_CA_Recovery: 2995 if (tcp_is_reno(tp)) 2996 tcp_reset_reno_sack(tp); 2997 if (tcp_try_undo_recovery(sk)) 2998 return; 2999 tcp_end_cwnd_reduction(sk); 3000 break; 3001 } 3002 } 3003 3004 /* E. Process state. */ 3005 switch (icsk->icsk_ca_state) { 3006 case TCP_CA_Recovery: 3007 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 3008 if (tcp_is_reno(tp)) 3009 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3010 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost)) 3011 return; 3012 3013 if (tcp_try_undo_dsack(sk)) 3014 tcp_try_keep_open(sk); 3015 3016 tcp_identify_packet_loss(sk, ack_flag); 3017 if (icsk->icsk_ca_state != TCP_CA_Recovery) { 3018 if (!tcp_time_to_recover(sk, flag)) 3019 return; 3020 /* Undo reverts the recovery state. If loss is evident, 3021 * starts a new recovery (e.g. reordering then loss); 3022 */ 3023 tcp_enter_recovery(sk, ece_ack); 3024 } 3025 break; 3026 case TCP_CA_Loss: 3027 tcp_process_loss(sk, flag, num_dupack, rexmit); 3028 tcp_identify_packet_loss(sk, ack_flag); 3029 if (!(icsk->icsk_ca_state == TCP_CA_Open || 3030 (*ack_flag & FLAG_LOST_RETRANS))) 3031 return; 3032 /* Change state if cwnd is undone or retransmits are lost */ 3033 fallthrough; 3034 default: 3035 if (tcp_is_reno(tp)) { 3036 if (flag & FLAG_SND_UNA_ADVANCED) 3037 tcp_reset_reno_sack(tp); 3038 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3039 } 3040 3041 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 3042 tcp_try_undo_dsack(sk); 3043 3044 tcp_identify_packet_loss(sk, ack_flag); 3045 if (!tcp_time_to_recover(sk, flag)) { 3046 tcp_try_to_open(sk, flag); 3047 return; 3048 } 3049 3050 /* MTU probe failure: don't reduce cwnd */ 3051 if (icsk->icsk_ca_state < TCP_CA_CWR && 3052 icsk->icsk_mtup.probe_size && 3053 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3054 tcp_mtup_probe_failed(sk); 3055 /* Restores the reduction we did in tcp_mtup_probe() */ 3056 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1); 3057 tcp_simple_retransmit(sk); 3058 return; 3059 } 3060 3061 /* Otherwise enter Recovery state */ 3062 tcp_enter_recovery(sk, ece_ack); 3063 fast_rexmit = 1; 3064 } 3065 3066 if (!tcp_is_rack(sk) && do_lost) 3067 tcp_update_scoreboard(sk, fast_rexmit); 3068 *rexmit = REXMIT_LOST; 3069 } 3070 3071 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 3072 { 3073 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ; 3074 struct tcp_sock *tp = tcp_sk(sk); 3075 3076 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 3077 /* If the remote keeps returning delayed ACKs, eventually 3078 * the min filter would pick it up and overestimate the 3079 * prop. delay when it expires. Skip suspected delayed ACKs. 3080 */ 3081 return; 3082 } 3083 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 3084 rtt_us ? : jiffies_to_usecs(1)); 3085 } 3086 3087 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 3088 long seq_rtt_us, long sack_rtt_us, 3089 long ca_rtt_us, struct rate_sample *rs) 3090 { 3091 const struct tcp_sock *tp = tcp_sk(sk); 3092 3093 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 3094 * broken middle-boxes or peers may corrupt TS-ECR fields. But 3095 * Karn's algorithm forbids taking RTT if some retransmitted data 3096 * is acked (RFC6298). 3097 */ 3098 if (seq_rtt_us < 0) 3099 seq_rtt_us = sack_rtt_us; 3100 3101 /* RTTM Rule: A TSecr value received in a segment is used to 3102 * update the averaged RTT measurement only if the segment 3103 * acknowledges some new data, i.e., only if it advances the 3104 * left edge of the send window. 3105 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3106 */ 3107 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 3108 flag & FLAG_ACKED) { 3109 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 3110 3111 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 3112 if (!delta) 3113 delta = 1; 3114 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 3115 ca_rtt_us = seq_rtt_us; 3116 } 3117 } 3118 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 3119 if (seq_rtt_us < 0) 3120 return false; 3121 3122 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 3123 * always taken together with ACK, SACK, or TS-opts. Any negative 3124 * values will be skipped with the seq_rtt_us < 0 check above. 3125 */ 3126 tcp_update_rtt_min(sk, ca_rtt_us, flag); 3127 tcp_rtt_estimator(sk, seq_rtt_us); 3128 tcp_set_rto(sk); 3129 3130 /* RFC6298: only reset backoff on valid RTT measurement. */ 3131 inet_csk(sk)->icsk_backoff = 0; 3132 return true; 3133 } 3134 3135 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 3136 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 3137 { 3138 struct rate_sample rs; 3139 long rtt_us = -1L; 3140 3141 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 3142 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 3143 3144 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 3145 } 3146 3147 3148 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 3149 { 3150 const struct inet_connection_sock *icsk = inet_csk(sk); 3151 3152 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 3153 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 3154 } 3155 3156 /* Restart timer after forward progress on connection. 3157 * RFC2988 recommends to restart timer to now+rto. 3158 */ 3159 void tcp_rearm_rto(struct sock *sk) 3160 { 3161 const struct inet_connection_sock *icsk = inet_csk(sk); 3162 struct tcp_sock *tp = tcp_sk(sk); 3163 3164 /* If the retrans timer is currently being used by Fast Open 3165 * for SYN-ACK retrans purpose, stay put. 3166 */ 3167 if (rcu_access_pointer(tp->fastopen_rsk)) 3168 return; 3169 3170 if (!tp->packets_out) { 3171 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3172 } else { 3173 u32 rto = inet_csk(sk)->icsk_rto; 3174 /* Offset the time elapsed after installing regular RTO */ 3175 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3176 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3177 s64 delta_us = tcp_rto_delta_us(sk); 3178 /* delta_us may not be positive if the socket is locked 3179 * when the retrans timer fires and is rescheduled. 3180 */ 3181 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3182 } 3183 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3184 TCP_RTO_MAX); 3185 } 3186 } 3187 3188 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3189 static void tcp_set_xmit_timer(struct sock *sk) 3190 { 3191 if (!tcp_schedule_loss_probe(sk, true)) 3192 tcp_rearm_rto(sk); 3193 } 3194 3195 /* If we get here, the whole TSO packet has not been acked. */ 3196 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3197 { 3198 struct tcp_sock *tp = tcp_sk(sk); 3199 u32 packets_acked; 3200 3201 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3202 3203 packets_acked = tcp_skb_pcount(skb); 3204 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3205 return 0; 3206 packets_acked -= tcp_skb_pcount(skb); 3207 3208 if (packets_acked) { 3209 BUG_ON(tcp_skb_pcount(skb) == 0); 3210 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3211 } 3212 3213 return packets_acked; 3214 } 3215 3216 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3217 const struct sk_buff *ack_skb, u32 prior_snd_una) 3218 { 3219 const struct skb_shared_info *shinfo; 3220 3221 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3222 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3223 return; 3224 3225 shinfo = skb_shinfo(skb); 3226 if (!before(shinfo->tskey, prior_snd_una) && 3227 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3228 tcp_skb_tsorted_save(skb) { 3229 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK); 3230 } tcp_skb_tsorted_restore(skb); 3231 } 3232 } 3233 3234 /* Remove acknowledged frames from the retransmission queue. If our packet 3235 * is before the ack sequence we can discard it as it's confirmed to have 3236 * arrived at the other end. 3237 */ 3238 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb, 3239 u32 prior_fack, u32 prior_snd_una, 3240 struct tcp_sacktag_state *sack, bool ece_ack) 3241 { 3242 const struct inet_connection_sock *icsk = inet_csk(sk); 3243 u64 first_ackt, last_ackt; 3244 struct tcp_sock *tp = tcp_sk(sk); 3245 u32 prior_sacked = tp->sacked_out; 3246 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3247 struct sk_buff *skb, *next; 3248 bool fully_acked = true; 3249 long sack_rtt_us = -1L; 3250 long seq_rtt_us = -1L; 3251 long ca_rtt_us = -1L; 3252 u32 pkts_acked = 0; 3253 bool rtt_update; 3254 int flag = 0; 3255 3256 first_ackt = 0; 3257 3258 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3259 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3260 const u32 start_seq = scb->seq; 3261 u8 sacked = scb->sacked; 3262 u32 acked_pcount; 3263 3264 /* Determine how many packets and what bytes were acked, tso and else */ 3265 if (after(scb->end_seq, tp->snd_una)) { 3266 if (tcp_skb_pcount(skb) == 1 || 3267 !after(tp->snd_una, scb->seq)) 3268 break; 3269 3270 acked_pcount = tcp_tso_acked(sk, skb); 3271 if (!acked_pcount) 3272 break; 3273 fully_acked = false; 3274 } else { 3275 acked_pcount = tcp_skb_pcount(skb); 3276 } 3277 3278 if (unlikely(sacked & TCPCB_RETRANS)) { 3279 if (sacked & TCPCB_SACKED_RETRANS) 3280 tp->retrans_out -= acked_pcount; 3281 flag |= FLAG_RETRANS_DATA_ACKED; 3282 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3283 last_ackt = tcp_skb_timestamp_us(skb); 3284 WARN_ON_ONCE(last_ackt == 0); 3285 if (!first_ackt) 3286 first_ackt = last_ackt; 3287 3288 if (before(start_seq, reord)) 3289 reord = start_seq; 3290 if (!after(scb->end_seq, tp->high_seq)) 3291 flag |= FLAG_ORIG_SACK_ACKED; 3292 } 3293 3294 if (sacked & TCPCB_SACKED_ACKED) { 3295 tp->sacked_out -= acked_pcount; 3296 } else if (tcp_is_sack(tp)) { 3297 tcp_count_delivered(tp, acked_pcount, ece_ack); 3298 if (!tcp_skb_spurious_retrans(tp, skb)) 3299 tcp_rack_advance(tp, sacked, scb->end_seq, 3300 tcp_skb_timestamp_us(skb)); 3301 } 3302 if (sacked & TCPCB_LOST) 3303 tp->lost_out -= acked_pcount; 3304 3305 tp->packets_out -= acked_pcount; 3306 pkts_acked += acked_pcount; 3307 tcp_rate_skb_delivered(sk, skb, sack->rate); 3308 3309 /* Initial outgoing SYN's get put onto the write_queue 3310 * just like anything else we transmit. It is not 3311 * true data, and if we misinform our callers that 3312 * this ACK acks real data, we will erroneously exit 3313 * connection startup slow start one packet too 3314 * quickly. This is severely frowned upon behavior. 3315 */ 3316 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3317 flag |= FLAG_DATA_ACKED; 3318 } else { 3319 flag |= FLAG_SYN_ACKED; 3320 tp->retrans_stamp = 0; 3321 } 3322 3323 if (!fully_acked) 3324 break; 3325 3326 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3327 3328 next = skb_rb_next(skb); 3329 if (unlikely(skb == tp->retransmit_skb_hint)) 3330 tp->retransmit_skb_hint = NULL; 3331 if (unlikely(skb == tp->lost_skb_hint)) 3332 tp->lost_skb_hint = NULL; 3333 tcp_highest_sack_replace(sk, skb, next); 3334 tcp_rtx_queue_unlink_and_free(skb, sk); 3335 } 3336 3337 if (!skb) 3338 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3339 3340 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3341 tp->snd_up = tp->snd_una; 3342 3343 if (skb) { 3344 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3345 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3346 flag |= FLAG_SACK_RENEGING; 3347 } 3348 3349 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3350 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3351 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3352 3353 if (pkts_acked == 1 && fully_acked && !prior_sacked && 3354 (tp->snd_una - prior_snd_una) < tp->mss_cache && 3355 sack->rate->prior_delivered + 1 == tp->delivered && 3356 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3357 /* Conservatively mark a delayed ACK. It's typically 3358 * from a lone runt packet over the round trip to 3359 * a receiver w/o out-of-order or CE events. 3360 */ 3361 flag |= FLAG_ACK_MAYBE_DELAYED; 3362 } 3363 } 3364 if (sack->first_sackt) { 3365 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3366 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3367 } 3368 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3369 ca_rtt_us, sack->rate); 3370 3371 if (flag & FLAG_ACKED) { 3372 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3373 if (unlikely(icsk->icsk_mtup.probe_size && 3374 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3375 tcp_mtup_probe_success(sk); 3376 } 3377 3378 if (tcp_is_reno(tp)) { 3379 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack); 3380 3381 /* If any of the cumulatively ACKed segments was 3382 * retransmitted, non-SACK case cannot confirm that 3383 * progress was due to original transmission due to 3384 * lack of TCPCB_SACKED_ACKED bits even if some of 3385 * the packets may have been never retransmitted. 3386 */ 3387 if (flag & FLAG_RETRANS_DATA_ACKED) 3388 flag &= ~FLAG_ORIG_SACK_ACKED; 3389 } else { 3390 int delta; 3391 3392 /* Non-retransmitted hole got filled? That's reordering */ 3393 if (before(reord, prior_fack)) 3394 tcp_check_sack_reordering(sk, reord, 0); 3395 3396 delta = prior_sacked - tp->sacked_out; 3397 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3398 } 3399 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3400 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3401 tcp_skb_timestamp_us(skb))) { 3402 /* Do not re-arm RTO if the sack RTT is measured from data sent 3403 * after when the head was last (re)transmitted. Otherwise the 3404 * timeout may continue to extend in loss recovery. 3405 */ 3406 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3407 } 3408 3409 if (icsk->icsk_ca_ops->pkts_acked) { 3410 struct ack_sample sample = { .pkts_acked = pkts_acked, 3411 .rtt_us = sack->rate->rtt_us }; 3412 3413 sample.in_flight = tp->mss_cache * 3414 (tp->delivered - sack->rate->prior_delivered); 3415 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3416 } 3417 3418 #if FASTRETRANS_DEBUG > 0 3419 WARN_ON((int)tp->sacked_out < 0); 3420 WARN_ON((int)tp->lost_out < 0); 3421 WARN_ON((int)tp->retrans_out < 0); 3422 if (!tp->packets_out && tcp_is_sack(tp)) { 3423 icsk = inet_csk(sk); 3424 if (tp->lost_out) { 3425 pr_debug("Leak l=%u %d\n", 3426 tp->lost_out, icsk->icsk_ca_state); 3427 tp->lost_out = 0; 3428 } 3429 if (tp->sacked_out) { 3430 pr_debug("Leak s=%u %d\n", 3431 tp->sacked_out, icsk->icsk_ca_state); 3432 tp->sacked_out = 0; 3433 } 3434 if (tp->retrans_out) { 3435 pr_debug("Leak r=%u %d\n", 3436 tp->retrans_out, icsk->icsk_ca_state); 3437 tp->retrans_out = 0; 3438 } 3439 } 3440 #endif 3441 return flag; 3442 } 3443 3444 static void tcp_ack_probe(struct sock *sk) 3445 { 3446 struct inet_connection_sock *icsk = inet_csk(sk); 3447 struct sk_buff *head = tcp_send_head(sk); 3448 const struct tcp_sock *tp = tcp_sk(sk); 3449 3450 /* Was it a usable window open? */ 3451 if (!head) 3452 return; 3453 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3454 icsk->icsk_backoff = 0; 3455 icsk->icsk_probes_tstamp = 0; 3456 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3457 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3458 * This function is not for random using! 3459 */ 3460 } else { 3461 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3462 3463 when = tcp_clamp_probe0_to_user_timeout(sk, when); 3464 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX); 3465 } 3466 } 3467 3468 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3469 { 3470 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3471 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3472 } 3473 3474 /* Decide wheather to run the increase function of congestion control. */ 3475 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3476 { 3477 /* If reordering is high then always grow cwnd whenever data is 3478 * delivered regardless of its ordering. Otherwise stay conservative 3479 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3480 * new SACK or ECE mark may first advance cwnd here and later reduce 3481 * cwnd in tcp_fastretrans_alert() based on more states. 