1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #define pr_fmt(fmt) "TCP: " fmt 65 66 #include <linux/mm.h> 67 #include <linux/slab.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <linux/kernel.h> 71 #include <net/dst.h> 72 #include <net/tcp.h> 73 #include <net/inet_common.h> 74 #include <linux/ipsec.h> 75 #include <asm/unaligned.h> 76 #include <net/netdma.h> 77 78 int sysctl_tcp_timestamps __read_mostly = 1; 79 int sysctl_tcp_window_scaling __read_mostly = 1; 80 int sysctl_tcp_sack __read_mostly = 1; 81 int sysctl_tcp_fack __read_mostly = 1; 82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; 83 EXPORT_SYMBOL(sysctl_tcp_reordering); 84 int sysctl_tcp_ecn __read_mostly = 2; 85 EXPORT_SYMBOL(sysctl_tcp_ecn); 86 int sysctl_tcp_dsack __read_mostly = 1; 87 int sysctl_tcp_app_win __read_mostly = 31; 88 int sysctl_tcp_adv_win_scale __read_mostly = 1; 89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 90 91 int sysctl_tcp_stdurg __read_mostly; 92 int sysctl_tcp_rfc1337 __read_mostly; 93 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 94 int sysctl_tcp_frto __read_mostly = 2; 95 int sysctl_tcp_frto_response __read_mostly; 96 int sysctl_tcp_nometrics_save __read_mostly; 97 98 int sysctl_tcp_thin_dupack __read_mostly; 99 100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 101 int sysctl_tcp_abc __read_mostly; 102 103 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 104 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 105 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 106 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 107 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 108 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 109 #define FLAG_ECE 0x40 /* ECE in this ACK */ 110 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 111 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */ 112 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 113 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 114 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */ 115 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 116 117 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 118 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 119 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 120 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 121 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED) 122 123 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 124 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 125 126 /* Adapt the MSS value used to make delayed ack decision to the 127 * real world. 128 */ 129 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 130 { 131 struct inet_connection_sock *icsk = inet_csk(sk); 132 const unsigned int lss = icsk->icsk_ack.last_seg_size; 133 unsigned int len; 134 135 icsk->icsk_ack.last_seg_size = 0; 136 137 /* skb->len may jitter because of SACKs, even if peer 138 * sends good full-sized frames. 139 */ 140 len = skb_shinfo(skb)->gso_size ? : skb->len; 141 if (len >= icsk->icsk_ack.rcv_mss) { 142 icsk->icsk_ack.rcv_mss = len; 143 } else { 144 /* Otherwise, we make more careful check taking into account, 145 * that SACKs block is variable. 146 * 147 * "len" is invariant segment length, including TCP header. 148 */ 149 len += skb->data - skb_transport_header(skb); 150 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 151 /* If PSH is not set, packet should be 152 * full sized, provided peer TCP is not badly broken. 153 * This observation (if it is correct 8)) allows 154 * to handle super-low mtu links fairly. 155 */ 156 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 157 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 158 /* Subtract also invariant (if peer is RFC compliant), 159 * tcp header plus fixed timestamp option length. 160 * Resulting "len" is MSS free of SACK jitter. 161 */ 162 len -= tcp_sk(sk)->tcp_header_len; 163 icsk->icsk_ack.last_seg_size = len; 164 if (len == lss) { 165 icsk->icsk_ack.rcv_mss = len; 166 return; 167 } 168 } 169 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 170 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 171 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 172 } 173 } 174 175 static void tcp_incr_quickack(struct sock *sk) 176 { 177 struct inet_connection_sock *icsk = inet_csk(sk); 178 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 179 180 if (quickacks == 0) 181 quickacks = 2; 182 if (quickacks > icsk->icsk_ack.quick) 183 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 184 } 185 186 static void tcp_enter_quickack_mode(struct sock *sk) 187 { 188 struct inet_connection_sock *icsk = inet_csk(sk); 189 tcp_incr_quickack(sk); 190 icsk->icsk_ack.pingpong = 0; 191 icsk->icsk_ack.ato = TCP_ATO_MIN; 192 } 193 194 /* Send ACKs quickly, if "quick" count is not exhausted 195 * and the session is not interactive. 196 */ 197 198 static inline int tcp_in_quickack_mode(const struct sock *sk) 199 { 200 const struct inet_connection_sock *icsk = inet_csk(sk); 201 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 202 } 203 204 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp) 205 { 206 if (tp->ecn_flags & TCP_ECN_OK) 207 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 208 } 209 210 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 211 { 212 if (tcp_hdr(skb)->cwr) 213 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 214 } 215 216 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp) 217 { 218 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 219 } 220 221 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 222 { 223 if (!(tp->ecn_flags & TCP_ECN_OK)) 224 return; 225 226 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 227 case INET_ECN_NOT_ECT: 228 /* Funny extension: if ECT is not set on a segment, 229 * and we already seen ECT on a previous segment, 230 * it is probably a retransmit. 231 */ 232 if (tp->ecn_flags & TCP_ECN_SEEN) 233 tcp_enter_quickack_mode((struct sock *)tp); 234 break; 235 case INET_ECN_CE: 236 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 237 /* fallinto */ 238 default: 239 tp->ecn_flags |= TCP_ECN_SEEN; 240 } 241 } 242 243 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 244 { 245 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 246 tp->ecn_flags &= ~TCP_ECN_OK; 247 } 248 249 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 250 { 251 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 252 tp->ecn_flags &= ~TCP_ECN_OK; 253 } 254 255 static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 256 { 257 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 258 return 1; 259 return 0; 260 } 261 262 /* Buffer size and advertised window tuning. 263 * 264 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 265 */ 266 267 static void tcp_fixup_sndbuf(struct sock *sk) 268 { 269 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER); 270 271 sndmem *= TCP_INIT_CWND; 272 if (sk->sk_sndbuf < sndmem) 273 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 274 } 275 276 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 277 * 278 * All tcp_full_space() is split to two parts: "network" buffer, allocated 279 * forward and advertised in receiver window (tp->rcv_wnd) and 280 * "application buffer", required to isolate scheduling/application 281 * latencies from network. 282 * window_clamp is maximal advertised window. It can be less than 283 * tcp_full_space(), in this case tcp_full_space() - window_clamp 284 * is reserved for "application" buffer. The less window_clamp is 285 * the smoother our behaviour from viewpoint of network, but the lower 286 * throughput and the higher sensitivity of the connection to losses. 8) 287 * 288 * rcv_ssthresh is more strict window_clamp used at "slow start" 289 * phase to predict further behaviour of this connection. 290 * It is used for two goals: 291 * - to enforce header prediction at sender, even when application 292 * requires some significant "application buffer". It is check #1. 293 * - to prevent pruning of receive queue because of misprediction 294 * of receiver window. Check #2. 295 * 296 * The scheme does not work when sender sends good segments opening 297 * window and then starts to feed us spaghetti. But it should work 298 * in common situations. Otherwise, we have to rely on queue collapsing. 299 */ 300 301 /* Slow part of check#2. */ 302 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 303 { 304 struct tcp_sock *tp = tcp_sk(sk); 305 /* Optimize this! */ 306 int truesize = tcp_win_from_space(skb->truesize) >> 1; 307 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 308 309 while (tp->rcv_ssthresh <= window) { 310 if (truesize <= skb->len) 311 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 312 313 truesize >>= 1; 314 window >>= 1; 315 } 316 return 0; 317 } 318 319 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 320 { 321 struct tcp_sock *tp = tcp_sk(sk); 322 323 /* Check #1 */ 324 if (tp->rcv_ssthresh < tp->window_clamp && 325 (int)tp->rcv_ssthresh < tcp_space(sk) && 326 !sk_under_memory_pressure(sk)) { 327 int incr; 328 329 /* Check #2. Increase window, if skb with such overhead 330 * will fit to rcvbuf in future. 331 */ 332 if (tcp_win_from_space(skb->truesize) <= skb->len) 333 incr = 2 * tp->advmss; 334 else 335 incr = __tcp_grow_window(sk, skb); 336 337 if (incr) { 338 incr = max_t(int, incr, 2 * skb->len); 339 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 340 tp->window_clamp); 341 inet_csk(sk)->icsk_ack.quick |= 1; 342 } 343 } 344 } 345 346 /* 3. Tuning rcvbuf, when connection enters established state. */ 347 348 static void tcp_fixup_rcvbuf(struct sock *sk) 349 { 350 u32 mss = tcp_sk(sk)->advmss; 351 u32 icwnd = TCP_DEFAULT_INIT_RCVWND; 352 int rcvmem; 353 354 /* Limit to 10 segments if mss <= 1460, 355 * or 14600/mss segments, with a minimum of two segments. 356 */ 357 if (mss > 1460) 358 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2); 359 360 rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER); 361 while (tcp_win_from_space(rcvmem) < mss) 362 rcvmem += 128; 363 364 rcvmem *= icwnd; 365 366 if (sk->sk_rcvbuf < rcvmem) 367 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); 368 } 369 370 /* 4. Try to fixup all. It is made immediately after connection enters 371 * established state. 372 */ 373 static void tcp_init_buffer_space(struct sock *sk) 374 { 375 struct tcp_sock *tp = tcp_sk(sk); 376 int maxwin; 377 378 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 379 tcp_fixup_rcvbuf(sk); 380 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 381 tcp_fixup_sndbuf(sk); 382 383 tp->rcvq_space.space = tp->rcv_wnd; 384 385 maxwin = tcp_full_space(sk); 386 387 if (tp->window_clamp >= maxwin) { 388 tp->window_clamp = maxwin; 389 390 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 391 tp->window_clamp = max(maxwin - 392 (maxwin >> sysctl_tcp_app_win), 393 4 * tp->advmss); 394 } 395 396 /* Force reservation of one segment. */ 397 if (sysctl_tcp_app_win && 398 tp->window_clamp > 2 * tp->advmss && 399 tp->window_clamp + tp->advmss > maxwin) 400 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 401 402 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 403 tp->snd_cwnd_stamp = tcp_time_stamp; 404 } 405 406 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 407 static void tcp_clamp_window(struct sock *sk) 408 { 409 struct tcp_sock *tp = tcp_sk(sk); 410 struct inet_connection_sock *icsk = inet_csk(sk); 411 412 icsk->icsk_ack.quick = 0; 413 414 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 415 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 416 !sk_under_memory_pressure(sk) && 417 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 418 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 419 sysctl_tcp_rmem[2]); 420 } 421 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 422 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 423 } 424 425 /* Initialize RCV_MSS value. 426 * RCV_MSS is an our guess about MSS used by the peer. 427 * We haven't any direct information about the MSS. 428 * It's better to underestimate the RCV_MSS rather than overestimate. 429 * Overestimations make us ACKing less frequently than needed. 430 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 431 */ 432 void tcp_initialize_rcv_mss(struct sock *sk) 433 { 434 const struct tcp_sock *tp = tcp_sk(sk); 435 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 436 437 hint = min(hint, tp->rcv_wnd / 2); 438 hint = min(hint, TCP_MSS_DEFAULT); 439 hint = max(hint, TCP_MIN_MSS); 440 441 inet_csk(sk)->icsk_ack.rcv_mss = hint; 442 } 443 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 444 445 /* Receiver "autotuning" code. 446 * 447 * The algorithm for RTT estimation w/o timestamps is based on 448 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 449 * <http://public.lanl.gov/radiant/pubs.html#DRS> 450 * 451 * More detail on this code can be found at 452 * <http://staff.psc.edu/jheffner/>, 453 * though this reference is out of date. A new paper 454 * is pending. 455 */ 456 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 457 { 458 u32 new_sample = tp->rcv_rtt_est.rtt; 459 long m = sample; 460 461 if (m == 0) 462 m = 1; 463 464 if (new_sample != 0) { 465 /* If we sample in larger samples in the non-timestamp 466 * case, we could grossly overestimate the RTT especially 467 * with chatty applications or bulk transfer apps which 468 * are stalled on filesystem I/O. 469 * 470 * Also, since we are only going for a minimum in the 471 * non-timestamp case, we do not smooth things out 472 * else with timestamps disabled convergence takes too 473 * long. 474 */ 475 if (!win_dep) { 476 m -= (new_sample >> 3); 477 new_sample += m; 478 } else { 479 m <<= 3; 480 if (m < new_sample) 481 new_sample = m; 482 } 483 } else { 484 /* No previous measure. */ 485 new_sample = m << 3; 486 } 487 488 if (tp->rcv_rtt_est.rtt != new_sample) 489 tp->rcv_rtt_est.rtt = new_sample; 490 } 491 492 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 493 { 494 if (tp->rcv_rtt_est.time == 0) 495 goto new_measure; 496 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 497 return; 498 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1); 499 500 new_measure: 501 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 502 tp->rcv_rtt_est.time = tcp_time_stamp; 503 } 504 505 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 506 const struct sk_buff *skb) 507 { 508 struct tcp_sock *tp = tcp_sk(sk); 509 if (tp->rx_opt.rcv_tsecr && 510 (TCP_SKB_CB(skb)->end_seq - 511 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 512 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 513 } 514 515 /* 516 * This function should be called every time data is copied to user space. 517 * It calculates the appropriate TCP receive buffer space. 518 */ 519 void tcp_rcv_space_adjust(struct sock *sk) 520 { 521 struct tcp_sock *tp = tcp_sk(sk); 522 int time; 523 int space; 524 525 if (tp->rcvq_space.time == 0) 526 goto new_measure; 527 528 time = tcp_time_stamp - tp->rcvq_space.time; 529 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 530 return; 531 532 space = 2 * (tp->copied_seq - tp->rcvq_space.seq); 533 534 space = max(tp->rcvq_space.space, space); 535 536 if (tp->rcvq_space.space != space) { 537 int rcvmem; 538 539 tp->rcvq_space.space = space; 540 541 if (sysctl_tcp_moderate_rcvbuf && 542 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 543 int new_clamp = space; 544 545 /* Receive space grows, normalize in order to 546 * take into account packet headers and sk_buff 547 * structure overhead. 548 */ 549 space /= tp->advmss; 550 if (!space) 551 space = 1; 552 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 553 while (tcp_win_from_space(rcvmem) < tp->advmss) 554 rcvmem += 128; 555 space *= rcvmem; 556 space = min(space, sysctl_tcp_rmem[2]); 557 if (space > sk->sk_rcvbuf) { 558 sk->sk_rcvbuf = space; 559 560 /* Make the window clamp follow along. */ 561 tp->window_clamp = new_clamp; 562 } 563 } 564 } 565 566 new_measure: 567 tp->rcvq_space.seq = tp->copied_seq; 568 tp->rcvq_space.time = tcp_time_stamp; 569 } 570 571 /* There is something which you must keep in mind when you analyze the 572 * behavior of the tp->ato delayed ack timeout interval. When a 573 * connection starts up, we want to ack as quickly as possible. The 574 * problem is that "good" TCP's do slow start at the beginning of data 575 * transmission. The means that until we send the first few ACK's the 576 * sender will sit on his end and only queue most of his data, because 577 * he can only send snd_cwnd unacked packets at any given time. For 578 * each ACK we send, he increments snd_cwnd and transmits more of his 579 * queue. -DaveM 580 */ 581 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 582 { 583 struct tcp_sock *tp = tcp_sk(sk); 584 struct inet_connection_sock *icsk = inet_csk(sk); 585 u32 now; 586 587 inet_csk_schedule_ack(sk); 588 589 tcp_measure_rcv_mss(sk, skb); 590 591 tcp_rcv_rtt_measure(tp); 592 593 now = tcp_time_stamp; 594 595 if (!icsk->icsk_ack.ato) { 596 /* The _first_ data packet received, initialize 597 * delayed ACK engine. 598 */ 599 tcp_incr_quickack(sk); 600 icsk->icsk_ack.ato = TCP_ATO_MIN; 601 } else { 602 int m = now - icsk->icsk_ack.lrcvtime; 603 604 if (m <= TCP_ATO_MIN / 2) { 605 /* The fastest case is the first. */ 606 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 607 } else if (m < icsk->icsk_ack.ato) { 608 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 609 if (icsk->icsk_ack.ato > icsk->icsk_rto) 610 icsk->icsk_ack.ato = icsk->icsk_rto; 611 } else if (m > icsk->icsk_rto) { 612 /* Too long gap. Apparently sender failed to 613 * restart window, so that we send ACKs quickly. 614 */ 615 tcp_incr_quickack(sk); 616 sk_mem_reclaim(sk); 617 } 618 } 619 icsk->icsk_ack.lrcvtime = now; 620 621 TCP_ECN_check_ce(tp, skb); 622 623 if (skb->len >= 128) 624 tcp_grow_window(sk, skb); 625 } 626 627 /* Called to compute a smoothed rtt estimate. The data fed to this 628 * routine either comes from timestamps, or from segments that were 629 * known _not_ to have been retransmitted [see Karn/Partridge 630 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 631 * piece by Van Jacobson. 632 * NOTE: the next three routines used to be one big routine. 633 * To save cycles in the RFC 1323 implementation it was better to break 634 * it up into three procedures. -- erics 635 */ 636 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt) 637 { 638 struct tcp_sock *tp = tcp_sk(sk); 639 long m = mrtt; /* RTT */ 640 641 /* The following amusing code comes from Jacobson's 642 * article in SIGCOMM '88. Note that rtt and mdev 643 * are scaled versions of rtt and mean deviation. 644 * This is designed to be as fast as possible 645 * m stands for "measurement". 646 * 647 * On a 1990 paper the rto value is changed to: 648 * RTO = rtt + 4 * mdev 649 * 650 * Funny. This algorithm seems to be very broken. 651 * These formulae increase RTO, when it should be decreased, increase 652 * too slowly, when it should be increased quickly, decrease too quickly 653 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 654 * does not matter how to _calculate_ it. Seems, it was trap 655 * that VJ failed to avoid. 8) 656 */ 657 if (m == 0) 658 m = 1; 659 if (tp->srtt != 0) { 660 m -= (tp->srtt >> 3); /* m is now error in rtt est */ 661 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 662 if (m < 0) { 663 m = -m; /* m is now abs(error) */ 664 m -= (tp->mdev >> 2); /* similar update on mdev */ 665 /* This is similar to one of Eifel findings. 666 * Eifel blocks mdev updates when rtt decreases. 667 * This solution is a bit different: we use finer gain 668 * for mdev in this case (alpha*beta). 669 * Like Eifel it also prevents growth of rto, 670 * but also it limits too fast rto decreases, 671 * happening in pure Eifel. 672 */ 673 if (m > 0) 674 m >>= 3; 675 } else { 676 m -= (tp->mdev >> 2); /* similar update on mdev */ 677 } 678 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */ 679 if (tp->mdev > tp->mdev_max) { 680 tp->mdev_max = tp->mdev; 681 if (tp->mdev_max > tp->rttvar) 682 tp->rttvar = tp->mdev_max; 683 } 684 if (after(tp->snd_una, tp->rtt_seq)) { 685 if (tp->mdev_max < tp->rttvar) 686 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2; 687 tp->rtt_seq = tp->snd_nxt; 688 tp->mdev_max = tcp_rto_min(sk); 689 } 690 } else { 691 /* no previous measure. */ 692 tp->srtt = m << 3; /* take the measured time to be rtt */ 693 tp->mdev = m << 1; /* make sure rto = 3*rtt */ 694 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 695 tp->rtt_seq = tp->snd_nxt; 696 } 697 } 698 699 /* Calculate rto without backoff. This is the second half of Van Jacobson's 700 * routine referred to above. 701 */ 702 static inline void tcp_set_rto(struct sock *sk) 703 { 704 const struct tcp_sock *tp = tcp_sk(sk); 705 /* Old crap is replaced with new one. 8) 706 * 707 * More seriously: 708 * 1. If rtt variance happened to be less 50msec, it is hallucination. 709 * It cannot be less due to utterly erratic ACK generation made 710 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 711 * to do with delayed acks, because at cwnd>2 true delack timeout 712 * is invisible. Actually, Linux-2.4 also generates erratic 713 * ACKs in some circumstances. 714 */ 715 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 716 717 /* 2. Fixups made earlier cannot be right. 718 * If we do not estimate RTO correctly without them, 719 * all the algo is pure shit and should be replaced 720 * with correct one. It is exactly, which we pretend to do. 721 */ 722 723 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 724 * guarantees that rto is higher. 725 */ 726 tcp_bound_rto(sk); 727 } 728 729 /* Save metrics learned by this TCP session. 730 This function is called only, when TCP finishes successfully 731 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE. 732 */ 733 void tcp_update_metrics(struct sock *sk) 734 { 735 struct tcp_sock *tp = tcp_sk(sk); 736 struct dst_entry *dst = __sk_dst_get(sk); 737 738 if (sysctl_tcp_nometrics_save) 739 return; 740 741 dst_confirm(dst); 742 743 if (dst && (dst->flags & DST_HOST)) { 744 const struct inet_connection_sock *icsk = inet_csk(sk); 745 int m; 746 unsigned long rtt; 747 748 if (icsk->icsk_backoff || !tp->srtt) { 749 /* This session failed to estimate rtt. Why? 750 * Probably, no packets returned in time. 751 * Reset our results. 752 */ 753 if (!(dst_metric_locked(dst, RTAX_RTT))) 754 dst_metric_set(dst, RTAX_RTT, 0); 755 return; 756 } 757 758 rtt = dst_metric_rtt(dst, RTAX_RTT); 759 m = rtt - tp->srtt; 760 761 /* If newly calculated rtt larger than stored one, 762 * store new one. Otherwise, use EWMA. Remember, 763 * rtt overestimation is always better than underestimation. 764 */ 765 if (!