xref: /openbmc/linux/net/ipv4/tcp_input.c (revision d7a3d85e)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #define pr_fmt(fmt) "TCP: " fmt
65 
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
78 
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly = 1;
83 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
84 int sysctl_tcp_max_reordering __read_mostly = 300;
85 EXPORT_SYMBOL(sysctl_tcp_reordering);
86 int sysctl_tcp_dsack __read_mostly = 1;
87 int sysctl_tcp_app_win __read_mostly = 31;
88 int sysctl_tcp_adv_win_scale __read_mostly = 1;
89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
90 
91 /* rfc5961 challenge ack rate limiting */
92 int sysctl_tcp_challenge_ack_limit = 100;
93 
94 int sysctl_tcp_stdurg __read_mostly;
95 int sysctl_tcp_rfc1337 __read_mostly;
96 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
97 int sysctl_tcp_frto __read_mostly = 2;
98 
99 int sysctl_tcp_thin_dupack __read_mostly;
100 
101 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
102 int sysctl_tcp_early_retrans __read_mostly = 3;
103 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
104 
105 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
106 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
107 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
108 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
109 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
110 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
111 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
112 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
113 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
114 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
115 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
116 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
117 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
118 
119 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
120 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
121 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
122 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
123 
124 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
125 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
126 
127 /* Adapt the MSS value used to make delayed ack decision to the
128  * real world.
129  */
130 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
131 {
132 	struct inet_connection_sock *icsk = inet_csk(sk);
133 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
134 	unsigned int len;
135 
136 	icsk->icsk_ack.last_seg_size = 0;
137 
138 	/* skb->len may jitter because of SACKs, even if peer
139 	 * sends good full-sized frames.
140 	 */
141 	len = skb_shinfo(skb)->gso_size ? : skb->len;
142 	if (len >= icsk->icsk_ack.rcv_mss) {
143 		icsk->icsk_ack.rcv_mss = len;
144 	} else {
145 		/* Otherwise, we make more careful check taking into account,
146 		 * that SACKs block is variable.
147 		 *
148 		 * "len" is invariant segment length, including TCP header.
149 		 */
150 		len += skb->data - skb_transport_header(skb);
151 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
152 		    /* If PSH is not set, packet should be
153 		     * full sized, provided peer TCP is not badly broken.
154 		     * This observation (if it is correct 8)) allows
155 		     * to handle super-low mtu links fairly.
156 		     */
157 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
158 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
159 			/* Subtract also invariant (if peer is RFC compliant),
160 			 * tcp header plus fixed timestamp option length.
161 			 * Resulting "len" is MSS free of SACK jitter.
162 			 */
163 			len -= tcp_sk(sk)->tcp_header_len;
164 			icsk->icsk_ack.last_seg_size = len;
165 			if (len == lss) {
166 				icsk->icsk_ack.rcv_mss = len;
167 				return;
168 			}
169 		}
170 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
171 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
172 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
173 	}
174 }
175 
176 static void tcp_incr_quickack(struct sock *sk)
177 {
178 	struct inet_connection_sock *icsk = inet_csk(sk);
179 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
180 
181 	if (quickacks == 0)
182 		quickacks = 2;
183 	if (quickacks > icsk->icsk_ack.quick)
184 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
185 }
186 
187 static void tcp_enter_quickack_mode(struct sock *sk)
188 {
189 	struct inet_connection_sock *icsk = inet_csk(sk);
190 	tcp_incr_quickack(sk);
191 	icsk->icsk_ack.pingpong = 0;
192 	icsk->icsk_ack.ato = TCP_ATO_MIN;
193 }
194 
195 /* Send ACKs quickly, if "quick" count is not exhausted
196  * and the session is not interactive.
197  */
198 
199 static inline bool tcp_in_quickack_mode(const struct sock *sk)
200 {
201 	const struct inet_connection_sock *icsk = inet_csk(sk);
202 
203 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
204 }
205 
206 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
207 {
208 	if (tp->ecn_flags & TCP_ECN_OK)
209 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
210 }
211 
212 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
213 {
214 	if (tcp_hdr(skb)->cwr)
215 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
216 }
217 
218 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
219 {
220 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
221 }
222 
223 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
224 {
225 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
226 	case INET_ECN_NOT_ECT:
227 		/* Funny extension: if ECT is not set on a segment,
228 		 * and we already seen ECT on a previous segment,
229 		 * it is probably a retransmit.
230 		 */
231 		if (tp->ecn_flags & TCP_ECN_SEEN)
232 			tcp_enter_quickack_mode((struct sock *)tp);
233 		break;
234 	case INET_ECN_CE:
235 		if (tcp_ca_needs_ecn((struct sock *)tp))
236 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
237 
238 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
239 			/* Better not delay acks, sender can have a very low cwnd */
240 			tcp_enter_quickack_mode((struct sock *)tp);
241 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
242 		}
243 		tp->ecn_flags |= TCP_ECN_SEEN;
244 		break;
245 	default:
246 		if (tcp_ca_needs_ecn((struct sock *)tp))
247 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
248 		tp->ecn_flags |= TCP_ECN_SEEN;
249 		break;
250 	}
251 }
252 
253 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
254 {
255 	if (tp->ecn_flags & TCP_ECN_OK)
256 		__tcp_ecn_check_ce(tp, skb);
257 }
258 
259 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
260 {
261 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
262 		tp->ecn_flags &= ~TCP_ECN_OK;
263 }
264 
265 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
266 {
267 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
268 		tp->ecn_flags &= ~TCP_ECN_OK;
269 }
270 
271 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
272 {
273 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
274 		return true;
275 	return false;
276 }
277 
278 /* Buffer size and advertised window tuning.
279  *
280  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
281  */
282 
283 static void tcp_sndbuf_expand(struct sock *sk)
284 {
285 	const struct tcp_sock *tp = tcp_sk(sk);
286 	int sndmem, per_mss;
287 	u32 nr_segs;
288 
289 	/* Worst case is non GSO/TSO : each frame consumes one skb
290 	 * and skb->head is kmalloced using power of two area of memory
291 	 */
292 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
293 		  MAX_TCP_HEADER +
294 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
295 
296 	per_mss = roundup_pow_of_two(per_mss) +
297 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
298 
299 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
300 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
301 
302 	/* Fast Recovery (RFC 5681 3.2) :
303 	 * Cubic needs 1.7 factor, rounded to 2 to include
304 	 * extra cushion (application might react slowly to POLLOUT)
305 	 */
306 	sndmem = 2 * nr_segs * per_mss;
307 
308 	if (sk->sk_sndbuf < sndmem)
309 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
310 }
311 
312 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
313  *
314  * All tcp_full_space() is split to two parts: "network" buffer, allocated
315  * forward and advertised in receiver window (tp->rcv_wnd) and
316  * "application buffer", required to isolate scheduling/application
317  * latencies from network.
318  * window_clamp is maximal advertised window. It can be less than
319  * tcp_full_space(), in this case tcp_full_space() - window_clamp
320  * is reserved for "application" buffer. The less window_clamp is
321  * the smoother our behaviour from viewpoint of network, but the lower
322  * throughput and the higher sensitivity of the connection to losses. 8)
323  *
324  * rcv_ssthresh is more strict window_clamp used at "slow start"
325  * phase to predict further behaviour of this connection.
326  * It is used for two goals:
327  * - to enforce header prediction at sender, even when application
328  *   requires some significant "application buffer". It is check #1.
329  * - to prevent pruning of receive queue because of misprediction
330  *   of receiver window. Check #2.
331  *
332  * The scheme does not work when sender sends good segments opening
333  * window and then starts to feed us spaghetti. But it should work
334  * in common situations. Otherwise, we have to rely on queue collapsing.
335  */
336 
337 /* Slow part of check#2. */
338 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
339 {
340 	struct tcp_sock *tp = tcp_sk(sk);
341 	/* Optimize this! */
342 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
343 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
344 
345 	while (tp->rcv_ssthresh <= window) {
346 		if (truesize <= skb->len)
347 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
348 
349 		truesize >>= 1;
350 		window >>= 1;
351 	}
352 	return 0;
353 }
354 
355 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
356 {
357 	struct tcp_sock *tp = tcp_sk(sk);
358 
359 	/* Check #1 */
360 	if (tp->rcv_ssthresh < tp->window_clamp &&
361 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
362 	    !sk_under_memory_pressure(sk)) {
363 		int incr;
364 
365 		/* Check #2. Increase window, if skb with such overhead
366 		 * will fit to rcvbuf in future.
367 		 */
368 		if (tcp_win_from_space(skb->truesize) <= skb->len)
369 			incr = 2 * tp->advmss;
370 		else
371 			incr = __tcp_grow_window(sk, skb);
372 
373 		if (incr) {
374 			incr = max_t(int, incr, 2 * skb->len);
375 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
376 					       tp->window_clamp);
377 			inet_csk(sk)->icsk_ack.quick |= 1;
378 		}
379 	}
380 }
381 
382 /* 3. Tuning rcvbuf, when connection enters established state. */
383 static void tcp_fixup_rcvbuf(struct sock *sk)
384 {
385 	u32 mss = tcp_sk(sk)->advmss;
386 	int rcvmem;
387 
388 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
389 		 tcp_default_init_rwnd(mss);
390 
391 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
392 	 * Allow enough cushion so that sender is not limited by our window
393 	 */
394 	if (sysctl_tcp_moderate_rcvbuf)
395 		rcvmem <<= 2;
396 
397 	if (sk->sk_rcvbuf < rcvmem)
398 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
399 }
400 
401 /* 4. Try to fixup all. It is made immediately after connection enters
402  *    established state.
403  */
404 void tcp_init_buffer_space(struct sock *sk)
405 {
406 	struct tcp_sock *tp = tcp_sk(sk);
407 	int maxwin;
408 
409 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
410 		tcp_fixup_rcvbuf(sk);
411 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
412 		tcp_sndbuf_expand(sk);
413 
414 	tp->rcvq_space.space = tp->rcv_wnd;
415 	tp->rcvq_space.time = tcp_time_stamp;
416 	tp->rcvq_space.seq = tp->copied_seq;
417 
418 	maxwin = tcp_full_space(sk);
419 
420 	if (tp->window_clamp >= maxwin) {
421 		tp->window_clamp = maxwin;
422 
423 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
424 			tp->window_clamp = max(maxwin -
425 					       (maxwin >> sysctl_tcp_app_win),
426 					       4 * tp->advmss);
427 	}
428 
429 	/* Force reservation of one segment. */
430 	if (sysctl_tcp_app_win &&
431 	    tp->window_clamp > 2 * tp->advmss &&
432 	    tp->window_clamp + tp->advmss > maxwin)
433 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
434 
435 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
436 	tp->snd_cwnd_stamp = tcp_time_stamp;
437 }
438 
439 /* 5. Recalculate window clamp after socket hit its memory bounds. */
440 static void tcp_clamp_window(struct sock *sk)
441 {
442 	struct tcp_sock *tp = tcp_sk(sk);
443 	struct inet_connection_sock *icsk = inet_csk(sk);
444 
445 	icsk->icsk_ack.quick = 0;
446 
447 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
448 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
449 	    !sk_under_memory_pressure(sk) &&
450 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
451 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
452 				    sysctl_tcp_rmem[2]);
453 	}
454 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
455 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
456 }
457 
458 /* Initialize RCV_MSS value.
459  * RCV_MSS is an our guess about MSS used by the peer.
460  * We haven't any direct information about the MSS.
461  * It's better to underestimate the RCV_MSS rather than overestimate.
462  * Overestimations make us ACKing less frequently than needed.
463  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
464  */
465 void tcp_initialize_rcv_mss(struct sock *sk)
466 {
467 	const struct tcp_sock *tp = tcp_sk(sk);
468 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
469 
470 	hint = min(hint, tp->rcv_wnd / 2);
471 	hint = min(hint, TCP_MSS_DEFAULT);
472 	hint = max(hint, TCP_MIN_MSS);
473 
474 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
475 }
476 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
477 
478 /* Receiver "autotuning" code.
479  *
480  * The algorithm for RTT estimation w/o timestamps is based on
481  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
482  * <http://public.lanl.gov/radiant/pubs.html#DRS>
483  *
484  * More detail on this code can be found at
485  * <http://staff.psc.edu/jheffner/>,
486  * though this reference is out of date.  A new paper
487  * is pending.
488  */
489 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
490 {
491 	u32 new_sample = tp->rcv_rtt_est.rtt;
492 	long m = sample;
493 
494 	if (m == 0)
495 		m = 1;
496 
497 	if (new_sample != 0) {
498 		/* If we sample in larger samples in the non-timestamp
499 		 * case, we could grossly overestimate the RTT especially
500 		 * with chatty applications or bulk transfer apps which
501 		 * are stalled on filesystem I/O.
502 		 *
503 		 * Also, since we are only going for a minimum in the
504 		 * non-timestamp case, we do not smooth things out
505 		 * else with timestamps disabled convergence takes too
506 		 * long.
507 		 */
508 		if (!win_dep) {
509 			m -= (new_sample >> 3);
510 			new_sample += m;
511 		} else {
512 			m <<= 3;
513 			if (m < new_sample)
514 				new_sample = m;
515 		}
516 	} else {
517 		/* No previous measure. */
518 		new_sample = m << 3;
519 	}
520 
521 	if (tp->rcv_rtt_est.rtt != new_sample)
522 		tp->rcv_rtt_est.rtt = new_sample;
523 }
524 
525 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
526 {
527 	if (tp->rcv_rtt_est.time == 0)
528 		goto new_measure;
529 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
530 		return;
531 	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
532 
533 new_measure:
534 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
535 	tp->rcv_rtt_est.time = tcp_time_stamp;
536 }
537 
538 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
539 					  const struct sk_buff *skb)
540 {
541 	struct tcp_sock *tp = tcp_sk(sk);
542 	if (tp->rx_opt.rcv_tsecr &&
543 	    (TCP_SKB_CB(skb)->end_seq -
544 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
545 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
546 }
547 
548 /*
549  * This function should be called every time data is copied to user space.
550  * It calculates the appropriate TCP receive buffer space.
551  */
552 void tcp_rcv_space_adjust(struct sock *sk)
553 {
554 	struct tcp_sock *tp = tcp_sk(sk);
555 	int time;
556 	int copied;
557 
558 	time = tcp_time_stamp - tp->rcvq_space.time;
559 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
560 		return;
561 
562 	/* Number of bytes copied to user in last RTT */
563 	copied = tp->copied_seq - tp->rcvq_space.seq;
564 	if (copied <= tp->rcvq_space.space)
565 		goto new_measure;
566 
567 	/* A bit of theory :
568 	 * copied = bytes received in previous RTT, our base window
569 	 * To cope with packet losses, we need a 2x factor
570 	 * To cope with slow start, and sender growing its cwin by 100 %
571 	 * every RTT, we need a 4x factor, because the ACK we are sending
572 	 * now is for the next RTT, not the current one :
573 	 * <prev RTT . ><current RTT .. ><next RTT .... >
574 	 */
575 
576 	if (sysctl_tcp_moderate_rcvbuf &&
577 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
578 		int rcvwin, rcvmem, rcvbuf;
579 
580 		/* minimal window to cope with packet losses, assuming
581 		 * steady state. Add some cushion because of small variations.
582 		 */
583 		rcvwin = (copied << 1) + 16 * tp->advmss;
584 
585 		/* If rate increased by 25%,
586 		 *	assume slow start, rcvwin = 3 * copied
587 		 * If rate increased by 50%,
588 		 *	assume sender can use 2x growth, rcvwin = 4 * copied
589 		 */
590 		if (copied >=
591 		    tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
592 			if (copied >=
593 			    tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
594 				rcvwin <<= 1;
595 			else
596 				rcvwin += (rcvwin >> 1);
597 		}
598 
599 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
600 		while (tcp_win_from_space(rcvmem) < tp->advmss)
601 			rcvmem += 128;
602 
603 		rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
604 		if (rcvbuf > sk->sk_rcvbuf) {
605 			sk->sk_rcvbuf = rcvbuf;
606 
607 			/* Make the window clamp follow along.  */
608 			tp->window_clamp = rcvwin;
609 		}
610 	}
611 	tp->rcvq_space.space = copied;
612 
613 new_measure:
614 	tp->rcvq_space.seq = tp->copied_seq;
615 	tp->rcvq_space.time = tcp_time_stamp;
616 }
617 
618 /* There is something which you must keep in mind when you analyze the
619  * behavior of the tp->ato delayed ack timeout interval.  When a
620  * connection starts up, we want to ack as quickly as possible.  The
621  * problem is that "good" TCP's do slow start at the beginning of data
622  * transmission.  The means that until we send the first few ACK's the
623  * sender will sit on his end and only queue most of his data, because
624  * he can only send snd_cwnd unacked packets at any given time.  For
625  * each ACK we send, he increments snd_cwnd and transmits more of his
626  * queue.  -DaveM
627  */
628 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
629 {
630 	struct tcp_sock *tp = tcp_sk(sk);
631 	struct inet_connection_sock *icsk = inet_csk(sk);
632 	u32 now;
633 
634 	inet_csk_schedule_ack(sk);
635 
636 	tcp_measure_rcv_mss(sk, skb);
637 
638 	tcp_rcv_rtt_measure(tp);
639 
640 	now = tcp_time_stamp;
641 
642 	if (!icsk->icsk_ack.ato) {
643 		/* The _first_ data packet received, initialize
644 		 * delayed ACK engine.
645 		 */
646 		tcp_incr_quickack(sk);
647 		icsk->icsk_ack.ato = TCP_ATO_MIN;
648 	} else {
649 		int m = now - icsk->icsk_ack.lrcvtime;
650 
651 		if (m <= TCP_ATO_MIN / 2) {
652 			/* The fastest case is the first. */
653 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
654 		} else if (m < icsk->icsk_ack.ato) {
655 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
656 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
657 				icsk->icsk_ack.ato = icsk->icsk_rto;
658 		} else if (m > icsk->icsk_rto) {
659 			/* Too long gap. Apparently sender failed to
660 			 * restart window, so that we send ACKs quickly.
661 			 */
662 			tcp_incr_quickack(sk);
663 			sk_mem_reclaim(sk);
664 		}
665 	}
666 	icsk->icsk_ack.lrcvtime = now;
667 
668 	tcp_ecn_check_ce(tp, skb);
669 
670 	if (skb->len >= 128)
671 		tcp_grow_window(sk, skb);
672 }
673 
674 /* Called to compute a smoothed rtt estimate. The data fed to this
675  * routine either comes from timestamps, or from segments that were
676  * known _not_ to have been retransmitted [see Karn/Partridge
677  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
678  * piece by Van Jacobson.
679  * NOTE: the next three routines used to be one big routine.
680  * To save cycles in the RFC 1323 implementation it was better to break
681  * it up into three procedures. -- erics
682  */
683 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
684 {
685 	struct tcp_sock *tp = tcp_sk(sk);
686 	long m = mrtt_us; /* RTT */
687 	u32 srtt = tp->srtt_us;
688 
689 	/*	The following amusing code comes from Jacobson's
690 	 *	article in SIGCOMM '88.  Note that rtt and mdev
691 	 *	are scaled versions of rtt and mean deviation.
692 	 *	This is designed to be as fast as possible
693 	 *	m stands for "measurement".
694 	 *
695 	 *	On a 1990 paper the rto value is changed to:
696 	 *	RTO = rtt + 4 * mdev
697 	 *
698 	 * Funny. This algorithm seems to be very broken.
699 	 * These formulae increase RTO, when it should be decreased, increase
700 	 * too slowly, when it should be increased quickly, decrease too quickly
701 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
702 	 * does not matter how to _calculate_ it. Seems, it was trap
703 	 * that VJ failed to avoid. 8)
704 	 */
705 	if (srtt != 0) {
706 		m -= (srtt >> 3);	/* m is now error in rtt est */
707 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
708 		if (m < 0) {
709 			m = -m;		/* m is now abs(error) */
710 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
711 			/* This is similar to one of Eifel findings.
712 			 * Eifel blocks mdev updates when rtt decreases.
713 			 * This solution is a bit different: we use finer gain
714 			 * for mdev in this case (alpha*beta).
715 			 * Like Eifel it also prevents growth of rto,
716 			 * but also it limits too fast rto decreases,
717 			 * happening in pure Eifel.
718 			 */
719 			if (m > 0)
720 				m >>= 3;
721 		} else {
722 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
723 		}
724 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
725 		if (tp->mdev_us > tp->mdev_max_us) {
726 			tp->mdev_max_us = tp->mdev_us;
727 			if (tp->mdev_max_us > tp->rttvar_us)
728 				tp->rttvar_us = tp->mdev_max_us;
729 		}
730 		if (after(tp->snd_una, tp->rtt_seq)) {
731 			if (tp->mdev_max_us < tp->rttvar_us)
732 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
733 			tp->rtt_seq = tp->snd_nxt;
734 			tp->mdev_max_us = tcp_rto_min_us(sk);
735 		}
736 	} else {
737 		/* no previous measure. */
738 		srtt = m << 3;		/* take the measured time to be rtt */
739 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
740 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
741 		tp->mdev_max_us = tp->rttvar_us;
742 		tp->rtt_seq = tp->snd_nxt;
743 	}
744 	tp->srtt_us = max(1U, srtt);
745 }
746 
747 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
748  * Note: TCP stack does not yet implement pacing.
749  * FQ packet scheduler can be used to implement cheap but effective
750  * TCP pacing, to smooth the burst on large writes when packets
751  * in flight is significantly lower than cwnd (or rwin)
752  */
753 static void tcp_update_pacing_rate(struct sock *sk)
754 {
755 	const struct tcp_sock *tp = tcp_sk(sk);
756 	u64 rate;
757 
758 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
759 	rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3);
760 
761 	rate *= max(tp->snd_cwnd, tp->packets_out);
762 
763 	if (likely(tp->srtt_us))
764 		do_div(rate, tp->srtt_us);
765 
766 	/* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
767 	 * without any lock. We want to make sure compiler wont store
768 	 * intermediate values in this location.
769 	 */
770 	ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
771 						sk->sk_max_pacing_rate);
772 }
773 
774 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
775  * routine referred to above.
776  */
777 static void tcp_set_rto(struct sock *sk)
778 {
779 	const struct tcp_sock *tp = tcp_sk(sk);
780 	/* Old crap is replaced with new one. 8)
781 	 *
782 	 * More seriously:
783 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
784 	 *    It cannot be less due to utterly erratic ACK generation made
785 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
786 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
787 	 *    is invisible. Actually, Linux-2.4 also generates erratic
788 	 *    ACKs in some circumstances.
789 	 */
790 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
791 
792 	/* 2. Fixups made earlier cannot be right.
793 	 *    If we do not estimate RTO correctly without them,
794 	 *    all the algo is pure shit and should be replaced
795 	 *    with correct one. It is exactly, which we pretend to do.
796 	 */
797 
798 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
799 	 * guarantees that rto is higher.
800 	 */
801 	tcp_bound_rto(sk);
802 }
803 
804 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
805 {
806 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
807 
808 	if (!cwnd)
809 		cwnd = TCP_INIT_CWND;
810 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
811 }
812 
813 /*
814  * Packet counting of FACK is based on in-order assumptions, therefore TCP
815  * disables it when reordering is detected
816  */
817 void tcp_disable_fack(struct tcp_sock *tp)
818 {
819 	/* RFC3517 uses different metric in lost marker => reset on change */
820 	if (tcp_is_fack(tp))
821 		tp->lost_skb_hint = NULL;
822 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
823 }
824 
825 /* Take a notice that peer is sending D-SACKs */
826 static void tcp_dsack_seen(struct tcp_sock *tp)
827 {
828 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
829 }
830 
831 static void tcp_update_reordering(struct sock *sk, const int metric,
832 				  const int ts)
833 {
834 	struct tcp_sock *tp = tcp_sk(sk);
835 	if (metric > tp->reordering) {
836 		int mib_idx;
837 
838 		tp->reordering = min(sysctl_tcp_max_reordering, metric);
839 
840 		/* This exciting event is worth to be remembered. 8) */
841 		if (ts)
842 			mib_idx = LINUX_MIB_TCPTSREORDER;
843 		else if (tcp_is_reno(tp))
844 			mib_idx = LINUX_MIB_TCPRENOREORDER;
845 		else if (tcp_is_fack(tp))
846 			mib_idx = LINUX_MIB_TCPFACKREORDER;
847 		else
848 			mib_idx = LINUX_MIB_TCPSACKREORDER;
849 
850 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
851 #if FASTRETRANS_DEBUG > 1
852 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
853 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
854 			 tp->reordering,
855 			 tp->fackets_out,
856 			 tp->sacked_out,
857 			 tp->undo_marker ? tp->undo_retrans : 0);
858 #endif
859 		tcp_disable_fack(tp);
860 	}
861 
862 	if (metric > 0)
863 		tcp_disable_early_retrans(tp);
864 }
865 
866 /* This must be called before lost_out is incremented */
867 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
868 {
869 	if (!tp->retransmit_skb_hint ||
870 	    before(TCP_SKB_CB(skb)->seq,
871 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
872 		tp->retransmit_skb_hint = skb;
873 
874 	if (!tp->lost_out ||
875 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
876 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
877 }
878 
879 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
880 {
881 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
882 		tcp_verify_retransmit_hint(tp, skb);
883 
884 		tp->lost_out += tcp_skb_pcount(skb);
885 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
886 	}
887 }
888 
889 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
890 					    struct sk_buff *skb)
891 {
892 	tcp_verify_retransmit_hint(tp, skb);
893 
894 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
895 		tp->lost_out += tcp_skb_pcount(skb);
896 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
897 	}
898 }
899 
900 /* This procedure tags the retransmission queue when SACKs arrive.
