1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/static_key.h> 81 82 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 83 84 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 85 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 86 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 87 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 88 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 89 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 90 #define FLAG_ECE 0x40 /* ECE in this ACK */ 91 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 92 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 93 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 94 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 95 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 96 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 97 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 98 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 99 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 100 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 101 102 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 103 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 104 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 105 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 106 107 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 108 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 109 110 #define REXMIT_NONE 0 /* no loss recovery to do */ 111 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 112 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 113 114 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 115 unsigned int len) 116 { 117 static bool __once __read_mostly; 118 119 if (!__once) { 120 struct net_device *dev; 121 122 __once = true; 123 124 rcu_read_lock(); 125 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 126 if (!dev || len >= dev->mtu) 127 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 128 dev ? dev->name : "Unknown driver"); 129 rcu_read_unlock(); 130 } 131 } 132 133 /* Adapt the MSS value used to make delayed ack decision to the 134 * real world. 135 */ 136 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 137 { 138 struct inet_connection_sock *icsk = inet_csk(sk); 139 const unsigned int lss = icsk->icsk_ack.last_seg_size; 140 unsigned int len; 141 142 icsk->icsk_ack.last_seg_size = 0; 143 144 /* skb->len may jitter because of SACKs, even if peer 145 * sends good full-sized frames. 146 */ 147 len = skb_shinfo(skb)->gso_size ? : skb->len; 148 if (len >= icsk->icsk_ack.rcv_mss) { 149 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 150 tcp_sk(sk)->advmss); 151 /* Account for possibly-removed options */ 152 if (unlikely(len > icsk->icsk_ack.rcv_mss + 153 MAX_TCP_OPTION_SPACE)) 154 tcp_gro_dev_warn(sk, skb, len); 155 } else { 156 /* Otherwise, we make more careful check taking into account, 157 * that SACKs block is variable. 158 * 159 * "len" is invariant segment length, including TCP header. 160 */ 161 len += skb->data - skb_transport_header(skb); 162 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 163 /* If PSH is not set, packet should be 164 * full sized, provided peer TCP is not badly broken. 165 * This observation (if it is correct 8)) allows 166 * to handle super-low mtu links fairly. 167 */ 168 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 169 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 170 /* Subtract also invariant (if peer is RFC compliant), 171 * tcp header plus fixed timestamp option length. 172 * Resulting "len" is MSS free of SACK jitter. 173 */ 174 len -= tcp_sk(sk)->tcp_header_len; 175 icsk->icsk_ack.last_seg_size = len; 176 if (len == lss) { 177 icsk->icsk_ack.rcv_mss = len; 178 return; 179 } 180 } 181 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 182 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 183 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 184 } 185 } 186 187 static void tcp_incr_quickack(struct sock *sk) 188 { 189 struct inet_connection_sock *icsk = inet_csk(sk); 190 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 191 192 if (quickacks == 0) 193 quickacks = 2; 194 if (quickacks > icsk->icsk_ack.quick) 195 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 196 } 197 198 static void tcp_enter_quickack_mode(struct sock *sk) 199 { 200 struct inet_connection_sock *icsk = inet_csk(sk); 201 tcp_incr_quickack(sk); 202 icsk->icsk_ack.pingpong = 0; 203 icsk->icsk_ack.ato = TCP_ATO_MIN; 204 } 205 206 /* Send ACKs quickly, if "quick" count is not exhausted 207 * and the session is not interactive. 208 */ 209 210 static bool tcp_in_quickack_mode(struct sock *sk) 211 { 212 const struct inet_connection_sock *icsk = inet_csk(sk); 213 const struct dst_entry *dst = __sk_dst_get(sk); 214 215 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 216 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong); 217 } 218 219 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 220 { 221 if (tp->ecn_flags & TCP_ECN_OK) 222 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 223 } 224 225 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 226 { 227 if (tcp_hdr(skb)->cwr) 228 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 229 } 230 231 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 232 { 233 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 234 } 235 236 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 237 { 238 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 239 case INET_ECN_NOT_ECT: 240 /* Funny extension: if ECT is not set on a segment, 241 * and we already seen ECT on a previous segment, 242 * it is probably a retransmit. 243 */ 244 if (tp->ecn_flags & TCP_ECN_SEEN) 245 tcp_enter_quickack_mode((struct sock *)tp); 246 break; 247 case INET_ECN_CE: 248 if (tcp_ca_needs_ecn((struct sock *)tp)) 249 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE); 250 251 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 252 /* Better not delay acks, sender can have a very low cwnd */ 253 tcp_enter_quickack_mode((struct sock *)tp); 254 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 255 } 256 tp->ecn_flags |= TCP_ECN_SEEN; 257 break; 258 default: 259 if (tcp_ca_needs_ecn((struct sock *)tp)) 260 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE); 261 tp->ecn_flags |= TCP_ECN_SEEN; 262 break; 263 } 264 } 265 266 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 267 { 268 if (tp->ecn_flags & TCP_ECN_OK) 269 __tcp_ecn_check_ce(tp, skb); 270 } 271 272 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 273 { 274 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 275 tp->ecn_flags &= ~TCP_ECN_OK; 276 } 277 278 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 279 { 280 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 281 tp->ecn_flags &= ~TCP_ECN_OK; 282 } 283 284 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 285 { 286 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 287 return true; 288 return false; 289 } 290 291 /* Buffer size and advertised window tuning. 292 * 293 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 294 */ 295 296 static void tcp_sndbuf_expand(struct sock *sk) 297 { 298 const struct tcp_sock *tp = tcp_sk(sk); 299 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 300 int sndmem, per_mss; 301 u32 nr_segs; 302 303 /* Worst case is non GSO/TSO : each frame consumes one skb 304 * and skb->head is kmalloced using power of two area of memory 305 */ 306 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 307 MAX_TCP_HEADER + 308 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 309 310 per_mss = roundup_pow_of_two(per_mss) + 311 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 312 313 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 314 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 315 316 /* Fast Recovery (RFC 5681 3.2) : 317 * Cubic needs 1.7 factor, rounded to 2 to include 318 * extra cushion (application might react slowly to EPOLLOUT) 319 */ 320 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 321 sndmem *= nr_segs * per_mss; 322 323 if (sk->sk_sndbuf < sndmem) 324 sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]); 325 } 326 327 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 328 * 329 * All tcp_full_space() is split to two parts: "network" buffer, allocated 330 * forward and advertised in receiver window (tp->rcv_wnd) and 331 * "application buffer", required to isolate scheduling/application 332 * latencies from network. 333 * window_clamp is maximal advertised window. It can be less than 334 * tcp_full_space(), in this case tcp_full_space() - window_clamp 335 * is reserved for "application" buffer. The less window_clamp is 336 * the smoother our behaviour from viewpoint of network, but the lower 337 * throughput and the higher sensitivity of the connection to losses. 8) 338 * 339 * rcv_ssthresh is more strict window_clamp used at "slow start" 340 * phase to predict further behaviour of this connection. 341 * It is used for two goals: 342 * - to enforce header prediction at sender, even when application 343 * requires some significant "application buffer". It is check #1. 344 * - to prevent pruning of receive queue because of misprediction 345 * of receiver window. Check #2. 346 * 347 * The scheme does not work when sender sends good segments opening 348 * window and then starts to feed us spaghetti. But it should work 349 * in common situations. Otherwise, we have to rely on queue collapsing. 350 */ 351 352 /* Slow part of check#2. */ 353 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 354 { 355 struct tcp_sock *tp = tcp_sk(sk); 356 /* Optimize this! */ 357 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1; 358 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 359 360 while (tp->rcv_ssthresh <= window) { 361 if (truesize <= skb->len) 362 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 363 364 truesize >>= 1; 365 window >>= 1; 366 } 367 return 0; 368 } 369 370 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 371 { 372 struct tcp_sock *tp = tcp_sk(sk); 373 374 /* Check #1 */ 375 if (tp->rcv_ssthresh < tp->window_clamp && 376 (int)tp->rcv_ssthresh < tcp_space(sk) && 377 !tcp_under_memory_pressure(sk)) { 378 int incr; 379 380 /* Check #2. Increase window, if skb with such overhead 381 * will fit to rcvbuf in future. 382 */ 383 if (tcp_win_from_space(sk, skb->truesize) <= skb->len) 384 incr = 2 * tp->advmss; 385 else 386 incr = __tcp_grow_window(sk, skb); 387 388 if (incr) { 389 incr = max_t(int, incr, 2 * skb->len); 390 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 391 tp->window_clamp); 392 inet_csk(sk)->icsk_ack.quick |= 1; 393 } 394 } 395 } 396 397 /* 3. Tuning rcvbuf, when connection enters established state. */ 398 static void tcp_fixup_rcvbuf(struct sock *sk) 399 { 400 u32 mss = tcp_sk(sk)->advmss; 401 int rcvmem; 402 403 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 404 tcp_default_init_rwnd(mss); 405 406 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 407 * Allow enough cushion so that sender is not limited by our window 408 */ 409 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) 410 rcvmem <<= 2; 411 412 if (sk->sk_rcvbuf < rcvmem) 413 sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 414 } 415 416 /* 4. Try to fixup all. It is made immediately after connection enters 417 * established state. 418 */ 419 void tcp_init_buffer_space(struct sock *sk) 420 { 421 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win; 422 struct tcp_sock *tp = tcp_sk(sk); 423 int maxwin; 424 425 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 426 tcp_fixup_rcvbuf(sk); 427 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 428 tcp_sndbuf_expand(sk); 429 430 tp->rcvq_space.space = tp->rcv_wnd; 431 tcp_mstamp_refresh(tp); 432 tp->rcvq_space.time = tp->tcp_mstamp; 433 tp->rcvq_space.seq = tp->copied_seq; 434 435 maxwin = tcp_full_space(sk); 436 437 if (tp->window_clamp >= maxwin) { 438 tp->window_clamp = maxwin; 439 440 if (tcp_app_win && maxwin > 4 * tp->advmss) 441 tp->window_clamp = max(maxwin - 442 (maxwin >> tcp_app_win), 443 4 * tp->advmss); 444 } 445 446 /* Force reservation of one segment. */ 447 if (tcp_app_win && 448 tp->window_clamp > 2 * tp->advmss && 449 tp->window_clamp + tp->advmss > maxwin) 450 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 451 452 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 453 tp->snd_cwnd_stamp = tcp_jiffies32; 454 } 455 456 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 457 static void tcp_clamp_window(struct sock *sk) 458 { 459 struct tcp_sock *tp = tcp_sk(sk); 460 struct inet_connection_sock *icsk = inet_csk(sk); 461 struct net *net = sock_net(sk); 462 463 icsk->icsk_ack.quick = 0; 464 465 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] && 466 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 467 !tcp_under_memory_pressure(sk) && 468 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 469 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 470 net->ipv4.sysctl_tcp_rmem[2]); 471 } 472 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 473 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 474 } 475 476 /* Initialize RCV_MSS value. 477 * RCV_MSS is an our guess about MSS used by the peer. 478 * We haven't any direct information about the MSS. 479 * It's better to underestimate the RCV_MSS rather than overestimate. 480 * Overestimations make us ACKing less frequently than needed. 481 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 482 */ 483 void tcp_initialize_rcv_mss(struct sock *sk) 484 { 485 const struct tcp_sock *tp = tcp_sk(sk); 486 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 487 488 hint = min(hint, tp->rcv_wnd / 2); 489 hint = min(hint, TCP_MSS_DEFAULT); 490 hint = max(hint, TCP_MIN_MSS); 491 492 inet_csk(sk)->icsk_ack.rcv_mss = hint; 493 } 494 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 495 496 /* Receiver "autotuning" code. 497 * 498 * The algorithm for RTT estimation w/o timestamps is based on 499 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 500 * <http://public.lanl.gov/radiant/pubs.html#DRS> 501 * 502 * More detail on this code can be found at 503 * <http://staff.psc.edu/jheffner/>, 504 * though this reference is out of date. A new paper 505 * is pending. 506 */ 507 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 508 { 509 u32 new_sample = tp->rcv_rtt_est.rtt_us; 510 long m = sample; 511 512 if (new_sample != 0) { 513 /* If we sample in larger samples in the non-timestamp 514 * case, we could grossly overestimate the RTT especially 515 * with chatty applications or bulk transfer apps which 516 * are stalled on filesystem I/O. 517 * 518 * Also, since we are only going for a minimum in the 519 * non-timestamp case, we do not smooth things out 520 * else with timestamps disabled convergence takes too 521 * long. 522 */ 523 if (!win_dep) { 524 m -= (new_sample >> 3); 525 new_sample += m; 526 } else { 527 m <<= 3; 528 if (m < new_sample) 529 new_sample = m; 530 } 531 } else { 532 /* No previous measure. */ 533 new_sample = m << 3; 534 } 535 536 tp->rcv_rtt_est.rtt_us = new_sample; 537 } 538 539 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 540 { 541 u32 delta_us; 542 543 if (tp->rcv_rtt_est.time == 0) 544 goto new_measure; 545 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 546 return; 547 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 548 if (!delta_us) 549 delta_us = 1; 550 tcp_rcv_rtt_update(tp, delta_us, 1); 551 552 new_measure: 553 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 554 tp->rcv_rtt_est.time = tp->tcp_mstamp; 555 } 556 557 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 558 const struct sk_buff *skb) 559 { 560 struct tcp_sock *tp = tcp_sk(sk); 561 562 if (tp->rx_opt.rcv_tsecr && 563 (TCP_SKB_CB(skb)->end_seq - 564 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) { 565 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 566 u32 delta_us; 567 568 if (!delta) 569 delta = 1; 570 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 571 tcp_rcv_rtt_update(tp, delta_us, 0); 572 } 573 } 574 575 /* 576 * This function should be called every time data is copied to user space. 577 * It calculates the appropriate TCP receive buffer space. 578 */ 579 void tcp_rcv_space_adjust(struct sock *sk) 580 { 581 struct tcp_sock *tp = tcp_sk(sk); 582 u32 copied; 583 int time; 584 585 tcp_mstamp_refresh(tp); 586 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 587 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 588 return; 589 590 /* Number of bytes copied to user in last RTT */ 591 copied = tp->copied_seq - tp->rcvq_space.seq; 592 if (copied <= tp->rcvq_space.space) 593 goto new_measure; 594 595 /* A bit of theory : 596 * copied = bytes received in previous RTT, our base window 597 * To cope with packet losses, we need a 2x factor 598 * To cope with slow start, and sender growing its cwin by 100 % 599 * every RTT, we need a 4x factor, because the ACK we are sending 600 * now is for the next RTT, not the current one : 601 * <prev RTT . ><current RTT .. ><next RTT .... > 602 */ 603 604 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 605 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 606 int rcvmem, rcvbuf; 607 u64 rcvwin, grow; 608 609 /* minimal window to cope with packet losses, assuming 610 * steady state. Add some cushion because of small variations. 611 */ 612 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 613 614 /* Accommodate for sender rate increase (eg. slow start) */ 615 grow = rcvwin * (copied - tp->rcvq_space.space); 616 do_div(grow, tp->rcvq_space.space); 617 rcvwin += (grow << 1); 618 619 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 620 while (tcp_win_from_space(sk, rcvmem) < tp->advmss) 621 rcvmem += 128; 622 623 do_div(rcvwin, tp->advmss); 624 rcvbuf = min_t(u64, rcvwin * rcvmem, 625 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 626 if (rcvbuf > sk->sk_rcvbuf) { 627 sk->sk_rcvbuf = rcvbuf; 628 629 /* Make the window clamp follow along. */ 630 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 631 } 632 } 633 tp->rcvq_space.space = copied; 634 635 new_measure: 636 tp->rcvq_space.seq = tp->copied_seq; 637 tp->rcvq_space.time = tp->tcp_mstamp; 638 } 639 640 /* There is something which you must keep in mind when you analyze the 641 * behavior of the tp->ato delayed ack timeout interval. When a 642 * connection starts up, we want to ack as quickly as possible. The 643 * problem is that "good" TCP's do slow start at the beginning of data 644 * transmission. The means that until we send the first few ACK's the 645 * sender will sit on his end and only queue most of his data, because 646 * he can only send snd_cwnd unacked packets at any given time. For 647 * each ACK we send, he increments snd_cwnd and transmits more of his 648 * queue. -DaveM 649 */ 650 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 651 { 652 struct tcp_sock *tp = tcp_sk(sk); 653 struct inet_connection_sock *icsk = inet_csk(sk); 654 u32 now; 655 656 inet_csk_schedule_ack(sk); 657 658 tcp_measure_rcv_mss(sk, skb); 659 660 tcp_rcv_rtt_measure(tp); 661 662 now = tcp_jiffies32; 663 664 if (!icsk->icsk_ack.ato) { 665 /* The _first_ data packet received, initialize 666 * delayed ACK engine. 667 */ 668 tcp_incr_quickack(sk); 669 icsk->icsk_ack.ato = TCP_ATO_MIN; 670 } else { 671 int m = now - icsk->icsk_ack.lrcvtime; 672 673 if (m <= TCP_ATO_MIN / 2) { 674 /* The fastest case is the first. */ 675 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 676 } else if (m < icsk->icsk_ack.ato) { 677 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 678 if (icsk->icsk_ack.ato > icsk->icsk_rto) 679 icsk->icsk_ack.ato = icsk->icsk_rto; 680 } else if (m > icsk->icsk_rto) { 681 /* Too long gap. Apparently sender failed to 682 * restart window, so that we send ACKs quickly. 683 */ 684 tcp_incr_quickack(sk); 685 sk_mem_reclaim(sk); 686 } 687 } 688 icsk->icsk_ack.lrcvtime = now; 689 690 tcp_ecn_check_ce(tp, skb); 691 692 if (skb->len >= 128) 693 tcp_grow_window(sk, skb); 694 } 695 696 /* Called to compute a smoothed rtt estimate. The data fed to this 697 * routine either comes from timestamps, or from segments that were 698 * known _not_ to have been retransmitted [see Karn/Partridge 699 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 700 * piece by Van Jacobson. 701 * NOTE: the next three routines used to be one big routine. 702 * To save cycles in the RFC 1323 implementation it was better to break 703 * it up into three procedures. -- erics 704 */ 705 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 706 { 707 struct tcp_sock *tp = tcp_sk(sk); 708 long m = mrtt_us; /* RTT */ 709 u32 srtt = tp->srtt_us; 710 711 /* The following amusing code comes from Jacobson's 712 * article in SIGCOMM '88. Note that rtt and mdev 713 * are scaled versions of rtt and mean deviation. 714 * This is designed to be as fast as possible 715 * m stands for "measurement". 716 * 717 * On a 1990 paper the rto value is changed to: 718 * RTO = rtt + 4 * mdev 719 * 720 * Funny. This algorithm seems to be very broken. 721 * These formulae increase RTO, when it should be decreased, increase 722 * too slowly, when it should be increased quickly, decrease too quickly 723 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 724 * does not matter how to _calculate_ it. Seems, it was trap 725 * that VJ failed to avoid. 8) 726 */ 727 if (srtt != 0) { 728 m -= (srtt >> 3); /* m is now error in rtt est */ 729 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 730 if (m < 0) { 731 m = -m; /* m is now abs(error) */ 732 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 733 /* This is similar to one of Eifel findings. 734 * Eifel blocks mdev updates when rtt decreases. 735 * This solution is a bit different: we use finer gain 736 * for mdev in this case (alpha*beta). 737 * Like Eifel it also prevents growth of rto, 738 * but also it limits too fast rto decreases, 739 * happening in pure Eifel. 740 */ 741 if (m > 0) 742 m >>= 3; 743 } else { 744 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 745 } 746 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 747 if (tp->mdev_us > tp->mdev_max_us) { 748 tp->mdev_max_us = tp->mdev_us; 749 if (tp->mdev_max_us > tp->rttvar_us) 750 tp->rttvar_us = tp->mdev_max_us; 751 } 752 if (after(tp->snd_una, tp->rtt_seq)) { 753 if (tp->mdev_max_us < tp->rttvar_us) 754 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 755 tp->rtt_seq = tp->snd_nxt; 756 tp->mdev_max_us = tcp_rto_min_us(sk); 757 } 758 } else { 759 /* no previous measure. */ 760 srtt = m << 3; /* take the measured time to be rtt */ 761 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 762 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 763 tp->mdev_max_us = tp->rttvar_us; 764 tp->rtt_seq = tp->snd_nxt; 765 } 766 tp->srtt_us = max(1U, srtt); 767 } 768 769 static void tcp_update_pacing_rate(struct sock *sk) 770 { 771 const struct tcp_sock *tp = tcp_sk(sk); 772 u64 rate; 773 774 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 775 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 776 777 /* current rate is (cwnd * mss) / srtt 778 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 779 * In Congestion Avoidance phase, set it to 120 % the current rate. 780 * 781 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 782 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 783 * end of slow start and should slow down. 784 */ 785 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 786 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio; 787 else 788 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio; 789 790 rate *= max(tp->snd_cwnd, tp->packets_out); 791 792 if (likely(tp->srtt_us)) 793 do_div(rate, tp->srtt_us); 794 795 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 796 * without any lock. We want to make sure compiler wont store 797 * intermediate values in this location. 798 */ 799 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 800 sk->sk_max_pacing_rate)); 801 } 802 803 /* Calculate rto without backoff. This is the second half of Van Jacobson's 804 * routine referred to above. 805 */ 806 static void tcp_set_rto(struct sock *sk) 807 { 808 const struct tcp_sock *tp = tcp_sk(sk); 809 /* Old crap is replaced with new one. 8) 810 * 811 * More seriously: 812 * 1. If rtt variance happened to be less 50msec, it is hallucination. 813 * It cannot be less due to utterly erratic ACK generation made 814 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 815 * to do with delayed acks, because at cwnd>2 true delack timeout 816 * is invisible. Actually, Linux-2.4 also generates erratic 817 * ACKs in some circumstances. 