(dst_metric_locked(dst, RTAX_RTT))) { 766 if (m <= 0) 767 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt); 768 else 769 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3)); 770 } 771 772 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) { 773 unsigned long var; 774 if (m < 0) 775 m = -m; 776 777 /* Scale deviation to rttvar fixed point */ 778 m >>= 1; 779 if (m < tp->mdev) 780 m = tp->mdev; 781 782 var = dst_metric_rtt(dst, RTAX_RTTVAR); 783 if (m >= var) 784 var = m; 785 else 786 var -= (var - m) >> 2; 787 788 set_dst_metric_rtt(dst, RTAX_RTTVAR, var); 789 } 790 791 if (tcp_in_initial_slowstart(tp)) { 792 /* Slow start still did not finish. */ 793 if (dst_metric(dst, RTAX_SSTHRESH) && 794 !dst_metric_locked(dst, RTAX_SSTHRESH) && 795 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH)) 796 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1); 797 if (!dst_metric_locked(dst, RTAX_CWND) && 798 tp->snd_cwnd > dst_metric(dst, RTAX_CWND)) 799 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd); 800 } else if (tp->snd_cwnd > tp->snd_ssthresh && 801 icsk->icsk_ca_state == TCP_CA_Open) { 802 /* Cong. avoidance phase, cwnd is reliable. */ 803 if (!dst_metric_locked(dst, RTAX_SSTHRESH)) 804 dst_metric_set(dst, RTAX_SSTHRESH, 805 max(tp->snd_cwnd >> 1, tp->snd_ssthresh)); 806 if (!dst_metric_locked(dst, RTAX_CWND)) 807 dst_metric_set(dst, RTAX_CWND, 808 (dst_metric(dst, RTAX_CWND) + 809 tp->snd_cwnd) >> 1); 810 } else { 811 /* Else slow start did not finish, cwnd is non-sense, 812 ssthresh may be also invalid. 813 */ 814 if (!dst_metric_locked(dst, RTAX_CWND)) 815 dst_metric_set(dst, RTAX_CWND, 816 (dst_metric(dst, RTAX_CWND) + 817 tp->snd_ssthresh) >> 1); 818 if (dst_metric(dst, RTAX_SSTHRESH) && 819 !dst_metric_locked(dst, RTAX_SSTHRESH) && 820 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH)) 821 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh); 822 } 823 824 if (!dst_metric_locked(dst, RTAX_REORDERING)) { 825 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering && 826 tp->reordering != sysctl_tcp_reordering) 827 dst_metric_set(dst, RTAX_REORDERING, tp->reordering); 828 } 829 } 830 } 831 832 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 833 { 834 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 835 836 if (!cwnd) 837 cwnd = TCP_INIT_CWND; 838 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 839 } 840 841 /* Set slow start threshold and cwnd not falling to slow start */ 842 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh) 843 { 844 struct tcp_sock *tp = tcp_sk(sk); 845 const struct inet_connection_sock *icsk = inet_csk(sk); 846 847 tp->prior_ssthresh = 0; 848 tp->bytes_acked = 0; 849 if (icsk->icsk_ca_state < TCP_CA_CWR) { 850 tp->undo_marker = 0; 851 if (set_ssthresh) 852 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 853 tp->snd_cwnd = min(tp->snd_cwnd, 854 tcp_packets_in_flight(tp) + 1U); 855 tp->snd_cwnd_cnt = 0; 856 tp->high_seq = tp->snd_nxt; 857 tp->snd_cwnd_stamp = tcp_time_stamp; 858 TCP_ECN_queue_cwr(tp); 859 860 tcp_set_ca_state(sk, TCP_CA_CWR); 861 } 862 } 863 864 /* 865 * Packet counting of FACK is based on in-order assumptions, therefore TCP 866 * disables it when reordering is detected 867 */ 868 static void tcp_disable_fack(struct tcp_sock *tp) 869 { 870 /* RFC3517 uses different metric in lost marker => reset on change */ 871 if (tcp_is_fack(tp)) 872 tp->lost_skb_hint = NULL; 873 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; 874 } 875 876 /* Take a notice that peer is sending D-SACKs */ 877 static void tcp_dsack_seen(struct tcp_sock *tp) 878 { 879 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 880 } 881 882 /* Initialize metrics on socket. */ 883 884 static void tcp_init_metrics(struct sock *sk) 885 { 886 struct tcp_sock *tp = tcp_sk(sk); 887 struct dst_entry *dst = __sk_dst_get(sk); 888 889 if (dst == NULL) 890 goto reset; 891 892 dst_confirm(dst); 893 894 if (dst_metric_locked(dst, RTAX_CWND)) 895 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND); 896 if (dst_metric(dst, RTAX_SSTHRESH)) { 897 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH); 898 if (tp->snd_ssthresh > tp->snd_cwnd_clamp) 899 tp->snd_ssthresh = tp->snd_cwnd_clamp; 900 } else { 901 /* ssthresh may have been reduced unnecessarily during. 902 * 3WHS. Restore it back to its initial default. 903 */ 904 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 905 } 906 if (dst_metric(dst, RTAX_REORDERING) && 907 tp->reordering != dst_metric(dst, RTAX_REORDERING)) { 908 tcp_disable_fack(tp); 909 tp->reordering = dst_metric(dst, RTAX_REORDERING); 910 } 911 912 if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0) 913 goto reset; 914 915 /* Initial rtt is determined from SYN,SYN-ACK. 916 * The segment is small and rtt may appear much 917 * less than real one. Use per-dst memory 918 * to make it more realistic. 919 * 920 * A bit of theory. RTT is time passed after "normal" sized packet 921 * is sent until it is ACKed. In normal circumstances sending small 922 * packets force peer to delay ACKs and calculation is correct too. 923 * The algorithm is adaptive and, provided we follow specs, it 924 * NEVER underestimate RTT. BUT! If peer tries to make some clever 925 * tricks sort of "quick acks" for time long enough to decrease RTT 926 * to low value, and then abruptly stops to do it and starts to delay 927 * ACKs, wait for troubles. 928 */ 929 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) { 930 tp->srtt = dst_metric_rtt(dst, RTAX_RTT); 931 tp->rtt_seq = tp->snd_nxt; 932 } 933 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) { 934 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR); 935 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 936 } 937 tcp_set_rto(sk); 938 reset: 939 if (tp->srtt == 0) { 940 /* RFC2988bis: We've failed to get a valid RTT sample from 941 * 3WHS. This is most likely due to retransmission, 942 * including spurious one. Reset the RTO back to 3secs 943 * from the more aggressive 1sec to avoid more spurious 944 * retransmission. 945 */ 946 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK; 947 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK; 948 } 949 /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 950 * retransmitted. In light of RFC2988bis' more aggressive 1sec 951 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 952 * retransmission has occurred. 953 */ 954 if (tp->total_retrans > 1) 955 tp->snd_cwnd = 1; 956 else 957 tp->snd_cwnd = tcp_init_cwnd(tp, dst); 958 tp->snd_cwnd_stamp = tcp_time_stamp; 959 } 960 961 static void tcp_update_reordering(struct sock *sk, const int metric, 962 const int ts) 963 { 964 struct tcp_sock *tp = tcp_sk(sk); 965 if (metric > tp->reordering) { 966 int mib_idx; 967 968 tp->reordering = min(TCP_MAX_REORDERING, metric); 969 970 /* This exciting event is worth to be remembered. 8) */ 971 if (ts) 972 mib_idx = LINUX_MIB_TCPTSREORDER; 973 else if (tcp_is_reno(tp)) 974 mib_idx = LINUX_MIB_TCPRENOREORDER; 975 else if (tcp_is_fack(tp)) 976 mib_idx = LINUX_MIB_TCPFACKREORDER; 977 else 978 mib_idx = LINUX_MIB_TCPSACKREORDER; 979 980 NET_INC_STATS_BH(sock_net(sk), mib_idx); 981 #if FASTRETRANS_DEBUG > 1 982 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n", 983 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 984 tp->reordering, 985 tp->fackets_out, 986 tp->sacked_out, 987 tp->undo_marker ? tp->undo_retrans : 0); 988 #endif 989 tcp_disable_fack(tp); 990 } 991 } 992 993 /* This must be called before lost_out is incremented */ 994 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 995 { 996 if ((tp->retransmit_skb_hint == NULL) || 997 before(TCP_SKB_CB(skb)->seq, 998 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 999 tp->retransmit_skb_hint = skb; 1000 1001 if (!tp->lost_out || 1002 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high)) 1003 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 1004 } 1005 1006 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 1007 { 1008 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 1009 tcp_verify_retransmit_hint(tp, skb); 1010 1011 tp->lost_out += tcp_skb_pcount(skb); 1012 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1013 } 1014 } 1015 1016 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, 1017 struct sk_buff *skb) 1018 { 1019 tcp_verify_retransmit_hint(tp, skb); 1020 1021 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 1022 tp->lost_out += tcp_skb_pcount(skb); 1023 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1024 } 1025 } 1026 1027 /* This procedure tags the retransmission queue when SACKs arrive. 1028 * 1029 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1030 * Packets in queue with these bits set are counted in variables 1031 * sacked_out, retrans_out and lost_out, correspondingly. 1032 * 1033 * Valid combinations are: 1034 * Tag InFlight Description 1035 * 0 1 - orig segment is in flight. 1036 * S 0 - nothing flies, orig reached receiver. 1037 * L 0 - nothing flies, orig lost by net. 1038 * R 2 - both orig and retransmit are in flight. 1039 * L|R 1 - orig is lost, retransmit is in flight. 1040 * S|R 1 - orig reached receiver, retrans is still in flight. 1041 * (L|S|R is logically valid, it could occur when L|R is sacked, 1042 * but it is equivalent to plain S and code short-curcuits it to S. 1043 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1044 * 1045 * These 6 states form finite state machine, controlled by the following events: 1046 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1047 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1048 * 3. Loss detection event of two flavors: 1049 * A. Scoreboard estimator decided the packet is lost. 1050 * A'. Reno "three dupacks" marks head of queue lost. 1051 * A''. Its FACK modification, head until snd.fack is lost. 1052 * B. SACK arrives sacking SND.NXT at the moment, when the 1053 * segment was retransmitted. 1054 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1055 * 1056 * It is pleasant to note, that state diagram turns out to be commutative, 1057 * so that we are allowed not to be bothered by order of our actions, 1058 * when multiple events arrive simultaneously. (see the function below). 1059 * 1060 * Reordering detection. 1061 * -------------------- 1062 * Reordering metric is maximal distance, which a packet can be displaced 1063 * in packet stream. With SACKs we can estimate it: 1064 * 1065 * 1. SACK fills old hole and the corresponding segment was not 1066 * ever retransmitted -> reordering. Alas, we cannot use it 1067 * when segment was retransmitted. 1068 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1069 * for retransmitted and already SACKed segment -> reordering.. 1070 * Both of these heuristics are not used in Loss state, when we cannot 1071 * account for retransmits accurately. 1072 * 1073 * SACK block validation. 1074 * ---------------------- 1075 * 1076 * SACK block range validation checks that the received SACK block fits to 1077 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1078 * Note that SND.UNA is not included to the range though being valid because 1079 * it means that the receiver is rather inconsistent with itself reporting 1080 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1081 * perfectly valid, however, in light of RFC2018 which explicitly states 1082 * that "SACK block MUST reflect the newest segment. Even if the newest 1083 * segment is going to be discarded ...", not that it looks very clever 1084 * in case of head skb. Due to potentional receiver driven attacks, we 1085 * choose to avoid immediate execution of a walk in write queue due to 1086 * reneging and defer head skb's loss recovery to standard loss recovery 1087 * procedure that will eventually trigger (nothing forbids us doing this). 1088 * 1089 * Implements also blockage to start_seq wrap-around. Problem lies in the 1090 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1091 * there's no guarantee that it will be before snd_nxt (n). The problem 1092 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1093 * wrap (s_w): 1094 * 1095 * <- outs wnd -> <- wrapzone -> 1096 * u e n u_w e_w s n_w 1097 * | | | | | | | 1098 * |<------------+------+----- TCP seqno space --------------+---------->| 1099 * ...-- <2^31 ->| |<--------... 1100 * ...---- >2^31 ------>| |<--------... 1101 * 1102 * Current code wouldn't be vulnerable but it's better still to discard such 1103 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1104 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1105 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1106 * equal to the ideal case (infinite seqno space without wrap caused issues). 1107 * 1108 * With D-SACK the lower bound is extended to cover sequence space below 1109 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1110 * again, D-SACK block must not to go across snd_una (for the same reason as 1111 * for the normal SACK blocks, explained above). But there all simplicity 1112 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1113 * fully below undo_marker they do not affect behavior in anyway and can 1114 * therefore be safely ignored. In rare cases (which are more or less 1115 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1116 * fragmentation and packet reordering past skb's retransmission. To consider 1117 * them correctly, the acceptable range must be extended even more though 1118 * the exact amount is rather hard to quantify. However, tp->max_window can 1119 * be used as an exaggerated estimate. 1120 */ 1121 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack, 1122 u32 start_seq, u32 end_seq) 1123 { 1124 /* Too far in future, or reversed (interpretation is ambiguous) */ 1125 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1126 return 0; 1127 1128 /* Nasty start_seq wrap-around check (see comments above) */ 1129 if (!before(start_seq, tp->snd_nxt)) 1130 return 0; 1131 1132 /* In outstanding window? ...This is valid exit for D-SACKs too. 1133 * start_seq == snd_una is non-sensical (see comments above) 1134 */ 1135 if (after(start_seq, tp->snd_una)) 1136 return 1; 1137 1138 if (!is_dsack || !tp->undo_marker) 1139 return 0; 1140 1141 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1142 if (after(end_seq, tp->snd_una)) 1143 return 0; 1144 1145 if (!before(start_seq, tp->undo_marker)) 1146 return 1; 1147 1148 /* Too old */ 1149 if (!after(end_seq, tp->undo_marker)) 1150 return 0; 1151 1152 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1153 * start_seq < undo_marker and end_seq >= undo_marker. 1154 */ 1155 return !before(start_seq, end_seq - tp->max_window); 1156 } 1157 1158 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving". 1159 * Event "B". Later note: FACK people cheated me again 8), we have to account 1160 * for reordering! Ugly, but should help. 1161 * 1162 * Search retransmitted skbs from write_queue that were sent when snd_nxt was 1163 * less than what is now known to be received by the other end (derived from 1164 * highest SACK block). Also calculate the lowest snd_nxt among the remaining 1165 * retransmitted skbs to avoid some costly processing per ACKs. 1166 */ 1167 static void tcp_mark_lost_retrans(struct sock *sk) 1168 { 1169 const struct inet_connection_sock *icsk = inet_csk(sk); 1170 struct tcp_sock *tp = tcp_sk(sk); 1171 struct sk_buff *skb; 1172 int cnt = 0; 1173 u32 new_low_seq = tp->snd_nxt; 1174 u32 received_upto = tcp_highest_sack_seq(tp); 1175 1176 if (!tcp_is_fack(tp) || !tp->retrans_out || 1177 !after(received_upto, tp->lost_retrans_low) || 1178 icsk->icsk_ca_state != TCP_CA_Recovery) 1179 return; 1180 1181 tcp_for_write_queue(skb, sk) { 1182 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq; 1183 1184 if (skb == tcp_send_head(sk)) 1185 break; 1186 if (cnt == tp->retrans_out) 1187 break; 1188 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1189 continue; 1190 1191 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) 1192 continue; 1193 1194 /* TODO: We would like to get rid of tcp_is_fack(tp) only 1195 * constraint here (see above) but figuring out that at 1196 * least tp->reordering SACK blocks reside between ack_seq 1197 * and received_upto is not easy task to do cheaply with 1198 * the available datastructures. 1199 * 1200 * Whether FACK should check here for tp->reordering segs 1201 * in-between one could argue for either way (it would be 1202 * rather simple to implement as we could count fack_count 1203 * during the walk and do tp->fackets_out - fack_count). 1204 */ 1205 if (after(received_upto, ack_seq)) { 1206 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1207 tp->retrans_out -= tcp_skb_pcount(skb); 1208 1209 tcp_skb_mark_lost_uncond_verify(tp, skb); 1210 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT); 1211 } else { 1212 if (before(ack_seq, new_low_seq)) 1213 new_low_seq = ack_seq; 1214 cnt += tcp_skb_pcount(skb); 1215 } 1216 } 1217 1218 if (tp->retrans_out) 1219 tp->lost_retrans_low = new_low_seq; 1220 } 1221 1222 static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1223 struct tcp_sack_block_wire *sp, int num_sacks, 1224 u32 prior_snd_una) 1225 { 1226 struct tcp_sock *tp = tcp_sk(sk); 1227 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1228 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1229 int dup_sack = 0; 1230 1231 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1232 dup_sack = 1; 1233 tcp_dsack_seen(tp); 1234 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1235 } else if (num_sacks > 1) { 1236 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1237 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1238 1239 if (!after(end_seq_0, end_seq_1) && 1240 !before(start_seq_0, start_seq_1)) { 1241 dup_sack = 1; 1242 tcp_dsack_seen(tp); 1243 NET_INC_STATS_BH(sock_net(sk), 1244 LINUX_MIB_TCPDSACKOFORECV); 1245 } 1246 } 1247 1248 /* D-SACK for already forgotten data... Do dumb counting. */ 1249 if (dup_sack && tp->undo_marker && tp->undo_retrans && 1250 !after(end_seq_0, prior_snd_una) && 1251 after(end_seq_0, tp->undo_marker)) 1252 tp->undo_retrans--; 1253 1254 return dup_sack; 1255 } 1256 1257 struct tcp_sacktag_state { 1258 int reord; 1259 int fack_count; 1260 int flag; 1261 }; 1262 1263 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1264 * the incoming SACK may not exactly match but we can find smaller MSS 1265 * aligned portion of it that matches. Therefore we might need to fragment 1266 * which may fail and creates some hassle (caller must handle error case 1267 * returns). 1268 * 1269 * FIXME: this could be merged to shift decision code 1270 */ 1271 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1272 u32 start_seq, u32 end_seq) 1273 { 1274 int in_sack, err; 1275 unsigned int pkt_len; 1276 unsigned int mss; 1277 1278 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1279 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1280 1281 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1282 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1283 mss = tcp_skb_mss(skb); 1284 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1285 1286 if (!in_sack) { 1287 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1288 if (pkt_len < mss) 1289 pkt_len = mss; 1290 } else { 1291 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1292 if (pkt_len < mss) 1293 return -EINVAL; 1294 } 1295 1296 /* Round if necessary so that SACKs cover only full MSSes 1297 * and/or the remaining small portion (if present) 1298 */ 1299 if (pkt_len > mss) { 1300 unsigned int new_len = (pkt_len / mss) * mss; 1301 if (!in_sack && new_len < pkt_len) { 1302 new_len += mss; 1303 if (new_len > skb->len) 1304 return 0; 1305 } 1306 pkt_len = new_len; 1307 } 1308 err = tcp_fragment(sk, skb, pkt_len, mss); 1309 if (err < 0) 1310 return err; 1311 } 1312 1313 return in_sack; 1314 } 1315 1316 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1317 static u8 tcp_sacktag_one(struct sock *sk, 1318 struct tcp_sacktag_state *state, u8 sacked, 1319 u32 start_seq, u32 end_seq, 1320 int dup_sack, int pcount) 1321 { 1322 struct tcp_sock *tp = tcp_sk(sk); 1323 int fack_count = state->fack_count; 1324 1325 /* Account D-SACK for retransmitted packet. */ 1326 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1327 if (tp->undo_marker && tp->undo_retrans && 1328 after(end_seq, tp->undo_marker)) 1329 tp->undo_retrans--; 1330 if (sacked & TCPCB_SACKED_ACKED) 1331 state->reord = min(fack_count, state->reord); 1332 } 1333 1334 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1335 if (!after(end_seq, tp->snd_una)) 1336 return sacked; 1337 1338 if (!(sacked & TCPCB_SACKED_ACKED)) { 1339 if (sacked & TCPCB_SACKED_RETRANS) { 1340 /* If the segment is not tagged as lost, 1341 * we do not clear RETRANS, believing 1342 * that retransmission is still in flight. 1343 */ 1344 if (sacked & TCPCB_LOST) { 1345 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1346 tp->lost_out -= pcount; 1347 tp->retrans_out -= pcount; 1348 } 1349 } else { 1350 if (!(sacked & TCPCB_RETRANS)) { 1351 /* New sack for not retransmitted frame, 1352 * which was in hole. It is reordering. 1353 */ 1354 if (before(start_seq, 1355 tcp_highest_sack_seq(tp))) 1356 state->reord = min(fack_count, 1357 state->reord); 1358 1359 /* SACK enhanced F-RTO (RFC4138; Appendix B) */ 1360 if (!after(end_seq, tp->frto_highmark)) 1361 state->flag |= FLAG_ONLY_ORIG_SACKED; 1362 } 1363 1364 if (sacked & TCPCB_LOST) { 1365 sacked &= ~TCPCB_LOST; 1366 tp->lost_out -= pcount; 1367 } 1368 } 1369 1370 sacked |= TCPCB_SACKED_ACKED; 1371 state->flag |= FLAG_DATA_SACKED; 1372 tp->sacked_out += pcount; 1373 1374 fack_count += pcount; 1375 1376 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1377 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) && 1378 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1379 tp->lost_cnt_hint += pcount; 1380 1381 if (fack_count > tp->fackets_out) 1382 tp->fackets_out = fack_count; 1383 } 1384 1385 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1386 * frames and clear it. undo_retrans is decreased above, L|R frames 1387 * are accounted above as well. 1388 */ 1389 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1390 sacked &= ~TCPCB_SACKED_RETRANS; 1391 tp->retrans_out -= pcount; 1392 } 1393 1394 return sacked; 1395 } 1396 1397 /* Shift newly-SACKed bytes from this skb to the immediately previous 1398 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1399 */ 1400 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1401 struct tcp_sacktag_state *state, 1402 unsigned int pcount, int shifted, int mss, 1403 int dup_sack) 1404 { 1405 struct tcp_sock *tp = tcp_sk(sk); 1406 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1407 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1408 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1409 1410 BUG_ON(!pcount); 1411 1412 /* Adjust counters and hints for the newly sacked sequence 1413 * range but discard the return value since prev is already 1414 * marked. We must tag the range first because the seq 1415 * advancement below implicitly advances 1416 * tcp_highest_sack_seq() when skb is highest_sack. 1417 */ 1418 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1419 start_seq, end_seq, dup_sack, pcount); 1420 1421 if (skb == tp->lost_skb_hint) 1422 tp->lost_cnt_hint += pcount; 1423 1424 TCP_SKB_CB(prev)->end_seq += shifted; 1425 TCP_SKB_CB(skb)->seq += shifted; 1426 1427 skb_shinfo(prev)->gso_segs += pcount; 1428 BUG_ON(skb_shinfo(skb)->gso_segs < pcount); 1429 skb_shinfo(skb)->gso_segs -= pcount; 1430 1431 /* When we're adding to gso_segs == 1, gso_size will be zero, 1432 * in theory this shouldn't be necessary but as long as DSACK 1433 * code can come after this skb later on it's better to keep 1434 * setting gso_size to something. 