3482 */ 3483 if (tcp_sk(sk)->reordering > 3484 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering)) 3485 return flag & FLAG_FORWARD_PROGRESS; 3486 3487 return flag & FLAG_DATA_ACKED; 3488 } 3489 3490 /* The "ultimate" congestion control function that aims to replace the rigid 3491 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3492 * It's called toward the end of processing an ACK with precise rate 3493 * information. All transmission or retransmission are delayed afterwards. 3494 */ 3495 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3496 int flag, const struct rate_sample *rs) 3497 { 3498 const struct inet_connection_sock *icsk = inet_csk(sk); 3499 3500 if (icsk->icsk_ca_ops->cong_control) { 3501 icsk->icsk_ca_ops->cong_control(sk, rs); 3502 return; 3503 } 3504 3505 if (tcp_in_cwnd_reduction(sk)) { 3506 /* Reduce cwnd if state mandates */ 3507 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag); 3508 } else if (tcp_may_raise_cwnd(sk, flag)) { 3509 /* Advance cwnd if state allows */ 3510 tcp_cong_avoid(sk, ack, acked_sacked); 3511 } 3512 tcp_update_pacing_rate(sk); 3513 } 3514 3515 /* Check that window update is acceptable. 3516 * The function assumes that snd_una<=ack<=snd_next. 3517 */ 3518 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3519 const u32 ack, const u32 ack_seq, 3520 const u32 nwin) 3521 { 3522 return after(ack, tp->snd_una) || 3523 after(ack_seq, tp->snd_wl1) || 3524 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3525 } 3526 3527 /* If we update tp->snd_una, also update tp->bytes_acked */ 3528 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3529 { 3530 u32 delta = ack - tp->snd_una; 3531 3532 sock_owned_by_me((struct sock *)tp); 3533 tp->bytes_acked += delta; 3534 tp->snd_una = ack; 3535 } 3536 3537 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3538 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3539 { 3540 u32 delta = seq - tp->rcv_nxt; 3541 3542 sock_owned_by_me((struct sock *)tp); 3543 tp->bytes_received += delta; 3544 WRITE_ONCE(tp->rcv_nxt, seq); 3545 } 3546 3547 /* Update our send window. 3548 * 3549 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3550 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3551 */ 3552 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3553 u32 ack_seq) 3554 { 3555 struct tcp_sock *tp = tcp_sk(sk); 3556 int flag = 0; 3557 u32 nwin = ntohs(tcp_hdr(skb)->window); 3558 3559 if (likely(!tcp_hdr(skb)->syn)) 3560 nwin <<= tp->rx_opt.snd_wscale; 3561 3562 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3563 flag |= FLAG_WIN_UPDATE; 3564 tcp_update_wl(tp, ack_seq); 3565 3566 if (tp->snd_wnd != nwin) { 3567 tp->snd_wnd = nwin; 3568 3569 /* Note, it is the only place, where 3570 * fast path is recovered for sending TCP. 3571 */ 3572 tp->pred_flags = 0; 3573 tcp_fast_path_check(sk); 3574 3575 if (!tcp_write_queue_empty(sk)) 3576 tcp_slow_start_after_idle_check(sk); 3577 3578 if (nwin > tp->max_window) { 3579 tp->max_window = nwin; 3580 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3581 } 3582 } 3583 } 3584 3585 tcp_snd_una_update(tp, ack); 3586 3587 return flag; 3588 } 3589 3590 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3591 u32 *last_oow_ack_time) 3592 { 3593 if (*last_oow_ack_time) { 3594 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3595 3596 if (0 <= elapsed && 3597 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) { 3598 NET_INC_STATS(net, mib_idx); 3599 return true; /* rate-limited: don't send yet! */ 3600 } 3601 } 3602 3603 *last_oow_ack_time = tcp_jiffies32; 3604 3605 return false; /* not rate-limited: go ahead, send dupack now! */ 3606 } 3607 3608 /* Return true if we're currently rate-limiting out-of-window ACKs and 3609 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3610 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3611 * attacks that send repeated SYNs or ACKs for the same connection. To 3612 * do this, we do not send a duplicate SYNACK or ACK if the remote 3613 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3614 */ 3615 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3616 int mib_idx, u32 *last_oow_ack_time) 3617 { 3618 /* Data packets without SYNs are not likely part of an ACK loop. */ 3619 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3620 !tcp_hdr(skb)->syn) 3621 return false; 3622 3623 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3624 } 3625 3626 /* RFC 5961 7 [ACK Throttling] */ 3627 static void tcp_send_challenge_ack(struct sock *sk) 3628 { 3629 struct tcp_sock *tp = tcp_sk(sk); 3630 struct net *net = sock_net(sk); 3631 u32 count, now, ack_limit; 3632 3633 /* First check our per-socket dupack rate limit. */ 3634 if (__tcp_oow_rate_limited(net, 3635 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3636 &tp->last_oow_ack_time)) 3637 return; 3638 3639 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit); 3640 if (ack_limit == INT_MAX) 3641 goto send_ack; 3642 3643 /* Then check host-wide RFC 5961 rate limit. */ 3644 now = jiffies / HZ; 3645 if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) { 3646 u32 half = (ack_limit + 1) >> 1; 3647 3648 WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now); 3649 WRITE_ONCE(net->ipv4.tcp_challenge_count, 3650 get_random_u32_inclusive(half, ack_limit + half - 1)); 3651 } 3652 count = READ_ONCE(net->ipv4.tcp_challenge_count); 3653 if (count > 0) { 3654 WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1); 3655 send_ack: 3656 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3657 tcp_send_ack(sk); 3658 } 3659 } 3660 3661 static void tcp_store_ts_recent(struct tcp_sock *tp) 3662 { 3663 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3664 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3665 } 3666 3667 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3668 { 3669 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3670 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3671 * extra check below makes sure this can only happen 3672 * for pure ACK frames. -DaveM 3673 * 3674 * Not only, also it occurs for expired timestamps. 3675 */ 3676 3677 if (tcp_paws_check(&tp->rx_opt, 0)) 3678 tcp_store_ts_recent(tp); 3679 } 3680 } 3681 3682 /* This routine deals with acks during a TLP episode and ends an episode by 3683 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack 3684 */ 3685 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3686 { 3687 struct tcp_sock *tp = tcp_sk(sk); 3688 3689 if (before(ack, tp->tlp_high_seq)) 3690 return; 3691 3692 if (!tp->tlp_retrans) { 3693 /* TLP of new data has been acknowledged */ 3694 tp->tlp_high_seq = 0; 3695 } else if (flag & FLAG_DSACK_TLP) { 3696 /* This DSACK means original and TLP probe arrived; no loss */ 3697 tp->tlp_high_seq = 0; 3698 } else if (after(ack, tp->tlp_high_seq)) { 3699 /* ACK advances: there was a loss, so reduce cwnd. Reset 3700 * tlp_high_seq in tcp_init_cwnd_reduction() 3701 */ 3702 tcp_init_cwnd_reduction(sk); 3703 tcp_set_ca_state(sk, TCP_CA_CWR); 3704 tcp_end_cwnd_reduction(sk); 3705 tcp_try_keep_open(sk); 3706 NET_INC_STATS(sock_net(sk), 3707 LINUX_MIB_TCPLOSSPROBERECOVERY); 3708 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3709 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3710 /* Pure dupack: original and TLP probe arrived; no loss */ 3711 tp->tlp_high_seq = 0; 3712 } 3713 } 3714 3715 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3716 { 3717 const struct inet_connection_sock *icsk = inet_csk(sk); 3718 3719 if (icsk->icsk_ca_ops->in_ack_event) 3720 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3721 } 3722 3723 /* Congestion control has updated the cwnd already. So if we're in 3724 * loss recovery then now we do any new sends (for FRTO) or 3725 * retransmits (for CA_Loss or CA_recovery) that make sense. 3726 */ 3727 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3728 { 3729 struct tcp_sock *tp = tcp_sk(sk); 3730 3731 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3732 return; 3733 3734 if (unlikely(rexmit == REXMIT_NEW)) { 3735 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3736 TCP_NAGLE_OFF); 3737 if (after(tp->snd_nxt, tp->high_seq)) 3738 return; 3739 tp->frto = 0; 3740 } 3741 tcp_xmit_retransmit_queue(sk); 3742 } 3743 3744 /* Returns the number of packets newly acked or sacked by the current ACK */ 3745 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3746 { 3747 const struct net *net = sock_net(sk); 3748 struct tcp_sock *tp = tcp_sk(sk); 3749 u32 delivered; 3750 3751 delivered = tp->delivered - prior_delivered; 3752 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3753 if (flag & FLAG_ECE) 3754 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3755 3756 return delivered; 3757 } 3758 3759 /* This routine deals with incoming acks, but not outgoing ones. */ 3760 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3761 { 3762 struct inet_connection_sock *icsk = inet_csk(sk); 3763 struct tcp_sock *tp = tcp_sk(sk); 3764 struct tcp_sacktag_state sack_state; 3765 struct rate_sample rs = { .prior_delivered = 0 }; 3766 u32 prior_snd_una = tp->snd_una; 3767 bool is_sack_reneg = tp->is_sack_reneg; 3768 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3769 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3770 int num_dupack = 0; 3771 int prior_packets = tp->packets_out; 3772 u32 delivered = tp->delivered; 3773 u32 lost = tp->lost; 3774 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3775 u32 prior_fack; 3776 3777 sack_state.first_sackt = 0; 3778 sack_state.rate = &rs; 3779 sack_state.sack_delivered = 0; 3780 3781 /* We very likely will need to access rtx queue. */ 3782 prefetch(sk->tcp_rtx_queue.rb_node); 3783 3784 /* If the ack is older than previous acks 3785 * then we can probably ignore it. 3786 */ 3787 if (before(ack, prior_snd_una)) { 3788 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3789 if (before(ack, prior_snd_una - tp->max_window)) { 3790 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3791 tcp_send_challenge_ack(sk); 3792 return -SKB_DROP_REASON_TCP_TOO_OLD_ACK; 3793 } 3794 goto old_ack; 3795 } 3796 3797 /* If the ack includes data we haven't sent yet, discard 3798 * this segment (RFC793 Section 3.9). 3799 */ 3800 if (after(ack, tp->snd_nxt)) 3801 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA; 3802 3803 if (after(ack, prior_snd_una)) { 3804 flag |= FLAG_SND_UNA_ADVANCED; 3805 icsk->icsk_retransmits = 0; 3806 3807 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3808 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 3809 if (icsk->icsk_clean_acked) 3810 icsk->icsk_clean_acked(sk, ack); 3811 #endif 3812 } 3813 3814 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3815 rs.prior_in_flight = tcp_packets_in_flight(tp); 3816 3817 /* ts_recent update must be made after we are sure that the packet 3818 * is in window. 3819 */ 3820 if (flag & FLAG_UPDATE_TS_RECENT) 3821 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3822 3823 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 3824 FLAG_SND_UNA_ADVANCED) { 3825 /* Window is constant, pure forward advance. 3826 * No more checks are required. 3827 * Note, we use the fact that SND.UNA>=SND.WL2. 3828 */ 3829 tcp_update_wl(tp, ack_seq); 3830 tcp_snd_una_update(tp, ack); 3831 flag |= FLAG_WIN_UPDATE; 3832 3833 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3834 3835 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3836 } else { 3837 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3838 3839 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3840 flag |= FLAG_DATA; 3841 else 3842 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3843 3844 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3845 3846 if (TCP_SKB_CB(skb)->sacked) 3847 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3848 &sack_state); 3849 3850 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3851 flag |= FLAG_ECE; 3852 ack_ev_flags |= CA_ACK_ECE; 3853 } 3854 3855 if (sack_state.sack_delivered) 3856 tcp_count_delivered(tp, sack_state.sack_delivered, 3857 flag & FLAG_ECE); 3858 3859 if (flag & FLAG_WIN_UPDATE) 3860 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3861 3862 tcp_in_ack_event(sk, ack_ev_flags); 3863 } 3864 3865 /* This is a deviation from RFC3168 since it states that: 3866 * "When the TCP data sender is ready to set the CWR bit after reducing 3867 * the congestion window, it SHOULD set the CWR bit only on the first 3868 * new data packet that it transmits." 3869 * We accept CWR on pure ACKs to be more robust 3870 * with widely-deployed TCP implementations that do this. 3871 */ 3872 tcp_ecn_accept_cwr(sk, skb); 3873 3874 /* We passed data and got it acked, remove any soft error 3875 * log. Something worked... 3876 */ 3877 sk->sk_err_soft = 0; 3878 icsk->icsk_probes_out = 0; 3879 tp->rcv_tstamp = tcp_jiffies32; 3880 if (!prior_packets) 3881 goto no_queue; 3882 3883 /* See if we can take anything off of the retransmit queue. */ 3884 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una, 3885 &sack_state, flag & FLAG_ECE); 3886 3887 tcp_rack_update_reo_wnd(sk, &rs); 3888 3889 if (tp->tlp_high_seq) 3890 tcp_process_tlp_ack(sk, ack, flag); 3891 3892 if (tcp_ack_is_dubious(sk, flag)) { 3893 if (!(flag & (FLAG_SND_UNA_ADVANCED | 3894 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) { 3895 num_dupack = 1; 3896 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 3897 if (!(flag & FLAG_DATA)) 3898 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 3899 } 3900 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3901 &rexmit); 3902 } 3903 3904 /* If needed, reset TLP/RTO timer when RACK doesn't set. */ 3905 if (flag & FLAG_SET_XMIT_TIMER) 3906 tcp_set_xmit_timer(sk); 3907 3908 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3909 sk_dst_confirm(sk); 3910 3911 delivered = tcp_newly_delivered(sk, delivered, flag); 3912 lost = tp->lost - lost; /* freshly marked lost */ 3913 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3914 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3915 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3916 tcp_xmit_recovery(sk, rexmit); 3917 return 1; 3918 3919 no_queue: 3920 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3921 if (flag & FLAG_DSACKING_ACK) { 3922 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3923 &rexmit); 3924 tcp_newly_delivered(sk, delivered, flag); 3925 } 3926 /* If this ack opens up a zero window, clear backoff. It was 3927 * being used to time the probes, and is probably far higher than 3928 * it needs to be for normal retransmission. 3929 */ 3930 tcp_ack_probe(sk); 3931 3932 if (tp->tlp_high_seq) 3933 tcp_process_tlp_ack(sk, ack, flag); 3934 return 1; 3935 3936 old_ack: 3937 /* If data was SACKed, tag it and see if we should send more data. 3938 * If data was DSACKed, see if we can undo a cwnd reduction. 3939 */ 3940 if (TCP_SKB_CB(skb)->sacked) { 3941 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3942 &sack_state); 3943 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3944 &rexmit); 3945 tcp_newly_delivered(sk, delivered, flag); 3946 tcp_xmit_recovery(sk, rexmit); 3947 } 3948 3949 return 0; 3950 } 3951 3952 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3953 bool syn, struct tcp_fastopen_cookie *foc, 3954 bool exp_opt) 3955 { 3956 /* Valid only in SYN or SYN-ACK with an even length. */ 3957 if (!foc || !syn || len < 0 || (len & 1)) 3958 return; 3959 3960 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3961 len <= TCP_FASTOPEN_COOKIE_MAX) 3962 memcpy(foc->val, cookie, len); 3963 else if (len != 0) 3964 len = -1; 3965 foc->len = len; 3966 foc->exp = exp_opt; 3967 } 3968 3969 static bool smc_parse_options(const struct tcphdr *th, 3970 struct tcp_options_received *opt_rx, 3971 const unsigned char *ptr, 3972 int opsize) 3973 { 3974 #if IS_ENABLED(CONFIG_SMC) 3975 if (static_branch_unlikely(&tcp_have_smc)) { 3976 if (th->syn && !