1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #define pr_fmt(fmt) "TCP: " fmt 65 66 #include <linux/mm.h> 67 #include <linux/slab.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <linux/kernel.h> 71 #include <linux/prefetch.h> 72 #include <net/dst.h> 73 #include <net/tcp.h> 74 #include <net/inet_common.h> 75 #include <linux/ipsec.h> 76 #include <asm/unaligned.h> 77 #include <linux/errqueue.h> 78 79 int sysctl_tcp_timestamps __read_mostly = 1; 80 int sysctl_tcp_window_scaling __read_mostly = 1; 81 int sysctl_tcp_sack __read_mostly = 1; 82 int sysctl_tcp_fack __read_mostly = 1; 83 int sysctl_tcp_max_reordering __read_mostly = 300; 84 int sysctl_tcp_dsack __read_mostly = 1; 85 int sysctl_tcp_app_win __read_mostly = 31; 86 int sysctl_tcp_adv_win_scale __read_mostly = 1; 87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 88 EXPORT_SYMBOL(sysctl_tcp_timestamps); 89 90 /* rfc5961 challenge ack rate limiting */ 91 int sysctl_tcp_challenge_ack_limit = 1000; 92 93 int sysctl_tcp_stdurg __read_mostly; 94 int sysctl_tcp_rfc1337 __read_mostly; 95 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 96 int sysctl_tcp_frto __read_mostly = 2; 97 int sysctl_tcp_min_rtt_wlen __read_mostly = 300; 98 99 int sysctl_tcp_thin_dupack __read_mostly; 100 101 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 102 int sysctl_tcp_early_retrans __read_mostly = 3; 103 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2; 104 105 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 106 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 107 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 108 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 109 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 110 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 111 #define FLAG_ECE 0x40 /* ECE in this ACK */ 112 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 113 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 114 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 115 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 116 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 117 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 118 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 119 120 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 121 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 122 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 123 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 124 125 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 126 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 127 128 #define REXMIT_NONE 0 /* no loss recovery to do */ 129 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 130 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 131 132 /* Adapt the MSS value used to make delayed ack decision to the 133 * real world. 134 */ 135 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 136 { 137 struct inet_connection_sock *icsk = inet_csk(sk); 138 const unsigned int lss = icsk->icsk_ack.last_seg_size; 139 unsigned int len; 140 141 icsk->icsk_ack.last_seg_size = 0; 142 143 /* skb->len may jitter because of SACKs, even if peer 144 * sends good full-sized frames. 145 */ 146 len = skb_shinfo(skb)->gso_size ? : skb->len; 147 if (len >= icsk->icsk_ack.rcv_mss) { 148 icsk->icsk_ack.rcv_mss = len; 149 } else { 150 /* Otherwise, we make more careful check taking into account, 151 * that SACKs block is variable. 152 * 153 * "len" is invariant segment length, including TCP header. 154 */ 155 len += skb->data - skb_transport_header(skb); 156 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 157 /* If PSH is not set, packet should be 158 * full sized, provided peer TCP is not badly broken. 159 * This observation (if it is correct 8)) allows 160 * to handle super-low mtu links fairly. 161 */ 162 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 163 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 164 /* Subtract also invariant (if peer is RFC compliant), 165 * tcp header plus fixed timestamp option length. 166 * Resulting "len" is MSS free of SACK jitter. 167 */ 168 len -= tcp_sk(sk)->tcp_header_len; 169 icsk->icsk_ack.last_seg_size = len; 170 if (len == lss) { 171 icsk->icsk_ack.rcv_mss = len; 172 return; 173 } 174 } 175 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 176 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 177 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 178 } 179 } 180 181 static void tcp_incr_quickack(struct sock *sk) 182 { 183 struct inet_connection_sock *icsk = inet_csk(sk); 184 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 185 186 if (quickacks == 0) 187 quickacks = 2; 188 if (quickacks > icsk->icsk_ack.quick) 189 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 190 } 191 192 static void tcp_enter_quickack_mode(struct sock *sk) 193 { 194 struct inet_connection_sock *icsk = inet_csk(sk); 195 tcp_incr_quickack(sk); 196 icsk->icsk_ack.pingpong = 0; 197 icsk->icsk_ack.ato = TCP_ATO_MIN; 198 } 199 200 /* Send ACKs quickly, if "quick" count is not exhausted 201 * and the session is not interactive. 202 */ 203 204 static bool tcp_in_quickack_mode(struct sock *sk) 205 { 206 const struct inet_connection_sock *icsk = inet_csk(sk); 207 const struct dst_entry *dst = __sk_dst_get(sk); 208 209 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 210 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong); 211 } 212 213 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 214 { 215 if (tp->ecn_flags & TCP_ECN_OK) 216 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 217 } 218 219 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 220 { 221 if (tcp_hdr(skb)->cwr) 222 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 223 } 224 225 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 226 { 227 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 228 } 229 230 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 231 { 232 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 233 case INET_ECN_NOT_ECT: 234 /* Funny extension: if ECT is not set on a segment, 235 * and we already seen ECT on a previous segment, 236 * it is probably a retransmit. 237 */ 238 if (tp->ecn_flags & TCP_ECN_SEEN) 239 tcp_enter_quickack_mode((struct sock *)tp); 240 break; 241 case INET_ECN_CE: 242 if (tcp_ca_needs_ecn((struct sock *)tp)) 243 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE); 244 245 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 246 /* Better not delay acks, sender can have a very low cwnd */ 247 tcp_enter_quickack_mode((struct sock *)tp); 248 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 249 } 250 tp->ecn_flags |= TCP_ECN_SEEN; 251 break; 252 default: 253 if (tcp_ca_needs_ecn((struct sock *)tp)) 254 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE); 255 tp->ecn_flags |= TCP_ECN_SEEN; 256 break; 257 } 258 } 259 260 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 261 { 262 if (tp->ecn_flags & TCP_ECN_OK) 263 __tcp_ecn_check_ce(tp, skb); 264 } 265 266 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 267 { 268 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 269 tp->ecn_flags &= ~TCP_ECN_OK; 270 } 271 272 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 273 { 274 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 275 tp->ecn_flags &= ~TCP_ECN_OK; 276 } 277 278 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 279 { 280 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 281 return true; 282 return false; 283 } 284 285 /* Buffer size and advertised window tuning. 286 * 287 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 288 */ 289 290 static void tcp_sndbuf_expand(struct sock *sk) 291 { 292 const struct tcp_sock *tp = tcp_sk(sk); 293 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 294 int sndmem, per_mss; 295 u32 nr_segs; 296 297 /* Worst case is non GSO/TSO : each frame consumes one skb 298 * and skb->head is kmalloced using power of two area of memory 299 */ 300 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 301 MAX_TCP_HEADER + 302 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 303 304 per_mss = roundup_pow_of_two(per_mss) + 305 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 306 307 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 308 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 309 310 /* Fast Recovery (RFC 5681 3.2) : 311 * Cubic needs 1.7 factor, rounded to 2 to include 312 * extra cushion (application might react slowly to POLLOUT) 313 */ 314 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 315 sndmem *= nr_segs * per_mss; 316 317 if (sk->sk_sndbuf < sndmem) 318 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 319 } 320 321 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 322 * 323 * All tcp_full_space() is split to two parts: "network" buffer, allocated 324 * forward and advertised in receiver window (tp->rcv_wnd) and 325 * "application buffer", required to isolate scheduling/application 326 * latencies from network. 327 * window_clamp is maximal advertised window. It can be less than 328 * tcp_full_space(), in this case tcp_full_space() - window_clamp 329 * is reserved for "application" buffer. The less window_clamp is 330 * the smoother our behaviour from viewpoint of network, but the lower 331 * throughput and the higher sensitivity of the connection to losses. 8) 332 * 333 * rcv_ssthresh is more strict window_clamp used at "slow start" 334 * phase to predict further behaviour of this connection. 335 * It is used for two goals: 336 * - to enforce header prediction at sender, even when application 337 * requires some significant "application buffer". It is check #1. 338 * - to prevent pruning of receive queue because of misprediction 339 * of receiver window. Check #2. 340 * 341 * The scheme does not work when sender sends good segments opening 342 * window and then starts to feed us spaghetti. But it should work 343 * in common situations. Otherwise, we have to rely on queue collapsing. 344 */ 345 346 /* Slow part of check#2. */ 347 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 348 { 349 struct tcp_sock *tp = tcp_sk(sk); 350 /* Optimize this! */ 351 int truesize = tcp_win_from_space(skb->truesize) >> 1; 352 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 353 354 while (tp->rcv_ssthresh <= window) { 355 if (truesize <= skb->len) 356 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 357 358 truesize >>= 1; 359 window >>= 1; 360 } 361 return 0; 362 } 363 364 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 365 { 366 struct tcp_sock *tp = tcp_sk(sk); 367 368 /* Check #1 */ 369 if (tp->rcv_ssthresh < tp->window_clamp && 370 (int)tp->rcv_ssthresh < tcp_space(sk) && 371 !tcp_under_memory_pressure(sk)) { 372 int incr; 373 374 /* Check #2. Increase window, if skb with such overhead 375 * will fit to rcvbuf in future. 376 */ 377 if (tcp_win_from_space(skb->truesize) <= skb->len) 378 incr = 2 * tp->advmss; 379 else 380 incr = __tcp_grow_window(sk, skb); 381 382 if (incr) { 383 incr = max_t(int, incr, 2 * skb->len); 384 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 385 tp->window_clamp); 386 inet_csk(sk)->icsk_ack.quick |= 1; 387 } 388 } 389 } 390 391 /* 3. Tuning rcvbuf, when connection enters established state. */ 392 static void tcp_fixup_rcvbuf(struct sock *sk) 393 { 394 u32 mss = tcp_sk(sk)->advmss; 395 int rcvmem; 396 397 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 398 tcp_default_init_rwnd(mss); 399 400 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 401 * Allow enough cushion so that sender is not limited by our window 402 */ 403 if (sysctl_tcp_moderate_rcvbuf) 404 rcvmem <<= 2; 405 406 if (sk->sk_rcvbuf < rcvmem) 407 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); 408 } 409 410 /* 4. Try to fixup all. It is made immediately after connection enters 411 * established state. 412 */ 413 void tcp_init_buffer_space(struct sock *sk) 414 { 415 struct tcp_sock *tp = tcp_sk(sk); 416 int maxwin; 417 418 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 419 tcp_fixup_rcvbuf(sk); 420 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 421 tcp_sndbuf_expand(sk); 422 423 tp->rcvq_space.space = tp->rcv_wnd; 424 tp->rcvq_space.time = tcp_time_stamp; 425 tp->rcvq_space.seq = tp->copied_seq; 426 427 maxwin = tcp_full_space(sk); 428 429 if (tp->window_clamp >= maxwin) { 430 tp->window_clamp = maxwin; 431 432 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 433 tp->window_clamp = max(maxwin - 434 (maxwin >> sysctl_tcp_app_win), 435 4 * tp->advmss); 436 } 437 438 /* Force reservation of one segment. */ 439 if (sysctl_tcp_app_win && 440 tp->window_clamp > 2 * tp->advmss && 441 tp->window_clamp + tp->advmss > maxwin) 442 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 443 444 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 445 tp->snd_cwnd_stamp = tcp_time_stamp; 446 } 447 448 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 449 static void tcp_clamp_window(struct sock *sk) 450 { 451 struct tcp_sock *tp = tcp_sk(sk); 452 struct inet_connection_sock *icsk = inet_csk(sk); 453 454 icsk->icsk_ack.quick = 0; 455 456 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 457 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 458 !tcp_under_memory_pressure(sk) && 459 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 460 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 461 sysctl_tcp_rmem[2]); 462 } 463 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 464 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 465 } 466 467 /* Initialize RCV_MSS value. 468 * RCV_MSS is an our guess about MSS used by the peer. 469 * We haven't any direct information about the MSS. 470 * It's better to underestimate the RCV_MSS rather than overestimate. 471 * Overestimations make us ACKing less frequently than needed. 472 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 473 */ 474 void tcp_initialize_rcv_mss(struct sock *sk) 475 { 476 const struct tcp_sock *tp = tcp_sk(sk); 477 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 478 479 hint = min(hint, tp->rcv_wnd / 2); 480 hint = min(hint, TCP_MSS_DEFAULT); 481 hint = max(hint, TCP_MIN_MSS); 482 483 inet_csk(sk)->icsk_ack.rcv_mss = hint; 484 } 485 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 486 487 /* Receiver "autotuning" code. 488 * 489 * The algorithm for RTT estimation w/o timestamps is based on 490 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 491 * <http://public.lanl.gov/radiant/pubs.html#DRS> 492 * 493 * More detail on this code can be found at 494 * <http://staff.psc.edu/jheffner/>, 495 * though this reference is out of date. A new paper 496 * is pending. 497 */ 498 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 499 { 500 u32 new_sample = tp->rcv_rtt_est.rtt; 501 long m = sample; 502 503 if (m == 0) 504 m = 1; 505 506 if (new_sample != 0) { 507 /* If we sample in larger samples in the non-timestamp 508 * case, we could grossly overestimate the RTT especially 509 * with chatty applications or bulk transfer apps which 510 * are stalled on filesystem I/O. 511 * 512 * Also, since we are only going for a minimum in the 513 * non-timestamp case, we do not smooth things out 514 * else with timestamps disabled convergence takes too 515 * long. 516 */ 517 if (!win_dep) { 518 m -= (new_sample >> 3); 519 new_sample += m; 520 } else { 521 m <<= 3; 522 if (m < new_sample) 523 new_sample = m; 524 } 525 } else { 526 /* No previous measure. */ 527 new_sample = m << 3; 528 } 529 530 if (tp->rcv_rtt_est.rtt != new_sample) 531 tp->rcv_rtt_est.rtt = new_sample; 532 } 533 534 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 535 { 536 if (tp->rcv_rtt_est.time == 0) 537 goto new_measure; 538 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 539 return; 540 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1); 541 542 new_measure: 543 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 544 tp->rcv_rtt_est.time = tcp_time_stamp; 545 } 546 547 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 548 const struct sk_buff *skb) 549 { 550 struct tcp_sock *tp = tcp_sk(sk); 551 if (tp->rx_opt.rcv_tsecr && 552 (TCP_SKB_CB(skb)->end_seq - 553 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 554 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 555 } 556 557 /* 558 * This function should be called every time data is copied to user space. 559 * It calculates the appropriate TCP receive buffer space. 560 */ 561 void tcp_rcv_space_adjust(struct sock *sk) 562 { 563 struct tcp_sock *tp = tcp_sk(sk); 564 int time; 565 int copied; 566 567 time = tcp_time_stamp - tp->rcvq_space.time; 568 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 569 return; 570 571 /* Number of bytes copied to user in last RTT */ 572 copied = tp->copied_seq - tp->rcvq_space.seq; 573 if (copied <= tp->rcvq_space.space) 574 goto new_measure; 575 576 /* A bit of theory : 577 * copied = bytes received in previous RTT, our base window 578 * To cope with packet losses, we need a 2x factor 579 * To cope with slow start, and sender growing its cwin by 100 % 580 * every RTT, we need a 4x factor, because the ACK we are sending 581 * now is for the next RTT, not the current one : 582 * <prev RTT . ><current RTT .. ><next RTT .... > 583 */ 584 585 if (sysctl_tcp_moderate_rcvbuf && 586 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 587 int rcvwin, rcvmem, rcvbuf; 588 589 /* minimal window to cope with packet losses, assuming 590 * steady state. Add some cushion because of small variations. 591 */ 592 rcvwin = (copied << 1) + 16 * tp->advmss; 593 594 /* If rate increased by 25%, 595 * assume slow start, rcvwin = 3 * copied 596 * If rate increased by 50%, 597 * assume sender can use 2x growth, rcvwin = 4 * copied 598 */ 599 if (copied >= 600 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) { 601 if (copied >= 602 tp->rcvq_space.space + (tp->rcvq_space.space >> 1)) 603 rcvwin <<= 1; 604 else 605 rcvwin += (rcvwin >> 1); 606 } 607 608 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 609 while (tcp_win_from_space(rcvmem) < tp->advmss) 610 rcvmem += 128; 611 612 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]); 613 if (rcvbuf > sk->sk_rcvbuf) { 614 sk->sk_rcvbuf = rcvbuf; 615 616 /* Make the window clamp follow along. */ 617 tp->window_clamp = rcvwin; 618 } 619 } 620 tp->rcvq_space.space = copied; 621 622 new_measure: 623 tp->rcvq_space.seq = tp->copied_seq; 624 tp->rcvq_space.time = tcp_time_stamp; 625 } 626 627 /* There is something which you must keep in mind when you analyze the 628 * behavior of the tp->ato delayed ack timeout interval. When a 629 * connection starts up, we want to ack as quickly as possible. The 630 * problem is that "good" TCP's do slow start at the beginning of data 631 * transmission. The means that until we send the first few ACK's the 632 * sender will sit on his end and only queue most of his data, because 633 * he can only send snd_cwnd unacked packets at any given time. For 634 * each ACK we send, he increments snd_cwnd and transmits more of his 635 * queue. -DaveM 636 */ 637 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 638 { 639 struct tcp_sock *tp = tcp_sk(sk); 640 struct inet_connection_sock *icsk = inet_csk(sk); 641 u32 now; 642 643 inet_csk_schedule_ack(sk); 644 645 tcp_measure_rcv_mss(sk, skb); 646 647 tcp_rcv_rtt_measure(tp); 648 649 now = tcp_time_stamp; 650 651 if (!icsk->icsk_ack.ato) { 652 /* The _first_ data packet received, initialize 653 * delayed ACK engine. 654 */ 655 tcp_incr_quickack(sk); 656 icsk->icsk_ack.ato = TCP_ATO_MIN; 657 } else { 658 int m = now - icsk->icsk_ack.lrcvtime; 659 660 if (m <= TCP_ATO_MIN / 2) { 661 /* The fastest case is the first. */ 662 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 663 } else if (m < icsk->icsk_ack.ato) { 664 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 665 if (icsk->icsk_ack.ato > icsk->icsk_rto) 666 icsk->icsk_ack.ato = icsk->icsk_rto; 667 } else if (m > icsk->icsk_rto) { 668 /* Too long gap. Apparently sender failed to 669 * restart window, so that we send ACKs quickly. 670 */ 671 tcp_incr_quickack(sk); 672 sk_mem_reclaim(sk); 673 } 674 } 675 icsk->icsk_ack.lrcvtime = now; 676 677 tcp_ecn_check_ce(tp, skb); 678 679 if (skb->len >= 128) 680 tcp_grow_window(sk, skb); 681 } 682 683 /* Called to compute a smoothed rtt estimate. The data fed to this 684 * routine either comes from timestamps, or from segments that were 685 * known _not_ to have been retransmitted [see Karn/Partridge 686 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 687 * piece by Van Jacobson. 688 * NOTE: the next three routines used to be one big routine. 689 * To save cycles in the RFC 1323 implementation it was better to break 690 * it up into three procedures. -- erics 691 */ 692 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 693 { 694 struct tcp_sock *tp = tcp_sk(sk); 695 long m = mrtt_us; /* RTT */ 696 u32 srtt = tp->srtt_us; 697 698 /* The following amusing code comes from Jacobson's 699 * article in SIGCOMM '88. Note that rtt and mdev 700 * are scaled versions of rtt and mean deviation. 701 * This is designed to be as fast as possible 702 * m stands for "measurement". 703 * 704 * On a 1990 paper the rto value is changed to: 705 * RTO = rtt + 4 * mdev 706 * 707 * Funny. This algorithm seems to be very broken. 708 * These formulae increase RTO, when it should be decreased, increase 709 * too slowly, when it should be increased quickly, decrease too quickly 710 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 711 * does not matter how to _calculate_ it. Seems, it was trap 712 * that VJ failed to avoid. 8) 713 */ 714 if (srtt != 0) { 715 m -= (srtt >> 3); /* m is now error in rtt est */ 716 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 717 if (m < 0) { 718 m = -m; /* m is now abs(error) */ 719 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 720 /* This is similar to one of Eifel findings. 721 * Eifel blocks mdev updates when rtt decreases. 722 * This solution is a bit different: we use finer gain 723 * for mdev in this case (alpha*beta). 724 * Like Eifel it also prevents growth of rto, 725 * but also it limits too fast rto decreases, 726 * happening in pure Eifel. 727 */ 728 if (m > 0) 729 m >>= 3; 730 } else { 731 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 732 } 733 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 734 if (tp->mdev_us > tp->mdev_max_us) { 735 tp->mdev_max_us = tp->mdev_us; 736 if (tp->mdev_max_us > tp->rttvar_us) 737 tp->rttvar_us = tp->mdev_max_us; 738 } 739 if (after(tp->snd_una, tp->rtt_seq)) { 740 if (tp->mdev_max_us < tp->rttvar_us) 741 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 742 tp->rtt_seq = tp->snd_nxt; 743 tp->mdev_max_us = tcp_rto_min_us(sk); 744 } 745 } else { 746 /* no previous measure. */ 747 srtt = m << 3; /* take the measured time to be rtt */ 748 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 749 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 750 tp->mdev_max_us = tp->rttvar_us; 751 tp->rtt_seq = tp->snd_nxt; 752 } 753 tp->srtt_us = max(1U, srtt); 754 } 755 756 /* Set the sk_pacing_rate to allow proper sizing of TSO packets. 757 * Note: TCP stack does not yet implement pacing. 758 * FQ packet scheduler can be used to implement cheap but effective 759 * TCP pacing, to smooth the burst on large writes when packets 760 * in flight is significantly lower than cwnd (or rwin) 761 */ 762 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200; 763 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120; 764 765 static void tcp_update_pacing_rate(struct sock *sk) 766 { 767 const struct tcp_sock *tp = tcp_sk(sk); 768 u64 rate; 769 770 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 771 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 772 773 /* current rate is (cwnd * mss) / srtt 774 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 775 * In Congestion Avoidance phase, set it to 120 % the current rate. 776 * 777 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 778 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 779 * end of slow start and should slow down. 780 */ 781 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 782 rate *= sysctl_tcp_pacing_ss_ratio; 783 else 784 rate *= sysctl_tcp_pacing_ca_ratio; 785 786 rate *= max(tp->snd_cwnd, tp->packets_out); 787 788 if (likely(tp->srtt_us)) 789 do_div(rate, tp->srtt_us); 790 791 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate 792 * without any lock. We want to make sure compiler wont store 793 * intermediate values in this location. 794 */ 795 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate, 796 sk->sk_max_pacing_rate); 797 } 798 799 /* Calculate rto without backoff. This is the second half of Van Jacobson's 800 * routine referred to above. 801 */ 802 static void tcp_set_rto(struct sock *sk) 803 { 804 const struct tcp_sock *tp = tcp_sk(sk); 805 /* Old crap is replaced with new one. 8) 806 * 807 * More seriously: 808 * 1. If rtt variance happened to be less 50msec, it is hallucination. 