xref: /openbmc/linux/net/ipv4/tcp_input.c (revision c21b37f6)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:	$Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche, <flla@stud.uni-sb.de>
15  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *		Matthew Dillon, <dillon@apollo.west.oic.com>
19  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *		Jorge Cwik, <jorge@laser.satlink.net>
21  */
22 
23 /*
24  * Changes:
25  *		Pedro Roque	:	Fast Retransmit/Recovery.
26  *					Two receive queues.
27  *					Retransmit queue handled by TCP.
28  *					Better retransmit timer handling.
29  *					New congestion avoidance.
30  *					Header prediction.
31  *					Variable renaming.
32  *
33  *		Eric		:	Fast Retransmit.
34  *		Randy Scott	:	MSS option defines.
35  *		Eric Schenk	:	Fixes to slow start algorithm.
36  *		Eric Schenk	:	Yet another double ACK bug.
37  *		Eric Schenk	:	Delayed ACK bug fixes.
38  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
39  *		David S. Miller	:	Don't allow zero congestion window.
40  *		Eric Schenk	:	Fix retransmitter so that it sends
41  *					next packet on ack of previous packet.
42  *		Andi Kleen	:	Moved open_request checking here
43  *					and process RSTs for open_requests.
44  *		Andi Kleen	:	Better prune_queue, and other fixes.
45  *		Andrey Savochkin:	Fix RTT measurements in the presence of
46  *					timestamps.
47  *		Andrey Savochkin:	Check sequence numbers correctly when
48  *					removing SACKs due to in sequence incoming
49  *					data segments.
50  *		Andi Kleen:		Make sure we never ack data there is not
51  *					enough room for. Also make this condition
52  *					a fatal error if it might still happen.
53  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
54  *					connections with MSS<min(MTU,ann. MSS)
55  *					work without delayed acks.
56  *		Andi Kleen:		Process packets with PSH set in the
57  *					fast path.
58  *		J Hadi Salim:		ECN support
59  *	 	Andrei Gurtov,
60  *		Pasi Sarolahti,
61  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
62  *					engine. Lots of bugs are found.
63  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
64  */
65 
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74 
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84 
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91 
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
94 
95 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
96 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
97 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
98 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
99 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
100 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
101 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
102 #define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
103 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
105 
106 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
107 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
108 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
109 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
110 
111 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
112 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
113 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
114 
115 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
116 
117 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
118 
119 /* Adapt the MSS value used to make delayed ack decision to the
120  * real world.
121  */
122 static void tcp_measure_rcv_mss(struct sock *sk,
123 				const struct sk_buff *skb)
124 {
125 	struct inet_connection_sock *icsk = inet_csk(sk);
126 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
127 	unsigned int len;
128 
129 	icsk->icsk_ack.last_seg_size = 0;
130 
131 	/* skb->len may jitter because of SACKs, even if peer
132 	 * sends good full-sized frames.
133 	 */
134 	len = skb_shinfo(skb)->gso_size ?: skb->len;
135 	if (len >= icsk->icsk_ack.rcv_mss) {
136 		icsk->icsk_ack.rcv_mss = len;
137 	} else {
138 		/* Otherwise, we make more careful check taking into account,
139 		 * that SACKs block is variable.
140 		 *
141 		 * "len" is invariant segment length, including TCP header.
142 		 */
143 		len += skb->data - skb_transport_header(skb);
144 		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
145 		    /* If PSH is not set, packet should be
146 		     * full sized, provided peer TCP is not badly broken.
147 		     * This observation (if it is correct 8)) allows
148 		     * to handle super-low mtu links fairly.
149 		     */
150 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
151 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
152 			/* Subtract also invariant (if peer is RFC compliant),
153 			 * tcp header plus fixed timestamp option length.
154 			 * Resulting "len" is MSS free of SACK jitter.
155 			 */
156 			len -= tcp_sk(sk)->tcp_header_len;
157 			icsk->icsk_ack.last_seg_size = len;
158 			if (len == lss) {
159 				icsk->icsk_ack.rcv_mss = len;
160 				return;
161 			}
162 		}
163 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
164 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
165 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
166 	}
167 }
168 
169 static void tcp_incr_quickack(struct sock *sk)
170 {
171 	struct inet_connection_sock *icsk = inet_csk(sk);
172 	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
173 
174 	if (quickacks==0)
175 		quickacks=2;
176 	if (quickacks > icsk->icsk_ack.quick)
177 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
178 }
179 
180 void tcp_enter_quickack_mode(struct sock *sk)
181 {
182 	struct inet_connection_sock *icsk = inet_csk(sk);
183 	tcp_incr_quickack(sk);
184 	icsk->icsk_ack.pingpong = 0;
185 	icsk->icsk_ack.ato = TCP_ATO_MIN;
186 }
187 
188 /* Send ACKs quickly, if "quick" count is not exhausted
189  * and the session is not interactive.
190  */
191 
192 static inline int tcp_in_quickack_mode(const struct sock *sk)
193 {
194 	const struct inet_connection_sock *icsk = inet_csk(sk);
195 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
196 }
197 
198 /* Buffer size and advertised window tuning.
199  *
200  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
201  */
202 
203 static void tcp_fixup_sndbuf(struct sock *sk)
204 {
205 	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
206 		     sizeof(struct sk_buff);
207 
208 	if (sk->sk_sndbuf < 3 * sndmem)
209 		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
210 }
211 
212 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
213  *
214  * All tcp_full_space() is split to two parts: "network" buffer, allocated
215  * forward and advertised in receiver window (tp->rcv_wnd) and
216  * "application buffer", required to isolate scheduling/application
217  * latencies from network.
218  * window_clamp is maximal advertised window. It can be less than
219  * tcp_full_space(), in this case tcp_full_space() - window_clamp
220  * is reserved for "application" buffer. The less window_clamp is
221  * the smoother our behaviour from viewpoint of network, but the lower
222  * throughput and the higher sensitivity of the connection to losses. 8)
223  *
224  * rcv_ssthresh is more strict window_clamp used at "slow start"
225  * phase to predict further behaviour of this connection.
226  * It is used for two goals:
227  * - to enforce header prediction at sender, even when application
228  *   requires some significant "application buffer". It is check #1.
229  * - to prevent pruning of receive queue because of misprediction
230  *   of receiver window. Check #2.
231  *
232  * The scheme does not work when sender sends good segments opening
233  * window and then starts to feed us spaghetti. But it should work
234  * in common situations. Otherwise, we have to rely on queue collapsing.
235  */
236 
237 /* Slow part of check#2. */
238 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
239 {
240 	struct tcp_sock *tp = tcp_sk(sk);
241 	/* Optimize this! */
242 	int truesize = tcp_win_from_space(skb->truesize)/2;
243 	int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
244 
245 	while (tp->rcv_ssthresh <= window) {
246 		if (truesize <= skb->len)
247 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
248 
249 		truesize >>= 1;
250 		window >>= 1;
251 	}
252 	return 0;
253 }
254 
255 static void tcp_grow_window(struct sock *sk,
256 			    struct sk_buff *skb)
257 {
258 	struct tcp_sock *tp = tcp_sk(sk);
259 
260 	/* Check #1 */
261 	if (tp->rcv_ssthresh < tp->window_clamp &&
262 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
263 	    !tcp_memory_pressure) {
264 		int incr;
265 
266 		/* Check #2. Increase window, if skb with such overhead
267 		 * will fit to rcvbuf in future.
268 		 */
269 		if (tcp_win_from_space(skb->truesize) <= skb->len)
270 			incr = 2*tp->advmss;
271 		else
272 			incr = __tcp_grow_window(sk, skb);
273 
274 		if (incr) {
275 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
276 			inet_csk(sk)->icsk_ack.quick |= 1;
277 		}
278 	}
279 }
280 
281 /* 3. Tuning rcvbuf, when connection enters established state. */
282 
283 static void tcp_fixup_rcvbuf(struct sock *sk)
284 {
285 	struct tcp_sock *tp = tcp_sk(sk);
286 	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
287 
288 	/* Try to select rcvbuf so that 4 mss-sized segments
289 	 * will fit to window and corresponding skbs will fit to our rcvbuf.
290 	 * (was 3; 4 is minimum to allow fast retransmit to work.)
291 	 */
292 	while (tcp_win_from_space(rcvmem) < tp->advmss)
293 		rcvmem += 128;
294 	if (sk->sk_rcvbuf < 4 * rcvmem)
295 		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
296 }
297 
298 /* 4. Try to fixup all. It is made immediately after connection enters
299  *    established state.
300  */
301 static void tcp_init_buffer_space(struct sock *sk)
302 {
303 	struct tcp_sock *tp = tcp_sk(sk);
304 	int maxwin;
305 
306 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
307 		tcp_fixup_rcvbuf(sk);
308 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
309 		tcp_fixup_sndbuf(sk);
310 
311 	tp->rcvq_space.space = tp->rcv_wnd;
312 
313 	maxwin = tcp_full_space(sk);
314 
315 	if (tp->window_clamp >= maxwin) {
316 		tp->window_clamp = maxwin;
317 
318 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
319 			tp->window_clamp = max(maxwin -
320 					       (maxwin >> sysctl_tcp_app_win),
321 					       4 * tp->advmss);
322 	}
323 
324 	/* Force reservation of one segment. */
325 	if (sysctl_tcp_app_win &&
326 	    tp->window_clamp > 2 * tp->advmss &&
327 	    tp->window_clamp + tp->advmss > maxwin)
328 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
329 
330 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
331 	tp->snd_cwnd_stamp = tcp_time_stamp;
332 }
333 
334 /* 5. Recalculate window clamp after socket hit its memory bounds. */
335 static void tcp_clamp_window(struct sock *sk)
336 {
337 	struct tcp_sock *tp = tcp_sk(sk);
338 	struct inet_connection_sock *icsk = inet_csk(sk);
339 
340 	icsk->icsk_ack.quick = 0;
341 
342 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
343 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
344 	    !tcp_memory_pressure &&
345 	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
346 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
347 				    sysctl_tcp_rmem[2]);
348 	}
349 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
350 		tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
351 }
352 
353 
354 /* Initialize RCV_MSS value.
355  * RCV_MSS is an our guess about MSS used by the peer.
356  * We haven't any direct information about the MSS.
357  * It's better to underestimate the RCV_MSS rather than overestimate.
358  * Overestimations make us ACKing less frequently than needed.
359  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
360  */
361 void tcp_initialize_rcv_mss(struct sock *sk)
362 {
363 	struct tcp_sock *tp = tcp_sk(sk);
364 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
365 
366 	hint = min(hint, tp->rcv_wnd/2);
367 	hint = min(hint, TCP_MIN_RCVMSS);
368 	hint = max(hint, TCP_MIN_MSS);
369 
370 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
371 }
372 
373 /* Receiver "autotuning" code.
374  *
375  * The algorithm for RTT estimation w/o timestamps is based on
376  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
377  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
378  *
379  * More detail on this code can be found at
380  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
381  * though this reference is out of date.  A new paper
382  * is pending.
383  */
384 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
385 {
386 	u32 new_sample = tp->rcv_rtt_est.rtt;
387 	long m = sample;
388 
389 	if (m == 0)
390 		m = 1;
391 
392 	if (new_sample != 0) {
393 		/* If we sample in larger samples in the non-timestamp
394 		 * case, we could grossly overestimate the RTT especially
395 		 * with chatty applications or bulk transfer apps which
396 		 * are stalled on filesystem I/O.
397 		 *
398 		 * Also, since we are only going for a minimum in the
399 		 * non-timestamp case, we do not smooth things out
400 		 * else with timestamps disabled convergence takes too
401 		 * long.
402 		 */
403 		if (!win_dep) {
404 			m -= (new_sample >> 3);
405 			new_sample += m;
406 		} else if (m < new_sample)
407 			new_sample = m << 3;
408 	} else {
409 		/* No previous measure. */
410 		new_sample = m << 3;
411 	}
412 
413 	if (tp->rcv_rtt_est.rtt != new_sample)
414 		tp->rcv_rtt_est.rtt = new_sample;
415 }
416 
417 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
418 {
419 	if (tp->rcv_rtt_est.time == 0)
420 		goto new_measure;
421 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
422 		return;
423 	tcp_rcv_rtt_update(tp,
424 			   jiffies - tp->rcv_rtt_est.time,
425 			   1);
426 
427 new_measure:
428 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
429 	tp->rcv_rtt_est.time = tcp_time_stamp;
430 }
431 
432 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
433 {
434 	struct tcp_sock *tp = tcp_sk(sk);
435 	if (tp->rx_opt.rcv_tsecr &&
436 	    (TCP_SKB_CB(skb)->end_seq -
437 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
438 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
439 }
440 
441 /*
442  * This function should be called every time data is copied to user space.
443  * It calculates the appropriate TCP receive buffer space.
444  */
445 void tcp_rcv_space_adjust(struct sock *sk)
446 {
447 	struct tcp_sock *tp = tcp_sk(sk);
448 	int time;
449 	int space;
450 
451 	if (tp->rcvq_space.time == 0)
452 		goto new_measure;
453 
454 	time = tcp_time_stamp - tp->rcvq_space.time;
455 	if (time < (tp->rcv_rtt_est.rtt >> 3) ||
456 	    tp->rcv_rtt_est.rtt == 0)
457 		return;
458 
459 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
460 
461 	space = max(tp->rcvq_space.space, space);
462 
463 	if (tp->rcvq_space.space != space) {
464 		int rcvmem;
465 
466 		tp->rcvq_space.space = space;
467 
468 		if (sysctl_tcp_moderate_rcvbuf &&
469 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
470 			int new_clamp = space;
471 
472 			/* Receive space grows, normalize in order to
473 			 * take into account packet headers and sk_buff
474 			 * structure overhead.
475 			 */
476 			space /= tp->advmss;
477 			if (!space)
478 				space = 1;
479 			rcvmem = (tp->advmss + MAX_TCP_HEADER +
480 				  16 + sizeof(struct sk_buff));
481 			while (tcp_win_from_space(rcvmem) < tp->advmss)
482 				rcvmem += 128;
483 			space *= rcvmem;
484 			space = min(space, sysctl_tcp_rmem[2]);
485 			if (space > sk->sk_rcvbuf) {
486 				sk->sk_rcvbuf = space;
487 
488 				/* Make the window clamp follow along.  */
489 				tp->window_clamp = new_clamp;
490 			}
491 		}
492 	}
493 
494 new_measure:
495 	tp->rcvq_space.seq = tp->copied_seq;
496 	tp->rcvq_space.time = tcp_time_stamp;
497 }
498 
499 /* There is something which you must keep in mind when you analyze the
500  * behavior of the tp->ato delayed ack timeout interval.  When a
501  * connection starts up, we want to ack as quickly as possible.  The
502  * problem is that "good" TCP's do slow start at the beginning of data
503  * transmission.  The means that until we send the first few ACK's the
504  * sender will sit on his end and only queue most of his data, because
505  * he can only send snd_cwnd unacked packets at any given time.  For
506  * each ACK we send, he increments snd_cwnd and transmits more of his
507  * queue.  -DaveM
508  */
509 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
510 {
511 	struct tcp_sock *tp = tcp_sk(sk);
512 	struct inet_connection_sock *icsk = inet_csk(sk);
513 	u32 now;
514 
515 	inet_csk_schedule_ack(sk);
516 
517 	tcp_measure_rcv_mss(sk, skb);
518 
519 	tcp_rcv_rtt_measure(tp);
520 
521 	now = tcp_time_stamp;
522 
523 	if (!icsk->icsk_ack.ato) {
524 		/* The _first_ data packet received, initialize
525 		 * delayed ACK engine.
526 		 */
527 		tcp_incr_quickack(sk);
528 		icsk->icsk_ack.ato = TCP_ATO_MIN;
529 	} else {
530 		int m = now - icsk->icsk_ack.lrcvtime;
531 
532 		if (m <= TCP_ATO_MIN/2) {
533 			/* The fastest case is the first. */
534 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
535 		} else if (m < icsk->icsk_ack.ato) {
536 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
537 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
538 				icsk->icsk_ack.ato = icsk->icsk_rto;
539 		} else if (m > icsk->icsk_rto) {
540 			/* Too long gap. Apparently sender failed to
541 			 * restart window, so that we send ACKs quickly.
542 			 */
543 			tcp_incr_quickack(sk);
544 			sk_stream_mem_reclaim(sk);
545 		}
546 	}
547 	icsk->icsk_ack.lrcvtime = now;
548 
549 	TCP_ECN_check_ce(tp, skb);
550 
551 	if (skb->len >= 128)
552 		tcp_grow_window(sk, skb);
553 }
554 
555 /* Called to compute a smoothed rtt estimate. The data fed to this
556  * routine either comes from timestamps, or from segments that were
557  * known _not_ to have been retransmitted [see Karn/Partridge
558  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
559  * piece by Van Jacobson.
560  * NOTE: the next three routines used to be one big routine.
561  * To save cycles in the RFC 1323 implementation it was better to break
562  * it up into three procedures. -- erics
563  */
564 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
565 {
566 	struct tcp_sock *tp = tcp_sk(sk);
567 	long m = mrtt; /* RTT */
568 
569 	/*	The following amusing code comes from Jacobson's
570 	 *	article in SIGCOMM '88.  Note that rtt and mdev
571 	 *	are scaled versions of rtt and mean deviation.
572 	 *	This is designed to be as fast as possible
573 	 *	m stands for "measurement".
574 	 *
575 	 *	On a 1990 paper the rto value is changed to:
576 	 *	RTO = rtt + 4 * mdev
577 	 *
578 	 * Funny. This algorithm seems to be very broken.
579 	 * These formulae increase RTO, when it should be decreased, increase
580 	 * too slowly, when it should be increased quickly, decrease too quickly
581 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
582 	 * does not matter how to _calculate_ it. Seems, it was trap
583 	 * that VJ failed to avoid. 8)
584 	 */
585 	if (m == 0)
586 		m = 1;
587 	if (tp->srtt != 0) {
588 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
589 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
590 		if (m < 0) {
591 			m = -m;		/* m is now abs(error) */
592 			m -= (tp->mdev >> 2);   /* similar update on mdev */
593 			/* This is similar to one of Eifel findings.
594 			 * Eifel blocks mdev updates when rtt decreases.
595 			 * This solution is a bit different: we use finer gain
596 			 * for mdev in this case (alpha*beta).
597 			 * Like Eifel it also prevents growth of rto,
598 			 * but also it limits too fast rto decreases,
599 			 * happening in pure Eifel.
600 			 */
601 			if (m > 0)
602 				m >>= 3;
603 		} else {
604 			m -= (tp->mdev >> 2);   /* similar update on mdev */
605 		}
606 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
607 		if (tp->mdev > tp->mdev_max) {
608 			tp->mdev_max = tp->mdev;
609 			if (tp->mdev_max > tp->rttvar)
610 				tp->rttvar = tp->mdev_max;
611 		}
612 		if (after(tp->snd_una, tp->rtt_seq)) {
613 			if (tp->mdev_max < tp->rttvar)
614 				tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
615 			tp->rtt_seq = tp->snd_nxt;
616 			tp->mdev_max = TCP_RTO_MIN;
617 		}
618 	} else {
619 		/* no previous measure. */
620 		tp->srtt = m<<3;	/* take the measured time to be rtt */
621 		tp->mdev = m<<1;	/* make sure rto = 3*rtt */
622 		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
623 		tp->rtt_seq = tp->snd_nxt;
624 	}
625 }
626 
627 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
628  * routine referred to above.
629  */
630 static inline void tcp_set_rto(struct sock *sk)
631 {
632 	const struct tcp_sock *tp = tcp_sk(sk);
633 	/* Old crap is replaced with new one. 8)
634 	 *
635 	 * More seriously:
636 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
637 	 *    It cannot be less due to utterly erratic ACK generation made
638 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
639 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
640 	 *    is invisible. Actually, Linux-2.4 also generates erratic
641 	 *    ACKs in some circumstances.
642 	 */
643 	inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
644 
645 	/* 2. Fixups made earlier cannot be right.
646 	 *    If we do not estimate RTO correctly without them,
647 	 *    all the algo is pure shit and should be replaced
648 	 *    with correct one. It is exactly, which we pretend to do.
649 	 */
650 }
651 
652 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
653  * guarantees that rto is higher.
654  */
655 static inline void tcp_bound_rto(struct sock *sk)
656 {
657 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
658 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
659 }
660 
661 /* Save metrics learned by this TCP session.
