xref: /openbmc/linux/net/ipv4/tcp_input.c (revision bdeeed09)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/static_key.h>
81 
82 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
83 
84 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
85 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
86 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
87 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
88 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
89 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
90 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
91 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
92 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
93 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
94 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
95 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
96 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
97 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
98 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
99 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
100 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
101 
102 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
103 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
104 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
105 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
106 
107 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
108 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
109 
110 #define REXMIT_NONE	0 /* no loss recovery to do */
111 #define REXMIT_LOST	1 /* retransmit packets marked lost */
112 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
113 
114 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
115 			     unsigned int len)
116 {
117 	static bool __once __read_mostly;
118 
119 	if (!__once) {
120 		struct net_device *dev;
121 
122 		__once = true;
123 
124 		rcu_read_lock();
125 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
126 		if (!dev || len >= dev->mtu)
127 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
128 				dev ? dev->name : "Unknown driver");
129 		rcu_read_unlock();
130 	}
131 }
132 
133 /* Adapt the MSS value used to make delayed ack decision to the
134  * real world.
135  */
136 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
137 {
138 	struct inet_connection_sock *icsk = inet_csk(sk);
139 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
140 	unsigned int len;
141 
142 	icsk->icsk_ack.last_seg_size = 0;
143 
144 	/* skb->len may jitter because of SACKs, even if peer
145 	 * sends good full-sized frames.
146 	 */
147 	len = skb_shinfo(skb)->gso_size ? : skb->len;
148 	if (len >= icsk->icsk_ack.rcv_mss) {
149 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
150 					       tcp_sk(sk)->advmss);
151 		/* Account for possibly-removed options */
152 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
153 				   MAX_TCP_OPTION_SPACE))
154 			tcp_gro_dev_warn(sk, skb, len);
155 	} else {
156 		/* Otherwise, we make more careful check taking into account,
157 		 * that SACKs block is variable.
158 		 *
159 		 * "len" is invariant segment length, including TCP header.
160 		 */
161 		len += skb->data - skb_transport_header(skb);
162 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
163 		    /* If PSH is not set, packet should be
164 		     * full sized, provided peer TCP is not badly broken.
165 		     * This observation (if it is correct 8)) allows
166 		     * to handle super-low mtu links fairly.
167 		     */
168 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
169 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
170 			/* Subtract also invariant (if peer is RFC compliant),
171 			 * tcp header plus fixed timestamp option length.
172 			 * Resulting "len" is MSS free of SACK jitter.
173 			 */
174 			len -= tcp_sk(sk)->tcp_header_len;
175 			icsk->icsk_ack.last_seg_size = len;
176 			if (len == lss) {
177 				icsk->icsk_ack.rcv_mss = len;
178 				return;
179 			}
180 		}
181 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
182 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
183 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
184 	}
185 }
186 
187 static void tcp_incr_quickack(struct sock *sk)
188 {
189 	struct inet_connection_sock *icsk = inet_csk(sk);
190 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
191 
192 	if (quickacks == 0)
193 		quickacks = 2;
194 	if (quickacks > icsk->icsk_ack.quick)
195 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
196 }
197 
198 static void tcp_enter_quickack_mode(struct sock *sk)
199 {
200 	struct inet_connection_sock *icsk = inet_csk(sk);
201 	tcp_incr_quickack(sk);
202 	icsk->icsk_ack.pingpong = 0;
203 	icsk->icsk_ack.ato = TCP_ATO_MIN;
204 }
205 
206 /* Send ACKs quickly, if "quick" count is not exhausted
207  * and the session is not interactive.
208  */
209 
210 static bool tcp_in_quickack_mode(struct sock *sk)
211 {
212 	const struct inet_connection_sock *icsk = inet_csk(sk);
213 	const struct dst_entry *dst = __sk_dst_get(sk);
214 
215 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
216 		(icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
217 }
218 
219 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
220 {
221 	if (tp->ecn_flags & TCP_ECN_OK)
222 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
223 }
224 
225 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
226 {
227 	if (tcp_hdr(skb)->cwr)
228 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
229 }
230 
231 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
232 {
233 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
234 }
235 
236 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
237 {
238 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
239 	case INET_ECN_NOT_ECT:
240 		/* Funny extension: if ECT is not set on a segment,
241 		 * and we already seen ECT on a previous segment,
242 		 * it is probably a retransmit.
243 		 */
244 		if (tp->ecn_flags & TCP_ECN_SEEN)
245 			tcp_enter_quickack_mode((struct sock *)tp);
246 		break;
247 	case INET_ECN_CE:
248 		if (tcp_ca_needs_ecn((struct sock *)tp))
249 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
250 
251 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
252 			/* Better not delay acks, sender can have a very low cwnd */
253 			tcp_enter_quickack_mode((struct sock *)tp);
254 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
255 		}
256 		tp->ecn_flags |= TCP_ECN_SEEN;
257 		break;
258 	default:
259 		if (tcp_ca_needs_ecn((struct sock *)tp))
260 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
261 		tp->ecn_flags |= TCP_ECN_SEEN;
262 		break;
263 	}
264 }
265 
266 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
267 {
268 	if (tp->ecn_flags & TCP_ECN_OK)
269 		__tcp_ecn_check_ce(tp, skb);
270 }
271 
272 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
273 {
274 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
275 		tp->ecn_flags &= ~TCP_ECN_OK;
276 }
277 
278 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
279 {
280 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
281 		tp->ecn_flags &= ~TCP_ECN_OK;
282 }
283 
284 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
285 {
286 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
287 		return true;
288 	return false;
289 }
290 
291 /* Buffer size and advertised window tuning.
292  *
293  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
294  */
295 
296 static void tcp_sndbuf_expand(struct sock *sk)
297 {
298 	const struct tcp_sock *tp = tcp_sk(sk);
299 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
300 	int sndmem, per_mss;
301 	u32 nr_segs;
302 
303 	/* Worst case is non GSO/TSO : each frame consumes one skb
304 	 * and skb->head is kmalloced using power of two area of memory
305 	 */
306 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
307 		  MAX_TCP_HEADER +
308 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
309 
310 	per_mss = roundup_pow_of_two(per_mss) +
311 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
312 
313 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
314 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
315 
316 	/* Fast Recovery (RFC 5681 3.2) :
317 	 * Cubic needs 1.7 factor, rounded to 2 to include
318 	 * extra cushion (application might react slowly to EPOLLOUT)
319 	 */
320 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
321 	sndmem *= nr_segs * per_mss;
322 
323 	if (sk->sk_sndbuf < sndmem)
324 		sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
325 }
326 
327 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
328  *
329  * All tcp_full_space() is split to two parts: "network" buffer, allocated
330  * forward and advertised in receiver window (tp->rcv_wnd) and
331  * "application buffer", required to isolate scheduling/application
332  * latencies from network.
333  * window_clamp is maximal advertised window. It can be less than
334  * tcp_full_space(), in this case tcp_full_space() - window_clamp
335  * is reserved for "application" buffer. The less window_clamp is
336  * the smoother our behaviour from viewpoint of network, but the lower
337  * throughput and the higher sensitivity of the connection to losses. 8)
338  *
339  * rcv_ssthresh is more strict window_clamp used at "slow start"
340  * phase to predict further behaviour of this connection.
341  * It is used for two goals:
342  * - to enforce header prediction at sender, even when application
343  *   requires some significant "application buffer". It is check #1.
344  * - to prevent pruning of receive queue because of misprediction
345  *   of receiver window. Check #2.
346  *
347  * The scheme does not work when sender sends good segments opening
348  * window and then starts to feed us spaghetti. But it should work
349  * in common situations. Otherwise, we have to rely on queue collapsing.
350  */
351 
352 /* Slow part of check#2. */
353 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
354 {
355 	struct tcp_sock *tp = tcp_sk(sk);
356 	/* Optimize this! */
357 	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
358 	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
359 
360 	while (tp->rcv_ssthresh <= window) {
361 		if (truesize <= skb->len)
362 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
363 
364 		truesize >>= 1;
365 		window >>= 1;
366 	}
367 	return 0;
368 }
369 
370 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
371 {
372 	struct tcp_sock *tp = tcp_sk(sk);
373 
374 	/* Check #1 */
375 	if (tp->rcv_ssthresh < tp->window_clamp &&
376 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
377 	    !tcp_under_memory_pressure(sk)) {
378 		int incr;
379 
380 		/* Check #2. Increase window, if skb with such overhead
381 		 * will fit to rcvbuf in future.
382 		 */
383 		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
384 			incr = 2 * tp->advmss;
385 		else
386 			incr = __tcp_grow_window(sk, skb);
387 
388 		if (incr) {
389 			incr = max_t(int, incr, 2 * skb->len);
390 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
391 					       tp->window_clamp);
392 			inet_csk(sk)->icsk_ack.quick |= 1;
393 		}
394 	}
395 }
396 
397 /* 3. Tuning rcvbuf, when connection enters established state. */
398 static void tcp_fixup_rcvbuf(struct sock *sk)
399 {
400 	u32 mss = tcp_sk(sk)->advmss;
401 	int rcvmem;
402 
403 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
404 		 tcp_default_init_rwnd(mss);
405 
406 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
407 	 * Allow enough cushion so that sender is not limited by our window
408 	 */
409 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf)
410 		rcvmem <<= 2;
411 
412 	if (sk->sk_rcvbuf < rcvmem)
413 		sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
414 }
415 
416 /* 4. Try to fixup all. It is made immediately after connection enters
417  *    established state.
418  */
419 void tcp_init_buffer_space(struct sock *sk)
420 {
421 	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
422 	struct tcp_sock *tp = tcp_sk(sk);
423 	int maxwin;
424 
425 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
426 		tcp_fixup_rcvbuf(sk);
427 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
428 		tcp_sndbuf_expand(sk);
429 
430 	tp->rcvq_space.space = tp->rcv_wnd;
431 	tcp_mstamp_refresh(tp);
432 	tp->rcvq_space.time = tp->tcp_mstamp;
433 	tp->rcvq_space.seq = tp->copied_seq;
434 
435 	maxwin = tcp_full_space(sk);
436 
437 	if (tp->window_clamp >= maxwin) {
438 		tp->window_clamp = maxwin;
439 
440 		if (tcp_app_win && maxwin > 4 * tp->advmss)
441 			tp->window_clamp = max(maxwin -
442 					       (maxwin >> tcp_app_win),
443 					       4 * tp->advmss);
444 	}
445 
446 	/* Force reservation of one segment. */
447 	if (tcp_app_win &&
448 	    tp->window_clamp > 2 * tp->advmss &&
449 	    tp->window_clamp + tp->advmss > maxwin)
450 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
451 
452 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
453 	tp->snd_cwnd_stamp = tcp_jiffies32;
454 }
455 
456 /* 5. Recalculate window clamp after socket hit its memory bounds. */
457 static void tcp_clamp_window(struct sock *sk)
458 {
459 	struct tcp_sock *tp = tcp_sk(sk);
460 	struct inet_connection_sock *icsk = inet_csk(sk);
461 	struct net *net = sock_net(sk);
462 
463 	icsk->icsk_ack.quick = 0;
464 
465 	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
466 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
467 	    !tcp_under_memory_pressure(sk) &&
468 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
469 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
470 				    net->ipv4.sysctl_tcp_rmem[2]);
471 	}
472 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
473 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
474 }
475 
476 /* Initialize RCV_MSS value.
477  * RCV_MSS is an our guess about MSS used by the peer.
478  * We haven't any direct information about the MSS.
479  * It's better to underestimate the RCV_MSS rather than overestimate.
480  * Overestimations make us ACKing less frequently than needed.
481  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
482  */
483 void tcp_initialize_rcv_mss(struct sock *sk)
484 {
485 	const struct tcp_sock *tp = tcp_sk(sk);
486 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
487 
488 	hint = min(hint, tp->rcv_wnd / 2);
489 	hint = min(hint, TCP_MSS_DEFAULT);
490 	hint = max(hint, TCP_MIN_MSS);
491 
492 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
493 }
494 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
495 
496 /* Receiver "autotuning" code.
497  *
498  * The algorithm for RTT estimation w/o timestamps is based on
499  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
500  * <http://public.lanl.gov/radiant/pubs.html#DRS>
501  *
502  * More detail on this code can be found at
503  * <http://staff.psc.edu/jheffner/>,
504  * though this reference is out of date.  A new paper
505  * is pending.
506  */
507 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
508 {
509 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
510 	long m = sample;
511 
512 	if (new_sample != 0) {
513 		/* If we sample in larger samples in the non-timestamp
514 		 * case, we could grossly overestimate the RTT especially
515 		 * with chatty applications or bulk transfer apps which
516 		 * are stalled on filesystem I/O.
517 		 *
518 		 * Also, since we are only going for a minimum in the
519 		 * non-timestamp case, we do not smooth things out
520 		 * else with timestamps disabled convergence takes too
521 		 * long.
522 		 */
523 		if (!win_dep) {
524 			m -= (new_sample >> 3);
525 			new_sample += m;
526 		} else {
527 			m <<= 3;
528 			if (m < new_sample)
529 				new_sample = m;
530 		}
531 	} else {
532 		/* No previous measure. */
533 		new_sample = m << 3;
534 	}
535 
536 	tp->rcv_rtt_est.rtt_us = new_sample;
537 }
538 
539 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
540 {
541 	u32 delta_us;
542 
543 	if (tp->rcv_rtt_est.time == 0)
544 		goto new_measure;
545 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
546 		return;
547 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
548 	if (!delta_us)
549 		delta_us = 1;
550 	tcp_rcv_rtt_update(tp, delta_us, 1);
551 
552 new_measure:
553 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
554 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
555 }
556 
557 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
558 					  const struct sk_buff *skb)
559 {
560 	struct tcp_sock *tp = tcp_sk(sk);
561 
562 	if (tp->rx_opt.rcv_tsecr &&
563 	    (TCP_SKB_CB(skb)->end_seq -
564 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
565 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
566 		u32 delta_us;
567 
568 		if (!delta)
569 			delta = 1;
570 		delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
571 		tcp_rcv_rtt_update(tp, delta_us, 0);
572 	}
573 }
574 
575 /*
576  * This function should be called every time data is copied to user space.
577  * It calculates the appropriate TCP receive buffer space.
578  */
579 void tcp_rcv_space_adjust(struct sock *sk)
580 {
581 	struct tcp_sock *tp = tcp_sk(sk);
582 	u32 copied;
583 	int time;
584 
585 	tcp_mstamp_refresh(tp);
586 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
587 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
588 		return;
589 
590 	/* Number of bytes copied to user in last RTT */
591 	copied = tp->copied_seq - tp->rcvq_space.seq;
592 	if (copied <= tp->rcvq_space.space)
593 		goto new_measure;
594 
595 	/* A bit of theory :
596 	 * copied = bytes received in previous RTT, our base window
597 	 * To cope with packet losses, we need a 2x factor
598 	 * To cope with slow start, and sender growing its cwin by 100 %
599 	 * every RTT, we need a 4x factor, because the ACK we are sending
600 	 * now is for the next RTT, not the current one :
601 	 * <prev RTT . ><current RTT .. ><next RTT .... >
602 	 */
603 
604 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
605 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
606 		int rcvmem, rcvbuf;
607 		u64 rcvwin, grow;
608 
609 		/* minimal window to cope with packet losses, assuming
610 		 * steady state. Add some cushion because of small variations.
611 		 */
612 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
613 
614 		/* Accommodate for sender rate increase (eg. slow start) */
615 		grow = rcvwin * (copied - tp->rcvq_space.space);
616 		do_div(grow, tp->rcvq_space.space);
617 		rcvwin += (grow << 1);
618 
619 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
620 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
621 			rcvmem += 128;
622 
623 		do_div(rcvwin, tp->advmss);
624 		rcvbuf = min_t(u64, rcvwin * rcvmem,
625 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
626 		if (rcvbuf > sk->sk_rcvbuf) {
627 			sk->sk_rcvbuf = rcvbuf;
628 
629 			/* Make the window clamp follow along.  */
630 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
631 		}
632 	}
633 	tp->rcvq_space.space = copied;
634 
635 new_measure:
636 	tp->rcvq_space.seq = tp->copied_seq;
637 	tp->rcvq_space.time = tp->tcp_mstamp;
638 }
639 
640 /* There is something which you must keep in mind when you analyze the
641  * behavior of the tp->ato delayed ack timeout interval.  When a
642  * connection starts up, we want to ack as quickly as possible.  The
643  * problem is that "good" TCP's do slow start at the beginning of data
644  * transmission.  The means that until we send the first few ACK's the
645  * sender will sit on his end and only queue most of his data, because
646  * he can only send snd_cwnd unacked packets at any given time.  For
647  * each ACK we send, he increments snd_cwnd and transmits more of his
648  * queue.  -DaveM
649  */
650 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
651 {
652 	struct tcp_sock *tp = tcp_sk(sk);
653 	struct inet_connection_sock *icsk = inet_csk(sk);
654 	u32 now;
655 
656 	inet_csk_schedule_ack(sk);
657 
658 	tcp_measure_rcv_mss(sk, skb);
659 
660 	tcp_rcv_rtt_measure(tp);
661 
662 	now = tcp_jiffies32;
663 
664 	if (!icsk->icsk_ack.ato) {
665 		/* The _first_ data packet received, initialize
666 		 * delayed ACK engine.
667 		 */
668 		tcp_incr_quickack(sk);
669 		icsk->icsk_ack.ato = TCP_ATO_MIN;
670 	} else {
671 		int m = now - icsk->icsk_ack.lrcvtime;
672 
673 		if (m <= TCP_ATO_MIN / 2) {
674 			/* The fastest case is the first. */
675 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
676 		} else if (m < icsk->icsk_ack.ato) {
677 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
678 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
679 				icsk->icsk_ack.ato = icsk->icsk_rto;
680 		} else if (m > icsk->icsk_rto) {
681 			/* Too long gap. Apparently sender failed to
682 			 * restart window, so that we send ACKs quickly.
683 			 */
684 			tcp_incr_quickack(sk);
685 			sk_mem_reclaim(sk);
686 		}
687 	}
688 	icsk->icsk_ack.lrcvtime = now;
689 
690 	tcp_ecn_check_ce(tp, skb);
691 
692 	if (skb->len >= 128)
693 		tcp_grow_window(sk, skb);
694 }
695 
696 /* Called to compute a smoothed rtt estimate. The data fed to this
697  * routine either comes from timestamps, or from segments that were
698  * known _not_ to have been retransmitted [see Karn/Partridge
699  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
700  * piece by Van Jacobson.
701  * NOTE: the next three routines used to be one big routine.
702  * To save cycles in the RFC 1323 implementation it was better to break
703  * it up into three procedures. -- erics
704  */
705 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
706 {
707 	struct tcp_sock *tp = tcp_sk(sk);
708 	long m = mrtt_us; /* RTT */
709 	u32 srtt = tp->srtt_us;
710 
711 	/*	The following amusing code comes from Jacobson's
712 	 *	article in SIGCOMM '88.  Note that rtt and mdev
713 	 *	are scaled versions of rtt and mean deviation.
714 	 *	This is designed to be as fast as possible
715 	 *	m stands for "measurement".
716 	 *
717 	 *	On a 1990 paper the rto value is changed to:
718 	 *	RTO = rtt + 4 * mdev
719 	 *
720 	 * Funny. This algorithm seems to be very broken.
721 	 * These formulae increase RTO, when it should be decreased, increase
722 	 * too slowly, when it should be increased quickly, decrease too quickly
723 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
724 	 * does not matter how to _calculate_ it. Seems, it was trap
725 	 * that VJ failed to avoid. 8)
726 	 */
727 	if (srtt != 0) {
728 		m -= (srtt >> 3);	/* m is now error in rtt est */
729 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
730 		if (m < 0) {
731 			m = -m;		/* m is now abs(error) */
732 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
733 			/* This is similar to one of Eifel findings.
734 			 * Eifel blocks mdev updates when rtt decreases.
735 			 * This solution is a bit different: we use finer gain
736 			 * for mdev in this case (alpha*beta).
737 			 * Like Eifel it also prevents growth of rto,
738 			 * but also it limits too fast rto decreases,
739 			 * happening in pure Eifel.
740 			 */
741 			if (m > 0)
742 				m >>= 3;
743 		} else {
744 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
745 		}
746 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
747 		if (tp->mdev_us > tp->mdev_max_us) {
748 			tp->mdev_max_us = tp->mdev_us;
749 			if (tp->mdev_max_us > tp->rttvar_us)
750 				tp->rttvar_us = tp->mdev_max_us;
751 		}
752 		if (after(tp->snd_una, tp->rtt_seq)) {
753 			if (tp->mdev_max_us < tp->rttvar_us)
754 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
755 			tp->rtt_seq = tp->snd_nxt;
756 			tp->mdev_max_us = tcp_rto_min_us(sk);
757 		}
758 	} else {
759 		/* no previous measure. */
760 		srtt = m << 3;		/* take the measured time to be rtt */
761 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
762 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
763 		tp->mdev_max_us = tp->rttvar_us;
764 		tp->rtt_seq = tp->snd_nxt;
765 	}
766 	tp->srtt_us = max(1U, srtt);
767 }
768 
769 static void tcp_update_pacing_rate(struct sock *sk)
770 {
771 	const struct tcp_sock *tp = tcp_sk(sk);
772 	u64 rate;
773 
774 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
775 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
776 
777 	/* current rate is (cwnd * mss) / srtt
778 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
779 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
780 	 *
781 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
782 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
783 	 *	 end of slow start and should slow down.
784 	 */
785 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
786 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
787 	else
788 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
789 
790 	rate *= max(tp->snd_cwnd, tp->packets_out);
791 
792 	if (likely(tp->srtt_us))
793 		do_div(rate, tp->srtt_us);
794 
795 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
796 	 * without any lock. We want to make sure compiler wont store
797 	 * intermediate values in this location.
798 	 */
799 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
800 					     sk->sk_max_pacing_rate));
801 }
802 
803 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
804  * routine referred to above.
805  */
806 static void tcp_set_rto(struct sock *sk)
807 {
808 	const struct tcp_sock *tp = tcp_sk(sk);
809 	/* Old crap is replaced with new one. 8)
810 	 *
811 	 * More seriously:
812 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
813 	 *    It cannot be less due to utterly erratic ACK generation made
814 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
815 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
816 	 *    is invisible. Actually, Linux-2.4 also generates erratic
817 	 *    ACKs in some circumstances.
818 	 */
819 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
820 
821 	/* 2. Fixups made earlier cannot be right.
822 	 *    If we do not estimate RTO correctly without them,
823 	 *    all the algo is pure shit and should be replaced
824 	 *    with correct one. It is exactly, which we pretend to do.
825 	 */
826 
827 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
828 	 * guarantees that rto is higher.
829 	 */
830 	tcp_bound_rto(sk);
831 }
832 
833 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
834 {
835 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
836 
837 	if (!cwnd)
838 		cwnd = TCP_INIT_CWND;
839 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
840 }
841 
842 /* Take a notice that peer is sending D-SACKs */
843 static void tcp_dsack_seen(struct tcp_sock *tp)
844 {
845 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
846 	tp->rack.dsack_seen = 1;
847 }
848 
849 /* It's reordering when higher sequence was delivered (i.e. sacked) before
850  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
851  * distance is approximated in full-mss packet distance ("reordering").
852  */
853 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
854 				      const int ts)
855 {
856 	struct tcp_sock *tp = tcp_sk(sk);
857 	const u32 mss = tp->mss_cache;
858 	u32 fack, metric;
859 
860 	fack = tcp_highest_sack_seq(tp);
861 	if (!before(low_seq, fack))
862 		return;
863 
864 	metric = fack - low_seq;
865 	if ((metric > tp->reordering * mss) && mss) {
866 #if FASTRETRANS_DEBUG > 1
867 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
868 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
869 			 tp->reordering,
870 			 0,
871 			 tp->sacked_out,
872 			 tp->undo_marker ? tp->undo_retrans : 0);
873 #endif
874 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
875 				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
876 	}
877 
878 	tp->rack.reord = 1;
879 	/* This exciting event is worth to be remembered. 8) */
880 	NET_INC_STATS(sock_net(sk),
881 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
882 }
883 
884 /* This must be called before lost_out is incremented */
885 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
886 {
887 	if (!tp->retransmit_skb_hint ||
888 	    before(TCP_SKB_CB(skb)->seq,
889 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
890 		tp->retransmit_skb_hint = skb;
891 }
892 
893 /* Sum the number of packets on the wire we have marked as lost.
894  * There are two cases we care about here:
895  * a) Packet hasn't been marked lost (nor retransmitted),
896  *    and this is the first loss.
897  * b) Packet has been marked both lost and retransmitted,
898  *    and this means we think it was lost again.
