1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/static_key.h> 81 82 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 83 84 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 85 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 86 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 87 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 88 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 89 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 90 #define FLAG_ECE 0x40 /* ECE in this ACK */ 91 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 92 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 93 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 94 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 95 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 96 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 97 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 98 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 99 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 100 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 101 102 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 103 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 104 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 105 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 106 107 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 108 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 109 110 #define REXMIT_NONE 0 /* no loss recovery to do */ 111 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 112 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 113 114 #if IS_ENABLED(CONFIG_TLS_DEVICE) 115 static DEFINE_STATIC_KEY_FALSE(clean_acked_data_enabled); 116 117 void clean_acked_data_enable(struct inet_connection_sock *icsk, 118 void (*cad)(struct sock *sk, u32 ack_seq)) 119 { 120 icsk->icsk_clean_acked = cad; 121 static_branch_inc(&clean_acked_data_enabled); 122 } 123 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 124 125 void clean_acked_data_disable(struct inet_connection_sock *icsk) 126 { 127 static_branch_dec(&clean_acked_data_enabled); 128 icsk->icsk_clean_acked = NULL; 129 } 130 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 131 #endif 132 133 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 134 unsigned int len) 135 { 136 static bool __once __read_mostly; 137 138 if (!__once) { 139 struct net_device *dev; 140 141 __once = true; 142 143 rcu_read_lock(); 144 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 145 if (!dev || len >= dev->mtu) 146 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 147 dev ? dev->name : "Unknown driver"); 148 rcu_read_unlock(); 149 } 150 } 151 152 /* Adapt the MSS value used to make delayed ack decision to the 153 * real world. 154 */ 155 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 156 { 157 struct inet_connection_sock *icsk = inet_csk(sk); 158 const unsigned int lss = icsk->icsk_ack.last_seg_size; 159 unsigned int len; 160 161 icsk->icsk_ack.last_seg_size = 0; 162 163 /* skb->len may jitter because of SACKs, even if peer 164 * sends good full-sized frames. 165 */ 166 len = skb_shinfo(skb)->gso_size ? : skb->len; 167 if (len >= icsk->icsk_ack.rcv_mss) { 168 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 169 tcp_sk(sk)->advmss); 170 /* Account for possibly-removed options */ 171 if (unlikely(len > icsk->icsk_ack.rcv_mss + 172 MAX_TCP_OPTION_SPACE)) 173 tcp_gro_dev_warn(sk, skb, len); 174 } else { 175 /* Otherwise, we make more careful check taking into account, 176 * that SACKs block is variable. 177 * 178 * "len" is invariant segment length, including TCP header. 179 */ 180 len += skb->data - skb_transport_header(skb); 181 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 182 /* If PSH is not set, packet should be 183 * full sized, provided peer TCP is not badly broken. 184 * This observation (if it is correct 8)) allows 185 * to handle super-low mtu links fairly. 186 */ 187 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 188 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 189 /* Subtract also invariant (if peer is RFC compliant), 190 * tcp header plus fixed timestamp option length. 191 * Resulting "len" is MSS free of SACK jitter. 192 */ 193 len -= tcp_sk(sk)->tcp_header_len; 194 icsk->icsk_ack.last_seg_size = len; 195 if (len == lss) { 196 icsk->icsk_ack.rcv_mss = len; 197 return; 198 } 199 } 200 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 201 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 202 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 203 } 204 } 205 206 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 207 { 208 struct inet_connection_sock *icsk = inet_csk(sk); 209 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 210 211 if (quickacks == 0) 212 quickacks = 2; 213 quickacks = min(quickacks, max_quickacks); 214 if (quickacks > icsk->icsk_ack.quick) 215 icsk->icsk_ack.quick = quickacks; 216 } 217 218 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 219 { 220 struct inet_connection_sock *icsk = inet_csk(sk); 221 222 tcp_incr_quickack(sk, max_quickacks); 223 icsk->icsk_ack.pingpong = 0; 224 icsk->icsk_ack.ato = TCP_ATO_MIN; 225 } 226 227 /* Send ACKs quickly, if "quick" count is not exhausted 228 * and the session is not interactive. 229 */ 230 231 static bool tcp_in_quickack_mode(struct sock *sk) 232 { 233 const struct inet_connection_sock *icsk = inet_csk(sk); 234 const struct dst_entry *dst = __sk_dst_get(sk); 235 236 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 237 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong); 238 } 239 240 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 241 { 242 if (tp->ecn_flags & TCP_ECN_OK) 243 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 244 } 245 246 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 247 { 248 if (tcp_hdr(skb)->cwr) 249 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 250 } 251 252 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 253 { 254 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 255 } 256 257 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 258 { 259 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 260 case INET_ECN_NOT_ECT: 261 /* Funny extension: if ECT is not set on a segment, 262 * and we already seen ECT on a previous segment, 263 * it is probably a retransmit. 264 */ 265 if (tp->ecn_flags & TCP_ECN_SEEN) 266 tcp_enter_quickack_mode((struct sock *)tp, 1); 267 break; 268 case INET_ECN_CE: 269 if (tcp_ca_needs_ecn((struct sock *)tp)) 270 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE); 271 272 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 273 /* Better not delay acks, sender can have a very low cwnd */ 274 tcp_enter_quickack_mode((struct sock *)tp, 1); 275 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 276 } 277 tp->ecn_flags |= TCP_ECN_SEEN; 278 break; 279 default: 280 if (tcp_ca_needs_ecn((struct sock *)tp)) 281 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE); 282 tp->ecn_flags |= TCP_ECN_SEEN; 283 break; 284 } 285 } 286 287 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 288 { 289 if (tp->ecn_flags & TCP_ECN_OK) 290 __tcp_ecn_check_ce(tp, skb); 291 } 292 293 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 294 { 295 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 296 tp->ecn_flags &= ~TCP_ECN_OK; 297 } 298 299 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 300 { 301 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 302 tp->ecn_flags &= ~TCP_ECN_OK; 303 } 304 305 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 306 { 307 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 308 return true; 309 return false; 310 } 311 312 /* Buffer size and advertised window tuning. 313 * 314 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 315 */ 316 317 static void tcp_sndbuf_expand(struct sock *sk) 318 { 319 const struct tcp_sock *tp = tcp_sk(sk); 320 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 321 int sndmem, per_mss; 322 u32 nr_segs; 323 324 /* Worst case is non GSO/TSO : each frame consumes one skb 325 * and skb->head is kmalloced using power of two area of memory 326 */ 327 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 328 MAX_TCP_HEADER + 329 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 330 331 per_mss = roundup_pow_of_two(per_mss) + 332 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 333 334 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 335 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 336 337 /* Fast Recovery (RFC 5681 3.2) : 338 * Cubic needs 1.7 factor, rounded to 2 to include 339 * extra cushion (application might react slowly to EPOLLOUT) 340 */ 341 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 342 sndmem *= nr_segs * per_mss; 343 344 if (sk->sk_sndbuf < sndmem) 345 sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]); 346 } 347 348 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 349 * 350 * All tcp_full_space() is split to two parts: "network" buffer, allocated 351 * forward and advertised in receiver window (tp->rcv_wnd) and 352 * "application buffer", required to isolate scheduling/application 353 * latencies from network. 354 * window_clamp is maximal advertised window. It can be less than 355 * tcp_full_space(), in this case tcp_full_space() - window_clamp 356 * is reserved for "application" buffer. The less window_clamp is 357 * the smoother our behaviour from viewpoint of network, but the lower 358 * throughput and the higher sensitivity of the connection to losses. 8) 359 * 360 * rcv_ssthresh is more strict window_clamp used at "slow start" 361 * phase to predict further behaviour of this connection. 362 * It is used for two goals: 363 * - to enforce header prediction at sender, even when application 364 * requires some significant "application buffer". It is check #1. 365 * - to prevent pruning of receive queue because of misprediction 366 * of receiver window. Check #2. 367 * 368 * The scheme does not work when sender sends good segments opening 369 * window and then starts to feed us spaghetti. But it should work 370 * in common situations. Otherwise, we have to rely on queue collapsing. 371 */ 372 373 /* Slow part of check#2. */ 374 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 375 { 376 struct tcp_sock *tp = tcp_sk(sk); 377 /* Optimize this! */ 378 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1; 379 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 380 381 while (tp->rcv_ssthresh <= window) { 382 if (truesize <= skb->len) 383 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 384 385 truesize >>= 1; 386 window >>= 1; 387 } 388 return 0; 389 } 390 391 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 392 { 393 struct tcp_sock *tp = tcp_sk(sk); 394 395 /* Check #1 */ 396 if (tp->rcv_ssthresh < tp->window_clamp && 397 (int)tp->rcv_ssthresh < tcp_space(sk) && 398 !tcp_under_memory_pressure(sk)) { 399 int incr; 400 401 /* Check #2. Increase window, if skb with such overhead 402 * will fit to rcvbuf in future. 403 */ 404 if (tcp_win_from_space(sk, skb->truesize) <= skb->len) 405 incr = 2 * tp->advmss; 406 else 407 incr = __tcp_grow_window(sk, skb); 408 409 if (incr) { 410 incr = max_t(int, incr, 2 * skb->len); 411 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 412 tp->window_clamp); 413 inet_csk(sk)->icsk_ack.quick |= 1; 414 } 415 } 416 } 417 418 /* 3. Tuning rcvbuf, when connection enters established state. */ 419 static void tcp_fixup_rcvbuf(struct sock *sk) 420 { 421 u32 mss = tcp_sk(sk)->advmss; 422 int rcvmem; 423 424 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 425 tcp_default_init_rwnd(mss); 426 427 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 428 * Allow enough cushion so that sender is not limited by our window 429 */ 430 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) 431 rcvmem <<= 2; 432 433 if (sk->sk_rcvbuf < rcvmem) 434 sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 435 } 436 437 /* 4. Try to fixup all. It is made immediately after connection enters 438 * established state. 439 */ 440 void tcp_init_buffer_space(struct sock *sk) 441 { 442 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win; 443 struct tcp_sock *tp = tcp_sk(sk); 444 int maxwin; 445 446 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 447 tcp_fixup_rcvbuf(sk); 448 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 449 tcp_sndbuf_expand(sk); 450 451 tp->rcvq_space.space = tp->rcv_wnd; 452 tcp_mstamp_refresh(tp); 453 tp->rcvq_space.time = tp->tcp_mstamp; 454 tp->rcvq_space.seq = tp->copied_seq; 455 456 maxwin = tcp_full_space(sk); 457 458 if (tp->window_clamp >= maxwin) { 459 tp->window_clamp = maxwin; 460 461 if (tcp_app_win && maxwin > 4 * tp->advmss) 462 tp->window_clamp = max(maxwin - 463 (maxwin >> tcp_app_win), 464 4 * tp->advmss); 465 } 466 467 /* Force reservation of one segment. */ 468 if (tcp_app_win && 469 tp->window_clamp > 2 * tp->advmss && 470 tp->window_clamp + tp->advmss > maxwin) 471 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 472 473 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 474 tp->snd_cwnd_stamp = tcp_jiffies32; 475 } 476 477 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 478 static void tcp_clamp_window(struct sock *sk) 479 { 480 struct tcp_sock *tp = tcp_sk(sk); 481 struct inet_connection_sock *icsk = inet_csk(sk); 482 struct net *net = sock_net(sk); 483 484 icsk->icsk_ack.quick = 0; 485 486 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] && 487 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 488 !tcp_under_memory_pressure(sk) && 489 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 490 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 491 net->ipv4.sysctl_tcp_rmem[2]); 492 } 493 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 494 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 495 } 496 497 /* Initialize RCV_MSS value. 498 * RCV_MSS is an our guess about MSS used by the peer. 499 * We haven't any direct information about the MSS. 500 * It's better to underestimate the RCV_MSS rather than overestimate. 501 * Overestimations make us ACKing less frequently than needed. 502 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 503 */ 504 void tcp_initialize_rcv_mss(struct sock *sk) 505 { 506 const struct tcp_sock *tp = tcp_sk(sk); 507 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 508 509 hint = min(hint, tp->rcv_wnd / 2); 510 hint = min(hint, TCP_MSS_DEFAULT); 511 hint = max(hint, TCP_MIN_MSS); 512 513 inet_csk(sk)->icsk_ack.rcv_mss = hint; 514 } 515 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 516 517 /* Receiver "autotuning" code. 518 * 519 * The algorithm for RTT estimation w/o timestamps is based on 520 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 521 * <http://public.lanl.gov/radiant/pubs.html#DRS> 522 * 523 * More detail on this code can be found at 524 * <http://staff.psc.edu/jheffner/>, 525 * though this reference is out of date. A new paper 526 * is pending. 527 */ 528 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 529 { 530 u32 new_sample = tp->rcv_rtt_est.rtt_us; 531 long m = sample; 532 533 if (new_sample != 0) { 534 /* If we sample in larger samples in the non-timestamp 535 * case, we could grossly overestimate the RTT especially 536 * with chatty applications or bulk transfer apps which 537 * are stalled on filesystem I/O. 538 * 539 * Also, since we are only going for a minimum in the 540 * non-timestamp case, we do not smooth things out 541 * else with timestamps disabled convergence takes too 542 * long. 543 */ 544 if (!win_dep) { 545 m -= (new_sample >> 3); 546 new_sample += m; 547 } else { 548 m <<= 3; 549 if (m < new_sample) 550 new_sample = m; 551 } 552 } else { 553 /* No previous measure. */ 554 new_sample = m << 3; 555 } 556 557 tp->rcv_rtt_est.rtt_us = new_sample; 558 } 559 560 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 561 { 562 u32 delta_us; 563 564 if (tp->rcv_rtt_est.time == 0) 565 goto new_measure; 566 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 567 return; 568 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 569 if (!delta_us) 570 delta_us = 1; 571 tcp_rcv_rtt_update(tp, delta_us, 1); 572 573 new_measure: 574 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 575 tp->rcv_rtt_est.time = tp->tcp_mstamp; 576 } 577 578 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 579 const struct sk_buff *skb) 580 { 581 struct tcp_sock *tp = tcp_sk(sk); 582 583 if (tp->rx_opt.rcv_tsecr && 584 (TCP_SKB_CB(skb)->end_seq - 585 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) { 586 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 587 u32 delta_us; 588 589 if (!delta) 590 delta = 1; 591 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 592 tcp_rcv_rtt_update(tp, delta_us, 0); 593 } 594 } 595 596 /* 597 * This function should be called every time data is copied to user space. 598 * It calculates the appropriate TCP receive buffer space. 599 */ 600 void tcp_rcv_space_adjust(struct sock *sk) 601 { 602 struct tcp_sock *tp = tcp_sk(sk); 603 u32 copied; 604 int time; 605 606 trace_tcp_rcv_space_adjust(sk); 607 608 tcp_mstamp_refresh(tp); 609 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 610 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 611 return; 612 613 /* Number of bytes copied to user in last RTT */ 614 copied = tp->copied_seq - tp->rcvq_space.seq; 615 if (copied <= tp->rcvq_space.space) 616 goto new_measure; 617 618 /* A bit of theory : 619 * copied = bytes received in previous RTT, our base window 620 * To cope with packet losses, we need a 2x factor 621 * To cope with slow start, and sender growing its cwin by 100 % 622 * every RTT, we need a 4x factor, because the ACK we are sending 623 * now is for the next RTT, not the current one : 624 * <prev RTT . ><current RTT .. ><next RTT .... > 625 */ 626 627 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 628 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 629 int rcvmem, rcvbuf; 630 u64 rcvwin, grow; 631 632 /* minimal window to cope with packet losses, assuming 633 * steady state. Add some cushion because of small variations. 634 */ 635 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 636 637 /* Accommodate for sender rate increase (eg. slow start) */ 638 grow = rcvwin * (copied - tp->rcvq_space.space); 639 do_div(grow, tp->rcvq_space.space); 640 rcvwin += (grow << 1); 641 642 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 643 while (tcp_win_from_space(sk, rcvmem) < tp->advmss) 644 rcvmem += 128; 645 646 do_div(rcvwin, tp->advmss); 647 rcvbuf = min_t(u64, rcvwin * rcvmem, 648 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 649 if (rcvbuf > sk->sk_rcvbuf) { 650 sk->sk_rcvbuf = rcvbuf; 651 652 /* Make the window clamp follow along. */ 653 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 654 } 655 } 656 tp->rcvq_space.space = copied; 657 658 new_measure: 659 tp->rcvq_space.seq = tp->copied_seq; 660 tp->rcvq_space.time = tp->tcp_mstamp; 661 } 662 663 /* There is something which you must keep in mind when you analyze the 664 * behavior of the tp->ato delayed ack timeout interval. When a 665 * connection starts up, we want to ack as quickly as possible. The 666 * problem is that "good" TCP's do slow start at the beginning of data 667 * transmission. The means that until we send the first few ACK's the 668 * sender will sit on his end and only queue most of his data, because 669 * he can only send snd_cwnd unacked packets at any given time. For 670 * each ACK we send, he increments snd_cwnd and transmits more of his 671 * queue. -DaveM 672 */ 673 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 674 { 675 struct tcp_sock *tp = tcp_sk(sk); 676 struct inet_connection_sock *icsk = inet_csk(sk); 677 u32 now; 678 679 inet_csk_schedule_ack(sk); 680 681 tcp_measure_rcv_mss(sk, skb); 682 683 tcp_rcv_rtt_measure(tp); 684 685 now = tcp_jiffies32; 686 687 if (!icsk->icsk_ack.ato) { 688 /* The _first_ data packet received, initialize 689 * delayed ACK engine. 690 */ 691 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 692 icsk->icsk_ack.ato = TCP_ATO_MIN; 693 } else { 694 int m = now - icsk->icsk_ack.lrcvtime; 695 696 if (m <= TCP_ATO_MIN / 2) { 697 /* The fastest case is the first. */ 698 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 699 } else if (m < icsk->icsk_ack.ato) { 700 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 701 if (icsk->icsk_ack.ato > icsk->icsk_rto) 702 icsk->icsk_ack.ato = icsk->icsk_rto; 703 } else if (m > icsk->icsk_rto) { 704 /* Too long gap. Apparently sender failed to 705 * restart window, so that we send ACKs quickly. 706 */ 707 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 708 sk_mem_reclaim(sk); 709 } 710 } 711 icsk->icsk_ack.lrcvtime = now; 712 713 tcp_ecn_check_ce(tp, skb); 714 715 if (skb->len >= 128) 716 tcp_grow_window(sk, skb); 717 } 718 719 /* Called to compute a smoothed rtt estimate. The data fed to this 720 * routine either comes from timestamps, or from segments that were 721 * known _not_ to have been retransmitted [see Karn/Partridge 722 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 723 * piece by Van Jacobson. 724 * NOTE: the next three routines used to be one big routine. 725 * To save cycles in the RFC 1323 implementation it was better to break 726 * it up into three procedures. -- erics 727 */ 728 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 729 { 730 struct tcp_sock *tp = tcp_sk(sk); 731 long m = mrtt_us; /* RTT */ 732 u32 srtt = tp->srtt_us; 733 734 /* The following amusing code comes from Jacobson's 735 * article in SIGCOMM '88. Note that rtt and mdev 736 * are scaled versions of rtt and mean deviation. 737 * This is designed to be as fast as possible 738 * m stands for "measurement". 739 * 740 * On a 1990 paper the rto value is changed to: 741 * RTO = rtt + 4 * mdev 742 * 743 * Funny. This algorithm seems to be very broken. 744 * These formulae increase RTO, when it should be decreased, increase 745 * too slowly, when it should be increased quickly, decrease too quickly 746 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 747 * does not matter how to _calculate_ it. Seems, it was trap 748 * that VJ failed to avoid. 8) 749 */ 750 if (srtt != 0) { 751 m -= (srtt >> 3); /* m is now error in rtt est */ 752 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 753 if (m < 0) { 754 m = -m; /* m is now abs(error) */ 755 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 756 /* This is similar to one of Eifel findings. 757 * Eifel blocks mdev updates when rtt decreases. 758 * This solution is a bit different: we use finer gain 759 * for mdev in this case (alpha*beta). 760 * Like Eifel it also prevents growth of rto, 761 * but also it limits too fast rto decreases, 762 * happening in pure Eifel. 763 */ 764 if (m > 0) 765 m >>= 3; 766 } else { 767 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 768 } 769 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 770 if (tp->mdev_us > tp->mdev_max_us) { 771 tp->mdev_max_us = tp->mdev_us; 772 if (tp->mdev_max_us > tp->rttvar_us) 773 tp->rttvar_us = tp->mdev_max_us; 774 } 775 if (after(tp->snd_una, tp->rtt_seq)) { 776 if (tp->mdev_max_us < tp->rttvar_us) 777 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 778 tp->rtt_seq = tp->snd_nxt; 779 tp->mdev_max_us = tcp_rto_min_us(sk); 780 } 781 } else { 782 /* no previous measure. */ 783 srtt = m << 3; /* take the measured time to be rtt */ 784 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 785 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 786 tp->mdev_max_us = tp->rttvar_us; 787 tp->rtt_seq = tp->snd_nxt; 788 } 789 tp->srtt_us = max(1U, srtt); 790 } 791 792 static void tcp_update_pacing_rate(struct sock *sk) 793 { 794 const struct tcp_sock *tp = tcp_sk(sk); 795 u64 rate; 796 797 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 798 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 799 800 /* current rate is (cwnd * mss) / srtt 801 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 802 * In Congestion Avoidance phase, set it to 120 % the current rate. 803 * 804 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 805 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 806 * end of slow start and should slow down. 807 */ 808 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 809 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio; 810 else 811 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio; 812 813 rate *= max(tp->snd_cwnd, tp->packets_out); 814 815 if (likely(tp->srtt_us)) 816 do_div(rate, tp->srtt_us); 817 818 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 819 * without any lock. We want to make sure compiler wont store 820 * intermediate values in this location. 821 */ 822 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 823 sk->sk_max_pacing_rate)); 824 } 825 826 /* Calculate rto without backoff. This is the second half of Van Jacobson's 827 * routine referred to above. 