xref: /openbmc/linux/net/ipv4/tcp_input.c (revision e23feb16)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #define pr_fmt(fmt) "TCP: " fmt
65 
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
77 
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88 
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 100;
91 
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
96 
97 int sysctl_tcp_thin_dupack __read_mostly;
98 
99 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
100 int sysctl_tcp_early_retrans __read_mostly = 3;
101 
102 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
103 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
104 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
105 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
106 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
107 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
108 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
109 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
111 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
114 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
115 
116 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
120 
121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
123 
124 /* Adapt the MSS value used to make delayed ack decision to the
125  * real world.
126  */
127 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
128 {
129 	struct inet_connection_sock *icsk = inet_csk(sk);
130 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
131 	unsigned int len;
132 
133 	icsk->icsk_ack.last_seg_size = 0;
134 
135 	/* skb->len may jitter because of SACKs, even if peer
136 	 * sends good full-sized frames.
137 	 */
138 	len = skb_shinfo(skb)->gso_size ? : skb->len;
139 	if (len >= icsk->icsk_ack.rcv_mss) {
140 		icsk->icsk_ack.rcv_mss = len;
141 	} else {
142 		/* Otherwise, we make more careful check taking into account,
143 		 * that SACKs block is variable.
144 		 *
145 		 * "len" is invariant segment length, including TCP header.
146 		 */
147 		len += skb->data - skb_transport_header(skb);
148 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
149 		    /* If PSH is not set, packet should be
150 		     * full sized, provided peer TCP is not badly broken.
151 		     * This observation (if it is correct 8)) allows
152 		     * to handle super-low mtu links fairly.
153 		     */
154 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
155 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
156 			/* Subtract also invariant (if peer is RFC compliant),
157 			 * tcp header plus fixed timestamp option length.
158 			 * Resulting "len" is MSS free of SACK jitter.
159 			 */
160 			len -= tcp_sk(sk)->tcp_header_len;
161 			icsk->icsk_ack.last_seg_size = len;
162 			if (len == lss) {
163 				icsk->icsk_ack.rcv_mss = len;
164 				return;
165 			}
166 		}
167 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
168 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
169 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
170 	}
171 }
172 
173 static void tcp_incr_quickack(struct sock *sk)
174 {
175 	struct inet_connection_sock *icsk = inet_csk(sk);
176 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
177 
178 	if (quickacks == 0)
179 		quickacks = 2;
180 	if (quickacks > icsk->icsk_ack.quick)
181 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
182 }
183 
184 static void tcp_enter_quickack_mode(struct sock *sk)
185 {
186 	struct inet_connection_sock *icsk = inet_csk(sk);
187 	tcp_incr_quickack(sk);
188 	icsk->icsk_ack.pingpong = 0;
189 	icsk->icsk_ack.ato = TCP_ATO_MIN;
190 }
191 
192 /* Send ACKs quickly, if "quick" count is not exhausted
193  * and the session is not interactive.
194  */
195 
196 static inline bool tcp_in_quickack_mode(const struct sock *sk)
197 {
198 	const struct inet_connection_sock *icsk = inet_csk(sk);
199 
200 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
201 }
202 
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204 {
205 	if (tp->ecn_flags & TCP_ECN_OK)
206 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207 }
208 
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
210 {
211 	if (tcp_hdr(skb)->cwr)
212 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 }
214 
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216 {
217 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218 }
219 
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
221 {
222 	if (!(tp->ecn_flags & TCP_ECN_OK))
223 		return;
224 
225 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
226 	case INET_ECN_NOT_ECT:
227 		/* Funny extension: if ECT is not set on a segment,
228 		 * and we already seen ECT on a previous segment,
229 		 * it is probably a retransmit.
230 		 */
231 		if (tp->ecn_flags & TCP_ECN_SEEN)
232 			tcp_enter_quickack_mode((struct sock *)tp);
233 		break;
234 	case INET_ECN_CE:
235 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
236 			/* Better not delay acks, sender can have a very low cwnd */
237 			tcp_enter_quickack_mode((struct sock *)tp);
238 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
239 		}
240 		/* fallinto */
241 	default:
242 		tp->ecn_flags |= TCP_ECN_SEEN;
243 	}
244 }
245 
246 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
247 {
248 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
249 		tp->ecn_flags &= ~TCP_ECN_OK;
250 }
251 
252 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
253 {
254 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
255 		tp->ecn_flags &= ~TCP_ECN_OK;
256 }
257 
258 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
259 {
260 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
261 		return true;
262 	return false;
263 }
264 
265 /* Buffer size and advertised window tuning.
266  *
267  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
268  */
269 
270 static void tcp_fixup_sndbuf(struct sock *sk)
271 {
272 	int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
273 
274 	sndmem *= TCP_INIT_CWND;
275 	if (sk->sk_sndbuf < sndmem)
276 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
277 }
278 
279 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
280  *
281  * All tcp_full_space() is split to two parts: "network" buffer, allocated
282  * forward and advertised in receiver window (tp->rcv_wnd) and
283  * "application buffer", required to isolate scheduling/application
284  * latencies from network.
285  * window_clamp is maximal advertised window. It can be less than
286  * tcp_full_space(), in this case tcp_full_space() - window_clamp
287  * is reserved for "application" buffer. The less window_clamp is
288  * the smoother our behaviour from viewpoint of network, but the lower
289  * throughput and the higher sensitivity of the connection to losses. 8)
290  *
291  * rcv_ssthresh is more strict window_clamp used at "slow start"
292  * phase to predict further behaviour of this connection.
293  * It is used for two goals:
294  * - to enforce header prediction at sender, even when application
295  *   requires some significant "application buffer". It is check #1.
296  * - to prevent pruning of receive queue because of misprediction
297  *   of receiver window. Check #2.
298  *
299  * The scheme does not work when sender sends good segments opening
300  * window and then starts to feed us spaghetti. But it should work
301  * in common situations. Otherwise, we have to rely on queue collapsing.
302  */
303 
304 /* Slow part of check#2. */
305 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
306 {
307 	struct tcp_sock *tp = tcp_sk(sk);
308 	/* Optimize this! */
309 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
310 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
311 
312 	while (tp->rcv_ssthresh <= window) {
313 		if (truesize <= skb->len)
314 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
315 
316 		truesize >>= 1;
317 		window >>= 1;
318 	}
319 	return 0;
320 }
321 
322 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
323 {
324 	struct tcp_sock *tp = tcp_sk(sk);
325 
326 	/* Check #1 */
327 	if (tp->rcv_ssthresh < tp->window_clamp &&
328 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
329 	    !sk_under_memory_pressure(sk)) {
330 		int incr;
331 
332 		/* Check #2. Increase window, if skb with such overhead
333 		 * will fit to rcvbuf in future.
334 		 */
335 		if (tcp_win_from_space(skb->truesize) <= skb->len)
336 			incr = 2 * tp->advmss;
337 		else
338 			incr = __tcp_grow_window(sk, skb);
339 
340 		if (incr) {
341 			incr = max_t(int, incr, 2 * skb->len);
342 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
343 					       tp->window_clamp);
344 			inet_csk(sk)->icsk_ack.quick |= 1;
345 		}
346 	}
347 }
348 
349 /* 3. Tuning rcvbuf, when connection enters established state. */
350 static void tcp_fixup_rcvbuf(struct sock *sk)
351 {
352 	u32 mss = tcp_sk(sk)->advmss;
353 	int rcvmem;
354 
355 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
356 		 tcp_default_init_rwnd(mss);
357 
358 	if (sk->sk_rcvbuf < rcvmem)
359 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
360 }
361 
362 /* 4. Try to fixup all. It is made immediately after connection enters
363  *    established state.
364  */
365 void tcp_init_buffer_space(struct sock *sk)
366 {
367 	struct tcp_sock *tp = tcp_sk(sk);
368 	int maxwin;
369 
370 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
371 		tcp_fixup_rcvbuf(sk);
372 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
373 		tcp_fixup_sndbuf(sk);
374 
375 	tp->rcvq_space.space = tp->rcv_wnd;
376 
377 	maxwin = tcp_full_space(sk);
378 
379 	if (tp->window_clamp >= maxwin) {
380 		tp->window_clamp = maxwin;
381 
382 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
383 			tp->window_clamp = max(maxwin -
384 					       (maxwin >> sysctl_tcp_app_win),
385 					       4 * tp->advmss);
386 	}
387 
388 	/* Force reservation of one segment. */
389 	if (sysctl_tcp_app_win &&
390 	    tp->window_clamp > 2 * tp->advmss &&
391 	    tp->window_clamp + tp->advmss > maxwin)
392 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
393 
394 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
395 	tp->snd_cwnd_stamp = tcp_time_stamp;
396 }
397 
398 /* 5. Recalculate window clamp after socket hit its memory bounds. */
399 static void tcp_clamp_window(struct sock *sk)
400 {
401 	struct tcp_sock *tp = tcp_sk(sk);
402 	struct inet_connection_sock *icsk = inet_csk(sk);
403 
404 	icsk->icsk_ack.quick = 0;
405 
406 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
407 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
408 	    !sk_under_memory_pressure(sk) &&
409 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
410 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
411 				    sysctl_tcp_rmem[2]);
412 	}
413 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
414 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
415 }
416 
417 /* Initialize RCV_MSS value.
418  * RCV_MSS is an our guess about MSS used by the peer.
419  * We haven't any direct information about the MSS.
420  * It's better to underestimate the RCV_MSS rather than overestimate.
421  * Overestimations make us ACKing less frequently than needed.
422  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
423  */
424 void tcp_initialize_rcv_mss(struct sock *sk)
425 {
426 	const struct tcp_sock *tp = tcp_sk(sk);
427 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
428 
429 	hint = min(hint, tp->rcv_wnd / 2);
430 	hint = min(hint, TCP_MSS_DEFAULT);
431 	hint = max(hint, TCP_MIN_MSS);
432 
433 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
434 }
435 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
436 
437 /* Receiver "autotuning" code.
438  *
439  * The algorithm for RTT estimation w/o timestamps is based on
440  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
441  * <http://public.lanl.gov/radiant/pubs.html#DRS>
442  *
443  * More detail on this code can be found at
444  * <http://staff.psc.edu/jheffner/>,
445  * though this reference is out of date.  A new paper
446  * is pending.
447  */
448 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
449 {
450 	u32 new_sample = tp->rcv_rtt_est.rtt;
451 	long m = sample;
452 
453 	if (m == 0)
454 		m = 1;
455 
456 	if (new_sample != 0) {
457 		/* If we sample in larger samples in the non-timestamp
458 		 * case, we could grossly overestimate the RTT especially
459 		 * with chatty applications or bulk transfer apps which
460 		 * are stalled on filesystem I/O.
461 		 *
462 		 * Also, since we are only going for a minimum in the
463 		 * non-timestamp case, we do not smooth things out
464 		 * else with timestamps disabled convergence takes too
465 		 * long.
466 		 */
467 		if (!win_dep) {
468 			m -= (new_sample >> 3);
469 			new_sample += m;
470 		} else {
471 			m <<= 3;
472 			if (m < new_sample)
473 				new_sample = m;
474 		}
475 	} else {
476 		/* No previous measure. */
477 		new_sample = m << 3;
478 	}
479 
480 	if (tp->rcv_rtt_est.rtt != new_sample)
481 		tp->rcv_rtt_est.rtt = new_sample;
482 }
483 
484 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
485 {
486 	if (tp->rcv_rtt_est.time == 0)
487 		goto new_measure;
488 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
489 		return;
490 	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
491 
492 new_measure:
493 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
494 	tp->rcv_rtt_est.time = tcp_time_stamp;
495 }
496 
497 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
498 					  const struct sk_buff *skb)
499 {
500 	struct tcp_sock *tp = tcp_sk(sk);
501 	if (tp->rx_opt.rcv_tsecr &&
502 	    (TCP_SKB_CB(skb)->end_seq -
503 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
504 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
505 }
506 
507 /*
508  * This function should be called every time data is copied to user space.
509  * It calculates the appropriate TCP receive buffer space.
510  */
511 void tcp_rcv_space_adjust(struct sock *sk)
512 {
513 	struct tcp_sock *tp = tcp_sk(sk);
514 	int time;
515 	int space;
516 
517 	if (tp->rcvq_space.time == 0)
518 		goto new_measure;
519 
520 	time = tcp_time_stamp - tp->rcvq_space.time;
521 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
522 		return;
523 
524 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
525 
526 	space = max(tp->rcvq_space.space, space);
527 
528 	if (tp->rcvq_space.space != space) {
529 		int rcvmem;
530 
531 		tp->rcvq_space.space = space;
532 
533 		if (sysctl_tcp_moderate_rcvbuf &&
534 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
535 			int new_clamp = space;
536 
537 			/* Receive space grows, normalize in order to
538 			 * take into account packet headers and sk_buff
539 			 * structure overhead.
540 			 */
541 			space /= tp->advmss;
542 			if (!space)
543 				space = 1;
544 			rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
545 			while (tcp_win_from_space(rcvmem) < tp->advmss)
546 				rcvmem += 128;
547 			space *= rcvmem;
548 			space = min(space, sysctl_tcp_rmem[2]);
549 			if (space > sk->sk_rcvbuf) {
550 				sk->sk_rcvbuf = space;
551 
552 				/* Make the window clamp follow along.  */
553 				tp->window_clamp = new_clamp;
554 			}
555 		}
556 	}
557 
558 new_measure:
559 	tp->rcvq_space.seq = tp->copied_seq;
560 	tp->rcvq_space.time = tcp_time_stamp;
561 }
562 
563 /* There is something which you must keep in mind when you analyze the
564  * behavior of the tp->ato delayed ack timeout interval.  When a
565  * connection starts up, we want to ack as quickly as possible.  The
566  * problem is that "good" TCP's do slow start at the beginning of data
567  * transmission.  The means that until we send the first few ACK's the
568  * sender will sit on his end and only queue most of his data, because
569  * he can only send snd_cwnd unacked packets at any given time.  For
570  * each ACK we send, he increments snd_cwnd and transmits more of his
571  * queue.  -DaveM
572  */
573 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
574 {
575 	struct tcp_sock *tp = tcp_sk(sk);
576 	struct inet_connection_sock *icsk = inet_csk(sk);
577 	u32 now;
578 
579 	inet_csk_schedule_ack(sk);
580 
581 	tcp_measure_rcv_mss(sk, skb);
582 
583 	tcp_rcv_rtt_measure(tp);
584 
585 	now = tcp_time_stamp;
586 
587 	if (!icsk->icsk_ack.ato) {
588 		/* The _first_ data packet received, initialize
589 		 * delayed ACK engine.
590 		 */
591 		tcp_incr_quickack(sk);
592 		icsk->icsk_ack.ato = TCP_ATO_MIN;
593 	} else {
594 		int m = now - icsk->icsk_ack.lrcvtime;
595 
596 		if (m <= TCP_ATO_MIN / 2) {
597 			/* The fastest case is the first. */
598 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
599 		} else if (m < icsk->icsk_ack.ato) {
600 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
601 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
602 				icsk->icsk_ack.ato = icsk->icsk_rto;
603 		} else if (m > icsk->icsk_rto) {
604 			/* Too long gap. Apparently sender failed to
605 			 * restart window, so that we send ACKs quickly.
606 			 */
607 			tcp_incr_quickack(sk);
608 			sk_mem_reclaim(sk);
609 		}
610 	}
611 	icsk->icsk_ack.lrcvtime = now;
612 
613 	TCP_ECN_check_ce(tp, skb);
614 
615 	if (skb->len >= 128)
616 		tcp_grow_window(sk, skb);
617 }
618 
619 /* Called to compute a smoothed rtt estimate. The data fed to this
620  * routine either comes from timestamps, or from segments that were
621  * known _not_ to have been retransmitted [see Karn/Partridge
622  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
623  * piece by Van Jacobson.
624  * NOTE: the next three routines used to be one big routine.
625  * To save cycles in the RFC 1323 implementation it was better to break
626  * it up into three procedures. -- erics
627  */
628 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
629 {
630 	struct tcp_sock *tp = tcp_sk(sk);
631 	long m = mrtt; /* RTT */
632 
633 	/*	The following amusing code comes from Jacobson's
634 	 *	article in SIGCOMM '88.  Note that rtt and mdev
635 	 *	are scaled versions of rtt and mean deviation.
636 	 *	This is designed to be as fast as possible
637 	 *	m stands for "measurement".
638 	 *
639 	 *	On a 1990 paper the rto value is changed to:
640 	 *	RTO = rtt + 4 * mdev
641 	 *
642 	 * Funny. This algorithm seems to be very broken.
643 	 * These formulae increase RTO, when it should be decreased, increase
644 	 * too slowly, when it should be increased quickly, decrease too quickly
645 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
646 	 * does not matter how to _calculate_ it. Seems, it was trap
647 	 * that VJ failed to avoid. 8)
648 	 */
649 	if (m == 0)
650 		m = 1;
651 	if (tp->srtt != 0) {
652 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
653 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
654 		if (m < 0) {
655 			m = -m;		/* m is now abs(error) */
656 			m -= (tp->mdev >> 2);   /* similar update on mdev */
657 			/* This is similar to one of Eifel findings.
658 			 * Eifel blocks mdev updates when rtt decreases.
659 			 * This solution is a bit different: we use finer gain
660 			 * for mdev in this case (alpha*beta).
661 			 * Like Eifel it also prevents growth of rto,
662 			 * but also it limits too fast rto decreases,
663 			 * happening in pure Eifel.
664 			 */
665 			if (m > 0)
666 				m >>= 3;
667 		} else {
668 			m -= (tp->mdev >> 2);   /* similar update on mdev */
669 		}
670 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
671 		if (tp->mdev > tp->mdev_max) {
672 			tp->mdev_max = tp->mdev;
673 			if (tp->mdev_max > tp->rttvar)
674 				tp->rttvar = tp->mdev_max;
675 		}
676 		if (after(tp->snd_una, tp->rtt_seq)) {
677 			if (tp->mdev_max < tp->rttvar)
678 				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
679 			tp->rtt_seq = tp->snd_nxt;
680 			tp->mdev_max = tcp_rto_min(sk);
681 		}
682 	} else {
683 		/* no previous measure. */
684 		tp->srtt = m << 3;	/* take the measured time to be rtt */
685 		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
686 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
687 		tp->rtt_seq = tp->snd_nxt;
688 	}
689 }
690 
691 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
692  * Note: TCP stack does not yet implement pacing.
693  * FQ packet scheduler can be used to implement cheap but effective
694  * TCP pacing, to smooth the burst on large writes when packets
695  * in flight is significantly lower than cwnd (or rwin)
696  */
697 static void tcp_update_pacing_rate(struct sock *sk)
698 {
699 	const struct tcp_sock *tp = tcp_sk(sk);
700 	u64 rate;
701 
702 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
703 	rate = (u64)tp->mss_cache * 2 * (HZ << 3);
704 
705 	rate *= max(tp->snd_cwnd, tp->packets_out);
706 
707 	/* Correction for small srtt : minimum srtt being 8 (1 jiffy << 3),
708 	 * be conservative and assume srtt = 1 (125 us instead of 1.25 ms)
709 	 * We probably need usec resolution in the future.
710 	 * Note: This also takes care of possible srtt=0 case,
711 	 * when tcp_rtt_estimator() was not yet called.
712 	 */
713 	if (tp->srtt > 8 + 2)
714 		do_div(rate, tp->srtt);
715 
716 	sk->sk_pacing_rate = min_t(u64, rate, ~0U);
717 }
718 
719 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
720  * routine referred to above.
721  */
722 void tcp_set_rto(struct sock *sk)
723 {
724 	const struct tcp_sock *tp = tcp_sk(sk);
725 	/* Old crap is replaced with new one. 8)
726 	 *
727 	 * More seriously:
728 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
729 	 *    It cannot be less due to utterly erratic ACK generation made
730 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
731 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
732 	 *    is invisible. Actually, Linux-2.4 also generates erratic
733 	 *    ACKs in some circumstances.
734 	 */
735 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
736 
737 	/* 2. Fixups made earlier cannot be right.
738 	 *    If we do not estimate RTO correctly without them,
739 	 *    all the algo is pure shit and should be replaced
740 	 *    with correct one. It is exactly, which we pretend to do.
741 	 */
742 
743 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
744 	 * guarantees that rto is higher.
745 	 */
746 	tcp_bound_rto(sk);
747 }
748 
749 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
750 {
751 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
752 
753 	if (!cwnd)
754 		cwnd = TCP_INIT_CWND;
755 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
756 }
757 
758 /*
759  * Packet counting of FACK is based on in-order assumptions, therefore TCP
760  * disables it when reordering is detected
761  */
762 void tcp_disable_fack(struct tcp_sock *tp)
763 {
764 	/* RFC3517 uses different metric in lost marker => reset on change */
765 	if (tcp_is_fack(tp))
766 		tp->lost_skb_hint = NULL;
767 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
768 }
769 
770 /* Take a notice that peer is sending D-SACKs */
771 static void tcp_dsack_seen(struct tcp_sock *tp)
772 {
773 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
774 }
775 
776 static void tcp_update_reordering(struct sock *sk, const int metric,
777 				  const int ts)
778 {
779 	struct tcp_sock *tp = tcp_sk(sk);
780 	if (metric > tp->reordering) {
781 		int mib_idx;
782 
783 		tp->reordering = min(TCP_MAX_REORDERING, metric);
784 
785 		/* This exciting event is worth to be remembered. 8) */
786 		if (ts)
787 			mib_idx = LINUX_MIB_TCPTSREORDER;
788 		else if (tcp_is_reno(tp))
789 			mib_idx = LINUX_MIB_TCPRENOREORDER;
790 		else if (tcp_is_fack(tp))
791 			mib_idx = LINUX_MIB_TCPFACKREORDER;
792 		else
793 			mib_idx = LINUX_MIB_TCPSACKREORDER;
794 
795 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
796 #if FASTRETRANS_DEBUG > 1
797 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
798 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
799 			 tp->reordering,
800 			 tp->fackets_out,
801 			 tp->sacked_out,
802 			 tp->undo_marker ? tp->undo_retrans : 0);
803 #endif
804 		tcp_disable_fack(tp);
805 	}
806 
807 	if (metric > 0)
808 		tcp_disable_early_retrans(tp);
809 }
810 
811 /* This must be called before lost_out is incremented */
812 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
813 {
814 	if ((tp->retransmit_skb_hint == NULL) ||
815 	    before(TCP_SKB_CB(skb)->seq,
816 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
817 		tp->retransmit_skb_hint = skb;
818 
819 	if (!tp->lost_out ||
820 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
821 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
822 }
823 
824 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
825 {
826 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
827 		tcp_verify_retransmit_hint(tp, skb);
828 
829 		tp->lost_out += tcp_skb_pcount(skb);
830 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
831 	}
832 }
833 
834 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
835 					    struct sk_buff *skb)
836 {
837 	tcp_verify_retransmit_hint(tp, skb);
838 
839 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
840 		tp->lost_out += tcp_skb_pcount(skb);
841 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
842 	}
843 }
844 
845 /* This procedure tags the retransmission queue when SACKs arrive.
