xref: /openbmc/linux/net/ipv4/tcp_input.c (revision e3d786a3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/static_key.h>
81 #include <net/busy_poll.h>
82 
83 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
84 
85 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
86 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
87 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
88 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
89 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
90 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
91 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
92 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
93 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
94 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
95 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
96 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
97 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
98 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
99 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
100 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
101 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
102 
103 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
104 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
105 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
106 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
107 
108 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
109 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
110 
111 #define REXMIT_NONE	0 /* no loss recovery to do */
112 #define REXMIT_LOST	1 /* retransmit packets marked lost */
113 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
114 
115 #if IS_ENABLED(CONFIG_TLS_DEVICE)
116 static DEFINE_STATIC_KEY_FALSE(clean_acked_data_enabled);
117 
118 void clean_acked_data_enable(struct inet_connection_sock *icsk,
119 			     void (*cad)(struct sock *sk, u32 ack_seq))
120 {
121 	icsk->icsk_clean_acked = cad;
122 	static_branch_inc(&clean_acked_data_enabled);
123 }
124 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
125 
126 void clean_acked_data_disable(struct inet_connection_sock *icsk)
127 {
128 	static_branch_dec(&clean_acked_data_enabled);
129 	icsk->icsk_clean_acked = NULL;
130 }
131 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
132 #endif
133 
134 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
135 			     unsigned int len)
136 {
137 	static bool __once __read_mostly;
138 
139 	if (!__once) {
140 		struct net_device *dev;
141 
142 		__once = true;
143 
144 		rcu_read_lock();
145 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
146 		if (!dev || len >= dev->mtu)
147 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
148 				dev ? dev->name : "Unknown driver");
149 		rcu_read_unlock();
150 	}
151 }
152 
153 /* Adapt the MSS value used to make delayed ack decision to the
154  * real world.
155  */
156 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
157 {
158 	struct inet_connection_sock *icsk = inet_csk(sk);
159 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
160 	unsigned int len;
161 
162 	icsk->icsk_ack.last_seg_size = 0;
163 
164 	/* skb->len may jitter because of SACKs, even if peer
165 	 * sends good full-sized frames.
166 	 */
167 	len = skb_shinfo(skb)->gso_size ? : skb->len;
168 	if (len >= icsk->icsk_ack.rcv_mss) {
169 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
170 					       tcp_sk(sk)->advmss);
171 		/* Account for possibly-removed options */
172 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
173 				   MAX_TCP_OPTION_SPACE))
174 			tcp_gro_dev_warn(sk, skb, len);
175 	} else {
176 		/* Otherwise, we make more careful check taking into account,
177 		 * that SACKs block is variable.
178 		 *
179 		 * "len" is invariant segment length, including TCP header.
180 		 */
181 		len += skb->data - skb_transport_header(skb);
182 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
183 		    /* If PSH is not set, packet should be
184 		     * full sized, provided peer TCP is not badly broken.
185 		     * This observation (if it is correct 8)) allows
186 		     * to handle super-low mtu links fairly.
187 		     */
188 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
189 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
190 			/* Subtract also invariant (if peer is RFC compliant),
191 			 * tcp header plus fixed timestamp option length.
192 			 * Resulting "len" is MSS free of SACK jitter.
193 			 */
194 			len -= tcp_sk(sk)->tcp_header_len;
195 			icsk->icsk_ack.last_seg_size = len;
196 			if (len == lss) {
197 				icsk->icsk_ack.rcv_mss = len;
198 				return;
199 			}
200 		}
201 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
202 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
203 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
204 	}
205 }
206 
207 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
208 {
209 	struct inet_connection_sock *icsk = inet_csk(sk);
210 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
211 
212 	if (quickacks == 0)
213 		quickacks = 2;
214 	quickacks = min(quickacks, max_quickacks);
215 	if (quickacks > icsk->icsk_ack.quick)
216 		icsk->icsk_ack.quick = quickacks;
217 }
218 
219 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
220 {
221 	struct inet_connection_sock *icsk = inet_csk(sk);
222 
223 	tcp_incr_quickack(sk, max_quickacks);
224 	icsk->icsk_ack.pingpong = 0;
225 	icsk->icsk_ack.ato = TCP_ATO_MIN;
226 }
227 EXPORT_SYMBOL(tcp_enter_quickack_mode);
228 
229 /* Send ACKs quickly, if "quick" count is not exhausted
230  * and the session is not interactive.
231  */
232 
233 static bool tcp_in_quickack_mode(struct sock *sk)
234 {
235 	const struct inet_connection_sock *icsk = inet_csk(sk);
236 	const struct dst_entry *dst = __sk_dst_get(sk);
237 
238 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
239 		(icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
240 }
241 
242 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
243 {
244 	if (tp->ecn_flags & TCP_ECN_OK)
245 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
246 }
247 
248 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
249 {
250 	if (tcp_hdr(skb)->cwr) {
251 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
252 
253 		/* If the sender is telling us it has entered CWR, then its
254 		 * cwnd may be very low (even just 1 packet), so we should ACK
255 		 * immediately.
256 		 */
257 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
258 	}
259 }
260 
261 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
262 {
263 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
264 }
265 
266 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
267 {
268 	struct tcp_sock *tp = tcp_sk(sk);
269 
270 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
271 	case INET_ECN_NOT_ECT:
272 		/* Funny extension: if ECT is not set on a segment,
273 		 * and we already seen ECT on a previous segment,
274 		 * it is probably a retransmit.
275 		 */
276 		if (tp->ecn_flags & TCP_ECN_SEEN)
277 			tcp_enter_quickack_mode(sk, 2);
278 		break;
279 	case INET_ECN_CE:
280 		if (tcp_ca_needs_ecn(sk))
281 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
282 
283 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
284 			/* Better not delay acks, sender can have a very low cwnd */
285 			tcp_enter_quickack_mode(sk, 2);
286 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
287 		}
288 		tp->ecn_flags |= TCP_ECN_SEEN;
289 		break;
290 	default:
291 		if (tcp_ca_needs_ecn(sk))
292 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
293 		tp->ecn_flags |= TCP_ECN_SEEN;
294 		break;
295 	}
296 }
297 
298 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
299 {
300 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
301 		__tcp_ecn_check_ce(sk, skb);
302 }
303 
304 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
305 {
306 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
307 		tp->ecn_flags &= ~TCP_ECN_OK;
308 }
309 
310 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
311 {
312 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
313 		tp->ecn_flags &= ~TCP_ECN_OK;
314 }
315 
316 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
317 {
318 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
319 		return true;
320 	return false;
321 }
322 
323 /* Buffer size and advertised window tuning.
324  *
325  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
326  */
327 
328 static void tcp_sndbuf_expand(struct sock *sk)
329 {
330 	const struct tcp_sock *tp = tcp_sk(sk);
331 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
332 	int sndmem, per_mss;
333 	u32 nr_segs;
334 
335 	/* Worst case is non GSO/TSO : each frame consumes one skb
336 	 * and skb->head is kmalloced using power of two area of memory
337 	 */
338 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
339 		  MAX_TCP_HEADER +
340 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
341 
342 	per_mss = roundup_pow_of_two(per_mss) +
343 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
344 
345 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
346 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
347 
348 	/* Fast Recovery (RFC 5681 3.2) :
349 	 * Cubic needs 1.7 factor, rounded to 2 to include
350 	 * extra cushion (application might react slowly to EPOLLOUT)
351 	 */
352 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
353 	sndmem *= nr_segs * per_mss;
354 
355 	if (sk->sk_sndbuf < sndmem)
356 		sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
357 }
358 
359 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
360  *
361  * All tcp_full_space() is split to two parts: "network" buffer, allocated
362  * forward and advertised in receiver window (tp->rcv_wnd) and
363  * "application buffer", required to isolate scheduling/application
364  * latencies from network.
365  * window_clamp is maximal advertised window. It can be less than
366  * tcp_full_space(), in this case tcp_full_space() - window_clamp
367  * is reserved for "application" buffer. The less window_clamp is
368  * the smoother our behaviour from viewpoint of network, but the lower
369  * throughput and the higher sensitivity of the connection to losses. 8)
370  *
371  * rcv_ssthresh is more strict window_clamp used at "slow start"
372  * phase to predict further behaviour of this connection.
373  * It is used for two goals:
374  * - to enforce header prediction at sender, even when application
375  *   requires some significant "application buffer". It is check #1.
376  * - to prevent pruning of receive queue because of misprediction
377  *   of receiver window. Check #2.
378  *
379  * The scheme does not work when sender sends good segments opening
380  * window and then starts to feed us spaghetti. But it should work
381  * in common situations. Otherwise, we have to rely on queue collapsing.
382  */
383 
384 /* Slow part of check#2. */
385 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
386 {
387 	struct tcp_sock *tp = tcp_sk(sk);
388 	/* Optimize this! */
389 	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
390 	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
391 
392 	while (tp->rcv_ssthresh <= window) {
393 		if (truesize <= skb->len)
394 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
395 
396 		truesize >>= 1;
397 		window >>= 1;
398 	}
399 	return 0;
400 }
401 
402 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
403 {
404 	struct tcp_sock *tp = tcp_sk(sk);
405 
406 	/* Check #1 */
407 	if (tp->rcv_ssthresh < tp->window_clamp &&
408 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
409 	    !tcp_under_memory_pressure(sk)) {
410 		int incr;
411 
412 		/* Check #2. Increase window, if skb with such overhead
413 		 * will fit to rcvbuf in future.
414 		 */
415 		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
416 			incr = 2 * tp->advmss;
417 		else
418 			incr = __tcp_grow_window(sk, skb);
419 
420 		if (incr) {
421 			incr = max_t(int, incr, 2 * skb->len);
422 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
423 					       tp->window_clamp);
424 			inet_csk(sk)->icsk_ack.quick |= 1;
425 		}
426 	}
427 }
428 
429 /* 3. Try to fixup all. It is made immediately after connection enters
430  *    established state.
431  */
432 void tcp_init_buffer_space(struct sock *sk)
433 {
434 	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
435 	struct tcp_sock *tp = tcp_sk(sk);
436 	int maxwin;
437 
438 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
439 		tcp_sndbuf_expand(sk);
440 
441 	tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss);
442 	tcp_mstamp_refresh(tp);
443 	tp->rcvq_space.time = tp->tcp_mstamp;
444 	tp->rcvq_space.seq = tp->copied_seq;
445 
446 	maxwin = tcp_full_space(sk);
447 
448 	if (tp->window_clamp >= maxwin) {
449 		tp->window_clamp = maxwin;
450 
451 		if (tcp_app_win && maxwin > 4 * tp->advmss)
452 			tp->window_clamp = max(maxwin -
453 					       (maxwin >> tcp_app_win),
454 					       4 * tp->advmss);
455 	}
456 
457 	/* Force reservation of one segment. */
458 	if (tcp_app_win &&
459 	    tp->window_clamp > 2 * tp->advmss &&
460 	    tp->window_clamp + tp->advmss > maxwin)
461 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
462 
463 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
464 	tp->snd_cwnd_stamp = tcp_jiffies32;
465 }
466 
467 /* 4. Recalculate window clamp after socket hit its memory bounds. */
468 static void tcp_clamp_window(struct sock *sk)
469 {
470 	struct tcp_sock *tp = tcp_sk(sk);
471 	struct inet_connection_sock *icsk = inet_csk(sk);
472 	struct net *net = sock_net(sk);
473 
474 	icsk->icsk_ack.quick = 0;
475 
476 	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
477 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
478 	    !tcp_under_memory_pressure(sk) &&
479 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
480 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
481 				    net->ipv4.sysctl_tcp_rmem[2]);
482 	}
483 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
484 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
485 }
486 
487 /* Initialize RCV_MSS value.
488  * RCV_MSS is an our guess about MSS used by the peer.
489  * We haven't any direct information about the MSS.
490  * It's better to underestimate the RCV_MSS rather than overestimate.
491  * Overestimations make us ACKing less frequently than needed.
492  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
493  */
494 void tcp_initialize_rcv_mss(struct sock *sk)
495 {
496 	const struct tcp_sock *tp = tcp_sk(sk);
497 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
498 
499 	hint = min(hint, tp->rcv_wnd / 2);
500 	hint = min(hint, TCP_MSS_DEFAULT);
501 	hint = max(hint, TCP_MIN_MSS);
502 
503 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
504 }
505 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
506 
507 /* Receiver "autotuning" code.
508  *
509  * The algorithm for RTT estimation w/o timestamps is based on
510  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
511  * <http://public.lanl.gov/radiant/pubs.html#DRS>
512  *
513  * More detail on this code can be found at
514  * <http://staff.psc.edu/jheffner/>,
515  * though this reference is out of date.  A new paper
516  * is pending.
517  */
518 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
519 {
520 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
521 	long m = sample;
522 
523 	if (new_sample != 0) {
524 		/* If we sample in larger samples in the non-timestamp
525 		 * case, we could grossly overestimate the RTT especially
526 		 * with chatty applications or bulk transfer apps which
527 		 * are stalled on filesystem I/O.
528 		 *
529 		 * Also, since we are only going for a minimum in the
530 		 * non-timestamp case, we do not smooth things out
531 		 * else with timestamps disabled convergence takes too
532 		 * long.
533 		 */
534 		if (!win_dep) {
535 			m -= (new_sample >> 3);
536 			new_sample += m;
537 		} else {
538 			m <<= 3;
539 			if (m < new_sample)
540 				new_sample = m;
541 		}
542 	} else {
543 		/* No previous measure. */
544 		new_sample = m << 3;
545 	}
546 
547 	tp->rcv_rtt_est.rtt_us = new_sample;
548 }
549 
550 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
551 {
552 	u32 delta_us;
553 
554 	if (tp->rcv_rtt_est.time == 0)
555 		goto new_measure;
556 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
557 		return;
558 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
559 	if (!delta_us)
560 		delta_us = 1;
561 	tcp_rcv_rtt_update(tp, delta_us, 1);
562 
563 new_measure:
564 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
565 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
566 }
567 
568 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
569 					  const struct sk_buff *skb)
570 {
571 	struct tcp_sock *tp = tcp_sk(sk);
572 
573 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
574 		return;
575 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
576 
577 	if (TCP_SKB_CB(skb)->end_seq -
578 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
579 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
580 		u32 delta_us;
581 
582 		if (!delta)
583 			delta = 1;
584 		delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
585 		tcp_rcv_rtt_update(tp, delta_us, 0);
586 	}
587 }
588 
589 /*
590  * This function should be called every time data is copied to user space.
591  * It calculates the appropriate TCP receive buffer space.
592  */
593 void tcp_rcv_space_adjust(struct sock *sk)
594 {
595 	struct tcp_sock *tp = tcp_sk(sk);
596 	u32 copied;
597 	int time;
598 
599 	trace_tcp_rcv_space_adjust(sk);
600 
601 	tcp_mstamp_refresh(tp);
602 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
603 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
604 		return;
605 
606 	/* Number of bytes copied to user in last RTT */
607 	copied = tp->copied_seq - tp->rcvq_space.seq;
608 	if (copied <= tp->rcvq_space.space)
609 		goto new_measure;
610 
611 	/* A bit of theory :
612 	 * copied = bytes received in previous RTT, our base window
613 	 * To cope with packet losses, we need a 2x factor
614 	 * To cope with slow start, and sender growing its cwin by 100 %
615 	 * every RTT, we need a 4x factor, because the ACK we are sending
616 	 * now is for the next RTT, not the current one :
617 	 * <prev RTT . ><current RTT .. ><next RTT .... >
618 	 */
619 
620 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
621 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
622 		int rcvmem, rcvbuf;
623 		u64 rcvwin, grow;
624 
625 		/* minimal window to cope with packet losses, assuming
626 		 * steady state. Add some cushion because of small variations.
627 		 */
628 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
629 
630 		/* Accommodate for sender rate increase (eg. slow start) */
631 		grow = rcvwin * (copied - tp->rcvq_space.space);
632 		do_div(grow, tp->rcvq_space.space);
633 		rcvwin += (grow << 1);
634 
635 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
636 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
637 			rcvmem += 128;
638 
639 		do_div(rcvwin, tp->advmss);
640 		rcvbuf = min_t(u64, rcvwin * rcvmem,
641 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
642 		if (rcvbuf > sk->sk_rcvbuf) {
643 			sk->sk_rcvbuf = rcvbuf;
644 
645 			/* Make the window clamp follow along.  */
646 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
647 		}
648 	}
649 	tp->rcvq_space.space = copied;
650 
651 new_measure:
652 	tp->rcvq_space.seq = tp->copied_seq;
653 	tp->rcvq_space.time = tp->tcp_mstamp;
654 }
655 
656 /* There is something which you must keep in mind when you analyze the
657  * behavior of the tp->ato delayed ack timeout interval.  When a
658  * connection starts up, we want to ack as quickly as possible.  The
659  * problem is that "good" TCP's do slow start at the beginning of data
660  * transmission.  The means that until we send the first few ACK's the
661  * sender will sit on his end and only queue most of his data, because
662  * he can only send snd_cwnd unacked packets at any given time.  For
663  * each ACK we send, he increments snd_cwnd and transmits more of his
664  * queue.  -DaveM
665  */
666 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
667 {
668 	struct tcp_sock *tp = tcp_sk(sk);
669 	struct inet_connection_sock *icsk = inet_csk(sk);
670 	u32 now;
671 
672 	inet_csk_schedule_ack(sk);
673 
674 	tcp_measure_rcv_mss(sk, skb);
675 
676 	tcp_rcv_rtt_measure(tp);
677 
678 	now = tcp_jiffies32;
679 
680 	if (!icsk->icsk_ack.ato) {
681 		/* The _first_ data packet received, initialize
682 		 * delayed ACK engine.
683 		 */
684 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
685 		icsk->icsk_ack.ato = TCP_ATO_MIN;
686 	} else {
687 		int m = now - icsk->icsk_ack.lrcvtime;
688 
689 		if (m <= TCP_ATO_MIN / 2) {
690 			/* The fastest case is the first. */
691 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
692 		} else if (m < icsk->icsk_ack.ato) {
693 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
694 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
695 				icsk->icsk_ack.ato = icsk->icsk_rto;
696 		} else if (m > icsk->icsk_rto) {
697 			/* Too long gap. Apparently sender failed to
698 			 * restart window, so that we send ACKs quickly.
699 			 */
700 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
701 			sk_mem_reclaim(sk);
702 		}
703 	}
704 	icsk->icsk_ack.lrcvtime = now;
705 
706 	tcp_ecn_check_ce(sk, skb);
707 
708 	if (skb->len >= 128)
709 		tcp_grow_window(sk, skb);
710 }
711 
712 /* Called to compute a smoothed rtt estimate. The data fed to this
713  * routine either comes from timestamps, or from segments that were
714  * known _not_ to have been retransmitted [see Karn/Partridge
715  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
716  * piece by Van Jacobson.
717  * NOTE: the next three routines used to be one big routine.
718  * To save cycles in the RFC 1323 implementation it was better to break
719  * it up into three procedures. -- erics
720  */
721 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
722 {
723 	struct tcp_sock *tp = tcp_sk(sk);
724 	long m = mrtt_us; /* RTT */
725 	u32 srtt = tp->srtt_us;
726 
727 	/*	The following amusing code comes from Jacobson's
728 	 *	article in SIGCOMM '88.  Note that rtt and mdev
729 	 *	are scaled versions of rtt and mean deviation.
730 	 *	This is designed to be as fast as possible
731 	 *	m stands for "measurement".
732 	 *
733 	 *	On a 1990 paper the rto value is changed to:
734 	 *	RTO = rtt + 4 * mdev
735 	 *
736 	 * Funny. This algorithm seems to be very broken.
737 	 * These formulae increase RTO, when it should be decreased, increase
738 	 * too slowly, when it should be increased quickly, decrease too quickly
739 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
740 	 * does not matter how to _calculate_ it. Seems, it was trap
741 	 * that VJ failed to avoid. 8)
742 	 */
743 	if (srtt != 0) {
744 		m -= (srtt >> 3);	/* m is now error in rtt est */
745 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
746 		if (m < 0) {
747 			m = -m;		/* m is now abs(error) */
748 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
749 			/* This is similar to one of Eifel findings.
750 			 * Eifel blocks mdev updates when rtt decreases.
751 			 * This solution is a bit different: we use finer gain
752 			 * for mdev in this case (alpha*beta).
753 			 * Like Eifel it also prevents growth of rto,
754 			 * but also it limits too fast rto decreases,
755 			 * happening in pure Eifel.
756 			 */
757 			if (m > 0)
758 				m >>= 3;
759 		} else {
760 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
761 		}
762 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
763 		if (tp->mdev_us > tp->mdev_max_us) {
764 			tp->mdev_max_us = tp->mdev_us;
765 			if (tp->mdev_max_us > tp->rttvar_us)
766 				tp->rttvar_us = tp->mdev_max_us;
767 		}
768 		if (after(tp->snd_una, tp->rtt_seq)) {
769 			if (tp->mdev_max_us < tp->rttvar_us)
770 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
771 			tp->rtt_seq = tp->snd_nxt;
772 			tp->mdev_max_us = tcp_rto_min_us(sk);
773 		}
774 	} else {
775 		/* no previous measure. */
776 		srtt = m << 3;		/* take the measured time to be rtt */
777 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
778 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
779 		tp->mdev_max_us = tp->rttvar_us;
780 		tp->rtt_seq = tp->snd_nxt;
781 	}
782 	tp->srtt_us = max(1U, srtt);
783 }
784 
785 static void tcp_update_pacing_rate(struct sock *sk)
786 {
787 	const struct tcp_sock *tp = tcp_sk(sk);
788 	u64 rate;
789 
790 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
791 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
792 
793 	/* current rate is (cwnd * mss) / srtt
794 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
795 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
796 	 *
797 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
798 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
799 	 *	 end of slow start and should slow down.
800 	 */
801 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
802 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
803 	else
804 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
805 
806 	rate *= max(tp->snd_cwnd, tp->packets_out);
807 
808 	if (likely(tp->srtt_us))
809 		do_div(rate, tp->srtt_us);
810 
811 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
812 	 * without any lock. We want to make sure compiler wont store
813 	 * intermediate values in this location.
814 	 */
815 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
816 					     sk->sk_max_pacing_rate));
817 }
818 
819 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
820  * routine referred to above.
821  */
822 static void tcp_set_rto(struct sock *sk)
823 {
824 	const struct tcp_sock *tp = tcp_sk(sk);
825 	/* Old crap is replaced with new one. 8)
826 	 *
827 	 * More seriously:
828 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
829 	 *    It cannot be less due to utterly erratic ACK generation made
830 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
831 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
832 	 *    is invisible. Actually, Linux-2.4 also generates erratic
833 	 *    ACKs in some circumstances.
834 	 */
835 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
836 
837 	/* 2. Fixups made earlier cannot be right.
838 	 *    If we do not estimate RTO correctly without them,
839 	 *    all the algo is pure shit and should be replaced
840 	 *    with correct one. It is exactly, which we pretend to do.
841 	 */
842 
843 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
844 	 * guarantees that rto is higher.
845 	 */
846 	tcp_bound_rto(sk);
847 }
848 
849 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
850 {
851 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
852 
853 	if (!cwnd)
854 		cwnd = TCP_INIT_CWND;
855 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
856 }
857 
858 /* Take a notice that peer is sending D-SACKs */
859 static void tcp_dsack_seen(struct tcp_sock *tp)
860 {
861 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
862 	tp->rack.dsack_seen = 1;
863 	tp->dsack_dups++;
864 }
865 
866 /* It's reordering when higher sequence was delivered (i.e. sacked) before
867  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
868  * distance is approximated in full-mss packet distance ("reordering").
869  */
870 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
871 				      const int ts)
872 {
873 	struct tcp_sock *tp = tcp_sk(sk);
874 	const u32 mss = tp->mss_cache;
875 	u32 fack, metric;
876 
877 	fack = tcp_highest_sack_seq(tp);
878 	if (!before(low_seq, fack))
879 		return;
880 
881 	metric = fack - low_seq;
882 	if ((metric > tp->reordering * mss) && mss) {
883 #if FASTRETRANS_DEBUG > 1
884 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
885 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
886 			 tp->reordering,
887 			 0,
888 			 tp->sacked_out,
889 			 tp->undo_marker ? tp->undo_retrans : 0);
890 #endif
891 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
892 				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
893 	}
894 
895 	/* This exciting event is worth to be remembered. 8) */
896 	tp->reord_seen++;
897 	NET_INC_STATS(sock_net(sk),
898 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
899 }
900 
901 /* This must be called before lost_out is incremented */
902 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
903 {
904 	if (!tp->retransmit_skb_hint ||
905 	    before(TCP_SKB_CB(skb)->seq,
906 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
907 		tp->retransmit_skb_hint = skb;
908 }
909 
910 /* Sum the number of packets on the wire we have marked as lost.
911  * There are two cases we care about here:
912  * a) Packet hasn't been marked lost (nor retransmitted),
913  *    and this is the first loss.
914  * b) Packet has been marked both lost and retransmitted,
915  *    and this means we think it was lost again.
