1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #define pr_fmt(fmt) "TCP: " fmt 65 66 #include <linux/mm.h> 67 #include <linux/slab.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <linux/kernel.h> 71 #include <linux/prefetch.h> 72 #include <net/dst.h> 73 #include <net/tcp.h> 74 #include <net/inet_common.h> 75 #include <linux/ipsec.h> 76 #include <asm/unaligned.h> 77 #include <linux/errqueue.h> 78 79 int sysctl_tcp_fack __read_mostly; 80 int sysctl_tcp_max_reordering __read_mostly = 300; 81 int sysctl_tcp_dsack __read_mostly = 1; 82 int sysctl_tcp_app_win __read_mostly = 31; 83 int sysctl_tcp_adv_win_scale __read_mostly = 1; 84 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 85 86 /* rfc5961 challenge ack rate limiting */ 87 int sysctl_tcp_challenge_ack_limit = 1000; 88 89 int sysctl_tcp_stdurg __read_mostly; 90 int sysctl_tcp_rfc1337 __read_mostly; 91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 92 int sysctl_tcp_frto __read_mostly = 2; 93 int sysctl_tcp_min_rtt_wlen __read_mostly = 300; 94 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 95 int sysctl_tcp_early_retrans __read_mostly = 3; 96 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2; 97 98 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 99 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 100 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 101 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 102 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 103 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 104 #define FLAG_ECE 0x40 /* ECE in this ACK */ 105 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 106 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 107 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 108 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 109 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 110 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 111 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 112 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 113 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 114 115 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 116 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 117 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 118 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 119 120 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 121 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 122 123 #define REXMIT_NONE 0 /* no loss recovery to do */ 124 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 125 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 126 127 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 128 unsigned int len) 129 { 130 static bool __once __read_mostly; 131 132 if (!__once) { 133 struct net_device *dev; 134 135 __once = true; 136 137 rcu_read_lock(); 138 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 139 if (!dev || len >= dev->mtu) 140 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 141 dev ? dev->name : "Unknown driver"); 142 rcu_read_unlock(); 143 } 144 } 145 146 /* Adapt the MSS value used to make delayed ack decision to the 147 * real world. 148 */ 149 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 150 { 151 struct inet_connection_sock *icsk = inet_csk(sk); 152 const unsigned int lss = icsk->icsk_ack.last_seg_size; 153 unsigned int len; 154 155 icsk->icsk_ack.last_seg_size = 0; 156 157 /* skb->len may jitter because of SACKs, even if peer 158 * sends good full-sized frames. 159 */ 160 len = skb_shinfo(skb)->gso_size ? : skb->len; 161 if (len >= icsk->icsk_ack.rcv_mss) { 162 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 163 tcp_sk(sk)->advmss); 164 /* Account for possibly-removed options */ 165 if (unlikely(len > icsk->icsk_ack.rcv_mss + 166 MAX_TCP_OPTION_SPACE)) 167 tcp_gro_dev_warn(sk, skb, len); 168 } else { 169 /* Otherwise, we make more careful check taking into account, 170 * that SACKs block is variable. 171 * 172 * "len" is invariant segment length, including TCP header. 173 */ 174 len += skb->data - skb_transport_header(skb); 175 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 176 /* If PSH is not set, packet should be 177 * full sized, provided peer TCP is not badly broken. 178 * This observation (if it is correct 8)) allows 179 * to handle super-low mtu links fairly. 180 */ 181 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 182 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 183 /* Subtract also invariant (if peer is RFC compliant), 184 * tcp header plus fixed timestamp option length. 185 * Resulting "len" is MSS free of SACK jitter. 186 */ 187 len -= tcp_sk(sk)->tcp_header_len; 188 icsk->icsk_ack.last_seg_size = len; 189 if (len == lss) { 190 icsk->icsk_ack.rcv_mss = len; 191 return; 192 } 193 } 194 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 195 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 196 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 197 } 198 } 199 200 static void tcp_incr_quickack(struct sock *sk) 201 { 202 struct inet_connection_sock *icsk = inet_csk(sk); 203 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 204 205 if (quickacks == 0) 206 quickacks = 2; 207 if (quickacks > icsk->icsk_ack.quick) 208 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 209 } 210 211 static void tcp_enter_quickack_mode(struct sock *sk) 212 { 213 struct inet_connection_sock *icsk = inet_csk(sk); 214 tcp_incr_quickack(sk); 215 icsk->icsk_ack.pingpong = 0; 216 icsk->icsk_ack.ato = TCP_ATO_MIN; 217 } 218 219 /* Send ACKs quickly, if "quick" count is not exhausted 220 * and the session is not interactive. 221 */ 222 223 static bool tcp_in_quickack_mode(struct sock *sk) 224 { 225 const struct inet_connection_sock *icsk = inet_csk(sk); 226 const struct dst_entry *dst = __sk_dst_get(sk); 227 228 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 229 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong); 230 } 231 232 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 233 { 234 if (tp->ecn_flags & TCP_ECN_OK) 235 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 236 } 237 238 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 239 { 240 if (tcp_hdr(skb)->cwr) 241 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 242 } 243 244 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 245 { 246 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 247 } 248 249 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 250 { 251 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 252 case INET_ECN_NOT_ECT: 253 /* Funny extension: if ECT is not set on a segment, 254 * and we already seen ECT on a previous segment, 255 * it is probably a retransmit. 256 */ 257 if (tp->ecn_flags & TCP_ECN_SEEN) 258 tcp_enter_quickack_mode((struct sock *)tp); 259 break; 260 case INET_ECN_CE: 261 if (tcp_ca_needs_ecn((struct sock *)tp)) 262 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE); 263 264 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 265 /* Better not delay acks, sender can have a very low cwnd */ 266 tcp_enter_quickack_mode((struct sock *)tp); 267 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 268 } 269 tp->ecn_flags |= TCP_ECN_SEEN; 270 break; 271 default: 272 if (tcp_ca_needs_ecn((struct sock *)tp)) 273 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE); 274 tp->ecn_flags |= TCP_ECN_SEEN; 275 break; 276 } 277 } 278 279 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 280 { 281 if (tp->ecn_flags & TCP_ECN_OK) 282 __tcp_ecn_check_ce(tp, skb); 283 } 284 285 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 286 { 287 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 288 tp->ecn_flags &= ~TCP_ECN_OK; 289 } 290 291 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 292 { 293 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 294 tp->ecn_flags &= ~TCP_ECN_OK; 295 } 296 297 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 298 { 299 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 300 return true; 301 return false; 302 } 303 304 /* Buffer size and advertised window tuning. 305 * 306 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 307 */ 308 309 static void tcp_sndbuf_expand(struct sock *sk) 310 { 311 const struct tcp_sock *tp = tcp_sk(sk); 312 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 313 int sndmem, per_mss; 314 u32 nr_segs; 315 316 /* Worst case is non GSO/TSO : each frame consumes one skb 317 * and skb->head is kmalloced using power of two area of memory 318 */ 319 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 320 MAX_TCP_HEADER + 321 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 322 323 per_mss = roundup_pow_of_two(per_mss) + 324 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 325 326 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 327 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 328 329 /* Fast Recovery (RFC 5681 3.2) : 330 * Cubic needs 1.7 factor, rounded to 2 to include 331 * extra cushion (application might react slowly to POLLOUT) 332 */ 333 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 334 sndmem *= nr_segs * per_mss; 335 336 if (sk->sk_sndbuf < sndmem) 337 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 338 } 339 340 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 341 * 342 * All tcp_full_space() is split to two parts: "network" buffer, allocated 343 * forward and advertised in receiver window (tp->rcv_wnd) and 344 * "application buffer", required to isolate scheduling/application 345 * latencies from network. 346 * window_clamp is maximal advertised window. It can be less than 347 * tcp_full_space(), in this case tcp_full_space() - window_clamp 348 * is reserved for "application" buffer. The less window_clamp is 349 * the smoother our behaviour from viewpoint of network, but the lower 350 * throughput and the higher sensitivity of the connection to losses. 8) 351 * 352 * rcv_ssthresh is more strict window_clamp used at "slow start" 353 * phase to predict further behaviour of this connection. 354 * It is used for two goals: 355 * - to enforce header prediction at sender, even when application 356 * requires some significant "application buffer". It is check #1. 357 * - to prevent pruning of receive queue because of misprediction 358 * of receiver window. Check #2. 359 * 360 * The scheme does not work when sender sends good segments opening 361 * window and then starts to feed us spaghetti. But it should work 362 * in common situations. Otherwise, we have to rely on queue collapsing. 363 */ 364 365 /* Slow part of check#2. */ 366 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 367 { 368 struct tcp_sock *tp = tcp_sk(sk); 369 /* Optimize this! */ 370 int truesize = tcp_win_from_space(skb->truesize) >> 1; 371 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 372 373 while (tp->rcv_ssthresh <= window) { 374 if (truesize <= skb->len) 375 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 376 377 truesize >>= 1; 378 window >>= 1; 379 } 380 return 0; 381 } 382 383 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 384 { 385 struct tcp_sock *tp = tcp_sk(sk); 386 387 /* Check #1 */ 388 if (tp->rcv_ssthresh < tp->window_clamp && 389 (int)tp->rcv_ssthresh < tcp_space(sk) && 390 !tcp_under_memory_pressure(sk)) { 391 int incr; 392 393 /* Check #2. Increase window, if skb with such overhead 394 * will fit to rcvbuf in future. 395 */ 396 if (tcp_win_from_space(skb->truesize) <= skb->len) 397 incr = 2 * tp->advmss; 398 else 399 incr = __tcp_grow_window(sk, skb); 400 401 if (incr) { 402 incr = max_t(int, incr, 2 * skb->len); 403 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 404 tp->window_clamp); 405 inet_csk(sk)->icsk_ack.quick |= 1; 406 } 407 } 408 } 409 410 /* 3. Tuning rcvbuf, when connection enters established state. */ 411 static void tcp_fixup_rcvbuf(struct sock *sk) 412 { 413 u32 mss = tcp_sk(sk)->advmss; 414 int rcvmem; 415 416 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 417 tcp_default_init_rwnd(mss); 418 419 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 420 * Allow enough cushion so that sender is not limited by our window 421 */ 422 if (sysctl_tcp_moderate_rcvbuf) 423 rcvmem <<= 2; 424 425 if (sk->sk_rcvbuf < rcvmem) 426 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); 427 } 428 429 /* 4. Try to fixup all. It is made immediately after connection enters 430 * established state. 431 */ 432 void tcp_init_buffer_space(struct sock *sk) 433 { 434 struct tcp_sock *tp = tcp_sk(sk); 435 int maxwin; 436 437 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 438 tcp_fixup_rcvbuf(sk); 439 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 440 tcp_sndbuf_expand(sk); 441 442 tp->rcvq_space.space = tp->rcv_wnd; 443 tcp_mstamp_refresh(tp); 444 tp->rcvq_space.time = tp->tcp_mstamp; 445 tp->rcvq_space.seq = tp->copied_seq; 446 447 maxwin = tcp_full_space(sk); 448 449 if (tp->window_clamp >= maxwin) { 450 tp->window_clamp = maxwin; 451 452 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 453 tp->window_clamp = max(maxwin - 454 (maxwin >> sysctl_tcp_app_win), 455 4 * tp->advmss); 456 } 457 458 /* Force reservation of one segment. */ 459 if (sysctl_tcp_app_win && 460 tp->window_clamp > 2 * tp->advmss && 461 tp->window_clamp + tp->advmss > maxwin) 462 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 463 464 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 465 tp->snd_cwnd_stamp = tcp_jiffies32; 466 } 467 468 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 469 static void tcp_clamp_window(struct sock *sk) 470 { 471 struct tcp_sock *tp = tcp_sk(sk); 472 struct inet_connection_sock *icsk = inet_csk(sk); 473 474 icsk->icsk_ack.quick = 0; 475 476 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 477 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 478 !tcp_under_memory_pressure(sk) && 479 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 480 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 481 sysctl_tcp_rmem[2]); 482 } 483 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 484 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 485 } 486 487 /* Initialize RCV_MSS value. 488 * RCV_MSS is an our guess about MSS used by the peer. 489 * We haven't any direct information about the MSS. 490 * It's better to underestimate the RCV_MSS rather than overestimate. 491 * Overestimations make us ACKing less frequently than needed. 492 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 493 */ 494 void tcp_initialize_rcv_mss(struct sock *sk) 495 { 496 const struct tcp_sock *tp = tcp_sk(sk); 497 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 498 499 hint = min(hint, tp->rcv_wnd / 2); 500 hint = min(hint, TCP_MSS_DEFAULT); 501 hint = max(hint, TCP_MIN_MSS); 502 503 inet_csk(sk)->icsk_ack.rcv_mss = hint; 504 } 505 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 506 507 /* Receiver "autotuning" code. 508 * 509 * The algorithm for RTT estimation w/o timestamps is based on 510 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 511 * <http://public.lanl.gov/radiant/pubs.html#DRS> 512 * 513 * More detail on this code can be found at 514 * <http://staff.psc.edu/jheffner/>, 515 * though this reference is out of date. A new paper 516 * is pending. 517 */ 518 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 519 { 520 u32 new_sample = tp->rcv_rtt_est.rtt_us; 521 long m = sample; 522 523 if (m == 0) 524 m = 1; 525 526 if (new_sample != 0) { 527 /* If we sample in larger samples in the non-timestamp 528 * case, we could grossly overestimate the RTT especially 529 * with chatty applications or bulk transfer apps which 530 * are stalled on filesystem I/O. 531 * 532 * Also, since we are only going for a minimum in the 533 * non-timestamp case, we do not smooth things out 534 * else with timestamps disabled convergence takes too 535 * long. 536 */ 537 if (!win_dep) { 538 m -= (new_sample >> 3); 539 new_sample += m; 540 } else { 541 m <<= 3; 542 if (m < new_sample) 543 new_sample = m; 544 } 545 } else { 546 /* No previous measure. */ 547 new_sample = m << 3; 548 } 549 550 tp->rcv_rtt_est.rtt_us = new_sample; 551 } 552 553 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 554 { 555 u32 delta_us; 556 557 if (tp->rcv_rtt_est.time == 0) 558 goto new_measure; 559 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 560 return; 561 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 562 tcp_rcv_rtt_update(tp, delta_us, 1); 563 564 new_measure: 565 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 566 tp->rcv_rtt_est.time = tp->tcp_mstamp; 567 } 568 569 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 570 const struct sk_buff *skb) 571 { 572 struct tcp_sock *tp = tcp_sk(sk); 573 574 if (tp->rx_opt.rcv_tsecr && 575 (TCP_SKB_CB(skb)->end_seq - 576 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) { 577 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 578 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 579 580 tcp_rcv_rtt_update(tp, delta_us, 0); 581 } 582 } 583 584 /* 585 * This function should be called every time data is copied to user space. 586 * It calculates the appropriate TCP receive buffer space. 587 */ 588 void tcp_rcv_space_adjust(struct sock *sk) 589 { 590 struct tcp_sock *tp = tcp_sk(sk); 591 int time; 592 int copied; 593 594 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 595 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 596 return; 597 598 /* Number of bytes copied to user in last RTT */ 599 copied = tp->copied_seq - tp->rcvq_space.seq; 600 if (copied <= tp->rcvq_space.space) 601 goto new_measure; 602 603 /* A bit of theory : 604 * copied = bytes received in previous RTT, our base window 605 * To cope with packet losses, we need a 2x factor 606 * To cope with slow start, and sender growing its cwin by 100 % 607 * every RTT, we need a 4x factor, because the ACK we are sending 608 * now is for the next RTT, not the current one : 609 * <prev RTT . ><current RTT .. ><next RTT .... > 610 */ 611 612 if (sysctl_tcp_moderate_rcvbuf && 613 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 614 int rcvwin, rcvmem, rcvbuf; 615 616 /* minimal window to cope with packet losses, assuming 617 * steady state. Add some cushion because of small variations. 618 */ 619 rcvwin = (copied << 1) + 16 * tp->advmss; 620 621 /* If rate increased by 25%, 622 * assume slow start, rcvwin = 3 * copied 623 * If rate increased by 50%, 624 * assume sender can use 2x growth, rcvwin = 4 * copied 625 */ 626 if (copied >= 627 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) { 628 if (copied >= 629 tp->rcvq_space.space + (tp->rcvq_space.space >> 1)) 630 rcvwin <<= 1; 631 else 632 rcvwin += (rcvwin >> 1); 633 } 634 635 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 636 while (tcp_win_from_space(rcvmem) < tp->advmss) 637 rcvmem += 128; 638 639 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]); 640 if (rcvbuf > sk->sk_rcvbuf) { 641 sk->sk_rcvbuf = rcvbuf; 642 643 /* Make the window clamp follow along. */ 644 tp->window_clamp = rcvwin; 645 } 646 } 647 tp->rcvq_space.space = copied; 648 649 new_measure: 650 tp->rcvq_space.seq = tp->copied_seq; 651 tp->rcvq_space.time = tp->tcp_mstamp; 652 } 653 654 /* There is something which you must keep in mind when you analyze the 655 * behavior of the tp->ato delayed ack timeout interval. When a 656 * connection starts up, we want to ack as quickly as possible. The 657 * problem is that "good" TCP's do slow start at the beginning of data 658 * transmission. The means that until we send the first few ACK's the 659 * sender will sit on his end and only queue most of his data, because 660 * he can only send snd_cwnd unacked packets at any given time. For 661 * each ACK we send, he increments snd_cwnd and transmits more of his 662 * queue. -DaveM 663 */ 664 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 665 { 666 struct tcp_sock *tp = tcp_sk(sk); 667 struct inet_connection_sock *icsk = inet_csk(sk); 668 u32 now; 669 670 inet_csk_schedule_ack(sk); 671 672 tcp_measure_rcv_mss(sk, skb); 673 674 tcp_rcv_rtt_measure(tp); 675 676 now = tcp_jiffies32; 677 678 if (!icsk->icsk_ack.ato) { 679 /* The _first_ data packet received, initialize 680 * delayed ACK engine. 681 */ 682 tcp_incr_quickack(sk); 683 icsk->icsk_ack.ato = TCP_ATO_MIN; 684 } else { 685 int m = now - icsk->icsk_ack.lrcvtime; 686 687 if (m <= TCP_ATO_MIN / 2) { 688 /* The fastest case is the first. */ 689 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 690 } else if (m < icsk->icsk_ack.ato) { 691 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 692 if (icsk->icsk_ack.ato > icsk->icsk_rto) 693 icsk->icsk_ack.ato = icsk->icsk_rto; 694 } else if (m > icsk->icsk_rto) { 695 /* Too long gap. Apparently sender failed to 696 * restart window, so that we send ACKs quickly. 697 */ 698 tcp_incr_quickack(sk); 699 sk_mem_reclaim(sk); 700 } 701 } 702 icsk->icsk_ack.lrcvtime = now; 703 704 tcp_ecn_check_ce(tp, skb); 705 706 if (skb->len >= 128) 707 tcp_grow_window(sk, skb); 708 } 709 710 /* Called to compute a smoothed rtt estimate. The data fed to this 711 * routine either comes from timestamps, or from segments that were 712 * known _not_ to have been retransmitted [see Karn/Partridge 713 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 714 * piece by Van Jacobson. 715 * NOTE: the next three routines used to be one big routine. 716 * To save cycles in the RFC 1323 implementation it was better to break 717 * it up into three procedures. -- erics 718 */ 719 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 720 { 721 struct tcp_sock *tp = tcp_sk(sk); 722 long m = mrtt_us; /* RTT */ 723 u32 srtt = tp->srtt_us; 724 725 /* The following amusing code comes from Jacobson's 726 * article in SIGCOMM '88. Note that rtt and mdev 727 * are scaled versions of rtt and mean deviation. 728 * This is designed to be as fast as possible 729 * m stands for "measurement". 730 * 731 * On a 1990 paper the rto value is changed to: 732 * RTO = rtt + 4 * mdev 733 * 734 * Funny. This algorithm seems to be very broken. 735 * These formulae increase RTO, when it should be decreased, increase 736 * too slowly, when it should be increased quickly, decrease too quickly 737 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 738 * does not matter how to _calculate_ it. Seems, it was trap 739 * that VJ failed to avoid. 8) 740 */ 741 if (srtt != 0) { 742 m -= (srtt >> 3); /* m is now error in rtt est */ 743 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 744 if (m < 0) { 745 m = -m; /* m is now abs(error) */ 746 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 747 /* This is similar to one of Eifel findings. 748 * Eifel blocks mdev updates when rtt decreases. 749 * This solution is a bit different: we use finer gain 750 * for mdev in this case (alpha*beta). 751 * Like Eifel it also prevents growth of rto, 752 * but also it limits too fast rto decreases, 753 * happening in pure Eifel. 754 */ 755 if (m > 0) 756 m >>= 3; 757 } else { 758 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 759 } 760 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 761 if (tp->mdev_us > tp->mdev_max_us) { 762 tp->mdev_max_us = tp->mdev_us; 763 if (tp->mdev_max_us > tp->rttvar_us) 764 tp->rttvar_us = tp->mdev_max_us; 765 } 766 if (after(tp->snd_una, tp->rtt_seq)) { 767 if (tp->mdev_max_us < tp->rttvar_us) 768 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 769 tp->rtt_seq = tp->snd_nxt; 770 tp->mdev_max_us = tcp_rto_min_us(sk); 771 } 772 } else { 773 /* no previous measure. */ 774 srtt = m << 3; /* take the measured time to be rtt */ 775 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 776 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 777 tp->mdev_max_us = tp->rttvar_us; 778 tp->rtt_seq = tp->snd_nxt; 779 } 780 tp->srtt_us = max(1U, srtt); 781 } 782 783 /* Set the sk_pacing_rate to allow proper sizing of TSO packets. 784 * Note: TCP stack does not yet implement pacing. 785 * FQ packet scheduler can be used to implement cheap but effective 786 * TCP pacing, to smooth the burst on large writes when packets 787 * in flight is significantly lower than cwnd (or rwin) 788 */ 789 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200; 790 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120; 791 792 static void tcp_update_pacing_rate(struct sock *sk) 793 { 794 const struct tcp_sock *tp = tcp_sk(sk); 795 u64 rate; 796 797 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 798 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 799 800 /* current rate is (cwnd * mss) / srtt 801 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 802 * In Congestion Avoidance phase, set it to 120 % the current rate. 803 * 804 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 805 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 806 * end of slow start and should slow down. 807 */ 808 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 809 rate *= sysctl_tcp_pacing_ss_ratio; 810 else 811 rate *= sysctl_tcp_pacing_ca_ratio; 812 813 rate *= max(tp->snd_cwnd, tp->packets_out); 814 815 if (likely(tp->srtt_us)) 816 do_div(rate, tp->srtt_us); 817 818 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate 819 * without any lock. We want to make sure compiler wont store 820 * intermediate values in this location. 