809 * It cannot be less due to utterly erratic ACK generation made 810 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 811 * to do with delayed acks, because at cwnd>2 true delack timeout 812 * is invisible. Actually, Linux-2.4 also generates erratic 813 * ACKs in some circumstances. 814 */ 815 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 816 817 /* 2. Fixups made earlier cannot be right. 818 * If we do not estimate RTO correctly without them, 819 * all the algo is pure shit and should be replaced 820 * with correct one. It is exactly, which we pretend to do. 821 */ 822 823 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 824 * guarantees that rto is higher. 825 */ 826 tcp_bound_rto(sk); 827 } 828 829 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 830 { 831 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 832 833 if (!cwnd) 834 cwnd = TCP_INIT_CWND; 835 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 836 } 837 838 /* 839 * Packet counting of FACK is based on in-order assumptions, therefore TCP 840 * disables it when reordering is detected 841 */ 842 void tcp_disable_fack(struct tcp_sock *tp) 843 { 844 /* RFC3517 uses different metric in lost marker => reset on change */ 845 if (tcp_is_fack(tp)) 846 tp->lost_skb_hint = NULL; 847 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; 848 } 849 850 /* Take a notice that peer is sending D-SACKs */ 851 static void tcp_dsack_seen(struct tcp_sock *tp) 852 { 853 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 854 } 855 856 static void tcp_update_reordering(struct sock *sk, const int metric, 857 const int ts) 858 { 859 struct tcp_sock *tp = tcp_sk(sk); 860 if (metric > tp->reordering) { 861 int mib_idx; 862 863 tp->reordering = min(sysctl_tcp_max_reordering, metric); 864 865 /* This exciting event is worth to be remembered. 8) */ 866 if (ts) 867 mib_idx = LINUX_MIB_TCPTSREORDER; 868 else if (tcp_is_reno(tp)) 869 mib_idx = LINUX_MIB_TCPRENOREORDER; 870 else if (tcp_is_fack(tp)) 871 mib_idx = LINUX_MIB_TCPFACKREORDER; 872 else 873 mib_idx = LINUX_MIB_TCPSACKREORDER; 874 875 NET_INC_STATS(sock_net(sk), mib_idx); 876 #if FASTRETRANS_DEBUG > 1 877 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 878 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 879 tp->reordering, 880 tp->fackets_out, 881 tp->sacked_out, 882 tp->undo_marker ? tp->undo_retrans : 0); 883 #endif 884 tcp_disable_fack(tp); 885 } 886 887 if (metric > 0) 888 tcp_disable_early_retrans(tp); 889 tp->rack.reord = 1; 890 } 891 892 /* This must be called before lost_out is incremented */ 893 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 894 { 895 if (!tp->retransmit_skb_hint || 896 before(TCP_SKB_CB(skb)->seq, 897 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 898 tp->retransmit_skb_hint = skb; 899 900 if (!tp->lost_out || 901 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high)) 902 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 903 } 904 905 /* Sum the number of packets on the wire we have marked as lost. 906 * There are two cases we care about here: 907 * a) Packet hasn't been marked lost (nor retransmitted), 908 * and this is the first loss. 909 * b) Packet has been marked both lost and retransmitted, 910 * and this means we think it was lost again. 911 */ 912 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 913 { 914 __u8 sacked = TCP_SKB_CB(skb)->sacked; 915 916 if (!(sacked & TCPCB_LOST) || 917 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 918 tp->lost += tcp_skb_pcount(skb); 919 } 920 921 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 922 { 923 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 924 tcp_verify_retransmit_hint(tp, skb); 925 926 tp->lost_out += tcp_skb_pcount(skb); 927 tcp_sum_lost(tp, skb); 928 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 929 } 930 } 931 932 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 933 { 934 tcp_verify_retransmit_hint(tp, skb); 935 936 tcp_sum_lost(tp, skb); 937 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 938 tp->lost_out += tcp_skb_pcount(skb); 939 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 940 } 941 } 942 943 /* This procedure tags the retransmission queue when SACKs arrive. 944 * 945 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 946 * Packets in queue with these bits set are counted in variables 947 * sacked_out, retrans_out and lost_out, correspondingly. 948 * 949 * Valid combinations are: 950 * Tag InFlight Description 951 * 0 1 - orig segment is in flight. 952 * S 0 - nothing flies, orig reached receiver. 953 * L 0 - nothing flies, orig lost by net. 954 * R 2 - both orig and retransmit are in flight. 955 * L|R 1 - orig is lost, retransmit is in flight. 956 * S|R 1 - orig reached receiver, retrans is still in flight. 957 * (L|S|R is logically valid, it could occur when L|R is sacked, 958 * but it is equivalent to plain S and code short-curcuits it to S. 959 * L|S is logically invalid, it would mean -1 packet in flight 8)) 960 * 961 * These 6 states form finite state machine, controlled by the following events: 962 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 963 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 964 * 3. Loss detection event of two flavors: 965 * A. Scoreboard estimator decided the packet is lost. 966 * A'. Reno "three dupacks" marks head of queue lost. 967 * A''. Its FACK modification, head until snd.fack is lost. 968 * B. SACK arrives sacking SND.NXT at the moment, when the 969 * segment was retransmitted. 970 * 4. D-SACK added new rule: D-SACK changes any tag to S. 971 * 972 * It is pleasant to note, that state diagram turns out to be commutative, 973 * so that we are allowed not to be bothered by order of our actions, 974 * when multiple events arrive simultaneously. (see the function below). 975 * 976 * Reordering detection. 977 * -------------------- 978 * Reordering metric is maximal distance, which a packet can be displaced 979 * in packet stream. With SACKs we can estimate it: 980 * 981 * 1. SACK fills old hole and the corresponding segment was not 982 * ever retransmitted -> reordering. Alas, we cannot use it 983 * when segment was retransmitted. 984 * 2. The last flaw is solved with D-SACK. D-SACK arrives 985 * for retransmitted and already SACKed segment -> reordering.. 986 * Both of these heuristics are not used in Loss state, when we cannot 987 * account for retransmits accurately. 988 * 989 * SACK block validation. 990 * ---------------------- 991 * 992 * SACK block range validation checks that the received SACK block fits to 993 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 994 * Note that SND.UNA is not included to the range though being valid because 995 * it means that the receiver is rather inconsistent with itself reporting 996 * SACK reneging when it should advance SND.UNA. Such SACK block this is 997 * perfectly valid, however, in light of RFC2018 which explicitly states 998 * that "SACK block MUST reflect the newest segment. Even if the newest 999 * segment is going to be discarded ...", not that it looks very clever 1000 * in case of head skb. Due to potentional receiver driven attacks, we 1001 * choose to avoid immediate execution of a walk in write queue due to 1002 * reneging and defer head skb's loss recovery to standard loss recovery 1003 * procedure that will eventually trigger (nothing forbids us doing this). 1004 * 1005 * Implements also blockage to start_seq wrap-around. Problem lies in the 1006 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1007 * there's no guarantee that it will be before snd_nxt (n). The problem 1008 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1009 * wrap (s_w): 1010 * 1011 * <- outs wnd -> <- wrapzone -> 1012 * u e n u_w e_w s n_w 1013 * | | | | | | | 1014 * |<------------+------+----- TCP seqno space --------------+---------->| 1015 * ...-- <2^31 ->| |<--------... 1016 * ...---- >2^31 ------>| |<--------... 1017 * 1018 * Current code wouldn't be vulnerable but it's better still to discard such 1019 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1020 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1021 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1022 * equal to the ideal case (infinite seqno space without wrap caused issues). 1023 * 1024 * With D-SACK the lower bound is extended to cover sequence space below 1025 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1026 * again, D-SACK block must not to go across snd_una (for the same reason as 1027 * for the normal SACK blocks, explained above). But there all simplicity 1028 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1029 * fully below undo_marker they do not affect behavior in anyway and can 1030 * therefore be safely ignored. In rare cases (which are more or less 1031 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1032 * fragmentation and packet reordering past skb's retransmission. To consider 1033 * them correctly, the acceptable range must be extended even more though 1034 * the exact amount is rather hard to quantify. However, tp->max_window can 1035 * be used as an exaggerated estimate. 1036 */ 1037 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1038 u32 start_seq, u32 end_seq) 1039 { 1040 /* Too far in future, or reversed (interpretation is ambiguous) */ 1041 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1042 return false; 1043 1044 /* Nasty start_seq wrap-around check (see comments above) */ 1045 if (!before(start_seq, tp->snd_nxt)) 1046 return false; 1047 1048 /* In outstanding window? ...This is valid exit for D-SACKs too. 1049 * start_seq == snd_una is non-sensical (see comments above) 1050 */ 1051 if (after(start_seq, tp->snd_una)) 1052 return true; 1053 1054 if (!is_dsack || !tp->undo_marker) 1055 return false; 1056 1057 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1058 if (after(end_seq, tp->snd_una)) 1059 return false; 1060 1061 if (!before(start_seq, tp->undo_marker)) 1062 return true; 1063 1064 /* Too old */ 1065 if (!after(end_seq, tp->undo_marker)) 1066 return false; 1067 1068 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1069 * start_seq < undo_marker and end_seq >= undo_marker. 1070 */ 1071 return !before(start_seq, end_seq - tp->max_window); 1072 } 1073 1074 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1075 struct tcp_sack_block_wire *sp, int num_sacks, 1076 u32 prior_snd_una) 1077 { 1078 struct tcp_sock *tp = tcp_sk(sk); 1079 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1080 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1081 bool dup_sack = false; 1082 1083 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1084 dup_sack = true; 1085 tcp_dsack_seen(tp); 1086 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1087 } else if (num_sacks > 1) { 1088 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1089 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1090 1091 if (!after(end_seq_0, end_seq_1) && 1092 !before(start_seq_0, start_seq_1)) { 1093 dup_sack = true; 1094 tcp_dsack_seen(tp); 1095 NET_INC_STATS(sock_net(sk), 1096 LINUX_MIB_TCPDSACKOFORECV); 1097 } 1098 } 1099 1100 /* D-SACK for already forgotten data... Do dumb counting. */ 1101 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1102 !after(end_seq_0, prior_snd_una) && 1103 after(end_seq_0, tp->undo_marker)) 1104 tp->undo_retrans--; 1105 1106 return dup_sack; 1107 } 1108 1109 struct tcp_sacktag_state { 1110 int reord; 1111 int fack_count; 1112 /* Timestamps for earliest and latest never-retransmitted segment 1113 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1114 * but congestion control should still get an accurate delay signal. 1115 */ 1116 struct skb_mstamp first_sackt; 1117 struct skb_mstamp last_sackt; 1118 struct rate_sample *rate; 1119 int flag; 1120 }; 1121 1122 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1123 * the incoming SACK may not exactly match but we can find smaller MSS 1124 * aligned portion of it that matches. Therefore we might need to fragment 1125 * which may fail and creates some hassle (caller must handle error case 1126 * returns). 1127 * 1128 * FIXME: this could be merged to shift decision code 1129 */ 1130 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1131 u32 start_seq, u32 end_seq) 1132 { 1133 int err; 1134 bool in_sack; 1135 unsigned int pkt_len; 1136 unsigned int mss; 1137 1138 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1139 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1140 1141 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1142 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1143 mss = tcp_skb_mss(skb); 1144 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1145 1146 if (!in_sack) { 1147 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1148 if (pkt_len < mss) 1149 pkt_len = mss; 1150 } else { 1151 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1152 if (pkt_len < mss) 1153 return -EINVAL; 1154 } 1155 1156 /* Round if necessary so that SACKs cover only full MSSes 1157 * and/or the remaining small portion (if present) 1158 */ 1159 if (pkt_len > mss) { 1160 unsigned int new_len = (pkt_len / mss) * mss; 1161 if (!in_sack && new_len < pkt_len) { 1162 new_len += mss; 1163 if (new_len >= skb->len) 1164 return 0; 1165 } 1166 pkt_len = new_len; 1167 } 1168 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC); 1169 if (err < 0) 1170 return err; 1171 } 1172 1173 return in_sack; 1174 } 1175 1176 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1177 static u8 tcp_sacktag_one(struct sock *sk, 1178 struct tcp_sacktag_state *state, u8 sacked, 1179 u32 start_seq, u32 end_seq, 1180 int dup_sack, int pcount, 1181 const struct skb_mstamp *xmit_time) 1182 { 1183 struct tcp_sock *tp = tcp_sk(sk); 1184 int fack_count = state->fack_count; 1185 1186 /* Account D-SACK for retransmitted packet. */ 1187 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1188 if (tp->undo_marker && tp->undo_retrans > 0 && 1189 after(end_seq, tp->undo_marker)) 1190 tp->undo_retrans--; 1191 if (sacked & TCPCB_SACKED_ACKED) 1192 state->reord = min(fack_count, state->reord); 1193 } 1194 1195 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1196 if (!after(end_seq, tp->snd_una)) 1197 return sacked; 1198 1199 if (!(sacked & TCPCB_SACKED_ACKED)) { 1200 tcp_rack_advance(tp, xmit_time, sacked); 1201 1202 if (sacked & TCPCB_SACKED_RETRANS) { 1203 /* If the segment is not tagged as lost, 1204 * we do not clear RETRANS, believing 1205 * that retransmission is still in flight. 1206 */ 1207 if (sacked & TCPCB_LOST) { 1208 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1209 tp->lost_out -= pcount; 1210 tp->retrans_out -= pcount; 1211 } 1212 } else { 1213 if (!(sacked & TCPCB_RETRANS)) { 1214 /* New sack for not retransmitted frame, 1215 * which was in hole. It is reordering. 1216 */ 1217 if (before(start_seq, 1218 tcp_highest_sack_seq(tp))) 1219 state->reord = min(fack_count, 1220 state->reord); 1221 if (!after(end_seq, tp->high_seq)) 1222 state->flag |= FLAG_ORIG_SACK_ACKED; 1223 if (state->first_sackt.v64 == 0) 1224 state->first_sackt = *xmit_time; 1225 state->last_sackt = *xmit_time; 1226 } 1227 1228 if (sacked & TCPCB_LOST) { 1229 sacked &= ~TCPCB_LOST; 1230 tp->lost_out -= pcount; 1231 } 1232 } 1233 1234 sacked |= TCPCB_SACKED_ACKED; 1235 state->flag |= FLAG_DATA_SACKED; 1236 tp->sacked_out += pcount; 1237 tp->delivered += pcount; /* Out-of-order packets delivered */ 1238 1239 fack_count += pcount; 1240 1241 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1242 if (!tcp_is_fack(tp) && tp->lost_skb_hint && 1243 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1244 tp->lost_cnt_hint += pcount; 1245 1246 if (fack_count > tp->fackets_out) 1247 tp->fackets_out = fack_count; 1248 } 1249 1250 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1251 * frames and clear it. undo_retrans is decreased above, L|R frames 1252 * are accounted above as well. 1253 */ 1254 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1255 sacked &= ~TCPCB_SACKED_RETRANS; 1256 tp->retrans_out -= pcount; 1257 } 1258 1259 return sacked; 1260 } 1261 1262 /* Shift newly-SACKed bytes from this skb to the immediately previous 1263 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1264 */ 1265 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1266 struct tcp_sacktag_state *state, 1267 unsigned int pcount, int shifted, int mss, 1268 bool dup_sack) 1269 { 1270 struct tcp_sock *tp = tcp_sk(sk); 1271 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1272 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1273 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1274 1275 BUG_ON(!pcount); 1276 1277 /* Adjust counters and hints for the newly sacked sequence 1278 * range but discard the return value since prev is already 1279 * marked. We must tag the range first because the seq 1280 * advancement below implicitly advances 1281 * tcp_highest_sack_seq() when skb is highest_sack. 1282 */ 1283 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1284 start_seq, end_seq, dup_sack, pcount, 1285 &skb->skb_mstamp); 1286 tcp_rate_skb_delivered(sk, skb, state->rate); 1287 1288 if (skb == tp->lost_skb_hint) 1289 tp->lost_cnt_hint += pcount; 1290 1291 TCP_SKB_CB(prev)->end_seq += shifted; 1292 TCP_SKB_CB(skb)->seq += shifted; 1293 1294 tcp_skb_pcount_add(prev, pcount); 1295 BUG_ON(tcp_skb_pcount(skb) < pcount); 1296 tcp_skb_pcount_add(skb, -pcount); 1297 1298 /* When we're adding to gso_segs == 1, gso_size will be zero, 1299 * in theory this shouldn't be necessary but as long as DSACK 1300 * code can come after this skb later on it's better to keep 1301 * setting gso_size to something. 1302 */ 1303 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1304 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1305 1306 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1307 if (tcp_skb_pcount(skb) <= 1) 1308 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1309 1310 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1311 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1312 1313 if (skb->len > 0) { 1314 BUG_ON(!tcp_skb_pcount(skb)); 1315 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1316 return false; 1317 } 1318 1319 /* Whole SKB was eaten :-) */ 1320 1321 if (skb == tp->retransmit_skb_hint) 1322 tp->retransmit_skb_hint = prev; 1323 if (skb == tp->lost_skb_hint) { 1324 tp->lost_skb_hint = prev; 1325 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1326 } 1327 1328 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1329 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1330 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1331 TCP_SKB_CB(prev)->end_seq++; 1332 1333 if (skb == tcp_highest_sack(sk)) 1334 tcp_advance_highest_sack(sk, skb); 1335 1336 tcp_skb_collapse_tstamp(prev, skb); 1337 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp.v64)) 1338 TCP_SKB_CB(prev)->tx.delivered_mstamp.v64 = 0; 1339 1340 tcp_unlink_write_queue(skb, sk); 1341 sk_wmem_free_skb(sk, skb); 1342 1343 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1344 1345 return true; 1346 } 1347 1348 /* I wish gso_size would have a bit more sane initialization than 1349 * something-or-zero which complicates things 1350 */ 1351 static int tcp_skb_seglen(const struct sk_buff *skb) 1352 { 1353 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1354 } 1355 1356 /* Shifting pages past head area doesn't work */ 1357 static int skb_can_shift(const struct sk_buff *skb) 1358 { 1359 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1360 } 1361 1362 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1363 * skb. 1364 */ 1365 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1366 struct tcp_sacktag_state *state, 1367 u32 start_seq, u32 end_seq, 1368 bool dup_sack) 1369 { 1370 struct tcp_sock *tp = tcp_sk(sk); 1371 struct sk_buff *prev; 1372 int mss; 1373 int pcount = 0; 1374 int len; 1375 int in_sack; 1376 1377 if (!sk_can_gso(sk)) 1378 goto fallback; 1379 1380 /* Normally R but no L won't result in plain S */ 1381 if (!dup_sack && 1382 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1383 goto fallback; 1384 if (!skb_can_shift(skb)) 1385 goto fallback; 1386 /* This frame is about to be dropped (was ACKed). */ 1387 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1388 goto fallback; 1389 1390 /* Can only happen with delayed DSACK + discard craziness */ 1391 if (unlikely(skb == tcp_write_queue_head(sk))) 1392 goto fallback; 1393 prev = tcp_write_queue_prev(sk, skb); 1394 1395 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1396 goto fallback; 1397 1398 if (!tcp_skb_can_collapse_to(prev)) 1399 goto fallback; 1400 1401 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1402 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1403 1404 if (in_sack) { 1405 len = skb->len; 1406 pcount = tcp_skb_pcount(skb); 1407 mss = tcp_skb_seglen(skb); 1408 1409 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1410 * drop this restriction as unnecessary 1411 */ 1412 if (mss != tcp_skb_seglen(prev)) 1413 goto fallback; 1414 } else { 1415 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1416 goto noop; 1417 /* CHECKME: This is non-MSS split case only?, this will 1418 * cause skipped skbs due to advancing loop btw, original 1419 * has that feature too 1420 */ 1421 if (tcp_skb_pcount(skb) <= 1) 1422 goto noop; 1423 1424 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1425 if (!in_sack) { 1426 /* TODO: head merge to next could be attempted here 1427 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1428 * though it might not be worth of the additional hassle 1429 * 1430 * ...we can probably just fallback to what was done 1431 * previously. We could try merging non-SACKed ones 1432 * as well but it probably isn't going to buy off 1433 * because later SACKs might again split them, and 1434 * it would make skb timestamp tracking considerably 1435 * harder problem. 1436 */ 1437 goto fallback; 1438 } 1439 1440 len = end_seq - TCP_SKB_CB(skb)->seq; 1441 BUG_ON(len < 0); 1442 BUG_ON(len > skb->len); 1443 1444 /* MSS boundaries should be honoured or else pcount will 1445 * severely break even though it makes things bit trickier. 1446 * Optimize common case to avoid most of the divides 1447 */ 1448 mss = tcp_skb_mss(skb); 1449 1450 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1451 * drop this restriction as unnecessary 1452 */ 1453 if (mss != tcp_skb_seglen(prev)) 1454 goto fallback; 1455 1456 if (len == mss) { 1457 pcount = 1; 1458 } else if (len < mss) { 1459 goto noop; 1460 } else { 1461 pcount = len / mss; 1462 len = pcount * mss; 1463 } 1464 } 1465 1466 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1467 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1468 goto fallback; 1469 1470 if (!skb_shift(prev, skb, len)) 1471 goto fallback; 1472 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1473 goto out; 1474 1475 /* Hole filled allows collapsing with the next as well, this is very 1476 * useful when hole on every nth skb pattern happens 1477 */ 1478 if (prev == tcp_write_queue_tail(sk)) 1479 goto out; 1480 skb = tcp_write_queue_next(sk, prev); 1481 1482 if (!skb_can_shift(skb) || 1483 (skb == tcp_send_head(sk)) || 1484 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1485 (mss != tcp_skb_seglen(skb))) 1486 goto out; 1487 1488 len = skb->len; 1489 if (skb_shift(prev, skb, len)) { 1490 pcount += tcp_skb_pcount(skb); 1491 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1492 } 1493 1494 out: 1495 state->fack_count += pcount; 1496 return prev; 1497 1498 noop: 1499 return skb; 1500 1501 fallback: 1502 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1503 return NULL; 1504 } 1505 1506 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1507 struct tcp_sack_block *next_dup, 1508 struct tcp_sacktag_state *state, 1509 u32 start_seq, u32 end_seq, 1510 bool dup_sack_in) 1511 { 1512 struct tcp_sock *tp = tcp_sk(sk); 1513 struct sk_buff *tmp; 1514 1515 tcp_for_write_queue_from(skb, sk) { 1516 int in_sack = 0; 1517 bool dup_sack = dup_sack_in; 1518 1519 if (skb == tcp_send_head(sk)) 1520 break; 1521 1522 /* queue is in-order => we can short-circuit the walk early */ 1523 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1524 break; 1525 1526 if (next_dup && 1527 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1528 in_sack = tcp_match_skb_to_sack(sk, skb, 1529 next_dup->start_seq, 1530 next_dup->end_seq); 1531 if (in_sack > 0) 1532 dup_sack = true; 1533 } 1534 1535 /* skb reference here is a bit tricky to get right, since 1536 * shifting can eat and free both this skb and the next, 1537 * so not even _safe variant of the loop is enough. 