xref: /openbmc/linux/net/ipv4/tcp_input.c (revision e2f1cf25)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #define pr_fmt(fmt) "TCP: " fmt
65 
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
78 
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly = 1;
83 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
84 int sysctl_tcp_max_reordering __read_mostly = 300;
85 EXPORT_SYMBOL(sysctl_tcp_reordering);
86 int sysctl_tcp_dsack __read_mostly = 1;
87 int sysctl_tcp_app_win __read_mostly = 31;
88 int sysctl_tcp_adv_win_scale __read_mostly = 1;
89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
90 
91 /* rfc5961 challenge ack rate limiting */
92 int sysctl_tcp_challenge_ack_limit = 100;
93 
94 int sysctl_tcp_stdurg __read_mostly;
95 int sysctl_tcp_rfc1337 __read_mostly;
96 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
97 int sysctl_tcp_frto __read_mostly = 2;
98 
99 int sysctl_tcp_thin_dupack __read_mostly;
100 
101 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
102 int sysctl_tcp_early_retrans __read_mostly = 3;
103 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
104 
105 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
106 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
107 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
108 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
109 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
110 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
111 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
112 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
113 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
114 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
115 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
116 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
117 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
118 
119 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
120 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
121 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
122 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
123 
124 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
125 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
126 
127 /* Adapt the MSS value used to make delayed ack decision to the
128  * real world.
129  */
130 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
131 {
132 	struct inet_connection_sock *icsk = inet_csk(sk);
133 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
134 	unsigned int len;
135 
136 	icsk->icsk_ack.last_seg_size = 0;
137 
138 	/* skb->len may jitter because of SACKs, even if peer
139 	 * sends good full-sized frames.
140 	 */
141 	len = skb_shinfo(skb)->gso_size ? : skb->len;
142 	if (len >= icsk->icsk_ack.rcv_mss) {
143 		icsk->icsk_ack.rcv_mss = len;
144 	} else {
145 		/* Otherwise, we make more careful check taking into account,
146 		 * that SACKs block is variable.
147 		 *
148 		 * "len" is invariant segment length, including TCP header.
149 		 */
150 		len += skb->data - skb_transport_header(skb);
151 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
152 		    /* If PSH is not set, packet should be
153 		     * full sized, provided peer TCP is not badly broken.
154 		     * This observation (if it is correct 8)) allows
155 		     * to handle super-low mtu links fairly.
156 		     */
157 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
158 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
159 			/* Subtract also invariant (if peer is RFC compliant),
160 			 * tcp header plus fixed timestamp option length.
161 			 * Resulting "len" is MSS free of SACK jitter.
162 			 */
163 			len -= tcp_sk(sk)->tcp_header_len;
164 			icsk->icsk_ack.last_seg_size = len;
165 			if (len == lss) {
166 				icsk->icsk_ack.rcv_mss = len;
167 				return;
168 			}
169 		}
170 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
171 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
172 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
173 	}
174 }
175 
176 static void tcp_incr_quickack(struct sock *sk)
177 {
178 	struct inet_connection_sock *icsk = inet_csk(sk);
179 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
180 
181 	if (quickacks == 0)
182 		quickacks = 2;
183 	if (quickacks > icsk->icsk_ack.quick)
184 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
185 }
186 
187 static void tcp_enter_quickack_mode(struct sock *sk)
188 {
189 	struct inet_connection_sock *icsk = inet_csk(sk);
190 	tcp_incr_quickack(sk);
191 	icsk->icsk_ack.pingpong = 0;
192 	icsk->icsk_ack.ato = TCP_ATO_MIN;
193 }
194 
195 /* Send ACKs quickly, if "quick" count is not exhausted
196  * and the session is not interactive.
197  */
198 
199 static inline bool tcp_in_quickack_mode(const struct sock *sk)
200 {
201 	const struct inet_connection_sock *icsk = inet_csk(sk);
202 
203 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
204 }
205 
206 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
207 {
208 	if (tp->ecn_flags & TCP_ECN_OK)
209 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
210 }
211 
212 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
213 {
214 	if (tcp_hdr(skb)->cwr)
215 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
216 }
217 
218 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
219 {
220 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
221 }
222 
223 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
224 {
225 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
226 	case INET_ECN_NOT_ECT:
227 		/* Funny extension: if ECT is not set on a segment,
228 		 * and we already seen ECT on a previous segment,
229 		 * it is probably a retransmit.
230 		 */
231 		if (tp->ecn_flags & TCP_ECN_SEEN)
232 			tcp_enter_quickack_mode((struct sock *)tp);
233 		break;
234 	case INET_ECN_CE:
235 		if (tcp_ca_needs_ecn((struct sock *)tp))
236 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
237 
238 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
239 			/* Better not delay acks, sender can have a very low cwnd */
240 			tcp_enter_quickack_mode((struct sock *)tp);
241 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
242 		}
243 		tp->ecn_flags |= TCP_ECN_SEEN;
244 		break;
245 	default:
246 		if (tcp_ca_needs_ecn((struct sock *)tp))
247 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
248 		tp->ecn_flags |= TCP_ECN_SEEN;
249 		break;
250 	}
251 }
252 
253 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
254 {
255 	if (tp->ecn_flags & TCP_ECN_OK)
256 		__tcp_ecn_check_ce(tp, skb);
257 }
258 
259 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
260 {
261 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
262 		tp->ecn_flags &= ~TCP_ECN_OK;
263 }
264 
265 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
266 {
267 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
268 		tp->ecn_flags &= ~TCP_ECN_OK;
269 }
270 
271 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
272 {
273 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
274 		return true;
275 	return false;
276 }
277 
278 /* Buffer size and advertised window tuning.
279  *
280  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
281  */
282 
283 static void tcp_sndbuf_expand(struct sock *sk)
284 {
285 	const struct tcp_sock *tp = tcp_sk(sk);
286 	int sndmem, per_mss;
287 	u32 nr_segs;
288 
289 	/* Worst case is non GSO/TSO : each frame consumes one skb
290 	 * and skb->head is kmalloced using power of two area of memory
291 	 */
292 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
293 		  MAX_TCP_HEADER +
294 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
295 
296 	per_mss = roundup_pow_of_two(per_mss) +
297 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
298 
299 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
300 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
301 
302 	/* Fast Recovery (RFC 5681 3.2) :
303 	 * Cubic needs 1.7 factor, rounded to 2 to include
304 	 * extra cushion (application might react slowly to POLLOUT)
305 	 */
306 	sndmem = 2 * nr_segs * per_mss;
307 
308 	if (sk->sk_sndbuf < sndmem)
309 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
310 }
311 
312 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
313  *
314  * All tcp_full_space() is split to two parts: "network" buffer, allocated
315  * forward and advertised in receiver window (tp->rcv_wnd) and
316  * "application buffer", required to isolate scheduling/application
317  * latencies from network.
318  * window_clamp is maximal advertised window. It can be less than
319  * tcp_full_space(), in this case tcp_full_space() - window_clamp
320  * is reserved for "application" buffer. The less window_clamp is
321  * the smoother our behaviour from viewpoint of network, but the lower
322  * throughput and the higher sensitivity of the connection to losses. 8)
323  *
324  * rcv_ssthresh is more strict window_clamp used at "slow start"
325  * phase to predict further behaviour of this connection.
326  * It is used for two goals:
327  * - to enforce header prediction at sender, even when application
328  *   requires some significant "application buffer". It is check #1.
329  * - to prevent pruning of receive queue because of misprediction
330  *   of receiver window. Check #2.
331  *
332  * The scheme does not work when sender sends good segments opening
333  * window and then starts to feed us spaghetti. But it should work
334  * in common situations. Otherwise, we have to rely on queue collapsing.
335  */
336 
337 /* Slow part of check#2. */
338 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
339 {
340 	struct tcp_sock *tp = tcp_sk(sk);
341 	/* Optimize this! */
342 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
343 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
344 
345 	while (tp->rcv_ssthresh <= window) {
346 		if (truesize <= skb->len)
347 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
348 
349 		truesize >>= 1;
350 		window >>= 1;
351 	}
352 	return 0;
353 }
354 
355 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
356 {
357 	struct tcp_sock *tp = tcp_sk(sk);
358 
359 	/* Check #1 */
360 	if (tp->rcv_ssthresh < tp->window_clamp &&
361 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
362 	    !tcp_under_memory_pressure(sk)) {
363 		int incr;
364 
365 		/* Check #2. Increase window, if skb with such overhead
366 		 * will fit to rcvbuf in future.
367 		 */
368 		if (tcp_win_from_space(skb->truesize) <= skb->len)
369 			incr = 2 * tp->advmss;
370 		else
371 			incr = __tcp_grow_window(sk, skb);
372 
373 		if (incr) {
374 			incr = max_t(int, incr, 2 * skb->len);
375 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
376 					       tp->window_clamp);
377 			inet_csk(sk)->icsk_ack.quick |= 1;
378 		}
379 	}
380 }
381 
382 /* 3. Tuning rcvbuf, when connection enters established state. */
383 static void tcp_fixup_rcvbuf(struct sock *sk)
384 {
385 	u32 mss = tcp_sk(sk)->advmss;
386 	int rcvmem;
387 
388 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
389 		 tcp_default_init_rwnd(mss);
390 
391 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
392 	 * Allow enough cushion so that sender is not limited by our window
393 	 */
394 	if (sysctl_tcp_moderate_rcvbuf)
395 		rcvmem <<= 2;
396 
397 	if (sk->sk_rcvbuf < rcvmem)
398 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
399 }
400 
401 /* 4. Try to fixup all. It is made immediately after connection enters
402  *    established state.
403  */
404 void tcp_init_buffer_space(struct sock *sk)
405 {
406 	struct tcp_sock *tp = tcp_sk(sk);
407 	int maxwin;
408 
409 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
410 		tcp_fixup_rcvbuf(sk);
411 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
412 		tcp_sndbuf_expand(sk);
413 
414 	tp->rcvq_space.space = tp->rcv_wnd;
415 	tp->rcvq_space.time = tcp_time_stamp;
416 	tp->rcvq_space.seq = tp->copied_seq;
417 
418 	maxwin = tcp_full_space(sk);
419 
420 	if (tp->window_clamp >= maxwin) {
421 		tp->window_clamp = maxwin;
422 
423 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
424 			tp->window_clamp = max(maxwin -
425 					       (maxwin >> sysctl_tcp_app_win),
426 					       4 * tp->advmss);
427 	}
428 
429 	/* Force reservation of one segment. */
430 	if (sysctl_tcp_app_win &&
431 	    tp->window_clamp > 2 * tp->advmss &&
432 	    tp->window_clamp + tp->advmss > maxwin)
433 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
434 
435 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
436 	tp->snd_cwnd_stamp = tcp_time_stamp;
437 }
438 
439 /* 5. Recalculate window clamp after socket hit its memory bounds. */
440 static void tcp_clamp_window(struct sock *sk)
441 {
442 	struct tcp_sock *tp = tcp_sk(sk);
443 	struct inet_connection_sock *icsk = inet_csk(sk);
444 
445 	icsk->icsk_ack.quick = 0;
446 
447 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
448 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
449 	    !tcp_under_memory_pressure(sk) &&
450 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
451 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
452 				    sysctl_tcp_rmem[2]);
453 	}
454 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
455 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
456 }
457 
458 /* Initialize RCV_MSS value.
459  * RCV_MSS is an our guess about MSS used by the peer.
460  * We haven't any direct information about the MSS.
461  * It's better to underestimate the RCV_MSS rather than overestimate.
462  * Overestimations make us ACKing less frequently than needed.
463  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
464  */
465 void tcp_initialize_rcv_mss(struct sock *sk)
466 {
467 	const struct tcp_sock *tp = tcp_sk(sk);
468 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
469 
470 	hint = min(hint, tp->rcv_wnd / 2);
471 	hint = min(hint, TCP_MSS_DEFAULT);
472 	hint = max(hint, TCP_MIN_MSS);
473 
474 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
475 }
476 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
477 
478 /* Receiver "autotuning" code.
479  *
480  * The algorithm for RTT estimation w/o timestamps is based on
481  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
482  * <http://public.lanl.gov/radiant/pubs.html#DRS>
483  *
484  * More detail on this code can be found at
485  * <http://staff.psc.edu/jheffner/>,
486  * though this reference is out of date.  A new paper
487  * is pending.
488  */
489 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
490 {
491 	u32 new_sample = tp->rcv_rtt_est.rtt;
492 	long m = sample;
493 
494 	if (m == 0)
495 		m = 1;
496 
497 	if (new_sample != 0) {
498 		/* If we sample in larger samples in the non-timestamp
499 		 * case, we could grossly overestimate the RTT especially
500 		 * with chatty applications or bulk transfer apps which
501 		 * are stalled on filesystem I/O.
502 		 *
503 		 * Also, since we are only going for a minimum in the
504 		 * non-timestamp case, we do not smooth things out
505 		 * else with timestamps disabled convergence takes too
506 		 * long.
507 		 */
508 		if (!win_dep) {
509 			m -= (new_sample >> 3);
510 			new_sample += m;
511 		} else {
512 			m <<= 3;
513 			if (m < new_sample)
514 				new_sample = m;
515 		}
516 	} else {
517 		/* No previous measure. */
518 		new_sample = m << 3;
519 	}
520 
521 	if (tp->rcv_rtt_est.rtt != new_sample)
522 		tp->rcv_rtt_est.rtt = new_sample;
523 }
524 
525 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
526 {
527 	if (tp->rcv_rtt_est.time == 0)
528 		goto new_measure;
529 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
530 		return;
531 	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
532 
533 new_measure:
534 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
535 	tp->rcv_rtt_est.time = tcp_time_stamp;
536 }
537 
538 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
539 					  const struct sk_buff *skb)
540 {
541 	struct tcp_sock *tp = tcp_sk(sk);
542 	if (tp->rx_opt.rcv_tsecr &&
543 	    (TCP_SKB_CB(skb)->end_seq -
544 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
545 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
546 }
547 
548 /*
549  * This function should be called every time data is copied to user space.
550  * It calculates the appropriate TCP receive buffer space.
551  */
552 void tcp_rcv_space_adjust(struct sock *sk)
553 {
554 	struct tcp_sock *tp = tcp_sk(sk);
555 	int time;
556 	int copied;
557 
558 	time = tcp_time_stamp - tp->rcvq_space.time;
559 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
560 		return;
561 
562 	/* Number of bytes copied to user in last RTT */
563 	copied = tp->copied_seq - tp->rcvq_space.seq;
564 	if (copied <= tp->rcvq_space.space)
565 		goto new_measure;
566 
567 	/* A bit of theory :
568 	 * copied = bytes received in previous RTT, our base window
569 	 * To cope with packet losses, we need a 2x factor
570 	 * To cope with slow start, and sender growing its cwin by 100 %
571 	 * every RTT, we need a 4x factor, because the ACK we are sending
572 	 * now is for the next RTT, not the current one :
573 	 * <prev RTT . ><current RTT .. ><next RTT .... >
574 	 */
575 
576 	if (sysctl_tcp_moderate_rcvbuf &&
577 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
578 		int rcvwin, rcvmem, rcvbuf;
579 
580 		/* minimal window to cope with packet losses, assuming
581 		 * steady state. Add some cushion because of small variations.
582 		 */
583 		rcvwin = (copied << 1) + 16 * tp->advmss;
584 
585 		/* If rate increased by 25%,
586 		 *	assume slow start, rcvwin = 3 * copied
587 		 * If rate increased by 50%,
588 		 *	assume sender can use 2x growth, rcvwin = 4 * copied
589 		 */
590 		if (copied >=
591 		    tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
592 			if (copied >=
593 			    tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
594 				rcvwin <<= 1;
595 			else
596 				rcvwin += (rcvwin >> 1);
597 		}
598 
599 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
600 		while (tcp_win_from_space(rcvmem) < tp->advmss)
601 			rcvmem += 128;
602 
603 		rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
604 		if (rcvbuf > sk->sk_rcvbuf) {
605 			sk->sk_rcvbuf = rcvbuf;
606 
607 			/* Make the window clamp follow along.  */
608 			tp->window_clamp = rcvwin;
609 		}
610 	}
611 	tp->rcvq_space.space = copied;
612 
613 new_measure:
614 	tp->rcvq_space.seq = tp->copied_seq;
615 	tp->rcvq_space.time = tcp_time_stamp;
616 }
617 
618 /* There is something which you must keep in mind when you analyze the
619  * behavior of the tp->ato delayed ack timeout interval.  When a
620  * connection starts up, we want to ack as quickly as possible.  The
621  * problem is that "good" TCP's do slow start at the beginning of data
622  * transmission.  The means that until we send the first few ACK's the
623  * sender will sit on his end and only queue most of his data, because
624  * he can only send snd_cwnd unacked packets at any given time.  For
625  * each ACK we send, he increments snd_cwnd and transmits more of his
626  * queue.  -DaveM
627  */
628 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
629 {
630 	struct tcp_sock *tp = tcp_sk(sk);
631 	struct inet_connection_sock *icsk = inet_csk(sk);
632 	u32 now;
633 
634 	inet_csk_schedule_ack(sk);
635 
636 	tcp_measure_rcv_mss(sk, skb);
637 
638 	tcp_rcv_rtt_measure(tp);
639 
640 	now = tcp_time_stamp;
641 
642 	if (!icsk->icsk_ack.ato) {
643 		/* The _first_ data packet received, initialize
644 		 * delayed ACK engine.
645 		 */
646 		tcp_incr_quickack(sk);
647 		icsk->icsk_ack.ato = TCP_ATO_MIN;
648 	} else {
649 		int m = now - icsk->icsk_ack.lrcvtime;
650 
651 		if (m <= TCP_ATO_MIN / 2) {
652 			/* The fastest case is the first. */
653 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
654 		} else if (m < icsk->icsk_ack.ato) {
655 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
656 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
657 				icsk->icsk_ack.ato = icsk->icsk_rto;
658 		} else if (m > icsk->icsk_rto) {
659 			/* Too long gap. Apparently sender failed to
660 			 * restart window, so that we send ACKs quickly.
661 			 */
662 			tcp_incr_quickack(sk);
663 			sk_mem_reclaim(sk);
664 		}
665 	}
666 	icsk->icsk_ack.lrcvtime = now;
667 
668 	tcp_ecn_check_ce(tp, skb);
669 
670 	if (skb->len >= 128)
671 		tcp_grow_window(sk, skb);
672 }
673 
674 /* Called to compute a smoothed rtt estimate. The data fed to this
675  * routine either comes from timestamps, or from segments that were
676  * known _not_ to have been retransmitted [see Karn/Partridge
677  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
678  * piece by Van Jacobson.
679  * NOTE: the next three routines used to be one big routine.
680  * To save cycles in the RFC 1323 implementation it was better to break
681  * it up into three procedures. -- erics
682  */
683 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
684 {
685 	struct tcp_sock *tp = tcp_sk(sk);
686 	long m = mrtt_us; /* RTT */
687 	u32 srtt = tp->srtt_us;
688 
689 	/*	The following amusing code comes from Jacobson's
690 	 *	article in SIGCOMM '88.  Note that rtt and mdev
691 	 *	are scaled versions of rtt and mean deviation.
692 	 *	This is designed to be as fast as possible
693 	 *	m stands for "measurement".
694 	 *
695 	 *	On a 1990 paper the rto value is changed to:
696 	 *	RTO = rtt + 4 * mdev
697 	 *
698 	 * Funny. This algorithm seems to be very broken.
699 	 * These formulae increase RTO, when it should be decreased, increase
700 	 * too slowly, when it should be increased quickly, decrease too quickly
701 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
702 	 * does not matter how to _calculate_ it. Seems, it was trap
703 	 * that VJ failed to avoid. 8)
704 	 */
705 	if (srtt != 0) {
706 		m -= (srtt >> 3);	/* m is now error in rtt est */
707 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
708 		if (m < 0) {
709 			m = -m;		/* m is now abs(error) */
710 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
711 			/* This is similar to one of Eifel findings.
712 			 * Eifel blocks mdev updates when rtt decreases.
713 			 * This solution is a bit different: we use finer gain
714 			 * for mdev in this case (alpha*beta).
715 			 * Like Eifel it also prevents growth of rto,
716 			 * but also it limits too fast rto decreases,
717 			 * happening in pure Eifel.
718 			 */
719 			if (m > 0)
720 				m >>= 3;
721 		} else {
722 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
723 		}
724 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
725 		if (tp->mdev_us > tp->mdev_max_us) {
726 			tp->mdev_max_us = tp->mdev_us;
727 			if (tp->mdev_max_us > tp->rttvar_us)
728 				tp->rttvar_us = tp->mdev_max_us;
729 		}
730 		if (after(tp->snd_una, tp->rtt_seq)) {
731 			if (tp->mdev_max_us < tp->rttvar_us)
732 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
733 			tp->rtt_seq = tp->snd_nxt;
734 			tp->mdev_max_us = tcp_rto_min_us(sk);
735 		}
736 	} else {
737 		/* no previous measure. */
738 		srtt = m << 3;		/* take the measured time to be rtt */
739 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
740 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
741 		tp->mdev_max_us = tp->rttvar_us;
742 		tp->rtt_seq = tp->snd_nxt;
743 	}
744 	tp->srtt_us = max(1U, srtt);
745 }
746 
747 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
748  * Note: TCP stack does not yet implement pacing.
749  * FQ packet scheduler can be used to implement cheap but effective
750  * TCP pacing, to smooth the burst on large writes when packets
751  * in flight is significantly lower than cwnd (or rwin)
752  */
753 static void tcp_update_pacing_rate(struct sock *sk)
754 {
755 	const struct tcp_sock *tp = tcp_sk(sk);
756 	u64 rate;
757 
758 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
759 	rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3);
760 
761 	rate *= max(tp->snd_cwnd, tp->packets_out);
762 
763 	if (likely(tp->srtt_us))
764 		do_div(rate, tp->srtt_us);
765 
766 	/* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
767 	 * without any lock. We want to make sure compiler wont store
768 	 * intermediate values in this location.
769 	 */
770 	ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
771 						sk->sk_max_pacing_rate);
772 }
773 
774 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
775  * routine referred to above.
776  */
777 static void tcp_set_rto(struct sock *sk)
778 {
779 	const struct tcp_sock *tp = tcp_sk(sk);
780 	/* Old crap is replaced with new one. 8)
781 	 *
782 	 * More seriously:
783 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
784 	 *    It cannot be less due to utterly erratic ACK generation made
785 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
786 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
787 	 *    is invisible. Actually, Linux-2.4 also generates erratic
788 	 *    ACKs in some circumstances.
789 	 */
790 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
791 
792 	/* 2. Fixups made earlier cannot be right.
793 	 *    If we do not estimate RTO correctly without them,
794 	 *    all the algo is pure shit and should be replaced
795 	 *    with correct one. It is exactly, which we pretend to do.
796 	 */
797 
798 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
799 	 * guarantees that rto is higher.
800 	 */
801 	tcp_bound_rto(sk);
802 }
803 
804 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
805 {
806 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
807 
808 	if (!cwnd)
809 		cwnd = TCP_INIT_CWND;
810 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
811 }
812 
813 /*
814  * Packet counting of FACK is based on in-order assumptions, therefore TCP
815  * disables it when reordering is detected
816  */
817 void tcp_disable_fack(struct tcp_sock *tp)
818 {
819 	/* RFC3517 uses different metric in lost marker => reset on change */
820 	if (tcp_is_fack(tp))
821 		tp->lost_skb_hint = NULL;
822 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
823 }
824 
825 /* Take a notice that peer is sending D-SACKs */
826 static void tcp_dsack_seen(struct tcp_sock *tp)
827 {
828 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
829 }
830 
831 static void tcp_update_reordering(struct sock *sk, const int metric,
832 				  const int ts)
833 {
834 	struct tcp_sock *tp = tcp_sk(sk);
835 	if (metric > tp->reordering) {
836 		int mib_idx;
837 
838 		tp->reordering = min(sysctl_tcp_max_reordering, metric);
839 
840 		/* This exciting event is worth to be remembered. 8) */
841 		if (ts)
842 			mib_idx = LINUX_MIB_TCPTSREORDER;
843 		else if (tcp_is_reno(tp))
844 			mib_idx = LINUX_MIB_TCPRENOREORDER;
845 		else if (tcp_is_fack(tp))
846 			mib_idx = LINUX_MIB_TCPFACKREORDER;
847 		else
848 			mib_idx = LINUX_MIB_TCPSACKREORDER;
849 
850 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
851 #if FASTRETRANS_DEBUG > 1
852 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
853 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
854 			 tp->reordering,
855 			 tp->fackets_out,
856 			 tp->sacked_out,
857 			 tp->undo_marker ? tp->undo_retrans : 0);
858 #endif
859 		tcp_disable_fack(tp);
860 	}
861 
862 	if (metric > 0)
863 		tcp_disable_early_retrans(tp);
864 }
865 
866 /* This must be called before lost_out is incremented */
867 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
868 {
869 	if (!tp->retransmit_skb_hint ||
870 	    before(TCP_SKB_CB(skb)->seq,
871 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
872 		tp->retransmit_skb_hint = skb;
873 
874 	if (!tp->lost_out ||
875 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
876 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
877 }
878 
879 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
880 {
881 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
882 		tcp_verify_retransmit_hint(tp, skb);
883 
884 		tp->lost_out += tcp_skb_pcount(skb);
885 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
886 	}
887 }
888 
889 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
890 					    struct sk_buff *skb)
891 {
892 	tcp_verify_retransmit_hint(tp, skb);
893 
894 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
895 		tp->lost_out += tcp_skb_pcount(skb);
896 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
897 	}
898 }
899 
900 /* This procedure tags the retransmission queue when SACKs arrive.