899  */
900 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
901 {
902 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
903 
904 	if (!(sacked & TCPCB_LOST) ||
905 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
906 		tp->lost += tcp_skb_pcount(skb);
907 }
908 
909 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
910 {
911 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
912 		tcp_verify_retransmit_hint(tp, skb);
913 
914 		tp->lost_out += tcp_skb_pcount(skb);
915 		tcp_sum_lost(tp, skb);
916 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
917 	}
918 }
919 
920 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
921 {
922 	tcp_verify_retransmit_hint(tp, skb);
923 
924 	tcp_sum_lost(tp, skb);
925 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
926 		tp->lost_out += tcp_skb_pcount(skb);
927 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
928 	}
929 }
930 
931 /* This procedure tags the retransmission queue when SACKs arrive.
932  *
933  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
934  * Packets in queue with these bits set are counted in variables
935  * sacked_out, retrans_out and lost_out, correspondingly.
936  *
937  * Valid combinations are:
938  * Tag  InFlight	Description
939  * 0	1		- orig segment is in flight.
940  * S	0		- nothing flies, orig reached receiver.
941  * L	0		- nothing flies, orig lost by net.
942  * R	2		- both orig and retransmit are in flight.
943  * L|R	1		- orig is lost, retransmit is in flight.
944  * S|R  1		- orig reached receiver, retrans is still in flight.
945  * (L|S|R is logically valid, it could occur when L|R is sacked,
946  *  but it is equivalent to plain S and code short-curcuits it to S.
947  *  L|S is logically invalid, it would mean -1 packet in flight 8))
948  *
949  * These 6 states form finite state machine, controlled by the following events:
950  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
951  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
952  * 3. Loss detection event of two flavors:
953  *	A. Scoreboard estimator decided the packet is lost.
954  *	   A'. Reno "three dupacks" marks head of queue lost.
955  *	B. SACK arrives sacking SND.NXT at the moment, when the
956  *	   segment was retransmitted.
957  * 4. D-SACK added new rule: D-SACK changes any tag to S.
958  *
959  * It is pleasant to note, that state diagram turns out to be commutative,
960  * so that we are allowed not to be bothered by order of our actions,
961  * when multiple events arrive simultaneously. (see the function below).
962  *
963  * Reordering detection.
964  * --------------------
965  * Reordering metric is maximal distance, which a packet can be displaced
966  * in packet stream. With SACKs we can estimate it:
967  *
968  * 1. SACK fills old hole and the corresponding segment was not
969  *    ever retransmitted -> reordering. Alas, we cannot use it
970  *    when segment was retransmitted.
971  * 2. The last flaw is solved with D-SACK. D-SACK arrives
972  *    for retransmitted and already SACKed segment -> reordering..
973  * Both of these heuristics are not used in Loss state, when we cannot
974  * account for retransmits accurately.
975  *
976  * SACK block validation.
977  * ----------------------
978  *
979  * SACK block range validation checks that the received SACK block fits to
980  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
981  * Note that SND.UNA is not included to the range though being valid because
982  * it means that the receiver is rather inconsistent with itself reporting
983  * SACK reneging when it should advance SND.UNA. Such SACK block this is
984  * perfectly valid, however, in light of RFC2018 which explicitly states
985  * that "SACK block MUST reflect the newest segment.  Even if the newest
986  * segment is going to be discarded ...", not that it looks very clever
987  * in case of head skb. Due to potentional receiver driven attacks, we
988  * choose to avoid immediate execution of a walk in write queue due to
989  * reneging and defer head skb's loss recovery to standard loss recovery
990  * procedure that will eventually trigger (nothing forbids us doing this).
991  *
992  * Implements also blockage to start_seq wrap-around. Problem lies in the
993  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
994  * there's no guarantee that it will be before snd_nxt (n). The problem
995  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
996  * wrap (s_w):
997  *
998  *         <- outs wnd ->                          <- wrapzone ->
999  *         u     e      n                         u_w   e_w  s n_w
1000  *         |     |      |                          |     |   |  |
1001  * |<------------+------+----- TCP seqno space --------------+---------->|
1002  * ...-- <2^31 ->|                                           |<--------...
1003  * ...---- >2^31 ------>|                                    |<--------...
1004  *
1005  * Current code wouldn't be vulnerable but it's better still to discard such
1006  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1007  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1008  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1009  * equal to the ideal case (infinite seqno space without wrap caused issues).
1010  *
1011  * With D-SACK the lower bound is extended to cover sequence space below
1012  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1013  * again, D-SACK block must not to go across snd_una (for the same reason as
1014  * for the normal SACK blocks, explained above). But there all simplicity
1015  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1016  * fully below undo_marker they do not affect behavior in anyway and can
1017  * therefore be safely ignored. In rare cases (which are more or less
1018  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1019  * fragmentation and packet reordering past skb's retransmission. To consider
1020  * them correctly, the acceptable range must be extended even more though
1021  * the exact amount is rather hard to quantify. However, tp->max_window can
1022  * be used as an exaggerated estimate.
1023  */
1024 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1025 				   u32 start_seq, u32 end_seq)
1026 {
1027 	/* Too far in future, or reversed (interpretation is ambiguous) */
1028 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1029 		return false;
1030 
1031 	/* Nasty start_seq wrap-around check (see comments above) */
1032 	if (!before(start_seq, tp->snd_nxt))
1033 		return false;
1034 
1035 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1036 	 * start_seq == snd_una is non-sensical (see comments above)
1037 	 */
1038 	if (after(start_seq, tp->snd_una))
1039 		return true;
1040 
1041 	if (!is_dsack || !tp->undo_marker)
1042 		return false;
1043 
1044 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1045 	if (after(end_seq, tp->snd_una))
1046 		return false;
1047 
1048 	if (!before(start_seq, tp->undo_marker))
1049 		return true;
1050 
1051 	/* Too old */
1052 	if (!after(end_seq, tp->undo_marker))
1053 		return false;
1054 
1055 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1056 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1057 	 */
1058 	return !before(start_seq, end_seq - tp->max_window);
1059 }
1060 
1061 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1062 			    struct tcp_sack_block_wire *sp, int num_sacks,
1063 			    u32 prior_snd_una)
1064 {
1065 	struct tcp_sock *tp = tcp_sk(sk);
1066 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1067 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1068 	bool dup_sack = false;
1069 
1070 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1071 		dup_sack = true;
1072 		tcp_dsack_seen(tp);
1073 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1074 	} else if (num_sacks > 1) {
1075 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1076 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1077 
1078 		if (!after(end_seq_0, end_seq_1) &&
1079 		    !before(start_seq_0, start_seq_1)) {
1080 			dup_sack = true;
1081 			tcp_dsack_seen(tp);
1082 			NET_INC_STATS(sock_net(sk),
1083 					LINUX_MIB_TCPDSACKOFORECV);
1084 		}
1085 	}
1086 
1087 	/* D-SACK for already forgotten data... Do dumb counting. */
1088 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1089 	    !after(end_seq_0, prior_snd_una) &&
1090 	    after(end_seq_0, tp->undo_marker))
1091 		tp->undo_retrans--;
1092 
1093 	return dup_sack;
1094 }
1095 
1096 struct tcp_sacktag_state {
1097 	u32	reord;
1098 	/* Timestamps for earliest and latest never-retransmitted segment
1099 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1100 	 * but congestion control should still get an accurate delay signal.
1101 	 */
1102 	u64	first_sackt;
1103 	u64	last_sackt;
1104 	struct rate_sample *rate;
1105 	int	flag;
1106 	unsigned int mss_now;
1107 };
1108 
1109 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1110  * the incoming SACK may not exactly match but we can find smaller MSS
1111  * aligned portion of it that matches. Therefore we might need to fragment
1112  * which may fail and creates some hassle (caller must handle error case
1113  * returns).
1114  *
1115  * FIXME: this could be merged to shift decision code
1116  */
1117 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1118 				  u32 start_seq, u32 end_seq)
1119 {
1120 	int err;
1121 	bool in_sack;
1122 	unsigned int pkt_len;
1123 	unsigned int mss;
1124 
1125 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1126 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1127 
1128 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1129 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1130 		mss = tcp_skb_mss(skb);
1131 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1132 
1133 		if (!in_sack) {
1134 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1135 			if (pkt_len < mss)
1136 				pkt_len = mss;
1137 		} else {
1138 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1139 			if (pkt_len < mss)
1140 				return -EINVAL;
1141 		}
1142 
1143 		/* Round if necessary so that SACKs cover only full MSSes
1144 		 * and/or the remaining small portion (if present)
1145 		 */
1146 		if (pkt_len > mss) {
1147 			unsigned int new_len = (pkt_len / mss) * mss;
1148 			if (!in_sack && new_len < pkt_len)
1149 				new_len += mss;
1150 			pkt_len = new_len;
1151 		}
1152 
1153 		if (pkt_len >= skb->len && !in_sack)
1154 			return 0;
1155 
1156 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1157 				   pkt_len, mss, GFP_ATOMIC);
1158 		if (err < 0)
1159 			return err;
1160 	}
1161 
1162 	return in_sack;
1163 }
1164 
1165 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1166 static u8 tcp_sacktag_one(struct sock *sk,
1167 			  struct tcp_sacktag_state *state, u8 sacked,
1168 			  u32 start_seq, u32 end_seq,
1169 			  int dup_sack, int pcount,
1170 			  u64 xmit_time)
1171 {
1172 	struct tcp_sock *tp = tcp_sk(sk);
1173 
1174 	/* Account D-SACK for retransmitted packet. */
1175 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1176 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1177 		    after(end_seq, tp->undo_marker))
1178 			tp->undo_retrans--;
1179 		if ((sacked & TCPCB_SACKED_ACKED) &&
1180 		    before(start_seq, state->reord))
1181 				state->reord = start_seq;
1182 	}
1183 
1184 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1185 	if (!after(end_seq, tp->snd_una))
1186 		return sacked;
1187 
1188 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1189 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1190 
1191 		if (sacked & TCPCB_SACKED_RETRANS) {
1192 			/* If the segment is not tagged as lost,
1193 			 * we do not clear RETRANS, believing
1194 			 * that retransmission is still in flight.
1195 			 */
1196 			if (sacked & TCPCB_LOST) {
1197 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1198 				tp->lost_out -= pcount;
1199 				tp->retrans_out -= pcount;
1200 			}
1201 		} else {
1202 			if (!(sacked & TCPCB_RETRANS)) {
1203 				/* New sack for not retransmitted frame,
1204 				 * which was in hole. It is reordering.
1205 				 */
1206 				if (before(start_seq,
1207 					   tcp_highest_sack_seq(tp)) &&
1208 				    before(start_seq, state->reord))
1209 					state->reord = start_seq;
1210 
1211 				if (!after(end_seq, tp->high_seq))
1212 					state->flag |= FLAG_ORIG_SACK_ACKED;
1213 				if (state->first_sackt == 0)
1214 					state->first_sackt = xmit_time;
1215 				state->last_sackt = xmit_time;
1216 			}
1217 
1218 			if (sacked & TCPCB_LOST) {
1219 				sacked &= ~TCPCB_LOST;
1220 				tp->lost_out -= pcount;
1221 			}
1222 		}
1223 
1224 		sacked |= TCPCB_SACKED_ACKED;
1225 		state->flag |= FLAG_DATA_SACKED;
1226 		tp->sacked_out += pcount;
1227 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1228 
1229 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1230 		if (tp->lost_skb_hint &&
1231 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1232 			tp->lost_cnt_hint += pcount;
1233 	}
1234 
1235 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1236 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1237 	 * are accounted above as well.
1238 	 */
1239 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1240 		sacked &= ~TCPCB_SACKED_RETRANS;
1241 		tp->retrans_out -= pcount;
1242 	}
1243 
1244 	return sacked;
1245 }
1246 
1247 /* Shift newly-SACKed bytes from this skb to the immediately previous
1248  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1249  */
1250 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1251 			    struct sk_buff *skb,
1252 			    struct tcp_sacktag_state *state,
1253 			    unsigned int pcount, int shifted, int mss,
1254 			    bool dup_sack)
1255 {
1256 	struct tcp_sock *tp = tcp_sk(sk);
1257 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1258 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1259 
1260 	BUG_ON(!pcount);
1261 
1262 	/* Adjust counters and hints for the newly sacked sequence
1263 	 * range but discard the return value since prev is already
1264 	 * marked. We must tag the range first because the seq
1265 	 * advancement below implicitly advances
1266 	 * tcp_highest_sack_seq() when skb is highest_sack.
1267 	 */
1268 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1269 			start_seq, end_seq, dup_sack, pcount,
1270 			skb->skb_mstamp);
1271 	tcp_rate_skb_delivered(sk, skb, state->rate);
1272 
1273 	if (skb == tp->lost_skb_hint)
1274 		tp->lost_cnt_hint += pcount;
1275 
1276 	TCP_SKB_CB(prev)->end_seq += shifted;
1277 	TCP_SKB_CB(skb)->seq += shifted;
1278 
1279 	tcp_skb_pcount_add(prev, pcount);
1280 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1281 	tcp_skb_pcount_add(skb, -pcount);
1282 
1283 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1284 	 * in theory this shouldn't be necessary but as long as DSACK
1285 	 * code can come after this skb later on it's better to keep
1286 	 * setting gso_size to something.
1287 	 */
1288 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1289 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1290 
1291 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1292 	if (tcp_skb_pcount(skb) <= 1)
1293 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1294 
1295 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1296 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1297 
1298 	if (skb->len > 0) {
1299 		BUG_ON(!tcp_skb_pcount(skb));
1300 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1301 		return false;
1302 	}
1303 
1304 	/* Whole SKB was eaten :-) */
1305 
1306 	if (skb == tp->retransmit_skb_hint)
1307 		tp->retransmit_skb_hint = prev;
1308 	if (skb == tp->lost_skb_hint) {
1309 		tp->lost_skb_hint = prev;
1310 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1311 	}
1312 
1313 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1314 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1315 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1316 		TCP_SKB_CB(prev)->end_seq++;
1317 
1318 	if (skb == tcp_highest_sack(sk))
1319 		tcp_advance_highest_sack(sk, skb);
1320 
1321 	tcp_skb_collapse_tstamp(prev, skb);
1322 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1323 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1324 
1325 	tcp_rtx_queue_unlink_and_free(skb, sk);
1326 
1327 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1328 
1329 	return true;
1330 }
1331 
1332 /* I wish gso_size would have a bit more sane initialization than
1333  * something-or-zero which complicates things
1334  */
1335 static int tcp_skb_seglen(const struct sk_buff *skb)
1336 {
1337 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1338 }
1339 
1340 /* Shifting pages past head area doesn't work */
1341 static int skb_can_shift(const struct sk_buff *skb)
1342 {
1343 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1344 }
1345 
1346 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1347  * skb.
1348  */
1349 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1350 					  struct tcp_sacktag_state *state,
1351 					  u32 start_seq, u32 end_seq,
1352 					  bool dup_sack)
1353 {
1354 	struct tcp_sock *tp = tcp_sk(sk);
1355 	struct sk_buff *prev;
1356 	int mss;
1357 	int pcount = 0;
1358 	int len;
1359 	int in_sack;
1360 
1361 	/* Normally R but no L won't result in plain S */
1362 	if (!dup_sack &&
1363 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1364 		goto fallback;
1365 	if (!skb_can_shift(skb))
1366 		goto fallback;
1367 	/* This frame is about to be dropped (was ACKed). */
1368 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1369 		goto fallback;
1370 
1371 	/* Can only happen with delayed DSACK + discard craziness */
1372 	prev = skb_rb_prev(skb);
1373 	if (!prev)
1374 		goto fallback;
1375 
1376 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1377 		goto fallback;
1378 
1379 	if (!tcp_skb_can_collapse_to(prev))
1380 		goto fallback;
1381 
1382 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1383 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1384 
1385 	if (in_sack) {
1386 		len = skb->len;
1387 		pcount = tcp_skb_pcount(skb);
1388 		mss = tcp_skb_seglen(skb);
1389 
1390 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1391 		 * drop this restriction as unnecessary
1392 		 */
1393 		if (mss != tcp_skb_seglen(prev))
1394 			goto fallback;
1395 	} else {
1396 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1397 			goto noop;
1398 		/* CHECKME: This is non-MSS split case only?, this will
1399 		 * cause skipped skbs due to advancing loop btw, original
1400 		 * has that feature too
1401 		 */
1402 		if (tcp_skb_pcount(skb) <= 1)
1403 			goto noop;
1404 
1405 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1406 		if (!in_sack) {
1407 			/* TODO: head merge to next could be attempted here
1408 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1409 			 * though it might not be worth of the additional hassle
1410 			 *
1411 			 * ...we can probably just fallback to what was done
1412 			 * previously. We could try merging non-SACKed ones
1413 			 * as well but it probably isn't going to buy off
1414 			 * because later SACKs might again split them, and
1415 			 * it would make skb timestamp tracking considerably
1416 			 * harder problem.
1417 			 */
1418 			goto fallback;
1419 		}
1420 
1421 		len = end_seq - TCP_SKB_CB(skb)->seq;
1422 		BUG_ON(len < 0);
1423 		BUG_ON(len > skb->len);
1424 
1425 		/* MSS boundaries should be honoured or else pcount will
1426 		 * severely break even though it makes things bit trickier.
1427 		 * Optimize common case to avoid most of the divides
1428 		 */
1429 		mss = tcp_skb_mss(skb);
1430 
1431 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1432 		 * drop this restriction as unnecessary
1433 		 */
1434 		if (mss != tcp_skb_seglen(prev))
1435 			goto fallback;
1436 
1437 		if (len == mss) {
1438 			pcount = 1;
1439 		} else if (len < mss) {
1440 			goto noop;
1441 		} else {
1442 			pcount = len / mss;
1443 			len = pcount * mss;
1444 		}
1445 	}
1446 
1447 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1448 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1449 		goto fallback;
1450 
1451 	if (!skb_shift(prev, skb, len))
1452 		goto fallback;
1453 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1454 		goto out;
1455 
1456 	/* Hole filled allows collapsing with the next as well, this is very
1457 	 * useful when hole on every nth skb pattern happens
1458 	 */
1459 	skb = skb_rb_next(prev);
1460 	if (!skb)
1461 		goto out;
1462 
1463 	if (!skb_can_shift(skb) ||
1464 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1465 	    (mss != tcp_skb_seglen(skb)))
1466 		goto out;
1467 
1468 	len = skb->len;
1469 	if (skb_shift(prev, skb, len)) {
1470 		pcount += tcp_skb_pcount(skb);
1471 		tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb),
1472 				len, mss, 0);
1473 	}
1474 
1475 out:
1476 	return prev;
1477 
1478 noop:
1479 	return skb;
1480 
1481 fallback:
1482 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1483 	return NULL;
1484 }
1485 
1486 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1487 					struct tcp_sack_block *next_dup,
1488 					struct tcp_sacktag_state *state,
1489 					u32 start_seq, u32 end_seq,
1490 					bool dup_sack_in)
1491 {
1492 	struct tcp_sock *tp = tcp_sk(sk);
1493 	struct sk_buff *tmp;
1494 
1495 	skb_rbtree_walk_from(skb) {
1496 		int in_sack = 0;
1497 		bool dup_sack = dup_sack_in;
1498 
1499 		/* queue is in-order => we can short-circuit the walk early */
1500 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1501 			break;
1502 
1503 		if (next_dup  &&
1504 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1505 			in_sack = tcp_match_skb_to_sack(sk, skb,
1506 							next_dup->start_seq,
1507 							next_dup->end_seq);
1508 			if (in_sack > 0)
1509 				dup_sack = true;
1510 		}
1511 
1512 		/* skb reference here is a bit tricky to get right, since
1513 		 * shifting can eat and free both this skb and the next,
1514 		 * so not even _safe variant of the loop is enough.
1515 		 */
1516 		if (in_sack <= 0) {
1517 			tmp = tcp_shift_skb_data(sk, skb, state,
1518 						 start_seq, end_seq, dup_sack);
1519 			if (tmp) {
1520 				if (tmp != skb) {
1521 					skb = tmp;
1522 					continue;
1523 				}
1524 
1525 				in_sack = 0;
1526 			} else {
1527 				in_sack = tcp_match_skb_to_sack(sk, skb,
1528 								start_seq,
1529 								end_seq);
1530 			}
1531 		}
1532 
1533 		if (unlikely(in_sack < 0))
1534 			break;
1535 
1536 		if (in_sack) {
1537 			TCP_SKB_CB(skb)->sacked =
1538 				tcp_sacktag_one(sk,
1539 						state,
1540 						TCP_SKB_CB(skb)->sacked,
1541 						TCP_SKB_CB(skb)->seq,
1542 						TCP_SKB_CB(skb)->end_seq,
1543 						dup_sack,
1544 						tcp_skb_pcount(skb),
1545 						skb->skb_mstamp);
1546 			tcp_rate_skb_delivered(sk, skb, state->rate);
1547 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1548 				list_del_init(&skb->tcp_tsorted_anchor);
1549 
1550 			if (!before(TCP_SKB_CB(skb)->seq,
1551 				    tcp_highest_sack_seq(tp)))
1552 				tcp_advance_highest_sack(sk, skb);
1553 		}
1554 	}
1555 	return skb;
1556 }
1557 
1558 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk,
1559 					   struct tcp_sacktag_state *state,
1560 					   u32 seq)
1561 {
1562 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1563 	struct sk_buff *skb;
1564 
1565 	while (*p) {
1566 		parent = *p;
1567 		skb = rb_to_skb(parent);
1568 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1569 			p = &parent->rb_left;
1570 			continue;
1571 		}
1572 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1573 			p = &parent->rb_right;
1574 			continue;
1575 		}
1576 		return skb;
1577 	}
1578 	return NULL;
1579 }
1580 
1581 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1582 					struct tcp_sacktag_state *state,
1583 					u32 skip_to_seq)
1584 {
1585 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1586 		return skb;
1587 
1588 	return tcp_sacktag_bsearch(sk, state, skip_to_seq);
1589 }
1590 
1591 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1592 						struct sock *sk,
1593 						struct tcp_sack_block *next_dup,
1594 						struct tcp_sacktag_state *state,
1595 						u32 skip_to_seq)
1596 {
1597 	if (!next_dup)
1598 		return skb;
1599 
1600 	if (before(next_dup->start_seq, skip_to_seq)) {
1601 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1602 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1603 				       next_dup->start_seq, next_dup->end_seq,
1604 				       1);
1605 	}
1606 
1607 	return skb;
1608 }
1609 
1610 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1611 {
1612 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1613 }
1614 
1615 static int
1616 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1617 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1618 {
1619 	struct tcp_sock *tp = tcp_sk(sk);
1620 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1621 				    TCP_SKB_CB(ack_skb)->sacked);
1622 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1623 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1624 	struct tcp_sack_block *cache;
1625 	struct sk_buff *skb;
1626 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1627 	int used_sacks;
1628 	bool found_dup_sack = false;
1629 	int i, j;
1630 	int first_sack_index;
1631 
1632 	state->flag = 0;
1633 	state->reord = tp->snd_nxt;
1634 
1635 	if (!tp->sacked_out)
1636 		tcp_highest_sack_reset(sk);
1637 
1638 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1639 					 num_sacks, prior_snd_una);
1640 	if (found_dup_sack) {
1641 		state->flag |= FLAG_DSACKING_ACK;
1642 		tp->delivered++; /* A spurious retransmission is delivered */
1643 	}
1644 
1645 	/* Eliminate too old ACKs, but take into
1646 	 * account more or less fresh ones, they can
1647 	 * contain valid SACK info.