846  *
847  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
848  * Packets in queue with these bits set are counted in variables
849  * sacked_out, retrans_out and lost_out, correspondingly.
850  *
851  * Valid combinations are:
852  * Tag  InFlight	Description
853  * 0	1		- orig segment is in flight.
854  * S	0		- nothing flies, orig reached receiver.
855  * L	0		- nothing flies, orig lost by net.
856  * R	2		- both orig and retransmit are in flight.
857  * L|R	1		- orig is lost, retransmit is in flight.
858  * S|R  1		- orig reached receiver, retrans is still in flight.
859  * (L|S|R is logically valid, it could occur when L|R is sacked,
860  *  but it is equivalent to plain S and code short-curcuits it to S.
861  *  L|S is logically invalid, it would mean -1 packet in flight 8))
862  *
863  * These 6 states form finite state machine, controlled by the following events:
864  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
865  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
866  * 3. Loss detection event of two flavors:
867  *	A. Scoreboard estimator decided the packet is lost.
868  *	   A'. Reno "three dupacks" marks head of queue lost.
869  *	   A''. Its FACK modification, head until snd.fack is lost.
870  *	B. SACK arrives sacking SND.NXT at the moment, when the
871  *	   segment was retransmitted.
872  * 4. D-SACK added new rule: D-SACK changes any tag to S.
873  *
874  * It is pleasant to note, that state diagram turns out to be commutative,
875  * so that we are allowed not to be bothered by order of our actions,
876  * when multiple events arrive simultaneously. (see the function below).
877  *
878  * Reordering detection.
879  * --------------------
880  * Reordering metric is maximal distance, which a packet can be displaced
881  * in packet stream. With SACKs we can estimate it:
882  *
883  * 1. SACK fills old hole and the corresponding segment was not
884  *    ever retransmitted -> reordering. Alas, we cannot use it
885  *    when segment was retransmitted.
886  * 2. The last flaw is solved with D-SACK. D-SACK arrives
887  *    for retransmitted and already SACKed segment -> reordering..
888  * Both of these heuristics are not used in Loss state, when we cannot
889  * account for retransmits accurately.
890  *
891  * SACK block validation.
892  * ----------------------
893  *
894  * SACK block range validation checks that the received SACK block fits to
895  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
896  * Note that SND.UNA is not included to the range though being valid because
897  * it means that the receiver is rather inconsistent with itself reporting
898  * SACK reneging when it should advance SND.UNA. Such SACK block this is
899  * perfectly valid, however, in light of RFC2018 which explicitly states
900  * that "SACK block MUST reflect the newest segment.  Even if the newest
901  * segment is going to be discarded ...", not that it looks very clever
902  * in case of head skb. Due to potentional receiver driven attacks, we
903  * choose to avoid immediate execution of a walk in write queue due to
904  * reneging and defer head skb's loss recovery to standard loss recovery
905  * procedure that will eventually trigger (nothing forbids us doing this).
906  *
907  * Implements also blockage to start_seq wrap-around. Problem lies in the
908  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
909  * there's no guarantee that it will be before snd_nxt (n). The problem
910  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
911  * wrap (s_w):
912  *
913  *         <- outs wnd ->                          <- wrapzone ->
914  *         u     e      n                         u_w   e_w  s n_w
915  *         |     |      |                          |     |   |  |
916  * |<------------+------+----- TCP seqno space --------------+---------->|
917  * ...-- <2^31 ->|                                           |<--------...
918  * ...---- >2^31 ------>|                                    |<--------...
919  *
920  * Current code wouldn't be vulnerable but it's better still to discard such
921  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
922  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
923  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
924  * equal to the ideal case (infinite seqno space without wrap caused issues).
925  *
926  * With D-SACK the lower bound is extended to cover sequence space below
927  * SND.UNA down to undo_marker, which is the last point of interest. Yet
928  * again, D-SACK block must not to go across snd_una (for the same reason as
929  * for the normal SACK blocks, explained above). But there all simplicity
930  * ends, TCP might receive valid D-SACKs below that. As long as they reside
931  * fully below undo_marker they do not affect behavior in anyway and can
932  * therefore be safely ignored. In rare cases (which are more or less
933  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
934  * fragmentation and packet reordering past skb's retransmission. To consider
935  * them correctly, the acceptable range must be extended even more though
936  * the exact amount is rather hard to quantify. However, tp->max_window can
937  * be used as an exaggerated estimate.
938  */
939 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
940 				   u32 start_seq, u32 end_seq)
941 {
942 	/* Too far in future, or reversed (interpretation is ambiguous) */
943 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
944 		return false;
945 
946 	/* Nasty start_seq wrap-around check (see comments above) */
947 	if (!before(start_seq, tp->snd_nxt))
948 		return false;
949 
950 	/* In outstanding window? ...This is valid exit for D-SACKs too.
951 	 * start_seq == snd_una is non-sensical (see comments above)
952 	 */
953 	if (after(start_seq, tp->snd_una))
954 		return true;
955 
956 	if (!is_dsack || !tp->undo_marker)
957 		return false;
958 
959 	/* ...Then it's D-SACK, and must reside below snd_una completely */
960 	if (after(end_seq, tp->snd_una))
961 		return false;
962 
963 	if (!before(start_seq, tp->undo_marker))
964 		return true;
965 
966 	/* Too old */
967 	if (!after(end_seq, tp->undo_marker))
968 		return false;
969 
970 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
971 	 *   start_seq < undo_marker and end_seq >= undo_marker.
972 	 */
973 	return !before(start_seq, end_seq - tp->max_window);
974 }
975 
976 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
977  * Event "B". Later note: FACK people cheated me again 8), we have to account
978  * for reordering! Ugly, but should help.
979  *
980  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
981  * less than what is now known to be received by the other end (derived from
982  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
983  * retransmitted skbs to avoid some costly processing per ACKs.
984  */
985 static void tcp_mark_lost_retrans(struct sock *sk)
986 {
987 	const struct inet_connection_sock *icsk = inet_csk(sk);
988 	struct tcp_sock *tp = tcp_sk(sk);
989 	struct sk_buff *skb;
990 	int cnt = 0;
991 	u32 new_low_seq = tp->snd_nxt;
992 	u32 received_upto = tcp_highest_sack_seq(tp);
993 
994 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
995 	    !after(received_upto, tp->lost_retrans_low) ||
996 	    icsk->icsk_ca_state != TCP_CA_Recovery)
997 		return;
998 
999 	tcp_for_write_queue(skb, sk) {
1000 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1001 
1002 		if (skb == tcp_send_head(sk))
1003 			break;
1004 		if (cnt == tp->retrans_out)
1005 			break;
1006 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1007 			continue;
1008 
1009 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1010 			continue;
1011 
1012 		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1013 		 * constraint here (see above) but figuring out that at
1014 		 * least tp->reordering SACK blocks reside between ack_seq
1015 		 * and received_upto is not easy task to do cheaply with
1016 		 * the available datastructures.
1017 		 *
1018 		 * Whether FACK should check here for tp->reordering segs
1019 		 * in-between one could argue for either way (it would be
1020 		 * rather simple to implement as we could count fack_count
1021 		 * during the walk and do tp->fackets_out - fack_count).
1022 		 */
1023 		if (after(received_upto, ack_seq)) {
1024 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1025 			tp->retrans_out -= tcp_skb_pcount(skb);
1026 
1027 			tcp_skb_mark_lost_uncond_verify(tp, skb);
1028 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1029 		} else {
1030 			if (before(ack_seq, new_low_seq))
1031 				new_low_seq = ack_seq;
1032 			cnt += tcp_skb_pcount(skb);
1033 		}
1034 	}
1035 
1036 	if (tp->retrans_out)
1037 		tp->lost_retrans_low = new_low_seq;
1038 }
1039 
1040 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1041 			    struct tcp_sack_block_wire *sp, int num_sacks,
1042 			    u32 prior_snd_una)
1043 {
1044 	struct tcp_sock *tp = tcp_sk(sk);
1045 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1046 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1047 	bool dup_sack = false;
1048 
1049 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1050 		dup_sack = true;
1051 		tcp_dsack_seen(tp);
1052 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1053 	} else if (num_sacks > 1) {
1054 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1055 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1056 
1057 		if (!after(end_seq_0, end_seq_1) &&
1058 		    !before(start_seq_0, start_seq_1)) {
1059 			dup_sack = true;
1060 			tcp_dsack_seen(tp);
1061 			NET_INC_STATS_BH(sock_net(sk),
1062 					LINUX_MIB_TCPDSACKOFORECV);
1063 		}
1064 	}
1065 
1066 	/* D-SACK for already forgotten data... Do dumb counting. */
1067 	if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1068 	    !after(end_seq_0, prior_snd_una) &&
1069 	    after(end_seq_0, tp->undo_marker))
1070 		tp->undo_retrans--;
1071 
1072 	return dup_sack;
1073 }
1074 
1075 struct tcp_sacktag_state {
1076 	int reord;
1077 	int fack_count;
1078 	int flag;
1079 	s32 rtt; /* RTT measured by SACKing never-retransmitted data */
1080 };
1081 
1082 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1083  * the incoming SACK may not exactly match but we can find smaller MSS
1084  * aligned portion of it that matches. Therefore we might need to fragment
1085  * which may fail and creates some hassle (caller must handle error case
1086  * returns).
1087  *
1088  * FIXME: this could be merged to shift decision code
1089  */
1090 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1091 				  u32 start_seq, u32 end_seq)
1092 {
1093 	int err;
1094 	bool in_sack;
1095 	unsigned int pkt_len;
1096 	unsigned int mss;
1097 
1098 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1099 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1100 
1101 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1102 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1103 		mss = tcp_skb_mss(skb);
1104 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1105 
1106 		if (!in_sack) {
1107 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1108 			if (pkt_len < mss)
1109 				pkt_len = mss;
1110 		} else {
1111 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1112 			if (pkt_len < mss)
1113 				return -EINVAL;
1114 		}
1115 
1116 		/* Round if necessary so that SACKs cover only full MSSes
1117 		 * and/or the remaining small portion (if present)
1118 		 */
1119 		if (pkt_len > mss) {
1120 			unsigned int new_len = (pkt_len / mss) * mss;
1121 			if (!in_sack && new_len < pkt_len) {
1122 				new_len += mss;
1123 				if (new_len > skb->len)
1124 					return 0;
1125 			}
1126 			pkt_len = new_len;
1127 		}
1128 		err = tcp_fragment(sk, skb, pkt_len, mss);
1129 		if (err < 0)
1130 			return err;
1131 	}
1132 
1133 	return in_sack;
1134 }
1135 
1136 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1137 static u8 tcp_sacktag_one(struct sock *sk,
1138 			  struct tcp_sacktag_state *state, u8 sacked,
1139 			  u32 start_seq, u32 end_seq,
1140 			  int dup_sack, int pcount, u32 xmit_time)
1141 {
1142 	struct tcp_sock *tp = tcp_sk(sk);
1143 	int fack_count = state->fack_count;
1144 
1145 	/* Account D-SACK for retransmitted packet. */
1146 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1147 		if (tp->undo_marker && tp->undo_retrans &&
1148 		    after(end_seq, tp->undo_marker))
1149 			tp->undo_retrans--;
1150 		if (sacked & TCPCB_SACKED_ACKED)
1151 			state->reord = min(fack_count, state->reord);
1152 	}
1153 
1154 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1155 	if (!after(end_seq, tp->snd_una))
1156 		return sacked;
1157 
1158 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1159 		if (sacked & TCPCB_SACKED_RETRANS) {
1160 			/* If the segment is not tagged as lost,
1161 			 * we do not clear RETRANS, believing
1162 			 * that retransmission is still in flight.
1163 			 */
1164 			if (sacked & TCPCB_LOST) {
1165 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1166 				tp->lost_out -= pcount;
1167 				tp->retrans_out -= pcount;
1168 			}
1169 		} else {
1170 			if (!(sacked & TCPCB_RETRANS)) {
1171 				/* New sack for not retransmitted frame,
1172 				 * which was in hole. It is reordering.
1173 				 */
1174 				if (before(start_seq,
1175 					   tcp_highest_sack_seq(tp)))
1176 					state->reord = min(fack_count,
1177 							   state->reord);
1178 				if (!after(end_seq, tp->high_seq))
1179 					state->flag |= FLAG_ORIG_SACK_ACKED;
1180 				/* Pick the earliest sequence sacked for RTT */
1181 				if (state->rtt < 0)
1182 					state->rtt = tcp_time_stamp - xmit_time;
1183 			}
1184 
1185 			if (sacked & TCPCB_LOST) {
1186 				sacked &= ~TCPCB_LOST;
1187 				tp->lost_out -= pcount;
1188 			}
1189 		}
1190 
1191 		sacked |= TCPCB_SACKED_ACKED;
1192 		state->flag |= FLAG_DATA_SACKED;
1193 		tp->sacked_out += pcount;
1194 
1195 		fack_count += pcount;
1196 
1197 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1198 		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1199 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1200 			tp->lost_cnt_hint += pcount;
1201 
1202 		if (fack_count > tp->fackets_out)
1203 			tp->fackets_out = fack_count;
1204 	}
1205 
1206 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1207 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1208 	 * are accounted above as well.
1209 	 */
1210 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1211 		sacked &= ~TCPCB_SACKED_RETRANS;
1212 		tp->retrans_out -= pcount;
1213 	}
1214 
1215 	return sacked;
1216 }
1217 
1218 /* Shift newly-SACKed bytes from this skb to the immediately previous
1219  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1220  */
1221 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1222 			    struct tcp_sacktag_state *state,
1223 			    unsigned int pcount, int shifted, int mss,
1224 			    bool dup_sack)
1225 {
1226 	struct tcp_sock *tp = tcp_sk(sk);
1227 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1228 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1229 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1230 
1231 	BUG_ON(!pcount);
1232 
1233 	/* Adjust counters and hints for the newly sacked sequence
1234 	 * range but discard the return value since prev is already
1235 	 * marked. We must tag the range first because the seq
1236 	 * advancement below implicitly advances
1237 	 * tcp_highest_sack_seq() when skb is highest_sack.
1238 	 */
1239 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1240 			start_seq, end_seq, dup_sack, pcount,
1241 			TCP_SKB_CB(skb)->when);
1242 
1243 	if (skb == tp->lost_skb_hint)
1244 		tp->lost_cnt_hint += pcount;
1245 
1246 	TCP_SKB_CB(prev)->end_seq += shifted;
1247 	TCP_SKB_CB(skb)->seq += shifted;
1248 
1249 	skb_shinfo(prev)->gso_segs += pcount;
1250 	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1251 	skb_shinfo(skb)->gso_segs -= pcount;
1252 
1253 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1254 	 * in theory this shouldn't be necessary but as long as DSACK
1255 	 * code can come after this skb later on it's better to keep
1256 	 * setting gso_size to something.
1257 	 */
1258 	if (!skb_shinfo(prev)->gso_size) {
1259 		skb_shinfo(prev)->gso_size = mss;
1260 		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1261 	}
1262 
1263 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1264 	if (skb_shinfo(skb)->gso_segs <= 1) {
1265 		skb_shinfo(skb)->gso_size = 0;
1266 		skb_shinfo(skb)->gso_type = 0;
1267 	}
1268 
1269 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1270 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1271 
1272 	if (skb->len > 0) {
1273 		BUG_ON(!tcp_skb_pcount(skb));
1274 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1275 		return false;
1276 	}
1277 
1278 	/* Whole SKB was eaten :-) */
1279 
1280 	if (skb == tp->retransmit_skb_hint)
1281 		tp->retransmit_skb_hint = prev;
1282 	if (skb == tp->lost_skb_hint) {
1283 		tp->lost_skb_hint = prev;
1284 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1285 	}
1286 
1287 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1288 	if (skb == tcp_highest_sack(sk))
1289 		tcp_advance_highest_sack(sk, skb);
1290 
1291 	tcp_unlink_write_queue(skb, sk);
1292 	sk_wmem_free_skb(sk, skb);
1293 
1294 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1295 
1296 	return true;
1297 }
1298 
1299 /* I wish gso_size would have a bit more sane initialization than
1300  * something-or-zero which complicates things
1301  */
1302 static int tcp_skb_seglen(const struct sk_buff *skb)
1303 {
1304 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1305 }
1306 
1307 /* Shifting pages past head area doesn't work */
1308 static int skb_can_shift(const struct sk_buff *skb)
1309 {
1310 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1311 }
1312 
1313 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1314  * skb.
1315  */
1316 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1317 					  struct tcp_sacktag_state *state,
1318 					  u32 start_seq, u32 end_seq,
1319 					  bool dup_sack)
1320 {
1321 	struct tcp_sock *tp = tcp_sk(sk);
1322 	struct sk_buff *prev;
1323 	int mss;
1324 	int pcount = 0;
1325 	int len;
1326 	int in_sack;
1327 
1328 	if (!sk_can_gso(sk))
1329 		goto fallback;
1330 
1331 	/* Normally R but no L won't result in plain S */
1332 	if (!dup_sack &&
1333 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1334 		goto fallback;
1335 	if (!skb_can_shift(skb))
1336 		goto fallback;
1337 	/* This frame is about to be dropped (was ACKed). */
1338 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1339 		goto fallback;
1340 
1341 	/* Can only happen with delayed DSACK + discard craziness */
1342 	if (unlikely(skb == tcp_write_queue_head(sk)))
1343 		goto fallback;
1344 	prev = tcp_write_queue_prev(sk, skb);
1345 
1346 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1347 		goto fallback;
1348 
1349 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1350 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1351 
1352 	if (in_sack) {
1353 		len = skb->len;
1354 		pcount = tcp_skb_pcount(skb);
1355 		mss = tcp_skb_seglen(skb);
1356 
1357 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1358 		 * drop this restriction as unnecessary
1359 		 */
1360 		if (mss != tcp_skb_seglen(prev))
1361 			goto fallback;
1362 	} else {
1363 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1364 			goto noop;
1365 		/* CHECKME: This is non-MSS split case only?, this will
1366 		 * cause skipped skbs due to advancing loop btw, original
1367 		 * has that feature too
1368 		 */
1369 		if (tcp_skb_pcount(skb) <= 1)
1370 			goto noop;
1371 
1372 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1373 		if (!in_sack) {
1374 			/* TODO: head merge to next could be attempted here
1375 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1376 			 * though it might not be worth of the additional hassle
1377 			 *
1378 			 * ...we can probably just fallback to what was done
1379 			 * previously. We could try merging non-SACKed ones
1380 			 * as well but it probably isn't going to buy off
1381 			 * because later SACKs might again split them, and
1382 			 * it would make skb timestamp tracking considerably
1383 			 * harder problem.
1384 			 */
1385 			goto fallback;
1386 		}
1387 
1388 		len = end_seq - TCP_SKB_CB(skb)->seq;
1389 		BUG_ON(len < 0);
1390 		BUG_ON(len > skb->len);
1391 
1392 		/* MSS boundaries should be honoured or else pcount will
1393 		 * severely break even though it makes things bit trickier.
1394 		 * Optimize common case to avoid most of the divides
1395 		 */
1396 		mss = tcp_skb_mss(skb);
1397 
1398 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1399 		 * drop this restriction as unnecessary
1400 		 */
1401 		if (mss != tcp_skb_seglen(prev))
1402 			goto fallback;
1403 
1404 		if (len == mss) {
1405 			pcount = 1;
1406 		} else if (len < mss) {
1407 			goto noop;
1408 		} else {
1409 			pcount = len / mss;
1410 			len = pcount * mss;
1411 		}
1412 	}
1413 
1414 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1415 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1416 		goto fallback;
1417 
1418 	if (!skb_shift(prev, skb, len))
1419 		goto fallback;
1420 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1421 		goto out;
1422 
1423 	/* Hole filled allows collapsing with the next as well, this is very
1424 	 * useful when hole on every nth skb pattern happens
1425 	 */
1426 	if (prev == tcp_write_queue_tail(sk))
1427 		goto out;
1428 	skb = tcp_write_queue_next(sk, prev);
1429 
1430 	if (!skb_can_shift(skb) ||
1431 	    (skb == tcp_send_head(sk)) ||
1432 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1433 	    (mss != tcp_skb_seglen(skb)))
1434 		goto out;
1435 
1436 	len = skb->len;
1437 	if (skb_shift(prev, skb, len)) {
1438 		pcount += tcp_skb_pcount(skb);
1439 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1440 	}
1441 
1442 out:
1443 	state->fack_count += pcount;
1444 	return prev;
1445 
1446 noop:
1447 	return skb;
1448 
1449 fallback:
1450 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1451 	return NULL;
1452 }
1453 
1454 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1455 					struct tcp_sack_block *next_dup,
1456 					struct tcp_sacktag_state *state,
1457 					u32 start_seq, u32 end_seq,
1458 					bool dup_sack_in)
1459 {
1460 	struct tcp_sock *tp = tcp_sk(sk);
1461 	struct sk_buff *tmp;
1462 
1463 	tcp_for_write_queue_from(skb, sk) {
1464 		int in_sack = 0;
1465 		bool dup_sack = dup_sack_in;
1466 
1467 		if (skb == tcp_send_head(sk))
1468 			break;
1469 
1470 		/* queue is in-order => we can short-circuit the walk early */
1471 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1472 			break;
1473 
1474 		if ((next_dup != NULL) &&
1475 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1476 			in_sack = tcp_match_skb_to_sack(sk, skb,
1477 							next_dup->start_seq,
1478 							next_dup->end_seq);
1479 			if (in_sack > 0)
1480 				dup_sack = true;
1481 		}
1482 
1483 		/* skb reference here is a bit tricky to get right, since
1484 		 * shifting can eat and free both this skb and the next,
1485 		 * so not even _safe variant of the loop is enough.