821 */ 822 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate, 823 sk->sk_max_pacing_rate); 824 } 825 826 /* Calculate rto without backoff. This is the second half of Van Jacobson's 827 * routine referred to above. 828 */ 829 static void tcp_set_rto(struct sock *sk) 830 { 831 const struct tcp_sock *tp = tcp_sk(sk); 832 /* Old crap is replaced with new one. 8) 833 * 834 * More seriously: 835 * 1. If rtt variance happened to be less 50msec, it is hallucination. 836 * It cannot be less due to utterly erratic ACK generation made 837 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 838 * to do with delayed acks, because at cwnd>2 true delack timeout 839 * is invisible. Actually, Linux-2.4 also generates erratic 840 * ACKs in some circumstances. 841 */ 842 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 843 844 /* 2. Fixups made earlier cannot be right. 845 * If we do not estimate RTO correctly without them, 846 * all the algo is pure shit and should be replaced 847 * with correct one. It is exactly, which we pretend to do. 848 */ 849 850 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 851 * guarantees that rto is higher. 852 */ 853 tcp_bound_rto(sk); 854 } 855 856 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 857 { 858 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 859 860 if (!cwnd) 861 cwnd = TCP_INIT_CWND; 862 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 863 } 864 865 /* 866 * Packet counting of FACK is based on in-order assumptions, therefore TCP 867 * disables it when reordering is detected 868 */ 869 void tcp_disable_fack(struct tcp_sock *tp) 870 { 871 /* RFC3517 uses different metric in lost marker => reset on change */ 872 if (tcp_is_fack(tp)) 873 tp->lost_skb_hint = NULL; 874 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; 875 } 876 877 /* Take a notice that peer is sending D-SACKs */ 878 static void tcp_dsack_seen(struct tcp_sock *tp) 879 { 880 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 881 } 882 883 static void tcp_update_reordering(struct sock *sk, const int metric, 884 const int ts) 885 { 886 struct tcp_sock *tp = tcp_sk(sk); 887 int mib_idx; 888 889 if (WARN_ON_ONCE(metric < 0)) 890 return; 891 892 if (metric > tp->reordering) { 893 tp->reordering = min(sysctl_tcp_max_reordering, metric); 894 895 #if FASTRETRANS_DEBUG > 1 896 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 897 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 898 tp->reordering, 899 tp->fackets_out, 900 tp->sacked_out, 901 tp->undo_marker ? tp->undo_retrans : 0); 902 #endif 903 tcp_disable_fack(tp); 904 } 905 906 tp->rack.reord = 1; 907 908 /* This exciting event is worth to be remembered. 8) */ 909 if (ts) 910 mib_idx = LINUX_MIB_TCPTSREORDER; 911 else if (tcp_is_reno(tp)) 912 mib_idx = LINUX_MIB_TCPRENOREORDER; 913 else if (tcp_is_fack(tp)) 914 mib_idx = LINUX_MIB_TCPFACKREORDER; 915 else 916 mib_idx = LINUX_MIB_TCPSACKREORDER; 917 918 NET_INC_STATS(sock_net(sk), mib_idx); 919 } 920 921 /* This must be called before lost_out is incremented */ 922 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 923 { 924 if (!tp->retransmit_skb_hint || 925 before(TCP_SKB_CB(skb)->seq, 926 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 927 tp->retransmit_skb_hint = skb; 928 } 929 930 /* Sum the number of packets on the wire we have marked as lost. 931 * There are two cases we care about here: 932 * a) Packet hasn't been marked lost (nor retransmitted), 933 * and this is the first loss. 934 * b) Packet has been marked both lost and retransmitted, 935 * and this means we think it was lost again. 936 */ 937 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 938 { 939 __u8 sacked = TCP_SKB_CB(skb)->sacked; 940 941 if (!(sacked & TCPCB_LOST) || 942 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 943 tp->lost += tcp_skb_pcount(skb); 944 } 945 946 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 947 { 948 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 949 tcp_verify_retransmit_hint(tp, skb); 950 951 tp->lost_out += tcp_skb_pcount(skb); 952 tcp_sum_lost(tp, skb); 953 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 954 } 955 } 956 957 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 958 { 959 tcp_verify_retransmit_hint(tp, skb); 960 961 tcp_sum_lost(tp, skb); 962 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 963 tp->lost_out += tcp_skb_pcount(skb); 964 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 965 } 966 } 967 968 /* This procedure tags the retransmission queue when SACKs arrive. 969 * 970 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 971 * Packets in queue with these bits set are counted in variables 972 * sacked_out, retrans_out and lost_out, correspondingly. 973 * 974 * Valid combinations are: 975 * Tag InFlight Description 976 * 0 1 - orig segment is in flight. 977 * S 0 - nothing flies, orig reached receiver. 978 * L 0 - nothing flies, orig lost by net. 979 * R 2 - both orig and retransmit are in flight. 980 * L|R 1 - orig is lost, retransmit is in flight. 981 * S|R 1 - orig reached receiver, retrans is still in flight. 982 * (L|S|R is logically valid, it could occur when L|R is sacked, 983 * but it is equivalent to plain S and code short-curcuits it to S. 984 * L|S is logically invalid, it would mean -1 packet in flight 8)) 985 * 986 * These 6 states form finite state machine, controlled by the following events: 987 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 988 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 989 * 3. Loss detection event of two flavors: 990 * A. Scoreboard estimator decided the packet is lost. 991 * A'. Reno "three dupacks" marks head of queue lost. 992 * A''. Its FACK modification, head until snd.fack is lost. 993 * B. SACK arrives sacking SND.NXT at the moment, when the 994 * segment was retransmitted. 995 * 4. D-SACK added new rule: D-SACK changes any tag to S. 996 * 997 * It is pleasant to note, that state diagram turns out to be commutative, 998 * so that we are allowed not to be bothered by order of our actions, 999 * when multiple events arrive simultaneously. (see the function below). 1000 * 1001 * Reordering detection. 1002 * -------------------- 1003 * Reordering metric is maximal distance, which a packet can be displaced 1004 * in packet stream. With SACKs we can estimate it: 1005 * 1006 * 1. SACK fills old hole and the corresponding segment was not 1007 * ever retransmitted -> reordering. Alas, we cannot use it 1008 * when segment was retransmitted. 1009 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1010 * for retransmitted and already SACKed segment -> reordering.. 1011 * Both of these heuristics are not used in Loss state, when we cannot 1012 * account for retransmits accurately. 1013 * 1014 * SACK block validation. 1015 * ---------------------- 1016 * 1017 * SACK block range validation checks that the received SACK block fits to 1018 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1019 * Note that SND.UNA is not included to the range though being valid because 1020 * it means that the receiver is rather inconsistent with itself reporting 1021 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1022 * perfectly valid, however, in light of RFC2018 which explicitly states 1023 * that "SACK block MUST reflect the newest segment. Even if the newest 1024 * segment is going to be discarded ...", not that it looks very clever 1025 * in case of head skb. Due to potentional receiver driven attacks, we 1026 * choose to avoid immediate execution of a walk in write queue due to 1027 * reneging and defer head skb's loss recovery to standard loss recovery 1028 * procedure that will eventually trigger (nothing forbids us doing this). 1029 * 1030 * Implements also blockage to start_seq wrap-around. Problem lies in the 1031 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1032 * there's no guarantee that it will be before snd_nxt (n). The problem 1033 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1034 * wrap (s_w): 1035 * 1036 * <- outs wnd -> <- wrapzone -> 1037 * u e n u_w e_w s n_w 1038 * | | | | | | | 1039 * |<------------+------+----- TCP seqno space --------------+---------->| 1040 * ...-- <2^31 ->| |<--------... 1041 * ...---- >2^31 ------>| |<--------... 1042 * 1043 * Current code wouldn't be vulnerable but it's better still to discard such 1044 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1045 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1046 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1047 * equal to the ideal case (infinite seqno space without wrap caused issues). 1048 * 1049 * With D-SACK the lower bound is extended to cover sequence space below 1050 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1051 * again, D-SACK block must not to go across snd_una (for the same reason as 1052 * for the normal SACK blocks, explained above). But there all simplicity 1053 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1054 * fully below undo_marker they do not affect behavior in anyway and can 1055 * therefore be safely ignored. In rare cases (which are more or less 1056 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1057 * fragmentation and packet reordering past skb's retransmission. To consider 1058 * them correctly, the acceptable range must be extended even more though 1059 * the exact amount is rather hard to quantify. However, tp->max_window can 1060 * be used as an exaggerated estimate. 1061 */ 1062 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1063 u32 start_seq, u32 end_seq) 1064 { 1065 /* Too far in future, or reversed (interpretation is ambiguous) */ 1066 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1067 return false; 1068 1069 /* Nasty start_seq wrap-around check (see comments above) */ 1070 if (!before(start_seq, tp->snd_nxt)) 1071 return false; 1072 1073 /* In outstanding window? ...This is valid exit for D-SACKs too. 1074 * start_seq == snd_una is non-sensical (see comments above) 1075 */ 1076 if (after(start_seq, tp->snd_una)) 1077 return true; 1078 1079 if (!is_dsack || !tp->undo_marker) 1080 return false; 1081 1082 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1083 if (after(end_seq, tp->snd_una)) 1084 return false; 1085 1086 if (!before(start_seq, tp->undo_marker)) 1087 return true; 1088 1089 /* Too old */ 1090 if (!after(end_seq, tp->undo_marker)) 1091 return false; 1092 1093 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1094 * start_seq < undo_marker and end_seq >= undo_marker. 1095 */ 1096 return !before(start_seq, end_seq - tp->max_window); 1097 } 1098 1099 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1100 struct tcp_sack_block_wire *sp, int num_sacks, 1101 u32 prior_snd_una) 1102 { 1103 struct tcp_sock *tp = tcp_sk(sk); 1104 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1105 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1106 bool dup_sack = false; 1107 1108 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1109 dup_sack = true; 1110 tcp_dsack_seen(tp); 1111 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1112 } else if (num_sacks > 1) { 1113 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1114 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1115 1116 if (!after(end_seq_0, end_seq_1) && 1117 !before(start_seq_0, start_seq_1)) { 1118 dup_sack = true; 1119 tcp_dsack_seen(tp); 1120 NET_INC_STATS(sock_net(sk), 1121 LINUX_MIB_TCPDSACKOFORECV); 1122 } 1123 } 1124 1125 /* D-SACK for already forgotten data... Do dumb counting. */ 1126 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1127 !after(end_seq_0, prior_snd_una) && 1128 after(end_seq_0, tp->undo_marker)) 1129 tp->undo_retrans--; 1130 1131 return dup_sack; 1132 } 1133 1134 struct tcp_sacktag_state { 1135 int reord; 1136 int fack_count; 1137 /* Timestamps for earliest and latest never-retransmitted segment 1138 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1139 * but congestion control should still get an accurate delay signal. 1140 */ 1141 u64 first_sackt; 1142 u64 last_sackt; 1143 struct rate_sample *rate; 1144 int flag; 1145 }; 1146 1147 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1148 * the incoming SACK may not exactly match but we can find smaller MSS 1149 * aligned portion of it that matches. Therefore we might need to fragment 1150 * which may fail and creates some hassle (caller must handle error case 1151 * returns). 1152 * 1153 * FIXME: this could be merged to shift decision code 1154 */ 1155 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1156 u32 start_seq, u32 end_seq) 1157 { 1158 int err; 1159 bool in_sack; 1160 unsigned int pkt_len; 1161 unsigned int mss; 1162 1163 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1164 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1165 1166 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1167 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1168 mss = tcp_skb_mss(skb); 1169 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1170 1171 if (!in_sack) { 1172 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1173 if (pkt_len < mss) 1174 pkt_len = mss; 1175 } else { 1176 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1177 if (pkt_len < mss) 1178 return -EINVAL; 1179 } 1180 1181 /* Round if necessary so that SACKs cover only full MSSes 1182 * and/or the remaining small portion (if present) 1183 */ 1184 if (pkt_len > mss) { 1185 unsigned int new_len = (pkt_len / mss) * mss; 1186 if (!in_sack && new_len < pkt_len) 1187 new_len += mss; 1188 pkt_len = new_len; 1189 } 1190 1191 if (pkt_len >= skb->len && !in_sack) 1192 return 0; 1193 1194 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC); 1195 if (err < 0) 1196 return err; 1197 } 1198 1199 return in_sack; 1200 } 1201 1202 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1203 static u8 tcp_sacktag_one(struct sock *sk, 1204 struct tcp_sacktag_state *state, u8 sacked, 1205 u32 start_seq, u32 end_seq, 1206 int dup_sack, int pcount, 1207 u64 xmit_time) 1208 { 1209 struct tcp_sock *tp = tcp_sk(sk); 1210 int fack_count = state->fack_count; 1211 1212 /* Account D-SACK for retransmitted packet. */ 1213 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1214 if (tp->undo_marker && tp->undo_retrans > 0 && 1215 after(end_seq, tp->undo_marker)) 1216 tp->undo_retrans--; 1217 if (sacked & TCPCB_SACKED_ACKED) 1218 state->reord = min(fack_count, state->reord); 1219 } 1220 1221 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1222 if (!after(end_seq, tp->snd_una)) 1223 return sacked; 1224 1225 if (!(sacked & TCPCB_SACKED_ACKED)) { 1226 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1227 1228 if (sacked & TCPCB_SACKED_RETRANS) { 1229 /* If the segment is not tagged as lost, 1230 * we do not clear RETRANS, believing 1231 * that retransmission is still in flight. 1232 */ 1233 if (sacked & TCPCB_LOST) { 1234 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1235 tp->lost_out -= pcount; 1236 tp->retrans_out -= pcount; 1237 } 1238 } else { 1239 if (!(sacked & TCPCB_RETRANS)) { 1240 /* New sack for not retransmitted frame, 1241 * which was in hole. It is reordering. 1242 */ 1243 if (before(start_seq, 1244 tcp_highest_sack_seq(tp))) 1245 state->reord = min(fack_count, 1246 state->reord); 1247 if (!after(end_seq, tp->high_seq)) 1248 state->flag |= FLAG_ORIG_SACK_ACKED; 1249 if (state->first_sackt == 0) 1250 state->first_sackt = xmit_time; 1251 state->last_sackt = xmit_time; 1252 } 1253 1254 if (sacked & TCPCB_LOST) { 1255 sacked &= ~TCPCB_LOST; 1256 tp->lost_out -= pcount; 1257 } 1258 } 1259 1260 sacked |= TCPCB_SACKED_ACKED; 1261 state->flag |= FLAG_DATA_SACKED; 1262 tp->sacked_out += pcount; 1263 tp->delivered += pcount; /* Out-of-order packets delivered */ 1264 1265 fack_count += pcount; 1266 1267 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1268 if (!tcp_is_fack(tp) && tp->lost_skb_hint && 1269 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1270 tp->lost_cnt_hint += pcount; 1271 1272 if (fack_count > tp->fackets_out) 1273 tp->fackets_out = fack_count; 1274 } 1275 1276 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1277 * frames and clear it. undo_retrans is decreased above, L|R frames 1278 * are accounted above as well. 1279 */ 1280 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1281 sacked &= ~TCPCB_SACKED_RETRANS; 1282 tp->retrans_out -= pcount; 1283 } 1284 1285 return sacked; 1286 } 1287 1288 /* Shift newly-SACKed bytes from this skb to the immediately previous 1289 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1290 */ 1291 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1292 struct tcp_sacktag_state *state, 1293 unsigned int pcount, int shifted, int mss, 1294 bool dup_sack) 1295 { 1296 struct tcp_sock *tp = tcp_sk(sk); 1297 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1298 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1299 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1300 1301 BUG_ON(!pcount); 1302 1303 /* Adjust counters and hints for the newly sacked sequence 1304 * range but discard the return value since prev is already 1305 * marked. We must tag the range first because the seq 1306 * advancement below implicitly advances 1307 * tcp_highest_sack_seq() when skb is highest_sack. 1308 */ 1309 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1310 start_seq, end_seq, dup_sack, pcount, 1311 skb->skb_mstamp); 1312 tcp_rate_skb_delivered(sk, skb, state->rate); 1313 1314 if (skb == tp->lost_skb_hint) 1315 tp->lost_cnt_hint += pcount; 1316 1317 TCP_SKB_CB(prev)->end_seq += shifted; 1318 TCP_SKB_CB(skb)->seq += shifted; 1319 1320 tcp_skb_pcount_add(prev, pcount); 1321 BUG_ON(tcp_skb_pcount(skb) < pcount); 1322 tcp_skb_pcount_add(skb, -pcount); 1323 1324 /* When we're adding to gso_segs == 1, gso_size will be zero, 1325 * in theory this shouldn't be necessary but as long as DSACK 1326 * code can come after this skb later on it's better to keep 1327 * setting gso_size to something. 1328 */ 1329 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1330 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1331 1332 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1333 if (tcp_skb_pcount(skb) <= 1) 1334 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1335 1336 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1337 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1338 1339 if (skb->len > 0) { 1340 BUG_ON(!tcp_skb_pcount(skb)); 1341 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1342 return false; 1343 } 1344 1345 /* Whole SKB was eaten :-) */ 1346 1347 if (skb == tp->retransmit_skb_hint) 1348 tp->retransmit_skb_hint = prev; 1349 if (skb == tp->lost_skb_hint) { 1350 tp->lost_skb_hint = prev; 1351 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1352 } 1353 1354 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1355 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1356 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1357 TCP_SKB_CB(prev)->end_seq++; 1358 1359 if (skb == tcp_highest_sack(sk)) 1360 tcp_advance_highest_sack(sk, skb); 1361 1362 tcp_skb_collapse_tstamp(prev, skb); 1363 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1364 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1365 1366 tcp_unlink_write_queue(skb, sk); 1367 sk_wmem_free_skb(sk, skb); 1368 1369 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1370 1371 return true; 1372 } 1373 1374 /* I wish gso_size would have a bit more sane initialization than 1375 * something-or-zero which complicates things 1376 */ 1377 static int tcp_skb_seglen(const struct sk_buff *skb) 1378 { 1379 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1380 } 1381 1382 /* Shifting pages past head area doesn't work */ 1383 static int skb_can_shift(const struct sk_buff *skb) 1384 { 1385 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1386 } 1387 1388 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1389 * skb. 1390 */ 1391 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1392 struct tcp_sacktag_state *state, 1393 u32 start_seq, u32 end_seq, 1394 bool dup_sack) 1395 { 1396 struct tcp_sock *tp = tcp_sk(sk); 1397 struct sk_buff *prev; 1398 int mss; 1399 int pcount = 0; 1400 int len; 1401 int in_sack; 1402 1403 if (!sk_can_gso(sk)) 1404 goto fallback; 1405 1406 /* Normally R but no L won't result in plain S */ 1407 if (!dup_sack && 1408 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1409 goto fallback; 1410 if (!skb_can_shift(skb)) 1411 goto fallback; 1412 /* This frame is about to be dropped (was ACKed). */ 1413 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1414 goto fallback; 1415 1416 /* Can only happen with delayed DSACK + discard craziness */ 1417 if (unlikely(skb == tcp_write_queue_head(sk))) 1418 goto fallback; 1419 prev = tcp_write_queue_prev(sk, skb); 1420 1421 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1422 goto fallback; 1423 1424 if (!tcp_skb_can_collapse_to(prev)) 1425 goto fallback; 1426 1427 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1428 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1429 1430 if (in_sack) { 1431 len = skb->len; 1432 pcount = tcp_skb_pcount(skb); 1433 mss = tcp_skb_seglen(skb); 1434 1435 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1436 * drop this restriction as unnecessary 1437 */ 1438 if (mss != tcp_skb_seglen(prev)) 1439 goto fallback; 1440 } else { 1441 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1442 goto noop; 1443 /* CHECKME: This is non-MSS split case only?, this will 1444 * cause skipped skbs due to advancing loop btw, original 1445 * has that feature too 1446 */ 1447 if (tcp_skb_pcount(skb) <= 1) 1448 goto noop; 1449 1450 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1451 if (!in_sack) { 1452 /* TODO: head merge to next could be attempted here 1453 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1454 * though it might not be worth of the additional hassle 1455 * 1456 * ...we can probably just fallback to what was done 1457 * previously. We could try merging non-SACKed ones 1458 * as well but it probably isn't going to buy off 1459 * because later SACKs might again split them, and 1460 * it would make skb timestamp tracking considerably 1461 * harder problem. 1462 */ 1463 goto fallback; 1464 } 1465 1466 len = end_seq - TCP_SKB_CB(skb)->seq; 1467 BUG_ON(len < 0); 1468 BUG_ON(len > skb->len); 1469 1470 /* MSS boundaries should be honoured or else pcount will 1471 * severely break even though it makes things bit trickier. 1472 * Optimize common case to avoid most of the divides 1473 */ 1474 mss = tcp_skb_mss(skb); 1475 1476 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1477 * drop this restriction as unnecessary 1478 */ 1479 if (mss != tcp_skb_seglen(prev)) 1480 goto fallback; 1481 1482 if (len == mss) { 1483 pcount = 1; 1484 } else if (len < mss) { 1485 goto noop; 1486 } else { 1487 pcount = len / mss; 1488 len = pcount * mss; 1489 } 1490 } 1491 1492 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1493 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1494 goto fallback; 1495 1496 if (!skb_shift(prev, skb, len)) 1497 goto fallback; 1498 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1499 goto out; 1500 1501 /* Hole filled allows collapsing with the next as well, this is very 1502 * useful when hole on every nth skb pattern happens 1503 */ 1504 if (prev == tcp_write_queue_tail(sk)) 1505 goto out; 1506 skb = tcp_write_queue_next(sk, prev); 1507 1508 if (!skb_can_shift(skb) || 1509 (skb == tcp_send_head(sk)) || 1510 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1511 (mss != tcp_skb_seglen(skb))) 1512 goto out; 1513 1514 len = skb->len; 1515 if (skb_shift(prev, skb, len)) { 1516 pcount += tcp_skb_pcount(skb); 1517 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1518 } 1519 1520 out: 1521 state->fack_count += pcount; 1522 return prev; 1523 1524 noop: 1525 return skb; 1526 1527 fallback: 1528 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1529 return NULL; 1530 } 1531 1532 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1533 struct tcp_sack_block *next_dup, 1534 struct tcp_sacktag_state *state, 1535 u32 start_seq, u32 end_seq, 1536 bool dup_sack_in) 1537 { 1538 struct tcp_sock *tp = tcp_sk(sk); 1539 struct sk_buff *tmp; 1540 1541 tcp_for_write_queue_from(skb, sk) { 1542 int in_sack = 0; 1543 bool dup_sack = dup_sack_in; 1544 1545 if (skb == tcp_send_head(sk)) 1546 break; 1547 1548 /* queue is in-order => we can short-circuit the walk early */ 1549 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1550 break; 1551 1552 if (next_dup && 1553 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1554 in_sack = tcp_match_skb_to_sack(sk, skb, 1555 next_dup->start_seq, 1556 next_dup->end_seq); 1557 if (in_sack > 0) 1558 dup_sack = true; 1559 } 1560 1561 /* skb reference here is a bit tricky to get right, since 1562 * shifting can eat and free both this skb and the next, 1563 * so not even _safe variant of the loop is enough. 