1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/static_key.h> 81 #include <net/busy_poll.h> 82 83 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 84 85 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 86 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 87 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 88 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 89 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 90 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 91 #define FLAG_ECE 0x40 /* ECE in this ACK */ 92 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 93 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 94 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 95 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 96 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 97 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 98 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 99 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 100 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 101 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 102 103 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 104 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 105 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 106 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 107 108 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 109 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 110 111 #define REXMIT_NONE 0 /* no loss recovery to do */ 112 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 113 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 114 115 #if IS_ENABLED(CONFIG_TLS_DEVICE) 116 static DEFINE_STATIC_KEY_FALSE(clean_acked_data_enabled); 117 118 void clean_acked_data_enable(struct inet_connection_sock *icsk, 119 void (*cad)(struct sock *sk, u32 ack_seq)) 120 { 121 icsk->icsk_clean_acked = cad; 122 static_branch_inc(&clean_acked_data_enabled); 123 } 124 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 125 126 void clean_acked_data_disable(struct inet_connection_sock *icsk) 127 { 128 static_branch_dec(&clean_acked_data_enabled); 129 icsk->icsk_clean_acked = NULL; 130 } 131 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 132 #endif 133 134 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 135 unsigned int len) 136 { 137 static bool __once __read_mostly; 138 139 if (!__once) { 140 struct net_device *dev; 141 142 __once = true; 143 144 rcu_read_lock(); 145 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 146 if (!dev || len >= dev->mtu) 147 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 148 dev ? dev->name : "Unknown driver"); 149 rcu_read_unlock(); 150 } 151 } 152 153 /* Adapt the MSS value used to make delayed ack decision to the 154 * real world. 155 */ 156 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 157 { 158 struct inet_connection_sock *icsk = inet_csk(sk); 159 const unsigned int lss = icsk->icsk_ack.last_seg_size; 160 unsigned int len; 161 162 icsk->icsk_ack.last_seg_size = 0; 163 164 /* skb->len may jitter because of SACKs, even if peer 165 * sends good full-sized frames. 166 */ 167 len = skb_shinfo(skb)->gso_size ? : skb->len; 168 if (len >= icsk->icsk_ack.rcv_mss) { 169 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 170 tcp_sk(sk)->advmss); 171 /* Account for possibly-removed options */ 172 if (unlikely(len > icsk->icsk_ack.rcv_mss + 173 MAX_TCP_OPTION_SPACE)) 174 tcp_gro_dev_warn(sk, skb, len); 175 } else { 176 /* Otherwise, we make more careful check taking into account, 177 * that SACKs block is variable. 178 * 179 * "len" is invariant segment length, including TCP header. 180 */ 181 len += skb->data - skb_transport_header(skb); 182 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 183 /* If PSH is not set, packet should be 184 * full sized, provided peer TCP is not badly broken. 185 * This observation (if it is correct 8)) allows 186 * to handle super-low mtu links fairly. 187 */ 188 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 189 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 190 /* Subtract also invariant (if peer is RFC compliant), 191 * tcp header plus fixed timestamp option length. 192 * Resulting "len" is MSS free of SACK jitter. 193 */ 194 len -= tcp_sk(sk)->tcp_header_len; 195 icsk->icsk_ack.last_seg_size = len; 196 if (len == lss) { 197 icsk->icsk_ack.rcv_mss = len; 198 return; 199 } 200 } 201 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 202 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 203 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 204 } 205 } 206 207 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 208 { 209 struct inet_connection_sock *icsk = inet_csk(sk); 210 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 211 212 if (quickacks == 0) 213 quickacks = 2; 214 quickacks = min(quickacks, max_quickacks); 215 if (quickacks > icsk->icsk_ack.quick) 216 icsk->icsk_ack.quick = quickacks; 217 } 218 219 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 220 { 221 struct inet_connection_sock *icsk = inet_csk(sk); 222 223 tcp_incr_quickack(sk, max_quickacks); 224 inet_csk_exit_pingpong_mode(sk); 225 icsk->icsk_ack.ato = TCP_ATO_MIN; 226 } 227 EXPORT_SYMBOL(tcp_enter_quickack_mode); 228 229 /* Send ACKs quickly, if "quick" count is not exhausted 230 * and the session is not interactive. 231 */ 232 233 static bool tcp_in_quickack_mode(struct sock *sk) 234 { 235 const struct inet_connection_sock *icsk = inet_csk(sk); 236 const struct dst_entry *dst = __sk_dst_get(sk); 237 238 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 239 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 240 } 241 242 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 243 { 244 if (tp->ecn_flags & TCP_ECN_OK) 245 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 246 } 247 248 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 249 { 250 if (tcp_hdr(skb)->cwr) { 251 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 252 253 /* If the sender is telling us it has entered CWR, then its 254 * cwnd may be very low (even just 1 packet), so we should ACK 255 * immediately. 256 */ 257 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 258 } 259 } 260 261 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 262 { 263 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 264 } 265 266 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 267 { 268 struct tcp_sock *tp = tcp_sk(sk); 269 270 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 271 case INET_ECN_NOT_ECT: 272 /* Funny extension: if ECT is not set on a segment, 273 * and we already seen ECT on a previous segment, 274 * it is probably a retransmit. 275 */ 276 if (tp->ecn_flags & TCP_ECN_SEEN) 277 tcp_enter_quickack_mode(sk, 2); 278 break; 279 case INET_ECN_CE: 280 if (tcp_ca_needs_ecn(sk)) 281 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 282 283 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 284 /* Better not delay acks, sender can have a very low cwnd */ 285 tcp_enter_quickack_mode(sk, 2); 286 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 287 } 288 tp->ecn_flags |= TCP_ECN_SEEN; 289 break; 290 default: 291 if (tcp_ca_needs_ecn(sk)) 292 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 293 tp->ecn_flags |= TCP_ECN_SEEN; 294 break; 295 } 296 } 297 298 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 299 { 300 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 301 __tcp_ecn_check_ce(sk, skb); 302 } 303 304 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 305 { 306 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 307 tp->ecn_flags &= ~TCP_ECN_OK; 308 } 309 310 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 311 { 312 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 313 tp->ecn_flags &= ~TCP_ECN_OK; 314 } 315 316 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 317 { 318 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 319 return true; 320 return false; 321 } 322 323 /* Buffer size and advertised window tuning. 324 * 325 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 326 */ 327 328 static void tcp_sndbuf_expand(struct sock *sk) 329 { 330 const struct tcp_sock *tp = tcp_sk(sk); 331 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 332 int sndmem, per_mss; 333 u32 nr_segs; 334 335 /* Worst case is non GSO/TSO : each frame consumes one skb 336 * and skb->head is kmalloced using power of two area of memory 337 */ 338 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 339 MAX_TCP_HEADER + 340 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 341 342 per_mss = roundup_pow_of_two(per_mss) + 343 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 344 345 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 346 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 347 348 /* Fast Recovery (RFC 5681 3.2) : 349 * Cubic needs 1.7 factor, rounded to 2 to include 350 * extra cushion (application might react slowly to EPOLLOUT) 351 */ 352 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 353 sndmem *= nr_segs * per_mss; 354 355 if (sk->sk_sndbuf < sndmem) 356 sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]); 357 } 358 359 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 360 * 361 * All tcp_full_space() is split to two parts: "network" buffer, allocated 362 * forward and advertised in receiver window (tp->rcv_wnd) and 363 * "application buffer", required to isolate scheduling/application 364 * latencies from network. 365 * window_clamp is maximal advertised window. It can be less than 366 * tcp_full_space(), in this case tcp_full_space() - window_clamp 367 * is reserved for "application" buffer. The less window_clamp is 368 * the smoother our behaviour from viewpoint of network, but the lower 369 * throughput and the higher sensitivity of the connection to losses. 8) 370 * 371 * rcv_ssthresh is more strict window_clamp used at "slow start" 372 * phase to predict further behaviour of this connection. 373 * It is used for two goals: 374 * - to enforce header prediction at sender, even when application 375 * requires some significant "application buffer". It is check #1. 376 * - to prevent pruning of receive queue because of misprediction 377 * of receiver window. Check #2. 378 * 379 * The scheme does not work when sender sends good segments opening 380 * window and then starts to feed us spaghetti. But it should work 381 * in common situations. Otherwise, we have to rely on queue collapsing. 382 */ 383 384 /* Slow part of check#2. */ 385 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 386 { 387 struct tcp_sock *tp = tcp_sk(sk); 388 /* Optimize this! */ 389 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1; 390 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 391 392 while (tp->rcv_ssthresh <= window) { 393 if (truesize <= skb->len) 394 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 395 396 truesize >>= 1; 397 window >>= 1; 398 } 399 return 0; 400 } 401 402 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 403 { 404 struct tcp_sock *tp = tcp_sk(sk); 405 406 /* Check #1 */ 407 if (tp->rcv_ssthresh < tp->window_clamp && 408 (int)tp->rcv_ssthresh < tcp_space(sk) && 409 !tcp_under_memory_pressure(sk)) { 410 int incr; 411 412 /* Check #2. Increase window, if skb with such overhead 413 * will fit to rcvbuf in future. 414 */ 415 if (tcp_win_from_space(sk, skb->truesize) <= skb->len) 416 incr = 2 * tp->advmss; 417 else 418 incr = __tcp_grow_window(sk, skb); 419 420 if (incr) { 421 incr = max_t(int, incr, 2 * skb->len); 422 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 423 tp->window_clamp); 424 inet_csk(sk)->icsk_ack.quick |= 1; 425 } 426 } 427 } 428 429 /* 3. Try to fixup all. It is made immediately after connection enters 430 * established state. 431 */ 432 void tcp_init_buffer_space(struct sock *sk) 433 { 434 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win; 435 struct tcp_sock *tp = tcp_sk(sk); 436 int maxwin; 437 438 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 439 tcp_sndbuf_expand(sk); 440 441 tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss); 442 tcp_mstamp_refresh(tp); 443 tp->rcvq_space.time = tp->tcp_mstamp; 444 tp->rcvq_space.seq = tp->copied_seq; 445 446 maxwin = tcp_full_space(sk); 447 448 if (tp->window_clamp >= maxwin) { 449 tp->window_clamp = maxwin; 450 451 if (tcp_app_win && maxwin > 4 * tp->advmss) 452 tp->window_clamp = max(maxwin - 453 (maxwin >> tcp_app_win), 454 4 * tp->advmss); 455 } 456 457 /* Force reservation of one segment. */ 458 if (tcp_app_win && 459 tp->window_clamp > 2 * tp->advmss && 460 tp->window_clamp + tp->advmss > maxwin) 461 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 462 463 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 464 tp->snd_cwnd_stamp = tcp_jiffies32; 465 } 466 467 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 468 static void tcp_clamp_window(struct sock *sk) 469 { 470 struct tcp_sock *tp = tcp_sk(sk); 471 struct inet_connection_sock *icsk = inet_csk(sk); 472 struct net *net = sock_net(sk); 473 474 icsk->icsk_ack.quick = 0; 475 476 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] && 477 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 478 !tcp_under_memory_pressure(sk) && 479 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 480 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 481 net->ipv4.sysctl_tcp_rmem[2]); 482 } 483 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 484 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 485 } 486 487 /* Initialize RCV_MSS value. 488 * RCV_MSS is an our guess about MSS used by the peer. 489 * We haven't any direct information about the MSS. 490 * It's better to underestimate the RCV_MSS rather than overestimate. 491 * Overestimations make us ACKing less frequently than needed. 492 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 493 */ 494 void tcp_initialize_rcv_mss(struct sock *sk) 495 { 496 const struct tcp_sock *tp = tcp_sk(sk); 497 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 498 499 hint = min(hint, tp->rcv_wnd / 2); 500 hint = min(hint, TCP_MSS_DEFAULT); 501 hint = max(hint, TCP_MIN_MSS); 502 503 inet_csk(sk)->icsk_ack.rcv_mss = hint; 504 } 505 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 506 507 /* Receiver "autotuning" code. 508 * 509 * The algorithm for RTT estimation w/o timestamps is based on 510 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 511 * <http://public.lanl.gov/radiant/pubs.html#DRS> 512 * 513 * More detail on this code can be found at 514 * <http://staff.psc.edu/jheffner/>, 515 * though this reference is out of date. A new paper 516 * is pending. 517 */ 518 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 519 { 520 u32 new_sample = tp->rcv_rtt_est.rtt_us; 521 long m = sample; 522 523 if (new_sample != 0) { 524 /* If we sample in larger samples in the non-timestamp 525 * case, we could grossly overestimate the RTT especially 526 * with chatty applications or bulk transfer apps which 527 * are stalled on filesystem I/O. 528 * 529 * Also, since we are only going for a minimum in the 530 * non-timestamp case, we do not smooth things out 531 * else with timestamps disabled convergence takes too 532 * long. 533 */ 534 if (!win_dep) { 535 m -= (new_sample >> 3); 536 new_sample += m; 537 } else { 538 m <<= 3; 539 if (m < new_sample) 540 new_sample = m; 541 } 542 } else { 543 /* No previous measure. */ 544 new_sample = m << 3; 545 } 546 547 tp->rcv_rtt_est.rtt_us = new_sample; 548 } 549 550 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 551 { 552 u32 delta_us; 553 554 if (tp->rcv_rtt_est.time == 0) 555 goto new_measure; 556 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 557 return; 558 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 559 if (!delta_us) 560 delta_us = 1; 561 tcp_rcv_rtt_update(tp, delta_us, 1); 562 563 new_measure: 564 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 565 tp->rcv_rtt_est.time = tp->tcp_mstamp; 566 } 567 568 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 569 const struct sk_buff *skb) 570 { 571 struct tcp_sock *tp = tcp_sk(sk); 572 573 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 574 return; 575 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 576 577 if (TCP_SKB_CB(skb)->end_seq - 578 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 579 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 580 u32 delta_us; 581 582 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 583 if (!delta) 584 delta = 1; 585 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 586 tcp_rcv_rtt_update(tp, delta_us, 0); 587 } 588 } 589 } 590 591 /* 592 * This function should be called every time data is copied to user space. 593 * It calculates the appropriate TCP receive buffer space. 594 */ 595 void tcp_rcv_space_adjust(struct sock *sk) 596 { 597 struct tcp_sock *tp = tcp_sk(sk); 598 u32 copied; 599 int time; 600 601 trace_tcp_rcv_space_adjust(sk); 602 603 tcp_mstamp_refresh(tp); 604 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 605 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 606 return; 607 608 /* Number of bytes copied to user in last RTT */ 609 copied = tp->copied_seq - tp->rcvq_space.seq; 610 if (copied <= tp->rcvq_space.space) 611 goto new_measure; 612 613 /* A bit of theory : 614 * copied = bytes received in previous RTT, our base window 615 * To cope with packet losses, we need a 2x factor 616 * To cope with slow start, and sender growing its cwin by 100 % 617 * every RTT, we need a 4x factor, because the ACK we are sending 618 * now is for the next RTT, not the current one : 619 * <prev RTT . ><current RTT .. ><next RTT .... > 620 */ 621 622 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 623 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 624 int rcvmem, rcvbuf; 625 u64 rcvwin, grow; 626 627 /* minimal window to cope with packet losses, assuming 628 * steady state. Add some cushion because of small variations. 629 */ 630 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 631 632 /* Accommodate for sender rate increase (eg. slow start) */ 633 grow = rcvwin * (copied - tp->rcvq_space.space); 634 do_div(grow, tp->rcvq_space.space); 635 rcvwin += (grow << 1); 636 637 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 638 while (tcp_win_from_space(sk, rcvmem) < tp->advmss) 639 rcvmem += 128; 640 641 do_div(rcvwin, tp->advmss); 642 rcvbuf = min_t(u64, rcvwin * rcvmem, 643 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 644 if (rcvbuf > sk->sk_rcvbuf) { 645 sk->sk_rcvbuf = rcvbuf; 646 647 /* Make the window clamp follow along. */ 648 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 649 } 650 } 651 tp->rcvq_space.space = copied; 652 653 new_measure: 654 tp->rcvq_space.seq = tp->copied_seq; 655 tp->rcvq_space.time = tp->tcp_mstamp; 656 } 657 658 /* There is something which you must keep in mind when you analyze the 659 * behavior of the tp->ato delayed ack timeout interval. When a 660 * connection starts up, we want to ack as quickly as possible. The 661 * problem is that "good" TCP's do slow start at the beginning of data 662 * transmission. The means that until we send the first few ACK's the 663 * sender will sit on his end and only queue most of his data, because 664 * he can only send snd_cwnd unacked packets at any given time. For 665 * each ACK we send, he increments snd_cwnd and transmits more of his 666 * queue. -DaveM 667 */ 668 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 669 { 670 struct tcp_sock *tp = tcp_sk(sk); 671 struct inet_connection_sock *icsk = inet_csk(sk); 672 u32 now; 673 674 inet_csk_schedule_ack(sk); 675 676 tcp_measure_rcv_mss(sk, skb); 677 678 tcp_rcv_rtt_measure(tp); 679 680 now = tcp_jiffies32; 681 682 if (!icsk->icsk_ack.ato) { 683 /* The _first_ data packet received, initialize 684 * delayed ACK engine. 685 */ 686 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 687 icsk->icsk_ack.ato = TCP_ATO_MIN; 688 } else { 689 int m = now - icsk->icsk_ack.lrcvtime; 690 691 if (m <= TCP_ATO_MIN / 2) { 692 /* The fastest case is the first. */ 693 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 694 } else if (m < icsk->icsk_ack.ato) { 695 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 696 if (icsk->icsk_ack.ato > icsk->icsk_rto) 697 icsk->icsk_ack.ato = icsk->icsk_rto; 698 } else if (m > icsk->icsk_rto) { 699 /* Too long gap. Apparently sender failed to 700 * restart window, so that we send ACKs quickly. 701 */ 702 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 703 sk_mem_reclaim(sk); 704 } 705 } 706 icsk->icsk_ack.lrcvtime = now; 707 708 tcp_ecn_check_ce(sk, skb); 709 710 if (skb->len >= 128) 711 tcp_grow_window(sk, skb); 712 } 713 714 /* Called to compute a smoothed rtt estimate. The data fed to this 715 * routine either comes from timestamps, or from segments that were 716 * known _not_ to have been retransmitted [see Karn/Partridge 717 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 718 * piece by Van Jacobson. 719 * NOTE: the next three routines used to be one big routine. 720 * To save cycles in the RFC 1323 implementation it was better to break 721 * it up into three procedures. -- erics 722 */ 723 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 724 { 725 struct tcp_sock *tp = tcp_sk(sk); 726 long m = mrtt_us; /* RTT */ 727 u32 srtt = tp->srtt_us; 728 729 /* The following amusing code comes from Jacobson's 730 * article in SIGCOMM '88. Note that rtt and mdev 731 * are scaled versions of rtt and mean deviation. 732 * This is designed to be as fast as possible 733 * m stands for "measurement". 734 * 735 * On a 1990 paper the rto value is changed to: 736 * RTO = rtt + 4 * mdev 737 * 738 * Funny. This algorithm seems to be very broken. 739 * These formulae increase RTO, when it should be decreased, increase 740 * too slowly, when it should be increased quickly, decrease too quickly 741 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 742 * does not matter how to _calculate_ it. Seems, it was trap 743 * that VJ failed to avoid. 8) 744 */ 745 if (srtt != 0) { 746 m -= (srtt >> 3); /* m is now error in rtt est */ 747 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 748 if (m < 0) { 749 m = -m; /* m is now abs(error) */ 750 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 751 /* This is similar to one of Eifel findings. 752 * Eifel blocks mdev updates when rtt decreases. 753 * This solution is a bit different: we use finer gain 754 * for mdev in this case (alpha*beta). 755 * Like Eifel it also prevents growth of rto, 756 * but also it limits too fast rto decreases, 757 * happening in pure Eifel. 758 */ 759 if (m > 0) 760 m >>= 3; 761 } else { 762 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 763 } 764 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 765 if (tp->mdev_us > tp->mdev_max_us) { 766 tp->mdev_max_us = tp->mdev_us; 767 if (tp->mdev_max_us > tp->rttvar_us) 768 tp->rttvar_us = tp->mdev_max_us; 769 } 770 if (after(tp->snd_una, tp->rtt_seq)) { 771 if (tp->mdev_max_us < tp->rttvar_us) 772 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 773 tp->rtt_seq = tp->snd_nxt; 774 tp->mdev_max_us = tcp_rto_min_us(sk); 775 } 776 } else { 777 /* no previous measure. */ 778 srtt = m << 3; /* take the measured time to be rtt */ 779 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 780 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 781 tp->mdev_max_us = tp->rttvar_us; 782 tp->rtt_seq = tp->snd_nxt; 783 } 784 tp->srtt_us = max(1U, srtt); 785 } 786 787 static void tcp_update_pacing_rate(struct sock *sk) 788 { 789 const struct tcp_sock *tp = tcp_sk(sk); 790 u64 rate; 791 792 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 793 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 794 795 /* current rate is (cwnd * mss) / srtt 796 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 797 * In Congestion Avoidance phase, set it to 120 % the current rate. 798 * 799 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 800 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 801 * end of slow start and should slow down. 802 */ 803 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 804 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio; 805 else 806 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio; 807 808 rate *= max(tp->snd_cwnd, tp->packets_out); 809 810 if (likely(tp->srtt_us)) 811 do_div(rate, tp->srtt_us); 812 813 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 814 * without any lock. We want to make sure compiler wont store 815 * intermediate values in this location. 816 */ 817 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 818 sk->sk_max_pacing_rate)); 819 } 820 821 /* Calculate rto without backoff. This is the second half of Van Jacobson's 822 * routine referred to above. 823 */ 824 static void tcp_set_rto(struct sock *sk) 825 { 826 const struct tcp_sock *tp = tcp_sk(sk); 827 /* Old crap is replaced with new one. 8) 828 * 829 * More seriously: 830 * 1. If rtt variance happened to be less 50msec, it is hallucination. 831 * It cannot be less due to utterly erratic ACK generation made 832 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 833 * to do with delayed acks, because at cwnd>2 true delack timeout 834 * is invisible. Actually, Linux-2.4 also generates erratic 835 * ACKs in some circumstances. 