1486 		 */
1487 		if (in_sack <= 0) {
1488 			tmp = tcp_shift_skb_data(sk, skb, state,
1489 						 start_seq, end_seq, dup_sack);
1490 			if (tmp != NULL) {
1491 				if (tmp != skb) {
1492 					skb = tmp;
1493 					continue;
1494 				}
1495 
1496 				in_sack = 0;
1497 			} else {
1498 				in_sack = tcp_match_skb_to_sack(sk, skb,
1499 								start_seq,
1500 								end_seq);
1501 			}
1502 		}
1503 
1504 		if (unlikely(in_sack < 0))
1505 			break;
1506 
1507 		if (in_sack) {
1508 			TCP_SKB_CB(skb)->sacked =
1509 				tcp_sacktag_one(sk,
1510 						state,
1511 						TCP_SKB_CB(skb)->sacked,
1512 						TCP_SKB_CB(skb)->seq,
1513 						TCP_SKB_CB(skb)->end_seq,
1514 						dup_sack,
1515 						tcp_skb_pcount(skb),
1516 						TCP_SKB_CB(skb)->when);
1517 
1518 			if (!before(TCP_SKB_CB(skb)->seq,
1519 				    tcp_highest_sack_seq(tp)))
1520 				tcp_advance_highest_sack(sk, skb);
1521 		}
1522 
1523 		state->fack_count += tcp_skb_pcount(skb);
1524 	}
1525 	return skb;
1526 }
1527 
1528 /* Avoid all extra work that is being done by sacktag while walking in
1529  * a normal way
1530  */
1531 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1532 					struct tcp_sacktag_state *state,
1533 					u32 skip_to_seq)
1534 {
1535 	tcp_for_write_queue_from(skb, sk) {
1536 		if (skb == tcp_send_head(sk))
1537 			break;
1538 
1539 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1540 			break;
1541 
1542 		state->fack_count += tcp_skb_pcount(skb);
1543 	}
1544 	return skb;
1545 }
1546 
1547 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1548 						struct sock *sk,
1549 						struct tcp_sack_block *next_dup,
1550 						struct tcp_sacktag_state *state,
1551 						u32 skip_to_seq)
1552 {
1553 	if (next_dup == NULL)
1554 		return skb;
1555 
1556 	if (before(next_dup->start_seq, skip_to_seq)) {
1557 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1558 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1559 				       next_dup->start_seq, next_dup->end_seq,
1560 				       1);
1561 	}
1562 
1563 	return skb;
1564 }
1565 
1566 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1567 {
1568 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1569 }
1570 
1571 static int
1572 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1573 			u32 prior_snd_una, s32 *sack_rtt)
1574 {
1575 	struct tcp_sock *tp = tcp_sk(sk);
1576 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1577 				    TCP_SKB_CB(ack_skb)->sacked);
1578 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1579 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1580 	struct tcp_sack_block *cache;
1581 	struct tcp_sacktag_state state;
1582 	struct sk_buff *skb;
1583 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1584 	int used_sacks;
1585 	bool found_dup_sack = false;
1586 	int i, j;
1587 	int first_sack_index;
1588 
1589 	state.flag = 0;
1590 	state.reord = tp->packets_out;
1591 	state.rtt = -1;
1592 
1593 	if (!tp->sacked_out) {
1594 		if (WARN_ON(tp->fackets_out))
1595 			tp->fackets_out = 0;
1596 		tcp_highest_sack_reset(sk);
1597 	}
1598 
1599 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1600 					 num_sacks, prior_snd_una);
1601 	if (found_dup_sack)
1602 		state.flag |= FLAG_DSACKING_ACK;
1603 
1604 	/* Eliminate too old ACKs, but take into
1605 	 * account more or less fresh ones, they can
1606 	 * contain valid SACK info.
1607 	 */
1608 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1609 		return 0;
1610 
1611 	if (!tp->packets_out)
1612 		goto out;
1613 
1614 	used_sacks = 0;
1615 	first_sack_index = 0;
1616 	for (i = 0; i < num_sacks; i++) {
1617 		bool dup_sack = !i && found_dup_sack;
1618 
1619 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1620 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1621 
1622 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1623 					    sp[used_sacks].start_seq,
1624 					    sp[used_sacks].end_seq)) {
1625 			int mib_idx;
1626 
1627 			if (dup_sack) {
1628 				if (!tp->undo_marker)
1629 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1630 				else
1631 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1632 			} else {
1633 				/* Don't count olds caused by ACK reordering */
1634 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1635 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1636 					continue;
1637 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1638 			}
1639 
1640 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1641 			if (i == 0)
1642 				first_sack_index = -1;
1643 			continue;
1644 		}
1645 
1646 		/* Ignore very old stuff early */
1647 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1648 			continue;
1649 
1650 		used_sacks++;
1651 	}
1652 
1653 	/* order SACK blocks to allow in order walk of the retrans queue */
1654 	for (i = used_sacks - 1; i > 0; i--) {
1655 		for (j = 0; j < i; j++) {
1656 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1657 				swap(sp[j], sp[j + 1]);
1658 
1659 				/* Track where the first SACK block goes to */
1660 				if (j == first_sack_index)
1661 					first_sack_index = j + 1;
1662 			}
1663 		}
1664 	}
1665 
1666 	skb = tcp_write_queue_head(sk);
1667 	state.fack_count = 0;
1668 	i = 0;
1669 
1670 	if (!tp->sacked_out) {
1671 		/* It's already past, so skip checking against it */
1672 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1673 	} else {
1674 		cache = tp->recv_sack_cache;
1675 		/* Skip empty blocks in at head of the cache */
1676 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1677 		       !cache->end_seq)
1678 			cache++;
1679 	}
1680 
1681 	while (i < used_sacks) {
1682 		u32 start_seq = sp[i].start_seq;
1683 		u32 end_seq = sp[i].end_seq;
1684 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1685 		struct tcp_sack_block *next_dup = NULL;
1686 
1687 		if (found_dup_sack && ((i + 1) == first_sack_index))
1688 			next_dup = &sp[i + 1];
1689 
1690 		/* Skip too early cached blocks */
1691 		while (tcp_sack_cache_ok(tp, cache) &&
1692 		       !before(start_seq, cache->end_seq))
1693 			cache++;
1694 
1695 		/* Can skip some work by looking recv_sack_cache? */
1696 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1697 		    after(end_seq, cache->start_seq)) {
1698 
1699 			/* Head todo? */
1700 			if (before(start_seq, cache->start_seq)) {
1701 				skb = tcp_sacktag_skip(skb, sk, &state,
1702 						       start_seq);
1703 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1704 						       &state,
1705 						       start_seq,
1706 						       cache->start_seq,
1707 						       dup_sack);
1708 			}
1709 
1710 			/* Rest of the block already fully processed? */
1711 			if (!after(end_seq, cache->end_seq))
1712 				goto advance_sp;
1713 
1714 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1715 						       &state,
1716 						       cache->end_seq);
1717 
1718 			/* ...tail remains todo... */
1719 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1720 				/* ...but better entrypoint exists! */
1721 				skb = tcp_highest_sack(sk);
1722 				if (skb == NULL)
1723 					break;
1724 				state.fack_count = tp->fackets_out;
1725 				cache++;
1726 				goto walk;
1727 			}
1728 
1729 			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1730 			/* Check overlap against next cached too (past this one already) */
1731 			cache++;
1732 			continue;
1733 		}
1734 
1735 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1736 			skb = tcp_highest_sack(sk);
1737 			if (skb == NULL)
1738 				break;
1739 			state.fack_count = tp->fackets_out;
1740 		}
1741 		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1742 
1743 walk:
1744 		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1745 				       start_seq, end_seq, dup_sack);
1746 
1747 advance_sp:
1748 		i++;
1749 	}
1750 
1751 	/* Clear the head of the cache sack blocks so we can skip it next time */
1752 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1753 		tp->recv_sack_cache[i].start_seq = 0;
1754 		tp->recv_sack_cache[i].end_seq = 0;
1755 	}
1756 	for (j = 0; j < used_sacks; j++)
1757 		tp->recv_sack_cache[i++] = sp[j];
1758 
1759 	tcp_mark_lost_retrans(sk);
1760 
1761 	tcp_verify_left_out(tp);
1762 
1763 	if ((state.reord < tp->fackets_out) &&
1764 	    ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1765 		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1766 
1767 out:
1768 
1769 #if FASTRETRANS_DEBUG > 0
1770 	WARN_ON((int)tp->sacked_out < 0);
1771 	WARN_ON((int)tp->lost_out < 0);
1772 	WARN_ON((int)tp->retrans_out < 0);
1773 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1774 #endif
1775 	*sack_rtt = state.rtt;
1776 	return state.flag;
1777 }
1778 
1779 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1780  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1781  */
1782 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1783 {
1784 	u32 holes;
1785 
1786 	holes = max(tp->lost_out, 1U);
1787 	holes = min(holes, tp->packets_out);
1788 
1789 	if ((tp->sacked_out + holes) > tp->packets_out) {
1790 		tp->sacked_out = tp->packets_out - holes;
1791 		return true;
1792 	}
1793 	return false;
1794 }
1795 
1796 /* If we receive more dupacks than we expected counting segments
1797  * in assumption of absent reordering, interpret this as reordering.
1798  * The only another reason could be bug in receiver TCP.
1799  */
1800 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1801 {
1802 	struct tcp_sock *tp = tcp_sk(sk);
1803 	if (tcp_limit_reno_sacked(tp))
1804 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1805 }
1806 
1807 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1808 
1809 static void tcp_add_reno_sack(struct sock *sk)
1810 {
1811 	struct tcp_sock *tp = tcp_sk(sk);
1812 	tp->sacked_out++;
1813 	tcp_check_reno_reordering(sk, 0);
1814 	tcp_verify_left_out(tp);
1815 }
1816 
1817 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1818 
1819 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1820 {
1821 	struct tcp_sock *tp = tcp_sk(sk);
1822 
1823 	if (acked > 0) {
1824 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1825 		if (acked - 1 >= tp->sacked_out)
1826 			tp->sacked_out = 0;
1827 		else
1828 			tp->sacked_out -= acked - 1;
1829 	}
1830 	tcp_check_reno_reordering(sk, acked);
1831 	tcp_verify_left_out(tp);
1832 }
1833 
1834 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1835 {
1836 	tp->sacked_out = 0;
1837 }
1838 
1839 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1840 {
1841 	tp->retrans_out = 0;
1842 	tp->lost_out = 0;
1843 
1844 	tp->undo_marker = 0;
1845 	tp->undo_retrans = 0;
1846 }
1847 
1848 void tcp_clear_retrans(struct tcp_sock *tp)
1849 {
1850 	tcp_clear_retrans_partial(tp);
1851 
1852 	tp->fackets_out = 0;
1853 	tp->sacked_out = 0;
1854 }
1855 
1856 /* Enter Loss state. If "how" is not zero, forget all SACK information
1857  * and reset tags completely, otherwise preserve SACKs. If receiver
1858  * dropped its ofo queue, we will know this due to reneging detection.
1859  */
1860 void tcp_enter_loss(struct sock *sk, int how)
1861 {
1862 	const struct inet_connection_sock *icsk = inet_csk(sk);
1863 	struct tcp_sock *tp = tcp_sk(sk);
1864 	struct sk_buff *skb;
1865 	bool new_recovery = false;
1866 
1867 	/* Reduce ssthresh if it has not yet been made inside this window. */
1868 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1869 	    !after(tp->high_seq, tp->snd_una) ||
1870 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1871 		new_recovery = true;
1872 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1873 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1874 		tcp_ca_event(sk, CA_EVENT_LOSS);
1875 	}
1876 	tp->snd_cwnd	   = 1;
1877 	tp->snd_cwnd_cnt   = 0;
1878 	tp->snd_cwnd_stamp = tcp_time_stamp;
1879 
1880 	tcp_clear_retrans_partial(tp);
1881 
1882 	if (tcp_is_reno(tp))
1883 		tcp_reset_reno_sack(tp);
1884 
1885 	tp->undo_marker = tp->snd_una;
1886 	if (how) {
1887 		tp->sacked_out = 0;
1888 		tp->fackets_out = 0;
1889 	}
1890 	tcp_clear_all_retrans_hints(tp);
1891 
1892 	tcp_for_write_queue(skb, sk) {
1893 		if (skb == tcp_send_head(sk))
1894 			break;
1895 
1896 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1897 			tp->undo_marker = 0;
1898 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1899 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1900 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1901 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1902 			tp->lost_out += tcp_skb_pcount(skb);
1903 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1904 		}
1905 	}
1906 	tcp_verify_left_out(tp);
1907 
1908 	/* Timeout in disordered state after receiving substantial DUPACKs
1909 	 * suggests that the degree of reordering is over-estimated.
1910 	 */
1911 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1912 	    tp->sacked_out >= sysctl_tcp_reordering)
1913 		tp->reordering = min_t(unsigned int, tp->reordering,
1914 				       sysctl_tcp_reordering);
1915 	tcp_set_ca_state(sk, TCP_CA_Loss);
1916 	tp->high_seq = tp->snd_nxt;
1917 	TCP_ECN_queue_cwr(tp);
1918 
1919 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1920 	 * loss recovery is underway except recurring timeout(s) on
1921 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1922 	 */
1923 	tp->frto = sysctl_tcp_frto &&
1924 		   (new_recovery || icsk->icsk_retransmits) &&
1925 		   !inet_csk(sk)->icsk_mtup.probe_size;
1926 }
1927 
1928 /* If ACK arrived pointing to a remembered SACK, it means that our
1929  * remembered SACKs do not reflect real state of receiver i.e.
1930  * receiver _host_ is heavily congested (or buggy).
1931  *
1932  * Do processing similar to RTO timeout.
1933  */
1934 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1935 {
1936 	if (flag & FLAG_SACK_RENEGING) {
1937 		struct inet_connection_sock *icsk = inet_csk(sk);
1938 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1939 
1940 		tcp_enter_loss(sk, 1);
1941 		icsk->icsk_retransmits++;
1942 		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1943 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1944 					  icsk->icsk_rto, TCP_RTO_MAX);
1945 		return true;
1946 	}
1947 	return false;
1948 }
1949 
1950 static inline int tcp_fackets_out(const struct tcp_sock *tp)
1951 {
1952 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1953 }
1954 
1955 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1956  * counter when SACK is enabled (without SACK, sacked_out is used for
1957  * that purpose).
1958  *
1959  * Instead, with FACK TCP uses fackets_out that includes both SACKed
1960  * segments up to the highest received SACK block so far and holes in
1961  * between them.
1962  *
1963  * With reordering, holes may still be in flight, so RFC3517 recovery
1964  * uses pure sacked_out (total number of SACKed segments) even though
1965  * it violates the RFC that uses duplicate ACKs, often these are equal
1966  * but when e.g. out-of-window ACKs or packet duplication occurs,
1967  * they differ. Since neither occurs due to loss, TCP should really
1968  * ignore them.
1969  */
1970 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
1971 {
1972 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1973 }
1974 
1975 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
1976 {
1977 	struct tcp_sock *tp = tcp_sk(sk);
1978 	unsigned long delay;
1979 
1980 	/* Delay early retransmit and entering fast recovery for
1981 	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
1982 	 * available, or RTO is scheduled to fire first.
1983 	 */
1984 	if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
1985 	    (flag & FLAG_ECE) || !tp->srtt)
1986 		return false;
1987 
1988 	delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
1989 	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
1990 		return false;
1991 
1992 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
1993 				  TCP_RTO_MAX);
1994 	return true;
1995 }
1996 
1997 /* Linux NewReno/SACK/FACK/ECN state machine.
1998  * --------------------------------------
1999  *
2000  * "Open"	Normal state, no dubious events, fast path.
2001  * "Disorder"   In all the respects it is "Open",
2002  *		but requires a bit more attention. It is entered when
2003  *		we see some SACKs or dupacks. It is split of "Open"
2004  *		mainly to move some processing from fast path to slow one.
2005  * "CWR"	CWND was reduced due to some Congestion Notification event.
2006  *		It can be ECN, ICMP source quench, local device congestion.
2007  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2008  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2009  *
2010  * tcp_fastretrans_alert() is entered:
2011  * - each incoming ACK, if state is not "Open"
2012  * - when arrived ACK is unusual, namely:
2013  *	* SACK
2014  *	* Duplicate ACK.
2015  *	* ECN ECE.
2016  *
2017  * Counting packets in flight is pretty simple.
2018  *
2019  *	in_flight = packets_out - left_out + retrans_out
2020  *
2021  *	packets_out is SND.NXT-SND.UNA counted in packets.
2022  *
2023  *	retrans_out is number of retransmitted segments.
2024  *
2025  *	left_out is number of segments left network, but not ACKed yet.
2026  *
2027  *		left_out = sacked_out + lost_out
2028  *
2029  *     sacked_out: Packets, which arrived to receiver out of order
2030  *		   and hence not ACKed. With SACKs this number is simply
2031  *		   amount of SACKed data. Even without SACKs
2032  *		   it is easy to give pretty reliable estimate of this number,
2033  *		   counting duplicate ACKs.
2034  *
2035  *       lost_out: Packets lost by network. TCP has no explicit
2036  *		   "loss notification" feedback from network (for now).
2037  *		   It means that this number can be only _guessed_.
2038  *		   Actually, it is the heuristics to predict lossage that
2039  *		   distinguishes different algorithms.
2040  *
2041  *	F.e. after RTO, when all the queue is considered as lost,
2042  *	lost_out = packets_out and in_flight = retrans_out.
2043  *
2044  *		Essentially, we have now two algorithms counting
2045  *		lost packets.
2046  *
2047  *		FACK: It is the simplest heuristics. As soon as we decided
2048  *		that something is lost, we decide that _all_ not SACKed
2049  *		packets until the most forward SACK are lost. I.e.
2050  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2051  *		It is absolutely correct estimate, if network does not reorder
2052  *		packets. And it loses any connection to reality when reordering
2053  *		takes place. We use FACK by default until reordering
2054  *		is suspected on the path to this destination.
2055  *
2056  *		NewReno: when Recovery is entered, we assume that one segment
2057  *		is lost (classic Reno). While we are in Recovery and
2058  *		a partial ACK arrives, we assume that one more packet
2059  *		is lost (NewReno). This heuristics are the same in NewReno
2060  *		and SACK.
2061  *
2062  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2063  *  deflation etc. CWND is real congestion window, never inflated, changes
2064  *  only according to classic VJ rules.
2065  *
2066  * Really tricky (and requiring careful tuning) part of algorithm
2067  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2068  * The first determines the moment _when_ we should reduce CWND and,
2069  * hence, slow down forward transmission. In fact, it determines the moment
2070  * when we decide that hole is caused by loss, rather than by a reorder.
2071  *
2072  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2073  * holes, caused by lost packets.
2074  *
2075  * And the most logically complicated part of algorithm is undo
2076  * heuristics. We detect false retransmits due to both too early
2077  * fast retransmit (reordering) and underestimated RTO, analyzing
2078  * timestamps and D-SACKs. When we detect that some segments were
2079  * retransmitted by mistake and CWND reduction was wrong, we undo
2080  * window reduction and abort recovery phase. This logic is hidden
2081  * inside several functions named tcp_try_undo_<something>.
2082  */
2083 
2084 /* This function decides, when we should leave Disordered state
2085  * and enter Recovery phase, reducing congestion window.
2086  *
2087  * Main question: may we further continue forward transmission
2088  * with the same cwnd?
2089  */
2090 static bool tcp_time_to_recover(struct sock *sk, int flag)
2091 {
2092 	struct tcp_sock *tp = tcp_sk(sk);
2093 	__u32 packets_out;
2094 
2095 	/* Trick#1: The loss is proven. */
2096 	if (tp->lost_out)
2097 		return true;
2098 
2099 	/* Not-A-Trick#2 : Classic rule... */
2100 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2101 		return true;
2102 
2103 	/* Trick#4: It is still not OK... But will it be useful to delay
2104 	 * recovery more?
2105 	 */
2106 	packets_out = tp->packets_out;
2107 	if (packets_out <= tp->reordering &&
2108 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2109 	    !tcp_may_send_now(sk)) {
2110 		/* We have nothing to send. This connection is limited
2111 		 * either by receiver window or by application.
2112 		 */
2113 		return true;
2114 	}
2115 
2116 	/* If a thin stream is detected, retransmit after first
2117 	 * received dupack. Employ only if SACK is supported in order
2118 	 * to avoid possible corner-case series of spurious retransmissions
2119 	 * Use only if there are no unsent data.
2120 	 */
2121 	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2122 	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2123 	    tcp_is_sack(tp) && !tcp_send_head(sk))
2124 		return true;
2125 
2126 	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2127 	 * retransmissions due to small network reorderings, we implement
2128 	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2129 	 * interval if appropriate.
2130 	 */
2131 	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2132 	    (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2133 	    !tcp_may_send_now(sk))
2134 		return !tcp_pause_early_retransmit(sk, flag);
2135 
2136 	return false;
2137 }
2138 
2139 /* Detect loss in event "A" above by marking head of queue up as lost.
2140  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2141  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2142  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2143  * the maximum SACKed segments to pass before reaching this limit.
2144  */
2145 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2146 {
2147 	struct tcp_sock *tp = tcp_sk(sk);
2148 	struct sk_buff *skb;
2149 	int cnt, oldcnt;
2150 	int err;
2151 	unsigned int mss;
2152 	/* Use SACK to deduce losses of new sequences sent during recovery */
2153 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2154 
2155 	WARN_ON(packets > tp->packets_out);
2156 	if (tp->lost_skb_hint) {
2157 		skb = tp->lost_skb_hint;
2158 		cnt = tp->lost_cnt_hint;
2159 		/* Head already handled? */
2160 		if (mark_head && skb != tcp_write_queue_head(sk))
2161 			return;
2162 	} else {
2163 		skb = tcp_write_queue_head(sk);
2164 		cnt = 0;
2165 	}
2166 
2167 	tcp_for_write_queue_from(skb, sk) {
2168 		if (skb == tcp_send_head(sk))
2169 			break;
2170 		/* TODO: do this better */
2171 		/* this is not the most efficient way to do this... */
2172 		tp->lost_skb_hint = skb;
2173 		tp->lost_cnt_hint = cnt;
2174 
2175 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2176 			break;
2177 
2178 		oldcnt = cnt;
2179 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2180 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2181 			cnt += tcp_skb_pcount(skb);
2182 
2183 		if (cnt > packets) {
2184 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2185 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2186 			    (oldcnt >= packets))
2187 				break;
2188 
2189 			mss = skb_shinfo(skb)->gso_size;
2190 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2191 			if (err < 0)
2192 				break;
2193 			cnt = packets;
2194 		}
2195 
2196 		tcp_skb_mark_lost(tp, skb);
2197 
2198 		if (mark_head)
2199 			break;
2200 	}
2201 	tcp_verify_left_out(tp);
2202 }
2203 
2204 /* Account newly detected lost packet(s) */
2205 
2206 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2207 {
2208 	struct tcp_sock *tp = tcp_sk(sk);
2209 
2210 	if (tcp_is_reno(tp)) {
2211 		tcp_mark_head_lost(sk, 1, 1);
2212 	} else if (tcp_is_fack(tp)) {
2213 		int lost = tp->fackets_out - tp->reordering;
2214 		if (lost <= 0)
2215 			lost = 1;
2216 		tcp_mark_head_lost(sk, lost, 0);
2217 	} else {
2218 		int sacked_upto = tp->sacked_out - tp->reordering;
2219 		if (sacked_upto >= 0)
2220 			tcp_mark_head_lost(sk, sacked_upto, 0);
2221 		else if (fast_rexmit)
2222 			tcp_mark_head_lost(sk, 1, 1);
2223 	}
2224 }
2225 
2226 /* CWND moderation, preventing bursts due to too big ACKs
2227  * in dubious situations.
2228  */
2229 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2230 {
2231 	tp->snd_cwnd = min(tp->snd_cwnd,
2232 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2233 	tp->snd_cwnd_stamp = tcp_time_stamp;
2234 }
2235 
2236 /* Nothing was retransmitted or returned timestamp is less
2237  * than timestamp of the first retransmission.