662    This function is called only, when TCP finishes successfully
663    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
664  */
665 void tcp_update_metrics(struct sock *sk)
666 {
667 	struct tcp_sock *tp = tcp_sk(sk);
668 	struct dst_entry *dst = __sk_dst_get(sk);
669 
670 	if (sysctl_tcp_nometrics_save)
671 		return;
672 
673 	dst_confirm(dst);
674 
675 	if (dst && (dst->flags&DST_HOST)) {
676 		const struct inet_connection_sock *icsk = inet_csk(sk);
677 		int m;
678 
679 		if (icsk->icsk_backoff || !tp->srtt) {
680 			/* This session failed to estimate rtt. Why?
681 			 * Probably, no packets returned in time.
682 			 * Reset our results.
683 			 */
684 			if (!(dst_metric_locked(dst, RTAX_RTT)))
685 				dst->metrics[RTAX_RTT-1] = 0;
686 			return;
687 		}
688 
689 		m = dst_metric(dst, RTAX_RTT) - tp->srtt;
690 
691 		/* If newly calculated rtt larger than stored one,
692 		 * store new one. Otherwise, use EWMA. Remember,
693 		 * rtt overestimation is always better than underestimation.
694 		 */
695 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
696 			if (m <= 0)
697 				dst->metrics[RTAX_RTT-1] = tp->srtt;
698 			else
699 				dst->metrics[RTAX_RTT-1] -= (m>>3);
700 		}
701 
702 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
703 			if (m < 0)
704 				m = -m;
705 
706 			/* Scale deviation to rttvar fixed point */
707 			m >>= 1;
708 			if (m < tp->mdev)
709 				m = tp->mdev;
710 
711 			if (m >= dst_metric(dst, RTAX_RTTVAR))
712 				dst->metrics[RTAX_RTTVAR-1] = m;
713 			else
714 				dst->metrics[RTAX_RTTVAR-1] -=
715 					(dst->metrics[RTAX_RTTVAR-1] - m)>>2;
716 		}
717 
718 		if (tp->snd_ssthresh >= 0xFFFF) {
719 			/* Slow start still did not finish. */
720 			if (dst_metric(dst, RTAX_SSTHRESH) &&
721 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
722 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
723 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
724 			if (!dst_metric_locked(dst, RTAX_CWND) &&
725 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
726 				dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
727 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
728 			   icsk->icsk_ca_state == TCP_CA_Open) {
729 			/* Cong. avoidance phase, cwnd is reliable. */
730 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
731 				dst->metrics[RTAX_SSTHRESH-1] =
732 					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
733 			if (!dst_metric_locked(dst, RTAX_CWND))
734 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
735 		} else {
736 			/* Else slow start did not finish, cwnd is non-sense,
737 			   ssthresh may be also invalid.
738 			 */
739 			if (!dst_metric_locked(dst, RTAX_CWND))
740 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
741 			if (dst->metrics[RTAX_SSTHRESH-1] &&
742 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
743 			    tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
744 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
745 		}
746 
747 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
748 			if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
749 			    tp->reordering != sysctl_tcp_reordering)
750 				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
751 		}
752 	}
753 }
754 
755 /* Numbers are taken from RFC2414.  */
756 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
757 {
758 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
759 
760 	if (!cwnd) {
761 		if (tp->mss_cache > 1460)
762 			cwnd = 2;
763 		else
764 			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
765 	}
766 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
767 }
768 
769 /* Set slow start threshold and cwnd not falling to slow start */
770 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
771 {
772 	struct tcp_sock *tp = tcp_sk(sk);
773 	const struct inet_connection_sock *icsk = inet_csk(sk);
774 
775 	tp->prior_ssthresh = 0;
776 	tp->bytes_acked = 0;
777 	if (icsk->icsk_ca_state < TCP_CA_CWR) {
778 		tp->undo_marker = 0;
779 		if (set_ssthresh)
780 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
781 		tp->snd_cwnd = min(tp->snd_cwnd,
782 				   tcp_packets_in_flight(tp) + 1U);
783 		tp->snd_cwnd_cnt = 0;
784 		tp->high_seq = tp->snd_nxt;
785 		tp->snd_cwnd_stamp = tcp_time_stamp;
786 		TCP_ECN_queue_cwr(tp);
787 
788 		tcp_set_ca_state(sk, TCP_CA_CWR);
789 	}
790 }
791 
792 /* Initialize metrics on socket. */
793 
794 static void tcp_init_metrics(struct sock *sk)
795 {
796 	struct tcp_sock *tp = tcp_sk(sk);
797 	struct dst_entry *dst = __sk_dst_get(sk);
798 
799 	if (dst == NULL)
800 		goto reset;
801 
802 	dst_confirm(dst);
803 
804 	if (dst_metric_locked(dst, RTAX_CWND))
805 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
806 	if (dst_metric(dst, RTAX_SSTHRESH)) {
807 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
808 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
809 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
810 	}
811 	if (dst_metric(dst, RTAX_REORDERING) &&
812 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
813 		tp->rx_opt.sack_ok &= ~2;
814 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
815 	}
816 
817 	if (dst_metric(dst, RTAX_RTT) == 0)
818 		goto reset;
819 
820 	if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
821 		goto reset;
822 
823 	/* Initial rtt is determined from SYN,SYN-ACK.
824 	 * The segment is small and rtt may appear much
825 	 * less than real one. Use per-dst memory
826 	 * to make it more realistic.
827 	 *
828 	 * A bit of theory. RTT is time passed after "normal" sized packet
829 	 * is sent until it is ACKed. In normal circumstances sending small
830 	 * packets force peer to delay ACKs and calculation is correct too.
831 	 * The algorithm is adaptive and, provided we follow specs, it
832 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
833 	 * tricks sort of "quick acks" for time long enough to decrease RTT
834 	 * to low value, and then abruptly stops to do it and starts to delay
835 	 * ACKs, wait for troubles.
836 	 */
837 	if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
838 		tp->srtt = dst_metric(dst, RTAX_RTT);
839 		tp->rtt_seq = tp->snd_nxt;
840 	}
841 	if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
842 		tp->mdev = dst_metric(dst, RTAX_RTTVAR);
843 		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
844 	}
845 	tcp_set_rto(sk);
846 	tcp_bound_rto(sk);
847 	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
848 		goto reset;
849 	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
850 	tp->snd_cwnd_stamp = tcp_time_stamp;
851 	return;
852 
853 reset:
854 	/* Play conservative. If timestamps are not
855 	 * supported, TCP will fail to recalculate correct
856 	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
857 	 */
858 	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
859 		tp->srtt = 0;
860 		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
861 		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
862 	}
863 }
864 
865 static void tcp_update_reordering(struct sock *sk, const int metric,
866 				  const int ts)
867 {
868 	struct tcp_sock *tp = tcp_sk(sk);
869 	if (metric > tp->reordering) {
870 		tp->reordering = min(TCP_MAX_REORDERING, metric);
871 
872 		/* This exciting event is worth to be remembered. 8) */
873 		if (ts)
874 			NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
875 		else if (IsReno(tp))
876 			NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
877 		else if (IsFack(tp))
878 			NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
879 		else
880 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
881 #if FASTRETRANS_DEBUG > 1
882 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
883 		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
884 		       tp->reordering,
885 		       tp->fackets_out,
886 		       tp->sacked_out,
887 		       tp->undo_marker ? tp->undo_retrans : 0);
888 #endif
889 		/* Disable FACK yet. */
890 		tp->rx_opt.sack_ok &= ~2;
891 	}
892 }
893 
894 /* This procedure tags the retransmission queue when SACKs arrive.
895  *
896  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
897  * Packets in queue with these bits set are counted in variables
898  * sacked_out, retrans_out and lost_out, correspondingly.
899  *
900  * Valid combinations are:
901  * Tag  InFlight	Description
902  * 0	1		- orig segment is in flight.
903  * S	0		- nothing flies, orig reached receiver.
904  * L	0		- nothing flies, orig lost by net.
905  * R	2		- both orig and retransmit are in flight.
906  * L|R	1		- orig is lost, retransmit is in flight.
907  * S|R  1		- orig reached receiver, retrans is still in flight.
908  * (L|S|R is logically valid, it could occur when L|R is sacked,
909  *  but it is equivalent to plain S and code short-curcuits it to S.
910  *  L|S is logically invalid, it would mean -1 packet in flight 8))
911  *
912  * These 6 states form finite state machine, controlled by the following events:
913  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
914  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
915  * 3. Loss detection event of one of three flavors:
916  *	A. Scoreboard estimator decided the packet is lost.
917  *	   A'. Reno "three dupacks" marks head of queue lost.
918  *	   A''. Its FACK modfication, head until snd.fack is lost.
919  *	B. SACK arrives sacking data transmitted after never retransmitted
920  *	   hole was sent out.
921  *	C. SACK arrives sacking SND.NXT at the moment, when the
922  *	   segment was retransmitted.
923  * 4. D-SACK added new rule: D-SACK changes any tag to S.
924  *
925  * It is pleasant to note, that state diagram turns out to be commutative,
926  * so that we are allowed not to be bothered by order of our actions,
927  * when multiple events arrive simultaneously. (see the function below).
928  *
929  * Reordering detection.
930  * --------------------
931  * Reordering metric is maximal distance, which a packet can be displaced
932  * in packet stream. With SACKs we can estimate it:
933  *
934  * 1. SACK fills old hole and the corresponding segment was not
935  *    ever retransmitted -> reordering. Alas, we cannot use it
936  *    when segment was retransmitted.
937  * 2. The last flaw is solved with D-SACK. D-SACK arrives
938  *    for retransmitted and already SACKed segment -> reordering..
939  * Both of these heuristics are not used in Loss state, when we cannot
940  * account for retransmits accurately.
941  */
942 static int
943 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
944 {
945 	const struct inet_connection_sock *icsk = inet_csk(sk);
946 	struct tcp_sock *tp = tcp_sk(sk);
947 	unsigned char *ptr = (skb_transport_header(ack_skb) +
948 			      TCP_SKB_CB(ack_skb)->sacked);
949 	struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
950 	struct sk_buff *cached_skb;
951 	int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
952 	int reord = tp->packets_out;
953 	int prior_fackets;
954 	u32 lost_retrans = 0;
955 	int flag = 0;
956 	int found_dup_sack = 0;
957 	int cached_fack_count;
958 	int i;
959 	int first_sack_index;
960 
961 	if (!tp->sacked_out)
962 		tp->fackets_out = 0;
963 	prior_fackets = tp->fackets_out;
964 
965 	/* Check for D-SACK. */
966 	if (before(ntohl(sp[0].start_seq), TCP_SKB_CB(ack_skb)->ack_seq)) {
967 		found_dup_sack = 1;
968 		tp->rx_opt.sack_ok |= 4;
969 		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
970 	} else if (num_sacks > 1 &&
971 			!after(ntohl(sp[0].end_seq), ntohl(sp[1].end_seq)) &&
972 			!before(ntohl(sp[0].start_seq), ntohl(sp[1].start_seq))) {
973 		found_dup_sack = 1;
974 		tp->rx_opt.sack_ok |= 4;
975 		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
976 	}
977 
978 	/* D-SACK for already forgotten data...
979 	 * Do dumb counting. */
980 	if (found_dup_sack &&
981 			!after(ntohl(sp[0].end_seq), prior_snd_una) &&
982 			after(ntohl(sp[0].end_seq), tp->undo_marker))
983 		tp->undo_retrans--;
984 
985 	/* Eliminate too old ACKs, but take into
986 	 * account more or less fresh ones, they can
987 	 * contain valid SACK info.
988 	 */
989 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
990 		return 0;
991 
992 	/* SACK fastpath:
993 	 * if the only SACK change is the increase of the end_seq of
994 	 * the first block then only apply that SACK block
995 	 * and use retrans queue hinting otherwise slowpath */
996 	flag = 1;
997 	for (i = 0; i < num_sacks; i++) {
998 		__be32 start_seq = sp[i].start_seq;
999 		__be32 end_seq = sp[i].end_seq;
1000 
1001 		if (i == 0) {
1002 			if (tp->recv_sack_cache[i].start_seq != start_seq)
1003 				flag = 0;
1004 		} else {
1005 			if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
1006 			    (tp->recv_sack_cache[i].end_seq != end_seq))
1007 				flag = 0;
1008 		}
1009 		tp->recv_sack_cache[i].start_seq = start_seq;
1010 		tp->recv_sack_cache[i].end_seq = end_seq;
1011 	}
1012 	/* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1013 	for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1014 		tp->recv_sack_cache[i].start_seq = 0;
1015 		tp->recv_sack_cache[i].end_seq = 0;
1016 	}
1017 
1018 	first_sack_index = 0;
1019 	if (flag)
1020 		num_sacks = 1;
1021 	else {
1022 		int j;
1023 		tp->fastpath_skb_hint = NULL;
1024 
1025 		/* order SACK blocks to allow in order walk of the retrans queue */
1026 		for (i = num_sacks-1; i > 0; i--) {
1027 			for (j = 0; j < i; j++){
1028 				if (after(ntohl(sp[j].start_seq),
1029 					  ntohl(sp[j+1].start_seq))){
1030 					struct tcp_sack_block_wire tmp;
1031 
1032 					tmp = sp[j];
1033 					sp[j] = sp[j+1];
1034 					sp[j+1] = tmp;
1035 
1036 					/* Track where the first SACK block goes to */
1037 					if (j == first_sack_index)
1038 						first_sack_index = j+1;
1039 				}
1040 
1041 			}
1042 		}
1043 	}
1044 
1045 	/* clear flag as used for different purpose in following code */
1046 	flag = 0;
1047 
1048 	/* Use SACK fastpath hint if valid */
1049 	cached_skb = tp->fastpath_skb_hint;
1050 	cached_fack_count = tp->fastpath_cnt_hint;
1051 	if (!cached_skb) {
1052 		cached_skb = tcp_write_queue_head(sk);
1053 		cached_fack_count = 0;
1054 	}
1055 
1056 	for (i=0; i<num_sacks; i++, sp++) {
1057 		struct sk_buff *skb;
1058 		__u32 start_seq = ntohl(sp->start_seq);
1059 		__u32 end_seq = ntohl(sp->end_seq);
1060 		int fack_count;
1061 		int dup_sack = (found_dup_sack && (i == first_sack_index));
1062 
1063 		skb = cached_skb;
1064 		fack_count = cached_fack_count;
1065 
1066 		/* Event "B" in the comment above. */
1067 		if (after(end_seq, tp->high_seq))
1068 			flag |= FLAG_DATA_LOST;
1069 
1070 		tcp_for_write_queue_from(skb, sk) {
1071 			int in_sack, pcount;
1072 			u8 sacked;
1073 
1074 			if (skb == tcp_send_head(sk))
1075 				break;
1076 
1077 			cached_skb = skb;
1078 			cached_fack_count = fack_count;
1079 			if (i == first_sack_index) {
1080 				tp->fastpath_skb_hint = skb;
1081 				tp->fastpath_cnt_hint = fack_count;
1082 			}
1083 
1084 			/* The retransmission queue is always in order, so
1085 			 * we can short-circuit the walk early.
1086 			 */
1087 			if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1088 				break;
1089 
1090 			in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1091 				!before(end_seq, TCP_SKB_CB(skb)->end_seq);
1092 
1093 			pcount = tcp_skb_pcount(skb);
1094 
1095 			if (pcount > 1 && !in_sack &&
1096 			    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1097 				unsigned int pkt_len;
1098 
1099 				in_sack = !after(start_seq,
1100 						 TCP_SKB_CB(skb)->seq);
1101 
1102 				if (!in_sack)
1103 					pkt_len = (start_seq -
1104 						   TCP_SKB_CB(skb)->seq);
1105 				else
1106 					pkt_len = (end_seq -
1107 						   TCP_SKB_CB(skb)->seq);
1108 				if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
1109 					break;
1110 				pcount = tcp_skb_pcount(skb);
1111 			}
1112 
1113 			fack_count += pcount;
1114 
1115 			sacked = TCP_SKB_CB(skb)->sacked;
1116 
1117 			/* Account D-SACK for retransmitted packet. */
1118 			if ((dup_sack && in_sack) &&
1119 			    (sacked & TCPCB_RETRANS) &&
1120 			    after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1121 				tp->undo_retrans--;
1122 
1123 			/* The frame is ACKed. */
1124 			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1125 				if (sacked&TCPCB_RETRANS) {
1126 					if ((dup_sack && in_sack) &&
1127 					    (sacked&TCPCB_SACKED_ACKED))
1128 						reord = min(fack_count, reord);
1129 				} else {
1130 					/* If it was in a hole, we detected reordering. */
1131 					if (fack_count < prior_fackets &&
1132 					    !(sacked&TCPCB_SACKED_ACKED))
1133 						reord = min(fack_count, reord);
1134 				}
1135 
1136 				/* Nothing to do; acked frame is about to be dropped. */
1137 				continue;
1138 			}
1139 
1140 			if ((sacked&TCPCB_SACKED_RETRANS) &&
1141 			    after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1142 			    (!lost_retrans || after(end_seq, lost_retrans)))
1143 				lost_retrans = end_seq;
1144 
1145 			if (!in_sack)
1146 				continue;
1147 
1148 			if (!(sacked&TCPCB_SACKED_ACKED)) {
1149 				if (sacked & TCPCB_SACKED_RETRANS) {
1150 					/* If the segment is not tagged as lost,
1151 					 * we do not clear RETRANS, believing
1152 					 * that retransmission is still in flight.
1153 					 */
1154 					if (sacked & TCPCB_LOST) {
1155 						TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1156 						tp->lost_out -= tcp_skb_pcount(skb);
1157 						tp->retrans_out -= tcp_skb_pcount(skb);
1158 
1159 						/* clear lost hint */
1160 						tp->retransmit_skb_hint = NULL;
1161 					}
1162 				} else {
1163 					/* New sack for not retransmitted frame,
1164 					 * which was in hole. It is reordering.
1165 					 */
1166 					if (!(sacked & TCPCB_RETRANS) &&
1167 					    fack_count < prior_fackets)
1168 						reord = min(fack_count, reord);
1169 
1170 					if (sacked & TCPCB_LOST) {
1171 						TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1172 						tp->lost_out -= tcp_skb_pcount(skb);
1173 
1174 						/* clear lost hint */
1175 						tp->retransmit_skb_hint = NULL;
1176 					}
1177 					/* SACK enhanced F-RTO detection.
1178 					 * Set flag if and only if non-rexmitted
1179 					 * segments below frto_highmark are
1180 					 * SACKed (RFC4138; Appendix B).
1181 					 * Clearing correct due to in-order walk
1182 					 */
1183 					if (after(end_seq, tp->frto_highmark)) {
1184 						flag &= ~FLAG_ONLY_ORIG_SACKED;
1185 					} else {
1186 						if (!(sacked & TCPCB_RETRANS))
1187 							flag |= FLAG_ONLY_ORIG_SACKED;
1188 					}
1189 				}
1190 
1191 				TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1192 				flag |= FLAG_DATA_SACKED;
1193 				tp->sacked_out += tcp_skb_pcount(skb);
1194 
1195 				if (fack_count > tp->fackets_out)
1196 					tp->fackets_out = fack_count;
1197 			} else {
1198 				if (dup_sack && (sacked&TCPCB_RETRANS))
1199 					reord = min(fack_count, reord);
1200 			}
1201 
1202 			/* D-SACK. We can detect redundant retransmission
1203 			 * in S|R and plain R frames and clear it.
1204 			 * undo_retrans is decreased above, L|R frames
1205 			 * are accounted above as well.
1206 			 */
1207 			if (dup_sack &&
1208 			    (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1209 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1210 				tp->retrans_out -= tcp_skb_pcount(skb);
1211 				tp->retransmit_skb_hint = NULL;
1212 			}
1213 		}
1214 	}
1215 
1216 	/* Check for lost retransmit. This superb idea is
1217 	 * borrowed from "ratehalving". Event "C".
1218 	 * Later note: FACK people cheated me again 8),
1219 	 * we have to account for reordering! Ugly,
1220 	 * but should help.