1648 	 */
1649 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1650 		return 0;
1651 
1652 	if (!tp->packets_out)
1653 		goto out;
1654 
1655 	used_sacks = 0;
1656 	first_sack_index = 0;
1657 	for (i = 0; i < num_sacks; i++) {
1658 		bool dup_sack = !i && found_dup_sack;
1659 
1660 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1661 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1662 
1663 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1664 					    sp[used_sacks].start_seq,
1665 					    sp[used_sacks].end_seq)) {
1666 			int mib_idx;
1667 
1668 			if (dup_sack) {
1669 				if (!tp->undo_marker)
1670 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1671 				else
1672 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1673 			} else {
1674 				/* Don't count olds caused by ACK reordering */
1675 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1676 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1677 					continue;
1678 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1679 			}
1680 
1681 			NET_INC_STATS(sock_net(sk), mib_idx);
1682 			if (i == 0)
1683 				first_sack_index = -1;
1684 			continue;
1685 		}
1686 
1687 		/* Ignore very old stuff early */
1688 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1689 			continue;
1690 
1691 		used_sacks++;
1692 	}
1693 
1694 	/* order SACK blocks to allow in order walk of the retrans queue */
1695 	for (i = used_sacks - 1; i > 0; i--) {
1696 		for (j = 0; j < i; j++) {
1697 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1698 				swap(sp[j], sp[j + 1]);
1699 
1700 				/* Track where the first SACK block goes to */
1701 				if (j == first_sack_index)
1702 					first_sack_index = j + 1;
1703 			}
1704 		}
1705 	}
1706 
1707 	state->mss_now = tcp_current_mss(sk);
1708 	skb = NULL;
1709 	i = 0;
1710 
1711 	if (!tp->sacked_out) {
1712 		/* It's already past, so skip checking against it */
1713 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1714 	} else {
1715 		cache = tp->recv_sack_cache;
1716 		/* Skip empty blocks in at head of the cache */
1717 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1718 		       !cache->end_seq)
1719 			cache++;
1720 	}
1721 
1722 	while (i < used_sacks) {
1723 		u32 start_seq = sp[i].start_seq;
1724 		u32 end_seq = sp[i].end_seq;
1725 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1726 		struct tcp_sack_block *next_dup = NULL;
1727 
1728 		if (found_dup_sack && ((i + 1) == first_sack_index))
1729 			next_dup = &sp[i + 1];
1730 
1731 		/* Skip too early cached blocks */
1732 		while (tcp_sack_cache_ok(tp, cache) &&
1733 		       !before(start_seq, cache->end_seq))
1734 			cache++;
1735 
1736 		/* Can skip some work by looking recv_sack_cache? */
1737 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1738 		    after(end_seq, cache->start_seq)) {
1739 
1740 			/* Head todo? */
1741 			if (before(start_seq, cache->start_seq)) {
1742 				skb = tcp_sacktag_skip(skb, sk, state,
1743 						       start_seq);
1744 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1745 						       state,
1746 						       start_seq,
1747 						       cache->start_seq,
1748 						       dup_sack);
1749 			}
1750 
1751 			/* Rest of the block already fully processed? */
1752 			if (!after(end_seq, cache->end_seq))
1753 				goto advance_sp;
1754 
1755 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1756 						       state,
1757 						       cache->end_seq);
1758 
1759 			/* ...tail remains todo... */
1760 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1761 				/* ...but better entrypoint exists! */
1762 				skb = tcp_highest_sack(sk);
1763 				if (!skb)
1764 					break;
1765 				cache++;
1766 				goto walk;
1767 			}
1768 
1769 			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1770 			/* Check overlap against next cached too (past this one already) */
1771 			cache++;
1772 			continue;
1773 		}
1774 
1775 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1776 			skb = tcp_highest_sack(sk);
1777 			if (!skb)
1778 				break;
1779 		}
1780 		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1781 
1782 walk:
1783 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1784 				       start_seq, end_seq, dup_sack);
1785 
1786 advance_sp:
1787 		i++;
1788 	}
1789 
1790 	/* Clear the head of the cache sack blocks so we can skip it next time */
1791 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1792 		tp->recv_sack_cache[i].start_seq = 0;
1793 		tp->recv_sack_cache[i].end_seq = 0;
1794 	}
1795 	for (j = 0; j < used_sacks; j++)
1796 		tp->recv_sack_cache[i++] = sp[j];
1797 
1798 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1799 		tcp_check_sack_reordering(sk, state->reord, 0);
1800 
1801 	tcp_verify_left_out(tp);
1802 out:
1803 
1804 #if FASTRETRANS_DEBUG > 0
1805 	WARN_ON((int)tp->sacked_out < 0);
1806 	WARN_ON((int)tp->lost_out < 0);
1807 	WARN_ON((int)tp->retrans_out < 0);
1808 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1809 #endif
1810 	return state->flag;
1811 }
1812 
1813 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1814  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1815  */
1816 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1817 {
1818 	u32 holes;
1819 
1820 	holes = max(tp->lost_out, 1U);
1821 	holes = min(holes, tp->packets_out);
1822 
1823 	if ((tp->sacked_out + holes) > tp->packets_out) {
1824 		tp->sacked_out = tp->packets_out - holes;
1825 		return true;
1826 	}
1827 	return false;
1828 }
1829 
1830 /* If we receive more dupacks than we expected counting segments
1831  * in assumption of absent reordering, interpret this as reordering.
1832  * The only another reason could be bug in receiver TCP.
1833  */
1834 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1835 {
1836 	struct tcp_sock *tp = tcp_sk(sk);
1837 
1838 	if (!tcp_limit_reno_sacked(tp))
1839 		return;
1840 
1841 	tp->reordering = min_t(u32, tp->packets_out + addend,
1842 			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1843 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1844 }
1845 
1846 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1847 
1848 static void tcp_add_reno_sack(struct sock *sk)
1849 {
1850 	struct tcp_sock *tp = tcp_sk(sk);
1851 	u32 prior_sacked = tp->sacked_out;
1852 
1853 	tp->sacked_out++;
1854 	tcp_check_reno_reordering(sk, 0);
1855 	if (tp->sacked_out > prior_sacked)
1856 		tp->delivered++; /* Some out-of-order packet is delivered */
1857 	tcp_verify_left_out(tp);
1858 }
1859 
1860 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1861 
1862 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1863 {
1864 	struct tcp_sock *tp = tcp_sk(sk);
1865 
1866 	if (acked > 0) {
1867 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1868 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1869 		if (acked - 1 >= tp->sacked_out)
1870 			tp->sacked_out = 0;
1871 		else
1872 			tp->sacked_out -= acked - 1;
1873 	}
1874 	tcp_check_reno_reordering(sk, acked);
1875 	tcp_verify_left_out(tp);
1876 }
1877 
1878 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1879 {
1880 	tp->sacked_out = 0;
1881 }
1882 
1883 void tcp_clear_retrans(struct tcp_sock *tp)
1884 {
1885 	tp->retrans_out = 0;
1886 	tp->lost_out = 0;
1887 	tp->undo_marker = 0;
1888 	tp->undo_retrans = -1;
1889 	tp->sacked_out = 0;
1890 }
1891 
1892 static inline void tcp_init_undo(struct tcp_sock *tp)
1893 {
1894 	tp->undo_marker = tp->snd_una;
1895 	/* Retransmission still in flight may cause DSACKs later. */
1896 	tp->undo_retrans = tp->retrans_out ? : -1;
1897 }
1898 
1899 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1900  * and reset tags completely, otherwise preserve SACKs. If receiver
1901  * dropped its ofo queue, we will know this due to reneging detection.
1902  */
1903 void tcp_enter_loss(struct sock *sk)
1904 {
1905 	const struct inet_connection_sock *icsk = inet_csk(sk);
1906 	struct tcp_sock *tp = tcp_sk(sk);
1907 	struct net *net = sock_net(sk);
1908 	struct sk_buff *skb;
1909 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1910 	bool is_reneg;			/* is receiver reneging on SACKs? */
1911 	bool mark_lost;
1912 
1913 	/* Reduce ssthresh if it has not yet been made inside this window. */
1914 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1915 	    !after(tp->high_seq, tp->snd_una) ||
1916 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1917 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1918 		tp->prior_cwnd = tp->snd_cwnd;
1919 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1920 		tcp_ca_event(sk, CA_EVENT_LOSS);
1921 		tcp_init_undo(tp);
1922 	}
1923 	tp->snd_cwnd	   = 1;
1924 	tp->snd_cwnd_cnt   = 0;
1925 	tp->snd_cwnd_stamp = tcp_jiffies32;
1926 
1927 	tp->retrans_out = 0;
1928 	tp->lost_out = 0;
1929 
1930 	if (tcp_is_reno(tp))
1931 		tcp_reset_reno_sack(tp);
1932 
1933 	skb = tcp_rtx_queue_head(sk);
1934 	is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1935 	if (is_reneg) {
1936 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1937 		tp->sacked_out = 0;
1938 		/* Mark SACK reneging until we recover from this loss event. */
1939 		tp->is_sack_reneg = 1;
1940 	}
1941 	tcp_clear_all_retrans_hints(tp);
1942 
1943 	skb_rbtree_walk_from(skb) {
1944 		mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
1945 			     is_reneg);
1946 		if (mark_lost)
1947 			tcp_sum_lost(tp, skb);
1948 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1949 		if (mark_lost) {
1950 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1951 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1952 			tp->lost_out += tcp_skb_pcount(skb);
1953 		}
1954 	}
1955 	tcp_verify_left_out(tp);
1956 
1957 	/* Timeout in disordered state after receiving substantial DUPACKs
1958 	 * suggests that the degree of reordering is over-estimated.
1959 	 */
1960 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1961 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1962 		tp->reordering = min_t(unsigned int, tp->reordering,
1963 				       net->ipv4.sysctl_tcp_reordering);
1964 	tcp_set_ca_state(sk, TCP_CA_Loss);
1965 	tp->high_seq = tp->snd_nxt;
1966 	tcp_ecn_queue_cwr(tp);
1967 
1968 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1969 	 * loss recovery is underway except recurring timeout(s) on
1970 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1971 	 */
1972 	tp->frto = net->ipv4.sysctl_tcp_frto &&
1973 		   (new_recovery || icsk->icsk_retransmits) &&
1974 		   !inet_csk(sk)->icsk_mtup.probe_size;
1975 }
1976 
1977 /* If ACK arrived pointing to a remembered SACK, it means that our
1978  * remembered SACKs do not reflect real state of receiver i.e.
1979  * receiver _host_ is heavily congested (or buggy).
1980  *
1981  * To avoid big spurious retransmission bursts due to transient SACK
1982  * scoreboard oddities that look like reneging, we give the receiver a
1983  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1984  * restore sanity to the SACK scoreboard. If the apparent reneging
1985  * persists until this RTO then we'll clear the SACK scoreboard.
1986  */
1987 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1988 {
1989 	if (flag & FLAG_SACK_RENEGING) {
1990 		struct tcp_sock *tp = tcp_sk(sk);
1991 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
1992 					  msecs_to_jiffies(10));
1993 
1994 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1995 					  delay, TCP_RTO_MAX);
1996 		return true;
1997 	}
1998 	return false;
1999 }
2000 
2001 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2002  * counter when SACK is enabled (without SACK, sacked_out is used for
2003  * that purpose).
2004  *
2005  * With reordering, holes may still be in flight, so RFC3517 recovery
2006  * uses pure sacked_out (total number of SACKed segments) even though
2007  * it violates the RFC that uses duplicate ACKs, often these are equal
2008  * but when e.g. out-of-window ACKs or packet duplication occurs,
2009  * they differ. Since neither occurs due to loss, TCP should really
2010  * ignore them.
2011  */
2012 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2013 {
2014 	return tp->sacked_out + 1;
2015 }
2016 
2017 /* Linux NewReno/SACK/ECN state machine.
2018  * --------------------------------------
2019  *
2020  * "Open"	Normal state, no dubious events, fast path.
2021  * "Disorder"   In all the respects it is "Open",
2022  *		but requires a bit more attention. It is entered when
2023  *		we see some SACKs or dupacks. It is split of "Open"
2024  *		mainly to move some processing from fast path to slow one.
2025  * "CWR"	CWND was reduced due to some Congestion Notification event.
2026  *		It can be ECN, ICMP source quench, local device congestion.
2027  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2028  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2029  *
2030  * tcp_fastretrans_alert() is entered:
2031  * - each incoming ACK, if state is not "Open"
2032  * - when arrived ACK is unusual, namely:
2033  *	* SACK
2034  *	* Duplicate ACK.
2035  *	* ECN ECE.
2036  *
2037  * Counting packets in flight is pretty simple.
2038  *
2039  *	in_flight = packets_out - left_out + retrans_out
2040  *
2041  *	packets_out is SND.NXT-SND.UNA counted in packets.
2042  *
2043  *	retrans_out is number of retransmitted segments.
2044  *
2045  *	left_out is number of segments left network, but not ACKed yet.
2046  *
2047  *		left_out = sacked_out + lost_out
2048  *
2049  *     sacked_out: Packets, which arrived to receiver out of order
2050  *		   and hence not ACKed. With SACKs this number is simply
2051  *		   amount of SACKed data. Even without SACKs
2052  *		   it is easy to give pretty reliable estimate of this number,
2053  *		   counting duplicate ACKs.
2054  *
2055  *       lost_out: Packets lost by network. TCP has no explicit
2056  *		   "loss notification" feedback from network (for now).
2057  *		   It means that this number can be only _guessed_.
2058  *		   Actually, it is the heuristics to predict lossage that
2059  *		   distinguishes different algorithms.
2060  *
2061  *	F.e. after RTO, when all the queue is considered as lost,
2062  *	lost_out = packets_out and in_flight = retrans_out.
2063  *
2064  *		Essentially, we have now a few algorithms detecting
2065  *		lost packets.
2066  *
2067  *		If the receiver supports SACK:
2068  *
2069  *		RFC6675/3517: It is the conventional algorithm. A packet is
2070  *		considered lost if the number of higher sequence packets
2071  *		SACKed is greater than or equal the DUPACK thoreshold
2072  *		(reordering). This is implemented in tcp_mark_head_lost and
2073  *		tcp_update_scoreboard.
2074  *
2075  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2076  *		(2017-) that checks timing instead of counting DUPACKs.
2077  *		Essentially a packet is considered lost if it's not S/ACKed
2078  *		after RTT + reordering_window, where both metrics are
2079  *		dynamically measured and adjusted. This is implemented in
2080  *		tcp_rack_mark_lost.
2081  *
2082  *		If the receiver does not support SACK:
2083  *
2084  *		NewReno (RFC6582): in Recovery we assume that one segment
2085  *		is lost (classic Reno). While we are in Recovery and
2086  *		a partial ACK arrives, we assume that one more packet
2087  *		is lost (NewReno). This heuristics are the same in NewReno
2088  *		and SACK.
2089  *
2090  * Really tricky (and requiring careful tuning) part of algorithm
2091  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2092  * The first determines the moment _when_ we should reduce CWND and,
2093  * hence, slow down forward transmission. In fact, it determines the moment
2094  * when we decide that hole is caused by loss, rather than by a reorder.
2095  *
2096  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2097  * holes, caused by lost packets.
2098  *
2099  * And the most logically complicated part of algorithm is undo
2100  * heuristics. We detect false retransmits due to both too early
2101  * fast retransmit (reordering) and underestimated RTO, analyzing
2102  * timestamps and D-SACKs. When we detect that some segments were
2103  * retransmitted by mistake and CWND reduction was wrong, we undo
2104  * window reduction and abort recovery phase. This logic is hidden
2105  * inside several functions named tcp_try_undo_<something>.
2106  */
2107 
2108 /* This function decides, when we should leave Disordered state
2109  * and enter Recovery phase, reducing congestion window.
2110  *
2111  * Main question: may we further continue forward transmission
2112  * with the same cwnd?
2113  */
2114 static bool tcp_time_to_recover(struct sock *sk, int flag)
2115 {
2116 	struct tcp_sock *tp = tcp_sk(sk);
2117 
2118 	/* Trick#1: The loss is proven. */
2119 	if (tp->lost_out)
2120 		return true;
2121 
2122 	/* Not-A-Trick#2 : Classic rule... */
2123 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2124 		return true;
2125 
2126 	return false;
2127 }
2128 
2129 /* Detect loss in event "A" above by marking head of queue up as lost.
2130  * For non-SACK(Reno) senders, the first "packets" number of segments
2131  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2132  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2133  * the maximum SACKed segments to pass before reaching this limit.
2134  */
2135 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2136 {
2137 	struct tcp_sock *tp = tcp_sk(sk);
2138 	struct sk_buff *skb;
2139 	int cnt, oldcnt, lost;
2140 	unsigned int mss;
2141 	/* Use SACK to deduce losses of new sequences sent during recovery */
2142 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2143 
2144 	WARN_ON(packets > tp->packets_out);
2145 	skb = tp->lost_skb_hint;
2146 	if (skb) {
2147 		/* Head already handled? */
2148 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2149 			return;
2150 		cnt = tp->lost_cnt_hint;
2151 	} else {
2152 		skb = tcp_rtx_queue_head(sk);
2153 		cnt = 0;
2154 	}
2155 
2156 	skb_rbtree_walk_from(skb) {
2157 		/* TODO: do this better */
2158 		/* this is not the most efficient way to do this... */
2159 		tp->lost_skb_hint = skb;
2160 		tp->lost_cnt_hint = cnt;
2161 
2162 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2163 			break;
2164 
2165 		oldcnt = cnt;
2166 		if (tcp_is_reno(tp) ||
2167 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2168 			cnt += tcp_skb_pcount(skb);
2169 
2170 		if (cnt > packets) {
2171 			if (tcp_is_sack(tp) ||
2172 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2173 			    (oldcnt >= packets))
2174 				break;
2175 
2176 			mss = tcp_skb_mss(skb);
2177 			/* If needed, chop off the prefix to mark as lost. */
2178 			lost = (packets - oldcnt) * mss;
2179 			if (lost < skb->len &&
2180 			    tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2181 					 lost, mss, GFP_ATOMIC) < 0)
2182 				break;
2183 			cnt = packets;
2184 		}
2185 
2186 		tcp_skb_mark_lost(tp, skb);
2187 
2188 		if (mark_head)
2189 			break;
2190 	}
2191 	tcp_verify_left_out(tp);
2192 }
2193 
2194 /* Account newly detected lost packet(s) */
2195 
2196 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2197 {
2198 	struct tcp_sock *tp = tcp_sk(sk);
2199 
2200 	if (tcp_is_reno(tp)) {
2201 		tcp_mark_head_lost(sk, 1, 1);
2202 	} else {
2203 		int sacked_upto = tp->sacked_out - tp->reordering;
2204 		if (sacked_upto >= 0)
2205 			tcp_mark_head_lost(sk, sacked_upto, 0);
2206 		else if (fast_rexmit)
2207 			tcp_mark_head_lost(sk, 1, 1);
2208 	}
2209 }
2210 
2211 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2212 {
2213 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2214 	       before(tp->rx_opt.rcv_tsecr, when);
2215 }
2216 
2217 /* skb is spurious retransmitted if the returned timestamp echo
2218  * reply is prior to the skb transmission time
2219  */
2220 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2221 				     const struct sk_buff *skb)
2222 {
2223 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2224 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2225 }
2226 
2227 /* Nothing was retransmitted or returned timestamp is less
2228  * than timestamp of the first retransmission.
2229  */
2230 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2231 {
2232 	return !tp->retrans_stamp ||
2233 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2234 }
2235 
2236 /* Undo procedures. */
2237 
2238 /* We can clear retrans_stamp when there are no retransmissions in the
2239  * window. It would seem that it is trivially available for us in
2240  * tp->retrans_out, however, that kind of assumptions doesn't consider
2241  * what will happen if errors occur when sending retransmission for the
2242  * second time. ...It could the that such segment has only
2243  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2244  * the head skb is enough except for some reneging corner cases that
2245  * are not worth the effort.
2246  *
2247  * Main reason for all this complexity is the fact that connection dying
2248  * time now depends on the validity of the retrans_stamp, in particular,
2249  * that successive retransmissions of a segment must not advance
2250  * retrans_stamp under any conditions.
2251  */
2252 static bool tcp_any_retrans_done(const struct sock *sk)
2253 {
2254 	const struct tcp_sock *tp = tcp_sk(sk);
2255 	struct sk_buff *skb;
2256 
2257 	if (tp->retrans_out)
2258 		return true;
2259 
2260 	skb = tcp_rtx_queue_head(sk);
2261 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2262 		return true;
2263 
2264 	return false;
2265 }
2266 
2267 static void DBGUNDO(struct sock *sk, const char *msg)
2268 {
2269 #if FASTRETRANS_DEBUG > 1
2270 	struct tcp_sock *tp = tcp_sk(sk);
2271 	struct inet_sock *inet = inet_sk(sk);
2272 
2273 	if (sk->sk_family == AF_INET) {
2274 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2275 			 msg,
2276 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2277 			 tp->snd_cwnd, tcp_left_out(tp),
2278 			 tp->snd_ssthresh, tp->prior_ssthresh,
2279 			 tp->packets_out);
2280 	}
2281 #if IS_ENABLED(CONFIG_IPV6)
2282 	else if (sk->sk_family == AF_INET6) {
2283 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2284 			 msg,
2285 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2286 			 tp->snd_cwnd, tcp_left_out(tp),
2287 			 tp->snd_ssthresh, tp->prior_ssthresh,
2288 			 tp->packets_out);
2289 	}
2290 #endif
2291 #endif
2292 }
2293 
2294 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2295 {
2296 	struct tcp_sock *tp = tcp_sk(sk);
2297 
2298 	if (unmark_loss) {
2299 		struct sk_buff *skb;
2300 
2301 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2302 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2303 		}
2304 		tp->lost_out = 0;
2305 		tcp_clear_all_retrans_hints(tp);
2306 	}
2307 
2308 	if (tp->prior_ssthresh) {
2309 		const struct inet_connection_sock *icsk = inet_csk(sk);
2310 
2311 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2312 
2313 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2314 			tp->snd_ssthresh = tp->prior_ssthresh;
2315 			tcp_ecn_withdraw_cwr(tp);
2316 		}
2317 	}
2318 	tp->snd_cwnd_stamp = tcp_jiffies32;
2319 	tp->undo_marker = 0;
2320 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2321 }
2322 
2323 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2324 {
2325 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2326 }
2327 
2328 /* People celebrate: "We love our President!" */
2329 static bool tcp_try_undo_recovery(struct sock *sk)
2330 {
2331 	struct tcp_sock *tp = tcp_sk(sk);
2332 
2333 	if (tcp_may_undo(tp)) {
2334 		int mib_idx;
2335 
2336 		/* Happy end! We did not retransmit anything
2337 		 * or our original transmission succeeded.
2338 		 */
2339 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2340 		tcp_undo_cwnd_reduction(sk, false);
2341 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2342 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2343 		else
2344 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2345 
2346 		NET_INC_STATS(sock_net(sk), mib_idx);
2347 	} else if (tp->rack.reo_wnd_persist) {
2348 		tp->rack.reo_wnd_persist--;
2349 	}
2350 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2351 		/* Hold old state until something *above* high_seq
2352 		 * is ACKed. For Reno it is MUST to prevent false
2353 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2354 		if (!tcp_any_retrans_done(sk))
2355 			tp->retrans_stamp = 0;
2356 		return true;
2357 	}
2358 	tcp_set_ca_state(sk, TCP_CA_Open);
2359 	tp->is_sack_reneg = 0;
2360 	return false;
2361 }
2362 
2363 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2364 static bool tcp_try_undo_dsack(struct sock *sk)
2365 {
2366 	struct tcp_sock *tp = tcp_sk(sk);
2367 
2368 	if (tp->undo_marker && !tp->undo_retrans) {
2369 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2370 					       tp->rack.reo_wnd_persist + 1);
2371 		DBGUNDO(sk, "D-SACK");
2372 		tcp_undo_cwnd_reduction(sk, false);
2373 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2374 		return true;
2375 	}
2376 	return false;
2377 }
2378 
2379 /* Undo during loss recovery after partial ACK or using F-RTO. */
2380 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2381 {
2382 	struct tcp_sock *tp = tcp_sk(sk);
2383 
2384 	if (frto_undo || tcp_may_undo(tp)) {
2385 		tcp_undo_cwnd_reduction(sk, true);
2386 
2387 		DBGUNDO(sk, "partial loss");
2388 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2389 		if (frto_undo)
2390 			NET_INC_STATS(sock_net(sk),
2391 					LINUX_MIB_TCPSPURIOUSRTOS);
2392 		inet_csk(sk)->icsk_retransmits = 0;
2393 		if (frto_undo || tcp_is_sack(tp)) {
2394 			tcp_set_ca_state(sk, TCP_CA_Open);
2395 			tp->is_sack_reneg = 0;
2396 		}
2397 		return true;
2398 	}
2399 	return false;
2400 }
2401 
2402 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2403  * It computes the number of packets to send (sndcnt) based on packets newly
2404  * delivered:
2405  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2406  *	cwnd reductions across a full RTT.
2407  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2408  *      But when the retransmits are acked without further losses, PRR
2409  *      slow starts cwnd up to ssthresh to speed up the recovery.