2238  */
2239 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2240 {
2241 	return !tp->retrans_stamp ||
2242 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2243 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2244 }
2245 
2246 /* Undo procedures. */
2247 
2248 #if FASTRETRANS_DEBUG > 1
2249 static void DBGUNDO(struct sock *sk, const char *msg)
2250 {
2251 	struct tcp_sock *tp = tcp_sk(sk);
2252 	struct inet_sock *inet = inet_sk(sk);
2253 
2254 	if (sk->sk_family == AF_INET) {
2255 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2256 			 msg,
2257 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2258 			 tp->snd_cwnd, tcp_left_out(tp),
2259 			 tp->snd_ssthresh, tp->prior_ssthresh,
2260 			 tp->packets_out);
2261 	}
2262 #if IS_ENABLED(CONFIG_IPV6)
2263 	else if (sk->sk_family == AF_INET6) {
2264 		struct ipv6_pinfo *np = inet6_sk(sk);
2265 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2266 			 msg,
2267 			 &np->daddr, ntohs(inet->inet_dport),
2268 			 tp->snd_cwnd, tcp_left_out(tp),
2269 			 tp->snd_ssthresh, tp->prior_ssthresh,
2270 			 tp->packets_out);
2271 	}
2272 #endif
2273 }
2274 #else
2275 #define DBGUNDO(x...) do { } while (0)
2276 #endif
2277 
2278 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2279 {
2280 	struct tcp_sock *tp = tcp_sk(sk);
2281 
2282 	if (unmark_loss) {
2283 		struct sk_buff *skb;
2284 
2285 		tcp_for_write_queue(skb, sk) {
2286 			if (skb == tcp_send_head(sk))
2287 				break;
2288 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2289 		}
2290 		tp->lost_out = 0;
2291 		tcp_clear_all_retrans_hints(tp);
2292 	}
2293 
2294 	if (tp->prior_ssthresh) {
2295 		const struct inet_connection_sock *icsk = inet_csk(sk);
2296 
2297 		if (icsk->icsk_ca_ops->undo_cwnd)
2298 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2299 		else
2300 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2301 
2302 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2303 			tp->snd_ssthresh = tp->prior_ssthresh;
2304 			TCP_ECN_withdraw_cwr(tp);
2305 		}
2306 	} else {
2307 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2308 	}
2309 	tp->snd_cwnd_stamp = tcp_time_stamp;
2310 	tp->undo_marker = 0;
2311 }
2312 
2313 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2314 {
2315 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2316 }
2317 
2318 /* People celebrate: "We love our President!" */
2319 static bool tcp_try_undo_recovery(struct sock *sk)
2320 {
2321 	struct tcp_sock *tp = tcp_sk(sk);
2322 
2323 	if (tcp_may_undo(tp)) {
2324 		int mib_idx;
2325 
2326 		/* Happy end! We did not retransmit anything
2327 		 * or our original transmission succeeded.
2328 		 */
2329 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2330 		tcp_undo_cwnd_reduction(sk, false);
2331 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2332 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2333 		else
2334 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2335 
2336 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2337 	}
2338 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2339 		/* Hold old state until something *above* high_seq
2340 		 * is ACKed. For Reno it is MUST to prevent false
2341 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2342 		tcp_moderate_cwnd(tp);
2343 		return true;
2344 	}
2345 	tcp_set_ca_state(sk, TCP_CA_Open);
2346 	return false;
2347 }
2348 
2349 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2350 static bool tcp_try_undo_dsack(struct sock *sk)
2351 {
2352 	struct tcp_sock *tp = tcp_sk(sk);
2353 
2354 	if (tp->undo_marker && !tp->undo_retrans) {
2355 		DBGUNDO(sk, "D-SACK");
2356 		tcp_undo_cwnd_reduction(sk, false);
2357 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2358 		return true;
2359 	}
2360 	return false;
2361 }
2362 
2363 /* We can clear retrans_stamp when there are no retransmissions in the
2364  * window. It would seem that it is trivially available for us in
2365  * tp->retrans_out, however, that kind of assumptions doesn't consider
2366  * what will happen if errors occur when sending retransmission for the
2367  * second time. ...It could the that such segment has only
2368  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2369  * the head skb is enough except for some reneging corner cases that
2370  * are not worth the effort.
2371  *
2372  * Main reason for all this complexity is the fact that connection dying
2373  * time now depends on the validity of the retrans_stamp, in particular,
2374  * that successive retransmissions of a segment must not advance
2375  * retrans_stamp under any conditions.
2376  */
2377 static bool tcp_any_retrans_done(const struct sock *sk)
2378 {
2379 	const struct tcp_sock *tp = tcp_sk(sk);
2380 	struct sk_buff *skb;
2381 
2382 	if (tp->retrans_out)
2383 		return true;
2384 
2385 	skb = tcp_write_queue_head(sk);
2386 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2387 		return true;
2388 
2389 	return false;
2390 }
2391 
2392 /* Undo during loss recovery after partial ACK or using F-RTO. */
2393 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2394 {
2395 	struct tcp_sock *tp = tcp_sk(sk);
2396 
2397 	if (frto_undo || tcp_may_undo(tp)) {
2398 		tcp_undo_cwnd_reduction(sk, true);
2399 
2400 		DBGUNDO(sk, "partial loss");
2401 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2402 		if (frto_undo)
2403 			NET_INC_STATS_BH(sock_net(sk),
2404 					 LINUX_MIB_TCPSPURIOUSRTOS);
2405 		inet_csk(sk)->icsk_retransmits = 0;
2406 		if (frto_undo || tcp_is_sack(tp))
2407 			tcp_set_ca_state(sk, TCP_CA_Open);
2408 		return true;
2409 	}
2410 	return false;
2411 }
2412 
2413 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2414  * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2415  * It computes the number of packets to send (sndcnt) based on packets newly
2416  * delivered:
2417  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2418  *	cwnd reductions across a full RTT.
2419  *   2) If packets in flight is lower than ssthresh (such as due to excess
2420  *	losses and/or application stalls), do not perform any further cwnd
2421  *	reductions, but instead slow start up to ssthresh.
2422  */
2423 static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
2424 {
2425 	struct tcp_sock *tp = tcp_sk(sk);
2426 
2427 	tp->high_seq = tp->snd_nxt;
2428 	tp->tlp_high_seq = 0;
2429 	tp->snd_cwnd_cnt = 0;
2430 	tp->prior_cwnd = tp->snd_cwnd;
2431 	tp->prr_delivered = 0;
2432 	tp->prr_out = 0;
2433 	if (set_ssthresh)
2434 		tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2435 	TCP_ECN_queue_cwr(tp);
2436 }
2437 
2438 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2439 			       int fast_rexmit)
2440 {
2441 	struct tcp_sock *tp = tcp_sk(sk);
2442 	int sndcnt = 0;
2443 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2444 	int newly_acked_sacked = prior_unsacked -
2445 				 (tp->packets_out - tp->sacked_out);
2446 
2447 	tp->prr_delivered += newly_acked_sacked;
2448 	if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2449 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2450 			       tp->prior_cwnd - 1;
2451 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2452 	} else {
2453 		sndcnt = min_t(int, delta,
2454 			       max_t(int, tp->prr_delivered - tp->prr_out,
2455 				     newly_acked_sacked) + 1);
2456 	}
2457 
2458 	sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2459 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2460 }
2461 
2462 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2463 {
2464 	struct tcp_sock *tp = tcp_sk(sk);
2465 
2466 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2467 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2468 	    (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2469 		tp->snd_cwnd = tp->snd_ssthresh;
2470 		tp->snd_cwnd_stamp = tcp_time_stamp;
2471 	}
2472 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2473 }
2474 
2475 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2476 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
2477 {
2478 	struct tcp_sock *tp = tcp_sk(sk);
2479 
2480 	tp->prior_ssthresh = 0;
2481 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2482 		tp->undo_marker = 0;
2483 		tcp_init_cwnd_reduction(sk, set_ssthresh);
2484 		tcp_set_ca_state(sk, TCP_CA_CWR);
2485 	}
2486 }
2487 
2488 static void tcp_try_keep_open(struct sock *sk)
2489 {
2490 	struct tcp_sock *tp = tcp_sk(sk);
2491 	int state = TCP_CA_Open;
2492 
2493 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2494 		state = TCP_CA_Disorder;
2495 
2496 	if (inet_csk(sk)->icsk_ca_state != state) {
2497 		tcp_set_ca_state(sk, state);
2498 		tp->high_seq = tp->snd_nxt;
2499 	}
2500 }
2501 
2502 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2503 {
2504 	struct tcp_sock *tp = tcp_sk(sk);
2505 
2506 	tcp_verify_left_out(tp);
2507 
2508 	if (!tcp_any_retrans_done(sk))
2509 		tp->retrans_stamp = 0;
2510 
2511 	if (flag & FLAG_ECE)
2512 		tcp_enter_cwr(sk, 1);
2513 
2514 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2515 		tcp_try_keep_open(sk);
2516 	} else {
2517 		tcp_cwnd_reduction(sk, prior_unsacked, 0);
2518 	}
2519 }
2520 
2521 static void tcp_mtup_probe_failed(struct sock *sk)
2522 {
2523 	struct inet_connection_sock *icsk = inet_csk(sk);
2524 
2525 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2526 	icsk->icsk_mtup.probe_size = 0;
2527 }
2528 
2529 static void tcp_mtup_probe_success(struct sock *sk)
2530 {
2531 	struct tcp_sock *tp = tcp_sk(sk);
2532 	struct inet_connection_sock *icsk = inet_csk(sk);
2533 
2534 	/* FIXME: breaks with very large cwnd */
2535 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2536 	tp->snd_cwnd = tp->snd_cwnd *
2537 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2538 		       icsk->icsk_mtup.probe_size;
2539 	tp->snd_cwnd_cnt = 0;
2540 	tp->snd_cwnd_stamp = tcp_time_stamp;
2541 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2542 
2543 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2544 	icsk->icsk_mtup.probe_size = 0;
2545 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2546 }
2547 
2548 /* Do a simple retransmit without using the backoff mechanisms in
2549  * tcp_timer. This is used for path mtu discovery.
2550  * The socket is already locked here.
2551  */
2552 void tcp_simple_retransmit(struct sock *sk)
2553 {
2554 	const struct inet_connection_sock *icsk = inet_csk(sk);
2555 	struct tcp_sock *tp = tcp_sk(sk);
2556 	struct sk_buff *skb;
2557 	unsigned int mss = tcp_current_mss(sk);
2558 	u32 prior_lost = tp->lost_out;
2559 
2560 	tcp_for_write_queue(skb, sk) {
2561 		if (skb == tcp_send_head(sk))
2562 			break;
2563 		if (tcp_skb_seglen(skb) > mss &&
2564 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2565 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2566 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2567 				tp->retrans_out -= tcp_skb_pcount(skb);
2568 			}
2569 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2570 		}
2571 	}
2572 
2573 	tcp_clear_retrans_hints_partial(tp);
2574 
2575 	if (prior_lost == tp->lost_out)
2576 		return;
2577 
2578 	if (tcp_is_reno(tp))
2579 		tcp_limit_reno_sacked(tp);
2580 
2581 	tcp_verify_left_out(tp);
2582 
2583 	/* Don't muck with the congestion window here.
2584 	 * Reason is that we do not increase amount of _data_
2585 	 * in network, but units changed and effective
2586 	 * cwnd/ssthresh really reduced now.
2587 	 */
2588 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2589 		tp->high_seq = tp->snd_nxt;
2590 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2591 		tp->prior_ssthresh = 0;
2592 		tp->undo_marker = 0;
2593 		tcp_set_ca_state(sk, TCP_CA_Loss);
2594 	}
2595 	tcp_xmit_retransmit_queue(sk);
2596 }
2597 EXPORT_SYMBOL(tcp_simple_retransmit);
2598 
2599 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2600 {
2601 	struct tcp_sock *tp = tcp_sk(sk);
2602 	int mib_idx;
2603 
2604 	if (tcp_is_reno(tp))
2605 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2606 	else
2607 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2608 
2609 	NET_INC_STATS_BH(sock_net(sk), mib_idx);
2610 
2611 	tp->prior_ssthresh = 0;
2612 	tp->undo_marker = tp->snd_una;
2613 	tp->undo_retrans = tp->retrans_out;
2614 
2615 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2616 		if (!ece_ack)
2617 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2618 		tcp_init_cwnd_reduction(sk, true);
2619 	}
2620 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2621 }
2622 
2623 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2624  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2625  */
2626 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2627 {
2628 	struct inet_connection_sock *icsk = inet_csk(sk);
2629 	struct tcp_sock *tp = tcp_sk(sk);
2630 	bool recovered = !before(tp->snd_una, tp->high_seq);
2631 
2632 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2633 		if (flag & FLAG_ORIG_SACK_ACKED) {
2634 			/* Step 3.b. A timeout is spurious if not all data are
2635 			 * lost, i.e., never-retransmitted data are (s)acked.
2636 			 */
2637 			tcp_try_undo_loss(sk, true);
2638 			return;
2639 		}
2640 		if (after(tp->snd_nxt, tp->high_seq) &&
2641 		    (flag & FLAG_DATA_SACKED || is_dupack)) {
2642 			tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
2643 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2644 			tp->high_seq = tp->snd_nxt;
2645 			__tcp_push_pending_frames(sk, tcp_current_mss(sk),
2646 						  TCP_NAGLE_OFF);
2647 			if (after(tp->snd_nxt, tp->high_seq))
2648 				return; /* Step 2.b */
2649 			tp->frto = 0;
2650 		}
2651 	}
2652 
2653 	if (recovered) {
2654 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2655 		icsk->icsk_retransmits = 0;
2656 		tcp_try_undo_recovery(sk);
2657 		return;
2658 	}
2659 	if (flag & FLAG_DATA_ACKED)
2660 		icsk->icsk_retransmits = 0;
2661 	if (tcp_is_reno(tp)) {
2662 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2663 		 * delivered. Lower inflight to clock out (re)tranmissions.
2664 		 */
2665 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2666 			tcp_add_reno_sack(sk);
2667 		else if (flag & FLAG_SND_UNA_ADVANCED)
2668 			tcp_reset_reno_sack(tp);
2669 	}
2670 	if (tcp_try_undo_loss(sk, false))
2671 		return;
2672 	tcp_xmit_retransmit_queue(sk);
2673 }
2674 
2675 /* Undo during fast recovery after partial ACK. */
2676 static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2677 				 const int prior_unsacked)
2678 {
2679 	struct tcp_sock *tp = tcp_sk(sk);
2680 
2681 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2682 		/* Plain luck! Hole if filled with delayed
2683 		 * packet, rather than with a retransmit.
2684 		 */
2685 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2686 
2687 		/* We are getting evidence that the reordering degree is higher
2688 		 * than we realized. If there are no retransmits out then we
2689 		 * can undo. Otherwise we clock out new packets but do not
2690 		 * mark more packets lost or retransmit more.
2691 		 */
2692 		if (tp->retrans_out) {
2693 			tcp_cwnd_reduction(sk, prior_unsacked, 0);
2694 			return true;
2695 		}
2696 
2697 		if (!tcp_any_retrans_done(sk))
2698 			tp->retrans_stamp = 0;
2699 
2700 		DBGUNDO(sk, "partial recovery");
2701 		tcp_undo_cwnd_reduction(sk, true);
2702 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2703 		tcp_try_keep_open(sk);
2704 		return true;
2705 	}
2706 	return false;
2707 }
2708 
2709 /* Process an event, which can update packets-in-flight not trivially.
2710  * Main goal of this function is to calculate new estimate for left_out,
2711  * taking into account both packets sitting in receiver's buffer and
2712  * packets lost by network.
2713  *
2714  * Besides that it does CWND reduction, when packet loss is detected
2715  * and changes state of machine.
2716  *
2717  * It does _not_ decide what to send, it is made in function
2718  * tcp_xmit_retransmit_queue().
2719  */
2720 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2721 				  const int prior_unsacked,
2722 				  bool is_dupack, int flag)
2723 {
2724 	struct inet_connection_sock *icsk = inet_csk(sk);
2725 	struct tcp_sock *tp = tcp_sk(sk);
2726 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2727 				    (tcp_fackets_out(tp) > tp->reordering));
2728 	int fast_rexmit = 0;
2729 
2730 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2731 		tp->sacked_out = 0;
2732 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2733 		tp->fackets_out = 0;
2734 
2735 	/* Now state machine starts.
2736 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2737 	if (flag & FLAG_ECE)
2738 		tp->prior_ssthresh = 0;
2739 
2740 	/* B. In all the states check for reneging SACKs. */
2741 	if (tcp_check_sack_reneging(sk, flag))
2742 		return;
2743 
2744 	/* C. Check consistency of the current state. */
2745 	tcp_verify_left_out(tp);
2746 
2747 	/* D. Check state exit conditions. State can be terminated
2748 	 *    when high_seq is ACKed. */
2749 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2750 		WARN_ON(tp->retrans_out != 0);
2751 		tp->retrans_stamp = 0;
2752 	} else if (!before(tp->snd_una, tp->high_seq)) {
2753 		switch (icsk->icsk_ca_state) {
2754 		case TCP_CA_CWR:
2755 			/* CWR is to be held something *above* high_seq
2756 			 * is ACKed for CWR bit to reach receiver. */
2757 			if (tp->snd_una != tp->high_seq) {
2758 				tcp_end_cwnd_reduction(sk);
2759 				tcp_set_ca_state(sk, TCP_CA_Open);
2760 			}
2761 			break;
2762 
2763 		case TCP_CA_Recovery:
2764 			if (tcp_is_reno(tp))
2765 				tcp_reset_reno_sack(tp);
2766 			if (tcp_try_undo_recovery(sk))
2767 				return;
2768 			tcp_end_cwnd_reduction(sk);
2769 			break;
2770 		}
2771 	}
2772 
2773 	/* E. Process state. */
2774 	switch (icsk->icsk_ca_state) {
2775 	case TCP_CA_Recovery:
2776 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2777 			if (tcp_is_reno(tp) && is_dupack)
2778 				tcp_add_reno_sack(sk);
2779 		} else {
2780 			if (tcp_try_undo_partial(sk, acked, prior_unsacked))
2781 				return;
2782 			/* Partial ACK arrived. Force fast retransmit. */
2783 			do_lost = tcp_is_reno(tp) ||
2784 				  tcp_fackets_out(tp) > tp->reordering;
2785 		}
2786 		if (tcp_try_undo_dsack(sk)) {
2787 			tcp_try_keep_open(sk);
2788 			return;
2789 		}
2790 		break;
2791 	case TCP_CA_Loss:
2792 		tcp_process_loss(sk, flag, is_dupack);
2793 		if (icsk->icsk_ca_state != TCP_CA_Open)
2794 			return;
2795 		/* Fall through to processing in Open state. */
2796 	default:
2797 		if (tcp_is_reno(tp)) {
2798 			if (flag & FLAG_SND_UNA_ADVANCED)
2799 				tcp_reset_reno_sack(tp);
2800 			if (is_dupack)
2801 				tcp_add_reno_sack(sk);
2802 		}
2803 
2804 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2805 			tcp_try_undo_dsack(sk);
2806 
2807 		if (!tcp_time_to_recover(sk, flag)) {
2808 			tcp_try_to_open(sk, flag, prior_unsacked);
2809 			return;
2810 		}
2811 
2812 		/* MTU probe failure: don't reduce cwnd */
2813 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2814 		    icsk->icsk_mtup.probe_size &&
2815 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2816 			tcp_mtup_probe_failed(sk);
2817 			/* Restores the reduction we did in tcp_mtup_probe() */
2818 			tp->snd_cwnd++;
2819 			tcp_simple_retransmit(sk);
2820 			return;
2821 		}
2822 
2823 		/* Otherwise enter Recovery state */
2824 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2825 		fast_rexmit = 1;
2826 	}
2827 
2828 	if (do_lost)
2829 		tcp_update_scoreboard(sk, fast_rexmit);
2830 	tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
2831 	tcp_xmit_retransmit_queue(sk);
2832 }
2833 
2834 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2835 				      s32 seq_rtt, s32 sack_rtt)
2836 {
2837 	const struct tcp_sock *tp = tcp_sk(sk);
2838 
2839 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2840 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2841 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2842 	 * is acked (RFC6298).
2843 	 */
2844 	if (flag & FLAG_RETRANS_DATA_ACKED)
2845 		seq_rtt = -1;
2846 
2847 	if (seq_rtt < 0)
2848 		seq_rtt = sack_rtt;
2849 
2850 	/* RTTM Rule: A TSecr value received in a segment is used to
2851 	 * update the averaged RTT measurement only if the segment
2852 	 * acknowledges some new data, i.e., only if it advances the
2853 	 * left edge of the send window.
2854 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2855 	 */
2856 	if (seq_rtt < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2857 		seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2858 
2859 	if (seq_rtt < 0)
2860 		return false;
2861 
2862 	tcp_rtt_estimator(sk, seq_rtt);
2863 	tcp_set_rto(sk);
2864 
2865 	/* RFC6298: only reset backoff on valid RTT measurement. */
2866 	inet_csk(sk)->icsk_backoff = 0;
2867 	return true;
2868 }
2869 
2870 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2871 static void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2872 {
2873 	struct tcp_sock *tp = tcp_sk(sk);
2874 	s32 seq_rtt = -1;
2875 
2876 	if (tp->lsndtime && !tp->total_retrans)
2877 		seq_rtt = tcp_time_stamp - tp->lsndtime;
2878 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt, -1);
2879 }
2880 
2881 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2882 {
2883 	const struct inet_connection_sock *icsk = inet_csk(sk);
2884 	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2885 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2886 }
2887 
2888 /* Restart timer after forward progress on connection.
2889  * RFC2988 recommends to restart timer to now+rto.
2890  */
2891 void tcp_rearm_rto(struct sock *sk)
2892 {
2893 	const struct inet_connection_sock *icsk = inet_csk(sk);
2894 	struct tcp_sock *tp = tcp_sk(sk);
2895 
2896 	/* If the retrans timer is currently being used by Fast Open
2897 	 * for SYN-ACK retrans purpose, stay put.
2898 	 */
2899 	if (tp->fastopen_rsk)
2900 		return;
2901 
2902 	if (!tp->packets_out) {
2903 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2904 	} else {
2905 		u32 rto = inet_csk(sk)->icsk_rto;
2906 		/* Offset the time elapsed after installing regular RTO */
2907 		if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2908 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2909 			struct sk_buff *skb = tcp_write_queue_head(sk);
2910 			const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
2911 			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2912 			/* delta may not be positive if the socket is locked
2913 			 * when the retrans timer fires and is rescheduled.
2914 			 */
2915 			if (delta > 0)
2916 				rto = delta;
2917 		}
2918 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2919 					  TCP_RTO_MAX);
2920 	}
2921 }
2922 
2923 /* This function is called when the delayed ER timer fires. TCP enters
2924  * fast recovery and performs fast-retransmit.
