xref: /openbmc/linux/net/ipv4/tcp_input.c (revision c51d39010a1bccc9c1294e2d7c00005aefeb2b5c)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #define pr_fmt(fmt) "TCP: " fmt
65 
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
78 
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly = 1;
83 int sysctl_tcp_max_reordering __read_mostly = 300;
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88 EXPORT_SYMBOL(sysctl_tcp_timestamps);
89 
90 /* rfc5961 challenge ack rate limiting */
91 int sysctl_tcp_challenge_ack_limit = 1000;
92 
93 int sysctl_tcp_stdurg __read_mostly;
94 int sysctl_tcp_rfc1337 __read_mostly;
95 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
96 int sysctl_tcp_frto __read_mostly = 2;
97 int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
98 
99 int sysctl_tcp_thin_dupack __read_mostly;
100 
101 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
102 int sysctl_tcp_early_retrans __read_mostly = 3;
103 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
104 
105 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
106 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
107 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
108 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
109 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
110 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
111 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
112 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
113 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
114 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
115 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
116 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
117 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
118 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
119 
120 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
121 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
122 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
123 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
124 
125 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
126 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
127 
128 #define REXMIT_NONE	0 /* no loss recovery to do */
129 #define REXMIT_LOST	1 /* retransmit packets marked lost */
130 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
131 
132 /* Adapt the MSS value used to make delayed ack decision to the
133  * real world.
134  */
135 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
136 {
137 	struct inet_connection_sock *icsk = inet_csk(sk);
138 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
139 	unsigned int len;
140 
141 	icsk->icsk_ack.last_seg_size = 0;
142 
143 	/* skb->len may jitter because of SACKs, even if peer
144 	 * sends good full-sized frames.
145 	 */
146 	len = skb_shinfo(skb)->gso_size ? : skb->len;
147 	if (len >= icsk->icsk_ack.rcv_mss) {
148 		icsk->icsk_ack.rcv_mss = len;
149 	} else {
150 		/* Otherwise, we make more careful check taking into account,
151 		 * that SACKs block is variable.
152 		 *
153 		 * "len" is invariant segment length, including TCP header.
154 		 */
155 		len += skb->data - skb_transport_header(skb);
156 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
157 		    /* If PSH is not set, packet should be
158 		     * full sized, provided peer TCP is not badly broken.
159 		     * This observation (if it is correct 8)) allows
160 		     * to handle super-low mtu links fairly.
161 		     */
162 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
163 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
164 			/* Subtract also invariant (if peer is RFC compliant),
165 			 * tcp header plus fixed timestamp option length.
166 			 * Resulting "len" is MSS free of SACK jitter.
167 			 */
168 			len -= tcp_sk(sk)->tcp_header_len;
169 			icsk->icsk_ack.last_seg_size = len;
170 			if (len == lss) {
171 				icsk->icsk_ack.rcv_mss = len;
172 				return;
173 			}
174 		}
175 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
176 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
177 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
178 	}
179 }
180 
181 static void tcp_incr_quickack(struct sock *sk)
182 {
183 	struct inet_connection_sock *icsk = inet_csk(sk);
184 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
185 
186 	if (quickacks == 0)
187 		quickacks = 2;
188 	if (quickacks > icsk->icsk_ack.quick)
189 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
190 }
191 
192 static void tcp_enter_quickack_mode(struct sock *sk)
193 {
194 	struct inet_connection_sock *icsk = inet_csk(sk);
195 	tcp_incr_quickack(sk);
196 	icsk->icsk_ack.pingpong = 0;
197 	icsk->icsk_ack.ato = TCP_ATO_MIN;
198 }
199 
200 /* Send ACKs quickly, if "quick" count is not exhausted
201  * and the session is not interactive.
202  */
203 
204 static bool tcp_in_quickack_mode(struct sock *sk)
205 {
206 	const struct inet_connection_sock *icsk = inet_csk(sk);
207 	const struct dst_entry *dst = __sk_dst_get(sk);
208 
209 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
210 		(icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
211 }
212 
213 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
214 {
215 	if (tp->ecn_flags & TCP_ECN_OK)
216 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
217 }
218 
219 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
220 {
221 	if (tcp_hdr(skb)->cwr)
222 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
223 }
224 
225 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
226 {
227 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
228 }
229 
230 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
231 {
232 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
233 	case INET_ECN_NOT_ECT:
234 		/* Funny extension: if ECT is not set on a segment,
235 		 * and we already seen ECT on a previous segment,
236 		 * it is probably a retransmit.
237 		 */
238 		if (tp->ecn_flags & TCP_ECN_SEEN)
239 			tcp_enter_quickack_mode((struct sock *)tp);
240 		break;
241 	case INET_ECN_CE:
242 		if (tcp_ca_needs_ecn((struct sock *)tp))
243 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
244 
245 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
246 			/* Better not delay acks, sender can have a very low cwnd */
247 			tcp_enter_quickack_mode((struct sock *)tp);
248 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
249 		}
250 		tp->ecn_flags |= TCP_ECN_SEEN;
251 		break;
252 	default:
253 		if (tcp_ca_needs_ecn((struct sock *)tp))
254 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
255 		tp->ecn_flags |= TCP_ECN_SEEN;
256 		break;
257 	}
258 }
259 
260 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
261 {
262 	if (tp->ecn_flags & TCP_ECN_OK)
263 		__tcp_ecn_check_ce(tp, skb);
264 }
265 
266 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
267 {
268 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
269 		tp->ecn_flags &= ~TCP_ECN_OK;
270 }
271 
272 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
273 {
274 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
275 		tp->ecn_flags &= ~TCP_ECN_OK;
276 }
277 
278 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
279 {
280 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
281 		return true;
282 	return false;
283 }
284 
285 /* Buffer size and advertised window tuning.
286  *
287  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
288  */
289 
290 static void tcp_sndbuf_expand(struct sock *sk)
291 {
292 	const struct tcp_sock *tp = tcp_sk(sk);
293 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
294 	int sndmem, per_mss;
295 	u32 nr_segs;
296 
297 	/* Worst case is non GSO/TSO : each frame consumes one skb
298 	 * and skb->head is kmalloced using power of two area of memory
299 	 */
300 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
301 		  MAX_TCP_HEADER +
302 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
303 
304 	per_mss = roundup_pow_of_two(per_mss) +
305 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
306 
307 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
308 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
309 
310 	/* Fast Recovery (RFC 5681 3.2) :
311 	 * Cubic needs 1.7 factor, rounded to 2 to include
312 	 * extra cushion (application might react slowly to POLLOUT)
313 	 */
314 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
315 	sndmem *= nr_segs * per_mss;
316 
317 	if (sk->sk_sndbuf < sndmem)
318 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
319 }
320 
321 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
322  *
323  * All tcp_full_space() is split to two parts: "network" buffer, allocated
324  * forward and advertised in receiver window (tp->rcv_wnd) and
325  * "application buffer", required to isolate scheduling/application
326  * latencies from network.
327  * window_clamp is maximal advertised window. It can be less than
328  * tcp_full_space(), in this case tcp_full_space() - window_clamp
329  * is reserved for "application" buffer. The less window_clamp is
330  * the smoother our behaviour from viewpoint of network, but the lower
331  * throughput and the higher sensitivity of the connection to losses. 8)
332  *
333  * rcv_ssthresh is more strict window_clamp used at "slow start"
334  * phase to predict further behaviour of this connection.
335  * It is used for two goals:
336  * - to enforce header prediction at sender, even when application
337  *   requires some significant "application buffer". It is check #1.
338  * - to prevent pruning of receive queue because of misprediction
339  *   of receiver window. Check #2.
340  *
341  * The scheme does not work when sender sends good segments opening
342  * window and then starts to feed us spaghetti. But it should work
343  * in common situations. Otherwise, we have to rely on queue collapsing.
344  */
345 
346 /* Slow part of check#2. */
347 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
348 {
349 	struct tcp_sock *tp = tcp_sk(sk);
350 	/* Optimize this! */
351 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
352 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
353 
354 	while (tp->rcv_ssthresh <= window) {
355 		if (truesize <= skb->len)
356 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
357 
358 		truesize >>= 1;
359 		window >>= 1;
360 	}
361 	return 0;
362 }
363 
364 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
365 {
366 	struct tcp_sock *tp = tcp_sk(sk);
367 
368 	/* Check #1 */
369 	if (tp->rcv_ssthresh < tp->window_clamp &&
370 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
371 	    !tcp_under_memory_pressure(sk)) {
372 		int incr;
373 
374 		/* Check #2. Increase window, if skb with such overhead
375 		 * will fit to rcvbuf in future.
376 		 */
377 		if (tcp_win_from_space(skb->truesize) <= skb->len)
378 			incr = 2 * tp->advmss;
379 		else
380 			incr = __tcp_grow_window(sk, skb);
381 
382 		if (incr) {
383 			incr = max_t(int, incr, 2 * skb->len);
384 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
385 					       tp->window_clamp);
386 			inet_csk(sk)->icsk_ack.quick |= 1;
387 		}
388 	}
389 }
390 
391 /* 3. Tuning rcvbuf, when connection enters established state. */
392 static void tcp_fixup_rcvbuf(struct sock *sk)
393 {
394 	u32 mss = tcp_sk(sk)->advmss;
395 	int rcvmem;
396 
397 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
398 		 tcp_default_init_rwnd(mss);
399 
400 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
401 	 * Allow enough cushion so that sender is not limited by our window
402 	 */
403 	if (sysctl_tcp_moderate_rcvbuf)
404 		rcvmem <<= 2;
405 
406 	if (sk->sk_rcvbuf < rcvmem)
407 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
408 }
409 
410 /* 4. Try to fixup all. It is made immediately after connection enters
411  *    established state.
412  */
413 void tcp_init_buffer_space(struct sock *sk)
414 {
415 	struct tcp_sock *tp = tcp_sk(sk);
416 	int maxwin;
417 
418 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
419 		tcp_fixup_rcvbuf(sk);
420 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
421 		tcp_sndbuf_expand(sk);
422 
423 	tp->rcvq_space.space = tp->rcv_wnd;
424 	tp->rcvq_space.time = tcp_time_stamp;
425 	tp->rcvq_space.seq = tp->copied_seq;
426 
427 	maxwin = tcp_full_space(sk);
428 
429 	if (tp->window_clamp >= maxwin) {
430 		tp->window_clamp = maxwin;
431 
432 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
433 			tp->window_clamp = max(maxwin -
434 					       (maxwin >> sysctl_tcp_app_win),
435 					       4 * tp->advmss);
436 	}
437 
438 	/* Force reservation of one segment. */
439 	if (sysctl_tcp_app_win &&
440 	    tp->window_clamp > 2 * tp->advmss &&
441 	    tp->window_clamp + tp->advmss > maxwin)
442 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
443 
444 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
445 	tp->snd_cwnd_stamp = tcp_time_stamp;
446 }
447 
448 /* 5. Recalculate window clamp after socket hit its memory bounds. */
449 static void tcp_clamp_window(struct sock *sk)
450 {
451 	struct tcp_sock *tp = tcp_sk(sk);
452 	struct inet_connection_sock *icsk = inet_csk(sk);
453 
454 	icsk->icsk_ack.quick = 0;
455 
456 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
457 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
458 	    !tcp_under_memory_pressure(sk) &&
459 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
460 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
461 				    sysctl_tcp_rmem[2]);
462 	}
463 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
464 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
465 }
466 
467 /* Initialize RCV_MSS value.
468  * RCV_MSS is an our guess about MSS used by the peer.
469  * We haven't any direct information about the MSS.
470  * It's better to underestimate the RCV_MSS rather than overestimate.
471  * Overestimations make us ACKing less frequently than needed.
472  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
473  */
474 void tcp_initialize_rcv_mss(struct sock *sk)
475 {
476 	const struct tcp_sock *tp = tcp_sk(sk);
477 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
478 
479 	hint = min(hint, tp->rcv_wnd / 2);
480 	hint = min(hint, TCP_MSS_DEFAULT);
481 	hint = max(hint, TCP_MIN_MSS);
482 
483 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
484 }
485 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
486 
487 /* Receiver "autotuning" code.
488  *
489  * The algorithm for RTT estimation w/o timestamps is based on
490  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
491  * <http://public.lanl.gov/radiant/pubs.html#DRS>
492  *
493  * More detail on this code can be found at
494  * <http://staff.psc.edu/jheffner/>,
495  * though this reference is out of date.  A new paper
496  * is pending.
497  */
498 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
499 {
500 	u32 new_sample = tp->rcv_rtt_est.rtt;
501 	long m = sample;
502 
503 	if (m == 0)
504 		m = 1;
505 
506 	if (new_sample != 0) {
507 		/* If we sample in larger samples in the non-timestamp
508 		 * case, we could grossly overestimate the RTT especially
509 		 * with chatty applications or bulk transfer apps which
510 		 * are stalled on filesystem I/O.
511 		 *
512 		 * Also, since we are only going for a minimum in the
513 		 * non-timestamp case, we do not smooth things out
514 		 * else with timestamps disabled convergence takes too
515 		 * long.
516 		 */
517 		if (!win_dep) {
518 			m -= (new_sample >> 3);
519 			new_sample += m;
520 		} else {
521 			m <<= 3;
522 			if (m < new_sample)
523 				new_sample = m;
524 		}
525 	} else {
526 		/* No previous measure. */
527 		new_sample = m << 3;
528 	}
529 
530 	if (tp->rcv_rtt_est.rtt != new_sample)
531 		tp->rcv_rtt_est.rtt = new_sample;
532 }
533 
534 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
535 {
536 	if (tp->rcv_rtt_est.time == 0)
537 		goto new_measure;
538 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
539 		return;
540 	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
541 
542 new_measure:
543 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
544 	tp->rcv_rtt_est.time = tcp_time_stamp;
545 }
546 
547 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
548 					  const struct sk_buff *skb)
549 {
550 	struct tcp_sock *tp = tcp_sk(sk);
551 	if (tp->rx_opt.rcv_tsecr &&
552 	    (TCP_SKB_CB(skb)->end_seq -
553 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
554 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
555 }
556 
557 /*
558  * This function should be called every time data is copied to user space.
559  * It calculates the appropriate TCP receive buffer space.
560  */
561 void tcp_rcv_space_adjust(struct sock *sk)
562 {
563 	struct tcp_sock *tp = tcp_sk(sk);
564 	int time;
565 	int copied;
566 
567 	time = tcp_time_stamp - tp->rcvq_space.time;
568 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
569 		return;
570 
571 	/* Number of bytes copied to user in last RTT */
572 	copied = tp->copied_seq - tp->rcvq_space.seq;
573 	if (copied <= tp->rcvq_space.space)
574 		goto new_measure;
575 
576 	/* A bit of theory :
577 	 * copied = bytes received in previous RTT, our base window
578 	 * To cope with packet losses, we need a 2x factor
579 	 * To cope with slow start, and sender growing its cwin by 100 %
580 	 * every RTT, we need a 4x factor, because the ACK we are sending
581 	 * now is for the next RTT, not the current one :
582 	 * <prev RTT . ><current RTT .. ><next RTT .... >
583 	 */
584 
585 	if (sysctl_tcp_moderate_rcvbuf &&
586 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
587 		int rcvwin, rcvmem, rcvbuf;
588 
589 		/* minimal window to cope with packet losses, assuming
590 		 * steady state. Add some cushion because of small variations.
591 		 */
592 		rcvwin = (copied << 1) + 16 * tp->advmss;
593 
594 		/* If rate increased by 25%,
595 		 *	assume slow start, rcvwin = 3 * copied
596 		 * If rate increased by 50%,
597 		 *	assume sender can use 2x growth, rcvwin = 4 * copied
598 		 */
599 		if (copied >=
600 		    tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
601 			if (copied >=
602 			    tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
603 				rcvwin <<= 1;
604 			else
605 				rcvwin += (rcvwin >> 1);
606 		}
607 
608 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
609 		while (tcp_win_from_space(rcvmem) < tp->advmss)
610 			rcvmem += 128;
611 
612 		rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
613 		if (rcvbuf > sk->sk_rcvbuf) {
614 			sk->sk_rcvbuf = rcvbuf;
615 
616 			/* Make the window clamp follow along.  */
617 			tp->window_clamp = rcvwin;
618 		}
619 	}
620 	tp->rcvq_space.space = copied;
621 
622 new_measure:
623 	tp->rcvq_space.seq = tp->copied_seq;
624 	tp->rcvq_space.time = tcp_time_stamp;
625 }
626 
627 /* There is something which you must keep in mind when you analyze the
628  * behavior of the tp->ato delayed ack timeout interval.  When a
629  * connection starts up, we want to ack as quickly as possible.  The
630  * problem is that "good" TCP's do slow start at the beginning of data
631  * transmission.  The means that until we send the first few ACK's the
632  * sender will sit on his end and only queue most of his data, because
633  * he can only send snd_cwnd unacked packets at any given time.  For
634  * each ACK we send, he increments snd_cwnd and transmits more of his
635  * queue.  -DaveM
636  */
637 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
638 {
639 	struct tcp_sock *tp = tcp_sk(sk);
640 	struct inet_connection_sock *icsk = inet_csk(sk);
641 	u32 now;
642 
643 	inet_csk_schedule_ack(sk);
644 
645 	tcp_measure_rcv_mss(sk, skb);
646 
647 	tcp_rcv_rtt_measure(tp);
648 
649 	now = tcp_time_stamp;
650 
651 	if (!icsk->icsk_ack.ato) {
652 		/* The _first_ data packet received, initialize
653 		 * delayed ACK engine.
654 		 */
655 		tcp_incr_quickack(sk);
656 		icsk->icsk_ack.ato = TCP_ATO_MIN;
657 	} else {
658 		int m = now - icsk->icsk_ack.lrcvtime;
659 
660 		if (m <= TCP_ATO_MIN / 2) {
661 			/* The fastest case is the first. */
662 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
663 		} else if (m < icsk->icsk_ack.ato) {
664 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
665 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
666 				icsk->icsk_ack.ato = icsk->icsk_rto;
667 		} else if (m > icsk->icsk_rto) {
668 			/* Too long gap. Apparently sender failed to
669 			 * restart window, so that we send ACKs quickly.
670 			 */
671 			tcp_incr_quickack(sk);
672 			sk_mem_reclaim(sk);
673 		}
674 	}
675 	icsk->icsk_ack.lrcvtime = now;
676 
677 	tcp_ecn_check_ce(tp, skb);
678 
679 	if (skb->len >= 128)
680 		tcp_grow_window(sk, skb);
681 }
682 
683 /* Called to compute a smoothed rtt estimate. The data fed to this
684  * routine either comes from timestamps, or from segments that were
685  * known _not_ to have been retransmitted [see Karn/Partridge
686  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
687  * piece by Van Jacobson.
688  * NOTE: the next three routines used to be one big routine.
689  * To save cycles in the RFC 1323 implementation it was better to break
690  * it up into three procedures. -- erics
691  */
692 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
693 {
694 	struct tcp_sock *tp = tcp_sk(sk);
695 	long m = mrtt_us; /* RTT */
696 	u32 srtt = tp->srtt_us;
697 
698 	/*	The following amusing code comes from Jacobson's
699 	 *	article in SIGCOMM '88.  Note that rtt and mdev
700 	 *	are scaled versions of rtt and mean deviation.
701 	 *	This is designed to be as fast as possible
702 	 *	m stands for "measurement".
703 	 *
704 	 *	On a 1990 paper the rto value is changed to:
705 	 *	RTO = rtt + 4 * mdev
706 	 *
707 	 * Funny. This algorithm seems to be very broken.
708 	 * These formulae increase RTO, when it should be decreased, increase
709 	 * too slowly, when it should be increased quickly, decrease too quickly
710 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
711 	 * does not matter how to _calculate_ it. Seems, it was trap
712 	 * that VJ failed to avoid. 8)
713 	 */
714 	if (srtt != 0) {
715 		m -= (srtt >> 3);	/* m is now error in rtt est */
716 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
717 		if (m < 0) {
718 			m = -m;		/* m is now abs(error) */
719 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
720 			/* This is similar to one of Eifel findings.
721 			 * Eifel blocks mdev updates when rtt decreases.
722 			 * This solution is a bit different: we use finer gain
723 			 * for mdev in this case (alpha*beta).
724 			 * Like Eifel it also prevents growth of rto,
725 			 * but also it limits too fast rto decreases,
726 			 * happening in pure Eifel.
727 			 */
728 			if (m > 0)
729 				m >>= 3;
730 		} else {
731 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
732 		}
733 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
734 		if (tp->mdev_us > tp->mdev_max_us) {
735 			tp->mdev_max_us = tp->mdev_us;
736 			if (tp->mdev_max_us > tp->rttvar_us)
737 				tp->rttvar_us = tp->mdev_max_us;
738 		}
739 		if (after(tp->snd_una, tp->rtt_seq)) {
740 			if (tp->mdev_max_us < tp->rttvar_us)
741 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
742 			tp->rtt_seq = tp->snd_nxt;
743 			tp->mdev_max_us = tcp_rto_min_us(sk);
744 		}
745 	} else {
746 		/* no previous measure. */
747 		srtt = m << 3;		/* take the measured time to be rtt */
748 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
749 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
750 		tp->mdev_max_us = tp->rttvar_us;
751 		tp->rtt_seq = tp->snd_nxt;
752 	}
753 	tp->srtt_us = max(1U, srtt);
754 }
755 
756 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
757  * Note: TCP stack does not yet implement pacing.
758  * FQ packet scheduler can be used to implement cheap but effective
759  * TCP pacing, to smooth the burst on large writes when packets
760  * in flight is significantly lower than cwnd (or rwin)
761  */
762 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
763 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
764 
765 static void tcp_update_pacing_rate(struct sock *sk)
766 {
767 	const struct tcp_sock *tp = tcp_sk(sk);
768 	u64 rate;
769 
770 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
771 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
772 
773 	/* current rate is (cwnd * mss) / srtt
774 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
775 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
776 	 *
777 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
778 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
779 	 *	 end of slow start and should slow down.
780 	 */
781 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
782 		rate *= sysctl_tcp_pacing_ss_ratio;
783 	else
784 		rate *= sysctl_tcp_pacing_ca_ratio;
785 
786 	rate *= max(tp->snd_cwnd, tp->packets_out);
787 
788 	if (likely(tp->srtt_us))
789 		do_div(rate, tp->srtt_us);
790 
791 	/* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
792 	 * without any lock. We want to make sure compiler wont store
793 	 * intermediate values in this location.
794 	 */
795 	ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
796 						sk->sk_max_pacing_rate);
797 }
798 
799 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
800  * routine referred to above.
801  */
802 static void tcp_set_rto(struct sock *sk)
803 {
804 	const struct tcp_sock *tp = tcp_sk(sk);
805 	/* Old crap is replaced with new one. 8)
806 	 *
807 	 * More seriously:
808 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
809 	 *    It cannot be less due to utterly erratic ACK generation made
810 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
811 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
812 	 *    is invisible. Actually, Linux-2.4 also generates erratic
813 	 *    ACKs in some circumstances.
814 	 */
815 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
816 
817 	/* 2. Fixups made earlier cannot be right.
818 	 *    If we do not estimate RTO correctly without them,
819 	 *    all the algo is pure shit and should be replaced
820 	 *    with correct one. It is exactly, which we pretend to do.
821 	 */
822 
823 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
824 	 * guarantees that rto is higher.
825 	 */
826 	tcp_bound_rto(sk);
827 }
828 
829 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
830 {
831 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
832 
833 	if (!cwnd)
834 		cwnd = TCP_INIT_CWND;
835 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
836 }
837 
838 /*
839  * Packet counting of FACK is based on in-order assumptions, therefore TCP
840  * disables it when reordering is detected
841  */
842 void tcp_disable_fack(struct tcp_sock *tp)
843 {
844 	/* RFC3517 uses different metric in lost marker => reset on change */
845 	if (tcp_is_fack(tp))
846 		tp->lost_skb_hint = NULL;
847 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
848 }
849 
850 /* Take a notice that peer is sending D-SACKs */
851 static void tcp_dsack_seen(struct tcp_sock *tp)
852 {
853 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
854 }
855 
856 static void tcp_update_reordering(struct sock *sk, const int metric,
857 				  const int ts)
858 {
859 	struct tcp_sock *tp = tcp_sk(sk);
860 	if (metric > tp->reordering) {
861 		int mib_idx;
862 
863 		tp->reordering = min(sysctl_tcp_max_reordering, metric);
864 
865 		/* This exciting event is worth to be remembered. 8) */
866 		if (ts)
867 			mib_idx = LINUX_MIB_TCPTSREORDER;
868 		else if (tcp_is_reno(tp))
869 			mib_idx = LINUX_MIB_TCPRENOREORDER;
870 		else if (tcp_is_fack(tp))
871 			mib_idx = LINUX_MIB_TCPFACKREORDER;
872 		else
873 			mib_idx = LINUX_MIB_TCPSACKREORDER;
874 
875 		NET_INC_STATS(sock_net(sk), mib_idx);
876 #if FASTRETRANS_DEBUG > 1
877 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
878 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
879 			 tp->reordering,
880 			 tp->fackets_out,
881 			 tp->sacked_out,
882 			 tp->undo_marker ? tp->undo_retrans : 0);
883 #endif
884 		tcp_disable_fack(tp);
885 	}
886 
887 	if (metric > 0)
888 		tcp_disable_early_retrans(tp);
889 	tp->rack.reord = 1;
890 }
891 
892 /* This must be called before lost_out is incremented */
893 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
894 {
895 	if (!tp->retransmit_skb_hint ||
896 	    before(TCP_SKB_CB(skb)->seq,
897 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
898 		tp->retransmit_skb_hint = skb;
899 
900 	if (!tp->lost_out ||
901 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
902 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
903 }
904 
905 /* Sum the number of packets on the wire we have marked as lost.