836 */ 837 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 838 839 /* 2. Fixups made earlier cannot be right. 840 * If we do not estimate RTO correctly without them, 841 * all the algo is pure shit and should be replaced 842 * with correct one. It is exactly, which we pretend to do. 843 */ 844 845 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 846 * guarantees that rto is higher. 847 */ 848 tcp_bound_rto(sk); 849 } 850 851 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 852 { 853 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 854 855 if (!cwnd) 856 cwnd = TCP_INIT_CWND; 857 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 858 } 859 860 /* Take a notice that peer is sending D-SACKs */ 861 static void tcp_dsack_seen(struct tcp_sock *tp) 862 { 863 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 864 tp->rack.dsack_seen = 1; 865 tp->dsack_dups++; 866 } 867 868 /* It's reordering when higher sequence was delivered (i.e. sacked) before 869 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 870 * distance is approximated in full-mss packet distance ("reordering"). 871 */ 872 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 873 const int ts) 874 { 875 struct tcp_sock *tp = tcp_sk(sk); 876 const u32 mss = tp->mss_cache; 877 u32 fack, metric; 878 879 fack = tcp_highest_sack_seq(tp); 880 if (!before(low_seq, fack)) 881 return; 882 883 metric = fack - low_seq; 884 if ((metric > tp->reordering * mss) && mss) { 885 #if FASTRETRANS_DEBUG > 1 886 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 887 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 888 tp->reordering, 889 0, 890 tp->sacked_out, 891 tp->undo_marker ? tp->undo_retrans : 0); 892 #endif 893 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 894 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 895 } 896 897 /* This exciting event is worth to be remembered. 8) */ 898 tp->reord_seen++; 899 NET_INC_STATS(sock_net(sk), 900 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 901 } 902 903 /* This must be called before lost_out is incremented */ 904 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 905 { 906 if (!tp->retransmit_skb_hint || 907 before(TCP_SKB_CB(skb)->seq, 908 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 909 tp->retransmit_skb_hint = skb; 910 } 911 912 /* Sum the number of packets on the wire we have marked as lost. 913 * There are two cases we care about here: 914 * a) Packet hasn't been marked lost (nor retransmitted), 915 * and this is the first loss. 916 * b) Packet has been marked both lost and retransmitted, 917 * and this means we think it was lost again. 918 */ 919 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 920 { 921 __u8 sacked = TCP_SKB_CB(skb)->sacked; 922 923 if (!(sacked & TCPCB_LOST) || 924 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 925 tp->lost += tcp_skb_pcount(skb); 926 } 927 928 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 929 { 930 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 931 tcp_verify_retransmit_hint(tp, skb); 932 933 tp->lost_out += tcp_skb_pcount(skb); 934 tcp_sum_lost(tp, skb); 935 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 936 } 937 } 938 939 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 940 { 941 tcp_verify_retransmit_hint(tp, skb); 942 943 tcp_sum_lost(tp, skb); 944 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 945 tp->lost_out += tcp_skb_pcount(skb); 946 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 947 } 948 } 949 950 /* This procedure tags the retransmission queue when SACKs arrive. 951 * 952 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 953 * Packets in queue with these bits set are counted in variables 954 * sacked_out, retrans_out and lost_out, correspondingly. 955 * 956 * Valid combinations are: 957 * Tag InFlight Description 958 * 0 1 - orig segment is in flight. 959 * S 0 - nothing flies, orig reached receiver. 960 * L 0 - nothing flies, orig lost by net. 961 * R 2 - both orig and retransmit are in flight. 962 * L|R 1 - orig is lost, retransmit is in flight. 963 * S|R 1 - orig reached receiver, retrans is still in flight. 964 * (L|S|R is logically valid, it could occur when L|R is sacked, 965 * but it is equivalent to plain S and code short-curcuits it to S. 966 * L|S is logically invalid, it would mean -1 packet in flight 8)) 967 * 968 * These 6 states form finite state machine, controlled by the following events: 969 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 970 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 971 * 3. Loss detection event of two flavors: 972 * A. Scoreboard estimator decided the packet is lost. 973 * A'. Reno "three dupacks" marks head of queue lost. 974 * B. SACK arrives sacking SND.NXT at the moment, when the 975 * segment was retransmitted. 976 * 4. D-SACK added new rule: D-SACK changes any tag to S. 977 * 978 * It is pleasant to note, that state diagram turns out to be commutative, 979 * so that we are allowed not to be bothered by order of our actions, 980 * when multiple events arrive simultaneously. (see the function below). 981 * 982 * Reordering detection. 983 * -------------------- 984 * Reordering metric is maximal distance, which a packet can be displaced 985 * in packet stream. With SACKs we can estimate it: 986 * 987 * 1. SACK fills old hole and the corresponding segment was not 988 * ever retransmitted -> reordering. Alas, we cannot use it 989 * when segment was retransmitted. 990 * 2. The last flaw is solved with D-SACK. D-SACK arrives 991 * for retransmitted and already SACKed segment -> reordering.. 992 * Both of these heuristics are not used in Loss state, when we cannot 993 * account for retransmits accurately. 994 * 995 * SACK block validation. 996 * ---------------------- 997 * 998 * SACK block range validation checks that the received SACK block fits to 999 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1000 * Note that SND.UNA is not included to the range though being valid because 1001 * it means that the receiver is rather inconsistent with itself reporting 1002 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1003 * perfectly valid, however, in light of RFC2018 which explicitly states 1004 * that "SACK block MUST reflect the newest segment. Even if the newest 1005 * segment is going to be discarded ...", not that it looks very clever 1006 * in case of head skb. Due to potentional receiver driven attacks, we 1007 * choose to avoid immediate execution of a walk in write queue due to 1008 * reneging and defer head skb's loss recovery to standard loss recovery 1009 * procedure that will eventually trigger (nothing forbids us doing this). 1010 * 1011 * Implements also blockage to start_seq wrap-around. Problem lies in the 1012 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1013 * there's no guarantee that it will be before snd_nxt (n). The problem 1014 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1015 * wrap (s_w): 1016 * 1017 * <- outs wnd -> <- wrapzone -> 1018 * u e n u_w e_w s n_w 1019 * | | | | | | | 1020 * |<------------+------+----- TCP seqno space --------------+---------->| 1021 * ...-- <2^31 ->| |<--------... 1022 * ...---- >2^31 ------>| |<--------... 1023 * 1024 * Current code wouldn't be vulnerable but it's better still to discard such 1025 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1026 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1027 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1028 * equal to the ideal case (infinite seqno space without wrap caused issues). 1029 * 1030 * With D-SACK the lower bound is extended to cover sequence space below 1031 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1032 * again, D-SACK block must not to go across snd_una (for the same reason as 1033 * for the normal SACK blocks, explained above). But there all simplicity 1034 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1035 * fully below undo_marker they do not affect behavior in anyway and can 1036 * therefore be safely ignored. In rare cases (which are more or less 1037 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1038 * fragmentation and packet reordering past skb's retransmission. To consider 1039 * them correctly, the acceptable range must be extended even more though 1040 * the exact amount is rather hard to quantify. However, tp->max_window can 1041 * be used as an exaggerated estimate. 1042 */ 1043 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1044 u32 start_seq, u32 end_seq) 1045 { 1046 /* Too far in future, or reversed (interpretation is ambiguous) */ 1047 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1048 return false; 1049 1050 /* Nasty start_seq wrap-around check (see comments above) */ 1051 if (!before(start_seq, tp->snd_nxt)) 1052 return false; 1053 1054 /* In outstanding window? ...This is valid exit for D-SACKs too. 1055 * start_seq == snd_una is non-sensical (see comments above) 1056 */ 1057 if (after(start_seq, tp->snd_una)) 1058 return true; 1059 1060 if (!is_dsack || !tp->undo_marker) 1061 return false; 1062 1063 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1064 if (after(end_seq, tp->snd_una)) 1065 return false; 1066 1067 if (!before(start_seq, tp->undo_marker)) 1068 return true; 1069 1070 /* Too old */ 1071 if (!after(end_seq, tp->undo_marker)) 1072 return false; 1073 1074 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1075 * start_seq < undo_marker and end_seq >= undo_marker. 1076 */ 1077 return !before(start_seq, end_seq - tp->max_window); 1078 } 1079 1080 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1081 struct tcp_sack_block_wire *sp, int num_sacks, 1082 u32 prior_snd_una) 1083 { 1084 struct tcp_sock *tp = tcp_sk(sk); 1085 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1086 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1087 bool dup_sack = false; 1088 1089 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1090 dup_sack = true; 1091 tcp_dsack_seen(tp); 1092 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1093 } else if (num_sacks > 1) { 1094 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1095 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1096 1097 if (!after(end_seq_0, end_seq_1) && 1098 !before(start_seq_0, start_seq_1)) { 1099 dup_sack = true; 1100 tcp_dsack_seen(tp); 1101 NET_INC_STATS(sock_net(sk), 1102 LINUX_MIB_TCPDSACKOFORECV); 1103 } 1104 } 1105 1106 /* D-SACK for already forgotten data... Do dumb counting. */ 1107 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1108 !after(end_seq_0, prior_snd_una) && 1109 after(end_seq_0, tp->undo_marker)) 1110 tp->undo_retrans--; 1111 1112 return dup_sack; 1113 } 1114 1115 struct tcp_sacktag_state { 1116 u32 reord; 1117 /* Timestamps for earliest and latest never-retransmitted segment 1118 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1119 * but congestion control should still get an accurate delay signal. 1120 */ 1121 u64 first_sackt; 1122 u64 last_sackt; 1123 struct rate_sample *rate; 1124 int flag; 1125 unsigned int mss_now; 1126 }; 1127 1128 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1129 * the incoming SACK may not exactly match but we can find smaller MSS 1130 * aligned portion of it that matches. Therefore we might need to fragment 1131 * which may fail and creates some hassle (caller must handle error case 1132 * returns). 1133 * 1134 * FIXME: this could be merged to shift decision code 1135 */ 1136 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1137 u32 start_seq, u32 end_seq) 1138 { 1139 int err; 1140 bool in_sack; 1141 unsigned int pkt_len; 1142 unsigned int mss; 1143 1144 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1145 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1146 1147 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1148 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1149 mss = tcp_skb_mss(skb); 1150 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1151 1152 if (!in_sack) { 1153 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1154 if (pkt_len < mss) 1155 pkt_len = mss; 1156 } else { 1157 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1158 if (pkt_len < mss) 1159 return -EINVAL; 1160 } 1161 1162 /* Round if necessary so that SACKs cover only full MSSes 1163 * and/or the remaining small portion (if present) 1164 */ 1165 if (pkt_len > mss) { 1166 unsigned int new_len = (pkt_len / mss) * mss; 1167 if (!in_sack && new_len < pkt_len) 1168 new_len += mss; 1169 pkt_len = new_len; 1170 } 1171 1172 if (pkt_len >= skb->len && !in_sack) 1173 return 0; 1174 1175 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1176 pkt_len, mss, GFP_ATOMIC); 1177 if (err < 0) 1178 return err; 1179 } 1180 1181 return in_sack; 1182 } 1183 1184 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1185 static u8 tcp_sacktag_one(struct sock *sk, 1186 struct tcp_sacktag_state *state, u8 sacked, 1187 u32 start_seq, u32 end_seq, 1188 int dup_sack, int pcount, 1189 u64 xmit_time) 1190 { 1191 struct tcp_sock *tp = tcp_sk(sk); 1192 1193 /* Account D-SACK for retransmitted packet. */ 1194 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1195 if (tp->undo_marker && tp->undo_retrans > 0 && 1196 after(end_seq, tp->undo_marker)) 1197 tp->undo_retrans--; 1198 if ((sacked & TCPCB_SACKED_ACKED) && 1199 before(start_seq, state->reord)) 1200 state->reord = start_seq; 1201 } 1202 1203 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1204 if (!after(end_seq, tp->snd_una)) 1205 return sacked; 1206 1207 if (!(sacked & TCPCB_SACKED_ACKED)) { 1208 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1209 1210 if (sacked & TCPCB_SACKED_RETRANS) { 1211 /* If the segment is not tagged as lost, 1212 * we do not clear RETRANS, believing 1213 * that retransmission is still in flight. 1214 */ 1215 if (sacked & TCPCB_LOST) { 1216 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1217 tp->lost_out -= pcount; 1218 tp->retrans_out -= pcount; 1219 } 1220 } else { 1221 if (!(sacked & TCPCB_RETRANS)) { 1222 /* New sack for not retransmitted frame, 1223 * which was in hole. It is reordering. 1224 */ 1225 if (before(start_seq, 1226 tcp_highest_sack_seq(tp)) && 1227 before(start_seq, state->reord)) 1228 state->reord = start_seq; 1229 1230 if (!after(end_seq, tp->high_seq)) 1231 state->flag |= FLAG_ORIG_SACK_ACKED; 1232 if (state->first_sackt == 0) 1233 state->first_sackt = xmit_time; 1234 state->last_sackt = xmit_time; 1235 } 1236 1237 if (sacked & TCPCB_LOST) { 1238 sacked &= ~TCPCB_LOST; 1239 tp->lost_out -= pcount; 1240 } 1241 } 1242 1243 sacked |= TCPCB_SACKED_ACKED; 1244 state->flag |= FLAG_DATA_SACKED; 1245 tp->sacked_out += pcount; 1246 tp->delivered += pcount; /* Out-of-order packets delivered */ 1247 1248 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1249 if (tp->lost_skb_hint && 1250 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1251 tp->lost_cnt_hint += pcount; 1252 } 1253 1254 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1255 * frames and clear it. undo_retrans is decreased above, L|R frames 1256 * are accounted above as well. 1257 */ 1258 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1259 sacked &= ~TCPCB_SACKED_RETRANS; 1260 tp->retrans_out -= pcount; 1261 } 1262 1263 return sacked; 1264 } 1265 1266 /* Shift newly-SACKed bytes from this skb to the immediately previous 1267 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1268 */ 1269 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1270 struct sk_buff *skb, 1271 struct tcp_sacktag_state *state, 1272 unsigned int pcount, int shifted, int mss, 1273 bool dup_sack) 1274 { 1275 struct tcp_sock *tp = tcp_sk(sk); 1276 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1277 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1278 1279 BUG_ON(!pcount); 1280 1281 /* Adjust counters and hints for the newly sacked sequence 1282 * range but discard the return value since prev is already 1283 * marked. We must tag the range first because the seq 1284 * advancement below implicitly advances 1285 * tcp_highest_sack_seq() when skb is highest_sack. 1286 */ 1287 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1288 start_seq, end_seq, dup_sack, pcount, 1289 tcp_skb_timestamp_us(skb)); 1290 tcp_rate_skb_delivered(sk, skb, state->rate); 1291 1292 if (skb == tp->lost_skb_hint) 1293 tp->lost_cnt_hint += pcount; 1294 1295 TCP_SKB_CB(prev)->end_seq += shifted; 1296 TCP_SKB_CB(skb)->seq += shifted; 1297 1298 tcp_skb_pcount_add(prev, pcount); 1299 BUG_ON(tcp_skb_pcount(skb) < pcount); 1300 tcp_skb_pcount_add(skb, -pcount); 1301 1302 /* When we're adding to gso_segs == 1, gso_size will be zero, 1303 * in theory this shouldn't be necessary but as long as DSACK 1304 * code can come after this skb later on it's better to keep 1305 * setting gso_size to something. 1306 */ 1307 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1308 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1309 1310 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1311 if (tcp_skb_pcount(skb) <= 1) 1312 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1313 1314 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1315 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1316 1317 if (skb->len > 0) { 1318 BUG_ON(!tcp_skb_pcount(skb)); 1319 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1320 return false; 1321 } 1322 1323 /* Whole SKB was eaten :-) */ 1324 1325 if (skb == tp->retransmit_skb_hint) 1326 tp->retransmit_skb_hint = prev; 1327 if (skb == tp->lost_skb_hint) { 1328 tp->lost_skb_hint = prev; 1329 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1330 } 1331 1332 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1333 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1334 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1335 TCP_SKB_CB(prev)->end_seq++; 1336 1337 if (skb == tcp_highest_sack(sk)) 1338 tcp_advance_highest_sack(sk, skb); 1339 1340 tcp_skb_collapse_tstamp(prev, skb); 1341 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1342 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1343 1344 tcp_rtx_queue_unlink_and_free(skb, sk); 1345 1346 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1347 1348 return true; 1349 } 1350 1351 /* I wish gso_size would have a bit more sane initialization than 1352 * something-or-zero which complicates things 1353 */ 1354 static int tcp_skb_seglen(const struct sk_buff *skb) 1355 { 1356 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1357 } 1358 1359 /* Shifting pages past head area doesn't work */ 1360 static int skb_can_shift(const struct sk_buff *skb) 1361 { 1362 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1363 } 1364 1365 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1366 * skb. 1367 */ 1368 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1369 struct tcp_sacktag_state *state, 1370 u32 start_seq, u32 end_seq, 1371 bool dup_sack) 1372 { 1373 struct tcp_sock *tp = tcp_sk(sk); 1374 struct sk_buff *prev; 1375 int mss; 1376 int pcount = 0; 1377 int len; 1378 int in_sack; 1379 1380 /* Normally R but no L won't result in plain S */ 1381 if (!dup_sack && 1382 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1383 goto fallback; 1384 if (!skb_can_shift(skb)) 1385 goto fallback; 1386 /* This frame is about to be dropped (was ACKed). */ 1387 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1388 goto fallback; 1389 1390 /* Can only happen with delayed DSACK + discard craziness */ 1391 prev = skb_rb_prev(skb); 1392 if (!prev) 1393 goto fallback; 1394 1395 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1396 goto fallback; 1397 1398 if (!tcp_skb_can_collapse_to(prev)) 1399 goto fallback; 1400 1401 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1402 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1403 1404 if (in_sack) { 1405 len = skb->len; 1406 pcount = tcp_skb_pcount(skb); 1407 mss = tcp_skb_seglen(skb); 1408 1409 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1410 * drop this restriction as unnecessary 1411 */ 1412 if (mss != tcp_skb_seglen(prev)) 1413 goto fallback; 1414 } else { 1415 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1416 goto noop; 1417 /* CHECKME: This is non-MSS split case only?, this will 1418 * cause skipped skbs due to advancing loop btw, original 1419 * has that feature too 1420 */ 1421 if (tcp_skb_pcount(skb) <= 1) 1422 goto noop; 1423 1424 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1425 if (!in_sack) { 1426 /* TODO: head merge to next could be attempted here 1427 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1428 * though it might not be worth of the additional hassle 1429 * 1430 * ...we can probably just fallback to what was done 1431 * previously. We could try merging non-SACKed ones 1432 * as well but it probably isn't going to buy off 1433 * because later SACKs might again split them, and 1434 * it would make skb timestamp tracking considerably 1435 * harder problem. 1436 */ 1437 goto fallback; 1438 } 1439 1440 len = end_seq - TCP_SKB_CB(skb)->seq; 1441 BUG_ON(len < 0); 1442 BUG_ON(len > skb->len); 1443 1444 /* MSS boundaries should be honoured or else pcount will 1445 * severely break even though it makes things bit trickier. 1446 * Optimize common case to avoid most of the divides 1447 */ 1448 mss = tcp_skb_mss(skb); 1449 1450 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1451 * drop this restriction as unnecessary 1452 */ 1453 if (mss != tcp_skb_seglen(prev)) 1454 goto fallback; 1455 1456 if (len == mss) { 1457 pcount = 1; 1458 } else if (len < mss) { 1459 goto noop; 1460 } else { 1461 pcount = len / mss; 1462 len = pcount * mss; 1463 } 1464 } 1465 1466 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1467 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1468 goto fallback; 1469 1470 if (!skb_shift(prev, skb, len)) 1471 goto fallback; 1472 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1473 goto out; 1474 1475 /* Hole filled allows collapsing with the next as well, this is very 1476 * useful when hole on every nth skb pattern happens 1477 */ 1478 skb = skb_rb_next(prev); 1479 if (!skb) 1480 goto out; 1481 1482 if (!skb_can_shift(skb) || 1483 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1484 (mss != tcp_skb_seglen(skb))) 1485 goto out; 1486 1487 len = skb->len; 1488 if (skb_shift(prev, skb, len)) { 1489 pcount += tcp_skb_pcount(skb); 1490 tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb), 1491 len, mss, 0); 1492 } 1493 1494 out: 1495 return prev; 1496 1497 noop: 1498 return skb; 1499 1500 fallback: 1501 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1502 return NULL; 1503 } 1504 1505 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1506 struct tcp_sack_block *next_dup, 1507 struct tcp_sacktag_state *state, 1508 u32 start_seq, u32 end_seq, 1509 bool dup_sack_in) 1510 { 1511 struct tcp_sock *tp = tcp_sk(sk); 1512 struct sk_buff *tmp; 1513 1514 skb_rbtree_walk_from(skb) { 1515 int in_sack = 0; 1516 bool dup_sack = dup_sack_in; 1517 1518 /* queue is in-order => we can short-circuit the walk early */ 1519 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1520 break; 1521 1522 if (next_dup && 1523 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1524 in_sack = tcp_match_skb_to_sack(sk, skb, 1525 next_dup->start_seq, 1526 next_dup->end_seq); 1527 if (in_sack > 0) 1528 dup_sack = true; 1529 } 1530 1531 /* skb reference here is a bit tricky to get right, since 1532 * shifting can eat and free both this skb and the next, 1533 * so not even _safe variant of the loop is enough. 