916  */
917 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
918 {
919 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
920 
921 	if (!(sacked & TCPCB_LOST) ||
922 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
923 		tp->lost += tcp_skb_pcount(skb);
924 }
925 
926 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
927 {
928 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
929 		tcp_verify_retransmit_hint(tp, skb);
930 
931 		tp->lost_out += tcp_skb_pcount(skb);
932 		tcp_sum_lost(tp, skb);
933 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
934 	}
935 }
936 
937 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
938 {
939 	tcp_verify_retransmit_hint(tp, skb);
940 
941 	tcp_sum_lost(tp, skb);
942 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
943 		tp->lost_out += tcp_skb_pcount(skb);
944 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
945 	}
946 }
947 
948 /* This procedure tags the retransmission queue when SACKs arrive.
949  *
950  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
951  * Packets in queue with these bits set are counted in variables
952  * sacked_out, retrans_out and lost_out, correspondingly.
953  *
954  * Valid combinations are:
955  * Tag  InFlight	Description
956  * 0	1		- orig segment is in flight.
957  * S	0		- nothing flies, orig reached receiver.
958  * L	0		- nothing flies, orig lost by net.
959  * R	2		- both orig and retransmit are in flight.
960  * L|R	1		- orig is lost, retransmit is in flight.
961  * S|R  1		- orig reached receiver, retrans is still in flight.
962  * (L|S|R is logically valid, it could occur when L|R is sacked,
963  *  but it is equivalent to plain S and code short-curcuits it to S.
964  *  L|S is logically invalid, it would mean -1 packet in flight 8))
965  *
966  * These 6 states form finite state machine, controlled by the following events:
967  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
968  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
969  * 3. Loss detection event of two flavors:
970  *	A. Scoreboard estimator decided the packet is lost.
971  *	   A'. Reno "three dupacks" marks head of queue lost.
972  *	B. SACK arrives sacking SND.NXT at the moment, when the
973  *	   segment was retransmitted.
974  * 4. D-SACK added new rule: D-SACK changes any tag to S.
975  *
976  * It is pleasant to note, that state diagram turns out to be commutative,
977  * so that we are allowed not to be bothered by order of our actions,
978  * when multiple events arrive simultaneously. (see the function below).
979  *
980  * Reordering detection.
981  * --------------------
982  * Reordering metric is maximal distance, which a packet can be displaced
983  * in packet stream. With SACKs we can estimate it:
984  *
985  * 1. SACK fills old hole and the corresponding segment was not
986  *    ever retransmitted -> reordering. Alas, we cannot use it
987  *    when segment was retransmitted.
988  * 2. The last flaw is solved with D-SACK. D-SACK arrives
989  *    for retransmitted and already SACKed segment -> reordering..
990  * Both of these heuristics are not used in Loss state, when we cannot
991  * account for retransmits accurately.
992  *
993  * SACK block validation.
994  * ----------------------
995  *
996  * SACK block range validation checks that the received SACK block fits to
997  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
998  * Note that SND.UNA is not included to the range though being valid because
999  * it means that the receiver is rather inconsistent with itself reporting
1000  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1001  * perfectly valid, however, in light of RFC2018 which explicitly states
1002  * that "SACK block MUST reflect the newest segment.  Even if the newest
1003  * segment is going to be discarded ...", not that it looks very clever
1004  * in case of head skb. Due to potentional receiver driven attacks, we
1005  * choose to avoid immediate execution of a walk in write queue due to
1006  * reneging and defer head skb's loss recovery to standard loss recovery
1007  * procedure that will eventually trigger (nothing forbids us doing this).
1008  *
1009  * Implements also blockage to start_seq wrap-around. Problem lies in the
1010  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1011  * there's no guarantee that it will be before snd_nxt (n). The problem
1012  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1013  * wrap (s_w):
1014  *
1015  *         <- outs wnd ->                          <- wrapzone ->
1016  *         u     e      n                         u_w   e_w  s n_w
1017  *         |     |      |                          |     |   |  |
1018  * |<------------+------+----- TCP seqno space --------------+---------->|
1019  * ...-- <2^31 ->|                                           |<--------...
1020  * ...---- >2^31 ------>|                                    |<--------...
1021  *
1022  * Current code wouldn't be vulnerable but it's better still to discard such
1023  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1024  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1025  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1026  * equal to the ideal case (infinite seqno space without wrap caused issues).
1027  *
1028  * With D-SACK the lower bound is extended to cover sequence space below
1029  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1030  * again, D-SACK block must not to go across snd_una (for the same reason as
1031  * for the normal SACK blocks, explained above). But there all simplicity
1032  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1033  * fully below undo_marker they do not affect behavior in anyway and can
1034  * therefore be safely ignored. In rare cases (which are more or less
1035  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1036  * fragmentation and packet reordering past skb's retransmission. To consider
1037  * them correctly, the acceptable range must be extended even more though
1038  * the exact amount is rather hard to quantify. However, tp->max_window can
1039  * be used as an exaggerated estimate.
1040  */
1041 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1042 				   u32 start_seq, u32 end_seq)
1043 {
1044 	/* Too far in future, or reversed (interpretation is ambiguous) */
1045 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1046 		return false;
1047 
1048 	/* Nasty start_seq wrap-around check (see comments above) */
1049 	if (!before(start_seq, tp->snd_nxt))
1050 		return false;
1051 
1052 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1053 	 * start_seq == snd_una is non-sensical (see comments above)
1054 	 */
1055 	if (after(start_seq, tp->snd_una))
1056 		return true;
1057 
1058 	if (!is_dsack || !tp->undo_marker)
1059 		return false;
1060 
1061 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1062 	if (after(end_seq, tp->snd_una))
1063 		return false;
1064 
1065 	if (!before(start_seq, tp->undo_marker))
1066 		return true;
1067 
1068 	/* Too old */
1069 	if (!after(end_seq, tp->undo_marker))
1070 		return false;
1071 
1072 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1073 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1074 	 */
1075 	return !before(start_seq, end_seq - tp->max_window);
1076 }
1077 
1078 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1079 			    struct tcp_sack_block_wire *sp, int num_sacks,
1080 			    u32 prior_snd_una)
1081 {
1082 	struct tcp_sock *tp = tcp_sk(sk);
1083 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1084 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1085 	bool dup_sack = false;
1086 
1087 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1088 		dup_sack = true;
1089 		tcp_dsack_seen(tp);
1090 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1091 	} else if (num_sacks > 1) {
1092 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1093 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1094 
1095 		if (!after(end_seq_0, end_seq_1) &&
1096 		    !before(start_seq_0, start_seq_1)) {
1097 			dup_sack = true;
1098 			tcp_dsack_seen(tp);
1099 			NET_INC_STATS(sock_net(sk),
1100 					LINUX_MIB_TCPDSACKOFORECV);
1101 		}
1102 	}
1103 
1104 	/* D-SACK for already forgotten data... Do dumb counting. */
1105 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1106 	    !after(end_seq_0, prior_snd_una) &&
1107 	    after(end_seq_0, tp->undo_marker))
1108 		tp->undo_retrans--;
1109 
1110 	return dup_sack;
1111 }
1112 
1113 struct tcp_sacktag_state {
1114 	u32	reord;
1115 	/* Timestamps for earliest and latest never-retransmitted segment
1116 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1117 	 * but congestion control should still get an accurate delay signal.
1118 	 */
1119 	u64	first_sackt;
1120 	u64	last_sackt;
1121 	struct rate_sample *rate;
1122 	int	flag;
1123 	unsigned int mss_now;
1124 };
1125 
1126 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1127  * the incoming SACK may not exactly match but we can find smaller MSS
1128  * aligned portion of it that matches. Therefore we might need to fragment
1129  * which may fail and creates some hassle (caller must handle error case
1130  * returns).
1131  *
1132  * FIXME: this could be merged to shift decision code
1133  */
1134 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1135 				  u32 start_seq, u32 end_seq)
1136 {
1137 	int err;
1138 	bool in_sack;
1139 	unsigned int pkt_len;
1140 	unsigned int mss;
1141 
1142 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1143 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1144 
1145 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1146 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1147 		mss = tcp_skb_mss(skb);
1148 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1149 
1150 		if (!in_sack) {
1151 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1152 			if (pkt_len < mss)
1153 				pkt_len = mss;
1154 		} else {
1155 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1156 			if (pkt_len < mss)
1157 				return -EINVAL;
1158 		}
1159 
1160 		/* Round if necessary so that SACKs cover only full MSSes
1161 		 * and/or the remaining small portion (if present)
1162 		 */
1163 		if (pkt_len > mss) {
1164 			unsigned int new_len = (pkt_len / mss) * mss;
1165 			if (!in_sack && new_len < pkt_len)
1166 				new_len += mss;
1167 			pkt_len = new_len;
1168 		}
1169 
1170 		if (pkt_len >= skb->len && !in_sack)
1171 			return 0;
1172 
1173 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1174 				   pkt_len, mss, GFP_ATOMIC);
1175 		if (err < 0)
1176 			return err;
1177 	}
1178 
1179 	return in_sack;
1180 }
1181 
1182 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1183 static u8 tcp_sacktag_one(struct sock *sk,
1184 			  struct tcp_sacktag_state *state, u8 sacked,
1185 			  u32 start_seq, u32 end_seq,
1186 			  int dup_sack, int pcount,
1187 			  u64 xmit_time)
1188 {
1189 	struct tcp_sock *tp = tcp_sk(sk);
1190 
1191 	/* Account D-SACK for retransmitted packet. */
1192 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1193 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1194 		    after(end_seq, tp->undo_marker))
1195 			tp->undo_retrans--;
1196 		if ((sacked & TCPCB_SACKED_ACKED) &&
1197 		    before(start_seq, state->reord))
1198 				state->reord = start_seq;
1199 	}
1200 
1201 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1202 	if (!after(end_seq, tp->snd_una))
1203 		return sacked;
1204 
1205 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1206 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1207 
1208 		if (sacked & TCPCB_SACKED_RETRANS) {
1209 			/* If the segment is not tagged as lost,
1210 			 * we do not clear RETRANS, believing
1211 			 * that retransmission is still in flight.
1212 			 */
1213 			if (sacked & TCPCB_LOST) {
1214 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1215 				tp->lost_out -= pcount;
1216 				tp->retrans_out -= pcount;
1217 			}
1218 		} else {
1219 			if (!(sacked & TCPCB_RETRANS)) {
1220 				/* New sack for not retransmitted frame,
1221 				 * which was in hole. It is reordering.
1222 				 */
1223 				if (before(start_seq,
1224 					   tcp_highest_sack_seq(tp)) &&
1225 				    before(start_seq, state->reord))
1226 					state->reord = start_seq;
1227 
1228 				if (!after(end_seq, tp->high_seq))
1229 					state->flag |= FLAG_ORIG_SACK_ACKED;
1230 				if (state->first_sackt == 0)
1231 					state->first_sackt = xmit_time;
1232 				state->last_sackt = xmit_time;
1233 			}
1234 
1235 			if (sacked & TCPCB_LOST) {
1236 				sacked &= ~TCPCB_LOST;
1237 				tp->lost_out -= pcount;
1238 			}
1239 		}
1240 
1241 		sacked |= TCPCB_SACKED_ACKED;
1242 		state->flag |= FLAG_DATA_SACKED;
1243 		tp->sacked_out += pcount;
1244 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1245 
1246 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1247 		if (tp->lost_skb_hint &&
1248 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1249 			tp->lost_cnt_hint += pcount;
1250 	}
1251 
1252 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1253 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1254 	 * are accounted above as well.
1255 	 */
1256 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1257 		sacked &= ~TCPCB_SACKED_RETRANS;
1258 		tp->retrans_out -= pcount;
1259 	}
1260 
1261 	return sacked;
1262 }
1263 
1264 /* Shift newly-SACKed bytes from this skb to the immediately previous
1265  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1266  */
1267 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1268 			    struct sk_buff *skb,
1269 			    struct tcp_sacktag_state *state,
1270 			    unsigned int pcount, int shifted, int mss,
1271 			    bool dup_sack)
1272 {
1273 	struct tcp_sock *tp = tcp_sk(sk);
1274 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1275 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1276 
1277 	BUG_ON(!pcount);
1278 
1279 	/* Adjust counters and hints for the newly sacked sequence
1280 	 * range but discard the return value since prev is already
1281 	 * marked. We must tag the range first because the seq
1282 	 * advancement below implicitly advances
1283 	 * tcp_highest_sack_seq() when skb is highest_sack.
1284 	 */
1285 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1286 			start_seq, end_seq, dup_sack, pcount,
1287 			tcp_skb_timestamp_us(skb));
1288 	tcp_rate_skb_delivered(sk, skb, state->rate);
1289 
1290 	if (skb == tp->lost_skb_hint)
1291 		tp->lost_cnt_hint += pcount;
1292 
1293 	TCP_SKB_CB(prev)->end_seq += shifted;
1294 	TCP_SKB_CB(skb)->seq += shifted;
1295 
1296 	tcp_skb_pcount_add(prev, pcount);
1297 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1298 	tcp_skb_pcount_add(skb, -pcount);
1299 
1300 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1301 	 * in theory this shouldn't be necessary but as long as DSACK
1302 	 * code can come after this skb later on it's better to keep
1303 	 * setting gso_size to something.
1304 	 */
1305 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1306 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1307 
1308 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1309 	if (tcp_skb_pcount(skb) <= 1)
1310 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1311 
1312 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1313 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1314 
1315 	if (skb->len > 0) {
1316 		BUG_ON(!tcp_skb_pcount(skb));
1317 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1318 		return false;
1319 	}
1320 
1321 	/* Whole SKB was eaten :-) */
1322 
1323 	if (skb == tp->retransmit_skb_hint)
1324 		tp->retransmit_skb_hint = prev;
1325 	if (skb == tp->lost_skb_hint) {
1326 		tp->lost_skb_hint = prev;
1327 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1328 	}
1329 
1330 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1331 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1332 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1333 		TCP_SKB_CB(prev)->end_seq++;
1334 
1335 	if (skb == tcp_highest_sack(sk))
1336 		tcp_advance_highest_sack(sk, skb);
1337 
1338 	tcp_skb_collapse_tstamp(prev, skb);
1339 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1340 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1341 
1342 	tcp_rtx_queue_unlink_and_free(skb, sk);
1343 
1344 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1345 
1346 	return true;
1347 }
1348 
1349 /* I wish gso_size would have a bit more sane initialization than
1350  * something-or-zero which complicates things
1351  */
1352 static int tcp_skb_seglen(const struct sk_buff *skb)
1353 {
1354 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1355 }
1356 
1357 /* Shifting pages past head area doesn't work */
1358 static int skb_can_shift(const struct sk_buff *skb)
1359 {
1360 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1361 }
1362 
1363 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1364  * skb.
1365  */
1366 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1367 					  struct tcp_sacktag_state *state,
1368 					  u32 start_seq, u32 end_seq,
1369 					  bool dup_sack)
1370 {
1371 	struct tcp_sock *tp = tcp_sk(sk);
1372 	struct sk_buff *prev;
1373 	int mss;
1374 	int pcount = 0;
1375 	int len;
1376 	int in_sack;
1377 
1378 	/* Normally R but no L won't result in plain S */
1379 	if (!dup_sack &&
1380 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1381 		goto fallback;
1382 	if (!skb_can_shift(skb))
1383 		goto fallback;
1384 	/* This frame is about to be dropped (was ACKed). */
1385 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1386 		goto fallback;
1387 
1388 	/* Can only happen with delayed DSACK + discard craziness */
1389 	prev = skb_rb_prev(skb);
1390 	if (!prev)
1391 		goto fallback;
1392 
1393 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1394 		goto fallback;
1395 
1396 	if (!tcp_skb_can_collapse_to(prev))
1397 		goto fallback;
1398 
1399 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1400 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1401 
1402 	if (in_sack) {
1403 		len = skb->len;
1404 		pcount = tcp_skb_pcount(skb);
1405 		mss = tcp_skb_seglen(skb);
1406 
1407 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1408 		 * drop this restriction as unnecessary
1409 		 */
1410 		if (mss != tcp_skb_seglen(prev))
1411 			goto fallback;
1412 	} else {
1413 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1414 			goto noop;
1415 		/* CHECKME: This is non-MSS split case only?, this will
1416 		 * cause skipped skbs due to advancing loop btw, original
1417 		 * has that feature too
1418 		 */
1419 		if (tcp_skb_pcount(skb) <= 1)
1420 			goto noop;
1421 
1422 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1423 		if (!in_sack) {
1424 			/* TODO: head merge to next could be attempted here
1425 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1426 			 * though it might not be worth of the additional hassle
1427 			 *
1428 			 * ...we can probably just fallback to what was done
1429 			 * previously. We could try merging non-SACKed ones
1430 			 * as well but it probably isn't going to buy off
1431 			 * because later SACKs might again split them, and
1432 			 * it would make skb timestamp tracking considerably
1433 			 * harder problem.
1434 			 */
1435 			goto fallback;
1436 		}
1437 
1438 		len = end_seq - TCP_SKB_CB(skb)->seq;
1439 		BUG_ON(len < 0);
1440 		BUG_ON(len > skb->len);
1441 
1442 		/* MSS boundaries should be honoured or else pcount will
1443 		 * severely break even though it makes things bit trickier.
1444 		 * Optimize common case to avoid most of the divides
1445 		 */
1446 		mss = tcp_skb_mss(skb);
1447 
1448 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1449 		 * drop this restriction as unnecessary
1450 		 */
1451 		if (mss != tcp_skb_seglen(prev))
1452 			goto fallback;
1453 
1454 		if (len == mss) {
1455 			pcount = 1;
1456 		} else if (len < mss) {
1457 			goto noop;
1458 		} else {
1459 			pcount = len / mss;
1460 			len = pcount * mss;
1461 		}
1462 	}
1463 
1464 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1465 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1466 		goto fallback;
1467 
1468 	if (!skb_shift(prev, skb, len))
1469 		goto fallback;
1470 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1471 		goto out;
1472 
1473 	/* Hole filled allows collapsing with the next as well, this is very
1474 	 * useful when hole on every nth skb pattern happens
1475 	 */
1476 	skb = skb_rb_next(prev);
1477 	if (!skb)
1478 		goto out;
1479 
1480 	if (!skb_can_shift(skb) ||
1481 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1482 	    (mss != tcp_skb_seglen(skb)))
1483 		goto out;
1484 
1485 	len = skb->len;
1486 	if (skb_shift(prev, skb, len)) {
1487 		pcount += tcp_skb_pcount(skb);
1488 		tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb),
1489 				len, mss, 0);
1490 	}
1491 
1492 out:
1493 	return prev;
1494 
1495 noop:
1496 	return skb;
1497 
1498 fallback:
1499 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1500 	return NULL;
1501 }
1502 
1503 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1504 					struct tcp_sack_block *next_dup,
1505 					struct tcp_sacktag_state *state,
1506 					u32 start_seq, u32 end_seq,
1507 					bool dup_sack_in)
1508 {
1509 	struct tcp_sock *tp = tcp_sk(sk);
1510 	struct sk_buff *tmp;
1511 
1512 	skb_rbtree_walk_from(skb) {
1513 		int in_sack = 0;
1514 		bool dup_sack = dup_sack_in;
1515 
1516 		/* queue is in-order => we can short-circuit the walk early */
1517 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1518 			break;
1519 
1520 		if (next_dup  &&
1521 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1522 			in_sack = tcp_match_skb_to_sack(sk, skb,
1523 							next_dup->start_seq,
1524 							next_dup->end_seq);
1525 			if (in_sack > 0)
1526 				dup_sack = true;
1527 		}
1528 
1529 		/* skb reference here is a bit tricky to get right, since
1530 		 * shifting can eat and free both this skb and the next,
1531 		 * so not even _safe variant of the loop is enough.
1532 		 */
1533 		if (in_sack <= 0) {
1534 			tmp = tcp_shift_skb_data(sk, skb, state,
1535 						 start_seq, end_seq, dup_sack);
1536 			if (tmp) {
1537 				if (tmp != skb) {
1538 					skb = tmp;
1539 					continue;
1540 				}
1541 
1542 				in_sack = 0;
1543 			} else {
1544 				in_sack = tcp_match_skb_to_sack(sk, skb,
1545 								start_seq,
1546 								end_seq);
1547 			}
1548 		}
1549 
1550 		if (unlikely(in_sack < 0))
1551 			break;
1552 
1553 		if (in_sack) {
1554 			TCP_SKB_CB(skb)->sacked =
1555 				tcp_sacktag_one(sk,
1556 						state,
1557 						TCP_SKB_CB(skb)->sacked,
1558 						TCP_SKB_CB(skb)->seq,
1559 						TCP_SKB_CB(skb)->end_seq,
1560 						dup_sack,
1561 						tcp_skb_pcount(skb),
1562 						tcp_skb_timestamp_us(skb));
1563 			tcp_rate_skb_delivered(sk, skb, state->rate);
1564 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1565 				list_del_init(&skb->tcp_tsorted_anchor);
1566 
1567 			if (!before(TCP_SKB_CB(skb)->seq,
1568 				    tcp_highest_sack_seq(tp)))
1569 				tcp_advance_highest_sack(sk, skb);
1570 		}
1571 	}
1572 	return skb;
1573 }
1574 
1575 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk,
1576 					   struct tcp_sacktag_state *state,
1577 					   u32 seq)
1578 {
1579 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1580 	struct sk_buff *skb;
1581 
1582 	while (*p) {
1583 		parent = *p;
1584 		skb = rb_to_skb(parent);
1585 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1586 			p = &parent->rb_left;
1587 			continue;
1588 		}
1589 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1590 			p = &parent->rb_right;
1591 			continue;
1592 		}
1593 		return skb;
1594 	}
1595 	return NULL;
1596 }
1597 
1598 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1599 					struct tcp_sacktag_state *state,
1600 					u32 skip_to_seq)
1601 {
1602 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1603 		return skb;
1604 
1605 	return tcp_sacktag_bsearch(sk, state, skip_to_seq);
1606 }
1607 
1608 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1609 						struct sock *sk,
1610 						struct tcp_sack_block *next_dup,
1611 						struct tcp_sacktag_state *state,
1612 						u32 skip_to_seq)
1613 {
1614 	if (!next_dup)
1615 		return skb;
1616 
1617 	if (before(next_dup->start_seq, skip_to_seq)) {
1618 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1619 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1620 				       next_dup->start_seq, next_dup->end_seq,
1621 				       1);
1622 	}
1623 
1624 	return skb;
1625 }
1626 
1627 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1628 {
1629 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1630 }
1631 
1632 static int
1633 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1634 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1635 {
1636 	struct tcp_sock *tp = tcp_sk(sk);
1637 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1638 				    TCP_SKB_CB(ack_skb)->sacked);
1639 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1640 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1641 	struct tcp_sack_block *cache;
1642 	struct sk_buff *skb;
1643 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1644 	int used_sacks;
1645 	bool found_dup_sack = false;
1646 	int i, j;
1647 	int first_sack_index;
1648 
1649 	state->flag = 0;
1650 	state->reord = tp->snd_nxt;
1651 
1652 	if (!tp->sacked_out)
1653 		tcp_highest_sack_reset(sk);
1654 
1655 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1656 					 num_sacks, prior_snd_una);
1657 	if (found_dup_sack) {
1658 		state->flag |= FLAG_DSACKING_ACK;
1659 		tp->delivered++; /* A spurious retransmission is delivered */
1660 	}
1661 
1662 	/* Eliminate too old ACKs, but take into
1663 	 * account more or less fresh ones, they can
1664 	 * contain valid SACK info.