1564 */ 1565 if (in_sack <= 0) { 1566 tmp = tcp_shift_skb_data(sk, skb, state, 1567 start_seq, end_seq, dup_sack); 1568 if (tmp) { 1569 if (tmp != skb) { 1570 skb = tmp; 1571 continue; 1572 } 1573 1574 in_sack = 0; 1575 } else { 1576 in_sack = tcp_match_skb_to_sack(sk, skb, 1577 start_seq, 1578 end_seq); 1579 } 1580 } 1581 1582 if (unlikely(in_sack < 0)) 1583 break; 1584 1585 if (in_sack) { 1586 TCP_SKB_CB(skb)->sacked = 1587 tcp_sacktag_one(sk, 1588 state, 1589 TCP_SKB_CB(skb)->sacked, 1590 TCP_SKB_CB(skb)->seq, 1591 TCP_SKB_CB(skb)->end_seq, 1592 dup_sack, 1593 tcp_skb_pcount(skb), 1594 skb->skb_mstamp); 1595 tcp_rate_skb_delivered(sk, skb, state->rate); 1596 1597 if (!before(TCP_SKB_CB(skb)->seq, 1598 tcp_highest_sack_seq(tp))) 1599 tcp_advance_highest_sack(sk, skb); 1600 } 1601 1602 state->fack_count += tcp_skb_pcount(skb); 1603 } 1604 return skb; 1605 } 1606 1607 /* Avoid all extra work that is being done by sacktag while walking in 1608 * a normal way 1609 */ 1610 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1611 struct tcp_sacktag_state *state, 1612 u32 skip_to_seq) 1613 { 1614 tcp_for_write_queue_from(skb, sk) { 1615 if (skb == tcp_send_head(sk)) 1616 break; 1617 1618 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1619 break; 1620 1621 state->fack_count += tcp_skb_pcount(skb); 1622 } 1623 return skb; 1624 } 1625 1626 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1627 struct sock *sk, 1628 struct tcp_sack_block *next_dup, 1629 struct tcp_sacktag_state *state, 1630 u32 skip_to_seq) 1631 { 1632 if (!next_dup) 1633 return skb; 1634 1635 if (before(next_dup->start_seq, skip_to_seq)) { 1636 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1637 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1638 next_dup->start_seq, next_dup->end_seq, 1639 1); 1640 } 1641 1642 return skb; 1643 } 1644 1645 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1646 { 1647 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1648 } 1649 1650 static int 1651 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1652 u32 prior_snd_una, struct tcp_sacktag_state *state) 1653 { 1654 struct tcp_sock *tp = tcp_sk(sk); 1655 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1656 TCP_SKB_CB(ack_skb)->sacked); 1657 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1658 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1659 struct tcp_sack_block *cache; 1660 struct sk_buff *skb; 1661 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1662 int used_sacks; 1663 bool found_dup_sack = false; 1664 int i, j; 1665 int first_sack_index; 1666 1667 state->flag = 0; 1668 state->reord = tp->packets_out; 1669 1670 if (!tp->sacked_out) { 1671 if (WARN_ON(tp->fackets_out)) 1672 tp->fackets_out = 0; 1673 tcp_highest_sack_reset(sk); 1674 } 1675 1676 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1677 num_sacks, prior_snd_una); 1678 if (found_dup_sack) { 1679 state->flag |= FLAG_DSACKING_ACK; 1680 tp->delivered++; /* A spurious retransmission is delivered */ 1681 } 1682 1683 /* Eliminate too old ACKs, but take into 1684 * account more or less fresh ones, they can 1685 * contain valid SACK info. 1686 */ 1687 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1688 return 0; 1689 1690 if (!tp->packets_out) 1691 goto out; 1692 1693 used_sacks = 0; 1694 first_sack_index = 0; 1695 for (i = 0; i < num_sacks; i++) { 1696 bool dup_sack = !i && found_dup_sack; 1697 1698 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1699 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1700 1701 if (!tcp_is_sackblock_valid(tp, dup_sack, 1702 sp[used_sacks].start_seq, 1703 sp[used_sacks].end_seq)) { 1704 int mib_idx; 1705 1706 if (dup_sack) { 1707 if (!tp->undo_marker) 1708 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1709 else 1710 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1711 } else { 1712 /* Don't count olds caused by ACK reordering */ 1713 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1714 !after(sp[used_sacks].end_seq, tp->snd_una)) 1715 continue; 1716 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1717 } 1718 1719 NET_INC_STATS(sock_net(sk), mib_idx); 1720 if (i == 0) 1721 first_sack_index = -1; 1722 continue; 1723 } 1724 1725 /* Ignore very old stuff early */ 1726 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1727 continue; 1728 1729 used_sacks++; 1730 } 1731 1732 /* order SACK blocks to allow in order walk of the retrans queue */ 1733 for (i = used_sacks - 1; i > 0; i--) { 1734 for (j = 0; j < i; j++) { 1735 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1736 swap(sp[j], sp[j + 1]); 1737 1738 /* Track where the first SACK block goes to */ 1739 if (j == first_sack_index) 1740 first_sack_index = j + 1; 1741 } 1742 } 1743 } 1744 1745 skb = tcp_write_queue_head(sk); 1746 state->fack_count = 0; 1747 i = 0; 1748 1749 if (!tp->sacked_out) { 1750 /* It's already past, so skip checking against it */ 1751 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1752 } else { 1753 cache = tp->recv_sack_cache; 1754 /* Skip empty blocks in at head of the cache */ 1755 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1756 !cache->end_seq) 1757 cache++; 1758 } 1759 1760 while (i < used_sacks) { 1761 u32 start_seq = sp[i].start_seq; 1762 u32 end_seq = sp[i].end_seq; 1763 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1764 struct tcp_sack_block *next_dup = NULL; 1765 1766 if (found_dup_sack && ((i + 1) == first_sack_index)) 1767 next_dup = &sp[i + 1]; 1768 1769 /* Skip too early cached blocks */ 1770 while (tcp_sack_cache_ok(tp, cache) && 1771 !before(start_seq, cache->end_seq)) 1772 cache++; 1773 1774 /* Can skip some work by looking recv_sack_cache? */ 1775 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1776 after(end_seq, cache->start_seq)) { 1777 1778 /* Head todo? */ 1779 if (before(start_seq, cache->start_seq)) { 1780 skb = tcp_sacktag_skip(skb, sk, state, 1781 start_seq); 1782 skb = tcp_sacktag_walk(skb, sk, next_dup, 1783 state, 1784 start_seq, 1785 cache->start_seq, 1786 dup_sack); 1787 } 1788 1789 /* Rest of the block already fully processed? */ 1790 if (!after(end_seq, cache->end_seq)) 1791 goto advance_sp; 1792 1793 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1794 state, 1795 cache->end_seq); 1796 1797 /* ...tail remains todo... */ 1798 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1799 /* ...but better entrypoint exists! */ 1800 skb = tcp_highest_sack(sk); 1801 if (!skb) 1802 break; 1803 state->fack_count = tp->fackets_out; 1804 cache++; 1805 goto walk; 1806 } 1807 1808 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq); 1809 /* Check overlap against next cached too (past this one already) */ 1810 cache++; 1811 continue; 1812 } 1813 1814 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1815 skb = tcp_highest_sack(sk); 1816 if (!skb) 1817 break; 1818 state->fack_count = tp->fackets_out; 1819 } 1820 skb = tcp_sacktag_skip(skb, sk, state, start_seq); 1821 1822 walk: 1823 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1824 start_seq, end_seq, dup_sack); 1825 1826 advance_sp: 1827 i++; 1828 } 1829 1830 /* Clear the head of the cache sack blocks so we can skip it next time */ 1831 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1832 tp->recv_sack_cache[i].start_seq = 0; 1833 tp->recv_sack_cache[i].end_seq = 0; 1834 } 1835 for (j = 0; j < used_sacks; j++) 1836 tp->recv_sack_cache[i++] = sp[j]; 1837 1838 if ((state->reord < tp->fackets_out) && 1839 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker)) 1840 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0); 1841 1842 tcp_verify_left_out(tp); 1843 out: 1844 1845 #if FASTRETRANS_DEBUG > 0 1846 WARN_ON((int)tp->sacked_out < 0); 1847 WARN_ON((int)tp->lost_out < 0); 1848 WARN_ON((int)tp->retrans_out < 0); 1849 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1850 #endif 1851 return state->flag; 1852 } 1853 1854 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1855 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1856 */ 1857 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1858 { 1859 u32 holes; 1860 1861 holes = max(tp->lost_out, 1U); 1862 holes = min(holes, tp->packets_out); 1863 1864 if ((tp->sacked_out + holes) > tp->packets_out) { 1865 tp->sacked_out = tp->packets_out - holes; 1866 return true; 1867 } 1868 return false; 1869 } 1870 1871 /* If we receive more dupacks than we expected counting segments 1872 * in assumption of absent reordering, interpret this as reordering. 1873 * The only another reason could be bug in receiver TCP. 1874 */ 1875 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1876 { 1877 struct tcp_sock *tp = tcp_sk(sk); 1878 if (tcp_limit_reno_sacked(tp)) 1879 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1880 } 1881 1882 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1883 1884 static void tcp_add_reno_sack(struct sock *sk) 1885 { 1886 struct tcp_sock *tp = tcp_sk(sk); 1887 u32 prior_sacked = tp->sacked_out; 1888 1889 tp->sacked_out++; 1890 tcp_check_reno_reordering(sk, 0); 1891 if (tp->sacked_out > prior_sacked) 1892 tp->delivered++; /* Some out-of-order packet is delivered */ 1893 tcp_verify_left_out(tp); 1894 } 1895 1896 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1897 1898 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1899 { 1900 struct tcp_sock *tp = tcp_sk(sk); 1901 1902 if (acked > 0) { 1903 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1904 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1905 if (acked - 1 >= tp->sacked_out) 1906 tp->sacked_out = 0; 1907 else 1908 tp->sacked_out -= acked - 1; 1909 } 1910 tcp_check_reno_reordering(sk, acked); 1911 tcp_verify_left_out(tp); 1912 } 1913 1914 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1915 { 1916 tp->sacked_out = 0; 1917 } 1918 1919 void tcp_clear_retrans(struct tcp_sock *tp) 1920 { 1921 tp->retrans_out = 0; 1922 tp->lost_out = 0; 1923 tp->undo_marker = 0; 1924 tp->undo_retrans = -1; 1925 tp->fackets_out = 0; 1926 tp->sacked_out = 0; 1927 } 1928 1929 static inline void tcp_init_undo(struct tcp_sock *tp) 1930 { 1931 tp->undo_marker = tp->snd_una; 1932 /* Retransmission still in flight may cause DSACKs later. */ 1933 tp->undo_retrans = tp->retrans_out ? : -1; 1934 } 1935 1936 /* Enter Loss state. If we detect SACK reneging, forget all SACK information 1937 * and reset tags completely, otherwise preserve SACKs. If receiver 1938 * dropped its ofo queue, we will know this due to reneging detection. 1939 */ 1940 void tcp_enter_loss(struct sock *sk) 1941 { 1942 const struct inet_connection_sock *icsk = inet_csk(sk); 1943 struct tcp_sock *tp = tcp_sk(sk); 1944 struct net *net = sock_net(sk); 1945 struct sk_buff *skb; 1946 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1947 bool is_reneg; /* is receiver reneging on SACKs? */ 1948 bool mark_lost; 1949 1950 /* Reduce ssthresh if it has not yet been made inside this window. */ 1951 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1952 !after(tp->high_seq, tp->snd_una) || 1953 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1954 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1955 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1956 tcp_ca_event(sk, CA_EVENT_LOSS); 1957 tcp_init_undo(tp); 1958 } 1959 tp->snd_cwnd = 1; 1960 tp->snd_cwnd_cnt = 0; 1961 tp->snd_cwnd_stamp = tcp_jiffies32; 1962 1963 tp->retrans_out = 0; 1964 tp->lost_out = 0; 1965 1966 if (tcp_is_reno(tp)) 1967 tcp_reset_reno_sack(tp); 1968 1969 skb = tcp_write_queue_head(sk); 1970 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED); 1971 if (is_reneg) { 1972 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1973 tp->sacked_out = 0; 1974 tp->fackets_out = 0; 1975 } 1976 tcp_clear_all_retrans_hints(tp); 1977 1978 tcp_for_write_queue(skb, sk) { 1979 if (skb == tcp_send_head(sk)) 1980 break; 1981 1982 mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 1983 is_reneg); 1984 if (mark_lost) 1985 tcp_sum_lost(tp, skb); 1986 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1987 if (mark_lost) { 1988 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1989 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1990 tp->lost_out += tcp_skb_pcount(skb); 1991 } 1992 } 1993 tcp_verify_left_out(tp); 1994 1995 /* Timeout in disordered state after receiving substantial DUPACKs 1996 * suggests that the degree of reordering is over-estimated. 1997 */ 1998 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1999 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 2000 tp->reordering = min_t(unsigned int, tp->reordering, 2001 net->ipv4.sysctl_tcp_reordering); 2002 tcp_set_ca_state(sk, TCP_CA_Loss); 2003 tp->high_seq = tp->snd_nxt; 2004 tcp_ecn_queue_cwr(tp); 2005 2006 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2007 * loss recovery is underway except recurring timeout(s) on 2008 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2009 * 2010 * In theory F-RTO can be used repeatedly during loss recovery. 2011 * In practice this interacts badly with broken middle-boxes that 2012 * falsely raise the receive window, which results in repeated 2013 * timeouts and stop-and-go behavior. 2014 */ 2015 tp->frto = sysctl_tcp_frto && 2016 (new_recovery || icsk->icsk_retransmits) && 2017 !inet_csk(sk)->icsk_mtup.probe_size; 2018 } 2019 2020 /* If ACK arrived pointing to a remembered SACK, it means that our 2021 * remembered SACKs do not reflect real state of receiver i.e. 2022 * receiver _host_ is heavily congested (or buggy). 2023 * 2024 * To avoid big spurious retransmission bursts due to transient SACK 2025 * scoreboard oddities that look like reneging, we give the receiver a 2026 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2027 * restore sanity to the SACK scoreboard. If the apparent reneging 2028 * persists until this RTO then we'll clear the SACK scoreboard. 2029 */ 2030 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2031 { 2032 if (flag & FLAG_SACK_RENEGING) { 2033 struct tcp_sock *tp = tcp_sk(sk); 2034 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2035 msecs_to_jiffies(10)); 2036 2037 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2038 delay, TCP_RTO_MAX); 2039 return true; 2040 } 2041 return false; 2042 } 2043 2044 static inline int tcp_fackets_out(const struct tcp_sock *tp) 2045 { 2046 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2047 } 2048 2049 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2050 * counter when SACK is enabled (without SACK, sacked_out is used for 2051 * that purpose). 2052 * 2053 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2054 * segments up to the highest received SACK block so far and holes in 2055 * between them. 2056 * 2057 * With reordering, holes may still be in flight, so RFC3517 recovery 2058 * uses pure sacked_out (total number of SACKed segments) even though 2059 * it violates the RFC that uses duplicate ACKs, often these are equal 2060 * but when e.g. out-of-window ACKs or packet duplication occurs, 2061 * they differ. Since neither occurs due to loss, TCP should really 2062 * ignore them. 2063 */ 2064 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2065 { 2066 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2067 } 2068 2069 /* Linux NewReno/SACK/FACK/ECN state machine. 2070 * -------------------------------------- 2071 * 2072 * "Open" Normal state, no dubious events, fast path. 2073 * "Disorder" In all the respects it is "Open", 2074 * but requires a bit more attention. It is entered when 2075 * we see some SACKs or dupacks. It is split of "Open" 2076 * mainly to move some processing from fast path to slow one. 2077 * "CWR" CWND was reduced due to some Congestion Notification event. 2078 * It can be ECN, ICMP source quench, local device congestion. 2079 * "Recovery" CWND was reduced, we are fast-retransmitting. 2080 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2081 * 2082 * tcp_fastretrans_alert() is entered: 2083 * - each incoming ACK, if state is not "Open" 2084 * - when arrived ACK is unusual, namely: 2085 * * SACK 2086 * * Duplicate ACK. 2087 * * ECN ECE. 2088 * 2089 * Counting packets in flight is pretty simple. 2090 * 2091 * in_flight = packets_out - left_out + retrans_out 2092 * 2093 * packets_out is SND.NXT-SND.UNA counted in packets. 2094 * 2095 * retrans_out is number of retransmitted segments. 2096 * 2097 * left_out is number of segments left network, but not ACKed yet. 2098 * 2099 * left_out = sacked_out + lost_out 2100 * 2101 * sacked_out: Packets, which arrived to receiver out of order 2102 * and hence not ACKed. With SACKs this number is simply 2103 * amount of SACKed data. Even without SACKs 2104 * it is easy to give pretty reliable estimate of this number, 2105 * counting duplicate ACKs. 2106 * 2107 * lost_out: Packets lost by network. TCP has no explicit 2108 * "loss notification" feedback from network (for now). 2109 * It means that this number can be only _guessed_. 2110 * Actually, it is the heuristics to predict lossage that 2111 * distinguishes different algorithms. 2112 * 2113 * F.e. after RTO, when all the queue is considered as lost, 2114 * lost_out = packets_out and in_flight = retrans_out. 2115 * 2116 * Essentially, we have now a few algorithms detecting 2117 * lost packets. 2118 * 2119 * If the receiver supports SACK: 2120 * 2121 * RFC6675/3517: It is the conventional algorithm. A packet is 2122 * considered lost if the number of higher sequence packets 2123 * SACKed is greater than or equal the DUPACK thoreshold 2124 * (reordering). This is implemented in tcp_mark_head_lost and 2125 * tcp_update_scoreboard. 2126 * 2127 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2128 * (2017-) that checks timing instead of counting DUPACKs. 2129 * Essentially a packet is considered lost if it's not S/ACKed 2130 * after RTT + reordering_window, where both metrics are 2131 * dynamically measured and adjusted. This is implemented in 2132 * tcp_rack_mark_lost. 2133 * 2134 * FACK (Disabled by default. Subsumbed by RACK): 2135 * It is the simplest heuristics. As soon as we decided 2136 * that something is lost, we decide that _all_ not SACKed 2137 * packets until the most forward SACK are lost. I.e. 2138 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2139 * It is absolutely correct estimate, if network does not reorder 2140 * packets. And it loses any connection to reality when reordering 2141 * takes place. We use FACK by default until reordering 2142 * is suspected on the path to this destination. 2143 * 2144 * If the receiver does not support SACK: 2145 * 2146 * NewReno (RFC6582): in Recovery we assume that one segment 2147 * is lost (classic Reno). While we are in Recovery and 2148 * a partial ACK arrives, we assume that one more packet 2149 * is lost (NewReno). This heuristics are the same in NewReno 2150 * and SACK. 2151 * 2152 * Really tricky (and requiring careful tuning) part of algorithm 2153 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2154 * The first determines the moment _when_ we should reduce CWND and, 2155 * hence, slow down forward transmission. In fact, it determines the moment 2156 * when we decide that hole is caused by loss, rather than by a reorder. 2157 * 2158 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2159 * holes, caused by lost packets. 2160 * 2161 * And the most logically complicated part of algorithm is undo 2162 * heuristics. We detect false retransmits due to both too early 2163 * fast retransmit (reordering) and underestimated RTO, analyzing 2164 * timestamps and D-SACKs. When we detect that some segments were 2165 * retransmitted by mistake and CWND reduction was wrong, we undo 2166 * window reduction and abort recovery phase. This logic is hidden 2167 * inside several functions named tcp_try_undo_<something>. 2168 */ 2169 2170 /* This function decides, when we should leave Disordered state 2171 * and enter Recovery phase, reducing congestion window. 2172 * 2173 * Main question: may we further continue forward transmission 2174 * with the same cwnd? 2175 */ 2176 static bool tcp_time_to_recover(struct sock *sk, int flag) 2177 { 2178 struct tcp_sock *tp = tcp_sk(sk); 2179 2180 /* Trick#1: The loss is proven. */ 2181 if (tp->lost_out) 2182 return true; 2183 2184 /* Not-A-Trick#2 : Classic rule... */ 2185 if (tcp_dupack_heuristics(tp) > tp->reordering) 2186 return true; 2187 2188 return false; 2189 } 2190 2191 /* Detect loss in event "A" above by marking head of queue up as lost. 2192 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments 2193 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2194 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2195 * the maximum SACKed segments to pass before reaching this limit. 2196 */ 2197 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2198 { 2199 struct tcp_sock *tp = tcp_sk(sk); 2200 struct sk_buff *skb; 2201 int cnt, oldcnt, lost; 2202 unsigned int mss; 2203 /* Use SACK to deduce losses of new sequences sent during recovery */ 2204 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2205 2206 WARN_ON(packets > tp->packets_out); 2207 if (tp->lost_skb_hint) { 2208 skb = tp->lost_skb_hint; 2209 cnt = tp->lost_cnt_hint; 2210 /* Head already handled? */ 2211 if (mark_head && skb != tcp_write_queue_head(sk)) 2212 return; 2213 } else { 2214 skb = tcp_write_queue_head(sk); 2215 cnt = 0; 2216 } 2217 2218 tcp_for_write_queue_from(skb, sk) { 2219 if (skb == tcp_send_head(sk)) 2220 break; 2221 /* TODO: do this better */ 2222 /* this is not the most efficient way to do this... */ 2223 tp->lost_skb_hint = skb; 2224 tp->lost_cnt_hint = cnt; 2225 2226 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2227 break; 2228 2229 oldcnt = cnt; 2230 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2231 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2232 cnt += tcp_skb_pcount(skb); 2233 2234 if (cnt > packets) { 2235 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2236 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2237 (oldcnt >= packets)) 2238 break; 2239 2240 mss = tcp_skb_mss(skb); 2241 /* If needed, chop off the prefix to mark as lost. */ 2242 lost = (packets - oldcnt) * mss; 2243 if (lost < skb->len && 2244 tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0) 2245 break; 2246 cnt = packets; 2247 } 2248 2249 tcp_skb_mark_lost(tp, skb); 2250 2251 if (mark_head) 2252 break; 2253 } 2254 tcp_verify_left_out(tp); 2255 } 2256 2257 /* Account newly detected lost packet(s) */ 2258 2259 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2260 { 2261 struct tcp_sock *tp = tcp_sk(sk); 2262 2263 if (tcp_is_reno(tp)) { 2264 tcp_mark_head_lost(sk, 1, 1); 2265 } else if (tcp_is_fack(tp)) { 2266 int lost = tp->fackets_out - tp->reordering; 2267 if (lost <= 0) 2268 lost = 1; 2269 tcp_mark_head_lost(sk, lost, 0); 2270 } else { 2271 int sacked_upto = tp->sacked_out - tp->reordering; 2272 if (sacked_upto >= 0) 2273 tcp_mark_head_lost(sk, sacked_upto, 0); 2274 else if (fast_rexmit) 2275 tcp_mark_head_lost(sk, 1, 1); 2276 } 2277 } 2278 2279 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2280 { 2281 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2282 before(tp->rx_opt.rcv_tsecr, when); 2283 } 2284 2285 /* skb is spurious retransmitted if the returned timestamp echo 2286 * reply is prior to the skb transmission time 2287 */ 2288 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2289 const struct sk_buff *skb) 2290 { 2291 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2292 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2293 } 2294 2295 /* Nothing was retransmitted or returned timestamp is less 2296 * than timestamp of the first retransmission. 2297 */ 2298 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2299 { 2300 return !tp->retrans_stamp || 2301 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2302 } 2303 2304 /* Undo procedures. */ 2305 2306 /* We can clear retrans_stamp when there are no retransmissions in the 2307 * window. It would seem that it is trivially available for us in 2308 * tp->retrans_out, however, that kind of assumptions doesn't consider 2309 * what will happen if errors occur when sending retransmission for the 2310 * second time. ...It could the that such segment has only 2311 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2312 * the head skb is enough except for some reneging corner cases that 2313 * are not worth the effort. 2314 * 2315 * Main reason for all this complexity is the fact that connection dying 2316 * time now depends on the validity of the retrans_stamp, in particular, 2317 * that successive retransmissions of a segment must not advance 2318 * retrans_stamp under any conditions. 