818 */ 819 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 820 821 /* 2. Fixups made earlier cannot be right. 822 * If we do not estimate RTO correctly without them, 823 * all the algo is pure shit and should be replaced 824 * with correct one. It is exactly, which we pretend to do. 825 */ 826 827 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 828 * guarantees that rto is higher. 829 */ 830 tcp_bound_rto(sk); 831 } 832 833 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 834 { 835 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 836 837 if (!cwnd) 838 cwnd = TCP_INIT_CWND; 839 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 840 } 841 842 /* Take a notice that peer is sending D-SACKs */ 843 static void tcp_dsack_seen(struct tcp_sock *tp) 844 { 845 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 846 tp->rack.dsack_seen = 1; 847 } 848 849 /* It's reordering when higher sequence was delivered (i.e. sacked) before 850 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 851 * distance is approximated in full-mss packet distance ("reordering"). 852 */ 853 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 854 const int ts) 855 { 856 struct tcp_sock *tp = tcp_sk(sk); 857 const u32 mss = tp->mss_cache; 858 u32 fack, metric; 859 860 fack = tcp_highest_sack_seq(tp); 861 if (!before(low_seq, fack)) 862 return; 863 864 metric = fack - low_seq; 865 if ((metric > tp->reordering * mss) && mss) { 866 #if FASTRETRANS_DEBUG > 1 867 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 868 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 869 tp->reordering, 870 0, 871 tp->sacked_out, 872 tp->undo_marker ? tp->undo_retrans : 0); 873 #endif 874 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 875 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 876 } 877 878 tp->rack.reord = 1; 879 /* This exciting event is worth to be remembered. 8) */ 880 NET_INC_STATS(sock_net(sk), 881 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 882 } 883 884 /* This must be called before lost_out is incremented */ 885 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 886 { 887 if (!tp->retransmit_skb_hint || 888 before(TCP_SKB_CB(skb)->seq, 889 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 890 tp->retransmit_skb_hint = skb; 891 } 892 893 /* Sum the number of packets on the wire we have marked as lost. 894 * There are two cases we care about here: 895 * a) Packet hasn't been marked lost (nor retransmitted), 896 * and this is the first loss. 897 * b) Packet has been marked both lost and retransmitted, 898 * and this means we think it was lost again. 899 */ 900 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 901 { 902 __u8 sacked = TCP_SKB_CB(skb)->sacked; 903 904 if (!(sacked & TCPCB_LOST) || 905 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 906 tp->lost += tcp_skb_pcount(skb); 907 } 908 909 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 910 { 911 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 912 tcp_verify_retransmit_hint(tp, skb); 913 914 tp->lost_out += tcp_skb_pcount(skb); 915 tcp_sum_lost(tp, skb); 916 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 917 } 918 } 919 920 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 921 { 922 tcp_verify_retransmit_hint(tp, skb); 923 924 tcp_sum_lost(tp, skb); 925 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 926 tp->lost_out += tcp_skb_pcount(skb); 927 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 928 } 929 } 930 931 /* This procedure tags the retransmission queue when SACKs arrive. 932 * 933 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 934 * Packets in queue with these bits set are counted in variables 935 * sacked_out, retrans_out and lost_out, correspondingly. 936 * 937 * Valid combinations are: 938 * Tag InFlight Description 939 * 0 1 - orig segment is in flight. 940 * S 0 - nothing flies, orig reached receiver. 941 * L 0 - nothing flies, orig lost by net. 942 * R 2 - both orig and retransmit are in flight. 943 * L|R 1 - orig is lost, retransmit is in flight. 944 * S|R 1 - orig reached receiver, retrans is still in flight. 945 * (L|S|R is logically valid, it could occur when L|R is sacked, 946 * but it is equivalent to plain S and code short-curcuits it to S. 947 * L|S is logically invalid, it would mean -1 packet in flight 8)) 948 * 949 * These 6 states form finite state machine, controlled by the following events: 950 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 951 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 952 * 3. Loss detection event of two flavors: 953 * A. Scoreboard estimator decided the packet is lost. 954 * A'. Reno "three dupacks" marks head of queue lost. 955 * B. SACK arrives sacking SND.NXT at the moment, when the 956 * segment was retransmitted. 957 * 4. D-SACK added new rule: D-SACK changes any tag to S. 958 * 959 * It is pleasant to note, that state diagram turns out to be commutative, 960 * so that we are allowed not to be bothered by order of our actions, 961 * when multiple events arrive simultaneously. (see the function below). 962 * 963 * Reordering detection. 964 * -------------------- 965 * Reordering metric is maximal distance, which a packet can be displaced 966 * in packet stream. With SACKs we can estimate it: 967 * 968 * 1. SACK fills old hole and the corresponding segment was not 969 * ever retransmitted -> reordering. Alas, we cannot use it 970 * when segment was retransmitted. 971 * 2. The last flaw is solved with D-SACK. D-SACK arrives 972 * for retransmitted and already SACKed segment -> reordering.. 973 * Both of these heuristics are not used in Loss state, when we cannot 974 * account for retransmits accurately. 975 * 976 * SACK block validation. 977 * ---------------------- 978 * 979 * SACK block range validation checks that the received SACK block fits to 980 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 981 * Note that SND.UNA is not included to the range though being valid because 982 * it means that the receiver is rather inconsistent with itself reporting 983 * SACK reneging when it should advance SND.UNA. Such SACK block this is 984 * perfectly valid, however, in light of RFC2018 which explicitly states 985 * that "SACK block MUST reflect the newest segment. Even if the newest 986 * segment is going to be discarded ...", not that it looks very clever 987 * in case of head skb. Due to potentional receiver driven attacks, we 988 * choose to avoid immediate execution of a walk in write queue due to 989 * reneging and defer head skb's loss recovery to standard loss recovery 990 * procedure that will eventually trigger (nothing forbids us doing this). 991 * 992 * Implements also blockage to start_seq wrap-around. Problem lies in the 993 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 994 * there's no guarantee that it will be before snd_nxt (n). The problem 995 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 996 * wrap (s_w): 997 * 998 * <- outs wnd -> <- wrapzone -> 999 * u e n u_w e_w s n_w 1000 * | | | | | | | 1001 * |<------------+------+----- TCP seqno space --------------+---------->| 1002 * ...-- <2^31 ->| |<--------... 1003 * ...---- >2^31 ------>| |<--------... 1004 * 1005 * Current code wouldn't be vulnerable but it's better still to discard such 1006 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1007 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1008 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1009 * equal to the ideal case (infinite seqno space without wrap caused issues). 1010 * 1011 * With D-SACK the lower bound is extended to cover sequence space below 1012 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1013 * again, D-SACK block must not to go across snd_una (for the same reason as 1014 * for the normal SACK blocks, explained above). But there all simplicity 1015 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1016 * fully below undo_marker they do not affect behavior in anyway and can 1017 * therefore be safely ignored. In rare cases (which are more or less 1018 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1019 * fragmentation and packet reordering past skb's retransmission. To consider 1020 * them correctly, the acceptable range must be extended even more though 1021 * the exact amount is rather hard to quantify. However, tp->max_window can 1022 * be used as an exaggerated estimate. 1023 */ 1024 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1025 u32 start_seq, u32 end_seq) 1026 { 1027 /* Too far in future, or reversed (interpretation is ambiguous) */ 1028 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1029 return false; 1030 1031 /* Nasty start_seq wrap-around check (see comments above) */ 1032 if (!before(start_seq, tp->snd_nxt)) 1033 return false; 1034 1035 /* In outstanding window? ...This is valid exit for D-SACKs too. 1036 * start_seq == snd_una is non-sensical (see comments above) 1037 */ 1038 if (after(start_seq, tp->snd_una)) 1039 return true; 1040 1041 if (!is_dsack || !tp->undo_marker) 1042 return false; 1043 1044 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1045 if (after(end_seq, tp->snd_una)) 1046 return false; 1047 1048 if (!before(start_seq, tp->undo_marker)) 1049 return true; 1050 1051 /* Too old */ 1052 if (!after(end_seq, tp->undo_marker)) 1053 return false; 1054 1055 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1056 * start_seq < undo_marker and end_seq >= undo_marker. 1057 */ 1058 return !before(start_seq, end_seq - tp->max_window); 1059 } 1060 1061 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1062 struct tcp_sack_block_wire *sp, int num_sacks, 1063 u32 prior_snd_una) 1064 { 1065 struct tcp_sock *tp = tcp_sk(sk); 1066 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1067 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1068 bool dup_sack = false; 1069 1070 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1071 dup_sack = true; 1072 tcp_dsack_seen(tp); 1073 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1074 } else if (num_sacks > 1) { 1075 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1076 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1077 1078 if (!after(end_seq_0, end_seq_1) && 1079 !before(start_seq_0, start_seq_1)) { 1080 dup_sack = true; 1081 tcp_dsack_seen(tp); 1082 NET_INC_STATS(sock_net(sk), 1083 LINUX_MIB_TCPDSACKOFORECV); 1084 } 1085 } 1086 1087 /* D-SACK for already forgotten data... Do dumb counting. */ 1088 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1089 !after(end_seq_0, prior_snd_una) && 1090 after(end_seq_0, tp->undo_marker)) 1091 tp->undo_retrans--; 1092 1093 return dup_sack; 1094 } 1095 1096 struct tcp_sacktag_state { 1097 u32 reord; 1098 /* Timestamps for earliest and latest never-retransmitted segment 1099 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1100 * but congestion control should still get an accurate delay signal. 1101 */ 1102 u64 first_sackt; 1103 u64 last_sackt; 1104 struct rate_sample *rate; 1105 int flag; 1106 unsigned int mss_now; 1107 }; 1108 1109 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1110 * the incoming SACK may not exactly match but we can find smaller MSS 1111 * aligned portion of it that matches. Therefore we might need to fragment 1112 * which may fail and creates some hassle (caller must handle error case 1113 * returns). 1114 * 1115 * FIXME: this could be merged to shift decision code 1116 */ 1117 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1118 u32 start_seq, u32 end_seq) 1119 { 1120 int err; 1121 bool in_sack; 1122 unsigned int pkt_len; 1123 unsigned int mss; 1124 1125 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1126 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1127 1128 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1129 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1130 mss = tcp_skb_mss(skb); 1131 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1132 1133 if (!in_sack) { 1134 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1135 if (pkt_len < mss) 1136 pkt_len = mss; 1137 } else { 1138 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1139 if (pkt_len < mss) 1140 return -EINVAL; 1141 } 1142 1143 /* Round if necessary so that SACKs cover only full MSSes 1144 * and/or the remaining small portion (if present) 1145 */ 1146 if (pkt_len > mss) { 1147 unsigned int new_len = (pkt_len / mss) * mss; 1148 if (!in_sack && new_len < pkt_len) 1149 new_len += mss; 1150 pkt_len = new_len; 1151 } 1152 1153 if (pkt_len >= skb->len && !in_sack) 1154 return 0; 1155 1156 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1157 pkt_len, mss, GFP_ATOMIC); 1158 if (err < 0) 1159 return err; 1160 } 1161 1162 return in_sack; 1163 } 1164 1165 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1166 static u8 tcp_sacktag_one(struct sock *sk, 1167 struct tcp_sacktag_state *state, u8 sacked, 1168 u32 start_seq, u32 end_seq, 1169 int dup_sack, int pcount, 1170 u64 xmit_time) 1171 { 1172 struct tcp_sock *tp = tcp_sk(sk); 1173 1174 /* Account D-SACK for retransmitted packet. */ 1175 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1176 if (tp->undo_marker && tp->undo_retrans > 0 && 1177 after(end_seq, tp->undo_marker)) 1178 tp->undo_retrans--; 1179 if ((sacked & TCPCB_SACKED_ACKED) && 1180 before(start_seq, state->reord)) 1181 state->reord = start_seq; 1182 } 1183 1184 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1185 if (!after(end_seq, tp->snd_una)) 1186 return sacked; 1187 1188 if (!(sacked & TCPCB_SACKED_ACKED)) { 1189 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1190 1191 if (sacked & TCPCB_SACKED_RETRANS) { 1192 /* If the segment is not tagged as lost, 1193 * we do not clear RETRANS, believing 1194 * that retransmission is still in flight. 1195 */ 1196 if (sacked & TCPCB_LOST) { 1197 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1198 tp->lost_out -= pcount; 1199 tp->retrans_out -= pcount; 1200 } 1201 } else { 1202 if (!(sacked & TCPCB_RETRANS)) { 1203 /* New sack for not retransmitted frame, 1204 * which was in hole. It is reordering. 1205 */ 1206 if (before(start_seq, 1207 tcp_highest_sack_seq(tp)) && 1208 before(start_seq, state->reord)) 1209 state->reord = start_seq; 1210 1211 if (!after(end_seq, tp->high_seq)) 1212 state->flag |= FLAG_ORIG_SACK_ACKED; 1213 if (state->first_sackt == 0) 1214 state->first_sackt = xmit_time; 1215 state->last_sackt = xmit_time; 1216 } 1217 1218 if (sacked & TCPCB_LOST) { 1219 sacked &= ~TCPCB_LOST; 1220 tp->lost_out -= pcount; 1221 } 1222 } 1223 1224 sacked |= TCPCB_SACKED_ACKED; 1225 state->flag |= FLAG_DATA_SACKED; 1226 tp->sacked_out += pcount; 1227 tp->delivered += pcount; /* Out-of-order packets delivered */ 1228 1229 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1230 if (tp->lost_skb_hint && 1231 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1232 tp->lost_cnt_hint += pcount; 1233 } 1234 1235 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1236 * frames and clear it. undo_retrans is decreased above, L|R frames 1237 * are accounted above as well. 1238 */ 1239 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1240 sacked &= ~TCPCB_SACKED_RETRANS; 1241 tp->retrans_out -= pcount; 1242 } 1243 1244 return sacked; 1245 } 1246 1247 /* Shift newly-SACKed bytes from this skb to the immediately previous 1248 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1249 */ 1250 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1251 struct sk_buff *skb, 1252 struct tcp_sacktag_state *state, 1253 unsigned int pcount, int shifted, int mss, 1254 bool dup_sack) 1255 { 1256 struct tcp_sock *tp = tcp_sk(sk); 1257 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1258 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1259 1260 BUG_ON(!pcount); 1261 1262 /* Adjust counters and hints for the newly sacked sequence 1263 * range but discard the return value since prev is already 1264 * marked. We must tag the range first because the seq 1265 * advancement below implicitly advances 1266 * tcp_highest_sack_seq() when skb is highest_sack. 1267 */ 1268 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1269 start_seq, end_seq, dup_sack, pcount, 1270 skb->skb_mstamp); 1271 tcp_rate_skb_delivered(sk, skb, state->rate); 1272 1273 if (skb == tp->lost_skb_hint) 1274 tp->lost_cnt_hint += pcount; 1275 1276 TCP_SKB_CB(prev)->end_seq += shifted; 1277 TCP_SKB_CB(skb)->seq += shifted; 1278 1279 tcp_skb_pcount_add(prev, pcount); 1280 BUG_ON(tcp_skb_pcount(skb) < pcount); 1281 tcp_skb_pcount_add(skb, -pcount); 1282 1283 /* When we're adding to gso_segs == 1, gso_size will be zero, 1284 * in theory this shouldn't be necessary but as long as DSACK 1285 * code can come after this skb later on it's better to keep 1286 * setting gso_size to something. 1287 */ 1288 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1289 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1290 1291 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1292 if (tcp_skb_pcount(skb) <= 1) 1293 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1294 1295 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1296 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1297 1298 if (skb->len > 0) { 1299 BUG_ON(!tcp_skb_pcount(skb)); 1300 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1301 return false; 1302 } 1303 1304 /* Whole SKB was eaten :-) */ 1305 1306 if (skb == tp->retransmit_skb_hint) 1307 tp->retransmit_skb_hint = prev; 1308 if (skb == tp->lost_skb_hint) { 1309 tp->lost_skb_hint = prev; 1310 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1311 } 1312 1313 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1314 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1315 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1316 TCP_SKB_CB(prev)->end_seq++; 1317 1318 if (skb == tcp_highest_sack(sk)) 1319 tcp_advance_highest_sack(sk, skb); 1320 1321 tcp_skb_collapse_tstamp(prev, skb); 1322 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1323 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1324 1325 tcp_rtx_queue_unlink_and_free(skb, sk); 1326 1327 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1328 1329 return true; 1330 } 1331 1332 /* I wish gso_size would have a bit more sane initialization than 1333 * something-or-zero which complicates things 1334 */ 1335 static int tcp_skb_seglen(const struct sk_buff *skb) 1336 { 1337 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1338 } 1339 1340 /* Shifting pages past head area doesn't work */ 1341 static int skb_can_shift(const struct sk_buff *skb) 1342 { 1343 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1344 } 1345 1346 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1347 * skb. 1348 */ 1349 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1350 struct tcp_sacktag_state *state, 1351 u32 start_seq, u32 end_seq, 1352 bool dup_sack) 1353 { 1354 struct tcp_sock *tp = tcp_sk(sk); 1355 struct sk_buff *prev; 1356 int mss; 1357 int pcount = 0; 1358 int len; 1359 int in_sack; 1360 1361 if (!sk_can_gso(sk)) 1362 goto fallback; 1363 1364 /* Normally R but no L won't result in plain S */ 1365 if (!dup_sack && 1366 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1367 goto fallback; 1368 if (!skb_can_shift(skb)) 1369 goto fallback; 1370 /* This frame is about to be dropped (was ACKed). */ 1371 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1372 goto fallback; 1373 1374 /* Can only happen with delayed DSACK + discard craziness */ 1375 prev = skb_rb_prev(skb); 1376 if (!prev) 1377 goto fallback; 1378 1379 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1380 goto fallback; 1381 1382 if (!tcp_skb_can_collapse_to(prev)) 1383 goto fallback; 1384 1385 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1386 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1387 1388 if (in_sack) { 1389 len = skb->len; 1390 pcount = tcp_skb_pcount(skb); 1391 mss = tcp_skb_seglen(skb); 1392 1393 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1394 * drop this restriction as unnecessary 1395 */ 1396 if (mss != tcp_skb_seglen(prev)) 1397 goto fallback; 1398 } else { 1399 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1400 goto noop; 1401 /* CHECKME: This is non-MSS split case only?, this will 1402 * cause skipped skbs due to advancing loop btw, original 1403 * has that feature too 1404 */ 1405 if (tcp_skb_pcount(skb) <= 1) 1406 goto noop; 1407 1408 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1409 if (!in_sack) { 1410 /* TODO: head merge to next could be attempted here 1411 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1412 * though it might not be worth of the additional hassle 1413 * 1414 * ...we can probably just fallback to what was done 1415 * previously. We could try merging non-SACKed ones 1416 * as well but it probably isn't going to buy off 1417 * because later SACKs might again split them, and 1418 * it would make skb timestamp tracking considerably 1419 * harder problem. 1420 */ 1421 goto fallback; 1422 } 1423 1424 len = end_seq - TCP_SKB_CB(skb)->seq; 1425 BUG_ON(len < 0); 1426 BUG_ON(len > skb->len); 1427 1428 /* MSS boundaries should be honoured or else pcount will 1429 * severely break even though it makes things bit trickier. 1430 * Optimize common case to avoid most of the divides 1431 */ 1432 mss = tcp_skb_mss(skb); 1433 1434 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1435 * drop this restriction as unnecessary 1436 */ 1437 if (mss != tcp_skb_seglen(prev)) 1438 goto fallback; 1439 1440 if (len == mss) { 1441 pcount = 1; 1442 } else if (len < mss) { 1443 goto noop; 1444 } else { 1445 pcount = len / mss; 1446 len = pcount * mss; 1447 } 1448 } 1449 1450 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1451 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1452 goto fallback; 1453 1454 if (!skb_shift(prev, skb, len)) 1455 goto fallback; 1456 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1457 goto out; 1458 1459 /* Hole filled allows collapsing with the next as well, this is very 1460 * useful when hole on every nth skb pattern happens 1461 */ 1462 skb = skb_rb_next(prev); 1463 if (!skb) 1464 goto out; 1465 1466 if (!skb_can_shift(skb) || 1467 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1468 (mss != tcp_skb_seglen(skb))) 1469 goto out; 1470 1471 len = skb->len; 1472 if (skb_shift(prev, skb, len)) { 1473 pcount += tcp_skb_pcount(skb); 1474 tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb), 1475 len, mss, 0); 1476 } 1477 1478 out: 1479 return prev; 1480 1481 noop: 1482 return skb; 1483 1484 fallback: 1485 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1486 return NULL; 1487 } 1488 1489 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1490 struct tcp_sack_block *next_dup, 1491 struct tcp_sacktag_state *state, 1492 u32 start_seq, u32 end_seq, 1493 bool dup_sack_in) 1494 { 1495 struct tcp_sock *tp = tcp_sk(sk); 1496 struct sk_buff *tmp; 1497 1498 skb_rbtree_walk_from(skb) { 1499 int in_sack = 0; 1500 bool dup_sack = dup_sack_in; 1501 1502 /* queue is in-order => we can short-circuit the walk early */ 1503 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1504 break; 1505 1506 if (next_dup && 1507 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1508 in_sack = tcp_match_skb_to_sack(sk, skb, 1509 next_dup->start_seq, 1510 next_dup->end_seq); 1511 if (in_sack > 0) 1512 dup_sack = true; 1513 } 1514 1515 /* skb reference here is a bit tricky to get right, since 1516 * shifting can eat and free both this skb and the next, 1517 * so not even _safe variant of the loop is enough. 