(opsize & 1) && 3977 opsize >= TCPOLEN_EXP_SMC_BASE && 3978 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) { 3979 opt_rx->smc_ok = 1; 3980 return true; 3981 } 3982 } 3983 #endif 3984 return false; 3985 } 3986 3987 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 3988 * value on success. 3989 */ 3990 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 3991 { 3992 const unsigned char *ptr = (const unsigned char *)(th + 1); 3993 int length = (th->doff * 4) - sizeof(struct tcphdr); 3994 u16 mss = 0; 3995 3996 while (length > 0) { 3997 int opcode = *ptr++; 3998 int opsize; 3999 4000 switch (opcode) { 4001 case TCPOPT_EOL: 4002 return mss; 4003 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4004 length--; 4005 continue; 4006 default: 4007 if (length < 2) 4008 return mss; 4009 opsize = *ptr++; 4010 if (opsize < 2) /* "silly options" */ 4011 return mss; 4012 if (opsize > length) 4013 return mss; /* fail on partial options */ 4014 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 4015 u16 in_mss = get_unaligned_be16(ptr); 4016 4017 if (in_mss) { 4018 if (user_mss && user_mss < in_mss) 4019 in_mss = user_mss; 4020 mss = in_mss; 4021 } 4022 } 4023 ptr += opsize - 2; 4024 length -= opsize; 4025 } 4026 } 4027 return mss; 4028 } 4029 EXPORT_SYMBOL_GPL(tcp_parse_mss_option); 4030 4031 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 4032 * But, this can also be called on packets in the established flow when 4033 * the fast version below fails. 4034 */ 4035 void tcp_parse_options(const struct net *net, 4036 const struct sk_buff *skb, 4037 struct tcp_options_received *opt_rx, int estab, 4038 struct tcp_fastopen_cookie *foc) 4039 { 4040 const unsigned char *ptr; 4041 const struct tcphdr *th = tcp_hdr(skb); 4042 int length = (th->doff * 4) - sizeof(struct tcphdr); 4043 4044 ptr = (const unsigned char *)(th + 1); 4045 opt_rx->saw_tstamp = 0; 4046 opt_rx->saw_unknown = 0; 4047 4048 while (length > 0) { 4049 int opcode = *ptr++; 4050 int opsize; 4051 4052 switch (opcode) { 4053 case TCPOPT_EOL: 4054 return; 4055 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4056 length--; 4057 continue; 4058 default: 4059 if (length < 2) 4060 return; 4061 opsize = *ptr++; 4062 if (opsize < 2) /* "silly options" */ 4063 return; 4064 if (opsize > length) 4065 return; /* don't parse partial options */ 4066 switch (opcode) { 4067 case TCPOPT_MSS: 4068 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 4069 u16 in_mss = get_unaligned_be16(ptr); 4070 if (in_mss) { 4071 if (opt_rx->user_mss && 4072 opt_rx->user_mss < in_mss) 4073 in_mss = opt_rx->user_mss; 4074 opt_rx->mss_clamp = in_mss; 4075 } 4076 } 4077 break; 4078 case TCPOPT_WINDOW: 4079 if (opsize == TCPOLEN_WINDOW && th->syn && 4080 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) { 4081 __u8 snd_wscale = *(__u8 *)ptr; 4082 opt_rx->wscale_ok = 1; 4083 if (snd_wscale > TCP_MAX_WSCALE) { 4084 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 4085 __func__, 4086 snd_wscale, 4087 TCP_MAX_WSCALE); 4088 snd_wscale = TCP_MAX_WSCALE; 4089 } 4090 opt_rx->snd_wscale = snd_wscale; 4091 } 4092 break; 4093 case TCPOPT_TIMESTAMP: 4094 if ((opsize == TCPOLEN_TIMESTAMP) && 4095 ((estab && opt_rx->tstamp_ok) || 4096 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) { 4097 opt_rx->saw_tstamp = 1; 4098 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 4099 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 4100 } 4101 break; 4102 case TCPOPT_SACK_PERM: 4103 if (opsize == TCPOLEN_SACK_PERM && th->syn && 4104 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) { 4105 opt_rx->sack_ok = TCP_SACK_SEEN; 4106 tcp_sack_reset(opt_rx); 4107 } 4108 break; 4109 4110 case TCPOPT_SACK: 4111 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 4112 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 4113 opt_rx->sack_ok) { 4114 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 4115 } 4116 break; 4117 #ifdef CONFIG_TCP_MD5SIG 4118 case TCPOPT_MD5SIG: 4119 /* 4120 * The MD5 Hash has already been 4121 * checked (see tcp_v{4,6}_do_rcv()). 4122 */ 4123 break; 4124 #endif 4125 case TCPOPT_FASTOPEN: 4126 tcp_parse_fastopen_option( 4127 opsize - TCPOLEN_FASTOPEN_BASE, 4128 ptr, th->syn, foc, false); 4129 break; 4130 4131 case TCPOPT_EXP: 4132 /* Fast Open option shares code 254 using a 4133 * 16 bits magic number. 4134 */ 4135 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 4136 get_unaligned_be16(ptr) == 4137 TCPOPT_FASTOPEN_MAGIC) { 4138 tcp_parse_fastopen_option(opsize - 4139 TCPOLEN_EXP_FASTOPEN_BASE, 4140 ptr + 2, th->syn, foc, true); 4141 break; 4142 } 4143 4144 if (smc_parse_options(th, opt_rx, ptr, opsize)) 4145 break; 4146 4147 opt_rx->saw_unknown = 1; 4148 break; 4149 4150 default: 4151 opt_rx->saw_unknown = 1; 4152 } 4153 ptr += opsize-2; 4154 length -= opsize; 4155 } 4156 } 4157 } 4158 EXPORT_SYMBOL(tcp_parse_options); 4159 4160 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 4161 { 4162 const __be32 *ptr = (const __be32 *)(th + 1); 4163 4164 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 4165 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 4166 tp->rx_opt.saw_tstamp = 1; 4167 ++ptr; 4168 tp->rx_opt.rcv_tsval = ntohl(*ptr); 4169 ++ptr; 4170 if (*ptr) 4171 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 4172 else 4173 tp->rx_opt.rcv_tsecr = 0; 4174 return true; 4175 } 4176 return false; 4177 } 4178 4179 /* Fast parse options. This hopes to only see timestamps. 4180 * If it is wrong it falls back on tcp_parse_options(). 4181 */ 4182 static bool tcp_fast_parse_options(const struct net *net, 4183 const struct sk_buff *skb, 4184 const struct tcphdr *th, struct tcp_sock *tp) 4185 { 4186 /* In the spirit of fast parsing, compare doff directly to constant 4187 * values. Because equality is used, short doff can be ignored here. 4188 */ 4189 if (th->doff == (sizeof(*th) / 4)) { 4190 tp->rx_opt.saw_tstamp = 0; 4191 return false; 4192 } else if (tp->rx_opt.tstamp_ok && 4193 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 4194 if (tcp_parse_aligned_timestamp(tp, th)) 4195 return true; 4196 } 4197 4198 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 4199 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 4200 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 4201 4202 return true; 4203 } 4204 4205 #ifdef CONFIG_TCP_MD5SIG 4206 /* 4207 * Parse MD5 Signature option 4208 */ 4209 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 4210 { 4211 int length = (th->doff << 2) - sizeof(*th); 4212 const u8 *ptr = (const u8 *)(th + 1); 4213 4214 /* If not enough data remaining, we can short cut */ 4215 while (length >= TCPOLEN_MD5SIG) { 4216 int opcode = *ptr++; 4217 int opsize; 4218 4219 switch (opcode) { 4220 case TCPOPT_EOL: 4221 return NULL; 4222 case TCPOPT_NOP: 4223 length--; 4224 continue; 4225 default: 4226 opsize = *ptr++; 4227 if (opsize < 2 || opsize > length) 4228 return NULL; 4229 if (opcode == TCPOPT_MD5SIG) 4230 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 4231 } 4232 ptr += opsize - 2; 4233 length -= opsize; 4234 } 4235 return NULL; 4236 } 4237 EXPORT_SYMBOL(tcp_parse_md5sig_option); 4238 #endif 4239 4240 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4241 * 4242 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4243 * it can pass through stack. So, the following predicate verifies that 4244 * this segment is not used for anything but congestion avoidance or 4245 * fast retransmit. Moreover, we even are able to eliminate most of such 4246 * second order effects, if we apply some small "replay" window (~RTO) 4247 * to timestamp space. 4248 * 4249 * All these measures still do not guarantee that we reject wrapped ACKs 4250 * on networks with high bandwidth, when sequence space is recycled fastly, 4251 * but it guarantees that such events will be very rare and do not affect 4252 * connection seriously. This doesn't look nice, but alas, PAWS is really 4253 * buggy extension. 4254 * 4255 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4256 * states that events when retransmit arrives after original data are rare. 4257 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4258 * the biggest problem on large power networks even with minor reordering. 4259 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4260 * up to bandwidth of 18Gigabit/sec. 8) ] 4261 */ 4262 4263 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 4264 { 4265 const struct tcp_sock *tp = tcp_sk(sk); 4266 const struct tcphdr *th = tcp_hdr(skb); 4267 u32 seq = TCP_SKB_CB(skb)->seq; 4268 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4269 4270 return (/* 1. Pure ACK with correct sequence number. */ 4271 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 4272 4273 /* 2. ... and duplicate ACK. */ 4274 ack == tp->snd_una && 4275 4276 /* 3. ... and does not update window. */ 4277 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4278 4279 /* 4. ... and sits in replay window. */ 4280 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4281 } 4282 4283 static inline bool tcp_paws_discard(const struct sock *sk, 4284 const struct sk_buff *skb) 4285 { 4286 const struct tcp_sock *tp = tcp_sk(sk); 4287 4288 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4289 !tcp_disordered_ack(sk, skb); 4290 } 4291 4292 /* Check segment sequence number for validity. 4293 * 4294 * Segment controls are considered valid, if the segment 4295 * fits to the window after truncation to the window. Acceptability 4296 * of data (and SYN, FIN, of course) is checked separately. 4297 * See tcp_data_queue(), for example. 4298 * 4299 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4300 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4301 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4302 * (borrowed from freebsd) 4303 */ 4304 4305 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4306 { 4307 return !before(end_seq, tp->rcv_wup) && 4308 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4309 } 4310 4311 /* When we get a reset we do this. */ 4312 void tcp_reset(struct sock *sk, struct sk_buff *skb) 4313 { 4314 trace_tcp_receive_reset(sk); 4315 4316 /* mptcp can't tell us to ignore reset pkts, 4317 * so just ignore the return value of mptcp_incoming_options(). 4318 */ 4319 if (sk_is_mptcp(sk)) 4320 mptcp_incoming_options(sk, skb); 4321 4322 /* We want the right error as BSD sees it (and indeed as we do). */ 4323 switch (sk->sk_state) { 4324 case TCP_SYN_SENT: 4325 sk->sk_err = ECONNREFUSED; 4326 break; 4327 case TCP_CLOSE_WAIT: 4328 sk->sk_err = EPIPE; 4329 break; 4330 case TCP_CLOSE: 4331 return; 4332 default: 4333 sk->sk_err = ECONNRESET; 4334 } 4335 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4336 smp_wmb(); 4337 4338 tcp_write_queue_purge(sk); 4339 tcp_done(sk); 4340 4341 if (!sock_flag(sk, SOCK_DEAD)) 4342 sk_error_report(sk); 4343 } 4344 4345 /* 4346 * Process the FIN bit. This now behaves as it is supposed to work 4347 * and the FIN takes effect when it is validly part of sequence 4348 * space. Not before when we get holes. 4349 * 4350 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4351 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4352 * TIME-WAIT) 4353 * 4354 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4355 * close and we go into CLOSING (and later onto TIME-WAIT) 4356 * 4357 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4358 */ 4359 void tcp_fin(struct sock *sk) 4360 { 4361 struct tcp_sock *tp = tcp_sk(sk); 4362 4363 inet_csk_schedule_ack(sk); 4364 4365 sk->sk_shutdown |= RCV_SHUTDOWN; 4366 sock_set_flag(sk, SOCK_DONE); 4367 4368 switch (sk->sk_state) { 4369 case TCP_SYN_RECV: 4370 case TCP_ESTABLISHED: 4371 /* Move to CLOSE_WAIT */ 4372 tcp_set_state(sk, TCP_CLOSE_WAIT); 4373 inet_csk_enter_pingpong_mode(sk); 4374 break; 4375 4376 case TCP_CLOSE_WAIT: 4377 case TCP_CLOSING: 4378 /* Received a retransmission of the FIN, do 4379 * nothing. 4380 */ 4381 break; 4382 case TCP_LAST_ACK: 4383 /* RFC793: Remain in the LAST-ACK state. */ 4384 break; 4385 4386 case TCP_FIN_WAIT1: 4387 /* This case occurs when a simultaneous close 4388 * happens, we must ack the received FIN and 4389 * enter the CLOSING state. 4390 */ 4391 tcp_send_ack(sk); 4392 tcp_set_state(sk, TCP_CLOSING); 4393 break; 4394 case TCP_FIN_WAIT2: 4395 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4396 tcp_send_ack(sk); 4397 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4398 break; 4399 default: 4400 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4401 * cases we should never reach this piece of code. 4402 */ 4403 pr_err("%s: Impossible, sk->sk_state=%d\n", 4404 __func__, sk->sk_state); 4405 break; 4406 } 4407 4408 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4409 * Probably, we should reset in this case. For now drop them. 4410 */ 4411 skb_rbtree_purge(&tp->out_of_order_queue); 4412 if (tcp_is_sack(tp)) 4413 tcp_sack_reset(&tp->rx_opt); 4414 4415 if (!sock_flag(sk, SOCK_DEAD)) { 4416 sk->sk_state_change(sk); 4417 4418 /* Do not send POLL_HUP for half duplex close. */ 4419 if (sk->sk_shutdown == SHUTDOWN_MASK || 4420 sk->sk_state == TCP_CLOSE) 4421 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4422 else 4423 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4424 } 4425 } 4426 4427 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4428 u32 end_seq) 4429 { 4430 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4431 if (before(seq, sp->start_seq)) 4432 sp->start_seq = seq; 4433 if (after(end_seq, sp->end_seq)) 4434 sp->end_seq = end_seq; 4435 return true; 4436 } 4437 return false; 4438 } 4439 4440 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4441 { 4442 struct tcp_sock *tp = tcp_sk(sk); 4443 4444 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4445 int mib_idx; 4446 4447 if (before(seq, tp->rcv_nxt)) 4448 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4449 else 4450 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4451 4452 NET_INC_STATS(sock_net(sk), mib_idx); 4453 4454 tp->rx_opt.dsack = 1; 4455 tp->duplicate_sack[0].start_seq = seq; 4456 tp->duplicate_sack[0].end_seq = end_seq; 4457 } 4458 } 4459 4460 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4461 { 4462 struct tcp_sock *tp = tcp_sk(sk); 4463 4464 if (!tp->rx_opt.dsack) 4465 tcp_dsack_set(sk, seq, end_seq); 4466 else 4467 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4468 } 4469 4470 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4471 { 4472 /* When the ACK path fails or drops most ACKs, the sender would 4473 * timeout and spuriously retransmit the same segment repeatedly. 4474 * The receiver remembers and reflects via DSACKs. Leverage the 4475 * DSACK state and change the txhash to re-route speculatively. 4476 */ 4477 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq && 4478 sk_rethink_txhash(sk)) 4479 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH); 4480 } 4481 4482 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4483 { 4484 struct tcp_sock *tp = tcp_sk(sk); 4485 4486 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4487 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4488 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4489 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4490 4491 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4492 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4493 4494 tcp_rcv_spurious_retrans(sk, skb); 4495 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4496 end_seq = tp->rcv_nxt; 4497 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4498 } 4499 } 4500 4501 tcp_send_ack(sk); 4502 } 4503 4504 /* These routines update the SACK block as out-of-order packets arrive or 4505 * in-order packets close up the sequence space. 