906  * There are two cases we care about here:
907  * a) Packet hasn't been marked lost (nor retransmitted),
908  *    and this is the first loss.
909  * b) Packet has been marked both lost and retransmitted,
910  *    and this means we think it was lost again.
911  */
912 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
913 {
914 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
915 
916 	if (!(sacked & TCPCB_LOST) ||
917 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
918 		tp->lost += tcp_skb_pcount(skb);
919 }
920 
921 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
922 {
923 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
924 		tcp_verify_retransmit_hint(tp, skb);
925 
926 		tp->lost_out += tcp_skb_pcount(skb);
927 		tcp_sum_lost(tp, skb);
928 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
929 	}
930 }
931 
932 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
933 {
934 	tcp_verify_retransmit_hint(tp, skb);
935 
936 	tcp_sum_lost(tp, skb);
937 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
938 		tp->lost_out += tcp_skb_pcount(skb);
939 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
940 	}
941 }
942 
943 /* This procedure tags the retransmission queue when SACKs arrive.
944  *
945  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
946  * Packets in queue with these bits set are counted in variables
947  * sacked_out, retrans_out and lost_out, correspondingly.
948  *
949  * Valid combinations are:
950  * Tag  InFlight	Description
951  * 0	1		- orig segment is in flight.
952  * S	0		- nothing flies, orig reached receiver.
953  * L	0		- nothing flies, orig lost by net.
954  * R	2		- both orig and retransmit are in flight.
955  * L|R	1		- orig is lost, retransmit is in flight.
956  * S|R  1		- orig reached receiver, retrans is still in flight.
957  * (L|S|R is logically valid, it could occur when L|R is sacked,
958  *  but it is equivalent to plain S and code short-curcuits it to S.
959  *  L|S is logically invalid, it would mean -1 packet in flight 8))
960  *
961  * These 6 states form finite state machine, controlled by the following events:
962  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
963  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
964  * 3. Loss detection event of two flavors:
965  *	A. Scoreboard estimator decided the packet is lost.
966  *	   A'. Reno "three dupacks" marks head of queue lost.
967  *	   A''. Its FACK modification, head until snd.fack is lost.
968  *	B. SACK arrives sacking SND.NXT at the moment, when the
969  *	   segment was retransmitted.
970  * 4. D-SACK added new rule: D-SACK changes any tag to S.
971  *
972  * It is pleasant to note, that state diagram turns out to be commutative,
973  * so that we are allowed not to be bothered by order of our actions,
974  * when multiple events arrive simultaneously. (see the function below).
975  *
976  * Reordering detection.
977  * --------------------
978  * Reordering metric is maximal distance, which a packet can be displaced
979  * in packet stream. With SACKs we can estimate it:
980  *
981  * 1. SACK fills old hole and the corresponding segment was not
982  *    ever retransmitted -> reordering. Alas, we cannot use it
983  *    when segment was retransmitted.
984  * 2. The last flaw is solved with D-SACK. D-SACK arrives
985  *    for retransmitted and already SACKed segment -> reordering..
986  * Both of these heuristics are not used in Loss state, when we cannot
987  * account for retransmits accurately.
988  *
989  * SACK block validation.
990  * ----------------------
991  *
992  * SACK block range validation checks that the received SACK block fits to
993  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
994  * Note that SND.UNA is not included to the range though being valid because
995  * it means that the receiver is rather inconsistent with itself reporting
996  * SACK reneging when it should advance SND.UNA. Such SACK block this is
997  * perfectly valid, however, in light of RFC2018 which explicitly states
998  * that "SACK block MUST reflect the newest segment.  Even if the newest
999  * segment is going to be discarded ...", not that it looks very clever
1000  * in case of head skb. Due to potentional receiver driven attacks, we
1001  * choose to avoid immediate execution of a walk in write queue due to
1002  * reneging and defer head skb's loss recovery to standard loss recovery
1003  * procedure that will eventually trigger (nothing forbids us doing this).
1004  *
1005  * Implements also blockage to start_seq wrap-around. Problem lies in the
1006  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1007  * there's no guarantee that it will be before snd_nxt (n). The problem
1008  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1009  * wrap (s_w):
1010  *
1011  *         <- outs wnd ->                          <- wrapzone ->
1012  *         u     e      n                         u_w   e_w  s n_w
1013  *         |     |      |                          |     |   |  |
1014  * |<------------+------+----- TCP seqno space --------------+---------->|
1015  * ...-- <2^31 ->|                                           |<--------...
1016  * ...---- >2^31 ------>|                                    |<--------...
1017  *
1018  * Current code wouldn't be vulnerable but it's better still to discard such
1019  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1020  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1021  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1022  * equal to the ideal case (infinite seqno space without wrap caused issues).
1023  *
1024  * With D-SACK the lower bound is extended to cover sequence space below
1025  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1026  * again, D-SACK block must not to go across snd_una (for the same reason as
1027  * for the normal SACK blocks, explained above). But there all simplicity
1028  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1029  * fully below undo_marker they do not affect behavior in anyway and can
1030  * therefore be safely ignored. In rare cases (which are more or less
1031  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1032  * fragmentation and packet reordering past skb's retransmission. To consider
1033  * them correctly, the acceptable range must be extended even more though
1034  * the exact amount is rather hard to quantify. However, tp->max_window can
1035  * be used as an exaggerated estimate.
1036  */
1037 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1038 				   u32 start_seq, u32 end_seq)
1039 {
1040 	/* Too far in future, or reversed (interpretation is ambiguous) */
1041 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1042 		return false;
1043 
1044 	/* Nasty start_seq wrap-around check (see comments above) */
1045 	if (!before(start_seq, tp->snd_nxt))
1046 		return false;
1047 
1048 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1049 	 * start_seq == snd_una is non-sensical (see comments above)
1050 	 */
1051 	if (after(start_seq, tp->snd_una))
1052 		return true;
1053 
1054 	if (!is_dsack || !tp->undo_marker)
1055 		return false;
1056 
1057 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1058 	if (after(end_seq, tp->snd_una))
1059 		return false;
1060 
1061 	if (!before(start_seq, tp->undo_marker))
1062 		return true;
1063 
1064 	/* Too old */
1065 	if (!after(end_seq, tp->undo_marker))
1066 		return false;
1067 
1068 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1069 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1070 	 */
1071 	return !before(start_seq, end_seq - tp->max_window);
1072 }
1073 
1074 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1075 			    struct tcp_sack_block_wire *sp, int num_sacks,
1076 			    u32 prior_snd_una)
1077 {
1078 	struct tcp_sock *tp = tcp_sk(sk);
1079 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1080 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1081 	bool dup_sack = false;
1082 
1083 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1084 		dup_sack = true;
1085 		tcp_dsack_seen(tp);
1086 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1087 	} else if (num_sacks > 1) {
1088 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1089 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1090 
1091 		if (!after(end_seq_0, end_seq_1) &&
1092 		    !before(start_seq_0, start_seq_1)) {
1093 			dup_sack = true;
1094 			tcp_dsack_seen(tp);
1095 			NET_INC_STATS(sock_net(sk),
1096 					LINUX_MIB_TCPDSACKOFORECV);
1097 		}
1098 	}
1099 
1100 	/* D-SACK for already forgotten data... Do dumb counting. */
1101 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1102 	    !after(end_seq_0, prior_snd_una) &&
1103 	    after(end_seq_0, tp->undo_marker))
1104 		tp->undo_retrans--;
1105 
1106 	return dup_sack;
1107 }
1108 
1109 struct tcp_sacktag_state {
1110 	int	reord;
1111 	int	fack_count;
1112 	/* Timestamps for earliest and latest never-retransmitted segment
1113 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1114 	 * but congestion control should still get an accurate delay signal.
1115 	 */
1116 	struct skb_mstamp first_sackt;
1117 	struct skb_mstamp last_sackt;
1118 	struct rate_sample *rate;
1119 	int	flag;
1120 };
1121 
1122 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1123  * the incoming SACK may not exactly match but we can find smaller MSS
1124  * aligned portion of it that matches. Therefore we might need to fragment
1125  * which may fail and creates some hassle (caller must handle error case
1126  * returns).
1127  *
1128  * FIXME: this could be merged to shift decision code
1129  */
1130 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1131 				  u32 start_seq, u32 end_seq)
1132 {
1133 	int err;
1134 	bool in_sack;
1135 	unsigned int pkt_len;
1136 	unsigned int mss;
1137 
1138 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1139 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1140 
1141 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1142 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1143 		mss = tcp_skb_mss(skb);
1144 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1145 
1146 		if (!in_sack) {
1147 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1148 			if (pkt_len < mss)
1149 				pkt_len = mss;
1150 		} else {
1151 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1152 			if (pkt_len < mss)
1153 				return -EINVAL;
1154 		}
1155 
1156 		/* Round if necessary so that SACKs cover only full MSSes
1157 		 * and/or the remaining small portion (if present)
1158 		 */
1159 		if (pkt_len > mss) {
1160 			unsigned int new_len = (pkt_len / mss) * mss;
1161 			if (!in_sack && new_len < pkt_len) {
1162 				new_len += mss;
1163 				if (new_len >= skb->len)
1164 					return 0;
1165 			}
1166 			pkt_len = new_len;
1167 		}
1168 		err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1169 		if (err < 0)
1170 			return err;
1171 	}
1172 
1173 	return in_sack;
1174 }
1175 
1176 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1177 static u8 tcp_sacktag_one(struct sock *sk,
1178 			  struct tcp_sacktag_state *state, u8 sacked,
1179 			  u32 start_seq, u32 end_seq,
1180 			  int dup_sack, int pcount,
1181 			  const struct skb_mstamp *xmit_time)
1182 {
1183 	struct tcp_sock *tp = tcp_sk(sk);
1184 	int fack_count = state->fack_count;
1185 
1186 	/* Account D-SACK for retransmitted packet. */
1187 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1188 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1189 		    after(end_seq, tp->undo_marker))
1190 			tp->undo_retrans--;
1191 		if (sacked & TCPCB_SACKED_ACKED)
1192 			state->reord = min(fack_count, state->reord);
1193 	}
1194 
1195 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1196 	if (!after(end_seq, tp->snd_una))
1197 		return sacked;
1198 
1199 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1200 		tcp_rack_advance(tp, xmit_time, sacked);
1201 
1202 		if (sacked & TCPCB_SACKED_RETRANS) {
1203 			/* If the segment is not tagged as lost,
1204 			 * we do not clear RETRANS, believing
1205 			 * that retransmission is still in flight.
1206 			 */
1207 			if (sacked & TCPCB_LOST) {
1208 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1209 				tp->lost_out -= pcount;
1210 				tp->retrans_out -= pcount;
1211 			}
1212 		} else {
1213 			if (!(sacked & TCPCB_RETRANS)) {
1214 				/* New sack for not retransmitted frame,
1215 				 * which was in hole. It is reordering.
1216 				 */
1217 				if (before(start_seq,
1218 					   tcp_highest_sack_seq(tp)))
1219 					state->reord = min(fack_count,
1220 							   state->reord);
1221 				if (!after(end_seq, tp->high_seq))
1222 					state->flag |= FLAG_ORIG_SACK_ACKED;
1223 				if (state->first_sackt.v64 == 0)
1224 					state->first_sackt = *xmit_time;
1225 				state->last_sackt = *xmit_time;
1226 			}
1227 
1228 			if (sacked & TCPCB_LOST) {
1229 				sacked &= ~TCPCB_LOST;
1230 				tp->lost_out -= pcount;
1231 			}
1232 		}
1233 
1234 		sacked |= TCPCB_SACKED_ACKED;
1235 		state->flag |= FLAG_DATA_SACKED;
1236 		tp->sacked_out += pcount;
1237 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1238 
1239 		fack_count += pcount;
1240 
1241 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1242 		if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1243 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1244 			tp->lost_cnt_hint += pcount;
1245 
1246 		if (fack_count > tp->fackets_out)
1247 			tp->fackets_out = fack_count;
1248 	}
1249 
1250 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1251 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1252 	 * are accounted above as well.
1253 	 */
1254 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1255 		sacked &= ~TCPCB_SACKED_RETRANS;
1256 		tp->retrans_out -= pcount;
1257 	}
1258 
1259 	return sacked;
1260 }
1261 
1262 /* Shift newly-SACKed bytes from this skb to the immediately previous
1263  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1264  */
1265 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1266 			    struct tcp_sacktag_state *state,
1267 			    unsigned int pcount, int shifted, int mss,
1268 			    bool dup_sack)
1269 {
1270 	struct tcp_sock *tp = tcp_sk(sk);
1271 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1272 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1273 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1274 
1275 	BUG_ON(!pcount);
1276 
1277 	/* Adjust counters and hints for the newly sacked sequence
1278 	 * range but discard the return value since prev is already
1279 	 * marked. We must tag the range first because the seq
1280 	 * advancement below implicitly advances
1281 	 * tcp_highest_sack_seq() when skb is highest_sack.
1282 	 */
1283 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1284 			start_seq, end_seq, dup_sack, pcount,
1285 			&skb->skb_mstamp);
1286 	tcp_rate_skb_delivered(sk, skb, state->rate);
1287 
1288 	if (skb == tp->lost_skb_hint)
1289 		tp->lost_cnt_hint += pcount;
1290 
1291 	TCP_SKB_CB(prev)->end_seq += shifted;
1292 	TCP_SKB_CB(skb)->seq += shifted;
1293 
1294 	tcp_skb_pcount_add(prev, pcount);
1295 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1296 	tcp_skb_pcount_add(skb, -pcount);
1297 
1298 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1299 	 * in theory this shouldn't be necessary but as long as DSACK
1300 	 * code can come after this skb later on it's better to keep
1301 	 * setting gso_size to something.
1302 	 */
1303 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1304 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1305 
1306 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1307 	if (tcp_skb_pcount(skb) <= 1)
1308 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1309 
1310 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1311 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1312 
1313 	if (skb->len > 0) {
1314 		BUG_ON(!tcp_skb_pcount(skb));
1315 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1316 		return false;
1317 	}
1318 
1319 	/* Whole SKB was eaten :-) */
1320 
1321 	if (skb == tp->retransmit_skb_hint)
1322 		tp->retransmit_skb_hint = prev;
1323 	if (skb == tp->lost_skb_hint) {
1324 		tp->lost_skb_hint = prev;
1325 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1326 	}
1327 
1328 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1329 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1330 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1331 		TCP_SKB_CB(prev)->end_seq++;
1332 
1333 	if (skb == tcp_highest_sack(sk))
1334 		tcp_advance_highest_sack(sk, skb);
1335 
1336 	tcp_skb_collapse_tstamp(prev, skb);
1337 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp.v64))
1338 		TCP_SKB_CB(prev)->tx.delivered_mstamp.v64 = 0;
1339 
1340 	tcp_unlink_write_queue(skb, sk);
1341 	sk_wmem_free_skb(sk, skb);
1342 
1343 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1344 
1345 	return true;
1346 }
1347 
1348 /* I wish gso_size would have a bit more sane initialization than
1349  * something-or-zero which complicates things
1350  */
1351 static int tcp_skb_seglen(const struct sk_buff *skb)
1352 {
1353 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1354 }
1355 
1356 /* Shifting pages past head area doesn't work */
1357 static int skb_can_shift(const struct sk_buff *skb)
1358 {
1359 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1360 }
1361 
1362 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1363  * skb.
1364  */
1365 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1366 					  struct tcp_sacktag_state *state,
1367 					  u32 start_seq, u32 end_seq,
1368 					  bool dup_sack)
1369 {
1370 	struct tcp_sock *tp = tcp_sk(sk);
1371 	struct sk_buff *prev;
1372 	int mss;
1373 	int pcount = 0;
1374 	int len;
1375 	int in_sack;
1376 
1377 	if (!sk_can_gso(sk))
1378 		goto fallback;
1379 
1380 	/* Normally R but no L won't result in plain S */
1381 	if (!dup_sack &&
1382 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1383 		goto fallback;
1384 	if (!skb_can_shift(skb))
1385 		goto fallback;
1386 	/* This frame is about to be dropped (was ACKed). */
1387 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1388 		goto fallback;
1389 
1390 	/* Can only happen with delayed DSACK + discard craziness */
1391 	if (unlikely(skb == tcp_write_queue_head(sk)))
1392 		goto fallback;
1393 	prev = tcp_write_queue_prev(sk, skb);
1394 
1395 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1396 		goto fallback;
1397 
1398 	if (!tcp_skb_can_collapse_to(prev))
1399 		goto fallback;
1400 
1401 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1402 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1403 
1404 	if (in_sack) {
1405 		len = skb->len;
1406 		pcount = tcp_skb_pcount(skb);
1407 		mss = tcp_skb_seglen(skb);
1408 
1409 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1410 		 * drop this restriction as unnecessary
1411 		 */
1412 		if (mss != tcp_skb_seglen(prev))
1413 			goto fallback;
1414 	} else {
1415 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1416 			goto noop;
1417 		/* CHECKME: This is non-MSS split case only?, this will
1418 		 * cause skipped skbs due to advancing loop btw, original
1419 		 * has that feature too
1420 		 */
1421 		if (tcp_skb_pcount(skb) <= 1)
1422 			goto noop;
1423 
1424 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1425 		if (!in_sack) {
1426 			/* TODO: head merge to next could be attempted here
1427 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1428 			 * though it might not be worth of the additional hassle
1429 			 *
1430 			 * ...we can probably just fallback to what was done
1431 			 * previously. We could try merging non-SACKed ones
1432 			 * as well but it probably isn't going to buy off
1433 			 * because later SACKs might again split them, and
1434 			 * it would make skb timestamp tracking considerably
1435 			 * harder problem.
1436 			 */
1437 			goto fallback;
1438 		}
1439 
1440 		len = end_seq - TCP_SKB_CB(skb)->seq;
1441 		BUG_ON(len < 0);
1442 		BUG_ON(len > skb->len);
1443 
1444 		/* MSS boundaries should be honoured or else pcount will
1445 		 * severely break even though it makes things bit trickier.
1446 		 * Optimize common case to avoid most of the divides
1447 		 */
1448 		mss = tcp_skb_mss(skb);
1449 
1450 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1451 		 * drop this restriction as unnecessary
1452 		 */
1453 		if (mss != tcp_skb_seglen(prev))
1454 			goto fallback;
1455 
1456 		if (len == mss) {
1457 			pcount = 1;
1458 		} else if (len < mss) {
1459 			goto noop;
1460 		} else {
1461 			pcount = len / mss;
1462 			len = pcount * mss;
1463 		}
1464 	}
1465 
1466 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1467 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1468 		goto fallback;
1469 
1470 	if (!skb_shift(prev, skb, len))
1471 		goto fallback;
1472 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1473 		goto out;
1474 
1475 	/* Hole filled allows collapsing with the next as well, this is very
1476 	 * useful when hole on every nth skb pattern happens
1477 	 */
1478 	if (prev == tcp_write_queue_tail(sk))
1479 		goto out;
1480 	skb = tcp_write_queue_next(sk, prev);
1481 
1482 	if (!skb_can_shift(skb) ||
1483 	    (skb == tcp_send_head(sk)) ||
1484 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1485 	    (mss != tcp_skb_seglen(skb)))
1486 		goto out;
1487 
1488 	len = skb->len;
1489 	if (skb_shift(prev, skb, len)) {
1490 		pcount += tcp_skb_pcount(skb);
1491 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1492 	}
1493 
1494 out:
1495 	state->fack_count += pcount;
1496 	return prev;
1497 
1498 noop:
1499 	return skb;
1500 
1501 fallback:
1502 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1503 	return NULL;
1504 }
1505 
1506 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1507 					struct tcp_sack_block *next_dup,
1508 					struct tcp_sacktag_state *state,
1509 					u32 start_seq, u32 end_seq,
1510 					bool dup_sack_in)
1511 {
1512 	struct tcp_sock *tp = tcp_sk(sk);
1513 	struct sk_buff *tmp;
1514 
1515 	tcp_for_write_queue_from(skb, sk) {
1516 		int in_sack = 0;
1517 		bool dup_sack = dup_sack_in;
1518 
1519 		if (skb == tcp_send_head(sk))
1520 			break;
1521 
1522 		/* queue is in-order => we can short-circuit the walk early */
1523 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1524 			break;
1525 
1526 		if (next_dup  &&
1527 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1528 			in_sack = tcp_match_skb_to_sack(sk, skb,
1529 							next_dup->start_seq,
1530 							next_dup->end_seq);
1531 			if (in_sack > 0)
1532 				dup_sack = true;
1533 		}
1534 
1535 		/* skb reference here is a bit tricky to get right, since
1536 		 * shifting can eat and free both this skb and the next,
1537 		 * so not even _safe variant of the loop is enough.
1538 		 */
1539 		if (in_sack <= 0) {
1540 			tmp = tcp_shift_skb_data(sk, skb, state,
1541 						 start_seq, end_seq, dup_sack);
1542 			if (tmp) {
1543 				if (tmp != skb) {
1544 					skb = tmp;
1545 					continue;
1546 				}
1547 
1548 				in_sack = 0;
1549 			} else {
1550 				in_sack = tcp_match_skb_to_sack(sk, skb,
1551 								start_seq,
1552 								end_seq);
1553 			}
1554 		}
1555 
1556 		if (unlikely(in_sack < 0))
1557 			break;
1558 
1559 		if (in_sack) {
1560 			TCP_SKB_CB(skb)->sacked =
1561 				tcp_sacktag_one(sk,
1562 						state,
1563 						TCP_SKB_CB(skb)->sacked,
1564 						TCP_SKB_CB(skb)->seq,
1565 						TCP_SKB_CB(skb)->end_seq,
1566 						dup_sack,
1567 						tcp_skb_pcount(skb),
1568 						&skb->skb_mstamp);
1569 			tcp_rate_skb_delivered(sk, skb, state->rate);
1570 
1571 			if (!before(TCP_SKB_CB(skb)->seq,
1572 				    tcp_highest_sack_seq(tp)))
1573 				tcp_advance_highest_sack(sk, skb);
1574 		}
1575 
1576 		state->fack_count += tcp_skb_pcount(skb);
1577 	}
1578 	return skb;
1579 }
1580 
1581 /* Avoid all extra work that is being done by sacktag while walking in
1582  * a normal way
1583  */
1584 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1585 					struct tcp_sacktag_state *state,
1586 					u32 skip_to_seq)
1587 {
1588 	tcp_for_write_queue_from(skb, sk) {
1589 		if (skb == tcp_send_head(sk))
1590 			break;
1591 
1592 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1593 			break;
1594 
1595 		state->fack_count += tcp_skb_pcount(skb);
1596 	}
1597 	return skb;
1598 }
1599 
1600 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1601 						struct sock *sk,
1602 						struct tcp_sack_block *next_dup,
1603 						struct tcp_sacktag_state *state,
1604 						u32 skip_to_seq)
1605 {
1606 	if (!next_dup)
1607 		return skb;
1608 
1609 	if (before(next_dup->start_seq, skip_to_seq)) {
1610 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1611 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1612 				       next_dup->start_seq, next_dup->end_seq,
1613 				       1);
1614 	}
1615 
1616 	return skb;
1617 }
1618 
1619 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1620 {
1621 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1622 }
1623 
1624 static int
1625 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1626 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1627 {
1628 	struct tcp_sock *tp = tcp_sk(sk);
1629 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1630 				    TCP_SKB_CB(ack_skb)->sacked);
1631 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1632 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1633 	struct tcp_sack_block *cache;
1634 	struct sk_buff *skb;
1635 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1636 	int used_sacks;
1637 	bool found_dup_sack = false;
1638 	int i, j;
1639 	int first_sack_index;
1640 
1641 	state->flag = 0;
1642 	state->reord = tp->packets_out;
1643 
1644 	if (!tp->sacked_out) {
1645 		if (WARN_ON(tp->fackets_out))
1646 			tp->fackets_out = 0;
1647 		tcp_highest_sack_reset(sk);
1648 	}
1649 
1650 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1651 					 num_sacks, prior_snd_una);
1652 	if (found_dup_sack) {
1653 		state->flag |= FLAG_DSACKING_ACK;
1654 		tp->delivered++; /* A spurious retransmission is delivered */
1655 	}
1656 
1657 	/* Eliminate too old ACKs, but take into
1658 	 * account more or less fresh ones, they can
1659 	 * contain valid SACK info.