901  *
902  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
903  * Packets in queue with these bits set are counted in variables
904  * sacked_out, retrans_out and lost_out, correspondingly.
905  *
906  * Valid combinations are:
907  * Tag  InFlight	Description
908  * 0	1		- orig segment is in flight.
909  * S	0		- nothing flies, orig reached receiver.
910  * L	0		- nothing flies, orig lost by net.
911  * R	2		- both orig and retransmit are in flight.
912  * L|R	1		- orig is lost, retransmit is in flight.
913  * S|R  1		- orig reached receiver, retrans is still in flight.
914  * (L|S|R is logically valid, it could occur when L|R is sacked,
915  *  but it is equivalent to plain S and code short-curcuits it to S.
916  *  L|S is logically invalid, it would mean -1 packet in flight 8))
917  *
918  * These 6 states form finite state machine, controlled by the following events:
919  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
920  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
921  * 3. Loss detection event of two flavors:
922  *	A. Scoreboard estimator decided the packet is lost.
923  *	   A'. Reno "three dupacks" marks head of queue lost.
924  *	   A''. Its FACK modification, head until snd.fack is lost.
925  *	B. SACK arrives sacking SND.NXT at the moment, when the
926  *	   segment was retransmitted.
927  * 4. D-SACK added new rule: D-SACK changes any tag to S.
928  *
929  * It is pleasant to note, that state diagram turns out to be commutative,
930  * so that we are allowed not to be bothered by order of our actions,
931  * when multiple events arrive simultaneously. (see the function below).
932  *
933  * Reordering detection.
934  * --------------------
935  * Reordering metric is maximal distance, which a packet can be displaced
936  * in packet stream. With SACKs we can estimate it:
937  *
938  * 1. SACK fills old hole and the corresponding segment was not
939  *    ever retransmitted -> reordering. Alas, we cannot use it
940  *    when segment was retransmitted.
941  * 2. The last flaw is solved with D-SACK. D-SACK arrives
942  *    for retransmitted and already SACKed segment -> reordering..
943  * Both of these heuristics are not used in Loss state, when we cannot
944  * account for retransmits accurately.
945  *
946  * SACK block validation.
947  * ----------------------
948  *
949  * SACK block range validation checks that the received SACK block fits to
950  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
951  * Note that SND.UNA is not included to the range though being valid because
952  * it means that the receiver is rather inconsistent with itself reporting
953  * SACK reneging when it should advance SND.UNA. Such SACK block this is
954  * perfectly valid, however, in light of RFC2018 which explicitly states
955  * that "SACK block MUST reflect the newest segment.  Even if the newest
956  * segment is going to be discarded ...", not that it looks very clever
957  * in case of head skb. Due to potentional receiver driven attacks, we
958  * choose to avoid immediate execution of a walk in write queue due to
959  * reneging and defer head skb's loss recovery to standard loss recovery
960  * procedure that will eventually trigger (nothing forbids us doing this).
961  *
962  * Implements also blockage to start_seq wrap-around. Problem lies in the
963  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
964  * there's no guarantee that it will be before snd_nxt (n). The problem
965  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
966  * wrap (s_w):
967  *
968  *         <- outs wnd ->                          <- wrapzone ->
969  *         u     e      n                         u_w   e_w  s n_w
970  *         |     |      |                          |     |   |  |
971  * |<------------+------+----- TCP seqno space --------------+---------->|
972  * ...-- <2^31 ->|                                           |<--------...
973  * ...---- >2^31 ------>|                                    |<--------...
974  *
975  * Current code wouldn't be vulnerable but it's better still to discard such
976  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
977  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
978  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
979  * equal to the ideal case (infinite seqno space without wrap caused issues).
980  *
981  * With D-SACK the lower bound is extended to cover sequence space below
982  * SND.UNA down to undo_marker, which is the last point of interest. Yet
983  * again, D-SACK block must not to go across snd_una (for the same reason as
984  * for the normal SACK blocks, explained above). But there all simplicity
985  * ends, TCP might receive valid D-SACKs below that. As long as they reside
986  * fully below undo_marker they do not affect behavior in anyway and can
987  * therefore be safely ignored. In rare cases (which are more or less
988  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
989  * fragmentation and packet reordering past skb's retransmission. To consider
990  * them correctly, the acceptable range must be extended even more though
991  * the exact amount is rather hard to quantify. However, tp->max_window can
992  * be used as an exaggerated estimate.
993  */
994 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
995 				   u32 start_seq, u32 end_seq)
996 {
997 	/* Too far in future, or reversed (interpretation is ambiguous) */
998 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
999 		return false;
1000 
1001 	/* Nasty start_seq wrap-around check (see comments above) */
1002 	if (!before(start_seq, tp->snd_nxt))
1003 		return false;
1004 
1005 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1006 	 * start_seq == snd_una is non-sensical (see comments above)
1007 	 */
1008 	if (after(start_seq, tp->snd_una))
1009 		return true;
1010 
1011 	if (!is_dsack || !tp->undo_marker)
1012 		return false;
1013 
1014 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1015 	if (after(end_seq, tp->snd_una))
1016 		return false;
1017 
1018 	if (!before(start_seq, tp->undo_marker))
1019 		return true;
1020 
1021 	/* Too old */
1022 	if (!after(end_seq, tp->undo_marker))
1023 		return false;
1024 
1025 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1026 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1027 	 */
1028 	return !before(start_seq, end_seq - tp->max_window);
1029 }
1030 
1031 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1032  * Event "B". Later note: FACK people cheated me again 8), we have to account
1033  * for reordering! Ugly, but should help.
1034  *
1035  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1036  * less than what is now known to be received by the other end (derived from
1037  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1038  * retransmitted skbs to avoid some costly processing per ACKs.
1039  */
1040 static void tcp_mark_lost_retrans(struct sock *sk)
1041 {
1042 	const struct inet_connection_sock *icsk = inet_csk(sk);
1043 	struct tcp_sock *tp = tcp_sk(sk);
1044 	struct sk_buff *skb;
1045 	int cnt = 0;
1046 	u32 new_low_seq = tp->snd_nxt;
1047 	u32 received_upto = tcp_highest_sack_seq(tp);
1048 
1049 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1050 	    !after(received_upto, tp->lost_retrans_low) ||
1051 	    icsk->icsk_ca_state != TCP_CA_Recovery)
1052 		return;
1053 
1054 	tcp_for_write_queue(skb, sk) {
1055 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1056 
1057 		if (skb == tcp_send_head(sk))
1058 			break;
1059 		if (cnt == tp->retrans_out)
1060 			break;
1061 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1062 			continue;
1063 
1064 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1065 			continue;
1066 
1067 		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1068 		 * constraint here (see above) but figuring out that at
1069 		 * least tp->reordering SACK blocks reside between ack_seq
1070 		 * and received_upto is not easy task to do cheaply with
1071 		 * the available datastructures.
1072 		 *
1073 		 * Whether FACK should check here for tp->reordering segs
1074 		 * in-between one could argue for either way (it would be
1075 		 * rather simple to implement as we could count fack_count
1076 		 * during the walk and do tp->fackets_out - fack_count).
1077 		 */
1078 		if (after(received_upto, ack_seq)) {
1079 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1080 			tp->retrans_out -= tcp_skb_pcount(skb);
1081 
1082 			tcp_skb_mark_lost_uncond_verify(tp, skb);
1083 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1084 		} else {
1085 			if (before(ack_seq, new_low_seq))
1086 				new_low_seq = ack_seq;
1087 			cnt += tcp_skb_pcount(skb);
1088 		}
1089 	}
1090 
1091 	if (tp->retrans_out)
1092 		tp->lost_retrans_low = new_low_seq;
1093 }
1094 
1095 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1096 			    struct tcp_sack_block_wire *sp, int num_sacks,
1097 			    u32 prior_snd_una)
1098 {
1099 	struct tcp_sock *tp = tcp_sk(sk);
1100 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1101 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1102 	bool dup_sack = false;
1103 
1104 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1105 		dup_sack = true;
1106 		tcp_dsack_seen(tp);
1107 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1108 	} else if (num_sacks > 1) {
1109 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1110 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1111 
1112 		if (!after(end_seq_0, end_seq_1) &&
1113 		    !before(start_seq_0, start_seq_1)) {
1114 			dup_sack = true;
1115 			tcp_dsack_seen(tp);
1116 			NET_INC_STATS_BH(sock_net(sk),
1117 					LINUX_MIB_TCPDSACKOFORECV);
1118 		}
1119 	}
1120 
1121 	/* D-SACK for already forgotten data... Do dumb counting. */
1122 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1123 	    !after(end_seq_0, prior_snd_una) &&
1124 	    after(end_seq_0, tp->undo_marker))
1125 		tp->undo_retrans--;
1126 
1127 	return dup_sack;
1128 }
1129 
1130 struct tcp_sacktag_state {
1131 	int	reord;
1132 	int	fack_count;
1133 	long	rtt_us; /* RTT measured by SACKing never-retransmitted data */
1134 	int	flag;
1135 };
1136 
1137 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1138  * the incoming SACK may not exactly match but we can find smaller MSS
1139  * aligned portion of it that matches. Therefore we might need to fragment
1140  * which may fail and creates some hassle (caller must handle error case
1141  * returns).
1142  *
1143  * FIXME: this could be merged to shift decision code
1144  */
1145 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1146 				  u32 start_seq, u32 end_seq)
1147 {
1148 	int err;
1149 	bool in_sack;
1150 	unsigned int pkt_len;
1151 	unsigned int mss;
1152 
1153 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1154 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1155 
1156 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1157 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1158 		mss = tcp_skb_mss(skb);
1159 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1160 
1161 		if (!in_sack) {
1162 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1163 			if (pkt_len < mss)
1164 				pkt_len = mss;
1165 		} else {
1166 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1167 			if (pkt_len < mss)
1168 				return -EINVAL;
1169 		}
1170 
1171 		/* Round if necessary so that SACKs cover only full MSSes
1172 		 * and/or the remaining small portion (if present)
1173 		 */
1174 		if (pkt_len > mss) {
1175 			unsigned int new_len = (pkt_len / mss) * mss;
1176 			if (!in_sack && new_len < pkt_len) {
1177 				new_len += mss;
1178 				if (new_len >= skb->len)
1179 					return 0;
1180 			}
1181 			pkt_len = new_len;
1182 		}
1183 		err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1184 		if (err < 0)
1185 			return err;
1186 	}
1187 
1188 	return in_sack;
1189 }
1190 
1191 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1192 static u8 tcp_sacktag_one(struct sock *sk,
1193 			  struct tcp_sacktag_state *state, u8 sacked,
1194 			  u32 start_seq, u32 end_seq,
1195 			  int dup_sack, int pcount,
1196 			  const struct skb_mstamp *xmit_time)
1197 {
1198 	struct tcp_sock *tp = tcp_sk(sk);
1199 	int fack_count = state->fack_count;
1200 
1201 	/* Account D-SACK for retransmitted packet. */
1202 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1203 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1204 		    after(end_seq, tp->undo_marker))
1205 			tp->undo_retrans--;
1206 		if (sacked & TCPCB_SACKED_ACKED)
1207 			state->reord = min(fack_count, state->reord);
1208 	}
1209 
1210 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1211 	if (!after(end_seq, tp->snd_una))
1212 		return sacked;
1213 
1214 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1215 		if (sacked & TCPCB_SACKED_RETRANS) {
1216 			/* If the segment is not tagged as lost,
1217 			 * we do not clear RETRANS, believing
1218 			 * that retransmission is still in flight.
1219 			 */
1220 			if (sacked & TCPCB_LOST) {
1221 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1222 				tp->lost_out -= pcount;
1223 				tp->retrans_out -= pcount;
1224 			}
1225 		} else {
1226 			if (!(sacked & TCPCB_RETRANS)) {
1227 				/* New sack for not retransmitted frame,
1228 				 * which was in hole. It is reordering.
1229 				 */
1230 				if (before(start_seq,
1231 					   tcp_highest_sack_seq(tp)))
1232 					state->reord = min(fack_count,
1233 							   state->reord);
1234 				if (!after(end_seq, tp->high_seq))
1235 					state->flag |= FLAG_ORIG_SACK_ACKED;
1236 				/* Pick the earliest sequence sacked for RTT */
1237 				if (state->rtt_us < 0) {
1238 					struct skb_mstamp now;
1239 
1240 					skb_mstamp_get(&now);
1241 					state->rtt_us = skb_mstamp_us_delta(&now,
1242 								xmit_time);
1243 				}
1244 			}
1245 
1246 			if (sacked & TCPCB_LOST) {
1247 				sacked &= ~TCPCB_LOST;
1248 				tp->lost_out -= pcount;
1249 			}
1250 		}
1251 
1252 		sacked |= TCPCB_SACKED_ACKED;
1253 		state->flag |= FLAG_DATA_SACKED;
1254 		tp->sacked_out += pcount;
1255 
1256 		fack_count += pcount;
1257 
1258 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1259 		if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1260 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1261 			tp->lost_cnt_hint += pcount;
1262 
1263 		if (fack_count > tp->fackets_out)
1264 			tp->fackets_out = fack_count;
1265 	}
1266 
1267 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1268 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1269 	 * are accounted above as well.
1270 	 */
1271 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1272 		sacked &= ~TCPCB_SACKED_RETRANS;
1273 		tp->retrans_out -= pcount;
1274 	}
1275 
1276 	return sacked;
1277 }
1278 
1279 /* Shift newly-SACKed bytes from this skb to the immediately previous
1280  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1281  */
1282 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1283 			    struct tcp_sacktag_state *state,
1284 			    unsigned int pcount, int shifted, int mss,
1285 			    bool dup_sack)
1286 {
1287 	struct tcp_sock *tp = tcp_sk(sk);
1288 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1289 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1290 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1291 
1292 	BUG_ON(!pcount);
1293 
1294 	/* Adjust counters and hints for the newly sacked sequence
1295 	 * range but discard the return value since prev is already
1296 	 * marked. We must tag the range first because the seq
1297 	 * advancement below implicitly advances
1298 	 * tcp_highest_sack_seq() when skb is highest_sack.
1299 	 */
1300 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1301 			start_seq, end_seq, dup_sack, pcount,
1302 			&skb->skb_mstamp);
1303 
1304 	if (skb == tp->lost_skb_hint)
1305 		tp->lost_cnt_hint += pcount;
1306 
1307 	TCP_SKB_CB(prev)->end_seq += shifted;
1308 	TCP_SKB_CB(skb)->seq += shifted;
1309 
1310 	tcp_skb_pcount_add(prev, pcount);
1311 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1312 	tcp_skb_pcount_add(skb, -pcount);
1313 
1314 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1315 	 * in theory this shouldn't be necessary but as long as DSACK
1316 	 * code can come after this skb later on it's better to keep
1317 	 * setting gso_size to something.
1318 	 */
1319 	if (!skb_shinfo(prev)->gso_size) {
1320 		skb_shinfo(prev)->gso_size = mss;
1321 		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1322 	}
1323 
1324 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1325 	if (tcp_skb_pcount(skb) <= 1) {
1326 		skb_shinfo(skb)->gso_size = 0;
1327 		skb_shinfo(skb)->gso_type = 0;
1328 	}
1329 
1330 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1331 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1332 
1333 	if (skb->len > 0) {
1334 		BUG_ON(!tcp_skb_pcount(skb));
1335 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1336 		return false;
1337 	}
1338 
1339 	/* Whole SKB was eaten :-) */
1340 
1341 	if (skb == tp->retransmit_skb_hint)
1342 		tp->retransmit_skb_hint = prev;
1343 	if (skb == tp->lost_skb_hint) {
1344 		tp->lost_skb_hint = prev;
1345 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1346 	}
1347 
1348 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1349 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1350 		TCP_SKB_CB(prev)->end_seq++;
1351 
1352 	if (skb == tcp_highest_sack(sk))
1353 		tcp_advance_highest_sack(sk, skb);
1354 
1355 	tcp_unlink_write_queue(skb, sk);
1356 	sk_wmem_free_skb(sk, skb);
1357 
1358 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1359 
1360 	return true;
1361 }
1362 
1363 /* I wish gso_size would have a bit more sane initialization than
1364  * something-or-zero which complicates things
1365  */
1366 static int tcp_skb_seglen(const struct sk_buff *skb)
1367 {
1368 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1369 }
1370 
1371 /* Shifting pages past head area doesn't work */
1372 static int skb_can_shift(const struct sk_buff *skb)
1373 {
1374 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1375 }
1376 
1377 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1378  * skb.
1379  */
1380 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1381 					  struct tcp_sacktag_state *state,
1382 					  u32 start_seq, u32 end_seq,
1383 					  bool dup_sack)
1384 {
1385 	struct tcp_sock *tp = tcp_sk(sk);
1386 	struct sk_buff *prev;
1387 	int mss;
1388 	int pcount = 0;
1389 	int len;
1390 	int in_sack;
1391 
1392 	if (!sk_can_gso(sk))
1393 		goto fallback;
1394 
1395 	/* Normally R but no L won't result in plain S */
1396 	if (!dup_sack &&
1397 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1398 		goto fallback;
1399 	if (!skb_can_shift(skb))
1400 		goto fallback;
1401 	/* This frame is about to be dropped (was ACKed). */
1402 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1403 		goto fallback;
1404 
1405 	/* Can only happen with delayed DSACK + discard craziness */
1406 	if (unlikely(skb == tcp_write_queue_head(sk)))
1407 		goto fallback;
1408 	prev = tcp_write_queue_prev(sk, skb);
1409 
1410 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1411 		goto fallback;
1412 
1413 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1414 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1415 
1416 	if (in_sack) {
1417 		len = skb->len;
1418 		pcount = tcp_skb_pcount(skb);
1419 		mss = tcp_skb_seglen(skb);
1420 
1421 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1422 		 * drop this restriction as unnecessary
1423 		 */
1424 		if (mss != tcp_skb_seglen(prev))
1425 			goto fallback;
1426 	} else {
1427 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1428 			goto noop;
1429 		/* CHECKME: This is non-MSS split case only?, this will
1430 		 * cause skipped skbs due to advancing loop btw, original
1431 		 * has that feature too
1432 		 */
1433 		if (tcp_skb_pcount(skb) <= 1)
1434 			goto noop;
1435 
1436 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1437 		if (!in_sack) {
1438 			/* TODO: head merge to next could be attempted here
1439 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1440 			 * though it might not be worth of the additional hassle
1441 			 *
1442 			 * ...we can probably just fallback to what was done
1443 			 * previously. We could try merging non-SACKed ones
1444 			 * as well but it probably isn't going to buy off
1445 			 * because later SACKs might again split them, and
1446 			 * it would make skb timestamp tracking considerably
1447 			 * harder problem.
1448 			 */
1449 			goto fallback;
1450 		}
1451 
1452 		len = end_seq - TCP_SKB_CB(skb)->seq;
1453 		BUG_ON(len < 0);
1454 		BUG_ON(len > skb->len);
1455 
1456 		/* MSS boundaries should be honoured or else pcount will
1457 		 * severely break even though it makes things bit trickier.
1458 		 * Optimize common case to avoid most of the divides
1459 		 */
1460 		mss = tcp_skb_mss(skb);
1461 
1462 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1463 		 * drop this restriction as unnecessary
1464 		 */
1465 		if (mss != tcp_skb_seglen(prev))
1466 			goto fallback;
1467 
1468 		if (len == mss) {
1469 			pcount = 1;
1470 		} else if (len < mss) {
1471 			goto noop;
1472 		} else {
1473 			pcount = len / mss;
1474 			len = pcount * mss;
1475 		}
1476 	}
1477 
1478 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1479 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1480 		goto fallback;
1481 
1482 	if (!skb_shift(prev, skb, len))
1483 		goto fallback;
1484 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1485 		goto out;
1486 
1487 	/* Hole filled allows collapsing with the next as well, this is very
1488 	 * useful when hole on every nth skb pattern happens
1489 	 */
1490 	if (prev == tcp_write_queue_tail(sk))
1491 		goto out;
1492 	skb = tcp_write_queue_next(sk, prev);
1493 
1494 	if (!skb_can_shift(skb) ||
1495 	    (skb == tcp_send_head(sk)) ||
1496 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1497 	    (mss != tcp_skb_seglen(skb)))
1498 		goto out;
1499 
1500 	len = skb->len;
1501 	if (skb_shift(prev, skb, len)) {
1502 		pcount += tcp_skb_pcount(skb);
1503 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1504 	}
1505 
1506 out:
1507 	state->fack_count += pcount;
1508 	return prev;
1509 
1510 noop:
1511 	return skb;
1512 
1513 fallback:
1514 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1515 	return NULL;
1516 }
1517 
1518 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1519 					struct tcp_sack_block *next_dup,
1520 					struct tcp_sacktag_state *state,
1521 					u32 start_seq, u32 end_seq,
1522 					bool dup_sack_in)
1523 {
1524 	struct tcp_sock *tp = tcp_sk(sk);
1525 	struct sk_buff *tmp;
1526 
1527 	tcp_for_write_queue_from(skb, sk) {
1528 		int in_sack = 0;
1529 		bool dup_sack = dup_sack_in;
1530 
1531 		if (skb == tcp_send_head(sk))
1532 			break;
1533 
1534 		/* queue is in-order => we can short-circuit the walk early */
1535 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1536 			break;
1537 
1538 		if (next_dup  &&
1539 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1540 			in_sack = tcp_match_skb_to_sack(sk, skb,
1541 							next_dup->start_seq,
1542 							next_dup->end_seq);
1543 			if (in_sack > 0)
1544 				dup_sack = true;
1545 		}
1546 
1547 		/* skb reference here is a bit tricky to get right, since
1548 		 * shifting can eat and free both this skb and the next,
1549 		 * so not even _safe variant of the loop is enough.
1550 		 */
1551 		if (in_sack <= 0) {
1552 			tmp = tcp_shift_skb_data(sk, skb, state,
1553 						 start_seq, end_seq, dup_sack);
1554 			if (tmp) {
1555 				if (tmp != skb) {
1556 					skb = tmp;
1557 					continue;
1558 				}
1559 
1560 				in_sack = 0;
1561 			} else {
1562 				in_sack = tcp_match_skb_to_sack(sk, skb,
1563 								start_seq,
1564 								end_seq);
1565 			}
1566 		}
1567 
1568 		if (unlikely(in_sack < 0))
1569 			break;
1570 
1571 		if (in_sack) {
1572 			TCP_SKB_CB(skb)->sacked =
1573 				tcp_sacktag_one(sk,
1574 						state,
1575 						TCP_SKB_CB(skb)->sacked,
1576 						TCP_SKB_CB(skb)->seq,
1577 						TCP_SKB_CB(skb)->end_seq,
1578 						dup_sack,
1579 						tcp_skb_pcount(skb),
1580 						&skb->skb_mstamp);
1581 
1582 			if (!before(TCP_SKB_CB(skb)->seq,
1583 				    tcp_highest_sack_seq(tp)))
1584 				tcp_advance_highest_sack(sk, skb);
1585 		}
1586 
1587 		state->fack_count += tcp_skb_pcount(skb);
1588 	}
1589 	return skb;
1590 }
1591 
1592 /* Avoid all extra work that is being done by sacktag while walking in
1593  * a normal way
1594  */
1595 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1596 					struct tcp_sacktag_state *state,
1597 					u32 skip_to_seq)
1598 {
1599 	tcp_for_write_queue_from(skb, sk) {
1600 		if (skb == tcp_send_head(sk))
1601 			break;
1602 
1603 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1604 			break;
1605 
1606 		state->fack_count += tcp_skb_pcount(skb);
1607 	}
1608 	return skb;
1609 }
1610 
1611 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1612 						struct sock *sk,
1613 						struct tcp_sack_block *next_dup,
1614 						struct tcp_sacktag_state *state,
1615 						u32 skip_to_seq)
1616 {
1617 	if (!next_dup)
1618 		return skb;
1619 
1620 	if (before(next_dup->start_seq, skip_to_seq)) {
1621 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1622 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1623 				       next_dup->start_seq, next_dup->end_seq,
1624 				       1);
1625 	}
1626 
1627 	return skb;
1628 }
1629 
1630 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1631 {
1632 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1633 }
1634 
1635 static int
1636 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1637 			u32 prior_snd_una, long *sack_rtt_us)
1638 {
1639 	struct tcp_sock *tp = tcp_sk(sk);
1640 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1641 				    TCP_SKB_CB(ack_skb)->sacked);
1642 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1643 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1644 	struct tcp_sack_block *cache;
1645 	struct tcp_sacktag_state state;
1646 	struct sk_buff *skb;
1647 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1648 	int used_sacks;
1649 	bool found_dup_sack = false;
1650 	int i, j;
1651 	int first_sack_index;
1652 
1653 	state.flag = 0;
1654 	state.reord = tp->packets_out;
1655 	state.rtt_us = -1L;
1656 
1657 	if (!tp->sacked_out) {
1658 		if (WARN_ON(tp->fackets_out))
1659 			tp->fackets_out = 0;
1660 		tcp_highest_sack_reset(sk);
1661 	}
1662 
1663 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1664 					 num_sacks, prior_snd_una);
1665 	if (found_dup_sack)
1666 		state.flag |= FLAG_DSACKING_ACK;
1667 
1668 	/* Eliminate too old ACKs, but take into
1669 	 * account more or less fresh ones, they can
1670 	 * contain valid SACK info.