4506 */ 4507 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4508 { 4509 int this_sack; 4510 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4511 struct tcp_sack_block *swalk = sp + 1; 4512 4513 /* See if the recent change to the first SACK eats into 4514 * or hits the sequence space of other SACK blocks, if so coalesce. 4515 */ 4516 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4517 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4518 int i; 4519 4520 /* Zap SWALK, by moving every further SACK up by one slot. 4521 * Decrease num_sacks. 4522 */ 4523 tp->rx_opt.num_sacks--; 4524 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4525 sp[i] = sp[i + 1]; 4526 continue; 4527 } 4528 this_sack++; 4529 swalk++; 4530 } 4531 } 4532 4533 static void tcp_sack_compress_send_ack(struct sock *sk) 4534 { 4535 struct tcp_sock *tp = tcp_sk(sk); 4536 4537 if (!tp->compressed_ack) 4538 return; 4539 4540 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 4541 __sock_put(sk); 4542 4543 /* Since we have to send one ack finally, 4544 * substract one from tp->compressed_ack to keep 4545 * LINUX_MIB_TCPACKCOMPRESSED accurate. 4546 */ 4547 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 4548 tp->compressed_ack - 1); 4549 4550 tp->compressed_ack = 0; 4551 tcp_send_ack(sk); 4552 } 4553 4554 /* Reasonable amount of sack blocks included in TCP SACK option 4555 * The max is 4, but this becomes 3 if TCP timestamps are there. 4556 * Given that SACK packets might be lost, be conservative and use 2. 4557 */ 4558 #define TCP_SACK_BLOCKS_EXPECTED 2 4559 4560 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4561 { 4562 struct tcp_sock *tp = tcp_sk(sk); 4563 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4564 int cur_sacks = tp->rx_opt.num_sacks; 4565 int this_sack; 4566 4567 if (!cur_sacks) 4568 goto new_sack; 4569 4570 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4571 if (tcp_sack_extend(sp, seq, end_seq)) { 4572 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4573 tcp_sack_compress_send_ack(sk); 4574 /* Rotate this_sack to the first one. */ 4575 for (; this_sack > 0; this_sack--, sp--) 4576 swap(*sp, *(sp - 1)); 4577 if (cur_sacks > 1) 4578 tcp_sack_maybe_coalesce(tp); 4579 return; 4580 } 4581 } 4582 4583 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4584 tcp_sack_compress_send_ack(sk); 4585 4586 /* Could not find an adjacent existing SACK, build a new one, 4587 * put it at the front, and shift everyone else down. We 4588 * always know there is at least one SACK present already here. 4589 * 4590 * If the sack array is full, forget about the last one. 4591 */ 4592 if (this_sack >= TCP_NUM_SACKS) { 4593 this_sack--; 4594 tp->rx_opt.num_sacks--; 4595 sp--; 4596 } 4597 for (; this_sack > 0; this_sack--, sp--) 4598 *sp = *(sp - 1); 4599 4600 new_sack: 4601 /* Build the new head SACK, and we're done. */ 4602 sp->start_seq = seq; 4603 sp->end_seq = end_seq; 4604 tp->rx_opt.num_sacks++; 4605 } 4606 4607 /* RCV.NXT advances, some SACKs should be eaten. */ 4608 4609 static void tcp_sack_remove(struct tcp_sock *tp) 4610 { 4611 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4612 int num_sacks = tp->rx_opt.num_sacks; 4613 int this_sack; 4614 4615 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4616 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4617 tp->rx_opt.num_sacks = 0; 4618 return; 4619 } 4620 4621 for (this_sack = 0; this_sack < num_sacks;) { 4622 /* Check if the start of the sack is covered by RCV.NXT. */ 4623 if (!before(tp->rcv_nxt, sp->start_seq)) { 4624 int i; 4625 4626 /* RCV.NXT must cover all the block! */ 4627 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4628 4629 /* Zap this SACK, by moving forward any other SACKS. */ 4630 for (i = this_sack+1; i < num_sacks; i++) 4631 tp->selective_acks[i-1] = tp->selective_acks[i]; 4632 num_sacks--; 4633 continue; 4634 } 4635 this_sack++; 4636 sp++; 4637 } 4638 tp->rx_opt.num_sacks = num_sacks; 4639 } 4640 4641 /** 4642 * tcp_try_coalesce - try to merge skb to prior one 4643 * @sk: socket 4644 * @to: prior buffer 4645 * @from: buffer to add in queue 4646 * @fragstolen: pointer to boolean 4647 * 4648 * Before queueing skb @from after @to, try to merge them 4649 * to reduce overall memory use and queue lengths, if cost is small. 4650 * Packets in ofo or receive queues can stay a long time. 4651 * Better try to coalesce them right now to avoid future collapses. 4652 * Returns true if caller should free @from instead of queueing it 4653 */ 4654 static bool tcp_try_coalesce(struct sock *sk, 4655 struct sk_buff *to, 4656 struct sk_buff *from, 4657 bool *fragstolen) 4658 { 4659 int delta; 4660 4661 *fragstolen = false; 4662 4663 /* Its possible this segment overlaps with prior segment in queue */ 4664 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4665 return false; 4666 4667 if (!mptcp_skb_can_collapse(to, from)) 4668 return false; 4669 4670 #ifdef CONFIG_TLS_DEVICE 4671 if (from->decrypted != to->decrypted) 4672 return false; 4673 #endif 4674 4675 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4676 return false; 4677 4678 atomic_add(delta, &sk->sk_rmem_alloc); 4679 sk_mem_charge(sk, delta); 4680 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4681 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4682 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4683 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4684 4685 if (TCP_SKB_CB(from)->has_rxtstamp) { 4686 TCP_SKB_CB(to)->has_rxtstamp = true; 4687 to->tstamp = from->tstamp; 4688 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4689 } 4690 4691 return true; 4692 } 4693 4694 static bool tcp_ooo_try_coalesce(struct sock *sk, 4695 struct sk_buff *to, 4696 struct sk_buff *from, 4697 bool *fragstolen) 4698 { 4699 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4700 4701 /* In case tcp_drop_reason() is called later, update to->gso_segs */ 4702 if (res) { 4703 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4704 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4705 4706 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4707 } 4708 return res; 4709 } 4710 4711 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb, 4712 enum skb_drop_reason reason) 4713 { 4714 sk_drops_add(sk, skb); 4715 kfree_skb_reason(skb, reason); 4716 } 4717 4718 /* This one checks to see if we can put data from the 4719 * out_of_order queue into the receive_queue. 4720 */ 4721 static void tcp_ofo_queue(struct sock *sk) 4722 { 4723 struct tcp_sock *tp = tcp_sk(sk); 4724 __u32 dsack_high = tp->rcv_nxt; 4725 bool fin, fragstolen, eaten; 4726 struct sk_buff *skb, *tail; 4727 struct rb_node *p; 4728 4729 p = rb_first(&tp->out_of_order_queue); 4730 while (p) { 4731 skb = rb_to_skb(p); 4732 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4733 break; 4734 4735 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4736 __u32 dsack = dsack_high; 4737 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4738 dsack_high = TCP_SKB_CB(skb)->end_seq; 4739 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4740 } 4741 p = rb_next(p); 4742 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4743 4744 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4745 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP); 4746 continue; 4747 } 4748 4749 tail = skb_peek_tail(&sk->sk_receive_queue); 4750 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4751 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4752 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4753 if (!eaten) 4754 __skb_queue_tail(&sk->sk_receive_queue, skb); 4755 else 4756 kfree_skb_partial(skb, fragstolen); 4757 4758 if (unlikely(fin)) { 4759 tcp_fin(sk); 4760 /* tcp_fin() purges tp->out_of_order_queue, 4761 * so we must end this loop right now. 4762 */ 4763 break; 4764 } 4765 } 4766 } 4767 4768 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb); 4769 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb); 4770 4771 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4772 unsigned int size) 4773 { 4774 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4775 !sk_rmem_schedule(sk, skb, size)) { 4776 4777 if (tcp_prune_queue(sk, skb) < 0) 4778 return -1; 4779 4780 while (!sk_rmem_schedule(sk, skb, size)) { 4781 if (!tcp_prune_ofo_queue(sk, skb)) 4782 return -1; 4783 } 4784 } 4785 return 0; 4786 } 4787 4788 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4789 { 4790 struct tcp_sock *tp = tcp_sk(sk); 4791 struct rb_node **p, *parent; 4792 struct sk_buff *skb1; 4793 u32 seq, end_seq; 4794 bool fragstolen; 4795 4796 tcp_ecn_check_ce(sk, skb); 4797 4798 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4799 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4800 sk->sk_data_ready(sk); 4801 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM); 4802 return; 4803 } 4804 4805 /* Disable header prediction. */ 4806 tp->pred_flags = 0; 4807 inet_csk_schedule_ack(sk); 4808 4809 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4810 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4811 seq = TCP_SKB_CB(skb)->seq; 4812 end_seq = TCP_SKB_CB(skb)->end_seq; 4813 4814 p = &tp->out_of_order_queue.rb_node; 4815 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4816 /* Initial out of order segment, build 1 SACK. */ 4817 if (tcp_is_sack(tp)) { 4818 tp->rx_opt.num_sacks = 1; 4819 tp->selective_acks[0].start_seq = seq; 4820 tp->selective_acks[0].end_seq = end_seq; 4821 } 4822 rb_link_node(&skb->rbnode, NULL, p); 4823 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4824 tp->ooo_last_skb = skb; 4825 goto end; 4826 } 4827 4828 /* In the typical case, we are adding an skb to the end of the list. 4829 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4830 */ 4831 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 4832 skb, &fragstolen)) { 4833 coalesce_done: 4834 /* For non sack flows, do not grow window to force DUPACK 4835 * and trigger fast retransmit. 4836 */ 4837 if (tcp_is_sack(tp)) 4838 tcp_grow_window(sk, skb, true); 4839 kfree_skb_partial(skb, fragstolen); 4840 skb = NULL; 4841 goto add_sack; 4842 } 4843 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4844 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4845 parent = &tp->ooo_last_skb->rbnode; 4846 p = &parent->rb_right; 4847 goto insert; 4848 } 4849 4850 /* Find place to insert this segment. Handle overlaps on the way. */ 4851 parent = NULL; 4852 while (*p) { 4853 parent = *p; 4854 skb1 = rb_to_skb(parent); 4855 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4856 p = &parent->rb_left; 4857 continue; 4858 } 4859 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4860 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4861 /* All the bits are present. Drop. */ 4862 NET_INC_STATS(sock_net(sk), 4863 LINUX_MIB_TCPOFOMERGE); 4864 tcp_drop_reason(sk, skb, 4865 SKB_DROP_REASON_TCP_OFOMERGE); 4866 skb = NULL; 4867 tcp_dsack_set(sk, seq, end_seq); 4868 goto add_sack; 4869 } 4870 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4871 /* Partial overlap. */ 4872 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4873 } else { 4874 /* skb's seq == skb1's seq and skb covers skb1. 4875 * Replace skb1 with skb. 4876 */ 4877 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4878 &tp->out_of_order_queue); 4879 tcp_dsack_extend(sk, 4880 TCP_SKB_CB(skb1)->seq, 4881 TCP_SKB_CB(skb1)->end_seq); 4882 NET_INC_STATS(sock_net(sk), 4883 LINUX_MIB_TCPOFOMERGE); 4884 tcp_drop_reason(sk, skb1, 4885 SKB_DROP_REASON_TCP_OFOMERGE); 4886 goto merge_right; 4887 } 4888 } else if (tcp_ooo_try_coalesce(sk, skb1, 4889 skb, &fragstolen)) { 4890 goto coalesce_done; 4891 } 4892 p = &parent->rb_right; 4893 } 4894 insert: 4895 /* Insert segment into RB tree. */ 4896 rb_link_node(&skb->rbnode, parent, p); 4897 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4898 4899 merge_right: 4900 /* Remove other segments covered by skb. */ 4901 while ((skb1 = skb_rb_next(skb)) != NULL) { 4902 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4903 break; 4904 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4905 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4906 end_seq); 4907 break; 4908 } 4909 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4910 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4911 TCP_SKB_CB(skb1)->end_seq); 4912 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4913 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE); 4914 } 4915 /* If there is no skb after us, we are the last_skb ! */ 4916 if (!skb1) 4917 tp->ooo_last_skb = skb; 4918 4919 add_sack: 4920 if (tcp_is_sack(tp)) 4921 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4922 end: 4923 if (skb) { 4924 /* For non sack flows, do not grow window to force DUPACK 4925 * and trigger fast retransmit. 4926 */ 4927 if (tcp_is_sack(tp)) 4928 tcp_grow_window(sk, skb, false); 4929 skb_condense(skb); 4930 skb_set_owner_r(skb, sk); 4931 } 4932 } 4933 4934 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 4935 bool *fragstolen) 4936 { 4937 int eaten; 4938 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4939 4940 eaten = (tail && 4941 tcp_try_coalesce(sk, tail, 4942 skb, fragstolen)) ? 1 : 0; 4943 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4944 if (!eaten) { 4945 __skb_queue_tail(&sk->sk_receive_queue, skb); 4946 skb_set_owner_r(skb, sk); 4947 } 4948 return eaten; 4949 } 4950 4951 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4952 { 4953 struct sk_buff *skb; 4954 int err = -ENOMEM; 4955 int data_len = 0; 4956 bool fragstolen; 4957 4958 if (size == 0) 4959 return 0; 4960 4961 if (size > PAGE_SIZE) { 4962 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4963 4964 data_len = npages << PAGE_SHIFT; 4965 size = data_len + (size & ~PAGE_MASK); 4966 } 4967 skb = alloc_skb_with_frags(size - data_len, data_len, 4968 PAGE_ALLOC_COSTLY_ORDER, 4969 &err, sk->sk_allocation); 4970 if (!skb) 4971 goto err; 4972 4973 skb_put(skb, size - data_len); 4974 skb->data_len = data_len; 4975 skb->len = size; 4976 4977 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 4978 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 4979 goto err_free; 4980 } 4981 4982 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4983 if (err) 4984 goto err_free; 4985 4986 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4987 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4988 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4989 4990 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 4991 WARN_ON_ONCE(fragstolen); /* should not happen */ 4992 __kfree_skb(skb); 4993 } 4994 return size; 4995 4996 err_free: 4997 kfree_skb(skb); 4998 err: 4999 return err; 5000 5001 } 5002 5003 void tcp_data_ready(struct sock *sk) 5004 { 5005 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE)) 5006 sk->sk_data_ready(sk); 5007 } 5008 5009 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 5010 { 5011 struct tcp_sock *tp = tcp_sk(sk); 5012 enum skb_drop_reason reason; 5013 bool fragstolen; 5014 int eaten; 5015 5016 /* If a subflow has been reset, the packet should not continue 5017 * to be processed, drop the packet. 5018 */ 5019 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) { 5020 __kfree_skb(skb); 5021 return; 5022 } 5023 5024 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 5025 __kfree_skb(skb); 5026 return; 5027 } 5028 skb_dst_drop(skb); 5029 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 5030 5031 reason = SKB_DROP_REASON_NOT_SPECIFIED; 5032 tp->rx_opt.dsack = 0; 5033 5034 /* Queue data for delivery to the user. 5035 * Packets in sequence go to the receive queue. 