1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $ 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Florian La Roche, <flla@stud.uni-sb.de> 15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 16 * Linus Torvalds, <torvalds@cs.helsinki.fi> 17 * Alan Cox, <gw4pts@gw4pts.ampr.org> 18 * Matthew Dillon, <dillon@apollo.west.oic.com> 19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 20 * Jorge Cwik, <jorge@laser.satlink.net> 21 */ 22 23 /* 24 * Changes: 25 * Pedro Roque : Fast Retransmit/Recovery. 26 * Two receive queues. 27 * Retransmit queue handled by TCP. 28 * Better retransmit timer handling. 29 * New congestion avoidance. 30 * Header prediction. 31 * Variable renaming. 32 * 33 * Eric : Fast Retransmit. 34 * Randy Scott : MSS option defines. 35 * Eric Schenk : Fixes to slow start algorithm. 36 * Eric Schenk : Yet another double ACK bug. 37 * Eric Schenk : Delayed ACK bug fixes. 38 * Eric Schenk : Floyd style fast retrans war avoidance. 39 * David S. Miller : Don't allow zero congestion window. 40 * Eric Schenk : Fix retransmitter so that it sends 41 * next packet on ack of previous packet. 42 * Andi Kleen : Moved open_request checking here 43 * and process RSTs for open_requests. 44 * Andi Kleen : Better prune_queue, and other fixes. 45 * Andrey Savochkin: Fix RTT measurements in the presence of 46 * timestamps. 47 * Andrey Savochkin: Check sequence numbers correctly when 48 * removing SACKs due to in sequence incoming 49 * data segments. 50 * Andi Kleen: Make sure we never ack data there is not 51 * enough room for. Also make this condition 52 * a fatal error if it might still happen. 53 * Andi Kleen: Add tcp_measure_rcv_mss to make 54 * connections with MSS<min(MTU,ann. MSS) 55 * work without delayed acks. 56 * Andi Kleen: Process packets with PSH set in the 57 * fast path. 58 * J Hadi Salim: ECN support 59 * Andrei Gurtov, 60 * Pasi Sarolahti, 61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 62 * engine. Lots of bugs are found. 63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 64 */ 65 66 #include <linux/mm.h> 67 #include <linux/module.h> 68 #include <linux/sysctl.h> 69 #include <net/tcp.h> 70 #include <net/inet_common.h> 71 #include <linux/ipsec.h> 72 #include <asm/unaligned.h> 73 #include <net/netdma.h> 74 75 int sysctl_tcp_timestamps __read_mostly = 1; 76 int sysctl_tcp_window_scaling __read_mostly = 1; 77 int sysctl_tcp_sack __read_mostly = 1; 78 int sysctl_tcp_fack __read_mostly = 1; 79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; 80 int sysctl_tcp_ecn __read_mostly; 81 int sysctl_tcp_dsack __read_mostly = 1; 82 int sysctl_tcp_app_win __read_mostly = 31; 83 int sysctl_tcp_adv_win_scale __read_mostly = 2; 84 85 int sysctl_tcp_stdurg __read_mostly; 86 int sysctl_tcp_rfc1337 __read_mostly; 87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 88 int sysctl_tcp_frto __read_mostly; 89 int sysctl_tcp_frto_response __read_mostly; 90 int sysctl_tcp_nometrics_save __read_mostly; 91 92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 93 int sysctl_tcp_abc __read_mostly; 94 95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 101 #define FLAG_ECE 0x40 /* ECE in this ACK */ 102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */ 103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 104 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */ 105 106 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 107 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 108 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 109 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 110 111 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0) 112 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2) 113 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4) 114 115 #define IsSackFrto() (sysctl_tcp_frto == 0x2) 116 117 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 118 119 /* Adapt the MSS value used to make delayed ack decision to the 120 * real world. 121 */ 122 static void tcp_measure_rcv_mss(struct sock *sk, 123 const struct sk_buff *skb) 124 { 125 struct inet_connection_sock *icsk = inet_csk(sk); 126 const unsigned int lss = icsk->icsk_ack.last_seg_size; 127 unsigned int len; 128 129 icsk->icsk_ack.last_seg_size = 0; 130 131 /* skb->len may jitter because of SACKs, even if peer 132 * sends good full-sized frames. 133 */ 134 len = skb_shinfo(skb)->gso_size ?: skb->len; 135 if (len >= icsk->icsk_ack.rcv_mss) { 136 icsk->icsk_ack.rcv_mss = len; 137 } else { 138 /* Otherwise, we make more careful check taking into account, 139 * that SACKs block is variable. 140 * 141 * "len" is invariant segment length, including TCP header. 142 */ 143 len += skb->data - skb_transport_header(skb); 144 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) || 145 /* If PSH is not set, packet should be 146 * full sized, provided peer TCP is not badly broken. 147 * This observation (if it is correct 8)) allows 148 * to handle super-low mtu links fairly. 149 */ 150 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 151 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 152 /* Subtract also invariant (if peer is RFC compliant), 153 * tcp header plus fixed timestamp option length. 154 * Resulting "len" is MSS free of SACK jitter. 155 */ 156 len -= tcp_sk(sk)->tcp_header_len; 157 icsk->icsk_ack.last_seg_size = len; 158 if (len == lss) { 159 icsk->icsk_ack.rcv_mss = len; 160 return; 161 } 162 } 163 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 164 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 165 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 166 } 167 } 168 169 static void tcp_incr_quickack(struct sock *sk) 170 { 171 struct inet_connection_sock *icsk = inet_csk(sk); 172 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 173 174 if (quickacks==0) 175 quickacks=2; 176 if (quickacks > icsk->icsk_ack.quick) 177 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 178 } 179 180 void tcp_enter_quickack_mode(struct sock *sk) 181 { 182 struct inet_connection_sock *icsk = inet_csk(sk); 183 tcp_incr_quickack(sk); 184 icsk->icsk_ack.pingpong = 0; 185 icsk->icsk_ack.ato = TCP_ATO_MIN; 186 } 187 188 /* Send ACKs quickly, if "quick" count is not exhausted 189 * and the session is not interactive. 190 */ 191 192 static inline int tcp_in_quickack_mode(const struct sock *sk) 193 { 194 const struct inet_connection_sock *icsk = inet_csk(sk); 195 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 196 } 197 198 /* Buffer size and advertised window tuning. 199 * 200 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 201 */ 202 203 static void tcp_fixup_sndbuf(struct sock *sk) 204 { 205 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 + 206 sizeof(struct sk_buff); 207 208 if (sk->sk_sndbuf < 3 * sndmem) 209 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]); 210 } 211 212 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 213 * 214 * All tcp_full_space() is split to two parts: "network" buffer, allocated 215 * forward and advertised in receiver window (tp->rcv_wnd) and 216 * "application buffer", required to isolate scheduling/application 217 * latencies from network. 218 * window_clamp is maximal advertised window. It can be less than 219 * tcp_full_space(), in this case tcp_full_space() - window_clamp 220 * is reserved for "application" buffer. The less window_clamp is 221 * the smoother our behaviour from viewpoint of network, but the lower 222 * throughput and the higher sensitivity of the connection to losses. 8) 223 * 224 * rcv_ssthresh is more strict window_clamp used at "slow start" 225 * phase to predict further behaviour of this connection. 226 * It is used for two goals: 227 * - to enforce header prediction at sender, even when application 228 * requires some significant "application buffer". It is check #1. 229 * - to prevent pruning of receive queue because of misprediction 230 * of receiver window. Check #2. 231 * 232 * The scheme does not work when sender sends good segments opening 233 * window and then starts to feed us spaghetti. But it should work 234 * in common situations. Otherwise, we have to rely on queue collapsing. 235 */ 236 237 /* Slow part of check#2. */ 238 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 239 { 240 struct tcp_sock *tp = tcp_sk(sk); 241 /* Optimize this! */ 242 int truesize = tcp_win_from_space(skb->truesize)/2; 243 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2; 244 245 while (tp->rcv_ssthresh <= window) { 246 if (truesize <= skb->len) 247 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 248 249 truesize >>= 1; 250 window >>= 1; 251 } 252 return 0; 253 } 254 255 static void tcp_grow_window(struct sock *sk, 256 struct sk_buff *skb) 257 { 258 struct tcp_sock *tp = tcp_sk(sk); 259 260 /* Check #1 */ 261 if (tp->rcv_ssthresh < tp->window_clamp && 262 (int)tp->rcv_ssthresh < tcp_space(sk) && 263 !tcp_memory_pressure) { 264 int incr; 265 266 /* Check #2. Increase window, if skb with such overhead 267 * will fit to rcvbuf in future. 268 */ 269 if (tcp_win_from_space(skb->truesize) <= skb->len) 270 incr = 2*tp->advmss; 271 else 272 incr = __tcp_grow_window(sk, skb); 273 274 if (incr) { 275 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp); 276 inet_csk(sk)->icsk_ack.quick |= 1; 277 } 278 } 279 } 280 281 /* 3. Tuning rcvbuf, when connection enters established state. */ 282 283 static void tcp_fixup_rcvbuf(struct sock *sk) 284 { 285 struct tcp_sock *tp = tcp_sk(sk); 286 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff); 287 288 /* Try to select rcvbuf so that 4 mss-sized segments 289 * will fit to window and corresponding skbs will fit to our rcvbuf. 290 * (was 3; 4 is minimum to allow fast retransmit to work.) 291 */ 292 while (tcp_win_from_space(rcvmem) < tp->advmss) 293 rcvmem += 128; 294 if (sk->sk_rcvbuf < 4 * rcvmem) 295 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]); 296 } 297 298 /* 4. Try to fixup all. It is made immediately after connection enters 299 * established state. 300 */ 301 static void tcp_init_buffer_space(struct sock *sk) 302 { 303 struct tcp_sock *tp = tcp_sk(sk); 304 int maxwin; 305 306 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 307 tcp_fixup_rcvbuf(sk); 308 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 309 tcp_fixup_sndbuf(sk); 310 311 tp->rcvq_space.space = tp->rcv_wnd; 312 313 maxwin = tcp_full_space(sk); 314 315 if (tp->window_clamp >= maxwin) { 316 tp->window_clamp = maxwin; 317 318 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 319 tp->window_clamp = max(maxwin - 320 (maxwin >> sysctl_tcp_app_win), 321 4 * tp->advmss); 322 } 323 324 /* Force reservation of one segment. */ 325 if (sysctl_tcp_app_win && 326 tp->window_clamp > 2 * tp->advmss && 327 tp->window_clamp + tp->advmss > maxwin) 328 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 329 330 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 331 tp->snd_cwnd_stamp = tcp_time_stamp; 332 } 333 334 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 335 static void tcp_clamp_window(struct sock *sk) 336 { 337 struct tcp_sock *tp = tcp_sk(sk); 338 struct inet_connection_sock *icsk = inet_csk(sk); 339 340 icsk->icsk_ack.quick = 0; 341 342 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 343 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 344 !tcp_memory_pressure && 345 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) { 346 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 347 sysctl_tcp_rmem[2]); 348 } 349 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 350 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss); 351 } 352 353 354 /* Initialize RCV_MSS value. 355 * RCV_MSS is an our guess about MSS used by the peer. 356 * We haven't any direct information about the MSS. 357 * It's better to underestimate the RCV_MSS rather than overestimate. 358 * Overestimations make us ACKing less frequently than needed. 359 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 360 */ 361 void tcp_initialize_rcv_mss(struct sock *sk) 362 { 363 struct tcp_sock *tp = tcp_sk(sk); 364 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 365 366 hint = min(hint, tp->rcv_wnd/2); 367 hint = min(hint, TCP_MIN_RCVMSS); 368 hint = max(hint, TCP_MIN_MSS); 369 370 inet_csk(sk)->icsk_ack.rcv_mss = hint; 371 } 372 373 /* Receiver "autotuning" code. 374 * 375 * The algorithm for RTT estimation w/o timestamps is based on 376 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 377 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps> 378 * 379 * More detail on this code can be found at 380 * <http://www.psc.edu/~jheffner/senior_thesis.ps>, 381 * though this reference is out of date. A new paper 382 * is pending. 383 */ 384 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 385 { 386 u32 new_sample = tp->rcv_rtt_est.rtt; 387 long m = sample; 388 389 if (m == 0) 390 m = 1; 391 392 if (new_sample != 0) { 393 /* If we sample in larger samples in the non-timestamp 394 * case, we could grossly overestimate the RTT especially 395 * with chatty applications or bulk transfer apps which 396 * are stalled on filesystem I/O. 397 * 398 * Also, since we are only going for a minimum in the 399 * non-timestamp case, we do not smooth things out 400 * else with timestamps disabled convergence takes too 401 * long. 402 */ 403 if (!win_dep) { 404 m -= (new_sample >> 3); 405 new_sample += m; 406 } else if (m < new_sample) 407 new_sample = m << 3; 408 } else { 409 /* No previous measure. */ 410 new_sample = m << 3; 411 } 412 413 if (tp->rcv_rtt_est.rtt != new_sample) 414 tp->rcv_rtt_est.rtt = new_sample; 415 } 416 417 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 418 { 419 if (tp->rcv_rtt_est.time == 0) 420 goto new_measure; 421 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 422 return; 423 tcp_rcv_rtt_update(tp, 424 jiffies - tp->rcv_rtt_est.time, 425 1); 426 427 new_measure: 428 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 429 tp->rcv_rtt_est.time = tcp_time_stamp; 430 } 431 432 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb) 433 { 434 struct tcp_sock *tp = tcp_sk(sk); 435 if (tp->rx_opt.rcv_tsecr && 436 (TCP_SKB_CB(skb)->end_seq - 437 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 438 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 439 } 440 441 /* 442 * This function should be called every time data is copied to user space. 443 * It calculates the appropriate TCP receive buffer space. 444 */ 445 void tcp_rcv_space_adjust(struct sock *sk) 446 { 447 struct tcp_sock *tp = tcp_sk(sk); 448 int time; 449 int space; 450 451 if (tp->rcvq_space.time == 0) 452 goto new_measure; 453 454 time = tcp_time_stamp - tp->rcvq_space.time; 455 if (time < (tp->rcv_rtt_est.rtt >> 3) || 456 tp->rcv_rtt_est.rtt == 0) 457 return; 458 459 space = 2 * (tp->copied_seq - tp->rcvq_space.seq); 460 461 space = max(tp->rcvq_space.space, space); 462 463 if (tp->rcvq_space.space != space) { 464 int rcvmem; 465 466 tp->rcvq_space.space = space; 467 468 if (sysctl_tcp_moderate_rcvbuf && 469 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 470 int new_clamp = space; 471 472 /* Receive space grows, normalize in order to 473 * take into account packet headers and sk_buff 474 * structure overhead. 475 */ 476 space /= tp->advmss; 477 if (!space) 478 space = 1; 479 rcvmem = (tp->advmss + MAX_TCP_HEADER + 480 16 + sizeof(struct sk_buff)); 481 while (tcp_win_from_space(rcvmem) < tp->advmss) 482 rcvmem += 128; 483 space *= rcvmem; 484 space = min(space, sysctl_tcp_rmem[2]); 485 if (space > sk->sk_rcvbuf) { 486 sk->sk_rcvbuf = space; 487 488 /* Make the window clamp follow along. */ 489 tp->window_clamp = new_clamp; 490 } 491 } 492 } 493 494 new_measure: 495 tp->rcvq_space.seq = tp->copied_seq; 496 tp->rcvq_space.time = tcp_time_stamp; 497 } 498 499 /* There is something which you must keep in mind when you analyze the 500 * behavior of the tp->ato delayed ack timeout interval. When a 501 * connection starts up, we want to ack as quickly as possible. The 502 * problem is that "good" TCP's do slow start at the beginning of data 503 * transmission. The means that until we send the first few ACK's the 504 * sender will sit on his end and only queue most of his data, because 505 * he can only send snd_cwnd unacked packets at any given time. For 506 * each ACK we send, he increments snd_cwnd and transmits more of his 507 * queue. -DaveM 508 */ 509 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 510 { 511 struct tcp_sock *tp = tcp_sk(sk); 512 struct inet_connection_sock *icsk = inet_csk(sk); 513 u32 now; 514 515 inet_csk_schedule_ack(sk); 516 517 tcp_measure_rcv_mss(sk, skb); 518 519 tcp_rcv_rtt_measure(tp); 520 521 now = tcp_time_stamp; 522 523 if (!icsk->icsk_ack.ato) { 524 /* The _first_ data packet received, initialize 525 * delayed ACK engine. 526 */ 527 tcp_incr_quickack(sk); 528 icsk->icsk_ack.ato = TCP_ATO_MIN; 529 } else { 530 int m = now - icsk->icsk_ack.lrcvtime; 531 532 if (m <= TCP_ATO_MIN/2) { 533 /* The fastest case is the first. */ 534 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 535 } else if (m < icsk->icsk_ack.ato) { 536 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 537 if (icsk->icsk_ack.ato > icsk->icsk_rto) 538 icsk->icsk_ack.ato = icsk->icsk_rto; 539 } else if (m > icsk->icsk_rto) { 540 /* Too long gap. Apparently sender failed to 541 * restart window, so that we send ACKs quickly. 542 */ 543 tcp_incr_quickack(sk); 544 sk_stream_mem_reclaim(sk); 545 } 546 } 547 icsk->icsk_ack.lrcvtime = now; 548 549 TCP_ECN_check_ce(tp, skb); 550 551 if (skb->len >= 128) 552 tcp_grow_window(sk, skb); 553 } 554 555 /* Called to compute a smoothed rtt estimate. The data fed to this 556 * routine either comes from timestamps, or from segments that were 557 * known _not_ to have been retransmitted [see Karn/Partridge 558 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 559 * piece by Van Jacobson. 560 * NOTE: the next three routines used to be one big routine. 561 * To save cycles in the RFC 1323 implementation it was better to break 562 * it up into three procedures. -- erics 563 */ 564 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt) 565 { 566 struct tcp_sock *tp = tcp_sk(sk); 567 long m = mrtt; /* RTT */ 568 569 /* The following amusing code comes from Jacobson's 570 * article in SIGCOMM '88. Note that rtt and mdev 571 * are scaled versions of rtt and mean deviation. 572 * This is designed to be as fast as possible 573 * m stands for "measurement". 574 * 575 * On a 1990 paper the rto value is changed to: 576 * RTO = rtt + 4 * mdev 577 * 578 * Funny. This algorithm seems to be very broken. 579 * These formulae increase RTO, when it should be decreased, increase 580 * too slowly, when it should be increased quickly, decrease too quickly 581 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 582 * does not matter how to _calculate_ it. Seems, it was trap 583 * that VJ failed to avoid. 8) 584 */ 585 if (m == 0) 586 m = 1; 587 if (tp->srtt != 0) { 588 m -= (tp->srtt >> 3); /* m is now error in rtt est */ 589 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 590 if (m < 0) { 591 m = -m; /* m is now abs(error) */ 592 m -= (tp->mdev >> 2); /* similar update on mdev */ 593 /* This is similar to one of Eifel findings. 594 * Eifel blocks mdev updates when rtt decreases. 