1435 */ 1436 if (!skb_shinfo(prev)->gso_size) { 1437 skb_shinfo(prev)->gso_size = mss; 1438 skb_shinfo(prev)->gso_type = sk->sk_gso_type; 1439 } 1440 1441 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1442 if (skb_shinfo(skb)->gso_segs <= 1) { 1443 skb_shinfo(skb)->gso_size = 0; 1444 skb_shinfo(skb)->gso_type = 0; 1445 } 1446 1447 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1448 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1449 1450 if (skb->len > 0) { 1451 BUG_ON(!tcp_skb_pcount(skb)); 1452 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1453 return 0; 1454 } 1455 1456 /* Whole SKB was eaten :-) */ 1457 1458 if (skb == tp->retransmit_skb_hint) 1459 tp->retransmit_skb_hint = prev; 1460 if (skb == tp->scoreboard_skb_hint) 1461 tp->scoreboard_skb_hint = prev; 1462 if (skb == tp->lost_skb_hint) { 1463 tp->lost_skb_hint = prev; 1464 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1465 } 1466 1467 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags; 1468 if (skb == tcp_highest_sack(sk)) 1469 tcp_advance_highest_sack(sk, skb); 1470 1471 tcp_unlink_write_queue(skb, sk); 1472 sk_wmem_free_skb(sk, skb); 1473 1474 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED); 1475 1476 return 1; 1477 } 1478 1479 /* I wish gso_size would have a bit more sane initialization than 1480 * something-or-zero which complicates things 1481 */ 1482 static int tcp_skb_seglen(const struct sk_buff *skb) 1483 { 1484 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1485 } 1486 1487 /* Shifting pages past head area doesn't work */ 1488 static int skb_can_shift(const struct sk_buff *skb) 1489 { 1490 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1491 } 1492 1493 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1494 * skb. 1495 */ 1496 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1497 struct tcp_sacktag_state *state, 1498 u32 start_seq, u32 end_seq, 1499 int dup_sack) 1500 { 1501 struct tcp_sock *tp = tcp_sk(sk); 1502 struct sk_buff *prev; 1503 int mss; 1504 int pcount = 0; 1505 int len; 1506 int in_sack; 1507 1508 if (!sk_can_gso(sk)) 1509 goto fallback; 1510 1511 /* Normally R but no L won't result in plain S */ 1512 if (!dup_sack && 1513 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1514 goto fallback; 1515 if (!skb_can_shift(skb)) 1516 goto fallback; 1517 /* This frame is about to be dropped (was ACKed). */ 1518 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1519 goto fallback; 1520 1521 /* Can only happen with delayed DSACK + discard craziness */ 1522 if (unlikely(skb == tcp_write_queue_head(sk))) 1523 goto fallback; 1524 prev = tcp_write_queue_prev(sk, skb); 1525 1526 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1527 goto fallback; 1528 1529 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1530 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1531 1532 if (in_sack) { 1533 len = skb->len; 1534 pcount = tcp_skb_pcount(skb); 1535 mss = tcp_skb_seglen(skb); 1536 1537 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1538 * drop this restriction as unnecessary 1539 */ 1540 if (mss != tcp_skb_seglen(prev)) 1541 goto fallback; 1542 } else { 1543 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1544 goto noop; 1545 /* CHECKME: This is non-MSS split case only?, this will 1546 * cause skipped skbs due to advancing loop btw, original 1547 * has that feature too 1548 */ 1549 if (tcp_skb_pcount(skb) <= 1) 1550 goto noop; 1551 1552 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1553 if (!in_sack) { 1554 /* TODO: head merge to next could be attempted here 1555 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1556 * though it might not be worth of the additional hassle 1557 * 1558 * ...we can probably just fallback to what was done 1559 * previously. We could try merging non-SACKed ones 1560 * as well but it probably isn't going to buy off 1561 * because later SACKs might again split them, and 1562 * it would make skb timestamp tracking considerably 1563 * harder problem. 1564 */ 1565 goto fallback; 1566 } 1567 1568 len = end_seq - TCP_SKB_CB(skb)->seq; 1569 BUG_ON(len < 0); 1570 BUG_ON(len > skb->len); 1571 1572 /* MSS boundaries should be honoured or else pcount will 1573 * severely break even though it makes things bit trickier. 1574 * Optimize common case to avoid most of the divides 1575 */ 1576 mss = tcp_skb_mss(skb); 1577 1578 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1579 * drop this restriction as unnecessary 1580 */ 1581 if (mss != tcp_skb_seglen(prev)) 1582 goto fallback; 1583 1584 if (len == mss) { 1585 pcount = 1; 1586 } else if (len < mss) { 1587 goto noop; 1588 } else { 1589 pcount = len / mss; 1590 len = pcount * mss; 1591 } 1592 } 1593 1594 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1595 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1596 goto fallback; 1597 1598 if (!skb_shift(prev, skb, len)) 1599 goto fallback; 1600 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1601 goto out; 1602 1603 /* Hole filled allows collapsing with the next as well, this is very 1604 * useful when hole on every nth skb pattern happens 1605 */ 1606 if (prev == tcp_write_queue_tail(sk)) 1607 goto out; 1608 skb = tcp_write_queue_next(sk, prev); 1609 1610 if (!skb_can_shift(skb) || 1611 (skb == tcp_send_head(sk)) || 1612 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1613 (mss != tcp_skb_seglen(skb))) 1614 goto out; 1615 1616 len = skb->len; 1617 if (skb_shift(prev, skb, len)) { 1618 pcount += tcp_skb_pcount(skb); 1619 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1620 } 1621 1622 out: 1623 state->fack_count += pcount; 1624 return prev; 1625 1626 noop: 1627 return skb; 1628 1629 fallback: 1630 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1631 return NULL; 1632 } 1633 1634 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1635 struct tcp_sack_block *next_dup, 1636 struct tcp_sacktag_state *state, 1637 u32 start_seq, u32 end_seq, 1638 int dup_sack_in) 1639 { 1640 struct tcp_sock *tp = tcp_sk(sk); 1641 struct sk_buff *tmp; 1642 1643 tcp_for_write_queue_from(skb, sk) { 1644 int in_sack = 0; 1645 int dup_sack = dup_sack_in; 1646 1647 if (skb == tcp_send_head(sk)) 1648 break; 1649 1650 /* queue is in-order => we can short-circuit the walk early */ 1651 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1652 break; 1653 1654 if ((next_dup != NULL) && 1655 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1656 in_sack = tcp_match_skb_to_sack(sk, skb, 1657 next_dup->start_seq, 1658 next_dup->end_seq); 1659 if (in_sack > 0) 1660 dup_sack = 1; 1661 } 1662 1663 /* skb reference here is a bit tricky to get right, since 1664 * shifting can eat and free both this skb and the next, 1665 * so not even _safe variant of the loop is enough. 1666 */ 1667 if (in_sack <= 0) { 1668 tmp = tcp_shift_skb_data(sk, skb, state, 1669 start_seq, end_seq, dup_sack); 1670 if (tmp != NULL) { 1671 if (tmp != skb) { 1672 skb = tmp; 1673 continue; 1674 } 1675 1676 in_sack = 0; 1677 } else { 1678 in_sack = tcp_match_skb_to_sack(sk, skb, 1679 start_seq, 1680 end_seq); 1681 } 1682 } 1683 1684 if (unlikely(in_sack < 0)) 1685 break; 1686 1687 if (in_sack) { 1688 TCP_SKB_CB(skb)->sacked = 1689 tcp_sacktag_one(sk, 1690 state, 1691 TCP_SKB_CB(skb)->sacked, 1692 TCP_SKB_CB(skb)->seq, 1693 TCP_SKB_CB(skb)->end_seq, 1694 dup_sack, 1695 tcp_skb_pcount(skb)); 1696 1697 if (!before(TCP_SKB_CB(skb)->seq, 1698 tcp_highest_sack_seq(tp))) 1699 tcp_advance_highest_sack(sk, skb); 1700 } 1701 1702 state->fack_count += tcp_skb_pcount(skb); 1703 } 1704 return skb; 1705 } 1706 1707 /* Avoid all extra work that is being done by sacktag while walking in 1708 * a normal way 1709 */ 1710 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1711 struct tcp_sacktag_state *state, 1712 u32 skip_to_seq) 1713 { 1714 tcp_for_write_queue_from(skb, sk) { 1715 if (skb == tcp_send_head(sk)) 1716 break; 1717 1718 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1719 break; 1720 1721 state->fack_count += tcp_skb_pcount(skb); 1722 } 1723 return skb; 1724 } 1725 1726 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1727 struct sock *sk, 1728 struct tcp_sack_block *next_dup, 1729 struct tcp_sacktag_state *state, 1730 u32 skip_to_seq) 1731 { 1732 if (next_dup == NULL) 1733 return skb; 1734 1735 if (before(next_dup->start_seq, skip_to_seq)) { 1736 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1737 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1738 next_dup->start_seq, next_dup->end_seq, 1739 1); 1740 } 1741 1742 return skb; 1743 } 1744 1745 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1746 { 1747 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1748 } 1749 1750 static int 1751 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1752 u32 prior_snd_una) 1753 { 1754 const struct inet_connection_sock *icsk = inet_csk(sk); 1755 struct tcp_sock *tp = tcp_sk(sk); 1756 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1757 TCP_SKB_CB(ack_skb)->sacked); 1758 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1759 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1760 struct tcp_sack_block *cache; 1761 struct tcp_sacktag_state state; 1762 struct sk_buff *skb; 1763 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1764 int used_sacks; 1765 int found_dup_sack = 0; 1766 int i, j; 1767 int first_sack_index; 1768 1769 state.flag = 0; 1770 state.reord = tp->packets_out; 1771 1772 if (!tp->sacked_out) { 1773 if (WARN_ON(tp->fackets_out)) 1774 tp->fackets_out = 0; 1775 tcp_highest_sack_reset(sk); 1776 } 1777 1778 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1779 num_sacks, prior_snd_una); 1780 if (found_dup_sack) 1781 state.flag |= FLAG_DSACKING_ACK; 1782 1783 /* Eliminate too old ACKs, but take into 1784 * account more or less fresh ones, they can 1785 * contain valid SACK info. 1786 */ 1787 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1788 return 0; 1789 1790 if (!tp->packets_out) 1791 goto out; 1792 1793 used_sacks = 0; 1794 first_sack_index = 0; 1795 for (i = 0; i < num_sacks; i++) { 1796 int dup_sack = !i && found_dup_sack; 1797 1798 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1799 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1800 1801 if (!tcp_is_sackblock_valid(tp, dup_sack, 1802 sp[used_sacks].start_seq, 1803 sp[used_sacks].end_seq)) { 1804 int mib_idx; 1805 1806 if (dup_sack) { 1807 if (!tp->undo_marker) 1808 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1809 else 1810 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1811 } else { 1812 /* Don't count olds caused by ACK reordering */ 1813 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1814 !after(sp[used_sacks].end_seq, tp->snd_una)) 1815 continue; 1816 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1817 } 1818 1819 NET_INC_STATS_BH(sock_net(sk), mib_idx); 1820 if (i == 0) 1821 first_sack_index = -1; 1822 continue; 1823 } 1824 1825 /* Ignore very old stuff early */ 1826 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1827 continue; 1828 1829 used_sacks++; 1830 } 1831 1832 /* order SACK blocks to allow in order walk of the retrans queue */ 1833 for (i = used_sacks - 1; i > 0; i--) { 1834 for (j = 0; j < i; j++) { 1835 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1836 swap(sp[j], sp[j + 1]); 1837 1838 /* Track where the first SACK block goes to */ 1839 if (j == first_sack_index) 1840 first_sack_index = j + 1; 1841 } 1842 } 1843 } 1844 1845 skb = tcp_write_queue_head(sk); 1846 state.fack_count = 0; 1847 i = 0; 1848 1849 if (!tp->sacked_out) { 1850 /* It's already past, so skip checking against it */ 1851 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1852 } else { 1853 cache = tp->recv_sack_cache; 1854 /* Skip empty blocks in at head of the cache */ 1855 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1856 !cache->end_seq) 1857 cache++; 1858 } 1859 1860 while (i < used_sacks) { 1861 u32 start_seq = sp[i].start_seq; 1862 u32 end_seq = sp[i].end_seq; 1863 int dup_sack = (found_dup_sack && (i == first_sack_index)); 1864 struct tcp_sack_block *next_dup = NULL; 1865 1866 if (found_dup_sack && ((i + 1) == first_sack_index)) 1867 next_dup = &sp[i + 1]; 1868 1869 /* Skip too early cached blocks */ 1870 while (tcp_sack_cache_ok(tp, cache) && 1871 !before(start_seq, cache->end_seq)) 1872 cache++; 1873 1874 /* Can skip some work by looking recv_sack_cache? */ 1875 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1876 after(end_seq, cache->start_seq)) { 1877 1878 /* Head todo? */ 1879 if (before(start_seq, cache->start_seq)) { 1880 skb = tcp_sacktag_skip(skb, sk, &state, 1881 start_seq); 1882 skb = tcp_sacktag_walk(skb, sk, next_dup, 1883 &state, 1884 start_seq, 1885 cache->start_seq, 1886 dup_sack); 1887 } 1888 1889 /* Rest of the block already fully processed? */ 1890 if (!after(end_seq, cache->end_seq)) 1891 goto advance_sp; 1892 1893 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1894 &state, 1895 cache->end_seq); 1896 1897 /* ...tail remains todo... */ 1898 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1899 /* ...but better entrypoint exists! */ 1900 skb = tcp_highest_sack(sk); 1901 if (skb == NULL) 1902 break; 1903 state.fack_count = tp->fackets_out; 1904 cache++; 1905 goto walk; 1906 } 1907 1908 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq); 1909 /* Check overlap against next cached too (past this one already) */ 1910 cache++; 1911 continue; 1912 } 1913 1914 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1915 skb = tcp_highest_sack(sk); 1916 if (skb == NULL) 1917 break; 1918 state.fack_count = tp->fackets_out; 1919 } 1920 skb = tcp_sacktag_skip(skb, sk, &state, start_seq); 1921 1922 walk: 1923 skb = tcp_sacktag_walk(skb, sk, next_dup, &state, 1924 start_seq, end_seq, dup_sack); 1925 1926 advance_sp: 1927 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct 1928 * due to in-order walk 1929 */ 1930 if (after(end_seq, tp->frto_highmark)) 1931 state.flag &= ~FLAG_ONLY_ORIG_SACKED; 1932 1933 i++; 1934 } 1935 1936 /* Clear the head of the cache sack blocks so we can skip it next time */ 1937 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1938 tp->recv_sack_cache[i].start_seq = 0; 1939 tp->recv_sack_cache[i].end_seq = 0; 1940 } 1941 for (j = 0; j < used_sacks; j++) 1942 tp->recv_sack_cache[i++] = sp[j]; 1943 1944 tcp_mark_lost_retrans(sk); 1945 1946 tcp_verify_left_out(tp); 1947 1948 if ((state.reord < tp->fackets_out) && 1949 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) && 1950 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark))) 1951 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0); 1952 1953 out: 1954 1955 #if FASTRETRANS_DEBUG > 0 1956 WARN_ON((int)tp->sacked_out < 0); 1957 WARN_ON((int)tp->lost_out < 0); 1958 WARN_ON((int)tp->retrans_out < 0); 1959 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1960 #endif 1961 return state.flag; 1962 } 1963 1964 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1965 * packets_out. Returns zero if sacked_out adjustement wasn't necessary. 1966 */ 1967 static int tcp_limit_reno_sacked(struct tcp_sock *tp) 1968 { 1969 u32 holes; 1970 1971 holes = max(tp->lost_out, 1U); 1972 holes = min(holes, tp->packets_out); 1973 1974 if ((tp->sacked_out + holes) > tp->packets_out) { 1975 tp->sacked_out = tp->packets_out - holes; 1976 return 1; 1977 } 1978 return 0; 1979 } 1980 1981 /* If we receive more dupacks than we expected counting segments 1982 * in assumption of absent reordering, interpret this as reordering. 1983 * The only another reason could be bug in receiver TCP. 1984 */ 1985 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1986 { 1987 struct tcp_sock *tp = tcp_sk(sk); 1988 if (tcp_limit_reno_sacked(tp)) 1989 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1990 } 1991 1992 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1993 1994 static void tcp_add_reno_sack(struct sock *sk) 1995 { 1996 struct tcp_sock *tp = tcp_sk(sk); 1997 tp->sacked_out++; 1998 tcp_check_reno_reordering(sk, 0); 1999 tcp_verify_left_out(tp); 2000 } 2001 2002 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 2003 2004 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 2005 { 2006 struct tcp_sock *tp = tcp_sk(sk); 2007 2008 if (acked > 0) { 2009 /* One ACK acked hole. The rest eat duplicate ACKs. */ 2010 if (acked - 1 >= tp->sacked_out) 2011 tp->sacked_out = 0; 2012 else 2013 tp->sacked_out -= acked - 1; 2014 } 2015 tcp_check_reno_reordering(sk, acked); 2016 tcp_verify_left_out(tp); 2017 } 2018 2019 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 2020 { 2021 tp->sacked_out = 0; 2022 } 2023 2024 static int tcp_is_sackfrto(const struct tcp_sock *tp) 2025 { 2026 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp); 2027 } 2028 2029 /* F-RTO can only be used if TCP has never retransmitted anything other than 2030 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here) 2031 */ 2032 int tcp_use_frto(struct sock *sk) 2033 { 2034 const struct tcp_sock *tp = tcp_sk(sk); 2035 const struct inet_connection_sock *icsk = inet_csk(sk); 2036 struct sk_buff *skb; 2037 2038 if (!sysctl_tcp_frto) 2039 return 0; 2040 2041 /* MTU probe and F-RTO won't really play nicely along currently */ 2042 if (icsk->icsk_mtup.probe_size) 2043 return 0; 2044 2045 if (tcp_is_sackfrto(tp)) 2046 return 1; 2047 2048 /* Avoid expensive walking of rexmit queue if possible */ 2049 if (tp->retrans_out > 1) 2050 return 0; 2051 2052 skb = tcp_write_queue_head(sk); 2053 if (tcp_skb_is_last(sk, skb)) 2054 return 1; 2055 skb = tcp_write_queue_next(sk, skb); /* Skips head */ 2056 tcp_for_write_queue_from(skb, sk) { 2057 if (skb == tcp_send_head(sk)) 2058 break; 2059 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2060 return 0; 2061 /* Short-circuit when first non-SACKed skb has been checked */ 2062 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2063 break; 2064 } 2065 return 1; 2066 } 2067 2068 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO 2069 * recovery a bit and use heuristics in tcp_process_frto() to detect if 2070 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to 2071 * keep retrans_out counting accurate (with SACK F-RTO, other than head 2072 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS 2073 * bits are handled if the Loss state is really to be entered (in 2074 * tcp_enter_frto_loss). 2075 * 2076 * Do like tcp_enter_loss() would; when RTO expires the second time it 2077 * does: 2078 * "Reduce ssthresh if it has not yet been made inside this window." 2079 */ 2080 void tcp_enter_frto(struct sock *sk) 2081 { 2082 const struct inet_connection_sock *icsk = inet_csk(sk); 2083 struct tcp_sock *tp = tcp_sk(sk); 2084 struct sk_buff *skb; 2085 2086 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) || 2087 tp->snd_una == tp->high_seq || 2088 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) && 2089 !icsk->icsk_retransmits)) { 2090 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2091 /* Our state is too optimistic in ssthresh() call because cwnd 2092 * is not reduced until tcp_enter_frto_loss() when previous F-RTO 2093 * recovery has not yet completed. Pattern would be this: RTO, 2094 * Cumulative ACK, RTO (2xRTO for the same segment does not end 2095 * up here twice). 2096 * RFC4138 should be more specific on what to do, even though 2097 * RTO is quite unlikely to occur after the first Cumulative ACK 2098 * due to back-off and complexity of triggering events ... 2099 */ 2100 if (tp->frto_counter) { 2101 u32 stored_cwnd; 2102 stored_cwnd = tp->snd_cwnd; 2103 tp->snd_cwnd = 2; 2104 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2105 tp->snd_cwnd = stored_cwnd; 2106 } else { 2107 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2108 } 2109 /* ... in theory, cong.control module could do "any tricks" in 2110 * ssthresh(), which means that ca_state, lost bits and lost_out 2111 * counter would have to be faked before the call occurs. We 2112 * consider that too expensive, unlikely and hacky, so modules 2113 * using these in ssthresh() must deal these incompatibility 2114 * issues if they receives CA_EVENT_FRTO and frto_counter != 0 2115 */ 2116 tcp_ca_event(sk, CA_EVENT_FRTO); 2117 } 2118 2119 tp->undo_marker = tp->snd_una; 2120 tp->undo_retrans = 0; 2121 2122 skb = tcp_write_queue_head(sk); 2123 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2124 tp->undo_marker = 0; 2125 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2126 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2127 tp->retrans_out -= tcp_skb_pcount(skb); 2128 } 2129 tcp_verify_left_out(tp); 2130 2131 /* Too bad if TCP was application limited */ 2132 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1); 2133 2134 /* Earlier loss recovery underway (see RFC4138; Appendix B). 2135 * The last condition is necessary at least in tp->frto_counter case. 2136 */ 2137 if (tcp_is_sackfrto(tp) && (tp->frto_counter || 2138 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) && 2139 after(tp->high_seq, tp->snd_una)) { 2140 tp->frto_highmark = tp->high_seq; 2141 } else { 2142 tp->frto_highmark = tp->snd_nxt; 2143 } 2144 tcp_set_ca_state(sk, TCP_CA_Disorder); 2145 tp->high_seq = tp->snd_nxt; 2146 tp->frto_counter = 1; 2147 } 2148 2149 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO, 2150 * which indicates that we should follow the traditional RTO recovery, 2151 * i.e. mark everything lost and do go-back-N retransmission. 2152 */ 2153 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag) 2154 { 2155 struct tcp_sock *tp = tcp_sk(sk); 2156 struct sk_buff *skb; 2157 2158 tp->lost_out = 0; 2159 tp->retrans_out = 0; 2160 if (tcp_is_reno(tp)) 2161 tcp_reset_reno_sack(tp); 2162 2163 tcp_for_write_queue(skb, sk) { 2164 if (skb == tcp_send_head(sk)) 2165 break; 2166 2167 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2168 /* 2169 * Count the retransmission made on RTO correctly (only when 2170 * waiting for the first ACK and did not get it)... 2171 */ 2172 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) { 2173 /* For some reason this R-bit might get cleared? */ 2174 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 2175 tp->retrans_out += tcp_skb_pcount(skb); 2176 /* ...enter this if branch just for the first segment */ 2177 flag |= FLAG_DATA_ACKED; 2178 } else { 2179 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2180 tp->undo_marker = 0; 2181 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2182 } 2183 2184 /* Marking forward transmissions that were made after RTO lost 2185 * can cause unnecessary retransmissions in some scenarios, 2186 * SACK blocks will mitigate that in some but not in all cases. 2187 * We used to not mark them but it was causing break-ups with 2188 * receivers that do only in-order receival. 2189 * 2190 * TODO: we could detect presence of such receiver and select 2191 * different behavior per flow. 2192 */ 2193 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2194 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 2195 tp->lost_out += tcp_skb_pcount(skb); 2196 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 2197 } 2198 } 2199 tcp_verify_left_out(tp); 2200 2201 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments; 2202 tp->snd_cwnd_cnt = 0; 2203 tp->snd_cwnd_stamp = tcp_time_stamp; 2204 tp->frto_counter = 0; 2205 tp->bytes_acked = 0; 2206 2207 tp->reordering = min_t(unsigned int, tp->reordering, 2208 sysctl_tcp_reordering); 2209 tcp_set_ca_state(sk, TCP_CA_Loss); 2210 tp->high_seq = tp->snd_nxt; 2211 TCP_ECN_queue_cwr(tp); 2212 2213 tcp_clear_all_retrans_hints(tp); 2214 } 2215 2216 static void tcp_clear_retrans_partial(struct tcp_sock *tp) 2217 { 2218 tp->retrans_out = 0; 2219 tp->lost_out = 0; 2220 2221 tp->undo_marker = 0; 2222 tp->undo_retrans = 0; 2223 } 2224 2225 void tcp_clear_retrans(struct tcp_sock *tp) 2226 { 2227 tcp_clear_retrans_partial(tp); 2228 2229 tp->fackets_out = 0; 2230 tp->sacked_out = 0; 2231 } 2232 2233 /* Enter Loss state. If "how" is not zero, forget all SACK information 2234 * and reset tags completely, otherwise preserve SACKs. If receiver 2235 * dropped its ofo queue, we will know this due to reneging detection. 