1538 */ 1539 if (in_sack <= 0) { 1540 tmp = tcp_shift_skb_data(sk, skb, state, 1541 start_seq, end_seq, dup_sack); 1542 if (tmp) { 1543 if (tmp != skb) { 1544 skb = tmp; 1545 continue; 1546 } 1547 1548 in_sack = 0; 1549 } else { 1550 in_sack = tcp_match_skb_to_sack(sk, skb, 1551 start_seq, 1552 end_seq); 1553 } 1554 } 1555 1556 if (unlikely(in_sack < 0)) 1557 break; 1558 1559 if (in_sack) { 1560 TCP_SKB_CB(skb)->sacked = 1561 tcp_sacktag_one(sk, 1562 state, 1563 TCP_SKB_CB(skb)->sacked, 1564 TCP_SKB_CB(skb)->seq, 1565 TCP_SKB_CB(skb)->end_seq, 1566 dup_sack, 1567 tcp_skb_pcount(skb), 1568 &skb->skb_mstamp); 1569 tcp_rate_skb_delivered(sk, skb, state->rate); 1570 1571 if (!before(TCP_SKB_CB(skb)->seq, 1572 tcp_highest_sack_seq(tp))) 1573 tcp_advance_highest_sack(sk, skb); 1574 } 1575 1576 state->fack_count += tcp_skb_pcount(skb); 1577 } 1578 return skb; 1579 } 1580 1581 /* Avoid all extra work that is being done by sacktag while walking in 1582 * a normal way 1583 */ 1584 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1585 struct tcp_sacktag_state *state, 1586 u32 skip_to_seq) 1587 { 1588 tcp_for_write_queue_from(skb, sk) { 1589 if (skb == tcp_send_head(sk)) 1590 break; 1591 1592 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1593 break; 1594 1595 state->fack_count += tcp_skb_pcount(skb); 1596 } 1597 return skb; 1598 } 1599 1600 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1601 struct sock *sk, 1602 struct tcp_sack_block *next_dup, 1603 struct tcp_sacktag_state *state, 1604 u32 skip_to_seq) 1605 { 1606 if (!next_dup) 1607 return skb; 1608 1609 if (before(next_dup->start_seq, skip_to_seq)) { 1610 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1611 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1612 next_dup->start_seq, next_dup->end_seq, 1613 1); 1614 } 1615 1616 return skb; 1617 } 1618 1619 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1620 { 1621 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1622 } 1623 1624 static int 1625 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1626 u32 prior_snd_una, struct tcp_sacktag_state *state) 1627 { 1628 struct tcp_sock *tp = tcp_sk(sk); 1629 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1630 TCP_SKB_CB(ack_skb)->sacked); 1631 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1632 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1633 struct tcp_sack_block *cache; 1634 struct sk_buff *skb; 1635 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1636 int used_sacks; 1637 bool found_dup_sack = false; 1638 int i, j; 1639 int first_sack_index; 1640 1641 state->flag = 0; 1642 state->reord = tp->packets_out; 1643 1644 if (!tp->sacked_out) { 1645 if (WARN_ON(tp->fackets_out)) 1646 tp->fackets_out = 0; 1647 tcp_highest_sack_reset(sk); 1648 } 1649 1650 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1651 num_sacks, prior_snd_una); 1652 if (found_dup_sack) { 1653 state->flag |= FLAG_DSACKING_ACK; 1654 tp->delivered++; /* A spurious retransmission is delivered */ 1655 } 1656 1657 /* Eliminate too old ACKs, but take into 1658 * account more or less fresh ones, they can 1659 * contain valid SACK info. 1660 */ 1661 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1662 return 0; 1663 1664 if (!tp->packets_out) 1665 goto out; 1666 1667 used_sacks = 0; 1668 first_sack_index = 0; 1669 for (i = 0; i < num_sacks; i++) { 1670 bool dup_sack = !i && found_dup_sack; 1671 1672 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1673 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1674 1675 if (!tcp_is_sackblock_valid(tp, dup_sack, 1676 sp[used_sacks].start_seq, 1677 sp[used_sacks].end_seq)) { 1678 int mib_idx; 1679 1680 if (dup_sack) { 1681 if (!tp->undo_marker) 1682 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1683 else 1684 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1685 } else { 1686 /* Don't count olds caused by ACK reordering */ 1687 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1688 !after(sp[used_sacks].end_seq, tp->snd_una)) 1689 continue; 1690 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1691 } 1692 1693 NET_INC_STATS(sock_net(sk), mib_idx); 1694 if (i == 0) 1695 first_sack_index = -1; 1696 continue; 1697 } 1698 1699 /* Ignore very old stuff early */ 1700 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1701 continue; 1702 1703 used_sacks++; 1704 } 1705 1706 /* order SACK blocks to allow in order walk of the retrans queue */ 1707 for (i = used_sacks - 1; i > 0; i--) { 1708 for (j = 0; j < i; j++) { 1709 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1710 swap(sp[j], sp[j + 1]); 1711 1712 /* Track where the first SACK block goes to */ 1713 if (j == first_sack_index) 1714 first_sack_index = j + 1; 1715 } 1716 } 1717 } 1718 1719 skb = tcp_write_queue_head(sk); 1720 state->fack_count = 0; 1721 i = 0; 1722 1723 if (!tp->sacked_out) { 1724 /* It's already past, so skip checking against it */ 1725 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1726 } else { 1727 cache = tp->recv_sack_cache; 1728 /* Skip empty blocks in at head of the cache */ 1729 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1730 !cache->end_seq) 1731 cache++; 1732 } 1733 1734 while (i < used_sacks) { 1735 u32 start_seq = sp[i].start_seq; 1736 u32 end_seq = sp[i].end_seq; 1737 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1738 struct tcp_sack_block *next_dup = NULL; 1739 1740 if (found_dup_sack && ((i + 1) == first_sack_index)) 1741 next_dup = &sp[i + 1]; 1742 1743 /* Skip too early cached blocks */ 1744 while (tcp_sack_cache_ok(tp, cache) && 1745 !before(start_seq, cache->end_seq)) 1746 cache++; 1747 1748 /* Can skip some work by looking recv_sack_cache? */ 1749 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1750 after(end_seq, cache->start_seq)) { 1751 1752 /* Head todo? */ 1753 if (before(start_seq, cache->start_seq)) { 1754 skb = tcp_sacktag_skip(skb, sk, state, 1755 start_seq); 1756 skb = tcp_sacktag_walk(skb, sk, next_dup, 1757 state, 1758 start_seq, 1759 cache->start_seq, 1760 dup_sack); 1761 } 1762 1763 /* Rest of the block already fully processed? */ 1764 if (!after(end_seq, cache->end_seq)) 1765 goto advance_sp; 1766 1767 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1768 state, 1769 cache->end_seq); 1770 1771 /* ...tail remains todo... */ 1772 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1773 /* ...but better entrypoint exists! */ 1774 skb = tcp_highest_sack(sk); 1775 if (!skb) 1776 break; 1777 state->fack_count = tp->fackets_out; 1778 cache++; 1779 goto walk; 1780 } 1781 1782 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq); 1783 /* Check overlap against next cached too (past this one already) */ 1784 cache++; 1785 continue; 1786 } 1787 1788 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1789 skb = tcp_highest_sack(sk); 1790 if (!skb) 1791 break; 1792 state->fack_count = tp->fackets_out; 1793 } 1794 skb = tcp_sacktag_skip(skb, sk, state, start_seq); 1795 1796 walk: 1797 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1798 start_seq, end_seq, dup_sack); 1799 1800 advance_sp: 1801 i++; 1802 } 1803 1804 /* Clear the head of the cache sack blocks so we can skip it next time */ 1805 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1806 tp->recv_sack_cache[i].start_seq = 0; 1807 tp->recv_sack_cache[i].end_seq = 0; 1808 } 1809 for (j = 0; j < used_sacks; j++) 1810 tp->recv_sack_cache[i++] = sp[j]; 1811 1812 if ((state->reord < tp->fackets_out) && 1813 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker)) 1814 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0); 1815 1816 tcp_verify_left_out(tp); 1817 out: 1818 1819 #if FASTRETRANS_DEBUG > 0 1820 WARN_ON((int)tp->sacked_out < 0); 1821 WARN_ON((int)tp->lost_out < 0); 1822 WARN_ON((int)tp->retrans_out < 0); 1823 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1824 #endif 1825 return state->flag; 1826 } 1827 1828 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1829 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1830 */ 1831 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1832 { 1833 u32 holes; 1834 1835 holes = max(tp->lost_out, 1U); 1836 holes = min(holes, tp->packets_out); 1837 1838 if ((tp->sacked_out + holes) > tp->packets_out) { 1839 tp->sacked_out = tp->packets_out - holes; 1840 return true; 1841 } 1842 return false; 1843 } 1844 1845 /* If we receive more dupacks than we expected counting segments 1846 * in assumption of absent reordering, interpret this as reordering. 1847 * The only another reason could be bug in receiver TCP. 1848 */ 1849 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1850 { 1851 struct tcp_sock *tp = tcp_sk(sk); 1852 if (tcp_limit_reno_sacked(tp)) 1853 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1854 } 1855 1856 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1857 1858 static void tcp_add_reno_sack(struct sock *sk) 1859 { 1860 struct tcp_sock *tp = tcp_sk(sk); 1861 u32 prior_sacked = tp->sacked_out; 1862 1863 tp->sacked_out++; 1864 tcp_check_reno_reordering(sk, 0); 1865 if (tp->sacked_out > prior_sacked) 1866 tp->delivered++; /* Some out-of-order packet is delivered */ 1867 tcp_verify_left_out(tp); 1868 } 1869 1870 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1871 1872 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1873 { 1874 struct tcp_sock *tp = tcp_sk(sk); 1875 1876 if (acked > 0) { 1877 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1878 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1879 if (acked - 1 >= tp->sacked_out) 1880 tp->sacked_out = 0; 1881 else 1882 tp->sacked_out -= acked - 1; 1883 } 1884 tcp_check_reno_reordering(sk, acked); 1885 tcp_verify_left_out(tp); 1886 } 1887 1888 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1889 { 1890 tp->sacked_out = 0; 1891 } 1892 1893 void tcp_clear_retrans(struct tcp_sock *tp) 1894 { 1895 tp->retrans_out = 0; 1896 tp->lost_out = 0; 1897 tp->undo_marker = 0; 1898 tp->undo_retrans = -1; 1899 tp->fackets_out = 0; 1900 tp->sacked_out = 0; 1901 } 1902 1903 static inline void tcp_init_undo(struct tcp_sock *tp) 1904 { 1905 tp->undo_marker = tp->snd_una; 1906 /* Retransmission still in flight may cause DSACKs later. */ 1907 tp->undo_retrans = tp->retrans_out ? : -1; 1908 } 1909 1910 /* Enter Loss state. If we detect SACK reneging, forget all SACK information 1911 * and reset tags completely, otherwise preserve SACKs. If receiver 1912 * dropped its ofo queue, we will know this due to reneging detection. 1913 */ 1914 void tcp_enter_loss(struct sock *sk) 1915 { 1916 const struct inet_connection_sock *icsk = inet_csk(sk); 1917 struct tcp_sock *tp = tcp_sk(sk); 1918 struct net *net = sock_net(sk); 1919 struct sk_buff *skb; 1920 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1921 bool is_reneg; /* is receiver reneging on SACKs? */ 1922 bool mark_lost; 1923 1924 /* Reduce ssthresh if it has not yet been made inside this window. */ 1925 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1926 !after(tp->high_seq, tp->snd_una) || 1927 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1928 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1929 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1930 tcp_ca_event(sk, CA_EVENT_LOSS); 1931 tcp_init_undo(tp); 1932 } 1933 tp->snd_cwnd = 1; 1934 tp->snd_cwnd_cnt = 0; 1935 tp->snd_cwnd_stamp = tcp_time_stamp; 1936 1937 tp->retrans_out = 0; 1938 tp->lost_out = 0; 1939 1940 if (tcp_is_reno(tp)) 1941 tcp_reset_reno_sack(tp); 1942 1943 skb = tcp_write_queue_head(sk); 1944 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED); 1945 if (is_reneg) { 1946 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1947 tp->sacked_out = 0; 1948 tp->fackets_out = 0; 1949 } 1950 tcp_clear_all_retrans_hints(tp); 1951 1952 tcp_for_write_queue(skb, sk) { 1953 if (skb == tcp_send_head(sk)) 1954 break; 1955 1956 mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 1957 is_reneg); 1958 if (mark_lost) 1959 tcp_sum_lost(tp, skb); 1960 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1961 if (mark_lost) { 1962 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1963 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1964 tp->lost_out += tcp_skb_pcount(skb); 1965 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 1966 } 1967 } 1968 tcp_verify_left_out(tp); 1969 1970 /* Timeout in disordered state after receiving substantial DUPACKs 1971 * suggests that the degree of reordering is over-estimated. 1972 */ 1973 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1974 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 1975 tp->reordering = min_t(unsigned int, tp->reordering, 1976 net->ipv4.sysctl_tcp_reordering); 1977 tcp_set_ca_state(sk, TCP_CA_Loss); 1978 tp->high_seq = tp->snd_nxt; 1979 tcp_ecn_queue_cwr(tp); 1980 1981 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 1982 * loss recovery is underway except recurring timeout(s) on 1983 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 1984 */ 1985 tp->frto = sysctl_tcp_frto && 1986 (new_recovery || icsk->icsk_retransmits) && 1987 !inet_csk(sk)->icsk_mtup.probe_size; 1988 } 1989 1990 /* If ACK arrived pointing to a remembered SACK, it means that our 1991 * remembered SACKs do not reflect real state of receiver i.e. 1992 * receiver _host_ is heavily congested (or buggy). 1993 * 1994 * To avoid big spurious retransmission bursts due to transient SACK 1995 * scoreboard oddities that look like reneging, we give the receiver a 1996 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 1997 * restore sanity to the SACK scoreboard. If the apparent reneging 1998 * persists until this RTO then we'll clear the SACK scoreboard. 1999 */ 2000 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2001 { 2002 if (flag & FLAG_SACK_RENEGING) { 2003 struct tcp_sock *tp = tcp_sk(sk); 2004 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2005 msecs_to_jiffies(10)); 2006 2007 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2008 delay, TCP_RTO_MAX); 2009 return true; 2010 } 2011 return false; 2012 } 2013 2014 static inline int tcp_fackets_out(const struct tcp_sock *tp) 2015 { 2016 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2017 } 2018 2019 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2020 * counter when SACK is enabled (without SACK, sacked_out is used for 2021 * that purpose). 2022 * 2023 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2024 * segments up to the highest received SACK block so far and holes in 2025 * between them. 2026 * 2027 * With reordering, holes may still be in flight, so RFC3517 recovery 2028 * uses pure sacked_out (total number of SACKed segments) even though 2029 * it violates the RFC that uses duplicate ACKs, often these are equal 2030 * but when e.g. out-of-window ACKs or packet duplication occurs, 2031 * they differ. Since neither occurs due to loss, TCP should really 2032 * ignore them. 2033 */ 2034 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2035 { 2036 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2037 } 2038 2039 static bool tcp_pause_early_retransmit(struct sock *sk, int flag) 2040 { 2041 struct tcp_sock *tp = tcp_sk(sk); 2042 unsigned long delay; 2043 2044 /* Delay early retransmit and entering fast recovery for 2045 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples 2046 * available, or RTO is scheduled to fire first. 2047 */ 2048 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 || 2049 (flag & FLAG_ECE) || !tp->srtt_us) 2050 return false; 2051 2052 delay = max(usecs_to_jiffies(tp->srtt_us >> 5), 2053 msecs_to_jiffies(2)); 2054 2055 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay))) 2056 return false; 2057 2058 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay, 2059 TCP_RTO_MAX); 2060 return true; 2061 } 2062 2063 /* Linux NewReno/SACK/FACK/ECN state machine. 2064 * -------------------------------------- 2065 * 2066 * "Open" Normal state, no dubious events, fast path. 2067 * "Disorder" In all the respects it is "Open", 2068 * but requires a bit more attention. It is entered when 2069 * we see some SACKs or dupacks. It is split of "Open" 2070 * mainly to move some processing from fast path to slow one. 2071 * "CWR" CWND was reduced due to some Congestion Notification event. 2072 * It can be ECN, ICMP source quench, local device congestion. 2073 * "Recovery" CWND was reduced, we are fast-retransmitting. 2074 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2075 * 2076 * tcp_fastretrans_alert() is entered: 2077 * - each incoming ACK, if state is not "Open" 2078 * - when arrived ACK is unusual, namely: 2079 * * SACK 2080 * * Duplicate ACK. 2081 * * ECN ECE. 2082 * 2083 * Counting packets in flight is pretty simple. 2084 * 2085 * in_flight = packets_out - left_out + retrans_out 2086 * 2087 * packets_out is SND.NXT-SND.UNA counted in packets. 2088 * 2089 * retrans_out is number of retransmitted segments. 2090 * 2091 * left_out is number of segments left network, but not ACKed yet. 2092 * 2093 * left_out = sacked_out + lost_out 2094 * 2095 * sacked_out: Packets, which arrived to receiver out of order 2096 * and hence not ACKed. With SACKs this number is simply 2097 * amount of SACKed data. Even without SACKs 2098 * it is easy to give pretty reliable estimate of this number, 2099 * counting duplicate ACKs. 2100 * 2101 * lost_out: Packets lost by network. TCP has no explicit 2102 * "loss notification" feedback from network (for now). 2103 * It means that this number can be only _guessed_. 2104 * Actually, it is the heuristics to predict lossage that 2105 * distinguishes different algorithms. 2106 * 2107 * F.e. after RTO, when all the queue is considered as lost, 2108 * lost_out = packets_out and in_flight = retrans_out. 2109 * 2110 * Essentially, we have now two algorithms counting 2111 * lost packets. 2112 * 2113 * FACK: It is the simplest heuristics. As soon as we decided 2114 * that something is lost, we decide that _all_ not SACKed 2115 * packets until the most forward SACK are lost. I.e. 2116 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2117 * It is absolutely correct estimate, if network does not reorder 2118 * packets. And it loses any connection to reality when reordering 2119 * takes place. We use FACK by default until reordering 2120 * is suspected on the path to this destination. 2121 * 2122 * NewReno: when Recovery is entered, we assume that one segment 2123 * is lost (classic Reno). While we are in Recovery and 2124 * a partial ACK arrives, we assume that one more packet 2125 * is lost (NewReno). This heuristics are the same in NewReno 2126 * and SACK. 2127 * 2128 * Imagine, that's all! Forget about all this shamanism about CWND inflation 2129 * deflation etc. CWND is real congestion window, never inflated, changes 2130 * only according to classic VJ rules. 2131 * 2132 * Really tricky (and requiring careful tuning) part of algorithm 2133 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2134 * The first determines the moment _when_ we should reduce CWND and, 2135 * hence, slow down forward transmission. In fact, it determines the moment 2136 * when we decide that hole is caused by loss, rather than by a reorder. 2137 * 2138 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2139 * holes, caused by lost packets. 2140 * 2141 * And the most logically complicated part of algorithm is undo 2142 * heuristics. We detect false retransmits due to both too early 2143 * fast retransmit (reordering) and underestimated RTO, analyzing 2144 * timestamps and D-SACKs. When we detect that some segments were 2145 * retransmitted by mistake and CWND reduction was wrong, we undo 2146 * window reduction and abort recovery phase. This logic is hidden 2147 * inside several functions named tcp_try_undo_<something>. 2148 */ 2149 2150 /* This function decides, when we should leave Disordered state 2151 * and enter Recovery phase, reducing congestion window. 2152 * 2153 * Main question: may we further continue forward transmission 2154 * with the same cwnd? 2155 */ 2156 static bool tcp_time_to_recover(struct sock *sk, int flag) 2157 { 2158 struct tcp_sock *tp = tcp_sk(sk); 2159 __u32 packets_out; 2160 int tcp_reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 2161 2162 /* Trick#1: The loss is proven. */ 2163 if (tp->lost_out) 2164 return true; 2165 2166 /* Not-A-Trick#2 : Classic rule... */ 2167 if (tcp_dupack_heuristics(tp) > tp->reordering) 2168 return true; 2169 2170 /* Trick#4: It is still not OK... But will it be useful to delay 2171 * recovery more? 2172 */ 2173 packets_out = tp->packets_out; 2174 if (packets_out <= tp->reordering && 2175 tp->sacked_out >= max_t(__u32, packets_out/2, tcp_reordering) && 2176 !tcp_may_send_now(sk)) { 2177 /* We have nothing to send. This connection is limited 2178 * either by receiver window or by application. 2179 */ 2180 return true; 2181 } 2182 2183 /* If a thin stream is detected, retransmit after first 2184 * received dupack. Employ only if SACK is supported in order 2185 * to avoid possible corner-case series of spurious retransmissions 2186 * Use only if there are no unsent data. 2187 */ 2188 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) && 2189 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 && 2190 tcp_is_sack(tp) && !tcp_send_head(sk)) 2191 return true; 2192 2193 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious 2194 * retransmissions due to small network reorderings, we implement 2195 * Mitigation A.3 in the RFC and delay the retransmission for a short 2196 * interval if appropriate. 2197 */ 2198 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out && 2199 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) && 2200 !tcp_may_send_now(sk)) 2201 return !tcp_pause_early_retransmit(sk, flag); 2202 2203 return false; 2204 } 2205 2206 /* Detect loss in event "A" above by marking head of queue up as lost. 2207 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments 2208 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2209 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2210 * the maximum SACKed segments to pass before reaching this limit. 2211 */ 2212 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2213 { 2214 struct tcp_sock *tp = tcp_sk(sk); 2215 struct sk_buff *skb; 2216 int cnt, oldcnt, lost; 2217 unsigned int mss; 2218 /* Use SACK to deduce losses of new sequences sent during recovery */ 2219 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2220 2221 WARN_ON(packets > tp->packets_out); 2222 if (tp->lost_skb_hint) { 2223 skb = tp->lost_skb_hint; 2224 cnt = tp->lost_cnt_hint; 2225 /* Head already handled? */ 2226 if (mark_head && skb != tcp_write_queue_head(sk)) 2227 return; 2228 } else { 2229 skb = tcp_write_queue_head(sk); 2230 cnt = 0; 2231 } 2232 2233 tcp_for_write_queue_from(skb, sk) { 2234 if (skb == tcp_send_head(sk)) 2235 break; 2236 /* TODO: do this better */ 2237 /* this is not the most efficient way to do this... */ 2238 tp->lost_skb_hint = skb; 2239 tp->lost_cnt_hint = cnt; 2240 2241 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2242 break; 2243 2244 oldcnt = cnt; 2245 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2246 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2247 cnt += tcp_skb_pcount(skb); 2248 2249 if (cnt > packets) { 2250 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2251 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2252 (oldcnt >= packets)) 2253 break; 2254 2255 mss = tcp_skb_mss(skb); 2256 /* If needed, chop off the prefix to mark as lost. */ 2257 lost = (packets - oldcnt) * mss; 2258 if (lost < skb->len && 2259 tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0) 2260 break; 2261 cnt = packets; 2262 } 2263 2264 tcp_skb_mark_lost(tp, skb); 2265 2266 if (mark_head) 2267 break; 2268 } 2269 tcp_verify_left_out(tp); 2270 } 2271 2272 /* Account newly detected lost packet(s) */ 2273 2274 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2275 { 2276 struct tcp_sock *tp = tcp_sk(sk); 2277 2278 if (tcp_is_reno(tp)) { 2279 tcp_mark_head_lost(sk, 1, 1); 2280 } else if (tcp_is_fack(tp)) { 2281 int lost = tp->fackets_out - tp->reordering; 2282 if (lost <= 0) 2283 lost = 1; 2284 tcp_mark_head_lost(sk, lost, 0); 2285 } else { 2286 int sacked_upto = tp->sacked_out - tp->reordering; 2287 if (sacked_upto >= 0) 2288 tcp_mark_head_lost(sk, sacked_upto, 0); 2289 else if (fast_rexmit) 2290 tcp_mark_head_lost(sk, 1, 1); 2291 } 2292 } 2293 2294 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2295 { 2296 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2297 before(tp->rx_opt.rcv_tsecr, when); 2298 } 2299 2300 /* skb is spurious retransmitted if the returned timestamp echo 2301 * reply is prior to the skb transmission time 2302 */ 2303 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2304 const struct sk_buff *skb) 2305 { 2306 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2307 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2308 } 2309 2310 /* Nothing was retransmitted or returned timestamp is less 2311 * than timestamp of the first retransmission. 2312 */ 2313 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2314 { 2315 return !tp->retrans_stamp || 2316 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2317 } 2318 2319 /* Undo procedures. */ 2320 2321 /* We can clear retrans_stamp when there are no retransmissions in the 2322 * window. It would seem that it is trivially available for us in 2323 * tp->retrans_out, however, that kind of assumptions doesn't consider 2324 * what will happen if errors occur when sending retransmission for the 2325 * second time. ...It could the that such segment has only 2326 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2327 * the head skb is enough except for some reneging corner cases that 2328 * are not worth the effort. 