xref: /openbmc/linux/net/ipv4/tcp_input.c (revision d2ba09c1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/static_key.h>
81 
82 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
83 
84 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
85 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
86 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
87 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
88 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
89 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
90 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
91 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
92 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
93 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
94 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
95 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
96 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
97 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
98 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
99 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
100 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
101 
102 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
103 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
104 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
105 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
106 
107 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
108 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
109 
110 #define REXMIT_NONE	0 /* no loss recovery to do */
111 #define REXMIT_LOST	1 /* retransmit packets marked lost */
112 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
113 
114 #if IS_ENABLED(CONFIG_TLS_DEVICE)
115 static DEFINE_STATIC_KEY_FALSE(clean_acked_data_enabled);
116 
117 void clean_acked_data_enable(struct inet_connection_sock *icsk,
118 			     void (*cad)(struct sock *sk, u32 ack_seq))
119 {
120 	icsk->icsk_clean_acked = cad;
121 	static_branch_inc(&clean_acked_data_enabled);
122 }
123 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
124 
125 void clean_acked_data_disable(struct inet_connection_sock *icsk)
126 {
127 	static_branch_dec(&clean_acked_data_enabled);
128 	icsk->icsk_clean_acked = NULL;
129 }
130 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
131 #endif
132 
133 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
134 			     unsigned int len)
135 {
136 	static bool __once __read_mostly;
137 
138 	if (!__once) {
139 		struct net_device *dev;
140 
141 		__once = true;
142 
143 		rcu_read_lock();
144 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
145 		if (!dev || len >= dev->mtu)
146 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
147 				dev ? dev->name : "Unknown driver");
148 		rcu_read_unlock();
149 	}
150 }
151 
152 /* Adapt the MSS value used to make delayed ack decision to the
153  * real world.
154  */
155 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
156 {
157 	struct inet_connection_sock *icsk = inet_csk(sk);
158 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
159 	unsigned int len;
160 
161 	icsk->icsk_ack.last_seg_size = 0;
162 
163 	/* skb->len may jitter because of SACKs, even if peer
164 	 * sends good full-sized frames.
165 	 */
166 	len = skb_shinfo(skb)->gso_size ? : skb->len;
167 	if (len >= icsk->icsk_ack.rcv_mss) {
168 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
169 					       tcp_sk(sk)->advmss);
170 		/* Account for possibly-removed options */
171 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
172 				   MAX_TCP_OPTION_SPACE))
173 			tcp_gro_dev_warn(sk, skb, len);
174 	} else {
175 		/* Otherwise, we make more careful check taking into account,
176 		 * that SACKs block is variable.
177 		 *
178 		 * "len" is invariant segment length, including TCP header.
179 		 */
180 		len += skb->data - skb_transport_header(skb);
181 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
182 		    /* If PSH is not set, packet should be
183 		     * full sized, provided peer TCP is not badly broken.
184 		     * This observation (if it is correct 8)) allows
185 		     * to handle super-low mtu links fairly.
186 		     */
187 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
188 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
189 			/* Subtract also invariant (if peer is RFC compliant),
190 			 * tcp header plus fixed timestamp option length.
191 			 * Resulting "len" is MSS free of SACK jitter.
192 			 */
193 			len -= tcp_sk(sk)->tcp_header_len;
194 			icsk->icsk_ack.last_seg_size = len;
195 			if (len == lss) {
196 				icsk->icsk_ack.rcv_mss = len;
197 				return;
198 			}
199 		}
200 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
201 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
202 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
203 	}
204 }
205 
206 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
207 {
208 	struct inet_connection_sock *icsk = inet_csk(sk);
209 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
210 
211 	if (quickacks == 0)
212 		quickacks = 2;
213 	quickacks = min(quickacks, max_quickacks);
214 	if (quickacks > icsk->icsk_ack.quick)
215 		icsk->icsk_ack.quick = quickacks;
216 }
217 
218 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
219 {
220 	struct inet_connection_sock *icsk = inet_csk(sk);
221 
222 	tcp_incr_quickack(sk, max_quickacks);
223 	icsk->icsk_ack.pingpong = 0;
224 	icsk->icsk_ack.ato = TCP_ATO_MIN;
225 }
226 
227 /* Send ACKs quickly, if "quick" count is not exhausted
228  * and the session is not interactive.
229  */
230 
231 static bool tcp_in_quickack_mode(struct sock *sk)
232 {
233 	const struct inet_connection_sock *icsk = inet_csk(sk);
234 	const struct dst_entry *dst = __sk_dst_get(sk);
235 
236 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
237 		(icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
238 }
239 
240 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
241 {
242 	if (tp->ecn_flags & TCP_ECN_OK)
243 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
244 }
245 
246 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
247 {
248 	if (tcp_hdr(skb)->cwr)
249 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
250 }
251 
252 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
253 {
254 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
255 }
256 
257 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
258 {
259 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
260 	case INET_ECN_NOT_ECT:
261 		/* Funny extension: if ECT is not set on a segment,
262 		 * and we already seen ECT on a previous segment,
263 		 * it is probably a retransmit.
264 		 */
265 		if (tp->ecn_flags & TCP_ECN_SEEN)
266 			tcp_enter_quickack_mode((struct sock *)tp, 1);
267 		break;
268 	case INET_ECN_CE:
269 		if (tcp_ca_needs_ecn((struct sock *)tp))
270 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
271 
272 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
273 			/* Better not delay acks, sender can have a very low cwnd */
274 			tcp_enter_quickack_mode((struct sock *)tp, 1);
275 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
276 		}
277 		tp->ecn_flags |= TCP_ECN_SEEN;
278 		break;
279 	default:
280 		if (tcp_ca_needs_ecn((struct sock *)tp))
281 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
282 		tp->ecn_flags |= TCP_ECN_SEEN;
283 		break;
284 	}
285 }
286 
287 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
288 {
289 	if (tp->ecn_flags & TCP_ECN_OK)
290 		__tcp_ecn_check_ce(tp, skb);
291 }
292 
293 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
294 {
295 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
296 		tp->ecn_flags &= ~TCP_ECN_OK;
297 }
298 
299 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
300 {
301 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
302 		tp->ecn_flags &= ~TCP_ECN_OK;
303 }
304 
305 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
306 {
307 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
308 		return true;
309 	return false;
310 }
311 
312 /* Buffer size and advertised window tuning.
313  *
314  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
315  */
316 
317 static void tcp_sndbuf_expand(struct sock *sk)
318 {
319 	const struct tcp_sock *tp = tcp_sk(sk);
320 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
321 	int sndmem, per_mss;
322 	u32 nr_segs;
323 
324 	/* Worst case is non GSO/TSO : each frame consumes one skb
325 	 * and skb->head is kmalloced using power of two area of memory
326 	 */
327 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
328 		  MAX_TCP_HEADER +
329 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
330 
331 	per_mss = roundup_pow_of_two(per_mss) +
332 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
333 
334 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
335 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
336 
337 	/* Fast Recovery (RFC 5681 3.2) :
338 	 * Cubic needs 1.7 factor, rounded to 2 to include
339 	 * extra cushion (application might react slowly to EPOLLOUT)
340 	 */
341 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
342 	sndmem *= nr_segs * per_mss;
343 
344 	if (sk->sk_sndbuf < sndmem)
345 		sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
346 }
347 
348 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
349  *
350  * All tcp_full_space() is split to two parts: "network" buffer, allocated
351  * forward and advertised in receiver window (tp->rcv_wnd) and
352  * "application buffer", required to isolate scheduling/application
353  * latencies from network.
354  * window_clamp is maximal advertised window. It can be less than
355  * tcp_full_space(), in this case tcp_full_space() - window_clamp
356  * is reserved for "application" buffer. The less window_clamp is
357  * the smoother our behaviour from viewpoint of network, but the lower
358  * throughput and the higher sensitivity of the connection to losses. 8)
359  *
360  * rcv_ssthresh is more strict window_clamp used at "slow start"
361  * phase to predict further behaviour of this connection.
362  * It is used for two goals:
363  * - to enforce header prediction at sender, even when application
364  *   requires some significant "application buffer". It is check #1.
365  * - to prevent pruning of receive queue because of misprediction
366  *   of receiver window. Check #2.
367  *
368  * The scheme does not work when sender sends good segments opening
369  * window and then starts to feed us spaghetti. But it should work
370  * in common situations. Otherwise, we have to rely on queue collapsing.
371  */
372 
373 /* Slow part of check#2. */
374 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
375 {
376 	struct tcp_sock *tp = tcp_sk(sk);
377 	/* Optimize this! */
378 	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
379 	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
380 
381 	while (tp->rcv_ssthresh <= window) {
382 		if (truesize <= skb->len)
383 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
384 
385 		truesize >>= 1;
386 		window >>= 1;
387 	}
388 	return 0;
389 }
390 
391 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
392 {
393 	struct tcp_sock *tp = tcp_sk(sk);
394 
395 	/* Check #1 */
396 	if (tp->rcv_ssthresh < tp->window_clamp &&
397 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
398 	    !tcp_under_memory_pressure(sk)) {
399 		int incr;
400 
401 		/* Check #2. Increase window, if skb with such overhead
402 		 * will fit to rcvbuf in future.
403 		 */
404 		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
405 			incr = 2 * tp->advmss;
406 		else
407 			incr = __tcp_grow_window(sk, skb);
408 
409 		if (incr) {
410 			incr = max_t(int, incr, 2 * skb->len);
411 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
412 					       tp->window_clamp);
413 			inet_csk(sk)->icsk_ack.quick |= 1;
414 		}
415 	}
416 }
417 
418 /* 3. Tuning rcvbuf, when connection enters established state. */
419 static void tcp_fixup_rcvbuf(struct sock *sk)
420 {
421 	u32 mss = tcp_sk(sk)->advmss;
422 	int rcvmem;
423 
424 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
425 		 tcp_default_init_rwnd(mss);
426 
427 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
428 	 * Allow enough cushion so that sender is not limited by our window
429 	 */
430 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf)
431 		rcvmem <<= 2;
432 
433 	if (sk->sk_rcvbuf < rcvmem)
434 		sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
435 }
436 
437 /* 4. Try to fixup all. It is made immediately after connection enters
438  *    established state.
439  */
440 void tcp_init_buffer_space(struct sock *sk)
441 {
442 	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
443 	struct tcp_sock *tp = tcp_sk(sk);
444 	int maxwin;
445 
446 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
447 		tcp_fixup_rcvbuf(sk);
448 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
449 		tcp_sndbuf_expand(sk);
450 
451 	tp->rcvq_space.space = tp->rcv_wnd;
452 	tcp_mstamp_refresh(tp);
453 	tp->rcvq_space.time = tp->tcp_mstamp;
454 	tp->rcvq_space.seq = tp->copied_seq;
455 
456 	maxwin = tcp_full_space(sk);
457 
458 	if (tp->window_clamp >= maxwin) {
459 		tp->window_clamp = maxwin;
460 
461 		if (tcp_app_win && maxwin > 4 * tp->advmss)
462 			tp->window_clamp = max(maxwin -
463 					       (maxwin >> tcp_app_win),
464 					       4 * tp->advmss);
465 	}
466 
467 	/* Force reservation of one segment. */
468 	if (tcp_app_win &&
469 	    tp->window_clamp > 2 * tp->advmss &&
470 	    tp->window_clamp + tp->advmss > maxwin)
471 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
472 
473 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
474 	tp->snd_cwnd_stamp = tcp_jiffies32;
475 }
476 
477 /* 5. Recalculate window clamp after socket hit its memory bounds. */
478 static void tcp_clamp_window(struct sock *sk)
479 {
480 	struct tcp_sock *tp = tcp_sk(sk);
481 	struct inet_connection_sock *icsk = inet_csk(sk);
482 	struct net *net = sock_net(sk);
483 
484 	icsk->icsk_ack.quick = 0;
485 
486 	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
487 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
488 	    !tcp_under_memory_pressure(sk) &&
489 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
490 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
491 				    net->ipv4.sysctl_tcp_rmem[2]);
492 	}
493 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
494 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
495 }
496 
497 /* Initialize RCV_MSS value.
498  * RCV_MSS is an our guess about MSS used by the peer.
499  * We haven't any direct information about the MSS.
500  * It's better to underestimate the RCV_MSS rather than overestimate.
501  * Overestimations make us ACKing less frequently than needed.
502  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
503  */
504 void tcp_initialize_rcv_mss(struct sock *sk)
505 {
506 	const struct tcp_sock *tp = tcp_sk(sk);
507 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
508 
509 	hint = min(hint, tp->rcv_wnd / 2);
510 	hint = min(hint, TCP_MSS_DEFAULT);
511 	hint = max(hint, TCP_MIN_MSS);
512 
513 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
514 }
515 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
516 
517 /* Receiver "autotuning" code.
518  *
519  * The algorithm for RTT estimation w/o timestamps is based on
520  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
521  * <http://public.lanl.gov/radiant/pubs.html#DRS>
522  *
523  * More detail on this code can be found at
524  * <http://staff.psc.edu/jheffner/>,
525  * though this reference is out of date.  A new paper
526  * is pending.
527  */
528 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
529 {
530 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
531 	long m = sample;
532 
533 	if (new_sample != 0) {
534 		/* If we sample in larger samples in the non-timestamp
535 		 * case, we could grossly overestimate the RTT especially
536 		 * with chatty applications or bulk transfer apps which
537 		 * are stalled on filesystem I/O.
538 		 *
539 		 * Also, since we are only going for a minimum in the
540 		 * non-timestamp case, we do not smooth things out
541 		 * else with timestamps disabled convergence takes too
542 		 * long.
543 		 */
544 		if (!win_dep) {
545 			m -= (new_sample >> 3);
546 			new_sample += m;
547 		} else {
548 			m <<= 3;
549 			if (m < new_sample)
550 				new_sample = m;
551 		}
552 	} else {
553 		/* No previous measure. */
554 		new_sample = m << 3;
555 	}
556 
557 	tp->rcv_rtt_est.rtt_us = new_sample;
558 }
559 
560 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
561 {
562 	u32 delta_us;
563 
564 	if (tp->rcv_rtt_est.time == 0)
565 		goto new_measure;
566 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
567 		return;
568 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
569 	if (!delta_us)
570 		delta_us = 1;
571 	tcp_rcv_rtt_update(tp, delta_us, 1);
572 
573 new_measure:
574 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
575 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
576 }
577 
578 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
579 					  const struct sk_buff *skb)
580 {
581 	struct tcp_sock *tp = tcp_sk(sk);
582 
583 	if (tp->rx_opt.rcv_tsecr &&
584 	    (TCP_SKB_CB(skb)->end_seq -
585 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
586 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
587 		u32 delta_us;
588 
589 		if (!delta)
590 			delta = 1;
591 		delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
592 		tcp_rcv_rtt_update(tp, delta_us, 0);
593 	}
594 }
595 
596 /*
597  * This function should be called every time data is copied to user space.
598  * It calculates the appropriate TCP receive buffer space.
599  */
600 void tcp_rcv_space_adjust(struct sock *sk)
601 {
602 	struct tcp_sock *tp = tcp_sk(sk);
603 	u32 copied;
604 	int time;
605 
606 	trace_tcp_rcv_space_adjust(sk);
607 
608 	tcp_mstamp_refresh(tp);
609 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
610 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
611 		return;
612 
613 	/* Number of bytes copied to user in last RTT */
614 	copied = tp->copied_seq - tp->rcvq_space.seq;
615 	if (copied <= tp->rcvq_space.space)
616 		goto new_measure;
617 
618 	/* A bit of theory :
619 	 * copied = bytes received in previous RTT, our base window
620 	 * To cope with packet losses, we need a 2x factor
621 	 * To cope with slow start, and sender growing its cwin by 100 %
622 	 * every RTT, we need a 4x factor, because the ACK we are sending
623 	 * now is for the next RTT, not the current one :
624 	 * <prev RTT . ><current RTT .. ><next RTT .... >
625 	 */
626 
627 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
628 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
629 		int rcvmem, rcvbuf;
630 		u64 rcvwin, grow;
631 
632 		/* minimal window to cope with packet losses, assuming
633 		 * steady state. Add some cushion because of small variations.
634 		 */
635 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
636 
637 		/* Accommodate for sender rate increase (eg. slow start) */
638 		grow = rcvwin * (copied - tp->rcvq_space.space);
639 		do_div(grow, tp->rcvq_space.space);
640 		rcvwin += (grow << 1);
641 
642 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
643 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
644 			rcvmem += 128;
645 
646 		do_div(rcvwin, tp->advmss);
647 		rcvbuf = min_t(u64, rcvwin * rcvmem,
648 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
649 		if (rcvbuf > sk->sk_rcvbuf) {
650 			sk->sk_rcvbuf = rcvbuf;
651 
652 			/* Make the window clamp follow along.  */
653 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
654 		}
655 	}
656 	tp->rcvq_space.space = copied;
657 
658 new_measure:
659 	tp->rcvq_space.seq = tp->copied_seq;
660 	tp->rcvq_space.time = tp->tcp_mstamp;
661 }
662 
663 /* There is something which you must keep in mind when you analyze the
664  * behavior of the tp->ato delayed ack timeout interval.  When a
665  * connection starts up, we want to ack as quickly as possible.  The
666  * problem is that "good" TCP's do slow start at the beginning of data
667  * transmission.  The means that until we send the first few ACK's the
668  * sender will sit on his end and only queue most of his data, because
669  * he can only send snd_cwnd unacked packets at any given time.  For
670  * each ACK we send, he increments snd_cwnd and transmits more of his
671  * queue.  -DaveM
672  */
673 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
674 {
675 	struct tcp_sock *tp = tcp_sk(sk);
676 	struct inet_connection_sock *icsk = inet_csk(sk);
677 	u32 now;
678 
679 	inet_csk_schedule_ack(sk);
680 
681 	tcp_measure_rcv_mss(sk, skb);
682 
683 	tcp_rcv_rtt_measure(tp);
684 
685 	now = tcp_jiffies32;
686 
687 	if (!icsk->icsk_ack.ato) {
688 		/* The _first_ data packet received, initialize
689 		 * delayed ACK engine.
690 		 */
691 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
692 		icsk->icsk_ack.ato = TCP_ATO_MIN;
693 	} else {
694 		int m = now - icsk->icsk_ack.lrcvtime;
695 
696 		if (m <= TCP_ATO_MIN / 2) {
697 			/* The fastest case is the first. */
698 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
699 		} else if (m < icsk->icsk_ack.ato) {
700 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
701 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
702 				icsk->icsk_ack.ato = icsk->icsk_rto;
703 		} else if (m > icsk->icsk_rto) {
704 			/* Too long gap. Apparently sender failed to
705 			 * restart window, so that we send ACKs quickly.
706 			 */
707 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
708 			sk_mem_reclaim(sk);
709 		}
710 	}
711 	icsk->icsk_ack.lrcvtime = now;
712 
713 	tcp_ecn_check_ce(tp, skb);
714 
715 	if (skb->len >= 128)
716 		tcp_grow_window(sk, skb);
717 }
718 
719 /* Called to compute a smoothed rtt estimate. The data fed to this
720  * routine either comes from timestamps, or from segments that were
721  * known _not_ to have been retransmitted [see Karn/Partridge
722  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
723  * piece by Van Jacobson.
724  * NOTE: the next three routines used to be one big routine.
725  * To save cycles in the RFC 1323 implementation it was better to break
726  * it up into three procedures. -- erics
727  */
728 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
729 {
730 	struct tcp_sock *tp = tcp_sk(sk);
731 	long m = mrtt_us; /* RTT */
732 	u32 srtt = tp->srtt_us;
733 
734 	/*	The following amusing code comes from Jacobson's
735 	 *	article in SIGCOMM '88.  Note that rtt and mdev
736 	 *	are scaled versions of rtt and mean deviation.
737 	 *	This is designed to be as fast as possible
738 	 *	m stands for "measurement".
739 	 *
740 	 *	On a 1990 paper the rto value is changed to:
741 	 *	RTO = rtt + 4 * mdev
742 	 *
743 	 * Funny. This algorithm seems to be very broken.
744 	 * These formulae increase RTO, when it should be decreased, increase
745 	 * too slowly, when it should be increased quickly, decrease too quickly
746 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
747 	 * does not matter how to _calculate_ it. Seems, it was trap
748 	 * that VJ failed to avoid. 8)
749 	 */
750 	if (srtt != 0) {
751 		m -= (srtt >> 3);	/* m is now error in rtt est */
752 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
753 		if (m < 0) {
754 			m = -m;		/* m is now abs(error) */
755 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
756 			/* This is similar to one of Eifel findings.
757 			 * Eifel blocks mdev updates when rtt decreases.
758 			 * This solution is a bit different: we use finer gain
759 			 * for mdev in this case (alpha*beta).
760 			 * Like Eifel it also prevents growth of rto,
761 			 * but also it limits too fast rto decreases,
762 			 * happening in pure Eifel.
763 			 */
764 			if (m > 0)
765 				m >>= 3;
766 		} else {
767 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
768 		}
769 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
770 		if (tp->mdev_us > tp->mdev_max_us) {
771 			tp->mdev_max_us = tp->mdev_us;
772 			if (tp->mdev_max_us > tp->rttvar_us)
773 				tp->rttvar_us = tp->mdev_max_us;
774 		}
775 		if (after(tp->snd_una, tp->rtt_seq)) {
776 			if (tp->mdev_max_us < tp->rttvar_us)
777 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
778 			tp->rtt_seq = tp->snd_nxt;
779 			tp->mdev_max_us = tcp_rto_min_us(sk);
780 		}
781 	} else {
782 		/* no previous measure. */
783 		srtt = m << 3;		/* take the measured time to be rtt */
784 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
785 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
786 		tp->mdev_max_us = tp->rttvar_us;
787 		tp->rtt_seq = tp->snd_nxt;
788 	}
789 	tp->srtt_us = max(1U, srtt);
790 }
791 
792 static void tcp_update_pacing_rate(struct sock *sk)
793 {
794 	const struct tcp_sock *tp = tcp_sk(sk);
795 	u64 rate;
796 
797 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
798 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
799 
800 	/* current rate is (cwnd * mss) / srtt
801 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
802 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
803 	 *
804 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
805 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
806 	 *	 end of slow start and should slow down.
807 	 */
808 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
809 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
810 	else
811 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
812 
813 	rate *= max(tp->snd_cwnd, tp->packets_out);
814 
815 	if (likely(tp->srtt_us))
816 		do_div(rate, tp->srtt_us);
817 
818 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
819 	 * without any lock. We want to make sure compiler wont store
820 	 * intermediate values in this location.
821 	 */
822 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
823 					     sk->sk_max_pacing_rate));
824 }
825 
826 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
827  * routine referred to above.
828  */
829 static void tcp_set_rto(struct sock *sk)
830 {
831 	const struct tcp_sock *tp = tcp_sk(sk);
832 	/* Old crap is replaced with new one. 8)
833 	 *
834 	 * More seriously:
835 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
836 	 *    It cannot be less due to utterly erratic ACK generation made
837 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
838 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
839 	 *    is invisible. Actually, Linux-2.4 also generates erratic
840 	 *    ACKs in some circumstances.
841 	 */
842 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
843 
844 	/* 2. Fixups made earlier cannot be right.
845 	 *    If we do not estimate RTO correctly without them,
846 	 *    all the algo is pure shit and should be replaced
847 	 *    with correct one. It is exactly, which we pretend to do.
848 	 */
849 
850 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
851 	 * guarantees that rto is higher.
852 	 */
853 	tcp_bound_rto(sk);
854 }
855 
856 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
857 {
858 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
859 
860 	if (!cwnd)
861 		cwnd = TCP_INIT_CWND;
862 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
863 }
864 
865 /* Take a notice that peer is sending D-SACKs */
866 static void tcp_dsack_seen(struct tcp_sock *tp)
867 {
868 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
869 	tp->rack.dsack_seen = 1;
870 }
871 
872 /* It's reordering when higher sequence was delivered (i.e. sacked) before
873  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
874  * distance is approximated in full-mss packet distance ("reordering").
875  */
876 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
877 				      const int ts)
878 {
879 	struct tcp_sock *tp = tcp_sk(sk);
880 	const u32 mss = tp->mss_cache;
881 	u32 fack, metric;
882 
883 	fack = tcp_highest_sack_seq(tp);
884 	if (!before(low_seq, fack))
885 		return;
886 
887 	metric = fack - low_seq;
888 	if ((metric > tp->reordering * mss) && mss) {
889 #if FASTRETRANS_DEBUG > 1
890 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
891 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
892 			 tp->reordering,
893 			 0,
894 			 tp->sacked_out,
895 			 tp->undo_marker ? tp->undo_retrans : 0);
896 #endif
897 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
898 				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
899 	}
900 
901 	tp->rack.reord = 1;
902 	/* This exciting event is worth to be remembered. 8) */
903 	NET_INC_STATS(sock_net(sk),
904 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
905 }
906 
907 /* This must be called before lost_out is incremented */
908 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
909 {
910 	if (!tp->retransmit_skb_hint ||
911 	    before(TCP_SKB_CB(skb)->seq,
912 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
913 		tp->retransmit_skb_hint = skb;
914 }
915 
916 /* Sum the number of packets on the wire we have marked as lost.