1221 	 */
1222 	if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1223 		struct sk_buff *skb;
1224 
1225 		tcp_for_write_queue(skb, sk) {
1226 			if (skb == tcp_send_head(sk))
1227 				break;
1228 			if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1229 				break;
1230 			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1231 				continue;
1232 			if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1233 			    after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1234 			    (IsFack(tp) ||
1235 			     !before(lost_retrans,
1236 				     TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1237 				     tp->mss_cache))) {
1238 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1239 				tp->retrans_out -= tcp_skb_pcount(skb);
1240 
1241 				/* clear lost hint */
1242 				tp->retransmit_skb_hint = NULL;
1243 
1244 				if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1245 					tp->lost_out += tcp_skb_pcount(skb);
1246 					TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1247 					flag |= FLAG_DATA_SACKED;
1248 					NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1249 				}
1250 			}
1251 		}
1252 	}
1253 
1254 	tp->left_out = tp->sacked_out + tp->lost_out;
1255 
1256 	if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
1257 	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1258 		tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1259 
1260 #if FASTRETRANS_DEBUG > 0
1261 	BUG_TRAP((int)tp->sacked_out >= 0);
1262 	BUG_TRAP((int)tp->lost_out >= 0);
1263 	BUG_TRAP((int)tp->retrans_out >= 0);
1264 	BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1265 #endif
1266 	return flag;
1267 }
1268 
1269 /* F-RTO can only be used if TCP has never retransmitted anything other than
1270  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1271  */
1272 int tcp_use_frto(struct sock *sk)
1273 {
1274 	const struct tcp_sock *tp = tcp_sk(sk);
1275 	struct sk_buff *skb;
1276 
1277 	if (!sysctl_tcp_frto)
1278 		return 0;
1279 
1280 	if (IsSackFrto())
1281 		return 1;
1282 
1283 	/* Avoid expensive walking of rexmit queue if possible */
1284 	if (tp->retrans_out > 1)
1285 		return 0;
1286 
1287 	skb = tcp_write_queue_head(sk);
1288 	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
1289 	tcp_for_write_queue_from(skb, sk) {
1290 		if (skb == tcp_send_head(sk))
1291 			break;
1292 		if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1293 			return 0;
1294 		/* Short-circuit when first non-SACKed skb has been checked */
1295 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1296 			break;
1297 	}
1298 	return 1;
1299 }
1300 
1301 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1302  * recovery a bit and use heuristics in tcp_process_frto() to detect if
1303  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1304  * keep retrans_out counting accurate (with SACK F-RTO, other than head
1305  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1306  * bits are handled if the Loss state is really to be entered (in
1307  * tcp_enter_frto_loss).
1308  *
1309  * Do like tcp_enter_loss() would; when RTO expires the second time it
1310  * does:
1311  *  "Reduce ssthresh if it has not yet been made inside this window."
1312  */
1313 void tcp_enter_frto(struct sock *sk)
1314 {
1315 	const struct inet_connection_sock *icsk = inet_csk(sk);
1316 	struct tcp_sock *tp = tcp_sk(sk);
1317 	struct sk_buff *skb;
1318 
1319 	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1320 	    tp->snd_una == tp->high_seq ||
1321 	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1322 	     !icsk->icsk_retransmits)) {
1323 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1324 		/* Our state is too optimistic in ssthresh() call because cwnd
1325 		 * is not reduced until tcp_enter_frto_loss() when previous FRTO
1326 		 * recovery has not yet completed. Pattern would be this: RTO,
1327 		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1328 		 * up here twice).
1329 		 * RFC4138 should be more specific on what to do, even though
1330 		 * RTO is quite unlikely to occur after the first Cumulative ACK
1331 		 * due to back-off and complexity of triggering events ...
1332 		 */
1333 		if (tp->frto_counter) {
1334 			u32 stored_cwnd;
1335 			stored_cwnd = tp->snd_cwnd;
1336 			tp->snd_cwnd = 2;
1337 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1338 			tp->snd_cwnd = stored_cwnd;
1339 		} else {
1340 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1341 		}
1342 		/* ... in theory, cong.control module could do "any tricks" in
1343 		 * ssthresh(), which means that ca_state, lost bits and lost_out
1344 		 * counter would have to be faked before the call occurs. We
1345 		 * consider that too expensive, unlikely and hacky, so modules
1346 		 * using these in ssthresh() must deal these incompatibility
1347 		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1348 		 */
1349 		tcp_ca_event(sk, CA_EVENT_FRTO);
1350 	}
1351 
1352 	tp->undo_marker = tp->snd_una;
1353 	tp->undo_retrans = 0;
1354 
1355 	skb = tcp_write_queue_head(sk);
1356 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1357 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1358 		tp->retrans_out -= tcp_skb_pcount(skb);
1359 	}
1360 	tcp_sync_left_out(tp);
1361 
1362 	/* Earlier loss recovery underway (see RFC4138; Appendix B).
1363 	 * The last condition is necessary at least in tp->frto_counter case.
1364 	 */
1365 	if (IsSackFrto() && (tp->frto_counter ||
1366 	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1367 	    after(tp->high_seq, tp->snd_una)) {
1368 		tp->frto_highmark = tp->high_seq;
1369 	} else {
1370 		tp->frto_highmark = tp->snd_nxt;
1371 	}
1372 	tcp_set_ca_state(sk, TCP_CA_Disorder);
1373 	tp->high_seq = tp->snd_nxt;
1374 	tp->frto_counter = 1;
1375 }
1376 
1377 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1378  * which indicates that we should follow the traditional RTO recovery,
1379  * i.e. mark everything lost and do go-back-N retransmission.
1380  */
1381 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1382 {
1383 	struct tcp_sock *tp = tcp_sk(sk);
1384 	struct sk_buff *skb;
1385 	int cnt = 0;
1386 
1387 	tp->sacked_out = 0;
1388 	tp->lost_out = 0;
1389 	tp->fackets_out = 0;
1390 	tp->retrans_out = 0;
1391 
1392 	tcp_for_write_queue(skb, sk) {
1393 		if (skb == tcp_send_head(sk))
1394 			break;
1395 		cnt += tcp_skb_pcount(skb);
1396 		/*
1397 		 * Count the retransmission made on RTO correctly (only when
1398 		 * waiting for the first ACK and did not get it)...
1399 		 */
1400 		if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1401 			/* For some reason this R-bit might get cleared? */
1402 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1403 				tp->retrans_out += tcp_skb_pcount(skb);
1404 			/* ...enter this if branch just for the first segment */
1405 			flag |= FLAG_DATA_ACKED;
1406 		} else {
1407 			TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1408 		}
1409 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1410 
1411 			/* Do not mark those segments lost that were
1412 			 * forward transmitted after RTO
1413 			 */
1414 			if (!after(TCP_SKB_CB(skb)->end_seq,
1415 				   tp->frto_highmark)) {
1416 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1417 				tp->lost_out += tcp_skb_pcount(skb);
1418 			}
1419 		} else {
1420 			tp->sacked_out += tcp_skb_pcount(skb);
1421 			tp->fackets_out = cnt;
1422 		}
1423 	}
1424 	tcp_sync_left_out(tp);
1425 
1426 	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1427 	tp->snd_cwnd_cnt = 0;
1428 	tp->snd_cwnd_stamp = tcp_time_stamp;
1429 	tp->undo_marker = 0;
1430 	tp->frto_counter = 0;
1431 
1432 	tp->reordering = min_t(unsigned int, tp->reordering,
1433 					     sysctl_tcp_reordering);
1434 	tcp_set_ca_state(sk, TCP_CA_Loss);
1435 	tp->high_seq = tp->frto_highmark;
1436 	TCP_ECN_queue_cwr(tp);
1437 
1438 	clear_all_retrans_hints(tp);
1439 }
1440 
1441 void tcp_clear_retrans(struct tcp_sock *tp)
1442 {
1443 	tp->left_out = 0;
1444 	tp->retrans_out = 0;
1445 
1446 	tp->fackets_out = 0;
1447 	tp->sacked_out = 0;
1448 	tp->lost_out = 0;
1449 
1450 	tp->undo_marker = 0;
1451 	tp->undo_retrans = 0;
1452 }
1453 
1454 /* Enter Loss state. If "how" is not zero, forget all SACK information
1455  * and reset tags completely, otherwise preserve SACKs. If receiver
1456  * dropped its ofo queue, we will know this due to reneging detection.
1457  */
1458 void tcp_enter_loss(struct sock *sk, int how)
1459 {
1460 	const struct inet_connection_sock *icsk = inet_csk(sk);
1461 	struct tcp_sock *tp = tcp_sk(sk);
1462 	struct sk_buff *skb;
1463 	int cnt = 0;
1464 
1465 	/* Reduce ssthresh if it has not yet been made inside this window. */
1466 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1467 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1468 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1469 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1470 		tcp_ca_event(sk, CA_EVENT_LOSS);
1471 	}
1472 	tp->snd_cwnd	   = 1;
1473 	tp->snd_cwnd_cnt   = 0;
1474 	tp->snd_cwnd_stamp = tcp_time_stamp;
1475 
1476 	tp->bytes_acked = 0;
1477 	tcp_clear_retrans(tp);
1478 
1479 	/* Push undo marker, if it was plain RTO and nothing
1480 	 * was retransmitted. */
1481 	if (!how)
1482 		tp->undo_marker = tp->snd_una;
1483 
1484 	tcp_for_write_queue(skb, sk) {
1485 		if (skb == tcp_send_head(sk))
1486 			break;
1487 		cnt += tcp_skb_pcount(skb);
1488 		if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1489 			tp->undo_marker = 0;
1490 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1491 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1492 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1493 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1494 			tp->lost_out += tcp_skb_pcount(skb);
1495 		} else {
1496 			tp->sacked_out += tcp_skb_pcount(skb);
1497 			tp->fackets_out = cnt;
1498 		}
1499 	}
1500 	tcp_sync_left_out(tp);
1501 
1502 	tp->reordering = min_t(unsigned int, tp->reordering,
1503 					     sysctl_tcp_reordering);
1504 	tcp_set_ca_state(sk, TCP_CA_Loss);
1505 	tp->high_seq = tp->snd_nxt;
1506 	TCP_ECN_queue_cwr(tp);
1507 	/* Abort FRTO algorithm if one is in progress */
1508 	tp->frto_counter = 0;
1509 
1510 	clear_all_retrans_hints(tp);
1511 }
1512 
1513 static int tcp_check_sack_reneging(struct sock *sk)
1514 {
1515 	struct sk_buff *skb;
1516 
1517 	/* If ACK arrived pointing to a remembered SACK,
1518 	 * it means that our remembered SACKs do not reflect
1519 	 * real state of receiver i.e.
1520 	 * receiver _host_ is heavily congested (or buggy).
1521 	 * Do processing similar to RTO timeout.
1522 	 */
1523 	if ((skb = tcp_write_queue_head(sk)) != NULL &&
1524 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1525 		struct inet_connection_sock *icsk = inet_csk(sk);
1526 		NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1527 
1528 		tcp_enter_loss(sk, 1);
1529 		icsk->icsk_retransmits++;
1530 		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1531 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1532 					  icsk->icsk_rto, TCP_RTO_MAX);
1533 		return 1;
1534 	}
1535 	return 0;
1536 }
1537 
1538 static inline int tcp_fackets_out(struct tcp_sock *tp)
1539 {
1540 	return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1541 }
1542 
1543 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1544 {
1545 	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1546 }
1547 
1548 static inline int tcp_head_timedout(struct sock *sk)
1549 {
1550 	struct tcp_sock *tp = tcp_sk(sk);
1551 
1552 	return tp->packets_out &&
1553 	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1554 }
1555 
1556 /* Linux NewReno/SACK/FACK/ECN state machine.
1557  * --------------------------------------
1558  *
1559  * "Open"	Normal state, no dubious events, fast path.
1560  * "Disorder"   In all the respects it is "Open",
1561  *		but requires a bit more attention. It is entered when
1562  *		we see some SACKs or dupacks. It is split of "Open"
1563  *		mainly to move some processing from fast path to slow one.
1564  * "CWR"	CWND was reduced due to some Congestion Notification event.
1565  *		It can be ECN, ICMP source quench, local device congestion.
1566  * "Recovery"	CWND was reduced, we are fast-retransmitting.
1567  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
1568  *
1569  * tcp_fastretrans_alert() is entered:
1570  * - each incoming ACK, if state is not "Open"
1571  * - when arrived ACK is unusual, namely:
1572  *	* SACK
1573  *	* Duplicate ACK.
1574  *	* ECN ECE.
1575  *
1576  * Counting packets in flight is pretty simple.
1577  *
1578  *	in_flight = packets_out - left_out + retrans_out
1579  *
1580  *	packets_out is SND.NXT-SND.UNA counted in packets.
1581  *
1582  *	retrans_out is number of retransmitted segments.
1583  *
1584  *	left_out is number of segments left network, but not ACKed yet.
1585  *
1586  *		left_out = sacked_out + lost_out
1587  *
1588  *     sacked_out: Packets, which arrived to receiver out of order
1589  *		   and hence not ACKed. With SACKs this number is simply
1590  *		   amount of SACKed data. Even without SACKs
1591  *		   it is easy to give pretty reliable estimate of this number,
1592  *		   counting duplicate ACKs.
1593  *
1594  *       lost_out: Packets lost by network. TCP has no explicit
1595  *		   "loss notification" feedback from network (for now).
1596  *		   It means that this number can be only _guessed_.
1597  *		   Actually, it is the heuristics to predict lossage that
1598  *		   distinguishes different algorithms.
1599  *
1600  *	F.e. after RTO, when all the queue is considered as lost,
1601  *	lost_out = packets_out and in_flight = retrans_out.
1602  *
1603  *		Essentially, we have now two algorithms counting
1604  *		lost packets.
1605  *
1606  *		FACK: It is the simplest heuristics. As soon as we decided
1607  *		that something is lost, we decide that _all_ not SACKed
1608  *		packets until the most forward SACK are lost. I.e.
1609  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
1610  *		It is absolutely correct estimate, if network does not reorder
1611  *		packets. And it loses any connection to reality when reordering
1612  *		takes place. We use FACK by default until reordering
1613  *		is suspected on the path to this destination.
1614  *
1615  *		NewReno: when Recovery is entered, we assume that one segment
1616  *		is lost (classic Reno). While we are in Recovery and
1617  *		a partial ACK arrives, we assume that one more packet
1618  *		is lost (NewReno). This heuristics are the same in NewReno
1619  *		and SACK.
1620  *
1621  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
1622  *  deflation etc. CWND is real congestion window, never inflated, changes
1623  *  only according to classic VJ rules.
1624  *
1625  * Really tricky (and requiring careful tuning) part of algorithm
1626  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1627  * The first determines the moment _when_ we should reduce CWND and,
1628  * hence, slow down forward transmission. In fact, it determines the moment
1629  * when we decide that hole is caused by loss, rather than by a reorder.
1630  *
1631  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1632  * holes, caused by lost packets.
1633  *
1634  * And the most logically complicated part of algorithm is undo
1635  * heuristics. We detect false retransmits due to both too early
1636  * fast retransmit (reordering) and underestimated RTO, analyzing
1637  * timestamps and D-SACKs. When we detect that some segments were
1638  * retransmitted by mistake and CWND reduction was wrong, we undo
1639  * window reduction and abort recovery phase. This logic is hidden
1640  * inside several functions named tcp_try_undo_<something>.
1641  */
1642 
1643 /* This function decides, when we should leave Disordered state
1644  * and enter Recovery phase, reducing congestion window.
1645  *
1646  * Main question: may we further continue forward transmission
1647  * with the same cwnd?
1648  */
1649 static int tcp_time_to_recover(struct sock *sk)
1650 {
1651 	struct tcp_sock *tp = tcp_sk(sk);
1652 	__u32 packets_out;
1653 
1654 	/* Do not perform any recovery during FRTO algorithm */
1655 	if (tp->frto_counter)
1656 		return 0;
1657 
1658 	/* Trick#1: The loss is proven. */
1659 	if (tp->lost_out)
1660 		return 1;
1661 
1662 	/* Not-A-Trick#2 : Classic rule... */
1663 	if (tcp_fackets_out(tp) > tp->reordering)
1664 		return 1;
1665 
1666 	/* Trick#3 : when we use RFC2988 timer restart, fast
1667 	 * retransmit can be triggered by timeout of queue head.
1668 	 */
1669 	if (tcp_head_timedout(sk))
1670 		return 1;
1671 
1672 	/* Trick#4: It is still not OK... But will it be useful to delay
1673 	 * recovery more?
1674 	 */
1675 	packets_out = tp->packets_out;
1676 	if (packets_out <= tp->reordering &&
1677 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1678 	    !tcp_may_send_now(sk)) {
1679 		/* We have nothing to send. This connection is limited
1680 		 * either by receiver window or by application.
1681 		 */
1682 		return 1;
1683 	}
1684 
1685 	return 0;
1686 }
1687 
1688 /* If we receive more dupacks than we expected counting segments
1689  * in assumption of absent reordering, interpret this as reordering.
1690  * The only another reason could be bug in receiver TCP.
1691  */
1692 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1693 {
1694 	struct tcp_sock *tp = tcp_sk(sk);
1695 	u32 holes;
1696 
1697 	holes = max(tp->lost_out, 1U);
1698 	holes = min(holes, tp->packets_out);
1699 
1700 	if ((tp->sacked_out + holes) > tp->packets_out) {
1701 		tp->sacked_out = tp->packets_out - holes;
1702 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1703 	}
1704 }
1705 
1706 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1707 
1708 static void tcp_add_reno_sack(struct sock *sk)
1709 {
1710 	struct tcp_sock *tp = tcp_sk(sk);
1711 	tp->sacked_out++;
1712 	tcp_check_reno_reordering(sk, 0);
1713 	tcp_sync_left_out(tp);
1714 }
1715 
1716 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1717 
1718 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1719 {
1720 	struct tcp_sock *tp = tcp_sk(sk);
1721 
1722 	if (acked > 0) {
1723 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1724 		if (acked-1 >= tp->sacked_out)
1725 			tp->sacked_out = 0;
1726 		else
1727 			tp->sacked_out -= acked-1;
1728 	}
1729 	tcp_check_reno_reordering(sk, acked);
1730 	tcp_sync_left_out(tp);
1731 }
1732 
1733 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1734 {
1735 	tp->sacked_out = 0;
1736 	tp->left_out = tp->lost_out;
1737 }
1738 
1739 /* Mark head of queue up as lost. */
1740 static void tcp_mark_head_lost(struct sock *sk,
1741 			       int packets, u32 high_seq)
1742 {
1743 	struct tcp_sock *tp = tcp_sk(sk);
1744 	struct sk_buff *skb;
1745 	int cnt;
1746 
1747 	BUG_TRAP(packets <= tp->packets_out);
1748 	if (tp->lost_skb_hint) {
1749 		skb = tp->lost_skb_hint;
1750 		cnt = tp->lost_cnt_hint;
1751 	} else {
1752 		skb = tcp_write_queue_head(sk);
1753 		cnt = 0;
1754 	}
1755 
1756 	tcp_for_write_queue_from(skb, sk) {
1757 		if (skb == tcp_send_head(sk))
1758 			break;
1759 		/* TODO: do this better */
1760 		/* this is not the most efficient way to do this... */
1761 		tp->lost_skb_hint = skb;
1762 		tp->lost_cnt_hint = cnt;
1763 		cnt += tcp_skb_pcount(skb);
1764 		if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1765 			break;
1766 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1767 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1768 			tp->lost_out += tcp_skb_pcount(skb);
1769 
1770 			/* clear xmit_retransmit_queue hints
1771 			 *  if this is beyond hint */
1772 			if (tp->retransmit_skb_hint != NULL &&
1773 			    before(TCP_SKB_CB(skb)->seq,
1774 				   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1775 				tp->retransmit_skb_hint = NULL;
1776 
1777 		}
1778 	}
1779 	tcp_sync_left_out(tp);
1780 }
1781 
1782 /* Account newly detected lost packet(s) */
1783 
1784 static void tcp_update_scoreboard(struct sock *sk)
1785 {
1786 	struct tcp_sock *tp = tcp_sk(sk);
1787 
1788 	if (IsFack(tp)) {
1789 		int lost = tp->fackets_out - tp->reordering;
1790 		if (lost <= 0)
1791 			lost = 1;
1792 		tcp_mark_head_lost(sk, lost, tp->high_seq);
1793 	} else {
1794 		tcp_mark_head_lost(sk, 1, tp->high_seq);
1795 	}
1796 
1797 	/* New heuristics: it is possible only after we switched
1798 	 * to restart timer each time when something is ACKed.
1799 	 * Hence, we can detect timed out packets during fast
1800 	 * retransmit without falling to slow start.
1801 	 */
1802 	if (!IsReno(tp) && tcp_head_timedout(sk)) {
1803 		struct sk_buff *skb;
1804 
1805 		skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
1806 			: tcp_write_queue_head(sk);
1807 
1808 		tcp_for_write_queue_from(skb, sk) {
1809 			if (skb == tcp_send_head(sk))
1810 				break;
1811 			if (!tcp_skb_timedout(sk, skb))
1812 				break;
1813 
1814 			if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1815 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1816 				tp->lost_out += tcp_skb_pcount(skb);
1817 
1818 				/* clear xmit_retrans hint */
1819 				if (tp->retransmit_skb_hint &&
1820 				    before(TCP_SKB_CB(skb)->seq,
1821 					   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1822 
1823 					tp->retransmit_skb_hint = NULL;
1824 			}
1825 		}
1826 
1827 		tp->scoreboard_skb_hint = skb;
1828 
1829 		tcp_sync_left_out(tp);
1830 	}
1831 }
1832 
1833 /* CWND moderation, preventing bursts due to too big ACKs
1834  * in dubious situations.