595 * This solution is a bit different: we use finer gain 596 * for mdev in this case (alpha*beta). 597 * Like Eifel it also prevents growth of rto, 598 * but also it limits too fast rto decreases, 599 * happening in pure Eifel. 600 */ 601 if (m > 0) 602 m >>= 3; 603 } else { 604 m -= (tp->mdev >> 2); /* similar update on mdev */ 605 } 606 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */ 607 if (tp->mdev > tp->mdev_max) { 608 tp->mdev_max = tp->mdev; 609 if (tp->mdev_max > tp->rttvar) 610 tp->rttvar = tp->mdev_max; 611 } 612 if (after(tp->snd_una, tp->rtt_seq)) { 613 if (tp->mdev_max < tp->rttvar) 614 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2; 615 tp->rtt_seq = tp->snd_nxt; 616 tp->mdev_max = TCP_RTO_MIN; 617 } 618 } else { 619 /* no previous measure. */ 620 tp->srtt = m<<3; /* take the measured time to be rtt */ 621 tp->mdev = m<<1; /* make sure rto = 3*rtt */ 622 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN); 623 tp->rtt_seq = tp->snd_nxt; 624 } 625 } 626 627 /* Calculate rto without backoff. This is the second half of Van Jacobson's 628 * routine referred to above. 629 */ 630 static inline void tcp_set_rto(struct sock *sk) 631 { 632 const struct tcp_sock *tp = tcp_sk(sk); 633 /* Old crap is replaced with new one. 8) 634 * 635 * More seriously: 636 * 1. If rtt variance happened to be less 50msec, it is hallucination. 637 * It cannot be less due to utterly erratic ACK generation made 638 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 639 * to do with delayed acks, because at cwnd>2 true delack timeout 640 * is invisible. Actually, Linux-2.4 also generates erratic 641 * ACKs in some circumstances. 642 */ 643 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar; 644 645 /* 2. Fixups made earlier cannot be right. 646 * If we do not estimate RTO correctly without them, 647 * all the algo is pure shit and should be replaced 648 * with correct one. It is exactly, which we pretend to do. 649 */ 650 } 651 652 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 653 * guarantees that rto is higher. 654 */ 655 static inline void tcp_bound_rto(struct sock *sk) 656 { 657 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX) 658 inet_csk(sk)->icsk_rto = TCP_RTO_MAX; 659 } 660 661 /* Save metrics learned by this TCP session. 662 This function is called only, when TCP finishes successfully 663 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE. 664 */ 665 void tcp_update_metrics(struct sock *sk) 666 { 667 struct tcp_sock *tp = tcp_sk(sk); 668 struct dst_entry *dst = __sk_dst_get(sk); 669 670 if (sysctl_tcp_nometrics_save) 671 return; 672 673 dst_confirm(dst); 674 675 if (dst && (dst->flags&DST_HOST)) { 676 const struct inet_connection_sock *icsk = inet_csk(sk); 677 int m; 678 679 if (icsk->icsk_backoff || !tp->srtt) { 680 /* This session failed to estimate rtt. Why? 681 * Probably, no packets returned in time. 682 * Reset our results. 683 */ 684 if (!(dst_metric_locked(dst, RTAX_RTT))) 685 dst->metrics[RTAX_RTT-1] = 0; 686 return; 687 } 688 689 m = dst_metric(dst, RTAX_RTT) - tp->srtt; 690 691 /* If newly calculated rtt larger than stored one, 692 * store new one. Otherwise, use EWMA. Remember, 693 * rtt overestimation is always better than underestimation. 694 */ 695 if (!(dst_metric_locked(dst, RTAX_RTT))) { 696 if (m <= 0) 697 dst->metrics[RTAX_RTT-1] = tp->srtt; 698 else 699 dst->metrics[RTAX_RTT-1] -= (m>>3); 700 } 701 702 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) { 703 if (m < 0) 704 m = -m; 705 706 /* Scale deviation to rttvar fixed point */ 707 m >>= 1; 708 if (m < tp->mdev) 709 m = tp->mdev; 710 711 if (m >= dst_metric(dst, RTAX_RTTVAR)) 712 dst->metrics[RTAX_RTTVAR-1] = m; 713 else 714 dst->metrics[RTAX_RTTVAR-1] -= 715 (dst->metrics[RTAX_RTTVAR-1] - m)>>2; 716 } 717 718 if (tp->snd_ssthresh >= 0xFFFF) { 719 /* Slow start still did not finish. */ 720 if (dst_metric(dst, RTAX_SSTHRESH) && 721 !dst_metric_locked(dst, RTAX_SSTHRESH) && 722 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH)) 723 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1; 724 if (!dst_metric_locked(dst, RTAX_CWND) && 725 tp->snd_cwnd > dst_metric(dst, RTAX_CWND)) 726 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd; 727 } else if (tp->snd_cwnd > tp->snd_ssthresh && 728 icsk->icsk_ca_state == TCP_CA_Open) { 729 /* Cong. avoidance phase, cwnd is reliable. */ 730 if (!dst_metric_locked(dst, RTAX_SSTHRESH)) 731 dst->metrics[RTAX_SSTHRESH-1] = 732 max(tp->snd_cwnd >> 1, tp->snd_ssthresh); 733 if (!dst_metric_locked(dst, RTAX_CWND)) 734 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1; 735 } else { 736 /* Else slow start did not finish, cwnd is non-sense, 737 ssthresh may be also invalid. 738 */ 739 if (!dst_metric_locked(dst, RTAX_CWND)) 740 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1; 741 if (dst->metrics[RTAX_SSTHRESH-1] && 742 !dst_metric_locked(dst, RTAX_SSTHRESH) && 743 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1]) 744 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh; 745 } 746 747 if (!dst_metric_locked(dst, RTAX_REORDERING)) { 748 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering && 749 tp->reordering != sysctl_tcp_reordering) 750 dst->metrics[RTAX_REORDERING-1] = tp->reordering; 751 } 752 } 753 } 754 755 /* Numbers are taken from RFC2414. */ 756 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst) 757 { 758 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 759 760 if (!cwnd) { 761 if (tp->mss_cache > 1460) 762 cwnd = 2; 763 else 764 cwnd = (tp->mss_cache > 1095) ? 3 : 4; 765 } 766 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 767 } 768 769 /* Set slow start threshold and cwnd not falling to slow start */ 770 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh) 771 { 772 struct tcp_sock *tp = tcp_sk(sk); 773 const struct inet_connection_sock *icsk = inet_csk(sk); 774 775 tp->prior_ssthresh = 0; 776 tp->bytes_acked = 0; 777 if (icsk->icsk_ca_state < TCP_CA_CWR) { 778 tp->undo_marker = 0; 779 if (set_ssthresh) 780 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 781 tp->snd_cwnd = min(tp->snd_cwnd, 782 tcp_packets_in_flight(tp) + 1U); 783 tp->snd_cwnd_cnt = 0; 784 tp->high_seq = tp->snd_nxt; 785 tp->snd_cwnd_stamp = tcp_time_stamp; 786 TCP_ECN_queue_cwr(tp); 787 788 tcp_set_ca_state(sk, TCP_CA_CWR); 789 } 790 } 791 792 /* Initialize metrics on socket. */ 793 794 static void tcp_init_metrics(struct sock *sk) 795 { 796 struct tcp_sock *tp = tcp_sk(sk); 797 struct dst_entry *dst = __sk_dst_get(sk); 798 799 if (dst == NULL) 800 goto reset; 801 802 dst_confirm(dst); 803 804 if (dst_metric_locked(dst, RTAX_CWND)) 805 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND); 806 if (dst_metric(dst, RTAX_SSTHRESH)) { 807 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH); 808 if (tp->snd_ssthresh > tp->snd_cwnd_clamp) 809 tp->snd_ssthresh = tp->snd_cwnd_clamp; 810 } 811 if (dst_metric(dst, RTAX_REORDERING) && 812 tp->reordering != dst_metric(dst, RTAX_REORDERING)) { 813 tp->rx_opt.sack_ok &= ~2; 814 tp->reordering = dst_metric(dst, RTAX_REORDERING); 815 } 816 817 if (dst_metric(dst, RTAX_RTT) == 0) 818 goto reset; 819 820 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3)) 821 goto reset; 822 823 /* Initial rtt is determined from SYN,SYN-ACK. 824 * The segment is small and rtt may appear much 825 * less than real one. Use per-dst memory 826 * to make it more realistic. 827 * 828 * A bit of theory. RTT is time passed after "normal" sized packet 829 * is sent until it is ACKed. In normal circumstances sending small 830 * packets force peer to delay ACKs and calculation is correct too. 831 * The algorithm is adaptive and, provided we follow specs, it 832 * NEVER underestimate RTT. BUT! If peer tries to make some clever 833 * tricks sort of "quick acks" for time long enough to decrease RTT 834 * to low value, and then abruptly stops to do it and starts to delay 835 * ACKs, wait for troubles. 836 */ 837 if (dst_metric(dst, RTAX_RTT) > tp->srtt) { 838 tp->srtt = dst_metric(dst, RTAX_RTT); 839 tp->rtt_seq = tp->snd_nxt; 840 } 841 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) { 842 tp->mdev = dst_metric(dst, RTAX_RTTVAR); 843 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN); 844 } 845 tcp_set_rto(sk); 846 tcp_bound_rto(sk); 847 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp) 848 goto reset; 849 tp->snd_cwnd = tcp_init_cwnd(tp, dst); 850 tp->snd_cwnd_stamp = tcp_time_stamp; 851 return; 852 853 reset: 854 /* Play conservative. If timestamps are not 855 * supported, TCP will fail to recalculate correct 856 * rtt, if initial rto is too small. FORGET ALL AND RESET! 857 */ 858 if (!tp->rx_opt.saw_tstamp && tp->srtt) { 859 tp->srtt = 0; 860 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT; 861 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 862 } 863 } 864 865 static void tcp_update_reordering(struct sock *sk, const int metric, 866 const int ts) 867 { 868 struct tcp_sock *tp = tcp_sk(sk); 869 if (metric > tp->reordering) { 870 tp->reordering = min(TCP_MAX_REORDERING, metric); 871 872 /* This exciting event is worth to be remembered. 8) */ 873 if (ts) 874 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER); 875 else if (IsReno(tp)) 876 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER); 877 else if (IsFack(tp)) 878 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER); 879 else 880 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER); 881 #if FASTRETRANS_DEBUG > 1 882 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n", 883 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 884 tp->reordering, 885 tp->fackets_out, 886 tp->sacked_out, 887 tp->undo_marker ? tp->undo_retrans : 0); 888 #endif 889 /* Disable FACK yet. */ 890 tp->rx_opt.sack_ok &= ~2; 891 } 892 } 893 894 /* This procedure tags the retransmission queue when SACKs arrive. 895 * 896 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 897 * Packets in queue with these bits set are counted in variables 898 * sacked_out, retrans_out and lost_out, correspondingly. 899 * 900 * Valid combinations are: 901 * Tag InFlight Description 902 * 0 1 - orig segment is in flight. 903 * S 0 - nothing flies, orig reached receiver. 904 * L 0 - nothing flies, orig lost by net. 905 * R 2 - both orig and retransmit are in flight. 906 * L|R 1 - orig is lost, retransmit is in flight. 907 * S|R 1 - orig reached receiver, retrans is still in flight. 908 * (L|S|R is logically valid, it could occur when L|R is sacked, 909 * but it is equivalent to plain S and code short-curcuits it to S. 910 * L|S is logically invalid, it would mean -1 packet in flight 8)) 911 * 912 * These 6 states form finite state machine, controlled by the following events: 913 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 914 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 915 * 3. Loss detection event of one of three flavors: 916 * A. Scoreboard estimator decided the packet is lost. 917 * A'. Reno "three dupacks" marks head of queue lost. 918 * A''. Its FACK modfication, head until snd.fack is lost. 919 * B. SACK arrives sacking data transmitted after never retransmitted 920 * hole was sent out. 921 * C. SACK arrives sacking SND.NXT at the moment, when the 922 * segment was retransmitted. 923 * 4. D-SACK added new rule: D-SACK changes any tag to S. 924 * 925 * It is pleasant to note, that state diagram turns out to be commutative, 926 * so that we are allowed not to be bothered by order of our actions, 927 * when multiple events arrive simultaneously. (see the function below). 928 * 929 * Reordering detection. 930 * -------------------- 931 * Reordering metric is maximal distance, which a packet can be displaced 932 * in packet stream. With SACKs we can estimate it: 933 * 934 * 1. SACK fills old hole and the corresponding segment was not 935 * ever retransmitted -> reordering. Alas, we cannot use it 936 * when segment was retransmitted. 937 * 2. The last flaw is solved with D-SACK. D-SACK arrives 938 * for retransmitted and already SACKed segment -> reordering.. 939 * Both of these heuristics are not used in Loss state, when we cannot 940 * account for retransmits accurately. 941 */ 942 static int 943 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una) 944 { 945 const struct inet_connection_sock *icsk = inet_csk(sk); 946 struct tcp_sock *tp = tcp_sk(sk); 947 unsigned char *ptr = (skb_transport_header(ack_skb) + 948 TCP_SKB_CB(ack_skb)->sacked); 949 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2); 950 struct sk_buff *cached_skb; 951 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3; 952 int reord = tp->packets_out; 953 int prior_fackets; 954 u32 lost_retrans = 0; 955 int flag = 0; 956 int found_dup_sack = 0; 957 int cached_fack_count; 958 int i; 959 int first_sack_index; 960 961 if (!tp->sacked_out) 962 tp->fackets_out = 0; 963 prior_fackets = tp->fackets_out; 964 965 /* Check for D-SACK. */ 966 if (before(ntohl(sp[0].start_seq), TCP_SKB_CB(ack_skb)->ack_seq)) { 967 found_dup_sack = 1; 968 tp->rx_opt.sack_ok |= 4; 969 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV); 970 } else if (num_sacks > 1 && 971 !after(ntohl(sp[0].end_seq), ntohl(sp[1].end_seq)) && 972 !before(ntohl(sp[0].start_seq), ntohl(sp[1].start_seq))) { 973 found_dup_sack = 1; 974 tp->rx_opt.sack_ok |= 4; 975 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV); 976 } 977 978 /* D-SACK for already forgotten data... 979 * Do dumb counting. */ 980 if (found_dup_sack && 981 !after(ntohl(sp[0].end_seq), prior_snd_una) && 982 after(ntohl(sp[0].end_seq), tp->undo_marker)) 983 tp->undo_retrans--; 984 985 /* Eliminate too old ACKs, but take into 986 * account more or less fresh ones, they can 987 * contain valid SACK info. 988 */ 989 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 990 return 0; 991 992 /* SACK fastpath: 993 * if the only SACK change is the increase of the end_seq of 994 * the first block then only apply that SACK block 995 * and use retrans queue hinting otherwise slowpath */ 996 flag = 1; 997 for (i = 0; i < num_sacks; i++) { 998 __be32 start_seq = sp[i].start_seq; 999 __be32 end_seq = sp[i].end_seq; 1000 1001 if (i == 0) { 1002 if (tp->recv_sack_cache[i].start_seq != start_seq) 1003 flag = 0; 1004 } else { 1005 if ((tp->recv_sack_cache[i].start_seq != start_seq) || 1006 (tp->recv_sack_cache[i].end_seq != end_seq)) 1007 flag = 0; 1008 } 1009 tp->recv_sack_cache[i].start_seq = start_seq; 1010 tp->recv_sack_cache[i].end_seq = end_seq; 1011 } 1012 /* Clear the rest of the cache sack blocks so they won't match mistakenly. */ 1013 for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) { 1014 tp->recv_sack_cache[i].start_seq = 0; 1015 tp->recv_sack_cache[i].end_seq = 0; 1016 } 1017 1018 first_sack_index = 0; 1019 if (flag) 1020 num_sacks = 1; 1021 else { 1022 int j; 1023 tp->fastpath_skb_hint = NULL; 1024 1025 /* order SACK blocks to allow in order walk of the retrans queue */ 1026 for (i = num_sacks-1; i > 0; i--) { 1027 for (j = 0; j < i; j++){ 1028 if (after(ntohl(sp[j].start_seq), 1029 ntohl(sp[j+1].start_seq))){ 1030 struct tcp_sack_block_wire tmp; 1031 1032 tmp = sp[j]; 1033 sp[j] = sp[j+1]; 1034 sp[j+1] = tmp; 1035 1036 /* Track where the first SACK block goes to */ 1037 if (j == first_sack_index) 1038 first_sack_index = j+1; 1039 } 1040 1041 } 1042 } 1043 } 1044 1045 /* clear flag as used for different purpose in following code */ 1046 flag = 0; 1047 1048 /* Use SACK fastpath hint if valid */ 1049 cached_skb = tp->fastpath_skb_hint; 1050 cached_fack_count = tp->fastpath_cnt_hint; 1051 if (!cached_skb) { 1052 cached_skb = tcp_write_queue_head(sk); 1053 cached_fack_count = 0; 1054 } 1055 1056 for (i=0; i<num_sacks; i++, sp++) { 1057 struct sk_buff *skb; 1058 __u32 start_seq = ntohl(sp->start_seq); 1059 __u32 end_seq = ntohl(sp->end_seq); 1060 int fack_count; 1061 int dup_sack = (found_dup_sack && (i == first_sack_index)); 1062 1063 skb = cached_skb; 1064 fack_count = cached_fack_count; 1065 1066 /* Event "B" in the comment above. */ 1067 if (after(end_seq, tp->high_seq)) 1068 flag |= FLAG_DATA_LOST; 1069 1070 tcp_for_write_queue_from(skb, sk) { 1071 int in_sack, pcount; 1072 u8 sacked; 1073 1074 if (skb == tcp_send_head(sk)) 1075 break; 1076 1077 cached_skb = skb; 1078 cached_fack_count = fack_count; 1079 if (i == first_sack_index) { 1080 tp->fastpath_skb_hint = skb; 1081 tp->fastpath_cnt_hint = fack_count; 1082 } 1083 1084 /* The retransmission queue is always in order, so 1085 * we can short-circuit the walk early. 1086 */ 1087 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1088 break; 1089 1090 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1091 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1092 1093 pcount = tcp_skb_pcount(skb); 1094 1095 if (pcount > 1 && !in_sack && 1096 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1097 unsigned int pkt_len; 1098 1099 in_sack = !after(start_seq, 1100 TCP_SKB_CB(skb)->seq); 1101 1102 if (!in_sack) 1103 pkt_len = (start_seq - 1104 TCP_SKB_CB(skb)->seq); 1105 else 1106 pkt_len = (end_seq - 1107 TCP_SKB_CB(skb)->seq); 1108 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size)) 1109 break; 1110 pcount = tcp_skb_pcount(skb); 1111 } 1112 1113 fack_count += pcount; 1114 1115 sacked = TCP_SKB_CB(skb)->sacked; 1116 1117 /* Account D-SACK for retransmitted packet. */ 1118 if ((dup_sack && in_sack) && 1119 (sacked & TCPCB_RETRANS) && 1120 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker)) 1121 tp->undo_retrans--; 1122 1123 /* The frame is ACKed. */ 1124 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) { 1125 if (sacked&TCPCB_RETRANS) { 1126 if ((dup_sack && in_sack) && 1127 (sacked&TCPCB_SACKED_ACKED)) 1128 reord = min(fack_count, reord); 1129 } else { 1130 /* If it was in a hole, we detected reordering. */ 1131 if (fack_count < prior_fackets && 1132 !(sacked&TCPCB_SACKED_ACKED)) 1133 reord = min(fack_count, reord); 1134 } 1135 1136 /* Nothing to do; acked frame is about to be dropped. */ 1137 continue; 1138 } 1139 1140 if ((sacked&TCPCB_SACKED_RETRANS) && 1141 after(end_seq, TCP_SKB_CB(skb)->ack_seq) && 1142 (!lost_retrans || after(end_seq, lost_retrans))) 1143 lost_retrans = end_seq; 1144 1145 if (!in_sack) 1146 continue; 1147 1148 if (!(sacked&TCPCB_SACKED_ACKED)) { 1149 if (sacked & TCPCB_SACKED_RETRANS) { 1150 /* If the segment is not tagged as lost, 1151 * we do not clear RETRANS, believing 1152 * that retransmission is still in flight. 1153 */ 1154 if (sacked & TCPCB_LOST) { 1155 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1156 tp->lost_out -= tcp_skb_pcount(skb); 1157 tp->retrans_out -= tcp_skb_pcount(skb); 1158 1159 /* clear lost hint */ 1160 tp->retransmit_skb_hint = NULL; 1161 } 1162 } else { 1163 /* New sack for not retransmitted frame, 1164 * which was in hole. It is reordering. 1165 */ 1166 if (!(sacked & TCPCB_RETRANS) && 1167 fack_count < prior_fackets) 1168 reord = min(fack_count, reord); 1169 1170 if (sacked & TCPCB_LOST) { 1171 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 1172 tp->lost_out -= tcp_skb_pcount(skb); 1173 1174 /* clear lost hint */ 1175 tp->retransmit_skb_hint = NULL; 1176 } 1177 /* SACK enhanced F-RTO detection. 1178 * Set flag if and only if non-rexmitted 1179 * segments below frto_highmark are 1180 * SACKed (RFC4138; Appendix B). 