1665 	 */
1666 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1667 		return 0;
1668 
1669 	if (!tp->packets_out)
1670 		goto out;
1671 
1672 	used_sacks = 0;
1673 	first_sack_index = 0;
1674 	for (i = 0; i < num_sacks; i++) {
1675 		bool dup_sack = !i && found_dup_sack;
1676 
1677 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1678 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1679 
1680 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1681 					    sp[used_sacks].start_seq,
1682 					    sp[used_sacks].end_seq)) {
1683 			int mib_idx;
1684 
1685 			if (dup_sack) {
1686 				if (!tp->undo_marker)
1687 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1688 				else
1689 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1690 			} else {
1691 				/* Don't count olds caused by ACK reordering */
1692 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1693 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1694 					continue;
1695 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1696 			}
1697 
1698 			NET_INC_STATS(sock_net(sk), mib_idx);
1699 			if (i == 0)
1700 				first_sack_index = -1;
1701 			continue;
1702 		}
1703 
1704 		/* Ignore very old stuff early */
1705 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1706 			continue;
1707 
1708 		used_sacks++;
1709 	}
1710 
1711 	/* order SACK blocks to allow in order walk of the retrans queue */
1712 	for (i = used_sacks - 1; i > 0; i--) {
1713 		for (j = 0; j < i; j++) {
1714 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1715 				swap(sp[j], sp[j + 1]);
1716 
1717 				/* Track where the first SACK block goes to */
1718 				if (j == first_sack_index)
1719 					first_sack_index = j + 1;
1720 			}
1721 		}
1722 	}
1723 
1724 	state->mss_now = tcp_current_mss(sk);
1725 	skb = NULL;
1726 	i = 0;
1727 
1728 	if (!tp->sacked_out) {
1729 		/* It's already past, so skip checking against it */
1730 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1731 	} else {
1732 		cache = tp->recv_sack_cache;
1733 		/* Skip empty blocks in at head of the cache */
1734 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1735 		       !cache->end_seq)
1736 			cache++;
1737 	}
1738 
1739 	while (i < used_sacks) {
1740 		u32 start_seq = sp[i].start_seq;
1741 		u32 end_seq = sp[i].end_seq;
1742 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1743 		struct tcp_sack_block *next_dup = NULL;
1744 
1745 		if (found_dup_sack && ((i + 1) == first_sack_index))
1746 			next_dup = &sp[i + 1];
1747 
1748 		/* Skip too early cached blocks */
1749 		while (tcp_sack_cache_ok(tp, cache) &&
1750 		       !before(start_seq, cache->end_seq))
1751 			cache++;
1752 
1753 		/* Can skip some work by looking recv_sack_cache? */
1754 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1755 		    after(end_seq, cache->start_seq)) {
1756 
1757 			/* Head todo? */
1758 			if (before(start_seq, cache->start_seq)) {
1759 				skb = tcp_sacktag_skip(skb, sk, state,
1760 						       start_seq);
1761 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1762 						       state,
1763 						       start_seq,
1764 						       cache->start_seq,
1765 						       dup_sack);
1766 			}
1767 
1768 			/* Rest of the block already fully processed? */
1769 			if (!after(end_seq, cache->end_seq))
1770 				goto advance_sp;
1771 
1772 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1773 						       state,
1774 						       cache->end_seq);
1775 
1776 			/* ...tail remains todo... */
1777 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1778 				/* ...but better entrypoint exists! */
1779 				skb = tcp_highest_sack(sk);
1780 				if (!skb)
1781 					break;
1782 				cache++;
1783 				goto walk;
1784 			}
1785 
1786 			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1787 			/* Check overlap against next cached too (past this one already) */
1788 			cache++;
1789 			continue;
1790 		}
1791 
1792 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1793 			skb = tcp_highest_sack(sk);
1794 			if (!skb)
1795 				break;
1796 		}
1797 		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1798 
1799 walk:
1800 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1801 				       start_seq, end_seq, dup_sack);
1802 
1803 advance_sp:
1804 		i++;
1805 	}
1806 
1807 	/* Clear the head of the cache sack blocks so we can skip it next time */
1808 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1809 		tp->recv_sack_cache[i].start_seq = 0;
1810 		tp->recv_sack_cache[i].end_seq = 0;
1811 	}
1812 	for (j = 0; j < used_sacks; j++)
1813 		tp->recv_sack_cache[i++] = sp[j];
1814 
1815 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1816 		tcp_check_sack_reordering(sk, state->reord, 0);
1817 
1818 	tcp_verify_left_out(tp);
1819 out:
1820 
1821 #if FASTRETRANS_DEBUG > 0
1822 	WARN_ON((int)tp->sacked_out < 0);
1823 	WARN_ON((int)tp->lost_out < 0);
1824 	WARN_ON((int)tp->retrans_out < 0);
1825 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1826 #endif
1827 	return state->flag;
1828 }
1829 
1830 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1831  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1832  */
1833 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1834 {
1835 	u32 holes;
1836 
1837 	holes = max(tp->lost_out, 1U);
1838 	holes = min(holes, tp->packets_out);
1839 
1840 	if ((tp->sacked_out + holes) > tp->packets_out) {
1841 		tp->sacked_out = tp->packets_out - holes;
1842 		return true;
1843 	}
1844 	return false;
1845 }
1846 
1847 /* If we receive more dupacks than we expected counting segments
1848  * in assumption of absent reordering, interpret this as reordering.
1849  * The only another reason could be bug in receiver TCP.
1850  */
1851 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1852 {
1853 	struct tcp_sock *tp = tcp_sk(sk);
1854 
1855 	if (!tcp_limit_reno_sacked(tp))
1856 		return;
1857 
1858 	tp->reordering = min_t(u32, tp->packets_out + addend,
1859 			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1860 	tp->reord_seen++;
1861 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1862 }
1863 
1864 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1865 
1866 static void tcp_add_reno_sack(struct sock *sk)
1867 {
1868 	struct tcp_sock *tp = tcp_sk(sk);
1869 	u32 prior_sacked = tp->sacked_out;
1870 
1871 	tp->sacked_out++;
1872 	tcp_check_reno_reordering(sk, 0);
1873 	if (tp->sacked_out > prior_sacked)
1874 		tp->delivered++; /* Some out-of-order packet is delivered */
1875 	tcp_verify_left_out(tp);
1876 }
1877 
1878 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1879 
1880 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1881 {
1882 	struct tcp_sock *tp = tcp_sk(sk);
1883 
1884 	if (acked > 0) {
1885 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1886 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1887 		if (acked - 1 >= tp->sacked_out)
1888 			tp->sacked_out = 0;
1889 		else
1890 			tp->sacked_out -= acked - 1;
1891 	}
1892 	tcp_check_reno_reordering(sk, acked);
1893 	tcp_verify_left_out(tp);
1894 }
1895 
1896 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1897 {
1898 	tp->sacked_out = 0;
1899 }
1900 
1901 void tcp_clear_retrans(struct tcp_sock *tp)
1902 {
1903 	tp->retrans_out = 0;
1904 	tp->lost_out = 0;
1905 	tp->undo_marker = 0;
1906 	tp->undo_retrans = -1;
1907 	tp->sacked_out = 0;
1908 }
1909 
1910 static inline void tcp_init_undo(struct tcp_sock *tp)
1911 {
1912 	tp->undo_marker = tp->snd_una;
1913 	/* Retransmission still in flight may cause DSACKs later. */
1914 	tp->undo_retrans = tp->retrans_out ? : -1;
1915 }
1916 
1917 static bool tcp_is_rack(const struct sock *sk)
1918 {
1919 	return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
1920 }
1921 
1922 /* If we detect SACK reneging, forget all SACK information
1923  * and reset tags completely, otherwise preserve SACKs. If receiver
1924  * dropped its ofo queue, we will know this due to reneging detection.
1925  */
1926 static void tcp_timeout_mark_lost(struct sock *sk)
1927 {
1928 	struct tcp_sock *tp = tcp_sk(sk);
1929 	struct sk_buff *skb, *head;
1930 	bool is_reneg;			/* is receiver reneging on SACKs? */
1931 
1932 	head = tcp_rtx_queue_head(sk);
1933 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
1934 	if (is_reneg) {
1935 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1936 		tp->sacked_out = 0;
1937 		/* Mark SACK reneging until we recover from this loss event. */
1938 		tp->is_sack_reneg = 1;
1939 	} else if (tcp_is_reno(tp)) {
1940 		tcp_reset_reno_sack(tp);
1941 	}
1942 
1943 	skb = head;
1944 	skb_rbtree_walk_from(skb) {
1945 		if (is_reneg)
1946 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1947 		else if (tcp_is_rack(sk) && skb != head &&
1948 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
1949 			continue; /* Don't mark recently sent ones lost yet */
1950 		tcp_mark_skb_lost(sk, skb);
1951 	}
1952 	tcp_verify_left_out(tp);
1953 	tcp_clear_all_retrans_hints(tp);
1954 }
1955 
1956 /* Enter Loss state. */
1957 void tcp_enter_loss(struct sock *sk)
1958 {
1959 	const struct inet_connection_sock *icsk = inet_csk(sk);
1960 	struct tcp_sock *tp = tcp_sk(sk);
1961 	struct net *net = sock_net(sk);
1962 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1963 
1964 	tcp_timeout_mark_lost(sk);
1965 
1966 	/* Reduce ssthresh if it has not yet been made inside this window. */
1967 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1968 	    !after(tp->high_seq, tp->snd_una) ||
1969 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1970 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1971 		tp->prior_cwnd = tp->snd_cwnd;
1972 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1973 		tcp_ca_event(sk, CA_EVENT_LOSS);
1974 		tcp_init_undo(tp);
1975 	}
1976 	tp->snd_cwnd	   = tcp_packets_in_flight(tp) + 1;
1977 	tp->snd_cwnd_cnt   = 0;
1978 	tp->snd_cwnd_stamp = tcp_jiffies32;
1979 
1980 	/* Timeout in disordered state after receiving substantial DUPACKs
1981 	 * suggests that the degree of reordering is over-estimated.
1982 	 */
1983 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1984 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1985 		tp->reordering = min_t(unsigned int, tp->reordering,
1986 				       net->ipv4.sysctl_tcp_reordering);
1987 	tcp_set_ca_state(sk, TCP_CA_Loss);
1988 	tp->high_seq = tp->snd_nxt;
1989 	tcp_ecn_queue_cwr(tp);
1990 
1991 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1992 	 * loss recovery is underway except recurring timeout(s) on
1993 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1994 	 */
1995 	tp->frto = net->ipv4.sysctl_tcp_frto &&
1996 		   (new_recovery || icsk->icsk_retransmits) &&
1997 		   !inet_csk(sk)->icsk_mtup.probe_size;
1998 }
1999 
2000 /* If ACK arrived pointing to a remembered SACK, it means that our
2001  * remembered SACKs do not reflect real state of receiver i.e.
2002  * receiver _host_ is heavily congested (or buggy).
2003  *
2004  * To avoid big spurious retransmission bursts due to transient SACK
2005  * scoreboard oddities that look like reneging, we give the receiver a
2006  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2007  * restore sanity to the SACK scoreboard. If the apparent reneging
2008  * persists until this RTO then we'll clear the SACK scoreboard.
2009  */
2010 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2011 {
2012 	if (flag & FLAG_SACK_RENEGING) {
2013 		struct tcp_sock *tp = tcp_sk(sk);
2014 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2015 					  msecs_to_jiffies(10));
2016 
2017 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2018 					  delay, TCP_RTO_MAX);
2019 		return true;
2020 	}
2021 	return false;
2022 }
2023 
2024 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2025  * counter when SACK is enabled (without SACK, sacked_out is used for
2026  * that purpose).
2027  *
2028  * With reordering, holes may still be in flight, so RFC3517 recovery
2029  * uses pure sacked_out (total number of SACKed segments) even though
2030  * it violates the RFC that uses duplicate ACKs, often these are equal
2031  * but when e.g. out-of-window ACKs or packet duplication occurs,
2032  * they differ. Since neither occurs due to loss, TCP should really
2033  * ignore them.
2034  */
2035 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2036 {
2037 	return tp->sacked_out + 1;
2038 }
2039 
2040 /* Linux NewReno/SACK/ECN state machine.
2041  * --------------------------------------
2042  *
2043  * "Open"	Normal state, no dubious events, fast path.
2044  * "Disorder"   In all the respects it is "Open",
2045  *		but requires a bit more attention. It is entered when
2046  *		we see some SACKs or dupacks. It is split of "Open"
2047  *		mainly to move some processing from fast path to slow one.
2048  * "CWR"	CWND was reduced due to some Congestion Notification event.
2049  *		It can be ECN, ICMP source quench, local device congestion.
2050  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2051  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2052  *
2053  * tcp_fastretrans_alert() is entered:
2054  * - each incoming ACK, if state is not "Open"
2055  * - when arrived ACK is unusual, namely:
2056  *	* SACK
2057  *	* Duplicate ACK.
2058  *	* ECN ECE.
2059  *
2060  * Counting packets in flight is pretty simple.
2061  *
2062  *	in_flight = packets_out - left_out + retrans_out
2063  *
2064  *	packets_out is SND.NXT-SND.UNA counted in packets.
2065  *
2066  *	retrans_out is number of retransmitted segments.
2067  *
2068  *	left_out is number of segments left network, but not ACKed yet.
2069  *
2070  *		left_out = sacked_out + lost_out
2071  *
2072  *     sacked_out: Packets, which arrived to receiver out of order
2073  *		   and hence not ACKed. With SACKs this number is simply
2074  *		   amount of SACKed data. Even without SACKs
2075  *		   it is easy to give pretty reliable estimate of this number,
2076  *		   counting duplicate ACKs.
2077  *
2078  *       lost_out: Packets lost by network. TCP has no explicit
2079  *		   "loss notification" feedback from network (for now).
2080  *		   It means that this number can be only _guessed_.
2081  *		   Actually, it is the heuristics to predict lossage that
2082  *		   distinguishes different algorithms.
2083  *
2084  *	F.e. after RTO, when all the queue is considered as lost,
2085  *	lost_out = packets_out and in_flight = retrans_out.
2086  *
2087  *		Essentially, we have now a few algorithms detecting
2088  *		lost packets.
2089  *
2090  *		If the receiver supports SACK:
2091  *
2092  *		RFC6675/3517: It is the conventional algorithm. A packet is
2093  *		considered lost if the number of higher sequence packets
2094  *		SACKed is greater than or equal the DUPACK thoreshold
2095  *		(reordering). This is implemented in tcp_mark_head_lost and
2096  *		tcp_update_scoreboard.
2097  *
2098  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2099  *		(2017-) that checks timing instead of counting DUPACKs.
2100  *		Essentially a packet is considered lost if it's not S/ACKed
2101  *		after RTT + reordering_window, where both metrics are
2102  *		dynamically measured and adjusted. This is implemented in
2103  *		tcp_rack_mark_lost.
2104  *
2105  *		If the receiver does not support SACK:
2106  *
2107  *		NewReno (RFC6582): in Recovery we assume that one segment
2108  *		is lost (classic Reno). While we are in Recovery and
2109  *		a partial ACK arrives, we assume that one more packet
2110  *		is lost (NewReno). This heuristics are the same in NewReno
2111  *		and SACK.
2112  *
2113  * Really tricky (and requiring careful tuning) part of algorithm
2114  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2115  * The first determines the moment _when_ we should reduce CWND and,
2116  * hence, slow down forward transmission. In fact, it determines the moment
2117  * when we decide that hole is caused by loss, rather than by a reorder.
2118  *
2119  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2120  * holes, caused by lost packets.
2121  *
2122  * And the most logically complicated part of algorithm is undo
2123  * heuristics. We detect false retransmits due to both too early
2124  * fast retransmit (reordering) and underestimated RTO, analyzing
2125  * timestamps and D-SACKs. When we detect that some segments were
2126  * retransmitted by mistake and CWND reduction was wrong, we undo
2127  * window reduction and abort recovery phase. This logic is hidden
2128  * inside several functions named tcp_try_undo_<something>.
2129  */
2130 
2131 /* This function decides, when we should leave Disordered state
2132  * and enter Recovery phase, reducing congestion window.
2133  *
2134  * Main question: may we further continue forward transmission
2135  * with the same cwnd?
2136  */
2137 static bool tcp_time_to_recover(struct sock *sk, int flag)
2138 {
2139 	struct tcp_sock *tp = tcp_sk(sk);
2140 
2141 	/* Trick#1: The loss is proven. */
2142 	if (tp->lost_out)
2143 		return true;
2144 
2145 	/* Not-A-Trick#2 : Classic rule... */
2146 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2147 		return true;
2148 
2149 	return false;
2150 }
2151 
2152 /* Detect loss in event "A" above by marking head of queue up as lost.
2153  * For non-SACK(Reno) senders, the first "packets" number of segments
2154  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2155  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2156  * the maximum SACKed segments to pass before reaching this limit.
2157  */
2158 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2159 {
2160 	struct tcp_sock *tp = tcp_sk(sk);
2161 	struct sk_buff *skb;
2162 	int cnt, oldcnt, lost;
2163 	unsigned int mss;
2164 	/* Use SACK to deduce losses of new sequences sent during recovery */
2165 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2166 
2167 	WARN_ON(packets > tp->packets_out);
2168 	skb = tp->lost_skb_hint;
2169 	if (skb) {
2170 		/* Head already handled? */
2171 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2172 			return;
2173 		cnt = tp->lost_cnt_hint;
2174 	} else {
2175 		skb = tcp_rtx_queue_head(sk);
2176 		cnt = 0;
2177 	}
2178 
2179 	skb_rbtree_walk_from(skb) {
2180 		/* TODO: do this better */
2181 		/* this is not the most efficient way to do this... */
2182 		tp->lost_skb_hint = skb;
2183 		tp->lost_cnt_hint = cnt;
2184 
2185 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2186 			break;
2187 
2188 		oldcnt = cnt;
2189 		if (tcp_is_reno(tp) ||
2190 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2191 			cnt += tcp_skb_pcount(skb);
2192 
2193 		if (cnt > packets) {
2194 			if (tcp_is_sack(tp) ||
2195 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2196 			    (oldcnt >= packets))
2197 				break;
2198 
2199 			mss = tcp_skb_mss(skb);
2200 			/* If needed, chop off the prefix to mark as lost. */
2201 			lost = (packets - oldcnt) * mss;
2202 			if (lost < skb->len &&
2203 			    tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2204 					 lost, mss, GFP_ATOMIC) < 0)
2205 				break;
2206 			cnt = packets;
2207 		}
2208 
2209 		tcp_skb_mark_lost(tp, skb);
2210 
2211 		if (mark_head)
2212 			break;
2213 	}
2214 	tcp_verify_left_out(tp);
2215 }
2216 
2217 /* Account newly detected lost packet(s) */
2218 
2219 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2220 {
2221 	struct tcp_sock *tp = tcp_sk(sk);
2222 
2223 	if (tcp_is_sack(tp)) {
2224 		int sacked_upto = tp->sacked_out - tp->reordering;
2225 		if (sacked_upto >= 0)
2226 			tcp_mark_head_lost(sk, sacked_upto, 0);
2227 		else if (fast_rexmit)
2228 			tcp_mark_head_lost(sk, 1, 1);
2229 	}
2230 }
2231 
2232 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2233 {
2234 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2235 	       before(tp->rx_opt.rcv_tsecr, when);
2236 }
2237 
2238 /* skb is spurious retransmitted if the returned timestamp echo
2239  * reply is prior to the skb transmission time
2240  */
2241 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2242 				     const struct sk_buff *skb)
2243 {
2244 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2245 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2246 }
2247 
2248 /* Nothing was retransmitted or returned timestamp is less
2249  * than timestamp of the first retransmission.
2250  */
2251 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2252 {
2253 	return !tp->retrans_stamp ||
2254 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2255 }
2256 
2257 /* Undo procedures. */
2258 
2259 /* We can clear retrans_stamp when there are no retransmissions in the
2260  * window. It would seem that it is trivially available for us in
2261  * tp->retrans_out, however, that kind of assumptions doesn't consider
2262  * what will happen if errors occur when sending retransmission for the
2263  * second time. ...It could the that such segment has only
2264  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2265  * the head skb is enough except for some reneging corner cases that
2266  * are not worth the effort.
2267  *
2268  * Main reason for all this complexity is the fact that connection dying
2269  * time now depends on the validity of the retrans_stamp, in particular,
2270  * that successive retransmissions of a segment must not advance
2271  * retrans_stamp under any conditions.
2272  */
2273 static bool tcp_any_retrans_done(const struct sock *sk)
2274 {
2275 	const struct tcp_sock *tp = tcp_sk(sk);
2276 	struct sk_buff *skb;
2277 
2278 	if (tp->retrans_out)
2279 		return true;
2280 
2281 	skb = tcp_rtx_queue_head(sk);
2282 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2283 		return true;
2284 
2285 	return false;
2286 }
2287 
2288 static void DBGUNDO(struct sock *sk, const char *msg)
2289 {
2290 #if FASTRETRANS_DEBUG > 1
2291 	struct tcp_sock *tp = tcp_sk(sk);
2292 	struct inet_sock *inet = inet_sk(sk);
2293 
2294 	if (sk->sk_family == AF_INET) {
2295 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2296 			 msg,
2297 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2298 			 tp->snd_cwnd, tcp_left_out(tp),
2299 			 tp->snd_ssthresh, tp->prior_ssthresh,
2300 			 tp->packets_out);
2301 	}
2302 #if IS_ENABLED(CONFIG_IPV6)
2303 	else if (sk->sk_family == AF_INET6) {
2304 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2305 			 msg,
2306 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2307 			 tp->snd_cwnd, tcp_left_out(tp),
2308 			 tp->snd_ssthresh, tp->prior_ssthresh,
2309 			 tp->packets_out);
2310 	}
2311 #endif
2312 #endif
2313 }
2314 
2315 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2316 {
2317 	struct tcp_sock *tp = tcp_sk(sk);
2318 
2319 	if (unmark_loss) {
2320 		struct sk_buff *skb;
2321 
2322 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2323 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2324 		}
2325 		tp->lost_out = 0;
2326 		tcp_clear_all_retrans_hints(tp);
2327 	}
2328 
2329 	if (tp->prior_ssthresh) {
2330 		const struct inet_connection_sock *icsk = inet_csk(sk);
2331 
2332 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2333 
2334 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2335 			tp->snd_ssthresh = tp->prior_ssthresh;
2336 			tcp_ecn_withdraw_cwr(tp);
2337 		}
2338 	}
2339 	tp->snd_cwnd_stamp = tcp_jiffies32;
2340 	tp->undo_marker = 0;
2341 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2342 }
2343 
2344 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2345 {
2346 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2347 }
2348 
2349 /* People celebrate: "We love our President!" */
2350 static bool tcp_try_undo_recovery(struct sock *sk)
2351 {
2352 	struct tcp_sock *tp = tcp_sk(sk);
2353 
2354 	if (tcp_may_undo(tp)) {
2355 		int mib_idx;
2356 
2357 		/* Happy end! We did not retransmit anything
2358 		 * or our original transmission succeeded.
2359 		 */
2360 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2361 		tcp_undo_cwnd_reduction(sk, false);
2362 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2363 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2364 		else
2365 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2366 
2367 		NET_INC_STATS(sock_net(sk), mib_idx);
2368 	} else if (tp->rack.reo_wnd_persist) {
2369 		tp->rack.reo_wnd_persist--;
2370 	}
2371 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2372 		/* Hold old state until something *above* high_seq
2373 		 * is ACKed. For Reno it is MUST to prevent false
2374 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2375 		if (!tcp_any_retrans_done(sk))
2376 			tp->retrans_stamp = 0;
2377 		return true;
2378 	}
2379 	tcp_set_ca_state(sk, TCP_CA_Open);
2380 	tp->is_sack_reneg = 0;
2381 	return false;
2382 }
2383 
2384 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2385 static bool tcp_try_undo_dsack(struct sock *sk)
2386 {
2387 	struct tcp_sock *tp = tcp_sk(sk);
2388 
2389 	if (tp->undo_marker && !tp->undo_retrans) {
2390 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2391 					       tp->rack.reo_wnd_persist + 1);
2392 		DBGUNDO(sk, "D-SACK");
2393 		tcp_undo_cwnd_reduction(sk, false);
2394 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2395 		return true;
2396 	}
2397 	return false;
2398 }
2399 
2400 /* Undo during loss recovery after partial ACK or using F-RTO. */
2401 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2402 {
2403 	struct tcp_sock *tp = tcp_sk(sk);
2404 
2405 	if (frto_undo || tcp_may_undo(tp)) {
2406 		tcp_undo_cwnd_reduction(sk, true);
2407 
2408 		DBGUNDO(sk, "partial loss");
2409 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2410 		if (frto_undo)
2411 			NET_INC_STATS(sock_net(sk),
2412 					LINUX_MIB_TCPSPURIOUSRTOS);
2413 		inet_csk(sk)->icsk_retransmits = 0;
2414 		if (frto_undo || tcp_is_sack(tp)) {
2415 			tcp_set_ca_state(sk, TCP_CA_Open);
2416 			tp->is_sack_reneg = 0;
2417 		}
2418 		return true;
2419 	}
2420 	return false;
2421 }
2422 
2423 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2424  * It computes the number of packets to send (sndcnt) based on packets newly
2425  * delivered:
2426  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2427  *	cwnd reductions across a full RTT.
2428  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2429  *      But when the retransmits are acked without further losses, PRR
2430  *      slow starts cwnd up to ssthresh to speed up the recovery.