5036 * Out of sequence packets to the out_of_order_queue. 5037 */ 5038 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 5039 if (tcp_receive_window(tp) == 0) { 5040 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5041 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5042 goto out_of_window; 5043 } 5044 5045 /* Ok. In sequence. In window. */ 5046 queue_and_out: 5047 if (skb_queue_len(&sk->sk_receive_queue) == 0) 5048 sk_forced_mem_schedule(sk, skb->truesize); 5049 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5050 reason = SKB_DROP_REASON_PROTO_MEM; 5051 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5052 sk->sk_data_ready(sk); 5053 goto drop; 5054 } 5055 5056 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5057 if (skb->len) 5058 tcp_event_data_recv(sk, skb); 5059 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 5060 tcp_fin(sk); 5061 5062 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5063 tcp_ofo_queue(sk); 5064 5065 /* RFC5681. 4.2. SHOULD send immediate ACK, when 5066 * gap in queue is filled. 5067 */ 5068 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5069 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 5070 } 5071 5072 if (tp->rx_opt.num_sacks) 5073 tcp_sack_remove(tp); 5074 5075 tcp_fast_path_check(sk); 5076 5077 if (eaten > 0) 5078 kfree_skb_partial(skb, fragstolen); 5079 if (!sock_flag(sk, SOCK_DEAD)) 5080 tcp_data_ready(sk); 5081 return; 5082 } 5083 5084 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 5085 tcp_rcv_spurious_retrans(sk, skb); 5086 /* A retransmit, 2nd most common case. Force an immediate ack. */ 5087 reason = SKB_DROP_REASON_TCP_OLD_DATA; 5088 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 5089 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5090 5091 out_of_window: 5092 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5093 inet_csk_schedule_ack(sk); 5094 drop: 5095 tcp_drop_reason(sk, skb, reason); 5096 return; 5097 } 5098 5099 /* Out of window. F.e. zero window probe. */ 5100 if (!before(TCP_SKB_CB(skb)->seq, 5101 tp->rcv_nxt + tcp_receive_window(tp))) { 5102 reason = SKB_DROP_REASON_TCP_OVERWINDOW; 5103 goto out_of_window; 5104 } 5105 5106 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5107 /* Partial packet, seq < rcv_next < end_seq */ 5108 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 5109 5110 /* If window is closed, drop tail of packet. But after 5111 * remembering D-SACK for its head made in previous line. 5112 */ 5113 if (!tcp_receive_window(tp)) { 5114 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5115 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5116 goto out_of_window; 5117 } 5118 goto queue_and_out; 5119 } 5120 5121 tcp_data_queue_ofo(sk, skb); 5122 } 5123 5124 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 5125 { 5126 if (list) 5127 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 5128 5129 return skb_rb_next(skb); 5130 } 5131 5132 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 5133 struct sk_buff_head *list, 5134 struct rb_root *root) 5135 { 5136 struct sk_buff *next = tcp_skb_next(skb, list); 5137 5138 if (list) 5139 __skb_unlink(skb, list); 5140 else 5141 rb_erase(&skb->rbnode, root); 5142 5143 __kfree_skb(skb); 5144 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 5145 5146 return next; 5147 } 5148 5149 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 5150 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 5151 { 5152 struct rb_node **p = &root->rb_node; 5153 struct rb_node *parent = NULL; 5154 struct sk_buff *skb1; 5155 5156 while (*p) { 5157 parent = *p; 5158 skb1 = rb_to_skb(parent); 5159 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 5160 p = &parent->rb_left; 5161 else 5162 p = &parent->rb_right; 5163 } 5164 rb_link_node(&skb->rbnode, parent, p); 5165 rb_insert_color(&skb->rbnode, root); 5166 } 5167 5168 /* Collapse contiguous sequence of skbs head..tail with 5169 * sequence numbers start..end. 5170 * 5171 * If tail is NULL, this means until the end of the queue. 5172 * 5173 * Segments with FIN/SYN are not collapsed (only because this 5174 * simplifies code) 5175 */ 5176 static void 5177 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 5178 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 5179 { 5180 struct sk_buff *skb = head, *n; 5181 struct sk_buff_head tmp; 5182 bool end_of_skbs; 5183 5184 /* First, check that queue is collapsible and find 5185 * the point where collapsing can be useful. 5186 */ 5187 restart: 5188 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 5189 n = tcp_skb_next(skb, list); 5190 5191 /* No new bits? It is possible on ofo queue. */ 5192 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5193 skb = tcp_collapse_one(sk, skb, list, root); 5194 if (!skb) 5195 break; 5196 goto restart; 5197 } 5198 5199 /* The first skb to collapse is: 5200 * - not SYN/FIN and 5201 * - bloated or contains data before "start" or 5202 * overlaps to the next one and mptcp allow collapsing. 5203 */ 5204 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 5205 (tcp_win_from_space(sk, skb->truesize) > skb->len || 5206 before(TCP_SKB_CB(skb)->seq, start))) { 5207 end_of_skbs = false; 5208 break; 5209 } 5210 5211 if (n && n != tail && mptcp_skb_can_collapse(skb, n) && 5212 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 5213 end_of_skbs = false; 5214 break; 5215 } 5216 5217 /* Decided to skip this, advance start seq. */ 5218 start = TCP_SKB_CB(skb)->end_seq; 5219 } 5220 if (end_of_skbs || 5221 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5222 return; 5223 5224 __skb_queue_head_init(&tmp); 5225 5226 while (before(start, end)) { 5227 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 5228 struct sk_buff *nskb; 5229 5230 nskb = alloc_skb(copy, GFP_ATOMIC); 5231 if (!nskb) 5232 break; 5233 5234 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 5235 #ifdef CONFIG_TLS_DEVICE 5236 nskb->decrypted = skb->decrypted; 5237 #endif 5238 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 5239 if (list) 5240 __skb_queue_before(list, skb, nskb); 5241 else 5242 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 5243 skb_set_owner_r(nskb, sk); 5244 mptcp_skb_ext_move(nskb, skb); 5245 5246 /* Copy data, releasing collapsed skbs. */ 5247 while (copy > 0) { 5248 int offset = start - TCP_SKB_CB(skb)->seq; 5249 int size = TCP_SKB_CB(skb)->end_seq - start; 5250 5251 BUG_ON(offset < 0); 5252 if (size > 0) { 5253 size = min(copy, size); 5254 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 5255 BUG(); 5256 TCP_SKB_CB(nskb)->end_seq += size; 5257 copy -= size; 5258 start += size; 5259 } 5260 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5261 skb = tcp_collapse_one(sk, skb, list, root); 5262 if (!skb || 5263 skb == tail || 5264 !mptcp_skb_can_collapse(nskb, skb) || 5265 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5266 goto end; 5267 #ifdef CONFIG_TLS_DEVICE 5268 if (skb->decrypted != nskb->decrypted) 5269 goto end; 5270 #endif 5271 } 5272 } 5273 } 5274 end: 5275 skb_queue_walk_safe(&tmp, skb, n) 5276 tcp_rbtree_insert(root, skb); 5277 } 5278 5279 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5280 * and tcp_collapse() them until all the queue is collapsed. 5281 */ 5282 static void tcp_collapse_ofo_queue(struct sock *sk) 5283 { 5284 struct tcp_sock *tp = tcp_sk(sk); 5285 u32 range_truesize, sum_tiny = 0; 5286 struct sk_buff *skb, *head; 5287 u32 start, end; 5288 5289 skb = skb_rb_first(&tp->out_of_order_queue); 5290 new_range: 5291 if (!skb) { 5292 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5293 return; 5294 } 5295 start = TCP_SKB_CB(skb)->seq; 5296 end = TCP_SKB_CB(skb)->end_seq; 5297 range_truesize = skb->truesize; 5298 5299 for (head = skb;;) { 5300 skb = skb_rb_next(skb); 5301 5302 /* Range is terminated when we see a gap or when 5303 * we are at the queue end. 5304 */ 5305 if (!skb || 5306 after(TCP_SKB_CB(skb)->seq, end) || 5307 before(TCP_SKB_CB(skb)->end_seq, start)) { 5308 /* Do not attempt collapsing tiny skbs */ 5309 if (range_truesize != head->truesize || 5310 end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) { 5311 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5312 head, skb, start, end); 5313 } else { 5314 sum_tiny += range_truesize; 5315 if (sum_tiny > sk->sk_rcvbuf >> 3) 5316 return; 5317 } 5318 goto new_range; 5319 } 5320 5321 range_truesize += skb->truesize; 5322 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5323 start = TCP_SKB_CB(skb)->seq; 5324 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5325 end = TCP_SKB_CB(skb)->end_seq; 5326 } 5327 } 5328 5329 /* 5330 * Clean the out-of-order queue to make room. 5331 * We drop high sequences packets to : 5332 * 1) Let a chance for holes to be filled. 5333 * This means we do not drop packets from ooo queue if their sequence 5334 * is before incoming packet sequence. 5335 * 2) not add too big latencies if thousands of packets sit there. 5336 * (But if application shrinks SO_RCVBUF, we could still end up 5337 * freeing whole queue here) 5338 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5339 * 5340 * Return true if queue has shrunk. 5341 */ 5342 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb) 5343 { 5344 struct tcp_sock *tp = tcp_sk(sk); 5345 struct rb_node *node, *prev; 5346 bool pruned = false; 5347 int goal; 5348 5349 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5350 return false; 5351 5352 goal = sk->sk_rcvbuf >> 3; 5353 node = &tp->ooo_last_skb->rbnode; 5354 5355 do { 5356 struct sk_buff *skb = rb_to_skb(node); 5357 5358 /* If incoming skb would land last in ofo queue, stop pruning. */ 5359 if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq)) 5360 break; 5361 pruned = true; 5362 prev = rb_prev(node); 5363 rb_erase(node, &tp->out_of_order_queue); 5364 goal -= skb->truesize; 5365 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE); 5366 tp->ooo_last_skb = rb_to_skb(prev); 5367 if (!prev || goal <= 0) { 5368 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5369 !tcp_under_memory_pressure(sk)) 5370 break; 5371 goal = sk->sk_rcvbuf >> 3; 5372 } 5373 node = prev; 5374 } while (node); 5375 5376 if (pruned) { 5377 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5378 /* Reset SACK state. A conforming SACK implementation will 5379 * do the same at a timeout based retransmit. When a connection 5380 * is in a sad state like this, we care only about integrity 5381 * of the connection not performance. 5382 */ 5383 if (tp->rx_opt.sack_ok) 5384 tcp_sack_reset(&tp->rx_opt); 5385 } 5386 return pruned; 5387 } 5388 5389 /* Reduce allocated memory if we can, trying to get 5390 * the socket within its memory limits again. 5391 * 5392 * Return less than zero if we should start dropping frames 5393 * until the socket owning process reads some of the data 5394 * to stabilize the situation. 5395 */ 5396 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb) 5397 { 5398 struct tcp_sock *tp = tcp_sk(sk); 5399 5400 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5401 5402 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5403 tcp_clamp_window(sk); 5404 else if (tcp_under_memory_pressure(sk)) 5405 tcp_adjust_rcv_ssthresh(sk); 5406 5407 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5408 return 0; 5409 5410 tcp_collapse_ofo_queue(sk); 5411 if (!skb_queue_empty(&sk->sk_receive_queue)) 5412 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5413 skb_peek(&sk->sk_receive_queue), 5414 NULL, 5415 tp->copied_seq, tp->rcv_nxt); 5416 5417 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5418 return 0; 5419 5420 /* Collapsing did not help, destructive actions follow. 5421 * This must not ever occur. */ 5422 5423 tcp_prune_ofo_queue(sk, in_skb); 5424 5425 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5426 return 0; 5427 5428 /* If we are really being abused, tell the caller to silently 5429 * drop receive data on the floor. It will get retransmitted 5430 * and hopefully then we'll have sufficient space. 5431 */ 5432 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5433 5434 /* Massive buffer overcommit. */ 5435 tp->pred_flags = 0; 5436 return -1; 5437 } 5438 5439 static bool tcp_should_expand_sndbuf(struct sock *sk) 5440 { 5441 const struct tcp_sock *tp = tcp_sk(sk); 5442 5443 /* If the user specified a specific send buffer setting, do 5444 * not modify it. 5445 */ 5446 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5447 return false; 5448 5449 /* If we are under global TCP memory pressure, do not expand. */ 5450 if (tcp_under_memory_pressure(sk)) { 5451 int unused_mem = sk_unused_reserved_mem(sk); 5452 5453 /* Adjust sndbuf according to reserved mem. But make sure 5454 * it never goes below SOCK_MIN_SNDBUF. 5455 * See sk_stream_moderate_sndbuf() for more details. 5456 */ 5457 if (unused_mem > SOCK_MIN_SNDBUF) 5458 WRITE_ONCE(sk->sk_sndbuf, unused_mem); 5459 5460 return false; 5461 } 5462 5463 /* If we are under soft global TCP memory pressure, do not expand. */ 5464 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5465 return false; 5466 5467 /* If we filled the congestion window, do not expand. */ 5468 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)) 5469 return false; 5470 5471 return true; 5472 } 5473 5474 static void tcp_new_space(struct sock *sk) 5475 { 5476 struct tcp_sock *tp = tcp_sk(sk); 5477 5478 if (tcp_should_expand_sndbuf(sk)) { 5479 tcp_sndbuf_expand(sk); 5480 tp->snd_cwnd_stamp = tcp_jiffies32; 5481 } 5482 5483 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk); 5484 } 5485 5486 /* Caller made space either from: 5487 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced) 5488 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt) 5489 * 5490 * We might be able to generate EPOLLOUT to the application if: 5491 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2 5492 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became 5493 * small enough that tcp_stream_memory_free() decides it 5494 * is time to generate EPOLLOUT. 5495 */ 5496 void tcp_check_space(struct sock *sk) 5497 { 5498 /* pairs with tcp_poll() */ 5499 smp_mb(); 5500 if (sk->sk_socket && 5501 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5502 tcp_new_space(sk); 5503 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5504 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5505 } 5506 } 5507 5508 static inline void tcp_data_snd_check(struct sock *sk) 5509 { 5510 tcp_push_pending_frames(sk); 5511 tcp_check_space(sk); 5512 } 5513 5514 /* 5515 * Check if sending an ack is needed. 5516 */ 5517 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5518 { 5519 struct tcp_sock *tp = tcp_sk(sk); 5520 unsigned long rtt, delay; 5521 5522 /* More than one full frame received... */ 5523 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5524 /* ... and right edge of window advances far enough. 5525 * (tcp_recvmsg() will send ACK otherwise). 5526 * If application uses SO_RCVLOWAT, we want send ack now if 5527 * we have not received enough bytes to satisfy the condition. 