xref: /openbmc/linux/net/ipv4/tcp_input.c (revision bbecb07f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/static_key.h>
81 
82 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
83 
84 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
85 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
86 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
87 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
88 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
89 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
90 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
91 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
92 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
93 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
94 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
95 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
96 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
97 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
98 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
99 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
100 
101 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
102 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
103 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
104 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
105 
106 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
107 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
108 
109 #define REXMIT_NONE	0 /* no loss recovery to do */
110 #define REXMIT_LOST	1 /* retransmit packets marked lost */
111 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
112 
113 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
114 			     unsigned int len)
115 {
116 	static bool __once __read_mostly;
117 
118 	if (!__once) {
119 		struct net_device *dev;
120 
121 		__once = true;
122 
123 		rcu_read_lock();
124 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
125 		if (!dev || len >= dev->mtu)
126 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
127 				dev ? dev->name : "Unknown driver");
128 		rcu_read_unlock();
129 	}
130 }
131 
132 /* Adapt the MSS value used to make delayed ack decision to the
133  * real world.
134  */
135 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
136 {
137 	struct inet_connection_sock *icsk = inet_csk(sk);
138 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
139 	unsigned int len;
140 
141 	icsk->icsk_ack.last_seg_size = 0;
142 
143 	/* skb->len may jitter because of SACKs, even if peer
144 	 * sends good full-sized frames.
145 	 */
146 	len = skb_shinfo(skb)->gso_size ? : skb->len;
147 	if (len >= icsk->icsk_ack.rcv_mss) {
148 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
149 					       tcp_sk(sk)->advmss);
150 		/* Account for possibly-removed options */
151 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
152 				   MAX_TCP_OPTION_SPACE))
153 			tcp_gro_dev_warn(sk, skb, len);
154 	} else {
155 		/* Otherwise, we make more careful check taking into account,
156 		 * that SACKs block is variable.
157 		 *
158 		 * "len" is invariant segment length, including TCP header.
159 		 */
160 		len += skb->data - skb_transport_header(skb);
161 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
162 		    /* If PSH is not set, packet should be
163 		     * full sized, provided peer TCP is not badly broken.
164 		     * This observation (if it is correct 8)) allows
165 		     * to handle super-low mtu links fairly.
166 		     */
167 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
168 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
169 			/* Subtract also invariant (if peer is RFC compliant),
170 			 * tcp header plus fixed timestamp option length.
171 			 * Resulting "len" is MSS free of SACK jitter.
172 			 */
173 			len -= tcp_sk(sk)->tcp_header_len;
174 			icsk->icsk_ack.last_seg_size = len;
175 			if (len == lss) {
176 				icsk->icsk_ack.rcv_mss = len;
177 				return;
178 			}
179 		}
180 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
181 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
182 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
183 	}
184 }
185 
186 static void tcp_incr_quickack(struct sock *sk)
187 {
188 	struct inet_connection_sock *icsk = inet_csk(sk);
189 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
190 
191 	if (quickacks == 0)
192 		quickacks = 2;
193 	if (quickacks > icsk->icsk_ack.quick)
194 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
195 }
196 
197 static void tcp_enter_quickack_mode(struct sock *sk)
198 {
199 	struct inet_connection_sock *icsk = inet_csk(sk);
200 	tcp_incr_quickack(sk);
201 	icsk->icsk_ack.pingpong = 0;
202 	icsk->icsk_ack.ato = TCP_ATO_MIN;
203 }
204 
205 /* Send ACKs quickly, if "quick" count is not exhausted
206  * and the session is not interactive.
207  */
208 
209 static bool tcp_in_quickack_mode(struct sock *sk)
210 {
211 	const struct inet_connection_sock *icsk = inet_csk(sk);
212 	const struct dst_entry *dst = __sk_dst_get(sk);
213 
214 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
215 		(icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
216 }
217 
218 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
219 {
220 	if (tp->ecn_flags & TCP_ECN_OK)
221 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
222 }
223 
224 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
225 {
226 	if (tcp_hdr(skb)->cwr)
227 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
228 }
229 
230 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
231 {
232 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
233 }
234 
235 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
236 {
237 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
238 	case INET_ECN_NOT_ECT:
239 		/* Funny extension: if ECT is not set on a segment,
240 		 * and we already seen ECT on a previous segment,
241 		 * it is probably a retransmit.