1660 	 */
1661 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1662 		return 0;
1663 
1664 	if (!tp->packets_out)
1665 		goto out;
1666 
1667 	used_sacks = 0;
1668 	first_sack_index = 0;
1669 	for (i = 0; i < num_sacks; i++) {
1670 		bool dup_sack = !i && found_dup_sack;
1671 
1672 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1673 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1674 
1675 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1676 					    sp[used_sacks].start_seq,
1677 					    sp[used_sacks].end_seq)) {
1678 			int mib_idx;
1679 
1680 			if (dup_sack) {
1681 				if (!tp->undo_marker)
1682 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1683 				else
1684 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1685 			} else {
1686 				/* Don't count olds caused by ACK reordering */
1687 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1688 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1689 					continue;
1690 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1691 			}
1692 
1693 			NET_INC_STATS(sock_net(sk), mib_idx);
1694 			if (i == 0)
1695 				first_sack_index = -1;
1696 			continue;
1697 		}
1698 
1699 		/* Ignore very old stuff early */
1700 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1701 			continue;
1702 
1703 		used_sacks++;
1704 	}
1705 
1706 	/* order SACK blocks to allow in order walk of the retrans queue */
1707 	for (i = used_sacks - 1; i > 0; i--) {
1708 		for (j = 0; j < i; j++) {
1709 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1710 				swap(sp[j], sp[j + 1]);
1711 
1712 				/* Track where the first SACK block goes to */
1713 				if (j == first_sack_index)
1714 					first_sack_index = j + 1;
1715 			}
1716 		}
1717 	}
1718 
1719 	skb = tcp_write_queue_head(sk);
1720 	state->fack_count = 0;
1721 	i = 0;
1722 
1723 	if (!tp->sacked_out) {
1724 		/* It's already past, so skip checking against it */
1725 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1726 	} else {
1727 		cache = tp->recv_sack_cache;
1728 		/* Skip empty blocks in at head of the cache */
1729 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1730 		       !cache->end_seq)
1731 			cache++;
1732 	}
1733 
1734 	while (i < used_sacks) {
1735 		u32 start_seq = sp[i].start_seq;
1736 		u32 end_seq = sp[i].end_seq;
1737 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1738 		struct tcp_sack_block *next_dup = NULL;
1739 
1740 		if (found_dup_sack && ((i + 1) == first_sack_index))
1741 			next_dup = &sp[i + 1];
1742 
1743 		/* Skip too early cached blocks */
1744 		while (tcp_sack_cache_ok(tp, cache) &&
1745 		       !before(start_seq, cache->end_seq))
1746 			cache++;
1747 
1748 		/* Can skip some work by looking recv_sack_cache? */
1749 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1750 		    after(end_seq, cache->start_seq)) {
1751 
1752 			/* Head todo? */
1753 			if (before(start_seq, cache->start_seq)) {
1754 				skb = tcp_sacktag_skip(skb, sk, state,
1755 						       start_seq);
1756 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1757 						       state,
1758 						       start_seq,
1759 						       cache->start_seq,
1760 						       dup_sack);
1761 			}
1762 
1763 			/* Rest of the block already fully processed? */
1764 			if (!after(end_seq, cache->end_seq))
1765 				goto advance_sp;
1766 
1767 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1768 						       state,
1769 						       cache->end_seq);
1770 
1771 			/* ...tail remains todo... */
1772 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1773 				/* ...but better entrypoint exists! */
1774 				skb = tcp_highest_sack(sk);
1775 				if (!skb)
1776 					break;
1777 				state->fack_count = tp->fackets_out;
1778 				cache++;
1779 				goto walk;
1780 			}
1781 
1782 			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1783 			/* Check overlap against next cached too (past this one already) */
1784 			cache++;
1785 			continue;
1786 		}
1787 
1788 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1789 			skb = tcp_highest_sack(sk);
1790 			if (!skb)
1791 				break;
1792 			state->fack_count = tp->fackets_out;
1793 		}
1794 		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1795 
1796 walk:
1797 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1798 				       start_seq, end_seq, dup_sack);
1799 
1800 advance_sp:
1801 		i++;
1802 	}
1803 
1804 	/* Clear the head of the cache sack blocks so we can skip it next time */
1805 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1806 		tp->recv_sack_cache[i].start_seq = 0;
1807 		tp->recv_sack_cache[i].end_seq = 0;
1808 	}
1809 	for (j = 0; j < used_sacks; j++)
1810 		tp->recv_sack_cache[i++] = sp[j];
1811 
1812 	if ((state->reord < tp->fackets_out) &&
1813 	    ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1814 		tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1815 
1816 	tcp_verify_left_out(tp);
1817 out:
1818 
1819 #if FASTRETRANS_DEBUG > 0
1820 	WARN_ON((int)tp->sacked_out < 0);
1821 	WARN_ON((int)tp->lost_out < 0);
1822 	WARN_ON((int)tp->retrans_out < 0);
1823 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1824 #endif
1825 	return state->flag;
1826 }
1827 
1828 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1829  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1830  */
1831 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1832 {
1833 	u32 holes;
1834 
1835 	holes = max(tp->lost_out, 1U);
1836 	holes = min(holes, tp->packets_out);
1837 
1838 	if ((tp->sacked_out + holes) > tp->packets_out) {
1839 		tp->sacked_out = tp->packets_out - holes;
1840 		return true;
1841 	}
1842 	return false;
1843 }
1844 
1845 /* If we receive more dupacks than we expected counting segments
1846  * in assumption of absent reordering, interpret this as reordering.
1847  * The only another reason could be bug in receiver TCP.
1848  */
1849 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1850 {
1851 	struct tcp_sock *tp = tcp_sk(sk);
1852 	if (tcp_limit_reno_sacked(tp))
1853 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1854 }
1855 
1856 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1857 
1858 static void tcp_add_reno_sack(struct sock *sk)
1859 {
1860 	struct tcp_sock *tp = tcp_sk(sk);
1861 	u32 prior_sacked = tp->sacked_out;
1862 
1863 	tp->sacked_out++;
1864 	tcp_check_reno_reordering(sk, 0);
1865 	if (tp->sacked_out > prior_sacked)
1866 		tp->delivered++; /* Some out-of-order packet is delivered */
1867 	tcp_verify_left_out(tp);
1868 }
1869 
1870 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1871 
1872 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1873 {
1874 	struct tcp_sock *tp = tcp_sk(sk);
1875 
1876 	if (acked > 0) {
1877 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1878 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1879 		if (acked - 1 >= tp->sacked_out)
1880 			tp->sacked_out = 0;
1881 		else
1882 			tp->sacked_out -= acked - 1;
1883 	}
1884 	tcp_check_reno_reordering(sk, acked);
1885 	tcp_verify_left_out(tp);
1886 }
1887 
1888 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1889 {
1890 	tp->sacked_out = 0;
1891 }
1892 
1893 void tcp_clear_retrans(struct tcp_sock *tp)
1894 {
1895 	tp->retrans_out = 0;
1896 	tp->lost_out = 0;
1897 	tp->undo_marker = 0;
1898 	tp->undo_retrans = -1;
1899 	tp->fackets_out = 0;
1900 	tp->sacked_out = 0;
1901 }
1902 
1903 static inline void tcp_init_undo(struct tcp_sock *tp)
1904 {
1905 	tp->undo_marker = tp->snd_una;
1906 	/* Retransmission still in flight may cause DSACKs later. */
1907 	tp->undo_retrans = tp->retrans_out ? : -1;
1908 }
1909 
1910 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1911  * and reset tags completely, otherwise preserve SACKs. If receiver
1912  * dropped its ofo queue, we will know this due to reneging detection.
1913  */
1914 void tcp_enter_loss(struct sock *sk)
1915 {
1916 	const struct inet_connection_sock *icsk = inet_csk(sk);
1917 	struct tcp_sock *tp = tcp_sk(sk);
1918 	struct net *net = sock_net(sk);
1919 	struct sk_buff *skb;
1920 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1921 	bool is_reneg;			/* is receiver reneging on SACKs? */
1922 	bool mark_lost;
1923 
1924 	/* Reduce ssthresh if it has not yet been made inside this window. */
1925 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1926 	    !after(tp->high_seq, tp->snd_una) ||
1927 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1928 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1929 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1930 		tcp_ca_event(sk, CA_EVENT_LOSS);
1931 		tcp_init_undo(tp);
1932 	}
1933 	tp->snd_cwnd	   = 1;
1934 	tp->snd_cwnd_cnt   = 0;
1935 	tp->snd_cwnd_stamp = tcp_time_stamp;
1936 
1937 	tp->retrans_out = 0;
1938 	tp->lost_out = 0;
1939 
1940 	if (tcp_is_reno(tp))
1941 		tcp_reset_reno_sack(tp);
1942 
1943 	skb = tcp_write_queue_head(sk);
1944 	is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1945 	if (is_reneg) {
1946 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1947 		tp->sacked_out = 0;
1948 		tp->fackets_out = 0;
1949 	}
1950 	tcp_clear_all_retrans_hints(tp);
1951 
1952 	tcp_for_write_queue(skb, sk) {
1953 		if (skb == tcp_send_head(sk))
1954 			break;
1955 
1956 		mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
1957 			     is_reneg);
1958 		if (mark_lost)
1959 			tcp_sum_lost(tp, skb);
1960 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1961 		if (mark_lost) {
1962 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1963 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1964 			tp->lost_out += tcp_skb_pcount(skb);
1965 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1966 		}
1967 	}
1968 	tcp_verify_left_out(tp);
1969 
1970 	/* Timeout in disordered state after receiving substantial DUPACKs
1971 	 * suggests that the degree of reordering is over-estimated.
1972 	 */
1973 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1974 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1975 		tp->reordering = min_t(unsigned int, tp->reordering,
1976 				       net->ipv4.sysctl_tcp_reordering);
1977 	tcp_set_ca_state(sk, TCP_CA_Loss);
1978 	tp->high_seq = tp->snd_nxt;
1979 	tcp_ecn_queue_cwr(tp);
1980 
1981 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1982 	 * loss recovery is underway except recurring timeout(s) on
1983 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1984 	 */
1985 	tp->frto = sysctl_tcp_frto &&
1986 		   (new_recovery || icsk->icsk_retransmits) &&
1987 		   !inet_csk(sk)->icsk_mtup.probe_size;
1988 }
1989 
1990 /* If ACK arrived pointing to a remembered SACK, it means that our
1991  * remembered SACKs do not reflect real state of receiver i.e.
1992  * receiver _host_ is heavily congested (or buggy).
1993  *
1994  * To avoid big spurious retransmission bursts due to transient SACK
1995  * scoreboard oddities that look like reneging, we give the receiver a
1996  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1997  * restore sanity to the SACK scoreboard. If the apparent reneging
1998  * persists until this RTO then we'll clear the SACK scoreboard.
1999  */
2000 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2001 {
2002 	if (flag & FLAG_SACK_RENEGING) {
2003 		struct tcp_sock *tp = tcp_sk(sk);
2004 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2005 					  msecs_to_jiffies(10));
2006 
2007 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2008 					  delay, TCP_RTO_MAX);
2009 		return true;
2010 	}
2011 	return false;
2012 }
2013 
2014 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2015 {
2016 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2017 }
2018 
2019 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2020  * counter when SACK is enabled (without SACK, sacked_out is used for
2021  * that purpose).
2022  *
2023  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2024  * segments up to the highest received SACK block so far and holes in
2025  * between them.
2026  *
2027  * With reordering, holes may still be in flight, so RFC3517 recovery
2028  * uses pure sacked_out (total number of SACKed segments) even though
2029  * it violates the RFC that uses duplicate ACKs, often these are equal
2030  * but when e.g. out-of-window ACKs or packet duplication occurs,
2031  * they differ. Since neither occurs due to loss, TCP should really
2032  * ignore them.
2033  */
2034 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2035 {
2036 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2037 }
2038 
2039 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2040 {
2041 	struct tcp_sock *tp = tcp_sk(sk);
2042 	unsigned long delay;
2043 
2044 	/* Delay early retransmit and entering fast recovery for
2045 	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2046 	 * available, or RTO is scheduled to fire first.
2047 	 */
2048 	if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2049 	    (flag & FLAG_ECE) || !tp->srtt_us)
2050 		return false;
2051 
2052 	delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2053 		    msecs_to_jiffies(2));
2054 
2055 	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2056 		return false;
2057 
2058 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2059 				  TCP_RTO_MAX);
2060 	return true;
2061 }
2062 
2063 /* Linux NewReno/SACK/FACK/ECN state machine.
2064  * --------------------------------------
2065  *
2066  * "Open"	Normal state, no dubious events, fast path.
2067  * "Disorder"   In all the respects it is "Open",
2068  *		but requires a bit more attention. It is entered when
2069  *		we see some SACKs or dupacks. It is split of "Open"
2070  *		mainly to move some processing from fast path to slow one.
2071  * "CWR"	CWND was reduced due to some Congestion Notification event.
2072  *		It can be ECN, ICMP source quench, local device congestion.
2073  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2074  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2075  *
2076  * tcp_fastretrans_alert() is entered:
2077  * - each incoming ACK, if state is not "Open"
2078  * - when arrived ACK is unusual, namely:
2079  *	* SACK
2080  *	* Duplicate ACK.
2081  *	* ECN ECE.
2082  *
2083  * Counting packets in flight is pretty simple.
2084  *
2085  *	in_flight = packets_out - left_out + retrans_out
2086  *
2087  *	packets_out is SND.NXT-SND.UNA counted in packets.
2088  *
2089  *	retrans_out is number of retransmitted segments.
2090  *
2091  *	left_out is number of segments left network, but not ACKed yet.
2092  *
2093  *		left_out = sacked_out + lost_out
2094  *
2095  *     sacked_out: Packets, which arrived to receiver out of order
2096  *		   and hence not ACKed. With SACKs this number is simply
2097  *		   amount of SACKed data. Even without SACKs
2098  *		   it is easy to give pretty reliable estimate of this number,
2099  *		   counting duplicate ACKs.
2100  *
2101  *       lost_out: Packets lost by network. TCP has no explicit
2102  *		   "loss notification" feedback from network (for now).
2103  *		   It means that this number can be only _guessed_.
2104  *		   Actually, it is the heuristics to predict lossage that
2105  *		   distinguishes different algorithms.
2106  *
2107  *	F.e. after RTO, when all the queue is considered as lost,
2108  *	lost_out = packets_out and in_flight = retrans_out.
2109  *
2110  *		Essentially, we have now two algorithms counting
2111  *		lost packets.
2112  *
2113  *		FACK: It is the simplest heuristics. As soon as we decided
2114  *		that something is lost, we decide that _all_ not SACKed
2115  *		packets until the most forward SACK are lost. I.e.
2116  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2117  *		It is absolutely correct estimate, if network does not reorder
2118  *		packets. And it loses any connection to reality when reordering
2119  *		takes place. We use FACK by default until reordering
2120  *		is suspected on the path to this destination.
2121  *
2122  *		NewReno: when Recovery is entered, we assume that one segment
2123  *		is lost (classic Reno). While we are in Recovery and
2124  *		a partial ACK arrives, we assume that one more packet
2125  *		is lost (NewReno). This heuristics are the same in NewReno
2126  *		and SACK.
2127  *
2128  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2129  *  deflation etc. CWND is real congestion window, never inflated, changes
2130  *  only according to classic VJ rules.
2131  *
2132  * Really tricky (and requiring careful tuning) part of algorithm
2133  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2134  * The first determines the moment _when_ we should reduce CWND and,
2135  * hence, slow down forward transmission. In fact, it determines the moment
2136  * when we decide that hole is caused by loss, rather than by a reorder.
2137  *
2138  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2139  * holes, caused by lost packets.
2140  *
2141  * And the most logically complicated part of algorithm is undo
2142  * heuristics. We detect false retransmits due to both too early
2143  * fast retransmit (reordering) and underestimated RTO, analyzing
2144  * timestamps and D-SACKs. When we detect that some segments were
2145  * retransmitted by mistake and CWND reduction was wrong, we undo
2146  * window reduction and abort recovery phase. This logic is hidden
2147  * inside several functions named tcp_try_undo_<something>.
2148  */
2149 
2150 /* This function decides, when we should leave Disordered state
2151  * and enter Recovery phase, reducing congestion window.
2152  *
2153  * Main question: may we further continue forward transmission
2154  * with the same cwnd?
2155  */
2156 static bool tcp_time_to_recover(struct sock *sk, int flag)
2157 {
2158 	struct tcp_sock *tp = tcp_sk(sk);
2159 	__u32 packets_out;
2160 	int tcp_reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
2161 
2162 	/* Trick#1: The loss is proven. */
2163 	if (tp->lost_out)
2164 		return true;
2165 
2166 	/* Not-A-Trick#2 : Classic rule... */
2167 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2168 		return true;
2169 
2170 	/* Trick#4: It is still not OK... But will it be useful to delay
2171 	 * recovery more?
2172 	 */
2173 	packets_out = tp->packets_out;
2174 	if (packets_out <= tp->reordering &&
2175 	    tp->sacked_out >= max_t(__u32, packets_out/2, tcp_reordering) &&
2176 	    !tcp_may_send_now(sk)) {
2177 		/* We have nothing to send. This connection is limited
2178 		 * either by receiver window or by application.
2179 		 */
2180 		return true;
2181 	}
2182 
2183 	/* If a thin stream is detected, retransmit after first
2184 	 * received dupack. Employ only if SACK is supported in order
2185 	 * to avoid possible corner-case series of spurious retransmissions
2186 	 * Use only if there are no unsent data.
2187 	 */
2188 	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2189 	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2190 	    tcp_is_sack(tp) && !tcp_send_head(sk))
2191 		return true;
2192 
2193 	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2194 	 * retransmissions due to small network reorderings, we implement
2195 	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2196 	 * interval if appropriate.
2197 	 */
2198 	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2199 	    (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2200 	    !tcp_may_send_now(sk))
2201 		return !tcp_pause_early_retransmit(sk, flag);
2202 
2203 	return false;
2204 }
2205 
2206 /* Detect loss in event "A" above by marking head of queue up as lost.
2207  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2208  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2209  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2210  * the maximum SACKed segments to pass before reaching this limit.
2211  */
2212 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2213 {
2214 	struct tcp_sock *tp = tcp_sk(sk);
2215 	struct sk_buff *skb;
2216 	int cnt, oldcnt, lost;
2217 	unsigned int mss;
2218 	/* Use SACK to deduce losses of new sequences sent during recovery */
2219 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2220 
2221 	WARN_ON(packets > tp->packets_out);
2222 	if (tp->lost_skb_hint) {
2223 		skb = tp->lost_skb_hint;
2224 		cnt = tp->lost_cnt_hint;
2225 		/* Head already handled? */
2226 		if (mark_head && skb != tcp_write_queue_head(sk))
2227 			return;
2228 	} else {
2229 		skb = tcp_write_queue_head(sk);
2230 		cnt = 0;
2231 	}
2232 
2233 	tcp_for_write_queue_from(skb, sk) {
2234 		if (skb == tcp_send_head(sk))
2235 			break;
2236 		/* TODO: do this better */
2237 		/* this is not the most efficient way to do this... */
2238 		tp->lost_skb_hint = skb;
2239 		tp->lost_cnt_hint = cnt;
2240 
2241 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2242 			break;
2243 
2244 		oldcnt = cnt;
2245 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2246 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2247 			cnt += tcp_skb_pcount(skb);
2248 
2249 		if (cnt > packets) {
2250 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2251 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2252 			    (oldcnt >= packets))
2253 				break;
2254 
2255 			mss = tcp_skb_mss(skb);
2256 			/* If needed, chop off the prefix to mark as lost. */
2257 			lost = (packets - oldcnt) * mss;
2258 			if (lost < skb->len &&
2259 			    tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2260 				break;
2261 			cnt = packets;
2262 		}
2263 
2264 		tcp_skb_mark_lost(tp, skb);
2265 
2266 		if (mark_head)
2267 			break;
2268 	}
2269 	tcp_verify_left_out(tp);
2270 }
2271 
2272 /* Account newly detected lost packet(s) */
2273 
2274 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2275 {
2276 	struct tcp_sock *tp = tcp_sk(sk);
2277 
2278 	if (tcp_is_reno(tp)) {
2279 		tcp_mark_head_lost(sk, 1, 1);
2280 	} else if (tcp_is_fack(tp)) {
2281 		int lost = tp->fackets_out - tp->reordering;
2282 		if (lost <= 0)
2283 			lost = 1;
2284 		tcp_mark_head_lost(sk, lost, 0);
2285 	} else {
2286 		int sacked_upto = tp->sacked_out - tp->reordering;
2287 		if (sacked_upto >= 0)
2288 			tcp_mark_head_lost(sk, sacked_upto, 0);
2289 		else if (fast_rexmit)
2290 			tcp_mark_head_lost(sk, 1, 1);
2291 	}
2292 }
2293 
2294 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2295 {
2296 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2297 	       before(tp->rx_opt.rcv_tsecr, when);
2298 }
2299 
2300 /* skb is spurious retransmitted if the returned timestamp echo
2301  * reply is prior to the skb transmission time
2302  */
2303 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2304 				     const struct sk_buff *skb)
2305 {
2306 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2307 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2308 }
2309 
2310 /* Nothing was retransmitted or returned timestamp is less
2311  * than timestamp of the first retransmission.
2312  */
2313 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2314 {
2315 	return !tp->retrans_stamp ||
2316 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2317 }
2318 
2319 /* Undo procedures. */
2320 
2321 /* We can clear retrans_stamp when there are no retransmissions in the
2322  * window. It would seem that it is trivially available for us in
2323  * tp->retrans_out, however, that kind of assumptions doesn't consider
2324  * what will happen if errors occur when sending retransmission for the
2325  * second time. ...It could the that such segment has only
2326  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2327  * the head skb is enough except for some reneging corner cases that
2328  * are not worth the effort.
2329  *
2330  * Main reason for all this complexity is the fact that connection dying
2331  * time now depends on the validity of the retrans_stamp, in particular,
2332  * that successive retransmissions of a segment must not advance
2333  * retrans_stamp under any conditions.
2334  */
2335 static bool tcp_any_retrans_done(const struct sock *sk)
2336 {
2337 	const struct tcp_sock *tp = tcp_sk(sk);
2338 	struct sk_buff *skb;
2339 
2340 	if (tp->retrans_out)
2341 		return true;
2342 
2343 	skb = tcp_write_queue_head(sk);
2344 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2345 		return true;
2346 
2347 	return false;
2348 }
2349 
2350 #if FASTRETRANS_DEBUG > 1
2351 static void DBGUNDO(struct sock *sk, const char *msg)
2352 {
2353 	struct tcp_sock *tp = tcp_sk(sk);
2354 	struct inet_sock *inet = inet_sk(sk);
2355 
2356 	if (sk->sk_family == AF_INET) {
2357 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2358 			 msg,
2359 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2360 			 tp->snd_cwnd, tcp_left_out(tp),
2361 			 tp->snd_ssthresh, tp->prior_ssthresh,
2362 			 tp->packets_out);
2363 	}
2364 #if IS_ENABLED(CONFIG_IPV6)
2365 	else if (sk->sk_family == AF_INET6) {
2366 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2367 			 msg,
2368 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2369 			 tp->snd_cwnd, tcp_left_out(tp),
2370 			 tp->snd_ssthresh, tp->prior_ssthresh,
2371 			 tp->packets_out);
2372 	}
2373 #endif
2374 }
2375 #else
2376 #define DBGUNDO(x...) do { } while (0)
2377 #endif
2378 
2379 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2380 {
2381 	struct tcp_sock *tp = tcp_sk(sk);
2382 
2383 	if (unmark_loss) {
2384 		struct sk_buff *skb;
2385 
2386 		tcp_for_write_queue(skb, sk) {
2387 			if (skb == tcp_send_head(sk))
2388 				break;
2389 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2390 		}
2391 		tp->lost_out = 0;
2392 		tcp_clear_all_retrans_hints(tp);
2393 	}
2394 
2395 	if (tp->prior_ssthresh) {
2396 		const struct inet_connection_sock *icsk = inet_csk(sk);
2397 
2398 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2399 
2400 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2401 			tp->snd_ssthresh = tp->prior_ssthresh;
2402 			tcp_ecn_withdraw_cwr(tp);
2403 		}
2404 	}
2405 	tp->snd_cwnd_stamp = tcp_time_stamp;
2406 	tp->undo_marker = 0;
2407 }
2408 
2409 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2410 {
2411 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2412 }
2413 
2414 /* People celebrate: "We love our President!" */
2415 static bool tcp_try_undo_recovery(struct sock *sk)
2416 {
2417 	struct tcp_sock *tp = tcp_sk(sk);
2418 
2419 	if (tcp_may_undo(tp)) {
2420 		int mib_idx;
2421 
2422 		/* Happy end! We did not retransmit anything
2423 		 * or our original transmission succeeded.
2424 		 */
2425 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2426 		tcp_undo_cwnd_reduction(sk, false);
2427 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2428 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2429 		else
2430 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2431 
2432 		NET_INC_STATS(sock_net(sk), mib_idx);
2433 	}
2434 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2435 		/* Hold old state until something *above* high_seq
2436 		 * is ACKed. For Reno it is MUST to prevent false
2437 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2438 		if (!tcp_any_retrans_done(sk))
2439 			tp->retrans_stamp = 0;
2440 		return true;
2441 	}
2442 	tcp_set_ca_state(sk, TCP_CA_Open);
2443 	return false;
2444 }
2445 
2446 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2447 static bool tcp_try_undo_dsack(struct sock *sk)
2448 {
2449 	struct tcp_sock *tp = tcp_sk(sk);
2450 
2451 	if (tp->undo_marker && !tp->undo_retrans) {
2452 		DBGUNDO(sk, "D-SACK");
2453 		tcp_undo_cwnd_reduction(sk, false);
2454 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2455 		return true;
2456 	}
2457 	return false;
2458 }
2459 
2460 /* Undo during loss recovery after partial ACK or using F-RTO. */
2461 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2462 {
2463 	struct tcp_sock *tp = tcp_sk(sk);
2464 
2465 	if (frto_undo || tcp_may_undo(tp)) {
2466 		tcp_undo_cwnd_reduction(sk, true);
2467 
2468 		DBGUNDO(sk, "partial loss");
2469 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2470 		if (frto_undo)
2471 			NET_INC_STATS(sock_net(sk),
2472 					LINUX_MIB_TCPSPURIOUSRTOS);
2473 		inet_csk(sk)->icsk_retransmits = 0;
2474 		if (frto_undo || tcp_is_sack(tp))
2475 			tcp_set_ca_state(sk, TCP_CA_Open);
2476 		return true;
2477 	}
2478 	return false;
2479 }
2480 
2481 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2482  * It computes the number of packets to send (sndcnt) based on packets newly
2483  * delivered:
2484  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2485  *	cwnd reductions across a full RTT.