1181 * Clearing correct due to in-order walk 1182 */ 1183 if (after(end_seq, tp->frto_highmark)) { 1184 flag &= ~FLAG_ONLY_ORIG_SACKED; 1185 } else { 1186 if (!(sacked & TCPCB_RETRANS)) 1187 flag |= FLAG_ONLY_ORIG_SACKED; 1188 } 1189 } 1190 1191 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED; 1192 flag |= FLAG_DATA_SACKED; 1193 tp->sacked_out += tcp_skb_pcount(skb); 1194 1195 if (fack_count > tp->fackets_out) 1196 tp->fackets_out = fack_count; 1197 } else { 1198 if (dup_sack && (sacked&TCPCB_RETRANS)) 1199 reord = min(fack_count, reord); 1200 } 1201 1202 /* D-SACK. We can detect redundant retransmission 1203 * in S|R and plain R frames and clear it. 1204 * undo_retrans is decreased above, L|R frames 1205 * are accounted above as well. 1206 */ 1207 if (dup_sack && 1208 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) { 1209 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1210 tp->retrans_out -= tcp_skb_pcount(skb); 1211 tp->retransmit_skb_hint = NULL; 1212 } 1213 } 1214 } 1215 1216 /* Check for lost retransmit. This superb idea is 1217 * borrowed from "ratehalving". Event "C". 1218 * Later note: FACK people cheated me again 8), 1219 * we have to account for reordering! Ugly, 1220 * but should help. 1221 */ 1222 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) { 1223 struct sk_buff *skb; 1224 1225 tcp_for_write_queue(skb, sk) { 1226 if (skb == tcp_send_head(sk)) 1227 break; 1228 if (after(TCP_SKB_CB(skb)->seq, lost_retrans)) 1229 break; 1230 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1231 continue; 1232 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) && 1233 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) && 1234 (IsFack(tp) || 1235 !before(lost_retrans, 1236 TCP_SKB_CB(skb)->ack_seq + tp->reordering * 1237 tp->mss_cache))) { 1238 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1239 tp->retrans_out -= tcp_skb_pcount(skb); 1240 1241 /* clear lost hint */ 1242 tp->retransmit_skb_hint = NULL; 1243 1244 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) { 1245 tp->lost_out += tcp_skb_pcount(skb); 1246 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1247 flag |= FLAG_DATA_SACKED; 1248 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT); 1249 } 1250 } 1251 } 1252 } 1253 1254 tp->left_out = tp->sacked_out + tp->lost_out; 1255 1256 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss && 1257 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark))) 1258 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0); 1259 1260 #if FASTRETRANS_DEBUG > 0 1261 BUG_TRAP((int)tp->sacked_out >= 0); 1262 BUG_TRAP((int)tp->lost_out >= 0); 1263 BUG_TRAP((int)tp->retrans_out >= 0); 1264 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0); 1265 #endif 1266 return flag; 1267 } 1268 1269 /* F-RTO can only be used if TCP has never retransmitted anything other than 1270 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here) 1271 */ 1272 int tcp_use_frto(struct sock *sk) 1273 { 1274 const struct tcp_sock *tp = tcp_sk(sk); 1275 struct sk_buff *skb; 1276 1277 if (!sysctl_tcp_frto) 1278 return 0; 1279 1280 if (IsSackFrto()) 1281 return 1; 1282 1283 /* Avoid expensive walking of rexmit queue if possible */ 1284 if (tp->retrans_out > 1) 1285 return 0; 1286 1287 skb = tcp_write_queue_head(sk); 1288 skb = tcp_write_queue_next(sk, skb); /* Skips head */ 1289 tcp_for_write_queue_from(skb, sk) { 1290 if (skb == tcp_send_head(sk)) 1291 break; 1292 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS) 1293 return 0; 1294 /* Short-circuit when first non-SACKed skb has been checked */ 1295 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) 1296 break; 1297 } 1298 return 1; 1299 } 1300 1301 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO 1302 * recovery a bit and use heuristics in tcp_process_frto() to detect if 1303 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to 1304 * keep retrans_out counting accurate (with SACK F-RTO, other than head 1305 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS 1306 * bits are handled if the Loss state is really to be entered (in 1307 * tcp_enter_frto_loss). 1308 * 1309 * Do like tcp_enter_loss() would; when RTO expires the second time it 1310 * does: 1311 * "Reduce ssthresh if it has not yet been made inside this window." 1312 */ 1313 void tcp_enter_frto(struct sock *sk) 1314 { 1315 const struct inet_connection_sock *icsk = inet_csk(sk); 1316 struct tcp_sock *tp = tcp_sk(sk); 1317 struct sk_buff *skb; 1318 1319 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) || 1320 tp->snd_una == tp->high_seq || 1321 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) && 1322 !icsk->icsk_retransmits)) { 1323 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1324 /* Our state is too optimistic in ssthresh() call because cwnd 1325 * is not reduced until tcp_enter_frto_loss() when previous FRTO 1326 * recovery has not yet completed. Pattern would be this: RTO, 1327 * Cumulative ACK, RTO (2xRTO for the same segment does not end 1328 * up here twice). 1329 * RFC4138 should be more specific on what to do, even though 1330 * RTO is quite unlikely to occur after the first Cumulative ACK 1331 * due to back-off and complexity of triggering events ... 1332 */ 1333 if (tp->frto_counter) { 1334 u32 stored_cwnd; 1335 stored_cwnd = tp->snd_cwnd; 1336 tp->snd_cwnd = 2; 1337 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1338 tp->snd_cwnd = stored_cwnd; 1339 } else { 1340 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1341 } 1342 /* ... in theory, cong.control module could do "any tricks" in 1343 * ssthresh(), which means that ca_state, lost bits and lost_out 1344 * counter would have to be faked before the call occurs. We 1345 * consider that too expensive, unlikely and hacky, so modules 1346 * using these in ssthresh() must deal these incompatibility 1347 * issues if they receives CA_EVENT_FRTO and frto_counter != 0 1348 */ 1349 tcp_ca_event(sk, CA_EVENT_FRTO); 1350 } 1351 1352 tp->undo_marker = tp->snd_una; 1353 tp->undo_retrans = 0; 1354 1355 skb = tcp_write_queue_head(sk); 1356 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 1357 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1358 tp->retrans_out -= tcp_skb_pcount(skb); 1359 } 1360 tcp_sync_left_out(tp); 1361 1362 /* Earlier loss recovery underway (see RFC4138; Appendix B). 1363 * The last condition is necessary at least in tp->frto_counter case. 1364 */ 1365 if (IsSackFrto() && (tp->frto_counter || 1366 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) && 1367 after(tp->high_seq, tp->snd_una)) { 1368 tp->frto_highmark = tp->high_seq; 1369 } else { 1370 tp->frto_highmark = tp->snd_nxt; 1371 } 1372 tcp_set_ca_state(sk, TCP_CA_Disorder); 1373 tp->high_seq = tp->snd_nxt; 1374 tp->frto_counter = 1; 1375 } 1376 1377 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO, 1378 * which indicates that we should follow the traditional RTO recovery, 1379 * i.e. mark everything lost and do go-back-N retransmission. 1380 */ 1381 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag) 1382 { 1383 struct tcp_sock *tp = tcp_sk(sk); 1384 struct sk_buff *skb; 1385 int cnt = 0; 1386 1387 tp->sacked_out = 0; 1388 tp->lost_out = 0; 1389 tp->fackets_out = 0; 1390 tp->retrans_out = 0; 1391 1392 tcp_for_write_queue(skb, sk) { 1393 if (skb == tcp_send_head(sk)) 1394 break; 1395 cnt += tcp_skb_pcount(skb); 1396 /* 1397 * Count the retransmission made on RTO correctly (only when 1398 * waiting for the first ACK and did not get it)... 1399 */ 1400 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) { 1401 /* For some reason this R-bit might get cleared? */ 1402 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1403 tp->retrans_out += tcp_skb_pcount(skb); 1404 /* ...enter this if branch just for the first segment */ 1405 flag |= FLAG_DATA_ACKED; 1406 } else { 1407 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1408 } 1409 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) { 1410 1411 /* Do not mark those segments lost that were 1412 * forward transmitted after RTO 1413 */ 1414 if (!after(TCP_SKB_CB(skb)->end_seq, 1415 tp->frto_highmark)) { 1416 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1417 tp->lost_out += tcp_skb_pcount(skb); 1418 } 1419 } else { 1420 tp->sacked_out += tcp_skb_pcount(skb); 1421 tp->fackets_out = cnt; 1422 } 1423 } 1424 tcp_sync_left_out(tp); 1425 1426 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments; 1427 tp->snd_cwnd_cnt = 0; 1428 tp->snd_cwnd_stamp = tcp_time_stamp; 1429 tp->undo_marker = 0; 1430 tp->frto_counter = 0; 1431 1432 tp->reordering = min_t(unsigned int, tp->reordering, 1433 sysctl_tcp_reordering); 1434 tcp_set_ca_state(sk, TCP_CA_Loss); 1435 tp->high_seq = tp->frto_highmark; 1436 TCP_ECN_queue_cwr(tp); 1437 1438 clear_all_retrans_hints(tp); 1439 } 1440 1441 void tcp_clear_retrans(struct tcp_sock *tp) 1442 { 1443 tp->left_out = 0; 1444 tp->retrans_out = 0; 1445 1446 tp->fackets_out = 0; 1447 tp->sacked_out = 0; 1448 tp->lost_out = 0; 1449 1450 tp->undo_marker = 0; 1451 tp->undo_retrans = 0; 1452 } 1453 1454 /* Enter Loss state. If "how" is not zero, forget all SACK information 1455 * and reset tags completely, otherwise preserve SACKs. If receiver 1456 * dropped its ofo queue, we will know this due to reneging detection. 1457 */ 1458 void tcp_enter_loss(struct sock *sk, int how) 1459 { 1460 const struct inet_connection_sock *icsk = inet_csk(sk); 1461 struct tcp_sock *tp = tcp_sk(sk); 1462 struct sk_buff *skb; 1463 int cnt = 0; 1464 1465 /* Reduce ssthresh if it has not yet been made inside this window. */ 1466 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq || 1467 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1468 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1469 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1470 tcp_ca_event(sk, CA_EVENT_LOSS); 1471 } 1472 tp->snd_cwnd = 1; 1473 tp->snd_cwnd_cnt = 0; 1474 tp->snd_cwnd_stamp = tcp_time_stamp; 1475 1476 tp->bytes_acked = 0; 1477 tcp_clear_retrans(tp); 1478 1479 /* Push undo marker, if it was plain RTO and nothing 1480 * was retransmitted. */ 1481 if (!how) 1482 tp->undo_marker = tp->snd_una; 1483 1484 tcp_for_write_queue(skb, sk) { 1485 if (skb == tcp_send_head(sk)) 1486 break; 1487 cnt += tcp_skb_pcount(skb); 1488 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS) 1489 tp->undo_marker = 0; 1490 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1491 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) { 1492 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1493 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1494 tp->lost_out += tcp_skb_pcount(skb); 1495 } else { 1496 tp->sacked_out += tcp_skb_pcount(skb); 1497 tp->fackets_out = cnt; 1498 } 1499 } 1500 tcp_sync_left_out(tp); 1501 1502 tp->reordering = min_t(unsigned int, tp->reordering, 1503 sysctl_tcp_reordering); 1504 tcp_set_ca_state(sk, TCP_CA_Loss); 1505 tp->high_seq = tp->snd_nxt; 1506 TCP_ECN_queue_cwr(tp); 1507 /* Abort FRTO algorithm if one is in progress */ 1508 tp->frto_counter = 0; 1509 1510 clear_all_retrans_hints(tp); 1511 } 1512 1513 static int tcp_check_sack_reneging(struct sock *sk) 1514 { 1515 struct sk_buff *skb; 1516 1517 /* If ACK arrived pointing to a remembered SACK, 1518 * it means that our remembered SACKs do not reflect 1519 * real state of receiver i.e. 1520 * receiver _host_ is heavily congested (or buggy). 1521 * Do processing similar to RTO timeout. 1522 */ 1523 if ((skb = tcp_write_queue_head(sk)) != NULL && 1524 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 1525 struct inet_connection_sock *icsk = inet_csk(sk); 1526 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING); 1527 1528 tcp_enter_loss(sk, 1); 1529 icsk->icsk_retransmits++; 1530 tcp_retransmit_skb(sk, tcp_write_queue_head(sk)); 1531 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 1532 icsk->icsk_rto, TCP_RTO_MAX); 1533 return 1; 1534 } 1535 return 0; 1536 } 1537 1538 static inline int tcp_fackets_out(struct tcp_sock *tp) 1539 { 1540 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out; 1541 } 1542 1543 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb) 1544 { 1545 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto); 1546 } 1547 1548 static inline int tcp_head_timedout(struct sock *sk) 1549 { 1550 struct tcp_sock *tp = tcp_sk(sk); 1551 1552 return tp->packets_out && 1553 tcp_skb_timedout(sk, tcp_write_queue_head(sk)); 1554 } 1555 1556 /* Linux NewReno/SACK/FACK/ECN state machine. 1557 * -------------------------------------- 1558 * 1559 * "Open" Normal state, no dubious events, fast path. 1560 * "Disorder" In all the respects it is "Open", 1561 * but requires a bit more attention. It is entered when 1562 * we see some SACKs or dupacks. It is split of "Open" 1563 * mainly to move some processing from fast path to slow one. 1564 * "CWR" CWND was reduced due to some Congestion Notification event. 1565 * It can be ECN, ICMP source quench, local device congestion. 1566 * "Recovery" CWND was reduced, we are fast-retransmitting. 1567 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 1568 * 1569 * tcp_fastretrans_alert() is entered: 1570 * - each incoming ACK, if state is not "Open" 1571 * - when arrived ACK is unusual, namely: 1572 * * SACK 1573 * * Duplicate ACK. 1574 * * ECN ECE. 1575 * 1576 * Counting packets in flight is pretty simple. 1577 * 1578 * in_flight = packets_out - left_out + retrans_out 1579 * 1580 * packets_out is SND.NXT-SND.UNA counted in packets. 1581 * 1582 * retrans_out is number of retransmitted segments. 1583 * 1584 * left_out is number of segments left network, but not ACKed yet. 1585 * 1586 * left_out = sacked_out + lost_out 1587 * 1588 * sacked_out: Packets, which arrived to receiver out of order 1589 * and hence not ACKed. With SACKs this number is simply 1590 * amount of SACKed data. Even without SACKs 1591 * it is easy to give pretty reliable estimate of this number, 1592 * counting duplicate ACKs. 1593 * 1594 * lost_out: Packets lost by network. TCP has no explicit 1595 * "loss notification" feedback from network (for now). 1596 * It means that this number can be only _guessed_. 1597 * Actually, it is the heuristics to predict lossage that 1598 * distinguishes different algorithms. 1599 * 1600 * F.e. after RTO, when all the queue is considered as lost, 1601 * lost_out = packets_out and in_flight = retrans_out. 1602 * 1603 * Essentially, we have now two algorithms counting 1604 * lost packets. 1605 * 1606 * FACK: It is the simplest heuristics. As soon as we decided 1607 * that something is lost, we decide that _all_ not SACKed 1608 * packets until the most forward SACK are lost. I.e. 1609 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 1610 * It is absolutely correct estimate, if network does not reorder 1611 * packets. And it loses any connection to reality when reordering 1612 * takes place. We use FACK by default until reordering 1613 * is suspected on the path to this destination. 1614 * 1615 * NewReno: when Recovery is entered, we assume that one segment 1616 * is lost (classic Reno). While we are in Recovery and 1617 * a partial ACK arrives, we assume that one more packet 1618 * is lost (NewReno). This heuristics are the same in NewReno 1619 * and SACK. 1620 * 1621 * Imagine, that's all! Forget about all this shamanism about CWND inflation 1622 * deflation etc. CWND is real congestion window, never inflated, changes 1623 * only according to classic VJ rules. 1624 * 1625 * Really tricky (and requiring careful tuning) part of algorithm 1626 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 1627 * The first determines the moment _when_ we should reduce CWND and, 1628 * hence, slow down forward transmission. In fact, it determines the moment 1629 * when we decide that hole is caused by loss, rather than by a reorder. 1630 * 1631 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 1632 * holes, caused by lost packets. 1633 * 1634 * And the most logically complicated part of algorithm is undo 1635 * heuristics. We detect false retransmits due to both too early 1636 * fast retransmit (reordering) and underestimated RTO, analyzing 1637 * timestamps and D-SACKs. When we detect that some segments were 1638 * retransmitted by mistake and CWND reduction was wrong, we undo 1639 * window reduction and abort recovery phase. This logic is hidden 1640 * inside several functions named tcp_try_undo_<something>. 1641 */ 1642 1643 /* This function decides, when we should leave Disordered state 1644 * and enter Recovery phase, reducing congestion window. 1645 * 1646 * Main question: may we further continue forward transmission 1647 * with the same cwnd? 1648 */ 1649 static int tcp_time_to_recover(struct sock *sk) 1650 { 1651 struct tcp_sock *tp = tcp_sk(sk); 1652 __u32 packets_out; 1653 1654 /* Do not perform any recovery during FRTO algorithm */ 1655 if (tp->frto_counter) 1656 return 0; 1657 1658 /* Trick#1: The loss is proven. */ 1659 if (tp->lost_out) 1660 return 1; 1661 1662 /* Not-A-Trick#2 : Classic rule... */ 1663 if (tcp_fackets_out(tp) > tp->reordering) 1664 return 1; 1665 1666 /* Trick#3 : when we use RFC2988 timer restart, fast 1667 * retransmit can be triggered by timeout of queue head. 1668 */ 1669 if (tcp_head_timedout(sk)) 1670 return 1; 1671 1672 /* Trick#4: It is still not OK... But will it be useful to delay 1673 * recovery more? 1674 */ 1675 packets_out = tp->packets_out; 1676 if (packets_out <= tp->reordering && 1677 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 1678 !tcp_may_send_now(sk)) { 1679 /* We have nothing to send. This connection is limited 1680 * either by receiver window or by application. 1681 */ 1682 return 1; 1683 } 1684 1685 return 0; 1686 } 1687 1688 /* If we receive more dupacks than we expected counting segments 1689 * in assumption of absent reordering, interpret this as reordering. 