5528 */ 5529 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5530 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5531 /* We ACK each frame or... */ 5532 tcp_in_quickack_mode(sk) || 5533 /* Protocol state mandates a one-time immediate ACK */ 5534 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5535 send_now: 5536 tcp_send_ack(sk); 5537 return; 5538 } 5539 5540 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5541 tcp_send_delayed_ack(sk); 5542 return; 5543 } 5544 5545 if (!tcp_is_sack(tp) || 5546 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)) 5547 goto send_now; 5548 5549 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5550 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5551 tp->dup_ack_counter = 0; 5552 } 5553 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) { 5554 tp->dup_ack_counter++; 5555 goto send_now; 5556 } 5557 tp->compressed_ack++; 5558 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5559 return; 5560 5561 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5562 5563 rtt = tp->rcv_rtt_est.rtt_us; 5564 if (tp->srtt_us && tp->srtt_us < rtt) 5565 rtt = tp->srtt_us; 5566 5567 delay = min_t(unsigned long, 5568 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns), 5569 rtt * (NSEC_PER_USEC >> 3)/20); 5570 sock_hold(sk); 5571 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay), 5572 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns), 5573 HRTIMER_MODE_REL_PINNED_SOFT); 5574 } 5575 5576 static inline void tcp_ack_snd_check(struct sock *sk) 5577 { 5578 if (!inet_csk_ack_scheduled(sk)) { 5579 /* We sent a data segment already. */ 5580 return; 5581 } 5582 __tcp_ack_snd_check(sk, 1); 5583 } 5584 5585 /* 5586 * This routine is only called when we have urgent data 5587 * signaled. Its the 'slow' part of tcp_urg. It could be 5588 * moved inline now as tcp_urg is only called from one 5589 * place. We handle URGent data wrong. We have to - as 5590 * BSD still doesn't use the correction from RFC961. 5591 * For 1003.1g we should support a new option TCP_STDURG to permit 5592 * either form (or just set the sysctl tcp_stdurg). 5593 */ 5594 5595 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5596 { 5597 struct tcp_sock *tp = tcp_sk(sk); 5598 u32 ptr = ntohs(th->urg_ptr); 5599 5600 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg)) 5601 ptr--; 5602 ptr += ntohl(th->seq); 5603 5604 /* Ignore urgent data that we've already seen and read. */ 5605 if (after(tp->copied_seq, ptr)) 5606 return; 5607 5608 /* Do not replay urg ptr. 5609 * 5610 * NOTE: interesting situation not covered by specs. 5611 * Misbehaving sender may send urg ptr, pointing to segment, 5612 * which we already have in ofo queue. We are not able to fetch 5613 * such data and will stay in TCP_URG_NOTYET until will be eaten 5614 * by recvmsg(). Seems, we are not obliged to handle such wicked 5615 * situations. But it is worth to think about possibility of some 5616 * DoSes using some hypothetical application level deadlock. 5617 */ 5618 if (before(ptr, tp->rcv_nxt)) 5619 return; 5620 5621 /* Do we already have a newer (or duplicate) urgent pointer? */ 5622 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5623 return; 5624 5625 /* Tell the world about our new urgent pointer. */ 5626 sk_send_sigurg(sk); 5627 5628 /* We may be adding urgent data when the last byte read was 5629 * urgent. To do this requires some care. We cannot just ignore 5630 * tp->copied_seq since we would read the last urgent byte again 5631 * as data, nor can we alter copied_seq until this data arrives 5632 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5633 * 5634 * NOTE. Double Dutch. Rendering to plain English: author of comment 5635 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5636 * and expect that both A and B disappear from stream. This is _wrong_. 5637 * Though this happens in BSD with high probability, this is occasional. 5638 * Any application relying on this is buggy. Note also, that fix "works" 5639 * only in this artificial test. Insert some normal data between A and B and we will 5640 * decline of BSD again. Verdict: it is better to remove to trap 5641 * buggy users. 5642 */ 5643 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5644 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5645 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5646 tp->copied_seq++; 5647 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5648 __skb_unlink(skb, &sk->sk_receive_queue); 5649 __kfree_skb(skb); 5650 } 5651 } 5652 5653 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET); 5654 WRITE_ONCE(tp->urg_seq, ptr); 5655 5656 /* Disable header prediction. */ 5657 tp->pred_flags = 0; 5658 } 5659 5660 /* This is the 'fast' part of urgent handling. */ 5661 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5662 { 5663 struct tcp_sock *tp = tcp_sk(sk); 5664 5665 /* Check if we get a new urgent pointer - normally not. */ 5666 if (unlikely(th->urg)) 5667 tcp_check_urg(sk, th); 5668 5669 /* Do we wait for any urgent data? - normally not... */ 5670 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) { 5671 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5672 th->syn; 5673 5674 /* Is the urgent pointer pointing into this packet? */ 5675 if (ptr < skb->len) { 5676 u8 tmp; 5677 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5678 BUG(); 5679 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp); 5680 if (!sock_flag(sk, SOCK_DEAD)) 5681 sk->sk_data_ready(sk); 5682 } 5683 } 5684 } 5685 5686 /* Accept RST for rcv_nxt - 1 after a FIN. 5687 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5688 * FIN is sent followed by a RST packet. The RST is sent with the same 5689 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5690 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5691 * ACKs on the closed socket. In addition middleboxes can drop either the 5692 * challenge ACK or a subsequent RST. 5693 */ 5694 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5695 { 5696 struct tcp_sock *tp = tcp_sk(sk); 5697 5698 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5699 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5700 TCPF_CLOSING)); 5701 } 5702 5703 /* Does PAWS and seqno based validation of an incoming segment, flags will 5704 * play significant role here. 5705 */ 5706 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5707 const struct tcphdr *th, int syn_inerr) 5708 { 5709 struct tcp_sock *tp = tcp_sk(sk); 5710 SKB_DR(reason); 5711 5712 /* RFC1323: H1. Apply PAWS check first. */ 5713 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5714 tp->rx_opt.saw_tstamp && 5715 tcp_paws_discard(sk, skb)) { 5716 if (!th->rst) { 5717 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5718 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5719 LINUX_MIB_TCPACKSKIPPEDPAWS, 5720 &tp->last_oow_ack_time)) 5721 tcp_send_dupack(sk, skb); 5722 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 5723 goto discard; 5724 } 5725 /* Reset is accepted even if it did not pass PAWS. */ 5726 } 5727 5728 /* Step 1: check sequence number */ 5729 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5730 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5731 * (RST) segments are validated by checking their SEQ-fields." 5732 * And page 69: "If an incoming segment is not acceptable, 5733 * an acknowledgment should be sent in reply (unless the RST 5734 * bit is set, if so drop the segment and return)". 5735 */ 5736 if (!th->rst) { 5737 if (th->syn) 5738 goto syn_challenge; 5739 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5740 LINUX_MIB_TCPACKSKIPPEDSEQ, 5741 &tp->last_oow_ack_time)) 5742 tcp_send_dupack(sk, skb); 5743 } else if (tcp_reset_check(sk, skb)) { 5744 goto reset; 5745 } 5746 SKB_DR_SET(reason, TCP_INVALID_SEQUENCE); 5747 goto discard; 5748 } 5749 5750 /* Step 2: check RST bit */ 5751 if (th->rst) { 5752 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5753 * FIN and SACK too if available): 5754 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5755 * the right-most SACK block, 5756 * then 5757 * RESET the connection 5758 * else 5759 * Send a challenge ACK 5760 */ 5761 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5762 tcp_reset_check(sk, skb)) 5763 goto reset; 5764 5765 if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5766 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5767 int max_sack = sp[0].end_seq; 5768 int this_sack; 5769 5770 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5771 ++this_sack) { 5772 max_sack = after(sp[this_sack].end_seq, 5773 max_sack) ? 5774 sp[this_sack].end_seq : max_sack; 5775 } 5776 5777 if (TCP_SKB_CB(skb)->seq == max_sack) 5778 goto reset; 5779 } 5780 5781 /* Disable TFO if RST is out-of-order 5782 * and no data has been received 5783 * for current active TFO socket 5784 */ 5785 if (tp->syn_fastopen && !tp->data_segs_in && 5786 sk->sk_state == TCP_ESTABLISHED) 5787 tcp_fastopen_active_disable(sk); 5788 tcp_send_challenge_ack(sk); 5789 SKB_DR_SET(reason, TCP_RESET); 5790 goto discard; 5791 } 5792 5793 /* step 3: check security and precedence [ignored] */ 5794 5795 /* step 4: Check for a SYN 5796 * RFC 5961 4.2 : Send a challenge ack 5797 */ 5798 if (th->syn) { 5799 syn_challenge: 5800 if (syn_inerr) 5801 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5802 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5803 tcp_send_challenge_ack(sk); 5804 SKB_DR_SET(reason, TCP_INVALID_SYN); 5805 goto discard; 5806 } 5807 5808 bpf_skops_parse_hdr(sk, skb); 5809 5810 return true; 5811 5812 discard: 5813 tcp_drop_reason(sk, skb, reason); 5814 return false; 5815 5816 reset: 5817 tcp_reset(sk, skb); 5818 __kfree_skb(skb); 5819 return false; 5820 } 5821 5822 /* 5823 * TCP receive function for the ESTABLISHED state. 5824 * 5825 * It is split into a fast path and a slow path. The fast path is 5826 * disabled when: 5827 * - A zero window was announced from us - zero window probing 5828 * is only handled properly in the slow path. 5829 * - Out of order segments arrived. 5830 * - Urgent data is expected. 5831 * - There is no buffer space left 5832 * - Unexpected TCP flags/window values/header lengths are received 5833 * (detected by checking the TCP header against pred_flags) 5834 * - Data is sent in both directions. Fast path only supports pure senders 5835 * or pure receivers (this means either the sequence number or the ack 5836 * value must stay constant) 5837 * - Unexpected TCP option. 5838 * 5839 * When these conditions are not satisfied it drops into a standard 5840 * receive procedure patterned after RFC793 to handle all cases. 5841 * The first three cases are guaranteed by proper pred_flags setting, 5842 * the rest is checked inline. Fast processing is turned on in 5843 * tcp_data_queue when everything is OK. 5844 */ 5845 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5846 { 5847 enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED; 5848 const struct tcphdr *th = (const struct tcphdr *)skb->data; 5849 struct tcp_sock *tp = tcp_sk(sk); 5850 unsigned int len = skb->len; 5851 5852 /* TCP congestion window tracking */ 5853 trace_tcp_probe(sk, skb); 5854 5855 tcp_mstamp_refresh(tp); 5856 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst))) 5857 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5858 /* 5859 * Header prediction. 5860 * The code loosely follows the one in the famous 5861 * "30 instruction TCP receive" Van Jacobson mail. 5862 * 5863 * Van's trick is to deposit buffers into socket queue 5864 * on a device interrupt, to call tcp_recv function 5865 * on the receive process context and checksum and copy 5866 * the buffer to user space. smart... 5867 * 5868 * Our current scheme is not silly either but we take the 5869 * extra cost of the net_bh soft interrupt processing... 5870 * We do checksum and copy also but from device to kernel. 5871 */ 5872 5873 tp->rx_opt.saw_tstamp = 0; 5874 5875 /* pred_flags is 0xS?10 << 16 + snd_wnd 5876 * if header_prediction is to be made 5877 * 'S' will always be tp->tcp_header_len >> 2 5878 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5879 * turn it off (when there are holes in the receive 5880 * space for instance) 5881 * PSH flag is ignored. 5882 */ 5883 5884 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5885 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5886 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5887 int tcp_header_len = tp->tcp_header_len; 5888 5889 /* Timestamp header prediction: tcp_header_len 5890 * is automatically equal to th->doff*4 due to pred_flags 5891 * match. 5892 */ 5893 5894 /* Check timestamp */ 5895 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5896 /* No? Slow path! */ 5897 if (!tcp_parse_aligned_timestamp(tp, th)) 5898 goto slow_path; 5899 5900 /* If PAWS failed, check it more carefully in slow path */ 5901 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5902 goto slow_path; 5903 5904 /* DO NOT update ts_recent here, if checksum fails 5905 * and timestamp was corrupted part, it will result 5906 * in a hung connection since we will drop all 5907 * future packets due to the PAWS test. 5908 */ 5909 } 5910 5911 if (len <= tcp_header_len) { 5912 /* Bulk data transfer: sender */ 5913 if (len == tcp_header_len) { 5914 /* Predicted packet is in window by definition. 5915 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5916 * Hence, check seq<=rcv_wup reduces to: 5917 */ 5918 if (tcp_header_len == 5919 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5920 tp->rcv_nxt == tp->rcv_wup) 5921 tcp_store_ts_recent(tp); 5922 5923 /* We know that such packets are checksummed 5924 * on entry. 5925 */ 5926 tcp_ack(sk, skb, 0); 5927 __kfree_skb(skb); 5928 tcp_data_snd_check(sk); 5929 /* When receiving pure ack in fast path, update 5930 * last ts ecr directly instead of calling 5931 * tcp_rcv_rtt_measure_ts() 5932 */ 5933 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 5934 return; 5935 } else { /* Header too small */ 5936 reason = SKB_DROP_REASON_PKT_TOO_SMALL; 5937 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5938 goto discard; 5939 } 5940 } else { 5941 int eaten = 0; 5942 bool fragstolen = false; 5943 5944 if (tcp_checksum_complete(skb)) 5945 goto csum_error; 5946 5947 if ((int)skb->truesize > sk->sk_forward_alloc) 5948 goto step5; 5949 5950 /* Predicted packet is in window by definition. 5951 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5952 * Hence, check seq<=rcv_wup reduces to: 5953 */ 5954 if (tcp_header_len == 5955 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5956 tp->rcv_nxt == tp->rcv_wup) 5957 tcp_store_ts_recent(tp); 5958 5959 tcp_rcv_rtt_measure_ts(sk, skb); 5960 5961 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5962 5963 /* Bulk data transfer: receiver */ 5964 skb_dst_drop(skb); 5965 __skb_pull(skb, tcp_header_len); 5966 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5967 5968 tcp_event_data_recv(sk, skb); 5969 5970 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5971 /* Well, only one small jumplet in fast path... */ 5972 tcp_ack(sk, skb, FLAG_DATA); 5973 tcp_data_snd_check(sk); 5974 if (!inet_csk_ack_scheduled(sk)) 5975 goto no_ack; 5976 } else { 5977 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq); 5978 } 5979 5980 __tcp_ack_snd_check(sk, 0); 5981 no_ack: 5982 if (eaten) 5983 kfree_skb_partial(skb, fragstolen); 5984 tcp_data_ready(sk); 5985 return; 5986 } 5987 } 5988 5989 slow_path: 5990 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5991 goto csum_error; 5992 5993 if (!th->ack && !th->rst && !th->syn) { 5994 reason = SKB_DROP_REASON_TCP_FLAGS; 5995 goto discard; 5996 } 5997 5998 /* 5999 * Standard slow path. 6000 */ 6001 6002 if (!tcp_validate_incoming(sk, skb, th, 1)) 6003 return; 6004 6005 step5: 6006 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT); 6007 if ((int)reason < 0) { 6008 reason = -reason; 6009 goto discard; 6010 } 6011 tcp_rcv_rtt_measure_ts(sk, skb); 6012 6013 /* Process urgent data. */ 6014 tcp_urg(sk, skb, th); 6015 6016 /* step 7: process the segment text */ 6017 tcp_data_queue(sk, skb); 6018 6019 tcp_data_snd_check(sk); 6020 tcp_ack_snd_check(sk); 6021 return; 6022 6023 csum_error: 6024 reason = SKB_DROP_REASON_TCP_CSUM; 6025 trace_tcp_bad_csum(skb); 6026 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 6027 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6028 6029 discard: 6030 tcp_drop_reason(sk, skb, reason); 6031 } 6032 EXPORT_SYMBOL(tcp_rcv_established); 6033 6034 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb) 6035 { 6036 struct inet_connection_sock *icsk = inet_csk(sk); 6037 struct tcp_sock *tp = tcp_sk(sk); 6038 6039 tcp_mtup_init(sk); 6040 icsk->icsk_af_ops->rebuild_header(sk); 6041 tcp_init_metrics(sk); 6042 6043 /* Initialize the congestion window to start the transfer. 