2486  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2487  *      But when the retransmits are acked without further losses, PRR
2488  *      slow starts cwnd up to ssthresh to speed up the recovery.
2489  */
2490 static void tcp_init_cwnd_reduction(struct sock *sk)
2491 {
2492 	struct tcp_sock *tp = tcp_sk(sk);
2493 
2494 	tp->high_seq = tp->snd_nxt;
2495 	tp->tlp_high_seq = 0;
2496 	tp->snd_cwnd_cnt = 0;
2497 	tp->prior_cwnd = tp->snd_cwnd;
2498 	tp->prr_delivered = 0;
2499 	tp->prr_out = 0;
2500 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2501 	tcp_ecn_queue_cwr(tp);
2502 }
2503 
2504 static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
2505 			       int flag)
2506 {
2507 	struct tcp_sock *tp = tcp_sk(sk);
2508 	int sndcnt = 0;
2509 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2510 
2511 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2512 		return;
2513 
2514 	tp->prr_delivered += newly_acked_sacked;
2515 	if (delta < 0) {
2516 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2517 			       tp->prior_cwnd - 1;
2518 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2519 	} else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2520 		   !(flag & FLAG_LOST_RETRANS)) {
2521 		sndcnt = min_t(int, delta,
2522 			       max_t(int, tp->prr_delivered - tp->prr_out,
2523 				     newly_acked_sacked) + 1);
2524 	} else {
2525 		sndcnt = min(delta, newly_acked_sacked);
2526 	}
2527 	/* Force a fast retransmit upon entering fast recovery */
2528 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2529 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2530 }
2531 
2532 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2533 {
2534 	struct tcp_sock *tp = tcp_sk(sk);
2535 
2536 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2537 		return;
2538 
2539 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2540 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2541 	    (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2542 		tp->snd_cwnd = tp->snd_ssthresh;
2543 		tp->snd_cwnd_stamp = tcp_time_stamp;
2544 	}
2545 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2546 }
2547 
2548 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2549 void tcp_enter_cwr(struct sock *sk)
2550 {
2551 	struct tcp_sock *tp = tcp_sk(sk);
2552 
2553 	tp->prior_ssthresh = 0;
2554 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2555 		tp->undo_marker = 0;
2556 		tcp_init_cwnd_reduction(sk);
2557 		tcp_set_ca_state(sk, TCP_CA_CWR);
2558 	}
2559 }
2560 EXPORT_SYMBOL(tcp_enter_cwr);
2561 
2562 static void tcp_try_keep_open(struct sock *sk)
2563 {
2564 	struct tcp_sock *tp = tcp_sk(sk);
2565 	int state = TCP_CA_Open;
2566 
2567 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2568 		state = TCP_CA_Disorder;
2569 
2570 	if (inet_csk(sk)->icsk_ca_state != state) {
2571 		tcp_set_ca_state(sk, state);
2572 		tp->high_seq = tp->snd_nxt;
2573 	}
2574 }
2575 
2576 static void tcp_try_to_open(struct sock *sk, int flag)
2577 {
2578 	struct tcp_sock *tp = tcp_sk(sk);
2579 
2580 	tcp_verify_left_out(tp);
2581 
2582 	if (!tcp_any_retrans_done(sk))
2583 		tp->retrans_stamp = 0;
2584 
2585 	if (flag & FLAG_ECE)
2586 		tcp_enter_cwr(sk);
2587 
2588 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2589 		tcp_try_keep_open(sk);
2590 	}
2591 }
2592 
2593 static void tcp_mtup_probe_failed(struct sock *sk)
2594 {
2595 	struct inet_connection_sock *icsk = inet_csk(sk);
2596 
2597 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2598 	icsk->icsk_mtup.probe_size = 0;
2599 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2600 }
2601 
2602 static void tcp_mtup_probe_success(struct sock *sk)
2603 {
2604 	struct tcp_sock *tp = tcp_sk(sk);
2605 	struct inet_connection_sock *icsk = inet_csk(sk);
2606 
2607 	/* FIXME: breaks with very large cwnd */
2608 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2609 	tp->snd_cwnd = tp->snd_cwnd *
2610 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2611 		       icsk->icsk_mtup.probe_size;
2612 	tp->snd_cwnd_cnt = 0;
2613 	tp->snd_cwnd_stamp = tcp_time_stamp;
2614 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2615 
2616 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2617 	icsk->icsk_mtup.probe_size = 0;
2618 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2619 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2620 }
2621 
2622 /* Do a simple retransmit without using the backoff mechanisms in
2623  * tcp_timer. This is used for path mtu discovery.
2624  * The socket is already locked here.
2625  */
2626 void tcp_simple_retransmit(struct sock *sk)
2627 {
2628 	const struct inet_connection_sock *icsk = inet_csk(sk);
2629 	struct tcp_sock *tp = tcp_sk(sk);
2630 	struct sk_buff *skb;
2631 	unsigned int mss = tcp_current_mss(sk);
2632 	u32 prior_lost = tp->lost_out;
2633 
2634 	tcp_for_write_queue(skb, sk) {
2635 		if (skb == tcp_send_head(sk))
2636 			break;
2637 		if (tcp_skb_seglen(skb) > mss &&
2638 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2639 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2640 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2641 				tp->retrans_out -= tcp_skb_pcount(skb);
2642 			}
2643 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2644 		}
2645 	}
2646 
2647 	tcp_clear_retrans_hints_partial(tp);
2648 
2649 	if (prior_lost == tp->lost_out)
2650 		return;
2651 
2652 	if (tcp_is_reno(tp))
2653 		tcp_limit_reno_sacked(tp);
2654 
2655 	tcp_verify_left_out(tp);
2656 
2657 	/* Don't muck with the congestion window here.
2658 	 * Reason is that we do not increase amount of _data_
2659 	 * in network, but units changed and effective
2660 	 * cwnd/ssthresh really reduced now.
2661 	 */
2662 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2663 		tp->high_seq = tp->snd_nxt;
2664 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2665 		tp->prior_ssthresh = 0;
2666 		tp->undo_marker = 0;
2667 		tcp_set_ca_state(sk, TCP_CA_Loss);
2668 	}
2669 	tcp_xmit_retransmit_queue(sk);
2670 }
2671 EXPORT_SYMBOL(tcp_simple_retransmit);
2672 
2673 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2674 {
2675 	struct tcp_sock *tp = tcp_sk(sk);
2676 	int mib_idx;
2677 
2678 	if (tcp_is_reno(tp))
2679 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2680 	else
2681 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2682 
2683 	NET_INC_STATS(sock_net(sk), mib_idx);
2684 
2685 	tp->prior_ssthresh = 0;
2686 	tcp_init_undo(tp);
2687 
2688 	if (!tcp_in_cwnd_reduction(sk)) {
2689 		if (!ece_ack)
2690 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2691 		tcp_init_cwnd_reduction(sk);
2692 	}
2693 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2694 }
2695 
2696 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2697  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2698  */
2699 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2700 			     int *rexmit)
2701 {
2702 	struct tcp_sock *tp = tcp_sk(sk);
2703 	bool recovered = !before(tp->snd_una, tp->high_seq);
2704 
2705 	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2706 	    tcp_try_undo_loss(sk, false))
2707 		return;
2708 
2709 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2710 		/* Step 3.b. A timeout is spurious if not all data are
2711 		 * lost, i.e., never-retransmitted data are (s)acked.
2712 		 */
2713 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2714 		    tcp_try_undo_loss(sk, true))
2715 			return;
2716 
2717 		if (after(tp->snd_nxt, tp->high_seq)) {
2718 			if (flag & FLAG_DATA_SACKED || is_dupack)
2719 				tp->frto = 0; /* Step 3.a. loss was real */
2720 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2721 			tp->high_seq = tp->snd_nxt;
2722 			/* Step 2.b. Try send new data (but deferred until cwnd
2723 			 * is updated in tcp_ack()). Otherwise fall back to
2724 			 * the conventional recovery.
2725 			 */
2726 			if (tcp_send_head(sk) &&
2727 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2728 				*rexmit = REXMIT_NEW;
2729 				return;
2730 			}
2731 			tp->frto = 0;
2732 		}
2733 	}
2734 
2735 	if (recovered) {
2736 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2737 		tcp_try_undo_recovery(sk);
2738 		return;
2739 	}
2740 	if (tcp_is_reno(tp)) {
2741 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2742 		 * delivered. Lower inflight to clock out (re)tranmissions.
2743 		 */
2744 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2745 			tcp_add_reno_sack(sk);
2746 		else if (flag & FLAG_SND_UNA_ADVANCED)
2747 			tcp_reset_reno_sack(tp);
2748 	}
2749 	*rexmit = REXMIT_LOST;
2750 }
2751 
2752 /* Undo during fast recovery after partial ACK. */
2753 static bool tcp_try_undo_partial(struct sock *sk, const int acked)
2754 {
2755 	struct tcp_sock *tp = tcp_sk(sk);
2756 
2757 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2758 		/* Plain luck! Hole if filled with delayed
2759 		 * packet, rather than with a retransmit.
2760 		 */
2761 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2762 
2763 		/* We are getting evidence that the reordering degree is higher
2764 		 * than we realized. If there are no retransmits out then we
2765 		 * can undo. Otherwise we clock out new packets but do not
2766 		 * mark more packets lost or retransmit more.
2767 		 */
2768 		if (tp->retrans_out)
2769 			return true;
2770 
2771 		if (!tcp_any_retrans_done(sk))
2772 			tp->retrans_stamp = 0;
2773 
2774 		DBGUNDO(sk, "partial recovery");
2775 		tcp_undo_cwnd_reduction(sk, true);
2776 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2777 		tcp_try_keep_open(sk);
2778 		return true;
2779 	}
2780 	return false;
2781 }
2782 
2783 /* Process an event, which can update packets-in-flight not trivially.
2784  * Main goal of this function is to calculate new estimate for left_out,
2785  * taking into account both packets sitting in receiver's buffer and
2786  * packets lost by network.
2787  *
2788  * Besides that it updates the congestion state when packet loss or ECN
2789  * is detected. But it does not reduce the cwnd, it is done by the
2790  * congestion control later.
2791  *
2792  * It does _not_ decide what to send, it is made in function
2793  * tcp_xmit_retransmit_queue().
2794  */
2795 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2796 				  bool is_dupack, int *ack_flag, int *rexmit)
2797 {
2798 	struct inet_connection_sock *icsk = inet_csk(sk);
2799 	struct tcp_sock *tp = tcp_sk(sk);
2800 	int fast_rexmit = 0, flag = *ack_flag;
2801 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2802 				    (tcp_fackets_out(tp) > tp->reordering));
2803 
2804 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2805 		tp->sacked_out = 0;
2806 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2807 		tp->fackets_out = 0;
2808 
2809 	/* Now state machine starts.
2810 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2811 	if (flag & FLAG_ECE)
2812 		tp->prior_ssthresh = 0;
2813 
2814 	/* B. In all the states check for reneging SACKs. */
2815 	if (tcp_check_sack_reneging(sk, flag))
2816 		return;
2817 
2818 	/* C. Check consistency of the current state. */
2819 	tcp_verify_left_out(tp);
2820 
2821 	/* D. Check state exit conditions. State can be terminated
2822 	 *    when high_seq is ACKed. */
2823 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2824 		WARN_ON(tp->retrans_out != 0);
2825 		tp->retrans_stamp = 0;
2826 	} else if (!before(tp->snd_una, tp->high_seq)) {
2827 		switch (icsk->icsk_ca_state) {
2828 		case TCP_CA_CWR:
2829 			/* CWR is to be held something *above* high_seq
2830 			 * is ACKed for CWR bit to reach receiver. */
2831 			if (tp->snd_una != tp->high_seq) {
2832 				tcp_end_cwnd_reduction(sk);
2833 				tcp_set_ca_state(sk, TCP_CA_Open);
2834 			}
2835 			break;
2836 
2837 		case TCP_CA_Recovery:
2838 			if (tcp_is_reno(tp))
2839 				tcp_reset_reno_sack(tp);
2840 			if (tcp_try_undo_recovery(sk))
2841 				return;
2842 			tcp_end_cwnd_reduction(sk);
2843 			break;
2844 		}
2845 	}
2846 
2847 	/* Use RACK to detect loss */
2848 	if (sysctl_tcp_recovery & TCP_RACK_LOST_RETRANS &&
2849 	    tcp_rack_mark_lost(sk)) {
2850 		flag |= FLAG_LOST_RETRANS;
2851 		*ack_flag |= FLAG_LOST_RETRANS;
2852 	}
2853 
2854 	/* E. Process state. */
2855 	switch (icsk->icsk_ca_state) {
2856 	case TCP_CA_Recovery:
2857 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2858 			if (tcp_is_reno(tp) && is_dupack)
2859 				tcp_add_reno_sack(sk);
2860 		} else {
2861 			if (tcp_try_undo_partial(sk, acked))
2862 				return;
2863 			/* Partial ACK arrived. Force fast retransmit. */
2864 			do_lost = tcp_is_reno(tp) ||
2865 				  tcp_fackets_out(tp) > tp->reordering;
2866 		}
2867 		if (tcp_try_undo_dsack(sk)) {
2868 			tcp_try_keep_open(sk);
2869 			return;
2870 		}
2871 		break;
2872 	case TCP_CA_Loss:
2873 		tcp_process_loss(sk, flag, is_dupack, rexmit);
2874 		if (icsk->icsk_ca_state != TCP_CA_Open &&
2875 		    !(flag & FLAG_LOST_RETRANS))
2876 			return;
2877 		/* Change state if cwnd is undone or retransmits are lost */
2878 	default:
2879 		if (tcp_is_reno(tp)) {
2880 			if (flag & FLAG_SND_UNA_ADVANCED)
2881 				tcp_reset_reno_sack(tp);
2882 			if (is_dupack)
2883 				tcp_add_reno_sack(sk);
2884 		}
2885 
2886 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2887 			tcp_try_undo_dsack(sk);
2888 
2889 		if (!tcp_time_to_recover(sk, flag)) {
2890 			tcp_try_to_open(sk, flag);
2891 			return;
2892 		}
2893 
2894 		/* MTU probe failure: don't reduce cwnd */
2895 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2896 		    icsk->icsk_mtup.probe_size &&
2897 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2898 			tcp_mtup_probe_failed(sk);
2899 			/* Restores the reduction we did in tcp_mtup_probe() */
2900 			tp->snd_cwnd++;
2901 			tcp_simple_retransmit(sk);
2902 			return;
2903 		}
2904 
2905 		/* Otherwise enter Recovery state */
2906 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2907 		fast_rexmit = 1;
2908 	}
2909 
2910 	if (do_lost)
2911 		tcp_update_scoreboard(sk, fast_rexmit);
2912 	*rexmit = REXMIT_LOST;
2913 }
2914 
2915 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2916 {
2917 	struct tcp_sock *tp = tcp_sk(sk);
2918 	u32 wlen = sysctl_tcp_min_rtt_wlen * HZ;
2919 
2920 	minmax_running_min(&tp->rtt_min, wlen, tcp_time_stamp,
2921 			   rtt_us ? : jiffies_to_usecs(1));
2922 }
2923 
2924 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2925 				      long seq_rtt_us, long sack_rtt_us,
2926 				      long ca_rtt_us)
2927 {
2928 	const struct tcp_sock *tp = tcp_sk(sk);
2929 
2930 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2931 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2932 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2933 	 * is acked (RFC6298).
2934 	 */
2935 	if (seq_rtt_us < 0)
2936 		seq_rtt_us = sack_rtt_us;
2937 
2938 	/* RTTM Rule: A TSecr value received in a segment is used to
2939 	 * update the averaged RTT measurement only if the segment
2940 	 * acknowledges some new data, i.e., only if it advances the
2941 	 * left edge of the send window.
2942 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2943 	 */
2944 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2945 	    flag & FLAG_ACKED)
2946 		seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp -
2947 							  tp->rx_opt.rcv_tsecr);
2948 	if (seq_rtt_us < 0)
2949 		return false;
2950 
2951 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2952 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2953 	 * values will be skipped with the seq_rtt_us < 0 check above.
2954 	 */
2955 	tcp_update_rtt_min(sk, ca_rtt_us);
2956 	tcp_rtt_estimator(sk, seq_rtt_us);
2957 	tcp_set_rto(sk);
2958 
2959 	/* RFC6298: only reset backoff on valid RTT measurement. */
2960 	inet_csk(sk)->icsk_backoff = 0;
2961 	return true;
2962 }
2963 
2964 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2965 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2966 {
2967 	long rtt_us = -1L;
2968 
2969 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) {
2970 		struct skb_mstamp now;
2971 
2972 		skb_mstamp_get(&now);
2973 		rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack);
2974 	}
2975 
2976 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us);
2977 }
2978 
2979 
2980 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2981 {
2982 	const struct inet_connection_sock *icsk = inet_csk(sk);
2983 
2984 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2985 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2986 }
2987 
2988 /* Restart timer after forward progress on connection.
2989  * RFC2988 recommends to restart timer to now+rto.
2990  */
2991 void tcp_rearm_rto(struct sock *sk)
2992 {
2993 	const struct inet_connection_sock *icsk = inet_csk(sk);
2994 	struct tcp_sock *tp = tcp_sk(sk);
2995 
2996 	/* If the retrans timer is currently being used by Fast Open
2997 	 * for SYN-ACK retrans purpose, stay put.
2998 	 */
2999 	if (tp->fastopen_rsk)
3000 		return;
3001 
3002 	if (!tp->packets_out) {
3003 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3004 	} else {
3005 		u32 rto = inet_csk(sk)->icsk_rto;
3006 		/* Offset the time elapsed after installing regular RTO */
3007 		if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3008 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3009 			struct sk_buff *skb = tcp_write_queue_head(sk);
3010 			const u32 rto_time_stamp =
3011 				tcp_skb_timestamp(skb) + rto;
3012 			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3013 			/* delta may not be positive if the socket is locked
3014 			 * when the retrans timer fires and is rescheduled.
3015 			 */
3016 			if (delta > 0)
3017 				rto = delta;
3018 		}
3019 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3020 					  TCP_RTO_MAX);
3021 	}
3022 }
3023 
3024 /* This function is called when the delayed ER timer fires. TCP enters
3025  * fast recovery and performs fast-retransmit.
3026  */
3027 void tcp_resume_early_retransmit(struct sock *sk)
3028 {
3029 	struct tcp_sock *tp = tcp_sk(sk);
3030 
3031 	tcp_rearm_rto(sk);
3032 
3033 	/* Stop if ER is disabled after the delayed ER timer is scheduled */
3034 	if (!tp->do_early_retrans)
3035 		return;
3036 
3037 	tcp_enter_recovery(sk, false);
3038 	tcp_update_scoreboard(sk, 1);
3039 	tcp_xmit_retransmit_queue(sk);
3040 }
3041 
3042 /* If we get here, the whole TSO packet has not been acked. */
3043 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3044 {
3045 	struct tcp_sock *tp = tcp_sk(sk);
3046 	u32 packets_acked;
3047 
3048 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3049 
3050 	packets_acked = tcp_skb_pcount(skb);
3051 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3052 		return 0;
3053 	packets_acked -= tcp_skb_pcount(skb);
3054 
3055 	if (packets_acked) {
3056 		BUG_ON(tcp_skb_pcount(skb) == 0);
3057 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3058 	}
3059 
3060 	return packets_acked;
3061 }
3062 
3063 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3064 			   u32 prior_snd_una)
3065 {
3066 	const struct skb_shared_info *shinfo;
3067 
3068 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3069 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3070 		return;
3071 
3072 	shinfo = skb_shinfo(skb);
3073 	if (!before(shinfo->tskey, prior_snd_una) &&
3074 	    before(shinfo->tskey, tcp_sk(sk)->snd_una))
3075 		__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3076 }
3077 
3078 /* Remove acknowledged frames from the retransmission queue. If our packet
3079  * is before the ack sequence we can discard it as it's confirmed to have
3080  * arrived at the other end.
3081  */
3082 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3083 			       u32 prior_snd_una, int *acked,
3084 			       struct tcp_sacktag_state *sack,
3085 			       struct skb_mstamp *now)
3086 {
3087 	const struct inet_connection_sock *icsk = inet_csk(sk);
3088 	struct skb_mstamp first_ackt, last_ackt;
3089 	struct tcp_sock *tp = tcp_sk(sk);
3090 	u32 prior_sacked = tp->sacked_out;
3091 	u32 reord = tp->packets_out;
3092 	bool fully_acked = true;
3093 	long sack_rtt_us = -1L;
3094 	long seq_rtt_us = -1L;
3095 	long ca_rtt_us = -1L;
3096 	struct sk_buff *skb;
3097 	u32 pkts_acked = 0;
3098 	u32 last_in_flight = 0;
3099 	bool rtt_update;
3100 	int flag = 0;
3101 
3102 	first_ackt.v64 = 0;
3103 
3104 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3105 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3106 		u8 sacked = scb->sacked;
3107 		u32 acked_pcount;
3108 
3109 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3110 
3111 		/* Determine how many packets and what bytes were acked, tso and else */
3112 		if (after(scb->end_seq, tp->snd_una)) {
3113 			if (tcp_skb_pcount(skb) == 1 ||
3114 			    !after(tp->snd_una, scb->seq))
3115 				break;
3116 
3117 			acked_pcount = tcp_tso_acked(sk, skb);
3118 			if (!acked_pcount)
3119 				break;
3120 			fully_acked = false;
3121 		} else {
3122 			/* Speedup tcp_unlink_write_queue() and next loop */
3123 			prefetchw(skb->next);
3124 			acked_pcount = tcp_skb_pcount(skb);
3125 		}
3126 
3127 		if (unlikely(sacked & TCPCB_RETRANS)) {
3128 			if (sacked & TCPCB_SACKED_RETRANS)
3129 				tp->retrans_out -= acked_pcount;
3130 			flag |= FLAG_RETRANS_DATA_ACKED;
3131 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3132 			last_ackt = skb->skb_mstamp;
3133 			WARN_ON_ONCE(last_ackt.v64 == 0);
3134 			if (!first_ackt.v64)
3135 				first_ackt = last_ackt;
3136 
3137 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3138 			reord = min(pkts_acked, reord);
3139 			if (!after(scb->end_seq, tp->high_seq))
3140 				flag |= FLAG_ORIG_SACK_ACKED;
3141 		}
3142 
3143 		if (sacked & TCPCB_SACKED_ACKED) {
3144 			tp->sacked_out -= acked_pcount;
3145 		} else if (tcp_is_sack(tp)) {
3146 			tp->delivered += acked_pcount;
3147 			if (!tcp_skb_spurious_retrans(tp, skb))
3148 				tcp_rack_advance(tp, &skb->skb_mstamp, sacked);
3149 		}
3150 		if (sacked & TCPCB_LOST)
3151 			tp->lost_out -= acked_pcount;
3152 
3153 		tp->packets_out -= acked_pcount;
3154 		pkts_acked += acked_pcount;
3155 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3156 
3157 		/* Initial outgoing SYN's get put onto the write_queue
3158 		 * just like anything else we transmit.  It is not
3159 		 * true data, and if we misinform our callers that
3160 		 * this ACK acks real data, we will erroneously exit
3161 		 * connection startup slow start one packet too
3162 		 * quickly.  This is severely frowned upon behavior.
3163 		 */
3164 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3165 			flag |= FLAG_DATA_ACKED;
3166 		} else {
3167 			flag |= FLAG_SYN_ACKED;
3168 			tp->retrans_stamp = 0;
3169 		}
3170 
3171 		if (!fully_acked)
3172 			break;
3173 
3174 		tcp_unlink_write_queue(skb, sk);
3175 		sk_wmem_free_skb(sk, skb);
3176 		if (unlikely(skb == tp->retransmit_skb_hint))
3177 			tp->retransmit_skb_hint = NULL;
3178 		if (unlikely(skb == tp->lost_skb_hint))
3179 			tp->lost_skb_hint = NULL;
3180 	}
3181 
3182 	if (!skb)
3183 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3184 
3185 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3186 		tp->snd_up = tp->snd_una;
3187 
3188 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3189 		flag |= FLAG_SACK_RENEGING;
3190 
3191 	if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3192 		seq_rtt_us = skb_mstamp_us_delta(now, &first_ackt);
3193 		ca_rtt_us = skb_mstamp_us_delta(now, &last_ackt);
3194 	}
3195 	if (sack->first_sackt.v64) {
3196 		sack_rtt_us = skb_mstamp_us_delta(now, &sack->first_sackt);
3197 		ca_rtt_us = skb_mstamp_us_delta(now, &sack->last_sackt);
3198 	}
3199 	sack->rate->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet, or -1 */
3200 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3201 					ca_rtt_us);
3202 
3203 	if (flag & FLAG_ACKED) {
3204 		tcp_rearm_rto(sk);
3205 		if (unlikely(icsk->icsk_mtup.probe_size &&
3206 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3207 			tcp_mtup_probe_success(sk);
3208 		}
3209 
3210 		if (tcp_is_reno(tp)) {
3211 			tcp_remove_reno_sacks(sk, pkts_acked);
3212 		} else {
3213 			int delta;
3214 
3215 			/* Non-retransmitted hole got filled? That's reordering */
3216 			if (reord < prior_fackets)
3217 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3218 
3219 			delta = tcp_is_fack(tp) ? pkts_acked :
3220 						  prior_sacked - tp->sacked_out;
3221 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3222 		}
3223 
3224 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3225 
3226 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3227 		   sack_rtt_us > skb_mstamp_us_delta(now, &skb->skb_mstamp)) {
3228 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3229 		 * after when the head was last (re)transmitted. Otherwise the
3230 		 * timeout may continue to extend in loss recovery.