1518 */ 1519 if (in_sack <= 0) { 1520 tmp = tcp_shift_skb_data(sk, skb, state, 1521 start_seq, end_seq, dup_sack); 1522 if (tmp) { 1523 if (tmp != skb) { 1524 skb = tmp; 1525 continue; 1526 } 1527 1528 in_sack = 0; 1529 } else { 1530 in_sack = tcp_match_skb_to_sack(sk, skb, 1531 start_seq, 1532 end_seq); 1533 } 1534 } 1535 1536 if (unlikely(in_sack < 0)) 1537 break; 1538 1539 if (in_sack) { 1540 TCP_SKB_CB(skb)->sacked = 1541 tcp_sacktag_one(sk, 1542 state, 1543 TCP_SKB_CB(skb)->sacked, 1544 TCP_SKB_CB(skb)->seq, 1545 TCP_SKB_CB(skb)->end_seq, 1546 dup_sack, 1547 tcp_skb_pcount(skb), 1548 skb->skb_mstamp); 1549 tcp_rate_skb_delivered(sk, skb, state->rate); 1550 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1551 list_del_init(&skb->tcp_tsorted_anchor); 1552 1553 if (!before(TCP_SKB_CB(skb)->seq, 1554 tcp_highest_sack_seq(tp))) 1555 tcp_advance_highest_sack(sk, skb); 1556 } 1557 } 1558 return skb; 1559 } 1560 1561 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, 1562 struct tcp_sacktag_state *state, 1563 u32 seq) 1564 { 1565 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1566 struct sk_buff *skb; 1567 1568 while (*p) { 1569 parent = *p; 1570 skb = rb_to_skb(parent); 1571 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1572 p = &parent->rb_left; 1573 continue; 1574 } 1575 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1576 p = &parent->rb_right; 1577 continue; 1578 } 1579 return skb; 1580 } 1581 return NULL; 1582 } 1583 1584 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1585 struct tcp_sacktag_state *state, 1586 u32 skip_to_seq) 1587 { 1588 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1589 return skb; 1590 1591 return tcp_sacktag_bsearch(sk, state, skip_to_seq); 1592 } 1593 1594 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1595 struct sock *sk, 1596 struct tcp_sack_block *next_dup, 1597 struct tcp_sacktag_state *state, 1598 u32 skip_to_seq) 1599 { 1600 if (!next_dup) 1601 return skb; 1602 1603 if (before(next_dup->start_seq, skip_to_seq)) { 1604 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1605 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1606 next_dup->start_seq, next_dup->end_seq, 1607 1); 1608 } 1609 1610 return skb; 1611 } 1612 1613 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1614 { 1615 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1616 } 1617 1618 static int 1619 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1620 u32 prior_snd_una, struct tcp_sacktag_state *state) 1621 { 1622 struct tcp_sock *tp = tcp_sk(sk); 1623 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1624 TCP_SKB_CB(ack_skb)->sacked); 1625 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1626 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1627 struct tcp_sack_block *cache; 1628 struct sk_buff *skb; 1629 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1630 int used_sacks; 1631 bool found_dup_sack = false; 1632 int i, j; 1633 int first_sack_index; 1634 1635 state->flag = 0; 1636 state->reord = tp->snd_nxt; 1637 1638 if (!tp->sacked_out) 1639 tcp_highest_sack_reset(sk); 1640 1641 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1642 num_sacks, prior_snd_una); 1643 if (found_dup_sack) { 1644 state->flag |= FLAG_DSACKING_ACK; 1645 tp->delivered++; /* A spurious retransmission is delivered */ 1646 } 1647 1648 /* Eliminate too old ACKs, but take into 1649 * account more or less fresh ones, they can 1650 * contain valid SACK info. 1651 */ 1652 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1653 return 0; 1654 1655 if (!tp->packets_out) 1656 goto out; 1657 1658 used_sacks = 0; 1659 first_sack_index = 0; 1660 for (i = 0; i < num_sacks; i++) { 1661 bool dup_sack = !i && found_dup_sack; 1662 1663 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1664 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1665 1666 if (!tcp_is_sackblock_valid(tp, dup_sack, 1667 sp[used_sacks].start_seq, 1668 sp[used_sacks].end_seq)) { 1669 int mib_idx; 1670 1671 if (dup_sack) { 1672 if (!tp->undo_marker) 1673 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1674 else 1675 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1676 } else { 1677 /* Don't count olds caused by ACK reordering */ 1678 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1679 !after(sp[used_sacks].end_seq, tp->snd_una)) 1680 continue; 1681 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1682 } 1683 1684 NET_INC_STATS(sock_net(sk), mib_idx); 1685 if (i == 0) 1686 first_sack_index = -1; 1687 continue; 1688 } 1689 1690 /* Ignore very old stuff early */ 1691 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1692 continue; 1693 1694 used_sacks++; 1695 } 1696 1697 /* order SACK blocks to allow in order walk of the retrans queue */ 1698 for (i = used_sacks - 1; i > 0; i--) { 1699 for (j = 0; j < i; j++) { 1700 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1701 swap(sp[j], sp[j + 1]); 1702 1703 /* Track where the first SACK block goes to */ 1704 if (j == first_sack_index) 1705 first_sack_index = j + 1; 1706 } 1707 } 1708 } 1709 1710 state->mss_now = tcp_current_mss(sk); 1711 skb = NULL; 1712 i = 0; 1713 1714 if (!tp->sacked_out) { 1715 /* It's already past, so skip checking against it */ 1716 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1717 } else { 1718 cache = tp->recv_sack_cache; 1719 /* Skip empty blocks in at head of the cache */ 1720 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1721 !cache->end_seq) 1722 cache++; 1723 } 1724 1725 while (i < used_sacks) { 1726 u32 start_seq = sp[i].start_seq; 1727 u32 end_seq = sp[i].end_seq; 1728 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1729 struct tcp_sack_block *next_dup = NULL; 1730 1731 if (found_dup_sack && ((i + 1) == first_sack_index)) 1732 next_dup = &sp[i + 1]; 1733 1734 /* Skip too early cached blocks */ 1735 while (tcp_sack_cache_ok(tp, cache) && 1736 !before(start_seq, cache->end_seq)) 1737 cache++; 1738 1739 /* Can skip some work by looking recv_sack_cache? */ 1740 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1741 after(end_seq, cache->start_seq)) { 1742 1743 /* Head todo? */ 1744 if (before(start_seq, cache->start_seq)) { 1745 skb = tcp_sacktag_skip(skb, sk, state, 1746 start_seq); 1747 skb = tcp_sacktag_walk(skb, sk, next_dup, 1748 state, 1749 start_seq, 1750 cache->start_seq, 1751 dup_sack); 1752 } 1753 1754 /* Rest of the block already fully processed? */ 1755 if (!after(end_seq, cache->end_seq)) 1756 goto advance_sp; 1757 1758 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1759 state, 1760 cache->end_seq); 1761 1762 /* ...tail remains todo... */ 1763 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1764 /* ...but better entrypoint exists! */ 1765 skb = tcp_highest_sack(sk); 1766 if (!skb) 1767 break; 1768 cache++; 1769 goto walk; 1770 } 1771 1772 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq); 1773 /* Check overlap against next cached too (past this one already) */ 1774 cache++; 1775 continue; 1776 } 1777 1778 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1779 skb = tcp_highest_sack(sk); 1780 if (!skb) 1781 break; 1782 } 1783 skb = tcp_sacktag_skip(skb, sk, state, start_seq); 1784 1785 walk: 1786 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1787 start_seq, end_seq, dup_sack); 1788 1789 advance_sp: 1790 i++; 1791 } 1792 1793 /* Clear the head of the cache sack blocks so we can skip it next time */ 1794 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1795 tp->recv_sack_cache[i].start_seq = 0; 1796 tp->recv_sack_cache[i].end_seq = 0; 1797 } 1798 for (j = 0; j < used_sacks; j++) 1799 tp->recv_sack_cache[i++] = sp[j]; 1800 1801 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 1802 tcp_check_sack_reordering(sk, state->reord, 0); 1803 1804 tcp_verify_left_out(tp); 1805 out: 1806 1807 #if FASTRETRANS_DEBUG > 0 1808 WARN_ON((int)tp->sacked_out < 0); 1809 WARN_ON((int)tp->lost_out < 0); 1810 WARN_ON((int)tp->retrans_out < 0); 1811 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1812 #endif 1813 return state->flag; 1814 } 1815 1816 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1817 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1818 */ 1819 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1820 { 1821 u32 holes; 1822 1823 holes = max(tp->lost_out, 1U); 1824 holes = min(holes, tp->packets_out); 1825 1826 if ((tp->sacked_out + holes) > tp->packets_out) { 1827 tp->sacked_out = tp->packets_out - holes; 1828 return true; 1829 } 1830 return false; 1831 } 1832 1833 /* If we receive more dupacks than we expected counting segments 1834 * in assumption of absent reordering, interpret this as reordering. 1835 * The only another reason could be bug in receiver TCP. 1836 */ 1837 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1838 { 1839 struct tcp_sock *tp = tcp_sk(sk); 1840 1841 if (!tcp_limit_reno_sacked(tp)) 1842 return; 1843 1844 tp->reordering = min_t(u32, tp->packets_out + addend, 1845 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 1846 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 1847 } 1848 1849 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1850 1851 static void tcp_add_reno_sack(struct sock *sk) 1852 { 1853 struct tcp_sock *tp = tcp_sk(sk); 1854 u32 prior_sacked = tp->sacked_out; 1855 1856 tp->sacked_out++; 1857 tcp_check_reno_reordering(sk, 0); 1858 if (tp->sacked_out > prior_sacked) 1859 tp->delivered++; /* Some out-of-order packet is delivered */ 1860 tcp_verify_left_out(tp); 1861 } 1862 1863 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1864 1865 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1866 { 1867 struct tcp_sock *tp = tcp_sk(sk); 1868 1869 if (acked > 0) { 1870 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1871 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1872 if (acked - 1 >= tp->sacked_out) 1873 tp->sacked_out = 0; 1874 else 1875 tp->sacked_out -= acked - 1; 1876 } 1877 tcp_check_reno_reordering(sk, acked); 1878 tcp_verify_left_out(tp); 1879 } 1880 1881 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1882 { 1883 tp->sacked_out = 0; 1884 } 1885 1886 void tcp_clear_retrans(struct tcp_sock *tp) 1887 { 1888 tp->retrans_out = 0; 1889 tp->lost_out = 0; 1890 tp->undo_marker = 0; 1891 tp->undo_retrans = -1; 1892 tp->sacked_out = 0; 1893 } 1894 1895 static inline void tcp_init_undo(struct tcp_sock *tp) 1896 { 1897 tp->undo_marker = tp->snd_una; 1898 /* Retransmission still in flight may cause DSACKs later. */ 1899 tp->undo_retrans = tp->retrans_out ? : -1; 1900 } 1901 1902 /* Enter Loss state. If we detect SACK reneging, forget all SACK information 1903 * and reset tags completely, otherwise preserve SACKs. If receiver 1904 * dropped its ofo queue, we will know this due to reneging detection. 1905 */ 1906 void tcp_enter_loss(struct sock *sk) 1907 { 1908 const struct inet_connection_sock *icsk = inet_csk(sk); 1909 struct tcp_sock *tp = tcp_sk(sk); 1910 struct net *net = sock_net(sk); 1911 struct sk_buff *skb; 1912 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1913 bool is_reneg; /* is receiver reneging on SACKs? */ 1914 bool mark_lost; 1915 1916 /* Reduce ssthresh if it has not yet been made inside this window. */ 1917 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1918 !after(tp->high_seq, tp->snd_una) || 1919 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1920 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1921 tp->prior_cwnd = tp->snd_cwnd; 1922 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1923 tcp_ca_event(sk, CA_EVENT_LOSS); 1924 tcp_init_undo(tp); 1925 } 1926 tp->snd_cwnd = 1; 1927 tp->snd_cwnd_cnt = 0; 1928 tp->snd_cwnd_stamp = tcp_jiffies32; 1929 1930 tp->retrans_out = 0; 1931 tp->lost_out = 0; 1932 1933 if (tcp_is_reno(tp)) 1934 tcp_reset_reno_sack(tp); 1935 1936 skb = tcp_rtx_queue_head(sk); 1937 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED); 1938 if (is_reneg) { 1939 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1940 tp->sacked_out = 0; 1941 /* Mark SACK reneging until we recover from this loss event. */ 1942 tp->is_sack_reneg = 1; 1943 } 1944 tcp_clear_all_retrans_hints(tp); 1945 1946 skb_rbtree_walk_from(skb) { 1947 mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 1948 is_reneg); 1949 if (mark_lost) 1950 tcp_sum_lost(tp, skb); 1951 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1952 if (mark_lost) { 1953 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1954 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1955 tp->lost_out += tcp_skb_pcount(skb); 1956 } 1957 } 1958 tcp_verify_left_out(tp); 1959 1960 /* Timeout in disordered state after receiving substantial DUPACKs 1961 * suggests that the degree of reordering is over-estimated. 1962 */ 1963 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1964 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 1965 tp->reordering = min_t(unsigned int, tp->reordering, 1966 net->ipv4.sysctl_tcp_reordering); 1967 tcp_set_ca_state(sk, TCP_CA_Loss); 1968 tp->high_seq = tp->snd_nxt; 1969 tcp_ecn_queue_cwr(tp); 1970 1971 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 1972 * loss recovery is underway except recurring timeout(s) on 1973 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 1974 * 1975 * In theory F-RTO can be used repeatedly during loss recovery. 1976 * In practice this interacts badly with broken middle-boxes that 1977 * falsely raise the receive window, which results in repeated 1978 * timeouts and stop-and-go behavior. 1979 */ 1980 tp->frto = net->ipv4.sysctl_tcp_frto && 1981 (new_recovery || icsk->icsk_retransmits) && 1982 !inet_csk(sk)->icsk_mtup.probe_size; 1983 } 1984 1985 /* If ACK arrived pointing to a remembered SACK, it means that our 1986 * remembered SACKs do not reflect real state of receiver i.e. 1987 * receiver _host_ is heavily congested (or buggy). 1988 * 1989 * To avoid big spurious retransmission bursts due to transient SACK 1990 * scoreboard oddities that look like reneging, we give the receiver a 1991 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 1992 * restore sanity to the SACK scoreboard. If the apparent reneging 1993 * persists until this RTO then we'll clear the SACK scoreboard. 1994 */ 1995 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 1996 { 1997 if (flag & FLAG_SACK_RENEGING) { 1998 struct tcp_sock *tp = tcp_sk(sk); 1999 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2000 msecs_to_jiffies(10)); 2001 2002 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2003 delay, TCP_RTO_MAX); 2004 return true; 2005 } 2006 return false; 2007 } 2008 2009 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2010 * counter when SACK is enabled (without SACK, sacked_out is used for 2011 * that purpose). 2012 * 2013 * With reordering, holes may still be in flight, so RFC3517 recovery 2014 * uses pure sacked_out (total number of SACKed segments) even though 2015 * it violates the RFC that uses duplicate ACKs, often these are equal 2016 * but when e.g. out-of-window ACKs or packet duplication occurs, 2017 * they differ. Since neither occurs due to loss, TCP should really 2018 * ignore them. 2019 */ 2020 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2021 { 2022 return tp->sacked_out + 1; 2023 } 2024 2025 /* Linux NewReno/SACK/ECN state machine. 2026 * -------------------------------------- 2027 * 2028 * "Open" Normal state, no dubious events, fast path. 2029 * "Disorder" In all the respects it is "Open", 2030 * but requires a bit more attention. It is entered when 2031 * we see some SACKs or dupacks. It is split of "Open" 2032 * mainly to move some processing from fast path to slow one. 2033 * "CWR" CWND was reduced due to some Congestion Notification event. 2034 * It can be ECN, ICMP source quench, local device congestion. 2035 * "Recovery" CWND was reduced, we are fast-retransmitting. 2036 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2037 * 2038 * tcp_fastretrans_alert() is entered: 2039 * - each incoming ACK, if state is not "Open" 2040 * - when arrived ACK is unusual, namely: 2041 * * SACK 2042 * * Duplicate ACK. 2043 * * ECN ECE. 2044 * 2045 * Counting packets in flight is pretty simple. 2046 * 2047 * in_flight = packets_out - left_out + retrans_out 2048 * 2049 * packets_out is SND.NXT-SND.UNA counted in packets. 2050 * 2051 * retrans_out is number of retransmitted segments. 2052 * 2053 * left_out is number of segments left network, but not ACKed yet. 2054 * 2055 * left_out = sacked_out + lost_out 2056 * 2057 * sacked_out: Packets, which arrived to receiver out of order 2058 * and hence not ACKed. With SACKs this number is simply 2059 * amount of SACKed data. Even without SACKs 2060 * it is easy to give pretty reliable estimate of this number, 2061 * counting duplicate ACKs. 2062 * 2063 * lost_out: Packets lost by network. TCP has no explicit 2064 * "loss notification" feedback from network (for now). 2065 * It means that this number can be only _guessed_. 2066 * Actually, it is the heuristics to predict lossage that 2067 * distinguishes different algorithms. 2068 * 2069 * F.e. after RTO, when all the queue is considered as lost, 2070 * lost_out = packets_out and in_flight = retrans_out. 2071 * 2072 * Essentially, we have now a few algorithms detecting 2073 * lost packets. 2074 * 2075 * If the receiver supports SACK: 2076 * 2077 * RFC6675/3517: It is the conventional algorithm. A packet is 2078 * considered lost if the number of higher sequence packets 2079 * SACKed is greater than or equal the DUPACK thoreshold 2080 * (reordering). This is implemented in tcp_mark_head_lost and 2081 * tcp_update_scoreboard. 2082 * 2083 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2084 * (2017-) that checks timing instead of counting DUPACKs. 2085 * Essentially a packet is considered lost if it's not S/ACKed 2086 * after RTT + reordering_window, where both metrics are 2087 * dynamically measured and adjusted. This is implemented in 2088 * tcp_rack_mark_lost. 2089 * 2090 * If the receiver does not support SACK: 2091 * 2092 * NewReno (RFC6582): in Recovery we assume that one segment 2093 * is lost (classic Reno). While we are in Recovery and 2094 * a partial ACK arrives, we assume that one more packet 2095 * is lost (NewReno). This heuristics are the same in NewReno 2096 * and SACK. 2097 * 2098 * Really tricky (and requiring careful tuning) part of algorithm 2099 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2100 * The first determines the moment _when_ we should reduce CWND and, 2101 * hence, slow down forward transmission. In fact, it determines the moment 2102 * when we decide that hole is caused by loss, rather than by a reorder. 2103 * 2104 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2105 * holes, caused by lost packets. 2106 * 2107 * And the most logically complicated part of algorithm is undo 2108 * heuristics. We detect false retransmits due to both too early 2109 * fast retransmit (reordering) and underestimated RTO, analyzing 2110 * timestamps and D-SACKs. When we detect that some segments were 2111 * retransmitted by mistake and CWND reduction was wrong, we undo 2112 * window reduction and abort recovery phase. This logic is hidden 2113 * inside several functions named tcp_try_undo_<something>. 2114 */ 2115 2116 /* This function decides, when we should leave Disordered state 2117 * and enter Recovery phase, reducing congestion window. 2118 * 2119 * Main question: may we further continue forward transmission 2120 * with the same cwnd? 2121 */ 2122 static bool tcp_time_to_recover(struct sock *sk, int flag) 2123 { 2124 struct tcp_sock *tp = tcp_sk(sk); 2125 2126 /* Trick#1: The loss is proven. */ 2127 if (tp->lost_out) 2128 return true; 2129 2130 /* Not-A-Trick#2 : Classic rule... */ 2131 if (tcp_dupack_heuristics(tp) > tp->reordering) 2132 return true; 2133 2134 return false; 2135 } 2136 2137 /* Detect loss in event "A" above by marking head of queue up as lost. 2138 * For non-SACK(Reno) senders, the first "packets" number of segments 2139 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2140 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2141 * the maximum SACKed segments to pass before reaching this limit. 2142 */ 2143 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2144 { 2145 struct tcp_sock *tp = tcp_sk(sk); 2146 struct sk_buff *skb; 2147 int cnt, oldcnt, lost; 2148 unsigned int mss; 2149 /* Use SACK to deduce losses of new sequences sent during recovery */ 2150 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2151 2152 WARN_ON(packets > tp->packets_out); 2153 skb = tp->lost_skb_hint; 2154 if (skb) { 2155 /* Head already handled? */ 2156 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2157 return; 2158 cnt = tp->lost_cnt_hint; 2159 } else { 2160 skb = tcp_rtx_queue_head(sk); 2161 cnt = 0; 2162 } 2163 2164 skb_rbtree_walk_from(skb) { 2165 /* TODO: do this better */ 2166 /* this is not the most efficient way to do this... */ 2167 tp->lost_skb_hint = skb; 2168 tp->lost_cnt_hint = cnt; 2169 2170 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2171 break; 2172 2173 oldcnt = cnt; 2174 if (tcp_is_reno(tp) || 2175 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2176 cnt += tcp_skb_pcount(skb); 2177 2178 if (cnt > packets) { 2179 if (tcp_is_sack(tp) || 2180 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2181 (oldcnt >= packets)) 2182 break; 2183 2184 mss = tcp_skb_mss(skb); 2185 /* If needed, chop off the prefix to mark as lost. */ 2186 lost = (packets - oldcnt) * mss; 2187 if (lost < skb->len && 2188 tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2189 lost, mss, GFP_ATOMIC) < 0) 2190 break; 2191 cnt = packets; 2192 } 2193 2194 tcp_skb_mark_lost(tp, skb); 2195 2196 if (mark_head) 2197 break; 2198 } 2199 tcp_verify_left_out(tp); 2200 } 2201 2202 /* Account newly detected lost packet(s) */ 2203 2204 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2205 { 2206 struct tcp_sock *tp = tcp_sk(sk); 2207 2208 if (tcp_is_reno(tp)) { 2209 tcp_mark_head_lost(sk, 1, 1); 2210 } else { 2211 int sacked_upto = tp->sacked_out - tp->reordering; 2212 if (sacked_upto >= 0) 2213 tcp_mark_head_lost(sk, sacked_upto, 0); 2214 else if (fast_rexmit) 2215 tcp_mark_head_lost(sk, 1, 1); 2216 } 2217 } 2218 2219 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2220 { 2221 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2222 before(tp->rx_opt.rcv_tsecr, when); 2223 } 2224 2225 /* skb is spurious retransmitted if the returned timestamp echo 2226 * reply is prior to the skb transmission time 2227 */ 2228 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2229 const struct sk_buff *skb) 2230 { 2231 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2232 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2233 } 2234 2235 /* Nothing was retransmitted or returned timestamp is less 2236 * than timestamp of the first retransmission. 2237 */ 2238 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2239 { 2240 return !tp->retrans_stamp || 2241 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2242 } 2243 2244 /* Undo procedures. */ 2245 2246 /* We can clear retrans_stamp when there are no retransmissions in the 2247 * window. It would seem that it is trivially available for us in 2248 * tp->retrans_out, however, that kind of assumptions doesn't consider 2249 * what will happen if errors occur when sending retransmission for the 2250 * second time. ...It could the that such segment has only 2251 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2252 * the head skb is enough except for some reneging corner cases that 2253 * are not worth the effort. 2254 * 2255 * Main reason for all this complexity is the fact that connection dying 2256 * time now depends on the validity of the retrans_stamp, in particular, 2257 * that successive retransmissions of a segment must not advance 2258 * retrans_stamp under any conditions. 2259 */ 2260 static bool tcp_any_retrans_done(const struct sock *sk) 2261 { 2262 const struct tcp_sock *tp = tcp_sk(sk); 2263 struct sk_buff *skb; 2264 2265 if (tp->retrans_out) 2266 return true; 2267 2268 skb = tcp_rtx_queue_head(sk); 2269 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2270 return true; 2271 2272 return false; 2273 } 2274 2275 static void DBGUNDO(struct sock *sk, const char *msg) 2276 { 2277 #if FASTRETRANS_DEBUG > 1 2278 struct tcp_sock *tp = tcp_sk(sk); 2279 struct inet_sock *inet = inet_sk(sk); 2280 2281 if (sk->sk_family == AF_INET) { 2282 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2283 msg, 2284 &inet->inet_daddr, ntohs(inet->inet_dport), 2285 tp->snd_cwnd, tcp_left_out(tp), 2286 tp->snd_ssthresh, tp->prior_ssthresh, 2287 tp->packets_out); 2288 } 2289 #if IS_ENABLED(CONFIG_IPV6) 2290 else if (sk->sk_family == AF_INET6) { 2291 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2292 msg, 2293 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2294 tp->snd_cwnd, tcp_left_out(tp), 2295 tp->snd_ssthresh, tp->prior_ssthresh, 2296 tp->packets_out); 2297 } 2298 #endif 2299 #endif 2300 } 2301 2302 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2303 { 2304 struct tcp_sock *tp = tcp_sk(sk); 2305 2306 if (unmark_loss) { 2307 struct sk_buff *skb; 2308 2309 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2310 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2311 } 2312 tp->lost_out = 0; 2313 tcp_clear_all_retrans_hints(tp); 2314 } 2315 2316 if (tp->prior_ssthresh) { 2317 const struct inet_connection_sock *icsk = inet_csk(sk); 2318 2319 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2320 2321 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2322 tp->snd_ssthresh = tp->prior_ssthresh; 2323 tcp_ecn_withdraw_cwr(tp); 2324 } 2325 } 2326 tp->snd_cwnd_stamp = tcp_jiffies32; 2327 tp->undo_marker = 0; 2328 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2329 } 2330 2331 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2332 { 2333 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2334 } 2335 2336 /* People celebrate: "We love our President!" */ 2337 static bool tcp_try_undo_recovery(struct sock *sk) 2338 { 2339 struct tcp_sock *tp = tcp_sk(sk); 2340 2341 if (tcp_may_undo(tp)) { 2342 int mib_idx; 2343 2344 /* Happy end! We did not retransmit anything 2345 * or our original transmission succeeded. 