1534 */ 1535 if (in_sack <= 0) { 1536 tmp = tcp_shift_skb_data(sk, skb, state, 1537 start_seq, end_seq, dup_sack); 1538 if (tmp) { 1539 if (tmp != skb) { 1540 skb = tmp; 1541 continue; 1542 } 1543 1544 in_sack = 0; 1545 } else { 1546 in_sack = tcp_match_skb_to_sack(sk, skb, 1547 start_seq, 1548 end_seq); 1549 } 1550 } 1551 1552 if (unlikely(in_sack < 0)) 1553 break; 1554 1555 if (in_sack) { 1556 TCP_SKB_CB(skb)->sacked = 1557 tcp_sacktag_one(sk, 1558 state, 1559 TCP_SKB_CB(skb)->sacked, 1560 TCP_SKB_CB(skb)->seq, 1561 TCP_SKB_CB(skb)->end_seq, 1562 dup_sack, 1563 tcp_skb_pcount(skb), 1564 tcp_skb_timestamp_us(skb)); 1565 tcp_rate_skb_delivered(sk, skb, state->rate); 1566 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1567 list_del_init(&skb->tcp_tsorted_anchor); 1568 1569 if (!before(TCP_SKB_CB(skb)->seq, 1570 tcp_highest_sack_seq(tp))) 1571 tcp_advance_highest_sack(sk, skb); 1572 } 1573 } 1574 return skb; 1575 } 1576 1577 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1578 { 1579 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1580 struct sk_buff *skb; 1581 1582 while (*p) { 1583 parent = *p; 1584 skb = rb_to_skb(parent); 1585 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1586 p = &parent->rb_left; 1587 continue; 1588 } 1589 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1590 p = &parent->rb_right; 1591 continue; 1592 } 1593 return skb; 1594 } 1595 return NULL; 1596 } 1597 1598 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1599 u32 skip_to_seq) 1600 { 1601 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1602 return skb; 1603 1604 return tcp_sacktag_bsearch(sk, skip_to_seq); 1605 } 1606 1607 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1608 struct sock *sk, 1609 struct tcp_sack_block *next_dup, 1610 struct tcp_sacktag_state *state, 1611 u32 skip_to_seq) 1612 { 1613 if (!next_dup) 1614 return skb; 1615 1616 if (before(next_dup->start_seq, skip_to_seq)) { 1617 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1618 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1619 next_dup->start_seq, next_dup->end_seq, 1620 1); 1621 } 1622 1623 return skb; 1624 } 1625 1626 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1627 { 1628 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1629 } 1630 1631 static int 1632 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1633 u32 prior_snd_una, struct tcp_sacktag_state *state) 1634 { 1635 struct tcp_sock *tp = tcp_sk(sk); 1636 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1637 TCP_SKB_CB(ack_skb)->sacked); 1638 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1639 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1640 struct tcp_sack_block *cache; 1641 struct sk_buff *skb; 1642 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1643 int used_sacks; 1644 bool found_dup_sack = false; 1645 int i, j; 1646 int first_sack_index; 1647 1648 state->flag = 0; 1649 state->reord = tp->snd_nxt; 1650 1651 if (!tp->sacked_out) 1652 tcp_highest_sack_reset(sk); 1653 1654 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1655 num_sacks, prior_snd_una); 1656 if (found_dup_sack) { 1657 state->flag |= FLAG_DSACKING_ACK; 1658 tp->delivered++; /* A spurious retransmission is delivered */ 1659 } 1660 1661 /* Eliminate too old ACKs, but take into 1662 * account more or less fresh ones, they can 1663 * contain valid SACK info. 1664 */ 1665 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1666 return 0; 1667 1668 if (!tp->packets_out) 1669 goto out; 1670 1671 used_sacks = 0; 1672 first_sack_index = 0; 1673 for (i = 0; i < num_sacks; i++) { 1674 bool dup_sack = !i && found_dup_sack; 1675 1676 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1677 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1678 1679 if (!tcp_is_sackblock_valid(tp, dup_sack, 1680 sp[used_sacks].start_seq, 1681 sp[used_sacks].end_seq)) { 1682 int mib_idx; 1683 1684 if (dup_sack) { 1685 if (!tp->undo_marker) 1686 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1687 else 1688 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1689 } else { 1690 /* Don't count olds caused by ACK reordering */ 1691 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1692 !after(sp[used_sacks].end_seq, tp->snd_una)) 1693 continue; 1694 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1695 } 1696 1697 NET_INC_STATS(sock_net(sk), mib_idx); 1698 if (i == 0) 1699 first_sack_index = -1; 1700 continue; 1701 } 1702 1703 /* Ignore very old stuff early */ 1704 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1705 continue; 1706 1707 used_sacks++; 1708 } 1709 1710 /* order SACK blocks to allow in order walk of the retrans queue */ 1711 for (i = used_sacks - 1; i > 0; i--) { 1712 for (j = 0; j < i; j++) { 1713 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1714 swap(sp[j], sp[j + 1]); 1715 1716 /* Track where the first SACK block goes to */ 1717 if (j == first_sack_index) 1718 first_sack_index = j + 1; 1719 } 1720 } 1721 } 1722 1723 state->mss_now = tcp_current_mss(sk); 1724 skb = NULL; 1725 i = 0; 1726 1727 if (!tp->sacked_out) { 1728 /* It's already past, so skip checking against it */ 1729 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1730 } else { 1731 cache = tp->recv_sack_cache; 1732 /* Skip empty blocks in at head of the cache */ 1733 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1734 !cache->end_seq) 1735 cache++; 1736 } 1737 1738 while (i < used_sacks) { 1739 u32 start_seq = sp[i].start_seq; 1740 u32 end_seq = sp[i].end_seq; 1741 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1742 struct tcp_sack_block *next_dup = NULL; 1743 1744 if (found_dup_sack && ((i + 1) == first_sack_index)) 1745 next_dup = &sp[i + 1]; 1746 1747 /* Skip too early cached blocks */ 1748 while (tcp_sack_cache_ok(tp, cache) && 1749 !before(start_seq, cache->end_seq)) 1750 cache++; 1751 1752 /* Can skip some work by looking recv_sack_cache? */ 1753 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1754 after(end_seq, cache->start_seq)) { 1755 1756 /* Head todo? */ 1757 if (before(start_seq, cache->start_seq)) { 1758 skb = tcp_sacktag_skip(skb, sk, start_seq); 1759 skb = tcp_sacktag_walk(skb, sk, next_dup, 1760 state, 1761 start_seq, 1762 cache->start_seq, 1763 dup_sack); 1764 } 1765 1766 /* Rest of the block already fully processed? */ 1767 if (!after(end_seq, cache->end_seq)) 1768 goto advance_sp; 1769 1770 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1771 state, 1772 cache->end_seq); 1773 1774 /* ...tail remains todo... */ 1775 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1776 /* ...but better entrypoint exists! */ 1777 skb = tcp_highest_sack(sk); 1778 if (!skb) 1779 break; 1780 cache++; 1781 goto walk; 1782 } 1783 1784 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 1785 /* Check overlap against next cached too (past this one already) */ 1786 cache++; 1787 continue; 1788 } 1789 1790 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1791 skb = tcp_highest_sack(sk); 1792 if (!skb) 1793 break; 1794 } 1795 skb = tcp_sacktag_skip(skb, sk, start_seq); 1796 1797 walk: 1798 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1799 start_seq, end_seq, dup_sack); 1800 1801 advance_sp: 1802 i++; 1803 } 1804 1805 /* Clear the head of the cache sack blocks so we can skip it next time */ 1806 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1807 tp->recv_sack_cache[i].start_seq = 0; 1808 tp->recv_sack_cache[i].end_seq = 0; 1809 } 1810 for (j = 0; j < used_sacks; j++) 1811 tp->recv_sack_cache[i++] = sp[j]; 1812 1813 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 1814 tcp_check_sack_reordering(sk, state->reord, 0); 1815 1816 tcp_verify_left_out(tp); 1817 out: 1818 1819 #if FASTRETRANS_DEBUG > 0 1820 WARN_ON((int)tp->sacked_out < 0); 1821 WARN_ON((int)tp->lost_out < 0); 1822 WARN_ON((int)tp->retrans_out < 0); 1823 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1824 #endif 1825 return state->flag; 1826 } 1827 1828 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1829 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1830 */ 1831 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1832 { 1833 u32 holes; 1834 1835 holes = max(tp->lost_out, 1U); 1836 holes = min(holes, tp->packets_out); 1837 1838 if ((tp->sacked_out + holes) > tp->packets_out) { 1839 tp->sacked_out = tp->packets_out - holes; 1840 return true; 1841 } 1842 return false; 1843 } 1844 1845 /* If we receive more dupacks than we expected counting segments 1846 * in assumption of absent reordering, interpret this as reordering. 1847 * The only another reason could be bug in receiver TCP. 1848 */ 1849 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1850 { 1851 struct tcp_sock *tp = tcp_sk(sk); 1852 1853 if (!tcp_limit_reno_sacked(tp)) 1854 return; 1855 1856 tp->reordering = min_t(u32, tp->packets_out + addend, 1857 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 1858 tp->reord_seen++; 1859 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 1860 } 1861 1862 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1863 1864 static void tcp_add_reno_sack(struct sock *sk, int num_dupack) 1865 { 1866 if (num_dupack) { 1867 struct tcp_sock *tp = tcp_sk(sk); 1868 u32 prior_sacked = tp->sacked_out; 1869 s32 delivered; 1870 1871 tp->sacked_out += num_dupack; 1872 tcp_check_reno_reordering(sk, 0); 1873 delivered = tp->sacked_out - prior_sacked; 1874 if (delivered > 0) 1875 tp->delivered += delivered; 1876 tcp_verify_left_out(tp); 1877 } 1878 } 1879 1880 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1881 1882 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1883 { 1884 struct tcp_sock *tp = tcp_sk(sk); 1885 1886 if (acked > 0) { 1887 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1888 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1889 if (acked - 1 >= tp->sacked_out) 1890 tp->sacked_out = 0; 1891 else 1892 tp->sacked_out -= acked - 1; 1893 } 1894 tcp_check_reno_reordering(sk, acked); 1895 tcp_verify_left_out(tp); 1896 } 1897 1898 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1899 { 1900 tp->sacked_out = 0; 1901 } 1902 1903 void tcp_clear_retrans(struct tcp_sock *tp) 1904 { 1905 tp->retrans_out = 0; 1906 tp->lost_out = 0; 1907 tp->undo_marker = 0; 1908 tp->undo_retrans = -1; 1909 tp->sacked_out = 0; 1910 } 1911 1912 static inline void tcp_init_undo(struct tcp_sock *tp) 1913 { 1914 tp->undo_marker = tp->snd_una; 1915 /* Retransmission still in flight may cause DSACKs later. */ 1916 tp->undo_retrans = tp->retrans_out ? : -1; 1917 } 1918 1919 static bool tcp_is_rack(const struct sock *sk) 1920 { 1921 return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION; 1922 } 1923 1924 /* If we detect SACK reneging, forget all SACK information 1925 * and reset tags completely, otherwise preserve SACKs. If receiver 1926 * dropped its ofo queue, we will know this due to reneging detection. 1927 */ 1928 static void tcp_timeout_mark_lost(struct sock *sk) 1929 { 1930 struct tcp_sock *tp = tcp_sk(sk); 1931 struct sk_buff *skb, *head; 1932 bool is_reneg; /* is receiver reneging on SACKs? */ 1933 1934 head = tcp_rtx_queue_head(sk); 1935 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 1936 if (is_reneg) { 1937 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1938 tp->sacked_out = 0; 1939 /* Mark SACK reneging until we recover from this loss event. */ 1940 tp->is_sack_reneg = 1; 1941 } else if (tcp_is_reno(tp)) { 1942 tcp_reset_reno_sack(tp); 1943 } 1944 1945 skb = head; 1946 skb_rbtree_walk_from(skb) { 1947 if (is_reneg) 1948 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1949 else if (tcp_is_rack(sk) && skb != head && 1950 tcp_rack_skb_timeout(tp, skb, 0) > 0) 1951 continue; /* Don't mark recently sent ones lost yet */ 1952 tcp_mark_skb_lost(sk, skb); 1953 } 1954 tcp_verify_left_out(tp); 1955 tcp_clear_all_retrans_hints(tp); 1956 } 1957 1958 /* Enter Loss state. */ 1959 void tcp_enter_loss(struct sock *sk) 1960 { 1961 const struct inet_connection_sock *icsk = inet_csk(sk); 1962 struct tcp_sock *tp = tcp_sk(sk); 1963 struct net *net = sock_net(sk); 1964 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1965 1966 tcp_timeout_mark_lost(sk); 1967 1968 /* Reduce ssthresh if it has not yet been made inside this window. */ 1969 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1970 !after(tp->high_seq, tp->snd_una) || 1971 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1972 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1973 tp->prior_cwnd = tp->snd_cwnd; 1974 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1975 tcp_ca_event(sk, CA_EVENT_LOSS); 1976 tcp_init_undo(tp); 1977 } 1978 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1; 1979 tp->snd_cwnd_cnt = 0; 1980 tp->snd_cwnd_stamp = tcp_jiffies32; 1981 1982 /* Timeout in disordered state after receiving substantial DUPACKs 1983 * suggests that the degree of reordering is over-estimated. 1984 */ 1985 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1986 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 1987 tp->reordering = min_t(unsigned int, tp->reordering, 1988 net->ipv4.sysctl_tcp_reordering); 1989 tcp_set_ca_state(sk, TCP_CA_Loss); 1990 tp->high_seq = tp->snd_nxt; 1991 tcp_ecn_queue_cwr(tp); 1992 1993 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 1994 * loss recovery is underway except recurring timeout(s) on 1995 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 1996 */ 1997 tp->frto = net->ipv4.sysctl_tcp_frto && 1998 (new_recovery || icsk->icsk_retransmits) && 1999 !inet_csk(sk)->icsk_mtup.probe_size; 2000 } 2001 2002 /* If ACK arrived pointing to a remembered SACK, it means that our 2003 * remembered SACKs do not reflect real state of receiver i.e. 2004 * receiver _host_ is heavily congested (or buggy). 2005 * 2006 * To avoid big spurious retransmission bursts due to transient SACK 2007 * scoreboard oddities that look like reneging, we give the receiver a 2008 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2009 * restore sanity to the SACK scoreboard. If the apparent reneging 2010 * persists until this RTO then we'll clear the SACK scoreboard. 2011 */ 2012 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2013 { 2014 if (flag & FLAG_SACK_RENEGING) { 2015 struct tcp_sock *tp = tcp_sk(sk); 2016 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2017 msecs_to_jiffies(10)); 2018 2019 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2020 delay, TCP_RTO_MAX); 2021 return true; 2022 } 2023 return false; 2024 } 2025 2026 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2027 * counter when SACK is enabled (without SACK, sacked_out is used for 2028 * that purpose). 2029 * 2030 * With reordering, holes may still be in flight, so RFC3517 recovery 2031 * uses pure sacked_out (total number of SACKed segments) even though 2032 * it violates the RFC that uses duplicate ACKs, often these are equal 2033 * but when e.g. out-of-window ACKs or packet duplication occurs, 2034 * they differ. Since neither occurs due to loss, TCP should really 2035 * ignore them. 2036 */ 2037 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2038 { 2039 return tp->sacked_out + 1; 2040 } 2041 2042 /* Linux NewReno/SACK/ECN state machine. 2043 * -------------------------------------- 2044 * 2045 * "Open" Normal state, no dubious events, fast path. 2046 * "Disorder" In all the respects it is "Open", 2047 * but requires a bit more attention. It is entered when 2048 * we see some SACKs or dupacks. It is split of "Open" 2049 * mainly to move some processing from fast path to slow one. 2050 * "CWR" CWND was reduced due to some Congestion Notification event. 2051 * It can be ECN, ICMP source quench, local device congestion. 2052 * "Recovery" CWND was reduced, we are fast-retransmitting. 2053 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2054 * 2055 * tcp_fastretrans_alert() is entered: 2056 * - each incoming ACK, if state is not "Open" 2057 * - when arrived ACK is unusual, namely: 2058 * * SACK 2059 * * Duplicate ACK. 2060 * * ECN ECE. 2061 * 2062 * Counting packets in flight is pretty simple. 2063 * 2064 * in_flight = packets_out - left_out + retrans_out 2065 * 2066 * packets_out is SND.NXT-SND.UNA counted in packets. 2067 * 2068 * retrans_out is number of retransmitted segments. 2069 * 2070 * left_out is number of segments left network, but not ACKed yet. 2071 * 2072 * left_out = sacked_out + lost_out 2073 * 2074 * sacked_out: Packets, which arrived to receiver out of order 2075 * and hence not ACKed. With SACKs this number is simply 2076 * amount of SACKed data. Even without SACKs 2077 * it is easy to give pretty reliable estimate of this number, 2078 * counting duplicate ACKs. 2079 * 2080 * lost_out: Packets lost by network. TCP has no explicit 2081 * "loss notification" feedback from network (for now). 2082 * It means that this number can be only _guessed_. 2083 * Actually, it is the heuristics to predict lossage that 2084 * distinguishes different algorithms. 2085 * 2086 * F.e. after RTO, when all the queue is considered as lost, 2087 * lost_out = packets_out and in_flight = retrans_out. 2088 * 2089 * Essentially, we have now a few algorithms detecting 2090 * lost packets. 2091 * 2092 * If the receiver supports SACK: 2093 * 2094 * RFC6675/3517: It is the conventional algorithm. A packet is 2095 * considered lost if the number of higher sequence packets 2096 * SACKed is greater than or equal the DUPACK thoreshold 2097 * (reordering). This is implemented in tcp_mark_head_lost and 2098 * tcp_update_scoreboard. 2099 * 2100 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2101 * (2017-) that checks timing instead of counting DUPACKs. 2102 * Essentially a packet is considered lost if it's not S/ACKed 2103 * after RTT + reordering_window, where both metrics are 2104 * dynamically measured and adjusted. This is implemented in 2105 * tcp_rack_mark_lost. 2106 * 2107 * If the receiver does not support SACK: 2108 * 2109 * NewReno (RFC6582): in Recovery we assume that one segment 2110 * is lost (classic Reno). While we are in Recovery and 2111 * a partial ACK arrives, we assume that one more packet 2112 * is lost (NewReno). This heuristics are the same in NewReno 2113 * and SACK. 2114 * 2115 * Really tricky (and requiring careful tuning) part of algorithm 2116 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2117 * The first determines the moment _when_ we should reduce CWND and, 2118 * hence, slow down forward transmission. In fact, it determines the moment 2119 * when we decide that hole is caused by loss, rather than by a reorder. 2120 * 2121 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2122 * holes, caused by lost packets. 2123 * 2124 * And the most logically complicated part of algorithm is undo 2125 * heuristics. We detect false retransmits due to both too early 2126 * fast retransmit (reordering) and underestimated RTO, analyzing 2127 * timestamps and D-SACKs. When we detect that some segments were 2128 * retransmitted by mistake and CWND reduction was wrong, we undo 2129 * window reduction and abort recovery phase. This logic is hidden 2130 * inside several functions named tcp_try_undo_<something>. 2131 */ 2132 2133 /* This function decides, when we should leave Disordered state 2134 * and enter Recovery phase, reducing congestion window. 2135 * 2136 * Main question: may we further continue forward transmission 2137 * with the same cwnd? 2138 */ 2139 static bool tcp_time_to_recover(struct sock *sk, int flag) 2140 { 2141 struct tcp_sock *tp = tcp_sk(sk); 2142 2143 /* Trick#1: The loss is proven. */ 2144 if (tp->lost_out) 2145 return true; 2146 2147 /* Not-A-Trick#2 : Classic rule... */ 2148 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2149 return true; 2150 2151 return false; 2152 } 2153 2154 /* Detect loss in event "A" above by marking head of queue up as lost. 2155 * For non-SACK(Reno) senders, the first "packets" number of segments 2156 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2157 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2158 * the maximum SACKed segments to pass before reaching this limit. 2159 */ 2160 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2161 { 2162 struct tcp_sock *tp = tcp_sk(sk); 2163 struct sk_buff *skb; 2164 int cnt, oldcnt, lost; 2165 unsigned int mss; 2166 /* Use SACK to deduce losses of new sequences sent during recovery */ 2167 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2168 2169 WARN_ON(packets > tp->packets_out); 2170 skb = tp->lost_skb_hint; 2171 if (skb) { 2172 /* Head already handled? */ 2173 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2174 return; 2175 cnt = tp->lost_cnt_hint; 2176 } else { 2177 skb = tcp_rtx_queue_head(sk); 2178 cnt = 0; 2179 } 2180 2181 skb_rbtree_walk_from(skb) { 2182 /* TODO: do this better */ 2183 /* this is not the most efficient way to do this... */ 2184 tp->lost_skb_hint = skb; 2185 tp->lost_cnt_hint = cnt; 2186 2187 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2188 break; 2189 2190 oldcnt = cnt; 2191 if (tcp_is_reno(tp) || 2192 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2193 cnt += tcp_skb_pcount(skb); 2194 2195 if (cnt > packets) { 2196 if (tcp_is_sack(tp) || 2197 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2198 (oldcnt >= packets)) 2199 break; 2200 2201 mss = tcp_skb_mss(skb); 2202 /* If needed, chop off the prefix to mark as lost. */ 2203 lost = (packets - oldcnt) * mss; 2204 if (lost < skb->len && 2205 tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2206 lost, mss, GFP_ATOMIC) < 0) 2207 break; 2208 cnt = packets; 2209 } 2210 2211 tcp_skb_mark_lost(tp, skb); 2212 2213 if (mark_head) 2214 break; 2215 } 2216 tcp_verify_left_out(tp); 2217 } 2218 2219 /* Account newly detected lost packet(s) */ 2220 2221 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2222 { 2223 struct tcp_sock *tp = tcp_sk(sk); 2224 2225 if (tcp_is_sack(tp)) { 2226 int sacked_upto = tp->sacked_out - tp->reordering; 2227 if (sacked_upto >= 0) 2228 tcp_mark_head_lost(sk, sacked_upto, 0); 2229 else if (fast_rexmit) 2230 tcp_mark_head_lost(sk, 1, 1); 2231 } 2232 } 2233 2234 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2235 { 2236 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2237 before(tp->rx_opt.rcv_tsecr, when); 2238 } 2239 2240 /* skb is spurious retransmitted if the returned timestamp echo 2241 * reply is prior to the skb transmission time 2242 */ 2243 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2244 const struct sk_buff *skb) 2245 { 2246 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2247 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2248 } 2249 2250 /* Nothing was retransmitted or returned timestamp is less 2251 * than timestamp of the first retransmission. 2252 */ 2253 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2254 { 2255 return !tp->retrans_stamp || 2256 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2257 } 2258 2259 /* Undo procedures. */ 2260 2261 /* We can clear retrans_stamp when there are no retransmissions in the 2262 * window. It would seem that it is trivially available for us in 2263 * tp->retrans_out, however, that kind of assumptions doesn't consider 2264 * what will happen if errors occur when sending retransmission for the 2265 * second time. ...It could the that such segment has only 2266 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2267 * the head skb is enough except for some reneging corner cases that 2268 * are not worth the effort. 2269 * 2270 * Main reason for all this complexity is the fact that connection dying 2271 * time now depends on the validity of the retrans_stamp, in particular, 2272 * that successive retransmissions of a segment must not advance 2273 * retrans_stamp under any conditions. 2274 */ 2275 static bool tcp_any_retrans_done(const struct sock *sk) 2276 { 2277 const struct tcp_sock *tp = tcp_sk(sk); 2278 struct sk_buff *skb; 2279 2280 if (tp->retrans_out) 2281 return true; 2282 2283 skb = tcp_rtx_queue_head(sk); 2284 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2285 return true; 2286 2287 return false; 2288 } 2289 2290 static void DBGUNDO(struct sock *sk, const char *msg) 2291 { 2292 #if FASTRETRANS_DEBUG > 1 2293 struct tcp_sock *tp = tcp_sk(sk); 2294 struct inet_sock *inet = inet_sk(sk); 2295 2296 if (sk->sk_family == AF_INET) { 2297 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2298 msg, 2299 &inet->inet_daddr, ntohs(inet->inet_dport), 2300 tp->snd_cwnd, tcp_left_out(tp), 2301 tp->snd_ssthresh, tp->prior_ssthresh, 2302 tp->packets_out); 2303 } 2304 #if IS_ENABLED(CONFIG_IPV6) 2305 else if (sk->sk_family == AF_INET6) { 2306 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2307 msg, 2308 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2309 tp->snd_cwnd, tcp_left_out(tp), 2310 tp->snd_ssthresh, tp->prior_ssthresh, 2311 tp->packets_out); 2312 } 2313 #endif 2314 #endif 2315 } 2316 2317 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2318 { 2319 struct tcp_sock *tp = tcp_sk(sk); 2320 2321 if (unmark_loss) { 2322 struct sk_buff *skb; 2323 2324 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2325 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2326 } 2327 tp->lost_out = 0; 2328 tcp_clear_all_retrans_hints(tp); 2329 } 2330 2331 if (tp->prior_ssthresh) { 2332 const struct inet_connection_sock *icsk = inet_csk(sk); 2333 2334 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2335 2336 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2337 tp->snd_ssthresh = tp->prior_ssthresh; 2338 tcp_ecn_withdraw_cwr(tp); 2339 } 2340 } 2341 tp->snd_cwnd_stamp = tcp_jiffies32; 2342 tp->undo_marker = 0; 2343 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2344 } 2345 2346 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2347 { 2348 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2349 } 2350 2351 /* People celebrate: "We love our President!" */ 2352 static bool tcp_try_undo_recovery(struct sock *sk) 2353 { 2354 struct tcp_sock *tp = tcp_sk(sk); 2355 2356 if (tcp_may_undo(tp)) { 2357 int mib_idx; 2358 2359 /* Happy end! We did not retransmit anything 2360 * or our original transmission succeeded. 2361 */ 2362 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2363 tcp_undo_cwnd_reduction(sk, false); 2364 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2365 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2366 else 2367 mib_idx = LINUX_MIB_TCPFULLUNDO; 2368 2369 NET_INC_STATS(sock_net(sk), mib_idx); 2370 } else if (tp->rack.reo_wnd_persist) { 2371 tp->rack.reo_wnd_persist--; 2372 } 2373 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2374 /* Hold old state until something *above* high_seq 2375 * is ACKed. For Reno it is MUST to prevent false 2376 * fast retransmits (RFC2582). SACK TCP is safe. */ 2377 if (!tcp_any_retrans_done(sk)) 2378 tp->retrans_stamp = 0; 2379 return true; 2380 } 2381 tcp_set_ca_state(sk, TCP_CA_Open); 2382 tp->is_sack_reneg = 0; 2383 return false; 2384 } 2385 2386 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2387 static bool tcp_try_undo_dsack(struct sock *sk) 2388 { 2389 struct tcp_sock *tp = tcp_sk(sk); 2390 2391 if (tp->undo_marker && !tp->undo_retrans) { 2392 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2393 tp->rack.reo_wnd_persist + 1); 2394 DBGUNDO(sk, "D-SACK"); 2395 tcp_undo_cwnd_reduction(sk, false); 2396 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2397 return true; 2398 } 2399 return false; 2400 } 2401 2402 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2403 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2404 { 2405 struct tcp_sock *tp = tcp_sk(sk); 2406 2407 if (frto_undo || tcp_may_undo(tp)) { 2408 tcp_undo_cwnd_reduction(sk, true); 2409 2410 DBGUNDO(sk, "partial loss"); 2411 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2412 if (frto_undo) 2413 NET_INC_STATS(sock_net(sk), 2414 LINUX_MIB_TCPSPURIOUSRTOS); 2415 inet_csk(sk)->icsk_retransmits = 0; 2416 if (frto_undo || tcp_is_sack(tp)) { 2417 tcp_set_ca_state(sk, TCP_CA_Open); 2418 tp->is_sack_reneg = 0; 2419 } 2420 return true; 2421 } 2422 return false; 2423 } 2424 2425 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2426 * It computes the number of packets to send (sndcnt) based on packets newly 2427 * delivered: 2428 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2429 * cwnd reductions across a full RTT. 2430 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2431 * But when the retransmits are acked without further losses, PRR 2432 * slow starts cwnd up to ssthresh to speed up the recovery. 