xref: /openbmc/linux/net/ipv4/tcp_input.c (revision c6fddb28)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83 
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85 
86 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
87 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
88 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
89 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
90 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
91 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
92 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
93 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
96 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
102 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
103 
104 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
107 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
108 
109 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
110 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
111 
112 #define REXMIT_NONE	0 /* no loss recovery to do */
113 #define REXMIT_LOST	1 /* retransmit packets marked lost */
114 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
115 
116 #if IS_ENABLED(CONFIG_TLS_DEVICE)
117 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
118 
119 void clean_acked_data_enable(struct inet_connection_sock *icsk,
120 			     void (*cad)(struct sock *sk, u32 ack_seq))
121 {
122 	icsk->icsk_clean_acked = cad;
123 	static_branch_deferred_inc(&clean_acked_data_enabled);
124 }
125 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
126 
127 void clean_acked_data_disable(struct inet_connection_sock *icsk)
128 {
129 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
130 	icsk->icsk_clean_acked = NULL;
131 }
132 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
133 
134 void clean_acked_data_flush(void)
135 {
136 	static_key_deferred_flush(&clean_acked_data_enabled);
137 }
138 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
139 #endif
140 
141 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
142 			     unsigned int len)
143 {
144 	static bool __once __read_mostly;
145 
146 	if (!__once) {
147 		struct net_device *dev;
148 
149 		__once = true;
150 
151 		rcu_read_lock();
152 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
153 		if (!dev || len >= dev->mtu)
154 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
155 				dev ? dev->name : "Unknown driver");
156 		rcu_read_unlock();
157 	}
158 }
159 
160 /* Adapt the MSS value used to make delayed ack decision to the
161  * real world.
162  */
163 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
164 {
165 	struct inet_connection_sock *icsk = inet_csk(sk);
166 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
167 	unsigned int len;
168 
169 	icsk->icsk_ack.last_seg_size = 0;
170 
171 	/* skb->len may jitter because of SACKs, even if peer
172 	 * sends good full-sized frames.
173 	 */
174 	len = skb_shinfo(skb)->gso_size ? : skb->len;
175 	if (len >= icsk->icsk_ack.rcv_mss) {
176 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
177 					       tcp_sk(sk)->advmss);
178 		/* Account for possibly-removed options */
179 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
180 				   MAX_TCP_OPTION_SPACE))
181 			tcp_gro_dev_warn(sk, skb, len);
182 	} else {
183 		/* Otherwise, we make more careful check taking into account,
184 		 * that SACKs block is variable.
185 		 *
186 		 * "len" is invariant segment length, including TCP header.
187 		 */
188 		len += skb->data - skb_transport_header(skb);
189 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
190 		    /* If PSH is not set, packet should be
191 		     * full sized, provided peer TCP is not badly broken.
192 		     * This observation (if it is correct 8)) allows
193 		     * to handle super-low mtu links fairly.
194 		     */
195 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
196 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
197 			/* Subtract also invariant (if peer is RFC compliant),
198 			 * tcp header plus fixed timestamp option length.
199 			 * Resulting "len" is MSS free of SACK jitter.
200 			 */
201 			len -= tcp_sk(sk)->tcp_header_len;
202 			icsk->icsk_ack.last_seg_size = len;
203 			if (len == lss) {
204 				icsk->icsk_ack.rcv_mss = len;
205 				return;
206 			}
207 		}
208 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
209 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
210 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
211 	}
212 }
213 
214 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
215 {
216 	struct inet_connection_sock *icsk = inet_csk(sk);
217 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
218 
219 	if (quickacks == 0)
220 		quickacks = 2;
221 	quickacks = min(quickacks, max_quickacks);
222 	if (quickacks > icsk->icsk_ack.quick)
223 		icsk->icsk_ack.quick = quickacks;
224 }
225 
226 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
227 {
228 	struct inet_connection_sock *icsk = inet_csk(sk);
229 
230 	tcp_incr_quickack(sk, max_quickacks);
231 	inet_csk_exit_pingpong_mode(sk);
232 	icsk->icsk_ack.ato = TCP_ATO_MIN;
233 }
234 EXPORT_SYMBOL(tcp_enter_quickack_mode);
235 
236 /* Send ACKs quickly, if "quick" count is not exhausted
237  * and the session is not interactive.
238  */
239 
240 static bool tcp_in_quickack_mode(struct sock *sk)
241 {
242 	const struct inet_connection_sock *icsk = inet_csk(sk);
243 	const struct dst_entry *dst = __sk_dst_get(sk);
244 
245 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
246 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
247 }
248 
249 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
250 {
251 	if (tp->ecn_flags & TCP_ECN_OK)
252 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
253 }
254 
255 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
256 {
257 	if (tcp_hdr(skb)->cwr) {
258 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
259 
260 		/* If the sender is telling us it has entered CWR, then its
261 		 * cwnd may be very low (even just 1 packet), so we should ACK
262 		 * immediately.
263 		 */
264 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
265 	}
266 }
267 
268 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
269 {
270 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
271 }
272 
273 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
274 {
275 	struct tcp_sock *tp = tcp_sk(sk);
276 
277 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
278 	case INET_ECN_NOT_ECT:
279 		/* Funny extension: if ECT is not set on a segment,
280 		 * and we already seen ECT on a previous segment,
281 		 * it is probably a retransmit.
282 		 */
283 		if (tp->ecn_flags & TCP_ECN_SEEN)
284 			tcp_enter_quickack_mode(sk, 2);
285 		break;
286 	case INET_ECN_CE:
287 		if (tcp_ca_needs_ecn(sk))
288 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
289 
290 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
291 			/* Better not delay acks, sender can have a very low cwnd */
292 			tcp_enter_quickack_mode(sk, 2);
293 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
294 		}
295 		tp->ecn_flags |= TCP_ECN_SEEN;
296 		break;
297 	default:
298 		if (tcp_ca_needs_ecn(sk))
299 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
300 		tp->ecn_flags |= TCP_ECN_SEEN;
301 		break;
302 	}
303 }
304 
305 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
306 {
307 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
308 		__tcp_ecn_check_ce(sk, skb);
309 }
310 
311 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
312 {
313 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
314 		tp->ecn_flags &= ~TCP_ECN_OK;
315 }
316 
317 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
318 {
319 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
320 		tp->ecn_flags &= ~TCP_ECN_OK;
321 }
322 
323 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
324 {
325 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
326 		return true;
327 	return false;
328 }
329 
330 /* Buffer size and advertised window tuning.
331  *
332  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
333  */
334 
335 static void tcp_sndbuf_expand(struct sock *sk)
336 {
337 	const struct tcp_sock *tp = tcp_sk(sk);
338 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
339 	int sndmem, per_mss;
340 	u32 nr_segs;
341 
342 	/* Worst case is non GSO/TSO : each frame consumes one skb
343 	 * and skb->head is kmalloced using power of two area of memory
344 	 */
345 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
346 		  MAX_TCP_HEADER +
347 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
348 
349 	per_mss = roundup_pow_of_two(per_mss) +
350 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
351 
352 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
353 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
354 
355 	/* Fast Recovery (RFC 5681 3.2) :
356 	 * Cubic needs 1.7 factor, rounded to 2 to include
357 	 * extra cushion (application might react slowly to EPOLLOUT)
358 	 */
359 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
360 	sndmem *= nr_segs * per_mss;
361 
362 	if (sk->sk_sndbuf < sndmem)
363 		WRITE_ONCE(sk->sk_sndbuf,
364 			   min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]));
365 }
366 
367 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
368  *
369  * All tcp_full_space() is split to two parts: "network" buffer, allocated
370  * forward and advertised in receiver window (tp->rcv_wnd) and
371  * "application buffer", required to isolate scheduling/application
372  * latencies from network.
373  * window_clamp is maximal advertised window. It can be less than
374  * tcp_full_space(), in this case tcp_full_space() - window_clamp
375  * is reserved for "application" buffer. The less window_clamp is
376  * the smoother our behaviour from viewpoint of network, but the lower
377  * throughput and the higher sensitivity of the connection to losses. 8)
378  *
379  * rcv_ssthresh is more strict window_clamp used at "slow start"
380  * phase to predict further behaviour of this connection.
381  * It is used for two goals:
382  * - to enforce header prediction at sender, even when application
383  *   requires some significant "application buffer". It is check #1.
384  * - to prevent pruning of receive queue because of misprediction
385  *   of receiver window. Check #2.
386  *
387  * The scheme does not work when sender sends good segments opening
388  * window and then starts to feed us spaghetti. But it should work
389  * in common situations. Otherwise, we have to rely on queue collapsing.
390  */
391 
392 /* Slow part of check#2. */
393 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
394 {
395 	struct tcp_sock *tp = tcp_sk(sk);
396 	/* Optimize this! */
397 	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
398 	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
399 
400 	while (tp->rcv_ssthresh <= window) {
401 		if (truesize <= skb->len)
402 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
403 
404 		truesize >>= 1;
405 		window >>= 1;
406 	}
407 	return 0;
408 }
409 
410 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
411 {
412 	struct tcp_sock *tp = tcp_sk(sk);
413 	int room;
414 
415 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
416 
417 	/* Check #1 */
418 	if (room > 0 && !tcp_under_memory_pressure(sk)) {
419 		int incr;
420 
421 		/* Check #2. Increase window, if skb with such overhead
422 		 * will fit to rcvbuf in future.
423 		 */
424 		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
425 			incr = 2 * tp->advmss;
426 		else
427 			incr = __tcp_grow_window(sk, skb);
428 
429 		if (incr) {
430 			incr = max_t(int, incr, 2 * skb->len);
431 			tp->rcv_ssthresh += min(room, incr);
432 			inet_csk(sk)->icsk_ack.quick |= 1;
433 		}
434 	}
435 }
436 
437 /* 3. Try to fixup all. It is made immediately after connection enters
438  *    established state.
439  */
440 void tcp_init_buffer_space(struct sock *sk)
441 {
442 	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
443 	struct tcp_sock *tp = tcp_sk(sk);
444 	int maxwin;
445 
446 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
447 		tcp_sndbuf_expand(sk);
448 
449 	tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss);
450 	tcp_mstamp_refresh(tp);
451 	tp->rcvq_space.time = tp->tcp_mstamp;
452 	tp->rcvq_space.seq = tp->copied_seq;
453 
454 	maxwin = tcp_full_space(sk);
455 
456 	if (tp->window_clamp >= maxwin) {
457 		tp->window_clamp = maxwin;
458 
459 		if (tcp_app_win && maxwin > 4 * tp->advmss)
460 			tp->window_clamp = max(maxwin -
461 					       (maxwin >> tcp_app_win),
462 					       4 * tp->advmss);
463 	}
464 
465 	/* Force reservation of one segment. */
466 	if (tcp_app_win &&
467 	    tp->window_clamp > 2 * tp->advmss &&
468 	    tp->window_clamp + tp->advmss > maxwin)
469 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
470 
471 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
472 	tp->snd_cwnd_stamp = tcp_jiffies32;
473 }
474 
475 /* 4. Recalculate window clamp after socket hit its memory bounds. */
476 static void tcp_clamp_window(struct sock *sk)
477 {
478 	struct tcp_sock *tp = tcp_sk(sk);
479 	struct inet_connection_sock *icsk = inet_csk(sk);
480 	struct net *net = sock_net(sk);
481 
482 	icsk->icsk_ack.quick = 0;
483 
484 	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
485 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
486 	    !tcp_under_memory_pressure(sk) &&
487 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
488 		WRITE_ONCE(sk->sk_rcvbuf,
489 			   min(atomic_read(&sk->sk_rmem_alloc),
490 			       net->ipv4.sysctl_tcp_rmem[2]));
491 	}
492 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
493 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
494 }
495 
496 /* Initialize RCV_MSS value.
497  * RCV_MSS is an our guess about MSS used by the peer.
498  * We haven't any direct information about the MSS.
499  * It's better to underestimate the RCV_MSS rather than overestimate.
500  * Overestimations make us ACKing less frequently than needed.
501  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
502  */
503 void tcp_initialize_rcv_mss(struct sock *sk)
504 {
505 	const struct tcp_sock *tp = tcp_sk(sk);
506 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
507 
508 	hint = min(hint, tp->rcv_wnd / 2);
509 	hint = min(hint, TCP_MSS_DEFAULT);
510 	hint = max(hint, TCP_MIN_MSS);
511 
512 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
513 }
514 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
515 
516 /* Receiver "autotuning" code.
517  *
518  * The algorithm for RTT estimation w/o timestamps is based on
519  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
520  * <http://public.lanl.gov/radiant/pubs.html#DRS>
521  *
522  * More detail on this code can be found at
523  * <http://staff.psc.edu/jheffner/>,
524  * though this reference is out of date.  A new paper
525  * is pending.
526  */
527 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
528 {
529 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
530 	long m = sample;
531 
532 	if (new_sample != 0) {
533 		/* If we sample in larger samples in the non-timestamp
534 		 * case, we could grossly overestimate the RTT especially
535 		 * with chatty applications or bulk transfer apps which
536 		 * are stalled on filesystem I/O.
537 		 *
538 		 * Also, since we are only going for a minimum in the
539 		 * non-timestamp case, we do not smooth things out
540 		 * else with timestamps disabled convergence takes too
541 		 * long.
542 		 */
543 		if (!win_dep) {
544 			m -= (new_sample >> 3);
545 			new_sample += m;
546 		} else {
547 			m <<= 3;
548 			if (m < new_sample)
549 				new_sample = m;
550 		}
551 	} else {
552 		/* No previous measure. */
553 		new_sample = m << 3;
554 	}
555 
556 	tp->rcv_rtt_est.rtt_us = new_sample;
557 }
558 
559 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
560 {
561 	u32 delta_us;
562 
563 	if (tp->rcv_rtt_est.time == 0)
564 		goto new_measure;
565 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
566 		return;
567 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
568 	if (!delta_us)
569 		delta_us = 1;
570 	tcp_rcv_rtt_update(tp, delta_us, 1);
571 
572 new_measure:
573 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
574 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
575 }
576 
577 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
578 					  const struct sk_buff *skb)
579 {
580 	struct tcp_sock *tp = tcp_sk(sk);
581 
582 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
583 		return;
584 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
585 
586 	if (TCP_SKB_CB(skb)->end_seq -
587 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
588 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
589 		u32 delta_us;
590 
591 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
592 			if (!delta)
593 				delta = 1;
594 			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
595 			tcp_rcv_rtt_update(tp, delta_us, 0);
596 		}
597 	}
598 }
599 
600 /*
601  * This function should be called every time data is copied to user space.
602  * It calculates the appropriate TCP receive buffer space.
603  */
604 void tcp_rcv_space_adjust(struct sock *sk)
605 {
606 	struct tcp_sock *tp = tcp_sk(sk);
607 	u32 copied;
608 	int time;
609 
610 	trace_tcp_rcv_space_adjust(sk);
611 
612 	tcp_mstamp_refresh(tp);
613 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
614 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
615 		return;
616 
617 	/* Number of bytes copied to user in last RTT */
618 	copied = tp->copied_seq - tp->rcvq_space.seq;
619 	if (copied <= tp->rcvq_space.space)
620 		goto new_measure;
621 
622 	/* A bit of theory :
623 	 * copied = bytes received in previous RTT, our base window
624 	 * To cope with packet losses, we need a 2x factor
625 	 * To cope with slow start, and sender growing its cwin by 100 %
626 	 * every RTT, we need a 4x factor, because the ACK we are sending
627 	 * now is for the next RTT, not the current one :
628 	 * <prev RTT . ><current RTT .. ><next RTT .... >
629 	 */
630 
631 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
632 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
633 		int rcvmem, rcvbuf;
634 		u64 rcvwin, grow;
635 
636 		/* minimal window to cope with packet losses, assuming
637 		 * steady state. Add some cushion because of small variations.
638 		 */
639 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
640 
641 		/* Accommodate for sender rate increase (eg. slow start) */
642 		grow = rcvwin * (copied - tp->rcvq_space.space);
643 		do_div(grow, tp->rcvq_space.space);
644 		rcvwin += (grow << 1);
645 
646 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
647 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
648 			rcvmem += 128;
649 
650 		do_div(rcvwin, tp->advmss);
651 		rcvbuf = min_t(u64, rcvwin * rcvmem,
652 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
653 		if (rcvbuf > sk->sk_rcvbuf) {
654 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
655 
656 			/* Make the window clamp follow along.  */
657 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
658 		}
659 	}
660 	tp->rcvq_space.space = copied;
661 
662 new_measure:
663 	tp->rcvq_space.seq = tp->copied_seq;
664 	tp->rcvq_space.time = tp->tcp_mstamp;
665 }
666 
667 /* There is something which you must keep in mind when you analyze the
668  * behavior of the tp->ato delayed ack timeout interval.  When a
669  * connection starts up, we want to ack as quickly as possible.  The
670  * problem is that "good" TCP's do slow start at the beginning of data
671  * transmission.  The means that until we send the first few ACK's the
672  * sender will sit on his end and only queue most of his data, because
673  * he can only send snd_cwnd unacked packets at any given time.  For
674  * each ACK we send, he increments snd_cwnd and transmits more of his
675  * queue.  -DaveM
676  */
677 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
678 {
679 	struct tcp_sock *tp = tcp_sk(sk);
680 	struct inet_connection_sock *icsk = inet_csk(sk);
681 	u32 now;
682 
683 	inet_csk_schedule_ack(sk);
684 
685 	tcp_measure_rcv_mss(sk, skb);
686 
687 	tcp_rcv_rtt_measure(tp);
688 
689 	now = tcp_jiffies32;
690 
691 	if (!icsk->icsk_ack.ato) {
692 		/* The _first_ data packet received, initialize
693 		 * delayed ACK engine.
694 		 */
695 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
696 		icsk->icsk_ack.ato = TCP_ATO_MIN;
697 	} else {
698 		int m = now - icsk->icsk_ack.lrcvtime;
699 
700 		if (m <= TCP_ATO_MIN / 2) {
701 			/* The fastest case is the first. */
702 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
703 		} else if (m < icsk->icsk_ack.ato) {
704 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
705 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
706 				icsk->icsk_ack.ato = icsk->icsk_rto;
707 		} else if (m > icsk->icsk_rto) {
708 			/* Too long gap. Apparently sender failed to
709 			 * restart window, so that we send ACKs quickly.
710 			 */
711 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
712 			sk_mem_reclaim(sk);
713 		}
714 	}
715 	icsk->icsk_ack.lrcvtime = now;
716 
717 	tcp_ecn_check_ce(sk, skb);
718 
719 	if (skb->len >= 128)
720 		tcp_grow_window(sk, skb);
721 }
722 
723 /* Called to compute a smoothed rtt estimate. The data fed to this
724  * routine either comes from timestamps, or from segments that were
725  * known _not_ to have been retransmitted [see Karn/Partridge
726  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
727  * piece by Van Jacobson.
728  * NOTE: the next three routines used to be one big routine.
729  * To save cycles in the RFC 1323 implementation it was better to break
730  * it up into three procedures. -- erics
731  */
732 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
733 {
734 	struct tcp_sock *tp = tcp_sk(sk);
735 	long m = mrtt_us; /* RTT */
736 	u32 srtt = tp->srtt_us;
737 
738 	/*	The following amusing code comes from Jacobson's
739 	 *	article in SIGCOMM '88.  Note that rtt and mdev
740 	 *	are scaled versions of rtt and mean deviation.
741 	 *	This is designed to be as fast as possible
742 	 *	m stands for "measurement".
743 	 *
744 	 *	On a 1990 paper the rto value is changed to:
745 	 *	RTO = rtt + 4 * mdev
746 	 *
747 	 * Funny. This algorithm seems to be very broken.
748 	 * These formulae increase RTO, when it should be decreased, increase
749 	 * too slowly, when it should be increased quickly, decrease too quickly
750 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
751 	 * does not matter how to _calculate_ it. Seems, it was trap
752 	 * that VJ failed to avoid. 8)
753 	 */
754 	if (srtt != 0) {
755 		m -= (srtt >> 3);	/* m is now error in rtt est */
756 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
757 		if (m < 0) {
758 			m = -m;		/* m is now abs(error) */
759 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
760 			/* This is similar to one of Eifel findings.
761 			 * Eifel blocks mdev updates when rtt decreases.
762 			 * This solution is a bit different: we use finer gain
763 			 * for mdev in this case (alpha*beta).
764 			 * Like Eifel it also prevents growth of rto,
765 			 * but also it limits too fast rto decreases,
766 			 * happening in pure Eifel.
767 			 */
768 			if (m > 0)
769 				m >>= 3;
770 		} else {
771 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
772 		}
773 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
774 		if (tp->mdev_us > tp->mdev_max_us) {
775 			tp->mdev_max_us = tp->mdev_us;
776 			if (tp->mdev_max_us > tp->rttvar_us)
777 				tp->rttvar_us = tp->mdev_max_us;
778 		}
779 		if (after(tp->snd_una, tp->rtt_seq)) {
780 			if (tp->mdev_max_us < tp->rttvar_us)
781 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
782 			tp->rtt_seq = tp->snd_nxt;
783 			tp->mdev_max_us = tcp_rto_min_us(sk);
784 
785 			tcp_bpf_rtt(sk);
786 		}
787 	} else {
788 		/* no previous measure. */
789 		srtt = m << 3;		/* take the measured time to be rtt */
790 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
791 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
792 		tp->mdev_max_us = tp->rttvar_us;
793 		tp->rtt_seq = tp->snd_nxt;
794 
795 		tcp_bpf_rtt(sk);
796 	}
797 	tp->srtt_us = max(1U, srtt);
798 }
799 
800 static void tcp_update_pacing_rate(struct sock *sk)
801 {
802 	const struct tcp_sock *tp = tcp_sk(sk);
803 	u64 rate;
804 
805 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
806 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
807 
808 	/* current rate is (cwnd * mss) / srtt
809 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
810 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
811 	 *
812 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
813 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
814 	 *	 end of slow start and should slow down.
815 	 */
816 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
817 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
818 	else
819 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
820 
821 	rate *= max(tp->snd_cwnd, tp->packets_out);
822 
823 	if (likely(tp->srtt_us))
824 		do_div(rate, tp->srtt_us);
825 
826 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
827 	 * without any lock. We want to make sure compiler wont store
828 	 * intermediate values in this location.
829 	 */
830 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
831 					     sk->sk_max_pacing_rate));
832 }
833 
834 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
835  * routine referred to above.
836  */
837 static void tcp_set_rto(struct sock *sk)
838 {
839 	const struct tcp_sock *tp = tcp_sk(sk);
840 	/* Old crap is replaced with new one. 8)
841 	 *
842 	 * More seriously:
843 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
844 	 *    It cannot be less due to utterly erratic ACK generation made
845 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
846 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
847 	 *    is invisible. Actually, Linux-2.4 also generates erratic
848 	 *    ACKs in some circumstances.
849 	 */
850 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
851 
852 	/* 2. Fixups made earlier cannot be right.
853 	 *    If we do not estimate RTO correctly without them,
854 	 *    all the algo is pure shit and should be replaced
855 	 *    with correct one. It is exactly, which we pretend to do.
856 	 */
857 
858 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
859 	 * guarantees that rto is higher.
860 	 */
861 	tcp_bound_rto(sk);
862 }
863 
864 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
865 {
866 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
867 
868 	if (!cwnd)
869 		cwnd = TCP_INIT_CWND;
870 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
871 }
872 
873 /* Take a notice that peer is sending D-SACKs */
874 static void tcp_dsack_seen(struct tcp_sock *tp)
875 {
876 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
877 	tp->rack.dsack_seen = 1;
878 	tp->dsack_dups++;
879 }
880 
881 /* It's reordering when higher sequence was delivered (i.e. sacked) before
882  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
883  * distance is approximated in full-mss packet distance ("reordering").
884  */
885 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
886 				      const int ts)
887 {
888 	struct tcp_sock *tp = tcp_sk(sk);
889 	const u32 mss = tp->mss_cache;
890 	u32 fack, metric;
891 
892 	fack = tcp_highest_sack_seq(tp);
893 	if (!before(low_seq, fack))
894 		return;
895 
896 	metric = fack - low_seq;
897 	if ((metric > tp->reordering * mss) && mss) {
898 #if FASTRETRANS_DEBUG > 1
899 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
900 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
901 			 tp->reordering,
902 			 0,
903 			 tp->sacked_out,
904 			 tp->undo_marker ? tp->undo_retrans : 0);
905 #endif
906 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
907 				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
908 	}
909 
910 	/* This exciting event is worth to be remembered. 8) */
911 	tp->reord_seen++;
912 	NET_INC_STATS(sock_net(sk),
913 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
914 }
915 
916 /* This must be called before lost_out is incremented */
917 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
918 {
919 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
920 	    (tp->retransmit_skb_hint &&
921 	     before(TCP_SKB_CB(skb)->seq,
922 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
923 		tp->retransmit_skb_hint = skb;
924 }
925 
926 /* Sum the number of packets on the wire we have marked as lost.
927  * There are two cases we care about here:
928  * a) Packet hasn't been marked lost (nor retransmitted),
929  *    and this is the first loss.
930  * b) Packet has been marked both lost and retransmitted,
931  *    and this means we think it was lost again.
932  */
933 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
934 {
935 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
936 
937 	if (!(sacked & TCPCB_LOST) ||
938 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
939 		tp->lost += tcp_skb_pcount(skb);
940 }
941 
942 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
943 {
944 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
945 		tcp_verify_retransmit_hint(tp, skb);
946 
947 		tp->lost_out += tcp_skb_pcount(skb);
948 		tcp_sum_lost(tp, skb);
949 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
950 	}
951 }
952 
953 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
954 {
955 	tcp_verify_retransmit_hint(tp, skb);
956 
957 	tcp_sum_lost(tp, skb);
958 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
959 		tp->lost_out += tcp_skb_pcount(skb);
960 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
961 	}
962 }
963 
964 /* This procedure tags the retransmission queue when SACKs arrive.
965  *
966  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
967  * Packets in queue with these bits set are counted in variables
968  * sacked_out, retrans_out and lost_out, correspondingly.