2346 */ 2347 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2348 tcp_undo_cwnd_reduction(sk, false); 2349 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2350 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2351 else 2352 mib_idx = LINUX_MIB_TCPFULLUNDO; 2353 2354 NET_INC_STATS(sock_net(sk), mib_idx); 2355 } else if (tp->rack.reo_wnd_persist) { 2356 tp->rack.reo_wnd_persist--; 2357 } 2358 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2359 /* Hold old state until something *above* high_seq 2360 * is ACKed. For Reno it is MUST to prevent false 2361 * fast retransmits (RFC2582). SACK TCP is safe. */ 2362 if (!tcp_any_retrans_done(sk)) 2363 tp->retrans_stamp = 0; 2364 return true; 2365 } 2366 tcp_set_ca_state(sk, TCP_CA_Open); 2367 tp->is_sack_reneg = 0; 2368 return false; 2369 } 2370 2371 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2372 static bool tcp_try_undo_dsack(struct sock *sk) 2373 { 2374 struct tcp_sock *tp = tcp_sk(sk); 2375 2376 if (tp->undo_marker && !tp->undo_retrans) { 2377 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2378 tp->rack.reo_wnd_persist + 1); 2379 DBGUNDO(sk, "D-SACK"); 2380 tcp_undo_cwnd_reduction(sk, false); 2381 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2382 return true; 2383 } 2384 return false; 2385 } 2386 2387 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2388 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2389 { 2390 struct tcp_sock *tp = tcp_sk(sk); 2391 2392 if (frto_undo || tcp_may_undo(tp)) { 2393 tcp_undo_cwnd_reduction(sk, true); 2394 2395 DBGUNDO(sk, "partial loss"); 2396 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2397 if (frto_undo) 2398 NET_INC_STATS(sock_net(sk), 2399 LINUX_MIB_TCPSPURIOUSRTOS); 2400 inet_csk(sk)->icsk_retransmits = 0; 2401 if (frto_undo || tcp_is_sack(tp)) { 2402 tcp_set_ca_state(sk, TCP_CA_Open); 2403 tp->is_sack_reneg = 0; 2404 } 2405 return true; 2406 } 2407 return false; 2408 } 2409 2410 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2411 * It computes the number of packets to send (sndcnt) based on packets newly 2412 * delivered: 2413 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2414 * cwnd reductions across a full RTT. 2415 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2416 * But when the retransmits are acked without further losses, PRR 2417 * slow starts cwnd up to ssthresh to speed up the recovery. 2418 */ 2419 static void tcp_init_cwnd_reduction(struct sock *sk) 2420 { 2421 struct tcp_sock *tp = tcp_sk(sk); 2422 2423 tp->high_seq = tp->snd_nxt; 2424 tp->tlp_high_seq = 0; 2425 tp->snd_cwnd_cnt = 0; 2426 tp->prior_cwnd = tp->snd_cwnd; 2427 tp->prr_delivered = 0; 2428 tp->prr_out = 0; 2429 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2430 tcp_ecn_queue_cwr(tp); 2431 } 2432 2433 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2434 { 2435 struct tcp_sock *tp = tcp_sk(sk); 2436 int sndcnt = 0; 2437 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2438 2439 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2440 return; 2441 2442 tp->prr_delivered += newly_acked_sacked; 2443 if (delta < 0) { 2444 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2445 tp->prior_cwnd - 1; 2446 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2447 } else if ((flag & FLAG_RETRANS_DATA_ACKED) && 2448 !(flag & FLAG_LOST_RETRANS)) { 2449 sndcnt = min_t(int, delta, 2450 max_t(int, tp->prr_delivered - tp->prr_out, 2451 newly_acked_sacked) + 1); 2452 } else { 2453 sndcnt = min(delta, newly_acked_sacked); 2454 } 2455 /* Force a fast retransmit upon entering fast recovery */ 2456 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2457 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2458 } 2459 2460 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2461 { 2462 struct tcp_sock *tp = tcp_sk(sk); 2463 2464 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2465 return; 2466 2467 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2468 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2469 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2470 tp->snd_cwnd = tp->snd_ssthresh; 2471 tp->snd_cwnd_stamp = tcp_jiffies32; 2472 } 2473 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2474 } 2475 2476 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2477 void tcp_enter_cwr(struct sock *sk) 2478 { 2479 struct tcp_sock *tp = tcp_sk(sk); 2480 2481 tp->prior_ssthresh = 0; 2482 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2483 tp->undo_marker = 0; 2484 tcp_init_cwnd_reduction(sk); 2485 tcp_set_ca_state(sk, TCP_CA_CWR); 2486 } 2487 } 2488 EXPORT_SYMBOL(tcp_enter_cwr); 2489 2490 static void tcp_try_keep_open(struct sock *sk) 2491 { 2492 struct tcp_sock *tp = tcp_sk(sk); 2493 int state = TCP_CA_Open; 2494 2495 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2496 state = TCP_CA_Disorder; 2497 2498 if (inet_csk(sk)->icsk_ca_state != state) { 2499 tcp_set_ca_state(sk, state); 2500 tp->high_seq = tp->snd_nxt; 2501 } 2502 } 2503 2504 static void tcp_try_to_open(struct sock *sk, int flag) 2505 { 2506 struct tcp_sock *tp = tcp_sk(sk); 2507 2508 tcp_verify_left_out(tp); 2509 2510 if (!tcp_any_retrans_done(sk)) 2511 tp->retrans_stamp = 0; 2512 2513 if (flag & FLAG_ECE) 2514 tcp_enter_cwr(sk); 2515 2516 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2517 tcp_try_keep_open(sk); 2518 } 2519 } 2520 2521 static void tcp_mtup_probe_failed(struct sock *sk) 2522 { 2523 struct inet_connection_sock *icsk = inet_csk(sk); 2524 2525 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2526 icsk->icsk_mtup.probe_size = 0; 2527 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2528 } 2529 2530 static void tcp_mtup_probe_success(struct sock *sk) 2531 { 2532 struct tcp_sock *tp = tcp_sk(sk); 2533 struct inet_connection_sock *icsk = inet_csk(sk); 2534 2535 /* FIXME: breaks with very large cwnd */ 2536 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2537 tp->snd_cwnd = tp->snd_cwnd * 2538 tcp_mss_to_mtu(sk, tp->mss_cache) / 2539 icsk->icsk_mtup.probe_size; 2540 tp->snd_cwnd_cnt = 0; 2541 tp->snd_cwnd_stamp = tcp_jiffies32; 2542 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2543 2544 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2545 icsk->icsk_mtup.probe_size = 0; 2546 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2547 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2548 } 2549 2550 /* Do a simple retransmit without using the backoff mechanisms in 2551 * tcp_timer. This is used for path mtu discovery. 2552 * The socket is already locked here. 2553 */ 2554 void tcp_simple_retransmit(struct sock *sk) 2555 { 2556 const struct inet_connection_sock *icsk = inet_csk(sk); 2557 struct tcp_sock *tp = tcp_sk(sk); 2558 struct sk_buff *skb; 2559 unsigned int mss = tcp_current_mss(sk); 2560 2561 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2562 if (tcp_skb_seglen(skb) > mss && 2563 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2564 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2565 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2566 tp->retrans_out -= tcp_skb_pcount(skb); 2567 } 2568 tcp_skb_mark_lost_uncond_verify(tp, skb); 2569 } 2570 } 2571 2572 tcp_clear_retrans_hints_partial(tp); 2573 2574 if (!tp->lost_out) 2575 return; 2576 2577 if (tcp_is_reno(tp)) 2578 tcp_limit_reno_sacked(tp); 2579 2580 tcp_verify_left_out(tp); 2581 2582 /* Don't muck with the congestion window here. 2583 * Reason is that we do not increase amount of _data_ 2584 * in network, but units changed and effective 2585 * cwnd/ssthresh really reduced now. 2586 */ 2587 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2588 tp->high_seq = tp->snd_nxt; 2589 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2590 tp->prior_ssthresh = 0; 2591 tp->undo_marker = 0; 2592 tcp_set_ca_state(sk, TCP_CA_Loss); 2593 } 2594 tcp_xmit_retransmit_queue(sk); 2595 } 2596 EXPORT_SYMBOL(tcp_simple_retransmit); 2597 2598 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2599 { 2600 struct tcp_sock *tp = tcp_sk(sk); 2601 int mib_idx; 2602 2603 if (tcp_is_reno(tp)) 2604 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2605 else 2606 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2607 2608 NET_INC_STATS(sock_net(sk), mib_idx); 2609 2610 tp->prior_ssthresh = 0; 2611 tcp_init_undo(tp); 2612 2613 if (!tcp_in_cwnd_reduction(sk)) { 2614 if (!ece_ack) 2615 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2616 tcp_init_cwnd_reduction(sk); 2617 } 2618 tcp_set_ca_state(sk, TCP_CA_Recovery); 2619 } 2620 2621 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2622 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2623 */ 2624 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack, 2625 int *rexmit) 2626 { 2627 struct tcp_sock *tp = tcp_sk(sk); 2628 bool recovered = !before(tp->snd_una, tp->high_seq); 2629 2630 if ((flag & FLAG_SND_UNA_ADVANCED) && 2631 tcp_try_undo_loss(sk, false)) 2632 return; 2633 2634 /* The ACK (s)acks some never-retransmitted data meaning not all 2635 * the data packets before the timeout were lost. Therefore we 2636 * undo the congestion window and state. This is essentially 2637 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since 2638 * a retransmitted skb is permantly marked, we can apply such an 2639 * operation even if F-RTO was not used. 2640 */ 2641 if ((flag & FLAG_ORIG_SACK_ACKED) && 2642 tcp_try_undo_loss(sk, tp->undo_marker)) 2643 return; 2644 2645 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2646 if (after(tp->snd_nxt, tp->high_seq)) { 2647 if (flag & FLAG_DATA_SACKED || is_dupack) 2648 tp->frto = 0; /* Step 3.a. loss was real */ 2649 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2650 tp->high_seq = tp->snd_nxt; 2651 /* Step 2.b. Try send new data (but deferred until cwnd 2652 * is updated in tcp_ack()). Otherwise fall back to 2653 * the conventional recovery. 2654 */ 2655 if (!tcp_write_queue_empty(sk) && 2656 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2657 *rexmit = REXMIT_NEW; 2658 return; 2659 } 2660 tp->frto = 0; 2661 } 2662 } 2663 2664 if (recovered) { 2665 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2666 tcp_try_undo_recovery(sk); 2667 return; 2668 } 2669 if (tcp_is_reno(tp)) { 2670 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2671 * delivered. Lower inflight to clock out (re)tranmissions. 2672 */ 2673 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2674 tcp_add_reno_sack(sk); 2675 else if (flag & FLAG_SND_UNA_ADVANCED) 2676 tcp_reset_reno_sack(tp); 2677 } 2678 *rexmit = REXMIT_LOST; 2679 } 2680 2681 /* Undo during fast recovery after partial ACK. */ 2682 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una) 2683 { 2684 struct tcp_sock *tp = tcp_sk(sk); 2685 2686 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2687 /* Plain luck! Hole if filled with delayed 2688 * packet, rather than with a retransmit. Check reordering. 2689 */ 2690 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2691 2692 /* We are getting evidence that the reordering degree is higher 2693 * than we realized. If there are no retransmits out then we 2694 * can undo. Otherwise we clock out new packets but do not 2695 * mark more packets lost or retransmit more. 2696 */ 2697 if (tp->retrans_out) 2698 return true; 2699 2700 if (!tcp_any_retrans_done(sk)) 2701 tp->retrans_stamp = 0; 2702 2703 DBGUNDO(sk, "partial recovery"); 2704 tcp_undo_cwnd_reduction(sk, true); 2705 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2706 tcp_try_keep_open(sk); 2707 return true; 2708 } 2709 return false; 2710 } 2711 2712 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag) 2713 { 2714 struct tcp_sock *tp = tcp_sk(sk); 2715 2716 /* Use RACK to detect loss */ 2717 if (sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) { 2718 u32 prior_retrans = tp->retrans_out; 2719 2720 tcp_rack_mark_lost(sk); 2721 if (prior_retrans > tp->retrans_out) 2722 *ack_flag |= FLAG_LOST_RETRANS; 2723 } 2724 } 2725 2726 static bool tcp_force_fast_retransmit(struct sock *sk) 2727 { 2728 struct tcp_sock *tp = tcp_sk(sk); 2729 2730 return after(tcp_highest_sack_seq(tp), 2731 tp->snd_una + tp->reordering * tp->mss_cache); 2732 } 2733 2734 /* Process an event, which can update packets-in-flight not trivially. 2735 * Main goal of this function is to calculate new estimate for left_out, 2736 * taking into account both packets sitting in receiver's buffer and 2737 * packets lost by network. 2738 * 2739 * Besides that it updates the congestion state when packet loss or ECN 2740 * is detected. But it does not reduce the cwnd, it is done by the 2741 * congestion control later. 2742 * 2743 * It does _not_ decide what to send, it is made in function 2744 * tcp_xmit_retransmit_queue(). 2745 */ 2746 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2747 bool is_dupack, int *ack_flag, int *rexmit) 2748 { 2749 struct inet_connection_sock *icsk = inet_csk(sk); 2750 struct tcp_sock *tp = tcp_sk(sk); 2751 int fast_rexmit = 0, flag = *ack_flag; 2752 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2753 tcp_force_fast_retransmit(sk)); 2754 2755 if (!tp->packets_out && tp->sacked_out) 2756 tp->sacked_out = 0; 2757 2758 /* Now state machine starts. 2759 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2760 if (flag & FLAG_ECE) 2761 tp->prior_ssthresh = 0; 2762 2763 /* B. In all the states check for reneging SACKs. */ 2764 if (tcp_check_sack_reneging(sk, flag)) 2765 return; 2766 2767 /* C. Check consistency of the current state. */ 2768 tcp_verify_left_out(tp); 2769 2770 /* D. Check state exit conditions. State can be terminated 2771 * when high_seq is ACKed. */ 2772 if (icsk->icsk_ca_state == TCP_CA_Open) { 2773 WARN_ON(tp->retrans_out != 0); 2774 tp->retrans_stamp = 0; 2775 } else if (!before(tp->snd_una, tp->high_seq)) { 2776 switch (icsk->icsk_ca_state) { 2777 case TCP_CA_CWR: 2778 /* CWR is to be held something *above* high_seq 2779 * is ACKed for CWR bit to reach receiver. */ 2780 if (tp->snd_una != tp->high_seq) { 2781 tcp_end_cwnd_reduction(sk); 2782 tcp_set_ca_state(sk, TCP_CA_Open); 2783 } 2784 break; 2785 2786 case TCP_CA_Recovery: 2787 if (tcp_is_reno(tp)) 2788 tcp_reset_reno_sack(tp); 2789 if (tcp_try_undo_recovery(sk)) 2790 return; 2791 tcp_end_cwnd_reduction(sk); 2792 break; 2793 } 2794 } 2795 2796 /* E. Process state. */ 2797 switch (icsk->icsk_ca_state) { 2798 case TCP_CA_Recovery: 2799 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2800 if (tcp_is_reno(tp) && is_dupack) 2801 tcp_add_reno_sack(sk); 2802 } else { 2803 if (tcp_try_undo_partial(sk, prior_snd_una)) 2804 return; 2805 /* Partial ACK arrived. Force fast retransmit. */ 2806 do_lost = tcp_is_reno(tp) || 2807 tcp_force_fast_retransmit(sk); 2808 } 2809 if (tcp_try_undo_dsack(sk)) { 2810 tcp_try_keep_open(sk); 2811 return; 2812 } 2813 tcp_rack_identify_loss(sk, ack_flag); 2814 break; 2815 case TCP_CA_Loss: 2816 tcp_process_loss(sk, flag, is_dupack, rexmit); 2817 tcp_rack_identify_loss(sk, ack_flag); 2818 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2819 (*ack_flag & FLAG_LOST_RETRANS))) 2820 return; 2821 /* Change state if cwnd is undone or retransmits are lost */ 2822 /* fall through */ 2823 default: 2824 if (tcp_is_reno(tp)) { 2825 if (flag & FLAG_SND_UNA_ADVANCED) 2826 tcp_reset_reno_sack(tp); 2827 if (is_dupack) 2828 tcp_add_reno_sack(sk); 2829 } 2830 2831 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2832 tcp_try_undo_dsack(sk); 2833 2834 tcp_rack_identify_loss(sk, ack_flag); 2835 if (!tcp_time_to_recover(sk, flag)) { 2836 tcp_try_to_open(sk, flag); 2837 return; 2838 } 2839 2840 /* MTU probe failure: don't reduce cwnd */ 2841 if (icsk->icsk_ca_state < TCP_CA_CWR && 2842 icsk->icsk_mtup.probe_size && 2843 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2844 tcp_mtup_probe_failed(sk); 2845 /* Restores the reduction we did in tcp_mtup_probe() */ 2846 tp->snd_cwnd++; 2847 tcp_simple_retransmit(sk); 2848 return; 2849 } 2850 2851 /* Otherwise enter Recovery state */ 2852 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2853 fast_rexmit = 1; 2854 } 2855 2856 if (do_lost) 2857 tcp_update_scoreboard(sk, fast_rexmit); 2858 *rexmit = REXMIT_LOST; 2859 } 2860 2861 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 2862 { 2863 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ; 2864 struct tcp_sock *tp = tcp_sk(sk); 2865 2866 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 2867 /* If the remote keeps returning delayed ACKs, eventually 2868 * the min filter would pick it up and overestimate the 2869 * prop. delay when it expires. Skip suspected delayed ACKs. 2870 */ 2871 return; 2872 } 2873 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 2874 rtt_us ? : jiffies_to_usecs(1)); 2875 } 2876 2877 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2878 long seq_rtt_us, long sack_rtt_us, 2879 long ca_rtt_us, struct rate_sample *rs) 2880 { 2881 const struct tcp_sock *tp = tcp_sk(sk); 2882 2883 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2884 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2885 * Karn's algorithm forbids taking RTT if some retransmitted data 2886 * is acked (RFC6298). 2887 */ 2888 if (seq_rtt_us < 0) 2889 seq_rtt_us = sack_rtt_us; 2890 2891 /* RTTM Rule: A TSecr value received in a segment is used to 2892 * update the averaged RTT measurement only if the segment 2893 * acknowledges some new data, i.e., only if it advances the 2894 * left edge of the send window. 2895 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2896 */ 2897 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2898 flag & FLAG_ACKED) { 2899 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 2900 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 2901 2902 seq_rtt_us = ca_rtt_us = delta_us; 2903 } 2904 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 2905 if (seq_rtt_us < 0) 2906 return false; 2907 2908 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2909 * always taken together with ACK, SACK, or TS-opts. Any negative 2910 * values will be skipped with the seq_rtt_us < 0 check above. 2911 */ 2912 tcp_update_rtt_min(sk, ca_rtt_us, flag); 2913 tcp_rtt_estimator(sk, seq_rtt_us); 2914 tcp_set_rto(sk); 2915 2916 /* RFC6298: only reset backoff on valid RTT measurement. */ 2917 inet_csk(sk)->icsk_backoff = 0; 2918 return true; 2919 } 2920 2921 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2922 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2923 { 2924 struct rate_sample rs; 2925 long rtt_us = -1L; 2926 2927 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 2928 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 2929 2930 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 2931 } 2932 2933 2934 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2935 { 2936 const struct inet_connection_sock *icsk = inet_csk(sk); 2937 2938 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2939 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 2940 } 2941 2942 /* Restart timer after forward progress on connection. 2943 * RFC2988 recommends to restart timer to now+rto. 2944 */ 2945 void tcp_rearm_rto(struct sock *sk) 2946 { 2947 const struct inet_connection_sock *icsk = inet_csk(sk); 2948 struct tcp_sock *tp = tcp_sk(sk); 2949 2950 /* If the retrans timer is currently being used by Fast Open 2951 * for SYN-ACK retrans purpose, stay put. 2952 */ 2953 if (tp->fastopen_rsk) 2954 return; 2955 2956 if (!tp->packets_out) { 2957 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2958 } else { 2959 u32 rto = inet_csk(sk)->icsk_rto; 2960 /* Offset the time elapsed after installing regular RTO */ 2961 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 2962 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2963 s64 delta_us = tcp_rto_delta_us(sk); 2964 /* delta_us may not be positive if the socket is locked 2965 * when the retrans timer fires and is rescheduled. 2966 */ 2967 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 2968 } 2969 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 2970 TCP_RTO_MAX); 2971 } 2972 } 2973 2974 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 2975 static void tcp_set_xmit_timer(struct sock *sk) 2976 { 2977 if (!tcp_schedule_loss_probe(sk, true)) 2978 tcp_rearm_rto(sk); 2979 } 2980 2981 /* If we get here, the whole TSO packet has not been acked. */ 2982 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 2983 { 2984 struct tcp_sock *tp = tcp_sk(sk); 2985 u32 packets_acked; 2986 2987 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 2988 2989 packets_acked = tcp_skb_pcount(skb); 2990 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2991 return 0; 2992 packets_acked -= tcp_skb_pcount(skb); 2993 2994 if (packets_acked) { 2995 BUG_ON(tcp_skb_pcount(skb) == 0); 2996 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 2997 } 2998 2999 return packets_acked; 3000 } 3001 3002 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3003 u32 prior_snd_una) 3004 { 3005 const struct skb_shared_info *shinfo; 3006 3007 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3008 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3009 return; 3010 3011 shinfo = skb_shinfo(skb); 3012 if (!before(shinfo->tskey, prior_snd_una) && 3013 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3014 tcp_skb_tsorted_save(skb) { 3015 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3016 } tcp_skb_tsorted_restore(skb); 3017 } 3018 } 3019 3020 /* Remove acknowledged frames from the retransmission queue. If our packet 3021 * is before the ack sequence we can discard it as it's confirmed to have 3022 * arrived at the other end. 3023 */ 3024 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack, 3025 u32 prior_snd_una, 3026 struct tcp_sacktag_state *sack) 3027 { 3028 const struct inet_connection_sock *icsk = inet_csk(sk); 3029 u64 first_ackt, last_ackt; 3030 struct tcp_sock *tp = tcp_sk(sk); 3031 u32 prior_sacked = tp->sacked_out; 3032 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3033 struct sk_buff *skb, *next; 3034 bool fully_acked = true; 3035 long sack_rtt_us = -1L; 3036 long seq_rtt_us = -1L; 3037 long ca_rtt_us = -1L; 3038 u32 pkts_acked = 0; 3039 u32 last_in_flight = 0; 3040 bool rtt_update; 3041 int flag = 0; 3042 3043 first_ackt = 0; 3044 3045 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3046 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3047 const u32 start_seq = scb->seq; 3048 u8 sacked = scb->sacked; 3049 u32 acked_pcount; 3050 3051 tcp_ack_tstamp(sk, skb, prior_snd_una); 3052 3053 /* Determine how many packets and what bytes were acked, tso and else */ 3054 if (after(scb->end_seq, tp->snd_una)) { 3055 if (tcp_skb_pcount(skb) == 1 || 3056 !after(tp->snd_una, scb->seq)) 3057 break; 3058 3059 acked_pcount = tcp_tso_acked(sk, skb); 3060 if (!acked_pcount) 3061 break; 3062 fully_acked = false; 3063 } else { 3064 acked_pcount = tcp_skb_pcount(skb); 3065 } 3066 3067 if (unlikely(sacked & TCPCB_RETRANS)) { 3068 if (sacked & TCPCB_SACKED_RETRANS) 3069 tp->retrans_out -= acked_pcount; 3070 flag |= FLAG_RETRANS_DATA_ACKED; 3071 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3072 last_ackt = skb->skb_mstamp; 3073 WARN_ON_ONCE(last_ackt == 0); 3074 if (!first_ackt) 3075 first_ackt = last_ackt; 3076 3077 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3078 if (before(start_seq, reord)) 3079 reord = start_seq; 3080 if (!after(scb->end_seq, tp->high_seq)) 3081 flag |= FLAG_ORIG_SACK_ACKED; 3082 } 3083 3084 if (sacked & TCPCB_SACKED_ACKED) { 3085 tp->sacked_out -= acked_pcount; 3086 } else if (tcp_is_sack(tp)) { 3087 tp->delivered += acked_pcount; 3088 if (!tcp_skb_spurious_retrans(tp, skb)) 3089 tcp_rack_advance(tp, sacked, scb->end_seq, 3090 skb->skb_mstamp); 3091 } 3092 if (sacked & TCPCB_LOST) 3093 tp->lost_out -= acked_pcount; 3094 3095 tp->packets_out -= acked_pcount; 3096 pkts_acked += acked_pcount; 3097 tcp_rate_skb_delivered(sk, skb, sack->rate); 3098 3099 /* Initial outgoing SYN's get put onto the write_queue 3100 * just like anything else we transmit. It is not 3101 * true data, and if we misinform our callers that 3102 * this ACK acks real data, we will erroneously exit 3103 * connection startup slow start one packet too 3104 * quickly. This is severely frowned upon behavior. 