828 */ 829 static void tcp_set_rto(struct sock *sk) 830 { 831 const struct tcp_sock *tp = tcp_sk(sk); 832 /* Old crap is replaced with new one. 8) 833 * 834 * More seriously: 835 * 1. If rtt variance happened to be less 50msec, it is hallucination. 836 * It cannot be less due to utterly erratic ACK generation made 837 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 838 * to do with delayed acks, because at cwnd>2 true delack timeout 839 * is invisible. Actually, Linux-2.4 also generates erratic 840 * ACKs in some circumstances. 841 */ 842 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 843 844 /* 2. Fixups made earlier cannot be right. 845 * If we do not estimate RTO correctly without them, 846 * all the algo is pure shit and should be replaced 847 * with correct one. It is exactly, which we pretend to do. 848 */ 849 850 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 851 * guarantees that rto is higher. 852 */ 853 tcp_bound_rto(sk); 854 } 855 856 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 857 { 858 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 859 860 if (!cwnd) 861 cwnd = TCP_INIT_CWND; 862 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 863 } 864 865 /* Take a notice that peer is sending D-SACKs */ 866 static void tcp_dsack_seen(struct tcp_sock *tp) 867 { 868 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 869 tp->rack.dsack_seen = 1; 870 } 871 872 /* It's reordering when higher sequence was delivered (i.e. sacked) before 873 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 874 * distance is approximated in full-mss packet distance ("reordering"). 875 */ 876 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 877 const int ts) 878 { 879 struct tcp_sock *tp = tcp_sk(sk); 880 const u32 mss = tp->mss_cache; 881 u32 fack, metric; 882 883 fack = tcp_highest_sack_seq(tp); 884 if (!before(low_seq, fack)) 885 return; 886 887 metric = fack - low_seq; 888 if ((metric > tp->reordering * mss) && mss) { 889 #if FASTRETRANS_DEBUG > 1 890 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 891 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 892 tp->reordering, 893 0, 894 tp->sacked_out, 895 tp->undo_marker ? tp->undo_retrans : 0); 896 #endif 897 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 898 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 899 } 900 901 tp->rack.reord = 1; 902 /* This exciting event is worth to be remembered. 8) */ 903 NET_INC_STATS(sock_net(sk), 904 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 905 } 906 907 /* This must be called before lost_out is incremented */ 908 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 909 { 910 if (!tp->retransmit_skb_hint || 911 before(TCP_SKB_CB(skb)->seq, 912 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 913 tp->retransmit_skb_hint = skb; 914 } 915 916 /* Sum the number of packets on the wire we have marked as lost. 917 * There are two cases we care about here: 918 * a) Packet hasn't been marked lost (nor retransmitted), 919 * and this is the first loss. 920 * b) Packet has been marked both lost and retransmitted, 921 * and this means we think it was lost again. 922 */ 923 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 924 { 925 __u8 sacked = TCP_SKB_CB(skb)->sacked; 926 927 if (!(sacked & TCPCB_LOST) || 928 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 929 tp->lost += tcp_skb_pcount(skb); 930 } 931 932 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 933 { 934 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 935 tcp_verify_retransmit_hint(tp, skb); 936 937 tp->lost_out += tcp_skb_pcount(skb); 938 tcp_sum_lost(tp, skb); 939 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 940 } 941 } 942 943 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 944 { 945 tcp_verify_retransmit_hint(tp, skb); 946 947 tcp_sum_lost(tp, skb); 948 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 949 tp->lost_out += tcp_skb_pcount(skb); 950 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 951 } 952 } 953 954 /* This procedure tags the retransmission queue when SACKs arrive. 955 * 956 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 957 * Packets in queue with these bits set are counted in variables 958 * sacked_out, retrans_out and lost_out, correspondingly. 959 * 960 * Valid combinations are: 961 * Tag InFlight Description 962 * 0 1 - orig segment is in flight. 963 * S 0 - nothing flies, orig reached receiver. 964 * L 0 - nothing flies, orig lost by net. 965 * R 2 - both orig and retransmit are in flight. 966 * L|R 1 - orig is lost, retransmit is in flight. 967 * S|R 1 - orig reached receiver, retrans is still in flight. 968 * (L|S|R is logically valid, it could occur when L|R is sacked, 969 * but it is equivalent to plain S and code short-curcuits it to S. 970 * L|S is logically invalid, it would mean -1 packet in flight 8)) 971 * 972 * These 6 states form finite state machine, controlled by the following events: 973 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 974 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 975 * 3. Loss detection event of two flavors: 976 * A. Scoreboard estimator decided the packet is lost. 977 * A'. Reno "three dupacks" marks head of queue lost. 978 * B. SACK arrives sacking SND.NXT at the moment, when the 979 * segment was retransmitted. 980 * 4. D-SACK added new rule: D-SACK changes any tag to S. 981 * 982 * It is pleasant to note, that state diagram turns out to be commutative, 983 * so that we are allowed not to be bothered by order of our actions, 984 * when multiple events arrive simultaneously. (see the function below). 985 * 986 * Reordering detection. 987 * -------------------- 988 * Reordering metric is maximal distance, which a packet can be displaced 989 * in packet stream. With SACKs we can estimate it: 990 * 991 * 1. SACK fills old hole and the corresponding segment was not 992 * ever retransmitted -> reordering. Alas, we cannot use it 993 * when segment was retransmitted. 994 * 2. The last flaw is solved with D-SACK. D-SACK arrives 995 * for retransmitted and already SACKed segment -> reordering.. 996 * Both of these heuristics are not used in Loss state, when we cannot 997 * account for retransmits accurately. 998 * 999 * SACK block validation. 1000 * ---------------------- 1001 * 1002 * SACK block range validation checks that the received SACK block fits to 1003 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1004 * Note that SND.UNA is not included to the range though being valid because 1005 * it means that the receiver is rather inconsistent with itself reporting 1006 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1007 * perfectly valid, however, in light of RFC2018 which explicitly states 1008 * that "SACK block MUST reflect the newest segment. Even if the newest 1009 * segment is going to be discarded ...", not that it looks very clever 1010 * in case of head skb. Due to potentional receiver driven attacks, we 1011 * choose to avoid immediate execution of a walk in write queue due to 1012 * reneging and defer head skb's loss recovery to standard loss recovery 1013 * procedure that will eventually trigger (nothing forbids us doing this). 1014 * 1015 * Implements also blockage to start_seq wrap-around. Problem lies in the 1016 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1017 * there's no guarantee that it will be before snd_nxt (n). The problem 1018 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1019 * wrap (s_w): 1020 * 1021 * <- outs wnd -> <- wrapzone -> 1022 * u e n u_w e_w s n_w 1023 * | | | | | | | 1024 * |<------------+------+----- TCP seqno space --------------+---------->| 1025 * ...-- <2^31 ->| |<--------... 1026 * ...---- >2^31 ------>| |<--------... 1027 * 1028 * Current code wouldn't be vulnerable but it's better still to discard such 1029 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1030 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1031 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1032 * equal to the ideal case (infinite seqno space without wrap caused issues). 1033 * 1034 * With D-SACK the lower bound is extended to cover sequence space below 1035 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1036 * again, D-SACK block must not to go across snd_una (for the same reason as 1037 * for the normal SACK blocks, explained above). But there all simplicity 1038 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1039 * fully below undo_marker they do not affect behavior in anyway and can 1040 * therefore be safely ignored. In rare cases (which are more or less 1041 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1042 * fragmentation and packet reordering past skb's retransmission. To consider 1043 * them correctly, the acceptable range must be extended even more though 1044 * the exact amount is rather hard to quantify. However, tp->max_window can 1045 * be used as an exaggerated estimate. 1046 */ 1047 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1048 u32 start_seq, u32 end_seq) 1049 { 1050 /* Too far in future, or reversed (interpretation is ambiguous) */ 1051 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1052 return false; 1053 1054 /* Nasty start_seq wrap-around check (see comments above) */ 1055 if (!before(start_seq, tp->snd_nxt)) 1056 return false; 1057 1058 /* In outstanding window? ...This is valid exit for D-SACKs too. 1059 * start_seq == snd_una is non-sensical (see comments above) 1060 */ 1061 if (after(start_seq, tp->snd_una)) 1062 return true; 1063 1064 if (!is_dsack || !tp->undo_marker) 1065 return false; 1066 1067 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1068 if (after(end_seq, tp->snd_una)) 1069 return false; 1070 1071 if (!before(start_seq, tp->undo_marker)) 1072 return true; 1073 1074 /* Too old */ 1075 if (!after(end_seq, tp->undo_marker)) 1076 return false; 1077 1078 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1079 * start_seq < undo_marker and end_seq >= undo_marker. 1080 */ 1081 return !before(start_seq, end_seq - tp->max_window); 1082 } 1083 1084 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1085 struct tcp_sack_block_wire *sp, int num_sacks, 1086 u32 prior_snd_una) 1087 { 1088 struct tcp_sock *tp = tcp_sk(sk); 1089 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1090 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1091 bool dup_sack = false; 1092 1093 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1094 dup_sack = true; 1095 tcp_dsack_seen(tp); 1096 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1097 } else if (num_sacks > 1) { 1098 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1099 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1100 1101 if (!after(end_seq_0, end_seq_1) && 1102 !before(start_seq_0, start_seq_1)) { 1103 dup_sack = true; 1104 tcp_dsack_seen(tp); 1105 NET_INC_STATS(sock_net(sk), 1106 LINUX_MIB_TCPDSACKOFORECV); 1107 } 1108 } 1109 1110 /* D-SACK for already forgotten data... Do dumb counting. */ 1111 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1112 !after(end_seq_0, prior_snd_una) && 1113 after(end_seq_0, tp->undo_marker)) 1114 tp->undo_retrans--; 1115 1116 return dup_sack; 1117 } 1118 1119 struct tcp_sacktag_state { 1120 u32 reord; 1121 /* Timestamps for earliest and latest never-retransmitted segment 1122 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1123 * but congestion control should still get an accurate delay signal. 1124 */ 1125 u64 first_sackt; 1126 u64 last_sackt; 1127 struct rate_sample *rate; 1128 int flag; 1129 unsigned int mss_now; 1130 }; 1131 1132 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1133 * the incoming SACK may not exactly match but we can find smaller MSS 1134 * aligned portion of it that matches. Therefore we might need to fragment 1135 * which may fail and creates some hassle (caller must handle error case 1136 * returns). 1137 * 1138 * FIXME: this could be merged to shift decision code 1139 */ 1140 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1141 u32 start_seq, u32 end_seq) 1142 { 1143 int err; 1144 bool in_sack; 1145 unsigned int pkt_len; 1146 unsigned int mss; 1147 1148 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1149 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1150 1151 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1152 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1153 mss = tcp_skb_mss(skb); 1154 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1155 1156 if (!in_sack) { 1157 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1158 if (pkt_len < mss) 1159 pkt_len = mss; 1160 } else { 1161 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1162 if (pkt_len < mss) 1163 return -EINVAL; 1164 } 1165 1166 /* Round if necessary so that SACKs cover only full MSSes 1167 * and/or the remaining small portion (if present) 1168 */ 1169 if (pkt_len > mss) { 1170 unsigned int new_len = (pkt_len / mss) * mss; 1171 if (!in_sack && new_len < pkt_len) 1172 new_len += mss; 1173 pkt_len = new_len; 1174 } 1175 1176 if (pkt_len >= skb->len && !in_sack) 1177 return 0; 1178 1179 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1180 pkt_len, mss, GFP_ATOMIC); 1181 if (err < 0) 1182 return err; 1183 } 1184 1185 return in_sack; 1186 } 1187 1188 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1189 static u8 tcp_sacktag_one(struct sock *sk, 1190 struct tcp_sacktag_state *state, u8 sacked, 1191 u32 start_seq, u32 end_seq, 1192 int dup_sack, int pcount, 1193 u64 xmit_time) 1194 { 1195 struct tcp_sock *tp = tcp_sk(sk); 1196 1197 /* Account D-SACK for retransmitted packet. */ 1198 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1199 if (tp->undo_marker && tp->undo_retrans > 0 && 1200 after(end_seq, tp->undo_marker)) 1201 tp->undo_retrans--; 1202 if ((sacked & TCPCB_SACKED_ACKED) && 1203 before(start_seq, state->reord)) 1204 state->reord = start_seq; 1205 } 1206 1207 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1208 if (!after(end_seq, tp->snd_una)) 1209 return sacked; 1210 1211 if (!(sacked & TCPCB_SACKED_ACKED)) { 1212 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1213 1214 if (sacked & TCPCB_SACKED_RETRANS) { 1215 /* If the segment is not tagged as lost, 1216 * we do not clear RETRANS, believing 1217 * that retransmission is still in flight. 1218 */ 1219 if (sacked & TCPCB_LOST) { 1220 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1221 tp->lost_out -= pcount; 1222 tp->retrans_out -= pcount; 1223 } 1224 } else { 1225 if (!(sacked & TCPCB_RETRANS)) { 1226 /* New sack for not retransmitted frame, 1227 * which was in hole. It is reordering. 1228 */ 1229 if (before(start_seq, 1230 tcp_highest_sack_seq(tp)) && 1231 before(start_seq, state->reord)) 1232 state->reord = start_seq; 1233 1234 if (!after(end_seq, tp->high_seq)) 1235 state->flag |= FLAG_ORIG_SACK_ACKED; 1236 if (state->first_sackt == 0) 1237 state->first_sackt = xmit_time; 1238 state->last_sackt = xmit_time; 1239 } 1240 1241 if (sacked & TCPCB_LOST) { 1242 sacked &= ~TCPCB_LOST; 1243 tp->lost_out -= pcount; 1244 } 1245 } 1246 1247 sacked |= TCPCB_SACKED_ACKED; 1248 state->flag |= FLAG_DATA_SACKED; 1249 tp->sacked_out += pcount; 1250 tp->delivered += pcount; /* Out-of-order packets delivered */ 1251 1252 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1253 if (tp->lost_skb_hint && 1254 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1255 tp->lost_cnt_hint += pcount; 1256 } 1257 1258 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1259 * frames and clear it. undo_retrans is decreased above, L|R frames 1260 * are accounted above as well. 1261 */ 1262 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1263 sacked &= ~TCPCB_SACKED_RETRANS; 1264 tp->retrans_out -= pcount; 1265 } 1266 1267 return sacked; 1268 } 1269 1270 /* Shift newly-SACKed bytes from this skb to the immediately previous 1271 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1272 */ 1273 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1274 struct sk_buff *skb, 1275 struct tcp_sacktag_state *state, 1276 unsigned int pcount, int shifted, int mss, 1277 bool dup_sack) 1278 { 1279 struct tcp_sock *tp = tcp_sk(sk); 1280 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1281 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1282 1283 BUG_ON(!pcount); 1284 1285 /* Adjust counters and hints for the newly sacked sequence 1286 * range but discard the return value since prev is already 1287 * marked. We must tag the range first because the seq 1288 * advancement below implicitly advances 1289 * tcp_highest_sack_seq() when skb is highest_sack. 1290 */ 1291 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1292 start_seq, end_seq, dup_sack, pcount, 1293 skb->skb_mstamp); 1294 tcp_rate_skb_delivered(sk, skb, state->rate); 1295 1296 if (skb == tp->lost_skb_hint) 1297 tp->lost_cnt_hint += pcount; 1298 1299 TCP_SKB_CB(prev)->end_seq += shifted; 1300 TCP_SKB_CB(skb)->seq += shifted; 1301 1302 tcp_skb_pcount_add(prev, pcount); 1303 BUG_ON(tcp_skb_pcount(skb) < pcount); 1304 tcp_skb_pcount_add(skb, -pcount); 1305 1306 /* When we're adding to gso_segs == 1, gso_size will be zero, 1307 * in theory this shouldn't be necessary but as long as DSACK 1308 * code can come after this skb later on it's better to keep 1309 * setting gso_size to something. 1310 */ 1311 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1312 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1313 1314 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1315 if (tcp_skb_pcount(skb) <= 1) 1316 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1317 1318 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1319 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1320 1321 if (skb->len > 0) { 1322 BUG_ON(!tcp_skb_pcount(skb)); 1323 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1324 return false; 1325 } 1326 1327 /* Whole SKB was eaten :-) */ 1328 1329 if (skb == tp->retransmit_skb_hint) 1330 tp->retransmit_skb_hint = prev; 1331 if (skb == tp->lost_skb_hint) { 1332 tp->lost_skb_hint = prev; 1333 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1334 } 1335 1336 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1337 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1338 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1339 TCP_SKB_CB(prev)->end_seq++; 1340 1341 if (skb == tcp_highest_sack(sk)) 1342 tcp_advance_highest_sack(sk, skb); 1343 1344 tcp_skb_collapse_tstamp(prev, skb); 1345 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1346 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1347 1348 tcp_rtx_queue_unlink_and_free(skb, sk); 1349 1350 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1351 1352 return true; 1353 } 1354 1355 /* I wish gso_size would have a bit more sane initialization than 1356 * something-or-zero which complicates things 1357 */ 1358 static int tcp_skb_seglen(const struct sk_buff *skb) 1359 { 1360 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1361 } 1362 1363 /* Shifting pages past head area doesn't work */ 1364 static int skb_can_shift(const struct sk_buff *skb) 1365 { 1366 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1367 } 1368 1369 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1370 * skb. 1371 */ 1372 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1373 struct tcp_sacktag_state *state, 1374 u32 start_seq, u32 end_seq, 1375 bool dup_sack) 1376 { 1377 struct tcp_sock *tp = tcp_sk(sk); 1378 struct sk_buff *prev; 1379 int mss; 1380 int pcount = 0; 1381 int len; 1382 int in_sack; 1383 1384 /* Normally R but no L won't result in plain S */ 1385 if (!dup_sack && 1386 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1387 goto fallback; 1388 if (!skb_can_shift(skb)) 1389 goto fallback; 1390 /* This frame is about to be dropped (was ACKed). */ 1391 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1392 goto fallback; 1393 1394 /* Can only happen with delayed DSACK + discard craziness */ 1395 prev = skb_rb_prev(skb); 1396 if (!prev) 1397 goto fallback; 1398 1399 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1400 goto fallback; 1401 1402 if (!tcp_skb_can_collapse_to(prev)) 1403 goto fallback; 1404 1405 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1406 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1407 1408 if (in_sack) { 1409 len = skb->len; 1410 pcount = tcp_skb_pcount(skb); 1411 mss = tcp_skb_seglen(skb); 1412 1413 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1414 * drop this restriction as unnecessary 1415 */ 1416 if (mss != tcp_skb_seglen(prev)) 1417 goto fallback; 1418 } else { 1419 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1420 goto noop; 1421 /* CHECKME: This is non-MSS split case only?, this will 1422 * cause skipped skbs due to advancing loop btw, original 1423 * has that feature too 1424 */ 1425 if (tcp_skb_pcount(skb) <= 1) 1426 goto noop; 1427 1428 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1429 if (!in_sack) { 1430 /* TODO: head merge to next could be attempted here 1431 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1432 * though it might not be worth of the additional hassle 1433 * 1434 * ...we can probably just fallback to what was done 1435 * previously. We could try merging non-SACKed ones 1436 * as well but it probably isn't going to buy off 1437 * because later SACKs might again split them, and 1438 * it would make skb timestamp tracking considerably 1439 * harder problem. 1440 */ 1441 goto fallback; 1442 } 1443 1444 len = end_seq - TCP_SKB_CB(skb)->seq; 1445 BUG_ON(len < 0); 1446 BUG_ON(len > skb->len); 1447 1448 /* MSS boundaries should be honoured or else pcount will 1449 * severely break even though it makes things bit trickier. 1450 * Optimize common case to avoid most of the divides 1451 */ 1452 mss = tcp_skb_mss(skb); 1453 1454 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1455 * drop this restriction as unnecessary 1456 */ 1457 if (mss != tcp_skb_seglen(prev)) 1458 goto fallback; 1459 1460 if (len == mss) { 1461 pcount = 1; 1462 } else if (len < mss) { 1463 goto noop; 1464 } else { 1465 pcount = len / mss; 1466 len = pcount * mss; 1467 } 1468 } 1469 1470 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1471 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1472 goto fallback; 1473 1474 if (!skb_shift(prev, skb, len)) 1475 goto fallback; 1476 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1477 goto out; 1478 1479 /* Hole filled allows collapsing with the next as well, this is very 1480 * useful when hole on every nth skb pattern happens 1481 */ 1482 skb = skb_rb_next(prev); 1483 if (!skb) 1484 goto out; 1485 1486 if (!skb_can_shift(skb) || 1487 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1488 (mss != tcp_skb_seglen(skb))) 1489 goto out; 1490 1491 len = skb->len; 1492 if (skb_shift(prev, skb, len)) { 1493 pcount += tcp_skb_pcount(skb); 1494 tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb), 1495 len, mss, 0); 1496 } 1497 1498 out: 1499 return prev; 1500 1501 noop: 1502 return skb; 1503 1504 fallback: 1505 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1506 return NULL; 1507 } 1508 1509 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1510 struct tcp_sack_block *next_dup, 1511 struct tcp_sacktag_state *state, 1512 u32 start_seq, u32 end_seq, 1513 bool dup_sack_in) 1514 { 1515 struct tcp_sock *tp = tcp_sk(sk); 1516 struct sk_buff *tmp; 1517 1518 skb_rbtree_walk_from(skb) { 1519 int in_sack = 0; 1520 bool dup_sack = dup_sack_in; 1521 1522 /* queue is in-order => we can short-circuit the walk early */ 1523 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1524 break; 1525 1526 if (next_dup && 1527 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1528 in_sack = tcp_match_skb_to_sack(sk, skb, 1529 next_dup->start_seq, 1530 next_dup->end_seq); 1531 if (in_sack > 0) 1532 dup_sack = true; 1533 } 1534 1535 /* skb reference here is a bit tricky to get right, since 1536 * shifting can eat and free both this skb and the next, 1537 * so not even _safe variant of the loop is enough. 