2236 */ 2237 void tcp_enter_loss(struct sock *sk, int how) 2238 { 2239 const struct inet_connection_sock *icsk = inet_csk(sk); 2240 struct tcp_sock *tp = tcp_sk(sk); 2241 struct sk_buff *skb; 2242 2243 /* Reduce ssthresh if it has not yet been made inside this window. */ 2244 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq || 2245 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2246 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2247 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2248 tcp_ca_event(sk, CA_EVENT_LOSS); 2249 } 2250 tp->snd_cwnd = 1; 2251 tp->snd_cwnd_cnt = 0; 2252 tp->snd_cwnd_stamp = tcp_time_stamp; 2253 2254 tp->bytes_acked = 0; 2255 tcp_clear_retrans_partial(tp); 2256 2257 if (tcp_is_reno(tp)) 2258 tcp_reset_reno_sack(tp); 2259 2260 if (!how) { 2261 /* Push undo marker, if it was plain RTO and nothing 2262 * was retransmitted. */ 2263 tp->undo_marker = tp->snd_una; 2264 } else { 2265 tp->sacked_out = 0; 2266 tp->fackets_out = 0; 2267 } 2268 tcp_clear_all_retrans_hints(tp); 2269 2270 tcp_for_write_queue(skb, sk) { 2271 if (skb == tcp_send_head(sk)) 2272 break; 2273 2274 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2275 tp->undo_marker = 0; 2276 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 2277 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) { 2278 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2279 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 2280 tp->lost_out += tcp_skb_pcount(skb); 2281 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 2282 } 2283 } 2284 tcp_verify_left_out(tp); 2285 2286 tp->reordering = min_t(unsigned int, tp->reordering, 2287 sysctl_tcp_reordering); 2288 tcp_set_ca_state(sk, TCP_CA_Loss); 2289 tp->high_seq = tp->snd_nxt; 2290 TCP_ECN_queue_cwr(tp); 2291 /* Abort F-RTO algorithm if one is in progress */ 2292 tp->frto_counter = 0; 2293 } 2294 2295 /* If ACK arrived pointing to a remembered SACK, it means that our 2296 * remembered SACKs do not reflect real state of receiver i.e. 2297 * receiver _host_ is heavily congested (or buggy). 2298 * 2299 * Do processing similar to RTO timeout. 2300 */ 2301 static int tcp_check_sack_reneging(struct sock *sk, int flag) 2302 { 2303 if (flag & FLAG_SACK_RENEGING) { 2304 struct inet_connection_sock *icsk = inet_csk(sk); 2305 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2306 2307 tcp_enter_loss(sk, 1); 2308 icsk->icsk_retransmits++; 2309 tcp_retransmit_skb(sk, tcp_write_queue_head(sk)); 2310 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2311 icsk->icsk_rto, TCP_RTO_MAX); 2312 return 1; 2313 } 2314 return 0; 2315 } 2316 2317 static inline int tcp_fackets_out(const struct tcp_sock *tp) 2318 { 2319 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2320 } 2321 2322 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2323 * counter when SACK is enabled (without SACK, sacked_out is used for 2324 * that purpose). 2325 * 2326 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2327 * segments up to the highest received SACK block so far and holes in 2328 * between them. 2329 * 2330 * With reordering, holes may still be in flight, so RFC3517 recovery 2331 * uses pure sacked_out (total number of SACKed segments) even though 2332 * it violates the RFC that uses duplicate ACKs, often these are equal 2333 * but when e.g. out-of-window ACKs or packet duplication occurs, 2334 * they differ. Since neither occurs due to loss, TCP should really 2335 * ignore them. 2336 */ 2337 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2338 { 2339 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2340 } 2341 2342 static inline int tcp_skb_timedout(const struct sock *sk, 2343 const struct sk_buff *skb) 2344 { 2345 return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto; 2346 } 2347 2348 static inline int tcp_head_timedout(const struct sock *sk) 2349 { 2350 const struct tcp_sock *tp = tcp_sk(sk); 2351 2352 return tp->packets_out && 2353 tcp_skb_timedout(sk, tcp_write_queue_head(sk)); 2354 } 2355 2356 /* Linux NewReno/SACK/FACK/ECN state machine. 2357 * -------------------------------------- 2358 * 2359 * "Open" Normal state, no dubious events, fast path. 2360 * "Disorder" In all the respects it is "Open", 2361 * but requires a bit more attention. It is entered when 2362 * we see some SACKs or dupacks. It is split of "Open" 2363 * mainly to move some processing from fast path to slow one. 2364 * "CWR" CWND was reduced due to some Congestion Notification event. 2365 * It can be ECN, ICMP source quench, local device congestion. 2366 * "Recovery" CWND was reduced, we are fast-retransmitting. 2367 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2368 * 2369 * tcp_fastretrans_alert() is entered: 2370 * - each incoming ACK, if state is not "Open" 2371 * - when arrived ACK is unusual, namely: 2372 * * SACK 2373 * * Duplicate ACK. 2374 * * ECN ECE. 2375 * 2376 * Counting packets in flight is pretty simple. 2377 * 2378 * in_flight = packets_out - left_out + retrans_out 2379 * 2380 * packets_out is SND.NXT-SND.UNA counted in packets. 2381 * 2382 * retrans_out is number of retransmitted segments. 2383 * 2384 * left_out is number of segments left network, but not ACKed yet. 2385 * 2386 * left_out = sacked_out + lost_out 2387 * 2388 * sacked_out: Packets, which arrived to receiver out of order 2389 * and hence not ACKed. With SACKs this number is simply 2390 * amount of SACKed data. Even without SACKs 2391 * it is easy to give pretty reliable estimate of this number, 2392 * counting duplicate ACKs. 2393 * 2394 * lost_out: Packets lost by network. TCP has no explicit 2395 * "loss notification" feedback from network (for now). 2396 * It means that this number can be only _guessed_. 2397 * Actually, it is the heuristics to predict lossage that 2398 * distinguishes different algorithms. 2399 * 2400 * F.e. after RTO, when all the queue is considered as lost, 2401 * lost_out = packets_out and in_flight = retrans_out. 2402 * 2403 * Essentially, we have now two algorithms counting 2404 * lost packets. 2405 * 2406 * FACK: It is the simplest heuristics. As soon as we decided 2407 * that something is lost, we decide that _all_ not SACKed 2408 * packets until the most forward SACK are lost. I.e. 2409 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2410 * It is absolutely correct estimate, if network does not reorder 2411 * packets. And it loses any connection to reality when reordering 2412 * takes place. We use FACK by default until reordering 2413 * is suspected on the path to this destination. 2414 * 2415 * NewReno: when Recovery is entered, we assume that one segment 2416 * is lost (classic Reno). While we are in Recovery and 2417 * a partial ACK arrives, we assume that one more packet 2418 * is lost (NewReno). This heuristics are the same in NewReno 2419 * and SACK. 2420 * 2421 * Imagine, that's all! Forget about all this shamanism about CWND inflation 2422 * deflation etc. CWND is real congestion window, never inflated, changes 2423 * only according to classic VJ rules. 2424 * 2425 * Really tricky (and requiring careful tuning) part of algorithm 2426 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2427 * The first determines the moment _when_ we should reduce CWND and, 2428 * hence, slow down forward transmission. In fact, it determines the moment 2429 * when we decide that hole is caused by loss, rather than by a reorder. 2430 * 2431 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2432 * holes, caused by lost packets. 2433 * 2434 * And the most logically complicated part of algorithm is undo 2435 * heuristics. We detect false retransmits due to both too early 2436 * fast retransmit (reordering) and underestimated RTO, analyzing 2437 * timestamps and D-SACKs. When we detect that some segments were 2438 * retransmitted by mistake and CWND reduction was wrong, we undo 2439 * window reduction and abort recovery phase. This logic is hidden 2440 * inside several functions named tcp_try_undo_<something>. 2441 */ 2442 2443 /* This function decides, when we should leave Disordered state 2444 * and enter Recovery phase, reducing congestion window. 2445 * 2446 * Main question: may we further continue forward transmission 2447 * with the same cwnd? 2448 */ 2449 static int tcp_time_to_recover(struct sock *sk) 2450 { 2451 struct tcp_sock *tp = tcp_sk(sk); 2452 __u32 packets_out; 2453 2454 /* Do not perform any recovery during F-RTO algorithm */ 2455 if (tp->frto_counter) 2456 return 0; 2457 2458 /* Trick#1: The loss is proven. */ 2459 if (tp->lost_out) 2460 return 1; 2461 2462 /* Not-A-Trick#2 : Classic rule... */ 2463 if (tcp_dupack_heuristics(tp) > tp->reordering) 2464 return 1; 2465 2466 /* Trick#3 : when we use RFC2988 timer restart, fast 2467 * retransmit can be triggered by timeout of queue head. 2468 */ 2469 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) 2470 return 1; 2471 2472 /* Trick#4: It is still not OK... But will it be useful to delay 2473 * recovery more? 2474 */ 2475 packets_out = tp->packets_out; 2476 if (packets_out <= tp->reordering && 2477 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 2478 !tcp_may_send_now(sk)) { 2479 /* We have nothing to send. This connection is limited 2480 * either by receiver window or by application. 2481 */ 2482 return 1; 2483 } 2484 2485 /* If a thin stream is detected, retransmit after first 2486 * received dupack. Employ only if SACK is supported in order 2487 * to avoid possible corner-case series of spurious retransmissions 2488 * Use only if there are no unsent data. 2489 */ 2490 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) && 2491 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 && 2492 tcp_is_sack(tp) && !tcp_send_head(sk)) 2493 return 1; 2494 2495 return 0; 2496 } 2497 2498 /* New heuristics: it is possible only after we switched to restart timer 2499 * each time when something is ACKed. Hence, we can detect timed out packets 2500 * during fast retransmit without falling to slow start. 2501 * 2502 * Usefulness of this as is very questionable, since we should know which of 2503 * the segments is the next to timeout which is relatively expensive to find 2504 * in general case unless we add some data structure just for that. The 2505 * current approach certainly won't find the right one too often and when it 2506 * finally does find _something_ it usually marks large part of the window 2507 * right away (because a retransmission with a larger timestamp blocks the 2508 * loop from advancing). -ij 2509 */ 2510 static void tcp_timeout_skbs(struct sock *sk) 2511 { 2512 struct tcp_sock *tp = tcp_sk(sk); 2513 struct sk_buff *skb; 2514 2515 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk)) 2516 return; 2517 2518 skb = tp->scoreboard_skb_hint; 2519 if (tp->scoreboard_skb_hint == NULL) 2520 skb = tcp_write_queue_head(sk); 2521 2522 tcp_for_write_queue_from(skb, sk) { 2523 if (skb == tcp_send_head(sk)) 2524 break; 2525 if (!tcp_skb_timedout(sk, skb)) 2526 break; 2527 2528 tcp_skb_mark_lost(tp, skb); 2529 } 2530 2531 tp->scoreboard_skb_hint = skb; 2532 2533 tcp_verify_left_out(tp); 2534 } 2535 2536 /* Detect loss in event "A" above by marking head of queue up as lost. 2537 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments 2538 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2539 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2540 * the maximum SACKed segments to pass before reaching this limit. 2541 */ 2542 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2543 { 2544 struct tcp_sock *tp = tcp_sk(sk); 2545 struct sk_buff *skb; 2546 int cnt, oldcnt; 2547 int err; 2548 unsigned int mss; 2549 /* Use SACK to deduce losses of new sequences sent during recovery */ 2550 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2551 2552 WARN_ON(packets > tp->packets_out); 2553 if (tp->lost_skb_hint) { 2554 skb = tp->lost_skb_hint; 2555 cnt = tp->lost_cnt_hint; 2556 /* Head already handled? */ 2557 if (mark_head && skb != tcp_write_queue_head(sk)) 2558 return; 2559 } else { 2560 skb = tcp_write_queue_head(sk); 2561 cnt = 0; 2562 } 2563 2564 tcp_for_write_queue_from(skb, sk) { 2565 if (skb == tcp_send_head(sk)) 2566 break; 2567 /* TODO: do this better */ 2568 /* this is not the most efficient way to do this... */ 2569 tp->lost_skb_hint = skb; 2570 tp->lost_cnt_hint = cnt; 2571 2572 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2573 break; 2574 2575 oldcnt = cnt; 2576 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2577 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2578 cnt += tcp_skb_pcount(skb); 2579 2580 if (cnt > packets) { 2581 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2582 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2583 (oldcnt >= packets)) 2584 break; 2585 2586 mss = skb_shinfo(skb)->gso_size; 2587 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss); 2588 if (err < 0) 2589 break; 2590 cnt = packets; 2591 } 2592 2593 tcp_skb_mark_lost(tp, skb); 2594 2595 if (mark_head) 2596 break; 2597 } 2598 tcp_verify_left_out(tp); 2599 } 2600 2601 /* Account newly detected lost packet(s) */ 2602 2603 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2604 { 2605 struct tcp_sock *tp = tcp_sk(sk); 2606 2607 if (tcp_is_reno(tp)) { 2608 tcp_mark_head_lost(sk, 1, 1); 2609 } else if (tcp_is_fack(tp)) { 2610 int lost = tp->fackets_out - tp->reordering; 2611 if (lost <= 0) 2612 lost = 1; 2613 tcp_mark_head_lost(sk, lost, 0); 2614 } else { 2615 int sacked_upto = tp->sacked_out - tp->reordering; 2616 if (sacked_upto >= 0) 2617 tcp_mark_head_lost(sk, sacked_upto, 0); 2618 else if (fast_rexmit) 2619 tcp_mark_head_lost(sk, 1, 1); 2620 } 2621 2622 tcp_timeout_skbs(sk); 2623 } 2624 2625 /* CWND moderation, preventing bursts due to too big ACKs 2626 * in dubious situations. 2627 */ 2628 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 2629 { 2630 tp->snd_cwnd = min(tp->snd_cwnd, 2631 tcp_packets_in_flight(tp) + tcp_max_burst(tp)); 2632 tp->snd_cwnd_stamp = tcp_time_stamp; 2633 } 2634 2635 /* Lower bound on congestion window is slow start threshold 2636 * unless congestion avoidance choice decides to overide it. 2637 */ 2638 static inline u32 tcp_cwnd_min(const struct sock *sk) 2639 { 2640 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 2641 2642 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh; 2643 } 2644 2645 /* Decrease cwnd each second ack. */ 2646 static void tcp_cwnd_down(struct sock *sk, int flag) 2647 { 2648 struct tcp_sock *tp = tcp_sk(sk); 2649 int decr = tp->snd_cwnd_cnt + 1; 2650 2651 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) || 2652 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) { 2653 tp->snd_cwnd_cnt = decr & 1; 2654 decr >>= 1; 2655 2656 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk)) 2657 tp->snd_cwnd -= decr; 2658 2659 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1); 2660 tp->snd_cwnd_stamp = tcp_time_stamp; 2661 } 2662 } 2663 2664 /* Nothing was retransmitted or returned timestamp is less 2665 * than timestamp of the first retransmission. 2666 */ 2667 static inline int tcp_packet_delayed(const struct tcp_sock *tp) 2668 { 2669 return !tp->retrans_stamp || 2670 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2671 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp)); 2672 } 2673 2674 /* Undo procedures. */ 2675 2676 #if FASTRETRANS_DEBUG > 1 2677 static void DBGUNDO(struct sock *sk, const char *msg) 2678 { 2679 struct tcp_sock *tp = tcp_sk(sk); 2680 struct inet_sock *inet = inet_sk(sk); 2681 2682 if (sk->sk_family == AF_INET) { 2683 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2684 msg, 2685 &inet->inet_daddr, ntohs(inet->inet_dport), 2686 tp->snd_cwnd, tcp_left_out(tp), 2687 tp->snd_ssthresh, tp->prior_ssthresh, 2688 tp->packets_out); 2689 } 2690 #if IS_ENABLED(CONFIG_IPV6) 2691 else if (sk->sk_family == AF_INET6) { 2692 struct ipv6_pinfo *np = inet6_sk(sk); 2693 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2694 msg, 2695 &np->daddr, ntohs(inet->inet_dport), 2696 tp->snd_cwnd, tcp_left_out(tp), 2697 tp->snd_ssthresh, tp->prior_ssthresh, 2698 tp->packets_out); 2699 } 2700 #endif 2701 } 2702 #else 2703 #define DBGUNDO(x...) do { } while (0) 2704 #endif 2705 2706 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh) 2707 { 2708 struct tcp_sock *tp = tcp_sk(sk); 2709 2710 if (tp->prior_ssthresh) { 2711 const struct inet_connection_sock *icsk = inet_csk(sk); 2712 2713 if (icsk->icsk_ca_ops->undo_cwnd) 2714 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2715 else 2716 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1); 2717 2718 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) { 2719 tp->snd_ssthresh = tp->prior_ssthresh; 2720 TCP_ECN_withdraw_cwr(tp); 2721 } 2722 } else { 2723 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 2724 } 2725 tp->snd_cwnd_stamp = tcp_time_stamp; 2726 } 2727 2728 static inline int tcp_may_undo(const struct tcp_sock *tp) 2729 { 2730 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2731 } 2732 2733 /* People celebrate: "We love our President!" */ 2734 static int tcp_try_undo_recovery(struct sock *sk) 2735 { 2736 struct tcp_sock *tp = tcp_sk(sk); 2737 2738 if (tcp_may_undo(tp)) { 2739 int mib_idx; 2740 2741 /* Happy end! We did not retransmit anything 2742 * or our original transmission succeeded. 2743 */ 2744 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2745 tcp_undo_cwr(sk, true); 2746 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2747 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2748 else 2749 mib_idx = LINUX_MIB_TCPFULLUNDO; 2750 2751 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2752 tp->undo_marker = 0; 2753 } 2754 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2755 /* Hold old state until something *above* high_seq 2756 * is ACKed. For Reno it is MUST to prevent false 2757 * fast retransmits (RFC2582). SACK TCP is safe. */ 2758 tcp_moderate_cwnd(tp); 2759 return 1; 2760 } 2761 tcp_set_ca_state(sk, TCP_CA_Open); 2762 return 0; 2763 } 2764 2765 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2766 static void tcp_try_undo_dsack(struct sock *sk) 2767 { 2768 struct tcp_sock *tp = tcp_sk(sk); 2769 2770 if (tp->undo_marker && !tp->undo_retrans) { 2771 DBGUNDO(sk, "D-SACK"); 2772 tcp_undo_cwr(sk, true); 2773 tp->undo_marker = 0; 2774 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2775 } 2776 } 2777 2778 /* We can clear retrans_stamp when there are no retransmissions in the 2779 * window. It would seem that it is trivially available for us in 2780 * tp->retrans_out, however, that kind of assumptions doesn't consider 2781 * what will happen if errors occur when sending retransmission for the 2782 * second time. ...It could the that such segment has only 2783 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2784 * the head skb is enough except for some reneging corner cases that 2785 * are not worth the effort. 2786 * 2787 * Main reason for all this complexity is the fact that connection dying 2788 * time now depends on the validity of the retrans_stamp, in particular, 2789 * that successive retransmissions of a segment must not advance 2790 * retrans_stamp under any conditions. 2791 */ 2792 static int tcp_any_retrans_done(const struct sock *sk) 2793 { 2794 const struct tcp_sock *tp = tcp_sk(sk); 2795 struct sk_buff *skb; 2796 2797 if (tp->retrans_out) 2798 return 1; 2799 2800 skb = tcp_write_queue_head(sk); 2801 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2802 return 1; 2803 2804 return 0; 2805 } 2806 2807 /* Undo during fast recovery after partial ACK. */ 2808 2809 static int tcp_try_undo_partial(struct sock *sk, int acked) 2810 { 2811 struct tcp_sock *tp = tcp_sk(sk); 2812 /* Partial ACK arrived. Force Hoe's retransmit. */ 2813 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering); 2814 2815 if (tcp_may_undo(tp)) { 2816 /* Plain luck! Hole if filled with delayed 2817 * packet, rather than with a retransmit. 2818 */ 2819 if (!tcp_any_retrans_done(sk)) 2820 tp->retrans_stamp = 0; 2821 2822 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2823 2824 DBGUNDO(sk, "Hoe"); 2825 tcp_undo_cwr(sk, false); 2826 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2827 2828 /* So... Do not make Hoe's retransmit yet. 2829 * If the first packet was delayed, the rest 2830 * ones are most probably delayed as well. 2831 */ 2832 failed = 0; 2833 } 2834 return failed; 2835 } 2836 2837 /* Undo during loss recovery after partial ACK. */ 2838 static int tcp_try_undo_loss(struct sock *sk) 2839 { 2840 struct tcp_sock *tp = tcp_sk(sk); 2841 2842 if (tcp_may_undo(tp)) { 2843 struct sk_buff *skb; 2844 tcp_for_write_queue(skb, sk) { 2845 if (skb == tcp_send_head(sk)) 2846 break; 2847 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2848 } 2849 2850 tcp_clear_all_retrans_hints(tp); 2851 2852 DBGUNDO(sk, "partial loss"); 2853 tp->lost_out = 0; 2854 tcp_undo_cwr(sk, true); 2855 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2856 inet_csk(sk)->icsk_retransmits = 0; 2857 tp->undo_marker = 0; 2858 if (tcp_is_sack(tp)) 2859 tcp_set_ca_state(sk, TCP_CA_Open); 2860 return 1; 2861 } 2862 return 0; 2863 } 2864 2865 static inline void tcp_complete_cwr(struct sock *sk) 2866 { 2867 struct tcp_sock *tp = tcp_sk(sk); 2868 2869 /* Do not moderate cwnd if it's already undone in cwr or recovery. */ 2870 if (tp->undo_marker) { 2871 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR) { 2872 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 2873 tp->snd_cwnd_stamp = tcp_time_stamp; 2874 } else if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH) { 2875 /* PRR algorithm. */ 2876 tp->snd_cwnd = tp->snd_ssthresh; 2877 tp->snd_cwnd_stamp = tcp_time_stamp; 2878 } 2879 } 2880 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2881 } 2882 2883 static void tcp_try_keep_open(struct sock *sk) 2884 { 2885 struct tcp_sock *tp = tcp_sk(sk); 2886 int state = TCP_CA_Open; 2887 2888 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2889 state = TCP_CA_Disorder; 2890 2891 if (inet_csk(sk)->icsk_ca_state != state) { 2892 tcp_set_ca_state(sk, state); 2893 tp->high_seq = tp->snd_nxt; 2894 } 2895 } 2896 2897 static void tcp_try_to_open(struct sock *sk, int flag) 2898 { 2899 struct tcp_sock *tp = tcp_sk(sk); 2900 2901 tcp_verify_left_out(tp); 2902 2903 if (!tp->frto_counter && !tcp_any_retrans_done(sk)) 2904 tp->retrans_stamp = 0; 2905 2906 if (flag & FLAG_ECE) 2907 tcp_enter_cwr(sk, 1); 2908 2909 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2910 tcp_try_keep_open(sk); 2911 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open) 2912 tcp_moderate_cwnd(tp); 2913 } else { 2914 tcp_cwnd_down(sk, flag); 2915 } 2916 } 2917 2918 static void tcp_mtup_probe_failed(struct sock *sk) 2919 { 2920 struct inet_connection_sock *icsk = inet_csk(sk); 2921 2922 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2923 icsk->icsk_mtup.probe_size = 0; 2924 } 2925 2926 static void tcp_mtup_probe_success(struct sock *sk) 2927 { 2928 struct tcp_sock *tp = tcp_sk(sk); 2929 struct inet_connection_sock *icsk = inet_csk(sk); 2930 2931 /* FIXME: breaks with very large cwnd */ 2932 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2933 tp->snd_cwnd = tp->snd_cwnd * 2934 tcp_mss_to_mtu(sk, tp->mss_cache) / 2935 icsk->icsk_mtup.probe_size; 2936 tp->snd_cwnd_cnt = 0; 2937 tp->snd_cwnd_stamp = tcp_time_stamp; 2938 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2939 2940 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2941 icsk->icsk_mtup.probe_size = 0; 2942 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2943 } 2944 2945 /* Do a simple retransmit without using the backoff mechanisms in 2946 * tcp_timer. This is used for path mtu discovery. 