2433 */ 2434 static void tcp_init_cwnd_reduction(struct sock *sk) 2435 { 2436 struct tcp_sock *tp = tcp_sk(sk); 2437 2438 tp->high_seq = tp->snd_nxt; 2439 tp->tlp_high_seq = 0; 2440 tp->snd_cwnd_cnt = 0; 2441 tp->prior_cwnd = tp->snd_cwnd; 2442 tp->prr_delivered = 0; 2443 tp->prr_out = 0; 2444 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2445 tcp_ecn_queue_cwr(tp); 2446 } 2447 2448 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2449 { 2450 struct tcp_sock *tp = tcp_sk(sk); 2451 int sndcnt = 0; 2452 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2453 2454 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2455 return; 2456 2457 tp->prr_delivered += newly_acked_sacked; 2458 if (delta < 0) { 2459 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2460 tp->prior_cwnd - 1; 2461 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2462 } else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) == 2463 FLAG_RETRANS_DATA_ACKED) { 2464 sndcnt = min_t(int, delta, 2465 max_t(int, tp->prr_delivered - tp->prr_out, 2466 newly_acked_sacked) + 1); 2467 } else { 2468 sndcnt = min(delta, newly_acked_sacked); 2469 } 2470 /* Force a fast retransmit upon entering fast recovery */ 2471 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2472 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2473 } 2474 2475 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2476 { 2477 struct tcp_sock *tp = tcp_sk(sk); 2478 2479 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2480 return; 2481 2482 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2483 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2484 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2485 tp->snd_cwnd = tp->snd_ssthresh; 2486 tp->snd_cwnd_stamp = tcp_jiffies32; 2487 } 2488 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2489 } 2490 2491 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2492 void tcp_enter_cwr(struct sock *sk) 2493 { 2494 struct tcp_sock *tp = tcp_sk(sk); 2495 2496 tp->prior_ssthresh = 0; 2497 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2498 tp->undo_marker = 0; 2499 tcp_init_cwnd_reduction(sk); 2500 tcp_set_ca_state(sk, TCP_CA_CWR); 2501 } 2502 } 2503 EXPORT_SYMBOL(tcp_enter_cwr); 2504 2505 static void tcp_try_keep_open(struct sock *sk) 2506 { 2507 struct tcp_sock *tp = tcp_sk(sk); 2508 int state = TCP_CA_Open; 2509 2510 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2511 state = TCP_CA_Disorder; 2512 2513 if (inet_csk(sk)->icsk_ca_state != state) { 2514 tcp_set_ca_state(sk, state); 2515 tp->high_seq = tp->snd_nxt; 2516 } 2517 } 2518 2519 static void tcp_try_to_open(struct sock *sk, int flag) 2520 { 2521 struct tcp_sock *tp = tcp_sk(sk); 2522 2523 tcp_verify_left_out(tp); 2524 2525 if (!tcp_any_retrans_done(sk)) 2526 tp->retrans_stamp = 0; 2527 2528 if (flag & FLAG_ECE) 2529 tcp_enter_cwr(sk); 2530 2531 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2532 tcp_try_keep_open(sk); 2533 } 2534 } 2535 2536 static void tcp_mtup_probe_failed(struct sock *sk) 2537 { 2538 struct inet_connection_sock *icsk = inet_csk(sk); 2539 2540 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2541 icsk->icsk_mtup.probe_size = 0; 2542 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2543 } 2544 2545 static void tcp_mtup_probe_success(struct sock *sk) 2546 { 2547 struct tcp_sock *tp = tcp_sk(sk); 2548 struct inet_connection_sock *icsk = inet_csk(sk); 2549 2550 /* FIXME: breaks with very large cwnd */ 2551 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2552 tp->snd_cwnd = tp->snd_cwnd * 2553 tcp_mss_to_mtu(sk, tp->mss_cache) / 2554 icsk->icsk_mtup.probe_size; 2555 tp->snd_cwnd_cnt = 0; 2556 tp->snd_cwnd_stamp = tcp_jiffies32; 2557 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2558 2559 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2560 icsk->icsk_mtup.probe_size = 0; 2561 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2562 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2563 } 2564 2565 /* Do a simple retransmit without using the backoff mechanisms in 2566 * tcp_timer. This is used for path mtu discovery. 2567 * The socket is already locked here. 2568 */ 2569 void tcp_simple_retransmit(struct sock *sk) 2570 { 2571 const struct inet_connection_sock *icsk = inet_csk(sk); 2572 struct tcp_sock *tp = tcp_sk(sk); 2573 struct sk_buff *skb; 2574 unsigned int mss = tcp_current_mss(sk); 2575 2576 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2577 if (tcp_skb_seglen(skb) > mss && 2578 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2579 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2580 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2581 tp->retrans_out -= tcp_skb_pcount(skb); 2582 } 2583 tcp_skb_mark_lost_uncond_verify(tp, skb); 2584 } 2585 } 2586 2587 tcp_clear_retrans_hints_partial(tp); 2588 2589 if (!tp->lost_out) 2590 return; 2591 2592 if (tcp_is_reno(tp)) 2593 tcp_limit_reno_sacked(tp); 2594 2595 tcp_verify_left_out(tp); 2596 2597 /* Don't muck with the congestion window here. 2598 * Reason is that we do not increase amount of _data_ 2599 * in network, but units changed and effective 2600 * cwnd/ssthresh really reduced now. 2601 */ 2602 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2603 tp->high_seq = tp->snd_nxt; 2604 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2605 tp->prior_ssthresh = 0; 2606 tp->undo_marker = 0; 2607 tcp_set_ca_state(sk, TCP_CA_Loss); 2608 } 2609 tcp_xmit_retransmit_queue(sk); 2610 } 2611 EXPORT_SYMBOL(tcp_simple_retransmit); 2612 2613 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2614 { 2615 struct tcp_sock *tp = tcp_sk(sk); 2616 int mib_idx; 2617 2618 if (tcp_is_reno(tp)) 2619 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2620 else 2621 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2622 2623 NET_INC_STATS(sock_net(sk), mib_idx); 2624 2625 tp->prior_ssthresh = 0; 2626 tcp_init_undo(tp); 2627 2628 if (!tcp_in_cwnd_reduction(sk)) { 2629 if (!ece_ack) 2630 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2631 tcp_init_cwnd_reduction(sk); 2632 } 2633 tcp_set_ca_state(sk, TCP_CA_Recovery); 2634 } 2635 2636 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2637 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2638 */ 2639 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2640 int *rexmit) 2641 { 2642 struct tcp_sock *tp = tcp_sk(sk); 2643 bool recovered = !before(tp->snd_una, tp->high_seq); 2644 2645 if ((flag & FLAG_SND_UNA_ADVANCED) && 2646 tcp_try_undo_loss(sk, false)) 2647 return; 2648 2649 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2650 /* Step 3.b. A timeout is spurious if not all data are 2651 * lost, i.e., never-retransmitted data are (s)acked. 2652 */ 2653 if ((flag & FLAG_ORIG_SACK_ACKED) && 2654 tcp_try_undo_loss(sk, true)) 2655 return; 2656 2657 if (after(tp->snd_nxt, tp->high_seq)) { 2658 if (flag & FLAG_DATA_SACKED || num_dupack) 2659 tp->frto = 0; /* Step 3.a. loss was real */ 2660 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2661 tp->high_seq = tp->snd_nxt; 2662 /* Step 2.b. Try send new data (but deferred until cwnd 2663 * is updated in tcp_ack()). Otherwise fall back to 2664 * the conventional recovery. 2665 */ 2666 if (!tcp_write_queue_empty(sk) && 2667 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2668 *rexmit = REXMIT_NEW; 2669 return; 2670 } 2671 tp->frto = 0; 2672 } 2673 } 2674 2675 if (recovered) { 2676 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2677 tcp_try_undo_recovery(sk); 2678 return; 2679 } 2680 if (tcp_is_reno(tp)) { 2681 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2682 * delivered. Lower inflight to clock out (re)tranmissions. 2683 */ 2684 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2685 tcp_add_reno_sack(sk, num_dupack); 2686 else if (flag & FLAG_SND_UNA_ADVANCED) 2687 tcp_reset_reno_sack(tp); 2688 } 2689 *rexmit = REXMIT_LOST; 2690 } 2691 2692 /* Undo during fast recovery after partial ACK. */ 2693 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una) 2694 { 2695 struct tcp_sock *tp = tcp_sk(sk); 2696 2697 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2698 /* Plain luck! Hole if filled with delayed 2699 * packet, rather than with a retransmit. Check reordering. 2700 */ 2701 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2702 2703 /* We are getting evidence that the reordering degree is higher 2704 * than we realized. If there are no retransmits out then we 2705 * can undo. Otherwise we clock out new packets but do not 2706 * mark more packets lost or retransmit more. 2707 */ 2708 if (tp->retrans_out) 2709 return true; 2710 2711 if (!tcp_any_retrans_done(sk)) 2712 tp->retrans_stamp = 0; 2713 2714 DBGUNDO(sk, "partial recovery"); 2715 tcp_undo_cwnd_reduction(sk, true); 2716 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2717 tcp_try_keep_open(sk); 2718 return true; 2719 } 2720 return false; 2721 } 2722 2723 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2724 { 2725 struct tcp_sock *tp = tcp_sk(sk); 2726 2727 if (tcp_rtx_queue_empty(sk)) 2728 return; 2729 2730 if (unlikely(tcp_is_reno(tp))) { 2731 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2732 } else if (tcp_is_rack(sk)) { 2733 u32 prior_retrans = tp->retrans_out; 2734 2735 tcp_rack_mark_lost(sk); 2736 if (prior_retrans > tp->retrans_out) 2737 *ack_flag |= FLAG_LOST_RETRANS; 2738 } 2739 } 2740 2741 static bool tcp_force_fast_retransmit(struct sock *sk) 2742 { 2743 struct tcp_sock *tp = tcp_sk(sk); 2744 2745 return after(tcp_highest_sack_seq(tp), 2746 tp->snd_una + tp->reordering * tp->mss_cache); 2747 } 2748 2749 /* Process an event, which can update packets-in-flight not trivially. 2750 * Main goal of this function is to calculate new estimate for left_out, 2751 * taking into account both packets sitting in receiver's buffer and 2752 * packets lost by network. 2753 * 2754 * Besides that it updates the congestion state when packet loss or ECN 2755 * is detected. But it does not reduce the cwnd, it is done by the 2756 * congestion control later. 2757 * 2758 * It does _not_ decide what to send, it is made in function 2759 * tcp_xmit_retransmit_queue(). 2760 */ 2761 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2762 int num_dupack, int *ack_flag, int *rexmit) 2763 { 2764 struct inet_connection_sock *icsk = inet_csk(sk); 2765 struct tcp_sock *tp = tcp_sk(sk); 2766 int fast_rexmit = 0, flag = *ack_flag; 2767 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && 2768 tcp_force_fast_retransmit(sk)); 2769 2770 if (!tp->packets_out && tp->sacked_out) 2771 tp->sacked_out = 0; 2772 2773 /* Now state machine starts. 2774 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2775 if (flag & FLAG_ECE) 2776 tp->prior_ssthresh = 0; 2777 2778 /* B. In all the states check for reneging SACKs. */ 2779 if (tcp_check_sack_reneging(sk, flag)) 2780 return; 2781 2782 /* C. Check consistency of the current state. */ 2783 tcp_verify_left_out(tp); 2784 2785 /* D. Check state exit conditions. State can be terminated 2786 * when high_seq is ACKed. */ 2787 if (icsk->icsk_ca_state == TCP_CA_Open) { 2788 WARN_ON(tp->retrans_out != 0); 2789 tp->retrans_stamp = 0; 2790 } else if (!before(tp->snd_una, tp->high_seq)) { 2791 switch (icsk->icsk_ca_state) { 2792 case TCP_CA_CWR: 2793 /* CWR is to be held something *above* high_seq 2794 * is ACKed for CWR bit to reach receiver. */ 2795 if (tp->snd_una != tp->high_seq) { 2796 tcp_end_cwnd_reduction(sk); 2797 tcp_set_ca_state(sk, TCP_CA_Open); 2798 } 2799 break; 2800 2801 case TCP_CA_Recovery: 2802 if (tcp_is_reno(tp)) 2803 tcp_reset_reno_sack(tp); 2804 if (tcp_try_undo_recovery(sk)) 2805 return; 2806 tcp_end_cwnd_reduction(sk); 2807 break; 2808 } 2809 } 2810 2811 /* E. Process state. */ 2812 switch (icsk->icsk_ca_state) { 2813 case TCP_CA_Recovery: 2814 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2815 if (tcp_is_reno(tp)) 2816 tcp_add_reno_sack(sk, num_dupack); 2817 } else { 2818 if (tcp_try_undo_partial(sk, prior_snd_una)) 2819 return; 2820 /* Partial ACK arrived. Force fast retransmit. */ 2821 do_lost = tcp_is_reno(tp) || 2822 tcp_force_fast_retransmit(sk); 2823 } 2824 if (tcp_try_undo_dsack(sk)) { 2825 tcp_try_keep_open(sk); 2826 return; 2827 } 2828 tcp_identify_packet_loss(sk, ack_flag); 2829 break; 2830 case TCP_CA_Loss: 2831 tcp_process_loss(sk, flag, num_dupack, rexmit); 2832 tcp_identify_packet_loss(sk, ack_flag); 2833 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2834 (*ack_flag & FLAG_LOST_RETRANS))) 2835 return; 2836 /* Change state if cwnd is undone or retransmits are lost */ 2837 /* fall through */ 2838 default: 2839 if (tcp_is_reno(tp)) { 2840 if (flag & FLAG_SND_UNA_ADVANCED) 2841 tcp_reset_reno_sack(tp); 2842 tcp_add_reno_sack(sk, num_dupack); 2843 } 2844 2845 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2846 tcp_try_undo_dsack(sk); 2847 2848 tcp_identify_packet_loss(sk, ack_flag); 2849 if (!tcp_time_to_recover(sk, flag)) { 2850 tcp_try_to_open(sk, flag); 2851 return; 2852 } 2853 2854 /* MTU probe failure: don't reduce cwnd */ 2855 if (icsk->icsk_ca_state < TCP_CA_CWR && 2856 icsk->icsk_mtup.probe_size && 2857 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2858 tcp_mtup_probe_failed(sk); 2859 /* Restores the reduction we did in tcp_mtup_probe() */ 2860 tp->snd_cwnd++; 2861 tcp_simple_retransmit(sk); 2862 return; 2863 } 2864 2865 /* Otherwise enter Recovery state */ 2866 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2867 fast_rexmit = 1; 2868 } 2869 2870 if (!tcp_is_rack(sk) && do_lost) 2871 tcp_update_scoreboard(sk, fast_rexmit); 2872 *rexmit = REXMIT_LOST; 2873 } 2874 2875 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 2876 { 2877 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ; 2878 struct tcp_sock *tp = tcp_sk(sk); 2879 2880 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 2881 /* If the remote keeps returning delayed ACKs, eventually 2882 * the min filter would pick it up and overestimate the 2883 * prop. delay when it expires. Skip suspected delayed ACKs. 2884 */ 2885 return; 2886 } 2887 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 2888 rtt_us ? : jiffies_to_usecs(1)); 2889 } 2890 2891 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2892 long seq_rtt_us, long sack_rtt_us, 2893 long ca_rtt_us, struct rate_sample *rs) 2894 { 2895 const struct tcp_sock *tp = tcp_sk(sk); 2896 2897 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2898 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2899 * Karn's algorithm forbids taking RTT if some retransmitted data 2900 * is acked (RFC6298). 2901 */ 2902 if (seq_rtt_us < 0) 2903 seq_rtt_us = sack_rtt_us; 2904 2905 /* RTTM Rule: A TSecr value received in a segment is used to 2906 * update the averaged RTT measurement only if the segment 2907 * acknowledges some new data, i.e., only if it advances the 2908 * left edge of the send window. 2909 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2910 */ 2911 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2912 flag & FLAG_ACKED) { 2913 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 2914 2915 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 2916 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 2917 ca_rtt_us = seq_rtt_us; 2918 } 2919 } 2920 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 2921 if (seq_rtt_us < 0) 2922 return false; 2923 2924 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2925 * always taken together with ACK, SACK, or TS-opts. Any negative 2926 * values will be skipped with the seq_rtt_us < 0 check above. 2927 */ 2928 tcp_update_rtt_min(sk, ca_rtt_us, flag); 2929 tcp_rtt_estimator(sk, seq_rtt_us); 2930 tcp_set_rto(sk); 2931 2932 /* RFC6298: only reset backoff on valid RTT measurement. */ 2933 inet_csk(sk)->icsk_backoff = 0; 2934 return true; 2935 } 2936 2937 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2938 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2939 { 2940 struct rate_sample rs; 2941 long rtt_us = -1L; 2942 2943 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 2944 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 2945 2946 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 2947 } 2948 2949 2950 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2951 { 2952 const struct inet_connection_sock *icsk = inet_csk(sk); 2953 2954 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2955 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 2956 } 2957 2958 /* Restart timer after forward progress on connection. 2959 * RFC2988 recommends to restart timer to now+rto. 2960 */ 2961 void tcp_rearm_rto(struct sock *sk) 2962 { 2963 const struct inet_connection_sock *icsk = inet_csk(sk); 2964 struct tcp_sock *tp = tcp_sk(sk); 2965 2966 /* If the retrans timer is currently being used by Fast Open 2967 * for SYN-ACK retrans purpose, stay put. 2968 */ 2969 if (tp->fastopen_rsk) 2970 return; 2971 2972 if (!tp->packets_out) { 2973 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2974 } else { 2975 u32 rto = inet_csk(sk)->icsk_rto; 2976 /* Offset the time elapsed after installing regular RTO */ 2977 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 2978 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2979 s64 delta_us = tcp_rto_delta_us(sk); 2980 /* delta_us may not be positive if the socket is locked 2981 * when the retrans timer fires and is rescheduled. 2982 */ 2983 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 2984 } 2985 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 2986 TCP_RTO_MAX, tcp_rtx_queue_head(sk)); 2987 } 2988 } 2989 2990 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 2991 static void tcp_set_xmit_timer(struct sock *sk) 2992 { 2993 if (!tcp_schedule_loss_probe(sk, true)) 2994 tcp_rearm_rto(sk); 2995 } 2996 2997 /* If we get here, the whole TSO packet has not been acked. */ 2998 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 2999 { 3000 struct tcp_sock *tp = tcp_sk(sk); 3001 u32 packets_acked; 3002 3003 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3004 3005 packets_acked = tcp_skb_pcount(skb); 3006 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3007 return 0; 3008 packets_acked -= tcp_skb_pcount(skb); 3009 3010 if (packets_acked) { 3011 BUG_ON(tcp_skb_pcount(skb) == 0); 3012 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3013 } 3014 3015 return packets_acked; 3016 } 3017 3018 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3019 u32 prior_snd_una) 3020 { 3021 const struct skb_shared_info *shinfo; 3022 3023 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3024 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3025 return; 3026 3027 shinfo = skb_shinfo(skb); 3028 if (!before(shinfo->tskey, prior_snd_una) && 3029 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3030 tcp_skb_tsorted_save(skb) { 3031 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3032 } tcp_skb_tsorted_restore(skb); 3033 } 3034 } 3035 3036 /* Remove acknowledged frames from the retransmission queue. If our packet 3037 * is before the ack sequence we can discard it as it's confirmed to have 3038 * arrived at the other end. 3039 */ 3040 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack, 3041 u32 prior_snd_una, 3042 struct tcp_sacktag_state *sack) 3043 { 3044 const struct inet_connection_sock *icsk = inet_csk(sk); 3045 u64 first_ackt, last_ackt; 3046 struct tcp_sock *tp = tcp_sk(sk); 3047 u32 prior_sacked = tp->sacked_out; 3048 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3049 struct sk_buff *skb, *next; 3050 bool fully_acked = true; 3051 long sack_rtt_us = -1L; 3052 long seq_rtt_us = -1L; 3053 long ca_rtt_us = -1L; 3054 u32 pkts_acked = 0; 3055 u32 last_in_flight = 0; 3056 bool rtt_update; 3057 int flag = 0; 3058 3059 first_ackt = 0; 3060 3061 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3062 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3063 const u32 start_seq = scb->seq; 3064 u8 sacked = scb->sacked; 3065 u32 acked_pcount; 3066 3067 tcp_ack_tstamp(sk, skb, prior_snd_una); 3068 3069 /* Determine how many packets and what bytes were acked, tso and else */ 3070 if (after(scb->end_seq, tp->snd_una)) { 3071 if (tcp_skb_pcount(skb) == 1 || 3072 !after(tp->snd_una, scb->seq)) 3073 break; 3074 3075 acked_pcount = tcp_tso_acked(sk, skb); 3076 if (!acked_pcount) 3077 break; 3078 fully_acked = false; 3079 } else { 3080 acked_pcount = tcp_skb_pcount(skb); 3081 } 3082 3083 if (unlikely(sacked & TCPCB_RETRANS)) { 3084 if (sacked & TCPCB_SACKED_RETRANS) 3085 tp->retrans_out -= acked_pcount; 3086 flag |= FLAG_RETRANS_DATA_ACKED; 3087 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3088 last_ackt = tcp_skb_timestamp_us(skb); 3089 WARN_ON_ONCE(last_ackt == 0); 3090 if (!first_ackt) 3091 first_ackt = last_ackt; 3092 3093 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3094 if (before(start_seq, reord)) 3095 reord = start_seq; 3096 if (!after(scb->end_seq, tp->high_seq)) 3097 flag |= FLAG_ORIG_SACK_ACKED; 3098 } 3099 3100 if (sacked & TCPCB_SACKED_ACKED) { 3101 tp->sacked_out -= acked_pcount; 3102 } else if (tcp_is_sack(tp)) { 3103 tp->delivered += acked_pcount; 3104 if (!tcp_skb_spurious_retrans(tp, skb)) 3105 tcp_rack_advance(tp, sacked, scb->end_seq, 3106 tcp_skb_timestamp_us(skb)); 3107 } 3108 if (sacked & TCPCB_LOST) 3109 tp->lost_out -= acked_pcount; 3110 3111 tp->packets_out -= acked_pcount; 3112 pkts_acked += acked_pcount; 3113 tcp_rate_skb_delivered(sk, skb, sack->rate); 3114 3115 /* Initial outgoing SYN's get put onto the write_queue 3116 * just like anything else we transmit. It is not 3117 * true data, and if we misinform our callers that 3118 * this ACK acks real data, we will erroneously exit 3119 * connection startup slow start one packet too 3120 * quickly. This is severely frowned upon behavior. 3121 */ 3122 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3123 flag |= FLAG_DATA_ACKED; 3124 } else { 3125 flag |= FLAG_SYN_ACKED; 3126 tp->retrans_stamp = 0; 3127 } 3128 3129 if (!fully_acked) 3130 break; 3131 3132 next = skb_rb_next(skb); 3133 if (unlikely(skb == tp->retransmit_skb_hint)) 3134 tp->retransmit_skb_hint = NULL; 3135 if (unlikely(skb == tp->lost_skb_hint)) 3136 tp->lost_skb_hint = NULL; 3137 tcp_rtx_queue_unlink_and_free(skb, sk); 3138 } 3139 3140 if (!skb) 3141 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3142 3143 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3144 tp->snd_up = tp->snd_una; 3145 3146 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3147 flag |= FLAG_SACK_RENEGING; 3148 3149 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3150 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3151 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3152 3153 if (pkts_acked == 1 && last_in_flight < tp->mss_cache && 3154 last_in_flight && !prior_sacked && fully_acked && 3155 sack->rate->prior_delivered + 1 == tp->delivered && 3156 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3157 /* Conservatively mark a delayed ACK. It's typically 3158 * from a lone runt packet over the round trip to 3159 * a receiver w/o out-of-order or CE events. 3160 */ 3161 flag |= FLAG_ACK_MAYBE_DELAYED; 3162 } 3163 } 3164 if (sack->first_sackt) { 3165 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3166 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3167 } 3168 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3169 ca_rtt_us, sack->rate); 3170 3171 if (flag & FLAG_ACKED) { 3172 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3173 if (unlikely(icsk->icsk_mtup.probe_size && 3174 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3175 tcp_mtup_probe_success(sk); 3176 } 3177 3178 if (tcp_is_reno(tp)) { 3179 tcp_remove_reno_sacks(sk, pkts_acked); 3180 3181 /* If any of the cumulatively ACKed segments was 3182 * retransmitted, non-SACK case cannot confirm that 3183 * progress was due to original transmission due to 3184 * lack of TCPCB_SACKED_ACKED bits even if some of 3185 * the packets may have been never retransmitted. 