2431  */
2432 static void tcp_init_cwnd_reduction(struct sock *sk)
2433 {
2434 	struct tcp_sock *tp = tcp_sk(sk);
2435 
2436 	tp->high_seq = tp->snd_nxt;
2437 	tp->tlp_high_seq = 0;
2438 	tp->snd_cwnd_cnt = 0;
2439 	tp->prior_cwnd = tp->snd_cwnd;
2440 	tp->prr_delivered = 0;
2441 	tp->prr_out = 0;
2442 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2443 	tcp_ecn_queue_cwr(tp);
2444 }
2445 
2446 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2447 {
2448 	struct tcp_sock *tp = tcp_sk(sk);
2449 	int sndcnt = 0;
2450 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2451 
2452 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2453 		return;
2454 
2455 	tp->prr_delivered += newly_acked_sacked;
2456 	if (delta < 0) {
2457 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2458 			       tp->prior_cwnd - 1;
2459 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2460 	} else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2461 		   !(flag & FLAG_LOST_RETRANS)) {
2462 		sndcnt = min_t(int, delta,
2463 			       max_t(int, tp->prr_delivered - tp->prr_out,
2464 				     newly_acked_sacked) + 1);
2465 	} else {
2466 		sndcnt = min(delta, newly_acked_sacked);
2467 	}
2468 	/* Force a fast retransmit upon entering fast recovery */
2469 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2470 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2471 }
2472 
2473 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2474 {
2475 	struct tcp_sock *tp = tcp_sk(sk);
2476 
2477 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2478 		return;
2479 
2480 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2481 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2482 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2483 		tp->snd_cwnd = tp->snd_ssthresh;
2484 		tp->snd_cwnd_stamp = tcp_jiffies32;
2485 	}
2486 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2487 }
2488 
2489 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2490 void tcp_enter_cwr(struct sock *sk)
2491 {
2492 	struct tcp_sock *tp = tcp_sk(sk);
2493 
2494 	tp->prior_ssthresh = 0;
2495 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2496 		tp->undo_marker = 0;
2497 		tcp_init_cwnd_reduction(sk);
2498 		tcp_set_ca_state(sk, TCP_CA_CWR);
2499 	}
2500 }
2501 EXPORT_SYMBOL(tcp_enter_cwr);
2502 
2503 static void tcp_try_keep_open(struct sock *sk)
2504 {
2505 	struct tcp_sock *tp = tcp_sk(sk);
2506 	int state = TCP_CA_Open;
2507 
2508 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2509 		state = TCP_CA_Disorder;
2510 
2511 	if (inet_csk(sk)->icsk_ca_state != state) {
2512 		tcp_set_ca_state(sk, state);
2513 		tp->high_seq = tp->snd_nxt;
2514 	}
2515 }
2516 
2517 static void tcp_try_to_open(struct sock *sk, int flag)
2518 {
2519 	struct tcp_sock *tp = tcp_sk(sk);
2520 
2521 	tcp_verify_left_out(tp);
2522 
2523 	if (!tcp_any_retrans_done(sk))
2524 		tp->retrans_stamp = 0;
2525 
2526 	if (flag & FLAG_ECE)
2527 		tcp_enter_cwr(sk);
2528 
2529 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2530 		tcp_try_keep_open(sk);
2531 	}
2532 }
2533 
2534 static void tcp_mtup_probe_failed(struct sock *sk)
2535 {
2536 	struct inet_connection_sock *icsk = inet_csk(sk);
2537 
2538 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2539 	icsk->icsk_mtup.probe_size = 0;
2540 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2541 }
2542 
2543 static void tcp_mtup_probe_success(struct sock *sk)
2544 {
2545 	struct tcp_sock *tp = tcp_sk(sk);
2546 	struct inet_connection_sock *icsk = inet_csk(sk);
2547 
2548 	/* FIXME: breaks with very large cwnd */
2549 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2550 	tp->snd_cwnd = tp->snd_cwnd *
2551 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2552 		       icsk->icsk_mtup.probe_size;
2553 	tp->snd_cwnd_cnt = 0;
2554 	tp->snd_cwnd_stamp = tcp_jiffies32;
2555 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2556 
2557 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2558 	icsk->icsk_mtup.probe_size = 0;
2559 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2560 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2561 }
2562 
2563 /* Do a simple retransmit without using the backoff mechanisms in
2564  * tcp_timer. This is used for path mtu discovery.
2565  * The socket is already locked here.
2566  */
2567 void tcp_simple_retransmit(struct sock *sk)
2568 {
2569 	const struct inet_connection_sock *icsk = inet_csk(sk);
2570 	struct tcp_sock *tp = tcp_sk(sk);
2571 	struct sk_buff *skb;
2572 	unsigned int mss = tcp_current_mss(sk);
2573 
2574 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2575 		if (tcp_skb_seglen(skb) > mss &&
2576 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2577 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2578 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2579 				tp->retrans_out -= tcp_skb_pcount(skb);
2580 			}
2581 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2582 		}
2583 	}
2584 
2585 	tcp_clear_retrans_hints_partial(tp);
2586 
2587 	if (!tp->lost_out)
2588 		return;
2589 
2590 	if (tcp_is_reno(tp))
2591 		tcp_limit_reno_sacked(tp);
2592 
2593 	tcp_verify_left_out(tp);
2594 
2595 	/* Don't muck with the congestion window here.
2596 	 * Reason is that we do not increase amount of _data_
2597 	 * in network, but units changed and effective
2598 	 * cwnd/ssthresh really reduced now.
2599 	 */
2600 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2601 		tp->high_seq = tp->snd_nxt;
2602 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2603 		tp->prior_ssthresh = 0;
2604 		tp->undo_marker = 0;
2605 		tcp_set_ca_state(sk, TCP_CA_Loss);
2606 	}
2607 	tcp_xmit_retransmit_queue(sk);
2608 }
2609 EXPORT_SYMBOL(tcp_simple_retransmit);
2610 
2611 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2612 {
2613 	struct tcp_sock *tp = tcp_sk(sk);
2614 	int mib_idx;
2615 
2616 	if (tcp_is_reno(tp))
2617 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2618 	else
2619 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2620 
2621 	NET_INC_STATS(sock_net(sk), mib_idx);
2622 
2623 	tp->prior_ssthresh = 0;
2624 	tcp_init_undo(tp);
2625 
2626 	if (!tcp_in_cwnd_reduction(sk)) {
2627 		if (!ece_ack)
2628 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2629 		tcp_init_cwnd_reduction(sk);
2630 	}
2631 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2632 }
2633 
2634 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2635  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2636  */
2637 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2638 			     int *rexmit)
2639 {
2640 	struct tcp_sock *tp = tcp_sk(sk);
2641 	bool recovered = !before(tp->snd_una, tp->high_seq);
2642 
2643 	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2644 	    tcp_try_undo_loss(sk, false))
2645 		return;
2646 
2647 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2648 		/* Step 3.b. A timeout is spurious if not all data are
2649 		 * lost, i.e., never-retransmitted data are (s)acked.
2650 		 */
2651 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2652 		    tcp_try_undo_loss(sk, true))
2653 			return;
2654 
2655 		if (after(tp->snd_nxt, tp->high_seq)) {
2656 			if (flag & FLAG_DATA_SACKED || is_dupack)
2657 				tp->frto = 0; /* Step 3.a. loss was real */
2658 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2659 			tp->high_seq = tp->snd_nxt;
2660 			/* Step 2.b. Try send new data (but deferred until cwnd
2661 			 * is updated in tcp_ack()). Otherwise fall back to
2662 			 * the conventional recovery.
2663 			 */
2664 			if (!tcp_write_queue_empty(sk) &&
2665 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2666 				*rexmit = REXMIT_NEW;
2667 				return;
2668 			}
2669 			tp->frto = 0;
2670 		}
2671 	}
2672 
2673 	if (recovered) {
2674 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2675 		tcp_try_undo_recovery(sk);
2676 		return;
2677 	}
2678 	if (tcp_is_reno(tp)) {
2679 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2680 		 * delivered. Lower inflight to clock out (re)tranmissions.
2681 		 */
2682 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2683 			tcp_add_reno_sack(sk);
2684 		else if (flag & FLAG_SND_UNA_ADVANCED)
2685 			tcp_reset_reno_sack(tp);
2686 	}
2687 	*rexmit = REXMIT_LOST;
2688 }
2689 
2690 /* Undo during fast recovery after partial ACK. */
2691 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2692 {
2693 	struct tcp_sock *tp = tcp_sk(sk);
2694 
2695 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2696 		/* Plain luck! Hole if filled with delayed
2697 		 * packet, rather than with a retransmit. Check reordering.
2698 		 */
2699 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2700 
2701 		/* We are getting evidence that the reordering degree is higher
2702 		 * than we realized. If there are no retransmits out then we
2703 		 * can undo. Otherwise we clock out new packets but do not
2704 		 * mark more packets lost or retransmit more.
2705 		 */
2706 		if (tp->retrans_out)
2707 			return true;
2708 
2709 		if (!tcp_any_retrans_done(sk))
2710 			tp->retrans_stamp = 0;
2711 
2712 		DBGUNDO(sk, "partial recovery");
2713 		tcp_undo_cwnd_reduction(sk, true);
2714 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2715 		tcp_try_keep_open(sk);
2716 		return true;
2717 	}
2718 	return false;
2719 }
2720 
2721 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2722 {
2723 	struct tcp_sock *tp = tcp_sk(sk);
2724 
2725 	if (tcp_rtx_queue_empty(sk))
2726 		return;
2727 
2728 	if (unlikely(tcp_is_reno(tp))) {
2729 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2730 	} else if (tcp_is_rack(sk)) {
2731 		u32 prior_retrans = tp->retrans_out;
2732 
2733 		tcp_rack_mark_lost(sk);
2734 		if (prior_retrans > tp->retrans_out)
2735 			*ack_flag |= FLAG_LOST_RETRANS;
2736 	}
2737 }
2738 
2739 static bool tcp_force_fast_retransmit(struct sock *sk)
2740 {
2741 	struct tcp_sock *tp = tcp_sk(sk);
2742 
2743 	return after(tcp_highest_sack_seq(tp),
2744 		     tp->snd_una + tp->reordering * tp->mss_cache);
2745 }
2746 
2747 /* Process an event, which can update packets-in-flight not trivially.
2748  * Main goal of this function is to calculate new estimate for left_out,
2749  * taking into account both packets sitting in receiver's buffer and
2750  * packets lost by network.
2751  *
2752  * Besides that it updates the congestion state when packet loss or ECN
2753  * is detected. But it does not reduce the cwnd, it is done by the
2754  * congestion control later.
2755  *
2756  * It does _not_ decide what to send, it is made in function
2757  * tcp_xmit_retransmit_queue().
2758  */
2759 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2760 				  bool is_dupack, int *ack_flag, int *rexmit)
2761 {
2762 	struct inet_connection_sock *icsk = inet_csk(sk);
2763 	struct tcp_sock *tp = tcp_sk(sk);
2764 	int fast_rexmit = 0, flag = *ack_flag;
2765 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2766 				     tcp_force_fast_retransmit(sk));
2767 
2768 	if (!tp->packets_out && tp->sacked_out)
2769 		tp->sacked_out = 0;
2770 
2771 	/* Now state machine starts.
2772 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2773 	if (flag & FLAG_ECE)
2774 		tp->prior_ssthresh = 0;
2775 
2776 	/* B. In all the states check for reneging SACKs. */
2777 	if (tcp_check_sack_reneging(sk, flag))
2778 		return;
2779 
2780 	/* C. Check consistency of the current state. */
2781 	tcp_verify_left_out(tp);
2782 
2783 	/* D. Check state exit conditions. State can be terminated
2784 	 *    when high_seq is ACKed. */
2785 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2786 		WARN_ON(tp->retrans_out != 0);
2787 		tp->retrans_stamp = 0;
2788 	} else if (!before(tp->snd_una, tp->high_seq)) {
2789 		switch (icsk->icsk_ca_state) {
2790 		case TCP_CA_CWR:
2791 			/* CWR is to be held something *above* high_seq
2792 			 * is ACKed for CWR bit to reach receiver. */
2793 			if (tp->snd_una != tp->high_seq) {
2794 				tcp_end_cwnd_reduction(sk);
2795 				tcp_set_ca_state(sk, TCP_CA_Open);
2796 			}
2797 			break;
2798 
2799 		case TCP_CA_Recovery:
2800 			if (tcp_is_reno(tp))
2801 				tcp_reset_reno_sack(tp);
2802 			if (tcp_try_undo_recovery(sk))
2803 				return;
2804 			tcp_end_cwnd_reduction(sk);
2805 			break;
2806 		}
2807 	}
2808 
2809 	/* E. Process state. */
2810 	switch (icsk->icsk_ca_state) {
2811 	case TCP_CA_Recovery:
2812 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2813 			if (tcp_is_reno(tp) && is_dupack)
2814 				tcp_add_reno_sack(sk);
2815 		} else {
2816 			if (tcp_try_undo_partial(sk, prior_snd_una))
2817 				return;
2818 			/* Partial ACK arrived. Force fast retransmit. */
2819 			do_lost = tcp_is_reno(tp) ||
2820 				  tcp_force_fast_retransmit(sk);
2821 		}
2822 		if (tcp_try_undo_dsack(sk)) {
2823 			tcp_try_keep_open(sk);
2824 			return;
2825 		}
2826 		tcp_identify_packet_loss(sk, ack_flag);
2827 		break;
2828 	case TCP_CA_Loss:
2829 		tcp_process_loss(sk, flag, is_dupack, rexmit);
2830 		tcp_identify_packet_loss(sk, ack_flag);
2831 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2832 		      (*ack_flag & FLAG_LOST_RETRANS)))
2833 			return;
2834 		/* Change state if cwnd is undone or retransmits are lost */
2835 		/* fall through */
2836 	default:
2837 		if (tcp_is_reno(tp)) {
2838 			if (flag & FLAG_SND_UNA_ADVANCED)
2839 				tcp_reset_reno_sack(tp);
2840 			if (is_dupack)
2841 				tcp_add_reno_sack(sk);
2842 		}
2843 
2844 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2845 			tcp_try_undo_dsack(sk);
2846 
2847 		tcp_identify_packet_loss(sk, ack_flag);
2848 		if (!tcp_time_to_recover(sk, flag)) {
2849 			tcp_try_to_open(sk, flag);
2850 			return;
2851 		}
2852 
2853 		/* MTU probe failure: don't reduce cwnd */
2854 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2855 		    icsk->icsk_mtup.probe_size &&
2856 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2857 			tcp_mtup_probe_failed(sk);
2858 			/* Restores the reduction we did in tcp_mtup_probe() */
2859 			tp->snd_cwnd++;
2860 			tcp_simple_retransmit(sk);
2861 			return;
2862 		}
2863 
2864 		/* Otherwise enter Recovery state */
2865 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2866 		fast_rexmit = 1;
2867 	}
2868 
2869 	if (!tcp_is_rack(sk) && do_lost)
2870 		tcp_update_scoreboard(sk, fast_rexmit);
2871 	*rexmit = REXMIT_LOST;
2872 }
2873 
2874 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2875 {
2876 	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2877 	struct tcp_sock *tp = tcp_sk(sk);
2878 
2879 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2880 		/* If the remote keeps returning delayed ACKs, eventually
2881 		 * the min filter would pick it up and overestimate the
2882 		 * prop. delay when it expires. Skip suspected delayed ACKs.
2883 		 */
2884 		return;
2885 	}
2886 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2887 			   rtt_us ? : jiffies_to_usecs(1));
2888 }
2889 
2890 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2891 			       long seq_rtt_us, long sack_rtt_us,
2892 			       long ca_rtt_us, struct rate_sample *rs)
2893 {
2894 	const struct tcp_sock *tp = tcp_sk(sk);
2895 
2896 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2897 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2898 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2899 	 * is acked (RFC6298).
2900 	 */
2901 	if (seq_rtt_us < 0)
2902 		seq_rtt_us = sack_rtt_us;
2903 
2904 	/* RTTM Rule: A TSecr value received in a segment is used to
2905 	 * update the averaged RTT measurement only if the segment
2906 	 * acknowledges some new data, i.e., only if it advances the
2907 	 * left edge of the send window.
2908 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2909 	 */
2910 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2911 	    flag & FLAG_ACKED) {
2912 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2913 		u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2914 
2915 		seq_rtt_us = ca_rtt_us = delta_us;
2916 	}
2917 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2918 	if (seq_rtt_us < 0)
2919 		return false;
2920 
2921 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2922 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2923 	 * values will be skipped with the seq_rtt_us < 0 check above.
2924 	 */
2925 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
2926 	tcp_rtt_estimator(sk, seq_rtt_us);
2927 	tcp_set_rto(sk);
2928 
2929 	/* RFC6298: only reset backoff on valid RTT measurement. */
2930 	inet_csk(sk)->icsk_backoff = 0;
2931 	return true;
2932 }
2933 
2934 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2935 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2936 {
2937 	struct rate_sample rs;
2938 	long rtt_us = -1L;
2939 
2940 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2941 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2942 
2943 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2944 }
2945 
2946 
2947 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2948 {
2949 	const struct inet_connection_sock *icsk = inet_csk(sk);
2950 
2951 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2952 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2953 }
2954 
2955 /* Restart timer after forward progress on connection.
2956  * RFC2988 recommends to restart timer to now+rto.
2957  */
2958 void tcp_rearm_rto(struct sock *sk)
2959 {
2960 	const struct inet_connection_sock *icsk = inet_csk(sk);
2961 	struct tcp_sock *tp = tcp_sk(sk);
2962 
2963 	/* If the retrans timer is currently being used by Fast Open
2964 	 * for SYN-ACK retrans purpose, stay put.
2965 	 */
2966 	if (tp->fastopen_rsk)
2967 		return;
2968 
2969 	if (!tp->packets_out) {
2970 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2971 	} else {
2972 		u32 rto = inet_csk(sk)->icsk_rto;
2973 		/* Offset the time elapsed after installing regular RTO */
2974 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2975 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2976 			s64 delta_us = tcp_rto_delta_us(sk);
2977 			/* delta_us may not be positive if the socket is locked
2978 			 * when the retrans timer fires and is rescheduled.
2979 			 */
2980 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
2981 		}
2982 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2983 				     TCP_RTO_MAX, tcp_rtx_queue_head(sk));
2984 	}
2985 }
2986 
2987 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
2988 static void tcp_set_xmit_timer(struct sock *sk)
2989 {
2990 	if (!tcp_schedule_loss_probe(sk, true))
2991 		tcp_rearm_rto(sk);
2992 }
2993 
2994 /* If we get here, the whole TSO packet has not been acked. */
2995 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2996 {
2997 	struct tcp_sock *tp = tcp_sk(sk);
2998 	u32 packets_acked;
2999 
3000 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3001 
3002 	packets_acked = tcp_skb_pcount(skb);
3003 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3004 		return 0;
3005 	packets_acked -= tcp_skb_pcount(skb);
3006 
3007 	if (packets_acked) {
3008 		BUG_ON(tcp_skb_pcount(skb) == 0);
3009 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3010 	}
3011 
3012 	return packets_acked;
3013 }
3014 
3015 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3016 			   u32 prior_snd_una)
3017 {
3018 	const struct skb_shared_info *shinfo;
3019 
3020 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3021 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3022 		return;
3023 
3024 	shinfo = skb_shinfo(skb);
3025 	if (!before(shinfo->tskey, prior_snd_una) &&
3026 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3027 		tcp_skb_tsorted_save(skb) {
3028 			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3029 		} tcp_skb_tsorted_restore(skb);
3030 	}
3031 }
3032 
3033 /* Remove acknowledged frames from the retransmission queue. If our packet
3034  * is before the ack sequence we can discard it as it's confirmed to have
3035  * arrived at the other end.
3036  */
3037 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3038 			       u32 prior_snd_una,
3039 			       struct tcp_sacktag_state *sack)
3040 {
3041 	const struct inet_connection_sock *icsk = inet_csk(sk);
3042 	u64 first_ackt, last_ackt;
3043 	struct tcp_sock *tp = tcp_sk(sk);
3044 	u32 prior_sacked = tp->sacked_out;
3045 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3046 	struct sk_buff *skb, *next;
3047 	bool fully_acked = true;
3048 	long sack_rtt_us = -1L;
3049 	long seq_rtt_us = -1L;
3050 	long ca_rtt_us = -1L;
3051 	u32 pkts_acked = 0;
3052 	u32 last_in_flight = 0;
3053 	bool rtt_update;
3054 	int flag = 0;
3055 
3056 	first_ackt = 0;
3057 
3058 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3059 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3060 		const u32 start_seq = scb->seq;
3061 		u8 sacked = scb->sacked;
3062 		u32 acked_pcount;
3063 
3064 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3065 
3066 		/* Determine how many packets and what bytes were acked, tso and else */
3067 		if (after(scb->end_seq, tp->snd_una)) {
3068 			if (tcp_skb_pcount(skb) == 1 ||
3069 			    !after(tp->snd_una, scb->seq))
3070 				break;
3071 
3072 			acked_pcount = tcp_tso_acked(sk, skb);
3073 			if (!acked_pcount)
3074 				break;
3075 			fully_acked = false;
3076 		} else {
3077 			acked_pcount = tcp_skb_pcount(skb);
3078 		}
3079 
3080 		if (unlikely(sacked & TCPCB_RETRANS)) {
3081 			if (sacked & TCPCB_SACKED_RETRANS)
3082 				tp->retrans_out -= acked_pcount;
3083 			flag |= FLAG_RETRANS_DATA_ACKED;
3084 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3085 			last_ackt = tcp_skb_timestamp_us(skb);
3086 			WARN_ON_ONCE(last_ackt == 0);
3087 			if (!first_ackt)
3088 				first_ackt = last_ackt;
3089 
3090 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3091 			if (before(start_seq, reord))
3092 				reord = start_seq;
3093 			if (!after(scb->end_seq, tp->high_seq))
3094 				flag |= FLAG_ORIG_SACK_ACKED;
3095 		}
3096 
3097 		if (sacked & TCPCB_SACKED_ACKED) {
3098 			tp->sacked_out -= acked_pcount;
3099 		} else if (tcp_is_sack(tp)) {
3100 			tp->delivered += acked_pcount;
3101 			if (!tcp_skb_spurious_retrans(tp, skb))
3102 				tcp_rack_advance(tp, sacked, scb->end_seq,
3103 						 tcp_skb_timestamp_us(skb));
3104 		}
3105 		if (sacked & TCPCB_LOST)
3106 			tp->lost_out -= acked_pcount;
3107 
3108 		tp->packets_out -= acked_pcount;
3109 		pkts_acked += acked_pcount;
3110 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3111 
3112 		/* Initial outgoing SYN's get put onto the write_queue
3113 		 * just like anything else we transmit.  It is not
3114 		 * true data, and if we misinform our callers that
3115 		 * this ACK acks real data, we will erroneously exit
3116 		 * connection startup slow start one packet too
3117 		 * quickly.  This is severely frowned upon behavior.
3118 		 */
3119 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3120 			flag |= FLAG_DATA_ACKED;
3121 		} else {
3122 			flag |= FLAG_SYN_ACKED;
3123 			tp->retrans_stamp = 0;
3124 		}
3125 
3126 		if (!fully_acked)
3127 			break;
3128 
3129 		next = skb_rb_next(skb);
3130 		if (unlikely(skb == tp->retransmit_skb_hint))
3131 			tp->retransmit_skb_hint = NULL;
3132 		if (unlikely(skb == tp->lost_skb_hint))
3133 			tp->lost_skb_hint = NULL;
3134 		tcp_rtx_queue_unlink_and_free(skb, sk);
3135 	}
3136 
3137 	if (!skb)
3138 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3139 
3140 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3141 		tp->snd_up = tp->snd_una;
3142 
3143 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3144 		flag |= FLAG_SACK_RENEGING;
3145 
3146 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3147 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3148 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3149 
3150 		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3151 		    last_in_flight && !prior_sacked && fully_acked &&
3152 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3153 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3154 			/* Conservatively mark a delayed ACK. It's typically
3155 			 * from a lone runt packet over the round trip to
3156 			 * a receiver w/o out-of-order or CE events.
3157 			 */
3158 			flag |= FLAG_ACK_MAYBE_DELAYED;
3159 		}
3160 	}
3161 	if (sack->first_sackt) {
3162 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3163 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3164 	}
3165 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3166 					ca_rtt_us, sack->rate);
3167 
3168 	if (flag & FLAG_ACKED) {
3169 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3170 		if (unlikely(icsk->icsk_mtup.probe_size &&
3171 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3172 			tcp_mtup_probe_success(sk);
3173 		}
3174 
3175 		if (tcp_is_reno(tp)) {
3176 			tcp_remove_reno_sacks(sk, pkts_acked);
3177 
3178 			/* If any of the cumulatively ACKed segments was
3179 			 * retransmitted, non-SACK case cannot confirm that
3180 			 * progress was due to original transmission due to
3181 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3182 			 * the packets may have been never retransmitted.
3183 			 */
3184 			if (flag & FLAG_RETRANS_DATA_ACKED)
3185 				flag &= ~FLAG_ORIG_SACK_ACKED;
3186 		} else {
3187 			int delta;
3188 
3189 			/* Non-retransmitted hole got filled? That's reordering */
3190 			if (before(reord, prior_fack))
3191 				tcp_check_sack_reordering(sk, reord, 0);
3192 
3193 			delta = prior_sacked - tp->sacked_out;
3194 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3195 		}
3196 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3197 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3198 						    tcp_skb_timestamp_us(skb))) {
3199 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3200 		 * after when the head was last (re)transmitted. Otherwise the
3201 		 * timeout may continue to extend in loss recovery.
3202 		 */
3203 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3204 	}
3205 
3206 	if (icsk->icsk_ca_ops->pkts_acked) {
3207 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3208 					     .rtt_us = sack->rate->rtt_us,
3209 					     .in_flight = last_in_flight };
3210 
3211 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3212 	}
3213 
3214 #if FASTRETRANS_DEBUG > 0
3215 	WARN_ON((int)tp->sacked_out < 0);
3216 	WARN_ON((int)tp->lost_out < 0);
3217 	WARN_ON((int)tp->retrans_out < 0);
3218 	if (!tp->packets_out && tcp_is_sack(tp)) {
3219 		icsk = inet_csk(sk);
3220 		if (tp->lost_out) {
3221 			pr_debug("Leak l=%u %d\n",
3222 				 tp->lost_out, icsk->icsk_ca_state);
3223 			tp->lost_out = 0;
3224 		}
3225 		if (tp->sacked_out) {
3226 			pr_debug("Leak s=%u %d\n",
3227 				 tp->sacked_out, icsk->icsk_ca_state);
3228 			tp->sacked_out = 0;
3229 		}
3230 		if (tp->retrans_out) {
3231 			pr_debug("Leak r=%u %d\n",
3232 				 tp->retrans_out, icsk->icsk_ca_state);
3233 			tp->retrans_out = 0;
3234 		}
3235 	}
3236 #endif
3237 	return flag;
3238 }
3239 
3240 static void tcp_ack_probe(struct sock *sk)
3241 {
3242 	struct inet_connection_sock *icsk = inet_csk(sk);
3243 	struct sk_buff *head = tcp_send_head(sk);
3244 	const struct tcp_sock *tp = tcp_sk(sk);
3245 
3246 	/* Was it a usable window open? */
3247 	if (!head)
3248 		return;
3249 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3250 		icsk->icsk_backoff = 0;
3251 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3252 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3253 		 * This function is not for random using!