1671 	 */
1672 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1673 		return 0;
1674 
1675 	if (!tp->packets_out)
1676 		goto out;
1677 
1678 	used_sacks = 0;
1679 	first_sack_index = 0;
1680 	for (i = 0; i < num_sacks; i++) {
1681 		bool dup_sack = !i && found_dup_sack;
1682 
1683 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1684 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1685 
1686 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1687 					    sp[used_sacks].start_seq,
1688 					    sp[used_sacks].end_seq)) {
1689 			int mib_idx;
1690 
1691 			if (dup_sack) {
1692 				if (!tp->undo_marker)
1693 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1694 				else
1695 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1696 			} else {
1697 				/* Don't count olds caused by ACK reordering */
1698 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1699 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1700 					continue;
1701 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1702 			}
1703 
1704 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1705 			if (i == 0)
1706 				first_sack_index = -1;
1707 			continue;
1708 		}
1709 
1710 		/* Ignore very old stuff early */
1711 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1712 			continue;
1713 
1714 		used_sacks++;
1715 	}
1716 
1717 	/* order SACK blocks to allow in order walk of the retrans queue */
1718 	for (i = used_sacks - 1; i > 0; i--) {
1719 		for (j = 0; j < i; j++) {
1720 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1721 				swap(sp[j], sp[j + 1]);
1722 
1723 				/* Track where the first SACK block goes to */
1724 				if (j == first_sack_index)
1725 					first_sack_index = j + 1;
1726 			}
1727 		}
1728 	}
1729 
1730 	skb = tcp_write_queue_head(sk);
1731 	state.fack_count = 0;
1732 	i = 0;
1733 
1734 	if (!tp->sacked_out) {
1735 		/* It's already past, so skip checking against it */
1736 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1737 	} else {
1738 		cache = tp->recv_sack_cache;
1739 		/* Skip empty blocks in at head of the cache */
1740 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1741 		       !cache->end_seq)
1742 			cache++;
1743 	}
1744 
1745 	while (i < used_sacks) {
1746 		u32 start_seq = sp[i].start_seq;
1747 		u32 end_seq = sp[i].end_seq;
1748 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1749 		struct tcp_sack_block *next_dup = NULL;
1750 
1751 		if (found_dup_sack && ((i + 1) == first_sack_index))
1752 			next_dup = &sp[i + 1];
1753 
1754 		/* Skip too early cached blocks */
1755 		while (tcp_sack_cache_ok(tp, cache) &&
1756 		       !before(start_seq, cache->end_seq))
1757 			cache++;
1758 
1759 		/* Can skip some work by looking recv_sack_cache? */
1760 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1761 		    after(end_seq, cache->start_seq)) {
1762 
1763 			/* Head todo? */
1764 			if (before(start_seq, cache->start_seq)) {
1765 				skb = tcp_sacktag_skip(skb, sk, &state,
1766 						       start_seq);
1767 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1768 						       &state,
1769 						       start_seq,
1770 						       cache->start_seq,
1771 						       dup_sack);
1772 			}
1773 
1774 			/* Rest of the block already fully processed? */
1775 			if (!after(end_seq, cache->end_seq))
1776 				goto advance_sp;
1777 
1778 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1779 						       &state,
1780 						       cache->end_seq);
1781 
1782 			/* ...tail remains todo... */
1783 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1784 				/* ...but better entrypoint exists! */
1785 				skb = tcp_highest_sack(sk);
1786 				if (!skb)
1787 					break;
1788 				state.fack_count = tp->fackets_out;
1789 				cache++;
1790 				goto walk;
1791 			}
1792 
1793 			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1794 			/* Check overlap against next cached too (past this one already) */
1795 			cache++;
1796 			continue;
1797 		}
1798 
1799 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1800 			skb = tcp_highest_sack(sk);
1801 			if (!skb)
1802 				break;
1803 			state.fack_count = tp->fackets_out;
1804 		}
1805 		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1806 
1807 walk:
1808 		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1809 				       start_seq, end_seq, dup_sack);
1810 
1811 advance_sp:
1812 		i++;
1813 	}
1814 
1815 	/* Clear the head of the cache sack blocks so we can skip it next time */
1816 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1817 		tp->recv_sack_cache[i].start_seq = 0;
1818 		tp->recv_sack_cache[i].end_seq = 0;
1819 	}
1820 	for (j = 0; j < used_sacks; j++)
1821 		tp->recv_sack_cache[i++] = sp[j];
1822 
1823 	if ((state.reord < tp->fackets_out) &&
1824 	    ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1825 		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1826 
1827 	tcp_mark_lost_retrans(sk);
1828 	tcp_verify_left_out(tp);
1829 out:
1830 
1831 #if FASTRETRANS_DEBUG > 0
1832 	WARN_ON((int)tp->sacked_out < 0);
1833 	WARN_ON((int)tp->lost_out < 0);
1834 	WARN_ON((int)tp->retrans_out < 0);
1835 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1836 #endif
1837 	*sack_rtt_us = state.rtt_us;
1838 	return state.flag;
1839 }
1840 
1841 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1842  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1843  */
1844 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1845 {
1846 	u32 holes;
1847 
1848 	holes = max(tp->lost_out, 1U);
1849 	holes = min(holes, tp->packets_out);
1850 
1851 	if ((tp->sacked_out + holes) > tp->packets_out) {
1852 		tp->sacked_out = tp->packets_out - holes;
1853 		return true;
1854 	}
1855 	return false;
1856 }
1857 
1858 /* If we receive more dupacks than we expected counting segments
1859  * in assumption of absent reordering, interpret this as reordering.
1860  * The only another reason could be bug in receiver TCP.
1861  */
1862 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1863 {
1864 	struct tcp_sock *tp = tcp_sk(sk);
1865 	if (tcp_limit_reno_sacked(tp))
1866 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1867 }
1868 
1869 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1870 
1871 static void tcp_add_reno_sack(struct sock *sk)
1872 {
1873 	struct tcp_sock *tp = tcp_sk(sk);
1874 	tp->sacked_out++;
1875 	tcp_check_reno_reordering(sk, 0);
1876 	tcp_verify_left_out(tp);
1877 }
1878 
1879 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1880 
1881 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1882 {
1883 	struct tcp_sock *tp = tcp_sk(sk);
1884 
1885 	if (acked > 0) {
1886 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1887 		if (acked - 1 >= tp->sacked_out)
1888 			tp->sacked_out = 0;
1889 		else
1890 			tp->sacked_out -= acked - 1;
1891 	}
1892 	tcp_check_reno_reordering(sk, acked);
1893 	tcp_verify_left_out(tp);
1894 }
1895 
1896 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1897 {
1898 	tp->sacked_out = 0;
1899 }
1900 
1901 void tcp_clear_retrans(struct tcp_sock *tp)
1902 {
1903 	tp->retrans_out = 0;
1904 	tp->lost_out = 0;
1905 	tp->undo_marker = 0;
1906 	tp->undo_retrans = -1;
1907 	tp->fackets_out = 0;
1908 	tp->sacked_out = 0;
1909 }
1910 
1911 static inline void tcp_init_undo(struct tcp_sock *tp)
1912 {
1913 	tp->undo_marker = tp->snd_una;
1914 	/* Retransmission still in flight may cause DSACKs later. */
1915 	tp->undo_retrans = tp->retrans_out ? : -1;
1916 }
1917 
1918 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1919  * and reset tags completely, otherwise preserve SACKs. If receiver
1920  * dropped its ofo queue, we will know this due to reneging detection.
1921  */
1922 void tcp_enter_loss(struct sock *sk)
1923 {
1924 	const struct inet_connection_sock *icsk = inet_csk(sk);
1925 	struct tcp_sock *tp = tcp_sk(sk);
1926 	struct sk_buff *skb;
1927 	bool new_recovery = false;
1928 	bool is_reneg;			/* is receiver reneging on SACKs? */
1929 
1930 	/* Reduce ssthresh if it has not yet been made inside this window. */
1931 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1932 	    !after(tp->high_seq, tp->snd_una) ||
1933 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1934 		new_recovery = true;
1935 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1936 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1937 		tcp_ca_event(sk, CA_EVENT_LOSS);
1938 		tcp_init_undo(tp);
1939 	}
1940 	tp->snd_cwnd	   = 1;
1941 	tp->snd_cwnd_cnt   = 0;
1942 	tp->snd_cwnd_stamp = tcp_time_stamp;
1943 
1944 	tp->retrans_out = 0;
1945 	tp->lost_out = 0;
1946 
1947 	if (tcp_is_reno(tp))
1948 		tcp_reset_reno_sack(tp);
1949 
1950 	skb = tcp_write_queue_head(sk);
1951 	is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1952 	if (is_reneg) {
1953 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1954 		tp->sacked_out = 0;
1955 		tp->fackets_out = 0;
1956 	}
1957 	tcp_clear_all_retrans_hints(tp);
1958 
1959 	tcp_for_write_queue(skb, sk) {
1960 		if (skb == tcp_send_head(sk))
1961 			break;
1962 
1963 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1964 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
1965 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1966 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1967 			tp->lost_out += tcp_skb_pcount(skb);
1968 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1969 		}
1970 	}
1971 	tcp_verify_left_out(tp);
1972 
1973 	/* Timeout in disordered state after receiving substantial DUPACKs
1974 	 * suggests that the degree of reordering is over-estimated.
1975 	 */
1976 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1977 	    tp->sacked_out >= sysctl_tcp_reordering)
1978 		tp->reordering = min_t(unsigned int, tp->reordering,
1979 				       sysctl_tcp_reordering);
1980 	tcp_set_ca_state(sk, TCP_CA_Loss);
1981 	tp->high_seq = tp->snd_nxt;
1982 	tcp_ecn_queue_cwr(tp);
1983 
1984 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1985 	 * loss recovery is underway except recurring timeout(s) on
1986 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1987 	 */
1988 	tp->frto = sysctl_tcp_frto &&
1989 		   (new_recovery || icsk->icsk_retransmits) &&
1990 		   !inet_csk(sk)->icsk_mtup.probe_size;
1991 }
1992 
1993 /* If ACK arrived pointing to a remembered SACK, it means that our
1994  * remembered SACKs do not reflect real state of receiver i.e.
1995  * receiver _host_ is heavily congested (or buggy).
1996  *
1997  * To avoid big spurious retransmission bursts due to transient SACK
1998  * scoreboard oddities that look like reneging, we give the receiver a
1999  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2000  * restore sanity to the SACK scoreboard. If the apparent reneging
2001  * persists until this RTO then we'll clear the SACK scoreboard.
2002  */
2003 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2004 {
2005 	if (flag & FLAG_SACK_RENEGING) {
2006 		struct tcp_sock *tp = tcp_sk(sk);
2007 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2008 					  msecs_to_jiffies(10));
2009 
2010 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2011 					  delay, TCP_RTO_MAX);
2012 		return true;
2013 	}
2014 	return false;
2015 }
2016 
2017 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2018 {
2019 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2020 }
2021 
2022 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2023  * counter when SACK is enabled (without SACK, sacked_out is used for
2024  * that purpose).
2025  *
2026  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2027  * segments up to the highest received SACK block so far and holes in
2028  * between them.
2029  *
2030  * With reordering, holes may still be in flight, so RFC3517 recovery
2031  * uses pure sacked_out (total number of SACKed segments) even though
2032  * it violates the RFC that uses duplicate ACKs, often these are equal
2033  * but when e.g. out-of-window ACKs or packet duplication occurs,
2034  * they differ. Since neither occurs due to loss, TCP should really
2035  * ignore them.
2036  */
2037 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2038 {
2039 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2040 }
2041 
2042 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2043 {
2044 	struct tcp_sock *tp = tcp_sk(sk);
2045 	unsigned long delay;
2046 
2047 	/* Delay early retransmit and entering fast recovery for
2048 	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2049 	 * available, or RTO is scheduled to fire first.
2050 	 */
2051 	if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2052 	    (flag & FLAG_ECE) || !tp->srtt_us)
2053 		return false;
2054 
2055 	delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2056 		    msecs_to_jiffies(2));
2057 
2058 	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2059 		return false;
2060 
2061 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2062 				  TCP_RTO_MAX);
2063 	return true;
2064 }
2065 
2066 /* Linux NewReno/SACK/FACK/ECN state machine.
2067  * --------------------------------------
2068  *
2069  * "Open"	Normal state, no dubious events, fast path.
2070  * "Disorder"   In all the respects it is "Open",
2071  *		but requires a bit more attention. It is entered when
2072  *		we see some SACKs or dupacks. It is split of "Open"
2073  *		mainly to move some processing from fast path to slow one.
2074  * "CWR"	CWND was reduced due to some Congestion Notification event.
2075  *		It can be ECN, ICMP source quench, local device congestion.
2076  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2077  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2078  *
2079  * tcp_fastretrans_alert() is entered:
2080  * - each incoming ACK, if state is not "Open"
2081  * - when arrived ACK is unusual, namely:
2082  *	* SACK
2083  *	* Duplicate ACK.
2084  *	* ECN ECE.
2085  *
2086  * Counting packets in flight is pretty simple.
2087  *
2088  *	in_flight = packets_out - left_out + retrans_out
2089  *
2090  *	packets_out is SND.NXT-SND.UNA counted in packets.
2091  *
2092  *	retrans_out is number of retransmitted segments.
2093  *
2094  *	left_out is number of segments left network, but not ACKed yet.
2095  *
2096  *		left_out = sacked_out + lost_out
2097  *
2098  *     sacked_out: Packets, which arrived to receiver out of order
2099  *		   and hence not ACKed. With SACKs this number is simply
2100  *		   amount of SACKed data. Even without SACKs
2101  *		   it is easy to give pretty reliable estimate of this number,
2102  *		   counting duplicate ACKs.
2103  *
2104  *       lost_out: Packets lost by network. TCP has no explicit
2105  *		   "loss notification" feedback from network (for now).
2106  *		   It means that this number can be only _guessed_.
2107  *		   Actually, it is the heuristics to predict lossage that
2108  *		   distinguishes different algorithms.
2109  *
2110  *	F.e. after RTO, when all the queue is considered as lost,
2111  *	lost_out = packets_out and in_flight = retrans_out.
2112  *
2113  *		Essentially, we have now two algorithms counting
2114  *		lost packets.
2115  *
2116  *		FACK: It is the simplest heuristics. As soon as we decided
2117  *		that something is lost, we decide that _all_ not SACKed
2118  *		packets until the most forward SACK are lost. I.e.
2119  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2120  *		It is absolutely correct estimate, if network does not reorder
2121  *		packets. And it loses any connection to reality when reordering
2122  *		takes place. We use FACK by default until reordering
2123  *		is suspected on the path to this destination.
2124  *
2125  *		NewReno: when Recovery is entered, we assume that one segment
2126  *		is lost (classic Reno). While we are in Recovery and
2127  *		a partial ACK arrives, we assume that one more packet
2128  *		is lost (NewReno). This heuristics are the same in NewReno
2129  *		and SACK.
2130  *
2131  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2132  *  deflation etc. CWND is real congestion window, never inflated, changes
2133  *  only according to classic VJ rules.
2134  *
2135  * Really tricky (and requiring careful tuning) part of algorithm
2136  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2137  * The first determines the moment _when_ we should reduce CWND and,
2138  * hence, slow down forward transmission. In fact, it determines the moment
2139  * when we decide that hole is caused by loss, rather than by a reorder.
2140  *
2141  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2142  * holes, caused by lost packets.
2143  *
2144  * And the most logically complicated part of algorithm is undo
2145  * heuristics. We detect false retransmits due to both too early
2146  * fast retransmit (reordering) and underestimated RTO, analyzing
2147  * timestamps and D-SACKs. When we detect that some segments were
2148  * retransmitted by mistake and CWND reduction was wrong, we undo
2149  * window reduction and abort recovery phase. This logic is hidden
2150  * inside several functions named tcp_try_undo_<something>.
2151  */
2152 
2153 /* This function decides, when we should leave Disordered state
2154  * and enter Recovery phase, reducing congestion window.
2155  *
2156  * Main question: may we further continue forward transmission
2157  * with the same cwnd?
2158  */
2159 static bool tcp_time_to_recover(struct sock *sk, int flag)
2160 {
2161 	struct tcp_sock *tp = tcp_sk(sk);
2162 	__u32 packets_out;
2163 
2164 	/* Trick#1: The loss is proven. */
2165 	if (tp->lost_out)
2166 		return true;
2167 
2168 	/* Not-A-Trick#2 : Classic rule... */
2169 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2170 		return true;
2171 
2172 	/* Trick#4: It is still not OK... But will it be useful to delay
2173 	 * recovery more?
2174 	 */
2175 	packets_out = tp->packets_out;
2176 	if (packets_out <= tp->reordering &&
2177 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2178 	    !tcp_may_send_now(sk)) {
2179 		/* We have nothing to send. This connection is limited
2180 		 * either by receiver window or by application.
2181 		 */
2182 		return true;
2183 	}
2184 
2185 	/* If a thin stream is detected, retransmit after first
2186 	 * received dupack. Employ only if SACK is supported in order
2187 	 * to avoid possible corner-case series of spurious retransmissions
2188 	 * Use only if there are no unsent data.
2189 	 */
2190 	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2191 	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2192 	    tcp_is_sack(tp) && !tcp_send_head(sk))
2193 		return true;
2194 
2195 	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2196 	 * retransmissions due to small network reorderings, we implement
2197 	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2198 	 * interval if appropriate.
2199 	 */
2200 	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2201 	    (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2202 	    !tcp_may_send_now(sk))
2203 		return !tcp_pause_early_retransmit(sk, flag);
2204 
2205 	return false;
2206 }
2207 
2208 /* Detect loss in event "A" above by marking head of queue up as lost.
2209  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2210  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2211  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2212  * the maximum SACKed segments to pass before reaching this limit.
2213  */
2214 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2215 {
2216 	struct tcp_sock *tp = tcp_sk(sk);
2217 	struct sk_buff *skb;
2218 	int cnt, oldcnt;
2219 	int err;
2220 	unsigned int mss;
2221 	/* Use SACK to deduce losses of new sequences sent during recovery */
2222 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2223 
2224 	WARN_ON(packets > tp->packets_out);
2225 	if (tp->lost_skb_hint) {
2226 		skb = tp->lost_skb_hint;
2227 		cnt = tp->lost_cnt_hint;
2228 		/* Head already handled? */
2229 		if (mark_head && skb != tcp_write_queue_head(sk))
2230 			return;
2231 	} else {
2232 		skb = tcp_write_queue_head(sk);
2233 		cnt = 0;
2234 	}
2235 
2236 	tcp_for_write_queue_from(skb, sk) {
2237 		if (skb == tcp_send_head(sk))
2238 			break;
2239 		/* TODO: do this better */
2240 		/* this is not the most efficient way to do this... */
2241 		tp->lost_skb_hint = skb;
2242 		tp->lost_cnt_hint = cnt;
2243 
2244 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2245 			break;
2246 
2247 		oldcnt = cnt;
2248 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2249 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2250 			cnt += tcp_skb_pcount(skb);
2251 
2252 		if (cnt > packets) {
2253 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2254 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2255 			    (oldcnt >= packets))
2256 				break;
2257 
2258 			mss = skb_shinfo(skb)->gso_size;
2259 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss,
2260 					   mss, GFP_ATOMIC);
2261 			if (err < 0)
2262 				break;
2263 			cnt = packets;
2264 		}
2265 
2266 		tcp_skb_mark_lost(tp, skb);
2267 
2268 		if (mark_head)
2269 			break;
2270 	}
2271 	tcp_verify_left_out(tp);
2272 }
2273 
2274 /* Account newly detected lost packet(s) */
2275 
2276 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2277 {
2278 	struct tcp_sock *tp = tcp_sk(sk);
2279 
2280 	if (tcp_is_reno(tp)) {
2281 		tcp_mark_head_lost(sk, 1, 1);
2282 	} else if (tcp_is_fack(tp)) {
2283 		int lost = tp->fackets_out - tp->reordering;
2284 		if (lost <= 0)
2285 			lost = 1;
2286 		tcp_mark_head_lost(sk, lost, 0);
2287 	} else {
2288 		int sacked_upto = tp->sacked_out - tp->reordering;
2289 		if (sacked_upto >= 0)
2290 			tcp_mark_head_lost(sk, sacked_upto, 0);
2291 		else if (fast_rexmit)
2292 			tcp_mark_head_lost(sk, 1, 1);
2293 	}
2294 }
2295 
2296 /* CWND moderation, preventing bursts due to too big ACKs
2297  * in dubious situations.
2298  */
2299 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2300 {
2301 	tp->snd_cwnd = min(tp->snd_cwnd,
2302 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2303 	tp->snd_cwnd_stamp = tcp_time_stamp;
2304 }
2305 
2306 /* Nothing was retransmitted or returned timestamp is less
2307  * than timestamp of the first retransmission.
2308  */
2309 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2310 {
2311 	return !tp->retrans_stamp ||
2312 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2313 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2314 }
2315 
2316 /* Undo procedures. */
2317 
2318 /* We can clear retrans_stamp when there are no retransmissions in the
2319  * window. It would seem that it is trivially available for us in
2320  * tp->retrans_out, however, that kind of assumptions doesn't consider
2321  * what will happen if errors occur when sending retransmission for the
2322  * second time. ...It could the that such segment has only
2323  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2324  * the head skb is enough except for some reneging corner cases that
2325  * are not worth the effort.
2326  *
2327  * Main reason for all this complexity is the fact that connection dying
2328  * time now depends on the validity of the retrans_stamp, in particular,
2329  * that successive retransmissions of a segment must not advance
2330  * retrans_stamp under any conditions.