1538 */ 1539 if (in_sack <= 0) { 1540 tmp = tcp_shift_skb_data(sk, skb, state, 1541 start_seq, end_seq, dup_sack); 1542 if (tmp) { 1543 if (tmp != skb) { 1544 skb = tmp; 1545 continue; 1546 } 1547 1548 in_sack = 0; 1549 } else { 1550 in_sack = tcp_match_skb_to_sack(sk, skb, 1551 start_seq, 1552 end_seq); 1553 } 1554 } 1555 1556 if (unlikely(in_sack < 0)) 1557 break; 1558 1559 if (in_sack) { 1560 TCP_SKB_CB(skb)->sacked = 1561 tcp_sacktag_one(sk, 1562 state, 1563 TCP_SKB_CB(skb)->sacked, 1564 TCP_SKB_CB(skb)->seq, 1565 TCP_SKB_CB(skb)->end_seq, 1566 dup_sack, 1567 tcp_skb_pcount(skb), 1568 skb->skb_mstamp); 1569 tcp_rate_skb_delivered(sk, skb, state->rate); 1570 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1571 list_del_init(&skb->tcp_tsorted_anchor); 1572 1573 if (!before(TCP_SKB_CB(skb)->seq, 1574 tcp_highest_sack_seq(tp))) 1575 tcp_advance_highest_sack(sk, skb); 1576 } 1577 } 1578 return skb; 1579 } 1580 1581 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, 1582 struct tcp_sacktag_state *state, 1583 u32 seq) 1584 { 1585 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1586 struct sk_buff *skb; 1587 1588 while (*p) { 1589 parent = *p; 1590 skb = rb_to_skb(parent); 1591 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1592 p = &parent->rb_left; 1593 continue; 1594 } 1595 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1596 p = &parent->rb_right; 1597 continue; 1598 } 1599 return skb; 1600 } 1601 return NULL; 1602 } 1603 1604 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1605 struct tcp_sacktag_state *state, 1606 u32 skip_to_seq) 1607 { 1608 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1609 return skb; 1610 1611 return tcp_sacktag_bsearch(sk, state, skip_to_seq); 1612 } 1613 1614 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1615 struct sock *sk, 1616 struct tcp_sack_block *next_dup, 1617 struct tcp_sacktag_state *state, 1618 u32 skip_to_seq) 1619 { 1620 if (!next_dup) 1621 return skb; 1622 1623 if (before(next_dup->start_seq, skip_to_seq)) { 1624 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1625 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1626 next_dup->start_seq, next_dup->end_seq, 1627 1); 1628 } 1629 1630 return skb; 1631 } 1632 1633 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1634 { 1635 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1636 } 1637 1638 static int 1639 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1640 u32 prior_snd_una, struct tcp_sacktag_state *state) 1641 { 1642 struct tcp_sock *tp = tcp_sk(sk); 1643 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1644 TCP_SKB_CB(ack_skb)->sacked); 1645 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1646 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1647 struct tcp_sack_block *cache; 1648 struct sk_buff *skb; 1649 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1650 int used_sacks; 1651 bool found_dup_sack = false; 1652 int i, j; 1653 int first_sack_index; 1654 1655 state->flag = 0; 1656 state->reord = tp->snd_nxt; 1657 1658 if (!tp->sacked_out) 1659 tcp_highest_sack_reset(sk); 1660 1661 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1662 num_sacks, prior_snd_una); 1663 if (found_dup_sack) { 1664 state->flag |= FLAG_DSACKING_ACK; 1665 tp->delivered++; /* A spurious retransmission is delivered */ 1666 } 1667 1668 /* Eliminate too old ACKs, but take into 1669 * account more or less fresh ones, they can 1670 * contain valid SACK info. 1671 */ 1672 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1673 return 0; 1674 1675 if (!tp->packets_out) 1676 goto out; 1677 1678 used_sacks = 0; 1679 first_sack_index = 0; 1680 for (i = 0; i < num_sacks; i++) { 1681 bool dup_sack = !i && found_dup_sack; 1682 1683 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1684 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1685 1686 if (!tcp_is_sackblock_valid(tp, dup_sack, 1687 sp[used_sacks].start_seq, 1688 sp[used_sacks].end_seq)) { 1689 int mib_idx; 1690 1691 if (dup_sack) { 1692 if (!tp->undo_marker) 1693 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1694 else 1695 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1696 } else { 1697 /* Don't count olds caused by ACK reordering */ 1698 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1699 !after(sp[used_sacks].end_seq, tp->snd_una)) 1700 continue; 1701 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1702 } 1703 1704 NET_INC_STATS(sock_net(sk), mib_idx); 1705 if (i == 0) 1706 first_sack_index = -1; 1707 continue; 1708 } 1709 1710 /* Ignore very old stuff early */ 1711 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1712 continue; 1713 1714 used_sacks++; 1715 } 1716 1717 /* order SACK blocks to allow in order walk of the retrans queue */ 1718 for (i = used_sacks - 1; i > 0; i--) { 1719 for (j = 0; j < i; j++) { 1720 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1721 swap(sp[j], sp[j + 1]); 1722 1723 /* Track where the first SACK block goes to */ 1724 if (j == first_sack_index) 1725 first_sack_index = j + 1; 1726 } 1727 } 1728 } 1729 1730 state->mss_now = tcp_current_mss(sk); 1731 skb = NULL; 1732 i = 0; 1733 1734 if (!tp->sacked_out) { 1735 /* It's already past, so skip checking against it */ 1736 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1737 } else { 1738 cache = tp->recv_sack_cache; 1739 /* Skip empty blocks in at head of the cache */ 1740 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1741 !cache->end_seq) 1742 cache++; 1743 } 1744 1745 while (i < used_sacks) { 1746 u32 start_seq = sp[i].start_seq; 1747 u32 end_seq = sp[i].end_seq; 1748 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1749 struct tcp_sack_block *next_dup = NULL; 1750 1751 if (found_dup_sack && ((i + 1) == first_sack_index)) 1752 next_dup = &sp[i + 1]; 1753 1754 /* Skip too early cached blocks */ 1755 while (tcp_sack_cache_ok(tp, cache) && 1756 !before(start_seq, cache->end_seq)) 1757 cache++; 1758 1759 /* Can skip some work by looking recv_sack_cache? */ 1760 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1761 after(end_seq, cache->start_seq)) { 1762 1763 /* Head todo? */ 1764 if (before(start_seq, cache->start_seq)) { 1765 skb = tcp_sacktag_skip(skb, sk, state, 1766 start_seq); 1767 skb = tcp_sacktag_walk(skb, sk, next_dup, 1768 state, 1769 start_seq, 1770 cache->start_seq, 1771 dup_sack); 1772 } 1773 1774 /* Rest of the block already fully processed? */ 1775 if (!after(end_seq, cache->end_seq)) 1776 goto advance_sp; 1777 1778 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1779 state, 1780 cache->end_seq); 1781 1782 /* ...tail remains todo... */ 1783 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1784 /* ...but better entrypoint exists! */ 1785 skb = tcp_highest_sack(sk); 1786 if (!skb) 1787 break; 1788 cache++; 1789 goto walk; 1790 } 1791 1792 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq); 1793 /* Check overlap against next cached too (past this one already) */ 1794 cache++; 1795 continue; 1796 } 1797 1798 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1799 skb = tcp_highest_sack(sk); 1800 if (!skb) 1801 break; 1802 } 1803 skb = tcp_sacktag_skip(skb, sk, state, start_seq); 1804 1805 walk: 1806 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1807 start_seq, end_seq, dup_sack); 1808 1809 advance_sp: 1810 i++; 1811 } 1812 1813 /* Clear the head of the cache sack blocks so we can skip it next time */ 1814 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1815 tp->recv_sack_cache[i].start_seq = 0; 1816 tp->recv_sack_cache[i].end_seq = 0; 1817 } 1818 for (j = 0; j < used_sacks; j++) 1819 tp->recv_sack_cache[i++] = sp[j]; 1820 1821 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 1822 tcp_check_sack_reordering(sk, state->reord, 0); 1823 1824 tcp_verify_left_out(tp); 1825 out: 1826 1827 #if FASTRETRANS_DEBUG > 0 1828 WARN_ON((int)tp->sacked_out < 0); 1829 WARN_ON((int)tp->lost_out < 0); 1830 WARN_ON((int)tp->retrans_out < 0); 1831 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1832 #endif 1833 return state->flag; 1834 } 1835 1836 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1837 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1838 */ 1839 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1840 { 1841 u32 holes; 1842 1843 holes = max(tp->lost_out, 1U); 1844 holes = min(holes, tp->packets_out); 1845 1846 if ((tp->sacked_out + holes) > tp->packets_out) { 1847 tp->sacked_out = tp->packets_out - holes; 1848 return true; 1849 } 1850 return false; 1851 } 1852 1853 /* If we receive more dupacks than we expected counting segments 1854 * in assumption of absent reordering, interpret this as reordering. 1855 * The only another reason could be bug in receiver TCP. 1856 */ 1857 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1858 { 1859 struct tcp_sock *tp = tcp_sk(sk); 1860 1861 if (!tcp_limit_reno_sacked(tp)) 1862 return; 1863 1864 tp->reordering = min_t(u32, tp->packets_out + addend, 1865 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 1866 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 1867 } 1868 1869 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1870 1871 static void tcp_add_reno_sack(struct sock *sk) 1872 { 1873 struct tcp_sock *tp = tcp_sk(sk); 1874 u32 prior_sacked = tp->sacked_out; 1875 1876 tp->sacked_out++; 1877 tcp_check_reno_reordering(sk, 0); 1878 if (tp->sacked_out > prior_sacked) 1879 tp->delivered++; /* Some out-of-order packet is delivered */ 1880 tcp_verify_left_out(tp); 1881 } 1882 1883 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1884 1885 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1886 { 1887 struct tcp_sock *tp = tcp_sk(sk); 1888 1889 if (acked > 0) { 1890 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1891 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1892 if (acked - 1 >= tp->sacked_out) 1893 tp->sacked_out = 0; 1894 else 1895 tp->sacked_out -= acked - 1; 1896 } 1897 tcp_check_reno_reordering(sk, acked); 1898 tcp_verify_left_out(tp); 1899 } 1900 1901 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1902 { 1903 tp->sacked_out = 0; 1904 } 1905 1906 void tcp_clear_retrans(struct tcp_sock *tp) 1907 { 1908 tp->retrans_out = 0; 1909 tp->lost_out = 0; 1910 tp->undo_marker = 0; 1911 tp->undo_retrans = -1; 1912 tp->sacked_out = 0; 1913 } 1914 1915 static inline void tcp_init_undo(struct tcp_sock *tp) 1916 { 1917 tp->undo_marker = tp->snd_una; 1918 /* Retransmission still in flight may cause DSACKs later. */ 1919 tp->undo_retrans = tp->retrans_out ? : -1; 1920 } 1921 1922 static bool tcp_is_rack(const struct sock *sk) 1923 { 1924 return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION; 1925 } 1926 1927 /* If we detect SACK reneging, forget all SACK information 1928 * and reset tags completely, otherwise preserve SACKs. If receiver 1929 * dropped its ofo queue, we will know this due to reneging detection. 1930 */ 1931 static void tcp_timeout_mark_lost(struct sock *sk) 1932 { 1933 struct tcp_sock *tp = tcp_sk(sk); 1934 struct sk_buff *skb, *head; 1935 bool is_reneg; /* is receiver reneging on SACKs? */ 1936 1937 head = tcp_rtx_queue_head(sk); 1938 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 1939 if (is_reneg) { 1940 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1941 tp->sacked_out = 0; 1942 /* Mark SACK reneging until we recover from this loss event. */ 1943 tp->is_sack_reneg = 1; 1944 } else if (tcp_is_reno(tp)) { 1945 tcp_reset_reno_sack(tp); 1946 } 1947 1948 skb = head; 1949 skb_rbtree_walk_from(skb) { 1950 if (is_reneg) 1951 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1952 else if (tcp_is_rack(sk) && skb != head && 1953 tcp_rack_skb_timeout(tp, skb, 0) > 0) 1954 continue; /* Don't mark recently sent ones lost yet */ 1955 tcp_mark_skb_lost(sk, skb); 1956 } 1957 tcp_verify_left_out(tp); 1958 tcp_clear_all_retrans_hints(tp); 1959 } 1960 1961 /* Enter Loss state. */ 1962 void tcp_enter_loss(struct sock *sk) 1963 { 1964 const struct inet_connection_sock *icsk = inet_csk(sk); 1965 struct tcp_sock *tp = tcp_sk(sk); 1966 struct net *net = sock_net(sk); 1967 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1968 1969 tcp_timeout_mark_lost(sk); 1970 1971 /* Reduce ssthresh if it has not yet been made inside this window. */ 1972 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1973 !after(tp->high_seq, tp->snd_una) || 1974 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1975 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1976 tp->prior_cwnd = tp->snd_cwnd; 1977 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1978 tcp_ca_event(sk, CA_EVENT_LOSS); 1979 tcp_init_undo(tp); 1980 } 1981 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1; 1982 tp->snd_cwnd_cnt = 0; 1983 tp->snd_cwnd_stamp = tcp_jiffies32; 1984 1985 /* Timeout in disordered state after receiving substantial DUPACKs 1986 * suggests that the degree of reordering is over-estimated. 1987 */ 1988 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1989 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 1990 tp->reordering = min_t(unsigned int, tp->reordering, 1991 net->ipv4.sysctl_tcp_reordering); 1992 tcp_set_ca_state(sk, TCP_CA_Loss); 1993 tp->high_seq = tp->snd_nxt; 1994 tcp_ecn_queue_cwr(tp); 1995 1996 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 1997 * loss recovery is underway except recurring timeout(s) on 1998 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 1999 */ 2000 tp->frto = net->ipv4.sysctl_tcp_frto && 2001 (new_recovery || icsk->icsk_retransmits) && 2002 !inet_csk(sk)->icsk_mtup.probe_size; 2003 } 2004 2005 /* If ACK arrived pointing to a remembered SACK, it means that our 2006 * remembered SACKs do not reflect real state of receiver i.e. 2007 * receiver _host_ is heavily congested (or buggy). 2008 * 2009 * To avoid big spurious retransmission bursts due to transient SACK 2010 * scoreboard oddities that look like reneging, we give the receiver a 2011 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2012 * restore sanity to the SACK scoreboard. If the apparent reneging 2013 * persists until this RTO then we'll clear the SACK scoreboard. 2014 */ 2015 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2016 { 2017 if (flag & FLAG_SACK_RENEGING) { 2018 struct tcp_sock *tp = tcp_sk(sk); 2019 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2020 msecs_to_jiffies(10)); 2021 2022 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2023 delay, TCP_RTO_MAX); 2024 return true; 2025 } 2026 return false; 2027 } 2028 2029 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2030 * counter when SACK is enabled (without SACK, sacked_out is used for 2031 * that purpose). 2032 * 2033 * With reordering, holes may still be in flight, so RFC3517 recovery 2034 * uses pure sacked_out (total number of SACKed segments) even though 2035 * it violates the RFC that uses duplicate ACKs, often these are equal 2036 * but when e.g. out-of-window ACKs or packet duplication occurs, 2037 * they differ. Since neither occurs due to loss, TCP should really 2038 * ignore them. 2039 */ 2040 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2041 { 2042 return tp->sacked_out + 1; 2043 } 2044 2045 /* Linux NewReno/SACK/ECN state machine. 2046 * -------------------------------------- 2047 * 2048 * "Open" Normal state, no dubious events, fast path. 2049 * "Disorder" In all the respects it is "Open", 2050 * but requires a bit more attention. It is entered when 2051 * we see some SACKs or dupacks. It is split of "Open" 2052 * mainly to move some processing from fast path to slow one. 2053 * "CWR" CWND was reduced due to some Congestion Notification event. 2054 * It can be ECN, ICMP source quench, local device congestion. 2055 * "Recovery" CWND was reduced, we are fast-retransmitting. 2056 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2057 * 2058 * tcp_fastretrans_alert() is entered: 2059 * - each incoming ACK, if state is not "Open" 2060 * - when arrived ACK is unusual, namely: 2061 * * SACK 2062 * * Duplicate ACK. 2063 * * ECN ECE. 2064 * 2065 * Counting packets in flight is pretty simple. 2066 * 2067 * in_flight = packets_out - left_out + retrans_out 2068 * 2069 * packets_out is SND.NXT-SND.UNA counted in packets. 2070 * 2071 * retrans_out is number of retransmitted segments. 2072 * 2073 * left_out is number of segments left network, but not ACKed yet. 2074 * 2075 * left_out = sacked_out + lost_out 2076 * 2077 * sacked_out: Packets, which arrived to receiver out of order 2078 * and hence not ACKed. With SACKs this number is simply 2079 * amount of SACKed data. Even without SACKs 2080 * it is easy to give pretty reliable estimate of this number, 2081 * counting duplicate ACKs. 2082 * 2083 * lost_out: Packets lost by network. TCP has no explicit 2084 * "loss notification" feedback from network (for now). 2085 * It means that this number can be only _guessed_. 2086 * Actually, it is the heuristics to predict lossage that 2087 * distinguishes different algorithms. 2088 * 2089 * F.e. after RTO, when all the queue is considered as lost, 2090 * lost_out = packets_out and in_flight = retrans_out. 2091 * 2092 * Essentially, we have now a few algorithms detecting 2093 * lost packets. 2094 * 2095 * If the receiver supports SACK: 2096 * 2097 * RFC6675/3517: It is the conventional algorithm. A packet is 2098 * considered lost if the number of higher sequence packets 2099 * SACKed is greater than or equal the DUPACK thoreshold 2100 * (reordering). This is implemented in tcp_mark_head_lost and 2101 * tcp_update_scoreboard. 2102 * 2103 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2104 * (2017-) that checks timing instead of counting DUPACKs. 2105 * Essentially a packet is considered lost if it's not S/ACKed 2106 * after RTT + reordering_window, where both metrics are 2107 * dynamically measured and adjusted. This is implemented in 2108 * tcp_rack_mark_lost. 2109 * 2110 * If the receiver does not support SACK: 2111 * 2112 * NewReno (RFC6582): in Recovery we assume that one segment 2113 * is lost (classic Reno). While we are in Recovery and 2114 * a partial ACK arrives, we assume that one more packet 2115 * is lost (NewReno). This heuristics are the same in NewReno 2116 * and SACK. 2117 * 2118 * Really tricky (and requiring careful tuning) part of algorithm 2119 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2120 * The first determines the moment _when_ we should reduce CWND and, 2121 * hence, slow down forward transmission. In fact, it determines the moment 2122 * when we decide that hole is caused by loss, rather than by a reorder. 2123 * 2124 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2125 * holes, caused by lost packets. 2126 * 2127 * And the most logically complicated part of algorithm is undo 2128 * heuristics. We detect false retransmits due to both too early 2129 * fast retransmit (reordering) and underestimated RTO, analyzing 2130 * timestamps and D-SACKs. When we detect that some segments were 2131 * retransmitted by mistake and CWND reduction was wrong, we undo 2132 * window reduction and abort recovery phase. This logic is hidden 2133 * inside several functions named tcp_try_undo_<something>. 2134 */ 2135 2136 /* This function decides, when we should leave Disordered state 2137 * and enter Recovery phase, reducing congestion window. 2138 * 2139 * Main question: may we further continue forward transmission 2140 * with the same cwnd? 2141 */ 2142 static bool tcp_time_to_recover(struct sock *sk, int flag) 2143 { 2144 struct tcp_sock *tp = tcp_sk(sk); 2145 2146 /* Trick#1: The loss is proven. */ 2147 if (tp->lost_out) 2148 return true; 2149 2150 /* Not-A-Trick#2 : Classic rule... */ 2151 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2152 return true; 2153 2154 return false; 2155 } 2156 2157 /* Detect loss in event "A" above by marking head of queue up as lost. 2158 * For non-SACK(Reno) senders, the first "packets" number of segments 2159 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2160 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2161 * the maximum SACKed segments to pass before reaching this limit. 2162 */ 2163 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2164 { 2165 struct tcp_sock *tp = tcp_sk(sk); 2166 struct sk_buff *skb; 2167 int cnt, oldcnt, lost; 2168 unsigned int mss; 2169 /* Use SACK to deduce losses of new sequences sent during recovery */ 2170 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2171 2172 WARN_ON(packets > tp->packets_out); 2173 skb = tp->lost_skb_hint; 2174 if (skb) { 2175 /* Head already handled? */ 2176 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2177 return; 2178 cnt = tp->lost_cnt_hint; 2179 } else { 2180 skb = tcp_rtx_queue_head(sk); 2181 cnt = 0; 2182 } 2183 2184 skb_rbtree_walk_from(skb) { 2185 /* TODO: do this better */ 2186 /* this is not the most efficient way to do this... */ 2187 tp->lost_skb_hint = skb; 2188 tp->lost_cnt_hint = cnt; 2189 2190 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2191 break; 2192 2193 oldcnt = cnt; 2194 if (tcp_is_reno(tp) || 2195 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2196 cnt += tcp_skb_pcount(skb); 2197 2198 if (cnt > packets) { 2199 if (tcp_is_sack(tp) || 2200 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2201 (oldcnt >= packets)) 2202 break; 2203 2204 mss = tcp_skb_mss(skb); 2205 /* If needed, chop off the prefix to mark as lost. */ 2206 lost = (packets - oldcnt) * mss; 2207 if (lost < skb->len && 2208 tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2209 lost, mss, GFP_ATOMIC) < 0) 2210 break; 2211 cnt = packets; 2212 } 2213 2214 tcp_skb_mark_lost(tp, skb); 2215 2216 if (mark_head) 2217 break; 2218 } 2219 tcp_verify_left_out(tp); 2220 } 2221 2222 /* Account newly detected lost packet(s) */ 2223 2224 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2225 { 2226 struct tcp_sock *tp = tcp_sk(sk); 2227 2228 if (tcp_is_sack(tp)) { 2229 int sacked_upto = tp->sacked_out - tp->reordering; 2230 if (sacked_upto >= 0) 2231 tcp_mark_head_lost(sk, sacked_upto, 0); 2232 else if (fast_rexmit) 2233 tcp_mark_head_lost(sk, 1, 1); 2234 } 2235 } 2236 2237 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2238 { 2239 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2240 before(tp->rx_opt.rcv_tsecr, when); 2241 } 2242 2243 /* skb is spurious retransmitted if the returned timestamp echo 2244 * reply is prior to the skb transmission time 2245 */ 2246 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2247 const struct sk_buff *skb) 2248 { 2249 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2250 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2251 } 2252 2253 /* Nothing was retransmitted or returned timestamp is less 2254 * than timestamp of the first retransmission. 2255 */ 2256 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2257 { 2258 return !tp->retrans_stamp || 2259 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2260 } 2261 2262 /* Undo procedures. */ 2263 2264 /* We can clear retrans_stamp when there are no retransmissions in the 2265 * window. It would seem that it is trivially available for us in 2266 * tp->retrans_out, however, that kind of assumptions doesn't consider 2267 * what will happen if errors occur when sending retransmission for the 2268 * second time. ...It could the that such segment has only 2269 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2270 * the head skb is enough except for some reneging corner cases that 2271 * are not worth the effort. 2272 * 2273 * Main reason for all this complexity is the fact that connection dying 2274 * time now depends on the validity of the retrans_stamp, in particular, 2275 * that successive retransmissions of a segment must not advance 2276 * retrans_stamp under any conditions. 2277 */ 2278 static bool tcp_any_retrans_done(const struct sock *sk) 2279 { 2280 const struct tcp_sock *tp = tcp_sk(sk); 2281 struct sk_buff *skb; 2282 2283 if (tp->retrans_out) 2284 return true; 2285 2286 skb = tcp_rtx_queue_head(sk); 2287 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2288 return true; 2289 2290 return false; 2291 } 2292 2293 static void DBGUNDO(struct sock *sk, const char *msg) 2294 { 2295 #if FASTRETRANS_DEBUG > 1 2296 struct tcp_sock *tp = tcp_sk(sk); 2297 struct inet_sock *inet = inet_sk(sk); 2298 2299 if (sk->sk_family == AF_INET) { 2300 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2301 msg, 2302 &inet->inet_daddr, ntohs(inet->inet_dport), 2303 tp->snd_cwnd, tcp_left_out(tp), 2304 tp->snd_ssthresh, tp->prior_ssthresh, 2305 tp->packets_out); 2306 } 2307 #if IS_ENABLED(CONFIG_IPV6) 2308 else if (sk->sk_family == AF_INET6) { 2309 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2310 msg, 2311 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2312 tp->snd_cwnd, tcp_left_out(tp), 2313 tp->snd_ssthresh, tp->prior_ssthresh, 2314 tp->packets_out); 2315 } 2316 #endif 2317 #endif 2318 } 2319 2320 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2321 { 2322 struct tcp_sock *tp = tcp_sk(sk); 2323 2324 if (unmark_loss) { 2325 struct sk_buff *skb; 2326 2327 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2328 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2329 } 2330 tp->lost_out = 0; 2331 tcp_clear_all_retrans_hints(tp); 2332 } 2333 2334 if (tp->prior_ssthresh) { 2335 const struct inet_connection_sock *icsk = inet_csk(sk); 2336 2337 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2338 2339 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2340 tp->snd_ssthresh = tp->prior_ssthresh; 2341 tcp_ecn_withdraw_cwr(tp); 2342 } 2343 } 2344 tp->snd_cwnd_stamp = tcp_jiffies32; 2345 tp->undo_marker = 0; 2346 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2347 } 2348 2349 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2350 { 2351 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2352 } 2353 2354 /* People celebrate: "We love our President!" */ 2355 static bool tcp_try_undo_recovery(struct sock *sk) 2356 { 2357 struct tcp_sock *tp = tcp_sk(sk); 2358 2359 if (tcp_may_undo(tp)) { 2360 int mib_idx; 2361 2362 /* Happy end! We did not retransmit anything 2363 * or our original transmission succeeded. 