3254 		 */
3255 	} else {
3256 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3257 
3258 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3259 				     when, TCP_RTO_MAX, NULL);
3260 	}
3261 }
3262 
3263 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3264 {
3265 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3266 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3267 }
3268 
3269 /* Decide wheather to run the increase function of congestion control. */
3270 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3271 {
3272 	/* If reordering is high then always grow cwnd whenever data is
3273 	 * delivered regardless of its ordering. Otherwise stay conservative
3274 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3275 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3276 	 * cwnd in tcp_fastretrans_alert() based on more states.
3277 	 */
3278 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3279 		return flag & FLAG_FORWARD_PROGRESS;
3280 
3281 	return flag & FLAG_DATA_ACKED;
3282 }
3283 
3284 /* The "ultimate" congestion control function that aims to replace the rigid
3285  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3286  * It's called toward the end of processing an ACK with precise rate
3287  * information. All transmission or retransmission are delayed afterwards.
3288  */
3289 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3290 			     int flag, const struct rate_sample *rs)
3291 {
3292 	const struct inet_connection_sock *icsk = inet_csk(sk);
3293 
3294 	if (icsk->icsk_ca_ops->cong_control) {
3295 		icsk->icsk_ca_ops->cong_control(sk, rs);
3296 		return;
3297 	}
3298 
3299 	if (tcp_in_cwnd_reduction(sk)) {
3300 		/* Reduce cwnd if state mandates */
3301 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3302 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3303 		/* Advance cwnd if state allows */
3304 		tcp_cong_avoid(sk, ack, acked_sacked);
3305 	}
3306 	tcp_update_pacing_rate(sk);
3307 }
3308 
3309 /* Check that window update is acceptable.
3310  * The function assumes that snd_una<=ack<=snd_next.
3311  */
3312 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3313 					const u32 ack, const u32 ack_seq,
3314 					const u32 nwin)
3315 {
3316 	return	after(ack, tp->snd_una) ||
3317 		after(ack_seq, tp->snd_wl1) ||
3318 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3319 }
3320 
3321 /* If we update tp->snd_una, also update tp->bytes_acked */
3322 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3323 {
3324 	u32 delta = ack - tp->snd_una;
3325 
3326 	sock_owned_by_me((struct sock *)tp);
3327 	tp->bytes_acked += delta;
3328 	tp->snd_una = ack;
3329 }
3330 
3331 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3332 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3333 {
3334 	u32 delta = seq - tp->rcv_nxt;
3335 
3336 	sock_owned_by_me((struct sock *)tp);
3337 	tp->bytes_received += delta;
3338 	tp->rcv_nxt = seq;
3339 }
3340 
3341 /* Update our send window.
3342  *
3343  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3344  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3345  */
3346 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3347 				 u32 ack_seq)
3348 {
3349 	struct tcp_sock *tp = tcp_sk(sk);
3350 	int flag = 0;
3351 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3352 
3353 	if (likely(!tcp_hdr(skb)->syn))
3354 		nwin <<= tp->rx_opt.snd_wscale;
3355 
3356 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3357 		flag |= FLAG_WIN_UPDATE;
3358 		tcp_update_wl(tp, ack_seq);
3359 
3360 		if (tp->snd_wnd != nwin) {
3361 			tp->snd_wnd = nwin;
3362 
3363 			/* Note, it is the only place, where
3364 			 * fast path is recovered for sending TCP.
3365 			 */
3366 			tp->pred_flags = 0;
3367 			tcp_fast_path_check(sk);
3368 
3369 			if (!tcp_write_queue_empty(sk))
3370 				tcp_slow_start_after_idle_check(sk);
3371 
3372 			if (nwin > tp->max_window) {
3373 				tp->max_window = nwin;
3374 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3375 			}
3376 		}
3377 	}
3378 
3379 	tcp_snd_una_update(tp, ack);
3380 
3381 	return flag;
3382 }
3383 
3384 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3385 				   u32 *last_oow_ack_time)
3386 {
3387 	if (*last_oow_ack_time) {
3388 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3389 
3390 		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3391 			NET_INC_STATS(net, mib_idx);
3392 			return true;	/* rate-limited: don't send yet! */
3393 		}
3394 	}
3395 
3396 	*last_oow_ack_time = tcp_jiffies32;
3397 
3398 	return false;	/* not rate-limited: go ahead, send dupack now! */
3399 }
3400 
3401 /* Return true if we're currently rate-limiting out-of-window ACKs and
3402  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3403  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3404  * attacks that send repeated SYNs or ACKs for the same connection. To
3405  * do this, we do not send a duplicate SYNACK or ACK if the remote
3406  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3407  */
3408 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3409 			  int mib_idx, u32 *last_oow_ack_time)
3410 {
3411 	/* Data packets without SYNs are not likely part of an ACK loop. */
3412 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3413 	    !tcp_hdr(skb)->syn)
3414 		return false;
3415 
3416 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3417 }
3418 
3419 /* RFC 5961 7 [ACK Throttling] */
3420 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3421 {
3422 	/* unprotected vars, we dont care of overwrites */
3423 	static u32 challenge_timestamp;
3424 	static unsigned int challenge_count;
3425 	struct tcp_sock *tp = tcp_sk(sk);
3426 	struct net *net = sock_net(sk);
3427 	u32 count, now;
3428 
3429 	/* First check our per-socket dupack rate limit. */
3430 	if (__tcp_oow_rate_limited(net,
3431 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3432 				   &tp->last_oow_ack_time))
3433 		return;
3434 
3435 	/* Then check host-wide RFC 5961 rate limit. */
3436 	now = jiffies / HZ;
3437 	if (now != challenge_timestamp) {
3438 		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3439 		u32 half = (ack_limit + 1) >> 1;
3440 
3441 		challenge_timestamp = now;
3442 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3443 	}
3444 	count = READ_ONCE(challenge_count);
3445 	if (count > 0) {
3446 		WRITE_ONCE(challenge_count, count - 1);
3447 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3448 		tcp_send_ack(sk);
3449 	}
3450 }
3451 
3452 static void tcp_store_ts_recent(struct tcp_sock *tp)
3453 {
3454 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3455 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3456 }
3457 
3458 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3459 {
3460 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3461 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3462 		 * extra check below makes sure this can only happen
3463 		 * for pure ACK frames.  -DaveM
3464 		 *
3465 		 * Not only, also it occurs for expired timestamps.
3466 		 */
3467 
3468 		if (tcp_paws_check(&tp->rx_opt, 0))
3469 			tcp_store_ts_recent(tp);
3470 	}
3471 }
3472 
3473 /* This routine deals with acks during a TLP episode.
3474  * We mark the end of a TLP episode on receiving TLP dupack or when
3475  * ack is after tlp_high_seq.
3476  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3477  */
3478 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3479 {
3480 	struct tcp_sock *tp = tcp_sk(sk);
3481 
3482 	if (before(ack, tp->tlp_high_seq))
3483 		return;
3484 
3485 	if (flag & FLAG_DSACKING_ACK) {
3486 		/* This DSACK means original and TLP probe arrived; no loss */
3487 		tp->tlp_high_seq = 0;
3488 	} else if (after(ack, tp->tlp_high_seq)) {
3489 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3490 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3491 		 */
3492 		tcp_init_cwnd_reduction(sk);
3493 		tcp_set_ca_state(sk, TCP_CA_CWR);
3494 		tcp_end_cwnd_reduction(sk);
3495 		tcp_try_keep_open(sk);
3496 		NET_INC_STATS(sock_net(sk),
3497 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3498 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3499 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3500 		/* Pure dupack: original and TLP probe arrived; no loss */
3501 		tp->tlp_high_seq = 0;
3502 	}
3503 }
3504 
3505 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3506 {
3507 	const struct inet_connection_sock *icsk = inet_csk(sk);
3508 
3509 	if (icsk->icsk_ca_ops->in_ack_event)
3510 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3511 }
3512 
3513 /* Congestion control has updated the cwnd already. So if we're in
3514  * loss recovery then now we do any new sends (for FRTO) or
3515  * retransmits (for CA_Loss or CA_recovery) that make sense.
3516  */
3517 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3518 {
3519 	struct tcp_sock *tp = tcp_sk(sk);
3520 
3521 	if (rexmit == REXMIT_NONE)
3522 		return;
3523 
3524 	if (unlikely(rexmit == 2)) {
3525 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3526 					  TCP_NAGLE_OFF);
3527 		if (after(tp->snd_nxt, tp->high_seq))
3528 			return;
3529 		tp->frto = 0;
3530 	}
3531 	tcp_xmit_retransmit_queue(sk);
3532 }
3533 
3534 /* Returns the number of packets newly acked or sacked by the current ACK */
3535 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3536 {
3537 	const struct net *net = sock_net(sk);
3538 	struct tcp_sock *tp = tcp_sk(sk);
3539 	u32 delivered;
3540 
3541 	delivered = tp->delivered - prior_delivered;
3542 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3543 	if (flag & FLAG_ECE) {
3544 		tp->delivered_ce += delivered;
3545 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3546 	}
3547 	return delivered;
3548 }
3549 
3550 /* This routine deals with incoming acks, but not outgoing ones. */
3551 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3552 {
3553 	struct inet_connection_sock *icsk = inet_csk(sk);
3554 	struct tcp_sock *tp = tcp_sk(sk);
3555 	struct tcp_sacktag_state sack_state;
3556 	struct rate_sample rs = { .prior_delivered = 0 };
3557 	u32 prior_snd_una = tp->snd_una;
3558 	bool is_sack_reneg = tp->is_sack_reneg;
3559 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3560 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3561 	bool is_dupack = false;
3562 	int prior_packets = tp->packets_out;
3563 	u32 delivered = tp->delivered;
3564 	u32 lost = tp->lost;
3565 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3566 	u32 prior_fack;
3567 
3568 	sack_state.first_sackt = 0;
3569 	sack_state.rate = &rs;
3570 
3571 	/* We very likely will need to access rtx queue. */
3572 	prefetch(sk->tcp_rtx_queue.rb_node);
3573 
3574 	/* If the ack is older than previous acks
3575 	 * then we can probably ignore it.
3576 	 */
3577 	if (before(ack, prior_snd_una)) {
3578 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3579 		if (before(ack, prior_snd_una - tp->max_window)) {
3580 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3581 				tcp_send_challenge_ack(sk, skb);
3582 			return -1;
3583 		}
3584 		goto old_ack;
3585 	}
3586 
3587 	/* If the ack includes data we haven't sent yet, discard
3588 	 * this segment (RFC793 Section 3.9).
3589 	 */
3590 	if (after(ack, tp->snd_nxt))
3591 		goto invalid_ack;
3592 
3593 	if (after(ack, prior_snd_una)) {
3594 		flag |= FLAG_SND_UNA_ADVANCED;
3595 		icsk->icsk_retransmits = 0;
3596 
3597 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3598 		if (static_branch_unlikely(&clean_acked_data_enabled))
3599 			if (icsk->icsk_clean_acked)
3600 				icsk->icsk_clean_acked(sk, ack);
3601 #endif
3602 	}
3603 
3604 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3605 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3606 
3607 	/* ts_recent update must be made after we are sure that the packet
3608 	 * is in window.
3609 	 */
3610 	if (flag & FLAG_UPDATE_TS_RECENT)
3611 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3612 
3613 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3614 		/* Window is constant, pure forward advance.
3615 		 * No more checks are required.
3616 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3617 		 */
3618 		tcp_update_wl(tp, ack_seq);
3619 		tcp_snd_una_update(tp, ack);
3620 		flag |= FLAG_WIN_UPDATE;
3621 
3622 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3623 
3624 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3625 	} else {
3626 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3627 
3628 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3629 			flag |= FLAG_DATA;
3630 		else
3631 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3632 
3633 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3634 
3635 		if (TCP_SKB_CB(skb)->sacked)
3636 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3637 							&sack_state);
3638 
3639 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3640 			flag |= FLAG_ECE;
3641 			ack_ev_flags |= CA_ACK_ECE;
3642 		}
3643 
3644 		if (flag & FLAG_WIN_UPDATE)
3645 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3646 
3647 		tcp_in_ack_event(sk, ack_ev_flags);
3648 	}
3649 
3650 	/* We passed data and got it acked, remove any soft error
3651 	 * log. Something worked...
3652 	 */
3653 	sk->sk_err_soft = 0;
3654 	icsk->icsk_probes_out = 0;
3655 	tp->rcv_tstamp = tcp_jiffies32;
3656 	if (!prior_packets)
3657 		goto no_queue;
3658 
3659 	/* See if we can take anything off of the retransmit queue. */
3660 	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3661 
3662 	tcp_rack_update_reo_wnd(sk, &rs);
3663 
3664 	if (tp->tlp_high_seq)
3665 		tcp_process_tlp_ack(sk, ack, flag);
3666 	/* If needed, reset TLP/RTO timer; RACK may later override this. */
3667 	if (flag & FLAG_SET_XMIT_TIMER)
3668 		tcp_set_xmit_timer(sk);
3669 
3670 	if (tcp_ack_is_dubious(sk, flag)) {
3671 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3672 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3673 				      &rexmit);
3674 	}
3675 
3676 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3677 		sk_dst_confirm(sk);
3678 
3679 	delivered = tcp_newly_delivered(sk, delivered, flag);
3680 	lost = tp->lost - lost;			/* freshly marked lost */
3681 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3682 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3683 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3684 	tcp_xmit_recovery(sk, rexmit);
3685 	return 1;
3686 
3687 no_queue:
3688 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3689 	if (flag & FLAG_DSACKING_ACK) {
3690 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3691 				      &rexmit);
3692 		tcp_newly_delivered(sk, delivered, flag);
3693 	}
3694 	/* If this ack opens up a zero window, clear backoff.  It was
3695 	 * being used to time the probes, and is probably far higher than
3696 	 * it needs to be for normal retransmission.
3697 	 */
3698 	tcp_ack_probe(sk);
3699 
3700 	if (tp->tlp_high_seq)
3701 		tcp_process_tlp_ack(sk, ack, flag);
3702 	return 1;
3703 
3704 invalid_ack:
3705 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3706 	return -1;
3707 
3708 old_ack:
3709 	/* If data was SACKed, tag it and see if we should send more data.
3710 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3711 	 */
3712 	if (TCP_SKB_CB(skb)->sacked) {
3713 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3714 						&sack_state);
3715 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3716 				      &rexmit);
3717 		tcp_newly_delivered(sk, delivered, flag);
3718 		tcp_xmit_recovery(sk, rexmit);
3719 	}
3720 
3721 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3722 	return 0;
3723 }
3724 
3725 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3726 				      bool syn, struct tcp_fastopen_cookie *foc,
3727 				      bool exp_opt)
3728 {
3729 	/* Valid only in SYN or SYN-ACK with an even length.  */
3730 	if (!foc || !syn || len < 0 || (len & 1))
3731 		return;
3732 
3733 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3734 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3735 		memcpy(foc->val, cookie, len);
3736 	else if (len != 0)
3737 		len = -1;
3738 	foc->len = len;
3739 	foc->exp = exp_opt;
3740 }
3741 
3742 static void smc_parse_options(const struct tcphdr *th,
3743 			      struct tcp_options_received *opt_rx,
3744 			      const unsigned char *ptr,
3745 			      int opsize)
3746 {
3747 #if IS_ENABLED(CONFIG_SMC)
3748 	if (static_branch_unlikely(&tcp_have_smc)) {
3749 		if (th->syn && !(opsize & 1) &&
3750 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3751 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3752 			opt_rx->smc_ok = 1;
3753 	}
3754 #endif
3755 }
3756 
3757 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3758  * But, this can also be called on packets in the established flow when
3759  * the fast version below fails.
3760  */
3761 void tcp_parse_options(const struct net *net,
3762 		       const struct sk_buff *skb,
3763 		       struct tcp_options_received *opt_rx, int estab,
3764 		       struct tcp_fastopen_cookie *foc)
3765 {
3766 	const unsigned char *ptr;
3767 	const struct tcphdr *th = tcp_hdr(skb);
3768 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3769 
3770 	ptr = (const unsigned char *)(th + 1);
3771 	opt_rx->saw_tstamp = 0;
3772 
3773 	while (length > 0) {
3774 		int opcode = *ptr++;
3775 		int opsize;
3776 
3777 		switch (opcode) {
3778 		case TCPOPT_EOL:
3779 			return;
3780 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3781 			length--;
3782 			continue;
3783 		default:
3784 			opsize = *ptr++;
3785 			if (opsize < 2) /* "silly options" */
3786 				return;
3787 			if (opsize > length)
3788 				return;	/* don't parse partial options */
3789 			switch (opcode) {
3790 			case TCPOPT_MSS:
3791 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3792 					u16 in_mss = get_unaligned_be16(ptr);
3793 					if (in_mss) {
3794 						if (opt_rx->user_mss &&
3795 						    opt_rx->user_mss < in_mss)
3796 							in_mss = opt_rx->user_mss;
3797 						opt_rx->mss_clamp = in_mss;
3798 					}
3799 				}
3800 				break;
3801 			case TCPOPT_WINDOW:
3802 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3803 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3804 					__u8 snd_wscale = *(__u8 *)ptr;
3805 					opt_rx->wscale_ok = 1;
3806 					if (snd_wscale > TCP_MAX_WSCALE) {
3807 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3808 								     __func__,
3809 								     snd_wscale,
3810 								     TCP_MAX_WSCALE);
3811 						snd_wscale = TCP_MAX_WSCALE;
3812 					}
3813 					opt_rx->snd_wscale = snd_wscale;
3814 				}
3815 				break;
3816 			case TCPOPT_TIMESTAMP:
3817 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3818 				    ((estab && opt_rx->tstamp_ok) ||
3819 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3820 					opt_rx->saw_tstamp = 1;
3821 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3822 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3823 				}
3824 				break;
3825 			case TCPOPT_SACK_PERM:
3826 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3827 				    !estab && net->ipv4.sysctl_tcp_sack) {
3828 					opt_rx->sack_ok = TCP_SACK_SEEN;
3829 					tcp_sack_reset(opt_rx);
3830 				}
3831 				break;
3832 
3833 			case TCPOPT_SACK:
3834 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3835 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3836 				   opt_rx->sack_ok) {
3837 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3838 				}
3839 				break;
3840 #ifdef CONFIG_TCP_MD5SIG
3841 			case TCPOPT_MD5SIG:
3842 				/*
3843 				 * The MD5 Hash has already been
3844 				 * checked (see tcp_v{4,6}_do_rcv()).
3845 				 */
3846 				break;
3847 #endif
3848 			case TCPOPT_FASTOPEN:
3849 				tcp_parse_fastopen_option(
3850 					opsize - TCPOLEN_FASTOPEN_BASE,
3851 					ptr, th->syn, foc, false);
3852 				break;
3853 
3854 			case TCPOPT_EXP:
3855 				/* Fast Open option shares code 254 using a
3856 				 * 16 bits magic number.
3857 				 */
3858 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3859 				    get_unaligned_be16(ptr) ==
3860 				    TCPOPT_FASTOPEN_MAGIC)
3861 					tcp_parse_fastopen_option(opsize -
3862 						TCPOLEN_EXP_FASTOPEN_BASE,
3863 						ptr + 2, th->syn, foc, true);
3864 				else
3865 					smc_parse_options(th, opt_rx, ptr,
3866 							  opsize);
3867 				break;
3868 
3869 			}
3870 			ptr += opsize-2;
3871 			length -= opsize;
3872 		}
3873 	}
3874 }
3875 EXPORT_SYMBOL(tcp_parse_options);
3876 
3877 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3878 {
3879 	const __be32 *ptr = (const __be32 *)(th + 1);
3880 
3881 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3882 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3883 		tp->rx_opt.saw_tstamp = 1;
3884 		++ptr;
3885 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3886 		++ptr;
3887 		if (*ptr)
3888 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3889 		else
3890 			tp->rx_opt.rcv_tsecr = 0;
3891 		return true;
3892 	}
3893 	return false;
3894 }
3895 
3896 /* Fast parse options. This hopes to only see timestamps.
3897  * If it is wrong it falls back on tcp_parse_options().
3898  */
3899 static bool tcp_fast_parse_options(const struct net *net,
3900 				   const struct sk_buff *skb,
3901 				   const struct tcphdr *th, struct tcp_sock *tp)
3902 {
3903 	/* In the spirit of fast parsing, compare doff directly to constant
3904 	 * values.  Because equality is used, short doff can be ignored here.
3905 	 */
3906 	if (th->doff == (sizeof(*th) / 4)) {
3907 		tp->rx_opt.saw_tstamp = 0;
3908 		return false;
3909 	} else if (tp->rx_opt.tstamp_ok &&
3910 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3911 		if (tcp_parse_aligned_timestamp(tp, th))
3912 			return true;
3913 	}
3914 
3915 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3916 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3917 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3918 
3919 	return true;
3920 }
3921 
3922 #ifdef CONFIG_TCP_MD5SIG
3923 /*
3924  * Parse MD5 Signature option
3925  */
3926 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3927 {
3928 	int length = (th->doff << 2) - sizeof(*th);
3929 	const u8 *ptr = (const u8 *)(th + 1);
3930 
3931 	/* If not enough data remaining, we can short cut */
3932 	while (length >= TCPOLEN_MD5SIG) {
3933 		int opcode = *ptr++;
3934 		int opsize;
3935 
3936 		switch (opcode) {
3937 		case TCPOPT_EOL:
3938 			return NULL;
3939 		case TCPOPT_NOP:
3940 			length--;
3941 			continue;
3942 		default:
3943 			opsize = *ptr++;
3944 			if (opsize < 2 || opsize > length)
3945 				return NULL;
3946 			if (opcode == TCPOPT_MD5SIG)
3947 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3948 		}
3949 		ptr += opsize - 2;
3950 		length -= opsize;
3951 	}
3952 	return NULL;
3953 }
3954 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3955 #endif
3956 
3957 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3958  *
3959  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3960  * it can pass through stack. So, the following predicate verifies that
3961  * this segment is not used for anything but congestion avoidance or
3962  * fast retransmit. Moreover, we even are able to eliminate most of such
3963  * second order effects, if we apply some small "replay" window (~RTO)
3964  * to timestamp space.
3965  *
3966  * All these measures still do not guarantee that we reject wrapped ACKs
3967  * on networks with high bandwidth, when sequence space is recycled fastly,
3968  * but it guarantees that such events will be very rare and do not affect
3969  * connection seriously. This doesn't look nice, but alas, PAWS is really
3970  * buggy extension.
3971  *
3972  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3973  * states that events when retransmit arrives after original data are rare.
3974  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3975  * the biggest problem on large power networks even with minor reordering.
3976  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3977  * up to bandwidth of 18Gigabit/sec. 8) ]
3978  */
3979 
3980 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3981 {
3982 	const struct tcp_sock *tp = tcp_sk(sk);
3983 	const struct tcphdr *th = tcp_hdr(skb);
3984 	u32 seq = TCP_SKB_CB(skb)->seq;
3985 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3986 
3987 	return (/* 1. Pure ACK with correct sequence number. */
3988 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3989 
3990 		/* 2. ... and duplicate ACK. */
3991 		ack == tp->snd_una &&
3992 
3993 		/* 3. ... and does not update window. */
3994 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3995 
3996 		/* 4. ... and sits in replay window. */
3997 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3998 }
3999 
4000 static inline bool tcp_paws_discard(const struct sock *sk,
4001 				   const struct sk_buff *skb)
4002 {
4003 	const struct tcp_sock *tp = tcp_sk(sk);
4004 
4005 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4006 	       !tcp_disordered_ack(sk, skb);
4007 }
4008 
4009 /* Check segment sequence number for validity.
4010  *
4011  * Segment controls are considered valid, if the segment
4012  * fits to the window after truncation to the window. Acceptability
4013  * of data (and SYN, FIN, of course) is checked separately.
4014  * See tcp_data_queue(), for example.
4015  *
4016  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4017  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4018  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4019  * (borrowed from freebsd)
4020  */
4021 
4022 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4023 {
4024 	return	!before(end_seq, tp->rcv_wup) &&
4025 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4026 }
4027 
4028 /* When we get a reset we do this. */
4029 void tcp_reset(struct sock *sk)
4030 {
4031 	trace_tcp_receive_reset(sk);
4032 
4033 	/* We want the right error as BSD sees it (and indeed as we do). */
4034 	switch (sk->sk_state) {
4035 	case TCP_SYN_SENT:
4036 		sk->sk_err = ECONNREFUSED;
4037 		break;
4038 	case TCP_CLOSE_WAIT:
4039 		sk->sk_err = EPIPE;
4040 		break;
4041 	case TCP_CLOSE:
4042 		return;
4043 	default:
4044 		sk->sk_err = ECONNRESET;
4045 	}
4046 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4047 	smp_wmb();
4048 
4049 	tcp_write_queue_purge(sk);
4050 	tcp_done(sk);
4051 
4052 	if (!sock_flag(sk, SOCK_DEAD))
4053 		sk->sk_error_report(sk);
4054 }
4055 
4056 /*
4057  * 	Process the FIN bit. This now behaves as it is supposed to work
4058  *	and the FIN takes effect when it is validly part of sequence
4059  *	space. Not before when we get holes.