2329 * 2330 * Main reason for all this complexity is the fact that connection dying 2331 * time now depends on the validity of the retrans_stamp, in particular, 2332 * that successive retransmissions of a segment must not advance 2333 * retrans_stamp under any conditions. 2334 */ 2335 static bool tcp_any_retrans_done(const struct sock *sk) 2336 { 2337 const struct tcp_sock *tp = tcp_sk(sk); 2338 struct sk_buff *skb; 2339 2340 if (tp->retrans_out) 2341 return true; 2342 2343 skb = tcp_write_queue_head(sk); 2344 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2345 return true; 2346 2347 return false; 2348 } 2349 2350 #if FASTRETRANS_DEBUG > 1 2351 static void DBGUNDO(struct sock *sk, const char *msg) 2352 { 2353 struct tcp_sock *tp = tcp_sk(sk); 2354 struct inet_sock *inet = inet_sk(sk); 2355 2356 if (sk->sk_family == AF_INET) { 2357 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2358 msg, 2359 &inet->inet_daddr, ntohs(inet->inet_dport), 2360 tp->snd_cwnd, tcp_left_out(tp), 2361 tp->snd_ssthresh, tp->prior_ssthresh, 2362 tp->packets_out); 2363 } 2364 #if IS_ENABLED(CONFIG_IPV6) 2365 else if (sk->sk_family == AF_INET6) { 2366 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2367 msg, 2368 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2369 tp->snd_cwnd, tcp_left_out(tp), 2370 tp->snd_ssthresh, tp->prior_ssthresh, 2371 tp->packets_out); 2372 } 2373 #endif 2374 } 2375 #else 2376 #define DBGUNDO(x...) do { } while (0) 2377 #endif 2378 2379 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2380 { 2381 struct tcp_sock *tp = tcp_sk(sk); 2382 2383 if (unmark_loss) { 2384 struct sk_buff *skb; 2385 2386 tcp_for_write_queue(skb, sk) { 2387 if (skb == tcp_send_head(sk)) 2388 break; 2389 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2390 } 2391 tp->lost_out = 0; 2392 tcp_clear_all_retrans_hints(tp); 2393 } 2394 2395 if (tp->prior_ssthresh) { 2396 const struct inet_connection_sock *icsk = inet_csk(sk); 2397 2398 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2399 2400 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2401 tp->snd_ssthresh = tp->prior_ssthresh; 2402 tcp_ecn_withdraw_cwr(tp); 2403 } 2404 } 2405 tp->snd_cwnd_stamp = tcp_time_stamp; 2406 tp->undo_marker = 0; 2407 } 2408 2409 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2410 { 2411 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2412 } 2413 2414 /* People celebrate: "We love our President!" */ 2415 static bool tcp_try_undo_recovery(struct sock *sk) 2416 { 2417 struct tcp_sock *tp = tcp_sk(sk); 2418 2419 if (tcp_may_undo(tp)) { 2420 int mib_idx; 2421 2422 /* Happy end! We did not retransmit anything 2423 * or our original transmission succeeded. 2424 */ 2425 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2426 tcp_undo_cwnd_reduction(sk, false); 2427 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2428 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2429 else 2430 mib_idx = LINUX_MIB_TCPFULLUNDO; 2431 2432 NET_INC_STATS(sock_net(sk), mib_idx); 2433 } 2434 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2435 /* Hold old state until something *above* high_seq 2436 * is ACKed. For Reno it is MUST to prevent false 2437 * fast retransmits (RFC2582). SACK TCP is safe. */ 2438 if (!tcp_any_retrans_done(sk)) 2439 tp->retrans_stamp = 0; 2440 return true; 2441 } 2442 tcp_set_ca_state(sk, TCP_CA_Open); 2443 return false; 2444 } 2445 2446 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2447 static bool tcp_try_undo_dsack(struct sock *sk) 2448 { 2449 struct tcp_sock *tp = tcp_sk(sk); 2450 2451 if (tp->undo_marker && !tp->undo_retrans) { 2452 DBGUNDO(sk, "D-SACK"); 2453 tcp_undo_cwnd_reduction(sk, false); 2454 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2455 return true; 2456 } 2457 return false; 2458 } 2459 2460 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2461 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2462 { 2463 struct tcp_sock *tp = tcp_sk(sk); 2464 2465 if (frto_undo || tcp_may_undo(tp)) { 2466 tcp_undo_cwnd_reduction(sk, true); 2467 2468 DBGUNDO(sk, "partial loss"); 2469 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2470 if (frto_undo) 2471 NET_INC_STATS(sock_net(sk), 2472 LINUX_MIB_TCPSPURIOUSRTOS); 2473 inet_csk(sk)->icsk_retransmits = 0; 2474 if (frto_undo || tcp_is_sack(tp)) 2475 tcp_set_ca_state(sk, TCP_CA_Open); 2476 return true; 2477 } 2478 return false; 2479 } 2480 2481 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2482 * It computes the number of packets to send (sndcnt) based on packets newly 2483 * delivered: 2484 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2485 * cwnd reductions across a full RTT. 2486 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2487 * But when the retransmits are acked without further losses, PRR 2488 * slow starts cwnd up to ssthresh to speed up the recovery. 2489 */ 2490 static void tcp_init_cwnd_reduction(struct sock *sk) 2491 { 2492 struct tcp_sock *tp = tcp_sk(sk); 2493 2494 tp->high_seq = tp->snd_nxt; 2495 tp->tlp_high_seq = 0; 2496 tp->snd_cwnd_cnt = 0; 2497 tp->prior_cwnd = tp->snd_cwnd; 2498 tp->prr_delivered = 0; 2499 tp->prr_out = 0; 2500 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2501 tcp_ecn_queue_cwr(tp); 2502 } 2503 2504 static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, 2505 int flag) 2506 { 2507 struct tcp_sock *tp = tcp_sk(sk); 2508 int sndcnt = 0; 2509 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2510 2511 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2512 return; 2513 2514 tp->prr_delivered += newly_acked_sacked; 2515 if (delta < 0) { 2516 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2517 tp->prior_cwnd - 1; 2518 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2519 } else if ((flag & FLAG_RETRANS_DATA_ACKED) && 2520 !(flag & FLAG_LOST_RETRANS)) { 2521 sndcnt = min_t(int, delta, 2522 max_t(int, tp->prr_delivered - tp->prr_out, 2523 newly_acked_sacked) + 1); 2524 } else { 2525 sndcnt = min(delta, newly_acked_sacked); 2526 } 2527 /* Force a fast retransmit upon entering fast recovery */ 2528 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2529 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2530 } 2531 2532 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2533 { 2534 struct tcp_sock *tp = tcp_sk(sk); 2535 2536 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2537 return; 2538 2539 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2540 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || 2541 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) { 2542 tp->snd_cwnd = tp->snd_ssthresh; 2543 tp->snd_cwnd_stamp = tcp_time_stamp; 2544 } 2545 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2546 } 2547 2548 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2549 void tcp_enter_cwr(struct sock *sk) 2550 { 2551 struct tcp_sock *tp = tcp_sk(sk); 2552 2553 tp->prior_ssthresh = 0; 2554 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2555 tp->undo_marker = 0; 2556 tcp_init_cwnd_reduction(sk); 2557 tcp_set_ca_state(sk, TCP_CA_CWR); 2558 } 2559 } 2560 EXPORT_SYMBOL(tcp_enter_cwr); 2561 2562 static void tcp_try_keep_open(struct sock *sk) 2563 { 2564 struct tcp_sock *tp = tcp_sk(sk); 2565 int state = TCP_CA_Open; 2566 2567 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2568 state = TCP_CA_Disorder; 2569 2570 if (inet_csk(sk)->icsk_ca_state != state) { 2571 tcp_set_ca_state(sk, state); 2572 tp->high_seq = tp->snd_nxt; 2573 } 2574 } 2575 2576 static void tcp_try_to_open(struct sock *sk, int flag) 2577 { 2578 struct tcp_sock *tp = tcp_sk(sk); 2579 2580 tcp_verify_left_out(tp); 2581 2582 if (!tcp_any_retrans_done(sk)) 2583 tp->retrans_stamp = 0; 2584 2585 if (flag & FLAG_ECE) 2586 tcp_enter_cwr(sk); 2587 2588 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2589 tcp_try_keep_open(sk); 2590 } 2591 } 2592 2593 static void tcp_mtup_probe_failed(struct sock *sk) 2594 { 2595 struct inet_connection_sock *icsk = inet_csk(sk); 2596 2597 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2598 icsk->icsk_mtup.probe_size = 0; 2599 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2600 } 2601 2602 static void tcp_mtup_probe_success(struct sock *sk) 2603 { 2604 struct tcp_sock *tp = tcp_sk(sk); 2605 struct inet_connection_sock *icsk = inet_csk(sk); 2606 2607 /* FIXME: breaks with very large cwnd */ 2608 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2609 tp->snd_cwnd = tp->snd_cwnd * 2610 tcp_mss_to_mtu(sk, tp->mss_cache) / 2611 icsk->icsk_mtup.probe_size; 2612 tp->snd_cwnd_cnt = 0; 2613 tp->snd_cwnd_stamp = tcp_time_stamp; 2614 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2615 2616 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2617 icsk->icsk_mtup.probe_size = 0; 2618 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2619 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2620 } 2621 2622 /* Do a simple retransmit without using the backoff mechanisms in 2623 * tcp_timer. This is used for path mtu discovery. 2624 * The socket is already locked here. 2625 */ 2626 void tcp_simple_retransmit(struct sock *sk) 2627 { 2628 const struct inet_connection_sock *icsk = inet_csk(sk); 2629 struct tcp_sock *tp = tcp_sk(sk); 2630 struct sk_buff *skb; 2631 unsigned int mss = tcp_current_mss(sk); 2632 u32 prior_lost = tp->lost_out; 2633 2634 tcp_for_write_queue(skb, sk) { 2635 if (skb == tcp_send_head(sk)) 2636 break; 2637 if (tcp_skb_seglen(skb) > mss && 2638 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2639 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2640 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2641 tp->retrans_out -= tcp_skb_pcount(skb); 2642 } 2643 tcp_skb_mark_lost_uncond_verify(tp, skb); 2644 } 2645 } 2646 2647 tcp_clear_retrans_hints_partial(tp); 2648 2649 if (prior_lost == tp->lost_out) 2650 return; 2651 2652 if (tcp_is_reno(tp)) 2653 tcp_limit_reno_sacked(tp); 2654 2655 tcp_verify_left_out(tp); 2656 2657 /* Don't muck with the congestion window here. 2658 * Reason is that we do not increase amount of _data_ 2659 * in network, but units changed and effective 2660 * cwnd/ssthresh really reduced now. 2661 */ 2662 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2663 tp->high_seq = tp->snd_nxt; 2664 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2665 tp->prior_ssthresh = 0; 2666 tp->undo_marker = 0; 2667 tcp_set_ca_state(sk, TCP_CA_Loss); 2668 } 2669 tcp_xmit_retransmit_queue(sk); 2670 } 2671 EXPORT_SYMBOL(tcp_simple_retransmit); 2672 2673 static void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2674 { 2675 struct tcp_sock *tp = tcp_sk(sk); 2676 int mib_idx; 2677 2678 if (tcp_is_reno(tp)) 2679 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2680 else 2681 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2682 2683 NET_INC_STATS(sock_net(sk), mib_idx); 2684 2685 tp->prior_ssthresh = 0; 2686 tcp_init_undo(tp); 2687 2688 if (!tcp_in_cwnd_reduction(sk)) { 2689 if (!ece_ack) 2690 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2691 tcp_init_cwnd_reduction(sk); 2692 } 2693 tcp_set_ca_state(sk, TCP_CA_Recovery); 2694 } 2695 2696 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2697 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2698 */ 2699 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack, 2700 int *rexmit) 2701 { 2702 struct tcp_sock *tp = tcp_sk(sk); 2703 bool recovered = !before(tp->snd_una, tp->high_seq); 2704 2705 if ((flag & FLAG_SND_UNA_ADVANCED) && 2706 tcp_try_undo_loss(sk, false)) 2707 return; 2708 2709 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2710 /* Step 3.b. A timeout is spurious if not all data are 2711 * lost, i.e., never-retransmitted data are (s)acked. 2712 */ 2713 if ((flag & FLAG_ORIG_SACK_ACKED) && 2714 tcp_try_undo_loss(sk, true)) 2715 return; 2716 2717 if (after(tp->snd_nxt, tp->high_seq)) { 2718 if (flag & FLAG_DATA_SACKED || is_dupack) 2719 tp->frto = 0; /* Step 3.a. loss was real */ 2720 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2721 tp->high_seq = tp->snd_nxt; 2722 /* Step 2.b. Try send new data (but deferred until cwnd 2723 * is updated in tcp_ack()). Otherwise fall back to 2724 * the conventional recovery. 2725 */ 2726 if (tcp_send_head(sk) && 2727 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2728 *rexmit = REXMIT_NEW; 2729 return; 2730 } 2731 tp->frto = 0; 2732 } 2733 } 2734 2735 if (recovered) { 2736 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2737 tcp_try_undo_recovery(sk); 2738 return; 2739 } 2740 if (tcp_is_reno(tp)) { 2741 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2742 * delivered. Lower inflight to clock out (re)tranmissions. 2743 */ 2744 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2745 tcp_add_reno_sack(sk); 2746 else if (flag & FLAG_SND_UNA_ADVANCED) 2747 tcp_reset_reno_sack(tp); 2748 } 2749 *rexmit = REXMIT_LOST; 2750 } 2751 2752 /* Undo during fast recovery after partial ACK. */ 2753 static bool tcp_try_undo_partial(struct sock *sk, const int acked) 2754 { 2755 struct tcp_sock *tp = tcp_sk(sk); 2756 2757 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2758 /* Plain luck! Hole if filled with delayed 2759 * packet, rather than with a retransmit. 2760 */ 2761 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2762 2763 /* We are getting evidence that the reordering degree is higher 2764 * than we realized. If there are no retransmits out then we 2765 * can undo. Otherwise we clock out new packets but do not 2766 * mark more packets lost or retransmit more. 2767 */ 2768 if (tp->retrans_out) 2769 return true; 2770 2771 if (!tcp_any_retrans_done(sk)) 2772 tp->retrans_stamp = 0; 2773 2774 DBGUNDO(sk, "partial recovery"); 2775 tcp_undo_cwnd_reduction(sk, true); 2776 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2777 tcp_try_keep_open(sk); 2778 return true; 2779 } 2780 return false; 2781 } 2782 2783 /* Process an event, which can update packets-in-flight not trivially. 2784 * Main goal of this function is to calculate new estimate for left_out, 2785 * taking into account both packets sitting in receiver's buffer and 2786 * packets lost by network. 2787 * 2788 * Besides that it updates the congestion state when packet loss or ECN 2789 * is detected. But it does not reduce the cwnd, it is done by the 2790 * congestion control later. 2791 * 2792 * It does _not_ decide what to send, it is made in function 2793 * tcp_xmit_retransmit_queue(). 2794 */ 2795 static void tcp_fastretrans_alert(struct sock *sk, const int acked, 2796 bool is_dupack, int *ack_flag, int *rexmit) 2797 { 2798 struct inet_connection_sock *icsk = inet_csk(sk); 2799 struct tcp_sock *tp = tcp_sk(sk); 2800 int fast_rexmit = 0, flag = *ack_flag; 2801 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2802 (tcp_fackets_out(tp) > tp->reordering)); 2803 2804 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2805 tp->sacked_out = 0; 2806 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2807 tp->fackets_out = 0; 2808 2809 /* Now state machine starts. 2810 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2811 if (flag & FLAG_ECE) 2812 tp->prior_ssthresh = 0; 2813 2814 /* B. In all the states check for reneging SACKs. */ 2815 if (tcp_check_sack_reneging(sk, flag)) 2816 return; 2817 2818 /* C. Check consistency of the current state. */ 2819 tcp_verify_left_out(tp); 2820 2821 /* D. Check state exit conditions. State can be terminated 2822 * when high_seq is ACKed. */ 2823 if (icsk->icsk_ca_state == TCP_CA_Open) { 2824 WARN_ON(tp->retrans_out != 0); 2825 tp->retrans_stamp = 0; 2826 } else if (!before(tp->snd_una, tp->high_seq)) { 2827 switch (icsk->icsk_ca_state) { 2828 case TCP_CA_CWR: 2829 /* CWR is to be held something *above* high_seq 2830 * is ACKed for CWR bit to reach receiver. */ 2831 if (tp->snd_una != tp->high_seq) { 2832 tcp_end_cwnd_reduction(sk); 2833 tcp_set_ca_state(sk, TCP_CA_Open); 2834 } 2835 break; 2836 2837 case TCP_CA_Recovery: 2838 if (tcp_is_reno(tp)) 2839 tcp_reset_reno_sack(tp); 2840 if (tcp_try_undo_recovery(sk)) 2841 return; 2842 tcp_end_cwnd_reduction(sk); 2843 break; 2844 } 2845 } 2846 2847 /* Use RACK to detect loss */ 2848 if (sysctl_tcp_recovery & TCP_RACK_LOST_RETRANS && 2849 tcp_rack_mark_lost(sk)) { 2850 flag |= FLAG_LOST_RETRANS; 2851 *ack_flag |= FLAG_LOST_RETRANS; 2852 } 2853 2854 /* E. Process state. */ 2855 switch (icsk->icsk_ca_state) { 2856 case TCP_CA_Recovery: 2857 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2858 if (tcp_is_reno(tp) && is_dupack) 2859 tcp_add_reno_sack(sk); 2860 } else { 2861 if (tcp_try_undo_partial(sk, acked)) 2862 return; 2863 /* Partial ACK arrived. Force fast retransmit. */ 2864 do_lost = tcp_is_reno(tp) || 2865 tcp_fackets_out(tp) > tp->reordering; 2866 } 2867 if (tcp_try_undo_dsack(sk)) { 2868 tcp_try_keep_open(sk); 2869 return; 2870 } 2871 break; 2872 case TCP_CA_Loss: 2873 tcp_process_loss(sk, flag, is_dupack, rexmit); 2874 if (icsk->icsk_ca_state != TCP_CA_Open && 2875 !(flag & FLAG_LOST_RETRANS)) 2876 return; 2877 /* Change state if cwnd is undone or retransmits are lost */ 2878 default: 2879 if (tcp_is_reno(tp)) { 2880 if (flag & FLAG_SND_UNA_ADVANCED) 2881 tcp_reset_reno_sack(tp); 2882 if (is_dupack) 2883 tcp_add_reno_sack(sk); 2884 } 2885 2886 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2887 tcp_try_undo_dsack(sk); 2888 2889 if (!tcp_time_to_recover(sk, flag)) { 2890 tcp_try_to_open(sk, flag); 2891 return; 2892 } 2893 2894 /* MTU probe failure: don't reduce cwnd */ 2895 if (icsk->icsk_ca_state < TCP_CA_CWR && 2896 icsk->icsk_mtup.probe_size && 2897 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2898 tcp_mtup_probe_failed(sk); 2899 /* Restores the reduction we did in tcp_mtup_probe() */ 2900 tp->snd_cwnd++; 2901 tcp_simple_retransmit(sk); 2902 return; 2903 } 2904 2905 /* Otherwise enter Recovery state */ 2906 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2907 fast_rexmit = 1; 2908 } 2909 2910 if (do_lost) 2911 tcp_update_scoreboard(sk, fast_rexmit); 2912 *rexmit = REXMIT_LOST; 2913 } 2914 2915 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us) 2916 { 2917 struct tcp_sock *tp = tcp_sk(sk); 2918 u32 wlen = sysctl_tcp_min_rtt_wlen * HZ; 2919 2920 minmax_running_min(&tp->rtt_min, wlen, tcp_time_stamp, 2921 rtt_us ? : jiffies_to_usecs(1)); 2922 } 2923 2924 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2925 long seq_rtt_us, long sack_rtt_us, 2926 long ca_rtt_us) 2927 { 2928 const struct tcp_sock *tp = tcp_sk(sk); 2929 2930 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2931 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2932 * Karn's algorithm forbids taking RTT if some retransmitted data 2933 * is acked (RFC6298). 2934 */ 2935 if (seq_rtt_us < 0) 2936 seq_rtt_us = sack_rtt_us; 2937 2938 /* RTTM Rule: A TSecr value received in a segment is used to 2939 * update the averaged RTT measurement only if the segment 2940 * acknowledges some new data, i.e., only if it advances the 2941 * left edge of the send window. 2942 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2943 */ 2944 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2945 flag & FLAG_ACKED) 2946 seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp - 2947 tp->rx_opt.rcv_tsecr); 2948 if (seq_rtt_us < 0) 2949 return false; 2950 2951 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2952 * always taken together with ACK, SACK, or TS-opts. Any negative 2953 * values will be skipped with the seq_rtt_us < 0 check above. 2954 */ 2955 tcp_update_rtt_min(sk, ca_rtt_us); 2956 tcp_rtt_estimator(sk, seq_rtt_us); 2957 tcp_set_rto(sk); 2958 2959 /* RFC6298: only reset backoff on valid RTT measurement. */ 2960 inet_csk(sk)->icsk_backoff = 0; 2961 return true; 2962 } 2963 2964 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2965 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2966 { 2967 long rtt_us = -1L; 2968 2969 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) { 2970 struct skb_mstamp now; 2971 2972 skb_mstamp_get(&now); 2973 rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack); 2974 } 2975 2976 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us); 2977 } 2978 2979 2980 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2981 { 2982 const struct inet_connection_sock *icsk = inet_csk(sk); 2983 2984 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2985 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 2986 } 2987 2988 /* Restart timer after forward progress on connection. 2989 * RFC2988 recommends to restart timer to now+rto. 2990 */ 2991 void tcp_rearm_rto(struct sock *sk) 2992 { 2993 const struct inet_connection_sock *icsk = inet_csk(sk); 2994 struct tcp_sock *tp = tcp_sk(sk); 2995 2996 /* If the retrans timer is currently being used by Fast Open 2997 * for SYN-ACK retrans purpose, stay put. 2998 */ 2999 if (tp->fastopen_rsk) 3000 return; 3001 3002 if (!tp->packets_out) { 3003 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3004 } else { 3005 u32 rto = inet_csk(sk)->icsk_rto; 3006 /* Offset the time elapsed after installing regular RTO */ 3007 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 3008 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3009 struct sk_buff *skb = tcp_write_queue_head(sk); 3010 const u32 rto_time_stamp = 3011 tcp_skb_timestamp(skb) + rto; 3012 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp); 3013 /* delta may not be positive if the socket is locked 3014 * when the retrans timer fires and is rescheduled. 3015 */ 3016 if (delta > 0) 3017 rto = delta; 3018 } 3019 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3020 TCP_RTO_MAX); 3021 } 3022 } 3023 3024 /* This function is called when the delayed ER timer fires. TCP enters 3025 * fast recovery and performs fast-retransmit. 3026 */ 3027 void tcp_resume_early_retransmit(struct sock *sk) 3028 { 3029 struct tcp_sock *tp = tcp_sk(sk); 3030 3031 tcp_rearm_rto(sk); 3032 3033 /* Stop if ER is disabled after the delayed ER timer is scheduled */ 3034 if (!tp->do_early_retrans) 3035 return; 3036 3037 tcp_enter_recovery(sk, false); 3038 tcp_update_scoreboard(sk, 1); 3039 tcp_xmit_retransmit_queue(sk); 3040 } 3041 3042 /* If we get here, the whole TSO packet has not been acked. */ 3043 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3044 { 3045 struct tcp_sock *tp = tcp_sk(sk); 3046 u32 packets_acked; 3047 3048 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3049 3050 packets_acked = tcp_skb_pcount(skb); 3051 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3052 return 0; 3053 packets_acked -= tcp_skb_pcount(skb); 3054 3055 if (packets_acked) { 3056 BUG_ON(tcp_skb_pcount(skb) == 0); 3057 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3058 } 3059 3060 return packets_acked; 3061 } 3062 3063 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3064 u32 prior_snd_una) 3065 { 3066 const struct skb_shared_info *shinfo; 3067 3068 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3069 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3070 return; 3071 3072 shinfo = skb_shinfo(skb); 3073 if (!before(shinfo->tskey, prior_snd_una) && 3074 before(shinfo->tskey, tcp_sk(sk)->snd_una)) 3075 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3076 } 3077 3078 /* Remove acknowledged frames from the retransmission queue. If our packet 3079 * is before the ack sequence we can discard it as it's confirmed to have 3080 * arrived at the other end. 3081 */ 3082 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3083 u32 prior_snd_una, int *acked, 3084 struct tcp_sacktag_state *sack, 3085 struct skb_mstamp *now) 3086 { 3087 const struct inet_connection_sock *icsk = inet_csk(sk); 3088 struct skb_mstamp first_ackt, last_ackt; 3089 struct tcp_sock *tp = tcp_sk(sk); 3090 u32 prior_sacked = tp->sacked_out; 3091 u32 reord = tp->packets_out; 3092 bool fully_acked = true; 3093 long sack_rtt_us = -1L; 3094 long seq_rtt_us = -1L; 3095 long ca_rtt_us = -1L; 3096 struct sk_buff *skb; 3097 u32 pkts_acked = 0; 3098 u32 last_in_flight = 0; 3099 bool rtt_update; 3100 int flag = 0; 3101 3102 first_ackt.v64 = 0; 3103 3104 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3105 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3106 u8 sacked = scb->sacked; 3107 u32 acked_pcount; 3108 3109 tcp_ack_tstamp(sk, skb, prior_snd_una); 3110 3111 /* Determine how many packets and what bytes were acked, tso and else */ 3112 if (after(scb->end_seq, tp->snd_una)) { 3113 if (tcp_skb_pcount(skb) == 1 || 3114 !after(tp->snd_una, scb->seq)) 3115 break; 3116 3117 acked_pcount = tcp_tso_acked(sk, skb); 3118 if (!acked_pcount) 3119 break; 3120 fully_acked = false; 3121 } else { 3122 /* Speedup tcp_unlink_write_queue() and next loop */ 3123 prefetchw(skb->next); 3124 acked_pcount = tcp_skb_pcount(skb); 3125 } 3126 3127 if (unlikely(sacked & TCPCB_RETRANS)) { 3128 if (sacked & TCPCB_SACKED_RETRANS) 3129 tp->retrans_out -= acked_pcount; 3130 flag |= FLAG_RETRANS_DATA_ACKED; 3131 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3132 last_ackt = skb->skb_mstamp; 3133 WARN_ON_ONCE(last_ackt.v64 == 0); 3134 if (!first_ackt.v64) 3135 first_ackt = last_ackt; 3136 3137 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3138 reord = min(pkts_acked, reord); 3139 if (!after(scb->end_seq, tp->high_seq)) 3140 flag |= FLAG_ORIG_SACK_ACKED; 3141 } 3142 3143 if (sacked & TCPCB_SACKED_ACKED) { 3144 tp->sacked_out -= acked_pcount; 3145 } else if (tcp_is_sack(tp)) { 3146 tp->delivered += acked_pcount; 3147 if (!tcp_skb_spurious_retrans(tp, skb)) 3148 tcp_rack_advance(tp, &skb->skb_mstamp, sacked); 3149 } 3150 if (sacked & TCPCB_LOST) 3151 tp->lost_out -= acked_pcount; 3152 3153 tp->packets_out -= acked_pcount; 3154 pkts_acked += acked_pcount; 3155 tcp_rate_skb_delivered(sk, skb, sack->rate); 3156 3157 /* Initial outgoing SYN's get put onto the write_queue 3158 * just like anything else we transmit. It is not 3159 * true data, and if we misinform our callers that 3160 * this ACK acks real data, we will erroneously exit 3161 * connection startup slow start one packet too 3162 * quickly. This is severely frowned upon behavior. 