6044 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 6045 * retransmitted. In light of RFC6298 more aggressive 1sec 6046 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 6047 * retransmission has occurred. 6048 */ 6049 if (tp->total_retrans > 1 && tp->undo_marker) 6050 tcp_snd_cwnd_set(tp, 1); 6051 else 6052 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk))); 6053 tp->snd_cwnd_stamp = tcp_jiffies32; 6054 6055 bpf_skops_established(sk, bpf_op, skb); 6056 /* Initialize congestion control unless BPF initialized it already: */ 6057 if (!icsk->icsk_ca_initialized) 6058 tcp_init_congestion_control(sk); 6059 tcp_init_buffer_space(sk); 6060 } 6061 6062 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 6063 { 6064 struct tcp_sock *tp = tcp_sk(sk); 6065 struct inet_connection_sock *icsk = inet_csk(sk); 6066 6067 tcp_set_state(sk, TCP_ESTABLISHED); 6068 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 6069 6070 if (skb) { 6071 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 6072 security_inet_conn_established(sk, skb); 6073 sk_mark_napi_id(sk, skb); 6074 } 6075 6076 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb); 6077 6078 /* Prevent spurious tcp_cwnd_restart() on first data 6079 * packet. 6080 */ 6081 tp->lsndtime = tcp_jiffies32; 6082 6083 if (sock_flag(sk, SOCK_KEEPOPEN)) 6084 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 6085 6086 if (!tp->rx_opt.snd_wscale) 6087 __tcp_fast_path_on(tp, tp->snd_wnd); 6088 else 6089 tp->pred_flags = 0; 6090 } 6091 6092 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 6093 struct tcp_fastopen_cookie *cookie) 6094 { 6095 struct tcp_sock *tp = tcp_sk(sk); 6096 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 6097 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 6098 bool syn_drop = false; 6099 6100 if (mss == tp->rx_opt.user_mss) { 6101 struct tcp_options_received opt; 6102 6103 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 6104 tcp_clear_options(&opt); 6105 opt.user_mss = opt.mss_clamp = 0; 6106 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 6107 mss = opt.mss_clamp; 6108 } 6109 6110 if (!tp->syn_fastopen) { 6111 /* Ignore an unsolicited cookie */ 6112 cookie->len = -1; 6113 } else if (tp->total_retrans) { 6114 /* SYN timed out and the SYN-ACK neither has a cookie nor 6115 * acknowledges data. Presumably the remote received only 6116 * the retransmitted (regular) SYNs: either the original 6117 * SYN-data or the corresponding SYN-ACK was dropped. 6118 */ 6119 syn_drop = (cookie->len < 0 && data); 6120 } else if (cookie->len < 0 && !tp->syn_data) { 6121 /* We requested a cookie but didn't get it. If we did not use 6122 * the (old) exp opt format then try so next time (try_exp=1). 6123 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 6124 */ 6125 try_exp = tp->syn_fastopen_exp ? 2 : 1; 6126 } 6127 6128 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 6129 6130 if (data) { /* Retransmit unacked data in SYN */ 6131 if (tp->total_retrans) 6132 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 6133 else 6134 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 6135 skb_rbtree_walk_from(data) 6136 tcp_mark_skb_lost(sk, data); 6137 tcp_xmit_retransmit_queue(sk); 6138 NET_INC_STATS(sock_net(sk), 6139 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 6140 return true; 6141 } 6142 tp->syn_data_acked = tp->syn_data; 6143 if (tp->syn_data_acked) { 6144 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 6145 /* SYN-data is counted as two separate packets in tcp_ack() */ 6146 if (tp->delivered > 1) 6147 --tp->delivered; 6148 } 6149 6150 tcp_fastopen_add_skb(sk, synack); 6151 6152 return false; 6153 } 6154 6155 static void smc_check_reset_syn(struct tcp_sock *tp) 6156 { 6157 #if IS_ENABLED(CONFIG_SMC) 6158 if (static_branch_unlikely(&tcp_have_smc)) { 6159 if (tp->syn_smc && !tp->rx_opt.smc_ok) 6160 tp->syn_smc = 0; 6161 } 6162 #endif 6163 } 6164 6165 static void tcp_try_undo_spurious_syn(struct sock *sk) 6166 { 6167 struct tcp_sock *tp = tcp_sk(sk); 6168 u32 syn_stamp; 6169 6170 /* undo_marker is set when SYN or SYNACK times out. The timeout is 6171 * spurious if the ACK's timestamp option echo value matches the 6172 * original SYN timestamp. 6173 */ 6174 syn_stamp = tp->retrans_stamp; 6175 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 6176 syn_stamp == tp->rx_opt.rcv_tsecr) 6177 tp->undo_marker = 0; 6178 } 6179 6180 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 6181 const struct tcphdr *th) 6182 { 6183 struct inet_connection_sock *icsk = inet_csk(sk); 6184 struct tcp_sock *tp = tcp_sk(sk); 6185 struct tcp_fastopen_cookie foc = { .len = -1 }; 6186 int saved_clamp = tp->rx_opt.mss_clamp; 6187 bool fastopen_fail; 6188 SKB_DR(reason); 6189 6190 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 6191 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 6192 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 6193 6194 if (th->ack) { 6195 /* rfc793: 6196 * "If the state is SYN-SENT then 6197 * first check the ACK bit 6198 * If the ACK bit is set 6199 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 6200 * a reset (unless the RST bit is set, if so drop 6201 * the segment and return)" 6202 */ 6203 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 6204 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6205 /* Previous FIN/ACK or RST/ACK might be ignored. */ 6206 if (icsk->icsk_retransmits == 0) 6207 inet_csk_reset_xmit_timer(sk, 6208 ICSK_TIME_RETRANS, 6209 TCP_TIMEOUT_MIN, TCP_RTO_MAX); 6210 goto reset_and_undo; 6211 } 6212 6213 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 6214 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 6215 tcp_time_stamp(tp))) { 6216 NET_INC_STATS(sock_net(sk), 6217 LINUX_MIB_PAWSACTIVEREJECTED); 6218 goto reset_and_undo; 6219 } 6220 6221 /* Now ACK is acceptable. 6222 * 6223 * "If the RST bit is set 6224 * If the ACK was acceptable then signal the user "error: 6225 * connection reset", drop the segment, enter CLOSED state, 6226 * delete TCB, and return." 6227 */ 6228 6229 if (th->rst) { 6230 tcp_reset(sk, skb); 6231 consume: 6232 __kfree_skb(skb); 6233 return 0; 6234 } 6235 6236 /* rfc793: 6237 * "fifth, if neither of the SYN or RST bits is set then 6238 * drop the segment and return." 6239 * 6240 * See note below! 6241 * --ANK(990513) 6242 */ 6243 if (!th->syn) { 6244 SKB_DR_SET(reason, TCP_FLAGS); 6245 goto discard_and_undo; 6246 } 6247 /* rfc793: 6248 * "If the SYN bit is on ... 6249 * are acceptable then ... 6250 * (our SYN has been ACKed), change the connection 6251 * state to ESTABLISHED..." 6252 */ 6253 6254 tcp_ecn_rcv_synack(tp, th); 6255 6256 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6257 tcp_try_undo_spurious_syn(sk); 6258 tcp_ack(sk, skb, FLAG_SLOWPATH); 6259 6260 /* Ok.. it's good. Set up sequence numbers and 6261 * move to established. 6262 */ 6263 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6264 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6265 6266 /* RFC1323: The window in SYN & SYN/ACK segments is 6267 * never scaled. 6268 */ 6269 tp->snd_wnd = ntohs(th->window); 6270 6271 if (!tp->rx_opt.wscale_ok) { 6272 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 6273 tp->window_clamp = min(tp->window_clamp, 65535U); 6274 } 6275 6276 if (tp->rx_opt.saw_tstamp) { 6277 tp->rx_opt.tstamp_ok = 1; 6278 tp->tcp_header_len = 6279 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6280 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6281 tcp_store_ts_recent(tp); 6282 } else { 6283 tp->tcp_header_len = sizeof(struct tcphdr); 6284 } 6285 6286 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6287 tcp_initialize_rcv_mss(sk); 6288 6289 /* Remember, tcp_poll() does not lock socket! 6290 * Change state from SYN-SENT only after copied_seq 6291 * is initialized. */ 6292 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6293 6294 smc_check_reset_syn(tp); 6295 6296 smp_mb(); 6297 6298 tcp_finish_connect(sk, skb); 6299 6300 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 6301 tcp_rcv_fastopen_synack(sk, skb, &foc); 6302 6303 if (!sock_flag(sk, SOCK_DEAD)) { 6304 sk->sk_state_change(sk); 6305 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6306 } 6307 if (fastopen_fail) 6308 return -1; 6309 if (sk->sk_write_pending || 6310 icsk->icsk_accept_queue.rskq_defer_accept || 6311 inet_csk_in_pingpong_mode(sk)) { 6312 /* Save one ACK. Data will be ready after 6313 * several ticks, if write_pending is set. 6314 * 6315 * It may be deleted, but with this feature tcpdumps 6316 * look so _wonderfully_ clever, that I was not able 6317 * to stand against the temptation 8) --ANK 6318 */ 6319 inet_csk_schedule_ack(sk); 6320 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 6321 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 6322 TCP_DELACK_MAX, TCP_RTO_MAX); 6323 goto consume; 6324 } 6325 tcp_send_ack(sk); 6326 return -1; 6327 } 6328 6329 /* No ACK in the segment */ 6330 6331 if (th->rst) { 6332 /* rfc793: 6333 * "If the RST bit is set 6334 * 6335 * Otherwise (no ACK) drop the segment and return." 6336 */ 6337 SKB_DR_SET(reason, TCP_RESET); 6338 goto discard_and_undo; 6339 } 6340 6341 /* PAWS check. */ 6342 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 6343 tcp_paws_reject(&tp->rx_opt, 0)) { 6344 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 6345 goto discard_and_undo; 6346 } 6347 if (th->syn) { 6348 /* We see SYN without ACK. It is attempt of 6349 * simultaneous connect with crossed SYNs. 6350 * Particularly, it can be connect to self. 6351 */ 6352 tcp_set_state(sk, TCP_SYN_RECV); 6353 6354 if (tp->rx_opt.saw_tstamp) { 6355 tp->rx_opt.tstamp_ok = 1; 6356 tcp_store_ts_recent(tp); 6357 tp->tcp_header_len = 6358 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6359 } else { 6360 tp->tcp_header_len = sizeof(struct tcphdr); 6361 } 6362 6363 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6364 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6365 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6366 6367 /* RFC1323: The window in SYN & SYN/ACK segments is 6368 * never scaled. 6369 */ 6370 tp->snd_wnd = ntohs(th->window); 6371 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6372 tp->max_window = tp->snd_wnd; 6373 6374 tcp_ecn_rcv_syn(tp, th); 6375 6376 tcp_mtup_init(sk); 6377 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6378 tcp_initialize_rcv_mss(sk); 6379 6380 tcp_send_synack(sk); 6381 #if 0 6382 /* Note, we could accept data and URG from this segment. 6383 * There are no obstacles to make this (except that we must 6384 * either change tcp_recvmsg() to prevent it from returning data 6385 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6386 * 6387 * However, if we ignore data in ACKless segments sometimes, 6388 * we have no reasons to accept it sometimes. 6389 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6390 * is not flawless. So, discard packet for sanity. 6391 * Uncomment this return to process the data. 6392 */ 6393 return -1; 6394 #else 6395 goto consume; 6396 #endif 6397 } 6398 /* "fifth, if neither of the SYN or RST bits is set then 6399 * drop the segment and return." 6400 */ 6401 6402 discard_and_undo: 6403 tcp_clear_options(&tp->rx_opt); 6404 tp->rx_opt.mss_clamp = saved_clamp; 6405 tcp_drop_reason(sk, skb, reason); 6406 return 0; 6407 6408 reset_and_undo: 6409 tcp_clear_options(&tp->rx_opt); 6410 tp->rx_opt.mss_clamp = saved_clamp; 6411 return 1; 6412 } 6413 6414 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6415 { 6416 struct request_sock *req; 6417 6418 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows 6419 * undo. If peer SACKs triggered fast recovery, we can't undo here. 6420 */ 6421 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 6422 tcp_try_undo_loss(sk, false); 6423 6424 /* Reset rtx states to prevent spurious retransmits_timed_out() */ 6425 tcp_sk(sk)->retrans_stamp = 0; 6426 inet_csk(sk)->icsk_retransmits = 0; 6427 6428 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6429 * we no longer need req so release it. 6430 */ 6431 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 6432 lockdep_sock_is_held(sk)); 6433 reqsk_fastopen_remove(sk, req, false); 6434 6435 /* Re-arm the timer because data may have been sent out. 6436 * This is similar to the regular data transmission case 6437 * when new data has just been ack'ed. 6438 * 6439 * (TFO) - we could try to be more aggressive and 6440 * retransmitting any data sooner based on when they 6441 * are sent out. 6442 */ 6443 tcp_rearm_rto(sk); 6444 } 6445 6446 /* 6447 * This function implements the receiving procedure of RFC 793 for 6448 * all states except ESTABLISHED and TIME_WAIT. 6449 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6450 * address independent. 6451 */ 6452 6453 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6454 { 6455 struct tcp_sock *tp = tcp_sk(sk); 6456 struct inet_connection_sock *icsk = inet_csk(sk); 6457 const struct tcphdr *th = tcp_hdr(skb); 6458 struct request_sock *req; 6459 int queued = 0; 6460 bool acceptable; 6461 SKB_DR(reason); 6462 6463 switch (sk->sk_state) { 6464 case TCP_CLOSE: 6465 SKB_DR_SET(reason, TCP_CLOSE); 6466 goto discard; 6467 6468 case TCP_LISTEN: 6469 if (th->ack) 6470 return 1; 6471 6472 if (th->rst) { 6473 SKB_DR_SET(reason, TCP_RESET); 6474 goto discard; 6475 } 6476 if (th->syn) { 6477 if (th->fin) { 6478 SKB_DR_SET(reason, TCP_FLAGS); 6479 goto discard; 6480 } 6481 /* It is possible that we process SYN packets from backlog, 6482 * so we need to make sure to disable BH and RCU right there. 