969  *
970  * Valid combinations are:
971  * Tag  InFlight	Description
972  * 0	1		- orig segment is in flight.
973  * S	0		- nothing flies, orig reached receiver.
974  * L	0		- nothing flies, orig lost by net.
975  * R	2		- both orig and retransmit are in flight.
976  * L|R	1		- orig is lost, retransmit is in flight.
977  * S|R  1		- orig reached receiver, retrans is still in flight.
978  * (L|S|R is logically valid, it could occur when L|R is sacked,
979  *  but it is equivalent to plain S and code short-curcuits it to S.
980  *  L|S is logically invalid, it would mean -1 packet in flight 8))
981  *
982  * These 6 states form finite state machine, controlled by the following events:
983  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
984  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
985  * 3. Loss detection event of two flavors:
986  *	A. Scoreboard estimator decided the packet is lost.
987  *	   A'. Reno "three dupacks" marks head of queue lost.
988  *	B. SACK arrives sacking SND.NXT at the moment, when the
989  *	   segment was retransmitted.
990  * 4. D-SACK added new rule: D-SACK changes any tag to S.
991  *
992  * It is pleasant to note, that state diagram turns out to be commutative,
993  * so that we are allowed not to be bothered by order of our actions,
994  * when multiple events arrive simultaneously. (see the function below).
995  *
996  * Reordering detection.
997  * --------------------
998  * Reordering metric is maximal distance, which a packet can be displaced
999  * in packet stream. With SACKs we can estimate it:
1000  *
1001  * 1. SACK fills old hole and the corresponding segment was not
1002  *    ever retransmitted -> reordering. Alas, we cannot use it
1003  *    when segment was retransmitted.
1004  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1005  *    for retransmitted and already SACKed segment -> reordering..
1006  * Both of these heuristics are not used in Loss state, when we cannot
1007  * account for retransmits accurately.
1008  *
1009  * SACK block validation.
1010  * ----------------------
1011  *
1012  * SACK block range validation checks that the received SACK block fits to
1013  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1014  * Note that SND.UNA is not included to the range though being valid because
1015  * it means that the receiver is rather inconsistent with itself reporting
1016  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1017  * perfectly valid, however, in light of RFC2018 which explicitly states
1018  * that "SACK block MUST reflect the newest segment.  Even if the newest
1019  * segment is going to be discarded ...", not that it looks very clever
1020  * in case of head skb. Due to potentional receiver driven attacks, we
1021  * choose to avoid immediate execution of a walk in write queue due to
1022  * reneging and defer head skb's loss recovery to standard loss recovery
1023  * procedure that will eventually trigger (nothing forbids us doing this).
1024  *
1025  * Implements also blockage to start_seq wrap-around. Problem lies in the
1026  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1027  * there's no guarantee that it will be before snd_nxt (n). The problem
1028  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1029  * wrap (s_w):
1030  *
1031  *         <- outs wnd ->                          <- wrapzone ->
1032  *         u     e      n                         u_w   e_w  s n_w
1033  *         |     |      |                          |     |   |  |
1034  * |<------------+------+----- TCP seqno space --------------+---------->|
1035  * ...-- <2^31 ->|                                           |<--------...
1036  * ...---- >2^31 ------>|                                    |<--------...
1037  *
1038  * Current code wouldn't be vulnerable but it's better still to discard such
1039  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1040  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1041  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1042  * equal to the ideal case (infinite seqno space without wrap caused issues).
1043  *
1044  * With D-SACK the lower bound is extended to cover sequence space below
1045  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1046  * again, D-SACK block must not to go across snd_una (for the same reason as
1047  * for the normal SACK blocks, explained above). But there all simplicity
1048  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1049  * fully below undo_marker they do not affect behavior in anyway and can
1050  * therefore be safely ignored. In rare cases (which are more or less
1051  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1052  * fragmentation and packet reordering past skb's retransmission. To consider
1053  * them correctly, the acceptable range must be extended even more though
1054  * the exact amount is rather hard to quantify. However, tp->max_window can
1055  * be used as an exaggerated estimate.
1056  */
1057 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1058 				   u32 start_seq, u32 end_seq)
1059 {
1060 	/* Too far in future, or reversed (interpretation is ambiguous) */
1061 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1062 		return false;
1063 
1064 	/* Nasty start_seq wrap-around check (see comments above) */
1065 	if (!before(start_seq, tp->snd_nxt))
1066 		return false;
1067 
1068 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1069 	 * start_seq == snd_una is non-sensical (see comments above)
1070 	 */
1071 	if (after(start_seq, tp->snd_una))
1072 		return true;
1073 
1074 	if (!is_dsack || !tp->undo_marker)
1075 		return false;
1076 
1077 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1078 	if (after(end_seq, tp->snd_una))
1079 		return false;
1080 
1081 	if (!before(start_seq, tp->undo_marker))
1082 		return true;
1083 
1084 	/* Too old */
1085 	if (!after(end_seq, tp->undo_marker))
1086 		return false;
1087 
1088 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1089 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1090 	 */
1091 	return !before(start_seq, end_seq - tp->max_window);
1092 }
1093 
1094 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1095 			    struct tcp_sack_block_wire *sp, int num_sacks,
1096 			    u32 prior_snd_una)
1097 {
1098 	struct tcp_sock *tp = tcp_sk(sk);
1099 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1100 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1101 	bool dup_sack = false;
1102 
1103 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1104 		dup_sack = true;
1105 		tcp_dsack_seen(tp);
1106 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1107 	} else if (num_sacks > 1) {
1108 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1109 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1110 
1111 		if (!after(end_seq_0, end_seq_1) &&
1112 		    !before(start_seq_0, start_seq_1)) {
1113 			dup_sack = true;
1114 			tcp_dsack_seen(tp);
1115 			NET_INC_STATS(sock_net(sk),
1116 					LINUX_MIB_TCPDSACKOFORECV);
1117 		}
1118 	}
1119 
1120 	/* D-SACK for already forgotten data... Do dumb counting. */
1121 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1122 	    !after(end_seq_0, prior_snd_una) &&
1123 	    after(end_seq_0, tp->undo_marker))
1124 		tp->undo_retrans--;
1125 
1126 	return dup_sack;
1127 }
1128 
1129 struct tcp_sacktag_state {
1130 	u32	reord;
1131 	/* Timestamps for earliest and latest never-retransmitted segment
1132 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1133 	 * but congestion control should still get an accurate delay signal.
1134 	 */
1135 	u64	first_sackt;
1136 	u64	last_sackt;
1137 	struct rate_sample *rate;
1138 	int	flag;
1139 	unsigned int mss_now;
1140 };
1141 
1142 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1143  * the incoming SACK may not exactly match but we can find smaller MSS
1144  * aligned portion of it that matches. Therefore we might need to fragment
1145  * which may fail and creates some hassle (caller must handle error case
1146  * returns).
1147  *
1148  * FIXME: this could be merged to shift decision code
1149  */
1150 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1151 				  u32 start_seq, u32 end_seq)
1152 {
1153 	int err;
1154 	bool in_sack;
1155 	unsigned int pkt_len;
1156 	unsigned int mss;
1157 
1158 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1159 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1160 
1161 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1162 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1163 		mss = tcp_skb_mss(skb);
1164 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1165 
1166 		if (!in_sack) {
1167 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1168 			if (pkt_len < mss)
1169 				pkt_len = mss;
1170 		} else {
1171 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1172 			if (pkt_len < mss)
1173 				return -EINVAL;
1174 		}
1175 
1176 		/* Round if necessary so that SACKs cover only full MSSes
1177 		 * and/or the remaining small portion (if present)
1178 		 */
1179 		if (pkt_len > mss) {
1180 			unsigned int new_len = (pkt_len / mss) * mss;
1181 			if (!in_sack && new_len < pkt_len)
1182 				new_len += mss;
1183 			pkt_len = new_len;
1184 		}
1185 
1186 		if (pkt_len >= skb->len && !in_sack)
1187 			return 0;
1188 
1189 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1190 				   pkt_len, mss, GFP_ATOMIC);
1191 		if (err < 0)
1192 			return err;
1193 	}
1194 
1195 	return in_sack;
1196 }
1197 
1198 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1199 static u8 tcp_sacktag_one(struct sock *sk,
1200 			  struct tcp_sacktag_state *state, u8 sacked,
1201 			  u32 start_seq, u32 end_seq,
1202 			  int dup_sack, int pcount,
1203 			  u64 xmit_time)
1204 {
1205 	struct tcp_sock *tp = tcp_sk(sk);
1206 
1207 	/* Account D-SACK for retransmitted packet. */
1208 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1209 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1210 		    after(end_seq, tp->undo_marker))
1211 			tp->undo_retrans--;
1212 		if ((sacked & TCPCB_SACKED_ACKED) &&
1213 		    before(start_seq, state->reord))
1214 				state->reord = start_seq;
1215 	}
1216 
1217 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1218 	if (!after(end_seq, tp->snd_una))
1219 		return sacked;
1220 
1221 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1222 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1223 
1224 		if (sacked & TCPCB_SACKED_RETRANS) {
1225 			/* If the segment is not tagged as lost,
1226 			 * we do not clear RETRANS, believing
1227 			 * that retransmission is still in flight.
1228 			 */
1229 			if (sacked & TCPCB_LOST) {
1230 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1231 				tp->lost_out -= pcount;
1232 				tp->retrans_out -= pcount;
1233 			}
1234 		} else {
1235 			if (!(sacked & TCPCB_RETRANS)) {
1236 				/* New sack for not retransmitted frame,
1237 				 * which was in hole. It is reordering.
1238 				 */
1239 				if (before(start_seq,
1240 					   tcp_highest_sack_seq(tp)) &&
1241 				    before(start_seq, state->reord))
1242 					state->reord = start_seq;
1243 
1244 				if (!after(end_seq, tp->high_seq))
1245 					state->flag |= FLAG_ORIG_SACK_ACKED;
1246 				if (state->first_sackt == 0)
1247 					state->first_sackt = xmit_time;
1248 				state->last_sackt = xmit_time;
1249 			}
1250 
1251 			if (sacked & TCPCB_LOST) {
1252 				sacked &= ~TCPCB_LOST;
1253 				tp->lost_out -= pcount;
1254 			}
1255 		}
1256 
1257 		sacked |= TCPCB_SACKED_ACKED;
1258 		state->flag |= FLAG_DATA_SACKED;
1259 		tp->sacked_out += pcount;
1260 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1261 
1262 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1263 		if (tp->lost_skb_hint &&
1264 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1265 			tp->lost_cnt_hint += pcount;
1266 	}
1267 
1268 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1269 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1270 	 * are accounted above as well.
1271 	 */
1272 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1273 		sacked &= ~TCPCB_SACKED_RETRANS;
1274 		tp->retrans_out -= pcount;
1275 	}
1276 
1277 	return sacked;
1278 }
1279 
1280 /* Shift newly-SACKed bytes from this skb to the immediately previous
1281  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1282  */
1283 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1284 			    struct sk_buff *skb,
1285 			    struct tcp_sacktag_state *state,
1286 			    unsigned int pcount, int shifted, int mss,
1287 			    bool dup_sack)
1288 {
1289 	struct tcp_sock *tp = tcp_sk(sk);
1290 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1291 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1292 
1293 	BUG_ON(!pcount);
1294 
1295 	/* Adjust counters and hints for the newly sacked sequence
1296 	 * range but discard the return value since prev is already
1297 	 * marked. We must tag the range first because the seq
1298 	 * advancement below implicitly advances
1299 	 * tcp_highest_sack_seq() when skb is highest_sack.
1300 	 */
1301 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1302 			start_seq, end_seq, dup_sack, pcount,
1303 			tcp_skb_timestamp_us(skb));
1304 	tcp_rate_skb_delivered(sk, skb, state->rate);
1305 
1306 	if (skb == tp->lost_skb_hint)
1307 		tp->lost_cnt_hint += pcount;
1308 
1309 	TCP_SKB_CB(prev)->end_seq += shifted;
1310 	TCP_SKB_CB(skb)->seq += shifted;
1311 
1312 	tcp_skb_pcount_add(prev, pcount);
1313 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1314 	tcp_skb_pcount_add(skb, -pcount);
1315 
1316 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1317 	 * in theory this shouldn't be necessary but as long as DSACK
1318 	 * code can come after this skb later on it's better to keep
1319 	 * setting gso_size to something.
1320 	 */
1321 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1322 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1323 
1324 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1325 	if (tcp_skb_pcount(skb) <= 1)
1326 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1327 
1328 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1329 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1330 
1331 	if (skb->len > 0) {
1332 		BUG_ON(!tcp_skb_pcount(skb));
1333 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1334 		return false;
1335 	}
1336 
1337 	/* Whole SKB was eaten :-) */
1338 
1339 	if (skb == tp->retransmit_skb_hint)
1340 		tp->retransmit_skb_hint = prev;
1341 	if (skb == tp->lost_skb_hint) {
1342 		tp->lost_skb_hint = prev;
1343 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1344 	}
1345 
1346 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1347 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1348 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1349 		TCP_SKB_CB(prev)->end_seq++;
1350 
1351 	if (skb == tcp_highest_sack(sk))
1352 		tcp_advance_highest_sack(sk, skb);
1353 
1354 	tcp_skb_collapse_tstamp(prev, skb);
1355 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1356 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1357 
1358 	tcp_rtx_queue_unlink_and_free(skb, sk);
1359 
1360 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1361 
1362 	return true;
1363 }
1364 
1365 /* I wish gso_size would have a bit more sane initialization than
1366  * something-or-zero which complicates things
1367  */
1368 static int tcp_skb_seglen(const struct sk_buff *skb)
1369 {
1370 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1371 }
1372 
1373 /* Shifting pages past head area doesn't work */
1374 static int skb_can_shift(const struct sk_buff *skb)
1375 {
1376 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1377 }
1378 
1379 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1380 		  int pcount, int shiftlen)
1381 {
1382 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1383 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1384 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1385 	 * even if current MSS is bigger.
1386 	 */
1387 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1388 		return 0;
1389 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1390 		return 0;
1391 	return skb_shift(to, from, shiftlen);
1392 }
1393 
1394 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1395  * skb.
1396  */
1397 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1398 					  struct tcp_sacktag_state *state,
1399 					  u32 start_seq, u32 end_seq,
1400 					  bool dup_sack)
1401 {
1402 	struct tcp_sock *tp = tcp_sk(sk);
1403 	struct sk_buff *prev;
1404 	int mss;
1405 	int pcount = 0;
1406 	int len;
1407 	int in_sack;
1408 
1409 	/* Normally R but no L won't result in plain S */
1410 	if (!dup_sack &&
1411 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1412 		goto fallback;
1413 	if (!skb_can_shift(skb))
1414 		goto fallback;
1415 	/* This frame is about to be dropped (was ACKed). */
1416 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1417 		goto fallback;
1418 
1419 	/* Can only happen with delayed DSACK + discard craziness */
1420 	prev = skb_rb_prev(skb);
1421 	if (!prev)
1422 		goto fallback;
1423 
1424 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1425 		goto fallback;
1426 
1427 	if (!tcp_skb_can_collapse(prev, skb))
1428 		goto fallback;
1429 
1430 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1431 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1432 
1433 	if (in_sack) {
1434 		len = skb->len;
1435 		pcount = tcp_skb_pcount(skb);
1436 		mss = tcp_skb_seglen(skb);
1437 
1438 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1439 		 * drop this restriction as unnecessary
1440 		 */
1441 		if (mss != tcp_skb_seglen(prev))
1442 			goto fallback;
1443 	} else {
1444 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1445 			goto noop;
1446 		/* CHECKME: This is non-MSS split case only?, this will
1447 		 * cause skipped skbs due to advancing loop btw, original
1448 		 * has that feature too
1449 		 */
1450 		if (tcp_skb_pcount(skb) <= 1)
1451 			goto noop;
1452 
1453 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1454 		if (!in_sack) {
1455 			/* TODO: head merge to next could be attempted here
1456 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1457 			 * though it might not be worth of the additional hassle
1458 			 *
1459 			 * ...we can probably just fallback to what was done
1460 			 * previously. We could try merging non-SACKed ones
1461 			 * as well but it probably isn't going to buy off
1462 			 * because later SACKs might again split them, and
1463 			 * it would make skb timestamp tracking considerably
1464 			 * harder problem.
1465 			 */
1466 			goto fallback;
1467 		}
1468 
1469 		len = end_seq - TCP_SKB_CB(skb)->seq;
1470 		BUG_ON(len < 0);
1471 		BUG_ON(len > skb->len);
1472 
1473 		/* MSS boundaries should be honoured or else pcount will
1474 		 * severely break even though it makes things bit trickier.
1475 		 * Optimize common case to avoid most of the divides
1476 		 */
1477 		mss = tcp_skb_mss(skb);
1478 
1479 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1480 		 * drop this restriction as unnecessary
1481 		 */
1482 		if (mss != tcp_skb_seglen(prev))
1483 			goto fallback;
1484 
1485 		if (len == mss) {
1486 			pcount = 1;
1487 		} else if (len < mss) {
1488 			goto noop;
1489 		} else {
1490 			pcount = len / mss;
1491 			len = pcount * mss;
1492 		}
1493 	}
1494 
1495 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1496 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1497 		goto fallback;
1498 
1499 	if (!tcp_skb_shift(prev, skb, pcount, len))
1500 		goto fallback;
1501 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1502 		goto out;
1503 
1504 	/* Hole filled allows collapsing with the next as well, this is very
1505 	 * useful when hole on every nth skb pattern happens
1506 	 */
1507 	skb = skb_rb_next(prev);
1508 	if (!skb)
1509 		goto out;
1510 
1511 	if (!skb_can_shift(skb) ||
1512 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1513 	    (mss != tcp_skb_seglen(skb)))
1514 		goto out;
1515 
1516 	len = skb->len;
1517 	pcount = tcp_skb_pcount(skb);
1518 	if (tcp_skb_shift(prev, skb, pcount, len))
1519 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1520 				len, mss, 0);
1521 
1522 out:
1523 	return prev;
1524 
1525 noop:
1526 	return skb;
1527 
1528 fallback:
1529 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1530 	return NULL;
1531 }
1532 
1533 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1534 					struct tcp_sack_block *next_dup,
1535 					struct tcp_sacktag_state *state,
1536 					u32 start_seq, u32 end_seq,
1537 					bool dup_sack_in)
1538 {
1539 	struct tcp_sock *tp = tcp_sk(sk);
1540 	struct sk_buff *tmp;
1541 
1542 	skb_rbtree_walk_from(skb) {
1543 		int in_sack = 0;
1544 		bool dup_sack = dup_sack_in;
1545 
1546 		/* queue is in-order => we can short-circuit the walk early */
1547 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1548 			break;
1549 
1550 		if (next_dup  &&
1551 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1552 			in_sack = tcp_match_skb_to_sack(sk, skb,
1553 							next_dup->start_seq,
1554 							next_dup->end_seq);
1555 			if (in_sack > 0)
1556 				dup_sack = true;
1557 		}
1558 
1559 		/* skb reference here is a bit tricky to get right, since
1560 		 * shifting can eat and free both this skb and the next,
1561 		 * so not even _safe variant of the loop is enough.
1562 		 */
1563 		if (in_sack <= 0) {
1564 			tmp = tcp_shift_skb_data(sk, skb, state,
1565 						 start_seq, end_seq, dup_sack);
1566 			if (tmp) {
1567 				if (tmp != skb) {
1568 					skb = tmp;
1569 					continue;
1570 				}
1571 
1572 				in_sack = 0;
1573 			} else {
1574 				in_sack = tcp_match_skb_to_sack(sk, skb,
1575 								start_seq,
1576 								end_seq);
1577 			}
1578 		}
1579 
1580 		if (unlikely(in_sack < 0))
1581 			break;
1582 
1583 		if (in_sack) {
1584 			TCP_SKB_CB(skb)->sacked =
1585 				tcp_sacktag_one(sk,
1586 						state,
1587 						TCP_SKB_CB(skb)->sacked,
1588 						TCP_SKB_CB(skb)->seq,
1589 						TCP_SKB_CB(skb)->end_seq,
1590 						dup_sack,
1591 						tcp_skb_pcount(skb),
1592 						tcp_skb_timestamp_us(skb));
1593 			tcp_rate_skb_delivered(sk, skb, state->rate);
1594 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1595 				list_del_init(&skb->tcp_tsorted_anchor);
1596 
1597 			if (!before(TCP_SKB_CB(skb)->seq,
1598 				    tcp_highest_sack_seq(tp)))
1599 				tcp_advance_highest_sack(sk, skb);
1600 		}
1601 	}
1602 	return skb;
1603 }
1604 
1605 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1606 {
1607 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1608 	struct sk_buff *skb;
1609 
1610 	while (*p) {
1611 		parent = *p;
1612 		skb = rb_to_skb(parent);
1613 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1614 			p = &parent->rb_left;
1615 			continue;
1616 		}
1617 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1618 			p = &parent->rb_right;
1619 			continue;
1620 		}
1621 		return skb;
1622 	}
1623 	return NULL;
1624 }
1625 
1626 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1627 					u32 skip_to_seq)
1628 {
1629 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1630 		return skb;
1631 
1632 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1633 }
1634 
1635 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1636 						struct sock *sk,
1637 						struct tcp_sack_block *next_dup,
1638 						struct tcp_sacktag_state *state,
1639 						u32 skip_to_seq)
1640 {
1641 	if (!next_dup)
1642 		return skb;
1643 
1644 	if (before(next_dup->start_seq, skip_to_seq)) {
1645 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1646 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1647 				       next_dup->start_seq, next_dup->end_seq,
1648 				       1);
1649 	}
1650 
1651 	return skb;
1652 }
1653 
1654 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1655 {
1656 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1657 }
1658 
1659 static int
1660 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1661 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1662 {
1663 	struct tcp_sock *tp = tcp_sk(sk);
1664 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1665 				    TCP_SKB_CB(ack_skb)->sacked);
1666 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1667 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1668 	struct tcp_sack_block *cache;
1669 	struct sk_buff *skb;
1670 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1671 	int used_sacks;
1672 	bool found_dup_sack = false;
1673 	int i, j;
1674 	int first_sack_index;
1675 
1676 	state->flag = 0;
1677 	state->reord = tp->snd_nxt;
1678 
1679 	if (!tp->sacked_out)
1680 		tcp_highest_sack_reset(sk);
1681 
1682 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1683 					 num_sacks, prior_snd_una);
1684 	if (found_dup_sack) {
1685 		state->flag |= FLAG_DSACKING_ACK;
1686 		tp->delivered++; /* A spurious retransmission is delivered */
1687 	}
1688 
1689 	/* Eliminate too old ACKs, but take into
1690 	 * account more or less fresh ones, they can
1691 	 * contain valid SACK info.
1692 	 */
1693 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1694 		return 0;
1695 
1696 	if (!tp->packets_out)
1697 		goto out;
1698 
1699 	used_sacks = 0;
1700 	first_sack_index = 0;
1701 	for (i = 0; i < num_sacks; i++) {
1702 		bool dup_sack = !i && found_dup_sack;
1703 
1704 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1705 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1706 
1707 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1708 					    sp[used_sacks].start_seq,
1709 					    sp[used_sacks].end_seq)) {
1710 			int mib_idx;
1711 
1712 			if (dup_sack) {
1713 				if (!tp->undo_marker)
1714 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1715 				else
1716 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1717 			} else {
1718 				/* Don't count olds caused by ACK reordering */
1719 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1720 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1721 					continue;
1722 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1723 			}
1724 
1725 			NET_INC_STATS(sock_net(sk), mib_idx);
1726 			if (i == 0)
1727 				first_sack_index = -1;
1728 			continue;
1729 		}
1730 
1731 		/* Ignore very old stuff early */
1732 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1733 			if (i == 0)
1734 				first_sack_index = -1;
1735 			continue;
1736 		}
1737 
1738 		used_sacks++;
1739 	}
1740 
1741 	/* order SACK blocks to allow in order walk of the retrans queue */
1742 	for (i = used_sacks - 1; i > 0; i--) {
1743 		for (j = 0; j < i; j++) {
1744 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1745 				swap(sp[j], sp[j + 1]);
1746 
1747 				/* Track where the first SACK block goes to */
1748 				if (j == first_sack_index)
1749 					first_sack_index = j + 1;
1750 			}
1751 		}
1752 	}
1753 
1754 	state->mss_now = tcp_current_mss(sk);
1755 	skb = NULL;
1756 	i = 0;
1757 
1758 	if (!tp->sacked_out) {
1759 		/* It's already past, so skip checking against it */
1760 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1761 	} else {
1762 		cache = tp->recv_sack_cache;
1763 		/* Skip empty blocks in at head of the cache */
1764 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1765 		       !cache->end_seq)
1766 			cache++;
1767 	}
1768 
1769 	while (i < used_sacks) {
1770 		u32 start_seq = sp[i].start_seq;
1771 		u32 end_seq = sp[i].end_seq;
1772 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1773 		struct tcp_sack_block *next_dup = NULL;
1774 
1775 		if (found_dup_sack && ((i + 1) == first_sack_index))
1776 			next_dup = &sp[i + 1];
1777 
1778 		/* Skip too early cached blocks */
1779 		while (tcp_sack_cache_ok(tp, cache) &&
1780 		       !before(start_seq, cache->end_seq))
1781 			cache++;
1782 
1783 		/* Can skip some work by looking recv_sack_cache? */
1784 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1785 		    after(end_seq, cache->start_seq)) {
1786 
1787 			/* Head todo? */
1788 			if (before(start_seq, cache->start_seq)) {
1789 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1790 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1791 						       state,
1792 						       start_seq,
1793 						       cache->start_seq,
1794 						       dup_sack);
1795 			}
1796 
1797 			/* Rest of the block already fully processed? */
1798 			if (!after(end_seq, cache->end_seq))
1799 				goto advance_sp;
1800 
1801 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1802 						       state,
1803 						       cache->end_seq);
1804 
1805 			/* ...tail remains todo... */
1806 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1807 				/* ...but better entrypoint exists! */
1808 				skb = tcp_highest_sack(sk);
1809 				if (!skb)
1810 					break;
1811 				cache++;
1812 				goto walk;
1813 			}
1814 
1815 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1816 			/* Check overlap against next cached too (past this one already) */
1817 			cache++;
1818 			continue;
1819 		}
1820 
1821 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1822 			skb = tcp_highest_sack(sk);
1823 			if (!skb)
1824 				break;
1825 		}
1826 		skb = tcp_sacktag_skip(skb, sk, start_seq);
1827 
1828 walk:
1829 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1830 				       start_seq, end_seq, dup_sack);
1831 
1832 advance_sp:
1833 		i++;
1834 	}
1835 
1836 	/* Clear the head of the cache sack blocks so we can skip it next time */
1837 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1838 		tp->recv_sack_cache[i].start_seq = 0;
1839 		tp->recv_sack_cache[i].end_seq = 0;
1840 	}
1841 	for (j = 0; j < used_sacks; j++)
1842 		tp->recv_sack_cache[i++] = sp[j];
1843 
1844 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1845 		tcp_check_sack_reordering(sk, state->reord, 0);
1846 
1847 	tcp_verify_left_out(tp);
1848 out:
1849 
1850 #if FASTRETRANS_DEBUG > 0
1851 	WARN_ON((int)tp->sacked_out < 0);
1852 	WARN_ON((int)tp->lost_out < 0);
1853 	WARN_ON((int)tp->retrans_out < 0);
1854 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1855 #endif
1856 	return state->flag;
1857 }
1858 
1859 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1860  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1861  */
1862 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1863 {
1864 	u32 holes;
1865 
1866 	holes = max(tp->lost_out, 1U);
1867 	holes = min(holes, tp->packets_out);
1868 
1869 	if ((tp->sacked_out + holes) > tp->packets_out) {
1870 		tp->sacked_out = tp->packets_out - holes;
1871 		return true;
1872 	}
1873 	return false;
1874 }
1875 
1876 /* If we receive more dupacks than we expected counting segments
1877  * in assumption of absent reordering, interpret this as reordering.