2331  */
2332 static bool tcp_any_retrans_done(const struct sock *sk)
2333 {
2334 	const struct tcp_sock *tp = tcp_sk(sk);
2335 	struct sk_buff *skb;
2336 
2337 	if (tp->retrans_out)
2338 		return true;
2339 
2340 	skb = tcp_write_queue_head(sk);
2341 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2342 		return true;
2343 
2344 	return false;
2345 }
2346 
2347 #if FASTRETRANS_DEBUG > 1
2348 static void DBGUNDO(struct sock *sk, const char *msg)
2349 {
2350 	struct tcp_sock *tp = tcp_sk(sk);
2351 	struct inet_sock *inet = inet_sk(sk);
2352 
2353 	if (sk->sk_family == AF_INET) {
2354 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2355 			 msg,
2356 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2357 			 tp->snd_cwnd, tcp_left_out(tp),
2358 			 tp->snd_ssthresh, tp->prior_ssthresh,
2359 			 tp->packets_out);
2360 	}
2361 #if IS_ENABLED(CONFIG_IPV6)
2362 	else if (sk->sk_family == AF_INET6) {
2363 		struct ipv6_pinfo *np = inet6_sk(sk);
2364 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2365 			 msg,
2366 			 &np->daddr, ntohs(inet->inet_dport),
2367 			 tp->snd_cwnd, tcp_left_out(tp),
2368 			 tp->snd_ssthresh, tp->prior_ssthresh,
2369 			 tp->packets_out);
2370 	}
2371 #endif
2372 }
2373 #else
2374 #define DBGUNDO(x...) do { } while (0)
2375 #endif
2376 
2377 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2378 {
2379 	struct tcp_sock *tp = tcp_sk(sk);
2380 
2381 	if (unmark_loss) {
2382 		struct sk_buff *skb;
2383 
2384 		tcp_for_write_queue(skb, sk) {
2385 			if (skb == tcp_send_head(sk))
2386 				break;
2387 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2388 		}
2389 		tp->lost_out = 0;
2390 		tcp_clear_all_retrans_hints(tp);
2391 	}
2392 
2393 	if (tp->prior_ssthresh) {
2394 		const struct inet_connection_sock *icsk = inet_csk(sk);
2395 
2396 		if (icsk->icsk_ca_ops->undo_cwnd)
2397 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2398 		else
2399 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2400 
2401 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2402 			tp->snd_ssthresh = tp->prior_ssthresh;
2403 			tcp_ecn_withdraw_cwr(tp);
2404 		}
2405 	} else {
2406 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2407 	}
2408 	tp->snd_cwnd_stamp = tcp_time_stamp;
2409 	tp->undo_marker = 0;
2410 }
2411 
2412 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2413 {
2414 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2415 }
2416 
2417 /* People celebrate: "We love our President!" */
2418 static bool tcp_try_undo_recovery(struct sock *sk)
2419 {
2420 	struct tcp_sock *tp = tcp_sk(sk);
2421 
2422 	if (tcp_may_undo(tp)) {
2423 		int mib_idx;
2424 
2425 		/* Happy end! We did not retransmit anything
2426 		 * or our original transmission succeeded.
2427 		 */
2428 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2429 		tcp_undo_cwnd_reduction(sk, false);
2430 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2431 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2432 		else
2433 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2434 
2435 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2436 	}
2437 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2438 		/* Hold old state until something *above* high_seq
2439 		 * is ACKed. For Reno it is MUST to prevent false
2440 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2441 		tcp_moderate_cwnd(tp);
2442 		if (!tcp_any_retrans_done(sk))
2443 			tp->retrans_stamp = 0;
2444 		return true;
2445 	}
2446 	tcp_set_ca_state(sk, TCP_CA_Open);
2447 	return false;
2448 }
2449 
2450 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2451 static bool tcp_try_undo_dsack(struct sock *sk)
2452 {
2453 	struct tcp_sock *tp = tcp_sk(sk);
2454 
2455 	if (tp->undo_marker && !tp->undo_retrans) {
2456 		DBGUNDO(sk, "D-SACK");
2457 		tcp_undo_cwnd_reduction(sk, false);
2458 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2459 		return true;
2460 	}
2461 	return false;
2462 }
2463 
2464 /* Undo during loss recovery after partial ACK or using F-RTO. */
2465 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2466 {
2467 	struct tcp_sock *tp = tcp_sk(sk);
2468 
2469 	if (frto_undo || tcp_may_undo(tp)) {
2470 		tcp_undo_cwnd_reduction(sk, true);
2471 
2472 		DBGUNDO(sk, "partial loss");
2473 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2474 		if (frto_undo)
2475 			NET_INC_STATS_BH(sock_net(sk),
2476 					 LINUX_MIB_TCPSPURIOUSRTOS);
2477 		inet_csk(sk)->icsk_retransmits = 0;
2478 		if (frto_undo || tcp_is_sack(tp))
2479 			tcp_set_ca_state(sk, TCP_CA_Open);
2480 		return true;
2481 	}
2482 	return false;
2483 }
2484 
2485 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2486  * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2487  * It computes the number of packets to send (sndcnt) based on packets newly
2488  * delivered:
2489  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2490  *	cwnd reductions across a full RTT.
2491  *   2) If packets in flight is lower than ssthresh (such as due to excess
2492  *	losses and/or application stalls), do not perform any further cwnd
2493  *	reductions, but instead slow start up to ssthresh.
2494  */
2495 static void tcp_init_cwnd_reduction(struct sock *sk)
2496 {
2497 	struct tcp_sock *tp = tcp_sk(sk);
2498 
2499 	tp->high_seq = tp->snd_nxt;
2500 	tp->tlp_high_seq = 0;
2501 	tp->snd_cwnd_cnt = 0;
2502 	tp->prior_cwnd = tp->snd_cwnd;
2503 	tp->prr_delivered = 0;
2504 	tp->prr_out = 0;
2505 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2506 	tcp_ecn_queue_cwr(tp);
2507 }
2508 
2509 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2510 			       int fast_rexmit)
2511 {
2512 	struct tcp_sock *tp = tcp_sk(sk);
2513 	int sndcnt = 0;
2514 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2515 	int newly_acked_sacked = prior_unsacked -
2516 				 (tp->packets_out - tp->sacked_out);
2517 
2518 	tp->prr_delivered += newly_acked_sacked;
2519 	if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2520 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2521 			       tp->prior_cwnd - 1;
2522 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2523 	} else {
2524 		sndcnt = min_t(int, delta,
2525 			       max_t(int, tp->prr_delivered - tp->prr_out,
2526 				     newly_acked_sacked) + 1);
2527 	}
2528 
2529 	sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2530 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2531 }
2532 
2533 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2534 {
2535 	struct tcp_sock *tp = tcp_sk(sk);
2536 
2537 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2538 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2539 	    (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2540 		tp->snd_cwnd = tp->snd_ssthresh;
2541 		tp->snd_cwnd_stamp = tcp_time_stamp;
2542 	}
2543 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2544 }
2545 
2546 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2547 void tcp_enter_cwr(struct sock *sk)
2548 {
2549 	struct tcp_sock *tp = tcp_sk(sk);
2550 
2551 	tp->prior_ssthresh = 0;
2552 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2553 		tp->undo_marker = 0;
2554 		tcp_init_cwnd_reduction(sk);
2555 		tcp_set_ca_state(sk, TCP_CA_CWR);
2556 	}
2557 }
2558 
2559 static void tcp_try_keep_open(struct sock *sk)
2560 {
2561 	struct tcp_sock *tp = tcp_sk(sk);
2562 	int state = TCP_CA_Open;
2563 
2564 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2565 		state = TCP_CA_Disorder;
2566 
2567 	if (inet_csk(sk)->icsk_ca_state != state) {
2568 		tcp_set_ca_state(sk, state);
2569 		tp->high_seq = tp->snd_nxt;
2570 	}
2571 }
2572 
2573 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2574 {
2575 	struct tcp_sock *tp = tcp_sk(sk);
2576 
2577 	tcp_verify_left_out(tp);
2578 
2579 	if (!tcp_any_retrans_done(sk))
2580 		tp->retrans_stamp = 0;
2581 
2582 	if (flag & FLAG_ECE)
2583 		tcp_enter_cwr(sk);
2584 
2585 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2586 		tcp_try_keep_open(sk);
2587 	} else {
2588 		tcp_cwnd_reduction(sk, prior_unsacked, 0);
2589 	}
2590 }
2591 
2592 static void tcp_mtup_probe_failed(struct sock *sk)
2593 {
2594 	struct inet_connection_sock *icsk = inet_csk(sk);
2595 
2596 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2597 	icsk->icsk_mtup.probe_size = 0;
2598 }
2599 
2600 static void tcp_mtup_probe_success(struct sock *sk)
2601 {
2602 	struct tcp_sock *tp = tcp_sk(sk);
2603 	struct inet_connection_sock *icsk = inet_csk(sk);
2604 
2605 	/* FIXME: breaks with very large cwnd */
2606 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2607 	tp->snd_cwnd = tp->snd_cwnd *
2608 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2609 		       icsk->icsk_mtup.probe_size;
2610 	tp->snd_cwnd_cnt = 0;
2611 	tp->snd_cwnd_stamp = tcp_time_stamp;
2612 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2613 
2614 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2615 	icsk->icsk_mtup.probe_size = 0;
2616 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2617 }
2618 
2619 /* Do a simple retransmit without using the backoff mechanisms in
2620  * tcp_timer. This is used for path mtu discovery.
2621  * The socket is already locked here.
2622  */
2623 void tcp_simple_retransmit(struct sock *sk)
2624 {
2625 	const struct inet_connection_sock *icsk = inet_csk(sk);
2626 	struct tcp_sock *tp = tcp_sk(sk);
2627 	struct sk_buff *skb;
2628 	unsigned int mss = tcp_current_mss(sk);
2629 	u32 prior_lost = tp->lost_out;
2630 
2631 	tcp_for_write_queue(skb, sk) {
2632 		if (skb == tcp_send_head(sk))
2633 			break;
2634 		if (tcp_skb_seglen(skb) > mss &&
2635 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2636 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2637 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2638 				tp->retrans_out -= tcp_skb_pcount(skb);
2639 			}
2640 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2641 		}
2642 	}
2643 
2644 	tcp_clear_retrans_hints_partial(tp);
2645 
2646 	if (prior_lost == tp->lost_out)
2647 		return;
2648 
2649 	if (tcp_is_reno(tp))
2650 		tcp_limit_reno_sacked(tp);
2651 
2652 	tcp_verify_left_out(tp);
2653 
2654 	/* Don't muck with the congestion window here.
2655 	 * Reason is that we do not increase amount of _data_
2656 	 * in network, but units changed and effective
2657 	 * cwnd/ssthresh really reduced now.
2658 	 */
2659 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2660 		tp->high_seq = tp->snd_nxt;
2661 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2662 		tp->prior_ssthresh = 0;
2663 		tp->undo_marker = 0;
2664 		tcp_set_ca_state(sk, TCP_CA_Loss);
2665 	}
2666 	tcp_xmit_retransmit_queue(sk);
2667 }
2668 EXPORT_SYMBOL(tcp_simple_retransmit);
2669 
2670 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2671 {
2672 	struct tcp_sock *tp = tcp_sk(sk);
2673 	int mib_idx;
2674 
2675 	if (tcp_is_reno(tp))
2676 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2677 	else
2678 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2679 
2680 	NET_INC_STATS_BH(sock_net(sk), mib_idx);
2681 
2682 	tp->prior_ssthresh = 0;
2683 	tcp_init_undo(tp);
2684 
2685 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2686 		if (!ece_ack)
2687 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2688 		tcp_init_cwnd_reduction(sk);
2689 	}
2690 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2691 }
2692 
2693 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2694  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2695  */
2696 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2697 {
2698 	struct tcp_sock *tp = tcp_sk(sk);
2699 	bool recovered = !before(tp->snd_una, tp->high_seq);
2700 
2701 	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2702 	    tcp_try_undo_loss(sk, false))
2703 		return;
2704 
2705 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2706 		/* Step 3.b. A timeout is spurious if not all data are
2707 		 * lost, i.e., never-retransmitted data are (s)acked.
2708 		 */
2709 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2710 		    tcp_try_undo_loss(sk, true))
2711 			return;
2712 
2713 		if (after(tp->snd_nxt, tp->high_seq)) {
2714 			if (flag & FLAG_DATA_SACKED || is_dupack)
2715 				tp->frto = 0; /* Step 3.a. loss was real */
2716 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2717 			tp->high_seq = tp->snd_nxt;
2718 			__tcp_push_pending_frames(sk, tcp_current_mss(sk),
2719 						  TCP_NAGLE_OFF);
2720 			if (after(tp->snd_nxt, tp->high_seq))
2721 				return; /* Step 2.b */
2722 			tp->frto = 0;
2723 		}
2724 	}
2725 
2726 	if (recovered) {
2727 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2728 		tcp_try_undo_recovery(sk);
2729 		return;
2730 	}
2731 	if (tcp_is_reno(tp)) {
2732 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2733 		 * delivered. Lower inflight to clock out (re)tranmissions.
2734 		 */
2735 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2736 			tcp_add_reno_sack(sk);
2737 		else if (flag & FLAG_SND_UNA_ADVANCED)
2738 			tcp_reset_reno_sack(tp);
2739 	}
2740 	tcp_xmit_retransmit_queue(sk);
2741 }
2742 
2743 /* Undo during fast recovery after partial ACK. */
2744 static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2745 				 const int prior_unsacked)
2746 {
2747 	struct tcp_sock *tp = tcp_sk(sk);
2748 
2749 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2750 		/* Plain luck! Hole if filled with delayed
2751 		 * packet, rather than with a retransmit.
2752 		 */
2753 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2754 
2755 		/* We are getting evidence that the reordering degree is higher
2756 		 * than we realized. If there are no retransmits out then we
2757 		 * can undo. Otherwise we clock out new packets but do not
2758 		 * mark more packets lost or retransmit more.
2759 		 */
2760 		if (tp->retrans_out) {
2761 			tcp_cwnd_reduction(sk, prior_unsacked, 0);
2762 			return true;
2763 		}
2764 
2765 		if (!tcp_any_retrans_done(sk))
2766 			tp->retrans_stamp = 0;
2767 
2768 		DBGUNDO(sk, "partial recovery");
2769 		tcp_undo_cwnd_reduction(sk, true);
2770 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2771 		tcp_try_keep_open(sk);
2772 		return true;
2773 	}
2774 	return false;
2775 }
2776 
2777 /* Process an event, which can update packets-in-flight not trivially.
2778  * Main goal of this function is to calculate new estimate for left_out,
2779  * taking into account both packets sitting in receiver's buffer and
2780  * packets lost by network.
2781  *
2782  * Besides that it does CWND reduction, when packet loss is detected
2783  * and changes state of machine.
2784  *
2785  * It does _not_ decide what to send, it is made in function
2786  * tcp_xmit_retransmit_queue().
2787  */
2788 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2789 				  const int prior_unsacked,
2790 				  bool is_dupack, int flag)
2791 {
2792 	struct inet_connection_sock *icsk = inet_csk(sk);
2793 	struct tcp_sock *tp = tcp_sk(sk);
2794 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2795 				    (tcp_fackets_out(tp) > tp->reordering));
2796 	int fast_rexmit = 0;
2797 
2798 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2799 		tp->sacked_out = 0;
2800 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2801 		tp->fackets_out = 0;
2802 
2803 	/* Now state machine starts.
2804 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2805 	if (flag & FLAG_ECE)
2806 		tp->prior_ssthresh = 0;
2807 
2808 	/* B. In all the states check for reneging SACKs. */
2809 	if (tcp_check_sack_reneging(sk, flag))
2810 		return;
2811 
2812 	/* C. Check consistency of the current state. */
2813 	tcp_verify_left_out(tp);
2814 
2815 	/* D. Check state exit conditions. State can be terminated
2816 	 *    when high_seq is ACKed. */
2817 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2818 		WARN_ON(tp->retrans_out != 0);
2819 		tp->retrans_stamp = 0;
2820 	} else if (!before(tp->snd_una, tp->high_seq)) {
2821 		switch (icsk->icsk_ca_state) {
2822 		case TCP_CA_CWR:
2823 			/* CWR is to be held something *above* high_seq
2824 			 * is ACKed for CWR bit to reach receiver. */
2825 			if (tp->snd_una != tp->high_seq) {
2826 				tcp_end_cwnd_reduction(sk);
2827 				tcp_set_ca_state(sk, TCP_CA_Open);
2828 			}
2829 			break;
2830 
2831 		case TCP_CA_Recovery:
2832 			if (tcp_is_reno(tp))
2833 				tcp_reset_reno_sack(tp);
2834 			if (tcp_try_undo_recovery(sk))
2835 				return;
2836 			tcp_end_cwnd_reduction(sk);
2837 			break;
2838 		}
2839 	}
2840 
2841 	/* E. Process state. */
2842 	switch (icsk->icsk_ca_state) {
2843 	case TCP_CA_Recovery:
2844 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2845 			if (tcp_is_reno(tp) && is_dupack)
2846 				tcp_add_reno_sack(sk);
2847 		} else {
2848 			if (tcp_try_undo_partial(sk, acked, prior_unsacked))
2849 				return;
2850 			/* Partial ACK arrived. Force fast retransmit. */
2851 			do_lost = tcp_is_reno(tp) ||
2852 				  tcp_fackets_out(tp) > tp->reordering;
2853 		}
2854 		if (tcp_try_undo_dsack(sk)) {
2855 			tcp_try_keep_open(sk);
2856 			return;
2857 		}
2858 		break;
2859 	case TCP_CA_Loss:
2860 		tcp_process_loss(sk, flag, is_dupack);
2861 		if (icsk->icsk_ca_state != TCP_CA_Open)
2862 			return;
2863 		/* Fall through to processing in Open state. */
2864 	default:
2865 		if (tcp_is_reno(tp)) {
2866 			if (flag & FLAG_SND_UNA_ADVANCED)
2867 				tcp_reset_reno_sack(tp);
2868 			if (is_dupack)
2869 				tcp_add_reno_sack(sk);
2870 		}
2871 
2872 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2873 			tcp_try_undo_dsack(sk);
2874 
2875 		if (!tcp_time_to_recover(sk, flag)) {
2876 			tcp_try_to_open(sk, flag, prior_unsacked);
2877 			return;
2878 		}
2879 
2880 		/* MTU probe failure: don't reduce cwnd */
2881 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2882 		    icsk->icsk_mtup.probe_size &&
2883 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2884 			tcp_mtup_probe_failed(sk);
2885 			/* Restores the reduction we did in tcp_mtup_probe() */
2886 			tp->snd_cwnd++;
2887 			tcp_simple_retransmit(sk);
2888 			return;
2889 		}
2890 
2891 		/* Otherwise enter Recovery state */
2892 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2893 		fast_rexmit = 1;
2894 	}
2895 
2896 	if (do_lost)
2897 		tcp_update_scoreboard(sk, fast_rexmit);
2898 	tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
2899 	tcp_xmit_retransmit_queue(sk);
2900 }
2901 
2902 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2903 				      long seq_rtt_us, long sack_rtt_us)
2904 {
2905 	const struct tcp_sock *tp = tcp_sk(sk);
2906 
2907 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2908 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2909 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2910 	 * is acked (RFC6298).
2911 	 */
2912 	if (flag & FLAG_RETRANS_DATA_ACKED)
2913 		seq_rtt_us = -1L;
2914 
2915 	if (seq_rtt_us < 0)
2916 		seq_rtt_us = sack_rtt_us;
2917 
2918 	/* RTTM Rule: A TSecr value received in a segment is used to
2919 	 * update the averaged RTT measurement only if the segment
2920 	 * acknowledges some new data, i.e., only if it advances the
2921 	 * left edge of the send window.
2922 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2923 	 */
2924 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2925 	    flag & FLAG_ACKED)
2926 		seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr);
2927 
2928 	if (seq_rtt_us < 0)
2929 		return false;
2930 
2931 	tcp_rtt_estimator(sk, seq_rtt_us);
2932 	tcp_set_rto(sk);
2933 
2934 	/* RFC6298: only reset backoff on valid RTT measurement. */
2935 	inet_csk(sk)->icsk_backoff = 0;
2936 	return true;
2937 }
2938 
2939 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2940 static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp)
2941 {
2942 	struct tcp_sock *tp = tcp_sk(sk);
2943 	long seq_rtt_us = -1L;
2944 
2945 	if (synack_stamp && !tp->total_retrans)
2946 		seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp);
2947 
2948 	/* If the ACK acks both the SYNACK and the (Fast Open'd) data packets
2949 	 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack()
2950 	 */
2951 	if (!tp->srtt_us)
2952 		tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L);
2953 }
2954 
2955 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2956 {
2957 	const struct inet_connection_sock *icsk = inet_csk(sk);
2958 
2959 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2960 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2961 }
2962 
2963 /* Restart timer after forward progress on connection.
2964  * RFC2988 recommends to restart timer to now+rto.
2965  */
2966 void tcp_rearm_rto(struct sock *sk)
2967 {
2968 	const struct inet_connection_sock *icsk = inet_csk(sk);
2969 	struct tcp_sock *tp = tcp_sk(sk);
2970 
2971 	/* If the retrans timer is currently being used by Fast Open
2972 	 * for SYN-ACK retrans purpose, stay put.
2973 	 */
2974 	if (tp->fastopen_rsk)
2975 		return;
2976 
2977 	if (!tp->packets_out) {
2978 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2979 	} else {
2980 		u32 rto = inet_csk(sk)->icsk_rto;
2981 		/* Offset the time elapsed after installing regular RTO */
2982 		if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2983 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2984 			struct sk_buff *skb = tcp_write_queue_head(sk);
2985 			const u32 rto_time_stamp =
2986 				tcp_skb_timestamp(skb) + rto;
2987 			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2988 			/* delta may not be positive if the socket is locked
2989 			 * when the retrans timer fires and is rescheduled.
2990 			 */
2991 			if (delta > 0)
2992 				rto = delta;
2993 		}
2994 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2995 					  TCP_RTO_MAX);
2996 	}
2997 }
2998 
2999 /* This function is called when the delayed ER timer fires. TCP enters
3000  * fast recovery and performs fast-retransmit.
3001  */
3002 void tcp_resume_early_retransmit(struct sock *sk)
3003 {
3004 	struct tcp_sock *tp = tcp_sk(sk);
3005 
3006 	tcp_rearm_rto(sk);
3007 
3008 	/* Stop if ER is disabled after the delayed ER timer is scheduled */
3009 	if (!tp->do_early_retrans)
3010 		return;
3011 
3012 	tcp_enter_recovery(sk, false);
3013 	tcp_update_scoreboard(sk, 1);
3014 	tcp_xmit_retransmit_queue(sk);
3015 }
3016 
3017 /* If we get here, the whole TSO packet has not been acked. */
3018 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3019 {
3020 	struct tcp_sock *tp = tcp_sk(sk);
3021 	u32 packets_acked;
3022 
3023 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3024 
3025 	packets_acked = tcp_skb_pcount(skb);
3026 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3027 		return 0;
3028 	packets_acked -= tcp_skb_pcount(skb);
3029 
3030 	if (packets_acked) {
3031 		BUG_ON(tcp_skb_pcount(skb) == 0);
3032 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3033 	}
3034 
3035 	return packets_acked;
3036 }
3037 
3038 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3039 			   u32 prior_snd_una)
3040 {
3041 	const struct skb_shared_info *shinfo;
3042 
3043 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3044 	if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)))
3045 		return;
3046 
3047 	shinfo = skb_shinfo(skb);
3048 	if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) &&
3049 	    between(shinfo->tskey, prior_snd_una, tcp_sk(sk)->snd_una - 1))
3050 		__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3051 }
3052 
3053 /* Remove acknowledged frames from the retransmission queue. If our packet
3054  * is before the ack sequence we can discard it as it's confirmed to have
3055  * arrived at the other end.
3056  */
3057 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3058 			       u32 prior_snd_una, long sack_rtt_us)
3059 {
3060 	const struct inet_connection_sock *icsk = inet_csk(sk);
3061 	struct skb_mstamp first_ackt, last_ackt, now;
3062 	struct tcp_sock *tp = tcp_sk(sk);
3063 	u32 prior_sacked = tp->sacked_out;
3064 	u32 reord = tp->packets_out;
3065 	bool fully_acked = true;
3066 	long ca_seq_rtt_us = -1L;
3067 	long seq_rtt_us = -1L;
3068 	struct sk_buff *skb;
3069 	u32 pkts_acked = 0;
3070 	bool rtt_update;
3071 	int flag = 0;
3072 
3073 	first_ackt.v64 = 0;
3074 
3075 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3076 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3077 		u8 sacked = scb->sacked;
3078 		u32 acked_pcount;
3079 
3080 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3081 
3082 		/* Determine how many packets and what bytes were acked, tso and else */
3083 		if (after(scb->end_seq, tp->snd_una)) {
3084 			if (tcp_skb_pcount(skb) == 1 ||
3085 			    !after(tp->snd_una, scb->seq))
3086 				break;
3087 
3088 			acked_pcount = tcp_tso_acked(sk, skb);
3089 			if (!acked_pcount)
3090 				break;
3091 
3092 			fully_acked = false;
3093 		} else {
3094 			/* Speedup tcp_unlink_write_queue() and next loop */
3095 			prefetchw(skb->next);
3096 			acked_pcount = tcp_skb_pcount(skb);
3097 		}
3098 
3099 		if (unlikely(sacked & TCPCB_RETRANS)) {
3100 			if (sacked & TCPCB_SACKED_RETRANS)
3101 				tp->retrans_out -= acked_pcount;
3102 			flag |= FLAG_RETRANS_DATA_ACKED;
3103 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3104 			last_ackt = skb->skb_mstamp;
3105 			WARN_ON_ONCE(last_ackt.v64 == 0);
3106 			if (!first_ackt.v64)
3107 				first_ackt = last_ackt;
3108 
3109 			reord = min(pkts_acked, reord);
3110 			if (!after(scb->end_seq, tp->high_seq))
3111 				flag |= FLAG_ORIG_SACK_ACKED;
3112 		}
3113 
3114 		if (sacked & TCPCB_SACKED_ACKED)
3115 			tp->sacked_out -= acked_pcount;
3116 		if (sacked & TCPCB_LOST)
3117 			tp->lost_out -= acked_pcount;
3118 
3119 		tp->packets_out -= acked_pcount;
3120 		pkts_acked += acked_pcount;
3121 
3122 		/* Initial outgoing SYN's get put onto the write_queue
3123 		 * just like anything else we transmit.  It is not
3124 		 * true data, and if we misinform our callers that
3125 		 * this ACK acks real data, we will erroneously exit
3126 		 * connection startup slow start one packet too
3127 		 * quickly.  This is severely frowned upon behavior.