2364 */ 2365 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2366 tcp_undo_cwnd_reduction(sk, false); 2367 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2368 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2369 else 2370 mib_idx = LINUX_MIB_TCPFULLUNDO; 2371 2372 NET_INC_STATS(sock_net(sk), mib_idx); 2373 } else if (tp->rack.reo_wnd_persist) { 2374 tp->rack.reo_wnd_persist--; 2375 } 2376 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2377 /* Hold old state until something *above* high_seq 2378 * is ACKed. For Reno it is MUST to prevent false 2379 * fast retransmits (RFC2582). SACK TCP is safe. */ 2380 if (!tcp_any_retrans_done(sk)) 2381 tp->retrans_stamp = 0; 2382 return true; 2383 } 2384 tcp_set_ca_state(sk, TCP_CA_Open); 2385 tp->is_sack_reneg = 0; 2386 return false; 2387 } 2388 2389 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2390 static bool tcp_try_undo_dsack(struct sock *sk) 2391 { 2392 struct tcp_sock *tp = tcp_sk(sk); 2393 2394 if (tp->undo_marker && !tp->undo_retrans) { 2395 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2396 tp->rack.reo_wnd_persist + 1); 2397 DBGUNDO(sk, "D-SACK"); 2398 tcp_undo_cwnd_reduction(sk, false); 2399 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2400 return true; 2401 } 2402 return false; 2403 } 2404 2405 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2406 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2407 { 2408 struct tcp_sock *tp = tcp_sk(sk); 2409 2410 if (frto_undo || tcp_may_undo(tp)) { 2411 tcp_undo_cwnd_reduction(sk, true); 2412 2413 DBGUNDO(sk, "partial loss"); 2414 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2415 if (frto_undo) 2416 NET_INC_STATS(sock_net(sk), 2417 LINUX_MIB_TCPSPURIOUSRTOS); 2418 inet_csk(sk)->icsk_retransmits = 0; 2419 if (frto_undo || tcp_is_sack(tp)) { 2420 tcp_set_ca_state(sk, TCP_CA_Open); 2421 tp->is_sack_reneg = 0; 2422 } 2423 return true; 2424 } 2425 return false; 2426 } 2427 2428 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2429 * It computes the number of packets to send (sndcnt) based on packets newly 2430 * delivered: 2431 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2432 * cwnd reductions across a full RTT. 2433 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2434 * But when the retransmits are acked without further losses, PRR 2435 * slow starts cwnd up to ssthresh to speed up the recovery. 2436 */ 2437 static void tcp_init_cwnd_reduction(struct sock *sk) 2438 { 2439 struct tcp_sock *tp = tcp_sk(sk); 2440 2441 tp->high_seq = tp->snd_nxt; 2442 tp->tlp_high_seq = 0; 2443 tp->snd_cwnd_cnt = 0; 2444 tp->prior_cwnd = tp->snd_cwnd; 2445 tp->prr_delivered = 0; 2446 tp->prr_out = 0; 2447 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2448 tcp_ecn_queue_cwr(tp); 2449 } 2450 2451 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2452 { 2453 struct tcp_sock *tp = tcp_sk(sk); 2454 int sndcnt = 0; 2455 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2456 2457 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2458 return; 2459 2460 tp->prr_delivered += newly_acked_sacked; 2461 if (delta < 0) { 2462 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2463 tp->prior_cwnd - 1; 2464 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2465 } else if ((flag & FLAG_RETRANS_DATA_ACKED) && 2466 !(flag & FLAG_LOST_RETRANS)) { 2467 sndcnt = min_t(int, delta, 2468 max_t(int, tp->prr_delivered - tp->prr_out, 2469 newly_acked_sacked) + 1); 2470 } else { 2471 sndcnt = min(delta, newly_acked_sacked); 2472 } 2473 /* Force a fast retransmit upon entering fast recovery */ 2474 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2475 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2476 } 2477 2478 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2479 { 2480 struct tcp_sock *tp = tcp_sk(sk); 2481 2482 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2483 return; 2484 2485 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2486 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2487 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2488 tp->snd_cwnd = tp->snd_ssthresh; 2489 tp->snd_cwnd_stamp = tcp_jiffies32; 2490 } 2491 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2492 } 2493 2494 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2495 void tcp_enter_cwr(struct sock *sk) 2496 { 2497 struct tcp_sock *tp = tcp_sk(sk); 2498 2499 tp->prior_ssthresh = 0; 2500 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2501 tp->undo_marker = 0; 2502 tcp_init_cwnd_reduction(sk); 2503 tcp_set_ca_state(sk, TCP_CA_CWR); 2504 } 2505 } 2506 EXPORT_SYMBOL(tcp_enter_cwr); 2507 2508 static void tcp_try_keep_open(struct sock *sk) 2509 { 2510 struct tcp_sock *tp = tcp_sk(sk); 2511 int state = TCP_CA_Open; 2512 2513 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2514 state = TCP_CA_Disorder; 2515 2516 if (inet_csk(sk)->icsk_ca_state != state) { 2517 tcp_set_ca_state(sk, state); 2518 tp->high_seq = tp->snd_nxt; 2519 } 2520 } 2521 2522 static void tcp_try_to_open(struct sock *sk, int flag) 2523 { 2524 struct tcp_sock *tp = tcp_sk(sk); 2525 2526 tcp_verify_left_out(tp); 2527 2528 if (!tcp_any_retrans_done(sk)) 2529 tp->retrans_stamp = 0; 2530 2531 if (flag & FLAG_ECE) 2532 tcp_enter_cwr(sk); 2533 2534 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2535 tcp_try_keep_open(sk); 2536 } 2537 } 2538 2539 static void tcp_mtup_probe_failed(struct sock *sk) 2540 { 2541 struct inet_connection_sock *icsk = inet_csk(sk); 2542 2543 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2544 icsk->icsk_mtup.probe_size = 0; 2545 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2546 } 2547 2548 static void tcp_mtup_probe_success(struct sock *sk) 2549 { 2550 struct tcp_sock *tp = tcp_sk(sk); 2551 struct inet_connection_sock *icsk = inet_csk(sk); 2552 2553 /* FIXME: breaks with very large cwnd */ 2554 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2555 tp->snd_cwnd = tp->snd_cwnd * 2556 tcp_mss_to_mtu(sk, tp->mss_cache) / 2557 icsk->icsk_mtup.probe_size; 2558 tp->snd_cwnd_cnt = 0; 2559 tp->snd_cwnd_stamp = tcp_jiffies32; 2560 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2561 2562 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2563 icsk->icsk_mtup.probe_size = 0; 2564 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2565 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2566 } 2567 2568 /* Do a simple retransmit without using the backoff mechanisms in 2569 * tcp_timer. This is used for path mtu discovery. 2570 * The socket is already locked here. 2571 */ 2572 void tcp_simple_retransmit(struct sock *sk) 2573 { 2574 const struct inet_connection_sock *icsk = inet_csk(sk); 2575 struct tcp_sock *tp = tcp_sk(sk); 2576 struct sk_buff *skb; 2577 unsigned int mss = tcp_current_mss(sk); 2578 2579 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2580 if (tcp_skb_seglen(skb) > mss && 2581 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2582 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2583 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2584 tp->retrans_out -= tcp_skb_pcount(skb); 2585 } 2586 tcp_skb_mark_lost_uncond_verify(tp, skb); 2587 } 2588 } 2589 2590 tcp_clear_retrans_hints_partial(tp); 2591 2592 if (!tp->lost_out) 2593 return; 2594 2595 if (tcp_is_reno(tp)) 2596 tcp_limit_reno_sacked(tp); 2597 2598 tcp_verify_left_out(tp); 2599 2600 /* Don't muck with the congestion window here. 2601 * Reason is that we do not increase amount of _data_ 2602 * in network, but units changed and effective 2603 * cwnd/ssthresh really reduced now. 2604 */ 2605 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2606 tp->high_seq = tp->snd_nxt; 2607 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2608 tp->prior_ssthresh = 0; 2609 tp->undo_marker = 0; 2610 tcp_set_ca_state(sk, TCP_CA_Loss); 2611 } 2612 tcp_xmit_retransmit_queue(sk); 2613 } 2614 EXPORT_SYMBOL(tcp_simple_retransmit); 2615 2616 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2617 { 2618 struct tcp_sock *tp = tcp_sk(sk); 2619 int mib_idx; 2620 2621 if (tcp_is_reno(tp)) 2622 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2623 else 2624 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2625 2626 NET_INC_STATS(sock_net(sk), mib_idx); 2627 2628 tp->prior_ssthresh = 0; 2629 tcp_init_undo(tp); 2630 2631 if (!tcp_in_cwnd_reduction(sk)) { 2632 if (!ece_ack) 2633 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2634 tcp_init_cwnd_reduction(sk); 2635 } 2636 tcp_set_ca_state(sk, TCP_CA_Recovery); 2637 } 2638 2639 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2640 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2641 */ 2642 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack, 2643 int *rexmit) 2644 { 2645 struct tcp_sock *tp = tcp_sk(sk); 2646 bool recovered = !before(tp->snd_una, tp->high_seq); 2647 2648 if ((flag & FLAG_SND_UNA_ADVANCED) && 2649 tcp_try_undo_loss(sk, false)) 2650 return; 2651 2652 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2653 /* Step 3.b. A timeout is spurious if not all data are 2654 * lost, i.e., never-retransmitted data are (s)acked. 2655 */ 2656 if ((flag & FLAG_ORIG_SACK_ACKED) && 2657 tcp_try_undo_loss(sk, true)) 2658 return; 2659 2660 if (after(tp->snd_nxt, tp->high_seq)) { 2661 if (flag & FLAG_DATA_SACKED || is_dupack) 2662 tp->frto = 0; /* Step 3.a. loss was real */ 2663 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2664 tp->high_seq = tp->snd_nxt; 2665 /* Step 2.b. Try send new data (but deferred until cwnd 2666 * is updated in tcp_ack()). Otherwise fall back to 2667 * the conventional recovery. 2668 */ 2669 if (!tcp_write_queue_empty(sk) && 2670 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2671 *rexmit = REXMIT_NEW; 2672 return; 2673 } 2674 tp->frto = 0; 2675 } 2676 } 2677 2678 if (recovered) { 2679 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2680 tcp_try_undo_recovery(sk); 2681 return; 2682 } 2683 if (tcp_is_reno(tp)) { 2684 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2685 * delivered. Lower inflight to clock out (re)tranmissions. 2686 */ 2687 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2688 tcp_add_reno_sack(sk); 2689 else if (flag & FLAG_SND_UNA_ADVANCED) 2690 tcp_reset_reno_sack(tp); 2691 } 2692 *rexmit = REXMIT_LOST; 2693 } 2694 2695 /* Undo during fast recovery after partial ACK. */ 2696 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una) 2697 { 2698 struct tcp_sock *tp = tcp_sk(sk); 2699 2700 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2701 /* Plain luck! Hole if filled with delayed 2702 * packet, rather than with a retransmit. Check reordering. 2703 */ 2704 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2705 2706 /* We are getting evidence that the reordering degree is higher 2707 * than we realized. If there are no retransmits out then we 2708 * can undo. Otherwise we clock out new packets but do not 2709 * mark more packets lost or retransmit more. 2710 */ 2711 if (tp->retrans_out) 2712 return true; 2713 2714 if (!tcp_any_retrans_done(sk)) 2715 tp->retrans_stamp = 0; 2716 2717 DBGUNDO(sk, "partial recovery"); 2718 tcp_undo_cwnd_reduction(sk, true); 2719 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2720 tcp_try_keep_open(sk); 2721 return true; 2722 } 2723 return false; 2724 } 2725 2726 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2727 { 2728 struct tcp_sock *tp = tcp_sk(sk); 2729 2730 if (tcp_rtx_queue_empty(sk)) 2731 return; 2732 2733 if (unlikely(tcp_is_reno(tp))) { 2734 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2735 } else if (tcp_is_rack(sk)) { 2736 u32 prior_retrans = tp->retrans_out; 2737 2738 tcp_rack_mark_lost(sk); 2739 if (prior_retrans > tp->retrans_out) 2740 *ack_flag |= FLAG_LOST_RETRANS; 2741 } 2742 } 2743 2744 static bool tcp_force_fast_retransmit(struct sock *sk) 2745 { 2746 struct tcp_sock *tp = tcp_sk(sk); 2747 2748 return after(tcp_highest_sack_seq(tp), 2749 tp->snd_una + tp->reordering * tp->mss_cache); 2750 } 2751 2752 /* Process an event, which can update packets-in-flight not trivially. 2753 * Main goal of this function is to calculate new estimate for left_out, 2754 * taking into account both packets sitting in receiver's buffer and 2755 * packets lost by network. 2756 * 2757 * Besides that it updates the congestion state when packet loss or ECN 2758 * is detected. But it does not reduce the cwnd, it is done by the 2759 * congestion control later. 2760 * 2761 * It does _not_ decide what to send, it is made in function 2762 * tcp_xmit_retransmit_queue(). 2763 */ 2764 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2765 bool is_dupack, int *ack_flag, int *rexmit) 2766 { 2767 struct inet_connection_sock *icsk = inet_csk(sk); 2768 struct tcp_sock *tp = tcp_sk(sk); 2769 int fast_rexmit = 0, flag = *ack_flag; 2770 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2771 tcp_force_fast_retransmit(sk)); 2772 2773 if (!tp->packets_out && tp->sacked_out) 2774 tp->sacked_out = 0; 2775 2776 /* Now state machine starts. 2777 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2778 if (flag & FLAG_ECE) 2779 tp->prior_ssthresh = 0; 2780 2781 /* B. In all the states check for reneging SACKs. */ 2782 if (tcp_check_sack_reneging(sk, flag)) 2783 return; 2784 2785 /* C. Check consistency of the current state. */ 2786 tcp_verify_left_out(tp); 2787 2788 /* D. Check state exit conditions. State can be terminated 2789 * when high_seq is ACKed. */ 2790 if (icsk->icsk_ca_state == TCP_CA_Open) { 2791 WARN_ON(tp->retrans_out != 0); 2792 tp->retrans_stamp = 0; 2793 } else if (!before(tp->snd_una, tp->high_seq)) { 2794 switch (icsk->icsk_ca_state) { 2795 case TCP_CA_CWR: 2796 /* CWR is to be held something *above* high_seq 2797 * is ACKed for CWR bit to reach receiver. */ 2798 if (tp->snd_una != tp->high_seq) { 2799 tcp_end_cwnd_reduction(sk); 2800 tcp_set_ca_state(sk, TCP_CA_Open); 2801 } 2802 break; 2803 2804 case TCP_CA_Recovery: 2805 if (tcp_is_reno(tp)) 2806 tcp_reset_reno_sack(tp); 2807 if (tcp_try_undo_recovery(sk)) 2808 return; 2809 tcp_end_cwnd_reduction(sk); 2810 break; 2811 } 2812 } 2813 2814 /* E. Process state. */ 2815 switch (icsk->icsk_ca_state) { 2816 case TCP_CA_Recovery: 2817 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2818 if (tcp_is_reno(tp) && is_dupack) 2819 tcp_add_reno_sack(sk); 2820 } else { 2821 if (tcp_try_undo_partial(sk, prior_snd_una)) 2822 return; 2823 /* Partial ACK arrived. Force fast retransmit. */ 2824 do_lost = tcp_is_reno(tp) || 2825 tcp_force_fast_retransmit(sk); 2826 } 2827 if (tcp_try_undo_dsack(sk)) { 2828 tcp_try_keep_open(sk); 2829 return; 2830 } 2831 tcp_identify_packet_loss(sk, ack_flag); 2832 break; 2833 case TCP_CA_Loss: 2834 tcp_process_loss(sk, flag, is_dupack, rexmit); 2835 tcp_identify_packet_loss(sk, ack_flag); 2836 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2837 (*ack_flag & FLAG_LOST_RETRANS))) 2838 return; 2839 /* Change state if cwnd is undone or retransmits are lost */ 2840 /* fall through */ 2841 default: 2842 if (tcp_is_reno(tp)) { 2843 if (flag & FLAG_SND_UNA_ADVANCED) 2844 tcp_reset_reno_sack(tp); 2845 if (is_dupack) 2846 tcp_add_reno_sack(sk); 2847 } 2848 2849 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2850 tcp_try_undo_dsack(sk); 2851 2852 tcp_identify_packet_loss(sk, ack_flag); 2853 if (!tcp_time_to_recover(sk, flag)) { 2854 tcp_try_to_open(sk, flag); 2855 return; 2856 } 2857 2858 /* MTU probe failure: don't reduce cwnd */ 2859 if (icsk->icsk_ca_state < TCP_CA_CWR && 2860 icsk->icsk_mtup.probe_size && 2861 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2862 tcp_mtup_probe_failed(sk); 2863 /* Restores the reduction we did in tcp_mtup_probe() */ 2864 tp->snd_cwnd++; 2865 tcp_simple_retransmit(sk); 2866 return; 2867 } 2868 2869 /* Otherwise enter Recovery state */ 2870 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2871 fast_rexmit = 1; 2872 } 2873 2874 if (!tcp_is_rack(sk) && do_lost) 2875 tcp_update_scoreboard(sk, fast_rexmit); 2876 *rexmit = REXMIT_LOST; 2877 } 2878 2879 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 2880 { 2881 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ; 2882 struct tcp_sock *tp = tcp_sk(sk); 2883 2884 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 2885 /* If the remote keeps returning delayed ACKs, eventually 2886 * the min filter would pick it up and overestimate the 2887 * prop. delay when it expires. Skip suspected delayed ACKs. 2888 */ 2889 return; 2890 } 2891 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 2892 rtt_us ? : jiffies_to_usecs(1)); 2893 } 2894 2895 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2896 long seq_rtt_us, long sack_rtt_us, 2897 long ca_rtt_us, struct rate_sample *rs) 2898 { 2899 const struct tcp_sock *tp = tcp_sk(sk); 2900 2901 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2902 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2903 * Karn's algorithm forbids taking RTT if some retransmitted data 2904 * is acked (RFC6298). 2905 */ 2906 if (seq_rtt_us < 0) 2907 seq_rtt_us = sack_rtt_us; 2908 2909 /* RTTM Rule: A TSecr value received in a segment is used to 2910 * update the averaged RTT measurement only if the segment 2911 * acknowledges some new data, i.e., only if it advances the 2912 * left edge of the send window. 2913 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2914 */ 2915 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2916 flag & FLAG_ACKED) { 2917 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 2918 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 2919 2920 seq_rtt_us = ca_rtt_us = delta_us; 2921 } 2922 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 2923 if (seq_rtt_us < 0) 2924 return false; 2925 2926 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2927 * always taken together with ACK, SACK, or TS-opts. Any negative 2928 * values will be skipped with the seq_rtt_us < 0 check above. 2929 */ 2930 tcp_update_rtt_min(sk, ca_rtt_us, flag); 2931 tcp_rtt_estimator(sk, seq_rtt_us); 2932 tcp_set_rto(sk); 2933 2934 /* RFC6298: only reset backoff on valid RTT measurement. */ 2935 inet_csk(sk)->icsk_backoff = 0; 2936 return true; 2937 } 2938 2939 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2940 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2941 { 2942 struct rate_sample rs; 2943 long rtt_us = -1L; 2944 2945 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 2946 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 2947 2948 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 2949 } 2950 2951 2952 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2953 { 2954 const struct inet_connection_sock *icsk = inet_csk(sk); 2955 2956 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2957 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 2958 } 2959 2960 /* Restart timer after forward progress on connection. 2961 * RFC2988 recommends to restart timer to now+rto. 2962 */ 2963 void tcp_rearm_rto(struct sock *sk) 2964 { 2965 const struct inet_connection_sock *icsk = inet_csk(sk); 2966 struct tcp_sock *tp = tcp_sk(sk); 2967 2968 /* If the retrans timer is currently being used by Fast Open 2969 * for SYN-ACK retrans purpose, stay put. 2970 */ 2971 if (tp->fastopen_rsk) 2972 return; 2973 2974 if (!tp->packets_out) { 2975 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2976 } else { 2977 u32 rto = inet_csk(sk)->icsk_rto; 2978 /* Offset the time elapsed after installing regular RTO */ 2979 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 2980 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2981 s64 delta_us = tcp_rto_delta_us(sk); 2982 /* delta_us may not be positive if the socket is locked 2983 * when the retrans timer fires and is rescheduled. 2984 */ 2985 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 2986 } 2987 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 2988 TCP_RTO_MAX); 2989 } 2990 } 2991 2992 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 2993 static void tcp_set_xmit_timer(struct sock *sk) 2994 { 2995 if (!tcp_schedule_loss_probe(sk, true)) 2996 tcp_rearm_rto(sk); 2997 } 2998 2999 /* If we get here, the whole TSO packet has not been acked. */ 3000 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3001 { 3002 struct tcp_sock *tp = tcp_sk(sk); 3003 u32 packets_acked; 3004 3005 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3006 3007 packets_acked = tcp_skb_pcount(skb); 3008 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3009 return 0; 3010 packets_acked -= tcp_skb_pcount(skb); 3011 3012 if (packets_acked) { 3013 BUG_ON(tcp_skb_pcount(skb) == 0); 3014 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3015 } 3016 3017 return packets_acked; 3018 } 3019 3020 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3021 u32 prior_snd_una) 3022 { 3023 const struct skb_shared_info *shinfo; 3024 3025 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3026 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3027 return; 3028 3029 shinfo = skb_shinfo(skb); 3030 if (!before(shinfo->tskey, prior_snd_una) && 3031 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3032 tcp_skb_tsorted_save(skb) { 3033 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3034 } tcp_skb_tsorted_restore(skb); 3035 } 3036 } 3037 3038 /* Remove acknowledged frames from the retransmission queue. If our packet 3039 * is before the ack sequence we can discard it as it's confirmed to have 3040 * arrived at the other end. 3041 */ 3042 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack, 3043 u32 prior_snd_una, 3044 struct tcp_sacktag_state *sack) 3045 { 3046 const struct inet_connection_sock *icsk = inet_csk(sk); 3047 u64 first_ackt, last_ackt; 3048 struct tcp_sock *tp = tcp_sk(sk); 3049 u32 prior_sacked = tp->sacked_out; 3050 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3051 struct sk_buff *skb, *next; 3052 bool fully_acked = true; 3053 long sack_rtt_us = -1L; 3054 long seq_rtt_us = -1L; 3055 long ca_rtt_us = -1L; 3056 u32 pkts_acked = 0; 3057 u32 last_in_flight = 0; 3058 bool rtt_update; 3059 int flag = 0; 3060 3061 first_ackt = 0; 3062 3063 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3064 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3065 const u32 start_seq = scb->seq; 3066 u8 sacked = scb->sacked; 3067 u32 acked_pcount; 3068 3069 tcp_ack_tstamp(sk, skb, prior_snd_una); 3070 3071 /* Determine how many packets and what bytes were acked, tso and else */ 3072 if (after(scb->end_seq, tp->snd_una)) { 3073 if (tcp_skb_pcount(skb) == 1 || 3074 !after(tp->snd_una, scb->seq)) 3075 break; 3076 3077 acked_pcount = tcp_tso_acked(sk, skb); 3078 if (!acked_pcount) 3079 break; 3080 fully_acked = false; 3081 } else { 3082 acked_pcount = tcp_skb_pcount(skb); 3083 } 3084 3085 if (unlikely(sacked & TCPCB_RETRANS)) { 3086 if (sacked & TCPCB_SACKED_RETRANS) 3087 tp->retrans_out -= acked_pcount; 3088 flag |= FLAG_RETRANS_DATA_ACKED; 3089 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3090 last_ackt = skb->skb_mstamp; 3091 WARN_ON_ONCE(last_ackt == 0); 3092 if (!first_ackt) 3093 first_ackt = last_ackt; 3094 3095 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3096 if (before(start_seq, reord)) 3097 reord = start_seq; 3098 if (!after(scb->end_seq, tp->high_seq)) 3099 flag |= FLAG_ORIG_SACK_ACKED; 3100 } 3101 3102 if (sacked & TCPCB_SACKED_ACKED) { 3103 tp->sacked_out -= acked_pcount; 3104 } else if (tcp_is_sack(tp)) { 3105 tp->delivered += acked_pcount; 3106 if (!tcp_skb_spurious_retrans(tp, skb)) 3107 tcp_rack_advance(tp, sacked, scb->end_seq, 3108 skb->skb_mstamp); 3109 } 3110 if (sacked & TCPCB_LOST) 3111 tp->lost_out -= acked_pcount; 3112 3113 tp->packets_out -= acked_pcount; 3114 pkts_acked += acked_pcount; 3115 tcp_rate_skb_delivered(sk, skb, sack->rate); 3116 3117 /* Initial outgoing SYN's get put onto the write_queue 3118 * just like anything else we transmit. It is not 3119 * true data, and if we misinform our callers that 3120 * this ACK acks real data, we will erroneously exit 3121 * connection startup slow start one packet too 3122 * quickly. This is severely frowned upon behavior. 3123 */ 3124 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3125 flag |= FLAG_DATA_ACKED; 3126 } else { 3127 flag |= FLAG_SYN_ACKED; 3128 tp->retrans_stamp = 0; 3129 } 3130 3131 if (!fully_acked) 3132 break; 3133 3134 next = skb_rb_next(skb); 3135 if (unlikely(skb == tp->retransmit_skb_hint)) 3136 tp->retransmit_skb_hint = NULL; 3137 if (unlikely(skb == tp->lost_skb_hint)) 3138 tp->lost_skb_hint = NULL; 3139 tcp_rtx_queue_unlink_and_free(skb, sk); 3140 } 3141 3142 if (!skb) 3143 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3144 3145 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3146 tp->snd_up = tp->snd_una; 3147 3148 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3149 flag |= FLAG_SACK_RENEGING; 3150 3151 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3152 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3153 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3154 3155 if (pkts_acked == 1 && last_in_flight < tp->mss_cache && 3156 last_in_flight && !prior_sacked && fully_acked && 3157 sack->rate->prior_delivered + 1 == tp->delivered && 3158 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3159 /* Conservatively mark a delayed ACK. It's typically 3160 * from a lone runt packet over the round trip to 3161 * a receiver w/o out-of-order or CE events. 