4060  *
4061  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4062  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4063  *	TIME-WAIT)
4064  *
4065  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4066  *	close and we go into CLOSING (and later onto TIME-WAIT)
4067  *
4068  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4069  */
4070 void tcp_fin(struct sock *sk)
4071 {
4072 	struct tcp_sock *tp = tcp_sk(sk);
4073 
4074 	inet_csk_schedule_ack(sk);
4075 
4076 	sk->sk_shutdown |= RCV_SHUTDOWN;
4077 	sock_set_flag(sk, SOCK_DONE);
4078 
4079 	switch (sk->sk_state) {
4080 	case TCP_SYN_RECV:
4081 	case TCP_ESTABLISHED:
4082 		/* Move to CLOSE_WAIT */
4083 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4084 		inet_csk(sk)->icsk_ack.pingpong = 1;
4085 		break;
4086 
4087 	case TCP_CLOSE_WAIT:
4088 	case TCP_CLOSING:
4089 		/* Received a retransmission of the FIN, do
4090 		 * nothing.
4091 		 */
4092 		break;
4093 	case TCP_LAST_ACK:
4094 		/* RFC793: Remain in the LAST-ACK state. */
4095 		break;
4096 
4097 	case TCP_FIN_WAIT1:
4098 		/* This case occurs when a simultaneous close
4099 		 * happens, we must ack the received FIN and
4100 		 * enter the CLOSING state.
4101 		 */
4102 		tcp_send_ack(sk);
4103 		tcp_set_state(sk, TCP_CLOSING);
4104 		break;
4105 	case TCP_FIN_WAIT2:
4106 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4107 		tcp_send_ack(sk);
4108 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4109 		break;
4110 	default:
4111 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4112 		 * cases we should never reach this piece of code.
4113 		 */
4114 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4115 		       __func__, sk->sk_state);
4116 		break;
4117 	}
4118 
4119 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4120 	 * Probably, we should reset in this case. For now drop them.
4121 	 */
4122 	skb_rbtree_purge(&tp->out_of_order_queue);
4123 	if (tcp_is_sack(tp))
4124 		tcp_sack_reset(&tp->rx_opt);
4125 	sk_mem_reclaim(sk);
4126 
4127 	if (!sock_flag(sk, SOCK_DEAD)) {
4128 		sk->sk_state_change(sk);
4129 
4130 		/* Do not send POLL_HUP for half duplex close. */
4131 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4132 		    sk->sk_state == TCP_CLOSE)
4133 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4134 		else
4135 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4136 	}
4137 }
4138 
4139 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4140 				  u32 end_seq)
4141 {
4142 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4143 		if (before(seq, sp->start_seq))
4144 			sp->start_seq = seq;
4145 		if (after(end_seq, sp->end_seq))
4146 			sp->end_seq = end_seq;
4147 		return true;
4148 	}
4149 	return false;
4150 }
4151 
4152 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4153 {
4154 	struct tcp_sock *tp = tcp_sk(sk);
4155 
4156 	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4157 		int mib_idx;
4158 
4159 		if (before(seq, tp->rcv_nxt))
4160 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4161 		else
4162 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4163 
4164 		NET_INC_STATS(sock_net(sk), mib_idx);
4165 
4166 		tp->rx_opt.dsack = 1;
4167 		tp->duplicate_sack[0].start_seq = seq;
4168 		tp->duplicate_sack[0].end_seq = end_seq;
4169 	}
4170 }
4171 
4172 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4173 {
4174 	struct tcp_sock *tp = tcp_sk(sk);
4175 
4176 	if (!tp->rx_opt.dsack)
4177 		tcp_dsack_set(sk, seq, end_seq);
4178 	else
4179 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4180 }
4181 
4182 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4183 {
4184 	/* When the ACK path fails or drops most ACKs, the sender would
4185 	 * timeout and spuriously retransmit the same segment repeatedly.
4186 	 * The receiver remembers and reflects via DSACKs. Leverage the
4187 	 * DSACK state and change the txhash to re-route speculatively.
4188 	 */
4189 	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq)
4190 		sk_rethink_txhash(sk);
4191 }
4192 
4193 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4194 {
4195 	struct tcp_sock *tp = tcp_sk(sk);
4196 
4197 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4198 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4199 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4200 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4201 
4202 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4203 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4204 
4205 			tcp_rcv_spurious_retrans(sk, skb);
4206 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4207 				end_seq = tp->rcv_nxt;
4208 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4209 		}
4210 	}
4211 
4212 	tcp_send_ack(sk);
4213 }
4214 
4215 /* These routines update the SACK block as out-of-order packets arrive or
4216  * in-order packets close up the sequence space.
4217  */
4218 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4219 {
4220 	int this_sack;
4221 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4222 	struct tcp_sack_block *swalk = sp + 1;
4223 
4224 	/* See if the recent change to the first SACK eats into
4225 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4226 	 */
4227 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4228 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4229 			int i;
4230 
4231 			/* Zap SWALK, by moving every further SACK up by one slot.
4232 			 * Decrease num_sacks.
4233 			 */
4234 			tp->rx_opt.num_sacks--;
4235 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4236 				sp[i] = sp[i + 1];
4237 			continue;
4238 		}
4239 		this_sack++, swalk++;
4240 	}
4241 }
4242 
4243 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4244 {
4245 	struct tcp_sock *tp = tcp_sk(sk);
4246 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4247 	int cur_sacks = tp->rx_opt.num_sacks;
4248 	int this_sack;
4249 
4250 	if (!cur_sacks)
4251 		goto new_sack;
4252 
4253 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4254 		if (tcp_sack_extend(sp, seq, end_seq)) {
4255 			/* Rotate this_sack to the first one. */
4256 			for (; this_sack > 0; this_sack--, sp--)
4257 				swap(*sp, *(sp - 1));
4258 			if (cur_sacks > 1)
4259 				tcp_sack_maybe_coalesce(tp);
4260 			return;
4261 		}
4262 	}
4263 
4264 	/* Could not find an adjacent existing SACK, build a new one,
4265 	 * put it at the front, and shift everyone else down.  We
4266 	 * always know there is at least one SACK present already here.
4267 	 *
4268 	 * If the sack array is full, forget about the last one.
4269 	 */
4270 	if (this_sack >= TCP_NUM_SACKS) {
4271 		if (tp->compressed_ack)
4272 			tcp_send_ack(sk);
4273 		this_sack--;
4274 		tp->rx_opt.num_sacks--;
4275 		sp--;
4276 	}
4277 	for (; this_sack > 0; this_sack--, sp--)
4278 		*sp = *(sp - 1);
4279 
4280 new_sack:
4281 	/* Build the new head SACK, and we're done. */
4282 	sp->start_seq = seq;
4283 	sp->end_seq = end_seq;
4284 	tp->rx_opt.num_sacks++;
4285 }
4286 
4287 /* RCV.NXT advances, some SACKs should be eaten. */
4288 
4289 static void tcp_sack_remove(struct tcp_sock *tp)
4290 {
4291 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4292 	int num_sacks = tp->rx_opt.num_sacks;
4293 	int this_sack;
4294 
4295 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4296 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4297 		tp->rx_opt.num_sacks = 0;
4298 		return;
4299 	}
4300 
4301 	for (this_sack = 0; this_sack < num_sacks;) {
4302 		/* Check if the start of the sack is covered by RCV.NXT. */
4303 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4304 			int i;
4305 
4306 			/* RCV.NXT must cover all the block! */
4307 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4308 
4309 			/* Zap this SACK, by moving forward any other SACKS. */
4310 			for (i = this_sack+1; i < num_sacks; i++)
4311 				tp->selective_acks[i-1] = tp->selective_acks[i];
4312 			num_sacks--;
4313 			continue;
4314 		}
4315 		this_sack++;
4316 		sp++;
4317 	}
4318 	tp->rx_opt.num_sacks = num_sacks;
4319 }
4320 
4321 /**
4322  * tcp_try_coalesce - try to merge skb to prior one
4323  * @sk: socket
4324  * @dest: destination queue
4325  * @to: prior buffer
4326  * @from: buffer to add in queue
4327  * @fragstolen: pointer to boolean
4328  *
4329  * Before queueing skb @from after @to, try to merge them
4330  * to reduce overall memory use and queue lengths, if cost is small.
4331  * Packets in ofo or receive queues can stay a long time.
4332  * Better try to coalesce them right now to avoid future collapses.
4333  * Returns true if caller should free @from instead of queueing it
4334  */
4335 static bool tcp_try_coalesce(struct sock *sk,
4336 			     struct sk_buff *to,
4337 			     struct sk_buff *from,
4338 			     bool *fragstolen)
4339 {
4340 	int delta;
4341 
4342 	*fragstolen = false;
4343 
4344 	/* Its possible this segment overlaps with prior segment in queue */
4345 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4346 		return false;
4347 
4348 #ifdef CONFIG_TLS_DEVICE
4349 	if (from->decrypted != to->decrypted)
4350 		return false;
4351 #endif
4352 
4353 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4354 		return false;
4355 
4356 	atomic_add(delta, &sk->sk_rmem_alloc);
4357 	sk_mem_charge(sk, delta);
4358 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4359 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4360 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4361 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4362 
4363 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4364 		TCP_SKB_CB(to)->has_rxtstamp = true;
4365 		to->tstamp = from->tstamp;
4366 	}
4367 
4368 	return true;
4369 }
4370 
4371 static bool tcp_ooo_try_coalesce(struct sock *sk,
4372 			     struct sk_buff *to,
4373 			     struct sk_buff *from,
4374 			     bool *fragstolen)
4375 {
4376 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4377 
4378 	/* In case tcp_drop() is called later, update to->gso_segs */
4379 	if (res) {
4380 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4381 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4382 
4383 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4384 	}
4385 	return res;
4386 }
4387 
4388 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4389 {
4390 	sk_drops_add(sk, skb);
4391 	__kfree_skb(skb);
4392 }
4393 
4394 /* This one checks to see if we can put data from the
4395  * out_of_order queue into the receive_queue.
4396  */
4397 static void tcp_ofo_queue(struct sock *sk)
4398 {
4399 	struct tcp_sock *tp = tcp_sk(sk);
4400 	__u32 dsack_high = tp->rcv_nxt;
4401 	bool fin, fragstolen, eaten;
4402 	struct sk_buff *skb, *tail;
4403 	struct rb_node *p;
4404 
4405 	p = rb_first(&tp->out_of_order_queue);
4406 	while (p) {
4407 		skb = rb_to_skb(p);
4408 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4409 			break;
4410 
4411 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4412 			__u32 dsack = dsack_high;
4413 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4414 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4415 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4416 		}
4417 		p = rb_next(p);
4418 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4419 
4420 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4421 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4422 			tcp_drop(sk, skb);
4423 			continue;
4424 		}
4425 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4426 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4427 			   TCP_SKB_CB(skb)->end_seq);
4428 
4429 		tail = skb_peek_tail(&sk->sk_receive_queue);
4430 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4431 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4432 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4433 		if (!eaten)
4434 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4435 		else
4436 			kfree_skb_partial(skb, fragstolen);
4437 
4438 		if (unlikely(fin)) {
4439 			tcp_fin(sk);
4440 			/* tcp_fin() purges tp->out_of_order_queue,
4441 			 * so we must end this loop right now.
4442 			 */
4443 			break;
4444 		}
4445 	}
4446 }
4447 
4448 static bool tcp_prune_ofo_queue(struct sock *sk);
4449 static int tcp_prune_queue(struct sock *sk);
4450 
4451 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4452 				 unsigned int size)
4453 {
4454 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4455 	    !sk_rmem_schedule(sk, skb, size)) {
4456 
4457 		if (tcp_prune_queue(sk) < 0)
4458 			return -1;
4459 
4460 		while (!sk_rmem_schedule(sk, skb, size)) {
4461 			if (!tcp_prune_ofo_queue(sk))
4462 				return -1;
4463 		}
4464 	}
4465 	return 0;
4466 }
4467 
4468 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4469 {
4470 	struct tcp_sock *tp = tcp_sk(sk);
4471 	struct rb_node **p, *parent;
4472 	struct sk_buff *skb1;
4473 	u32 seq, end_seq;
4474 	bool fragstolen;
4475 
4476 	tcp_ecn_check_ce(sk, skb);
4477 
4478 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4479 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4480 		tcp_drop(sk, skb);
4481 		return;
4482 	}
4483 
4484 	/* Disable header prediction. */
4485 	tp->pred_flags = 0;
4486 	inet_csk_schedule_ack(sk);
4487 
4488 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4489 	seq = TCP_SKB_CB(skb)->seq;
4490 	end_seq = TCP_SKB_CB(skb)->end_seq;
4491 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4492 		   tp->rcv_nxt, seq, end_seq);
4493 
4494 	p = &tp->out_of_order_queue.rb_node;
4495 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4496 		/* Initial out of order segment, build 1 SACK. */
4497 		if (tcp_is_sack(tp)) {
4498 			tp->rx_opt.num_sacks = 1;
4499 			tp->selective_acks[0].start_seq = seq;
4500 			tp->selective_acks[0].end_seq = end_seq;
4501 		}
4502 		rb_link_node(&skb->rbnode, NULL, p);
4503 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4504 		tp->ooo_last_skb = skb;
4505 		goto end;
4506 	}
4507 
4508 	/* In the typical case, we are adding an skb to the end of the list.
4509 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4510 	 */
4511 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4512 				 skb, &fragstolen)) {
4513 coalesce_done:
4514 		tcp_grow_window(sk, skb);
4515 		kfree_skb_partial(skb, fragstolen);
4516 		skb = NULL;
4517 		goto add_sack;
4518 	}
4519 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4520 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4521 		parent = &tp->ooo_last_skb->rbnode;
4522 		p = &parent->rb_right;
4523 		goto insert;
4524 	}
4525 
4526 	/* Find place to insert this segment. Handle overlaps on the way. */
4527 	parent = NULL;
4528 	while (*p) {
4529 		parent = *p;
4530 		skb1 = rb_to_skb(parent);
4531 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4532 			p = &parent->rb_left;
4533 			continue;
4534 		}
4535 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4536 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4537 				/* All the bits are present. Drop. */
4538 				NET_INC_STATS(sock_net(sk),
4539 					      LINUX_MIB_TCPOFOMERGE);
4540 				tcp_drop(sk, skb);
4541 				skb = NULL;
4542 				tcp_dsack_set(sk, seq, end_seq);
4543 				goto add_sack;
4544 			}
4545 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4546 				/* Partial overlap. */
4547 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4548 			} else {
4549 				/* skb's seq == skb1's seq and skb covers skb1.
4550 				 * Replace skb1 with skb.
4551 				 */
4552 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4553 						&tp->out_of_order_queue);
4554 				tcp_dsack_extend(sk,
4555 						 TCP_SKB_CB(skb1)->seq,
4556 						 TCP_SKB_CB(skb1)->end_seq);
4557 				NET_INC_STATS(sock_net(sk),
4558 					      LINUX_MIB_TCPOFOMERGE);
4559 				tcp_drop(sk, skb1);
4560 				goto merge_right;
4561 			}
4562 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4563 						skb, &fragstolen)) {
4564 			goto coalesce_done;
4565 		}
4566 		p = &parent->rb_right;
4567 	}
4568 insert:
4569 	/* Insert segment into RB tree. */
4570 	rb_link_node(&skb->rbnode, parent, p);
4571 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4572 
4573 merge_right:
4574 	/* Remove other segments covered by skb. */
4575 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4576 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4577 			break;
4578 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4579 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4580 					 end_seq);
4581 			break;
4582 		}
4583 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4584 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4585 				 TCP_SKB_CB(skb1)->end_seq);
4586 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4587 		tcp_drop(sk, skb1);
4588 	}
4589 	/* If there is no skb after us, we are the last_skb ! */
4590 	if (!skb1)
4591 		tp->ooo_last_skb = skb;
4592 
4593 add_sack:
4594 	if (tcp_is_sack(tp))
4595 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4596 end:
4597 	if (skb) {
4598 		tcp_grow_window(sk, skb);
4599 		skb_condense(skb);
4600 		skb_set_owner_r(skb, sk);
4601 	}
4602 }
4603 
4604 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4605 		  bool *fragstolen)
4606 {
4607 	int eaten;
4608 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4609 
4610 	__skb_pull(skb, hdrlen);
4611 	eaten = (tail &&
4612 		 tcp_try_coalesce(sk, tail,
4613 				  skb, fragstolen)) ? 1 : 0;
4614 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4615 	if (!eaten) {
4616 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4617 		skb_set_owner_r(skb, sk);
4618 	}
4619 	return eaten;
4620 }
4621 
4622 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4623 {
4624 	struct sk_buff *skb;
4625 	int err = -ENOMEM;
4626 	int data_len = 0;
4627 	bool fragstolen;
4628 
4629 	if (size == 0)
4630 		return 0;
4631 
4632 	if (size > PAGE_SIZE) {
4633 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4634 
4635 		data_len = npages << PAGE_SHIFT;
4636 		size = data_len + (size & ~PAGE_MASK);
4637 	}
4638 	skb = alloc_skb_with_frags(size - data_len, data_len,
4639 				   PAGE_ALLOC_COSTLY_ORDER,
4640 				   &err, sk->sk_allocation);
4641 	if (!skb)
4642 		goto err;
4643 
4644 	skb_put(skb, size - data_len);
4645 	skb->data_len = data_len;
4646 	skb->len = size;
4647 
4648 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4649 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4650 		goto err_free;
4651 	}
4652 
4653 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4654 	if (err)
4655 		goto err_free;
4656 
4657 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4658 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4659 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4660 
4661 	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4662 		WARN_ON_ONCE(fragstolen); /* should not happen */
4663 		__kfree_skb(skb);
4664 	}
4665 	return size;
4666 
4667 err_free:
4668 	kfree_skb(skb);
4669 err:
4670 	return err;
4671 
4672 }
4673 
4674 void tcp_data_ready(struct sock *sk)
4675 {
4676 	const struct tcp_sock *tp = tcp_sk(sk);
4677 	int avail = tp->rcv_nxt - tp->copied_seq;
4678 
4679 	if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE))
4680 		return;
4681 
4682 	sk->sk_data_ready(sk);
4683 }
4684 
4685 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4686 {
4687 	struct tcp_sock *tp = tcp_sk(sk);
4688 	bool fragstolen;
4689 	int eaten;
4690 
4691 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4692 		__kfree_skb(skb);
4693 		return;
4694 	}
4695 	skb_dst_drop(skb);
4696 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4697 
4698 	tcp_ecn_accept_cwr(sk, skb);
4699 
4700 	tp->rx_opt.dsack = 0;
4701 
4702 	/*  Queue data for delivery to the user.
4703 	 *  Packets in sequence go to the receive queue.
4704 	 *  Out of sequence packets to the out_of_order_queue.
4705 	 */
4706 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4707 		if (tcp_receive_window(tp) == 0) {
4708 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4709 			goto out_of_window;
4710 		}
4711 
4712 		/* Ok. In sequence. In window. */
4713 queue_and_out:
4714 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4715 			sk_forced_mem_schedule(sk, skb->truesize);
4716 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4717 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4718 			goto drop;
4719 		}
4720 
4721 		eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4722 		if (skb->len)
4723 			tcp_event_data_recv(sk, skb);
4724 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4725 			tcp_fin(sk);
4726 
4727 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4728 			tcp_ofo_queue(sk);
4729 
4730 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
4731 			 * gap in queue is filled.
4732 			 */
4733 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4734 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4735 		}
4736 
4737 		if (tp->rx_opt.num_sacks)
4738 			tcp_sack_remove(tp);
4739 
4740 		tcp_fast_path_check(sk);
4741 
4742 		if (eaten > 0)
4743 			kfree_skb_partial(skb, fragstolen);
4744 		if (!sock_flag(sk, SOCK_DEAD))
4745 			tcp_data_ready(sk);
4746 		return;
4747 	}
4748 
4749 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4750 		tcp_rcv_spurious_retrans(sk, skb);
4751 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4752 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4753 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4754 
4755 out_of_window:
4756 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4757 		inet_csk_schedule_ack(sk);
4758 drop:
4759 		tcp_drop(sk, skb);
4760 		return;
4761 	}
4762 
4763 	/* Out of window. F.e. zero window probe. */
4764 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4765 		goto out_of_window;
4766 
4767 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4768 		/* Partial packet, seq < rcv_next < end_seq */
4769 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4770 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4771 			   TCP_SKB_CB(skb)->end_seq);
4772 
4773 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4774 
4775 		/* If window is closed, drop tail of packet. But after
4776 		 * remembering D-SACK for its head made in previous line.
4777 		 */
4778 		if (!tcp_receive_window(tp)) {
4779 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4780 			goto out_of_window;
4781 		}
4782 		goto queue_and_out;
4783 	}
4784 
4785 	tcp_data_queue_ofo(sk, skb);
4786 }
4787 
4788 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4789 {
4790 	if (list)
4791 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4792 
4793 	return skb_rb_next(skb);
4794 }
4795 
4796 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4797 					struct sk_buff_head *list,
4798 					struct rb_root *root)
4799 {
4800 	struct sk_buff *next = tcp_skb_next(skb, list);
4801 
4802 	if (list)
4803 		__skb_unlink(skb, list);
4804 	else
4805 		rb_erase(&skb->rbnode, root);
4806 
4807 	__kfree_skb(skb);
4808 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4809 
4810 	return next;
4811 }
4812 
4813 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4814 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4815 {
4816 	struct rb_node **p = &root->rb_node;
4817 	struct rb_node *parent = NULL;
4818 	struct sk_buff *skb1;
4819 
4820 	while (*p) {
4821 		parent = *p;
4822 		skb1 = rb_to_skb(parent);
4823 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4824 			p = &parent->rb_left;
4825 		else
4826 			p = &parent->rb_right;
4827 	}
4828 	rb_link_node(&skb->rbnode, parent, p);
4829 	rb_insert_color(&skb->rbnode, root);
4830 }
4831 
4832 /* Collapse contiguous sequence of skbs head..tail with
4833  * sequence numbers start..end.
4834  *
4835  * If tail is NULL, this means until the end of the queue.
4836  *
4837  * Segments with FIN/SYN are not collapsed (only because this
4838  * simplifies code)
4839  */
4840 static void
4841 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4842 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4843 {
4844 	struct sk_buff *skb = head, *n;
4845 	struct sk_buff_head tmp;
4846 	bool end_of_skbs;
4847 
4848 	/* First, check that queue is collapsible and find
4849 	 * the point where collapsing can be useful.
4850 	 */
4851 restart:
4852 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4853 		n = tcp_skb_next(skb, list);
4854 
4855 		/* No new bits? It is possible on ofo queue. */
4856 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4857 			skb = tcp_collapse_one(sk, skb, list, root);
4858 			if (!skb)
4859 				break;
4860 			goto restart;
4861 		}
4862 
4863 		/* The first skb to collapse is:
4864 		 * - not SYN/FIN and
4865 		 * - bloated or contains data before "start" or
4866 		 *   overlaps to the next one.
4867 		 */
4868 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4869 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4870 		     before(TCP_SKB_CB(skb)->seq, start))) {
4871 			end_of_skbs = false;
4872 			break;
4873 		}
4874 
4875 		if (n && n != tail &&
4876 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4877 			end_of_skbs = false;
4878 			break;
4879 		}
4880 
4881 		/* Decided to skip this, advance start seq. */
4882 		start = TCP_SKB_CB(skb)->end_seq;
4883 	}
4884 	if (end_of_skbs ||
4885 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4886 		return;
4887 
4888 	__skb_queue_head_init(&tmp);
4889 
4890 	while (before(start, end)) {
4891 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4892 		struct sk_buff *nskb;
4893 
4894 		nskb = alloc_skb(copy, GFP_ATOMIC);
4895 		if (!nskb)
4896 			break;
4897 
4898 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4899 #ifdef CONFIG_TLS_DEVICE
4900 		nskb->decrypted = skb->decrypted;
4901 #endif
4902 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4903 		if (list)
4904 			__skb_queue_before(list, skb, nskb);
4905 		else
4906 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4907 		skb_set_owner_r(nskb, sk);
4908 
4909 		/* Copy data, releasing collapsed skbs. */
4910 		while (copy > 0) {
4911 			int offset = start - TCP_SKB_CB(skb)->seq;
4912 			int size = TCP_SKB_CB(skb)->end_seq - start;
4913 
4914 			BUG_ON(offset < 0);
4915 			if (size > 0) {
4916 				size = min(copy, size);
4917 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4918 					BUG();
4919 				TCP_SKB_CB(nskb)->end_seq += size;
4920 				copy -= size;
4921 				start += size;
4922 			}
4923 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4924 				skb = tcp_collapse_one(sk, skb, list, root);
4925 				if (!skb ||
4926 				    skb == tail ||
4927 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4928 					goto end;
4929 #ifdef CONFIG_TLS_DEVICE
4930 				if (skb->decrypted != nskb->decrypted)
4931 					goto end;
4932 #endif
4933 			}
4934 		}
4935 	}
4936 end:
4937 	skb_queue_walk_safe(&tmp, skb, n)
4938 		tcp_rbtree_insert(root, skb);
4939 }
4940 
4941 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4942  * and tcp_collapse() them until all the queue is collapsed.