3128 		 */
3129 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3130 			flag |= FLAG_DATA_ACKED;
3131 		} else {
3132 			flag |= FLAG_SYN_ACKED;
3133 			tp->retrans_stamp = 0;
3134 		}
3135 
3136 		if (!fully_acked)
3137 			break;
3138 
3139 		tcp_unlink_write_queue(skb, sk);
3140 		sk_wmem_free_skb(sk, skb);
3141 		if (unlikely(skb == tp->retransmit_skb_hint))
3142 			tp->retransmit_skb_hint = NULL;
3143 		if (unlikely(skb == tp->lost_skb_hint))
3144 			tp->lost_skb_hint = NULL;
3145 	}
3146 
3147 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3148 		tp->snd_up = tp->snd_una;
3149 
3150 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3151 		flag |= FLAG_SACK_RENEGING;
3152 
3153 	skb_mstamp_get(&now);
3154 	if (likely(first_ackt.v64)) {
3155 		seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3156 		ca_seq_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3157 	}
3158 
3159 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us);
3160 
3161 	if (flag & FLAG_ACKED) {
3162 		const struct tcp_congestion_ops *ca_ops
3163 			= inet_csk(sk)->icsk_ca_ops;
3164 
3165 		tcp_rearm_rto(sk);
3166 		if (unlikely(icsk->icsk_mtup.probe_size &&
3167 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3168 			tcp_mtup_probe_success(sk);
3169 		}
3170 
3171 		if (tcp_is_reno(tp)) {
3172 			tcp_remove_reno_sacks(sk, pkts_acked);
3173 		} else {
3174 			int delta;
3175 
3176 			/* Non-retransmitted hole got filled? That's reordering */
3177 			if (reord < prior_fackets)
3178 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3179 
3180 			delta = tcp_is_fack(tp) ? pkts_acked :
3181 						  prior_sacked - tp->sacked_out;
3182 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3183 		}
3184 
3185 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3186 
3187 		if (ca_ops->pkts_acked) {
3188 			long rtt_us = min_t(ulong, ca_seq_rtt_us, sack_rtt_us);
3189 			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3190 		}
3191 
3192 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3193 		   sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
3194 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3195 		 * after when the head was last (re)transmitted. Otherwise the
3196 		 * timeout may continue to extend in loss recovery.
3197 		 */
3198 		tcp_rearm_rto(sk);
3199 	}
3200 
3201 #if FASTRETRANS_DEBUG > 0
3202 	WARN_ON((int)tp->sacked_out < 0);
3203 	WARN_ON((int)tp->lost_out < 0);
3204 	WARN_ON((int)tp->retrans_out < 0);
3205 	if (!tp->packets_out && tcp_is_sack(tp)) {
3206 		icsk = inet_csk(sk);
3207 		if (tp->lost_out) {
3208 			pr_debug("Leak l=%u %d\n",
3209 				 tp->lost_out, icsk->icsk_ca_state);
3210 			tp->lost_out = 0;
3211 		}
3212 		if (tp->sacked_out) {
3213 			pr_debug("Leak s=%u %d\n",
3214 				 tp->sacked_out, icsk->icsk_ca_state);
3215 			tp->sacked_out = 0;
3216 		}
3217 		if (tp->retrans_out) {
3218 			pr_debug("Leak r=%u %d\n",
3219 				 tp->retrans_out, icsk->icsk_ca_state);
3220 			tp->retrans_out = 0;
3221 		}
3222 	}
3223 #endif
3224 	return flag;
3225 }
3226 
3227 static void tcp_ack_probe(struct sock *sk)
3228 {
3229 	const struct tcp_sock *tp = tcp_sk(sk);
3230 	struct inet_connection_sock *icsk = inet_csk(sk);
3231 
3232 	/* Was it a usable window open? */
3233 
3234 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3235 		icsk->icsk_backoff = 0;
3236 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3237 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3238 		 * This function is not for random using!
3239 		 */
3240 	} else {
3241 		unsigned long when = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
3242 
3243 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3244 					  when, TCP_RTO_MAX);
3245 	}
3246 }
3247 
3248 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3249 {
3250 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3251 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3252 }
3253 
3254 /* Decide wheather to run the increase function of congestion control. */
3255 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3256 {
3257 	if (tcp_in_cwnd_reduction(sk))
3258 		return false;
3259 
3260 	/* If reordering is high then always grow cwnd whenever data is
3261 	 * delivered regardless of its ordering. Otherwise stay conservative
3262 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3263 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3264 	 * cwnd in tcp_fastretrans_alert() based on more states.
3265 	 */
3266 	if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
3267 		return flag & FLAG_FORWARD_PROGRESS;
3268 
3269 	return flag & FLAG_DATA_ACKED;
3270 }
3271 
3272 /* Check that window update is acceptable.
3273  * The function assumes that snd_una<=ack<=snd_next.
3274  */
3275 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3276 					const u32 ack, const u32 ack_seq,
3277 					const u32 nwin)
3278 {
3279 	return	after(ack, tp->snd_una) ||
3280 		after(ack_seq, tp->snd_wl1) ||
3281 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3282 }
3283 
3284 /* If we update tp->snd_una, also update tp->bytes_acked */
3285 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3286 {
3287 	u32 delta = ack - tp->snd_una;
3288 
3289 	u64_stats_update_begin(&tp->syncp);
3290 	tp->bytes_acked += delta;
3291 	u64_stats_update_end(&tp->syncp);
3292 	tp->snd_una = ack;
3293 }
3294 
3295 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3296 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3297 {
3298 	u32 delta = seq - tp->rcv_nxt;
3299 
3300 	u64_stats_update_begin(&tp->syncp);
3301 	tp->bytes_received += delta;
3302 	u64_stats_update_end(&tp->syncp);
3303 	tp->rcv_nxt = seq;
3304 }
3305 
3306 /* Update our send window.
3307  *
3308  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3309  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3310  */
3311 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3312 				 u32 ack_seq)
3313 {
3314 	struct tcp_sock *tp = tcp_sk(sk);
3315 	int flag = 0;
3316 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3317 
3318 	if (likely(!tcp_hdr(skb)->syn))
3319 		nwin <<= tp->rx_opt.snd_wscale;
3320 
3321 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3322 		flag |= FLAG_WIN_UPDATE;
3323 		tcp_update_wl(tp, ack_seq);
3324 
3325 		if (tp->snd_wnd != nwin) {
3326 			tp->snd_wnd = nwin;
3327 
3328 			/* Note, it is the only place, where
3329 			 * fast path is recovered for sending TCP.
3330 			 */
3331 			tp->pred_flags = 0;
3332 			tcp_fast_path_check(sk);
3333 
3334 			if (nwin > tp->max_window) {
3335 				tp->max_window = nwin;
3336 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3337 			}
3338 		}
3339 	}
3340 
3341 	tcp_snd_una_update(tp, ack);
3342 
3343 	return flag;
3344 }
3345 
3346 /* Return true if we're currently rate-limiting out-of-window ACKs and
3347  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3348  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3349  * attacks that send repeated SYNs or ACKs for the same connection. To
3350  * do this, we do not send a duplicate SYNACK or ACK if the remote
3351  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3352  */
3353 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3354 			  int mib_idx, u32 *last_oow_ack_time)
3355 {
3356 	/* Data packets without SYNs are not likely part of an ACK loop. */
3357 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3358 	    !tcp_hdr(skb)->syn)
3359 		goto not_rate_limited;
3360 
3361 	if (*last_oow_ack_time) {
3362 		s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3363 
3364 		if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3365 			NET_INC_STATS_BH(net, mib_idx);
3366 			return true;	/* rate-limited: don't send yet! */
3367 		}
3368 	}
3369 
3370 	*last_oow_ack_time = tcp_time_stamp;
3371 
3372 not_rate_limited:
3373 	return false;	/* not rate-limited: go ahead, send dupack now! */
3374 }
3375 
3376 /* RFC 5961 7 [ACK Throttling] */
3377 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3378 {
3379 	/* unprotected vars, we dont care of overwrites */
3380 	static u32 challenge_timestamp;
3381 	static unsigned int challenge_count;
3382 	struct tcp_sock *tp = tcp_sk(sk);
3383 	u32 now;
3384 
3385 	/* First check our per-socket dupack rate limit. */
3386 	if (tcp_oow_rate_limited(sock_net(sk), skb,
3387 				 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3388 				 &tp->last_oow_ack_time))
3389 		return;
3390 
3391 	/* Then check the check host-wide RFC 5961 rate limit. */
3392 	now = jiffies / HZ;
3393 	if (now != challenge_timestamp) {
3394 		challenge_timestamp = now;
3395 		challenge_count = 0;
3396 	}
3397 	if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3398 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3399 		tcp_send_ack(sk);
3400 	}
3401 }
3402 
3403 static void tcp_store_ts_recent(struct tcp_sock *tp)
3404 {
3405 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3406 	tp->rx_opt.ts_recent_stamp = get_seconds();
3407 }
3408 
3409 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3410 {
3411 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3412 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3413 		 * extra check below makes sure this can only happen
3414 		 * for pure ACK frames.  -DaveM
3415 		 *
3416 		 * Not only, also it occurs for expired timestamps.
3417 		 */
3418 
3419 		if (tcp_paws_check(&tp->rx_opt, 0))
3420 			tcp_store_ts_recent(tp);
3421 	}
3422 }
3423 
3424 /* This routine deals with acks during a TLP episode.
3425  * We mark the end of a TLP episode on receiving TLP dupack or when
3426  * ack is after tlp_high_seq.
3427  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3428  */
3429 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3430 {
3431 	struct tcp_sock *tp = tcp_sk(sk);
3432 
3433 	if (before(ack, tp->tlp_high_seq))
3434 		return;
3435 
3436 	if (flag & FLAG_DSACKING_ACK) {
3437 		/* This DSACK means original and TLP probe arrived; no loss */
3438 		tp->tlp_high_seq = 0;
3439 	} else if (after(ack, tp->tlp_high_seq)) {
3440 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3441 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3442 		 */
3443 		tcp_init_cwnd_reduction(sk);
3444 		tcp_set_ca_state(sk, TCP_CA_CWR);
3445 		tcp_end_cwnd_reduction(sk);
3446 		tcp_try_keep_open(sk);
3447 		NET_INC_STATS_BH(sock_net(sk),
3448 				 LINUX_MIB_TCPLOSSPROBERECOVERY);
3449 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3450 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3451 		/* Pure dupack: original and TLP probe arrived; no loss */
3452 		tp->tlp_high_seq = 0;
3453 	}
3454 }
3455 
3456 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3457 {
3458 	const struct inet_connection_sock *icsk = inet_csk(sk);
3459 
3460 	if (icsk->icsk_ca_ops->in_ack_event)
3461 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3462 }
3463 
3464 /* This routine deals with incoming acks, but not outgoing ones. */
3465 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3466 {
3467 	struct inet_connection_sock *icsk = inet_csk(sk);
3468 	struct tcp_sock *tp = tcp_sk(sk);
3469 	u32 prior_snd_una = tp->snd_una;
3470 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3471 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3472 	bool is_dupack = false;
3473 	u32 prior_fackets;
3474 	int prior_packets = tp->packets_out;
3475 	const int prior_unsacked = tp->packets_out - tp->sacked_out;
3476 	int acked = 0; /* Number of packets newly acked */
3477 	long sack_rtt_us = -1L;
3478 
3479 	/* We very likely will need to access write queue head. */
3480 	prefetchw(sk->sk_write_queue.next);
3481 
3482 	/* If the ack is older than previous acks
3483 	 * then we can probably ignore it.
3484 	 */
3485 	if (before(ack, prior_snd_una)) {
3486 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3487 		if (before(ack, prior_snd_una - tp->max_window)) {
3488 			tcp_send_challenge_ack(sk, skb);
3489 			return -1;
3490 		}
3491 		goto old_ack;
3492 	}
3493 
3494 	/* If the ack includes data we haven't sent yet, discard
3495 	 * this segment (RFC793 Section 3.9).
3496 	 */
3497 	if (after(ack, tp->snd_nxt))
3498 		goto invalid_ack;
3499 
3500 	if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3501 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3502 		tcp_rearm_rto(sk);
3503 
3504 	if (after(ack, prior_snd_una)) {
3505 		flag |= FLAG_SND_UNA_ADVANCED;
3506 		icsk->icsk_retransmits = 0;
3507 	}
3508 
3509 	prior_fackets = tp->fackets_out;
3510 
3511 	/* ts_recent update must be made after we are sure that the packet
3512 	 * is in window.
3513 	 */
3514 	if (flag & FLAG_UPDATE_TS_RECENT)
3515 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3516 
3517 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3518 		/* Window is constant, pure forward advance.
3519 		 * No more checks are required.
3520 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3521 		 */
3522 		tcp_update_wl(tp, ack_seq);
3523 		tcp_snd_una_update(tp, ack);
3524 		flag |= FLAG_WIN_UPDATE;
3525 
3526 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3527 
3528 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3529 	} else {
3530 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3531 
3532 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3533 			flag |= FLAG_DATA;
3534 		else
3535 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3536 
3537 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3538 
3539 		if (TCP_SKB_CB(skb)->sacked)
3540 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3541 							&sack_rtt_us);
3542 
3543 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3544 			flag |= FLAG_ECE;
3545 			ack_ev_flags |= CA_ACK_ECE;
3546 		}
3547 
3548 		if (flag & FLAG_WIN_UPDATE)
3549 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3550 
3551 		tcp_in_ack_event(sk, ack_ev_flags);
3552 	}
3553 
3554 	/* We passed data and got it acked, remove any soft error
3555 	 * log. Something worked...
3556 	 */
3557 	sk->sk_err_soft = 0;
3558 	icsk->icsk_probes_out = 0;
3559 	tp->rcv_tstamp = tcp_time_stamp;
3560 	if (!prior_packets)
3561 		goto no_queue;
3562 
3563 	/* See if we can take anything off of the retransmit queue. */
3564 	acked = tp->packets_out;
3565 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una,
3566 				    sack_rtt_us);
3567 	acked -= tp->packets_out;
3568 
3569 	/* Advance cwnd if state allows */
3570 	if (tcp_may_raise_cwnd(sk, flag))
3571 		tcp_cong_avoid(sk, ack, acked);
3572 
3573 	if (tcp_ack_is_dubious(sk, flag)) {
3574 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3575 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3576 				      is_dupack, flag);
3577 	}
3578 	if (tp->tlp_high_seq)
3579 		tcp_process_tlp_ack(sk, ack, flag);
3580 
3581 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3582 		struct dst_entry *dst = __sk_dst_get(sk);
3583 		if (dst)
3584 			dst_confirm(dst);
3585 	}
3586 
3587 	if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3588 		tcp_schedule_loss_probe(sk);
3589 	tcp_update_pacing_rate(sk);
3590 	return 1;
3591 
3592 no_queue:
3593 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3594 	if (flag & FLAG_DSACKING_ACK)
3595 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3596 				      is_dupack, flag);
3597 	/* If this ack opens up a zero window, clear backoff.  It was
3598 	 * being used to time the probes, and is probably far higher than
3599 	 * it needs to be for normal retransmission.
3600 	 */
3601 	if (tcp_send_head(sk))
3602 		tcp_ack_probe(sk);
3603 
3604 	if (tp->tlp_high_seq)
3605 		tcp_process_tlp_ack(sk, ack, flag);
3606 	return 1;
3607 
3608 invalid_ack:
3609 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3610 	return -1;
3611 
3612 old_ack:
3613 	/* If data was SACKed, tag it and see if we should send more data.
3614 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3615 	 */
3616 	if (TCP_SKB_CB(skb)->sacked) {
3617 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3618 						&sack_rtt_us);
3619 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3620 				      is_dupack, flag);
3621 	}
3622 
3623 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3624 	return 0;
3625 }
3626 
3627 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3628 				      bool syn, struct tcp_fastopen_cookie *foc,
3629 				      bool exp_opt)
3630 {
3631 	/* Valid only in SYN or SYN-ACK with an even length.  */
3632 	if (!foc || !syn || len < 0 || (len & 1))
3633 		return;
3634 
3635 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3636 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3637 		memcpy(foc->val, cookie, len);
3638 	else if (len != 0)
3639 		len = -1;
3640 	foc->len = len;
3641 	foc->exp = exp_opt;
3642 }
3643 
3644 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3645  * But, this can also be called on packets in the established flow when
3646  * the fast version below fails.
3647  */
3648 void tcp_parse_options(const struct sk_buff *skb,
3649 		       struct tcp_options_received *opt_rx, int estab,
3650 		       struct tcp_fastopen_cookie *foc)
3651 {
3652 	const unsigned char *ptr;
3653 	const struct tcphdr *th = tcp_hdr(skb);
3654 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3655 
3656 	ptr = (const unsigned char *)(th + 1);
3657 	opt_rx->saw_tstamp = 0;
3658 
3659 	while (length > 0) {
3660 		int opcode = *ptr++;
3661 		int opsize;
3662 
3663 		switch (opcode) {
3664 		case TCPOPT_EOL:
3665 			return;
3666 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3667 			length--;
3668 			continue;
3669 		default:
3670 			opsize = *ptr++;
3671 			if (opsize < 2) /* "silly options" */
3672 				return;
3673 			if (opsize > length)
3674 				return;	/* don't parse partial options */
3675 			switch (opcode) {
3676 			case TCPOPT_MSS:
3677 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3678 					u16 in_mss = get_unaligned_be16(ptr);
3679 					if (in_mss) {
3680 						if (opt_rx->user_mss &&
3681 						    opt_rx->user_mss < in_mss)
3682 							in_mss = opt_rx->user_mss;
3683 						opt_rx->mss_clamp = in_mss;
3684 					}
3685 				}
3686 				break;
3687 			case TCPOPT_WINDOW:
3688 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3689 				    !estab && sysctl_tcp_window_scaling) {
3690 					__u8 snd_wscale = *(__u8 *)ptr;
3691 					opt_rx->wscale_ok = 1;
3692 					if (snd_wscale > 14) {
3693 						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3694 								     __func__,
3695 								     snd_wscale);
3696 						snd_wscale = 14;
3697 					}
3698 					opt_rx->snd_wscale = snd_wscale;
3699 				}
3700 				break;
3701 			case TCPOPT_TIMESTAMP:
3702 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3703 				    ((estab && opt_rx->tstamp_ok) ||
3704 				     (!estab && sysctl_tcp_timestamps))) {
3705 					opt_rx->saw_tstamp = 1;
3706 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3707 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3708 				}
3709 				break;
3710 			case TCPOPT_SACK_PERM:
3711 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3712 				    !estab && sysctl_tcp_sack) {
3713 					opt_rx->sack_ok = TCP_SACK_SEEN;
3714 					tcp_sack_reset(opt_rx);
3715 				}
3716 				break;
3717 
3718 			case TCPOPT_SACK:
3719 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3720 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3721 				   opt_rx->sack_ok) {
3722 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3723 				}
3724 				break;
3725 #ifdef CONFIG_TCP_MD5SIG
3726 			case TCPOPT_MD5SIG:
3727 				/*
3728 				 * The MD5 Hash has already been
3729 				 * checked (see tcp_v{4,6}_do_rcv()).
3730 				 */
3731 				break;
3732 #endif
3733 			case TCPOPT_FASTOPEN:
3734 				tcp_parse_fastopen_option(
3735 					opsize - TCPOLEN_FASTOPEN_BASE,
3736 					ptr, th->syn, foc, false);
3737 				break;
3738 
3739 			case TCPOPT_EXP:
3740 				/* Fast Open option shares code 254 using a
3741 				 * 16 bits magic number.
3742 				 */
3743 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3744 				    get_unaligned_be16(ptr) ==
3745 				    TCPOPT_FASTOPEN_MAGIC)
3746 					tcp_parse_fastopen_option(opsize -
3747 						TCPOLEN_EXP_FASTOPEN_BASE,
3748 						ptr + 2, th->syn, foc, true);
3749 				break;
3750 
3751 			}
3752 			ptr += opsize-2;
3753 			length -= opsize;
3754 		}
3755 	}
3756 }
3757 EXPORT_SYMBOL(tcp_parse_options);
3758 
3759 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3760 {
3761 	const __be32 *ptr = (const __be32 *)(th + 1);
3762 
3763 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3764 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3765 		tp->rx_opt.saw_tstamp = 1;
3766 		++ptr;
3767 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3768 		++ptr;
3769 		if (*ptr)
3770 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3771 		else
3772 			tp->rx_opt.rcv_tsecr = 0;
3773 		return true;
3774 	}
3775 	return false;
3776 }
3777 
3778 /* Fast parse options. This hopes to only see timestamps.
3779  * If it is wrong it falls back on tcp_parse_options().
3780  */
3781 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3782 				   const struct tcphdr *th, struct tcp_sock *tp)
3783 {
3784 	/* In the spirit of fast parsing, compare doff directly to constant
3785 	 * values.  Because equality is used, short doff can be ignored here.
3786 	 */
3787 	if (th->doff == (sizeof(*th) / 4)) {
3788 		tp->rx_opt.saw_tstamp = 0;
3789 		return false;
3790 	} else if (tp->rx_opt.tstamp_ok &&
3791 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3792 		if (tcp_parse_aligned_timestamp(tp, th))
3793 			return true;
3794 	}
3795 
3796 	tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3797 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3798 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3799 
3800 	return true;
3801 }
3802 
3803 #ifdef CONFIG_TCP_MD5SIG
3804 /*
3805  * Parse MD5 Signature option
3806  */
3807 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3808 {
3809 	int length = (th->doff << 2) - sizeof(*th);
3810 	const u8 *ptr = (const u8 *)(th + 1);
3811 
3812 	/* If the TCP option is too short, we can short cut */
3813 	if (length < TCPOLEN_MD5SIG)
3814 		return NULL;
3815 
3816 	while (length > 0) {
3817 		int opcode = *ptr++;
3818 		int opsize;
3819 
3820 		switch (opcode) {
3821 		case TCPOPT_EOL:
3822 			return NULL;
3823 		case TCPOPT_NOP:
3824 			length--;
3825 			continue;
3826 		default:
3827 			opsize = *ptr++;
3828 			if (opsize < 2 || opsize > length)
3829 				return NULL;
3830 			if (opcode == TCPOPT_MD5SIG)
3831 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3832 		}
3833 		ptr += opsize - 2;
3834 		length -= opsize;
3835 	}
3836 	return NULL;
3837 }
3838 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3839 #endif
3840 
3841 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3842  *
3843  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3844  * it can pass through stack. So, the following predicate verifies that
3845  * this segment is not used for anything but congestion avoidance or
3846  * fast retransmit. Moreover, we even are able to eliminate most of such
3847  * second order effects, if we apply some small "replay" window (~RTO)
3848  * to timestamp space.
3849  *
3850  * All these measures still do not guarantee that we reject wrapped ACKs
3851  * on networks with high bandwidth, when sequence space is recycled fastly,
3852  * but it guarantees that such events will be very rare and do not affect
3853  * connection seriously. This doesn't look nice, but alas, PAWS is really
3854  * buggy extension.
3855  *
3856  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3857  * states that events when retransmit arrives after original data are rare.
3858  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3859  * the biggest problem on large power networks even with minor reordering.
3860  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3861  * up to bandwidth of 18Gigabit/sec. 8) ]
3862  */
3863 
3864 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3865 {
3866 	const struct tcp_sock *tp = tcp_sk(sk);
3867 	const struct tcphdr *th = tcp_hdr(skb);
3868 	u32 seq = TCP_SKB_CB(skb)->seq;
3869 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3870 
3871 	return (/* 1. Pure ACK with correct sequence number. */
3872 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3873 
3874 		/* 2. ... and duplicate ACK. */
3875 		ack == tp->snd_una &&
3876 
3877 		/* 3. ... and does not update window. */
3878 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3879 
3880 		/* 4. ... and sits in replay window. */
3881 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3882 }
3883 
3884 static inline bool tcp_paws_discard(const struct sock *sk,
3885 				   const struct sk_buff *skb)
3886 {
3887 	const struct tcp_sock *tp = tcp_sk(sk);
3888 
3889 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3890 	       !tcp_disordered_ack(sk, skb);
3891 }
3892 
3893 /* Check segment sequence number for validity.