901  *
902  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
903  * Packets in queue with these bits set are counted in variables
904  * sacked_out, retrans_out and lost_out, correspondingly.
905  *
906  * Valid combinations are:
907  * Tag  InFlight	Description
908  * 0	1		- orig segment is in flight.
909  * S	0		- nothing flies, orig reached receiver.
910  * L	0		- nothing flies, orig lost by net.
911  * R	2		- both orig and retransmit are in flight.
912  * L|R	1		- orig is lost, retransmit is in flight.
913  * S|R  1		- orig reached receiver, retrans is still in flight.
914  * (L|S|R is logically valid, it could occur when L|R is sacked,
915  *  but it is equivalent to plain S and code short-curcuits it to S.
916  *  L|S is logically invalid, it would mean -1 packet in flight 8))
917  *
918  * These 6 states form finite state machine, controlled by the following events:
919  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
920  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
921  * 3. Loss detection event of two flavors:
922  *	A. Scoreboard estimator decided the packet is lost.
923  *	   A'. Reno "three dupacks" marks head of queue lost.
924  *	   A''. Its FACK modification, head until snd.fack is lost.
925  *	B. SACK arrives sacking SND.NXT at the moment, when the
926  *	   segment was retransmitted.
927  * 4. D-SACK added new rule: D-SACK changes any tag to S.
928  *
929  * It is pleasant to note, that state diagram turns out to be commutative,
930  * so that we are allowed not to be bothered by order of our actions,
931  * when multiple events arrive simultaneously. (see the function below).
932  *
933  * Reordering detection.
934  * --------------------
935  * Reordering metric is maximal distance, which a packet can be displaced
936  * in packet stream. With SACKs we can estimate it:
937  *
938  * 1. SACK fills old hole and the corresponding segment was not
939  *    ever retransmitted -> reordering. Alas, we cannot use it
940  *    when segment was retransmitted.
941  * 2. The last flaw is solved with D-SACK. D-SACK arrives
942  *    for retransmitted and already SACKed segment -> reordering..
943  * Both of these heuristics are not used in Loss state, when we cannot
944  * account for retransmits accurately.
945  *
946  * SACK block validation.
947  * ----------------------
948  *
949  * SACK block range validation checks that the received SACK block fits to
950  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
951  * Note that SND.UNA is not included to the range though being valid because
952  * it means that the receiver is rather inconsistent with itself reporting
953  * SACK reneging when it should advance SND.UNA. Such SACK block this is
954  * perfectly valid, however, in light of RFC2018 which explicitly states
955  * that "SACK block MUST reflect the newest segment.  Even if the newest
956  * segment is going to be discarded ...", not that it looks very clever
957  * in case of head skb. Due to potentional receiver driven attacks, we
958  * choose to avoid immediate execution of a walk in write queue due to
959  * reneging and defer head skb's loss recovery to standard loss recovery
960  * procedure that will eventually trigger (nothing forbids us doing this).
961  *
962  * Implements also blockage to start_seq wrap-around. Problem lies in the
963  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
964  * there's no guarantee that it will be before snd_nxt (n). The problem
965  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
966  * wrap (s_w):
967  *
968  *         <- outs wnd ->                          <- wrapzone ->
969  *         u     e      n                         u_w   e_w  s n_w
970  *         |     |      |                          |     |   |  |
971  * |<------------+------+----- TCP seqno space --------------+---------->|
972  * ...-- <2^31 ->|                                           |<--------...
973  * ...---- >2^31 ------>|                                    |<--------...
974  *
975  * Current code wouldn't be vulnerable but it's better still to discard such
976  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
977  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
978  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
979  * equal to the ideal case (infinite seqno space without wrap caused issues).
980  *
981  * With D-SACK the lower bound is extended to cover sequence space below
982  * SND.UNA down to undo_marker, which is the last point of interest. Yet
983  * again, D-SACK block must not to go across snd_una (for the same reason as
984  * for the normal SACK blocks, explained above). But there all simplicity
985  * ends, TCP might receive valid D-SACKs below that. As long as they reside
986  * fully below undo_marker they do not affect behavior in anyway and can
987  * therefore be safely ignored. In rare cases (which are more or less
988  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
989  * fragmentation and packet reordering past skb's retransmission. To consider
990  * them correctly, the acceptable range must be extended even more though
991  * the exact amount is rather hard to quantify. However, tp->max_window can
992  * be used as an exaggerated estimate.
993  */
994 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
995 				   u32 start_seq, u32 end_seq)
996 {
997 	/* Too far in future, or reversed (interpretation is ambiguous) */
998 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
999 		return false;
1000 
1001 	/* Nasty start_seq wrap-around check (see comments above) */
1002 	if (!before(start_seq, tp->snd_nxt))
1003 		return false;
1004 
1005 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1006 	 * start_seq == snd_una is non-sensical (see comments above)
1007 	 */
1008 	if (after(start_seq, tp->snd_una))
1009 		return true;
1010 
1011 	if (!is_dsack || !tp->undo_marker)
1012 		return false;
1013 
1014 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1015 	if (after(end_seq, tp->snd_una))
1016 		return false;
1017 
1018 	if (!before(start_seq, tp->undo_marker))
1019 		return true;
1020 
1021 	/* Too old */
1022 	if (!after(end_seq, tp->undo_marker))
1023 		return false;
1024 
1025 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1026 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1027 	 */
1028 	return !before(start_seq, end_seq - tp->max_window);
1029 }
1030 
1031 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1032  * Event "B". Later note: FACK people cheated me again 8), we have to account
1033  * for reordering! Ugly, but should help.
1034  *
1035  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1036  * less than what is now known to be received by the other end (derived from
1037  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1038  * retransmitted skbs to avoid some costly processing per ACKs.
1039  */
1040 static void tcp_mark_lost_retrans(struct sock *sk)
1041 {
1042 	const struct inet_connection_sock *icsk = inet_csk(sk);
1043 	struct tcp_sock *tp = tcp_sk(sk);
1044 	struct sk_buff *skb;
1045 	int cnt = 0;
1046 	u32 new_low_seq = tp->snd_nxt;
1047 	u32 received_upto = tcp_highest_sack_seq(tp);
1048 
1049 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1050 	    !after(received_upto, tp->lost_retrans_low) ||
1051 	    icsk->icsk_ca_state != TCP_CA_Recovery)
1052 		return;
1053 
1054 	tcp_for_write_queue(skb, sk) {
1055 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1056 
1057 		if (skb == tcp_send_head(sk))
1058 			break;
1059 		if (cnt == tp->retrans_out)
1060 			break;
1061 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1062 			continue;
1063 
1064 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1065 			continue;
1066 
1067 		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1068 		 * constraint here (see above) but figuring out that at
1069 		 * least tp->reordering SACK blocks reside between ack_seq
1070 		 * and received_upto is not easy task to do cheaply with
1071 		 * the available datastructures.
1072 		 *
1073 		 * Whether FACK should check here for tp->reordering segs
1074 		 * in-between one could argue for either way (it would be
1075 		 * rather simple to implement as we could count fack_count
1076 		 * during the walk and do tp->fackets_out - fack_count).
1077 		 */
1078 		if (after(received_upto, ack_seq)) {
1079 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1080 			tp->retrans_out -= tcp_skb_pcount(skb);
1081 
1082 			tcp_skb_mark_lost_uncond_verify(tp, skb);
1083 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1084 		} else {
1085 			if (before(ack_seq, new_low_seq))
1086 				new_low_seq = ack_seq;
1087 			cnt += tcp_skb_pcount(skb);
1088 		}
1089 	}
1090 
1091 	if (tp->retrans_out)
1092 		tp->lost_retrans_low = new_low_seq;
1093 }
1094 
1095 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1096 			    struct tcp_sack_block_wire *sp, int num_sacks,
1097 			    u32 prior_snd_una)
1098 {
1099 	struct tcp_sock *tp = tcp_sk(sk);
1100 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1101 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1102 	bool dup_sack = false;
1103 
1104 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1105 		dup_sack = true;
1106 		tcp_dsack_seen(tp);
1107 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1108 	} else if (num_sacks > 1) {
1109 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1110 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1111 
1112 		if (!after(end_seq_0, end_seq_1) &&
1113 		    !before(start_seq_0, start_seq_1)) {
1114 			dup_sack = true;
1115 			tcp_dsack_seen(tp);
1116 			NET_INC_STATS_BH(sock_net(sk),
1117 					LINUX_MIB_TCPDSACKOFORECV);
1118 		}
1119 	}
1120 
1121 	/* D-SACK for already forgotten data... Do dumb counting. */
1122 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1123 	    !after(end_seq_0, prior_snd_una) &&
1124 	    after(end_seq_0, tp->undo_marker))
1125 		tp->undo_retrans--;
1126 
1127 	return dup_sack;
1128 }
1129 
1130 struct tcp_sacktag_state {
1131 	int	reord;
1132 	int	fack_count;
1133 	/* Timestamps for earliest and latest never-retransmitted segment
1134 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1135 	 * but congestion control should still get an accurate delay signal.
1136 	 */
1137 	struct skb_mstamp first_sackt;
1138 	struct skb_mstamp last_sackt;
1139 	int	flag;
1140 };
1141 
1142 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1143  * the incoming SACK may not exactly match but we can find smaller MSS
1144  * aligned portion of it that matches. Therefore we might need to fragment
1145  * which may fail and creates some hassle (caller must handle error case
1146  * returns).
1147  *
1148  * FIXME: this could be merged to shift decision code
1149  */
1150 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1151 				  u32 start_seq, u32 end_seq)
1152 {
1153 	int err;
1154 	bool in_sack;
1155 	unsigned int pkt_len;
1156 	unsigned int mss;
1157 
1158 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1159 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1160 
1161 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1162 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1163 		mss = tcp_skb_mss(skb);
1164 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1165 
1166 		if (!in_sack) {
1167 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1168 			if (pkt_len < mss)
1169 				pkt_len = mss;
1170 		} else {
1171 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1172 			if (pkt_len < mss)
1173 				return -EINVAL;
1174 		}
1175 
1176 		/* Round if necessary so that SACKs cover only full MSSes
1177 		 * and/or the remaining small portion (if present)
1178 		 */
1179 		if (pkt_len > mss) {
1180 			unsigned int new_len = (pkt_len / mss) * mss;
1181 			if (!in_sack && new_len < pkt_len) {
1182 				new_len += mss;
1183 				if (new_len >= skb->len)
1184 					return 0;
1185 			}
1186 			pkt_len = new_len;
1187 		}
1188 		err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1189 		if (err < 0)
1190 			return err;
1191 	}
1192 
1193 	return in_sack;
1194 }
1195 
1196 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1197 static u8 tcp_sacktag_one(struct sock *sk,
1198 			  struct tcp_sacktag_state *state, u8 sacked,
1199 			  u32 start_seq, u32 end_seq,
1200 			  int dup_sack, int pcount,
1201 			  const struct skb_mstamp *xmit_time)
1202 {
1203 	struct tcp_sock *tp = tcp_sk(sk);
1204 	int fack_count = state->fack_count;
1205 
1206 	/* Account D-SACK for retransmitted packet. */
1207 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1208 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1209 		    after(end_seq, tp->undo_marker))
1210 			tp->undo_retrans--;
1211 		if (sacked & TCPCB_SACKED_ACKED)
1212 			state->reord = min(fack_count, state->reord);
1213 	}
1214 
1215 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1216 	if (!after(end_seq, tp->snd_una))
1217 		return sacked;
1218 
1219 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1220 		if (sacked & TCPCB_SACKED_RETRANS) {
1221 			/* If the segment is not tagged as lost,
1222 			 * we do not clear RETRANS, believing
1223 			 * that retransmission is still in flight.
1224 			 */
1225 			if (sacked & TCPCB_LOST) {
1226 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1227 				tp->lost_out -= pcount;
1228 				tp->retrans_out -= pcount;
1229 			}
1230 		} else {
1231 			if (!(sacked & TCPCB_RETRANS)) {
1232 				/* New sack for not retransmitted frame,
1233 				 * which was in hole. It is reordering.
1234 				 */
1235 				if (before(start_seq,
1236 					   tcp_highest_sack_seq(tp)))
1237 					state->reord = min(fack_count,
1238 							   state->reord);
1239 				if (!after(end_seq, tp->high_seq))
1240 					state->flag |= FLAG_ORIG_SACK_ACKED;
1241 				if (state->first_sackt.v64 == 0)
1242 					state->first_sackt = *xmit_time;
1243 				state->last_sackt = *xmit_time;
1244 			}
1245 
1246 			if (sacked & TCPCB_LOST) {
1247 				sacked &= ~TCPCB_LOST;
1248 				tp->lost_out -= pcount;
1249 			}
1250 		}
1251 
1252 		sacked |= TCPCB_SACKED_ACKED;
1253 		state->flag |= FLAG_DATA_SACKED;
1254 		tp->sacked_out += pcount;
1255 
1256 		fack_count += pcount;
1257 
1258 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1259 		if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1260 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1261 			tp->lost_cnt_hint += pcount;
1262 
1263 		if (fack_count > tp->fackets_out)
1264 			tp->fackets_out = fack_count;
1265 	}
1266 
1267 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1268 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1269 	 * are accounted above as well.
1270 	 */
1271 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1272 		sacked &= ~TCPCB_SACKED_RETRANS;
1273 		tp->retrans_out -= pcount;
1274 	}
1275 
1276 	return sacked;
1277 }
1278 
1279 /* Shift newly-SACKed bytes from this skb to the immediately previous
1280  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1281  */
1282 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1283 			    struct tcp_sacktag_state *state,
1284 			    unsigned int pcount, int shifted, int mss,
1285 			    bool dup_sack)
1286 {
1287 	struct tcp_sock *tp = tcp_sk(sk);
1288 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1289 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1290 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1291 
1292 	BUG_ON(!pcount);
1293 
1294 	/* Adjust counters and hints for the newly sacked sequence
1295 	 * range but discard the return value since prev is already
1296 	 * marked. We must tag the range first because the seq
1297 	 * advancement below implicitly advances
1298 	 * tcp_highest_sack_seq() when skb is highest_sack.
1299 	 */
1300 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1301 			start_seq, end_seq, dup_sack, pcount,
1302 			&skb->skb_mstamp);
1303 
1304 	if (skb == tp->lost_skb_hint)
1305 		tp->lost_cnt_hint += pcount;
1306 
1307 	TCP_SKB_CB(prev)->end_seq += shifted;
1308 	TCP_SKB_CB(skb)->seq += shifted;
1309 
1310 	tcp_skb_pcount_add(prev, pcount);
1311 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1312 	tcp_skb_pcount_add(skb, -pcount);
1313 
1314 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1315 	 * in theory this shouldn't be necessary but as long as DSACK
1316 	 * code can come after this skb later on it's better to keep
1317 	 * setting gso_size to something.
1318 	 */
1319 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1320 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1321 
1322 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1323 	if (tcp_skb_pcount(skb) <= 1)
1324 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1325 
1326 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1327 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1328 
1329 	if (skb->len > 0) {
1330 		BUG_ON(!tcp_skb_pcount(skb));
1331 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1332 		return false;
1333 	}
1334 
1335 	/* Whole SKB was eaten :-) */
1336 
1337 	if (skb == tp->retransmit_skb_hint)
1338 		tp->retransmit_skb_hint = prev;
1339 	if (skb == tp->lost_skb_hint) {
1340 		tp->lost_skb_hint = prev;
1341 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1342 	}
1343 
1344 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1345 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1346 		TCP_SKB_CB(prev)->end_seq++;
1347 
1348 	if (skb == tcp_highest_sack(sk))
1349 		tcp_advance_highest_sack(sk, skb);
1350 
1351 	tcp_unlink_write_queue(skb, sk);
1352 	sk_wmem_free_skb(sk, skb);
1353 
1354 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1355 
1356 	return true;
1357 }
1358 
1359 /* I wish gso_size would have a bit more sane initialization than
1360  * something-or-zero which complicates things
1361  */
1362 static int tcp_skb_seglen(const struct sk_buff *skb)
1363 {
1364 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1365 }
1366 
1367 /* Shifting pages past head area doesn't work */
1368 static int skb_can_shift(const struct sk_buff *skb)
1369 {
1370 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1371 }
1372 
1373 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1374  * skb.
1375  */
1376 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1377 					  struct tcp_sacktag_state *state,
1378 					  u32 start_seq, u32 end_seq,
1379 					  bool dup_sack)
1380 {
1381 	struct tcp_sock *tp = tcp_sk(sk);
1382 	struct sk_buff *prev;
1383 	int mss;
1384 	int pcount = 0;
1385 	int len;
1386 	int in_sack;
1387 
1388 	if (!sk_can_gso(sk))
1389 		goto fallback;
1390 
1391 	/* Normally R but no L won't result in plain S */
1392 	if (!dup_sack &&
1393 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1394 		goto fallback;
1395 	if (!skb_can_shift(skb))
1396 		goto fallback;
1397 	/* This frame is about to be dropped (was ACKed). */
1398 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1399 		goto fallback;
1400 
1401 	/* Can only happen with delayed DSACK + discard craziness */
1402 	if (unlikely(skb == tcp_write_queue_head(sk)))
1403 		goto fallback;
1404 	prev = tcp_write_queue_prev(sk, skb);
1405 
1406 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1407 		goto fallback;
1408 
1409 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1410 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1411 
1412 	if (in_sack) {
1413 		len = skb->len;
1414 		pcount = tcp_skb_pcount(skb);
1415 		mss = tcp_skb_seglen(skb);
1416 
1417 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1418 		 * drop this restriction as unnecessary
1419 		 */
1420 		if (mss != tcp_skb_seglen(prev))
1421 			goto fallback;
1422 	} else {
1423 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1424 			goto noop;
1425 		/* CHECKME: This is non-MSS split case only?, this will
1426 		 * cause skipped skbs due to advancing loop btw, original
1427 		 * has that feature too
1428 		 */
1429 		if (tcp_skb_pcount(skb) <= 1)
1430 			goto noop;
1431 
1432 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1433 		if (!in_sack) {
1434 			/* TODO: head merge to next could be attempted here
1435 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1436 			 * though it might not be worth of the additional hassle
1437 			 *
1438 			 * ...we can probably just fallback to what was done
1439 			 * previously. We could try merging non-SACKed ones
1440 			 * as well but it probably isn't going to buy off
1441 			 * because later SACKs might again split them, and
1442 			 * it would make skb timestamp tracking considerably
1443 			 * harder problem.
1444 			 */
1445 			goto fallback;
1446 		}
1447 
1448 		len = end_seq - TCP_SKB_CB(skb)->seq;
1449 		BUG_ON(len < 0);
1450 		BUG_ON(len > skb->len);
1451 
1452 		/* MSS boundaries should be honoured or else pcount will
1453 		 * severely break even though it makes things bit trickier.
1454 		 * Optimize common case to avoid most of the divides
1455 		 */
1456 		mss = tcp_skb_mss(skb);
1457 
1458 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1459 		 * drop this restriction as unnecessary
1460 		 */
1461 		if (mss != tcp_skb_seglen(prev))
1462 			goto fallback;
1463 
1464 		if (len == mss) {
1465 			pcount = 1;
1466 		} else if (len < mss) {
1467 			goto noop;
1468 		} else {
1469 			pcount = len / mss;
1470 			len = pcount * mss;
1471 		}
1472 	}
1473 
1474 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1475 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1476 		goto fallback;
1477 
1478 	if (!skb_shift(prev, skb, len))
1479 		goto fallback;
1480 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1481 		goto out;
1482 
1483 	/* Hole filled allows collapsing with the next as well, this is very
1484 	 * useful when hole on every nth skb pattern happens
1485 	 */
1486 	if (prev == tcp_write_queue_tail(sk))
1487 		goto out;
1488 	skb = tcp_write_queue_next(sk, prev);
1489 
1490 	if (!skb_can_shift(skb) ||
1491 	    (skb == tcp_send_head(sk)) ||
1492 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1493 	    (mss != tcp_skb_seglen(skb)))
1494 		goto out;
1495 
1496 	len = skb->len;
1497 	if (skb_shift(prev, skb, len)) {
1498 		pcount += tcp_skb_pcount(skb);
1499 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1500 	}
1501 
1502 out:
1503 	state->fack_count += pcount;
1504 	return prev;
1505 
1506 noop:
1507 	return skb;
1508 
1509 fallback:
1510 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1511 	return NULL;
1512 }
1513 
1514 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1515 					struct tcp_sack_block *next_dup,
1516 					struct tcp_sacktag_state *state,
1517 					u32 start_seq, u32 end_seq,
1518 					bool dup_sack_in)
1519 {
1520 	struct tcp_sock *tp = tcp_sk(sk);
1521 	struct sk_buff *tmp;
1522 
1523 	tcp_for_write_queue_from(skb, sk) {
1524 		int in_sack = 0;
1525 		bool dup_sack = dup_sack_in;
1526 
1527 		if (skb == tcp_send_head(sk))
1528 			break;
1529 
1530 		/* queue is in-order => we can short-circuit the walk early */
1531 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1532 			break;
1533 
1534 		if (next_dup  &&
1535 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1536 			in_sack = tcp_match_skb_to_sack(sk, skb,
1537 							next_dup->start_seq,
1538 							next_dup->end_seq);
1539 			if (in_sack > 0)
1540 				dup_sack = true;
1541 		}
1542 
1543 		/* skb reference here is a bit tricky to get right, since
1544 		 * shifting can eat and free both this skb and the next,
1545 		 * so not even _safe variant of the loop is enough.
1546 		 */
1547 		if (in_sack <= 0) {
1548 			tmp = tcp_shift_skb_data(sk, skb, state,
1549 						 start_seq, end_seq, dup_sack);
1550 			if (tmp) {
1551 				if (tmp != skb) {
1552 					skb = tmp;
1553 					continue;
1554 				}
1555 
1556 				in_sack = 0;
1557 			} else {
1558 				in_sack = tcp_match_skb_to_sack(sk, skb,
1559 								start_seq,
1560 								end_seq);
1561 			}
1562 		}
1563 
1564 		if (unlikely(in_sack < 0))
1565 			break;
1566 
1567 		if (in_sack) {
1568 			TCP_SKB_CB(skb)->sacked =
1569 				tcp_sacktag_one(sk,
1570 						state,
1571 						TCP_SKB_CB(skb)->sacked,
1572 						TCP_SKB_CB(skb)->seq,
1573 						TCP_SKB_CB(skb)->end_seq,
1574 						dup_sack,
1575 						tcp_skb_pcount(skb),
1576 						&skb->skb_mstamp);
1577 
1578 			if (!before(TCP_SKB_CB(skb)->seq,
1579 				    tcp_highest_sack_seq(tp)))
1580 				tcp_advance_highest_sack(sk, skb);
1581 		}
1582 
1583 		state->fack_count += tcp_skb_pcount(skb);
1584 	}
1585 	return skb;
1586 }
1587 
1588 /* Avoid all extra work that is being done by sacktag while walking in
1589  * a normal way
1590  */
1591 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1592 					struct tcp_sacktag_state *state,
1593 					u32 skip_to_seq)
1594 {
1595 	tcp_for_write_queue_from(skb, sk) {
1596 		if (skb == tcp_send_head(sk))
1597 			break;
1598 
1599 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1600 			break;
1601 
1602 		state->fack_count += tcp_skb_pcount(skb);
1603 	}
1604 	return skb;
1605 }
1606 
1607 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1608 						struct sock *sk,
1609 						struct tcp_sack_block *next_dup,
1610 						struct tcp_sacktag_state *state,
1611 						u32 skip_to_seq)
1612 {
1613 	if (!next_dup)
1614 		return skb;
1615 
1616 	if (before(next_dup->start_seq, skip_to_seq)) {
1617 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1618 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1619 				       next_dup->start_seq, next_dup->end_seq,
1620 				       1);
1621 	}
1622 
1623 	return skb;
1624 }
1625 
1626 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1627 {
1628 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1629 }
1630 
1631 static int
1632 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1633 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1634 {
1635 	struct tcp_sock *tp = tcp_sk(sk);
1636 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1637 				    TCP_SKB_CB(ack_skb)->sacked);
1638 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1639 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1640 	struct tcp_sack_block *cache;
1641 	struct sk_buff *skb;
1642 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1643 	int used_sacks;
1644 	bool found_dup_sack = false;
1645 	int i, j;
1646 	int first_sack_index;
1647 
1648 	state->flag = 0;
1649 	state->reord = tp->packets_out;
1650 
1651 	if (!tp->sacked_out) {
1652 		if (WARN_ON(tp->fackets_out))
1653 			tp->fackets_out = 0;
1654 		tcp_highest_sack_reset(sk);
1655 	}
1656 
1657 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1658 					 num_sacks, prior_snd_una);
1659 	if (found_dup_sack)
1660 		state->flag |= FLAG_DSACKING_ACK;
1661 
1662 	/* Eliminate too old ACKs, but take into
1663 	 * account more or less fresh ones, they can
1664 	 * contain valid SACK info.