242 		 */
243 		if (tp->ecn_flags & TCP_ECN_SEEN)
244 			tcp_enter_quickack_mode((struct sock *)tp);
245 		break;
246 	case INET_ECN_CE:
247 		if (tcp_ca_needs_ecn((struct sock *)tp))
248 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
249 
250 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
251 			/* Better not delay acks, sender can have a very low cwnd */
252 			tcp_enter_quickack_mode((struct sock *)tp);
253 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
254 		}
255 		tp->ecn_flags |= TCP_ECN_SEEN;
256 		break;
257 	default:
258 		if (tcp_ca_needs_ecn((struct sock *)tp))
259 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
260 		tp->ecn_flags |= TCP_ECN_SEEN;
261 		break;
262 	}
263 }
264 
265 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
266 {
267 	if (tp->ecn_flags & TCP_ECN_OK)
268 		__tcp_ecn_check_ce(tp, skb);
269 }
270 
271 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
272 {
273 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
274 		tp->ecn_flags &= ~TCP_ECN_OK;
275 }
276 
277 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
278 {
279 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
280 		tp->ecn_flags &= ~TCP_ECN_OK;
281 }
282 
283 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
284 {
285 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
286 		return true;
287 	return false;
288 }
289 
290 /* Buffer size and advertised window tuning.
291  *
292  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
293  */
294 
295 static void tcp_sndbuf_expand(struct sock *sk)
296 {
297 	const struct tcp_sock *tp = tcp_sk(sk);
298 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
299 	int sndmem, per_mss;
300 	u32 nr_segs;
301 
302 	/* Worst case is non GSO/TSO : each frame consumes one skb
303 	 * and skb->head is kmalloced using power of two area of memory
304 	 */
305 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
306 		  MAX_TCP_HEADER +
307 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
308 
309 	per_mss = roundup_pow_of_two(per_mss) +
310 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
311 
312 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
313 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
314 
315 	/* Fast Recovery (RFC 5681 3.2) :
316 	 * Cubic needs 1.7 factor, rounded to 2 to include
317 	 * extra cushion (application might react slowly to POLLOUT)
318 	 */
319 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
320 	sndmem *= nr_segs * per_mss;
321 
322 	if (sk->sk_sndbuf < sndmem)
323 		sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
324 }
325 
326 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
327  *
328  * All tcp_full_space() is split to two parts: "network" buffer, allocated
329  * forward and advertised in receiver window (tp->rcv_wnd) and
330  * "application buffer", required to isolate scheduling/application
331  * latencies from network.
332  * window_clamp is maximal advertised window. It can be less than
333  * tcp_full_space(), in this case tcp_full_space() - window_clamp
334  * is reserved for "application" buffer. The less window_clamp is
335  * the smoother our behaviour from viewpoint of network, but the lower
336  * throughput and the higher sensitivity of the connection to losses. 8)
337  *
338  * rcv_ssthresh is more strict window_clamp used at "slow start"
339  * phase to predict further behaviour of this connection.
340  * It is used for two goals:
341  * - to enforce header prediction at sender, even when application
342  *   requires some significant "application buffer". It is check #1.
343  * - to prevent pruning of receive queue because of misprediction
344  *   of receiver window. Check #2.
345  *
346  * The scheme does not work when sender sends good segments opening
347  * window and then starts to feed us spaghetti. But it should work
348  * in common situations. Otherwise, we have to rely on queue collapsing.
349  */
350 
351 /* Slow part of check#2. */
352 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
353 {
354 	struct tcp_sock *tp = tcp_sk(sk);
355 	/* Optimize this! */
356 	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
357 	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
358 
359 	while (tp->rcv_ssthresh <= window) {
360 		if (truesize <= skb->len)
361 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
362 
363 		truesize >>= 1;
364 		window >>= 1;
365 	}
366 	return 0;
367 }
368 
369 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
370 {
371 	struct tcp_sock *tp = tcp_sk(sk);
372 
373 	/* Check #1 */
374 	if (tp->rcv_ssthresh < tp->window_clamp &&
375 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
376 	    !tcp_under_memory_pressure(sk)) {
377 		int incr;
378 
379 		/* Check #2. Increase window, if skb with such overhead
380 		 * will fit to rcvbuf in future.