2319 */ 2320 static bool tcp_any_retrans_done(const struct sock *sk) 2321 { 2322 const struct tcp_sock *tp = tcp_sk(sk); 2323 struct sk_buff *skb; 2324 2325 if (tp->retrans_out) 2326 return true; 2327 2328 skb = tcp_write_queue_head(sk); 2329 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2330 return true; 2331 2332 return false; 2333 } 2334 2335 #if FASTRETRANS_DEBUG > 1 2336 static void DBGUNDO(struct sock *sk, const char *msg) 2337 { 2338 struct tcp_sock *tp = tcp_sk(sk); 2339 struct inet_sock *inet = inet_sk(sk); 2340 2341 if (sk->sk_family == AF_INET) { 2342 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2343 msg, 2344 &inet->inet_daddr, ntohs(inet->inet_dport), 2345 tp->snd_cwnd, tcp_left_out(tp), 2346 tp->snd_ssthresh, tp->prior_ssthresh, 2347 tp->packets_out); 2348 } 2349 #if IS_ENABLED(CONFIG_IPV6) 2350 else if (sk->sk_family == AF_INET6) { 2351 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2352 msg, 2353 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2354 tp->snd_cwnd, tcp_left_out(tp), 2355 tp->snd_ssthresh, tp->prior_ssthresh, 2356 tp->packets_out); 2357 } 2358 #endif 2359 } 2360 #else 2361 #define DBGUNDO(x...) do { } while (0) 2362 #endif 2363 2364 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2365 { 2366 struct tcp_sock *tp = tcp_sk(sk); 2367 2368 if (unmark_loss) { 2369 struct sk_buff *skb; 2370 2371 tcp_for_write_queue(skb, sk) { 2372 if (skb == tcp_send_head(sk)) 2373 break; 2374 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2375 } 2376 tp->lost_out = 0; 2377 tcp_clear_all_retrans_hints(tp); 2378 } 2379 2380 if (tp->prior_ssthresh) { 2381 const struct inet_connection_sock *icsk = inet_csk(sk); 2382 2383 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2384 2385 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2386 tp->snd_ssthresh = tp->prior_ssthresh; 2387 tcp_ecn_withdraw_cwr(tp); 2388 } 2389 } 2390 tp->snd_cwnd_stamp = tcp_jiffies32; 2391 tp->undo_marker = 0; 2392 } 2393 2394 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2395 { 2396 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2397 } 2398 2399 /* People celebrate: "We love our President!" */ 2400 static bool tcp_try_undo_recovery(struct sock *sk) 2401 { 2402 struct tcp_sock *tp = tcp_sk(sk); 2403 2404 if (tcp_may_undo(tp)) { 2405 int mib_idx; 2406 2407 /* Happy end! We did not retransmit anything 2408 * or our original transmission succeeded. 2409 */ 2410 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2411 tcp_undo_cwnd_reduction(sk, false); 2412 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2413 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2414 else 2415 mib_idx = LINUX_MIB_TCPFULLUNDO; 2416 2417 NET_INC_STATS(sock_net(sk), mib_idx); 2418 } 2419 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2420 /* Hold old state until something *above* high_seq 2421 * is ACKed. For Reno it is MUST to prevent false 2422 * fast retransmits (RFC2582). SACK TCP is safe. */ 2423 if (!tcp_any_retrans_done(sk)) 2424 tp->retrans_stamp = 0; 2425 return true; 2426 } 2427 tcp_set_ca_state(sk, TCP_CA_Open); 2428 return false; 2429 } 2430 2431 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2432 static bool tcp_try_undo_dsack(struct sock *sk) 2433 { 2434 struct tcp_sock *tp = tcp_sk(sk); 2435 2436 if (tp->undo_marker && !tp->undo_retrans) { 2437 DBGUNDO(sk, "D-SACK"); 2438 tcp_undo_cwnd_reduction(sk, false); 2439 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2440 return true; 2441 } 2442 return false; 2443 } 2444 2445 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2446 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2447 { 2448 struct tcp_sock *tp = tcp_sk(sk); 2449 2450 if (frto_undo || tcp_may_undo(tp)) { 2451 tcp_undo_cwnd_reduction(sk, true); 2452 2453 DBGUNDO(sk, "partial loss"); 2454 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2455 if (frto_undo) 2456 NET_INC_STATS(sock_net(sk), 2457 LINUX_MIB_TCPSPURIOUSRTOS); 2458 inet_csk(sk)->icsk_retransmits = 0; 2459 if (frto_undo || tcp_is_sack(tp)) 2460 tcp_set_ca_state(sk, TCP_CA_Open); 2461 return true; 2462 } 2463 return false; 2464 } 2465 2466 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2467 * It computes the number of packets to send (sndcnt) based on packets newly 2468 * delivered: 2469 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2470 * cwnd reductions across a full RTT. 2471 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2472 * But when the retransmits are acked without further losses, PRR 2473 * slow starts cwnd up to ssthresh to speed up the recovery. 2474 */ 2475 static void tcp_init_cwnd_reduction(struct sock *sk) 2476 { 2477 struct tcp_sock *tp = tcp_sk(sk); 2478 2479 tp->high_seq = tp->snd_nxt; 2480 tp->tlp_high_seq = 0; 2481 tp->snd_cwnd_cnt = 0; 2482 tp->prior_cwnd = tp->snd_cwnd; 2483 tp->prr_delivered = 0; 2484 tp->prr_out = 0; 2485 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2486 tcp_ecn_queue_cwr(tp); 2487 } 2488 2489 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2490 { 2491 struct tcp_sock *tp = tcp_sk(sk); 2492 int sndcnt = 0; 2493 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2494 2495 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2496 return; 2497 2498 tp->prr_delivered += newly_acked_sacked; 2499 if (delta < 0) { 2500 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2501 tp->prior_cwnd - 1; 2502 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2503 } else if ((flag & FLAG_RETRANS_DATA_ACKED) && 2504 !(flag & FLAG_LOST_RETRANS)) { 2505 sndcnt = min_t(int, delta, 2506 max_t(int, tp->prr_delivered - tp->prr_out, 2507 newly_acked_sacked) + 1); 2508 } else { 2509 sndcnt = min(delta, newly_acked_sacked); 2510 } 2511 /* Force a fast retransmit upon entering fast recovery */ 2512 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2513 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2514 } 2515 2516 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2517 { 2518 struct tcp_sock *tp = tcp_sk(sk); 2519 2520 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2521 return; 2522 2523 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2524 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2525 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2526 tp->snd_cwnd = tp->snd_ssthresh; 2527 tp->snd_cwnd_stamp = tcp_jiffies32; 2528 } 2529 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2530 } 2531 2532 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2533 void tcp_enter_cwr(struct sock *sk) 2534 { 2535 struct tcp_sock *tp = tcp_sk(sk); 2536 2537 tp->prior_ssthresh = 0; 2538 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2539 tp->undo_marker = 0; 2540 tcp_init_cwnd_reduction(sk); 2541 tcp_set_ca_state(sk, TCP_CA_CWR); 2542 } 2543 } 2544 EXPORT_SYMBOL(tcp_enter_cwr); 2545 2546 static void tcp_try_keep_open(struct sock *sk) 2547 { 2548 struct tcp_sock *tp = tcp_sk(sk); 2549 int state = TCP_CA_Open; 2550 2551 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2552 state = TCP_CA_Disorder; 2553 2554 if (inet_csk(sk)->icsk_ca_state != state) { 2555 tcp_set_ca_state(sk, state); 2556 tp->high_seq = tp->snd_nxt; 2557 } 2558 } 2559 2560 static void tcp_try_to_open(struct sock *sk, int flag) 2561 { 2562 struct tcp_sock *tp = tcp_sk(sk); 2563 2564 tcp_verify_left_out(tp); 2565 2566 if (!tcp_any_retrans_done(sk)) 2567 tp->retrans_stamp = 0; 2568 2569 if (flag & FLAG_ECE) 2570 tcp_enter_cwr(sk); 2571 2572 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2573 tcp_try_keep_open(sk); 2574 } 2575 } 2576 2577 static void tcp_mtup_probe_failed(struct sock *sk) 2578 { 2579 struct inet_connection_sock *icsk = inet_csk(sk); 2580 2581 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2582 icsk->icsk_mtup.probe_size = 0; 2583 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2584 } 2585 2586 static void tcp_mtup_probe_success(struct sock *sk) 2587 { 2588 struct tcp_sock *tp = tcp_sk(sk); 2589 struct inet_connection_sock *icsk = inet_csk(sk); 2590 2591 /* FIXME: breaks with very large cwnd */ 2592 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2593 tp->snd_cwnd = tp->snd_cwnd * 2594 tcp_mss_to_mtu(sk, tp->mss_cache) / 2595 icsk->icsk_mtup.probe_size; 2596 tp->snd_cwnd_cnt = 0; 2597 tp->snd_cwnd_stamp = tcp_jiffies32; 2598 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2599 2600 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2601 icsk->icsk_mtup.probe_size = 0; 2602 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2603 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2604 } 2605 2606 /* Do a simple retransmit without using the backoff mechanisms in 2607 * tcp_timer. This is used for path mtu discovery. 2608 * The socket is already locked here. 2609 */ 2610 void tcp_simple_retransmit(struct sock *sk) 2611 { 2612 const struct inet_connection_sock *icsk = inet_csk(sk); 2613 struct tcp_sock *tp = tcp_sk(sk); 2614 struct sk_buff *skb; 2615 unsigned int mss = tcp_current_mss(sk); 2616 u32 prior_lost = tp->lost_out; 2617 2618 tcp_for_write_queue(skb, sk) { 2619 if (skb == tcp_send_head(sk)) 2620 break; 2621 if (tcp_skb_seglen(skb) > mss && 2622 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2623 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2624 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2625 tp->retrans_out -= tcp_skb_pcount(skb); 2626 } 2627 tcp_skb_mark_lost_uncond_verify(tp, skb); 2628 } 2629 } 2630 2631 tcp_clear_retrans_hints_partial(tp); 2632 2633 if (prior_lost == tp->lost_out) 2634 return; 2635 2636 if (tcp_is_reno(tp)) 2637 tcp_limit_reno_sacked(tp); 2638 2639 tcp_verify_left_out(tp); 2640 2641 /* Don't muck with the congestion window here. 2642 * Reason is that we do not increase amount of _data_ 2643 * in network, but units changed and effective 2644 * cwnd/ssthresh really reduced now. 2645 */ 2646 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2647 tp->high_seq = tp->snd_nxt; 2648 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2649 tp->prior_ssthresh = 0; 2650 tp->undo_marker = 0; 2651 tcp_set_ca_state(sk, TCP_CA_Loss); 2652 } 2653 tcp_xmit_retransmit_queue(sk); 2654 } 2655 EXPORT_SYMBOL(tcp_simple_retransmit); 2656 2657 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2658 { 2659 struct tcp_sock *tp = tcp_sk(sk); 2660 int mib_idx; 2661 2662 if (tcp_is_reno(tp)) 2663 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2664 else 2665 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2666 2667 NET_INC_STATS(sock_net(sk), mib_idx); 2668 2669 tp->prior_ssthresh = 0; 2670 tcp_init_undo(tp); 2671 2672 if (!tcp_in_cwnd_reduction(sk)) { 2673 if (!ece_ack) 2674 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2675 tcp_init_cwnd_reduction(sk); 2676 } 2677 tcp_set_ca_state(sk, TCP_CA_Recovery); 2678 } 2679 2680 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2681 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2682 */ 2683 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack, 2684 int *rexmit) 2685 { 2686 struct tcp_sock *tp = tcp_sk(sk); 2687 bool recovered = !before(tp->snd_una, tp->high_seq); 2688 2689 if ((flag & FLAG_SND_UNA_ADVANCED) && 2690 tcp_try_undo_loss(sk, false)) 2691 return; 2692 2693 /* The ACK (s)acks some never-retransmitted data meaning not all 2694 * the data packets before the timeout were lost. Therefore we 2695 * undo the congestion window and state. This is essentially 2696 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since 2697 * a retransmitted skb is permantly marked, we can apply such an 2698 * operation even if F-RTO was not used. 2699 */ 2700 if ((flag & FLAG_ORIG_SACK_ACKED) && 2701 tcp_try_undo_loss(sk, tp->undo_marker)) 2702 return; 2703 2704 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2705 if (after(tp->snd_nxt, tp->high_seq)) { 2706 if (flag & FLAG_DATA_SACKED || is_dupack) 2707 tp->frto = 0; /* Step 3.a. loss was real */ 2708 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2709 tp->high_seq = tp->snd_nxt; 2710 /* Step 2.b. Try send new data (but deferred until cwnd 2711 * is updated in tcp_ack()). Otherwise fall back to 2712 * the conventional recovery. 2713 */ 2714 if (tcp_send_head(sk) && 2715 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2716 *rexmit = REXMIT_NEW; 2717 return; 2718 } 2719 tp->frto = 0; 2720 } 2721 } 2722 2723 if (recovered) { 2724 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2725 tcp_try_undo_recovery(sk); 2726 return; 2727 } 2728 if (tcp_is_reno(tp)) { 2729 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2730 * delivered. Lower inflight to clock out (re)tranmissions. 2731 */ 2732 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2733 tcp_add_reno_sack(sk); 2734 else if (flag & FLAG_SND_UNA_ADVANCED) 2735 tcp_reset_reno_sack(tp); 2736 } 2737 *rexmit = REXMIT_LOST; 2738 } 2739 2740 /* Undo during fast recovery after partial ACK. */ 2741 static bool tcp_try_undo_partial(struct sock *sk, const int acked) 2742 { 2743 struct tcp_sock *tp = tcp_sk(sk); 2744 2745 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2746 /* Plain luck! Hole if filled with delayed 2747 * packet, rather than with a retransmit. 2748 */ 2749 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2750 2751 /* We are getting evidence that the reordering degree is higher 2752 * than we realized. If there are no retransmits out then we 2753 * can undo. Otherwise we clock out new packets but do not 2754 * mark more packets lost or retransmit more. 2755 */ 2756 if (tp->retrans_out) 2757 return true; 2758 2759 if (!tcp_any_retrans_done(sk)) 2760 tp->retrans_stamp = 0; 2761 2762 DBGUNDO(sk, "partial recovery"); 2763 tcp_undo_cwnd_reduction(sk, true); 2764 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2765 tcp_try_keep_open(sk); 2766 return true; 2767 } 2768 return false; 2769 } 2770 2771 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag) 2772 { 2773 struct tcp_sock *tp = tcp_sk(sk); 2774 2775 /* Use RACK to detect loss */ 2776 if (sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) { 2777 u32 prior_retrans = tp->retrans_out; 2778 2779 tcp_rack_mark_lost(sk); 2780 if (prior_retrans > tp->retrans_out) 2781 *ack_flag |= FLAG_LOST_RETRANS; 2782 } 2783 } 2784 2785 /* Process an event, which can update packets-in-flight not trivially. 2786 * Main goal of this function is to calculate new estimate for left_out, 2787 * taking into account both packets sitting in receiver's buffer and 2788 * packets lost by network. 2789 * 2790 * Besides that it updates the congestion state when packet loss or ECN 2791 * is detected. But it does not reduce the cwnd, it is done by the 2792 * congestion control later. 2793 * 2794 * It does _not_ decide what to send, it is made in function 2795 * tcp_xmit_retransmit_queue(). 2796 */ 2797 static void tcp_fastretrans_alert(struct sock *sk, const int acked, 2798 bool is_dupack, int *ack_flag, int *rexmit) 2799 { 2800 struct inet_connection_sock *icsk = inet_csk(sk); 2801 struct tcp_sock *tp = tcp_sk(sk); 2802 int fast_rexmit = 0, flag = *ack_flag; 2803 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2804 (tcp_fackets_out(tp) > tp->reordering)); 2805 2806 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2807 tp->sacked_out = 0; 2808 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2809 tp->fackets_out = 0; 2810 2811 /* Now state machine starts. 2812 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2813 if (flag & FLAG_ECE) 2814 tp->prior_ssthresh = 0; 2815 2816 /* B. In all the states check for reneging SACKs. */ 2817 if (tcp_check_sack_reneging(sk, flag)) 2818 return; 2819 2820 /* C. Check consistency of the current state. */ 2821 tcp_verify_left_out(tp); 2822 2823 /* D. Check state exit conditions. State can be terminated 2824 * when high_seq is ACKed. */ 2825 if (icsk->icsk_ca_state == TCP_CA_Open) { 2826 WARN_ON(tp->retrans_out != 0); 2827 tp->retrans_stamp = 0; 2828 } else if (!before(tp->snd_una, tp->high_seq)) { 2829 switch (icsk->icsk_ca_state) { 2830 case TCP_CA_CWR: 2831 /* CWR is to be held something *above* high_seq 2832 * is ACKed for CWR bit to reach receiver. */ 2833 if (tp->snd_una != tp->high_seq) { 2834 tcp_end_cwnd_reduction(sk); 2835 tcp_set_ca_state(sk, TCP_CA_Open); 2836 } 2837 break; 2838 2839 case TCP_CA_Recovery: 2840 if (tcp_is_reno(tp)) 2841 tcp_reset_reno_sack(tp); 2842 if (tcp_try_undo_recovery(sk)) 2843 return; 2844 tcp_end_cwnd_reduction(sk); 2845 break; 2846 } 2847 } 2848 2849 /* E. Process state. */ 2850 switch (icsk->icsk_ca_state) { 2851 case TCP_CA_Recovery: 2852 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2853 if (tcp_is_reno(tp) && is_dupack) 2854 tcp_add_reno_sack(sk); 2855 } else { 2856 if (tcp_try_undo_partial(sk, acked)) 2857 return; 2858 /* Partial ACK arrived. Force fast retransmit. */ 2859 do_lost = tcp_is_reno(tp) || 2860 tcp_fackets_out(tp) > tp->reordering; 2861 } 2862 if (tcp_try_undo_dsack(sk)) { 2863 tcp_try_keep_open(sk); 2864 return; 2865 } 2866 tcp_rack_identify_loss(sk, ack_flag); 2867 break; 2868 case TCP_CA_Loss: 2869 tcp_process_loss(sk, flag, is_dupack, rexmit); 2870 tcp_rack_identify_loss(sk, ack_flag); 2871 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2872 (*ack_flag & FLAG_LOST_RETRANS))) 2873 return; 2874 /* Change state if cwnd is undone or retransmits are lost */ 2875 default: 2876 if (tcp_is_reno(tp)) { 2877 if (flag & FLAG_SND_UNA_ADVANCED) 2878 tcp_reset_reno_sack(tp); 2879 if (is_dupack) 2880 tcp_add_reno_sack(sk); 2881 } 2882 2883 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2884 tcp_try_undo_dsack(sk); 2885 2886 tcp_rack_identify_loss(sk, ack_flag); 2887 if (!tcp_time_to_recover(sk, flag)) { 2888 tcp_try_to_open(sk, flag); 2889 return; 2890 } 2891 2892 /* MTU probe failure: don't reduce cwnd */ 2893 if (icsk->icsk_ca_state < TCP_CA_CWR && 2894 icsk->icsk_mtup.probe_size && 2895 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2896 tcp_mtup_probe_failed(sk); 2897 /* Restores the reduction we did in tcp_mtup_probe() */ 2898 tp->snd_cwnd++; 2899 tcp_simple_retransmit(sk); 2900 return; 2901 } 2902 2903 /* Otherwise enter Recovery state */ 2904 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2905 fast_rexmit = 1; 2906 } 2907 2908 if (do_lost) 2909 tcp_update_scoreboard(sk, fast_rexmit); 2910 *rexmit = REXMIT_LOST; 2911 } 2912 2913 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us) 2914 { 2915 struct tcp_sock *tp = tcp_sk(sk); 2916 u32 wlen = sysctl_tcp_min_rtt_wlen * HZ; 2917 2918 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 2919 rtt_us ? : jiffies_to_usecs(1)); 2920 } 2921 2922 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2923 long seq_rtt_us, long sack_rtt_us, 2924 long ca_rtt_us, struct rate_sample *rs) 2925 { 2926 const struct tcp_sock *tp = tcp_sk(sk); 2927 2928 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2929 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2930 * Karn's algorithm forbids taking RTT if some retransmitted data 2931 * is acked (RFC6298). 2932 */ 2933 if (seq_rtt_us < 0) 2934 seq_rtt_us = sack_rtt_us; 2935 2936 /* RTTM Rule: A TSecr value received in a segment is used to 2937 * update the averaged RTT measurement only if the segment 2938 * acknowledges some new data, i.e., only if it advances the 2939 * left edge of the send window. 2940 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2941 */ 2942 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2943 flag & FLAG_ACKED) { 2944 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 2945 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 2946 2947 seq_rtt_us = ca_rtt_us = delta_us; 2948 } 2949 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 2950 if (seq_rtt_us < 0) 2951 return false; 2952 2953 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2954 * always taken together with ACK, SACK, or TS-opts. Any negative 2955 * values will be skipped with the seq_rtt_us < 0 check above. 2956 */ 2957 tcp_update_rtt_min(sk, ca_rtt_us); 2958 tcp_rtt_estimator(sk, seq_rtt_us); 2959 tcp_set_rto(sk); 2960 2961 /* RFC6298: only reset backoff on valid RTT measurement. */ 2962 inet_csk(sk)->icsk_backoff = 0; 2963 return true; 2964 } 2965 2966 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2967 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2968 { 2969 struct rate_sample rs; 2970 long rtt_us = -1L; 2971 2972 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 2973 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 2974 2975 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 2976 } 2977 2978 2979 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2980 { 2981 const struct inet_connection_sock *icsk = inet_csk(sk); 2982 2983 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2984 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 2985 } 2986 2987 /* Restart timer after forward progress on connection. 2988 * RFC2988 recommends to restart timer to now+rto. 2989 */ 2990 void tcp_rearm_rto(struct sock *sk) 2991 { 2992 const struct inet_connection_sock *icsk = inet_csk(sk); 2993 struct tcp_sock *tp = tcp_sk(sk); 2994 2995 /* If the retrans timer is currently being used by Fast Open 2996 * for SYN-ACK retrans purpose, stay put. 2997 */ 2998 if (tp->fastopen_rsk) 2999 return; 3000 3001 if (!tp->packets_out) { 3002 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3003 } else { 3004 u32 rto = inet_csk(sk)->icsk_rto; 3005 /* Offset the time elapsed after installing regular RTO */ 3006 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3007 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3008 s64 delta_us = tcp_rto_delta_us(sk); 3009 /* delta_us may not be positive if the socket is locked 3010 * when the retrans timer fires and is rescheduled. 3011 */ 3012 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3013 } 3014 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3015 TCP_RTO_MAX); 3016 } 3017 } 3018 3019 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3020 static void tcp_set_xmit_timer(struct sock *sk) 3021 { 3022 if (!tcp_schedule_loss_probe(sk)) 3023 tcp_rearm_rto(sk); 3024 } 3025 3026 /* If we get here, the whole TSO packet has not been acked. */ 3027 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3028 { 3029 struct tcp_sock *tp = tcp_sk(sk); 3030 u32 packets_acked; 3031 3032 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3033 3034 packets_acked = tcp_skb_pcount(skb); 3035 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3036 return 0; 3037 packets_acked -= tcp_skb_pcount(skb); 3038 3039 if (packets_acked) { 3040 BUG_ON(tcp_skb_pcount(skb) == 0); 3041 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3042 } 3043 3044 return packets_acked; 3045 } 3046 3047 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3048 u32 prior_snd_una) 3049 { 3050 const struct skb_shared_info *shinfo; 3051 3052 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3053 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3054 return; 3055 3056 shinfo = skb_shinfo(skb); 3057 if (!before(shinfo->tskey, prior_snd_una) && 3058 before(shinfo->tskey, tcp_sk(sk)->snd_una)) 3059 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3060 } 3061 3062 /* Remove acknowledged frames from the retransmission queue. If our packet 3063 * is before the ack sequence we can discard it as it's confirmed to have 3064 * arrived at the other end. 3065 */ 3066 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3067 u32 prior_snd_una, int *acked, 3068 struct tcp_sacktag_state *sack) 3069 { 3070 const struct inet_connection_sock *icsk = inet_csk(sk); 3071 u64 first_ackt, last_ackt; 3072 struct tcp_sock *tp = tcp_sk(sk); 3073 u32 prior_sacked = tp->sacked_out; 3074 u32 reord = tp->packets_out; 3075 bool fully_acked = true; 3076 long sack_rtt_us = -1L; 3077 long seq_rtt_us = -1L; 3078 long ca_rtt_us = -1L; 3079 struct sk_buff *skb; 3080 u32 pkts_acked = 0; 3081 u32 last_in_flight = 0; 3082 bool rtt_update; 3083 int flag = 0; 3084 3085 first_ackt = 0; 3086 3087 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3088 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3089 u8 sacked = scb->sacked; 3090 u32 acked_pcount; 3091 3092 tcp_ack_tstamp(sk, skb, prior_snd_una); 3093 3094 /* Determine how many packets and what bytes were acked, tso and else */ 3095 if (after(scb->end_seq, tp->snd_una)) { 3096 if (tcp_skb_pcount(skb) == 1 || 3097 !after(tp->snd_una, scb->seq)) 3098 break; 3099 3100 acked_pcount = tcp_tso_acked(sk, skb); 3101 if (!acked_pcount) 3102 break; 3103 fully_acked = false; 3104 } else { 3105 /* Speedup tcp_unlink_write_queue() and next loop */ 3106 prefetchw(skb->next); 3107 acked_pcount = tcp_skb_pcount(skb); 3108 } 3109 3110 if (unlikely(sacked & TCPCB_RETRANS)) { 3111 if (sacked & TCPCB_SACKED_RETRANS) 3112 tp->retrans_out -= acked_pcount; 3113 flag |= FLAG_RETRANS_DATA_ACKED; 3114 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3115 last_ackt = skb->skb_mstamp; 3116 WARN_ON_ONCE(last_ackt == 0); 3117 if (!first_ackt) 3118 first_ackt = last_ackt; 3119 3120 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3121 reord = min(pkts_acked, reord); 3122 if (!after(scb->end_seq, tp->high_seq)) 3123 flag |= FLAG_ORIG_SACK_ACKED; 3124 } 3125 3126 if (sacked & TCPCB_SACKED_ACKED) { 3127 tp->sacked_out -= acked_pcount; 3128 } else if (tcp_is_sack(tp)) { 3129 tp->delivered += acked_pcount; 3130 if (!tcp_skb_spurious_retrans(tp, skb)) 3131 tcp_rack_advance(tp, sacked, scb->end_seq, 3132 skb->skb_mstamp); 3133 } 3134 if (sacked & TCPCB_LOST) 3135 tp->lost_out -= acked_pcount; 3136 3137 tp->packets_out -= acked_pcount; 3138 pkts_acked += acked_pcount; 3139 tcp_rate_skb_delivered(sk, skb, sack->rate); 3140 3141 /* Initial outgoing SYN's get put onto the write_queue 3142 * just like anything else we transmit. It is not 3143 * true data, and if we misinform our callers that 3144 * this ACK acks real data, we will erroneously exit 3145 * connection startup slow start one packet too 3146 * quickly. This is severely frowned upon behavior. 