1690 * The only another reason could be bug in receiver TCP. 1691 */ 1692 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1693 { 1694 struct tcp_sock *tp = tcp_sk(sk); 1695 u32 holes; 1696 1697 holes = max(tp->lost_out, 1U); 1698 holes = min(holes, tp->packets_out); 1699 1700 if ((tp->sacked_out + holes) > tp->packets_out) { 1701 tp->sacked_out = tp->packets_out - holes; 1702 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1703 } 1704 } 1705 1706 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1707 1708 static void tcp_add_reno_sack(struct sock *sk) 1709 { 1710 struct tcp_sock *tp = tcp_sk(sk); 1711 tp->sacked_out++; 1712 tcp_check_reno_reordering(sk, 0); 1713 tcp_sync_left_out(tp); 1714 } 1715 1716 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1717 1718 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1719 { 1720 struct tcp_sock *tp = tcp_sk(sk); 1721 1722 if (acked > 0) { 1723 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1724 if (acked-1 >= tp->sacked_out) 1725 tp->sacked_out = 0; 1726 else 1727 tp->sacked_out -= acked-1; 1728 } 1729 tcp_check_reno_reordering(sk, acked); 1730 tcp_sync_left_out(tp); 1731 } 1732 1733 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1734 { 1735 tp->sacked_out = 0; 1736 tp->left_out = tp->lost_out; 1737 } 1738 1739 /* Mark head of queue up as lost. */ 1740 static void tcp_mark_head_lost(struct sock *sk, 1741 int packets, u32 high_seq) 1742 { 1743 struct tcp_sock *tp = tcp_sk(sk); 1744 struct sk_buff *skb; 1745 int cnt; 1746 1747 BUG_TRAP(packets <= tp->packets_out); 1748 if (tp->lost_skb_hint) { 1749 skb = tp->lost_skb_hint; 1750 cnt = tp->lost_cnt_hint; 1751 } else { 1752 skb = tcp_write_queue_head(sk); 1753 cnt = 0; 1754 } 1755 1756 tcp_for_write_queue_from(skb, sk) { 1757 if (skb == tcp_send_head(sk)) 1758 break; 1759 /* TODO: do this better */ 1760 /* this is not the most efficient way to do this... */ 1761 tp->lost_skb_hint = skb; 1762 tp->lost_cnt_hint = cnt; 1763 cnt += tcp_skb_pcount(skb); 1764 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq)) 1765 break; 1766 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) { 1767 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1768 tp->lost_out += tcp_skb_pcount(skb); 1769 1770 /* clear xmit_retransmit_queue hints 1771 * if this is beyond hint */ 1772 if (tp->retransmit_skb_hint != NULL && 1773 before(TCP_SKB_CB(skb)->seq, 1774 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 1775 tp->retransmit_skb_hint = NULL; 1776 1777 } 1778 } 1779 tcp_sync_left_out(tp); 1780 } 1781 1782 /* Account newly detected lost packet(s) */ 1783 1784 static void tcp_update_scoreboard(struct sock *sk) 1785 { 1786 struct tcp_sock *tp = tcp_sk(sk); 1787 1788 if (IsFack(tp)) { 1789 int lost = tp->fackets_out - tp->reordering; 1790 if (lost <= 0) 1791 lost = 1; 1792 tcp_mark_head_lost(sk, lost, tp->high_seq); 1793 } else { 1794 tcp_mark_head_lost(sk, 1, tp->high_seq); 1795 } 1796 1797 /* New heuristics: it is possible only after we switched 1798 * to restart timer each time when something is ACKed. 1799 * Hence, we can detect timed out packets during fast 1800 * retransmit without falling to slow start. 1801 */ 1802 if (!IsReno(tp) && tcp_head_timedout(sk)) { 1803 struct sk_buff *skb; 1804 1805 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint 1806 : tcp_write_queue_head(sk); 1807 1808 tcp_for_write_queue_from(skb, sk) { 1809 if (skb == tcp_send_head(sk)) 1810 break; 1811 if (!tcp_skb_timedout(sk, skb)) 1812 break; 1813 1814 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) { 1815 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1816 tp->lost_out += tcp_skb_pcount(skb); 1817 1818 /* clear xmit_retrans hint */ 1819 if (tp->retransmit_skb_hint && 1820 before(TCP_SKB_CB(skb)->seq, 1821 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 1822 1823 tp->retransmit_skb_hint = NULL; 1824 } 1825 } 1826 1827 tp->scoreboard_skb_hint = skb; 1828 1829 tcp_sync_left_out(tp); 1830 } 1831 } 1832 1833 /* CWND moderation, preventing bursts due to too big ACKs 1834 * in dubious situations. 1835 */ 1836 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 1837 { 1838 tp->snd_cwnd = min(tp->snd_cwnd, 1839 tcp_packets_in_flight(tp)+tcp_max_burst(tp)); 1840 tp->snd_cwnd_stamp = tcp_time_stamp; 1841 } 1842 1843 /* Lower bound on congestion window is slow start threshold 1844 * unless congestion avoidance choice decides to overide it. 1845 */ 1846 static inline u32 tcp_cwnd_min(const struct sock *sk) 1847 { 1848 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1849 1850 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh; 1851 } 1852 1853 /* Decrease cwnd each second ack. */ 1854 static void tcp_cwnd_down(struct sock *sk) 1855 { 1856 struct tcp_sock *tp = tcp_sk(sk); 1857 int decr = tp->snd_cwnd_cnt + 1; 1858 1859 tp->snd_cwnd_cnt = decr&1; 1860 decr >>= 1; 1861 1862 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk)) 1863 tp->snd_cwnd -= decr; 1864 1865 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1); 1866 tp->snd_cwnd_stamp = tcp_time_stamp; 1867 } 1868 1869 /* Nothing was retransmitted or returned timestamp is less 1870 * than timestamp of the first retransmission. 1871 */ 1872 static inline int tcp_packet_delayed(struct tcp_sock *tp) 1873 { 1874 return !tp->retrans_stamp || 1875 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 1876 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0); 1877 } 1878 1879 /* Undo procedures. */ 1880 1881 #if FASTRETRANS_DEBUG > 1 1882 static void DBGUNDO(struct sock *sk, const char *msg) 1883 { 1884 struct tcp_sock *tp = tcp_sk(sk); 1885 struct inet_sock *inet = inet_sk(sk); 1886 1887 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n", 1888 msg, 1889 NIPQUAD(inet->daddr), ntohs(inet->dport), 1890 tp->snd_cwnd, tp->left_out, 1891 tp->snd_ssthresh, tp->prior_ssthresh, 1892 tp->packets_out); 1893 } 1894 #else 1895 #define DBGUNDO(x...) do { } while (0) 1896 #endif 1897 1898 static void tcp_undo_cwr(struct sock *sk, const int undo) 1899 { 1900 struct tcp_sock *tp = tcp_sk(sk); 1901 1902 if (tp->prior_ssthresh) { 1903 const struct inet_connection_sock *icsk = inet_csk(sk); 1904 1905 if (icsk->icsk_ca_ops->undo_cwnd) 1906 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 1907 else 1908 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1); 1909 1910 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) { 1911 tp->snd_ssthresh = tp->prior_ssthresh; 1912 TCP_ECN_withdraw_cwr(tp); 1913 } 1914 } else { 1915 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 1916 } 1917 tcp_moderate_cwnd(tp); 1918 tp->snd_cwnd_stamp = tcp_time_stamp; 1919 1920 /* There is something screwy going on with the retrans hints after 1921 an undo */ 1922 clear_all_retrans_hints(tp); 1923 } 1924 1925 static inline int tcp_may_undo(struct tcp_sock *tp) 1926 { 1927 return tp->undo_marker && 1928 (!tp->undo_retrans || tcp_packet_delayed(tp)); 1929 } 1930 1931 /* People celebrate: "We love our President!" */ 1932 static int tcp_try_undo_recovery(struct sock *sk) 1933 { 1934 struct tcp_sock *tp = tcp_sk(sk); 1935 1936 if (tcp_may_undo(tp)) { 1937 /* Happy end! We did not retransmit anything 1938 * or our original transmission succeeded. 1939 */ 1940 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 1941 tcp_undo_cwr(sk, 1); 1942 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 1943 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO); 1944 else 1945 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO); 1946 tp->undo_marker = 0; 1947 } 1948 if (tp->snd_una == tp->high_seq && IsReno(tp)) { 1949 /* Hold old state until something *above* high_seq 1950 * is ACKed. For Reno it is MUST to prevent false 1951 * fast retransmits (RFC2582). SACK TCP is safe. */ 1952 tcp_moderate_cwnd(tp); 1953 return 1; 1954 } 1955 tcp_set_ca_state(sk, TCP_CA_Open); 1956 return 0; 1957 } 1958 1959 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 1960 static void tcp_try_undo_dsack(struct sock *sk) 1961 { 1962 struct tcp_sock *tp = tcp_sk(sk); 1963 1964 if (tp->undo_marker && !tp->undo_retrans) { 1965 DBGUNDO(sk, "D-SACK"); 1966 tcp_undo_cwr(sk, 1); 1967 tp->undo_marker = 0; 1968 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO); 1969 } 1970 } 1971 1972 /* Undo during fast recovery after partial ACK. */ 1973 1974 static int tcp_try_undo_partial(struct sock *sk, int acked) 1975 { 1976 struct tcp_sock *tp = tcp_sk(sk); 1977 /* Partial ACK arrived. Force Hoe's retransmit. */ 1978 int failed = IsReno(tp) || tp->fackets_out>tp->reordering; 1979 1980 if (tcp_may_undo(tp)) { 1981 /* Plain luck! Hole if filled with delayed 1982 * packet, rather than with a retransmit. 1983 */ 1984 if (tp->retrans_out == 0) 1985 tp->retrans_stamp = 0; 1986 1987 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 1988 1989 DBGUNDO(sk, "Hoe"); 1990 tcp_undo_cwr(sk, 0); 1991 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO); 1992 1993 /* So... Do not make Hoe's retransmit yet. 1994 * If the first packet was delayed, the rest 1995 * ones are most probably delayed as well. 1996 */ 1997 failed = 0; 1998 } 1999 return failed; 2000 } 2001 2002 /* Undo during loss recovery after partial ACK. */ 2003 static int tcp_try_undo_loss(struct sock *sk) 2004 { 2005 struct tcp_sock *tp = tcp_sk(sk); 2006 2007 if (tcp_may_undo(tp)) { 2008 struct sk_buff *skb; 2009 tcp_for_write_queue(skb, sk) { 2010 if (skb == tcp_send_head(sk)) 2011 break; 2012 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2013 } 2014 2015 clear_all_retrans_hints(tp); 2016 2017 DBGUNDO(sk, "partial loss"); 2018 tp->lost_out = 0; 2019 tp->left_out = tp->sacked_out; 2020 tcp_undo_cwr(sk, 1); 2021 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO); 2022 inet_csk(sk)->icsk_retransmits = 0; 2023 tp->undo_marker = 0; 2024 if (!IsReno(tp)) 2025 tcp_set_ca_state(sk, TCP_CA_Open); 2026 return 1; 2027 } 2028 return 0; 2029 } 2030 2031 static inline void tcp_complete_cwr(struct sock *sk) 2032 { 2033 struct tcp_sock *tp = tcp_sk(sk); 2034 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 2035 tp->snd_cwnd_stamp = tcp_time_stamp; 2036 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2037 } 2038 2039 static void tcp_try_to_open(struct sock *sk, int flag) 2040 { 2041 struct tcp_sock *tp = tcp_sk(sk); 2042 2043 tcp_sync_left_out(tp); 2044 2045 if (tp->retrans_out == 0) 2046 tp->retrans_stamp = 0; 2047 2048 if (flag&FLAG_ECE) 2049 tcp_enter_cwr(sk, 1); 2050 2051 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2052 int state = TCP_CA_Open; 2053 2054 if (tp->left_out || tp->retrans_out || tp->undo_marker) 2055 state = TCP_CA_Disorder; 2056 2057 if (inet_csk(sk)->icsk_ca_state != state) { 2058 tcp_set_ca_state(sk, state); 2059 tp->high_seq = tp->snd_nxt; 2060 } 2061 tcp_moderate_cwnd(tp); 2062 } else { 2063 tcp_cwnd_down(sk); 2064 } 2065 } 2066 2067 static void tcp_mtup_probe_failed(struct sock *sk) 2068 { 2069 struct inet_connection_sock *icsk = inet_csk(sk); 2070 2071 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2072 icsk->icsk_mtup.probe_size = 0; 2073 } 2074 2075 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb) 2076 { 2077 struct tcp_sock *tp = tcp_sk(sk); 2078 struct inet_connection_sock *icsk = inet_csk(sk); 2079 2080 /* FIXME: breaks with very large cwnd */ 2081 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2082 tp->snd_cwnd = tp->snd_cwnd * 2083 tcp_mss_to_mtu(sk, tp->mss_cache) / 2084 icsk->icsk_mtup.probe_size; 2085 tp->snd_cwnd_cnt = 0; 2086 tp->snd_cwnd_stamp = tcp_time_stamp; 2087 tp->rcv_ssthresh = tcp_current_ssthresh(sk); 2088 2089 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2090 icsk->icsk_mtup.probe_size = 0; 2091 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2092 } 2093 2094 2095 /* Process an event, which can update packets-in-flight not trivially. 2096 * Main goal of this function is to calculate new estimate for left_out, 2097 * taking into account both packets sitting in receiver's buffer and 2098 * packets lost by network. 2099 * 2100 * Besides that it does CWND reduction, when packet loss is detected 2101 * and changes state of machine. 2102 * 2103 * It does _not_ decide what to send, it is made in function 2104 * tcp_xmit_retransmit_queue(). 2105 */ 2106 static void 2107 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una, 2108 int prior_packets, int flag) 2109 { 2110 struct inet_connection_sock *icsk = inet_csk(sk); 2111 struct tcp_sock *tp = tcp_sk(sk); 2112 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP)); 2113 2114 /* Some technical things: 2115 * 1. Reno does not count dupacks (sacked_out) automatically. */ 2116 if (!tp->packets_out) 2117 tp->sacked_out = 0; 2118 /* 2. SACK counts snd_fack in packets inaccurately. */ 2119 if (tp->sacked_out == 0) 2120 tp->fackets_out = 0; 2121 2122 /* Now state machine starts. 2123 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2124 if (flag&FLAG_ECE) 2125 tp->prior_ssthresh = 0; 2126 2127 /* B. In all the states check for reneging SACKs. */ 2128 if (tp->sacked_out && tcp_check_sack_reneging(sk)) 2129 return; 2130 2131 /* C. Process data loss notification, provided it is valid. */ 2132 if ((flag&FLAG_DATA_LOST) && 2133 before(tp->snd_una, tp->high_seq) && 2134 icsk->icsk_ca_state != TCP_CA_Open && 2135 tp->fackets_out > tp->reordering) { 2136 tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, tp->high_seq); 2137 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS); 2138 } 2139 2140 /* D. Synchronize left_out to current state. */ 2141 tcp_sync_left_out(tp); 2142 2143 /* E. Check state exit conditions. State can be terminated 2144 * when high_seq is ACKed. */ 2145 if (icsk->icsk_ca_state == TCP_CA_Open) { 2146 BUG_TRAP(tp->retrans_out == 0); 2147 tp->retrans_stamp = 0; 2148 } else if (!before(tp->snd_una, tp->high_seq)) { 2149 switch (icsk->icsk_ca_state) { 2150 case TCP_CA_Loss: 2151 icsk->icsk_retransmits = 0; 2152 if (tcp_try_undo_recovery(sk)) 2153 return; 2154 break; 2155 2156 case TCP_CA_CWR: 2157 /* CWR is to be held something *above* high_seq 2158 * is ACKed for CWR bit to reach receiver. */ 2159 if (tp->snd_una != tp->high_seq) { 2160 tcp_complete_cwr(sk); 2161 tcp_set_ca_state(sk, TCP_CA_Open); 2162 } 2163 break; 2164 2165 case TCP_CA_Disorder: 2166 tcp_try_undo_dsack(sk); 2167 if (!tp->undo_marker || 2168 /* For SACK case do not Open to allow to undo 2169 * catching for all duplicate ACKs. */ 2170 IsReno(tp) || tp->snd_una != tp->high_seq) { 2171 tp->undo_marker = 0; 2172 tcp_set_ca_state(sk, TCP_CA_Open); 2173 } 2174 break; 2175 2176 case TCP_CA_Recovery: 2177 if (IsReno(tp)) 2178 tcp_reset_reno_sack(tp); 2179 if (tcp_try_undo_recovery(sk)) 2180 return; 2181 tcp_complete_cwr(sk); 2182 break; 2183 } 2184 } 2185 2186 /* F. Process state. */ 2187 switch (icsk->icsk_ca_state) { 2188 case TCP_CA_Recovery: 2189 if (prior_snd_una == tp->snd_una) { 2190 if (IsReno(tp) && is_dupack) 2191 tcp_add_reno_sack(sk); 2192 } else { 2193 int acked = prior_packets - tp->packets_out; 2194 if (IsReno(tp)) 2195 tcp_remove_reno_sacks(sk, acked); 2196 is_dupack = tcp_try_undo_partial(sk, acked); 2197 } 2198 break; 2199 case TCP_CA_Loss: 2200 if (flag&FLAG_DATA_ACKED) 2201 icsk->icsk_retransmits = 0; 2202 if (!tcp_try_undo_loss(sk)) { 2203 tcp_moderate_cwnd(tp); 2204 tcp_xmit_retransmit_queue(sk); 2205 return; 2206 } 2207 if (icsk->icsk_ca_state != TCP_CA_Open) 2208 return; 2209 /* Loss is undone; fall through to processing in Open state. */ 2210 default: 2211 if (IsReno(tp)) { 2212 if (tp->snd_una != prior_snd_una) 2213 tcp_reset_reno_sack(tp); 2214 if (is_dupack) 2215 tcp_add_reno_sack(sk); 2216 } 2217 2218 if (icsk->icsk_ca_state == TCP_CA_Disorder) 2219 tcp_try_undo_dsack(sk); 2220 2221 if (!tcp_time_to_recover(sk)) { 2222 tcp_try_to_open(sk, flag); 2223 return; 2224 } 2225 2226 /* MTU probe failure: don't reduce cwnd */ 2227 if (icsk->icsk_ca_state < TCP_CA_CWR && 2228 icsk->icsk_mtup.probe_size && 2229 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2230 tcp_mtup_probe_failed(sk); 2231 /* Restores the reduction we did in tcp_mtup_probe() */ 2232 tp->snd_cwnd++; 2233 tcp_simple_retransmit(sk); 2234 return; 2235 } 2236 2237 /* Otherwise enter Recovery state */ 2238 2239 if (IsReno(tp)) 2240 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY); 2241 else 2242 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY); 2243 2244 tp->high_seq = tp->snd_nxt; 2245 tp->prior_ssthresh = 0; 2246 tp->undo_marker = tp->snd_una; 2247 tp->undo_retrans = tp->retrans_out; 2248 2249 if (icsk->icsk_ca_state < TCP_CA_CWR) { 2250 if (!(flag&FLAG_ECE)) 2251 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2252 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2253 TCP_ECN_queue_cwr(tp); 2254 } 2255 2256 tp->bytes_acked = 0; 2257 tp->snd_cwnd_cnt = 0; 2258 tcp_set_ca_state(sk, TCP_CA_Recovery); 2259 } 2260 2261 if (is_dupack || tcp_head_timedout(sk)) 2262 tcp_update_scoreboard(sk); 2263 tcp_cwnd_down(sk); 2264 tcp_xmit_retransmit_queue(sk); 2265 } 2266 2267 /* Read draft-ietf-tcplw-high-performance before mucking 2268 * with this code. (Supersedes RFC1323) 2269 */ 2270 static void tcp_ack_saw_tstamp(struct sock *sk, int flag) 2271 { 2272 /* RTTM Rule: A TSecr value received in a segment is used to 2273 * update the averaged RTT measurement only if the segment 2274 * acknowledges some new data, i.e., only if it advances the 2275 * left edge of the send window. 2276 * 2277 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2278 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru> 2279 * 2280 * Changed: reset backoff as soon as we see the first valid sample. 2281 * If we do not, we get strongly overestimated rto. With timestamps 2282 * samples are accepted even from very old segments: f.e., when rtt=1 2283 * increases to 8, we retransmit 5 times and after 8 seconds delayed 2284 * answer arrives rto becomes 120 seconds! If at least one of segments 2285 * in window is lost... Voila. --ANK (010210) 2286 */ 2287 struct tcp_sock *tp = tcp_sk(sk); 2288 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr; 2289 tcp_rtt_estimator(sk, seq_rtt); 2290 tcp_set_rto(sk); 2291 inet_csk(sk)->icsk_backoff = 0; 2292 tcp_bound_rto(sk); 2293 } 2294 2295 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag) 2296 { 2297 /* We don't have a timestamp. Can only use 2298 * packets that are not retransmitted to determine 2299 * rtt estimates. Also, we must not reset the 2300 * backoff for rto until we get a non-retransmitted 2301 * packet. This allows us to deal with a situation 2302 * where the network delay has increased suddenly. 2303 * I.e. Karn's algorithm. (SIGCOMM '87, p5.) 2304 */ 2305 2306 if (flag & FLAG_RETRANS_DATA_ACKED) 2307 return; 2308 2309 tcp_rtt_estimator(sk, seq_rtt); 2310 tcp_set_rto(sk); 2311 inet_csk(sk)->icsk_backoff = 0; 2312 tcp_bound_rto(sk); 2313 } 2314 2315 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag, 2316 const s32 seq_rtt) 2317 { 2318 const struct tcp_sock *tp = tcp_sk(sk); 2319 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */ 2320 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 2321 tcp_ack_saw_tstamp(sk, flag); 2322 else if (seq_rtt >= 0) 2323 tcp_ack_no_tstamp(sk, seq_rtt, flag); 2324 } 2325 2326 static void tcp_cong_avoid(struct sock *sk, u32 ack, 2327 u32 in_flight, int good) 2328 { 2329 const struct inet_connection_sock *icsk = inet_csk(sk); 2330 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight, good); 2331 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 2332 } 2333 2334 /* Restart timer after forward progress on connection. 2335 * RFC2988 recommends to restart timer to now+rto. 2336 */ 2337 2338 static void tcp_ack_packets_out(struct sock *sk) 2339 { 2340 struct tcp_sock *tp = tcp_sk(sk); 2341 2342 if (!tp->packets_out) { 2343 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2344 } else { 2345 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 2346 } 2347 } 2348 2349 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb, 2350 __u32 now, __s32 *seq_rtt) 2351 { 2352 struct tcp_sock *tp = tcp_sk(sk); 2353 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 2354 __u32 seq = tp->snd_una; 2355 __u32 packets_acked; 2356 int acked = 0; 2357 2358 /* If we get here, the whole TSO packet has not been 2359 * acked. 