1835  */
1836 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1837 {
1838 	tp->snd_cwnd = min(tp->snd_cwnd,
1839 			   tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1840 	tp->snd_cwnd_stamp = tcp_time_stamp;
1841 }
1842 
1843 /* Lower bound on congestion window is slow start threshold
1844  * unless congestion avoidance choice decides to overide it.
1845  */
1846 static inline u32 tcp_cwnd_min(const struct sock *sk)
1847 {
1848 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1849 
1850 	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
1851 }
1852 
1853 /* Decrease cwnd each second ack. */
1854 static void tcp_cwnd_down(struct sock *sk)
1855 {
1856 	struct tcp_sock *tp = tcp_sk(sk);
1857 	int decr = tp->snd_cwnd_cnt + 1;
1858 
1859 	tp->snd_cwnd_cnt = decr&1;
1860 	decr >>= 1;
1861 
1862 	if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
1863 		tp->snd_cwnd -= decr;
1864 
1865 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1866 	tp->snd_cwnd_stamp = tcp_time_stamp;
1867 }
1868 
1869 /* Nothing was retransmitted or returned timestamp is less
1870  * than timestamp of the first retransmission.
1871  */
1872 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1873 {
1874 	return !tp->retrans_stamp ||
1875 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1876 		 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1877 }
1878 
1879 /* Undo procedures. */
1880 
1881 #if FASTRETRANS_DEBUG > 1
1882 static void DBGUNDO(struct sock *sk, const char *msg)
1883 {
1884 	struct tcp_sock *tp = tcp_sk(sk);
1885 	struct inet_sock *inet = inet_sk(sk);
1886 
1887 	printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1888 	       msg,
1889 	       NIPQUAD(inet->daddr), ntohs(inet->dport),
1890 	       tp->snd_cwnd, tp->left_out,
1891 	       tp->snd_ssthresh, tp->prior_ssthresh,
1892 	       tp->packets_out);
1893 }
1894 #else
1895 #define DBGUNDO(x...) do { } while (0)
1896 #endif
1897 
1898 static void tcp_undo_cwr(struct sock *sk, const int undo)
1899 {
1900 	struct tcp_sock *tp = tcp_sk(sk);
1901 
1902 	if (tp->prior_ssthresh) {
1903 		const struct inet_connection_sock *icsk = inet_csk(sk);
1904 
1905 		if (icsk->icsk_ca_ops->undo_cwnd)
1906 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1907 		else
1908 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1909 
1910 		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1911 			tp->snd_ssthresh = tp->prior_ssthresh;
1912 			TCP_ECN_withdraw_cwr(tp);
1913 		}
1914 	} else {
1915 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1916 	}
1917 	tcp_moderate_cwnd(tp);
1918 	tp->snd_cwnd_stamp = tcp_time_stamp;
1919 
1920 	/* There is something screwy going on with the retrans hints after
1921 	   an undo */
1922 	clear_all_retrans_hints(tp);
1923 }
1924 
1925 static inline int tcp_may_undo(struct tcp_sock *tp)
1926 {
1927 	return tp->undo_marker &&
1928 		(!tp->undo_retrans || tcp_packet_delayed(tp));
1929 }
1930 
1931 /* People celebrate: "We love our President!" */
1932 static int tcp_try_undo_recovery(struct sock *sk)
1933 {
1934 	struct tcp_sock *tp = tcp_sk(sk);
1935 
1936 	if (tcp_may_undo(tp)) {
1937 		/* Happy end! We did not retransmit anything
1938 		 * or our original transmission succeeded.
1939 		 */
1940 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1941 		tcp_undo_cwr(sk, 1);
1942 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1943 			NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1944 		else
1945 			NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1946 		tp->undo_marker = 0;
1947 	}
1948 	if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1949 		/* Hold old state until something *above* high_seq
1950 		 * is ACKed. For Reno it is MUST to prevent false
1951 		 * fast retransmits (RFC2582). SACK TCP is safe. */
1952 		tcp_moderate_cwnd(tp);
1953 		return 1;
1954 	}
1955 	tcp_set_ca_state(sk, TCP_CA_Open);
1956 	return 0;
1957 }
1958 
1959 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1960 static void tcp_try_undo_dsack(struct sock *sk)
1961 {
1962 	struct tcp_sock *tp = tcp_sk(sk);
1963 
1964 	if (tp->undo_marker && !tp->undo_retrans) {
1965 		DBGUNDO(sk, "D-SACK");
1966 		tcp_undo_cwr(sk, 1);
1967 		tp->undo_marker = 0;
1968 		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1969 	}
1970 }
1971 
1972 /* Undo during fast recovery after partial ACK. */
1973 
1974 static int tcp_try_undo_partial(struct sock *sk, int acked)
1975 {
1976 	struct tcp_sock *tp = tcp_sk(sk);
1977 	/* Partial ACK arrived. Force Hoe's retransmit. */
1978 	int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1979 
1980 	if (tcp_may_undo(tp)) {
1981 		/* Plain luck! Hole if filled with delayed
1982 		 * packet, rather than with a retransmit.
1983 		 */
1984 		if (tp->retrans_out == 0)
1985 			tp->retrans_stamp = 0;
1986 
1987 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1988 
1989 		DBGUNDO(sk, "Hoe");
1990 		tcp_undo_cwr(sk, 0);
1991 		NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1992 
1993 		/* So... Do not make Hoe's retransmit yet.
1994 		 * If the first packet was delayed, the rest
1995 		 * ones are most probably delayed as well.
1996 		 */
1997 		failed = 0;
1998 	}
1999 	return failed;
2000 }
2001 
2002 /* Undo during loss recovery after partial ACK. */
2003 static int tcp_try_undo_loss(struct sock *sk)
2004 {
2005 	struct tcp_sock *tp = tcp_sk(sk);
2006 
2007 	if (tcp_may_undo(tp)) {
2008 		struct sk_buff *skb;
2009 		tcp_for_write_queue(skb, sk) {
2010 			if (skb == tcp_send_head(sk))
2011 				break;
2012 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2013 		}
2014 
2015 		clear_all_retrans_hints(tp);
2016 
2017 		DBGUNDO(sk, "partial loss");
2018 		tp->lost_out = 0;
2019 		tp->left_out = tp->sacked_out;
2020 		tcp_undo_cwr(sk, 1);
2021 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2022 		inet_csk(sk)->icsk_retransmits = 0;
2023 		tp->undo_marker = 0;
2024 		if (!IsReno(tp))
2025 			tcp_set_ca_state(sk, TCP_CA_Open);
2026 		return 1;
2027 	}
2028 	return 0;
2029 }
2030 
2031 static inline void tcp_complete_cwr(struct sock *sk)
2032 {
2033 	struct tcp_sock *tp = tcp_sk(sk);
2034 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2035 	tp->snd_cwnd_stamp = tcp_time_stamp;
2036 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2037 }
2038 
2039 static void tcp_try_to_open(struct sock *sk, int flag)
2040 {
2041 	struct tcp_sock *tp = tcp_sk(sk);
2042 
2043 	tcp_sync_left_out(tp);
2044 
2045 	if (tp->retrans_out == 0)
2046 		tp->retrans_stamp = 0;
2047 
2048 	if (flag&FLAG_ECE)
2049 		tcp_enter_cwr(sk, 1);
2050 
2051 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2052 		int state = TCP_CA_Open;
2053 
2054 		if (tp->left_out || tp->retrans_out || tp->undo_marker)
2055 			state = TCP_CA_Disorder;
2056 
2057 		if (inet_csk(sk)->icsk_ca_state != state) {
2058 			tcp_set_ca_state(sk, state);
2059 			tp->high_seq = tp->snd_nxt;
2060 		}
2061 		tcp_moderate_cwnd(tp);
2062 	} else {
2063 		tcp_cwnd_down(sk);
2064 	}
2065 }
2066 
2067 static void tcp_mtup_probe_failed(struct sock *sk)
2068 {
2069 	struct inet_connection_sock *icsk = inet_csk(sk);
2070 
2071 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2072 	icsk->icsk_mtup.probe_size = 0;
2073 }
2074 
2075 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2076 {
2077 	struct tcp_sock *tp = tcp_sk(sk);
2078 	struct inet_connection_sock *icsk = inet_csk(sk);
2079 
2080 	/* FIXME: breaks with very large cwnd */
2081 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2082 	tp->snd_cwnd = tp->snd_cwnd *
2083 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2084 		       icsk->icsk_mtup.probe_size;
2085 	tp->snd_cwnd_cnt = 0;
2086 	tp->snd_cwnd_stamp = tcp_time_stamp;
2087 	tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2088 
2089 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2090 	icsk->icsk_mtup.probe_size = 0;
2091 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2092 }
2093 
2094 
2095 /* Process an event, which can update packets-in-flight not trivially.
2096  * Main goal of this function is to calculate new estimate for left_out,
2097  * taking into account both packets sitting in receiver's buffer and
2098  * packets lost by network.
2099  *
2100  * Besides that it does CWND reduction, when packet loss is detected
2101  * and changes state of machine.
2102  *
2103  * It does _not_ decide what to send, it is made in function
2104  * tcp_xmit_retransmit_queue().
2105  */
2106 static void
2107 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
2108 		      int prior_packets, int flag)
2109 {
2110 	struct inet_connection_sock *icsk = inet_csk(sk);
2111 	struct tcp_sock *tp = tcp_sk(sk);
2112 	int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
2113 
2114 	/* Some technical things:
2115 	 * 1. Reno does not count dupacks (sacked_out) automatically. */
2116 	if (!tp->packets_out)
2117 		tp->sacked_out = 0;
2118 	/* 2. SACK counts snd_fack in packets inaccurately. */
2119 	if (tp->sacked_out == 0)
2120 		tp->fackets_out = 0;
2121 
2122 	/* Now state machine starts.
2123 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2124 	if (flag&FLAG_ECE)
2125 		tp->prior_ssthresh = 0;
2126 
2127 	/* B. In all the states check for reneging SACKs. */
2128 	if (tp->sacked_out && tcp_check_sack_reneging(sk))
2129 		return;
2130 
2131 	/* C. Process data loss notification, provided it is valid. */
2132 	if ((flag&FLAG_DATA_LOST) &&
2133 	    before(tp->snd_una, tp->high_seq) &&
2134 	    icsk->icsk_ca_state != TCP_CA_Open &&
2135 	    tp->fackets_out > tp->reordering) {
2136 		tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, tp->high_seq);
2137 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2138 	}
2139 
2140 	/* D. Synchronize left_out to current state. */
2141 	tcp_sync_left_out(tp);
2142 
2143 	/* E. Check state exit conditions. State can be terminated
2144 	 *    when high_seq is ACKed. */
2145 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2146 		BUG_TRAP(tp->retrans_out == 0);
2147 		tp->retrans_stamp = 0;
2148 	} else if (!before(tp->snd_una, tp->high_seq)) {
2149 		switch (icsk->icsk_ca_state) {
2150 		case TCP_CA_Loss:
2151 			icsk->icsk_retransmits = 0;
2152 			if (tcp_try_undo_recovery(sk))
2153 				return;
2154 			break;
2155 
2156 		case TCP_CA_CWR:
2157 			/* CWR is to be held something *above* high_seq
2158 			 * is ACKed for CWR bit to reach receiver. */
2159 			if (tp->snd_una != tp->high_seq) {
2160 				tcp_complete_cwr(sk);
2161 				tcp_set_ca_state(sk, TCP_CA_Open);
2162 			}
2163 			break;
2164 
2165 		case TCP_CA_Disorder:
2166 			tcp_try_undo_dsack(sk);
2167 			if (!tp->undo_marker ||
2168 			    /* For SACK case do not Open to allow to undo
2169 			     * catching for all duplicate ACKs. */
2170 			    IsReno(tp) || tp->snd_una != tp->high_seq) {
2171 				tp->undo_marker = 0;
2172 				tcp_set_ca_state(sk, TCP_CA_Open);
2173 			}
2174 			break;
2175 
2176 		case TCP_CA_Recovery:
2177 			if (IsReno(tp))
2178 				tcp_reset_reno_sack(tp);
2179 			if (tcp_try_undo_recovery(sk))
2180 				return;
2181 			tcp_complete_cwr(sk);
2182 			break;
2183 		}
2184 	}
2185 
2186 	/* F. Process state. */
2187 	switch (icsk->icsk_ca_state) {
2188 	case TCP_CA_Recovery:
2189 		if (prior_snd_una == tp->snd_una) {
2190 			if (IsReno(tp) && is_dupack)
2191 				tcp_add_reno_sack(sk);
2192 		} else {
2193 			int acked = prior_packets - tp->packets_out;
2194 			if (IsReno(tp))
2195 				tcp_remove_reno_sacks(sk, acked);
2196 			is_dupack = tcp_try_undo_partial(sk, acked);
2197 		}
2198 		break;
2199 	case TCP_CA_Loss:
2200 		if (flag&FLAG_DATA_ACKED)
2201 			icsk->icsk_retransmits = 0;
2202 		if (!tcp_try_undo_loss(sk)) {
2203 			tcp_moderate_cwnd(tp);
2204 			tcp_xmit_retransmit_queue(sk);
2205 			return;
2206 		}
2207 		if (icsk->icsk_ca_state != TCP_CA_Open)
2208 			return;
2209 		/* Loss is undone; fall through to processing in Open state. */
2210 	default:
2211 		if (IsReno(tp)) {
2212 			if (tp->snd_una != prior_snd_una)
2213 				tcp_reset_reno_sack(tp);
2214 			if (is_dupack)
2215 				tcp_add_reno_sack(sk);
2216 		}
2217 
2218 		if (icsk->icsk_ca_state == TCP_CA_Disorder)
2219 			tcp_try_undo_dsack(sk);
2220 
2221 		if (!tcp_time_to_recover(sk)) {
2222 			tcp_try_to_open(sk, flag);
2223 			return;
2224 		}
2225 
2226 		/* MTU probe failure: don't reduce cwnd */
2227 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2228 		    icsk->icsk_mtup.probe_size &&
2229 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2230 			tcp_mtup_probe_failed(sk);
2231 			/* Restores the reduction we did in tcp_mtup_probe() */
2232 			tp->snd_cwnd++;
2233 			tcp_simple_retransmit(sk);
2234 			return;
2235 		}
2236 
2237 		/* Otherwise enter Recovery state */
2238 
2239 		if (IsReno(tp))
2240 			NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2241 		else
2242 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2243 
2244 		tp->high_seq = tp->snd_nxt;
2245 		tp->prior_ssthresh = 0;
2246 		tp->undo_marker = tp->snd_una;
2247 		tp->undo_retrans = tp->retrans_out;
2248 
2249 		if (icsk->icsk_ca_state < TCP_CA_CWR) {
2250 			if (!(flag&FLAG_ECE))
2251 				tp->prior_ssthresh = tcp_current_ssthresh(sk);
2252 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2253 			TCP_ECN_queue_cwr(tp);
2254 		}
2255 
2256 		tp->bytes_acked = 0;
2257 		tp->snd_cwnd_cnt = 0;
2258 		tcp_set_ca_state(sk, TCP_CA_Recovery);
2259 	}
2260 
2261 	if (is_dupack || tcp_head_timedout(sk))
2262 		tcp_update_scoreboard(sk);
2263 	tcp_cwnd_down(sk);
2264 	tcp_xmit_retransmit_queue(sk);
2265 }
2266 
2267 /* Read draft-ietf-tcplw-high-performance before mucking
2268  * with this code. (Supersedes RFC1323)
2269  */
2270 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2271 {
2272 	/* RTTM Rule: A TSecr value received in a segment is used to
2273 	 * update the averaged RTT measurement only if the segment
2274 	 * acknowledges some new data, i.e., only if it advances the
2275 	 * left edge of the send window.
2276 	 *
2277 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2278 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2279 	 *
2280 	 * Changed: reset backoff as soon as we see the first valid sample.
2281 	 * If we do not, we get strongly overestimated rto. With timestamps
2282 	 * samples are accepted even from very old segments: f.e., when rtt=1
2283 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2284 	 * answer arrives rto becomes 120 seconds! If at least one of segments
2285 	 * in window is lost... Voila.	 			--ANK (010210)
2286 	 */
2287 	struct tcp_sock *tp = tcp_sk(sk);
2288 	const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2289 	tcp_rtt_estimator(sk, seq_rtt);
2290 	tcp_set_rto(sk);
2291 	inet_csk(sk)->icsk_backoff = 0;
2292 	tcp_bound_rto(sk);
2293 }
2294 
2295 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2296 {
2297 	/* We don't have a timestamp. Can only use
2298 	 * packets that are not retransmitted to determine
2299 	 * rtt estimates. Also, we must not reset the
2300 	 * backoff for rto until we get a non-retransmitted
2301 	 * packet. This allows us to deal with a situation
2302 	 * where the network delay has increased suddenly.
2303 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2304 	 */
2305 
2306 	if (flag & FLAG_RETRANS_DATA_ACKED)
2307 		return;
2308 
2309 	tcp_rtt_estimator(sk, seq_rtt);
2310 	tcp_set_rto(sk);
2311 	inet_csk(sk)->icsk_backoff = 0;
2312 	tcp_bound_rto(sk);
2313 }
2314 
2315 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2316 				      const s32 seq_rtt)
2317 {
2318 	const struct tcp_sock *tp = tcp_sk(sk);
2319 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2320 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2321 		tcp_ack_saw_tstamp(sk, flag);
2322 	else if (seq_rtt >= 0)
2323 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
2324 }
2325 
2326 static void tcp_cong_avoid(struct sock *sk, u32 ack,
2327 			   u32 in_flight, int good)
2328 {
2329 	const struct inet_connection_sock *icsk = inet_csk(sk);
2330 	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight, good);
2331 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2332 }
2333 
2334 /* Restart timer after forward progress on connection.
2335  * RFC2988 recommends to restart timer to now+rto.
2336  */
2337 
2338 static void tcp_ack_packets_out(struct sock *sk)
2339 {
2340 	struct tcp_sock *tp = tcp_sk(sk);
2341 
2342 	if (!tp->packets_out) {
2343 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2344 	} else {
2345 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2346 	}
2347 }
2348 
2349 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2350 			 __u32 now, __s32 *seq_rtt)
2351 {
2352 	struct tcp_sock *tp = tcp_sk(sk);
2353 	struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2354 	__u32 seq = tp->snd_una;
2355 	__u32 packets_acked;
2356 	int acked = 0;
2357 
2358 	/* If we get here, the whole TSO packet has not been
2359 	 * acked.
2360 	 */
2361 	BUG_ON(!after(scb->end_seq, seq));
2362 
2363 	packets_acked = tcp_skb_pcount(skb);
2364 	if (tcp_trim_head(sk, skb, seq - scb->seq))
2365 		return 0;
2366 	packets_acked -= tcp_skb_pcount(skb);
2367 
2368 	if (packets_acked) {
2369 		__u8 sacked = scb->sacked;
2370 
2371 		acked |= FLAG_DATA_ACKED;
2372 		if (sacked) {
2373 			if (sacked & TCPCB_RETRANS) {
2374 				if (sacked & TCPCB_SACKED_RETRANS)
2375 					tp->retrans_out -= packets_acked;
2376 				acked |= FLAG_RETRANS_DATA_ACKED;
2377 				*seq_rtt = -1;
2378 			} else if (*seq_rtt < 0)
2379 				*seq_rtt = now - scb->when;
2380 			if (sacked & TCPCB_SACKED_ACKED)
2381 				tp->sacked_out -= packets_acked;
2382 			if (sacked & TCPCB_LOST)
2383 				tp->lost_out -= packets_acked;
2384 			if (sacked & TCPCB_URG) {
2385 				if (tp->urg_mode &&
2386 				    !before(seq, tp->snd_up))
2387 					tp->urg_mode = 0;
2388 			}
2389 		} else if (*seq_rtt < 0)
2390 			*seq_rtt = now - scb->when;
2391 
2392 		if (tp->fackets_out) {
2393 			__u32 dval = min(tp->fackets_out, packets_acked);
2394 			tp->fackets_out -= dval;
2395 		}
2396 		tp->packets_out -= packets_acked;
2397 
2398 		BUG_ON(tcp_skb_pcount(skb) == 0);
2399 		BUG_ON(!before(scb->seq, scb->end_seq));
2400 	}
2401 
2402 	return acked;
2403 }
2404 
2405 /* Remove acknowledged frames from the retransmission queue. */
2406 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
2407 {
2408 	struct tcp_sock *tp = tcp_sk(sk);
2409 	const struct inet_connection_sock *icsk = inet_csk(sk);
2410 	struct sk_buff *skb;
2411 	__u32 now = tcp_time_stamp;
2412 	int acked = 0;
2413 	int prior_packets = tp->packets_out;
2414 	__s32 seq_rtt = -1;
2415 	ktime_t last_ackt = net_invalid_timestamp();
2416 
2417 	while ((skb = tcp_write_queue_head(sk)) &&
2418 	       skb != tcp_send_head(sk)) {
2419 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2420 		__u8 sacked = scb->sacked;
2421 
2422 		/* If our packet is before the ack sequence we can
2423 		 * discard it as it's confirmed to have arrived at
2424 		 * the other end.