2947 * The socket is already locked here. 2948 */ 2949 void tcp_simple_retransmit(struct sock *sk) 2950 { 2951 const struct inet_connection_sock *icsk = inet_csk(sk); 2952 struct tcp_sock *tp = tcp_sk(sk); 2953 struct sk_buff *skb; 2954 unsigned int mss = tcp_current_mss(sk); 2955 u32 prior_lost = tp->lost_out; 2956 2957 tcp_for_write_queue(skb, sk) { 2958 if (skb == tcp_send_head(sk)) 2959 break; 2960 if (tcp_skb_seglen(skb) > mss && 2961 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2962 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2963 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2964 tp->retrans_out -= tcp_skb_pcount(skb); 2965 } 2966 tcp_skb_mark_lost_uncond_verify(tp, skb); 2967 } 2968 } 2969 2970 tcp_clear_retrans_hints_partial(tp); 2971 2972 if (prior_lost == tp->lost_out) 2973 return; 2974 2975 if (tcp_is_reno(tp)) 2976 tcp_limit_reno_sacked(tp); 2977 2978 tcp_verify_left_out(tp); 2979 2980 /* Don't muck with the congestion window here. 2981 * Reason is that we do not increase amount of _data_ 2982 * in network, but units changed and effective 2983 * cwnd/ssthresh really reduced now. 2984 */ 2985 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2986 tp->high_seq = tp->snd_nxt; 2987 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2988 tp->prior_ssthresh = 0; 2989 tp->undo_marker = 0; 2990 tcp_set_ca_state(sk, TCP_CA_Loss); 2991 } 2992 tcp_xmit_retransmit_queue(sk); 2993 } 2994 EXPORT_SYMBOL(tcp_simple_retransmit); 2995 2996 /* This function implements the PRR algorithm, specifcally the PRR-SSRB 2997 * (proportional rate reduction with slow start reduction bound) as described in 2998 * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt. 2999 * It computes the number of packets to send (sndcnt) based on packets newly 3000 * delivered: 3001 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 3002 * cwnd reductions across a full RTT. 3003 * 2) If packets in flight is lower than ssthresh (such as due to excess 3004 * losses and/or application stalls), do not perform any further cwnd 3005 * reductions, but instead slow start up to ssthresh. 3006 */ 3007 static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked, 3008 int fast_rexmit, int flag) 3009 { 3010 struct tcp_sock *tp = tcp_sk(sk); 3011 int sndcnt = 0; 3012 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 3013 3014 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) { 3015 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 3016 tp->prior_cwnd - 1; 3017 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 3018 } else { 3019 sndcnt = min_t(int, delta, 3020 max_t(int, tp->prr_delivered - tp->prr_out, 3021 newly_acked_sacked) + 1); 3022 } 3023 3024 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0)); 3025 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 3026 } 3027 3028 /* Process an event, which can update packets-in-flight not trivially. 3029 * Main goal of this function is to calculate new estimate for left_out, 3030 * taking into account both packets sitting in receiver's buffer and 3031 * packets lost by network. 3032 * 3033 * Besides that it does CWND reduction, when packet loss is detected 3034 * and changes state of machine. 3035 * 3036 * It does _not_ decide what to send, it is made in function 3037 * tcp_xmit_retransmit_queue(). 3038 */ 3039 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, 3040 int newly_acked_sacked, bool is_dupack, 3041 int flag) 3042 { 3043 struct inet_connection_sock *icsk = inet_csk(sk); 3044 struct tcp_sock *tp = tcp_sk(sk); 3045 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 3046 (tcp_fackets_out(tp) > tp->reordering)); 3047 int fast_rexmit = 0, mib_idx; 3048 3049 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 3050 tp->sacked_out = 0; 3051 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 3052 tp->fackets_out = 0; 3053 3054 /* Now state machine starts. 3055 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 3056 if (flag & FLAG_ECE) 3057 tp->prior_ssthresh = 0; 3058 3059 /* B. In all the states check for reneging SACKs. */ 3060 if (tcp_check_sack_reneging(sk, flag)) 3061 return; 3062 3063 /* C. Check consistency of the current state. */ 3064 tcp_verify_left_out(tp); 3065 3066 /* D. Check state exit conditions. State can be terminated 3067 * when high_seq is ACKed. */ 3068 if (icsk->icsk_ca_state == TCP_CA_Open) { 3069 WARN_ON(tp->retrans_out != 0); 3070 tp->retrans_stamp = 0; 3071 } else if (!before(tp->snd_una, tp->high_seq)) { 3072 switch (icsk->icsk_ca_state) { 3073 case TCP_CA_Loss: 3074 icsk->icsk_retransmits = 0; 3075 if (tcp_try_undo_recovery(sk)) 3076 return; 3077 break; 3078 3079 case TCP_CA_CWR: 3080 /* CWR is to be held something *above* high_seq 3081 * is ACKed for CWR bit to reach receiver. */ 3082 if (tp->snd_una != tp->high_seq) { 3083 tcp_complete_cwr(sk); 3084 tcp_set_ca_state(sk, TCP_CA_Open); 3085 } 3086 break; 3087 3088 case TCP_CA_Recovery: 3089 if (tcp_is_reno(tp)) 3090 tcp_reset_reno_sack(tp); 3091 if (tcp_try_undo_recovery(sk)) 3092 return; 3093 tcp_complete_cwr(sk); 3094 break; 3095 } 3096 } 3097 3098 /* E. Process state. */ 3099 switch (icsk->icsk_ca_state) { 3100 case TCP_CA_Recovery: 3101 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 3102 if (tcp_is_reno(tp) && is_dupack) 3103 tcp_add_reno_sack(sk); 3104 } else 3105 do_lost = tcp_try_undo_partial(sk, pkts_acked); 3106 break; 3107 case TCP_CA_Loss: 3108 if (flag & FLAG_DATA_ACKED) 3109 icsk->icsk_retransmits = 0; 3110 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED) 3111 tcp_reset_reno_sack(tp); 3112 if (!tcp_try_undo_loss(sk)) { 3113 tcp_moderate_cwnd(tp); 3114 tcp_xmit_retransmit_queue(sk); 3115 return; 3116 } 3117 if (icsk->icsk_ca_state != TCP_CA_Open) 3118 return; 3119 /* Loss is undone; fall through to processing in Open state. */ 3120 default: 3121 if (tcp_is_reno(tp)) { 3122 if (flag & FLAG_SND_UNA_ADVANCED) 3123 tcp_reset_reno_sack(tp); 3124 if (is_dupack) 3125 tcp_add_reno_sack(sk); 3126 } 3127 3128 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 3129 tcp_try_undo_dsack(sk); 3130 3131 if (!tcp_time_to_recover(sk)) { 3132 tcp_try_to_open(sk, flag); 3133 return; 3134 } 3135 3136 /* MTU probe failure: don't reduce cwnd */ 3137 if (icsk->icsk_ca_state < TCP_CA_CWR && 3138 icsk->icsk_mtup.probe_size && 3139 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3140 tcp_mtup_probe_failed(sk); 3141 /* Restores the reduction we did in tcp_mtup_probe() */ 3142 tp->snd_cwnd++; 3143 tcp_simple_retransmit(sk); 3144 return; 3145 } 3146 3147 /* Otherwise enter Recovery state */ 3148 3149 if (tcp_is_reno(tp)) 3150 mib_idx = LINUX_MIB_TCPRENORECOVERY; 3151 else 3152 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 3153 3154 NET_INC_STATS_BH(sock_net(sk), mib_idx); 3155 3156 tp->high_seq = tp->snd_nxt; 3157 tp->prior_ssthresh = 0; 3158 tp->undo_marker = tp->snd_una; 3159 tp->undo_retrans = tp->retrans_out; 3160 3161 if (icsk->icsk_ca_state < TCP_CA_CWR) { 3162 if (!(flag & FLAG_ECE)) 3163 tp->prior_ssthresh = tcp_current_ssthresh(sk); 3164 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 3165 TCP_ECN_queue_cwr(tp); 3166 } 3167 3168 tp->bytes_acked = 0; 3169 tp->snd_cwnd_cnt = 0; 3170 tp->prior_cwnd = tp->snd_cwnd; 3171 tp->prr_delivered = 0; 3172 tp->prr_out = 0; 3173 tcp_set_ca_state(sk, TCP_CA_Recovery); 3174 fast_rexmit = 1; 3175 } 3176 3177 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk))) 3178 tcp_update_scoreboard(sk, fast_rexmit); 3179 tp->prr_delivered += newly_acked_sacked; 3180 tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag); 3181 tcp_xmit_retransmit_queue(sk); 3182 } 3183 3184 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt) 3185 { 3186 tcp_rtt_estimator(sk, seq_rtt); 3187 tcp_set_rto(sk); 3188 inet_csk(sk)->icsk_backoff = 0; 3189 } 3190 EXPORT_SYMBOL(tcp_valid_rtt_meas); 3191 3192 /* Read draft-ietf-tcplw-high-performance before mucking 3193 * with this code. (Supersedes RFC1323) 3194 */ 3195 static void tcp_ack_saw_tstamp(struct sock *sk, int flag) 3196 { 3197 /* RTTM Rule: A TSecr value received in a segment is used to 3198 * update the averaged RTT measurement only if the segment 3199 * acknowledges some new data, i.e., only if it advances the 3200 * left edge of the send window. 3201 * 3202 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3203 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru> 3204 * 3205 * Changed: reset backoff as soon as we see the first valid sample. 3206 * If we do not, we get strongly overestimated rto. With timestamps 3207 * samples are accepted even from very old segments: f.e., when rtt=1 3208 * increases to 8, we retransmit 5 times and after 8 seconds delayed 3209 * answer arrives rto becomes 120 seconds! If at least one of segments 3210 * in window is lost... Voila. --ANK (010210) 3211 */ 3212 struct tcp_sock *tp = tcp_sk(sk); 3213 3214 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr); 3215 } 3216 3217 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag) 3218 { 3219 /* We don't have a timestamp. Can only use 3220 * packets that are not retransmitted to determine 3221 * rtt estimates. Also, we must not reset the 3222 * backoff for rto until we get a non-retransmitted 3223 * packet. This allows us to deal with a situation 3224 * where the network delay has increased suddenly. 3225 * I.e. Karn's algorithm. (SIGCOMM '87, p5.) 3226 */ 3227 3228 if (flag & FLAG_RETRANS_DATA_ACKED) 3229 return; 3230 3231 tcp_valid_rtt_meas(sk, seq_rtt); 3232 } 3233 3234 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag, 3235 const s32 seq_rtt) 3236 { 3237 const struct tcp_sock *tp = tcp_sk(sk); 3238 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */ 3239 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3240 tcp_ack_saw_tstamp(sk, flag); 3241 else if (seq_rtt >= 0) 3242 tcp_ack_no_tstamp(sk, seq_rtt, flag); 3243 } 3244 3245 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight) 3246 { 3247 const struct inet_connection_sock *icsk = inet_csk(sk); 3248 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight); 3249 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 3250 } 3251 3252 /* Restart timer after forward progress on connection. 3253 * RFC2988 recommends to restart timer to now+rto. 3254 */ 3255 static void tcp_rearm_rto(struct sock *sk) 3256 { 3257 const struct tcp_sock *tp = tcp_sk(sk); 3258 3259 if (!tp->packets_out) { 3260 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3261 } else { 3262 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3263 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3264 } 3265 } 3266 3267 /* If we get here, the whole TSO packet has not been acked. */ 3268 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3269 { 3270 struct tcp_sock *tp = tcp_sk(sk); 3271 u32 packets_acked; 3272 3273 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3274 3275 packets_acked = tcp_skb_pcount(skb); 3276 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3277 return 0; 3278 packets_acked -= tcp_skb_pcount(skb); 3279 3280 if (packets_acked) { 3281 BUG_ON(tcp_skb_pcount(skb) == 0); 3282 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3283 } 3284 3285 return packets_acked; 3286 } 3287 3288 /* Remove acknowledged frames from the retransmission queue. If our packet 3289 * is before the ack sequence we can discard it as it's confirmed to have 3290 * arrived at the other end. 3291 */ 3292 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3293 u32 prior_snd_una) 3294 { 3295 struct tcp_sock *tp = tcp_sk(sk); 3296 const struct inet_connection_sock *icsk = inet_csk(sk); 3297 struct sk_buff *skb; 3298 u32 now = tcp_time_stamp; 3299 int fully_acked = 1; 3300 int flag = 0; 3301 u32 pkts_acked = 0; 3302 u32 reord = tp->packets_out; 3303 u32 prior_sacked = tp->sacked_out; 3304 s32 seq_rtt = -1; 3305 s32 ca_seq_rtt = -1; 3306 ktime_t last_ackt = net_invalid_timestamp(); 3307 3308 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3309 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3310 u32 acked_pcount; 3311 u8 sacked = scb->sacked; 3312 3313 /* Determine how many packets and what bytes were acked, tso and else */ 3314 if (after(scb->end_seq, tp->snd_una)) { 3315 if (tcp_skb_pcount(skb) == 1 || 3316 !after(tp->snd_una, scb->seq)) 3317 break; 3318 3319 acked_pcount = tcp_tso_acked(sk, skb); 3320 if (!acked_pcount) 3321 break; 3322 3323 fully_acked = 0; 3324 } else { 3325 acked_pcount = tcp_skb_pcount(skb); 3326 } 3327 3328 if (sacked & TCPCB_RETRANS) { 3329 if (sacked & TCPCB_SACKED_RETRANS) 3330 tp->retrans_out -= acked_pcount; 3331 flag |= FLAG_RETRANS_DATA_ACKED; 3332 ca_seq_rtt = -1; 3333 seq_rtt = -1; 3334 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1)) 3335 flag |= FLAG_NONHEAD_RETRANS_ACKED; 3336 } else { 3337 ca_seq_rtt = now - scb->when; 3338 last_ackt = skb->tstamp; 3339 if (seq_rtt < 0) { 3340 seq_rtt = ca_seq_rtt; 3341 } 3342 if (!(sacked & TCPCB_SACKED_ACKED)) 3343 reord = min(pkts_acked, reord); 3344 } 3345 3346 if (sacked & TCPCB_SACKED_ACKED) 3347 tp->sacked_out -= acked_pcount; 3348 if (sacked & TCPCB_LOST) 3349 tp->lost_out -= acked_pcount; 3350 3351 tp->packets_out -= acked_pcount; 3352 pkts_acked += acked_pcount; 3353 3354 /* Initial outgoing SYN's get put onto the write_queue 3355 * just like anything else we transmit. It is not 3356 * true data, and if we misinform our callers that 3357 * this ACK acks real data, we will erroneously exit 3358 * connection startup slow start one packet too 3359 * quickly. This is severely frowned upon behavior. 3360 */ 3361 if (!(scb->tcp_flags & TCPHDR_SYN)) { 3362 flag |= FLAG_DATA_ACKED; 3363 } else { 3364 flag |= FLAG_SYN_ACKED; 3365 tp->retrans_stamp = 0; 3366 } 3367 3368 if (!fully_acked) 3369 break; 3370 3371 tcp_unlink_write_queue(skb, sk); 3372 sk_wmem_free_skb(sk, skb); 3373 tp->scoreboard_skb_hint = NULL; 3374 if (skb == tp->retransmit_skb_hint) 3375 tp->retransmit_skb_hint = NULL; 3376 if (skb == tp->lost_skb_hint) 3377 tp->lost_skb_hint = NULL; 3378 } 3379 3380 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3381 tp->snd_up = tp->snd_una; 3382 3383 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3384 flag |= FLAG_SACK_RENEGING; 3385 3386 if (flag & FLAG_ACKED) { 3387 const struct tcp_congestion_ops *ca_ops 3388 = inet_csk(sk)->icsk_ca_ops; 3389 3390 if (unlikely(icsk->icsk_mtup.probe_size && 3391 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3392 tcp_mtup_probe_success(sk); 3393 } 3394 3395 tcp_ack_update_rtt(sk, flag, seq_rtt); 3396 tcp_rearm_rto(sk); 3397 3398 if (tcp_is_reno(tp)) { 3399 tcp_remove_reno_sacks(sk, pkts_acked); 3400 } else { 3401 int delta; 3402 3403 /* Non-retransmitted hole got filled? That's reordering */ 3404 if (reord < prior_fackets) 3405 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3406 3407 delta = tcp_is_fack(tp) ? pkts_acked : 3408 prior_sacked - tp->sacked_out; 3409 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3410 } 3411 3412 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3413 3414 if (ca_ops->pkts_acked) { 3415 s32 rtt_us = -1; 3416 3417 /* Is the ACK triggering packet unambiguous? */ 3418 if (!(flag & FLAG_RETRANS_DATA_ACKED)) { 3419 /* High resolution needed and available? */ 3420 if (ca_ops->flags & TCP_CONG_RTT_STAMP && 3421 !ktime_equal(last_ackt, 3422 net_invalid_timestamp())) 3423 rtt_us = ktime_us_delta(ktime_get_real(), 3424 last_ackt); 3425 else if (ca_seq_rtt >= 0) 3426 rtt_us = jiffies_to_usecs(ca_seq_rtt); 3427 } 3428 3429 ca_ops->pkts_acked(sk, pkts_acked, rtt_us); 3430 } 3431 } 3432 3433 #if FASTRETRANS_DEBUG > 0 3434 WARN_ON((int)tp->sacked_out < 0); 3435 WARN_ON((int)tp->lost_out < 0); 3436 WARN_ON((int)tp->retrans_out < 0); 3437 if (!tp->packets_out && tcp_is_sack(tp)) { 3438 icsk = inet_csk(sk); 3439 if (tp->lost_out) { 3440 printk(KERN_DEBUG "Leak l=%u %d\n", 3441 tp->lost_out, icsk->icsk_ca_state); 3442 tp->lost_out = 0; 3443 } 3444 if (tp->sacked_out) { 3445 printk(KERN_DEBUG "Leak s=%u %d\n", 3446 tp->sacked_out, icsk->icsk_ca_state); 3447 tp->sacked_out = 0; 3448 } 3449 if (tp->retrans_out) { 3450 printk(KERN_DEBUG "Leak r=%u %d\n", 3451 tp->retrans_out, icsk->icsk_ca_state); 3452 tp->retrans_out = 0; 3453 } 3454 } 3455 #endif 3456 return flag; 3457 } 3458 3459 static void tcp_ack_probe(struct sock *sk) 3460 { 3461 const struct tcp_sock *tp = tcp_sk(sk); 3462 struct inet_connection_sock *icsk = inet_csk(sk); 3463 3464 /* Was it a usable window open? */ 3465 3466 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3467 icsk->icsk_backoff = 0; 3468 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3469 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3470 * This function is not for random using! 3471 */ 3472 } else { 3473 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3474 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 3475 TCP_RTO_MAX); 3476 } 3477 } 3478 3479 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag) 3480 { 3481 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3482 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3483 } 3484 3485 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3486 { 3487 const struct tcp_sock *tp = tcp_sk(sk); 3488 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) && 3489 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR)); 3490 } 3491 3492 /* Check that window update is acceptable. 3493 * The function assumes that snd_una<=ack<=snd_next. 3494 */ 3495 static inline int tcp_may_update_window(const struct tcp_sock *tp, 3496 const u32 ack, const u32 ack_seq, 3497 const u32 nwin) 3498 { 3499 return after(ack, tp->snd_una) || 3500 after(ack_seq, tp->snd_wl1) || 3501 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3502 } 3503 3504 /* Update our send window. 3505 * 3506 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3507 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3508 */ 3509 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3510 u32 ack_seq) 3511 { 3512 struct tcp_sock *tp = tcp_sk(sk); 3513 int flag = 0; 3514 u32 nwin = ntohs(tcp_hdr(skb)->window); 3515 3516 if (likely(!tcp_hdr(skb)->syn)) 3517 nwin <<= tp->rx_opt.snd_wscale; 3518 3519 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3520 flag |= FLAG_WIN_UPDATE; 3521 tcp_update_wl(tp, ack_seq); 3522 3523 if (tp->snd_wnd != nwin) { 3524 tp->snd_wnd = nwin; 3525 3526 /* Note, it is the only place, where 3527 * fast path is recovered for sending TCP. 3528 */ 3529 tp->pred_flags = 0; 3530 tcp_fast_path_check(sk); 3531 3532 if (nwin > tp->max_window) { 3533 tp->max_window = nwin; 3534 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3535 } 3536 } 3537 } 3538 3539 tp->snd_una = ack; 3540 3541 return flag; 3542 } 3543 3544 /* A very conservative spurious RTO response algorithm: reduce cwnd and 3545 * continue in congestion avoidance. 3546 */ 3547 static void tcp_conservative_spur_to_response(struct tcp_sock *tp) 3548 { 3549 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 3550 tp->snd_cwnd_cnt = 0; 3551 tp->bytes_acked = 0; 3552 TCP_ECN_queue_cwr(tp); 3553 tcp_moderate_cwnd(tp); 3554 } 3555 3556 /* A conservative spurious RTO response algorithm: reduce cwnd using 3557 * rate halving and continue in congestion avoidance. 3558 */ 3559 static void tcp_ratehalving_spur_to_response(struct sock *sk) 3560 { 3561 tcp_enter_cwr(sk, 0); 3562 } 3563 3564 static void tcp_undo_spur_to_response(struct sock *sk, int flag) 3565 { 3566 if (flag & FLAG_ECE) 3567 tcp_ratehalving_spur_to_response(sk); 3568 else 3569 tcp_undo_cwr(sk, true); 3570 } 3571 3572 /* F-RTO spurious RTO detection algorithm (RFC4138) 3573 * 3574 * F-RTO affects during two new ACKs following RTO (well, almost, see inline 3575 * comments). State (ACK number) is kept in frto_counter. When ACK advances 3576 * window (but not to or beyond highest sequence sent before RTO): 3577 * On First ACK, send two new segments out. 3578 * On Second ACK, RTO was likely spurious. Do spurious response (response 3579 * algorithm is not part of the F-RTO detection algorithm 3580 * given in RFC4138 but can be selected separately). 3581 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss 3582 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding 3583 * of Nagle, this is done using frto_counter states 2 and 3, when a new data 3584 * segment of any size sent during F-RTO, state 2 is upgraded to 3. 3585 * 3586 * Rationale: if the RTO was spurious, new ACKs should arrive from the 3587 * original window even after we transmit two new data segments. 3588 * 3589 * SACK version: 3590 * on first step, wait until first cumulative ACK arrives, then move to 3591 * the second step. In second step, the next ACK decides. 3592 * 3593 * F-RTO is implemented (mainly) in four functions: 3594 * - tcp_use_frto() is used to determine if TCP is can use F-RTO 3595 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is 3596 * called when tcp_use_frto() showed green light 3597 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm 3598 * - tcp_enter_frto_loss() is called if there is not enough evidence 3599 * to prove that the RTO is indeed spurious. It transfers the control 3600 * from F-RTO to the conventional RTO recovery 3601 */ 3602 static int tcp_process_frto(struct sock *sk, int flag) 3603 { 3604 struct tcp_sock *tp = tcp_sk(sk); 3605 3606 tcp_verify_left_out(tp); 3607 3608 /* Duplicate the behavior from Loss state (fastretrans_alert) */ 3609 if (flag & FLAG_DATA_ACKED) 3610 inet_csk(sk)->icsk_retransmits = 0; 3611 3612 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) || 3613 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED))) 3614 tp->undo_marker = 0; 3615 3616 if (!before(tp->snd_una, tp->frto_highmark)) { 3617 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag); 3618 return 1; 3619 } 3620 3621 if (!tcp_is_sackfrto(tp)) { 3622 /* RFC4138 shortcoming in step 2; should also have case c): 3623 * ACK isn't duplicate nor advances window, e.g., opposite dir 3624 * data, winupdate 3625 */ 3626 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP)) 3627 return 1; 3628 3629 if (!(flag & FLAG_DATA_ACKED)) { 3630 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3), 3631 flag); 3632 return 1; 3633 } 3634 } else { 3635 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) { 3636 /* Prevent sending of new data. */ 3637 tp->snd_cwnd = min(tp->snd_cwnd, 3638 tcp_packets_in_flight(tp)); 3639 return 1; 3640 } 3641 3642 if ((tp->frto_counter >= 2) && 3643 (!(flag & FLAG_FORWARD_PROGRESS) || 3644 ((flag & FLAG_DATA_SACKED) && 3645 !(flag & FLAG_ONLY_ORIG_SACKED)))) { 3646 /* RFC4138 shortcoming (see comment above) */ 3647 if (!