3147 */ 3148 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3149 flag |= FLAG_DATA_ACKED; 3150 } else { 3151 flag |= FLAG_SYN_ACKED; 3152 tp->retrans_stamp = 0; 3153 } 3154 3155 if (!fully_acked) 3156 break; 3157 3158 tcp_unlink_write_queue(skb, sk); 3159 sk_wmem_free_skb(sk, skb); 3160 if (unlikely(skb == tp->retransmit_skb_hint)) 3161 tp->retransmit_skb_hint = NULL; 3162 if (unlikely(skb == tp->lost_skb_hint)) 3163 tp->lost_skb_hint = NULL; 3164 } 3165 3166 if (!skb) 3167 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3168 3169 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3170 tp->snd_up = tp->snd_una; 3171 3172 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3173 flag |= FLAG_SACK_RENEGING; 3174 3175 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3176 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3177 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3178 } 3179 if (sack->first_sackt) { 3180 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3181 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3182 } 3183 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3184 ca_rtt_us, sack->rate); 3185 3186 if (flag & FLAG_ACKED) { 3187 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3188 if (unlikely(icsk->icsk_mtup.probe_size && 3189 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3190 tcp_mtup_probe_success(sk); 3191 } 3192 3193 if (tcp_is_reno(tp)) { 3194 tcp_remove_reno_sacks(sk, pkts_acked); 3195 } else { 3196 int delta; 3197 3198 /* Non-retransmitted hole got filled? That's reordering */ 3199 if (reord < prior_fackets && reord <= tp->fackets_out) 3200 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3201 3202 delta = tcp_is_fack(tp) ? pkts_acked : 3203 prior_sacked - tp->sacked_out; 3204 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3205 } 3206 3207 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3208 3209 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3210 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) { 3211 /* Do not re-arm RTO if the sack RTT is measured from data sent 3212 * after when the head was last (re)transmitted. Otherwise the 3213 * timeout may continue to extend in loss recovery. 3214 */ 3215 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3216 } 3217 3218 if (icsk->icsk_ca_ops->pkts_acked) { 3219 struct ack_sample sample = { .pkts_acked = pkts_acked, 3220 .rtt_us = sack->rate->rtt_us, 3221 .in_flight = last_in_flight }; 3222 3223 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3224 } 3225 3226 #if FASTRETRANS_DEBUG > 0 3227 WARN_ON((int)tp->sacked_out < 0); 3228 WARN_ON((int)tp->lost_out < 0); 3229 WARN_ON((int)tp->retrans_out < 0); 3230 if (!tp->packets_out && tcp_is_sack(tp)) { 3231 icsk = inet_csk(sk); 3232 if (tp->lost_out) { 3233 pr_debug("Leak l=%u %d\n", 3234 tp->lost_out, icsk->icsk_ca_state); 3235 tp->lost_out = 0; 3236 } 3237 if (tp->sacked_out) { 3238 pr_debug("Leak s=%u %d\n", 3239 tp->sacked_out, icsk->icsk_ca_state); 3240 tp->sacked_out = 0; 3241 } 3242 if (tp->retrans_out) { 3243 pr_debug("Leak r=%u %d\n", 3244 tp->retrans_out, icsk->icsk_ca_state); 3245 tp->retrans_out = 0; 3246 } 3247 } 3248 #endif 3249 *acked = pkts_acked; 3250 return flag; 3251 } 3252 3253 static void tcp_ack_probe(struct sock *sk) 3254 { 3255 const struct tcp_sock *tp = tcp_sk(sk); 3256 struct inet_connection_sock *icsk = inet_csk(sk); 3257 3258 /* Was it a usable window open? */ 3259 3260 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3261 icsk->icsk_backoff = 0; 3262 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3263 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3264 * This function is not for random using! 3265 */ 3266 } else { 3267 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3268 3269 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3270 when, TCP_RTO_MAX); 3271 } 3272 } 3273 3274 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3275 { 3276 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3277 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3278 } 3279 3280 /* Decide wheather to run the increase function of congestion control. */ 3281 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3282 { 3283 /* If reordering is high then always grow cwnd whenever data is 3284 * delivered regardless of its ordering. Otherwise stay conservative 3285 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3286 * new SACK or ECE mark may first advance cwnd here and later reduce 3287 * cwnd in tcp_fastretrans_alert() based on more states. 3288 */ 3289 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3290 return flag & FLAG_FORWARD_PROGRESS; 3291 3292 return flag & FLAG_DATA_ACKED; 3293 } 3294 3295 /* The "ultimate" congestion control function that aims to replace the rigid 3296 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3297 * It's called toward the end of processing an ACK with precise rate 3298 * information. All transmission or retransmission are delayed afterwards. 3299 */ 3300 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3301 int flag, const struct rate_sample *rs) 3302 { 3303 const struct inet_connection_sock *icsk = inet_csk(sk); 3304 3305 if (icsk->icsk_ca_ops->cong_control) { 3306 icsk->icsk_ca_ops->cong_control(sk, rs); 3307 return; 3308 } 3309 3310 if (tcp_in_cwnd_reduction(sk)) { 3311 /* Reduce cwnd if state mandates */ 3312 tcp_cwnd_reduction(sk, acked_sacked, flag); 3313 } else if (tcp_may_raise_cwnd(sk, flag)) { 3314 /* Advance cwnd if state allows */ 3315 tcp_cong_avoid(sk, ack, acked_sacked); 3316 } 3317 tcp_update_pacing_rate(sk); 3318 } 3319 3320 /* Check that window update is acceptable. 3321 * The function assumes that snd_una<=ack<=snd_next. 3322 */ 3323 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3324 const u32 ack, const u32 ack_seq, 3325 const u32 nwin) 3326 { 3327 return after(ack, tp->snd_una) || 3328 after(ack_seq, tp->snd_wl1) || 3329 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3330 } 3331 3332 /* If we update tp->snd_una, also update tp->bytes_acked */ 3333 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3334 { 3335 u32 delta = ack - tp->snd_una; 3336 3337 sock_owned_by_me((struct sock *)tp); 3338 tp->bytes_acked += delta; 3339 tp->snd_una = ack; 3340 } 3341 3342 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3343 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3344 { 3345 u32 delta = seq - tp->rcv_nxt; 3346 3347 sock_owned_by_me((struct sock *)tp); 3348 tp->bytes_received += delta; 3349 tp->rcv_nxt = seq; 3350 } 3351 3352 /* Update our send window. 3353 * 3354 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3355 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3356 */ 3357 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3358 u32 ack_seq) 3359 { 3360 struct tcp_sock *tp = tcp_sk(sk); 3361 int flag = 0; 3362 u32 nwin = ntohs(tcp_hdr(skb)->window); 3363 3364 if (likely(!tcp_hdr(skb)->syn)) 3365 nwin <<= tp->rx_opt.snd_wscale; 3366 3367 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3368 flag |= FLAG_WIN_UPDATE; 3369 tcp_update_wl(tp, ack_seq); 3370 3371 if (tp->snd_wnd != nwin) { 3372 tp->snd_wnd = nwin; 3373 3374 /* Note, it is the only place, where 3375 * fast path is recovered for sending TCP. 3376 */ 3377 tp->pred_flags = 0; 3378 tcp_fast_path_check(sk); 3379 3380 if (tcp_send_head(sk)) 3381 tcp_slow_start_after_idle_check(sk); 3382 3383 if (nwin > tp->max_window) { 3384 tp->max_window = nwin; 3385 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3386 } 3387 } 3388 } 3389 3390 tcp_snd_una_update(tp, ack); 3391 3392 return flag; 3393 } 3394 3395 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3396 u32 *last_oow_ack_time) 3397 { 3398 if (*last_oow_ack_time) { 3399 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3400 3401 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) { 3402 NET_INC_STATS(net, mib_idx); 3403 return true; /* rate-limited: don't send yet! */ 3404 } 3405 } 3406 3407 *last_oow_ack_time = tcp_jiffies32; 3408 3409 return false; /* not rate-limited: go ahead, send dupack now! */ 3410 } 3411 3412 /* Return true if we're currently rate-limiting out-of-window ACKs and 3413 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3414 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3415 * attacks that send repeated SYNs or ACKs for the same connection. To 3416 * do this, we do not send a duplicate SYNACK or ACK if the remote 3417 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3418 */ 3419 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3420 int mib_idx, u32 *last_oow_ack_time) 3421 { 3422 /* Data packets without SYNs are not likely part of an ACK loop. */ 3423 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3424 !tcp_hdr(skb)->syn) 3425 return false; 3426 3427 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3428 } 3429 3430 /* RFC 5961 7 [ACK Throttling] */ 3431 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3432 { 3433 /* unprotected vars, we dont care of overwrites */ 3434 static u32 challenge_timestamp; 3435 static unsigned int challenge_count; 3436 struct tcp_sock *tp = tcp_sk(sk); 3437 u32 count, now; 3438 3439 /* First check our per-socket dupack rate limit. */ 3440 if (__tcp_oow_rate_limited(sock_net(sk), 3441 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3442 &tp->last_oow_ack_time)) 3443 return; 3444 3445 /* Then check host-wide RFC 5961 rate limit. */ 3446 now = jiffies / HZ; 3447 if (now != challenge_timestamp) { 3448 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1; 3449 3450 challenge_timestamp = now; 3451 WRITE_ONCE(challenge_count, half + 3452 prandom_u32_max(sysctl_tcp_challenge_ack_limit)); 3453 } 3454 count = READ_ONCE(challenge_count); 3455 if (count > 0) { 3456 WRITE_ONCE(challenge_count, count - 1); 3457 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK); 3458 tcp_send_ack(sk); 3459 } 3460 } 3461 3462 static void tcp_store_ts_recent(struct tcp_sock *tp) 3463 { 3464 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3465 tp->rx_opt.ts_recent_stamp = get_seconds(); 3466 } 3467 3468 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3469 { 3470 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3471 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3472 * extra check below makes sure this can only happen 3473 * for pure ACK frames. -DaveM 3474 * 3475 * Not only, also it occurs for expired timestamps. 3476 */ 3477 3478 if (tcp_paws_check(&tp->rx_opt, 0)) 3479 tcp_store_ts_recent(tp); 3480 } 3481 } 3482 3483 /* This routine deals with acks during a TLP episode. 3484 * We mark the end of a TLP episode on receiving TLP dupack or when 3485 * ack is after tlp_high_seq. 3486 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3487 */ 3488 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3489 { 3490 struct tcp_sock *tp = tcp_sk(sk); 3491 3492 if (before(ack, tp->tlp_high_seq)) 3493 return; 3494 3495 if (flag & FLAG_DSACKING_ACK) { 3496 /* This DSACK means original and TLP probe arrived; no loss */ 3497 tp->tlp_high_seq = 0; 3498 } else if (after(ack, tp->tlp_high_seq)) { 3499 /* ACK advances: there was a loss, so reduce cwnd. Reset 3500 * tlp_high_seq in tcp_init_cwnd_reduction() 3501 */ 3502 tcp_init_cwnd_reduction(sk); 3503 tcp_set_ca_state(sk, TCP_CA_CWR); 3504 tcp_end_cwnd_reduction(sk); 3505 tcp_try_keep_open(sk); 3506 NET_INC_STATS(sock_net(sk), 3507 LINUX_MIB_TCPLOSSPROBERECOVERY); 3508 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3509 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3510 /* Pure dupack: original and TLP probe arrived; no loss */ 3511 tp->tlp_high_seq = 0; 3512 } 3513 } 3514 3515 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3516 { 3517 const struct inet_connection_sock *icsk = inet_csk(sk); 3518 3519 if (icsk->icsk_ca_ops->in_ack_event) 3520 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3521 } 3522 3523 /* Congestion control has updated the cwnd already. So if we're in 3524 * loss recovery then now we do any new sends (for FRTO) or 3525 * retransmits (for CA_Loss or CA_recovery) that make sense. 3526 */ 3527 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3528 { 3529 struct tcp_sock *tp = tcp_sk(sk); 3530 3531 if (rexmit == REXMIT_NONE) 3532 return; 3533 3534 if (unlikely(rexmit == 2)) { 3535 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3536 TCP_NAGLE_OFF); 3537 if (after(tp->snd_nxt, tp->high_seq)) 3538 return; 3539 tp->frto = 0; 3540 } 3541 tcp_xmit_retransmit_queue(sk); 3542 } 3543 3544 /* This routine deals with incoming acks, but not outgoing ones. */ 3545 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3546 { 3547 struct inet_connection_sock *icsk = inet_csk(sk); 3548 struct tcp_sock *tp = tcp_sk(sk); 3549 struct tcp_sacktag_state sack_state; 3550 struct rate_sample rs = { .prior_delivered = 0 }; 3551 u32 prior_snd_una = tp->snd_una; 3552 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3553 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3554 bool is_dupack = false; 3555 u32 prior_fackets; 3556 int prior_packets = tp->packets_out; 3557 u32 delivered = tp->delivered; 3558 u32 lost = tp->lost; 3559 int acked = 0; /* Number of packets newly acked */ 3560 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3561 3562 sack_state.first_sackt = 0; 3563 sack_state.rate = &rs; 3564 3565 /* We very likely will need to access write queue head. */ 3566 prefetchw(sk->sk_write_queue.next); 3567 3568 /* If the ack is older than previous acks 3569 * then we can probably ignore it. 3570 */ 3571 if (before(ack, prior_snd_una)) { 3572 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3573 if (before(ack, prior_snd_una - tp->max_window)) { 3574 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3575 tcp_send_challenge_ack(sk, skb); 3576 return -1; 3577 } 3578 goto old_ack; 3579 } 3580 3581 /* If the ack includes data we haven't sent yet, discard 3582 * this segment (RFC793 Section 3.9). 3583 */ 3584 if (after(ack, tp->snd_nxt)) 3585 goto invalid_ack; 3586 3587 if (after(ack, prior_snd_una)) { 3588 flag |= FLAG_SND_UNA_ADVANCED; 3589 icsk->icsk_retransmits = 0; 3590 } 3591 3592 prior_fackets = tp->fackets_out; 3593 rs.prior_in_flight = tcp_packets_in_flight(tp); 3594 3595 /* ts_recent update must be made after we are sure that the packet 3596 * is in window. 3597 */ 3598 if (flag & FLAG_UPDATE_TS_RECENT) 3599 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3600 3601 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3602 /* Window is constant, pure forward advance. 3603 * No more checks are required. 3604 * Note, we use the fact that SND.UNA>=SND.WL2. 3605 */ 3606 tcp_update_wl(tp, ack_seq); 3607 tcp_snd_una_update(tp, ack); 3608 flag |= FLAG_WIN_UPDATE; 3609 3610 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3611 3612 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3613 } else { 3614 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3615 3616 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3617 flag |= FLAG_DATA; 3618 else 3619 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3620 3621 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3622 3623 if (TCP_SKB_CB(skb)->sacked) 3624 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3625 &sack_state); 3626 3627 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3628 flag |= FLAG_ECE; 3629 ack_ev_flags |= CA_ACK_ECE; 3630 } 3631 3632 if (flag & FLAG_WIN_UPDATE) 3633 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3634 3635 tcp_in_ack_event(sk, ack_ev_flags); 3636 } 3637 3638 /* We passed data and got it acked, remove any soft error 3639 * log. Something worked... 3640 */ 3641 sk->sk_err_soft = 0; 3642 icsk->icsk_probes_out = 0; 3643 tp->rcv_tstamp = tcp_jiffies32; 3644 if (!prior_packets) 3645 goto no_queue; 3646 3647 /* See if we can take anything off of the retransmit queue. */ 3648 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked, 3649 &sack_state); 3650 3651 if (tp->tlp_high_seq) 3652 tcp_process_tlp_ack(sk, ack, flag); 3653 /* If needed, reset TLP/RTO timer; RACK may later override this. */ 3654 if (flag & FLAG_SET_XMIT_TIMER) 3655 tcp_set_xmit_timer(sk); 3656 3657 if (tcp_ack_is_dubious(sk, flag)) { 3658 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3659 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3660 } 3661 3662 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3663 sk_dst_confirm(sk); 3664 3665 delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */ 3666 lost = tp->lost - lost; /* freshly marked lost */ 3667 tcp_rate_gen(sk, delivered, lost, sack_state.rate); 3668 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3669 tcp_xmit_recovery(sk, rexmit); 3670 return 1; 3671 3672 no_queue: 3673 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3674 if (flag & FLAG_DSACKING_ACK) 3675 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3676 /* If this ack opens up a zero window, clear backoff. It was 3677 * being used to time the probes, and is probably far higher than 3678 * it needs to be for normal retransmission. 3679 */ 3680 if (tcp_send_head(sk)) 3681 tcp_ack_probe(sk); 3682 3683 if (tp->tlp_high_seq) 3684 tcp_process_tlp_ack(sk, ack, flag); 3685 return 1; 3686 3687 invalid_ack: 3688 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3689 return -1; 3690 3691 old_ack: 3692 /* If data was SACKed, tag it and see if we should send more data. 3693 * If data was DSACKed, see if we can undo a cwnd reduction. 3694 */ 3695 if (TCP_SKB_CB(skb)->sacked) { 3696 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3697 &sack_state); 3698 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3699 tcp_xmit_recovery(sk, rexmit); 3700 } 3701 3702 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3703 return 0; 3704 } 3705 3706 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3707 bool syn, struct tcp_fastopen_cookie *foc, 3708 bool exp_opt) 3709 { 3710 /* Valid only in SYN or SYN-ACK with an even length. */ 3711 if (!foc || !syn || len < 0 || (len & 1)) 3712 return; 3713 3714 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3715 len <= TCP_FASTOPEN_COOKIE_MAX) 3716 memcpy(foc->val, cookie, len); 3717 else if (len != 0) 3718 len = -1; 3719 foc->len = len; 3720 foc->exp = exp_opt; 3721 } 3722 3723 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3724 * But, this can also be called on packets in the established flow when 3725 * the fast version below fails. 3726 */ 3727 void tcp_parse_options(const struct net *net, 3728 const struct sk_buff *skb, 3729 struct tcp_options_received *opt_rx, int estab, 3730 struct tcp_fastopen_cookie *foc) 3731 { 3732 const unsigned char *ptr; 3733 const struct tcphdr *th = tcp_hdr(skb); 3734 int length = (th->doff * 4) - sizeof(struct tcphdr); 3735 3736 ptr = (const unsigned char *)(th + 1); 3737 opt_rx->saw_tstamp = 0; 3738 3739 while (length > 0) { 3740 int opcode = *ptr++; 3741 int opsize; 3742 3743 switch (opcode) { 3744 case TCPOPT_EOL: 3745 return; 3746 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3747 length--; 3748 continue; 3749 default: 3750 opsize = *ptr++; 3751 if (opsize < 2) /* "silly options" */ 3752 return; 3753 if (opsize > length) 3754 return; /* don't parse partial options */ 3755 switch (opcode) { 3756 case TCPOPT_MSS: 3757 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3758 u16 in_mss = get_unaligned_be16(ptr); 3759 if (in_mss) { 3760 if (opt_rx->user_mss && 3761 opt_rx->user_mss < in_mss) 3762 in_mss = opt_rx->user_mss; 3763 opt_rx->mss_clamp = in_mss; 3764 } 3765 } 3766 break; 3767 case TCPOPT_WINDOW: 3768 if (opsize == TCPOLEN_WINDOW && th->syn && 3769 !estab && net->ipv4.sysctl_tcp_window_scaling) { 3770 __u8 snd_wscale = *(__u8 *)ptr; 3771 opt_rx->wscale_ok = 1; 3772 if (snd_wscale > TCP_MAX_WSCALE) { 3773 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 3774 __func__, 3775 snd_wscale, 3776 TCP_MAX_WSCALE); 3777 snd_wscale = TCP_MAX_WSCALE; 3778 } 3779 opt_rx->snd_wscale = snd_wscale; 3780 } 3781 break; 3782 case TCPOPT_TIMESTAMP: 3783 if ((opsize == TCPOLEN_TIMESTAMP) && 3784 ((estab && opt_rx->tstamp_ok) || 3785 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 3786 opt_rx->saw_tstamp = 1; 3787 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3788 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3789 } 3790 break; 3791 case TCPOPT_SACK_PERM: 3792 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3793 !estab && net->ipv4.sysctl_tcp_sack) { 3794 opt_rx->sack_ok = TCP_SACK_SEEN; 3795 tcp_sack_reset(opt_rx); 3796 } 3797 break; 3798 3799 case TCPOPT_SACK: 3800 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3801 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3802 opt_rx->sack_ok) { 3803 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3804 } 3805 break; 3806 #ifdef CONFIG_TCP_MD5SIG 3807 case TCPOPT_MD5SIG: 3808 /* 3809 * The MD5 Hash has already been 3810 * checked (see tcp_v{4,6}_do_rcv()). 3811 */ 3812 break; 3813 #endif 3814 case TCPOPT_FASTOPEN: 3815 tcp_parse_fastopen_option( 3816 opsize - TCPOLEN_FASTOPEN_BASE, 3817 ptr, th->syn, foc, false); 3818 break; 3819 3820 case TCPOPT_EXP: 3821 /* Fast Open option shares code 254 using a 3822 * 16 bits magic number. 3823 */ 3824 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3825 get_unaligned_be16(ptr) == 3826 TCPOPT_FASTOPEN_MAGIC) 3827 tcp_parse_fastopen_option(opsize - 3828 TCPOLEN_EXP_FASTOPEN_BASE, 3829 ptr + 2, th->syn, foc, true); 3830 break; 3831 3832 } 3833 ptr += opsize-2; 3834 length -= opsize; 3835 } 3836 } 3837 } 3838 EXPORT_SYMBOL(tcp_parse_options); 3839 3840 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3841 { 3842 const __be32 *ptr = (const __be32 *)(th + 1); 3843 3844 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3845 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3846 tp->rx_opt.saw_tstamp = 1; 3847 ++ptr; 3848 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3849 ++ptr; 3850 if (*ptr) 3851 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3852 else 3853 tp->rx_opt.rcv_tsecr = 0; 3854 return true; 3855 } 3856 return false; 3857 } 3858 3859 /* Fast parse options. This hopes to only see timestamps. 3860 * If it is wrong it falls back on tcp_parse_options(). 3861 */ 3862 static bool tcp_fast_parse_options(const struct net *net, 3863 const struct sk_buff *skb, 3864 const struct tcphdr *th, struct tcp_sock *tp) 3865 { 3866 /* In the spirit of fast parsing, compare doff directly to constant 3867 * values. Because equality is used, short doff can be ignored here. 3868 */ 3869 if (th->doff == (sizeof(*th) / 4)) { 3870 tp->rx_opt.saw_tstamp = 0; 3871 return false; 3872 } else if (tp->rx_opt.tstamp_ok && 3873 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3874 if (tcp_parse_aligned_timestamp(tp, th)) 3875 return true; 3876 } 3877 3878 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 3879 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3880 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3881 3882 return true; 3883 } 3884 3885 #ifdef CONFIG_TCP_MD5SIG 3886 /* 3887 * Parse MD5 Signature option 3888 */ 3889 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3890 { 3891 int length = (th->doff << 2) - sizeof(*th); 3892 const u8 *ptr = (const u8 *)(th + 1); 3893 3894 /* If the TCP option is too short, we can short cut */ 3895 if (length < TCPOLEN_MD5SIG) 3896 return NULL; 3897 3898 while (length > 0) { 3899 int opcode = *ptr++; 3900 int opsize; 3901 3902 switch (opcode) { 3903 case TCPOPT_EOL: 3904 return NULL; 3905 case TCPOPT_NOP: 3906 length--; 3907 continue; 3908 default: 3909 opsize = *ptr++; 3910 if (opsize < 2 || opsize > length) 3911 return NULL; 3912 if (opcode == TCPOPT_MD5SIG) 3913 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3914 } 3915 ptr += opsize - 2; 3916 length -= opsize; 3917 } 3918 return NULL; 3919 } 3920 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3921 #endif 3922 3923 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3924 * 3925 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3926 * it can pass through stack. So, the following predicate verifies that 3927 * this segment is not used for anything but congestion avoidance or 3928 * fast retransmit. Moreover, we even are able to eliminate most of such 3929 * second order effects, if we apply some small "replay" window (~RTO) 3930 * to timestamp space. 3931 * 3932 * All these measures still do not guarantee that we reject wrapped ACKs 3933 * on networks with high bandwidth, when sequence space is recycled fastly, 3934 * but it guarantees that such events will be very rare and do not affect 3935 * connection seriously. This doesn't look nice, but alas, PAWS is really 3936 * buggy extension. 