2410  */
2411 static void tcp_init_cwnd_reduction(struct sock *sk)
2412 {
2413 	struct tcp_sock *tp = tcp_sk(sk);
2414 
2415 	tp->high_seq = tp->snd_nxt;
2416 	tp->tlp_high_seq = 0;
2417 	tp->snd_cwnd_cnt = 0;
2418 	tp->prior_cwnd = tp->snd_cwnd;
2419 	tp->prr_delivered = 0;
2420 	tp->prr_out = 0;
2421 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2422 	tcp_ecn_queue_cwr(tp);
2423 }
2424 
2425 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2426 {
2427 	struct tcp_sock *tp = tcp_sk(sk);
2428 	int sndcnt = 0;
2429 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2430 
2431 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2432 		return;
2433 
2434 	tp->prr_delivered += newly_acked_sacked;
2435 	if (delta < 0) {
2436 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2437 			       tp->prior_cwnd - 1;
2438 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2439 	} else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2440 		   !(flag & FLAG_LOST_RETRANS)) {
2441 		sndcnt = min_t(int, delta,
2442 			       max_t(int, tp->prr_delivered - tp->prr_out,
2443 				     newly_acked_sacked) + 1);
2444 	} else {
2445 		sndcnt = min(delta, newly_acked_sacked);
2446 	}
2447 	/* Force a fast retransmit upon entering fast recovery */
2448 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2449 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2450 }
2451 
2452 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2453 {
2454 	struct tcp_sock *tp = tcp_sk(sk);
2455 
2456 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2457 		return;
2458 
2459 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2460 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2461 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2462 		tp->snd_cwnd = tp->snd_ssthresh;
2463 		tp->snd_cwnd_stamp = tcp_jiffies32;
2464 	}
2465 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2466 }
2467 
2468 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2469 void tcp_enter_cwr(struct sock *sk)
2470 {
2471 	struct tcp_sock *tp = tcp_sk(sk);
2472 
2473 	tp->prior_ssthresh = 0;
2474 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2475 		tp->undo_marker = 0;
2476 		tcp_init_cwnd_reduction(sk);
2477 		tcp_set_ca_state(sk, TCP_CA_CWR);
2478 	}
2479 }
2480 EXPORT_SYMBOL(tcp_enter_cwr);
2481 
2482 static void tcp_try_keep_open(struct sock *sk)
2483 {
2484 	struct tcp_sock *tp = tcp_sk(sk);
2485 	int state = TCP_CA_Open;
2486 
2487 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2488 		state = TCP_CA_Disorder;
2489 
2490 	if (inet_csk(sk)->icsk_ca_state != state) {
2491 		tcp_set_ca_state(sk, state);
2492 		tp->high_seq = tp->snd_nxt;
2493 	}
2494 }
2495 
2496 static void tcp_try_to_open(struct sock *sk, int flag)
2497 {
2498 	struct tcp_sock *tp = tcp_sk(sk);
2499 
2500 	tcp_verify_left_out(tp);
2501 
2502 	if (!tcp_any_retrans_done(sk))
2503 		tp->retrans_stamp = 0;
2504 
2505 	if (flag & FLAG_ECE)
2506 		tcp_enter_cwr(sk);
2507 
2508 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2509 		tcp_try_keep_open(sk);
2510 	}
2511 }
2512 
2513 static void tcp_mtup_probe_failed(struct sock *sk)
2514 {
2515 	struct inet_connection_sock *icsk = inet_csk(sk);
2516 
2517 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2518 	icsk->icsk_mtup.probe_size = 0;
2519 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2520 }
2521 
2522 static void tcp_mtup_probe_success(struct sock *sk)
2523 {
2524 	struct tcp_sock *tp = tcp_sk(sk);
2525 	struct inet_connection_sock *icsk = inet_csk(sk);
2526 
2527 	/* FIXME: breaks with very large cwnd */
2528 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2529 	tp->snd_cwnd = tp->snd_cwnd *
2530 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2531 		       icsk->icsk_mtup.probe_size;
2532 	tp->snd_cwnd_cnt = 0;
2533 	tp->snd_cwnd_stamp = tcp_jiffies32;
2534 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2535 
2536 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2537 	icsk->icsk_mtup.probe_size = 0;
2538 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2539 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2540 }
2541 
2542 /* Do a simple retransmit without using the backoff mechanisms in
2543  * tcp_timer. This is used for path mtu discovery.
2544  * The socket is already locked here.
2545  */
2546 void tcp_simple_retransmit(struct sock *sk)
2547 {
2548 	const struct inet_connection_sock *icsk = inet_csk(sk);
2549 	struct tcp_sock *tp = tcp_sk(sk);
2550 	struct sk_buff *skb;
2551 	unsigned int mss = tcp_current_mss(sk);
2552 
2553 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2554 		if (tcp_skb_seglen(skb) > mss &&
2555 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2556 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2557 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2558 				tp->retrans_out -= tcp_skb_pcount(skb);
2559 			}
2560 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2561 		}
2562 	}
2563 
2564 	tcp_clear_retrans_hints_partial(tp);
2565 
2566 	if (!tp->lost_out)
2567 		return;
2568 
2569 	if (tcp_is_reno(tp))
2570 		tcp_limit_reno_sacked(tp);
2571 
2572 	tcp_verify_left_out(tp);
2573 
2574 	/* Don't muck with the congestion window here.
2575 	 * Reason is that we do not increase amount of _data_
2576 	 * in network, but units changed and effective
2577 	 * cwnd/ssthresh really reduced now.
2578 	 */
2579 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2580 		tp->high_seq = tp->snd_nxt;
2581 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2582 		tp->prior_ssthresh = 0;
2583 		tp->undo_marker = 0;
2584 		tcp_set_ca_state(sk, TCP_CA_Loss);
2585 	}
2586 	tcp_xmit_retransmit_queue(sk);
2587 }
2588 EXPORT_SYMBOL(tcp_simple_retransmit);
2589 
2590 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2591 {
2592 	struct tcp_sock *tp = tcp_sk(sk);
2593 	int mib_idx;
2594 
2595 	if (tcp_is_reno(tp))
2596 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2597 	else
2598 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2599 
2600 	NET_INC_STATS(sock_net(sk), mib_idx);
2601 
2602 	tp->prior_ssthresh = 0;
2603 	tcp_init_undo(tp);
2604 
2605 	if (!tcp_in_cwnd_reduction(sk)) {
2606 		if (!ece_ack)
2607 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2608 		tcp_init_cwnd_reduction(sk);
2609 	}
2610 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2611 }
2612 
2613 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2614  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2615  */
2616 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2617 			     int *rexmit)
2618 {
2619 	struct tcp_sock *tp = tcp_sk(sk);
2620 	bool recovered = !before(tp->snd_una, tp->high_seq);
2621 
2622 	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2623 	    tcp_try_undo_loss(sk, false))
2624 		return;
2625 
2626 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2627 		/* Step 3.b. A timeout is spurious if not all data are
2628 		 * lost, i.e., never-retransmitted data are (s)acked.
2629 		 */
2630 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2631 		    tcp_try_undo_loss(sk, true))
2632 			return;
2633 
2634 		if (after(tp->snd_nxt, tp->high_seq)) {
2635 			if (flag & FLAG_DATA_SACKED || is_dupack)
2636 				tp->frto = 0; /* Step 3.a. loss was real */
2637 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2638 			tp->high_seq = tp->snd_nxt;
2639 			/* Step 2.b. Try send new data (but deferred until cwnd
2640 			 * is updated in tcp_ack()). Otherwise fall back to
2641 			 * the conventional recovery.
2642 			 */
2643 			if (!tcp_write_queue_empty(sk) &&
2644 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2645 				*rexmit = REXMIT_NEW;
2646 				return;
2647 			}
2648 			tp->frto = 0;
2649 		}
2650 	}
2651 
2652 	if (recovered) {
2653 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2654 		tcp_try_undo_recovery(sk);
2655 		return;
2656 	}
2657 	if (tcp_is_reno(tp)) {
2658 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2659 		 * delivered. Lower inflight to clock out (re)tranmissions.
2660 		 */
2661 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2662 			tcp_add_reno_sack(sk);
2663 		else if (flag & FLAG_SND_UNA_ADVANCED)
2664 			tcp_reset_reno_sack(tp);
2665 	}
2666 	*rexmit = REXMIT_LOST;
2667 }
2668 
2669 /* Undo during fast recovery after partial ACK. */
2670 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2671 {
2672 	struct tcp_sock *tp = tcp_sk(sk);
2673 
2674 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2675 		/* Plain luck! Hole if filled with delayed
2676 		 * packet, rather than with a retransmit. Check reordering.
2677 		 */
2678 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2679 
2680 		/* We are getting evidence that the reordering degree is higher
2681 		 * than we realized. If there are no retransmits out then we
2682 		 * can undo. Otherwise we clock out new packets but do not
2683 		 * mark more packets lost or retransmit more.
2684 		 */
2685 		if (tp->retrans_out)
2686 			return true;
2687 
2688 		if (!tcp_any_retrans_done(sk))
2689 			tp->retrans_stamp = 0;
2690 
2691 		DBGUNDO(sk, "partial recovery");
2692 		tcp_undo_cwnd_reduction(sk, true);
2693 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2694 		tcp_try_keep_open(sk);
2695 		return true;
2696 	}
2697 	return false;
2698 }
2699 
2700 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag)
2701 {
2702 	struct tcp_sock *tp = tcp_sk(sk);
2703 
2704 	/* Use RACK to detect loss */
2705 	if (sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) {
2706 		u32 prior_retrans = tp->retrans_out;
2707 
2708 		tcp_rack_mark_lost(sk);
2709 		if (prior_retrans > tp->retrans_out)
2710 			*ack_flag |= FLAG_LOST_RETRANS;
2711 	}
2712 }
2713 
2714 static bool tcp_force_fast_retransmit(struct sock *sk)
2715 {
2716 	struct tcp_sock *tp = tcp_sk(sk);
2717 
2718 	return after(tcp_highest_sack_seq(tp),
2719 		     tp->snd_una + tp->reordering * tp->mss_cache);
2720 }
2721 
2722 /* Process an event, which can update packets-in-flight not trivially.
2723  * Main goal of this function is to calculate new estimate for left_out,
2724  * taking into account both packets sitting in receiver's buffer and
2725  * packets lost by network.
2726  *
2727  * Besides that it updates the congestion state when packet loss or ECN
2728  * is detected. But it does not reduce the cwnd, it is done by the
2729  * congestion control later.
2730  *
2731  * It does _not_ decide what to send, it is made in function
2732  * tcp_xmit_retransmit_queue().
2733  */
2734 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2735 				  bool is_dupack, int *ack_flag, int *rexmit)
2736 {
2737 	struct inet_connection_sock *icsk = inet_csk(sk);
2738 	struct tcp_sock *tp = tcp_sk(sk);
2739 	int fast_rexmit = 0, flag = *ack_flag;
2740 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2741 				     tcp_force_fast_retransmit(sk));
2742 
2743 	if (!tp->packets_out && tp->sacked_out)
2744 		tp->sacked_out = 0;
2745 
2746 	/* Now state machine starts.
2747 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2748 	if (flag & FLAG_ECE)
2749 		tp->prior_ssthresh = 0;
2750 
2751 	/* B. In all the states check for reneging SACKs. */
2752 	if (tcp_check_sack_reneging(sk, flag))
2753 		return;
2754 
2755 	/* C. Check consistency of the current state. */
2756 	tcp_verify_left_out(tp);
2757 
2758 	/* D. Check state exit conditions. State can be terminated
2759 	 *    when high_seq is ACKed. */
2760 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2761 		WARN_ON(tp->retrans_out != 0);
2762 		tp->retrans_stamp = 0;
2763 	} else if (!before(tp->snd_una, tp->high_seq)) {
2764 		switch (icsk->icsk_ca_state) {
2765 		case TCP_CA_CWR:
2766 			/* CWR is to be held something *above* high_seq
2767 			 * is ACKed for CWR bit to reach receiver. */
2768 			if (tp->snd_una != tp->high_seq) {
2769 				tcp_end_cwnd_reduction(sk);
2770 				tcp_set_ca_state(sk, TCP_CA_Open);
2771 			}
2772 			break;
2773 
2774 		case TCP_CA_Recovery:
2775 			if (tcp_is_reno(tp))
2776 				tcp_reset_reno_sack(tp);
2777 			if (tcp_try_undo_recovery(sk))
2778 				return;
2779 			tcp_end_cwnd_reduction(sk);
2780 			break;
2781 		}
2782 	}
2783 
2784 	/* E. Process state. */
2785 	switch (icsk->icsk_ca_state) {
2786 	case TCP_CA_Recovery:
2787 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2788 			if (tcp_is_reno(tp) && is_dupack)
2789 				tcp_add_reno_sack(sk);
2790 		} else {
2791 			if (tcp_try_undo_partial(sk, prior_snd_una))
2792 				return;
2793 			/* Partial ACK arrived. Force fast retransmit. */
2794 			do_lost = tcp_is_reno(tp) ||
2795 				  tcp_force_fast_retransmit(sk);
2796 		}
2797 		if (tcp_try_undo_dsack(sk)) {
2798 			tcp_try_keep_open(sk);
2799 			return;
2800 		}
2801 		tcp_rack_identify_loss(sk, ack_flag);
2802 		break;
2803 	case TCP_CA_Loss:
2804 		tcp_process_loss(sk, flag, is_dupack, rexmit);
2805 		tcp_rack_identify_loss(sk, ack_flag);
2806 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2807 		      (*ack_flag & FLAG_LOST_RETRANS)))
2808 			return;
2809 		/* Change state if cwnd is undone or retransmits are lost */
2810 		/* fall through */
2811 	default:
2812 		if (tcp_is_reno(tp)) {
2813 			if (flag & FLAG_SND_UNA_ADVANCED)
2814 				tcp_reset_reno_sack(tp);
2815 			if (is_dupack)
2816 				tcp_add_reno_sack(sk);
2817 		}
2818 
2819 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2820 			tcp_try_undo_dsack(sk);
2821 
2822 		tcp_rack_identify_loss(sk, ack_flag);
2823 		if (!tcp_time_to_recover(sk, flag)) {
2824 			tcp_try_to_open(sk, flag);
2825 			return;
2826 		}
2827 
2828 		/* MTU probe failure: don't reduce cwnd */
2829 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2830 		    icsk->icsk_mtup.probe_size &&
2831 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2832 			tcp_mtup_probe_failed(sk);
2833 			/* Restores the reduction we did in tcp_mtup_probe() */
2834 			tp->snd_cwnd++;
2835 			tcp_simple_retransmit(sk);
2836 			return;
2837 		}
2838 
2839 		/* Otherwise enter Recovery state */
2840 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2841 		fast_rexmit = 1;
2842 	}
2843 
2844 	if (do_lost)
2845 		tcp_update_scoreboard(sk, fast_rexmit);
2846 	*rexmit = REXMIT_LOST;
2847 }
2848 
2849 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2850 {
2851 	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2852 	struct tcp_sock *tp = tcp_sk(sk);
2853 
2854 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2855 		/* If the remote keeps returning delayed ACKs, eventually
2856 		 * the min filter would pick it up and overestimate the
2857 		 * prop. delay when it expires. Skip suspected delayed ACKs.
2858 		 */
2859 		return;
2860 	}
2861 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2862 			   rtt_us ? : jiffies_to_usecs(1));
2863 }
2864 
2865 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2866 			       long seq_rtt_us, long sack_rtt_us,
2867 			       long ca_rtt_us, struct rate_sample *rs)
2868 {
2869 	const struct tcp_sock *tp = tcp_sk(sk);
2870 
2871 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2872 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2873 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2874 	 * is acked (RFC6298).
2875 	 */
2876 	if (seq_rtt_us < 0)
2877 		seq_rtt_us = sack_rtt_us;
2878 
2879 	/* RTTM Rule: A TSecr value received in a segment is used to
2880 	 * update the averaged RTT measurement only if the segment
2881 	 * acknowledges some new data, i.e., only if it advances the
2882 	 * left edge of the send window.
2883 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2884 	 */
2885 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2886 	    flag & FLAG_ACKED) {
2887 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2888 		u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2889 
2890 		seq_rtt_us = ca_rtt_us = delta_us;
2891 	}
2892 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2893 	if (seq_rtt_us < 0)
2894 		return false;
2895 
2896 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2897 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2898 	 * values will be skipped with the seq_rtt_us < 0 check above.
2899 	 */
2900 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
2901 	tcp_rtt_estimator(sk, seq_rtt_us);
2902 	tcp_set_rto(sk);
2903 
2904 	/* RFC6298: only reset backoff on valid RTT measurement. */
2905 	inet_csk(sk)->icsk_backoff = 0;
2906 	return true;
2907 }
2908 
2909 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2910 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2911 {
2912 	struct rate_sample rs;
2913 	long rtt_us = -1L;
2914 
2915 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2916 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2917 
2918 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2919 }
2920 
2921 
2922 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2923 {
2924 	const struct inet_connection_sock *icsk = inet_csk(sk);
2925 
2926 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2927 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2928 }
2929 
2930 /* Restart timer after forward progress on connection.
2931  * RFC2988 recommends to restart timer to now+rto.
2932  */
2933 void tcp_rearm_rto(struct sock *sk)
2934 {
2935 	const struct inet_connection_sock *icsk = inet_csk(sk);
2936 	struct tcp_sock *tp = tcp_sk(sk);
2937 
2938 	/* If the retrans timer is currently being used by Fast Open
2939 	 * for SYN-ACK retrans purpose, stay put.
2940 	 */
2941 	if (tp->fastopen_rsk)
2942 		return;
2943 
2944 	if (!tp->packets_out) {
2945 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2946 	} else {
2947 		u32 rto = inet_csk(sk)->icsk_rto;
2948 		/* Offset the time elapsed after installing regular RTO */
2949 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2950 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2951 			s64 delta_us = tcp_rto_delta_us(sk);
2952 			/* delta_us may not be positive if the socket is locked
2953 			 * when the retrans timer fires and is rescheduled.
2954 			 */
2955 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
2956 		}
2957 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2958 					  TCP_RTO_MAX);
2959 	}
2960 }
2961 
2962 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
2963 static void tcp_set_xmit_timer(struct sock *sk)
2964 {
2965 	if (!tcp_schedule_loss_probe(sk, true))
2966 		tcp_rearm_rto(sk);
2967 }
2968 
2969 /* If we get here, the whole TSO packet has not been acked. */
2970 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2971 {
2972 	struct tcp_sock *tp = tcp_sk(sk);
2973 	u32 packets_acked;
2974 
2975 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2976 
2977 	packets_acked = tcp_skb_pcount(skb);
2978 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2979 		return 0;
2980 	packets_acked -= tcp_skb_pcount(skb);
2981 
2982 	if (packets_acked) {
2983 		BUG_ON(tcp_skb_pcount(skb) == 0);
2984 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2985 	}
2986 
2987 	return packets_acked;
2988 }
2989 
2990 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
2991 			   u32 prior_snd_una)
2992 {
2993 	const struct skb_shared_info *shinfo;
2994 
2995 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
2996 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
2997 		return;
2998 
2999 	shinfo = skb_shinfo(skb);
3000 	if (!before(shinfo->tskey, prior_snd_una) &&
3001 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3002 		tcp_skb_tsorted_save(skb) {
3003 			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3004 		} tcp_skb_tsorted_restore(skb);
3005 	}
3006 }
3007 
3008 /* Remove acknowledged frames from the retransmission queue. If our packet
3009  * is before the ack sequence we can discard it as it's confirmed to have
3010  * arrived at the other end.
3011  */
3012 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3013 			       u32 prior_snd_una,
3014 			       struct tcp_sacktag_state *sack)
3015 {
3016 	const struct inet_connection_sock *icsk = inet_csk(sk);
3017 	u64 first_ackt, last_ackt;
3018 	struct tcp_sock *tp = tcp_sk(sk);
3019 	u32 prior_sacked = tp->sacked_out;
3020 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3021 	struct sk_buff *skb, *next;
3022 	bool fully_acked = true;
3023 	long sack_rtt_us = -1L;
3024 	long seq_rtt_us = -1L;
3025 	long ca_rtt_us = -1L;
3026 	u32 pkts_acked = 0;
3027 	u32 last_in_flight = 0;
3028 	bool rtt_update;
3029 	int flag = 0;
3030 
3031 	first_ackt = 0;
3032 
3033 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3034 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3035 		const u32 start_seq = scb->seq;
3036 		u8 sacked = scb->sacked;
3037 		u32 acked_pcount;
3038 
3039 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3040 
3041 		/* Determine how many packets and what bytes were acked, tso and else */
3042 		if (after(scb->end_seq, tp->snd_una)) {
3043 			if (tcp_skb_pcount(skb) == 1 ||
3044 			    !after(tp->snd_una, scb->seq))
3045 				break;
3046 
3047 			acked_pcount = tcp_tso_acked(sk, skb);
3048 			if (!acked_pcount)
3049 				break;
3050 			fully_acked = false;
3051 		} else {
3052 			acked_pcount = tcp_skb_pcount(skb);
3053 		}
3054 
3055 		if (unlikely(sacked & TCPCB_RETRANS)) {
3056 			if (sacked & TCPCB_SACKED_RETRANS)
3057 				tp->retrans_out -= acked_pcount;
3058 			flag |= FLAG_RETRANS_DATA_ACKED;
3059 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3060 			last_ackt = skb->skb_mstamp;
3061 			WARN_ON_ONCE(last_ackt == 0);
3062 			if (!first_ackt)
3063 				first_ackt = last_ackt;
3064 
3065 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3066 			if (before(start_seq, reord))
3067 				reord = start_seq;
3068 			if (!after(scb->end_seq, tp->high_seq))
3069 				flag |= FLAG_ORIG_SACK_ACKED;
3070 		}
3071 
3072 		if (sacked & TCPCB_SACKED_ACKED) {
3073 			tp->sacked_out -= acked_pcount;
3074 		} else if (tcp_is_sack(tp)) {
3075 			tp->delivered += acked_pcount;
3076 			if (!tcp_skb_spurious_retrans(tp, skb))
3077 				tcp_rack_advance(tp, sacked, scb->end_seq,
3078 						 skb->skb_mstamp);
3079 		}
3080 		if (sacked & TCPCB_LOST)
3081 			tp->lost_out -= acked_pcount;
3082 
3083 		tp->packets_out -= acked_pcount;
3084 		pkts_acked += acked_pcount;
3085 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3086 
3087 		/* Initial outgoing SYN's get put onto the write_queue
3088 		 * just like anything else we transmit.  It is not
3089 		 * true data, and if we misinform our callers that
3090 		 * this ACK acks real data, we will erroneously exit
3091 		 * connection startup slow start one packet too
3092 		 * quickly.  This is severely frowned upon behavior.
3093 		 */
3094 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3095 			flag |= FLAG_DATA_ACKED;
3096 		} else {
3097 			flag |= FLAG_SYN_ACKED;
3098 			tp->retrans_stamp = 0;
3099 		}
3100 
3101 		if (!fully_acked)
3102 			break;
3103 
3104 		next = skb_rb_next(skb);
3105 		if (unlikely(skb == tp->retransmit_skb_hint))
3106 			tp->retransmit_skb_hint = NULL;
3107 		if (unlikely(skb == tp->lost_skb_hint))
3108 			tp->lost_skb_hint = NULL;
3109 		tcp_rtx_queue_unlink_and_free(skb, sk);
3110 	}
3111 
3112 	if (!skb)
3113 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3114 
3115 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3116 		tp->snd_up = tp->snd_una;
3117 
3118 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3119 		flag |= FLAG_SACK_RENEGING;
3120 
3121 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3122 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3123 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3124 
3125 		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3126 		    last_in_flight && !prior_sacked && fully_acked &&
3127 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3128 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3129 			/* Conservatively mark a delayed ACK. It's typically
3130 			 * from a lone runt packet over the round trip to
3131 			 * a receiver w/o out-of-order or CE events.
3132 			 */
3133 			flag |= FLAG_ACK_MAYBE_DELAYED;
3134 		}
3135 	}
3136 	if (sack->first_sackt) {
3137 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3138 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3139 	}
3140 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3141 					ca_rtt_us, sack->rate);
3142 
3143 	if (flag & FLAG_ACKED) {
3144 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3145 		if (unlikely(icsk->icsk_mtup.probe_size &&
3146 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3147 			tcp_mtup_probe_success(sk);
3148 		}
3149 
3150 		if (tcp_is_reno(tp)) {
3151 			tcp_remove_reno_sacks(sk, pkts_acked);
3152 		} else {
3153 			int delta;
3154 
3155 			/* Non-retransmitted hole got filled? That's reordering */
3156 			if (before(reord, prior_fack))
3157 				tcp_check_sack_reordering(sk, reord, 0);
3158 
3159 			delta = prior_sacked - tp->sacked_out;
3160 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3161 		}
3162 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3163 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) {
3164 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3165 		 * after when the head was last (re)transmitted. Otherwise the
3166 		 * timeout may continue to extend in loss recovery.