1665 	 */
1666 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1667 		return 0;
1668 
1669 	if (!tp->packets_out)
1670 		goto out;
1671 
1672 	used_sacks = 0;
1673 	first_sack_index = 0;
1674 	for (i = 0; i < num_sacks; i++) {
1675 		bool dup_sack = !i && found_dup_sack;
1676 
1677 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1678 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1679 
1680 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1681 					    sp[used_sacks].start_seq,
1682 					    sp[used_sacks].end_seq)) {
1683 			int mib_idx;
1684 
1685 			if (dup_sack) {
1686 				if (!tp->undo_marker)
1687 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1688 				else
1689 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1690 			} else {
1691 				/* Don't count olds caused by ACK reordering */
1692 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1693 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1694 					continue;
1695 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1696 			}
1697 
1698 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1699 			if (i == 0)
1700 				first_sack_index = -1;
1701 			continue;
1702 		}
1703 
1704 		/* Ignore very old stuff early */
1705 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1706 			continue;
1707 
1708 		used_sacks++;
1709 	}
1710 
1711 	/* order SACK blocks to allow in order walk of the retrans queue */
1712 	for (i = used_sacks - 1; i > 0; i--) {
1713 		for (j = 0; j < i; j++) {
1714 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1715 				swap(sp[j], sp[j + 1]);
1716 
1717 				/* Track where the first SACK block goes to */
1718 				if (j == first_sack_index)
1719 					first_sack_index = j + 1;
1720 			}
1721 		}
1722 	}
1723 
1724 	skb = tcp_write_queue_head(sk);
1725 	state->fack_count = 0;
1726 	i = 0;
1727 
1728 	if (!tp->sacked_out) {
1729 		/* It's already past, so skip checking against it */
1730 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1731 	} else {
1732 		cache = tp->recv_sack_cache;
1733 		/* Skip empty blocks in at head of the cache */
1734 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1735 		       !cache->end_seq)
1736 			cache++;
1737 	}
1738 
1739 	while (i < used_sacks) {
1740 		u32 start_seq = sp[i].start_seq;
1741 		u32 end_seq = sp[i].end_seq;
1742 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1743 		struct tcp_sack_block *next_dup = NULL;
1744 
1745 		if (found_dup_sack && ((i + 1) == first_sack_index))
1746 			next_dup = &sp[i + 1];
1747 
1748 		/* Skip too early cached blocks */
1749 		while (tcp_sack_cache_ok(tp, cache) &&
1750 		       !before(start_seq, cache->end_seq))
1751 			cache++;
1752 
1753 		/* Can skip some work by looking recv_sack_cache? */
1754 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1755 		    after(end_seq, cache->start_seq)) {
1756 
1757 			/* Head todo? */
1758 			if (before(start_seq, cache->start_seq)) {
1759 				skb = tcp_sacktag_skip(skb, sk, state,
1760 						       start_seq);
1761 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1762 						       state,
1763 						       start_seq,
1764 						       cache->start_seq,
1765 						       dup_sack);
1766 			}
1767 
1768 			/* Rest of the block already fully processed? */
1769 			if (!after(end_seq, cache->end_seq))
1770 				goto advance_sp;
1771 
1772 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1773 						       state,
1774 						       cache->end_seq);
1775 
1776 			/* ...tail remains todo... */
1777 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1778 				/* ...but better entrypoint exists! */
1779 				skb = tcp_highest_sack(sk);
1780 				if (!skb)
1781 					break;
1782 				state->fack_count = tp->fackets_out;
1783 				cache++;
1784 				goto walk;
1785 			}
1786 
1787 			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1788 			/* Check overlap against next cached too (past this one already) */
1789 			cache++;
1790 			continue;
1791 		}
1792 
1793 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1794 			skb = tcp_highest_sack(sk);
1795 			if (!skb)
1796 				break;
1797 			state->fack_count = tp->fackets_out;
1798 		}
1799 		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1800 
1801 walk:
1802 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1803 				       start_seq, end_seq, dup_sack);
1804 
1805 advance_sp:
1806 		i++;
1807 	}
1808 
1809 	/* Clear the head of the cache sack blocks so we can skip it next time */
1810 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1811 		tp->recv_sack_cache[i].start_seq = 0;
1812 		tp->recv_sack_cache[i].end_seq = 0;
1813 	}
1814 	for (j = 0; j < used_sacks; j++)
1815 		tp->recv_sack_cache[i++] = sp[j];
1816 
1817 	if ((state->reord < tp->fackets_out) &&
1818 	    ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1819 		tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1820 
1821 	tcp_mark_lost_retrans(sk);
1822 	tcp_verify_left_out(tp);
1823 out:
1824 
1825 #if FASTRETRANS_DEBUG > 0
1826 	WARN_ON((int)tp->sacked_out < 0);
1827 	WARN_ON((int)tp->lost_out < 0);
1828 	WARN_ON((int)tp->retrans_out < 0);
1829 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1830 #endif
1831 	return state->flag;
1832 }
1833 
1834 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1835  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1836  */
1837 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1838 {
1839 	u32 holes;
1840 
1841 	holes = max(tp->lost_out, 1U);
1842 	holes = min(holes, tp->packets_out);
1843 
1844 	if ((tp->sacked_out + holes) > tp->packets_out) {
1845 		tp->sacked_out = tp->packets_out - holes;
1846 		return true;
1847 	}
1848 	return false;
1849 }
1850 
1851 /* If we receive more dupacks than we expected counting segments
1852  * in assumption of absent reordering, interpret this as reordering.
1853  * The only another reason could be bug in receiver TCP.
1854  */
1855 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1856 {
1857 	struct tcp_sock *tp = tcp_sk(sk);
1858 	if (tcp_limit_reno_sacked(tp))
1859 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1860 }
1861 
1862 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1863 
1864 static void tcp_add_reno_sack(struct sock *sk)
1865 {
1866 	struct tcp_sock *tp = tcp_sk(sk);
1867 	tp->sacked_out++;
1868 	tcp_check_reno_reordering(sk, 0);
1869 	tcp_verify_left_out(tp);
1870 }
1871 
1872 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1873 
1874 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1875 {
1876 	struct tcp_sock *tp = tcp_sk(sk);
1877 
1878 	if (acked > 0) {
1879 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1880 		if (acked - 1 >= tp->sacked_out)
1881 			tp->sacked_out = 0;
1882 		else
1883 			tp->sacked_out -= acked - 1;
1884 	}
1885 	tcp_check_reno_reordering(sk, acked);
1886 	tcp_verify_left_out(tp);
1887 }
1888 
1889 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1890 {
1891 	tp->sacked_out = 0;
1892 }
1893 
1894 void tcp_clear_retrans(struct tcp_sock *tp)
1895 {
1896 	tp->retrans_out = 0;
1897 	tp->lost_out = 0;
1898 	tp->undo_marker = 0;
1899 	tp->undo_retrans = -1;
1900 	tp->fackets_out = 0;
1901 	tp->sacked_out = 0;
1902 }
1903 
1904 static inline void tcp_init_undo(struct tcp_sock *tp)
1905 {
1906 	tp->undo_marker = tp->snd_una;
1907 	/* Retransmission still in flight may cause DSACKs later. */
1908 	tp->undo_retrans = tp->retrans_out ? : -1;
1909 }
1910 
1911 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1912  * and reset tags completely, otherwise preserve SACKs. If receiver
1913  * dropped its ofo queue, we will know this due to reneging detection.
1914  */
1915 void tcp_enter_loss(struct sock *sk)
1916 {
1917 	const struct inet_connection_sock *icsk = inet_csk(sk);
1918 	struct tcp_sock *tp = tcp_sk(sk);
1919 	struct sk_buff *skb;
1920 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1921 	bool is_reneg;			/* is receiver reneging on SACKs? */
1922 
1923 	/* Reduce ssthresh if it has not yet been made inside this window. */
1924 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1925 	    !after(tp->high_seq, tp->snd_una) ||
1926 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1927 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1928 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1929 		tcp_ca_event(sk, CA_EVENT_LOSS);
1930 		tcp_init_undo(tp);
1931 	}
1932 	tp->snd_cwnd	   = 1;
1933 	tp->snd_cwnd_cnt   = 0;
1934 	tp->snd_cwnd_stamp = tcp_time_stamp;
1935 
1936 	tp->retrans_out = 0;
1937 	tp->lost_out = 0;
1938 
1939 	if (tcp_is_reno(tp))
1940 		tcp_reset_reno_sack(tp);
1941 
1942 	skb = tcp_write_queue_head(sk);
1943 	is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1944 	if (is_reneg) {
1945 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1946 		tp->sacked_out = 0;
1947 		tp->fackets_out = 0;
1948 	}
1949 	tcp_clear_all_retrans_hints(tp);
1950 
1951 	tcp_for_write_queue(skb, sk) {
1952 		if (skb == tcp_send_head(sk))
1953 			break;
1954 
1955 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1956 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
1957 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1958 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1959 			tp->lost_out += tcp_skb_pcount(skb);
1960 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1961 		}
1962 	}
1963 	tcp_verify_left_out(tp);
1964 
1965 	/* Timeout in disordered state after receiving substantial DUPACKs
1966 	 * suggests that the degree of reordering is over-estimated.
1967 	 */
1968 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1969 	    tp->sacked_out >= sysctl_tcp_reordering)
1970 		tp->reordering = min_t(unsigned int, tp->reordering,
1971 				       sysctl_tcp_reordering);
1972 	tcp_set_ca_state(sk, TCP_CA_Loss);
1973 	tp->high_seq = tp->snd_nxt;
1974 	tcp_ecn_queue_cwr(tp);
1975 
1976 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1977 	 * loss recovery is underway except recurring timeout(s) on
1978 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1979 	 */
1980 	tp->frto = sysctl_tcp_frto &&
1981 		   (new_recovery || icsk->icsk_retransmits) &&
1982 		   !inet_csk(sk)->icsk_mtup.probe_size;
1983 }
1984 
1985 /* If ACK arrived pointing to a remembered SACK, it means that our
1986  * remembered SACKs do not reflect real state of receiver i.e.
1987  * receiver _host_ is heavily congested (or buggy).
1988  *
1989  * To avoid big spurious retransmission bursts due to transient SACK
1990  * scoreboard oddities that look like reneging, we give the receiver a
1991  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1992  * restore sanity to the SACK scoreboard. If the apparent reneging
1993  * persists until this RTO then we'll clear the SACK scoreboard.
1994  */
1995 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1996 {
1997 	if (flag & FLAG_SACK_RENEGING) {
1998 		struct tcp_sock *tp = tcp_sk(sk);
1999 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2000 					  msecs_to_jiffies(10));
2001 
2002 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2003 					  delay, TCP_RTO_MAX);
2004 		return true;
2005 	}
2006 	return false;
2007 }
2008 
2009 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2010 {
2011 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2012 }
2013 
2014 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2015  * counter when SACK is enabled (without SACK, sacked_out is used for
2016  * that purpose).
2017  *
2018  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2019  * segments up to the highest received SACK block so far and holes in
2020  * between them.
2021  *
2022  * With reordering, holes may still be in flight, so RFC3517 recovery
2023  * uses pure sacked_out (total number of SACKed segments) even though
2024  * it violates the RFC that uses duplicate ACKs, often these are equal
2025  * but when e.g. out-of-window ACKs or packet duplication occurs,
2026  * they differ. Since neither occurs due to loss, TCP should really
2027  * ignore them.
2028  */
2029 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2030 {
2031 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2032 }
2033 
2034 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2035 {
2036 	struct tcp_sock *tp = tcp_sk(sk);
2037 	unsigned long delay;
2038 
2039 	/* Delay early retransmit and entering fast recovery for
2040 	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2041 	 * available, or RTO is scheduled to fire first.
2042 	 */
2043 	if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2044 	    (flag & FLAG_ECE) || !tp->srtt_us)
2045 		return false;
2046 
2047 	delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2048 		    msecs_to_jiffies(2));
2049 
2050 	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2051 		return false;
2052 
2053 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2054 				  TCP_RTO_MAX);
2055 	return true;
2056 }
2057 
2058 /* Linux NewReno/SACK/FACK/ECN state machine.
2059  * --------------------------------------
2060  *
2061  * "Open"	Normal state, no dubious events, fast path.
2062  * "Disorder"   In all the respects it is "Open",
2063  *		but requires a bit more attention. It is entered when
2064  *		we see some SACKs or dupacks. It is split of "Open"
2065  *		mainly to move some processing from fast path to slow one.
2066  * "CWR"	CWND was reduced due to some Congestion Notification event.
2067  *		It can be ECN, ICMP source quench, local device congestion.
2068  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2069  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2070  *
2071  * tcp_fastretrans_alert() is entered:
2072  * - each incoming ACK, if state is not "Open"
2073  * - when arrived ACK is unusual, namely:
2074  *	* SACK
2075  *	* Duplicate ACK.
2076  *	* ECN ECE.
2077  *
2078  * Counting packets in flight is pretty simple.
2079  *
2080  *	in_flight = packets_out - left_out + retrans_out
2081  *
2082  *	packets_out is SND.NXT-SND.UNA counted in packets.
2083  *
2084  *	retrans_out is number of retransmitted segments.
2085  *
2086  *	left_out is number of segments left network, but not ACKed yet.
2087  *
2088  *		left_out = sacked_out + lost_out
2089  *
2090  *     sacked_out: Packets, which arrived to receiver out of order
2091  *		   and hence not ACKed. With SACKs this number is simply
2092  *		   amount of SACKed data. Even without SACKs
2093  *		   it is easy to give pretty reliable estimate of this number,
2094  *		   counting duplicate ACKs.
2095  *
2096  *       lost_out: Packets lost by network. TCP has no explicit
2097  *		   "loss notification" feedback from network (for now).
2098  *		   It means that this number can be only _guessed_.
2099  *		   Actually, it is the heuristics to predict lossage that
2100  *		   distinguishes different algorithms.
2101  *
2102  *	F.e. after RTO, when all the queue is considered as lost,
2103  *	lost_out = packets_out and in_flight = retrans_out.
2104  *
2105  *		Essentially, we have now two algorithms counting
2106  *		lost packets.
2107  *
2108  *		FACK: It is the simplest heuristics. As soon as we decided
2109  *		that something is lost, we decide that _all_ not SACKed
2110  *		packets until the most forward SACK are lost. I.e.
2111  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2112  *		It is absolutely correct estimate, if network does not reorder
2113  *		packets. And it loses any connection to reality when reordering
2114  *		takes place. We use FACK by default until reordering
2115  *		is suspected on the path to this destination.
2116  *
2117  *		NewReno: when Recovery is entered, we assume that one segment
2118  *		is lost (classic Reno). While we are in Recovery and
2119  *		a partial ACK arrives, we assume that one more packet
2120  *		is lost (NewReno). This heuristics are the same in NewReno
2121  *		and SACK.
2122  *
2123  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2124  *  deflation etc. CWND is real congestion window, never inflated, changes
2125  *  only according to classic VJ rules.
2126  *
2127  * Really tricky (and requiring careful tuning) part of algorithm
2128  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2129  * The first determines the moment _when_ we should reduce CWND and,
2130  * hence, slow down forward transmission. In fact, it determines the moment
2131  * when we decide that hole is caused by loss, rather than by a reorder.
2132  *
2133  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2134  * holes, caused by lost packets.
2135  *
2136  * And the most logically complicated part of algorithm is undo
2137  * heuristics. We detect false retransmits due to both too early
2138  * fast retransmit (reordering) and underestimated RTO, analyzing
2139  * timestamps and D-SACKs. When we detect that some segments were
2140  * retransmitted by mistake and CWND reduction was wrong, we undo
2141  * window reduction and abort recovery phase. This logic is hidden
2142  * inside several functions named tcp_try_undo_<something>.
2143  */
2144 
2145 /* This function decides, when we should leave Disordered state
2146  * and enter Recovery phase, reducing congestion window.
2147  *
2148  * Main question: may we further continue forward transmission
2149  * with the same cwnd?
2150  */
2151 static bool tcp_time_to_recover(struct sock *sk, int flag)
2152 {
2153 	struct tcp_sock *tp = tcp_sk(sk);
2154 	__u32 packets_out;
2155 
2156 	/* Trick#1: The loss is proven. */
2157 	if (tp->lost_out)
2158 		return true;
2159 
2160 	/* Not-A-Trick#2 : Classic rule... */
2161 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2162 		return true;
2163 
2164 	/* Trick#4: It is still not OK... But will it be useful to delay
2165 	 * recovery more?
2166 	 */
2167 	packets_out = tp->packets_out;
2168 	if (packets_out <= tp->reordering &&
2169 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2170 	    !tcp_may_send_now(sk)) {
2171 		/* We have nothing to send. This connection is limited
2172 		 * either by receiver window or by application.
2173 		 */
2174 		return true;
2175 	}
2176 
2177 	/* If a thin stream is detected, retransmit after first
2178 	 * received dupack. Employ only if SACK is supported in order
2179 	 * to avoid possible corner-case series of spurious retransmissions
2180 	 * Use only if there are no unsent data.
2181 	 */
2182 	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2183 	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2184 	    tcp_is_sack(tp) && !tcp_send_head(sk))
2185 		return true;
2186 
2187 	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2188 	 * retransmissions due to small network reorderings, we implement
2189 	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2190 	 * interval if appropriate.
2191 	 */
2192 	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2193 	    (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2194 	    !tcp_may_send_now(sk))
2195 		return !tcp_pause_early_retransmit(sk, flag);
2196 
2197 	return false;
2198 }
2199 
2200 /* Detect loss in event "A" above by marking head of queue up as lost.
2201  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2202  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2203  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2204  * the maximum SACKed segments to pass before reaching this limit.
2205  */
2206 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2207 {
2208 	struct tcp_sock *tp = tcp_sk(sk);
2209 	struct sk_buff *skb;
2210 	int cnt, oldcnt;
2211 	int err;
2212 	unsigned int mss;
2213 	/* Use SACK to deduce losses of new sequences sent during recovery */
2214 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2215 
2216 	WARN_ON(packets > tp->packets_out);
2217 	if (tp->lost_skb_hint) {
2218 		skb = tp->lost_skb_hint;
2219 		cnt = tp->lost_cnt_hint;
2220 		/* Head already handled? */
2221 		if (mark_head && skb != tcp_write_queue_head(sk))
2222 			return;
2223 	} else {
2224 		skb = tcp_write_queue_head(sk);
2225 		cnt = 0;
2226 	}
2227 
2228 	tcp_for_write_queue_from(skb, sk) {
2229 		if (skb == tcp_send_head(sk))
2230 			break;
2231 		/* TODO: do this better */
2232 		/* this is not the most efficient way to do this... */
2233 		tp->lost_skb_hint = skb;
2234 		tp->lost_cnt_hint = cnt;
2235 
2236 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2237 			break;
2238 
2239 		oldcnt = cnt;
2240 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2241 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2242 			cnt += tcp_skb_pcount(skb);
2243 
2244 		if (cnt > packets) {
2245 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2246 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2247 			    (oldcnt >= packets))
2248 				break;
2249 
2250 			mss = tcp_skb_mss(skb);
2251 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss,
2252 					   mss, GFP_ATOMIC);
2253 			if (err < 0)
2254 				break;
2255 			cnt = packets;
2256 		}
2257 
2258 		tcp_skb_mark_lost(tp, skb);
2259 
2260 		if (mark_head)
2261 			break;
2262 	}
2263 	tcp_verify_left_out(tp);
2264 }
2265 
2266 /* Account newly detected lost packet(s) */
2267 
2268 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2269 {
2270 	struct tcp_sock *tp = tcp_sk(sk);
2271 
2272 	if (tcp_is_reno(tp)) {
2273 		tcp_mark_head_lost(sk, 1, 1);
2274 	} else if (tcp_is_fack(tp)) {
2275 		int lost = tp->fackets_out - tp->reordering;
2276 		if (lost <= 0)
2277 			lost = 1;
2278 		tcp_mark_head_lost(sk, lost, 0);
2279 	} else {
2280 		int sacked_upto = tp->sacked_out - tp->reordering;
2281 		if (sacked_upto >= 0)
2282 			tcp_mark_head_lost(sk, sacked_upto, 0);
2283 		else if (fast_rexmit)
2284 			tcp_mark_head_lost(sk, 1, 1);
2285 	}
2286 }
2287 
2288 /* CWND moderation, preventing bursts due to too big ACKs
2289  * in dubious situations.
2290  */
2291 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2292 {
2293 	tp->snd_cwnd = min(tp->snd_cwnd,
2294 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2295 	tp->snd_cwnd_stamp = tcp_time_stamp;
2296 }
2297 
2298 /* Nothing was retransmitted or returned timestamp is less
2299  * than timestamp of the first retransmission.
2300  */
2301 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2302 {
2303 	return !tp->retrans_stamp ||
2304 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2305 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2306 }
2307 
2308 /* Undo procedures. */
2309 
2310 /* We can clear retrans_stamp when there are no retransmissions in the
2311  * window. It would seem that it is trivially available for us in
2312  * tp->retrans_out, however, that kind of assumptions doesn't consider
2313  * what will happen if errors occur when sending retransmission for the
2314  * second time. ...It could the that such segment has only
2315  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2316  * the head skb is enough except for some reneging corner cases that
2317  * are not worth the effort.
2318  *
2319  * Main reason for all this complexity is the fact that connection dying
2320  * time now depends on the validity of the retrans_stamp, in particular,
2321  * that successive retransmissions of a segment must not advance
2322  * retrans_stamp under any conditions.
2323  */
2324 static bool tcp_any_retrans_done(const struct sock *sk)
2325 {
2326 	const struct tcp_sock *tp = tcp_sk(sk);
2327 	struct sk_buff *skb;
2328 
2329 	if (tp->retrans_out)
2330 		return true;
2331 
2332 	skb = tcp_write_queue_head(sk);
2333 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2334 		return true;
2335 
2336 	return false;
2337 }
2338 
2339 #if FASTRETRANS_DEBUG > 1
2340 static void DBGUNDO(struct sock *sk, const char *msg)
2341 {
2342 	struct tcp_sock *tp = tcp_sk(sk);
2343 	struct inet_sock *inet = inet_sk(sk);
2344 
2345 	if (sk->sk_family == AF_INET) {
2346 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2347 			 msg,
2348 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2349 			 tp->snd_cwnd, tcp_left_out(tp),
2350 			 tp->snd_ssthresh, tp->prior_ssthresh,
2351 			 tp->packets_out);
2352 	}
2353 #if IS_ENABLED(CONFIG_IPV6)
2354 	else if (sk->sk_family == AF_INET6) {
2355 		struct ipv6_pinfo *np = inet6_sk(sk);
2356 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2357 			 msg,
2358 			 &np->daddr, ntohs(inet->inet_dport),
2359 			 tp->snd_cwnd, tcp_left_out(tp),
2360 			 tp->snd_ssthresh, tp->prior_ssthresh,
2361 			 tp->packets_out);
2362 	}
2363 #endif
2364 }
2365 #else
2366 #define DBGUNDO(x...) do { } while (0)
2367 #endif
2368 
2369 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2370 {
2371 	struct tcp_sock *tp = tcp_sk(sk);
2372 
2373 	if (unmark_loss) {
2374 		struct sk_buff *skb;
2375 
2376 		tcp_for_write_queue(skb, sk) {
2377 			if (skb == tcp_send_head(sk))
2378 				break;
2379 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2380 		}
2381 		tp->lost_out = 0;
2382 		tcp_clear_all_retrans_hints(tp);
2383 	}
2384 
2385 	if (tp->prior_ssthresh) {
2386 		const struct inet_connection_sock *icsk = inet_csk(sk);
2387 
2388 		if (icsk->icsk_ca_ops->undo_cwnd)
2389 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2390 		else
2391 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2392 
2393 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2394 			tp->snd_ssthresh = tp->prior_ssthresh;
2395 			tcp_ecn_withdraw_cwr(tp);
2396 		}
2397 	} else {
2398 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2399 	}
2400 	tp->snd_cwnd_stamp = tcp_time_stamp;
2401 	tp->undo_marker = 0;
2402 }
2403 
2404 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2405 {
2406 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2407 }
2408 
2409 /* People celebrate: "We love our President!" */
2410 static bool tcp_try_undo_recovery(struct sock *sk)
2411 {
2412 	struct tcp_sock *tp = tcp_sk(sk);
2413 
2414 	if (tcp_may_undo(tp)) {
2415 		int mib_idx;
2416 
2417 		/* Happy end! We did not retransmit anything
2418 		 * or our original transmission succeeded.