3163 */ 3164 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3165 flag |= FLAG_DATA_ACKED; 3166 } else { 3167 flag |= FLAG_SYN_ACKED; 3168 tp->retrans_stamp = 0; 3169 } 3170 3171 if (!fully_acked) 3172 break; 3173 3174 tcp_unlink_write_queue(skb, sk); 3175 sk_wmem_free_skb(sk, skb); 3176 if (unlikely(skb == tp->retransmit_skb_hint)) 3177 tp->retransmit_skb_hint = NULL; 3178 if (unlikely(skb == tp->lost_skb_hint)) 3179 tp->lost_skb_hint = NULL; 3180 } 3181 3182 if (!skb) 3183 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3184 3185 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3186 tp->snd_up = tp->snd_una; 3187 3188 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3189 flag |= FLAG_SACK_RENEGING; 3190 3191 if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3192 seq_rtt_us = skb_mstamp_us_delta(now, &first_ackt); 3193 ca_rtt_us = skb_mstamp_us_delta(now, &last_ackt); 3194 } 3195 if (sack->first_sackt.v64) { 3196 sack_rtt_us = skb_mstamp_us_delta(now, &sack->first_sackt); 3197 ca_rtt_us = skb_mstamp_us_delta(now, &sack->last_sackt); 3198 } 3199 sack->rate->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet, or -1 */ 3200 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3201 ca_rtt_us); 3202 3203 if (flag & FLAG_ACKED) { 3204 tcp_rearm_rto(sk); 3205 if (unlikely(icsk->icsk_mtup.probe_size && 3206 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3207 tcp_mtup_probe_success(sk); 3208 } 3209 3210 if (tcp_is_reno(tp)) { 3211 tcp_remove_reno_sacks(sk, pkts_acked); 3212 } else { 3213 int delta; 3214 3215 /* Non-retransmitted hole got filled? That's reordering */ 3216 if (reord < prior_fackets) 3217 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3218 3219 delta = tcp_is_fack(tp) ? pkts_acked : 3220 prior_sacked - tp->sacked_out; 3221 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3222 } 3223 3224 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3225 3226 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3227 sack_rtt_us > skb_mstamp_us_delta(now, &skb->skb_mstamp)) { 3228 /* Do not re-arm RTO if the sack RTT is measured from data sent 3229 * after when the head was last (re)transmitted. Otherwise the 3230 * timeout may continue to extend in loss recovery. 3231 */ 3232 tcp_rearm_rto(sk); 3233 } 3234 3235 if (icsk->icsk_ca_ops->pkts_acked) { 3236 struct ack_sample sample = { .pkts_acked = pkts_acked, 3237 .rtt_us = ca_rtt_us, 3238 .in_flight = last_in_flight }; 3239 3240 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3241 } 3242 3243 #if FASTRETRANS_DEBUG > 0 3244 WARN_ON((int)tp->sacked_out < 0); 3245 WARN_ON((int)tp->lost_out < 0); 3246 WARN_ON((int)tp->retrans_out < 0); 3247 if (!tp->packets_out && tcp_is_sack(tp)) { 3248 icsk = inet_csk(sk); 3249 if (tp->lost_out) { 3250 pr_debug("Leak l=%u %d\n", 3251 tp->lost_out, icsk->icsk_ca_state); 3252 tp->lost_out = 0; 3253 } 3254 if (tp->sacked_out) { 3255 pr_debug("Leak s=%u %d\n", 3256 tp->sacked_out, icsk->icsk_ca_state); 3257 tp->sacked_out = 0; 3258 } 3259 if (tp->retrans_out) { 3260 pr_debug("Leak r=%u %d\n", 3261 tp->retrans_out, icsk->icsk_ca_state); 3262 tp->retrans_out = 0; 3263 } 3264 } 3265 #endif 3266 *acked = pkts_acked; 3267 return flag; 3268 } 3269 3270 static void tcp_ack_probe(struct sock *sk) 3271 { 3272 const struct tcp_sock *tp = tcp_sk(sk); 3273 struct inet_connection_sock *icsk = inet_csk(sk); 3274 3275 /* Was it a usable window open? */ 3276 3277 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3278 icsk->icsk_backoff = 0; 3279 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3280 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3281 * This function is not for random using! 3282 */ 3283 } else { 3284 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3285 3286 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3287 when, TCP_RTO_MAX); 3288 } 3289 } 3290 3291 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3292 { 3293 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3294 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3295 } 3296 3297 /* Decide wheather to run the increase function of congestion control. */ 3298 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3299 { 3300 /* If reordering is high then always grow cwnd whenever data is 3301 * delivered regardless of its ordering. Otherwise stay conservative 3302 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3303 * new SACK or ECE mark may first advance cwnd here and later reduce 3304 * cwnd in tcp_fastretrans_alert() based on more states. 3305 */ 3306 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3307 return flag & FLAG_FORWARD_PROGRESS; 3308 3309 return flag & FLAG_DATA_ACKED; 3310 } 3311 3312 /* The "ultimate" congestion control function that aims to replace the rigid 3313 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3314 * It's called toward the end of processing an ACK with precise rate 3315 * information. All transmission or retransmission are delayed afterwards. 3316 */ 3317 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3318 int flag, const struct rate_sample *rs) 3319 { 3320 const struct inet_connection_sock *icsk = inet_csk(sk); 3321 3322 if (icsk->icsk_ca_ops->cong_control) { 3323 icsk->icsk_ca_ops->cong_control(sk, rs); 3324 return; 3325 } 3326 3327 if (tcp_in_cwnd_reduction(sk)) { 3328 /* Reduce cwnd if state mandates */ 3329 tcp_cwnd_reduction(sk, acked_sacked, flag); 3330 } else if (tcp_may_raise_cwnd(sk, flag)) { 3331 /* Advance cwnd if state allows */ 3332 tcp_cong_avoid(sk, ack, acked_sacked); 3333 } 3334 tcp_update_pacing_rate(sk); 3335 } 3336 3337 /* Check that window update is acceptable. 3338 * The function assumes that snd_una<=ack<=snd_next. 3339 */ 3340 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3341 const u32 ack, const u32 ack_seq, 3342 const u32 nwin) 3343 { 3344 return after(ack, tp->snd_una) || 3345 after(ack_seq, tp->snd_wl1) || 3346 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3347 } 3348 3349 /* If we update tp->snd_una, also update tp->bytes_acked */ 3350 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3351 { 3352 u32 delta = ack - tp->snd_una; 3353 3354 sock_owned_by_me((struct sock *)tp); 3355 tp->bytes_acked += delta; 3356 tp->snd_una = ack; 3357 } 3358 3359 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3360 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3361 { 3362 u32 delta = seq - tp->rcv_nxt; 3363 3364 sock_owned_by_me((struct sock *)tp); 3365 tp->bytes_received += delta; 3366 tp->rcv_nxt = seq; 3367 } 3368 3369 /* Update our send window. 3370 * 3371 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3372 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3373 */ 3374 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3375 u32 ack_seq) 3376 { 3377 struct tcp_sock *tp = tcp_sk(sk); 3378 int flag = 0; 3379 u32 nwin = ntohs(tcp_hdr(skb)->window); 3380 3381 if (likely(!tcp_hdr(skb)->syn)) 3382 nwin <<= tp->rx_opt.snd_wscale; 3383 3384 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3385 flag |= FLAG_WIN_UPDATE; 3386 tcp_update_wl(tp, ack_seq); 3387 3388 if (tp->snd_wnd != nwin) { 3389 tp->snd_wnd = nwin; 3390 3391 /* Note, it is the only place, where 3392 * fast path is recovered for sending TCP. 3393 */ 3394 tp->pred_flags = 0; 3395 tcp_fast_path_check(sk); 3396 3397 if (tcp_send_head(sk)) 3398 tcp_slow_start_after_idle_check(sk); 3399 3400 if (nwin > tp->max_window) { 3401 tp->max_window = nwin; 3402 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3403 } 3404 } 3405 } 3406 3407 tcp_snd_una_update(tp, ack); 3408 3409 return flag; 3410 } 3411 3412 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3413 u32 *last_oow_ack_time) 3414 { 3415 if (*last_oow_ack_time) { 3416 s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time); 3417 3418 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) { 3419 NET_INC_STATS(net, mib_idx); 3420 return true; /* rate-limited: don't send yet! */ 3421 } 3422 } 3423 3424 *last_oow_ack_time = tcp_time_stamp; 3425 3426 return false; /* not rate-limited: go ahead, send dupack now! */ 3427 } 3428 3429 /* Return true if we're currently rate-limiting out-of-window ACKs and 3430 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3431 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3432 * attacks that send repeated SYNs or ACKs for the same connection. To 3433 * do this, we do not send a duplicate SYNACK or ACK if the remote 3434 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3435 */ 3436 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3437 int mib_idx, u32 *last_oow_ack_time) 3438 { 3439 /* Data packets without SYNs are not likely part of an ACK loop. */ 3440 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3441 !tcp_hdr(skb)->syn) 3442 return false; 3443 3444 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3445 } 3446 3447 /* RFC 5961 7 [ACK Throttling] */ 3448 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3449 { 3450 /* unprotected vars, we dont care of overwrites */ 3451 static u32 challenge_timestamp; 3452 static unsigned int challenge_count; 3453 struct tcp_sock *tp = tcp_sk(sk); 3454 u32 count, now; 3455 3456 /* First check our per-socket dupack rate limit. */ 3457 if (__tcp_oow_rate_limited(sock_net(sk), 3458 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3459 &tp->last_oow_ack_time)) 3460 return; 3461 3462 /* Then check host-wide RFC 5961 rate limit. */ 3463 now = jiffies / HZ; 3464 if (now != challenge_timestamp) { 3465 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1; 3466 3467 challenge_timestamp = now; 3468 WRITE_ONCE(challenge_count, half + 3469 prandom_u32_max(sysctl_tcp_challenge_ack_limit)); 3470 } 3471 count = READ_ONCE(challenge_count); 3472 if (count > 0) { 3473 WRITE_ONCE(challenge_count, count - 1); 3474 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK); 3475 tcp_send_ack(sk); 3476 } 3477 } 3478 3479 static void tcp_store_ts_recent(struct tcp_sock *tp) 3480 { 3481 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3482 tp->rx_opt.ts_recent_stamp = get_seconds(); 3483 } 3484 3485 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3486 { 3487 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3488 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3489 * extra check below makes sure this can only happen 3490 * for pure ACK frames. -DaveM 3491 * 3492 * Not only, also it occurs for expired timestamps. 3493 */ 3494 3495 if (tcp_paws_check(&tp->rx_opt, 0)) 3496 tcp_store_ts_recent(tp); 3497 } 3498 } 3499 3500 /* This routine deals with acks during a TLP episode. 3501 * We mark the end of a TLP episode on receiving TLP dupack or when 3502 * ack is after tlp_high_seq. 3503 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3504 */ 3505 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3506 { 3507 struct tcp_sock *tp = tcp_sk(sk); 3508 3509 if (before(ack, tp->tlp_high_seq)) 3510 return; 3511 3512 if (flag & FLAG_DSACKING_ACK) { 3513 /* This DSACK means original and TLP probe arrived; no loss */ 3514 tp->tlp_high_seq = 0; 3515 } else if (after(ack, tp->tlp_high_seq)) { 3516 /* ACK advances: there was a loss, so reduce cwnd. Reset 3517 * tlp_high_seq in tcp_init_cwnd_reduction() 3518 */ 3519 tcp_init_cwnd_reduction(sk); 3520 tcp_set_ca_state(sk, TCP_CA_CWR); 3521 tcp_end_cwnd_reduction(sk); 3522 tcp_try_keep_open(sk); 3523 NET_INC_STATS(sock_net(sk), 3524 LINUX_MIB_TCPLOSSPROBERECOVERY); 3525 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3526 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3527 /* Pure dupack: original and TLP probe arrived; no loss */ 3528 tp->tlp_high_seq = 0; 3529 } 3530 } 3531 3532 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3533 { 3534 const struct inet_connection_sock *icsk = inet_csk(sk); 3535 3536 if (icsk->icsk_ca_ops->in_ack_event) 3537 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3538 } 3539 3540 /* Congestion control has updated the cwnd already. So if we're in 3541 * loss recovery then now we do any new sends (for FRTO) or 3542 * retransmits (for CA_Loss or CA_recovery) that make sense. 3543 */ 3544 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3545 { 3546 struct tcp_sock *tp = tcp_sk(sk); 3547 3548 if (rexmit == REXMIT_NONE) 3549 return; 3550 3551 if (unlikely(rexmit == 2)) { 3552 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3553 TCP_NAGLE_OFF); 3554 if (after(tp->snd_nxt, tp->high_seq)) 3555 return; 3556 tp->frto = 0; 3557 } 3558 tcp_xmit_retransmit_queue(sk); 3559 } 3560 3561 /* This routine deals with incoming acks, but not outgoing ones. */ 3562 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3563 { 3564 struct inet_connection_sock *icsk = inet_csk(sk); 3565 struct tcp_sock *tp = tcp_sk(sk); 3566 struct tcp_sacktag_state sack_state; 3567 struct rate_sample rs = { .prior_delivered = 0 }; 3568 u32 prior_snd_una = tp->snd_una; 3569 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3570 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3571 bool is_dupack = false; 3572 u32 prior_fackets; 3573 int prior_packets = tp->packets_out; 3574 u32 delivered = tp->delivered; 3575 u32 lost = tp->lost; 3576 int acked = 0; /* Number of packets newly acked */ 3577 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3578 struct skb_mstamp now; 3579 3580 sack_state.first_sackt.v64 = 0; 3581 sack_state.rate = &rs; 3582 3583 /* We very likely will need to access write queue head. */ 3584 prefetchw(sk->sk_write_queue.next); 3585 3586 /* If the ack is older than previous acks 3587 * then we can probably ignore it. 3588 */ 3589 if (before(ack, prior_snd_una)) { 3590 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3591 if (before(ack, prior_snd_una - tp->max_window)) { 3592 tcp_send_challenge_ack(sk, skb); 3593 return -1; 3594 } 3595 goto old_ack; 3596 } 3597 3598 /* If the ack includes data we haven't sent yet, discard 3599 * this segment (RFC793 Section 3.9). 3600 */ 3601 if (after(ack, tp->snd_nxt)) 3602 goto invalid_ack; 3603 3604 skb_mstamp_get(&now); 3605 3606 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 3607 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 3608 tcp_rearm_rto(sk); 3609 3610 if (after(ack, prior_snd_una)) { 3611 flag |= FLAG_SND_UNA_ADVANCED; 3612 icsk->icsk_retransmits = 0; 3613 } 3614 3615 prior_fackets = tp->fackets_out; 3616 rs.prior_in_flight = tcp_packets_in_flight(tp); 3617 3618 /* ts_recent update must be made after we are sure that the packet 3619 * is in window. 3620 */ 3621 if (flag & FLAG_UPDATE_TS_RECENT) 3622 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3623 3624 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3625 /* Window is constant, pure forward advance. 3626 * No more checks are required. 3627 * Note, we use the fact that SND.UNA>=SND.WL2. 3628 */ 3629 tcp_update_wl(tp, ack_seq); 3630 tcp_snd_una_update(tp, ack); 3631 flag |= FLAG_WIN_UPDATE; 3632 3633 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3634 3635 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3636 } else { 3637 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3638 3639 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3640 flag |= FLAG_DATA; 3641 else 3642 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3643 3644 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3645 3646 if (TCP_SKB_CB(skb)->sacked) 3647 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3648 &sack_state); 3649 3650 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3651 flag |= FLAG_ECE; 3652 ack_ev_flags |= CA_ACK_ECE; 3653 } 3654 3655 if (flag & FLAG_WIN_UPDATE) 3656 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3657 3658 tcp_in_ack_event(sk, ack_ev_flags); 3659 } 3660 3661 /* We passed data and got it acked, remove any soft error 3662 * log. Something worked... 3663 */ 3664 sk->sk_err_soft = 0; 3665 icsk->icsk_probes_out = 0; 3666 tp->rcv_tstamp = tcp_time_stamp; 3667 if (!prior_packets) 3668 goto no_queue; 3669 3670 /* See if we can take anything off of the retransmit queue. */ 3671 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked, 3672 &sack_state, &now); 3673 3674 if (tcp_ack_is_dubious(sk, flag)) { 3675 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3676 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3677 } 3678 if (tp->tlp_high_seq) 3679 tcp_process_tlp_ack(sk, ack, flag); 3680 3681 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) { 3682 struct dst_entry *dst = __sk_dst_get(sk); 3683 if (dst) 3684 dst_confirm(dst); 3685 } 3686 3687 if (icsk->icsk_pending == ICSK_TIME_RETRANS) 3688 tcp_schedule_loss_probe(sk); 3689 delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */ 3690 lost = tp->lost - lost; /* freshly marked lost */ 3691 tcp_rate_gen(sk, delivered, lost, &now, &rs); 3692 tcp_cong_control(sk, ack, delivered, flag, &rs); 3693 tcp_xmit_recovery(sk, rexmit); 3694 return 1; 3695 3696 no_queue: 3697 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3698 if (flag & FLAG_DSACKING_ACK) 3699 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3700 /* If this ack opens up a zero window, clear backoff. It was 3701 * being used to time the probes, and is probably far higher than 3702 * it needs to be for normal retransmission. 3703 */ 3704 if (tcp_send_head(sk)) 3705 tcp_ack_probe(sk); 3706 3707 if (tp->tlp_high_seq) 3708 tcp_process_tlp_ack(sk, ack, flag); 3709 return 1; 3710 3711 invalid_ack: 3712 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3713 return -1; 3714 3715 old_ack: 3716 /* If data was SACKed, tag it and see if we should send more data. 3717 * If data was DSACKed, see if we can undo a cwnd reduction. 3718 */ 3719 if (TCP_SKB_CB(skb)->sacked) { 3720 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3721 &sack_state); 3722 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3723 tcp_xmit_recovery(sk, rexmit); 3724 } 3725 3726 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3727 return 0; 3728 } 3729 3730 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3731 bool syn, struct tcp_fastopen_cookie *foc, 3732 bool exp_opt) 3733 { 3734 /* Valid only in SYN or SYN-ACK with an even length. */ 3735 if (!foc || !syn || len < 0 || (len & 1)) 3736 return; 3737 3738 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3739 len <= TCP_FASTOPEN_COOKIE_MAX) 3740 memcpy(foc->val, cookie, len); 3741 else if (len != 0) 3742 len = -1; 3743 foc->len = len; 3744 foc->exp = exp_opt; 3745 } 3746 3747 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3748 * But, this can also be called on packets in the established flow when 3749 * the fast version below fails. 3750 */ 3751 void tcp_parse_options(const struct sk_buff *skb, 3752 struct tcp_options_received *opt_rx, int estab, 3753 struct tcp_fastopen_cookie *foc) 3754 { 3755 const unsigned char *ptr; 3756 const struct tcphdr *th = tcp_hdr(skb); 3757 int length = (th->doff * 4) - sizeof(struct tcphdr); 3758 3759 ptr = (const unsigned char *)(th + 1); 3760 opt_rx->saw_tstamp = 0; 3761 3762 while (length > 0) { 3763 int opcode = *ptr++; 3764 int opsize; 3765 3766 switch (opcode) { 3767 case TCPOPT_EOL: 3768 return; 3769 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3770 length--; 3771 continue; 3772 default: 3773 opsize = *ptr++; 3774 if (opsize < 2) /* "silly options" */ 3775 return; 3776 if (opsize > length) 3777 return; /* don't parse partial options */ 3778 switch (opcode) { 3779 case TCPOPT_MSS: 3780 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3781 u16 in_mss = get_unaligned_be16(ptr); 3782 if (in_mss) { 3783 if (opt_rx->user_mss && 3784 opt_rx->user_mss < in_mss) 3785 in_mss = opt_rx->user_mss; 3786 opt_rx->mss_clamp = in_mss; 3787 } 3788 } 3789 break; 3790 case TCPOPT_WINDOW: 3791 if (opsize == TCPOLEN_WINDOW && th->syn && 3792 !estab && sysctl_tcp_window_scaling) { 3793 __u8 snd_wscale = *(__u8 *)ptr; 3794 opt_rx->wscale_ok = 1; 3795 if (snd_wscale > 14) { 3796 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n", 3797 __func__, 3798 snd_wscale); 3799 snd_wscale = 14; 3800 } 3801 opt_rx->snd_wscale = snd_wscale; 3802 } 3803 break; 3804 case TCPOPT_TIMESTAMP: 3805 if ((opsize == TCPOLEN_TIMESTAMP) && 3806 ((estab && opt_rx->tstamp_ok) || 3807 (!estab && sysctl_tcp_timestamps))) { 3808 opt_rx->saw_tstamp = 1; 3809 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3810 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3811 } 3812 break; 3813 case TCPOPT_SACK_PERM: 3814 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3815 !estab && sysctl_tcp_sack) { 3816 opt_rx->sack_ok = TCP_SACK_SEEN; 3817 tcp_sack_reset(opt_rx); 3818 } 3819 break; 3820 3821 case TCPOPT_SACK: 3822 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3823 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3824 opt_rx->sack_ok) { 3825 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3826 } 3827 break; 3828 #ifdef CONFIG_TCP_MD5SIG 3829 case TCPOPT_MD5SIG: 3830 /* 3831 * The MD5 Hash has already been 3832 * checked (see tcp_v{4,6}_do_rcv()). 3833 */ 3834 break; 3835 #endif 3836 case TCPOPT_FASTOPEN: 3837 tcp_parse_fastopen_option( 3838 opsize - TCPOLEN_FASTOPEN_BASE, 3839 ptr, th->syn, foc, false); 3840 break; 3841 3842 case TCPOPT_EXP: 3843 /* Fast Open option shares code 254 using a 3844 * 16 bits magic number. 3845 */ 3846 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3847 get_unaligned_be16(ptr) == 3848 TCPOPT_FASTOPEN_MAGIC) 3849 tcp_parse_fastopen_option(opsize - 3850 TCPOLEN_EXP_FASTOPEN_BASE, 3851 ptr + 2, th->syn, foc, true); 3852 break; 3853 3854 } 3855 ptr += opsize-2; 3856 length -= opsize; 3857 } 3858 } 3859 } 3860 EXPORT_SYMBOL(tcp_parse_options); 3861 3862 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3863 { 3864 const __be32 *ptr = (const __be32 *)(th + 1); 3865 3866 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3867 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3868 tp->rx_opt.saw_tstamp = 1; 3869 ++ptr; 3870 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3871 ++ptr; 3872 if (*ptr) 3873 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3874 else 3875 tp->rx_opt.rcv_tsecr = 0; 3876 return true; 3877 } 3878 return false; 3879 } 3880 3881 /* Fast parse options. This hopes to only see timestamps. 3882 * If it is wrong it falls back on tcp_parse_options(). 3883 */ 3884 static bool tcp_fast_parse_options(const struct sk_buff *skb, 3885 const struct tcphdr *th, struct tcp_sock *tp) 3886 { 3887 /* In the spirit of fast parsing, compare doff directly to constant 3888 * values. Because equality is used, short doff can be ignored here. 3889 */ 3890 if (th->doff == (sizeof(*th) / 4)) { 3891 tp->rx_opt.saw_tstamp = 0; 3892 return false; 3893 } else if (tp->rx_opt.tstamp_ok && 3894 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3895 if (tcp_parse_aligned_timestamp(tp, th)) 3896 return true; 3897 } 3898 3899 tcp_parse_options(skb, &tp->rx_opt, 1, NULL); 3900 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3901 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3902 3903 return true; 3904 } 3905 3906 #ifdef CONFIG_TCP_MD5SIG 3907 /* 3908 * Parse MD5 Signature option 3909 */ 3910 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3911 { 3912 int length = (th->doff << 2) - sizeof(*th); 3913 const u8 *ptr = (const u8 *)(th + 1); 3914 3915 /* If the TCP option is too short, we can short cut */ 3916 if (length < TCPOLEN_MD5SIG) 3917 return NULL; 3918 3919 while (length > 0) { 3920 int opcode = *ptr++; 3921 int opsize; 3922 3923 switch (opcode) { 3924 case TCPOPT_EOL: 3925 return NULL; 3926 case TCPOPT_NOP: 3927 length--; 3928 continue; 3929 default: 3930 opsize = *ptr++; 3931 if (opsize < 2 || opsize > length) 3932 return NULL; 3933 if (opcode == TCPOPT_MD5SIG) 3934 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3935 } 3936 ptr += opsize - 2; 3937 length -= opsize; 3938 } 3939 return NULL; 3940 } 3941 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3942 #endif 3943 3944 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3945 * 3946 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3947 * it can pass through stack. So, the following predicate verifies that 3948 * this segment is not used for anything but congestion avoidance or 3949 * fast retransmit. Moreover, we even are able to eliminate most of such 3950 * second order effects, if we apply some small "replay" window (~RTO) 3951 * to timestamp space. 