917  * There are two cases we care about here:
918  * a) Packet hasn't been marked lost (nor retransmitted),
919  *    and this is the first loss.
920  * b) Packet has been marked both lost and retransmitted,
921  *    and this means we think it was lost again.
922  */
923 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
924 {
925 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
926 
927 	if (!(sacked & TCPCB_LOST) ||
928 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
929 		tp->lost += tcp_skb_pcount(skb);
930 }
931 
932 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
933 {
934 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
935 		tcp_verify_retransmit_hint(tp, skb);
936 
937 		tp->lost_out += tcp_skb_pcount(skb);
938 		tcp_sum_lost(tp, skb);
939 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
940 	}
941 }
942 
943 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
944 {
945 	tcp_verify_retransmit_hint(tp, skb);
946 
947 	tcp_sum_lost(tp, skb);
948 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
949 		tp->lost_out += tcp_skb_pcount(skb);
950 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
951 	}
952 }
953 
954 /* This procedure tags the retransmission queue when SACKs arrive.
955  *
956  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
957  * Packets in queue with these bits set are counted in variables
958  * sacked_out, retrans_out and lost_out, correspondingly.
959  *
960  * Valid combinations are:
961  * Tag  InFlight	Description
962  * 0	1		- orig segment is in flight.
963  * S	0		- nothing flies, orig reached receiver.
964  * L	0		- nothing flies, orig lost by net.
965  * R	2		- both orig and retransmit are in flight.
966  * L|R	1		- orig is lost, retransmit is in flight.
967  * S|R  1		- orig reached receiver, retrans is still in flight.
968  * (L|S|R is logically valid, it could occur when L|R is sacked,
969  *  but it is equivalent to plain S and code short-curcuits it to S.
970  *  L|S is logically invalid, it would mean -1 packet in flight 8))
971  *
972  * These 6 states form finite state machine, controlled by the following events:
973  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
974  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
975  * 3. Loss detection event of two flavors:
976  *	A. Scoreboard estimator decided the packet is lost.
977  *	   A'. Reno "three dupacks" marks head of queue lost.
978  *	B. SACK arrives sacking SND.NXT at the moment, when the
979  *	   segment was retransmitted.
980  * 4. D-SACK added new rule: D-SACK changes any tag to S.
981  *
982  * It is pleasant to note, that state diagram turns out to be commutative,
983  * so that we are allowed not to be bothered by order of our actions,
984  * when multiple events arrive simultaneously. (see the function below).
985  *
986  * Reordering detection.
987  * --------------------
988  * Reordering metric is maximal distance, which a packet can be displaced
989  * in packet stream. With SACKs we can estimate it:
990  *
991  * 1. SACK fills old hole and the corresponding segment was not
992  *    ever retransmitted -> reordering. Alas, we cannot use it
993  *    when segment was retransmitted.
994  * 2. The last flaw is solved with D-SACK. D-SACK arrives
995  *    for retransmitted and already SACKed segment -> reordering..
996  * Both of these heuristics are not used in Loss state, when we cannot
997  * account for retransmits accurately.
998  *
999  * SACK block validation.
1000  * ----------------------
1001  *
1002  * SACK block range validation checks that the received SACK block fits to
1003  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1004  * Note that SND.UNA is not included to the range though being valid because
1005  * it means that the receiver is rather inconsistent with itself reporting
1006  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1007  * perfectly valid, however, in light of RFC2018 which explicitly states
1008  * that "SACK block MUST reflect the newest segment.  Even if the newest
1009  * segment is going to be discarded ...", not that it looks very clever
1010  * in case of head skb. Due to potentional receiver driven attacks, we
1011  * choose to avoid immediate execution of a walk in write queue due to
1012  * reneging and defer head skb's loss recovery to standard loss recovery
1013  * procedure that will eventually trigger (nothing forbids us doing this).
1014  *
1015  * Implements also blockage to start_seq wrap-around. Problem lies in the
1016  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1017  * there's no guarantee that it will be before snd_nxt (n). The problem
1018  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1019  * wrap (s_w):
1020  *
1021  *         <- outs wnd ->                          <- wrapzone ->
1022  *         u     e      n                         u_w   e_w  s n_w
1023  *         |     |      |                          |     |   |  |
1024  * |<------------+------+----- TCP seqno space --------------+---------->|
1025  * ...-- <2^31 ->|                                           |<--------...
1026  * ...---- >2^31 ------>|                                    |<--------...
1027  *
1028  * Current code wouldn't be vulnerable but it's better still to discard such
1029  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1030  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1031  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1032  * equal to the ideal case (infinite seqno space without wrap caused issues).
1033  *
1034  * With D-SACK the lower bound is extended to cover sequence space below
1035  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1036  * again, D-SACK block must not to go across snd_una (for the same reason as
1037  * for the normal SACK blocks, explained above). But there all simplicity
1038  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1039  * fully below undo_marker they do not affect behavior in anyway and can
1040  * therefore be safely ignored. In rare cases (which are more or less
1041  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1042  * fragmentation and packet reordering past skb's retransmission. To consider
1043  * them correctly, the acceptable range must be extended even more though
1044  * the exact amount is rather hard to quantify. However, tp->max_window can
1045  * be used as an exaggerated estimate.
1046  */
1047 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1048 				   u32 start_seq, u32 end_seq)
1049 {
1050 	/* Too far in future, or reversed (interpretation is ambiguous) */
1051 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1052 		return false;
1053 
1054 	/* Nasty start_seq wrap-around check (see comments above) */
1055 	if (!before(start_seq, tp->snd_nxt))
1056 		return false;
1057 
1058 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1059 	 * start_seq == snd_una is non-sensical (see comments above)
1060 	 */
1061 	if (after(start_seq, tp->snd_una))
1062 		return true;
1063 
1064 	if (!is_dsack || !tp->undo_marker)
1065 		return false;
1066 
1067 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1068 	if (after(end_seq, tp->snd_una))
1069 		return false;
1070 
1071 	if (!before(start_seq, tp->undo_marker))
1072 		return true;
1073 
1074 	/* Too old */
1075 	if (!after(end_seq, tp->undo_marker))
1076 		return false;
1077 
1078 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1079 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1080 	 */
1081 	return !before(start_seq, end_seq - tp->max_window);
1082 }
1083 
1084 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1085 			    struct tcp_sack_block_wire *sp, int num_sacks,
1086 			    u32 prior_snd_una)
1087 {
1088 	struct tcp_sock *tp = tcp_sk(sk);
1089 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1090 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1091 	bool dup_sack = false;
1092 
1093 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1094 		dup_sack = true;
1095 		tcp_dsack_seen(tp);
1096 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1097 	} else if (num_sacks > 1) {
1098 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1099 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1100 
1101 		if (!after(end_seq_0, end_seq_1) &&
1102 		    !before(start_seq_0, start_seq_1)) {
1103 			dup_sack = true;
1104 			tcp_dsack_seen(tp);
1105 			NET_INC_STATS(sock_net(sk),
1106 					LINUX_MIB_TCPDSACKOFORECV);
1107 		}
1108 	}
1109 
1110 	/* D-SACK for already forgotten data... Do dumb counting. */
1111 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1112 	    !after(end_seq_0, prior_snd_una) &&
1113 	    after(end_seq_0, tp->undo_marker))
1114 		tp->undo_retrans--;
1115 
1116 	return dup_sack;
1117 }
1118 
1119 struct tcp_sacktag_state {
1120 	u32	reord;
1121 	/* Timestamps for earliest and latest never-retransmitted segment
1122 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1123 	 * but congestion control should still get an accurate delay signal.
1124 	 */
1125 	u64	first_sackt;
1126 	u64	last_sackt;
1127 	struct rate_sample *rate;
1128 	int	flag;
1129 	unsigned int mss_now;
1130 };
1131 
1132 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1133  * the incoming SACK may not exactly match but we can find smaller MSS
1134  * aligned portion of it that matches. Therefore we might need to fragment
1135  * which may fail and creates some hassle (caller must handle error case
1136  * returns).
1137  *
1138  * FIXME: this could be merged to shift decision code
1139  */
1140 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1141 				  u32 start_seq, u32 end_seq)
1142 {
1143 	int err;
1144 	bool in_sack;
1145 	unsigned int pkt_len;
1146 	unsigned int mss;
1147 
1148 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1149 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1150 
1151 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1152 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1153 		mss = tcp_skb_mss(skb);
1154 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1155 
1156 		if (!in_sack) {
1157 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1158 			if (pkt_len < mss)
1159 				pkt_len = mss;
1160 		} else {
1161 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1162 			if (pkt_len < mss)
1163 				return -EINVAL;
1164 		}
1165 
1166 		/* Round if necessary so that SACKs cover only full MSSes
1167 		 * and/or the remaining small portion (if present)
1168 		 */
1169 		if (pkt_len > mss) {
1170 			unsigned int new_len = (pkt_len / mss) * mss;
1171 			if (!in_sack && new_len < pkt_len)
1172 				new_len += mss;
1173 			pkt_len = new_len;
1174 		}
1175 
1176 		if (pkt_len >= skb->len && !in_sack)
1177 			return 0;
1178 
1179 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1180 				   pkt_len, mss, GFP_ATOMIC);
1181 		if (err < 0)
1182 			return err;
1183 	}
1184 
1185 	return in_sack;
1186 }
1187 
1188 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1189 static u8 tcp_sacktag_one(struct sock *sk,
1190 			  struct tcp_sacktag_state *state, u8 sacked,
1191 			  u32 start_seq, u32 end_seq,
1192 			  int dup_sack, int pcount,
1193 			  u64 xmit_time)
1194 {
1195 	struct tcp_sock *tp = tcp_sk(sk);
1196 
1197 	/* Account D-SACK for retransmitted packet. */
1198 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1199 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1200 		    after(end_seq, tp->undo_marker))
1201 			tp->undo_retrans--;
1202 		if ((sacked & TCPCB_SACKED_ACKED) &&
1203 		    before(start_seq, state->reord))
1204 				state->reord = start_seq;
1205 	}
1206 
1207 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1208 	if (!after(end_seq, tp->snd_una))
1209 		return sacked;
1210 
1211 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1212 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1213 
1214 		if (sacked & TCPCB_SACKED_RETRANS) {
1215 			/* If the segment is not tagged as lost,
1216 			 * we do not clear RETRANS, believing
1217 			 * that retransmission is still in flight.
1218 			 */
1219 			if (sacked & TCPCB_LOST) {
1220 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1221 				tp->lost_out -= pcount;
1222 				tp->retrans_out -= pcount;
1223 			}
1224 		} else {
1225 			if (!(sacked & TCPCB_RETRANS)) {
1226 				/* New sack for not retransmitted frame,
1227 				 * which was in hole. It is reordering.
1228 				 */
1229 				if (before(start_seq,
1230 					   tcp_highest_sack_seq(tp)) &&
1231 				    before(start_seq, state->reord))
1232 					state->reord = start_seq;
1233 
1234 				if (!after(end_seq, tp->high_seq))
1235 					state->flag |= FLAG_ORIG_SACK_ACKED;
1236 				if (state->first_sackt == 0)
1237 					state->first_sackt = xmit_time;
1238 				state->last_sackt = xmit_time;
1239 			}
1240 
1241 			if (sacked & TCPCB_LOST) {
1242 				sacked &= ~TCPCB_LOST;
1243 				tp->lost_out -= pcount;
1244 			}
1245 		}
1246 
1247 		sacked |= TCPCB_SACKED_ACKED;
1248 		state->flag |= FLAG_DATA_SACKED;
1249 		tp->sacked_out += pcount;
1250 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1251 
1252 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1253 		if (tp->lost_skb_hint &&
1254 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1255 			tp->lost_cnt_hint += pcount;
1256 	}
1257 
1258 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1259 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1260 	 * are accounted above as well.
1261 	 */
1262 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1263 		sacked &= ~TCPCB_SACKED_RETRANS;
1264 		tp->retrans_out -= pcount;
1265 	}
1266 
1267 	return sacked;
1268 }
1269 
1270 /* Shift newly-SACKed bytes from this skb to the immediately previous
1271  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1272  */
1273 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1274 			    struct sk_buff *skb,
1275 			    struct tcp_sacktag_state *state,
1276 			    unsigned int pcount, int shifted, int mss,
1277 			    bool dup_sack)
1278 {
1279 	struct tcp_sock *tp = tcp_sk(sk);
1280 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1281 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1282 
1283 	BUG_ON(!pcount);
1284 
1285 	/* Adjust counters and hints for the newly sacked sequence
1286 	 * range but discard the return value since prev is already
1287 	 * marked. We must tag the range first because the seq
1288 	 * advancement below implicitly advances
1289 	 * tcp_highest_sack_seq() when skb is highest_sack.
1290 	 */
1291 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1292 			start_seq, end_seq, dup_sack, pcount,
1293 			skb->skb_mstamp);
1294 	tcp_rate_skb_delivered(sk, skb, state->rate);
1295 
1296 	if (skb == tp->lost_skb_hint)
1297 		tp->lost_cnt_hint += pcount;
1298 
1299 	TCP_SKB_CB(prev)->end_seq += shifted;
1300 	TCP_SKB_CB(skb)->seq += shifted;
1301 
1302 	tcp_skb_pcount_add(prev, pcount);
1303 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1304 	tcp_skb_pcount_add(skb, -pcount);
1305 
1306 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1307 	 * in theory this shouldn't be necessary but as long as DSACK
1308 	 * code can come after this skb later on it's better to keep
1309 	 * setting gso_size to something.
1310 	 */
1311 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1312 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1313 
1314 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1315 	if (tcp_skb_pcount(skb) <= 1)
1316 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1317 
1318 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1319 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1320 
1321 	if (skb->len > 0) {
1322 		BUG_ON(!tcp_skb_pcount(skb));
1323 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1324 		return false;
1325 	}
1326 
1327 	/* Whole SKB was eaten :-) */
1328 
1329 	if (skb == tp->retransmit_skb_hint)
1330 		tp->retransmit_skb_hint = prev;
1331 	if (skb == tp->lost_skb_hint) {
1332 		tp->lost_skb_hint = prev;
1333 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1334 	}
1335 
1336 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1337 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1338 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1339 		TCP_SKB_CB(prev)->end_seq++;
1340 
1341 	if (skb == tcp_highest_sack(sk))
1342 		tcp_advance_highest_sack(sk, skb);
1343 
1344 	tcp_skb_collapse_tstamp(prev, skb);
1345 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1346 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1347 
1348 	tcp_rtx_queue_unlink_and_free(skb, sk);
1349 
1350 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1351 
1352 	return true;
1353 }
1354 
1355 /* I wish gso_size would have a bit more sane initialization than
1356  * something-or-zero which complicates things
1357  */
1358 static int tcp_skb_seglen(const struct sk_buff *skb)
1359 {
1360 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1361 }
1362 
1363 /* Shifting pages past head area doesn't work */
1364 static int skb_can_shift(const struct sk_buff *skb)
1365 {
1366 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1367 }
1368 
1369 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1370  * skb.
1371  */
1372 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1373 					  struct tcp_sacktag_state *state,
1374 					  u32 start_seq, u32 end_seq,
1375 					  bool dup_sack)
1376 {
1377 	struct tcp_sock *tp = tcp_sk(sk);
1378 	struct sk_buff *prev;
1379 	int mss;
1380 	int pcount = 0;
1381 	int len;
1382 	int in_sack;
1383 
1384 	/* Normally R but no L won't result in plain S */
1385 	if (!dup_sack &&
1386 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1387 		goto fallback;
1388 	if (!skb_can_shift(skb))
1389 		goto fallback;
1390 	/* This frame is about to be dropped (was ACKed). */
1391 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1392 		goto fallback;
1393 
1394 	/* Can only happen with delayed DSACK + discard craziness */
1395 	prev = skb_rb_prev(skb);
1396 	if (!prev)
1397 		goto fallback;
1398 
1399 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1400 		goto fallback;
1401 
1402 	if (!tcp_skb_can_collapse_to(prev))
1403 		goto fallback;
1404 
1405 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1406 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1407 
1408 	if (in_sack) {
1409 		len = skb->len;
1410 		pcount = tcp_skb_pcount(skb);
1411 		mss = tcp_skb_seglen(skb);
1412 
1413 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1414 		 * drop this restriction as unnecessary
1415 		 */
1416 		if (mss != tcp_skb_seglen(prev))
1417 			goto fallback;
1418 	} else {
1419 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1420 			goto noop;
1421 		/* CHECKME: This is non-MSS split case only?, this will
1422 		 * cause skipped skbs due to advancing loop btw, original
1423 		 * has that feature too
1424 		 */
1425 		if (tcp_skb_pcount(skb) <= 1)
1426 			goto noop;
1427 
1428 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1429 		if (!in_sack) {
1430 			/* TODO: head merge to next could be attempted here
1431 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1432 			 * though it might not be worth of the additional hassle
1433 			 *
1434 			 * ...we can probably just fallback to what was done
1435 			 * previously. We could try merging non-SACKed ones
1436 			 * as well but it probably isn't going to buy off
1437 			 * because later SACKs might again split them, and
1438 			 * it would make skb timestamp tracking considerably
1439 			 * harder problem.
1440 			 */
1441 			goto fallback;
1442 		}
1443 
1444 		len = end_seq - TCP_SKB_CB(skb)->seq;
1445 		BUG_ON(len < 0);
1446 		BUG_ON(len > skb->len);
1447 
1448 		/* MSS boundaries should be honoured or else pcount will
1449 		 * severely break even though it makes things bit trickier.
1450 		 * Optimize common case to avoid most of the divides
1451 		 */
1452 		mss = tcp_skb_mss(skb);
1453 
1454 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1455 		 * drop this restriction as unnecessary
1456 		 */
1457 		if (mss != tcp_skb_seglen(prev))
1458 			goto fallback;
1459 
1460 		if (len == mss) {
1461 			pcount = 1;
1462 		} else if (len < mss) {
1463 			goto noop;
1464 		} else {
1465 			pcount = len / mss;
1466 			len = pcount * mss;
1467 		}
1468 	}
1469 
1470 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1471 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1472 		goto fallback;
1473 
1474 	if (!skb_shift(prev, skb, len))
1475 		goto fallback;
1476 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1477 		goto out;
1478 
1479 	/* Hole filled allows collapsing with the next as well, this is very
1480 	 * useful when hole on every nth skb pattern happens
1481 	 */
1482 	skb = skb_rb_next(prev);
1483 	if (!skb)
1484 		goto out;
1485 
1486 	if (!skb_can_shift(skb) ||
1487 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1488 	    (mss != tcp_skb_seglen(skb)))
1489 		goto out;
1490 
1491 	len = skb->len;
1492 	if (skb_shift(prev, skb, len)) {
1493 		pcount += tcp_skb_pcount(skb);
1494 		tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb),
1495 				len, mss, 0);
1496 	}
1497 
1498 out:
1499 	return prev;
1500 
1501 noop:
1502 	return skb;
1503 
1504 fallback:
1505 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1506 	return NULL;
1507 }
1508 
1509 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1510 					struct tcp_sack_block *next_dup,
1511 					struct tcp_sacktag_state *state,
1512 					u32 start_seq, u32 end_seq,
1513 					bool dup_sack_in)
1514 {
1515 	struct tcp_sock *tp = tcp_sk(sk);
1516 	struct sk_buff *tmp;
1517 
1518 	skb_rbtree_walk_from(skb) {
1519 		int in_sack = 0;
1520 		bool dup_sack = dup_sack_in;
1521 
1522 		/* queue is in-order => we can short-circuit the walk early */
1523 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1524 			break;
1525 
1526 		if (next_dup  &&
1527 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1528 			in_sack = tcp_match_skb_to_sack(sk, skb,
1529 							next_dup->start_seq,
1530 							next_dup->end_seq);
1531 			if (in_sack > 0)
1532 				dup_sack = true;
1533 		}
1534 
1535 		/* skb reference here is a bit tricky to get right, since
1536 		 * shifting can eat and free both this skb and the next,
1537 		 * so not even _safe variant of the loop is enough.
1538 		 */
1539 		if (in_sack <= 0) {
1540 			tmp = tcp_shift_skb_data(sk, skb, state,
1541 						 start_seq, end_seq, dup_sack);
1542 			if (tmp) {
1543 				if (tmp != skb) {
1544 					skb = tmp;
1545 					continue;
1546 				}
1547 
1548 				in_sack = 0;
1549 			} else {
1550 				in_sack = tcp_match_skb_to_sack(sk, skb,
1551 								start_seq,
1552 								end_seq);
1553 			}
1554 		}
1555 
1556 		if (unlikely(in_sack < 0))
1557 			break;
1558 
1559 		if (in_sack) {
1560 			TCP_SKB_CB(skb)->sacked =
1561 				tcp_sacktag_one(sk,
1562 						state,
1563 						TCP_SKB_CB(skb)->sacked,
1564 						TCP_SKB_CB(skb)->seq,
1565 						TCP_SKB_CB(skb)->end_seq,
1566 						dup_sack,
1567 						tcp_skb_pcount(skb),
1568 						skb->skb_mstamp);
1569 			tcp_rate_skb_delivered(sk, skb, state->rate);
1570 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1571 				list_del_init(&skb->tcp_tsorted_anchor);
1572 
1573 			if (!before(TCP_SKB_CB(skb)->seq,
1574 				    tcp_highest_sack_seq(tp)))
1575 				tcp_advance_highest_sack(sk, skb);
1576 		}
1577 	}
1578 	return skb;
1579 }
1580 
1581 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk,
1582 					   struct tcp_sacktag_state *state,
1583 					   u32 seq)
1584 {
1585 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1586 	struct sk_buff *skb;
1587 
1588 	while (*p) {
1589 		parent = *p;
1590 		skb = rb_to_skb(parent);
1591 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1592 			p = &parent->rb_left;
1593 			continue;
1594 		}
1595 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1596 			p = &parent->rb_right;
1597 			continue;
1598 		}
1599 		return skb;
1600 	}
1601 	return NULL;
1602 }
1603 
1604 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1605 					struct tcp_sacktag_state *state,
1606 					u32 skip_to_seq)
1607 {
1608 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1609 		return skb;
1610 
1611 	return tcp_sacktag_bsearch(sk, state, skip_to_seq);
1612 }
1613 
1614 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1615 						struct sock *sk,
1616 						struct tcp_sack_block *next_dup,
1617 						struct tcp_sacktag_state *state,
1618 						u32 skip_to_seq)
1619 {
1620 	if (!next_dup)
1621 		return skb;
1622 
1623 	if (before(next_dup->start_seq, skip_to_seq)) {
1624 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1625 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1626 				       next_dup->start_seq, next_dup->end_seq,
1627 				       1);
1628 	}
1629 
1630 	return skb;
1631 }
1632 
1633 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1634 {
1635 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1636 }
1637 
1638 static int
1639 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1640 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1641 {
1642 	struct tcp_sock *tp = tcp_sk(sk);
1643 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1644 				    TCP_SKB_CB(ack_skb)->sacked);
1645 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1646 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1647 	struct tcp_sack_block *cache;
1648 	struct sk_buff *skb;
1649 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1650 	int used_sacks;
1651 	bool found_dup_sack = false;
1652 	int i, j;
1653 	int first_sack_index;
1654 
1655 	state->flag = 0;
1656 	state->reord = tp->snd_nxt;
1657 
1658 	if (!tp->sacked_out)
1659 		tcp_highest_sack_reset(sk);
1660 
1661 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1662 					 num_sacks, prior_snd_una);
1663 	if (found_dup_sack) {
1664 		state->flag |= FLAG_DSACKING_ACK;
1665 		tp->delivered++; /* A spurious retransmission is delivered */
1666 	}
1667 
1668 	/* Eliminate too old ACKs, but take into
1669 	 * account more or less fresh ones, they can
1670 	 * contain valid SACK info.