3105 */ 3106 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3107 flag |= FLAG_DATA_ACKED; 3108 } else { 3109 flag |= FLAG_SYN_ACKED; 3110 tp->retrans_stamp = 0; 3111 } 3112 3113 if (!fully_acked) 3114 break; 3115 3116 next = skb_rb_next(skb); 3117 if (unlikely(skb == tp->retransmit_skb_hint)) 3118 tp->retransmit_skb_hint = NULL; 3119 if (unlikely(skb == tp->lost_skb_hint)) 3120 tp->lost_skb_hint = NULL; 3121 tcp_rtx_queue_unlink_and_free(skb, sk); 3122 } 3123 3124 if (!skb) 3125 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3126 3127 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3128 tp->snd_up = tp->snd_una; 3129 3130 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3131 flag |= FLAG_SACK_RENEGING; 3132 3133 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3134 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3135 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3136 3137 if (pkts_acked == 1 && last_in_flight < tp->mss_cache && 3138 last_in_flight && !prior_sacked && fully_acked && 3139 sack->rate->prior_delivered + 1 == tp->delivered && 3140 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3141 /* Conservatively mark a delayed ACK. It's typically 3142 * from a lone runt packet over the round trip to 3143 * a receiver w/o out-of-order or CE events. 3144 */ 3145 flag |= FLAG_ACK_MAYBE_DELAYED; 3146 } 3147 } 3148 if (sack->first_sackt) { 3149 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3150 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3151 } 3152 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3153 ca_rtt_us, sack->rate); 3154 3155 if (flag & FLAG_ACKED) { 3156 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3157 if (unlikely(icsk->icsk_mtup.probe_size && 3158 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3159 tcp_mtup_probe_success(sk); 3160 } 3161 3162 if (tcp_is_reno(tp)) { 3163 tcp_remove_reno_sacks(sk, pkts_acked); 3164 } else { 3165 int delta; 3166 3167 /* Non-retransmitted hole got filled? That's reordering */ 3168 if (before(reord, prior_fack)) 3169 tcp_check_sack_reordering(sk, reord, 0); 3170 3171 delta = prior_sacked - tp->sacked_out; 3172 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3173 } 3174 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3175 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) { 3176 /* Do not re-arm RTO if the sack RTT is measured from data sent 3177 * after when the head was last (re)transmitted. Otherwise the 3178 * timeout may continue to extend in loss recovery. 3179 */ 3180 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3181 } 3182 3183 if (icsk->icsk_ca_ops->pkts_acked) { 3184 struct ack_sample sample = { .pkts_acked = pkts_acked, 3185 .rtt_us = sack->rate->rtt_us, 3186 .in_flight = last_in_flight }; 3187 3188 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3189 } 3190 3191 #if FASTRETRANS_DEBUG > 0 3192 WARN_ON((int)tp->sacked_out < 0); 3193 WARN_ON((int)tp->lost_out < 0); 3194 WARN_ON((int)tp->retrans_out < 0); 3195 if (!tp->packets_out && tcp_is_sack(tp)) { 3196 icsk = inet_csk(sk); 3197 if (tp->lost_out) { 3198 pr_debug("Leak l=%u %d\n", 3199 tp->lost_out, icsk->icsk_ca_state); 3200 tp->lost_out = 0; 3201 } 3202 if (tp->sacked_out) { 3203 pr_debug("Leak s=%u %d\n", 3204 tp->sacked_out, icsk->icsk_ca_state); 3205 tp->sacked_out = 0; 3206 } 3207 if (tp->retrans_out) { 3208 pr_debug("Leak r=%u %d\n", 3209 tp->retrans_out, icsk->icsk_ca_state); 3210 tp->retrans_out = 0; 3211 } 3212 } 3213 #endif 3214 return flag; 3215 } 3216 3217 static void tcp_ack_probe(struct sock *sk) 3218 { 3219 struct inet_connection_sock *icsk = inet_csk(sk); 3220 struct sk_buff *head = tcp_send_head(sk); 3221 const struct tcp_sock *tp = tcp_sk(sk); 3222 3223 /* Was it a usable window open? */ 3224 if (!head) 3225 return; 3226 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3227 icsk->icsk_backoff = 0; 3228 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3229 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3230 * This function is not for random using! 3231 */ 3232 } else { 3233 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3234 3235 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3236 when, TCP_RTO_MAX); 3237 } 3238 } 3239 3240 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3241 { 3242 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3243 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3244 } 3245 3246 /* Decide wheather to run the increase function of congestion control. */ 3247 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3248 { 3249 /* If reordering is high then always grow cwnd whenever data is 3250 * delivered regardless of its ordering. Otherwise stay conservative 3251 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3252 * new SACK or ECE mark may first advance cwnd here and later reduce 3253 * cwnd in tcp_fastretrans_alert() based on more states. 3254 */ 3255 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3256 return flag & FLAG_FORWARD_PROGRESS; 3257 3258 return flag & FLAG_DATA_ACKED; 3259 } 3260 3261 /* The "ultimate" congestion control function that aims to replace the rigid 3262 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3263 * It's called toward the end of processing an ACK with precise rate 3264 * information. All transmission or retransmission are delayed afterwards. 3265 */ 3266 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3267 int flag, const struct rate_sample *rs) 3268 { 3269 const struct inet_connection_sock *icsk = inet_csk(sk); 3270 3271 if (icsk->icsk_ca_ops->cong_control) { 3272 icsk->icsk_ca_ops->cong_control(sk, rs); 3273 return; 3274 } 3275 3276 if (tcp_in_cwnd_reduction(sk)) { 3277 /* Reduce cwnd if state mandates */ 3278 tcp_cwnd_reduction(sk, acked_sacked, flag); 3279 } else if (tcp_may_raise_cwnd(sk, flag)) { 3280 /* Advance cwnd if state allows */ 3281 tcp_cong_avoid(sk, ack, acked_sacked); 3282 } 3283 tcp_update_pacing_rate(sk); 3284 } 3285 3286 /* Check that window update is acceptable. 3287 * The function assumes that snd_una<=ack<=snd_next. 3288 */ 3289 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3290 const u32 ack, const u32 ack_seq, 3291 const u32 nwin) 3292 { 3293 return after(ack, tp->snd_una) || 3294 after(ack_seq, tp->snd_wl1) || 3295 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3296 } 3297 3298 /* If we update tp->snd_una, also update tp->bytes_acked */ 3299 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3300 { 3301 u32 delta = ack - tp->snd_una; 3302 3303 sock_owned_by_me((struct sock *)tp); 3304 tp->bytes_acked += delta; 3305 tp->snd_una = ack; 3306 } 3307 3308 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3309 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3310 { 3311 u32 delta = seq - tp->rcv_nxt; 3312 3313 sock_owned_by_me((struct sock *)tp); 3314 tp->bytes_received += delta; 3315 tp->rcv_nxt = seq; 3316 } 3317 3318 /* Update our send window. 3319 * 3320 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3321 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3322 */ 3323 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3324 u32 ack_seq) 3325 { 3326 struct tcp_sock *tp = tcp_sk(sk); 3327 int flag = 0; 3328 u32 nwin = ntohs(tcp_hdr(skb)->window); 3329 3330 if (likely(!tcp_hdr(skb)->syn)) 3331 nwin <<= tp->rx_opt.snd_wscale; 3332 3333 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3334 flag |= FLAG_WIN_UPDATE; 3335 tcp_update_wl(tp, ack_seq); 3336 3337 if (tp->snd_wnd != nwin) { 3338 tp->snd_wnd = nwin; 3339 3340 /* Note, it is the only place, where 3341 * fast path is recovered for sending TCP. 3342 */ 3343 tp->pred_flags = 0; 3344 tcp_fast_path_check(sk); 3345 3346 if (!tcp_write_queue_empty(sk)) 3347 tcp_slow_start_after_idle_check(sk); 3348 3349 if (nwin > tp->max_window) { 3350 tp->max_window = nwin; 3351 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3352 } 3353 } 3354 } 3355 3356 tcp_snd_una_update(tp, ack); 3357 3358 return flag; 3359 } 3360 3361 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3362 u32 *last_oow_ack_time) 3363 { 3364 if (*last_oow_ack_time) { 3365 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3366 3367 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) { 3368 NET_INC_STATS(net, mib_idx); 3369 return true; /* rate-limited: don't send yet! */ 3370 } 3371 } 3372 3373 *last_oow_ack_time = tcp_jiffies32; 3374 3375 return false; /* not rate-limited: go ahead, send dupack now! */ 3376 } 3377 3378 /* Return true if we're currently rate-limiting out-of-window ACKs and 3379 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3380 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3381 * attacks that send repeated SYNs or ACKs for the same connection. To 3382 * do this, we do not send a duplicate SYNACK or ACK if the remote 3383 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3384 */ 3385 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3386 int mib_idx, u32 *last_oow_ack_time) 3387 { 3388 /* Data packets without SYNs are not likely part of an ACK loop. */ 3389 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3390 !tcp_hdr(skb)->syn) 3391 return false; 3392 3393 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3394 } 3395 3396 /* RFC 5961 7 [ACK Throttling] */ 3397 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3398 { 3399 /* unprotected vars, we dont care of overwrites */ 3400 static u32 challenge_timestamp; 3401 static unsigned int challenge_count; 3402 struct tcp_sock *tp = tcp_sk(sk); 3403 struct net *net = sock_net(sk); 3404 u32 count, now; 3405 3406 /* First check our per-socket dupack rate limit. */ 3407 if (__tcp_oow_rate_limited(net, 3408 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3409 &tp->last_oow_ack_time)) 3410 return; 3411 3412 /* Then check host-wide RFC 5961 rate limit. */ 3413 now = jiffies / HZ; 3414 if (now != challenge_timestamp) { 3415 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit; 3416 u32 half = (ack_limit + 1) >> 1; 3417 3418 challenge_timestamp = now; 3419 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit)); 3420 } 3421 count = READ_ONCE(challenge_count); 3422 if (count > 0) { 3423 WRITE_ONCE(challenge_count, count - 1); 3424 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3425 tcp_send_ack(sk); 3426 } 3427 } 3428 3429 static void tcp_store_ts_recent(struct tcp_sock *tp) 3430 { 3431 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3432 tp->rx_opt.ts_recent_stamp = get_seconds(); 3433 } 3434 3435 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3436 { 3437 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3438 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3439 * extra check below makes sure this can only happen 3440 * for pure ACK frames. -DaveM 3441 * 3442 * Not only, also it occurs for expired timestamps. 3443 */ 3444 3445 if (tcp_paws_check(&tp->rx_opt, 0)) 3446 tcp_store_ts_recent(tp); 3447 } 3448 } 3449 3450 /* This routine deals with acks during a TLP episode. 3451 * We mark the end of a TLP episode on receiving TLP dupack or when 3452 * ack is after tlp_high_seq. 3453 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3454 */ 3455 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3456 { 3457 struct tcp_sock *tp = tcp_sk(sk); 3458 3459 if (before(ack, tp->tlp_high_seq)) 3460 return; 3461 3462 if (flag & FLAG_DSACKING_ACK) { 3463 /* This DSACK means original and TLP probe arrived; no loss */ 3464 tp->tlp_high_seq = 0; 3465 } else if (after(ack, tp->tlp_high_seq)) { 3466 /* ACK advances: there was a loss, so reduce cwnd. Reset 3467 * tlp_high_seq in tcp_init_cwnd_reduction() 3468 */ 3469 tcp_init_cwnd_reduction(sk); 3470 tcp_set_ca_state(sk, TCP_CA_CWR); 3471 tcp_end_cwnd_reduction(sk); 3472 tcp_try_keep_open(sk); 3473 NET_INC_STATS(sock_net(sk), 3474 LINUX_MIB_TCPLOSSPROBERECOVERY); 3475 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3476 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3477 /* Pure dupack: original and TLP probe arrived; no loss */ 3478 tp->tlp_high_seq = 0; 3479 } 3480 } 3481 3482 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3483 { 3484 const struct inet_connection_sock *icsk = inet_csk(sk); 3485 3486 if (icsk->icsk_ca_ops->in_ack_event) 3487 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3488 } 3489 3490 /* Congestion control has updated the cwnd already. So if we're in 3491 * loss recovery then now we do any new sends (for FRTO) or 3492 * retransmits (for CA_Loss or CA_recovery) that make sense. 3493 */ 3494 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3495 { 3496 struct tcp_sock *tp = tcp_sk(sk); 3497 3498 if (rexmit == REXMIT_NONE) 3499 return; 3500 3501 if (unlikely(rexmit == 2)) { 3502 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3503 TCP_NAGLE_OFF); 3504 if (after(tp->snd_nxt, tp->high_seq)) 3505 return; 3506 tp->frto = 0; 3507 } 3508 tcp_xmit_retransmit_queue(sk); 3509 } 3510 3511 /* This routine deals with incoming acks, but not outgoing ones. */ 3512 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3513 { 3514 struct inet_connection_sock *icsk = inet_csk(sk); 3515 struct tcp_sock *tp = tcp_sk(sk); 3516 struct tcp_sacktag_state sack_state; 3517 struct rate_sample rs = { .prior_delivered = 0 }; 3518 u32 prior_snd_una = tp->snd_una; 3519 bool is_sack_reneg = tp->is_sack_reneg; 3520 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3521 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3522 bool is_dupack = false; 3523 int prior_packets = tp->packets_out; 3524 u32 delivered = tp->delivered; 3525 u32 lost = tp->lost; 3526 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3527 u32 prior_fack; 3528 3529 sack_state.first_sackt = 0; 3530 sack_state.rate = &rs; 3531 3532 /* We very likely will need to access rtx queue. */ 3533 prefetch(sk->tcp_rtx_queue.rb_node); 3534 3535 /* If the ack is older than previous acks 3536 * then we can probably ignore it. 3537 */ 3538 if (before(ack, prior_snd_una)) { 3539 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3540 if (before(ack, prior_snd_una - tp->max_window)) { 3541 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3542 tcp_send_challenge_ack(sk, skb); 3543 return -1; 3544 } 3545 goto old_ack; 3546 } 3547 3548 /* If the ack includes data we haven't sent yet, discard 3549 * this segment (RFC793 Section 3.9). 3550 */ 3551 if (after(ack, tp->snd_nxt)) 3552 goto invalid_ack; 3553 3554 if (after(ack, prior_snd_una)) { 3555 flag |= FLAG_SND_UNA_ADVANCED; 3556 icsk->icsk_retransmits = 0; 3557 } 3558 3559 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3560 rs.prior_in_flight = tcp_packets_in_flight(tp); 3561 3562 /* ts_recent update must be made after we are sure that the packet 3563 * is in window. 3564 */ 3565 if (flag & FLAG_UPDATE_TS_RECENT) 3566 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3567 3568 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3569 /* Window is constant, pure forward advance. 3570 * No more checks are required. 3571 * Note, we use the fact that SND.UNA>=SND.WL2. 3572 */ 3573 tcp_update_wl(tp, ack_seq); 3574 tcp_snd_una_update(tp, ack); 3575 flag |= FLAG_WIN_UPDATE; 3576 3577 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3578 3579 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3580 } else { 3581 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3582 3583 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3584 flag |= FLAG_DATA; 3585 else 3586 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3587 3588 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3589 3590 if (TCP_SKB_CB(skb)->sacked) 3591 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3592 &sack_state); 3593 3594 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3595 flag |= FLAG_ECE; 3596 ack_ev_flags |= CA_ACK_ECE; 3597 } 3598 3599 if (flag & FLAG_WIN_UPDATE) 3600 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3601 3602 tcp_in_ack_event(sk, ack_ev_flags); 3603 } 3604 3605 /* We passed data and got it acked, remove any soft error 3606 * log. Something worked... 3607 */ 3608 sk->sk_err_soft = 0; 3609 icsk->icsk_probes_out = 0; 3610 tp->rcv_tstamp = tcp_jiffies32; 3611 if (!prior_packets) 3612 goto no_queue; 3613 3614 /* See if we can take anything off of the retransmit queue. */ 3615 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state); 3616 3617 tcp_rack_update_reo_wnd(sk, &rs); 3618 3619 if (tp->tlp_high_seq) 3620 tcp_process_tlp_ack(sk, ack, flag); 3621 /* If needed, reset TLP/RTO timer; RACK may later override this. */ 3622 if (flag & FLAG_SET_XMIT_TIMER) 3623 tcp_set_xmit_timer(sk); 3624 3625 if (tcp_ack_is_dubious(sk, flag)) { 3626 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3627 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3628 &rexmit); 3629 } 3630 3631 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3632 sk_dst_confirm(sk); 3633 3634 delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */ 3635 lost = tp->lost - lost; /* freshly marked lost */ 3636 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3637 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3638 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3639 tcp_xmit_recovery(sk, rexmit); 3640 return 1; 3641 3642 no_queue: 3643 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3644 if (flag & FLAG_DSACKING_ACK) 3645 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3646 &rexmit); 3647 /* If this ack opens up a zero window, clear backoff. It was 3648 * being used to time the probes, and is probably far higher than 3649 * it needs to be for normal retransmission. 3650 */ 3651 tcp_ack_probe(sk); 3652 3653 if (tp->tlp_high_seq) 3654 tcp_process_tlp_ack(sk, ack, flag); 3655 return 1; 3656 3657 invalid_ack: 3658 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3659 return -1; 3660 3661 old_ack: 3662 /* If data was SACKed, tag it and see if we should send more data. 3663 * If data was DSACKed, see if we can undo a cwnd reduction. 3664 */ 3665 if (TCP_SKB_CB(skb)->sacked) { 3666 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3667 &sack_state); 3668 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3669 &rexmit); 3670 tcp_xmit_recovery(sk, rexmit); 3671 } 3672 3673 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3674 return 0; 3675 } 3676 3677 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3678 bool syn, struct tcp_fastopen_cookie *foc, 3679 bool exp_opt) 3680 { 3681 /* Valid only in SYN or SYN-ACK with an even length. */ 3682 if (!foc || !syn || len < 0 || (len & 1)) 3683 return; 3684 3685 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3686 len <= TCP_FASTOPEN_COOKIE_MAX) 3687 memcpy(foc->val, cookie, len); 3688 else if (len != 0) 3689 len = -1; 3690 foc->len = len; 3691 foc->exp = exp_opt; 3692 } 3693 3694 static void smc_parse_options(const struct tcphdr *th, 3695 struct tcp_options_received *opt_rx, 3696 const unsigned char *ptr, 3697 int opsize) 3698 { 3699 #if IS_ENABLED(CONFIG_SMC) 3700 if (static_branch_unlikely(&tcp_have_smc)) { 3701 if (th->syn && !(opsize & 1) && 3702 opsize >= TCPOLEN_EXP_SMC_BASE && 3703 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) 3704 opt_rx->smc_ok = 1; 3705 } 3706 #endif 3707 } 3708 3709 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3710 * But, this can also be called on packets in the established flow when 3711 * the fast version below fails. 3712 */ 3713 void tcp_parse_options(const struct net *net, 3714 const struct sk_buff *skb, 3715 struct tcp_options_received *opt_rx, int estab, 3716 struct tcp_fastopen_cookie *foc) 3717 { 3718 const unsigned char *ptr; 3719 const struct tcphdr *th = tcp_hdr(skb); 3720 int length = (th->doff * 4) - sizeof(struct tcphdr); 3721 3722 ptr = (const unsigned char *)(th + 1); 3723 opt_rx->saw_tstamp = 0; 3724 3725 while (length > 0) { 3726 int opcode = *ptr++; 3727 int opsize; 3728 3729 switch (opcode) { 3730 case TCPOPT_EOL: 3731 return; 3732 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3733 length--; 3734 continue; 3735 default: 3736 opsize = *ptr++; 3737 if (opsize < 2) /* "silly options" */ 3738 return; 3739 if (opsize > length) 3740 return; /* don't parse partial options */ 3741 switch (opcode) { 3742 case TCPOPT_MSS: 3743 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3744 u16 in_mss = get_unaligned_be16(ptr); 3745 if (in_mss) { 3746 if (opt_rx->user_mss && 3747 opt_rx->user_mss < in_mss) 3748 in_mss = opt_rx->user_mss; 3749 opt_rx->mss_clamp = in_mss; 3750 } 3751 } 3752 break; 3753 case TCPOPT_WINDOW: 3754 if (opsize == TCPOLEN_WINDOW && th->syn && 3755 !estab && net->ipv4.sysctl_tcp_window_scaling) { 3756 __u8 snd_wscale = *(__u8 *)ptr; 3757 opt_rx->wscale_ok = 1; 3758 if (snd_wscale > TCP_MAX_WSCALE) { 3759 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 3760 __func__, 3761 snd_wscale, 3762 TCP_MAX_WSCALE); 3763 snd_wscale = TCP_MAX_WSCALE; 3764 } 3765 opt_rx->snd_wscale = snd_wscale; 3766 } 3767 break; 3768 case TCPOPT_TIMESTAMP: 3769 if ((opsize == TCPOLEN_TIMESTAMP) && 3770 ((estab && opt_rx->tstamp_ok) || 3771 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 3772 opt_rx->saw_tstamp = 1; 3773 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3774 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3775 } 3776 break; 3777 case TCPOPT_SACK_PERM: 3778 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3779 !estab && net->ipv4.sysctl_tcp_sack) { 3780 opt_rx->sack_ok = TCP_SACK_SEEN; 3781 tcp_sack_reset(opt_rx); 3782 } 3783 break; 3784 3785 case TCPOPT_SACK: 3786 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3787 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3788 opt_rx->sack_ok) { 3789 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3790 } 3791 break; 3792 #ifdef CONFIG_TCP_MD5SIG 3793 case TCPOPT_MD5SIG: 3794 /* 3795 * The MD5 Hash has already been 3796 * checked (see tcp_v{4,6}_do_rcv()). 3797 */ 3798 break; 3799 #endif 3800 case TCPOPT_FASTOPEN: 3801 tcp_parse_fastopen_option( 3802 opsize - TCPOLEN_FASTOPEN_BASE, 3803 ptr, th->syn, foc, false); 3804 break; 3805 3806 case TCPOPT_EXP: 3807 /* Fast Open option shares code 254 using a 3808 * 16 bits magic number. 3809 */ 3810 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3811 get_unaligned_be16(ptr) == 3812 TCPOPT_FASTOPEN_MAGIC) 3813 tcp_parse_fastopen_option(opsize - 3814 TCPOLEN_EXP_FASTOPEN_BASE, 3815 ptr + 2, th->syn, foc, true); 3816 else 3817 smc_parse_options(th, opt_rx, ptr, 3818 opsize); 3819 break; 3820 3821 } 3822 ptr += opsize-2; 3823 length -= opsize; 3824 } 3825 } 3826 } 3827 EXPORT_SYMBOL(tcp_parse_options); 3828 3829 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3830 { 3831 const __be32 *ptr = (const __be32 *)(th + 1); 3832 3833 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3834 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3835 tp->rx_opt.saw_tstamp = 1; 3836 ++ptr; 3837 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3838 ++ptr; 3839 if (*ptr) 3840 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3841 else 3842 tp->rx_opt.rcv_tsecr = 0; 3843 return true; 3844 } 3845 return false; 3846 } 3847 3848 /* Fast parse options. This hopes to only see timestamps. 3849 * If it is wrong it falls back on tcp_parse_options(). 3850 */ 3851 static bool tcp_fast_parse_options(const struct net *net, 3852 const struct sk_buff *skb, 3853 const struct tcphdr *th, struct tcp_sock *tp) 3854 { 3855 /* In the spirit of fast parsing, compare doff directly to constant 3856 * values. Because equality is used, short doff can be ignored here. 3857 */ 3858 if (th->doff == (sizeof(*th) / 4)) { 3859 tp->rx_opt.saw_tstamp = 0; 3860 return false; 3861 } else if (tp->rx_opt.tstamp_ok && 3862 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3863 if (tcp_parse_aligned_timestamp(tp, th)) 3864 return true; 3865 } 3866 3867 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 3868 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3869 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3870 3871 return true; 3872 } 3873 3874 #ifdef CONFIG_TCP_MD5SIG 3875 /* 3876 * Parse MD5 Signature option 3877 */ 3878 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3879 { 3880 int length = (th->doff << 2) - sizeof(*th); 3881 const u8 *ptr = (const u8 *)(th + 1); 3882 3883 /* If the TCP option is too short, we can short cut */ 3884 if (length < TCPOLEN_MD5SIG) 3885 return NULL; 3886 3887 while (length > 0) { 3888 int opcode = *ptr++; 3889 int opsize; 3890 3891 switch (opcode) { 3892 case TCPOPT_EOL: 3893 return NULL; 3894 case TCPOPT_NOP: 3895 length--; 3896 continue; 3897 default: 3898 opsize = *ptr++; 3899 if (opsize < 2 || opsize > length) 3900 return NULL; 3901 if (opcode == TCPOPT_MD5SIG) 3902 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3903 } 3904 ptr += opsize - 2; 3905 length -= opsize; 3906 } 3907 return NULL; 3908 } 3909 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3910 #endif 3911 3912 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3913 * 3914 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3915 * it can pass through stack. So, the following predicate verifies that 3916 * this segment is not used for anything but congestion avoidance or 3917 * fast retransmit. Moreover, we even are able to eliminate most of such 3918 * second order effects, if we apply some small "replay" window (~RTO) 3919 * to timestamp space. 