3894  *
3895  * Segment controls are considered valid, if the segment
3896  * fits to the window after truncation to the window. Acceptability
3897  * of data (and SYN, FIN, of course) is checked separately.
3898  * See tcp_data_queue(), for example.
3899  *
3900  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3901  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3902  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3903  * (borrowed from freebsd)
3904  */
3905 
3906 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3907 {
3908 	return	!before(end_seq, tp->rcv_wup) &&
3909 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3910 }
3911 
3912 /* When we get a reset we do this. */
3913 void tcp_reset(struct sock *sk)
3914 {
3915 	/* We want the right error as BSD sees it (and indeed as we do). */
3916 	switch (sk->sk_state) {
3917 	case TCP_SYN_SENT:
3918 		sk->sk_err = ECONNREFUSED;
3919 		break;
3920 	case TCP_CLOSE_WAIT:
3921 		sk->sk_err = EPIPE;
3922 		break;
3923 	case TCP_CLOSE:
3924 		return;
3925 	default:
3926 		sk->sk_err = ECONNRESET;
3927 	}
3928 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
3929 	smp_wmb();
3930 
3931 	if (!sock_flag(sk, SOCK_DEAD))
3932 		sk->sk_error_report(sk);
3933 
3934 	tcp_done(sk);
3935 }
3936 
3937 /*
3938  * 	Process the FIN bit. This now behaves as it is supposed to work
3939  *	and the FIN takes effect when it is validly part of sequence
3940  *	space. Not before when we get holes.
3941  *
3942  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3943  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3944  *	TIME-WAIT)
3945  *
3946  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3947  *	close and we go into CLOSING (and later onto TIME-WAIT)
3948  *
3949  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3950  */
3951 static void tcp_fin(struct sock *sk)
3952 {
3953 	struct tcp_sock *tp = tcp_sk(sk);
3954 	const struct dst_entry *dst;
3955 
3956 	inet_csk_schedule_ack(sk);
3957 
3958 	sk->sk_shutdown |= RCV_SHUTDOWN;
3959 	sock_set_flag(sk, SOCK_DONE);
3960 
3961 	switch (sk->sk_state) {
3962 	case TCP_SYN_RECV:
3963 	case TCP_ESTABLISHED:
3964 		/* Move to CLOSE_WAIT */
3965 		tcp_set_state(sk, TCP_CLOSE_WAIT);
3966 		dst = __sk_dst_get(sk);
3967 		if (!dst || !dst_metric(dst, RTAX_QUICKACK))
3968 			inet_csk(sk)->icsk_ack.pingpong = 1;
3969 		break;
3970 
3971 	case TCP_CLOSE_WAIT:
3972 	case TCP_CLOSING:
3973 		/* Received a retransmission of the FIN, do
3974 		 * nothing.
3975 		 */
3976 		break;
3977 	case TCP_LAST_ACK:
3978 		/* RFC793: Remain in the LAST-ACK state. */
3979 		break;
3980 
3981 	case TCP_FIN_WAIT1:
3982 		/* This case occurs when a simultaneous close
3983 		 * happens, we must ack the received FIN and
3984 		 * enter the CLOSING state.
3985 		 */
3986 		tcp_send_ack(sk);
3987 		tcp_set_state(sk, TCP_CLOSING);
3988 		break;
3989 	case TCP_FIN_WAIT2:
3990 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
3991 		tcp_send_ack(sk);
3992 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3993 		break;
3994 	default:
3995 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
3996 		 * cases we should never reach this piece of code.
3997 		 */
3998 		pr_err("%s: Impossible, sk->sk_state=%d\n",
3999 		       __func__, sk->sk_state);
4000 		break;
4001 	}
4002 
4003 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4004 	 * Probably, we should reset in this case. For now drop them.
4005 	 */
4006 	__skb_queue_purge(&tp->out_of_order_queue);
4007 	if (tcp_is_sack(tp))
4008 		tcp_sack_reset(&tp->rx_opt);
4009 	sk_mem_reclaim(sk);
4010 
4011 	if (!sock_flag(sk, SOCK_DEAD)) {
4012 		sk->sk_state_change(sk);
4013 
4014 		/* Do not send POLL_HUP for half duplex close. */
4015 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4016 		    sk->sk_state == TCP_CLOSE)
4017 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4018 		else
4019 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4020 	}
4021 }
4022 
4023 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4024 				  u32 end_seq)
4025 {
4026 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4027 		if (before(seq, sp->start_seq))
4028 			sp->start_seq = seq;
4029 		if (after(end_seq, sp->end_seq))
4030 			sp->end_seq = end_seq;
4031 		return true;
4032 	}
4033 	return false;
4034 }
4035 
4036 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4037 {
4038 	struct tcp_sock *tp = tcp_sk(sk);
4039 
4040 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4041 		int mib_idx;
4042 
4043 		if (before(seq, tp->rcv_nxt))
4044 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4045 		else
4046 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4047 
4048 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4049 
4050 		tp->rx_opt.dsack = 1;
4051 		tp->duplicate_sack[0].start_seq = seq;
4052 		tp->duplicate_sack[0].end_seq = end_seq;
4053 	}
4054 }
4055 
4056 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4057 {
4058 	struct tcp_sock *tp = tcp_sk(sk);
4059 
4060 	if (!tp->rx_opt.dsack)
4061 		tcp_dsack_set(sk, seq, end_seq);
4062 	else
4063 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4064 }
4065 
4066 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4067 {
4068 	struct tcp_sock *tp = tcp_sk(sk);
4069 
4070 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4071 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4072 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4073 		tcp_enter_quickack_mode(sk);
4074 
4075 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4076 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4077 
4078 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4079 				end_seq = tp->rcv_nxt;
4080 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4081 		}
4082 	}
4083 
4084 	tcp_send_ack(sk);
4085 }
4086 
4087 /* These routines update the SACK block as out-of-order packets arrive or
4088  * in-order packets close up the sequence space.
4089  */
4090 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4091 {
4092 	int this_sack;
4093 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4094 	struct tcp_sack_block *swalk = sp + 1;
4095 
4096 	/* See if the recent change to the first SACK eats into
4097 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4098 	 */
4099 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4100 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4101 			int i;
4102 
4103 			/* Zap SWALK, by moving every further SACK up by one slot.
4104 			 * Decrease num_sacks.
4105 			 */
4106 			tp->rx_opt.num_sacks--;
4107 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4108 				sp[i] = sp[i + 1];
4109 			continue;
4110 		}
4111 		this_sack++, swalk++;
4112 	}
4113 }
4114 
4115 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4116 {
4117 	struct tcp_sock *tp = tcp_sk(sk);
4118 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4119 	int cur_sacks = tp->rx_opt.num_sacks;
4120 	int this_sack;
4121 
4122 	if (!cur_sacks)
4123 		goto new_sack;
4124 
4125 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4126 		if (tcp_sack_extend(sp, seq, end_seq)) {
4127 			/* Rotate this_sack to the first one. */
4128 			for (; this_sack > 0; this_sack--, sp--)
4129 				swap(*sp, *(sp - 1));
4130 			if (cur_sacks > 1)
4131 				tcp_sack_maybe_coalesce(tp);
4132 			return;
4133 		}
4134 	}
4135 
4136 	/* Could not find an adjacent existing SACK, build a new one,
4137 	 * put it at the front, and shift everyone else down.  We
4138 	 * always know there is at least one SACK present already here.
4139 	 *
4140 	 * If the sack array is full, forget about the last one.
4141 	 */
4142 	if (this_sack >= TCP_NUM_SACKS) {
4143 		this_sack--;
4144 		tp->rx_opt.num_sacks--;
4145 		sp--;
4146 	}
4147 	for (; this_sack > 0; this_sack--, sp--)
4148 		*sp = *(sp - 1);
4149 
4150 new_sack:
4151 	/* Build the new head SACK, and we're done. */
4152 	sp->start_seq = seq;
4153 	sp->end_seq = end_seq;
4154 	tp->rx_opt.num_sacks++;
4155 }
4156 
4157 /* RCV.NXT advances, some SACKs should be eaten. */
4158 
4159 static void tcp_sack_remove(struct tcp_sock *tp)
4160 {
4161 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4162 	int num_sacks = tp->rx_opt.num_sacks;
4163 	int this_sack;
4164 
4165 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4166 	if (skb_queue_empty(&tp->out_of_order_queue)) {
4167 		tp->rx_opt.num_sacks = 0;
4168 		return;
4169 	}
4170 
4171 	for (this_sack = 0; this_sack < num_sacks;) {
4172 		/* Check if the start of the sack is covered by RCV.NXT. */
4173 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4174 			int i;
4175 
4176 			/* RCV.NXT must cover all the block! */
4177 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4178 
4179 			/* Zap this SACK, by moving forward any other SACKS. */
4180 			for (i = this_sack+1; i < num_sacks; i++)
4181 				tp->selective_acks[i-1] = tp->selective_acks[i];
4182 			num_sacks--;
4183 			continue;
4184 		}
4185 		this_sack++;
4186 		sp++;
4187 	}
4188 	tp->rx_opt.num_sacks = num_sacks;
4189 }
4190 
4191 /**
4192  * tcp_try_coalesce - try to merge skb to prior one
4193  * @sk: socket
4194  * @to: prior buffer
4195  * @from: buffer to add in queue
4196  * @fragstolen: pointer to boolean
4197  *
4198  * Before queueing skb @from after @to, try to merge them
4199  * to reduce overall memory use and queue lengths, if cost is small.
4200  * Packets in ofo or receive queues can stay a long time.
4201  * Better try to coalesce them right now to avoid future collapses.
4202  * Returns true if caller should free @from instead of queueing it
4203  */
4204 static bool tcp_try_coalesce(struct sock *sk,
4205 			     struct sk_buff *to,
4206 			     struct sk_buff *from,
4207 			     bool *fragstolen)
4208 {
4209 	int delta;
4210 
4211 	*fragstolen = false;
4212 
4213 	/* Its possible this segment overlaps with prior segment in queue */
4214 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4215 		return false;
4216 
4217 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4218 		return false;
4219 
4220 	atomic_add(delta, &sk->sk_rmem_alloc);
4221 	sk_mem_charge(sk, delta);
4222 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4223 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4224 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4225 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4226 	return true;
4227 }
4228 
4229 /* This one checks to see if we can put data from the
4230  * out_of_order queue into the receive_queue.
4231  */
4232 static void tcp_ofo_queue(struct sock *sk)
4233 {
4234 	struct tcp_sock *tp = tcp_sk(sk);
4235 	__u32 dsack_high = tp->rcv_nxt;
4236 	struct sk_buff *skb, *tail;
4237 	bool fragstolen, eaten;
4238 
4239 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4240 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4241 			break;
4242 
4243 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4244 			__u32 dsack = dsack_high;
4245 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4246 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4247 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4248 		}
4249 
4250 		__skb_unlink(skb, &tp->out_of_order_queue);
4251 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4252 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4253 			__kfree_skb(skb);
4254 			continue;
4255 		}
4256 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4257 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4258 			   TCP_SKB_CB(skb)->end_seq);
4259 
4260 		tail = skb_peek_tail(&sk->sk_receive_queue);
4261 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4262 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4263 		if (!eaten)
4264 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4265 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4266 			tcp_fin(sk);
4267 		if (eaten)
4268 			kfree_skb_partial(skb, fragstolen);
4269 	}
4270 }
4271 
4272 static bool tcp_prune_ofo_queue(struct sock *sk);
4273 static int tcp_prune_queue(struct sock *sk);
4274 
4275 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4276 				 unsigned int size)
4277 {
4278 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4279 	    !sk_rmem_schedule(sk, skb, size)) {
4280 
4281 		if (tcp_prune_queue(sk) < 0)
4282 			return -1;
4283 
4284 		if (!sk_rmem_schedule(sk, skb, size)) {
4285 			if (!tcp_prune_ofo_queue(sk))
4286 				return -1;
4287 
4288 			if (!sk_rmem_schedule(sk, skb, size))
4289 				return -1;
4290 		}
4291 	}
4292 	return 0;
4293 }
4294 
4295 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4296 {
4297 	struct tcp_sock *tp = tcp_sk(sk);
4298 	struct sk_buff *skb1;
4299 	u32 seq, end_seq;
4300 
4301 	tcp_ecn_check_ce(tp, skb);
4302 
4303 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4304 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4305 		__kfree_skb(skb);
4306 		return;
4307 	}
4308 
4309 	/* Disable header prediction. */
4310 	tp->pred_flags = 0;
4311 	inet_csk_schedule_ack(sk);
4312 
4313 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4314 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4315 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4316 
4317 	skb1 = skb_peek_tail(&tp->out_of_order_queue);
4318 	if (!skb1) {
4319 		/* Initial out of order segment, build 1 SACK. */
4320 		if (tcp_is_sack(tp)) {
4321 			tp->rx_opt.num_sacks = 1;
4322 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4323 			tp->selective_acks[0].end_seq =
4324 						TCP_SKB_CB(skb)->end_seq;
4325 		}
4326 		__skb_queue_head(&tp->out_of_order_queue, skb);
4327 		goto end;
4328 	}
4329 
4330 	seq = TCP_SKB_CB(skb)->seq;
4331 	end_seq = TCP_SKB_CB(skb)->end_seq;
4332 
4333 	if (seq == TCP_SKB_CB(skb1)->end_seq) {
4334 		bool fragstolen;
4335 
4336 		if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4337 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4338 		} else {
4339 			tcp_grow_window(sk, skb);
4340 			kfree_skb_partial(skb, fragstolen);
4341 			skb = NULL;
4342 		}
4343 
4344 		if (!tp->rx_opt.num_sacks ||
4345 		    tp->selective_acks[0].end_seq != seq)
4346 			goto add_sack;
4347 
4348 		/* Common case: data arrive in order after hole. */
4349 		tp->selective_acks[0].end_seq = end_seq;
4350 		goto end;
4351 	}
4352 
4353 	/* Find place to insert this segment. */
4354 	while (1) {
4355 		if (!after(TCP_SKB_CB(skb1)->seq, seq))
4356 			break;
4357 		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4358 			skb1 = NULL;
4359 			break;
4360 		}
4361 		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4362 	}
4363 
4364 	/* Do skb overlap to previous one? */
4365 	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4366 		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4367 			/* All the bits are present. Drop. */
4368 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4369 			__kfree_skb(skb);
4370 			skb = NULL;
4371 			tcp_dsack_set(sk, seq, end_seq);
4372 			goto add_sack;
4373 		}
4374 		if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4375 			/* Partial overlap. */
4376 			tcp_dsack_set(sk, seq,
4377 				      TCP_SKB_CB(skb1)->end_seq);
4378 		} else {
4379 			if (skb_queue_is_first(&tp->out_of_order_queue,
4380 					       skb1))
4381 				skb1 = NULL;
4382 			else
4383 				skb1 = skb_queue_prev(
4384 					&tp->out_of_order_queue,
4385 					skb1);
4386 		}
4387 	}
4388 	if (!skb1)
4389 		__skb_queue_head(&tp->out_of_order_queue, skb);
4390 	else
4391 		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4392 
4393 	/* And clean segments covered by new one as whole. */
4394 	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4395 		skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4396 
4397 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4398 			break;
4399 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4400 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4401 					 end_seq);
4402 			break;
4403 		}
4404 		__skb_unlink(skb1, &tp->out_of_order_queue);
4405 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4406 				 TCP_SKB_CB(skb1)->end_seq);
4407 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4408 		__kfree_skb(skb1);
4409 	}
4410 
4411 add_sack:
4412 	if (tcp_is_sack(tp))
4413 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4414 end:
4415 	if (skb) {
4416 		tcp_grow_window(sk, skb);
4417 		skb_set_owner_r(skb, sk);
4418 	}
4419 }
4420 
4421 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4422 		  bool *fragstolen)
4423 {
4424 	int eaten;
4425 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4426 
4427 	__skb_pull(skb, hdrlen);
4428 	eaten = (tail &&
4429 		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4430 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4431 	if (!eaten) {
4432 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4433 		skb_set_owner_r(skb, sk);
4434 	}
4435 	return eaten;
4436 }
4437 
4438 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4439 {
4440 	struct sk_buff *skb;
4441 	bool fragstolen;
4442 
4443 	if (size == 0)
4444 		return 0;
4445 
4446 	skb = alloc_skb(size, sk->sk_allocation);
4447 	if (!skb)
4448 		goto err;
4449 
4450 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4451 		goto err_free;
4452 
4453 	if (memcpy_from_msg(skb_put(skb, size), msg, size))
4454 		goto err_free;
4455 
4456 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4457 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4458 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4459 
4460 	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4461 		WARN_ON_ONCE(fragstolen); /* should not happen */
4462 		__kfree_skb(skb);
4463 	}
4464 	return size;
4465 
4466 err_free:
4467 	kfree_skb(skb);
4468 err:
4469 	return -ENOMEM;
4470 }
4471 
4472 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4473 {
4474 	struct tcp_sock *tp = tcp_sk(sk);
4475 	int eaten = -1;
4476 	bool fragstolen = false;
4477 
4478 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4479 		goto drop;
4480 
4481 	skb_dst_drop(skb);
4482 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4483 
4484 	tcp_ecn_accept_cwr(tp, skb);
4485 
4486 	tp->rx_opt.dsack = 0;
4487 
4488 	/*  Queue data for delivery to the user.
4489 	 *  Packets in sequence go to the receive queue.
4490 	 *  Out of sequence packets to the out_of_order_queue.
4491 	 */
4492 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4493 		if (tcp_receive_window(tp) == 0)
4494 			goto out_of_window;
4495 
4496 		/* Ok. In sequence. In window. */
4497 		if (tp->ucopy.task == current &&
4498 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4499 		    sock_owned_by_user(sk) && !tp->urg_data) {
4500 			int chunk = min_t(unsigned int, skb->len,
4501 					  tp->ucopy.len);
4502 
4503 			__set_current_state(TASK_RUNNING);
4504 
4505 			local_bh_enable();
4506 			if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4507 				tp->ucopy.len -= chunk;
4508 				tp->copied_seq += chunk;
4509 				eaten = (chunk == skb->len);
4510 				tcp_rcv_space_adjust(sk);
4511 			}
4512 			local_bh_disable();
4513 		}
4514 
4515 		if (eaten <= 0) {
4516 queue_and_out:
4517 			if (eaten < 0 &&
4518 			    tcp_try_rmem_schedule(sk, skb, skb->truesize))
4519 				goto drop;
4520 
4521 			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4522 		}
4523 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4524 		if (skb->len)
4525 			tcp_event_data_recv(sk, skb);
4526 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4527 			tcp_fin(sk);
4528 
4529 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4530 			tcp_ofo_queue(sk);
4531 
4532 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4533 			 * gap in queue is filled.
4534 			 */
4535 			if (skb_queue_empty(&tp->out_of_order_queue))
4536 				inet_csk(sk)->icsk_ack.pingpong = 0;
4537 		}
4538 
4539 		if (tp->rx_opt.num_sacks)
4540 			tcp_sack_remove(tp);
4541 
4542 		tcp_fast_path_check(sk);
4543 
4544 		if (eaten > 0)
4545 			kfree_skb_partial(skb, fragstolen);
4546 		if (!sock_flag(sk, SOCK_DEAD))
4547 			sk->sk_data_ready(sk);
4548 		return;
4549 	}
4550 
4551 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4552 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4553 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4554 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4555 
4556 out_of_window:
4557 		tcp_enter_quickack_mode(sk);
4558 		inet_csk_schedule_ack(sk);
4559 drop:
4560 		__kfree_skb(skb);
4561 		return;
4562 	}
4563 
4564 	/* Out of window. F.e. zero window probe. */
4565 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4566 		goto out_of_window;
4567 
4568 	tcp_enter_quickack_mode(sk);
4569 
4570 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4571 		/* Partial packet, seq < rcv_next < end_seq */
4572 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4573 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4574 			   TCP_SKB_CB(skb)->end_seq);
4575 
4576 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4577 
4578 		/* If window is closed, drop tail of packet. But after
4579 		 * remembering D-SACK for its head made in previous line.
4580 		 */
4581 		if (!tcp_receive_window(tp))
4582 			goto out_of_window;
4583 		goto queue_and_out;
4584 	}
4585 
4586 	tcp_data_queue_ofo(sk, skb);
4587 }
4588 
4589 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4590 					struct sk_buff_head *list)
4591 {
4592 	struct sk_buff *next = NULL;
4593 
4594 	if (!skb_queue_is_last(list, skb))
4595 		next = skb_queue_next(list, skb);
4596 
4597 	__skb_unlink(skb, list);
4598 	__kfree_skb(skb);
4599 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4600 
4601 	return next;
4602 }
4603 
4604 /* Collapse contiguous sequence of skbs head..tail with
4605  * sequence numbers start..end.
4606  *
4607  * If tail is NULL, this means until the end of the list.
4608  *
4609  * Segments with FIN/SYN are not collapsed (only because this
4610  * simplifies code)
4611  */
4612 static void
4613 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4614 	     struct sk_buff *head, struct sk_buff *tail,
4615 	     u32 start, u32 end)
4616 {
4617 	struct sk_buff *skb, *n;
4618 	bool end_of_skbs;
4619 
4620 	/* First, check that queue is collapsible and find
4621 	 * the point where collapsing can be useful. */
4622 	skb = head;
4623 restart:
4624 	end_of_skbs = true;
4625 	skb_queue_walk_from_safe(list, skb, n) {
4626 		if (skb == tail)
4627 			break;
4628 		/* No new bits? It is possible on ofo queue. */
4629 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4630 			skb = tcp_collapse_one(sk, skb, list);
4631 			if (!skb)
4632 				break;
4633 			goto restart;
4634 		}
4635 
4636 		/* The first skb to collapse is:
4637 		 * - not SYN/FIN and
4638 		 * - bloated or contains data before "start" or
4639 		 *   overlaps to the next one.
4640 		 */
4641 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4642 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4643 		     before(TCP_SKB_CB(skb)->seq, start))) {
4644 			end_of_skbs = false;
4645 			break;
4646 		}
4647 
4648 		if (!skb_queue_is_last(list, skb)) {
4649 			struct sk_buff *next = skb_queue_next(list, skb);
4650 			if (next != tail &&
4651 			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4652 				end_of_skbs = false;
4653 				break;
4654 			}
4655 		}
4656 
4657 		/* Decided to skip this, advance start seq. */
4658 		start = TCP_SKB_CB(skb)->end_seq;
4659 	}
4660 	if (end_of_skbs ||
4661 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4662 		return;
4663 
4664 	while (before(start, end)) {
4665 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4666 		struct sk_buff *nskb;
4667 
4668 		nskb = alloc_skb(copy, GFP_ATOMIC);
4669 		if (!nskb)
4670 			return;
4671 
4672 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4673 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4674 		__skb_queue_before(list, skb, nskb);
4675 		skb_set_owner_r(nskb, sk);
4676 
4677 		/* Copy data, releasing collapsed skbs. */
4678 		while (copy > 0) {
4679 			int offset = start - TCP_SKB_CB(skb)->seq;
4680 			int size = TCP_SKB_CB(skb)->end_seq - start;
4681 
4682 			BUG_ON(offset < 0);
4683 			if (size > 0) {
4684 				size = min(copy, size);
4685 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4686 					BUG();
4687 				TCP_SKB_CB(nskb)->end_seq += size;
4688 				copy -= size;
4689 				start += size;
4690 			}
4691 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4692 				skb = tcp_collapse_one(sk, skb, list);
4693 				if (!skb ||
4694 				    skb == tail ||
4695 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4696 					return;
4697 			}
4698 		}
4699 	}
4700 }
4701 
4702 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4703  * and tcp_collapse() them until all the queue is collapsed.