3952 * 3953 * All these measures still do not guarantee that we reject wrapped ACKs 3954 * on networks with high bandwidth, when sequence space is recycled fastly, 3955 * but it guarantees that such events will be very rare and do not affect 3956 * connection seriously. This doesn't look nice, but alas, PAWS is really 3957 * buggy extension. 3958 * 3959 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3960 * states that events when retransmit arrives after original data are rare. 3961 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3962 * the biggest problem on large power networks even with minor reordering. 3963 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3964 * up to bandwidth of 18Gigabit/sec. 8) ] 3965 */ 3966 3967 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3968 { 3969 const struct tcp_sock *tp = tcp_sk(sk); 3970 const struct tcphdr *th = tcp_hdr(skb); 3971 u32 seq = TCP_SKB_CB(skb)->seq; 3972 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3973 3974 return (/* 1. Pure ACK with correct sequence number. */ 3975 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3976 3977 /* 2. ... and duplicate ACK. */ 3978 ack == tp->snd_una && 3979 3980 /* 3. ... and does not update window. */ 3981 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3982 3983 /* 4. ... and sits in replay window. */ 3984 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3985 } 3986 3987 static inline bool tcp_paws_discard(const struct sock *sk, 3988 const struct sk_buff *skb) 3989 { 3990 const struct tcp_sock *tp = tcp_sk(sk); 3991 3992 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3993 !tcp_disordered_ack(sk, skb); 3994 } 3995 3996 /* Check segment sequence number for validity. 3997 * 3998 * Segment controls are considered valid, if the segment 3999 * fits to the window after truncation to the window. Acceptability 4000 * of data (and SYN, FIN, of course) is checked separately. 4001 * See tcp_data_queue(), for example. 4002 * 4003 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4004 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4005 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4006 * (borrowed from freebsd) 4007 */ 4008 4009 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4010 { 4011 return !before(end_seq, tp->rcv_wup) && 4012 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4013 } 4014 4015 /* When we get a reset we do this. */ 4016 void tcp_reset(struct sock *sk) 4017 { 4018 /* We want the right error as BSD sees it (and indeed as we do). */ 4019 switch (sk->sk_state) { 4020 case TCP_SYN_SENT: 4021 sk->sk_err = ECONNREFUSED; 4022 break; 4023 case TCP_CLOSE_WAIT: 4024 sk->sk_err = EPIPE; 4025 break; 4026 case TCP_CLOSE: 4027 return; 4028 default: 4029 sk->sk_err = ECONNRESET; 4030 } 4031 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4032 smp_wmb(); 4033 4034 if (!sock_flag(sk, SOCK_DEAD)) 4035 sk->sk_error_report(sk); 4036 4037 tcp_done(sk); 4038 } 4039 4040 /* 4041 * Process the FIN bit. This now behaves as it is supposed to work 4042 * and the FIN takes effect when it is validly part of sequence 4043 * space. Not before when we get holes. 4044 * 4045 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4046 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4047 * TIME-WAIT) 4048 * 4049 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4050 * close and we go into CLOSING (and later onto TIME-WAIT) 4051 * 4052 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4053 */ 4054 void tcp_fin(struct sock *sk) 4055 { 4056 struct tcp_sock *tp = tcp_sk(sk); 4057 4058 inet_csk_schedule_ack(sk); 4059 4060 sk->sk_shutdown |= RCV_SHUTDOWN; 4061 sock_set_flag(sk, SOCK_DONE); 4062 4063 switch (sk->sk_state) { 4064 case TCP_SYN_RECV: 4065 case TCP_ESTABLISHED: 4066 /* Move to CLOSE_WAIT */ 4067 tcp_set_state(sk, TCP_CLOSE_WAIT); 4068 inet_csk(sk)->icsk_ack.pingpong = 1; 4069 break; 4070 4071 case TCP_CLOSE_WAIT: 4072 case TCP_CLOSING: 4073 /* Received a retransmission of the FIN, do 4074 * nothing. 4075 */ 4076 break; 4077 case TCP_LAST_ACK: 4078 /* RFC793: Remain in the LAST-ACK state. */ 4079 break; 4080 4081 case TCP_FIN_WAIT1: 4082 /* This case occurs when a simultaneous close 4083 * happens, we must ack the received FIN and 4084 * enter the CLOSING state. 4085 */ 4086 tcp_send_ack(sk); 4087 tcp_set_state(sk, TCP_CLOSING); 4088 break; 4089 case TCP_FIN_WAIT2: 4090 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4091 tcp_send_ack(sk); 4092 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4093 break; 4094 default: 4095 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4096 * cases we should never reach this piece of code. 4097 */ 4098 pr_err("%s: Impossible, sk->sk_state=%d\n", 4099 __func__, sk->sk_state); 4100 break; 4101 } 4102 4103 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4104 * Probably, we should reset in this case. For now drop them. 4105 */ 4106 skb_rbtree_purge(&tp->out_of_order_queue); 4107 if (tcp_is_sack(tp)) 4108 tcp_sack_reset(&tp->rx_opt); 4109 sk_mem_reclaim(sk); 4110 4111 if (!sock_flag(sk, SOCK_DEAD)) { 4112 sk->sk_state_change(sk); 4113 4114 /* Do not send POLL_HUP for half duplex close. */ 4115 if (sk->sk_shutdown == SHUTDOWN_MASK || 4116 sk->sk_state == TCP_CLOSE) 4117 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4118 else 4119 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4120 } 4121 } 4122 4123 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4124 u32 end_seq) 4125 { 4126 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4127 if (before(seq, sp->start_seq)) 4128 sp->start_seq = seq; 4129 if (after(end_seq, sp->end_seq)) 4130 sp->end_seq = end_seq; 4131 return true; 4132 } 4133 return false; 4134 } 4135 4136 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4137 { 4138 struct tcp_sock *tp = tcp_sk(sk); 4139 4140 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4141 int mib_idx; 4142 4143 if (before(seq, tp->rcv_nxt)) 4144 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4145 else 4146 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4147 4148 NET_INC_STATS(sock_net(sk), mib_idx); 4149 4150 tp->rx_opt.dsack = 1; 4151 tp->duplicate_sack[0].start_seq = seq; 4152 tp->duplicate_sack[0].end_seq = end_seq; 4153 } 4154 } 4155 4156 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4157 { 4158 struct tcp_sock *tp = tcp_sk(sk); 4159 4160 if (!tp->rx_opt.dsack) 4161 tcp_dsack_set(sk, seq, end_seq); 4162 else 4163 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4164 } 4165 4166 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4167 { 4168 struct tcp_sock *tp = tcp_sk(sk); 4169 4170 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4171 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4172 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4173 tcp_enter_quickack_mode(sk); 4174 4175 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4176 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4177 4178 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4179 end_seq = tp->rcv_nxt; 4180 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4181 } 4182 } 4183 4184 tcp_send_ack(sk); 4185 } 4186 4187 /* These routines update the SACK block as out-of-order packets arrive or 4188 * in-order packets close up the sequence space. 4189 */ 4190 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4191 { 4192 int this_sack; 4193 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4194 struct tcp_sack_block *swalk = sp + 1; 4195 4196 /* See if the recent change to the first SACK eats into 4197 * or hits the sequence space of other SACK blocks, if so coalesce. 4198 */ 4199 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4200 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4201 int i; 4202 4203 /* Zap SWALK, by moving every further SACK up by one slot. 4204 * Decrease num_sacks. 4205 */ 4206 tp->rx_opt.num_sacks--; 4207 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4208 sp[i] = sp[i + 1]; 4209 continue; 4210 } 4211 this_sack++, swalk++; 4212 } 4213 } 4214 4215 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4216 { 4217 struct tcp_sock *tp = tcp_sk(sk); 4218 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4219 int cur_sacks = tp->rx_opt.num_sacks; 4220 int this_sack; 4221 4222 if (!cur_sacks) 4223 goto new_sack; 4224 4225 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4226 if (tcp_sack_extend(sp, seq, end_seq)) { 4227 /* Rotate this_sack to the first one. */ 4228 for (; this_sack > 0; this_sack--, sp--) 4229 swap(*sp, *(sp - 1)); 4230 if (cur_sacks > 1) 4231 tcp_sack_maybe_coalesce(tp); 4232 return; 4233 } 4234 } 4235 4236 /* Could not find an adjacent existing SACK, build a new one, 4237 * put it at the front, and shift everyone else down. We 4238 * always know there is at least one SACK present already here. 4239 * 4240 * If the sack array is full, forget about the last one. 4241 */ 4242 if (this_sack >= TCP_NUM_SACKS) { 4243 this_sack--; 4244 tp->rx_opt.num_sacks--; 4245 sp--; 4246 } 4247 for (; this_sack > 0; this_sack--, sp--) 4248 *sp = *(sp - 1); 4249 4250 new_sack: 4251 /* Build the new head SACK, and we're done. */ 4252 sp->start_seq = seq; 4253 sp->end_seq = end_seq; 4254 tp->rx_opt.num_sacks++; 4255 } 4256 4257 /* RCV.NXT advances, some SACKs should be eaten. */ 4258 4259 static void tcp_sack_remove(struct tcp_sock *tp) 4260 { 4261 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4262 int num_sacks = tp->rx_opt.num_sacks; 4263 int this_sack; 4264 4265 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4266 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4267 tp->rx_opt.num_sacks = 0; 4268 return; 4269 } 4270 4271 for (this_sack = 0; this_sack < num_sacks;) { 4272 /* Check if the start of the sack is covered by RCV.NXT. */ 4273 if (!before(tp->rcv_nxt, sp->start_seq)) { 4274 int i; 4275 4276 /* RCV.NXT must cover all the block! */ 4277 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4278 4279 /* Zap this SACK, by moving forward any other SACKS. */ 4280 for (i = this_sack+1; i < num_sacks; i++) 4281 tp->selective_acks[i-1] = tp->selective_acks[i]; 4282 num_sacks--; 4283 continue; 4284 } 4285 this_sack++; 4286 sp++; 4287 } 4288 tp->rx_opt.num_sacks = num_sacks; 4289 } 4290 4291 /** 4292 * tcp_try_coalesce - try to merge skb to prior one 4293 * @sk: socket 4294 * @to: prior buffer 4295 * @from: buffer to add in queue 4296 * @fragstolen: pointer to boolean 4297 * 4298 * Before queueing skb @from after @to, try to merge them 4299 * to reduce overall memory use and queue lengths, if cost is small. 4300 * Packets in ofo or receive queues can stay a long time. 4301 * Better try to coalesce them right now to avoid future collapses. 4302 * Returns true if caller should free @from instead of queueing it 4303 */ 4304 static bool tcp_try_coalesce(struct sock *sk, 4305 struct sk_buff *to, 4306 struct sk_buff *from, 4307 bool *fragstolen) 4308 { 4309 int delta; 4310 4311 *fragstolen = false; 4312 4313 /* Its possible this segment overlaps with prior segment in queue */ 4314 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4315 return false; 4316 4317 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4318 return false; 4319 4320 atomic_add(delta, &sk->sk_rmem_alloc); 4321 sk_mem_charge(sk, delta); 4322 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4323 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4324 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4325 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4326 return true; 4327 } 4328 4329 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4330 { 4331 sk_drops_add(sk, skb); 4332 __kfree_skb(skb); 4333 } 4334 4335 /* This one checks to see if we can put data from the 4336 * out_of_order queue into the receive_queue. 4337 */ 4338 static void tcp_ofo_queue(struct sock *sk) 4339 { 4340 struct tcp_sock *tp = tcp_sk(sk); 4341 __u32 dsack_high = tp->rcv_nxt; 4342 bool fin, fragstolen, eaten; 4343 struct sk_buff *skb, *tail; 4344 struct rb_node *p; 4345 4346 p = rb_first(&tp->out_of_order_queue); 4347 while (p) { 4348 skb = rb_entry(p, struct sk_buff, rbnode); 4349 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4350 break; 4351 4352 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4353 __u32 dsack = dsack_high; 4354 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4355 dsack_high = TCP_SKB_CB(skb)->end_seq; 4356 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4357 } 4358 p = rb_next(p); 4359 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4360 4361 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4362 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4363 tcp_drop(sk, skb); 4364 continue; 4365 } 4366 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4367 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4368 TCP_SKB_CB(skb)->end_seq); 4369 4370 tail = skb_peek_tail(&sk->sk_receive_queue); 4371 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4372 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4373 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4374 if (!eaten) 4375 __skb_queue_tail(&sk->sk_receive_queue, skb); 4376 else 4377 kfree_skb_partial(skb, fragstolen); 4378 4379 if (unlikely(fin)) { 4380 tcp_fin(sk); 4381 /* tcp_fin() purges tp->out_of_order_queue, 4382 * so we must end this loop right now. 4383 */ 4384 break; 4385 } 4386 } 4387 } 4388 4389 static bool tcp_prune_ofo_queue(struct sock *sk); 4390 static int tcp_prune_queue(struct sock *sk); 4391 4392 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4393 unsigned int size) 4394 { 4395 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4396 !sk_rmem_schedule(sk, skb, size)) { 4397 4398 if (tcp_prune_queue(sk) < 0) 4399 return -1; 4400 4401 while (!sk_rmem_schedule(sk, skb, size)) { 4402 if (!tcp_prune_ofo_queue(sk)) 4403 return -1; 4404 } 4405 } 4406 return 0; 4407 } 4408 4409 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4410 { 4411 struct tcp_sock *tp = tcp_sk(sk); 4412 struct rb_node **p, *q, *parent; 4413 struct sk_buff *skb1; 4414 u32 seq, end_seq; 4415 bool fragstolen; 4416 4417 tcp_ecn_check_ce(tp, skb); 4418 4419 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4420 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4421 tcp_drop(sk, skb); 4422 return; 4423 } 4424 4425 /* Disable header prediction. */ 4426 tp->pred_flags = 0; 4427 inet_csk_schedule_ack(sk); 4428 4429 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4430 seq = TCP_SKB_CB(skb)->seq; 4431 end_seq = TCP_SKB_CB(skb)->end_seq; 4432 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4433 tp->rcv_nxt, seq, end_seq); 4434 4435 p = &tp->out_of_order_queue.rb_node; 4436 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4437 /* Initial out of order segment, build 1 SACK. */ 4438 if (tcp_is_sack(tp)) { 4439 tp->rx_opt.num_sacks = 1; 4440 tp->selective_acks[0].start_seq = seq; 4441 tp->selective_acks[0].end_seq = end_seq; 4442 } 4443 rb_link_node(&skb->rbnode, NULL, p); 4444 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4445 tp->ooo_last_skb = skb; 4446 goto end; 4447 } 4448 4449 /* In the typical case, we are adding an skb to the end of the list. 4450 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4451 */ 4452 if (tcp_try_coalesce(sk, tp->ooo_last_skb, skb, &fragstolen)) { 4453 coalesce_done: 4454 tcp_grow_window(sk, skb); 4455 kfree_skb_partial(skb, fragstolen); 4456 skb = NULL; 4457 goto add_sack; 4458 } 4459 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4460 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4461 parent = &tp->ooo_last_skb->rbnode; 4462 p = &parent->rb_right; 4463 goto insert; 4464 } 4465 4466 /* Find place to insert this segment. Handle overlaps on the way. */ 4467 parent = NULL; 4468 while (*p) { 4469 parent = *p; 4470 skb1 = rb_entry(parent, struct sk_buff, rbnode); 4471 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4472 p = &parent->rb_left; 4473 continue; 4474 } 4475 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4476 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4477 /* All the bits are present. Drop. */ 4478 NET_INC_STATS(sock_net(sk), 4479 LINUX_MIB_TCPOFOMERGE); 4480 __kfree_skb(skb); 4481 skb = NULL; 4482 tcp_dsack_set(sk, seq, end_seq); 4483 goto add_sack; 4484 } 4485 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4486 /* Partial overlap. */ 4487 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4488 } else { 4489 /* skb's seq == skb1's seq and skb covers skb1. 4490 * Replace skb1 with skb. 4491 */ 4492 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4493 &tp->out_of_order_queue); 4494 tcp_dsack_extend(sk, 4495 TCP_SKB_CB(skb1)->seq, 4496 TCP_SKB_CB(skb1)->end_seq); 4497 NET_INC_STATS(sock_net(sk), 4498 LINUX_MIB_TCPOFOMERGE); 4499 __kfree_skb(skb1); 4500 goto merge_right; 4501 } 4502 } else if (tcp_try_coalesce(sk, skb1, skb, &fragstolen)) { 4503 goto coalesce_done; 4504 } 4505 p = &parent->rb_right; 4506 } 4507 insert: 4508 /* Insert segment into RB tree. */ 4509 rb_link_node(&skb->rbnode, parent, p); 4510 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4511 4512 merge_right: 4513 /* Remove other segments covered by skb. */ 4514 while ((q = rb_next(&skb->rbnode)) != NULL) { 4515 skb1 = rb_entry(q, struct sk_buff, rbnode); 4516 4517 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4518 break; 4519 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4520 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4521 end_seq); 4522 break; 4523 } 4524 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4525 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4526 TCP_SKB_CB(skb1)->end_seq); 4527 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4528 tcp_drop(sk, skb1); 4529 } 4530 /* If there is no skb after us, we are the last_skb ! */ 4531 if (!q) 4532 tp->ooo_last_skb = skb; 4533 4534 add_sack: 4535 if (tcp_is_sack(tp)) 4536 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4537 end: 4538 if (skb) { 4539 tcp_grow_window(sk, skb); 4540 skb_set_owner_r(skb, sk); 4541 } 4542 } 4543 4544 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4545 bool *fragstolen) 4546 { 4547 int eaten; 4548 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4549 4550 __skb_pull(skb, hdrlen); 4551 eaten = (tail && 4552 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0; 4553 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4554 if (!eaten) { 4555 __skb_queue_tail(&sk->sk_receive_queue, skb); 4556 skb_set_owner_r(skb, sk); 4557 } 4558 return eaten; 4559 } 4560 4561 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4562 { 4563 struct sk_buff *skb; 4564 int err = -ENOMEM; 4565 int data_len = 0; 4566 bool fragstolen; 4567 4568 if (size == 0) 4569 return 0; 4570 4571 if (size > PAGE_SIZE) { 4572 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4573 4574 data_len = npages << PAGE_SHIFT; 4575 size = data_len + (size & ~PAGE_MASK); 4576 } 4577 skb = alloc_skb_with_frags(size - data_len, data_len, 4578 PAGE_ALLOC_COSTLY_ORDER, 4579 &err, sk->sk_allocation); 4580 if (!skb) 4581 goto err; 4582 4583 skb_put(skb, size - data_len); 4584 skb->data_len = data_len; 4585 skb->len = size; 4586 4587 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4588 goto err_free; 4589 4590 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4591 if (err) 4592 goto err_free; 4593 4594 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4595 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4596 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4597 4598 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4599 WARN_ON_ONCE(fragstolen); /* should not happen */ 4600 __kfree_skb(skb); 4601 } 4602 return size; 4603 4604 err_free: 4605 kfree_skb(skb); 4606 err: 4607 return err; 4608 4609 } 4610 4611 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4612 { 4613 struct tcp_sock *tp = tcp_sk(sk); 4614 bool fragstolen = false; 4615 int eaten = -1; 4616 4617 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4618 __kfree_skb(skb); 4619 return; 4620 } 4621 skb_dst_drop(skb); 4622 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4623 4624 tcp_ecn_accept_cwr(tp, skb); 4625 4626 tp->rx_opt.dsack = 0; 4627 4628 /* Queue data for delivery to the user. 4629 * Packets in sequence go to the receive queue. 4630 * Out of sequence packets to the out_of_order_queue. 4631 */ 4632 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4633 if (tcp_receive_window(tp) == 0) 4634 goto out_of_window; 4635 4636 /* Ok. In sequence. In window. */ 4637 if (tp->ucopy.task == current && 4638 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4639 sock_owned_by_user(sk) && !tp->urg_data) { 4640 int chunk = min_t(unsigned int, skb->len, 4641 tp->ucopy.len); 4642 4643 __set_current_state(TASK_RUNNING); 4644 4645 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) { 4646 tp->ucopy.len -= chunk; 4647 tp->copied_seq += chunk; 4648 eaten = (chunk == skb->len); 4649 tcp_rcv_space_adjust(sk); 4650 } 4651 } 4652 4653 if (eaten <= 0) { 4654 queue_and_out: 4655 if (eaten < 0) { 4656 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4657 sk_forced_mem_schedule(sk, skb->truesize); 4658 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4659 goto drop; 4660 } 4661 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4662 } 4663 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4664 if (skb->len) 4665 tcp_event_data_recv(sk, skb); 4666 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4667 tcp_fin(sk); 4668 4669 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4670 tcp_ofo_queue(sk); 4671 4672 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4673 * gap in queue is filled. 4674 */ 4675 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4676 inet_csk(sk)->icsk_ack.pingpong = 0; 4677 } 4678 4679 if (tp->rx_opt.num_sacks) 4680 tcp_sack_remove(tp); 4681 4682 tcp_fast_path_check(sk); 4683 4684 if (eaten > 0) 4685 kfree_skb_partial(skb, fragstolen); 4686 if (!sock_flag(sk, SOCK_DEAD)) 4687 sk->sk_data_ready(sk); 4688 return; 4689 } 4690 4691 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4692 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4693 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4694 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4695 4696 out_of_window: 4697 tcp_enter_quickack_mode(sk); 4698 inet_csk_schedule_ack(sk); 4699 drop: 4700 tcp_drop(sk, skb); 4701 return; 4702 } 4703 4704 /* Out of window. F.e. zero window probe. */ 4705 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4706 goto out_of_window; 4707 4708 tcp_enter_quickack_mode(sk); 4709 4710 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4711 /* Partial packet, seq < rcv_next < end_seq */ 4712 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4713 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4714 TCP_SKB_CB(skb)->end_seq); 4715 4716 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4717 4718 /* If window is closed, drop tail of packet. But after 4719 * remembering D-SACK for its head made in previous line. 4720 */ 4721 if (!tcp_receive_window(tp)) 4722 goto out_of_window; 4723 goto queue_and_out; 4724 } 4725 4726 tcp_data_queue_ofo(sk, skb); 4727 } 4728 4729 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4730 { 4731 if (list) 4732 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4733 4734 return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode); 4735 } 4736 4737 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4738 struct sk_buff_head *list, 4739 struct rb_root *root) 4740 { 4741 struct sk_buff *next = tcp_skb_next(skb, list); 4742 4743 if (list) 4744 __skb_unlink(skb, list); 4745 else 4746 rb_erase(&skb->rbnode, root); 4747 4748 __kfree_skb(skb); 4749 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4750 4751 return next; 4752 } 4753 4754 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4755 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4756 { 4757 struct rb_node **p = &root->rb_node; 4758 struct rb_node *parent = NULL; 4759 struct sk_buff *skb1; 4760 4761 while (*p) { 4762 parent = *p; 4763 skb1 = rb_entry(parent, struct sk_buff, rbnode); 4764 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4765 p = &parent->rb_left; 4766 else 4767 p = &parent->rb_right; 4768 } 4769 rb_link_node(&skb->rbnode, parent, p); 4770 rb_insert_color(&skb->rbnode, root); 4771 } 4772 4773 /* Collapse contiguous sequence of skbs head..tail with 4774 * sequence numbers start..end. 4775 * 4776 * If tail is NULL, this means until the end of the queue. 