3937 * 3938 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3939 * states that events when retransmit arrives after original data are rare. 3940 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3941 * the biggest problem on large power networks even with minor reordering. 3942 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3943 * up to bandwidth of 18Gigabit/sec. 8) ] 3944 */ 3945 3946 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3947 { 3948 const struct tcp_sock *tp = tcp_sk(sk); 3949 const struct tcphdr *th = tcp_hdr(skb); 3950 u32 seq = TCP_SKB_CB(skb)->seq; 3951 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3952 3953 return (/* 1. Pure ACK with correct sequence number. */ 3954 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3955 3956 /* 2. ... and duplicate ACK. */ 3957 ack == tp->snd_una && 3958 3959 /* 3. ... and does not update window. */ 3960 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3961 3962 /* 4. ... and sits in replay window. */ 3963 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3964 } 3965 3966 static inline bool tcp_paws_discard(const struct sock *sk, 3967 const struct sk_buff *skb) 3968 { 3969 const struct tcp_sock *tp = tcp_sk(sk); 3970 3971 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3972 !tcp_disordered_ack(sk, skb); 3973 } 3974 3975 /* Check segment sequence number for validity. 3976 * 3977 * Segment controls are considered valid, if the segment 3978 * fits to the window after truncation to the window. Acceptability 3979 * of data (and SYN, FIN, of course) is checked separately. 3980 * See tcp_data_queue(), for example. 3981 * 3982 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3983 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3984 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3985 * (borrowed from freebsd) 3986 */ 3987 3988 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 3989 { 3990 return !before(end_seq, tp->rcv_wup) && 3991 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3992 } 3993 3994 /* When we get a reset we do this. */ 3995 void tcp_reset(struct sock *sk) 3996 { 3997 /* We want the right error as BSD sees it (and indeed as we do). */ 3998 switch (sk->sk_state) { 3999 case TCP_SYN_SENT: 4000 sk->sk_err = ECONNREFUSED; 4001 break; 4002 case TCP_CLOSE_WAIT: 4003 sk->sk_err = EPIPE; 4004 break; 4005 case TCP_CLOSE: 4006 return; 4007 default: 4008 sk->sk_err = ECONNRESET; 4009 } 4010 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4011 smp_wmb(); 4012 4013 tcp_done(sk); 4014 4015 if (!sock_flag(sk, SOCK_DEAD)) 4016 sk->sk_error_report(sk); 4017 } 4018 4019 /* 4020 * Process the FIN bit. This now behaves as it is supposed to work 4021 * and the FIN takes effect when it is validly part of sequence 4022 * space. Not before when we get holes. 4023 * 4024 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4025 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4026 * TIME-WAIT) 4027 * 4028 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4029 * close and we go into CLOSING (and later onto TIME-WAIT) 4030 * 4031 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4032 */ 4033 void tcp_fin(struct sock *sk) 4034 { 4035 struct tcp_sock *tp = tcp_sk(sk); 4036 4037 inet_csk_schedule_ack(sk); 4038 4039 sk->sk_shutdown |= RCV_SHUTDOWN; 4040 sock_set_flag(sk, SOCK_DONE); 4041 4042 switch (sk->sk_state) { 4043 case TCP_SYN_RECV: 4044 case TCP_ESTABLISHED: 4045 /* Move to CLOSE_WAIT */ 4046 tcp_set_state(sk, TCP_CLOSE_WAIT); 4047 inet_csk(sk)->icsk_ack.pingpong = 1; 4048 break; 4049 4050 case TCP_CLOSE_WAIT: 4051 case TCP_CLOSING: 4052 /* Received a retransmission of the FIN, do 4053 * nothing. 4054 */ 4055 break; 4056 case TCP_LAST_ACK: 4057 /* RFC793: Remain in the LAST-ACK state. */ 4058 break; 4059 4060 case TCP_FIN_WAIT1: 4061 /* This case occurs when a simultaneous close 4062 * happens, we must ack the received FIN and 4063 * enter the CLOSING state. 4064 */ 4065 tcp_send_ack(sk); 4066 tcp_set_state(sk, TCP_CLOSING); 4067 break; 4068 case TCP_FIN_WAIT2: 4069 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4070 tcp_send_ack(sk); 4071 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4072 break; 4073 default: 4074 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4075 * cases we should never reach this piece of code. 4076 */ 4077 pr_err("%s: Impossible, sk->sk_state=%d\n", 4078 __func__, sk->sk_state); 4079 break; 4080 } 4081 4082 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4083 * Probably, we should reset in this case. For now drop them. 4084 */ 4085 skb_rbtree_purge(&tp->out_of_order_queue); 4086 if (tcp_is_sack(tp)) 4087 tcp_sack_reset(&tp->rx_opt); 4088 sk_mem_reclaim(sk); 4089 4090 if (!sock_flag(sk, SOCK_DEAD)) { 4091 sk->sk_state_change(sk); 4092 4093 /* Do not send POLL_HUP for half duplex close. */ 4094 if (sk->sk_shutdown == SHUTDOWN_MASK || 4095 sk->sk_state == TCP_CLOSE) 4096 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4097 else 4098 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4099 } 4100 } 4101 4102 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4103 u32 end_seq) 4104 { 4105 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4106 if (before(seq, sp->start_seq)) 4107 sp->start_seq = seq; 4108 if (after(end_seq, sp->end_seq)) 4109 sp->end_seq = end_seq; 4110 return true; 4111 } 4112 return false; 4113 } 4114 4115 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4116 { 4117 struct tcp_sock *tp = tcp_sk(sk); 4118 4119 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4120 int mib_idx; 4121 4122 if (before(seq, tp->rcv_nxt)) 4123 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4124 else 4125 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4126 4127 NET_INC_STATS(sock_net(sk), mib_idx); 4128 4129 tp->rx_opt.dsack = 1; 4130 tp->duplicate_sack[0].start_seq = seq; 4131 tp->duplicate_sack[0].end_seq = end_seq; 4132 } 4133 } 4134 4135 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4136 { 4137 struct tcp_sock *tp = tcp_sk(sk); 4138 4139 if (!tp->rx_opt.dsack) 4140 tcp_dsack_set(sk, seq, end_seq); 4141 else 4142 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4143 } 4144 4145 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4146 { 4147 struct tcp_sock *tp = tcp_sk(sk); 4148 4149 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4150 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4151 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4152 tcp_enter_quickack_mode(sk); 4153 4154 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4155 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4156 4157 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4158 end_seq = tp->rcv_nxt; 4159 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4160 } 4161 } 4162 4163 tcp_send_ack(sk); 4164 } 4165 4166 /* These routines update the SACK block as out-of-order packets arrive or 4167 * in-order packets close up the sequence space. 4168 */ 4169 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4170 { 4171 int this_sack; 4172 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4173 struct tcp_sack_block *swalk = sp + 1; 4174 4175 /* See if the recent change to the first SACK eats into 4176 * or hits the sequence space of other SACK blocks, if so coalesce. 4177 */ 4178 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4179 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4180 int i; 4181 4182 /* Zap SWALK, by moving every further SACK up by one slot. 4183 * Decrease num_sacks. 4184 */ 4185 tp->rx_opt.num_sacks--; 4186 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4187 sp[i] = sp[i + 1]; 4188 continue; 4189 } 4190 this_sack++, swalk++; 4191 } 4192 } 4193 4194 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4195 { 4196 struct tcp_sock *tp = tcp_sk(sk); 4197 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4198 int cur_sacks = tp->rx_opt.num_sacks; 4199 int this_sack; 4200 4201 if (!cur_sacks) 4202 goto new_sack; 4203 4204 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4205 if (tcp_sack_extend(sp, seq, end_seq)) { 4206 /* Rotate this_sack to the first one. */ 4207 for (; this_sack > 0; this_sack--, sp--) 4208 swap(*sp, *(sp - 1)); 4209 if (cur_sacks > 1) 4210 tcp_sack_maybe_coalesce(tp); 4211 return; 4212 } 4213 } 4214 4215 /* Could not find an adjacent existing SACK, build a new one, 4216 * put it at the front, and shift everyone else down. We 4217 * always know there is at least one SACK present already here. 4218 * 4219 * If the sack array is full, forget about the last one. 4220 */ 4221 if (this_sack >= TCP_NUM_SACKS) { 4222 this_sack--; 4223 tp->rx_opt.num_sacks--; 4224 sp--; 4225 } 4226 for (; this_sack > 0; this_sack--, sp--) 4227 *sp = *(sp - 1); 4228 4229 new_sack: 4230 /* Build the new head SACK, and we're done. */ 4231 sp->start_seq = seq; 4232 sp->end_seq = end_seq; 4233 tp->rx_opt.num_sacks++; 4234 } 4235 4236 /* RCV.NXT advances, some SACKs should be eaten. */ 4237 4238 static void tcp_sack_remove(struct tcp_sock *tp) 4239 { 4240 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4241 int num_sacks = tp->rx_opt.num_sacks; 4242 int this_sack; 4243 4244 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4245 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4246 tp->rx_opt.num_sacks = 0; 4247 return; 4248 } 4249 4250 for (this_sack = 0; this_sack < num_sacks;) { 4251 /* Check if the start of the sack is covered by RCV.NXT. */ 4252 if (!before(tp->rcv_nxt, sp->start_seq)) { 4253 int i; 4254 4255 /* RCV.NXT must cover all the block! */ 4256 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4257 4258 /* Zap this SACK, by moving forward any other SACKS. */ 4259 for (i = this_sack+1; i < num_sacks; i++) 4260 tp->selective_acks[i-1] = tp->selective_acks[i]; 4261 num_sacks--; 4262 continue; 4263 } 4264 this_sack++; 4265 sp++; 4266 } 4267 tp->rx_opt.num_sacks = num_sacks; 4268 } 4269 4270 /** 4271 * tcp_try_coalesce - try to merge skb to prior one 4272 * @sk: socket 4273 * @to: prior buffer 4274 * @from: buffer to add in queue 4275 * @fragstolen: pointer to boolean 4276 * 4277 * Before queueing skb @from after @to, try to merge them 4278 * to reduce overall memory use and queue lengths, if cost is small. 4279 * Packets in ofo or receive queues can stay a long time. 4280 * Better try to coalesce them right now to avoid future collapses. 4281 * Returns true if caller should free @from instead of queueing it 4282 */ 4283 static bool tcp_try_coalesce(struct sock *sk, 4284 struct sk_buff *to, 4285 struct sk_buff *from, 4286 bool *fragstolen) 4287 { 4288 int delta; 4289 4290 *fragstolen = false; 4291 4292 /* Its possible this segment overlaps with prior segment in queue */ 4293 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4294 return false; 4295 4296 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4297 return false; 4298 4299 atomic_add(delta, &sk->sk_rmem_alloc); 4300 sk_mem_charge(sk, delta); 4301 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4302 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4303 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4304 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4305 return true; 4306 } 4307 4308 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4309 { 4310 sk_drops_add(sk, skb); 4311 __kfree_skb(skb); 4312 } 4313 4314 /* This one checks to see if we can put data from the 4315 * out_of_order queue into the receive_queue. 4316 */ 4317 static void tcp_ofo_queue(struct sock *sk) 4318 { 4319 struct tcp_sock *tp = tcp_sk(sk); 4320 __u32 dsack_high = tp->rcv_nxt; 4321 bool fin, fragstolen, eaten; 4322 struct sk_buff *skb, *tail; 4323 struct rb_node *p; 4324 4325 p = rb_first(&tp->out_of_order_queue); 4326 while (p) { 4327 skb = rb_entry(p, struct sk_buff, rbnode); 4328 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4329 break; 4330 4331 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4332 __u32 dsack = dsack_high; 4333 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4334 dsack_high = TCP_SKB_CB(skb)->end_seq; 4335 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4336 } 4337 p = rb_next(p); 4338 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4339 4340 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4341 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4342 tcp_drop(sk, skb); 4343 continue; 4344 } 4345 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4346 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4347 TCP_SKB_CB(skb)->end_seq); 4348 4349 tail = skb_peek_tail(&sk->sk_receive_queue); 4350 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4351 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4352 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4353 if (!eaten) 4354 __skb_queue_tail(&sk->sk_receive_queue, skb); 4355 else 4356 kfree_skb_partial(skb, fragstolen); 4357 4358 if (unlikely(fin)) { 4359 tcp_fin(sk); 4360 /* tcp_fin() purges tp->out_of_order_queue, 4361 * so we must end this loop right now. 4362 */ 4363 break; 4364 } 4365 } 4366 } 4367 4368 static bool tcp_prune_ofo_queue(struct sock *sk); 4369 static int tcp_prune_queue(struct sock *sk); 4370 4371 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4372 unsigned int size) 4373 { 4374 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4375 !sk_rmem_schedule(sk, skb, size)) { 4376 4377 if (tcp_prune_queue(sk) < 0) 4378 return -1; 4379 4380 while (!sk_rmem_schedule(sk, skb, size)) { 4381 if (!tcp_prune_ofo_queue(sk)) 4382 return -1; 4383 } 4384 } 4385 return 0; 4386 } 4387 4388 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4389 { 4390 struct tcp_sock *tp = tcp_sk(sk); 4391 struct rb_node **p, *q, *parent; 4392 struct sk_buff *skb1; 4393 u32 seq, end_seq; 4394 bool fragstolen; 4395 4396 tcp_ecn_check_ce(tp, skb); 4397 4398 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4399 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4400 tcp_drop(sk, skb); 4401 return; 4402 } 4403 4404 /* Disable header prediction. */ 4405 tp->pred_flags = 0; 4406 inet_csk_schedule_ack(sk); 4407 4408 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4409 seq = TCP_SKB_CB(skb)->seq; 4410 end_seq = TCP_SKB_CB(skb)->end_seq; 4411 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4412 tp->rcv_nxt, seq, end_seq); 4413 4414 p = &tp->out_of_order_queue.rb_node; 4415 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4416 /* Initial out of order segment, build 1 SACK. */ 4417 if (tcp_is_sack(tp)) { 4418 tp->rx_opt.num_sacks = 1; 4419 tp->selective_acks[0].start_seq = seq; 4420 tp->selective_acks[0].end_seq = end_seq; 4421 } 4422 rb_link_node(&skb->rbnode, NULL, p); 4423 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4424 tp->ooo_last_skb = skb; 4425 goto end; 4426 } 4427 4428 /* In the typical case, we are adding an skb to the end of the list. 4429 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4430 */ 4431 if (tcp_try_coalesce(sk, tp->ooo_last_skb, skb, &fragstolen)) { 4432 coalesce_done: 4433 tcp_grow_window(sk, skb); 4434 kfree_skb_partial(skb, fragstolen); 4435 skb = NULL; 4436 goto add_sack; 4437 } 4438 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4439 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4440 parent = &tp->ooo_last_skb->rbnode; 4441 p = &parent->rb_right; 4442 goto insert; 4443 } 4444 4445 /* Find place to insert this segment. Handle overlaps on the way. */ 4446 parent = NULL; 4447 while (*p) { 4448 parent = *p; 4449 skb1 = rb_entry(parent, struct sk_buff, rbnode); 4450 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4451 p = &parent->rb_left; 4452 continue; 4453 } 4454 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4455 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4456 /* All the bits are present. Drop. */ 4457 NET_INC_STATS(sock_net(sk), 4458 LINUX_MIB_TCPOFOMERGE); 4459 __kfree_skb(skb); 4460 skb = NULL; 4461 tcp_dsack_set(sk, seq, end_seq); 4462 goto add_sack; 4463 } 4464 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4465 /* Partial overlap. */ 4466 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4467 } else { 4468 /* skb's seq == skb1's seq and skb covers skb1. 4469 * Replace skb1 with skb. 4470 */ 4471 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4472 &tp->out_of_order_queue); 4473 tcp_dsack_extend(sk, 4474 TCP_SKB_CB(skb1)->seq, 4475 TCP_SKB_CB(skb1)->end_seq); 4476 NET_INC_STATS(sock_net(sk), 4477 LINUX_MIB_TCPOFOMERGE); 4478 __kfree_skb(skb1); 4479 goto merge_right; 4480 } 4481 } else if (tcp_try_coalesce(sk, skb1, skb, &fragstolen)) { 4482 goto coalesce_done; 4483 } 4484 p = &parent->rb_right; 4485 } 4486 insert: 4487 /* Insert segment into RB tree. */ 4488 rb_link_node(&skb->rbnode, parent, p); 4489 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4490 4491 merge_right: 4492 /* Remove other segments covered by skb. */ 4493 while ((q = rb_next(&skb->rbnode)) != NULL) { 4494 skb1 = rb_entry(q, struct sk_buff, rbnode); 4495 4496 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4497 break; 4498 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4499 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4500 end_seq); 4501 break; 4502 } 4503 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4504 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4505 TCP_SKB_CB(skb1)->end_seq); 4506 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4507 tcp_drop(sk, skb1); 4508 } 4509 /* If there is no skb after us, we are the last_skb ! */ 4510 if (!q) 4511 tp->ooo_last_skb = skb; 4512 4513 add_sack: 4514 if (tcp_is_sack(tp)) 4515 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4516 end: 4517 if (skb) { 4518 tcp_grow_window(sk, skb); 4519 skb_condense(skb); 4520 skb_set_owner_r(skb, sk); 4521 } 4522 } 4523 4524 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4525 bool *fragstolen) 4526 { 4527 int eaten; 4528 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4529 4530 __skb_pull(skb, hdrlen); 4531 eaten = (tail && 4532 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0; 4533 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4534 if (!eaten) { 4535 __skb_queue_tail(&sk->sk_receive_queue, skb); 4536 skb_set_owner_r(skb, sk); 4537 } 4538 return eaten; 4539 } 4540 4541 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4542 { 4543 struct sk_buff *skb; 4544 int err = -ENOMEM; 4545 int data_len = 0; 4546 bool fragstolen; 4547 4548 if (size == 0) 4549 return 0; 4550 4551 if (size > PAGE_SIZE) { 4552 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4553 4554 data_len = npages << PAGE_SHIFT; 4555 size = data_len + (size & ~PAGE_MASK); 4556 } 4557 skb = alloc_skb_with_frags(size - data_len, data_len, 4558 PAGE_ALLOC_COSTLY_ORDER, 4559 &err, sk->sk_allocation); 4560 if (!skb) 4561 goto err; 4562 4563 skb_put(skb, size - data_len); 4564 skb->data_len = data_len; 4565 skb->len = size; 4566 4567 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4568 goto err_free; 4569 4570 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4571 if (err) 4572 goto err_free; 4573 4574 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4575 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4576 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4577 4578 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4579 WARN_ON_ONCE(fragstolen); /* should not happen */ 4580 __kfree_skb(skb); 4581 } 4582 return size; 4583 4584 err_free: 4585 kfree_skb(skb); 4586 err: 4587 return err; 4588 4589 } 4590 4591 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4592 { 4593 struct tcp_sock *tp = tcp_sk(sk); 4594 bool fragstolen = false; 4595 int eaten = -1; 4596 4597 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4598 __kfree_skb(skb); 4599 return; 4600 } 4601 skb_dst_drop(skb); 4602 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4603 4604 tcp_ecn_accept_cwr(tp, skb); 4605 4606 tp->rx_opt.dsack = 0; 4607 4608 /* Queue data for delivery to the user. 4609 * Packets in sequence go to the receive queue. 4610 * Out of sequence packets to the out_of_order_queue. 4611 */ 4612 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4613 if (tcp_receive_window(tp) == 0) 4614 goto out_of_window; 4615 4616 /* Ok. In sequence. In window. */ 4617 if (tp->ucopy.task == current && 4618 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4619 sock_owned_by_user(sk) && !tp->urg_data) { 4620 int chunk = min_t(unsigned int, skb->len, 4621 tp->ucopy.len); 4622 4623 __set_current_state(TASK_RUNNING); 4624 4625 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) { 4626 tp->ucopy.len -= chunk; 4627 tp->copied_seq += chunk; 4628 eaten = (chunk == skb->len); 4629 tcp_rcv_space_adjust(sk); 4630 } 4631 } 4632 4633 if (eaten <= 0) { 4634 queue_and_out: 4635 if (eaten < 0) { 4636 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4637 sk_forced_mem_schedule(sk, skb->truesize); 4638 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4639 goto drop; 4640 } 4641 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4642 } 4643 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4644 if (skb->len) 4645 tcp_event_data_recv(sk, skb); 4646 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4647 tcp_fin(sk); 4648 4649 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4650 tcp_ofo_queue(sk); 4651 4652 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4653 * gap in queue is filled. 4654 */ 4655 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4656 inet_csk(sk)->icsk_ack.pingpong = 0; 4657 } 4658 4659 if (tp->rx_opt.num_sacks) 4660 tcp_sack_remove(tp); 4661 4662 tcp_fast_path_check(sk); 4663 4664 if (eaten > 0) 4665 kfree_skb_partial(skb, fragstolen); 4666 if (!sock_flag(sk, SOCK_DEAD)) 4667 sk->sk_data_ready(sk); 4668 return; 4669 } 4670 4671 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4672 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4673 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4674 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4675 4676 out_of_window: 4677 tcp_enter_quickack_mode(sk); 4678 inet_csk_schedule_ack(sk); 4679 drop: 4680 tcp_drop(sk, skb); 4681 return; 4682 } 4683 4684 /* Out of window. F.e. zero window probe. */ 4685 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4686 goto out_of_window; 4687 4688 tcp_enter_quickack_mode(sk); 4689 4690 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4691 /* Partial packet, seq < rcv_next < end_seq */ 4692 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4693 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4694 TCP_SKB_CB(skb)->end_seq); 4695 4696 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4697 4698 /* If window is closed, drop tail of packet. But after 4699 * remembering D-SACK for its head made in previous line. 4700 */ 4701 if (!tcp_receive_window(tp)) 4702 goto out_of_window; 4703 goto queue_and_out; 4704 } 4705 4706 tcp_data_queue_ofo(sk, skb); 4707 } 4708 4709 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4710 { 4711 if (list) 4712 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4713 4714 return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode); 4715 } 4716 4717 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4718 struct sk_buff_head *list, 4719 struct rb_root *root) 4720 { 4721 struct sk_buff *next = tcp_skb_next(skb, list); 4722 4723 if (list) 4724 __skb_unlink(skb, list); 4725 else 4726 rb_erase(&skb->rbnode, root); 4727 4728 __kfree_skb(skb); 4729 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4730 4731 return next; 4732 } 4733 4734 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4735 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4736 { 4737 struct rb_node **p = &root->rb_node; 4738 struct rb_node *parent = NULL; 4739 struct sk_buff *skb1; 4740 4741 while (*p) { 4742 parent = *p; 4743 skb1 = rb_entry(parent, struct sk_buff, rbnode); 4744 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4745 p = &parent->rb_left; 4746 else 4747 p = &parent->rb_right; 4748 } 4749 rb_link_node(&skb->rbnode, parent, p); 4750 rb_insert_color(&skb->rbnode, root); 4751 } 4752 4753 /* Collapse contiguous sequence of skbs head..tail with 4754 * sequence numbers start..end. 4755 * 4756 * If tail is NULL, this means until the end of the queue. 4757 * 4758 * Segments with FIN/SYN are not collapsed (only because this 4759 * simplifies code) 4760 */ 4761 static void 4762 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4763 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4764 { 4765 struct sk_buff *skb = head, *n; 4766 struct sk_buff_head tmp; 4767 bool end_of_skbs; 4768 4769 /* First, check that queue is collapsible and find 4770 * the point where collapsing can be useful. 