2419 		 */
2420 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2421 		tcp_undo_cwnd_reduction(sk, false);
2422 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2423 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2424 		else
2425 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2426 
2427 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2428 	}
2429 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2430 		/* Hold old state until something *above* high_seq
2431 		 * is ACKed. For Reno it is MUST to prevent false
2432 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2433 		tcp_moderate_cwnd(tp);
2434 		if (!tcp_any_retrans_done(sk))
2435 			tp->retrans_stamp = 0;
2436 		return true;
2437 	}
2438 	tcp_set_ca_state(sk, TCP_CA_Open);
2439 	return false;
2440 }
2441 
2442 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2443 static bool tcp_try_undo_dsack(struct sock *sk)
2444 {
2445 	struct tcp_sock *tp = tcp_sk(sk);
2446 
2447 	if (tp->undo_marker && !tp->undo_retrans) {
2448 		DBGUNDO(sk, "D-SACK");
2449 		tcp_undo_cwnd_reduction(sk, false);
2450 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2451 		return true;
2452 	}
2453 	return false;
2454 }
2455 
2456 /* Undo during loss recovery after partial ACK or using F-RTO. */
2457 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2458 {
2459 	struct tcp_sock *tp = tcp_sk(sk);
2460 
2461 	if (frto_undo || tcp_may_undo(tp)) {
2462 		tcp_undo_cwnd_reduction(sk, true);
2463 
2464 		DBGUNDO(sk, "partial loss");
2465 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2466 		if (frto_undo)
2467 			NET_INC_STATS_BH(sock_net(sk),
2468 					 LINUX_MIB_TCPSPURIOUSRTOS);
2469 		inet_csk(sk)->icsk_retransmits = 0;
2470 		if (frto_undo || tcp_is_sack(tp))
2471 			tcp_set_ca_state(sk, TCP_CA_Open);
2472 		return true;
2473 	}
2474 	return false;
2475 }
2476 
2477 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2478  * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2479  * It computes the number of packets to send (sndcnt) based on packets newly
2480  * delivered:
2481  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2482  *	cwnd reductions across a full RTT.
2483  *   2) If packets in flight is lower than ssthresh (such as due to excess
2484  *	losses and/or application stalls), do not perform any further cwnd
2485  *	reductions, but instead slow start up to ssthresh.
2486  */
2487 static void tcp_init_cwnd_reduction(struct sock *sk)
2488 {
2489 	struct tcp_sock *tp = tcp_sk(sk);
2490 
2491 	tp->high_seq = tp->snd_nxt;
2492 	tp->tlp_high_seq = 0;
2493 	tp->snd_cwnd_cnt = 0;
2494 	tp->prior_cwnd = tp->snd_cwnd;
2495 	tp->prr_delivered = 0;
2496 	tp->prr_out = 0;
2497 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2498 	tcp_ecn_queue_cwr(tp);
2499 }
2500 
2501 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2502 			       int fast_rexmit)
2503 {
2504 	struct tcp_sock *tp = tcp_sk(sk);
2505 	int sndcnt = 0;
2506 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2507 	int newly_acked_sacked = prior_unsacked -
2508 				 (tp->packets_out - tp->sacked_out);
2509 
2510 	tp->prr_delivered += newly_acked_sacked;
2511 	if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2512 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2513 			       tp->prior_cwnd - 1;
2514 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2515 	} else {
2516 		sndcnt = min_t(int, delta,
2517 			       max_t(int, tp->prr_delivered - tp->prr_out,
2518 				     newly_acked_sacked) + 1);
2519 	}
2520 
2521 	sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2522 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2523 }
2524 
2525 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2526 {
2527 	struct tcp_sock *tp = tcp_sk(sk);
2528 
2529 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2530 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2531 	    (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2532 		tp->snd_cwnd = tp->snd_ssthresh;
2533 		tp->snd_cwnd_stamp = tcp_time_stamp;
2534 	}
2535 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2536 }
2537 
2538 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2539 void tcp_enter_cwr(struct sock *sk)
2540 {
2541 	struct tcp_sock *tp = tcp_sk(sk);
2542 
2543 	tp->prior_ssthresh = 0;
2544 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2545 		tp->undo_marker = 0;
2546 		tcp_init_cwnd_reduction(sk);
2547 		tcp_set_ca_state(sk, TCP_CA_CWR);
2548 	}
2549 }
2550 EXPORT_SYMBOL(tcp_enter_cwr);
2551 
2552 static void tcp_try_keep_open(struct sock *sk)
2553 {
2554 	struct tcp_sock *tp = tcp_sk(sk);
2555 	int state = TCP_CA_Open;
2556 
2557 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2558 		state = TCP_CA_Disorder;
2559 
2560 	if (inet_csk(sk)->icsk_ca_state != state) {
2561 		tcp_set_ca_state(sk, state);
2562 		tp->high_seq = tp->snd_nxt;
2563 	}
2564 }
2565 
2566 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2567 {
2568 	struct tcp_sock *tp = tcp_sk(sk);
2569 
2570 	tcp_verify_left_out(tp);
2571 
2572 	if (!tcp_any_retrans_done(sk))
2573 		tp->retrans_stamp = 0;
2574 
2575 	if (flag & FLAG_ECE)
2576 		tcp_enter_cwr(sk);
2577 
2578 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2579 		tcp_try_keep_open(sk);
2580 	} else {
2581 		tcp_cwnd_reduction(sk, prior_unsacked, 0);
2582 	}
2583 }
2584 
2585 static void tcp_mtup_probe_failed(struct sock *sk)
2586 {
2587 	struct inet_connection_sock *icsk = inet_csk(sk);
2588 
2589 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2590 	icsk->icsk_mtup.probe_size = 0;
2591 }
2592 
2593 static void tcp_mtup_probe_success(struct sock *sk)
2594 {
2595 	struct tcp_sock *tp = tcp_sk(sk);
2596 	struct inet_connection_sock *icsk = inet_csk(sk);
2597 
2598 	/* FIXME: breaks with very large cwnd */
2599 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2600 	tp->snd_cwnd = tp->snd_cwnd *
2601 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2602 		       icsk->icsk_mtup.probe_size;
2603 	tp->snd_cwnd_cnt = 0;
2604 	tp->snd_cwnd_stamp = tcp_time_stamp;
2605 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2606 
2607 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2608 	icsk->icsk_mtup.probe_size = 0;
2609 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2610 }
2611 
2612 /* Do a simple retransmit without using the backoff mechanisms in
2613  * tcp_timer. This is used for path mtu discovery.
2614  * The socket is already locked here.
2615  */
2616 void tcp_simple_retransmit(struct sock *sk)
2617 {
2618 	const struct inet_connection_sock *icsk = inet_csk(sk);
2619 	struct tcp_sock *tp = tcp_sk(sk);
2620 	struct sk_buff *skb;
2621 	unsigned int mss = tcp_current_mss(sk);
2622 	u32 prior_lost = tp->lost_out;
2623 
2624 	tcp_for_write_queue(skb, sk) {
2625 		if (skb == tcp_send_head(sk))
2626 			break;
2627 		if (tcp_skb_seglen(skb) > mss &&
2628 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2629 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2630 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2631 				tp->retrans_out -= tcp_skb_pcount(skb);
2632 			}
2633 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2634 		}
2635 	}
2636 
2637 	tcp_clear_retrans_hints_partial(tp);
2638 
2639 	if (prior_lost == tp->lost_out)
2640 		return;
2641 
2642 	if (tcp_is_reno(tp))
2643 		tcp_limit_reno_sacked(tp);
2644 
2645 	tcp_verify_left_out(tp);
2646 
2647 	/* Don't muck with the congestion window here.
2648 	 * Reason is that we do not increase amount of _data_
2649 	 * in network, but units changed and effective
2650 	 * cwnd/ssthresh really reduced now.
2651 	 */
2652 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2653 		tp->high_seq = tp->snd_nxt;
2654 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2655 		tp->prior_ssthresh = 0;
2656 		tp->undo_marker = 0;
2657 		tcp_set_ca_state(sk, TCP_CA_Loss);
2658 	}
2659 	tcp_xmit_retransmit_queue(sk);
2660 }
2661 EXPORT_SYMBOL(tcp_simple_retransmit);
2662 
2663 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2664 {
2665 	struct tcp_sock *tp = tcp_sk(sk);
2666 	int mib_idx;
2667 
2668 	if (tcp_is_reno(tp))
2669 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2670 	else
2671 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2672 
2673 	NET_INC_STATS_BH(sock_net(sk), mib_idx);
2674 
2675 	tp->prior_ssthresh = 0;
2676 	tcp_init_undo(tp);
2677 
2678 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2679 		if (!ece_ack)
2680 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2681 		tcp_init_cwnd_reduction(sk);
2682 	}
2683 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2684 }
2685 
2686 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2687  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2688  */
2689 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2690 {
2691 	struct tcp_sock *tp = tcp_sk(sk);
2692 	bool recovered = !before(tp->snd_una, tp->high_seq);
2693 
2694 	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2695 	    tcp_try_undo_loss(sk, false))
2696 		return;
2697 
2698 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2699 		/* Step 3.b. A timeout is spurious if not all data are
2700 		 * lost, i.e., never-retransmitted data are (s)acked.
2701 		 */
2702 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2703 		    tcp_try_undo_loss(sk, true))
2704 			return;
2705 
2706 		if (after(tp->snd_nxt, tp->high_seq)) {
2707 			if (flag & FLAG_DATA_SACKED || is_dupack)
2708 				tp->frto = 0; /* Step 3.a. loss was real */
2709 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2710 			tp->high_seq = tp->snd_nxt;
2711 			__tcp_push_pending_frames(sk, tcp_current_mss(sk),
2712 						  TCP_NAGLE_OFF);
2713 			if (after(tp->snd_nxt, tp->high_seq))
2714 				return; /* Step 2.b */
2715 			tp->frto = 0;
2716 		}
2717 	}
2718 
2719 	if (recovered) {
2720 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2721 		tcp_try_undo_recovery(sk);
2722 		return;
2723 	}
2724 	if (tcp_is_reno(tp)) {
2725 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2726 		 * delivered. Lower inflight to clock out (re)tranmissions.
2727 		 */
2728 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2729 			tcp_add_reno_sack(sk);
2730 		else if (flag & FLAG_SND_UNA_ADVANCED)
2731 			tcp_reset_reno_sack(tp);
2732 	}
2733 	tcp_xmit_retransmit_queue(sk);
2734 }
2735 
2736 /* Undo during fast recovery after partial ACK. */
2737 static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2738 				 const int prior_unsacked)
2739 {
2740 	struct tcp_sock *tp = tcp_sk(sk);
2741 
2742 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2743 		/* Plain luck! Hole if filled with delayed
2744 		 * packet, rather than with a retransmit.
2745 		 */
2746 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2747 
2748 		/* We are getting evidence that the reordering degree is higher
2749 		 * than we realized. If there are no retransmits out then we
2750 		 * can undo. Otherwise we clock out new packets but do not
2751 		 * mark more packets lost or retransmit more.
2752 		 */
2753 		if (tp->retrans_out) {
2754 			tcp_cwnd_reduction(sk, prior_unsacked, 0);
2755 			return true;
2756 		}
2757 
2758 		if (!tcp_any_retrans_done(sk))
2759 			tp->retrans_stamp = 0;
2760 
2761 		DBGUNDO(sk, "partial recovery");
2762 		tcp_undo_cwnd_reduction(sk, true);
2763 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2764 		tcp_try_keep_open(sk);
2765 		return true;
2766 	}
2767 	return false;
2768 }
2769 
2770 /* Process an event, which can update packets-in-flight not trivially.
2771  * Main goal of this function is to calculate new estimate for left_out,
2772  * taking into account both packets sitting in receiver's buffer and
2773  * packets lost by network.
2774  *
2775  * Besides that it does CWND reduction, when packet loss is detected
2776  * and changes state of machine.
2777  *
2778  * It does _not_ decide what to send, it is made in function
2779  * tcp_xmit_retransmit_queue().
2780  */
2781 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2782 				  const int prior_unsacked,
2783 				  bool is_dupack, int flag)
2784 {
2785 	struct inet_connection_sock *icsk = inet_csk(sk);
2786 	struct tcp_sock *tp = tcp_sk(sk);
2787 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2788 				    (tcp_fackets_out(tp) > tp->reordering));
2789 	int fast_rexmit = 0;
2790 
2791 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2792 		tp->sacked_out = 0;
2793 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2794 		tp->fackets_out = 0;
2795 
2796 	/* Now state machine starts.
2797 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2798 	if (flag & FLAG_ECE)
2799 		tp->prior_ssthresh = 0;
2800 
2801 	/* B. In all the states check for reneging SACKs. */
2802 	if (tcp_check_sack_reneging(sk, flag))
2803 		return;
2804 
2805 	/* C. Check consistency of the current state. */
2806 	tcp_verify_left_out(tp);
2807 
2808 	/* D. Check state exit conditions. State can be terminated
2809 	 *    when high_seq is ACKed. */
2810 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2811 		WARN_ON(tp->retrans_out != 0);
2812 		tp->retrans_stamp = 0;
2813 	} else if (!before(tp->snd_una, tp->high_seq)) {
2814 		switch (icsk->icsk_ca_state) {
2815 		case TCP_CA_CWR:
2816 			/* CWR is to be held something *above* high_seq
2817 			 * is ACKed for CWR bit to reach receiver. */
2818 			if (tp->snd_una != tp->high_seq) {
2819 				tcp_end_cwnd_reduction(sk);
2820 				tcp_set_ca_state(sk, TCP_CA_Open);
2821 			}
2822 			break;
2823 
2824 		case TCP_CA_Recovery:
2825 			if (tcp_is_reno(tp))
2826 				tcp_reset_reno_sack(tp);
2827 			if (tcp_try_undo_recovery(sk))
2828 				return;
2829 			tcp_end_cwnd_reduction(sk);
2830 			break;
2831 		}
2832 	}
2833 
2834 	/* E. Process state. */
2835 	switch (icsk->icsk_ca_state) {
2836 	case TCP_CA_Recovery:
2837 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2838 			if (tcp_is_reno(tp) && is_dupack)
2839 				tcp_add_reno_sack(sk);
2840 		} else {
2841 			if (tcp_try_undo_partial(sk, acked, prior_unsacked))
2842 				return;
2843 			/* Partial ACK arrived. Force fast retransmit. */
2844 			do_lost = tcp_is_reno(tp) ||
2845 				  tcp_fackets_out(tp) > tp->reordering;
2846 		}
2847 		if (tcp_try_undo_dsack(sk)) {
2848 			tcp_try_keep_open(sk);
2849 			return;
2850 		}
2851 		break;
2852 	case TCP_CA_Loss:
2853 		tcp_process_loss(sk, flag, is_dupack);
2854 		if (icsk->icsk_ca_state != TCP_CA_Open)
2855 			return;
2856 		/* Fall through to processing in Open state. */
2857 	default:
2858 		if (tcp_is_reno(tp)) {
2859 			if (flag & FLAG_SND_UNA_ADVANCED)
2860 				tcp_reset_reno_sack(tp);
2861 			if (is_dupack)
2862 				tcp_add_reno_sack(sk);
2863 		}
2864 
2865 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2866 			tcp_try_undo_dsack(sk);
2867 
2868 		if (!tcp_time_to_recover(sk, flag)) {
2869 			tcp_try_to_open(sk, flag, prior_unsacked);
2870 			return;
2871 		}
2872 
2873 		/* MTU probe failure: don't reduce cwnd */
2874 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2875 		    icsk->icsk_mtup.probe_size &&
2876 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2877 			tcp_mtup_probe_failed(sk);
2878 			/* Restores the reduction we did in tcp_mtup_probe() */
2879 			tp->snd_cwnd++;
2880 			tcp_simple_retransmit(sk);
2881 			return;
2882 		}
2883 
2884 		/* Otherwise enter Recovery state */
2885 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2886 		fast_rexmit = 1;
2887 	}
2888 
2889 	if (do_lost)
2890 		tcp_update_scoreboard(sk, fast_rexmit);
2891 	tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
2892 	tcp_xmit_retransmit_queue(sk);
2893 }
2894 
2895 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2896 				      long seq_rtt_us, long sack_rtt_us)
2897 {
2898 	const struct tcp_sock *tp = tcp_sk(sk);
2899 
2900 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2901 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2902 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2903 	 * is acked (RFC6298).
2904 	 */
2905 	if (flag & FLAG_RETRANS_DATA_ACKED)
2906 		seq_rtt_us = -1L;
2907 
2908 	if (seq_rtt_us < 0)
2909 		seq_rtt_us = sack_rtt_us;
2910 
2911 	/* RTTM Rule: A TSecr value received in a segment is used to
2912 	 * update the averaged RTT measurement only if the segment
2913 	 * acknowledges some new data, i.e., only if it advances the
2914 	 * left edge of the send window.
2915 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2916 	 */
2917 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2918 	    flag & FLAG_ACKED)
2919 		seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr);
2920 
2921 	if (seq_rtt_us < 0)
2922 		return false;
2923 
2924 	tcp_rtt_estimator(sk, seq_rtt_us);
2925 	tcp_set_rto(sk);
2926 
2927 	/* RFC6298: only reset backoff on valid RTT measurement. */
2928 	inet_csk(sk)->icsk_backoff = 0;
2929 	return true;
2930 }
2931 
2932 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2933 static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp)
2934 {
2935 	struct tcp_sock *tp = tcp_sk(sk);
2936 	long seq_rtt_us = -1L;
2937 
2938 	if (synack_stamp && !tp->total_retrans)
2939 		seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp);
2940 
2941 	/* If the ACK acks both the SYNACK and the (Fast Open'd) data packets
2942 	 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack()
2943 	 */
2944 	if (!tp->srtt_us)
2945 		tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L);
2946 }
2947 
2948 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2949 {
2950 	const struct inet_connection_sock *icsk = inet_csk(sk);
2951 
2952 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2953 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2954 }
2955 
2956 /* Restart timer after forward progress on connection.
2957  * RFC2988 recommends to restart timer to now+rto.
2958  */
2959 void tcp_rearm_rto(struct sock *sk)
2960 {
2961 	const struct inet_connection_sock *icsk = inet_csk(sk);
2962 	struct tcp_sock *tp = tcp_sk(sk);
2963 
2964 	/* If the retrans timer is currently being used by Fast Open
2965 	 * for SYN-ACK retrans purpose, stay put.
2966 	 */
2967 	if (tp->fastopen_rsk)
2968 		return;
2969 
2970 	if (!tp->packets_out) {
2971 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2972 	} else {
2973 		u32 rto = inet_csk(sk)->icsk_rto;
2974 		/* Offset the time elapsed after installing regular RTO */
2975 		if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2976 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2977 			struct sk_buff *skb = tcp_write_queue_head(sk);
2978 			const u32 rto_time_stamp =
2979 				tcp_skb_timestamp(skb) + rto;
2980 			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2981 			/* delta may not be positive if the socket is locked
2982 			 * when the retrans timer fires and is rescheduled.
2983 			 */
2984 			if (delta > 0)
2985 				rto = delta;
2986 		}
2987 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2988 					  TCP_RTO_MAX);
2989 	}
2990 }
2991 
2992 /* This function is called when the delayed ER timer fires. TCP enters
2993  * fast recovery and performs fast-retransmit.
2994  */
2995 void tcp_resume_early_retransmit(struct sock *sk)
2996 {
2997 	struct tcp_sock *tp = tcp_sk(sk);
2998 
2999 	tcp_rearm_rto(sk);
3000 
3001 	/* Stop if ER is disabled after the delayed ER timer is scheduled */
3002 	if (!tp->do_early_retrans)
3003 		return;
3004 
3005 	tcp_enter_recovery(sk, false);
3006 	tcp_update_scoreboard(sk, 1);
3007 	tcp_xmit_retransmit_queue(sk);
3008 }
3009 
3010 /* If we get here, the whole TSO packet has not been acked. */
3011 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3012 {
3013 	struct tcp_sock *tp = tcp_sk(sk);
3014 	u32 packets_acked;
3015 
3016 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3017 
3018 	packets_acked = tcp_skb_pcount(skb);
3019 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3020 		return 0;
3021 	packets_acked -= tcp_skb_pcount(skb);
3022 
3023 	if (packets_acked) {
3024 		BUG_ON(tcp_skb_pcount(skb) == 0);
3025 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3026 	}
3027 
3028 	return packets_acked;
3029 }
3030 
3031 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3032 			   u32 prior_snd_una)
3033 {
3034 	const struct skb_shared_info *shinfo;
3035 
3036 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3037 	if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)))
3038 		return;
3039 
3040 	shinfo = skb_shinfo(skb);
3041 	if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) &&
3042 	    between(shinfo->tskey, prior_snd_una, tcp_sk(sk)->snd_una - 1))
3043 		__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3044 }
3045 
3046 /* Remove acknowledged frames from the retransmission queue. If our packet
3047  * is before the ack sequence we can discard it as it's confirmed to have
3048  * arrived at the other end.
3049  */
3050 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3051 			       u32 prior_snd_una,
3052 			       struct tcp_sacktag_state *sack)
3053 {
3054 	const struct inet_connection_sock *icsk = inet_csk(sk);
3055 	struct skb_mstamp first_ackt, last_ackt, now;
3056 	struct tcp_sock *tp = tcp_sk(sk);
3057 	u32 prior_sacked = tp->sacked_out;
3058 	u32 reord = tp->packets_out;
3059 	bool fully_acked = true;
3060 	long sack_rtt_us = -1L;
3061 	long seq_rtt_us = -1L;
3062 	long ca_rtt_us = -1L;
3063 	struct sk_buff *skb;
3064 	u32 pkts_acked = 0;
3065 	bool rtt_update;
3066 	int flag = 0;
3067 
3068 	first_ackt.v64 = 0;
3069 
3070 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3071 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3072 		u8 sacked = scb->sacked;
3073 		u32 acked_pcount;
3074 
3075 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3076 
3077 		/* Determine how many packets and what bytes were acked, tso and else */
3078 		if (after(scb->end_seq, tp->snd_una)) {
3079 			if (tcp_skb_pcount(skb) == 1 ||
3080 			    !after(tp->snd_una, scb->seq))
3081 				break;
3082 
3083 			acked_pcount = tcp_tso_acked(sk, skb);
3084 			if (!acked_pcount)
3085 				break;
3086 
3087 			fully_acked = false;
3088 		} else {
3089 			/* Speedup tcp_unlink_write_queue() and next loop */
3090 			prefetchw(skb->next);
3091 			acked_pcount = tcp_skb_pcount(skb);
3092 		}
3093 
3094 		if (unlikely(sacked & TCPCB_RETRANS)) {
3095 			if (sacked & TCPCB_SACKED_RETRANS)
3096 				tp->retrans_out -= acked_pcount;
3097 			flag |= FLAG_RETRANS_DATA_ACKED;
3098 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3099 			last_ackt = skb->skb_mstamp;
3100 			WARN_ON_ONCE(last_ackt.v64 == 0);
3101 			if (!first_ackt.v64)
3102 				first_ackt = last_ackt;
3103 
3104 			reord = min(pkts_acked, reord);
3105 			if (!after(scb->end_seq, tp->high_seq))
3106 				flag |= FLAG_ORIG_SACK_ACKED;
3107 		}
3108 
3109 		if (sacked & TCPCB_SACKED_ACKED)
3110 			tp->sacked_out -= acked_pcount;
3111 		if (sacked & TCPCB_LOST)
3112 			tp->lost_out -= acked_pcount;
3113 
3114 		tp->packets_out -= acked_pcount;
3115 		pkts_acked += acked_pcount;
3116 
3117 		/* Initial outgoing SYN's get put onto the write_queue
3118 		 * just like anything else we transmit.  It is not
3119 		 * true data, and if we misinform our callers that
3120 		 * this ACK acks real data, we will erroneously exit
3121 		 * connection startup slow start one packet too
3122 		 * quickly.  This is severely frowned upon behavior.