4943  */
4944 static void tcp_collapse_ofo_queue(struct sock *sk)
4945 {
4946 	struct tcp_sock *tp = tcp_sk(sk);
4947 	u32 range_truesize, sum_tiny = 0;
4948 	struct sk_buff *skb, *head;
4949 	u32 start, end;
4950 
4951 	skb = skb_rb_first(&tp->out_of_order_queue);
4952 new_range:
4953 	if (!skb) {
4954 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
4955 		return;
4956 	}
4957 	start = TCP_SKB_CB(skb)->seq;
4958 	end = TCP_SKB_CB(skb)->end_seq;
4959 	range_truesize = skb->truesize;
4960 
4961 	for (head = skb;;) {
4962 		skb = skb_rb_next(skb);
4963 
4964 		/* Range is terminated when we see a gap or when
4965 		 * we are at the queue end.
4966 		 */
4967 		if (!skb ||
4968 		    after(TCP_SKB_CB(skb)->seq, end) ||
4969 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4970 			/* Do not attempt collapsing tiny skbs */
4971 			if (range_truesize != head->truesize ||
4972 			    end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
4973 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4974 					     head, skb, start, end);
4975 			} else {
4976 				sum_tiny += range_truesize;
4977 				if (sum_tiny > sk->sk_rcvbuf >> 3)
4978 					return;
4979 			}
4980 			goto new_range;
4981 		}
4982 
4983 		range_truesize += skb->truesize;
4984 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4985 			start = TCP_SKB_CB(skb)->seq;
4986 		if (after(TCP_SKB_CB(skb)->end_seq, end))
4987 			end = TCP_SKB_CB(skb)->end_seq;
4988 	}
4989 }
4990 
4991 /*
4992  * Clean the out-of-order queue to make room.
4993  * We drop high sequences packets to :
4994  * 1) Let a chance for holes to be filled.
4995  * 2) not add too big latencies if thousands of packets sit there.
4996  *    (But if application shrinks SO_RCVBUF, we could still end up
4997  *     freeing whole queue here)
4998  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
4999  *
5000  * Return true if queue has shrunk.
5001  */
5002 static bool tcp_prune_ofo_queue(struct sock *sk)
5003 {
5004 	struct tcp_sock *tp = tcp_sk(sk);
5005 	struct rb_node *node, *prev;
5006 	int goal;
5007 
5008 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5009 		return false;
5010 
5011 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5012 	goal = sk->sk_rcvbuf >> 3;
5013 	node = &tp->ooo_last_skb->rbnode;
5014 	do {
5015 		prev = rb_prev(node);
5016 		rb_erase(node, &tp->out_of_order_queue);
5017 		goal -= rb_to_skb(node)->truesize;
5018 		tcp_drop(sk, rb_to_skb(node));
5019 		if (!prev || goal <= 0) {
5020 			sk_mem_reclaim(sk);
5021 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5022 			    !tcp_under_memory_pressure(sk))
5023 				break;
5024 			goal = sk->sk_rcvbuf >> 3;
5025 		}
5026 		node = prev;
5027 	} while (node);
5028 	tp->ooo_last_skb = rb_to_skb(prev);
5029 
5030 	/* Reset SACK state.  A conforming SACK implementation will
5031 	 * do the same at a timeout based retransmit.  When a connection
5032 	 * is in a sad state like this, we care only about integrity
5033 	 * of the connection not performance.
5034 	 */
5035 	if (tp->rx_opt.sack_ok)
5036 		tcp_sack_reset(&tp->rx_opt);
5037 	return true;
5038 }
5039 
5040 /* Reduce allocated memory if we can, trying to get
5041  * the socket within its memory limits again.
5042  *
5043  * Return less than zero if we should start dropping frames
5044  * until the socket owning process reads some of the data
5045  * to stabilize the situation.
5046  */
5047 static int tcp_prune_queue(struct sock *sk)
5048 {
5049 	struct tcp_sock *tp = tcp_sk(sk);
5050 
5051 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
5052 
5053 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5054 
5055 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5056 		tcp_clamp_window(sk);
5057 	else if (tcp_under_memory_pressure(sk))
5058 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5059 
5060 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5061 		return 0;
5062 
5063 	tcp_collapse_ofo_queue(sk);
5064 	if (!skb_queue_empty(&sk->sk_receive_queue))
5065 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5066 			     skb_peek(&sk->sk_receive_queue),
5067 			     NULL,
5068 			     tp->copied_seq, tp->rcv_nxt);
5069 	sk_mem_reclaim(sk);
5070 
5071 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5072 		return 0;
5073 
5074 	/* Collapsing did not help, destructive actions follow.
5075 	 * This must not ever occur. */
5076 
5077 	tcp_prune_ofo_queue(sk);
5078 
5079 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5080 		return 0;
5081 
5082 	/* If we are really being abused, tell the caller to silently
5083 	 * drop receive data on the floor.  It will get retransmitted
5084 	 * and hopefully then we'll have sufficient space.
5085 	 */
5086 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5087 
5088 	/* Massive buffer overcommit. */
5089 	tp->pred_flags = 0;
5090 	return -1;
5091 }
5092 
5093 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5094 {
5095 	const struct tcp_sock *tp = tcp_sk(sk);
5096 
5097 	/* If the user specified a specific send buffer setting, do
5098 	 * not modify it.
5099 	 */
5100 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5101 		return false;
5102 
5103 	/* If we are under global TCP memory pressure, do not expand.  */
5104 	if (tcp_under_memory_pressure(sk))
5105 		return false;
5106 
5107 	/* If we are under soft global TCP memory pressure, do not expand.  */
5108 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5109 		return false;
5110 
5111 	/* If we filled the congestion window, do not expand.  */
5112 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5113 		return false;
5114 
5115 	return true;
5116 }
5117 
5118 /* When incoming ACK allowed to free some skb from write_queue,
5119  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5120  * on the exit from tcp input handler.
5121  *
5122  * PROBLEM: sndbuf expansion does not work well with largesend.
5123  */
5124 static void tcp_new_space(struct sock *sk)
5125 {
5126 	struct tcp_sock *tp = tcp_sk(sk);
5127 
5128 	if (tcp_should_expand_sndbuf(sk)) {
5129 		tcp_sndbuf_expand(sk);
5130 		tp->snd_cwnd_stamp = tcp_jiffies32;
5131 	}
5132 
5133 	sk->sk_write_space(sk);
5134 }
5135 
5136 static void tcp_check_space(struct sock *sk)
5137 {
5138 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5139 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5140 		/* pairs with tcp_poll() */
5141 		smp_mb();
5142 		if (sk->sk_socket &&
5143 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5144 			tcp_new_space(sk);
5145 			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5146 				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5147 		}
5148 	}
5149 }
5150 
5151 static inline void tcp_data_snd_check(struct sock *sk)
5152 {
5153 	tcp_push_pending_frames(sk);
5154 	tcp_check_space(sk);
5155 }
5156 
5157 /*
5158  * Check if sending an ack is needed.
5159  */
5160 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5161 {
5162 	struct tcp_sock *tp = tcp_sk(sk);
5163 	unsigned long rtt, delay;
5164 
5165 	    /* More than one full frame received... */
5166 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5167 	     /* ... and right edge of window advances far enough.
5168 	      * (tcp_recvmsg() will send ACK otherwise).
5169 	      * If application uses SO_RCVLOWAT, we want send ack now if
5170 	      * we have not received enough bytes to satisfy the condition.
5171 	      */
5172 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5173 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5174 	    /* We ACK each frame or... */
5175 	    tcp_in_quickack_mode(sk) ||
5176 	    /* Protocol state mandates a one-time immediate ACK */
5177 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5178 send_now:
5179 		tcp_send_ack(sk);
5180 		return;
5181 	}
5182 
5183 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5184 		tcp_send_delayed_ack(sk);
5185 		return;
5186 	}
5187 
5188 	if (!tcp_is_sack(tp) ||
5189 	    tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5190 		goto send_now;
5191 	tp->compressed_ack++;
5192 
5193 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5194 		return;
5195 
5196 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5197 
5198 	rtt = tp->rcv_rtt_est.rtt_us;
5199 	if (tp->srtt_us && tp->srtt_us < rtt)
5200 		rtt = tp->srtt_us;
5201 
5202 	delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5203 		      rtt * (NSEC_PER_USEC >> 3)/20);
5204 	sock_hold(sk);
5205 	hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay),
5206 		      HRTIMER_MODE_REL_PINNED_SOFT);
5207 }
5208 
5209 static inline void tcp_ack_snd_check(struct sock *sk)
5210 {
5211 	if (!inet_csk_ack_scheduled(sk)) {
5212 		/* We sent a data segment already. */
5213 		return;
5214 	}
5215 	__tcp_ack_snd_check(sk, 1);
5216 }
5217 
5218 /*
5219  *	This routine is only called when we have urgent data
5220  *	signaled. Its the 'slow' part of tcp_urg. It could be
5221  *	moved inline now as tcp_urg is only called from one
5222  *	place. We handle URGent data wrong. We have to - as
5223  *	BSD still doesn't use the correction from RFC961.
5224  *	For 1003.1g we should support a new option TCP_STDURG to permit
5225  *	either form (or just set the sysctl tcp_stdurg).
5226  */
5227 
5228 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5229 {
5230 	struct tcp_sock *tp = tcp_sk(sk);
5231 	u32 ptr = ntohs(th->urg_ptr);
5232 
5233 	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5234 		ptr--;
5235 	ptr += ntohl(th->seq);
5236 
5237 	/* Ignore urgent data that we've already seen and read. */
5238 	if (after(tp->copied_seq, ptr))
5239 		return;
5240 
5241 	/* Do not replay urg ptr.
5242 	 *
5243 	 * NOTE: interesting situation not covered by specs.
5244 	 * Misbehaving sender may send urg ptr, pointing to segment,
5245 	 * which we already have in ofo queue. We are not able to fetch
5246 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5247 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5248 	 * situations. But it is worth to think about possibility of some
5249 	 * DoSes using some hypothetical application level deadlock.
5250 	 */
5251 	if (before(ptr, tp->rcv_nxt))
5252 		return;
5253 
5254 	/* Do we already have a newer (or duplicate) urgent pointer? */
5255 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5256 		return;
5257 
5258 	/* Tell the world about our new urgent pointer. */
5259 	sk_send_sigurg(sk);
5260 
5261 	/* We may be adding urgent data when the last byte read was
5262 	 * urgent. To do this requires some care. We cannot just ignore
5263 	 * tp->copied_seq since we would read the last urgent byte again
5264 	 * as data, nor can we alter copied_seq until this data arrives
5265 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5266 	 *
5267 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5268 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5269 	 * and expect that both A and B disappear from stream. This is _wrong_.
5270 	 * Though this happens in BSD with high probability, this is occasional.
5271 	 * Any application relying on this is buggy. Note also, that fix "works"
5272 	 * only in this artificial test. Insert some normal data between A and B and we will
5273 	 * decline of BSD again. Verdict: it is better to remove to trap
5274 	 * buggy users.
5275 	 */
5276 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5277 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5278 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5279 		tp->copied_seq++;
5280 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5281 			__skb_unlink(skb, &sk->sk_receive_queue);
5282 			__kfree_skb(skb);
5283 		}
5284 	}
5285 
5286 	tp->urg_data = TCP_URG_NOTYET;
5287 	tp->urg_seq = ptr;
5288 
5289 	/* Disable header prediction. */
5290 	tp->pred_flags = 0;
5291 }
5292 
5293 /* This is the 'fast' part of urgent handling. */
5294 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5295 {
5296 	struct tcp_sock *tp = tcp_sk(sk);
5297 
5298 	/* Check if we get a new urgent pointer - normally not. */
5299 	if (th->urg)
5300 		tcp_check_urg(sk, th);
5301 
5302 	/* Do we wait for any urgent data? - normally not... */
5303 	if (tp->urg_data == TCP_URG_NOTYET) {
5304 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5305 			  th->syn;
5306 
5307 		/* Is the urgent pointer pointing into this packet? */
5308 		if (ptr < skb->len) {
5309 			u8 tmp;
5310 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5311 				BUG();
5312 			tp->urg_data = TCP_URG_VALID | tmp;
5313 			if (!sock_flag(sk, SOCK_DEAD))
5314 				sk->sk_data_ready(sk);
5315 		}
5316 	}
5317 }
5318 
5319 /* Accept RST for rcv_nxt - 1 after a FIN.
5320  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5321  * FIN is sent followed by a RST packet. The RST is sent with the same
5322  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5323  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5324  * ACKs on the closed socket. In addition middleboxes can drop either the
5325  * challenge ACK or a subsequent RST.
5326  */
5327 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5328 {
5329 	struct tcp_sock *tp = tcp_sk(sk);
5330 
5331 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5332 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5333 					       TCPF_CLOSING));
5334 }
5335 
5336 /* Does PAWS and seqno based validation of an incoming segment, flags will
5337  * play significant role here.
5338  */
5339 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5340 				  const struct tcphdr *th, int syn_inerr)
5341 {
5342 	struct tcp_sock *tp = tcp_sk(sk);
5343 	bool rst_seq_match = false;
5344 
5345 	/* RFC1323: H1. Apply PAWS check first. */
5346 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5347 	    tp->rx_opt.saw_tstamp &&
5348 	    tcp_paws_discard(sk, skb)) {
5349 		if (!th->rst) {
5350 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5351 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5352 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5353 						  &tp->last_oow_ack_time))
5354 				tcp_send_dupack(sk, skb);
5355 			goto discard;
5356 		}
5357 		/* Reset is accepted even if it did not pass PAWS. */
5358 	}
5359 
5360 	/* Step 1: check sequence number */
5361 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5362 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5363 		 * (RST) segments are validated by checking their SEQ-fields."
5364 		 * And page 69: "If an incoming segment is not acceptable,
5365 		 * an acknowledgment should be sent in reply (unless the RST
5366 		 * bit is set, if so drop the segment and return)".
5367 		 */
5368 		if (!th->rst) {
5369 			if (th->syn)
5370 				goto syn_challenge;
5371 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5372 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5373 						  &tp->last_oow_ack_time))
5374 				tcp_send_dupack(sk, skb);
5375 		} else if (tcp_reset_check(sk, skb)) {
5376 			tcp_reset(sk);
5377 		}
5378 		goto discard;
5379 	}
5380 
5381 	/* Step 2: check RST bit */
5382 	if (th->rst) {
5383 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5384 		 * FIN and SACK too if available):
5385 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5386 		 * the right-most SACK block,
5387 		 * then
5388 		 *     RESET the connection
5389 		 * else
5390 		 *     Send a challenge ACK
5391 		 */
5392 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5393 		    tcp_reset_check(sk, skb)) {
5394 			rst_seq_match = true;
5395 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5396 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5397 			int max_sack = sp[0].end_seq;
5398 			int this_sack;
5399 
5400 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5401 			     ++this_sack) {
5402 				max_sack = after(sp[this_sack].end_seq,
5403 						 max_sack) ?
5404 					sp[this_sack].end_seq : max_sack;
5405 			}
5406 
5407 			if (TCP_SKB_CB(skb)->seq == max_sack)
5408 				rst_seq_match = true;
5409 		}
5410 
5411 		if (rst_seq_match)
5412 			tcp_reset(sk);
5413 		else {
5414 			/* Disable TFO if RST is out-of-order
5415 			 * and no data has been received
5416 			 * for current active TFO socket
5417 			 */
5418 			if (tp->syn_fastopen && !tp->data_segs_in &&
5419 			    sk->sk_state == TCP_ESTABLISHED)
5420 				tcp_fastopen_active_disable(sk);
5421 			tcp_send_challenge_ack(sk, skb);
5422 		}
5423 		goto discard;
5424 	}
5425 
5426 	/* step 3: check security and precedence [ignored] */
5427 
5428 	/* step 4: Check for a SYN
5429 	 * RFC 5961 4.2 : Send a challenge ack
5430 	 */
5431 	if (th->syn) {
5432 syn_challenge:
5433 		if (syn_inerr)
5434 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5435 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5436 		tcp_send_challenge_ack(sk, skb);
5437 		goto discard;
5438 	}
5439 
5440 	return true;
5441 
5442 discard:
5443 	tcp_drop(sk, skb);
5444 	return false;
5445 }
5446 
5447 /*
5448  *	TCP receive function for the ESTABLISHED state.
5449  *
5450  *	It is split into a fast path and a slow path. The fast path is
5451  * 	disabled when:
5452  *	- A zero window was announced from us - zero window probing
5453  *        is only handled properly in the slow path.
5454  *	- Out of order segments arrived.
5455  *	- Urgent data is expected.
5456  *	- There is no buffer space left
5457  *	- Unexpected TCP flags/window values/header lengths are received
5458  *	  (detected by checking the TCP header against pred_flags)
5459  *	- Data is sent in both directions. Fast path only supports pure senders
5460  *	  or pure receivers (this means either the sequence number or the ack
5461  *	  value must stay constant)
5462  *	- Unexpected TCP option.
5463  *
5464  *	When these conditions are not satisfied it drops into a standard
5465  *	receive procedure patterned after RFC793 to handle all cases.
5466  *	The first three cases are guaranteed by proper pred_flags setting,
5467  *	the rest is checked inline. Fast processing is turned on in
5468  *	tcp_data_queue when everything is OK.
5469  */
5470 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5471 {
5472 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5473 	struct tcp_sock *tp = tcp_sk(sk);
5474 	unsigned int len = skb->len;
5475 
5476 	/* TCP congestion window tracking */
5477 	trace_tcp_probe(sk, skb);
5478 
5479 	tcp_mstamp_refresh(tp);
5480 	if (unlikely(!sk->sk_rx_dst))
5481 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5482 	/*
5483 	 *	Header prediction.
5484 	 *	The code loosely follows the one in the famous
5485 	 *	"30 instruction TCP receive" Van Jacobson mail.
5486 	 *
5487 	 *	Van's trick is to deposit buffers into socket queue
5488 	 *	on a device interrupt, to call tcp_recv function
5489 	 *	on the receive process context and checksum and copy
5490 	 *	the buffer to user space. smart...
5491 	 *
5492 	 *	Our current scheme is not silly either but we take the
5493 	 *	extra cost of the net_bh soft interrupt processing...
5494 	 *	We do checksum and copy also but from device to kernel.
5495 	 */
5496 
5497 	tp->rx_opt.saw_tstamp = 0;
5498 
5499 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5500 	 *	if header_prediction is to be made
5501 	 *	'S' will always be tp->tcp_header_len >> 2
5502 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5503 	 *  turn it off	(when there are holes in the receive
5504 	 *	 space for instance)
5505 	 *	PSH flag is ignored.
5506 	 */
5507 
5508 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5509 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5510 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5511 		int tcp_header_len = tp->tcp_header_len;
5512 
5513 		/* Timestamp header prediction: tcp_header_len
5514 		 * is automatically equal to th->doff*4 due to pred_flags
5515 		 * match.
5516 		 */
5517 
5518 		/* Check timestamp */
5519 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5520 			/* No? Slow path! */
5521 			if (!tcp_parse_aligned_timestamp(tp, th))
5522 				goto slow_path;
5523 
5524 			/* If PAWS failed, check it more carefully in slow path */
5525 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5526 				goto slow_path;
5527 
5528 			/* DO NOT update ts_recent here, if checksum fails
5529 			 * and timestamp was corrupted part, it will result
5530 			 * in a hung connection since we will drop all
5531 			 * future packets due to the PAWS test.
5532 			 */
5533 		}
5534 
5535 		if (len <= tcp_header_len) {
5536 			/* Bulk data transfer: sender */
5537 			if (len == tcp_header_len) {
5538 				/* Predicted packet is in window by definition.
5539 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5540 				 * Hence, check seq<=rcv_wup reduces to:
5541 				 */
5542 				if (tcp_header_len ==
5543 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5544 				    tp->rcv_nxt == tp->rcv_wup)
5545 					tcp_store_ts_recent(tp);
5546 
5547 				/* We know that such packets are checksummed
5548 				 * on entry.
5549 				 */
5550 				tcp_ack(sk, skb, 0);
5551 				__kfree_skb(skb);
5552 				tcp_data_snd_check(sk);
5553 				/* When receiving pure ack in fast path, update
5554 				 * last ts ecr directly instead of calling
5555 				 * tcp_rcv_rtt_measure_ts()
5556 				 */
5557 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5558 				return;
5559 			} else { /* Header too small */
5560 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5561 				goto discard;
5562 			}
5563 		} else {
5564 			int eaten = 0;
5565 			bool fragstolen = false;
5566 
5567 			if (tcp_checksum_complete(skb))
5568 				goto csum_error;
5569 
5570 			if ((int)skb->truesize > sk->sk_forward_alloc)
5571 				goto step5;
5572 
5573 			/* Predicted packet is in window by definition.
5574 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5575 			 * Hence, check seq<=rcv_wup reduces to:
5576 			 */
5577 			if (tcp_header_len ==
5578 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5579 			    tp->rcv_nxt == tp->rcv_wup)
5580 				tcp_store_ts_recent(tp);
5581 
5582 			tcp_rcv_rtt_measure_ts(sk, skb);
5583 
5584 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5585 
5586 			/* Bulk data transfer: receiver */
5587 			eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5588 					      &fragstolen);
5589 
5590 			tcp_event_data_recv(sk, skb);
5591 
5592 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5593 				/* Well, only one small jumplet in fast path... */
5594 				tcp_ack(sk, skb, FLAG_DATA);
5595 				tcp_data_snd_check(sk);
5596 				if (!inet_csk_ack_scheduled(sk))
5597 					goto no_ack;
5598 			}
5599 
5600 			__tcp_ack_snd_check(sk, 0);
5601 no_ack:
5602 			if (eaten)
5603 				kfree_skb_partial(skb, fragstolen);
5604 			tcp_data_ready(sk);
5605 			return;
5606 		}
5607 	}
5608 
5609 slow_path:
5610 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5611 		goto csum_error;
5612 
5613 	if (!th->ack && !th->rst && !th->syn)
5614 		goto discard;
5615 
5616 	/*
5617 	 *	Standard slow path.
5618 	 */
5619 
5620 	if (!tcp_validate_incoming(sk, skb, th, 1))
5621 		return;
5622 
5623 step5:
5624 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5625 		goto discard;
5626 
5627 	tcp_rcv_rtt_measure_ts(sk, skb);
5628 
5629 	/* Process urgent data. */
5630 	tcp_urg(sk, skb, th);
5631 
5632 	/* step 7: process the segment text */
5633 	tcp_data_queue(sk, skb);
5634 
5635 	tcp_data_snd_check(sk);
5636 	tcp_ack_snd_check(sk);
5637 	return;
5638 
5639 csum_error:
5640 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5641 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5642 
5643 discard:
5644 	tcp_drop(sk, skb);
5645 }
5646 EXPORT_SYMBOL(tcp_rcv_established);
5647 
5648 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5649 {
5650 	struct tcp_sock *tp = tcp_sk(sk);
5651 	struct inet_connection_sock *icsk = inet_csk(sk);
5652 
5653 	tcp_set_state(sk, TCP_ESTABLISHED);
5654 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5655 
5656 	if (skb) {
5657 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5658 		security_inet_conn_established(sk, skb);
5659 		sk_mark_napi_id(sk, skb);
5660 	}
5661 
5662 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5663 
5664 	/* Prevent spurious tcp_cwnd_restart() on first data
5665 	 * packet.
5666 	 */
5667 	tp->lsndtime = tcp_jiffies32;
5668 
5669 	if (sock_flag(sk, SOCK_KEEPOPEN))
5670 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5671 
5672 	if (!tp->rx_opt.snd_wscale)
5673 		__tcp_fast_path_on(tp, tp->snd_wnd);
5674 	else
5675 		tp->pred_flags = 0;
5676 }
5677 
5678 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5679 				    struct tcp_fastopen_cookie *cookie)
5680 {
5681 	struct tcp_sock *tp = tcp_sk(sk);
5682 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5683 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5684 	bool syn_drop = false;
5685 
5686 	if (mss == tp->rx_opt.user_mss) {
5687 		struct tcp_options_received opt;
5688 
5689 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5690 		tcp_clear_options(&opt);
5691 		opt.user_mss = opt.mss_clamp = 0;
5692 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5693 		mss = opt.mss_clamp;
5694 	}
5695 
5696 	if (!tp->syn_fastopen) {
5697 		/* Ignore an unsolicited cookie */
5698 		cookie->len = -1;
5699 	} else if (tp->total_retrans) {
5700 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5701 		 * acknowledges data. Presumably the remote received only
5702 		 * the retransmitted (regular) SYNs: either the original
5703 		 * SYN-data or the corresponding SYN-ACK was dropped.
5704 		 */
5705 		syn_drop = (cookie->len < 0 && data);
5706 	} else if (cookie->len < 0 && !tp->syn_data) {
5707 		/* We requested a cookie but didn't get it. If we did not use
5708 		 * the (old) exp opt format then try so next time (try_exp=1).