1671 	 */
1672 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1673 		return 0;
1674 
1675 	if (!tp->packets_out)
1676 		goto out;
1677 
1678 	used_sacks = 0;
1679 	first_sack_index = 0;
1680 	for (i = 0; i < num_sacks; i++) {
1681 		bool dup_sack = !i && found_dup_sack;
1682 
1683 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1684 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1685 
1686 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1687 					    sp[used_sacks].start_seq,
1688 					    sp[used_sacks].end_seq)) {
1689 			int mib_idx;
1690 
1691 			if (dup_sack) {
1692 				if (!tp->undo_marker)
1693 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1694 				else
1695 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1696 			} else {
1697 				/* Don't count olds caused by ACK reordering */
1698 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1699 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1700 					continue;
1701 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1702 			}
1703 
1704 			NET_INC_STATS(sock_net(sk), mib_idx);
1705 			if (i == 0)
1706 				first_sack_index = -1;
1707 			continue;
1708 		}
1709 
1710 		/* Ignore very old stuff early */
1711 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1712 			continue;
1713 
1714 		used_sacks++;
1715 	}
1716 
1717 	/* order SACK blocks to allow in order walk of the retrans queue */
1718 	for (i = used_sacks - 1; i > 0; i--) {
1719 		for (j = 0; j < i; j++) {
1720 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1721 				swap(sp[j], sp[j + 1]);
1722 
1723 				/* Track where the first SACK block goes to */
1724 				if (j == first_sack_index)
1725 					first_sack_index = j + 1;
1726 			}
1727 		}
1728 	}
1729 
1730 	state->mss_now = tcp_current_mss(sk);
1731 	skb = NULL;
1732 	i = 0;
1733 
1734 	if (!tp->sacked_out) {
1735 		/* It's already past, so skip checking against it */
1736 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1737 	} else {
1738 		cache = tp->recv_sack_cache;
1739 		/* Skip empty blocks in at head of the cache */
1740 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1741 		       !cache->end_seq)
1742 			cache++;
1743 	}
1744 
1745 	while (i < used_sacks) {
1746 		u32 start_seq = sp[i].start_seq;
1747 		u32 end_seq = sp[i].end_seq;
1748 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1749 		struct tcp_sack_block *next_dup = NULL;
1750 
1751 		if (found_dup_sack && ((i + 1) == first_sack_index))
1752 			next_dup = &sp[i + 1];
1753 
1754 		/* Skip too early cached blocks */
1755 		while (tcp_sack_cache_ok(tp, cache) &&
1756 		       !before(start_seq, cache->end_seq))
1757 			cache++;
1758 
1759 		/* Can skip some work by looking recv_sack_cache? */
1760 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1761 		    after(end_seq, cache->start_seq)) {
1762 
1763 			/* Head todo? */
1764 			if (before(start_seq, cache->start_seq)) {
1765 				skb = tcp_sacktag_skip(skb, sk, state,
1766 						       start_seq);
1767 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1768 						       state,
1769 						       start_seq,
1770 						       cache->start_seq,
1771 						       dup_sack);
1772 			}
1773 
1774 			/* Rest of the block already fully processed? */
1775 			if (!after(end_seq, cache->end_seq))
1776 				goto advance_sp;
1777 
1778 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1779 						       state,
1780 						       cache->end_seq);
1781 
1782 			/* ...tail remains todo... */
1783 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1784 				/* ...but better entrypoint exists! */
1785 				skb = tcp_highest_sack(sk);
1786 				if (!skb)
1787 					break;
1788 				cache++;
1789 				goto walk;
1790 			}
1791 
1792 			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1793 			/* Check overlap against next cached too (past this one already) */
1794 			cache++;
1795 			continue;
1796 		}
1797 
1798 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1799 			skb = tcp_highest_sack(sk);
1800 			if (!skb)
1801 				break;
1802 		}
1803 		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1804 
1805 walk:
1806 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1807 				       start_seq, end_seq, dup_sack);
1808 
1809 advance_sp:
1810 		i++;
1811 	}
1812 
1813 	/* Clear the head of the cache sack blocks so we can skip it next time */
1814 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1815 		tp->recv_sack_cache[i].start_seq = 0;
1816 		tp->recv_sack_cache[i].end_seq = 0;
1817 	}
1818 	for (j = 0; j < used_sacks; j++)
1819 		tp->recv_sack_cache[i++] = sp[j];
1820 
1821 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1822 		tcp_check_sack_reordering(sk, state->reord, 0);
1823 
1824 	tcp_verify_left_out(tp);
1825 out:
1826 
1827 #if FASTRETRANS_DEBUG > 0
1828 	WARN_ON((int)tp->sacked_out < 0);
1829 	WARN_ON((int)tp->lost_out < 0);
1830 	WARN_ON((int)tp->retrans_out < 0);
1831 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1832 #endif
1833 	return state->flag;
1834 }
1835 
1836 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1837  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1838  */
1839 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1840 {
1841 	u32 holes;
1842 
1843 	holes = max(tp->lost_out, 1U);
1844 	holes = min(holes, tp->packets_out);
1845 
1846 	if ((tp->sacked_out + holes) > tp->packets_out) {
1847 		tp->sacked_out = tp->packets_out - holes;
1848 		return true;
1849 	}
1850 	return false;
1851 }
1852 
1853 /* If we receive more dupacks than we expected counting segments
1854  * in assumption of absent reordering, interpret this as reordering.
1855  * The only another reason could be bug in receiver TCP.
1856  */
1857 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1858 {
1859 	struct tcp_sock *tp = tcp_sk(sk);
1860 
1861 	if (!tcp_limit_reno_sacked(tp))
1862 		return;
1863 
1864 	tp->reordering = min_t(u32, tp->packets_out + addend,
1865 			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1866 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1867 }
1868 
1869 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1870 
1871 static void tcp_add_reno_sack(struct sock *sk)
1872 {
1873 	struct tcp_sock *tp = tcp_sk(sk);
1874 	u32 prior_sacked = tp->sacked_out;
1875 
1876 	tp->sacked_out++;
1877 	tcp_check_reno_reordering(sk, 0);
1878 	if (tp->sacked_out > prior_sacked)
1879 		tp->delivered++; /* Some out-of-order packet is delivered */
1880 	tcp_verify_left_out(tp);
1881 }
1882 
1883 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1884 
1885 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1886 {
1887 	struct tcp_sock *tp = tcp_sk(sk);
1888 
1889 	if (acked > 0) {
1890 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1891 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1892 		if (acked - 1 >= tp->sacked_out)
1893 			tp->sacked_out = 0;
1894 		else
1895 			tp->sacked_out -= acked - 1;
1896 	}
1897 	tcp_check_reno_reordering(sk, acked);
1898 	tcp_verify_left_out(tp);
1899 }
1900 
1901 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1902 {
1903 	tp->sacked_out = 0;
1904 }
1905 
1906 void tcp_clear_retrans(struct tcp_sock *tp)
1907 {
1908 	tp->retrans_out = 0;
1909 	tp->lost_out = 0;
1910 	tp->undo_marker = 0;
1911 	tp->undo_retrans = -1;
1912 	tp->sacked_out = 0;
1913 }
1914 
1915 static inline void tcp_init_undo(struct tcp_sock *tp)
1916 {
1917 	tp->undo_marker = tp->snd_una;
1918 	/* Retransmission still in flight may cause DSACKs later. */
1919 	tp->undo_retrans = tp->retrans_out ? : -1;
1920 }
1921 
1922 static bool tcp_is_rack(const struct sock *sk)
1923 {
1924 	return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
1925 }
1926 
1927 /* If we detect SACK reneging, forget all SACK information
1928  * and reset tags completely, otherwise preserve SACKs. If receiver
1929  * dropped its ofo queue, we will know this due to reneging detection.
1930  */
1931 static void tcp_timeout_mark_lost(struct sock *sk)
1932 {
1933 	struct tcp_sock *tp = tcp_sk(sk);
1934 	struct sk_buff *skb, *head;
1935 	bool is_reneg;			/* is receiver reneging on SACKs? */
1936 
1937 	head = tcp_rtx_queue_head(sk);
1938 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
1939 	if (is_reneg) {
1940 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1941 		tp->sacked_out = 0;
1942 		/* Mark SACK reneging until we recover from this loss event. */
1943 		tp->is_sack_reneg = 1;
1944 	} else if (tcp_is_reno(tp)) {
1945 		tcp_reset_reno_sack(tp);
1946 	}
1947 
1948 	skb = head;
1949 	skb_rbtree_walk_from(skb) {
1950 		if (is_reneg)
1951 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1952 		else if (tcp_is_rack(sk) && skb != head &&
1953 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
1954 			continue; /* Don't mark recently sent ones lost yet */
1955 		tcp_mark_skb_lost(sk, skb);
1956 	}
1957 	tcp_verify_left_out(tp);
1958 	tcp_clear_all_retrans_hints(tp);
1959 }
1960 
1961 /* Enter Loss state. */
1962 void tcp_enter_loss(struct sock *sk)
1963 {
1964 	const struct inet_connection_sock *icsk = inet_csk(sk);
1965 	struct tcp_sock *tp = tcp_sk(sk);
1966 	struct net *net = sock_net(sk);
1967 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1968 
1969 	tcp_timeout_mark_lost(sk);
1970 
1971 	/* Reduce ssthresh if it has not yet been made inside this window. */
1972 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1973 	    !after(tp->high_seq, tp->snd_una) ||
1974 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1975 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1976 		tp->prior_cwnd = tp->snd_cwnd;
1977 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1978 		tcp_ca_event(sk, CA_EVENT_LOSS);
1979 		tcp_init_undo(tp);
1980 	}
1981 	tp->snd_cwnd	   = tcp_packets_in_flight(tp) + 1;
1982 	tp->snd_cwnd_cnt   = 0;
1983 	tp->snd_cwnd_stamp = tcp_jiffies32;
1984 
1985 	/* Timeout in disordered state after receiving substantial DUPACKs
1986 	 * suggests that the degree of reordering is over-estimated.
1987 	 */
1988 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1989 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1990 		tp->reordering = min_t(unsigned int, tp->reordering,
1991 				       net->ipv4.sysctl_tcp_reordering);
1992 	tcp_set_ca_state(sk, TCP_CA_Loss);
1993 	tp->high_seq = tp->snd_nxt;
1994 	tcp_ecn_queue_cwr(tp);
1995 
1996 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1997 	 * loss recovery is underway except recurring timeout(s) on
1998 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1999 	 */
2000 	tp->frto = net->ipv4.sysctl_tcp_frto &&
2001 		   (new_recovery || icsk->icsk_retransmits) &&
2002 		   !inet_csk(sk)->icsk_mtup.probe_size;
2003 }
2004 
2005 /* If ACK arrived pointing to a remembered SACK, it means that our
2006  * remembered SACKs do not reflect real state of receiver i.e.
2007  * receiver _host_ is heavily congested (or buggy).
2008  *
2009  * To avoid big spurious retransmission bursts due to transient SACK
2010  * scoreboard oddities that look like reneging, we give the receiver a
2011  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2012  * restore sanity to the SACK scoreboard. If the apparent reneging
2013  * persists until this RTO then we'll clear the SACK scoreboard.
2014  */
2015 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2016 {
2017 	if (flag & FLAG_SACK_RENEGING) {
2018 		struct tcp_sock *tp = tcp_sk(sk);
2019 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2020 					  msecs_to_jiffies(10));
2021 
2022 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2023 					  delay, TCP_RTO_MAX);
2024 		return true;
2025 	}
2026 	return false;
2027 }
2028 
2029 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2030  * counter when SACK is enabled (without SACK, sacked_out is used for
2031  * that purpose).
2032  *
2033  * With reordering, holes may still be in flight, so RFC3517 recovery
2034  * uses pure sacked_out (total number of SACKed segments) even though
2035  * it violates the RFC that uses duplicate ACKs, often these are equal
2036  * but when e.g. out-of-window ACKs or packet duplication occurs,
2037  * they differ. Since neither occurs due to loss, TCP should really
2038  * ignore them.
2039  */
2040 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2041 {
2042 	return tp->sacked_out + 1;
2043 }
2044 
2045 /* Linux NewReno/SACK/ECN state machine.
2046  * --------------------------------------
2047  *
2048  * "Open"	Normal state, no dubious events, fast path.
2049  * "Disorder"   In all the respects it is "Open",
2050  *		but requires a bit more attention. It is entered when
2051  *		we see some SACKs or dupacks. It is split of "Open"
2052  *		mainly to move some processing from fast path to slow one.
2053  * "CWR"	CWND was reduced due to some Congestion Notification event.
2054  *		It can be ECN, ICMP source quench, local device congestion.
2055  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2056  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2057  *
2058  * tcp_fastretrans_alert() is entered:
2059  * - each incoming ACK, if state is not "Open"
2060  * - when arrived ACK is unusual, namely:
2061  *	* SACK
2062  *	* Duplicate ACK.
2063  *	* ECN ECE.
2064  *
2065  * Counting packets in flight is pretty simple.
2066  *
2067  *	in_flight = packets_out - left_out + retrans_out
2068  *
2069  *	packets_out is SND.NXT-SND.UNA counted in packets.
2070  *
2071  *	retrans_out is number of retransmitted segments.
2072  *
2073  *	left_out is number of segments left network, but not ACKed yet.
2074  *
2075  *		left_out = sacked_out + lost_out
2076  *
2077  *     sacked_out: Packets, which arrived to receiver out of order
2078  *		   and hence not ACKed. With SACKs this number is simply
2079  *		   amount of SACKed data. Even without SACKs
2080  *		   it is easy to give pretty reliable estimate of this number,
2081  *		   counting duplicate ACKs.
2082  *
2083  *       lost_out: Packets lost by network. TCP has no explicit
2084  *		   "loss notification" feedback from network (for now).
2085  *		   It means that this number can be only _guessed_.
2086  *		   Actually, it is the heuristics to predict lossage that
2087  *		   distinguishes different algorithms.
2088  *
2089  *	F.e. after RTO, when all the queue is considered as lost,
2090  *	lost_out = packets_out and in_flight = retrans_out.
2091  *
2092  *		Essentially, we have now a few algorithms detecting
2093  *		lost packets.
2094  *
2095  *		If the receiver supports SACK:
2096  *
2097  *		RFC6675/3517: It is the conventional algorithm. A packet is
2098  *		considered lost if the number of higher sequence packets
2099  *		SACKed is greater than or equal the DUPACK thoreshold
2100  *		(reordering). This is implemented in tcp_mark_head_lost and
2101  *		tcp_update_scoreboard.
2102  *
2103  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2104  *		(2017-) that checks timing instead of counting DUPACKs.
2105  *		Essentially a packet is considered lost if it's not S/ACKed
2106  *		after RTT + reordering_window, where both metrics are
2107  *		dynamically measured and adjusted. This is implemented in
2108  *		tcp_rack_mark_lost.
2109  *
2110  *		If the receiver does not support SACK:
2111  *
2112  *		NewReno (RFC6582): in Recovery we assume that one segment
2113  *		is lost (classic Reno). While we are in Recovery and
2114  *		a partial ACK arrives, we assume that one more packet
2115  *		is lost (NewReno). This heuristics are the same in NewReno
2116  *		and SACK.
2117  *
2118  * Really tricky (and requiring careful tuning) part of algorithm
2119  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2120  * The first determines the moment _when_ we should reduce CWND and,
2121  * hence, slow down forward transmission. In fact, it determines the moment
2122  * when we decide that hole is caused by loss, rather than by a reorder.
2123  *
2124  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2125  * holes, caused by lost packets.
2126  *
2127  * And the most logically complicated part of algorithm is undo
2128  * heuristics. We detect false retransmits due to both too early
2129  * fast retransmit (reordering) and underestimated RTO, analyzing
2130  * timestamps and D-SACKs. When we detect that some segments were
2131  * retransmitted by mistake and CWND reduction was wrong, we undo
2132  * window reduction and abort recovery phase. This logic is hidden
2133  * inside several functions named tcp_try_undo_<something>.
2134  */
2135 
2136 /* This function decides, when we should leave Disordered state
2137  * and enter Recovery phase, reducing congestion window.
2138  *
2139  * Main question: may we further continue forward transmission
2140  * with the same cwnd?
2141  */
2142 static bool tcp_time_to_recover(struct sock *sk, int flag)
2143 {
2144 	struct tcp_sock *tp = tcp_sk(sk);
2145 
2146 	/* Trick#1: The loss is proven. */
2147 	if (tp->lost_out)
2148 		return true;
2149 
2150 	/* Not-A-Trick#2 : Classic rule... */
2151 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2152 		return true;
2153 
2154 	return false;
2155 }
2156 
2157 /* Detect loss in event "A" above by marking head of queue up as lost.
2158  * For non-SACK(Reno) senders, the first "packets" number of segments
2159  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2160  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2161  * the maximum SACKed segments to pass before reaching this limit.
2162  */
2163 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2164 {
2165 	struct tcp_sock *tp = tcp_sk(sk);
2166 	struct sk_buff *skb;
2167 	int cnt, oldcnt, lost;
2168 	unsigned int mss;
2169 	/* Use SACK to deduce losses of new sequences sent during recovery */
2170 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2171 
2172 	WARN_ON(packets > tp->packets_out);
2173 	skb = tp->lost_skb_hint;
2174 	if (skb) {
2175 		/* Head already handled? */
2176 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2177 			return;
2178 		cnt = tp->lost_cnt_hint;
2179 	} else {
2180 		skb = tcp_rtx_queue_head(sk);
2181 		cnt = 0;
2182 	}
2183 
2184 	skb_rbtree_walk_from(skb) {
2185 		/* TODO: do this better */
2186 		/* this is not the most efficient way to do this... */
2187 		tp->lost_skb_hint = skb;
2188 		tp->lost_cnt_hint = cnt;
2189 
2190 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2191 			break;
2192 
2193 		oldcnt = cnt;
2194 		if (tcp_is_reno(tp) ||
2195 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2196 			cnt += tcp_skb_pcount(skb);
2197 
2198 		if (cnt > packets) {
2199 			if (tcp_is_sack(tp) ||
2200 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2201 			    (oldcnt >= packets))
2202 				break;
2203 
2204 			mss = tcp_skb_mss(skb);
2205 			/* If needed, chop off the prefix to mark as lost. */
2206 			lost = (packets - oldcnt) * mss;
2207 			if (lost < skb->len &&
2208 			    tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2209 					 lost, mss, GFP_ATOMIC) < 0)
2210 				break;
2211 			cnt = packets;
2212 		}
2213 
2214 		tcp_skb_mark_lost(tp, skb);
2215 
2216 		if (mark_head)
2217 			break;
2218 	}
2219 	tcp_verify_left_out(tp);
2220 }
2221 
2222 /* Account newly detected lost packet(s) */
2223 
2224 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2225 {
2226 	struct tcp_sock *tp = tcp_sk(sk);
2227 
2228 	if (tcp_is_sack(tp)) {
2229 		int sacked_upto = tp->sacked_out - tp->reordering;
2230 		if (sacked_upto >= 0)
2231 			tcp_mark_head_lost(sk, sacked_upto, 0);
2232 		else if (fast_rexmit)
2233 			tcp_mark_head_lost(sk, 1, 1);
2234 	}
2235 }
2236 
2237 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2238 {
2239 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2240 	       before(tp->rx_opt.rcv_tsecr, when);
2241 }
2242 
2243 /* skb is spurious retransmitted if the returned timestamp echo
2244  * reply is prior to the skb transmission time
2245  */
2246 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2247 				     const struct sk_buff *skb)
2248 {
2249 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2250 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2251 }
2252 
2253 /* Nothing was retransmitted or returned timestamp is less
2254  * than timestamp of the first retransmission.
2255  */
2256 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2257 {
2258 	return !tp->retrans_stamp ||
2259 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2260 }
2261 
2262 /* Undo procedures. */
2263 
2264 /* We can clear retrans_stamp when there are no retransmissions in the
2265  * window. It would seem that it is trivially available for us in
2266  * tp->retrans_out, however, that kind of assumptions doesn't consider
2267  * what will happen if errors occur when sending retransmission for the
2268  * second time. ...It could the that such segment has only
2269  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2270  * the head skb is enough except for some reneging corner cases that
2271  * are not worth the effort.
2272  *
2273  * Main reason for all this complexity is the fact that connection dying
2274  * time now depends on the validity of the retrans_stamp, in particular,
2275  * that successive retransmissions of a segment must not advance
2276  * retrans_stamp under any conditions.
2277  */
2278 static bool tcp_any_retrans_done(const struct sock *sk)
2279 {
2280 	const struct tcp_sock *tp = tcp_sk(sk);
2281 	struct sk_buff *skb;
2282 
2283 	if (tp->retrans_out)
2284 		return true;
2285 
2286 	skb = tcp_rtx_queue_head(sk);
2287 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2288 		return true;
2289 
2290 	return false;
2291 }
2292 
2293 static void DBGUNDO(struct sock *sk, const char *msg)
2294 {
2295 #if FASTRETRANS_DEBUG > 1
2296 	struct tcp_sock *tp = tcp_sk(sk);
2297 	struct inet_sock *inet = inet_sk(sk);
2298 
2299 	if (sk->sk_family == AF_INET) {
2300 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2301 			 msg,
2302 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2303 			 tp->snd_cwnd, tcp_left_out(tp),
2304 			 tp->snd_ssthresh, tp->prior_ssthresh,
2305 			 tp->packets_out);
2306 	}
2307 #if IS_ENABLED(CONFIG_IPV6)
2308 	else if (sk->sk_family == AF_INET6) {
2309 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2310 			 msg,
2311 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2312 			 tp->snd_cwnd, tcp_left_out(tp),
2313 			 tp->snd_ssthresh, tp->prior_ssthresh,
2314 			 tp->packets_out);
2315 	}
2316 #endif
2317 #endif
2318 }
2319 
2320 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2321 {
2322 	struct tcp_sock *tp = tcp_sk(sk);
2323 
2324 	if (unmark_loss) {
2325 		struct sk_buff *skb;
2326 
2327 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2328 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2329 		}
2330 		tp->lost_out = 0;
2331 		tcp_clear_all_retrans_hints(tp);
2332 	}
2333 
2334 	if (tp->prior_ssthresh) {
2335 		const struct inet_connection_sock *icsk = inet_csk(sk);
2336 
2337 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2338 
2339 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2340 			tp->snd_ssthresh = tp->prior_ssthresh;
2341 			tcp_ecn_withdraw_cwr(tp);
2342 		}
2343 	}
2344 	tp->snd_cwnd_stamp = tcp_jiffies32;
2345 	tp->undo_marker = 0;
2346 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2347 }
2348 
2349 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2350 {
2351 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2352 }
2353 
2354 /* People celebrate: "We love our President!" */
2355 static bool tcp_try_undo_recovery(struct sock *sk)
2356 {
2357 	struct tcp_sock *tp = tcp_sk(sk);
2358 
2359 	if (tcp_may_undo(tp)) {
2360 		int mib_idx;
2361 
2362 		/* Happy end! We did not retransmit anything
2363 		 * or our original transmission succeeded.
2364 		 */
2365 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2366 		tcp_undo_cwnd_reduction(sk, false);
2367 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2368 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2369 		else
2370 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2371 
2372 		NET_INC_STATS(sock_net(sk), mib_idx);
2373 	} else if (tp->rack.reo_wnd_persist) {
2374 		tp->rack.reo_wnd_persist--;
2375 	}
2376 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2377 		/* Hold old state until something *above* high_seq
2378 		 * is ACKed. For Reno it is MUST to prevent false
2379 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2380 		if (!tcp_any_retrans_done(sk))
2381 			tp->retrans_stamp = 0;
2382 		return true;
2383 	}
2384 	tcp_set_ca_state(sk, TCP_CA_Open);
2385 	tp->is_sack_reneg = 0;
2386 	return false;
2387 }
2388 
2389 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2390 static bool tcp_try_undo_dsack(struct sock *sk)
2391 {
2392 	struct tcp_sock *tp = tcp_sk(sk);
2393 
2394 	if (tp->undo_marker && !tp->undo_retrans) {
2395 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2396 					       tp->rack.reo_wnd_persist + 1);
2397 		DBGUNDO(sk, "D-SACK");
2398 		tcp_undo_cwnd_reduction(sk, false);
2399 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2400 		return true;
2401 	}
2402 	return false;
2403 }
2404 
2405 /* Undo during loss recovery after partial ACK or using F-RTO. */
2406 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2407 {
2408 	struct tcp_sock *tp = tcp_sk(sk);
2409 
2410 	if (frto_undo || tcp_may_undo(tp)) {
2411 		tcp_undo_cwnd_reduction(sk, true);
2412 
2413 		DBGUNDO(sk, "partial loss");
2414 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2415 		if (frto_undo)
2416 			NET_INC_STATS(sock_net(sk),
2417 					LINUX_MIB_TCPSPURIOUSRTOS);
2418 		inet_csk(sk)->icsk_retransmits = 0;
2419 		if (frto_undo || tcp_is_sack(tp)) {
2420 			tcp_set_ca_state(sk, TCP_CA_Open);
2421 			tp->is_sack_reneg = 0;
2422 		}
2423 		return true;
2424 	}
2425 	return false;
2426 }
2427 
2428 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2429  * It computes the number of packets to send (sndcnt) based on packets newly
2430  * delivered:
2431  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2432  *	cwnd reductions across a full RTT.
2433  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2434  *      But when the retransmits are acked without further losses, PRR
2435  *      slow starts cwnd up to ssthresh to speed up the recovery.