2925  */
2926 void tcp_resume_early_retransmit(struct sock *sk)
2927 {
2928 	struct tcp_sock *tp = tcp_sk(sk);
2929 
2930 	tcp_rearm_rto(sk);
2931 
2932 	/* Stop if ER is disabled after the delayed ER timer is scheduled */
2933 	if (!tp->do_early_retrans)
2934 		return;
2935 
2936 	tcp_enter_recovery(sk, false);
2937 	tcp_update_scoreboard(sk, 1);
2938 	tcp_xmit_retransmit_queue(sk);
2939 }
2940 
2941 /* If we get here, the whole TSO packet has not been acked. */
2942 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2943 {
2944 	struct tcp_sock *tp = tcp_sk(sk);
2945 	u32 packets_acked;
2946 
2947 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2948 
2949 	packets_acked = tcp_skb_pcount(skb);
2950 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2951 		return 0;
2952 	packets_acked -= tcp_skb_pcount(skb);
2953 
2954 	if (packets_acked) {
2955 		BUG_ON(tcp_skb_pcount(skb) == 0);
2956 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2957 	}
2958 
2959 	return packets_acked;
2960 }
2961 
2962 /* Remove acknowledged frames from the retransmission queue. If our packet
2963  * is before the ack sequence we can discard it as it's confirmed to have
2964  * arrived at the other end.
2965  */
2966 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
2967 			       u32 prior_snd_una, s32 sack_rtt)
2968 {
2969 	struct tcp_sock *tp = tcp_sk(sk);
2970 	const struct inet_connection_sock *icsk = inet_csk(sk);
2971 	struct sk_buff *skb;
2972 	u32 now = tcp_time_stamp;
2973 	int fully_acked = true;
2974 	int flag = 0;
2975 	u32 pkts_acked = 0;
2976 	u32 reord = tp->packets_out;
2977 	u32 prior_sacked = tp->sacked_out;
2978 	s32 seq_rtt = -1;
2979 	s32 ca_seq_rtt = -1;
2980 	ktime_t last_ackt = net_invalid_timestamp();
2981 
2982 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2983 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2984 		u32 acked_pcount;
2985 		u8 sacked = scb->sacked;
2986 
2987 		/* Determine how many packets and what bytes were acked, tso and else */
2988 		if (after(scb->end_seq, tp->snd_una)) {
2989 			if (tcp_skb_pcount(skb) == 1 ||
2990 			    !after(tp->snd_una, scb->seq))
2991 				break;
2992 
2993 			acked_pcount = tcp_tso_acked(sk, skb);
2994 			if (!acked_pcount)
2995 				break;
2996 
2997 			fully_acked = false;
2998 		} else {
2999 			acked_pcount = tcp_skb_pcount(skb);
3000 		}
3001 
3002 		if (sacked & TCPCB_RETRANS) {
3003 			if (sacked & TCPCB_SACKED_RETRANS)
3004 				tp->retrans_out -= acked_pcount;
3005 			flag |= FLAG_RETRANS_DATA_ACKED;
3006 		} else {
3007 			ca_seq_rtt = now - scb->when;
3008 			last_ackt = skb->tstamp;
3009 			if (seq_rtt < 0) {
3010 				seq_rtt = ca_seq_rtt;
3011 			}
3012 			if (!(sacked & TCPCB_SACKED_ACKED))
3013 				reord = min(pkts_acked, reord);
3014 			if (!after(scb->end_seq, tp->high_seq))
3015 				flag |= FLAG_ORIG_SACK_ACKED;
3016 		}
3017 
3018 		if (sacked & TCPCB_SACKED_ACKED)
3019 			tp->sacked_out -= acked_pcount;
3020 		if (sacked & TCPCB_LOST)
3021 			tp->lost_out -= acked_pcount;
3022 
3023 		tp->packets_out -= acked_pcount;
3024 		pkts_acked += acked_pcount;
3025 
3026 		/* Initial outgoing SYN's get put onto the write_queue
3027 		 * just like anything else we transmit.  It is not
3028 		 * true data, and if we misinform our callers that
3029 		 * this ACK acks real data, we will erroneously exit
3030 		 * connection startup slow start one packet too
3031 		 * quickly.  This is severely frowned upon behavior.
3032 		 */
3033 		if (!(scb->tcp_flags & TCPHDR_SYN)) {
3034 			flag |= FLAG_DATA_ACKED;
3035 		} else {
3036 			flag |= FLAG_SYN_ACKED;
3037 			tp->retrans_stamp = 0;
3038 		}
3039 
3040 		if (!fully_acked)
3041 			break;
3042 
3043 		tcp_unlink_write_queue(skb, sk);
3044 		sk_wmem_free_skb(sk, skb);
3045 		if (skb == tp->retransmit_skb_hint)
3046 			tp->retransmit_skb_hint = NULL;
3047 		if (skb == tp->lost_skb_hint)
3048 			tp->lost_skb_hint = NULL;
3049 	}
3050 
3051 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3052 		tp->snd_up = tp->snd_una;
3053 
3054 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3055 		flag |= FLAG_SACK_RENEGING;
3056 
3057 	if (tcp_ack_update_rtt(sk, flag, seq_rtt, sack_rtt) ||
3058 	    (flag & FLAG_ACKED))
3059 		tcp_rearm_rto(sk);
3060 
3061 	if (flag & FLAG_ACKED) {
3062 		const struct tcp_congestion_ops *ca_ops
3063 			= inet_csk(sk)->icsk_ca_ops;
3064 
3065 		if (unlikely(icsk->icsk_mtup.probe_size &&
3066 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3067 			tcp_mtup_probe_success(sk);
3068 		}
3069 
3070 		if (tcp_is_reno(tp)) {
3071 			tcp_remove_reno_sacks(sk, pkts_acked);
3072 		} else {
3073 			int delta;
3074 
3075 			/* Non-retransmitted hole got filled? That's reordering */
3076 			if (reord < prior_fackets)
3077 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3078 
3079 			delta = tcp_is_fack(tp) ? pkts_acked :
3080 						  prior_sacked - tp->sacked_out;
3081 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3082 		}
3083 
3084 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3085 
3086 		if (ca_ops->pkts_acked) {
3087 			s32 rtt_us = -1;
3088 
3089 			/* Is the ACK triggering packet unambiguous? */
3090 			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3091 				/* High resolution needed and available? */
3092 				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3093 				    !ktime_equal(last_ackt,
3094 						 net_invalid_timestamp()))
3095 					rtt_us = ktime_us_delta(ktime_get_real(),
3096 								last_ackt);
3097 				else if (ca_seq_rtt >= 0)
3098 					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3099 			}
3100 
3101 			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3102 		}
3103 	}
3104 
3105 #if FASTRETRANS_DEBUG > 0
3106 	WARN_ON((int)tp->sacked_out < 0);
3107 	WARN_ON((int)tp->lost_out < 0);
3108 	WARN_ON((int)tp->retrans_out < 0);
3109 	if (!tp->packets_out && tcp_is_sack(tp)) {
3110 		icsk = inet_csk(sk);
3111 		if (tp->lost_out) {
3112 			pr_debug("Leak l=%u %d\n",
3113 				 tp->lost_out, icsk->icsk_ca_state);
3114 			tp->lost_out = 0;
3115 		}
3116 		if (tp->sacked_out) {
3117 			pr_debug("Leak s=%u %d\n",
3118 				 tp->sacked_out, icsk->icsk_ca_state);
3119 			tp->sacked_out = 0;
3120 		}
3121 		if (tp->retrans_out) {
3122 			pr_debug("Leak r=%u %d\n",
3123 				 tp->retrans_out, icsk->icsk_ca_state);
3124 			tp->retrans_out = 0;
3125 		}
3126 	}
3127 #endif
3128 	return flag;
3129 }
3130 
3131 static void tcp_ack_probe(struct sock *sk)
3132 {
3133 	const struct tcp_sock *tp = tcp_sk(sk);
3134 	struct inet_connection_sock *icsk = inet_csk(sk);
3135 
3136 	/* Was it a usable window open? */
3137 
3138 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3139 		icsk->icsk_backoff = 0;
3140 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3141 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3142 		 * This function is not for random using!
3143 		 */
3144 	} else {
3145 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3146 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3147 					  TCP_RTO_MAX);
3148 	}
3149 }
3150 
3151 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3152 {
3153 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3154 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3155 }
3156 
3157 /* Decide wheather to run the increase function of congestion control. */
3158 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3159 {
3160 	if (tcp_in_cwnd_reduction(sk))
3161 		return false;
3162 
3163 	/* If reordering is high then always grow cwnd whenever data is
3164 	 * delivered regardless of its ordering. Otherwise stay conservative
3165 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3166 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3167 	 * cwnd in tcp_fastretrans_alert() based on more states.
3168 	 */
3169 	if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
3170 		return flag & FLAG_FORWARD_PROGRESS;
3171 
3172 	return flag & FLAG_DATA_ACKED;
3173 }
3174 
3175 /* Check that window update is acceptable.
3176  * The function assumes that snd_una<=ack<=snd_next.
3177  */
3178 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3179 					const u32 ack, const u32 ack_seq,
3180 					const u32 nwin)
3181 {
3182 	return	after(ack, tp->snd_una) ||
3183 		after(ack_seq, tp->snd_wl1) ||
3184 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3185 }
3186 
3187 /* Update our send window.
3188  *
3189  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3190  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3191  */
3192 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3193 				 u32 ack_seq)
3194 {
3195 	struct tcp_sock *tp = tcp_sk(sk);
3196 	int flag = 0;
3197 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3198 
3199 	if (likely(!tcp_hdr(skb)->syn))
3200 		nwin <<= tp->rx_opt.snd_wscale;
3201 
3202 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3203 		flag |= FLAG_WIN_UPDATE;
3204 		tcp_update_wl(tp, ack_seq);
3205 
3206 		if (tp->snd_wnd != nwin) {
3207 			tp->snd_wnd = nwin;
3208 
3209 			/* Note, it is the only place, where
3210 			 * fast path is recovered for sending TCP.
3211 			 */
3212 			tp->pred_flags = 0;
3213 			tcp_fast_path_check(sk);
3214 
3215 			if (nwin > tp->max_window) {
3216 				tp->max_window = nwin;
3217 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3218 			}
3219 		}
3220 	}
3221 
3222 	tp->snd_una = ack;
3223 
3224 	return flag;
3225 }
3226 
3227 /* RFC 5961 7 [ACK Throttling] */
3228 static void tcp_send_challenge_ack(struct sock *sk)
3229 {
3230 	/* unprotected vars, we dont care of overwrites */
3231 	static u32 challenge_timestamp;
3232 	static unsigned int challenge_count;
3233 	u32 now = jiffies / HZ;
3234 
3235 	if (now != challenge_timestamp) {
3236 		challenge_timestamp = now;
3237 		challenge_count = 0;
3238 	}
3239 	if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3240 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3241 		tcp_send_ack(sk);
3242 	}
3243 }
3244 
3245 static void tcp_store_ts_recent(struct tcp_sock *tp)
3246 {
3247 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3248 	tp->rx_opt.ts_recent_stamp = get_seconds();
3249 }
3250 
3251 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3252 {
3253 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3254 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3255 		 * extra check below makes sure this can only happen
3256 		 * for pure ACK frames.  -DaveM
3257 		 *
3258 		 * Not only, also it occurs for expired timestamps.
3259 		 */
3260 
3261 		if (tcp_paws_check(&tp->rx_opt, 0))
3262 			tcp_store_ts_recent(tp);
3263 	}
3264 }
3265 
3266 /* This routine deals with acks during a TLP episode.
3267  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3268  */
3269 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3270 {
3271 	struct tcp_sock *tp = tcp_sk(sk);
3272 	bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
3273 			     !(flag & (FLAG_SND_UNA_ADVANCED |
3274 				       FLAG_NOT_DUP | FLAG_DATA_SACKED));
3275 
3276 	/* Mark the end of TLP episode on receiving TLP dupack or when
3277 	 * ack is after tlp_high_seq.
3278 	 */
3279 	if (is_tlp_dupack) {
3280 		tp->tlp_high_seq = 0;
3281 		return;
3282 	}
3283 
3284 	if (after(ack, tp->tlp_high_seq)) {
3285 		tp->tlp_high_seq = 0;
3286 		/* Don't reduce cwnd if DSACK arrives for TLP retrans. */
3287 		if (!(flag & FLAG_DSACKING_ACK)) {
3288 			tcp_init_cwnd_reduction(sk, true);
3289 			tcp_set_ca_state(sk, TCP_CA_CWR);
3290 			tcp_end_cwnd_reduction(sk);
3291 			tcp_set_ca_state(sk, TCP_CA_Open);
3292 			NET_INC_STATS_BH(sock_net(sk),
3293 					 LINUX_MIB_TCPLOSSPROBERECOVERY);
3294 		}
3295 	}
3296 }
3297 
3298 /* This routine deals with incoming acks, but not outgoing ones. */
3299 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3300 {
3301 	struct inet_connection_sock *icsk = inet_csk(sk);
3302 	struct tcp_sock *tp = tcp_sk(sk);
3303 	u32 prior_snd_una = tp->snd_una;
3304 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3305 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3306 	bool is_dupack = false;
3307 	u32 prior_in_flight, prior_cwnd = tp->snd_cwnd, prior_rtt = tp->srtt;
3308 	u32 prior_fackets;
3309 	int prior_packets = tp->packets_out;
3310 	const int prior_unsacked = tp->packets_out - tp->sacked_out;
3311 	int acked = 0; /* Number of packets newly acked */
3312 	s32 sack_rtt = -1;
3313 
3314 	/* If the ack is older than previous acks
3315 	 * then we can probably ignore it.
3316 	 */
3317 	if (before(ack, prior_snd_una)) {
3318 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3319 		if (before(ack, prior_snd_una - tp->max_window)) {
3320 			tcp_send_challenge_ack(sk);
3321 			return -1;
3322 		}
3323 		goto old_ack;
3324 	}
3325 
3326 	/* If the ack includes data we haven't sent yet, discard
3327 	 * this segment (RFC793 Section 3.9).
3328 	 */
3329 	if (after(ack, tp->snd_nxt))
3330 		goto invalid_ack;
3331 
3332 	if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3333 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3334 		tcp_rearm_rto(sk);
3335 
3336 	if (after(ack, prior_snd_una))
3337 		flag |= FLAG_SND_UNA_ADVANCED;
3338 
3339 	prior_fackets = tp->fackets_out;
3340 	prior_in_flight = tcp_packets_in_flight(tp);
3341 
3342 	/* ts_recent update must be made after we are sure that the packet
3343 	 * is in window.
3344 	 */
3345 	if (flag & FLAG_UPDATE_TS_RECENT)
3346 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3347 
3348 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3349 		/* Window is constant, pure forward advance.
3350 		 * No more checks are required.
3351 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3352 		 */
3353 		tcp_update_wl(tp, ack_seq);
3354 		tp->snd_una = ack;
3355 		flag |= FLAG_WIN_UPDATE;
3356 
3357 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3358 
3359 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3360 	} else {
3361 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3362 			flag |= FLAG_DATA;
3363 		else
3364 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3365 
3366 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3367 
3368 		if (TCP_SKB_CB(skb)->sacked)
3369 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3370 							&sack_rtt);
3371 
3372 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3373 			flag |= FLAG_ECE;
3374 
3375 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3376 	}
3377 
3378 	/* We passed data and got it acked, remove any soft error
3379 	 * log. Something worked...
3380 	 */
3381 	sk->sk_err_soft = 0;
3382 	icsk->icsk_probes_out = 0;
3383 	tp->rcv_tstamp = tcp_time_stamp;
3384 	if (!prior_packets)
3385 		goto no_queue;
3386 
3387 	/* See if we can take anything off of the retransmit queue. */
3388 	acked = tp->packets_out;
3389 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, sack_rtt);
3390 	acked -= tp->packets_out;
3391 
3392 	/* Advance cwnd if state allows */
3393 	if (tcp_may_raise_cwnd(sk, flag))
3394 		tcp_cong_avoid(sk, ack, prior_in_flight);
3395 
3396 	if (tcp_ack_is_dubious(sk, flag)) {
3397 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3398 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3399 				      is_dupack, flag);
3400 	}
3401 	if (tp->tlp_high_seq)
3402 		tcp_process_tlp_ack(sk, ack, flag);
3403 
3404 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3405 		struct dst_entry *dst = __sk_dst_get(sk);
3406 		if (dst)
3407 			dst_confirm(dst);
3408 	}
3409 
3410 	if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3411 		tcp_schedule_loss_probe(sk);
3412 	if (tp->srtt != prior_rtt || tp->snd_cwnd != prior_cwnd)
3413 		tcp_update_pacing_rate(sk);
3414 	return 1;
3415 
3416 no_queue:
3417 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3418 	if (flag & FLAG_DSACKING_ACK)
3419 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3420 				      is_dupack, flag);
3421 	/* If this ack opens up a zero window, clear backoff.  It was
3422 	 * being used to time the probes, and is probably far higher than
3423 	 * it needs to be for normal retransmission.
3424 	 */
3425 	if (tcp_send_head(sk))
3426 		tcp_ack_probe(sk);
3427 
3428 	if (tp->tlp_high_seq)
3429 		tcp_process_tlp_ack(sk, ack, flag);
3430 	return 1;
3431 
3432 invalid_ack:
3433 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3434 	return -1;
3435 
3436 old_ack:
3437 	/* If data was SACKed, tag it and see if we should send more data.
3438 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3439 	 */
3440 	if (TCP_SKB_CB(skb)->sacked) {
3441 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3442 						&sack_rtt);
3443 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3444 				      is_dupack, flag);
3445 	}
3446 
3447 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3448 	return 0;
3449 }
3450 
3451 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3452  * But, this can also be called on packets in the established flow when
3453  * the fast version below fails.
3454  */
3455 void tcp_parse_options(const struct sk_buff *skb,
3456 		       struct tcp_options_received *opt_rx, int estab,
3457 		       struct tcp_fastopen_cookie *foc)
3458 {
3459 	const unsigned char *ptr;
3460 	const struct tcphdr *th = tcp_hdr(skb);
3461 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3462 
3463 	ptr = (const unsigned char *)(th + 1);
3464 	opt_rx->saw_tstamp = 0;
3465 
3466 	while (length > 0) {
3467 		int opcode = *ptr++;
3468 		int opsize;
3469 
3470 		switch (opcode) {
3471 		case TCPOPT_EOL:
3472 			return;
3473 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3474 			length--;
3475 			continue;
3476 		default:
3477 			opsize = *ptr++;
3478 			if (opsize < 2) /* "silly options" */
3479 				return;
3480 			if (opsize > length)
3481 				return;	/* don't parse partial options */
3482 			switch (opcode) {
3483 			case TCPOPT_MSS:
3484 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3485 					u16 in_mss = get_unaligned_be16(ptr);
3486 					if (in_mss) {
3487 						if (opt_rx->user_mss &&
3488 						    opt_rx->user_mss < in_mss)
3489 							in_mss = opt_rx->user_mss;
3490 						opt_rx->mss_clamp = in_mss;
3491 					}
3492 				}
3493 				break;
3494 			case TCPOPT_WINDOW:
3495 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3496 				    !estab && sysctl_tcp_window_scaling) {
3497 					__u8 snd_wscale = *(__u8 *)ptr;
3498 					opt_rx->wscale_ok = 1;
3499 					if (snd_wscale > 14) {
3500 						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3501 								     __func__,
3502 								     snd_wscale);
3503 						snd_wscale = 14;
3504 					}
3505 					opt_rx->snd_wscale = snd_wscale;
3506 				}
3507 				break;
3508 			case TCPOPT_TIMESTAMP:
3509 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3510 				    ((estab && opt_rx->tstamp_ok) ||
3511 				     (!estab && sysctl_tcp_timestamps))) {
3512 					opt_rx->saw_tstamp = 1;
3513 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3514 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3515 				}
3516 				break;
3517 			case TCPOPT_SACK_PERM:
3518 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3519 				    !estab && sysctl_tcp_sack) {
3520 					opt_rx->sack_ok = TCP_SACK_SEEN;
3521 					tcp_sack_reset(opt_rx);
3522 				}
3523 				break;
3524 
3525 			case TCPOPT_SACK:
3526 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3527 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3528 				   opt_rx->sack_ok) {
3529 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3530 				}
3531 				break;
3532 #ifdef CONFIG_TCP_MD5SIG
3533 			case TCPOPT_MD5SIG:
3534 				/*
3535 				 * The MD5 Hash has already been
3536 				 * checked (see tcp_v{4,6}_do_rcv()).
3537 				 */
3538 				break;
3539 #endif
3540 			case TCPOPT_EXP:
3541 				/* Fast Open option shares code 254 using a
3542 				 * 16 bits magic number. It's valid only in
3543 				 * SYN or SYN-ACK with an even size.
3544 				 */
3545 				if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3546 				    get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3547 				    foc == NULL || !th->syn || (opsize & 1))
3548 					break;
3549 				foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3550 				if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3551 				    foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3552 					memcpy(foc->val, ptr + 2, foc->len);
3553 				else if (foc->len != 0)
3554 					foc->len = -1;
3555 				break;
3556 
3557 			}
3558 			ptr += opsize-2;
3559 			length -= opsize;
3560 		}
3561 	}
3562 }
3563 EXPORT_SYMBOL(tcp_parse_options);
3564 
3565 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3566 {
3567 	const __be32 *ptr = (const __be32 *)(th + 1);
3568 
3569 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3570 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3571 		tp->rx_opt.saw_tstamp = 1;
3572 		++ptr;
3573 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3574 		++ptr;
3575 		if (*ptr)
3576 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3577 		else
3578 			tp->rx_opt.rcv_tsecr = 0;
3579 		return true;
3580 	}
3581 	return false;
3582 }
3583 
3584 /* Fast parse options. This hopes to only see timestamps.
3585  * If it is wrong it falls back on tcp_parse_options().
3586  */
3587 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3588 				   const struct tcphdr *th, struct tcp_sock *tp)
3589 {
3590 	/* In the spirit of fast parsing, compare doff directly to constant
3591 	 * values.  Because equality is used, short doff can be ignored here.
3592 	 */
3593 	if (th->doff == (sizeof(*th) / 4)) {
3594 		tp->rx_opt.saw_tstamp = 0;
3595 		return false;
3596 	} else if (tp->rx_opt.tstamp_ok &&
3597 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3598 		if (tcp_parse_aligned_timestamp(tp, th))
3599 			return true;
3600 	}
3601 
3602 	tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3603 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3604 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3605 
3606 	return true;
3607 }
3608 
3609 #ifdef CONFIG_TCP_MD5SIG
3610 /*
3611  * Parse MD5 Signature option
3612  */
3613 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3614 {
3615 	int length = (th->doff << 2) - sizeof(*th);
3616 	const u8 *ptr = (const u8 *)(th + 1);
3617 
3618 	/* If the TCP option is too short, we can short cut */
3619 	if (length < TCPOLEN_MD5SIG)
3620 		return NULL;
3621 
3622 	while (length > 0) {
3623 		int opcode = *ptr++;
3624 		int opsize;
3625 
3626 		switch(opcode) {
3627 		case TCPOPT_EOL:
3628 			return NULL;
3629 		case TCPOPT_NOP:
3630 			length--;
3631 			continue;
3632 		default:
3633 			opsize = *ptr++;
3634 			if (opsize < 2 || opsize > length)
3635 				return NULL;
3636 			if (opcode == TCPOPT_MD5SIG)
3637 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3638 		}
3639 		ptr += opsize - 2;
3640 		length -= opsize;
3641 	}
3642 	return NULL;
3643 }
3644 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3645 #endif
3646 
3647 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3648  *
3649  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3650  * it can pass through stack. So, the following predicate verifies that
3651  * this segment is not used for anything but congestion avoidance or
3652  * fast retransmit. Moreover, we even are able to eliminate most of such
3653  * second order effects, if we apply some small "replay" window (~RTO)
3654  * to timestamp space.