5709 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5710 		 */
5711 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5712 	}
5713 
5714 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5715 
5716 	if (data) { /* Retransmit unacked data in SYN */
5717 		skb_rbtree_walk_from(data) {
5718 			if (__tcp_retransmit_skb(sk, data, 1))
5719 				break;
5720 		}
5721 		tcp_rearm_rto(sk);
5722 		NET_INC_STATS(sock_net(sk),
5723 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5724 		return true;
5725 	}
5726 	tp->syn_data_acked = tp->syn_data;
5727 	if (tp->syn_data_acked) {
5728 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5729 		/* SYN-data is counted as two separate packets in tcp_ack() */
5730 		if (tp->delivered > 1)
5731 			--tp->delivered;
5732 	}
5733 
5734 	tcp_fastopen_add_skb(sk, synack);
5735 
5736 	return false;
5737 }
5738 
5739 static void smc_check_reset_syn(struct tcp_sock *tp)
5740 {
5741 #if IS_ENABLED(CONFIG_SMC)
5742 	if (static_branch_unlikely(&tcp_have_smc)) {
5743 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
5744 			tp->syn_smc = 0;
5745 	}
5746 #endif
5747 }
5748 
5749 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5750 					 const struct tcphdr *th)
5751 {
5752 	struct inet_connection_sock *icsk = inet_csk(sk);
5753 	struct tcp_sock *tp = tcp_sk(sk);
5754 	struct tcp_fastopen_cookie foc = { .len = -1 };
5755 	int saved_clamp = tp->rx_opt.mss_clamp;
5756 	bool fastopen_fail;
5757 
5758 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5759 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5760 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5761 
5762 	if (th->ack) {
5763 		/* rfc793:
5764 		 * "If the state is SYN-SENT then
5765 		 *    first check the ACK bit
5766 		 *      If the ACK bit is set
5767 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5768 		 *        a reset (unless the RST bit is set, if so drop
5769 		 *        the segment and return)"
5770 		 */
5771 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5772 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5773 			goto reset_and_undo;
5774 
5775 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5776 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5777 			     tcp_time_stamp(tp))) {
5778 			NET_INC_STATS(sock_net(sk),
5779 					LINUX_MIB_PAWSACTIVEREJECTED);
5780 			goto reset_and_undo;
5781 		}
5782 
5783 		/* Now ACK is acceptable.
5784 		 *
5785 		 * "If the RST bit is set
5786 		 *    If the ACK was acceptable then signal the user "error:
5787 		 *    connection reset", drop the segment, enter CLOSED state,
5788 		 *    delete TCB, and return."
5789 		 */
5790 
5791 		if (th->rst) {
5792 			tcp_reset(sk);
5793 			goto discard;
5794 		}
5795 
5796 		/* rfc793:
5797 		 *   "fifth, if neither of the SYN or RST bits is set then
5798 		 *    drop the segment and return."
5799 		 *
5800 		 *    See note below!
5801 		 *                                        --ANK(990513)
5802 		 */
5803 		if (!th->syn)
5804 			goto discard_and_undo;
5805 
5806 		/* rfc793:
5807 		 *   "If the SYN bit is on ...
5808 		 *    are acceptable then ...
5809 		 *    (our SYN has been ACKed), change the connection
5810 		 *    state to ESTABLISHED..."
5811 		 */
5812 
5813 		tcp_ecn_rcv_synack(tp, th);
5814 
5815 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5816 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5817 
5818 		/* Ok.. it's good. Set up sequence numbers and
5819 		 * move to established.
5820 		 */
5821 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5822 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5823 
5824 		/* RFC1323: The window in SYN & SYN/ACK segments is
5825 		 * never scaled.
5826 		 */
5827 		tp->snd_wnd = ntohs(th->window);
5828 
5829 		if (!tp->rx_opt.wscale_ok) {
5830 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5831 			tp->window_clamp = min(tp->window_clamp, 65535U);
5832 		}
5833 
5834 		if (tp->rx_opt.saw_tstamp) {
5835 			tp->rx_opt.tstamp_ok	   = 1;
5836 			tp->tcp_header_len =
5837 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5838 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5839 			tcp_store_ts_recent(tp);
5840 		} else {
5841 			tp->tcp_header_len = sizeof(struct tcphdr);
5842 		}
5843 
5844 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5845 		tcp_initialize_rcv_mss(sk);
5846 
5847 		/* Remember, tcp_poll() does not lock socket!
5848 		 * Change state from SYN-SENT only after copied_seq
5849 		 * is initialized. */
5850 		tp->copied_seq = tp->rcv_nxt;
5851 
5852 		smc_check_reset_syn(tp);
5853 
5854 		smp_mb();
5855 
5856 		tcp_finish_connect(sk, skb);
5857 
5858 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5859 				tcp_rcv_fastopen_synack(sk, skb, &foc);
5860 
5861 		if (!sock_flag(sk, SOCK_DEAD)) {
5862 			sk->sk_state_change(sk);
5863 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5864 		}
5865 		if (fastopen_fail)
5866 			return -1;
5867 		if (sk->sk_write_pending ||
5868 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5869 		    icsk->icsk_ack.pingpong) {
5870 			/* Save one ACK. Data will be ready after
5871 			 * several ticks, if write_pending is set.
5872 			 *
5873 			 * It may be deleted, but with this feature tcpdumps
5874 			 * look so _wonderfully_ clever, that I was not able
5875 			 * to stand against the temptation 8)     --ANK
5876 			 */
5877 			inet_csk_schedule_ack(sk);
5878 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5879 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5880 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5881 
5882 discard:
5883 			tcp_drop(sk, skb);
5884 			return 0;
5885 		} else {
5886 			tcp_send_ack(sk);
5887 		}
5888 		return -1;
5889 	}
5890 
5891 	/* No ACK in the segment */
5892 
5893 	if (th->rst) {
5894 		/* rfc793:
5895 		 * "If the RST bit is set
5896 		 *
5897 		 *      Otherwise (no ACK) drop the segment and return."
5898 		 */
5899 
5900 		goto discard_and_undo;
5901 	}
5902 
5903 	/* PAWS check. */
5904 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5905 	    tcp_paws_reject(&tp->rx_opt, 0))
5906 		goto discard_and_undo;
5907 
5908 	if (th->syn) {
5909 		/* We see SYN without ACK. It is attempt of
5910 		 * simultaneous connect with crossed SYNs.
5911 		 * Particularly, it can be connect to self.
5912 		 */
5913 		tcp_set_state(sk, TCP_SYN_RECV);
5914 
5915 		if (tp->rx_opt.saw_tstamp) {
5916 			tp->rx_opt.tstamp_ok = 1;
5917 			tcp_store_ts_recent(tp);
5918 			tp->tcp_header_len =
5919 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5920 		} else {
5921 			tp->tcp_header_len = sizeof(struct tcphdr);
5922 		}
5923 
5924 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5925 		tp->copied_seq = tp->rcv_nxt;
5926 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5927 
5928 		/* RFC1323: The window in SYN & SYN/ACK segments is
5929 		 * never scaled.
5930 		 */
5931 		tp->snd_wnd    = ntohs(th->window);
5932 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5933 		tp->max_window = tp->snd_wnd;
5934 
5935 		tcp_ecn_rcv_syn(tp, th);
5936 
5937 		tcp_mtup_init(sk);
5938 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5939 		tcp_initialize_rcv_mss(sk);
5940 
5941 		tcp_send_synack(sk);
5942 #if 0
5943 		/* Note, we could accept data and URG from this segment.
5944 		 * There are no obstacles to make this (except that we must
5945 		 * either change tcp_recvmsg() to prevent it from returning data
5946 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5947 		 *
5948 		 * However, if we ignore data in ACKless segments sometimes,
5949 		 * we have no reasons to accept it sometimes.
5950 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5951 		 * is not flawless. So, discard packet for sanity.
5952 		 * Uncomment this return to process the data.
5953 		 */
5954 		return -1;
5955 #else
5956 		goto discard;
5957 #endif
5958 	}
5959 	/* "fifth, if neither of the SYN or RST bits is set then
5960 	 * drop the segment and return."
5961 	 */
5962 
5963 discard_and_undo:
5964 	tcp_clear_options(&tp->rx_opt);
5965 	tp->rx_opt.mss_clamp = saved_clamp;
5966 	goto discard;
5967 
5968 reset_and_undo:
5969 	tcp_clear_options(&tp->rx_opt);
5970 	tp->rx_opt.mss_clamp = saved_clamp;
5971 	return 1;
5972 }
5973 
5974 /*
5975  *	This function implements the receiving procedure of RFC 793 for
5976  *	all states except ESTABLISHED and TIME_WAIT.
5977  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5978  *	address independent.
5979  */
5980 
5981 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5982 {
5983 	struct tcp_sock *tp = tcp_sk(sk);
5984 	struct inet_connection_sock *icsk = inet_csk(sk);
5985 	const struct tcphdr *th = tcp_hdr(skb);
5986 	struct request_sock *req;
5987 	int queued = 0;
5988 	bool acceptable;
5989 
5990 	switch (sk->sk_state) {
5991 	case TCP_CLOSE:
5992 		goto discard;
5993 
5994 	case TCP_LISTEN:
5995 		if (th->ack)
5996 			return 1;
5997 
5998 		if (th->rst)
5999 			goto discard;
6000 
6001 		if (th->syn) {
6002 			if (th->fin)
6003 				goto discard;
6004 			/* It is possible that we process SYN packets from backlog,
6005 			 * so we need to make sure to disable BH and RCU right there.
6006 			 */
6007 			rcu_read_lock();
6008 			local_bh_disable();
6009 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6010 			local_bh_enable();
6011 			rcu_read_unlock();
6012 
6013 			if (!acceptable)
6014 				return 1;
6015 			consume_skb(skb);
6016 			return 0;
6017 		}
6018 		goto discard;
6019 
6020 	case TCP_SYN_SENT:
6021 		tp->rx_opt.saw_tstamp = 0;
6022 		tcp_mstamp_refresh(tp);
6023 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6024 		if (queued >= 0)
6025 			return queued;
6026 
6027 		/* Do step6 onward by hand. */
6028 		tcp_urg(sk, skb, th);
6029 		__kfree_skb(skb);
6030 		tcp_data_snd_check(sk);
6031 		return 0;
6032 	}
6033 
6034 	tcp_mstamp_refresh(tp);
6035 	tp->rx_opt.saw_tstamp = 0;
6036 	req = tp->fastopen_rsk;
6037 	if (req) {
6038 		bool req_stolen;
6039 
6040 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6041 		    sk->sk_state != TCP_FIN_WAIT1);
6042 
6043 		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6044 			goto discard;
6045 	}
6046 
6047 	if (!th->ack && !th->rst && !th->syn)
6048 		goto discard;
6049 
6050 	if (!tcp_validate_incoming(sk, skb, th, 0))
6051 		return 0;
6052 
6053 	/* step 5: check the ACK field */
6054 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6055 				      FLAG_UPDATE_TS_RECENT |
6056 				      FLAG_NO_CHALLENGE_ACK) > 0;
6057 
6058 	if (!acceptable) {
6059 		if (sk->sk_state == TCP_SYN_RECV)
6060 			return 1;	/* send one RST */
6061 		tcp_send_challenge_ack(sk, skb);
6062 		goto discard;
6063 	}
6064 	switch (sk->sk_state) {
6065 	case TCP_SYN_RECV:
6066 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6067 		if (!tp->srtt_us)
6068 			tcp_synack_rtt_meas(sk, req);
6069 
6070 		/* Once we leave TCP_SYN_RECV, we no longer need req
6071 		 * so release it.
6072 		 */
6073 		if (req) {
6074 			inet_csk(sk)->icsk_retransmits = 0;
6075 			reqsk_fastopen_remove(sk, req, false);
6076 			/* Re-arm the timer because data may have been sent out.
6077 			 * This is similar to the regular data transmission case
6078 			 * when new data has just been ack'ed.
6079 			 *
6080 			 * (TFO) - we could try to be more aggressive and
6081 			 * retransmitting any data sooner based on when they
6082 			 * are sent out.
6083 			 */
6084 			tcp_rearm_rto(sk);
6085 		} else {
6086 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
6087 			tp->copied_seq = tp->rcv_nxt;
6088 		}
6089 		smp_mb();
6090 		tcp_set_state(sk, TCP_ESTABLISHED);
6091 		sk->sk_state_change(sk);
6092 
6093 		/* Note, that this wakeup is only for marginal crossed SYN case.
6094 		 * Passively open sockets are not waked up, because
6095 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6096 		 */
6097 		if (sk->sk_socket)
6098 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6099 
6100 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6101 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6102 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6103 
6104 		if (tp->rx_opt.tstamp_ok)
6105 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6106 
6107 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6108 			tcp_update_pacing_rate(sk);
6109 
6110 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6111 		tp->lsndtime = tcp_jiffies32;
6112 
6113 		tcp_initialize_rcv_mss(sk);
6114 		tcp_fast_path_on(tp);
6115 		break;
6116 
6117 	case TCP_FIN_WAIT1: {
6118 		int tmo;
6119 
6120 		/* If we enter the TCP_FIN_WAIT1 state and we are a
6121 		 * Fast Open socket and this is the first acceptable
6122 		 * ACK we have received, this would have acknowledged
6123 		 * our SYNACK so stop the SYNACK timer.
6124 		 */
6125 		if (req) {
6126 			/* We no longer need the request sock. */
6127 			reqsk_fastopen_remove(sk, req, false);
6128 			tcp_rearm_rto(sk);
6129 		}
6130 		if (tp->snd_una != tp->write_seq)
6131 			break;
6132 
6133 		tcp_set_state(sk, TCP_FIN_WAIT2);
6134 		sk->sk_shutdown |= SEND_SHUTDOWN;
6135 
6136 		sk_dst_confirm(sk);
6137 
6138 		if (!sock_flag(sk, SOCK_DEAD)) {
6139 			/* Wake up lingering close() */
6140 			sk->sk_state_change(sk);
6141 			break;
6142 		}
6143 
6144 		if (tp->linger2 < 0) {
6145 			tcp_done(sk);
6146 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6147 			return 1;
6148 		}
6149 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6150 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6151 			/* Receive out of order FIN after close() */
6152 			if (tp->syn_fastopen && th->fin)
6153 				tcp_fastopen_active_disable(sk);
6154 			tcp_done(sk);
6155 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6156 			return 1;
6157 		}
6158 
6159 		tmo = tcp_fin_time(sk);
6160 		if (tmo > TCP_TIMEWAIT_LEN) {
6161 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6162 		} else if (th->fin || sock_owned_by_user(sk)) {
6163 			/* Bad case. We could lose such FIN otherwise.
6164 			 * It is not a big problem, but it looks confusing
6165 			 * and not so rare event. We still can lose it now,
6166 			 * if it spins in bh_lock_sock(), but it is really
6167 			 * marginal case.
6168 			 */
6169 			inet_csk_reset_keepalive_timer(sk, tmo);
6170 		} else {
6171 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6172 			goto discard;
6173 		}
6174 		break;
6175 	}
6176 
6177 	case TCP_CLOSING:
6178 		if (tp->snd_una == tp->write_seq) {
6179 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6180 			goto discard;
6181 		}
6182 		break;
6183 
6184 	case TCP_LAST_ACK:
6185 		if (tp->snd_una == tp->write_seq) {
6186 			tcp_update_metrics(sk);
6187 			tcp_done(sk);
6188 			goto discard;
6189 		}
6190 		break;
6191 	}
6192 
6193 	/* step 6: check the URG bit */
6194 	tcp_urg(sk, skb, th);
6195 
6196 	/* step 7: process the segment text */
6197 	switch (sk->sk_state) {
6198 	case TCP_CLOSE_WAIT:
6199 	case TCP_CLOSING:
6200 	case TCP_LAST_ACK:
6201 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6202 			break;
6203 		/* fall through */
6204 	case TCP_FIN_WAIT1:
6205 	case TCP_FIN_WAIT2:
6206 		/* RFC 793 says to queue data in these states,
6207 		 * RFC 1122 says we MUST send a reset.
6208 		 * BSD 4.4 also does reset.
6209 		 */
6210 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6211 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6212 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6213 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6214 				tcp_reset(sk);
6215 				return 1;
6216 			}
6217 		}
6218 		/* Fall through */
6219 	case TCP_ESTABLISHED:
6220 		tcp_data_queue(sk, skb);
6221 		queued = 1;
6222 		break;
6223 	}
6224 
6225 	/* tcp_data could move socket to TIME-WAIT */
6226 	if (sk->sk_state != TCP_CLOSE) {
6227 		tcp_data_snd_check(sk);
6228 		tcp_ack_snd_check(sk);
6229 	}
6230 
6231 	if (!queued) {
6232 discard:
6233 		tcp_drop(sk, skb);
6234 	}
6235 	return 0;
6236 }
6237 EXPORT_SYMBOL(tcp_rcv_state_process);
6238 
6239 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6240 {
6241 	struct inet_request_sock *ireq = inet_rsk(req);
6242 
6243 	if (family == AF_INET)
6244 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6245 				    &ireq->ir_rmt_addr, port);
6246 #if IS_ENABLED(CONFIG_IPV6)
6247 	else if (family == AF_INET6)
6248 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6249 				    &ireq->ir_v6_rmt_addr, port);
6250 #endif
6251 }
6252 
6253 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6254  *
6255  * If we receive a SYN packet with these bits set, it means a
6256  * network is playing bad games with TOS bits. In order to
6257  * avoid possible false congestion notifications, we disable
6258  * TCP ECN negotiation.
6259  *
6260  * Exception: tcp_ca wants ECN. This is required for DCTCP
6261  * congestion control: Linux DCTCP asserts ECT on all packets,
6262  * including SYN, which is most optimal solution; however,
6263  * others, such as FreeBSD do not.
6264  */
6265 static void tcp_ecn_create_request(struct request_sock *req,
6266 				   const struct sk_buff *skb,
6267 				   const struct sock *listen_sk,
6268 				   const struct dst_entry *dst)
6269 {
6270 	const struct tcphdr *th = tcp_hdr(skb);
6271 	const struct net *net = sock_net(listen_sk);
6272 	bool th_ecn = th->ece && th->cwr;
6273 	bool ect, ecn_ok;
6274 	u32 ecn_ok_dst;
6275 
6276 	if (!th_ecn)
6277 		return;
6278 
6279 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6280 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6281 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6282 
6283 	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6284 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6285 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6286 		inet_rsk(req)->ecn_ok = 1;
6287 }
6288 
6289 static void tcp_openreq_init(struct request_sock *req,
6290 			     const struct tcp_options_received *rx_opt,
6291 			     struct sk_buff *skb, const struct sock *sk)
6292 {
6293 	struct inet_request_sock *ireq = inet_rsk(req);
6294 
6295 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6296 	req->cookie_ts = 0;
6297 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6298 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6299 	tcp_rsk(req)->snt_synack = tcp_clock_us();
6300 	tcp_rsk(req)->last_oow_ack_time = 0;
6301 	req->mss = rx_opt->mss_clamp;
6302 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6303 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6304 	ireq->sack_ok = rx_opt->sack_ok;
6305 	ireq->snd_wscale = rx_opt->snd_wscale;
6306 	ireq->wscale_ok = rx_opt->wscale_ok;
6307 	ireq->acked = 0;
6308 	ireq->ecn_ok = 0;
6309 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6310 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6311 	ireq->ir_mark = inet_request_mark(sk, skb);
6312 #if IS_ENABLED(CONFIG_SMC)
6313 	ireq->smc_ok = rx_opt->smc_ok;
6314 #endif
6315 }
6316 
6317 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6318 				      struct sock *sk_listener,
6319 				      bool attach_listener)
6320 {
6321 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6322 					       attach_listener);
6323 
6324 	if (req) {
6325 		struct inet_request_sock *ireq = inet_rsk(req);
6326 
6327 		ireq->ireq_opt = NULL;
6328 #if IS_ENABLED(CONFIG_IPV6)
6329 		ireq->pktopts = NULL;
6330 #endif
6331 		atomic64_set(&ireq->ir_cookie, 0);
6332 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6333 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6334 		ireq->ireq_family = sk_listener->sk_family;
6335 	}
6336 
6337 	return req;
6338 }
6339 EXPORT_SYMBOL(inet_reqsk_alloc);
6340 
6341 /*
6342  * Return true if a syncookie should be sent
6343  */
6344 static bool tcp_syn_flood_action(const struct sock *sk,
6345 				 const struct sk_buff *skb,
6346 				 const char *proto)
6347 {
6348 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6349 	const char *msg = "Dropping request";
6350 	bool want_cookie = false;
6351 	struct net *net = sock_net(sk);
6352 
6353 #ifdef CONFIG_SYN_COOKIES
6354 	if (net->ipv4.sysctl_tcp_syncookies) {
6355 		msg = "Sending cookies";
6356 		want_cookie = true;
6357 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6358 	} else
6359 #endif
6360 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6361 
6362 	if (!queue->synflood_warned &&
6363 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6364 	    xchg(&queue->synflood_warned, 1) == 0)
6365 		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6366 				     proto, ntohs(tcp_hdr(skb)->dest), msg);
6367 
6368 	return want_cookie;
6369 }
6370 
6371 static void tcp_reqsk_record_syn(const struct sock *sk,
6372 				 struct request_sock *req,
6373 				 const struct sk_buff *skb)
6374 {
6375 	if (tcp_sk(sk)->save_syn) {
6376 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6377 		u32 *copy;
6378 
6379 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6380 		if (copy) {
6381 			copy[0] = len;
6382 			memcpy(&copy[1], skb_network_header(skb), len);
6383 			req->saved_syn = copy;
6384 		}
6385 	}
6386 }
6387 
6388 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6389 		     const struct tcp_request_sock_ops *af_ops,
6390 		     struct sock *sk, struct sk_buff *skb)
6391 {
6392 	struct tcp_fastopen_cookie foc = { .len = -1 };
6393 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6394 	struct tcp_options_received tmp_opt;
6395 	struct tcp_sock *tp = tcp_sk(sk);
6396 	struct net *net = sock_net(sk);
6397 	struct sock *fastopen_sk = NULL;
6398 	struct request_sock *req;
6399 	bool want_cookie = false;
6400 	struct dst_entry *dst;
6401 	struct flowi fl;
6402 
6403 	/* TW buckets are converted to open requests without
6404 	 * limitations, they conserve resources and peer is
6405 	 * evidently real one.
6406 	 */
6407 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6408 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6409 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6410 		if (!want_cookie)
6411 			goto drop;
6412 	}
6413 
6414 	if (sk_acceptq_is_full(sk)) {
6415 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6416 		goto drop;
6417 	}
6418 
6419 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6420 	if (!req)
6421 		goto drop;
6422 
6423 	tcp_rsk(req)->af_specific = af_ops;
6424 	tcp_rsk(req)->ts_off = 0;
6425 
6426 	tcp_clear_options(&tmp_opt);
6427 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6428 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6429 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6430 			  want_cookie ? NULL : &foc);
6431 
6432 	if (want_cookie && !tmp_opt.saw_tstamp)
6433 		tcp_clear_options(&tmp_opt);
6434 
6435 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6436 		tmp_opt.smc_ok = 0;
6437 
6438 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6439 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6440 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6441 
6442 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6443 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6444 
6445 	af_ops->init_req(req, sk, skb);
6446 
6447 	if (security_inet_conn_request(sk, skb, req))
6448 		goto drop_and_free;
6449 
6450 	if (tmp_opt.tstamp_ok)
6451 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6452 
6453 	dst = af_ops->route_req(sk, &fl, req);
6454 	if (!dst)
6455 		goto drop_and_free;
6456 
6457 	if (!want_cookie && !isn) {
6458 		/* Kill the following clause, if you dislike this way. */
6459 		if (!net->ipv4.sysctl_tcp_syncookies &&
6460 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6461 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6462 		    !tcp_peer_is_proven(req, dst)) {
6463 			/* Without syncookies last quarter of
6464 			 * backlog is filled with destinations,
6465 			 * proven to be alive.
6466 			 * It means that we continue to communicate
6467 			 * to destinations, already remembered
6468 			 * to the moment of synflood.
6469 			 */
6470 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6471 				    rsk_ops->family);
6472 			goto drop_and_release;
6473 		}
6474 
6475 		isn = af_ops->init_seq(skb);
6476 	}
6477 
6478 	tcp_ecn_create_request(req, skb, sk, dst);
6479 
6480 	if (want_cookie) {
6481 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6482 		req->cookie_ts = tmp_opt.tstamp_ok;
6483 		if (!tmp_opt.tstamp_ok)
6484 			inet_rsk(req)->ecn_ok = 0;
6485 	}
6486 
6487 	tcp_rsk(req)->snt_isn = isn;
6488 	tcp_rsk(req)->txhash = net_tx_rndhash();
6489 	tcp_openreq_init_rwin(req, sk, dst);
6490 	sk_rx_queue_set(req_to_sk(req), skb);
6491 	if (!want_cookie) {
6492 		tcp_reqsk_record_syn(sk, req, skb);
6493 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6494 	}
6495 	if (fastopen_sk) {
6496 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6497 				    &foc, TCP_SYNACK_FASTOPEN);
6498 		/* Add the child socket directly into the accept queue */
6499 		inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6500 		sk->sk_data_ready(sk);
6501 		bh_unlock_sock(fastopen_sk);
6502 		sock_put(fastopen_sk);
6503 	} else {
6504 		tcp_rsk(req)->tfo_listener = false;
6505 		if (!want_cookie)
6506 			inet_csk_reqsk_queue_hash_add(sk, req,
6507 				tcp_timeout_init((struct sock *)req));
6508 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6509 				    !want_cookie ? TCP_SYNACK_NORMAL :
6510 						   TCP_SYNACK_COOKIE);
6511 		if (want_cookie) {
6512 			reqsk_free(req);
6513 			return 0;
6514 		}
6515 	}
6516 	reqsk_put(req);
6517 	return 0;
6518 
6519 drop_and_release:
6520 	dst_release(dst);
6521 drop_and_free:
6522 	reqsk_free(req);
6523 drop:
6524 	tcp_listendrop(sk);
6525 	return 0;
6526 }
6527 EXPORT_SYMBOL(tcp_conn_request);
6528