3231 		 */
3232 		tcp_rearm_rto(sk);
3233 	}
3234 
3235 	if (icsk->icsk_ca_ops->pkts_acked) {
3236 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3237 					     .rtt_us = ca_rtt_us,
3238 					     .in_flight = last_in_flight };
3239 
3240 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3241 	}
3242 
3243 #if FASTRETRANS_DEBUG > 0
3244 	WARN_ON((int)tp->sacked_out < 0);
3245 	WARN_ON((int)tp->lost_out < 0);
3246 	WARN_ON((int)tp->retrans_out < 0);
3247 	if (!tp->packets_out && tcp_is_sack(tp)) {
3248 		icsk = inet_csk(sk);
3249 		if (tp->lost_out) {
3250 			pr_debug("Leak l=%u %d\n",
3251 				 tp->lost_out, icsk->icsk_ca_state);
3252 			tp->lost_out = 0;
3253 		}
3254 		if (tp->sacked_out) {
3255 			pr_debug("Leak s=%u %d\n",
3256 				 tp->sacked_out, icsk->icsk_ca_state);
3257 			tp->sacked_out = 0;
3258 		}
3259 		if (tp->retrans_out) {
3260 			pr_debug("Leak r=%u %d\n",
3261 				 tp->retrans_out, icsk->icsk_ca_state);
3262 			tp->retrans_out = 0;
3263 		}
3264 	}
3265 #endif
3266 	*acked = pkts_acked;
3267 	return flag;
3268 }
3269 
3270 static void tcp_ack_probe(struct sock *sk)
3271 {
3272 	const struct tcp_sock *tp = tcp_sk(sk);
3273 	struct inet_connection_sock *icsk = inet_csk(sk);
3274 
3275 	/* Was it a usable window open? */
3276 
3277 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3278 		icsk->icsk_backoff = 0;
3279 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3280 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3281 		 * This function is not for random using!
3282 		 */
3283 	} else {
3284 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3285 
3286 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3287 					  when, TCP_RTO_MAX);
3288 	}
3289 }
3290 
3291 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3292 {
3293 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3294 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3295 }
3296 
3297 /* Decide wheather to run the increase function of congestion control. */
3298 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3299 {
3300 	/* If reordering is high then always grow cwnd whenever data is
3301 	 * delivered regardless of its ordering. Otherwise stay conservative
3302 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3303 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3304 	 * cwnd in tcp_fastretrans_alert() based on more states.
3305 	 */
3306 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3307 		return flag & FLAG_FORWARD_PROGRESS;
3308 
3309 	return flag & FLAG_DATA_ACKED;
3310 }
3311 
3312 /* The "ultimate" congestion control function that aims to replace the rigid
3313  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3314  * It's called toward the end of processing an ACK with precise rate
3315  * information. All transmission or retransmission are delayed afterwards.
3316  */
3317 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3318 			     int flag, const struct rate_sample *rs)
3319 {
3320 	const struct inet_connection_sock *icsk = inet_csk(sk);
3321 
3322 	if (icsk->icsk_ca_ops->cong_control) {
3323 		icsk->icsk_ca_ops->cong_control(sk, rs);
3324 		return;
3325 	}
3326 
3327 	if (tcp_in_cwnd_reduction(sk)) {
3328 		/* Reduce cwnd if state mandates */
3329 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3330 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3331 		/* Advance cwnd if state allows */
3332 		tcp_cong_avoid(sk, ack, acked_sacked);
3333 	}
3334 	tcp_update_pacing_rate(sk);
3335 }
3336 
3337 /* Check that window update is acceptable.
3338  * The function assumes that snd_una<=ack<=snd_next.
3339  */
3340 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3341 					const u32 ack, const u32 ack_seq,
3342 					const u32 nwin)
3343 {
3344 	return	after(ack, tp->snd_una) ||
3345 		after(ack_seq, tp->snd_wl1) ||
3346 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3347 }
3348 
3349 /* If we update tp->snd_una, also update tp->bytes_acked */
3350 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3351 {
3352 	u32 delta = ack - tp->snd_una;
3353 
3354 	sock_owned_by_me((struct sock *)tp);
3355 	tp->bytes_acked += delta;
3356 	tp->snd_una = ack;
3357 }
3358 
3359 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3360 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3361 {
3362 	u32 delta = seq - tp->rcv_nxt;
3363 
3364 	sock_owned_by_me((struct sock *)tp);
3365 	tp->bytes_received += delta;
3366 	tp->rcv_nxt = seq;
3367 }
3368 
3369 /* Update our send window.
3370  *
3371  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3372  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3373  */
3374 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3375 				 u32 ack_seq)
3376 {
3377 	struct tcp_sock *tp = tcp_sk(sk);
3378 	int flag = 0;
3379 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3380 
3381 	if (likely(!tcp_hdr(skb)->syn))
3382 		nwin <<= tp->rx_opt.snd_wscale;
3383 
3384 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3385 		flag |= FLAG_WIN_UPDATE;
3386 		tcp_update_wl(tp, ack_seq);
3387 
3388 		if (tp->snd_wnd != nwin) {
3389 			tp->snd_wnd = nwin;
3390 
3391 			/* Note, it is the only place, where
3392 			 * fast path is recovered for sending TCP.
3393 			 */
3394 			tp->pred_flags = 0;
3395 			tcp_fast_path_check(sk);
3396 
3397 			if (tcp_send_head(sk))
3398 				tcp_slow_start_after_idle_check(sk);
3399 
3400 			if (nwin > tp->max_window) {
3401 				tp->max_window = nwin;
3402 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3403 			}
3404 		}
3405 	}
3406 
3407 	tcp_snd_una_update(tp, ack);
3408 
3409 	return flag;
3410 }
3411 
3412 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3413 				   u32 *last_oow_ack_time)
3414 {
3415 	if (*last_oow_ack_time) {
3416 		s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3417 
3418 		if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3419 			NET_INC_STATS(net, mib_idx);
3420 			return true;	/* rate-limited: don't send yet! */
3421 		}
3422 	}
3423 
3424 	*last_oow_ack_time = tcp_time_stamp;
3425 
3426 	return false;	/* not rate-limited: go ahead, send dupack now! */
3427 }
3428 
3429 /* Return true if we're currently rate-limiting out-of-window ACKs and
3430  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3431  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3432  * attacks that send repeated SYNs or ACKs for the same connection. To
3433  * do this, we do not send a duplicate SYNACK or ACK if the remote
3434  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3435  */
3436 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3437 			  int mib_idx, u32 *last_oow_ack_time)
3438 {
3439 	/* Data packets without SYNs are not likely part of an ACK loop. */
3440 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3441 	    !tcp_hdr(skb)->syn)
3442 		return false;
3443 
3444 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3445 }
3446 
3447 /* RFC 5961 7 [ACK Throttling] */
3448 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3449 {
3450 	/* unprotected vars, we dont care of overwrites */
3451 	static u32 challenge_timestamp;
3452 	static unsigned int challenge_count;
3453 	struct tcp_sock *tp = tcp_sk(sk);
3454 	u32 count, now;
3455 
3456 	/* First check our per-socket dupack rate limit. */
3457 	if (__tcp_oow_rate_limited(sock_net(sk),
3458 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3459 				   &tp->last_oow_ack_time))
3460 		return;
3461 
3462 	/* Then check host-wide RFC 5961 rate limit. */
3463 	now = jiffies / HZ;
3464 	if (now != challenge_timestamp) {
3465 		u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
3466 
3467 		challenge_timestamp = now;
3468 		WRITE_ONCE(challenge_count, half +
3469 			   prandom_u32_max(sysctl_tcp_challenge_ack_limit));
3470 	}
3471 	count = READ_ONCE(challenge_count);
3472 	if (count > 0) {
3473 		WRITE_ONCE(challenge_count, count - 1);
3474 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3475 		tcp_send_ack(sk);
3476 	}
3477 }
3478 
3479 static void tcp_store_ts_recent(struct tcp_sock *tp)
3480 {
3481 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3482 	tp->rx_opt.ts_recent_stamp = get_seconds();
3483 }
3484 
3485 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3486 {
3487 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3488 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3489 		 * extra check below makes sure this can only happen
3490 		 * for pure ACK frames.  -DaveM
3491 		 *
3492 		 * Not only, also it occurs for expired timestamps.
3493 		 */
3494 
3495 		if (tcp_paws_check(&tp->rx_opt, 0))
3496 			tcp_store_ts_recent(tp);
3497 	}
3498 }
3499 
3500 /* This routine deals with acks during a TLP episode.
3501  * We mark the end of a TLP episode on receiving TLP dupack or when
3502  * ack is after tlp_high_seq.
3503  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3504  */
3505 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3506 {
3507 	struct tcp_sock *tp = tcp_sk(sk);
3508 
3509 	if (before(ack, tp->tlp_high_seq))
3510 		return;
3511 
3512 	if (flag & FLAG_DSACKING_ACK) {
3513 		/* This DSACK means original and TLP probe arrived; no loss */
3514 		tp->tlp_high_seq = 0;
3515 	} else if (after(ack, tp->tlp_high_seq)) {
3516 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3517 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3518 		 */
3519 		tcp_init_cwnd_reduction(sk);
3520 		tcp_set_ca_state(sk, TCP_CA_CWR);
3521 		tcp_end_cwnd_reduction(sk);
3522 		tcp_try_keep_open(sk);
3523 		NET_INC_STATS(sock_net(sk),
3524 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3525 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3526 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3527 		/* Pure dupack: original and TLP probe arrived; no loss */
3528 		tp->tlp_high_seq = 0;
3529 	}
3530 }
3531 
3532 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3533 {
3534 	const struct inet_connection_sock *icsk = inet_csk(sk);
3535 
3536 	if (icsk->icsk_ca_ops->in_ack_event)
3537 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3538 }
3539 
3540 /* Congestion control has updated the cwnd already. So if we're in
3541  * loss recovery then now we do any new sends (for FRTO) or
3542  * retransmits (for CA_Loss or CA_recovery) that make sense.
3543  */
3544 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3545 {
3546 	struct tcp_sock *tp = tcp_sk(sk);
3547 
3548 	if (rexmit == REXMIT_NONE)
3549 		return;
3550 
3551 	if (unlikely(rexmit == 2)) {
3552 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3553 					  TCP_NAGLE_OFF);
3554 		if (after(tp->snd_nxt, tp->high_seq))
3555 			return;
3556 		tp->frto = 0;
3557 	}
3558 	tcp_xmit_retransmit_queue(sk);
3559 }
3560 
3561 /* This routine deals with incoming acks, but not outgoing ones. */
3562 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3563 {
3564 	struct inet_connection_sock *icsk = inet_csk(sk);
3565 	struct tcp_sock *tp = tcp_sk(sk);
3566 	struct tcp_sacktag_state sack_state;
3567 	struct rate_sample rs = { .prior_delivered = 0 };
3568 	u32 prior_snd_una = tp->snd_una;
3569 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3570 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3571 	bool is_dupack = false;
3572 	u32 prior_fackets;
3573 	int prior_packets = tp->packets_out;
3574 	u32 delivered = tp->delivered;
3575 	u32 lost = tp->lost;
3576 	int acked = 0; /* Number of packets newly acked */
3577 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3578 	struct skb_mstamp now;
3579 
3580 	sack_state.first_sackt.v64 = 0;
3581 	sack_state.rate = &rs;
3582 
3583 	/* We very likely will need to access write queue head. */
3584 	prefetchw(sk->sk_write_queue.next);
3585 
3586 	/* If the ack is older than previous acks
3587 	 * then we can probably ignore it.
3588 	 */
3589 	if (before(ack, prior_snd_una)) {
3590 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3591 		if (before(ack, prior_snd_una - tp->max_window)) {
3592 			tcp_send_challenge_ack(sk, skb);
3593 			return -1;
3594 		}
3595 		goto old_ack;
3596 	}
3597 
3598 	/* If the ack includes data we haven't sent yet, discard
3599 	 * this segment (RFC793 Section 3.9).
3600 	 */
3601 	if (after(ack, tp->snd_nxt))
3602 		goto invalid_ack;
3603 
3604 	skb_mstamp_get(&now);
3605 
3606 	if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3607 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3608 		tcp_rearm_rto(sk);
3609 
3610 	if (after(ack, prior_snd_una)) {
3611 		flag |= FLAG_SND_UNA_ADVANCED;
3612 		icsk->icsk_retransmits = 0;
3613 	}
3614 
3615 	prior_fackets = tp->fackets_out;
3616 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3617 
3618 	/* ts_recent update must be made after we are sure that the packet
3619 	 * is in window.
3620 	 */
3621 	if (flag & FLAG_UPDATE_TS_RECENT)
3622 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3623 
3624 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3625 		/* Window is constant, pure forward advance.
3626 		 * No more checks are required.
3627 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3628 		 */
3629 		tcp_update_wl(tp, ack_seq);
3630 		tcp_snd_una_update(tp, ack);
3631 		flag |= FLAG_WIN_UPDATE;
3632 
3633 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3634 
3635 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3636 	} else {
3637 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3638 
3639 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3640 			flag |= FLAG_DATA;
3641 		else
3642 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3643 
3644 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3645 
3646 		if (TCP_SKB_CB(skb)->sacked)
3647 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3648 							&sack_state);
3649 
3650 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3651 			flag |= FLAG_ECE;
3652 			ack_ev_flags |= CA_ACK_ECE;
3653 		}
3654 
3655 		if (flag & FLAG_WIN_UPDATE)
3656 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3657 
3658 		tcp_in_ack_event(sk, ack_ev_flags);
3659 	}
3660 
3661 	/* We passed data and got it acked, remove any soft error
3662 	 * log. Something worked...
3663 	 */
3664 	sk->sk_err_soft = 0;
3665 	icsk->icsk_probes_out = 0;
3666 	tp->rcv_tstamp = tcp_time_stamp;
3667 	if (!prior_packets)
3668 		goto no_queue;
3669 
3670 	/* See if we can take anything off of the retransmit queue. */
3671 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
3672 				    &sack_state, &now);
3673 
3674 	if (tcp_ack_is_dubious(sk, flag)) {
3675 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3676 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3677 	}
3678 	if (tp->tlp_high_seq)
3679 		tcp_process_tlp_ack(sk, ack, flag);
3680 
3681 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3682 		struct dst_entry *dst = __sk_dst_get(sk);
3683 		if (dst)
3684 			dst_confirm(dst);
3685 	}
3686 
3687 	if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3688 		tcp_schedule_loss_probe(sk);
3689 	delivered = tp->delivered - delivered;	/* freshly ACKed or SACKed */
3690 	lost = tp->lost - lost;			/* freshly marked lost */
3691 	tcp_rate_gen(sk, delivered, lost, &now, &rs);
3692 	tcp_cong_control(sk, ack, delivered, flag, &rs);
3693 	tcp_xmit_recovery(sk, rexmit);
3694 	return 1;
3695 
3696 no_queue:
3697 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3698 	if (flag & FLAG_DSACKING_ACK)
3699 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3700 	/* If this ack opens up a zero window, clear backoff.  It was
3701 	 * being used to time the probes, and is probably far higher than
3702 	 * it needs to be for normal retransmission.
3703 	 */
3704 	if (tcp_send_head(sk))
3705 		tcp_ack_probe(sk);
3706 
3707 	if (tp->tlp_high_seq)
3708 		tcp_process_tlp_ack(sk, ack, flag);
3709 	return 1;
3710 
3711 invalid_ack:
3712 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3713 	return -1;
3714 
3715 old_ack:
3716 	/* If data was SACKed, tag it and see if we should send more data.
3717 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3718 	 */
3719 	if (TCP_SKB_CB(skb)->sacked) {
3720 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3721 						&sack_state);
3722 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3723 		tcp_xmit_recovery(sk, rexmit);
3724 	}
3725 
3726 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3727 	return 0;
3728 }
3729 
3730 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3731 				      bool syn, struct tcp_fastopen_cookie *foc,
3732 				      bool exp_opt)
3733 {
3734 	/* Valid only in SYN or SYN-ACK with an even length.  */
3735 	if (!foc || !syn || len < 0 || (len & 1))
3736 		return;
3737 
3738 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3739 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3740 		memcpy(foc->val, cookie, len);
3741 	else if (len != 0)
3742 		len = -1;
3743 	foc->len = len;
3744 	foc->exp = exp_opt;
3745 }
3746 
3747 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3748  * But, this can also be called on packets in the established flow when
3749  * the fast version below fails.
3750  */
3751 void tcp_parse_options(const struct sk_buff *skb,
3752 		       struct tcp_options_received *opt_rx, int estab,
3753 		       struct tcp_fastopen_cookie *foc)
3754 {
3755 	const unsigned char *ptr;
3756 	const struct tcphdr *th = tcp_hdr(skb);
3757 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3758 
3759 	ptr = (const unsigned char *)(th + 1);
3760 	opt_rx->saw_tstamp = 0;
3761 
3762 	while (length > 0) {
3763 		int opcode = *ptr++;
3764 		int opsize;
3765 
3766 		switch (opcode) {
3767 		case TCPOPT_EOL:
3768 			return;
3769 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3770 			length--;
3771 			continue;
3772 		default:
3773 			opsize = *ptr++;
3774 			if (opsize < 2) /* "silly options" */
3775 				return;
3776 			if (opsize > length)
3777 				return;	/* don't parse partial options */
3778 			switch (opcode) {
3779 			case TCPOPT_MSS:
3780 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3781 					u16 in_mss = get_unaligned_be16(ptr);
3782 					if (in_mss) {
3783 						if (opt_rx->user_mss &&
3784 						    opt_rx->user_mss < in_mss)
3785 							in_mss = opt_rx->user_mss;
3786 						opt_rx->mss_clamp = in_mss;
3787 					}
3788 				}
3789 				break;
3790 			case TCPOPT_WINDOW:
3791 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3792 				    !estab && sysctl_tcp_window_scaling) {
3793 					__u8 snd_wscale = *(__u8 *)ptr;
3794 					opt_rx->wscale_ok = 1;
3795 					if (snd_wscale > 14) {
3796 						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3797 								     __func__,
3798 								     snd_wscale);
3799 						snd_wscale = 14;
3800 					}
3801 					opt_rx->snd_wscale = snd_wscale;
3802 				}
3803 				break;
3804 			case TCPOPT_TIMESTAMP:
3805 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3806 				    ((estab && opt_rx->tstamp_ok) ||
3807 				     (!estab && sysctl_tcp_timestamps))) {
3808 					opt_rx->saw_tstamp = 1;
3809 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3810 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3811 				}
3812 				break;
3813 			case TCPOPT_SACK_PERM:
3814 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3815 				    !estab && sysctl_tcp_sack) {
3816 					opt_rx->sack_ok = TCP_SACK_SEEN;
3817 					tcp_sack_reset(opt_rx);
3818 				}
3819 				break;
3820 
3821 			case TCPOPT_SACK:
3822 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3823 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3824 				   opt_rx->sack_ok) {
3825 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3826 				}
3827 				break;
3828 #ifdef CONFIG_TCP_MD5SIG
3829 			case TCPOPT_MD5SIG:
3830 				/*
3831 				 * The MD5 Hash has already been
3832 				 * checked (see tcp_v{4,6}_do_rcv()).
3833 				 */
3834 				break;
3835 #endif
3836 			case TCPOPT_FASTOPEN:
3837 				tcp_parse_fastopen_option(
3838 					opsize - TCPOLEN_FASTOPEN_BASE,
3839 					ptr, th->syn, foc, false);
3840 				break;
3841 
3842 			case TCPOPT_EXP:
3843 				/* Fast Open option shares code 254 using a
3844 				 * 16 bits magic number.
3845 				 */
3846 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3847 				    get_unaligned_be16(ptr) ==
3848 				    TCPOPT_FASTOPEN_MAGIC)
3849 					tcp_parse_fastopen_option(opsize -
3850 						TCPOLEN_EXP_FASTOPEN_BASE,
3851 						ptr + 2, th->syn, foc, true);
3852 				break;
3853 
3854 			}
3855 			ptr += opsize-2;
3856 			length -= opsize;
3857 		}
3858 	}
3859 }
3860 EXPORT_SYMBOL(tcp_parse_options);
3861 
3862 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3863 {
3864 	const __be32 *ptr = (const __be32 *)(th + 1);
3865 
3866 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3867 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3868 		tp->rx_opt.saw_tstamp = 1;
3869 		++ptr;
3870 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3871 		++ptr;
3872 		if (*ptr)
3873 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3874 		else
3875 			tp->rx_opt.rcv_tsecr = 0;
3876 		return true;
3877 	}
3878 	return false;
3879 }
3880 
3881 /* Fast parse options. This hopes to only see timestamps.
3882  * If it is wrong it falls back on tcp_parse_options().
3883  */
3884 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3885 				   const struct tcphdr *th, struct tcp_sock *tp)
3886 {
3887 	/* In the spirit of fast parsing, compare doff directly to constant
3888 	 * values.  Because equality is used, short doff can be ignored here.
3889 	 */
3890 	if (th->doff == (sizeof(*th) / 4)) {
3891 		tp->rx_opt.saw_tstamp = 0;
3892 		return false;
3893 	} else if (tp->rx_opt.tstamp_ok &&
3894 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3895 		if (tcp_parse_aligned_timestamp(tp, th))
3896 			return true;
3897 	}
3898 
3899 	tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3900 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3901 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3902 
3903 	return true;
3904 }
3905 
3906 #ifdef CONFIG_TCP_MD5SIG
3907 /*
3908  * Parse MD5 Signature option
3909  */
3910 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3911 {
3912 	int length = (th->doff << 2) - sizeof(*th);
3913 	const u8 *ptr = (const u8 *)(th + 1);
3914 
3915 	/* If the TCP option is too short, we can short cut */
3916 	if (length < TCPOLEN_MD5SIG)
3917 		return NULL;
3918 
3919 	while (length > 0) {
3920 		int opcode = *ptr++;
3921 		int opsize;
3922 
3923 		switch (opcode) {
3924 		case TCPOPT_EOL:
3925 			return NULL;
3926 		case TCPOPT_NOP:
3927 			length--;
3928 			continue;
3929 		default:
3930 			opsize = *ptr++;
3931 			if (opsize < 2 || opsize > length)
3932 				return NULL;
3933 			if (opcode == TCPOPT_MD5SIG)
3934 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3935 		}
3936 		ptr += opsize - 2;
3937 		length -= opsize;
3938 	}
3939 	return NULL;
3940 }
3941 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3942 #endif
3943 
3944 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3945  *
3946  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3947  * it can pass through stack. So, the following predicate verifies that
3948  * this segment is not used for anything but congestion avoidance or
3949  * fast retransmit. Moreover, we even are able to eliminate most of such
3950  * second order effects, if we apply some small "replay" window (~RTO)
3951  * to timestamp space.
3952  *
3953  * All these measures still do not guarantee that we reject wrapped ACKs
3954  * on networks with high bandwidth, when sequence space is recycled fastly,
3955  * but it guarantees that such events will be very rare and do not affect
3956  * connection seriously. This doesn't look nice, but alas, PAWS is really
3957  * buggy extension.
3958  *
3959  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3960  * states that events when retransmit arrives after original data are rare.
3961  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3962  * the biggest problem on large power networks even with minor reordering.
3963  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3964  * up to bandwidth of 18Gigabit/sec. 8) ]
3965  */
3966 
3967 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3968 {
3969 	const struct tcp_sock *tp = tcp_sk(sk);
3970 	const struct tcphdr *th = tcp_hdr(skb);
3971 	u32 seq = TCP_SKB_CB(skb)->seq;
3972 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3973 
3974 	return (/* 1. Pure ACK with correct sequence number. */
3975 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3976 
3977 		/* 2. ... and duplicate ACK. */
3978 		ack == tp->snd_una &&
3979 
3980 		/* 3. ... and does not update window. */
3981 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3982 
3983 		/* 4. ... and sits in replay window. */
3984 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3985 }
3986 
3987 static inline bool tcp_paws_discard(const struct sock *sk,
3988 				   const struct sk_buff *skb)
3989 {
3990 	const struct tcp_sock *tp = tcp_sk(sk);
3991 
3992 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3993 	       !tcp_disordered_ack(sk, skb);
3994 }
3995 
3996 /* Check segment sequence number for validity.
3997  *
3998  * Segment controls are considered valid, if the segment
3999  * fits to the window after truncation to the window. Acceptability
4000  * of data (and SYN, FIN, of course) is checked separately.
4001  * See tcp_data_queue(), for example.