3655  *
3656  * All these measures still do not guarantee that we reject wrapped ACKs
3657  * on networks with high bandwidth, when sequence space is recycled fastly,
3658  * but it guarantees that such events will be very rare and do not affect
3659  * connection seriously. This doesn't look nice, but alas, PAWS is really
3660  * buggy extension.
3661  *
3662  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3663  * states that events when retransmit arrives after original data are rare.
3664  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3665  * the biggest problem on large power networks even with minor reordering.
3666  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3667  * up to bandwidth of 18Gigabit/sec. 8) ]
3668  */
3669 
3670 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3671 {
3672 	const struct tcp_sock *tp = tcp_sk(sk);
3673 	const struct tcphdr *th = tcp_hdr(skb);
3674 	u32 seq = TCP_SKB_CB(skb)->seq;
3675 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3676 
3677 	return (/* 1. Pure ACK with correct sequence number. */
3678 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3679 
3680 		/* 2. ... and duplicate ACK. */
3681 		ack == tp->snd_una &&
3682 
3683 		/* 3. ... and does not update window. */
3684 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3685 
3686 		/* 4. ... and sits in replay window. */
3687 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3688 }
3689 
3690 static inline bool tcp_paws_discard(const struct sock *sk,
3691 				   const struct sk_buff *skb)
3692 {
3693 	const struct tcp_sock *tp = tcp_sk(sk);
3694 
3695 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3696 	       !tcp_disordered_ack(sk, skb);
3697 }
3698 
3699 /* Check segment sequence number for validity.
3700  *
3701  * Segment controls are considered valid, if the segment
3702  * fits to the window after truncation to the window. Acceptability
3703  * of data (and SYN, FIN, of course) is checked separately.
3704  * See tcp_data_queue(), for example.
3705  *
3706  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3707  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3708  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3709  * (borrowed from freebsd)
3710  */
3711 
3712 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3713 {
3714 	return	!before(end_seq, tp->rcv_wup) &&
3715 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3716 }
3717 
3718 /* When we get a reset we do this. */
3719 void tcp_reset(struct sock *sk)
3720 {
3721 	/* We want the right error as BSD sees it (and indeed as we do). */
3722 	switch (sk->sk_state) {
3723 	case TCP_SYN_SENT:
3724 		sk->sk_err = ECONNREFUSED;
3725 		break;
3726 	case TCP_CLOSE_WAIT:
3727 		sk->sk_err = EPIPE;
3728 		break;
3729 	case TCP_CLOSE:
3730 		return;
3731 	default:
3732 		sk->sk_err = ECONNRESET;
3733 	}
3734 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
3735 	smp_wmb();
3736 
3737 	if (!sock_flag(sk, SOCK_DEAD))
3738 		sk->sk_error_report(sk);
3739 
3740 	tcp_done(sk);
3741 }
3742 
3743 /*
3744  * 	Process the FIN bit. This now behaves as it is supposed to work
3745  *	and the FIN takes effect when it is validly part of sequence
3746  *	space. Not before when we get holes.
3747  *
3748  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3749  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3750  *	TIME-WAIT)
3751  *
3752  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3753  *	close and we go into CLOSING (and later onto TIME-WAIT)
3754  *
3755  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3756  */
3757 static void tcp_fin(struct sock *sk)
3758 {
3759 	struct tcp_sock *tp = tcp_sk(sk);
3760 	const struct dst_entry *dst;
3761 
3762 	inet_csk_schedule_ack(sk);
3763 
3764 	sk->sk_shutdown |= RCV_SHUTDOWN;
3765 	sock_set_flag(sk, SOCK_DONE);
3766 
3767 	switch (sk->sk_state) {
3768 	case TCP_SYN_RECV:
3769 	case TCP_ESTABLISHED:
3770 		/* Move to CLOSE_WAIT */
3771 		tcp_set_state(sk, TCP_CLOSE_WAIT);
3772 		dst = __sk_dst_get(sk);
3773 		if (!dst || !dst_metric(dst, RTAX_QUICKACK))
3774 			inet_csk(sk)->icsk_ack.pingpong = 1;
3775 		break;
3776 
3777 	case TCP_CLOSE_WAIT:
3778 	case TCP_CLOSING:
3779 		/* Received a retransmission of the FIN, do
3780 		 * nothing.
3781 		 */
3782 		break;
3783 	case TCP_LAST_ACK:
3784 		/* RFC793: Remain in the LAST-ACK state. */
3785 		break;
3786 
3787 	case TCP_FIN_WAIT1:
3788 		/* This case occurs when a simultaneous close
3789 		 * happens, we must ack the received FIN and
3790 		 * enter the CLOSING state.
3791 		 */
3792 		tcp_send_ack(sk);
3793 		tcp_set_state(sk, TCP_CLOSING);
3794 		break;
3795 	case TCP_FIN_WAIT2:
3796 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
3797 		tcp_send_ack(sk);
3798 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3799 		break;
3800 	default:
3801 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
3802 		 * cases we should never reach this piece of code.
3803 		 */
3804 		pr_err("%s: Impossible, sk->sk_state=%d\n",
3805 		       __func__, sk->sk_state);
3806 		break;
3807 	}
3808 
3809 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
3810 	 * Probably, we should reset in this case. For now drop them.
3811 	 */
3812 	__skb_queue_purge(&tp->out_of_order_queue);
3813 	if (tcp_is_sack(tp))
3814 		tcp_sack_reset(&tp->rx_opt);
3815 	sk_mem_reclaim(sk);
3816 
3817 	if (!sock_flag(sk, SOCK_DEAD)) {
3818 		sk->sk_state_change(sk);
3819 
3820 		/* Do not send POLL_HUP for half duplex close. */
3821 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
3822 		    sk->sk_state == TCP_CLOSE)
3823 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3824 		else
3825 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3826 	}
3827 }
3828 
3829 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3830 				  u32 end_seq)
3831 {
3832 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3833 		if (before(seq, sp->start_seq))
3834 			sp->start_seq = seq;
3835 		if (after(end_seq, sp->end_seq))
3836 			sp->end_seq = end_seq;
3837 		return true;
3838 	}
3839 	return false;
3840 }
3841 
3842 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3843 {
3844 	struct tcp_sock *tp = tcp_sk(sk);
3845 
3846 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3847 		int mib_idx;
3848 
3849 		if (before(seq, tp->rcv_nxt))
3850 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3851 		else
3852 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3853 
3854 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
3855 
3856 		tp->rx_opt.dsack = 1;
3857 		tp->duplicate_sack[0].start_seq = seq;
3858 		tp->duplicate_sack[0].end_seq = end_seq;
3859 	}
3860 }
3861 
3862 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3863 {
3864 	struct tcp_sock *tp = tcp_sk(sk);
3865 
3866 	if (!tp->rx_opt.dsack)
3867 		tcp_dsack_set(sk, seq, end_seq);
3868 	else
3869 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3870 }
3871 
3872 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
3873 {
3874 	struct tcp_sock *tp = tcp_sk(sk);
3875 
3876 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3877 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3878 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3879 		tcp_enter_quickack_mode(sk);
3880 
3881 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3882 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3883 
3884 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3885 				end_seq = tp->rcv_nxt;
3886 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3887 		}
3888 	}
3889 
3890 	tcp_send_ack(sk);
3891 }
3892 
3893 /* These routines update the SACK block as out-of-order packets arrive or
3894  * in-order packets close up the sequence space.
3895  */
3896 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3897 {
3898 	int this_sack;
3899 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3900 	struct tcp_sack_block *swalk = sp + 1;
3901 
3902 	/* See if the recent change to the first SACK eats into
3903 	 * or hits the sequence space of other SACK blocks, if so coalesce.
3904 	 */
3905 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3906 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3907 			int i;
3908 
3909 			/* Zap SWALK, by moving every further SACK up by one slot.
3910 			 * Decrease num_sacks.
3911 			 */
3912 			tp->rx_opt.num_sacks--;
3913 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3914 				sp[i] = sp[i + 1];
3915 			continue;
3916 		}
3917 		this_sack++, swalk++;
3918 	}
3919 }
3920 
3921 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3922 {
3923 	struct tcp_sock *tp = tcp_sk(sk);
3924 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3925 	int cur_sacks = tp->rx_opt.num_sacks;
3926 	int this_sack;
3927 
3928 	if (!cur_sacks)
3929 		goto new_sack;
3930 
3931 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3932 		if (tcp_sack_extend(sp, seq, end_seq)) {
3933 			/* Rotate this_sack to the first one. */
3934 			for (; this_sack > 0; this_sack--, sp--)
3935 				swap(*sp, *(sp - 1));
3936 			if (cur_sacks > 1)
3937 				tcp_sack_maybe_coalesce(tp);
3938 			return;
3939 		}
3940 	}
3941 
3942 	/* Could not find an adjacent existing SACK, build a new one,
3943 	 * put it at the front, and shift everyone else down.  We
3944 	 * always know there is at least one SACK present already here.
3945 	 *
3946 	 * If the sack array is full, forget about the last one.
3947 	 */
3948 	if (this_sack >= TCP_NUM_SACKS) {
3949 		this_sack--;
3950 		tp->rx_opt.num_sacks--;
3951 		sp--;
3952 	}
3953 	for (; this_sack > 0; this_sack--, sp--)
3954 		*sp = *(sp - 1);
3955 
3956 new_sack:
3957 	/* Build the new head SACK, and we're done. */
3958 	sp->start_seq = seq;
3959 	sp->end_seq = end_seq;
3960 	tp->rx_opt.num_sacks++;
3961 }
3962 
3963 /* RCV.NXT advances, some SACKs should be eaten. */
3964 
3965 static void tcp_sack_remove(struct tcp_sock *tp)
3966 {
3967 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3968 	int num_sacks = tp->rx_opt.num_sacks;
3969 	int this_sack;
3970 
3971 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3972 	if (skb_queue_empty(&tp->out_of_order_queue)) {
3973 		tp->rx_opt.num_sacks = 0;
3974 		return;
3975 	}
3976 
3977 	for (this_sack = 0; this_sack < num_sacks;) {
3978 		/* Check if the start of the sack is covered by RCV.NXT. */
3979 		if (!before(tp->rcv_nxt, sp->start_seq)) {
3980 			int i;
3981 
3982 			/* RCV.NXT must cover all the block! */
3983 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
3984 
3985 			/* Zap this SACK, by moving forward any other SACKS. */
3986 			for (i=this_sack+1; i < num_sacks; i++)
3987 				tp->selective_acks[i-1] = tp->selective_acks[i];
3988 			num_sacks--;
3989 			continue;
3990 		}
3991 		this_sack++;
3992 		sp++;
3993 	}
3994 	tp->rx_opt.num_sacks = num_sacks;
3995 }
3996 
3997 /* This one checks to see if we can put data from the
3998  * out_of_order queue into the receive_queue.
3999  */
4000 static void tcp_ofo_queue(struct sock *sk)
4001 {
4002 	struct tcp_sock *tp = tcp_sk(sk);
4003 	__u32 dsack_high = tp->rcv_nxt;
4004 	struct sk_buff *skb;
4005 
4006 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4007 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4008 			break;
4009 
4010 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4011 			__u32 dsack = dsack_high;
4012 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4013 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4014 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4015 		}
4016 
4017 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4018 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4019 			__skb_unlink(skb, &tp->out_of_order_queue);
4020 			__kfree_skb(skb);
4021 			continue;
4022 		}
4023 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4024 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4025 			   TCP_SKB_CB(skb)->end_seq);
4026 
4027 		__skb_unlink(skb, &tp->out_of_order_queue);
4028 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4029 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4030 		if (tcp_hdr(skb)->fin)
4031 			tcp_fin(sk);
4032 	}
4033 }
4034 
4035 static bool tcp_prune_ofo_queue(struct sock *sk);
4036 static int tcp_prune_queue(struct sock *sk);
4037 
4038 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4039 				 unsigned int size)
4040 {
4041 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4042 	    !sk_rmem_schedule(sk, skb, size)) {
4043 
4044 		if (tcp_prune_queue(sk) < 0)
4045 			return -1;
4046 
4047 		if (!sk_rmem_schedule(sk, skb, size)) {
4048 			if (!tcp_prune_ofo_queue(sk))
4049 				return -1;
4050 
4051 			if (!sk_rmem_schedule(sk, skb, size))
4052 				return -1;
4053 		}
4054 	}
4055 	return 0;
4056 }
4057 
4058 /**
4059  * tcp_try_coalesce - try to merge skb to prior one
4060  * @sk: socket
4061  * @to: prior buffer
4062  * @from: buffer to add in queue
4063  * @fragstolen: pointer to boolean
4064  *
4065  * Before queueing skb @from after @to, try to merge them
4066  * to reduce overall memory use and queue lengths, if cost is small.
4067  * Packets in ofo or receive queues can stay a long time.
4068  * Better try to coalesce them right now to avoid future collapses.
4069  * Returns true if caller should free @from instead of queueing it
4070  */
4071 static bool tcp_try_coalesce(struct sock *sk,
4072 			     struct sk_buff *to,
4073 			     struct sk_buff *from,
4074 			     bool *fragstolen)
4075 {
4076 	int delta;
4077 
4078 	*fragstolen = false;
4079 
4080 	if (tcp_hdr(from)->fin)
4081 		return false;
4082 
4083 	/* Its possible this segment overlaps with prior segment in queue */
4084 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4085 		return false;
4086 
4087 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4088 		return false;
4089 
4090 	atomic_add(delta, &sk->sk_rmem_alloc);
4091 	sk_mem_charge(sk, delta);
4092 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4093 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4094 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4095 	return true;
4096 }
4097 
4098 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4099 {
4100 	struct tcp_sock *tp = tcp_sk(sk);
4101 	struct sk_buff *skb1;
4102 	u32 seq, end_seq;
4103 
4104 	TCP_ECN_check_ce(tp, skb);
4105 
4106 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4107 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4108 		__kfree_skb(skb);
4109 		return;
4110 	}
4111 
4112 	/* Disable header prediction. */
4113 	tp->pred_flags = 0;
4114 	inet_csk_schedule_ack(sk);
4115 
4116 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4117 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4118 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4119 
4120 	skb1 = skb_peek_tail(&tp->out_of_order_queue);
4121 	if (!skb1) {
4122 		/* Initial out of order segment, build 1 SACK. */
4123 		if (tcp_is_sack(tp)) {
4124 			tp->rx_opt.num_sacks = 1;
4125 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4126 			tp->selective_acks[0].end_seq =
4127 						TCP_SKB_CB(skb)->end_seq;
4128 		}
4129 		__skb_queue_head(&tp->out_of_order_queue, skb);
4130 		goto end;
4131 	}
4132 
4133 	seq = TCP_SKB_CB(skb)->seq;
4134 	end_seq = TCP_SKB_CB(skb)->end_seq;
4135 
4136 	if (seq == TCP_SKB_CB(skb1)->end_seq) {
4137 		bool fragstolen;
4138 
4139 		if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4140 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4141 		} else {
4142 			tcp_grow_window(sk, skb);
4143 			kfree_skb_partial(skb, fragstolen);
4144 			skb = NULL;
4145 		}
4146 
4147 		if (!tp->rx_opt.num_sacks ||
4148 		    tp->selective_acks[0].end_seq != seq)
4149 			goto add_sack;
4150 
4151 		/* Common case: data arrive in order after hole. */
4152 		tp->selective_acks[0].end_seq = end_seq;
4153 		goto end;
4154 	}
4155 
4156 	/* Find place to insert this segment. */
4157 	while (1) {
4158 		if (!after(TCP_SKB_CB(skb1)->seq, seq))
4159 			break;
4160 		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4161 			skb1 = NULL;
4162 			break;
4163 		}
4164 		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4165 	}
4166 
4167 	/* Do skb overlap to previous one? */
4168 	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4169 		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4170 			/* All the bits are present. Drop. */
4171 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4172 			__kfree_skb(skb);
4173 			skb = NULL;
4174 			tcp_dsack_set(sk, seq, end_seq);
4175 			goto add_sack;
4176 		}
4177 		if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4178 			/* Partial overlap. */
4179 			tcp_dsack_set(sk, seq,
4180 				      TCP_SKB_CB(skb1)->end_seq);
4181 		} else {
4182 			if (skb_queue_is_first(&tp->out_of_order_queue,
4183 					       skb1))
4184 				skb1 = NULL;
4185 			else
4186 				skb1 = skb_queue_prev(
4187 					&tp->out_of_order_queue,
4188 					skb1);
4189 		}
4190 	}
4191 	if (!skb1)
4192 		__skb_queue_head(&tp->out_of_order_queue, skb);
4193 	else
4194 		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4195 
4196 	/* And clean segments covered by new one as whole. */
4197 	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4198 		skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4199 
4200 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4201 			break;
4202 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4203 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4204 					 end_seq);
4205 			break;
4206 		}
4207 		__skb_unlink(skb1, &tp->out_of_order_queue);
4208 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4209 				 TCP_SKB_CB(skb1)->end_seq);
4210 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4211 		__kfree_skb(skb1);
4212 	}
4213 
4214 add_sack:
4215 	if (tcp_is_sack(tp))
4216 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4217 end:
4218 	if (skb) {
4219 		tcp_grow_window(sk, skb);
4220 		skb_set_owner_r(skb, sk);
4221 	}
4222 }
4223 
4224 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4225 		  bool *fragstolen)
4226 {
4227 	int eaten;
4228 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4229 
4230 	__skb_pull(skb, hdrlen);
4231 	eaten = (tail &&
4232 		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4233 	tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4234 	if (!eaten) {
4235 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4236 		skb_set_owner_r(skb, sk);
4237 	}
4238 	return eaten;
4239 }
4240 
4241 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4242 {
4243 	struct sk_buff *skb = NULL;
4244 	struct tcphdr *th;
4245 	bool fragstolen;
4246 
4247 	if (size == 0)
4248 		return 0;
4249 
4250 	skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4251 	if (!skb)
4252 		goto err;
4253 
4254 	if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
4255 		goto err_free;
4256 
4257 	th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4258 	skb_reset_transport_header(skb);
4259 	memset(th, 0, sizeof(*th));
4260 
4261 	if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4262 		goto err_free;
4263 
4264 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4265 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4266 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4267 
4268 	if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4269 		WARN_ON_ONCE(fragstolen); /* should not happen */
4270 		__kfree_skb(skb);
4271 	}
4272 	return size;
4273 
4274 err_free:
4275 	kfree_skb(skb);
4276 err:
4277 	return -ENOMEM;
4278 }
4279 
4280 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4281 {
4282 	const struct tcphdr *th = tcp_hdr(skb);
4283 	struct tcp_sock *tp = tcp_sk(sk);
4284 	int eaten = -1;
4285 	bool fragstolen = false;
4286 
4287 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4288 		goto drop;
4289 
4290 	skb_dst_drop(skb);
4291 	__skb_pull(skb, th->doff * 4);
4292 
4293 	TCP_ECN_accept_cwr(tp, skb);
4294 
4295 	tp->rx_opt.dsack = 0;
4296 
4297 	/*  Queue data for delivery to the user.
4298 	 *  Packets in sequence go to the receive queue.
4299 	 *  Out of sequence packets to the out_of_order_queue.
4300 	 */
4301 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4302 		if (tcp_receive_window(tp) == 0)
4303 			goto out_of_window;
4304 
4305 		/* Ok. In sequence. In window. */
4306 		if (tp->ucopy.task == current &&
4307 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4308 		    sock_owned_by_user(sk) && !tp->urg_data) {
4309 			int chunk = min_t(unsigned int, skb->len,
4310 					  tp->ucopy.len);
4311 
4312 			__set_current_state(TASK_RUNNING);
4313 
4314 			local_bh_enable();
4315 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4316 				tp->ucopy.len -= chunk;
4317 				tp->copied_seq += chunk;
4318 				eaten = (chunk == skb->len);
4319 				tcp_rcv_space_adjust(sk);
4320 			}
4321 			local_bh_disable();
4322 		}
4323 
4324 		if (eaten <= 0) {
4325 queue_and_out:
4326 			if (eaten < 0 &&
4327 			    tcp_try_rmem_schedule(sk, skb, skb->truesize))
4328 				goto drop;
4329 
4330 			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4331 		}
4332 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4333 		if (skb->len)
4334 			tcp_event_data_recv(sk, skb);
4335 		if (th->fin)
4336 			tcp_fin(sk);
4337 
4338 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4339 			tcp_ofo_queue(sk);
4340 
4341 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4342 			 * gap in queue is filled.
4343 			 */
4344 			if (skb_queue_empty(&tp->out_of_order_queue))
4345 				inet_csk(sk)->icsk_ack.pingpong = 0;
4346 		}
4347 
4348 		if (tp->rx_opt.num_sacks)
4349 			tcp_sack_remove(tp);
4350 
4351 		tcp_fast_path_check(sk);
4352 
4353 		if (eaten > 0)
4354 			kfree_skb_partial(skb, fragstolen);
4355 		if (!sock_flag(sk, SOCK_DEAD))
4356 			sk->sk_data_ready(sk, 0);
4357 		return;
4358 	}
4359 
4360 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4361 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4362 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4363 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4364 
4365 out_of_window:
4366 		tcp_enter_quickack_mode(sk);
4367 		inet_csk_schedule_ack(sk);
4368 drop:
4369 		__kfree_skb(skb);
4370 		return;
4371 	}
4372 
4373 	/* Out of window. F.e. zero window probe. */
4374 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4375 		goto out_of_window;
4376 
4377 	tcp_enter_quickack_mode(sk);
4378 
4379 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4380 		/* Partial packet, seq < rcv_next < end_seq */
4381 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4382 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4383 			   TCP_SKB_CB(skb)->end_seq);
4384 
4385 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4386 
4387 		/* If window is closed, drop tail of packet. But after
4388 		 * remembering D-SACK for its head made in previous line.
4389 		 */
4390 		if (!tcp_receive_window(tp))
4391 			goto out_of_window;
4392 		goto queue_and_out;
4393 	}
4394 
4395 	tcp_data_queue_ofo(sk, skb);
4396 }
4397 
4398 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4399 					struct sk_buff_head *list)
4400 {
4401 	struct sk_buff *next = NULL;
4402 
4403 	if (!skb_queue_is_last(list, skb))
4404 		next = skb_queue_next(list, skb);
4405 
4406 	__skb_unlink(skb, list);
4407 	__kfree_skb(skb);
4408 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4409 
4410 	return next;
4411 }
4412 
4413 /* Collapse contiguous sequence of skbs head..tail with
4414  * sequence numbers start..end.
4415  *
4416  * If tail is NULL, this means until the end of the list.