1878  * The only another reason could be bug in receiver TCP.
1879  */
1880 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1881 {
1882 	struct tcp_sock *tp = tcp_sk(sk);
1883 
1884 	if (!tcp_limit_reno_sacked(tp))
1885 		return;
1886 
1887 	tp->reordering = min_t(u32, tp->packets_out + addend,
1888 			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1889 	tp->reord_seen++;
1890 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1891 }
1892 
1893 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1894 
1895 static void tcp_add_reno_sack(struct sock *sk, int num_dupack)
1896 {
1897 	if (num_dupack) {
1898 		struct tcp_sock *tp = tcp_sk(sk);
1899 		u32 prior_sacked = tp->sacked_out;
1900 		s32 delivered;
1901 
1902 		tp->sacked_out += num_dupack;
1903 		tcp_check_reno_reordering(sk, 0);
1904 		delivered = tp->sacked_out - prior_sacked;
1905 		if (delivered > 0)
1906 			tp->delivered += delivered;
1907 		tcp_verify_left_out(tp);
1908 	}
1909 }
1910 
1911 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1912 
1913 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1914 {
1915 	struct tcp_sock *tp = tcp_sk(sk);
1916 
1917 	if (acked > 0) {
1918 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1919 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1920 		if (acked - 1 >= tp->sacked_out)
1921 			tp->sacked_out = 0;
1922 		else
1923 			tp->sacked_out -= acked - 1;
1924 	}
1925 	tcp_check_reno_reordering(sk, acked);
1926 	tcp_verify_left_out(tp);
1927 }
1928 
1929 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1930 {
1931 	tp->sacked_out = 0;
1932 }
1933 
1934 void tcp_clear_retrans(struct tcp_sock *tp)
1935 {
1936 	tp->retrans_out = 0;
1937 	tp->lost_out = 0;
1938 	tp->undo_marker = 0;
1939 	tp->undo_retrans = -1;
1940 	tp->sacked_out = 0;
1941 }
1942 
1943 static inline void tcp_init_undo(struct tcp_sock *tp)
1944 {
1945 	tp->undo_marker = tp->snd_una;
1946 	/* Retransmission still in flight may cause DSACKs later. */
1947 	tp->undo_retrans = tp->retrans_out ? : -1;
1948 }
1949 
1950 static bool tcp_is_rack(const struct sock *sk)
1951 {
1952 	return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
1953 }
1954 
1955 /* If we detect SACK reneging, forget all SACK information
1956  * and reset tags completely, otherwise preserve SACKs. If receiver
1957  * dropped its ofo queue, we will know this due to reneging detection.
1958  */
1959 static void tcp_timeout_mark_lost(struct sock *sk)
1960 {
1961 	struct tcp_sock *tp = tcp_sk(sk);
1962 	struct sk_buff *skb, *head;
1963 	bool is_reneg;			/* is receiver reneging on SACKs? */
1964 
1965 	head = tcp_rtx_queue_head(sk);
1966 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
1967 	if (is_reneg) {
1968 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1969 		tp->sacked_out = 0;
1970 		/* Mark SACK reneging until we recover from this loss event. */
1971 		tp->is_sack_reneg = 1;
1972 	} else if (tcp_is_reno(tp)) {
1973 		tcp_reset_reno_sack(tp);
1974 	}
1975 
1976 	skb = head;
1977 	skb_rbtree_walk_from(skb) {
1978 		if (is_reneg)
1979 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1980 		else if (tcp_is_rack(sk) && skb != head &&
1981 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
1982 			continue; /* Don't mark recently sent ones lost yet */
1983 		tcp_mark_skb_lost(sk, skb);
1984 	}
1985 	tcp_verify_left_out(tp);
1986 	tcp_clear_all_retrans_hints(tp);
1987 }
1988 
1989 /* Enter Loss state. */
1990 void tcp_enter_loss(struct sock *sk)
1991 {
1992 	const struct inet_connection_sock *icsk = inet_csk(sk);
1993 	struct tcp_sock *tp = tcp_sk(sk);
1994 	struct net *net = sock_net(sk);
1995 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1996 
1997 	tcp_timeout_mark_lost(sk);
1998 
1999 	/* Reduce ssthresh if it has not yet been made inside this window. */
2000 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2001 	    !after(tp->high_seq, tp->snd_una) ||
2002 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2003 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2004 		tp->prior_cwnd = tp->snd_cwnd;
2005 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2006 		tcp_ca_event(sk, CA_EVENT_LOSS);
2007 		tcp_init_undo(tp);
2008 	}
2009 	tp->snd_cwnd	   = tcp_packets_in_flight(tp) + 1;
2010 	tp->snd_cwnd_cnt   = 0;
2011 	tp->snd_cwnd_stamp = tcp_jiffies32;
2012 
2013 	/* Timeout in disordered state after receiving substantial DUPACKs
2014 	 * suggests that the degree of reordering is over-estimated.
2015 	 */
2016 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2017 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2018 		tp->reordering = min_t(unsigned int, tp->reordering,
2019 				       net->ipv4.sysctl_tcp_reordering);
2020 	tcp_set_ca_state(sk, TCP_CA_Loss);
2021 	tp->high_seq = tp->snd_nxt;
2022 	tcp_ecn_queue_cwr(tp);
2023 
2024 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2025 	 * loss recovery is underway except recurring timeout(s) on
2026 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2027 	 */
2028 	tp->frto = net->ipv4.sysctl_tcp_frto &&
2029 		   (new_recovery || icsk->icsk_retransmits) &&
2030 		   !inet_csk(sk)->icsk_mtup.probe_size;
2031 }
2032 
2033 /* If ACK arrived pointing to a remembered SACK, it means that our
2034  * remembered SACKs do not reflect real state of receiver i.e.
2035  * receiver _host_ is heavily congested (or buggy).
2036  *
2037  * To avoid big spurious retransmission bursts due to transient SACK
2038  * scoreboard oddities that look like reneging, we give the receiver a
2039  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2040  * restore sanity to the SACK scoreboard. If the apparent reneging
2041  * persists until this RTO then we'll clear the SACK scoreboard.
2042  */
2043 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2044 {
2045 	if (flag & FLAG_SACK_RENEGING) {
2046 		struct tcp_sock *tp = tcp_sk(sk);
2047 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2048 					  msecs_to_jiffies(10));
2049 
2050 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2051 					  delay, TCP_RTO_MAX);
2052 		return true;
2053 	}
2054 	return false;
2055 }
2056 
2057 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2058  * counter when SACK is enabled (without SACK, sacked_out is used for
2059  * that purpose).
2060  *
2061  * With reordering, holes may still be in flight, so RFC3517 recovery
2062  * uses pure sacked_out (total number of SACKed segments) even though
2063  * it violates the RFC that uses duplicate ACKs, often these are equal
2064  * but when e.g. out-of-window ACKs or packet duplication occurs,
2065  * they differ. Since neither occurs due to loss, TCP should really
2066  * ignore them.
2067  */
2068 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2069 {
2070 	return tp->sacked_out + 1;
2071 }
2072 
2073 /* Linux NewReno/SACK/ECN state machine.
2074  * --------------------------------------
2075  *
2076  * "Open"	Normal state, no dubious events, fast path.
2077  * "Disorder"   In all the respects it is "Open",
2078  *		but requires a bit more attention. It is entered when
2079  *		we see some SACKs or dupacks. It is split of "Open"
2080  *		mainly to move some processing from fast path to slow one.
2081  * "CWR"	CWND was reduced due to some Congestion Notification event.
2082  *		It can be ECN, ICMP source quench, local device congestion.
2083  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2084  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2085  *
2086  * tcp_fastretrans_alert() is entered:
2087  * - each incoming ACK, if state is not "Open"
2088  * - when arrived ACK is unusual, namely:
2089  *	* SACK
2090  *	* Duplicate ACK.
2091  *	* ECN ECE.
2092  *
2093  * Counting packets in flight is pretty simple.
2094  *
2095  *	in_flight = packets_out - left_out + retrans_out
2096  *
2097  *	packets_out is SND.NXT-SND.UNA counted in packets.
2098  *
2099  *	retrans_out is number of retransmitted segments.
2100  *
2101  *	left_out is number of segments left network, but not ACKed yet.
2102  *
2103  *		left_out = sacked_out + lost_out
2104  *
2105  *     sacked_out: Packets, which arrived to receiver out of order
2106  *		   and hence not ACKed. With SACKs this number is simply
2107  *		   amount of SACKed data. Even without SACKs
2108  *		   it is easy to give pretty reliable estimate of this number,
2109  *		   counting duplicate ACKs.
2110  *
2111  *       lost_out: Packets lost by network. TCP has no explicit
2112  *		   "loss notification" feedback from network (for now).
2113  *		   It means that this number can be only _guessed_.
2114  *		   Actually, it is the heuristics to predict lossage that
2115  *		   distinguishes different algorithms.
2116  *
2117  *	F.e. after RTO, when all the queue is considered as lost,
2118  *	lost_out = packets_out and in_flight = retrans_out.
2119  *
2120  *		Essentially, we have now a few algorithms detecting
2121  *		lost packets.
2122  *
2123  *		If the receiver supports SACK:
2124  *
2125  *		RFC6675/3517: It is the conventional algorithm. A packet is
2126  *		considered lost if the number of higher sequence packets
2127  *		SACKed is greater than or equal the DUPACK thoreshold
2128  *		(reordering). This is implemented in tcp_mark_head_lost and
2129  *		tcp_update_scoreboard.
2130  *
2131  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2132  *		(2017-) that checks timing instead of counting DUPACKs.
2133  *		Essentially a packet is considered lost if it's not S/ACKed
2134  *		after RTT + reordering_window, where both metrics are
2135  *		dynamically measured and adjusted. This is implemented in
2136  *		tcp_rack_mark_lost.
2137  *
2138  *		If the receiver does not support SACK:
2139  *
2140  *		NewReno (RFC6582): in Recovery we assume that one segment
2141  *		is lost (classic Reno). While we are in Recovery and
2142  *		a partial ACK arrives, we assume that one more packet
2143  *		is lost (NewReno). This heuristics are the same in NewReno
2144  *		and SACK.
2145  *
2146  * Really tricky (and requiring careful tuning) part of algorithm
2147  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2148  * The first determines the moment _when_ we should reduce CWND and,
2149  * hence, slow down forward transmission. In fact, it determines the moment
2150  * when we decide that hole is caused by loss, rather than by a reorder.
2151  *
2152  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2153  * holes, caused by lost packets.
2154  *
2155  * And the most logically complicated part of algorithm is undo
2156  * heuristics. We detect false retransmits due to both too early
2157  * fast retransmit (reordering) and underestimated RTO, analyzing
2158  * timestamps and D-SACKs. When we detect that some segments were
2159  * retransmitted by mistake and CWND reduction was wrong, we undo
2160  * window reduction and abort recovery phase. This logic is hidden
2161  * inside several functions named tcp_try_undo_<something>.
2162  */
2163 
2164 /* This function decides, when we should leave Disordered state
2165  * and enter Recovery phase, reducing congestion window.
2166  *
2167  * Main question: may we further continue forward transmission
2168  * with the same cwnd?
2169  */
2170 static bool tcp_time_to_recover(struct sock *sk, int flag)
2171 {
2172 	struct tcp_sock *tp = tcp_sk(sk);
2173 
2174 	/* Trick#1: The loss is proven. */
2175 	if (tp->lost_out)
2176 		return true;
2177 
2178 	/* Not-A-Trick#2 : Classic rule... */
2179 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2180 		return true;
2181 
2182 	return false;
2183 }
2184 
2185 /* Detect loss in event "A" above by marking head of queue up as lost.
2186  * For non-SACK(Reno) senders, the first "packets" number of segments
2187  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2188  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2189  * the maximum SACKed segments to pass before reaching this limit.
2190  */
2191 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2192 {
2193 	struct tcp_sock *tp = tcp_sk(sk);
2194 	struct sk_buff *skb;
2195 	int cnt, oldcnt, lost;
2196 	unsigned int mss;
2197 	/* Use SACK to deduce losses of new sequences sent during recovery */
2198 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2199 
2200 	WARN_ON(packets > tp->packets_out);
2201 	skb = tp->lost_skb_hint;
2202 	if (skb) {
2203 		/* Head already handled? */
2204 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2205 			return;
2206 		cnt = tp->lost_cnt_hint;
2207 	} else {
2208 		skb = tcp_rtx_queue_head(sk);
2209 		cnt = 0;
2210 	}
2211 
2212 	skb_rbtree_walk_from(skb) {
2213 		/* TODO: do this better */
2214 		/* this is not the most efficient way to do this... */
2215 		tp->lost_skb_hint = skb;
2216 		tp->lost_cnt_hint = cnt;
2217 
2218 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2219 			break;
2220 
2221 		oldcnt = cnt;
2222 		if (tcp_is_reno(tp) ||
2223 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2224 			cnt += tcp_skb_pcount(skb);
2225 
2226 		if (cnt > packets) {
2227 			if (tcp_is_sack(tp) ||
2228 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2229 			    (oldcnt >= packets))
2230 				break;
2231 
2232 			mss = tcp_skb_mss(skb);
2233 			/* If needed, chop off the prefix to mark as lost. */
2234 			lost = (packets - oldcnt) * mss;
2235 			if (lost < skb->len &&
2236 			    tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2237 					 lost, mss, GFP_ATOMIC) < 0)
2238 				break;
2239 			cnt = packets;
2240 		}
2241 
2242 		tcp_skb_mark_lost(tp, skb);
2243 
2244 		if (mark_head)
2245 			break;
2246 	}
2247 	tcp_verify_left_out(tp);
2248 }
2249 
2250 /* Account newly detected lost packet(s) */
2251 
2252 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2253 {
2254 	struct tcp_sock *tp = tcp_sk(sk);
2255 
2256 	if (tcp_is_sack(tp)) {
2257 		int sacked_upto = tp->sacked_out - tp->reordering;
2258 		if (sacked_upto >= 0)
2259 			tcp_mark_head_lost(sk, sacked_upto, 0);
2260 		else if (fast_rexmit)
2261 			tcp_mark_head_lost(sk, 1, 1);
2262 	}
2263 }
2264 
2265 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2266 {
2267 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2268 	       before(tp->rx_opt.rcv_tsecr, when);
2269 }
2270 
2271 /* skb is spurious retransmitted if the returned timestamp echo
2272  * reply is prior to the skb transmission time
2273  */
2274 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2275 				     const struct sk_buff *skb)
2276 {
2277 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2278 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2279 }
2280 
2281 /* Nothing was retransmitted or returned timestamp is less
2282  * than timestamp of the first retransmission.
2283  */
2284 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2285 {
2286 	return tp->retrans_stamp &&
2287 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2288 }
2289 
2290 /* Undo procedures. */
2291 
2292 /* We can clear retrans_stamp when there are no retransmissions in the
2293  * window. It would seem that it is trivially available for us in
2294  * tp->retrans_out, however, that kind of assumptions doesn't consider
2295  * what will happen if errors occur when sending retransmission for the
2296  * second time. ...It could the that such segment has only
2297  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2298  * the head skb is enough except for some reneging corner cases that
2299  * are not worth the effort.
2300  *
2301  * Main reason for all this complexity is the fact that connection dying
2302  * time now depends on the validity of the retrans_stamp, in particular,
2303  * that successive retransmissions of a segment must not advance
2304  * retrans_stamp under any conditions.
2305  */
2306 static bool tcp_any_retrans_done(const struct sock *sk)
2307 {
2308 	const struct tcp_sock *tp = tcp_sk(sk);
2309 	struct sk_buff *skb;
2310 
2311 	if (tp->retrans_out)
2312 		return true;
2313 
2314 	skb = tcp_rtx_queue_head(sk);
2315 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2316 		return true;
2317 
2318 	return false;
2319 }
2320 
2321 static void DBGUNDO(struct sock *sk, const char *msg)
2322 {
2323 #if FASTRETRANS_DEBUG > 1
2324 	struct tcp_sock *tp = tcp_sk(sk);
2325 	struct inet_sock *inet = inet_sk(sk);
2326 
2327 	if (sk->sk_family == AF_INET) {
2328 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2329 			 msg,
2330 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2331 			 tp->snd_cwnd, tcp_left_out(tp),
2332 			 tp->snd_ssthresh, tp->prior_ssthresh,
2333 			 tp->packets_out);
2334 	}
2335 #if IS_ENABLED(CONFIG_IPV6)
2336 	else if (sk->sk_family == AF_INET6) {
2337 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2338 			 msg,
2339 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2340 			 tp->snd_cwnd, tcp_left_out(tp),
2341 			 tp->snd_ssthresh, tp->prior_ssthresh,
2342 			 tp->packets_out);
2343 	}
2344 #endif
2345 #endif
2346 }
2347 
2348 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2349 {
2350 	struct tcp_sock *tp = tcp_sk(sk);
2351 
2352 	if (unmark_loss) {
2353 		struct sk_buff *skb;
2354 
2355 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2356 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2357 		}
2358 		tp->lost_out = 0;
2359 		tcp_clear_all_retrans_hints(tp);
2360 	}
2361 
2362 	if (tp->prior_ssthresh) {
2363 		const struct inet_connection_sock *icsk = inet_csk(sk);
2364 
2365 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2366 
2367 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2368 			tp->snd_ssthresh = tp->prior_ssthresh;
2369 			tcp_ecn_withdraw_cwr(tp);
2370 		}
2371 	}
2372 	tp->snd_cwnd_stamp = tcp_jiffies32;
2373 	tp->undo_marker = 0;
2374 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2375 }
2376 
2377 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2378 {
2379 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2380 }
2381 
2382 /* People celebrate: "We love our President!" */
2383 static bool tcp_try_undo_recovery(struct sock *sk)
2384 {
2385 	struct tcp_sock *tp = tcp_sk(sk);
2386 
2387 	if (tcp_may_undo(tp)) {
2388 		int mib_idx;
2389 
2390 		/* Happy end! We did not retransmit anything
2391 		 * or our original transmission succeeded.
2392 		 */
2393 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2394 		tcp_undo_cwnd_reduction(sk, false);
2395 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2396 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2397 		else
2398 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2399 
2400 		NET_INC_STATS(sock_net(sk), mib_idx);
2401 	} else if (tp->rack.reo_wnd_persist) {
2402 		tp->rack.reo_wnd_persist--;
2403 	}
2404 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2405 		/* Hold old state until something *above* high_seq
2406 		 * is ACKed. For Reno it is MUST to prevent false
2407 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2408 		if (!tcp_any_retrans_done(sk))
2409 			tp->retrans_stamp = 0;
2410 		return true;
2411 	}
2412 	tcp_set_ca_state(sk, TCP_CA_Open);
2413 	tp->is_sack_reneg = 0;
2414 	return false;
2415 }
2416 
2417 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2418 static bool tcp_try_undo_dsack(struct sock *sk)
2419 {
2420 	struct tcp_sock *tp = tcp_sk(sk);
2421 
2422 	if (tp->undo_marker && !tp->undo_retrans) {
2423 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2424 					       tp->rack.reo_wnd_persist + 1);
2425 		DBGUNDO(sk, "D-SACK");
2426 		tcp_undo_cwnd_reduction(sk, false);
2427 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2428 		return true;
2429 	}
2430 	return false;
2431 }
2432 
2433 /* Undo during loss recovery after partial ACK or using F-RTO. */
2434 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2435 {
2436 	struct tcp_sock *tp = tcp_sk(sk);
2437 
2438 	if (frto_undo || tcp_may_undo(tp)) {
2439 		tcp_undo_cwnd_reduction(sk, true);
2440 
2441 		DBGUNDO(sk, "partial loss");
2442 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2443 		if (frto_undo)
2444 			NET_INC_STATS(sock_net(sk),
2445 					LINUX_MIB_TCPSPURIOUSRTOS);
2446 		inet_csk(sk)->icsk_retransmits = 0;
2447 		if (frto_undo || tcp_is_sack(tp)) {
2448 			tcp_set_ca_state(sk, TCP_CA_Open);
2449 			tp->is_sack_reneg = 0;
2450 		}
2451 		return true;
2452 	}
2453 	return false;
2454 }
2455 
2456 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2457  * It computes the number of packets to send (sndcnt) based on packets newly
2458  * delivered:
2459  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2460  *	cwnd reductions across a full RTT.
2461  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2462  *      But when the retransmits are acked without further losses, PRR
2463  *      slow starts cwnd up to ssthresh to speed up the recovery.
2464  */
2465 static void tcp_init_cwnd_reduction(struct sock *sk)
2466 {
2467 	struct tcp_sock *tp = tcp_sk(sk);
2468 
2469 	tp->high_seq = tp->snd_nxt;
2470 	tp->tlp_high_seq = 0;
2471 	tp->snd_cwnd_cnt = 0;
2472 	tp->prior_cwnd = tp->snd_cwnd;
2473 	tp->prr_delivered = 0;
2474 	tp->prr_out = 0;
2475 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2476 	tcp_ecn_queue_cwr(tp);
2477 }
2478 
2479 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2480 {
2481 	struct tcp_sock *tp = tcp_sk(sk);
2482 	int sndcnt = 0;
2483 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2484 
2485 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2486 		return;
2487 
2488 	tp->prr_delivered += newly_acked_sacked;
2489 	if (delta < 0) {
2490 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2491 			       tp->prior_cwnd - 1;
2492 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2493 	} else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) ==
2494 		   FLAG_RETRANS_DATA_ACKED) {
2495 		sndcnt = min_t(int, delta,
2496 			       max_t(int, tp->prr_delivered - tp->prr_out,
2497 				     newly_acked_sacked) + 1);
2498 	} else {
2499 		sndcnt = min(delta, newly_acked_sacked);
2500 	}
2501 	/* Force a fast retransmit upon entering fast recovery */
2502 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2503 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2504 }
2505 
2506 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2507 {
2508 	struct tcp_sock *tp = tcp_sk(sk);
2509 
2510 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2511 		return;
2512 
2513 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2514 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2515 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2516 		tp->snd_cwnd = tp->snd_ssthresh;
2517 		tp->snd_cwnd_stamp = tcp_jiffies32;
2518 	}
2519 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2520 }
2521 
2522 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2523 void tcp_enter_cwr(struct sock *sk)
2524 {
2525 	struct tcp_sock *tp = tcp_sk(sk);
2526 
2527 	tp->prior_ssthresh = 0;
2528 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2529 		tp->undo_marker = 0;
2530 		tcp_init_cwnd_reduction(sk);
2531 		tcp_set_ca_state(sk, TCP_CA_CWR);
2532 	}
2533 }
2534 EXPORT_SYMBOL(tcp_enter_cwr);
2535 
2536 static void tcp_try_keep_open(struct sock *sk)
2537 {
2538 	struct tcp_sock *tp = tcp_sk(sk);
2539 	int state = TCP_CA_Open;
2540 
2541 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2542 		state = TCP_CA_Disorder;
2543 
2544 	if (inet_csk(sk)->icsk_ca_state != state) {
2545 		tcp_set_ca_state(sk, state);
2546 		tp->high_seq = tp->snd_nxt;
2547 	}
2548 }
2549 
2550 static void tcp_try_to_open(struct sock *sk, int flag)
2551 {
2552 	struct tcp_sock *tp = tcp_sk(sk);
2553 
2554 	tcp_verify_left_out(tp);
2555 
2556 	if (!tcp_any_retrans_done(sk))
2557 		tp->retrans_stamp = 0;
2558 
2559 	if (flag & FLAG_ECE)
2560 		tcp_enter_cwr(sk);
2561 
2562 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2563 		tcp_try_keep_open(sk);
2564 	}
2565 }
2566 
2567 static void tcp_mtup_probe_failed(struct sock *sk)
2568 {
2569 	struct inet_connection_sock *icsk = inet_csk(sk);
2570 
2571 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2572 	icsk->icsk_mtup.probe_size = 0;
2573 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2574 }
2575 
2576 static void tcp_mtup_probe_success(struct sock *sk)
2577 {
2578 	struct tcp_sock *tp = tcp_sk(sk);
2579 	struct inet_connection_sock *icsk = inet_csk(sk);
2580 
2581 	/* FIXME: breaks with very large cwnd */
2582 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2583 	tp->snd_cwnd = tp->snd_cwnd *
2584 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2585 		       icsk->icsk_mtup.probe_size;
2586 	tp->snd_cwnd_cnt = 0;
2587 	tp->snd_cwnd_stamp = tcp_jiffies32;
2588 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2589 
2590 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2591 	icsk->icsk_mtup.probe_size = 0;
2592 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2593 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2594 }
2595 
2596 /* Do a simple retransmit without using the backoff mechanisms in
2597  * tcp_timer. This is used for path mtu discovery.