3167 		 */
3168 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3169 	}
3170 
3171 	if (icsk->icsk_ca_ops->pkts_acked) {
3172 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3173 					     .rtt_us = sack->rate->rtt_us,
3174 					     .in_flight = last_in_flight };
3175 
3176 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3177 	}
3178 
3179 #if FASTRETRANS_DEBUG > 0
3180 	WARN_ON((int)tp->sacked_out < 0);
3181 	WARN_ON((int)tp->lost_out < 0);
3182 	WARN_ON((int)tp->retrans_out < 0);
3183 	if (!tp->packets_out && tcp_is_sack(tp)) {
3184 		icsk = inet_csk(sk);
3185 		if (tp->lost_out) {
3186 			pr_debug("Leak l=%u %d\n",
3187 				 tp->lost_out, icsk->icsk_ca_state);
3188 			tp->lost_out = 0;
3189 		}
3190 		if (tp->sacked_out) {
3191 			pr_debug("Leak s=%u %d\n",
3192 				 tp->sacked_out, icsk->icsk_ca_state);
3193 			tp->sacked_out = 0;
3194 		}
3195 		if (tp->retrans_out) {
3196 			pr_debug("Leak r=%u %d\n",
3197 				 tp->retrans_out, icsk->icsk_ca_state);
3198 			tp->retrans_out = 0;
3199 		}
3200 	}
3201 #endif
3202 	return flag;
3203 }
3204 
3205 static void tcp_ack_probe(struct sock *sk)
3206 {
3207 	struct inet_connection_sock *icsk = inet_csk(sk);
3208 	struct sk_buff *head = tcp_send_head(sk);
3209 	const struct tcp_sock *tp = tcp_sk(sk);
3210 
3211 	/* Was it a usable window open? */
3212 	if (!head)
3213 		return;
3214 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3215 		icsk->icsk_backoff = 0;
3216 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3217 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3218 		 * This function is not for random using!
3219 		 */
3220 	} else {
3221 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3222 
3223 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3224 					  when, TCP_RTO_MAX);
3225 	}
3226 }
3227 
3228 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3229 {
3230 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3231 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3232 }
3233 
3234 /* Decide wheather to run the increase function of congestion control. */
3235 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3236 {
3237 	/* If reordering is high then always grow cwnd whenever data is
3238 	 * delivered regardless of its ordering. Otherwise stay conservative
3239 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3240 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3241 	 * cwnd in tcp_fastretrans_alert() based on more states.
3242 	 */
3243 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3244 		return flag & FLAG_FORWARD_PROGRESS;
3245 
3246 	return flag & FLAG_DATA_ACKED;
3247 }
3248 
3249 /* The "ultimate" congestion control function that aims to replace the rigid
3250  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3251  * It's called toward the end of processing an ACK with precise rate
3252  * information. All transmission or retransmission are delayed afterwards.
3253  */
3254 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3255 			     int flag, const struct rate_sample *rs)
3256 {
3257 	const struct inet_connection_sock *icsk = inet_csk(sk);
3258 
3259 	if (icsk->icsk_ca_ops->cong_control) {
3260 		icsk->icsk_ca_ops->cong_control(sk, rs);
3261 		return;
3262 	}
3263 
3264 	if (tcp_in_cwnd_reduction(sk)) {
3265 		/* Reduce cwnd if state mandates */
3266 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3267 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3268 		/* Advance cwnd if state allows */
3269 		tcp_cong_avoid(sk, ack, acked_sacked);
3270 	}
3271 	tcp_update_pacing_rate(sk);
3272 }
3273 
3274 /* Check that window update is acceptable.
3275  * The function assumes that snd_una<=ack<=snd_next.
3276  */
3277 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3278 					const u32 ack, const u32 ack_seq,
3279 					const u32 nwin)
3280 {
3281 	return	after(ack, tp->snd_una) ||
3282 		after(ack_seq, tp->snd_wl1) ||
3283 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3284 }
3285 
3286 /* If we update tp->snd_una, also update tp->bytes_acked */
3287 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3288 {
3289 	u32 delta = ack - tp->snd_una;
3290 
3291 	sock_owned_by_me((struct sock *)tp);
3292 	tp->bytes_acked += delta;
3293 	tp->snd_una = ack;
3294 }
3295 
3296 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3297 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3298 {
3299 	u32 delta = seq - tp->rcv_nxt;
3300 
3301 	sock_owned_by_me((struct sock *)tp);
3302 	tp->bytes_received += delta;
3303 	tp->rcv_nxt = seq;
3304 }
3305 
3306 /* Update our send window.
3307  *
3308  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3309  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3310  */
3311 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3312 				 u32 ack_seq)
3313 {
3314 	struct tcp_sock *tp = tcp_sk(sk);
3315 	int flag = 0;
3316 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3317 
3318 	if (likely(!tcp_hdr(skb)->syn))
3319 		nwin <<= tp->rx_opt.snd_wscale;
3320 
3321 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3322 		flag |= FLAG_WIN_UPDATE;
3323 		tcp_update_wl(tp, ack_seq);
3324 
3325 		if (tp->snd_wnd != nwin) {
3326 			tp->snd_wnd = nwin;
3327 
3328 			/* Note, it is the only place, where
3329 			 * fast path is recovered for sending TCP.
3330 			 */
3331 			tp->pred_flags = 0;
3332 			tcp_fast_path_check(sk);
3333 
3334 			if (!tcp_write_queue_empty(sk))
3335 				tcp_slow_start_after_idle_check(sk);
3336 
3337 			if (nwin > tp->max_window) {
3338 				tp->max_window = nwin;
3339 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3340 			}
3341 		}
3342 	}
3343 
3344 	tcp_snd_una_update(tp, ack);
3345 
3346 	return flag;
3347 }
3348 
3349 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3350 				   u32 *last_oow_ack_time)
3351 {
3352 	if (*last_oow_ack_time) {
3353 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3354 
3355 		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3356 			NET_INC_STATS(net, mib_idx);
3357 			return true;	/* rate-limited: don't send yet! */
3358 		}
3359 	}
3360 
3361 	*last_oow_ack_time = tcp_jiffies32;
3362 
3363 	return false;	/* not rate-limited: go ahead, send dupack now! */
3364 }
3365 
3366 /* Return true if we're currently rate-limiting out-of-window ACKs and
3367  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3368  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3369  * attacks that send repeated SYNs or ACKs for the same connection. To
3370  * do this, we do not send a duplicate SYNACK or ACK if the remote
3371  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3372  */
3373 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3374 			  int mib_idx, u32 *last_oow_ack_time)
3375 {
3376 	/* Data packets without SYNs are not likely part of an ACK loop. */
3377 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3378 	    !tcp_hdr(skb)->syn)
3379 		return false;
3380 
3381 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3382 }
3383 
3384 /* RFC 5961 7 [ACK Throttling] */
3385 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3386 {
3387 	/* unprotected vars, we dont care of overwrites */
3388 	static u32 challenge_timestamp;
3389 	static unsigned int challenge_count;
3390 	struct tcp_sock *tp = tcp_sk(sk);
3391 	struct net *net = sock_net(sk);
3392 	u32 count, now;
3393 
3394 	/* First check our per-socket dupack rate limit. */
3395 	if (__tcp_oow_rate_limited(net,
3396 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3397 				   &tp->last_oow_ack_time))
3398 		return;
3399 
3400 	/* Then check host-wide RFC 5961 rate limit. */
3401 	now = jiffies / HZ;
3402 	if (now != challenge_timestamp) {
3403 		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3404 		u32 half = (ack_limit + 1) >> 1;
3405 
3406 		challenge_timestamp = now;
3407 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3408 	}
3409 	count = READ_ONCE(challenge_count);
3410 	if (count > 0) {
3411 		WRITE_ONCE(challenge_count, count - 1);
3412 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3413 		tcp_send_ack(sk);
3414 	}
3415 }
3416 
3417 static void tcp_store_ts_recent(struct tcp_sock *tp)
3418 {
3419 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3420 	tp->rx_opt.ts_recent_stamp = get_seconds();
3421 }
3422 
3423 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3424 {
3425 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3426 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3427 		 * extra check below makes sure this can only happen
3428 		 * for pure ACK frames.  -DaveM
3429 		 *
3430 		 * Not only, also it occurs for expired timestamps.
3431 		 */
3432 
3433 		if (tcp_paws_check(&tp->rx_opt, 0))
3434 			tcp_store_ts_recent(tp);
3435 	}
3436 }
3437 
3438 /* This routine deals with acks during a TLP episode.
3439  * We mark the end of a TLP episode on receiving TLP dupack or when
3440  * ack is after tlp_high_seq.
3441  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3442  */
3443 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3444 {
3445 	struct tcp_sock *tp = tcp_sk(sk);
3446 
3447 	if (before(ack, tp->tlp_high_seq))
3448 		return;
3449 
3450 	if (flag & FLAG_DSACKING_ACK) {
3451 		/* This DSACK means original and TLP probe arrived; no loss */
3452 		tp->tlp_high_seq = 0;
3453 	} else if (after(ack, tp->tlp_high_seq)) {
3454 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3455 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3456 		 */
3457 		tcp_init_cwnd_reduction(sk);
3458 		tcp_set_ca_state(sk, TCP_CA_CWR);
3459 		tcp_end_cwnd_reduction(sk);
3460 		tcp_try_keep_open(sk);
3461 		NET_INC_STATS(sock_net(sk),
3462 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3463 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3464 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3465 		/* Pure dupack: original and TLP probe arrived; no loss */
3466 		tp->tlp_high_seq = 0;
3467 	}
3468 }
3469 
3470 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3471 {
3472 	const struct inet_connection_sock *icsk = inet_csk(sk);
3473 
3474 	if (icsk->icsk_ca_ops->in_ack_event)
3475 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3476 }
3477 
3478 /* Congestion control has updated the cwnd already. So if we're in
3479  * loss recovery then now we do any new sends (for FRTO) or
3480  * retransmits (for CA_Loss or CA_recovery) that make sense.
3481  */
3482 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3483 {
3484 	struct tcp_sock *tp = tcp_sk(sk);
3485 
3486 	if (rexmit == REXMIT_NONE)
3487 		return;
3488 
3489 	if (unlikely(rexmit == 2)) {
3490 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3491 					  TCP_NAGLE_OFF);
3492 		if (after(tp->snd_nxt, tp->high_seq))
3493 			return;
3494 		tp->frto = 0;
3495 	}
3496 	tcp_xmit_retransmit_queue(sk);
3497 }
3498 
3499 /* This routine deals with incoming acks, but not outgoing ones. */
3500 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3501 {
3502 	struct inet_connection_sock *icsk = inet_csk(sk);
3503 	struct tcp_sock *tp = tcp_sk(sk);
3504 	struct tcp_sacktag_state sack_state;
3505 	struct rate_sample rs = { .prior_delivered = 0 };
3506 	u32 prior_snd_una = tp->snd_una;
3507 	bool is_sack_reneg = tp->is_sack_reneg;
3508 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3509 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3510 	bool is_dupack = false;
3511 	int prior_packets = tp->packets_out;
3512 	u32 delivered = tp->delivered;
3513 	u32 lost = tp->lost;
3514 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3515 	u32 prior_fack;
3516 
3517 	sack_state.first_sackt = 0;
3518 	sack_state.rate = &rs;
3519 
3520 	/* We very likely will need to access rtx queue. */
3521 	prefetch(sk->tcp_rtx_queue.rb_node);
3522 
3523 	/* If the ack is older than previous acks
3524 	 * then we can probably ignore it.
3525 	 */
3526 	if (before(ack, prior_snd_una)) {
3527 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3528 		if (before(ack, prior_snd_una - tp->max_window)) {
3529 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3530 				tcp_send_challenge_ack(sk, skb);
3531 			return -1;
3532 		}
3533 		goto old_ack;
3534 	}
3535 
3536 	/* If the ack includes data we haven't sent yet, discard
3537 	 * this segment (RFC793 Section 3.9).
3538 	 */
3539 	if (after(ack, tp->snd_nxt))
3540 		goto invalid_ack;
3541 
3542 	if (after(ack, prior_snd_una)) {
3543 		flag |= FLAG_SND_UNA_ADVANCED;
3544 		icsk->icsk_retransmits = 0;
3545 	}
3546 
3547 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3548 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3549 
3550 	/* ts_recent update must be made after we are sure that the packet
3551 	 * is in window.
3552 	 */
3553 	if (flag & FLAG_UPDATE_TS_RECENT)
3554 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3555 
3556 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3557 		/* Window is constant, pure forward advance.
3558 		 * No more checks are required.
3559 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3560 		 */
3561 		tcp_update_wl(tp, ack_seq);
3562 		tcp_snd_una_update(tp, ack);
3563 		flag |= FLAG_WIN_UPDATE;
3564 
3565 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3566 
3567 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3568 	} else {
3569 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3570 
3571 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3572 			flag |= FLAG_DATA;
3573 		else
3574 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3575 
3576 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3577 
3578 		if (TCP_SKB_CB(skb)->sacked)
3579 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3580 							&sack_state);
3581 
3582 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3583 			flag |= FLAG_ECE;
3584 			ack_ev_flags |= CA_ACK_ECE;
3585 		}
3586 
3587 		if (flag & FLAG_WIN_UPDATE)
3588 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3589 
3590 		tcp_in_ack_event(sk, ack_ev_flags);
3591 	}
3592 
3593 	/* We passed data and got it acked, remove any soft error
3594 	 * log. Something worked...
3595 	 */
3596 	sk->sk_err_soft = 0;
3597 	icsk->icsk_probes_out = 0;
3598 	tp->rcv_tstamp = tcp_jiffies32;
3599 	if (!prior_packets)
3600 		goto no_queue;
3601 
3602 	/* See if we can take anything off of the retransmit queue. */
3603 	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3604 
3605 	tcp_rack_update_reo_wnd(sk, &rs);
3606 
3607 	if (tp->tlp_high_seq)
3608 		tcp_process_tlp_ack(sk, ack, flag);
3609 	/* If needed, reset TLP/RTO timer; RACK may later override this. */
3610 	if (flag & FLAG_SET_XMIT_TIMER)
3611 		tcp_set_xmit_timer(sk);
3612 
3613 	if (tcp_ack_is_dubious(sk, flag)) {
3614 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3615 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3616 				      &rexmit);
3617 	}
3618 
3619 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3620 		sk_dst_confirm(sk);
3621 
3622 	delivered = tp->delivered - delivered;	/* freshly ACKed or SACKed */
3623 	lost = tp->lost - lost;			/* freshly marked lost */
3624 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3625 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3626 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3627 	tcp_xmit_recovery(sk, rexmit);
3628 	return 1;
3629 
3630 no_queue:
3631 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3632 	if (flag & FLAG_DSACKING_ACK)
3633 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3634 				      &rexmit);
3635 	/* If this ack opens up a zero window, clear backoff.  It was
3636 	 * being used to time the probes, and is probably far higher than
3637 	 * it needs to be for normal retransmission.
3638 	 */
3639 	tcp_ack_probe(sk);
3640 
3641 	if (tp->tlp_high_seq)
3642 		tcp_process_tlp_ack(sk, ack, flag);
3643 	return 1;
3644 
3645 invalid_ack:
3646 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3647 	return -1;
3648 
3649 old_ack:
3650 	/* If data was SACKed, tag it and see if we should send more data.
3651 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3652 	 */
3653 	if (TCP_SKB_CB(skb)->sacked) {
3654 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3655 						&sack_state);
3656 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3657 				      &rexmit);
3658 		tcp_xmit_recovery(sk, rexmit);
3659 	}
3660 
3661 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3662 	return 0;
3663 }
3664 
3665 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3666 				      bool syn, struct tcp_fastopen_cookie *foc,
3667 				      bool exp_opt)
3668 {
3669 	/* Valid only in SYN or SYN-ACK with an even length.  */
3670 	if (!foc || !syn || len < 0 || (len & 1))
3671 		return;
3672 
3673 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3674 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3675 		memcpy(foc->val, cookie, len);
3676 	else if (len != 0)
3677 		len = -1;
3678 	foc->len = len;
3679 	foc->exp = exp_opt;
3680 }
3681 
3682 static void smc_parse_options(const struct tcphdr *th,
3683 			      struct tcp_options_received *opt_rx,
3684 			      const unsigned char *ptr,
3685 			      int opsize)
3686 {
3687 #if IS_ENABLED(CONFIG_SMC)
3688 	if (static_branch_unlikely(&tcp_have_smc)) {
3689 		if (th->syn && !(opsize & 1) &&
3690 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3691 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3692 			opt_rx->smc_ok = 1;
3693 	}
3694 #endif
3695 }
3696 
3697 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3698  * But, this can also be called on packets in the established flow when
3699  * the fast version below fails.
3700  */
3701 void tcp_parse_options(const struct net *net,
3702 		       const struct sk_buff *skb,
3703 		       struct tcp_options_received *opt_rx, int estab,
3704 		       struct tcp_fastopen_cookie *foc)
3705 {
3706 	const unsigned char *ptr;
3707 	const struct tcphdr *th = tcp_hdr(skb);
3708 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3709 
3710 	ptr = (const unsigned char *)(th + 1);
3711 	opt_rx->saw_tstamp = 0;
3712 
3713 	while (length > 0) {
3714 		int opcode = *ptr++;
3715 		int opsize;
3716 
3717 		switch (opcode) {
3718 		case TCPOPT_EOL:
3719 			return;
3720 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3721 			length--;
3722 			continue;
3723 		default:
3724 			opsize = *ptr++;
3725 			if (opsize < 2) /* "silly options" */
3726 				return;
3727 			if (opsize > length)
3728 				return;	/* don't parse partial options */
3729 			switch (opcode) {
3730 			case TCPOPT_MSS:
3731 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3732 					u16 in_mss = get_unaligned_be16(ptr);
3733 					if (in_mss) {
3734 						if (opt_rx->user_mss &&
3735 						    opt_rx->user_mss < in_mss)
3736 							in_mss = opt_rx->user_mss;
3737 						opt_rx->mss_clamp = in_mss;
3738 					}
3739 				}
3740 				break;
3741 			case TCPOPT_WINDOW:
3742 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3743 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3744 					__u8 snd_wscale = *(__u8 *)ptr;
3745 					opt_rx->wscale_ok = 1;
3746 					if (snd_wscale > TCP_MAX_WSCALE) {
3747 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3748 								     __func__,
3749 								     snd_wscale,
3750 								     TCP_MAX_WSCALE);
3751 						snd_wscale = TCP_MAX_WSCALE;
3752 					}
3753 					opt_rx->snd_wscale = snd_wscale;
3754 				}
3755 				break;
3756 			case TCPOPT_TIMESTAMP:
3757 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3758 				    ((estab && opt_rx->tstamp_ok) ||
3759 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3760 					opt_rx->saw_tstamp = 1;
3761 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3762 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3763 				}
3764 				break;
3765 			case TCPOPT_SACK_PERM:
3766 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3767 				    !estab && net->ipv4.sysctl_tcp_sack) {
3768 					opt_rx->sack_ok = TCP_SACK_SEEN;
3769 					tcp_sack_reset(opt_rx);
3770 				}
3771 				break;
3772 
3773 			case TCPOPT_SACK:
3774 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3775 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3776 				   opt_rx->sack_ok) {
3777 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3778 				}
3779 				break;
3780 #ifdef CONFIG_TCP_MD5SIG
3781 			case TCPOPT_MD5SIG:
3782 				/*
3783 				 * The MD5 Hash has already been
3784 				 * checked (see tcp_v{4,6}_do_rcv()).
3785 				 */
3786 				break;
3787 #endif
3788 			case TCPOPT_FASTOPEN:
3789 				tcp_parse_fastopen_option(
3790 					opsize - TCPOLEN_FASTOPEN_BASE,
3791 					ptr, th->syn, foc, false);
3792 				break;
3793 
3794 			case TCPOPT_EXP:
3795 				/* Fast Open option shares code 254 using a
3796 				 * 16 bits magic number.
3797 				 */
3798 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3799 				    get_unaligned_be16(ptr) ==
3800 				    TCPOPT_FASTOPEN_MAGIC)
3801 					tcp_parse_fastopen_option(opsize -
3802 						TCPOLEN_EXP_FASTOPEN_BASE,
3803 						ptr + 2, th->syn, foc, true);
3804 				else
3805 					smc_parse_options(th, opt_rx, ptr,
3806 							  opsize);
3807 				break;
3808 
3809 			}
3810 			ptr += opsize-2;
3811 			length -= opsize;
3812 		}
3813 	}
3814 }
3815 EXPORT_SYMBOL(tcp_parse_options);
3816 
3817 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3818 {
3819 	const __be32 *ptr = (const __be32 *)(th + 1);
3820 
3821 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3822 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3823 		tp->rx_opt.saw_tstamp = 1;
3824 		++ptr;
3825 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3826 		++ptr;
3827 		if (*ptr)
3828 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3829 		else
3830 			tp->rx_opt.rcv_tsecr = 0;
3831 		return true;
3832 	}
3833 	return false;
3834 }
3835 
3836 /* Fast parse options. This hopes to only see timestamps.
3837  * If it is wrong it falls back on tcp_parse_options().
3838  */
3839 static bool tcp_fast_parse_options(const struct net *net,
3840 				   const struct sk_buff *skb,
3841 				   const struct tcphdr *th, struct tcp_sock *tp)
3842 {
3843 	/* In the spirit of fast parsing, compare doff directly to constant
3844 	 * values.  Because equality is used, short doff can be ignored here.
3845 	 */
3846 	if (th->doff == (sizeof(*th) / 4)) {
3847 		tp->rx_opt.saw_tstamp = 0;
3848 		return false;
3849 	} else if (tp->rx_opt.tstamp_ok &&
3850 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3851 		if (tcp_parse_aligned_timestamp(tp, th))
3852 			return true;
3853 	}
3854 
3855 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3856 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3857 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3858 
3859 	return true;
3860 }
3861 
3862 #ifdef CONFIG_TCP_MD5SIG
3863 /*
3864  * Parse MD5 Signature option
3865  */
3866 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3867 {
3868 	int length = (th->doff << 2) - sizeof(*th);
3869 	const u8 *ptr = (const u8 *)(th + 1);
3870 
3871 	/* If not enough data remaining, we can short cut */
3872 	while (length >= TCPOLEN_MD5SIG) {
3873 		int opcode = *ptr++;
3874 		int opsize;
3875 
3876 		switch (opcode) {
3877 		case TCPOPT_EOL:
3878 			return NULL;
3879 		case TCPOPT_NOP:
3880 			length--;
3881 			continue;
3882 		default:
3883 			opsize = *ptr++;
3884 			if (opsize < 2 || opsize > length)
3885 				return NULL;
3886 			if (opcode == TCPOPT_MD5SIG)
3887 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3888 		}
3889 		ptr += opsize - 2;
3890 		length -= opsize;
3891 	}
3892 	return NULL;
3893 }
3894 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3895 #endif
3896 
3897 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3898  *
3899  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3900  * it can pass through stack. So, the following predicate verifies that
3901  * this segment is not used for anything but congestion avoidance or
3902  * fast retransmit. Moreover, we even are able to eliminate most of such
3903  * second order effects, if we apply some small "replay" window (~RTO)
3904  * to timestamp space.
3905  *
3906  * All these measures still do not guarantee that we reject wrapped ACKs
3907  * on networks with high bandwidth, when sequence space is recycled fastly,
3908  * but it guarantees that such events will be very rare and do not affect
3909  * connection seriously. This doesn't look nice, but alas, PAWS is really
3910  * buggy extension.
3911  *
3912  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3913  * states that events when retransmit arrives after original data are rare.
3914  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3915  * the biggest problem on large power networks even with minor reordering.
3916  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3917  * up to bandwidth of 18Gigabit/sec. 8) ]
3918  */
3919 
3920 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3921 {
3922 	const struct tcp_sock *tp = tcp_sk(sk);
3923 	const struct tcphdr *th = tcp_hdr(skb);
3924 	u32 seq = TCP_SKB_CB(skb)->seq;
3925 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3926 
3927 	return (/* 1. Pure ACK with correct sequence number. */
3928 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3929 
3930 		/* 2. ... and duplicate ACK. */
3931 		ack == tp->snd_una &&
3932 
3933 		/* 3. ... and does not update window. */
3934 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3935 
3936 		/* 4. ... and sits in replay window. */
3937 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3938 }
3939 
3940 static inline bool tcp_paws_discard(const struct sock *sk,
3941 				   const struct sk_buff *skb)
3942 {
3943 	const struct tcp_sock *tp = tcp_sk(sk);
3944 
3945 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3946 	       !tcp_disordered_ack(sk, skb);
3947 }
3948 
3949 /* Check segment sequence number for validity.
3950  *
3951  * Segment controls are considered valid, if the segment
3952  * fits to the window after truncation to the window. Acceptability
3953  * of data (and SYN, FIN, of course) is checked separately.
3954  * See tcp_data_queue(), for example.