4771 */ 4772 restart: 4773 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4774 n = tcp_skb_next(skb, list); 4775 4776 /* No new bits? It is possible on ofo queue. */ 4777 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4778 skb = tcp_collapse_one(sk, skb, list, root); 4779 if (!skb) 4780 break; 4781 goto restart; 4782 } 4783 4784 /* The first skb to collapse is: 4785 * - not SYN/FIN and 4786 * - bloated or contains data before "start" or 4787 * overlaps to the next one. 4788 */ 4789 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4790 (tcp_win_from_space(skb->truesize) > skb->len || 4791 before(TCP_SKB_CB(skb)->seq, start))) { 4792 end_of_skbs = false; 4793 break; 4794 } 4795 4796 if (n && n != tail && 4797 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4798 end_of_skbs = false; 4799 break; 4800 } 4801 4802 /* Decided to skip this, advance start seq. */ 4803 start = TCP_SKB_CB(skb)->end_seq; 4804 } 4805 if (end_of_skbs || 4806 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4807 return; 4808 4809 __skb_queue_head_init(&tmp); 4810 4811 while (before(start, end)) { 4812 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4813 struct sk_buff *nskb; 4814 4815 nskb = alloc_skb(copy, GFP_ATOMIC); 4816 if (!nskb) 4817 break; 4818 4819 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4820 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4821 if (list) 4822 __skb_queue_before(list, skb, nskb); 4823 else 4824 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 4825 skb_set_owner_r(nskb, sk); 4826 4827 /* Copy data, releasing collapsed skbs. */ 4828 while (copy > 0) { 4829 int offset = start - TCP_SKB_CB(skb)->seq; 4830 int size = TCP_SKB_CB(skb)->end_seq - start; 4831 4832 BUG_ON(offset < 0); 4833 if (size > 0) { 4834 size = min(copy, size); 4835 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4836 BUG(); 4837 TCP_SKB_CB(nskb)->end_seq += size; 4838 copy -= size; 4839 start += size; 4840 } 4841 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4842 skb = tcp_collapse_one(sk, skb, list, root); 4843 if (!skb || 4844 skb == tail || 4845 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4846 goto end; 4847 } 4848 } 4849 } 4850 end: 4851 skb_queue_walk_safe(&tmp, skb, n) 4852 tcp_rbtree_insert(root, skb); 4853 } 4854 4855 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4856 * and tcp_collapse() them until all the queue is collapsed. 4857 */ 4858 static void tcp_collapse_ofo_queue(struct sock *sk) 4859 { 4860 struct tcp_sock *tp = tcp_sk(sk); 4861 struct sk_buff *skb, *head; 4862 struct rb_node *p; 4863 u32 start, end; 4864 4865 p = rb_first(&tp->out_of_order_queue); 4866 skb = rb_entry_safe(p, struct sk_buff, rbnode); 4867 new_range: 4868 if (!skb) { 4869 p = rb_last(&tp->out_of_order_queue); 4870 /* Note: This is possible p is NULL here. We do not 4871 * use rb_entry_safe(), as ooo_last_skb is valid only 4872 * if rbtree is not empty. 4873 */ 4874 tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode); 4875 return; 4876 } 4877 start = TCP_SKB_CB(skb)->seq; 4878 end = TCP_SKB_CB(skb)->end_seq; 4879 4880 for (head = skb;;) { 4881 skb = tcp_skb_next(skb, NULL); 4882 4883 /* Range is terminated when we see a gap or when 4884 * we are at the queue end. 4885 */ 4886 if (!skb || 4887 after(TCP_SKB_CB(skb)->seq, end) || 4888 before(TCP_SKB_CB(skb)->end_seq, start)) { 4889 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 4890 head, skb, start, end); 4891 goto new_range; 4892 } 4893 4894 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 4895 start = TCP_SKB_CB(skb)->seq; 4896 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4897 end = TCP_SKB_CB(skb)->end_seq; 4898 } 4899 } 4900 4901 /* 4902 * Clean the out-of-order queue to make room. 4903 * We drop high sequences packets to : 4904 * 1) Let a chance for holes to be filled. 4905 * 2) not add too big latencies if thousands of packets sit there. 4906 * (But if application shrinks SO_RCVBUF, we could still end up 4907 * freeing whole queue here) 4908 * 4909 * Return true if queue has shrunk. 4910 */ 4911 static bool tcp_prune_ofo_queue(struct sock *sk) 4912 { 4913 struct tcp_sock *tp = tcp_sk(sk); 4914 struct rb_node *node, *prev; 4915 4916 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4917 return false; 4918 4919 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 4920 node = &tp->ooo_last_skb->rbnode; 4921 do { 4922 prev = rb_prev(node); 4923 rb_erase(node, &tp->out_of_order_queue); 4924 tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode)); 4925 sk_mem_reclaim(sk); 4926 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 4927 !tcp_under_memory_pressure(sk)) 4928 break; 4929 node = prev; 4930 } while (node); 4931 tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode); 4932 4933 /* Reset SACK state. A conforming SACK implementation will 4934 * do the same at a timeout based retransmit. When a connection 4935 * is in a sad state like this, we care only about integrity 4936 * of the connection not performance. 4937 */ 4938 if (tp->rx_opt.sack_ok) 4939 tcp_sack_reset(&tp->rx_opt); 4940 return true; 4941 } 4942 4943 /* Reduce allocated memory if we can, trying to get 4944 * the socket within its memory limits again. 4945 * 4946 * Return less than zero if we should start dropping frames 4947 * until the socket owning process reads some of the data 4948 * to stabilize the situation. 4949 */ 4950 static int tcp_prune_queue(struct sock *sk) 4951 { 4952 struct tcp_sock *tp = tcp_sk(sk); 4953 4954 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4955 4956 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 4957 4958 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4959 tcp_clamp_window(sk); 4960 else if (tcp_under_memory_pressure(sk)) 4961 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4962 4963 tcp_collapse_ofo_queue(sk); 4964 if (!skb_queue_empty(&sk->sk_receive_queue)) 4965 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 4966 skb_peek(&sk->sk_receive_queue), 4967 NULL, 4968 tp->copied_seq, tp->rcv_nxt); 4969 sk_mem_reclaim(sk); 4970 4971 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4972 return 0; 4973 4974 /* Collapsing did not help, destructive actions follow. 4975 * This must not ever occur. */ 4976 4977 tcp_prune_ofo_queue(sk); 4978 4979 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4980 return 0; 4981 4982 /* If we are really being abused, tell the caller to silently 4983 * drop receive data on the floor. It will get retransmitted 4984 * and hopefully then we'll have sufficient space. 4985 */ 4986 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 4987 4988 /* Massive buffer overcommit. */ 4989 tp->pred_flags = 0; 4990 return -1; 4991 } 4992 4993 static bool tcp_should_expand_sndbuf(const struct sock *sk) 4994 { 4995 const struct tcp_sock *tp = tcp_sk(sk); 4996 4997 /* If the user specified a specific send buffer setting, do 4998 * not modify it. 4999 */ 5000 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5001 return false; 5002 5003 /* If we are under global TCP memory pressure, do not expand. */ 5004 if (tcp_under_memory_pressure(sk)) 5005 return false; 5006 5007 /* If we are under soft global TCP memory pressure, do not expand. */ 5008 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5009 return false; 5010 5011 /* If we filled the congestion window, do not expand. */ 5012 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5013 return false; 5014 5015 return true; 5016 } 5017 5018 /* When incoming ACK allowed to free some skb from write_queue, 5019 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5020 * on the exit from tcp input handler. 5021 * 5022 * PROBLEM: sndbuf expansion does not work well with largesend. 5023 */ 5024 static void tcp_new_space(struct sock *sk) 5025 { 5026 struct tcp_sock *tp = tcp_sk(sk); 5027 5028 if (tcp_should_expand_sndbuf(sk)) { 5029 tcp_sndbuf_expand(sk); 5030 tp->snd_cwnd_stamp = tcp_jiffies32; 5031 } 5032 5033 sk->sk_write_space(sk); 5034 } 5035 5036 static void tcp_check_space(struct sock *sk) 5037 { 5038 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5039 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5040 /* pairs with tcp_poll() */ 5041 smp_mb(); 5042 if (sk->sk_socket && 5043 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5044 tcp_new_space(sk); 5045 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5046 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5047 } 5048 } 5049 } 5050 5051 static inline void tcp_data_snd_check(struct sock *sk) 5052 { 5053 tcp_push_pending_frames(sk); 5054 tcp_check_space(sk); 5055 } 5056 5057 /* 5058 * Check if sending an ack is needed. 5059 */ 5060 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5061 { 5062 struct tcp_sock *tp = tcp_sk(sk); 5063 5064 /* More than one full frame received... */ 5065 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5066 /* ... and right edge of window advances far enough. 5067 * (tcp_recvmsg() will send ACK otherwise). Or... 5068 */ 5069 __tcp_select_window(sk) >= tp->rcv_wnd) || 5070 /* We ACK each frame or... */ 5071 tcp_in_quickack_mode(sk) || 5072 /* We have out of order data. */ 5073 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) { 5074 /* Then ack it now */ 5075 tcp_send_ack(sk); 5076 } else { 5077 /* Else, send delayed ack. */ 5078 tcp_send_delayed_ack(sk); 5079 } 5080 } 5081 5082 static inline void tcp_ack_snd_check(struct sock *sk) 5083 { 5084 if (!inet_csk_ack_scheduled(sk)) { 5085 /* We sent a data segment already. */ 5086 return; 5087 } 5088 __tcp_ack_snd_check(sk, 1); 5089 } 5090 5091 /* 5092 * This routine is only called when we have urgent data 5093 * signaled. Its the 'slow' part of tcp_urg. It could be 5094 * moved inline now as tcp_urg is only called from one 5095 * place. We handle URGent data wrong. We have to - as 5096 * BSD still doesn't use the correction from RFC961. 5097 * For 1003.1g we should support a new option TCP_STDURG to permit 5098 * either form (or just set the sysctl tcp_stdurg). 5099 */ 5100 5101 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5102 { 5103 struct tcp_sock *tp = tcp_sk(sk); 5104 u32 ptr = ntohs(th->urg_ptr); 5105 5106 if (ptr && !sysctl_tcp_stdurg) 5107 ptr--; 5108 ptr += ntohl(th->seq); 5109 5110 /* Ignore urgent data that we've already seen and read. */ 5111 if (after(tp->copied_seq, ptr)) 5112 return; 5113 5114 /* Do not replay urg ptr. 5115 * 5116 * NOTE: interesting situation not covered by specs. 5117 * Misbehaving sender may send urg ptr, pointing to segment, 5118 * which we already have in ofo queue. We are not able to fetch 5119 * such data and will stay in TCP_URG_NOTYET until will be eaten 5120 * by recvmsg(). Seems, we are not obliged to handle such wicked 5121 * situations. But it is worth to think about possibility of some 5122 * DoSes using some hypothetical application level deadlock. 5123 */ 5124 if (before(ptr, tp->rcv_nxt)) 5125 return; 5126 5127 /* Do we already have a newer (or duplicate) urgent pointer? */ 5128 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5129 return; 5130 5131 /* Tell the world about our new urgent pointer. */ 5132 sk_send_sigurg(sk); 5133 5134 /* We may be adding urgent data when the last byte read was 5135 * urgent. To do this requires some care. We cannot just ignore 5136 * tp->copied_seq since we would read the last urgent byte again 5137 * as data, nor can we alter copied_seq until this data arrives 5138 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5139 * 5140 * NOTE. Double Dutch. Rendering to plain English: author of comment 5141 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5142 * and expect that both A and B disappear from stream. This is _wrong_. 5143 * Though this happens in BSD with high probability, this is occasional. 5144 * Any application relying on this is buggy. Note also, that fix "works" 5145 * only in this artificial test. Insert some normal data between A and B and we will 5146 * decline of BSD again. Verdict: it is better to remove to trap 5147 * buggy users. 5148 */ 5149 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5150 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5151 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5152 tp->copied_seq++; 5153 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5154 __skb_unlink(skb, &sk->sk_receive_queue); 5155 __kfree_skb(skb); 5156 } 5157 } 5158 5159 tp->urg_data = TCP_URG_NOTYET; 5160 tp->urg_seq = ptr; 5161 5162 /* Disable header prediction. */ 5163 tp->pred_flags = 0; 5164 } 5165 5166 /* This is the 'fast' part of urgent handling. */ 5167 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5168 { 5169 struct tcp_sock *tp = tcp_sk(sk); 5170 5171 /* Check if we get a new urgent pointer - normally not. */ 5172 if (th->urg) 5173 tcp_check_urg(sk, th); 5174 5175 /* Do we wait for any urgent data? - normally not... */ 5176 if (tp->urg_data == TCP_URG_NOTYET) { 5177 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5178 th->syn; 5179 5180 /* Is the urgent pointer pointing into this packet? */ 5181 if (ptr < skb->len) { 5182 u8 tmp; 5183 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5184 BUG(); 5185 tp->urg_data = TCP_URG_VALID | tmp; 5186 if (!sock_flag(sk, SOCK_DEAD)) 5187 sk->sk_data_ready(sk); 5188 } 5189 } 5190 } 5191 5192 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 5193 { 5194 struct tcp_sock *tp = tcp_sk(sk); 5195 int chunk = skb->len - hlen; 5196 int err; 5197 5198 if (skb_csum_unnecessary(skb)) 5199 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk); 5200 else 5201 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg); 5202 5203 if (!err) { 5204 tp->ucopy.len -= chunk; 5205 tp->copied_seq += chunk; 5206 tcp_rcv_space_adjust(sk); 5207 } 5208 5209 return err; 5210 } 5211 5212 /* Accept RST for rcv_nxt - 1 after a FIN. 5213 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5214 * FIN is sent followed by a RST packet. The RST is sent with the same 5215 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5216 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5217 * ACKs on the closed socket. In addition middleboxes can drop either the 5218 * challenge ACK or a subsequent RST. 5219 */ 5220 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5221 { 5222 struct tcp_sock *tp = tcp_sk(sk); 5223 5224 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5225 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5226 TCPF_CLOSING)); 5227 } 5228 5229 /* Does PAWS and seqno based validation of an incoming segment, flags will 5230 * play significant role here. 5231 */ 5232 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5233 const struct tcphdr *th, int syn_inerr) 5234 { 5235 struct tcp_sock *tp = tcp_sk(sk); 5236 bool rst_seq_match = false; 5237 5238 /* RFC1323: H1. Apply PAWS check first. */ 5239 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5240 tp->rx_opt.saw_tstamp && 5241 tcp_paws_discard(sk, skb)) { 5242 if (!th->rst) { 5243 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5244 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5245 LINUX_MIB_TCPACKSKIPPEDPAWS, 5246 &tp->last_oow_ack_time)) 5247 tcp_send_dupack(sk, skb); 5248 goto discard; 5249 } 5250 /* Reset is accepted even if it did not pass PAWS. */ 5251 } 5252 5253 /* Step 1: check sequence number */ 5254 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5255 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5256 * (RST) segments are validated by checking their SEQ-fields." 5257 * And page 69: "If an incoming segment is not acceptable, 5258 * an acknowledgment should be sent in reply (unless the RST 5259 * bit is set, if so drop the segment and return)". 5260 */ 5261 if (!th->rst) { 5262 if (th->syn) 5263 goto syn_challenge; 5264 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5265 LINUX_MIB_TCPACKSKIPPEDSEQ, 5266 &tp->last_oow_ack_time)) 5267 tcp_send_dupack(sk, skb); 5268 } else if (tcp_reset_check(sk, skb)) { 5269 tcp_reset(sk); 5270 } 5271 goto discard; 5272 } 5273 5274 /* Step 2: check RST bit */ 5275 if (th->rst) { 5276 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5277 * FIN and SACK too if available): 5278 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5279 * the right-most SACK block, 5280 * then 5281 * RESET the connection 5282 * else 5283 * Send a challenge ACK 5284 */ 5285 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5286 tcp_reset_check(sk, skb)) { 5287 rst_seq_match = true; 5288 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5289 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5290 int max_sack = sp[0].end_seq; 5291 int this_sack; 5292 5293 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5294 ++this_sack) { 5295 max_sack = after(sp[this_sack].end_seq, 5296 max_sack) ? 5297 sp[this_sack].end_seq : max_sack; 5298 } 5299 5300 if (TCP_SKB_CB(skb)->seq == max_sack) 5301 rst_seq_match = true; 5302 } 5303 5304 if (rst_seq_match) 5305 tcp_reset(sk); 5306 else { 5307 /* Disable TFO if RST is out-of-order 5308 * and no data has been received 5309 * for current active TFO socket 5310 */ 5311 if (tp->syn_fastopen && !tp->data_segs_in && 5312 sk->sk_state == TCP_ESTABLISHED) 5313 tcp_fastopen_active_disable(sk); 5314 tcp_send_challenge_ack(sk, skb); 5315 } 5316 goto discard; 5317 } 5318 5319 /* step 3: check security and precedence [ignored] */ 5320 5321 /* step 4: Check for a SYN 5322 * RFC 5961 4.2 : Send a challenge ack 5323 */ 5324 if (th->syn) { 5325 syn_challenge: 5326 if (syn_inerr) 5327 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5328 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5329 tcp_send_challenge_ack(sk, skb); 5330 goto discard; 5331 } 5332 5333 return true; 5334 5335 discard: 5336 tcp_drop(sk, skb); 5337 return false; 5338 } 5339 5340 /* 5341 * TCP receive function for the ESTABLISHED state. 5342 * 5343 * It is split into a fast path and a slow path. The fast path is 5344 * disabled when: 5345 * - A zero window was announced from us - zero window probing 5346 * is only handled properly in the slow path. 5347 * - Out of order segments arrived. 5348 * - Urgent data is expected. 5349 * - There is no buffer space left 5350 * - Unexpected TCP flags/window values/header lengths are received 5351 * (detected by checking the TCP header against pred_flags) 5352 * - Data is sent in both directions. Fast path only supports pure senders 5353 * or pure receivers (this means either the sequence number or the ack 5354 * value must stay constant) 5355 * - Unexpected TCP option. 5356 * 5357 * When these conditions are not satisfied it drops into a standard 5358 * receive procedure patterned after RFC793 to handle all cases. 5359 * The first three cases are guaranteed by proper pred_flags setting, 5360 * the rest is checked inline. Fast processing is turned on in 5361 * tcp_data_queue when everything is OK. 5362 */ 5363 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5364 const struct tcphdr *th, unsigned int len) 5365 { 5366 struct tcp_sock *tp = tcp_sk(sk); 5367 5368 tcp_mstamp_refresh(tp); 5369 if (unlikely(!sk->sk_rx_dst)) 5370 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5371 /* 5372 * Header prediction. 5373 * The code loosely follows the one in the famous 5374 * "30 instruction TCP receive" Van Jacobson mail. 5375 * 5376 * Van's trick is to deposit buffers into socket queue 5377 * on a device interrupt, to call tcp_recv function 5378 * on the receive process context and checksum and copy 5379 * the buffer to user space. smart... 5380 * 5381 * Our current scheme is not silly either but we take the 5382 * extra cost of the net_bh soft interrupt processing... 5383 * We do checksum and copy also but from device to kernel. 5384 */ 5385 5386 tp->rx_opt.saw_tstamp = 0; 5387 5388 /* pred_flags is 0xS?10 << 16 + snd_wnd 5389 * if header_prediction is to be made 5390 * 'S' will always be tp->tcp_header_len >> 2 5391 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5392 * turn it off (when there are holes in the receive 5393 * space for instance) 5394 * PSH flag is ignored. 5395 */ 5396 5397 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5398 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5399 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5400 int tcp_header_len = tp->tcp_header_len; 5401 5402 /* Timestamp header prediction: tcp_header_len 5403 * is automatically equal to th->doff*4 due to pred_flags 5404 * match. 5405 */ 5406 5407 /* Check timestamp */ 5408 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5409 /* No? Slow path! */ 5410 if (!tcp_parse_aligned_timestamp(tp, th)) 5411 goto slow_path; 5412 5413 /* If PAWS failed, check it more carefully in slow path */ 5414 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5415 goto slow_path; 5416 5417 /* DO NOT update ts_recent here, if checksum fails 5418 * and timestamp was corrupted part, it will result 5419 * in a hung connection since we will drop all 5420 * future packets due to the PAWS test. 5421 */ 5422 } 5423 5424 if (len <= tcp_header_len) { 5425 /* Bulk data transfer: sender */ 5426 if (len == tcp_header_len) { 5427 /* Predicted packet is in window by definition. 5428 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5429 * Hence, check seq<=rcv_wup reduces to: 5430 */ 5431 if (tcp_header_len == 5432 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5433 tp->rcv_nxt == tp->rcv_wup) 5434 tcp_store_ts_recent(tp); 5435 5436 /* We know that such packets are checksummed 5437 * on entry. 5438 */ 5439 tcp_ack(sk, skb, 0); 5440 __kfree_skb(skb); 5441 tcp_data_snd_check(sk); 5442 return; 5443 } else { /* Header too small */ 5444 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5445 goto discard; 5446 } 5447 } else { 5448 int eaten = 0; 5449 bool fragstolen = false; 5450 5451 if (tp->ucopy.task == current && 5452 tp->copied_seq == tp->rcv_nxt && 5453 len - tcp_header_len <= tp->ucopy.len && 5454 sock_owned_by_user(sk)) { 5455 __set_current_state(TASK_RUNNING); 5456 5457 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) { 5458 /* Predicted packet is in window by definition. 5459 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5460 * Hence, check seq<=rcv_wup reduces to: 5461 */ 5462 if (tcp_header_len == 5463 (sizeof(struct tcphdr) + 5464 TCPOLEN_TSTAMP_ALIGNED) && 5465 tp->rcv_nxt == tp->rcv_wup) 5466 tcp_store_ts_recent(tp); 5467 5468 tcp_rcv_rtt_measure_ts(sk, skb); 5469 5470 __skb_pull(skb, tcp_header_len); 5471 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 5472 NET_INC_STATS(sock_net(sk), 5473 LINUX_MIB_TCPHPHITSTOUSER); 5474 eaten = 1; 5475 } 5476 } 5477 if (!eaten) { 5478 if (tcp_checksum_complete(skb)) 5479 goto csum_error; 5480 5481 if ((int)skb->truesize > sk->sk_forward_alloc) 5482 goto step5; 5483 5484 /* Predicted packet is in window by definition. 5485 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5486 * Hence, check seq<=rcv_wup reduces to: 5487 */ 5488 if (tcp_header_len == 5489 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5490 tp->rcv_nxt == tp->rcv_wup) 5491 tcp_store_ts_recent(tp); 5492 5493 tcp_rcv_rtt_measure_ts(sk, skb); 5494 5495 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5496 5497 /* Bulk data transfer: receiver */ 5498 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5499 &fragstolen); 5500 } 5501 5502 tcp_event_data_recv(sk, skb); 5503 5504 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5505 /* Well, only one small jumplet in fast path... */ 5506 tcp_ack(sk, skb, FLAG_DATA); 5507 tcp_data_snd_check(sk); 5508 if (!inet_csk_ack_scheduled(sk)) 5509 goto no_ack; 5510 } 5511 5512 __tcp_ack_snd_check(sk, 0); 5513 no_ack: 5514 if (eaten) 5515 kfree_skb_partial(skb, fragstolen); 5516 sk->sk_data_ready(sk); 5517 return; 5518 } 5519 } 5520 5521 slow_path: 5522 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5523 goto csum_error; 5524 5525 if (!th->ack && !th->rst && !th->syn) 5526 goto discard; 5527 5528 /* 5529 * Standard slow path. 5530 */ 5531 5532 if (!tcp_validate_incoming(sk, skb, th, 1)) 5533 return; 5534 5535 step5: 5536 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5537 goto discard; 5538 5539 tcp_rcv_rtt_measure_ts(sk, skb); 5540 5541 /* Process urgent data. */ 5542 tcp_urg(sk, skb, th); 5543 5544 /* step 7: process the segment text */ 5545 tcp_data_queue(sk, skb); 5546 5547 tcp_data_snd_check(sk); 5548 tcp_ack_snd_check(sk); 5549 return; 5550 5551 csum_error: 5552 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5553 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5554 5555 discard: 5556 tcp_drop(sk, skb); 5557 } 5558 EXPORT_SYMBOL(tcp_rcv_established); 5559 5560 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5561 { 5562 struct tcp_sock *tp = tcp_sk(sk); 5563 struct inet_connection_sock *icsk = inet_csk(sk); 5564 5565 tcp_set_state(sk, TCP_ESTABLISHED); 5566 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5567 5568 if (skb) { 5569 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5570 security_inet_conn_established(sk, skb); 5571 } 5572 5573 /* Make sure socket is routed, for correct metrics. */ 5574 icsk->icsk_af_ops->rebuild_header(sk); 5575 5576 tcp_init_metrics(sk); 5577 tcp_call_bpf(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB); 5578 tcp_init_congestion_control(sk); 5579 5580 /* Prevent spurious tcp_cwnd_restart() on first data 5581 * packet. 