2425 		 */
2426 		if (after(scb->end_seq, tp->snd_una)) {
2427 			if (tcp_skb_pcount(skb) > 1 &&
2428 			    after(tp->snd_una, scb->seq))
2429 				acked |= tcp_tso_acked(sk, skb,
2430 						       now, &seq_rtt);
2431 			break;
2432 		}
2433 
2434 		/* Initial outgoing SYN's get put onto the write_queue
2435 		 * just like anything else we transmit.  It is not
2436 		 * true data, and if we misinform our callers that
2437 		 * this ACK acks real data, we will erroneously exit
2438 		 * connection startup slow start one packet too
2439 		 * quickly.  This is severely frowned upon behavior.
2440 		 */
2441 		if (!(scb->flags & TCPCB_FLAG_SYN)) {
2442 			acked |= FLAG_DATA_ACKED;
2443 		} else {
2444 			acked |= FLAG_SYN_ACKED;
2445 			tp->retrans_stamp = 0;
2446 		}
2447 
2448 		/* MTU probing checks */
2449 		if (icsk->icsk_mtup.probe_size) {
2450 			if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) {
2451 				tcp_mtup_probe_success(sk, skb);
2452 			}
2453 		}
2454 
2455 		if (sacked) {
2456 			if (sacked & TCPCB_RETRANS) {
2457 				if (sacked & TCPCB_SACKED_RETRANS)
2458 					tp->retrans_out -= tcp_skb_pcount(skb);
2459 				acked |= FLAG_RETRANS_DATA_ACKED;
2460 				seq_rtt = -1;
2461 			} else if (seq_rtt < 0) {
2462 				seq_rtt = now - scb->when;
2463 				last_ackt = skb->tstamp;
2464 			}
2465 			if (sacked & TCPCB_SACKED_ACKED)
2466 				tp->sacked_out -= tcp_skb_pcount(skb);
2467 			if (sacked & TCPCB_LOST)
2468 				tp->lost_out -= tcp_skb_pcount(skb);
2469 			if (sacked & TCPCB_URG) {
2470 				if (tp->urg_mode &&
2471 				    !before(scb->end_seq, tp->snd_up))
2472 					tp->urg_mode = 0;
2473 			}
2474 		} else if (seq_rtt < 0) {
2475 			seq_rtt = now - scb->when;
2476 			last_ackt = skb->tstamp;
2477 		}
2478 		tcp_dec_pcount_approx(&tp->fackets_out, skb);
2479 		tcp_packets_out_dec(tp, skb);
2480 		tcp_unlink_write_queue(skb, sk);
2481 		sk_stream_free_skb(sk, skb);
2482 		clear_all_retrans_hints(tp);
2483 	}
2484 
2485 	if (acked&FLAG_ACKED) {
2486 		u32 pkts_acked = prior_packets - tp->packets_out;
2487 		const struct tcp_congestion_ops *ca_ops
2488 			= inet_csk(sk)->icsk_ca_ops;
2489 
2490 		tcp_ack_update_rtt(sk, acked, seq_rtt);
2491 		tcp_ack_packets_out(sk);
2492 
2493 		/* Is the ACK triggering packet unambiguous? */
2494 		if (acked & FLAG_RETRANS_DATA_ACKED)
2495 			last_ackt = net_invalid_timestamp();
2496 
2497 		if (ca_ops->pkts_acked)
2498 			ca_ops->pkts_acked(sk, pkts_acked, last_ackt);
2499 	}
2500 
2501 #if FASTRETRANS_DEBUG > 0
2502 	BUG_TRAP((int)tp->sacked_out >= 0);
2503 	BUG_TRAP((int)tp->lost_out >= 0);
2504 	BUG_TRAP((int)tp->retrans_out >= 0);
2505 	if (!tp->packets_out && tp->rx_opt.sack_ok) {
2506 		const struct inet_connection_sock *icsk = inet_csk(sk);
2507 		if (tp->lost_out) {
2508 			printk(KERN_DEBUG "Leak l=%u %d\n",
2509 			       tp->lost_out, icsk->icsk_ca_state);
2510 			tp->lost_out = 0;
2511 		}
2512 		if (tp->sacked_out) {
2513 			printk(KERN_DEBUG "Leak s=%u %d\n",
2514 			       tp->sacked_out, icsk->icsk_ca_state);
2515 			tp->sacked_out = 0;
2516 		}
2517 		if (tp->retrans_out) {
2518 			printk(KERN_DEBUG "Leak r=%u %d\n",
2519 			       tp->retrans_out, icsk->icsk_ca_state);
2520 			tp->retrans_out = 0;
2521 		}
2522 	}
2523 #endif
2524 	*seq_rtt_p = seq_rtt;
2525 	return acked;
2526 }
2527 
2528 static void tcp_ack_probe(struct sock *sk)
2529 {
2530 	const struct tcp_sock *tp = tcp_sk(sk);
2531 	struct inet_connection_sock *icsk = inet_csk(sk);
2532 
2533 	/* Was it a usable window open? */
2534 
2535 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2536 		   tp->snd_una + tp->snd_wnd)) {
2537 		icsk->icsk_backoff = 0;
2538 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2539 		/* Socket must be waked up by subsequent tcp_data_snd_check().
2540 		 * This function is not for random using!
2541 		 */
2542 	} else {
2543 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2544 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2545 					  TCP_RTO_MAX);
2546 	}
2547 }
2548 
2549 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2550 {
2551 	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2552 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2553 }
2554 
2555 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2556 {
2557 	const struct tcp_sock *tp = tcp_sk(sk);
2558 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2559 		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2560 }
2561 
2562 /* Check that window update is acceptable.
2563  * The function assumes that snd_una<=ack<=snd_next.
2564  */
2565 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2566 					const u32 ack_seq, const u32 nwin)
2567 {
2568 	return (after(ack, tp->snd_una) ||
2569 		after(ack_seq, tp->snd_wl1) ||
2570 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2571 }
2572 
2573 /* Update our send window.
2574  *
2575  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2576  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2577  */
2578 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2579 				 u32 ack_seq)
2580 {
2581 	struct tcp_sock *tp = tcp_sk(sk);
2582 	int flag = 0;
2583 	u32 nwin = ntohs(tcp_hdr(skb)->window);
2584 
2585 	if (likely(!tcp_hdr(skb)->syn))
2586 		nwin <<= tp->rx_opt.snd_wscale;
2587 
2588 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2589 		flag |= FLAG_WIN_UPDATE;
2590 		tcp_update_wl(tp, ack, ack_seq);
2591 
2592 		if (tp->snd_wnd != nwin) {
2593 			tp->snd_wnd = nwin;
2594 
2595 			/* Note, it is the only place, where
2596 			 * fast path is recovered for sending TCP.
2597 			 */
2598 			tp->pred_flags = 0;
2599 			tcp_fast_path_check(sk);
2600 
2601 			if (nwin > tp->max_window) {
2602 				tp->max_window = nwin;
2603 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2604 			}
2605 		}
2606 	}
2607 
2608 	tp->snd_una = ack;
2609 
2610 	return flag;
2611 }
2612 
2613 /* A very conservative spurious RTO response algorithm: reduce cwnd and
2614  * continue in congestion avoidance.
2615  */
2616 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2617 {
2618 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2619 	tp->snd_cwnd_cnt = 0;
2620 	TCP_ECN_queue_cwr(tp);
2621 	tcp_moderate_cwnd(tp);
2622 }
2623 
2624 /* A conservative spurious RTO response algorithm: reduce cwnd using
2625  * rate halving and continue in congestion avoidance.
2626  */
2627 static void tcp_ratehalving_spur_to_response(struct sock *sk)
2628 {
2629 	tcp_enter_cwr(sk, 0);
2630 }
2631 
2632 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
2633 {
2634 	if (flag&FLAG_ECE)
2635 		tcp_ratehalving_spur_to_response(sk);
2636 	else
2637 		tcp_undo_cwr(sk, 1);
2638 }
2639 
2640 /* F-RTO spurious RTO detection algorithm (RFC4138)
2641  *
2642  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2643  * comments). State (ACK number) is kept in frto_counter. When ACK advances
2644  * window (but not to or beyond highest sequence sent before RTO):
2645  *   On First ACK,  send two new segments out.
2646  *   On Second ACK, RTO was likely spurious. Do spurious response (response
2647  *                  algorithm is not part of the F-RTO detection algorithm
2648  *                  given in RFC4138 but can be selected separately).
2649  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
2650  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
2651  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
2652  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
2653  *
2654  * Rationale: if the RTO was spurious, new ACKs should arrive from the
2655  * original window even after we transmit two new data segments.
2656  *
2657  * SACK version:
2658  *   on first step, wait until first cumulative ACK arrives, then move to
2659  *   the second step. In second step, the next ACK decides.
2660  *
2661  * F-RTO is implemented (mainly) in four functions:
2662  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
2663  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2664  *     called when tcp_use_frto() showed green light
2665  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2666  *   - tcp_enter_frto_loss() is called if there is not enough evidence
2667  *     to prove that the RTO is indeed spurious. It transfers the control
2668  *     from F-RTO to the conventional RTO recovery
2669  */
2670 static int tcp_process_frto(struct sock *sk, u32 prior_snd_una, int flag)
2671 {
2672 	struct tcp_sock *tp = tcp_sk(sk);
2673 
2674 	tcp_sync_left_out(tp);
2675 
2676 	/* Duplicate the behavior from Loss state (fastretrans_alert) */
2677 	if (flag&FLAG_DATA_ACKED)
2678 		inet_csk(sk)->icsk_retransmits = 0;
2679 
2680 	if (!before(tp->snd_una, tp->frto_highmark)) {
2681 		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
2682 		return 1;
2683 	}
2684 
2685 	if (!IsSackFrto() || IsReno(tp)) {
2686 		/* RFC4138 shortcoming in step 2; should also have case c):
2687 		 * ACK isn't duplicate nor advances window, e.g., opposite dir
2688 		 * data, winupdate
2689 		 */
2690 		if ((tp->snd_una == prior_snd_una) && (flag&FLAG_NOT_DUP) &&
2691 		    !(flag&FLAG_FORWARD_PROGRESS))
2692 			return 1;
2693 
2694 		if (!(flag&FLAG_DATA_ACKED)) {
2695 			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
2696 					    flag);
2697 			return 1;
2698 		}
2699 	} else {
2700 		if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
2701 			/* Prevent sending of new data. */
2702 			tp->snd_cwnd = min(tp->snd_cwnd,
2703 					   tcp_packets_in_flight(tp));
2704 			return 1;
2705 		}
2706 
2707 		if ((tp->frto_counter >= 2) &&
2708 		    (!(flag&FLAG_FORWARD_PROGRESS) ||
2709 		     ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
2710 			/* RFC4138 shortcoming (see comment above) */
2711 			if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
2712 				return 1;
2713 
2714 			tcp_enter_frto_loss(sk, 3, flag);
2715 			return 1;
2716 		}
2717 	}
2718 
2719 	if (tp->frto_counter == 1) {
2720 		/* Sending of the next skb must be allowed or no FRTO */
2721 		if (!tcp_send_head(sk) ||
2722 		    after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2723 				     tp->snd_una + tp->snd_wnd)) {
2724 			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3),
2725 					    flag);
2726 			return 1;
2727 		}
2728 
2729 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2730 		tp->frto_counter = 2;
2731 		return 1;
2732 	} else {
2733 		switch (sysctl_tcp_frto_response) {
2734 		case 2:
2735 			tcp_undo_spur_to_response(sk, flag);
2736 			break;
2737 		case 1:
2738 			tcp_conservative_spur_to_response(tp);
2739 			break;
2740 		default:
2741 			tcp_ratehalving_spur_to_response(sk);
2742 			break;
2743 		}
2744 		tp->frto_counter = 0;
2745 	}
2746 	return 0;
2747 }
2748 
2749 /* This routine deals with incoming acks, but not outgoing ones. */
2750 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2751 {
2752 	struct inet_connection_sock *icsk = inet_csk(sk);
2753 	struct tcp_sock *tp = tcp_sk(sk);
2754 	u32 prior_snd_una = tp->snd_una;
2755 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
2756 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
2757 	u32 prior_in_flight;
2758 	s32 seq_rtt;
2759 	int prior_packets;
2760 	int frto_cwnd = 0;
2761 
2762 	/* If the ack is newer than sent or older than previous acks
2763 	 * then we can probably ignore it.
2764 	 */
2765 	if (after(ack, tp->snd_nxt))
2766 		goto uninteresting_ack;
2767 
2768 	if (before(ack, prior_snd_una))
2769 		goto old_ack;
2770 
2771 	if (sysctl_tcp_abc) {
2772 		if (icsk->icsk_ca_state < TCP_CA_CWR)
2773 			tp->bytes_acked += ack - prior_snd_una;
2774 		else if (icsk->icsk_ca_state == TCP_CA_Loss)
2775 			/* we assume just one segment left network */
2776 			tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2777 	}
2778 
2779 	if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2780 		/* Window is constant, pure forward advance.
2781 		 * No more checks are required.
2782 		 * Note, we use the fact that SND.UNA>=SND.WL2.
2783 		 */
2784 		tcp_update_wl(tp, ack, ack_seq);
2785 		tp->snd_una = ack;
2786 		flag |= FLAG_WIN_UPDATE;
2787 
2788 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2789 
2790 		NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2791 	} else {
2792 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2793 			flag |= FLAG_DATA;
2794 		else
2795 			NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2796 
2797 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
2798 
2799 		if (TCP_SKB_CB(skb)->sacked)
2800 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2801 
2802 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
2803 			flag |= FLAG_ECE;
2804 
2805 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2806 	}
2807 
2808 	/* We passed data and got it acked, remove any soft error
2809 	 * log. Something worked...
2810 	 */
2811 	sk->sk_err_soft = 0;
2812 	tp->rcv_tstamp = tcp_time_stamp;
2813 	prior_packets = tp->packets_out;
2814 	if (!prior_packets)
2815 		goto no_queue;
2816 
2817 	prior_in_flight = tcp_packets_in_flight(tp);
2818 
2819 	/* See if we can take anything off of the retransmit queue. */
2820 	flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
2821 
2822 	if (tp->frto_counter)
2823 		frto_cwnd = tcp_process_frto(sk, prior_snd_una, flag);
2824 
2825 	if (tcp_ack_is_dubious(sk, flag)) {
2826 		/* Advance CWND, if state allows this. */
2827 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
2828 		    tcp_may_raise_cwnd(sk, flag))
2829 			tcp_cong_avoid(sk, ack, prior_in_flight, 0);
2830 		tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2831 	} else {
2832 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
2833 			tcp_cong_avoid(sk, ack, prior_in_flight, 1);
2834 	}
2835 
2836 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2837 		dst_confirm(sk->sk_dst_cache);
2838 
2839 	return 1;
2840 
2841 no_queue:
2842 	icsk->icsk_probes_out = 0;
2843 
2844 	/* If this ack opens up a zero window, clear backoff.  It was
2845 	 * being used to time the probes, and is probably far higher than
2846 	 * it needs to be for normal retransmission.
2847 	 */
2848 	if (tcp_send_head(sk))
2849 		tcp_ack_probe(sk);
2850 	return 1;
2851 
2852 old_ack:
2853 	if (TCP_SKB_CB(skb)->sacked)
2854 		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2855 
2856 uninteresting_ack:
2857 	SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2858 	return 0;
2859 }
2860 
2861 
2862 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2863  * But, this can also be called on packets in the established flow when
2864  * the fast version below fails.
2865  */
2866 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2867 {
2868 	unsigned char *ptr;
2869 	struct tcphdr *th = tcp_hdr(skb);
2870 	int length=(th->doff*4)-sizeof(struct tcphdr);
2871 
2872 	ptr = (unsigned char *)(th + 1);
2873 	opt_rx->saw_tstamp = 0;
2874 
2875 	while (length > 0) {
2876 		int opcode=*ptr++;
2877 		int opsize;
2878 
2879 		switch (opcode) {
2880 			case TCPOPT_EOL:
2881 				return;
2882 			case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
2883 				length--;
2884 				continue;
2885 			default:
2886 				opsize=*ptr++;
2887 				if (opsize < 2) /* "silly options" */
2888 					return;
2889 				if (opsize > length)
2890 					return;	/* don't parse partial options */
2891 				switch (opcode) {
2892 				case TCPOPT_MSS:
2893 					if (opsize==TCPOLEN_MSS && th->syn && !estab) {
2894 						u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
2895 						if (in_mss) {
2896 							if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2897 								in_mss = opt_rx->user_mss;
2898 							opt_rx->mss_clamp = in_mss;
2899 						}
2900 					}
2901 					break;
2902 				case TCPOPT_WINDOW:
2903 					if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
2904 						if (sysctl_tcp_window_scaling) {
2905 							__u8 snd_wscale = *(__u8 *) ptr;
2906 							opt_rx->wscale_ok = 1;
2907 							if (snd_wscale > 14) {
2908 								if (net_ratelimit())
2909 									printk(KERN_INFO "tcp_parse_options: Illegal window "
2910 									       "scaling value %d >14 received.\n",
2911 									       snd_wscale);
2912 								snd_wscale = 14;
2913 							}
2914 							opt_rx->snd_wscale = snd_wscale;
2915 						}
2916 					break;
2917 				case TCPOPT_TIMESTAMP:
2918 					if (opsize==TCPOLEN_TIMESTAMP) {
2919 						if ((estab && opt_rx->tstamp_ok) ||
2920 						    (!estab && sysctl_tcp_timestamps)) {
2921 							opt_rx->saw_tstamp = 1;
2922 							opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
2923 							opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
2924 						}
2925 					}
2926 					break;
2927 				case TCPOPT_SACK_PERM:
2928 					if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2929 						if (sysctl_tcp_sack) {
2930 							opt_rx->sack_ok = 1;
2931 							tcp_sack_reset(opt_rx);
2932 						}
2933 					}
2934 					break;
2935 
2936 				case TCPOPT_SACK:
2937 					if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2938 					   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2939 					   opt_rx->sack_ok) {
2940 						TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2941 					}
2942 					break;
2943 #ifdef CONFIG_TCP_MD5SIG
2944 				case TCPOPT_MD5SIG:
2945 					/*
2946 					 * The MD5 Hash has already been
2947 					 * checked (see tcp_v{4,6}_do_rcv()).
2948 					 */
2949 					break;
2950 #endif
2951 				}
2952 
2953 				ptr+=opsize-2;
2954 				length-=opsize;
2955 		}
2956 	}
2957 }
2958 
2959 /* Fast parse options. This hopes to only see timestamps.
2960  * If it is wrong it falls back on tcp_parse_options().
2961  */
2962 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2963 				  struct tcp_sock *tp)
2964 {
2965 	if (th->doff == sizeof(struct tcphdr)>>2) {
2966 		tp->rx_opt.saw_tstamp = 0;
2967 		return 0;
2968 	} else if (tp->rx_opt.tstamp_ok &&
2969 		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2970 		__be32 *ptr = (__be32 *)(th + 1);
2971 		if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2972 				  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2973 			tp->rx_opt.saw_tstamp = 1;
2974 			++ptr;
2975 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
2976 			++ptr;
2977 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2978 			return 1;
2979 		}
2980 	}
2981 	tcp_parse_options(skb, &tp->rx_opt, 1);
2982 	return 1;
2983 }
2984 
2985 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2986 {
2987 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2988 	tp->rx_opt.ts_recent_stamp = get_seconds();
2989 }
2990 
2991 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2992 {
2993 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2994 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
2995 		 * extra check below makes sure this can only happen
2996 		 * for pure ACK frames.  -DaveM
2997 		 *
2998 		 * Not only, also it occurs for expired timestamps.
2999 		 */
3000 
3001 		if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3002 		   get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3003 			tcp_store_ts_recent(tp);
3004 	}
3005 }
3006 
3007 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3008  *
3009  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3010  * it can pass through stack. So, the following predicate verifies that
3011  * this segment is not used for anything but congestion avoidance or
3012  * fast retransmit. Moreover, we even are able to eliminate most of such
3013  * second order effects, if we apply some small "replay" window (~RTO)
3014  * to timestamp space.