2360 */ 2361 BUG_ON(!after(scb->end_seq, seq)); 2362 2363 packets_acked = tcp_skb_pcount(skb); 2364 if (tcp_trim_head(sk, skb, seq - scb->seq)) 2365 return 0; 2366 packets_acked -= tcp_skb_pcount(skb); 2367 2368 if (packets_acked) { 2369 __u8 sacked = scb->sacked; 2370 2371 acked |= FLAG_DATA_ACKED; 2372 if (sacked) { 2373 if (sacked & TCPCB_RETRANS) { 2374 if (sacked & TCPCB_SACKED_RETRANS) 2375 tp->retrans_out -= packets_acked; 2376 acked |= FLAG_RETRANS_DATA_ACKED; 2377 *seq_rtt = -1; 2378 } else if (*seq_rtt < 0) 2379 *seq_rtt = now - scb->when; 2380 if (sacked & TCPCB_SACKED_ACKED) 2381 tp->sacked_out -= packets_acked; 2382 if (sacked & TCPCB_LOST) 2383 tp->lost_out -= packets_acked; 2384 if (sacked & TCPCB_URG) { 2385 if (tp->urg_mode && 2386 !before(seq, tp->snd_up)) 2387 tp->urg_mode = 0; 2388 } 2389 } else if (*seq_rtt < 0) 2390 *seq_rtt = now - scb->when; 2391 2392 if (tp->fackets_out) { 2393 __u32 dval = min(tp->fackets_out, packets_acked); 2394 tp->fackets_out -= dval; 2395 } 2396 tp->packets_out -= packets_acked; 2397 2398 BUG_ON(tcp_skb_pcount(skb) == 0); 2399 BUG_ON(!before(scb->seq, scb->end_seq)); 2400 } 2401 2402 return acked; 2403 } 2404 2405 /* Remove acknowledged frames from the retransmission queue. */ 2406 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p) 2407 { 2408 struct tcp_sock *tp = tcp_sk(sk); 2409 const struct inet_connection_sock *icsk = inet_csk(sk); 2410 struct sk_buff *skb; 2411 __u32 now = tcp_time_stamp; 2412 int acked = 0; 2413 int prior_packets = tp->packets_out; 2414 __s32 seq_rtt = -1; 2415 ktime_t last_ackt = net_invalid_timestamp(); 2416 2417 while ((skb = tcp_write_queue_head(sk)) && 2418 skb != tcp_send_head(sk)) { 2419 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 2420 __u8 sacked = scb->sacked; 2421 2422 /* If our packet is before the ack sequence we can 2423 * discard it as it's confirmed to have arrived at 2424 * the other end. 2425 */ 2426 if (after(scb->end_seq, tp->snd_una)) { 2427 if (tcp_skb_pcount(skb) > 1 && 2428 after(tp->snd_una, scb->seq)) 2429 acked |= tcp_tso_acked(sk, skb, 2430 now, &seq_rtt); 2431 break; 2432 } 2433 2434 /* Initial outgoing SYN's get put onto the write_queue 2435 * just like anything else we transmit. It is not 2436 * true data, and if we misinform our callers that 2437 * this ACK acks real data, we will erroneously exit 2438 * connection startup slow start one packet too 2439 * quickly. This is severely frowned upon behavior. 2440 */ 2441 if (!(scb->flags & TCPCB_FLAG_SYN)) { 2442 acked |= FLAG_DATA_ACKED; 2443 } else { 2444 acked |= FLAG_SYN_ACKED; 2445 tp->retrans_stamp = 0; 2446 } 2447 2448 /* MTU probing checks */ 2449 if (icsk->icsk_mtup.probe_size) { 2450 if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) { 2451 tcp_mtup_probe_success(sk, skb); 2452 } 2453 } 2454 2455 if (sacked) { 2456 if (sacked & TCPCB_RETRANS) { 2457 if (sacked & TCPCB_SACKED_RETRANS) 2458 tp->retrans_out -= tcp_skb_pcount(skb); 2459 acked |= FLAG_RETRANS_DATA_ACKED; 2460 seq_rtt = -1; 2461 } else if (seq_rtt < 0) { 2462 seq_rtt = now - scb->when; 2463 last_ackt = skb->tstamp; 2464 } 2465 if (sacked & TCPCB_SACKED_ACKED) 2466 tp->sacked_out -= tcp_skb_pcount(skb); 2467 if (sacked & TCPCB_LOST) 2468 tp->lost_out -= tcp_skb_pcount(skb); 2469 if (sacked & TCPCB_URG) { 2470 if (tp->urg_mode && 2471 !before(scb->end_seq, tp->snd_up)) 2472 tp->urg_mode = 0; 2473 } 2474 } else if (seq_rtt < 0) { 2475 seq_rtt = now - scb->when; 2476 last_ackt = skb->tstamp; 2477 } 2478 tcp_dec_pcount_approx(&tp->fackets_out, skb); 2479 tcp_packets_out_dec(tp, skb); 2480 tcp_unlink_write_queue(skb, sk); 2481 sk_stream_free_skb(sk, skb); 2482 clear_all_retrans_hints(tp); 2483 } 2484 2485 if (acked&FLAG_ACKED) { 2486 u32 pkts_acked = prior_packets - tp->packets_out; 2487 const struct tcp_congestion_ops *ca_ops 2488 = inet_csk(sk)->icsk_ca_ops; 2489 2490 tcp_ack_update_rtt(sk, acked, seq_rtt); 2491 tcp_ack_packets_out(sk); 2492 2493 /* Is the ACK triggering packet unambiguous? */ 2494 if (acked & FLAG_RETRANS_DATA_ACKED) 2495 last_ackt = net_invalid_timestamp(); 2496 2497 if (ca_ops->pkts_acked) 2498 ca_ops->pkts_acked(sk, pkts_acked, last_ackt); 2499 } 2500 2501 #if FASTRETRANS_DEBUG > 0 2502 BUG_TRAP((int)tp->sacked_out >= 0); 2503 BUG_TRAP((int)tp->lost_out >= 0); 2504 BUG_TRAP((int)tp->retrans_out >= 0); 2505 if (!tp->packets_out && tp->rx_opt.sack_ok) { 2506 const struct inet_connection_sock *icsk = inet_csk(sk); 2507 if (tp->lost_out) { 2508 printk(KERN_DEBUG "Leak l=%u %d\n", 2509 tp->lost_out, icsk->icsk_ca_state); 2510 tp->lost_out = 0; 2511 } 2512 if (tp->sacked_out) { 2513 printk(KERN_DEBUG "Leak s=%u %d\n", 2514 tp->sacked_out, icsk->icsk_ca_state); 2515 tp->sacked_out = 0; 2516 } 2517 if (tp->retrans_out) { 2518 printk(KERN_DEBUG "Leak r=%u %d\n", 2519 tp->retrans_out, icsk->icsk_ca_state); 2520 tp->retrans_out = 0; 2521 } 2522 } 2523 #endif 2524 *seq_rtt_p = seq_rtt; 2525 return acked; 2526 } 2527 2528 static void tcp_ack_probe(struct sock *sk) 2529 { 2530 const struct tcp_sock *tp = tcp_sk(sk); 2531 struct inet_connection_sock *icsk = inet_csk(sk); 2532 2533 /* Was it a usable window open? */ 2534 2535 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, 2536 tp->snd_una + tp->snd_wnd)) { 2537 icsk->icsk_backoff = 0; 2538 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 2539 /* Socket must be waked up by subsequent tcp_data_snd_check(). 2540 * This function is not for random using! 2541 */ 2542 } else { 2543 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 2544 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 2545 TCP_RTO_MAX); 2546 } 2547 } 2548 2549 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag) 2550 { 2551 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 2552 inet_csk(sk)->icsk_ca_state != TCP_CA_Open); 2553 } 2554 2555 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag) 2556 { 2557 const struct tcp_sock *tp = tcp_sk(sk); 2558 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) && 2559 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR)); 2560 } 2561 2562 /* Check that window update is acceptable. 2563 * The function assumes that snd_una<=ack<=snd_next. 2564 */ 2565 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack, 2566 const u32 ack_seq, const u32 nwin) 2567 { 2568 return (after(ack, tp->snd_una) || 2569 after(ack_seq, tp->snd_wl1) || 2570 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd)); 2571 } 2572 2573 /* Update our send window. 2574 * 2575 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 2576 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 2577 */ 2578 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack, 2579 u32 ack_seq) 2580 { 2581 struct tcp_sock *tp = tcp_sk(sk); 2582 int flag = 0; 2583 u32 nwin = ntohs(tcp_hdr(skb)->window); 2584 2585 if (likely(!tcp_hdr(skb)->syn)) 2586 nwin <<= tp->rx_opt.snd_wscale; 2587 2588 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 2589 flag |= FLAG_WIN_UPDATE; 2590 tcp_update_wl(tp, ack, ack_seq); 2591 2592 if (tp->snd_wnd != nwin) { 2593 tp->snd_wnd = nwin; 2594 2595 /* Note, it is the only place, where 2596 * fast path is recovered for sending TCP. 2597 */ 2598 tp->pred_flags = 0; 2599 tcp_fast_path_check(sk); 2600 2601 if (nwin > tp->max_window) { 2602 tp->max_window = nwin; 2603 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 2604 } 2605 } 2606 } 2607 2608 tp->snd_una = ack; 2609 2610 return flag; 2611 } 2612 2613 /* A very conservative spurious RTO response algorithm: reduce cwnd and 2614 * continue in congestion avoidance. 2615 */ 2616 static void tcp_conservative_spur_to_response(struct tcp_sock *tp) 2617 { 2618 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 2619 tp->snd_cwnd_cnt = 0; 2620 TCP_ECN_queue_cwr(tp); 2621 tcp_moderate_cwnd(tp); 2622 } 2623 2624 /* A conservative spurious RTO response algorithm: reduce cwnd using 2625 * rate halving and continue in congestion avoidance. 2626 */ 2627 static void tcp_ratehalving_spur_to_response(struct sock *sk) 2628 { 2629 tcp_enter_cwr(sk, 0); 2630 } 2631 2632 static void tcp_undo_spur_to_response(struct sock *sk, int flag) 2633 { 2634 if (flag&FLAG_ECE) 2635 tcp_ratehalving_spur_to_response(sk); 2636 else 2637 tcp_undo_cwr(sk, 1); 2638 } 2639 2640 /* F-RTO spurious RTO detection algorithm (RFC4138) 2641 * 2642 * F-RTO affects during two new ACKs following RTO (well, almost, see inline 2643 * comments). State (ACK number) is kept in frto_counter. When ACK advances 2644 * window (but not to or beyond highest sequence sent before RTO): 2645 * On First ACK, send two new segments out. 2646 * On Second ACK, RTO was likely spurious. Do spurious response (response 2647 * algorithm is not part of the F-RTO detection algorithm 2648 * given in RFC4138 but can be selected separately). 2649 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss 2650 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding 2651 * of Nagle, this is done using frto_counter states 2 and 3, when a new data 2652 * segment of any size sent during F-RTO, state 2 is upgraded to 3. 2653 * 2654 * Rationale: if the RTO was spurious, new ACKs should arrive from the 2655 * original window even after we transmit two new data segments. 2656 * 2657 * SACK version: 2658 * on first step, wait until first cumulative ACK arrives, then move to 2659 * the second step. In second step, the next ACK decides. 2660 * 2661 * F-RTO is implemented (mainly) in four functions: 2662 * - tcp_use_frto() is used to determine if TCP is can use F-RTO 2663 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is 2664 * called when tcp_use_frto() showed green light 2665 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm 2666 * - tcp_enter_frto_loss() is called if there is not enough evidence 2667 * to prove that the RTO is indeed spurious. It transfers the control 2668 * from F-RTO to the conventional RTO recovery 2669 */ 2670 static int tcp_process_frto(struct sock *sk, u32 prior_snd_una, int flag) 2671 { 2672 struct tcp_sock *tp = tcp_sk(sk); 2673 2674 tcp_sync_left_out(tp); 2675 2676 /* Duplicate the behavior from Loss state (fastretrans_alert) */ 2677 if (flag&FLAG_DATA_ACKED) 2678 inet_csk(sk)->icsk_retransmits = 0; 2679 2680 if (!before(tp->snd_una, tp->frto_highmark)) { 2681 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag); 2682 return 1; 2683 } 2684 2685 if (!IsSackFrto() || IsReno(tp)) { 2686 /* RFC4138 shortcoming in step 2; should also have case c): 2687 * ACK isn't duplicate nor advances window, e.g., opposite dir 2688 * data, winupdate 2689 */ 2690 if ((tp->snd_una == prior_snd_una) && (flag&FLAG_NOT_DUP) && 2691 !(flag&FLAG_FORWARD_PROGRESS)) 2692 return 1; 2693 2694 if (!(flag&FLAG_DATA_ACKED)) { 2695 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3), 2696 flag); 2697 return 1; 2698 } 2699 } else { 2700 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) { 2701 /* Prevent sending of new data. */ 2702 tp->snd_cwnd = min(tp->snd_cwnd, 2703 tcp_packets_in_flight(tp)); 2704 return 1; 2705 } 2706 2707 if ((tp->frto_counter >= 2) && 2708 (!(flag&FLAG_FORWARD_PROGRESS) || 2709 ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) { 2710 /* RFC4138 shortcoming (see comment above) */ 2711 if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP)) 2712 return 1; 2713 2714 tcp_enter_frto_loss(sk, 3, flag); 2715 return 1; 2716 } 2717 } 2718 2719 if (tp->frto_counter == 1) { 2720 /* Sending of the next skb must be allowed or no FRTO */ 2721 if (!tcp_send_head(sk) || 2722 after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, 2723 tp->snd_una + tp->snd_wnd)) { 2724 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), 2725 flag); 2726 return 1; 2727 } 2728 2729 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2; 2730 tp->frto_counter = 2; 2731 return 1; 2732 } else { 2733 switch (sysctl_tcp_frto_response) { 2734 case 2: 2735 tcp_undo_spur_to_response(sk, flag); 2736 break; 2737 case 1: 2738 tcp_conservative_spur_to_response(tp); 2739 break; 2740 default: 2741 tcp_ratehalving_spur_to_response(sk); 2742 break; 2743 } 2744 tp->frto_counter = 0; 2745 } 2746 return 0; 2747 } 2748 2749 /* This routine deals with incoming acks, but not outgoing ones. */ 2750 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag) 2751 { 2752 struct inet_connection_sock *icsk = inet_csk(sk); 2753 struct tcp_sock *tp = tcp_sk(sk); 2754 u32 prior_snd_una = tp->snd_una; 2755 u32 ack_seq = TCP_SKB_CB(skb)->seq; 2756 u32 ack = TCP_SKB_CB(skb)->ack_seq; 2757 u32 prior_in_flight; 2758 s32 seq_rtt; 2759 int prior_packets; 2760 int frto_cwnd = 0; 2761 2762 /* If the ack is newer than sent or older than previous acks 2763 * then we can probably ignore it. 2764 */ 2765 if (after(ack, tp->snd_nxt)) 2766 goto uninteresting_ack; 2767 2768 if (before(ack, prior_snd_una)) 2769 goto old_ack; 2770 2771 if (sysctl_tcp_abc) { 2772 if (icsk->icsk_ca_state < TCP_CA_CWR) 2773 tp->bytes_acked += ack - prior_snd_una; 2774 else if (icsk->icsk_ca_state == TCP_CA_Loss) 2775 /* we assume just one segment left network */ 2776 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache); 2777 } 2778 2779 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 2780 /* Window is constant, pure forward advance. 2781 * No more checks are required. 2782 * Note, we use the fact that SND.UNA>=SND.WL2. 2783 */ 2784 tcp_update_wl(tp, ack, ack_seq); 2785 tp->snd_una = ack; 2786 flag |= FLAG_WIN_UPDATE; 2787 2788 tcp_ca_event(sk, CA_EVENT_FAST_ACK); 2789 2790 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS); 2791 } else { 2792 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 2793 flag |= FLAG_DATA; 2794 else 2795 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS); 2796 2797 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 2798 2799 if (TCP_SKB_CB(skb)->sacked) 2800 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una); 2801 2802 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb))) 2803 flag |= FLAG_ECE; 2804 2805 tcp_ca_event(sk, CA_EVENT_SLOW_ACK); 2806 } 2807 2808 /* We passed data and got it acked, remove any soft error 2809 * log. Something worked... 2810 */ 2811 sk->sk_err_soft = 0; 2812 tp->rcv_tstamp = tcp_time_stamp; 2813 prior_packets = tp->packets_out; 2814 if (!prior_packets) 2815 goto no_queue; 2816 2817 prior_in_flight = tcp_packets_in_flight(tp); 2818 2819 /* See if we can take anything off of the retransmit queue. */ 2820 flag |= tcp_clean_rtx_queue(sk, &seq_rtt); 2821 2822 if (tp->frto_counter) 2823 frto_cwnd = tcp_process_frto(sk, prior_snd_una, flag); 2824 2825 if (tcp_ack_is_dubious(sk, flag)) { 2826 /* Advance CWND, if state allows this. */ 2827 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd && 2828 tcp_may_raise_cwnd(sk, flag)) 2829 tcp_cong_avoid(sk, ack, prior_in_flight, 0); 2830 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag); 2831 } else { 2832 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd) 2833 tcp_cong_avoid(sk, ack, prior_in_flight, 1); 2834 } 2835 2836 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP)) 2837 dst_confirm(sk->sk_dst_cache); 2838 2839 return 1; 2840 2841 no_queue: 2842 icsk->icsk_probes_out = 0; 2843 2844 /* If this ack opens up a zero window, clear backoff. It was 2845 * being used to time the probes, and is probably far higher than 2846 * it needs to be for normal retransmission. 2847 */ 2848 if (tcp_send_head(sk)) 2849 tcp_ack_probe(sk); 2850 return 1; 2851 2852 old_ack: 2853 if (TCP_SKB_CB(skb)->sacked) 2854 tcp_sacktag_write_queue(sk, skb, prior_snd_una); 2855 2856 uninteresting_ack: 2857 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 2858 return 0; 2859 } 2860 2861 2862 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 2863 * But, this can also be called on packets in the established flow when 2864 * the fast version below fails. 2865 */ 2866 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab) 2867 { 2868 unsigned char *ptr; 2869 struct tcphdr *th = tcp_hdr(skb); 2870 int length=(th->doff*4)-sizeof(struct tcphdr); 2871 2872 ptr = (unsigned char *)(th + 1); 2873 opt_rx->saw_tstamp = 0; 2874 2875 while (length > 0) { 2876 int opcode=*ptr++; 2877 int opsize; 2878 2879 switch (opcode) { 2880 case TCPOPT_EOL: 2881 return; 2882 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 2883 length--; 2884 continue; 2885 default: 2886 opsize=*ptr++; 2887 if (opsize < 2) /* "silly options" */ 2888 return; 2889 if (opsize > length) 2890 return; /* don't parse partial options */ 2891 switch (opcode) { 2892 case TCPOPT_MSS: 2893 if (opsize==TCPOLEN_MSS && th->syn && !estab) { 2894 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr)); 2895 if (in_mss) { 2896 if (opt_rx->user_mss && opt_rx->user_mss < in_mss) 2897 in_mss = opt_rx->user_mss; 2898 opt_rx->mss_clamp = in_mss; 2899 } 2900 } 2901 break; 2902 case TCPOPT_WINDOW: 2903 if (opsize==TCPOLEN_WINDOW && th->syn && !estab) 2904 if (sysctl_tcp_window_scaling) { 2905 __u8 snd_wscale = *(__u8 *) ptr; 2906 opt_rx->wscale_ok = 1; 2907 if (snd_wscale > 14) { 2908 if (net_ratelimit()) 2909 printk(KERN_INFO "tcp_parse_options: Illegal window " 2910 "scaling value %d >14 received.\n", 2911 snd_wscale); 2912 snd_wscale = 14; 2913 } 2914 opt_rx->snd_wscale = snd_wscale; 2915 } 2916 break; 2917 case TCPOPT_TIMESTAMP: 2918 if (opsize==TCPOLEN_TIMESTAMP) { 2919 if ((estab && opt_rx->tstamp_ok) || 2920 (!estab && sysctl_tcp_timestamps)) { 2921 opt_rx->saw_tstamp = 1; 2922 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr)); 2923 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4))); 2924 } 2925 } 2926 break; 2927 case TCPOPT_SACK_PERM: 2928 if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) { 2929 if (sysctl_tcp_sack) { 2930 opt_rx->sack_ok = 1; 2931 tcp_sack_reset(opt_rx); 2932 } 2933 } 2934 break; 2935 2936 case TCPOPT_SACK: 2937 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 2938 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 2939 opt_rx->sack_ok) { 2940 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 2941 } 2942 break; 2943 #ifdef CONFIG_TCP_MD5SIG 2944 case TCPOPT_MD5SIG: 2945 /* 2946 * The MD5 Hash has already been 2947 * checked (see tcp_v{4,6}_do_rcv()). 2948 */ 2949 break; 2950 #endif 2951 } 2952 2953 ptr+=opsize-2; 2954 length-=opsize; 2955 } 2956 } 2957 } 2958 2959 /* Fast parse options. This hopes to only see timestamps. 2960 * If it is wrong it falls back on tcp_parse_options(). 2961 */ 2962 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th, 2963 struct tcp_sock *tp) 2964 { 2965 if (th->doff == sizeof(struct tcphdr)>>2) { 2966 tp->rx_opt.saw_tstamp = 0; 2967 return 0; 2968 } else if (tp->rx_opt.tstamp_ok && 2969 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) { 2970 __be32 *ptr = (__be32 *)(th + 1); 2971 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 2972 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 2973 tp->rx_opt.saw_tstamp = 1; 2974 ++ptr; 2975 tp->rx_opt.rcv_tsval = ntohl(*ptr); 2976 ++ptr; 2977 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 2978 return 1; 2979 } 2980 } 2981 tcp_parse_options(skb, &tp->rx_opt, 1); 2982 return 1; 2983 } 2984 2985 static inline void tcp_store_ts_recent(struct tcp_sock *tp) 2986 { 2987 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 2988 tp->rx_opt.ts_recent_stamp = get_seconds(); 2989 } 2990 2991 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 2992 { 2993 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 2994 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 2995 * extra check below makes sure this can only happen 2996 * for pure ACK frames. -DaveM 2997 * 2998 * Not only, also it occurs for expired timestamps. 