4704  */
4705 static void tcp_collapse_ofo_queue(struct sock *sk)
4706 {
4707 	struct tcp_sock *tp = tcp_sk(sk);
4708 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4709 	struct sk_buff *head;
4710 	u32 start, end;
4711 
4712 	if (!skb)
4713 		return;
4714 
4715 	start = TCP_SKB_CB(skb)->seq;
4716 	end = TCP_SKB_CB(skb)->end_seq;
4717 	head = skb;
4718 
4719 	for (;;) {
4720 		struct sk_buff *next = NULL;
4721 
4722 		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4723 			next = skb_queue_next(&tp->out_of_order_queue, skb);
4724 		skb = next;
4725 
4726 		/* Segment is terminated when we see gap or when
4727 		 * we are at the end of all the queue. */
4728 		if (!skb ||
4729 		    after(TCP_SKB_CB(skb)->seq, end) ||
4730 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4731 			tcp_collapse(sk, &tp->out_of_order_queue,
4732 				     head, skb, start, end);
4733 			head = skb;
4734 			if (!skb)
4735 				break;
4736 			/* Start new segment */
4737 			start = TCP_SKB_CB(skb)->seq;
4738 			end = TCP_SKB_CB(skb)->end_seq;
4739 		} else {
4740 			if (before(TCP_SKB_CB(skb)->seq, start))
4741 				start = TCP_SKB_CB(skb)->seq;
4742 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4743 				end = TCP_SKB_CB(skb)->end_seq;
4744 		}
4745 	}
4746 }
4747 
4748 /*
4749  * Purge the out-of-order queue.
4750  * Return true if queue was pruned.
4751  */
4752 static bool tcp_prune_ofo_queue(struct sock *sk)
4753 {
4754 	struct tcp_sock *tp = tcp_sk(sk);
4755 	bool res = false;
4756 
4757 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4758 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4759 		__skb_queue_purge(&tp->out_of_order_queue);
4760 
4761 		/* Reset SACK state.  A conforming SACK implementation will
4762 		 * do the same at a timeout based retransmit.  When a connection
4763 		 * is in a sad state like this, we care only about integrity
4764 		 * of the connection not performance.
4765 		 */
4766 		if (tp->rx_opt.sack_ok)
4767 			tcp_sack_reset(&tp->rx_opt);
4768 		sk_mem_reclaim(sk);
4769 		res = true;
4770 	}
4771 	return res;
4772 }
4773 
4774 /* Reduce allocated memory if we can, trying to get
4775  * the socket within its memory limits again.
4776  *
4777  * Return less than zero if we should start dropping frames
4778  * until the socket owning process reads some of the data
4779  * to stabilize the situation.
4780  */
4781 static int tcp_prune_queue(struct sock *sk)
4782 {
4783 	struct tcp_sock *tp = tcp_sk(sk);
4784 
4785 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4786 
4787 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4788 
4789 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4790 		tcp_clamp_window(sk);
4791 	else if (sk_under_memory_pressure(sk))
4792 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4793 
4794 	tcp_collapse_ofo_queue(sk);
4795 	if (!skb_queue_empty(&sk->sk_receive_queue))
4796 		tcp_collapse(sk, &sk->sk_receive_queue,
4797 			     skb_peek(&sk->sk_receive_queue),
4798 			     NULL,
4799 			     tp->copied_seq, tp->rcv_nxt);
4800 	sk_mem_reclaim(sk);
4801 
4802 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4803 		return 0;
4804 
4805 	/* Collapsing did not help, destructive actions follow.
4806 	 * This must not ever occur. */
4807 
4808 	tcp_prune_ofo_queue(sk);
4809 
4810 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4811 		return 0;
4812 
4813 	/* If we are really being abused, tell the caller to silently
4814 	 * drop receive data on the floor.  It will get retransmitted
4815 	 * and hopefully then we'll have sufficient space.
4816 	 */
4817 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4818 
4819 	/* Massive buffer overcommit. */
4820 	tp->pred_flags = 0;
4821 	return -1;
4822 }
4823 
4824 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4825 {
4826 	const struct tcp_sock *tp = tcp_sk(sk);
4827 
4828 	/* If the user specified a specific send buffer setting, do
4829 	 * not modify it.
4830 	 */
4831 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4832 		return false;
4833 
4834 	/* If we are under global TCP memory pressure, do not expand.  */
4835 	if (sk_under_memory_pressure(sk))
4836 		return false;
4837 
4838 	/* If we are under soft global TCP memory pressure, do not expand.  */
4839 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4840 		return false;
4841 
4842 	/* If we filled the congestion window, do not expand.  */
4843 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
4844 		return false;
4845 
4846 	return true;
4847 }
4848 
4849 /* When incoming ACK allowed to free some skb from write_queue,
4850  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4851  * on the exit from tcp input handler.
4852  *
4853  * PROBLEM: sndbuf expansion does not work well with largesend.
4854  */
4855 static void tcp_new_space(struct sock *sk)
4856 {
4857 	struct tcp_sock *tp = tcp_sk(sk);
4858 
4859 	if (tcp_should_expand_sndbuf(sk)) {
4860 		tcp_sndbuf_expand(sk);
4861 		tp->snd_cwnd_stamp = tcp_time_stamp;
4862 	}
4863 
4864 	sk->sk_write_space(sk);
4865 }
4866 
4867 static void tcp_check_space(struct sock *sk)
4868 {
4869 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4870 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4871 		/* pairs with tcp_poll() */
4872 		smp_mb__after_atomic();
4873 		if (sk->sk_socket &&
4874 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4875 			tcp_new_space(sk);
4876 	}
4877 }
4878 
4879 static inline void tcp_data_snd_check(struct sock *sk)
4880 {
4881 	tcp_push_pending_frames(sk);
4882 	tcp_check_space(sk);
4883 }
4884 
4885 /*
4886  * Check if sending an ack is needed.
4887  */
4888 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4889 {
4890 	struct tcp_sock *tp = tcp_sk(sk);
4891 
4892 	    /* More than one full frame received... */
4893 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4894 	     /* ... and right edge of window advances far enough.
4895 	      * (tcp_recvmsg() will send ACK otherwise). Or...
4896 	      */
4897 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
4898 	    /* We ACK each frame or... */
4899 	    tcp_in_quickack_mode(sk) ||
4900 	    /* We have out of order data. */
4901 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4902 		/* Then ack it now */
4903 		tcp_send_ack(sk);
4904 	} else {
4905 		/* Else, send delayed ack. */
4906 		tcp_send_delayed_ack(sk);
4907 	}
4908 }
4909 
4910 static inline void tcp_ack_snd_check(struct sock *sk)
4911 {
4912 	if (!inet_csk_ack_scheduled(sk)) {
4913 		/* We sent a data segment already. */
4914 		return;
4915 	}
4916 	__tcp_ack_snd_check(sk, 1);
4917 }
4918 
4919 /*
4920  *	This routine is only called when we have urgent data
4921  *	signaled. Its the 'slow' part of tcp_urg. It could be
4922  *	moved inline now as tcp_urg is only called from one
4923  *	place. We handle URGent data wrong. We have to - as
4924  *	BSD still doesn't use the correction from RFC961.
4925  *	For 1003.1g we should support a new option TCP_STDURG to permit
4926  *	either form (or just set the sysctl tcp_stdurg).
4927  */
4928 
4929 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4930 {
4931 	struct tcp_sock *tp = tcp_sk(sk);
4932 	u32 ptr = ntohs(th->urg_ptr);
4933 
4934 	if (ptr && !sysctl_tcp_stdurg)
4935 		ptr--;
4936 	ptr += ntohl(th->seq);
4937 
4938 	/* Ignore urgent data that we've already seen and read. */
4939 	if (after(tp->copied_seq, ptr))
4940 		return;
4941 
4942 	/* Do not replay urg ptr.
4943 	 *
4944 	 * NOTE: interesting situation not covered by specs.
4945 	 * Misbehaving sender may send urg ptr, pointing to segment,
4946 	 * which we already have in ofo queue. We are not able to fetch
4947 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4948 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4949 	 * situations. But it is worth to think about possibility of some
4950 	 * DoSes using some hypothetical application level deadlock.
4951 	 */
4952 	if (before(ptr, tp->rcv_nxt))
4953 		return;
4954 
4955 	/* Do we already have a newer (or duplicate) urgent pointer? */
4956 	if (tp->urg_data && !after(ptr, tp->urg_seq))
4957 		return;
4958 
4959 	/* Tell the world about our new urgent pointer. */
4960 	sk_send_sigurg(sk);
4961 
4962 	/* We may be adding urgent data when the last byte read was
4963 	 * urgent. To do this requires some care. We cannot just ignore
4964 	 * tp->copied_seq since we would read the last urgent byte again
4965 	 * as data, nor can we alter copied_seq until this data arrives
4966 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4967 	 *
4968 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4969 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4970 	 * and expect that both A and B disappear from stream. This is _wrong_.
4971 	 * Though this happens in BSD with high probability, this is occasional.
4972 	 * Any application relying on this is buggy. Note also, that fix "works"
4973 	 * only in this artificial test. Insert some normal data between A and B and we will
4974 	 * decline of BSD again. Verdict: it is better to remove to trap
4975 	 * buggy users.
4976 	 */
4977 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4978 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4979 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4980 		tp->copied_seq++;
4981 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4982 			__skb_unlink(skb, &sk->sk_receive_queue);
4983 			__kfree_skb(skb);
4984 		}
4985 	}
4986 
4987 	tp->urg_data = TCP_URG_NOTYET;
4988 	tp->urg_seq = ptr;
4989 
4990 	/* Disable header prediction. */
4991 	tp->pred_flags = 0;
4992 }
4993 
4994 /* This is the 'fast' part of urgent handling. */
4995 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4996 {
4997 	struct tcp_sock *tp = tcp_sk(sk);
4998 
4999 	/* Check if we get a new urgent pointer - normally not. */
5000 	if (th->urg)
5001 		tcp_check_urg(sk, th);
5002 
5003 	/* Do we wait for any urgent data? - normally not... */
5004 	if (tp->urg_data == TCP_URG_NOTYET) {
5005 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5006 			  th->syn;
5007 
5008 		/* Is the urgent pointer pointing into this packet? */
5009 		if (ptr < skb->len) {
5010 			u8 tmp;
5011 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5012 				BUG();
5013 			tp->urg_data = TCP_URG_VALID | tmp;
5014 			if (!sock_flag(sk, SOCK_DEAD))
5015 				sk->sk_data_ready(sk);
5016 		}
5017 	}
5018 }
5019 
5020 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5021 {
5022 	struct tcp_sock *tp = tcp_sk(sk);
5023 	int chunk = skb->len - hlen;
5024 	int err;
5025 
5026 	local_bh_enable();
5027 	if (skb_csum_unnecessary(skb))
5028 		err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5029 	else
5030 		err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5031 
5032 	if (!err) {
5033 		tp->ucopy.len -= chunk;
5034 		tp->copied_seq += chunk;
5035 		tcp_rcv_space_adjust(sk);
5036 	}
5037 
5038 	local_bh_disable();
5039 	return err;
5040 }
5041 
5042 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5043 					    struct sk_buff *skb)
5044 {
5045 	__sum16 result;
5046 
5047 	if (sock_owned_by_user(sk)) {
5048 		local_bh_enable();
5049 		result = __tcp_checksum_complete(skb);
5050 		local_bh_disable();
5051 	} else {
5052 		result = __tcp_checksum_complete(skb);
5053 	}
5054 	return result;
5055 }
5056 
5057 static inline bool tcp_checksum_complete_user(struct sock *sk,
5058 					     struct sk_buff *skb)
5059 {
5060 	return !skb_csum_unnecessary(skb) &&
5061 	       __tcp_checksum_complete_user(sk, skb);
5062 }
5063 
5064 /* Does PAWS and seqno based validation of an incoming segment, flags will
5065  * play significant role here.
5066  */
5067 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5068 				  const struct tcphdr *th, int syn_inerr)
5069 {
5070 	struct tcp_sock *tp = tcp_sk(sk);
5071 
5072 	/* RFC1323: H1. Apply PAWS check first. */
5073 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5074 	    tcp_paws_discard(sk, skb)) {
5075 		if (!th->rst) {
5076 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5077 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5078 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5079 						  &tp->last_oow_ack_time))
5080 				tcp_send_dupack(sk, skb);
5081 			goto discard;
5082 		}
5083 		/* Reset is accepted even if it did not pass PAWS. */
5084 	}
5085 
5086 	/* Step 1: check sequence number */
5087 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5088 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5089 		 * (RST) segments are validated by checking their SEQ-fields."
5090 		 * And page 69: "If an incoming segment is not acceptable,
5091 		 * an acknowledgment should be sent in reply (unless the RST
5092 		 * bit is set, if so drop the segment and return)".
5093 		 */
5094 		if (!th->rst) {
5095 			if (th->syn)
5096 				goto syn_challenge;
5097 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5098 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5099 						  &tp->last_oow_ack_time))
5100 				tcp_send_dupack(sk, skb);
5101 		}
5102 		goto discard;
5103 	}
5104 
5105 	/* Step 2: check RST bit */
5106 	if (th->rst) {
5107 		/* RFC 5961 3.2 :
5108 		 * If sequence number exactly matches RCV.NXT, then
5109 		 *     RESET the connection
5110 		 * else
5111 		 *     Send a challenge ACK
5112 		 */
5113 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5114 			tcp_reset(sk);
5115 		else
5116 			tcp_send_challenge_ack(sk, skb);
5117 		goto discard;
5118 	}
5119 
5120 	/* step 3: check security and precedence [ignored] */
5121 
5122 	/* step 4: Check for a SYN
5123 	 * RFC 5961 4.2 : Send a challenge ack
5124 	 */
5125 	if (th->syn) {
5126 syn_challenge:
5127 		if (syn_inerr)
5128 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5129 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5130 		tcp_send_challenge_ack(sk, skb);
5131 		goto discard;
5132 	}
5133 
5134 	return true;
5135 
5136 discard:
5137 	__kfree_skb(skb);
5138 	return false;
5139 }
5140 
5141 /*
5142  *	TCP receive function for the ESTABLISHED state.
5143  *
5144  *	It is split into a fast path and a slow path. The fast path is
5145  * 	disabled when:
5146  *	- A zero window was announced from us - zero window probing
5147  *        is only handled properly in the slow path.
5148  *	- Out of order segments arrived.
5149  *	- Urgent data is expected.
5150  *	- There is no buffer space left
5151  *	- Unexpected TCP flags/window values/header lengths are received
5152  *	  (detected by checking the TCP header against pred_flags)
5153  *	- Data is sent in both directions. Fast path only supports pure senders
5154  *	  or pure receivers (this means either the sequence number or the ack
5155  *	  value must stay constant)
5156  *	- Unexpected TCP option.
5157  *
5158  *	When these conditions are not satisfied it drops into a standard
5159  *	receive procedure patterned after RFC793 to handle all cases.
5160  *	The first three cases are guaranteed by proper pred_flags setting,
5161  *	the rest is checked inline. Fast processing is turned on in
5162  *	tcp_data_queue when everything is OK.
5163  */
5164 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5165 			 const struct tcphdr *th, unsigned int len)
5166 {
5167 	struct tcp_sock *tp = tcp_sk(sk);
5168 
5169 	if (unlikely(!sk->sk_rx_dst))
5170 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5171 	/*
5172 	 *	Header prediction.
5173 	 *	The code loosely follows the one in the famous
5174 	 *	"30 instruction TCP receive" Van Jacobson mail.
5175 	 *
5176 	 *	Van's trick is to deposit buffers into socket queue
5177 	 *	on a device interrupt, to call tcp_recv function
5178 	 *	on the receive process context and checksum and copy
5179 	 *	the buffer to user space. smart...
5180 	 *
5181 	 *	Our current scheme is not silly either but we take the
5182 	 *	extra cost of the net_bh soft interrupt processing...
5183 	 *	We do checksum and copy also but from device to kernel.
5184 	 */
5185 
5186 	tp->rx_opt.saw_tstamp = 0;
5187 
5188 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5189 	 *	if header_prediction is to be made
5190 	 *	'S' will always be tp->tcp_header_len >> 2
5191 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5192 	 *  turn it off	(when there are holes in the receive
5193 	 *	 space for instance)
5194 	 *	PSH flag is ignored.
5195 	 */
5196 
5197 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5198 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5199 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5200 		int tcp_header_len = tp->tcp_header_len;
5201 
5202 		/* Timestamp header prediction: tcp_header_len
5203 		 * is automatically equal to th->doff*4 due to pred_flags
5204 		 * match.
5205 		 */
5206 
5207 		/* Check timestamp */
5208 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5209 			/* No? Slow path! */
5210 			if (!tcp_parse_aligned_timestamp(tp, th))
5211 				goto slow_path;
5212 
5213 			/* If PAWS failed, check it more carefully in slow path */
5214 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5215 				goto slow_path;
5216 
5217 			/* DO NOT update ts_recent here, if checksum fails
5218 			 * and timestamp was corrupted part, it will result
5219 			 * in a hung connection since we will drop all
5220 			 * future packets due to the PAWS test.
5221 			 */
5222 		}
5223 
5224 		if (len <= tcp_header_len) {
5225 			/* Bulk data transfer: sender */
5226 			if (len == tcp_header_len) {
5227 				/* Predicted packet is in window by definition.
5228 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5229 				 * Hence, check seq<=rcv_wup reduces to:
5230 				 */
5231 				if (tcp_header_len ==
5232 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5233 				    tp->rcv_nxt == tp->rcv_wup)
5234 					tcp_store_ts_recent(tp);
5235 
5236 				/* We know that such packets are checksummed
5237 				 * on entry.
5238 				 */
5239 				tcp_ack(sk, skb, 0);
5240 				__kfree_skb(skb);
5241 				tcp_data_snd_check(sk);
5242 				return;
5243 			} else { /* Header too small */
5244 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5245 				goto discard;
5246 			}
5247 		} else {
5248 			int eaten = 0;
5249 			bool fragstolen = false;
5250 
5251 			if (tp->ucopy.task == current &&
5252 			    tp->copied_seq == tp->rcv_nxt &&
5253 			    len - tcp_header_len <= tp->ucopy.len &&
5254 			    sock_owned_by_user(sk)) {
5255 				__set_current_state(TASK_RUNNING);
5256 
5257 				if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5258 					/* Predicted packet is in window by definition.
5259 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5260 					 * Hence, check seq<=rcv_wup reduces to:
5261 					 */
5262 					if (tcp_header_len ==
5263 					    (sizeof(struct tcphdr) +
5264 					     TCPOLEN_TSTAMP_ALIGNED) &&
5265 					    tp->rcv_nxt == tp->rcv_wup)
5266 						tcp_store_ts_recent(tp);
5267 
5268 					tcp_rcv_rtt_measure_ts(sk, skb);
5269 
5270 					__skb_pull(skb, tcp_header_len);
5271 					tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5272 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5273 					eaten = 1;
5274 				}
5275 			}
5276 			if (!eaten) {
5277 				if (tcp_checksum_complete_user(sk, skb))
5278 					goto csum_error;
5279 
5280 				if ((int)skb->truesize > sk->sk_forward_alloc)
5281 					goto step5;
5282 
5283 				/* Predicted packet is in window by definition.
5284 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5285 				 * Hence, check seq<=rcv_wup reduces to:
5286 				 */
5287 				if (tcp_header_len ==
5288 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5289 				    tp->rcv_nxt == tp->rcv_wup)
5290 					tcp_store_ts_recent(tp);
5291 
5292 				tcp_rcv_rtt_measure_ts(sk, skb);
5293 
5294 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5295 
5296 				/* Bulk data transfer: receiver */
5297 				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5298 						      &fragstolen);
5299 			}
5300 
5301 			tcp_event_data_recv(sk, skb);
5302 
5303 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5304 				/* Well, only one small jumplet in fast path... */
5305 				tcp_ack(sk, skb, FLAG_DATA);
5306 				tcp_data_snd_check(sk);
5307 				if (!inet_csk_ack_scheduled(sk))
5308 					goto no_ack;
5309 			}
5310 
5311 			__tcp_ack_snd_check(sk, 0);
5312 no_ack:
5313 			if (eaten)
5314 				kfree_skb_partial(skb, fragstolen);
5315 			sk->sk_data_ready(sk);
5316 			return;
5317 		}
5318 	}
5319 
5320 slow_path:
5321 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5322 		goto csum_error;
5323 
5324 	if (!th->ack && !th->rst && !th->syn)
5325 		goto discard;
5326 
5327 	/*
5328 	 *	Standard slow path.
5329 	 */
5330 
5331 	if (!tcp_validate_incoming(sk, skb, th, 1))
5332 		return;
5333 
5334 step5:
5335 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5336 		goto discard;
5337 
5338 	tcp_rcv_rtt_measure_ts(sk, skb);
5339 
5340 	/* Process urgent data. */
5341 	tcp_urg(sk, skb, th);
5342 
5343 	/* step 7: process the segment text */
5344 	tcp_data_queue(sk, skb);
5345 
5346 	tcp_data_snd_check(sk);
5347 	tcp_ack_snd_check(sk);
5348 	return;
5349 
5350 csum_error:
5351 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5352 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5353 
5354 discard:
5355 	__kfree_skb(skb);
5356 }
5357 EXPORT_SYMBOL(tcp_rcv_established);
5358 
5359 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5360 {
5361 	struct tcp_sock *tp = tcp_sk(sk);
5362 	struct inet_connection_sock *icsk = inet_csk(sk);
5363 
5364 	tcp_set_state(sk, TCP_ESTABLISHED);
5365 
5366 	if (skb) {
5367 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5368 		security_inet_conn_established(sk, skb);
5369 	}
5370 
5371 	/* Make sure socket is routed, for correct metrics.  */
5372 	icsk->icsk_af_ops->rebuild_header(sk);
5373 
5374 	tcp_init_metrics(sk);
5375 
5376 	tcp_init_congestion_control(sk);
5377 
5378 	/* Prevent spurious tcp_cwnd_restart() on first data
5379 	 * packet.
5380 	 */
5381 	tp->lsndtime = tcp_time_stamp;
5382 
5383 	tcp_init_buffer_space(sk);
5384 
5385 	if (sock_flag(sk, SOCK_KEEPOPEN))
5386 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5387 
5388 	if (!tp->rx_opt.snd_wscale)
5389 		__tcp_fast_path_on(tp, tp->snd_wnd);
5390 	else
5391 		tp->pred_flags = 0;
5392 
5393 	if (!sock_flag(sk, SOCK_DEAD)) {
5394 		sk->sk_state_change(sk);
5395 		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5396 	}
5397 }
5398 
5399 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5400 				    struct tcp_fastopen_cookie *cookie)
5401 {
5402 	struct tcp_sock *tp = tcp_sk(sk);
5403 	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5404 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5405 	bool syn_drop = false;
5406 
5407 	if (mss == tp->rx_opt.user_mss) {
5408 		struct tcp_options_received opt;
5409 
5410 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5411 		tcp_clear_options(&opt);
5412 		opt.user_mss = opt.mss_clamp = 0;
5413 		tcp_parse_options(synack, &opt, 0, NULL);
5414 		mss = opt.mss_clamp;
5415 	}
5416 
5417 	if (!tp->syn_fastopen) {
5418 		/* Ignore an unsolicited cookie */
5419 		cookie->len = -1;
5420 	} else if (tp->total_retrans) {
5421 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5422 		 * acknowledges data. Presumably the remote received only
5423 		 * the retransmitted (regular) SYNs: either the original
5424 		 * SYN-data or the corresponding SYN-ACK was dropped.
5425 		 */
5426 		syn_drop = (cookie->len < 0 && data);
5427 	} else if (cookie->len < 0 && !tp->syn_data) {
5428 		/* We requested a cookie but didn't get it. If we did not use
5429 		 * the (old) exp opt format then try so next time (try_exp=1).
5430 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5431 		 */
5432 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5433 	}
5434 
5435 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5436 
5437 	if (data) { /* Retransmit unacked data in SYN */
5438 		tcp_for_write_queue_from(data, sk) {
5439 			if (data == tcp_send_head(sk) ||
5440 			    __tcp_retransmit_skb(sk, data))
5441 				break;
5442 		}
5443 		tcp_rearm_rto(sk);
5444 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5445 		return true;
5446 	}
5447 	tp->syn_data_acked = tp->syn_data;
5448 	if (tp->syn_data_acked)
5449 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5450 	return false;
5451 }
5452 
5453 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5454 					 const struct tcphdr *th, unsigned int len)
5455 {
5456 	struct inet_connection_sock *icsk = inet_csk(sk);
5457 	struct tcp_sock *tp = tcp_sk(sk);
5458 	struct tcp_fastopen_cookie foc = { .len = -1 };
5459 	int saved_clamp = tp->rx_opt.mss_clamp;
5460 
5461 	tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5462 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5463 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5464 
5465 	if (th->ack) {
5466 		/* rfc793:
5467 		 * "If the state is SYN-SENT then
5468 		 *    first check the ACK bit
5469 		 *      If the ACK bit is set
5470 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5471 		 *        a reset (unless the RST bit is set, if so drop
5472 		 *        the segment and return)"
5473 		 */
5474 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5475 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5476 			goto reset_and_undo;
5477 
5478 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5479 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5480 			     tcp_time_stamp)) {
5481 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5482 			goto reset_and_undo;
5483 		}
5484 
5485 		/* Now ACK is acceptable.