3015  *
3016  * All these measures still do not guarantee that we reject wrapped ACKs
3017  * on networks with high bandwidth, when sequence space is recycled fastly,
3018  * but it guarantees that such events will be very rare and do not affect
3019  * connection seriously. This doesn't look nice, but alas, PAWS is really
3020  * buggy extension.
3021  *
3022  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3023  * states that events when retransmit arrives after original data are rare.
3024  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3025  * the biggest problem on large power networks even with minor reordering.
3026  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3027  * up to bandwidth of 18Gigabit/sec. 8) ]
3028  */
3029 
3030 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3031 {
3032 	struct tcp_sock *tp = tcp_sk(sk);
3033 	struct tcphdr *th = tcp_hdr(skb);
3034 	u32 seq = TCP_SKB_CB(skb)->seq;
3035 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3036 
3037 	return (/* 1. Pure ACK with correct sequence number. */
3038 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3039 
3040 		/* 2. ... and duplicate ACK. */
3041 		ack == tp->snd_una &&
3042 
3043 		/* 3. ... and does not update window. */
3044 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3045 
3046 		/* 4. ... and sits in replay window. */
3047 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3048 }
3049 
3050 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
3051 {
3052 	const struct tcp_sock *tp = tcp_sk(sk);
3053 	return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3054 		get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3055 		!tcp_disordered_ack(sk, skb));
3056 }
3057 
3058 /* Check segment sequence number for validity.
3059  *
3060  * Segment controls are considered valid, if the segment
3061  * fits to the window after truncation to the window. Acceptability
3062  * of data (and SYN, FIN, of course) is checked separately.
3063  * See tcp_data_queue(), for example.
3064  *
3065  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3066  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3067  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3068  * (borrowed from freebsd)
3069  */
3070 
3071 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3072 {
3073 	return	!before(end_seq, tp->rcv_wup) &&
3074 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3075 }
3076 
3077 /* When we get a reset we do this. */
3078 static void tcp_reset(struct sock *sk)
3079 {
3080 	/* We want the right error as BSD sees it (and indeed as we do). */
3081 	switch (sk->sk_state) {
3082 		case TCP_SYN_SENT:
3083 			sk->sk_err = ECONNREFUSED;
3084 			break;
3085 		case TCP_CLOSE_WAIT:
3086 			sk->sk_err = EPIPE;
3087 			break;
3088 		case TCP_CLOSE:
3089 			return;
3090 		default:
3091 			sk->sk_err = ECONNRESET;
3092 	}
3093 
3094 	if (!sock_flag(sk, SOCK_DEAD))
3095 		sk->sk_error_report(sk);
3096 
3097 	tcp_done(sk);
3098 }
3099 
3100 /*
3101  * 	Process the FIN bit. This now behaves as it is supposed to work
3102  *	and the FIN takes effect when it is validly part of sequence
3103  *	space. Not before when we get holes.
3104  *
3105  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3106  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3107  *	TIME-WAIT)
3108  *
3109  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3110  *	close and we go into CLOSING (and later onto TIME-WAIT)
3111  *
3112  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3113  */
3114 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3115 {
3116 	struct tcp_sock *tp = tcp_sk(sk);
3117 
3118 	inet_csk_schedule_ack(sk);
3119 
3120 	sk->sk_shutdown |= RCV_SHUTDOWN;
3121 	sock_set_flag(sk, SOCK_DONE);
3122 
3123 	switch (sk->sk_state) {
3124 		case TCP_SYN_RECV:
3125 		case TCP_ESTABLISHED:
3126 			/* Move to CLOSE_WAIT */
3127 			tcp_set_state(sk, TCP_CLOSE_WAIT);
3128 			inet_csk(sk)->icsk_ack.pingpong = 1;
3129 			break;
3130 
3131 		case TCP_CLOSE_WAIT:
3132 		case TCP_CLOSING:
3133 			/* Received a retransmission of the FIN, do
3134 			 * nothing.
3135 			 */
3136 			break;
3137 		case TCP_LAST_ACK:
3138 			/* RFC793: Remain in the LAST-ACK state. */
3139 			break;
3140 
3141 		case TCP_FIN_WAIT1:
3142 			/* This case occurs when a simultaneous close
3143 			 * happens, we must ack the received FIN and
3144 			 * enter the CLOSING state.
3145 			 */
3146 			tcp_send_ack(sk);
3147 			tcp_set_state(sk, TCP_CLOSING);
3148 			break;
3149 		case TCP_FIN_WAIT2:
3150 			/* Received a FIN -- send ACK and enter TIME_WAIT. */
3151 			tcp_send_ack(sk);
3152 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3153 			break;
3154 		default:
3155 			/* Only TCP_LISTEN and TCP_CLOSE are left, in these
3156 			 * cases we should never reach this piece of code.
3157 			 */
3158 			printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3159 			       __FUNCTION__, sk->sk_state);
3160 			break;
3161 	}
3162 
3163 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
3164 	 * Probably, we should reset in this case. For now drop them.
3165 	 */
3166 	__skb_queue_purge(&tp->out_of_order_queue);
3167 	if (tp->rx_opt.sack_ok)
3168 		tcp_sack_reset(&tp->rx_opt);
3169 	sk_stream_mem_reclaim(sk);
3170 
3171 	if (!sock_flag(sk, SOCK_DEAD)) {
3172 		sk->sk_state_change(sk);
3173 
3174 		/* Do not send POLL_HUP for half duplex close. */
3175 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
3176 		    sk->sk_state == TCP_CLOSE)
3177 			sk_wake_async(sk, 1, POLL_HUP);
3178 		else
3179 			sk_wake_async(sk, 1, POLL_IN);
3180 	}
3181 }
3182 
3183 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3184 {
3185 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3186 		if (before(seq, sp->start_seq))
3187 			sp->start_seq = seq;
3188 		if (after(end_seq, sp->end_seq))
3189 			sp->end_seq = end_seq;
3190 		return 1;
3191 	}
3192 	return 0;
3193 }
3194 
3195 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3196 {
3197 	if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3198 		if (before(seq, tp->rcv_nxt))
3199 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3200 		else
3201 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3202 
3203 		tp->rx_opt.dsack = 1;
3204 		tp->duplicate_sack[0].start_seq = seq;
3205 		tp->duplicate_sack[0].end_seq = end_seq;
3206 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3207 	}
3208 }
3209 
3210 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3211 {
3212 	if (!tp->rx_opt.dsack)
3213 		tcp_dsack_set(tp, seq, end_seq);
3214 	else
3215 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3216 }
3217 
3218 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3219 {
3220 	struct tcp_sock *tp = tcp_sk(sk);
3221 
3222 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3223 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3224 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3225 		tcp_enter_quickack_mode(sk);
3226 
3227 		if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3228 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3229 
3230 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3231 				end_seq = tp->rcv_nxt;
3232 			tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3233 		}
3234 	}
3235 
3236 	tcp_send_ack(sk);
3237 }
3238 
3239 /* These routines update the SACK block as out-of-order packets arrive or
3240  * in-order packets close up the sequence space.
3241  */
3242 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3243 {
3244 	int this_sack;
3245 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3246 	struct tcp_sack_block *swalk = sp+1;
3247 
3248 	/* See if the recent change to the first SACK eats into
3249 	 * or hits the sequence space of other SACK blocks, if so coalesce.
3250 	 */
3251 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3252 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3253 			int i;
3254 
3255 			/* Zap SWALK, by moving every further SACK up by one slot.
3256 			 * Decrease num_sacks.
3257 			 */
3258 			tp->rx_opt.num_sacks--;
3259 			tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3260 			for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
3261 				sp[i] = sp[i+1];
3262 			continue;
3263 		}
3264 		this_sack++, swalk++;
3265 	}
3266 }
3267 
3268 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3269 {
3270 	__u32 tmp;
3271 
3272 	tmp = sack1->start_seq;
3273 	sack1->start_seq = sack2->start_seq;
3274 	sack2->start_seq = tmp;
3275 
3276 	tmp = sack1->end_seq;
3277 	sack1->end_seq = sack2->end_seq;
3278 	sack2->end_seq = tmp;
3279 }
3280 
3281 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3282 {
3283 	struct tcp_sock *tp = tcp_sk(sk);
3284 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3285 	int cur_sacks = tp->rx_opt.num_sacks;
3286 	int this_sack;
3287 
3288 	if (!cur_sacks)
3289 		goto new_sack;
3290 
3291 	for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3292 		if (tcp_sack_extend(sp, seq, end_seq)) {
3293 			/* Rotate this_sack to the first one. */
3294 			for (; this_sack>0; this_sack--, sp--)
3295 				tcp_sack_swap(sp, sp-1);
3296 			if (cur_sacks > 1)
3297 				tcp_sack_maybe_coalesce(tp);
3298 			return;
3299 		}
3300 	}
3301 
3302 	/* Could not find an adjacent existing SACK, build a new one,
3303 	 * put it at the front, and shift everyone else down.  We
3304 	 * always know there is at least one SACK present already here.
3305 	 *
3306 	 * If the sack array is full, forget about the last one.
3307 	 */
3308 	if (this_sack >= 4) {
3309 		this_sack--;
3310 		tp->rx_opt.num_sacks--;
3311 		sp--;
3312 	}
3313 	for (; this_sack > 0; this_sack--, sp--)
3314 		*sp = *(sp-1);
3315 
3316 new_sack:
3317 	/* Build the new head SACK, and we're done. */
3318 	sp->start_seq = seq;
3319 	sp->end_seq = end_seq;
3320 	tp->rx_opt.num_sacks++;
3321 	tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3322 }
3323 
3324 /* RCV.NXT advances, some SACKs should be eaten. */
3325 
3326 static void tcp_sack_remove(struct tcp_sock *tp)
3327 {
3328 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3329 	int num_sacks = tp->rx_opt.num_sacks;
3330 	int this_sack;
3331 
3332 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3333 	if (skb_queue_empty(&tp->out_of_order_queue)) {
3334 		tp->rx_opt.num_sacks = 0;
3335 		tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3336 		return;
3337 	}
3338 
3339 	for (this_sack = 0; this_sack < num_sacks; ) {
3340 		/* Check if the start of the sack is covered by RCV.NXT. */
3341 		if (!before(tp->rcv_nxt, sp->start_seq)) {
3342 			int i;
3343 
3344 			/* RCV.NXT must cover all the block! */
3345 			BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3346 
3347 			/* Zap this SACK, by moving forward any other SACKS. */
3348 			for (i=this_sack+1; i < num_sacks; i++)
3349 				tp->selective_acks[i-1] = tp->selective_acks[i];
3350 			num_sacks--;
3351 			continue;
3352 		}
3353 		this_sack++;
3354 		sp++;
3355 	}
3356 	if (num_sacks != tp->rx_opt.num_sacks) {
3357 		tp->rx_opt.num_sacks = num_sacks;
3358 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3359 	}
3360 }
3361 
3362 /* This one checks to see if we can put data from the
3363  * out_of_order queue into the receive_queue.
3364  */
3365 static void tcp_ofo_queue(struct sock *sk)
3366 {
3367 	struct tcp_sock *tp = tcp_sk(sk);
3368 	__u32 dsack_high = tp->rcv_nxt;
3369 	struct sk_buff *skb;
3370 
3371 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3372 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3373 			break;
3374 
3375 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3376 			__u32 dsack = dsack_high;
3377 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3378 				dsack_high = TCP_SKB_CB(skb)->end_seq;
3379 			tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3380 		}
3381 
3382 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3383 			SOCK_DEBUG(sk, "ofo packet was already received \n");
3384 			__skb_unlink(skb, &tp->out_of_order_queue);
3385 			__kfree_skb(skb);
3386 			continue;
3387 		}
3388 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3389 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3390 			   TCP_SKB_CB(skb)->end_seq);
3391 
3392 		__skb_unlink(skb, &tp->out_of_order_queue);
3393 		__skb_queue_tail(&sk->sk_receive_queue, skb);
3394 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3395 		if (tcp_hdr(skb)->fin)
3396 			tcp_fin(skb, sk, tcp_hdr(skb));
3397 	}
3398 }
3399 
3400 static int tcp_prune_queue(struct sock *sk);
3401 
3402 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3403 {
3404 	struct tcphdr *th = tcp_hdr(skb);
3405 	struct tcp_sock *tp = tcp_sk(sk);
3406 	int eaten = -1;
3407 
3408 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3409 		goto drop;
3410 
3411 	__skb_pull(skb, th->doff*4);
3412 
3413 	TCP_ECN_accept_cwr(tp, skb);
3414 
3415 	if (tp->rx_opt.dsack) {
3416 		tp->rx_opt.dsack = 0;
3417 		tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3418 						    4 - tp->rx_opt.tstamp_ok);
3419 	}
3420 
3421 	/*  Queue data for delivery to the user.
3422 	 *  Packets in sequence go to the receive queue.
3423 	 *  Out of sequence packets to the out_of_order_queue.
3424 	 */
3425 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3426 		if (tcp_receive_window(tp) == 0)
3427 			goto out_of_window;
3428 
3429 		/* Ok. In sequence. In window. */
3430 		if (tp->ucopy.task == current &&
3431 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3432 		    sock_owned_by_user(sk) && !tp->urg_data) {
3433 			int chunk = min_t(unsigned int, skb->len,
3434 							tp->ucopy.len);
3435 
3436 			__set_current_state(TASK_RUNNING);
3437 
3438 			local_bh_enable();
3439 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3440 				tp->ucopy.len -= chunk;
3441 				tp->copied_seq += chunk;
3442 				eaten = (chunk == skb->len && !th->fin);
3443 				tcp_rcv_space_adjust(sk);
3444 			}
3445 			local_bh_disable();
3446 		}
3447 
3448 		if (eaten <= 0) {
3449 queue_and_out:
3450 			if (eaten < 0 &&
3451 			    (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3452 			     !sk_stream_rmem_schedule(sk, skb))) {
3453 				if (tcp_prune_queue(sk) < 0 ||
3454 				    !sk_stream_rmem_schedule(sk, skb))
3455 					goto drop;
3456 			}
3457 			sk_stream_set_owner_r(skb, sk);
3458 			__skb_queue_tail(&sk->sk_receive_queue, skb);
3459 		}
3460 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3461 		if (skb->len)
3462 			tcp_event_data_recv(sk, skb);
3463 		if (th->fin)
3464 			tcp_fin(skb, sk, th);
3465 
3466 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
3467 			tcp_ofo_queue(sk);
3468 
3469 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
3470 			 * gap in queue is filled.
3471 			 */
3472 			if (skb_queue_empty(&tp->out_of_order_queue))
3473 				inet_csk(sk)->icsk_ack.pingpong = 0;
3474 		}
3475 
3476 		if (tp->rx_opt.num_sacks)
3477 			tcp_sack_remove(tp);
3478 
3479 		tcp_fast_path_check(sk);
3480 
3481 		if (eaten > 0)
3482 			__kfree_skb(skb);
3483 		else if (!sock_flag(sk, SOCK_DEAD))
3484 			sk->sk_data_ready(sk, 0);
3485 		return;
3486 	}
3487 
3488 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3489 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
3490 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3491 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3492 
3493 out_of_window:
3494 		tcp_enter_quickack_mode(sk);
3495 		inet_csk_schedule_ack(sk);
3496 drop:
3497 		__kfree_skb(skb);
3498 		return;
3499 	}
3500 
3501 	/* Out of window. F.e. zero window probe. */
3502 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3503 		goto out_of_window;
3504 
3505 	tcp_enter_quickack_mode(sk);
3506 
3507 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3508 		/* Partial packet, seq < rcv_next < end_seq */
3509 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3510 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3511 			   TCP_SKB_CB(skb)->end_seq);
3512 
3513 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3514 
3515 		/* If window is closed, drop tail of packet. But after
3516 		 * remembering D-SACK for its head made in previous line.
3517 		 */
3518 		if (!tcp_receive_window(tp))
3519 			goto out_of_window;
3520 		goto queue_and_out;
3521 	}
3522 
3523 	TCP_ECN_check_ce(tp, skb);
3524 
3525 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3526 	    !sk_stream_rmem_schedule(sk, skb)) {
3527 		if (tcp_prune_queue(sk) < 0 ||
3528 		    !sk_stream_rmem_schedule(sk, skb))
3529 			goto drop;
3530 	}
3531 
3532 	/* Disable header prediction. */
3533 	tp->pred_flags = 0;
3534 	inet_csk_schedule_ack(sk);
3535 
3536 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3537 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3538 
3539 	sk_stream_set_owner_r(skb, sk);
3540 
3541 	if (!skb_peek(&tp->out_of_order_queue)) {
3542 		/* Initial out of order segment, build 1 SACK. */
3543 		if (tp->rx_opt.sack_ok) {
3544 			tp->rx_opt.num_sacks = 1;
3545 			tp->rx_opt.dsack     = 0;
3546 			tp->rx_opt.eff_sacks = 1;
3547 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3548 			tp->selective_acks[0].end_seq =
3549 						TCP_SKB_CB(skb)->end_seq;
3550 		}
3551 		__skb_queue_head(&tp->out_of_order_queue,skb);
3552 	} else {
3553 		struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3554 		u32 seq = TCP_SKB_CB(skb)->seq;
3555 		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3556 
3557 		if (seq == TCP_SKB_CB(skb1)->end_seq) {
3558 			__skb_append(skb1, skb, &tp->out_of_order_queue);
3559 
3560 			if (!tp->rx_opt.num_sacks ||
3561 			    tp->selective_acks[0].end_seq != seq)
3562 				goto add_sack;
3563 
3564 			/* Common case: data arrive in order after hole. */
3565 			tp->selective_acks[0].end_seq = end_seq;
3566 			return;
3567 		}
3568 
3569 		/* Find place to insert this segment. */
3570 		do {
3571 			if (!after(TCP_SKB_CB(skb1)->seq, seq))
3572 				break;
3573 		} while ((skb1 = skb1->prev) !=
3574 			 (struct sk_buff*)&tp->out_of_order_queue);
3575 
3576 		/* Do skb overlap to previous one? */
3577 		if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3578 		    before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3579 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3580 				/* All the bits are present. Drop. */
3581 				__kfree_skb(skb);
3582 				tcp_dsack_set(tp, seq, end_seq);
3583 				goto add_sack;
3584 			}
3585 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3586 				/* Partial overlap. */
3587 				tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3588 			} else {
3589 				skb1 = skb1->prev;
3590 			}
3591 		}
3592 		__skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3593 
3594 		/* And clean segments covered by new one as whole. */
3595 		while ((skb1 = skb->next) !=
3596 		       (struct sk_buff*)&tp->out_of_order_queue &&
3597 		       after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3598 		       if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3599 			       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3600 			       break;
3601 		       }
3602 		       __skb_unlink(skb1, &tp->out_of_order_queue);
3603 		       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3604 		       __kfree_skb(skb1);
3605 		}
3606 
3607 add_sack:
3608 		if (tp->rx_opt.sack_ok)
3609 			tcp_sack_new_ofo_skb(sk, seq, end_seq);
3610 	}
3611 }
3612 
3613 /* Collapse contiguous sequence of skbs head..tail with
3614  * sequence numbers start..end.
3615  * Segments with FIN/SYN are not collapsed (only because this
3616  * simplifies code)
3617  */
3618 static void
3619 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3620 	     struct sk_buff *head, struct sk_buff *tail,
3621 	     u32 start, u32 end)
3622 {
3623 	struct sk_buff *skb;
3624 
3625 	/* First, check that queue is collapsible and find
3626 	 * the point where collapsing can be useful. */
3627 	for (skb = head; skb != tail; ) {
3628 		/* No new bits? It is possible on ofo queue. */
3629 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3630 			struct sk_buff *next = skb->next;
3631 			__skb_unlink(skb, list);
3632 			__kfree_skb(skb);
3633 			NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3634 			skb = next;
3635 			continue;
3636 		}
3637 
3638 		/* The first skb to collapse is:
3639 		 * - not SYN/FIN and
3640 		 * - bloated or contains data before "start" or
3641 		 *   overlaps to the next one.