2436  */
2437 static void tcp_init_cwnd_reduction(struct sock *sk)
2438 {
2439 	struct tcp_sock *tp = tcp_sk(sk);
2440 
2441 	tp->high_seq = tp->snd_nxt;
2442 	tp->tlp_high_seq = 0;
2443 	tp->snd_cwnd_cnt = 0;
2444 	tp->prior_cwnd = tp->snd_cwnd;
2445 	tp->prr_delivered = 0;
2446 	tp->prr_out = 0;
2447 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2448 	tcp_ecn_queue_cwr(tp);
2449 }
2450 
2451 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2452 {
2453 	struct tcp_sock *tp = tcp_sk(sk);
2454 	int sndcnt = 0;
2455 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2456 
2457 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2458 		return;
2459 
2460 	tp->prr_delivered += newly_acked_sacked;
2461 	if (delta < 0) {
2462 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2463 			       tp->prior_cwnd - 1;
2464 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2465 	} else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2466 		   !(flag & FLAG_LOST_RETRANS)) {
2467 		sndcnt = min_t(int, delta,
2468 			       max_t(int, tp->prr_delivered - tp->prr_out,
2469 				     newly_acked_sacked) + 1);
2470 	} else {
2471 		sndcnt = min(delta, newly_acked_sacked);
2472 	}
2473 	/* Force a fast retransmit upon entering fast recovery */
2474 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2475 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2476 }
2477 
2478 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2479 {
2480 	struct tcp_sock *tp = tcp_sk(sk);
2481 
2482 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2483 		return;
2484 
2485 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2486 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2487 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2488 		tp->snd_cwnd = tp->snd_ssthresh;
2489 		tp->snd_cwnd_stamp = tcp_jiffies32;
2490 	}
2491 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2492 }
2493 
2494 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2495 void tcp_enter_cwr(struct sock *sk)
2496 {
2497 	struct tcp_sock *tp = tcp_sk(sk);
2498 
2499 	tp->prior_ssthresh = 0;
2500 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2501 		tp->undo_marker = 0;
2502 		tcp_init_cwnd_reduction(sk);
2503 		tcp_set_ca_state(sk, TCP_CA_CWR);
2504 	}
2505 }
2506 EXPORT_SYMBOL(tcp_enter_cwr);
2507 
2508 static void tcp_try_keep_open(struct sock *sk)
2509 {
2510 	struct tcp_sock *tp = tcp_sk(sk);
2511 	int state = TCP_CA_Open;
2512 
2513 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2514 		state = TCP_CA_Disorder;
2515 
2516 	if (inet_csk(sk)->icsk_ca_state != state) {
2517 		tcp_set_ca_state(sk, state);
2518 		tp->high_seq = tp->snd_nxt;
2519 	}
2520 }
2521 
2522 static void tcp_try_to_open(struct sock *sk, int flag)
2523 {
2524 	struct tcp_sock *tp = tcp_sk(sk);
2525 
2526 	tcp_verify_left_out(tp);
2527 
2528 	if (!tcp_any_retrans_done(sk))
2529 		tp->retrans_stamp = 0;
2530 
2531 	if (flag & FLAG_ECE)
2532 		tcp_enter_cwr(sk);
2533 
2534 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2535 		tcp_try_keep_open(sk);
2536 	}
2537 }
2538 
2539 static void tcp_mtup_probe_failed(struct sock *sk)
2540 {
2541 	struct inet_connection_sock *icsk = inet_csk(sk);
2542 
2543 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2544 	icsk->icsk_mtup.probe_size = 0;
2545 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2546 }
2547 
2548 static void tcp_mtup_probe_success(struct sock *sk)
2549 {
2550 	struct tcp_sock *tp = tcp_sk(sk);
2551 	struct inet_connection_sock *icsk = inet_csk(sk);
2552 
2553 	/* FIXME: breaks with very large cwnd */
2554 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2555 	tp->snd_cwnd = tp->snd_cwnd *
2556 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2557 		       icsk->icsk_mtup.probe_size;
2558 	tp->snd_cwnd_cnt = 0;
2559 	tp->snd_cwnd_stamp = tcp_jiffies32;
2560 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2561 
2562 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2563 	icsk->icsk_mtup.probe_size = 0;
2564 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2565 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2566 }
2567 
2568 /* Do a simple retransmit without using the backoff mechanisms in
2569  * tcp_timer. This is used for path mtu discovery.
2570  * The socket is already locked here.
2571  */
2572 void tcp_simple_retransmit(struct sock *sk)
2573 {
2574 	const struct inet_connection_sock *icsk = inet_csk(sk);
2575 	struct tcp_sock *tp = tcp_sk(sk);
2576 	struct sk_buff *skb;
2577 	unsigned int mss = tcp_current_mss(sk);
2578 
2579 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2580 		if (tcp_skb_seglen(skb) > mss &&
2581 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2582 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2583 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2584 				tp->retrans_out -= tcp_skb_pcount(skb);
2585 			}
2586 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2587 		}
2588 	}
2589 
2590 	tcp_clear_retrans_hints_partial(tp);
2591 
2592 	if (!tp->lost_out)
2593 		return;
2594 
2595 	if (tcp_is_reno(tp))
2596 		tcp_limit_reno_sacked(tp);
2597 
2598 	tcp_verify_left_out(tp);
2599 
2600 	/* Don't muck with the congestion window here.
2601 	 * Reason is that we do not increase amount of _data_
2602 	 * in network, but units changed and effective
2603 	 * cwnd/ssthresh really reduced now.
2604 	 */
2605 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2606 		tp->high_seq = tp->snd_nxt;
2607 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2608 		tp->prior_ssthresh = 0;
2609 		tp->undo_marker = 0;
2610 		tcp_set_ca_state(sk, TCP_CA_Loss);
2611 	}
2612 	tcp_xmit_retransmit_queue(sk);
2613 }
2614 EXPORT_SYMBOL(tcp_simple_retransmit);
2615 
2616 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2617 {
2618 	struct tcp_sock *tp = tcp_sk(sk);
2619 	int mib_idx;
2620 
2621 	if (tcp_is_reno(tp))
2622 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2623 	else
2624 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2625 
2626 	NET_INC_STATS(sock_net(sk), mib_idx);
2627 
2628 	tp->prior_ssthresh = 0;
2629 	tcp_init_undo(tp);
2630 
2631 	if (!tcp_in_cwnd_reduction(sk)) {
2632 		if (!ece_ack)
2633 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2634 		tcp_init_cwnd_reduction(sk);
2635 	}
2636 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2637 }
2638 
2639 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2640  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2641  */
2642 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2643 			     int *rexmit)
2644 {
2645 	struct tcp_sock *tp = tcp_sk(sk);
2646 	bool recovered = !before(tp->snd_una, tp->high_seq);
2647 
2648 	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2649 	    tcp_try_undo_loss(sk, false))
2650 		return;
2651 
2652 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2653 		/* Step 3.b. A timeout is spurious if not all data are
2654 		 * lost, i.e., never-retransmitted data are (s)acked.
2655 		 */
2656 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2657 		    tcp_try_undo_loss(sk, true))
2658 			return;
2659 
2660 		if (after(tp->snd_nxt, tp->high_seq)) {
2661 			if (flag & FLAG_DATA_SACKED || is_dupack)
2662 				tp->frto = 0; /* Step 3.a. loss was real */
2663 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2664 			tp->high_seq = tp->snd_nxt;
2665 			/* Step 2.b. Try send new data (but deferred until cwnd
2666 			 * is updated in tcp_ack()). Otherwise fall back to
2667 			 * the conventional recovery.
2668 			 */
2669 			if (!tcp_write_queue_empty(sk) &&
2670 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2671 				*rexmit = REXMIT_NEW;
2672 				return;
2673 			}
2674 			tp->frto = 0;
2675 		}
2676 	}
2677 
2678 	if (recovered) {
2679 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2680 		tcp_try_undo_recovery(sk);
2681 		return;
2682 	}
2683 	if (tcp_is_reno(tp)) {
2684 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2685 		 * delivered. Lower inflight to clock out (re)tranmissions.
2686 		 */
2687 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2688 			tcp_add_reno_sack(sk);
2689 		else if (flag & FLAG_SND_UNA_ADVANCED)
2690 			tcp_reset_reno_sack(tp);
2691 	}
2692 	*rexmit = REXMIT_LOST;
2693 }
2694 
2695 /* Undo during fast recovery after partial ACK. */
2696 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2697 {
2698 	struct tcp_sock *tp = tcp_sk(sk);
2699 
2700 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2701 		/* Plain luck! Hole if filled with delayed
2702 		 * packet, rather than with a retransmit. Check reordering.
2703 		 */
2704 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2705 
2706 		/* We are getting evidence that the reordering degree is higher
2707 		 * than we realized. If there are no retransmits out then we
2708 		 * can undo. Otherwise we clock out new packets but do not
2709 		 * mark more packets lost or retransmit more.
2710 		 */
2711 		if (tp->retrans_out)
2712 			return true;
2713 
2714 		if (!tcp_any_retrans_done(sk))
2715 			tp->retrans_stamp = 0;
2716 
2717 		DBGUNDO(sk, "partial recovery");
2718 		tcp_undo_cwnd_reduction(sk, true);
2719 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2720 		tcp_try_keep_open(sk);
2721 		return true;
2722 	}
2723 	return false;
2724 }
2725 
2726 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2727 {
2728 	struct tcp_sock *tp = tcp_sk(sk);
2729 
2730 	if (tcp_rtx_queue_empty(sk))
2731 		return;
2732 
2733 	if (unlikely(tcp_is_reno(tp))) {
2734 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2735 	} else if (tcp_is_rack(sk)) {
2736 		u32 prior_retrans = tp->retrans_out;
2737 
2738 		tcp_rack_mark_lost(sk);
2739 		if (prior_retrans > tp->retrans_out)
2740 			*ack_flag |= FLAG_LOST_RETRANS;
2741 	}
2742 }
2743 
2744 static bool tcp_force_fast_retransmit(struct sock *sk)
2745 {
2746 	struct tcp_sock *tp = tcp_sk(sk);
2747 
2748 	return after(tcp_highest_sack_seq(tp),
2749 		     tp->snd_una + tp->reordering * tp->mss_cache);
2750 }
2751 
2752 /* Process an event, which can update packets-in-flight not trivially.
2753  * Main goal of this function is to calculate new estimate for left_out,
2754  * taking into account both packets sitting in receiver's buffer and
2755  * packets lost by network.
2756  *
2757  * Besides that it updates the congestion state when packet loss or ECN
2758  * is detected. But it does not reduce the cwnd, it is done by the
2759  * congestion control later.
2760  *
2761  * It does _not_ decide what to send, it is made in function
2762  * tcp_xmit_retransmit_queue().
2763  */
2764 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2765 				  bool is_dupack, int *ack_flag, int *rexmit)
2766 {
2767 	struct inet_connection_sock *icsk = inet_csk(sk);
2768 	struct tcp_sock *tp = tcp_sk(sk);
2769 	int fast_rexmit = 0, flag = *ack_flag;
2770 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2771 				     tcp_force_fast_retransmit(sk));
2772 
2773 	if (!tp->packets_out && tp->sacked_out)
2774 		tp->sacked_out = 0;
2775 
2776 	/* Now state machine starts.
2777 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2778 	if (flag & FLAG_ECE)
2779 		tp->prior_ssthresh = 0;
2780 
2781 	/* B. In all the states check for reneging SACKs. */
2782 	if (tcp_check_sack_reneging(sk, flag))
2783 		return;
2784 
2785 	/* C. Check consistency of the current state. */
2786 	tcp_verify_left_out(tp);
2787 
2788 	/* D. Check state exit conditions. State can be terminated
2789 	 *    when high_seq is ACKed. */
2790 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2791 		WARN_ON(tp->retrans_out != 0);
2792 		tp->retrans_stamp = 0;
2793 	} else if (!before(tp->snd_una, tp->high_seq)) {
2794 		switch (icsk->icsk_ca_state) {
2795 		case TCP_CA_CWR:
2796 			/* CWR is to be held something *above* high_seq
2797 			 * is ACKed for CWR bit to reach receiver. */
2798 			if (tp->snd_una != tp->high_seq) {
2799 				tcp_end_cwnd_reduction(sk);
2800 				tcp_set_ca_state(sk, TCP_CA_Open);
2801 			}
2802 			break;
2803 
2804 		case TCP_CA_Recovery:
2805 			if (tcp_is_reno(tp))
2806 				tcp_reset_reno_sack(tp);
2807 			if (tcp_try_undo_recovery(sk))
2808 				return;
2809 			tcp_end_cwnd_reduction(sk);
2810 			break;
2811 		}
2812 	}
2813 
2814 	/* E. Process state. */
2815 	switch (icsk->icsk_ca_state) {
2816 	case TCP_CA_Recovery:
2817 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2818 			if (tcp_is_reno(tp) && is_dupack)
2819 				tcp_add_reno_sack(sk);
2820 		} else {
2821 			if (tcp_try_undo_partial(sk, prior_snd_una))
2822 				return;
2823 			/* Partial ACK arrived. Force fast retransmit. */
2824 			do_lost = tcp_is_reno(tp) ||
2825 				  tcp_force_fast_retransmit(sk);
2826 		}
2827 		if (tcp_try_undo_dsack(sk)) {
2828 			tcp_try_keep_open(sk);
2829 			return;
2830 		}
2831 		tcp_identify_packet_loss(sk, ack_flag);
2832 		break;
2833 	case TCP_CA_Loss:
2834 		tcp_process_loss(sk, flag, is_dupack, rexmit);
2835 		tcp_identify_packet_loss(sk, ack_flag);
2836 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2837 		      (*ack_flag & FLAG_LOST_RETRANS)))
2838 			return;
2839 		/* Change state if cwnd is undone or retransmits are lost */
2840 		/* fall through */
2841 	default:
2842 		if (tcp_is_reno(tp)) {
2843 			if (flag & FLAG_SND_UNA_ADVANCED)
2844 				tcp_reset_reno_sack(tp);
2845 			if (is_dupack)
2846 				tcp_add_reno_sack(sk);
2847 		}
2848 
2849 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2850 			tcp_try_undo_dsack(sk);
2851 
2852 		tcp_identify_packet_loss(sk, ack_flag);
2853 		if (!tcp_time_to_recover(sk, flag)) {
2854 			tcp_try_to_open(sk, flag);
2855 			return;
2856 		}
2857 
2858 		/* MTU probe failure: don't reduce cwnd */
2859 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2860 		    icsk->icsk_mtup.probe_size &&
2861 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2862 			tcp_mtup_probe_failed(sk);
2863 			/* Restores the reduction we did in tcp_mtup_probe() */
2864 			tp->snd_cwnd++;
2865 			tcp_simple_retransmit(sk);
2866 			return;
2867 		}
2868 
2869 		/* Otherwise enter Recovery state */
2870 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2871 		fast_rexmit = 1;
2872 	}
2873 
2874 	if (!tcp_is_rack(sk) && do_lost)
2875 		tcp_update_scoreboard(sk, fast_rexmit);
2876 	*rexmit = REXMIT_LOST;
2877 }
2878 
2879 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2880 {
2881 	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2882 	struct tcp_sock *tp = tcp_sk(sk);
2883 
2884 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2885 		/* If the remote keeps returning delayed ACKs, eventually
2886 		 * the min filter would pick it up and overestimate the
2887 		 * prop. delay when it expires. Skip suspected delayed ACKs.
2888 		 */
2889 		return;
2890 	}
2891 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2892 			   rtt_us ? : jiffies_to_usecs(1));
2893 }
2894 
2895 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2896 			       long seq_rtt_us, long sack_rtt_us,
2897 			       long ca_rtt_us, struct rate_sample *rs)
2898 {
2899 	const struct tcp_sock *tp = tcp_sk(sk);
2900 
2901 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2902 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2903 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2904 	 * is acked (RFC6298).
2905 	 */
2906 	if (seq_rtt_us < 0)
2907 		seq_rtt_us = sack_rtt_us;
2908 
2909 	/* RTTM Rule: A TSecr value received in a segment is used to
2910 	 * update the averaged RTT measurement only if the segment
2911 	 * acknowledges some new data, i.e., only if it advances the
2912 	 * left edge of the send window.
2913 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2914 	 */
2915 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2916 	    flag & FLAG_ACKED) {
2917 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2918 		u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2919 
2920 		seq_rtt_us = ca_rtt_us = delta_us;
2921 	}
2922 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2923 	if (seq_rtt_us < 0)
2924 		return false;
2925 
2926 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2927 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2928 	 * values will be skipped with the seq_rtt_us < 0 check above.
2929 	 */
2930 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
2931 	tcp_rtt_estimator(sk, seq_rtt_us);
2932 	tcp_set_rto(sk);
2933 
2934 	/* RFC6298: only reset backoff on valid RTT measurement. */
2935 	inet_csk(sk)->icsk_backoff = 0;
2936 	return true;
2937 }
2938 
2939 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2940 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2941 {
2942 	struct rate_sample rs;
2943 	long rtt_us = -1L;
2944 
2945 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2946 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2947 
2948 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2949 }
2950 
2951 
2952 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2953 {
2954 	const struct inet_connection_sock *icsk = inet_csk(sk);
2955 
2956 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2957 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2958 }
2959 
2960 /* Restart timer after forward progress on connection.
2961  * RFC2988 recommends to restart timer to now+rto.
2962  */
2963 void tcp_rearm_rto(struct sock *sk)
2964 {
2965 	const struct inet_connection_sock *icsk = inet_csk(sk);
2966 	struct tcp_sock *tp = tcp_sk(sk);
2967 
2968 	/* If the retrans timer is currently being used by Fast Open
2969 	 * for SYN-ACK retrans purpose, stay put.
2970 	 */
2971 	if (tp->fastopen_rsk)
2972 		return;
2973 
2974 	if (!tp->packets_out) {
2975 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2976 	} else {
2977 		u32 rto = inet_csk(sk)->icsk_rto;
2978 		/* Offset the time elapsed after installing regular RTO */
2979 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2980 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2981 			s64 delta_us = tcp_rto_delta_us(sk);
2982 			/* delta_us may not be positive if the socket is locked
2983 			 * when the retrans timer fires and is rescheduled.
2984 			 */
2985 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
2986 		}
2987 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2988 					  TCP_RTO_MAX);
2989 	}
2990 }
2991 
2992 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
2993 static void tcp_set_xmit_timer(struct sock *sk)
2994 {
2995 	if (!tcp_schedule_loss_probe(sk, true))
2996 		tcp_rearm_rto(sk);
2997 }
2998 
2999 /* If we get here, the whole TSO packet has not been acked. */
3000 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3001 {
3002 	struct tcp_sock *tp = tcp_sk(sk);
3003 	u32 packets_acked;
3004 
3005 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3006 
3007 	packets_acked = tcp_skb_pcount(skb);
3008 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3009 		return 0;
3010 	packets_acked -= tcp_skb_pcount(skb);
3011 
3012 	if (packets_acked) {
3013 		BUG_ON(tcp_skb_pcount(skb) == 0);
3014 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3015 	}
3016 
3017 	return packets_acked;
3018 }
3019 
3020 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3021 			   u32 prior_snd_una)
3022 {
3023 	const struct skb_shared_info *shinfo;
3024 
3025 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3026 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3027 		return;
3028 
3029 	shinfo = skb_shinfo(skb);
3030 	if (!before(shinfo->tskey, prior_snd_una) &&
3031 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3032 		tcp_skb_tsorted_save(skb) {
3033 			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3034 		} tcp_skb_tsorted_restore(skb);
3035 	}
3036 }
3037 
3038 /* Remove acknowledged frames from the retransmission queue. If our packet
3039  * is before the ack sequence we can discard it as it's confirmed to have
3040  * arrived at the other end.
3041  */
3042 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3043 			       u32 prior_snd_una,
3044 			       struct tcp_sacktag_state *sack)
3045 {
3046 	const struct inet_connection_sock *icsk = inet_csk(sk);
3047 	u64 first_ackt, last_ackt;
3048 	struct tcp_sock *tp = tcp_sk(sk);
3049 	u32 prior_sacked = tp->sacked_out;
3050 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3051 	struct sk_buff *skb, *next;
3052 	bool fully_acked = true;
3053 	long sack_rtt_us = -1L;
3054 	long seq_rtt_us = -1L;
3055 	long ca_rtt_us = -1L;
3056 	u32 pkts_acked = 0;
3057 	u32 last_in_flight = 0;
3058 	bool rtt_update;
3059 	int flag = 0;
3060 
3061 	first_ackt = 0;
3062 
3063 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3064 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3065 		const u32 start_seq = scb->seq;
3066 		u8 sacked = scb->sacked;
3067 		u32 acked_pcount;
3068 
3069 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3070 
3071 		/* Determine how many packets and what bytes were acked, tso and else */
3072 		if (after(scb->end_seq, tp->snd_una)) {
3073 			if (tcp_skb_pcount(skb) == 1 ||
3074 			    !after(tp->snd_una, scb->seq))
3075 				break;
3076 
3077 			acked_pcount = tcp_tso_acked(sk, skb);
3078 			if (!acked_pcount)
3079 				break;
3080 			fully_acked = false;
3081 		} else {
3082 			acked_pcount = tcp_skb_pcount(skb);
3083 		}
3084 
3085 		if (unlikely(sacked & TCPCB_RETRANS)) {
3086 			if (sacked & TCPCB_SACKED_RETRANS)
3087 				tp->retrans_out -= acked_pcount;
3088 			flag |= FLAG_RETRANS_DATA_ACKED;
3089 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3090 			last_ackt = skb->skb_mstamp;
3091 			WARN_ON_ONCE(last_ackt == 0);
3092 			if (!first_ackt)
3093 				first_ackt = last_ackt;
3094 
3095 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3096 			if (before(start_seq, reord))
3097 				reord = start_seq;
3098 			if (!after(scb->end_seq, tp->high_seq))
3099 				flag |= FLAG_ORIG_SACK_ACKED;
3100 		}
3101 
3102 		if (sacked & TCPCB_SACKED_ACKED) {
3103 			tp->sacked_out -= acked_pcount;
3104 		} else if (tcp_is_sack(tp)) {
3105 			tp->delivered += acked_pcount;
3106 			if (!tcp_skb_spurious_retrans(tp, skb))
3107 				tcp_rack_advance(tp, sacked, scb->end_seq,
3108 						 skb->skb_mstamp);
3109 		}
3110 		if (sacked & TCPCB_LOST)
3111 			tp->lost_out -= acked_pcount;
3112 
3113 		tp->packets_out -= acked_pcount;
3114 		pkts_acked += acked_pcount;
3115 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3116 
3117 		/* Initial outgoing SYN's get put onto the write_queue
3118 		 * just like anything else we transmit.  It is not
3119 		 * true data, and if we misinform our callers that
3120 		 * this ACK acks real data, we will erroneously exit
3121 		 * connection startup slow start one packet too
3122 		 * quickly.  This is severely frowned upon behavior.
3123 		 */
3124 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3125 			flag |= FLAG_DATA_ACKED;
3126 		} else {
3127 			flag |= FLAG_SYN_ACKED;
3128 			tp->retrans_stamp = 0;
3129 		}
3130 
3131 		if (!fully_acked)
3132 			break;
3133 
3134 		next = skb_rb_next(skb);
3135 		if (unlikely(skb == tp->retransmit_skb_hint))
3136 			tp->retransmit_skb_hint = NULL;
3137 		if (unlikely(skb == tp->lost_skb_hint))
3138 			tp->lost_skb_hint = NULL;
3139 		tcp_rtx_queue_unlink_and_free(skb, sk);
3140 	}
3141 
3142 	if (!skb)
3143 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3144 
3145 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3146 		tp->snd_up = tp->snd_una;
3147 
3148 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3149 		flag |= FLAG_SACK_RENEGING;
3150 
3151 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3152 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3153 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3154 
3155 		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3156 		    last_in_flight && !prior_sacked && fully_acked &&
3157 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3158 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3159 			/* Conservatively mark a delayed ACK. It's typically
3160 			 * from a lone runt packet over the round trip to
3161 			 * a receiver w/o out-of-order or CE events.
3162 			 */
3163 			flag |= FLAG_ACK_MAYBE_DELAYED;
3164 		}
3165 	}
3166 	if (sack->first_sackt) {
3167 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3168 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3169 	}
3170 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3171 					ca_rtt_us, sack->rate);
3172 
3173 	if (flag & FLAG_ACKED) {
3174 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3175 		if (unlikely(icsk->icsk_mtup.probe_size &&
3176 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3177 			tcp_mtup_probe_success(sk);
3178 		}
3179 
3180 		if (tcp_is_reno(tp)) {
3181 			tcp_remove_reno_sacks(sk, pkts_acked);
3182 		} else {
3183 			int delta;
3184 
3185 			/* Non-retransmitted hole got filled? That's reordering */
3186 			if (before(reord, prior_fack))
3187 				tcp_check_sack_reordering(sk, reord, 0);
3188 
3189 			delta = prior_sacked - tp->sacked_out;
3190 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3191 		}
3192 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3193 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) {
3194 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3195 		 * after when the head was last (re)transmitted. Otherwise the
3196 		 * timeout may continue to extend in loss recovery.