4777 * 4778 * Segments with FIN/SYN are not collapsed (only because this 4779 * simplifies code) 4780 */ 4781 static void 4782 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4783 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4784 { 4785 struct sk_buff *skb = head, *n; 4786 struct sk_buff_head tmp; 4787 bool end_of_skbs; 4788 4789 /* First, check that queue is collapsible and find 4790 * the point where collapsing can be useful. 4791 */ 4792 restart: 4793 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4794 n = tcp_skb_next(skb, list); 4795 4796 /* No new bits? It is possible on ofo queue. */ 4797 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4798 skb = tcp_collapse_one(sk, skb, list, root); 4799 if (!skb) 4800 break; 4801 goto restart; 4802 } 4803 4804 /* The first skb to collapse is: 4805 * - not SYN/FIN and 4806 * - bloated or contains data before "start" or 4807 * overlaps to the next one. 4808 */ 4809 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4810 (tcp_win_from_space(skb->truesize) > skb->len || 4811 before(TCP_SKB_CB(skb)->seq, start))) { 4812 end_of_skbs = false; 4813 break; 4814 } 4815 4816 if (n && n != tail && 4817 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4818 end_of_skbs = false; 4819 break; 4820 } 4821 4822 /* Decided to skip this, advance start seq. */ 4823 start = TCP_SKB_CB(skb)->end_seq; 4824 } 4825 if (end_of_skbs || 4826 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4827 return; 4828 4829 __skb_queue_head_init(&tmp); 4830 4831 while (before(start, end)) { 4832 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4833 struct sk_buff *nskb; 4834 4835 nskb = alloc_skb(copy, GFP_ATOMIC); 4836 if (!nskb) 4837 break; 4838 4839 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4840 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4841 if (list) 4842 __skb_queue_before(list, skb, nskb); 4843 else 4844 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 4845 skb_set_owner_r(nskb, sk); 4846 4847 /* Copy data, releasing collapsed skbs. */ 4848 while (copy > 0) { 4849 int offset = start - TCP_SKB_CB(skb)->seq; 4850 int size = TCP_SKB_CB(skb)->end_seq - start; 4851 4852 BUG_ON(offset < 0); 4853 if (size > 0) { 4854 size = min(copy, size); 4855 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4856 BUG(); 4857 TCP_SKB_CB(nskb)->end_seq += size; 4858 copy -= size; 4859 start += size; 4860 } 4861 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4862 skb = tcp_collapse_one(sk, skb, list, root); 4863 if (!skb || 4864 skb == tail || 4865 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4866 goto end; 4867 } 4868 } 4869 } 4870 end: 4871 skb_queue_walk_safe(&tmp, skb, n) 4872 tcp_rbtree_insert(root, skb); 4873 } 4874 4875 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4876 * and tcp_collapse() them until all the queue is collapsed. 4877 */ 4878 static void tcp_collapse_ofo_queue(struct sock *sk) 4879 { 4880 struct tcp_sock *tp = tcp_sk(sk); 4881 struct sk_buff *skb, *head; 4882 struct rb_node *p; 4883 u32 start, end; 4884 4885 p = rb_first(&tp->out_of_order_queue); 4886 skb = rb_entry_safe(p, struct sk_buff, rbnode); 4887 new_range: 4888 if (!skb) { 4889 p = rb_last(&tp->out_of_order_queue); 4890 /* Note: This is possible p is NULL here. We do not 4891 * use rb_entry_safe(), as ooo_last_skb is valid only 4892 * if rbtree is not empty. 4893 */ 4894 tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode); 4895 return; 4896 } 4897 start = TCP_SKB_CB(skb)->seq; 4898 end = TCP_SKB_CB(skb)->end_seq; 4899 4900 for (head = skb;;) { 4901 skb = tcp_skb_next(skb, NULL); 4902 4903 /* Range is terminated when we see a gap or when 4904 * we are at the queue end. 4905 */ 4906 if (!skb || 4907 after(TCP_SKB_CB(skb)->seq, end) || 4908 before(TCP_SKB_CB(skb)->end_seq, start)) { 4909 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 4910 head, skb, start, end); 4911 goto new_range; 4912 } 4913 4914 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 4915 start = TCP_SKB_CB(skb)->seq; 4916 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4917 end = TCP_SKB_CB(skb)->end_seq; 4918 } 4919 } 4920 4921 /* 4922 * Clean the out-of-order queue to make room. 4923 * We drop high sequences packets to : 4924 * 1) Let a chance for holes to be filled. 4925 * 2) not add too big latencies if thousands of packets sit there. 4926 * (But if application shrinks SO_RCVBUF, we could still end up 4927 * freeing whole queue here) 4928 * 4929 * Return true if queue has shrunk. 4930 */ 4931 static bool tcp_prune_ofo_queue(struct sock *sk) 4932 { 4933 struct tcp_sock *tp = tcp_sk(sk); 4934 struct rb_node *node, *prev; 4935 4936 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4937 return false; 4938 4939 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 4940 node = &tp->ooo_last_skb->rbnode; 4941 do { 4942 prev = rb_prev(node); 4943 rb_erase(node, &tp->out_of_order_queue); 4944 tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode)); 4945 sk_mem_reclaim(sk); 4946 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 4947 !tcp_under_memory_pressure(sk)) 4948 break; 4949 node = prev; 4950 } while (node); 4951 tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode); 4952 4953 /* Reset SACK state. A conforming SACK implementation will 4954 * do the same at a timeout based retransmit. When a connection 4955 * is in a sad state like this, we care only about integrity 4956 * of the connection not performance. 4957 */ 4958 if (tp->rx_opt.sack_ok) 4959 tcp_sack_reset(&tp->rx_opt); 4960 return true; 4961 } 4962 4963 /* Reduce allocated memory if we can, trying to get 4964 * the socket within its memory limits again. 4965 * 4966 * Return less than zero if we should start dropping frames 4967 * until the socket owning process reads some of the data 4968 * to stabilize the situation. 4969 */ 4970 static int tcp_prune_queue(struct sock *sk) 4971 { 4972 struct tcp_sock *tp = tcp_sk(sk); 4973 4974 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4975 4976 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 4977 4978 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4979 tcp_clamp_window(sk); 4980 else if (tcp_under_memory_pressure(sk)) 4981 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4982 4983 tcp_collapse_ofo_queue(sk); 4984 if (!skb_queue_empty(&sk->sk_receive_queue)) 4985 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 4986 skb_peek(&sk->sk_receive_queue), 4987 NULL, 4988 tp->copied_seq, tp->rcv_nxt); 4989 sk_mem_reclaim(sk); 4990 4991 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4992 return 0; 4993 4994 /* Collapsing did not help, destructive actions follow. 4995 * This must not ever occur. */ 4996 4997 tcp_prune_ofo_queue(sk); 4998 4999 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5000 return 0; 5001 5002 /* If we are really being abused, tell the caller to silently 5003 * drop receive data on the floor. It will get retransmitted 5004 * and hopefully then we'll have sufficient space. 5005 */ 5006 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5007 5008 /* Massive buffer overcommit. */ 5009 tp->pred_flags = 0; 5010 return -1; 5011 } 5012 5013 static bool tcp_should_expand_sndbuf(const struct sock *sk) 5014 { 5015 const struct tcp_sock *tp = tcp_sk(sk); 5016 5017 /* If the user specified a specific send buffer setting, do 5018 * not modify it. 5019 */ 5020 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5021 return false; 5022 5023 /* If we are under global TCP memory pressure, do not expand. */ 5024 if (tcp_under_memory_pressure(sk)) 5025 return false; 5026 5027 /* If we are under soft global TCP memory pressure, do not expand. */ 5028 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5029 return false; 5030 5031 /* If we filled the congestion window, do not expand. */ 5032 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5033 return false; 5034 5035 return true; 5036 } 5037 5038 /* When incoming ACK allowed to free some skb from write_queue, 5039 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5040 * on the exit from tcp input handler. 5041 * 5042 * PROBLEM: sndbuf expansion does not work well with largesend. 5043 */ 5044 static void tcp_new_space(struct sock *sk) 5045 { 5046 struct tcp_sock *tp = tcp_sk(sk); 5047 5048 if (tcp_should_expand_sndbuf(sk)) { 5049 tcp_sndbuf_expand(sk); 5050 tp->snd_cwnd_stamp = tcp_time_stamp; 5051 } 5052 5053 sk->sk_write_space(sk); 5054 } 5055 5056 static void tcp_check_space(struct sock *sk) 5057 { 5058 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5059 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5060 /* pairs with tcp_poll() */ 5061 smp_mb__after_atomic(); 5062 if (sk->sk_socket && 5063 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5064 tcp_new_space(sk); 5065 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5066 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5067 } 5068 } 5069 } 5070 5071 static inline void tcp_data_snd_check(struct sock *sk) 5072 { 5073 tcp_push_pending_frames(sk); 5074 tcp_check_space(sk); 5075 } 5076 5077 /* 5078 * Check if sending an ack is needed. 5079 */ 5080 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5081 { 5082 struct tcp_sock *tp = tcp_sk(sk); 5083 5084 /* More than one full frame received... */ 5085 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5086 /* ... and right edge of window advances far enough. 5087 * (tcp_recvmsg() will send ACK otherwise). Or... 5088 */ 5089 __tcp_select_window(sk) >= tp->rcv_wnd) || 5090 /* We ACK each frame or... */ 5091 tcp_in_quickack_mode(sk) || 5092 /* We have out of order data. */ 5093 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) { 5094 /* Then ack it now */ 5095 tcp_send_ack(sk); 5096 } else { 5097 /* Else, send delayed ack. */ 5098 tcp_send_delayed_ack(sk); 5099 } 5100 } 5101 5102 static inline void tcp_ack_snd_check(struct sock *sk) 5103 { 5104 if (!inet_csk_ack_scheduled(sk)) { 5105 /* We sent a data segment already. */ 5106 return; 5107 } 5108 __tcp_ack_snd_check(sk, 1); 5109 } 5110 5111 /* 5112 * This routine is only called when we have urgent data 5113 * signaled. Its the 'slow' part of tcp_urg. It could be 5114 * moved inline now as tcp_urg is only called from one 5115 * place. We handle URGent data wrong. We have to - as 5116 * BSD still doesn't use the correction from RFC961. 5117 * For 1003.1g we should support a new option TCP_STDURG to permit 5118 * either form (or just set the sysctl tcp_stdurg). 5119 */ 5120 5121 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5122 { 5123 struct tcp_sock *tp = tcp_sk(sk); 5124 u32 ptr = ntohs(th->urg_ptr); 5125 5126 if (ptr && !sysctl_tcp_stdurg) 5127 ptr--; 5128 ptr += ntohl(th->seq); 5129 5130 /* Ignore urgent data that we've already seen and read. */ 5131 if (after(tp->copied_seq, ptr)) 5132 return; 5133 5134 /* Do not replay urg ptr. 5135 * 5136 * NOTE: interesting situation not covered by specs. 5137 * Misbehaving sender may send urg ptr, pointing to segment, 5138 * which we already have in ofo queue. We are not able to fetch 5139 * such data and will stay in TCP_URG_NOTYET until will be eaten 5140 * by recvmsg(). Seems, we are not obliged to handle such wicked 5141 * situations. But it is worth to think about possibility of some 5142 * DoSes using some hypothetical application level deadlock. 5143 */ 5144 if (before(ptr, tp->rcv_nxt)) 5145 return; 5146 5147 /* Do we already have a newer (or duplicate) urgent pointer? */ 5148 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5149 return; 5150 5151 /* Tell the world about our new urgent pointer. */ 5152 sk_send_sigurg(sk); 5153 5154 /* We may be adding urgent data when the last byte read was 5155 * urgent. To do this requires some care. We cannot just ignore 5156 * tp->copied_seq since we would read the last urgent byte again 5157 * as data, nor can we alter copied_seq until this data arrives 5158 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5159 * 5160 * NOTE. Double Dutch. Rendering to plain English: author of comment 5161 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5162 * and expect that both A and B disappear from stream. This is _wrong_. 5163 * Though this happens in BSD with high probability, this is occasional. 5164 * Any application relying on this is buggy. Note also, that fix "works" 5165 * only in this artificial test. Insert some normal data between A and B and we will 5166 * decline of BSD again. Verdict: it is better to remove to trap 5167 * buggy users. 5168 */ 5169 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5170 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5171 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5172 tp->copied_seq++; 5173 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5174 __skb_unlink(skb, &sk->sk_receive_queue); 5175 __kfree_skb(skb); 5176 } 5177 } 5178 5179 tp->urg_data = TCP_URG_NOTYET; 5180 tp->urg_seq = ptr; 5181 5182 /* Disable header prediction. */ 5183 tp->pred_flags = 0; 5184 } 5185 5186 /* This is the 'fast' part of urgent handling. */ 5187 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5188 { 5189 struct tcp_sock *tp = tcp_sk(sk); 5190 5191 /* Check if we get a new urgent pointer - normally not. */ 5192 if (th->urg) 5193 tcp_check_urg(sk, th); 5194 5195 /* Do we wait for any urgent data? - normally not... */ 5196 if (tp->urg_data == TCP_URG_NOTYET) { 5197 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5198 th->syn; 5199 5200 /* Is the urgent pointer pointing into this packet? */ 5201 if (ptr < skb->len) { 5202 u8 tmp; 5203 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5204 BUG(); 5205 tp->urg_data = TCP_URG_VALID | tmp; 5206 if (!sock_flag(sk, SOCK_DEAD)) 5207 sk->sk_data_ready(sk); 5208 } 5209 } 5210 } 5211 5212 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 5213 { 5214 struct tcp_sock *tp = tcp_sk(sk); 5215 int chunk = skb->len - hlen; 5216 int err; 5217 5218 if (skb_csum_unnecessary(skb)) 5219 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk); 5220 else 5221 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg); 5222 5223 if (!err) { 5224 tp->ucopy.len -= chunk; 5225 tp->copied_seq += chunk; 5226 tcp_rcv_space_adjust(sk); 5227 } 5228 5229 return err; 5230 } 5231 5232 /* Does PAWS and seqno based validation of an incoming segment, flags will 5233 * play significant role here. 5234 */ 5235 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5236 const struct tcphdr *th, int syn_inerr) 5237 { 5238 struct tcp_sock *tp = tcp_sk(sk); 5239 bool rst_seq_match = false; 5240 5241 /* RFC1323: H1. Apply PAWS check first. */ 5242 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 5243 tcp_paws_discard(sk, skb)) { 5244 if (!th->rst) { 5245 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5246 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5247 LINUX_MIB_TCPACKSKIPPEDPAWS, 5248 &tp->last_oow_ack_time)) 5249 tcp_send_dupack(sk, skb); 5250 goto discard; 5251 } 5252 /* Reset is accepted even if it did not pass PAWS. */ 5253 } 5254 5255 /* Step 1: check sequence number */ 5256 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5257 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5258 * (RST) segments are validated by checking their SEQ-fields." 5259 * And page 69: "If an incoming segment is not acceptable, 5260 * an acknowledgment should be sent in reply (unless the RST 5261 * bit is set, if so drop the segment and return)". 5262 */ 5263 if (!th->rst) { 5264 if (th->syn) 5265 goto syn_challenge; 5266 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5267 LINUX_MIB_TCPACKSKIPPEDSEQ, 5268 &tp->last_oow_ack_time)) 5269 tcp_send_dupack(sk, skb); 5270 } 5271 goto discard; 5272 } 5273 5274 /* Step 2: check RST bit */ 5275 if (th->rst) { 5276 /* RFC 5961 3.2 (extend to match against SACK too if available): 5277 * If seq num matches RCV.NXT or the right-most SACK block, 5278 * then 5279 * RESET the connection 5280 * else 5281 * Send a challenge ACK 5282 */ 5283 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 5284 rst_seq_match = true; 5285 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5286 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5287 int max_sack = sp[0].end_seq; 5288 int this_sack; 5289 5290 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5291 ++this_sack) { 5292 max_sack = after(sp[this_sack].end_seq, 5293 max_sack) ? 5294 sp[this_sack].end_seq : max_sack; 5295 } 5296 5297 if (TCP_SKB_CB(skb)->seq == max_sack) 5298 rst_seq_match = true; 5299 } 5300 5301 if (rst_seq_match) 5302 tcp_reset(sk); 5303 else 5304 tcp_send_challenge_ack(sk, skb); 5305 goto discard; 5306 } 5307 5308 /* step 3: check security and precedence [ignored] */ 5309 5310 /* step 4: Check for a SYN 5311 * RFC 5961 4.2 : Send a challenge ack 5312 */ 5313 if (th->syn) { 5314 syn_challenge: 5315 if (syn_inerr) 5316 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5317 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5318 tcp_send_challenge_ack(sk, skb); 5319 goto discard; 5320 } 5321 5322 return true; 5323 5324 discard: 5325 tcp_drop(sk, skb); 5326 return false; 5327 } 5328 5329 /* 5330 * TCP receive function for the ESTABLISHED state. 5331 * 5332 * It is split into a fast path and a slow path. The fast path is 5333 * disabled when: 5334 * - A zero window was announced from us - zero window probing 5335 * is only handled properly in the slow path. 5336 * - Out of order segments arrived. 5337 * - Urgent data is expected. 5338 * - There is no buffer space left 5339 * - Unexpected TCP flags/window values/header lengths are received 5340 * (detected by checking the TCP header against pred_flags) 5341 * - Data is sent in both directions. Fast path only supports pure senders 5342 * or pure receivers (this means either the sequence number or the ack 5343 * value must stay constant) 5344 * - Unexpected TCP option. 5345 * 5346 * When these conditions are not satisfied it drops into a standard 5347 * receive procedure patterned after RFC793 to handle all cases. 5348 * The first three cases are guaranteed by proper pred_flags setting, 5349 * the rest is checked inline. Fast processing is turned on in 5350 * tcp_data_queue when everything is OK. 5351 */ 5352 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5353 const struct tcphdr *th, unsigned int len) 5354 { 5355 struct tcp_sock *tp = tcp_sk(sk); 5356 5357 if (unlikely(!sk->sk_rx_dst)) 5358 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5359 /* 5360 * Header prediction. 5361 * The code loosely follows the one in the famous 5362 * "30 instruction TCP receive" Van Jacobson mail. 5363 * 5364 * Van's trick is to deposit buffers into socket queue 5365 * on a device interrupt, to call tcp_recv function 5366 * on the receive process context and checksum and copy 5367 * the buffer to user space. smart... 5368 * 5369 * Our current scheme is not silly either but we take the 5370 * extra cost of the net_bh soft interrupt processing... 5371 * We do checksum and copy also but from device to kernel. 5372 */ 5373 5374 tp->rx_opt.saw_tstamp = 0; 5375 5376 /* pred_flags is 0xS?10 << 16 + snd_wnd 5377 * if header_prediction is to be made 5378 * 'S' will always be tp->tcp_header_len >> 2 5379 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5380 * turn it off (when there are holes in the receive 5381 * space for instance) 5382 * PSH flag is ignored. 5383 */ 5384 5385 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5386 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5387 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5388 int tcp_header_len = tp->tcp_header_len; 5389 5390 /* Timestamp header prediction: tcp_header_len 5391 * is automatically equal to th->doff*4 due to pred_flags 5392 * match. 5393 */ 5394 5395 /* Check timestamp */ 5396 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5397 /* No? Slow path! */ 5398 if (!tcp_parse_aligned_timestamp(tp, th)) 5399 goto slow_path; 5400 5401 /* If PAWS failed, check it more carefully in slow path */ 5402 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5403 goto slow_path; 5404 5405 /* DO NOT update ts_recent here, if checksum fails 5406 * and timestamp was corrupted part, it will result 5407 * in a hung connection since we will drop all 5408 * future packets due to the PAWS test. 5409 */ 5410 } 5411 5412 if (len <= tcp_header_len) { 5413 /* Bulk data transfer: sender */ 5414 if (len == tcp_header_len) { 5415 /* Predicted packet is in window by definition. 5416 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5417 * Hence, check seq<=rcv_wup reduces to: 5418 */ 5419 if (tcp_header_len == 5420 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5421 tp->rcv_nxt == tp->rcv_wup) 5422 tcp_store_ts_recent(tp); 5423 5424 /* We know that such packets are checksummed 5425 * on entry. 5426 */ 5427 tcp_ack(sk, skb, 0); 5428 __kfree_skb(skb); 5429 tcp_data_snd_check(sk); 5430 return; 5431 } else { /* Header too small */ 5432 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5433 goto discard; 5434 } 5435 } else { 5436 int eaten = 0; 5437 bool fragstolen = false; 5438 5439 if (tp->ucopy.task == current && 5440 tp->copied_seq == tp->rcv_nxt && 5441 len - tcp_header_len <= tp->ucopy.len && 5442 sock_owned_by_user(sk)) { 5443 __set_current_state(TASK_RUNNING); 5444 5445 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) { 5446 /* Predicted packet is in window by definition. 5447 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5448 * Hence, check seq<=rcv_wup reduces to: 5449 */ 5450 if (tcp_header_len == 5451 (sizeof(struct tcphdr) + 5452 TCPOLEN_TSTAMP_ALIGNED) && 5453 tp->rcv_nxt == tp->rcv_wup) 5454 tcp_store_ts_recent(tp); 5455 5456 tcp_rcv_rtt_measure_ts(sk, skb); 5457 5458 __skb_pull(skb, tcp_header_len); 5459 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 5460 NET_INC_STATS(sock_net(sk), 5461 LINUX_MIB_TCPHPHITSTOUSER); 5462 eaten = 1; 5463 } 5464 } 5465 if (!eaten) { 5466 if (tcp_checksum_complete(skb)) 5467 goto csum_error; 5468 5469 if ((int)skb->truesize > sk->sk_forward_alloc) 5470 goto step5; 5471 5472 /* Predicted packet is in window by definition. 5473 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5474 * Hence, check seq<=rcv_wup reduces to: 5475 */ 5476 if (tcp_header_len == 5477 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5478 tp->rcv_nxt == tp->rcv_wup) 5479 tcp_store_ts_recent(tp); 5480 5481 tcp_rcv_rtt_measure_ts(sk, skb); 5482 5483 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5484 5485 /* Bulk data transfer: receiver */ 5486 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5487 &fragstolen); 5488 } 5489 5490 tcp_event_data_recv(sk, skb); 5491 5492 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5493 /* Well, only one small jumplet in fast path... */ 5494 tcp_ack(sk, skb, FLAG_DATA); 5495 tcp_data_snd_check(sk); 5496 if (!inet_csk_ack_scheduled(sk)) 5497 goto no_ack; 5498 } 5499 5500 __tcp_ack_snd_check(sk, 0); 5501 no_ack: 5502 if (eaten) 5503 kfree_skb_partial(skb, fragstolen); 5504 sk->sk_data_ready(sk); 5505 return; 5506 } 5507 } 5508 5509 slow_path: 5510 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5511 goto csum_error; 5512 5513 if (!th->ack && !th->rst && !th->syn) 5514 goto discard; 5515 5516 /* 5517 * Standard slow path. 5518 */ 5519 5520 if (!tcp_validate_incoming(sk, skb, th, 1)) 5521 return; 5522 5523 step5: 5524 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5525 goto discard; 5526 5527 tcp_rcv_rtt_measure_ts(sk, skb); 5528 5529 /* Process urgent data. */ 5530 tcp_urg(sk, skb, th); 5531 5532 /* step 7: process the segment text */ 5533 tcp_data_queue(sk, skb); 5534 5535 tcp_data_snd_check(sk); 5536 tcp_ack_snd_check(sk); 5537 return; 5538 5539 csum_error: 5540 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5541 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5542 5543 discard: 5544 tcp_drop(sk, skb); 5545 } 5546 EXPORT_SYMBOL(tcp_rcv_established); 5547 5548 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5549 { 5550 struct tcp_sock *tp = tcp_sk(sk); 5551 struct inet_connection_sock *icsk = inet_csk(sk); 5552 5553 tcp_set_state(sk, TCP_ESTABLISHED); 5554 5555 if (skb) { 5556 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5557 security_inet_conn_established(sk, skb); 5558 } 5559 5560 /* Make sure socket is routed, for correct metrics. */ 5561 icsk->icsk_af_ops->rebuild_header(sk); 5562 5563 tcp_init_metrics(sk); 5564 5565 tcp_init_congestion_control(sk); 5566 5567 /* Prevent spurious tcp_cwnd_restart() on first data 5568 * packet. 