3955  *
3956  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3957  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3958  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3959  * (borrowed from freebsd)
3960  */
3961 
3962 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3963 {
3964 	return	!before(end_seq, tp->rcv_wup) &&
3965 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3966 }
3967 
3968 /* When we get a reset we do this. */
3969 void tcp_reset(struct sock *sk)
3970 {
3971 	trace_tcp_receive_reset(sk);
3972 
3973 	/* We want the right error as BSD sees it (and indeed as we do). */
3974 	switch (sk->sk_state) {
3975 	case TCP_SYN_SENT:
3976 		sk->sk_err = ECONNREFUSED;
3977 		break;
3978 	case TCP_CLOSE_WAIT:
3979 		sk->sk_err = EPIPE;
3980 		break;
3981 	case TCP_CLOSE:
3982 		return;
3983 	default:
3984 		sk->sk_err = ECONNRESET;
3985 	}
3986 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
3987 	smp_wmb();
3988 
3989 	tcp_write_queue_purge(sk);
3990 	tcp_done(sk);
3991 
3992 	if (!sock_flag(sk, SOCK_DEAD))
3993 		sk->sk_error_report(sk);
3994 }
3995 
3996 /*
3997  * 	Process the FIN bit. This now behaves as it is supposed to work
3998  *	and the FIN takes effect when it is validly part of sequence
3999  *	space. Not before when we get holes.
4000  *
4001  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4002  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4003  *	TIME-WAIT)
4004  *
4005  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4006  *	close and we go into CLOSING (and later onto TIME-WAIT)
4007  *
4008  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4009  */
4010 void tcp_fin(struct sock *sk)
4011 {
4012 	struct tcp_sock *tp = tcp_sk(sk);
4013 
4014 	inet_csk_schedule_ack(sk);
4015 
4016 	sk->sk_shutdown |= RCV_SHUTDOWN;
4017 	sock_set_flag(sk, SOCK_DONE);
4018 
4019 	switch (sk->sk_state) {
4020 	case TCP_SYN_RECV:
4021 	case TCP_ESTABLISHED:
4022 		/* Move to CLOSE_WAIT */
4023 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4024 		inet_csk(sk)->icsk_ack.pingpong = 1;
4025 		break;
4026 
4027 	case TCP_CLOSE_WAIT:
4028 	case TCP_CLOSING:
4029 		/* Received a retransmission of the FIN, do
4030 		 * nothing.
4031 		 */
4032 		break;
4033 	case TCP_LAST_ACK:
4034 		/* RFC793: Remain in the LAST-ACK state. */
4035 		break;
4036 
4037 	case TCP_FIN_WAIT1:
4038 		/* This case occurs when a simultaneous close
4039 		 * happens, we must ack the received FIN and
4040 		 * enter the CLOSING state.
4041 		 */
4042 		tcp_send_ack(sk);
4043 		tcp_set_state(sk, TCP_CLOSING);
4044 		break;
4045 	case TCP_FIN_WAIT2:
4046 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4047 		tcp_send_ack(sk);
4048 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4049 		break;
4050 	default:
4051 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4052 		 * cases we should never reach this piece of code.
4053 		 */
4054 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4055 		       __func__, sk->sk_state);
4056 		break;
4057 	}
4058 
4059 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4060 	 * Probably, we should reset in this case. For now drop them.
4061 	 */
4062 	skb_rbtree_purge(&tp->out_of_order_queue);
4063 	if (tcp_is_sack(tp))
4064 		tcp_sack_reset(&tp->rx_opt);
4065 	sk_mem_reclaim(sk);
4066 
4067 	if (!sock_flag(sk, SOCK_DEAD)) {
4068 		sk->sk_state_change(sk);
4069 
4070 		/* Do not send POLL_HUP for half duplex close. */
4071 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4072 		    sk->sk_state == TCP_CLOSE)
4073 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4074 		else
4075 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4076 	}
4077 }
4078 
4079 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4080 				  u32 end_seq)
4081 {
4082 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4083 		if (before(seq, sp->start_seq))
4084 			sp->start_seq = seq;
4085 		if (after(end_seq, sp->end_seq))
4086 			sp->end_seq = end_seq;
4087 		return true;
4088 	}
4089 	return false;
4090 }
4091 
4092 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4093 {
4094 	struct tcp_sock *tp = tcp_sk(sk);
4095 
4096 	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4097 		int mib_idx;
4098 
4099 		if (before(seq, tp->rcv_nxt))
4100 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4101 		else
4102 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4103 
4104 		NET_INC_STATS(sock_net(sk), mib_idx);
4105 
4106 		tp->rx_opt.dsack = 1;
4107 		tp->duplicate_sack[0].start_seq = seq;
4108 		tp->duplicate_sack[0].end_seq = end_seq;
4109 	}
4110 }
4111 
4112 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4113 {
4114 	struct tcp_sock *tp = tcp_sk(sk);
4115 
4116 	if (!tp->rx_opt.dsack)
4117 		tcp_dsack_set(sk, seq, end_seq);
4118 	else
4119 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4120 }
4121 
4122 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4123 {
4124 	struct tcp_sock *tp = tcp_sk(sk);
4125 
4126 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4127 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4128 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4129 		tcp_enter_quickack_mode(sk);
4130 
4131 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4132 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4133 
4134 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4135 				end_seq = tp->rcv_nxt;
4136 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4137 		}
4138 	}
4139 
4140 	tcp_send_ack(sk);
4141 }
4142 
4143 /* These routines update the SACK block as out-of-order packets arrive or
4144  * in-order packets close up the sequence space.
4145  */
4146 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4147 {
4148 	int this_sack;
4149 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4150 	struct tcp_sack_block *swalk = sp + 1;
4151 
4152 	/* See if the recent change to the first SACK eats into
4153 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4154 	 */
4155 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4156 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4157 			int i;
4158 
4159 			/* Zap SWALK, by moving every further SACK up by one slot.
4160 			 * Decrease num_sacks.
4161 			 */
4162 			tp->rx_opt.num_sacks--;
4163 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4164 				sp[i] = sp[i + 1];
4165 			continue;
4166 		}
4167 		this_sack++, swalk++;
4168 	}
4169 }
4170 
4171 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4172 {
4173 	struct tcp_sock *tp = tcp_sk(sk);
4174 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4175 	int cur_sacks = tp->rx_opt.num_sacks;
4176 	int this_sack;
4177 
4178 	if (!cur_sacks)
4179 		goto new_sack;
4180 
4181 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4182 		if (tcp_sack_extend(sp, seq, end_seq)) {
4183 			/* Rotate this_sack to the first one. */
4184 			for (; this_sack > 0; this_sack--, sp--)
4185 				swap(*sp, *(sp - 1));
4186 			if (cur_sacks > 1)
4187 				tcp_sack_maybe_coalesce(tp);
4188 			return;
4189 		}
4190 	}
4191 
4192 	/* Could not find an adjacent existing SACK, build a new one,
4193 	 * put it at the front, and shift everyone else down.  We
4194 	 * always know there is at least one SACK present already here.
4195 	 *
4196 	 * If the sack array is full, forget about the last one.
4197 	 */
4198 	if (this_sack >= TCP_NUM_SACKS) {
4199 		this_sack--;
4200 		tp->rx_opt.num_sacks--;
4201 		sp--;
4202 	}
4203 	for (; this_sack > 0; this_sack--, sp--)
4204 		*sp = *(sp - 1);
4205 
4206 new_sack:
4207 	/* Build the new head SACK, and we're done. */
4208 	sp->start_seq = seq;
4209 	sp->end_seq = end_seq;
4210 	tp->rx_opt.num_sacks++;
4211 }
4212 
4213 /* RCV.NXT advances, some SACKs should be eaten. */
4214 
4215 static void tcp_sack_remove(struct tcp_sock *tp)
4216 {
4217 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4218 	int num_sacks = tp->rx_opt.num_sacks;
4219 	int this_sack;
4220 
4221 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4222 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4223 		tp->rx_opt.num_sacks = 0;
4224 		return;
4225 	}
4226 
4227 	for (this_sack = 0; this_sack < num_sacks;) {
4228 		/* Check if the start of the sack is covered by RCV.NXT. */
4229 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4230 			int i;
4231 
4232 			/* RCV.NXT must cover all the block! */
4233 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4234 
4235 			/* Zap this SACK, by moving forward any other SACKS. */
4236 			for (i = this_sack+1; i < num_sacks; i++)
4237 				tp->selective_acks[i-1] = tp->selective_acks[i];
4238 			num_sacks--;
4239 			continue;
4240 		}
4241 		this_sack++;
4242 		sp++;
4243 	}
4244 	tp->rx_opt.num_sacks = num_sacks;
4245 }
4246 
4247 /**
4248  * tcp_try_coalesce - try to merge skb to prior one
4249  * @sk: socket
4250  * @dest: destination queue
4251  * @to: prior buffer
4252  * @from: buffer to add in queue
4253  * @fragstolen: pointer to boolean
4254  *
4255  * Before queueing skb @from after @to, try to merge them
4256  * to reduce overall memory use and queue lengths, if cost is small.
4257  * Packets in ofo or receive queues can stay a long time.
4258  * Better try to coalesce them right now to avoid future collapses.
4259  * Returns true if caller should free @from instead of queueing it
4260  */
4261 static bool tcp_try_coalesce(struct sock *sk,
4262 			     struct sk_buff *to,
4263 			     struct sk_buff *from,
4264 			     bool *fragstolen)
4265 {
4266 	int delta;
4267 
4268 	*fragstolen = false;
4269 
4270 	/* Its possible this segment overlaps with prior segment in queue */
4271 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4272 		return false;
4273 
4274 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4275 		return false;
4276 
4277 	atomic_add(delta, &sk->sk_rmem_alloc);
4278 	sk_mem_charge(sk, delta);
4279 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4280 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4281 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4282 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4283 
4284 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4285 		TCP_SKB_CB(to)->has_rxtstamp = true;
4286 		to->tstamp = from->tstamp;
4287 	}
4288 
4289 	return true;
4290 }
4291 
4292 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4293 {
4294 	sk_drops_add(sk, skb);
4295 	__kfree_skb(skb);
4296 }
4297 
4298 /* This one checks to see if we can put data from the
4299  * out_of_order queue into the receive_queue.
4300  */
4301 static void tcp_ofo_queue(struct sock *sk)
4302 {
4303 	struct tcp_sock *tp = tcp_sk(sk);
4304 	__u32 dsack_high = tp->rcv_nxt;
4305 	bool fin, fragstolen, eaten;
4306 	struct sk_buff *skb, *tail;
4307 	struct rb_node *p;
4308 
4309 	p = rb_first(&tp->out_of_order_queue);
4310 	while (p) {
4311 		skb = rb_to_skb(p);
4312 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4313 			break;
4314 
4315 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4316 			__u32 dsack = dsack_high;
4317 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4318 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4319 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4320 		}
4321 		p = rb_next(p);
4322 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4323 
4324 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4325 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4326 			tcp_drop(sk, skb);
4327 			continue;
4328 		}
4329 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4330 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4331 			   TCP_SKB_CB(skb)->end_seq);
4332 
4333 		tail = skb_peek_tail(&sk->sk_receive_queue);
4334 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4335 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4336 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4337 		if (!eaten)
4338 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4339 		else
4340 			kfree_skb_partial(skb, fragstolen);
4341 
4342 		if (unlikely(fin)) {
4343 			tcp_fin(sk);
4344 			/* tcp_fin() purges tp->out_of_order_queue,
4345 			 * so we must end this loop right now.
4346 			 */
4347 			break;
4348 		}
4349 	}
4350 }
4351 
4352 static bool tcp_prune_ofo_queue(struct sock *sk);
4353 static int tcp_prune_queue(struct sock *sk);
4354 
4355 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4356 				 unsigned int size)
4357 {
4358 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4359 	    !sk_rmem_schedule(sk, skb, size)) {
4360 
4361 		if (tcp_prune_queue(sk) < 0)
4362 			return -1;
4363 
4364 		while (!sk_rmem_schedule(sk, skb, size)) {
4365 			if (!tcp_prune_ofo_queue(sk))
4366 				return -1;
4367 		}
4368 	}
4369 	return 0;
4370 }
4371 
4372 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4373 {
4374 	struct tcp_sock *tp = tcp_sk(sk);
4375 	struct rb_node **p, *parent;
4376 	struct sk_buff *skb1;
4377 	u32 seq, end_seq;
4378 	bool fragstolen;
4379 
4380 	tcp_ecn_check_ce(tp, skb);
4381 
4382 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4383 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4384 		tcp_drop(sk, skb);
4385 		return;
4386 	}
4387 
4388 	/* Disable header prediction. */
4389 	tp->pred_flags = 0;
4390 	inet_csk_schedule_ack(sk);
4391 
4392 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4393 	seq = TCP_SKB_CB(skb)->seq;
4394 	end_seq = TCP_SKB_CB(skb)->end_seq;
4395 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4396 		   tp->rcv_nxt, seq, end_seq);
4397 
4398 	p = &tp->out_of_order_queue.rb_node;
4399 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4400 		/* Initial out of order segment, build 1 SACK. */
4401 		if (tcp_is_sack(tp)) {
4402 			tp->rx_opt.num_sacks = 1;
4403 			tp->selective_acks[0].start_seq = seq;
4404 			tp->selective_acks[0].end_seq = end_seq;
4405 		}
4406 		rb_link_node(&skb->rbnode, NULL, p);
4407 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4408 		tp->ooo_last_skb = skb;
4409 		goto end;
4410 	}
4411 
4412 	/* In the typical case, we are adding an skb to the end of the list.
4413 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4414 	 */
4415 	if (tcp_try_coalesce(sk, tp->ooo_last_skb,
4416 			     skb, &fragstolen)) {
4417 coalesce_done:
4418 		tcp_grow_window(sk, skb);
4419 		kfree_skb_partial(skb, fragstolen);
4420 		skb = NULL;
4421 		goto add_sack;
4422 	}
4423 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4424 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4425 		parent = &tp->ooo_last_skb->rbnode;
4426 		p = &parent->rb_right;
4427 		goto insert;
4428 	}
4429 
4430 	/* Find place to insert this segment. Handle overlaps on the way. */
4431 	parent = NULL;
4432 	while (*p) {
4433 		parent = *p;
4434 		skb1 = rb_to_skb(parent);
4435 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4436 			p = &parent->rb_left;
4437 			continue;
4438 		}
4439 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4440 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4441 				/* All the bits are present. Drop. */
4442 				NET_INC_STATS(sock_net(sk),
4443 					      LINUX_MIB_TCPOFOMERGE);
4444 				__kfree_skb(skb);
4445 				skb = NULL;
4446 				tcp_dsack_set(sk, seq, end_seq);
4447 				goto add_sack;
4448 			}
4449 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4450 				/* Partial overlap. */
4451 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4452 			} else {
4453 				/* skb's seq == skb1's seq and skb covers skb1.
4454 				 * Replace skb1 with skb.
4455 				 */
4456 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4457 						&tp->out_of_order_queue);
4458 				tcp_dsack_extend(sk,
4459 						 TCP_SKB_CB(skb1)->seq,
4460 						 TCP_SKB_CB(skb1)->end_seq);
4461 				NET_INC_STATS(sock_net(sk),
4462 					      LINUX_MIB_TCPOFOMERGE);
4463 				__kfree_skb(skb1);
4464 				goto merge_right;
4465 			}
4466 		} else if (tcp_try_coalesce(sk, skb1,
4467 					    skb, &fragstolen)) {
4468 			goto coalesce_done;
4469 		}
4470 		p = &parent->rb_right;
4471 	}
4472 insert:
4473 	/* Insert segment into RB tree. */
4474 	rb_link_node(&skb->rbnode, parent, p);
4475 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4476 
4477 merge_right:
4478 	/* Remove other segments covered by skb. */
4479 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4480 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4481 			break;
4482 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4483 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4484 					 end_seq);
4485 			break;
4486 		}
4487 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4488 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4489 				 TCP_SKB_CB(skb1)->end_seq);
4490 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4491 		tcp_drop(sk, skb1);
4492 	}
4493 	/* If there is no skb after us, we are the last_skb ! */
4494 	if (!skb1)
4495 		tp->ooo_last_skb = skb;
4496 
4497 add_sack:
4498 	if (tcp_is_sack(tp))
4499 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4500 end:
4501 	if (skb) {
4502 		tcp_grow_window(sk, skb);
4503 		skb_condense(skb);
4504 		skb_set_owner_r(skb, sk);
4505 	}
4506 }
4507 
4508 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4509 		  bool *fragstolen)
4510 {
4511 	int eaten;
4512 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4513 
4514 	__skb_pull(skb, hdrlen);
4515 	eaten = (tail &&
4516 		 tcp_try_coalesce(sk, tail,
4517 				  skb, fragstolen)) ? 1 : 0;
4518 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4519 	if (!eaten) {
4520 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4521 		skb_set_owner_r(skb, sk);
4522 	}
4523 	return eaten;
4524 }
4525 
4526 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4527 {
4528 	struct sk_buff *skb;
4529 	int err = -ENOMEM;
4530 	int data_len = 0;
4531 	bool fragstolen;
4532 
4533 	if (size == 0)
4534 		return 0;
4535 
4536 	if (size > PAGE_SIZE) {
4537 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4538 
4539 		data_len = npages << PAGE_SHIFT;
4540 		size = data_len + (size & ~PAGE_MASK);
4541 	}
4542 	skb = alloc_skb_with_frags(size - data_len, data_len,
4543 				   PAGE_ALLOC_COSTLY_ORDER,
4544 				   &err, sk->sk_allocation);
4545 	if (!skb)
4546 		goto err;
4547 
4548 	skb_put(skb, size - data_len);
4549 	skb->data_len = data_len;
4550 	skb->len = size;
4551 
4552 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4553 		goto err_free;
4554 
4555 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4556 	if (err)
4557 		goto err_free;
4558 
4559 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4560 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4561 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4562 
4563 	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4564 		WARN_ON_ONCE(fragstolen); /* should not happen */
4565 		__kfree_skb(skb);
4566 	}
4567 	return size;
4568 
4569 err_free:
4570 	kfree_skb(skb);
4571 err:
4572 	return err;
4573 
4574 }
4575 
4576 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4577 {
4578 	struct tcp_sock *tp = tcp_sk(sk);
4579 	bool fragstolen;
4580 	int eaten;
4581 
4582 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4583 		__kfree_skb(skb);
4584 		return;
4585 	}
4586 	skb_dst_drop(skb);
4587 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4588 
4589 	tcp_ecn_accept_cwr(tp, skb);
4590 
4591 	tp->rx_opt.dsack = 0;
4592 
4593 	/*  Queue data for delivery to the user.
4594 	 *  Packets in sequence go to the receive queue.
4595 	 *  Out of sequence packets to the out_of_order_queue.
4596 	 */
4597 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4598 		if (tcp_receive_window(tp) == 0)
4599 			goto out_of_window;
4600 
4601 		/* Ok. In sequence. In window. */
4602 queue_and_out:
4603 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4604 			sk_forced_mem_schedule(sk, skb->truesize);
4605 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4606 			goto drop;
4607 
4608 		eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4609 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4610 		if (skb->len)
4611 			tcp_event_data_recv(sk, skb);
4612 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4613 			tcp_fin(sk);
4614 
4615 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4616 			tcp_ofo_queue(sk);
4617 
4618 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4619 			 * gap in queue is filled.
4620 			 */
4621 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4622 				inet_csk(sk)->icsk_ack.pingpong = 0;
4623 		}
4624 
4625 		if (tp->rx_opt.num_sacks)
4626 			tcp_sack_remove(tp);
4627 
4628 		tcp_fast_path_check(sk);
4629 
4630 		if (eaten > 0)
4631 			kfree_skb_partial(skb, fragstolen);
4632 		if (!sock_flag(sk, SOCK_DEAD))
4633 			sk->sk_data_ready(sk);
4634 		return;
4635 	}
4636 
4637 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4638 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4639 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4640 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4641 
4642 out_of_window:
4643 		tcp_enter_quickack_mode(sk);
4644 		inet_csk_schedule_ack(sk);
4645 drop:
4646 		tcp_drop(sk, skb);
4647 		return;
4648 	}
4649 
4650 	/* Out of window. F.e. zero window probe. */
4651 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4652 		goto out_of_window;
4653 
4654 	tcp_enter_quickack_mode(sk);
4655 
4656 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4657 		/* Partial packet, seq < rcv_next < end_seq */
4658 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4659 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4660 			   TCP_SKB_CB(skb)->end_seq);
4661 
4662 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4663 
4664 		/* If window is closed, drop tail of packet. But after
4665 		 * remembering D-SACK for its head made in previous line.
4666 		 */
4667 		if (!tcp_receive_window(tp))
4668 			goto out_of_window;
4669 		goto queue_and_out;
4670 	}
4671 
4672 	tcp_data_queue_ofo(sk, skb);
4673 }
4674 
4675 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4676 {
4677 	if (list)
4678 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4679 
4680 	return skb_rb_next(skb);
4681 }
4682 
4683 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4684 					struct sk_buff_head *list,
4685 					struct rb_root *root)
4686 {
4687 	struct sk_buff *next = tcp_skb_next(skb, list);
4688 
4689 	if (list)
4690 		__skb_unlink(skb, list);
4691 	else
4692 		rb_erase(&skb->rbnode, root);
4693 
4694 	__kfree_skb(skb);
4695 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4696 
4697 	return next;
4698 }
4699 
4700 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4701 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4702 {
4703 	struct rb_node **p = &root->rb_node;
4704 	struct rb_node *parent = NULL;
4705 	struct sk_buff *skb1;
4706 
4707 	while (*p) {
4708 		parent = *p;
4709 		skb1 = rb_to_skb(parent);
4710 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4711 			p = &parent->rb_left;
4712 		else
4713 			p = &parent->rb_right;
4714 	}
4715 	rb_link_node(&skb->rbnode, parent, p);
4716 	rb_insert_color(&skb->rbnode, root);
4717 }
4718 
4719 /* Collapse contiguous sequence of skbs head..tail with
4720  * sequence numbers start..end.
4721  *
4722  * If tail is NULL, this means until the end of the queue.
4723  *
4724  * Segments with FIN/SYN are not collapsed (only because this
4725  * simplifies code)
4726  */
4727 static void
4728 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4729 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4730 {
4731 	struct sk_buff *skb = head, *n;
4732 	struct sk_buff_head tmp;
4733 	bool end_of_skbs;
4734 
4735 	/* First, check that queue is collapsible and find
4736 	 * the point where collapsing can be useful.
4737 	 */
4738 restart:
4739 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4740 		n = tcp_skb_next(skb, list);
4741 
4742 		/* No new bits? It is possible on ofo queue. */
4743 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4744 			skb = tcp_collapse_one(sk, skb, list, root);
4745 			if (!skb)
4746 				break;
4747 			goto restart;
4748 		}
4749 
4750 		/* The first skb to collapse is:
4751 		 * - not SYN/FIN and
4752 		 * - bloated or contains data before "start" or
4753 		 *   overlaps to the next one.
4754 		 */
4755 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4756 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4757 		     before(TCP_SKB_CB(skb)->seq, start))) {
4758 			end_of_skbs = false;
4759 			break;
4760 		}
4761 
4762 		if (n && n != tail &&
4763 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4764 			end_of_skbs = false;
4765 			break;
4766 		}
4767 
4768 		/* Decided to skip this, advance start seq. */
4769 		start = TCP_SKB_CB(skb)->end_seq;
4770 	}
4771 	if (end_of_skbs ||
4772 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4773 		return;
4774 
4775 	__skb_queue_head_init(&tmp);
4776 
4777 	while (before(start, end)) {
4778 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4779 		struct sk_buff *nskb;
4780 
4781 		nskb = alloc_skb(copy, GFP_ATOMIC);
4782 		if (!nskb)
4783 			break;
4784 
4785 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4786 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4787 		if (list)
4788 			__skb_queue_before(list, skb, nskb);
4789 		else
4790 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4791 		skb_set_owner_r(nskb, sk);
4792 
4793 		/* Copy data, releasing collapsed skbs. */
4794 		while (copy > 0) {
4795 			int offset = start - TCP_SKB_CB(skb)->seq;
4796 			int size = TCP_SKB_CB(skb)->end_seq - start;
4797 
4798 			BUG_ON(offset < 0);
4799 			if (size > 0) {
4800 				size = min(copy, size);
4801 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4802 					BUG();
4803 				TCP_SKB_CB(nskb)->end_seq += size;
4804 				copy -= size;
4805 				start += size;
4806 			}
4807 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4808 				skb = tcp_collapse_one(sk, skb, list, root);
4809 				if (!skb ||
4810 				    skb == tail ||
4811 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4812 					goto end;
4813 			}
4814 		}
4815 	}
4816 end:
4817 	skb_queue_walk_safe(&tmp, skb, n)
4818 		tcp_rbtree_insert(root, skb);
4819 }
4820 
4821 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4822  * and tcp_collapse() them until all the queue is collapsed.