5582 */ 5583 tp->lsndtime = tcp_jiffies32; 5584 5585 tcp_init_buffer_space(sk); 5586 5587 if (sock_flag(sk, SOCK_KEEPOPEN)) 5588 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5589 5590 if (!tp->rx_opt.snd_wscale) 5591 __tcp_fast_path_on(tp, tp->snd_wnd); 5592 else 5593 tp->pred_flags = 0; 5594 5595 } 5596 5597 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5598 struct tcp_fastopen_cookie *cookie) 5599 { 5600 struct tcp_sock *tp = tcp_sk(sk); 5601 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL; 5602 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5603 bool syn_drop = false; 5604 5605 if (mss == tp->rx_opt.user_mss) { 5606 struct tcp_options_received opt; 5607 5608 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5609 tcp_clear_options(&opt); 5610 opt.user_mss = opt.mss_clamp = 0; 5611 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 5612 mss = opt.mss_clamp; 5613 } 5614 5615 if (!tp->syn_fastopen) { 5616 /* Ignore an unsolicited cookie */ 5617 cookie->len = -1; 5618 } else if (tp->total_retrans) { 5619 /* SYN timed out and the SYN-ACK neither has a cookie nor 5620 * acknowledges data. Presumably the remote received only 5621 * the retransmitted (regular) SYNs: either the original 5622 * SYN-data or the corresponding SYN-ACK was dropped. 5623 */ 5624 syn_drop = (cookie->len < 0 && data); 5625 } else if (cookie->len < 0 && !tp->syn_data) { 5626 /* We requested a cookie but didn't get it. If we did not use 5627 * the (old) exp opt format then try so next time (try_exp=1). 5628 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5629 */ 5630 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5631 } 5632 5633 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5634 5635 if (data) { /* Retransmit unacked data in SYN */ 5636 tcp_for_write_queue_from(data, sk) { 5637 if (data == tcp_send_head(sk) || 5638 __tcp_retransmit_skb(sk, data, 1)) 5639 break; 5640 } 5641 tcp_rearm_rto(sk); 5642 NET_INC_STATS(sock_net(sk), 5643 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5644 return true; 5645 } 5646 tp->syn_data_acked = tp->syn_data; 5647 if (tp->syn_data_acked) 5648 NET_INC_STATS(sock_net(sk), 5649 LINUX_MIB_TCPFASTOPENACTIVE); 5650 5651 tcp_fastopen_add_skb(sk, synack); 5652 5653 return false; 5654 } 5655 5656 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5657 const struct tcphdr *th) 5658 { 5659 struct inet_connection_sock *icsk = inet_csk(sk); 5660 struct tcp_sock *tp = tcp_sk(sk); 5661 struct tcp_fastopen_cookie foc = { .len = -1 }; 5662 int saved_clamp = tp->rx_opt.mss_clamp; 5663 bool fastopen_fail; 5664 5665 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 5666 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5667 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5668 5669 if (th->ack) { 5670 /* rfc793: 5671 * "If the state is SYN-SENT then 5672 * first check the ACK bit 5673 * If the ACK bit is set 5674 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5675 * a reset (unless the RST bit is set, if so drop 5676 * the segment and return)" 5677 */ 5678 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5679 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5680 goto reset_and_undo; 5681 5682 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5683 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5684 tcp_time_stamp(tp))) { 5685 NET_INC_STATS(sock_net(sk), 5686 LINUX_MIB_PAWSACTIVEREJECTED); 5687 goto reset_and_undo; 5688 } 5689 5690 /* Now ACK is acceptable. 5691 * 5692 * "If the RST bit is set 5693 * If the ACK was acceptable then signal the user "error: 5694 * connection reset", drop the segment, enter CLOSED state, 5695 * delete TCB, and return." 5696 */ 5697 5698 if (th->rst) { 5699 tcp_reset(sk); 5700 goto discard; 5701 } 5702 5703 /* rfc793: 5704 * "fifth, if neither of the SYN or RST bits is set then 5705 * drop the segment and return." 5706 * 5707 * See note below! 5708 * --ANK(990513) 5709 */ 5710 if (!th->syn) 5711 goto discard_and_undo; 5712 5713 /* rfc793: 5714 * "If the SYN bit is on ... 5715 * are acceptable then ... 5716 * (our SYN has been ACKed), change the connection 5717 * state to ESTABLISHED..." 5718 */ 5719 5720 tcp_ecn_rcv_synack(tp, th); 5721 5722 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5723 tcp_ack(sk, skb, FLAG_SLOWPATH); 5724 5725 /* Ok.. it's good. Set up sequence numbers and 5726 * move to established. 5727 */ 5728 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5729 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5730 5731 /* RFC1323: The window in SYN & SYN/ACK segments is 5732 * never scaled. 5733 */ 5734 tp->snd_wnd = ntohs(th->window); 5735 5736 if (!tp->rx_opt.wscale_ok) { 5737 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5738 tp->window_clamp = min(tp->window_clamp, 65535U); 5739 } 5740 5741 if (tp->rx_opt.saw_tstamp) { 5742 tp->rx_opt.tstamp_ok = 1; 5743 tp->tcp_header_len = 5744 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5745 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5746 tcp_store_ts_recent(tp); 5747 } else { 5748 tp->tcp_header_len = sizeof(struct tcphdr); 5749 } 5750 5751 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5752 tcp_enable_fack(tp); 5753 5754 tcp_mtup_init(sk); 5755 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5756 tcp_initialize_rcv_mss(sk); 5757 5758 /* Remember, tcp_poll() does not lock socket! 5759 * Change state from SYN-SENT only after copied_seq 5760 * is initialized. */ 5761 tp->copied_seq = tp->rcv_nxt; 5762 5763 smp_mb(); 5764 5765 tcp_finish_connect(sk, skb); 5766 5767 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 5768 tcp_rcv_fastopen_synack(sk, skb, &foc); 5769 5770 if (!sock_flag(sk, SOCK_DEAD)) { 5771 sk->sk_state_change(sk); 5772 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5773 } 5774 if (fastopen_fail) 5775 return -1; 5776 if (sk->sk_write_pending || 5777 icsk->icsk_accept_queue.rskq_defer_accept || 5778 icsk->icsk_ack.pingpong) { 5779 /* Save one ACK. Data will be ready after 5780 * several ticks, if write_pending is set. 5781 * 5782 * It may be deleted, but with this feature tcpdumps 5783 * look so _wonderfully_ clever, that I was not able 5784 * to stand against the temptation 8) --ANK 5785 */ 5786 inet_csk_schedule_ack(sk); 5787 tcp_enter_quickack_mode(sk); 5788 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5789 TCP_DELACK_MAX, TCP_RTO_MAX); 5790 5791 discard: 5792 tcp_drop(sk, skb); 5793 return 0; 5794 } else { 5795 tcp_send_ack(sk); 5796 } 5797 return -1; 5798 } 5799 5800 /* No ACK in the segment */ 5801 5802 if (th->rst) { 5803 /* rfc793: 5804 * "If the RST bit is set 5805 * 5806 * Otherwise (no ACK) drop the segment and return." 5807 */ 5808 5809 goto discard_and_undo; 5810 } 5811 5812 /* PAWS check. */ 5813 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5814 tcp_paws_reject(&tp->rx_opt, 0)) 5815 goto discard_and_undo; 5816 5817 if (th->syn) { 5818 /* We see SYN without ACK. It is attempt of 5819 * simultaneous connect with crossed SYNs. 5820 * Particularly, it can be connect to self. 5821 */ 5822 tcp_set_state(sk, TCP_SYN_RECV); 5823 5824 if (tp->rx_opt.saw_tstamp) { 5825 tp->rx_opt.tstamp_ok = 1; 5826 tcp_store_ts_recent(tp); 5827 tp->tcp_header_len = 5828 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5829 } else { 5830 tp->tcp_header_len = sizeof(struct tcphdr); 5831 } 5832 5833 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5834 tp->copied_seq = tp->rcv_nxt; 5835 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5836 5837 /* RFC1323: The window in SYN & SYN/ACK segments is 5838 * never scaled. 5839 */ 5840 tp->snd_wnd = ntohs(th->window); 5841 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5842 tp->max_window = tp->snd_wnd; 5843 5844 tcp_ecn_rcv_syn(tp, th); 5845 5846 tcp_mtup_init(sk); 5847 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5848 tcp_initialize_rcv_mss(sk); 5849 5850 tcp_send_synack(sk); 5851 #if 0 5852 /* Note, we could accept data and URG from this segment. 5853 * There are no obstacles to make this (except that we must 5854 * either change tcp_recvmsg() to prevent it from returning data 5855 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5856 * 5857 * However, if we ignore data in ACKless segments sometimes, 5858 * we have no reasons to accept it sometimes. 5859 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5860 * is not flawless. So, discard packet for sanity. 5861 * Uncomment this return to process the data. 5862 */ 5863 return -1; 5864 #else 5865 goto discard; 5866 #endif 5867 } 5868 /* "fifth, if neither of the SYN or RST bits is set then 5869 * drop the segment and return." 5870 */ 5871 5872 discard_and_undo: 5873 tcp_clear_options(&tp->rx_opt); 5874 tp->rx_opt.mss_clamp = saved_clamp; 5875 goto discard; 5876 5877 reset_and_undo: 5878 tcp_clear_options(&tp->rx_opt); 5879 tp->rx_opt.mss_clamp = saved_clamp; 5880 return 1; 5881 } 5882 5883 /* 5884 * This function implements the receiving procedure of RFC 793 for 5885 * all states except ESTABLISHED and TIME_WAIT. 5886 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5887 * address independent. 5888 */ 5889 5890 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 5891 { 5892 struct tcp_sock *tp = tcp_sk(sk); 5893 struct inet_connection_sock *icsk = inet_csk(sk); 5894 const struct tcphdr *th = tcp_hdr(skb); 5895 struct request_sock *req; 5896 int queued = 0; 5897 bool acceptable; 5898 5899 switch (sk->sk_state) { 5900 case TCP_CLOSE: 5901 goto discard; 5902 5903 case TCP_LISTEN: 5904 if (th->ack) 5905 return 1; 5906 5907 if (th->rst) 5908 goto discard; 5909 5910 if (th->syn) { 5911 if (th->fin) 5912 goto discard; 5913 /* It is possible that we process SYN packets from backlog, 5914 * so we need to make sure to disable BH right there. 5915 */ 5916 local_bh_disable(); 5917 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 5918 local_bh_enable(); 5919 5920 if (!acceptable) 5921 return 1; 5922 consume_skb(skb); 5923 return 0; 5924 } 5925 goto discard; 5926 5927 case TCP_SYN_SENT: 5928 tp->rx_opt.saw_tstamp = 0; 5929 tcp_mstamp_refresh(tp); 5930 queued = tcp_rcv_synsent_state_process(sk, skb, th); 5931 if (queued >= 0) 5932 return queued; 5933 5934 /* Do step6 onward by hand. */ 5935 tcp_urg(sk, skb, th); 5936 __kfree_skb(skb); 5937 tcp_data_snd_check(sk); 5938 return 0; 5939 } 5940 5941 tcp_mstamp_refresh(tp); 5942 tp->rx_opt.saw_tstamp = 0; 5943 req = tp->fastopen_rsk; 5944 if (req) { 5945 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5946 sk->sk_state != TCP_FIN_WAIT1); 5947 5948 if (!tcp_check_req(sk, skb, req, true)) 5949 goto discard; 5950 } 5951 5952 if (!th->ack && !th->rst && !th->syn) 5953 goto discard; 5954 5955 if (!tcp_validate_incoming(sk, skb, th, 0)) 5956 return 0; 5957 5958 /* step 5: check the ACK field */ 5959 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5960 FLAG_UPDATE_TS_RECENT | 5961 FLAG_NO_CHALLENGE_ACK) > 0; 5962 5963 if (!acceptable) { 5964 if (sk->sk_state == TCP_SYN_RECV) 5965 return 1; /* send one RST */ 5966 tcp_send_challenge_ack(sk, skb); 5967 goto discard; 5968 } 5969 switch (sk->sk_state) { 5970 case TCP_SYN_RECV: 5971 if (!tp->srtt_us) 5972 tcp_synack_rtt_meas(sk, req); 5973 5974 /* Once we leave TCP_SYN_RECV, we no longer need req 5975 * so release it. 5976 */ 5977 if (req) { 5978 inet_csk(sk)->icsk_retransmits = 0; 5979 reqsk_fastopen_remove(sk, req, false); 5980 } else { 5981 /* Make sure socket is routed, for correct metrics. */ 5982 icsk->icsk_af_ops->rebuild_header(sk); 5983 tcp_call_bpf(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB); 5984 tcp_init_congestion_control(sk); 5985 5986 tcp_mtup_init(sk); 5987 tp->copied_seq = tp->rcv_nxt; 5988 tcp_init_buffer_space(sk); 5989 } 5990 smp_mb(); 5991 tcp_set_state(sk, TCP_ESTABLISHED); 5992 sk->sk_state_change(sk); 5993 5994 /* Note, that this wakeup is only for marginal crossed SYN case. 5995 * Passively open sockets are not waked up, because 5996 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 5997 */ 5998 if (sk->sk_socket) 5999 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6000 6001 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6002 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6003 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6004 6005 if (tp->rx_opt.tstamp_ok) 6006 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6007 6008 if (req) { 6009 /* Re-arm the timer because data may have been sent out. 6010 * This is similar to the regular data transmission case 6011 * when new data has just been ack'ed. 6012 * 6013 * (TFO) - we could try to be more aggressive and 6014 * retransmitting any data sooner based on when they 6015 * are sent out. 6016 */ 6017 tcp_rearm_rto(sk); 6018 } else 6019 tcp_init_metrics(sk); 6020 6021 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6022 tcp_update_pacing_rate(sk); 6023 6024 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6025 tp->lsndtime = tcp_jiffies32; 6026 6027 tcp_initialize_rcv_mss(sk); 6028 tcp_fast_path_on(tp); 6029 break; 6030 6031 case TCP_FIN_WAIT1: { 6032 int tmo; 6033 6034 /* If we enter the TCP_FIN_WAIT1 state and we are a 6035 * Fast Open socket and this is the first acceptable 6036 * ACK we have received, this would have acknowledged 6037 * our SYNACK so stop the SYNACK timer. 6038 */ 6039 if (req) { 6040 /* We no longer need the request sock. */ 6041 reqsk_fastopen_remove(sk, req, false); 6042 tcp_rearm_rto(sk); 6043 } 6044 if (tp->snd_una != tp->write_seq) 6045 break; 6046 6047 tcp_set_state(sk, TCP_FIN_WAIT2); 6048 sk->sk_shutdown |= SEND_SHUTDOWN; 6049 6050 sk_dst_confirm(sk); 6051 6052 if (!sock_flag(sk, SOCK_DEAD)) { 6053 /* Wake up lingering close() */ 6054 sk->sk_state_change(sk); 6055 break; 6056 } 6057 6058 if (tp->linger2 < 0) { 6059 tcp_done(sk); 6060 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6061 return 1; 6062 } 6063 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6064 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6065 /* Receive out of order FIN after close() */ 6066 if (tp->syn_fastopen && th->fin) 6067 tcp_fastopen_active_disable(sk); 6068 tcp_done(sk); 6069 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6070 return 1; 6071 } 6072 6073 tmo = tcp_fin_time(sk); 6074 if (tmo > TCP_TIMEWAIT_LEN) { 6075 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6076 } else if (th->fin || sock_owned_by_user(sk)) { 6077 /* Bad case. We could lose such FIN otherwise. 6078 * It is not a big problem, but it looks confusing 6079 * and not so rare event. We still can lose it now, 6080 * if it spins in bh_lock_sock(), but it is really 6081 * marginal case. 6082 */ 6083 inet_csk_reset_keepalive_timer(sk, tmo); 6084 } else { 6085 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6086 goto discard; 6087 } 6088 break; 6089 } 6090 6091 case TCP_CLOSING: 6092 if (tp->snd_una == tp->write_seq) { 6093 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6094 goto discard; 6095 } 6096 break; 6097 6098 case TCP_LAST_ACK: 6099 if (tp->snd_una == tp->write_seq) { 6100 tcp_update_metrics(sk); 6101 tcp_done(sk); 6102 goto discard; 6103 } 6104 break; 6105 } 6106 6107 /* step 6: check the URG bit */ 6108 tcp_urg(sk, skb, th); 6109 6110 /* step 7: process the segment text */ 6111 switch (sk->sk_state) { 6112 case TCP_CLOSE_WAIT: 6113 case TCP_CLOSING: 6114 case TCP_LAST_ACK: 6115 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6116 break; 6117 case TCP_FIN_WAIT1: 6118 case TCP_FIN_WAIT2: 6119 /* RFC 793 says to queue data in these states, 6120 * RFC 1122 says we MUST send a reset. 6121 * BSD 4.4 also does reset. 6122 */ 6123 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6124 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6125 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6126 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6127 tcp_reset(sk); 6128 return 1; 6129 } 6130 } 6131 /* Fall through */ 6132 case TCP_ESTABLISHED: 6133 tcp_data_queue(sk, skb); 6134 queued = 1; 6135 break; 6136 } 6137 6138 /* tcp_data could move socket to TIME-WAIT */ 6139 if (sk->sk_state != TCP_CLOSE) { 6140 tcp_data_snd_check(sk); 6141 tcp_ack_snd_check(sk); 6142 } 6143 6144 if (!queued) { 6145 discard: 6146 tcp_drop(sk, skb); 6147 } 6148 return 0; 6149 } 6150 EXPORT_SYMBOL(tcp_rcv_state_process); 6151 6152 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6153 { 6154 struct inet_request_sock *ireq = inet_rsk(req); 6155 6156 if (family == AF_INET) 6157 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6158 &ireq->ir_rmt_addr, port); 6159 #if IS_ENABLED(CONFIG_IPV6) 6160 else if (family == AF_INET6) 6161 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6162 &ireq->ir_v6_rmt_addr, port); 6163 #endif 6164 } 6165 6166 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6167 * 6168 * If we receive a SYN packet with these bits set, it means a 6169 * network is playing bad games with TOS bits. In order to 6170 * avoid possible false congestion notifications, we disable 6171 * TCP ECN negotiation. 6172 * 6173 * Exception: tcp_ca wants ECN. This is required for DCTCP 6174 * congestion control: Linux DCTCP asserts ECT on all packets, 6175 * including SYN, which is most optimal solution; however, 6176 * others, such as FreeBSD do not. 6177 */ 6178 static void tcp_ecn_create_request(struct request_sock *req, 6179 const struct sk_buff *skb, 6180 const struct sock *listen_sk, 6181 const struct dst_entry *dst) 6182 { 6183 const struct tcphdr *th = tcp_hdr(skb); 6184 const struct net *net = sock_net(listen_sk); 6185 bool th_ecn = th->ece && th->cwr; 6186 bool ect, ecn_ok; 6187 u32 ecn_ok_dst; 6188 6189 if (!th_ecn) 6190 return; 6191 6192 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6193 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6194 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6195 6196 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6197 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6198 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6199 inet_rsk(req)->ecn_ok = 1; 6200 } 6201 6202 static void tcp_openreq_init(struct request_sock *req, 6203 const struct tcp_options_received *rx_opt, 6204 struct sk_buff *skb, const struct sock *sk) 6205 { 6206 struct inet_request_sock *ireq = inet_rsk(req); 6207 6208 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6209 req->cookie_ts = 0; 6210 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6211 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6212 tcp_rsk(req)->snt_synack = tcp_clock_us(); 6213 tcp_rsk(req)->last_oow_ack_time = 0; 6214 req->mss = rx_opt->mss_clamp; 6215 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6216 ireq->tstamp_ok = rx_opt->tstamp_ok; 6217 ireq->sack_ok = rx_opt->sack_ok; 6218 ireq->snd_wscale = rx_opt->snd_wscale; 6219 ireq->wscale_ok = rx_opt->wscale_ok; 6220 ireq->acked = 0; 6221 ireq->ecn_ok = 0; 6222 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6223 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6224 ireq->ir_mark = inet_request_mark(sk, skb); 6225 } 6226 6227 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6228 struct sock *sk_listener, 6229 bool attach_listener) 6230 { 6231 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6232 attach_listener); 6233 6234 if (req) { 6235 struct inet_request_sock *ireq = inet_rsk(req); 6236 6237 kmemcheck_annotate_bitfield(ireq, flags); 6238 ireq->opt = NULL; 6239 #if IS_ENABLED(CONFIG_IPV6) 6240 ireq->pktopts = NULL; 6241 #endif 6242 atomic64_set(&ireq->ir_cookie, 0); 6243 ireq->ireq_state = TCP_NEW_SYN_RECV; 6244 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6245 ireq->ireq_family = sk_listener->sk_family; 6246 } 6247 6248 return req; 6249 } 6250 EXPORT_SYMBOL(inet_reqsk_alloc); 6251 6252 /* 6253 * Return true if a syncookie should be sent 6254 */ 6255 static bool tcp_syn_flood_action(const struct sock *sk, 6256 const struct sk_buff *skb, 6257 const char *proto) 6258 { 6259 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6260 const char *msg = "Dropping request"; 6261 bool want_cookie = false; 6262 struct net *net = sock_net(sk); 6263 6264 #ifdef CONFIG_SYN_COOKIES 6265 if (net->ipv4.sysctl_tcp_syncookies) { 6266 msg = "Sending cookies"; 6267 want_cookie = true; 6268 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6269 } else 6270 #endif 6271 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6272 6273 if (!queue->synflood_warned && 6274 net->ipv4.sysctl_tcp_syncookies != 2 && 6275 xchg(&queue->synflood_warned, 1) == 0) 6276 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6277 proto, ntohs(tcp_hdr(skb)->dest), msg); 6278 6279 return want_cookie; 6280 } 6281 6282 static void tcp_reqsk_record_syn(const struct sock *sk, 6283 struct request_sock *req, 6284 const struct sk_buff *skb) 6285 { 6286 if (tcp_sk(sk)->save_syn) { 6287 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6288 u32 *copy; 6289 6290 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6291 if (copy) { 6292 copy[0] = len; 6293 memcpy(©[1], skb_network_header(skb), len); 6294 req->saved_syn = copy; 6295 } 6296 } 6297 } 6298 6299 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6300 const struct tcp_request_sock_ops *af_ops, 6301 struct sock *sk, struct sk_buff *skb) 6302 { 6303 struct tcp_fastopen_cookie foc = { .len = -1 }; 6304 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6305 struct tcp_options_received tmp_opt; 6306 struct tcp_sock *tp = tcp_sk(sk); 6307 struct net *net = sock_net(sk); 6308 struct sock *fastopen_sk = NULL; 6309 struct dst_entry *dst = NULL; 6310 struct request_sock *req; 6311 bool want_cookie = false; 6312 struct flowi fl; 6313 6314 /* TW buckets are converted to open requests without 6315 * limitations, they conserve resources and peer is 6316 * evidently real one. 6317 */ 6318 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6319 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6320 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6321 if (!want_cookie) 6322 goto drop; 6323 } 6324 6325 if (sk_acceptq_is_full(sk)) { 6326 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6327 goto drop; 6328 } 6329 6330 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6331 if (!req) 6332 goto drop; 6333 6334 tcp_rsk(req)->af_specific = af_ops; 6335 tcp_rsk(req)->ts_off = 0; 6336 6337 tcp_clear_options(&tmp_opt); 6338 tmp_opt.mss_clamp = af_ops->mss_clamp; 6339 tmp_opt.user_mss = tp->rx_opt.user_mss; 6340 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6341 want_cookie ? NULL : &foc); 6342 6343 if (want_cookie && !tmp_opt.saw_tstamp) 6344 tcp_clear_options(&tmp_opt); 6345 6346 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6347 tcp_openreq_init(req, &tmp_opt, skb, sk); 6348 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6349 6350 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6351 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6352 6353 af_ops->init_req(req, sk, skb); 6354 6355 if (security_inet_conn_request(sk, skb, req)) 6356 goto drop_and_free; 6357 6358 if (tmp_opt.tstamp_ok) 6359 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6360 6361 if (!want_cookie && !isn) { 6362 /* Kill the following clause, if you dislike this way. */ 6363 if (!net->ipv4.sysctl_tcp_syncookies && 6364 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6365 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6366 !tcp_peer_is_proven(req, dst)) { 6367 /* Without syncookies last quarter of 6368 * backlog is filled with destinations, 6369 * proven to be alive. 6370 * It means that we continue to communicate 6371 * to destinations, already remembered 6372 * to the moment of synflood. 6373 */ 6374 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6375 rsk_ops->family); 6376 goto drop_and_release; 6377 } 6378 6379 isn = af_ops->init_seq(skb); 6380 } 6381 if (!dst) { 6382 dst = af_ops->route_req(sk, &fl, req); 6383 if (!dst) 6384 goto drop_and_free; 6385 } 6386 6387 tcp_ecn_create_request(req, skb, sk, dst); 6388 6389 if (want_cookie) { 6390 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6391 req->cookie_ts = tmp_opt.tstamp_ok; 6392 if (!tmp_opt.tstamp_ok) 6393 inet_rsk(req)->ecn_ok = 0; 6394 } 6395 6396 tcp_rsk(req)->snt_isn = isn; 6397 tcp_rsk(req)->txhash = net_tx_rndhash(); 6398 tcp_openreq_init_rwin(req, sk, dst); 6399 if (!want_cookie) { 6400 tcp_reqsk_record_syn(sk, req, skb); 6401 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6402 } 6403 if (fastopen_sk) { 6404 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6405 &foc, TCP_SYNACK_FASTOPEN); 6406 /* Add the child socket directly into the accept queue */ 6407 inet_csk_reqsk_queue_add(sk, req, fastopen_sk); 6408 sk->sk_data_ready(sk); 6409 bh_unlock_sock(fastopen_sk); 6410 sock_put(fastopen_sk); 6411 } else { 6412 tcp_rsk(req)->tfo_listener = false; 6413 if (!want_cookie) 6414 inet_csk_reqsk_queue_hash_add(sk, req, 6415 tcp_timeout_init((struct sock *)req)); 6416 af_ops->send_synack(sk, dst, &fl, req, &foc, 6417 !want_cookie ? TCP_SYNACK_NORMAL : 6418 TCP_SYNACK_COOKIE); 6419 if (want_cookie) { 6420 reqsk_free(req); 6421 return 0; 6422 } 6423 } 6424 reqsk_put(req); 6425 return 0; 6426 6427 drop_and_release: 6428 dst_release(dst); 6429 drop_and_free: 6430 reqsk_free(req); 6431 drop: 6432 tcp_listendrop(sk); 6433 return 0; 6434 } 6435 EXPORT_SYMBOL(tcp_conn_request); 6436