3186 */ 3187 if (flag & FLAG_RETRANS_DATA_ACKED) 3188 flag &= ~FLAG_ORIG_SACK_ACKED; 3189 } else { 3190 int delta; 3191 3192 /* Non-retransmitted hole got filled? That's reordering */ 3193 if (before(reord, prior_fack)) 3194 tcp_check_sack_reordering(sk, reord, 0); 3195 3196 delta = prior_sacked - tp->sacked_out; 3197 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3198 } 3199 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3200 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3201 tcp_skb_timestamp_us(skb))) { 3202 /* Do not re-arm RTO if the sack RTT is measured from data sent 3203 * after when the head was last (re)transmitted. Otherwise the 3204 * timeout may continue to extend in loss recovery. 3205 */ 3206 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3207 } 3208 3209 if (icsk->icsk_ca_ops->pkts_acked) { 3210 struct ack_sample sample = { .pkts_acked = pkts_acked, 3211 .rtt_us = sack->rate->rtt_us, 3212 .in_flight = last_in_flight }; 3213 3214 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3215 } 3216 3217 #if FASTRETRANS_DEBUG > 0 3218 WARN_ON((int)tp->sacked_out < 0); 3219 WARN_ON((int)tp->lost_out < 0); 3220 WARN_ON((int)tp->retrans_out < 0); 3221 if (!tp->packets_out && tcp_is_sack(tp)) { 3222 icsk = inet_csk(sk); 3223 if (tp->lost_out) { 3224 pr_debug("Leak l=%u %d\n", 3225 tp->lost_out, icsk->icsk_ca_state); 3226 tp->lost_out = 0; 3227 } 3228 if (tp->sacked_out) { 3229 pr_debug("Leak s=%u %d\n", 3230 tp->sacked_out, icsk->icsk_ca_state); 3231 tp->sacked_out = 0; 3232 } 3233 if (tp->retrans_out) { 3234 pr_debug("Leak r=%u %d\n", 3235 tp->retrans_out, icsk->icsk_ca_state); 3236 tp->retrans_out = 0; 3237 } 3238 } 3239 #endif 3240 return flag; 3241 } 3242 3243 static void tcp_ack_probe(struct sock *sk) 3244 { 3245 struct inet_connection_sock *icsk = inet_csk(sk); 3246 struct sk_buff *head = tcp_send_head(sk); 3247 const struct tcp_sock *tp = tcp_sk(sk); 3248 3249 /* Was it a usable window open? */ 3250 if (!head) 3251 return; 3252 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3253 icsk->icsk_backoff = 0; 3254 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3255 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3256 * This function is not for random using! 3257 */ 3258 } else { 3259 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3260 3261 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3262 when, TCP_RTO_MAX, NULL); 3263 } 3264 } 3265 3266 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3267 { 3268 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3269 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3270 } 3271 3272 /* Decide wheather to run the increase function of congestion control. */ 3273 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3274 { 3275 /* If reordering is high then always grow cwnd whenever data is 3276 * delivered regardless of its ordering. Otherwise stay conservative 3277 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3278 * new SACK or ECE mark may first advance cwnd here and later reduce 3279 * cwnd in tcp_fastretrans_alert() based on more states. 3280 */ 3281 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3282 return flag & FLAG_FORWARD_PROGRESS; 3283 3284 return flag & FLAG_DATA_ACKED; 3285 } 3286 3287 /* The "ultimate" congestion control function that aims to replace the rigid 3288 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3289 * It's called toward the end of processing an ACK with precise rate 3290 * information. All transmission or retransmission are delayed afterwards. 3291 */ 3292 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3293 int flag, const struct rate_sample *rs) 3294 { 3295 const struct inet_connection_sock *icsk = inet_csk(sk); 3296 3297 if (icsk->icsk_ca_ops->cong_control) { 3298 icsk->icsk_ca_ops->cong_control(sk, rs); 3299 return; 3300 } 3301 3302 if (tcp_in_cwnd_reduction(sk)) { 3303 /* Reduce cwnd if state mandates */ 3304 tcp_cwnd_reduction(sk, acked_sacked, flag); 3305 } else if (tcp_may_raise_cwnd(sk, flag)) { 3306 /* Advance cwnd if state allows */ 3307 tcp_cong_avoid(sk, ack, acked_sacked); 3308 } 3309 tcp_update_pacing_rate(sk); 3310 } 3311 3312 /* Check that window update is acceptable. 3313 * The function assumes that snd_una<=ack<=snd_next. 3314 */ 3315 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3316 const u32 ack, const u32 ack_seq, 3317 const u32 nwin) 3318 { 3319 return after(ack, tp->snd_una) || 3320 after(ack_seq, tp->snd_wl1) || 3321 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3322 } 3323 3324 /* If we update tp->snd_una, also update tp->bytes_acked */ 3325 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3326 { 3327 u32 delta = ack - tp->snd_una; 3328 3329 sock_owned_by_me((struct sock *)tp); 3330 tp->bytes_acked += delta; 3331 tp->snd_una = ack; 3332 } 3333 3334 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3335 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3336 { 3337 u32 delta = seq - tp->rcv_nxt; 3338 3339 sock_owned_by_me((struct sock *)tp); 3340 tp->bytes_received += delta; 3341 tp->rcv_nxt = seq; 3342 } 3343 3344 /* Update our send window. 3345 * 3346 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3347 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3348 */ 3349 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3350 u32 ack_seq) 3351 { 3352 struct tcp_sock *tp = tcp_sk(sk); 3353 int flag = 0; 3354 u32 nwin = ntohs(tcp_hdr(skb)->window); 3355 3356 if (likely(!tcp_hdr(skb)->syn)) 3357 nwin <<= tp->rx_opt.snd_wscale; 3358 3359 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3360 flag |= FLAG_WIN_UPDATE; 3361 tcp_update_wl(tp, ack_seq); 3362 3363 if (tp->snd_wnd != nwin) { 3364 tp->snd_wnd = nwin; 3365 3366 /* Note, it is the only place, where 3367 * fast path is recovered for sending TCP. 3368 */ 3369 tp->pred_flags = 0; 3370 tcp_fast_path_check(sk); 3371 3372 if (!tcp_write_queue_empty(sk)) 3373 tcp_slow_start_after_idle_check(sk); 3374 3375 if (nwin > tp->max_window) { 3376 tp->max_window = nwin; 3377 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3378 } 3379 } 3380 } 3381 3382 tcp_snd_una_update(tp, ack); 3383 3384 return flag; 3385 } 3386 3387 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3388 u32 *last_oow_ack_time) 3389 { 3390 if (*last_oow_ack_time) { 3391 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3392 3393 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) { 3394 NET_INC_STATS(net, mib_idx); 3395 return true; /* rate-limited: don't send yet! */ 3396 } 3397 } 3398 3399 *last_oow_ack_time = tcp_jiffies32; 3400 3401 return false; /* not rate-limited: go ahead, send dupack now! */ 3402 } 3403 3404 /* Return true if we're currently rate-limiting out-of-window ACKs and 3405 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3406 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3407 * attacks that send repeated SYNs or ACKs for the same connection. To 3408 * do this, we do not send a duplicate SYNACK or ACK if the remote 3409 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3410 */ 3411 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3412 int mib_idx, u32 *last_oow_ack_time) 3413 { 3414 /* Data packets without SYNs are not likely part of an ACK loop. */ 3415 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3416 !tcp_hdr(skb)->syn) 3417 return false; 3418 3419 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3420 } 3421 3422 /* RFC 5961 7 [ACK Throttling] */ 3423 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3424 { 3425 /* unprotected vars, we dont care of overwrites */ 3426 static u32 challenge_timestamp; 3427 static unsigned int challenge_count; 3428 struct tcp_sock *tp = tcp_sk(sk); 3429 struct net *net = sock_net(sk); 3430 u32 count, now; 3431 3432 /* First check our per-socket dupack rate limit. */ 3433 if (__tcp_oow_rate_limited(net, 3434 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3435 &tp->last_oow_ack_time)) 3436 return; 3437 3438 /* Then check host-wide RFC 5961 rate limit. */ 3439 now = jiffies / HZ; 3440 if (now != challenge_timestamp) { 3441 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit; 3442 u32 half = (ack_limit + 1) >> 1; 3443 3444 challenge_timestamp = now; 3445 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit)); 3446 } 3447 count = READ_ONCE(challenge_count); 3448 if (count > 0) { 3449 WRITE_ONCE(challenge_count, count - 1); 3450 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3451 tcp_send_ack(sk); 3452 } 3453 } 3454 3455 static void tcp_store_ts_recent(struct tcp_sock *tp) 3456 { 3457 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3458 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3459 } 3460 3461 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3462 { 3463 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3464 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3465 * extra check below makes sure this can only happen 3466 * for pure ACK frames. -DaveM 3467 * 3468 * Not only, also it occurs for expired timestamps. 3469 */ 3470 3471 if (tcp_paws_check(&tp->rx_opt, 0)) 3472 tcp_store_ts_recent(tp); 3473 } 3474 } 3475 3476 /* This routine deals with acks during a TLP episode. 3477 * We mark the end of a TLP episode on receiving TLP dupack or when 3478 * ack is after tlp_high_seq. 3479 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3480 */ 3481 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3482 { 3483 struct tcp_sock *tp = tcp_sk(sk); 3484 3485 if (before(ack, tp->tlp_high_seq)) 3486 return; 3487 3488 if (flag & FLAG_DSACKING_ACK) { 3489 /* This DSACK means original and TLP probe arrived; no loss */ 3490 tp->tlp_high_seq = 0; 3491 } else if (after(ack, tp->tlp_high_seq)) { 3492 /* ACK advances: there was a loss, so reduce cwnd. Reset 3493 * tlp_high_seq in tcp_init_cwnd_reduction() 3494 */ 3495 tcp_init_cwnd_reduction(sk); 3496 tcp_set_ca_state(sk, TCP_CA_CWR); 3497 tcp_end_cwnd_reduction(sk); 3498 tcp_try_keep_open(sk); 3499 NET_INC_STATS(sock_net(sk), 3500 LINUX_MIB_TCPLOSSPROBERECOVERY); 3501 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3502 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3503 /* Pure dupack: original and TLP probe arrived; no loss */ 3504 tp->tlp_high_seq = 0; 3505 } 3506 } 3507 3508 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3509 { 3510 const struct inet_connection_sock *icsk = inet_csk(sk); 3511 3512 if (icsk->icsk_ca_ops->in_ack_event) 3513 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3514 } 3515 3516 /* Congestion control has updated the cwnd already. So if we're in 3517 * loss recovery then now we do any new sends (for FRTO) or 3518 * retransmits (for CA_Loss or CA_recovery) that make sense. 3519 */ 3520 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3521 { 3522 struct tcp_sock *tp = tcp_sk(sk); 3523 3524 if (rexmit == REXMIT_NONE) 3525 return; 3526 3527 if (unlikely(rexmit == 2)) { 3528 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3529 TCP_NAGLE_OFF); 3530 if (after(tp->snd_nxt, tp->high_seq)) 3531 return; 3532 tp->frto = 0; 3533 } 3534 tcp_xmit_retransmit_queue(sk); 3535 } 3536 3537 /* Returns the number of packets newly acked or sacked by the current ACK */ 3538 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3539 { 3540 const struct net *net = sock_net(sk); 3541 struct tcp_sock *tp = tcp_sk(sk); 3542 u32 delivered; 3543 3544 delivered = tp->delivered - prior_delivered; 3545 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3546 if (flag & FLAG_ECE) { 3547 tp->delivered_ce += delivered; 3548 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3549 } 3550 return delivered; 3551 } 3552 3553 /* This routine deals with incoming acks, but not outgoing ones. */ 3554 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3555 { 3556 struct inet_connection_sock *icsk = inet_csk(sk); 3557 struct tcp_sock *tp = tcp_sk(sk); 3558 struct tcp_sacktag_state sack_state; 3559 struct rate_sample rs = { .prior_delivered = 0 }; 3560 u32 prior_snd_una = tp->snd_una; 3561 bool is_sack_reneg = tp->is_sack_reneg; 3562 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3563 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3564 int num_dupack = 0; 3565 int prior_packets = tp->packets_out; 3566 u32 delivered = tp->delivered; 3567 u32 lost = tp->lost; 3568 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3569 u32 prior_fack; 3570 3571 sack_state.first_sackt = 0; 3572 sack_state.rate = &rs; 3573 3574 /* We very likely will need to access rtx queue. */ 3575 prefetch(sk->tcp_rtx_queue.rb_node); 3576 3577 /* If the ack is older than previous acks 3578 * then we can probably ignore it. 3579 */ 3580 if (before(ack, prior_snd_una)) { 3581 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3582 if (before(ack, prior_snd_una - tp->max_window)) { 3583 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3584 tcp_send_challenge_ack(sk, skb); 3585 return -1; 3586 } 3587 goto old_ack; 3588 } 3589 3590 /* If the ack includes data we haven't sent yet, discard 3591 * this segment (RFC793 Section 3.9). 3592 */ 3593 if (after(ack, tp->snd_nxt)) 3594 return -1; 3595 3596 if (after(ack, prior_snd_una)) { 3597 flag |= FLAG_SND_UNA_ADVANCED; 3598 icsk->icsk_retransmits = 0; 3599 3600 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3601 if (static_branch_unlikely(&clean_acked_data_enabled)) 3602 if (icsk->icsk_clean_acked) 3603 icsk->icsk_clean_acked(sk, ack); 3604 #endif 3605 } 3606 3607 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3608 rs.prior_in_flight = tcp_packets_in_flight(tp); 3609 3610 /* ts_recent update must be made after we are sure that the packet 3611 * is in window. 3612 */ 3613 if (flag & FLAG_UPDATE_TS_RECENT) 3614 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3615 3616 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 3617 FLAG_SND_UNA_ADVANCED) { 3618 /* Window is constant, pure forward advance. 3619 * No more checks are required. 3620 * Note, we use the fact that SND.UNA>=SND.WL2. 3621 */ 3622 tcp_update_wl(tp, ack_seq); 3623 tcp_snd_una_update(tp, ack); 3624 flag |= FLAG_WIN_UPDATE; 3625 3626 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3627 3628 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3629 } else { 3630 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3631 3632 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3633 flag |= FLAG_DATA; 3634 else 3635 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3636 3637 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3638 3639 if (TCP_SKB_CB(skb)->sacked) 3640 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3641 &sack_state); 3642 3643 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3644 flag |= FLAG_ECE; 3645 ack_ev_flags |= CA_ACK_ECE; 3646 } 3647 3648 if (flag & FLAG_WIN_UPDATE) 3649 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3650 3651 tcp_in_ack_event(sk, ack_ev_flags); 3652 } 3653 3654 /* We passed data and got it acked, remove any soft error 3655 * log. Something worked... 3656 */ 3657 sk->sk_err_soft = 0; 3658 icsk->icsk_probes_out = 0; 3659 tp->rcv_tstamp = tcp_jiffies32; 3660 if (!prior_packets) 3661 goto no_queue; 3662 3663 /* See if we can take anything off of the retransmit queue. */ 3664 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state); 3665 3666 tcp_rack_update_reo_wnd(sk, &rs); 3667 3668 if (tp->tlp_high_seq) 3669 tcp_process_tlp_ack(sk, ack, flag); 3670 /* If needed, reset TLP/RTO timer; RACK may later override this. */ 3671 if (flag & FLAG_SET_XMIT_TIMER) 3672 tcp_set_xmit_timer(sk); 3673 3674 if (tcp_ack_is_dubious(sk, flag)) { 3675 if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) { 3676 num_dupack = 1; 3677 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 3678 if (!(flag & FLAG_DATA)) 3679 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 3680 } 3681 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3682 &rexmit); 3683 } 3684 3685 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3686 sk_dst_confirm(sk); 3687 3688 delivered = tcp_newly_delivered(sk, delivered, flag); 3689 lost = tp->lost - lost; /* freshly marked lost */ 3690 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3691 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3692 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3693 tcp_xmit_recovery(sk, rexmit); 3694 return 1; 3695 3696 no_queue: 3697 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3698 if (flag & FLAG_DSACKING_ACK) { 3699 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3700 &rexmit); 3701 tcp_newly_delivered(sk, delivered, flag); 3702 } 3703 /* If this ack opens up a zero window, clear backoff. It was 3704 * being used to time the probes, and is probably far higher than 3705 * it needs to be for normal retransmission. 3706 */ 3707 tcp_ack_probe(sk); 3708 3709 if (tp->tlp_high_seq) 3710 tcp_process_tlp_ack(sk, ack, flag); 3711 return 1; 3712 3713 old_ack: 3714 /* If data was SACKed, tag it and see if we should send more data. 3715 * If data was DSACKed, see if we can undo a cwnd reduction. 3716 */ 3717 if (TCP_SKB_CB(skb)->sacked) { 3718 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3719 &sack_state); 3720 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3721 &rexmit); 3722 tcp_newly_delivered(sk, delivered, flag); 3723 tcp_xmit_recovery(sk, rexmit); 3724 } 3725 3726 return 0; 3727 } 3728 3729 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3730 bool syn, struct tcp_fastopen_cookie *foc, 3731 bool exp_opt) 3732 { 3733 /* Valid only in SYN or SYN-ACK with an even length. */ 3734 if (!foc || !syn || len < 0 || (len & 1)) 3735 return; 3736 3737 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3738 len <= TCP_FASTOPEN_COOKIE_MAX) 3739 memcpy(foc->val, cookie, len); 3740 else if (len != 0) 3741 len = -1; 3742 foc->len = len; 3743 foc->exp = exp_opt; 3744 } 3745 3746 static void smc_parse_options(const struct tcphdr *th, 3747 struct tcp_options_received *opt_rx, 3748 const unsigned char *ptr, 3749 int opsize) 3750 { 3751 #if IS_ENABLED(CONFIG_SMC) 3752 if (static_branch_unlikely(&tcp_have_smc)) { 3753 if (th->syn && !(opsize & 1) && 3754 opsize >= TCPOLEN_EXP_SMC_BASE && 3755 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) 3756 opt_rx->smc_ok = 1; 3757 } 3758 #endif 3759 } 3760 3761 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3762 * But, this can also be called on packets in the established flow when 3763 * the fast version below fails. 3764 */ 3765 void tcp_parse_options(const struct net *net, 3766 const struct sk_buff *skb, 3767 struct tcp_options_received *opt_rx, int estab, 3768 struct tcp_fastopen_cookie *foc) 3769 { 3770 const unsigned char *ptr; 3771 const struct tcphdr *th = tcp_hdr(skb); 3772 int length = (th->doff * 4) - sizeof(struct tcphdr); 3773 3774 ptr = (const unsigned char *)(th + 1); 3775 opt_rx->saw_tstamp = 0; 3776 3777 while (length > 0) { 3778 int opcode = *ptr++; 3779 int opsize; 3780 3781 switch (opcode) { 3782 case TCPOPT_EOL: 3783 return; 3784 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3785 length--; 3786 continue; 3787 default: 3788 opsize = *ptr++; 3789 if (opsize < 2) /* "silly options" */ 3790 return; 3791 if (opsize > length) 3792 return; /* don't parse partial options */ 3793 switch (opcode) { 3794 case TCPOPT_MSS: 3795 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3796 u16 in_mss = get_unaligned_be16(ptr); 3797 if (in_mss) { 3798 if (opt_rx->user_mss && 3799 opt_rx->user_mss < in_mss) 3800 in_mss = opt_rx->user_mss; 3801 opt_rx->mss_clamp = in_mss; 3802 } 3803 } 3804 break; 3805 case TCPOPT_WINDOW: 3806 if (opsize == TCPOLEN_WINDOW && th->syn && 3807 !estab && net->ipv4.sysctl_tcp_window_scaling) { 3808 __u8 snd_wscale = *(__u8 *)ptr; 3809 opt_rx->wscale_ok = 1; 3810 if (snd_wscale > TCP_MAX_WSCALE) { 3811 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 3812 __func__, 3813 snd_wscale, 3814 TCP_MAX_WSCALE); 3815 snd_wscale = TCP_MAX_WSCALE; 3816 } 3817 opt_rx->snd_wscale = snd_wscale; 3818 } 3819 break; 3820 case TCPOPT_TIMESTAMP: 3821 if ((opsize == TCPOLEN_TIMESTAMP) && 3822 ((estab && opt_rx->tstamp_ok) || 3823 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 3824 opt_rx->saw_tstamp = 1; 3825 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3826 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3827 } 3828 break; 3829 case TCPOPT_SACK_PERM: 3830 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3831 !estab && net->ipv4.sysctl_tcp_sack) { 3832 opt_rx->sack_ok = TCP_SACK_SEEN; 3833 tcp_sack_reset(opt_rx); 3834 } 3835 break; 3836 3837 case TCPOPT_SACK: 3838 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3839 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3840 opt_rx->sack_ok) { 3841 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3842 } 3843 break; 3844 #ifdef CONFIG_TCP_MD5SIG 3845 case TCPOPT_MD5SIG: 3846 /* 3847 * The MD5 Hash has already been 3848 * checked (see tcp_v{4,6}_do_rcv()). 3849 */ 3850 break; 3851 #endif 3852 case TCPOPT_FASTOPEN: 3853 tcp_parse_fastopen_option( 3854 opsize - TCPOLEN_FASTOPEN_BASE, 3855 ptr, th->syn, foc, false); 3856 break; 3857 3858 case TCPOPT_EXP: 3859 /* Fast Open option shares code 254 using a 3860 * 16 bits magic number. 3861 */ 3862 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3863 get_unaligned_be16(ptr) == 3864 TCPOPT_FASTOPEN_MAGIC) 3865 tcp_parse_fastopen_option(opsize - 3866 TCPOLEN_EXP_FASTOPEN_BASE, 3867 ptr + 2, th->syn, foc, true); 3868 else 3869 smc_parse_options(th, opt_rx, ptr, 3870 opsize); 3871 break; 3872 3873 } 3874 ptr += opsize-2; 3875 length -= opsize; 3876 } 3877 } 3878 } 3879 EXPORT_SYMBOL(tcp_parse_options); 3880 3881 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3882 { 3883 const __be32 *ptr = (const __be32 *)(th + 1); 3884 3885 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3886 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3887 tp->rx_opt.saw_tstamp = 1; 3888 ++ptr; 3889 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3890 ++ptr; 3891 if (*ptr) 3892 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3893 else 3894 tp->rx_opt.rcv_tsecr = 0; 3895 return true; 3896 } 3897 return false; 3898 } 3899 3900 /* Fast parse options. This hopes to only see timestamps. 3901 * If it is wrong it falls back on tcp_parse_options(). 3902 */ 3903 static bool tcp_fast_parse_options(const struct net *net, 3904 const struct sk_buff *skb, 3905 const struct tcphdr *th, struct tcp_sock *tp) 3906 { 3907 /* In the spirit of fast parsing, compare doff directly to constant 3908 * values. Because equality is used, short doff can be ignored here. 3909 */ 3910 if (th->doff == (sizeof(*th) / 4)) { 3911 tp->rx_opt.saw_tstamp = 0; 3912 return false; 3913 } else if (tp->rx_opt.tstamp_ok && 3914 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3915 if (tcp_parse_aligned_timestamp(tp, th)) 3916 return true; 3917 } 3918 3919 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 3920 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3921 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3922 3923 return true; 3924 } 3925 3926 #ifdef CONFIG_TCP_MD5SIG 3927 /* 3928 * Parse MD5 Signature option 3929 */ 3930 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3931 { 3932 int length = (th->doff << 2) - sizeof(*th); 3933 const u8 *ptr = (const u8 *)(th + 1); 3934 3935 /* If not enough data remaining, we can short cut */ 3936 while (length >= TCPOLEN_MD5SIG) { 3937 int opcode = *ptr++; 3938 int opsize; 3939 3940 switch (opcode) { 3941 case TCPOPT_EOL: 3942 return NULL; 3943 case TCPOPT_NOP: 3944 length--; 3945 continue; 3946 default: 3947 opsize = *ptr++; 3948 if (opsize < 2 || opsize > length) 3949 return NULL; 3950 if (opcode == TCPOPT_MD5SIG) 3951 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3952 } 3953 ptr += opsize - 2; 3954 length -= opsize; 3955 } 3956 return NULL; 3957 } 3958 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3959 #endif 3960 3961 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3962 * 3963 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3964 * it can pass through stack. So, the following predicate verifies that 3965 * this segment is not used for anything but congestion avoidance or 3966 * fast retransmit. Moreover, we even are able to eliminate most of such 3967 * second order effects, if we apply some small "replay" window (~RTO) 3968 * to timestamp space. 3969 * 3970 * All these measures still do not guarantee that we reject wrapped ACKs 3971 * on networks with high bandwidth, when sequence space is recycled fastly, 3972 * but it guarantees that such events will be very rare and do not affect 3973 * connection seriously. This doesn't look nice, but alas, PAWS is really 3974 * buggy extension. 3975 * 3976 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3977 * states that events when retransmit arrives after original data are rare. 3978 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3979 * the biggest problem on large power networks even with minor reordering. 3980 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3981 * up to bandwidth of 18Gigabit/sec. 8) ] 3982 */ 3983 3984 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3985 { 3986 const struct tcp_sock *tp = tcp_sk(sk); 3987 const struct tcphdr *th = tcp_hdr(skb); 3988 u32 seq = TCP_SKB_CB(skb)->seq; 3989 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3990 3991 return (/* 1. Pure ACK with correct sequence number. */ 3992 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3993 3994 /* 2. ... and duplicate ACK. */ 3995 ack == tp->snd_una && 3996 3997 /* 3. ... and does not update window. */ 3998 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3999 4000 /* 4. ... and sits in replay window. */ 4001 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4002 } 4003 4004 static inline bool tcp_paws_discard(const struct sock *sk, 4005 const struct sk_buff *skb) 4006 { 4007 const struct tcp_sock *tp = tcp_sk(sk); 4008 4009 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4010 !tcp_disordered_ack(sk, skb); 4011 } 4012 4013 /* Check segment sequence number for validity. 