3197 		 */
3198 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3199 	}
3200 
3201 	if (icsk->icsk_ca_ops->pkts_acked) {
3202 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3203 					     .rtt_us = sack->rate->rtt_us,
3204 					     .in_flight = last_in_flight };
3205 
3206 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3207 	}
3208 
3209 #if FASTRETRANS_DEBUG > 0
3210 	WARN_ON((int)tp->sacked_out < 0);
3211 	WARN_ON((int)tp->lost_out < 0);
3212 	WARN_ON((int)tp->retrans_out < 0);
3213 	if (!tp->packets_out && tcp_is_sack(tp)) {
3214 		icsk = inet_csk(sk);
3215 		if (tp->lost_out) {
3216 			pr_debug("Leak l=%u %d\n",
3217 				 tp->lost_out, icsk->icsk_ca_state);
3218 			tp->lost_out = 0;
3219 		}
3220 		if (tp->sacked_out) {
3221 			pr_debug("Leak s=%u %d\n",
3222 				 tp->sacked_out, icsk->icsk_ca_state);
3223 			tp->sacked_out = 0;
3224 		}
3225 		if (tp->retrans_out) {
3226 			pr_debug("Leak r=%u %d\n",
3227 				 tp->retrans_out, icsk->icsk_ca_state);
3228 			tp->retrans_out = 0;
3229 		}
3230 	}
3231 #endif
3232 	return flag;
3233 }
3234 
3235 static void tcp_ack_probe(struct sock *sk)
3236 {
3237 	struct inet_connection_sock *icsk = inet_csk(sk);
3238 	struct sk_buff *head = tcp_send_head(sk);
3239 	const struct tcp_sock *tp = tcp_sk(sk);
3240 
3241 	/* Was it a usable window open? */
3242 	if (!head)
3243 		return;
3244 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3245 		icsk->icsk_backoff = 0;
3246 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3247 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3248 		 * This function is not for random using!
3249 		 */
3250 	} else {
3251 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3252 
3253 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3254 					  when, TCP_RTO_MAX);
3255 	}
3256 }
3257 
3258 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3259 {
3260 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3261 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3262 }
3263 
3264 /* Decide wheather to run the increase function of congestion control. */
3265 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3266 {
3267 	/* If reordering is high then always grow cwnd whenever data is
3268 	 * delivered regardless of its ordering. Otherwise stay conservative
3269 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3270 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3271 	 * cwnd in tcp_fastretrans_alert() based on more states.
3272 	 */
3273 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3274 		return flag & FLAG_FORWARD_PROGRESS;
3275 
3276 	return flag & FLAG_DATA_ACKED;
3277 }
3278 
3279 /* The "ultimate" congestion control function that aims to replace the rigid
3280  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3281  * It's called toward the end of processing an ACK with precise rate
3282  * information. All transmission or retransmission are delayed afterwards.
3283  */
3284 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3285 			     int flag, const struct rate_sample *rs)
3286 {
3287 	const struct inet_connection_sock *icsk = inet_csk(sk);
3288 
3289 	if (icsk->icsk_ca_ops->cong_control) {
3290 		icsk->icsk_ca_ops->cong_control(sk, rs);
3291 		return;
3292 	}
3293 
3294 	if (tcp_in_cwnd_reduction(sk)) {
3295 		/* Reduce cwnd if state mandates */
3296 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3297 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3298 		/* Advance cwnd if state allows */
3299 		tcp_cong_avoid(sk, ack, acked_sacked);
3300 	}
3301 	tcp_update_pacing_rate(sk);
3302 }
3303 
3304 /* Check that window update is acceptable.
3305  * The function assumes that snd_una<=ack<=snd_next.
3306  */
3307 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3308 					const u32 ack, const u32 ack_seq,
3309 					const u32 nwin)
3310 {
3311 	return	after(ack, tp->snd_una) ||
3312 		after(ack_seq, tp->snd_wl1) ||
3313 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3314 }
3315 
3316 /* If we update tp->snd_una, also update tp->bytes_acked */
3317 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3318 {
3319 	u32 delta = ack - tp->snd_una;
3320 
3321 	sock_owned_by_me((struct sock *)tp);
3322 	tp->bytes_acked += delta;
3323 	tp->snd_una = ack;
3324 }
3325 
3326 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3327 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3328 {
3329 	u32 delta = seq - tp->rcv_nxt;
3330 
3331 	sock_owned_by_me((struct sock *)tp);
3332 	tp->bytes_received += delta;
3333 	tp->rcv_nxt = seq;
3334 }
3335 
3336 /* Update our send window.
3337  *
3338  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3339  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3340  */
3341 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3342 				 u32 ack_seq)
3343 {
3344 	struct tcp_sock *tp = tcp_sk(sk);
3345 	int flag = 0;
3346 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3347 
3348 	if (likely(!tcp_hdr(skb)->syn))
3349 		nwin <<= tp->rx_opt.snd_wscale;
3350 
3351 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3352 		flag |= FLAG_WIN_UPDATE;
3353 		tcp_update_wl(tp, ack_seq);
3354 
3355 		if (tp->snd_wnd != nwin) {
3356 			tp->snd_wnd = nwin;
3357 
3358 			/* Note, it is the only place, where
3359 			 * fast path is recovered for sending TCP.
3360 			 */
3361 			tp->pred_flags = 0;
3362 			tcp_fast_path_check(sk);
3363 
3364 			if (!tcp_write_queue_empty(sk))
3365 				tcp_slow_start_after_idle_check(sk);
3366 
3367 			if (nwin > tp->max_window) {
3368 				tp->max_window = nwin;
3369 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3370 			}
3371 		}
3372 	}
3373 
3374 	tcp_snd_una_update(tp, ack);
3375 
3376 	return flag;
3377 }
3378 
3379 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3380 				   u32 *last_oow_ack_time)
3381 {
3382 	if (*last_oow_ack_time) {
3383 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3384 
3385 		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3386 			NET_INC_STATS(net, mib_idx);
3387 			return true;	/* rate-limited: don't send yet! */
3388 		}
3389 	}
3390 
3391 	*last_oow_ack_time = tcp_jiffies32;
3392 
3393 	return false;	/* not rate-limited: go ahead, send dupack now! */
3394 }
3395 
3396 /* Return true if we're currently rate-limiting out-of-window ACKs and
3397  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3398  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3399  * attacks that send repeated SYNs or ACKs for the same connection. To
3400  * do this, we do not send a duplicate SYNACK or ACK if the remote
3401  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3402  */
3403 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3404 			  int mib_idx, u32 *last_oow_ack_time)
3405 {
3406 	/* Data packets without SYNs are not likely part of an ACK loop. */
3407 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3408 	    !tcp_hdr(skb)->syn)
3409 		return false;
3410 
3411 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3412 }
3413 
3414 /* RFC 5961 7 [ACK Throttling] */
3415 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3416 {
3417 	/* unprotected vars, we dont care of overwrites */
3418 	static u32 challenge_timestamp;
3419 	static unsigned int challenge_count;
3420 	struct tcp_sock *tp = tcp_sk(sk);
3421 	struct net *net = sock_net(sk);
3422 	u32 count, now;
3423 
3424 	/* First check our per-socket dupack rate limit. */
3425 	if (__tcp_oow_rate_limited(net,
3426 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3427 				   &tp->last_oow_ack_time))
3428 		return;
3429 
3430 	/* Then check host-wide RFC 5961 rate limit. */
3431 	now = jiffies / HZ;
3432 	if (now != challenge_timestamp) {
3433 		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3434 		u32 half = (ack_limit + 1) >> 1;
3435 
3436 		challenge_timestamp = now;
3437 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3438 	}
3439 	count = READ_ONCE(challenge_count);
3440 	if (count > 0) {
3441 		WRITE_ONCE(challenge_count, count - 1);
3442 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3443 		tcp_send_ack(sk);
3444 	}
3445 }
3446 
3447 static void tcp_store_ts_recent(struct tcp_sock *tp)
3448 {
3449 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3450 	tp->rx_opt.ts_recent_stamp = get_seconds();
3451 }
3452 
3453 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3454 {
3455 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3456 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3457 		 * extra check below makes sure this can only happen
3458 		 * for pure ACK frames.  -DaveM
3459 		 *
3460 		 * Not only, also it occurs for expired timestamps.
3461 		 */
3462 
3463 		if (tcp_paws_check(&tp->rx_opt, 0))
3464 			tcp_store_ts_recent(tp);
3465 	}
3466 }
3467 
3468 /* This routine deals with acks during a TLP episode.
3469  * We mark the end of a TLP episode on receiving TLP dupack or when
3470  * ack is after tlp_high_seq.
3471  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3472  */
3473 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3474 {
3475 	struct tcp_sock *tp = tcp_sk(sk);
3476 
3477 	if (before(ack, tp->tlp_high_seq))
3478 		return;
3479 
3480 	if (flag & FLAG_DSACKING_ACK) {
3481 		/* This DSACK means original and TLP probe arrived; no loss */
3482 		tp->tlp_high_seq = 0;
3483 	} else if (after(ack, tp->tlp_high_seq)) {
3484 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3485 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3486 		 */
3487 		tcp_init_cwnd_reduction(sk);
3488 		tcp_set_ca_state(sk, TCP_CA_CWR);
3489 		tcp_end_cwnd_reduction(sk);
3490 		tcp_try_keep_open(sk);
3491 		NET_INC_STATS(sock_net(sk),
3492 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3493 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3494 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3495 		/* Pure dupack: original and TLP probe arrived; no loss */
3496 		tp->tlp_high_seq = 0;
3497 	}
3498 }
3499 
3500 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3501 {
3502 	const struct inet_connection_sock *icsk = inet_csk(sk);
3503 
3504 	if (icsk->icsk_ca_ops->in_ack_event)
3505 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3506 }
3507 
3508 /* Congestion control has updated the cwnd already. So if we're in
3509  * loss recovery then now we do any new sends (for FRTO) or
3510  * retransmits (for CA_Loss or CA_recovery) that make sense.
3511  */
3512 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3513 {
3514 	struct tcp_sock *tp = tcp_sk(sk);
3515 
3516 	if (rexmit == REXMIT_NONE)
3517 		return;
3518 
3519 	if (unlikely(rexmit == 2)) {
3520 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3521 					  TCP_NAGLE_OFF);
3522 		if (after(tp->snd_nxt, tp->high_seq))
3523 			return;
3524 		tp->frto = 0;
3525 	}
3526 	tcp_xmit_retransmit_queue(sk);
3527 }
3528 
3529 /* Returns the number of packets newly acked or sacked by the current ACK */
3530 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3531 {
3532 	const struct net *net = sock_net(sk);
3533 	struct tcp_sock *tp = tcp_sk(sk);
3534 	u32 delivered;
3535 
3536 	delivered = tp->delivered - prior_delivered;
3537 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3538 	if (flag & FLAG_ECE) {
3539 		tp->delivered_ce += delivered;
3540 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3541 	}
3542 	return delivered;
3543 }
3544 
3545 /* This routine deals with incoming acks, but not outgoing ones. */
3546 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3547 {
3548 	struct inet_connection_sock *icsk = inet_csk(sk);
3549 	struct tcp_sock *tp = tcp_sk(sk);
3550 	struct tcp_sacktag_state sack_state;
3551 	struct rate_sample rs = { .prior_delivered = 0 };
3552 	u32 prior_snd_una = tp->snd_una;
3553 	bool is_sack_reneg = tp->is_sack_reneg;
3554 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3555 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3556 	bool is_dupack = false;
3557 	int prior_packets = tp->packets_out;
3558 	u32 delivered = tp->delivered;
3559 	u32 lost = tp->lost;
3560 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3561 	u32 prior_fack;
3562 
3563 	sack_state.first_sackt = 0;
3564 	sack_state.rate = &rs;
3565 
3566 	/* We very likely will need to access rtx queue. */
3567 	prefetch(sk->tcp_rtx_queue.rb_node);
3568 
3569 	/* If the ack is older than previous acks
3570 	 * then we can probably ignore it.
3571 	 */
3572 	if (before(ack, prior_snd_una)) {
3573 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3574 		if (before(ack, prior_snd_una - tp->max_window)) {
3575 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3576 				tcp_send_challenge_ack(sk, skb);
3577 			return -1;
3578 		}
3579 		goto old_ack;
3580 	}
3581 
3582 	/* If the ack includes data we haven't sent yet, discard
3583 	 * this segment (RFC793 Section 3.9).
3584 	 */
3585 	if (after(ack, tp->snd_nxt))
3586 		goto invalid_ack;
3587 
3588 	if (after(ack, prior_snd_una)) {
3589 		flag |= FLAG_SND_UNA_ADVANCED;
3590 		icsk->icsk_retransmits = 0;
3591 
3592 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3593 		if (static_branch_unlikely(&clean_acked_data_enabled))
3594 			if (icsk->icsk_clean_acked)
3595 				icsk->icsk_clean_acked(sk, ack);
3596 #endif
3597 	}
3598 
3599 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3600 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3601 
3602 	/* ts_recent update must be made after we are sure that the packet
3603 	 * is in window.
3604 	 */
3605 	if (flag & FLAG_UPDATE_TS_RECENT)
3606 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3607 
3608 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3609 		/* Window is constant, pure forward advance.
3610 		 * No more checks are required.
3611 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3612 		 */
3613 		tcp_update_wl(tp, ack_seq);
3614 		tcp_snd_una_update(tp, ack);
3615 		flag |= FLAG_WIN_UPDATE;
3616 
3617 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3618 
3619 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3620 	} else {
3621 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3622 
3623 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3624 			flag |= FLAG_DATA;
3625 		else
3626 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3627 
3628 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3629 
3630 		if (TCP_SKB_CB(skb)->sacked)
3631 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3632 							&sack_state);
3633 
3634 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3635 			flag |= FLAG_ECE;
3636 			ack_ev_flags |= CA_ACK_ECE;
3637 		}
3638 
3639 		if (flag & FLAG_WIN_UPDATE)
3640 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3641 
3642 		tcp_in_ack_event(sk, ack_ev_flags);
3643 	}
3644 
3645 	/* We passed data and got it acked, remove any soft error
3646 	 * log. Something worked...
3647 	 */
3648 	sk->sk_err_soft = 0;
3649 	icsk->icsk_probes_out = 0;
3650 	tp->rcv_tstamp = tcp_jiffies32;
3651 	if (!prior_packets)
3652 		goto no_queue;
3653 
3654 	/* See if we can take anything off of the retransmit queue. */
3655 	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3656 
3657 	tcp_rack_update_reo_wnd(sk, &rs);
3658 
3659 	if (tp->tlp_high_seq)
3660 		tcp_process_tlp_ack(sk, ack, flag);
3661 	/* If needed, reset TLP/RTO timer; RACK may later override this. */
3662 	if (flag & FLAG_SET_XMIT_TIMER)
3663 		tcp_set_xmit_timer(sk);
3664 
3665 	if (tcp_ack_is_dubious(sk, flag)) {
3666 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3667 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3668 				      &rexmit);
3669 	}
3670 
3671 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3672 		sk_dst_confirm(sk);
3673 
3674 	delivered = tcp_newly_delivered(sk, delivered, flag);
3675 	lost = tp->lost - lost;			/* freshly marked lost */
3676 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3677 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3678 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3679 	tcp_xmit_recovery(sk, rexmit);
3680 	return 1;
3681 
3682 no_queue:
3683 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3684 	if (flag & FLAG_DSACKING_ACK) {
3685 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3686 				      &rexmit);
3687 		tcp_newly_delivered(sk, delivered, flag);
3688 	}
3689 	/* If this ack opens up a zero window, clear backoff.  It was
3690 	 * being used to time the probes, and is probably far higher than
3691 	 * it needs to be for normal retransmission.
3692 	 */
3693 	tcp_ack_probe(sk);
3694 
3695 	if (tp->tlp_high_seq)
3696 		tcp_process_tlp_ack(sk, ack, flag);
3697 	return 1;
3698 
3699 invalid_ack:
3700 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3701 	return -1;
3702 
3703 old_ack:
3704 	/* If data was SACKed, tag it and see if we should send more data.
3705 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3706 	 */
3707 	if (TCP_SKB_CB(skb)->sacked) {
3708 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3709 						&sack_state);
3710 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3711 				      &rexmit);
3712 		tcp_newly_delivered(sk, delivered, flag);
3713 		tcp_xmit_recovery(sk, rexmit);
3714 	}
3715 
3716 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3717 	return 0;
3718 }
3719 
3720 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3721 				      bool syn, struct tcp_fastopen_cookie *foc,
3722 				      bool exp_opt)
3723 {
3724 	/* Valid only in SYN or SYN-ACK with an even length.  */
3725 	if (!foc || !syn || len < 0 || (len & 1))
3726 		return;
3727 
3728 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3729 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3730 		memcpy(foc->val, cookie, len);
3731 	else if (len != 0)
3732 		len = -1;
3733 	foc->len = len;
3734 	foc->exp = exp_opt;
3735 }
3736 
3737 static void smc_parse_options(const struct tcphdr *th,
3738 			      struct tcp_options_received *opt_rx,
3739 			      const unsigned char *ptr,
3740 			      int opsize)
3741 {
3742 #if IS_ENABLED(CONFIG_SMC)
3743 	if (static_branch_unlikely(&tcp_have_smc)) {
3744 		if (th->syn && !(opsize & 1) &&
3745 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3746 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3747 			opt_rx->smc_ok = 1;
3748 	}
3749 #endif
3750 }
3751 
3752 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3753  * But, this can also be called on packets in the established flow when
3754  * the fast version below fails.
3755  */
3756 void tcp_parse_options(const struct net *net,
3757 		       const struct sk_buff *skb,
3758 		       struct tcp_options_received *opt_rx, int estab,
3759 		       struct tcp_fastopen_cookie *foc)
3760 {
3761 	const unsigned char *ptr;
3762 	const struct tcphdr *th = tcp_hdr(skb);
3763 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3764 
3765 	ptr = (const unsigned char *)(th + 1);
3766 	opt_rx->saw_tstamp = 0;
3767 
3768 	while (length > 0) {
3769 		int opcode = *ptr++;
3770 		int opsize;
3771 
3772 		switch (opcode) {
3773 		case TCPOPT_EOL:
3774 			return;
3775 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3776 			length--;
3777 			continue;
3778 		default:
3779 			opsize = *ptr++;
3780 			if (opsize < 2) /* "silly options" */
3781 				return;
3782 			if (opsize > length)
3783 				return;	/* don't parse partial options */
3784 			switch (opcode) {
3785 			case TCPOPT_MSS:
3786 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3787 					u16 in_mss = get_unaligned_be16(ptr);
3788 					if (in_mss) {
3789 						if (opt_rx->user_mss &&
3790 						    opt_rx->user_mss < in_mss)
3791 							in_mss = opt_rx->user_mss;
3792 						opt_rx->mss_clamp = in_mss;
3793 					}
3794 				}
3795 				break;
3796 			case TCPOPT_WINDOW:
3797 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3798 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3799 					__u8 snd_wscale = *(__u8 *)ptr;
3800 					opt_rx->wscale_ok = 1;
3801 					if (snd_wscale > TCP_MAX_WSCALE) {
3802 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3803 								     __func__,
3804 								     snd_wscale,
3805 								     TCP_MAX_WSCALE);
3806 						snd_wscale = TCP_MAX_WSCALE;
3807 					}
3808 					opt_rx->snd_wscale = snd_wscale;
3809 				}
3810 				break;
3811 			case TCPOPT_TIMESTAMP:
3812 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3813 				    ((estab && opt_rx->tstamp_ok) ||
3814 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3815 					opt_rx->saw_tstamp = 1;
3816 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3817 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3818 				}
3819 				break;
3820 			case TCPOPT_SACK_PERM:
3821 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3822 				    !estab && net->ipv4.sysctl_tcp_sack) {
3823 					opt_rx->sack_ok = TCP_SACK_SEEN;
3824 					tcp_sack_reset(opt_rx);
3825 				}
3826 				break;
3827 
3828 			case TCPOPT_SACK:
3829 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3830 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3831 				   opt_rx->sack_ok) {
3832 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3833 				}
3834 				break;
3835 #ifdef CONFIG_TCP_MD5SIG
3836 			case TCPOPT_MD5SIG:
3837 				/*
3838 				 * The MD5 Hash has already been
3839 				 * checked (see tcp_v{4,6}_do_rcv()).
3840 				 */
3841 				break;
3842 #endif
3843 			case TCPOPT_FASTOPEN:
3844 				tcp_parse_fastopen_option(
3845 					opsize - TCPOLEN_FASTOPEN_BASE,
3846 					ptr, th->syn, foc, false);
3847 				break;
3848 
3849 			case TCPOPT_EXP:
3850 				/* Fast Open option shares code 254 using a
3851 				 * 16 bits magic number.
3852 				 */
3853 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3854 				    get_unaligned_be16(ptr) ==
3855 				    TCPOPT_FASTOPEN_MAGIC)
3856 					tcp_parse_fastopen_option(opsize -
3857 						TCPOLEN_EXP_FASTOPEN_BASE,
3858 						ptr + 2, th->syn, foc, true);
3859 				else
3860 					smc_parse_options(th, opt_rx, ptr,
3861 							  opsize);
3862 				break;
3863 
3864 			}
3865 			ptr += opsize-2;
3866 			length -= opsize;
3867 		}
3868 	}
3869 }
3870 EXPORT_SYMBOL(tcp_parse_options);
3871 
3872 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3873 {
3874 	const __be32 *ptr = (const __be32 *)(th + 1);
3875 
3876 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3877 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3878 		tp->rx_opt.saw_tstamp = 1;
3879 		++ptr;
3880 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3881 		++ptr;
3882 		if (*ptr)
3883 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3884 		else
3885 			tp->rx_opt.rcv_tsecr = 0;
3886 		return true;
3887 	}
3888 	return false;
3889 }
3890 
3891 /* Fast parse options. This hopes to only see timestamps.
3892  * If it is wrong it falls back on tcp_parse_options().
3893  */
3894 static bool tcp_fast_parse_options(const struct net *net,
3895 				   const struct sk_buff *skb,
3896 				   const struct tcphdr *th, struct tcp_sock *tp)
3897 {
3898 	/* In the spirit of fast parsing, compare doff directly to constant
3899 	 * values.  Because equality is used, short doff can be ignored here.
3900 	 */
3901 	if (th->doff == (sizeof(*th) / 4)) {
3902 		tp->rx_opt.saw_tstamp = 0;
3903 		return false;
3904 	} else if (tp->rx_opt.tstamp_ok &&
3905 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3906 		if (tcp_parse_aligned_timestamp(tp, th))
3907 			return true;
3908 	}
3909 
3910 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3911 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3912 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3913 
3914 	return true;
3915 }
3916 
3917 #ifdef CONFIG_TCP_MD5SIG
3918 /*
3919  * Parse MD5 Signature option
3920  */
3921 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3922 {
3923 	int length = (th->doff << 2) - sizeof(*th);
3924 	const u8 *ptr = (const u8 *)(th + 1);
3925 
3926 	/* If not enough data remaining, we can short cut */
3927 	while (length >= TCPOLEN_MD5SIG) {
3928 		int opcode = *ptr++;
3929 		int opsize;
3930 
3931 		switch (opcode) {
3932 		case TCPOPT_EOL:
3933 			return NULL;
3934 		case TCPOPT_NOP:
3935 			length--;
3936 			continue;
3937 		default:
3938 			opsize = *ptr++;
3939 			if (opsize < 2 || opsize > length)
3940 				return NULL;
3941 			if (opcode == TCPOPT_MD5SIG)
3942 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3943 		}
3944 		ptr += opsize - 2;
3945 		length -= opsize;
3946 	}
3947 	return NULL;
3948 }
3949 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3950 #endif
3951 
3952 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3953  *
3954  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3955  * it can pass through stack. So, the following predicate verifies that
3956  * this segment is not used for anything but congestion avoidance or
3957  * fast retransmit. Moreover, we even are able to eliminate most of such
3958  * second order effects, if we apply some small "replay" window (~RTO)
3959  * to timestamp space.
3960  *
3961  * All these measures still do not guarantee that we reject wrapped ACKs
3962  * on networks with high bandwidth, when sequence space is recycled fastly,
3963  * but it guarantees that such events will be very rare and do not affect
3964  * connection seriously. This doesn't look nice, but alas, PAWS is really
3965  * buggy extension.
3966  *
3967  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3968  * states that events when retransmit arrives after original data are rare.
3969  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3970  * the biggest problem on large power networks even with minor reordering.
3971  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3972  * up to bandwidth of 18Gigabit/sec. 8) ]
3973  */
3974 
3975 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3976 {
3977 	const struct tcp_sock *tp = tcp_sk(sk);
3978 	const struct tcphdr *th = tcp_hdr(skb);
3979 	u32 seq = TCP_SKB_CB(skb)->seq;
3980 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3981 
3982 	return (/* 1. Pure ACK with correct sequence number. */
3983 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3984 
3985 		/* 2. ... and duplicate ACK. */
3986 		ack == tp->snd_una &&
3987 
3988 		/* 3. ... and does not update window. */
3989 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3990 
3991 		/* 4. ... and sits in replay window. */
3992 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3993 }
3994 
3995 static inline bool tcp_paws_discard(const struct sock *sk,
3996 				   const struct sk_buff *skb)
3997 {
3998 	const struct tcp_sock *tp = tcp_sk(sk);
3999 
4000 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4001 	       !tcp_disordered_ack(sk, skb);
4002 }
4003 
4004 /* Check segment sequence number for validity.
4005  *
4006  * Segment controls are considered valid, if the segment
4007  * fits to the window after truncation to the window. Acceptability
4008  * of data (and SYN, FIN, of course) is checked separately.