3123 		 */
3124 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3125 			flag |= FLAG_DATA_ACKED;
3126 		} else {
3127 			flag |= FLAG_SYN_ACKED;
3128 			tp->retrans_stamp = 0;
3129 		}
3130 
3131 		if (!fully_acked)
3132 			break;
3133 
3134 		tcp_unlink_write_queue(skb, sk);
3135 		sk_wmem_free_skb(sk, skb);
3136 		if (unlikely(skb == tp->retransmit_skb_hint))
3137 			tp->retransmit_skb_hint = NULL;
3138 		if (unlikely(skb == tp->lost_skb_hint))
3139 			tp->lost_skb_hint = NULL;
3140 	}
3141 
3142 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3143 		tp->snd_up = tp->snd_una;
3144 
3145 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3146 		flag |= FLAG_SACK_RENEGING;
3147 
3148 	skb_mstamp_get(&now);
3149 	if (likely(first_ackt.v64)) {
3150 		seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3151 		ca_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3152 	}
3153 	if (sack->first_sackt.v64) {
3154 		sack_rtt_us = skb_mstamp_us_delta(&now, &sack->first_sackt);
3155 		ca_rtt_us = skb_mstamp_us_delta(&now, &sack->last_sackt);
3156 	}
3157 
3158 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us);
3159 
3160 	if (flag & FLAG_ACKED) {
3161 		tcp_rearm_rto(sk);
3162 		if (unlikely(icsk->icsk_mtup.probe_size &&
3163 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3164 			tcp_mtup_probe_success(sk);
3165 		}
3166 
3167 		if (tcp_is_reno(tp)) {
3168 			tcp_remove_reno_sacks(sk, pkts_acked);
3169 		} else {
3170 			int delta;
3171 
3172 			/* Non-retransmitted hole got filled? That's reordering */
3173 			if (reord < prior_fackets)
3174 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3175 
3176 			delta = tcp_is_fack(tp) ? pkts_acked :
3177 						  prior_sacked - tp->sacked_out;
3178 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3179 		}
3180 
3181 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3182 
3183 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3184 		   sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
3185 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3186 		 * after when the head was last (re)transmitted. Otherwise the
3187 		 * timeout may continue to extend in loss recovery.
3188 		 */
3189 		tcp_rearm_rto(sk);
3190 	}
3191 
3192 	if (icsk->icsk_ca_ops->pkts_acked)
3193 		icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked, ca_rtt_us);
3194 
3195 #if FASTRETRANS_DEBUG > 0
3196 	WARN_ON((int)tp->sacked_out < 0);
3197 	WARN_ON((int)tp->lost_out < 0);
3198 	WARN_ON((int)tp->retrans_out < 0);
3199 	if (!tp->packets_out && tcp_is_sack(tp)) {
3200 		icsk = inet_csk(sk);
3201 		if (tp->lost_out) {
3202 			pr_debug("Leak l=%u %d\n",
3203 				 tp->lost_out, icsk->icsk_ca_state);
3204 			tp->lost_out = 0;
3205 		}
3206 		if (tp->sacked_out) {
3207 			pr_debug("Leak s=%u %d\n",
3208 				 tp->sacked_out, icsk->icsk_ca_state);
3209 			tp->sacked_out = 0;
3210 		}
3211 		if (tp->retrans_out) {
3212 			pr_debug("Leak r=%u %d\n",
3213 				 tp->retrans_out, icsk->icsk_ca_state);
3214 			tp->retrans_out = 0;
3215 		}
3216 	}
3217 #endif
3218 	return flag;
3219 }
3220 
3221 static void tcp_ack_probe(struct sock *sk)
3222 {
3223 	const struct tcp_sock *tp = tcp_sk(sk);
3224 	struct inet_connection_sock *icsk = inet_csk(sk);
3225 
3226 	/* Was it a usable window open? */
3227 
3228 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3229 		icsk->icsk_backoff = 0;
3230 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3231 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3232 		 * This function is not for random using!
3233 		 */
3234 	} else {
3235 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3236 
3237 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3238 					  when, TCP_RTO_MAX);
3239 	}
3240 }
3241 
3242 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3243 {
3244 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3245 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3246 }
3247 
3248 /* Decide wheather to run the increase function of congestion control. */
3249 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3250 {
3251 	if (tcp_in_cwnd_reduction(sk))
3252 		return false;
3253 
3254 	/* If reordering is high then always grow cwnd whenever data is
3255 	 * delivered regardless of its ordering. Otherwise stay conservative
3256 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3257 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3258 	 * cwnd in tcp_fastretrans_alert() based on more states.
3259 	 */
3260 	if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
3261 		return flag & FLAG_FORWARD_PROGRESS;
3262 
3263 	return flag & FLAG_DATA_ACKED;
3264 }
3265 
3266 /* Check that window update is acceptable.
3267  * The function assumes that snd_una<=ack<=snd_next.
3268  */
3269 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3270 					const u32 ack, const u32 ack_seq,
3271 					const u32 nwin)
3272 {
3273 	return	after(ack, tp->snd_una) ||
3274 		after(ack_seq, tp->snd_wl1) ||
3275 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3276 }
3277 
3278 /* If we update tp->snd_una, also update tp->bytes_acked */
3279 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3280 {
3281 	u32 delta = ack - tp->snd_una;
3282 
3283 	u64_stats_update_begin(&tp->syncp);
3284 	tp->bytes_acked += delta;
3285 	u64_stats_update_end(&tp->syncp);
3286 	tp->snd_una = ack;
3287 }
3288 
3289 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3290 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3291 {
3292 	u32 delta = seq - tp->rcv_nxt;
3293 
3294 	u64_stats_update_begin(&tp->syncp);
3295 	tp->bytes_received += delta;
3296 	u64_stats_update_end(&tp->syncp);
3297 	tp->rcv_nxt = seq;
3298 }
3299 
3300 /* Update our send window.
3301  *
3302  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3303  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3304  */
3305 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3306 				 u32 ack_seq)
3307 {
3308 	struct tcp_sock *tp = tcp_sk(sk);
3309 	int flag = 0;
3310 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3311 
3312 	if (likely(!tcp_hdr(skb)->syn))
3313 		nwin <<= tp->rx_opt.snd_wscale;
3314 
3315 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3316 		flag |= FLAG_WIN_UPDATE;
3317 		tcp_update_wl(tp, ack_seq);
3318 
3319 		if (tp->snd_wnd != nwin) {
3320 			tp->snd_wnd = nwin;
3321 
3322 			/* Note, it is the only place, where
3323 			 * fast path is recovered for sending TCP.
3324 			 */
3325 			tp->pred_flags = 0;
3326 			tcp_fast_path_check(sk);
3327 
3328 			if (nwin > tp->max_window) {
3329 				tp->max_window = nwin;
3330 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3331 			}
3332 		}
3333 	}
3334 
3335 	tcp_snd_una_update(tp, ack);
3336 
3337 	return flag;
3338 }
3339 
3340 /* Return true if we're currently rate-limiting out-of-window ACKs and
3341  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3342  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3343  * attacks that send repeated SYNs or ACKs for the same connection. To
3344  * do this, we do not send a duplicate SYNACK or ACK if the remote
3345  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3346  */
3347 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3348 			  int mib_idx, u32 *last_oow_ack_time)
3349 {
3350 	/* Data packets without SYNs are not likely part of an ACK loop. */
3351 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3352 	    !tcp_hdr(skb)->syn)
3353 		goto not_rate_limited;
3354 
3355 	if (*last_oow_ack_time) {
3356 		s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3357 
3358 		if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3359 			NET_INC_STATS_BH(net, mib_idx);
3360 			return true;	/* rate-limited: don't send yet! */
3361 		}
3362 	}
3363 
3364 	*last_oow_ack_time = tcp_time_stamp;
3365 
3366 not_rate_limited:
3367 	return false;	/* not rate-limited: go ahead, send dupack now! */
3368 }
3369 
3370 /* RFC 5961 7 [ACK Throttling] */
3371 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3372 {
3373 	/* unprotected vars, we dont care of overwrites */
3374 	static u32 challenge_timestamp;
3375 	static unsigned int challenge_count;
3376 	struct tcp_sock *tp = tcp_sk(sk);
3377 	u32 now;
3378 
3379 	/* First check our per-socket dupack rate limit. */
3380 	if (tcp_oow_rate_limited(sock_net(sk), skb,
3381 				 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3382 				 &tp->last_oow_ack_time))
3383 		return;
3384 
3385 	/* Then check the check host-wide RFC 5961 rate limit. */
3386 	now = jiffies / HZ;
3387 	if (now != challenge_timestamp) {
3388 		challenge_timestamp = now;
3389 		challenge_count = 0;
3390 	}
3391 	if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3392 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3393 		tcp_send_ack(sk);
3394 	}
3395 }
3396 
3397 static void tcp_store_ts_recent(struct tcp_sock *tp)
3398 {
3399 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3400 	tp->rx_opt.ts_recent_stamp = get_seconds();
3401 }
3402 
3403 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3404 {
3405 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3406 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3407 		 * extra check below makes sure this can only happen
3408 		 * for pure ACK frames.  -DaveM
3409 		 *
3410 		 * Not only, also it occurs for expired timestamps.
3411 		 */
3412 
3413 		if (tcp_paws_check(&tp->rx_opt, 0))
3414 			tcp_store_ts_recent(tp);
3415 	}
3416 }
3417 
3418 /* This routine deals with acks during a TLP episode.
3419  * We mark the end of a TLP episode on receiving TLP dupack or when
3420  * ack is after tlp_high_seq.
3421  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3422  */
3423 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3424 {
3425 	struct tcp_sock *tp = tcp_sk(sk);
3426 
3427 	if (before(ack, tp->tlp_high_seq))
3428 		return;
3429 
3430 	if (flag & FLAG_DSACKING_ACK) {
3431 		/* This DSACK means original and TLP probe arrived; no loss */
3432 		tp->tlp_high_seq = 0;
3433 	} else if (after(ack, tp->tlp_high_seq)) {
3434 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3435 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3436 		 */
3437 		tcp_init_cwnd_reduction(sk);
3438 		tcp_set_ca_state(sk, TCP_CA_CWR);
3439 		tcp_end_cwnd_reduction(sk);
3440 		tcp_try_keep_open(sk);
3441 		NET_INC_STATS_BH(sock_net(sk),
3442 				 LINUX_MIB_TCPLOSSPROBERECOVERY);
3443 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3444 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3445 		/* Pure dupack: original and TLP probe arrived; no loss */
3446 		tp->tlp_high_seq = 0;
3447 	}
3448 }
3449 
3450 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3451 {
3452 	const struct inet_connection_sock *icsk = inet_csk(sk);
3453 
3454 	if (icsk->icsk_ca_ops->in_ack_event)
3455 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3456 }
3457 
3458 /* This routine deals with incoming acks, but not outgoing ones. */
3459 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3460 {
3461 	struct inet_connection_sock *icsk = inet_csk(sk);
3462 	struct tcp_sock *tp = tcp_sk(sk);
3463 	struct tcp_sacktag_state sack_state;
3464 	u32 prior_snd_una = tp->snd_una;
3465 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3466 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3467 	bool is_dupack = false;
3468 	u32 prior_fackets;
3469 	int prior_packets = tp->packets_out;
3470 	const int prior_unsacked = tp->packets_out - tp->sacked_out;
3471 	int acked = 0; /* Number of packets newly acked */
3472 
3473 	sack_state.first_sackt.v64 = 0;
3474 
3475 	/* We very likely will need to access write queue head. */
3476 	prefetchw(sk->sk_write_queue.next);
3477 
3478 	/* If the ack is older than previous acks
3479 	 * then we can probably ignore it.
3480 	 */
3481 	if (before(ack, prior_snd_una)) {
3482 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3483 		if (before(ack, prior_snd_una - tp->max_window)) {
3484 			tcp_send_challenge_ack(sk, skb);
3485 			return -1;
3486 		}
3487 		goto old_ack;
3488 	}
3489 
3490 	/* If the ack includes data we haven't sent yet, discard
3491 	 * this segment (RFC793 Section 3.9).
3492 	 */
3493 	if (after(ack, tp->snd_nxt))
3494 		goto invalid_ack;
3495 
3496 	if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3497 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3498 		tcp_rearm_rto(sk);
3499 
3500 	if (after(ack, prior_snd_una)) {
3501 		flag |= FLAG_SND_UNA_ADVANCED;
3502 		icsk->icsk_retransmits = 0;
3503 	}
3504 
3505 	prior_fackets = tp->fackets_out;
3506 
3507 	/* ts_recent update must be made after we are sure that the packet
3508 	 * is in window.
3509 	 */
3510 	if (flag & FLAG_UPDATE_TS_RECENT)
3511 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3512 
3513 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3514 		/* Window is constant, pure forward advance.
3515 		 * No more checks are required.
3516 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3517 		 */
3518 		tcp_update_wl(tp, ack_seq);
3519 		tcp_snd_una_update(tp, ack);
3520 		flag |= FLAG_WIN_UPDATE;
3521 
3522 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3523 
3524 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3525 	} else {
3526 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3527 
3528 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3529 			flag |= FLAG_DATA;
3530 		else
3531 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3532 
3533 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3534 
3535 		if (TCP_SKB_CB(skb)->sacked)
3536 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3537 							&sack_state);
3538 
3539 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3540 			flag |= FLAG_ECE;
3541 			ack_ev_flags |= CA_ACK_ECE;
3542 		}
3543 
3544 		if (flag & FLAG_WIN_UPDATE)
3545 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3546 
3547 		tcp_in_ack_event(sk, ack_ev_flags);
3548 	}
3549 
3550 	/* We passed data and got it acked, remove any soft error
3551 	 * log. Something worked...
3552 	 */
3553 	sk->sk_err_soft = 0;
3554 	icsk->icsk_probes_out = 0;
3555 	tp->rcv_tstamp = tcp_time_stamp;
3556 	if (!prior_packets)
3557 		goto no_queue;
3558 
3559 	/* See if we can take anything off of the retransmit queue. */
3560 	acked = tp->packets_out;
3561 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una,
3562 				    &sack_state);
3563 	acked -= tp->packets_out;
3564 
3565 	/* Advance cwnd if state allows */
3566 	if (tcp_may_raise_cwnd(sk, flag))
3567 		tcp_cong_avoid(sk, ack, acked);
3568 
3569 	if (tcp_ack_is_dubious(sk, flag)) {
3570 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3571 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3572 				      is_dupack, flag);
3573 	}
3574 	if (tp->tlp_high_seq)
3575 		tcp_process_tlp_ack(sk, ack, flag);
3576 
3577 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3578 		struct dst_entry *dst = __sk_dst_get(sk);
3579 		if (dst)
3580 			dst_confirm(dst);
3581 	}
3582 
3583 	if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3584 		tcp_schedule_loss_probe(sk);
3585 	tcp_update_pacing_rate(sk);
3586 	return 1;
3587 
3588 no_queue:
3589 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3590 	if (flag & FLAG_DSACKING_ACK)
3591 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3592 				      is_dupack, flag);
3593 	/* If this ack opens up a zero window, clear backoff.  It was
3594 	 * being used to time the probes, and is probably far higher than
3595 	 * it needs to be for normal retransmission.
3596 	 */
3597 	if (tcp_send_head(sk))
3598 		tcp_ack_probe(sk);
3599 
3600 	if (tp->tlp_high_seq)
3601 		tcp_process_tlp_ack(sk, ack, flag);
3602 	return 1;
3603 
3604 invalid_ack:
3605 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3606 	return -1;
3607 
3608 old_ack:
3609 	/* If data was SACKed, tag it and see if we should send more data.
3610 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3611 	 */
3612 	if (TCP_SKB_CB(skb)->sacked) {
3613 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3614 						&sack_state);
3615 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3616 				      is_dupack, flag);
3617 	}
3618 
3619 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3620 	return 0;
3621 }
3622 
3623 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3624 				      bool syn, struct tcp_fastopen_cookie *foc,
3625 				      bool exp_opt)
3626 {
3627 	/* Valid only in SYN or SYN-ACK with an even length.  */
3628 	if (!foc || !syn || len < 0 || (len & 1))
3629 		return;
3630 
3631 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3632 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3633 		memcpy(foc->val, cookie, len);
3634 	else if (len != 0)
3635 		len = -1;
3636 	foc->len = len;
3637 	foc->exp = exp_opt;
3638 }
3639 
3640 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3641  * But, this can also be called on packets in the established flow when
3642  * the fast version below fails.
3643  */
3644 void tcp_parse_options(const struct sk_buff *skb,
3645 		       struct tcp_options_received *opt_rx, int estab,
3646 		       struct tcp_fastopen_cookie *foc)
3647 {
3648 	const unsigned char *ptr;
3649 	const struct tcphdr *th = tcp_hdr(skb);
3650 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3651 
3652 	ptr = (const unsigned char *)(th + 1);
3653 	opt_rx->saw_tstamp = 0;
3654 
3655 	while (length > 0) {
3656 		int opcode = *ptr++;
3657 		int opsize;
3658 
3659 		switch (opcode) {
3660 		case TCPOPT_EOL:
3661 			return;
3662 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3663 			length--;
3664 			continue;
3665 		default:
3666 			opsize = *ptr++;
3667 			if (opsize < 2) /* "silly options" */
3668 				return;
3669 			if (opsize > length)
3670 				return;	/* don't parse partial options */
3671 			switch (opcode) {
3672 			case TCPOPT_MSS:
3673 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3674 					u16 in_mss = get_unaligned_be16(ptr);
3675 					if (in_mss) {
3676 						if (opt_rx->user_mss &&
3677 						    opt_rx->user_mss < in_mss)
3678 							in_mss = opt_rx->user_mss;
3679 						opt_rx->mss_clamp = in_mss;
3680 					}
3681 				}
3682 				break;
3683 			case TCPOPT_WINDOW:
3684 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3685 				    !estab && sysctl_tcp_window_scaling) {
3686 					__u8 snd_wscale = *(__u8 *)ptr;
3687 					opt_rx->wscale_ok = 1;
3688 					if (snd_wscale > 14) {
3689 						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3690 								     __func__,
3691 								     snd_wscale);
3692 						snd_wscale = 14;
3693 					}
3694 					opt_rx->snd_wscale = snd_wscale;
3695 				}
3696 				break;
3697 			case TCPOPT_TIMESTAMP:
3698 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3699 				    ((estab && opt_rx->tstamp_ok) ||
3700 				     (!estab && sysctl_tcp_timestamps))) {
3701 					opt_rx->saw_tstamp = 1;
3702 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3703 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3704 				}
3705 				break;
3706 			case TCPOPT_SACK_PERM:
3707 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3708 				    !estab && sysctl_tcp_sack) {
3709 					opt_rx->sack_ok = TCP_SACK_SEEN;
3710 					tcp_sack_reset(opt_rx);
3711 				}
3712 				break;
3713 
3714 			case TCPOPT_SACK:
3715 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3716 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3717 				   opt_rx->sack_ok) {
3718 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3719 				}
3720 				break;
3721 #ifdef CONFIG_TCP_MD5SIG
3722 			case TCPOPT_MD5SIG:
3723 				/*
3724 				 * The MD5 Hash has already been
3725 				 * checked (see tcp_v{4,6}_do_rcv()).
3726 				 */
3727 				break;
3728 #endif
3729 			case TCPOPT_FASTOPEN:
3730 				tcp_parse_fastopen_option(
3731 					opsize - TCPOLEN_FASTOPEN_BASE,
3732 					ptr, th->syn, foc, false);
3733 				break;
3734 
3735 			case TCPOPT_EXP:
3736 				/* Fast Open option shares code 254 using a
3737 				 * 16 bits magic number.
3738 				 */
3739 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3740 				    get_unaligned_be16(ptr) ==
3741 				    TCPOPT_FASTOPEN_MAGIC)
3742 					tcp_parse_fastopen_option(opsize -
3743 						TCPOLEN_EXP_FASTOPEN_BASE,
3744 						ptr + 2, th->syn, foc, true);
3745 				break;
3746 
3747 			}
3748 			ptr += opsize-2;
3749 			length -= opsize;
3750 		}
3751 	}
3752 }
3753 EXPORT_SYMBOL(tcp_parse_options);
3754 
3755 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3756 {
3757 	const __be32 *ptr = (const __be32 *)(th + 1);
3758 
3759 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3760 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3761 		tp->rx_opt.saw_tstamp = 1;
3762 		++ptr;
3763 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3764 		++ptr;
3765 		if (*ptr)
3766 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3767 		else
3768 			tp->rx_opt.rcv_tsecr = 0;
3769 		return true;
3770 	}
3771 	return false;
3772 }
3773 
3774 /* Fast parse options. This hopes to only see timestamps.
3775  * If it is wrong it falls back on tcp_parse_options().
3776  */
3777 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3778 				   const struct tcphdr *th, struct tcp_sock *tp)
3779 {
3780 	/* In the spirit of fast parsing, compare doff directly to constant
3781 	 * values.  Because equality is used, short doff can be ignored here.
3782 	 */
3783 	if (th->doff == (sizeof(*th) / 4)) {
3784 		tp->rx_opt.saw_tstamp = 0;
3785 		return false;
3786 	} else if (tp->rx_opt.tstamp_ok &&
3787 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3788 		if (tcp_parse_aligned_timestamp(tp, th))
3789 			return true;
3790 	}
3791 
3792 	tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3793 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3794 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3795 
3796 	return true;
3797 }
3798 
3799 #ifdef CONFIG_TCP_MD5SIG
3800 /*
3801  * Parse MD5 Signature option
3802  */
3803 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3804 {
3805 	int length = (th->doff << 2) - sizeof(*th);
3806 	const u8 *ptr = (const u8 *)(th + 1);
3807 
3808 	/* If the TCP option is too short, we can short cut */
3809 	if (length < TCPOLEN_MD5SIG)
3810 		return NULL;
3811 
3812 	while (length > 0) {
3813 		int opcode = *ptr++;
3814 		int opsize;
3815 
3816 		switch (opcode) {
3817 		case TCPOPT_EOL:
3818 			return NULL;
3819 		case TCPOPT_NOP:
3820 			length--;
3821 			continue;
3822 		default:
3823 			opsize = *ptr++;
3824 			if (opsize < 2 || opsize > length)
3825 				return NULL;
3826 			if (opcode == TCPOPT_MD5SIG)
3827 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3828 		}
3829 		ptr += opsize - 2;
3830 		length -= opsize;
3831 	}
3832 	return NULL;
3833 }
3834 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3835 #endif
3836 
3837 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3838  *
3839  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3840  * it can pass through stack. So, the following predicate verifies that
3841  * this segment is not used for anything but congestion avoidance or
3842  * fast retransmit. Moreover, we even are able to eliminate most of such
3843  * second order effects, if we apply some small "replay" window (~RTO)
3844  * to timestamp space.
3845  *
3846  * All these measures still do not guarantee that we reject wrapped ACKs
3847  * on networks with high bandwidth, when sequence space is recycled fastly,
3848  * but it guarantees that such events will be very rare and do not affect
3849  * connection seriously. This doesn't look nice, but alas, PAWS is really
3850  * buggy extension.
3851  *
3852  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3853  * states that events when retransmit arrives after original data are rare.
3854  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3855  * the biggest problem on large power networks even with minor reordering.
3856  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3857  * up to bandwidth of 18Gigabit/sec. 8) ]
3858  */
3859 
3860 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3861 {
3862 	const struct tcp_sock *tp = tcp_sk(sk);
3863 	const struct tcphdr *th = tcp_hdr(skb);
3864 	u32 seq = TCP_SKB_CB(skb)->seq;
3865 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3866 
3867 	return (/* 1. Pure ACK with correct sequence number. */
3868 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3869 
3870 		/* 2. ... and duplicate ACK. */
3871 		ack == tp->snd_una &&
3872 
3873 		/* 3. ... and does not update window. */
3874 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3875 
3876 		/* 4. ... and sits in replay window. */
3877 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3878 }
3879 
3880 static inline bool tcp_paws_discard(const struct sock *sk,
3881 				   const struct sk_buff *skb)
3882 {
3883 	const struct tcp_sock *tp = tcp_sk(sk);
3884 
3885 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3886 	       !tcp_disordered_ack(sk, skb);
3887 }
3888 
3889 /* Check segment sequence number for validity.