4002  *
4003  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4004  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4005  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4006  * (borrowed from freebsd)
4007  */
4008 
4009 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4010 {
4011 	return	!before(end_seq, tp->rcv_wup) &&
4012 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4013 }
4014 
4015 /* When we get a reset we do this. */
4016 void tcp_reset(struct sock *sk)
4017 {
4018 	/* We want the right error as BSD sees it (and indeed as we do). */
4019 	switch (sk->sk_state) {
4020 	case TCP_SYN_SENT:
4021 		sk->sk_err = ECONNREFUSED;
4022 		break;
4023 	case TCP_CLOSE_WAIT:
4024 		sk->sk_err = EPIPE;
4025 		break;
4026 	case TCP_CLOSE:
4027 		return;
4028 	default:
4029 		sk->sk_err = ECONNRESET;
4030 	}
4031 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4032 	smp_wmb();
4033 
4034 	if (!sock_flag(sk, SOCK_DEAD))
4035 		sk->sk_error_report(sk);
4036 
4037 	tcp_done(sk);
4038 }
4039 
4040 /*
4041  * 	Process the FIN bit. This now behaves as it is supposed to work
4042  *	and the FIN takes effect when it is validly part of sequence
4043  *	space. Not before when we get holes.
4044  *
4045  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4046  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4047  *	TIME-WAIT)
4048  *
4049  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4050  *	close and we go into CLOSING (and later onto TIME-WAIT)
4051  *
4052  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4053  */
4054 void tcp_fin(struct sock *sk)
4055 {
4056 	struct tcp_sock *tp = tcp_sk(sk);
4057 
4058 	inet_csk_schedule_ack(sk);
4059 
4060 	sk->sk_shutdown |= RCV_SHUTDOWN;
4061 	sock_set_flag(sk, SOCK_DONE);
4062 
4063 	switch (sk->sk_state) {
4064 	case TCP_SYN_RECV:
4065 	case TCP_ESTABLISHED:
4066 		/* Move to CLOSE_WAIT */
4067 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4068 		inet_csk(sk)->icsk_ack.pingpong = 1;
4069 		break;
4070 
4071 	case TCP_CLOSE_WAIT:
4072 	case TCP_CLOSING:
4073 		/* Received a retransmission of the FIN, do
4074 		 * nothing.
4075 		 */
4076 		break;
4077 	case TCP_LAST_ACK:
4078 		/* RFC793: Remain in the LAST-ACK state. */
4079 		break;
4080 
4081 	case TCP_FIN_WAIT1:
4082 		/* This case occurs when a simultaneous close
4083 		 * happens, we must ack the received FIN and
4084 		 * enter the CLOSING state.
4085 		 */
4086 		tcp_send_ack(sk);
4087 		tcp_set_state(sk, TCP_CLOSING);
4088 		break;
4089 	case TCP_FIN_WAIT2:
4090 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4091 		tcp_send_ack(sk);
4092 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4093 		break;
4094 	default:
4095 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4096 		 * cases we should never reach this piece of code.
4097 		 */
4098 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4099 		       __func__, sk->sk_state);
4100 		break;
4101 	}
4102 
4103 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4104 	 * Probably, we should reset in this case. For now drop them.
4105 	 */
4106 	skb_rbtree_purge(&tp->out_of_order_queue);
4107 	if (tcp_is_sack(tp))
4108 		tcp_sack_reset(&tp->rx_opt);
4109 	sk_mem_reclaim(sk);
4110 
4111 	if (!sock_flag(sk, SOCK_DEAD)) {
4112 		sk->sk_state_change(sk);
4113 
4114 		/* Do not send POLL_HUP for half duplex close. */
4115 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4116 		    sk->sk_state == TCP_CLOSE)
4117 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4118 		else
4119 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4120 	}
4121 }
4122 
4123 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4124 				  u32 end_seq)
4125 {
4126 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4127 		if (before(seq, sp->start_seq))
4128 			sp->start_seq = seq;
4129 		if (after(end_seq, sp->end_seq))
4130 			sp->end_seq = end_seq;
4131 		return true;
4132 	}
4133 	return false;
4134 }
4135 
4136 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4137 {
4138 	struct tcp_sock *tp = tcp_sk(sk);
4139 
4140 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4141 		int mib_idx;
4142 
4143 		if (before(seq, tp->rcv_nxt))
4144 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4145 		else
4146 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4147 
4148 		NET_INC_STATS(sock_net(sk), mib_idx);
4149 
4150 		tp->rx_opt.dsack = 1;
4151 		tp->duplicate_sack[0].start_seq = seq;
4152 		tp->duplicate_sack[0].end_seq = end_seq;
4153 	}
4154 }
4155 
4156 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4157 {
4158 	struct tcp_sock *tp = tcp_sk(sk);
4159 
4160 	if (!tp->rx_opt.dsack)
4161 		tcp_dsack_set(sk, seq, end_seq);
4162 	else
4163 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4164 }
4165 
4166 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4167 {
4168 	struct tcp_sock *tp = tcp_sk(sk);
4169 
4170 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4171 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4172 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4173 		tcp_enter_quickack_mode(sk);
4174 
4175 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4176 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4177 
4178 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4179 				end_seq = tp->rcv_nxt;
4180 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4181 		}
4182 	}
4183 
4184 	tcp_send_ack(sk);
4185 }
4186 
4187 /* These routines update the SACK block as out-of-order packets arrive or
4188  * in-order packets close up the sequence space.
4189  */
4190 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4191 {
4192 	int this_sack;
4193 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4194 	struct tcp_sack_block *swalk = sp + 1;
4195 
4196 	/* See if the recent change to the first SACK eats into
4197 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4198 	 */
4199 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4200 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4201 			int i;
4202 
4203 			/* Zap SWALK, by moving every further SACK up by one slot.
4204 			 * Decrease num_sacks.
4205 			 */
4206 			tp->rx_opt.num_sacks--;
4207 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4208 				sp[i] = sp[i + 1];
4209 			continue;
4210 		}
4211 		this_sack++, swalk++;
4212 	}
4213 }
4214 
4215 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4216 {
4217 	struct tcp_sock *tp = tcp_sk(sk);
4218 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4219 	int cur_sacks = tp->rx_opt.num_sacks;
4220 	int this_sack;
4221 
4222 	if (!cur_sacks)
4223 		goto new_sack;
4224 
4225 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4226 		if (tcp_sack_extend(sp, seq, end_seq)) {
4227 			/* Rotate this_sack to the first one. */
4228 			for (; this_sack > 0; this_sack--, sp--)
4229 				swap(*sp, *(sp - 1));
4230 			if (cur_sacks > 1)
4231 				tcp_sack_maybe_coalesce(tp);
4232 			return;
4233 		}
4234 	}
4235 
4236 	/* Could not find an adjacent existing SACK, build a new one,
4237 	 * put it at the front, and shift everyone else down.  We
4238 	 * always know there is at least one SACK present already here.
4239 	 *
4240 	 * If the sack array is full, forget about the last one.
4241 	 */
4242 	if (this_sack >= TCP_NUM_SACKS) {
4243 		this_sack--;
4244 		tp->rx_opt.num_sacks--;
4245 		sp--;
4246 	}
4247 	for (; this_sack > 0; this_sack--, sp--)
4248 		*sp = *(sp - 1);
4249 
4250 new_sack:
4251 	/* Build the new head SACK, and we're done. */
4252 	sp->start_seq = seq;
4253 	sp->end_seq = end_seq;
4254 	tp->rx_opt.num_sacks++;
4255 }
4256 
4257 /* RCV.NXT advances, some SACKs should be eaten. */
4258 
4259 static void tcp_sack_remove(struct tcp_sock *tp)
4260 {
4261 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4262 	int num_sacks = tp->rx_opt.num_sacks;
4263 	int this_sack;
4264 
4265 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4266 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4267 		tp->rx_opt.num_sacks = 0;
4268 		return;
4269 	}
4270 
4271 	for (this_sack = 0; this_sack < num_sacks;) {
4272 		/* Check if the start of the sack is covered by RCV.NXT. */
4273 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4274 			int i;
4275 
4276 			/* RCV.NXT must cover all the block! */
4277 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4278 
4279 			/* Zap this SACK, by moving forward any other SACKS. */
4280 			for (i = this_sack+1; i < num_sacks; i++)
4281 				tp->selective_acks[i-1] = tp->selective_acks[i];
4282 			num_sacks--;
4283 			continue;
4284 		}
4285 		this_sack++;
4286 		sp++;
4287 	}
4288 	tp->rx_opt.num_sacks = num_sacks;
4289 }
4290 
4291 /**
4292  * tcp_try_coalesce - try to merge skb to prior one
4293  * @sk: socket
4294  * @to: prior buffer
4295  * @from: buffer to add in queue
4296  * @fragstolen: pointer to boolean
4297  *
4298  * Before queueing skb @from after @to, try to merge them
4299  * to reduce overall memory use and queue lengths, if cost is small.
4300  * Packets in ofo or receive queues can stay a long time.
4301  * Better try to coalesce them right now to avoid future collapses.
4302  * Returns true if caller should free @from instead of queueing it
4303  */
4304 static bool tcp_try_coalesce(struct sock *sk,
4305 			     struct sk_buff *to,
4306 			     struct sk_buff *from,
4307 			     bool *fragstolen)
4308 {
4309 	int delta;
4310 
4311 	*fragstolen = false;
4312 
4313 	/* Its possible this segment overlaps with prior segment in queue */
4314 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4315 		return false;
4316 
4317 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4318 		return false;
4319 
4320 	atomic_add(delta, &sk->sk_rmem_alloc);
4321 	sk_mem_charge(sk, delta);
4322 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4323 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4324 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4325 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4326 	return true;
4327 }
4328 
4329 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4330 {
4331 	sk_drops_add(sk, skb);
4332 	__kfree_skb(skb);
4333 }
4334 
4335 /* This one checks to see if we can put data from the
4336  * out_of_order queue into the receive_queue.
4337  */
4338 static void tcp_ofo_queue(struct sock *sk)
4339 {
4340 	struct tcp_sock *tp = tcp_sk(sk);
4341 	__u32 dsack_high = tp->rcv_nxt;
4342 	bool fin, fragstolen, eaten;
4343 	struct sk_buff *skb, *tail;
4344 	struct rb_node *p;
4345 
4346 	p = rb_first(&tp->out_of_order_queue);
4347 	while (p) {
4348 		skb = rb_entry(p, struct sk_buff, rbnode);
4349 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4350 			break;
4351 
4352 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4353 			__u32 dsack = dsack_high;
4354 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4355 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4356 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4357 		}
4358 		p = rb_next(p);
4359 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4360 
4361 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4362 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4363 			tcp_drop(sk, skb);
4364 			continue;
4365 		}
4366 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4367 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4368 			   TCP_SKB_CB(skb)->end_seq);
4369 
4370 		tail = skb_peek_tail(&sk->sk_receive_queue);
4371 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4372 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4373 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4374 		if (!eaten)
4375 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4376 		else
4377 			kfree_skb_partial(skb, fragstolen);
4378 
4379 		if (unlikely(fin)) {
4380 			tcp_fin(sk);
4381 			/* tcp_fin() purges tp->out_of_order_queue,
4382 			 * so we must end this loop right now.
4383 			 */
4384 			break;
4385 		}
4386 	}
4387 }
4388 
4389 static bool tcp_prune_ofo_queue(struct sock *sk);
4390 static int tcp_prune_queue(struct sock *sk);
4391 
4392 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4393 				 unsigned int size)
4394 {
4395 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4396 	    !sk_rmem_schedule(sk, skb, size)) {
4397 
4398 		if (tcp_prune_queue(sk) < 0)
4399 			return -1;
4400 
4401 		while (!sk_rmem_schedule(sk, skb, size)) {
4402 			if (!tcp_prune_ofo_queue(sk))
4403 				return -1;
4404 		}
4405 	}
4406 	return 0;
4407 }
4408 
4409 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4410 {
4411 	struct tcp_sock *tp = tcp_sk(sk);
4412 	struct rb_node **p, *q, *parent;
4413 	struct sk_buff *skb1;
4414 	u32 seq, end_seq;
4415 	bool fragstolen;
4416 
4417 	tcp_ecn_check_ce(tp, skb);
4418 
4419 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4420 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4421 		tcp_drop(sk, skb);
4422 		return;
4423 	}
4424 
4425 	/* Disable header prediction. */
4426 	tp->pred_flags = 0;
4427 	inet_csk_schedule_ack(sk);
4428 
4429 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4430 	seq = TCP_SKB_CB(skb)->seq;
4431 	end_seq = TCP_SKB_CB(skb)->end_seq;
4432 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4433 		   tp->rcv_nxt, seq, end_seq);
4434 
4435 	p = &tp->out_of_order_queue.rb_node;
4436 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4437 		/* Initial out of order segment, build 1 SACK. */
4438 		if (tcp_is_sack(tp)) {
4439 			tp->rx_opt.num_sacks = 1;
4440 			tp->selective_acks[0].start_seq = seq;
4441 			tp->selective_acks[0].end_seq = end_seq;
4442 		}
4443 		rb_link_node(&skb->rbnode, NULL, p);
4444 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4445 		tp->ooo_last_skb = skb;
4446 		goto end;
4447 	}
4448 
4449 	/* In the typical case, we are adding an skb to the end of the list.
4450 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4451 	 */
4452 	if (tcp_try_coalesce(sk, tp->ooo_last_skb, skb, &fragstolen)) {
4453 coalesce_done:
4454 		tcp_grow_window(sk, skb);
4455 		kfree_skb_partial(skb, fragstolen);
4456 		skb = NULL;
4457 		goto add_sack;
4458 	}
4459 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4460 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4461 		parent = &tp->ooo_last_skb->rbnode;
4462 		p = &parent->rb_right;
4463 		goto insert;
4464 	}
4465 
4466 	/* Find place to insert this segment. Handle overlaps on the way. */
4467 	parent = NULL;
4468 	while (*p) {
4469 		parent = *p;
4470 		skb1 = rb_entry(parent, struct sk_buff, rbnode);
4471 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4472 			p = &parent->rb_left;
4473 			continue;
4474 		}
4475 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4476 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4477 				/* All the bits are present. Drop. */
4478 				NET_INC_STATS(sock_net(sk),
4479 					      LINUX_MIB_TCPOFOMERGE);
4480 				__kfree_skb(skb);
4481 				skb = NULL;
4482 				tcp_dsack_set(sk, seq, end_seq);
4483 				goto add_sack;
4484 			}
4485 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4486 				/* Partial overlap. */
4487 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4488 			} else {
4489 				/* skb's seq == skb1's seq and skb covers skb1.
4490 				 * Replace skb1 with skb.
4491 				 */
4492 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4493 						&tp->out_of_order_queue);
4494 				tcp_dsack_extend(sk,
4495 						 TCP_SKB_CB(skb1)->seq,
4496 						 TCP_SKB_CB(skb1)->end_seq);
4497 				NET_INC_STATS(sock_net(sk),
4498 					      LINUX_MIB_TCPOFOMERGE);
4499 				__kfree_skb(skb1);
4500 				goto merge_right;
4501 			}
4502 		} else if (tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4503 			goto coalesce_done;
4504 		}
4505 		p = &parent->rb_right;
4506 	}
4507 insert:
4508 	/* Insert segment into RB tree. */
4509 	rb_link_node(&skb->rbnode, parent, p);
4510 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4511 
4512 merge_right:
4513 	/* Remove other segments covered by skb. */
4514 	while ((q = rb_next(&skb->rbnode)) != NULL) {
4515 		skb1 = rb_entry(q, struct sk_buff, rbnode);
4516 
4517 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4518 			break;
4519 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4520 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4521 					 end_seq);
4522 			break;
4523 		}
4524 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4525 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4526 				 TCP_SKB_CB(skb1)->end_seq);
4527 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4528 		tcp_drop(sk, skb1);
4529 	}
4530 	/* If there is no skb after us, we are the last_skb ! */
4531 	if (!q)
4532 		tp->ooo_last_skb = skb;
4533 
4534 add_sack:
4535 	if (tcp_is_sack(tp))
4536 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4537 end:
4538 	if (skb) {
4539 		tcp_grow_window(sk, skb);
4540 		skb_set_owner_r(skb, sk);
4541 	}
4542 }
4543 
4544 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4545 		  bool *fragstolen)
4546 {
4547 	int eaten;
4548 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4549 
4550 	__skb_pull(skb, hdrlen);
4551 	eaten = (tail &&
4552 		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4553 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4554 	if (!eaten) {
4555 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4556 		skb_set_owner_r(skb, sk);
4557 	}
4558 	return eaten;
4559 }
4560 
4561 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4562 {
4563 	struct sk_buff *skb;
4564 	int err = -ENOMEM;
4565 	int data_len = 0;
4566 	bool fragstolen;
4567 
4568 	if (size == 0)
4569 		return 0;
4570 
4571 	if (size > PAGE_SIZE) {
4572 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4573 
4574 		data_len = npages << PAGE_SHIFT;
4575 		size = data_len + (size & ~PAGE_MASK);
4576 	}
4577 	skb = alloc_skb_with_frags(size - data_len, data_len,
4578 				   PAGE_ALLOC_COSTLY_ORDER,
4579 				   &err, sk->sk_allocation);
4580 	if (!skb)
4581 		goto err;
4582 
4583 	skb_put(skb, size - data_len);
4584 	skb->data_len = data_len;
4585 	skb->len = size;
4586 
4587 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4588 		goto err_free;
4589 
4590 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4591 	if (err)
4592 		goto err_free;
4593 
4594 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4595 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4596 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4597 
4598 	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4599 		WARN_ON_ONCE(fragstolen); /* should not happen */
4600 		__kfree_skb(skb);
4601 	}
4602 	return size;
4603 
4604 err_free:
4605 	kfree_skb(skb);
4606 err:
4607 	return err;
4608 
4609 }
4610 
4611 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4612 {
4613 	struct tcp_sock *tp = tcp_sk(sk);
4614 	bool fragstolen = false;
4615 	int eaten = -1;
4616 
4617 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4618 		__kfree_skb(skb);
4619 		return;
4620 	}
4621 	skb_dst_drop(skb);
4622 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4623 
4624 	tcp_ecn_accept_cwr(tp, skb);
4625 
4626 	tp->rx_opt.dsack = 0;
4627 
4628 	/*  Queue data for delivery to the user.
4629 	 *  Packets in sequence go to the receive queue.
4630 	 *  Out of sequence packets to the out_of_order_queue.
4631 	 */
4632 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4633 		if (tcp_receive_window(tp) == 0)
4634 			goto out_of_window;
4635 
4636 		/* Ok. In sequence. In window. */
4637 		if (tp->ucopy.task == current &&
4638 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4639 		    sock_owned_by_user(sk) && !tp->urg_data) {
4640 			int chunk = min_t(unsigned int, skb->len,
4641 					  tp->ucopy.len);
4642 
4643 			__set_current_state(TASK_RUNNING);
4644 
4645 			if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4646 				tp->ucopy.len -= chunk;
4647 				tp->copied_seq += chunk;
4648 				eaten = (chunk == skb->len);
4649 				tcp_rcv_space_adjust(sk);
4650 			}
4651 		}
4652 
4653 		if (eaten <= 0) {
4654 queue_and_out:
4655 			if (eaten < 0) {
4656 				if (skb_queue_len(&sk->sk_receive_queue) == 0)
4657 					sk_forced_mem_schedule(sk, skb->truesize);
4658 				else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4659 					goto drop;
4660 			}
4661 			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4662 		}
4663 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4664 		if (skb->len)
4665 			tcp_event_data_recv(sk, skb);
4666 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4667 			tcp_fin(sk);
4668 
4669 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4670 			tcp_ofo_queue(sk);
4671 
4672 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4673 			 * gap in queue is filled.
4674 			 */
4675 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4676 				inet_csk(sk)->icsk_ack.pingpong = 0;
4677 		}
4678 
4679 		if (tp->rx_opt.num_sacks)
4680 			tcp_sack_remove(tp);
4681 
4682 		tcp_fast_path_check(sk);
4683 
4684 		if (eaten > 0)
4685 			kfree_skb_partial(skb, fragstolen);
4686 		if (!sock_flag(sk, SOCK_DEAD))
4687 			sk->sk_data_ready(sk);
4688 		return;
4689 	}
4690 
4691 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4692 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4693 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4694 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4695 
4696 out_of_window:
4697 		tcp_enter_quickack_mode(sk);
4698 		inet_csk_schedule_ack(sk);
4699 drop:
4700 		tcp_drop(sk, skb);
4701 		return;
4702 	}
4703 
4704 	/* Out of window. F.e. zero window probe. */
4705 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4706 		goto out_of_window;
4707 
4708 	tcp_enter_quickack_mode(sk);
4709 
4710 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4711 		/* Partial packet, seq < rcv_next < end_seq */
4712 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4713 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4714 			   TCP_SKB_CB(skb)->end_seq);
4715 
4716 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4717 
4718 		/* If window is closed, drop tail of packet. But after
4719 		 * remembering D-SACK for its head made in previous line.
4720 		 */
4721 		if (!tcp_receive_window(tp))
4722 			goto out_of_window;
4723 		goto queue_and_out;
4724 	}
4725 
4726 	tcp_data_queue_ofo(sk, skb);
4727 }
4728 
4729 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4730 {
4731 	if (list)
4732 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4733 
4734 	return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode);
4735 }
4736 
4737 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4738 					struct sk_buff_head *list,
4739 					struct rb_root *root)
4740 {
4741 	struct sk_buff *next = tcp_skb_next(skb, list);
4742 
4743 	if (list)
4744 		__skb_unlink(skb, list);
4745 	else
4746 		rb_erase(&skb->rbnode, root);
4747 
4748 	__kfree_skb(skb);
4749 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4750 
4751 	return next;
4752 }
4753 
4754 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4755 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4756 {
4757 	struct rb_node **p = &root->rb_node;
4758 	struct rb_node *parent = NULL;
4759 	struct sk_buff *skb1;
4760 
4761 	while (*p) {
4762 		parent = *p;
4763 		skb1 = rb_entry(parent, struct sk_buff, rbnode);
4764 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4765 			p = &parent->rb_left;
4766 		else
4767 			p = &parent->rb_right;
4768 	}
4769 	rb_link_node(&skb->rbnode, parent, p);
4770 	rb_insert_color(&skb->rbnode, root);
4771 }
4772 
4773 /* Collapse contiguous sequence of skbs head..tail with
4774  * sequence numbers start..end.
4775  *
4776  * If tail is NULL, this means until the end of the queue.
4777  *
4778  * Segments with FIN/SYN are not collapsed (only because this
4779  * simplifies code)
4780  */
4781 static void
4782 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4783 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4784 {
4785 	struct sk_buff *skb = head, *n;
4786 	struct sk_buff_head tmp;
4787 	bool end_of_skbs;
4788 
4789 	/* First, check that queue is collapsible and find
4790 	 * the point where collapsing can be useful.
4791 	 */
4792 restart:
4793 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4794 		n = tcp_skb_next(skb, list);
4795 
4796 		/* No new bits? It is possible on ofo queue. */
4797 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4798 			skb = tcp_collapse_one(sk, skb, list, root);
4799 			if (!skb)
4800 				break;
4801 			goto restart;
4802 		}
4803 
4804 		/* The first skb to collapse is:
4805 		 * - not SYN/FIN and
4806 		 * - bloated or contains data before "start" or
4807 		 *   overlaps to the next one.
4808 		 */
4809 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4810 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4811 		     before(TCP_SKB_CB(skb)->seq, start))) {
4812 			end_of_skbs = false;
4813 			break;
4814 		}
4815 
4816 		if (n && n != tail &&
4817 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4818 			end_of_skbs = false;
4819 			break;
4820 		}
4821 
4822 		/* Decided to skip this, advance start seq. */
4823 		start = TCP_SKB_CB(skb)->end_seq;
4824 	}
4825 	if (end_of_skbs ||
4826 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4827 		return;
4828 
4829 	__skb_queue_head_init(&tmp);
4830 
4831 	while (before(start, end)) {
4832 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4833 		struct sk_buff *nskb;
4834 
4835 		nskb = alloc_skb(copy, GFP_ATOMIC);
4836 		if (!nskb)
4837 			break;
4838 
4839 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4840 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4841 		if (list)
4842 			__skb_queue_before(list, skb, nskb);
4843 		else
4844 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4845 		skb_set_owner_r(nskb, sk);
4846 
4847 		/* Copy data, releasing collapsed skbs. */
4848 		while (copy > 0) {
4849 			int offset = start - TCP_SKB_CB(skb)->seq;
4850 			int size = TCP_SKB_CB(skb)->end_seq - start;
4851 
4852 			BUG_ON(offset < 0);
4853 			if (size > 0) {
4854 				size = min(copy, size);
4855 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4856 					BUG();
4857 				TCP_SKB_CB(nskb)->end_seq += size;
4858 				copy -= size;
4859 				start += size;
4860 			}
4861 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4862 				skb = tcp_collapse_one(sk, skb, list, root);
4863 				if (!skb ||
4864 				    skb == tail ||
4865 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4866 					goto end;
4867 			}
4868 		}
4869 	}
4870 end:
4871 	skb_queue_walk_safe(&tmp, skb, n)
4872 		tcp_rbtree_insert(root, skb);
4873 }
4874 
4875 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4876  * and tcp_collapse() them until all the queue is collapsed.