4417  *
4418  * Segments with FIN/SYN are not collapsed (only because this
4419  * simplifies code)
4420  */
4421 static void
4422 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4423 	     struct sk_buff *head, struct sk_buff *tail,
4424 	     u32 start, u32 end)
4425 {
4426 	struct sk_buff *skb, *n;
4427 	bool end_of_skbs;
4428 
4429 	/* First, check that queue is collapsible and find
4430 	 * the point where collapsing can be useful. */
4431 	skb = head;
4432 restart:
4433 	end_of_skbs = true;
4434 	skb_queue_walk_from_safe(list, skb, n) {
4435 		if (skb == tail)
4436 			break;
4437 		/* No new bits? It is possible on ofo queue. */
4438 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4439 			skb = tcp_collapse_one(sk, skb, list);
4440 			if (!skb)
4441 				break;
4442 			goto restart;
4443 		}
4444 
4445 		/* The first skb to collapse is:
4446 		 * - not SYN/FIN and
4447 		 * - bloated or contains data before "start" or
4448 		 *   overlaps to the next one.
4449 		 */
4450 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4451 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4452 		     before(TCP_SKB_CB(skb)->seq, start))) {
4453 			end_of_skbs = false;
4454 			break;
4455 		}
4456 
4457 		if (!skb_queue_is_last(list, skb)) {
4458 			struct sk_buff *next = skb_queue_next(list, skb);
4459 			if (next != tail &&
4460 			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4461 				end_of_skbs = false;
4462 				break;
4463 			}
4464 		}
4465 
4466 		/* Decided to skip this, advance start seq. */
4467 		start = TCP_SKB_CB(skb)->end_seq;
4468 	}
4469 	if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4470 		return;
4471 
4472 	while (before(start, end)) {
4473 		struct sk_buff *nskb;
4474 		unsigned int header = skb_headroom(skb);
4475 		int copy = SKB_MAX_ORDER(header, 0);
4476 
4477 		/* Too big header? This can happen with IPv6. */
4478 		if (copy < 0)
4479 			return;
4480 		if (end - start < copy)
4481 			copy = end - start;
4482 		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4483 		if (!nskb)
4484 			return;
4485 
4486 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4487 		skb_set_network_header(nskb, (skb_network_header(skb) -
4488 					      skb->head));
4489 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4490 						skb->head));
4491 		skb_reserve(nskb, header);
4492 		memcpy(nskb->head, skb->head, header);
4493 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4494 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4495 		__skb_queue_before(list, skb, nskb);
4496 		skb_set_owner_r(nskb, sk);
4497 
4498 		/* Copy data, releasing collapsed skbs. */
4499 		while (copy > 0) {
4500 			int offset = start - TCP_SKB_CB(skb)->seq;
4501 			int size = TCP_SKB_CB(skb)->end_seq - start;
4502 
4503 			BUG_ON(offset < 0);
4504 			if (size > 0) {
4505 				size = min(copy, size);
4506 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4507 					BUG();
4508 				TCP_SKB_CB(nskb)->end_seq += size;
4509 				copy -= size;
4510 				start += size;
4511 			}
4512 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4513 				skb = tcp_collapse_one(sk, skb, list);
4514 				if (!skb ||
4515 				    skb == tail ||
4516 				    tcp_hdr(skb)->syn ||
4517 				    tcp_hdr(skb)->fin)
4518 					return;
4519 			}
4520 		}
4521 	}
4522 }
4523 
4524 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4525  * and tcp_collapse() them until all the queue is collapsed.
4526  */
4527 static void tcp_collapse_ofo_queue(struct sock *sk)
4528 {
4529 	struct tcp_sock *tp = tcp_sk(sk);
4530 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4531 	struct sk_buff *head;
4532 	u32 start, end;
4533 
4534 	if (skb == NULL)
4535 		return;
4536 
4537 	start = TCP_SKB_CB(skb)->seq;
4538 	end = TCP_SKB_CB(skb)->end_seq;
4539 	head = skb;
4540 
4541 	for (;;) {
4542 		struct sk_buff *next = NULL;
4543 
4544 		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4545 			next = skb_queue_next(&tp->out_of_order_queue, skb);
4546 		skb = next;
4547 
4548 		/* Segment is terminated when we see gap or when
4549 		 * we are at the end of all the queue. */
4550 		if (!skb ||
4551 		    after(TCP_SKB_CB(skb)->seq, end) ||
4552 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4553 			tcp_collapse(sk, &tp->out_of_order_queue,
4554 				     head, skb, start, end);
4555 			head = skb;
4556 			if (!skb)
4557 				break;
4558 			/* Start new segment */
4559 			start = TCP_SKB_CB(skb)->seq;
4560 			end = TCP_SKB_CB(skb)->end_seq;
4561 		} else {
4562 			if (before(TCP_SKB_CB(skb)->seq, start))
4563 				start = TCP_SKB_CB(skb)->seq;
4564 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4565 				end = TCP_SKB_CB(skb)->end_seq;
4566 		}
4567 	}
4568 }
4569 
4570 /*
4571  * Purge the out-of-order queue.
4572  * Return true if queue was pruned.
4573  */
4574 static bool tcp_prune_ofo_queue(struct sock *sk)
4575 {
4576 	struct tcp_sock *tp = tcp_sk(sk);
4577 	bool res = false;
4578 
4579 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4580 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4581 		__skb_queue_purge(&tp->out_of_order_queue);
4582 
4583 		/* Reset SACK state.  A conforming SACK implementation will
4584 		 * do the same at a timeout based retransmit.  When a connection
4585 		 * is in a sad state like this, we care only about integrity
4586 		 * of the connection not performance.
4587 		 */
4588 		if (tp->rx_opt.sack_ok)
4589 			tcp_sack_reset(&tp->rx_opt);
4590 		sk_mem_reclaim(sk);
4591 		res = true;
4592 	}
4593 	return res;
4594 }
4595 
4596 /* Reduce allocated memory if we can, trying to get
4597  * the socket within its memory limits again.
4598  *
4599  * Return less than zero if we should start dropping frames
4600  * until the socket owning process reads some of the data
4601  * to stabilize the situation.
4602  */
4603 static int tcp_prune_queue(struct sock *sk)
4604 {
4605 	struct tcp_sock *tp = tcp_sk(sk);
4606 
4607 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4608 
4609 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4610 
4611 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4612 		tcp_clamp_window(sk);
4613 	else if (sk_under_memory_pressure(sk))
4614 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4615 
4616 	tcp_collapse_ofo_queue(sk);
4617 	if (!skb_queue_empty(&sk->sk_receive_queue))
4618 		tcp_collapse(sk, &sk->sk_receive_queue,
4619 			     skb_peek(&sk->sk_receive_queue),
4620 			     NULL,
4621 			     tp->copied_seq, tp->rcv_nxt);
4622 	sk_mem_reclaim(sk);
4623 
4624 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4625 		return 0;
4626 
4627 	/* Collapsing did not help, destructive actions follow.
4628 	 * This must not ever occur. */
4629 
4630 	tcp_prune_ofo_queue(sk);
4631 
4632 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4633 		return 0;
4634 
4635 	/* If we are really being abused, tell the caller to silently
4636 	 * drop receive data on the floor.  It will get retransmitted
4637 	 * and hopefully then we'll have sufficient space.
4638 	 */
4639 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4640 
4641 	/* Massive buffer overcommit. */
4642 	tp->pred_flags = 0;
4643 	return -1;
4644 }
4645 
4646 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4647  * As additional protections, we do not touch cwnd in retransmission phases,
4648  * and if application hit its sndbuf limit recently.
4649  */
4650 void tcp_cwnd_application_limited(struct sock *sk)
4651 {
4652 	struct tcp_sock *tp = tcp_sk(sk);
4653 
4654 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4655 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4656 		/* Limited by application or receiver window. */
4657 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4658 		u32 win_used = max(tp->snd_cwnd_used, init_win);
4659 		if (win_used < tp->snd_cwnd) {
4660 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4661 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4662 		}
4663 		tp->snd_cwnd_used = 0;
4664 	}
4665 	tp->snd_cwnd_stamp = tcp_time_stamp;
4666 }
4667 
4668 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4669 {
4670 	const struct tcp_sock *tp = tcp_sk(sk);
4671 
4672 	/* If the user specified a specific send buffer setting, do
4673 	 * not modify it.
4674 	 */
4675 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4676 		return false;
4677 
4678 	/* If we are under global TCP memory pressure, do not expand.  */
4679 	if (sk_under_memory_pressure(sk))
4680 		return false;
4681 
4682 	/* If we are under soft global TCP memory pressure, do not expand.  */
4683 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4684 		return false;
4685 
4686 	/* If we filled the congestion window, do not expand.  */
4687 	if (tp->packets_out >= tp->snd_cwnd)
4688 		return false;
4689 
4690 	return true;
4691 }
4692 
4693 /* When incoming ACK allowed to free some skb from write_queue,
4694  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4695  * on the exit from tcp input handler.
4696  *
4697  * PROBLEM: sndbuf expansion does not work well with largesend.
4698  */
4699 static void tcp_new_space(struct sock *sk)
4700 {
4701 	struct tcp_sock *tp = tcp_sk(sk);
4702 
4703 	if (tcp_should_expand_sndbuf(sk)) {
4704 		int sndmem = SKB_TRUESIZE(max_t(u32,
4705 						tp->rx_opt.mss_clamp,
4706 						tp->mss_cache) +
4707 					  MAX_TCP_HEADER);
4708 		int demanded = max_t(unsigned int, tp->snd_cwnd,
4709 				     tp->reordering + 1);
4710 		sndmem *= 2 * demanded;
4711 		if (sndmem > sk->sk_sndbuf)
4712 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4713 		tp->snd_cwnd_stamp = tcp_time_stamp;
4714 	}
4715 
4716 	sk->sk_write_space(sk);
4717 }
4718 
4719 static void tcp_check_space(struct sock *sk)
4720 {
4721 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4722 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4723 		if (sk->sk_socket &&
4724 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4725 			tcp_new_space(sk);
4726 	}
4727 }
4728 
4729 static inline void tcp_data_snd_check(struct sock *sk)
4730 {
4731 	tcp_push_pending_frames(sk);
4732 	tcp_check_space(sk);
4733 }
4734 
4735 /*
4736  * Check if sending an ack is needed.
4737  */
4738 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4739 {
4740 	struct tcp_sock *tp = tcp_sk(sk);
4741 
4742 	    /* More than one full frame received... */
4743 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4744 	     /* ... and right edge of window advances far enough.
4745 	      * (tcp_recvmsg() will send ACK otherwise). Or...
4746 	      */
4747 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
4748 	    /* We ACK each frame or... */
4749 	    tcp_in_quickack_mode(sk) ||
4750 	    /* We have out of order data. */
4751 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4752 		/* Then ack it now */
4753 		tcp_send_ack(sk);
4754 	} else {
4755 		/* Else, send delayed ack. */
4756 		tcp_send_delayed_ack(sk);
4757 	}
4758 }
4759 
4760 static inline void tcp_ack_snd_check(struct sock *sk)
4761 {
4762 	if (!inet_csk_ack_scheduled(sk)) {
4763 		/* We sent a data segment already. */
4764 		return;
4765 	}
4766 	__tcp_ack_snd_check(sk, 1);
4767 }
4768 
4769 /*
4770  *	This routine is only called when we have urgent data
4771  *	signaled. Its the 'slow' part of tcp_urg. It could be
4772  *	moved inline now as tcp_urg is only called from one
4773  *	place. We handle URGent data wrong. We have to - as
4774  *	BSD still doesn't use the correction from RFC961.
4775  *	For 1003.1g we should support a new option TCP_STDURG to permit
4776  *	either form (or just set the sysctl tcp_stdurg).
4777  */
4778 
4779 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4780 {
4781 	struct tcp_sock *tp = tcp_sk(sk);
4782 	u32 ptr = ntohs(th->urg_ptr);
4783 
4784 	if (ptr && !sysctl_tcp_stdurg)
4785 		ptr--;
4786 	ptr += ntohl(th->seq);
4787 
4788 	/* Ignore urgent data that we've already seen and read. */
4789 	if (after(tp->copied_seq, ptr))
4790 		return;
4791 
4792 	/* Do not replay urg ptr.
4793 	 *
4794 	 * NOTE: interesting situation not covered by specs.
4795 	 * Misbehaving sender may send urg ptr, pointing to segment,
4796 	 * which we already have in ofo queue. We are not able to fetch
4797 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4798 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4799 	 * situations. But it is worth to think about possibility of some
4800 	 * DoSes using some hypothetical application level deadlock.
4801 	 */
4802 	if (before(ptr, tp->rcv_nxt))
4803 		return;
4804 
4805 	/* Do we already have a newer (or duplicate) urgent pointer? */
4806 	if (tp->urg_data && !after(ptr, tp->urg_seq))
4807 		return;
4808 
4809 	/* Tell the world about our new urgent pointer. */
4810 	sk_send_sigurg(sk);
4811 
4812 	/* We may be adding urgent data when the last byte read was
4813 	 * urgent. To do this requires some care. We cannot just ignore
4814 	 * tp->copied_seq since we would read the last urgent byte again
4815 	 * as data, nor can we alter copied_seq until this data arrives
4816 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4817 	 *
4818 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4819 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4820 	 * and expect that both A and B disappear from stream. This is _wrong_.
4821 	 * Though this happens in BSD with high probability, this is occasional.
4822 	 * Any application relying on this is buggy. Note also, that fix "works"
4823 	 * only in this artificial test. Insert some normal data between A and B and we will
4824 	 * decline of BSD again. Verdict: it is better to remove to trap
4825 	 * buggy users.
4826 	 */
4827 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4828 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4829 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4830 		tp->copied_seq++;
4831 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4832 			__skb_unlink(skb, &sk->sk_receive_queue);
4833 			__kfree_skb(skb);
4834 		}
4835 	}
4836 
4837 	tp->urg_data = TCP_URG_NOTYET;
4838 	tp->urg_seq = ptr;
4839 
4840 	/* Disable header prediction. */
4841 	tp->pred_flags = 0;
4842 }
4843 
4844 /* This is the 'fast' part of urgent handling. */
4845 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4846 {
4847 	struct tcp_sock *tp = tcp_sk(sk);
4848 
4849 	/* Check if we get a new urgent pointer - normally not. */
4850 	if (th->urg)
4851 		tcp_check_urg(sk, th);
4852 
4853 	/* Do we wait for any urgent data? - normally not... */
4854 	if (tp->urg_data == TCP_URG_NOTYET) {
4855 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4856 			  th->syn;
4857 
4858 		/* Is the urgent pointer pointing into this packet? */
4859 		if (ptr < skb->len) {
4860 			u8 tmp;
4861 			if (skb_copy_bits(skb, ptr, &tmp, 1))
4862 				BUG();
4863 			tp->urg_data = TCP_URG_VALID | tmp;
4864 			if (!sock_flag(sk, SOCK_DEAD))
4865 				sk->sk_data_ready(sk, 0);
4866 		}
4867 	}
4868 }
4869 
4870 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4871 {
4872 	struct tcp_sock *tp = tcp_sk(sk);
4873 	int chunk = skb->len - hlen;
4874 	int err;
4875 
4876 	local_bh_enable();
4877 	if (skb_csum_unnecessary(skb))
4878 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4879 	else
4880 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4881 						       tp->ucopy.iov);
4882 
4883 	if (!err) {
4884 		tp->ucopy.len -= chunk;
4885 		tp->copied_seq += chunk;
4886 		tcp_rcv_space_adjust(sk);
4887 	}
4888 
4889 	local_bh_disable();
4890 	return err;
4891 }
4892 
4893 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4894 					    struct sk_buff *skb)
4895 {
4896 	__sum16 result;
4897 
4898 	if (sock_owned_by_user(sk)) {
4899 		local_bh_enable();
4900 		result = __tcp_checksum_complete(skb);
4901 		local_bh_disable();
4902 	} else {
4903 		result = __tcp_checksum_complete(skb);
4904 	}
4905 	return result;
4906 }
4907 
4908 static inline bool tcp_checksum_complete_user(struct sock *sk,
4909 					     struct sk_buff *skb)
4910 {
4911 	return !skb_csum_unnecessary(skb) &&
4912 	       __tcp_checksum_complete_user(sk, skb);
4913 }
4914 
4915 #ifdef CONFIG_NET_DMA
4916 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4917 				  int hlen)
4918 {
4919 	struct tcp_sock *tp = tcp_sk(sk);
4920 	int chunk = skb->len - hlen;
4921 	int dma_cookie;
4922 	bool copied_early = false;
4923 
4924 	if (tp->ucopy.wakeup)
4925 		return false;
4926 
4927 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4928 		tp->ucopy.dma_chan = net_dma_find_channel();
4929 
4930 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4931 
4932 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4933 							 skb, hlen,
4934 							 tp->ucopy.iov, chunk,
4935 							 tp->ucopy.pinned_list);
4936 
4937 		if (dma_cookie < 0)
4938 			goto out;
4939 
4940 		tp->ucopy.dma_cookie = dma_cookie;
4941 		copied_early = true;
4942 
4943 		tp->ucopy.len -= chunk;
4944 		tp->copied_seq += chunk;
4945 		tcp_rcv_space_adjust(sk);
4946 
4947 		if ((tp->ucopy.len == 0) ||
4948 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4949 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4950 			tp->ucopy.wakeup = 1;
4951 			sk->sk_data_ready(sk, 0);
4952 		}
4953 	} else if (chunk > 0) {
4954 		tp->ucopy.wakeup = 1;
4955 		sk->sk_data_ready(sk, 0);
4956 	}
4957 out:
4958 	return copied_early;
4959 }
4960 #endif /* CONFIG_NET_DMA */
4961 
4962 /* Does PAWS and seqno based validation of an incoming segment, flags will
4963  * play significant role here.
4964  */
4965 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
4966 				  const struct tcphdr *th, int syn_inerr)
4967 {
4968 	struct tcp_sock *tp = tcp_sk(sk);
4969 
4970 	/* RFC1323: H1. Apply PAWS check first. */
4971 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4972 	    tcp_paws_discard(sk, skb)) {
4973 		if (!th->rst) {
4974 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
4975 			tcp_send_dupack(sk, skb);
4976 			goto discard;
4977 		}
4978 		/* Reset is accepted even if it did not pass PAWS. */
4979 	}
4980 
4981 	/* Step 1: check sequence number */
4982 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4983 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
4984 		 * (RST) segments are validated by checking their SEQ-fields."
4985 		 * And page 69: "If an incoming segment is not acceptable,
4986 		 * an acknowledgment should be sent in reply (unless the RST
4987 		 * bit is set, if so drop the segment and return)".
4988 		 */
4989 		if (!th->rst) {
4990 			if (th->syn)
4991 				goto syn_challenge;
4992 			tcp_send_dupack(sk, skb);
4993 		}
4994 		goto discard;
4995 	}
4996 
4997 	/* Step 2: check RST bit */
4998 	if (th->rst) {
4999 		/* RFC 5961 3.2 :
5000 		 * If sequence number exactly matches RCV.NXT, then
5001 		 *     RESET the connection
5002 		 * else
5003 		 *     Send a challenge ACK
5004 		 */
5005 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5006 			tcp_reset(sk);
5007 		else
5008 			tcp_send_challenge_ack(sk);
5009 		goto discard;
5010 	}
5011 
5012 	/* step 3: check security and precedence [ignored] */
5013 
5014 	/* step 4: Check for a SYN
5015 	 * RFC 5691 4.2 : Send a challenge ack
5016 	 */
5017 	if (th->syn) {
5018 syn_challenge:
5019 		if (syn_inerr)
5020 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5021 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5022 		tcp_send_challenge_ack(sk);
5023 		goto discard;
5024 	}
5025 
5026 	return true;
5027 
5028 discard:
5029 	__kfree_skb(skb);
5030 	return false;
5031 }
5032 
5033 /*
5034  *	TCP receive function for the ESTABLISHED state.
5035  *
5036  *	It is split into a fast path and a slow path. The fast path is
5037  * 	disabled when:
5038  *	- A zero window was announced from us - zero window probing
5039  *        is only handled properly in the slow path.
5040  *	- Out of order segments arrived.
5041  *	- Urgent data is expected.
5042  *	- There is no buffer space left
5043  *	- Unexpected TCP flags/window values/header lengths are received
5044  *	  (detected by checking the TCP header against pred_flags)
5045  *	- Data is sent in both directions. Fast path only supports pure senders
5046  *	  or pure receivers (this means either the sequence number or the ack
5047  *	  value must stay constant)
5048  *	- Unexpected TCP option.
5049  *
5050  *	When these conditions are not satisfied it drops into a standard
5051  *	receive procedure patterned after RFC793 to handle all cases.
5052  *	The first three cases are guaranteed by proper pred_flags setting,
5053  *	the rest is checked inline. Fast processing is turned on in
5054  *	tcp_data_queue when everything is OK.
5055  */
5056 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5057 			 const struct tcphdr *th, unsigned int len)
5058 {
5059 	struct tcp_sock *tp = tcp_sk(sk);
5060 
5061 	if (unlikely(sk->sk_rx_dst == NULL))
5062 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5063 	/*
5064 	 *	Header prediction.
5065 	 *	The code loosely follows the one in the famous
5066 	 *	"30 instruction TCP receive" Van Jacobson mail.
5067 	 *
5068 	 *	Van's trick is to deposit buffers into socket queue
5069 	 *	on a device interrupt, to call tcp_recv function
5070 	 *	on the receive process context and checksum and copy
5071 	 *	the buffer to user space. smart...
5072 	 *
5073 	 *	Our current scheme is not silly either but we take the
5074 	 *	extra cost of the net_bh soft interrupt processing...
5075 	 *	We do checksum and copy also but from device to kernel.
5076 	 */
5077 
5078 	tp->rx_opt.saw_tstamp = 0;
5079 
5080 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5081 	 *	if header_prediction is to be made
5082 	 *	'S' will always be tp->tcp_header_len >> 2
5083 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5084 	 *  turn it off	(when there are holes in the receive
5085 	 *	 space for instance)
5086 	 *	PSH flag is ignored.
5087 	 */
5088 
5089 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5090 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5091 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5092 		int tcp_header_len = tp->tcp_header_len;
5093 
5094 		/* Timestamp header prediction: tcp_header_len
5095 		 * is automatically equal to th->doff*4 due to pred_flags
5096 		 * match.
5097 		 */
5098 
5099 		/* Check timestamp */
5100 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5101 			/* No? Slow path! */
5102 			if (!tcp_parse_aligned_timestamp(tp, th))
5103 				goto slow_path;
5104 
5105 			/* If PAWS failed, check it more carefully in slow path */
5106 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5107 				goto slow_path;
5108 
5109 			/* DO NOT update ts_recent here, if checksum fails
5110 			 * and timestamp was corrupted part, it will result
5111 			 * in a hung connection since we will drop all
5112 			 * future packets due to the PAWS test.
5113 			 */
5114 		}
5115 
5116 		if (len <= tcp_header_len) {
5117 			/* Bulk data transfer: sender */
5118 			if (len == tcp_header_len) {
5119 				/* Predicted packet is in window by definition.