3920 * 3921 * All these measures still do not guarantee that we reject wrapped ACKs 3922 * on networks with high bandwidth, when sequence space is recycled fastly, 3923 * but it guarantees that such events will be very rare and do not affect 3924 * connection seriously. This doesn't look nice, but alas, PAWS is really 3925 * buggy extension. 3926 * 3927 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3928 * states that events when retransmit arrives after original data are rare. 3929 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3930 * the biggest problem on large power networks even with minor reordering. 3931 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3932 * up to bandwidth of 18Gigabit/sec. 8) ] 3933 */ 3934 3935 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3936 { 3937 const struct tcp_sock *tp = tcp_sk(sk); 3938 const struct tcphdr *th = tcp_hdr(skb); 3939 u32 seq = TCP_SKB_CB(skb)->seq; 3940 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3941 3942 return (/* 1. Pure ACK with correct sequence number. */ 3943 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3944 3945 /* 2. ... and duplicate ACK. */ 3946 ack == tp->snd_una && 3947 3948 /* 3. ... and does not update window. */ 3949 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3950 3951 /* 4. ... and sits in replay window. */ 3952 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3953 } 3954 3955 static inline bool tcp_paws_discard(const struct sock *sk, 3956 const struct sk_buff *skb) 3957 { 3958 const struct tcp_sock *tp = tcp_sk(sk); 3959 3960 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3961 !tcp_disordered_ack(sk, skb); 3962 } 3963 3964 /* Check segment sequence number for validity. 3965 * 3966 * Segment controls are considered valid, if the segment 3967 * fits to the window after truncation to the window. Acceptability 3968 * of data (and SYN, FIN, of course) is checked separately. 3969 * See tcp_data_queue(), for example. 3970 * 3971 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3972 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3973 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3974 * (borrowed from freebsd) 3975 */ 3976 3977 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 3978 { 3979 return !before(end_seq, tp->rcv_wup) && 3980 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3981 } 3982 3983 /* When we get a reset we do this. */ 3984 void tcp_reset(struct sock *sk) 3985 { 3986 trace_tcp_receive_reset(sk); 3987 3988 /* We want the right error as BSD sees it (and indeed as we do). */ 3989 switch (sk->sk_state) { 3990 case TCP_SYN_SENT: 3991 sk->sk_err = ECONNREFUSED; 3992 break; 3993 case TCP_CLOSE_WAIT: 3994 sk->sk_err = EPIPE; 3995 break; 3996 case TCP_CLOSE: 3997 return; 3998 default: 3999 sk->sk_err = ECONNRESET; 4000 } 4001 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4002 smp_wmb(); 4003 4004 tcp_done(sk); 4005 4006 if (!sock_flag(sk, SOCK_DEAD)) 4007 sk->sk_error_report(sk); 4008 } 4009 4010 /* 4011 * Process the FIN bit. This now behaves as it is supposed to work 4012 * and the FIN takes effect when it is validly part of sequence 4013 * space. Not before when we get holes. 4014 * 4015 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4016 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4017 * TIME-WAIT) 4018 * 4019 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4020 * close and we go into CLOSING (and later onto TIME-WAIT) 4021 * 4022 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4023 */ 4024 void tcp_fin(struct sock *sk) 4025 { 4026 struct tcp_sock *tp = tcp_sk(sk); 4027 4028 inet_csk_schedule_ack(sk); 4029 4030 sk->sk_shutdown |= RCV_SHUTDOWN; 4031 sock_set_flag(sk, SOCK_DONE); 4032 4033 switch (sk->sk_state) { 4034 case TCP_SYN_RECV: 4035 case TCP_ESTABLISHED: 4036 /* Move to CLOSE_WAIT */ 4037 tcp_set_state(sk, TCP_CLOSE_WAIT); 4038 inet_csk(sk)->icsk_ack.pingpong = 1; 4039 break; 4040 4041 case TCP_CLOSE_WAIT: 4042 case TCP_CLOSING: 4043 /* Received a retransmission of the FIN, do 4044 * nothing. 4045 */ 4046 break; 4047 case TCP_LAST_ACK: 4048 /* RFC793: Remain in the LAST-ACK state. */ 4049 break; 4050 4051 case TCP_FIN_WAIT1: 4052 /* This case occurs when a simultaneous close 4053 * happens, we must ack the received FIN and 4054 * enter the CLOSING state. 4055 */ 4056 tcp_send_ack(sk); 4057 tcp_set_state(sk, TCP_CLOSING); 4058 break; 4059 case TCP_FIN_WAIT2: 4060 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4061 tcp_send_ack(sk); 4062 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4063 break; 4064 default: 4065 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4066 * cases we should never reach this piece of code. 4067 */ 4068 pr_err("%s: Impossible, sk->sk_state=%d\n", 4069 __func__, sk->sk_state); 4070 break; 4071 } 4072 4073 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4074 * Probably, we should reset in this case. For now drop them. 4075 */ 4076 skb_rbtree_purge(&tp->out_of_order_queue); 4077 if (tcp_is_sack(tp)) 4078 tcp_sack_reset(&tp->rx_opt); 4079 sk_mem_reclaim(sk); 4080 4081 if (!sock_flag(sk, SOCK_DEAD)) { 4082 sk->sk_state_change(sk); 4083 4084 /* Do not send POLL_HUP for half duplex close. */ 4085 if (sk->sk_shutdown == SHUTDOWN_MASK || 4086 sk->sk_state == TCP_CLOSE) 4087 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4088 else 4089 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4090 } 4091 } 4092 4093 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4094 u32 end_seq) 4095 { 4096 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4097 if (before(seq, sp->start_seq)) 4098 sp->start_seq = seq; 4099 if (after(end_seq, sp->end_seq)) 4100 sp->end_seq = end_seq; 4101 return true; 4102 } 4103 return false; 4104 } 4105 4106 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4107 { 4108 struct tcp_sock *tp = tcp_sk(sk); 4109 4110 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4111 int mib_idx; 4112 4113 if (before(seq, tp->rcv_nxt)) 4114 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4115 else 4116 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4117 4118 NET_INC_STATS(sock_net(sk), mib_idx); 4119 4120 tp->rx_opt.dsack = 1; 4121 tp->duplicate_sack[0].start_seq = seq; 4122 tp->duplicate_sack[0].end_seq = end_seq; 4123 } 4124 } 4125 4126 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4127 { 4128 struct tcp_sock *tp = tcp_sk(sk); 4129 4130 if (!tp->rx_opt.dsack) 4131 tcp_dsack_set(sk, seq, end_seq); 4132 else 4133 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4134 } 4135 4136 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4137 { 4138 struct tcp_sock *tp = tcp_sk(sk); 4139 4140 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4141 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4142 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4143 tcp_enter_quickack_mode(sk); 4144 4145 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4146 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4147 4148 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4149 end_seq = tp->rcv_nxt; 4150 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4151 } 4152 } 4153 4154 tcp_send_ack(sk); 4155 } 4156 4157 /* These routines update the SACK block as out-of-order packets arrive or 4158 * in-order packets close up the sequence space. 4159 */ 4160 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4161 { 4162 int this_sack; 4163 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4164 struct tcp_sack_block *swalk = sp + 1; 4165 4166 /* See if the recent change to the first SACK eats into 4167 * or hits the sequence space of other SACK blocks, if so coalesce. 4168 */ 4169 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4170 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4171 int i; 4172 4173 /* Zap SWALK, by moving every further SACK up by one slot. 4174 * Decrease num_sacks. 4175 */ 4176 tp->rx_opt.num_sacks--; 4177 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4178 sp[i] = sp[i + 1]; 4179 continue; 4180 } 4181 this_sack++, swalk++; 4182 } 4183 } 4184 4185 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4186 { 4187 struct tcp_sock *tp = tcp_sk(sk); 4188 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4189 int cur_sacks = tp->rx_opt.num_sacks; 4190 int this_sack; 4191 4192 if (!cur_sacks) 4193 goto new_sack; 4194 4195 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4196 if (tcp_sack_extend(sp, seq, end_seq)) { 4197 /* Rotate this_sack to the first one. */ 4198 for (; this_sack > 0; this_sack--, sp--) 4199 swap(*sp, *(sp - 1)); 4200 if (cur_sacks > 1) 4201 tcp_sack_maybe_coalesce(tp); 4202 return; 4203 } 4204 } 4205 4206 /* Could not find an adjacent existing SACK, build a new one, 4207 * put it at the front, and shift everyone else down. We 4208 * always know there is at least one SACK present already here. 4209 * 4210 * If the sack array is full, forget about the last one. 4211 */ 4212 if (this_sack >= TCP_NUM_SACKS) { 4213 this_sack--; 4214 tp->rx_opt.num_sacks--; 4215 sp--; 4216 } 4217 for (; this_sack > 0; this_sack--, sp--) 4218 *sp = *(sp - 1); 4219 4220 new_sack: 4221 /* Build the new head SACK, and we're done. */ 4222 sp->start_seq = seq; 4223 sp->end_seq = end_seq; 4224 tp->rx_opt.num_sacks++; 4225 } 4226 4227 /* RCV.NXT advances, some SACKs should be eaten. */ 4228 4229 static void tcp_sack_remove(struct tcp_sock *tp) 4230 { 4231 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4232 int num_sacks = tp->rx_opt.num_sacks; 4233 int this_sack; 4234 4235 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4236 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4237 tp->rx_opt.num_sacks = 0; 4238 return; 4239 } 4240 4241 for (this_sack = 0; this_sack < num_sacks;) { 4242 /* Check if the start of the sack is covered by RCV.NXT. */ 4243 if (!before(tp->rcv_nxt, sp->start_seq)) { 4244 int i; 4245 4246 /* RCV.NXT must cover all the block! */ 4247 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4248 4249 /* Zap this SACK, by moving forward any other SACKS. */ 4250 for (i = this_sack+1; i < num_sacks; i++) 4251 tp->selective_acks[i-1] = tp->selective_acks[i]; 4252 num_sacks--; 4253 continue; 4254 } 4255 this_sack++; 4256 sp++; 4257 } 4258 tp->rx_opt.num_sacks = num_sacks; 4259 } 4260 4261 /** 4262 * tcp_try_coalesce - try to merge skb to prior one 4263 * @sk: socket 4264 * @dest: destination queue 4265 * @to: prior buffer 4266 * @from: buffer to add in queue 4267 * @fragstolen: pointer to boolean 4268 * 4269 * Before queueing skb @from after @to, try to merge them 4270 * to reduce overall memory use and queue lengths, if cost is small. 4271 * Packets in ofo or receive queues can stay a long time. 4272 * Better try to coalesce them right now to avoid future collapses. 4273 * Returns true if caller should free @from instead of queueing it 4274 */ 4275 static bool tcp_try_coalesce(struct sock *sk, 4276 struct sk_buff *to, 4277 struct sk_buff *from, 4278 bool *fragstolen) 4279 { 4280 int delta; 4281 4282 *fragstolen = false; 4283 4284 /* Its possible this segment overlaps with prior segment in queue */ 4285 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4286 return false; 4287 4288 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4289 return false; 4290 4291 atomic_add(delta, &sk->sk_rmem_alloc); 4292 sk_mem_charge(sk, delta); 4293 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4294 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4295 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4296 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4297 4298 if (TCP_SKB_CB(from)->has_rxtstamp) { 4299 TCP_SKB_CB(to)->has_rxtstamp = true; 4300 to->tstamp = from->tstamp; 4301 } 4302 4303 return true; 4304 } 4305 4306 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4307 { 4308 sk_drops_add(sk, skb); 4309 __kfree_skb(skb); 4310 } 4311 4312 /* This one checks to see if we can put data from the 4313 * out_of_order queue into the receive_queue. 4314 */ 4315 static void tcp_ofo_queue(struct sock *sk) 4316 { 4317 struct tcp_sock *tp = tcp_sk(sk); 4318 __u32 dsack_high = tp->rcv_nxt; 4319 bool fin, fragstolen, eaten; 4320 struct sk_buff *skb, *tail; 4321 struct rb_node *p; 4322 4323 p = rb_first(&tp->out_of_order_queue); 4324 while (p) { 4325 skb = rb_to_skb(p); 4326 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4327 break; 4328 4329 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4330 __u32 dsack = dsack_high; 4331 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4332 dsack_high = TCP_SKB_CB(skb)->end_seq; 4333 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4334 } 4335 p = rb_next(p); 4336 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4337 4338 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4339 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4340 tcp_drop(sk, skb); 4341 continue; 4342 } 4343 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4344 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4345 TCP_SKB_CB(skb)->end_seq); 4346 4347 tail = skb_peek_tail(&sk->sk_receive_queue); 4348 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4349 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4350 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4351 if (!eaten) 4352 __skb_queue_tail(&sk->sk_receive_queue, skb); 4353 else 4354 kfree_skb_partial(skb, fragstolen); 4355 4356 if (unlikely(fin)) { 4357 tcp_fin(sk); 4358 /* tcp_fin() purges tp->out_of_order_queue, 4359 * so we must end this loop right now. 4360 */ 4361 break; 4362 } 4363 } 4364 } 4365 4366 static bool tcp_prune_ofo_queue(struct sock *sk); 4367 static int tcp_prune_queue(struct sock *sk); 4368 4369 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4370 unsigned int size) 4371 { 4372 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4373 !sk_rmem_schedule(sk, skb, size)) { 4374 4375 if (tcp_prune_queue(sk) < 0) 4376 return -1; 4377 4378 while (!sk_rmem_schedule(sk, skb, size)) { 4379 if (!tcp_prune_ofo_queue(sk)) 4380 return -1; 4381 } 4382 } 4383 return 0; 4384 } 4385 4386 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4387 { 4388 struct tcp_sock *tp = tcp_sk(sk); 4389 struct rb_node **p, *parent; 4390 struct sk_buff *skb1; 4391 u32 seq, end_seq; 4392 bool fragstolen; 4393 4394 tcp_ecn_check_ce(tp, skb); 4395 4396 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4397 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4398 tcp_drop(sk, skb); 4399 return; 4400 } 4401 4402 /* Disable header prediction. */ 4403 tp->pred_flags = 0; 4404 inet_csk_schedule_ack(sk); 4405 4406 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4407 seq = TCP_SKB_CB(skb)->seq; 4408 end_seq = TCP_SKB_CB(skb)->end_seq; 4409 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4410 tp->rcv_nxt, seq, end_seq); 4411 4412 p = &tp->out_of_order_queue.rb_node; 4413 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4414 /* Initial out of order segment, build 1 SACK. */ 4415 if (tcp_is_sack(tp)) { 4416 tp->rx_opt.num_sacks = 1; 4417 tp->selective_acks[0].start_seq = seq; 4418 tp->selective_acks[0].end_seq = end_seq; 4419 } 4420 rb_link_node(&skb->rbnode, NULL, p); 4421 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4422 tp->ooo_last_skb = skb; 4423 goto end; 4424 } 4425 4426 /* In the typical case, we are adding an skb to the end of the list. 4427 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4428 */ 4429 if (tcp_try_coalesce(sk, tp->ooo_last_skb, 4430 skb, &fragstolen)) { 4431 coalesce_done: 4432 tcp_grow_window(sk, skb); 4433 kfree_skb_partial(skb, fragstolen); 4434 skb = NULL; 4435 goto add_sack; 4436 } 4437 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4438 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4439 parent = &tp->ooo_last_skb->rbnode; 4440 p = &parent->rb_right; 4441 goto insert; 4442 } 4443 4444 /* Find place to insert this segment. Handle overlaps on the way. */ 4445 parent = NULL; 4446 while (*p) { 4447 parent = *p; 4448 skb1 = rb_to_skb(parent); 4449 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4450 p = &parent->rb_left; 4451 continue; 4452 } 4453 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4454 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4455 /* All the bits are present. Drop. */ 4456 NET_INC_STATS(sock_net(sk), 4457 LINUX_MIB_TCPOFOMERGE); 4458 __kfree_skb(skb); 4459 skb = NULL; 4460 tcp_dsack_set(sk, seq, end_seq); 4461 goto add_sack; 4462 } 4463 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4464 /* Partial overlap. */ 4465 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4466 } else { 4467 /* skb's seq == skb1's seq and skb covers skb1. 4468 * Replace skb1 with skb. 4469 */ 4470 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4471 &tp->out_of_order_queue); 4472 tcp_dsack_extend(sk, 4473 TCP_SKB_CB(skb1)->seq, 4474 TCP_SKB_CB(skb1)->end_seq); 4475 NET_INC_STATS(sock_net(sk), 4476 LINUX_MIB_TCPOFOMERGE); 4477 __kfree_skb(skb1); 4478 goto merge_right; 4479 } 4480 } else if (tcp_try_coalesce(sk, skb1, 4481 skb, &fragstolen)) { 4482 goto coalesce_done; 4483 } 4484 p = &parent->rb_right; 4485 } 4486 insert: 4487 /* Insert segment into RB tree. */ 4488 rb_link_node(&skb->rbnode, parent, p); 4489 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4490 4491 merge_right: 4492 /* Remove other segments covered by skb. */ 4493 while ((skb1 = skb_rb_next(skb)) != NULL) { 4494 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4495 break; 4496 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4497 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4498 end_seq); 4499 break; 4500 } 4501 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4502 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4503 TCP_SKB_CB(skb1)->end_seq); 4504 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4505 tcp_drop(sk, skb1); 4506 } 4507 /* If there is no skb after us, we are the last_skb ! */ 4508 if (!skb1) 4509 tp->ooo_last_skb = skb; 4510 4511 add_sack: 4512 if (tcp_is_sack(tp)) 4513 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4514 end: 4515 if (skb) { 4516 tcp_grow_window(sk, skb); 4517 skb_condense(skb); 4518 skb_set_owner_r(skb, sk); 4519 } 4520 } 4521 4522 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4523 bool *fragstolen) 4524 { 4525 int eaten; 4526 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4527 4528 __skb_pull(skb, hdrlen); 4529 eaten = (tail && 4530 tcp_try_coalesce(sk, tail, 4531 skb, fragstolen)) ? 1 : 0; 4532 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4533 if (!eaten) { 4534 __skb_queue_tail(&sk->sk_receive_queue, skb); 4535 skb_set_owner_r(skb, sk); 4536 } 4537 return eaten; 4538 } 4539 4540 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4541 { 4542 struct sk_buff *skb; 4543 int err = -ENOMEM; 4544 int data_len = 0; 4545 bool fragstolen; 4546 4547 if (size == 0) 4548 return 0; 4549 4550 if (size > PAGE_SIZE) { 4551 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4552 4553 data_len = npages << PAGE_SHIFT; 4554 size = data_len + (size & ~PAGE_MASK); 4555 } 4556 skb = alloc_skb_with_frags(size - data_len, data_len, 4557 PAGE_ALLOC_COSTLY_ORDER, 4558 &err, sk->sk_allocation); 4559 if (!skb) 4560 goto err; 4561 4562 skb_put(skb, size - data_len); 4563 skb->data_len = data_len; 4564 skb->len = size; 4565 4566 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4567 goto err_free; 4568 4569 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4570 if (err) 4571 goto err_free; 4572 4573 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4574 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4575 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4576 4577 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4578 WARN_ON_ONCE(fragstolen); /* should not happen */ 4579 __kfree_skb(skb); 4580 } 4581 return size; 4582 4583 err_free: 4584 kfree_skb(skb); 4585 err: 4586 return err; 4587 4588 } 4589 4590 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4591 { 4592 struct tcp_sock *tp = tcp_sk(sk); 4593 bool fragstolen; 4594 int eaten; 4595 4596 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4597 __kfree_skb(skb); 4598 return; 4599 } 4600 skb_dst_drop(skb); 4601 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4602 4603 tcp_ecn_accept_cwr(tp, skb); 4604 4605 tp->rx_opt.dsack = 0; 4606 4607 /* Queue data for delivery to the user. 4608 * Packets in sequence go to the receive queue. 4609 * Out of sequence packets to the out_of_order_queue. 4610 */ 4611 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4612 if (tcp_receive_window(tp) == 0) 4613 goto out_of_window; 4614 4615 /* Ok. In sequence. In window. */ 4616 queue_and_out: 4617 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4618 sk_forced_mem_schedule(sk, skb->truesize); 4619 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4620 goto drop; 4621 4622 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4623 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4624 if (skb->len) 4625 tcp_event_data_recv(sk, skb); 4626 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4627 tcp_fin(sk); 4628 4629 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4630 tcp_ofo_queue(sk); 4631 4632 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4633 * gap in queue is filled. 4634 */ 4635 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4636 inet_csk(sk)->icsk_ack.pingpong = 0; 4637 } 4638 4639 if (tp->rx_opt.num_sacks) 4640 tcp_sack_remove(tp); 4641 4642 tcp_fast_path_check(sk); 4643 4644 if (eaten > 0) 4645 kfree_skb_partial(skb, fragstolen); 4646 if (!sock_flag(sk, SOCK_DEAD)) 4647 sk->sk_data_ready(sk); 4648 return; 4649 } 4650 4651 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4652 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4653 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4654 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4655 4656 out_of_window: 4657 tcp_enter_quickack_mode(sk); 4658 inet_csk_schedule_ack(sk); 4659 drop: 4660 tcp_drop(sk, skb); 4661 return; 4662 } 4663 4664 /* Out of window. F.e. zero window probe. */ 4665 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4666 goto out_of_window; 4667 4668 tcp_enter_quickack_mode(sk); 4669 4670 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4671 /* Partial packet, seq < rcv_next < end_seq */ 4672 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4673 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4674 TCP_SKB_CB(skb)->end_seq); 4675 4676 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4677 4678 /* If window is closed, drop tail of packet. But after 4679 * remembering D-SACK for its head made in previous line. 4680 */ 4681 if (!tcp_receive_window(tp)) 4682 goto out_of_window; 4683 goto queue_and_out; 4684 } 4685 4686 tcp_data_queue_ofo(sk, skb); 4687 } 4688 4689 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4690 { 4691 if (list) 4692 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4693 4694 return skb_rb_next(skb); 4695 } 4696 4697 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4698 struct sk_buff_head *list, 4699 struct rb_root *root) 4700 { 4701 struct sk_buff *next = tcp_skb_next(skb, list); 4702 4703 if (list) 4704 __skb_unlink(skb, list); 4705 else 4706 rb_erase(&skb->rbnode, root); 4707 4708 __kfree_skb(skb); 4709 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4710 4711 return next; 4712 } 4713 4714 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4715 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4716 { 4717 struct rb_node **p = &root->rb_node; 4718 struct rb_node *parent = NULL; 4719 struct sk_buff *skb1; 4720 4721 while (*p) { 4722 parent = *p; 4723 skb1 = rb_to_skb(parent); 4724 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4725 p = &parent->rb_left; 4726 else 4727 p = &parent->rb_right; 4728 } 4729 rb_link_node(&skb->rbnode, parent, p); 4730 rb_insert_color(&skb->rbnode, root); 4731 } 4732 4733 /* Collapse contiguous sequence of skbs head..tail with 4734 * sequence numbers start..end. 4735 * 4736 * If tail is NULL, this means until the end of the queue. 