381 		 */
382 		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
383 			incr = 2 * tp->advmss;
384 		else
385 			incr = __tcp_grow_window(sk, skb);
386 
387 		if (incr) {
388 			incr = max_t(int, incr, 2 * skb->len);
389 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
390 					       tp->window_clamp);
391 			inet_csk(sk)->icsk_ack.quick |= 1;
392 		}
393 	}
394 }
395 
396 /* 3. Tuning rcvbuf, when connection enters established state. */
397 static void tcp_fixup_rcvbuf(struct sock *sk)
398 {
399 	u32 mss = tcp_sk(sk)->advmss;
400 	int rcvmem;
401 
402 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
403 		 tcp_default_init_rwnd(mss);
404 
405 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
406 	 * Allow enough cushion so that sender is not limited by our window
407 	 */
408 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf)
409 		rcvmem <<= 2;
410 
411 	if (sk->sk_rcvbuf < rcvmem)
412 		sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
413 }
414 
415 /* 4. Try to fixup all. It is made immediately after connection enters
416  *    established state.
417  */
418 void tcp_init_buffer_space(struct sock *sk)
419 {
420 	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
421 	struct tcp_sock *tp = tcp_sk(sk);
422 	int maxwin;
423 
424 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
425 		tcp_fixup_rcvbuf(sk);
426 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
427 		tcp_sndbuf_expand(sk);
428 
429 	tp->rcvq_space.space = tp->rcv_wnd;
430 	tcp_mstamp_refresh(tp);
431 	tp->rcvq_space.time = tp->tcp_mstamp;
432 	tp->rcvq_space.seq = tp->copied_seq;
433 
434 	maxwin = tcp_full_space(sk);
435 
436 	if (tp->window_clamp >= maxwin) {
437 		tp->window_clamp = maxwin;
438 
439 		if (tcp_app_win && maxwin > 4 * tp->advmss)
440 			tp->window_clamp = max(maxwin -
441 					       (maxwin >> tcp_app_win),
442 					       4 * tp->advmss);
443 	}
444 
445 	/* Force reservation of one segment. */
446 	if (tcp_app_win &&
447 	    tp->window_clamp > 2 * tp->advmss &&
448 	    tp->window_clamp + tp->advmss > maxwin)
449 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
450 
451 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
452 	tp->snd_cwnd_stamp = tcp_jiffies32;
453 }
454 
455 /* 5. Recalculate window clamp after socket hit its memory bounds. */
456 static void tcp_clamp_window(struct sock *sk)
457 {
458 	struct tcp_sock *tp = tcp_sk(sk);
459 	struct inet_connection_sock *icsk = inet_csk(sk);
460 	struct net *net = sock_net(sk);
461 
462 	icsk->icsk_ack.quick = 0;
463 
464 	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
465 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
466 	    !tcp_under_memory_pressure(sk) &&
467 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
468 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
469 				    net->ipv4.sysctl_tcp_rmem[2]);
470 	}
471 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
472 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
473 }
474 
475 /* Initialize RCV_MSS value.
476  * RCV_MSS is an our guess about MSS used by the peer.
477  * We haven't any direct information about the MSS.
478  * It's better to underestimate the RCV_MSS rather than overestimate.
479  * Overestimations make us ACKing less frequently than needed.
480  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
481  */
482 void tcp_initialize_rcv_mss(struct sock *sk)
483 {
484 	const struct tcp_sock *tp = tcp_sk(sk);
485 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
486 
487 	hint = min(hint, tp->rcv_wnd / 2);
488 	hint = min(hint, TCP_MSS_DEFAULT);
489 	hint = max(hint, TCP_MIN_MSS);
490 
491 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
492 }
493 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
494 
495 /* Receiver "autotuning" code.