2999 */ 3000 3001 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 || 3002 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS) 3003 tcp_store_ts_recent(tp); 3004 } 3005 } 3006 3007 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3008 * 3009 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3010 * it can pass through stack. So, the following predicate verifies that 3011 * this segment is not used for anything but congestion avoidance or 3012 * fast retransmit. Moreover, we even are able to eliminate most of such 3013 * second order effects, if we apply some small "replay" window (~RTO) 3014 * to timestamp space. 3015 * 3016 * All these measures still do not guarantee that we reject wrapped ACKs 3017 * on networks with high bandwidth, when sequence space is recycled fastly, 3018 * but it guarantees that such events will be very rare and do not affect 3019 * connection seriously. This doesn't look nice, but alas, PAWS is really 3020 * buggy extension. 3021 * 3022 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3023 * states that events when retransmit arrives after original data are rare. 3024 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3025 * the biggest problem on large power networks even with minor reordering. 3026 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3027 * up to bandwidth of 18Gigabit/sec. 8) ] 3028 */ 3029 3030 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3031 { 3032 struct tcp_sock *tp = tcp_sk(sk); 3033 struct tcphdr *th = tcp_hdr(skb); 3034 u32 seq = TCP_SKB_CB(skb)->seq; 3035 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3036 3037 return (/* 1. Pure ACK with correct sequence number. */ 3038 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3039 3040 /* 2. ... and duplicate ACK. */ 3041 ack == tp->snd_una && 3042 3043 /* 3. ... and does not update window. */ 3044 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3045 3046 /* 4. ... and sits in replay window. */ 3047 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3048 } 3049 3050 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb) 3051 { 3052 const struct tcp_sock *tp = tcp_sk(sk); 3053 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW && 3054 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS && 3055 !tcp_disordered_ack(sk, skb)); 3056 } 3057 3058 /* Check segment sequence number for validity. 3059 * 3060 * Segment controls are considered valid, if the segment 3061 * fits to the window after truncation to the window. Acceptability 3062 * of data (and SYN, FIN, of course) is checked separately. 3063 * See tcp_data_queue(), for example. 3064 * 3065 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3066 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3067 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3068 * (borrowed from freebsd) 3069 */ 3070 3071 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq) 3072 { 3073 return !before(end_seq, tp->rcv_wup) && 3074 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3075 } 3076 3077 /* When we get a reset we do this. */ 3078 static void tcp_reset(struct sock *sk) 3079 { 3080 /* We want the right error as BSD sees it (and indeed as we do). */ 3081 switch (sk->sk_state) { 3082 case TCP_SYN_SENT: 3083 sk->sk_err = ECONNREFUSED; 3084 break; 3085 case TCP_CLOSE_WAIT: 3086 sk->sk_err = EPIPE; 3087 break; 3088 case TCP_CLOSE: 3089 return; 3090 default: 3091 sk->sk_err = ECONNRESET; 3092 } 3093 3094 if (!sock_flag(sk, SOCK_DEAD)) 3095 sk->sk_error_report(sk); 3096 3097 tcp_done(sk); 3098 } 3099 3100 /* 3101 * Process the FIN bit. This now behaves as it is supposed to work 3102 * and the FIN takes effect when it is validly part of sequence 3103 * space. Not before when we get holes. 3104 * 3105 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 3106 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 3107 * TIME-WAIT) 3108 * 3109 * If we are in FINWAIT-1, a received FIN indicates simultaneous 3110 * close and we go into CLOSING (and later onto TIME-WAIT) 3111 * 3112 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 3113 */ 3114 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th) 3115 { 3116 struct tcp_sock *tp = tcp_sk(sk); 3117 3118 inet_csk_schedule_ack(sk); 3119 3120 sk->sk_shutdown |= RCV_SHUTDOWN; 3121 sock_set_flag(sk, SOCK_DONE); 3122 3123 switch (sk->sk_state) { 3124 case TCP_SYN_RECV: 3125 case TCP_ESTABLISHED: 3126 /* Move to CLOSE_WAIT */ 3127 tcp_set_state(sk, TCP_CLOSE_WAIT); 3128 inet_csk(sk)->icsk_ack.pingpong = 1; 3129 break; 3130 3131 case TCP_CLOSE_WAIT: 3132 case TCP_CLOSING: 3133 /* Received a retransmission of the FIN, do 3134 * nothing. 3135 */ 3136 break; 3137 case TCP_LAST_ACK: 3138 /* RFC793: Remain in the LAST-ACK state. */ 3139 break; 3140 3141 case TCP_FIN_WAIT1: 3142 /* This case occurs when a simultaneous close 3143 * happens, we must ack the received FIN and 3144 * enter the CLOSING state. 3145 */ 3146 tcp_send_ack(sk); 3147 tcp_set_state(sk, TCP_CLOSING); 3148 break; 3149 case TCP_FIN_WAIT2: 3150 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 3151 tcp_send_ack(sk); 3152 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 3153 break; 3154 default: 3155 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 3156 * cases we should never reach this piece of code. 3157 */ 3158 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n", 3159 __FUNCTION__, sk->sk_state); 3160 break; 3161 } 3162 3163 /* It _is_ possible, that we have something out-of-order _after_ FIN. 3164 * Probably, we should reset in this case. For now drop them. 3165 */ 3166 __skb_queue_purge(&tp->out_of_order_queue); 3167 if (tp->rx_opt.sack_ok) 3168 tcp_sack_reset(&tp->rx_opt); 3169 sk_stream_mem_reclaim(sk); 3170 3171 if (!sock_flag(sk, SOCK_DEAD)) { 3172 sk->sk_state_change(sk); 3173 3174 /* Do not send POLL_HUP for half duplex close. */ 3175 if (sk->sk_shutdown == SHUTDOWN_MASK || 3176 sk->sk_state == TCP_CLOSE) 3177 sk_wake_async(sk, 1, POLL_HUP); 3178 else 3179 sk_wake_async(sk, 1, POLL_IN); 3180 } 3181 } 3182 3183 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq) 3184 { 3185 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 3186 if (before(seq, sp->start_seq)) 3187 sp->start_seq = seq; 3188 if (after(end_seq, sp->end_seq)) 3189 sp->end_seq = end_seq; 3190 return 1; 3191 } 3192 return 0; 3193 } 3194 3195 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq) 3196 { 3197 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) { 3198 if (before(seq, tp->rcv_nxt)) 3199 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT); 3200 else 3201 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT); 3202 3203 tp->rx_opt.dsack = 1; 3204 tp->duplicate_sack[0].start_seq = seq; 3205 tp->duplicate_sack[0].end_seq = end_seq; 3206 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok); 3207 } 3208 } 3209 3210 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq) 3211 { 3212 if (!tp->rx_opt.dsack) 3213 tcp_dsack_set(tp, seq, end_seq); 3214 else 3215 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 3216 } 3217 3218 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb) 3219 { 3220 struct tcp_sock *tp = tcp_sk(sk); 3221 3222 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 3223 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 3224 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST); 3225 tcp_enter_quickack_mode(sk); 3226 3227 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) { 3228 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 3229 3230 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 3231 end_seq = tp->rcv_nxt; 3232 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq); 3233 } 3234 } 3235 3236 tcp_send_ack(sk); 3237 } 3238 3239 /* These routines update the SACK block as out-of-order packets arrive or 3240 * in-order packets close up the sequence space. 3241 */ 3242 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 3243 { 3244 int this_sack; 3245 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3246 struct tcp_sack_block *swalk = sp+1; 3247 3248 /* See if the recent change to the first SACK eats into 3249 * or hits the sequence space of other SACK blocks, if so coalesce. 3250 */ 3251 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) { 3252 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 3253 int i; 3254 3255 /* Zap SWALK, by moving every further SACK up by one slot. 3256 * Decrease num_sacks. 3257 */ 3258 tp->rx_opt.num_sacks--; 3259 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); 3260 for (i=this_sack; i < tp->rx_opt.num_sacks; i++) 3261 sp[i] = sp[i+1]; 3262 continue; 3263 } 3264 this_sack++, swalk++; 3265 } 3266 } 3267 3268 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2) 3269 { 3270 __u32 tmp; 3271 3272 tmp = sack1->start_seq; 3273 sack1->start_seq = sack2->start_seq; 3274 sack2->start_seq = tmp; 3275 3276 tmp = sack1->end_seq; 3277 sack1->end_seq = sack2->end_seq; 3278 sack2->end_seq = tmp; 3279 } 3280 3281 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 3282 { 3283 struct tcp_sock *tp = tcp_sk(sk); 3284 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3285 int cur_sacks = tp->rx_opt.num_sacks; 3286 int this_sack; 3287 3288 if (!cur_sacks) 3289 goto new_sack; 3290 3291 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) { 3292 if (tcp_sack_extend(sp, seq, end_seq)) { 3293 /* Rotate this_sack to the first one. */ 3294 for (; this_sack>0; this_sack--, sp--) 3295 tcp_sack_swap(sp, sp-1); 3296 if (cur_sacks > 1) 3297 tcp_sack_maybe_coalesce(tp); 3298 return; 3299 } 3300 } 3301 3302 /* Could not find an adjacent existing SACK, build a new one, 3303 * put it at the front, and shift everyone else down. We 3304 * always know there is at least one SACK present already here. 3305 * 3306 * If the sack array is full, forget about the last one. 3307 */ 3308 if (this_sack >= 4) { 3309 this_sack--; 3310 tp->rx_opt.num_sacks--; 3311 sp--; 3312 } 3313 for (; this_sack > 0; this_sack--, sp--) 3314 *sp = *(sp-1); 3315 3316 new_sack: 3317 /* Build the new head SACK, and we're done. */ 3318 sp->start_seq = seq; 3319 sp->end_seq = end_seq; 3320 tp->rx_opt.num_sacks++; 3321 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); 3322 } 3323 3324 /* RCV.NXT advances, some SACKs should be eaten. */ 3325 3326 static void tcp_sack_remove(struct tcp_sock *tp) 3327 { 3328 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3329 int num_sacks = tp->rx_opt.num_sacks; 3330 int this_sack; 3331 3332 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 3333 if (skb_queue_empty(&tp->out_of_order_queue)) { 3334 tp->rx_opt.num_sacks = 0; 3335 tp->rx_opt.eff_sacks = tp->rx_opt.dsack; 3336 return; 3337 } 3338 3339 for (this_sack = 0; this_sack < num_sacks; ) { 3340 /* Check if the start of the sack is covered by RCV.NXT. */ 3341 if (!before(tp->rcv_nxt, sp->start_seq)) { 3342 int i; 3343 3344 /* RCV.NXT must cover all the block! */ 3345 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq)); 3346 3347 /* Zap this SACK, by moving forward any other SACKS. */ 3348 for (i=this_sack+1; i < num_sacks; i++) 3349 tp->selective_acks[i-1] = tp->selective_acks[i]; 3350 num_sacks--; 3351 continue; 3352 } 3353 this_sack++; 3354 sp++; 3355 } 3356 if (num_sacks != tp->rx_opt.num_sacks) { 3357 tp->rx_opt.num_sacks = num_sacks; 3358 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); 3359 } 3360 } 3361 3362 /* This one checks to see if we can put data from the 3363 * out_of_order queue into the receive_queue. 3364 */ 3365 static void tcp_ofo_queue(struct sock *sk) 3366 { 3367 struct tcp_sock *tp = tcp_sk(sk); 3368 __u32 dsack_high = tp->rcv_nxt; 3369 struct sk_buff *skb; 3370 3371 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 3372 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 3373 break; 3374 3375 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 3376 __u32 dsack = dsack_high; 3377 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 3378 dsack_high = TCP_SKB_CB(skb)->end_seq; 3379 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack); 3380 } 3381 3382 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 3383 SOCK_DEBUG(sk, "ofo packet was already received \n"); 3384 __skb_unlink(skb, &tp->out_of_order_queue); 3385 __kfree_skb(skb); 3386 continue; 3387 } 3388 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 3389 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 3390 TCP_SKB_CB(skb)->end_seq); 3391 3392 __skb_unlink(skb, &tp->out_of_order_queue); 3393 __skb_queue_tail(&sk->sk_receive_queue, skb); 3394 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 3395 if (tcp_hdr(skb)->fin) 3396 tcp_fin(skb, sk, tcp_hdr(skb)); 3397 } 3398 } 3399 3400 static int tcp_prune_queue(struct sock *sk); 3401 3402 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 3403 { 3404 struct tcphdr *th = tcp_hdr(skb); 3405 struct tcp_sock *tp = tcp_sk(sk); 3406 int eaten = -1; 3407 3408 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 3409 goto drop; 3410 3411 __skb_pull(skb, th->doff*4); 3412 3413 TCP_ECN_accept_cwr(tp, skb); 3414 3415 if (tp->rx_opt.dsack) { 3416 tp->rx_opt.dsack = 0; 3417 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks, 3418 4 - tp->rx_opt.tstamp_ok); 3419 } 3420 3421 /* Queue data for delivery to the user. 3422 * Packets in sequence go to the receive queue. 3423 * Out of sequence packets to the out_of_order_queue. 3424 */ 3425 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 3426 if (tcp_receive_window(tp) == 0) 3427 goto out_of_window; 3428 3429 /* Ok. In sequence. In window. */ 3430 if (tp->ucopy.task == current && 3431 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 3432 sock_owned_by_user(sk) && !tp->urg_data) { 3433 int chunk = min_t(unsigned int, skb->len, 3434 tp->ucopy.len); 3435 3436 __set_current_state(TASK_RUNNING); 3437 3438 local_bh_enable(); 3439 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { 3440 tp->ucopy.len -= chunk; 3441 tp->copied_seq += chunk; 3442 eaten = (chunk == skb->len && !th->fin); 3443 tcp_rcv_space_adjust(sk); 3444 } 3445 local_bh_disable(); 3446 } 3447 3448 if (eaten <= 0) { 3449 queue_and_out: 3450 if (eaten < 0 && 3451 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 3452 !sk_stream_rmem_schedule(sk, skb))) { 3453 if (tcp_prune_queue(sk) < 0 || 3454 !sk_stream_rmem_schedule(sk, skb)) 3455 goto drop; 3456 } 3457 sk_stream_set_owner_r(skb, sk); 3458 __skb_queue_tail(&sk->sk_receive_queue, skb); 3459 } 3460 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 3461 if (skb->len) 3462 tcp_event_data_recv(sk, skb); 3463 if (th->fin) 3464 tcp_fin(skb, sk, th); 3465 3466 if (!skb_queue_empty(&tp->out_of_order_queue)) { 3467 tcp_ofo_queue(sk); 3468 3469 /* RFC2581. 4.2. SHOULD send immediate ACK, when 3470 * gap in queue is filled. 3471 */ 3472 if (skb_queue_empty(&tp->out_of_order_queue)) 3473 inet_csk(sk)->icsk_ack.pingpong = 0; 3474 } 3475 3476 if (tp->rx_opt.num_sacks) 3477 tcp_sack_remove(tp); 3478 3479 tcp_fast_path_check(sk); 3480 3481 if (eaten > 0) 3482 __kfree_skb(skb); 3483 else if (!sock_flag(sk, SOCK_DEAD)) 3484 sk->sk_data_ready(sk, 0); 3485 return; 3486 } 3487 3488 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 3489 /* A retransmit, 2nd most common case. Force an immediate ack. */ 3490 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST); 3491 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 3492 3493 out_of_window: 3494 tcp_enter_quickack_mode(sk); 3495 inet_csk_schedule_ack(sk); 3496 drop: 3497 __kfree_skb(skb); 3498 return; 3499 } 3500 3501 /* Out of window. F.e. zero window probe. */ 3502 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 3503 goto out_of_window; 3504 3505 tcp_enter_quickack_mode(sk); 3506 3507 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 3508 /* Partial packet, seq < rcv_next < end_seq */ 3509 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 3510 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 3511 TCP_SKB_CB(skb)->end_seq); 3512 3513 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 3514 3515 /* If window is closed, drop tail of packet. But after 3516 * remembering D-SACK for its head made in previous line. 3517 */ 3518 if (!tcp_receive_window(tp)) 3519 goto out_of_window; 3520 goto queue_and_out; 3521 } 3522 3523 TCP_ECN_check_ce(tp, skb); 3524 3525 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 3526 !sk_stream_rmem_schedule(sk, skb)) { 3527 if (tcp_prune_queue(sk) < 0 || 3528 !sk_stream_rmem_schedule(sk, skb)) 3529 goto drop; 3530 } 3531 3532 /* Disable header prediction. */ 3533 tp->pred_flags = 0; 3534 inet_csk_schedule_ack(sk); 3535 3536 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 3537 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 3538 3539 sk_stream_set_owner_r(skb, sk); 3540 3541 if (!skb_peek(&tp->out_of_order_queue)) { 3542 /* Initial out of order segment, build 1 SACK. */ 3543 if (tp->rx_opt.sack_ok) { 3544 tp->rx_opt.num_sacks = 1; 3545 tp->rx_opt.dsack = 0; 3546 tp->rx_opt.eff_sacks = 1; 3547 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 3548 tp->selective_acks[0].end_seq = 3549 TCP_SKB_CB(skb)->end_seq; 3550 } 3551 __skb_queue_head(&tp->out_of_order_queue,skb); 3552 } else { 3553 struct sk_buff *skb1 = tp->out_of_order_queue.prev; 3554 u32 seq = TCP_SKB_CB(skb)->seq; 3555 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 3556 3557 if (seq == TCP_SKB_CB(skb1)->end_seq) { 3558 __skb_append(skb1, skb, &tp->out_of_order_queue); 3559 3560 if (!tp->rx_opt.num_sacks || 3561 tp->selective_acks[0].end_seq != seq) 3562 goto add_sack; 3563 3564 /* Common case: data arrive in order after hole. */ 3565 tp->selective_acks[0].end_seq = end_seq; 3566 return; 3567 } 3568 3569 /* Find place to insert this segment. */ 3570 do { 3571 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 3572 break; 3573 } while ((skb1 = skb1->prev) != 3574 (struct sk_buff*)&tp->out_of_order_queue); 3575 3576 /* Do skb overlap to previous one? */ 3577 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue && 3578 before(seq, TCP_SKB_CB(skb1)->end_seq)) { 3579 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 3580 /* All the bits are present. Drop. */ 3581 __kfree_skb(skb); 3582 tcp_dsack_set(tp, seq, end_seq); 3583 goto add_sack; 3584 } 3585 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 3586 /* Partial overlap. */ 3587 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq); 3588 } else { 3589 skb1 = skb1->prev; 3590 } 3591 } 3592 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue); 3593 3594 /* And clean segments covered by new one as whole. */ 3595 while ((skb1 = skb->next) != 3596 (struct sk_buff*)&tp->out_of_order_queue && 3597 after(end_seq, TCP_SKB_CB(skb1)->seq)) { 3598 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 3599 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq); 3600 break; 3601 } 3602 __skb_unlink(skb1, &tp->out_of_order_queue); 3603 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq); 3604 __kfree_skb(skb1); 3605 } 3606 3607 add_sack: 3608 if (tp->rx_opt.sack_ok) 3609 tcp_sack_new_ofo_skb(sk, seq, end_seq); 3610 } 3611 } 3612 3613 /* Collapse contiguous sequence of skbs head..tail with 3614 * sequence numbers start..end. 3615 * Segments with FIN/SYN are not collapsed (only because this 3616 * simplifies code) 3617 */ 3618 static void 3619 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 3620 struct