4737 * 4738 * Segments with FIN/SYN are not collapsed (only because this 4739 * simplifies code) 4740 */ 4741 static void 4742 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4743 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4744 { 4745 struct sk_buff *skb = head, *n; 4746 struct sk_buff_head tmp; 4747 bool end_of_skbs; 4748 4749 /* First, check that queue is collapsible and find 4750 * the point where collapsing can be useful. 4751 */ 4752 restart: 4753 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4754 n = tcp_skb_next(skb, list); 4755 4756 /* No new bits? It is possible on ofo queue. */ 4757 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4758 skb = tcp_collapse_one(sk, skb, list, root); 4759 if (!skb) 4760 break; 4761 goto restart; 4762 } 4763 4764 /* The first skb to collapse is: 4765 * - not SYN/FIN and 4766 * - bloated or contains data before "start" or 4767 * overlaps to the next one. 4768 */ 4769 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4770 (tcp_win_from_space(sk, skb->truesize) > skb->len || 4771 before(TCP_SKB_CB(skb)->seq, start))) { 4772 end_of_skbs = false; 4773 break; 4774 } 4775 4776 if (n && n != tail && 4777 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4778 end_of_skbs = false; 4779 break; 4780 } 4781 4782 /* Decided to skip this, advance start seq. */ 4783 start = TCP_SKB_CB(skb)->end_seq; 4784 } 4785 if (end_of_skbs || 4786 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4787 return; 4788 4789 __skb_queue_head_init(&tmp); 4790 4791 while (before(start, end)) { 4792 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4793 struct sk_buff *nskb; 4794 4795 nskb = alloc_skb(copy, GFP_ATOMIC); 4796 if (!nskb) 4797 break; 4798 4799 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4800 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4801 if (list) 4802 __skb_queue_before(list, skb, nskb); 4803 else 4804 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 4805 skb_set_owner_r(nskb, sk); 4806 4807 /* Copy data, releasing collapsed skbs. */ 4808 while (copy > 0) { 4809 int offset = start - TCP_SKB_CB(skb)->seq; 4810 int size = TCP_SKB_CB(skb)->end_seq - start; 4811 4812 BUG_ON(offset < 0); 4813 if (size > 0) { 4814 size = min(copy, size); 4815 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4816 BUG(); 4817 TCP_SKB_CB(nskb)->end_seq += size; 4818 copy -= size; 4819 start += size; 4820 } 4821 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4822 skb = tcp_collapse_one(sk, skb, list, root); 4823 if (!skb || 4824 skb == tail || 4825 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4826 goto end; 4827 } 4828 } 4829 } 4830 end: 4831 skb_queue_walk_safe(&tmp, skb, n) 4832 tcp_rbtree_insert(root, skb); 4833 } 4834 4835 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4836 * and tcp_collapse() them until all the queue is collapsed. 4837 */ 4838 static void tcp_collapse_ofo_queue(struct sock *sk) 4839 { 4840 struct tcp_sock *tp = tcp_sk(sk); 4841 struct sk_buff *skb, *head; 4842 u32 start, end; 4843 4844 skb = skb_rb_first(&tp->out_of_order_queue); 4845 new_range: 4846 if (!skb) { 4847 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 4848 return; 4849 } 4850 start = TCP_SKB_CB(skb)->seq; 4851 end = TCP_SKB_CB(skb)->end_seq; 4852 4853 for (head = skb;;) { 4854 skb = skb_rb_next(skb); 4855 4856 /* Range is terminated when we see a gap or when 4857 * we are at the queue end. 4858 */ 4859 if (!skb || 4860 after(TCP_SKB_CB(skb)->seq, end) || 4861 before(TCP_SKB_CB(skb)->end_seq, start)) { 4862 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 4863 head, skb, start, end); 4864 goto new_range; 4865 } 4866 4867 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 4868 start = TCP_SKB_CB(skb)->seq; 4869 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4870 end = TCP_SKB_CB(skb)->end_seq; 4871 } 4872 } 4873 4874 /* 4875 * Clean the out-of-order queue to make room. 4876 * We drop high sequences packets to : 4877 * 1) Let a chance for holes to be filled. 4878 * 2) not add too big latencies if thousands of packets sit there. 4879 * (But if application shrinks SO_RCVBUF, we could still end up 4880 * freeing whole queue here) 4881 * 4882 * Return true if queue has shrunk. 4883 */ 4884 static bool tcp_prune_ofo_queue(struct sock *sk) 4885 { 4886 struct tcp_sock *tp = tcp_sk(sk); 4887 struct rb_node *node, *prev; 4888 4889 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4890 return false; 4891 4892 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 4893 node = &tp->ooo_last_skb->rbnode; 4894 do { 4895 prev = rb_prev(node); 4896 rb_erase(node, &tp->out_of_order_queue); 4897 tcp_drop(sk, rb_to_skb(node)); 4898 sk_mem_reclaim(sk); 4899 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 4900 !tcp_under_memory_pressure(sk)) 4901 break; 4902 node = prev; 4903 } while (node); 4904 tp->ooo_last_skb = rb_to_skb(prev); 4905 4906 /* Reset SACK state. A conforming SACK implementation will 4907 * do the same at a timeout based retransmit. When a connection 4908 * is in a sad state like this, we care only about integrity 4909 * of the connection not performance. 4910 */ 4911 if (tp->rx_opt.sack_ok) 4912 tcp_sack_reset(&tp->rx_opt); 4913 return true; 4914 } 4915 4916 /* Reduce allocated memory if we can, trying to get 4917 * the socket within its memory limits again. 4918 * 4919 * Return less than zero if we should start dropping frames 4920 * until the socket owning process reads some of the data 4921 * to stabilize the situation. 4922 */ 4923 static int tcp_prune_queue(struct sock *sk) 4924 { 4925 struct tcp_sock *tp = tcp_sk(sk); 4926 4927 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4928 4929 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 4930 4931 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4932 tcp_clamp_window(sk); 4933 else if (tcp_under_memory_pressure(sk)) 4934 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4935 4936 tcp_collapse_ofo_queue(sk); 4937 if (!skb_queue_empty(&sk->sk_receive_queue)) 4938 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 4939 skb_peek(&sk->sk_receive_queue), 4940 NULL, 4941 tp->copied_seq, tp->rcv_nxt); 4942 sk_mem_reclaim(sk); 4943 4944 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4945 return 0; 4946 4947 /* Collapsing did not help, destructive actions follow. 4948 * This must not ever occur. */ 4949 4950 tcp_prune_ofo_queue(sk); 4951 4952 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4953 return 0; 4954 4955 /* If we are really being abused, tell the caller to silently 4956 * drop receive data on the floor. It will get retransmitted 4957 * and hopefully then we'll have sufficient space. 4958 */ 4959 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 4960 4961 /* Massive buffer overcommit. */ 4962 tp->pred_flags = 0; 4963 return -1; 4964 } 4965 4966 static bool tcp_should_expand_sndbuf(const struct sock *sk) 4967 { 4968 const struct tcp_sock *tp = tcp_sk(sk); 4969 4970 /* If the user specified a specific send buffer setting, do 4971 * not modify it. 4972 */ 4973 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4974 return false; 4975 4976 /* If we are under global TCP memory pressure, do not expand. */ 4977 if (tcp_under_memory_pressure(sk)) 4978 return false; 4979 4980 /* If we are under soft global TCP memory pressure, do not expand. */ 4981 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 4982 return false; 4983 4984 /* If we filled the congestion window, do not expand. */ 4985 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 4986 return false; 4987 4988 return true; 4989 } 4990 4991 /* When incoming ACK allowed to free some skb from write_queue, 4992 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 4993 * on the exit from tcp input handler. 4994 * 4995 * PROBLEM: sndbuf expansion does not work well with largesend. 4996 */ 4997 static void tcp_new_space(struct sock *sk) 4998 { 4999 struct tcp_sock *tp = tcp_sk(sk); 5000 5001 if (tcp_should_expand_sndbuf(sk)) { 5002 tcp_sndbuf_expand(sk); 5003 tp->snd_cwnd_stamp = tcp_jiffies32; 5004 } 5005 5006 sk->sk_write_space(sk); 5007 } 5008 5009 static void tcp_check_space(struct sock *sk) 5010 { 5011 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5012 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5013 /* pairs with tcp_poll() */ 5014 smp_mb(); 5015 if (sk->sk_socket && 5016 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5017 tcp_new_space(sk); 5018 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5019 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5020 } 5021 } 5022 } 5023 5024 static inline void tcp_data_snd_check(struct sock *sk) 5025 { 5026 tcp_push_pending_frames(sk); 5027 tcp_check_space(sk); 5028 } 5029 5030 /* 5031 * Check if sending an ack is needed. 5032 */ 5033 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5034 { 5035 struct tcp_sock *tp = tcp_sk(sk); 5036 5037 /* More than one full frame received... */ 5038 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5039 /* ... and right edge of window advances far enough. 5040 * (tcp_recvmsg() will send ACK otherwise). Or... 5041 */ 5042 __tcp_select_window(sk) >= tp->rcv_wnd) || 5043 /* We ACK each frame or... */ 5044 tcp_in_quickack_mode(sk) || 5045 /* We have out of order data. */ 5046 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) { 5047 /* Then ack it now */ 5048 tcp_send_ack(sk); 5049 } else { 5050 /* Else, send delayed ack. */ 5051 tcp_send_delayed_ack(sk); 5052 } 5053 } 5054 5055 static inline void tcp_ack_snd_check(struct sock *sk) 5056 { 5057 if (!inet_csk_ack_scheduled(sk)) { 5058 /* We sent a data segment already. */ 5059 return; 5060 } 5061 __tcp_ack_snd_check(sk, 1); 5062 } 5063 5064 /* 5065 * This routine is only called when we have urgent data 5066 * signaled. Its the 'slow' part of tcp_urg. It could be 5067 * moved inline now as tcp_urg is only called from one 5068 * place. We handle URGent data wrong. We have to - as 5069 * BSD still doesn't use the correction from RFC961. 5070 * For 1003.1g we should support a new option TCP_STDURG to permit 5071 * either form (or just set the sysctl tcp_stdurg). 5072 */ 5073 5074 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5075 { 5076 struct tcp_sock *tp = tcp_sk(sk); 5077 u32 ptr = ntohs(th->urg_ptr); 5078 5079 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg) 5080 ptr--; 5081 ptr += ntohl(th->seq); 5082 5083 /* Ignore urgent data that we've already seen and read. */ 5084 if (after(tp->copied_seq, ptr)) 5085 return; 5086 5087 /* Do not replay urg ptr. 5088 * 5089 * NOTE: interesting situation not covered by specs. 5090 * Misbehaving sender may send urg ptr, pointing to segment, 5091 * which we already have in ofo queue. We are not able to fetch 5092 * such data and will stay in TCP_URG_NOTYET until will be eaten 5093 * by recvmsg(). Seems, we are not obliged to handle such wicked 5094 * situations. But it is worth to think about possibility of some 5095 * DoSes using some hypothetical application level deadlock. 5096 */ 5097 if (before(ptr, tp->rcv_nxt)) 5098 return; 5099 5100 /* Do we already have a newer (or duplicate) urgent pointer? */ 5101 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5102 return; 5103 5104 /* Tell the world about our new urgent pointer. */ 5105 sk_send_sigurg(sk); 5106 5107 /* We may be adding urgent data when the last byte read was 5108 * urgent. To do this requires some care. We cannot just ignore 5109 * tp->copied_seq since we would read the last urgent byte again 5110 * as data, nor can we alter copied_seq until this data arrives 5111 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5112 * 5113 * NOTE. Double Dutch. Rendering to plain English: author of comment 5114 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5115 * and expect that both A and B disappear from stream. This is _wrong_. 5116 * Though this happens in BSD with high probability, this is occasional. 5117 * Any application relying on this is buggy. Note also, that fix "works" 5118 * only in this artificial test. Insert some normal data between A and B and we will 5119 * decline of BSD again. Verdict: it is better to remove to trap 5120 * buggy users. 5121 */ 5122 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5123 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5124 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5125 tp->copied_seq++; 5126 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5127 __skb_unlink(skb, &sk->sk_receive_queue); 5128 __kfree_skb(skb); 5129 } 5130 } 5131 5132 tp->urg_data = TCP_URG_NOTYET; 5133 tp->urg_seq = ptr; 5134 5135 /* Disable header prediction. */ 5136 tp->pred_flags = 0; 5137 } 5138 5139 /* This is the 'fast' part of urgent handling. */ 5140 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5141 { 5142 struct tcp_sock *tp = tcp_sk(sk); 5143 5144 /* Check if we get a new urgent pointer - normally not. */ 5145 if (th->urg) 5146 tcp_check_urg(sk, th); 5147 5148 /* Do we wait for any urgent data? - normally not... */ 5149 if (tp->urg_data == TCP_URG_NOTYET) { 5150 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5151 th->syn; 5152 5153 /* Is the urgent pointer pointing into this packet? */ 5154 if (ptr < skb->len) { 5155 u8 tmp; 5156 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5157 BUG(); 5158 tp->urg_data = TCP_URG_VALID | tmp; 5159 if (!sock_flag(sk, SOCK_DEAD)) 5160 sk->sk_data_ready(sk); 5161 } 5162 } 5163 } 5164 5165 /* Accept RST for rcv_nxt - 1 after a FIN. 5166 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5167 * FIN is sent followed by a RST packet. The RST is sent with the same 5168 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5169 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5170 * ACKs on the closed socket. In addition middleboxes can drop either the 5171 * challenge ACK or a subsequent RST. 5172 */ 5173 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5174 { 5175 struct tcp_sock *tp = tcp_sk(sk); 5176 5177 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5178 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5179 TCPF_CLOSING)); 5180 } 5181 5182 /* Does PAWS and seqno based validation of an incoming segment, flags will 5183 * play significant role here. 5184 */ 5185 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5186 const struct tcphdr *th, int syn_inerr) 5187 { 5188 struct tcp_sock *tp = tcp_sk(sk); 5189 bool rst_seq_match = false; 5190 5191 /* RFC1323: H1. Apply PAWS check first. */ 5192 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5193 tp->rx_opt.saw_tstamp && 5194 tcp_paws_discard(sk, skb)) { 5195 if (!th->rst) { 5196 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5197 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5198 LINUX_MIB_TCPACKSKIPPEDPAWS, 5199 &tp->last_oow_ack_time)) 5200 tcp_send_dupack(sk, skb); 5201 goto discard; 5202 } 5203 /* Reset is accepted even if it did not pass PAWS. */ 5204 } 5205 5206 /* Step 1: check sequence number */ 5207 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5208 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5209 * (RST) segments are validated by checking their SEQ-fields." 5210 * And page 69: "If an incoming segment is not acceptable, 5211 * an acknowledgment should be sent in reply (unless the RST 5212 * bit is set, if so drop the segment and return)". 5213 */ 5214 if (!th->rst) { 5215 if (th->syn) 5216 goto syn_challenge; 5217 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5218 LINUX_MIB_TCPACKSKIPPEDSEQ, 5219 &tp->last_oow_ack_time)) 5220 tcp_send_dupack(sk, skb); 5221 } else if (tcp_reset_check(sk, skb)) { 5222 tcp_reset(sk); 5223 } 5224 goto discard; 5225 } 5226 5227 /* Step 2: check RST bit */ 5228 if (th->rst) { 5229 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5230 * FIN and SACK too if available): 5231 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5232 * the right-most SACK block, 5233 * then 5234 * RESET the connection 5235 * else 5236 * Send a challenge ACK 5237 */ 5238 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5239 tcp_reset_check(sk, skb)) { 5240 rst_seq_match = true; 5241 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5242 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5243 int max_sack = sp[0].end_seq; 5244 int this_sack; 5245 5246 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5247 ++this_sack) { 5248 max_sack = after(sp[this_sack].end_seq, 5249 max_sack) ? 5250 sp[this_sack].end_seq : max_sack; 5251 } 5252 5253 if (TCP_SKB_CB(skb)->seq == max_sack) 5254 rst_seq_match = true; 5255 } 5256 5257 if (rst_seq_match) 5258 tcp_reset(sk); 5259 else { 5260 /* Disable TFO if RST is out-of-order 5261 * and no data has been received 5262 * for current active TFO socket 5263 */ 5264 if (tp->syn_fastopen && !tp->data_segs_in && 5265 sk->sk_state == TCP_ESTABLISHED) 5266 tcp_fastopen_active_disable(sk); 5267 tcp_send_challenge_ack(sk, skb); 5268 } 5269 goto discard; 5270 } 5271 5272 /* step 3: check security and precedence [ignored] */ 5273 5274 /* step 4: Check for a SYN 5275 * RFC 5961 4.2 : Send a challenge ack 5276 */ 5277 if (th->syn) { 5278 syn_challenge: 5279 if (syn_inerr) 5280 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5281 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5282 tcp_send_challenge_ack(sk, skb); 5283 goto discard; 5284 } 5285 5286 return true; 5287 5288 discard: 5289 tcp_drop(sk, skb); 5290 return false; 5291 } 5292 5293 /* 5294 * TCP receive function for the ESTABLISHED state. 5295 * 5296 * It is split into a fast path and a slow path. The fast path is 5297 * disabled when: 5298 * - A zero window was announced from us - zero window probing 5299 * is only handled properly in the slow path. 5300 * - Out of order segments arrived. 5301 * - Urgent data is expected. 5302 * - There is no buffer space left 5303 * - Unexpected TCP flags/window values/header lengths are received 5304 * (detected by checking the TCP header against pred_flags) 5305 * - Data is sent in both directions. Fast path only supports pure senders 5306 * or pure receivers (this means either the sequence number or the ack 5307 * value must stay constant) 5308 * - Unexpected TCP option. 5309 * 5310 * When these conditions are not satisfied it drops into a standard 5311 * receive procedure patterned after RFC793 to handle all cases. 5312 * The first three cases are guaranteed by proper pred_flags setting, 5313 * the rest is checked inline. Fast processing is turned on in 5314 * tcp_data_queue when everything is OK. 5315 */ 5316 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5317 const struct tcphdr *th) 5318 { 5319 unsigned int len = skb->len; 5320 struct tcp_sock *tp = tcp_sk(sk); 5321 5322 /* TCP congestion window tracking */ 5323 trace_tcp_probe(sk, skb); 5324 5325 tcp_mstamp_refresh(tp); 5326 if (unlikely(!sk->sk_rx_dst)) 5327 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5328 /* 5329 * Header prediction. 5330 * The code loosely follows the one in the famous 5331 * "30 instruction TCP receive" Van Jacobson mail. 5332 * 5333 * Van's trick is to deposit buffers into socket queue 5334 * on a device interrupt, to call tcp_recv function 5335 * on the receive process context and checksum and copy 5336 * the buffer to user space. smart... 5337 * 5338 * Our current scheme is not silly either but we take the 5339 * extra cost of the net_bh soft interrupt processing... 5340 * We do checksum and copy also but from device to kernel. 5341 */ 5342 5343 tp->rx_opt.saw_tstamp = 0; 5344 5345 /* pred_flags is 0xS?10 << 16 + snd_wnd 5346 * if header_prediction is to be made 5347 * 'S' will always be tp->tcp_header_len >> 2 5348 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5349 * turn it off (when there are holes in the receive 5350 * space for instance) 5351 * PSH flag is ignored. 5352 */ 5353 5354 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5355 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5356 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5357 int tcp_header_len = tp->tcp_header_len; 5358 5359 /* Timestamp header prediction: tcp_header_len 5360 * is automatically equal to th->doff*4 due to pred_flags 5361 * match. 5362 */ 5363 5364 /* Check timestamp */ 5365 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5366 /* No? Slow path! */ 5367 if (!tcp_parse_aligned_timestamp(tp, th)) 5368 goto slow_path; 5369 5370 /* If PAWS failed, check it more carefully in slow path */ 5371 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5372 goto slow_path; 5373 5374 /* DO NOT update ts_recent here, if checksum fails 5375 * and timestamp was corrupted part, it will result 5376 * in a hung connection since we will drop all 5377 * future packets due to the PAWS test. 5378 */ 5379 } 5380 5381 if (len <= tcp_header_len) { 5382 /* Bulk data transfer: sender */ 5383 if (len == tcp_header_len) { 5384 /* Predicted packet is in window by definition. 5385 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5386 * Hence, check seq<=rcv_wup reduces to: 5387 */ 5388 if (tcp_header_len == 5389 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5390 tp->rcv_nxt == tp->rcv_wup) 5391 tcp_store_ts_recent(tp); 5392 5393 /* We know that such packets are checksummed 5394 * on entry. 5395 */ 5396 tcp_ack(sk, skb, 0); 5397 __kfree_skb(skb); 5398 tcp_data_snd_check(sk); 5399 return; 5400 } else { /* Header too small */ 5401 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5402 goto discard; 5403 } 5404 } else { 5405 int eaten = 0; 5406 bool fragstolen = false; 5407 5408 if (tcp_checksum_complete(skb)) 5409 goto csum_error; 5410 5411 if ((int)skb->truesize > sk->sk_forward_alloc) 5412 goto step5; 5413 5414 /* Predicted packet is in window by definition. 5415 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5416 * Hence, check seq<=rcv_wup reduces to: 5417 */ 5418 if (tcp_header_len == 5419 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5420 tp->rcv_nxt == tp->rcv_wup) 5421 tcp_store_ts_recent(tp); 5422 5423 tcp_rcv_rtt_measure_ts(sk, skb); 5424 5425 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5426 5427 /* Bulk data transfer: receiver */ 5428 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5429 &fragstolen); 5430 5431 tcp_event_data_recv(sk, skb); 5432 5433 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5434 /* Well, only one small jumplet in fast path... */ 5435 tcp_ack(sk, skb, FLAG_DATA); 5436 tcp_data_snd_check(sk); 5437 if (!inet_csk_ack_scheduled(sk)) 5438 goto no_ack; 5439 } 5440 5441 __tcp_ack_snd_check(sk, 0); 5442 no_ack: 5443 if (eaten) 5444 kfree_skb_partial(skb, fragstolen); 5445 sk->sk_data_ready(sk); 5446 return; 5447 } 5448 } 5449 5450 slow_path: 5451 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5452 goto csum_error; 5453 5454 if (!th->ack && !th->rst && !th->syn) 5455 goto discard; 5456 5457 /* 5458 * Standard slow path. 5459 */ 5460 5461 if (!tcp_validate_incoming(sk, skb, th, 1)) 5462 return; 5463 5464 step5: 5465 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5466 goto discard; 5467 5468 tcp_rcv_rtt_measure_ts(sk, skb); 5469 5470 /* Process urgent data. */ 5471 tcp_urg(sk, skb, th); 5472 5473 /* step 7: process the segment text */ 5474 tcp_data_queue(sk, skb); 5475 5476 tcp_data_snd_check(sk); 5477 tcp_ack_snd_check(sk); 5478 return; 5479 5480 csum_error: 5481 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5482 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5483 5484 discard: 5485 tcp_drop(sk, skb); 5486 } 5487 EXPORT_SYMBOL(tcp_rcv_established); 5488 5489 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5490 { 5491 struct tcp_sock *tp = tcp_sk(sk); 5492 struct inet_connection_sock *icsk = inet_csk(sk); 5493 5494 tcp_set_state(sk, TCP_ESTABLISHED); 5495 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5496 5497 if (skb) { 5498 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5499 security_inet_conn_established(sk, skb); 5500 } 5501 5502 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB); 5503 5504 /* Prevent spurious tcp_cwnd_restart() on first data 5505 * packet. 