4014 * 4015 * Segment controls are considered valid, if the segment 4016 * fits to the window after truncation to the window. Acceptability 4017 * of data (and SYN, FIN, of course) is checked separately. 4018 * See tcp_data_queue(), for example. 4019 * 4020 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4021 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4022 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4023 * (borrowed from freebsd) 4024 */ 4025 4026 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4027 { 4028 return !before(end_seq, tp->rcv_wup) && 4029 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4030 } 4031 4032 /* When we get a reset we do this. */ 4033 void tcp_reset(struct sock *sk) 4034 { 4035 trace_tcp_receive_reset(sk); 4036 4037 /* We want the right error as BSD sees it (and indeed as we do). */ 4038 switch (sk->sk_state) { 4039 case TCP_SYN_SENT: 4040 sk->sk_err = ECONNREFUSED; 4041 break; 4042 case TCP_CLOSE_WAIT: 4043 sk->sk_err = EPIPE; 4044 break; 4045 case TCP_CLOSE: 4046 return; 4047 default: 4048 sk->sk_err = ECONNRESET; 4049 } 4050 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4051 smp_wmb(); 4052 4053 tcp_write_queue_purge(sk); 4054 tcp_done(sk); 4055 4056 if (!sock_flag(sk, SOCK_DEAD)) 4057 sk->sk_error_report(sk); 4058 } 4059 4060 /* 4061 * Process the FIN bit. This now behaves as it is supposed to work 4062 * and the FIN takes effect when it is validly part of sequence 4063 * space. Not before when we get holes. 4064 * 4065 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4066 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4067 * TIME-WAIT) 4068 * 4069 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4070 * close and we go into CLOSING (and later onto TIME-WAIT) 4071 * 4072 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4073 */ 4074 void tcp_fin(struct sock *sk) 4075 { 4076 struct tcp_sock *tp = tcp_sk(sk); 4077 4078 inet_csk_schedule_ack(sk); 4079 4080 sk->sk_shutdown |= RCV_SHUTDOWN; 4081 sock_set_flag(sk, SOCK_DONE); 4082 4083 switch (sk->sk_state) { 4084 case TCP_SYN_RECV: 4085 case TCP_ESTABLISHED: 4086 /* Move to CLOSE_WAIT */ 4087 tcp_set_state(sk, TCP_CLOSE_WAIT); 4088 inet_csk_enter_pingpong_mode(sk); 4089 break; 4090 4091 case TCP_CLOSE_WAIT: 4092 case TCP_CLOSING: 4093 /* Received a retransmission of the FIN, do 4094 * nothing. 4095 */ 4096 break; 4097 case TCP_LAST_ACK: 4098 /* RFC793: Remain in the LAST-ACK state. */ 4099 break; 4100 4101 case TCP_FIN_WAIT1: 4102 /* This case occurs when a simultaneous close 4103 * happens, we must ack the received FIN and 4104 * enter the CLOSING state. 4105 */ 4106 tcp_send_ack(sk); 4107 tcp_set_state(sk, TCP_CLOSING); 4108 break; 4109 case TCP_FIN_WAIT2: 4110 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4111 tcp_send_ack(sk); 4112 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4113 break; 4114 default: 4115 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4116 * cases we should never reach this piece of code. 4117 */ 4118 pr_err("%s: Impossible, sk->sk_state=%d\n", 4119 __func__, sk->sk_state); 4120 break; 4121 } 4122 4123 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4124 * Probably, we should reset in this case. For now drop them. 4125 */ 4126 skb_rbtree_purge(&tp->out_of_order_queue); 4127 if (tcp_is_sack(tp)) 4128 tcp_sack_reset(&tp->rx_opt); 4129 sk_mem_reclaim(sk); 4130 4131 if (!sock_flag(sk, SOCK_DEAD)) { 4132 sk->sk_state_change(sk); 4133 4134 /* Do not send POLL_HUP for half duplex close. */ 4135 if (sk->sk_shutdown == SHUTDOWN_MASK || 4136 sk->sk_state == TCP_CLOSE) 4137 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4138 else 4139 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4140 } 4141 } 4142 4143 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4144 u32 end_seq) 4145 { 4146 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4147 if (before(seq, sp->start_seq)) 4148 sp->start_seq = seq; 4149 if (after(end_seq, sp->end_seq)) 4150 sp->end_seq = end_seq; 4151 return true; 4152 } 4153 return false; 4154 } 4155 4156 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4157 { 4158 struct tcp_sock *tp = tcp_sk(sk); 4159 4160 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4161 int mib_idx; 4162 4163 if (before(seq, tp->rcv_nxt)) 4164 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4165 else 4166 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4167 4168 NET_INC_STATS(sock_net(sk), mib_idx); 4169 4170 tp->rx_opt.dsack = 1; 4171 tp->duplicate_sack[0].start_seq = seq; 4172 tp->duplicate_sack[0].end_seq = end_seq; 4173 } 4174 } 4175 4176 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4177 { 4178 struct tcp_sock *tp = tcp_sk(sk); 4179 4180 if (!tp->rx_opt.dsack) 4181 tcp_dsack_set(sk, seq, end_seq); 4182 else 4183 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4184 } 4185 4186 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4187 { 4188 /* When the ACK path fails or drops most ACKs, the sender would 4189 * timeout and spuriously retransmit the same segment repeatedly. 4190 * The receiver remembers and reflects via DSACKs. Leverage the 4191 * DSACK state and change the txhash to re-route speculatively. 4192 */ 4193 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq) 4194 sk_rethink_txhash(sk); 4195 } 4196 4197 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4198 { 4199 struct tcp_sock *tp = tcp_sk(sk); 4200 4201 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4202 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4203 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4204 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4205 4206 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4207 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4208 4209 tcp_rcv_spurious_retrans(sk, skb); 4210 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4211 end_seq = tp->rcv_nxt; 4212 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4213 } 4214 } 4215 4216 tcp_send_ack(sk); 4217 } 4218 4219 /* These routines update the SACK block as out-of-order packets arrive or 4220 * in-order packets close up the sequence space. 4221 */ 4222 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4223 { 4224 int this_sack; 4225 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4226 struct tcp_sack_block *swalk = sp + 1; 4227 4228 /* See if the recent change to the first SACK eats into 4229 * or hits the sequence space of other SACK blocks, if so coalesce. 4230 */ 4231 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4232 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4233 int i; 4234 4235 /* Zap SWALK, by moving every further SACK up by one slot. 4236 * Decrease num_sacks. 4237 */ 4238 tp->rx_opt.num_sacks--; 4239 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4240 sp[i] = sp[i + 1]; 4241 continue; 4242 } 4243 this_sack++, swalk++; 4244 } 4245 } 4246 4247 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4248 { 4249 struct tcp_sock *tp = tcp_sk(sk); 4250 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4251 int cur_sacks = tp->rx_opt.num_sacks; 4252 int this_sack; 4253 4254 if (!cur_sacks) 4255 goto new_sack; 4256 4257 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4258 if (tcp_sack_extend(sp, seq, end_seq)) { 4259 /* Rotate this_sack to the first one. */ 4260 for (; this_sack > 0; this_sack--, sp--) 4261 swap(*sp, *(sp - 1)); 4262 if (cur_sacks > 1) 4263 tcp_sack_maybe_coalesce(tp); 4264 return; 4265 } 4266 } 4267 4268 /* Could not find an adjacent existing SACK, build a new one, 4269 * put it at the front, and shift everyone else down. We 4270 * always know there is at least one SACK present already here. 4271 * 4272 * If the sack array is full, forget about the last one. 4273 */ 4274 if (this_sack >= TCP_NUM_SACKS) { 4275 if (tp->compressed_ack > TCP_FASTRETRANS_THRESH) 4276 tcp_send_ack(sk); 4277 this_sack--; 4278 tp->rx_opt.num_sacks--; 4279 sp--; 4280 } 4281 for (; this_sack > 0; this_sack--, sp--) 4282 *sp = *(sp - 1); 4283 4284 new_sack: 4285 /* Build the new head SACK, and we're done. */ 4286 sp->start_seq = seq; 4287 sp->end_seq = end_seq; 4288 tp->rx_opt.num_sacks++; 4289 } 4290 4291 /* RCV.NXT advances, some SACKs should be eaten. */ 4292 4293 static void tcp_sack_remove(struct tcp_sock *tp) 4294 { 4295 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4296 int num_sacks = tp->rx_opt.num_sacks; 4297 int this_sack; 4298 4299 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4300 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4301 tp->rx_opt.num_sacks = 0; 4302 return; 4303 } 4304 4305 for (this_sack = 0; this_sack < num_sacks;) { 4306 /* Check if the start of the sack is covered by RCV.NXT. */ 4307 if (!before(tp->rcv_nxt, sp->start_seq)) { 4308 int i; 4309 4310 /* RCV.NXT must cover all the block! */ 4311 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4312 4313 /* Zap this SACK, by moving forward any other SACKS. */ 4314 for (i = this_sack+1; i < num_sacks; i++) 4315 tp->selective_acks[i-1] = tp->selective_acks[i]; 4316 num_sacks--; 4317 continue; 4318 } 4319 this_sack++; 4320 sp++; 4321 } 4322 tp->rx_opt.num_sacks = num_sacks; 4323 } 4324 4325 /** 4326 * tcp_try_coalesce - try to merge skb to prior one 4327 * @sk: socket 4328 * @dest: destination queue 4329 * @to: prior buffer 4330 * @from: buffer to add in queue 4331 * @fragstolen: pointer to boolean 4332 * 4333 * Before queueing skb @from after @to, try to merge them 4334 * to reduce overall memory use and queue lengths, if cost is small. 4335 * Packets in ofo or receive queues can stay a long time. 4336 * Better try to coalesce them right now to avoid future collapses. 4337 * Returns true if caller should free @from instead of queueing it 4338 */ 4339 static bool tcp_try_coalesce(struct sock *sk, 4340 struct sk_buff *to, 4341 struct sk_buff *from, 4342 bool *fragstolen) 4343 { 4344 int delta; 4345 4346 *fragstolen = false; 4347 4348 /* Its possible this segment overlaps with prior segment in queue */ 4349 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4350 return false; 4351 4352 #ifdef CONFIG_TLS_DEVICE 4353 if (from->decrypted != to->decrypted) 4354 return false; 4355 #endif 4356 4357 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4358 return false; 4359 4360 atomic_add(delta, &sk->sk_rmem_alloc); 4361 sk_mem_charge(sk, delta); 4362 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4363 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4364 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4365 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4366 4367 if (TCP_SKB_CB(from)->has_rxtstamp) { 4368 TCP_SKB_CB(to)->has_rxtstamp = true; 4369 to->tstamp = from->tstamp; 4370 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4371 } 4372 4373 return true; 4374 } 4375 4376 static bool tcp_ooo_try_coalesce(struct sock *sk, 4377 struct sk_buff *to, 4378 struct sk_buff *from, 4379 bool *fragstolen) 4380 { 4381 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4382 4383 /* In case tcp_drop() is called later, update to->gso_segs */ 4384 if (res) { 4385 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4386 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4387 4388 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4389 } 4390 return res; 4391 } 4392 4393 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4394 { 4395 sk_drops_add(sk, skb); 4396 __kfree_skb(skb); 4397 } 4398 4399 /* This one checks to see if we can put data from the 4400 * out_of_order queue into the receive_queue. 4401 */ 4402 static void tcp_ofo_queue(struct sock *sk) 4403 { 4404 struct tcp_sock *tp = tcp_sk(sk); 4405 __u32 dsack_high = tp->rcv_nxt; 4406 bool fin, fragstolen, eaten; 4407 struct sk_buff *skb, *tail; 4408 struct rb_node *p; 4409 4410 p = rb_first(&tp->out_of_order_queue); 4411 while (p) { 4412 skb = rb_to_skb(p); 4413 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4414 break; 4415 4416 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4417 __u32 dsack = dsack_high; 4418 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4419 dsack_high = TCP_SKB_CB(skb)->end_seq; 4420 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4421 } 4422 p = rb_next(p); 4423 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4424 4425 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4426 tcp_drop(sk, skb); 4427 continue; 4428 } 4429 4430 tail = skb_peek_tail(&sk->sk_receive_queue); 4431 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4432 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4433 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4434 if (!eaten) 4435 __skb_queue_tail(&sk->sk_receive_queue, skb); 4436 else 4437 kfree_skb_partial(skb, fragstolen); 4438 4439 if (unlikely(fin)) { 4440 tcp_fin(sk); 4441 /* tcp_fin() purges tp->out_of_order_queue, 4442 * so we must end this loop right now. 4443 */ 4444 break; 4445 } 4446 } 4447 } 4448 4449 static bool tcp_prune_ofo_queue(struct sock *sk); 4450 static int tcp_prune_queue(struct sock *sk); 4451 4452 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4453 unsigned int size) 4454 { 4455 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4456 !sk_rmem_schedule(sk, skb, size)) { 4457 4458 if (tcp_prune_queue(sk) < 0) 4459 return -1; 4460 4461 while (!sk_rmem_schedule(sk, skb, size)) { 4462 if (!tcp_prune_ofo_queue(sk)) 4463 return -1; 4464 } 4465 } 4466 return 0; 4467 } 4468 4469 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4470 { 4471 struct tcp_sock *tp = tcp_sk(sk); 4472 struct rb_node **p, *parent; 4473 struct sk_buff *skb1; 4474 u32 seq, end_seq; 4475 bool fragstolen; 4476 4477 tcp_ecn_check_ce(sk, skb); 4478 4479 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4480 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4481 tcp_drop(sk, skb); 4482 return; 4483 } 4484 4485 /* Disable header prediction. */ 4486 tp->pred_flags = 0; 4487 inet_csk_schedule_ack(sk); 4488 4489 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4490 seq = TCP_SKB_CB(skb)->seq; 4491 end_seq = TCP_SKB_CB(skb)->end_seq; 4492 4493 p = &tp->out_of_order_queue.rb_node; 4494 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4495 /* Initial out of order segment, build 1 SACK. */ 4496 if (tcp_is_sack(tp)) { 4497 tp->rx_opt.num_sacks = 1; 4498 tp->selective_acks[0].start_seq = seq; 4499 tp->selective_acks[0].end_seq = end_seq; 4500 } 4501 rb_link_node(&skb->rbnode, NULL, p); 4502 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4503 tp->ooo_last_skb = skb; 4504 goto end; 4505 } 4506 4507 /* In the typical case, we are adding an skb to the end of the list. 4508 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4509 */ 4510 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 4511 skb, &fragstolen)) { 4512 coalesce_done: 4513 tcp_grow_window(sk, skb); 4514 kfree_skb_partial(skb, fragstolen); 4515 skb = NULL; 4516 goto add_sack; 4517 } 4518 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4519 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4520 parent = &tp->ooo_last_skb->rbnode; 4521 p = &parent->rb_right; 4522 goto insert; 4523 } 4524 4525 /* Find place to insert this segment. Handle overlaps on the way. */ 4526 parent = NULL; 4527 while (*p) { 4528 parent = *p; 4529 skb1 = rb_to_skb(parent); 4530 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4531 p = &parent->rb_left; 4532 continue; 4533 } 4534 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4535 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4536 /* All the bits are present. Drop. */ 4537 NET_INC_STATS(sock_net(sk), 4538 LINUX_MIB_TCPOFOMERGE); 4539 tcp_drop(sk, skb); 4540 skb = NULL; 4541 tcp_dsack_set(sk, seq, end_seq); 4542 goto add_sack; 4543 } 4544 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4545 /* Partial overlap. */ 4546 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4547 } else { 4548 /* skb's seq == skb1's seq and skb covers skb1. 4549 * Replace skb1 with skb. 4550 */ 4551 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4552 &tp->out_of_order_queue); 4553 tcp_dsack_extend(sk, 4554 TCP_SKB_CB(skb1)->seq, 4555 TCP_SKB_CB(skb1)->end_seq); 4556 NET_INC_STATS(sock_net(sk), 4557 LINUX_MIB_TCPOFOMERGE); 4558 tcp_drop(sk, skb1); 4559 goto merge_right; 4560 } 4561 } else if (tcp_ooo_try_coalesce(sk, skb1, 4562 skb, &fragstolen)) { 4563 goto coalesce_done; 4564 } 4565 p = &parent->rb_right; 4566 } 4567 insert: 4568 /* Insert segment into RB tree. */ 4569 rb_link_node(&skb->rbnode, parent, p); 4570 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4571 4572 merge_right: 4573 /* Remove other segments covered by skb. */ 4574 while ((skb1 = skb_rb_next(skb)) != NULL) { 4575 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4576 break; 4577 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4578 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4579 end_seq); 4580 break; 4581 } 4582 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4583 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4584 TCP_SKB_CB(skb1)->end_seq); 4585 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4586 tcp_drop(sk, skb1); 4587 } 4588 /* If there is no skb after us, we are the last_skb ! */ 4589 if (!skb1) 4590 tp->ooo_last_skb = skb; 4591 4592 add_sack: 4593 if (tcp_is_sack(tp)) 4594 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4595 end: 4596 if (skb) { 4597 tcp_grow_window(sk, skb); 4598 skb_condense(skb); 4599 skb_set_owner_r(skb, sk); 4600 } 4601 } 4602 4603 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 4604 bool *fragstolen) 4605 { 4606 int eaten; 4607 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4608 4609 eaten = (tail && 4610 tcp_try_coalesce(sk, tail, 4611 skb, fragstolen)) ? 1 : 0; 4612 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4613 if (!eaten) { 4614 __skb_queue_tail(&sk->sk_receive_queue, skb); 4615 skb_set_owner_r(skb, sk); 4616 } 4617 return eaten; 4618 } 4619 4620 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4621 { 4622 struct sk_buff *skb; 4623 int err = -ENOMEM; 4624 int data_len = 0; 4625 bool fragstolen; 4626 4627 if (size == 0) 4628 return 0; 4629 4630 if (size > PAGE_SIZE) { 4631 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4632 4633 data_len = npages << PAGE_SHIFT; 4634 size = data_len + (size & ~PAGE_MASK); 4635 } 4636 skb = alloc_skb_with_frags(size - data_len, data_len, 4637 PAGE_ALLOC_COSTLY_ORDER, 4638 &err, sk->sk_allocation); 4639 if (!skb) 4640 goto err; 4641 4642 skb_put(skb, size - data_len); 4643 skb->data_len = data_len; 4644 skb->len = size; 4645 4646 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 4647 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 4648 goto err_free; 4649 } 4650 4651 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4652 if (err) 4653 goto err_free; 4654 4655 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4656 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4657 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4658 4659 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 4660 WARN_ON_ONCE(fragstolen); /* should not happen */ 4661 __kfree_skb(skb); 4662 } 4663 return size; 4664 4665 err_free: 4666 kfree_skb(skb); 4667 err: 4668 return err; 4669 4670 } 4671 4672 void tcp_data_ready(struct sock *sk) 4673 { 4674 const struct tcp_sock *tp = tcp_sk(sk); 4675 int avail = tp->rcv_nxt - tp->copied_seq; 4676 4677 if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE)) 4678 return; 4679 4680 sk->sk_data_ready(sk); 4681 } 4682 4683 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4684 { 4685 struct tcp_sock *tp = tcp_sk(sk); 4686 bool fragstolen; 4687 int eaten; 4688 4689 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4690 __kfree_skb(skb); 4691 return; 4692 } 4693 skb_dst_drop(skb); 4694 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4695 4696 tcp_ecn_accept_cwr(sk, skb); 4697 4698 tp->rx_opt.dsack = 0; 4699 4700 /* Queue data for delivery to the user. 4701 * Packets in sequence go to the receive queue. 4702 * Out of sequence packets to the out_of_order_queue. 4703 */ 4704 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4705 if (tcp_receive_window(tp) == 0) { 4706 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 4707 goto out_of_window; 4708 } 4709 4710 /* Ok. In sequence. In window. */ 4711 queue_and_out: 4712 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4713 sk_forced_mem_schedule(sk, skb->truesize); 4714 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 4715 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 4716 goto drop; 4717 } 4718 4719 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 4720 if (skb->len) 4721 tcp_event_data_recv(sk, skb); 4722 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4723 tcp_fin(sk); 4724 4725 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4726 tcp_ofo_queue(sk); 4727 4728 /* RFC5681. 4.2. SHOULD send immediate ACK, when 4729 * gap in queue is filled. 4730 */ 4731 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4732 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 4733 } 4734 4735 if (tp->rx_opt.num_sacks) 4736 tcp_sack_remove(tp); 4737 4738 tcp_fast_path_check(sk); 4739 4740 if (eaten > 0) 4741 kfree_skb_partial(skb, fragstolen); 4742 if (!sock_flag(sk, SOCK_DEAD)) 4743 tcp_data_ready(sk); 4744 return; 4745 } 4746 4747 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4748 tcp_rcv_spurious_retrans(sk, skb); 4749 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4750 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4751 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4752 4753 out_of_window: 4754 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4755 inet_csk_schedule_ack(sk); 4756 drop: 4757 tcp_drop(sk, skb); 4758 return; 4759 } 4760 4761 /* Out of window. F.e. zero window probe. */ 4762 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4763 goto out_of_window; 4764 4765 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4766 /* Partial packet, seq < rcv_next < end_seq */ 4767 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4768 4769 /* If window is closed, drop tail of packet. But after 4770 * remembering D-SACK for its head made in previous line. 4771 */ 4772 if (!tcp_receive_window(tp)) { 4773 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 4774 goto out_of_window; 4775 } 4776 goto queue_and_out; 4777 } 4778 4779 tcp_data_queue_ofo(sk, skb); 4780 } 4781 4782 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4783 { 4784 if (list) 4785 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4786 4787 return skb_rb_next(skb); 4788 } 4789 4790 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4791 struct sk_buff_head *list, 4792 struct rb_root *root) 4793 { 4794 struct sk_buff *next = tcp_skb_next(skb, list); 4795 4796 if (list) 4797 __skb_unlink(skb, list); 4798 else 4799 rb_erase(&skb->rbnode, root); 4800 4801 __kfree_skb(skb); 4802 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4803 4804 return next; 4805 } 4806 4807 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4808 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4809 { 4810 struct rb_node **p = &root->rb_node; 4811 struct rb_node *parent = NULL; 4812 struct sk_buff *skb1; 4813 4814 while (*p) { 4815 parent = *p; 4816 skb1 = rb_to_skb(parent); 4817 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4818 p = &parent->rb_left; 4819 else 4820 p = &parent->rb_right; 4821 } 4822 rb_link_node(&skb->rbnode, parent, p); 4823 rb_insert_color(&skb->rbnode, root); 4824 } 4825 4826 /* Collapse contiguous sequence of skbs head..tail with 4827 * sequence numbers start..end. 4828 * 4829 * If tail is NULL, this means until the end of the queue. 4830 * 4831 * Segments with FIN/SYN are not collapsed (only because this 4832 * simplifies code) 4833 */ 4834 static void 4835 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4836 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4837 { 4838 struct sk_buff *skb = head, *n; 4839 struct sk_buff_head tmp; 4840 bool end_of_skbs; 4841 4842 /* First, check that queue is collapsible and find 4843 * the point where collapsing can be useful. 