3162 */ 3163 flag |= FLAG_ACK_MAYBE_DELAYED; 3164 } 3165 } 3166 if (sack->first_sackt) { 3167 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3168 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3169 } 3170 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3171 ca_rtt_us, sack->rate); 3172 3173 if (flag & FLAG_ACKED) { 3174 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3175 if (unlikely(icsk->icsk_mtup.probe_size && 3176 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3177 tcp_mtup_probe_success(sk); 3178 } 3179 3180 if (tcp_is_reno(tp)) { 3181 tcp_remove_reno_sacks(sk, pkts_acked); 3182 } else { 3183 int delta; 3184 3185 /* Non-retransmitted hole got filled? That's reordering */ 3186 if (before(reord, prior_fack)) 3187 tcp_check_sack_reordering(sk, reord, 0); 3188 3189 delta = prior_sacked - tp->sacked_out; 3190 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3191 } 3192 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3193 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) { 3194 /* Do not re-arm RTO if the sack RTT is measured from data sent 3195 * after when the head was last (re)transmitted. Otherwise the 3196 * timeout may continue to extend in loss recovery. 3197 */ 3198 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3199 } 3200 3201 if (icsk->icsk_ca_ops->pkts_acked) { 3202 struct ack_sample sample = { .pkts_acked = pkts_acked, 3203 .rtt_us = sack->rate->rtt_us, 3204 .in_flight = last_in_flight }; 3205 3206 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3207 } 3208 3209 #if FASTRETRANS_DEBUG > 0 3210 WARN_ON((int)tp->sacked_out < 0); 3211 WARN_ON((int)tp->lost_out < 0); 3212 WARN_ON((int)tp->retrans_out < 0); 3213 if (!tp->packets_out && tcp_is_sack(tp)) { 3214 icsk = inet_csk(sk); 3215 if (tp->lost_out) { 3216 pr_debug("Leak l=%u %d\n", 3217 tp->lost_out, icsk->icsk_ca_state); 3218 tp->lost_out = 0; 3219 } 3220 if (tp->sacked_out) { 3221 pr_debug("Leak s=%u %d\n", 3222 tp->sacked_out, icsk->icsk_ca_state); 3223 tp->sacked_out = 0; 3224 } 3225 if (tp->retrans_out) { 3226 pr_debug("Leak r=%u %d\n", 3227 tp->retrans_out, icsk->icsk_ca_state); 3228 tp->retrans_out = 0; 3229 } 3230 } 3231 #endif 3232 return flag; 3233 } 3234 3235 static void tcp_ack_probe(struct sock *sk) 3236 { 3237 struct inet_connection_sock *icsk = inet_csk(sk); 3238 struct sk_buff *head = tcp_send_head(sk); 3239 const struct tcp_sock *tp = tcp_sk(sk); 3240 3241 /* Was it a usable window open? */ 3242 if (!head) 3243 return; 3244 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3245 icsk->icsk_backoff = 0; 3246 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3247 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3248 * This function is not for random using! 3249 */ 3250 } else { 3251 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3252 3253 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3254 when, TCP_RTO_MAX); 3255 } 3256 } 3257 3258 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3259 { 3260 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3261 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3262 } 3263 3264 /* Decide wheather to run the increase function of congestion control. */ 3265 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3266 { 3267 /* If reordering is high then always grow cwnd whenever data is 3268 * delivered regardless of its ordering. Otherwise stay conservative 3269 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3270 * new SACK or ECE mark may first advance cwnd here and later reduce 3271 * cwnd in tcp_fastretrans_alert() based on more states. 3272 */ 3273 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3274 return flag & FLAG_FORWARD_PROGRESS; 3275 3276 return flag & FLAG_DATA_ACKED; 3277 } 3278 3279 /* The "ultimate" congestion control function that aims to replace the rigid 3280 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3281 * It's called toward the end of processing an ACK with precise rate 3282 * information. All transmission or retransmission are delayed afterwards. 3283 */ 3284 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3285 int flag, const struct rate_sample *rs) 3286 { 3287 const struct inet_connection_sock *icsk = inet_csk(sk); 3288 3289 if (icsk->icsk_ca_ops->cong_control) { 3290 icsk->icsk_ca_ops->cong_control(sk, rs); 3291 return; 3292 } 3293 3294 if (tcp_in_cwnd_reduction(sk)) { 3295 /* Reduce cwnd if state mandates */ 3296 tcp_cwnd_reduction(sk, acked_sacked, flag); 3297 } else if (tcp_may_raise_cwnd(sk, flag)) { 3298 /* Advance cwnd if state allows */ 3299 tcp_cong_avoid(sk, ack, acked_sacked); 3300 } 3301 tcp_update_pacing_rate(sk); 3302 } 3303 3304 /* Check that window update is acceptable. 3305 * The function assumes that snd_una<=ack<=snd_next. 3306 */ 3307 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3308 const u32 ack, const u32 ack_seq, 3309 const u32 nwin) 3310 { 3311 return after(ack, tp->snd_una) || 3312 after(ack_seq, tp->snd_wl1) || 3313 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3314 } 3315 3316 /* If we update tp->snd_una, also update tp->bytes_acked */ 3317 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3318 { 3319 u32 delta = ack - tp->snd_una; 3320 3321 sock_owned_by_me((struct sock *)tp); 3322 tp->bytes_acked += delta; 3323 tp->snd_una = ack; 3324 } 3325 3326 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3327 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3328 { 3329 u32 delta = seq - tp->rcv_nxt; 3330 3331 sock_owned_by_me((struct sock *)tp); 3332 tp->bytes_received += delta; 3333 tp->rcv_nxt = seq; 3334 } 3335 3336 /* Update our send window. 3337 * 3338 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3339 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3340 */ 3341 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3342 u32 ack_seq) 3343 { 3344 struct tcp_sock *tp = tcp_sk(sk); 3345 int flag = 0; 3346 u32 nwin = ntohs(tcp_hdr(skb)->window); 3347 3348 if (likely(!tcp_hdr(skb)->syn)) 3349 nwin <<= tp->rx_opt.snd_wscale; 3350 3351 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3352 flag |= FLAG_WIN_UPDATE; 3353 tcp_update_wl(tp, ack_seq); 3354 3355 if (tp->snd_wnd != nwin) { 3356 tp->snd_wnd = nwin; 3357 3358 /* Note, it is the only place, where 3359 * fast path is recovered for sending TCP. 3360 */ 3361 tp->pred_flags = 0; 3362 tcp_fast_path_check(sk); 3363 3364 if (!tcp_write_queue_empty(sk)) 3365 tcp_slow_start_after_idle_check(sk); 3366 3367 if (nwin > tp->max_window) { 3368 tp->max_window = nwin; 3369 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3370 } 3371 } 3372 } 3373 3374 tcp_snd_una_update(tp, ack); 3375 3376 return flag; 3377 } 3378 3379 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3380 u32 *last_oow_ack_time) 3381 { 3382 if (*last_oow_ack_time) { 3383 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3384 3385 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) { 3386 NET_INC_STATS(net, mib_idx); 3387 return true; /* rate-limited: don't send yet! */ 3388 } 3389 } 3390 3391 *last_oow_ack_time = tcp_jiffies32; 3392 3393 return false; /* not rate-limited: go ahead, send dupack now! */ 3394 } 3395 3396 /* Return true if we're currently rate-limiting out-of-window ACKs and 3397 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3398 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3399 * attacks that send repeated SYNs or ACKs for the same connection. To 3400 * do this, we do not send a duplicate SYNACK or ACK if the remote 3401 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3402 */ 3403 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3404 int mib_idx, u32 *last_oow_ack_time) 3405 { 3406 /* Data packets without SYNs are not likely part of an ACK loop. */ 3407 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3408 !tcp_hdr(skb)->syn) 3409 return false; 3410 3411 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3412 } 3413 3414 /* RFC 5961 7 [ACK Throttling] */ 3415 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3416 { 3417 /* unprotected vars, we dont care of overwrites */ 3418 static u32 challenge_timestamp; 3419 static unsigned int challenge_count; 3420 struct tcp_sock *tp = tcp_sk(sk); 3421 struct net *net = sock_net(sk); 3422 u32 count, now; 3423 3424 /* First check our per-socket dupack rate limit. */ 3425 if (__tcp_oow_rate_limited(net, 3426 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3427 &tp->last_oow_ack_time)) 3428 return; 3429 3430 /* Then check host-wide RFC 5961 rate limit. */ 3431 now = jiffies / HZ; 3432 if (now != challenge_timestamp) { 3433 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit; 3434 u32 half = (ack_limit + 1) >> 1; 3435 3436 challenge_timestamp = now; 3437 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit)); 3438 } 3439 count = READ_ONCE(challenge_count); 3440 if (count > 0) { 3441 WRITE_ONCE(challenge_count, count - 1); 3442 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3443 tcp_send_ack(sk); 3444 } 3445 } 3446 3447 static void tcp_store_ts_recent(struct tcp_sock *tp) 3448 { 3449 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3450 tp->rx_opt.ts_recent_stamp = get_seconds(); 3451 } 3452 3453 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3454 { 3455 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3456 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3457 * extra check below makes sure this can only happen 3458 * for pure ACK frames. -DaveM 3459 * 3460 * Not only, also it occurs for expired timestamps. 3461 */ 3462 3463 if (tcp_paws_check(&tp->rx_opt, 0)) 3464 tcp_store_ts_recent(tp); 3465 } 3466 } 3467 3468 /* This routine deals with acks during a TLP episode. 3469 * We mark the end of a TLP episode on receiving TLP dupack or when 3470 * ack is after tlp_high_seq. 3471 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3472 */ 3473 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3474 { 3475 struct tcp_sock *tp = tcp_sk(sk); 3476 3477 if (before(ack, tp->tlp_high_seq)) 3478 return; 3479 3480 if (flag & FLAG_DSACKING_ACK) { 3481 /* This DSACK means original and TLP probe arrived; no loss */ 3482 tp->tlp_high_seq = 0; 3483 } else if (after(ack, tp->tlp_high_seq)) { 3484 /* ACK advances: there was a loss, so reduce cwnd. Reset 3485 * tlp_high_seq in tcp_init_cwnd_reduction() 3486 */ 3487 tcp_init_cwnd_reduction(sk); 3488 tcp_set_ca_state(sk, TCP_CA_CWR); 3489 tcp_end_cwnd_reduction(sk); 3490 tcp_try_keep_open(sk); 3491 NET_INC_STATS(sock_net(sk), 3492 LINUX_MIB_TCPLOSSPROBERECOVERY); 3493 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3494 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3495 /* Pure dupack: original and TLP probe arrived; no loss */ 3496 tp->tlp_high_seq = 0; 3497 } 3498 } 3499 3500 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3501 { 3502 const struct inet_connection_sock *icsk = inet_csk(sk); 3503 3504 if (icsk->icsk_ca_ops->in_ack_event) 3505 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3506 } 3507 3508 /* Congestion control has updated the cwnd already. So if we're in 3509 * loss recovery then now we do any new sends (for FRTO) or 3510 * retransmits (for CA_Loss or CA_recovery) that make sense. 3511 */ 3512 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3513 { 3514 struct tcp_sock *tp = tcp_sk(sk); 3515 3516 if (rexmit == REXMIT_NONE) 3517 return; 3518 3519 if (unlikely(rexmit == 2)) { 3520 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3521 TCP_NAGLE_OFF); 3522 if (after(tp->snd_nxt, tp->high_seq)) 3523 return; 3524 tp->frto = 0; 3525 } 3526 tcp_xmit_retransmit_queue(sk); 3527 } 3528 3529 /* Returns the number of packets newly acked or sacked by the current ACK */ 3530 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3531 { 3532 const struct net *net = sock_net(sk); 3533 struct tcp_sock *tp = tcp_sk(sk); 3534 u32 delivered; 3535 3536 delivered = tp->delivered - prior_delivered; 3537 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3538 if (flag & FLAG_ECE) { 3539 tp->delivered_ce += delivered; 3540 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3541 } 3542 return delivered; 3543 } 3544 3545 /* This routine deals with incoming acks, but not outgoing ones. */ 3546 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3547 { 3548 struct inet_connection_sock *icsk = inet_csk(sk); 3549 struct tcp_sock *tp = tcp_sk(sk); 3550 struct tcp_sacktag_state sack_state; 3551 struct rate_sample rs = { .prior_delivered = 0 }; 3552 u32 prior_snd_una = tp->snd_una; 3553 bool is_sack_reneg = tp->is_sack_reneg; 3554 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3555 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3556 bool is_dupack = false; 3557 int prior_packets = tp->packets_out; 3558 u32 delivered = tp->delivered; 3559 u32 lost = tp->lost; 3560 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3561 u32 prior_fack; 3562 3563 sack_state.first_sackt = 0; 3564 sack_state.rate = &rs; 3565 3566 /* We very likely will need to access rtx queue. */ 3567 prefetch(sk->tcp_rtx_queue.rb_node); 3568 3569 /* If the ack is older than previous acks 3570 * then we can probably ignore it. 3571 */ 3572 if (before(ack, prior_snd_una)) { 3573 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3574 if (before(ack, prior_snd_una - tp->max_window)) { 3575 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3576 tcp_send_challenge_ack(sk, skb); 3577 return -1; 3578 } 3579 goto old_ack; 3580 } 3581 3582 /* If the ack includes data we haven't sent yet, discard 3583 * this segment (RFC793 Section 3.9). 3584 */ 3585 if (after(ack, tp->snd_nxt)) 3586 goto invalid_ack; 3587 3588 if (after(ack, prior_snd_una)) { 3589 flag |= FLAG_SND_UNA_ADVANCED; 3590 icsk->icsk_retransmits = 0; 3591 3592 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3593 if (static_branch_unlikely(&clean_acked_data_enabled)) 3594 if (icsk->icsk_clean_acked) 3595 icsk->icsk_clean_acked(sk, ack); 3596 #endif 3597 } 3598 3599 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3600 rs.prior_in_flight = tcp_packets_in_flight(tp); 3601 3602 /* ts_recent update must be made after we are sure that the packet 3603 * is in window. 3604 */ 3605 if (flag & FLAG_UPDATE_TS_RECENT) 3606 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3607 3608 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3609 /* Window is constant, pure forward advance. 3610 * No more checks are required. 3611 * Note, we use the fact that SND.UNA>=SND.WL2. 3612 */ 3613 tcp_update_wl(tp, ack_seq); 3614 tcp_snd_una_update(tp, ack); 3615 flag |= FLAG_WIN_UPDATE; 3616 3617 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3618 3619 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3620 } else { 3621 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3622 3623 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3624 flag |= FLAG_DATA; 3625 else 3626 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3627 3628 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3629 3630 if (TCP_SKB_CB(skb)->sacked) 3631 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3632 &sack_state); 3633 3634 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3635 flag |= FLAG_ECE; 3636 ack_ev_flags |= CA_ACK_ECE; 3637 } 3638 3639 if (flag & FLAG_WIN_UPDATE) 3640 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3641 3642 tcp_in_ack_event(sk, ack_ev_flags); 3643 } 3644 3645 /* We passed data and got it acked, remove any soft error 3646 * log. Something worked... 3647 */ 3648 sk->sk_err_soft = 0; 3649 icsk->icsk_probes_out = 0; 3650 tp->rcv_tstamp = tcp_jiffies32; 3651 if (!prior_packets) 3652 goto no_queue; 3653 3654 /* See if we can take anything off of the retransmit queue. */ 3655 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state); 3656 3657 tcp_rack_update_reo_wnd(sk, &rs); 3658 3659 if (tp->tlp_high_seq) 3660 tcp_process_tlp_ack(sk, ack, flag); 3661 /* If needed, reset TLP/RTO timer; RACK may later override this. */ 3662 if (flag & FLAG_SET_XMIT_TIMER) 3663 tcp_set_xmit_timer(sk); 3664 3665 if (tcp_ack_is_dubious(sk, flag)) { 3666 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3667 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3668 &rexmit); 3669 } 3670 3671 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3672 sk_dst_confirm(sk); 3673 3674 delivered = tcp_newly_delivered(sk, delivered, flag); 3675 lost = tp->lost - lost; /* freshly marked lost */ 3676 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3677 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3678 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3679 tcp_xmit_recovery(sk, rexmit); 3680 return 1; 3681 3682 no_queue: 3683 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3684 if (flag & FLAG_DSACKING_ACK) { 3685 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3686 &rexmit); 3687 tcp_newly_delivered(sk, delivered, flag); 3688 } 3689 /* If this ack opens up a zero window, clear backoff. It was 3690 * being used to time the probes, and is probably far higher than 3691 * it needs to be for normal retransmission. 3692 */ 3693 tcp_ack_probe(sk); 3694 3695 if (tp->tlp_high_seq) 3696 tcp_process_tlp_ack(sk, ack, flag); 3697 return 1; 3698 3699 invalid_ack: 3700 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3701 return -1; 3702 3703 old_ack: 3704 /* If data was SACKed, tag it and see if we should send more data. 3705 * If data was DSACKed, see if we can undo a cwnd reduction. 3706 */ 3707 if (TCP_SKB_CB(skb)->sacked) { 3708 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3709 &sack_state); 3710 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3711 &rexmit); 3712 tcp_newly_delivered(sk, delivered, flag); 3713 tcp_xmit_recovery(sk, rexmit); 3714 } 3715 3716 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3717 return 0; 3718 } 3719 3720 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3721 bool syn, struct tcp_fastopen_cookie *foc, 3722 bool exp_opt) 3723 { 3724 /* Valid only in SYN or SYN-ACK with an even length. */ 3725 if (!foc || !syn || len < 0 || (len & 1)) 3726 return; 3727 3728 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3729 len <= TCP_FASTOPEN_COOKIE_MAX) 3730 memcpy(foc->val, cookie, len); 3731 else if (len != 0) 3732 len = -1; 3733 foc->len = len; 3734 foc->exp = exp_opt; 3735 } 3736 3737 static void smc_parse_options(const struct tcphdr *th, 3738 struct tcp_options_received *opt_rx, 3739 const unsigned char *ptr, 3740 int opsize) 3741 { 3742 #if IS_ENABLED(CONFIG_SMC) 3743 if (static_branch_unlikely(&tcp_have_smc)) { 3744 if (th->syn && !(opsize & 1) && 3745 opsize >= TCPOLEN_EXP_SMC_BASE && 3746 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) 3747 opt_rx->smc_ok = 1; 3748 } 3749 #endif 3750 } 3751 3752 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3753 * But, this can also be called on packets in the established flow when 3754 * the fast version below fails. 3755 */ 3756 void tcp_parse_options(const struct net *net, 3757 const struct sk_buff *skb, 3758 struct tcp_options_received *opt_rx, int estab, 3759 struct tcp_fastopen_cookie *foc) 3760 { 3761 const unsigned char *ptr; 3762 const struct tcphdr *th = tcp_hdr(skb); 3763 int length = (th->doff * 4) - sizeof(struct tcphdr); 3764 3765 ptr = (const unsigned char *)(th + 1); 3766 opt_rx->saw_tstamp = 0; 3767 3768 while (length > 0) { 3769 int opcode = *ptr++; 3770 int opsize; 3771 3772 switch (opcode) { 3773 case TCPOPT_EOL: 3774 return; 3775 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3776 length--; 3777 continue; 3778 default: 3779 opsize = *ptr++; 3780 if (opsize < 2) /* "silly options" */ 3781 return; 3782 if (opsize > length) 3783 return; /* don't parse partial options */ 3784 switch (opcode) { 3785 case TCPOPT_MSS: 3786 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3787 u16 in_mss = get_unaligned_be16(ptr); 3788 if (in_mss) { 3789 if (opt_rx->user_mss && 3790 opt_rx->user_mss < in_mss) 3791 in_mss = opt_rx->user_mss; 3792 opt_rx->mss_clamp = in_mss; 3793 } 3794 } 3795 break; 3796 case TCPOPT_WINDOW: 3797 if (opsize == TCPOLEN_WINDOW && th->syn && 3798 !estab && net->ipv4.sysctl_tcp_window_scaling) { 3799 __u8 snd_wscale = *(__u8 *)ptr; 3800 opt_rx->wscale_ok = 1; 3801 if (snd_wscale > TCP_MAX_WSCALE) { 3802 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 3803 __func__, 3804 snd_wscale, 3805 TCP_MAX_WSCALE); 3806 snd_wscale = TCP_MAX_WSCALE; 3807 } 3808 opt_rx->snd_wscale = snd_wscale; 3809 } 3810 break; 3811 case TCPOPT_TIMESTAMP: 3812 if ((opsize == TCPOLEN_TIMESTAMP) && 3813 ((estab && opt_rx->tstamp_ok) || 3814 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 3815 opt_rx->saw_tstamp = 1; 3816 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3817 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3818 } 3819 break; 3820 case TCPOPT_SACK_PERM: 3821 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3822 !estab && net->ipv4.sysctl_tcp_sack) { 3823 opt_rx->sack_ok = TCP_SACK_SEEN; 3824 tcp_sack_reset(opt_rx); 3825 } 3826 break; 3827 3828 case TCPOPT_SACK: 3829 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3830 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3831 opt_rx->sack_ok) { 3832 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3833 } 3834 break; 3835 #ifdef CONFIG_TCP_MD5SIG 3836 case TCPOPT_MD5SIG: 3837 /* 3838 * The MD5 Hash has already been 3839 * checked (see tcp_v{4,6}_do_rcv()). 3840 */ 3841 break; 3842 #endif 3843 case TCPOPT_FASTOPEN: 3844 tcp_parse_fastopen_option( 3845 opsize - TCPOLEN_FASTOPEN_BASE, 3846 ptr, th->syn, foc, false); 3847 break; 3848 3849 case TCPOPT_EXP: 3850 /* Fast Open option shares code 254 using a 3851 * 16 bits magic number. 3852 */ 3853 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3854 get_unaligned_be16(ptr) == 3855 TCPOPT_FASTOPEN_MAGIC) 3856 tcp_parse_fastopen_option(opsize - 3857 TCPOLEN_EXP_FASTOPEN_BASE, 3858 ptr + 2, th->syn, foc, true); 3859 else 3860 smc_parse_options(th, opt_rx, ptr, 3861 opsize); 3862 break; 3863 3864 } 3865 ptr += opsize-2; 3866 length -= opsize; 3867 } 3868 } 3869 } 3870 EXPORT_SYMBOL(tcp_parse_options); 3871 3872 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3873 { 3874 const __be32 *ptr = (const __be32 *)(th + 1); 3875 3876 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3877 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3878 tp->rx_opt.saw_tstamp = 1; 3879 ++ptr; 3880 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3881 ++ptr; 3882 if (*ptr) 3883 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3884 else 3885 tp->rx_opt.rcv_tsecr = 0; 3886 return true; 3887 } 3888 return false; 3889 } 3890 3891 /* Fast parse options. This hopes to only see timestamps. 3892 * If it is wrong it falls back on tcp_parse_options(). 3893 */ 3894 static bool tcp_fast_parse_options(const struct net *net, 3895 const struct sk_buff *skb, 3896 const struct tcphdr *th, struct tcp_sock *tp) 3897 { 3898 /* In the spirit of fast parsing, compare doff directly to constant 3899 * values. Because equality is used, short doff can be ignored here. 3900 */ 3901 if (th->doff == (sizeof(*th) / 4)) { 3902 tp->rx_opt.saw_tstamp = 0; 3903 return false; 3904 } else if (tp->rx_opt.tstamp_ok && 3905 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3906 if (tcp_parse_aligned_timestamp(tp, th)) 3907 return true; 3908 } 3909 3910 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 3911 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3912 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3913 3914 return true; 3915 } 3916 3917 #ifdef CONFIG_TCP_MD5SIG 3918 /* 3919 * Parse MD5 Signature option 3920 */ 3921 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3922 { 3923 int length = (th->doff << 2) - sizeof(*th); 3924 const u8 *ptr = (const u8 *)(th + 1); 3925 3926 /* If not enough data remaining, we can short cut */ 3927 while (length >= TCPOLEN_MD5SIG) { 3928 int opcode = *ptr++; 3929 int opsize; 3930 3931 switch (opcode) { 3932 case TCPOPT_EOL: 3933 return NULL; 3934 case TCPOPT_NOP: 3935 length--; 3936 continue; 3937 default: 3938 opsize = *ptr++; 3939 if (opsize < 2 || opsize > length) 3940 return NULL; 3941 if (opcode == TCPOPT_MD5SIG) 3942 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3943 } 3944 ptr += opsize - 2; 3945 length -= opsize; 3946 } 3947 return NULL; 3948 } 3949 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3950 #endif 3951 3952 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3953 * 3954 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3955 * it can pass through stack. So, the following predicate verifies that 3956 * this segment is not used for anything but congestion avoidance or 3957 * fast retransmit. Moreover, we even are able to eliminate most of such 3958 * second order effects, if we apply some small "replay" window (~RTO) 3959 * to timestamp space. 