4877  */
4878 static void tcp_collapse_ofo_queue(struct sock *sk)
4879 {
4880 	struct tcp_sock *tp = tcp_sk(sk);
4881 	struct sk_buff *skb, *head;
4882 	struct rb_node *p;
4883 	u32 start, end;
4884 
4885 	p = rb_first(&tp->out_of_order_queue);
4886 	skb = rb_entry_safe(p, struct sk_buff, rbnode);
4887 new_range:
4888 	if (!skb) {
4889 		p = rb_last(&tp->out_of_order_queue);
4890 		/* Note: This is possible p is NULL here. We do not
4891 		 * use rb_entry_safe(), as ooo_last_skb is valid only
4892 		 * if rbtree is not empty.
4893 		 */
4894 		tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode);
4895 		return;
4896 	}
4897 	start = TCP_SKB_CB(skb)->seq;
4898 	end = TCP_SKB_CB(skb)->end_seq;
4899 
4900 	for (head = skb;;) {
4901 		skb = tcp_skb_next(skb, NULL);
4902 
4903 		/* Range is terminated when we see a gap or when
4904 		 * we are at the queue end.
4905 		 */
4906 		if (!skb ||
4907 		    after(TCP_SKB_CB(skb)->seq, end) ||
4908 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4909 			tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4910 				     head, skb, start, end);
4911 			goto new_range;
4912 		}
4913 
4914 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4915 			start = TCP_SKB_CB(skb)->seq;
4916 		if (after(TCP_SKB_CB(skb)->end_seq, end))
4917 			end = TCP_SKB_CB(skb)->end_seq;
4918 	}
4919 }
4920 
4921 /*
4922  * Clean the out-of-order queue to make room.
4923  * We drop high sequences packets to :
4924  * 1) Let a chance for holes to be filled.
4925  * 2) not add too big latencies if thousands of packets sit there.
4926  *    (But if application shrinks SO_RCVBUF, we could still end up
4927  *     freeing whole queue here)
4928  *
4929  * Return true if queue has shrunk.
4930  */
4931 static bool tcp_prune_ofo_queue(struct sock *sk)
4932 {
4933 	struct tcp_sock *tp = tcp_sk(sk);
4934 	struct rb_node *node, *prev;
4935 
4936 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4937 		return false;
4938 
4939 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4940 	node = &tp->ooo_last_skb->rbnode;
4941 	do {
4942 		prev = rb_prev(node);
4943 		rb_erase(node, &tp->out_of_order_queue);
4944 		tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode));
4945 		sk_mem_reclaim(sk);
4946 		if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4947 		    !tcp_under_memory_pressure(sk))
4948 			break;
4949 		node = prev;
4950 	} while (node);
4951 	tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode);
4952 
4953 	/* Reset SACK state.  A conforming SACK implementation will
4954 	 * do the same at a timeout based retransmit.  When a connection
4955 	 * is in a sad state like this, we care only about integrity
4956 	 * of the connection not performance.
4957 	 */
4958 	if (tp->rx_opt.sack_ok)
4959 		tcp_sack_reset(&tp->rx_opt);
4960 	return true;
4961 }
4962 
4963 /* Reduce allocated memory if we can, trying to get
4964  * the socket within its memory limits again.
4965  *
4966  * Return less than zero if we should start dropping frames
4967  * until the socket owning process reads some of the data
4968  * to stabilize the situation.
4969  */
4970 static int tcp_prune_queue(struct sock *sk)
4971 {
4972 	struct tcp_sock *tp = tcp_sk(sk);
4973 
4974 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4975 
4976 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4977 
4978 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4979 		tcp_clamp_window(sk);
4980 	else if (tcp_under_memory_pressure(sk))
4981 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4982 
4983 	tcp_collapse_ofo_queue(sk);
4984 	if (!skb_queue_empty(&sk->sk_receive_queue))
4985 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
4986 			     skb_peek(&sk->sk_receive_queue),
4987 			     NULL,
4988 			     tp->copied_seq, tp->rcv_nxt);
4989 	sk_mem_reclaim(sk);
4990 
4991 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4992 		return 0;
4993 
4994 	/* Collapsing did not help, destructive actions follow.
4995 	 * This must not ever occur. */
4996 
4997 	tcp_prune_ofo_queue(sk);
4998 
4999 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5000 		return 0;
5001 
5002 	/* If we are really being abused, tell the caller to silently
5003 	 * drop receive data on the floor.  It will get retransmitted
5004 	 * and hopefully then we'll have sufficient space.
5005 	 */
5006 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5007 
5008 	/* Massive buffer overcommit. */
5009 	tp->pred_flags = 0;
5010 	return -1;
5011 }
5012 
5013 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5014 {
5015 	const struct tcp_sock *tp = tcp_sk(sk);
5016 
5017 	/* If the user specified a specific send buffer setting, do
5018 	 * not modify it.
5019 	 */
5020 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5021 		return false;
5022 
5023 	/* If we are under global TCP memory pressure, do not expand.  */
5024 	if (tcp_under_memory_pressure(sk))
5025 		return false;
5026 
5027 	/* If we are under soft global TCP memory pressure, do not expand.  */
5028 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5029 		return false;
5030 
5031 	/* If we filled the congestion window, do not expand.  */
5032 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5033 		return false;
5034 
5035 	return true;
5036 }
5037 
5038 /* When incoming ACK allowed to free some skb from write_queue,
5039  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5040  * on the exit from tcp input handler.
5041  *
5042  * PROBLEM: sndbuf expansion does not work well with largesend.
5043  */
5044 static void tcp_new_space(struct sock *sk)
5045 {
5046 	struct tcp_sock *tp = tcp_sk(sk);
5047 
5048 	if (tcp_should_expand_sndbuf(sk)) {
5049 		tcp_sndbuf_expand(sk);
5050 		tp->snd_cwnd_stamp = tcp_time_stamp;
5051 	}
5052 
5053 	sk->sk_write_space(sk);
5054 }
5055 
5056 static void tcp_check_space(struct sock *sk)
5057 {
5058 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5059 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5060 		/* pairs with tcp_poll() */
5061 		smp_mb__after_atomic();
5062 		if (sk->sk_socket &&
5063 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5064 			tcp_new_space(sk);
5065 			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5066 				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5067 		}
5068 	}
5069 }
5070 
5071 static inline void tcp_data_snd_check(struct sock *sk)
5072 {
5073 	tcp_push_pending_frames(sk);
5074 	tcp_check_space(sk);
5075 }
5076 
5077 /*
5078  * Check if sending an ack is needed.
5079  */
5080 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5081 {
5082 	struct tcp_sock *tp = tcp_sk(sk);
5083 
5084 	    /* More than one full frame received... */
5085 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5086 	     /* ... and right edge of window advances far enough.
5087 	      * (tcp_recvmsg() will send ACK otherwise). Or...
5088 	      */
5089 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
5090 	    /* We ACK each frame or... */
5091 	    tcp_in_quickack_mode(sk) ||
5092 	    /* We have out of order data. */
5093 	    (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
5094 		/* Then ack it now */
5095 		tcp_send_ack(sk);
5096 	} else {
5097 		/* Else, send delayed ack. */
5098 		tcp_send_delayed_ack(sk);
5099 	}
5100 }
5101 
5102 static inline void tcp_ack_snd_check(struct sock *sk)
5103 {
5104 	if (!inet_csk_ack_scheduled(sk)) {
5105 		/* We sent a data segment already. */
5106 		return;
5107 	}
5108 	__tcp_ack_snd_check(sk, 1);
5109 }
5110 
5111 /*
5112  *	This routine is only called when we have urgent data
5113  *	signaled. Its the 'slow' part of tcp_urg. It could be
5114  *	moved inline now as tcp_urg is only called from one
5115  *	place. We handle URGent data wrong. We have to - as
5116  *	BSD still doesn't use the correction from RFC961.
5117  *	For 1003.1g we should support a new option TCP_STDURG to permit
5118  *	either form (or just set the sysctl tcp_stdurg).
5119  */
5120 
5121 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5122 {
5123 	struct tcp_sock *tp = tcp_sk(sk);
5124 	u32 ptr = ntohs(th->urg_ptr);
5125 
5126 	if (ptr && !sysctl_tcp_stdurg)
5127 		ptr--;
5128 	ptr += ntohl(th->seq);
5129 
5130 	/* Ignore urgent data that we've already seen and read. */
5131 	if (after(tp->copied_seq, ptr))
5132 		return;
5133 
5134 	/* Do not replay urg ptr.
5135 	 *
5136 	 * NOTE: interesting situation not covered by specs.
5137 	 * Misbehaving sender may send urg ptr, pointing to segment,
5138 	 * which we already have in ofo queue. We are not able to fetch
5139 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5140 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5141 	 * situations. But it is worth to think about possibility of some
5142 	 * DoSes using some hypothetical application level deadlock.
5143 	 */
5144 	if (before(ptr, tp->rcv_nxt))
5145 		return;
5146 
5147 	/* Do we already have a newer (or duplicate) urgent pointer? */
5148 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5149 		return;
5150 
5151 	/* Tell the world about our new urgent pointer. */
5152 	sk_send_sigurg(sk);
5153 
5154 	/* We may be adding urgent data when the last byte read was
5155 	 * urgent. To do this requires some care. We cannot just ignore
5156 	 * tp->copied_seq since we would read the last urgent byte again
5157 	 * as data, nor can we alter copied_seq until this data arrives
5158 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5159 	 *
5160 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5161 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5162 	 * and expect that both A and B disappear from stream. This is _wrong_.
5163 	 * Though this happens in BSD with high probability, this is occasional.
5164 	 * Any application relying on this is buggy. Note also, that fix "works"
5165 	 * only in this artificial test. Insert some normal data between A and B and we will
5166 	 * decline of BSD again. Verdict: it is better to remove to trap
5167 	 * buggy users.
5168 	 */
5169 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5170 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5171 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5172 		tp->copied_seq++;
5173 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5174 			__skb_unlink(skb, &sk->sk_receive_queue);
5175 			__kfree_skb(skb);
5176 		}
5177 	}
5178 
5179 	tp->urg_data = TCP_URG_NOTYET;
5180 	tp->urg_seq = ptr;
5181 
5182 	/* Disable header prediction. */
5183 	tp->pred_flags = 0;
5184 }
5185 
5186 /* This is the 'fast' part of urgent handling. */
5187 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5188 {
5189 	struct tcp_sock *tp = tcp_sk(sk);
5190 
5191 	/* Check if we get a new urgent pointer - normally not. */
5192 	if (th->urg)
5193 		tcp_check_urg(sk, th);
5194 
5195 	/* Do we wait for any urgent data? - normally not... */
5196 	if (tp->urg_data == TCP_URG_NOTYET) {
5197 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5198 			  th->syn;
5199 
5200 		/* Is the urgent pointer pointing into this packet? */
5201 		if (ptr < skb->len) {
5202 			u8 tmp;
5203 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5204 				BUG();
5205 			tp->urg_data = TCP_URG_VALID | tmp;
5206 			if (!sock_flag(sk, SOCK_DEAD))
5207 				sk->sk_data_ready(sk);
5208 		}
5209 	}
5210 }
5211 
5212 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5213 {
5214 	struct tcp_sock *tp = tcp_sk(sk);
5215 	int chunk = skb->len - hlen;
5216 	int err;
5217 
5218 	if (skb_csum_unnecessary(skb))
5219 		err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5220 	else
5221 		err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5222 
5223 	if (!err) {
5224 		tp->ucopy.len -= chunk;
5225 		tp->copied_seq += chunk;
5226 		tcp_rcv_space_adjust(sk);
5227 	}
5228 
5229 	return err;
5230 }
5231 
5232 /* Does PAWS and seqno based validation of an incoming segment, flags will
5233  * play significant role here.
5234  */
5235 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5236 				  const struct tcphdr *th, int syn_inerr)
5237 {
5238 	struct tcp_sock *tp = tcp_sk(sk);
5239 	bool rst_seq_match = false;
5240 
5241 	/* RFC1323: H1. Apply PAWS check first. */
5242 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5243 	    tcp_paws_discard(sk, skb)) {
5244 		if (!th->rst) {
5245 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5246 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5247 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5248 						  &tp->last_oow_ack_time))
5249 				tcp_send_dupack(sk, skb);
5250 			goto discard;
5251 		}
5252 		/* Reset is accepted even if it did not pass PAWS. */
5253 	}
5254 
5255 	/* Step 1: check sequence number */
5256 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5257 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5258 		 * (RST) segments are validated by checking their SEQ-fields."
5259 		 * And page 69: "If an incoming segment is not acceptable,
5260 		 * an acknowledgment should be sent in reply (unless the RST
5261 		 * bit is set, if so drop the segment and return)".
5262 		 */
5263 		if (!th->rst) {
5264 			if (th->syn)
5265 				goto syn_challenge;
5266 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5267 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5268 						  &tp->last_oow_ack_time))
5269 				tcp_send_dupack(sk, skb);
5270 		}
5271 		goto discard;
5272 	}
5273 
5274 	/* Step 2: check RST bit */
5275 	if (th->rst) {
5276 		/* RFC 5961 3.2 (extend to match against SACK too if available):
5277 		 * If seq num matches RCV.NXT or the right-most SACK block,
5278 		 * then
5279 		 *     RESET the connection
5280 		 * else
5281 		 *     Send a challenge ACK
5282 		 */
5283 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5284 			rst_seq_match = true;
5285 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5286 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5287 			int max_sack = sp[0].end_seq;
5288 			int this_sack;
5289 
5290 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5291 			     ++this_sack) {
5292 				max_sack = after(sp[this_sack].end_seq,
5293 						 max_sack) ?
5294 					sp[this_sack].end_seq : max_sack;
5295 			}
5296 
5297 			if (TCP_SKB_CB(skb)->seq == max_sack)
5298 				rst_seq_match = true;
5299 		}
5300 
5301 		if (rst_seq_match)
5302 			tcp_reset(sk);
5303 		else
5304 			tcp_send_challenge_ack(sk, skb);
5305 		goto discard;
5306 	}
5307 
5308 	/* step 3: check security and precedence [ignored] */
5309 
5310 	/* step 4: Check for a SYN
5311 	 * RFC 5961 4.2 : Send a challenge ack
5312 	 */
5313 	if (th->syn) {
5314 syn_challenge:
5315 		if (syn_inerr)
5316 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5317 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5318 		tcp_send_challenge_ack(sk, skb);
5319 		goto discard;
5320 	}
5321 
5322 	return true;
5323 
5324 discard:
5325 	tcp_drop(sk, skb);
5326 	return false;
5327 }
5328 
5329 /*
5330  *	TCP receive function for the ESTABLISHED state.
5331  *
5332  *	It is split into a fast path and a slow path. The fast path is
5333  * 	disabled when:
5334  *	- A zero window was announced from us - zero window probing
5335  *        is only handled properly in the slow path.
5336  *	- Out of order segments arrived.
5337  *	- Urgent data is expected.
5338  *	- There is no buffer space left
5339  *	- Unexpected TCP flags/window values/header lengths are received
5340  *	  (detected by checking the TCP header against pred_flags)
5341  *	- Data is sent in both directions. Fast path only supports pure senders
5342  *	  or pure receivers (this means either the sequence number or the ack
5343  *	  value must stay constant)
5344  *	- Unexpected TCP option.
5345  *
5346  *	When these conditions are not satisfied it drops into a standard
5347  *	receive procedure patterned after RFC793 to handle all cases.
5348  *	The first three cases are guaranteed by proper pred_flags setting,
5349  *	the rest is checked inline. Fast processing is turned on in
5350  *	tcp_data_queue when everything is OK.
5351  */
5352 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5353 			 const struct tcphdr *th, unsigned int len)
5354 {
5355 	struct tcp_sock *tp = tcp_sk(sk);
5356 
5357 	if (unlikely(!sk->sk_rx_dst))
5358 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5359 	/*
5360 	 *	Header prediction.
5361 	 *	The code loosely follows the one in the famous
5362 	 *	"30 instruction TCP receive" Van Jacobson mail.
5363 	 *
5364 	 *	Van's trick is to deposit buffers into socket queue
5365 	 *	on a device interrupt, to call tcp_recv function
5366 	 *	on the receive process context and checksum and copy
5367 	 *	the buffer to user space. smart...
5368 	 *
5369 	 *	Our current scheme is not silly either but we take the
5370 	 *	extra cost of the net_bh soft interrupt processing...
5371 	 *	We do checksum and copy also but from device to kernel.
5372 	 */
5373 
5374 	tp->rx_opt.saw_tstamp = 0;
5375 
5376 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5377 	 *	if header_prediction is to be made
5378 	 *	'S' will always be tp->tcp_header_len >> 2
5379 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5380 	 *  turn it off	(when there are holes in the receive
5381 	 *	 space for instance)
5382 	 *	PSH flag is ignored.
5383 	 */
5384 
5385 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5386 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5387 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5388 		int tcp_header_len = tp->tcp_header_len;
5389 
5390 		/* Timestamp header prediction: tcp_header_len
5391 		 * is automatically equal to th->doff*4 due to pred_flags
5392 		 * match.
5393 		 */
5394 
5395 		/* Check timestamp */
5396 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5397 			/* No? Slow path! */
5398 			if (!tcp_parse_aligned_timestamp(tp, th))
5399 				goto slow_path;
5400 
5401 			/* If PAWS failed, check it more carefully in slow path */
5402 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5403 				goto slow_path;
5404 
5405 			/* DO NOT update ts_recent here, if checksum fails
5406 			 * and timestamp was corrupted part, it will result
5407 			 * in a hung connection since we will drop all
5408 			 * future packets due to the PAWS test.
5409 			 */
5410 		}
5411 
5412 		if (len <= tcp_header_len) {
5413 			/* Bulk data transfer: sender */
5414 			if (len == tcp_header_len) {
5415 				/* Predicted packet is in window by definition.
5416 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5417 				 * Hence, check seq<=rcv_wup reduces to:
5418 				 */
5419 				if (tcp_header_len ==
5420 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5421 				    tp->rcv_nxt == tp->rcv_wup)
5422 					tcp_store_ts_recent(tp);
5423 
5424 				/* We know that such packets are checksummed
5425 				 * on entry.
5426 				 */
5427 				tcp_ack(sk, skb, 0);
5428 				__kfree_skb(skb);
5429 				tcp_data_snd_check(sk);
5430 				return;
5431 			} else { /* Header too small */
5432 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5433 				goto discard;
5434 			}
5435 		} else {
5436 			int eaten = 0;
5437 			bool fragstolen = false;
5438 
5439 			if (tp->ucopy.task == current &&
5440 			    tp->copied_seq == tp->rcv_nxt &&
5441 			    len - tcp_header_len <= tp->ucopy.len &&
5442 			    sock_owned_by_user(sk)) {
5443 				__set_current_state(TASK_RUNNING);
5444 
5445 				if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5446 					/* Predicted packet is in window by definition.
5447 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5448 					 * Hence, check seq<=rcv_wup reduces to:
5449 					 */
5450 					if (tcp_header_len ==
5451 					    (sizeof(struct tcphdr) +
5452 					     TCPOLEN_TSTAMP_ALIGNED) &&
5453 					    tp->rcv_nxt == tp->rcv_wup)
5454 						tcp_store_ts_recent(tp);
5455 
5456 					tcp_rcv_rtt_measure_ts(sk, skb);
5457 
5458 					__skb_pull(skb, tcp_header_len);
5459 					tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5460 					NET_INC_STATS(sock_net(sk),
5461 							LINUX_MIB_TCPHPHITSTOUSER);
5462 					eaten = 1;
5463 				}
5464 			}
5465 			if (!eaten) {
5466 				if (tcp_checksum_complete(skb))
5467 					goto csum_error;
5468 
5469 				if ((int)skb->truesize > sk->sk_forward_alloc)
5470 					goto step5;
5471 
5472 				/* Predicted packet is in window by definition.
5473 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5474 				 * Hence, check seq<=rcv_wup reduces to:
5475 				 */
5476 				if (tcp_header_len ==
5477 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5478 				    tp->rcv_nxt == tp->rcv_wup)
5479 					tcp_store_ts_recent(tp);
5480 
5481 				tcp_rcv_rtt_measure_ts(sk, skb);
5482 
5483 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5484 
5485 				/* Bulk data transfer: receiver */
5486 				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5487 						      &fragstolen);
5488 			}
5489 
5490 			tcp_event_data_recv(sk, skb);
5491 
5492 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5493 				/* Well, only one small jumplet in fast path... */
5494 				tcp_ack(sk, skb, FLAG_DATA);
5495 				tcp_data_snd_check(sk);
5496 				if (!inet_csk_ack_scheduled(sk))
5497 					goto no_ack;
5498 			}
5499 
5500 			__tcp_ack_snd_check(sk, 0);
5501 no_ack:
5502 			if (eaten)
5503 				kfree_skb_partial(skb, fragstolen);
5504 			sk->sk_data_ready(sk);
5505 			return;
5506 		}
5507 	}
5508 
5509 slow_path:
5510 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5511 		goto csum_error;
5512 
5513 	if (!th->ack && !th->rst && !th->syn)
5514 		goto discard;
5515 
5516 	/*
5517 	 *	Standard slow path.
5518 	 */
5519 
5520 	if (!tcp_validate_incoming(sk, skb, th, 1))
5521 		return;
5522 
5523 step5:
5524 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5525 		goto discard;
5526 
5527 	tcp_rcv_rtt_measure_ts(sk, skb);
5528 
5529 	/* Process urgent data. */
5530 	tcp_urg(sk, skb, th);
5531 
5532 	/* step 7: process the segment text */
5533 	tcp_data_queue(sk, skb);
5534 
5535 	tcp_data_snd_check(sk);
5536 	tcp_ack_snd_check(sk);
5537 	return;
5538 
5539 csum_error:
5540 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5541 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5542 
5543 discard:
5544 	tcp_drop(sk, skb);
5545 }
5546 EXPORT_SYMBOL(tcp_rcv_established);
5547 
5548 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5549 {
5550 	struct tcp_sock *tp = tcp_sk(sk);
5551 	struct inet_connection_sock *icsk = inet_csk(sk);
5552 
5553 	tcp_set_state(sk, TCP_ESTABLISHED);
5554 
5555 	if (skb) {
5556 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5557 		security_inet_conn_established(sk, skb);
5558 	}
5559 
5560 	/* Make sure socket is routed, for correct metrics.  */
5561 	icsk->icsk_af_ops->rebuild_header(sk);
5562 
5563 	tcp_init_metrics(sk);
5564 
5565 	tcp_init_congestion_control(sk);
5566 
5567 	/* Prevent spurious tcp_cwnd_restart() on first data
5568 	 * packet.
5569 	 */
5570 	tp->lsndtime = tcp_time_stamp;
5571 
5572 	tcp_init_buffer_space(sk);
5573 
5574 	if (sock_flag(sk, SOCK_KEEPOPEN))
5575 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5576 
5577 	if (!tp->rx_opt.snd_wscale)
5578 		__tcp_fast_path_on(tp, tp->snd_wnd);
5579 	else
5580 		tp->pred_flags = 0;
5581 
5582 	if (!sock_flag(sk, SOCK_DEAD)) {
5583 		sk->sk_state_change(sk);
5584 		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5585 	}
5586 }
5587 
5588 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5589 				    struct tcp_fastopen_cookie *cookie)
5590 {
5591 	struct tcp_sock *tp = tcp_sk(sk);
5592 	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5593 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5594 	bool syn_drop = false;
5595 
5596 	if (mss == tp->rx_opt.user_mss) {
5597 		struct tcp_options_received opt;
5598 
5599 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5600 		tcp_clear_options(&opt);
5601 		opt.user_mss = opt.mss_clamp = 0;
5602 		tcp_parse_options(synack, &opt, 0, NULL);
5603 		mss = opt.mss_clamp;
5604 	}
5605 
5606 	if (!tp->syn_fastopen) {
5607 		/* Ignore an unsolicited cookie */
5608 		cookie->len = -1;
5609 	} else if (tp->total_retrans) {
5610 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5611 		 * acknowledges data. Presumably the remote received only
5612 		 * the retransmitted (regular) SYNs: either the original
5613 		 * SYN-data or the corresponding SYN-ACK was dropped.
5614 		 */
5615 		syn_drop = (cookie->len < 0 && data);
5616 	} else if (cookie->len < 0 && !tp->syn_data) {
5617 		/* We requested a cookie but didn't get it. If we did not use
5618 		 * the (old) exp opt format then try so next time (try_exp=1).
5619 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5620 		 */
5621 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5622 	}
5623 
5624 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5625 
5626 	if (data) { /* Retransmit unacked data in SYN */
5627 		tcp_for_write_queue_from(data, sk) {
5628 			if (data == tcp_send_head(sk) ||
5629 			    __tcp_retransmit_skb(sk, data, 1))
5630 				break;
5631 		}
5632 		tcp_rearm_rto(sk);
5633 		NET_INC_STATS(sock_net(sk),
5634 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5635 		return true;
5636 	}
5637 	tp->syn_data_acked = tp->syn_data;
5638 	if (tp->syn_data_acked)
5639 		NET_INC_STATS(sock_net(sk),
5640 				LINUX_MIB_TCPFASTOPENACTIVE);
5641 
5642 	tcp_fastopen_add_skb(sk, synack);
5643 
5644 	return false;
5645 }
5646 
5647 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5648 					 const struct tcphdr *th)
5649 {
5650 	struct inet_connection_sock *icsk = inet_csk(sk);
5651 	struct tcp_sock *tp = tcp_sk(sk);
5652 	struct tcp_fastopen_cookie foc = { .len = -1 };
5653 	int saved_clamp = tp->rx_opt.mss_clamp;
5654 
5655 	tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5656 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5657 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5658 
5659 	if (th->ack) {
5660 		/* rfc793:
5661 		 * "If the state is SYN-SENT then
5662 		 *    first check the ACK bit
5663 		 *      If the ACK bit is set
5664 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5665 		 *        a reset (unless the RST bit is set, if so drop
5666 		 *        the segment and return)"
5667 		 */
5668 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5669 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5670 			goto reset_and_undo;
5671 
5672 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5673 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5674 			     tcp_time_stamp)) {
5675 			NET_INC_STATS(sock_net(sk),
5676 					LINUX_MIB_PAWSACTIVEREJECTED);
5677 			goto reset_and_undo;
5678 		}
5679 
5680 		/* Now ACK is acceptable.