496  *
497  * The algorithm for RTT estimation w/o timestamps is based on
498  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
499  * <http://public.lanl.gov/radiant/pubs.html#DRS>
500  *
501  * More detail on this code can be found at
502  * <http://staff.psc.edu/jheffner/>,
503  * though this reference is out of date.  A new paper
504  * is pending.
505  */
506 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
507 {
508 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
509 	long m = sample;
510 
511 	if (m == 0)
512 		m = 1;
513 
514 	if (new_sample != 0) {
515 		/* If we sample in larger samples in the non-timestamp
516 		 * case, we could grossly overestimate the RTT especially
517 		 * with chatty applications or bulk transfer apps which
518 		 * are stalled on filesystem I/O.
519 		 *
520 		 * Also, since we are only going for a minimum in the
521 		 * non-timestamp case, we do not smooth things out
522 		 * else with timestamps disabled convergence takes too
523 		 * long.
524 		 */
525 		if (!win_dep) {
526 			m -= (new_sample >> 3);
527 			new_sample += m;
528 		} else {
529 			m <<= 3;
530 			if (m < new_sample)
531 				new_sample = m;
532 		}
533 	} else {
534 		/* No previous measure. */
535 		new_sample = m << 3;
536 	}
537 
538 	tp->rcv_rtt_est.rtt_us = new_sample;
539 }
540 
541 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
542 {
543 	u32 delta_us;
544 
545 	if (tp->rcv_rtt_est.time == 0)
546 		goto new_measure;
547 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
548 		return;
549 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
550 	tcp_rcv_rtt_update(tp, delta_us, 1);
551 
552 new_measure:
553 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
554 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
555 }
556 
557 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
558 					  const struct sk_buff *skb)
559 {
560 	struct tcp_sock *tp = tcp_sk(sk);
561 
562 	if (tp->rx_opt.rcv_tsecr &&
563 	    (TCP_SKB_CB(skb)->end_seq -
564 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
565 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
566 		u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
567 
568 		tcp_rcv_rtt_update(tp, delta_us, 0);
569 	}
570 }
571 
572 /*
573  * This function should be called every time data is copied to user space.
574  * It calculates the appropriate TCP receive buffer space.
575  */
576 void tcp_rcv_space_adjust(struct sock *sk)
577 {
578 	struct tcp_sock *tp = tcp_sk(sk);
579 	int time;
580 	int copied;
581 
582 	tcp_mstamp_refresh(tp);
583 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
584 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
585 		return;
586 
587 	/* Number of bytes copied to user in last RTT */
588 	copied = tp->copied_seq - tp->rcvq_space.seq;
589 	if (copied <= tp->rcvq_space.space)
590 		goto new_measure;
591 
592 	/* A bit of theory :
593 	 * copied = bytes received in previous RTT, our base window
594 	 * To cope with packet losses, we need a 2x factor
595 	 * To cope with slow start, and sender growing its cwin by 100 %
596 	 * every RTT, we need a 4x factor, because the ACK we are sending
597 	 * now is for the next RTT, not the current one :
598 	 * <prev RTT . ><current RTT .. ><next RTT .... >
599 	 */
600 
601 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
602 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
603 		int rcvwin, rcvmem, rcvbuf;
604 
605 		/* minimal window to cope with packet losses, assuming
606 		 * steady state. Add some cushion because of small variations.