3642 		 */
3643 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
3644 		    (tcp_win_from_space(skb->truesize) > skb->len ||
3645 		     before(TCP_SKB_CB(skb)->seq, start) ||
3646 		     (skb->next != tail &&
3647 		      TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3648 			break;
3649 
3650 		/* Decided to skip this, advance start seq. */
3651 		start = TCP_SKB_CB(skb)->end_seq;
3652 		skb = skb->next;
3653 	}
3654 	if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
3655 		return;
3656 
3657 	while (before(start, end)) {
3658 		struct sk_buff *nskb;
3659 		int header = skb_headroom(skb);
3660 		int copy = SKB_MAX_ORDER(header, 0);
3661 
3662 		/* Too big header? This can happen with IPv6. */
3663 		if (copy < 0)
3664 			return;
3665 		if (end-start < copy)
3666 			copy = end-start;
3667 		nskb = alloc_skb(copy+header, GFP_ATOMIC);
3668 		if (!nskb)
3669 			return;
3670 
3671 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
3672 		skb_set_network_header(nskb, (skb_network_header(skb) -
3673 					      skb->head));
3674 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
3675 						skb->head));
3676 		skb_reserve(nskb, header);
3677 		memcpy(nskb->head, skb->head, header);
3678 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3679 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3680 		__skb_insert(nskb, skb->prev, skb, list);
3681 		sk_stream_set_owner_r(nskb, sk);
3682 
3683 		/* Copy data, releasing collapsed skbs. */
3684 		while (copy > 0) {
3685 			int offset = start - TCP_SKB_CB(skb)->seq;
3686 			int size = TCP_SKB_CB(skb)->end_seq - start;
3687 
3688 			BUG_ON(offset < 0);
3689 			if (size > 0) {
3690 				size = min(copy, size);
3691 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3692 					BUG();
3693 				TCP_SKB_CB(nskb)->end_seq += size;
3694 				copy -= size;
3695 				start += size;
3696 			}
3697 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3698 				struct sk_buff *next = skb->next;
3699 				__skb_unlink(skb, list);
3700 				__kfree_skb(skb);
3701 				NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3702 				skb = next;
3703 				if (skb == tail ||
3704 				    tcp_hdr(skb)->syn ||
3705 				    tcp_hdr(skb)->fin)
3706 					return;
3707 			}
3708 		}
3709 	}
3710 }
3711 
3712 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3713  * and tcp_collapse() them until all the queue is collapsed.
3714  */
3715 static void tcp_collapse_ofo_queue(struct sock *sk)
3716 {
3717 	struct tcp_sock *tp = tcp_sk(sk);
3718 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3719 	struct sk_buff *head;
3720 	u32 start, end;
3721 
3722 	if (skb == NULL)
3723 		return;
3724 
3725 	start = TCP_SKB_CB(skb)->seq;
3726 	end = TCP_SKB_CB(skb)->end_seq;
3727 	head = skb;
3728 
3729 	for (;;) {
3730 		skb = skb->next;
3731 
3732 		/* Segment is terminated when we see gap or when
3733 		 * we are at the end of all the queue. */
3734 		if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3735 		    after(TCP_SKB_CB(skb)->seq, end) ||
3736 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
3737 			tcp_collapse(sk, &tp->out_of_order_queue,
3738 				     head, skb, start, end);
3739 			head = skb;
3740 			if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3741 				break;
3742 			/* Start new segment */
3743 			start = TCP_SKB_CB(skb)->seq;
3744 			end = TCP_SKB_CB(skb)->end_seq;
3745 		} else {
3746 			if (before(TCP_SKB_CB(skb)->seq, start))
3747 				start = TCP_SKB_CB(skb)->seq;
3748 			if (after(TCP_SKB_CB(skb)->end_seq, end))
3749 				end = TCP_SKB_CB(skb)->end_seq;
3750 		}
3751 	}
3752 }
3753 
3754 /* Reduce allocated memory if we can, trying to get
3755  * the socket within its memory limits again.
3756  *
3757  * Return less than zero if we should start dropping frames
3758  * until the socket owning process reads some of the data
3759  * to stabilize the situation.
3760  */
3761 static int tcp_prune_queue(struct sock *sk)
3762 {
3763 	struct tcp_sock *tp = tcp_sk(sk);
3764 
3765 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3766 
3767 	NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3768 
3769 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3770 		tcp_clamp_window(sk);
3771 	else if (tcp_memory_pressure)
3772 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3773 
3774 	tcp_collapse_ofo_queue(sk);
3775 	tcp_collapse(sk, &sk->sk_receive_queue,
3776 		     sk->sk_receive_queue.next,
3777 		     (struct sk_buff*)&sk->sk_receive_queue,
3778 		     tp->copied_seq, tp->rcv_nxt);
3779 	sk_stream_mem_reclaim(sk);
3780 
3781 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3782 		return 0;
3783 
3784 	/* Collapsing did not help, destructive actions follow.
3785 	 * This must not ever occur. */
3786 
3787 	/* First, purge the out_of_order queue. */
3788 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
3789 		NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3790 		__skb_queue_purge(&tp->out_of_order_queue);
3791 
3792 		/* Reset SACK state.  A conforming SACK implementation will
3793 		 * do the same at a timeout based retransmit.  When a connection
3794 		 * is in a sad state like this, we care only about integrity
3795 		 * of the connection not performance.
3796 		 */
3797 		if (tp->rx_opt.sack_ok)
3798 			tcp_sack_reset(&tp->rx_opt);
3799 		sk_stream_mem_reclaim(sk);
3800 	}
3801 
3802 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3803 		return 0;
3804 
3805 	/* If we are really being abused, tell the caller to silently
3806 	 * drop receive data on the floor.  It will get retransmitted
3807 	 * and hopefully then we'll have sufficient space.
3808 	 */
3809 	NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3810 
3811 	/* Massive buffer overcommit. */
3812 	tp->pred_flags = 0;
3813 	return -1;
3814 }
3815 
3816 
3817 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3818  * As additional protections, we do not touch cwnd in retransmission phases,
3819  * and if application hit its sndbuf limit recently.
3820  */
3821 void tcp_cwnd_application_limited(struct sock *sk)
3822 {
3823 	struct tcp_sock *tp = tcp_sk(sk);
3824 
3825 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
3826 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3827 		/* Limited by application or receiver window. */
3828 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
3829 		u32 win_used = max(tp->snd_cwnd_used, init_win);
3830 		if (win_used < tp->snd_cwnd) {
3831 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
3832 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3833 		}
3834 		tp->snd_cwnd_used = 0;
3835 	}
3836 	tp->snd_cwnd_stamp = tcp_time_stamp;
3837 }
3838 
3839 static int tcp_should_expand_sndbuf(struct sock *sk)
3840 {
3841 	struct tcp_sock *tp = tcp_sk(sk);
3842 
3843 	/* If the user specified a specific send buffer setting, do
3844 	 * not modify it.
3845 	 */
3846 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3847 		return 0;
3848 
3849 	/* If we are under global TCP memory pressure, do not expand.  */
3850 	if (tcp_memory_pressure)
3851 		return 0;
3852 
3853 	/* If we are under soft global TCP memory pressure, do not expand.  */
3854 	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3855 		return 0;
3856 
3857 	/* If we filled the congestion window, do not expand.  */
3858 	if (tp->packets_out >= tp->snd_cwnd)
3859 		return 0;
3860 
3861 	return 1;
3862 }
3863 
3864 /* When incoming ACK allowed to free some skb from write_queue,
3865  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3866  * on the exit from tcp input handler.
3867  *
3868  * PROBLEM: sndbuf expansion does not work well with largesend.
3869  */
3870 static void tcp_new_space(struct sock *sk)
3871 {
3872 	struct tcp_sock *tp = tcp_sk(sk);
3873 
3874 	if (tcp_should_expand_sndbuf(sk)) {
3875 		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3876 			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3877 		    demanded = max_t(unsigned int, tp->snd_cwnd,
3878 						   tp->reordering + 1);
3879 		sndmem *= 2*demanded;
3880 		if (sndmem > sk->sk_sndbuf)
3881 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3882 		tp->snd_cwnd_stamp = tcp_time_stamp;
3883 	}
3884 
3885 	sk->sk_write_space(sk);
3886 }
3887 
3888 static void tcp_check_space(struct sock *sk)
3889 {
3890 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3891 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3892 		if (sk->sk_socket &&
3893 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3894 			tcp_new_space(sk);
3895 	}
3896 }
3897 
3898 static inline void tcp_data_snd_check(struct sock *sk)
3899 {
3900 	tcp_push_pending_frames(sk);
3901 	tcp_check_space(sk);
3902 }
3903 
3904 /*
3905  * Check if sending an ack is needed.
3906  */
3907 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3908 {
3909 	struct tcp_sock *tp = tcp_sk(sk);
3910 
3911 	    /* More than one full frame received... */
3912 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3913 	     /* ... and right edge of window advances far enough.
3914 	      * (tcp_recvmsg() will send ACK otherwise). Or...
3915 	      */
3916 	     && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3917 	    /* We ACK each frame or... */
3918 	    tcp_in_quickack_mode(sk) ||
3919 	    /* We have out of order data. */
3920 	    (ofo_possible &&
3921 	     skb_peek(&tp->out_of_order_queue))) {
3922 		/* Then ack it now */
3923 		tcp_send_ack(sk);
3924 	} else {
3925 		/* Else, send delayed ack. */
3926 		tcp_send_delayed_ack(sk);
3927 	}
3928 }
3929 
3930 static inline void tcp_ack_snd_check(struct sock *sk)
3931 {
3932 	if (!inet_csk_ack_scheduled(sk)) {
3933 		/* We sent a data segment already. */
3934 		return;
3935 	}
3936 	__tcp_ack_snd_check(sk, 1);
3937 }
3938 
3939 /*
3940  *	This routine is only called when we have urgent data
3941  *	signaled. Its the 'slow' part of tcp_urg. It could be
3942  *	moved inline now as tcp_urg is only called from one
3943  *	place. We handle URGent data wrong. We have to - as
3944  *	BSD still doesn't use the correction from RFC961.
3945  *	For 1003.1g we should support a new option TCP_STDURG to permit
3946  *	either form (or just set the sysctl tcp_stdurg).
3947  */
3948 
3949 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3950 {
3951 	struct tcp_sock *tp = tcp_sk(sk);
3952 	u32 ptr = ntohs(th->urg_ptr);
3953 
3954 	if (ptr && !sysctl_tcp_stdurg)
3955 		ptr--;
3956 	ptr += ntohl(th->seq);
3957 
3958 	/* Ignore urgent data that we've already seen and read. */
3959 	if (after(tp->copied_seq, ptr))
3960 		return;
3961 
3962 	/* Do not replay urg ptr.
3963 	 *
3964 	 * NOTE: interesting situation not covered by specs.
3965 	 * Misbehaving sender may send urg ptr, pointing to segment,
3966 	 * which we already have in ofo queue. We are not able to fetch
3967 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
3968 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
3969 	 * situations. But it is worth to think about possibility of some
3970 	 * DoSes using some hypothetical application level deadlock.
3971 	 */
3972 	if (before(ptr, tp->rcv_nxt))
3973 		return;
3974 
3975 	/* Do we already have a newer (or duplicate) urgent pointer? */
3976 	if (tp->urg_data && !after(ptr, tp->urg_seq))
3977 		return;
3978 
3979 	/* Tell the world about our new urgent pointer. */
3980 	sk_send_sigurg(sk);
3981 
3982 	/* We may be adding urgent data when the last byte read was
3983 	 * urgent. To do this requires some care. We cannot just ignore
3984 	 * tp->copied_seq since we would read the last urgent byte again
3985 	 * as data, nor can we alter copied_seq until this data arrives
3986 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
3987 	 *
3988 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
3989 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
3990 	 * and expect that both A and B disappear from stream. This is _wrong_.
3991 	 * Though this happens in BSD with high probability, this is occasional.
3992 	 * Any application relying on this is buggy. Note also, that fix "works"
3993 	 * only in this artificial test. Insert some normal data between A and B and we will
3994 	 * decline of BSD again. Verdict: it is better to remove to trap
3995 	 * buggy users.
3996 	 */
3997 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3998 	    !sock_flag(sk, SOCK_URGINLINE) &&
3999 	    tp->copied_seq != tp->rcv_nxt) {
4000 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4001 		tp->copied_seq++;
4002 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4003 			__skb_unlink(skb, &sk->sk_receive_queue);
4004 			__kfree_skb(skb);
4005 		}
4006 	}
4007 
4008 	tp->urg_data   = TCP_URG_NOTYET;
4009 	tp->urg_seq    = ptr;
4010 
4011 	/* Disable header prediction. */
4012 	tp->pred_flags = 0;
4013 }
4014 
4015 /* This is the 'fast' part of urgent handling. */
4016 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4017 {
4018 	struct tcp_sock *tp = tcp_sk(sk);
4019 
4020 	/* Check if we get a new urgent pointer - normally not. */
4021 	if (th->urg)
4022 		tcp_check_urg(sk,th);
4023 
4024 	/* Do we wait for any urgent data? - normally not... */
4025 	if (tp->urg_data == TCP_URG_NOTYET) {
4026 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4027 			  th->syn;
4028 
4029 		/* Is the urgent pointer pointing into this packet? */
4030 		if (ptr < skb->len) {
4031 			u8 tmp;
4032 			if (skb_copy_bits(skb, ptr, &tmp, 1))
4033 				BUG();
4034 			tp->urg_data = TCP_URG_VALID | tmp;
4035 			if (!sock_flag(sk, SOCK_DEAD))
4036 				sk->sk_data_ready(sk, 0);
4037 		}
4038 	}
4039 }
4040 
4041 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4042 {
4043 	struct tcp_sock *tp = tcp_sk(sk);
4044 	int chunk = skb->len - hlen;
4045 	int err;
4046 
4047 	local_bh_enable();
4048 	if (skb_csum_unnecessary(skb))
4049 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4050 	else
4051 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4052 						       tp->ucopy.iov);
4053 
4054 	if (!err) {
4055 		tp->ucopy.len -= chunk;
4056 		tp->copied_seq += chunk;
4057 		tcp_rcv_space_adjust(sk);
4058 	}
4059 
4060 	local_bh_disable();
4061 	return err;
4062 }
4063 
4064 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4065 {
4066 	__sum16 result;
4067 
4068 	if (sock_owned_by_user(sk)) {
4069 		local_bh_enable();
4070 		result = __tcp_checksum_complete(skb);
4071 		local_bh_disable();
4072 	} else {
4073 		result = __tcp_checksum_complete(skb);
4074 	}
4075 	return result;
4076 }
4077 
4078 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4079 {
4080 	return !skb_csum_unnecessary(skb) &&
4081 		__tcp_checksum_complete_user(sk, skb);
4082 }
4083 
4084 #ifdef CONFIG_NET_DMA
4085 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4086 {
4087 	struct tcp_sock *tp = tcp_sk(sk);
4088 	int chunk = skb->len - hlen;
4089 	int dma_cookie;
4090 	int copied_early = 0;
4091 
4092 	if (tp->ucopy.wakeup)
4093 		return 0;
4094 
4095 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4096 		tp->ucopy.dma_chan = get_softnet_dma();
4097 
4098 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4099 
4100 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4101 			skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4102 
4103 		if (dma_cookie < 0)
4104 			goto out;
4105 
4106 		tp->ucopy.dma_cookie = dma_cookie;
4107 		copied_early = 1;
4108 
4109 		tp->ucopy.len -= chunk;
4110 		tp->copied_seq += chunk;
4111 		tcp_rcv_space_adjust(sk);
4112 
4113 		if ((tp->ucopy.len == 0) ||
4114 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4115 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4116 			tp->ucopy.wakeup = 1;
4117 			sk->sk_data_ready(sk, 0);
4118 		}
4119 	} else if (chunk > 0) {
4120 		tp->ucopy.wakeup = 1;
4121 		sk->sk_data_ready(sk, 0);
4122 	}
4123 out:
4124 	return copied_early;
4125 }
4126 #endif /* CONFIG_NET_DMA */
4127 
4128 /*
4129  *	TCP receive function for the ESTABLISHED state.
4130  *
4131  *	It is split into a fast path and a slow path. The fast path is
4132  * 	disabled when:
4133  *	- A zero window was announced from us - zero window probing
4134  *        is only handled properly in the slow path.
4135  *	- Out of order segments arrived.
4136  *	- Urgent data is expected.
4137  *	- There is no buffer space left
4138  *	- Unexpected TCP flags/window values/header lengths are received
4139  *	  (detected by checking the TCP header against pred_flags)
4140  *	- Data is sent in both directions. Fast path only supports pure senders
4141  *	  or pure receivers (this means either the sequence number or the ack
4142  *	  value must stay constant)
4143  *	- Unexpected TCP option.
4144  *
4145  *	When these conditions are not satisfied it drops into a standard
4146  *	receive procedure patterned after RFC793 to handle all cases.
4147  *	The first three cases are guaranteed by proper pred_flags setting,
4148  *	the rest is checked inline. Fast processing is turned on in
4149  *	tcp_data_queue when everything is OK.
4150  */
4151 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4152 			struct tcphdr *th, unsigned len)
4153 {
4154 	struct tcp_sock *tp = tcp_sk(sk);
4155 
4156 	/*
4157 	 *	Header prediction.
4158 	 *	The code loosely follows the one in the famous
4159 	 *	"30 instruction TCP receive" Van Jacobson mail.
4160 	 *
4161 	 *	Van's trick is to deposit buffers into socket queue
4162 	 *	on a device interrupt, to call tcp_recv function
4163 	 *	on the receive process context and checksum and copy
4164 	 *	the buffer to user space. smart...
4165 	 *
4166 	 *	Our current scheme is not silly either but we take the
4167 	 *	extra cost of the net_bh soft interrupt processing...
4168 	 *	We do checksum and copy also but from device to kernel.
4169 	 */
4170 
4171 	tp->rx_opt.saw_tstamp = 0;
4172 
4173 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
4174 	 *	if header_prediction is to be made
4175 	 *	'S' will always be tp->tcp_header_len >> 2
4176 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
4177 	 *  turn it off	(when there are holes in the receive
4178 	 *	 space for instance)
4179 	 *	PSH flag is ignored.
4180 	 */
4181 
4182 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4183 		TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4184 		int tcp_header_len = tp->tcp_header_len;
4185 
4186 		/* Timestamp header prediction: tcp_header_len
4187 		 * is automatically equal to th->doff*4 due to pred_flags
4188 		 * match.
4189 		 */
4190 
4191 		/* Check timestamp */
4192 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4193 			__be32 *ptr = (__be32 *)(th + 1);
4194 
4195 			/* No? Slow path! */
4196 			if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4197 					  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4198 				goto slow_path;
4199 
4200 			tp->rx_opt.saw_tstamp = 1;
4201 			++ptr;
4202 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
4203 			++ptr;
4204 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4205 
4206 			/* If PAWS failed, check it more carefully in slow path */
4207 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4208 				goto slow_path;
4209 
4210 			/* DO NOT update ts_recent here, if checksum fails
4211 			 * and timestamp was corrupted part, it will result
4212 			 * in a hung connection since we will drop all
4213 			 * future packets due to the PAWS test.
4214 			 */
4215 		}
4216 
4217 		if (len <= tcp_header_len) {
4218 			/* Bulk data transfer: sender */
4219 			if (len == tcp_header_len) {
4220 				/* Predicted packet is in window by definition.
4221 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4222 				 * Hence, check seq<=rcv_wup reduces to:
4223 				 */
4224 				if (tcp_header_len ==
4225 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4226 				    tp->rcv_nxt == tp->rcv_wup)
4227 					tcp_store_ts_recent(tp);
4228 
4229 				/* We know that such packets are checksummed
4230 				 * on entry.
4231 				 */
4232 				tcp_ack(sk, skb, 0);
4233 				__kfree_skb(skb);
4234 				tcp_data_snd_check(sk);
4235 				return 0;
4236 			} else { /* Header too small */
4237 				TCP_INC_STATS_BH(TCP_MIB_INERRS);
4238 				goto discard;
4239 			}
4240 		} else {
4241 			int eaten = 0;
4242 			int copied_early = 0;
4243 
4244 			if (tp->copied_seq == tp->rcv_nxt &&
4245 			    len - tcp_header_len <= tp->ucopy.len) {
4246 #ifdef CONFIG_NET_DMA
4247 				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4248 					copied_early = 1;
4249 					eaten = 1;
4250 				}
4251 #endif
4252 				if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4253 					__set_current_state(TASK_RUNNING);
4254 
4255 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4256 						eaten = 1;
4257 				}
4258 				if (eaten) {
4259 					/* Predicted packet is in window by definition.
4260 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4261 					 * Hence, check seq<=rcv_wup reduces to:
4262 					 */
4263 					if (tcp_header_len ==
4264 					    (sizeof(struct tcphdr) +
4265 					     TCPOLEN_TSTAMP_ALIGNED) &&
4266 					    tp->rcv_nxt == tp->rcv_wup)
4267 						tcp_store_ts_recent(tp);
4268 
4269 					tcp_rcv_rtt_measure_ts(sk, skb);
4270 
4271 					__skb_pull(skb, tcp_header_len);
4272 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4273 					NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4274 				}
4275 				if (copied_early)
4276 					tcp_cleanup_rbuf(sk, skb->len);
4277 			}
4278 			if (!eaten) {
4279 				if (tcp_checksum_complete_user(sk, skb))
4280 					goto csum_error;
4281 
4282 				/* Predicted packet is in window by definition.