5120 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5121 				 * Hence, check seq<=rcv_wup reduces to:
5122 				 */
5123 				if (tcp_header_len ==
5124 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5125 				    tp->rcv_nxt == tp->rcv_wup)
5126 					tcp_store_ts_recent(tp);
5127 
5128 				/* We know that such packets are checksummed
5129 				 * on entry.
5130 				 */
5131 				tcp_ack(sk, skb, 0);
5132 				__kfree_skb(skb);
5133 				tcp_data_snd_check(sk);
5134 				return;
5135 			} else { /* Header too small */
5136 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5137 				goto discard;
5138 			}
5139 		} else {
5140 			int eaten = 0;
5141 			int copied_early = 0;
5142 			bool fragstolen = false;
5143 
5144 			if (tp->copied_seq == tp->rcv_nxt &&
5145 			    len - tcp_header_len <= tp->ucopy.len) {
5146 #ifdef CONFIG_NET_DMA
5147 				if (tp->ucopy.task == current &&
5148 				    sock_owned_by_user(sk) &&
5149 				    tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5150 					copied_early = 1;
5151 					eaten = 1;
5152 				}
5153 #endif
5154 				if (tp->ucopy.task == current &&
5155 				    sock_owned_by_user(sk) && !copied_early) {
5156 					__set_current_state(TASK_RUNNING);
5157 
5158 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5159 						eaten = 1;
5160 				}
5161 				if (eaten) {
5162 					/* Predicted packet is in window by definition.
5163 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5164 					 * Hence, check seq<=rcv_wup reduces to:
5165 					 */
5166 					if (tcp_header_len ==
5167 					    (sizeof(struct tcphdr) +
5168 					     TCPOLEN_TSTAMP_ALIGNED) &&
5169 					    tp->rcv_nxt == tp->rcv_wup)
5170 						tcp_store_ts_recent(tp);
5171 
5172 					tcp_rcv_rtt_measure_ts(sk, skb);
5173 
5174 					__skb_pull(skb, tcp_header_len);
5175 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5176 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5177 				}
5178 				if (copied_early)
5179 					tcp_cleanup_rbuf(sk, skb->len);
5180 			}
5181 			if (!eaten) {
5182 				if (tcp_checksum_complete_user(sk, skb))
5183 					goto csum_error;
5184 
5185 				if ((int)skb->truesize > sk->sk_forward_alloc)
5186 					goto step5;
5187 
5188 				/* Predicted packet is in window by definition.
5189 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5190 				 * Hence, check seq<=rcv_wup reduces to:
5191 				 */
5192 				if (tcp_header_len ==
5193 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5194 				    tp->rcv_nxt == tp->rcv_wup)
5195 					tcp_store_ts_recent(tp);
5196 
5197 				tcp_rcv_rtt_measure_ts(sk, skb);
5198 
5199 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5200 
5201 				/* Bulk data transfer: receiver */
5202 				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5203 						      &fragstolen);
5204 			}
5205 
5206 			tcp_event_data_recv(sk, skb);
5207 
5208 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5209 				/* Well, only one small jumplet in fast path... */
5210 				tcp_ack(sk, skb, FLAG_DATA);
5211 				tcp_data_snd_check(sk);
5212 				if (!inet_csk_ack_scheduled(sk))
5213 					goto no_ack;
5214 			}
5215 
5216 			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5217 				__tcp_ack_snd_check(sk, 0);
5218 no_ack:
5219 #ifdef CONFIG_NET_DMA
5220 			if (copied_early)
5221 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5222 			else
5223 #endif
5224 			if (eaten)
5225 				kfree_skb_partial(skb, fragstolen);
5226 			sk->sk_data_ready(sk, 0);
5227 			return;
5228 		}
5229 	}
5230 
5231 slow_path:
5232 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5233 		goto csum_error;
5234 
5235 	if (!th->ack && !th->rst)
5236 		goto discard;
5237 
5238 	/*
5239 	 *	Standard slow path.
5240 	 */
5241 
5242 	if (!tcp_validate_incoming(sk, skb, th, 1))
5243 		return;
5244 
5245 step5:
5246 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5247 		goto discard;
5248 
5249 	tcp_rcv_rtt_measure_ts(sk, skb);
5250 
5251 	/* Process urgent data. */
5252 	tcp_urg(sk, skb, th);
5253 
5254 	/* step 7: process the segment text */
5255 	tcp_data_queue(sk, skb);
5256 
5257 	tcp_data_snd_check(sk);
5258 	tcp_ack_snd_check(sk);
5259 	return;
5260 
5261 csum_error:
5262 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5263 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5264 
5265 discard:
5266 	__kfree_skb(skb);
5267 }
5268 EXPORT_SYMBOL(tcp_rcv_established);
5269 
5270 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5271 {
5272 	struct tcp_sock *tp = tcp_sk(sk);
5273 	struct inet_connection_sock *icsk = inet_csk(sk);
5274 
5275 	tcp_set_state(sk, TCP_ESTABLISHED);
5276 
5277 	if (skb != NULL) {
5278 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5279 		security_inet_conn_established(sk, skb);
5280 	}
5281 
5282 	/* Make sure socket is routed, for correct metrics.  */
5283 	icsk->icsk_af_ops->rebuild_header(sk);
5284 
5285 	tcp_init_metrics(sk);
5286 
5287 	tcp_init_congestion_control(sk);
5288 
5289 	/* Prevent spurious tcp_cwnd_restart() on first data
5290 	 * packet.
5291 	 */
5292 	tp->lsndtime = tcp_time_stamp;
5293 
5294 	tcp_init_buffer_space(sk);
5295 
5296 	if (sock_flag(sk, SOCK_KEEPOPEN))
5297 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5298 
5299 	if (!tp->rx_opt.snd_wscale)
5300 		__tcp_fast_path_on(tp, tp->snd_wnd);
5301 	else
5302 		tp->pred_flags = 0;
5303 
5304 	if (!sock_flag(sk, SOCK_DEAD)) {
5305 		sk->sk_state_change(sk);
5306 		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5307 	}
5308 }
5309 
5310 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5311 				    struct tcp_fastopen_cookie *cookie)
5312 {
5313 	struct tcp_sock *tp = tcp_sk(sk);
5314 	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5315 	u16 mss = tp->rx_opt.mss_clamp;
5316 	bool syn_drop;
5317 
5318 	if (mss == tp->rx_opt.user_mss) {
5319 		struct tcp_options_received opt;
5320 
5321 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5322 		tcp_clear_options(&opt);
5323 		opt.user_mss = opt.mss_clamp = 0;
5324 		tcp_parse_options(synack, &opt, 0, NULL);
5325 		mss = opt.mss_clamp;
5326 	}
5327 
5328 	if (!tp->syn_fastopen)  /* Ignore an unsolicited cookie */
5329 		cookie->len = -1;
5330 
5331 	/* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5332 	 * the remote receives only the retransmitted (regular) SYNs: either
5333 	 * the original SYN-data or the corresponding SYN-ACK is lost.
5334 	 */
5335 	syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
5336 
5337 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5338 
5339 	if (data) { /* Retransmit unacked data in SYN */
5340 		tcp_for_write_queue_from(data, sk) {
5341 			if (data == tcp_send_head(sk) ||
5342 			    __tcp_retransmit_skb(sk, data))
5343 				break;
5344 		}
5345 		tcp_rearm_rto(sk);
5346 		return true;
5347 	}
5348 	tp->syn_data_acked = tp->syn_data;
5349 	return false;
5350 }
5351 
5352 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5353 					 const struct tcphdr *th, unsigned int len)
5354 {
5355 	struct inet_connection_sock *icsk = inet_csk(sk);
5356 	struct tcp_sock *tp = tcp_sk(sk);
5357 	struct tcp_fastopen_cookie foc = { .len = -1 };
5358 	int saved_clamp = tp->rx_opt.mss_clamp;
5359 
5360 	tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5361 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5362 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5363 
5364 	if (th->ack) {
5365 		/* rfc793:
5366 		 * "If the state is SYN-SENT then
5367 		 *    first check the ACK bit
5368 		 *      If the ACK bit is set
5369 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5370 		 *        a reset (unless the RST bit is set, if so drop
5371 		 *        the segment and return)"
5372 		 */
5373 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5374 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5375 			goto reset_and_undo;
5376 
5377 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5378 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5379 			     tcp_time_stamp)) {
5380 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5381 			goto reset_and_undo;
5382 		}
5383 
5384 		/* Now ACK is acceptable.
5385 		 *
5386 		 * "If the RST bit is set
5387 		 *    If the ACK was acceptable then signal the user "error:
5388 		 *    connection reset", drop the segment, enter CLOSED state,
5389 		 *    delete TCB, and return."
5390 		 */
5391 
5392 		if (th->rst) {
5393 			tcp_reset(sk);
5394 			goto discard;
5395 		}
5396 
5397 		/* rfc793:
5398 		 *   "fifth, if neither of the SYN or RST bits is set then
5399 		 *    drop the segment and return."
5400 		 *
5401 		 *    See note below!
5402 		 *                                        --ANK(990513)
5403 		 */
5404 		if (!th->syn)
5405 			goto discard_and_undo;
5406 
5407 		/* rfc793:
5408 		 *   "If the SYN bit is on ...
5409 		 *    are acceptable then ...
5410 		 *    (our SYN has been ACKed), change the connection
5411 		 *    state to ESTABLISHED..."
5412 		 */
5413 
5414 		TCP_ECN_rcv_synack(tp, th);
5415 
5416 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5417 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5418 
5419 		/* Ok.. it's good. Set up sequence numbers and
5420 		 * move to established.
5421 		 */
5422 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5423 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5424 
5425 		/* RFC1323: The window in SYN & SYN/ACK segments is
5426 		 * never scaled.
5427 		 */
5428 		tp->snd_wnd = ntohs(th->window);
5429 
5430 		if (!tp->rx_opt.wscale_ok) {
5431 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5432 			tp->window_clamp = min(tp->window_clamp, 65535U);
5433 		}
5434 
5435 		if (tp->rx_opt.saw_tstamp) {
5436 			tp->rx_opt.tstamp_ok	   = 1;
5437 			tp->tcp_header_len =
5438 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5439 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5440 			tcp_store_ts_recent(tp);
5441 		} else {
5442 			tp->tcp_header_len = sizeof(struct tcphdr);
5443 		}
5444 
5445 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5446 			tcp_enable_fack(tp);
5447 
5448 		tcp_mtup_init(sk);
5449 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5450 		tcp_initialize_rcv_mss(sk);
5451 
5452 		/* Remember, tcp_poll() does not lock socket!
5453 		 * Change state from SYN-SENT only after copied_seq
5454 		 * is initialized. */
5455 		tp->copied_seq = tp->rcv_nxt;
5456 
5457 		smp_mb();
5458 
5459 		tcp_finish_connect(sk, skb);
5460 
5461 		if ((tp->syn_fastopen || tp->syn_data) &&
5462 		    tcp_rcv_fastopen_synack(sk, skb, &foc))
5463 			return -1;
5464 
5465 		if (sk->sk_write_pending ||
5466 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5467 		    icsk->icsk_ack.pingpong) {
5468 			/* Save one ACK. Data will be ready after
5469 			 * several ticks, if write_pending is set.
5470 			 *
5471 			 * It may be deleted, but with this feature tcpdumps
5472 			 * look so _wonderfully_ clever, that I was not able
5473 			 * to stand against the temptation 8)     --ANK
5474 			 */
5475 			inet_csk_schedule_ack(sk);
5476 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5477 			tcp_enter_quickack_mode(sk);
5478 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5479 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5480 
5481 discard:
5482 			__kfree_skb(skb);
5483 			return 0;
5484 		} else {
5485 			tcp_send_ack(sk);
5486 		}
5487 		return -1;
5488 	}
5489 
5490 	/* No ACK in the segment */
5491 
5492 	if (th->rst) {
5493 		/* rfc793:
5494 		 * "If the RST bit is set
5495 		 *
5496 		 *      Otherwise (no ACK) drop the segment and return."
5497 		 */
5498 
5499 		goto discard_and_undo;
5500 	}
5501 
5502 	/* PAWS check. */
5503 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5504 	    tcp_paws_reject(&tp->rx_opt, 0))
5505 		goto discard_and_undo;
5506 
5507 	if (th->syn) {
5508 		/* We see SYN without ACK. It is attempt of
5509 		 * simultaneous connect with crossed SYNs.
5510 		 * Particularly, it can be connect to self.
5511 		 */
5512 		tcp_set_state(sk, TCP_SYN_RECV);
5513 
5514 		if (tp->rx_opt.saw_tstamp) {
5515 			tp->rx_opt.tstamp_ok = 1;
5516 			tcp_store_ts_recent(tp);
5517 			tp->tcp_header_len =
5518 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5519 		} else {
5520 			tp->tcp_header_len = sizeof(struct tcphdr);
5521 		}
5522 
5523 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5524 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5525 
5526 		/* RFC1323: The window in SYN & SYN/ACK segments is
5527 		 * never scaled.
5528 		 */
5529 		tp->snd_wnd    = ntohs(th->window);
5530 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5531 		tp->max_window = tp->snd_wnd;
5532 
5533 		TCP_ECN_rcv_syn(tp, th);
5534 
5535 		tcp_mtup_init(sk);
5536 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5537 		tcp_initialize_rcv_mss(sk);
5538 
5539 		tcp_send_synack(sk);
5540 #if 0
5541 		/* Note, we could accept data and URG from this segment.
5542 		 * There are no obstacles to make this (except that we must
5543 		 * either change tcp_recvmsg() to prevent it from returning data
5544 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5545 		 *
5546 		 * However, if we ignore data in ACKless segments sometimes,
5547 		 * we have no reasons to accept it sometimes.
5548 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5549 		 * is not flawless. So, discard packet for sanity.
5550 		 * Uncomment this return to process the data.
5551 		 */
5552 		return -1;
5553 #else
5554 		goto discard;
5555 #endif
5556 	}
5557 	/* "fifth, if neither of the SYN or RST bits is set then
5558 	 * drop the segment and return."
5559 	 */
5560 
5561 discard_and_undo:
5562 	tcp_clear_options(&tp->rx_opt);
5563 	tp->rx_opt.mss_clamp = saved_clamp;
5564 	goto discard;
5565 
5566 reset_and_undo:
5567 	tcp_clear_options(&tp->rx_opt);
5568 	tp->rx_opt.mss_clamp = saved_clamp;
5569 	return 1;
5570 }
5571 
5572 /*
5573  *	This function implements the receiving procedure of RFC 793 for
5574  *	all states except ESTABLISHED and TIME_WAIT.
5575  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5576  *	address independent.
5577  */
5578 
5579 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5580 			  const struct tcphdr *th, unsigned int len)
5581 {
5582 	struct tcp_sock *tp = tcp_sk(sk);
5583 	struct inet_connection_sock *icsk = inet_csk(sk);
5584 	struct request_sock *req;
5585 	int queued = 0;
5586 	bool acceptable;
5587 
5588 	tp->rx_opt.saw_tstamp = 0;
5589 
5590 	switch (sk->sk_state) {
5591 	case TCP_CLOSE:
5592 		goto discard;
5593 
5594 	case TCP_LISTEN:
5595 		if (th->ack)
5596 			return 1;
5597 
5598 		if (th->rst)
5599 			goto discard;
5600 
5601 		if (th->syn) {
5602 			if (th->fin)
5603 				goto discard;
5604 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5605 				return 1;
5606 
5607 			/* Now we have several options: In theory there is
5608 			 * nothing else in the frame. KA9Q has an option to
5609 			 * send data with the syn, BSD accepts data with the
5610 			 * syn up to the [to be] advertised window and
5611 			 * Solaris 2.1 gives you a protocol error. For now
5612 			 * we just ignore it, that fits the spec precisely
5613 			 * and avoids incompatibilities. It would be nice in
5614 			 * future to drop through and process the data.
5615 			 *
5616 			 * Now that TTCP is starting to be used we ought to
5617 			 * queue this data.
5618 			 * But, this leaves one open to an easy denial of
5619 			 * service attack, and SYN cookies can't defend
5620 			 * against this problem. So, we drop the data
5621 			 * in the interest of security over speed unless
5622 			 * it's still in use.
5623 			 */
5624 			kfree_skb(skb);
5625 			return 0;
5626 		}
5627 		goto discard;
5628 
5629 	case TCP_SYN_SENT:
5630 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5631 		if (queued >= 0)
5632 			return queued;
5633 
5634 		/* Do step6 onward by hand. */
5635 		tcp_urg(sk, skb, th);
5636 		__kfree_skb(skb);
5637 		tcp_data_snd_check(sk);
5638 		return 0;
5639 	}
5640 
5641 	req = tp->fastopen_rsk;
5642 	if (req != NULL) {
5643 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5644 		    sk->sk_state != TCP_FIN_WAIT1);
5645 
5646 		if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5647 			goto discard;
5648 	}
5649 
5650 	if (!th->ack && !th->rst)
5651 		goto discard;
5652 
5653 	if (!tcp_validate_incoming(sk, skb, th, 0))
5654 		return 0;
5655 
5656 	/* step 5: check the ACK field */
5657 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5658 				      FLAG_UPDATE_TS_RECENT) > 0;
5659 
5660 	switch (sk->sk_state) {
5661 	case TCP_SYN_RECV:
5662 		if (!acceptable)
5663 			return 1;
5664 
5665 		/* Once we leave TCP_SYN_RECV, we no longer need req
5666 		 * so release it.
5667 		 */
5668 		if (req) {
5669 			tp->total_retrans = req->num_retrans;
5670 			reqsk_fastopen_remove(sk, req, false);
5671 		} else {
5672 			/* Make sure socket is routed, for correct metrics. */
5673 			icsk->icsk_af_ops->rebuild_header(sk);
5674 			tcp_init_congestion_control(sk);
5675 
5676 			tcp_mtup_init(sk);
5677 			tcp_init_buffer_space(sk);
5678 			tp->copied_seq = tp->rcv_nxt;
5679 		}
5680 		smp_mb();
5681 		tcp_set_state(sk, TCP_ESTABLISHED);
5682 		sk->sk_state_change(sk);
5683 
5684 		/* Note, that this wakeup is only for marginal crossed SYN case.
5685 		 * Passively open sockets are not waked up, because
5686 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5687 		 */
5688 		if (sk->sk_socket)
5689 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5690 
5691 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5692 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5693 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5694 		tcp_synack_rtt_meas(sk, req);
5695 
5696 		if (tp->rx_opt.tstamp_ok)
5697 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5698 
5699 		if (req) {
5700 			/* Re-arm the timer because data may have been sent out.
5701 			 * This is similar to the regular data transmission case
5702 			 * when new data has just been ack'ed.
5703 			 *
5704 			 * (TFO) - we could try to be more aggressive and
5705 			 * retransmitting any data sooner based on when they
5706 			 * are sent out.
5707 			 */
5708 			tcp_rearm_rto(sk);
5709 		} else
5710 			tcp_init_metrics(sk);
5711 
5712 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5713 		tp->lsndtime = tcp_time_stamp;
5714 
5715 		tcp_initialize_rcv_mss(sk);
5716 		tcp_fast_path_on(tp);
5717 		break;
5718 
5719 	case TCP_FIN_WAIT1: {
5720 		struct dst_entry *dst;
5721 		int tmo;
5722 
5723 		/* If we enter the TCP_FIN_WAIT1 state and we are a
5724 		 * Fast Open socket and this is the first acceptable
5725 		 * ACK we have received, this would have acknowledged
5726 		 * our SYNACK so stop the SYNACK timer.
5727 		 */
5728 		if (req != NULL) {
5729 			/* Return RST if ack_seq is invalid.
5730 			 * Note that RFC793 only says to generate a
5731 			 * DUPACK for it but for TCP Fast Open it seems
5732 			 * better to treat this case like TCP_SYN_RECV
5733 			 * above.
5734 			 */
5735 			if (!acceptable)
5736 				return 1;
5737 			/* We no longer need the request sock. */
5738 			reqsk_fastopen_remove(sk, req, false);
5739 			tcp_rearm_rto(sk);
5740 		}
5741 		if (tp->snd_una != tp->write_seq)
5742 			break;
5743 
5744 		tcp_set_state(sk, TCP_FIN_WAIT2);
5745 		sk->sk_shutdown |= SEND_SHUTDOWN;
5746 
5747 		dst = __sk_dst_get(sk);
5748 		if (dst)
5749 			dst_confirm(dst);
5750 
5751 		if (!sock_flag(sk, SOCK_DEAD)) {
5752 			/* Wake up lingering close() */
5753 			sk->sk_state_change(sk);
5754 			break;
5755 		}
5756 
5757 		if (tp->linger2 < 0 ||
5758 		    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5759 		     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5760 			tcp_done(sk);
5761 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5762 			return 1;
5763 		}
5764 
5765 		tmo = tcp_fin_time(sk);
5766 		if (tmo > TCP_TIMEWAIT_LEN) {
5767 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5768 		} else if (th->fin || sock_owned_by_user(sk)) {
5769 			/* Bad case. We could lose such FIN otherwise.
5770 			 * It is not a big problem, but it looks confusing
5771 			 * and not so rare event. We still can lose it now,
5772 			 * if it spins in bh_lock_sock(), but it is really
5773 			 * marginal case.
5774 			 */
5775 			inet_csk_reset_keepalive_timer(sk, tmo);
5776 		} else {
5777 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5778 			goto discard;
5779 		}
5780 		break;
5781 	}
5782 
5783 	case TCP_CLOSING:
5784 		if (tp->snd_una == tp->write_seq) {
5785 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5786 			goto discard;
5787 		}
5788 		break;
5789 
5790 	case TCP_LAST_ACK:
5791 		if (tp->snd_una == tp->write_seq) {
5792 			tcp_update_metrics(sk);
5793 			tcp_done(sk);
5794 			goto discard;
5795 		}
5796 		break;
5797 	}
5798 
5799 	/* step 6: check the URG bit */
5800 	tcp_urg(sk, skb, th);
5801 
5802 	/* step 7: process the segment text */
5803 	switch (sk->sk_state) {
5804 	case TCP_CLOSE_WAIT:
5805 	case TCP_CLOSING:
5806 	case TCP_LAST_ACK:
5807 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5808 			break;
5809 	case TCP_FIN_WAIT1:
5810 	case TCP_FIN_WAIT2:
5811 		/* RFC 793 says to queue data in these states,
5812 		 * RFC 1122 says we MUST send a reset.
5813 		 * BSD 4.4 also does reset.
5814 		 */
5815 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5816 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5817 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5818 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5819 				tcp_reset(sk);
5820 				return 1;
5821 			}
5822 		}
5823 		/* Fall through */
5824 	case TCP_ESTABLISHED:
5825 		tcp_data_queue(sk, skb);
5826 		queued = 1;
5827 		break;
5828 	}
5829 
5830 	/* tcp_data could move socket to TIME-WAIT */
5831 	if (sk->sk_state != TCP_CLOSE) {
5832 		tcp_data_snd_check(sk);
5833 		tcp_ack_snd_check(sk);
5834 	}
5835 
5836 	if (!queued) {
5837 discard:
5838 		__kfree_skb(skb);
5839 	}
5840 	return 0;
5841 }
5842 EXPORT_SYMBOL(tcp_rcv_state_process);
5843