2598  * The socket is already locked here.
2599  */
2600 void tcp_simple_retransmit(struct sock *sk)
2601 {
2602 	const struct inet_connection_sock *icsk = inet_csk(sk);
2603 	struct tcp_sock *tp = tcp_sk(sk);
2604 	struct sk_buff *skb;
2605 	unsigned int mss = tcp_current_mss(sk);
2606 
2607 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2608 		if (tcp_skb_seglen(skb) > mss &&
2609 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2610 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2611 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2612 				tp->retrans_out -= tcp_skb_pcount(skb);
2613 			}
2614 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2615 		}
2616 	}
2617 
2618 	tcp_clear_retrans_hints_partial(tp);
2619 
2620 	if (!tp->lost_out)
2621 		return;
2622 
2623 	if (tcp_is_reno(tp))
2624 		tcp_limit_reno_sacked(tp);
2625 
2626 	tcp_verify_left_out(tp);
2627 
2628 	/* Don't muck with the congestion window here.
2629 	 * Reason is that we do not increase amount of _data_
2630 	 * in network, but units changed and effective
2631 	 * cwnd/ssthresh really reduced now.
2632 	 */
2633 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2634 		tp->high_seq = tp->snd_nxt;
2635 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2636 		tp->prior_ssthresh = 0;
2637 		tp->undo_marker = 0;
2638 		tcp_set_ca_state(sk, TCP_CA_Loss);
2639 	}
2640 	tcp_xmit_retransmit_queue(sk);
2641 }
2642 EXPORT_SYMBOL(tcp_simple_retransmit);
2643 
2644 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2645 {
2646 	struct tcp_sock *tp = tcp_sk(sk);
2647 	int mib_idx;
2648 
2649 	if (tcp_is_reno(tp))
2650 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2651 	else
2652 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2653 
2654 	NET_INC_STATS(sock_net(sk), mib_idx);
2655 
2656 	tp->prior_ssthresh = 0;
2657 	tcp_init_undo(tp);
2658 
2659 	if (!tcp_in_cwnd_reduction(sk)) {
2660 		if (!ece_ack)
2661 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2662 		tcp_init_cwnd_reduction(sk);
2663 	}
2664 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2665 }
2666 
2667 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2668  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2669  */
2670 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2671 			     int *rexmit)
2672 {
2673 	struct tcp_sock *tp = tcp_sk(sk);
2674 	bool recovered = !before(tp->snd_una, tp->high_seq);
2675 
2676 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2677 	    tcp_try_undo_loss(sk, false))
2678 		return;
2679 
2680 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2681 		/* Step 3.b. A timeout is spurious if not all data are
2682 		 * lost, i.e., never-retransmitted data are (s)acked.
2683 		 */
2684 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2685 		    tcp_try_undo_loss(sk, true))
2686 			return;
2687 
2688 		if (after(tp->snd_nxt, tp->high_seq)) {
2689 			if (flag & FLAG_DATA_SACKED || num_dupack)
2690 				tp->frto = 0; /* Step 3.a. loss was real */
2691 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2692 			tp->high_seq = tp->snd_nxt;
2693 			/* Step 2.b. Try send new data (but deferred until cwnd
2694 			 * is updated in tcp_ack()). Otherwise fall back to
2695 			 * the conventional recovery.
2696 			 */
2697 			if (!tcp_write_queue_empty(sk) &&
2698 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2699 				*rexmit = REXMIT_NEW;
2700 				return;
2701 			}
2702 			tp->frto = 0;
2703 		}
2704 	}
2705 
2706 	if (recovered) {
2707 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2708 		tcp_try_undo_recovery(sk);
2709 		return;
2710 	}
2711 	if (tcp_is_reno(tp)) {
2712 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2713 		 * delivered. Lower inflight to clock out (re)tranmissions.
2714 		 */
2715 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2716 			tcp_add_reno_sack(sk, num_dupack);
2717 		else if (flag & FLAG_SND_UNA_ADVANCED)
2718 			tcp_reset_reno_sack(tp);
2719 	}
2720 	*rexmit = REXMIT_LOST;
2721 }
2722 
2723 /* Undo during fast recovery after partial ACK. */
2724 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2725 {
2726 	struct tcp_sock *tp = tcp_sk(sk);
2727 
2728 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2729 		/* Plain luck! Hole if filled with delayed
2730 		 * packet, rather than with a retransmit. Check reordering.
2731 		 */
2732 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2733 
2734 		/* We are getting evidence that the reordering degree is higher
2735 		 * than we realized. If there are no retransmits out then we
2736 		 * can undo. Otherwise we clock out new packets but do not
2737 		 * mark more packets lost or retransmit more.
2738 		 */
2739 		if (tp->retrans_out)
2740 			return true;
2741 
2742 		if (!tcp_any_retrans_done(sk))
2743 			tp->retrans_stamp = 0;
2744 
2745 		DBGUNDO(sk, "partial recovery");
2746 		tcp_undo_cwnd_reduction(sk, true);
2747 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2748 		tcp_try_keep_open(sk);
2749 		return true;
2750 	}
2751 	return false;
2752 }
2753 
2754 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2755 {
2756 	struct tcp_sock *tp = tcp_sk(sk);
2757 
2758 	if (tcp_rtx_queue_empty(sk))
2759 		return;
2760 
2761 	if (unlikely(tcp_is_reno(tp))) {
2762 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2763 	} else if (tcp_is_rack(sk)) {
2764 		u32 prior_retrans = tp->retrans_out;
2765 
2766 		tcp_rack_mark_lost(sk);
2767 		if (prior_retrans > tp->retrans_out)
2768 			*ack_flag |= FLAG_LOST_RETRANS;
2769 	}
2770 }
2771 
2772 static bool tcp_force_fast_retransmit(struct sock *sk)
2773 {
2774 	struct tcp_sock *tp = tcp_sk(sk);
2775 
2776 	return after(tcp_highest_sack_seq(tp),
2777 		     tp->snd_una + tp->reordering * tp->mss_cache);
2778 }
2779 
2780 /* Process an event, which can update packets-in-flight not trivially.
2781  * Main goal of this function is to calculate new estimate for left_out,
2782  * taking into account both packets sitting in receiver's buffer and
2783  * packets lost by network.
2784  *
2785  * Besides that it updates the congestion state when packet loss or ECN
2786  * is detected. But it does not reduce the cwnd, it is done by the
2787  * congestion control later.
2788  *
2789  * It does _not_ decide what to send, it is made in function
2790  * tcp_xmit_retransmit_queue().
2791  */
2792 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2793 				  int num_dupack, int *ack_flag, int *rexmit)
2794 {
2795 	struct inet_connection_sock *icsk = inet_csk(sk);
2796 	struct tcp_sock *tp = tcp_sk(sk);
2797 	int fast_rexmit = 0, flag = *ack_flag;
2798 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2799 				      tcp_force_fast_retransmit(sk));
2800 
2801 	if (!tp->packets_out && tp->sacked_out)
2802 		tp->sacked_out = 0;
2803 
2804 	/* Now state machine starts.
2805 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2806 	if (flag & FLAG_ECE)
2807 		tp->prior_ssthresh = 0;
2808 
2809 	/* B. In all the states check for reneging SACKs. */
2810 	if (tcp_check_sack_reneging(sk, flag))
2811 		return;
2812 
2813 	/* C. Check consistency of the current state. */
2814 	tcp_verify_left_out(tp);
2815 
2816 	/* D. Check state exit conditions. State can be terminated
2817 	 *    when high_seq is ACKed. */
2818 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2819 		WARN_ON(tp->retrans_out != 0);
2820 		tp->retrans_stamp = 0;
2821 	} else if (!before(tp->snd_una, tp->high_seq)) {
2822 		switch (icsk->icsk_ca_state) {
2823 		case TCP_CA_CWR:
2824 			/* CWR is to be held something *above* high_seq
2825 			 * is ACKed for CWR bit to reach receiver. */
2826 			if (tp->snd_una != tp->high_seq) {
2827 				tcp_end_cwnd_reduction(sk);
2828 				tcp_set_ca_state(sk, TCP_CA_Open);
2829 			}
2830 			break;
2831 
2832 		case TCP_CA_Recovery:
2833 			if (tcp_is_reno(tp))
2834 				tcp_reset_reno_sack(tp);
2835 			if (tcp_try_undo_recovery(sk))
2836 				return;
2837 			tcp_end_cwnd_reduction(sk);
2838 			break;
2839 		}
2840 	}
2841 
2842 	/* E. Process state. */
2843 	switch (icsk->icsk_ca_state) {
2844 	case TCP_CA_Recovery:
2845 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2846 			if (tcp_is_reno(tp))
2847 				tcp_add_reno_sack(sk, num_dupack);
2848 		} else {
2849 			if (tcp_try_undo_partial(sk, prior_snd_una))
2850 				return;
2851 			/* Partial ACK arrived. Force fast retransmit. */
2852 			do_lost = tcp_is_reno(tp) ||
2853 				  tcp_force_fast_retransmit(sk);
2854 		}
2855 		if (tcp_try_undo_dsack(sk)) {
2856 			tcp_try_keep_open(sk);
2857 			return;
2858 		}
2859 		tcp_identify_packet_loss(sk, ack_flag);
2860 		break;
2861 	case TCP_CA_Loss:
2862 		tcp_process_loss(sk, flag, num_dupack, rexmit);
2863 		tcp_identify_packet_loss(sk, ack_flag);
2864 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2865 		      (*ack_flag & FLAG_LOST_RETRANS)))
2866 			return;
2867 		/* Change state if cwnd is undone or retransmits are lost */
2868 		fallthrough;
2869 	default:
2870 		if (tcp_is_reno(tp)) {
2871 			if (flag & FLAG_SND_UNA_ADVANCED)
2872 				tcp_reset_reno_sack(tp);
2873 			tcp_add_reno_sack(sk, num_dupack);
2874 		}
2875 
2876 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2877 			tcp_try_undo_dsack(sk);
2878 
2879 		tcp_identify_packet_loss(sk, ack_flag);
2880 		if (!tcp_time_to_recover(sk, flag)) {
2881 			tcp_try_to_open(sk, flag);
2882 			return;
2883 		}
2884 
2885 		/* MTU probe failure: don't reduce cwnd */
2886 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2887 		    icsk->icsk_mtup.probe_size &&
2888 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2889 			tcp_mtup_probe_failed(sk);
2890 			/* Restores the reduction we did in tcp_mtup_probe() */
2891 			tp->snd_cwnd++;
2892 			tcp_simple_retransmit(sk);
2893 			return;
2894 		}
2895 
2896 		/* Otherwise enter Recovery state */
2897 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2898 		fast_rexmit = 1;
2899 	}
2900 
2901 	if (!tcp_is_rack(sk) && do_lost)
2902 		tcp_update_scoreboard(sk, fast_rexmit);
2903 	*rexmit = REXMIT_LOST;
2904 }
2905 
2906 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2907 {
2908 	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2909 	struct tcp_sock *tp = tcp_sk(sk);
2910 
2911 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2912 		/* If the remote keeps returning delayed ACKs, eventually
2913 		 * the min filter would pick it up and overestimate the
2914 		 * prop. delay when it expires. Skip suspected delayed ACKs.
2915 		 */
2916 		return;
2917 	}
2918 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2919 			   rtt_us ? : jiffies_to_usecs(1));
2920 }
2921 
2922 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2923 			       long seq_rtt_us, long sack_rtt_us,
2924 			       long ca_rtt_us, struct rate_sample *rs)
2925 {
2926 	const struct tcp_sock *tp = tcp_sk(sk);
2927 
2928 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2929 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2930 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2931 	 * is acked (RFC6298).
2932 	 */
2933 	if (seq_rtt_us < 0)
2934 		seq_rtt_us = sack_rtt_us;
2935 
2936 	/* RTTM Rule: A TSecr value received in a segment is used to
2937 	 * update the averaged RTT measurement only if the segment
2938 	 * acknowledges some new data, i.e., only if it advances the
2939 	 * left edge of the send window.
2940 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2941 	 */
2942 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2943 	    flag & FLAG_ACKED) {
2944 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2945 
2946 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
2947 			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2948 			ca_rtt_us = seq_rtt_us;
2949 		}
2950 	}
2951 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2952 	if (seq_rtt_us < 0)
2953 		return false;
2954 
2955 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2956 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2957 	 * values will be skipped with the seq_rtt_us < 0 check above.
2958 	 */
2959 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
2960 	tcp_rtt_estimator(sk, seq_rtt_us);
2961 	tcp_set_rto(sk);
2962 
2963 	/* RFC6298: only reset backoff on valid RTT measurement. */
2964 	inet_csk(sk)->icsk_backoff = 0;
2965 	return true;
2966 }
2967 
2968 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2969 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2970 {
2971 	struct rate_sample rs;
2972 	long rtt_us = -1L;
2973 
2974 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2975 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2976 
2977 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2978 }
2979 
2980 
2981 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2982 {
2983 	const struct inet_connection_sock *icsk = inet_csk(sk);
2984 
2985 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2986 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2987 }
2988 
2989 /* Restart timer after forward progress on connection.
2990  * RFC2988 recommends to restart timer to now+rto.
2991  */
2992 void tcp_rearm_rto(struct sock *sk)
2993 {
2994 	const struct inet_connection_sock *icsk = inet_csk(sk);
2995 	struct tcp_sock *tp = tcp_sk(sk);
2996 
2997 	/* If the retrans timer is currently being used by Fast Open
2998 	 * for SYN-ACK retrans purpose, stay put.
2999 	 */
3000 	if (rcu_access_pointer(tp->fastopen_rsk))
3001 		return;
3002 
3003 	if (!tp->packets_out) {
3004 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3005 	} else {
3006 		u32 rto = inet_csk(sk)->icsk_rto;
3007 		/* Offset the time elapsed after installing regular RTO */
3008 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3009 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3010 			s64 delta_us = tcp_rto_delta_us(sk);
3011 			/* delta_us may not be positive if the socket is locked
3012 			 * when the retrans timer fires and is rescheduled.
3013 			 */
3014 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3015 		}
3016 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3017 				     TCP_RTO_MAX, tcp_rtx_queue_head(sk));
3018 	}
3019 }
3020 
3021 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3022 static void tcp_set_xmit_timer(struct sock *sk)
3023 {
3024 	if (!tcp_schedule_loss_probe(sk, true))
3025 		tcp_rearm_rto(sk);
3026 }
3027 
3028 /* If we get here, the whole TSO packet has not been acked. */
3029 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3030 {
3031 	struct tcp_sock *tp = tcp_sk(sk);
3032 	u32 packets_acked;
3033 
3034 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3035 
3036 	packets_acked = tcp_skb_pcount(skb);
3037 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3038 		return 0;
3039 	packets_acked -= tcp_skb_pcount(skb);
3040 
3041 	if (packets_acked) {
3042 		BUG_ON(tcp_skb_pcount(skb) == 0);
3043 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3044 	}
3045 
3046 	return packets_acked;
3047 }
3048 
3049 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3050 			   u32 prior_snd_una)
3051 {
3052 	const struct skb_shared_info *shinfo;
3053 
3054 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3055 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3056 		return;
3057 
3058 	shinfo = skb_shinfo(skb);
3059 	if (!before(shinfo->tskey, prior_snd_una) &&
3060 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3061 		tcp_skb_tsorted_save(skb) {
3062 			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3063 		} tcp_skb_tsorted_restore(skb);
3064 	}
3065 }
3066 
3067 /* Remove acknowledged frames from the retransmission queue. If our packet
3068  * is before the ack sequence we can discard it as it's confirmed to have
3069  * arrived at the other end.
3070  */
3071 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3072 			       u32 prior_snd_una,
3073 			       struct tcp_sacktag_state *sack)
3074 {
3075 	const struct inet_connection_sock *icsk = inet_csk(sk);
3076 	u64 first_ackt, last_ackt;
3077 	struct tcp_sock *tp = tcp_sk(sk);
3078 	u32 prior_sacked = tp->sacked_out;
3079 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3080 	struct sk_buff *skb, *next;
3081 	bool fully_acked = true;
3082 	long sack_rtt_us = -1L;
3083 	long seq_rtt_us = -1L;
3084 	long ca_rtt_us = -1L;
3085 	u32 pkts_acked = 0;
3086 	u32 last_in_flight = 0;
3087 	bool rtt_update;
3088 	int flag = 0;
3089 
3090 	first_ackt = 0;
3091 
3092 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3093 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3094 		const u32 start_seq = scb->seq;
3095 		u8 sacked = scb->sacked;
3096 		u32 acked_pcount;
3097 
3098 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3099 
3100 		/* Determine how many packets and what bytes were acked, tso and else */
3101 		if (after(scb->end_seq, tp->snd_una)) {
3102 			if (tcp_skb_pcount(skb) == 1 ||
3103 			    !after(tp->snd_una, scb->seq))
3104 				break;
3105 
3106 			acked_pcount = tcp_tso_acked(sk, skb);
3107 			if (!acked_pcount)
3108 				break;
3109 			fully_acked = false;
3110 		} else {
3111 			acked_pcount = tcp_skb_pcount(skb);
3112 		}
3113 
3114 		if (unlikely(sacked & TCPCB_RETRANS)) {
3115 			if (sacked & TCPCB_SACKED_RETRANS)
3116 				tp->retrans_out -= acked_pcount;
3117 			flag |= FLAG_RETRANS_DATA_ACKED;
3118 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3119 			last_ackt = tcp_skb_timestamp_us(skb);
3120 			WARN_ON_ONCE(last_ackt == 0);
3121 			if (!first_ackt)
3122 				first_ackt = last_ackt;
3123 
3124 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3125 			if (before(start_seq, reord))
3126 				reord = start_seq;
3127 			if (!after(scb->end_seq, tp->high_seq))
3128 				flag |= FLAG_ORIG_SACK_ACKED;
3129 		}
3130 
3131 		if (sacked & TCPCB_SACKED_ACKED) {
3132 			tp->sacked_out -= acked_pcount;
3133 		} else if (tcp_is_sack(tp)) {
3134 			tp->delivered += acked_pcount;
3135 			if (!tcp_skb_spurious_retrans(tp, skb))
3136 				tcp_rack_advance(tp, sacked, scb->end_seq,
3137 						 tcp_skb_timestamp_us(skb));
3138 		}
3139 		if (sacked & TCPCB_LOST)
3140 			tp->lost_out -= acked_pcount;
3141 
3142 		tp->packets_out -= acked_pcount;
3143 		pkts_acked += acked_pcount;
3144 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3145 
3146 		/* Initial outgoing SYN's get put onto the write_queue
3147 		 * just like anything else we transmit.  It is not
3148 		 * true data, and if we misinform our callers that
3149 		 * this ACK acks real data, we will erroneously exit
3150 		 * connection startup slow start one packet too
3151 		 * quickly.  This is severely frowned upon behavior.
3152 		 */
3153 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3154 			flag |= FLAG_DATA_ACKED;
3155 		} else {
3156 			flag |= FLAG_SYN_ACKED;
3157 			tp->retrans_stamp = 0;
3158 		}
3159 
3160 		if (!fully_acked)
3161 			break;
3162 
3163 		next = skb_rb_next(skb);
3164 		if (unlikely(skb == tp->retransmit_skb_hint))
3165 			tp->retransmit_skb_hint = NULL;
3166 		if (unlikely(skb == tp->lost_skb_hint))
3167 			tp->lost_skb_hint = NULL;
3168 		tcp_highest_sack_replace(sk, skb, next);
3169 		tcp_rtx_queue_unlink_and_free(skb, sk);
3170 	}
3171 
3172 	if (!skb)
3173 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3174 
3175 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3176 		tp->snd_up = tp->snd_una;
3177 
3178 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3179 		flag |= FLAG_SACK_RENEGING;
3180 
3181 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3182 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3183 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3184 
3185 		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3186 		    last_in_flight && !prior_sacked && fully_acked &&
3187 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3188 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3189 			/* Conservatively mark a delayed ACK. It's typically
3190 			 * from a lone runt packet over the round trip to
3191 			 * a receiver w/o out-of-order or CE events.
3192 			 */
3193 			flag |= FLAG_ACK_MAYBE_DELAYED;
3194 		}
3195 	}
3196 	if (sack->first_sackt) {
3197 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3198 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3199 	}
3200 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3201 					ca_rtt_us, sack->rate);
3202 
3203 	if (flag & FLAG_ACKED) {
3204 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3205 		if (unlikely(icsk->icsk_mtup.probe_size &&
3206 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3207 			tcp_mtup_probe_success(sk);
3208 		}
3209 
3210 		if (tcp_is_reno(tp)) {
3211 			tcp_remove_reno_sacks(sk, pkts_acked);
3212 
3213 			/* If any of the cumulatively ACKed segments was
3214 			 * retransmitted, non-SACK case cannot confirm that
3215 			 * progress was due to original transmission due to
3216 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3217 			 * the packets may have been never retransmitted.
3218 			 */
3219 			if (flag & FLAG_RETRANS_DATA_ACKED)
3220 				flag &= ~FLAG_ORIG_SACK_ACKED;
3221 		} else {
3222 			int delta;
3223 
3224 			/* Non-retransmitted hole got filled? That's reordering */
3225 			if (before(reord, prior_fack))
3226 				tcp_check_sack_reordering(sk, reord, 0);
3227 
3228 			delta = prior_sacked - tp->sacked_out;
3229 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3230 		}
3231 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3232 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3233 						    tcp_skb_timestamp_us(skb))) {
3234 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3235 		 * after when the head was last (re)transmitted. Otherwise the
3236 		 * timeout may continue to extend in loss recovery.
3237 		 */
3238 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3239 	}
3240 
3241 	if (icsk->icsk_ca_ops->pkts_acked) {
3242 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3243 					     .rtt_us = sack->rate->rtt_us,
3244 					     .in_flight = last_in_flight };
3245 
3246 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3247 	}
3248 
3249 #if FASTRETRANS_DEBUG > 0
3250 	WARN_ON((int)tp->sacked_out < 0);
3251 	WARN_ON((int)tp->lost_out < 0);
3252 	WARN_ON((int)tp->retrans_out < 0);
3253 	if (!tp->packets_out && tcp_is_sack(tp)) {
3254 		icsk = inet_csk(sk);
3255 		if (tp->lost_out) {
3256 			pr_debug("Leak l=%u %d\n",
3257 				 tp->lost_out, icsk->icsk_ca_state);
3258 			tp->lost_out = 0;
3259 		}
3260 		if (tp->sacked_out) {
3261 			pr_debug("Leak s=%u %d\n",
3262 				 tp->sacked_out, icsk->icsk_ca_state);
3263 			tp->sacked_out = 0;
3264 		}
3265 		if (tp->retrans_out) {
3266 			pr_debug("Leak r=%u %d\n",
3267 				 tp->retrans_out, icsk->icsk_ca_state);
3268 			tp->retrans_out = 0;
3269 		}
3270 	}
3271 #endif
3272 	return flag;
3273 }
3274 
3275 static void tcp_ack_probe(struct sock *sk)
3276 {
3277 	struct inet_connection_sock *icsk = inet_csk(sk);
3278 	struct sk_buff *head = tcp_send_head(sk);
3279 	const struct tcp_sock *tp = tcp_sk(sk);
3280 
3281 	/* Was it a usable window open? */
3282 	if (!head)
3283 		return;
3284 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3285 		icsk->icsk_backoff = 0;
3286 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3287 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3288 		 * This function is not for random using!
3289 		 */
3290 	} else {
3291 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3292 
3293 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3294 				     when, TCP_RTO_MAX, NULL);
3295 	}
3296 }
3297 
3298 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3299 {
3300 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3301 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3302 }
3303 
3304 /* Decide wheather to run the increase function of congestion control. */
3305 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3306 {
3307 	/* If reordering is high then always grow cwnd whenever data is
3308 	 * delivered regardless of its ordering. Otherwise stay conservative
3309 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3310 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3311 	 * cwnd in tcp_fastretrans_alert() based on more states.
3312 	 */
3313 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3314 		return flag & FLAG_FORWARD_PROGRESS;
3315 
3316 	return flag & FLAG_DATA_ACKED;
3317 }
3318 
3319 /* The "ultimate" congestion control function that aims to replace the rigid
3320  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3321  * It's called toward the end of processing an ACK with precise rate
3322  * information. All transmission or retransmission are delayed afterwards.
3323  */
3324 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3325 			     int flag, const struct rate_sample *rs)
3326 {
3327 	const struct inet_connection_sock *icsk = inet_csk(sk);
3328 
3329 	if (icsk->icsk_ca_ops->cong_control) {
3330 		icsk->icsk_ca_ops->cong_control(sk, rs);
3331 		return;
3332 	}
3333 
3334 	if (tcp_in_cwnd_reduction(sk)) {
3335 		/* Reduce cwnd if state mandates */
3336 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3337 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3338 		/* Advance cwnd if state allows */
3339 		tcp_cong_avoid(sk, ack, acked_sacked);
3340 	}
3341 	tcp_update_pacing_rate(sk);
3342 }
3343 
3344 /* Check that window update is acceptable.
3345  * The function assumes that snd_una<=ack<=snd_next.
3346  */
3347 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3348 					const u32 ack, const u32 ack_seq,
3349 					const u32 nwin)
3350 {
3351 	return	after(ack, tp->snd_una) ||
3352 		after(ack_seq, tp->snd_wl1) ||
3353 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3354 }
3355 
3356 /* If we update tp->snd_una, also update tp->bytes_acked */
3357 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3358 {
3359 	u32 delta = ack - tp->snd_una;
3360 
3361 	sock_owned_by_me((struct sock *)tp);
3362 	tp->bytes_acked += delta;
3363 	tp->snd_una = ack;
3364 }
3365 
3366 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3367 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3368 {
3369 	u32 delta = seq - tp->rcv_nxt;
3370 
3371 	sock_owned_by_me((struct sock *)tp);
3372 	tp->bytes_received += delta;
3373 	WRITE_ONCE(tp->rcv_nxt, seq);
3374 }
3375 
3376 /* Update our send window.