5486 		 *
5487 		 * "If the RST bit is set
5488 		 *    If the ACK was acceptable then signal the user "error:
5489 		 *    connection reset", drop the segment, enter CLOSED state,
5490 		 *    delete TCB, and return."
5491 		 */
5492 
5493 		if (th->rst) {
5494 			tcp_reset(sk);
5495 			goto discard;
5496 		}
5497 
5498 		/* rfc793:
5499 		 *   "fifth, if neither of the SYN or RST bits is set then
5500 		 *    drop the segment and return."
5501 		 *
5502 		 *    See note below!
5503 		 *                                        --ANK(990513)
5504 		 */
5505 		if (!th->syn)
5506 			goto discard_and_undo;
5507 
5508 		/* rfc793:
5509 		 *   "If the SYN bit is on ...
5510 		 *    are acceptable then ...
5511 		 *    (our SYN has been ACKed), change the connection
5512 		 *    state to ESTABLISHED..."
5513 		 */
5514 
5515 		tcp_ecn_rcv_synack(tp, th);
5516 
5517 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5518 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5519 
5520 		/* Ok.. it's good. Set up sequence numbers and
5521 		 * move to established.
5522 		 */
5523 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5524 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5525 
5526 		/* RFC1323: The window in SYN & SYN/ACK segments is
5527 		 * never scaled.
5528 		 */
5529 		tp->snd_wnd = ntohs(th->window);
5530 
5531 		if (!tp->rx_opt.wscale_ok) {
5532 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5533 			tp->window_clamp = min(tp->window_clamp, 65535U);
5534 		}
5535 
5536 		if (tp->rx_opt.saw_tstamp) {
5537 			tp->rx_opt.tstamp_ok	   = 1;
5538 			tp->tcp_header_len =
5539 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5540 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5541 			tcp_store_ts_recent(tp);
5542 		} else {
5543 			tp->tcp_header_len = sizeof(struct tcphdr);
5544 		}
5545 
5546 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5547 			tcp_enable_fack(tp);
5548 
5549 		tcp_mtup_init(sk);
5550 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5551 		tcp_initialize_rcv_mss(sk);
5552 
5553 		/* Remember, tcp_poll() does not lock socket!
5554 		 * Change state from SYN-SENT only after copied_seq
5555 		 * is initialized. */
5556 		tp->copied_seq = tp->rcv_nxt;
5557 
5558 		smp_mb();
5559 
5560 		tcp_finish_connect(sk, skb);
5561 
5562 		if ((tp->syn_fastopen || tp->syn_data) &&
5563 		    tcp_rcv_fastopen_synack(sk, skb, &foc))
5564 			return -1;
5565 
5566 		if (sk->sk_write_pending ||
5567 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5568 		    icsk->icsk_ack.pingpong) {
5569 			/* Save one ACK. Data will be ready after
5570 			 * several ticks, if write_pending is set.
5571 			 *
5572 			 * It may be deleted, but with this feature tcpdumps
5573 			 * look so _wonderfully_ clever, that I was not able
5574 			 * to stand against the temptation 8)     --ANK
5575 			 */
5576 			inet_csk_schedule_ack(sk);
5577 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5578 			tcp_enter_quickack_mode(sk);
5579 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5580 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5581 
5582 discard:
5583 			__kfree_skb(skb);
5584 			return 0;
5585 		} else {
5586 			tcp_send_ack(sk);
5587 		}
5588 		return -1;
5589 	}
5590 
5591 	/* No ACK in the segment */
5592 
5593 	if (th->rst) {
5594 		/* rfc793:
5595 		 * "If the RST bit is set
5596 		 *
5597 		 *      Otherwise (no ACK) drop the segment and return."
5598 		 */
5599 
5600 		goto discard_and_undo;
5601 	}
5602 
5603 	/* PAWS check. */
5604 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5605 	    tcp_paws_reject(&tp->rx_opt, 0))
5606 		goto discard_and_undo;
5607 
5608 	if (th->syn) {
5609 		/* We see SYN without ACK. It is attempt of
5610 		 * simultaneous connect with crossed SYNs.
5611 		 * Particularly, it can be connect to self.
5612 		 */
5613 		tcp_set_state(sk, TCP_SYN_RECV);
5614 
5615 		if (tp->rx_opt.saw_tstamp) {
5616 			tp->rx_opt.tstamp_ok = 1;
5617 			tcp_store_ts_recent(tp);
5618 			tp->tcp_header_len =
5619 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5620 		} else {
5621 			tp->tcp_header_len = sizeof(struct tcphdr);
5622 		}
5623 
5624 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5625 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5626 
5627 		/* RFC1323: The window in SYN & SYN/ACK segments is
5628 		 * never scaled.
5629 		 */
5630 		tp->snd_wnd    = ntohs(th->window);
5631 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5632 		tp->max_window = tp->snd_wnd;
5633 
5634 		tcp_ecn_rcv_syn(tp, th);
5635 
5636 		tcp_mtup_init(sk);
5637 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5638 		tcp_initialize_rcv_mss(sk);
5639 
5640 		tcp_send_synack(sk);
5641 #if 0
5642 		/* Note, we could accept data and URG from this segment.
5643 		 * There are no obstacles to make this (except that we must
5644 		 * either change tcp_recvmsg() to prevent it from returning data
5645 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5646 		 *
5647 		 * However, if we ignore data in ACKless segments sometimes,
5648 		 * we have no reasons to accept it sometimes.
5649 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5650 		 * is not flawless. So, discard packet for sanity.
5651 		 * Uncomment this return to process the data.
5652 		 */
5653 		return -1;
5654 #else
5655 		goto discard;
5656 #endif
5657 	}
5658 	/* "fifth, if neither of the SYN or RST bits is set then
5659 	 * drop the segment and return."
5660 	 */
5661 
5662 discard_and_undo:
5663 	tcp_clear_options(&tp->rx_opt);
5664 	tp->rx_opt.mss_clamp = saved_clamp;
5665 	goto discard;
5666 
5667 reset_and_undo:
5668 	tcp_clear_options(&tp->rx_opt);
5669 	tp->rx_opt.mss_clamp = saved_clamp;
5670 	return 1;
5671 }
5672 
5673 /*
5674  *	This function implements the receiving procedure of RFC 793 for
5675  *	all states except ESTABLISHED and TIME_WAIT.
5676  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5677  *	address independent.
5678  */
5679 
5680 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5681 			  const struct tcphdr *th, unsigned int len)
5682 {
5683 	struct tcp_sock *tp = tcp_sk(sk);
5684 	struct inet_connection_sock *icsk = inet_csk(sk);
5685 	struct request_sock *req;
5686 	int queued = 0;
5687 	bool acceptable;
5688 	u32 synack_stamp;
5689 
5690 	tp->rx_opt.saw_tstamp = 0;
5691 
5692 	switch (sk->sk_state) {
5693 	case TCP_CLOSE:
5694 		goto discard;
5695 
5696 	case TCP_LISTEN:
5697 		if (th->ack)
5698 			return 1;
5699 
5700 		if (th->rst)
5701 			goto discard;
5702 
5703 		if (th->syn) {
5704 			if (th->fin)
5705 				goto discard;
5706 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5707 				return 1;
5708 
5709 			/* Now we have several options: In theory there is
5710 			 * nothing else in the frame. KA9Q has an option to
5711 			 * send data with the syn, BSD accepts data with the
5712 			 * syn up to the [to be] advertised window and
5713 			 * Solaris 2.1 gives you a protocol error. For now
5714 			 * we just ignore it, that fits the spec precisely
5715 			 * and avoids incompatibilities. It would be nice in
5716 			 * future to drop through and process the data.
5717 			 *
5718 			 * Now that TTCP is starting to be used we ought to
5719 			 * queue this data.
5720 			 * But, this leaves one open to an easy denial of
5721 			 * service attack, and SYN cookies can't defend
5722 			 * against this problem. So, we drop the data
5723 			 * in the interest of security over speed unless
5724 			 * it's still in use.
5725 			 */
5726 			kfree_skb(skb);
5727 			return 0;
5728 		}
5729 		goto discard;
5730 
5731 	case TCP_SYN_SENT:
5732 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5733 		if (queued >= 0)
5734 			return queued;
5735 
5736 		/* Do step6 onward by hand. */
5737 		tcp_urg(sk, skb, th);
5738 		__kfree_skb(skb);
5739 		tcp_data_snd_check(sk);
5740 		return 0;
5741 	}
5742 
5743 	req = tp->fastopen_rsk;
5744 	if (req) {
5745 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5746 		    sk->sk_state != TCP_FIN_WAIT1);
5747 
5748 		if (!tcp_check_req(sk, skb, req, true))
5749 			goto discard;
5750 	}
5751 
5752 	if (!th->ack && !th->rst && !th->syn)
5753 		goto discard;
5754 
5755 	if (!tcp_validate_incoming(sk, skb, th, 0))
5756 		return 0;
5757 
5758 	/* step 5: check the ACK field */
5759 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5760 				      FLAG_UPDATE_TS_RECENT) > 0;
5761 
5762 	switch (sk->sk_state) {
5763 	case TCP_SYN_RECV:
5764 		if (!acceptable)
5765 			return 1;
5766 
5767 		/* Once we leave TCP_SYN_RECV, we no longer need req
5768 		 * so release it.
5769 		 */
5770 		if (req) {
5771 			synack_stamp = tcp_rsk(req)->snt_synack;
5772 			tp->total_retrans = req->num_retrans;
5773 			reqsk_fastopen_remove(sk, req, false);
5774 		} else {
5775 			synack_stamp = tp->lsndtime;
5776 			/* Make sure socket is routed, for correct metrics. */
5777 			icsk->icsk_af_ops->rebuild_header(sk);
5778 			tcp_init_congestion_control(sk);
5779 
5780 			tcp_mtup_init(sk);
5781 			tp->copied_seq = tp->rcv_nxt;
5782 			tcp_init_buffer_space(sk);
5783 		}
5784 		smp_mb();
5785 		tcp_set_state(sk, TCP_ESTABLISHED);
5786 		sk->sk_state_change(sk);
5787 
5788 		/* Note, that this wakeup is only for marginal crossed SYN case.
5789 		 * Passively open sockets are not waked up, because
5790 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5791 		 */
5792 		if (sk->sk_socket)
5793 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5794 
5795 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5796 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5797 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5798 		tcp_synack_rtt_meas(sk, synack_stamp);
5799 
5800 		if (tp->rx_opt.tstamp_ok)
5801 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5802 
5803 		if (req) {
5804 			/* Re-arm the timer because data may have been sent out.
5805 			 * This is similar to the regular data transmission case
5806 			 * when new data has just been ack'ed.
5807 			 *
5808 			 * (TFO) - we could try to be more aggressive and
5809 			 * retransmitting any data sooner based on when they
5810 			 * are sent out.
5811 			 */
5812 			tcp_rearm_rto(sk);
5813 		} else
5814 			tcp_init_metrics(sk);
5815 
5816 		tcp_update_pacing_rate(sk);
5817 
5818 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5819 		tp->lsndtime = tcp_time_stamp;
5820 
5821 		tcp_initialize_rcv_mss(sk);
5822 		tcp_fast_path_on(tp);
5823 		break;
5824 
5825 	case TCP_FIN_WAIT1: {
5826 		struct dst_entry *dst;
5827 		int tmo;
5828 
5829 		/* If we enter the TCP_FIN_WAIT1 state and we are a
5830 		 * Fast Open socket and this is the first acceptable
5831 		 * ACK we have received, this would have acknowledged
5832 		 * our SYNACK so stop the SYNACK timer.
5833 		 */
5834 		if (req) {
5835 			/* Return RST if ack_seq is invalid.
5836 			 * Note that RFC793 only says to generate a
5837 			 * DUPACK for it but for TCP Fast Open it seems
5838 			 * better to treat this case like TCP_SYN_RECV
5839 			 * above.
5840 			 */
5841 			if (!acceptable)
5842 				return 1;
5843 			/* We no longer need the request sock. */
5844 			reqsk_fastopen_remove(sk, req, false);
5845 			tcp_rearm_rto(sk);
5846 		}
5847 		if (tp->snd_una != tp->write_seq)
5848 			break;
5849 
5850 		tcp_set_state(sk, TCP_FIN_WAIT2);
5851 		sk->sk_shutdown |= SEND_SHUTDOWN;
5852 
5853 		dst = __sk_dst_get(sk);
5854 		if (dst)
5855 			dst_confirm(dst);
5856 
5857 		if (!sock_flag(sk, SOCK_DEAD)) {
5858 			/* Wake up lingering close() */
5859 			sk->sk_state_change(sk);
5860 			break;
5861 		}
5862 
5863 		if (tp->linger2 < 0 ||
5864 		    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5865 		     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5866 			tcp_done(sk);
5867 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5868 			return 1;
5869 		}
5870 
5871 		tmo = tcp_fin_time(sk);
5872 		if (tmo > TCP_TIMEWAIT_LEN) {
5873 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5874 		} else if (th->fin || sock_owned_by_user(sk)) {
5875 			/* Bad case. We could lose such FIN otherwise.
5876 			 * It is not a big problem, but it looks confusing
5877 			 * and not so rare event. We still can lose it now,
5878 			 * if it spins in bh_lock_sock(), but it is really
5879 			 * marginal case.
5880 			 */
5881 			inet_csk_reset_keepalive_timer(sk, tmo);
5882 		} else {
5883 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5884 			goto discard;
5885 		}
5886 		break;
5887 	}
5888 
5889 	case TCP_CLOSING:
5890 		if (tp->snd_una == tp->write_seq) {
5891 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5892 			goto discard;
5893 		}
5894 		break;
5895 
5896 	case TCP_LAST_ACK:
5897 		if (tp->snd_una == tp->write_seq) {
5898 			tcp_update_metrics(sk);
5899 			tcp_done(sk);
5900 			goto discard;
5901 		}
5902 		break;
5903 	}
5904 
5905 	/* step 6: check the URG bit */
5906 	tcp_urg(sk, skb, th);
5907 
5908 	/* step 7: process the segment text */
5909 	switch (sk->sk_state) {
5910 	case TCP_CLOSE_WAIT:
5911 	case TCP_CLOSING:
5912 	case TCP_LAST_ACK:
5913 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5914 			break;
5915 	case TCP_FIN_WAIT1:
5916 	case TCP_FIN_WAIT2:
5917 		/* RFC 793 says to queue data in these states,
5918 		 * RFC 1122 says we MUST send a reset.
5919 		 * BSD 4.4 also does reset.
5920 		 */
5921 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5922 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5923 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5924 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5925 				tcp_reset(sk);
5926 				return 1;
5927 			}
5928 		}
5929 		/* Fall through */
5930 	case TCP_ESTABLISHED:
5931 		tcp_data_queue(sk, skb);
5932 		queued = 1;
5933 		break;
5934 	}
5935 
5936 	/* tcp_data could move socket to TIME-WAIT */
5937 	if (sk->sk_state != TCP_CLOSE) {
5938 		tcp_data_snd_check(sk);
5939 		tcp_ack_snd_check(sk);
5940 	}
5941 
5942 	if (!queued) {
5943 discard:
5944 		__kfree_skb(skb);
5945 	}
5946 	return 0;
5947 }
5948 EXPORT_SYMBOL(tcp_rcv_state_process);
5949 
5950 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
5951 {
5952 	struct inet_request_sock *ireq = inet_rsk(req);
5953 
5954 	if (family == AF_INET)
5955 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
5956 				    &ireq->ir_rmt_addr, port);
5957 #if IS_ENABLED(CONFIG_IPV6)
5958 	else if (family == AF_INET6)
5959 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
5960 				    &ireq->ir_v6_rmt_addr, port);
5961 #endif
5962 }
5963 
5964 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
5965  *
5966  * If we receive a SYN packet with these bits set, it means a
5967  * network is playing bad games with TOS bits. In order to
5968  * avoid possible false congestion notifications, we disable
5969  * TCP ECN negotiation.
5970  *
5971  * Exception: tcp_ca wants ECN. This is required for DCTCP
5972  * congestion control: Linux DCTCP asserts ECT on all packets,
5973  * including SYN, which is most optimal solution; however,
5974  * others, such as FreeBSD do not.
5975  */
5976 static void tcp_ecn_create_request(struct request_sock *req,
5977 				   const struct sk_buff *skb,
5978 				   const struct sock *listen_sk,
5979 				   const struct dst_entry *dst)
5980 {
5981 	const struct tcphdr *th = tcp_hdr(skb);
5982 	const struct net *net = sock_net(listen_sk);
5983 	bool th_ecn = th->ece && th->cwr;
5984 	bool ect, ecn_ok;
5985 
5986 	if (!th_ecn)
5987 		return;
5988 
5989 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
5990 	ecn_ok = net->ipv4.sysctl_tcp_ecn || dst_feature(dst, RTAX_FEATURE_ECN);
5991 
5992 	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk))
5993 		inet_rsk(req)->ecn_ok = 1;
5994 }
5995 
5996 static void tcp_openreq_init(struct request_sock *req,
5997 			     const struct tcp_options_received *rx_opt,
5998 			     struct sk_buff *skb, const struct sock *sk)
5999 {
6000 	struct inet_request_sock *ireq = inet_rsk(req);
6001 
6002 	req->rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6003 	req->cookie_ts = 0;
6004 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6005 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6006 	tcp_rsk(req)->snt_synack = tcp_time_stamp;
6007 	tcp_rsk(req)->last_oow_ack_time = 0;
6008 	req->mss = rx_opt->mss_clamp;
6009 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6010 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6011 	ireq->sack_ok = rx_opt->sack_ok;
6012 	ireq->snd_wscale = rx_opt->snd_wscale;
6013 	ireq->wscale_ok = rx_opt->wscale_ok;
6014 	ireq->acked = 0;
6015 	ireq->ecn_ok = 0;
6016 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6017 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6018 	ireq->ir_mark = inet_request_mark(sk, skb);
6019 }
6020 
6021 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6022 				      struct sock *sk_listener)
6023 {
6024 	struct request_sock *req = reqsk_alloc(ops, sk_listener);
6025 
6026 	if (req) {
6027 		struct inet_request_sock *ireq = inet_rsk(req);
6028 
6029 		kmemcheck_annotate_bitfield(ireq, flags);
6030 		ireq->opt = NULL;
6031 		atomic64_set(&ireq->ir_cookie, 0);
6032 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6033 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6034 		ireq->ireq_family = sk_listener->sk_family;
6035 	}
6036 
6037 	return req;
6038 }
6039 EXPORT_SYMBOL(inet_reqsk_alloc);
6040 
6041 /*
6042  * Return true if a syncookie should be sent
6043  */
6044 static bool tcp_syn_flood_action(struct sock *sk,
6045 				 const struct sk_buff *skb,
6046 				 const char *proto)
6047 {
6048 	const char *msg = "Dropping request";
6049 	bool want_cookie = false;
6050 	struct listen_sock *lopt;
6051 
6052 #ifdef CONFIG_SYN_COOKIES
6053 	if (sysctl_tcp_syncookies) {
6054 		msg = "Sending cookies";
6055 		want_cookie = true;
6056 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6057 	} else
6058 #endif
6059 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6060 
6061 	lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
6062 	if (!lopt->synflood_warned && sysctl_tcp_syncookies != 2) {
6063 		lopt->synflood_warned = 1;
6064 		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6065 			proto, ntohs(tcp_hdr(skb)->dest), msg);
6066 	}
6067 	return want_cookie;
6068 }
6069 
6070 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6071 		     const struct tcp_request_sock_ops *af_ops,
6072 		     struct sock *sk, struct sk_buff *skb)
6073 {
6074 	struct tcp_options_received tmp_opt;
6075 	struct request_sock *req;
6076 	struct tcp_sock *tp = tcp_sk(sk);
6077 	struct dst_entry *dst = NULL;
6078 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6079 	bool want_cookie = false, fastopen;
6080 	struct flowi fl;
6081 	struct tcp_fastopen_cookie foc = { .len = -1 };
6082 	int err;
6083 
6084 
6085 	/* TW buckets are converted to open requests without
6086 	 * limitations, they conserve resources and peer is
6087 	 * evidently real one.
6088 	 */
6089 	if ((sysctl_tcp_syncookies == 2 ||
6090 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6091 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6092 		if (!want_cookie)
6093 			goto drop;
6094 	}
6095 
6096 
6097 	/* Accept backlog is full. If we have already queued enough
6098 	 * of warm entries in syn queue, drop request. It is better than
6099 	 * clogging syn queue with openreqs with exponentially increasing
6100 	 * timeout.
6101 	 */
6102 	if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
6103 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6104 		goto drop;
6105 	}
6106 
6107 	req = inet_reqsk_alloc(rsk_ops, sk);
6108 	if (!req)
6109 		goto drop;
6110 
6111 	tcp_rsk(req)->af_specific = af_ops;
6112 
6113 	tcp_clear_options(&tmp_opt);
6114 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6115 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6116 	tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6117 
6118 	if (want_cookie && !tmp_opt.saw_tstamp)
6119 		tcp_clear_options(&tmp_opt);
6120 
6121 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6122 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6123 
6124 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6125 	inet_rsk(req)->ir_iif = sk->sk_bound_dev_if;
6126 
6127 	af_ops->init_req(req, sk, skb);
6128 
6129 	if (security_inet_conn_request(sk, skb, req))
6130 		goto drop_and_free;
6131 
6132 	if (!want_cookie && !isn) {
6133 		/* VJ's idea. We save last timestamp seen
6134 		 * from the destination in peer table, when entering
6135 		 * state TIME-WAIT, and check against it before
6136 		 * accepting new connection request.
6137 		 *
6138 		 * If "isn" is not zero, this request hit alive
6139 		 * timewait bucket, so that all the necessary checks
6140 		 * are made in the function processing timewait state.
6141 		 */
6142 		if (tcp_death_row.sysctl_tw_recycle) {
6143 			bool strict;
6144 
6145 			dst = af_ops->route_req(sk, &fl, req, &strict);
6146 
6147 			if (dst && strict &&
6148 			    !tcp_peer_is_proven(req, dst, true,
6149 						tmp_opt.saw_tstamp)) {
6150 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6151 				goto drop_and_release;
6152 			}
6153 		}
6154 		/* Kill the following clause, if you dislike this way. */
6155 		else if (!sysctl_tcp_syncookies &&
6156 			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6157 			  (sysctl_max_syn_backlog >> 2)) &&
6158 			 !tcp_peer_is_proven(req, dst, false,
6159 					     tmp_opt.saw_tstamp)) {
6160 			/* Without syncookies last quarter of
6161 			 * backlog is filled with destinations,
6162 			 * proven to be alive.
6163 			 * It means that we continue to communicate
6164 			 * to destinations, already remembered
6165 			 * to the moment of synflood.
6166 			 */
6167 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6168 				    rsk_ops->family);
6169 			goto drop_and_release;
6170 		}
6171 
6172 		isn = af_ops->init_seq(skb);
6173 	}
6174 	if (!dst) {
6175 		dst = af_ops->route_req(sk, &fl, req, NULL);
6176 		if (!dst)
6177 			goto drop_and_free;
6178 	}
6179 
6180 	tcp_ecn_create_request(req, skb, sk, dst);
6181 
6182 	if (want_cookie) {
6183 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6184 		req->cookie_ts = tmp_opt.tstamp_ok;
6185 		if (!tmp_opt.tstamp_ok)
6186 			inet_rsk(req)->ecn_ok = 0;
6187 	}
6188 
6189 	tcp_rsk(req)->snt_isn = isn;
6190 	tcp_openreq_init_rwin(req, sk, dst);
6191 	fastopen = !want_cookie &&
6192 		   tcp_try_fastopen(sk, skb, req, &foc, dst);
6193 	err = af_ops->send_synack(sk, dst, &fl, req,
6194 				  skb_get_queue_mapping(skb), &foc);
6195 	if (!fastopen) {
6196 		if (err || want_cookie)
6197 			goto drop_and_free;
6198 
6199 		tcp_rsk(req)->tfo_listener = false;
6200 		af_ops->queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6201 	}
6202 
6203 	return 0;
6204 
6205 drop_and_release:
6206 	dst_release(dst);
6207 drop_and_free:
6208 	reqsk_free(req);
6209 drop:
6210 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
6211 	return 0;
6212 }
6213 EXPORT_SYMBOL(tcp_conn_request);
6214