3890  *
3891  * Segment controls are considered valid, if the segment
3892  * fits to the window after truncation to the window. Acceptability
3893  * of data (and SYN, FIN, of course) is checked separately.
3894  * See tcp_data_queue(), for example.
3895  *
3896  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3897  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3898  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3899  * (borrowed from freebsd)
3900  */
3901 
3902 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3903 {
3904 	return	!before(end_seq, tp->rcv_wup) &&
3905 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3906 }
3907 
3908 /* When we get a reset we do this. */
3909 void tcp_reset(struct sock *sk)
3910 {
3911 	/* We want the right error as BSD sees it (and indeed as we do). */
3912 	switch (sk->sk_state) {
3913 	case TCP_SYN_SENT:
3914 		sk->sk_err = ECONNREFUSED;
3915 		break;
3916 	case TCP_CLOSE_WAIT:
3917 		sk->sk_err = EPIPE;
3918 		break;
3919 	case TCP_CLOSE:
3920 		return;
3921 	default:
3922 		sk->sk_err = ECONNRESET;
3923 	}
3924 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
3925 	smp_wmb();
3926 
3927 	if (!sock_flag(sk, SOCK_DEAD))
3928 		sk->sk_error_report(sk);
3929 
3930 	tcp_done(sk);
3931 }
3932 
3933 /*
3934  * 	Process the FIN bit. This now behaves as it is supposed to work
3935  *	and the FIN takes effect when it is validly part of sequence
3936  *	space. Not before when we get holes.
3937  *
3938  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3939  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3940  *	TIME-WAIT)
3941  *
3942  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3943  *	close and we go into CLOSING (and later onto TIME-WAIT)
3944  *
3945  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3946  */
3947 static void tcp_fin(struct sock *sk)
3948 {
3949 	struct tcp_sock *tp = tcp_sk(sk);
3950 	const struct dst_entry *dst;
3951 
3952 	inet_csk_schedule_ack(sk);
3953 
3954 	sk->sk_shutdown |= RCV_SHUTDOWN;
3955 	sock_set_flag(sk, SOCK_DONE);
3956 
3957 	switch (sk->sk_state) {
3958 	case TCP_SYN_RECV:
3959 	case TCP_ESTABLISHED:
3960 		/* Move to CLOSE_WAIT */
3961 		tcp_set_state(sk, TCP_CLOSE_WAIT);
3962 		dst = __sk_dst_get(sk);
3963 		if (!dst || !dst_metric(dst, RTAX_QUICKACK))
3964 			inet_csk(sk)->icsk_ack.pingpong = 1;
3965 		break;
3966 
3967 	case TCP_CLOSE_WAIT:
3968 	case TCP_CLOSING:
3969 		/* Received a retransmission of the FIN, do
3970 		 * nothing.
3971 		 */
3972 		break;
3973 	case TCP_LAST_ACK:
3974 		/* RFC793: Remain in the LAST-ACK state. */
3975 		break;
3976 
3977 	case TCP_FIN_WAIT1:
3978 		/* This case occurs when a simultaneous close
3979 		 * happens, we must ack the received FIN and
3980 		 * enter the CLOSING state.
3981 		 */
3982 		tcp_send_ack(sk);
3983 		tcp_set_state(sk, TCP_CLOSING);
3984 		break;
3985 	case TCP_FIN_WAIT2:
3986 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
3987 		tcp_send_ack(sk);
3988 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3989 		break;
3990 	default:
3991 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
3992 		 * cases we should never reach this piece of code.
3993 		 */
3994 		pr_err("%s: Impossible, sk->sk_state=%d\n",
3995 		       __func__, sk->sk_state);
3996 		break;
3997 	}
3998 
3999 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4000 	 * Probably, we should reset in this case. For now drop them.
4001 	 */
4002 	__skb_queue_purge(&tp->out_of_order_queue);
4003 	if (tcp_is_sack(tp))
4004 		tcp_sack_reset(&tp->rx_opt);
4005 	sk_mem_reclaim(sk);
4006 
4007 	if (!sock_flag(sk, SOCK_DEAD)) {
4008 		sk->sk_state_change(sk);
4009 
4010 		/* Do not send POLL_HUP for half duplex close. */
4011 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4012 		    sk->sk_state == TCP_CLOSE)
4013 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4014 		else
4015 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4016 	}
4017 }
4018 
4019 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4020 				  u32 end_seq)
4021 {
4022 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4023 		if (before(seq, sp->start_seq))
4024 			sp->start_seq = seq;
4025 		if (after(end_seq, sp->end_seq))
4026 			sp->end_seq = end_seq;
4027 		return true;
4028 	}
4029 	return false;
4030 }
4031 
4032 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4033 {
4034 	struct tcp_sock *tp = tcp_sk(sk);
4035 
4036 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4037 		int mib_idx;
4038 
4039 		if (before(seq, tp->rcv_nxt))
4040 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4041 		else
4042 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4043 
4044 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4045 
4046 		tp->rx_opt.dsack = 1;
4047 		tp->duplicate_sack[0].start_seq = seq;
4048 		tp->duplicate_sack[0].end_seq = end_seq;
4049 	}
4050 }
4051 
4052 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4053 {
4054 	struct tcp_sock *tp = tcp_sk(sk);
4055 
4056 	if (!tp->rx_opt.dsack)
4057 		tcp_dsack_set(sk, seq, end_seq);
4058 	else
4059 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4060 }
4061 
4062 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4063 {
4064 	struct tcp_sock *tp = tcp_sk(sk);
4065 
4066 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4067 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4068 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4069 		tcp_enter_quickack_mode(sk);
4070 
4071 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4072 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4073 
4074 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4075 				end_seq = tp->rcv_nxt;
4076 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4077 		}
4078 	}
4079 
4080 	tcp_send_ack(sk);
4081 }
4082 
4083 /* These routines update the SACK block as out-of-order packets arrive or
4084  * in-order packets close up the sequence space.
4085  */
4086 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4087 {
4088 	int this_sack;
4089 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4090 	struct tcp_sack_block *swalk = sp + 1;
4091 
4092 	/* See if the recent change to the first SACK eats into
4093 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4094 	 */
4095 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4096 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4097 			int i;
4098 
4099 			/* Zap SWALK, by moving every further SACK up by one slot.
4100 			 * Decrease num_sacks.
4101 			 */
4102 			tp->rx_opt.num_sacks--;
4103 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4104 				sp[i] = sp[i + 1];
4105 			continue;
4106 		}
4107 		this_sack++, swalk++;
4108 	}
4109 }
4110 
4111 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4112 {
4113 	struct tcp_sock *tp = tcp_sk(sk);
4114 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4115 	int cur_sacks = tp->rx_opt.num_sacks;
4116 	int this_sack;
4117 
4118 	if (!cur_sacks)
4119 		goto new_sack;
4120 
4121 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4122 		if (tcp_sack_extend(sp, seq, end_seq)) {
4123 			/* Rotate this_sack to the first one. */
4124 			for (; this_sack > 0; this_sack--, sp--)
4125 				swap(*sp, *(sp - 1));
4126 			if (cur_sacks > 1)
4127 				tcp_sack_maybe_coalesce(tp);
4128 			return;
4129 		}
4130 	}
4131 
4132 	/* Could not find an adjacent existing SACK, build a new one,
4133 	 * put it at the front, and shift everyone else down.  We
4134 	 * always know there is at least one SACK present already here.
4135 	 *
4136 	 * If the sack array is full, forget about the last one.
4137 	 */
4138 	if (this_sack >= TCP_NUM_SACKS) {
4139 		this_sack--;
4140 		tp->rx_opt.num_sacks--;
4141 		sp--;
4142 	}
4143 	for (; this_sack > 0; this_sack--, sp--)
4144 		*sp = *(sp - 1);
4145 
4146 new_sack:
4147 	/* Build the new head SACK, and we're done. */
4148 	sp->start_seq = seq;
4149 	sp->end_seq = end_seq;
4150 	tp->rx_opt.num_sacks++;
4151 }
4152 
4153 /* RCV.NXT advances, some SACKs should be eaten. */
4154 
4155 static void tcp_sack_remove(struct tcp_sock *tp)
4156 {
4157 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4158 	int num_sacks = tp->rx_opt.num_sacks;
4159 	int this_sack;
4160 
4161 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4162 	if (skb_queue_empty(&tp->out_of_order_queue)) {
4163 		tp->rx_opt.num_sacks = 0;
4164 		return;
4165 	}
4166 
4167 	for (this_sack = 0; this_sack < num_sacks;) {
4168 		/* Check if the start of the sack is covered by RCV.NXT. */
4169 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4170 			int i;
4171 
4172 			/* RCV.NXT must cover all the block! */
4173 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4174 
4175 			/* Zap this SACK, by moving forward any other SACKS. */
4176 			for (i = this_sack+1; i < num_sacks; i++)
4177 				tp->selective_acks[i-1] = tp->selective_acks[i];
4178 			num_sacks--;
4179 			continue;
4180 		}
4181 		this_sack++;
4182 		sp++;
4183 	}
4184 	tp->rx_opt.num_sacks = num_sacks;
4185 }
4186 
4187 /**
4188  * tcp_try_coalesce - try to merge skb to prior one
4189  * @sk: socket
4190  * @to: prior buffer
4191  * @from: buffer to add in queue
4192  * @fragstolen: pointer to boolean
4193  *
4194  * Before queueing skb @from after @to, try to merge them
4195  * to reduce overall memory use and queue lengths, if cost is small.
4196  * Packets in ofo or receive queues can stay a long time.
4197  * Better try to coalesce them right now to avoid future collapses.
4198  * Returns true if caller should free @from instead of queueing it
4199  */
4200 static bool tcp_try_coalesce(struct sock *sk,
4201 			     struct sk_buff *to,
4202 			     struct sk_buff *from,
4203 			     bool *fragstolen)
4204 {
4205 	int delta;
4206 
4207 	*fragstolen = false;
4208 
4209 	/* Its possible this segment overlaps with prior segment in queue */
4210 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4211 		return false;
4212 
4213 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4214 		return false;
4215 
4216 	atomic_add(delta, &sk->sk_rmem_alloc);
4217 	sk_mem_charge(sk, delta);
4218 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4219 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4220 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4221 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4222 	return true;
4223 }
4224 
4225 /* This one checks to see if we can put data from the
4226  * out_of_order queue into the receive_queue.
4227  */
4228 static void tcp_ofo_queue(struct sock *sk)
4229 {
4230 	struct tcp_sock *tp = tcp_sk(sk);
4231 	__u32 dsack_high = tp->rcv_nxt;
4232 	struct sk_buff *skb, *tail;
4233 	bool fragstolen, eaten;
4234 
4235 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4236 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4237 			break;
4238 
4239 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4240 			__u32 dsack = dsack_high;
4241 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4242 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4243 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4244 		}
4245 
4246 		__skb_unlink(skb, &tp->out_of_order_queue);
4247 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4248 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4249 			__kfree_skb(skb);
4250 			continue;
4251 		}
4252 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4253 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4254 			   TCP_SKB_CB(skb)->end_seq);
4255 
4256 		tail = skb_peek_tail(&sk->sk_receive_queue);
4257 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4258 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4259 		if (!eaten)
4260 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4261 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4262 			tcp_fin(sk);
4263 		if (eaten)
4264 			kfree_skb_partial(skb, fragstolen);
4265 	}
4266 }
4267 
4268 static bool tcp_prune_ofo_queue(struct sock *sk);
4269 static int tcp_prune_queue(struct sock *sk);
4270 
4271 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4272 				 unsigned int size)
4273 {
4274 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4275 	    !sk_rmem_schedule(sk, skb, size)) {
4276 
4277 		if (tcp_prune_queue(sk) < 0)
4278 			return -1;
4279 
4280 		if (!sk_rmem_schedule(sk, skb, size)) {
4281 			if (!tcp_prune_ofo_queue(sk))
4282 				return -1;
4283 
4284 			if (!sk_rmem_schedule(sk, skb, size))
4285 				return -1;
4286 		}
4287 	}
4288 	return 0;
4289 }
4290 
4291 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4292 {
4293 	struct tcp_sock *tp = tcp_sk(sk);
4294 	struct sk_buff *skb1;
4295 	u32 seq, end_seq;
4296 
4297 	tcp_ecn_check_ce(tp, skb);
4298 
4299 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4300 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4301 		__kfree_skb(skb);
4302 		return;
4303 	}
4304 
4305 	/* Disable header prediction. */
4306 	tp->pred_flags = 0;
4307 	inet_csk_schedule_ack(sk);
4308 
4309 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4310 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4311 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4312 
4313 	skb1 = skb_peek_tail(&tp->out_of_order_queue);
4314 	if (!skb1) {
4315 		/* Initial out of order segment, build 1 SACK. */
4316 		if (tcp_is_sack(tp)) {
4317 			tp->rx_opt.num_sacks = 1;
4318 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4319 			tp->selective_acks[0].end_seq =
4320 						TCP_SKB_CB(skb)->end_seq;
4321 		}
4322 		__skb_queue_head(&tp->out_of_order_queue, skb);
4323 		goto end;
4324 	}
4325 
4326 	seq = TCP_SKB_CB(skb)->seq;
4327 	end_seq = TCP_SKB_CB(skb)->end_seq;
4328 
4329 	if (seq == TCP_SKB_CB(skb1)->end_seq) {
4330 		bool fragstolen;
4331 
4332 		if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4333 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4334 		} else {
4335 			tcp_grow_window(sk, skb);
4336 			kfree_skb_partial(skb, fragstolen);
4337 			skb = NULL;
4338 		}
4339 
4340 		if (!tp->rx_opt.num_sacks ||
4341 		    tp->selective_acks[0].end_seq != seq)
4342 			goto add_sack;
4343 
4344 		/* Common case: data arrive in order after hole. */
4345 		tp->selective_acks[0].end_seq = end_seq;
4346 		goto end;
4347 	}
4348 
4349 	/* Find place to insert this segment. */
4350 	while (1) {
4351 		if (!after(TCP_SKB_CB(skb1)->seq, seq))
4352 			break;
4353 		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4354 			skb1 = NULL;
4355 			break;
4356 		}
4357 		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4358 	}
4359 
4360 	/* Do skb overlap to previous one? */
4361 	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4362 		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4363 			/* All the bits are present. Drop. */
4364 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4365 			__kfree_skb(skb);
4366 			skb = NULL;
4367 			tcp_dsack_set(sk, seq, end_seq);
4368 			goto add_sack;
4369 		}
4370 		if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4371 			/* Partial overlap. */
4372 			tcp_dsack_set(sk, seq,
4373 				      TCP_SKB_CB(skb1)->end_seq);
4374 		} else {
4375 			if (skb_queue_is_first(&tp->out_of_order_queue,
4376 					       skb1))
4377 				skb1 = NULL;
4378 			else
4379 				skb1 = skb_queue_prev(
4380 					&tp->out_of_order_queue,
4381 					skb1);
4382 		}
4383 	}
4384 	if (!skb1)
4385 		__skb_queue_head(&tp->out_of_order_queue, skb);
4386 	else
4387 		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4388 
4389 	/* And clean segments covered by new one as whole. */
4390 	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4391 		skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4392 
4393 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4394 			break;
4395 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4396 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4397 					 end_seq);
4398 			break;
4399 		}
4400 		__skb_unlink(skb1, &tp->out_of_order_queue);
4401 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4402 				 TCP_SKB_CB(skb1)->end_seq);
4403 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4404 		__kfree_skb(skb1);
4405 	}
4406 
4407 add_sack:
4408 	if (tcp_is_sack(tp))
4409 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4410 end:
4411 	if (skb) {
4412 		tcp_grow_window(sk, skb);
4413 		skb_set_owner_r(skb, sk);
4414 	}
4415 }
4416 
4417 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4418 		  bool *fragstolen)
4419 {
4420 	int eaten;
4421 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4422 
4423 	__skb_pull(skb, hdrlen);
4424 	eaten = (tail &&
4425 		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4426 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4427 	if (!eaten) {
4428 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4429 		skb_set_owner_r(skb, sk);
4430 	}
4431 	return eaten;
4432 }
4433 
4434 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4435 {
4436 	struct sk_buff *skb;
4437 	bool fragstolen;
4438 
4439 	if (size == 0)
4440 		return 0;
4441 
4442 	skb = alloc_skb(size, sk->sk_allocation);
4443 	if (!skb)
4444 		goto err;
4445 
4446 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4447 		goto err_free;
4448 
4449 	if (memcpy_from_msg(skb_put(skb, size), msg, size))
4450 		goto err_free;
4451 
4452 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4453 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4454 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4455 
4456 	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4457 		WARN_ON_ONCE(fragstolen); /* should not happen */
4458 		__kfree_skb(skb);
4459 	}
4460 	return size;
4461 
4462 err_free:
4463 	kfree_skb(skb);
4464 err:
4465 	return -ENOMEM;
4466 }
4467 
4468 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4469 {
4470 	struct tcp_sock *tp = tcp_sk(sk);
4471 	int eaten = -1;
4472 	bool fragstolen = false;
4473 
4474 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4475 		goto drop;
4476 
4477 	skb_dst_drop(skb);
4478 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4479 
4480 	tcp_ecn_accept_cwr(tp, skb);
4481 
4482 	tp->rx_opt.dsack = 0;
4483 
4484 	/*  Queue data for delivery to the user.
4485 	 *  Packets in sequence go to the receive queue.
4486 	 *  Out of sequence packets to the out_of_order_queue.
4487 	 */
4488 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4489 		if (tcp_receive_window(tp) == 0)
4490 			goto out_of_window;
4491 
4492 		/* Ok. In sequence. In window. */
4493 		if (tp->ucopy.task == current &&
4494 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4495 		    sock_owned_by_user(sk) && !tp->urg_data) {
4496 			int chunk = min_t(unsigned int, skb->len,
4497 					  tp->ucopy.len);
4498 
4499 			__set_current_state(TASK_RUNNING);
4500 
4501 			local_bh_enable();
4502 			if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4503 				tp->ucopy.len -= chunk;
4504 				tp->copied_seq += chunk;
4505 				eaten = (chunk == skb->len);
4506 				tcp_rcv_space_adjust(sk);
4507 			}
4508 			local_bh_disable();
4509 		}
4510 
4511 		if (eaten <= 0) {
4512 queue_and_out:
4513 			if (eaten < 0) {
4514 				if (skb_queue_len(&sk->sk_receive_queue) == 0)
4515 					sk_forced_mem_schedule(sk, skb->truesize);
4516 				else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4517 					goto drop;
4518 			}
4519 			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4520 		}
4521 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4522 		if (skb->len)
4523 			tcp_event_data_recv(sk, skb);
4524 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4525 			tcp_fin(sk);
4526 
4527 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4528 			tcp_ofo_queue(sk);
4529 
4530 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4531 			 * gap in queue is filled.
4532 			 */
4533 			if (skb_queue_empty(&tp->out_of_order_queue))
4534 				inet_csk(sk)->icsk_ack.pingpong = 0;
4535 		}
4536 
4537 		if (tp->rx_opt.num_sacks)
4538 			tcp_sack_remove(tp);
4539 
4540 		tcp_fast_path_check(sk);
4541 
4542 		if (eaten > 0)
4543 			kfree_skb_partial(skb, fragstolen);
4544 		if (!sock_flag(sk, SOCK_DEAD))
4545 			sk->sk_data_ready(sk);
4546 		return;
4547 	}
4548 
4549 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4550 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4551 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4552 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4553 
4554 out_of_window:
4555 		tcp_enter_quickack_mode(sk);
4556 		inet_csk_schedule_ack(sk);
4557 drop:
4558 		__kfree_skb(skb);
4559 		return;
4560 	}
4561 
4562 	/* Out of window. F.e. zero window probe. */
4563 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4564 		goto out_of_window;
4565 
4566 	tcp_enter_quickack_mode(sk);
4567 
4568 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4569 		/* Partial packet, seq < rcv_next < end_seq */
4570 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4571 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4572 			   TCP_SKB_CB(skb)->end_seq);
4573 
4574 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4575 
4576 		/* If window is closed, drop tail of packet. But after
4577 		 * remembering D-SACK for its head made in previous line.
4578 		 */
4579 		if (!tcp_receive_window(tp))
4580 			goto out_of_window;
4581 		goto queue_and_out;
4582 	}
4583 
4584 	tcp_data_queue_ofo(sk, skb);
4585 }
4586 
4587 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4588 					struct sk_buff_head *list)
4589 {
4590 	struct sk_buff *next = NULL;
4591 
4592 	if (!skb_queue_is_last(list, skb))
4593 		next = skb_queue_next(list, skb);
4594 
4595 	__skb_unlink(skb, list);
4596 	__kfree_skb(skb);
4597 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4598 
4599 	return next;
4600 }
4601 
4602 /* Collapse contiguous sequence of skbs head..tail with
4603  * sequence numbers start..end.
4604  *
4605  * If tail is NULL, this means until the end of the list.
4606  *
4607  * Segments with FIN/SYN are not collapsed (only because this
4608  * simplifies code)
4609  */
4610 static void
4611 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4612 	     struct sk_buff *head, struct sk_buff *tail,
4613 	     u32 start, u32 end)
4614 {
4615 	struct sk_buff *skb, *n;
4616 	bool end_of_skbs;
4617 
4618 	/* First, check that queue is collapsible and find
4619 	 * the point where collapsing can be useful. */
4620 	skb = head;
4621 restart:
4622 	end_of_skbs = true;
4623 	skb_queue_walk_from_safe(list, skb, n) {
4624 		if (skb == tail)
4625 			break;
4626 		/* No new bits? It is possible on ofo queue. */
4627 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4628 			skb = tcp_collapse_one(sk, skb, list);
4629 			if (!skb)
4630 				break;
4631 			goto restart;
4632 		}
4633 
4634 		/* The first skb to collapse is:
4635 		 * - not SYN/FIN and
4636 		 * - bloated or contains data before "start" or
4637 		 *   overlaps to the next one.
4638 		 */
4639 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4640 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4641 		     before(TCP_SKB_CB(skb)->seq, start))) {
4642 			end_of_skbs = false;
4643 			break;
4644 		}
4645 
4646 		if (!skb_queue_is_last(list, skb)) {
4647 			struct sk_buff *next = skb_queue_next(list, skb);
4648 			if (next != tail &&
4649 			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4650 				end_of_skbs = false;
4651 				break;
4652 			}
4653 		}
4654 
4655 		/* Decided to skip this, advance start seq. */
4656 		start = TCP_SKB_CB(skb)->end_seq;
4657 	}
4658 	if (end_of_skbs ||
4659 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4660 		return;
4661 
4662 	while (before(start, end)) {
4663 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4664 		struct sk_buff *nskb;
4665 
4666 		nskb = alloc_skb(copy, GFP_ATOMIC);
4667 		if (!nskb)
4668 			return;
4669 
4670 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4671 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4672 		__skb_queue_before(list, skb, nskb);
4673 		skb_set_owner_r(nskb, sk);
4674 
4675 		/* Copy data, releasing collapsed skbs. */
4676 		while (copy > 0) {
4677 			int offset = start - TCP_SKB_CB(skb)->seq;
4678 			int size = TCP_SKB_CB(skb)->end_seq - start;
4679 
4680 			BUG_ON(offset < 0);
4681 			if (size > 0) {
4682 				size = min(copy, size);
4683 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4684 					BUG();
4685 				TCP_SKB_CB(nskb)->end_seq += size;
4686 				copy -= size;
4687 				start += size;
4688 			}
4689 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4690 				skb = tcp_collapse_one(sk, skb, list);
4691 				if (!skb ||
4692 				    skb == tail ||
4693 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4694 					return;
4695 			}
4696 		}
4697 	}
4698 }
4699 
4700 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4701  * and tcp_collapse() them until all the queue is collapsed.
4702  */
4703 static void tcp_collapse_ofo_queue(struct sock *sk)
4704 {
4705 	struct tcp_sock *tp = tcp_sk(sk);
4706 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4707 	struct sk_buff *head;
4708 	u32 start, end;
4709 
4710 	if (!skb)
4711 		return;
4712 
4713 	start = TCP_SKB_CB(skb)->seq;
4714 	end = TCP_SKB_CB(skb)->end_seq;
4715 	head = skb;
4716 
4717 	for (;;) {
4718 		struct sk_buff *next = NULL;
4719 
4720 		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4721 			next = skb_queue_next(&tp->out_of_order_queue, skb);
4722 		skb = next;
4723 
4724 		/* Segment is terminated when we see gap or when
4725 		 * we are at the end of all the queue. */
4726 		if (!skb ||
4727 		    after(TCP_SKB_CB(skb)->seq, end) ||
4728 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4729 			tcp_collapse(sk, &tp->out_of_order_queue,
4730 				     head, skb, start, end);
4731 			head = skb;
4732 			if (!skb)
4733 				break;
4734 			/* Start new segment */
4735 			start = TCP_SKB_CB(skb)->seq;
4736 			end = TCP_SKB_CB(skb)->end_seq;
4737 		} else {
4738 			if (before(TCP_SKB_CB(skb)->seq, start))
4739 				start = TCP_SKB_CB(skb)->seq;
4740 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4741 				end = TCP_SKB_CB(skb)->end_seq;
4742 		}
4743 	}
4744 }
4745 
4746 /*
4747  * Purge the out-of-order queue.