4823  */
4824 static void tcp_collapse_ofo_queue(struct sock *sk)
4825 {
4826 	struct tcp_sock *tp = tcp_sk(sk);
4827 	struct sk_buff *skb, *head;
4828 	u32 start, end;
4829 
4830 	skb = skb_rb_first(&tp->out_of_order_queue);
4831 new_range:
4832 	if (!skb) {
4833 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
4834 		return;
4835 	}
4836 	start = TCP_SKB_CB(skb)->seq;
4837 	end = TCP_SKB_CB(skb)->end_seq;
4838 
4839 	for (head = skb;;) {
4840 		skb = skb_rb_next(skb);
4841 
4842 		/* Range is terminated when we see a gap or when
4843 		 * we are at the queue end.
4844 		 */
4845 		if (!skb ||
4846 		    after(TCP_SKB_CB(skb)->seq, end) ||
4847 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4848 			tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4849 				     head, skb, start, end);
4850 			goto new_range;
4851 		}
4852 
4853 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4854 			start = TCP_SKB_CB(skb)->seq;
4855 		if (after(TCP_SKB_CB(skb)->end_seq, end))
4856 			end = TCP_SKB_CB(skb)->end_seq;
4857 	}
4858 }
4859 
4860 /*
4861  * Clean the out-of-order queue to make room.
4862  * We drop high sequences packets to :
4863  * 1) Let a chance for holes to be filled.
4864  * 2) not add too big latencies if thousands of packets sit there.
4865  *    (But if application shrinks SO_RCVBUF, we could still end up
4866  *     freeing whole queue here)
4867  *
4868  * Return true if queue has shrunk.
4869  */
4870 static bool tcp_prune_ofo_queue(struct sock *sk)
4871 {
4872 	struct tcp_sock *tp = tcp_sk(sk);
4873 	struct rb_node *node, *prev;
4874 
4875 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4876 		return false;
4877 
4878 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4879 	node = &tp->ooo_last_skb->rbnode;
4880 	do {
4881 		prev = rb_prev(node);
4882 		rb_erase(node, &tp->out_of_order_queue);
4883 		tcp_drop(sk, rb_to_skb(node));
4884 		sk_mem_reclaim(sk);
4885 		if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4886 		    !tcp_under_memory_pressure(sk))
4887 			break;
4888 		node = prev;
4889 	} while (node);
4890 	tp->ooo_last_skb = rb_to_skb(prev);
4891 
4892 	/* Reset SACK state.  A conforming SACK implementation will
4893 	 * do the same at a timeout based retransmit.  When a connection
4894 	 * is in a sad state like this, we care only about integrity
4895 	 * of the connection not performance.
4896 	 */
4897 	if (tp->rx_opt.sack_ok)
4898 		tcp_sack_reset(&tp->rx_opt);
4899 	return true;
4900 }
4901 
4902 /* Reduce allocated memory if we can, trying to get
4903  * the socket within its memory limits again.
4904  *
4905  * Return less than zero if we should start dropping frames
4906  * until the socket owning process reads some of the data
4907  * to stabilize the situation.
4908  */
4909 static int tcp_prune_queue(struct sock *sk)
4910 {
4911 	struct tcp_sock *tp = tcp_sk(sk);
4912 
4913 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4914 
4915 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4916 
4917 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4918 		tcp_clamp_window(sk);
4919 	else if (tcp_under_memory_pressure(sk))
4920 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4921 
4922 	tcp_collapse_ofo_queue(sk);
4923 	if (!skb_queue_empty(&sk->sk_receive_queue))
4924 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
4925 			     skb_peek(&sk->sk_receive_queue),
4926 			     NULL,
4927 			     tp->copied_seq, tp->rcv_nxt);
4928 	sk_mem_reclaim(sk);
4929 
4930 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4931 		return 0;
4932 
4933 	/* Collapsing did not help, destructive actions follow.
4934 	 * This must not ever occur. */
4935 
4936 	tcp_prune_ofo_queue(sk);
4937 
4938 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4939 		return 0;
4940 
4941 	/* If we are really being abused, tell the caller to silently
4942 	 * drop receive data on the floor.  It will get retransmitted
4943 	 * and hopefully then we'll have sufficient space.
4944 	 */
4945 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
4946 
4947 	/* Massive buffer overcommit. */
4948 	tp->pred_flags = 0;
4949 	return -1;
4950 }
4951 
4952 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4953 {
4954 	const struct tcp_sock *tp = tcp_sk(sk);
4955 
4956 	/* If the user specified a specific send buffer setting, do
4957 	 * not modify it.
4958 	 */
4959 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4960 		return false;
4961 
4962 	/* If we are under global TCP memory pressure, do not expand.  */
4963 	if (tcp_under_memory_pressure(sk))
4964 		return false;
4965 
4966 	/* If we are under soft global TCP memory pressure, do not expand.  */
4967 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4968 		return false;
4969 
4970 	/* If we filled the congestion window, do not expand.  */
4971 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
4972 		return false;
4973 
4974 	return true;
4975 }
4976 
4977 /* When incoming ACK allowed to free some skb from write_queue,
4978  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4979  * on the exit from tcp input handler.
4980  *
4981  * PROBLEM: sndbuf expansion does not work well with largesend.
4982  */
4983 static void tcp_new_space(struct sock *sk)
4984 {
4985 	struct tcp_sock *tp = tcp_sk(sk);
4986 
4987 	if (tcp_should_expand_sndbuf(sk)) {
4988 		tcp_sndbuf_expand(sk);
4989 		tp->snd_cwnd_stamp = tcp_jiffies32;
4990 	}
4991 
4992 	sk->sk_write_space(sk);
4993 }
4994 
4995 static void tcp_check_space(struct sock *sk)
4996 {
4997 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4998 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4999 		/* pairs with tcp_poll() */
5000 		smp_mb();
5001 		if (sk->sk_socket &&
5002 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5003 			tcp_new_space(sk);
5004 			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5005 				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5006 		}
5007 	}
5008 }
5009 
5010 static inline void tcp_data_snd_check(struct sock *sk)
5011 {
5012 	tcp_push_pending_frames(sk);
5013 	tcp_check_space(sk);
5014 }
5015 
5016 /*
5017  * Check if sending an ack is needed.
5018  */
5019 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5020 {
5021 	struct tcp_sock *tp = tcp_sk(sk);
5022 
5023 	    /* More than one full frame received... */
5024 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5025 	     /* ... and right edge of window advances far enough.
5026 	      * (tcp_recvmsg() will send ACK otherwise). Or...
5027 	      */
5028 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
5029 	    /* We ACK each frame or... */
5030 	    tcp_in_quickack_mode(sk) ||
5031 	    /* We have out of order data. */
5032 	    (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
5033 		/* Then ack it now */
5034 		tcp_send_ack(sk);
5035 	} else {
5036 		/* Else, send delayed ack. */
5037 		tcp_send_delayed_ack(sk);
5038 	}
5039 }
5040 
5041 static inline void tcp_ack_snd_check(struct sock *sk)
5042 {
5043 	if (!inet_csk_ack_scheduled(sk)) {
5044 		/* We sent a data segment already. */
5045 		return;
5046 	}
5047 	__tcp_ack_snd_check(sk, 1);
5048 }
5049 
5050 /*
5051  *	This routine is only called when we have urgent data
5052  *	signaled. Its the 'slow' part of tcp_urg. It could be
5053  *	moved inline now as tcp_urg is only called from one
5054  *	place. We handle URGent data wrong. We have to - as
5055  *	BSD still doesn't use the correction from RFC961.
5056  *	For 1003.1g we should support a new option TCP_STDURG to permit
5057  *	either form (or just set the sysctl tcp_stdurg).
5058  */
5059 
5060 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5061 {
5062 	struct tcp_sock *tp = tcp_sk(sk);
5063 	u32 ptr = ntohs(th->urg_ptr);
5064 
5065 	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5066 		ptr--;
5067 	ptr += ntohl(th->seq);
5068 
5069 	/* Ignore urgent data that we've already seen and read. */
5070 	if (after(tp->copied_seq, ptr))
5071 		return;
5072 
5073 	/* Do not replay urg ptr.
5074 	 *
5075 	 * NOTE: interesting situation not covered by specs.
5076 	 * Misbehaving sender may send urg ptr, pointing to segment,
5077 	 * which we already have in ofo queue. We are not able to fetch
5078 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5079 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5080 	 * situations. But it is worth to think about possibility of some
5081 	 * DoSes using some hypothetical application level deadlock.
5082 	 */
5083 	if (before(ptr, tp->rcv_nxt))
5084 		return;
5085 
5086 	/* Do we already have a newer (or duplicate) urgent pointer? */
5087 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5088 		return;
5089 
5090 	/* Tell the world about our new urgent pointer. */
5091 	sk_send_sigurg(sk);
5092 
5093 	/* We may be adding urgent data when the last byte read was
5094 	 * urgent. To do this requires some care. We cannot just ignore
5095 	 * tp->copied_seq since we would read the last urgent byte again
5096 	 * as data, nor can we alter copied_seq until this data arrives
5097 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5098 	 *
5099 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5100 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5101 	 * and expect that both A and B disappear from stream. This is _wrong_.
5102 	 * Though this happens in BSD with high probability, this is occasional.
5103 	 * Any application relying on this is buggy. Note also, that fix "works"
5104 	 * only in this artificial test. Insert some normal data between A and B and we will
5105 	 * decline of BSD again. Verdict: it is better to remove to trap
5106 	 * buggy users.
5107 	 */
5108 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5109 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5110 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5111 		tp->copied_seq++;
5112 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5113 			__skb_unlink(skb, &sk->sk_receive_queue);
5114 			__kfree_skb(skb);
5115 		}
5116 	}
5117 
5118 	tp->urg_data = TCP_URG_NOTYET;
5119 	tp->urg_seq = ptr;
5120 
5121 	/* Disable header prediction. */
5122 	tp->pred_flags = 0;
5123 }
5124 
5125 /* This is the 'fast' part of urgent handling. */
5126 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5127 {
5128 	struct tcp_sock *tp = tcp_sk(sk);
5129 
5130 	/* Check if we get a new urgent pointer - normally not. */
5131 	if (th->urg)
5132 		tcp_check_urg(sk, th);
5133 
5134 	/* Do we wait for any urgent data? - normally not... */
5135 	if (tp->urg_data == TCP_URG_NOTYET) {
5136 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5137 			  th->syn;
5138 
5139 		/* Is the urgent pointer pointing into this packet? */
5140 		if (ptr < skb->len) {
5141 			u8 tmp;
5142 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5143 				BUG();
5144 			tp->urg_data = TCP_URG_VALID | tmp;
5145 			if (!sock_flag(sk, SOCK_DEAD))
5146 				sk->sk_data_ready(sk);
5147 		}
5148 	}
5149 }
5150 
5151 /* Accept RST for rcv_nxt - 1 after a FIN.
5152  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5153  * FIN is sent followed by a RST packet. The RST is sent with the same
5154  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5155  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5156  * ACKs on the closed socket. In addition middleboxes can drop either the
5157  * challenge ACK or a subsequent RST.
5158  */
5159 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5160 {
5161 	struct tcp_sock *tp = tcp_sk(sk);
5162 
5163 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5164 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5165 					       TCPF_CLOSING));
5166 }
5167 
5168 /* Does PAWS and seqno based validation of an incoming segment, flags will
5169  * play significant role here.
5170  */
5171 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5172 				  const struct tcphdr *th, int syn_inerr)
5173 {
5174 	struct tcp_sock *tp = tcp_sk(sk);
5175 	bool rst_seq_match = false;
5176 
5177 	/* RFC1323: H1. Apply PAWS check first. */
5178 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5179 	    tp->rx_opt.saw_tstamp &&
5180 	    tcp_paws_discard(sk, skb)) {
5181 		if (!th->rst) {
5182 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5183 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5184 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5185 						  &tp->last_oow_ack_time))
5186 				tcp_send_dupack(sk, skb);
5187 			goto discard;
5188 		}
5189 		/* Reset is accepted even if it did not pass PAWS. */
5190 	}
5191 
5192 	/* Step 1: check sequence number */
5193 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5194 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5195 		 * (RST) segments are validated by checking their SEQ-fields."
5196 		 * And page 69: "If an incoming segment is not acceptable,
5197 		 * an acknowledgment should be sent in reply (unless the RST
5198 		 * bit is set, if so drop the segment and return)".
5199 		 */
5200 		if (!th->rst) {
5201 			if (th->syn)
5202 				goto syn_challenge;
5203 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5204 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5205 						  &tp->last_oow_ack_time))
5206 				tcp_send_dupack(sk, skb);
5207 		} else if (tcp_reset_check(sk, skb)) {
5208 			tcp_reset(sk);
5209 		}
5210 		goto discard;
5211 	}
5212 
5213 	/* Step 2: check RST bit */
5214 	if (th->rst) {
5215 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5216 		 * FIN and SACK too if available):
5217 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5218 		 * the right-most SACK block,
5219 		 * then
5220 		 *     RESET the connection
5221 		 * else
5222 		 *     Send a challenge ACK
5223 		 */
5224 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5225 		    tcp_reset_check(sk, skb)) {
5226 			rst_seq_match = true;
5227 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5228 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5229 			int max_sack = sp[0].end_seq;
5230 			int this_sack;
5231 
5232 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5233 			     ++this_sack) {
5234 				max_sack = after(sp[this_sack].end_seq,
5235 						 max_sack) ?
5236 					sp[this_sack].end_seq : max_sack;
5237 			}
5238 
5239 			if (TCP_SKB_CB(skb)->seq == max_sack)
5240 				rst_seq_match = true;
5241 		}
5242 
5243 		if (rst_seq_match)
5244 			tcp_reset(sk);
5245 		else {
5246 			/* Disable TFO if RST is out-of-order
5247 			 * and no data has been received
5248 			 * for current active TFO socket
5249 			 */
5250 			if (tp->syn_fastopen && !tp->data_segs_in &&
5251 			    sk->sk_state == TCP_ESTABLISHED)
5252 				tcp_fastopen_active_disable(sk);
5253 			tcp_send_challenge_ack(sk, skb);
5254 		}
5255 		goto discard;
5256 	}
5257 
5258 	/* step 3: check security and precedence [ignored] */
5259 
5260 	/* step 4: Check for a SYN
5261 	 * RFC 5961 4.2 : Send a challenge ack
5262 	 */
5263 	if (th->syn) {
5264 syn_challenge:
5265 		if (syn_inerr)
5266 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5267 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5268 		tcp_send_challenge_ack(sk, skb);
5269 		goto discard;
5270 	}
5271 
5272 	return true;
5273 
5274 discard:
5275 	tcp_drop(sk, skb);
5276 	return false;
5277 }
5278 
5279 /*
5280  *	TCP receive function for the ESTABLISHED state.
5281  *
5282  *	It is split into a fast path and a slow path. The fast path is
5283  * 	disabled when:
5284  *	- A zero window was announced from us - zero window probing
5285  *        is only handled properly in the slow path.
5286  *	- Out of order segments arrived.
5287  *	- Urgent data is expected.
5288  *	- There is no buffer space left
5289  *	- Unexpected TCP flags/window values/header lengths are received
5290  *	  (detected by checking the TCP header against pred_flags)
5291  *	- Data is sent in both directions. Fast path only supports pure senders
5292  *	  or pure receivers (this means either the sequence number or the ack
5293  *	  value must stay constant)
5294  *	- Unexpected TCP option.
5295  *
5296  *	When these conditions are not satisfied it drops into a standard
5297  *	receive procedure patterned after RFC793 to handle all cases.
5298  *	The first three cases are guaranteed by proper pred_flags setting,
5299  *	the rest is checked inline. Fast processing is turned on in
5300  *	tcp_data_queue when everything is OK.
5301  */
5302 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5303 			 const struct tcphdr *th)
5304 {
5305 	unsigned int len = skb->len;
5306 	struct tcp_sock *tp = tcp_sk(sk);
5307 
5308 	/* TCP congestion window tracking */
5309 	trace_tcp_probe(sk, skb);
5310 
5311 	tcp_mstamp_refresh(tp);
5312 	if (unlikely(!sk->sk_rx_dst))
5313 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5314 	/*
5315 	 *	Header prediction.
5316 	 *	The code loosely follows the one in the famous
5317 	 *	"30 instruction TCP receive" Van Jacobson mail.
5318 	 *
5319 	 *	Van's trick is to deposit buffers into socket queue
5320 	 *	on a device interrupt, to call tcp_recv function
5321 	 *	on the receive process context and checksum and copy
5322 	 *	the buffer to user space. smart...
5323 	 *
5324 	 *	Our current scheme is not silly either but we take the
5325 	 *	extra cost of the net_bh soft interrupt processing...
5326 	 *	We do checksum and copy also but from device to kernel.
5327 	 */
5328 
5329 	tp->rx_opt.saw_tstamp = 0;
5330 
5331 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5332 	 *	if header_prediction is to be made
5333 	 *	'S' will always be tp->tcp_header_len >> 2
5334 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5335 	 *  turn it off	(when there are holes in the receive
5336 	 *	 space for instance)
5337 	 *	PSH flag is ignored.
5338 	 */
5339 
5340 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5341 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5342 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5343 		int tcp_header_len = tp->tcp_header_len;
5344 
5345 		/* Timestamp header prediction: tcp_header_len
5346 		 * is automatically equal to th->doff*4 due to pred_flags
5347 		 * match.
5348 		 */
5349 
5350 		/* Check timestamp */
5351 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5352 			/* No? Slow path! */
5353 			if (!tcp_parse_aligned_timestamp(tp, th))
5354 				goto slow_path;
5355 
5356 			/* If PAWS failed, check it more carefully in slow path */
5357 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5358 				goto slow_path;
5359 
5360 			/* DO NOT update ts_recent here, if checksum fails
5361 			 * and timestamp was corrupted part, it will result
5362 			 * in a hung connection since we will drop all
5363 			 * future packets due to the PAWS test.
5364 			 */
5365 		}
5366 
5367 		if (len <= tcp_header_len) {
5368 			/* Bulk data transfer: sender */
5369 			if (len == tcp_header_len) {
5370 				/* Predicted packet is in window by definition.
5371 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5372 				 * Hence, check seq<=rcv_wup reduces to:
5373 				 */
5374 				if (tcp_header_len ==
5375 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5376 				    tp->rcv_nxt == tp->rcv_wup)
5377 					tcp_store_ts_recent(tp);
5378 
5379 				/* We know that such packets are checksummed
5380 				 * on entry.
5381 				 */
5382 				tcp_ack(sk, skb, 0);
5383 				__kfree_skb(skb);
5384 				tcp_data_snd_check(sk);
5385 				return;
5386 			} else { /* Header too small */
5387 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5388 				goto discard;
5389 			}
5390 		} else {
5391 			int eaten = 0;
5392 			bool fragstolen = false;
5393 
5394 			if (tcp_checksum_complete(skb))
5395 				goto csum_error;
5396 
5397 			if ((int)skb->truesize > sk->sk_forward_alloc)
5398 				goto step5;
5399 
5400 			/* Predicted packet is in window by definition.
5401 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5402 			 * Hence, check seq<=rcv_wup reduces to:
5403 			 */
5404 			if (tcp_header_len ==
5405 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5406 			    tp->rcv_nxt == tp->rcv_wup)
5407 				tcp_store_ts_recent(tp);
5408 
5409 			tcp_rcv_rtt_measure_ts(sk, skb);
5410 
5411 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5412 
5413 			/* Bulk data transfer: receiver */
5414 			eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5415 					      &fragstolen);
5416 
5417 			tcp_event_data_recv(sk, skb);
5418 
5419 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5420 				/* Well, only one small jumplet in fast path... */
5421 				tcp_ack(sk, skb, FLAG_DATA);
5422 				tcp_data_snd_check(sk);
5423 				if (!inet_csk_ack_scheduled(sk))
5424 					goto no_ack;
5425 			}
5426 
5427 			__tcp_ack_snd_check(sk, 0);
5428 no_ack:
5429 			if (eaten)
5430 				kfree_skb_partial(skb, fragstolen);
5431 			sk->sk_data_ready(sk);
5432 			return;
5433 		}
5434 	}
5435 
5436 slow_path:
5437 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5438 		goto csum_error;
5439 
5440 	if (!th->ack && !th->rst && !th->syn)
5441 		goto discard;
5442 
5443 	/*
5444 	 *	Standard slow path.
5445 	 */
5446 
5447 	if (!tcp_validate_incoming(sk, skb, th, 1))
5448 		return;
5449 
5450 step5:
5451 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5452 		goto discard;
5453 
5454 	tcp_rcv_rtt_measure_ts(sk, skb);
5455 
5456 	/* Process urgent data. */
5457 	tcp_urg(sk, skb, th);
5458 
5459 	/* step 7: process the segment text */
5460 	tcp_data_queue(sk, skb);
5461 
5462 	tcp_data_snd_check(sk);
5463 	tcp_ack_snd_check(sk);
5464 	return;
5465 
5466 csum_error:
5467 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5468 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5469 
5470 discard:
5471 	tcp_drop(sk, skb);
5472 }
5473 EXPORT_SYMBOL(tcp_rcv_established);
5474 
5475 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5476 {
5477 	struct tcp_sock *tp = tcp_sk(sk);
5478 	struct inet_connection_sock *icsk = inet_csk(sk);
5479 
5480 	tcp_set_state(sk, TCP_ESTABLISHED);
5481 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5482 
5483 	if (skb) {
5484 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5485 		security_inet_conn_established(sk, skb);
5486 	}
5487 
5488 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5489 
5490 	/* Prevent spurious tcp_cwnd_restart() on first data
5491 	 * packet.
5492 	 */
5493 	tp->lsndtime = tcp_jiffies32;
5494 
5495 	if (sock_flag(sk, SOCK_KEEPOPEN))
5496 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5497 
5498 	if (!tp->rx_opt.snd_wscale)
5499 		__tcp_fast_path_on(tp, tp->snd_wnd);
5500 	else
5501 		tp->pred_flags = 0;
5502 }
5503 
5504 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5505 				    struct tcp_fastopen_cookie *cookie)
5506 {
5507 	struct tcp_sock *tp = tcp_sk(sk);
5508 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5509 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5510 	bool syn_drop = false;
5511 
5512 	if (mss == tp->rx_opt.user_mss) {
5513 		struct tcp_options_received opt;
5514 
5515 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5516 		tcp_clear_options(&opt);
5517 		opt.user_mss = opt.mss_clamp = 0;
5518 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5519 		mss = opt.mss_clamp;
5520 	}
5521 
5522 	if (!tp->syn_fastopen) {
5523 		/* Ignore an unsolicited cookie */
5524 		cookie->len = -1;
5525 	} else if (tp->total_retrans) {
5526 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5527 		 * acknowledges data. Presumably the remote received only
5528 		 * the retransmitted (regular) SYNs: either the original
5529 		 * SYN-data or the corresponding SYN-ACK was dropped.
5530 		 */
5531 		syn_drop = (cookie->len < 0 && data);
5532 	} else if (cookie->len < 0 && !tp->syn_data) {
5533 		/* We requested a cookie but didn't get it. If we did not use
5534 		 * the (old) exp opt format then try so next time (try_exp=1).
5535 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5536 		 */
5537 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5538 	}
5539 
5540 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5541 
5542 	if (data) { /* Retransmit unacked data in SYN */
5543 		skb_rbtree_walk_from(data) {
5544 			if (__tcp_retransmit_skb(sk, data, 1))
5545 				break;
5546 		}
5547 		tcp_rearm_rto(sk);
5548 		NET_INC_STATS(sock_net(sk),
5549 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5550 		return true;
5551 	}
5552 	tp->syn_data_acked = tp->syn_data;
5553 	if (tp->syn_data_acked)
5554 		NET_INC_STATS(sock_net(sk),
5555 				LINUX_MIB_TCPFASTOPENACTIVE);
5556 
5557 	tcp_fastopen_add_skb(sk, synack);
5558 
5559 	return false;
5560 }
5561 
5562 static void smc_check_reset_syn(struct tcp_sock *tp)
5563 {
5564 #if IS_ENABLED(CONFIG_SMC)
5565 	if (static_branch_unlikely(&tcp_have_smc)) {
5566 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
5567 			tp->syn_smc = 0;
5568 	}
5569 #endif
5570 }
5571 
5572 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5573 					 const struct tcphdr *th)
5574 {
5575 	struct inet_connection_sock *icsk = inet_csk(sk);
5576 	struct tcp_sock *tp = tcp_sk(sk);
5577 	struct tcp_fastopen_cookie foc = { .len = -1 };
5578 	int saved_clamp = tp->rx_opt.mss_clamp;
5579 	bool fastopen_fail;
5580 
5581 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5582 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5583 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5584 
5585 	if (th->ack) {
5586 		/* rfc793:
5587 		 * "If the state is SYN-SENT then
5588 		 *    first check the ACK bit
5589 		 *      If the ACK bit is set
5590 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5591 		 *        a reset (unless the RST bit is set, if so drop
5592 		 *        the segment and return)"
5593 		 */
5594 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5595 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5596 			goto reset_and_undo;
5597 
5598 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5599 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5600 			     tcp_time_stamp(tp))) {
5601 			NET_INC_STATS(sock_net(sk),
5602 					LINUX_MIB_PAWSACTIVEREJECTED);
5603 			goto reset_and_undo;
5604 		}
5605 
5606 		/* Now ACK is acceptable.