sk_buff *head, struct sk_buff *tail, 3621 u32 start, u32 end) 3622 { 3623 struct sk_buff *skb; 3624 3625 /* First, check that queue is collapsible and find 3626 * the point where collapsing can be useful. */ 3627 for (skb = head; skb != tail; ) { 3628 /* No new bits? It is possible on ofo queue. */ 3629 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 3630 struct sk_buff *next = skb->next; 3631 __skb_unlink(skb, list); 3632 __kfree_skb(skb); 3633 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED); 3634 skb = next; 3635 continue; 3636 } 3637 3638 /* The first skb to collapse is: 3639 * - not SYN/FIN and 3640 * - bloated or contains data before "start" or 3641 * overlaps to the next one. 3642 */ 3643 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin && 3644 (tcp_win_from_space(skb->truesize) > skb->len || 3645 before(TCP_SKB_CB(skb)->seq, start) || 3646 (skb->next != tail && 3647 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq))) 3648 break; 3649 3650 /* Decided to skip this, advance start seq. */ 3651 start = TCP_SKB_CB(skb)->end_seq; 3652 skb = skb->next; 3653 } 3654 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin) 3655 return; 3656 3657 while (before(start, end)) { 3658 struct sk_buff *nskb; 3659 int header = skb_headroom(skb); 3660 int copy = SKB_MAX_ORDER(header, 0); 3661 3662 /* Too big header? This can happen with IPv6. */ 3663 if (copy < 0) 3664 return; 3665 if (end-start < copy) 3666 copy = end-start; 3667 nskb = alloc_skb(copy+header, GFP_ATOMIC); 3668 if (!nskb) 3669 return; 3670 3671 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head); 3672 skb_set_network_header(nskb, (skb_network_header(skb) - 3673 skb->head)); 3674 skb_set_transport_header(nskb, (skb_transport_header(skb) - 3675 skb->head)); 3676 skb_reserve(nskb, header); 3677 memcpy(nskb->head, skb->head, header); 3678 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 3679 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 3680 __skb_insert(nskb, skb->prev, skb, list); 3681 sk_stream_set_owner_r(nskb, sk); 3682 3683 /* Copy data, releasing collapsed skbs. */ 3684 while (copy > 0) { 3685 int offset = start - TCP_SKB_CB(skb)->seq; 3686 int size = TCP_SKB_CB(skb)->end_seq - start; 3687 3688 BUG_ON(offset < 0); 3689 if (size > 0) { 3690 size = min(copy, size); 3691 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 3692 BUG(); 3693 TCP_SKB_CB(nskb)->end_seq += size; 3694 copy -= size; 3695 start += size; 3696 } 3697 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 3698 struct sk_buff *next = skb->next; 3699 __skb_unlink(skb, list); 3700 __kfree_skb(skb); 3701 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED); 3702 skb = next; 3703 if (skb == tail || 3704 tcp_hdr(skb)->syn || 3705 tcp_hdr(skb)->fin) 3706 return; 3707 } 3708 } 3709 } 3710 } 3711 3712 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 3713 * and tcp_collapse() them until all the queue is collapsed. 3714 */ 3715 static void tcp_collapse_ofo_queue(struct sock *sk) 3716 { 3717 struct tcp_sock *tp = tcp_sk(sk); 3718 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 3719 struct sk_buff *head; 3720 u32 start, end; 3721 3722 if (skb == NULL) 3723 return; 3724 3725 start = TCP_SKB_CB(skb)->seq; 3726 end = TCP_SKB_CB(skb)->end_seq; 3727 head = skb; 3728 3729 for (;;) { 3730 skb = skb->next; 3731 3732 /* Segment is terminated when we see gap or when 3733 * we are at the end of all the queue. */ 3734 if (skb == (struct sk_buff *)&tp->out_of_order_queue || 3735 after(TCP_SKB_CB(skb)->seq, end) || 3736 before(TCP_SKB_CB(skb)->end_seq, start)) { 3737 tcp_collapse(sk, &tp->out_of_order_queue, 3738 head, skb, start, end); 3739 head = skb; 3740 if (skb == (struct sk_buff *)&tp->out_of_order_queue) 3741 break; 3742 /* Start new segment */ 3743 start = TCP_SKB_CB(skb)->seq; 3744 end = TCP_SKB_CB(skb)->end_seq; 3745 } else { 3746 if (before(TCP_SKB_CB(skb)->seq, start)) 3747 start = TCP_SKB_CB(skb)->seq; 3748 if (after(TCP_SKB_CB(skb)->end_seq, end)) 3749 end = TCP_SKB_CB(skb)->end_seq; 3750 } 3751 } 3752 } 3753 3754 /* Reduce allocated memory if we can, trying to get 3755 * the socket within its memory limits again. 3756 * 3757 * Return less than zero if we should start dropping frames 3758 * until the socket owning process reads some of the data 3759 * to stabilize the situation. 3760 */ 3761 static int tcp_prune_queue(struct sock *sk) 3762 { 3763 struct tcp_sock *tp = tcp_sk(sk); 3764 3765 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 3766 3767 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED); 3768 3769 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 3770 tcp_clamp_window(sk); 3771 else if (tcp_memory_pressure) 3772 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 3773 3774 tcp_collapse_ofo_queue(sk); 3775 tcp_collapse(sk, &sk->sk_receive_queue, 3776 sk->sk_receive_queue.next, 3777 (struct sk_buff*)&sk->sk_receive_queue, 3778 tp->copied_seq, tp->rcv_nxt); 3779 sk_stream_mem_reclaim(sk); 3780 3781 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 3782 return 0; 3783 3784 /* Collapsing did not help, destructive actions follow. 3785 * This must not ever occur. */ 3786 3787 /* First, purge the out_of_order queue. */ 3788 if (!skb_queue_empty(&tp->out_of_order_queue)) { 3789 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED); 3790 __skb_queue_purge(&tp->out_of_order_queue); 3791 3792 /* Reset SACK state. A conforming SACK implementation will 3793 * do the same at a timeout based retransmit. When a connection 3794 * is in a sad state like this, we care only about integrity 3795 * of the connection not performance. 3796 */ 3797 if (tp->rx_opt.sack_ok) 3798 tcp_sack_reset(&tp->rx_opt); 3799 sk_stream_mem_reclaim(sk); 3800 } 3801 3802 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 3803 return 0; 3804 3805 /* If we are really being abused, tell the caller to silently 3806 * drop receive data on the floor. It will get retransmitted 3807 * and hopefully then we'll have sufficient space. 3808 */ 3809 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED); 3810 3811 /* Massive buffer overcommit. */ 3812 tp->pred_flags = 0; 3813 return -1; 3814 } 3815 3816 3817 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 3818 * As additional protections, we do not touch cwnd in retransmission phases, 3819 * and if application hit its sndbuf limit recently. 3820 */ 3821 void tcp_cwnd_application_limited(struct sock *sk) 3822 { 3823 struct tcp_sock *tp = tcp_sk(sk); 3824 3825 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 3826 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 3827 /* Limited by application or receiver window. */ 3828 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 3829 u32 win_used = max(tp->snd_cwnd_used, init_win); 3830 if (win_used < tp->snd_cwnd) { 3831 tp->snd_ssthresh = tcp_current_ssthresh(sk); 3832 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 3833 } 3834 tp->snd_cwnd_used = 0; 3835 } 3836 tp->snd_cwnd_stamp = tcp_time_stamp; 3837 } 3838 3839 static int tcp_should_expand_sndbuf(struct sock *sk) 3840 { 3841 struct tcp_sock *tp = tcp_sk(sk); 3842 3843 /* If the user specified a specific send buffer setting, do 3844 * not modify it. 3845 */ 3846 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 3847 return 0; 3848 3849 /* If we are under global TCP memory pressure, do not expand. */ 3850 if (tcp_memory_pressure) 3851 return 0; 3852 3853 /* If we are under soft global TCP memory pressure, do not expand. */ 3854 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0]) 3855 return 0; 3856 3857 /* If we filled the congestion window, do not expand. */ 3858 if (tp->packets_out >= tp->snd_cwnd) 3859 return 0; 3860 3861 return 1; 3862 } 3863 3864 /* When incoming ACK allowed to free some skb from write_queue, 3865 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 3866 * on the exit from tcp input handler. 3867 * 3868 * PROBLEM: sndbuf expansion does not work well with largesend. 3869 */ 3870 static void tcp_new_space(struct sock *sk) 3871 { 3872 struct tcp_sock *tp = tcp_sk(sk); 3873 3874 if (tcp_should_expand_sndbuf(sk)) { 3875 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 3876 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff), 3877 demanded = max_t(unsigned int, tp->snd_cwnd, 3878 tp->reordering + 1); 3879 sndmem *= 2*demanded; 3880 if (sndmem > sk->sk_sndbuf) 3881 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 3882 tp->snd_cwnd_stamp = tcp_time_stamp; 3883 } 3884 3885 sk->sk_write_space(sk); 3886 } 3887 3888 static void tcp_check_space(struct sock *sk) 3889 { 3890 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 3891 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 3892 if (sk->sk_socket && 3893 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 3894 tcp_new_space(sk); 3895 } 3896 } 3897 3898 static inline void tcp_data_snd_check(struct sock *sk) 3899 { 3900 tcp_push_pending_frames(sk); 3901 tcp_check_space(sk); 3902 } 3903 3904 /* 3905 * Check if sending an ack is needed. 3906 */ 3907 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 3908 { 3909 struct tcp_sock *tp = tcp_sk(sk); 3910 3911 /* More than one full frame received... */ 3912 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss 3913 /* ... and right edge of window advances far enough. 3914 * (tcp_recvmsg() will send ACK otherwise). Or... 3915 */ 3916 && __tcp_select_window(sk) >= tp->rcv_wnd) || 3917 /* We ACK each frame or... */ 3918 tcp_in_quickack_mode(sk) || 3919 /* We have out of order data. */ 3920 (ofo_possible && 3921 skb_peek(&tp->out_of_order_queue))) { 3922 /* Then ack it now */ 3923 tcp_send_ack(sk); 3924 } else { 3925 /* Else, send delayed ack. */ 3926 tcp_send_delayed_ack(sk); 3927 } 3928 } 3929 3930 static inline void tcp_ack_snd_check(struct sock *sk) 3931 { 3932 if (!inet_csk_ack_scheduled(sk)) { 3933 /* We sent a data segment already. */ 3934 return; 3935 } 3936 __tcp_ack_snd_check(sk, 1); 3937 } 3938 3939 /* 3940 * This routine is only called when we have urgent data 3941 * signaled. Its the 'slow' part of tcp_urg. It could be 3942 * moved inline now as tcp_urg is only called from one 3943 * place. We handle URGent data wrong. We have to - as 3944 * BSD still doesn't use the correction from RFC961. 3945 * For 1003.1g we should support a new option TCP_STDURG to permit 3946 * either form (or just set the sysctl tcp_stdurg). 3947 */ 3948 3949 static void tcp_check_urg(struct sock * sk, struct tcphdr * th) 3950 { 3951 struct tcp_sock *tp = tcp_sk(sk); 3952 u32 ptr = ntohs(th->urg_ptr); 3953 3954 if (ptr && !sysctl_tcp_stdurg) 3955 ptr--; 3956 ptr += ntohl(th->seq); 3957 3958 /* Ignore urgent data that we've already seen and read. */ 3959 if (after(tp->copied_seq, ptr)) 3960 return; 3961 3962 /* Do not replay urg ptr. 3963 * 3964 * NOTE: interesting situation not covered by specs. 3965 * Misbehaving sender may send urg ptr, pointing to segment, 3966 * which we already have in ofo queue. We are not able to fetch 3967 * such data and will stay in TCP_URG_NOTYET until will be eaten 3968 * by recvmsg(). Seems, we are not obliged to handle such wicked 3969 * situations. But it is worth to think about possibility of some 3970 * DoSes using some hypothetical application level deadlock. 3971 */ 3972 if (before(ptr, tp->rcv_nxt)) 3973 return; 3974 3975 /* Do we already have a newer (or duplicate) urgent pointer? */ 3976 if (tp->urg_data && !after(ptr, tp->urg_seq)) 3977 return; 3978 3979 /* Tell the world about our new urgent pointer. */ 3980 sk_send_sigurg(sk); 3981 3982 /* We may be adding urgent data when the last byte read was 3983 * urgent. To do this requires some care. We cannot just ignore 3984 * tp->copied_seq since we would read the last urgent byte again 3985 * as data, nor can we alter copied_seq until this data arrives 3986 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 3987 * 3988 * NOTE. Double Dutch. Rendering to plain English: author of comment 3989 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 3990 * and expect that both A and B disappear from stream. This is _wrong_. 3991 * Though this happens in BSD with high probability, this is occasional. 3992 * Any application relying on this is buggy. Note also, that fix "works" 3993 * only in this artificial test. Insert some normal data between A and B and we will 3994 * decline of BSD again. Verdict: it is better to remove to trap 3995 * buggy users. 3996 */ 3997 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 3998 !sock_flag(sk, SOCK_URGINLINE) && 3999 tp->copied_seq != tp->rcv_nxt) { 4000 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 4001 tp->copied_seq++; 4002 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 4003 __skb_unlink(skb, &sk->sk_receive_queue); 4004 __kfree_skb(skb); 4005 } 4006 } 4007 4008 tp->urg_data = TCP_URG_NOTYET; 4009 tp->urg_seq = ptr; 4010 4011 /* Disable header prediction. */ 4012 tp->pred_flags = 0; 4013 } 4014 4015 /* This is the 'fast' part of urgent handling. */ 4016 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th) 4017 { 4018 struct tcp_sock *tp = tcp_sk(sk); 4019 4020 /* Check if we get a new urgent pointer - normally not. */ 4021 if (th->urg) 4022 tcp_check_urg(sk,th); 4023 4024 /* Do we wait for any urgent data? - normally not... */ 4025 if (tp->urg_data == TCP_URG_NOTYET) { 4026 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 4027 th->syn; 4028 4029 /* Is the urgent pointer pointing into this packet? */ 4030 if (ptr < skb->len) { 4031 u8 tmp; 4032 if (skb_copy_bits(skb, ptr, &tmp, 1)) 4033 BUG(); 4034 tp->urg_data = TCP_URG_VALID | tmp; 4035 if (!sock_flag(sk, SOCK_DEAD)) 4036 sk->sk_data_ready(sk, 0); 4037 } 4038 } 4039 } 4040 4041 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 4042 { 4043 struct tcp_sock *tp = tcp_sk(sk); 4044 int chunk = skb->len - hlen; 4045 int err; 4046 4047 local_bh_enable(); 4048 if (skb_csum_unnecessary(skb)) 4049 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); 4050 else 4051 err = skb_copy_and_csum_datagram_iovec(skb, hlen, 4052 tp->ucopy.iov); 4053 4054 if (!err) { 4055 tp->ucopy.len -= chunk; 4056 tp->copied_seq += chunk; 4057 tcp_rcv_space_adjust(sk); 4058 } 4059 4060 local_bh_disable(); 4061 return err; 4062 } 4063 4064 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb) 4065 { 4066 __sum16 result; 4067 4068 if (sock_owned_by_user(sk)) { 4069 local_bh_enable(); 4070 result = __tcp_checksum_complete(skb); 4071 local_bh_disable(); 4072 } else { 4073 result = __tcp_checksum_complete(skb); 4074 } 4075 return result; 4076 } 4077 4078 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb) 4079 { 4080 return !skb_csum_unnecessary(skb) && 4081 __tcp_checksum_complete_user(sk, skb); 4082 } 4083 4084 #ifdef CONFIG_NET_DMA 4085 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen) 4086 { 4087 struct tcp_sock *tp = tcp_sk(sk); 4088 int chunk = skb->len - hlen; 4089 int dma_cookie; 4090 int copied_early = 0; 4091 4092 if (tp->ucopy.wakeup) 4093 return 0; 4094 4095 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 4096 tp->ucopy.dma_chan = get_softnet_dma(); 4097 4098 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) { 4099 4100 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan, 4101 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list); 4102 4103 if (dma_cookie < 0) 4104 goto out; 4105 4106 tp->ucopy.dma_cookie = dma_cookie; 4107 copied_early = 1; 4108 4109 tp->ucopy.len -= chunk; 4110 tp->copied_seq += chunk; 4111 tcp_rcv_space_adjust(sk); 4112 4113 if ((tp->ucopy.len == 0) || 4114 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) || 4115 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) { 4116 tp->ucopy.wakeup = 1; 4117 sk->sk_data_ready(sk, 0); 4118 } 4119 } else if (chunk > 0) { 4120 tp->ucopy.wakeup = 1; 4121 sk->sk_data_ready(sk, 0); 4122 } 4123 out: 4124 return copied_early; 4125 } 4126 #endif /* CONFIG_NET_DMA */ 4127 4128 /* 4129 * TCP receive function for the ESTABLISHED state. 4130 * 4131 * It is split into a fast path and a slow path. The fast path is 4132 * disabled when: 4133 * - A zero window was announced from us - zero window probing 4134 * is only handled properly in the slow path. 4135 * - Out of order segments arrived. 4136 * - Urgent data is expected. 4137 * - There is no buffer space left 4138 * - Unexpected TCP flags/window values/header lengths are received 4139 * (detected by checking the TCP header against pred_flags) 4140 * - Data is sent in both directions. Fast path only supports pure senders 4141 * or pure receivers (this means either the sequence number or the ack 4142 * value must stay constant) 4143 * - Unexpected TCP option. 4144 * 4145 * When these conditions are not satisfied it drops into a standard 4146 * receive procedure patterned after RFC793 to handle all cases. 4147 * The first three cases are guaranteed by proper pred_flags setting, 4148 * the rest is checked inline. Fast processing is turned on in 4149 * tcp_data_queue when everything is OK. 4150 */ 4151 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 4152 struct tcphdr *th, unsigned len) 4153 { 4154 struct tcp_sock *tp = tcp_sk(sk); 4155 4156 /* 4157 * Header prediction. 4158 * The code loosely follows the one in the famous 4159 * "30 instruction TCP receive" Van Jacobson mail. 4160 * 4161 * Van's trick is to deposit buffers into socket queue 4162 * on a device interrupt, to call tcp_recv function 4163 * on the receive process context and checksum and copy 4164 * the buffer to user space. smart... 4165 * 4166 * Our current scheme is not silly either but we take the 4167 * extra cost of the net_bh soft interrupt processing... 4168 * We do checksum and copy also but from device to kernel. 4169 */ 4170 4171 tp->rx_opt.saw_tstamp = 0; 4172 4173 /* pred_flags is 0xS?10 << 16 + snd_wnd 4174 * if header_prediction is to be made 4175 * 'S' will always be tp->tcp_header_len >> 2 4176 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 4177 * turn it off (when there are holes in the receive 4178 * space for instance) 4179 * PSH flag is ignored. 4180 */ 4181 4182 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 4183 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4184 int tcp_header_len = tp->tcp_header_len; 4185 4186 /* Timestamp header prediction: tcp_header_len 4187 * is automatically equal to th->doff*4 due to pred_flags 4188 * match. 4189 */ 4190 4191 /* Check timestamp */ 4192 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 4193 __be32 *ptr = (__be32 *)(th + 1); 4194 4195 /* No? Slow path! */ 4196 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 4197 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) 4198 goto slow_path; 4199 4200 tp->rx_opt.saw_tstamp = 1; 4201 ++ptr; 4202 tp->rx_opt.rcv_tsval = ntohl(*ptr); 4203 ++ptr; 4204 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 4205 4206 /* If PAWS failed, check it more carefully in slow path */ 4207 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 4208 goto slow_path; 4209 4210 /* DO NOT update ts_recent here, if checksum fails 4211 * and timestamp was corrupted part, it will result 4212 * in a hung connection since we will drop all 4213 * future packets due to the PAWS test. 4214 */ 4215 } 4216 4217 if (len <= tcp_header_len) { 4218 /* Bulk data transfer: sender */ 4219 if (len == tcp_header_len) { 4220 /* Predicted packet is in window by definition. 