(flag & FLAG_FORWARD_PROGRESS) && 3648 (flag & FLAG_NOT_DUP)) 3649 return 1; 3650 3651 tcp_enter_frto_loss(sk, 3, flag); 3652 return 1; 3653 } 3654 } 3655 3656 if (tp->frto_counter == 1) { 3657 /* tcp_may_send_now needs to see updated state */ 3658 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2; 3659 tp->frto_counter = 2; 3660 3661 if (!tcp_may_send_now(sk)) 3662 tcp_enter_frto_loss(sk, 2, flag); 3663 3664 return 1; 3665 } else { 3666 switch (sysctl_tcp_frto_response) { 3667 case 2: 3668 tcp_undo_spur_to_response(sk, flag); 3669 break; 3670 case 1: 3671 tcp_conservative_spur_to_response(tp); 3672 break; 3673 default: 3674 tcp_ratehalving_spur_to_response(sk); 3675 break; 3676 } 3677 tp->frto_counter = 0; 3678 tp->undo_marker = 0; 3679 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS); 3680 } 3681 return 0; 3682 } 3683 3684 /* This routine deals with incoming acks, but not outgoing ones. */ 3685 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3686 { 3687 struct inet_connection_sock *icsk = inet_csk(sk); 3688 struct tcp_sock *tp = tcp_sk(sk); 3689 u32 prior_snd_una = tp->snd_una; 3690 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3691 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3692 bool is_dupack = false; 3693 u32 prior_in_flight; 3694 u32 prior_fackets; 3695 int prior_packets; 3696 int prior_sacked = tp->sacked_out; 3697 int pkts_acked = 0; 3698 int newly_acked_sacked = 0; 3699 int frto_cwnd = 0; 3700 3701 /* If the ack is older than previous acks 3702 * then we can probably ignore it. 3703 */ 3704 if (before(ack, prior_snd_una)) 3705 goto old_ack; 3706 3707 /* If the ack includes data we haven't sent yet, discard 3708 * this segment (RFC793 Section 3.9). 3709 */ 3710 if (after(ack, tp->snd_nxt)) 3711 goto invalid_ack; 3712 3713 if (after(ack, prior_snd_una)) 3714 flag |= FLAG_SND_UNA_ADVANCED; 3715 3716 if (sysctl_tcp_abc) { 3717 if (icsk->icsk_ca_state < TCP_CA_CWR) 3718 tp->bytes_acked += ack - prior_snd_una; 3719 else if (icsk->icsk_ca_state == TCP_CA_Loss) 3720 /* we assume just one segment left network */ 3721 tp->bytes_acked += min(ack - prior_snd_una, 3722 tp->mss_cache); 3723 } 3724 3725 prior_fackets = tp->fackets_out; 3726 prior_in_flight = tcp_packets_in_flight(tp); 3727 3728 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3729 /* Window is constant, pure forward advance. 3730 * No more checks are required. 3731 * Note, we use the fact that SND.UNA>=SND.WL2. 3732 */ 3733 tcp_update_wl(tp, ack_seq); 3734 tp->snd_una = ack; 3735 flag |= FLAG_WIN_UPDATE; 3736 3737 tcp_ca_event(sk, CA_EVENT_FAST_ACK); 3738 3739 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS); 3740 } else { 3741 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3742 flag |= FLAG_DATA; 3743 else 3744 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3745 3746 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3747 3748 if (TCP_SKB_CB(skb)->sacked) 3749 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3750 3751 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb))) 3752 flag |= FLAG_ECE; 3753 3754 tcp_ca_event(sk, CA_EVENT_SLOW_ACK); 3755 } 3756 3757 /* We passed data and got it acked, remove any soft error 3758 * log. Something worked... 3759 */ 3760 sk->sk_err_soft = 0; 3761 icsk->icsk_probes_out = 0; 3762 tp->rcv_tstamp = tcp_time_stamp; 3763 prior_packets = tp->packets_out; 3764 if (!prior_packets) 3765 goto no_queue; 3766 3767 /* See if we can take anything off of the retransmit queue. */ 3768 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una); 3769 3770 pkts_acked = prior_packets - tp->packets_out; 3771 newly_acked_sacked = (prior_packets - prior_sacked) - 3772 (tp->packets_out - tp->sacked_out); 3773 3774 if (tp->frto_counter) 3775 frto_cwnd = tcp_process_frto(sk, flag); 3776 /* Guarantee sacktag reordering detection against wrap-arounds */ 3777 if (before(tp->frto_highmark, tp->snd_una)) 3778 tp->frto_highmark = 0; 3779 3780 if (tcp_ack_is_dubious(sk, flag)) { 3781 /* Advance CWND, if state allows this. */ 3782 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd && 3783 tcp_may_raise_cwnd(sk, flag)) 3784 tcp_cong_avoid(sk, ack, prior_in_flight); 3785 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3786 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked, 3787 is_dupack, flag); 3788 } else { 3789 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd) 3790 tcp_cong_avoid(sk, ack, prior_in_flight); 3791 } 3792 3793 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3794 dst_confirm(__sk_dst_get(sk)); 3795 3796 return 1; 3797 3798 no_queue: 3799 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3800 if (flag & FLAG_DSACKING_ACK) 3801 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked, 3802 is_dupack, flag); 3803 /* If this ack opens up a zero window, clear backoff. It was 3804 * being used to time the probes, and is probably far higher than 3805 * it needs to be for normal retransmission. 3806 */ 3807 if (tcp_send_head(sk)) 3808 tcp_ack_probe(sk); 3809 return 1; 3810 3811 invalid_ack: 3812 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3813 return -1; 3814 3815 old_ack: 3816 /* If data was SACKed, tag it and see if we should send more data. 3817 * If data was DSACKed, see if we can undo a cwnd reduction. 3818 */ 3819 if (TCP_SKB_CB(skb)->sacked) { 3820 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3821 newly_acked_sacked = tp->sacked_out - prior_sacked; 3822 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked, 3823 is_dupack, flag); 3824 } 3825 3826 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3827 return 0; 3828 } 3829 3830 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3831 * But, this can also be called on packets in the established flow when 3832 * the fast version below fails. 3833 */ 3834 void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx, 3835 const u8 **hvpp, int estab) 3836 { 3837 const unsigned char *ptr; 3838 const struct tcphdr *th = tcp_hdr(skb); 3839 int length = (th->doff * 4) - sizeof(struct tcphdr); 3840 3841 ptr = (const unsigned char *)(th + 1); 3842 opt_rx->saw_tstamp = 0; 3843 3844 while (length > 0) { 3845 int opcode = *ptr++; 3846 int opsize; 3847 3848 switch (opcode) { 3849 case TCPOPT_EOL: 3850 return; 3851 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3852 length--; 3853 continue; 3854 default: 3855 opsize = *ptr++; 3856 if (opsize < 2) /* "silly options" */ 3857 return; 3858 if (opsize > length) 3859 return; /* don't parse partial options */ 3860 switch (opcode) { 3861 case TCPOPT_MSS: 3862 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3863 u16 in_mss = get_unaligned_be16(ptr); 3864 if (in_mss) { 3865 if (opt_rx->user_mss && 3866 opt_rx->user_mss < in_mss) 3867 in_mss = opt_rx->user_mss; 3868 opt_rx->mss_clamp = in_mss; 3869 } 3870 } 3871 break; 3872 case TCPOPT_WINDOW: 3873 if (opsize == TCPOLEN_WINDOW && th->syn && 3874 !estab && sysctl_tcp_window_scaling) { 3875 __u8 snd_wscale = *(__u8 *)ptr; 3876 opt_rx->wscale_ok = 1; 3877 if (snd_wscale > 14) { 3878 if (net_ratelimit()) 3879 pr_info("%s: Illegal window scaling value %d >14 received\n", 3880 __func__, 3881 snd_wscale); 3882 snd_wscale = 14; 3883 } 3884 opt_rx->snd_wscale = snd_wscale; 3885 } 3886 break; 3887 case TCPOPT_TIMESTAMP: 3888 if ((opsize == TCPOLEN_TIMESTAMP) && 3889 ((estab && opt_rx->tstamp_ok) || 3890 (!estab && sysctl_tcp_timestamps))) { 3891 opt_rx->saw_tstamp = 1; 3892 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3893 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3894 } 3895 break; 3896 case TCPOPT_SACK_PERM: 3897 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3898 !estab && sysctl_tcp_sack) { 3899 opt_rx->sack_ok = TCP_SACK_SEEN; 3900 tcp_sack_reset(opt_rx); 3901 } 3902 break; 3903 3904 case TCPOPT_SACK: 3905 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3906 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3907 opt_rx->sack_ok) { 3908 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3909 } 3910 break; 3911 #ifdef CONFIG_TCP_MD5SIG 3912 case TCPOPT_MD5SIG: 3913 /* 3914 * The MD5 Hash has already been 3915 * checked (see tcp_v{4,6}_do_rcv()). 3916 */ 3917 break; 3918 #endif 3919 case TCPOPT_COOKIE: 3920 /* This option is variable length. 3921 */ 3922 switch (opsize) { 3923 case TCPOLEN_COOKIE_BASE: 3924 /* not yet implemented */ 3925 break; 3926 case TCPOLEN_COOKIE_PAIR: 3927 /* not yet implemented */ 3928 break; 3929 case TCPOLEN_COOKIE_MIN+0: 3930 case TCPOLEN_COOKIE_MIN+2: 3931 case TCPOLEN_COOKIE_MIN+4: 3932 case TCPOLEN_COOKIE_MIN+6: 3933 case TCPOLEN_COOKIE_MAX: 3934 /* 16-bit multiple */ 3935 opt_rx->cookie_plus = opsize; 3936 *hvpp = ptr; 3937 break; 3938 default: 3939 /* ignore option */ 3940 break; 3941 } 3942 break; 3943 } 3944 3945 ptr += opsize-2; 3946 length -= opsize; 3947 } 3948 } 3949 } 3950 EXPORT_SYMBOL(tcp_parse_options); 3951 3952 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3953 { 3954 const __be32 *ptr = (const __be32 *)(th + 1); 3955 3956 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3957 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3958 tp->rx_opt.saw_tstamp = 1; 3959 ++ptr; 3960 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3961 ++ptr; 3962 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 3963 return 1; 3964 } 3965 return 0; 3966 } 3967 3968 /* Fast parse options. This hopes to only see timestamps. 3969 * If it is wrong it falls back on tcp_parse_options(). 3970 */ 3971 static int tcp_fast_parse_options(const struct sk_buff *skb, 3972 const struct tcphdr *th, 3973 struct tcp_sock *tp, const u8 **hvpp) 3974 { 3975 /* In the spirit of fast parsing, compare doff directly to constant 3976 * values. Because equality is used, short doff can be ignored here. 3977 */ 3978 if (th->doff == (sizeof(*th) / 4)) { 3979 tp->rx_opt.saw_tstamp = 0; 3980 return 0; 3981 } else if (tp->rx_opt.tstamp_ok && 3982 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3983 if (tcp_parse_aligned_timestamp(tp, th)) 3984 return 1; 3985 } 3986 tcp_parse_options(skb, &tp->rx_opt, hvpp, 1); 3987 return 1; 3988 } 3989 3990 #ifdef CONFIG_TCP_MD5SIG 3991 /* 3992 * Parse MD5 Signature option 3993 */ 3994 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3995 { 3996 int length = (th->doff << 2) - sizeof(*th); 3997 const u8 *ptr = (const u8 *)(th + 1); 3998 3999 /* If the TCP option is too short, we can short cut */ 4000 if (length < TCPOLEN_MD5SIG) 4001 return NULL; 4002 4003 while (length > 0) { 4004 int opcode = *ptr++; 4005 int opsize; 4006 4007 switch(opcode) { 4008 case TCPOPT_EOL: 4009 return NULL; 4010 case TCPOPT_NOP: 4011 length--; 4012 continue; 4013 default: 4014 opsize = *ptr++; 4015 if (opsize < 2 || opsize > length) 4016 return NULL; 4017 if (opcode == TCPOPT_MD5SIG) 4018 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 4019 } 4020 ptr += opsize - 2; 4021 length -= opsize; 4022 } 4023 return NULL; 4024 } 4025 EXPORT_SYMBOL(tcp_parse_md5sig_option); 4026 #endif 4027 4028 static inline void tcp_store_ts_recent(struct tcp_sock *tp) 4029 { 4030 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 4031 tp->rx_opt.ts_recent_stamp = get_seconds(); 4032 } 4033 4034 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 4035 { 4036 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 4037 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 4038 * extra check below makes sure this can only happen 4039 * for pure ACK frames. -DaveM 4040 * 4041 * Not only, also it occurs for expired timestamps. 4042 */ 4043 4044 if (tcp_paws_check(&tp->rx_opt, 0)) 4045 tcp_store_ts_recent(tp); 4046 } 4047 } 4048 4049 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4050 * 4051 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4052 * it can pass through stack. So, the following predicate verifies that 4053 * this segment is not used for anything but congestion avoidance or 4054 * fast retransmit. Moreover, we even are able to eliminate most of such 4055 * second order effects, if we apply some small "replay" window (~RTO) 4056 * to timestamp space. 4057 * 4058 * All these measures still do not guarantee that we reject wrapped ACKs 4059 * on networks with high bandwidth, when sequence space is recycled fastly, 4060 * but it guarantees that such events will be very rare and do not affect 4061 * connection seriously. This doesn't look nice, but alas, PAWS is really 4062 * buggy extension. 4063 * 4064 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4065 * states that events when retransmit arrives after original data are rare. 4066 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4067 * the biggest problem on large power networks even with minor reordering. 4068 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4069 * up to bandwidth of 18Gigabit/sec. 8) ] 4070 */ 4071 4072 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 4073 { 4074 const struct tcp_sock *tp = tcp_sk(sk); 4075 const struct tcphdr *th = tcp_hdr(skb); 4076 u32 seq = TCP_SKB_CB(skb)->seq; 4077 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4078 4079 return (/* 1. Pure ACK with correct sequence number. */ 4080 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 4081 4082 /* 2. ... and duplicate ACK. */ 4083 ack == tp->snd_una && 4084 4085 /* 3. ... and does not update window. */ 4086 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4087 4088 /* 4. ... and sits in replay window. */ 4089 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4090 } 4091 4092 static inline int tcp_paws_discard(const struct sock *sk, 4093 const struct sk_buff *skb) 4094 { 4095 const struct tcp_sock *tp = tcp_sk(sk); 4096 4097 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4098 !tcp_disordered_ack(sk, skb); 4099 } 4100 4101 /* Check segment sequence number for validity. 4102 * 4103 * Segment controls are considered valid, if the segment 4104 * fits to the window after truncation to the window. Acceptability 4105 * of data (and SYN, FIN, of course) is checked separately. 4106 * See tcp_data_queue(), for example. 4107 * 4108 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4109 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4110 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4111 * (borrowed from freebsd) 4112 */ 4113 4114 static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4115 { 4116 return !before(end_seq, tp->rcv_wup) && 4117 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4118 } 4119 4120 /* When we get a reset we do this. */ 4121 static void tcp_reset(struct sock *sk) 4122 { 4123 /* We want the right error as BSD sees it (and indeed as we do). */ 4124 switch (sk->sk_state) { 4125 case TCP_SYN_SENT: 4126 sk->sk_err = ECONNREFUSED; 4127 break; 4128 case TCP_CLOSE_WAIT: 4129 sk->sk_err = EPIPE; 4130 break; 4131 case TCP_CLOSE: 4132 return; 4133 default: 4134 sk->sk_err = ECONNRESET; 4135 } 4136 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4137 smp_wmb(); 4138 4139 if (!sock_flag(sk, SOCK_DEAD)) 4140 sk->sk_error_report(sk); 4141 4142 tcp_done(sk); 4143 } 4144 4145 /* 4146 * Process the FIN bit. This now behaves as it is supposed to work 4147 * and the FIN takes effect when it is validly part of sequence 4148 * space. Not before when we get holes. 4149 * 4150 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4151 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4152 * TIME-WAIT) 4153 * 4154 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4155 * close and we go into CLOSING (and later onto TIME-WAIT) 4156 * 4157 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4158 */ 4159 static void tcp_fin(struct sock *sk) 4160 { 4161 struct tcp_sock *tp = tcp_sk(sk); 4162 4163 inet_csk_schedule_ack(sk); 4164 4165 sk->sk_shutdown |= RCV_SHUTDOWN; 4166 sock_set_flag(sk, SOCK_DONE); 4167 4168 switch (sk->sk_state) { 4169 case TCP_SYN_RECV: 4170 case TCP_ESTABLISHED: 4171 /* Move to CLOSE_WAIT */ 4172 tcp_set_state(sk, TCP_CLOSE_WAIT); 4173 inet_csk(sk)->icsk_ack.pingpong = 1; 4174 break; 4175 4176 case TCP_CLOSE_WAIT: 4177 case TCP_CLOSING: 4178 /* Received a retransmission of the FIN, do 4179 * nothing. 4180 */ 4181 break; 4182 case TCP_LAST_ACK: 4183 /* RFC793: Remain in the LAST-ACK state. */ 4184 break; 4185 4186 case TCP_FIN_WAIT1: 4187 /* This case occurs when a simultaneous close 4188 * happens, we must ack the received FIN and 4189 * enter the CLOSING state. 4190 */ 4191 tcp_send_ack(sk); 4192 tcp_set_state(sk, TCP_CLOSING); 4193 break; 4194 case TCP_FIN_WAIT2: 4195 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4196 tcp_send_ack(sk); 4197 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4198 break; 4199 default: 4200 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4201 * cases we should never reach this piece of code. 4202 */ 4203 pr_err("%s: Impossible, sk->sk_state=%d\n", 4204 __func__, sk->sk_state); 4205 break; 4206 } 4207 4208 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4209 * Probably, we should reset in this case. For now drop them. 4210 */ 4211 __skb_queue_purge(&tp->out_of_order_queue); 4212 if (tcp_is_sack(tp)) 4213 tcp_sack_reset(&tp->rx_opt); 4214 sk_mem_reclaim(sk); 4215 4216 if (!sock_flag(sk, SOCK_DEAD)) { 4217 sk->sk_state_change(sk); 4218 4219 /* Do not send POLL_HUP for half duplex close. */ 4220 if (sk->sk_shutdown == SHUTDOWN_MASK || 4221 sk->sk_state == TCP_CLOSE) 4222 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4223 else 4224 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4225 } 4226 } 4227 4228 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4229 u32 end_seq) 4230 { 4231 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4232 if (before(seq, sp->start_seq)) 4233 sp->start_seq = seq; 4234 if (after(end_seq, sp->end_seq)) 4235 sp->end_seq = end_seq; 4236 return 1; 4237 } 4238 return 0; 4239 } 4240 4241 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4242 { 4243 struct tcp_sock *tp = tcp_sk(sk); 4244 4245 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4246 int mib_idx; 4247 4248 if (before(seq, tp->rcv_nxt)) 4249 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4250 else 4251 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4252 4253 NET_INC_STATS_BH(sock_net(sk), mib_idx); 4254 4255 tp->rx_opt.dsack = 1; 4256 tp->duplicate_sack[0].start_seq = seq; 4257 tp->duplicate_sack[0].end_seq = end_seq; 4258 } 4259 } 4260 4261 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4262 { 4263 struct tcp_sock *tp = tcp_sk(sk); 4264 4265 if (!tp->rx_opt.dsack) 4266 tcp_dsack_set(sk, seq, end_seq); 4267 else 4268 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4269 } 4270 4271 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4272 { 4273 struct tcp_sock *tp = tcp_sk(sk); 4274 4275 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4276 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4277 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4278 tcp_enter_quickack_mode(sk); 4279 4280 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4281 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4282 4283 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4284 end_seq = tp->rcv_nxt; 4285 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4286 } 4287 } 4288 4289 tcp_send_ack(sk); 4290 } 4291 4292 /* These routines update the SACK block as out-of-order packets arrive or 4293 * in-order packets close up the sequence space. 4294 */ 4295 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4296 { 4297 int this_sack; 4298 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4299 struct tcp_sack_block *swalk = sp + 1; 4300 4301 /* See if the recent change to the first SACK eats into 4302 * or hits the sequence space of other SACK blocks, if so coalesce. 4303 */ 4304 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4305 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4306 int i; 4307 4308 /* Zap SWALK, by moving every further SACK up by one slot. 4309 * Decrease num_sacks. 4310 */ 4311 tp->rx_opt.num_sacks--; 4312 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4313 sp[i] = sp[i + 1]; 4314 continue; 4315 } 4316 this_sack++, swalk++; 4317 } 4318 } 4319 4320 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4321 { 4322 struct tcp_sock *tp = tcp_sk(sk); 4323 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4324 int cur_sacks = tp->rx_opt.num_sacks; 4325 int this_sack; 4326 4327 if (!cur_sacks) 4328 goto new_sack; 4329 4330 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4331 if (tcp_sack_extend(sp, seq, end_seq)) { 4332 /* Rotate this_sack to the first one. */ 4333 for (; this_sack > 0; this_sack--, sp--) 4334 swap(*sp, *(sp - 1)); 4335 if (cur_sacks > 1) 4336 tcp_sack_maybe_coalesce(tp); 4337 return; 4338 } 4339 } 4340 4341 /* Could not find an adjacent existing SACK, build a new one, 4342 * put it at the front, and shift everyone else down. We 4343 * always know there is at least one SACK present already here. 4344 * 4345 * If the sack array is full, forget about the last one. 4346 */ 4347 if (this_sack >= TCP_NUM_SACKS) { 4348 this_sack--; 4349 tp->rx_opt.num_sacks--; 4350 sp--; 4351 } 4352 for (; this_sack > 0; this_sack--, sp--) 4353 *sp = *(sp - 1); 4354 4355 new_sack: 4356 /* Build the new head SACK, and we're done. */ 4357 sp->start_seq = seq; 4358 sp->end_seq = end_seq; 4359 tp->rx_opt.num_sacks++; 4360 } 4361 4362 /* RCV.NXT advances, some SACKs should be eaten. */ 4363 4364 static void tcp_sack_remove(struct tcp_sock *tp) 4365 { 4366 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4367 int num_sacks = tp->rx_opt.num_sacks; 4368 int this_sack; 4369 4370 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4371 if (skb_queue_empty(&tp->out_of_order_queue)) { 4372 tp->rx_opt.num_sacks = 0; 4373 return; 4374 } 4375 4376 for (this_sack = 0; this_sack < num_sacks;) { 4377 /* Check if the start of the sack is covered by RCV.NXT. */ 4378 if (!before(tp->rcv_nxt, sp->start_seq)) { 4379 int i; 4380 4381 /* RCV.NXT must cover all the block! */ 4382 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4383 4384 /* Zap this SACK, by moving forward any other SACKS. */ 4385 for (i=this_sack+1; i < num_sacks; i++) 4386 tp->selective_acks[i-1] = tp->selective_acks[i]; 4387 num_sacks--; 4388 continue; 4389 } 4390 this_sack++; 4391 sp++; 4392 } 4393 tp->rx_opt.num_sacks = num_sacks; 4394 } 4395 4396 /* This one checks to see if we can put data from the 4397 * out_of_order queue into the receive_queue. 4398 */ 4399 static void tcp_ofo_queue(struct sock *sk) 4400 { 4401 struct tcp_sock *tp = tcp_sk(sk); 4402 __u32 dsack_high = tp->rcv_nxt; 4403 struct sk_buff *skb; 4404 4405 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 4406 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4407 break; 4408 4409 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4410 __u32 dsack = dsack_high; 4411 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4412 dsack_high = TCP_SKB_CB(skb)->end_seq; 4413 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4414 } 4415 4416 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4417 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4418 __skb_unlink(skb, &tp->out_of_order_queue); 4419 __kfree_skb(skb); 4420 continue; 4421 } 4422 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4423 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4424 TCP_SKB_CB(skb)->end_seq); 4425 4426 __skb_unlink(skb, &tp->out_of_order_queue); 4427 __skb_queue_tail(&sk->sk_receive_queue, skb); 4428 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4429 if (tcp_hdr(skb)->fin) 4430 tcp_fin(sk); 4431 } 4432 } 4433 4434 static int tcp_prune_ofo_queue(struct sock *sk); 4435 static int tcp_prune_queue(struct sock *sk); 4436 4437 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size) 4438 { 4439 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4440 !sk_rmem_schedule(sk, size)) { 4441 4442 if (tcp_prune_queue(sk) < 0) 4443 return -1; 4444 4445 if (!sk_rmem_schedule(sk, size)) { 4446 if (!tcp_prune_ofo_queue(sk)) 4447 return -1; 4448 4449 if (!sk_rmem_schedule(sk, size)) 4450 return -1; 4451 } 4452 } 4453 return 0; 4454 } 4455 4456 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4457 { 4458 struct tcp_sock *tp = tcp_sk(sk); 4459 struct sk_buff *skb1; 4460 u32 seq, end_seq; 4461 4462 TCP_ECN_check_ce(tp, skb); 4463 4464 if (tcp_try_rmem_schedule(sk, skb->truesize)) { 4465 /* TODO: should increment a counter */ 4466 __kfree_skb(skb); 4467 return; 4468 } 4469 4470 /* Disable header prediction. */ 4471 tp->pred_flags = 0; 4472 inet_csk_schedule_ack(sk); 4473 4474 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4475 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4476 4477 skb1 = skb_peek_tail(&tp->out_of_order_queue); 4478 if (!skb1) { 4479 /* Initial out of order segment, build 1 SACK. */ 4480 if (tcp_is_sack(tp)) { 4481 tp->rx_opt.num_sacks = 1; 4482 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 4483 tp->selective_acks[0].end_seq = 4484 TCP_SKB_CB(skb)->end_seq; 4485 } 4486 __skb_queue_head(&tp->out_of_order_queue, skb); 4487 goto end; 4488 } 4489 4490 seq = TCP_SKB_CB(skb)->seq; 4491 end_seq = TCP_SKB_CB(skb)->end_seq; 4492 4493 if (seq == TCP_SKB_CB(skb1)->end_seq) { 4494 /* Packets in ofo can stay in queue a long time. 4495 * Better try to coalesce them right now 4496 * to avoid future tcp_collapse_ofo_queue(), 4497 * probably the most expensive function in tcp stack. 