4009  * See tcp_data_queue(), for example.
4010  *
4011  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4012  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4013  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4014  * (borrowed from freebsd)
4015  */
4016 
4017 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4018 {
4019 	return	!before(end_seq, tp->rcv_wup) &&
4020 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4021 }
4022 
4023 /* When we get a reset we do this. */
4024 void tcp_reset(struct sock *sk)
4025 {
4026 	trace_tcp_receive_reset(sk);
4027 
4028 	/* We want the right error as BSD sees it (and indeed as we do). */
4029 	switch (sk->sk_state) {
4030 	case TCP_SYN_SENT:
4031 		sk->sk_err = ECONNREFUSED;
4032 		break;
4033 	case TCP_CLOSE_WAIT:
4034 		sk->sk_err = EPIPE;
4035 		break;
4036 	case TCP_CLOSE:
4037 		return;
4038 	default:
4039 		sk->sk_err = ECONNRESET;
4040 	}
4041 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4042 	smp_wmb();
4043 
4044 	tcp_write_queue_purge(sk);
4045 	tcp_done(sk);
4046 
4047 	if (!sock_flag(sk, SOCK_DEAD))
4048 		sk->sk_error_report(sk);
4049 }
4050 
4051 /*
4052  * 	Process the FIN bit. This now behaves as it is supposed to work
4053  *	and the FIN takes effect when it is validly part of sequence
4054  *	space. Not before when we get holes.
4055  *
4056  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4057  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4058  *	TIME-WAIT)
4059  *
4060  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4061  *	close and we go into CLOSING (and later onto TIME-WAIT)
4062  *
4063  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4064  */
4065 void tcp_fin(struct sock *sk)
4066 {
4067 	struct tcp_sock *tp = tcp_sk(sk);
4068 
4069 	inet_csk_schedule_ack(sk);
4070 
4071 	sk->sk_shutdown |= RCV_SHUTDOWN;
4072 	sock_set_flag(sk, SOCK_DONE);
4073 
4074 	switch (sk->sk_state) {
4075 	case TCP_SYN_RECV:
4076 	case TCP_ESTABLISHED:
4077 		/* Move to CLOSE_WAIT */
4078 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4079 		inet_csk(sk)->icsk_ack.pingpong = 1;
4080 		break;
4081 
4082 	case TCP_CLOSE_WAIT:
4083 	case TCP_CLOSING:
4084 		/* Received a retransmission of the FIN, do
4085 		 * nothing.
4086 		 */
4087 		break;
4088 	case TCP_LAST_ACK:
4089 		/* RFC793: Remain in the LAST-ACK state. */
4090 		break;
4091 
4092 	case TCP_FIN_WAIT1:
4093 		/* This case occurs when a simultaneous close
4094 		 * happens, we must ack the received FIN and
4095 		 * enter the CLOSING state.
4096 		 */
4097 		tcp_send_ack(sk);
4098 		tcp_set_state(sk, TCP_CLOSING);
4099 		break;
4100 	case TCP_FIN_WAIT2:
4101 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4102 		tcp_send_ack(sk);
4103 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4104 		break;
4105 	default:
4106 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4107 		 * cases we should never reach this piece of code.
4108 		 */
4109 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4110 		       __func__, sk->sk_state);
4111 		break;
4112 	}
4113 
4114 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4115 	 * Probably, we should reset in this case. For now drop them.
4116 	 */
4117 	skb_rbtree_purge(&tp->out_of_order_queue);
4118 	if (tcp_is_sack(tp))
4119 		tcp_sack_reset(&tp->rx_opt);
4120 	sk_mem_reclaim(sk);
4121 
4122 	if (!sock_flag(sk, SOCK_DEAD)) {
4123 		sk->sk_state_change(sk);
4124 
4125 		/* Do not send POLL_HUP for half duplex close. */
4126 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4127 		    sk->sk_state == TCP_CLOSE)
4128 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4129 		else
4130 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4131 	}
4132 }
4133 
4134 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4135 				  u32 end_seq)
4136 {
4137 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4138 		if (before(seq, sp->start_seq))
4139 			sp->start_seq = seq;
4140 		if (after(end_seq, sp->end_seq))
4141 			sp->end_seq = end_seq;
4142 		return true;
4143 	}
4144 	return false;
4145 }
4146 
4147 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4148 {
4149 	struct tcp_sock *tp = tcp_sk(sk);
4150 
4151 	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4152 		int mib_idx;
4153 
4154 		if (before(seq, tp->rcv_nxt))
4155 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4156 		else
4157 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4158 
4159 		NET_INC_STATS(sock_net(sk), mib_idx);
4160 
4161 		tp->rx_opt.dsack = 1;
4162 		tp->duplicate_sack[0].start_seq = seq;
4163 		tp->duplicate_sack[0].end_seq = end_seq;
4164 	}
4165 }
4166 
4167 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4168 {
4169 	struct tcp_sock *tp = tcp_sk(sk);
4170 
4171 	if (!tp->rx_opt.dsack)
4172 		tcp_dsack_set(sk, seq, end_seq);
4173 	else
4174 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4175 }
4176 
4177 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4178 {
4179 	struct tcp_sock *tp = tcp_sk(sk);
4180 
4181 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4182 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4183 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4184 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4185 
4186 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4187 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4188 
4189 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4190 				end_seq = tp->rcv_nxt;
4191 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4192 		}
4193 	}
4194 
4195 	tcp_send_ack(sk);
4196 }
4197 
4198 /* These routines update the SACK block as out-of-order packets arrive or
4199  * in-order packets close up the sequence space.
4200  */
4201 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4202 {
4203 	int this_sack;
4204 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4205 	struct tcp_sack_block *swalk = sp + 1;
4206 
4207 	/* See if the recent change to the first SACK eats into
4208 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4209 	 */
4210 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4211 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4212 			int i;
4213 
4214 			/* Zap SWALK, by moving every further SACK up by one slot.
4215 			 * Decrease num_sacks.
4216 			 */
4217 			tp->rx_opt.num_sacks--;
4218 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4219 				sp[i] = sp[i + 1];
4220 			continue;
4221 		}
4222 		this_sack++, swalk++;
4223 	}
4224 }
4225 
4226 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4227 {
4228 	struct tcp_sock *tp = tcp_sk(sk);
4229 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4230 	int cur_sacks = tp->rx_opt.num_sacks;
4231 	int this_sack;
4232 
4233 	if (!cur_sacks)
4234 		goto new_sack;
4235 
4236 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4237 		if (tcp_sack_extend(sp, seq, end_seq)) {
4238 			/* Rotate this_sack to the first one. */
4239 			for (; this_sack > 0; this_sack--, sp--)
4240 				swap(*sp, *(sp - 1));
4241 			if (cur_sacks > 1)
4242 				tcp_sack_maybe_coalesce(tp);
4243 			return;
4244 		}
4245 	}
4246 
4247 	/* Could not find an adjacent existing SACK, build a new one,
4248 	 * put it at the front, and shift everyone else down.  We
4249 	 * always know there is at least one SACK present already here.
4250 	 *
4251 	 * If the sack array is full, forget about the last one.
4252 	 */
4253 	if (this_sack >= TCP_NUM_SACKS) {
4254 		if (tp->compressed_ack)
4255 			tcp_send_ack(sk);
4256 		this_sack--;
4257 		tp->rx_opt.num_sacks--;
4258 		sp--;
4259 	}
4260 	for (; this_sack > 0; this_sack--, sp--)
4261 		*sp = *(sp - 1);
4262 
4263 new_sack:
4264 	/* Build the new head SACK, and we're done. */
4265 	sp->start_seq = seq;
4266 	sp->end_seq = end_seq;
4267 	tp->rx_opt.num_sacks++;
4268 }
4269 
4270 /* RCV.NXT advances, some SACKs should be eaten. */
4271 
4272 static void tcp_sack_remove(struct tcp_sock *tp)
4273 {
4274 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4275 	int num_sacks = tp->rx_opt.num_sacks;
4276 	int this_sack;
4277 
4278 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4279 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4280 		tp->rx_opt.num_sacks = 0;
4281 		return;
4282 	}
4283 
4284 	for (this_sack = 0; this_sack < num_sacks;) {
4285 		/* Check if the start of the sack is covered by RCV.NXT. */
4286 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4287 			int i;
4288 
4289 			/* RCV.NXT must cover all the block! */
4290 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4291 
4292 			/* Zap this SACK, by moving forward any other SACKS. */
4293 			for (i = this_sack+1; i < num_sacks; i++)
4294 				tp->selective_acks[i-1] = tp->selective_acks[i];
4295 			num_sacks--;
4296 			continue;
4297 		}
4298 		this_sack++;
4299 		sp++;
4300 	}
4301 	tp->rx_opt.num_sacks = num_sacks;
4302 }
4303 
4304 /**
4305  * tcp_try_coalesce - try to merge skb to prior one
4306  * @sk: socket
4307  * @dest: destination queue
4308  * @to: prior buffer
4309  * @from: buffer to add in queue
4310  * @fragstolen: pointer to boolean
4311  *
4312  * Before queueing skb @from after @to, try to merge them
4313  * to reduce overall memory use and queue lengths, if cost is small.
4314  * Packets in ofo or receive queues can stay a long time.
4315  * Better try to coalesce them right now to avoid future collapses.
4316  * Returns true if caller should free @from instead of queueing it
4317  */
4318 static bool tcp_try_coalesce(struct sock *sk,
4319 			     struct sk_buff *to,
4320 			     struct sk_buff *from,
4321 			     bool *fragstolen)
4322 {
4323 	int delta;
4324 
4325 	*fragstolen = false;
4326 
4327 	/* Its possible this segment overlaps with prior segment in queue */
4328 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4329 		return false;
4330 
4331 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4332 		return false;
4333 
4334 	atomic_add(delta, &sk->sk_rmem_alloc);
4335 	sk_mem_charge(sk, delta);
4336 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4337 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4338 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4339 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4340 
4341 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4342 		TCP_SKB_CB(to)->has_rxtstamp = true;
4343 		to->tstamp = from->tstamp;
4344 	}
4345 
4346 	return true;
4347 }
4348 
4349 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4350 {
4351 	sk_drops_add(sk, skb);
4352 	__kfree_skb(skb);
4353 }
4354 
4355 /* This one checks to see if we can put data from the
4356  * out_of_order queue into the receive_queue.
4357  */
4358 static void tcp_ofo_queue(struct sock *sk)
4359 {
4360 	struct tcp_sock *tp = tcp_sk(sk);
4361 	__u32 dsack_high = tp->rcv_nxt;
4362 	bool fin, fragstolen, eaten;
4363 	struct sk_buff *skb, *tail;
4364 	struct rb_node *p;
4365 
4366 	p = rb_first(&tp->out_of_order_queue);
4367 	while (p) {
4368 		skb = rb_to_skb(p);
4369 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4370 			break;
4371 
4372 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4373 			__u32 dsack = dsack_high;
4374 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4375 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4376 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4377 		}
4378 		p = rb_next(p);
4379 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4380 
4381 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4382 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4383 			tcp_drop(sk, skb);
4384 			continue;
4385 		}
4386 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4387 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4388 			   TCP_SKB_CB(skb)->end_seq);
4389 
4390 		tail = skb_peek_tail(&sk->sk_receive_queue);
4391 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4392 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4393 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4394 		if (!eaten)
4395 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4396 		else
4397 			kfree_skb_partial(skb, fragstolen);
4398 
4399 		if (unlikely(fin)) {
4400 			tcp_fin(sk);
4401 			/* tcp_fin() purges tp->out_of_order_queue,
4402 			 * so we must end this loop right now.
4403 			 */
4404 			break;
4405 		}
4406 	}
4407 }
4408 
4409 static bool tcp_prune_ofo_queue(struct sock *sk);
4410 static int tcp_prune_queue(struct sock *sk);
4411 
4412 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4413 				 unsigned int size)
4414 {
4415 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4416 	    !sk_rmem_schedule(sk, skb, size)) {
4417 
4418 		if (tcp_prune_queue(sk) < 0)
4419 			return -1;
4420 
4421 		while (!sk_rmem_schedule(sk, skb, size)) {
4422 			if (!tcp_prune_ofo_queue(sk))
4423 				return -1;
4424 		}
4425 	}
4426 	return 0;
4427 }
4428 
4429 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4430 {
4431 	struct tcp_sock *tp = tcp_sk(sk);
4432 	struct rb_node **p, *parent;
4433 	struct sk_buff *skb1;
4434 	u32 seq, end_seq;
4435 	bool fragstolen;
4436 
4437 	tcp_ecn_check_ce(tp, skb);
4438 
4439 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4440 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4441 		tcp_drop(sk, skb);
4442 		return;
4443 	}
4444 
4445 	/* Disable header prediction. */
4446 	tp->pred_flags = 0;
4447 	inet_csk_schedule_ack(sk);
4448 
4449 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4450 	seq = TCP_SKB_CB(skb)->seq;
4451 	end_seq = TCP_SKB_CB(skb)->end_seq;
4452 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4453 		   tp->rcv_nxt, seq, end_seq);
4454 
4455 	p = &tp->out_of_order_queue.rb_node;
4456 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4457 		/* Initial out of order segment, build 1 SACK. */
4458 		if (tcp_is_sack(tp)) {
4459 			tp->rx_opt.num_sacks = 1;
4460 			tp->selective_acks[0].start_seq = seq;
4461 			tp->selective_acks[0].end_seq = end_seq;
4462 		}
4463 		rb_link_node(&skb->rbnode, NULL, p);
4464 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4465 		tp->ooo_last_skb = skb;
4466 		goto end;
4467 	}
4468 
4469 	/* In the typical case, we are adding an skb to the end of the list.
4470 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4471 	 */
4472 	if (tcp_try_coalesce(sk, tp->ooo_last_skb,
4473 			     skb, &fragstolen)) {
4474 coalesce_done:
4475 		tcp_grow_window(sk, skb);
4476 		kfree_skb_partial(skb, fragstolen);
4477 		skb = NULL;
4478 		goto add_sack;
4479 	}
4480 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4481 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4482 		parent = &tp->ooo_last_skb->rbnode;
4483 		p = &parent->rb_right;
4484 		goto insert;
4485 	}
4486 
4487 	/* Find place to insert this segment. Handle overlaps on the way. */
4488 	parent = NULL;
4489 	while (*p) {
4490 		parent = *p;
4491 		skb1 = rb_to_skb(parent);
4492 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4493 			p = &parent->rb_left;
4494 			continue;
4495 		}
4496 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4497 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4498 				/* All the bits are present. Drop. */
4499 				NET_INC_STATS(sock_net(sk),
4500 					      LINUX_MIB_TCPOFOMERGE);
4501 				__kfree_skb(skb);
4502 				skb = NULL;
4503 				tcp_dsack_set(sk, seq, end_seq);
4504 				goto add_sack;
4505 			}
4506 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4507 				/* Partial overlap. */
4508 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4509 			} else {
4510 				/* skb's seq == skb1's seq and skb covers skb1.
4511 				 * Replace skb1 with skb.
4512 				 */
4513 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4514 						&tp->out_of_order_queue);
4515 				tcp_dsack_extend(sk,
4516 						 TCP_SKB_CB(skb1)->seq,
4517 						 TCP_SKB_CB(skb1)->end_seq);
4518 				NET_INC_STATS(sock_net(sk),
4519 					      LINUX_MIB_TCPOFOMERGE);
4520 				__kfree_skb(skb1);
4521 				goto merge_right;
4522 			}
4523 		} else if (tcp_try_coalesce(sk, skb1,
4524 					    skb, &fragstolen)) {
4525 			goto coalesce_done;
4526 		}
4527 		p = &parent->rb_right;
4528 	}
4529 insert:
4530 	/* Insert segment into RB tree. */
4531 	rb_link_node(&skb->rbnode, parent, p);
4532 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4533 
4534 merge_right:
4535 	/* Remove other segments covered by skb. */
4536 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4537 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4538 			break;
4539 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4540 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4541 					 end_seq);
4542 			break;
4543 		}
4544 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4545 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4546 				 TCP_SKB_CB(skb1)->end_seq);
4547 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4548 		tcp_drop(sk, skb1);
4549 	}
4550 	/* If there is no skb after us, we are the last_skb ! */
4551 	if (!skb1)
4552 		tp->ooo_last_skb = skb;
4553 
4554 add_sack:
4555 	if (tcp_is_sack(tp))
4556 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4557 end:
4558 	if (skb) {
4559 		tcp_grow_window(sk, skb);
4560 		skb_condense(skb);
4561 		skb_set_owner_r(skb, sk);
4562 	}
4563 }
4564 
4565 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4566 		  bool *fragstolen)
4567 {
4568 	int eaten;
4569 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4570 
4571 	__skb_pull(skb, hdrlen);
4572 	eaten = (tail &&
4573 		 tcp_try_coalesce(sk, tail,
4574 				  skb, fragstolen)) ? 1 : 0;
4575 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4576 	if (!eaten) {
4577 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4578 		skb_set_owner_r(skb, sk);
4579 	}
4580 	return eaten;
4581 }
4582 
4583 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4584 {
4585 	struct sk_buff *skb;
4586 	int err = -ENOMEM;
4587 	int data_len = 0;
4588 	bool fragstolen;
4589 
4590 	if (size == 0)
4591 		return 0;
4592 
4593 	if (size > PAGE_SIZE) {
4594 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4595 
4596 		data_len = npages << PAGE_SHIFT;
4597 		size = data_len + (size & ~PAGE_MASK);
4598 	}
4599 	skb = alloc_skb_with_frags(size - data_len, data_len,
4600 				   PAGE_ALLOC_COSTLY_ORDER,
4601 				   &err, sk->sk_allocation);
4602 	if (!skb)
4603 		goto err;
4604 
4605 	skb_put(skb, size - data_len);
4606 	skb->data_len = data_len;
4607 	skb->len = size;
4608 
4609 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4610 		goto err_free;
4611 
4612 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4613 	if (err)
4614 		goto err_free;
4615 
4616 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4617 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4618 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4619 
4620 	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4621 		WARN_ON_ONCE(fragstolen); /* should not happen */
4622 		__kfree_skb(skb);
4623 	}
4624 	return size;
4625 
4626 err_free:
4627 	kfree_skb(skb);
4628 err:
4629 	return err;
4630 
4631 }
4632 
4633 void tcp_data_ready(struct sock *sk)
4634 {
4635 	const struct tcp_sock *tp = tcp_sk(sk);
4636 	int avail = tp->rcv_nxt - tp->copied_seq;
4637 
4638 	if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE))
4639 		return;
4640 
4641 	sk->sk_data_ready(sk);
4642 }
4643 
4644 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4645 {
4646 	struct tcp_sock *tp = tcp_sk(sk);
4647 	bool fragstolen;
4648 	int eaten;
4649 
4650 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4651 		__kfree_skb(skb);
4652 		return;
4653 	}
4654 	skb_dst_drop(skb);
4655 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4656 
4657 	tcp_ecn_accept_cwr(tp, skb);
4658 
4659 	tp->rx_opt.dsack = 0;
4660 
4661 	/*  Queue data for delivery to the user.
4662 	 *  Packets in sequence go to the receive queue.
4663 	 *  Out of sequence packets to the out_of_order_queue.
4664 	 */
4665 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4666 		if (tcp_receive_window(tp) == 0)
4667 			goto out_of_window;
4668 
4669 		/* Ok. In sequence. In window. */
4670 queue_and_out:
4671 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4672 			sk_forced_mem_schedule(sk, skb->truesize);
4673 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4674 			goto drop;
4675 
4676 		eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4677 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4678 		if (skb->len)
4679 			tcp_event_data_recv(sk, skb);
4680 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4681 			tcp_fin(sk);
4682 
4683 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4684 			tcp_ofo_queue(sk);
4685 
4686 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4687 			 * gap in queue is filled.
4688 			 */
4689 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4690 				inet_csk(sk)->icsk_ack.pingpong = 0;
4691 		}
4692 
4693 		if (tp->rx_opt.num_sacks)
4694 			tcp_sack_remove(tp);
4695 
4696 		tcp_fast_path_check(sk);
4697 
4698 		if (eaten > 0)
4699 			kfree_skb_partial(skb, fragstolen);
4700 		if (!sock_flag(sk, SOCK_DEAD))
4701 			tcp_data_ready(sk);
4702 		return;
4703 	}
4704 
4705 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4706 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4707 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4708 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4709 
4710 out_of_window:
4711 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4712 		inet_csk_schedule_ack(sk);
4713 drop:
4714 		tcp_drop(sk, skb);
4715 		return;
4716 	}
4717 
4718 	/* Out of window. F.e. zero window probe. */
4719 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4720 		goto out_of_window;
4721 
4722 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4723 		/* Partial packet, seq < rcv_next < end_seq */
4724 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4725 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4726 			   TCP_SKB_CB(skb)->end_seq);
4727 
4728 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4729 
4730 		/* If window is closed, drop tail of packet. But after
4731 		 * remembering D-SACK for its head made in previous line.
4732 		 */
4733 		if (!tcp_receive_window(tp))
4734 			goto out_of_window;
4735 		goto queue_and_out;
4736 	}
4737 
4738 	tcp_data_queue_ofo(sk, skb);
4739 }
4740 
4741 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4742 {
4743 	if (list)
4744 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4745 
4746 	return skb_rb_next(skb);
4747 }
4748 
4749 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4750 					struct sk_buff_head *list,
4751 					struct rb_root *root)
4752 {
4753 	struct sk_buff *next = tcp_skb_next(skb, list);
4754 
4755 	if (list)
4756 		__skb_unlink(skb, list);
4757 	else
4758 		rb_erase(&skb->rbnode, root);
4759 
4760 	__kfree_skb(skb);
4761 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4762 
4763 	return next;
4764 }
4765 
4766 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4767 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4768 {
4769 	struct rb_node **p = &root->rb_node;
4770 	struct rb_node *parent = NULL;
4771 	struct sk_buff *skb1;
4772 
4773 	while (*p) {
4774 		parent = *p;
4775 		skb1 = rb_to_skb(parent);
4776 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4777 			p = &parent->rb_left;
4778 		else
4779 			p = &parent->rb_right;
4780 	}
4781 	rb_link_node(&skb->rbnode, parent, p);
4782 	rb_insert_color(&skb->rbnode, root);
4783 }
4784 
4785 /* Collapse contiguous sequence of skbs head..tail with
4786  * sequence numbers start..end.
4787  *
4788  * If tail is NULL, this means until the end of the queue.
4789  *
4790  * Segments with FIN/SYN are not collapsed (only because this
4791  * simplifies code)
4792  */
4793 static void
4794 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4795 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4796 {
4797 	struct sk_buff *skb = head, *n;
4798 	struct sk_buff_head tmp;
4799 	bool end_of_skbs;
4800 
4801 	/* First, check that queue is collapsible and find
4802 	 * the point where collapsing can be useful.
4803 	 */
4804 restart:
4805 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4806 		n = tcp_skb_next(skb, list);
4807 
4808 		/* No new bits? It is possible on ofo queue. */
4809 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4810 			skb = tcp_collapse_one(sk, skb, list, root);
4811 			if (!skb)
4812 				break;
4813 			goto restart;
4814 		}
4815 
4816 		/* The first skb to collapse is:
4817 		 * - not SYN/FIN and
4818 		 * - bloated or contains data before "start" or
4819 		 *   overlaps to the next one.
4820 		 */
4821 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4822 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4823 		     before(TCP_SKB_CB(skb)->seq, start))) {
4824 			end_of_skbs = false;
4825 			break;
4826 		}
4827 
4828 		if (n && n != tail &&
4829 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4830 			end_of_skbs = false;
4831 			break;
4832 		}
4833 
4834 		/* Decided to skip this, advance start seq. */
4835 		start = TCP_SKB_CB(skb)->end_seq;
4836 	}
4837 	if (end_of_skbs ||
4838 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4839 		return;
4840 
4841 	__skb_queue_head_init(&tmp);
4842 
4843 	while (before(start, end)) {
4844 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4845 		struct sk_buff *nskb;
4846 
4847 		nskb = alloc_skb(copy, GFP_ATOMIC);
4848 		if (!nskb)
4849 			break;
4850 
4851 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4852 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4853 		if (list)
4854 			__skb_queue_before(list, skb, nskb);
4855 		else
4856 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4857 		skb_set_owner_r(nskb, sk);
4858 
4859 		/* Copy data, releasing collapsed skbs. */
4860 		while (copy > 0) {
4861 			int offset = start - TCP_SKB_CB(skb)->seq;
4862 			int size = TCP_SKB_CB(skb)->end_seq - start;
4863 
4864 			BUG_ON(offset < 0);
4865 			if (size > 0) {
4866 				size = min(copy, size);
4867 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4868 					BUG();
4869 				TCP_SKB_CB(nskb)->end_seq += size;
4870 				copy -= size;
4871 				start += size;
4872 			}
4873 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4874 				skb = tcp_collapse_one(sk, skb, list, root);
4875 				if (!skb ||
4876 				    skb == tail ||
4877 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4878 					goto end;
4879 			}
4880 		}
4881 	}
4882 end:
4883 	skb_queue_walk_safe(&tmp, skb, n)
4884 		tcp_rbtree_insert(root, skb);
4885 }
4886 
4887 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4888  * and tcp_collapse() them until all the queue is collapsed.