3377  *
3378  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3379  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3380  */
3381 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3382 				 u32 ack_seq)
3383 {
3384 	struct tcp_sock *tp = tcp_sk(sk);
3385 	int flag = 0;
3386 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3387 
3388 	if (likely(!tcp_hdr(skb)->syn))
3389 		nwin <<= tp->rx_opt.snd_wscale;
3390 
3391 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3392 		flag |= FLAG_WIN_UPDATE;
3393 		tcp_update_wl(tp, ack_seq);
3394 
3395 		if (tp->snd_wnd != nwin) {
3396 			tp->snd_wnd = nwin;
3397 
3398 			/* Note, it is the only place, where
3399 			 * fast path is recovered for sending TCP.
3400 			 */
3401 			tp->pred_flags = 0;
3402 			tcp_fast_path_check(sk);
3403 
3404 			if (!tcp_write_queue_empty(sk))
3405 				tcp_slow_start_after_idle_check(sk);
3406 
3407 			if (nwin > tp->max_window) {
3408 				tp->max_window = nwin;
3409 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3410 			}
3411 		}
3412 	}
3413 
3414 	tcp_snd_una_update(tp, ack);
3415 
3416 	return flag;
3417 }
3418 
3419 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3420 				   u32 *last_oow_ack_time)
3421 {
3422 	if (*last_oow_ack_time) {
3423 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3424 
3425 		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3426 			NET_INC_STATS(net, mib_idx);
3427 			return true;	/* rate-limited: don't send yet! */
3428 		}
3429 	}
3430 
3431 	*last_oow_ack_time = tcp_jiffies32;
3432 
3433 	return false;	/* not rate-limited: go ahead, send dupack now! */
3434 }
3435 
3436 /* Return true if we're currently rate-limiting out-of-window ACKs and
3437  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3438  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3439  * attacks that send repeated SYNs or ACKs for the same connection. To
3440  * do this, we do not send a duplicate SYNACK or ACK if the remote
3441  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3442  */
3443 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3444 			  int mib_idx, u32 *last_oow_ack_time)
3445 {
3446 	/* Data packets without SYNs are not likely part of an ACK loop. */
3447 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3448 	    !tcp_hdr(skb)->syn)
3449 		return false;
3450 
3451 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3452 }
3453 
3454 /* RFC 5961 7 [ACK Throttling] */
3455 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3456 {
3457 	/* unprotected vars, we dont care of overwrites */
3458 	static u32 challenge_timestamp;
3459 	static unsigned int challenge_count;
3460 	struct tcp_sock *tp = tcp_sk(sk);
3461 	struct net *net = sock_net(sk);
3462 	u32 count, now;
3463 
3464 	/* First check our per-socket dupack rate limit. */
3465 	if (__tcp_oow_rate_limited(net,
3466 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3467 				   &tp->last_oow_ack_time))
3468 		return;
3469 
3470 	/* Then check host-wide RFC 5961 rate limit. */
3471 	now = jiffies / HZ;
3472 	if (now != challenge_timestamp) {
3473 		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3474 		u32 half = (ack_limit + 1) >> 1;
3475 
3476 		challenge_timestamp = now;
3477 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3478 	}
3479 	count = READ_ONCE(challenge_count);
3480 	if (count > 0) {
3481 		WRITE_ONCE(challenge_count, count - 1);
3482 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3483 		tcp_send_ack(sk);
3484 	}
3485 }
3486 
3487 static void tcp_store_ts_recent(struct tcp_sock *tp)
3488 {
3489 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3490 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3491 }
3492 
3493 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3494 {
3495 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3496 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3497 		 * extra check below makes sure this can only happen
3498 		 * for pure ACK frames.  -DaveM
3499 		 *
3500 		 * Not only, also it occurs for expired timestamps.
3501 		 */
3502 
3503 		if (tcp_paws_check(&tp->rx_opt, 0))
3504 			tcp_store_ts_recent(tp);
3505 	}
3506 }
3507 
3508 /* This routine deals with acks during a TLP episode.
3509  * We mark the end of a TLP episode on receiving TLP dupack or when
3510  * ack is after tlp_high_seq.
3511  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3512  */
3513 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3514 {
3515 	struct tcp_sock *tp = tcp_sk(sk);
3516 
3517 	if (before(ack, tp->tlp_high_seq))
3518 		return;
3519 
3520 	if (flag & FLAG_DSACKING_ACK) {
3521 		/* This DSACK means original and TLP probe arrived; no loss */
3522 		tp->tlp_high_seq = 0;
3523 	} else if (after(ack, tp->tlp_high_seq)) {
3524 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3525 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3526 		 */
3527 		tcp_init_cwnd_reduction(sk);
3528 		tcp_set_ca_state(sk, TCP_CA_CWR);
3529 		tcp_end_cwnd_reduction(sk);
3530 		tcp_try_keep_open(sk);
3531 		NET_INC_STATS(sock_net(sk),
3532 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3533 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3534 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3535 		/* Pure dupack: original and TLP probe arrived; no loss */
3536 		tp->tlp_high_seq = 0;
3537 	}
3538 }
3539 
3540 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3541 {
3542 	const struct inet_connection_sock *icsk = inet_csk(sk);
3543 
3544 	if (icsk->icsk_ca_ops->in_ack_event)
3545 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3546 }
3547 
3548 /* Congestion control has updated the cwnd already. So if we're in
3549  * loss recovery then now we do any new sends (for FRTO) or
3550  * retransmits (for CA_Loss or CA_recovery) that make sense.
3551  */
3552 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3553 {
3554 	struct tcp_sock *tp = tcp_sk(sk);
3555 
3556 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3557 		return;
3558 
3559 	if (unlikely(rexmit == REXMIT_NEW)) {
3560 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3561 					  TCP_NAGLE_OFF);
3562 		if (after(tp->snd_nxt, tp->high_seq))
3563 			return;
3564 		tp->frto = 0;
3565 	}
3566 	tcp_xmit_retransmit_queue(sk);
3567 }
3568 
3569 /* Returns the number of packets newly acked or sacked by the current ACK */
3570 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3571 {
3572 	const struct net *net = sock_net(sk);
3573 	struct tcp_sock *tp = tcp_sk(sk);
3574 	u32 delivered;
3575 
3576 	delivered = tp->delivered - prior_delivered;
3577 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3578 	if (flag & FLAG_ECE) {
3579 		tp->delivered_ce += delivered;
3580 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3581 	}
3582 	return delivered;
3583 }
3584 
3585 /* This routine deals with incoming acks, but not outgoing ones. */
3586 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3587 {
3588 	struct inet_connection_sock *icsk = inet_csk(sk);
3589 	struct tcp_sock *tp = tcp_sk(sk);
3590 	struct tcp_sacktag_state sack_state;
3591 	struct rate_sample rs = { .prior_delivered = 0 };
3592 	u32 prior_snd_una = tp->snd_una;
3593 	bool is_sack_reneg = tp->is_sack_reneg;
3594 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3595 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3596 	int num_dupack = 0;
3597 	int prior_packets = tp->packets_out;
3598 	u32 delivered = tp->delivered;
3599 	u32 lost = tp->lost;
3600 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3601 	u32 prior_fack;
3602 
3603 	sack_state.first_sackt = 0;
3604 	sack_state.rate = &rs;
3605 
3606 	/* We very likely will need to access rtx queue. */
3607 	prefetch(sk->tcp_rtx_queue.rb_node);
3608 
3609 	/* If the ack is older than previous acks
3610 	 * then we can probably ignore it.
3611 	 */
3612 	if (before(ack, prior_snd_una)) {
3613 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3614 		if (before(ack, prior_snd_una - tp->max_window)) {
3615 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3616 				tcp_send_challenge_ack(sk, skb);
3617 			return -1;
3618 		}
3619 		goto old_ack;
3620 	}
3621 
3622 	/* If the ack includes data we haven't sent yet, discard
3623 	 * this segment (RFC793 Section 3.9).
3624 	 */
3625 	if (after(ack, tp->snd_nxt))
3626 		return -1;
3627 
3628 	if (after(ack, prior_snd_una)) {
3629 		flag |= FLAG_SND_UNA_ADVANCED;
3630 		icsk->icsk_retransmits = 0;
3631 
3632 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3633 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3634 			if (icsk->icsk_clean_acked)
3635 				icsk->icsk_clean_acked(sk, ack);
3636 #endif
3637 	}
3638 
3639 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3640 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3641 
3642 	/* ts_recent update must be made after we are sure that the packet
3643 	 * is in window.
3644 	 */
3645 	if (flag & FLAG_UPDATE_TS_RECENT)
3646 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3647 
3648 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3649 	    FLAG_SND_UNA_ADVANCED) {
3650 		/* Window is constant, pure forward advance.
3651 		 * No more checks are required.
3652 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3653 		 */
3654 		tcp_update_wl(tp, ack_seq);
3655 		tcp_snd_una_update(tp, ack);
3656 		flag |= FLAG_WIN_UPDATE;
3657 
3658 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3659 
3660 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3661 	} else {
3662 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3663 
3664 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3665 			flag |= FLAG_DATA;
3666 		else
3667 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3668 
3669 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3670 
3671 		if (TCP_SKB_CB(skb)->sacked)
3672 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3673 							&sack_state);
3674 
3675 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3676 			flag |= FLAG_ECE;
3677 			ack_ev_flags |= CA_ACK_ECE;
3678 		}
3679 
3680 		if (flag & FLAG_WIN_UPDATE)
3681 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3682 
3683 		tcp_in_ack_event(sk, ack_ev_flags);
3684 	}
3685 
3686 	/* We passed data and got it acked, remove any soft error
3687 	 * log. Something worked...
3688 	 */
3689 	sk->sk_err_soft = 0;
3690 	icsk->icsk_probes_out = 0;
3691 	tp->rcv_tstamp = tcp_jiffies32;
3692 	if (!prior_packets)
3693 		goto no_queue;
3694 
3695 	/* See if we can take anything off of the retransmit queue. */
3696 	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3697 
3698 	tcp_rack_update_reo_wnd(sk, &rs);
3699 
3700 	if (tp->tlp_high_seq)
3701 		tcp_process_tlp_ack(sk, ack, flag);
3702 	/* If needed, reset TLP/RTO timer; RACK may later override this. */
3703 	if (flag & FLAG_SET_XMIT_TIMER)
3704 		tcp_set_xmit_timer(sk);
3705 
3706 	if (tcp_ack_is_dubious(sk, flag)) {
3707 		if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) {
3708 			num_dupack = 1;
3709 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3710 			if (!(flag & FLAG_DATA))
3711 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3712 		}
3713 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3714 				      &rexmit);
3715 	}
3716 
3717 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3718 		sk_dst_confirm(sk);
3719 
3720 	delivered = tcp_newly_delivered(sk, delivered, flag);
3721 	lost = tp->lost - lost;			/* freshly marked lost */
3722 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3723 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3724 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3725 	tcp_xmit_recovery(sk, rexmit);
3726 	return 1;
3727 
3728 no_queue:
3729 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3730 	if (flag & FLAG_DSACKING_ACK) {
3731 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3732 				      &rexmit);
3733 		tcp_newly_delivered(sk, delivered, flag);
3734 	}
3735 	/* If this ack opens up a zero window, clear backoff.  It was
3736 	 * being used to time the probes, and is probably far higher than
3737 	 * it needs to be for normal retransmission.
3738 	 */
3739 	tcp_ack_probe(sk);
3740 
3741 	if (tp->tlp_high_seq)
3742 		tcp_process_tlp_ack(sk, ack, flag);
3743 	return 1;
3744 
3745 old_ack:
3746 	/* If data was SACKed, tag it and see if we should send more data.
3747 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3748 	 */
3749 	if (TCP_SKB_CB(skb)->sacked) {
3750 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3751 						&sack_state);
3752 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3753 				      &rexmit);
3754 		tcp_newly_delivered(sk, delivered, flag);
3755 		tcp_xmit_recovery(sk, rexmit);
3756 	}
3757 
3758 	return 0;
3759 }
3760 
3761 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3762 				      bool syn, struct tcp_fastopen_cookie *foc,
3763 				      bool exp_opt)
3764 {
3765 	/* Valid only in SYN or SYN-ACK with an even length.  */
3766 	if (!foc || !syn || len < 0 || (len & 1))
3767 		return;
3768 
3769 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3770 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3771 		memcpy(foc->val, cookie, len);
3772 	else if (len != 0)
3773 		len = -1;
3774 	foc->len = len;
3775 	foc->exp = exp_opt;
3776 }
3777 
3778 static void smc_parse_options(const struct tcphdr *th,
3779 			      struct tcp_options_received *opt_rx,
3780 			      const unsigned char *ptr,
3781 			      int opsize)
3782 {
3783 #if IS_ENABLED(CONFIG_SMC)
3784 	if (static_branch_unlikely(&tcp_have_smc)) {
3785 		if (th->syn && !(opsize & 1) &&
3786 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3787 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3788 			opt_rx->smc_ok = 1;
3789 	}
3790 #endif
3791 }
3792 
3793 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3794  * value on success.
3795  */
3796 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3797 {
3798 	const unsigned char *ptr = (const unsigned char *)(th + 1);
3799 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3800 	u16 mss = 0;
3801 
3802 	while (length > 0) {
3803 		int opcode = *ptr++;
3804 		int opsize;
3805 
3806 		switch (opcode) {
3807 		case TCPOPT_EOL:
3808 			return mss;
3809 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3810 			length--;
3811 			continue;
3812 		default:
3813 			if (length < 2)
3814 				return mss;
3815 			opsize = *ptr++;
3816 			if (opsize < 2) /* "silly options" */
3817 				return mss;
3818 			if (opsize > length)
3819 				return mss;	/* fail on partial options */
3820 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3821 				u16 in_mss = get_unaligned_be16(ptr);
3822 
3823 				if (in_mss) {
3824 					if (user_mss && user_mss < in_mss)
3825 						in_mss = user_mss;
3826 					mss = in_mss;
3827 				}
3828 			}
3829 			ptr += opsize - 2;
3830 			length -= opsize;
3831 		}
3832 	}
3833 	return mss;
3834 }
3835 
3836 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3837  * But, this can also be called on packets in the established flow when
3838  * the fast version below fails.
3839  */
3840 void tcp_parse_options(const struct net *net,
3841 		       const struct sk_buff *skb,
3842 		       struct tcp_options_received *opt_rx, int estab,
3843 		       struct tcp_fastopen_cookie *foc)
3844 {
3845 	const unsigned char *ptr;
3846 	const struct tcphdr *th = tcp_hdr(skb);
3847 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3848 
3849 	ptr = (const unsigned char *)(th + 1);
3850 	opt_rx->saw_tstamp = 0;
3851 
3852 	while (length > 0) {
3853 		int opcode = *ptr++;
3854 		int opsize;
3855 
3856 		switch (opcode) {
3857 		case TCPOPT_EOL:
3858 			return;
3859 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3860 			length--;
3861 			continue;
3862 		default:
3863 			if (length < 2)
3864 				return;
3865 			opsize = *ptr++;
3866 			if (opsize < 2) /* "silly options" */
3867 				return;
3868 			if (opsize > length)
3869 				return;	/* don't parse partial options */
3870 			switch (opcode) {
3871 			case TCPOPT_MSS:
3872 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3873 					u16 in_mss = get_unaligned_be16(ptr);
3874 					if (in_mss) {
3875 						if (opt_rx->user_mss &&
3876 						    opt_rx->user_mss < in_mss)
3877 							in_mss = opt_rx->user_mss;
3878 						opt_rx->mss_clamp = in_mss;
3879 					}
3880 				}
3881 				break;
3882 			case TCPOPT_WINDOW:
3883 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3884 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3885 					__u8 snd_wscale = *(__u8 *)ptr;
3886 					opt_rx->wscale_ok = 1;
3887 					if (snd_wscale > TCP_MAX_WSCALE) {
3888 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3889 								     __func__,
3890 								     snd_wscale,
3891 								     TCP_MAX_WSCALE);
3892 						snd_wscale = TCP_MAX_WSCALE;
3893 					}
3894 					opt_rx->snd_wscale = snd_wscale;
3895 				}
3896 				break;
3897 			case TCPOPT_TIMESTAMP:
3898 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3899 				    ((estab && opt_rx->tstamp_ok) ||
3900 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3901 					opt_rx->saw_tstamp = 1;
3902 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3903 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3904 				}
3905 				break;
3906 			case TCPOPT_SACK_PERM:
3907 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3908 				    !estab && net->ipv4.sysctl_tcp_sack) {
3909 					opt_rx->sack_ok = TCP_SACK_SEEN;
3910 					tcp_sack_reset(opt_rx);
3911 				}
3912 				break;
3913 
3914 			case TCPOPT_SACK:
3915 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3916 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3917 				   opt_rx->sack_ok) {
3918 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3919 				}
3920 				break;
3921 #ifdef CONFIG_TCP_MD5SIG
3922 			case TCPOPT_MD5SIG:
3923 				/*
3924 				 * The MD5 Hash has already been
3925 				 * checked (see tcp_v{4,6}_do_rcv()).
3926 				 */
3927 				break;
3928 #endif
3929 			case TCPOPT_MPTCP:
3930 				mptcp_parse_option(skb, ptr, opsize, opt_rx);
3931 				break;
3932 
3933 			case TCPOPT_FASTOPEN:
3934 				tcp_parse_fastopen_option(
3935 					opsize - TCPOLEN_FASTOPEN_BASE,
3936 					ptr, th->syn, foc, false);
3937 				break;
3938 
3939 			case TCPOPT_EXP:
3940 				/* Fast Open option shares code 254 using a
3941 				 * 16 bits magic number.
3942 				 */
3943 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3944 				    get_unaligned_be16(ptr) ==
3945 				    TCPOPT_FASTOPEN_MAGIC)
3946 					tcp_parse_fastopen_option(opsize -
3947 						TCPOLEN_EXP_FASTOPEN_BASE,
3948 						ptr + 2, th->syn, foc, true);
3949 				else
3950 					smc_parse_options(th, opt_rx, ptr,
3951 							  opsize);
3952 				break;
3953 
3954 			}
3955 			ptr += opsize-2;
3956 			length -= opsize;
3957 		}
3958 	}
3959 }
3960 EXPORT_SYMBOL(tcp_parse_options);
3961 
3962 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3963 {
3964 	const __be32 *ptr = (const __be32 *)(th + 1);
3965 
3966 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3967 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3968 		tp->rx_opt.saw_tstamp = 1;
3969 		++ptr;
3970 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3971 		++ptr;
3972 		if (*ptr)
3973 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3974 		else
3975 			tp->rx_opt.rcv_tsecr = 0;
3976 		return true;
3977 	}
3978 	return false;
3979 }
3980 
3981 /* Fast parse options. This hopes to only see timestamps.
3982  * If it is wrong it falls back on tcp_parse_options().
3983  */
3984 static bool tcp_fast_parse_options(const struct net *net,
3985 				   const struct sk_buff *skb,
3986 				   const struct tcphdr *th, struct tcp_sock *tp)
3987 {
3988 	/* In the spirit of fast parsing, compare doff directly to constant
3989 	 * values.  Because equality is used, short doff can be ignored here.
3990 	 */
3991 	if (th->doff == (sizeof(*th) / 4)) {
3992 		tp->rx_opt.saw_tstamp = 0;
3993 		return false;
3994 	} else if (tp->rx_opt.tstamp_ok &&
3995 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3996 		if (tcp_parse_aligned_timestamp(tp, th))
3997 			return true;
3998 	}
3999 
4000 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4001 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4002 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4003 
4004 	return true;
4005 }
4006 
4007 #ifdef CONFIG_TCP_MD5SIG
4008 /*
4009  * Parse MD5 Signature option
4010  */
4011 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4012 {
4013 	int length = (th->doff << 2) - sizeof(*th);
4014 	const u8 *ptr = (const u8 *)(th + 1);
4015 
4016 	/* If not enough data remaining, we can short cut */
4017 	while (length >= TCPOLEN_MD5SIG) {
4018 		int opcode = *ptr++;
4019 		int opsize;
4020 
4021 		switch (opcode) {
4022 		case TCPOPT_EOL:
4023 			return NULL;
4024 		case TCPOPT_NOP:
4025 			length--;
4026 			continue;
4027 		default:
4028 			opsize = *ptr++;
4029 			if (opsize < 2 || opsize > length)
4030 				return NULL;
4031 			if (opcode == TCPOPT_MD5SIG)
4032 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4033 		}
4034 		ptr += opsize - 2;
4035 		length -= opsize;
4036 	}
4037 	return NULL;
4038 }
4039 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4040 #endif
4041 
4042 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4043  *
4044  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4045  * it can pass through stack. So, the following predicate verifies that
4046  * this segment is not used for anything but congestion avoidance or
4047  * fast retransmit. Moreover, we even are able to eliminate most of such
4048  * second order effects, if we apply some small "replay" window (~RTO)
4049  * to timestamp space.
4050  *
4051  * All these measures still do not guarantee that we reject wrapped ACKs
4052  * on networks with high bandwidth, when sequence space is recycled fastly,
4053  * but it guarantees that such events will be very rare and do not affect
4054  * connection seriously. This doesn't look nice, but alas, PAWS is really
4055  * buggy extension.
4056  *
4057  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4058  * states that events when retransmit arrives after original data are rare.
4059  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4060  * the biggest problem on large power networks even with minor reordering.
4061  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4062  * up to bandwidth of 18Gigabit/sec. 8) ]
4063  */
4064 
4065 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4066 {
4067 	const struct tcp_sock *tp = tcp_sk(sk);
4068 	const struct tcphdr *th = tcp_hdr(skb);
4069 	u32 seq = TCP_SKB_CB(skb)->seq;
4070 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4071 
4072 	return (/* 1. Pure ACK with correct sequence number. */
4073 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4074 
4075 		/* 2. ... and duplicate ACK. */
4076 		ack == tp->snd_una &&
4077 
4078 		/* 3. ... and does not update window. */
4079 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4080 
4081 		/* 4. ... and sits in replay window. */
4082 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4083 }
4084 
4085 static inline bool tcp_paws_discard(const struct sock *sk,
4086 				   const struct sk_buff *skb)
4087 {
4088 	const struct tcp_sock *tp = tcp_sk(sk);
4089 
4090 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4091 	       !tcp_disordered_ack(sk, skb);
4092 }
4093 
4094 /* Check segment sequence number for validity.
4095  *
4096  * Segment controls are considered valid, if the segment
4097  * fits to the window after truncation to the window. Acceptability
4098  * of data (and SYN, FIN, of course) is checked separately.
4099  * See tcp_data_queue(), for example.
4100  *
4101  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4102  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4103  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4104  * (borrowed from freebsd)
4105  */
4106 
4107 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4108 {
4109 	return	!before(end_seq, tp->rcv_wup) &&
4110 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4111 }
4112 
4113 /* When we get a reset we do this. */
4114 void tcp_reset(struct sock *sk)
4115 {
4116 	trace_tcp_receive_reset(sk);
4117 
4118 	/* We want the right error as BSD sees it (and indeed as we do). */
4119 	switch (sk->sk_state) {
4120 	case TCP_SYN_SENT:
4121 		sk->sk_err = ECONNREFUSED;
4122 		break;
4123 	case TCP_CLOSE_WAIT:
4124 		sk->sk_err = EPIPE;
4125 		break;
4126 	case TCP_CLOSE:
4127 		return;
4128 	default:
4129 		sk->sk_err = ECONNRESET;
4130 	}
4131 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4132 	smp_wmb();
4133 
4134 	tcp_write_queue_purge(sk);
4135 	tcp_done(sk);
4136 
4137 	if (!sock_flag(sk, SOCK_DEAD))
4138 		sk->sk_error_report(sk);
4139 }
4140 
4141 /*
4142  * 	Process the FIN bit. This now behaves as it is supposed to work
4143  *	and the FIN takes effect when it is validly part of sequence
4144  *	space. Not before when we get holes.
4145  *
4146  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4147  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4148  *	TIME-WAIT)
4149  *
4150  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4151  *	close and we go into CLOSING (and later onto TIME-WAIT)
4152  *
4153  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4154  */
4155 void tcp_fin(struct sock *sk)
4156 {
4157 	struct tcp_sock *tp = tcp_sk(sk);
4158 
4159 	inet_csk_schedule_ack(sk);
4160 
4161 	sk->sk_shutdown |= RCV_SHUTDOWN;
4162 	sock_set_flag(sk, SOCK_DONE);
4163 
4164 	switch (sk->sk_state) {
4165 	case TCP_SYN_RECV:
4166 	case TCP_ESTABLISHED:
4167 		/* Move to CLOSE_WAIT */
4168 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4169 		inet_csk_enter_pingpong_mode(sk);
4170 		break;
4171 
4172 	case TCP_CLOSE_WAIT:
4173 	case TCP_CLOSING:
4174 		/* Received a retransmission of the FIN, do
4175 		 * nothing.
4176 		 */
4177 		break;
4178 	case TCP_LAST_ACK:
4179 		/* RFC793: Remain in the LAST-ACK state. */
4180 		break;
4181 
4182 	case TCP_FIN_WAIT1:
4183 		/* This case occurs when a simultaneous close
4184 		 * happens, we must ack the received FIN and
4185 		 * enter the CLOSING state.
4186 		 */
4187 		tcp_send_ack(sk);
4188 		tcp_set_state(sk, TCP_CLOSING);
4189 		break;
4190 	case TCP_FIN_WAIT2:
4191 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4192 		tcp_send_ack(sk);
4193 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4194 		break;
4195 	default:
4196 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4197 		 * cases we should never reach this piece of code.
4198 		 */
4199 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4200 		       __func__, sk->sk_state);
4201 		break;
4202 	}
4203 
4204 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4205 	 * Probably, we should reset in this case. For now drop them.