4498 */ 4499 if (skb->len <= skb_tailroom(skb1) && !tcp_hdr(skb)->fin) { 4500 NET_INC_STATS_BH(sock_net(sk), 4501 LINUX_MIB_TCPRCVCOALESCE); 4502 BUG_ON(skb_copy_bits(skb, 0, 4503 skb_put(skb1, skb->len), 4504 skb->len)); 4505 TCP_SKB_CB(skb1)->end_seq = end_seq; 4506 TCP_SKB_CB(skb1)->ack_seq = TCP_SKB_CB(skb)->ack_seq; 4507 __kfree_skb(skb); 4508 skb = NULL; 4509 } else { 4510 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4511 } 4512 4513 if (!tp->rx_opt.num_sacks || 4514 tp->selective_acks[0].end_seq != seq) 4515 goto add_sack; 4516 4517 /* Common case: data arrive in order after hole. */ 4518 tp->selective_acks[0].end_seq = end_seq; 4519 goto end; 4520 } 4521 4522 /* Find place to insert this segment. */ 4523 while (1) { 4524 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 4525 break; 4526 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) { 4527 skb1 = NULL; 4528 break; 4529 } 4530 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1); 4531 } 4532 4533 /* Do skb overlap to previous one? */ 4534 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4535 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4536 /* All the bits are present. Drop. */ 4537 __kfree_skb(skb); 4538 skb = NULL; 4539 tcp_dsack_set(sk, seq, end_seq); 4540 goto add_sack; 4541 } 4542 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4543 /* Partial overlap. */ 4544 tcp_dsack_set(sk, seq, 4545 TCP_SKB_CB(skb1)->end_seq); 4546 } else { 4547 if (skb_queue_is_first(&tp->out_of_order_queue, 4548 skb1)) 4549 skb1 = NULL; 4550 else 4551 skb1 = skb_queue_prev( 4552 &tp->out_of_order_queue, 4553 skb1); 4554 } 4555 } 4556 if (!skb1) 4557 __skb_queue_head(&tp->out_of_order_queue, skb); 4558 else 4559 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4560 4561 /* And clean segments covered by new one as whole. */ 4562 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) { 4563 skb1 = skb_queue_next(&tp->out_of_order_queue, skb); 4564 4565 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4566 break; 4567 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4568 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4569 end_seq); 4570 break; 4571 } 4572 __skb_unlink(skb1, &tp->out_of_order_queue); 4573 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4574 TCP_SKB_CB(skb1)->end_seq); 4575 __kfree_skb(skb1); 4576 } 4577 4578 add_sack: 4579 if (tcp_is_sack(tp)) 4580 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4581 end: 4582 if (skb) 4583 skb_set_owner_r(skb, sk); 4584 } 4585 4586 4587 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4588 { 4589 const struct tcphdr *th = tcp_hdr(skb); 4590 struct tcp_sock *tp = tcp_sk(sk); 4591 int eaten = -1; 4592 4593 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 4594 goto drop; 4595 4596 skb_dst_drop(skb); 4597 __skb_pull(skb, th->doff * 4); 4598 4599 TCP_ECN_accept_cwr(tp, skb); 4600 4601 tp->rx_opt.dsack = 0; 4602 4603 /* Queue data for delivery to the user. 4604 * Packets in sequence go to the receive queue. 4605 * Out of sequence packets to the out_of_order_queue. 4606 */ 4607 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4608 if (tcp_receive_window(tp) == 0) 4609 goto out_of_window; 4610 4611 /* Ok. In sequence. In window. */ 4612 if (tp->ucopy.task == current && 4613 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4614 sock_owned_by_user(sk) && !tp->urg_data) { 4615 int chunk = min_t(unsigned int, skb->len, 4616 tp->ucopy.len); 4617 4618 __set_current_state(TASK_RUNNING); 4619 4620 local_bh_enable(); 4621 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { 4622 tp->ucopy.len -= chunk; 4623 tp->copied_seq += chunk; 4624 eaten = (chunk == skb->len); 4625 tcp_rcv_space_adjust(sk); 4626 } 4627 local_bh_disable(); 4628 } 4629 4630 if (eaten <= 0) { 4631 queue_and_out: 4632 if (eaten < 0 && 4633 tcp_try_rmem_schedule(sk, skb->truesize)) 4634 goto drop; 4635 4636 skb_set_owner_r(skb, sk); 4637 __skb_queue_tail(&sk->sk_receive_queue, skb); 4638 } 4639 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4640 if (skb->len) 4641 tcp_event_data_recv(sk, skb); 4642 if (th->fin) 4643 tcp_fin(sk); 4644 4645 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4646 tcp_ofo_queue(sk); 4647 4648 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4649 * gap in queue is filled. 4650 */ 4651 if (skb_queue_empty(&tp->out_of_order_queue)) 4652 inet_csk(sk)->icsk_ack.pingpong = 0; 4653 } 4654 4655 if (tp->rx_opt.num_sacks) 4656 tcp_sack_remove(tp); 4657 4658 tcp_fast_path_check(sk); 4659 4660 if (eaten > 0) 4661 __kfree_skb(skb); 4662 else if (!sock_flag(sk, SOCK_DEAD)) 4663 sk->sk_data_ready(sk, 0); 4664 return; 4665 } 4666 4667 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4668 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4669 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4670 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4671 4672 out_of_window: 4673 tcp_enter_quickack_mode(sk); 4674 inet_csk_schedule_ack(sk); 4675 drop: 4676 __kfree_skb(skb); 4677 return; 4678 } 4679 4680 /* Out of window. F.e. zero window probe. */ 4681 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4682 goto out_of_window; 4683 4684 tcp_enter_quickack_mode(sk); 4685 4686 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4687 /* Partial packet, seq < rcv_next < end_seq */ 4688 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4689 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4690 TCP_SKB_CB(skb)->end_seq); 4691 4692 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4693 4694 /* If window is closed, drop tail of packet. But after 4695 * remembering D-SACK for its head made in previous line. 4696 */ 4697 if (!tcp_receive_window(tp)) 4698 goto out_of_window; 4699 goto queue_and_out; 4700 } 4701 4702 tcp_data_queue_ofo(sk, skb); 4703 } 4704 4705 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4706 struct sk_buff_head *list) 4707 { 4708 struct sk_buff *next = NULL; 4709 4710 if (!skb_queue_is_last(list, skb)) 4711 next = skb_queue_next(list, skb); 4712 4713 __skb_unlink(skb, list); 4714 __kfree_skb(skb); 4715 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4716 4717 return next; 4718 } 4719 4720 /* Collapse contiguous sequence of skbs head..tail with 4721 * sequence numbers start..end. 4722 * 4723 * If tail is NULL, this means until the end of the list. 4724 * 4725 * Segments with FIN/SYN are not collapsed (only because this 4726 * simplifies code) 4727 */ 4728 static void 4729 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 4730 struct sk_buff *head, struct sk_buff *tail, 4731 u32 start, u32 end) 4732 { 4733 struct sk_buff *skb, *n; 4734 bool end_of_skbs; 4735 4736 /* First, check that queue is collapsible and find 4737 * the point where collapsing can be useful. */ 4738 skb = head; 4739 restart: 4740 end_of_skbs = true; 4741 skb_queue_walk_from_safe(list, skb, n) { 4742 if (skb == tail) 4743 break; 4744 /* No new bits? It is possible on ofo queue. */ 4745 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4746 skb = tcp_collapse_one(sk, skb, list); 4747 if (!skb) 4748 break; 4749 goto restart; 4750 } 4751 4752 /* The first skb to collapse is: 4753 * - not SYN/FIN and 4754 * - bloated or contains data before "start" or 4755 * overlaps to the next one. 4756 */ 4757 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin && 4758 (tcp_win_from_space(skb->truesize) > skb->len || 4759 before(TCP_SKB_CB(skb)->seq, start))) { 4760 end_of_skbs = false; 4761 break; 4762 } 4763 4764 if (!skb_queue_is_last(list, skb)) { 4765 struct sk_buff *next = skb_queue_next(list, skb); 4766 if (next != tail && 4767 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) { 4768 end_of_skbs = false; 4769 break; 4770 } 4771 } 4772 4773 /* Decided to skip this, advance start seq. */ 4774 start = TCP_SKB_CB(skb)->end_seq; 4775 } 4776 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin) 4777 return; 4778 4779 while (before(start, end)) { 4780 struct sk_buff *nskb; 4781 unsigned int header = skb_headroom(skb); 4782 int copy = SKB_MAX_ORDER(header, 0); 4783 4784 /* Too big header? This can happen with IPv6. */ 4785 if (copy < 0) 4786 return; 4787 if (end - start < copy) 4788 copy = end - start; 4789 nskb = alloc_skb(copy + header, GFP_ATOMIC); 4790 if (!nskb) 4791 return; 4792 4793 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head); 4794 skb_set_network_header(nskb, (skb_network_header(skb) - 4795 skb->head)); 4796 skb_set_transport_header(nskb, (skb_transport_header(skb) - 4797 skb->head)); 4798 skb_reserve(nskb, header); 4799 memcpy(nskb->head, skb->head, header); 4800 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4801 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4802 __skb_queue_before(list, skb, nskb); 4803 skb_set_owner_r(nskb, sk); 4804 4805 /* Copy data, releasing collapsed skbs. */ 4806 while (copy > 0) { 4807 int offset = start - TCP_SKB_CB(skb)->seq; 4808 int size = TCP_SKB_CB(skb)->end_seq - start; 4809 4810 BUG_ON(offset < 0); 4811 if (size > 0) { 4812 size = min(copy, size); 4813 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4814 BUG(); 4815 TCP_SKB_CB(nskb)->end_seq += size; 4816 copy -= size; 4817 start += size; 4818 } 4819 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4820 skb = tcp_collapse_one(sk, skb, list); 4821 if (!skb || 4822 skb == tail || 4823 tcp_hdr(skb)->syn || 4824 tcp_hdr(skb)->fin) 4825 return; 4826 } 4827 } 4828 } 4829 } 4830 4831 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4832 * and tcp_collapse() them until all the queue is collapsed. 4833 */ 4834 static void tcp_collapse_ofo_queue(struct sock *sk) 4835 { 4836 struct tcp_sock *tp = tcp_sk(sk); 4837 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 4838 struct sk_buff *head; 4839 u32 start, end; 4840 4841 if (skb == NULL) 4842 return; 4843 4844 start = TCP_SKB_CB(skb)->seq; 4845 end = TCP_SKB_CB(skb)->end_seq; 4846 head = skb; 4847 4848 for (;;) { 4849 struct sk_buff *next = NULL; 4850 4851 if (!skb_queue_is_last(&tp->out_of_order_queue, skb)) 4852 next = skb_queue_next(&tp->out_of_order_queue, skb); 4853 skb = next; 4854 4855 /* Segment is terminated when we see gap or when 4856 * we are at the end of all the queue. */ 4857 if (!skb || 4858 after(TCP_SKB_CB(skb)->seq, end) || 4859 before(TCP_SKB_CB(skb)->end_seq, start)) { 4860 tcp_collapse(sk, &tp->out_of_order_queue, 4861 head, skb, start, end); 4862 head = skb; 4863 if (!skb) 4864 break; 4865 /* Start new segment */ 4866 start = TCP_SKB_CB(skb)->seq; 4867 end = TCP_SKB_CB(skb)->end_seq; 4868 } else { 4869 if (before(TCP_SKB_CB(skb)->seq, start)) 4870 start = TCP_SKB_CB(skb)->seq; 4871 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4872 end = TCP_SKB_CB(skb)->end_seq; 4873 } 4874 } 4875 } 4876 4877 /* 4878 * Purge the out-of-order queue. 4879 * Return true if queue was pruned. 4880 */ 4881 static int tcp_prune_ofo_queue(struct sock *sk) 4882 { 4883 struct tcp_sock *tp = tcp_sk(sk); 4884 int res = 0; 4885 4886 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4887 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED); 4888 __skb_queue_purge(&tp->out_of_order_queue); 4889 4890 /* Reset SACK state. A conforming SACK implementation will 4891 * do the same at a timeout based retransmit. When a connection 4892 * is in a sad state like this, we care only about integrity 4893 * of the connection not performance. 4894 */ 4895 if (tp->rx_opt.sack_ok) 4896 tcp_sack_reset(&tp->rx_opt); 4897 sk_mem_reclaim(sk); 4898 res = 1; 4899 } 4900 return res; 4901 } 4902 4903 /* Reduce allocated memory if we can, trying to get 4904 * the socket within its memory limits again. 4905 * 4906 * Return less than zero if we should start dropping frames 4907 * until the socket owning process reads some of the data 4908 * to stabilize the situation. 4909 */ 4910 static int tcp_prune_queue(struct sock *sk) 4911 { 4912 struct tcp_sock *tp = tcp_sk(sk); 4913 4914 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4915 4916 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED); 4917 4918 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4919 tcp_clamp_window(sk); 4920 else if (sk_under_memory_pressure(sk)) 4921 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4922 4923 tcp_collapse_ofo_queue(sk); 4924 if (!skb_queue_empty(&sk->sk_receive_queue)) 4925 tcp_collapse(sk, &sk->sk_receive_queue, 4926 skb_peek(&sk->sk_receive_queue), 4927 NULL, 4928 tp->copied_seq, tp->rcv_nxt); 4929 sk_mem_reclaim(sk); 4930 4931 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4932 return 0; 4933 4934 /* Collapsing did not help, destructive actions follow. 4935 * This must not ever occur. */ 4936 4937 tcp_prune_ofo_queue(sk); 4938 4939 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4940 return 0; 4941 4942 /* If we are really being abused, tell the caller to silently 4943 * drop receive data on the floor. It will get retransmitted 4944 * and hopefully then we'll have sufficient space. 4945 */ 4946 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED); 4947 4948 /* Massive buffer overcommit. */ 4949 tp->pred_flags = 0; 4950 return -1; 4951 } 4952 4953 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 4954 * As additional protections, we do not touch cwnd in retransmission phases, 4955 * and if application hit its sndbuf limit recently. 4956 */ 4957 void tcp_cwnd_application_limited(struct sock *sk) 4958 { 4959 struct tcp_sock *tp = tcp_sk(sk); 4960 4961 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 4962 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 4963 /* Limited by application or receiver window. */ 4964 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 4965 u32 win_used = max(tp->snd_cwnd_used, init_win); 4966 if (win_used < tp->snd_cwnd) { 4967 tp->snd_ssthresh = tcp_current_ssthresh(sk); 4968 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 4969 } 4970 tp->snd_cwnd_used = 0; 4971 } 4972 tp->snd_cwnd_stamp = tcp_time_stamp; 4973 } 4974 4975 static int tcp_should_expand_sndbuf(const struct sock *sk) 4976 { 4977 const struct tcp_sock *tp = tcp_sk(sk); 4978 4979 /* If the user specified a specific send buffer setting, do 4980 * not modify it. 4981 */ 4982 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4983 return 0; 4984 4985 /* If we are under global TCP memory pressure, do not expand. */ 4986 if (sk_under_memory_pressure(sk)) 4987 return 0; 4988 4989 /* If we are under soft global TCP memory pressure, do not expand. */ 4990 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 4991 return 0; 4992 4993 /* If we filled the congestion window, do not expand. */ 4994 if (tp->packets_out >= tp->snd_cwnd) 4995 return 0; 4996 4997 return 1; 4998 } 4999 5000 /* When incoming ACK allowed to free some skb from write_queue, 5001 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5002 * on the exit from tcp input handler. 5003 * 5004 * PROBLEM: sndbuf expansion does not work well with largesend. 5005 */ 5006 static void tcp_new_space(struct sock *sk) 5007 { 5008 struct tcp_sock *tp = tcp_sk(sk); 5009 5010 if (tcp_should_expand_sndbuf(sk)) { 5011 int sndmem = SKB_TRUESIZE(max_t(u32, 5012 tp->rx_opt.mss_clamp, 5013 tp->mss_cache) + 5014 MAX_TCP_HEADER); 5015 int demanded = max_t(unsigned int, tp->snd_cwnd, 5016 tp->reordering + 1); 5017 sndmem *= 2 * demanded; 5018 if (sndmem > sk->sk_sndbuf) 5019 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 5020 tp->snd_cwnd_stamp = tcp_time_stamp; 5021 } 5022 5023 sk->sk_write_space(sk); 5024 } 5025 5026 static void tcp_check_space(struct sock *sk) 5027 { 5028 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5029 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5030 if (sk->sk_socket && 5031 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5032 tcp_new_space(sk); 5033 } 5034 } 5035 5036 static inline void tcp_data_snd_check(struct sock *sk) 5037 { 5038 tcp_push_pending_frames(sk); 5039 tcp_check_space(sk); 5040 } 5041 5042 /* 5043 * Check if sending an ack is needed. 5044 */ 5045 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5046 { 5047 struct tcp_sock *tp = tcp_sk(sk); 5048 5049 /* More than one full frame received... */ 5050 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5051 /* ... and right edge of window advances far enough. 5052 * (tcp_recvmsg() will send ACK otherwise). Or... 5053 */ 5054 __tcp_select_window(sk) >= tp->rcv_wnd) || 5055 /* We ACK each frame or... */ 5056 tcp_in_quickack_mode(sk) || 5057 /* We have out of order data. */ 5058 (ofo_possible && skb_peek(&tp->out_of_order_queue))) { 5059 /* Then ack it now */ 5060 tcp_send_ack(sk); 5061 } else { 5062 /* Else, send delayed ack. */ 5063 tcp_send_delayed_ack(sk); 5064 } 5065 } 5066 5067 static inline void tcp_ack_snd_check(struct sock *sk) 5068 { 5069 if (!inet_csk_ack_scheduled(sk)) { 5070 /* We sent a data segment already. */ 5071 return; 5072 } 5073 __tcp_ack_snd_check(sk, 1); 5074 } 5075 5076 /* 5077 * This routine is only called when we have urgent data 5078 * signaled. Its the 'slow' part of tcp_urg. It could be 5079 * moved inline now as tcp_urg is only called from one 5080 * place. We handle URGent data wrong. We have to - as 5081 * BSD still doesn't use the correction from RFC961. 5082 * For 1003.1g we should support a new option TCP_STDURG to permit 5083 * either form (or just set the sysctl tcp_stdurg). 5084 */ 5085 5086 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5087 { 5088 struct tcp_sock *tp = tcp_sk(sk); 5089 u32 ptr = ntohs(th->urg_ptr); 5090 5091 if (ptr && !sysctl_tcp_stdurg) 5092 ptr--; 5093 ptr += ntohl(th->seq); 5094 5095 /* Ignore urgent data that we've already seen and read. */ 5096 if (after(tp->copied_seq, ptr)) 5097 return; 5098 5099 /* Do not replay urg ptr. 5100 * 5101 * NOTE: interesting situation not covered by specs. 5102 * Misbehaving sender may send urg ptr, pointing to segment, 5103 * which we already have in ofo queue. We are not able to fetch 5104 * such data and will stay in TCP_URG_NOTYET until will be eaten 5105 * by recvmsg(). Seems, we are not obliged to handle such wicked 5106 * situations. But it is worth to think about possibility of some 5107 * DoSes using some hypothetical application level deadlock. 5108 */ 5109 if (before(ptr, tp->rcv_nxt)) 5110 return; 5111 5112 /* Do we already have a newer (or duplicate) urgent pointer? */ 5113 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5114 return; 5115 5116 /* Tell the world about our new urgent pointer. */ 5117 sk_send_sigurg(sk); 5118 5119 /* We may be adding urgent data when the last byte read was 5120 * urgent. To do this requires some care. We cannot just ignore 5121 * tp->copied_seq since we would read the last urgent byte again 5122 * as data, nor can we alter copied_seq until this data arrives 5123 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5124 * 5125 * NOTE. Double Dutch. Rendering to plain English: author of comment 5126 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5127 * and expect that both A and B disappear from stream. This is _wrong_. 5128 * Though this happens in BSD with high probability, this is occasional. 5129 * Any application relying on this is buggy. Note also, that fix "works" 5130 * only in this artificial test. Insert some normal data between A and B and we will 5131 * decline of BSD again. Verdict: it is better to remove to trap 5132 * buggy users. 5133 */ 5134 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5135 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5136 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5137 tp->copied_seq++; 5138 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5139 __skb_unlink(skb, &sk->sk_receive_queue); 5140 __kfree_skb(skb); 5141 } 5142 } 5143 5144 tp->urg_data = TCP_URG_NOTYET; 5145 tp->urg_seq = ptr; 5146 5147 /* Disable header prediction. */ 5148 tp->pred_flags = 0; 5149 } 5150 5151 /* This is the 'fast' part of urgent handling. */ 5152 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5153 { 5154 struct tcp_sock *tp = tcp_sk(sk); 5155 5156 /* Check if we get a new urgent pointer - normally not. */ 5157 if (th->urg) 5158 tcp_check_urg(sk, th); 5159 5160 /* Do we wait for any urgent data? - normally not... */ 5161 if (tp->urg_data == TCP_URG_NOTYET) { 5162 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5163 th->syn; 5164 5165 /* Is the urgent pointer pointing into this packet? */ 5166 if (ptr < skb->len) { 5167 u8 tmp; 5168 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5169 BUG(); 5170 tp->urg_data = TCP_URG_VALID | tmp; 5171 if (!sock_flag(sk, SOCK_DEAD)) 5172 sk->sk_data_ready(sk, 0); 5173 } 5174 } 5175 } 5176 5177 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 5178 { 5179 struct tcp_sock *tp = tcp_sk(sk); 5180 int chunk = skb->len - hlen; 5181 int err; 5182 5183 local_bh_enable(); 5184 if (skb_csum_unnecessary(skb)) 5185 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); 5186 else 5187 err = skb_copy_and_csum_datagram_iovec(skb, hlen, 5188 tp->ucopy.iov); 5189 5190 if (!err) { 5191 tp->ucopy.len -= chunk; 5192 tp->copied_seq += chunk; 5193 tcp_rcv_space_adjust(sk); 5194 } 5195 5196 local_bh_disable(); 5197 return err; 5198 } 5199 5200 static __sum16 __tcp_checksum_complete_user(struct sock *sk, 5201 struct sk_buff *skb) 5202 { 5203 __sum16 result; 5204 5205 if (sock_owned_by_user(sk)) { 5206 local_bh_enable(); 5207 result = __tcp_checksum_complete(skb); 5208 local_bh_disable(); 5209 } else { 5210 result = __tcp_checksum_complete(skb); 5211 } 5212 return result; 5213 } 5214 5215 static inline int tcp_checksum_complete_user(struct sock *sk, 5216 struct sk_buff *skb) 5217 { 5218 return !skb_csum_unnecessary(skb) && 5219 __tcp_checksum_complete_user(sk, skb); 5220 } 5221 5222 #ifdef CONFIG_NET_DMA 5223 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, 5224 int hlen) 5225 { 5226 struct tcp_sock *tp = tcp_sk(sk); 5227 int chunk = skb->len - hlen; 5228 int dma_cookie; 5229 int copied_early = 0; 5230 5231 if (tp->ucopy.wakeup) 5232 return 0; 5233 5234 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 5235 tp->ucopy.dma_chan = net_dma_find_channel(); 5236 5237 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) { 5238 5239 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan, 5240 skb, hlen, 5241 tp->ucopy.iov, chunk, 5242 tp->ucopy.pinned_list); 5243 5244 if (dma_cookie < 0) 5245 goto out; 5246 5247 tp->ucopy.dma_cookie = dma_cookie; 5248 copied_early = 1; 5249 5250 tp->ucopy.len -= chunk; 5251 tp->copied_seq += chunk; 5252 tcp_rcv_space_adjust(sk); 5253 5254 if ((tp->ucopy.len == 0) || 5255 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) || 5256 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) { 5257 tp->ucopy.wakeup = 1; 5258 sk->sk_data_ready(sk, 0); 5259 } 5260 } else if (chunk > 0) { 5261 tp->ucopy.wakeup = 1; 5262 sk->sk_data_ready(sk, 0); 5263 } 5264 out: 5265 return copied_early; 5266 } 5267 #endif /* CONFIG_NET_DMA */ 5268 5269 /* Does PAWS and seqno based validation of an incoming segment, flags will 5270 * play significant role here. 5271 */ 5272 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5273 const struct tcphdr *th, int syn_inerr) 5274 { 5275 const u8 *hash_location; 5276 struct tcp_sock *tp = tcp_sk(sk); 5277 5278 /* RFC1323: H1. Apply PAWS check first. */ 5279 if (tcp_fast_parse_options(skb, th, tp, &hash_location) && 5280 tp->rx_opt.saw_tstamp && 5281 tcp_paws_discard(sk, skb)) { 5282 if (!th->rst) { 5283 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5284 tcp_send_dupack(sk, skb); 5285 goto discard; 5286 } 5287 /* Reset is accepted even if it did not pass PAWS. */ 5288 } 5289 5290 /* Step 1: check sequence number */ 5291 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5292 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5293 * (RST) segments are validated by checking their SEQ-fields." 