4889  */
4890 static void tcp_collapse_ofo_queue(struct sock *sk)
4891 {
4892 	struct tcp_sock *tp = tcp_sk(sk);
4893 	struct sk_buff *skb, *head;
4894 	u32 start, end;
4895 
4896 	skb = skb_rb_first(&tp->out_of_order_queue);
4897 new_range:
4898 	if (!skb) {
4899 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
4900 		return;
4901 	}
4902 	start = TCP_SKB_CB(skb)->seq;
4903 	end = TCP_SKB_CB(skb)->end_seq;
4904 
4905 	for (head = skb;;) {
4906 		skb = skb_rb_next(skb);
4907 
4908 		/* Range is terminated when we see a gap or when
4909 		 * we are at the queue end.
4910 		 */
4911 		if (!skb ||
4912 		    after(TCP_SKB_CB(skb)->seq, end) ||
4913 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4914 			tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4915 				     head, skb, start, end);
4916 			goto new_range;
4917 		}
4918 
4919 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4920 			start = TCP_SKB_CB(skb)->seq;
4921 		if (after(TCP_SKB_CB(skb)->end_seq, end))
4922 			end = TCP_SKB_CB(skb)->end_seq;
4923 	}
4924 }
4925 
4926 /*
4927  * Clean the out-of-order queue to make room.
4928  * We drop high sequences packets to :
4929  * 1) Let a chance for holes to be filled.
4930  * 2) not add too big latencies if thousands of packets sit there.
4931  *    (But if application shrinks SO_RCVBUF, we could still end up
4932  *     freeing whole queue here)
4933  *
4934  * Return true if queue has shrunk.
4935  */
4936 static bool tcp_prune_ofo_queue(struct sock *sk)
4937 {
4938 	struct tcp_sock *tp = tcp_sk(sk);
4939 	struct rb_node *node, *prev;
4940 
4941 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4942 		return false;
4943 
4944 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4945 	node = &tp->ooo_last_skb->rbnode;
4946 	do {
4947 		prev = rb_prev(node);
4948 		rb_erase(node, &tp->out_of_order_queue);
4949 		tcp_drop(sk, rb_to_skb(node));
4950 		sk_mem_reclaim(sk);
4951 		if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4952 		    !tcp_under_memory_pressure(sk))
4953 			break;
4954 		node = prev;
4955 	} while (node);
4956 	tp->ooo_last_skb = rb_to_skb(prev);
4957 
4958 	/* Reset SACK state.  A conforming SACK implementation will
4959 	 * do the same at a timeout based retransmit.  When a connection
4960 	 * is in a sad state like this, we care only about integrity
4961 	 * of the connection not performance.
4962 	 */
4963 	if (tp->rx_opt.sack_ok)
4964 		tcp_sack_reset(&tp->rx_opt);
4965 	return true;
4966 }
4967 
4968 /* Reduce allocated memory if we can, trying to get
4969  * the socket within its memory limits again.
4970  *
4971  * Return less than zero if we should start dropping frames
4972  * until the socket owning process reads some of the data
4973  * to stabilize the situation.
4974  */
4975 static int tcp_prune_queue(struct sock *sk)
4976 {
4977 	struct tcp_sock *tp = tcp_sk(sk);
4978 
4979 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4980 
4981 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4982 
4983 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4984 		tcp_clamp_window(sk);
4985 	else if (tcp_under_memory_pressure(sk))
4986 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4987 
4988 	tcp_collapse_ofo_queue(sk);
4989 	if (!skb_queue_empty(&sk->sk_receive_queue))
4990 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
4991 			     skb_peek(&sk->sk_receive_queue),
4992 			     NULL,
4993 			     tp->copied_seq, tp->rcv_nxt);
4994 	sk_mem_reclaim(sk);
4995 
4996 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4997 		return 0;
4998 
4999 	/* Collapsing did not help, destructive actions follow.
5000 	 * This must not ever occur. */
5001 
5002 	tcp_prune_ofo_queue(sk);
5003 
5004 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5005 		return 0;
5006 
5007 	/* If we are really being abused, tell the caller to silently
5008 	 * drop receive data on the floor.  It will get retransmitted
5009 	 * and hopefully then we'll have sufficient space.
5010 	 */
5011 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5012 
5013 	/* Massive buffer overcommit. */
5014 	tp->pred_flags = 0;
5015 	return -1;
5016 }
5017 
5018 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5019 {
5020 	const struct tcp_sock *tp = tcp_sk(sk);
5021 
5022 	/* If the user specified a specific send buffer setting, do
5023 	 * not modify it.
5024 	 */
5025 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5026 		return false;
5027 
5028 	/* If we are under global TCP memory pressure, do not expand.  */
5029 	if (tcp_under_memory_pressure(sk))
5030 		return false;
5031 
5032 	/* If we are under soft global TCP memory pressure, do not expand.  */
5033 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5034 		return false;
5035 
5036 	/* If we filled the congestion window, do not expand.  */
5037 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5038 		return false;
5039 
5040 	return true;
5041 }
5042 
5043 /* When incoming ACK allowed to free some skb from write_queue,
5044  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5045  * on the exit from tcp input handler.
5046  *
5047  * PROBLEM: sndbuf expansion does not work well with largesend.
5048  */
5049 static void tcp_new_space(struct sock *sk)
5050 {
5051 	struct tcp_sock *tp = tcp_sk(sk);
5052 
5053 	if (tcp_should_expand_sndbuf(sk)) {
5054 		tcp_sndbuf_expand(sk);
5055 		tp->snd_cwnd_stamp = tcp_jiffies32;
5056 	}
5057 
5058 	sk->sk_write_space(sk);
5059 }
5060 
5061 static void tcp_check_space(struct sock *sk)
5062 {
5063 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5064 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5065 		/* pairs with tcp_poll() */
5066 		smp_mb();
5067 		if (sk->sk_socket &&
5068 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5069 			tcp_new_space(sk);
5070 			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5071 				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5072 		}
5073 	}
5074 }
5075 
5076 static inline void tcp_data_snd_check(struct sock *sk)
5077 {
5078 	tcp_push_pending_frames(sk);
5079 	tcp_check_space(sk);
5080 }
5081 
5082 /*
5083  * Check if sending an ack is needed.
5084  */
5085 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5086 {
5087 	struct tcp_sock *tp = tcp_sk(sk);
5088 	unsigned long rtt, delay;
5089 
5090 	    /* More than one full frame received... */
5091 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5092 	     /* ... and right edge of window advances far enough.
5093 	      * (tcp_recvmsg() will send ACK otherwise).
5094 	      * If application uses SO_RCVLOWAT, we want send ack now if
5095 	      * we have not received enough bytes to satisfy the condition.
5096 	      */
5097 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5098 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5099 	    /* We ACK each frame or... */
5100 	    tcp_in_quickack_mode(sk)) {
5101 send_now:
5102 		tcp_send_ack(sk);
5103 		return;
5104 	}
5105 
5106 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5107 		tcp_send_delayed_ack(sk);
5108 		return;
5109 	}
5110 
5111 	if (!tcp_is_sack(tp) ||
5112 	    tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5113 		goto send_now;
5114 	tp->compressed_ack++;
5115 
5116 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5117 		return;
5118 
5119 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5120 
5121 	rtt = tp->rcv_rtt_est.rtt_us;
5122 	if (tp->srtt_us && tp->srtt_us < rtt)
5123 		rtt = tp->srtt_us;
5124 
5125 	delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5126 		      rtt * (NSEC_PER_USEC >> 3)/20);
5127 	sock_hold(sk);
5128 	hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay),
5129 		      HRTIMER_MODE_REL_PINNED_SOFT);
5130 }
5131 
5132 static inline void tcp_ack_snd_check(struct sock *sk)
5133 {
5134 	if (!inet_csk_ack_scheduled(sk)) {
5135 		/* We sent a data segment already. */
5136 		return;
5137 	}
5138 	__tcp_ack_snd_check(sk, 1);
5139 }
5140 
5141 /*
5142  *	This routine is only called when we have urgent data
5143  *	signaled. Its the 'slow' part of tcp_urg. It could be
5144  *	moved inline now as tcp_urg is only called from one
5145  *	place. We handle URGent data wrong. We have to - as
5146  *	BSD still doesn't use the correction from RFC961.
5147  *	For 1003.1g we should support a new option TCP_STDURG to permit
5148  *	either form (or just set the sysctl tcp_stdurg).
5149  */
5150 
5151 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5152 {
5153 	struct tcp_sock *tp = tcp_sk(sk);
5154 	u32 ptr = ntohs(th->urg_ptr);
5155 
5156 	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5157 		ptr--;
5158 	ptr += ntohl(th->seq);
5159 
5160 	/* Ignore urgent data that we've already seen and read. */
5161 	if (after(tp->copied_seq, ptr))
5162 		return;
5163 
5164 	/* Do not replay urg ptr.
5165 	 *
5166 	 * NOTE: interesting situation not covered by specs.
5167 	 * Misbehaving sender may send urg ptr, pointing to segment,
5168 	 * which we already have in ofo queue. We are not able to fetch
5169 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5170 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5171 	 * situations. But it is worth to think about possibility of some
5172 	 * DoSes using some hypothetical application level deadlock.
5173 	 */
5174 	if (before(ptr, tp->rcv_nxt))
5175 		return;
5176 
5177 	/* Do we already have a newer (or duplicate) urgent pointer? */
5178 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5179 		return;
5180 
5181 	/* Tell the world about our new urgent pointer. */
5182 	sk_send_sigurg(sk);
5183 
5184 	/* We may be adding urgent data when the last byte read was
5185 	 * urgent. To do this requires some care. We cannot just ignore
5186 	 * tp->copied_seq since we would read the last urgent byte again
5187 	 * as data, nor can we alter copied_seq until this data arrives
5188 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5189 	 *
5190 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5191 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5192 	 * and expect that both A and B disappear from stream. This is _wrong_.
5193 	 * Though this happens in BSD with high probability, this is occasional.
5194 	 * Any application relying on this is buggy. Note also, that fix "works"
5195 	 * only in this artificial test. Insert some normal data between A and B and we will
5196 	 * decline of BSD again. Verdict: it is better to remove to trap
5197 	 * buggy users.
5198 	 */
5199 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5200 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5201 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5202 		tp->copied_seq++;
5203 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5204 			__skb_unlink(skb, &sk->sk_receive_queue);
5205 			__kfree_skb(skb);
5206 		}
5207 	}
5208 
5209 	tp->urg_data = TCP_URG_NOTYET;
5210 	tp->urg_seq = ptr;
5211 
5212 	/* Disable header prediction. */
5213 	tp->pred_flags = 0;
5214 }
5215 
5216 /* This is the 'fast' part of urgent handling. */
5217 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5218 {
5219 	struct tcp_sock *tp = tcp_sk(sk);
5220 
5221 	/* Check if we get a new urgent pointer - normally not. */
5222 	if (th->urg)
5223 		tcp_check_urg(sk, th);
5224 
5225 	/* Do we wait for any urgent data? - normally not... */
5226 	if (tp->urg_data == TCP_URG_NOTYET) {
5227 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5228 			  th->syn;
5229 
5230 		/* Is the urgent pointer pointing into this packet? */
5231 		if (ptr < skb->len) {
5232 			u8 tmp;
5233 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5234 				BUG();
5235 			tp->urg_data = TCP_URG_VALID | tmp;
5236 			if (!sock_flag(sk, SOCK_DEAD))
5237 				sk->sk_data_ready(sk);
5238 		}
5239 	}
5240 }
5241 
5242 /* Accept RST for rcv_nxt - 1 after a FIN.
5243  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5244  * FIN is sent followed by a RST packet. The RST is sent with the same
5245  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5246  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5247  * ACKs on the closed socket. In addition middleboxes can drop either the
5248  * challenge ACK or a subsequent RST.
5249  */
5250 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5251 {
5252 	struct tcp_sock *tp = tcp_sk(sk);
5253 
5254 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5255 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5256 					       TCPF_CLOSING));
5257 }
5258 
5259 /* Does PAWS and seqno based validation of an incoming segment, flags will
5260  * play significant role here.
5261  */
5262 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5263 				  const struct tcphdr *th, int syn_inerr)
5264 {
5265 	struct tcp_sock *tp = tcp_sk(sk);
5266 	bool rst_seq_match = false;
5267 
5268 	/* RFC1323: H1. Apply PAWS check first. */
5269 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5270 	    tp->rx_opt.saw_tstamp &&
5271 	    tcp_paws_discard(sk, skb)) {
5272 		if (!th->rst) {
5273 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5274 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5275 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5276 						  &tp->last_oow_ack_time))
5277 				tcp_send_dupack(sk, skb);
5278 			goto discard;
5279 		}
5280 		/* Reset is accepted even if it did not pass PAWS. */
5281 	}
5282 
5283 	/* Step 1: check sequence number */
5284 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5285 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5286 		 * (RST) segments are validated by checking their SEQ-fields."
5287 		 * And page 69: "If an incoming segment is not acceptable,
5288 		 * an acknowledgment should be sent in reply (unless the RST
5289 		 * bit is set, if so drop the segment and return)".
5290 		 */
5291 		if (!th->rst) {
5292 			if (th->syn)
5293 				goto syn_challenge;
5294 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5295 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5296 						  &tp->last_oow_ack_time))
5297 				tcp_send_dupack(sk, skb);
5298 		} else if (tcp_reset_check(sk, skb)) {
5299 			tcp_reset(sk);
5300 		}
5301 		goto discard;
5302 	}
5303 
5304 	/* Step 2: check RST bit */
5305 	if (th->rst) {
5306 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5307 		 * FIN and SACK too if available):
5308 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5309 		 * the right-most SACK block,
5310 		 * then
5311 		 *     RESET the connection
5312 		 * else
5313 		 *     Send a challenge ACK
5314 		 */
5315 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5316 		    tcp_reset_check(sk, skb)) {
5317 			rst_seq_match = true;
5318 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5319 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5320 			int max_sack = sp[0].end_seq;
5321 			int this_sack;
5322 
5323 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5324 			     ++this_sack) {
5325 				max_sack = after(sp[this_sack].end_seq,
5326 						 max_sack) ?
5327 					sp[this_sack].end_seq : max_sack;
5328 			}
5329 
5330 			if (TCP_SKB_CB(skb)->seq == max_sack)
5331 				rst_seq_match = true;
5332 		}
5333 
5334 		if (rst_seq_match)
5335 			tcp_reset(sk);
5336 		else {
5337 			/* Disable TFO if RST is out-of-order
5338 			 * and no data has been received
5339 			 * for current active TFO socket
5340 			 */
5341 			if (tp->syn_fastopen && !tp->data_segs_in &&
5342 			    sk->sk_state == TCP_ESTABLISHED)
5343 				tcp_fastopen_active_disable(sk);
5344 			tcp_send_challenge_ack(sk, skb);
5345 		}
5346 		goto discard;
5347 	}
5348 
5349 	/* step 3: check security and precedence [ignored] */
5350 
5351 	/* step 4: Check for a SYN
5352 	 * RFC 5961 4.2 : Send a challenge ack
5353 	 */
5354 	if (th->syn) {
5355 syn_challenge:
5356 		if (syn_inerr)
5357 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5358 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5359 		tcp_send_challenge_ack(sk, skb);
5360 		goto discard;
5361 	}
5362 
5363 	return true;
5364 
5365 discard:
5366 	tcp_drop(sk, skb);
5367 	return false;
5368 }
5369 
5370 /*
5371  *	TCP receive function for the ESTABLISHED state.
5372  *
5373  *	It is split into a fast path and a slow path. The fast path is
5374  * 	disabled when:
5375  *	- A zero window was announced from us - zero window probing
5376  *        is only handled properly in the slow path.
5377  *	- Out of order segments arrived.
5378  *	- Urgent data is expected.
5379  *	- There is no buffer space left
5380  *	- Unexpected TCP flags/window values/header lengths are received
5381  *	  (detected by checking the TCP header against pred_flags)
5382  *	- Data is sent in both directions. Fast path only supports pure senders
5383  *	  or pure receivers (this means either the sequence number or the ack
5384  *	  value must stay constant)
5385  *	- Unexpected TCP option.
5386  *
5387  *	When these conditions are not satisfied it drops into a standard
5388  *	receive procedure patterned after RFC793 to handle all cases.
5389  *	The first three cases are guaranteed by proper pred_flags setting,
5390  *	the rest is checked inline. Fast processing is turned on in
5391  *	tcp_data_queue when everything is OK.
5392  */
5393 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5394 			 const struct tcphdr *th)
5395 {
5396 	unsigned int len = skb->len;
5397 	struct tcp_sock *tp = tcp_sk(sk);
5398 
5399 	/* TCP congestion window tracking */
5400 	trace_tcp_probe(sk, skb);
5401 
5402 	tcp_mstamp_refresh(tp);
5403 	if (unlikely(!sk->sk_rx_dst))
5404 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5405 	/*
5406 	 *	Header prediction.
5407 	 *	The code loosely follows the one in the famous
5408 	 *	"30 instruction TCP receive" Van Jacobson mail.
5409 	 *
5410 	 *	Van's trick is to deposit buffers into socket queue
5411 	 *	on a device interrupt, to call tcp_recv function
5412 	 *	on the receive process context and checksum and copy
5413 	 *	the buffer to user space. smart...
5414 	 *
5415 	 *	Our current scheme is not silly either but we take the
5416 	 *	extra cost of the net_bh soft interrupt processing...
5417 	 *	We do checksum and copy also but from device to kernel.
5418 	 */
5419 
5420 	tp->rx_opt.saw_tstamp = 0;
5421 
5422 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5423 	 *	if header_prediction is to be made
5424 	 *	'S' will always be tp->tcp_header_len >> 2
5425 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5426 	 *  turn it off	(when there are holes in the receive
5427 	 *	 space for instance)
5428 	 *	PSH flag is ignored.
5429 	 */
5430 
5431 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5432 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5433 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5434 		int tcp_header_len = tp->tcp_header_len;
5435 
5436 		/* Timestamp header prediction: tcp_header_len
5437 		 * is automatically equal to th->doff*4 due to pred_flags
5438 		 * match.
5439 		 */
5440 
5441 		/* Check timestamp */
5442 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5443 			/* No? Slow path! */
5444 			if (!tcp_parse_aligned_timestamp(tp, th))
5445 				goto slow_path;
5446 
5447 			/* If PAWS failed, check it more carefully in slow path */
5448 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5449 				goto slow_path;
5450 
5451 			/* DO NOT update ts_recent here, if checksum fails
5452 			 * and timestamp was corrupted part, it will result
5453 			 * in a hung connection since we will drop all
5454 			 * future packets due to the PAWS test.
5455 			 */
5456 		}
5457 
5458 		if (len <= tcp_header_len) {
5459 			/* Bulk data transfer: sender */
5460 			if (len == tcp_header_len) {
5461 				/* Predicted packet is in window by definition.
5462 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5463 				 * Hence, check seq<=rcv_wup reduces to:
5464 				 */
5465 				if (tcp_header_len ==
5466 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5467 				    tp->rcv_nxt == tp->rcv_wup)
5468 					tcp_store_ts_recent(tp);
5469 
5470 				/* We know that such packets are checksummed
5471 				 * on entry.
5472 				 */
5473 				tcp_ack(sk, skb, 0);
5474 				__kfree_skb(skb);
5475 				tcp_data_snd_check(sk);
5476 				return;
5477 			} else { /* Header too small */
5478 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5479 				goto discard;
5480 			}
5481 		} else {
5482 			int eaten = 0;
5483 			bool fragstolen = false;
5484 
5485 			if (tcp_checksum_complete(skb))
5486 				goto csum_error;
5487 
5488 			if ((int)skb->truesize > sk->sk_forward_alloc)
5489 				goto step5;
5490 
5491 			/* Predicted packet is in window by definition.
5492 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5493 			 * Hence, check seq<=rcv_wup reduces to:
5494 			 */
5495 			if (tcp_header_len ==
5496 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5497 			    tp->rcv_nxt == tp->rcv_wup)
5498 				tcp_store_ts_recent(tp);
5499 
5500 			tcp_rcv_rtt_measure_ts(sk, skb);
5501 
5502 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5503 
5504 			/* Bulk data transfer: receiver */
5505 			eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5506 					      &fragstolen);
5507 
5508 			tcp_event_data_recv(sk, skb);
5509 
5510 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5511 				/* Well, only one small jumplet in fast path... */
5512 				tcp_ack(sk, skb, FLAG_DATA);
5513 				tcp_data_snd_check(sk);
5514 				if (!inet_csk_ack_scheduled(sk))
5515 					goto no_ack;
5516 			}
5517 
5518 			__tcp_ack_snd_check(sk, 0);
5519 no_ack:
5520 			if (eaten)
5521 				kfree_skb_partial(skb, fragstolen);
5522 			tcp_data_ready(sk);
5523 			return;
5524 		}
5525 	}
5526 
5527 slow_path:
5528 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5529 		goto csum_error;
5530 
5531 	if (!th->ack && !th->rst && !th->syn)
5532 		goto discard;
5533 
5534 	/*
5535 	 *	Standard slow path.
5536 	 */
5537 
5538 	if (!tcp_validate_incoming(sk, skb, th, 1))
5539 		return;
5540 
5541 step5:
5542 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5543 		goto discard;
5544 
5545 	tcp_rcv_rtt_measure_ts(sk, skb);
5546 
5547 	/* Process urgent data. */
5548 	tcp_urg(sk, skb, th);
5549 
5550 	/* step 7: process the segment text */
5551 	tcp_data_queue(sk, skb);
5552 
5553 	tcp_data_snd_check(sk);
5554 	tcp_ack_snd_check(sk);
5555 	return;
5556 
5557 csum_error:
5558 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5559 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5560 
5561 discard:
5562 	tcp_drop(sk, skb);
5563 }
5564 EXPORT_SYMBOL(tcp_rcv_established);
5565 
5566 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5567 {
5568 	struct tcp_sock *tp = tcp_sk(sk);
5569 	struct inet_connection_sock *icsk = inet_csk(sk);
5570 
5571 	tcp_set_state(sk, TCP_ESTABLISHED);
5572 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5573 
5574 	if (skb) {
5575 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5576 		security_inet_conn_established(sk, skb);
5577 	}
5578 
5579 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5580 
5581 	/* Prevent spurious tcp_cwnd_restart() on first data
5582 	 * packet.
5583 	 */
5584 	tp->lsndtime = tcp_jiffies32;
5585 
5586 	if (sock_flag(sk, SOCK_KEEPOPEN))
5587 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5588 
5589 	if (!tp->rx_opt.snd_wscale)
5590 		__tcp_fast_path_on(tp, tp->snd_wnd);
5591 	else
5592 		tp->pred_flags = 0;
5593 }
5594 
5595 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5596 				    struct tcp_fastopen_cookie *cookie)
5597 {
5598 	struct tcp_sock *tp = tcp_sk(sk);
5599 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5600 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5601 	bool syn_drop = false;
5602 
5603 	if (mss == tp->rx_opt.user_mss) {
5604 		struct tcp_options_received opt;
5605 
5606 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5607 		tcp_clear_options(&opt);
5608 		opt.user_mss = opt.mss_clamp = 0;
5609 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5610 		mss = opt.mss_clamp;
5611 	}
5612 
5613 	if (!tp->syn_fastopen) {
5614 		/* Ignore an unsolicited cookie */
5615 		cookie->len = -1;
5616 	} else if (tp->total_retrans) {
5617 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5618 		 * acknowledges data. Presumably the remote received only
5619 		 * the retransmitted (regular) SYNs: either the original
5620 		 * SYN-data or the corresponding SYN-ACK was dropped.
5621 		 */
5622 		syn_drop = (cookie->len < 0 && data);
5623 	} else if (cookie->len < 0 && !tp->syn_data) {
5624 		/* We requested a cookie but didn't get it. If we did not use
5625 		 * the (old) exp opt format then try so next time (try_exp=1).