4221 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 4222 * Hence, check seq<=rcv_wup reduces to: 4223 */ 4224 if (tcp_header_len == 4225 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 4226 tp->rcv_nxt == tp->rcv_wup) 4227 tcp_store_ts_recent(tp); 4228 4229 /* We know that such packets are checksummed 4230 * on entry. 4231 */ 4232 tcp_ack(sk, skb, 0); 4233 __kfree_skb(skb); 4234 tcp_data_snd_check(sk); 4235 return 0; 4236 } else { /* Header too small */ 4237 TCP_INC_STATS_BH(TCP_MIB_INERRS); 4238 goto discard; 4239 } 4240 } else { 4241 int eaten = 0; 4242 int copied_early = 0; 4243 4244 if (tp->copied_seq == tp->rcv_nxt && 4245 len - tcp_header_len <= tp->ucopy.len) { 4246 #ifdef CONFIG_NET_DMA 4247 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) { 4248 copied_early = 1; 4249 eaten = 1; 4250 } 4251 #endif 4252 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) { 4253 __set_current_state(TASK_RUNNING); 4254 4255 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) 4256 eaten = 1; 4257 } 4258 if (eaten) { 4259 /* Predicted packet is in window by definition. 4260 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 4261 * Hence, check seq<=rcv_wup reduces to: 4262 */ 4263 if (tcp_header_len == 4264 (sizeof(struct tcphdr) + 4265 TCPOLEN_TSTAMP_ALIGNED) && 4266 tp->rcv_nxt == tp->rcv_wup) 4267 tcp_store_ts_recent(tp); 4268 4269 tcp_rcv_rtt_measure_ts(sk, skb); 4270 4271 __skb_pull(skb, tcp_header_len); 4272 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4273 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER); 4274 } 4275 if (copied_early) 4276 tcp_cleanup_rbuf(sk, skb->len); 4277 } 4278 if (!eaten) { 4279 if (tcp_checksum_complete_user(sk, skb)) 4280 goto csum_error; 4281 4282 /* Predicted packet is in window by definition. 4283 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 4284 * Hence, check seq<=rcv_wup reduces to: 4285 */ 4286 if (tcp_header_len == 4287 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 4288 tp->rcv_nxt == tp->rcv_wup) 4289 tcp_store_ts_recent(tp); 4290 4291 tcp_rcv_rtt_measure_ts(sk, skb); 4292 4293 if ((int)skb->truesize > sk->sk_forward_alloc) 4294 goto step5; 4295 4296 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS); 4297 4298 /* Bulk data transfer: receiver */ 4299 __skb_pull(skb,tcp_header_len); 4300 __skb_queue_tail(&sk->sk_receive_queue, skb); 4301 sk_stream_set_owner_r(skb, sk); 4302 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4303 } 4304 4305 tcp_event_data_recv(sk, skb); 4306 4307 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 4308 /* Well, only one small jumplet in fast path... */ 4309 tcp_ack(sk, skb, FLAG_DATA); 4310 tcp_data_snd_check(sk); 4311 if (!inet_csk_ack_scheduled(sk)) 4312 goto no_ack; 4313 } 4314 4315 __tcp_ack_snd_check(sk, 0); 4316 no_ack: 4317 #ifdef CONFIG_NET_DMA 4318 if (copied_early) 4319 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 4320 else 4321 #endif 4322 if (eaten) 4323 __kfree_skb(skb); 4324 else 4325 sk->sk_data_ready(sk, 0); 4326 return 0; 4327 } 4328 } 4329 4330 slow_path: 4331 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb)) 4332 goto csum_error; 4333 4334 /* 4335 * RFC1323: H1. Apply PAWS check first. 4336 */ 4337 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 4338 tcp_paws_discard(sk, skb)) { 4339 if (!th->rst) { 4340 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); 4341 tcp_send_dupack(sk, skb); 4342 goto discard; 4343 } 4344 /* Resets are accepted even if PAWS failed. 4345 4346 ts_recent update must be made after we are sure 4347 that the packet is in window. 4348 */ 4349 } 4350 4351 /* 4352 * Standard slow path. 4353 */ 4354 4355 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 4356 /* RFC793, page 37: "In all states except SYN-SENT, all reset 4357 * (RST) segments are validated by checking their SEQ-fields." 4358 * And page 69: "If an incoming segment is not acceptable, 4359 * an acknowledgment should be sent in reply (unless the RST bit 4360 * is set, if so drop the segment and return)". 4361 */ 4362 if (!th->rst) 4363 tcp_send_dupack(sk, skb); 4364 goto discard; 4365 } 4366 4367 if (th->rst) { 4368 tcp_reset(sk); 4369 goto discard; 4370 } 4371 4372 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 4373 4374 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4375 TCP_INC_STATS_BH(TCP_MIB_INERRS); 4376 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN); 4377 tcp_reset(sk); 4378 return 1; 4379 } 4380 4381 step5: 4382 if (th->ack) 4383 tcp_ack(sk, skb, FLAG_SLOWPATH); 4384 4385 tcp_rcv_rtt_measure_ts(sk, skb); 4386 4387 /* Process urgent data. */ 4388 tcp_urg(sk, skb, th); 4389 4390 /* step 7: process the segment text */ 4391 tcp_data_queue(sk, skb); 4392 4393 tcp_data_snd_check(sk); 4394 tcp_ack_snd_check(sk); 4395 return 0; 4396 4397 csum_error: 4398 TCP_INC_STATS_BH(TCP_MIB_INERRS); 4399 4400 discard: 4401 __kfree_skb(skb); 4402 return 0; 4403 } 4404 4405 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 4406 struct tcphdr *th, unsigned len) 4407 { 4408 struct tcp_sock *tp = tcp_sk(sk); 4409 struct inet_connection_sock *icsk = inet_csk(sk); 4410 int saved_clamp = tp->rx_opt.mss_clamp; 4411 4412 tcp_parse_options(skb, &tp->rx_opt, 0); 4413 4414 if (th->ack) { 4415 /* rfc793: 4416 * "If the state is SYN-SENT then 4417 * first check the ACK bit 4418 * If the ACK bit is set 4419 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 4420 * a reset (unless the RST bit is set, if so drop 4421 * the segment and return)" 4422 * 4423 * We do not send data with SYN, so that RFC-correct 4424 * test reduces to: 4425 */ 4426 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt) 4427 goto reset_and_undo; 4428 4429 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 4430 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 4431 tcp_time_stamp)) { 4432 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED); 4433 goto reset_and_undo; 4434 } 4435 4436 /* Now ACK is acceptable. 4437 * 4438 * "If the RST bit is set 4439 * If the ACK was acceptable then signal the user "error: 4440 * connection reset", drop the segment, enter CLOSED state, 4441 * delete TCB, and return." 4442 */ 4443 4444 if (th->rst) { 4445 tcp_reset(sk); 4446 goto discard; 4447 } 4448 4449 /* rfc793: 4450 * "fifth, if neither of the SYN or RST bits is set then 4451 * drop the segment and return." 4452 * 4453 * See note below! 4454 * --ANK(990513) 4455 */ 4456 if (!th->syn) 4457 goto discard_and_undo; 4458 4459 /* rfc793: 4460 * "If the SYN bit is on ... 4461 * are acceptable then ... 4462 * (our SYN has been ACKed), change the connection 4463 * state to ESTABLISHED..." 4464 */ 4465 4466 TCP_ECN_rcv_synack(tp, th); 4467 4468 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 4469 tcp_ack(sk, skb, FLAG_SLOWPATH); 4470 4471 /* Ok.. it's good. Set up sequence numbers and 4472 * move to established. 4473 */ 4474 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 4475 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 4476 4477 /* RFC1323: The window in SYN & SYN/ACK segments is 4478 * never scaled. 4479 */ 4480 tp->snd_wnd = ntohs(th->window); 4481 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq); 4482 4483 if (!tp->rx_opt.wscale_ok) { 4484 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 4485 tp->window_clamp = min(tp->window_clamp, 65535U); 4486 } 4487 4488 if (tp->rx_opt.saw_tstamp) { 4489 tp->rx_opt.tstamp_ok = 1; 4490 tp->tcp_header_len = 4491 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 4492 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 4493 tcp_store_ts_recent(tp); 4494 } else { 4495 tp->tcp_header_len = sizeof(struct tcphdr); 4496 } 4497 4498 if (tp->rx_opt.sack_ok && sysctl_tcp_fack) 4499 tp->rx_opt.sack_ok |= 2; 4500 4501 tcp_mtup_init(sk); 4502 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 4503 tcp_initialize_rcv_mss(sk); 4504 4505 /* Remember, tcp_poll() does not lock socket! 4506 * Change state from SYN-SENT only after copied_seq 4507 * is initialized. */ 4508 tp->copied_seq = tp->rcv_nxt; 4509 smp_mb(); 4510 tcp_set_state(sk, TCP_ESTABLISHED); 4511 4512 security_inet_conn_established(sk, skb); 4513 4514 /* Make sure socket is routed, for correct metrics. */ 4515 icsk->icsk_af_ops->rebuild_header(sk); 4516 4517 tcp_init_metrics(sk); 4518 4519 tcp_init_congestion_control(sk); 4520 4521 /* Prevent spurious tcp_cwnd_restart() on first data 4522 * packet. 4523 */ 4524 tp->lsndtime = tcp_time_stamp; 4525 4526 tcp_init_buffer_space(sk); 4527 4528 if (sock_flag(sk, SOCK_KEEPOPEN)) 4529 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 4530 4531 if (!tp->rx_opt.snd_wscale) 4532 __tcp_fast_path_on(tp, tp->snd_wnd); 4533 else 4534 tp->pred_flags = 0; 4535 4536 if (!sock_flag(sk, SOCK_DEAD)) { 4537 sk->sk_state_change(sk); 4538 sk_wake_async(sk, 0, POLL_OUT); 4539 } 4540 4541 if (sk->sk_write_pending || 4542 icsk->icsk_accept_queue.rskq_defer_accept || 4543 icsk->icsk_ack.pingpong) { 4544 /* Save one ACK. Data will be ready after 4545 * several ticks, if write_pending is set. 4546 * 4547 * It may be deleted, but with this feature tcpdumps 4548 * look so _wonderfully_ clever, that I was not able 4549 * to stand against the temptation 8) --ANK 4550 */ 4551 inet_csk_schedule_ack(sk); 4552 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 4553 icsk->icsk_ack.ato = TCP_ATO_MIN; 4554 tcp_incr_quickack(sk); 4555 tcp_enter_quickack_mode(sk); 4556 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 4557 TCP_DELACK_MAX, TCP_RTO_MAX); 4558 4559 discard: 4560 __kfree_skb(skb); 4561 return 0; 4562 } else { 4563 tcp_send_ack(sk); 4564 } 4565 return -1; 4566 } 4567 4568 /* No ACK in the segment */ 4569 4570 if (th->rst) { 4571 /* rfc793: 4572 * "If the RST bit is set 4573 * 4574 * Otherwise (no ACK) drop the segment and return." 4575 */ 4576 4577 goto discard_and_undo; 4578 } 4579 4580 /* PAWS check. */ 4581 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0)) 4582 goto discard_and_undo; 4583 4584 if (th->syn) { 4585 /* We see SYN without ACK. It is attempt of 4586 * simultaneous connect with crossed SYNs. 4587 * Particularly, it can be connect to self. 4588 */ 4589 tcp_set_state(sk, TCP_SYN_RECV); 4590 4591 if (tp->rx_opt.saw_tstamp) { 4592 tp->rx_opt.tstamp_ok = 1; 4593 tcp_store_ts_recent(tp); 4594 tp->tcp_header_len = 4595 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 4596 } else { 4597 tp->tcp_header_len = sizeof(struct tcphdr); 4598 } 4599 4600 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 4601 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 4602 4603 /* RFC1323: The window in SYN & SYN/ACK segments is 4604 * never scaled. 4605 */ 4606 tp->snd_wnd = ntohs(th->window); 4607 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 4608 tp->max_window = tp->snd_wnd; 4609 4610 TCP_ECN_rcv_syn(tp, th); 4611 4612 tcp_mtup_init(sk); 4613 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 4614 tcp_initialize_rcv_mss(sk); 4615 4616 4617 tcp_send_synack(sk); 4618 #if 0 4619 /* Note, we could accept data and URG from this segment. 4620 * There are no obstacles to make this. 4621 * 4622 * However, if we ignore data in ACKless segments sometimes, 4623 * we have no reasons to accept it sometimes. 4624 * Also, seems the code doing it in step6 of tcp_rcv_state_process 4625 * is not flawless. So, discard packet for sanity. 4626 * Uncomment this return to process the data. 4627 */ 4628 return -1; 4629 #else 4630 goto discard; 4631 #endif 4632 } 4633 /* "fifth, if neither of the SYN or RST bits is set then 4634 * drop the segment and return." 4635 */ 4636 4637 discard_and_undo: 4638 tcp_clear_options(&tp->rx_opt); 4639 tp->rx_opt.mss_clamp = saved_clamp; 4640 goto discard; 4641 4642 reset_and_undo: 4643 tcp_clear_options(&tp->rx_opt); 4644 tp->rx_opt.mss_clamp = saved_clamp; 4645 return 1; 4646 } 4647 4648 4649 /* 4650 * This function implements the receiving procedure of RFC 793 for 4651 * all states except ESTABLISHED and TIME_WAIT. 4652 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 4653 * address independent. 4654 */ 4655 4656 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 4657 struct tcphdr *th, unsigned len) 4658 { 4659 struct tcp_sock *tp = tcp_sk(sk); 4660 struct inet_connection_sock *icsk = inet_csk(sk); 4661 int queued = 0; 4662 4663 tp->rx_opt.saw_tstamp = 0; 4664 4665 switch (sk->sk_state) { 4666 case TCP_CLOSE: 4667 goto discard; 4668 4669 case TCP_LISTEN: 4670 if (th->ack) 4671 return 1; 4672 4673 if (th->rst) 4674 goto discard; 4675 4676 if (th->syn) { 4677 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 4678 return 1; 4679 4680 /* Now we have several options: In theory there is 4681 * nothing else in the frame. KA9Q has an option to 4682 * send data with the syn, BSD accepts data with the 4683 * syn up to the [to be] advertised window and 4684 * Solaris 2.1 gives you a protocol error. For now 4685 * we just ignore it, that fits the spec precisely 4686 * and avoids incompatibilities. It would be nice in 4687 * future to drop through and process the data. 4688 * 4689 * Now that TTCP is starting to be used we ought to 4690 * queue this data. 4691 * But, this leaves one open to an easy denial of 4692 * service attack, and SYN cookies can't defend 4693 * against this problem. So, we drop the data 4694 * in the interest of security over speed unless 4695 * it's still in use. 4696 */ 4697 kfree_skb(skb); 4698 return 0; 4699 } 4700 goto discard; 4701 4702 case TCP_SYN_SENT: 4703 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 4704 if (queued >= 0) 4705 return queued; 4706 4707 /* Do step6 onward by hand. */ 4708 tcp_urg(sk, skb, th); 4709 __kfree_skb(skb); 4710 tcp_data_snd_check(sk); 4711 return 0; 4712 } 4713 4714 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 4715 tcp_paws_discard(sk, skb)) { 4716 if (!th->rst) { 4717 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); 4718 tcp_send_dupack(sk, skb); 4719 goto discard; 4720 } 4721 /* Reset is accepted even if it did not pass PAWS. */ 4722 } 4723 4724 /* step 1: check sequence number */ 4725 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 4726 if (!th->rst) 4727 tcp_send_dupack(sk, skb); 4728 goto discard; 4729 } 4730 4731 /* step 2: check RST bit */ 4732 if (th->rst) { 4733 tcp_reset(sk); 4734 goto discard; 4735 } 4736 4737 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 4738 4739 /* step 3: check security and precedence [ignored] */ 4740 4741 /* step 4: 4742 * 4743 * Check for a SYN in window. 4744 */ 4745 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4746 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN); 4747 tcp_reset(sk); 4748 return 1; 4749 } 4750 4751 /* step 5: check the ACK field */ 4752 if (th->ack) { 4753 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH); 4754 4755 switch (sk->sk_state) { 4756 case TCP_SYN_RECV: 4757 if (acceptable) { 4758 tp->copied_seq = tp->rcv_nxt; 4759 smp_mb(); 4760 tcp_set_state(sk, TCP_ESTABLISHED); 4761 sk->sk_state_change(sk); 4762 4763 /* Note, that this wakeup is only for marginal 4764 * crossed SYN case. Passively open sockets 4765 * are not waked up, because sk->sk_sleep == 4766 * NULL and sk->sk_socket == NULL. 4767 */ 4768 if (sk->sk_socket) { 4769 sk_wake_async(sk,0,POLL_OUT); 4770 } 4771 4772 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 4773 tp->snd_wnd = ntohs(th->window) << 4774 tp->rx_opt.snd_wscale; 4775 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, 4776 TCP_SKB_CB(skb)->seq); 4777 4778 /* tcp_ack considers this ACK as duplicate 4779 * and does not calculate rtt. 4780 * Fix it at least with timestamps. 4781 */ 4782 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 4783 !tp->srtt) 4784 tcp_ack_saw_tstamp(sk, 0); 4785 4786 if (tp->rx_opt.tstamp_ok) 4787 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 4788 4789 /* Make sure socket is routed, for 4790 * correct metrics. 4791 */ 4792 icsk->icsk_af_ops->rebuild_header(sk); 4793 4794 tcp_init_metrics(sk); 4795 4796 tcp_init_congestion_control(sk); 4797 4798 /* Prevent spurious tcp_cwnd_restart() on 4799 * first data packet. 4800 */ 4801 tp->lsndtime = tcp_time_stamp; 4802 4803 tcp_mtup_init(sk); 4804 tcp_initialize_rcv_mss(sk); 4805 tcp_init_buffer_space(sk); 4806 tcp_fast_path_on(tp); 4807 } else { 4808 return 1; 4809 } 4810 break; 4811 4812 case TCP_FIN_WAIT1: 4813 if (tp->snd_una == tp->write_seq) { 4814 tcp_set_state(sk, TCP_FIN_WAIT2); 4815 sk->sk_shutdown |= SEND_SHUTDOWN; 4816 dst_confirm(sk->sk_dst_cache); 4817 4818 if (!sock_flag(sk, SOCK_DEAD)) 4819 /* Wake up lingering close() */ 4820 sk->sk_state_change(sk); 4821 else { 4822 int tmo; 4823 4824 if (tp->linger2 < 0 || 4825 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4826 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 4827 tcp_done(sk); 4828 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA); 4829 return 1; 4830 } 4831 4832 tmo = tcp_fin_time(sk); 4833 if (tmo > TCP_TIMEWAIT_LEN) { 4834 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 4835 } else if (th->fin || sock_owned_by_user(sk)) { 4836 /* Bad case. We could lose such FIN otherwise. 4837 * It is not a big problem, but it looks confusing 4838 * and not so rare event. We still can lose it now, 4839 * if it spins in bh_lock_sock(), but it is really 4840 * marginal case. 4841 */ 4842 inet_csk_reset_keepalive_timer(sk, tmo); 4843 } else { 4844 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 4845 goto discard; 4846 } 4847 } 4848 } 4849 break; 4850 4851 case TCP_CLOSING: 4852 if (tp->snd_una == tp->write_seq) { 4853 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4854 goto discard; 4855 } 4856 break; 4857 4858 case TCP_LAST_ACK: 4859 if (tp->snd_una == tp->write_seq) { 4860 tcp_update_metrics(sk); 4861 tcp_done(sk); 4862 goto discard; 4863 } 4864 break; 4865 } 4866 } else 4867 goto discard; 4868 4869 /* step 6: check the URG bit */ 4870 tcp_urg(sk, skb, th); 4871 4872 /* step 7: process the segment text */ 4873 switch (sk->sk_state) { 4874 case TCP_CLOSE_WAIT: 4875 case TCP_CLOSING: 4876 case TCP_LAST_ACK: 4877 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4878 break; 4879 case TCP_FIN_WAIT1: 4880 case TCP_FIN_WAIT2: 4881 /* RFC 793 says to queue data in these states, 4882 * RFC 1122 says we MUST send a reset. 4883 * BSD 4.4 also does reset. 4884 */ 4885 if (sk->sk_shutdown & RCV_SHUTDOWN) { 4886 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4887 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 4888 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA); 4889 tcp_reset(sk); 4890 return 1; 4891 } 4892 } 4893 /* Fall through */ 4894 case TCP_ESTABLISHED: 4895 tcp_data_queue(sk, skb); 4896 queued = 1; 4897 break; 4898 } 4899 4900 /* tcp_data could move socket to TIME-WAIT */ 4901 if (sk->sk_state != TCP_CLOSE) { 4902 tcp_data_snd_check(sk); 4903 tcp_ack_snd_check(sk); 4904 } 4905 4906 if (!queued) { 4907 discard: 4908 __kfree_skb(skb); 4909 } 4910 return 0; 4911 } 4912 4913 EXPORT_SYMBOL(sysctl_tcp_ecn); 4914 EXPORT_SYMBOL(sysctl_tcp_reordering); 4915 EXPORT_SYMBOL(tcp_parse_options); 4916 EXPORT_SYMBOL(tcp_rcv_established); 4917 EXPORT_SYMBOL(tcp_rcv_state_process); 4918 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 4919