4844 */ 4845 restart: 4846 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4847 n = tcp_skb_next(skb, list); 4848 4849 /* No new bits? It is possible on ofo queue. */ 4850 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4851 skb = tcp_collapse_one(sk, skb, list, root); 4852 if (!skb) 4853 break; 4854 goto restart; 4855 } 4856 4857 /* The first skb to collapse is: 4858 * - not SYN/FIN and 4859 * - bloated or contains data before "start" or 4860 * overlaps to the next one. 4861 */ 4862 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4863 (tcp_win_from_space(sk, skb->truesize) > skb->len || 4864 before(TCP_SKB_CB(skb)->seq, start))) { 4865 end_of_skbs = false; 4866 break; 4867 } 4868 4869 if (n && n != tail && 4870 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4871 end_of_skbs = false; 4872 break; 4873 } 4874 4875 /* Decided to skip this, advance start seq. */ 4876 start = TCP_SKB_CB(skb)->end_seq; 4877 } 4878 if (end_of_skbs || 4879 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4880 return; 4881 4882 __skb_queue_head_init(&tmp); 4883 4884 while (before(start, end)) { 4885 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4886 struct sk_buff *nskb; 4887 4888 nskb = alloc_skb(copy, GFP_ATOMIC); 4889 if (!nskb) 4890 break; 4891 4892 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4893 #ifdef CONFIG_TLS_DEVICE 4894 nskb->decrypted = skb->decrypted; 4895 #endif 4896 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4897 if (list) 4898 __skb_queue_before(list, skb, nskb); 4899 else 4900 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 4901 skb_set_owner_r(nskb, sk); 4902 4903 /* Copy data, releasing collapsed skbs. */ 4904 while (copy > 0) { 4905 int offset = start - TCP_SKB_CB(skb)->seq; 4906 int size = TCP_SKB_CB(skb)->end_seq - start; 4907 4908 BUG_ON(offset < 0); 4909 if (size > 0) { 4910 size = min(copy, size); 4911 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4912 BUG(); 4913 TCP_SKB_CB(nskb)->end_seq += size; 4914 copy -= size; 4915 start += size; 4916 } 4917 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4918 skb = tcp_collapse_one(sk, skb, list, root); 4919 if (!skb || 4920 skb == tail || 4921 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4922 goto end; 4923 #ifdef CONFIG_TLS_DEVICE 4924 if (skb->decrypted != nskb->decrypted) 4925 goto end; 4926 #endif 4927 } 4928 } 4929 } 4930 end: 4931 skb_queue_walk_safe(&tmp, skb, n) 4932 tcp_rbtree_insert(root, skb); 4933 } 4934 4935 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4936 * and tcp_collapse() them until all the queue is collapsed. 4937 */ 4938 static void tcp_collapse_ofo_queue(struct sock *sk) 4939 { 4940 struct tcp_sock *tp = tcp_sk(sk); 4941 u32 range_truesize, sum_tiny = 0; 4942 struct sk_buff *skb, *head; 4943 u32 start, end; 4944 4945 skb = skb_rb_first(&tp->out_of_order_queue); 4946 new_range: 4947 if (!skb) { 4948 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 4949 return; 4950 } 4951 start = TCP_SKB_CB(skb)->seq; 4952 end = TCP_SKB_CB(skb)->end_seq; 4953 range_truesize = skb->truesize; 4954 4955 for (head = skb;;) { 4956 skb = skb_rb_next(skb); 4957 4958 /* Range is terminated when we see a gap or when 4959 * we are at the queue end. 4960 */ 4961 if (!skb || 4962 after(TCP_SKB_CB(skb)->seq, end) || 4963 before(TCP_SKB_CB(skb)->end_seq, start)) { 4964 /* Do not attempt collapsing tiny skbs */ 4965 if (range_truesize != head->truesize || 4966 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) { 4967 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 4968 head, skb, start, end); 4969 } else { 4970 sum_tiny += range_truesize; 4971 if (sum_tiny > sk->sk_rcvbuf >> 3) 4972 return; 4973 } 4974 goto new_range; 4975 } 4976 4977 range_truesize += skb->truesize; 4978 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 4979 start = TCP_SKB_CB(skb)->seq; 4980 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4981 end = TCP_SKB_CB(skb)->end_seq; 4982 } 4983 } 4984 4985 /* 4986 * Clean the out-of-order queue to make room. 4987 * We drop high sequences packets to : 4988 * 1) Let a chance for holes to be filled. 4989 * 2) not add too big latencies if thousands of packets sit there. 4990 * (But if application shrinks SO_RCVBUF, we could still end up 4991 * freeing whole queue here) 4992 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 4993 * 4994 * Return true if queue has shrunk. 4995 */ 4996 static bool tcp_prune_ofo_queue(struct sock *sk) 4997 { 4998 struct tcp_sock *tp = tcp_sk(sk); 4999 struct rb_node *node, *prev; 5000 int goal; 5001 5002 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5003 return false; 5004 5005 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5006 goal = sk->sk_rcvbuf >> 3; 5007 node = &tp->ooo_last_skb->rbnode; 5008 do { 5009 prev = rb_prev(node); 5010 rb_erase(node, &tp->out_of_order_queue); 5011 goal -= rb_to_skb(node)->truesize; 5012 tcp_drop(sk, rb_to_skb(node)); 5013 if (!prev || goal <= 0) { 5014 sk_mem_reclaim(sk); 5015 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5016 !tcp_under_memory_pressure(sk)) 5017 break; 5018 goal = sk->sk_rcvbuf >> 3; 5019 } 5020 node = prev; 5021 } while (node); 5022 tp->ooo_last_skb = rb_to_skb(prev); 5023 5024 /* Reset SACK state. A conforming SACK implementation will 5025 * do the same at a timeout based retransmit. When a connection 5026 * is in a sad state like this, we care only about integrity 5027 * of the connection not performance. 5028 */ 5029 if (tp->rx_opt.sack_ok) 5030 tcp_sack_reset(&tp->rx_opt); 5031 return true; 5032 } 5033 5034 /* Reduce allocated memory if we can, trying to get 5035 * the socket within its memory limits again. 5036 * 5037 * Return less than zero if we should start dropping frames 5038 * until the socket owning process reads some of the data 5039 * to stabilize the situation. 5040 */ 5041 static int tcp_prune_queue(struct sock *sk) 5042 { 5043 struct tcp_sock *tp = tcp_sk(sk); 5044 5045 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5046 5047 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5048 tcp_clamp_window(sk); 5049 else if (tcp_under_memory_pressure(sk)) 5050 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 5051 5052 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5053 return 0; 5054 5055 tcp_collapse_ofo_queue(sk); 5056 if (!skb_queue_empty(&sk->sk_receive_queue)) 5057 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5058 skb_peek(&sk->sk_receive_queue), 5059 NULL, 5060 tp->copied_seq, tp->rcv_nxt); 5061 sk_mem_reclaim(sk); 5062 5063 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5064 return 0; 5065 5066 /* Collapsing did not help, destructive actions follow. 5067 * This must not ever occur. */ 5068 5069 tcp_prune_ofo_queue(sk); 5070 5071 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5072 return 0; 5073 5074 /* If we are really being abused, tell the caller to silently 5075 * drop receive data on the floor. It will get retransmitted 5076 * and hopefully then we'll have sufficient space. 5077 */ 5078 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5079 5080 /* Massive buffer overcommit. */ 5081 tp->pred_flags = 0; 5082 return -1; 5083 } 5084 5085 static bool tcp_should_expand_sndbuf(const struct sock *sk) 5086 { 5087 const struct tcp_sock *tp = tcp_sk(sk); 5088 5089 /* If the user specified a specific send buffer setting, do 5090 * not modify it. 5091 */ 5092 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5093 return false; 5094 5095 /* If we are under global TCP memory pressure, do not expand. */ 5096 if (tcp_under_memory_pressure(sk)) 5097 return false; 5098 5099 /* If we are under soft global TCP memory pressure, do not expand. */ 5100 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5101 return false; 5102 5103 /* If we filled the congestion window, do not expand. */ 5104 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5105 return false; 5106 5107 return true; 5108 } 5109 5110 /* When incoming ACK allowed to free some skb from write_queue, 5111 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5112 * on the exit from tcp input handler. 5113 * 5114 * PROBLEM: sndbuf expansion does not work well with largesend. 5115 */ 5116 static void tcp_new_space(struct sock *sk) 5117 { 5118 struct tcp_sock *tp = tcp_sk(sk); 5119 5120 if (tcp_should_expand_sndbuf(sk)) { 5121 tcp_sndbuf_expand(sk); 5122 tp->snd_cwnd_stamp = tcp_jiffies32; 5123 } 5124 5125 sk->sk_write_space(sk); 5126 } 5127 5128 static void tcp_check_space(struct sock *sk) 5129 { 5130 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5131 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5132 /* pairs with tcp_poll() */ 5133 smp_mb(); 5134 if (sk->sk_socket && 5135 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5136 tcp_new_space(sk); 5137 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5138 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5139 } 5140 } 5141 } 5142 5143 static inline void tcp_data_snd_check(struct sock *sk) 5144 { 5145 tcp_push_pending_frames(sk); 5146 tcp_check_space(sk); 5147 } 5148 5149 /* 5150 * Check if sending an ack is needed. 5151 */ 5152 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5153 { 5154 struct tcp_sock *tp = tcp_sk(sk); 5155 unsigned long rtt, delay; 5156 5157 /* More than one full frame received... */ 5158 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5159 /* ... and right edge of window advances far enough. 5160 * (tcp_recvmsg() will send ACK otherwise). 5161 * If application uses SO_RCVLOWAT, we want send ack now if 5162 * we have not received enough bytes to satisfy the condition. 5163 */ 5164 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5165 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5166 /* We ACK each frame or... */ 5167 tcp_in_quickack_mode(sk) || 5168 /* Protocol state mandates a one-time immediate ACK */ 5169 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5170 send_now: 5171 tcp_send_ack(sk); 5172 return; 5173 } 5174 5175 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5176 tcp_send_delayed_ack(sk); 5177 return; 5178 } 5179 5180 if (!tcp_is_sack(tp) || 5181 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr) 5182 goto send_now; 5183 5184 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5185 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5186 if (tp->compressed_ack > TCP_FASTRETRANS_THRESH) 5187 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 5188 tp->compressed_ack - TCP_FASTRETRANS_THRESH); 5189 tp->compressed_ack = 0; 5190 } 5191 5192 if (++tp->compressed_ack <= TCP_FASTRETRANS_THRESH) 5193 goto send_now; 5194 5195 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5196 return; 5197 5198 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5199 5200 rtt = tp->rcv_rtt_est.rtt_us; 5201 if (tp->srtt_us && tp->srtt_us < rtt) 5202 rtt = tp->srtt_us; 5203 5204 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns, 5205 rtt * (NSEC_PER_USEC >> 3)/20); 5206 sock_hold(sk); 5207 hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay), 5208 HRTIMER_MODE_REL_PINNED_SOFT); 5209 } 5210 5211 static inline void tcp_ack_snd_check(struct sock *sk) 5212 { 5213 if (!inet_csk_ack_scheduled(sk)) { 5214 /* We sent a data segment already. */ 5215 return; 5216 } 5217 __tcp_ack_snd_check(sk, 1); 5218 } 5219 5220 /* 5221 * This routine is only called when we have urgent data 5222 * signaled. Its the 'slow' part of tcp_urg. It could be 5223 * moved inline now as tcp_urg is only called from one 5224 * place. We handle URGent data wrong. We have to - as 5225 * BSD still doesn't use the correction from RFC961. 5226 * For 1003.1g we should support a new option TCP_STDURG to permit 5227 * either form (or just set the sysctl tcp_stdurg). 5228 */ 5229 5230 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5231 { 5232 struct tcp_sock *tp = tcp_sk(sk); 5233 u32 ptr = ntohs(th->urg_ptr); 5234 5235 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg) 5236 ptr--; 5237 ptr += ntohl(th->seq); 5238 5239 /* Ignore urgent data that we've already seen and read. */ 5240 if (after(tp->copied_seq, ptr)) 5241 return; 5242 5243 /* Do not replay urg ptr. 5244 * 5245 * NOTE: interesting situation not covered by specs. 5246 * Misbehaving sender may send urg ptr, pointing to segment, 5247 * which we already have in ofo queue. We are not able to fetch 5248 * such data and will stay in TCP_URG_NOTYET until will be eaten 5249 * by recvmsg(). Seems, we are not obliged to handle such wicked 5250 * situations. But it is worth to think about possibility of some 5251 * DoSes using some hypothetical application level deadlock. 5252 */ 5253 if (before(ptr, tp->rcv_nxt)) 5254 return; 5255 5256 /* Do we already have a newer (or duplicate) urgent pointer? */ 5257 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5258 return; 5259 5260 /* Tell the world about our new urgent pointer. */ 5261 sk_send_sigurg(sk); 5262 5263 /* We may be adding urgent data when the last byte read was 5264 * urgent. To do this requires some care. We cannot just ignore 5265 * tp->copied_seq since we would read the last urgent byte again 5266 * as data, nor can we alter copied_seq until this data arrives 5267 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5268 * 5269 * NOTE. Double Dutch. Rendering to plain English: author of comment 5270 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5271 * and expect that both A and B disappear from stream. This is _wrong_. 5272 * Though this happens in BSD with high probability, this is occasional. 5273 * Any application relying on this is buggy. Note also, that fix "works" 5274 * only in this artificial test. Insert some normal data between A and B and we will 5275 * decline of BSD again. Verdict: it is better to remove to trap 5276 * buggy users. 5277 */ 5278 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5279 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5280 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5281 tp->copied_seq++; 5282 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5283 __skb_unlink(skb, &sk->sk_receive_queue); 5284 __kfree_skb(skb); 5285 } 5286 } 5287 5288 tp->urg_data = TCP_URG_NOTYET; 5289 tp->urg_seq = ptr; 5290 5291 /* Disable header prediction. */ 5292 tp->pred_flags = 0; 5293 } 5294 5295 /* This is the 'fast' part of urgent handling. */ 5296 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5297 { 5298 struct tcp_sock *tp = tcp_sk(sk); 5299 5300 /* Check if we get a new urgent pointer - normally not. */ 5301 if (th->urg) 5302 tcp_check_urg(sk, th); 5303 5304 /* Do we wait for any urgent data? - normally not... */ 5305 if (tp->urg_data == TCP_URG_NOTYET) { 5306 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5307 th->syn; 5308 5309 /* Is the urgent pointer pointing into this packet? */ 5310 if (ptr < skb->len) { 5311 u8 tmp; 5312 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5313 BUG(); 5314 tp->urg_data = TCP_URG_VALID | tmp; 5315 if (!sock_flag(sk, SOCK_DEAD)) 5316 sk->sk_data_ready(sk); 5317 } 5318 } 5319 } 5320 5321 /* Accept RST for rcv_nxt - 1 after a FIN. 5322 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5323 * FIN is sent followed by a RST packet. The RST is sent with the same 5324 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5325 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5326 * ACKs on the closed socket. In addition middleboxes can drop either the 5327 * challenge ACK or a subsequent RST. 5328 */ 5329 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5330 { 5331 struct tcp_sock *tp = tcp_sk(sk); 5332 5333 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5334 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5335 TCPF_CLOSING)); 5336 } 5337 5338 /* Does PAWS and seqno based validation of an incoming segment, flags will 5339 * play significant role here. 5340 */ 5341 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5342 const struct tcphdr *th, int syn_inerr) 5343 { 5344 struct tcp_sock *tp = tcp_sk(sk); 5345 bool rst_seq_match = false; 5346 5347 /* RFC1323: H1. Apply PAWS check first. */ 5348 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5349 tp->rx_opt.saw_tstamp && 5350 tcp_paws_discard(sk, skb)) { 5351 if (!th->rst) { 5352 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5353 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5354 LINUX_MIB_TCPACKSKIPPEDPAWS, 5355 &tp->last_oow_ack_time)) 5356 tcp_send_dupack(sk, skb); 5357 goto discard; 5358 } 5359 /* Reset is accepted even if it did not pass PAWS. */ 5360 } 5361 5362 /* Step 1: check sequence number */ 5363 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5364 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5365 * (RST) segments are validated by checking their SEQ-fields." 5366 * And page 69: "If an incoming segment is not acceptable, 5367 * an acknowledgment should be sent in reply (unless the RST 5368 * bit is set, if so drop the segment and return)". 5369 */ 5370 if (!th->rst) { 5371 if (th->syn) 5372 goto syn_challenge; 5373 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5374 LINUX_MIB_TCPACKSKIPPEDSEQ, 5375 &tp->last_oow_ack_time)) 5376 tcp_send_dupack(sk, skb); 5377 } else if (tcp_reset_check(sk, skb)) { 5378 tcp_reset(sk); 5379 } 5380 goto discard; 5381 } 5382 5383 /* Step 2: check RST bit */ 5384 if (th->rst) { 5385 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5386 * FIN and SACK too if available): 5387 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5388 * the right-most SACK block, 5389 * then 5390 * RESET the connection 5391 * else 5392 * Send a challenge ACK 5393 */ 5394 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5395 tcp_reset_check(sk, skb)) { 5396 rst_seq_match = true; 5397 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5398 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5399 int max_sack = sp[0].end_seq; 5400 int this_sack; 5401 5402 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5403 ++this_sack) { 5404 max_sack = after(sp[this_sack].end_seq, 5405 max_sack) ? 5406 sp[this_sack].end_seq : max_sack; 5407 } 5408 5409 if (TCP_SKB_CB(skb)->seq == max_sack) 5410 rst_seq_match = true; 5411 } 5412 5413 if (rst_seq_match) 5414 tcp_reset(sk); 5415 else { 5416 /* Disable TFO if RST is out-of-order 5417 * and no data has been received 5418 * for current active TFO socket 5419 */ 5420 if (tp->syn_fastopen && !tp->data_segs_in && 5421 sk->sk_state == TCP_ESTABLISHED) 5422 tcp_fastopen_active_disable(sk); 5423 tcp_send_challenge_ack(sk, skb); 5424 } 5425 goto discard; 5426 } 5427 5428 /* step 3: check security and precedence [ignored] */ 5429 5430 /* step 4: Check for a SYN 5431 * RFC 5961 4.2 : Send a challenge ack 5432 */ 5433 if (th->syn) { 5434 syn_challenge: 5435 if (syn_inerr) 5436 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5437 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5438 tcp_send_challenge_ack(sk, skb); 5439 goto discard; 5440 } 5441 5442 return true; 5443 5444 discard: 5445 tcp_drop(sk, skb); 5446 return false; 5447 } 5448 5449 /* 5450 * TCP receive function for the ESTABLISHED state. 5451 * 5452 * It is split into a fast path and a slow path. The fast path is 5453 * disabled when: 5454 * - A zero window was announced from us - zero window probing 5455 * is only handled properly in the slow path. 5456 * - Out of order segments arrived. 5457 * - Urgent data is expected. 5458 * - There is no buffer space left 5459 * - Unexpected TCP flags/window values/header lengths are received 5460 * (detected by checking the TCP header against pred_flags) 5461 * - Data is sent in both directions. Fast path only supports pure senders 5462 * or pure receivers (this means either the sequence number or the ack 5463 * value must stay constant) 5464 * - Unexpected TCP option. 5465 * 5466 * When these conditions are not satisfied it drops into a standard 5467 * receive procedure patterned after RFC793 to handle all cases. 5468 * The first three cases are guaranteed by proper pred_flags setting, 5469 * the rest is checked inline. Fast processing is turned on in 5470 * tcp_data_queue when everything is OK. 5471 */ 5472 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5473 { 5474 const struct tcphdr *th = (const struct tcphdr *)skb->data; 5475 struct tcp_sock *tp = tcp_sk(sk); 5476 unsigned int len = skb->len; 5477 5478 /* TCP congestion window tracking */ 5479 trace_tcp_probe(sk, skb); 5480 5481 tcp_mstamp_refresh(tp); 5482 if (unlikely(!sk->sk_rx_dst)) 5483 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5484 /* 5485 * Header prediction. 5486 * The code loosely follows the one in the famous 5487 * "30 instruction TCP receive" Van Jacobson mail. 5488 * 5489 * Van's trick is to deposit buffers into socket queue 5490 * on a device interrupt, to call tcp_recv function 5491 * on the receive process context and checksum and copy 5492 * the buffer to user space. smart... 5493 * 5494 * Our current scheme is not silly either but we take the 5495 * extra cost of the net_bh soft interrupt processing... 5496 * We do checksum and copy also but from device to kernel. 5497 */ 5498 5499 tp->rx_opt.saw_tstamp = 0; 5500 5501 /* pred_flags is 0xS?10 << 16 + snd_wnd 5502 * if header_prediction is to be made 5503 * 'S' will always be tp->tcp_header_len >> 2 5504 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5505 * turn it off (when there are holes in the receive 5506 * space for instance) 5507 * PSH flag is ignored. 5508 */ 5509 5510 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5511 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5512 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5513 int tcp_header_len = tp->tcp_header_len; 5514 5515 /* Timestamp header prediction: tcp_header_len 5516 * is automatically equal to th->doff*4 due to pred_flags 5517 * match. 5518 */ 5519 5520 /* Check timestamp */ 5521 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5522 /* No? Slow path! */ 5523 if (!tcp_parse_aligned_timestamp(tp, th)) 5524 goto slow_path; 5525 5526 /* If PAWS failed, check it more carefully in slow path */ 5527 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5528 goto slow_path; 5529 5530 /* DO NOT update ts_recent here, if checksum fails 5531 * and timestamp was corrupted part, it will result 5532 * in a hung connection since we will drop all 5533 * future packets due to the PAWS test. 5534 */ 5535 } 5536 5537 if (len <= tcp_header_len) { 5538 /* Bulk data transfer: sender */ 5539 if (len == tcp_header_len) { 5540 /* Predicted packet is in window by definition. 5541 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5542 * Hence, check seq<=rcv_wup reduces to: 5543 */ 5544 if (tcp_header_len == 5545 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5546 tp->rcv_nxt == tp->rcv_wup) 5547 tcp_store_ts_recent(tp); 5548 5549 /* We know that such packets are checksummed 5550 * on entry. 5551 */ 5552 tcp_ack(sk, skb, 0); 5553 __kfree_skb(skb); 5554 tcp_data_snd_check(sk); 5555 /* When receiving pure ack in fast path, update 5556 * last ts ecr directly instead of calling 5557 * tcp_rcv_rtt_measure_ts() 5558 */ 5559 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 5560 return; 5561 } else { /* Header too small */ 5562 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5563 goto discard; 5564 } 5565 } else { 5566 int eaten = 0; 5567 bool fragstolen = false; 5568 5569 if (tcp_checksum_complete(skb)) 5570 goto csum_error; 5571 5572 if ((int)skb->truesize > sk->sk_forward_alloc) 5573 goto step5; 5574 5575 /* Predicted packet is in window by definition. 5576 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5577 * Hence, check seq<=rcv_wup reduces to: 5578 */ 5579 if (tcp_header_len == 5580 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5581 tp->rcv_nxt == tp->rcv_wup) 5582 tcp_store_ts_recent(tp); 5583 5584 tcp_rcv_rtt_measure_ts(sk, skb); 5585 5586 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5587 5588 /* Bulk data transfer: receiver */ 5589 __skb_pull(skb, tcp_header_len); 5590 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5591 5592 tcp_event_data_recv(sk, skb); 5593 5594 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5595 /* Well, only one small jumplet in fast path... */ 5596 tcp_ack(sk, skb, FLAG_DATA); 5597 tcp_data_snd_check(sk); 5598 if (!inet_csk_ack_scheduled(sk)) 5599 goto no_ack; 5600 } 5601 5602 __tcp_ack_snd_check(sk, 0); 5603 no_ack: 5604 if (eaten) 5605 kfree_skb_partial(skb, fragstolen); 5606 tcp_data_ready(sk); 5607 return; 5608 } 5609 } 5610 5611 slow_path: 5612 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5613 goto csum_error; 5614 5615 if (!th->ack && !th->rst && !th->syn) 5616 goto discard; 5617 5618 /* 5619 * Standard slow path. 5620 */ 5621 5622 if (!tcp_validate_incoming(sk, skb, th, 1)) 5623 return; 5624 5625 step5: 5626 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5627 goto discard; 5628 5629 tcp_rcv_rtt_measure_ts(sk, skb); 5630 5631 /* Process urgent data. */ 5632 tcp_urg(sk, skb, th); 5633 5634 /* step 7: process the segment text */ 5635 tcp_data_queue(sk, skb); 5636 5637 tcp_data_snd_check(sk); 5638 tcp_ack_snd_check(sk); 5639 return; 5640 5641 csum_error: 5642 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5643 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5644 5645 discard: 5646 tcp_drop(sk, skb); 5647 } 5648 EXPORT_SYMBOL(tcp_rcv_established); 5649 5650 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5651 { 5652 struct tcp_sock *tp = tcp_sk(sk); 5653 struct inet_connection_sock *icsk = inet_csk(sk); 5654 5655 tcp_set_state(sk, TCP_ESTABLISHED); 5656 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5657 5658 if (skb) { 5659 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5660 security_inet_conn_established(sk, skb); 5661 sk_mark_napi_id(sk, skb); 5662 } 5663 5664 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB); 5665 5666 /* Prevent spurious tcp_cwnd_restart() on first data 5667 * packet. 