5607 		 *
5608 		 * "If the RST bit is set
5609 		 *    If the ACK was acceptable then signal the user "error:
5610 		 *    connection reset", drop the segment, enter CLOSED state,
5611 		 *    delete TCB, and return."
5612 		 */
5613 
5614 		if (th->rst) {
5615 			tcp_reset(sk);
5616 			goto discard;
5617 		}
5618 
5619 		/* rfc793:
5620 		 *   "fifth, if neither of the SYN or RST bits is set then
5621 		 *    drop the segment and return."
5622 		 *
5623 		 *    See note below!
5624 		 *                                        --ANK(990513)
5625 		 */
5626 		if (!th->syn)
5627 			goto discard_and_undo;
5628 
5629 		/* rfc793:
5630 		 *   "If the SYN bit is on ...
5631 		 *    are acceptable then ...
5632 		 *    (our SYN has been ACKed), change the connection
5633 		 *    state to ESTABLISHED..."
5634 		 */
5635 
5636 		tcp_ecn_rcv_synack(tp, th);
5637 
5638 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5639 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5640 
5641 		/* Ok.. it's good. Set up sequence numbers and
5642 		 * move to established.
5643 		 */
5644 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5645 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5646 
5647 		/* RFC1323: The window in SYN & SYN/ACK segments is
5648 		 * never scaled.
5649 		 */
5650 		tp->snd_wnd = ntohs(th->window);
5651 
5652 		if (!tp->rx_opt.wscale_ok) {
5653 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5654 			tp->window_clamp = min(tp->window_clamp, 65535U);
5655 		}
5656 
5657 		if (tp->rx_opt.saw_tstamp) {
5658 			tp->rx_opt.tstamp_ok	   = 1;
5659 			tp->tcp_header_len =
5660 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5661 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5662 			tcp_store_ts_recent(tp);
5663 		} else {
5664 			tp->tcp_header_len = sizeof(struct tcphdr);
5665 		}
5666 
5667 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5668 		tcp_initialize_rcv_mss(sk);
5669 
5670 		/* Remember, tcp_poll() does not lock socket!
5671 		 * Change state from SYN-SENT only after copied_seq
5672 		 * is initialized. */
5673 		tp->copied_seq = tp->rcv_nxt;
5674 
5675 		smc_check_reset_syn(tp);
5676 
5677 		smp_mb();
5678 
5679 		tcp_finish_connect(sk, skb);
5680 
5681 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5682 				tcp_rcv_fastopen_synack(sk, skb, &foc);
5683 
5684 		if (!sock_flag(sk, SOCK_DEAD)) {
5685 			sk->sk_state_change(sk);
5686 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5687 		}
5688 		if (fastopen_fail)
5689 			return -1;
5690 		if (sk->sk_write_pending ||
5691 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5692 		    icsk->icsk_ack.pingpong) {
5693 			/* Save one ACK. Data will be ready after
5694 			 * several ticks, if write_pending is set.
5695 			 *
5696 			 * It may be deleted, but with this feature tcpdumps
5697 			 * look so _wonderfully_ clever, that I was not able
5698 			 * to stand against the temptation 8)     --ANK
5699 			 */
5700 			inet_csk_schedule_ack(sk);
5701 			tcp_enter_quickack_mode(sk);
5702 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5703 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5704 
5705 discard:
5706 			tcp_drop(sk, skb);
5707 			return 0;
5708 		} else {
5709 			tcp_send_ack(sk);
5710 		}
5711 		return -1;
5712 	}
5713 
5714 	/* No ACK in the segment */
5715 
5716 	if (th->rst) {
5717 		/* rfc793:
5718 		 * "If the RST bit is set
5719 		 *
5720 		 *      Otherwise (no ACK) drop the segment and return."
5721 		 */
5722 
5723 		goto discard_and_undo;
5724 	}
5725 
5726 	/* PAWS check. */
5727 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5728 	    tcp_paws_reject(&tp->rx_opt, 0))
5729 		goto discard_and_undo;
5730 
5731 	if (th->syn) {
5732 		/* We see SYN without ACK. It is attempt of
5733 		 * simultaneous connect with crossed SYNs.
5734 		 * Particularly, it can be connect to self.
5735 		 */
5736 		tcp_set_state(sk, TCP_SYN_RECV);
5737 
5738 		if (tp->rx_opt.saw_tstamp) {
5739 			tp->rx_opt.tstamp_ok = 1;
5740 			tcp_store_ts_recent(tp);
5741 			tp->tcp_header_len =
5742 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5743 		} else {
5744 			tp->tcp_header_len = sizeof(struct tcphdr);
5745 		}
5746 
5747 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5748 		tp->copied_seq = tp->rcv_nxt;
5749 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5750 
5751 		/* RFC1323: The window in SYN & SYN/ACK segments is
5752 		 * never scaled.
5753 		 */
5754 		tp->snd_wnd    = ntohs(th->window);
5755 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5756 		tp->max_window = tp->snd_wnd;
5757 
5758 		tcp_ecn_rcv_syn(tp, th);
5759 
5760 		tcp_mtup_init(sk);
5761 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5762 		tcp_initialize_rcv_mss(sk);
5763 
5764 		tcp_send_synack(sk);
5765 #if 0
5766 		/* Note, we could accept data and URG from this segment.
5767 		 * There are no obstacles to make this (except that we must
5768 		 * either change tcp_recvmsg() to prevent it from returning data
5769 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5770 		 *
5771 		 * However, if we ignore data in ACKless segments sometimes,
5772 		 * we have no reasons to accept it sometimes.
5773 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5774 		 * is not flawless. So, discard packet for sanity.
5775 		 * Uncomment this return to process the data.
5776 		 */
5777 		return -1;
5778 #else
5779 		goto discard;
5780 #endif
5781 	}
5782 	/* "fifth, if neither of the SYN or RST bits is set then
5783 	 * drop the segment and return."
5784 	 */
5785 
5786 discard_and_undo:
5787 	tcp_clear_options(&tp->rx_opt);
5788 	tp->rx_opt.mss_clamp = saved_clamp;
5789 	goto discard;
5790 
5791 reset_and_undo:
5792 	tcp_clear_options(&tp->rx_opt);
5793 	tp->rx_opt.mss_clamp = saved_clamp;
5794 	return 1;
5795 }
5796 
5797 /*
5798  *	This function implements the receiving procedure of RFC 793 for
5799  *	all states except ESTABLISHED and TIME_WAIT.
5800  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5801  *	address independent.
5802  */
5803 
5804 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5805 {
5806 	struct tcp_sock *tp = tcp_sk(sk);
5807 	struct inet_connection_sock *icsk = inet_csk(sk);
5808 	const struct tcphdr *th = tcp_hdr(skb);
5809 	struct request_sock *req;
5810 	int queued = 0;
5811 	bool acceptable;
5812 
5813 	switch (sk->sk_state) {
5814 	case TCP_CLOSE:
5815 		goto discard;
5816 
5817 	case TCP_LISTEN:
5818 		if (th->ack)
5819 			return 1;
5820 
5821 		if (th->rst)
5822 			goto discard;
5823 
5824 		if (th->syn) {
5825 			if (th->fin)
5826 				goto discard;
5827 			/* It is possible that we process SYN packets from backlog,
5828 			 * so we need to make sure to disable BH right there.
5829 			 */
5830 			local_bh_disable();
5831 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
5832 			local_bh_enable();
5833 
5834 			if (!acceptable)
5835 				return 1;
5836 			consume_skb(skb);
5837 			return 0;
5838 		}
5839 		goto discard;
5840 
5841 	case TCP_SYN_SENT:
5842 		tp->rx_opt.saw_tstamp = 0;
5843 		tcp_mstamp_refresh(tp);
5844 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
5845 		if (queued >= 0)
5846 			return queued;
5847 
5848 		/* Do step6 onward by hand. */
5849 		tcp_urg(sk, skb, th);
5850 		__kfree_skb(skb);
5851 		tcp_data_snd_check(sk);
5852 		return 0;
5853 	}
5854 
5855 	tcp_mstamp_refresh(tp);
5856 	tp->rx_opt.saw_tstamp = 0;
5857 	req = tp->fastopen_rsk;
5858 	if (req) {
5859 		bool req_stolen;
5860 
5861 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5862 		    sk->sk_state != TCP_FIN_WAIT1);
5863 
5864 		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
5865 			goto discard;
5866 	}
5867 
5868 	if (!th->ack && !th->rst && !th->syn)
5869 		goto discard;
5870 
5871 	if (!tcp_validate_incoming(sk, skb, th, 0))
5872 		return 0;
5873 
5874 	/* step 5: check the ACK field */
5875 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5876 				      FLAG_UPDATE_TS_RECENT |
5877 				      FLAG_NO_CHALLENGE_ACK) > 0;
5878 
5879 	if (!acceptable) {
5880 		if (sk->sk_state == TCP_SYN_RECV)
5881 			return 1;	/* send one RST */
5882 		tcp_send_challenge_ack(sk, skb);
5883 		goto discard;
5884 	}
5885 	switch (sk->sk_state) {
5886 	case TCP_SYN_RECV:
5887 		if (!tp->srtt_us)
5888 			tcp_synack_rtt_meas(sk, req);
5889 
5890 		/* Once we leave TCP_SYN_RECV, we no longer need req
5891 		 * so release it.
5892 		 */
5893 		if (req) {
5894 			inet_csk(sk)->icsk_retransmits = 0;
5895 			reqsk_fastopen_remove(sk, req, false);
5896 			/* Re-arm the timer because data may have been sent out.
5897 			 * This is similar to the regular data transmission case
5898 			 * when new data has just been ack'ed.
5899 			 *
5900 			 * (TFO) - we could try to be more aggressive and
5901 			 * retransmitting any data sooner based on when they
5902 			 * are sent out.
5903 			 */
5904 			tcp_rearm_rto(sk);
5905 		} else {
5906 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
5907 			tp->copied_seq = tp->rcv_nxt;
5908 		}
5909 		smp_mb();
5910 		tcp_set_state(sk, TCP_ESTABLISHED);
5911 		sk->sk_state_change(sk);
5912 
5913 		/* Note, that this wakeup is only for marginal crossed SYN case.
5914 		 * Passively open sockets are not waked up, because
5915 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5916 		 */
5917 		if (sk->sk_socket)
5918 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5919 
5920 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5921 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5922 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5923 
5924 		if (tp->rx_opt.tstamp_ok)
5925 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5926 
5927 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
5928 			tcp_update_pacing_rate(sk);
5929 
5930 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5931 		tp->lsndtime = tcp_jiffies32;
5932 
5933 		tcp_initialize_rcv_mss(sk);
5934 		tcp_fast_path_on(tp);
5935 		break;
5936 
5937 	case TCP_FIN_WAIT1: {
5938 		int tmo;
5939 
5940 		/* If we enter the TCP_FIN_WAIT1 state and we are a
5941 		 * Fast Open socket and this is the first acceptable
5942 		 * ACK we have received, this would have acknowledged
5943 		 * our SYNACK so stop the SYNACK timer.
5944 		 */
5945 		if (req) {
5946 			/* We no longer need the request sock. */
5947 			reqsk_fastopen_remove(sk, req, false);
5948 			tcp_rearm_rto(sk);
5949 		}
5950 		if (tp->snd_una != tp->write_seq)
5951 			break;
5952 
5953 		tcp_set_state(sk, TCP_FIN_WAIT2);
5954 		sk->sk_shutdown |= SEND_SHUTDOWN;
5955 
5956 		sk_dst_confirm(sk);
5957 
5958 		if (!sock_flag(sk, SOCK_DEAD)) {
5959 			/* Wake up lingering close() */
5960 			sk->sk_state_change(sk);
5961 			break;
5962 		}
5963 
5964 		if (tp->linger2 < 0) {
5965 			tcp_done(sk);
5966 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5967 			return 1;
5968 		}
5969 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5970 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5971 			/* Receive out of order FIN after close() */
5972 			if (tp->syn_fastopen && th->fin)
5973 				tcp_fastopen_active_disable(sk);
5974 			tcp_done(sk);
5975 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5976 			return 1;
5977 		}
5978 
5979 		tmo = tcp_fin_time(sk);
5980 		if (tmo > TCP_TIMEWAIT_LEN) {
5981 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5982 		} else if (th->fin || sock_owned_by_user(sk)) {
5983 			/* Bad case. We could lose such FIN otherwise.
5984 			 * It is not a big problem, but it looks confusing
5985 			 * and not so rare event. We still can lose it now,
5986 			 * if it spins in bh_lock_sock(), but it is really
5987 			 * marginal case.
5988 			 */
5989 			inet_csk_reset_keepalive_timer(sk, tmo);
5990 		} else {
5991 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5992 			goto discard;
5993 		}
5994 		break;
5995 	}
5996 
5997 	case TCP_CLOSING:
5998 		if (tp->snd_una == tp->write_seq) {
5999 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6000 			goto discard;
6001 		}
6002 		break;
6003 
6004 	case TCP_LAST_ACK:
6005 		if (tp->snd_una == tp->write_seq) {
6006 			tcp_update_metrics(sk);
6007 			tcp_done(sk);
6008 			goto discard;
6009 		}
6010 		break;
6011 	}
6012 
6013 	/* step 6: check the URG bit */
6014 	tcp_urg(sk, skb, th);
6015 
6016 	/* step 7: process the segment text */
6017 	switch (sk->sk_state) {
6018 	case TCP_CLOSE_WAIT:
6019 	case TCP_CLOSING:
6020 	case TCP_LAST_ACK:
6021 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6022 			break;
6023 		/* fall through */
6024 	case TCP_FIN_WAIT1:
6025 	case TCP_FIN_WAIT2:
6026 		/* RFC 793 says to queue data in these states,
6027 		 * RFC 1122 says we MUST send a reset.
6028 		 * BSD 4.4 also does reset.
6029 		 */
6030 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6031 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6032 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6033 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6034 				tcp_reset(sk);
6035 				return 1;
6036 			}
6037 		}
6038 		/* Fall through */
6039 	case TCP_ESTABLISHED:
6040 		tcp_data_queue(sk, skb);
6041 		queued = 1;
6042 		break;
6043 	}
6044 
6045 	/* tcp_data could move socket to TIME-WAIT */
6046 	if (sk->sk_state != TCP_CLOSE) {
6047 		tcp_data_snd_check(sk);
6048 		tcp_ack_snd_check(sk);
6049 	}
6050 
6051 	if (!queued) {
6052 discard:
6053 		tcp_drop(sk, skb);
6054 	}
6055 	return 0;
6056 }
6057 EXPORT_SYMBOL(tcp_rcv_state_process);
6058 
6059 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6060 {
6061 	struct inet_request_sock *ireq = inet_rsk(req);
6062 
6063 	if (family == AF_INET)
6064 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6065 				    &ireq->ir_rmt_addr, port);
6066 #if IS_ENABLED(CONFIG_IPV6)
6067 	else if (family == AF_INET6)
6068 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6069 				    &ireq->ir_v6_rmt_addr, port);
6070 #endif
6071 }
6072 
6073 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6074  *
6075  * If we receive a SYN packet with these bits set, it means a
6076  * network is playing bad games with TOS bits. In order to
6077  * avoid possible false congestion notifications, we disable
6078  * TCP ECN negotiation.
6079  *
6080  * Exception: tcp_ca wants ECN. This is required for DCTCP
6081  * congestion control: Linux DCTCP asserts ECT on all packets,
6082  * including SYN, which is most optimal solution; however,
6083  * others, such as FreeBSD do not.
6084  */
6085 static void tcp_ecn_create_request(struct request_sock *req,
6086 				   const struct sk_buff *skb,
6087 				   const struct sock *listen_sk,
6088 				   const struct dst_entry *dst)
6089 {
6090 	const struct tcphdr *th = tcp_hdr(skb);
6091 	const struct net *net = sock_net(listen_sk);
6092 	bool th_ecn = th->ece && th->cwr;
6093 	bool ect, ecn_ok;
6094 	u32 ecn_ok_dst;
6095 
6096 	if (!th_ecn)
6097 		return;
6098 
6099 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6100 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6101 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6102 
6103 	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6104 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6105 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6106 		inet_rsk(req)->ecn_ok = 1;
6107 }
6108 
6109 static void tcp_openreq_init(struct request_sock *req,
6110 			     const struct tcp_options_received *rx_opt,
6111 			     struct sk_buff *skb, const struct sock *sk)
6112 {
6113 	struct inet_request_sock *ireq = inet_rsk(req);
6114 
6115 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6116 	req->cookie_ts = 0;
6117 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6118 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6119 	tcp_rsk(req)->snt_synack = tcp_clock_us();
6120 	tcp_rsk(req)->last_oow_ack_time = 0;
6121 	req->mss = rx_opt->mss_clamp;
6122 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6123 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6124 	ireq->sack_ok = rx_opt->sack_ok;
6125 	ireq->snd_wscale = rx_opt->snd_wscale;
6126 	ireq->wscale_ok = rx_opt->wscale_ok;
6127 	ireq->acked = 0;
6128 	ireq->ecn_ok = 0;
6129 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6130 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6131 	ireq->ir_mark = inet_request_mark(sk, skb);
6132 #if IS_ENABLED(CONFIG_SMC)
6133 	ireq->smc_ok = rx_opt->smc_ok;
6134 #endif
6135 }
6136 
6137 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6138 				      struct sock *sk_listener,
6139 				      bool attach_listener)
6140 {
6141 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6142 					       attach_listener);
6143 
6144 	if (req) {
6145 		struct inet_request_sock *ireq = inet_rsk(req);
6146 
6147 		ireq->ireq_opt = NULL;
6148 #if IS_ENABLED(CONFIG_IPV6)
6149 		ireq->pktopts = NULL;
6150 #endif
6151 		atomic64_set(&ireq->ir_cookie, 0);
6152 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6153 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6154 		ireq->ireq_family = sk_listener->sk_family;
6155 	}
6156 
6157 	return req;
6158 }
6159 EXPORT_SYMBOL(inet_reqsk_alloc);
6160 
6161 /*
6162  * Return true if a syncookie should be sent
6163  */
6164 static bool tcp_syn_flood_action(const struct sock *sk,
6165 				 const struct sk_buff *skb,
6166 				 const char *proto)
6167 {
6168 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6169 	const char *msg = "Dropping request";
6170 	bool want_cookie = false;
6171 	struct net *net = sock_net(sk);
6172 
6173 #ifdef CONFIG_SYN_COOKIES
6174 	if (net->ipv4.sysctl_tcp_syncookies) {
6175 		msg = "Sending cookies";
6176 		want_cookie = true;
6177 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6178 	} else
6179 #endif
6180 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6181 
6182 	if (!queue->synflood_warned &&
6183 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6184 	    xchg(&queue->synflood_warned, 1) == 0)
6185 		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6186 			proto, ntohs(tcp_hdr(skb)->dest), msg);
6187 
6188 	return want_cookie;
6189 }
6190 
6191 static void tcp_reqsk_record_syn(const struct sock *sk,
6192 				 struct request_sock *req,
6193 				 const struct sk_buff *skb)
6194 {
6195 	if (tcp_sk(sk)->save_syn) {
6196 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6197 		u32 *copy;
6198 
6199 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6200 		if (copy) {
6201 			copy[0] = len;
6202 			memcpy(&copy[1], skb_network_header(skb), len);
6203 			req->saved_syn = copy;
6204 		}
6205 	}
6206 }
6207 
6208 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6209 		     const struct tcp_request_sock_ops *af_ops,
6210 		     struct sock *sk, struct sk_buff *skb)
6211 {
6212 	struct tcp_fastopen_cookie foc = { .len = -1 };
6213 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6214 	struct tcp_options_received tmp_opt;
6215 	struct tcp_sock *tp = tcp_sk(sk);
6216 	struct net *net = sock_net(sk);
6217 	struct sock *fastopen_sk = NULL;
6218 	struct request_sock *req;
6219 	bool want_cookie = false;
6220 	struct dst_entry *dst;
6221 	struct flowi fl;
6222 
6223 	/* TW buckets are converted to open requests without
6224 	 * limitations, they conserve resources and peer is
6225 	 * evidently real one.
6226 	 */
6227 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6228 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6229 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6230 		if (!want_cookie)
6231 			goto drop;
6232 	}
6233 
6234 	if (sk_acceptq_is_full(sk)) {
6235 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6236 		goto drop;
6237 	}
6238 
6239 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6240 	if (!req)
6241 		goto drop;
6242 
6243 	tcp_rsk(req)->af_specific = af_ops;
6244 	tcp_rsk(req)->ts_off = 0;
6245 
6246 	tcp_clear_options(&tmp_opt);
6247 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6248 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6249 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6250 			  want_cookie ? NULL : &foc);
6251 
6252 	if (want_cookie && !tmp_opt.saw_tstamp)
6253 		tcp_clear_options(&tmp_opt);
6254 
6255 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6256 		tmp_opt.smc_ok = 0;
6257 
6258 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6259 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6260 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6261 
6262 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6263 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6264 
6265 	af_ops->init_req(req, sk, skb);
6266 
6267 	if (security_inet_conn_request(sk, skb, req))
6268 		goto drop_and_free;
6269 
6270 	if (tmp_opt.tstamp_ok)
6271 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6272 
6273 	dst = af_ops->route_req(sk, &fl, req);
6274 	if (!dst)
6275 		goto drop_and_free;
6276 
6277 	if (!want_cookie && !isn) {
6278 		/* Kill the following clause, if you dislike this way. */
6279 		if (!net->ipv4.sysctl_tcp_syncookies &&
6280 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6281 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6282 		    !tcp_peer_is_proven(req, dst)) {
6283 			/* Without syncookies last quarter of
6284 			 * backlog is filled with destinations,
6285 			 * proven to be alive.
6286 			 * It means that we continue to communicate
6287 			 * to destinations, already remembered
6288 			 * to the moment of synflood.
6289 			 */
6290 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6291 				    rsk_ops->family);
6292 			goto drop_and_release;
6293 		}
6294 
6295 		isn = af_ops->init_seq(skb);
6296 	}
6297 
6298 	tcp_ecn_create_request(req, skb, sk, dst);
6299 
6300 	if (want_cookie) {
6301 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6302 		req->cookie_ts = tmp_opt.tstamp_ok;
6303 		if (!tmp_opt.tstamp_ok)
6304 			inet_rsk(req)->ecn_ok = 0;
6305 	}
6306 
6307 	tcp_rsk(req)->snt_isn = isn;
6308 	tcp_rsk(req)->txhash = net_tx_rndhash();
6309 	tcp_openreq_init_rwin(req, sk, dst);
6310 	if (!want_cookie) {
6311 		tcp_reqsk_record_syn(sk, req, skb);
6312 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6313 	}
6314 	if (fastopen_sk) {
6315 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6316 				    &foc, TCP_SYNACK_FASTOPEN);
6317 		/* Add the child socket directly into the accept queue */
6318 		inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6319 		sk->sk_data_ready(sk);
6320 		bh_unlock_sock(fastopen_sk);
6321 		sock_put(fastopen_sk);
6322 	} else {
6323 		tcp_rsk(req)->tfo_listener = false;
6324 		if (!want_cookie)
6325 			inet_csk_reqsk_queue_hash_add(sk, req,
6326 				tcp_timeout_init((struct sock *)req));
6327 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6328 				    !want_cookie ? TCP_SYNACK_NORMAL :
6329 						   TCP_SYNACK_COOKIE);
6330 		if (want_cookie) {
6331 			reqsk_free(req);
6332 			return 0;
6333 		}
6334 	}
6335 	reqsk_put(req);
6336 	return 0;
6337 
6338 drop_and_release:
6339 	dst_release(dst);
6340 drop_and_free:
6341 	reqsk_free(req);
6342 drop:
6343 	tcp_listendrop(sk);
6344 	return 0;
6345 }
6346 EXPORT_SYMBOL(tcp_conn_request);
6347