4206 	 */
4207 	skb_rbtree_purge(&tp->out_of_order_queue);
4208 	if (tcp_is_sack(tp))
4209 		tcp_sack_reset(&tp->rx_opt);
4210 	sk_mem_reclaim(sk);
4211 
4212 	if (!sock_flag(sk, SOCK_DEAD)) {
4213 		sk->sk_state_change(sk);
4214 
4215 		/* Do not send POLL_HUP for half duplex close. */
4216 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4217 		    sk->sk_state == TCP_CLOSE)
4218 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4219 		else
4220 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4221 	}
4222 }
4223 
4224 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4225 				  u32 end_seq)
4226 {
4227 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4228 		if (before(seq, sp->start_seq))
4229 			sp->start_seq = seq;
4230 		if (after(end_seq, sp->end_seq))
4231 			sp->end_seq = end_seq;
4232 		return true;
4233 	}
4234 	return false;
4235 }
4236 
4237 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4238 {
4239 	struct tcp_sock *tp = tcp_sk(sk);
4240 
4241 	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4242 		int mib_idx;
4243 
4244 		if (before(seq, tp->rcv_nxt))
4245 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4246 		else
4247 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4248 
4249 		NET_INC_STATS(sock_net(sk), mib_idx);
4250 
4251 		tp->rx_opt.dsack = 1;
4252 		tp->duplicate_sack[0].start_seq = seq;
4253 		tp->duplicate_sack[0].end_seq = end_seq;
4254 	}
4255 }
4256 
4257 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4258 {
4259 	struct tcp_sock *tp = tcp_sk(sk);
4260 
4261 	if (!tp->rx_opt.dsack)
4262 		tcp_dsack_set(sk, seq, end_seq);
4263 	else
4264 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4265 }
4266 
4267 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4268 {
4269 	/* When the ACK path fails or drops most ACKs, the sender would
4270 	 * timeout and spuriously retransmit the same segment repeatedly.
4271 	 * The receiver remembers and reflects via DSACKs. Leverage the
4272 	 * DSACK state and change the txhash to re-route speculatively.
4273 	 */
4274 	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq) {
4275 		sk_rethink_txhash(sk);
4276 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4277 	}
4278 }
4279 
4280 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4281 {
4282 	struct tcp_sock *tp = tcp_sk(sk);
4283 
4284 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4285 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4286 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4287 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4288 
4289 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4290 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4291 
4292 			tcp_rcv_spurious_retrans(sk, skb);
4293 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4294 				end_seq = tp->rcv_nxt;
4295 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4296 		}
4297 	}
4298 
4299 	tcp_send_ack(sk);
4300 }
4301 
4302 /* These routines update the SACK block as out-of-order packets arrive or
4303  * in-order packets close up the sequence space.
4304  */
4305 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4306 {
4307 	int this_sack;
4308 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4309 	struct tcp_sack_block *swalk = sp + 1;
4310 
4311 	/* See if the recent change to the first SACK eats into
4312 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4313 	 */
4314 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4315 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4316 			int i;
4317 
4318 			/* Zap SWALK, by moving every further SACK up by one slot.
4319 			 * Decrease num_sacks.
4320 			 */
4321 			tp->rx_opt.num_sacks--;
4322 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4323 				sp[i] = sp[i + 1];
4324 			continue;
4325 		}
4326 		this_sack++, swalk++;
4327 	}
4328 }
4329 
4330 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4331 {
4332 	struct tcp_sock *tp = tcp_sk(sk);
4333 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4334 	int cur_sacks = tp->rx_opt.num_sacks;
4335 	int this_sack;
4336 
4337 	if (!cur_sacks)
4338 		goto new_sack;
4339 
4340 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4341 		if (tcp_sack_extend(sp, seq, end_seq)) {
4342 			/* Rotate this_sack to the first one. */
4343 			for (; this_sack > 0; this_sack--, sp--)
4344 				swap(*sp, *(sp - 1));
4345 			if (cur_sacks > 1)
4346 				tcp_sack_maybe_coalesce(tp);
4347 			return;
4348 		}
4349 	}
4350 
4351 	/* Could not find an adjacent existing SACK, build a new one,
4352 	 * put it at the front, and shift everyone else down.  We
4353 	 * always know there is at least one SACK present already here.
4354 	 *
4355 	 * If the sack array is full, forget about the last one.
4356 	 */
4357 	if (this_sack >= TCP_NUM_SACKS) {
4358 		if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
4359 			tcp_send_ack(sk);
4360 		this_sack--;
4361 		tp->rx_opt.num_sacks--;
4362 		sp--;
4363 	}
4364 	for (; this_sack > 0; this_sack--, sp--)
4365 		*sp = *(sp - 1);
4366 
4367 new_sack:
4368 	/* Build the new head SACK, and we're done. */
4369 	sp->start_seq = seq;
4370 	sp->end_seq = end_seq;
4371 	tp->rx_opt.num_sacks++;
4372 }
4373 
4374 /* RCV.NXT advances, some SACKs should be eaten. */
4375 
4376 static void tcp_sack_remove(struct tcp_sock *tp)
4377 {
4378 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4379 	int num_sacks = tp->rx_opt.num_sacks;
4380 	int this_sack;
4381 
4382 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4383 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4384 		tp->rx_opt.num_sacks = 0;
4385 		return;
4386 	}
4387 
4388 	for (this_sack = 0; this_sack < num_sacks;) {
4389 		/* Check if the start of the sack is covered by RCV.NXT. */
4390 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4391 			int i;
4392 
4393 			/* RCV.NXT must cover all the block! */
4394 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4395 
4396 			/* Zap this SACK, by moving forward any other SACKS. */
4397 			for (i = this_sack+1; i < num_sacks; i++)
4398 				tp->selective_acks[i-1] = tp->selective_acks[i];
4399 			num_sacks--;
4400 			continue;
4401 		}
4402 		this_sack++;
4403 		sp++;
4404 	}
4405 	tp->rx_opt.num_sacks = num_sacks;
4406 }
4407 
4408 /**
4409  * tcp_try_coalesce - try to merge skb to prior one
4410  * @sk: socket
4411  * @dest: destination queue
4412  * @to: prior buffer
4413  * @from: buffer to add in queue
4414  * @fragstolen: pointer to boolean
4415  *
4416  * Before queueing skb @from after @to, try to merge them
4417  * to reduce overall memory use and queue lengths, if cost is small.
4418  * Packets in ofo or receive queues can stay a long time.
4419  * Better try to coalesce them right now to avoid future collapses.
4420  * Returns true if caller should free @from instead of queueing it
4421  */
4422 static bool tcp_try_coalesce(struct sock *sk,
4423 			     struct sk_buff *to,
4424 			     struct sk_buff *from,
4425 			     bool *fragstolen)
4426 {
4427 	int delta;
4428 
4429 	*fragstolen = false;
4430 
4431 	/* Its possible this segment overlaps with prior segment in queue */
4432 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4433 		return false;
4434 
4435 	if (!mptcp_skb_can_collapse(to, from))
4436 		return false;
4437 
4438 #ifdef CONFIG_TLS_DEVICE
4439 	if (from->decrypted != to->decrypted)
4440 		return false;
4441 #endif
4442 
4443 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4444 		return false;
4445 
4446 	atomic_add(delta, &sk->sk_rmem_alloc);
4447 	sk_mem_charge(sk, delta);
4448 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4449 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4450 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4451 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4452 
4453 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4454 		TCP_SKB_CB(to)->has_rxtstamp = true;
4455 		to->tstamp = from->tstamp;
4456 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4457 	}
4458 
4459 	return true;
4460 }
4461 
4462 static bool tcp_ooo_try_coalesce(struct sock *sk,
4463 			     struct sk_buff *to,
4464 			     struct sk_buff *from,
4465 			     bool *fragstolen)
4466 {
4467 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4468 
4469 	/* In case tcp_drop() is called later, update to->gso_segs */
4470 	if (res) {
4471 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4472 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4473 
4474 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4475 	}
4476 	return res;
4477 }
4478 
4479 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4480 {
4481 	sk_drops_add(sk, skb);
4482 	__kfree_skb(skb);
4483 }
4484 
4485 /* This one checks to see if we can put data from the
4486  * out_of_order queue into the receive_queue.
4487  */
4488 static void tcp_ofo_queue(struct sock *sk)
4489 {
4490 	struct tcp_sock *tp = tcp_sk(sk);
4491 	__u32 dsack_high = tp->rcv_nxt;
4492 	bool fin, fragstolen, eaten;
4493 	struct sk_buff *skb, *tail;
4494 	struct rb_node *p;
4495 
4496 	p = rb_first(&tp->out_of_order_queue);
4497 	while (p) {
4498 		skb = rb_to_skb(p);
4499 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4500 			break;
4501 
4502 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4503 			__u32 dsack = dsack_high;
4504 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4505 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4506 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4507 		}
4508 		p = rb_next(p);
4509 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4510 
4511 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4512 			tcp_drop(sk, skb);
4513 			continue;
4514 		}
4515 
4516 		tail = skb_peek_tail(&sk->sk_receive_queue);
4517 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4518 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4519 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4520 		if (!eaten)
4521 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4522 		else
4523 			kfree_skb_partial(skb, fragstolen);
4524 
4525 		if (unlikely(fin)) {
4526 			tcp_fin(sk);
4527 			/* tcp_fin() purges tp->out_of_order_queue,
4528 			 * so we must end this loop right now.
4529 			 */
4530 			break;
4531 		}
4532 	}
4533 }
4534 
4535 static bool tcp_prune_ofo_queue(struct sock *sk);
4536 static int tcp_prune_queue(struct sock *sk);
4537 
4538 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4539 				 unsigned int size)
4540 {
4541 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4542 	    !sk_rmem_schedule(sk, skb, size)) {
4543 
4544 		if (tcp_prune_queue(sk) < 0)
4545 			return -1;
4546 
4547 		while (!sk_rmem_schedule(sk, skb, size)) {
4548 			if (!tcp_prune_ofo_queue(sk))
4549 				return -1;
4550 		}
4551 	}
4552 	return 0;
4553 }
4554 
4555 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4556 {
4557 	struct tcp_sock *tp = tcp_sk(sk);
4558 	struct rb_node **p, *parent;
4559 	struct sk_buff *skb1;
4560 	u32 seq, end_seq;
4561 	bool fragstolen;
4562 
4563 	tcp_ecn_check_ce(sk, skb);
4564 
4565 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4566 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4567 		tcp_drop(sk, skb);
4568 		return;
4569 	}
4570 
4571 	/* Disable header prediction. */
4572 	tp->pred_flags = 0;
4573 	inet_csk_schedule_ack(sk);
4574 
4575 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4576 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4577 	seq = TCP_SKB_CB(skb)->seq;
4578 	end_seq = TCP_SKB_CB(skb)->end_seq;
4579 
4580 	p = &tp->out_of_order_queue.rb_node;
4581 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4582 		/* Initial out of order segment, build 1 SACK. */
4583 		if (tcp_is_sack(tp)) {
4584 			tp->rx_opt.num_sacks = 1;
4585 			tp->selective_acks[0].start_seq = seq;
4586 			tp->selective_acks[0].end_seq = end_seq;
4587 		}
4588 		rb_link_node(&skb->rbnode, NULL, p);
4589 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4590 		tp->ooo_last_skb = skb;
4591 		goto end;
4592 	}
4593 
4594 	/* In the typical case, we are adding an skb to the end of the list.
4595 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4596 	 */
4597 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4598 				 skb, &fragstolen)) {
4599 coalesce_done:
4600 		tcp_grow_window(sk, skb);
4601 		kfree_skb_partial(skb, fragstolen);
4602 		skb = NULL;
4603 		goto add_sack;
4604 	}
4605 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4606 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4607 		parent = &tp->ooo_last_skb->rbnode;
4608 		p = &parent->rb_right;
4609 		goto insert;
4610 	}
4611 
4612 	/* Find place to insert this segment. Handle overlaps on the way. */
4613 	parent = NULL;
4614 	while (*p) {
4615 		parent = *p;
4616 		skb1 = rb_to_skb(parent);
4617 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4618 			p = &parent->rb_left;
4619 			continue;
4620 		}
4621 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4622 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4623 				/* All the bits are present. Drop. */
4624 				NET_INC_STATS(sock_net(sk),
4625 					      LINUX_MIB_TCPOFOMERGE);
4626 				tcp_drop(sk, skb);
4627 				skb = NULL;
4628 				tcp_dsack_set(sk, seq, end_seq);
4629 				goto add_sack;
4630 			}
4631 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4632 				/* Partial overlap. */
4633 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4634 			} else {
4635 				/* skb's seq == skb1's seq and skb covers skb1.
4636 				 * Replace skb1 with skb.
4637 				 */
4638 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4639 						&tp->out_of_order_queue);
4640 				tcp_dsack_extend(sk,
4641 						 TCP_SKB_CB(skb1)->seq,
4642 						 TCP_SKB_CB(skb1)->end_seq);
4643 				NET_INC_STATS(sock_net(sk),
4644 					      LINUX_MIB_TCPOFOMERGE);
4645 				tcp_drop(sk, skb1);
4646 				goto merge_right;
4647 			}
4648 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4649 						skb, &fragstolen)) {
4650 			goto coalesce_done;
4651 		}
4652 		p = &parent->rb_right;
4653 	}
4654 insert:
4655 	/* Insert segment into RB tree. */
4656 	rb_link_node(&skb->rbnode, parent, p);
4657 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4658 
4659 merge_right:
4660 	/* Remove other segments covered by skb. */
4661 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4662 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4663 			break;
4664 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4665 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4666 					 end_seq);
4667 			break;
4668 		}
4669 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4670 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4671 				 TCP_SKB_CB(skb1)->end_seq);
4672 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4673 		tcp_drop(sk, skb1);
4674 	}
4675 	/* If there is no skb after us, we are the last_skb ! */
4676 	if (!skb1)
4677 		tp->ooo_last_skb = skb;
4678 
4679 add_sack:
4680 	if (tcp_is_sack(tp))
4681 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4682 end:
4683 	if (skb) {
4684 		tcp_grow_window(sk, skb);
4685 		skb_condense(skb);
4686 		skb_set_owner_r(skb, sk);
4687 	}
4688 }
4689 
4690 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4691 				      bool *fragstolen)
4692 {
4693 	int eaten;
4694 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4695 
4696 	eaten = (tail &&
4697 		 tcp_try_coalesce(sk, tail,
4698 				  skb, fragstolen)) ? 1 : 0;
4699 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4700 	if (!eaten) {
4701 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4702 		skb_set_owner_r(skb, sk);
4703 	}
4704 	return eaten;
4705 }
4706 
4707 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4708 {
4709 	struct sk_buff *skb;
4710 	int err = -ENOMEM;
4711 	int data_len = 0;
4712 	bool fragstolen;
4713 
4714 	if (size == 0)
4715 		return 0;
4716 
4717 	if (size > PAGE_SIZE) {
4718 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4719 
4720 		data_len = npages << PAGE_SHIFT;
4721 		size = data_len + (size & ~PAGE_MASK);
4722 	}
4723 	skb = alloc_skb_with_frags(size - data_len, data_len,
4724 				   PAGE_ALLOC_COSTLY_ORDER,
4725 				   &err, sk->sk_allocation);
4726 	if (!skb)
4727 		goto err;
4728 
4729 	skb_put(skb, size - data_len);
4730 	skb->data_len = data_len;
4731 	skb->len = size;
4732 
4733 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4734 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4735 		goto err_free;
4736 	}
4737 
4738 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4739 	if (err)
4740 		goto err_free;
4741 
4742 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4743 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4744 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4745 
4746 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4747 		WARN_ON_ONCE(fragstolen); /* should not happen */
4748 		__kfree_skb(skb);
4749 	}
4750 	return size;
4751 
4752 err_free:
4753 	kfree_skb(skb);
4754 err:
4755 	return err;
4756 
4757 }
4758 
4759 void tcp_data_ready(struct sock *sk)
4760 {
4761 	const struct tcp_sock *tp = tcp_sk(sk);
4762 	int avail = tp->rcv_nxt - tp->copied_seq;
4763 
4764 	if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE))
4765 		return;
4766 
4767 	sk->sk_data_ready(sk);
4768 }
4769 
4770 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4771 {
4772 	struct tcp_sock *tp = tcp_sk(sk);
4773 	bool fragstolen;
4774 	int eaten;
4775 
4776 	if (sk_is_mptcp(sk))
4777 		mptcp_incoming_options(sk, skb, &tp->rx_opt);
4778 
4779 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4780 		__kfree_skb(skb);
4781 		return;
4782 	}
4783 	skb_dst_drop(skb);
4784 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4785 
4786 	tcp_ecn_accept_cwr(sk, skb);
4787 
4788 	tp->rx_opt.dsack = 0;
4789 
4790 	/*  Queue data for delivery to the user.
4791 	 *  Packets in sequence go to the receive queue.
4792 	 *  Out of sequence packets to the out_of_order_queue.
4793 	 */
4794 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4795 		if (tcp_receive_window(tp) == 0) {
4796 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4797 			goto out_of_window;
4798 		}
4799 
4800 		/* Ok. In sequence. In window. */
4801 queue_and_out:
4802 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4803 			sk_forced_mem_schedule(sk, skb->truesize);
4804 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4805 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4806 			goto drop;
4807 		}
4808 
4809 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
4810 		if (skb->len)
4811 			tcp_event_data_recv(sk, skb);
4812 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4813 			tcp_fin(sk);
4814 
4815 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4816 			tcp_ofo_queue(sk);
4817 
4818 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
4819 			 * gap in queue is filled.
4820 			 */
4821 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4822 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4823 		}
4824 
4825 		if (tp->rx_opt.num_sacks)
4826 			tcp_sack_remove(tp);
4827 
4828 		tcp_fast_path_check(sk);
4829 
4830 		if (eaten > 0)
4831 			kfree_skb_partial(skb, fragstolen);
4832 		if (!sock_flag(sk, SOCK_DEAD))
4833 			tcp_data_ready(sk);
4834 		return;
4835 	}
4836 
4837 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4838 		tcp_rcv_spurious_retrans(sk, skb);
4839 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4840 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4841 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4842 
4843 out_of_window:
4844 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4845 		inet_csk_schedule_ack(sk);
4846 drop:
4847 		tcp_drop(sk, skb);
4848 		return;
4849 	}
4850 
4851 	/* Out of window. F.e. zero window probe. */
4852 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4853 		goto out_of_window;
4854 
4855 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4856 		/* Partial packet, seq < rcv_next < end_seq */
4857 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4858 
4859 		/* If window is closed, drop tail of packet. But after
4860 		 * remembering D-SACK for its head made in previous line.
4861 		 */
4862 		if (!tcp_receive_window(tp)) {
4863 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4864 			goto out_of_window;
4865 		}
4866 		goto queue_and_out;
4867 	}
4868 
4869 	tcp_data_queue_ofo(sk, skb);
4870 }
4871 
4872 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4873 {
4874 	if (list)
4875 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4876 
4877 	return skb_rb_next(skb);
4878 }
4879 
4880 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4881 					struct sk_buff_head *list,
4882 					struct rb_root *root)
4883 {
4884 	struct sk_buff *next = tcp_skb_next(skb, list);
4885 
4886 	if (list)
4887 		__skb_unlink(skb, list);
4888 	else
4889 		rb_erase(&skb->rbnode, root);
4890 
4891 	__kfree_skb(skb);
4892 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4893 
4894 	return next;
4895 }
4896 
4897 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4898 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4899 {
4900 	struct rb_node **p = &root->rb_node;
4901 	struct rb_node *parent = NULL;
4902 	struct sk_buff *skb1;
4903 
4904 	while (*p) {
4905 		parent = *p;
4906 		skb1 = rb_to_skb(parent);
4907 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4908 			p = &parent->rb_left;
4909 		else
4910 			p = &parent->rb_right;
4911 	}
4912 	rb_link_node(&skb->rbnode, parent, p);
4913 	rb_insert_color(&skb->rbnode, root);
4914 }
4915 
4916 /* Collapse contiguous sequence of skbs head..tail with
4917  * sequence numbers start..end.
4918  *
4919  * If tail is NULL, this means until the end of the queue.
4920  *
4921  * Segments with FIN/SYN are not collapsed (only because this
4922  * simplifies code)
4923  */
4924 static void
4925 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4926 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4927 {
4928 	struct sk_buff *skb = head, *n;
4929 	struct sk_buff_head tmp;
4930 	bool end_of_skbs;
4931 
4932 	/* First, check that queue is collapsible and find
4933 	 * the point where collapsing can be useful.
4934 	 */
4935 restart:
4936 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4937 		n = tcp_skb_next(skb, list);
4938 
4939 		/* No new bits? It is possible on ofo queue. */
4940 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4941 			skb = tcp_collapse_one(sk, skb, list, root);
4942 			if (!skb)
4943 				break;
4944 			goto restart;
4945 		}
4946 
4947 		/* The first skb to collapse is:
4948 		 * - not SYN/FIN and
4949 		 * - bloated or contains data before "start" or
4950 		 *   overlaps to the next one and mptcp allow collapsing.
4951 		 */
4952 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4953 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4954 		     before(TCP_SKB_CB(skb)->seq, start))) {
4955 			end_of_skbs = false;
4956 			break;
4957 		}
4958 
4959 		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
4960 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4961 			end_of_skbs = false;
4962 			break;
4963 		}
4964 
4965 		/* Decided to skip this, advance start seq. */
4966 		start = TCP_SKB_CB(skb)->end_seq;
4967 	}
4968 	if (end_of_skbs ||
4969 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4970 		return;
4971 
4972 	__skb_queue_head_init(&tmp);
4973 
4974 	while (before(start, end)) {
4975 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4976 		struct sk_buff *nskb;
4977 
4978 		nskb = alloc_skb(copy, GFP_ATOMIC);
4979 		if (!nskb)
4980 			break;
4981 
4982 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4983 #ifdef CONFIG_TLS_DEVICE
4984 		nskb->decrypted = skb->decrypted;
4985 #endif
4986 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4987 		if (list)
4988 			__skb_queue_before(list, skb, nskb);
4989 		else
4990 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4991 		skb_set_owner_r(nskb, sk);
4992 		mptcp_skb_ext_move(nskb, skb);
4993 
4994 		/* Copy data, releasing collapsed skbs. */
4995 		while (copy > 0) {
4996 			int offset = start - TCP_SKB_CB(skb)->seq;
4997 			int size = TCP_SKB_CB(skb)->end_seq - start;
4998 
4999 			BUG_ON(offset < 0);
5000 			if (size > 0) {
5001 				size = min(copy, size);
5002 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5003 					BUG();
5004 				TCP_SKB_CB(nskb)->end_seq += size;
5005 				copy -= size;
5006 				start += size;
5007 			}
5008 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5009 				skb = tcp_collapse_one(sk, skb, list, root);
5010 				if (!skb ||
5011 				    skb == tail ||
5012 				    !mptcp_skb_can_collapse(nskb, skb) ||
5013 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5014 					goto end;
5015 #ifdef CONFIG_TLS_DEVICE
5016 				if (skb->decrypted != nskb->decrypted)
5017 					goto end;
5018 #endif
5019 			}
5020 		}
5021 	}
5022 end:
5023 	skb_queue_walk_safe(&tmp, skb, n)
5024 		tcp_rbtree_insert(root, skb);
5025 }
5026 
5027 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5028  * and tcp_collapse() them until all the queue is collapsed.
5029  */
5030 static void tcp_collapse_ofo_queue(struct sock *sk)
5031 {
5032 	struct tcp_sock *tp = tcp_sk(sk);
5033 	u32 range_truesize, sum_tiny = 0;
5034 	struct sk_buff *skb, *head;
5035 	u32 start, end;
5036 
5037 	skb = skb_rb_first(&tp->out_of_order_queue);
5038 new_range:
5039 	if (!skb) {
5040 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5041 		return;
5042 	}
5043 	start = TCP_SKB_CB(skb)->seq;
5044 	end = TCP_SKB_CB(skb)->end_seq;
5045 	range_truesize = skb->truesize;
5046 
5047 	for (head = skb;;) {
5048 		skb = skb_rb_next(skb);
5049 
5050 		/* Range is terminated when we see a gap or when
5051 		 * we are at the queue end.
5052 		 */
5053 		if (!skb ||
5054 		    after(TCP_SKB_CB(skb)->seq, end) ||
5055 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5056 			/* Do not attempt collapsing tiny skbs */
5057 			if (range_truesize != head->truesize ||
5058 			    end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5059 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5060 					     head, skb, start, end);
5061 			} else {
5062 				sum_tiny += range_truesize;
5063 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5064 					return;
5065 			}
5066 			goto new_range;
5067 		}
5068 
5069 		range_truesize += skb->truesize;
5070 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5071 			start = TCP_SKB_CB(skb)->seq;
5072 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5073 			end = TCP_SKB_CB(skb)->end_seq;
5074 	}
5075 }
5076 
5077 /*
5078  * Clean the out-of-order queue to make room.
5079  * We drop high sequences packets to :
5080  * 1) Let a chance for holes to be filled.
5081  * 2) not add too big latencies if thousands of packets sit there.
5082  *    (But if application shrinks SO_RCVBUF, we could still end up
5083  *     freeing whole queue here)
5084  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5085  *
5086  * Return true if queue has shrunk.
5087  */
5088 static bool tcp_prune_ofo_queue(struct sock *sk)
5089 {
5090 	struct tcp_sock *tp = tcp_sk(sk);
5091 	struct rb_node *node, *prev;
5092 	int goal;
5093 
5094 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5095 		return false;
5096 
5097 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5098 	goal = sk->sk_rcvbuf >> 3;
5099 	node = &tp->ooo_last_skb->rbnode;
5100 	do {
5101 		prev = rb_prev(node);
5102 		rb_erase(node, &tp->out_of_order_queue);
5103 		goal -= rb_to_skb(node)->truesize;
5104 		tcp_drop(sk, rb_to_skb(node));
5105 		if (!prev || goal <= 0) {
5106 			sk_mem_reclaim(sk);
5107 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5108 			    !tcp_under_memory_pressure(sk))
5109 				break;
5110 			goal = sk->sk_rcvbuf >> 3;
5111 		}
5112 		node = prev;
5113 	} while (node);
5114 	tp->ooo_last_skb = rb_to_skb(prev);
5115 
5116 	/* Reset SACK state.  A conforming SACK implementation will
5117 	 * do the same at a timeout based retransmit.  When a connection
5118 	 * is in a sad state like this, we care only about integrity
5119 	 * of the connection not performance.