3960 * 3961 * All these measures still do not guarantee that we reject wrapped ACKs 3962 * on networks with high bandwidth, when sequence space is recycled fastly, 3963 * but it guarantees that such events will be very rare and do not affect 3964 * connection seriously. This doesn't look nice, but alas, PAWS is really 3965 * buggy extension. 3966 * 3967 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3968 * states that events when retransmit arrives after original data are rare. 3969 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3970 * the biggest problem on large power networks even with minor reordering. 3971 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3972 * up to bandwidth of 18Gigabit/sec. 8) ] 3973 */ 3974 3975 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3976 { 3977 const struct tcp_sock *tp = tcp_sk(sk); 3978 const struct tcphdr *th = tcp_hdr(skb); 3979 u32 seq = TCP_SKB_CB(skb)->seq; 3980 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3981 3982 return (/* 1. Pure ACK with correct sequence number. */ 3983 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3984 3985 /* 2. ... and duplicate ACK. */ 3986 ack == tp->snd_una && 3987 3988 /* 3. ... and does not update window. */ 3989 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3990 3991 /* 4. ... and sits in replay window. */ 3992 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3993 } 3994 3995 static inline bool tcp_paws_discard(const struct sock *sk, 3996 const struct sk_buff *skb) 3997 { 3998 const struct tcp_sock *tp = tcp_sk(sk); 3999 4000 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4001 !tcp_disordered_ack(sk, skb); 4002 } 4003 4004 /* Check segment sequence number for validity. 4005 * 4006 * Segment controls are considered valid, if the segment 4007 * fits to the window after truncation to the window. Acceptability 4008 * of data (and SYN, FIN, of course) is checked separately. 4009 * See tcp_data_queue(), for example. 4010 * 4011 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4012 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4013 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4014 * (borrowed from freebsd) 4015 */ 4016 4017 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4018 { 4019 return !before(end_seq, tp->rcv_wup) && 4020 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4021 } 4022 4023 /* When we get a reset we do this. */ 4024 void tcp_reset(struct sock *sk) 4025 { 4026 trace_tcp_receive_reset(sk); 4027 4028 /* We want the right error as BSD sees it (and indeed as we do). */ 4029 switch (sk->sk_state) { 4030 case TCP_SYN_SENT: 4031 sk->sk_err = ECONNREFUSED; 4032 break; 4033 case TCP_CLOSE_WAIT: 4034 sk->sk_err = EPIPE; 4035 break; 4036 case TCP_CLOSE: 4037 return; 4038 default: 4039 sk->sk_err = ECONNRESET; 4040 } 4041 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4042 smp_wmb(); 4043 4044 tcp_write_queue_purge(sk); 4045 tcp_done(sk); 4046 4047 if (!sock_flag(sk, SOCK_DEAD)) 4048 sk->sk_error_report(sk); 4049 } 4050 4051 /* 4052 * Process the FIN bit. This now behaves as it is supposed to work 4053 * and the FIN takes effect when it is validly part of sequence 4054 * space. Not before when we get holes. 4055 * 4056 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4057 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4058 * TIME-WAIT) 4059 * 4060 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4061 * close and we go into CLOSING (and later onto TIME-WAIT) 4062 * 4063 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4064 */ 4065 void tcp_fin(struct sock *sk) 4066 { 4067 struct tcp_sock *tp = tcp_sk(sk); 4068 4069 inet_csk_schedule_ack(sk); 4070 4071 sk->sk_shutdown |= RCV_SHUTDOWN; 4072 sock_set_flag(sk, SOCK_DONE); 4073 4074 switch (sk->sk_state) { 4075 case TCP_SYN_RECV: 4076 case TCP_ESTABLISHED: 4077 /* Move to CLOSE_WAIT */ 4078 tcp_set_state(sk, TCP_CLOSE_WAIT); 4079 inet_csk(sk)->icsk_ack.pingpong = 1; 4080 break; 4081 4082 case TCP_CLOSE_WAIT: 4083 case TCP_CLOSING: 4084 /* Received a retransmission of the FIN, do 4085 * nothing. 4086 */ 4087 break; 4088 case TCP_LAST_ACK: 4089 /* RFC793: Remain in the LAST-ACK state. */ 4090 break; 4091 4092 case TCP_FIN_WAIT1: 4093 /* This case occurs when a simultaneous close 4094 * happens, we must ack the received FIN and 4095 * enter the CLOSING state. 4096 */ 4097 tcp_send_ack(sk); 4098 tcp_set_state(sk, TCP_CLOSING); 4099 break; 4100 case TCP_FIN_WAIT2: 4101 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4102 tcp_send_ack(sk); 4103 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4104 break; 4105 default: 4106 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4107 * cases we should never reach this piece of code. 4108 */ 4109 pr_err("%s: Impossible, sk->sk_state=%d\n", 4110 __func__, sk->sk_state); 4111 break; 4112 } 4113 4114 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4115 * Probably, we should reset in this case. For now drop them. 4116 */ 4117 skb_rbtree_purge(&tp->out_of_order_queue); 4118 if (tcp_is_sack(tp)) 4119 tcp_sack_reset(&tp->rx_opt); 4120 sk_mem_reclaim(sk); 4121 4122 if (!sock_flag(sk, SOCK_DEAD)) { 4123 sk->sk_state_change(sk); 4124 4125 /* Do not send POLL_HUP for half duplex close. */ 4126 if (sk->sk_shutdown == SHUTDOWN_MASK || 4127 sk->sk_state == TCP_CLOSE) 4128 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4129 else 4130 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4131 } 4132 } 4133 4134 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4135 u32 end_seq) 4136 { 4137 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4138 if (before(seq, sp->start_seq)) 4139 sp->start_seq = seq; 4140 if (after(end_seq, sp->end_seq)) 4141 sp->end_seq = end_seq; 4142 return true; 4143 } 4144 return false; 4145 } 4146 4147 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4148 { 4149 struct tcp_sock *tp = tcp_sk(sk); 4150 4151 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4152 int mib_idx; 4153 4154 if (before(seq, tp->rcv_nxt)) 4155 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4156 else 4157 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4158 4159 NET_INC_STATS(sock_net(sk), mib_idx); 4160 4161 tp->rx_opt.dsack = 1; 4162 tp->duplicate_sack[0].start_seq = seq; 4163 tp->duplicate_sack[0].end_seq = end_seq; 4164 } 4165 } 4166 4167 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4168 { 4169 struct tcp_sock *tp = tcp_sk(sk); 4170 4171 if (!tp->rx_opt.dsack) 4172 tcp_dsack_set(sk, seq, end_seq); 4173 else 4174 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4175 } 4176 4177 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4178 { 4179 struct tcp_sock *tp = tcp_sk(sk); 4180 4181 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4182 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4183 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4184 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4185 4186 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4187 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4188 4189 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4190 end_seq = tp->rcv_nxt; 4191 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4192 } 4193 } 4194 4195 tcp_send_ack(sk); 4196 } 4197 4198 /* These routines update the SACK block as out-of-order packets arrive or 4199 * in-order packets close up the sequence space. 4200 */ 4201 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4202 { 4203 int this_sack; 4204 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4205 struct tcp_sack_block *swalk = sp + 1; 4206 4207 /* See if the recent change to the first SACK eats into 4208 * or hits the sequence space of other SACK blocks, if so coalesce. 4209 */ 4210 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4211 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4212 int i; 4213 4214 /* Zap SWALK, by moving every further SACK up by one slot. 4215 * Decrease num_sacks. 4216 */ 4217 tp->rx_opt.num_sacks--; 4218 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4219 sp[i] = sp[i + 1]; 4220 continue; 4221 } 4222 this_sack++, swalk++; 4223 } 4224 } 4225 4226 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4227 { 4228 struct tcp_sock *tp = tcp_sk(sk); 4229 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4230 int cur_sacks = tp->rx_opt.num_sacks; 4231 int this_sack; 4232 4233 if (!cur_sacks) 4234 goto new_sack; 4235 4236 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4237 if (tcp_sack_extend(sp, seq, end_seq)) { 4238 /* Rotate this_sack to the first one. */ 4239 for (; this_sack > 0; this_sack--, sp--) 4240 swap(*sp, *(sp - 1)); 4241 if (cur_sacks > 1) 4242 tcp_sack_maybe_coalesce(tp); 4243 return; 4244 } 4245 } 4246 4247 /* Could not find an adjacent existing SACK, build a new one, 4248 * put it at the front, and shift everyone else down. We 4249 * always know there is at least one SACK present already here. 4250 * 4251 * If the sack array is full, forget about the last one. 4252 */ 4253 if (this_sack >= TCP_NUM_SACKS) { 4254 if (tp->compressed_ack) 4255 tcp_send_ack(sk); 4256 this_sack--; 4257 tp->rx_opt.num_sacks--; 4258 sp--; 4259 } 4260 for (; this_sack > 0; this_sack--, sp--) 4261 *sp = *(sp - 1); 4262 4263 new_sack: 4264 /* Build the new head SACK, and we're done. */ 4265 sp->start_seq = seq; 4266 sp->end_seq = end_seq; 4267 tp->rx_opt.num_sacks++; 4268 } 4269 4270 /* RCV.NXT advances, some SACKs should be eaten. */ 4271 4272 static void tcp_sack_remove(struct tcp_sock *tp) 4273 { 4274 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4275 int num_sacks = tp->rx_opt.num_sacks; 4276 int this_sack; 4277 4278 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4279 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4280 tp->rx_opt.num_sacks = 0; 4281 return; 4282 } 4283 4284 for (this_sack = 0; this_sack < num_sacks;) { 4285 /* Check if the start of the sack is covered by RCV.NXT. */ 4286 if (!before(tp->rcv_nxt, sp->start_seq)) { 4287 int i; 4288 4289 /* RCV.NXT must cover all the block! */ 4290 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4291 4292 /* Zap this SACK, by moving forward any other SACKS. */ 4293 for (i = this_sack+1; i < num_sacks; i++) 4294 tp->selective_acks[i-1] = tp->selective_acks[i]; 4295 num_sacks--; 4296 continue; 4297 } 4298 this_sack++; 4299 sp++; 4300 } 4301 tp->rx_opt.num_sacks = num_sacks; 4302 } 4303 4304 /** 4305 * tcp_try_coalesce - try to merge skb to prior one 4306 * @sk: socket 4307 * @dest: destination queue 4308 * @to: prior buffer 4309 * @from: buffer to add in queue 4310 * @fragstolen: pointer to boolean 4311 * 4312 * Before queueing skb @from after @to, try to merge them 4313 * to reduce overall memory use and queue lengths, if cost is small. 4314 * Packets in ofo or receive queues can stay a long time. 4315 * Better try to coalesce them right now to avoid future collapses. 4316 * Returns true if caller should free @from instead of queueing it 4317 */ 4318 static bool tcp_try_coalesce(struct sock *sk, 4319 struct sk_buff *to, 4320 struct sk_buff *from, 4321 bool *fragstolen) 4322 { 4323 int delta; 4324 4325 *fragstolen = false; 4326 4327 /* Its possible this segment overlaps with prior segment in queue */ 4328 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4329 return false; 4330 4331 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4332 return false; 4333 4334 atomic_add(delta, &sk->sk_rmem_alloc); 4335 sk_mem_charge(sk, delta); 4336 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4337 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4338 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4339 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4340 4341 if (TCP_SKB_CB(from)->has_rxtstamp) { 4342 TCP_SKB_CB(to)->has_rxtstamp = true; 4343 to->tstamp = from->tstamp; 4344 } 4345 4346 return true; 4347 } 4348 4349 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4350 { 4351 sk_drops_add(sk, skb); 4352 __kfree_skb(skb); 4353 } 4354 4355 /* This one checks to see if we can put data from the 4356 * out_of_order queue into the receive_queue. 4357 */ 4358 static void tcp_ofo_queue(struct sock *sk) 4359 { 4360 struct tcp_sock *tp = tcp_sk(sk); 4361 __u32 dsack_high = tp->rcv_nxt; 4362 bool fin, fragstolen, eaten; 4363 struct sk_buff *skb, *tail; 4364 struct rb_node *p; 4365 4366 p = rb_first(&tp->out_of_order_queue); 4367 while (p) { 4368 skb = rb_to_skb(p); 4369 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4370 break; 4371 4372 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4373 __u32 dsack = dsack_high; 4374 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4375 dsack_high = TCP_SKB_CB(skb)->end_seq; 4376 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4377 } 4378 p = rb_next(p); 4379 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4380 4381 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4382 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4383 tcp_drop(sk, skb); 4384 continue; 4385 } 4386 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4387 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4388 TCP_SKB_CB(skb)->end_seq); 4389 4390 tail = skb_peek_tail(&sk->sk_receive_queue); 4391 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4392 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4393 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4394 if (!eaten) 4395 __skb_queue_tail(&sk->sk_receive_queue, skb); 4396 else 4397 kfree_skb_partial(skb, fragstolen); 4398 4399 if (unlikely(fin)) { 4400 tcp_fin(sk); 4401 /* tcp_fin() purges tp->out_of_order_queue, 4402 * so we must end this loop right now. 4403 */ 4404 break; 4405 } 4406 } 4407 } 4408 4409 static bool tcp_prune_ofo_queue(struct sock *sk); 4410 static int tcp_prune_queue(struct sock *sk); 4411 4412 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4413 unsigned int size) 4414 { 4415 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4416 !sk_rmem_schedule(sk, skb, size)) { 4417 4418 if (tcp_prune_queue(sk) < 0) 4419 return -1; 4420 4421 while (!sk_rmem_schedule(sk, skb, size)) { 4422 if (!tcp_prune_ofo_queue(sk)) 4423 return -1; 4424 } 4425 } 4426 return 0; 4427 } 4428 4429 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4430 { 4431 struct tcp_sock *tp = tcp_sk(sk); 4432 struct rb_node **p, *parent; 4433 struct sk_buff *skb1; 4434 u32 seq, end_seq; 4435 bool fragstolen; 4436 4437 tcp_ecn_check_ce(tp, skb); 4438 4439 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4440 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4441 tcp_drop(sk, skb); 4442 return; 4443 } 4444 4445 /* Disable header prediction. */ 4446 tp->pred_flags = 0; 4447 inet_csk_schedule_ack(sk); 4448 4449 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4450 seq = TCP_SKB_CB(skb)->seq; 4451 end_seq = TCP_SKB_CB(skb)->end_seq; 4452 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4453 tp->rcv_nxt, seq, end_seq); 4454 4455 p = &tp->out_of_order_queue.rb_node; 4456 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4457 /* Initial out of order segment, build 1 SACK. */ 4458 if (tcp_is_sack(tp)) { 4459 tp->rx_opt.num_sacks = 1; 4460 tp->selective_acks[0].start_seq = seq; 4461 tp->selective_acks[0].end_seq = end_seq; 4462 } 4463 rb_link_node(&skb->rbnode, NULL, p); 4464 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4465 tp->ooo_last_skb = skb; 4466 goto end; 4467 } 4468 4469 /* In the typical case, we are adding an skb to the end of the list. 4470 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4471 */ 4472 if (tcp_try_coalesce(sk, tp->ooo_last_skb, 4473 skb, &fragstolen)) { 4474 coalesce_done: 4475 tcp_grow_window(sk, skb); 4476 kfree_skb_partial(skb, fragstolen); 4477 skb = NULL; 4478 goto add_sack; 4479 } 4480 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4481 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4482 parent = &tp->ooo_last_skb->rbnode; 4483 p = &parent->rb_right; 4484 goto insert; 4485 } 4486 4487 /* Find place to insert this segment. Handle overlaps on the way. */ 4488 parent = NULL; 4489 while (*p) { 4490 parent = *p; 4491 skb1 = rb_to_skb(parent); 4492 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4493 p = &parent->rb_left; 4494 continue; 4495 } 4496 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4497 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4498 /* All the bits are present. Drop. */ 4499 NET_INC_STATS(sock_net(sk), 4500 LINUX_MIB_TCPOFOMERGE); 4501 __kfree_skb(skb); 4502 skb = NULL; 4503 tcp_dsack_set(sk, seq, end_seq); 4504 goto add_sack; 4505 } 4506 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4507 /* Partial overlap. */ 4508 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4509 } else { 4510 /* skb's seq == skb1's seq and skb covers skb1. 4511 * Replace skb1 with skb. 4512 */ 4513 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4514 &tp->out_of_order_queue); 4515 tcp_dsack_extend(sk, 4516 TCP_SKB_CB(skb1)->seq, 4517 TCP_SKB_CB(skb1)->end_seq); 4518 NET_INC_STATS(sock_net(sk), 4519 LINUX_MIB_TCPOFOMERGE); 4520 __kfree_skb(skb1); 4521 goto merge_right; 4522 } 4523 } else if (tcp_try_coalesce(sk, skb1, 4524 skb, &fragstolen)) { 4525 goto coalesce_done; 4526 } 4527 p = &parent->rb_right; 4528 } 4529 insert: 4530 /* Insert segment into RB tree. */ 4531 rb_link_node(&skb->rbnode, parent, p); 4532 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4533 4534 merge_right: 4535 /* Remove other segments covered by skb. */ 4536 while ((skb1 = skb_rb_next(skb)) != NULL) { 4537 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4538 break; 4539 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4540 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4541 end_seq); 4542 break; 4543 } 4544 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4545 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4546 TCP_SKB_CB(skb1)->end_seq); 4547 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4548 tcp_drop(sk, skb1); 4549 } 4550 /* If there is no skb after us, we are the last_skb ! */ 4551 if (!skb1) 4552 tp->ooo_last_skb = skb; 4553 4554 add_sack: 4555 if (tcp_is_sack(tp)) 4556 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4557 end: 4558 if (skb) { 4559 tcp_grow_window(sk, skb); 4560 skb_condense(skb); 4561 skb_set_owner_r(skb, sk); 4562 } 4563 } 4564 4565 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4566 bool *fragstolen) 4567 { 4568 int eaten; 4569 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4570 4571 __skb_pull(skb, hdrlen); 4572 eaten = (tail && 4573 tcp_try_coalesce(sk, tail, 4574 skb, fragstolen)) ? 1 : 0; 4575 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4576 if (!eaten) { 4577 __skb_queue_tail(&sk->sk_receive_queue, skb); 4578 skb_set_owner_r(skb, sk); 4579 } 4580 return eaten; 4581 } 4582 4583 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4584 { 4585 struct sk_buff *skb; 4586 int err = -ENOMEM; 4587 int data_len = 0; 4588 bool fragstolen; 4589 4590 if (size == 0) 4591 return 0; 4592 4593 if (size > PAGE_SIZE) { 4594 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4595 4596 data_len = npages << PAGE_SHIFT; 4597 size = data_len + (size & ~PAGE_MASK); 4598 } 4599 skb = alloc_skb_with_frags(size - data_len, data_len, 4600 PAGE_ALLOC_COSTLY_ORDER, 4601 &err, sk->sk_allocation); 4602 if (!skb) 4603 goto err; 4604 4605 skb_put(skb, size - data_len); 4606 skb->data_len = data_len; 4607 skb->len = size; 4608 4609 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4610 goto err_free; 4611 4612 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4613 if (err) 4614 goto err_free; 4615 4616 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4617 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4618 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4619 4620 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4621 WARN_ON_ONCE(fragstolen); /* should not happen */ 4622 __kfree_skb(skb); 4623 } 4624 return size; 4625 4626 err_free: 4627 kfree_skb(skb); 4628 err: 4629 return err; 4630 4631 } 4632 4633 void tcp_data_ready(struct sock *sk) 4634 { 4635 const struct tcp_sock *tp = tcp_sk(sk); 4636 int avail = tp->rcv_nxt - tp->copied_seq; 4637 4638 if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE)) 4639 return; 4640 4641 sk->sk_data_ready(sk); 4642 } 4643 4644 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4645 { 4646 struct tcp_sock *tp = tcp_sk(sk); 4647 bool fragstolen; 4648 int eaten; 4649 4650 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4651 __kfree_skb(skb); 4652 return; 4653 } 4654 skb_dst_drop(skb); 4655 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4656 4657 tcp_ecn_accept_cwr(tp, skb); 4658 4659 tp->rx_opt.dsack = 0; 4660 4661 /* Queue data for delivery to the user. 4662 * Packets in sequence go to the receive queue. 4663 * Out of sequence packets to the out_of_order_queue. 4664 */ 4665 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4666 if (tcp_receive_window(tp) == 0) 4667 goto out_of_window; 4668 4669 /* Ok. In sequence. In window. */ 4670 queue_and_out: 4671 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4672 sk_forced_mem_schedule(sk, skb->truesize); 4673 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4674 goto drop; 4675 4676 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4677 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4678 if (skb->len) 4679 tcp_event_data_recv(sk, skb); 4680 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4681 tcp_fin(sk); 4682 4683 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4684 tcp_ofo_queue(sk); 4685 4686 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4687 * gap in queue is filled. 4688 */ 4689 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4690 inet_csk(sk)->icsk_ack.pingpong = 0; 4691 } 4692 4693 if (tp->rx_opt.num_sacks) 4694 tcp_sack_remove(tp); 4695 4696 tcp_fast_path_check(sk); 4697 4698 if (eaten > 0) 4699 kfree_skb_partial(skb, fragstolen); 4700 if (!sock_flag(sk, SOCK_DEAD)) 4701 tcp_data_ready(sk); 4702 return; 4703 } 4704 4705 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4706 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4707 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4708 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4709 4710 out_of_window: 4711 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4712 inet_csk_schedule_ack(sk); 4713 drop: 4714 tcp_drop(sk, skb); 4715 return; 4716 } 4717 4718 /* Out of window. F.e. zero window probe. */ 4719 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4720 goto out_of_window; 4721 4722 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4723 /* Partial packet, seq < rcv_next < end_seq */ 4724 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4725 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4726 TCP_SKB_CB(skb)->end_seq); 4727 4728 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4729 4730 /* If window is closed, drop tail of packet. But after 4731 * remembering D-SACK for its head made in previous line. 4732 */ 4733 if (!tcp_receive_window(tp)) 4734 goto out_of_window; 4735 goto queue_and_out; 4736 } 4737 4738 tcp_data_queue_ofo(sk, skb); 4739 } 4740 4741 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4742 { 4743 if (list) 4744 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4745 4746 return skb_rb_next(skb); 4747 } 4748 4749 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4750 struct sk_buff_head *list, 4751 struct rb_root *root) 4752 { 4753 struct sk_buff *next = tcp_skb_next(skb, list); 4754 4755 if (list) 4756 __skb_unlink(skb, list); 4757 else 4758 rb_erase(&skb->rbnode, root); 4759 4760 __kfree_skb(skb); 4761 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4762 4763 return next; 4764 } 4765 4766 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4767 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4768 { 4769 struct rb_node **p = &root->rb_node; 4770 struct rb_node *parent = NULL; 4771 struct sk_buff *skb1; 4772 4773 while (*p) { 4774 parent = *p; 4775 skb1 = rb_to_skb(parent); 4776 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4777 p = &parent->rb_left; 4778 else 4779 p = &parent->rb_right; 4780 } 4781 rb_link_node(&skb->rbnode, parent, p); 4782 rb_insert_color(&skb->rbnode, root); 4783 } 4784 4785 /* Collapse contiguous sequence of skbs head..tail with 4786 * sequence numbers start..end. 4787 * 4788 * If tail is NULL, this means until the end of the queue. 4789 * 4790 * Segments with FIN/SYN are not collapsed (only because this 4791 * simplifies code) 4792 */ 4793 static void 4794 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4795 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4796 { 4797 struct sk_buff *skb = head, *n; 4798 struct sk_buff_head tmp; 4799 bool end_of_skbs; 4800 4801 /* First, check that queue is collapsible and find 4802 * the point where collapsing can be useful. 