5626 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5627 		 */
5628 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5629 	}
5630 
5631 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5632 
5633 	if (data) { /* Retransmit unacked data in SYN */
5634 		skb_rbtree_walk_from(data) {
5635 			if (__tcp_retransmit_skb(sk, data, 1))
5636 				break;
5637 		}
5638 		tcp_rearm_rto(sk);
5639 		NET_INC_STATS(sock_net(sk),
5640 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5641 		return true;
5642 	}
5643 	tp->syn_data_acked = tp->syn_data;
5644 	if (tp->syn_data_acked) {
5645 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5646 		/* SYN-data is counted as two separate packets in tcp_ack() */
5647 		if (tp->delivered > 1)
5648 			--tp->delivered;
5649 	}
5650 
5651 	tcp_fastopen_add_skb(sk, synack);
5652 
5653 	return false;
5654 }
5655 
5656 static void smc_check_reset_syn(struct tcp_sock *tp)
5657 {
5658 #if IS_ENABLED(CONFIG_SMC)
5659 	if (static_branch_unlikely(&tcp_have_smc)) {
5660 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
5661 			tp->syn_smc = 0;
5662 	}
5663 #endif
5664 }
5665 
5666 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5667 					 const struct tcphdr *th)
5668 {
5669 	struct inet_connection_sock *icsk = inet_csk(sk);
5670 	struct tcp_sock *tp = tcp_sk(sk);
5671 	struct tcp_fastopen_cookie foc = { .len = -1 };
5672 	int saved_clamp = tp->rx_opt.mss_clamp;
5673 	bool fastopen_fail;
5674 
5675 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5676 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5677 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5678 
5679 	if (th->ack) {
5680 		/* rfc793:
5681 		 * "If the state is SYN-SENT then
5682 		 *    first check the ACK bit
5683 		 *      If the ACK bit is set
5684 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5685 		 *        a reset (unless the RST bit is set, if so drop
5686 		 *        the segment and return)"
5687 		 */
5688 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5689 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5690 			goto reset_and_undo;
5691 
5692 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5693 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5694 			     tcp_time_stamp(tp))) {
5695 			NET_INC_STATS(sock_net(sk),
5696 					LINUX_MIB_PAWSACTIVEREJECTED);
5697 			goto reset_and_undo;
5698 		}
5699 
5700 		/* Now ACK is acceptable.
5701 		 *
5702 		 * "If the RST bit is set
5703 		 *    If the ACK was acceptable then signal the user "error:
5704 		 *    connection reset", drop the segment, enter CLOSED state,
5705 		 *    delete TCB, and return."
5706 		 */
5707 
5708 		if (th->rst) {
5709 			tcp_reset(sk);
5710 			goto discard;
5711 		}
5712 
5713 		/* rfc793:
5714 		 *   "fifth, if neither of the SYN or RST bits is set then
5715 		 *    drop the segment and return."
5716 		 *
5717 		 *    See note below!
5718 		 *                                        --ANK(990513)
5719 		 */
5720 		if (!th->syn)
5721 			goto discard_and_undo;
5722 
5723 		/* rfc793:
5724 		 *   "If the SYN bit is on ...
5725 		 *    are acceptable then ...
5726 		 *    (our SYN has been ACKed), change the connection
5727 		 *    state to ESTABLISHED..."
5728 		 */
5729 
5730 		tcp_ecn_rcv_synack(tp, th);
5731 
5732 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5733 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5734 
5735 		/* Ok.. it's good. Set up sequence numbers and
5736 		 * move to established.
5737 		 */
5738 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5739 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5740 
5741 		/* RFC1323: The window in SYN & SYN/ACK segments is
5742 		 * never scaled.
5743 		 */
5744 		tp->snd_wnd = ntohs(th->window);
5745 
5746 		if (!tp->rx_opt.wscale_ok) {
5747 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5748 			tp->window_clamp = min(tp->window_clamp, 65535U);
5749 		}
5750 
5751 		if (tp->rx_opt.saw_tstamp) {
5752 			tp->rx_opt.tstamp_ok	   = 1;
5753 			tp->tcp_header_len =
5754 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5755 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5756 			tcp_store_ts_recent(tp);
5757 		} else {
5758 			tp->tcp_header_len = sizeof(struct tcphdr);
5759 		}
5760 
5761 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5762 		tcp_initialize_rcv_mss(sk);
5763 
5764 		/* Remember, tcp_poll() does not lock socket!
5765 		 * Change state from SYN-SENT only after copied_seq
5766 		 * is initialized. */
5767 		tp->copied_seq = tp->rcv_nxt;
5768 
5769 		smc_check_reset_syn(tp);
5770 
5771 		smp_mb();
5772 
5773 		tcp_finish_connect(sk, skb);
5774 
5775 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5776 				tcp_rcv_fastopen_synack(sk, skb, &foc);
5777 
5778 		if (!sock_flag(sk, SOCK_DEAD)) {
5779 			sk->sk_state_change(sk);
5780 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5781 		}
5782 		if (fastopen_fail)
5783 			return -1;
5784 		if (sk->sk_write_pending ||
5785 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5786 		    icsk->icsk_ack.pingpong) {
5787 			/* Save one ACK. Data will be ready after
5788 			 * several ticks, if write_pending is set.
5789 			 *
5790 			 * It may be deleted, but with this feature tcpdumps
5791 			 * look so _wonderfully_ clever, that I was not able
5792 			 * to stand against the temptation 8)     --ANK
5793 			 */
5794 			inet_csk_schedule_ack(sk);
5795 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5796 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5797 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5798 
5799 discard:
5800 			tcp_drop(sk, skb);
5801 			return 0;
5802 		} else {
5803 			tcp_send_ack(sk);
5804 		}
5805 		return -1;
5806 	}
5807 
5808 	/* No ACK in the segment */
5809 
5810 	if (th->rst) {
5811 		/* rfc793:
5812 		 * "If the RST bit is set
5813 		 *
5814 		 *      Otherwise (no ACK) drop the segment and return."
5815 		 */
5816 
5817 		goto discard_and_undo;
5818 	}
5819 
5820 	/* PAWS check. */
5821 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5822 	    tcp_paws_reject(&tp->rx_opt, 0))
5823 		goto discard_and_undo;
5824 
5825 	if (th->syn) {
5826 		/* We see SYN without ACK. It is attempt of
5827 		 * simultaneous connect with crossed SYNs.
5828 		 * Particularly, it can be connect to self.
5829 		 */
5830 		tcp_set_state(sk, TCP_SYN_RECV);
5831 
5832 		if (tp->rx_opt.saw_tstamp) {
5833 			tp->rx_opt.tstamp_ok = 1;
5834 			tcp_store_ts_recent(tp);
5835 			tp->tcp_header_len =
5836 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5837 		} else {
5838 			tp->tcp_header_len = sizeof(struct tcphdr);
5839 		}
5840 
5841 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5842 		tp->copied_seq = tp->rcv_nxt;
5843 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5844 
5845 		/* RFC1323: The window in SYN & SYN/ACK segments is
5846 		 * never scaled.
5847 		 */
5848 		tp->snd_wnd    = ntohs(th->window);
5849 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5850 		tp->max_window = tp->snd_wnd;
5851 
5852 		tcp_ecn_rcv_syn(tp, th);
5853 
5854 		tcp_mtup_init(sk);
5855 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5856 		tcp_initialize_rcv_mss(sk);
5857 
5858 		tcp_send_synack(sk);
5859 #if 0
5860 		/* Note, we could accept data and URG from this segment.
5861 		 * There are no obstacles to make this (except that we must
5862 		 * either change tcp_recvmsg() to prevent it from returning data
5863 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5864 		 *
5865 		 * However, if we ignore data in ACKless segments sometimes,
5866 		 * we have no reasons to accept it sometimes.
5867 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5868 		 * is not flawless. So, discard packet for sanity.
5869 		 * Uncomment this return to process the data.
5870 		 */
5871 		return -1;
5872 #else
5873 		goto discard;
5874 #endif
5875 	}
5876 	/* "fifth, if neither of the SYN or RST bits is set then
5877 	 * drop the segment and return."
5878 	 */
5879 
5880 discard_and_undo:
5881 	tcp_clear_options(&tp->rx_opt);
5882 	tp->rx_opt.mss_clamp = saved_clamp;
5883 	goto discard;
5884 
5885 reset_and_undo:
5886 	tcp_clear_options(&tp->rx_opt);
5887 	tp->rx_opt.mss_clamp = saved_clamp;
5888 	return 1;
5889 }
5890 
5891 /*
5892  *	This function implements the receiving procedure of RFC 793 for
5893  *	all states except ESTABLISHED and TIME_WAIT.
5894  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5895  *	address independent.
5896  */
5897 
5898 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5899 {
5900 	struct tcp_sock *tp = tcp_sk(sk);
5901 	struct inet_connection_sock *icsk = inet_csk(sk);
5902 	const struct tcphdr *th = tcp_hdr(skb);
5903 	struct request_sock *req;
5904 	int queued = 0;
5905 	bool acceptable;
5906 
5907 	switch (sk->sk_state) {
5908 	case TCP_CLOSE:
5909 		goto discard;
5910 
5911 	case TCP_LISTEN:
5912 		if (th->ack)
5913 			return 1;
5914 
5915 		if (th->rst)
5916 			goto discard;
5917 
5918 		if (th->syn) {
5919 			if (th->fin)
5920 				goto discard;
5921 			/* It is possible that we process SYN packets from backlog,
5922 			 * so we need to make sure to disable BH right there.
5923 			 */
5924 			local_bh_disable();
5925 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
5926 			local_bh_enable();
5927 
5928 			if (!acceptable)
5929 				return 1;
5930 			consume_skb(skb);
5931 			return 0;
5932 		}
5933 		goto discard;
5934 
5935 	case TCP_SYN_SENT:
5936 		tp->rx_opt.saw_tstamp = 0;
5937 		tcp_mstamp_refresh(tp);
5938 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
5939 		if (queued >= 0)
5940 			return queued;
5941 
5942 		/* Do step6 onward by hand. */
5943 		tcp_urg(sk, skb, th);
5944 		__kfree_skb(skb);
5945 		tcp_data_snd_check(sk);
5946 		return 0;
5947 	}
5948 
5949 	tcp_mstamp_refresh(tp);
5950 	tp->rx_opt.saw_tstamp = 0;
5951 	req = tp->fastopen_rsk;
5952 	if (req) {
5953 		bool req_stolen;
5954 
5955 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5956 		    sk->sk_state != TCP_FIN_WAIT1);
5957 
5958 		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
5959 			goto discard;
5960 	}
5961 
5962 	if (!th->ack && !th->rst && !th->syn)
5963 		goto discard;
5964 
5965 	if (!tcp_validate_incoming(sk, skb, th, 0))
5966 		return 0;
5967 
5968 	/* step 5: check the ACK field */
5969 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5970 				      FLAG_UPDATE_TS_RECENT |
5971 				      FLAG_NO_CHALLENGE_ACK) > 0;
5972 
5973 	if (!acceptable) {
5974 		if (sk->sk_state == TCP_SYN_RECV)
5975 			return 1;	/* send one RST */
5976 		tcp_send_challenge_ack(sk, skb);
5977 		goto discard;
5978 	}
5979 	switch (sk->sk_state) {
5980 	case TCP_SYN_RECV:
5981 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
5982 		if (!tp->srtt_us)
5983 			tcp_synack_rtt_meas(sk, req);
5984 
5985 		/* Once we leave TCP_SYN_RECV, we no longer need req
5986 		 * so release it.
5987 		 */
5988 		if (req) {
5989 			inet_csk(sk)->icsk_retransmits = 0;
5990 			reqsk_fastopen_remove(sk, req, false);
5991 			/* Re-arm the timer because data may have been sent out.
5992 			 * This is similar to the regular data transmission case
5993 			 * when new data has just been ack'ed.
5994 			 *
5995 			 * (TFO) - we could try to be more aggressive and
5996 			 * retransmitting any data sooner based on when they
5997 			 * are sent out.
5998 			 */
5999 			tcp_rearm_rto(sk);
6000 		} else {
6001 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
6002 			tp->copied_seq = tp->rcv_nxt;
6003 		}
6004 		smp_mb();
6005 		tcp_set_state(sk, TCP_ESTABLISHED);
6006 		sk->sk_state_change(sk);
6007 
6008 		/* Note, that this wakeup is only for marginal crossed SYN case.
6009 		 * Passively open sockets are not waked up, because
6010 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6011 		 */
6012 		if (sk->sk_socket)
6013 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6014 
6015 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6016 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6017 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6018 
6019 		if (tp->rx_opt.tstamp_ok)
6020 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6021 
6022 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6023 			tcp_update_pacing_rate(sk);
6024 
6025 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6026 		tp->lsndtime = tcp_jiffies32;
6027 
6028 		tcp_initialize_rcv_mss(sk);
6029 		tcp_fast_path_on(tp);
6030 		break;
6031 
6032 	case TCP_FIN_WAIT1: {
6033 		int tmo;
6034 
6035 		/* If we enter the TCP_FIN_WAIT1 state and we are a
6036 		 * Fast Open socket and this is the first acceptable
6037 		 * ACK we have received, this would have acknowledged
6038 		 * our SYNACK so stop the SYNACK timer.
6039 		 */
6040 		if (req) {
6041 			/* We no longer need the request sock. */
6042 			reqsk_fastopen_remove(sk, req, false);
6043 			tcp_rearm_rto(sk);
6044 		}
6045 		if (tp->snd_una != tp->write_seq)
6046 			break;
6047 
6048 		tcp_set_state(sk, TCP_FIN_WAIT2);
6049 		sk->sk_shutdown |= SEND_SHUTDOWN;
6050 
6051 		sk_dst_confirm(sk);
6052 
6053 		if (!sock_flag(sk, SOCK_DEAD)) {
6054 			/* Wake up lingering close() */
6055 			sk->sk_state_change(sk);
6056 			break;
6057 		}
6058 
6059 		if (tp->linger2 < 0) {
6060 			tcp_done(sk);
6061 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6062 			return 1;
6063 		}
6064 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6065 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6066 			/* Receive out of order FIN after close() */
6067 			if (tp->syn_fastopen && th->fin)
6068 				tcp_fastopen_active_disable(sk);
6069 			tcp_done(sk);
6070 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6071 			return 1;
6072 		}
6073 
6074 		tmo = tcp_fin_time(sk);
6075 		if (tmo > TCP_TIMEWAIT_LEN) {
6076 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6077 		} else if (th->fin || sock_owned_by_user(sk)) {
6078 			/* Bad case. We could lose such FIN otherwise.
6079 			 * It is not a big problem, but it looks confusing
6080 			 * and not so rare event. We still can lose it now,
6081 			 * if it spins in bh_lock_sock(), but it is really
6082 			 * marginal case.
6083 			 */
6084 			inet_csk_reset_keepalive_timer(sk, tmo);
6085 		} else {
6086 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6087 			goto discard;
6088 		}
6089 		break;
6090 	}
6091 
6092 	case TCP_CLOSING:
6093 		if (tp->snd_una == tp->write_seq) {
6094 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6095 			goto discard;
6096 		}
6097 		break;
6098 
6099 	case TCP_LAST_ACK:
6100 		if (tp->snd_una == tp->write_seq) {
6101 			tcp_update_metrics(sk);
6102 			tcp_done(sk);
6103 			goto discard;
6104 		}
6105 		break;
6106 	}
6107 
6108 	/* step 6: check the URG bit */
6109 	tcp_urg(sk, skb, th);
6110 
6111 	/* step 7: process the segment text */
6112 	switch (sk->sk_state) {
6113 	case TCP_CLOSE_WAIT:
6114 	case TCP_CLOSING:
6115 	case TCP_LAST_ACK:
6116 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6117 			break;
6118 		/* fall through */
6119 	case TCP_FIN_WAIT1:
6120 	case TCP_FIN_WAIT2:
6121 		/* RFC 793 says to queue data in these states,
6122 		 * RFC 1122 says we MUST send a reset.
6123 		 * BSD 4.4 also does reset.
6124 		 */
6125 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6126 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6127 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6128 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6129 				tcp_reset(sk);
6130 				return 1;
6131 			}
6132 		}
6133 		/* Fall through */
6134 	case TCP_ESTABLISHED:
6135 		tcp_data_queue(sk, skb);
6136 		queued = 1;
6137 		break;
6138 	}
6139 
6140 	/* tcp_data could move socket to TIME-WAIT */
6141 	if (sk->sk_state != TCP_CLOSE) {
6142 		tcp_data_snd_check(sk);
6143 		tcp_ack_snd_check(sk);
6144 	}
6145 
6146 	if (!queued) {
6147 discard:
6148 		tcp_drop(sk, skb);
6149 	}
6150 	return 0;
6151 }
6152 EXPORT_SYMBOL(tcp_rcv_state_process);
6153 
6154 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6155 {
6156 	struct inet_request_sock *ireq = inet_rsk(req);
6157 
6158 	if (family == AF_INET)
6159 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6160 				    &ireq->ir_rmt_addr, port);
6161 #if IS_ENABLED(CONFIG_IPV6)
6162 	else if (family == AF_INET6)
6163 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6164 				    &ireq->ir_v6_rmt_addr, port);
6165 #endif
6166 }
6167 
6168 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6169  *
6170  * If we receive a SYN packet with these bits set, it means a
6171  * network is playing bad games with TOS bits. In order to
6172  * avoid possible false congestion notifications, we disable
6173  * TCP ECN negotiation.
6174  *
6175  * Exception: tcp_ca wants ECN. This is required for DCTCP
6176  * congestion control: Linux DCTCP asserts ECT on all packets,
6177  * including SYN, which is most optimal solution; however,
6178  * others, such as FreeBSD do not.
6179  */
6180 static void tcp_ecn_create_request(struct request_sock *req,
6181 				   const struct sk_buff *skb,
6182 				   const struct sock *listen_sk,
6183 				   const struct dst_entry *dst)
6184 {
6185 	const struct tcphdr *th = tcp_hdr(skb);
6186 	const struct net *net = sock_net(listen_sk);
6187 	bool th_ecn = th->ece && th->cwr;
6188 	bool ect, ecn_ok;
6189 	u32 ecn_ok_dst;
6190 
6191 	if (!th_ecn)
6192 		return;
6193 
6194 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6195 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6196 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6197 
6198 	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6199 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6200 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6201 		inet_rsk(req)->ecn_ok = 1;
6202 }
6203 
6204 static void tcp_openreq_init(struct request_sock *req,
6205 			     const struct tcp_options_received *rx_opt,
6206 			     struct sk_buff *skb, const struct sock *sk)
6207 {
6208 	struct inet_request_sock *ireq = inet_rsk(req);
6209 
6210 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6211 	req->cookie_ts = 0;
6212 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6213 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6214 	tcp_rsk(req)->snt_synack = tcp_clock_us();
6215 	tcp_rsk(req)->last_oow_ack_time = 0;
6216 	req->mss = rx_opt->mss_clamp;
6217 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6218 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6219 	ireq->sack_ok = rx_opt->sack_ok;
6220 	ireq->snd_wscale = rx_opt->snd_wscale;
6221 	ireq->wscale_ok = rx_opt->wscale_ok;
6222 	ireq->acked = 0;
6223 	ireq->ecn_ok = 0;
6224 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6225 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6226 	ireq->ir_mark = inet_request_mark(sk, skb);
6227 #if IS_ENABLED(CONFIG_SMC)
6228 	ireq->smc_ok = rx_opt->smc_ok;
6229 #endif
6230 }
6231 
6232 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6233 				      struct sock *sk_listener,
6234 				      bool attach_listener)
6235 {
6236 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6237 					       attach_listener);
6238 
6239 	if (req) {
6240 		struct inet_request_sock *ireq = inet_rsk(req);
6241 
6242 		ireq->ireq_opt = NULL;
6243 #if IS_ENABLED(CONFIG_IPV6)
6244 		ireq->pktopts = NULL;
6245 #endif
6246 		atomic64_set(&ireq->ir_cookie, 0);
6247 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6248 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6249 		ireq->ireq_family = sk_listener->sk_family;
6250 	}
6251 
6252 	return req;
6253 }
6254 EXPORT_SYMBOL(inet_reqsk_alloc);
6255 
6256 /*
6257  * Return true if a syncookie should be sent
6258  */
6259 static bool tcp_syn_flood_action(const struct sock *sk,
6260 				 const struct sk_buff *skb,
6261 				 const char *proto)
6262 {
6263 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6264 	const char *msg = "Dropping request";
6265 	bool want_cookie = false;
6266 	struct net *net = sock_net(sk);
6267 
6268 #ifdef CONFIG_SYN_COOKIES
6269 	if (net->ipv4.sysctl_tcp_syncookies) {
6270 		msg = "Sending cookies";
6271 		want_cookie = true;
6272 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6273 	} else
6274 #endif
6275 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6276 
6277 	if (!queue->synflood_warned &&
6278 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6279 	    xchg(&queue->synflood_warned, 1) == 0)
6280 		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6281 			proto, ntohs(tcp_hdr(skb)->dest), msg);
6282 
6283 	return want_cookie;
6284 }
6285 
6286 static void tcp_reqsk_record_syn(const struct sock *sk,
6287 				 struct request_sock *req,
6288 				 const struct sk_buff *skb)
6289 {
6290 	if (tcp_sk(sk)->save_syn) {
6291 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6292 		u32 *copy;
6293 
6294 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6295 		if (copy) {
6296 			copy[0] = len;
6297 			memcpy(&copy[1], skb_network_header(skb), len);
6298 			req->saved_syn = copy;
6299 		}
6300 	}
6301 }
6302 
6303 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6304 		     const struct tcp_request_sock_ops *af_ops,
6305 		     struct sock *sk, struct sk_buff *skb)
6306 {
6307 	struct tcp_fastopen_cookie foc = { .len = -1 };
6308 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6309 	struct tcp_options_received tmp_opt;
6310 	struct tcp_sock *tp = tcp_sk(sk);
6311 	struct net *net = sock_net(sk);
6312 	struct sock *fastopen_sk = NULL;
6313 	struct request_sock *req;
6314 	bool want_cookie = false;
6315 	struct dst_entry *dst;
6316 	struct flowi fl;
6317 
6318 	/* TW buckets are converted to open requests without
6319 	 * limitations, they conserve resources and peer is
6320 	 * evidently real one.
6321 	 */
6322 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6323 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6324 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6325 		if (!want_cookie)
6326 			goto drop;
6327 	}
6328 
6329 	if (sk_acceptq_is_full(sk)) {
6330 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6331 		goto drop;
6332 	}
6333 
6334 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6335 	if (!req)
6336 		goto drop;
6337 
6338 	tcp_rsk(req)->af_specific = af_ops;
6339 	tcp_rsk(req)->ts_off = 0;
6340 
6341 	tcp_clear_options(&tmp_opt);
6342 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6343 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6344 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6345 			  want_cookie ? NULL : &foc);
6346 
6347 	if (want_cookie && !tmp_opt.saw_tstamp)
6348 		tcp_clear_options(&tmp_opt);
6349 
6350 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6351 		tmp_opt.smc_ok = 0;
6352 
6353 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6354 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6355 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6356 
6357 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6358 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6359 
6360 	af_ops->init_req(req, sk, skb);
6361 
6362 	if (security_inet_conn_request(sk, skb, req))
6363 		goto drop_and_free;
6364 
6365 	if (tmp_opt.tstamp_ok)
6366 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6367 
6368 	dst = af_ops->route_req(sk, &fl, req);
6369 	if (!dst)
6370 		goto drop_and_free;
6371 
6372 	if (!want_cookie && !isn) {
6373 		/* Kill the following clause, if you dislike this way. */
6374 		if (!net->ipv4.sysctl_tcp_syncookies &&
6375 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6376 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6377 		    !tcp_peer_is_proven(req, dst)) {
6378 			/* Without syncookies last quarter of
6379 			 * backlog is filled with destinations,
6380 			 * proven to be alive.
6381 			 * It means that we continue to communicate
6382 			 * to destinations, already remembered
6383 			 * to the moment of synflood.
6384 			 */
6385 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6386 				    rsk_ops->family);
6387 			goto drop_and_release;
6388 		}
6389 
6390 		isn = af_ops->init_seq(skb);
6391 	}
6392 
6393 	tcp_ecn_create_request(req, skb, sk, dst);
6394 
6395 	if (want_cookie) {
6396 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6397 		req->cookie_ts = tmp_opt.tstamp_ok;
6398 		if (!tmp_opt.tstamp_ok)
6399 			inet_rsk(req)->ecn_ok = 0;
6400 	}
6401 
6402 	tcp_rsk(req)->snt_isn = isn;
6403 	tcp_rsk(req)->txhash = net_tx_rndhash();
6404 	tcp_openreq_init_rwin(req, sk, dst);
6405 	if (!want_cookie) {
6406 		tcp_reqsk_record_syn(sk, req, skb);
6407 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6408 	}
6409 	if (fastopen_sk) {
6410 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6411 				    &foc, TCP_SYNACK_FASTOPEN);
6412 		/* Add the child socket directly into the accept queue */
6413 		inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6414 		sk->sk_data_ready(sk);
6415 		bh_unlock_sock(fastopen_sk);
6416 		sock_put(fastopen_sk);
6417 	} else {
6418 		tcp_rsk(req)->tfo_listener = false;
6419 		if (!want_cookie)
6420 			inet_csk_reqsk_queue_hash_add(sk, req,
6421 				tcp_timeout_init((struct sock *)req));
6422 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6423 				    !want_cookie ? TCP_SYNACK_NORMAL :
6424 						   TCP_SYNACK_COOKIE);
6425 		if (want_cookie) {
6426 			reqsk_free(req);
6427 			return 0;
6428 		}
6429 	}
6430 	reqsk_put(req);
6431 	return 0;
6432 
6433 drop_and_release:
6434 	dst_release(dst);
6435 drop_and_free:
6436 	reqsk_free(req);
6437 drop:
6438 	tcp_listendrop(sk);
6439 	return 0;
6440 }
6441 EXPORT_SYMBOL(tcp_conn_request);
6442