5506 */ 5507 tp->lsndtime = tcp_jiffies32; 5508 5509 if (sock_flag(sk, SOCK_KEEPOPEN)) 5510 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5511 5512 if (!tp->rx_opt.snd_wscale) 5513 __tcp_fast_path_on(tp, tp->snd_wnd); 5514 else 5515 tp->pred_flags = 0; 5516 } 5517 5518 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5519 struct tcp_fastopen_cookie *cookie) 5520 { 5521 struct tcp_sock *tp = tcp_sk(sk); 5522 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 5523 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5524 bool syn_drop = false; 5525 5526 if (mss == tp->rx_opt.user_mss) { 5527 struct tcp_options_received opt; 5528 5529 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5530 tcp_clear_options(&opt); 5531 opt.user_mss = opt.mss_clamp = 0; 5532 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 5533 mss = opt.mss_clamp; 5534 } 5535 5536 if (!tp->syn_fastopen) { 5537 /* Ignore an unsolicited cookie */ 5538 cookie->len = -1; 5539 } else if (tp->total_retrans) { 5540 /* SYN timed out and the SYN-ACK neither has a cookie nor 5541 * acknowledges data. Presumably the remote received only 5542 * the retransmitted (regular) SYNs: either the original 5543 * SYN-data or the corresponding SYN-ACK was dropped. 5544 */ 5545 syn_drop = (cookie->len < 0 && data); 5546 } else if (cookie->len < 0 && !tp->syn_data) { 5547 /* We requested a cookie but didn't get it. If we did not use 5548 * the (old) exp opt format then try so next time (try_exp=1). 5549 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5550 */ 5551 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5552 } 5553 5554 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5555 5556 if (data) { /* Retransmit unacked data in SYN */ 5557 skb_rbtree_walk_from(data) { 5558 if (__tcp_retransmit_skb(sk, data, 1)) 5559 break; 5560 } 5561 tcp_rearm_rto(sk); 5562 NET_INC_STATS(sock_net(sk), 5563 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5564 return true; 5565 } 5566 tp->syn_data_acked = tp->syn_data; 5567 if (tp->syn_data_acked) 5568 NET_INC_STATS(sock_net(sk), 5569 LINUX_MIB_TCPFASTOPENACTIVE); 5570 5571 tcp_fastopen_add_skb(sk, synack); 5572 5573 return false; 5574 } 5575 5576 static void smc_check_reset_syn(struct tcp_sock *tp) 5577 { 5578 #if IS_ENABLED(CONFIG_SMC) 5579 if (static_branch_unlikely(&tcp_have_smc)) { 5580 if (tp->syn_smc && !tp->rx_opt.smc_ok) 5581 tp->syn_smc = 0; 5582 } 5583 #endif 5584 } 5585 5586 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5587 const struct tcphdr *th) 5588 { 5589 struct inet_connection_sock *icsk = inet_csk(sk); 5590 struct tcp_sock *tp = tcp_sk(sk); 5591 struct tcp_fastopen_cookie foc = { .len = -1 }; 5592 int saved_clamp = tp->rx_opt.mss_clamp; 5593 bool fastopen_fail; 5594 5595 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 5596 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5597 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5598 5599 if (th->ack) { 5600 /* rfc793: 5601 * "If the state is SYN-SENT then 5602 * first check the ACK bit 5603 * If the ACK bit is set 5604 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5605 * a reset (unless the RST bit is set, if so drop 5606 * the segment and return)" 5607 */ 5608 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5609 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5610 goto reset_and_undo; 5611 5612 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5613 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5614 tcp_time_stamp(tp))) { 5615 NET_INC_STATS(sock_net(sk), 5616 LINUX_MIB_PAWSACTIVEREJECTED); 5617 goto reset_and_undo; 5618 } 5619 5620 /* Now ACK is acceptable. 5621 * 5622 * "If the RST bit is set 5623 * If the ACK was acceptable then signal the user "error: 5624 * connection reset", drop the segment, enter CLOSED state, 5625 * delete TCB, and return." 5626 */ 5627 5628 if (th->rst) { 5629 tcp_reset(sk); 5630 goto discard; 5631 } 5632 5633 /* rfc793: 5634 * "fifth, if neither of the SYN or RST bits is set then 5635 * drop the segment and return." 5636 * 5637 * See note below! 5638 * --ANK(990513) 5639 */ 5640 if (!th->syn) 5641 goto discard_and_undo; 5642 5643 /* rfc793: 5644 * "If the SYN bit is on ... 5645 * are acceptable then ... 5646 * (our SYN has been ACKed), change the connection 5647 * state to ESTABLISHED..." 5648 */ 5649 5650 tcp_ecn_rcv_synack(tp, th); 5651 5652 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5653 tcp_ack(sk, skb, FLAG_SLOWPATH); 5654 5655 /* Ok.. it's good. Set up sequence numbers and 5656 * move to established. 5657 */ 5658 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5659 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5660 5661 /* RFC1323: The window in SYN & SYN/ACK segments is 5662 * never scaled. 5663 */ 5664 tp->snd_wnd = ntohs(th->window); 5665 5666 if (!tp->rx_opt.wscale_ok) { 5667 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5668 tp->window_clamp = min(tp->window_clamp, 65535U); 5669 } 5670 5671 if (tp->rx_opt.saw_tstamp) { 5672 tp->rx_opt.tstamp_ok = 1; 5673 tp->tcp_header_len = 5674 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5675 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5676 tcp_store_ts_recent(tp); 5677 } else { 5678 tp->tcp_header_len = sizeof(struct tcphdr); 5679 } 5680 5681 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5682 tcp_initialize_rcv_mss(sk); 5683 5684 /* Remember, tcp_poll() does not lock socket! 5685 * Change state from SYN-SENT only after copied_seq 5686 * is initialized. */ 5687 tp->copied_seq = tp->rcv_nxt; 5688 5689 smc_check_reset_syn(tp); 5690 5691 smp_mb(); 5692 5693 tcp_finish_connect(sk, skb); 5694 5695 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 5696 tcp_rcv_fastopen_synack(sk, skb, &foc); 5697 5698 if (!sock_flag(sk, SOCK_DEAD)) { 5699 sk->sk_state_change(sk); 5700 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5701 } 5702 if (fastopen_fail) 5703 return -1; 5704 if (sk->sk_write_pending || 5705 icsk->icsk_accept_queue.rskq_defer_accept || 5706 icsk->icsk_ack.pingpong) { 5707 /* Save one ACK. Data will be ready after 5708 * several ticks, if write_pending is set. 5709 * 5710 * It may be deleted, but with this feature tcpdumps 5711 * look so _wonderfully_ clever, that I was not able 5712 * to stand against the temptation 8) --ANK 5713 */ 5714 inet_csk_schedule_ack(sk); 5715 tcp_enter_quickack_mode(sk); 5716 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5717 TCP_DELACK_MAX, TCP_RTO_MAX); 5718 5719 discard: 5720 tcp_drop(sk, skb); 5721 return 0; 5722 } else { 5723 tcp_send_ack(sk); 5724 } 5725 return -1; 5726 } 5727 5728 /* No ACK in the segment */ 5729 5730 if (th->rst) { 5731 /* rfc793: 5732 * "If the RST bit is set 5733 * 5734 * Otherwise (no ACK) drop the segment and return." 5735 */ 5736 5737 goto discard_and_undo; 5738 } 5739 5740 /* PAWS check. */ 5741 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5742 tcp_paws_reject(&tp->rx_opt, 0)) 5743 goto discard_and_undo; 5744 5745 if (th->syn) { 5746 /* We see SYN without ACK. It is attempt of 5747 * simultaneous connect with crossed SYNs. 5748 * Particularly, it can be connect to self. 5749 */ 5750 tcp_set_state(sk, TCP_SYN_RECV); 5751 5752 if (tp->rx_opt.saw_tstamp) { 5753 tp->rx_opt.tstamp_ok = 1; 5754 tcp_store_ts_recent(tp); 5755 tp->tcp_header_len = 5756 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5757 } else { 5758 tp->tcp_header_len = sizeof(struct tcphdr); 5759 } 5760 5761 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5762 tp->copied_seq = tp->rcv_nxt; 5763 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5764 5765 /* RFC1323: The window in SYN & SYN/ACK segments is 5766 * never scaled. 5767 */ 5768 tp->snd_wnd = ntohs(th->window); 5769 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5770 tp->max_window = tp->snd_wnd; 5771 5772 tcp_ecn_rcv_syn(tp, th); 5773 5774 tcp_mtup_init(sk); 5775 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5776 tcp_initialize_rcv_mss(sk); 5777 5778 tcp_send_synack(sk); 5779 #if 0 5780 /* Note, we could accept data and URG from this segment. 5781 * There are no obstacles to make this (except that we must 5782 * either change tcp_recvmsg() to prevent it from returning data 5783 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5784 * 5785 * However, if we ignore data in ACKless segments sometimes, 5786 * we have no reasons to accept it sometimes. 5787 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5788 * is not flawless. So, discard packet for sanity. 5789 * Uncomment this return to process the data. 5790 */ 5791 return -1; 5792 #else 5793 goto discard; 5794 #endif 5795 } 5796 /* "fifth, if neither of the SYN or RST bits is set then 5797 * drop the segment and return." 5798 */ 5799 5800 discard_and_undo: 5801 tcp_clear_options(&tp->rx_opt); 5802 tp->rx_opt.mss_clamp = saved_clamp; 5803 goto discard; 5804 5805 reset_and_undo: 5806 tcp_clear_options(&tp->rx_opt); 5807 tp->rx_opt.mss_clamp = saved_clamp; 5808 return 1; 5809 } 5810 5811 /* 5812 * This function implements the receiving procedure of RFC 793 for 5813 * all states except ESTABLISHED and TIME_WAIT. 5814 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5815 * address independent. 5816 */ 5817 5818 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 5819 { 5820 struct tcp_sock *tp = tcp_sk(sk); 5821 struct inet_connection_sock *icsk = inet_csk(sk); 5822 const struct tcphdr *th = tcp_hdr(skb); 5823 struct request_sock *req; 5824 int queued = 0; 5825 bool acceptable; 5826 5827 switch (sk->sk_state) { 5828 case TCP_CLOSE: 5829 goto discard; 5830 5831 case TCP_LISTEN: 5832 if (th->ack) 5833 return 1; 5834 5835 if (th->rst) 5836 goto discard; 5837 5838 if (th->syn) { 5839 if (th->fin) 5840 goto discard; 5841 /* It is possible that we process SYN packets from backlog, 5842 * so we need to make sure to disable BH right there. 5843 */ 5844 local_bh_disable(); 5845 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 5846 local_bh_enable(); 5847 5848 if (!acceptable) 5849 return 1; 5850 consume_skb(skb); 5851 return 0; 5852 } 5853 goto discard; 5854 5855 case TCP_SYN_SENT: 5856 tp->rx_opt.saw_tstamp = 0; 5857 tcp_mstamp_refresh(tp); 5858 queued = tcp_rcv_synsent_state_process(sk, skb, th); 5859 if (queued >= 0) 5860 return queued; 5861 5862 /* Do step6 onward by hand. */ 5863 tcp_urg(sk, skb, th); 5864 __kfree_skb(skb); 5865 tcp_data_snd_check(sk); 5866 return 0; 5867 } 5868 5869 tcp_mstamp_refresh(tp); 5870 tp->rx_opt.saw_tstamp = 0; 5871 req = tp->fastopen_rsk; 5872 if (req) { 5873 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5874 sk->sk_state != TCP_FIN_WAIT1); 5875 5876 if (!tcp_check_req(sk, skb, req, true)) 5877 goto discard; 5878 } 5879 5880 if (!th->ack && !th->rst && !th->syn) 5881 goto discard; 5882 5883 if (!tcp_validate_incoming(sk, skb, th, 0)) 5884 return 0; 5885 5886 /* step 5: check the ACK field */ 5887 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5888 FLAG_UPDATE_TS_RECENT | 5889 FLAG_NO_CHALLENGE_ACK) > 0; 5890 5891 if (!acceptable) { 5892 if (sk->sk_state == TCP_SYN_RECV) 5893 return 1; /* send one RST */ 5894 tcp_send_challenge_ack(sk, skb); 5895 goto discard; 5896 } 5897 switch (sk->sk_state) { 5898 case TCP_SYN_RECV: 5899 if (!tp->srtt_us) 5900 tcp_synack_rtt_meas(sk, req); 5901 5902 /* Once we leave TCP_SYN_RECV, we no longer need req 5903 * so release it. 5904 */ 5905 if (req) { 5906 inet_csk(sk)->icsk_retransmits = 0; 5907 reqsk_fastopen_remove(sk, req, false); 5908 /* Re-arm the timer because data may have been sent out. 5909 * This is similar to the regular data transmission case 5910 * when new data has just been ack'ed. 5911 * 5912 * (TFO) - we could try to be more aggressive and 5913 * retransmitting any data sooner based on when they 5914 * are sent out. 5915 */ 5916 tcp_rearm_rto(sk); 5917 } else { 5918 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB); 5919 tp->copied_seq = tp->rcv_nxt; 5920 } 5921 smp_mb(); 5922 tcp_set_state(sk, TCP_ESTABLISHED); 5923 sk->sk_state_change(sk); 5924 5925 /* Note, that this wakeup is only for marginal crossed SYN case. 5926 * Passively open sockets are not waked up, because 5927 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 5928 */ 5929 if (sk->sk_socket) 5930 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5931 5932 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5933 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 5934 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5935 5936 if (tp->rx_opt.tstamp_ok) 5937 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5938 5939 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 5940 tcp_update_pacing_rate(sk); 5941 5942 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 5943 tp->lsndtime = tcp_jiffies32; 5944 5945 tcp_initialize_rcv_mss(sk); 5946 tcp_fast_path_on(tp); 5947 break; 5948 5949 case TCP_FIN_WAIT1: { 5950 int tmo; 5951 5952 /* If we enter the TCP_FIN_WAIT1 state and we are a 5953 * Fast Open socket and this is the first acceptable 5954 * ACK we have received, this would have acknowledged 5955 * our SYNACK so stop the SYNACK timer. 5956 */ 5957 if (req) { 5958 /* We no longer need the request sock. */ 5959 reqsk_fastopen_remove(sk, req, false); 5960 tcp_rearm_rto(sk); 5961 } 5962 if (tp->snd_una != tp->write_seq) 5963 break; 5964 5965 tcp_set_state(sk, TCP_FIN_WAIT2); 5966 sk->sk_shutdown |= SEND_SHUTDOWN; 5967 5968 sk_dst_confirm(sk); 5969 5970 if (!sock_flag(sk, SOCK_DEAD)) { 5971 /* Wake up lingering close() */ 5972 sk->sk_state_change(sk); 5973 break; 5974 } 5975 5976 if (tp->linger2 < 0) { 5977 tcp_done(sk); 5978 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5979 return 1; 5980 } 5981 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5982 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 5983 /* Receive out of order FIN after close() */ 5984 if (tp->syn_fastopen && th->fin) 5985 tcp_fastopen_active_disable(sk); 5986 tcp_done(sk); 5987 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5988 return 1; 5989 } 5990 5991 tmo = tcp_fin_time(sk); 5992 if (tmo > TCP_TIMEWAIT_LEN) { 5993 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 5994 } else if (th->fin || sock_owned_by_user(sk)) { 5995 /* Bad case. We could lose such FIN otherwise. 5996 * It is not a big problem, but it looks confusing 5997 * and not so rare event. We still can lose it now, 5998 * if it spins in bh_lock_sock(), but it is really 5999 * marginal case. 6000 */ 6001 inet_csk_reset_keepalive_timer(sk, tmo); 6002 } else { 6003 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6004 goto discard; 6005 } 6006 break; 6007 } 6008 6009 case TCP_CLOSING: 6010 if (tp->snd_una == tp->write_seq) { 6011 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6012 goto discard; 6013 } 6014 break; 6015 6016 case TCP_LAST_ACK: 6017 if (tp->snd_una == tp->write_seq) { 6018 tcp_update_metrics(sk); 6019 tcp_done(sk); 6020 goto discard; 6021 } 6022 break; 6023 } 6024 6025 /* step 6: check the URG bit */ 6026 tcp_urg(sk, skb, th); 6027 6028 /* step 7: process the segment text */ 6029 switch (sk->sk_state) { 6030 case TCP_CLOSE_WAIT: 6031 case TCP_CLOSING: 6032 case TCP_LAST_ACK: 6033 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6034 break; 6035 /* fall through */ 6036 case TCP_FIN_WAIT1: 6037 case TCP_FIN_WAIT2: 6038 /* RFC 793 says to queue data in these states, 6039 * RFC 1122 says we MUST send a reset. 6040 * BSD 4.4 also does reset. 6041 */ 6042 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6043 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6044 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6045 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6046 tcp_reset(sk); 6047 return 1; 6048 } 6049 } 6050 /* Fall through */ 6051 case TCP_ESTABLISHED: 6052 tcp_data_queue(sk, skb); 6053 queued = 1; 6054 break; 6055 } 6056 6057 /* tcp_data could move socket to TIME-WAIT */ 6058 if (sk->sk_state != TCP_CLOSE) { 6059 tcp_data_snd_check(sk); 6060 tcp_ack_snd_check(sk); 6061 } 6062 6063 if (!queued) { 6064 discard: 6065 tcp_drop(sk, skb); 6066 } 6067 return 0; 6068 } 6069 EXPORT_SYMBOL(tcp_rcv_state_process); 6070 6071 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6072 { 6073 struct inet_request_sock *ireq = inet_rsk(req); 6074 6075 if (family == AF_INET) 6076 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6077 &ireq->ir_rmt_addr, port); 6078 #if IS_ENABLED(CONFIG_IPV6) 6079 else if (family == AF_INET6) 6080 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6081 &ireq->ir_v6_rmt_addr, port); 6082 #endif 6083 } 6084 6085 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6086 * 6087 * If we receive a SYN packet with these bits set, it means a 6088 * network is playing bad games with TOS bits. In order to 6089 * avoid possible false congestion notifications, we disable 6090 * TCP ECN negotiation. 6091 * 6092 * Exception: tcp_ca wants ECN. This is required for DCTCP 6093 * congestion control: Linux DCTCP asserts ECT on all packets, 6094 * including SYN, which is most optimal solution; however, 6095 * others, such as FreeBSD do not. 6096 */ 6097 static void tcp_ecn_create_request(struct request_sock *req, 6098 const struct sk_buff *skb, 6099 const struct sock *listen_sk, 6100 const struct dst_entry *dst) 6101 { 6102 const struct tcphdr *th = tcp_hdr(skb); 6103 const struct net *net = sock_net(listen_sk); 6104 bool th_ecn = th->ece && th->cwr; 6105 bool ect, ecn_ok; 6106 u32 ecn_ok_dst; 6107 6108 if (!th_ecn) 6109 return; 6110 6111 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6112 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6113 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6114 6115 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6116 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6117 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6118 inet_rsk(req)->ecn_ok = 1; 6119 } 6120 6121 static void tcp_openreq_init(struct request_sock *req, 6122 const struct tcp_options_received *rx_opt, 6123 struct sk_buff *skb, const struct sock *sk) 6124 { 6125 struct inet_request_sock *ireq = inet_rsk(req); 6126 6127 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6128 req->cookie_ts = 0; 6129 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6130 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6131 tcp_rsk(req)->snt_synack = tcp_clock_us(); 6132 tcp_rsk(req)->last_oow_ack_time = 0; 6133 req->mss = rx_opt->mss_clamp; 6134 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6135 ireq->tstamp_ok = rx_opt->tstamp_ok; 6136 ireq->sack_ok = rx_opt->sack_ok; 6137 ireq->snd_wscale = rx_opt->snd_wscale; 6138 ireq->wscale_ok = rx_opt->wscale_ok; 6139 ireq->acked = 0; 6140 ireq->ecn_ok = 0; 6141 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6142 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6143 ireq->ir_mark = inet_request_mark(sk, skb); 6144 #if IS_ENABLED(CONFIG_SMC) 6145 ireq->smc_ok = rx_opt->smc_ok; 6146 #endif 6147 } 6148 6149 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6150 struct sock *sk_listener, 6151 bool attach_listener) 6152 { 6153 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6154 attach_listener); 6155 6156 if (req) { 6157 struct inet_request_sock *ireq = inet_rsk(req); 6158 6159 ireq->ireq_opt = NULL; 6160 #if IS_ENABLED(CONFIG_IPV6) 6161 ireq->pktopts = NULL; 6162 #endif 6163 atomic64_set(&ireq->ir_cookie, 0); 6164 ireq->ireq_state = TCP_NEW_SYN_RECV; 6165 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6166 ireq->ireq_family = sk_listener->sk_family; 6167 } 6168 6169 return req; 6170 } 6171 EXPORT_SYMBOL(inet_reqsk_alloc); 6172 6173 /* 6174 * Return true if a syncookie should be sent 6175 */ 6176 static bool tcp_syn_flood_action(const struct sock *sk, 6177 const struct sk_buff *skb, 6178 const char *proto) 6179 { 6180 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6181 const char *msg = "Dropping request"; 6182 bool want_cookie = false; 6183 struct net *net = sock_net(sk); 6184 6185 #ifdef CONFIG_SYN_COOKIES 6186 if (net->ipv4.sysctl_tcp_syncookies) { 6187 msg = "Sending cookies"; 6188 want_cookie = true; 6189 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6190 } else 6191 #endif 6192 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6193 6194 if (!queue->synflood_warned && 6195 net->ipv4.sysctl_tcp_syncookies != 2 && 6196 xchg(&queue->synflood_warned, 1) == 0) 6197 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6198 proto, ntohs(tcp_hdr(skb)->dest), msg); 6199 6200 return want_cookie; 6201 } 6202 6203 static void tcp_reqsk_record_syn(const struct sock *sk, 6204 struct request_sock *req, 6205 const struct sk_buff *skb) 6206 { 6207 if (tcp_sk(sk)->save_syn) { 6208 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6209 u32 *copy; 6210 6211 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6212 if (copy) { 6213 copy[0] = len; 6214 memcpy(©[1], skb_network_header(skb), len); 6215 req->saved_syn = copy; 6216 } 6217 } 6218 } 6219 6220 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6221 const struct tcp_request_sock_ops *af_ops, 6222 struct sock *sk, struct sk_buff *skb) 6223 { 6224 struct tcp_fastopen_cookie foc = { .len = -1 }; 6225 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6226 struct tcp_options_received tmp_opt; 6227 struct tcp_sock *tp = tcp_sk(sk); 6228 struct net *net = sock_net(sk); 6229 struct sock *fastopen_sk = NULL; 6230 struct request_sock *req; 6231 bool want_cookie = false; 6232 struct dst_entry *dst; 6233 struct flowi fl; 6234 6235 /* TW buckets are converted to open requests without 6236 * limitations, they conserve resources and peer is 6237 * evidently real one. 6238 */ 6239 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6240 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6241 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6242 if (!want_cookie) 6243 goto drop; 6244 } 6245 6246 if (sk_acceptq_is_full(sk)) { 6247 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6248 goto drop; 6249 } 6250 6251 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6252 if (!req) 6253 goto drop; 6254 6255 tcp_rsk(req)->af_specific = af_ops; 6256 tcp_rsk(req)->ts_off = 0; 6257 6258 tcp_clear_options(&tmp_opt); 6259 tmp_opt.mss_clamp = af_ops->mss_clamp; 6260 tmp_opt.user_mss = tp->rx_opt.user_mss; 6261 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6262 want_cookie ? NULL : &foc); 6263 6264 if (want_cookie && !tmp_opt.saw_tstamp) 6265 tcp_clear_options(&tmp_opt); 6266 6267 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6268 tcp_openreq_init(req, &tmp_opt, skb, sk); 6269 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6270 6271 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6272 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6273 6274 af_ops->init_req(req, sk, skb); 6275 6276 if (security_inet_conn_request(sk, skb, req)) 6277 goto drop_and_free; 6278 6279 if (tmp_opt.tstamp_ok) 6280 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6281 6282 dst = af_ops->route_req(sk, &fl, req); 6283 if (!dst) 6284 goto drop_and_free; 6285 6286 if (!want_cookie && !isn) { 6287 /* Kill the following clause, if you dislike this way. */ 6288 if (!net->ipv4.sysctl_tcp_syncookies && 6289 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6290 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6291 !tcp_peer_is_proven(req, dst)) { 6292 /* Without syncookies last quarter of 6293 * backlog is filled with destinations, 6294 * proven to be alive. 6295 * It means that we continue to communicate 6296 * to destinations, already remembered 6297 * to the moment of synflood. 6298 */ 6299 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6300 rsk_ops->family); 6301 goto drop_and_release; 6302 } 6303 6304 isn = af_ops->init_seq(skb); 6305 } 6306 6307 tcp_ecn_create_request(req, skb, sk, dst); 6308 6309 if (want_cookie) { 6310 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6311 req->cookie_ts = tmp_opt.tstamp_ok; 6312 if (!tmp_opt.tstamp_ok) 6313 inet_rsk(req)->ecn_ok = 0; 6314 } 6315 6316 tcp_rsk(req)->snt_isn = isn; 6317 tcp_rsk(req)->txhash = net_tx_rndhash(); 6318 tcp_openreq_init_rwin(req, sk, dst); 6319 if (!want_cookie) { 6320 tcp_reqsk_record_syn(sk, req, skb); 6321 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6322 } 6323 if (fastopen_sk) { 6324 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6325 &foc, TCP_SYNACK_FASTOPEN); 6326 /* Add the child socket directly into the accept queue */ 6327 inet_csk_reqsk_queue_add(sk, req, fastopen_sk); 6328 sk->sk_data_ready(sk); 6329 bh_unlock_sock(fastopen_sk); 6330 sock_put(fastopen_sk); 6331 } else { 6332 tcp_rsk(req)->tfo_listener = false; 6333 if (!want_cookie) 6334 inet_csk_reqsk_queue_hash_add(sk, req, 6335 tcp_timeout_init((struct sock *)req)); 6336 af_ops->send_synack(sk, dst, &fl, req, &foc, 6337 !want_cookie ? TCP_SYNACK_NORMAL : 6338 TCP_SYNACK_COOKIE); 6339 if (want_cookie) { 6340 reqsk_free(req); 6341 return 0; 6342 } 6343 } 6344 reqsk_put(req); 6345 return 0; 6346 6347 drop_and_release: 6348 dst_release(dst); 6349 drop_and_free: 6350 reqsk_free(req); 6351 drop: 6352 tcp_listendrop(sk); 6353 return 0; 6354 } 6355 EXPORT_SYMBOL(tcp_conn_request); 6356