4803 */ 4804 restart: 4805 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4806 n = tcp_skb_next(skb, list); 4807 4808 /* No new bits? It is possible on ofo queue. */ 4809 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4810 skb = tcp_collapse_one(sk, skb, list, root); 4811 if (!skb) 4812 break; 4813 goto restart; 4814 } 4815 4816 /* The first skb to collapse is: 4817 * - not SYN/FIN and 4818 * - bloated or contains data before "start" or 4819 * overlaps to the next one. 4820 */ 4821 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4822 (tcp_win_from_space(sk, skb->truesize) > skb->len || 4823 before(TCP_SKB_CB(skb)->seq, start))) { 4824 end_of_skbs = false; 4825 break; 4826 } 4827 4828 if (n && n != tail && 4829 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4830 end_of_skbs = false; 4831 break; 4832 } 4833 4834 /* Decided to skip this, advance start seq. */ 4835 start = TCP_SKB_CB(skb)->end_seq; 4836 } 4837 if (end_of_skbs || 4838 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4839 return; 4840 4841 __skb_queue_head_init(&tmp); 4842 4843 while (before(start, end)) { 4844 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4845 struct sk_buff *nskb; 4846 4847 nskb = alloc_skb(copy, GFP_ATOMIC); 4848 if (!nskb) 4849 break; 4850 4851 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4852 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4853 if (list) 4854 __skb_queue_before(list, skb, nskb); 4855 else 4856 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 4857 skb_set_owner_r(nskb, sk); 4858 4859 /* Copy data, releasing collapsed skbs. */ 4860 while (copy > 0) { 4861 int offset = start - TCP_SKB_CB(skb)->seq; 4862 int size = TCP_SKB_CB(skb)->end_seq - start; 4863 4864 BUG_ON(offset < 0); 4865 if (size > 0) { 4866 size = min(copy, size); 4867 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4868 BUG(); 4869 TCP_SKB_CB(nskb)->end_seq += size; 4870 copy -= size; 4871 start += size; 4872 } 4873 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4874 skb = tcp_collapse_one(sk, skb, list, root); 4875 if (!skb || 4876 skb == tail || 4877 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4878 goto end; 4879 } 4880 } 4881 } 4882 end: 4883 skb_queue_walk_safe(&tmp, skb, n) 4884 tcp_rbtree_insert(root, skb); 4885 } 4886 4887 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4888 * and tcp_collapse() them until all the queue is collapsed. 4889 */ 4890 static void tcp_collapse_ofo_queue(struct sock *sk) 4891 { 4892 struct tcp_sock *tp = tcp_sk(sk); 4893 struct sk_buff *skb, *head; 4894 u32 start, end; 4895 4896 skb = skb_rb_first(&tp->out_of_order_queue); 4897 new_range: 4898 if (!skb) { 4899 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 4900 return; 4901 } 4902 start = TCP_SKB_CB(skb)->seq; 4903 end = TCP_SKB_CB(skb)->end_seq; 4904 4905 for (head = skb;;) { 4906 skb = skb_rb_next(skb); 4907 4908 /* Range is terminated when we see a gap or when 4909 * we are at the queue end. 4910 */ 4911 if (!skb || 4912 after(TCP_SKB_CB(skb)->seq, end) || 4913 before(TCP_SKB_CB(skb)->end_seq, start)) { 4914 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 4915 head, skb, start, end); 4916 goto new_range; 4917 } 4918 4919 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 4920 start = TCP_SKB_CB(skb)->seq; 4921 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4922 end = TCP_SKB_CB(skb)->end_seq; 4923 } 4924 } 4925 4926 /* 4927 * Clean the out-of-order queue to make room. 4928 * We drop high sequences packets to : 4929 * 1) Let a chance for holes to be filled. 4930 * 2) not add too big latencies if thousands of packets sit there. 4931 * (But if application shrinks SO_RCVBUF, we could still end up 4932 * freeing whole queue here) 4933 * 4934 * Return true if queue has shrunk. 4935 */ 4936 static bool tcp_prune_ofo_queue(struct sock *sk) 4937 { 4938 struct tcp_sock *tp = tcp_sk(sk); 4939 struct rb_node *node, *prev; 4940 4941 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4942 return false; 4943 4944 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 4945 node = &tp->ooo_last_skb->rbnode; 4946 do { 4947 prev = rb_prev(node); 4948 rb_erase(node, &tp->out_of_order_queue); 4949 tcp_drop(sk, rb_to_skb(node)); 4950 sk_mem_reclaim(sk); 4951 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 4952 !tcp_under_memory_pressure(sk)) 4953 break; 4954 node = prev; 4955 } while (node); 4956 tp->ooo_last_skb = rb_to_skb(prev); 4957 4958 /* Reset SACK state. A conforming SACK implementation will 4959 * do the same at a timeout based retransmit. When a connection 4960 * is in a sad state like this, we care only about integrity 4961 * of the connection not performance. 4962 */ 4963 if (tp->rx_opt.sack_ok) 4964 tcp_sack_reset(&tp->rx_opt); 4965 return true; 4966 } 4967 4968 /* Reduce allocated memory if we can, trying to get 4969 * the socket within its memory limits again. 4970 * 4971 * Return less than zero if we should start dropping frames 4972 * until the socket owning process reads some of the data 4973 * to stabilize the situation. 4974 */ 4975 static int tcp_prune_queue(struct sock *sk) 4976 { 4977 struct tcp_sock *tp = tcp_sk(sk); 4978 4979 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4980 4981 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 4982 4983 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4984 tcp_clamp_window(sk); 4985 else if (tcp_under_memory_pressure(sk)) 4986 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4987 4988 tcp_collapse_ofo_queue(sk); 4989 if (!skb_queue_empty(&sk->sk_receive_queue)) 4990 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 4991 skb_peek(&sk->sk_receive_queue), 4992 NULL, 4993 tp->copied_seq, tp->rcv_nxt); 4994 sk_mem_reclaim(sk); 4995 4996 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4997 return 0; 4998 4999 /* Collapsing did not help, destructive actions follow. 5000 * This must not ever occur. */ 5001 5002 tcp_prune_ofo_queue(sk); 5003 5004 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5005 return 0; 5006 5007 /* If we are really being abused, tell the caller to silently 5008 * drop receive data on the floor. It will get retransmitted 5009 * and hopefully then we'll have sufficient space. 5010 */ 5011 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5012 5013 /* Massive buffer overcommit. */ 5014 tp->pred_flags = 0; 5015 return -1; 5016 } 5017 5018 static bool tcp_should_expand_sndbuf(const struct sock *sk) 5019 { 5020 const struct tcp_sock *tp = tcp_sk(sk); 5021 5022 /* If the user specified a specific send buffer setting, do 5023 * not modify it. 5024 */ 5025 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5026 return false; 5027 5028 /* If we are under global TCP memory pressure, do not expand. */ 5029 if (tcp_under_memory_pressure(sk)) 5030 return false; 5031 5032 /* If we are under soft global TCP memory pressure, do not expand. */ 5033 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5034 return false; 5035 5036 /* If we filled the congestion window, do not expand. */ 5037 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5038 return false; 5039 5040 return true; 5041 } 5042 5043 /* When incoming ACK allowed to free some skb from write_queue, 5044 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5045 * on the exit from tcp input handler. 5046 * 5047 * PROBLEM: sndbuf expansion does not work well with largesend. 5048 */ 5049 static void tcp_new_space(struct sock *sk) 5050 { 5051 struct tcp_sock *tp = tcp_sk(sk); 5052 5053 if (tcp_should_expand_sndbuf(sk)) { 5054 tcp_sndbuf_expand(sk); 5055 tp->snd_cwnd_stamp = tcp_jiffies32; 5056 } 5057 5058 sk->sk_write_space(sk); 5059 } 5060 5061 static void tcp_check_space(struct sock *sk) 5062 { 5063 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5064 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5065 /* pairs with tcp_poll() */ 5066 smp_mb(); 5067 if (sk->sk_socket && 5068 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5069 tcp_new_space(sk); 5070 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5071 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5072 } 5073 } 5074 } 5075 5076 static inline void tcp_data_snd_check(struct sock *sk) 5077 { 5078 tcp_push_pending_frames(sk); 5079 tcp_check_space(sk); 5080 } 5081 5082 /* 5083 * Check if sending an ack is needed. 5084 */ 5085 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5086 { 5087 struct tcp_sock *tp = tcp_sk(sk); 5088 unsigned long rtt, delay; 5089 5090 /* More than one full frame received... */ 5091 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5092 /* ... and right edge of window advances far enough. 5093 * (tcp_recvmsg() will send ACK otherwise). 5094 * If application uses SO_RCVLOWAT, we want send ack now if 5095 * we have not received enough bytes to satisfy the condition. 5096 */ 5097 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5098 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5099 /* We ACK each frame or... */ 5100 tcp_in_quickack_mode(sk)) { 5101 send_now: 5102 tcp_send_ack(sk); 5103 return; 5104 } 5105 5106 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5107 tcp_send_delayed_ack(sk); 5108 return; 5109 } 5110 5111 if (!tcp_is_sack(tp) || 5112 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr) 5113 goto send_now; 5114 tp->compressed_ack++; 5115 5116 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5117 return; 5118 5119 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5120 5121 rtt = tp->rcv_rtt_est.rtt_us; 5122 if (tp->srtt_us && tp->srtt_us < rtt) 5123 rtt = tp->srtt_us; 5124 5125 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns, 5126 rtt * (NSEC_PER_USEC >> 3)/20); 5127 sock_hold(sk); 5128 hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay), 5129 HRTIMER_MODE_REL_PINNED_SOFT); 5130 } 5131 5132 static inline void tcp_ack_snd_check(struct sock *sk) 5133 { 5134 if (!inet_csk_ack_scheduled(sk)) { 5135 /* We sent a data segment already. */ 5136 return; 5137 } 5138 __tcp_ack_snd_check(sk, 1); 5139 } 5140 5141 /* 5142 * This routine is only called when we have urgent data 5143 * signaled. Its the 'slow' part of tcp_urg. It could be 5144 * moved inline now as tcp_urg is only called from one 5145 * place. We handle URGent data wrong. We have to - as 5146 * BSD still doesn't use the correction from RFC961. 5147 * For 1003.1g we should support a new option TCP_STDURG to permit 5148 * either form (or just set the sysctl tcp_stdurg). 5149 */ 5150 5151 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5152 { 5153 struct tcp_sock *tp = tcp_sk(sk); 5154 u32 ptr = ntohs(th->urg_ptr); 5155 5156 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg) 5157 ptr--; 5158 ptr += ntohl(th->seq); 5159 5160 /* Ignore urgent data that we've already seen and read. */ 5161 if (after(tp->copied_seq, ptr)) 5162 return; 5163 5164 /* Do not replay urg ptr. 5165 * 5166 * NOTE: interesting situation not covered by specs. 5167 * Misbehaving sender may send urg ptr, pointing to segment, 5168 * which we already have in ofo queue. We are not able to fetch 5169 * such data and will stay in TCP_URG_NOTYET until will be eaten 5170 * by recvmsg(). Seems, we are not obliged to handle such wicked 5171 * situations. But it is worth to think about possibility of some 5172 * DoSes using some hypothetical application level deadlock. 5173 */ 5174 if (before(ptr, tp->rcv_nxt)) 5175 return; 5176 5177 /* Do we already have a newer (or duplicate) urgent pointer? */ 5178 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5179 return; 5180 5181 /* Tell the world about our new urgent pointer. */ 5182 sk_send_sigurg(sk); 5183 5184 /* We may be adding urgent data when the last byte read was 5185 * urgent. To do this requires some care. We cannot just ignore 5186 * tp->copied_seq since we would read the last urgent byte again 5187 * as data, nor can we alter copied_seq until this data arrives 5188 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5189 * 5190 * NOTE. Double Dutch. Rendering to plain English: author of comment 5191 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5192 * and expect that both A and B disappear from stream. This is _wrong_. 5193 * Though this happens in BSD with high probability, this is occasional. 5194 * Any application relying on this is buggy. Note also, that fix "works" 5195 * only in this artificial test. Insert some normal data between A and B and we will 5196 * decline of BSD again. Verdict: it is better to remove to trap 5197 * buggy users. 5198 */ 5199 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5200 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5201 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5202 tp->copied_seq++; 5203 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5204 __skb_unlink(skb, &sk->sk_receive_queue); 5205 __kfree_skb(skb); 5206 } 5207 } 5208 5209 tp->urg_data = TCP_URG_NOTYET; 5210 tp->urg_seq = ptr; 5211 5212 /* Disable header prediction. */ 5213 tp->pred_flags = 0; 5214 } 5215 5216 /* This is the 'fast' part of urgent handling. */ 5217 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5218 { 5219 struct tcp_sock *tp = tcp_sk(sk); 5220 5221 /* Check if we get a new urgent pointer - normally not. */ 5222 if (th->urg) 5223 tcp_check_urg(sk, th); 5224 5225 /* Do we wait for any urgent data? - normally not... */ 5226 if (tp->urg_data == TCP_URG_NOTYET) { 5227 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5228 th->syn; 5229 5230 /* Is the urgent pointer pointing into this packet? */ 5231 if (ptr < skb->len) { 5232 u8 tmp; 5233 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5234 BUG(); 5235 tp->urg_data = TCP_URG_VALID | tmp; 5236 if (!sock_flag(sk, SOCK_DEAD)) 5237 sk->sk_data_ready(sk); 5238 } 5239 } 5240 } 5241 5242 /* Accept RST for rcv_nxt - 1 after a FIN. 5243 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5244 * FIN is sent followed by a RST packet. The RST is sent with the same 5245 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5246 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5247 * ACKs on the closed socket. In addition middleboxes can drop either the 5248 * challenge ACK or a subsequent RST. 5249 */ 5250 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5251 { 5252 struct tcp_sock *tp = tcp_sk(sk); 5253 5254 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5255 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5256 TCPF_CLOSING)); 5257 } 5258 5259 /* Does PAWS and seqno based validation of an incoming segment, flags will 5260 * play significant role here. 5261 */ 5262 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5263 const struct tcphdr *th, int syn_inerr) 5264 { 5265 struct tcp_sock *tp = tcp_sk(sk); 5266 bool rst_seq_match = false; 5267 5268 /* RFC1323: H1. Apply PAWS check first. */ 5269 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5270 tp->rx_opt.saw_tstamp && 5271 tcp_paws_discard(sk, skb)) { 5272 if (!th->rst) { 5273 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5274 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5275 LINUX_MIB_TCPACKSKIPPEDPAWS, 5276 &tp->last_oow_ack_time)) 5277 tcp_send_dupack(sk, skb); 5278 goto discard; 5279 } 5280 /* Reset is accepted even if it did not pass PAWS. */ 5281 } 5282 5283 /* Step 1: check sequence number */ 5284 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5285 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5286 * (RST) segments are validated by checking their SEQ-fields." 5287 * And page 69: "If an incoming segment is not acceptable, 5288 * an acknowledgment should be sent in reply (unless the RST 5289 * bit is set, if so drop the segment and return)". 5290 */ 5291 if (!th->rst) { 5292 if (th->syn) 5293 goto syn_challenge; 5294 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5295 LINUX_MIB_TCPACKSKIPPEDSEQ, 5296 &tp->last_oow_ack_time)) 5297 tcp_send_dupack(sk, skb); 5298 } else if (tcp_reset_check(sk, skb)) { 5299 tcp_reset(sk); 5300 } 5301 goto discard; 5302 } 5303 5304 /* Step 2: check RST bit */ 5305 if (th->rst) { 5306 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5307 * FIN and SACK too if available): 5308 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5309 * the right-most SACK block, 5310 * then 5311 * RESET the connection 5312 * else 5313 * Send a challenge ACK 5314 */ 5315 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5316 tcp_reset_check(sk, skb)) { 5317 rst_seq_match = true; 5318 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5319 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5320 int max_sack = sp[0].end_seq; 5321 int this_sack; 5322 5323 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5324 ++this_sack) { 5325 max_sack = after(sp[this_sack].end_seq, 5326 max_sack) ? 5327 sp[this_sack].end_seq : max_sack; 5328 } 5329 5330 if (TCP_SKB_CB(skb)->seq == max_sack) 5331 rst_seq_match = true; 5332 } 5333 5334 if (rst_seq_match) 5335 tcp_reset(sk); 5336 else { 5337 /* Disable TFO if RST is out-of-order 5338 * and no data has been received 5339 * for current active TFO socket 5340 */ 5341 if (tp->syn_fastopen && !tp->data_segs_in && 5342 sk->sk_state == TCP_ESTABLISHED) 5343 tcp_fastopen_active_disable(sk); 5344 tcp_send_challenge_ack(sk, skb); 5345 } 5346 goto discard; 5347 } 5348 5349 /* step 3: check security and precedence [ignored] */ 5350 5351 /* step 4: Check for a SYN 5352 * RFC 5961 4.2 : Send a challenge ack 5353 */ 5354 if (th->syn) { 5355 syn_challenge: 5356 if (syn_inerr) 5357 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5358 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5359 tcp_send_challenge_ack(sk, skb); 5360 goto discard; 5361 } 5362 5363 return true; 5364 5365 discard: 5366 tcp_drop(sk, skb); 5367 return false; 5368 } 5369 5370 /* 5371 * TCP receive function for the ESTABLISHED state. 5372 * 5373 * It is split into a fast path and a slow path. The fast path is 5374 * disabled when: 5375 * - A zero window was announced from us - zero window probing 5376 * is only handled properly in the slow path. 5377 * - Out of order segments arrived. 5378 * - Urgent data is expected. 5379 * - There is no buffer space left 5380 * - Unexpected TCP flags/window values/header lengths are received 5381 * (detected by checking the TCP header against pred_flags) 5382 * - Data is sent in both directions. Fast path only supports pure senders 5383 * or pure receivers (this means either the sequence number or the ack 5384 * value must stay constant) 5385 * - Unexpected TCP option. 5386 * 5387 * When these conditions are not satisfied it drops into a standard 5388 * receive procedure patterned after RFC793 to handle all cases. 5389 * The first three cases are guaranteed by proper pred_flags setting, 5390 * the rest is checked inline. Fast processing is turned on in 5391 * tcp_data_queue when everything is OK. 5392 */ 5393 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5394 const struct tcphdr *th) 5395 { 5396 unsigned int len = skb->len; 5397 struct tcp_sock *tp = tcp_sk(sk); 5398 5399 /* TCP congestion window tracking */ 5400 trace_tcp_probe(sk, skb); 5401 5402 tcp_mstamp_refresh(tp); 5403 if (unlikely(!sk->sk_rx_dst)) 5404 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5405 /* 5406 * Header prediction. 5407 * The code loosely follows the one in the famous 5408 * "30 instruction TCP receive" Van Jacobson mail. 5409 * 5410 * Van's trick is to deposit buffers into socket queue 5411 * on a device interrupt, to call tcp_recv function 5412 * on the receive process context and checksum and copy 5413 * the buffer to user space. smart... 5414 * 5415 * Our current scheme is not silly either but we take the 5416 * extra cost of the net_bh soft interrupt processing... 5417 * We do checksum and copy also but from device to kernel. 5418 */ 5419 5420 tp->rx_opt.saw_tstamp = 0; 5421 5422 /* pred_flags is 0xS?10 << 16 + snd_wnd 5423 * if header_prediction is to be made 5424 * 'S' will always be tp->tcp_header_len >> 2 5425 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5426 * turn it off (when there are holes in the receive 5427 * space for instance) 5428 * PSH flag is ignored. 5429 */ 5430 5431 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5432 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5433 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5434 int tcp_header_len = tp->tcp_header_len; 5435 5436 /* Timestamp header prediction: tcp_header_len 5437 * is automatically equal to th->doff*4 due to pred_flags 5438 * match. 5439 */ 5440 5441 /* Check timestamp */ 5442 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5443 /* No? Slow path! */ 5444 if (!tcp_parse_aligned_timestamp(tp, th)) 5445 goto slow_path; 5446 5447 /* If PAWS failed, check it more carefully in slow path */ 5448 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5449 goto slow_path; 5450 5451 /* DO NOT update ts_recent here, if checksum fails 5452 * and timestamp was corrupted part, it will result 5453 * in a hung connection since we will drop all 5454 * future packets due to the PAWS test. 5455 */ 5456 } 5457 5458 if (len <= tcp_header_len) { 5459 /* Bulk data transfer: sender */ 5460 if (len == tcp_header_len) { 5461 /* Predicted packet is in window by definition. 5462 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5463 * Hence, check seq<=rcv_wup reduces to: 5464 */ 5465 if (tcp_header_len == 5466 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5467 tp->rcv_nxt == tp->rcv_wup) 5468 tcp_store_ts_recent(tp); 5469 5470 /* We know that such packets are checksummed 5471 * on entry. 5472 */ 5473 tcp_ack(sk, skb, 0); 5474 __kfree_skb(skb); 5475 tcp_data_snd_check(sk); 5476 return; 5477 } else { /* Header too small */ 5478 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5479 goto discard; 5480 } 5481 } else { 5482 int eaten = 0; 5483 bool fragstolen = false; 5484 5485 if (tcp_checksum_complete(skb)) 5486 goto csum_error; 5487 5488 if ((int)skb->truesize > sk->sk_forward_alloc) 5489 goto step5; 5490 5491 /* Predicted packet is in window by definition. 5492 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5493 * Hence, check seq<=rcv_wup reduces to: 5494 */ 5495 if (tcp_header_len == 5496 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5497 tp->rcv_nxt == tp->rcv_wup) 5498 tcp_store_ts_recent(tp); 5499 5500 tcp_rcv_rtt_measure_ts(sk, skb); 5501 5502 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5503 5504 /* Bulk data transfer: receiver */ 5505 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5506 &fragstolen); 5507 5508 tcp_event_data_recv(sk, skb); 5509 5510 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5511 /* Well, only one small jumplet in fast path... */ 5512 tcp_ack(sk, skb, FLAG_DATA); 5513 tcp_data_snd_check(sk); 5514 if (!inet_csk_ack_scheduled(sk)) 5515 goto no_ack; 5516 } 5517 5518 __tcp_ack_snd_check(sk, 0); 5519 no_ack: 5520 if (eaten) 5521 kfree_skb_partial(skb, fragstolen); 5522 tcp_data_ready(sk); 5523 return; 5524 } 5525 } 5526 5527 slow_path: 5528 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5529 goto csum_error; 5530 5531 if (!th->ack && !th->rst && !th->syn) 5532 goto discard; 5533 5534 /* 5535 * Standard slow path. 5536 */ 5537 5538 if (!tcp_validate_incoming(sk, skb, th, 1)) 5539 return; 5540 5541 step5: 5542 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5543 goto discard; 5544 5545 tcp_rcv_rtt_measure_ts(sk, skb); 5546 5547 /* Process urgent data. */ 5548 tcp_urg(sk, skb, th); 5549 5550 /* step 7: process the segment text */ 5551 tcp_data_queue(sk, skb); 5552 5553 tcp_data_snd_check(sk); 5554 tcp_ack_snd_check(sk); 5555 return; 5556 5557 csum_error: 5558 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5559 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5560 5561 discard: 5562 tcp_drop(sk, skb); 5563 } 5564 EXPORT_SYMBOL(tcp_rcv_established); 5565 5566 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5567 { 5568 struct tcp_sock *tp = tcp_sk(sk); 5569 struct inet_connection_sock *icsk = inet_csk(sk); 5570 5571 tcp_set_state(sk, TCP_ESTABLISHED); 5572 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5573 5574 if (skb) { 5575 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5576 security_inet_conn_established(sk, skb); 5577 } 5578 5579 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB); 5580 5581 /* Prevent spurious tcp_cwnd_restart() on first data 5582 * packet. 