4283 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4284 				 * Hence, check seq<=rcv_wup reduces to:
4285 				 */
4286 				if (tcp_header_len ==
4287 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4288 				    tp->rcv_nxt == tp->rcv_wup)
4289 					tcp_store_ts_recent(tp);
4290 
4291 				tcp_rcv_rtt_measure_ts(sk, skb);
4292 
4293 				if ((int)skb->truesize > sk->sk_forward_alloc)
4294 					goto step5;
4295 
4296 				NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4297 
4298 				/* Bulk data transfer: receiver */
4299 				__skb_pull(skb,tcp_header_len);
4300 				__skb_queue_tail(&sk->sk_receive_queue, skb);
4301 				sk_stream_set_owner_r(skb, sk);
4302 				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4303 			}
4304 
4305 			tcp_event_data_recv(sk, skb);
4306 
4307 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4308 				/* Well, only one small jumplet in fast path... */
4309 				tcp_ack(sk, skb, FLAG_DATA);
4310 				tcp_data_snd_check(sk);
4311 				if (!inet_csk_ack_scheduled(sk))
4312 					goto no_ack;
4313 			}
4314 
4315 			__tcp_ack_snd_check(sk, 0);
4316 no_ack:
4317 #ifdef CONFIG_NET_DMA
4318 			if (copied_early)
4319 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
4320 			else
4321 #endif
4322 			if (eaten)
4323 				__kfree_skb(skb);
4324 			else
4325 				sk->sk_data_ready(sk, 0);
4326 			return 0;
4327 		}
4328 	}
4329 
4330 slow_path:
4331 	if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4332 		goto csum_error;
4333 
4334 	/*
4335 	 * RFC1323: H1. Apply PAWS check first.
4336 	 */
4337 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4338 	    tcp_paws_discard(sk, skb)) {
4339 		if (!th->rst) {
4340 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4341 			tcp_send_dupack(sk, skb);
4342 			goto discard;
4343 		}
4344 		/* Resets are accepted even if PAWS failed.
4345 
4346 		   ts_recent update must be made after we are sure
4347 		   that the packet is in window.
4348 		 */
4349 	}
4350 
4351 	/*
4352 	 *	Standard slow path.
4353 	 */
4354 
4355 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4356 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
4357 		 * (RST) segments are validated by checking their SEQ-fields."
4358 		 * And page 69: "If an incoming segment is not acceptable,
4359 		 * an acknowledgment should be sent in reply (unless the RST bit
4360 		 * is set, if so drop the segment and return)".
4361 		 */
4362 		if (!th->rst)
4363 			tcp_send_dupack(sk, skb);
4364 		goto discard;
4365 	}
4366 
4367 	if (th->rst) {
4368 		tcp_reset(sk);
4369 		goto discard;
4370 	}
4371 
4372 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4373 
4374 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4375 		TCP_INC_STATS_BH(TCP_MIB_INERRS);
4376 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4377 		tcp_reset(sk);
4378 		return 1;
4379 	}
4380 
4381 step5:
4382 	if (th->ack)
4383 		tcp_ack(sk, skb, FLAG_SLOWPATH);
4384 
4385 	tcp_rcv_rtt_measure_ts(sk, skb);
4386 
4387 	/* Process urgent data. */
4388 	tcp_urg(sk, skb, th);
4389 
4390 	/* step 7: process the segment text */
4391 	tcp_data_queue(sk, skb);
4392 
4393 	tcp_data_snd_check(sk);
4394 	tcp_ack_snd_check(sk);
4395 	return 0;
4396 
4397 csum_error:
4398 	TCP_INC_STATS_BH(TCP_MIB_INERRS);
4399 
4400 discard:
4401 	__kfree_skb(skb);
4402 	return 0;
4403 }
4404 
4405 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4406 					 struct tcphdr *th, unsigned len)
4407 {
4408 	struct tcp_sock *tp = tcp_sk(sk);
4409 	struct inet_connection_sock *icsk = inet_csk(sk);
4410 	int saved_clamp = tp->rx_opt.mss_clamp;
4411 
4412 	tcp_parse_options(skb, &tp->rx_opt, 0);
4413 
4414 	if (th->ack) {
4415 		/* rfc793:
4416 		 * "If the state is SYN-SENT then
4417 		 *    first check the ACK bit
4418 		 *      If the ACK bit is set
4419 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4420 		 *        a reset (unless the RST bit is set, if so drop
4421 		 *        the segment and return)"
4422 		 *
4423 		 *  We do not send data with SYN, so that RFC-correct
4424 		 *  test reduces to:
4425 		 */
4426 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4427 			goto reset_and_undo;
4428 
4429 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4430 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4431 			     tcp_time_stamp)) {
4432 			NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4433 			goto reset_and_undo;
4434 		}
4435 
4436 		/* Now ACK is acceptable.
4437 		 *
4438 		 * "If the RST bit is set
4439 		 *    If the ACK was acceptable then signal the user "error:
4440 		 *    connection reset", drop the segment, enter CLOSED state,
4441 		 *    delete TCB, and return."
4442 		 */
4443 
4444 		if (th->rst) {
4445 			tcp_reset(sk);
4446 			goto discard;
4447 		}
4448 
4449 		/* rfc793:
4450 		 *   "fifth, if neither of the SYN or RST bits is set then
4451 		 *    drop the segment and return."
4452 		 *
4453 		 *    See note below!
4454 		 *                                        --ANK(990513)
4455 		 */
4456 		if (!th->syn)
4457 			goto discard_and_undo;
4458 
4459 		/* rfc793:
4460 		 *   "If the SYN bit is on ...
4461 		 *    are acceptable then ...
4462 		 *    (our SYN has been ACKed), change the connection
4463 		 *    state to ESTABLISHED..."
4464 		 */
4465 
4466 		TCP_ECN_rcv_synack(tp, th);
4467 
4468 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4469 		tcp_ack(sk, skb, FLAG_SLOWPATH);
4470 
4471 		/* Ok.. it's good. Set up sequence numbers and
4472 		 * move to established.
4473 		 */
4474 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4475 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4476 
4477 		/* RFC1323: The window in SYN & SYN/ACK segments is
4478 		 * never scaled.
4479 		 */
4480 		tp->snd_wnd = ntohs(th->window);
4481 		tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4482 
4483 		if (!tp->rx_opt.wscale_ok) {
4484 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4485 			tp->window_clamp = min(tp->window_clamp, 65535U);
4486 		}
4487 
4488 		if (tp->rx_opt.saw_tstamp) {
4489 			tp->rx_opt.tstamp_ok	   = 1;
4490 			tp->tcp_header_len =
4491 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4492 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
4493 			tcp_store_ts_recent(tp);
4494 		} else {
4495 			tp->tcp_header_len = sizeof(struct tcphdr);
4496 		}
4497 
4498 		if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4499 			tp->rx_opt.sack_ok |= 2;
4500 
4501 		tcp_mtup_init(sk);
4502 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4503 		tcp_initialize_rcv_mss(sk);
4504 
4505 		/* Remember, tcp_poll() does not lock socket!
4506 		 * Change state from SYN-SENT only after copied_seq
4507 		 * is initialized. */
4508 		tp->copied_seq = tp->rcv_nxt;
4509 		smp_mb();
4510 		tcp_set_state(sk, TCP_ESTABLISHED);
4511 
4512 		security_inet_conn_established(sk, skb);
4513 
4514 		/* Make sure socket is routed, for correct metrics.  */
4515 		icsk->icsk_af_ops->rebuild_header(sk);
4516 
4517 		tcp_init_metrics(sk);
4518 
4519 		tcp_init_congestion_control(sk);
4520 
4521 		/* Prevent spurious tcp_cwnd_restart() on first data
4522 		 * packet.
4523 		 */
4524 		tp->lsndtime = tcp_time_stamp;
4525 
4526 		tcp_init_buffer_space(sk);
4527 
4528 		if (sock_flag(sk, SOCK_KEEPOPEN))
4529 			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4530 
4531 		if (!tp->rx_opt.snd_wscale)
4532 			__tcp_fast_path_on(tp, tp->snd_wnd);
4533 		else
4534 			tp->pred_flags = 0;
4535 
4536 		if (!sock_flag(sk, SOCK_DEAD)) {
4537 			sk->sk_state_change(sk);
4538 			sk_wake_async(sk, 0, POLL_OUT);
4539 		}
4540 
4541 		if (sk->sk_write_pending ||
4542 		    icsk->icsk_accept_queue.rskq_defer_accept ||
4543 		    icsk->icsk_ack.pingpong) {
4544 			/* Save one ACK. Data will be ready after
4545 			 * several ticks, if write_pending is set.
4546 			 *
4547 			 * It may be deleted, but with this feature tcpdumps
4548 			 * look so _wonderfully_ clever, that I was not able
4549 			 * to stand against the temptation 8)     --ANK
4550 			 */
4551 			inet_csk_schedule_ack(sk);
4552 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4553 			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
4554 			tcp_incr_quickack(sk);
4555 			tcp_enter_quickack_mode(sk);
4556 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4557 						  TCP_DELACK_MAX, TCP_RTO_MAX);
4558 
4559 discard:
4560 			__kfree_skb(skb);
4561 			return 0;
4562 		} else {
4563 			tcp_send_ack(sk);
4564 		}
4565 		return -1;
4566 	}
4567 
4568 	/* No ACK in the segment */
4569 
4570 	if (th->rst) {
4571 		/* rfc793:
4572 		 * "If the RST bit is set
4573 		 *
4574 		 *      Otherwise (no ACK) drop the segment and return."
4575 		 */
4576 
4577 		goto discard_and_undo;
4578 	}
4579 
4580 	/* PAWS check. */
4581 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4582 		goto discard_and_undo;
4583 
4584 	if (th->syn) {
4585 		/* We see SYN without ACK. It is attempt of
4586 		 * simultaneous connect with crossed SYNs.
4587 		 * Particularly, it can be connect to self.
4588 		 */
4589 		tcp_set_state(sk, TCP_SYN_RECV);
4590 
4591 		if (tp->rx_opt.saw_tstamp) {
4592 			tp->rx_opt.tstamp_ok = 1;
4593 			tcp_store_ts_recent(tp);
4594 			tp->tcp_header_len =
4595 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4596 		} else {
4597 			tp->tcp_header_len = sizeof(struct tcphdr);
4598 		}
4599 
4600 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4601 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4602 
4603 		/* RFC1323: The window in SYN & SYN/ACK segments is
4604 		 * never scaled.
4605 		 */
4606 		tp->snd_wnd    = ntohs(th->window);
4607 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
4608 		tp->max_window = tp->snd_wnd;
4609 
4610 		TCP_ECN_rcv_syn(tp, th);
4611 
4612 		tcp_mtup_init(sk);
4613 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4614 		tcp_initialize_rcv_mss(sk);
4615 
4616 
4617 		tcp_send_synack(sk);
4618 #if 0
4619 		/* Note, we could accept data and URG from this segment.
4620 		 * There are no obstacles to make this.
4621 		 *
4622 		 * However, if we ignore data in ACKless segments sometimes,
4623 		 * we have no reasons to accept it sometimes.
4624 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4625 		 * is not flawless. So, discard packet for sanity.
4626 		 * Uncomment this return to process the data.
4627 		 */
4628 		return -1;
4629 #else
4630 		goto discard;
4631 #endif
4632 	}
4633 	/* "fifth, if neither of the SYN or RST bits is set then
4634 	 * drop the segment and return."
4635 	 */
4636 
4637 discard_and_undo:
4638 	tcp_clear_options(&tp->rx_opt);
4639 	tp->rx_opt.mss_clamp = saved_clamp;
4640 	goto discard;
4641 
4642 reset_and_undo:
4643 	tcp_clear_options(&tp->rx_opt);
4644 	tp->rx_opt.mss_clamp = saved_clamp;
4645 	return 1;
4646 }
4647 
4648 
4649 /*
4650  *	This function implements the receiving procedure of RFC 793 for
4651  *	all states except ESTABLISHED and TIME_WAIT.
4652  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4653  *	address independent.
4654  */
4655 
4656 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4657 			  struct tcphdr *th, unsigned len)
4658 {
4659 	struct tcp_sock *tp = tcp_sk(sk);
4660 	struct inet_connection_sock *icsk = inet_csk(sk);
4661 	int queued = 0;
4662 
4663 	tp->rx_opt.saw_tstamp = 0;
4664 
4665 	switch (sk->sk_state) {
4666 	case TCP_CLOSE:
4667 		goto discard;
4668 
4669 	case TCP_LISTEN:
4670 		if (th->ack)
4671 			return 1;
4672 
4673 		if (th->rst)
4674 			goto discard;
4675 
4676 		if (th->syn) {
4677 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4678 				return 1;
4679 
4680 			/* Now we have several options: In theory there is
4681 			 * nothing else in the frame. KA9Q has an option to
4682 			 * send data with the syn, BSD accepts data with the
4683 			 * syn up to the [to be] advertised window and
4684 			 * Solaris 2.1 gives you a protocol error. For now
4685 			 * we just ignore it, that fits the spec precisely
4686 			 * and avoids incompatibilities. It would be nice in
4687 			 * future to drop through and process the data.
4688 			 *
4689 			 * Now that TTCP is starting to be used we ought to
4690 			 * queue this data.
4691 			 * But, this leaves one open to an easy denial of
4692 			 * service attack, and SYN cookies can't defend
4693 			 * against this problem. So, we drop the data
4694 			 * in the interest of security over speed unless
4695 			 * it's still in use.
4696 			 */
4697 			kfree_skb(skb);
4698 			return 0;
4699 		}
4700 		goto discard;
4701 
4702 	case TCP_SYN_SENT:
4703 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4704 		if (queued >= 0)
4705 			return queued;
4706 
4707 		/* Do step6 onward by hand. */
4708 		tcp_urg(sk, skb, th);
4709 		__kfree_skb(skb);
4710 		tcp_data_snd_check(sk);
4711 		return 0;
4712 	}
4713 
4714 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4715 	    tcp_paws_discard(sk, skb)) {
4716 		if (!th->rst) {
4717 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4718 			tcp_send_dupack(sk, skb);
4719 			goto discard;
4720 		}
4721 		/* Reset is accepted even if it did not pass PAWS. */
4722 	}
4723 
4724 	/* step 1: check sequence number */
4725 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4726 		if (!th->rst)
4727 			tcp_send_dupack(sk, skb);
4728 		goto discard;
4729 	}
4730 
4731 	/* step 2: check RST bit */
4732 	if (th->rst) {
4733 		tcp_reset(sk);
4734 		goto discard;
4735 	}
4736 
4737 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4738 
4739 	/* step 3: check security and precedence [ignored] */
4740 
4741 	/*	step 4:
4742 	 *
4743 	 *	Check for a SYN in window.
4744 	 */
4745 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4746 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4747 		tcp_reset(sk);
4748 		return 1;
4749 	}
4750 
4751 	/* step 5: check the ACK field */
4752 	if (th->ack) {
4753 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4754 
4755 		switch (sk->sk_state) {
4756 		case TCP_SYN_RECV:
4757 			if (acceptable) {
4758 				tp->copied_seq = tp->rcv_nxt;
4759 				smp_mb();
4760 				tcp_set_state(sk, TCP_ESTABLISHED);
4761 				sk->sk_state_change(sk);
4762 
4763 				/* Note, that this wakeup is only for marginal
4764 				 * crossed SYN case. Passively open sockets
4765 				 * are not waked up, because sk->sk_sleep ==
4766 				 * NULL and sk->sk_socket == NULL.
4767 				 */
4768 				if (sk->sk_socket) {
4769 					sk_wake_async(sk,0,POLL_OUT);
4770 				}
4771 
4772 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4773 				tp->snd_wnd = ntohs(th->window) <<
4774 					      tp->rx_opt.snd_wscale;
4775 				tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4776 					    TCP_SKB_CB(skb)->seq);
4777 
4778 				/* tcp_ack considers this ACK as duplicate
4779 				 * and does not calculate rtt.
4780 				 * Fix it at least with timestamps.
4781 				 */
4782 				if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4783 				    !tp->srtt)
4784 					tcp_ack_saw_tstamp(sk, 0);
4785 
4786 				if (tp->rx_opt.tstamp_ok)
4787 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4788 
4789 				/* Make sure socket is routed, for
4790 				 * correct metrics.
4791 				 */
4792 				icsk->icsk_af_ops->rebuild_header(sk);
4793 
4794 				tcp_init_metrics(sk);
4795 
4796 				tcp_init_congestion_control(sk);
4797 
4798 				/* Prevent spurious tcp_cwnd_restart() on
4799 				 * first data packet.
4800 				 */
4801 				tp->lsndtime = tcp_time_stamp;
4802 
4803 				tcp_mtup_init(sk);
4804 				tcp_initialize_rcv_mss(sk);
4805 				tcp_init_buffer_space(sk);
4806 				tcp_fast_path_on(tp);
4807 			} else {
4808 				return 1;
4809 			}
4810 			break;
4811 
4812 		case TCP_FIN_WAIT1:
4813 			if (tp->snd_una == tp->write_seq) {
4814 				tcp_set_state(sk, TCP_FIN_WAIT2);
4815 				sk->sk_shutdown |= SEND_SHUTDOWN;
4816 				dst_confirm(sk->sk_dst_cache);
4817 
4818 				if (!sock_flag(sk, SOCK_DEAD))
4819 					/* Wake up lingering close() */
4820 					sk->sk_state_change(sk);
4821 				else {
4822 					int tmo;
4823 
4824 					if (tp->linger2 < 0 ||
4825 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4826 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4827 						tcp_done(sk);
4828 						NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4829 						return 1;
4830 					}
4831 
4832 					tmo = tcp_fin_time(sk);
4833 					if (tmo > TCP_TIMEWAIT_LEN) {
4834 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4835 					} else if (th->fin || sock_owned_by_user(sk)) {
4836 						/* Bad case. We could lose such FIN otherwise.
4837 						 * It is not a big problem, but it looks confusing
4838 						 * and not so rare event. We still can lose it now,
4839 						 * if it spins in bh_lock_sock(), but it is really
4840 						 * marginal case.
4841 						 */
4842 						inet_csk_reset_keepalive_timer(sk, tmo);
4843 					} else {
4844 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4845 						goto discard;
4846 					}
4847 				}
4848 			}
4849 			break;
4850 
4851 		case TCP_CLOSING:
4852 			if (tp->snd_una == tp->write_seq) {
4853 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4854 				goto discard;
4855 			}
4856 			break;
4857 
4858 		case TCP_LAST_ACK:
4859 			if (tp->snd_una == tp->write_seq) {
4860 				tcp_update_metrics(sk);
4861 				tcp_done(sk);
4862 				goto discard;
4863 			}
4864 			break;
4865 		}
4866 	} else
4867 		goto discard;
4868 
4869 	/* step 6: check the URG bit */
4870 	tcp_urg(sk, skb, th);
4871 
4872 	/* step 7: process the segment text */
4873 	switch (sk->sk_state) {
4874 	case TCP_CLOSE_WAIT:
4875 	case TCP_CLOSING:
4876 	case TCP_LAST_ACK:
4877 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4878 			break;
4879 	case TCP_FIN_WAIT1:
4880 	case TCP_FIN_WAIT2:
4881 		/* RFC 793 says to queue data in these states,
4882 		 * RFC 1122 says we MUST send a reset.
4883 		 * BSD 4.4 also does reset.
4884 		 */
4885 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
4886 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4887 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4888 				NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4889 				tcp_reset(sk);
4890 				return 1;
4891 			}
4892 		}
4893 		/* Fall through */
4894 	case TCP_ESTABLISHED:
4895 		tcp_data_queue(sk, skb);
4896 		queued = 1;
4897 		break;
4898 	}
4899 
4900 	/* tcp_data could move socket to TIME-WAIT */
4901 	if (sk->sk_state != TCP_CLOSE) {
4902 		tcp_data_snd_check(sk);
4903 		tcp_ack_snd_check(sk);
4904 	}
4905 
4906 	if (!queued) {
4907 discard:
4908 		__kfree_skb(skb);
4909 	}
4910 	return 0;
4911 }
4912 
4913 EXPORT_SYMBOL(sysctl_tcp_ecn);
4914 EXPORT_SYMBOL(sysctl_tcp_reordering);
4915 EXPORT_SYMBOL(tcp_parse_options);
4916 EXPORT_SYMBOL(tcp_rcv_established);
4917 EXPORT_SYMBOL(tcp_rcv_state_process);
4918 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
4919