6483 */ 6484 rcu_read_lock(); 6485 local_bh_disable(); 6486 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 6487 local_bh_enable(); 6488 rcu_read_unlock(); 6489 6490 if (!acceptable) 6491 return 1; 6492 consume_skb(skb); 6493 return 0; 6494 } 6495 SKB_DR_SET(reason, TCP_FLAGS); 6496 goto discard; 6497 6498 case TCP_SYN_SENT: 6499 tp->rx_opt.saw_tstamp = 0; 6500 tcp_mstamp_refresh(tp); 6501 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6502 if (queued >= 0) 6503 return queued; 6504 6505 /* Do step6 onward by hand. */ 6506 tcp_urg(sk, skb, th); 6507 __kfree_skb(skb); 6508 tcp_data_snd_check(sk); 6509 return 0; 6510 } 6511 6512 tcp_mstamp_refresh(tp); 6513 tp->rx_opt.saw_tstamp = 0; 6514 req = rcu_dereference_protected(tp->fastopen_rsk, 6515 lockdep_sock_is_held(sk)); 6516 if (req) { 6517 bool req_stolen; 6518 6519 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6520 sk->sk_state != TCP_FIN_WAIT1); 6521 6522 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) { 6523 SKB_DR_SET(reason, TCP_FASTOPEN); 6524 goto discard; 6525 } 6526 } 6527 6528 if (!th->ack && !th->rst && !th->syn) { 6529 SKB_DR_SET(reason, TCP_FLAGS); 6530 goto discard; 6531 } 6532 if (!tcp_validate_incoming(sk, skb, th, 0)) 6533 return 0; 6534 6535 /* step 5: check the ACK field */ 6536 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 6537 FLAG_UPDATE_TS_RECENT | 6538 FLAG_NO_CHALLENGE_ACK) > 0; 6539 6540 if (!acceptable) { 6541 if (sk->sk_state == TCP_SYN_RECV) 6542 return 1; /* send one RST */ 6543 tcp_send_challenge_ack(sk); 6544 SKB_DR_SET(reason, TCP_OLD_ACK); 6545 goto discard; 6546 } 6547 switch (sk->sk_state) { 6548 case TCP_SYN_RECV: 6549 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6550 if (!tp->srtt_us) 6551 tcp_synack_rtt_meas(sk, req); 6552 6553 if (req) { 6554 tcp_rcv_synrecv_state_fastopen(sk); 6555 } else { 6556 tcp_try_undo_spurious_syn(sk); 6557 tp->retrans_stamp = 0; 6558 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, 6559 skb); 6560 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6561 } 6562 smp_mb(); 6563 tcp_set_state(sk, TCP_ESTABLISHED); 6564 sk->sk_state_change(sk); 6565 6566 /* Note, that this wakeup is only for marginal crossed SYN case. 6567 * Passively open sockets are not waked up, because 6568 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6569 */ 6570 if (sk->sk_socket) 6571 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6572 6573 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6574 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6575 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6576 6577 if (tp->rx_opt.tstamp_ok) 6578 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6579 6580 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6581 tcp_update_pacing_rate(sk); 6582 6583 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6584 tp->lsndtime = tcp_jiffies32; 6585 6586 tcp_initialize_rcv_mss(sk); 6587 tcp_fast_path_on(tp); 6588 break; 6589 6590 case TCP_FIN_WAIT1: { 6591 int tmo; 6592 6593 if (req) 6594 tcp_rcv_synrecv_state_fastopen(sk); 6595 6596 if (tp->snd_una != tp->write_seq) 6597 break; 6598 6599 tcp_set_state(sk, TCP_FIN_WAIT2); 6600 sk->sk_shutdown |= SEND_SHUTDOWN; 6601 6602 sk_dst_confirm(sk); 6603 6604 if (!sock_flag(sk, SOCK_DEAD)) { 6605 /* Wake up lingering close() */ 6606 sk->sk_state_change(sk); 6607 break; 6608 } 6609 6610 if (tp->linger2 < 0) { 6611 tcp_done(sk); 6612 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6613 return 1; 6614 } 6615 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6616 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6617 /* Receive out of order FIN after close() */ 6618 if (tp->syn_fastopen && th->fin) 6619 tcp_fastopen_active_disable(sk); 6620 tcp_done(sk); 6621 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6622 return 1; 6623 } 6624 6625 tmo = tcp_fin_time(sk); 6626 if (tmo > TCP_TIMEWAIT_LEN) { 6627 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6628 } else if (th->fin || sock_owned_by_user(sk)) { 6629 /* Bad case. We could lose such FIN otherwise. 6630 * It is not a big problem, but it looks confusing 6631 * and not so rare event. We still can lose it now, 6632 * if it spins in bh_lock_sock(), but it is really 6633 * marginal case. 6634 */ 6635 inet_csk_reset_keepalive_timer(sk, tmo); 6636 } else { 6637 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6638 goto consume; 6639 } 6640 break; 6641 } 6642 6643 case TCP_CLOSING: 6644 if (tp->snd_una == tp->write_seq) { 6645 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6646 goto consume; 6647 } 6648 break; 6649 6650 case TCP_LAST_ACK: 6651 if (tp->snd_una == tp->write_seq) { 6652 tcp_update_metrics(sk); 6653 tcp_done(sk); 6654 goto consume; 6655 } 6656 break; 6657 } 6658 6659 /* step 6: check the URG bit */ 6660 tcp_urg(sk, skb, th); 6661 6662 /* step 7: process the segment text */ 6663 switch (sk->sk_state) { 6664 case TCP_CLOSE_WAIT: 6665 case TCP_CLOSING: 6666 case TCP_LAST_ACK: 6667 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 6668 /* If a subflow has been reset, the packet should not 6669 * continue to be processed, drop the packet. 6670 */ 6671 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) 6672 goto discard; 6673 break; 6674 } 6675 fallthrough; 6676 case TCP_FIN_WAIT1: 6677 case TCP_FIN_WAIT2: 6678 /* RFC 793 says to queue data in these states, 6679 * RFC 1122 says we MUST send a reset. 6680 * BSD 4.4 also does reset. 6681 */ 6682 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6683 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6684 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6685 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6686 tcp_reset(sk, skb); 6687 return 1; 6688 } 6689 } 6690 fallthrough; 6691 case TCP_ESTABLISHED: 6692 tcp_data_queue(sk, skb); 6693 queued = 1; 6694 break; 6695 } 6696 6697 /* tcp_data could move socket to TIME-WAIT */ 6698 if (sk->sk_state != TCP_CLOSE) { 6699 tcp_data_snd_check(sk); 6700 tcp_ack_snd_check(sk); 6701 } 6702 6703 if (!queued) { 6704 discard: 6705 tcp_drop_reason(sk, skb, reason); 6706 } 6707 return 0; 6708 6709 consume: 6710 __kfree_skb(skb); 6711 return 0; 6712 } 6713 EXPORT_SYMBOL(tcp_rcv_state_process); 6714 6715 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6716 { 6717 struct inet_request_sock *ireq = inet_rsk(req); 6718 6719 if (family == AF_INET) 6720 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6721 &ireq->ir_rmt_addr, port); 6722 #if IS_ENABLED(CONFIG_IPV6) 6723 else if (family == AF_INET6) 6724 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6725 &ireq->ir_v6_rmt_addr, port); 6726 #endif 6727 } 6728 6729 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6730 * 6731 * If we receive a SYN packet with these bits set, it means a 6732 * network is playing bad games with TOS bits. In order to 6733 * avoid possible false congestion notifications, we disable 6734 * TCP ECN negotiation. 6735 * 6736 * Exception: tcp_ca wants ECN. This is required for DCTCP 6737 * congestion control: Linux DCTCP asserts ECT on all packets, 6738 * including SYN, which is most optimal solution; however, 6739 * others, such as FreeBSD do not. 6740 * 6741 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 6742 * set, indicating the use of a future TCP extension (such as AccECN). See 6743 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 6744 * extensions. 6745 */ 6746 static void tcp_ecn_create_request(struct request_sock *req, 6747 const struct sk_buff *skb, 6748 const struct sock *listen_sk, 6749 const struct dst_entry *dst) 6750 { 6751 const struct tcphdr *th = tcp_hdr(skb); 6752 const struct net *net = sock_net(listen_sk); 6753 bool th_ecn = th->ece && th->cwr; 6754 bool ect, ecn_ok; 6755 u32 ecn_ok_dst; 6756 6757 if (!th_ecn) 6758 return; 6759 6760 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6761 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6762 ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst; 6763 6764 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6765 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6766 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6767 inet_rsk(req)->ecn_ok = 1; 6768 } 6769 6770 static void tcp_openreq_init(struct request_sock *req, 6771 const struct tcp_options_received *rx_opt, 6772 struct sk_buff *skb, const struct sock *sk) 6773 { 6774 struct inet_request_sock *ireq = inet_rsk(req); 6775 6776 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6777 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6778 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6779 tcp_rsk(req)->snt_synack = 0; 6780 tcp_rsk(req)->last_oow_ack_time = 0; 6781 req->mss = rx_opt->mss_clamp; 6782 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6783 ireq->tstamp_ok = rx_opt->tstamp_ok; 6784 ireq->sack_ok = rx_opt->sack_ok; 6785 ireq->snd_wscale = rx_opt->snd_wscale; 6786 ireq->wscale_ok = rx_opt->wscale_ok; 6787 ireq->acked = 0; 6788 ireq->ecn_ok = 0; 6789 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6790 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6791 ireq->ir_mark = inet_request_mark(sk, skb); 6792 #if IS_ENABLED(CONFIG_SMC) 6793 ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested && 6794 tcp_sk(sk)->smc_hs_congested(sk)); 6795 #endif 6796 } 6797 6798 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6799 struct sock *sk_listener, 6800 bool attach_listener) 6801 { 6802 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6803 attach_listener); 6804 6805 if (req) { 6806 struct inet_request_sock *ireq = inet_rsk(req); 6807 6808 ireq->ireq_opt = NULL; 6809 #if IS_ENABLED(CONFIG_IPV6) 6810 ireq->pktopts = NULL; 6811 #endif 6812 atomic64_set(&ireq->ir_cookie, 0); 6813 ireq->ireq_state = TCP_NEW_SYN_RECV; 6814 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6815 ireq->ireq_family = sk_listener->sk_family; 6816 req->timeout = TCP_TIMEOUT_INIT; 6817 } 6818 6819 return req; 6820 } 6821 EXPORT_SYMBOL(inet_reqsk_alloc); 6822 6823 /* 6824 * Return true if a syncookie should be sent 6825 */ 6826 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto) 6827 { 6828 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6829 const char *msg = "Dropping request"; 6830 struct net *net = sock_net(sk); 6831 bool want_cookie = false; 6832 u8 syncookies; 6833 6834 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 6835 6836 #ifdef CONFIG_SYN_COOKIES 6837 if (syncookies) { 6838 msg = "Sending cookies"; 6839 want_cookie = true; 6840 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6841 } else 6842 #endif 6843 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6844 6845 if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 && 6846 xchg(&queue->synflood_warned, 1) == 0) { 6847 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) { 6848 net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n", 6849 proto, inet6_rcv_saddr(sk), 6850 sk->sk_num, msg); 6851 } else { 6852 net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n", 6853 proto, &sk->sk_rcv_saddr, 6854 sk->sk_num, msg); 6855 } 6856 } 6857 6858 return want_cookie; 6859 } 6860 6861 static void tcp_reqsk_record_syn(const struct sock *sk, 6862 struct request_sock *req, 6863 const struct sk_buff *skb) 6864 { 6865 if (tcp_sk(sk)->save_syn) { 6866 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6867 struct saved_syn *saved_syn; 6868 u32 mac_hdrlen; 6869 void *base; 6870 6871 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */ 6872 base = skb_mac_header(skb); 6873 mac_hdrlen = skb_mac_header_len(skb); 6874 len += mac_hdrlen; 6875 } else { 6876 base = skb_network_header(skb); 6877 mac_hdrlen = 0; 6878 } 6879 6880 saved_syn = kmalloc(struct_size(saved_syn, data, len), 6881 GFP_ATOMIC); 6882 if (saved_syn) { 6883 saved_syn->mac_hdrlen = mac_hdrlen; 6884 saved_syn->network_hdrlen = skb_network_header_len(skb); 6885 saved_syn->tcp_hdrlen = tcp_hdrlen(skb); 6886 memcpy(saved_syn->data, base, len); 6887 req->saved_syn = saved_syn; 6888 } 6889 } 6890 } 6891 6892 /* If a SYN cookie is required and supported, returns a clamped MSS value to be 6893 * used for SYN cookie generation. 6894 */ 6895 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 6896 const struct tcp_request_sock_ops *af_ops, 6897 struct sock *sk, struct tcphdr *th) 6898 { 6899 struct tcp_sock *tp = tcp_sk(sk); 6900 u16 mss; 6901 6902 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 && 6903 !inet_csk_reqsk_queue_is_full(sk)) 6904 return 0; 6905 6906 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 6907 return 0; 6908 6909 if (sk_acceptq_is_full(sk)) { 6910 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6911 return 0; 6912 } 6913 6914 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss); 6915 if (!mss) 6916 mss = af_ops->mss_clamp; 6917 6918 return mss; 6919 } 6920 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss); 6921 6922 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6923 const struct tcp_request_sock_ops *af_ops, 6924 struct sock *sk, struct sk_buff *skb) 6925 { 6926 struct tcp_fastopen_cookie foc = { .len = -1 }; 6927 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6928 struct tcp_options_received tmp_opt; 6929 struct tcp_sock *tp = tcp_sk(sk); 6930 struct net *net = sock_net(sk); 6931 struct sock *fastopen_sk = NULL; 6932 struct request_sock *req; 6933 bool want_cookie = false; 6934 struct dst_entry *dst; 6935 struct flowi fl; 6936 u8 syncookies; 6937 6938 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 6939 6940 /* TW buckets are converted to open requests without 6941 * limitations, they conserve resources and peer is 6942 * evidently real one. 6943 */ 6944 if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6945 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name); 6946 if (!want_cookie) 6947 goto drop; 6948 } 6949 6950 if (sk_acceptq_is_full(sk)) { 6951 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6952 goto drop; 6953 } 6954 6955 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6956 if (!req) 6957 goto drop; 6958 6959 req->syncookie = want_cookie; 6960 tcp_rsk(req)->af_specific = af_ops; 6961 tcp_rsk(req)->ts_off = 0; 6962 #if IS_ENABLED(CONFIG_MPTCP) 6963 tcp_rsk(req)->is_mptcp = 0; 6964 #endif 6965 6966 tcp_clear_options(&tmp_opt); 6967 tmp_opt.mss_clamp = af_ops->mss_clamp; 6968 tmp_opt.user_mss = tp->rx_opt.user_mss; 6969 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6970 want_cookie ? NULL : &foc); 6971 6972 if (want_cookie && !tmp_opt.saw_tstamp) 6973 tcp_clear_options(&tmp_opt); 6974 6975 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 6976 tmp_opt.smc_ok = 0; 6977 6978 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6979 tcp_openreq_init(req, &tmp_opt, skb, sk); 6980 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6981 6982 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6983 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6984 6985 dst = af_ops->route_req(sk, skb, &fl, req); 6986 if (!dst) 6987 goto drop_and_free; 6988 6989 if (tmp_opt.tstamp_ok) 6990 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6991 6992 if (!want_cookie && !isn) { 6993 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog); 6994 6995 /* Kill the following clause, if you dislike this way. */ 6996 if (!syncookies && 6997 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6998 (max_syn_backlog >> 2)) && 6999 !tcp_peer_is_proven(req, dst)) { 7000 /* Without syncookies last quarter of 7001 * backlog is filled with destinations, 7002 * proven to be alive. 7003 * It means that we continue to communicate 7004 * to destinations, already remembered 7005 * to the moment of synflood. 7006 */ 7007 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 7008 rsk_ops->family); 7009 goto drop_and_release; 7010 } 7011 7012 isn = af_ops->init_seq(skb); 7013 } 7014 7015 tcp_ecn_create_request(req, skb, sk, dst); 7016 7017 if (want_cookie) { 7018 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 7019 if (!tmp_opt.tstamp_ok) 7020 inet_rsk(req)->ecn_ok = 0; 7021 } 7022 7023 tcp_rsk(req)->snt_isn = isn; 7024 tcp_rsk(req)->txhash = net_tx_rndhash(); 7025 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield; 7026 tcp_openreq_init_rwin(req, sk, dst); 7027 sk_rx_queue_set(req_to_sk(req), skb); 7028 if (!want_cookie) { 7029 tcp_reqsk_record_syn(sk, req, skb); 7030 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 7031 } 7032 if (fastopen_sk) { 7033 af_ops->send_synack(fastopen_sk, dst, &fl, req, 7034 &foc, TCP_SYNACK_FASTOPEN, skb); 7035 /* Add the child socket directly into the accept queue */ 7036 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 7037 reqsk_fastopen_remove(fastopen_sk, req, false); 7038 bh_unlock_sock(fastopen_sk); 7039 sock_put(fastopen_sk); 7040 goto drop_and_free; 7041 } 7042 sk->sk_data_ready(sk); 7043 bh_unlock_sock(fastopen_sk); 7044 sock_put(fastopen_sk); 7045 } else { 7046 tcp_rsk(req)->tfo_listener = false; 7047 if (!want_cookie) { 7048 req->timeout = tcp_timeout_init((struct sock *)req); 7049 inet_csk_reqsk_queue_hash_add(sk, req, req->timeout); 7050 } 7051 af_ops->send_synack(sk, dst, &fl, req, &foc, 7052 !want_cookie ? TCP_SYNACK_NORMAL : 7053 TCP_SYNACK_COOKIE, 7054 skb); 7055 if (want_cookie) { 7056 reqsk_free(req); 7057 return 0; 7058 } 7059 } 7060 reqsk_put(req); 7061 return 0; 7062 7063 drop_and_release: 7064 dst_release(dst); 7065 drop_and_free: 7066 __reqsk_free(req); 7067 drop: 7068 tcp_listendrop(sk); 7069 return 0; 7070 } 7071 EXPORT_SYMBOL(tcp_conn_request); 7072