5668 */ 5669 tp->lsndtime = tcp_jiffies32; 5670 5671 if (sock_flag(sk, SOCK_KEEPOPEN)) 5672 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5673 5674 if (!tp->rx_opt.snd_wscale) 5675 __tcp_fast_path_on(tp, tp->snd_wnd); 5676 else 5677 tp->pred_flags = 0; 5678 } 5679 5680 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5681 struct tcp_fastopen_cookie *cookie) 5682 { 5683 struct tcp_sock *tp = tcp_sk(sk); 5684 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 5685 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5686 bool syn_drop = false; 5687 5688 if (mss == tp->rx_opt.user_mss) { 5689 struct tcp_options_received opt; 5690 5691 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5692 tcp_clear_options(&opt); 5693 opt.user_mss = opt.mss_clamp = 0; 5694 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 5695 mss = opt.mss_clamp; 5696 } 5697 5698 if (!tp->syn_fastopen) { 5699 /* Ignore an unsolicited cookie */ 5700 cookie->len = -1; 5701 } else if (tp->total_retrans) { 5702 /* SYN timed out and the SYN-ACK neither has a cookie nor 5703 * acknowledges data. Presumably the remote received only 5704 * the retransmitted (regular) SYNs: either the original 5705 * SYN-data or the corresponding SYN-ACK was dropped. 5706 */ 5707 syn_drop = (cookie->len < 0 && data); 5708 } else if (cookie->len < 0 && !tp->syn_data) { 5709 /* We requested a cookie but didn't get it. If we did not use 5710 * the (old) exp opt format then try so next time (try_exp=1). 5711 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5712 */ 5713 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5714 } 5715 5716 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5717 5718 if (data) { /* Retransmit unacked data in SYN */ 5719 skb_rbtree_walk_from(data) { 5720 if (__tcp_retransmit_skb(sk, data, 1)) 5721 break; 5722 } 5723 tcp_rearm_rto(sk); 5724 NET_INC_STATS(sock_net(sk), 5725 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5726 return true; 5727 } 5728 tp->syn_data_acked = tp->syn_data; 5729 if (tp->syn_data_acked) { 5730 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 5731 /* SYN-data is counted as two separate packets in tcp_ack() */ 5732 if (tp->delivered > 1) 5733 --tp->delivered; 5734 } 5735 5736 tcp_fastopen_add_skb(sk, synack); 5737 5738 return false; 5739 } 5740 5741 static void smc_check_reset_syn(struct tcp_sock *tp) 5742 { 5743 #if IS_ENABLED(CONFIG_SMC) 5744 if (static_branch_unlikely(&tcp_have_smc)) { 5745 if (tp->syn_smc && !tp->rx_opt.smc_ok) 5746 tp->syn_smc = 0; 5747 } 5748 #endif 5749 } 5750 5751 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5752 const struct tcphdr *th) 5753 { 5754 struct inet_connection_sock *icsk = inet_csk(sk); 5755 struct tcp_sock *tp = tcp_sk(sk); 5756 struct tcp_fastopen_cookie foc = { .len = -1 }; 5757 int saved_clamp = tp->rx_opt.mss_clamp; 5758 bool fastopen_fail; 5759 5760 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 5761 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5762 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5763 5764 if (th->ack) { 5765 /* rfc793: 5766 * "If the state is SYN-SENT then 5767 * first check the ACK bit 5768 * If the ACK bit is set 5769 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5770 * a reset (unless the RST bit is set, if so drop 5771 * the segment and return)" 5772 */ 5773 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5774 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5775 goto reset_and_undo; 5776 5777 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5778 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5779 tcp_time_stamp(tp))) { 5780 NET_INC_STATS(sock_net(sk), 5781 LINUX_MIB_PAWSACTIVEREJECTED); 5782 goto reset_and_undo; 5783 } 5784 5785 /* Now ACK is acceptable. 5786 * 5787 * "If the RST bit is set 5788 * If the ACK was acceptable then signal the user "error: 5789 * connection reset", drop the segment, enter CLOSED state, 5790 * delete TCB, and return." 5791 */ 5792 5793 if (th->rst) { 5794 tcp_reset(sk); 5795 goto discard; 5796 } 5797 5798 /* rfc793: 5799 * "fifth, if neither of the SYN or RST bits is set then 5800 * drop the segment and return." 5801 * 5802 * See note below! 5803 * --ANK(990513) 5804 */ 5805 if (!th->syn) 5806 goto discard_and_undo; 5807 5808 /* rfc793: 5809 * "If the SYN bit is on ... 5810 * are acceptable then ... 5811 * (our SYN has been ACKed), change the connection 5812 * state to ESTABLISHED..." 5813 */ 5814 5815 tcp_ecn_rcv_synack(tp, th); 5816 5817 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5818 tcp_ack(sk, skb, FLAG_SLOWPATH); 5819 5820 /* Ok.. it's good. Set up sequence numbers and 5821 * move to established. 5822 */ 5823 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5824 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5825 5826 /* RFC1323: The window in SYN & SYN/ACK segments is 5827 * never scaled. 5828 */ 5829 tp->snd_wnd = ntohs(th->window); 5830 5831 if (!tp->rx_opt.wscale_ok) { 5832 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5833 tp->window_clamp = min(tp->window_clamp, 65535U); 5834 } 5835 5836 if (tp->rx_opt.saw_tstamp) { 5837 tp->rx_opt.tstamp_ok = 1; 5838 tp->tcp_header_len = 5839 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5840 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5841 tcp_store_ts_recent(tp); 5842 } else { 5843 tp->tcp_header_len = sizeof(struct tcphdr); 5844 } 5845 5846 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5847 tcp_initialize_rcv_mss(sk); 5848 5849 /* Remember, tcp_poll() does not lock socket! 5850 * Change state from SYN-SENT only after copied_seq 5851 * is initialized. */ 5852 tp->copied_seq = tp->rcv_nxt; 5853 5854 smc_check_reset_syn(tp); 5855 5856 smp_mb(); 5857 5858 tcp_finish_connect(sk, skb); 5859 5860 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 5861 tcp_rcv_fastopen_synack(sk, skb, &foc); 5862 5863 if (!sock_flag(sk, SOCK_DEAD)) { 5864 sk->sk_state_change(sk); 5865 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5866 } 5867 if (fastopen_fail) 5868 return -1; 5869 if (sk->sk_write_pending || 5870 icsk->icsk_accept_queue.rskq_defer_accept || 5871 inet_csk_in_pingpong_mode(sk)) { 5872 /* Save one ACK. Data will be ready after 5873 * several ticks, if write_pending is set. 5874 * 5875 * It may be deleted, but with this feature tcpdumps 5876 * look so _wonderfully_ clever, that I was not able 5877 * to stand against the temptation 8) --ANK 5878 */ 5879 inet_csk_schedule_ack(sk); 5880 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5881 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5882 TCP_DELACK_MAX, TCP_RTO_MAX); 5883 5884 discard: 5885 tcp_drop(sk, skb); 5886 return 0; 5887 } else { 5888 tcp_send_ack(sk); 5889 } 5890 return -1; 5891 } 5892 5893 /* No ACK in the segment */ 5894 5895 if (th->rst) { 5896 /* rfc793: 5897 * "If the RST bit is set 5898 * 5899 * Otherwise (no ACK) drop the segment and return." 5900 */ 5901 5902 goto discard_and_undo; 5903 } 5904 5905 /* PAWS check. */ 5906 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5907 tcp_paws_reject(&tp->rx_opt, 0)) 5908 goto discard_and_undo; 5909 5910 if (th->syn) { 5911 /* We see SYN without ACK. It is attempt of 5912 * simultaneous connect with crossed SYNs. 5913 * Particularly, it can be connect to self. 5914 */ 5915 tcp_set_state(sk, TCP_SYN_RECV); 5916 5917 if (tp->rx_opt.saw_tstamp) { 5918 tp->rx_opt.tstamp_ok = 1; 5919 tcp_store_ts_recent(tp); 5920 tp->tcp_header_len = 5921 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5922 } else { 5923 tp->tcp_header_len = sizeof(struct tcphdr); 5924 } 5925 5926 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5927 tp->copied_seq = tp->rcv_nxt; 5928 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5929 5930 /* RFC1323: The window in SYN & SYN/ACK segments is 5931 * never scaled. 5932 */ 5933 tp->snd_wnd = ntohs(th->window); 5934 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5935 tp->max_window = tp->snd_wnd; 5936 5937 tcp_ecn_rcv_syn(tp, th); 5938 5939 tcp_mtup_init(sk); 5940 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5941 tcp_initialize_rcv_mss(sk); 5942 5943 tcp_send_synack(sk); 5944 #if 0 5945 /* Note, we could accept data and URG from this segment. 5946 * There are no obstacles to make this (except that we must 5947 * either change tcp_recvmsg() to prevent it from returning data 5948 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5949 * 5950 * However, if we ignore data in ACKless segments sometimes, 5951 * we have no reasons to accept it sometimes. 5952 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5953 * is not flawless. So, discard packet for sanity. 5954 * Uncomment this return to process the data. 5955 */ 5956 return -1; 5957 #else 5958 goto discard; 5959 #endif 5960 } 5961 /* "fifth, if neither of the SYN or RST bits is set then 5962 * drop the segment and return." 5963 */ 5964 5965 discard_and_undo: 5966 tcp_clear_options(&tp->rx_opt); 5967 tp->rx_opt.mss_clamp = saved_clamp; 5968 goto discard; 5969 5970 reset_and_undo: 5971 tcp_clear_options(&tp->rx_opt); 5972 tp->rx_opt.mss_clamp = saved_clamp; 5973 return 1; 5974 } 5975 5976 /* 5977 * This function implements the receiving procedure of RFC 793 for 5978 * all states except ESTABLISHED and TIME_WAIT. 5979 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5980 * address independent. 5981 */ 5982 5983 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 5984 { 5985 struct tcp_sock *tp = tcp_sk(sk); 5986 struct inet_connection_sock *icsk = inet_csk(sk); 5987 const struct tcphdr *th = tcp_hdr(skb); 5988 struct request_sock *req; 5989 int queued = 0; 5990 bool acceptable; 5991 5992 switch (sk->sk_state) { 5993 case TCP_CLOSE: 5994 goto discard; 5995 5996 case TCP_LISTEN: 5997 if (th->ack) 5998 return 1; 5999 6000 if (th->rst) 6001 goto discard; 6002 6003 if (th->syn) { 6004 if (th->fin) 6005 goto discard; 6006 /* It is possible that we process SYN packets from backlog, 6007 * so we need to make sure to disable BH and RCU right there. 6008 */ 6009 rcu_read_lock(); 6010 local_bh_disable(); 6011 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 6012 local_bh_enable(); 6013 rcu_read_unlock(); 6014 6015 if (!acceptable) 6016 return 1; 6017 consume_skb(skb); 6018 return 0; 6019 } 6020 goto discard; 6021 6022 case TCP_SYN_SENT: 6023 tp->rx_opt.saw_tstamp = 0; 6024 tcp_mstamp_refresh(tp); 6025 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6026 if (queued >= 0) 6027 return queued; 6028 6029 /* Do step6 onward by hand. */ 6030 tcp_urg(sk, skb, th); 6031 __kfree_skb(skb); 6032 tcp_data_snd_check(sk); 6033 return 0; 6034 } 6035 6036 tcp_mstamp_refresh(tp); 6037 tp->rx_opt.saw_tstamp = 0; 6038 req = tp->fastopen_rsk; 6039 if (req) { 6040 bool req_stolen; 6041 6042 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6043 sk->sk_state != TCP_FIN_WAIT1); 6044 6045 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) 6046 goto discard; 6047 } 6048 6049 if (!th->ack && !th->rst && !th->syn) 6050 goto discard; 6051 6052 if (!tcp_validate_incoming(sk, skb, th, 0)) 6053 return 0; 6054 6055 /* step 5: check the ACK field */ 6056 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 6057 FLAG_UPDATE_TS_RECENT | 6058 FLAG_NO_CHALLENGE_ACK) > 0; 6059 6060 if (!acceptable) { 6061 if (sk->sk_state == TCP_SYN_RECV) 6062 return 1; /* send one RST */ 6063 tcp_send_challenge_ack(sk, skb); 6064 goto discard; 6065 } 6066 switch (sk->sk_state) { 6067 case TCP_SYN_RECV: 6068 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6069 if (!tp->srtt_us) 6070 tcp_synack_rtt_meas(sk, req); 6071 6072 /* Once we leave TCP_SYN_RECV, we no longer need req 6073 * so release it. 6074 */ 6075 if (req) { 6076 inet_csk(sk)->icsk_retransmits = 0; 6077 reqsk_fastopen_remove(sk, req, false); 6078 /* Re-arm the timer because data may have been sent out. 6079 * This is similar to the regular data transmission case 6080 * when new data has just been ack'ed. 6081 * 6082 * (TFO) - we could try to be more aggressive and 6083 * retransmitting any data sooner based on when they 6084 * are sent out. 6085 */ 6086 tcp_rearm_rto(sk); 6087 } else { 6088 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB); 6089 tp->copied_seq = tp->rcv_nxt; 6090 } 6091 smp_mb(); 6092 tcp_set_state(sk, TCP_ESTABLISHED); 6093 sk->sk_state_change(sk); 6094 6095 /* Note, that this wakeup is only for marginal crossed SYN case. 6096 * Passively open sockets are not waked up, because 6097 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6098 */ 6099 if (sk->sk_socket) 6100 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6101 6102 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6103 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6104 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6105 6106 if (tp->rx_opt.tstamp_ok) 6107 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6108 6109 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6110 tcp_update_pacing_rate(sk); 6111 6112 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6113 tp->lsndtime = tcp_jiffies32; 6114 6115 tcp_initialize_rcv_mss(sk); 6116 tcp_fast_path_on(tp); 6117 break; 6118 6119 case TCP_FIN_WAIT1: { 6120 int tmo; 6121 6122 /* If we enter the TCP_FIN_WAIT1 state and we are a 6123 * Fast Open socket and this is the first acceptable 6124 * ACK we have received, this would have acknowledged 6125 * our SYNACK so stop the SYNACK timer. 6126 */ 6127 if (req) { 6128 /* We no longer need the request sock. */ 6129 reqsk_fastopen_remove(sk, req, false); 6130 tcp_rearm_rto(sk); 6131 } 6132 if (tp->snd_una != tp->write_seq) 6133 break; 6134 6135 tcp_set_state(sk, TCP_FIN_WAIT2); 6136 sk->sk_shutdown |= SEND_SHUTDOWN; 6137 6138 sk_dst_confirm(sk); 6139 6140 if (!sock_flag(sk, SOCK_DEAD)) { 6141 /* Wake up lingering close() */ 6142 sk->sk_state_change(sk); 6143 break; 6144 } 6145 6146 if (tp->linger2 < 0) { 6147 tcp_done(sk); 6148 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6149 return 1; 6150 } 6151 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6152 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6153 /* Receive out of order FIN after close() */ 6154 if (tp->syn_fastopen && th->fin) 6155 tcp_fastopen_active_disable(sk); 6156 tcp_done(sk); 6157 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6158 return 1; 6159 } 6160 6161 tmo = tcp_fin_time(sk); 6162 if (tmo > TCP_TIMEWAIT_LEN) { 6163 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6164 } else if (th->fin || sock_owned_by_user(sk)) { 6165 /* Bad case. We could lose such FIN otherwise. 6166 * It is not a big problem, but it looks confusing 6167 * and not so rare event. We still can lose it now, 6168 * if it spins in bh_lock_sock(), but it is really 6169 * marginal case. 6170 */ 6171 inet_csk_reset_keepalive_timer(sk, tmo); 6172 } else { 6173 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6174 goto discard; 6175 } 6176 break; 6177 } 6178 6179 case TCP_CLOSING: 6180 if (tp->snd_una == tp->write_seq) { 6181 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6182 goto discard; 6183 } 6184 break; 6185 6186 case TCP_LAST_ACK: 6187 if (tp->snd_una == tp->write_seq) { 6188 tcp_update_metrics(sk); 6189 tcp_done(sk); 6190 goto discard; 6191 } 6192 break; 6193 } 6194 6195 /* step 6: check the URG bit */ 6196 tcp_urg(sk, skb, th); 6197 6198 /* step 7: process the segment text */ 6199 switch (sk->sk_state) { 6200 case TCP_CLOSE_WAIT: 6201 case TCP_CLOSING: 6202 case TCP_LAST_ACK: 6203 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6204 break; 6205 /* fall through */ 6206 case TCP_FIN_WAIT1: 6207 case TCP_FIN_WAIT2: 6208 /* RFC 793 says to queue data in these states, 6209 * RFC 1122 says we MUST send a reset. 6210 * BSD 4.4 also does reset. 6211 */ 6212 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6213 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6214 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6215 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6216 tcp_reset(sk); 6217 return 1; 6218 } 6219 } 6220 /* Fall through */ 6221 case TCP_ESTABLISHED: 6222 tcp_data_queue(sk, skb); 6223 queued = 1; 6224 break; 6225 } 6226 6227 /* tcp_data could move socket to TIME-WAIT */ 6228 if (sk->sk_state != TCP_CLOSE) { 6229 tcp_data_snd_check(sk); 6230 tcp_ack_snd_check(sk); 6231 } 6232 6233 if (!queued) { 6234 discard: 6235 tcp_drop(sk, skb); 6236 } 6237 return 0; 6238 } 6239 EXPORT_SYMBOL(tcp_rcv_state_process); 6240 6241 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6242 { 6243 struct inet_request_sock *ireq = inet_rsk(req); 6244 6245 if (family == AF_INET) 6246 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6247 &ireq->ir_rmt_addr, port); 6248 #if IS_ENABLED(CONFIG_IPV6) 6249 else if (family == AF_INET6) 6250 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6251 &ireq->ir_v6_rmt_addr, port); 6252 #endif 6253 } 6254 6255 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6256 * 6257 * If we receive a SYN packet with these bits set, it means a 6258 * network is playing bad games with TOS bits. In order to 6259 * avoid possible false congestion notifications, we disable 6260 * TCP ECN negotiation. 6261 * 6262 * Exception: tcp_ca wants ECN. This is required for DCTCP 6263 * congestion control: Linux DCTCP asserts ECT on all packets, 6264 * including SYN, which is most optimal solution; however, 6265 * others, such as FreeBSD do not. 6266 */ 6267 static void tcp_ecn_create_request(struct request_sock *req, 6268 const struct sk_buff *skb, 6269 const struct sock *listen_sk, 6270 const struct dst_entry *dst) 6271 { 6272 const struct tcphdr *th = tcp_hdr(skb); 6273 const struct net *net = sock_net(listen_sk); 6274 bool th_ecn = th->ece && th->cwr; 6275 bool ect, ecn_ok; 6276 u32 ecn_ok_dst; 6277 6278 if (!th_ecn) 6279 return; 6280 6281 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6282 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6283 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6284 6285 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6286 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6287 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6288 inet_rsk(req)->ecn_ok = 1; 6289 } 6290 6291 static void tcp_openreq_init(struct request_sock *req, 6292 const struct tcp_options_received *rx_opt, 6293 struct sk_buff *skb, const struct sock *sk) 6294 { 6295 struct inet_request_sock *ireq = inet_rsk(req); 6296 6297 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6298 req->cookie_ts = 0; 6299 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6300 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6301 tcp_rsk(req)->snt_synack = tcp_clock_us(); 6302 tcp_rsk(req)->last_oow_ack_time = 0; 6303 req->mss = rx_opt->mss_clamp; 6304 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6305 ireq->tstamp_ok = rx_opt->tstamp_ok; 6306 ireq->sack_ok = rx_opt->sack_ok; 6307 ireq->snd_wscale = rx_opt->snd_wscale; 6308 ireq->wscale_ok = rx_opt->wscale_ok; 6309 ireq->acked = 0; 6310 ireq->ecn_ok = 0; 6311 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6312 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6313 ireq->ir_mark = inet_request_mark(sk, skb); 6314 #if IS_ENABLED(CONFIG_SMC) 6315 ireq->smc_ok = rx_opt->smc_ok; 6316 #endif 6317 } 6318 6319 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6320 struct sock *sk_listener, 6321 bool attach_listener) 6322 { 6323 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6324 attach_listener); 6325 6326 if (req) { 6327 struct inet_request_sock *ireq = inet_rsk(req); 6328 6329 ireq->ireq_opt = NULL; 6330 #if IS_ENABLED(CONFIG_IPV6) 6331 ireq->pktopts = NULL; 6332 #endif 6333 atomic64_set(&ireq->ir_cookie, 0); 6334 ireq->ireq_state = TCP_NEW_SYN_RECV; 6335 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6336 ireq->ireq_family = sk_listener->sk_family; 6337 } 6338 6339 return req; 6340 } 6341 EXPORT_SYMBOL(inet_reqsk_alloc); 6342 6343 /* 6344 * Return true if a syncookie should be sent 6345 */ 6346 static bool tcp_syn_flood_action(const struct sock *sk, 6347 const struct sk_buff *skb, 6348 const char *proto) 6349 { 6350 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6351 const char *msg = "Dropping request"; 6352 bool want_cookie = false; 6353 struct net *net = sock_net(sk); 6354 6355 #ifdef CONFIG_SYN_COOKIES 6356 if (net->ipv4.sysctl_tcp_syncookies) { 6357 msg = "Sending cookies"; 6358 want_cookie = true; 6359 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6360 } else 6361 #endif 6362 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6363 6364 if (!queue->synflood_warned && 6365 net->ipv4.sysctl_tcp_syncookies != 2 && 6366 xchg(&queue->synflood_warned, 1) == 0) 6367 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6368 proto, ntohs(tcp_hdr(skb)->dest), msg); 6369 6370 return want_cookie; 6371 } 6372 6373 static void tcp_reqsk_record_syn(const struct sock *sk, 6374 struct request_sock *req, 6375 const struct sk_buff *skb) 6376 { 6377 if (tcp_sk(sk)->save_syn) { 6378 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6379 u32 *copy; 6380 6381 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6382 if (copy) { 6383 copy[0] = len; 6384 memcpy(©[1], skb_network_header(skb), len); 6385 req->saved_syn = copy; 6386 } 6387 } 6388 } 6389 6390 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6391 const struct tcp_request_sock_ops *af_ops, 6392 struct sock *sk, struct sk_buff *skb) 6393 { 6394 struct tcp_fastopen_cookie foc = { .len = -1 }; 6395 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6396 struct tcp_options_received tmp_opt; 6397 struct tcp_sock *tp = tcp_sk(sk); 6398 struct net *net = sock_net(sk); 6399 struct sock *fastopen_sk = NULL; 6400 struct request_sock *req; 6401 bool want_cookie = false; 6402 struct dst_entry *dst; 6403 struct flowi fl; 6404 6405 /* TW buckets are converted to open requests without 6406 * limitations, they conserve resources and peer is 6407 * evidently real one. 6408 */ 6409 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6410 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6411 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6412 if (!want_cookie) 6413 goto drop; 6414 } 6415 6416 if (sk_acceptq_is_full(sk)) { 6417 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6418 goto drop; 6419 } 6420 6421 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6422 if (!req) 6423 goto drop; 6424 6425 tcp_rsk(req)->af_specific = af_ops; 6426 tcp_rsk(req)->ts_off = 0; 6427 6428 tcp_clear_options(&tmp_opt); 6429 tmp_opt.mss_clamp = af_ops->mss_clamp; 6430 tmp_opt.user_mss = tp->rx_opt.user_mss; 6431 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6432 want_cookie ? NULL : &foc); 6433 6434 if (want_cookie && !tmp_opt.saw_tstamp) 6435 tcp_clear_options(&tmp_opt); 6436 6437 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 6438 tmp_opt.smc_ok = 0; 6439 6440 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6441 tcp_openreq_init(req, &tmp_opt, skb, sk); 6442 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6443 6444 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6445 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6446 6447 af_ops->init_req(req, sk, skb); 6448 6449 if (security_inet_conn_request(sk, skb, req)) 6450 goto drop_and_free; 6451 6452 if (tmp_opt.tstamp_ok) 6453 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6454 6455 dst = af_ops->route_req(sk, &fl, req); 6456 if (!dst) 6457 goto drop_and_free; 6458 6459 if (!want_cookie && !isn) { 6460 /* Kill the following clause, if you dislike this way. */ 6461 if (!net->ipv4.sysctl_tcp_syncookies && 6462 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6463 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6464 !tcp_peer_is_proven(req, dst)) { 6465 /* Without syncookies last quarter of 6466 * backlog is filled with destinations, 6467 * proven to be alive. 6468 * It means that we continue to communicate 6469 * to destinations, already remembered 6470 * to the moment of synflood. 6471 */ 6472 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6473 rsk_ops->family); 6474 goto drop_and_release; 6475 } 6476 6477 isn = af_ops->init_seq(skb); 6478 } 6479 6480 tcp_ecn_create_request(req, skb, sk, dst); 6481 6482 if (want_cookie) { 6483 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6484 req->cookie_ts = tmp_opt.tstamp_ok; 6485 if (!tmp_opt.tstamp_ok) 6486 inet_rsk(req)->ecn_ok = 0; 6487 } 6488 6489 tcp_rsk(req)->snt_isn = isn; 6490 tcp_rsk(req)->txhash = net_tx_rndhash(); 6491 tcp_openreq_init_rwin(req, sk, dst); 6492 sk_rx_queue_set(req_to_sk(req), skb); 6493 if (!want_cookie) { 6494 tcp_reqsk_record_syn(sk, req, skb); 6495 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6496 } 6497 if (fastopen_sk) { 6498 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6499 &foc, TCP_SYNACK_FASTOPEN); 6500 /* Add the child socket directly into the accept queue */ 6501 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 6502 reqsk_fastopen_remove(fastopen_sk, req, false); 6503 bh_unlock_sock(fastopen_sk); 6504 sock_put(fastopen_sk); 6505 reqsk_put(req); 6506 goto drop; 6507 } 6508 sk->sk_data_ready(sk); 6509 bh_unlock_sock(fastopen_sk); 6510 sock_put(fastopen_sk); 6511 } else { 6512 tcp_rsk(req)->tfo_listener = false; 6513 if (!want_cookie) 6514 inet_csk_reqsk_queue_hash_add(sk, req, 6515 tcp_timeout_init((struct sock *)req)); 6516 af_ops->send_synack(sk, dst, &fl, req, &foc, 6517 !want_cookie ? TCP_SYNACK_NORMAL : 6518 TCP_SYNACK_COOKIE); 6519 if (want_cookie) { 6520 reqsk_free(req); 6521 return 0; 6522 } 6523 } 6524 reqsk_put(req); 6525 return 0; 6526 6527 drop_and_release: 6528 dst_release(dst); 6529 drop_and_free: 6530 reqsk_free(req); 6531 drop: 6532 tcp_listendrop(sk); 6533 return 0; 6534 } 6535 EXPORT_SYMBOL(tcp_conn_request); 6536