5294 * And page 69: "If an incoming segment is not acceptable, 5295 * an acknowledgment should be sent in reply (unless the RST 5296 * bit is set, if so drop the segment and return)". 5297 */ 5298 if (!th->rst) 5299 tcp_send_dupack(sk, skb); 5300 goto discard; 5301 } 5302 5303 /* Step 2: check RST bit */ 5304 if (th->rst) { 5305 tcp_reset(sk); 5306 goto discard; 5307 } 5308 5309 /* ts_recent update must be made after we are sure that the packet 5310 * is in window. 5311 */ 5312 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 5313 5314 /* step 3: check security and precedence [ignored] */ 5315 5316 /* step 4: Check for a SYN in window. */ 5317 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5318 if (syn_inerr) 5319 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5320 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN); 5321 tcp_reset(sk); 5322 return -1; 5323 } 5324 5325 return 1; 5326 5327 discard: 5328 __kfree_skb(skb); 5329 return 0; 5330 } 5331 5332 /* 5333 * TCP receive function for the ESTABLISHED state. 5334 * 5335 * It is split into a fast path and a slow path. The fast path is 5336 * disabled when: 5337 * - A zero window was announced from us - zero window probing 5338 * is only handled properly in the slow path. 5339 * - Out of order segments arrived. 5340 * - Urgent data is expected. 5341 * - There is no buffer space left 5342 * - Unexpected TCP flags/window values/header lengths are received 5343 * (detected by checking the TCP header against pred_flags) 5344 * - Data is sent in both directions. Fast path only supports pure senders 5345 * or pure receivers (this means either the sequence number or the ack 5346 * value must stay constant) 5347 * - Unexpected TCP option. 5348 * 5349 * When these conditions are not satisfied it drops into a standard 5350 * receive procedure patterned after RFC793 to handle all cases. 5351 * The first three cases are guaranteed by proper pred_flags setting, 5352 * the rest is checked inline. Fast processing is turned on in 5353 * tcp_data_queue when everything is OK. 5354 */ 5355 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5356 const struct tcphdr *th, unsigned int len) 5357 { 5358 struct tcp_sock *tp = tcp_sk(sk); 5359 int res; 5360 5361 /* 5362 * Header prediction. 5363 * The code loosely follows the one in the famous 5364 * "30 instruction TCP receive" Van Jacobson mail. 5365 * 5366 * Van's trick is to deposit buffers into socket queue 5367 * on a device interrupt, to call tcp_recv function 5368 * on the receive process context and checksum and copy 5369 * the buffer to user space. smart... 5370 * 5371 * Our current scheme is not silly either but we take the 5372 * extra cost of the net_bh soft interrupt processing... 5373 * We do checksum and copy also but from device to kernel. 5374 */ 5375 5376 tp->rx_opt.saw_tstamp = 0; 5377 5378 /* pred_flags is 0xS?10 << 16 + snd_wnd 5379 * if header_prediction is to be made 5380 * 'S' will always be tp->tcp_header_len >> 2 5381 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5382 * turn it off (when there are holes in the receive 5383 * space for instance) 5384 * PSH flag is ignored. 5385 */ 5386 5387 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5388 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5389 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5390 int tcp_header_len = tp->tcp_header_len; 5391 5392 /* Timestamp header prediction: tcp_header_len 5393 * is automatically equal to th->doff*4 due to pred_flags 5394 * match. 5395 */ 5396 5397 /* Check timestamp */ 5398 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5399 /* No? Slow path! */ 5400 if (!tcp_parse_aligned_timestamp(tp, th)) 5401 goto slow_path; 5402 5403 /* If PAWS failed, check it more carefully in slow path */ 5404 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5405 goto slow_path; 5406 5407 /* DO NOT update ts_recent here, if checksum fails 5408 * and timestamp was corrupted part, it will result 5409 * in a hung connection since we will drop all 5410 * future packets due to the PAWS test. 5411 */ 5412 } 5413 5414 if (len <= tcp_header_len) { 5415 /* Bulk data transfer: sender */ 5416 if (len == tcp_header_len) { 5417 /* Predicted packet is in window by definition. 5418 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5419 * Hence, check seq<=rcv_wup reduces to: 5420 */ 5421 if (tcp_header_len == 5422 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5423 tp->rcv_nxt == tp->rcv_wup) 5424 tcp_store_ts_recent(tp); 5425 5426 /* We know that such packets are checksummed 5427 * on entry. 5428 */ 5429 tcp_ack(sk, skb, 0); 5430 __kfree_skb(skb); 5431 tcp_data_snd_check(sk); 5432 return 0; 5433 } else { /* Header too small */ 5434 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5435 goto discard; 5436 } 5437 } else { 5438 int eaten = 0; 5439 int copied_early = 0; 5440 5441 if (tp->copied_seq == tp->rcv_nxt && 5442 len - tcp_header_len <= tp->ucopy.len) { 5443 #ifdef CONFIG_NET_DMA 5444 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) { 5445 copied_early = 1; 5446 eaten = 1; 5447 } 5448 #endif 5449 if (tp->ucopy.task == current && 5450 sock_owned_by_user(sk) && !copied_early) { 5451 __set_current_state(TASK_RUNNING); 5452 5453 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) 5454 eaten = 1; 5455 } 5456 if (eaten) { 5457 /* Predicted packet is in window by definition. 5458 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5459 * Hence, check seq<=rcv_wup reduces to: 5460 */ 5461 if (tcp_header_len == 5462 (sizeof(struct tcphdr) + 5463 TCPOLEN_TSTAMP_ALIGNED) && 5464 tp->rcv_nxt == tp->rcv_wup) 5465 tcp_store_ts_recent(tp); 5466 5467 tcp_rcv_rtt_measure_ts(sk, skb); 5468 5469 __skb_pull(skb, tcp_header_len); 5470 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 5471 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER); 5472 } 5473 if (copied_early) 5474 tcp_cleanup_rbuf(sk, skb->len); 5475 } 5476 if (!eaten) { 5477 if (tcp_checksum_complete_user(sk, skb)) 5478 goto csum_error; 5479 5480 /* Predicted packet is in window by definition. 5481 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5482 * Hence, check seq<=rcv_wup reduces to: 5483 */ 5484 if (tcp_header_len == 5485 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5486 tp->rcv_nxt == tp->rcv_wup) 5487 tcp_store_ts_recent(tp); 5488 5489 tcp_rcv_rtt_measure_ts(sk, skb); 5490 5491 if ((int)skb->truesize > sk->sk_forward_alloc) 5492 goto step5; 5493 5494 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS); 5495 5496 /* Bulk data transfer: receiver */ 5497 __skb_pull(skb, tcp_header_len); 5498 __skb_queue_tail(&sk->sk_receive_queue, skb); 5499 skb_set_owner_r(skb, sk); 5500 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 5501 } 5502 5503 tcp_event_data_recv(sk, skb); 5504 5505 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5506 /* Well, only one small jumplet in fast path... */ 5507 tcp_ack(sk, skb, FLAG_DATA); 5508 tcp_data_snd_check(sk); 5509 if (!inet_csk_ack_scheduled(sk)) 5510 goto no_ack; 5511 } 5512 5513 if (!copied_early || tp->rcv_nxt != tp->rcv_wup) 5514 __tcp_ack_snd_check(sk, 0); 5515 no_ack: 5516 #ifdef CONFIG_NET_DMA 5517 if (copied_early) 5518 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 5519 else 5520 #endif 5521 if (eaten) 5522 __kfree_skb(skb); 5523 else 5524 sk->sk_data_ready(sk, 0); 5525 return 0; 5526 } 5527 } 5528 5529 slow_path: 5530 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb)) 5531 goto csum_error; 5532 5533 /* 5534 * Standard slow path. 5535 */ 5536 5537 res = tcp_validate_incoming(sk, skb, th, 1); 5538 if (res <= 0) 5539 return -res; 5540 5541 step5: 5542 if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0) 5543 goto discard; 5544 5545 tcp_rcv_rtt_measure_ts(sk, skb); 5546 5547 /* Process urgent data. */ 5548 tcp_urg(sk, skb, th); 5549 5550 /* step 7: process the segment text */ 5551 tcp_data_queue(sk, skb); 5552 5553 tcp_data_snd_check(sk); 5554 tcp_ack_snd_check(sk); 5555 return 0; 5556 5557 csum_error: 5558 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5559 5560 discard: 5561 __kfree_skb(skb); 5562 return 0; 5563 } 5564 EXPORT_SYMBOL(tcp_rcv_established); 5565 5566 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5567 const struct tcphdr *th, unsigned int len) 5568 { 5569 const u8 *hash_location; 5570 struct inet_connection_sock *icsk = inet_csk(sk); 5571 struct tcp_sock *tp = tcp_sk(sk); 5572 struct tcp_cookie_values *cvp = tp->cookie_values; 5573 int saved_clamp = tp->rx_opt.mss_clamp; 5574 5575 tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0); 5576 5577 if (th->ack) { 5578 /* rfc793: 5579 * "If the state is SYN-SENT then 5580 * first check the ACK bit 5581 * If the ACK bit is set 5582 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5583 * a reset (unless the RST bit is set, if so drop 5584 * the segment and return)" 5585 * 5586 * We do not send data with SYN, so that RFC-correct 5587 * test reduces to: 5588 */ 5589 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt) 5590 goto reset_and_undo; 5591 5592 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5593 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5594 tcp_time_stamp)) { 5595 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED); 5596 goto reset_and_undo; 5597 } 5598 5599 /* Now ACK is acceptable. 5600 * 5601 * "If the RST bit is set 5602 * If the ACK was acceptable then signal the user "error: 5603 * connection reset", drop the segment, enter CLOSED state, 5604 * delete TCB, and return." 5605 */ 5606 5607 if (th->rst) { 5608 tcp_reset(sk); 5609 goto discard; 5610 } 5611 5612 /* rfc793: 5613 * "fifth, if neither of the SYN or RST bits is set then 5614 * drop the segment and return." 5615 * 5616 * See note below! 5617 * --ANK(990513) 5618 */ 5619 if (!th->syn) 5620 goto discard_and_undo; 5621 5622 /* rfc793: 5623 * "If the SYN bit is on ... 5624 * are acceptable then ... 5625 * (our SYN has been ACKed), change the connection 5626 * state to ESTABLISHED..." 5627 */ 5628 5629 TCP_ECN_rcv_synack(tp, th); 5630 5631 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5632 tcp_ack(sk, skb, FLAG_SLOWPATH); 5633 5634 /* Ok.. it's good. Set up sequence numbers and 5635 * move to established. 5636 */ 5637 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5638 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5639 5640 /* RFC1323: The window in SYN & SYN/ACK segments is 5641 * never scaled. 5642 */ 5643 tp->snd_wnd = ntohs(th->window); 5644 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5645 5646 if (!tp->rx_opt.wscale_ok) { 5647 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5648 tp->window_clamp = min(tp->window_clamp, 65535U); 5649 } 5650 5651 if (tp->rx_opt.saw_tstamp) { 5652 tp->rx_opt.tstamp_ok = 1; 5653 tp->tcp_header_len = 5654 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5655 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5656 tcp_store_ts_recent(tp); 5657 } else { 5658 tp->tcp_header_len = sizeof(struct tcphdr); 5659 } 5660 5661 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5662 tcp_enable_fack(tp); 5663 5664 tcp_mtup_init(sk); 5665 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5666 tcp_initialize_rcv_mss(sk); 5667 5668 /* Remember, tcp_poll() does not lock socket! 5669 * Change state from SYN-SENT only after copied_seq 5670 * is initialized. */ 5671 tp->copied_seq = tp->rcv_nxt; 5672 5673 if (cvp != NULL && 5674 cvp->cookie_pair_size > 0 && 5675 tp->rx_opt.cookie_plus > 0) { 5676 int cookie_size = tp->rx_opt.cookie_plus 5677 - TCPOLEN_COOKIE_BASE; 5678 int cookie_pair_size = cookie_size 5679 + cvp->cookie_desired; 5680 5681 /* A cookie extension option was sent and returned. 5682 * Note that each incoming SYNACK replaces the 5683 * Responder cookie. The initial exchange is most 5684 * fragile, as protection against spoofing relies 5685 * entirely upon the sequence and timestamp (above). 5686 * This replacement strategy allows the correct pair to 5687 * pass through, while any others will be filtered via 5688 * Responder verification later. 5689 */ 5690 if (sizeof(cvp->cookie_pair) >= cookie_pair_size) { 5691 memcpy(&cvp->cookie_pair[cvp->cookie_desired], 5692 hash_location, cookie_size); 5693 cvp->cookie_pair_size = cookie_pair_size; 5694 } 5695 } 5696 5697 smp_mb(); 5698 tcp_set_state(sk, TCP_ESTABLISHED); 5699 5700 security_inet_conn_established(sk, skb); 5701 5702 /* Make sure socket is routed, for correct metrics. */ 5703 icsk->icsk_af_ops->rebuild_header(sk); 5704 5705 tcp_init_metrics(sk); 5706 5707 tcp_init_congestion_control(sk); 5708 5709 /* Prevent spurious tcp_cwnd_restart() on first data 5710 * packet. 5711 */ 5712 tp->lsndtime = tcp_time_stamp; 5713 5714 tcp_init_buffer_space(sk); 5715 5716 if (sock_flag(sk, SOCK_KEEPOPEN)) 5717 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5718 5719 if (!tp->rx_opt.snd_wscale) 5720 __tcp_fast_path_on(tp, tp->snd_wnd); 5721 else 5722 tp->pred_flags = 0; 5723 5724 if (!sock_flag(sk, SOCK_DEAD)) { 5725 sk->sk_state_change(sk); 5726 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5727 } 5728 5729 if (sk->sk_write_pending || 5730 icsk->icsk_accept_queue.rskq_defer_accept || 5731 icsk->icsk_ack.pingpong) { 5732 /* Save one ACK. Data will be ready after 5733 * several ticks, if write_pending is set. 5734 * 5735 * It may be deleted, but with this feature tcpdumps 5736 * look so _wonderfully_ clever, that I was not able 5737 * to stand against the temptation 8) --ANK 5738 */ 5739 inet_csk_schedule_ack(sk); 5740 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5741 icsk->icsk_ack.ato = TCP_ATO_MIN; 5742 tcp_incr_quickack(sk); 5743 tcp_enter_quickack_mode(sk); 5744 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5745 TCP_DELACK_MAX, TCP_RTO_MAX); 5746 5747 discard: 5748 __kfree_skb(skb); 5749 return 0; 5750 } else { 5751 tcp_send_ack(sk); 5752 } 5753 return -1; 5754 } 5755 5756 /* No ACK in the segment */ 5757 5758 if (th->rst) { 5759 /* rfc793: 5760 * "If the RST bit is set 5761 * 5762 * Otherwise (no ACK) drop the segment and return." 5763 */ 5764 5765 goto discard_and_undo; 5766 } 5767 5768 /* PAWS check. */ 5769 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5770 tcp_paws_reject(&tp->rx_opt, 0)) 5771 goto discard_and_undo; 5772 5773 if (th->syn) { 5774 /* We see SYN without ACK. It is attempt of 5775 * simultaneous connect with crossed SYNs. 5776 * Particularly, it can be connect to self. 5777 */ 5778 tcp_set_state(sk, TCP_SYN_RECV); 5779 5780 if (tp->rx_opt.saw_tstamp) { 5781 tp->rx_opt.tstamp_ok = 1; 5782 tcp_store_ts_recent(tp); 5783 tp->tcp_header_len = 5784 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5785 } else { 5786 tp->tcp_header_len = sizeof(struct tcphdr); 5787 } 5788 5789 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5790 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5791 5792 /* RFC1323: The window in SYN & SYN/ACK segments is 5793 * never scaled. 5794 */ 5795 tp->snd_wnd = ntohs(th->window); 5796 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5797 tp->max_window = tp->snd_wnd; 5798 5799 TCP_ECN_rcv_syn(tp, th); 5800 5801 tcp_mtup_init(sk); 5802 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5803 tcp_initialize_rcv_mss(sk); 5804 5805 tcp_send_synack(sk); 5806 #if 0 5807 /* Note, we could accept data and URG from this segment. 5808 * There are no obstacles to make this. 5809 * 5810 * However, if we ignore data in ACKless segments sometimes, 5811 * we have no reasons to accept it sometimes. 5812 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5813 * is not flawless. So, discard packet for sanity. 5814 * Uncomment this return to process the data. 5815 */ 5816 return -1; 5817 #else 5818 goto discard; 5819 #endif 5820 } 5821 /* "fifth, if neither of the SYN or RST bits is set then 5822 * drop the segment and return." 5823 */ 5824 5825 discard_and_undo: 5826 tcp_clear_options(&tp->rx_opt); 5827 tp->rx_opt.mss_clamp = saved_clamp; 5828 goto discard; 5829 5830 reset_and_undo: 5831 tcp_clear_options(&tp->rx_opt); 5832 tp->rx_opt.mss_clamp = saved_clamp; 5833 return 1; 5834 } 5835 5836 /* 5837 * This function implements the receiving procedure of RFC 793 for 5838 * all states except ESTABLISHED and TIME_WAIT. 5839 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5840 * address independent. 5841 */ 5842 5843 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 5844 const struct tcphdr *th, unsigned int len) 5845 { 5846 struct tcp_sock *tp = tcp_sk(sk); 5847 struct inet_connection_sock *icsk = inet_csk(sk); 5848 int queued = 0; 5849 int res; 5850 5851 tp->rx_opt.saw_tstamp = 0; 5852 5853 switch (sk->sk_state) { 5854 case TCP_CLOSE: 5855 goto discard; 5856 5857 case TCP_LISTEN: 5858 if (th->ack) 5859 return 1; 5860 5861 if (th->rst) 5862 goto discard; 5863 5864 if (th->syn) { 5865 if (th->fin) 5866 goto discard; 5867 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 5868 return 1; 5869 5870 /* Now we have several options: In theory there is 5871 * nothing else in the frame. KA9Q has an option to 5872 * send data with the syn, BSD accepts data with the 5873 * syn up to the [to be] advertised window and 5874 * Solaris 2.1 gives you a protocol error. For now 5875 * we just ignore it, that fits the spec precisely 5876 * and avoids incompatibilities. It would be nice in 5877 * future to drop through and process the data. 5878 * 5879 * Now that TTCP is starting to be used we ought to 5880 * queue this data. 5881 * But, this leaves one open to an easy denial of 5882 * service attack, and SYN cookies can't defend 5883 * against this problem. So, we drop the data 5884 * in the interest of security over speed unless 5885 * it's still in use. 5886 */ 5887 kfree_skb(skb); 5888 return 0; 5889 } 5890 goto discard; 5891 5892 case TCP_SYN_SENT: 5893 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 5894 if (queued >= 0) 5895 return queued; 5896 5897 /* Do step6 onward by hand. */ 5898 tcp_urg(sk, skb, th); 5899 __kfree_skb(skb); 5900 tcp_data_snd_check(sk); 5901 return 0; 5902 } 5903 5904 res = tcp_validate_incoming(sk, skb, th, 0); 5905 if (res <= 0) 5906 return -res; 5907 5908 /* step 5: check the ACK field */ 5909 if (th->ack) { 5910 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0; 5911 5912 switch (sk->sk_state) { 5913 case TCP_SYN_RECV: 5914 if (acceptable) { 5915 tp->copied_seq = tp->rcv_nxt; 5916 smp_mb(); 5917 tcp_set_state(sk, TCP_ESTABLISHED); 5918 sk->sk_state_change(sk); 5919 5920 /* Note, that this wakeup is only for marginal 5921 * crossed SYN case. Passively open sockets 5922 * are not waked up, because sk->sk_sleep == 5923 * NULL and sk->sk_socket == NULL. 5924 */ 5925 if (sk->sk_socket) 5926 sk_wake_async(sk, 5927 SOCK_WAKE_IO, POLL_OUT); 5928 5929 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5930 tp->snd_wnd = ntohs(th->window) << 5931 tp->rx_opt.snd_wscale; 5932 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5933 5934 if (tp->rx_opt.tstamp_ok) 5935 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5936 5937 /* Make sure socket is routed, for 5938 * correct metrics. 5939 */ 5940 icsk->icsk_af_ops->rebuild_header(sk); 5941 5942 tcp_init_metrics(sk); 5943 5944 tcp_init_congestion_control(sk); 5945 5946 /* Prevent spurious tcp_cwnd_restart() on 5947 * first data packet. 5948 */ 5949 tp->lsndtime = tcp_time_stamp; 5950 5951 tcp_mtup_init(sk); 5952 tcp_initialize_rcv_mss(sk); 5953 tcp_init_buffer_space(sk); 5954 tcp_fast_path_on(tp); 5955 } else { 5956 return 1; 5957 } 5958 break; 5959 5960 case TCP_FIN_WAIT1: 5961 if (tp->snd_una == tp->write_seq) { 5962 tcp_set_state(sk, TCP_FIN_WAIT2); 5963 sk->sk_shutdown |= SEND_SHUTDOWN; 5964 dst_confirm(__sk_dst_get(sk)); 5965 5966 if (!sock_flag(sk, SOCK_DEAD)) 5967 /* Wake up lingering close() */ 5968 sk->sk_state_change(sk); 5969 else { 5970 int tmo; 5971 5972 if (tp->linger2 < 0 || 5973 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5974 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 5975 tcp_done(sk); 5976 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5977 return 1; 5978 } 5979 5980 tmo = tcp_fin_time(sk); 5981 if (tmo > TCP_TIMEWAIT_LEN) { 5982 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 5983 } else if (th->fin || sock_owned_by_user(sk)) { 5984 /* Bad case. We could lose such FIN otherwise. 5985 * It is not a big problem, but it looks confusing 5986 * and not so rare event. We still can lose it now, 5987 * if it spins in bh_lock_sock(), but it is really 5988 * marginal case. 5989 */ 5990 inet_csk_reset_keepalive_timer(sk, tmo); 5991 } else { 5992 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 5993 goto discard; 5994 } 5995 } 5996 } 5997 break; 5998 5999 case TCP_CLOSING: 6000 if (tp->snd_una == tp->write_seq) { 6001 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6002 goto discard; 6003 } 6004 break; 6005 6006 case TCP_LAST_ACK: 6007 if (tp->snd_una == tp->write_seq) { 6008 tcp_update_metrics(sk); 6009 tcp_done(sk); 6010 goto discard; 6011 } 6012 break; 6013 } 6014 } else 6015 goto discard; 6016 6017 /* step 6: check the URG bit */ 6018 tcp_urg(sk, skb, th); 6019 6020 /* step 7: process the segment text */ 6021 switch (sk->sk_state) { 6022 case TCP_CLOSE_WAIT: 6023 case TCP_CLOSING: 6024 case TCP_LAST_ACK: 6025 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6026 break; 6027 case TCP_FIN_WAIT1: 6028 case TCP_FIN_WAIT2: 6029 /* RFC 793 says to queue data in these states, 6030 * RFC 1122 says we MUST send a reset. 6031 * BSD 4.4 also does reset. 6032 */ 6033 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6034 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6035 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6036 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6037 tcp_reset(sk); 6038 return 1; 6039 } 6040 } 6041 /* Fall through */ 6042 case TCP_ESTABLISHED: 6043 tcp_data_queue(sk, skb); 6044 queued = 1; 6045 break; 6046 } 6047 6048 /* tcp_data could move socket to TIME-WAIT */ 6049 if (sk->sk_state != TCP_CLOSE) { 6050 tcp_data_snd_check(sk); 6051 tcp_ack_snd_check(sk); 6052 } 6053 6054 if (!queued) { 6055 discard: 6056 __kfree_skb(skb); 6057 } 6058 return 0; 6059 } 6060 EXPORT_SYMBOL(tcp_rcv_state_process); 6061