5120 	 */
5121 	if (tp->rx_opt.sack_ok)
5122 		tcp_sack_reset(&tp->rx_opt);
5123 	return true;
5124 }
5125 
5126 /* Reduce allocated memory if we can, trying to get
5127  * the socket within its memory limits again.
5128  *
5129  * Return less than zero if we should start dropping frames
5130  * until the socket owning process reads some of the data
5131  * to stabilize the situation.
5132  */
5133 static int tcp_prune_queue(struct sock *sk)
5134 {
5135 	struct tcp_sock *tp = tcp_sk(sk);
5136 
5137 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5138 
5139 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5140 		tcp_clamp_window(sk);
5141 	else if (tcp_under_memory_pressure(sk))
5142 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5143 
5144 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5145 		return 0;
5146 
5147 	tcp_collapse_ofo_queue(sk);
5148 	if (!skb_queue_empty(&sk->sk_receive_queue))
5149 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5150 			     skb_peek(&sk->sk_receive_queue),
5151 			     NULL,
5152 			     tp->copied_seq, tp->rcv_nxt);
5153 	sk_mem_reclaim(sk);
5154 
5155 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5156 		return 0;
5157 
5158 	/* Collapsing did not help, destructive actions follow.
5159 	 * This must not ever occur. */
5160 
5161 	tcp_prune_ofo_queue(sk);
5162 
5163 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5164 		return 0;
5165 
5166 	/* If we are really being abused, tell the caller to silently
5167 	 * drop receive data on the floor.  It will get retransmitted
5168 	 * and hopefully then we'll have sufficient space.
5169 	 */
5170 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5171 
5172 	/* Massive buffer overcommit. */
5173 	tp->pred_flags = 0;
5174 	return -1;
5175 }
5176 
5177 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5178 {
5179 	const struct tcp_sock *tp = tcp_sk(sk);
5180 
5181 	/* If the user specified a specific send buffer setting, do
5182 	 * not modify it.
5183 	 */
5184 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5185 		return false;
5186 
5187 	/* If we are under global TCP memory pressure, do not expand.  */
5188 	if (tcp_under_memory_pressure(sk))
5189 		return false;
5190 
5191 	/* If we are under soft global TCP memory pressure, do not expand.  */
5192 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5193 		return false;
5194 
5195 	/* If we filled the congestion window, do not expand.  */
5196 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5197 		return false;
5198 
5199 	return true;
5200 }
5201 
5202 /* When incoming ACK allowed to free some skb from write_queue,
5203  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5204  * on the exit from tcp input handler.
5205  *
5206  * PROBLEM: sndbuf expansion does not work well with largesend.
5207  */
5208 static void tcp_new_space(struct sock *sk)
5209 {
5210 	struct tcp_sock *tp = tcp_sk(sk);
5211 
5212 	if (tcp_should_expand_sndbuf(sk)) {
5213 		tcp_sndbuf_expand(sk);
5214 		tp->snd_cwnd_stamp = tcp_jiffies32;
5215 	}
5216 
5217 	sk->sk_write_space(sk);
5218 }
5219 
5220 static void tcp_check_space(struct sock *sk)
5221 {
5222 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5223 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5224 		/* pairs with tcp_poll() */
5225 		smp_mb();
5226 		if (sk->sk_socket &&
5227 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5228 			tcp_new_space(sk);
5229 			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5230 				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5231 		}
5232 	}
5233 }
5234 
5235 static inline void tcp_data_snd_check(struct sock *sk)
5236 {
5237 	tcp_push_pending_frames(sk);
5238 	tcp_check_space(sk);
5239 }
5240 
5241 /*
5242  * Check if sending an ack is needed.
5243  */
5244 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5245 {
5246 	struct tcp_sock *tp = tcp_sk(sk);
5247 	unsigned long rtt, delay;
5248 
5249 	    /* More than one full frame received... */
5250 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5251 	     /* ... and right edge of window advances far enough.
5252 	      * (tcp_recvmsg() will send ACK otherwise).
5253 	      * If application uses SO_RCVLOWAT, we want send ack now if
5254 	      * we have not received enough bytes to satisfy the condition.
5255 	      */
5256 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5257 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5258 	    /* We ACK each frame or... */
5259 	    tcp_in_quickack_mode(sk) ||
5260 	    /* Protocol state mandates a one-time immediate ACK */
5261 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5262 send_now:
5263 		tcp_send_ack(sk);
5264 		return;
5265 	}
5266 
5267 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5268 		tcp_send_delayed_ack(sk);
5269 		return;
5270 	}
5271 
5272 	if (!tcp_is_sack(tp) ||
5273 	    tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5274 		goto send_now;
5275 
5276 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5277 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5278 		if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
5279 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
5280 				      tp->compressed_ack - TCP_FASTRETRANS_THRESH);
5281 		tp->compressed_ack = 0;
5282 	}
5283 
5284 	if (++tp->compressed_ack <= TCP_FASTRETRANS_THRESH)
5285 		goto send_now;
5286 
5287 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5288 		return;
5289 
5290 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5291 
5292 	rtt = tp->rcv_rtt_est.rtt_us;
5293 	if (tp->srtt_us && tp->srtt_us < rtt)
5294 		rtt = tp->srtt_us;
5295 
5296 	delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5297 		      rtt * (NSEC_PER_USEC >> 3)/20);
5298 	sock_hold(sk);
5299 	hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay),
5300 		      HRTIMER_MODE_REL_PINNED_SOFT);
5301 }
5302 
5303 static inline void tcp_ack_snd_check(struct sock *sk)
5304 {
5305 	if (!inet_csk_ack_scheduled(sk)) {
5306 		/* We sent a data segment already. */
5307 		return;
5308 	}
5309 	__tcp_ack_snd_check(sk, 1);
5310 }
5311 
5312 /*
5313  *	This routine is only called when we have urgent data
5314  *	signaled. Its the 'slow' part of tcp_urg. It could be
5315  *	moved inline now as tcp_urg is only called from one
5316  *	place. We handle URGent data wrong. We have to - as
5317  *	BSD still doesn't use the correction from RFC961.
5318  *	For 1003.1g we should support a new option TCP_STDURG to permit
5319  *	either form (or just set the sysctl tcp_stdurg).
5320  */
5321 
5322 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5323 {
5324 	struct tcp_sock *tp = tcp_sk(sk);
5325 	u32 ptr = ntohs(th->urg_ptr);
5326 
5327 	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5328 		ptr--;
5329 	ptr += ntohl(th->seq);
5330 
5331 	/* Ignore urgent data that we've already seen and read. */
5332 	if (after(tp->copied_seq, ptr))
5333 		return;
5334 
5335 	/* Do not replay urg ptr.
5336 	 *
5337 	 * NOTE: interesting situation not covered by specs.
5338 	 * Misbehaving sender may send urg ptr, pointing to segment,
5339 	 * which we already have in ofo queue. We are not able to fetch
5340 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5341 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5342 	 * situations. But it is worth to think about possibility of some
5343 	 * DoSes using some hypothetical application level deadlock.
5344 	 */
5345 	if (before(ptr, tp->rcv_nxt))
5346 		return;
5347 
5348 	/* Do we already have a newer (or duplicate) urgent pointer? */
5349 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5350 		return;
5351 
5352 	/* Tell the world about our new urgent pointer. */
5353 	sk_send_sigurg(sk);
5354 
5355 	/* We may be adding urgent data when the last byte read was
5356 	 * urgent. To do this requires some care. We cannot just ignore
5357 	 * tp->copied_seq since we would read the last urgent byte again
5358 	 * as data, nor can we alter copied_seq until this data arrives
5359 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5360 	 *
5361 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5362 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5363 	 * and expect that both A and B disappear from stream. This is _wrong_.
5364 	 * Though this happens in BSD with high probability, this is occasional.
5365 	 * Any application relying on this is buggy. Note also, that fix "works"
5366 	 * only in this artificial test. Insert some normal data between A and B and we will
5367 	 * decline of BSD again. Verdict: it is better to remove to trap
5368 	 * buggy users.
5369 	 */
5370 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5371 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5372 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5373 		tp->copied_seq++;
5374 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5375 			__skb_unlink(skb, &sk->sk_receive_queue);
5376 			__kfree_skb(skb);
5377 		}
5378 	}
5379 
5380 	tp->urg_data = TCP_URG_NOTYET;
5381 	WRITE_ONCE(tp->urg_seq, ptr);
5382 
5383 	/* Disable header prediction. */
5384 	tp->pred_flags = 0;
5385 }
5386 
5387 /* This is the 'fast' part of urgent handling. */
5388 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5389 {
5390 	struct tcp_sock *tp = tcp_sk(sk);
5391 
5392 	/* Check if we get a new urgent pointer - normally not. */
5393 	if (th->urg)
5394 		tcp_check_urg(sk, th);
5395 
5396 	/* Do we wait for any urgent data? - normally not... */
5397 	if (tp->urg_data == TCP_URG_NOTYET) {
5398 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5399 			  th->syn;
5400 
5401 		/* Is the urgent pointer pointing into this packet? */
5402 		if (ptr < skb->len) {
5403 			u8 tmp;
5404 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5405 				BUG();
5406 			tp->urg_data = TCP_URG_VALID | tmp;
5407 			if (!sock_flag(sk, SOCK_DEAD))
5408 				sk->sk_data_ready(sk);
5409 		}
5410 	}
5411 }
5412 
5413 /* Accept RST for rcv_nxt - 1 after a FIN.
5414  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5415  * FIN is sent followed by a RST packet. The RST is sent with the same
5416  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5417  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5418  * ACKs on the closed socket. In addition middleboxes can drop either the
5419  * challenge ACK or a subsequent RST.
5420  */
5421 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5422 {
5423 	struct tcp_sock *tp = tcp_sk(sk);
5424 
5425 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5426 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5427 					       TCPF_CLOSING));
5428 }
5429 
5430 /* Does PAWS and seqno based validation of an incoming segment, flags will
5431  * play significant role here.
5432  */
5433 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5434 				  const struct tcphdr *th, int syn_inerr)
5435 {
5436 	struct tcp_sock *tp = tcp_sk(sk);
5437 	bool rst_seq_match = false;
5438 
5439 	/* RFC1323: H1. Apply PAWS check first. */
5440 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5441 	    tp->rx_opt.saw_tstamp &&
5442 	    tcp_paws_discard(sk, skb)) {
5443 		if (!th->rst) {
5444 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5445 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5446 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5447 						  &tp->last_oow_ack_time))
5448 				tcp_send_dupack(sk, skb);
5449 			goto discard;
5450 		}
5451 		/* Reset is accepted even if it did not pass PAWS. */
5452 	}
5453 
5454 	/* Step 1: check sequence number */
5455 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5456 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5457 		 * (RST) segments are validated by checking their SEQ-fields."
5458 		 * And page 69: "If an incoming segment is not acceptable,
5459 		 * an acknowledgment should be sent in reply (unless the RST
5460 		 * bit is set, if so drop the segment and return)".
5461 		 */
5462 		if (!th->rst) {
5463 			if (th->syn)
5464 				goto syn_challenge;
5465 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5466 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5467 						  &tp->last_oow_ack_time))
5468 				tcp_send_dupack(sk, skb);
5469 		} else if (tcp_reset_check(sk, skb)) {
5470 			tcp_reset(sk);
5471 		}
5472 		goto discard;
5473 	}
5474 
5475 	/* Step 2: check RST bit */
5476 	if (th->rst) {
5477 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5478 		 * FIN and SACK too if available):
5479 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5480 		 * the right-most SACK block,
5481 		 * then
5482 		 *     RESET the connection
5483 		 * else
5484 		 *     Send a challenge ACK
5485 		 */
5486 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5487 		    tcp_reset_check(sk, skb)) {
5488 			rst_seq_match = true;
5489 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5490 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5491 			int max_sack = sp[0].end_seq;
5492 			int this_sack;
5493 
5494 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5495 			     ++this_sack) {
5496 				max_sack = after(sp[this_sack].end_seq,
5497 						 max_sack) ?
5498 					sp[this_sack].end_seq : max_sack;
5499 			}
5500 
5501 			if (TCP_SKB_CB(skb)->seq == max_sack)
5502 				rst_seq_match = true;
5503 		}
5504 
5505 		if (rst_seq_match)
5506 			tcp_reset(sk);
5507 		else {
5508 			/* Disable TFO if RST is out-of-order
5509 			 * and no data has been received
5510 			 * for current active TFO socket
5511 			 */
5512 			if (tp->syn_fastopen && !tp->data_segs_in &&
5513 			    sk->sk_state == TCP_ESTABLISHED)
5514 				tcp_fastopen_active_disable(sk);
5515 			tcp_send_challenge_ack(sk, skb);
5516 		}
5517 		goto discard;
5518 	}
5519 
5520 	/* step 3: check security and precedence [ignored] */
5521 
5522 	/* step 4: Check for a SYN
5523 	 * RFC 5961 4.2 : Send a challenge ack
5524 	 */
5525 	if (th->syn) {
5526 syn_challenge:
5527 		if (syn_inerr)
5528 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5529 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5530 		tcp_send_challenge_ack(sk, skb);
5531 		goto discard;
5532 	}
5533 
5534 	return true;
5535 
5536 discard:
5537 	tcp_drop(sk, skb);
5538 	return false;
5539 }
5540 
5541 /*
5542  *	TCP receive function for the ESTABLISHED state.
5543  *
5544  *	It is split into a fast path and a slow path. The fast path is
5545  * 	disabled when:
5546  *	- A zero window was announced from us - zero window probing
5547  *        is only handled properly in the slow path.
5548  *	- Out of order segments arrived.
5549  *	- Urgent data is expected.
5550  *	- There is no buffer space left
5551  *	- Unexpected TCP flags/window values/header lengths are received
5552  *	  (detected by checking the TCP header against pred_flags)
5553  *	- Data is sent in both directions. Fast path only supports pure senders
5554  *	  or pure receivers (this means either the sequence number or the ack
5555  *	  value must stay constant)
5556  *	- Unexpected TCP option.
5557  *
5558  *	When these conditions are not satisfied it drops into a standard
5559  *	receive procedure patterned after RFC793 to handle all cases.
5560  *	The first three cases are guaranteed by proper pred_flags setting,
5561  *	the rest is checked inline. Fast processing is turned on in
5562  *	tcp_data_queue when everything is OK.
5563  */
5564 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5565 {
5566 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5567 	struct tcp_sock *tp = tcp_sk(sk);
5568 	unsigned int len = skb->len;
5569 
5570 	/* TCP congestion window tracking */
5571 	trace_tcp_probe(sk, skb);
5572 
5573 	tcp_mstamp_refresh(tp);
5574 	if (unlikely(!sk->sk_rx_dst))
5575 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5576 	/*
5577 	 *	Header prediction.
5578 	 *	The code loosely follows the one in the famous
5579 	 *	"30 instruction TCP receive" Van Jacobson mail.
5580 	 *
5581 	 *	Van's trick is to deposit buffers into socket queue
5582 	 *	on a device interrupt, to call tcp_recv function
5583 	 *	on the receive process context and checksum and copy
5584 	 *	the buffer to user space. smart...
5585 	 *
5586 	 *	Our current scheme is not silly either but we take the
5587 	 *	extra cost of the net_bh soft interrupt processing...
5588 	 *	We do checksum and copy also but from device to kernel.
5589 	 */
5590 
5591 	tp->rx_opt.saw_tstamp = 0;
5592 
5593 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5594 	 *	if header_prediction is to be made
5595 	 *	'S' will always be tp->tcp_header_len >> 2
5596 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5597 	 *  turn it off	(when there are holes in the receive
5598 	 *	 space for instance)
5599 	 *	PSH flag is ignored.
5600 	 */
5601 
5602 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5603 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5604 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5605 		int tcp_header_len = tp->tcp_header_len;
5606 
5607 		/* Timestamp header prediction: tcp_header_len
5608 		 * is automatically equal to th->doff*4 due to pred_flags
5609 		 * match.
5610 		 */
5611 
5612 		/* Check timestamp */
5613 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5614 			/* No? Slow path! */
5615 			if (!tcp_parse_aligned_timestamp(tp, th))
5616 				goto slow_path;
5617 
5618 			/* If PAWS failed, check it more carefully in slow path */
5619 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5620 				goto slow_path;
5621 
5622 			/* DO NOT update ts_recent here, if checksum fails
5623 			 * and timestamp was corrupted part, it will result
5624 			 * in a hung connection since we will drop all
5625 			 * future packets due to the PAWS test.
5626 			 */
5627 		}
5628 
5629 		if (len <= tcp_header_len) {
5630 			/* Bulk data transfer: sender */
5631 			if (len == tcp_header_len) {
5632 				/* Predicted packet is in window by definition.
5633 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5634 				 * Hence, check seq<=rcv_wup reduces to:
5635 				 */
5636 				if (tcp_header_len ==
5637 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5638 				    tp->rcv_nxt == tp->rcv_wup)
5639 					tcp_store_ts_recent(tp);
5640 
5641 				/* We know that such packets are checksummed
5642 				 * on entry.
5643 				 */
5644 				tcp_ack(sk, skb, 0);
5645 				__kfree_skb(skb);
5646 				tcp_data_snd_check(sk);
5647 				/* When receiving pure ack in fast path, update
5648 				 * last ts ecr directly instead of calling
5649 				 * tcp_rcv_rtt_measure_ts()
5650 				 */
5651 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5652 				return;
5653 			} else { /* Header too small */
5654 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5655 				goto discard;
5656 			}
5657 		} else {
5658 			int eaten = 0;
5659 			bool fragstolen = false;
5660 
5661 			if (tcp_checksum_complete(skb))
5662 				goto csum_error;
5663 
5664 			if ((int)skb->truesize > sk->sk_forward_alloc)
5665 				goto step5;
5666 
5667 			/* Predicted packet is in window by definition.
5668 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5669 			 * Hence, check seq<=rcv_wup reduces to:
5670 			 */
5671 			if (tcp_header_len ==
5672 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5673 			    tp->rcv_nxt == tp->rcv_wup)
5674 				tcp_store_ts_recent(tp);
5675 
5676 			tcp_rcv_rtt_measure_ts(sk, skb);
5677 
5678 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5679 
5680 			/* Bulk data transfer: receiver */
5681 			__skb_pull(skb, tcp_header_len);
5682 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5683 
5684 			tcp_event_data_recv(sk, skb);
5685 
5686 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5687 				/* Well, only one small jumplet in fast path... */
5688 				tcp_ack(sk, skb, FLAG_DATA);
5689 				tcp_data_snd_check(sk);
5690 				if (!inet_csk_ack_scheduled(sk))
5691 					goto no_ack;
5692 			}
5693 
5694 			__tcp_ack_snd_check(sk, 0);
5695 no_ack:
5696 			if (eaten)
5697 				kfree_skb_partial(skb, fragstolen);
5698 			tcp_data_ready(sk);
5699 			return;
5700 		}
5701 	}
5702 
5703 slow_path:
5704 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5705 		goto csum_error;
5706 
5707 	if (!th->ack && !th->rst && !th->syn)
5708 		goto discard;
5709 
5710 	/*
5711 	 *	Standard slow path.
5712 	 */
5713 
5714 	if (!tcp_validate_incoming(sk, skb, th, 1))
5715 		return;
5716 
5717 step5:
5718 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5719 		goto discard;
5720 
5721 	tcp_rcv_rtt_measure_ts(sk, skb);
5722 
5723 	/* Process urgent data. */
5724 	tcp_urg(sk, skb, th);
5725 
5726 	/* step 7: process the segment text */
5727 	tcp_data_queue(sk, skb);
5728 
5729 	tcp_data_snd_check(sk);
5730 	tcp_ack_snd_check(sk);
5731 	return;
5732 
5733 csum_error:
5734 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5735 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5736 
5737 discard:
5738 	tcp_drop(sk, skb);
5739 }
5740 EXPORT_SYMBOL(tcp_rcv_established);
5741 
5742 void tcp_init_transfer(struct sock *sk, int bpf_op)
5743 {
5744 	struct inet_connection_sock *icsk = inet_csk(sk);
5745 	struct tcp_sock *tp = tcp_sk(sk);
5746 
5747 	tcp_mtup_init(sk);
5748 	icsk->icsk_af_ops->rebuild_header(sk);
5749 	tcp_init_metrics(sk);
5750 
5751 	/* Initialize the congestion window to start the transfer.
5752 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5753 	 * retransmitted. In light of RFC6298 more aggressive 1sec
5754 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5755 	 * retransmission has occurred.
5756 	 */
5757 	if (tp->total_retrans > 1 && tp->undo_marker)
5758 		tp->snd_cwnd = 1;
5759 	else
5760 		tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5761 	tp->snd_cwnd_stamp = tcp_jiffies32;
5762 
5763 	tcp_call_bpf(sk, bpf_op, 0, NULL);
5764 	tcp_init_congestion_control(sk);
5765 	tcp_init_buffer_space(sk);
5766 }
5767 
5768 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5769 {
5770 	struct tcp_sock *tp = tcp_sk(sk);
5771 	struct inet_connection_sock *icsk = inet_csk(sk);
5772 
5773 	tcp_set_state(sk, TCP_ESTABLISHED);
5774 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5775 
5776 	if (skb) {
5777 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5778 		security_inet_conn_established(sk, skb);
5779 		sk_mark_napi_id(sk, skb);
5780 	}
5781 
5782 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5783 
5784 	/* Prevent spurious tcp_cwnd_restart() on first data
5785 	 * packet.
5786 	 */
5787 	tp->lsndtime = tcp_jiffies32;
5788 
5789 	if (sock_flag(sk, SOCK_KEEPOPEN))
5790 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5791 
5792 	if (!tp->rx_opt.snd_wscale)
5793 		__tcp_fast_path_on(tp, tp->snd_wnd);
5794 	else
5795 		tp->pred_flags = 0;
5796 }
5797 
5798 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5799 				    struct tcp_fastopen_cookie *cookie)
5800 {
5801 	struct tcp_sock *tp = tcp_sk(sk);
5802 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5803 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5804 	bool syn_drop = false;
5805 
5806 	if (mss == tp->rx_opt.user_mss) {
5807 		struct tcp_options_received opt;
5808 
5809 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5810 		tcp_clear_options(&opt);
5811 		opt.user_mss = opt.mss_clamp = 0;
5812 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5813 		mss = opt.mss_clamp;
5814 	}
5815 
5816 	if (!tp->syn_fastopen) {
5817 		/* Ignore an unsolicited cookie */
5818 		cookie->len = -1;
5819 	} else if (tp->total_retrans) {
5820 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5821 		 * acknowledges data. Presumably the remote received only
5822 		 * the retransmitted (regular) SYNs: either the original
5823 		 * SYN-data or the corresponding SYN-ACK was dropped.
5824 		 */
5825 		syn_drop = (cookie->len < 0 && data);
5826 	} else if (cookie->len < 0 && !tp->syn_data) {
5827 		/* We requested a cookie but didn't get it. If we did not use
5828 		 * the (old) exp opt format then try so next time (try_exp=1).
5829 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5830 		 */
5831 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5832 	}
5833 
5834 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5835 
5836 	if (data) { /* Retransmit unacked data in SYN */
5837 		if (tp->total_retrans)
5838 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
5839 		else
5840 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
5841 		skb_rbtree_walk_from(data) {
5842 			if (__tcp_retransmit_skb(sk, data, 1))
5843 				break;
5844 		}
5845 		tcp_rearm_rto(sk);
5846 		NET_INC_STATS(sock_net(sk),
5847 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5848 		return true;
5849 	}
5850 	tp->syn_data_acked = tp->syn_data;
5851 	if (tp->syn_data_acked) {
5852 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5853 		/* SYN-data is counted as two separate packets in tcp_ack() */
5854 		if (tp->delivered > 1)
5855 			--tp->delivered;
5856 	}
5857 
5858 	tcp_fastopen_add_skb(sk, synack);
5859 
5860 	return false;
5861 }
5862 
5863 static void smc_check_reset_syn(struct tcp_sock *tp)
5864 {
5865 #if IS_ENABLED(CONFIG_SMC)
5866 	if (static_branch_unlikely(&tcp_have_smc)) {
5867 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
5868 			tp->syn_smc = 0;
5869 	}
5870 #endif
5871 }
5872 
5873 static void tcp_try_undo_spurious_syn(struct sock *sk)
5874 {
5875 	struct tcp_sock *tp = tcp_sk(sk);
5876 	u32 syn_stamp;
5877 
5878 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
5879 	 * spurious if the ACK's timestamp option echo value matches the
5880 	 * original SYN timestamp.
5881 	 */
5882 	syn_stamp = tp->retrans_stamp;
5883 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
5884 	    syn_stamp == tp->rx_opt.rcv_tsecr)
5885 		tp->undo_marker = 0;
5886 }
5887 
5888 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5889 					 const struct tcphdr *th)
5890 {
5891 	struct inet_connection_sock *icsk = inet_csk(sk);
5892 	struct tcp_sock *tp = tcp_sk(sk);
5893 	struct tcp_fastopen_cookie foc = { .len = -1 };
5894 	int saved_clamp = tp->rx_opt.mss_clamp;
5895 	bool fastopen_fail;
5896 
5897 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5898 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5899 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5900 
5901 	if (th->ack) {
5902 		/* rfc793:
5903 		 * "If the state is SYN-SENT then
5904 		 *    first check the ACK bit
5905 		 *      If the ACK bit is set
5906 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5907 		 *        a reset (unless the RST bit is set, if so drop
5908 		 *        the segment and return)"
5909 		 */
5910 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5911 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5912 			/* Previous FIN/ACK or RST/ACK might be ignored. */
5913 			if (icsk->icsk_retransmits == 0)
5914 				inet_csk_reset_xmit_timer(sk,
5915 						ICSK_TIME_RETRANS,
5916 						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
5917 			goto reset_and_undo;
5918 		}
5919 
5920 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5921 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5922 			     tcp_time_stamp(tp))) {
5923 			NET_INC_STATS(sock_net(sk),
5924 					LINUX_MIB_PAWSACTIVEREJECTED);
5925 			goto reset_and_undo;
5926 		}
5927 
5928 		/* Now ACK is acceptable.