607 		 */
608 		rcvwin = (copied << 1) + 16 * tp->advmss;
609 
610 		/* If rate increased by 25%,
611 		 *	assume slow start, rcvwin = 3 * copied
612 		 * If rate increased by 50%,
613 		 *	assume sender can use 2x growth, rcvwin = 4 * copied
614 		 */
615 		if (copied >=
616 		    tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
617 			if (copied >=
618 			    tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
619 				rcvwin <<= 1;
620 			else
621 				rcvwin += (rcvwin >> 1);
622 		}
623 
624 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
625 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
626 			rcvmem += 128;
627 
628 		rcvbuf = min(rcvwin / tp->advmss * rcvmem,
629 			     sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
630 		if (rcvbuf > sk->sk_rcvbuf) {
631 			sk->sk_rcvbuf = rcvbuf;
632 
633 			/* Make the window clamp follow along.  */
634 			tp->window_clamp = rcvwin;
635 		}
636 	}
637 	tp->rcvq_space.space = copied;
638 
639 new_measure:
640 	tp->rcvq_space.seq = tp->copied_seq;
641 	tp->rcvq_space.time = tp->tcp_mstamp;
642 }
643 
644 /* There is something which you must keep in mind when you analyze the
645  * behavior of the tp->ato delayed ack timeout interval.  When a
646  * connection starts up, we want to ack as quickly as possible.  The
647  * problem is that "good" TCP's do slow start at the beginning of data
648  * transmission.  The means that until we send the first few ACK's the
649  * sender will sit on his end and only queue most of his data, because
650  * he can only send snd_cwnd unacked packets at any given time.  For
651  * each ACK we send, he increments snd_cwnd and transmits more of his
652  * queue.  -DaveM
653  */
654 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
655 {
656 	struct tcp_sock *tp = tcp_sk(sk);
657 	struct inet_connection_sock *icsk = inet_csk(sk);
658 	u32 now;
659 
660 	inet_csk_schedule_ack(sk);
661 
662 	tcp_measure_rcv_mss(sk, skb);
663 
664 	tcp_rcv_rtt_measure(tp);
665 
666 	now = tcp_jiffies32;
667 
668 	if (!icsk->icsk_ack.ato) {
669 		/* The _first_ data packet received, initialize
670 		 * delayed ACK engine.
671 		 */
672 		tcp_incr_quickack(sk);
673 		icsk->icsk_ack.ato = TCP_ATO_MIN;
674 	} else {
675 		int m = now - icsk->icsk_ack.lrcvtime;
676 
677 		if (m <= TCP_ATO_MIN / 2) {
678 			/* The fastest case is the first. */
679 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
680 		} else if (m < icsk->icsk_ack.ato) {
681 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
682 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
683 				icsk->icsk_ack.ato = icsk->icsk_rto;
684 		} else if (m > icsk->icsk_rto) {
685 			/* Too long gap. Apparently sender failed to
686 			 * restart window, so that we send ACKs quickly.
687 			 */
688 			tcp_incr_quickack(sk);
689 			sk_mem_reclaim(sk);
690 		}
691 	}
692 	icsk->icsk_ack.lrcvtime = now;
693 
694 	tcp_ecn_check_ce(tp, skb);
695 
696 	if (skb->len >= 128)
697 		tcp_grow_window(sk, skb);
698 }
699 
700 /* Called to compute a smoothed rtt estimate. The data fed to this
701  * routine either comes from timestamps, or from segments that were
702  * known _not_ to have been retransmitted [see Karn/Partridge
703  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
704  * piece by Van Jacobson.
705  * NOTE: the next three routines used to be one big routine.
706  * To save cycles in the RFC 1323 implementation it was better to break
707  * it up into three procedures. -- erics
708  */
709 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
710 {
711 	struct tcp_sock *tp = tcp_sk(sk);
712 	long m = mrtt_us; /* RTT */
713 	u32 srtt = tp->srtt_us;
714 
715 	/*	The following amusing code comes from Jacobson's
716 	 *	article in SIGCOMM '88.  Note that rtt and mdev
717 	 *	are scaled versions of rtt and mean deviation.
718 	 *	This is designed to be as fast as possible
719 	 *	m stands for "measurement".
720 	 *
721 	 *	On a 1990 paper the rto value is changed to:
722 	 *	RTO = rtt + 4 * mdev
723 	 *
724 	 * Funny. This algorithm seems to be very broken.
725 	 * These formulae increase RTO, when it should be decreased, increase
726 	 * too slowly, when it should be increased quickly, decrease too quickly
727 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
728 	 * does not matter how to _calculate_ it. Seems, it was trap
729 	 * that VJ failed to avoid. 8)
730 	 */
731 	if (srtt != 0) {
732 		m -= (srtt >> 3);	/* m is now error in rtt est */
733 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
734 		if (m < 0) {
735 			m = -m;		/* m is now abs(error) */
736 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
737 			/* This is similar to one of Eifel findings.