4748  * Return true if queue was pruned.
4749  */
4750 static bool tcp_prune_ofo_queue(struct sock *sk)
4751 {
4752 	struct tcp_sock *tp = tcp_sk(sk);
4753 	bool res = false;
4754 
4755 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4756 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4757 		__skb_queue_purge(&tp->out_of_order_queue);
4758 
4759 		/* Reset SACK state.  A conforming SACK implementation will
4760 		 * do the same at a timeout based retransmit.  When a connection
4761 		 * is in a sad state like this, we care only about integrity
4762 		 * of the connection not performance.
4763 		 */
4764 		if (tp->rx_opt.sack_ok)
4765 			tcp_sack_reset(&tp->rx_opt);
4766 		sk_mem_reclaim(sk);
4767 		res = true;
4768 	}
4769 	return res;
4770 }
4771 
4772 /* Reduce allocated memory if we can, trying to get
4773  * the socket within its memory limits again.
4774  *
4775  * Return less than zero if we should start dropping frames
4776  * until the socket owning process reads some of the data
4777  * to stabilize the situation.
4778  */
4779 static int tcp_prune_queue(struct sock *sk)
4780 {
4781 	struct tcp_sock *tp = tcp_sk(sk);
4782 
4783 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4784 
4785 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4786 
4787 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4788 		tcp_clamp_window(sk);
4789 	else if (tcp_under_memory_pressure(sk))
4790 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4791 
4792 	tcp_collapse_ofo_queue(sk);
4793 	if (!skb_queue_empty(&sk->sk_receive_queue))
4794 		tcp_collapse(sk, &sk->sk_receive_queue,
4795 			     skb_peek(&sk->sk_receive_queue),
4796 			     NULL,
4797 			     tp->copied_seq, tp->rcv_nxt);
4798 	sk_mem_reclaim(sk);
4799 
4800 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4801 		return 0;
4802 
4803 	/* Collapsing did not help, destructive actions follow.
4804 	 * This must not ever occur. */
4805 
4806 	tcp_prune_ofo_queue(sk);
4807 
4808 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4809 		return 0;
4810 
4811 	/* If we are really being abused, tell the caller to silently
4812 	 * drop receive data on the floor.  It will get retransmitted
4813 	 * and hopefully then we'll have sufficient space.
4814 	 */
4815 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4816 
4817 	/* Massive buffer overcommit. */
4818 	tp->pred_flags = 0;
4819 	return -1;
4820 }
4821 
4822 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4823 {
4824 	const struct tcp_sock *tp = tcp_sk(sk);
4825 
4826 	/* If the user specified a specific send buffer setting, do
4827 	 * not modify it.
4828 	 */
4829 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4830 		return false;
4831 
4832 	/* If we are under global TCP memory pressure, do not expand.  */
4833 	if (tcp_under_memory_pressure(sk))
4834 		return false;
4835 
4836 	/* If we are under soft global TCP memory pressure, do not expand.  */
4837 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4838 		return false;
4839 
4840 	/* If we filled the congestion window, do not expand.  */
4841 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
4842 		return false;
4843 
4844 	return true;
4845 }
4846 
4847 /* When incoming ACK allowed to free some skb from write_queue,
4848  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4849  * on the exit from tcp input handler.
4850  *
4851  * PROBLEM: sndbuf expansion does not work well with largesend.
4852  */
4853 static void tcp_new_space(struct sock *sk)
4854 {
4855 	struct tcp_sock *tp = tcp_sk(sk);
4856 
4857 	if (tcp_should_expand_sndbuf(sk)) {
4858 		tcp_sndbuf_expand(sk);
4859 		tp->snd_cwnd_stamp = tcp_time_stamp;
4860 	}
4861 
4862 	sk->sk_write_space(sk);
4863 }
4864 
4865 static void tcp_check_space(struct sock *sk)
4866 {
4867 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4868 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4869 		/* pairs with tcp_poll() */
4870 		smp_mb__after_atomic();
4871 		if (sk->sk_socket &&
4872 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4873 			tcp_new_space(sk);
4874 	}
4875 }
4876 
4877 static inline void tcp_data_snd_check(struct sock *sk)
4878 {
4879 	tcp_push_pending_frames(sk);
4880 	tcp_check_space(sk);
4881 }
4882 
4883 /*
4884  * Check if sending an ack is needed.
4885  */
4886 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4887 {
4888 	struct tcp_sock *tp = tcp_sk(sk);
4889 
4890 	    /* More than one full frame received... */
4891 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4892 	     /* ... and right edge of window advances far enough.
4893 	      * (tcp_recvmsg() will send ACK otherwise). Or...
4894 	      */
4895 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
4896 	    /* We ACK each frame or... */
4897 	    tcp_in_quickack_mode(sk) ||
4898 	    /* We have out of order data. */
4899 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4900 		/* Then ack it now */
4901 		tcp_send_ack(sk);
4902 	} else {
4903 		/* Else, send delayed ack. */
4904 		tcp_send_delayed_ack(sk);
4905 	}
4906 }
4907 
4908 static inline void tcp_ack_snd_check(struct sock *sk)
4909 {
4910 	if (!inet_csk_ack_scheduled(sk)) {
4911 		/* We sent a data segment already. */
4912 		return;
4913 	}
4914 	__tcp_ack_snd_check(sk, 1);
4915 }
4916 
4917 /*
4918  *	This routine is only called when we have urgent data
4919  *	signaled. Its the 'slow' part of tcp_urg. It could be
4920  *	moved inline now as tcp_urg is only called from one
4921  *	place. We handle URGent data wrong. We have to - as
4922  *	BSD still doesn't use the correction from RFC961.
4923  *	For 1003.1g we should support a new option TCP_STDURG to permit
4924  *	either form (or just set the sysctl tcp_stdurg).
4925  */
4926 
4927 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4928 {
4929 	struct tcp_sock *tp = tcp_sk(sk);
4930 	u32 ptr = ntohs(th->urg_ptr);
4931 
4932 	if (ptr && !sysctl_tcp_stdurg)
4933 		ptr--;
4934 	ptr += ntohl(th->seq);
4935 
4936 	/* Ignore urgent data that we've already seen and read. */
4937 	if (after(tp->copied_seq, ptr))
4938 		return;
4939 
4940 	/* Do not replay urg ptr.
4941 	 *
4942 	 * NOTE: interesting situation not covered by specs.
4943 	 * Misbehaving sender may send urg ptr, pointing to segment,
4944 	 * which we already have in ofo queue. We are not able to fetch
4945 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4946 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4947 	 * situations. But it is worth to think about possibility of some
4948 	 * DoSes using some hypothetical application level deadlock.
4949 	 */
4950 	if (before(ptr, tp->rcv_nxt))
4951 		return;
4952 
4953 	/* Do we already have a newer (or duplicate) urgent pointer? */
4954 	if (tp->urg_data && !after(ptr, tp->urg_seq))
4955 		return;
4956 
4957 	/* Tell the world about our new urgent pointer. */
4958 	sk_send_sigurg(sk);
4959 
4960 	/* We may be adding urgent data when the last byte read was
4961 	 * urgent. To do this requires some care. We cannot just ignore
4962 	 * tp->copied_seq since we would read the last urgent byte again
4963 	 * as data, nor can we alter copied_seq until this data arrives
4964 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4965 	 *
4966 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4967 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4968 	 * and expect that both A and B disappear from stream. This is _wrong_.
4969 	 * Though this happens in BSD with high probability, this is occasional.
4970 	 * Any application relying on this is buggy. Note also, that fix "works"
4971 	 * only in this artificial test. Insert some normal data between A and B and we will
4972 	 * decline of BSD again. Verdict: it is better to remove to trap
4973 	 * buggy users.
4974 	 */
4975 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4976 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4977 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4978 		tp->copied_seq++;
4979 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4980 			__skb_unlink(skb, &sk->sk_receive_queue);
4981 			__kfree_skb(skb);
4982 		}
4983 	}
4984 
4985 	tp->urg_data = TCP_URG_NOTYET;
4986 	tp->urg_seq = ptr;
4987 
4988 	/* Disable header prediction. */
4989 	tp->pred_flags = 0;
4990 }
4991 
4992 /* This is the 'fast' part of urgent handling. */
4993 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4994 {
4995 	struct tcp_sock *tp = tcp_sk(sk);
4996 
4997 	/* Check if we get a new urgent pointer - normally not. */
4998 	if (th->urg)
4999 		tcp_check_urg(sk, th);
5000 
5001 	/* Do we wait for any urgent data? - normally not... */
5002 	if (tp->urg_data == TCP_URG_NOTYET) {
5003 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5004 			  th->syn;
5005 
5006 		/* Is the urgent pointer pointing into this packet? */
5007 		if (ptr < skb->len) {
5008 			u8 tmp;
5009 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5010 				BUG();
5011 			tp->urg_data = TCP_URG_VALID | tmp;
5012 			if (!sock_flag(sk, SOCK_DEAD))
5013 				sk->sk_data_ready(sk);
5014 		}
5015 	}
5016 }
5017 
5018 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5019 {
5020 	struct tcp_sock *tp = tcp_sk(sk);
5021 	int chunk = skb->len - hlen;
5022 	int err;
5023 
5024 	local_bh_enable();
5025 	if (skb_csum_unnecessary(skb))
5026 		err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5027 	else
5028 		err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5029 
5030 	if (!err) {
5031 		tp->ucopy.len -= chunk;
5032 		tp->copied_seq += chunk;
5033 		tcp_rcv_space_adjust(sk);
5034 	}
5035 
5036 	local_bh_disable();
5037 	return err;
5038 }
5039 
5040 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5041 					    struct sk_buff *skb)
5042 {
5043 	__sum16 result;
5044 
5045 	if (sock_owned_by_user(sk)) {
5046 		local_bh_enable();
5047 		result = __tcp_checksum_complete(skb);
5048 		local_bh_disable();
5049 	} else {
5050 		result = __tcp_checksum_complete(skb);
5051 	}
5052 	return result;
5053 }
5054 
5055 static inline bool tcp_checksum_complete_user(struct sock *sk,
5056 					     struct sk_buff *skb)
5057 {
5058 	return !skb_csum_unnecessary(skb) &&
5059 	       __tcp_checksum_complete_user(sk, skb);
5060 }
5061 
5062 /* Does PAWS and seqno based validation of an incoming segment, flags will
5063  * play significant role here.
5064  */
5065 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5066 				  const struct tcphdr *th, int syn_inerr)
5067 {
5068 	struct tcp_sock *tp = tcp_sk(sk);
5069 
5070 	/* RFC1323: H1. Apply PAWS check first. */
5071 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5072 	    tcp_paws_discard(sk, skb)) {
5073 		if (!th->rst) {
5074 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5075 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5076 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5077 						  &tp->last_oow_ack_time))
5078 				tcp_send_dupack(sk, skb);
5079 			goto discard;
5080 		}
5081 		/* Reset is accepted even if it did not pass PAWS. */
5082 	}
5083 
5084 	/* Step 1: check sequence number */
5085 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5086 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5087 		 * (RST) segments are validated by checking their SEQ-fields."
5088 		 * And page 69: "If an incoming segment is not acceptable,
5089 		 * an acknowledgment should be sent in reply (unless the RST
5090 		 * bit is set, if so drop the segment and return)".
5091 		 */
5092 		if (!th->rst) {
5093 			if (th->syn)
5094 				goto syn_challenge;
5095 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5096 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5097 						  &tp->last_oow_ack_time))
5098 				tcp_send_dupack(sk, skb);
5099 		}
5100 		goto discard;
5101 	}
5102 
5103 	/* Step 2: check RST bit */
5104 	if (th->rst) {
5105 		/* RFC 5961 3.2 :
5106 		 * If sequence number exactly matches RCV.NXT, then
5107 		 *     RESET the connection
5108 		 * else
5109 		 *     Send a challenge ACK
5110 		 */
5111 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5112 			tcp_reset(sk);
5113 		else
5114 			tcp_send_challenge_ack(sk, skb);
5115 		goto discard;
5116 	}
5117 
5118 	/* step 3: check security and precedence [ignored] */
5119 
5120 	/* step 4: Check for a SYN
5121 	 * RFC 5961 4.2 : Send a challenge ack
5122 	 */
5123 	if (th->syn) {
5124 syn_challenge:
5125 		if (syn_inerr)
5126 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5127 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5128 		tcp_send_challenge_ack(sk, skb);
5129 		goto discard;
5130 	}
5131 
5132 	return true;
5133 
5134 discard:
5135 	__kfree_skb(skb);
5136 	return false;
5137 }
5138 
5139 /*
5140  *	TCP receive function for the ESTABLISHED state.
5141  *
5142  *	It is split into a fast path and a slow path. The fast path is
5143  * 	disabled when:
5144  *	- A zero window was announced from us - zero window probing
5145  *        is only handled properly in the slow path.
5146  *	- Out of order segments arrived.
5147  *	- Urgent data is expected.
5148  *	- There is no buffer space left
5149  *	- Unexpected TCP flags/window values/header lengths are received
5150  *	  (detected by checking the TCP header against pred_flags)
5151  *	- Data is sent in both directions. Fast path only supports pure senders
5152  *	  or pure receivers (this means either the sequence number or the ack
5153  *	  value must stay constant)
5154  *	- Unexpected TCP option.
5155  *
5156  *	When these conditions are not satisfied it drops into a standard
5157  *	receive procedure patterned after RFC793 to handle all cases.
5158  *	The first three cases are guaranteed by proper pred_flags setting,
5159  *	the rest is checked inline. Fast processing is turned on in
5160  *	tcp_data_queue when everything is OK.
5161  */
5162 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5163 			 const struct tcphdr *th, unsigned int len)
5164 {
5165 	struct tcp_sock *tp = tcp_sk(sk);
5166 
5167 	if (unlikely(!sk->sk_rx_dst))
5168 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5169 	/*
5170 	 *	Header prediction.
5171 	 *	The code loosely follows the one in the famous
5172 	 *	"30 instruction TCP receive" Van Jacobson mail.
5173 	 *
5174 	 *	Van's trick is to deposit buffers into socket queue
5175 	 *	on a device interrupt, to call tcp_recv function
5176 	 *	on the receive process context and checksum and copy
5177 	 *	the buffer to user space. smart...
5178 	 *
5179 	 *	Our current scheme is not silly either but we take the
5180 	 *	extra cost of the net_bh soft interrupt processing...
5181 	 *	We do checksum and copy also but from device to kernel.
5182 	 */
5183 
5184 	tp->rx_opt.saw_tstamp = 0;
5185 
5186 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5187 	 *	if header_prediction is to be made
5188 	 *	'S' will always be tp->tcp_header_len >> 2
5189 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5190 	 *  turn it off	(when there are holes in the receive
5191 	 *	 space for instance)
5192 	 *	PSH flag is ignored.
5193 	 */
5194 
5195 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5196 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5197 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5198 		int tcp_header_len = tp->tcp_header_len;
5199 
5200 		/* Timestamp header prediction: tcp_header_len
5201 		 * is automatically equal to th->doff*4 due to pred_flags
5202 		 * match.
5203 		 */
5204 
5205 		/* Check timestamp */
5206 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5207 			/* No? Slow path! */
5208 			if (!tcp_parse_aligned_timestamp(tp, th))
5209 				goto slow_path;
5210 
5211 			/* If PAWS failed, check it more carefully in slow path */
5212 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5213 				goto slow_path;
5214 
5215 			/* DO NOT update ts_recent here, if checksum fails
5216 			 * and timestamp was corrupted part, it will result
5217 			 * in a hung connection since we will drop all
5218 			 * future packets due to the PAWS test.
5219 			 */
5220 		}
5221 
5222 		if (len <= tcp_header_len) {
5223 			/* Bulk data transfer: sender */
5224 			if (len == tcp_header_len) {
5225 				/* Predicted packet is in window by definition.
5226 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5227 				 * Hence, check seq<=rcv_wup reduces to:
5228 				 */
5229 				if (tcp_header_len ==
5230 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5231 				    tp->rcv_nxt == tp->rcv_wup)
5232 					tcp_store_ts_recent(tp);
5233 
5234 				/* We know that such packets are checksummed
5235 				 * on entry.
5236 				 */
5237 				tcp_ack(sk, skb, 0);
5238 				__kfree_skb(skb);
5239 				tcp_data_snd_check(sk);
5240 				return;
5241 			} else { /* Header too small */
5242 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5243 				goto discard;
5244 			}
5245 		} else {
5246 			int eaten = 0;
5247 			bool fragstolen = false;
5248 
5249 			if (tp->ucopy.task == current &&
5250 			    tp->copied_seq == tp->rcv_nxt &&
5251 			    len - tcp_header_len <= tp->ucopy.len &&
5252 			    sock_owned_by_user(sk)) {
5253 				__set_current_state(TASK_RUNNING);
5254 
5255 				if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5256 					/* Predicted packet is in window by definition.
5257 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5258 					 * Hence, check seq<=rcv_wup reduces to:
5259 					 */
5260 					if (tcp_header_len ==
5261 					    (sizeof(struct tcphdr) +
5262 					     TCPOLEN_TSTAMP_ALIGNED) &&
5263 					    tp->rcv_nxt == tp->rcv_wup)
5264 						tcp_store_ts_recent(tp);
5265 
5266 					tcp_rcv_rtt_measure_ts(sk, skb);
5267 
5268 					__skb_pull(skb, tcp_header_len);
5269 					tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5270 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5271 					eaten = 1;
5272 				}
5273 			}
5274 			if (!eaten) {
5275 				if (tcp_checksum_complete_user(sk, skb))
5276 					goto csum_error;
5277 
5278 				if ((int)skb->truesize > sk->sk_forward_alloc)
5279 					goto step5;
5280 
5281 				/* Predicted packet is in window by definition.
5282 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5283 				 * Hence, check seq<=rcv_wup reduces to:
5284 				 */
5285 				if (tcp_header_len ==
5286 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5287 				    tp->rcv_nxt == tp->rcv_wup)
5288 					tcp_store_ts_recent(tp);
5289 
5290 				tcp_rcv_rtt_measure_ts(sk, skb);
5291 
5292 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5293 
5294 				/* Bulk data transfer: receiver */
5295 				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5296 						      &fragstolen);
5297 			}
5298 
5299 			tcp_event_data_recv(sk, skb);
5300 
5301 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5302 				/* Well, only one small jumplet in fast path... */
5303 				tcp_ack(sk, skb, FLAG_DATA);
5304 				tcp_data_snd_check(sk);
5305 				if (!inet_csk_ack_scheduled(sk))
5306 					goto no_ack;
5307 			}
5308 
5309 			__tcp_ack_snd_check(sk, 0);
5310 no_ack:
5311 			if (eaten)
5312 				kfree_skb_partial(skb, fragstolen);
5313 			sk->sk_data_ready(sk);
5314 			return;
5315 		}
5316 	}
5317 
5318 slow_path:
5319 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5320 		goto csum_error;
5321 
5322 	if (!th->ack && !th->rst && !th->syn)
5323 		goto discard;
5324 
5325 	/*
5326 	 *	Standard slow path.
5327 	 */
5328 
5329 	if (!tcp_validate_incoming(sk, skb, th, 1))
5330 		return;
5331 
5332 step5:
5333 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5334 		goto discard;
5335 
5336 	tcp_rcv_rtt_measure_ts(sk, skb);
5337 
5338 	/* Process urgent data. */
5339 	tcp_urg(sk, skb, th);
5340 
5341 	/* step 7: process the segment text */
5342 	tcp_data_queue(sk, skb);
5343 
5344 	tcp_data_snd_check(sk);
5345 	tcp_ack_snd_check(sk);
5346 	return;
5347 
5348 csum_error:
5349 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5350 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5351 
5352 discard:
5353 	__kfree_skb(skb);
5354 }
5355 EXPORT_SYMBOL(tcp_rcv_established);
5356 
5357 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5358 {
5359 	struct tcp_sock *tp = tcp_sk(sk);
5360 	struct inet_connection_sock *icsk = inet_csk(sk);
5361 
5362 	tcp_set_state(sk, TCP_ESTABLISHED);
5363 
5364 	if (skb) {
5365 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5366 		security_inet_conn_established(sk, skb);
5367 	}
5368 
5369 	/* Make sure socket is routed, for correct metrics.  */
5370 	icsk->icsk_af_ops->rebuild_header(sk);
5371 
5372 	tcp_init_metrics(sk);
5373 
5374 	tcp_init_congestion_control(sk);
5375 
5376 	/* Prevent spurious tcp_cwnd_restart() on first data
5377 	 * packet.
5378 	 */
5379 	tp->lsndtime = tcp_time_stamp;
5380 
5381 	tcp_init_buffer_space(sk);
5382 
5383 	if (sock_flag(sk, SOCK_KEEPOPEN))
5384 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5385 
5386 	if (!tp->rx_opt.snd_wscale)
5387 		__tcp_fast_path_on(tp, tp->snd_wnd);
5388 	else
5389 		tp->pred_flags = 0;
5390 
5391 	if (!sock_flag(sk, SOCK_DEAD)) {
5392 		sk->sk_state_change(sk);
5393 		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5394 	}
5395 }
5396 
5397 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5398 				    struct tcp_fastopen_cookie *cookie)
5399 {
5400 	struct tcp_sock *tp = tcp_sk(sk);
5401 	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5402 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5403 	bool syn_drop = false;
5404 
5405 	if (mss == tp->rx_opt.user_mss) {
5406 		struct tcp_options_received opt;
5407 
5408 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5409 		tcp_clear_options(&opt);
5410 		opt.user_mss = opt.mss_clamp = 0;
5411 		tcp_parse_options(synack, &opt, 0, NULL);
5412 		mss = opt.mss_clamp;
5413 	}
5414 
5415 	if (!tp->syn_fastopen) {
5416 		/* Ignore an unsolicited cookie */
5417 		cookie->len = -1;
5418 	} else if (tp->total_retrans) {
5419 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5420 		 * acknowledges data. Presumably the remote received only
5421 		 * the retransmitted (regular) SYNs: either the original
5422 		 * SYN-data or the corresponding SYN-ACK was dropped.
5423 		 */
5424 		syn_drop = (cookie->len < 0 && data);
5425 	} else if (cookie->len < 0 && !tp->syn_data) {
5426 		/* We requested a cookie but didn't get it. If we did not use
5427 		 * the (old) exp opt format then try so next time (try_exp=1).
5428 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5429 		 */
5430 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5431 	}
5432 
5433 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5434 
5435 	if (data) { /* Retransmit unacked data in SYN */
5436 		tcp_for_write_queue_from(data, sk) {
5437 			if (data == tcp_send_head(sk) ||
5438 			    __tcp_retransmit_skb(sk, data))
5439 				break;
5440 		}
5441 		tcp_rearm_rto(sk);
5442 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5443 		return true;
5444 	}
5445 	tp->syn_data_acked = tp->syn_data;
5446 	if (tp->syn_data_acked)
5447 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5448 	return false;
5449 }
5450 
5451 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5452 					 const struct tcphdr *th, unsigned int len)
5453 {
5454 	struct inet_connection_sock *icsk = inet_csk(sk);
5455 	struct tcp_sock *tp = tcp_sk(sk);
5456 	struct tcp_fastopen_cookie foc = { .len = -1 };
5457 	int saved_clamp = tp->rx_opt.mss_clamp;
5458 
5459 	tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5460 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5461 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5462 
5463 	if (th->ack) {
5464 		/* rfc793:
5465 		 * "If the state is SYN-SENT then
5466 		 *    first check the ACK bit
5467 		 *      If the ACK bit is set
5468 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5469 		 *        a reset (unless the RST bit is set, if so drop
5470 		 *        the segment and return)"
5471 		 */
5472 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5473 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5474 			goto reset_and_undo;
5475 
5476 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5477 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5478 			     tcp_time_stamp)) {
5479 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5480 			goto reset_and_undo;
5481 		}
5482 
5483 		/* Now ACK is acceptable.
5484 		 *
5485 		 * "If the RST bit is set
5486 		 *    If the ACK was acceptable then signal the user "error:
5487 		 *    connection reset", drop the segment, enter CLOSED state,
5488 		 *    delete TCB, and return."