5929 		 *
5930 		 * "If the RST bit is set
5931 		 *    If the ACK was acceptable then signal the user "error:
5932 		 *    connection reset", drop the segment, enter CLOSED state,
5933 		 *    delete TCB, and return."
5934 		 */
5935 
5936 		if (th->rst) {
5937 			tcp_reset(sk);
5938 			goto discard;
5939 		}
5940 
5941 		/* rfc793:
5942 		 *   "fifth, if neither of the SYN or RST bits is set then
5943 		 *    drop the segment and return."
5944 		 *
5945 		 *    See note below!
5946 		 *                                        --ANK(990513)
5947 		 */
5948 		if (!th->syn)
5949 			goto discard_and_undo;
5950 
5951 		/* rfc793:
5952 		 *   "If the SYN bit is on ...
5953 		 *    are acceptable then ...
5954 		 *    (our SYN has been ACKed), change the connection
5955 		 *    state to ESTABLISHED..."
5956 		 */
5957 
5958 		tcp_ecn_rcv_synack(tp, th);
5959 
5960 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5961 		tcp_try_undo_spurious_syn(sk);
5962 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5963 
5964 		/* Ok.. it's good. Set up sequence numbers and
5965 		 * move to established.
5966 		 */
5967 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
5968 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5969 
5970 		/* RFC1323: The window in SYN & SYN/ACK segments is
5971 		 * never scaled.
5972 		 */
5973 		tp->snd_wnd = ntohs(th->window);
5974 
5975 		if (!tp->rx_opt.wscale_ok) {
5976 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5977 			tp->window_clamp = min(tp->window_clamp, 65535U);
5978 		}
5979 
5980 		if (tp->rx_opt.saw_tstamp) {
5981 			tp->rx_opt.tstamp_ok	   = 1;
5982 			tp->tcp_header_len =
5983 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5984 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5985 			tcp_store_ts_recent(tp);
5986 		} else {
5987 			tp->tcp_header_len = sizeof(struct tcphdr);
5988 		}
5989 
5990 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5991 		tcp_initialize_rcv_mss(sk);
5992 
5993 		if (sk_is_mptcp(sk))
5994 			mptcp_rcv_synsent(sk);
5995 
5996 		/* Remember, tcp_poll() does not lock socket!
5997 		 * Change state from SYN-SENT only after copied_seq
5998 		 * is initialized. */
5999 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6000 
6001 		smc_check_reset_syn(tp);
6002 
6003 		smp_mb();
6004 
6005 		tcp_finish_connect(sk, skb);
6006 
6007 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6008 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6009 
6010 		if (!sock_flag(sk, SOCK_DEAD)) {
6011 			sk->sk_state_change(sk);
6012 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6013 		}
6014 		if (fastopen_fail)
6015 			return -1;
6016 		if (sk->sk_write_pending ||
6017 		    icsk->icsk_accept_queue.rskq_defer_accept ||
6018 		    inet_csk_in_pingpong_mode(sk)) {
6019 			/* Save one ACK. Data will be ready after
6020 			 * several ticks, if write_pending is set.
6021 			 *
6022 			 * It may be deleted, but with this feature tcpdumps
6023 			 * look so _wonderfully_ clever, that I was not able
6024 			 * to stand against the temptation 8)     --ANK
6025 			 */
6026 			inet_csk_schedule_ack(sk);
6027 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6028 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6029 						  TCP_DELACK_MAX, TCP_RTO_MAX);
6030 
6031 discard:
6032 			tcp_drop(sk, skb);
6033 			return 0;
6034 		} else {
6035 			tcp_send_ack(sk);
6036 		}
6037 		return -1;
6038 	}
6039 
6040 	/* No ACK in the segment */
6041 
6042 	if (th->rst) {
6043 		/* rfc793:
6044 		 * "If the RST bit is set
6045 		 *
6046 		 *      Otherwise (no ACK) drop the segment and return."
6047 		 */
6048 
6049 		goto discard_and_undo;
6050 	}
6051 
6052 	/* PAWS check. */
6053 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6054 	    tcp_paws_reject(&tp->rx_opt, 0))
6055 		goto discard_and_undo;
6056 
6057 	if (th->syn) {
6058 		/* We see SYN without ACK. It is attempt of
6059 		 * simultaneous connect with crossed SYNs.
6060 		 * Particularly, it can be connect to self.
6061 		 */
6062 		tcp_set_state(sk, TCP_SYN_RECV);
6063 
6064 		if (tp->rx_opt.saw_tstamp) {
6065 			tp->rx_opt.tstamp_ok = 1;
6066 			tcp_store_ts_recent(tp);
6067 			tp->tcp_header_len =
6068 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6069 		} else {
6070 			tp->tcp_header_len = sizeof(struct tcphdr);
6071 		}
6072 
6073 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6074 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6075 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6076 
6077 		/* RFC1323: The window in SYN & SYN/ACK segments is
6078 		 * never scaled.
6079 		 */
6080 		tp->snd_wnd    = ntohs(th->window);
6081 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6082 		tp->max_window = tp->snd_wnd;
6083 
6084 		tcp_ecn_rcv_syn(tp, th);
6085 
6086 		tcp_mtup_init(sk);
6087 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6088 		tcp_initialize_rcv_mss(sk);
6089 
6090 		tcp_send_synack(sk);
6091 #if 0
6092 		/* Note, we could accept data and URG from this segment.
6093 		 * There are no obstacles to make this (except that we must
6094 		 * either change tcp_recvmsg() to prevent it from returning data
6095 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6096 		 *
6097 		 * However, if we ignore data in ACKless segments sometimes,
6098 		 * we have no reasons to accept it sometimes.
6099 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6100 		 * is not flawless. So, discard packet for sanity.
6101 		 * Uncomment this return to process the data.
6102 		 */
6103 		return -1;
6104 #else
6105 		goto discard;
6106 #endif
6107 	}
6108 	/* "fifth, if neither of the SYN or RST bits is set then
6109 	 * drop the segment and return."
6110 	 */
6111 
6112 discard_and_undo:
6113 	tcp_clear_options(&tp->rx_opt);
6114 	tp->rx_opt.mss_clamp = saved_clamp;
6115 	goto discard;
6116 
6117 reset_and_undo:
6118 	tcp_clear_options(&tp->rx_opt);
6119 	tp->rx_opt.mss_clamp = saved_clamp;
6120 	return 1;
6121 }
6122 
6123 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6124 {
6125 	struct request_sock *req;
6126 
6127 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6128 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6129 	 */
6130 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
6131 		tcp_try_undo_loss(sk, false);
6132 
6133 	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6134 	tcp_sk(sk)->retrans_stamp = 0;
6135 	inet_csk(sk)->icsk_retransmits = 0;
6136 
6137 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6138 	 * we no longer need req so release it.
6139 	 */
6140 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6141 					lockdep_sock_is_held(sk));
6142 	reqsk_fastopen_remove(sk, req, false);
6143 
6144 	/* Re-arm the timer because data may have been sent out.
6145 	 * This is similar to the regular data transmission case
6146 	 * when new data has just been ack'ed.
6147 	 *
6148 	 * (TFO) - we could try to be more aggressive and
6149 	 * retransmitting any data sooner based on when they
6150 	 * are sent out.
6151 	 */
6152 	tcp_rearm_rto(sk);
6153 }
6154 
6155 /*
6156  *	This function implements the receiving procedure of RFC 793 for
6157  *	all states except ESTABLISHED and TIME_WAIT.
6158  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6159  *	address independent.
6160  */
6161 
6162 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6163 {
6164 	struct tcp_sock *tp = tcp_sk(sk);
6165 	struct inet_connection_sock *icsk = inet_csk(sk);
6166 	const struct tcphdr *th = tcp_hdr(skb);
6167 	struct request_sock *req;
6168 	int queued = 0;
6169 	bool acceptable;
6170 
6171 	switch (sk->sk_state) {
6172 	case TCP_CLOSE:
6173 		goto discard;
6174 
6175 	case TCP_LISTEN:
6176 		if (th->ack)
6177 			return 1;
6178 
6179 		if (th->rst)
6180 			goto discard;
6181 
6182 		if (th->syn) {
6183 			if (th->fin)
6184 				goto discard;
6185 			/* It is possible that we process SYN packets from backlog,
6186 			 * so we need to make sure to disable BH and RCU right there.
6187 			 */
6188 			rcu_read_lock();
6189 			local_bh_disable();
6190 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6191 			local_bh_enable();
6192 			rcu_read_unlock();
6193 
6194 			if (!acceptable)
6195 				return 1;
6196 			consume_skb(skb);
6197 			return 0;
6198 		}
6199 		goto discard;
6200 
6201 	case TCP_SYN_SENT:
6202 		tp->rx_opt.saw_tstamp = 0;
6203 		tcp_mstamp_refresh(tp);
6204 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6205 		if (queued >= 0)
6206 			return queued;
6207 
6208 		/* Do step6 onward by hand. */
6209 		tcp_urg(sk, skb, th);
6210 		__kfree_skb(skb);
6211 		tcp_data_snd_check(sk);
6212 		return 0;
6213 	}
6214 
6215 	tcp_mstamp_refresh(tp);
6216 	tp->rx_opt.saw_tstamp = 0;
6217 	req = rcu_dereference_protected(tp->fastopen_rsk,
6218 					lockdep_sock_is_held(sk));
6219 	if (req) {
6220 		bool req_stolen;
6221 
6222 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6223 		    sk->sk_state != TCP_FIN_WAIT1);
6224 
6225 		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6226 			goto discard;
6227 	}
6228 
6229 	if (!th->ack && !th->rst && !th->syn)
6230 		goto discard;
6231 
6232 	if (!tcp_validate_incoming(sk, skb, th, 0))
6233 		return 0;
6234 
6235 	/* step 5: check the ACK field */
6236 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6237 				      FLAG_UPDATE_TS_RECENT |
6238 				      FLAG_NO_CHALLENGE_ACK) > 0;
6239 
6240 	if (!acceptable) {
6241 		if (sk->sk_state == TCP_SYN_RECV)
6242 			return 1;	/* send one RST */
6243 		tcp_send_challenge_ack(sk, skb);
6244 		goto discard;
6245 	}
6246 	switch (sk->sk_state) {
6247 	case TCP_SYN_RECV:
6248 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6249 		if (!tp->srtt_us)
6250 			tcp_synack_rtt_meas(sk, req);
6251 
6252 		if (req) {
6253 			tcp_rcv_synrecv_state_fastopen(sk);
6254 		} else {
6255 			tcp_try_undo_spurious_syn(sk);
6256 			tp->retrans_stamp = 0;
6257 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
6258 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6259 		}
6260 		smp_mb();
6261 		tcp_set_state(sk, TCP_ESTABLISHED);
6262 		sk->sk_state_change(sk);
6263 
6264 		/* Note, that this wakeup is only for marginal crossed SYN case.
6265 		 * Passively open sockets are not waked up, because
6266 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6267 		 */
6268 		if (sk->sk_socket)
6269 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6270 
6271 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6272 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6273 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6274 
6275 		if (tp->rx_opt.tstamp_ok)
6276 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6277 
6278 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6279 			tcp_update_pacing_rate(sk);
6280 
6281 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6282 		tp->lsndtime = tcp_jiffies32;
6283 
6284 		tcp_initialize_rcv_mss(sk);
6285 		tcp_fast_path_on(tp);
6286 		break;
6287 
6288 	case TCP_FIN_WAIT1: {
6289 		int tmo;
6290 
6291 		if (req)
6292 			tcp_rcv_synrecv_state_fastopen(sk);
6293 
6294 		if (tp->snd_una != tp->write_seq)
6295 			break;
6296 
6297 		tcp_set_state(sk, TCP_FIN_WAIT2);
6298 		sk->sk_shutdown |= SEND_SHUTDOWN;
6299 
6300 		sk_dst_confirm(sk);
6301 
6302 		if (!sock_flag(sk, SOCK_DEAD)) {
6303 			/* Wake up lingering close() */
6304 			sk->sk_state_change(sk);
6305 			break;
6306 		}
6307 
6308 		if (tp->linger2 < 0) {
6309 			tcp_done(sk);
6310 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6311 			return 1;
6312 		}
6313 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6314 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6315 			/* Receive out of order FIN after close() */
6316 			if (tp->syn_fastopen && th->fin)
6317 				tcp_fastopen_active_disable(sk);
6318 			tcp_done(sk);
6319 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6320 			return 1;
6321 		}
6322 
6323 		tmo = tcp_fin_time(sk);
6324 		if (tmo > TCP_TIMEWAIT_LEN) {
6325 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6326 		} else if (th->fin || sock_owned_by_user(sk)) {
6327 			/* Bad case. We could lose such FIN otherwise.
6328 			 * It is not a big problem, but it looks confusing
6329 			 * and not so rare event. We still can lose it now,
6330 			 * if it spins in bh_lock_sock(), but it is really
6331 			 * marginal case.
6332 			 */
6333 			inet_csk_reset_keepalive_timer(sk, tmo);
6334 		} else {
6335 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6336 			goto discard;
6337 		}
6338 		break;
6339 	}
6340 
6341 	case TCP_CLOSING:
6342 		if (tp->snd_una == tp->write_seq) {
6343 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6344 			goto discard;
6345 		}
6346 		break;
6347 
6348 	case TCP_LAST_ACK:
6349 		if (tp->snd_una == tp->write_seq) {
6350 			tcp_update_metrics(sk);
6351 			tcp_done(sk);
6352 			goto discard;
6353 		}
6354 		break;
6355 	}
6356 
6357 	/* step 6: check the URG bit */
6358 	tcp_urg(sk, skb, th);
6359 
6360 	/* step 7: process the segment text */
6361 	switch (sk->sk_state) {
6362 	case TCP_CLOSE_WAIT:
6363 	case TCP_CLOSING:
6364 	case TCP_LAST_ACK:
6365 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6366 			if (sk_is_mptcp(sk))
6367 				mptcp_incoming_options(sk, skb, &tp->rx_opt);
6368 			break;
6369 		}
6370 		fallthrough;
6371 	case TCP_FIN_WAIT1:
6372 	case TCP_FIN_WAIT2:
6373 		/* RFC 793 says to queue data in these states,
6374 		 * RFC 1122 says we MUST send a reset.
6375 		 * BSD 4.4 also does reset.
6376 		 */
6377 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6378 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6379 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6380 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6381 				tcp_reset(sk);
6382 				return 1;
6383 			}
6384 		}
6385 		fallthrough;
6386 	case TCP_ESTABLISHED:
6387 		tcp_data_queue(sk, skb);
6388 		queued = 1;
6389 		break;
6390 	}
6391 
6392 	/* tcp_data could move socket to TIME-WAIT */
6393 	if (sk->sk_state != TCP_CLOSE) {
6394 		tcp_data_snd_check(sk);
6395 		tcp_ack_snd_check(sk);
6396 	}
6397 
6398 	if (!queued) {
6399 discard:
6400 		tcp_drop(sk, skb);
6401 	}
6402 	return 0;
6403 }
6404 EXPORT_SYMBOL(tcp_rcv_state_process);
6405 
6406 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6407 {
6408 	struct inet_request_sock *ireq = inet_rsk(req);
6409 
6410 	if (family == AF_INET)
6411 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6412 				    &ireq->ir_rmt_addr, port);
6413 #if IS_ENABLED(CONFIG_IPV6)
6414 	else if (family == AF_INET6)
6415 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6416 				    &ireq->ir_v6_rmt_addr, port);
6417 #endif
6418 }
6419 
6420 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6421  *
6422  * If we receive a SYN packet with these bits set, it means a
6423  * network is playing bad games with TOS bits. In order to
6424  * avoid possible false congestion notifications, we disable
6425  * TCP ECN negotiation.
6426  *
6427  * Exception: tcp_ca wants ECN. This is required for DCTCP
6428  * congestion control: Linux DCTCP asserts ECT on all packets,
6429  * including SYN, which is most optimal solution; however,
6430  * others, such as FreeBSD do not.
6431  *
6432  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6433  * set, indicating the use of a future TCP extension (such as AccECN). See
6434  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6435  * extensions.
6436  */
6437 static void tcp_ecn_create_request(struct request_sock *req,
6438 				   const struct sk_buff *skb,
6439 				   const struct sock *listen_sk,
6440 				   const struct dst_entry *dst)
6441 {
6442 	const struct tcphdr *th = tcp_hdr(skb);
6443 	const struct net *net = sock_net(listen_sk);
6444 	bool th_ecn = th->ece && th->cwr;
6445 	bool ect, ecn_ok;
6446 	u32 ecn_ok_dst;
6447 
6448 	if (!th_ecn)
6449 		return;
6450 
6451 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6452 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6453 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6454 
6455 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6456 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6457 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6458 		inet_rsk(req)->ecn_ok = 1;
6459 }
6460 
6461 static void tcp_openreq_init(struct request_sock *req,
6462 			     const struct tcp_options_received *rx_opt,
6463 			     struct sk_buff *skb, const struct sock *sk)
6464 {
6465 	struct inet_request_sock *ireq = inet_rsk(req);
6466 
6467 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6468 	req->cookie_ts = 0;
6469 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6470 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6471 	tcp_rsk(req)->snt_synack = 0;
6472 	tcp_rsk(req)->last_oow_ack_time = 0;
6473 	req->mss = rx_opt->mss_clamp;
6474 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6475 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6476 	ireq->sack_ok = rx_opt->sack_ok;
6477 	ireq->snd_wscale = rx_opt->snd_wscale;
6478 	ireq->wscale_ok = rx_opt->wscale_ok;
6479 	ireq->acked = 0;
6480 	ireq->ecn_ok = 0;
6481 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6482 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6483 	ireq->ir_mark = inet_request_mark(sk, skb);
6484 #if IS_ENABLED(CONFIG_SMC)
6485 	ireq->smc_ok = rx_opt->smc_ok;
6486 #endif
6487 }
6488 
6489 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6490 				      struct sock *sk_listener,
6491 				      bool attach_listener)
6492 {
6493 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6494 					       attach_listener);
6495 
6496 	if (req) {
6497 		struct inet_request_sock *ireq = inet_rsk(req);
6498 
6499 		ireq->ireq_opt = NULL;
6500 #if IS_ENABLED(CONFIG_IPV6)
6501 		ireq->pktopts = NULL;
6502 #endif
6503 		atomic64_set(&ireq->ir_cookie, 0);
6504 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6505 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6506 		ireq->ireq_family = sk_listener->sk_family;
6507 	}
6508 
6509 	return req;
6510 }
6511 EXPORT_SYMBOL(inet_reqsk_alloc);
6512 
6513 /*
6514  * Return true if a syncookie should be sent
6515  */
6516 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6517 {
6518 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6519 	const char *msg = "Dropping request";
6520 	bool want_cookie = false;
6521 	struct net *net = sock_net(sk);
6522 
6523 #ifdef CONFIG_SYN_COOKIES
6524 	if (net->ipv4.sysctl_tcp_syncookies) {
6525 		msg = "Sending cookies";
6526 		want_cookie = true;
6527 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6528 	} else
6529 #endif
6530 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6531 
6532 	if (!queue->synflood_warned &&
6533 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6534 	    xchg(&queue->synflood_warned, 1) == 0)
6535 		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6536 				     proto, sk->sk_num, msg);
6537 
6538 	return want_cookie;
6539 }
6540 
6541 static void tcp_reqsk_record_syn(const struct sock *sk,
6542 				 struct request_sock *req,
6543 				 const struct sk_buff *skb)
6544 {
6545 	if (tcp_sk(sk)->save_syn) {
6546 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6547 		u32 *copy;
6548 
6549 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6550 		if (copy) {
6551 			copy[0] = len;
6552 			memcpy(&copy[1], skb_network_header(skb), len);
6553 			req->saved_syn = copy;
6554 		}
6555 	}
6556 }
6557 
6558 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6559  * used for SYN cookie generation.
6560  */
6561 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6562 			  const struct tcp_request_sock_ops *af_ops,
6563 			  struct sock *sk, struct tcphdr *th)
6564 {
6565 	struct tcp_sock *tp = tcp_sk(sk);
6566 	u16 mss;
6567 
6568 	if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 &&
6569 	    !inet_csk_reqsk_queue_is_full(sk))
6570 		return 0;
6571 
6572 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6573 		return 0;
6574 
6575 	if (sk_acceptq_is_full(sk)) {
6576 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6577 		return 0;
6578 	}
6579 
6580 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6581 	if (!mss)
6582 		mss = af_ops->mss_clamp;
6583 
6584 	return mss;
6585 }
6586 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6587 
6588 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6589 		     const struct tcp_request_sock_ops *af_ops,
6590 		     struct sock *sk, struct sk_buff *skb)
6591 {
6592 	struct tcp_fastopen_cookie foc = { .len = -1 };
6593 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6594 	struct tcp_options_received tmp_opt;
6595 	struct tcp_sock *tp = tcp_sk(sk);
6596 	struct net *net = sock_net(sk);
6597 	struct sock *fastopen_sk = NULL;
6598 	struct request_sock *req;
6599 	bool want_cookie = false;
6600 	struct dst_entry *dst;
6601 	struct flowi fl;
6602 
6603 	/* TW buckets are converted to open requests without
6604 	 * limitations, they conserve resources and peer is
6605 	 * evidently real one.
6606 	 */
6607 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6608 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6609 		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6610 		if (!want_cookie)
6611 			goto drop;
6612 	}
6613 
6614 	if (sk_acceptq_is_full(sk)) {
6615 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6616 		goto drop;
6617 	}
6618 
6619 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6620 	if (!req)
6621 		goto drop;
6622 
6623 	tcp_rsk(req)->af_specific = af_ops;
6624 	tcp_rsk(req)->ts_off = 0;
6625 #if IS_ENABLED(CONFIG_MPTCP)
6626 	tcp_rsk(req)->is_mptcp = 0;
6627 #endif
6628 
6629 	tcp_clear_options(&tmp_opt);
6630 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6631 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6632 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6633 			  want_cookie ? NULL : &foc);
6634 
6635 	if (want_cookie && !tmp_opt.saw_tstamp)
6636 		tcp_clear_options(&tmp_opt);
6637 
6638 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6639 		tmp_opt.smc_ok = 0;
6640 
6641 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6642 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6643 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6644 
6645 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6646 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6647 
6648 	af_ops->init_req(req, sk, skb);
6649 
6650 	if (IS_ENABLED(CONFIG_MPTCP) && want_cookie)
6651 		tcp_rsk(req)->is_mptcp = 0;
6652 
6653 	if (security_inet_conn_request(sk, skb, req))
6654 		goto drop_and_free;
6655 
6656 	if (tmp_opt.tstamp_ok)
6657 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6658 
6659 	dst = af_ops->route_req(sk, &fl, req);
6660 	if (!dst)
6661 		goto drop_and_free;
6662 
6663 	if (!want_cookie && !isn) {
6664 		/* Kill the following clause, if you dislike this way. */
6665 		if (!net->ipv4.sysctl_tcp_syncookies &&
6666 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6667 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6668 		    !tcp_peer_is_proven(req, dst)) {
6669 			/* Without syncookies last quarter of
6670 			 * backlog is filled with destinations,
6671 			 * proven to be alive.
6672 			 * It means that we continue to communicate
6673 			 * to destinations, already remembered
6674 			 * to the moment of synflood.
6675 			 */
6676 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6677 				    rsk_ops->family);
6678 			goto drop_and_release;
6679 		}
6680 
6681 		isn = af_ops->init_seq(skb);
6682 	}
6683 
6684 	tcp_ecn_create_request(req, skb, sk, dst);
6685 
6686 	if (want_cookie) {
6687 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6688 		req->cookie_ts = tmp_opt.tstamp_ok;
6689 		if (!tmp_opt.tstamp_ok)
6690 			inet_rsk(req)->ecn_ok = 0;
6691 	}
6692 
6693 	tcp_rsk(req)->snt_isn = isn;
6694 	tcp_rsk(req)->txhash = net_tx_rndhash();
6695 	tcp_openreq_init_rwin(req, sk, dst);
6696 	sk_rx_queue_set(req_to_sk(req), skb);
6697 	if (!want_cookie) {
6698 		tcp_reqsk_record_syn(sk, req, skb);
6699 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6700 	}
6701 	if (fastopen_sk) {
6702 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6703 				    &foc, TCP_SYNACK_FASTOPEN);
6704 		/* Add the child socket directly into the accept queue */
6705 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6706 			reqsk_fastopen_remove(fastopen_sk, req, false);
6707 			bh_unlock_sock(fastopen_sk);
6708 			sock_put(fastopen_sk);
6709 			goto drop_and_free;
6710 		}
6711 		sk->sk_data_ready(sk);
6712 		bh_unlock_sock(fastopen_sk);
6713 		sock_put(fastopen_sk);
6714 	} else {
6715 		tcp_rsk(req)->tfo_listener = false;
6716 		if (!want_cookie)
6717 			inet_csk_reqsk_queue_hash_add(sk, req,
6718 				tcp_timeout_init((struct sock *)req));
6719 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6720 				    !want_cookie ? TCP_SYNACK_NORMAL :
6721 						   TCP_SYNACK_COOKIE);
6722 		if (want_cookie) {
6723 			reqsk_free(req);
6724 			return 0;
6725 		}
6726 	}
6727 	reqsk_put(req);
6728 	return 0;
6729 
6730 drop_and_release:
6731 	dst_release(dst);
6732 drop_and_free:
6733 	__reqsk_free(req);
6734 drop:
6735 	tcp_listendrop(sk);
6736 	return 0;
6737 }
6738 EXPORT_SYMBOL(tcp_conn_request);
6739