5569 */ 5570 tp->lsndtime = tcp_time_stamp; 5571 5572 tcp_init_buffer_space(sk); 5573 5574 if (sock_flag(sk, SOCK_KEEPOPEN)) 5575 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5576 5577 if (!tp->rx_opt.snd_wscale) 5578 __tcp_fast_path_on(tp, tp->snd_wnd); 5579 else 5580 tp->pred_flags = 0; 5581 5582 if (!sock_flag(sk, SOCK_DEAD)) { 5583 sk->sk_state_change(sk); 5584 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5585 } 5586 } 5587 5588 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5589 struct tcp_fastopen_cookie *cookie) 5590 { 5591 struct tcp_sock *tp = tcp_sk(sk); 5592 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL; 5593 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5594 bool syn_drop = false; 5595 5596 if (mss == tp->rx_opt.user_mss) { 5597 struct tcp_options_received opt; 5598 5599 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5600 tcp_clear_options(&opt); 5601 opt.user_mss = opt.mss_clamp = 0; 5602 tcp_parse_options(synack, &opt, 0, NULL); 5603 mss = opt.mss_clamp; 5604 } 5605 5606 if (!tp->syn_fastopen) { 5607 /* Ignore an unsolicited cookie */ 5608 cookie->len = -1; 5609 } else if (tp->total_retrans) { 5610 /* SYN timed out and the SYN-ACK neither has a cookie nor 5611 * acknowledges data. Presumably the remote received only 5612 * the retransmitted (regular) SYNs: either the original 5613 * SYN-data or the corresponding SYN-ACK was dropped. 5614 */ 5615 syn_drop = (cookie->len < 0 && data); 5616 } else if (cookie->len < 0 && !tp->syn_data) { 5617 /* We requested a cookie but didn't get it. If we did not use 5618 * the (old) exp opt format then try so next time (try_exp=1). 5619 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5620 */ 5621 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5622 } 5623 5624 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5625 5626 if (data) { /* Retransmit unacked data in SYN */ 5627 tcp_for_write_queue_from(data, sk) { 5628 if (data == tcp_send_head(sk) || 5629 __tcp_retransmit_skb(sk, data, 1)) 5630 break; 5631 } 5632 tcp_rearm_rto(sk); 5633 NET_INC_STATS(sock_net(sk), 5634 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5635 return true; 5636 } 5637 tp->syn_data_acked = tp->syn_data; 5638 if (tp->syn_data_acked) 5639 NET_INC_STATS(sock_net(sk), 5640 LINUX_MIB_TCPFASTOPENACTIVE); 5641 5642 tcp_fastopen_add_skb(sk, synack); 5643 5644 return false; 5645 } 5646 5647 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5648 const struct tcphdr *th) 5649 { 5650 struct inet_connection_sock *icsk = inet_csk(sk); 5651 struct tcp_sock *tp = tcp_sk(sk); 5652 struct tcp_fastopen_cookie foc = { .len = -1 }; 5653 int saved_clamp = tp->rx_opt.mss_clamp; 5654 5655 tcp_parse_options(skb, &tp->rx_opt, 0, &foc); 5656 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5657 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5658 5659 if (th->ack) { 5660 /* rfc793: 5661 * "If the state is SYN-SENT then 5662 * first check the ACK bit 5663 * If the ACK bit is set 5664 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5665 * a reset (unless the RST bit is set, if so drop 5666 * the segment and return)" 5667 */ 5668 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5669 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5670 goto reset_and_undo; 5671 5672 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5673 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5674 tcp_time_stamp)) { 5675 NET_INC_STATS(sock_net(sk), 5676 LINUX_MIB_PAWSACTIVEREJECTED); 5677 goto reset_and_undo; 5678 } 5679 5680 /* Now ACK is acceptable. 5681 * 5682 * "If the RST bit is set 5683 * If the ACK was acceptable then signal the user "error: 5684 * connection reset", drop the segment, enter CLOSED state, 5685 * delete TCB, and return." 5686 */ 5687 5688 if (th->rst) { 5689 tcp_reset(sk); 5690 goto discard; 5691 } 5692 5693 /* rfc793: 5694 * "fifth, if neither of the SYN or RST bits is set then 5695 * drop the segment and return." 5696 * 5697 * See note below! 5698 * --ANK(990513) 5699 */ 5700 if (!th->syn) 5701 goto discard_and_undo; 5702 5703 /* rfc793: 5704 * "If the SYN bit is on ... 5705 * are acceptable then ... 5706 * (our SYN has been ACKed), change the connection 5707 * state to ESTABLISHED..." 5708 */ 5709 5710 tcp_ecn_rcv_synack(tp, th); 5711 5712 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5713 tcp_ack(sk, skb, FLAG_SLOWPATH); 5714 5715 /* Ok.. it's good. Set up sequence numbers and 5716 * move to established. 5717 */ 5718 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5719 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5720 5721 /* RFC1323: The window in SYN & SYN/ACK segments is 5722 * never scaled. 5723 */ 5724 tp->snd_wnd = ntohs(th->window); 5725 5726 if (!tp->rx_opt.wscale_ok) { 5727 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5728 tp->window_clamp = min(tp->window_clamp, 65535U); 5729 } 5730 5731 if (tp->rx_opt.saw_tstamp) { 5732 tp->rx_opt.tstamp_ok = 1; 5733 tp->tcp_header_len = 5734 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5735 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5736 tcp_store_ts_recent(tp); 5737 } else { 5738 tp->tcp_header_len = sizeof(struct tcphdr); 5739 } 5740 5741 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5742 tcp_enable_fack(tp); 5743 5744 tcp_mtup_init(sk); 5745 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5746 tcp_initialize_rcv_mss(sk); 5747 5748 /* Remember, tcp_poll() does not lock socket! 5749 * Change state from SYN-SENT only after copied_seq 5750 * is initialized. */ 5751 tp->copied_seq = tp->rcv_nxt; 5752 5753 smp_mb(); 5754 5755 tcp_finish_connect(sk, skb); 5756 5757 if ((tp->syn_fastopen || tp->syn_data) && 5758 tcp_rcv_fastopen_synack(sk, skb, &foc)) 5759 return -1; 5760 5761 if (sk->sk_write_pending || 5762 icsk->icsk_accept_queue.rskq_defer_accept || 5763 icsk->icsk_ack.pingpong) { 5764 /* Save one ACK. Data will be ready after 5765 * several ticks, if write_pending is set. 5766 * 5767 * It may be deleted, but with this feature tcpdumps 5768 * look so _wonderfully_ clever, that I was not able 5769 * to stand against the temptation 8) --ANK 5770 */ 5771 inet_csk_schedule_ack(sk); 5772 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5773 tcp_enter_quickack_mode(sk); 5774 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5775 TCP_DELACK_MAX, TCP_RTO_MAX); 5776 5777 discard: 5778 tcp_drop(sk, skb); 5779 return 0; 5780 } else { 5781 tcp_send_ack(sk); 5782 } 5783 return -1; 5784 } 5785 5786 /* No ACK in the segment */ 5787 5788 if (th->rst) { 5789 /* rfc793: 5790 * "If the RST bit is set 5791 * 5792 * Otherwise (no ACK) drop the segment and return." 5793 */ 5794 5795 goto discard_and_undo; 5796 } 5797 5798 /* PAWS check. */ 5799 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5800 tcp_paws_reject(&tp->rx_opt, 0)) 5801 goto discard_and_undo; 5802 5803 if (th->syn) { 5804 /* We see SYN without ACK. It is attempt of 5805 * simultaneous connect with crossed SYNs. 5806 * Particularly, it can be connect to self. 5807 */ 5808 tcp_set_state(sk, TCP_SYN_RECV); 5809 5810 if (tp->rx_opt.saw_tstamp) { 5811 tp->rx_opt.tstamp_ok = 1; 5812 tcp_store_ts_recent(tp); 5813 tp->tcp_header_len = 5814 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5815 } else { 5816 tp->tcp_header_len = sizeof(struct tcphdr); 5817 } 5818 5819 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5820 tp->copied_seq = tp->rcv_nxt; 5821 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5822 5823 /* RFC1323: The window in SYN & SYN/ACK segments is 5824 * never scaled. 5825 */ 5826 tp->snd_wnd = ntohs(th->window); 5827 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5828 tp->max_window = tp->snd_wnd; 5829 5830 tcp_ecn_rcv_syn(tp, th); 5831 5832 tcp_mtup_init(sk); 5833 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5834 tcp_initialize_rcv_mss(sk); 5835 5836 tcp_send_synack(sk); 5837 #if 0 5838 /* Note, we could accept data and URG from this segment. 5839 * There are no obstacles to make this (except that we must 5840 * either change tcp_recvmsg() to prevent it from returning data 5841 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5842 * 5843 * However, if we ignore data in ACKless segments sometimes, 5844 * we have no reasons to accept it sometimes. 5845 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5846 * is not flawless. So, discard packet for sanity. 5847 * Uncomment this return to process the data. 5848 */ 5849 return -1; 5850 #else 5851 goto discard; 5852 #endif 5853 } 5854 /* "fifth, if neither of the SYN or RST bits is set then 5855 * drop the segment and return." 5856 */ 5857 5858 discard_and_undo: 5859 tcp_clear_options(&tp->rx_opt); 5860 tp->rx_opt.mss_clamp = saved_clamp; 5861 goto discard; 5862 5863 reset_and_undo: 5864 tcp_clear_options(&tp->rx_opt); 5865 tp->rx_opt.mss_clamp = saved_clamp; 5866 return 1; 5867 } 5868 5869 /* 5870 * This function implements the receiving procedure of RFC 793 for 5871 * all states except ESTABLISHED and TIME_WAIT. 5872 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5873 * address independent. 5874 */ 5875 5876 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 5877 { 5878 struct tcp_sock *tp = tcp_sk(sk); 5879 struct inet_connection_sock *icsk = inet_csk(sk); 5880 const struct tcphdr *th = tcp_hdr(skb); 5881 struct request_sock *req; 5882 int queued = 0; 5883 bool acceptable; 5884 5885 switch (sk->sk_state) { 5886 case TCP_CLOSE: 5887 goto discard; 5888 5889 case TCP_LISTEN: 5890 if (th->ack) 5891 return 1; 5892 5893 if (th->rst) 5894 goto discard; 5895 5896 if (th->syn) { 5897 if (th->fin) 5898 goto discard; 5899 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 5900 return 1; 5901 5902 consume_skb(skb); 5903 return 0; 5904 } 5905 goto discard; 5906 5907 case TCP_SYN_SENT: 5908 tp->rx_opt.saw_tstamp = 0; 5909 queued = tcp_rcv_synsent_state_process(sk, skb, th); 5910 if (queued >= 0) 5911 return queued; 5912 5913 /* Do step6 onward by hand. */ 5914 tcp_urg(sk, skb, th); 5915 __kfree_skb(skb); 5916 tcp_data_snd_check(sk); 5917 return 0; 5918 } 5919 5920 tp->rx_opt.saw_tstamp = 0; 5921 req = tp->fastopen_rsk; 5922 if (req) { 5923 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5924 sk->sk_state != TCP_FIN_WAIT1); 5925 5926 if (!tcp_check_req(sk, skb, req, true)) 5927 goto discard; 5928 } 5929 5930 if (!th->ack && !th->rst && !th->syn) 5931 goto discard; 5932 5933 if (!tcp_validate_incoming(sk, skb, th, 0)) 5934 return 0; 5935 5936 /* step 5: check the ACK field */ 5937 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5938 FLAG_UPDATE_TS_RECENT) > 0; 5939 5940 switch (sk->sk_state) { 5941 case TCP_SYN_RECV: 5942 if (!acceptable) 5943 return 1; 5944 5945 if (!tp->srtt_us) 5946 tcp_synack_rtt_meas(sk, req); 5947 5948 /* Once we leave TCP_SYN_RECV, we no longer need req 5949 * so release it. 5950 */ 5951 if (req) { 5952 inet_csk(sk)->icsk_retransmits = 0; 5953 reqsk_fastopen_remove(sk, req, false); 5954 } else { 5955 /* Make sure socket is routed, for correct metrics. */ 5956 icsk->icsk_af_ops->rebuild_header(sk); 5957 tcp_init_congestion_control(sk); 5958 5959 tcp_mtup_init(sk); 5960 tp->copied_seq = tp->rcv_nxt; 5961 tcp_init_buffer_space(sk); 5962 } 5963 smp_mb(); 5964 tcp_set_state(sk, TCP_ESTABLISHED); 5965 sk->sk_state_change(sk); 5966 5967 /* Note, that this wakeup is only for marginal crossed SYN case. 5968 * Passively open sockets are not waked up, because 5969 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 5970 */ 5971 if (sk->sk_socket) 5972 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5973 5974 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5975 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 5976 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5977 5978 if (tp->rx_opt.tstamp_ok) 5979 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5980 5981 if (req) { 5982 /* Re-arm the timer because data may have been sent out. 5983 * This is similar to the regular data transmission case 5984 * when new data has just been ack'ed. 5985 * 5986 * (TFO) - we could try to be more aggressive and 5987 * retransmitting any data sooner based on when they 5988 * are sent out. 5989 */ 5990 tcp_rearm_rto(sk); 5991 } else 5992 tcp_init_metrics(sk); 5993 5994 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 5995 tcp_update_pacing_rate(sk); 5996 5997 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 5998 tp->lsndtime = tcp_time_stamp; 5999 6000 tcp_initialize_rcv_mss(sk); 6001 tcp_fast_path_on(tp); 6002 break; 6003 6004 case TCP_FIN_WAIT1: { 6005 struct dst_entry *dst; 6006 int tmo; 6007 6008 /* If we enter the TCP_FIN_WAIT1 state and we are a 6009 * Fast Open socket and this is the first acceptable 6010 * ACK we have received, this would have acknowledged 6011 * our SYNACK so stop the SYNACK timer. 6012 */ 6013 if (req) { 6014 /* Return RST if ack_seq is invalid. 6015 * Note that RFC793 only says to generate a 6016 * DUPACK for it but for TCP Fast Open it seems 6017 * better to treat this case like TCP_SYN_RECV 6018 * above. 6019 */ 6020 if (!acceptable) 6021 return 1; 6022 /* We no longer need the request sock. */ 6023 reqsk_fastopen_remove(sk, req, false); 6024 tcp_rearm_rto(sk); 6025 } 6026 if (tp->snd_una != tp->write_seq) 6027 break; 6028 6029 tcp_set_state(sk, TCP_FIN_WAIT2); 6030 sk->sk_shutdown |= SEND_SHUTDOWN; 6031 6032 dst = __sk_dst_get(sk); 6033 if (dst) 6034 dst_confirm(dst); 6035 6036 if (!sock_flag(sk, SOCK_DEAD)) { 6037 /* Wake up lingering close() */ 6038 sk->sk_state_change(sk); 6039 break; 6040 } 6041 6042 if (tp->linger2 < 0 || 6043 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6044 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 6045 tcp_done(sk); 6046 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6047 return 1; 6048 } 6049 6050 tmo = tcp_fin_time(sk); 6051 if (tmo > TCP_TIMEWAIT_LEN) { 6052 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6053 } else if (th->fin || sock_owned_by_user(sk)) { 6054 /* Bad case. We could lose such FIN otherwise. 6055 * It is not a big problem, but it looks confusing 6056 * and not so rare event. We still can lose it now, 6057 * if it spins in bh_lock_sock(), but it is really 6058 * marginal case. 6059 */ 6060 inet_csk_reset_keepalive_timer(sk, tmo); 6061 } else { 6062 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6063 goto discard; 6064 } 6065 break; 6066 } 6067 6068 case TCP_CLOSING: 6069 if (tp->snd_una == tp->write_seq) { 6070 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6071 goto discard; 6072 } 6073 break; 6074 6075 case TCP_LAST_ACK: 6076 if (tp->snd_una == tp->write_seq) { 6077 tcp_update_metrics(sk); 6078 tcp_done(sk); 6079 goto discard; 6080 } 6081 break; 6082 } 6083 6084 /* step 6: check the URG bit */ 6085 tcp_urg(sk, skb, th); 6086 6087 /* step 7: process the segment text */ 6088 switch (sk->sk_state) { 6089 case TCP_CLOSE_WAIT: 6090 case TCP_CLOSING: 6091 case TCP_LAST_ACK: 6092 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6093 break; 6094 case TCP_FIN_WAIT1: 6095 case TCP_FIN_WAIT2: 6096 /* RFC 793 says to queue data in these states, 6097 * RFC 1122 says we MUST send a reset. 6098 * BSD 4.4 also does reset. 6099 */ 6100 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6101 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6102 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6103 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6104 tcp_reset(sk); 6105 return 1; 6106 } 6107 } 6108 /* Fall through */ 6109 case TCP_ESTABLISHED: 6110 tcp_data_queue(sk, skb); 6111 queued = 1; 6112 break; 6113 } 6114 6115 /* tcp_data could move socket to TIME-WAIT */ 6116 if (sk->sk_state != TCP_CLOSE) { 6117 tcp_data_snd_check(sk); 6118 tcp_ack_snd_check(sk); 6119 } 6120 6121 if (!queued) { 6122 discard: 6123 tcp_drop(sk, skb); 6124 } 6125 return 0; 6126 } 6127 EXPORT_SYMBOL(tcp_rcv_state_process); 6128 6129 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6130 { 6131 struct inet_request_sock *ireq = inet_rsk(req); 6132 6133 if (family == AF_INET) 6134 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6135 &ireq->ir_rmt_addr, port); 6136 #if IS_ENABLED(CONFIG_IPV6) 6137 else if (family == AF_INET6) 6138 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6139 &ireq->ir_v6_rmt_addr, port); 6140 #endif 6141 } 6142 6143 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6144 * 6145 * If we receive a SYN packet with these bits set, it means a 6146 * network is playing bad games with TOS bits. In order to 6147 * avoid possible false congestion notifications, we disable 6148 * TCP ECN negotiation. 6149 * 6150 * Exception: tcp_ca wants ECN. This is required for DCTCP 6151 * congestion control: Linux DCTCP asserts ECT on all packets, 6152 * including SYN, which is most optimal solution; however, 6153 * others, such as FreeBSD do not. 6154 */ 6155 static void tcp_ecn_create_request(struct request_sock *req, 6156 const struct sk_buff *skb, 6157 const struct sock *listen_sk, 6158 const struct dst_entry *dst) 6159 { 6160 const struct tcphdr *th = tcp_hdr(skb); 6161 const struct net *net = sock_net(listen_sk); 6162 bool th_ecn = th->ece && th->cwr; 6163 bool ect, ecn_ok; 6164 u32 ecn_ok_dst; 6165 6166 if (!th_ecn) 6167 return; 6168 6169 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6170 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6171 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6172 6173 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6174 (ecn_ok_dst & DST_FEATURE_ECN_CA)) 6175 inet_rsk(req)->ecn_ok = 1; 6176 } 6177 6178 static void tcp_openreq_init(struct request_sock *req, 6179 const struct tcp_options_received *rx_opt, 6180 struct sk_buff *skb, const struct sock *sk) 6181 { 6182 struct inet_request_sock *ireq = inet_rsk(req); 6183 6184 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6185 req->cookie_ts = 0; 6186 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6187 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6188 skb_mstamp_get(&tcp_rsk(req)->snt_synack); 6189 tcp_rsk(req)->last_oow_ack_time = 0; 6190 req->mss = rx_opt->mss_clamp; 6191 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6192 ireq->tstamp_ok = rx_opt->tstamp_ok; 6193 ireq->sack_ok = rx_opt->sack_ok; 6194 ireq->snd_wscale = rx_opt->snd_wscale; 6195 ireq->wscale_ok = rx_opt->wscale_ok; 6196 ireq->acked = 0; 6197 ireq->ecn_ok = 0; 6198 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6199 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6200 ireq->ir_mark = inet_request_mark(sk, skb); 6201 } 6202 6203 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6204 struct sock *sk_listener, 6205 bool attach_listener) 6206 { 6207 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6208 attach_listener); 6209 6210 if (req) { 6211 struct inet_request_sock *ireq = inet_rsk(req); 6212 6213 kmemcheck_annotate_bitfield(ireq, flags); 6214 ireq->opt = NULL; 6215 #if IS_ENABLED(CONFIG_IPV6) 6216 ireq->pktopts = NULL; 6217 #endif 6218 atomic64_set(&ireq->ir_cookie, 0); 6219 ireq->ireq_state = TCP_NEW_SYN_RECV; 6220 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6221 ireq->ireq_family = sk_listener->sk_family; 6222 } 6223 6224 return req; 6225 } 6226 EXPORT_SYMBOL(inet_reqsk_alloc); 6227 6228 /* 6229 * Return true if a syncookie should be sent 6230 */ 6231 static bool tcp_syn_flood_action(const struct sock *sk, 6232 const struct sk_buff *skb, 6233 const char *proto) 6234 { 6235 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6236 const char *msg = "Dropping request"; 6237 bool want_cookie = false; 6238 struct net *net = sock_net(sk); 6239 6240 #ifdef CONFIG_SYN_COOKIES 6241 if (net->ipv4.sysctl_tcp_syncookies) { 6242 msg = "Sending cookies"; 6243 want_cookie = true; 6244 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6245 } else 6246 #endif 6247 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6248 6249 if (!queue->synflood_warned && 6250 net->ipv4.sysctl_tcp_syncookies != 2 && 6251 xchg(&queue->synflood_warned, 1) == 0) 6252 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6253 proto, ntohs(tcp_hdr(skb)->dest), msg); 6254 6255 return want_cookie; 6256 } 6257 6258 static void tcp_reqsk_record_syn(const struct sock *sk, 6259 struct request_sock *req, 6260 const struct sk_buff *skb) 6261 { 6262 if (tcp_sk(sk)->save_syn) { 6263 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6264 u32 *copy; 6265 6266 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6267 if (copy) { 6268 copy[0] = len; 6269 memcpy(©[1], skb_network_header(skb), len); 6270 req->saved_syn = copy; 6271 } 6272 } 6273 } 6274 6275 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6276 const struct tcp_request_sock_ops *af_ops, 6277 struct sock *sk, struct sk_buff *skb) 6278 { 6279 struct tcp_fastopen_cookie foc = { .len = -1 }; 6280 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6281 struct tcp_options_received tmp_opt; 6282 struct tcp_sock *tp = tcp_sk(sk); 6283 struct net *net = sock_net(sk); 6284 struct sock *fastopen_sk = NULL; 6285 struct dst_entry *dst = NULL; 6286 struct request_sock *req; 6287 bool want_cookie = false; 6288 struct flowi fl; 6289 6290 /* TW buckets are converted to open requests without 6291 * limitations, they conserve resources and peer is 6292 * evidently real one. 6293 */ 6294 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6295 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6296 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6297 if (!want_cookie) 6298 goto drop; 6299 } 6300 6301 if (sk_acceptq_is_full(sk)) { 6302 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6303 goto drop; 6304 } 6305 6306 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6307 if (!req) 6308 goto drop; 6309 6310 tcp_rsk(req)->af_specific = af_ops; 6311 tcp_rsk(req)->ts_off = 0; 6312 6313 tcp_clear_options(&tmp_opt); 6314 tmp_opt.mss_clamp = af_ops->mss_clamp; 6315 tmp_opt.user_mss = tp->rx_opt.user_mss; 6316 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc); 6317 6318 if (want_cookie && !tmp_opt.saw_tstamp) 6319 tcp_clear_options(&tmp_opt); 6320 6321 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6322 tcp_openreq_init(req, &tmp_opt, skb, sk); 6323 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6324 6325 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6326 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6327 6328 af_ops->init_req(req, sk, skb); 6329 6330 if (security_inet_conn_request(sk, skb, req)) 6331 goto drop_and_free; 6332 6333 if (isn && tmp_opt.tstamp_ok) 6334 af_ops->init_seq(skb, &tcp_rsk(req)->ts_off); 6335 6336 if (!want_cookie && !isn) { 6337 /* VJ's idea. We save last timestamp seen 6338 * from the destination in peer table, when entering 6339 * state TIME-WAIT, and check against it before 6340 * accepting new connection request. 6341 * 6342 * If "isn" is not zero, this request hit alive 6343 * timewait bucket, so that all the necessary checks 6344 * are made in the function processing timewait state. 6345 */ 6346 if (tcp_death_row.sysctl_tw_recycle) { 6347 bool strict; 6348 6349 dst = af_ops->route_req(sk, &fl, req, &strict); 6350 6351 if (dst && strict && 6352 !tcp_peer_is_proven(req, dst, true, 6353 tmp_opt.saw_tstamp)) { 6354 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED); 6355 goto drop_and_release; 6356 } 6357 } 6358 /* Kill the following clause, if you dislike this way. */ 6359 else if (!net->ipv4.sysctl_tcp_syncookies && 6360 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6361 (sysctl_max_syn_backlog >> 2)) && 6362 !tcp_peer_is_proven(req, dst, false, 6363 tmp_opt.saw_tstamp)) { 6364 /* Without syncookies last quarter of 6365 * backlog is filled with destinations, 6366 * proven to be alive. 6367 * It means that we continue to communicate 6368 * to destinations, already remembered 6369 * to the moment of synflood. 6370 */ 6371 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6372 rsk_ops->family); 6373 goto drop_and_release; 6374 } 6375 6376 isn = af_ops->init_seq(skb, &tcp_rsk(req)->ts_off); 6377 } 6378 if (!dst) { 6379 dst = af_ops->route_req(sk, &fl, req, NULL); 6380 if (!dst) 6381 goto drop_and_free; 6382 } 6383 6384 tcp_ecn_create_request(req, skb, sk, dst); 6385 6386 if (want_cookie) { 6387 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6388 tcp_rsk(req)->ts_off = 0; 6389 req->cookie_ts = tmp_opt.tstamp_ok; 6390 if (!tmp_opt.tstamp_ok) 6391 inet_rsk(req)->ecn_ok = 0; 6392 } 6393 6394 tcp_rsk(req)->snt_isn = isn; 6395 tcp_rsk(req)->txhash = net_tx_rndhash(); 6396 tcp_openreq_init_rwin(req, sk, dst); 6397 if (!want_cookie) { 6398 tcp_reqsk_record_syn(sk, req, skb); 6399 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6400 } 6401 if (fastopen_sk) { 6402 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6403 &foc, TCP_SYNACK_FASTOPEN); 6404 /* Add the child socket directly into the accept queue */ 6405 inet_csk_reqsk_queue_add(sk, req, fastopen_sk); 6406 sk->sk_data_ready(sk); 6407 bh_unlock_sock(fastopen_sk); 6408 sock_put(fastopen_sk); 6409 } else { 6410 tcp_rsk(req)->tfo_listener = false; 6411 if (!want_cookie) 6412 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT); 6413 af_ops->send_synack(sk, dst, &fl, req, &foc, 6414 !want_cookie ? TCP_SYNACK_NORMAL : 6415 TCP_SYNACK_COOKIE); 6416 if (want_cookie) { 6417 reqsk_free(req); 6418 return 0; 6419 } 6420 } 6421 reqsk_put(req); 6422 return 0; 6423 6424 drop_and_release: 6425 dst_release(dst); 6426 drop_and_free: 6427 reqsk_free(req); 6428 drop: 6429 tcp_listendrop(sk); 6430 return 0; 6431 } 6432 EXPORT_SYMBOL(tcp_conn_request); 6433