5489 		 */
5490 
5491 		if (th->rst) {
5492 			tcp_reset(sk);
5493 			goto discard;
5494 		}
5495 
5496 		/* rfc793:
5497 		 *   "fifth, if neither of the SYN or RST bits is set then
5498 		 *    drop the segment and return."
5499 		 *
5500 		 *    See note below!
5501 		 *                                        --ANK(990513)
5502 		 */
5503 		if (!th->syn)
5504 			goto discard_and_undo;
5505 
5506 		/* rfc793:
5507 		 *   "If the SYN bit is on ...
5508 		 *    are acceptable then ...
5509 		 *    (our SYN has been ACKed), change the connection
5510 		 *    state to ESTABLISHED..."
5511 		 */
5512 
5513 		tcp_ecn_rcv_synack(tp, th);
5514 
5515 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5516 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5517 
5518 		/* Ok.. it's good. Set up sequence numbers and
5519 		 * move to established.
5520 		 */
5521 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5522 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5523 
5524 		/* RFC1323: The window in SYN & SYN/ACK segments is
5525 		 * never scaled.
5526 		 */
5527 		tp->snd_wnd = ntohs(th->window);
5528 
5529 		if (!tp->rx_opt.wscale_ok) {
5530 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5531 			tp->window_clamp = min(tp->window_clamp, 65535U);
5532 		}
5533 
5534 		if (tp->rx_opt.saw_tstamp) {
5535 			tp->rx_opt.tstamp_ok	   = 1;
5536 			tp->tcp_header_len =
5537 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5538 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5539 			tcp_store_ts_recent(tp);
5540 		} else {
5541 			tp->tcp_header_len = sizeof(struct tcphdr);
5542 		}
5543 
5544 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5545 			tcp_enable_fack(tp);
5546 
5547 		tcp_mtup_init(sk);
5548 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5549 		tcp_initialize_rcv_mss(sk);
5550 
5551 		/* Remember, tcp_poll() does not lock socket!
5552 		 * Change state from SYN-SENT only after copied_seq
5553 		 * is initialized. */
5554 		tp->copied_seq = tp->rcv_nxt;
5555 
5556 		smp_mb();
5557 
5558 		tcp_finish_connect(sk, skb);
5559 
5560 		if ((tp->syn_fastopen || tp->syn_data) &&
5561 		    tcp_rcv_fastopen_synack(sk, skb, &foc))
5562 			return -1;
5563 
5564 		if (sk->sk_write_pending ||
5565 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5566 		    icsk->icsk_ack.pingpong) {
5567 			/* Save one ACK. Data will be ready after
5568 			 * several ticks, if write_pending is set.
5569 			 *
5570 			 * It may be deleted, but with this feature tcpdumps
5571 			 * look so _wonderfully_ clever, that I was not able
5572 			 * to stand against the temptation 8)     --ANK
5573 			 */
5574 			inet_csk_schedule_ack(sk);
5575 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5576 			tcp_enter_quickack_mode(sk);
5577 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5578 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5579 
5580 discard:
5581 			__kfree_skb(skb);
5582 			return 0;
5583 		} else {
5584 			tcp_send_ack(sk);
5585 		}
5586 		return -1;
5587 	}
5588 
5589 	/* No ACK in the segment */
5590 
5591 	if (th->rst) {
5592 		/* rfc793:
5593 		 * "If the RST bit is set
5594 		 *
5595 		 *      Otherwise (no ACK) drop the segment and return."
5596 		 */
5597 
5598 		goto discard_and_undo;
5599 	}
5600 
5601 	/* PAWS check. */
5602 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5603 	    tcp_paws_reject(&tp->rx_opt, 0))
5604 		goto discard_and_undo;
5605 
5606 	if (th->syn) {
5607 		/* We see SYN without ACK. It is attempt of
5608 		 * simultaneous connect with crossed SYNs.
5609 		 * Particularly, it can be connect to self.
5610 		 */
5611 		tcp_set_state(sk, TCP_SYN_RECV);
5612 
5613 		if (tp->rx_opt.saw_tstamp) {
5614 			tp->rx_opt.tstamp_ok = 1;
5615 			tcp_store_ts_recent(tp);
5616 			tp->tcp_header_len =
5617 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5618 		} else {
5619 			tp->tcp_header_len = sizeof(struct tcphdr);
5620 		}
5621 
5622 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5623 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5624 
5625 		/* RFC1323: The window in SYN & SYN/ACK segments is
5626 		 * never scaled.
5627 		 */
5628 		tp->snd_wnd    = ntohs(th->window);
5629 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5630 		tp->max_window = tp->snd_wnd;
5631 
5632 		tcp_ecn_rcv_syn(tp, th);
5633 
5634 		tcp_mtup_init(sk);
5635 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5636 		tcp_initialize_rcv_mss(sk);
5637 
5638 		tcp_send_synack(sk);
5639 #if 0
5640 		/* Note, we could accept data and URG from this segment.
5641 		 * There are no obstacles to make this (except that we must
5642 		 * either change tcp_recvmsg() to prevent it from returning data
5643 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5644 		 *
5645 		 * However, if we ignore data in ACKless segments sometimes,
5646 		 * we have no reasons to accept it sometimes.
5647 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5648 		 * is not flawless. So, discard packet for sanity.
5649 		 * Uncomment this return to process the data.
5650 		 */
5651 		return -1;
5652 #else
5653 		goto discard;
5654 #endif
5655 	}
5656 	/* "fifth, if neither of the SYN or RST bits is set then
5657 	 * drop the segment and return."
5658 	 */
5659 
5660 discard_and_undo:
5661 	tcp_clear_options(&tp->rx_opt);
5662 	tp->rx_opt.mss_clamp = saved_clamp;
5663 	goto discard;
5664 
5665 reset_and_undo:
5666 	tcp_clear_options(&tp->rx_opt);
5667 	tp->rx_opt.mss_clamp = saved_clamp;
5668 	return 1;
5669 }
5670 
5671 /*
5672  *	This function implements the receiving procedure of RFC 793 for
5673  *	all states except ESTABLISHED and TIME_WAIT.
5674  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5675  *	address independent.
5676  */
5677 
5678 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5679 			  const struct tcphdr *th, unsigned int len)
5680 {
5681 	struct tcp_sock *tp = tcp_sk(sk);
5682 	struct inet_connection_sock *icsk = inet_csk(sk);
5683 	struct request_sock *req;
5684 	int queued = 0;
5685 	bool acceptable;
5686 	u32 synack_stamp;
5687 
5688 	tp->rx_opt.saw_tstamp = 0;
5689 
5690 	switch (sk->sk_state) {
5691 	case TCP_CLOSE:
5692 		goto discard;
5693 
5694 	case TCP_LISTEN:
5695 		if (th->ack)
5696 			return 1;
5697 
5698 		if (th->rst)
5699 			goto discard;
5700 
5701 		if (th->syn) {
5702 			if (th->fin)
5703 				goto discard;
5704 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5705 				return 1;
5706 
5707 			/* Now we have several options: In theory there is
5708 			 * nothing else in the frame. KA9Q has an option to
5709 			 * send data with the syn, BSD accepts data with the
5710 			 * syn up to the [to be] advertised window and
5711 			 * Solaris 2.1 gives you a protocol error. For now
5712 			 * we just ignore it, that fits the spec precisely
5713 			 * and avoids incompatibilities. It would be nice in
5714 			 * future to drop through and process the data.
5715 			 *
5716 			 * Now that TTCP is starting to be used we ought to
5717 			 * queue this data.
5718 			 * But, this leaves one open to an easy denial of
5719 			 * service attack, and SYN cookies can't defend
5720 			 * against this problem. So, we drop the data
5721 			 * in the interest of security over speed unless
5722 			 * it's still in use.
5723 			 */
5724 			kfree_skb(skb);
5725 			return 0;
5726 		}
5727 		goto discard;
5728 
5729 	case TCP_SYN_SENT:
5730 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5731 		if (queued >= 0)
5732 			return queued;
5733 
5734 		/* Do step6 onward by hand. */
5735 		tcp_urg(sk, skb, th);
5736 		__kfree_skb(skb);
5737 		tcp_data_snd_check(sk);
5738 		return 0;
5739 	}
5740 
5741 	req = tp->fastopen_rsk;
5742 	if (req) {
5743 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5744 		    sk->sk_state != TCP_FIN_WAIT1);
5745 
5746 		if (!tcp_check_req(sk, skb, req, true))
5747 			goto discard;
5748 	}
5749 
5750 	if (!th->ack && !th->rst && !th->syn)
5751 		goto discard;
5752 
5753 	if (!tcp_validate_incoming(sk, skb, th, 0))
5754 		return 0;
5755 
5756 	/* step 5: check the ACK field */
5757 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5758 				      FLAG_UPDATE_TS_RECENT) > 0;
5759 
5760 	switch (sk->sk_state) {
5761 	case TCP_SYN_RECV:
5762 		if (!acceptable)
5763 			return 1;
5764 
5765 		/* Once we leave TCP_SYN_RECV, we no longer need req
5766 		 * so release it.
5767 		 */
5768 		if (req) {
5769 			synack_stamp = tcp_rsk(req)->snt_synack;
5770 			tp->total_retrans = req->num_retrans;
5771 			reqsk_fastopen_remove(sk, req, false);
5772 		} else {
5773 			synack_stamp = tp->lsndtime;
5774 			/* Make sure socket is routed, for correct metrics. */
5775 			icsk->icsk_af_ops->rebuild_header(sk);
5776 			tcp_init_congestion_control(sk);
5777 
5778 			tcp_mtup_init(sk);
5779 			tp->copied_seq = tp->rcv_nxt;
5780 			tcp_init_buffer_space(sk);
5781 		}
5782 		smp_mb();
5783 		tcp_set_state(sk, TCP_ESTABLISHED);
5784 		sk->sk_state_change(sk);
5785 
5786 		/* Note, that this wakeup is only for marginal crossed SYN case.
5787 		 * Passively open sockets are not waked up, because
5788 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5789 		 */
5790 		if (sk->sk_socket)
5791 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5792 
5793 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5794 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5795 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5796 		tcp_synack_rtt_meas(sk, synack_stamp);
5797 
5798 		if (tp->rx_opt.tstamp_ok)
5799 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5800 
5801 		if (req) {
5802 			/* Re-arm the timer because data may have been sent out.
5803 			 * This is similar to the regular data transmission case
5804 			 * when new data has just been ack'ed.
5805 			 *
5806 			 * (TFO) - we could try to be more aggressive and
5807 			 * retransmitting any data sooner based on when they
5808 			 * are sent out.
5809 			 */
5810 			tcp_rearm_rto(sk);
5811 		} else
5812 			tcp_init_metrics(sk);
5813 
5814 		tcp_update_pacing_rate(sk);
5815 
5816 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5817 		tp->lsndtime = tcp_time_stamp;
5818 
5819 		tcp_initialize_rcv_mss(sk);
5820 		tcp_fast_path_on(tp);
5821 		break;
5822 
5823 	case TCP_FIN_WAIT1: {
5824 		struct dst_entry *dst;
5825 		int tmo;
5826 
5827 		/* If we enter the TCP_FIN_WAIT1 state and we are a
5828 		 * Fast Open socket and this is the first acceptable
5829 		 * ACK we have received, this would have acknowledged
5830 		 * our SYNACK so stop the SYNACK timer.
5831 		 */
5832 		if (req) {
5833 			/* Return RST if ack_seq is invalid.
5834 			 * Note that RFC793 only says to generate a
5835 			 * DUPACK for it but for TCP Fast Open it seems
5836 			 * better to treat this case like TCP_SYN_RECV
5837 			 * above.
5838 			 */
5839 			if (!acceptable)
5840 				return 1;
5841 			/* We no longer need the request sock. */
5842 			reqsk_fastopen_remove(sk, req, false);
5843 			tcp_rearm_rto(sk);
5844 		}
5845 		if (tp->snd_una != tp->write_seq)
5846 			break;
5847 
5848 		tcp_set_state(sk, TCP_FIN_WAIT2);
5849 		sk->sk_shutdown |= SEND_SHUTDOWN;
5850 
5851 		dst = __sk_dst_get(sk);
5852 		if (dst)
5853 			dst_confirm(dst);
5854 
5855 		if (!sock_flag(sk, SOCK_DEAD)) {
5856 			/* Wake up lingering close() */
5857 			sk->sk_state_change(sk);
5858 			break;
5859 		}
5860 
5861 		if (tp->linger2 < 0 ||
5862 		    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5863 		     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5864 			tcp_done(sk);
5865 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5866 			return 1;
5867 		}
5868 
5869 		tmo = tcp_fin_time(sk);
5870 		if (tmo > TCP_TIMEWAIT_LEN) {
5871 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5872 		} else if (th->fin || sock_owned_by_user(sk)) {
5873 			/* Bad case. We could lose such FIN otherwise.
5874 			 * It is not a big problem, but it looks confusing
5875 			 * and not so rare event. We still can lose it now,
5876 			 * if it spins in bh_lock_sock(), but it is really
5877 			 * marginal case.
5878 			 */
5879 			inet_csk_reset_keepalive_timer(sk, tmo);
5880 		} else {
5881 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5882 			goto discard;
5883 		}
5884 		break;
5885 	}
5886 
5887 	case TCP_CLOSING:
5888 		if (tp->snd_una == tp->write_seq) {
5889 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5890 			goto discard;
5891 		}
5892 		break;
5893 
5894 	case TCP_LAST_ACK:
5895 		if (tp->snd_una == tp->write_seq) {
5896 			tcp_update_metrics(sk);
5897 			tcp_done(sk);
5898 			goto discard;
5899 		}
5900 		break;
5901 	}
5902 
5903 	/* step 6: check the URG bit */
5904 	tcp_urg(sk, skb, th);
5905 
5906 	/* step 7: process the segment text */
5907 	switch (sk->sk_state) {
5908 	case TCP_CLOSE_WAIT:
5909 	case TCP_CLOSING:
5910 	case TCP_LAST_ACK:
5911 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5912 			break;
5913 	case TCP_FIN_WAIT1:
5914 	case TCP_FIN_WAIT2:
5915 		/* RFC 793 says to queue data in these states,
5916 		 * RFC 1122 says we MUST send a reset.
5917 		 * BSD 4.4 also does reset.
5918 		 */
5919 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5920 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5921 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5922 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5923 				tcp_reset(sk);
5924 				return 1;
5925 			}
5926 		}
5927 		/* Fall through */
5928 	case TCP_ESTABLISHED:
5929 		tcp_data_queue(sk, skb);
5930 		queued = 1;
5931 		break;
5932 	}
5933 
5934 	/* tcp_data could move socket to TIME-WAIT */
5935 	if (sk->sk_state != TCP_CLOSE) {
5936 		tcp_data_snd_check(sk);
5937 		tcp_ack_snd_check(sk);
5938 	}
5939 
5940 	if (!queued) {
5941 discard:
5942 		__kfree_skb(skb);
5943 	}
5944 	return 0;
5945 }
5946 EXPORT_SYMBOL(tcp_rcv_state_process);
5947 
5948 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
5949 {
5950 	struct inet_request_sock *ireq = inet_rsk(req);
5951 
5952 	if (family == AF_INET)
5953 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
5954 				    &ireq->ir_rmt_addr, port);
5955 #if IS_ENABLED(CONFIG_IPV6)
5956 	else if (family == AF_INET6)
5957 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
5958 				    &ireq->ir_v6_rmt_addr, port);
5959 #endif
5960 }
5961 
5962 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
5963  *
5964  * If we receive a SYN packet with these bits set, it means a
5965  * network is playing bad games with TOS bits. In order to
5966  * avoid possible false congestion notifications, we disable
5967  * TCP ECN negotiation.
5968  *
5969  * Exception: tcp_ca wants ECN. This is required for DCTCP
5970  * congestion control: Linux DCTCP asserts ECT on all packets,
5971  * including SYN, which is most optimal solution; however,
5972  * others, such as FreeBSD do not.
5973  */
5974 static void tcp_ecn_create_request(struct request_sock *req,
5975 				   const struct sk_buff *skb,
5976 				   const struct sock *listen_sk,
5977 				   const struct dst_entry *dst)
5978 {
5979 	const struct tcphdr *th = tcp_hdr(skb);
5980 	const struct net *net = sock_net(listen_sk);
5981 	bool th_ecn = th->ece && th->cwr;
5982 	bool ect, ecn_ok;
5983 
5984 	if (!th_ecn)
5985 		return;
5986 
5987 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
5988 	ecn_ok = net->ipv4.sysctl_tcp_ecn || dst_feature(dst, RTAX_FEATURE_ECN);
5989 
5990 	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk))
5991 		inet_rsk(req)->ecn_ok = 1;
5992 }
5993 
5994 static void tcp_openreq_init(struct request_sock *req,
5995 			     const struct tcp_options_received *rx_opt,
5996 			     struct sk_buff *skb, const struct sock *sk)
5997 {
5998 	struct inet_request_sock *ireq = inet_rsk(req);
5999 
6000 	req->rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6001 	req->cookie_ts = 0;
6002 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6003 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6004 	tcp_rsk(req)->snt_synack = tcp_time_stamp;
6005 	tcp_rsk(req)->last_oow_ack_time = 0;
6006 	req->mss = rx_opt->mss_clamp;
6007 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6008 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6009 	ireq->sack_ok = rx_opt->sack_ok;
6010 	ireq->snd_wscale = rx_opt->snd_wscale;
6011 	ireq->wscale_ok = rx_opt->wscale_ok;
6012 	ireq->acked = 0;
6013 	ireq->ecn_ok = 0;
6014 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6015 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6016 	ireq->ir_mark = inet_request_mark(sk, skb);
6017 }
6018 
6019 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6020 				      struct sock *sk_listener)
6021 {
6022 	struct request_sock *req = reqsk_alloc(ops, sk_listener);
6023 
6024 	if (req) {
6025 		struct inet_request_sock *ireq = inet_rsk(req);
6026 
6027 		kmemcheck_annotate_bitfield(ireq, flags);
6028 		ireq->opt = NULL;
6029 		atomic64_set(&ireq->ir_cookie, 0);
6030 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6031 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6032 		ireq->ireq_family = sk_listener->sk_family;
6033 	}
6034 
6035 	return req;
6036 }
6037 EXPORT_SYMBOL(inet_reqsk_alloc);
6038 
6039 /*
6040  * Return true if a syncookie should be sent
6041  */
6042 static bool tcp_syn_flood_action(struct sock *sk,
6043 				 const struct sk_buff *skb,
6044 				 const char *proto)
6045 {
6046 	const char *msg = "Dropping request";
6047 	bool want_cookie = false;
6048 	struct listen_sock *lopt;
6049 
6050 #ifdef CONFIG_SYN_COOKIES
6051 	if (sysctl_tcp_syncookies) {
6052 		msg = "Sending cookies";
6053 		want_cookie = true;
6054 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6055 	} else
6056 #endif
6057 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6058 
6059 	lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
6060 	if (!lopt->synflood_warned && sysctl_tcp_syncookies != 2) {
6061 		lopt->synflood_warned = 1;
6062 		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6063 			proto, ntohs(tcp_hdr(skb)->dest), msg);
6064 	}
6065 	return want_cookie;
6066 }
6067 
6068 static void tcp_reqsk_record_syn(const struct sock *sk,
6069 				 struct request_sock *req,
6070 				 const struct sk_buff *skb)
6071 {
6072 	if (tcp_sk(sk)->save_syn) {
6073 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6074 		u32 *copy;
6075 
6076 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6077 		if (copy) {
6078 			copy[0] = len;
6079 			memcpy(&copy[1], skb_network_header(skb), len);
6080 			req->saved_syn = copy;
6081 		}
6082 	}
6083 }
6084 
6085 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6086 		     const struct tcp_request_sock_ops *af_ops,
6087 		     struct sock *sk, struct sk_buff *skb)
6088 {
6089 	struct tcp_options_received tmp_opt;
6090 	struct request_sock *req;
6091 	struct tcp_sock *tp = tcp_sk(sk);
6092 	struct dst_entry *dst = NULL;
6093 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6094 	bool want_cookie = false, fastopen;
6095 	struct flowi fl;
6096 	struct tcp_fastopen_cookie foc = { .len = -1 };
6097 	int err;
6098 
6099 
6100 	/* TW buckets are converted to open requests without
6101 	 * limitations, they conserve resources and peer is
6102 	 * evidently real one.
6103 	 */
6104 	if ((sysctl_tcp_syncookies == 2 ||
6105 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6106 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6107 		if (!want_cookie)
6108 			goto drop;
6109 	}
6110 
6111 
6112 	/* Accept backlog is full. If we have already queued enough
6113 	 * of warm entries in syn queue, drop request. It is better than
6114 	 * clogging syn queue with openreqs with exponentially increasing
6115 	 * timeout.
6116 	 */
6117 	if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
6118 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6119 		goto drop;
6120 	}
6121 
6122 	req = inet_reqsk_alloc(rsk_ops, sk);
6123 	if (!req)
6124 		goto drop;
6125 
6126 	tcp_rsk(req)->af_specific = af_ops;
6127 
6128 	tcp_clear_options(&tmp_opt);
6129 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6130 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6131 	tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6132 
6133 	if (want_cookie && !tmp_opt.saw_tstamp)
6134 		tcp_clear_options(&tmp_opt);
6135 
6136 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6137 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6138 
6139 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6140 	inet_rsk(req)->ir_iif = sk->sk_bound_dev_if;
6141 
6142 	af_ops->init_req(req, sk, skb);
6143 
6144 	if (security_inet_conn_request(sk, skb, req))
6145 		goto drop_and_free;
6146 
6147 	if (!want_cookie && !isn) {
6148 		/* VJ's idea. We save last timestamp seen
6149 		 * from the destination in peer table, when entering
6150 		 * state TIME-WAIT, and check against it before
6151 		 * accepting new connection request.
6152 		 *
6153 		 * If "isn" is not zero, this request hit alive
6154 		 * timewait bucket, so that all the necessary checks
6155 		 * are made in the function processing timewait state.
6156 		 */
6157 		if (tcp_death_row.sysctl_tw_recycle) {
6158 			bool strict;
6159 
6160 			dst = af_ops->route_req(sk, &fl, req, &strict);
6161 
6162 			if (dst && strict &&
6163 			    !tcp_peer_is_proven(req, dst, true,
6164 						tmp_opt.saw_tstamp)) {
6165 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6166 				goto drop_and_release;
6167 			}
6168 		}
6169 		/* Kill the following clause, if you dislike this way. */
6170 		else if (!sysctl_tcp_syncookies &&
6171 			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6172 			  (sysctl_max_syn_backlog >> 2)) &&
6173 			 !tcp_peer_is_proven(req, dst, false,
6174 					     tmp_opt.saw_tstamp)) {
6175 			/* Without syncookies last quarter of
6176 			 * backlog is filled with destinations,
6177 			 * proven to be alive.
6178 			 * It means that we continue to communicate
6179 			 * to destinations, already remembered
6180 			 * to the moment of synflood.
6181 			 */
6182 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6183 				    rsk_ops->family);
6184 			goto drop_and_release;
6185 		}
6186 
6187 		isn = af_ops->init_seq(skb);
6188 	}
6189 	if (!dst) {
6190 		dst = af_ops->route_req(sk, &fl, req, NULL);
6191 		if (!dst)
6192 			goto drop_and_free;
6193 	}
6194 
6195 	tcp_ecn_create_request(req, skb, sk, dst);
6196 
6197 	if (want_cookie) {
6198 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6199 		req->cookie_ts = tmp_opt.tstamp_ok;
6200 		if (!tmp_opt.tstamp_ok)
6201 			inet_rsk(req)->ecn_ok = 0;
6202 	}
6203 
6204 	tcp_rsk(req)->snt_isn = isn;
6205 	tcp_openreq_init_rwin(req, sk, dst);
6206 	fastopen = !want_cookie &&
6207 		   tcp_try_fastopen(sk, skb, req, &foc, dst);
6208 	err = af_ops->send_synack(sk, dst, &fl, req,
6209 				  skb_get_queue_mapping(skb), &foc);
6210 	if (!fastopen) {
6211 		if (err || want_cookie)
6212 			goto drop_and_free;
6213 
6214 		tcp_rsk(req)->tfo_listener = false;
6215 		af_ops->queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6216 	}
6217 	tcp_reqsk_record_syn(sk, req, skb);
6218 
6219 	return 0;
6220 
6221 drop_and_release:
6222 	dst_release(dst);
6223 drop_and_free:
6224 	reqsk_free(req);
6225 drop:
6226 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
6227 	return 0;
6228 }
6229 EXPORT_SYMBOL(tcp_conn_request);
6230