5583 */ 5584 tp->lsndtime = tcp_jiffies32; 5585 5586 if (sock_flag(sk, SOCK_KEEPOPEN)) 5587 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5588 5589 if (!tp->rx_opt.snd_wscale) 5590 __tcp_fast_path_on(tp, tp->snd_wnd); 5591 else 5592 tp->pred_flags = 0; 5593 } 5594 5595 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5596 struct tcp_fastopen_cookie *cookie) 5597 { 5598 struct tcp_sock *tp = tcp_sk(sk); 5599 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 5600 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5601 bool syn_drop = false; 5602 5603 if (mss == tp->rx_opt.user_mss) { 5604 struct tcp_options_received opt; 5605 5606 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5607 tcp_clear_options(&opt); 5608 opt.user_mss = opt.mss_clamp = 0; 5609 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 5610 mss = opt.mss_clamp; 5611 } 5612 5613 if (!tp->syn_fastopen) { 5614 /* Ignore an unsolicited cookie */ 5615 cookie->len = -1; 5616 } else if (tp->total_retrans) { 5617 /* SYN timed out and the SYN-ACK neither has a cookie nor 5618 * acknowledges data. Presumably the remote received only 5619 * the retransmitted (regular) SYNs: either the original 5620 * SYN-data or the corresponding SYN-ACK was dropped. 5621 */ 5622 syn_drop = (cookie->len < 0 && data); 5623 } else if (cookie->len < 0 && !tp->syn_data) { 5624 /* We requested a cookie but didn't get it. If we did not use 5625 * the (old) exp opt format then try so next time (try_exp=1). 5626 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5627 */ 5628 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5629 } 5630 5631 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5632 5633 if (data) { /* Retransmit unacked data in SYN */ 5634 skb_rbtree_walk_from(data) { 5635 if (__tcp_retransmit_skb(sk, data, 1)) 5636 break; 5637 } 5638 tcp_rearm_rto(sk); 5639 NET_INC_STATS(sock_net(sk), 5640 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5641 return true; 5642 } 5643 tp->syn_data_acked = tp->syn_data; 5644 if (tp->syn_data_acked) { 5645 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 5646 /* SYN-data is counted as two separate packets in tcp_ack() */ 5647 if (tp->delivered > 1) 5648 --tp->delivered; 5649 } 5650 5651 tcp_fastopen_add_skb(sk, synack); 5652 5653 return false; 5654 } 5655 5656 static void smc_check_reset_syn(struct tcp_sock *tp) 5657 { 5658 #if IS_ENABLED(CONFIG_SMC) 5659 if (static_branch_unlikely(&tcp_have_smc)) { 5660 if (tp->syn_smc && !tp->rx_opt.smc_ok) 5661 tp->syn_smc = 0; 5662 } 5663 #endif 5664 } 5665 5666 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5667 const struct tcphdr *th) 5668 { 5669 struct inet_connection_sock *icsk = inet_csk(sk); 5670 struct tcp_sock *tp = tcp_sk(sk); 5671 struct tcp_fastopen_cookie foc = { .len = -1 }; 5672 int saved_clamp = tp->rx_opt.mss_clamp; 5673 bool fastopen_fail; 5674 5675 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 5676 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5677 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5678 5679 if (th->ack) { 5680 /* rfc793: 5681 * "If the state is SYN-SENT then 5682 * first check the ACK bit 5683 * If the ACK bit is set 5684 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5685 * a reset (unless the RST bit is set, if so drop 5686 * the segment and return)" 5687 */ 5688 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5689 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5690 goto reset_and_undo; 5691 5692 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5693 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5694 tcp_time_stamp(tp))) { 5695 NET_INC_STATS(sock_net(sk), 5696 LINUX_MIB_PAWSACTIVEREJECTED); 5697 goto reset_and_undo; 5698 } 5699 5700 /* Now ACK is acceptable. 5701 * 5702 * "If the RST bit is set 5703 * If the ACK was acceptable then signal the user "error: 5704 * connection reset", drop the segment, enter CLOSED state, 5705 * delete TCB, and return." 5706 */ 5707 5708 if (th->rst) { 5709 tcp_reset(sk); 5710 goto discard; 5711 } 5712 5713 /* rfc793: 5714 * "fifth, if neither of the SYN or RST bits is set then 5715 * drop the segment and return." 5716 * 5717 * See note below! 5718 * --ANK(990513) 5719 */ 5720 if (!th->syn) 5721 goto discard_and_undo; 5722 5723 /* rfc793: 5724 * "If the SYN bit is on ... 5725 * are acceptable then ... 5726 * (our SYN has been ACKed), change the connection 5727 * state to ESTABLISHED..." 5728 */ 5729 5730 tcp_ecn_rcv_synack(tp, th); 5731 5732 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5733 tcp_ack(sk, skb, FLAG_SLOWPATH); 5734 5735 /* Ok.. it's good. Set up sequence numbers and 5736 * move to established. 5737 */ 5738 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5739 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5740 5741 /* RFC1323: The window in SYN & SYN/ACK segments is 5742 * never scaled. 5743 */ 5744 tp->snd_wnd = ntohs(th->window); 5745 5746 if (!tp->rx_opt.wscale_ok) { 5747 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5748 tp->window_clamp = min(tp->window_clamp, 65535U); 5749 } 5750 5751 if (tp->rx_opt.saw_tstamp) { 5752 tp->rx_opt.tstamp_ok = 1; 5753 tp->tcp_header_len = 5754 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5755 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5756 tcp_store_ts_recent(tp); 5757 } else { 5758 tp->tcp_header_len = sizeof(struct tcphdr); 5759 } 5760 5761 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5762 tcp_initialize_rcv_mss(sk); 5763 5764 /* Remember, tcp_poll() does not lock socket! 5765 * Change state from SYN-SENT only after copied_seq 5766 * is initialized. */ 5767 tp->copied_seq = tp->rcv_nxt; 5768 5769 smc_check_reset_syn(tp); 5770 5771 smp_mb(); 5772 5773 tcp_finish_connect(sk, skb); 5774 5775 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 5776 tcp_rcv_fastopen_synack(sk, skb, &foc); 5777 5778 if (!sock_flag(sk, SOCK_DEAD)) { 5779 sk->sk_state_change(sk); 5780 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5781 } 5782 if (fastopen_fail) 5783 return -1; 5784 if (sk->sk_write_pending || 5785 icsk->icsk_accept_queue.rskq_defer_accept || 5786 icsk->icsk_ack.pingpong) { 5787 /* Save one ACK. Data will be ready after 5788 * several ticks, if write_pending is set. 5789 * 5790 * It may be deleted, but with this feature tcpdumps 5791 * look so _wonderfully_ clever, that I was not able 5792 * to stand against the temptation 8) --ANK 5793 */ 5794 inet_csk_schedule_ack(sk); 5795 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5796 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5797 TCP_DELACK_MAX, TCP_RTO_MAX); 5798 5799 discard: 5800 tcp_drop(sk, skb); 5801 return 0; 5802 } else { 5803 tcp_send_ack(sk); 5804 } 5805 return -1; 5806 } 5807 5808 /* No ACK in the segment */ 5809 5810 if (th->rst) { 5811 /* rfc793: 5812 * "If the RST bit is set 5813 * 5814 * Otherwise (no ACK) drop the segment and return." 5815 */ 5816 5817 goto discard_and_undo; 5818 } 5819 5820 /* PAWS check. */ 5821 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5822 tcp_paws_reject(&tp->rx_opt, 0)) 5823 goto discard_and_undo; 5824 5825 if (th->syn) { 5826 /* We see SYN without ACK. It is attempt of 5827 * simultaneous connect with crossed SYNs. 5828 * Particularly, it can be connect to self. 5829 */ 5830 tcp_set_state(sk, TCP_SYN_RECV); 5831 5832 if (tp->rx_opt.saw_tstamp) { 5833 tp->rx_opt.tstamp_ok = 1; 5834 tcp_store_ts_recent(tp); 5835 tp->tcp_header_len = 5836 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5837 } else { 5838 tp->tcp_header_len = sizeof(struct tcphdr); 5839 } 5840 5841 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5842 tp->copied_seq = tp->rcv_nxt; 5843 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5844 5845 /* RFC1323: The window in SYN & SYN/ACK segments is 5846 * never scaled. 5847 */ 5848 tp->snd_wnd = ntohs(th->window); 5849 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5850 tp->max_window = tp->snd_wnd; 5851 5852 tcp_ecn_rcv_syn(tp, th); 5853 5854 tcp_mtup_init(sk); 5855 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5856 tcp_initialize_rcv_mss(sk); 5857 5858 tcp_send_synack(sk); 5859 #if 0 5860 /* Note, we could accept data and URG from this segment. 5861 * There are no obstacles to make this (except that we must 5862 * either change tcp_recvmsg() to prevent it from returning data 5863 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5864 * 5865 * However, if we ignore data in ACKless segments sometimes, 5866 * we have no reasons to accept it sometimes. 5867 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5868 * is not flawless. So, discard packet for sanity. 5869 * Uncomment this return to process the data. 5870 */ 5871 return -1; 5872 #else 5873 goto discard; 5874 #endif 5875 } 5876 /* "fifth, if neither of the SYN or RST bits is set then 5877 * drop the segment and return." 5878 */ 5879 5880 discard_and_undo: 5881 tcp_clear_options(&tp->rx_opt); 5882 tp->rx_opt.mss_clamp = saved_clamp; 5883 goto discard; 5884 5885 reset_and_undo: 5886 tcp_clear_options(&tp->rx_opt); 5887 tp->rx_opt.mss_clamp = saved_clamp; 5888 return 1; 5889 } 5890 5891 /* 5892 * This function implements the receiving procedure of RFC 793 for 5893 * all states except ESTABLISHED and TIME_WAIT. 5894 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5895 * address independent. 5896 */ 5897 5898 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 5899 { 5900 struct tcp_sock *tp = tcp_sk(sk); 5901 struct inet_connection_sock *icsk = inet_csk(sk); 5902 const struct tcphdr *th = tcp_hdr(skb); 5903 struct request_sock *req; 5904 int queued = 0; 5905 bool acceptable; 5906 5907 switch (sk->sk_state) { 5908 case TCP_CLOSE: 5909 goto discard; 5910 5911 case TCP_LISTEN: 5912 if (th->ack) 5913 return 1; 5914 5915 if (th->rst) 5916 goto discard; 5917 5918 if (th->syn) { 5919 if (th->fin) 5920 goto discard; 5921 /* It is possible that we process SYN packets from backlog, 5922 * so we need to make sure to disable BH right there. 5923 */ 5924 local_bh_disable(); 5925 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 5926 local_bh_enable(); 5927 5928 if (!acceptable) 5929 return 1; 5930 consume_skb(skb); 5931 return 0; 5932 } 5933 goto discard; 5934 5935 case TCP_SYN_SENT: 5936 tp->rx_opt.saw_tstamp = 0; 5937 tcp_mstamp_refresh(tp); 5938 queued = tcp_rcv_synsent_state_process(sk, skb, th); 5939 if (queued >= 0) 5940 return queued; 5941 5942 /* Do step6 onward by hand. */ 5943 tcp_urg(sk, skb, th); 5944 __kfree_skb(skb); 5945 tcp_data_snd_check(sk); 5946 return 0; 5947 } 5948 5949 tcp_mstamp_refresh(tp); 5950 tp->rx_opt.saw_tstamp = 0; 5951 req = tp->fastopen_rsk; 5952 if (req) { 5953 bool req_stolen; 5954 5955 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5956 sk->sk_state != TCP_FIN_WAIT1); 5957 5958 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) 5959 goto discard; 5960 } 5961 5962 if (!th->ack && !th->rst && !th->syn) 5963 goto discard; 5964 5965 if (!tcp_validate_incoming(sk, skb, th, 0)) 5966 return 0; 5967 5968 /* step 5: check the ACK field */ 5969 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5970 FLAG_UPDATE_TS_RECENT | 5971 FLAG_NO_CHALLENGE_ACK) > 0; 5972 5973 if (!acceptable) { 5974 if (sk->sk_state == TCP_SYN_RECV) 5975 return 1; /* send one RST */ 5976 tcp_send_challenge_ack(sk, skb); 5977 goto discard; 5978 } 5979 switch (sk->sk_state) { 5980 case TCP_SYN_RECV: 5981 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 5982 if (!tp->srtt_us) 5983 tcp_synack_rtt_meas(sk, req); 5984 5985 /* Once we leave TCP_SYN_RECV, we no longer need req 5986 * so release it. 5987 */ 5988 if (req) { 5989 inet_csk(sk)->icsk_retransmits = 0; 5990 reqsk_fastopen_remove(sk, req, false); 5991 /* Re-arm the timer because data may have been sent out. 5992 * This is similar to the regular data transmission case 5993 * when new data has just been ack'ed. 5994 * 5995 * (TFO) - we could try to be more aggressive and 5996 * retransmitting any data sooner based on when they 5997 * are sent out. 5998 */ 5999 tcp_rearm_rto(sk); 6000 } else { 6001 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB); 6002 tp->copied_seq = tp->rcv_nxt; 6003 } 6004 smp_mb(); 6005 tcp_set_state(sk, TCP_ESTABLISHED); 6006 sk->sk_state_change(sk); 6007 6008 /* Note, that this wakeup is only for marginal crossed SYN case. 6009 * Passively open sockets are not waked up, because 6010 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6011 */ 6012 if (sk->sk_socket) 6013 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6014 6015 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6016 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6017 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6018 6019 if (tp->rx_opt.tstamp_ok) 6020 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6021 6022 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6023 tcp_update_pacing_rate(sk); 6024 6025 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6026 tp->lsndtime = tcp_jiffies32; 6027 6028 tcp_initialize_rcv_mss(sk); 6029 tcp_fast_path_on(tp); 6030 break; 6031 6032 case TCP_FIN_WAIT1: { 6033 int tmo; 6034 6035 /* If we enter the TCP_FIN_WAIT1 state and we are a 6036 * Fast Open socket and this is the first acceptable 6037 * ACK we have received, this would have acknowledged 6038 * our SYNACK so stop the SYNACK timer. 6039 */ 6040 if (req) { 6041 /* We no longer need the request sock. */ 6042 reqsk_fastopen_remove(sk, req, false); 6043 tcp_rearm_rto(sk); 6044 } 6045 if (tp->snd_una != tp->write_seq) 6046 break; 6047 6048 tcp_set_state(sk, TCP_FIN_WAIT2); 6049 sk->sk_shutdown |= SEND_SHUTDOWN; 6050 6051 sk_dst_confirm(sk); 6052 6053 if (!sock_flag(sk, SOCK_DEAD)) { 6054 /* Wake up lingering close() */ 6055 sk->sk_state_change(sk); 6056 break; 6057 } 6058 6059 if (tp->linger2 < 0) { 6060 tcp_done(sk); 6061 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6062 return 1; 6063 } 6064 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6065 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6066 /* Receive out of order FIN after close() */ 6067 if (tp->syn_fastopen && th->fin) 6068 tcp_fastopen_active_disable(sk); 6069 tcp_done(sk); 6070 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6071 return 1; 6072 } 6073 6074 tmo = tcp_fin_time(sk); 6075 if (tmo > TCP_TIMEWAIT_LEN) { 6076 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6077 } else if (th->fin || sock_owned_by_user(sk)) { 6078 /* Bad case. We could lose such FIN otherwise. 6079 * It is not a big problem, but it looks confusing 6080 * and not so rare event. We still can lose it now, 6081 * if it spins in bh_lock_sock(), but it is really 6082 * marginal case. 6083 */ 6084 inet_csk_reset_keepalive_timer(sk, tmo); 6085 } else { 6086 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6087 goto discard; 6088 } 6089 break; 6090 } 6091 6092 case TCP_CLOSING: 6093 if (tp->snd_una == tp->write_seq) { 6094 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6095 goto discard; 6096 } 6097 break; 6098 6099 case TCP_LAST_ACK: 6100 if (tp->snd_una == tp->write_seq) { 6101 tcp_update_metrics(sk); 6102 tcp_done(sk); 6103 goto discard; 6104 } 6105 break; 6106 } 6107 6108 /* step 6: check the URG bit */ 6109 tcp_urg(sk, skb, th); 6110 6111 /* step 7: process the segment text */ 6112 switch (sk->sk_state) { 6113 case TCP_CLOSE_WAIT: 6114 case TCP_CLOSING: 6115 case TCP_LAST_ACK: 6116 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6117 break; 6118 /* fall through */ 6119 case TCP_FIN_WAIT1: 6120 case TCP_FIN_WAIT2: 6121 /* RFC 793 says to queue data in these states, 6122 * RFC 1122 says we MUST send a reset. 6123 * BSD 4.4 also does reset. 6124 */ 6125 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6126 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6127 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6128 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6129 tcp_reset(sk); 6130 return 1; 6131 } 6132 } 6133 /* Fall through */ 6134 case TCP_ESTABLISHED: 6135 tcp_data_queue(sk, skb); 6136 queued = 1; 6137 break; 6138 } 6139 6140 /* tcp_data could move socket to TIME-WAIT */ 6141 if (sk->sk_state != TCP_CLOSE) { 6142 tcp_data_snd_check(sk); 6143 tcp_ack_snd_check(sk); 6144 } 6145 6146 if (!queued) { 6147 discard: 6148 tcp_drop(sk, skb); 6149 } 6150 return 0; 6151 } 6152 EXPORT_SYMBOL(tcp_rcv_state_process); 6153 6154 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6155 { 6156 struct inet_request_sock *ireq = inet_rsk(req); 6157 6158 if (family == AF_INET) 6159 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6160 &ireq->ir_rmt_addr, port); 6161 #if IS_ENABLED(CONFIG_IPV6) 6162 else if (family == AF_INET6) 6163 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6164 &ireq->ir_v6_rmt_addr, port); 6165 #endif 6166 } 6167 6168 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6169 * 6170 * If we receive a SYN packet with these bits set, it means a 6171 * network is playing bad games with TOS bits. In order to 6172 * avoid possible false congestion notifications, we disable 6173 * TCP ECN negotiation. 6174 * 6175 * Exception: tcp_ca wants ECN. This is required for DCTCP 6176 * congestion control: Linux DCTCP asserts ECT on all packets, 6177 * including SYN, which is most optimal solution; however, 6178 * others, such as FreeBSD do not. 6179 */ 6180 static void tcp_ecn_create_request(struct request_sock *req, 6181 const struct sk_buff *skb, 6182 const struct sock *listen_sk, 6183 const struct dst_entry *dst) 6184 { 6185 const struct tcphdr *th = tcp_hdr(skb); 6186 const struct net *net = sock_net(listen_sk); 6187 bool th_ecn = th->ece && th->cwr; 6188 bool ect, ecn_ok; 6189 u32 ecn_ok_dst; 6190 6191 if (!th_ecn) 6192 return; 6193 6194 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6195 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6196 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6197 6198 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6199 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6200 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6201 inet_rsk(req)->ecn_ok = 1; 6202 } 6203 6204 static void tcp_openreq_init(struct request_sock *req, 6205 const struct tcp_options_received *rx_opt, 6206 struct sk_buff *skb, const struct sock *sk) 6207 { 6208 struct inet_request_sock *ireq = inet_rsk(req); 6209 6210 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6211 req->cookie_ts = 0; 6212 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6213 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6214 tcp_rsk(req)->snt_synack = tcp_clock_us(); 6215 tcp_rsk(req)->last_oow_ack_time = 0; 6216 req->mss = rx_opt->mss_clamp; 6217 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6218 ireq->tstamp_ok = rx_opt->tstamp_ok; 6219 ireq->sack_ok = rx_opt->sack_ok; 6220 ireq->snd_wscale = rx_opt->snd_wscale; 6221 ireq->wscale_ok = rx_opt->wscale_ok; 6222 ireq->acked = 0; 6223 ireq->ecn_ok = 0; 6224 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6225 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6226 ireq->ir_mark = inet_request_mark(sk, skb); 6227 #if IS_ENABLED(CONFIG_SMC) 6228 ireq->smc_ok = rx_opt->smc_ok; 6229 #endif 6230 } 6231 6232 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6233 struct sock *sk_listener, 6234 bool attach_listener) 6235 { 6236 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6237 attach_listener); 6238 6239 if (req) { 6240 struct inet_request_sock *ireq = inet_rsk(req); 6241 6242 ireq->ireq_opt = NULL; 6243 #if IS_ENABLED(CONFIG_IPV6) 6244 ireq->pktopts = NULL; 6245 #endif 6246 atomic64_set(&ireq->ir_cookie, 0); 6247 ireq->ireq_state = TCP_NEW_SYN_RECV; 6248 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6249 ireq->ireq_family = sk_listener->sk_family; 6250 } 6251 6252 return req; 6253 } 6254 EXPORT_SYMBOL(inet_reqsk_alloc); 6255 6256 /* 6257 * Return true if a syncookie should be sent 6258 */ 6259 static bool tcp_syn_flood_action(const struct sock *sk, 6260 const struct sk_buff *skb, 6261 const char *proto) 6262 { 6263 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6264 const char *msg = "Dropping request"; 6265 bool want_cookie = false; 6266 struct net *net = sock_net(sk); 6267 6268 #ifdef CONFIG_SYN_COOKIES 6269 if (net->ipv4.sysctl_tcp_syncookies) { 6270 msg = "Sending cookies"; 6271 want_cookie = true; 6272 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6273 } else 6274 #endif 6275 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6276 6277 if (!queue->synflood_warned && 6278 net->ipv4.sysctl_tcp_syncookies != 2 && 6279 xchg(&queue->synflood_warned, 1) == 0) 6280 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6281 proto, ntohs(tcp_hdr(skb)->dest), msg); 6282 6283 return want_cookie; 6284 } 6285 6286 static void tcp_reqsk_record_syn(const struct sock *sk, 6287 struct request_sock *req, 6288 const struct sk_buff *skb) 6289 { 6290 if (tcp_sk(sk)->save_syn) { 6291 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6292 u32 *copy; 6293 6294 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6295 if (copy) { 6296 copy[0] = len; 6297 memcpy(©[1], skb_network_header(skb), len); 6298 req->saved_syn = copy; 6299 } 6300 } 6301 } 6302 6303 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6304 const struct tcp_request_sock_ops *af_ops, 6305 struct sock *sk, struct sk_buff *skb) 6306 { 6307 struct tcp_fastopen_cookie foc = { .len = -1 }; 6308 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6309 struct tcp_options_received tmp_opt; 6310 struct tcp_sock *tp = tcp_sk(sk); 6311 struct net *net = sock_net(sk); 6312 struct sock *fastopen_sk = NULL; 6313 struct request_sock *req; 6314 bool want_cookie = false; 6315 struct dst_entry *dst; 6316 struct flowi fl; 6317 6318 /* TW buckets are converted to open requests without 6319 * limitations, they conserve resources and peer is 6320 * evidently real one. 6321 */ 6322 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6323 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6324 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6325 if (!want_cookie) 6326 goto drop; 6327 } 6328 6329 if (sk_acceptq_is_full(sk)) { 6330 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6331 goto drop; 6332 } 6333 6334 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6335 if (!req) 6336 goto drop; 6337 6338 tcp_rsk(req)->af_specific = af_ops; 6339 tcp_rsk(req)->ts_off = 0; 6340 6341 tcp_clear_options(&tmp_opt); 6342 tmp_opt.mss_clamp = af_ops->mss_clamp; 6343 tmp_opt.user_mss = tp->rx_opt.user_mss; 6344 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6345 want_cookie ? NULL : &foc); 6346 6347 if (want_cookie && !tmp_opt.saw_tstamp) 6348 tcp_clear_options(&tmp_opt); 6349 6350 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 6351 tmp_opt.smc_ok = 0; 6352 6353 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6354 tcp_openreq_init(req, &tmp_opt, skb, sk); 6355 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6356 6357 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6358 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6359 6360 af_ops->init_req(req, sk, skb); 6361 6362 if (security_inet_conn_request(sk, skb, req)) 6363 goto drop_and_free; 6364 6365 if (tmp_opt.tstamp_ok) 6366 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6367 6368 dst = af_ops->route_req(sk, &fl, req); 6369 if (!dst) 6370 goto drop_and_free; 6371 6372 if (!want_cookie && !isn) { 6373 /* Kill the following clause, if you dislike this way. */ 6374 if (!net->ipv4.sysctl_tcp_syncookies && 6375 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6376 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6377 !tcp_peer_is_proven(req, dst)) { 6378 /* Without syncookies last quarter of 6379 * backlog is filled with destinations, 6380 * proven to be alive. 6381 * It means that we continue to communicate 6382 * to destinations, already remembered 6383 * to the moment of synflood. 6384 */ 6385 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6386 rsk_ops->family); 6387 goto drop_and_release; 6388 } 6389 6390 isn = af_ops->init_seq(skb); 6391 } 6392 6393 tcp_ecn_create_request(req, skb, sk, dst); 6394 6395 if (want_cookie) { 6396 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6397 req->cookie_ts = tmp_opt.tstamp_ok; 6398 if (!tmp_opt.tstamp_ok) 6399 inet_rsk(req)->ecn_ok = 0; 6400 } 6401 6402 tcp_rsk(req)->snt_isn = isn; 6403 tcp_rsk(req)->txhash = net_tx_rndhash(); 6404 tcp_openreq_init_rwin(req, sk, dst); 6405 if (!want_cookie) { 6406 tcp_reqsk_record_syn(sk, req, skb); 6407 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6408 } 6409 if (fastopen_sk) { 6410 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6411 &foc, TCP_SYNACK_FASTOPEN); 6412 /* Add the child socket directly into the accept queue */ 6413 inet_csk_reqsk_queue_add(sk, req, fastopen_sk); 6414 sk->sk_data_ready(sk); 6415 bh_unlock_sock(fastopen_sk); 6416 sock_put(fastopen_sk); 6417 } else { 6418 tcp_rsk(req)->tfo_listener = false; 6419 if (!want_cookie) 6420 inet_csk_reqsk_queue_hash_add(sk, req, 6421 tcp_timeout_init((struct sock *)req)); 6422 af_ops->send_synack(sk, dst, &fl, req, &foc, 6423 !want_cookie ? TCP_SYNACK_NORMAL : 6424 TCP_SYNACK_COOKIE); 6425 if (want_cookie) { 6426 reqsk_free(req); 6427 return 0; 6428 } 6429 } 6430 reqsk_put(req); 6431 return 0; 6432 6433 drop_and_release: 6434 dst_release(dst); 6435 drop_and_free: 6436 reqsk_free(req); 6437 drop: 6438 tcp_listendrop(sk); 6439 return 0; 6440 } 6441 EXPORT_SYMBOL(tcp_conn_request); 6442