5681 		 *
5682 		 * "If the RST bit is set
5683 		 *    If the ACK was acceptable then signal the user "error:
5684 		 *    connection reset", drop the segment, enter CLOSED state,
5685 		 *    delete TCB, and return."
5686 		 */
5687 
5688 		if (th->rst) {
5689 			tcp_reset(sk);
5690 			goto discard;
5691 		}
5692 
5693 		/* rfc793:
5694 		 *   "fifth, if neither of the SYN or RST bits is set then
5695 		 *    drop the segment and return."
5696 		 *
5697 		 *    See note below!
5698 		 *                                        --ANK(990513)
5699 		 */
5700 		if (!th->syn)
5701 			goto discard_and_undo;
5702 
5703 		/* rfc793:
5704 		 *   "If the SYN bit is on ...
5705 		 *    are acceptable then ...
5706 		 *    (our SYN has been ACKed), change the connection
5707 		 *    state to ESTABLISHED..."
5708 		 */
5709 
5710 		tcp_ecn_rcv_synack(tp, th);
5711 
5712 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5713 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5714 
5715 		/* Ok.. it's good. Set up sequence numbers and
5716 		 * move to established.
5717 		 */
5718 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5719 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5720 
5721 		/* RFC1323: The window in SYN & SYN/ACK segments is
5722 		 * never scaled.
5723 		 */
5724 		tp->snd_wnd = ntohs(th->window);
5725 
5726 		if (!tp->rx_opt.wscale_ok) {
5727 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5728 			tp->window_clamp = min(tp->window_clamp, 65535U);
5729 		}
5730 
5731 		if (tp->rx_opt.saw_tstamp) {
5732 			tp->rx_opt.tstamp_ok	   = 1;
5733 			tp->tcp_header_len =
5734 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5735 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5736 			tcp_store_ts_recent(tp);
5737 		} else {
5738 			tp->tcp_header_len = sizeof(struct tcphdr);
5739 		}
5740 
5741 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5742 			tcp_enable_fack(tp);
5743 
5744 		tcp_mtup_init(sk);
5745 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5746 		tcp_initialize_rcv_mss(sk);
5747 
5748 		/* Remember, tcp_poll() does not lock socket!
5749 		 * Change state from SYN-SENT only after copied_seq
5750 		 * is initialized. */
5751 		tp->copied_seq = tp->rcv_nxt;
5752 
5753 		smp_mb();
5754 
5755 		tcp_finish_connect(sk, skb);
5756 
5757 		if ((tp->syn_fastopen || tp->syn_data) &&
5758 		    tcp_rcv_fastopen_synack(sk, skb, &foc))
5759 			return -1;
5760 
5761 		if (sk->sk_write_pending ||
5762 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5763 		    icsk->icsk_ack.pingpong) {
5764 			/* Save one ACK. Data will be ready after
5765 			 * several ticks, if write_pending is set.
5766 			 *
5767 			 * It may be deleted, but with this feature tcpdumps
5768 			 * look so _wonderfully_ clever, that I was not able
5769 			 * to stand against the temptation 8)     --ANK
5770 			 */
5771 			inet_csk_schedule_ack(sk);
5772 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5773 			tcp_enter_quickack_mode(sk);
5774 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5775 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5776 
5777 discard:
5778 			tcp_drop(sk, skb);
5779 			return 0;
5780 		} else {
5781 			tcp_send_ack(sk);
5782 		}
5783 		return -1;
5784 	}
5785 
5786 	/* No ACK in the segment */
5787 
5788 	if (th->rst) {
5789 		/* rfc793:
5790 		 * "If the RST bit is set
5791 		 *
5792 		 *      Otherwise (no ACK) drop the segment and return."
5793 		 */
5794 
5795 		goto discard_and_undo;
5796 	}
5797 
5798 	/* PAWS check. */
5799 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5800 	    tcp_paws_reject(&tp->rx_opt, 0))
5801 		goto discard_and_undo;
5802 
5803 	if (th->syn) {
5804 		/* We see SYN without ACK. It is attempt of
5805 		 * simultaneous connect with crossed SYNs.
5806 		 * Particularly, it can be connect to self.
5807 		 */
5808 		tcp_set_state(sk, TCP_SYN_RECV);
5809 
5810 		if (tp->rx_opt.saw_tstamp) {
5811 			tp->rx_opt.tstamp_ok = 1;
5812 			tcp_store_ts_recent(tp);
5813 			tp->tcp_header_len =
5814 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5815 		} else {
5816 			tp->tcp_header_len = sizeof(struct tcphdr);
5817 		}
5818 
5819 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5820 		tp->copied_seq = tp->rcv_nxt;
5821 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5822 
5823 		/* RFC1323: The window in SYN & SYN/ACK segments is
5824 		 * never scaled.
5825 		 */
5826 		tp->snd_wnd    = ntohs(th->window);
5827 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5828 		tp->max_window = tp->snd_wnd;
5829 
5830 		tcp_ecn_rcv_syn(tp, th);
5831 
5832 		tcp_mtup_init(sk);
5833 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5834 		tcp_initialize_rcv_mss(sk);
5835 
5836 		tcp_send_synack(sk);
5837 #if 0
5838 		/* Note, we could accept data and URG from this segment.
5839 		 * There are no obstacles to make this (except that we must
5840 		 * either change tcp_recvmsg() to prevent it from returning data
5841 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5842 		 *
5843 		 * However, if we ignore data in ACKless segments sometimes,
5844 		 * we have no reasons to accept it sometimes.
5845 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5846 		 * is not flawless. So, discard packet for sanity.
5847 		 * Uncomment this return to process the data.
5848 		 */
5849 		return -1;
5850 #else
5851 		goto discard;
5852 #endif
5853 	}
5854 	/* "fifth, if neither of the SYN or RST bits is set then
5855 	 * drop the segment and return."
5856 	 */
5857 
5858 discard_and_undo:
5859 	tcp_clear_options(&tp->rx_opt);
5860 	tp->rx_opt.mss_clamp = saved_clamp;
5861 	goto discard;
5862 
5863 reset_and_undo:
5864 	tcp_clear_options(&tp->rx_opt);
5865 	tp->rx_opt.mss_clamp = saved_clamp;
5866 	return 1;
5867 }
5868 
5869 /*
5870  *	This function implements the receiving procedure of RFC 793 for
5871  *	all states except ESTABLISHED and TIME_WAIT.
5872  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5873  *	address independent.
5874  */
5875 
5876 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5877 {
5878 	struct tcp_sock *tp = tcp_sk(sk);
5879 	struct inet_connection_sock *icsk = inet_csk(sk);
5880 	const struct tcphdr *th = tcp_hdr(skb);
5881 	struct request_sock *req;
5882 	int queued = 0;
5883 	bool acceptable;
5884 
5885 	switch (sk->sk_state) {
5886 	case TCP_CLOSE:
5887 		goto discard;
5888 
5889 	case TCP_LISTEN:
5890 		if (th->ack)
5891 			return 1;
5892 
5893 		if (th->rst)
5894 			goto discard;
5895 
5896 		if (th->syn) {
5897 			if (th->fin)
5898 				goto discard;
5899 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5900 				return 1;
5901 
5902 			consume_skb(skb);
5903 			return 0;
5904 		}
5905 		goto discard;
5906 
5907 	case TCP_SYN_SENT:
5908 		tp->rx_opt.saw_tstamp = 0;
5909 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
5910 		if (queued >= 0)
5911 			return queued;
5912 
5913 		/* Do step6 onward by hand. */
5914 		tcp_urg(sk, skb, th);
5915 		__kfree_skb(skb);
5916 		tcp_data_snd_check(sk);
5917 		return 0;
5918 	}
5919 
5920 	tp->rx_opt.saw_tstamp = 0;
5921 	req = tp->fastopen_rsk;
5922 	if (req) {
5923 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5924 		    sk->sk_state != TCP_FIN_WAIT1);
5925 
5926 		if (!tcp_check_req(sk, skb, req, true))
5927 			goto discard;
5928 	}
5929 
5930 	if (!th->ack && !th->rst && !th->syn)
5931 		goto discard;
5932 
5933 	if (!tcp_validate_incoming(sk, skb, th, 0))
5934 		return 0;
5935 
5936 	/* step 5: check the ACK field */
5937 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5938 				      FLAG_UPDATE_TS_RECENT) > 0;
5939 
5940 	switch (sk->sk_state) {
5941 	case TCP_SYN_RECV:
5942 		if (!acceptable)
5943 			return 1;
5944 
5945 		if (!tp->srtt_us)
5946 			tcp_synack_rtt_meas(sk, req);
5947 
5948 		/* Once we leave TCP_SYN_RECV, we no longer need req
5949 		 * so release it.
5950 		 */
5951 		if (req) {
5952 			inet_csk(sk)->icsk_retransmits = 0;
5953 			reqsk_fastopen_remove(sk, req, false);
5954 		} else {
5955 			/* Make sure socket is routed, for correct metrics. */
5956 			icsk->icsk_af_ops->rebuild_header(sk);
5957 			tcp_init_congestion_control(sk);
5958 
5959 			tcp_mtup_init(sk);
5960 			tp->copied_seq = tp->rcv_nxt;
5961 			tcp_init_buffer_space(sk);
5962 		}
5963 		smp_mb();
5964 		tcp_set_state(sk, TCP_ESTABLISHED);
5965 		sk->sk_state_change(sk);
5966 
5967 		/* Note, that this wakeup is only for marginal crossed SYN case.
5968 		 * Passively open sockets are not waked up, because
5969 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5970 		 */
5971 		if (sk->sk_socket)
5972 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5973 
5974 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5975 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5976 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5977 
5978 		if (tp->rx_opt.tstamp_ok)
5979 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5980 
5981 		if (req) {
5982 			/* Re-arm the timer because data may have been sent out.
5983 			 * This is similar to the regular data transmission case
5984 			 * when new data has just been ack'ed.
5985 			 *
5986 			 * (TFO) - we could try to be more aggressive and
5987 			 * retransmitting any data sooner based on when they
5988 			 * are sent out.
5989 			 */
5990 			tcp_rearm_rto(sk);
5991 		} else
5992 			tcp_init_metrics(sk);
5993 
5994 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
5995 			tcp_update_pacing_rate(sk);
5996 
5997 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5998 		tp->lsndtime = tcp_time_stamp;
5999 
6000 		tcp_initialize_rcv_mss(sk);
6001 		tcp_fast_path_on(tp);
6002 		break;
6003 
6004 	case TCP_FIN_WAIT1: {
6005 		struct dst_entry *dst;
6006 		int tmo;
6007 
6008 		/* If we enter the TCP_FIN_WAIT1 state and we are a
6009 		 * Fast Open socket and this is the first acceptable
6010 		 * ACK we have received, this would have acknowledged
6011 		 * our SYNACK so stop the SYNACK timer.
6012 		 */
6013 		if (req) {
6014 			/* Return RST if ack_seq is invalid.
6015 			 * Note that RFC793 only says to generate a
6016 			 * DUPACK for it but for TCP Fast Open it seems
6017 			 * better to treat this case like TCP_SYN_RECV
6018 			 * above.
6019 			 */
6020 			if (!acceptable)
6021 				return 1;
6022 			/* We no longer need the request sock. */
6023 			reqsk_fastopen_remove(sk, req, false);
6024 			tcp_rearm_rto(sk);
6025 		}
6026 		if (tp->snd_una != tp->write_seq)
6027 			break;
6028 
6029 		tcp_set_state(sk, TCP_FIN_WAIT2);
6030 		sk->sk_shutdown |= SEND_SHUTDOWN;
6031 
6032 		dst = __sk_dst_get(sk);
6033 		if (dst)
6034 			dst_confirm(dst);
6035 
6036 		if (!sock_flag(sk, SOCK_DEAD)) {
6037 			/* Wake up lingering close() */
6038 			sk->sk_state_change(sk);
6039 			break;
6040 		}
6041 
6042 		if (tp->linger2 < 0 ||
6043 		    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6044 		     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
6045 			tcp_done(sk);
6046 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6047 			return 1;
6048 		}
6049 
6050 		tmo = tcp_fin_time(sk);
6051 		if (tmo > TCP_TIMEWAIT_LEN) {
6052 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6053 		} else if (th->fin || sock_owned_by_user(sk)) {
6054 			/* Bad case. We could lose such FIN otherwise.
6055 			 * It is not a big problem, but it looks confusing
6056 			 * and not so rare event. We still can lose it now,
6057 			 * if it spins in bh_lock_sock(), but it is really
6058 			 * marginal case.
6059 			 */
6060 			inet_csk_reset_keepalive_timer(sk, tmo);
6061 		} else {
6062 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6063 			goto discard;
6064 		}
6065 		break;
6066 	}
6067 
6068 	case TCP_CLOSING:
6069 		if (tp->snd_una == tp->write_seq) {
6070 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6071 			goto discard;
6072 		}
6073 		break;
6074 
6075 	case TCP_LAST_ACK:
6076 		if (tp->snd_una == tp->write_seq) {
6077 			tcp_update_metrics(sk);
6078 			tcp_done(sk);
6079 			goto discard;
6080 		}
6081 		break;
6082 	}
6083 
6084 	/* step 6: check the URG bit */
6085 	tcp_urg(sk, skb, th);
6086 
6087 	/* step 7: process the segment text */
6088 	switch (sk->sk_state) {
6089 	case TCP_CLOSE_WAIT:
6090 	case TCP_CLOSING:
6091 	case TCP_LAST_ACK:
6092 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6093 			break;
6094 	case TCP_FIN_WAIT1:
6095 	case TCP_FIN_WAIT2:
6096 		/* RFC 793 says to queue data in these states,
6097 		 * RFC 1122 says we MUST send a reset.
6098 		 * BSD 4.4 also does reset.
6099 		 */
6100 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6101 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6102 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6103 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6104 				tcp_reset(sk);
6105 				return 1;
6106 			}
6107 		}
6108 		/* Fall through */
6109 	case TCP_ESTABLISHED:
6110 		tcp_data_queue(sk, skb);
6111 		queued = 1;
6112 		break;
6113 	}
6114 
6115 	/* tcp_data could move socket to TIME-WAIT */
6116 	if (sk->sk_state != TCP_CLOSE) {
6117 		tcp_data_snd_check(sk);
6118 		tcp_ack_snd_check(sk);
6119 	}
6120 
6121 	if (!queued) {
6122 discard:
6123 		tcp_drop(sk, skb);
6124 	}
6125 	return 0;
6126 }
6127 EXPORT_SYMBOL(tcp_rcv_state_process);
6128 
6129 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6130 {
6131 	struct inet_request_sock *ireq = inet_rsk(req);
6132 
6133 	if (family == AF_INET)
6134 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6135 				    &ireq->ir_rmt_addr, port);
6136 #if IS_ENABLED(CONFIG_IPV6)
6137 	else if (family == AF_INET6)
6138 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6139 				    &ireq->ir_v6_rmt_addr, port);
6140 #endif
6141 }
6142 
6143 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6144  *
6145  * If we receive a SYN packet with these bits set, it means a
6146  * network is playing bad games with TOS bits. In order to
6147  * avoid possible false congestion notifications, we disable
6148  * TCP ECN negotiation.
6149  *
6150  * Exception: tcp_ca wants ECN. This is required for DCTCP
6151  * congestion control: Linux DCTCP asserts ECT on all packets,
6152  * including SYN, which is most optimal solution; however,
6153  * others, such as FreeBSD do not.
6154  */
6155 static void tcp_ecn_create_request(struct request_sock *req,
6156 				   const struct sk_buff *skb,
6157 				   const struct sock *listen_sk,
6158 				   const struct dst_entry *dst)
6159 {
6160 	const struct tcphdr *th = tcp_hdr(skb);
6161 	const struct net *net = sock_net(listen_sk);
6162 	bool th_ecn = th->ece && th->cwr;
6163 	bool ect, ecn_ok;
6164 	u32 ecn_ok_dst;
6165 
6166 	if (!th_ecn)
6167 		return;
6168 
6169 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6170 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6171 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6172 
6173 	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6174 	    (ecn_ok_dst & DST_FEATURE_ECN_CA))
6175 		inet_rsk(req)->ecn_ok = 1;
6176 }
6177 
6178 static void tcp_openreq_init(struct request_sock *req,
6179 			     const struct tcp_options_received *rx_opt,
6180 			     struct sk_buff *skb, const struct sock *sk)
6181 {
6182 	struct inet_request_sock *ireq = inet_rsk(req);
6183 
6184 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6185 	req->cookie_ts = 0;
6186 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6187 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6188 	skb_mstamp_get(&tcp_rsk(req)->snt_synack);
6189 	tcp_rsk(req)->last_oow_ack_time = 0;
6190 	req->mss = rx_opt->mss_clamp;
6191 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6192 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6193 	ireq->sack_ok = rx_opt->sack_ok;
6194 	ireq->snd_wscale = rx_opt->snd_wscale;
6195 	ireq->wscale_ok = rx_opt->wscale_ok;
6196 	ireq->acked = 0;
6197 	ireq->ecn_ok = 0;
6198 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6199 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6200 	ireq->ir_mark = inet_request_mark(sk, skb);
6201 }
6202 
6203 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6204 				      struct sock *sk_listener,
6205 				      bool attach_listener)
6206 {
6207 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6208 					       attach_listener);
6209 
6210 	if (req) {
6211 		struct inet_request_sock *ireq = inet_rsk(req);
6212 
6213 		kmemcheck_annotate_bitfield(ireq, flags);
6214 		ireq->opt = NULL;
6215 #if IS_ENABLED(CONFIG_IPV6)
6216 		ireq->pktopts = NULL;
6217 #endif
6218 		atomic64_set(&ireq->ir_cookie, 0);
6219 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6220 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6221 		ireq->ireq_family = sk_listener->sk_family;
6222 	}
6223 
6224 	return req;
6225 }
6226 EXPORT_SYMBOL(inet_reqsk_alloc);
6227 
6228 /*
6229  * Return true if a syncookie should be sent
6230  */
6231 static bool tcp_syn_flood_action(const struct sock *sk,
6232 				 const struct sk_buff *skb,
6233 				 const char *proto)
6234 {
6235 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6236 	const char *msg = "Dropping request";
6237 	bool want_cookie = false;
6238 	struct net *net = sock_net(sk);
6239 
6240 #ifdef CONFIG_SYN_COOKIES
6241 	if (net->ipv4.sysctl_tcp_syncookies) {
6242 		msg = "Sending cookies";
6243 		want_cookie = true;
6244 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6245 	} else
6246 #endif
6247 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6248 
6249 	if (!queue->synflood_warned &&
6250 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6251 	    xchg(&queue->synflood_warned, 1) == 0)
6252 		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6253 			proto, ntohs(tcp_hdr(skb)->dest), msg);
6254 
6255 	return want_cookie;
6256 }
6257 
6258 static void tcp_reqsk_record_syn(const struct sock *sk,
6259 				 struct request_sock *req,
6260 				 const struct sk_buff *skb)
6261 {
6262 	if (tcp_sk(sk)->save_syn) {
6263 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6264 		u32 *copy;
6265 
6266 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6267 		if (copy) {
6268 			copy[0] = len;
6269 			memcpy(&copy[1], skb_network_header(skb), len);
6270 			req->saved_syn = copy;
6271 		}
6272 	}
6273 }
6274 
6275 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6276 		     const struct tcp_request_sock_ops *af_ops,
6277 		     struct sock *sk, struct sk_buff *skb)
6278 {
6279 	struct tcp_fastopen_cookie foc = { .len = -1 };
6280 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6281 	struct tcp_options_received tmp_opt;
6282 	struct tcp_sock *tp = tcp_sk(sk);
6283 	struct net *net = sock_net(sk);
6284 	struct sock *fastopen_sk = NULL;
6285 	struct dst_entry *dst = NULL;
6286 	struct request_sock *req;
6287 	bool want_cookie = false;
6288 	struct flowi fl;
6289 
6290 	/* TW buckets are converted to open requests without
6291 	 * limitations, they conserve resources and peer is
6292 	 * evidently real one.
6293 	 */
6294 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6295 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6296 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6297 		if (!want_cookie)
6298 			goto drop;
6299 	}
6300 
6301 	if (sk_acceptq_is_full(sk)) {
6302 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6303 		goto drop;
6304 	}
6305 
6306 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6307 	if (!req)
6308 		goto drop;
6309 
6310 	tcp_rsk(req)->af_specific = af_ops;
6311 	tcp_rsk(req)->ts_off = 0;
6312 
6313 	tcp_clear_options(&tmp_opt);
6314 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6315 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6316 	tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6317 
6318 	if (want_cookie && !tmp_opt.saw_tstamp)
6319 		tcp_clear_options(&tmp_opt);
6320 
6321 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6322 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6323 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6324 
6325 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6326 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6327 
6328 	af_ops->init_req(req, sk, skb);
6329 
6330 	if (security_inet_conn_request(sk, skb, req))
6331 		goto drop_and_free;
6332 
6333 	if (isn && tmp_opt.tstamp_ok)
6334 		af_ops->init_seq(skb, &tcp_rsk(req)->ts_off);
6335 
6336 	if (!want_cookie && !isn) {
6337 		/* VJ's idea. We save last timestamp seen
6338 		 * from the destination in peer table, when entering
6339 		 * state TIME-WAIT, and check against it before
6340 		 * accepting new connection request.
6341 		 *
6342 		 * If "isn" is not zero, this request hit alive
6343 		 * timewait bucket, so that all the necessary checks
6344 		 * are made in the function processing timewait state.
6345 		 */
6346 		if (tcp_death_row.sysctl_tw_recycle) {
6347 			bool strict;
6348 
6349 			dst = af_ops->route_req(sk, &fl, req, &strict);
6350 
6351 			if (dst && strict &&
6352 			    !tcp_peer_is_proven(req, dst, true,
6353 						tmp_opt.saw_tstamp)) {
6354 				NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6355 				goto drop_and_release;
6356 			}
6357 		}
6358 		/* Kill the following clause, if you dislike this way. */
6359 		else if (!net->ipv4.sysctl_tcp_syncookies &&
6360 			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6361 			  (sysctl_max_syn_backlog >> 2)) &&
6362 			 !tcp_peer_is_proven(req, dst, false,
6363 					     tmp_opt.saw_tstamp)) {
6364 			/* Without syncookies last quarter of
6365 			 * backlog is filled with destinations,
6366 			 * proven to be alive.
6367 			 * It means that we continue to communicate
6368 			 * to destinations, already remembered
6369 			 * to the moment of synflood.
6370 			 */
6371 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6372 				    rsk_ops->family);
6373 			goto drop_and_release;
6374 		}
6375 
6376 		isn = af_ops->init_seq(skb, &tcp_rsk(req)->ts_off);
6377 	}
6378 	if (!dst) {
6379 		dst = af_ops->route_req(sk, &fl, req, NULL);
6380 		if (!dst)
6381 			goto drop_and_free;
6382 	}
6383 
6384 	tcp_ecn_create_request(req, skb, sk, dst);
6385 
6386 	if (want_cookie) {
6387 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6388 		tcp_rsk(req)->ts_off = 0;
6389 		req->cookie_ts = tmp_opt.tstamp_ok;
6390 		if (!tmp_opt.tstamp_ok)
6391 			inet_rsk(req)->ecn_ok = 0;
6392 	}
6393 
6394 	tcp_rsk(req)->snt_isn = isn;
6395 	tcp_rsk(req)->txhash = net_tx_rndhash();
6396 	tcp_openreq_init_rwin(req, sk, dst);
6397 	if (!want_cookie) {
6398 		tcp_reqsk_record_syn(sk, req, skb);
6399 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6400 	}
6401 	if (fastopen_sk) {
6402 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6403 				    &foc, TCP_SYNACK_FASTOPEN);
6404 		/* Add the child socket directly into the accept queue */
6405 		inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6406 		sk->sk_data_ready(sk);
6407 		bh_unlock_sock(fastopen_sk);
6408 		sock_put(fastopen_sk);
6409 	} else {
6410 		tcp_rsk(req)->tfo_listener = false;
6411 		if (!want_cookie)
6412 			inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6413 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6414 				    !want_cookie ? TCP_SYNACK_NORMAL :
6415 						   TCP_SYNACK_COOKIE);
6416 		if (want_cookie) {
6417 			reqsk_free(req);
6418 			return 0;
6419 		}
6420 	}
6421 	reqsk_put(req);
6422 	return 0;
6423 
6424 drop_and_release:
6425 	dst_release(dst);
6426 drop_and_free:
6427 	reqsk_free(req);
6428 drop:
6429 	tcp_listendrop(sk);
6430 	return 0;
6431 }
6432 EXPORT_SYMBOL(tcp_conn_request);
6433