738 			 * Eifel blocks mdev updates when rtt decreases.
739 			 * This solution is a bit different: we use finer gain
740 			 * for mdev in this case (alpha*beta).
741 			 * Like Eifel it also prevents growth of rto,
742 			 * but also it limits too fast rto decreases,
743 			 * happening in pure Eifel.
744 			 */
745 			if (m > 0)
746 				m >>= 3;
747 		} else {
748 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
749 		}
750 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
751 		if (tp->mdev_us > tp->mdev_max_us) {
752 			tp->mdev_max_us = tp->mdev_us;
753 			if (tp->mdev_max_us > tp->rttvar_us)
754 				tp->rttvar_us = tp->mdev_max_us;
755 		}
756 		if (after(tp->snd_una, tp->rtt_seq)) {
757 			if (tp->mdev_max_us < tp->rttvar_us)
758 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
759 			tp->rtt_seq = tp->snd_nxt;
760 			tp->mdev_max_us = tcp_rto_min_us(sk);
761 		}
762 	} else {
763 		/* no previous measure. */
764 		srtt = m << 3;		/* take the measured time to be rtt */
765 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
766 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
767 		tp->mdev_max_us = tp->rttvar_us;
768 		tp->rtt_seq = tp->snd_nxt;
769 	}
770 	tp->srtt_us = max(1U, srtt);
771 }
772 
773 static void tcp_update_pacing_rate(struct sock *sk)
774 {
775 	const struct tcp_sock *tp = tcp_sk(sk);
776 	u64 rate;
777 
778 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
779 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
780 
781 	/* current rate is (cwnd * mss) / srtt
782 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
783 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
784 	 *
785 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
786 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
787 	 *	 end of slow start and should slow down.
788 	 */
789 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
790 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
791 	else
792 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
793 
794 	rate *= max(tp->snd_cwnd, tp->packets_out);
795 
796 	if (likely(tp->srtt_us))
797 		do_div(rate, tp->srtt_us);
798 
799 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
800 	 * without any lock. We want to make sure compiler wont store
801 	 * intermediate values in this location.
802 	 */
803 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
804 					     sk->sk_max_pacing_rate));
805 }
806 
807 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
808  * routine referred to above.
809  */
810 static void tcp_set_rto(struct sock *sk)
811 {
812 	const struct tcp_sock *tp = tcp_sk(sk);
813 	/* Old crap is replaced with new one. 8)
814 	 *
815 	 * More seriously:
816 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
817 	 *    It cannot be less due to utterly erratic ACK generation made
818 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
819 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
820 	 *    is invisible. Actually, Linux-2.4 also generates erratic
821 	 *    ACKs in some circumstances.
822 	 */
823 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
824 
825 	/* 2. Fixups made earlier cannot be right.
826 	 *    If we do not estimate RTO correctly without them,
827 	 *    all the algo is pure shit and should be replaced
828 	 *    with correct one. It is exactly, which we pretend to do.
829 	 */
830 
831 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
832 	 * guarantees that rto is higher.
833 	 */
834 	tcp_bound_rto(sk);
835 }
836 
837 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
838 {
839 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
840 
841 	if (!cwnd)
842 		cwnd = TCP_INIT_CWND;
843 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
844 }
845 
846 /* Take a notice that peer is sending D-SACKs */
847 static void tcp_dsack_seen(struct tcp_sock *tp)
848 {
849 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
850 	tp->rack.dsack_seen = 1;
851 }
852 
853 /* It's reordering when higher sequence was delivered (i.e. sacked) before
854  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
855  * distance is approximated in full-mss packet distance ("reordering").
856  */
857 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
858 				      const int ts)
859 {
860 	struct tcp_sock *tp = tcp_sk(sk);
861 	const u32 mss = tp->mss_cache;
862 	u32 fack, metric;
863 
864 	fack = tcp_highest_sack_seq(tp);
865 	if (!before(low_seq, fack))
866 		return;
867 
868 	metric = fack - low_seq;
869 	if ((metric > tp->reordering * mss) && mss) {
870 #if FASTRETRANS_DEBUG > 1
871 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
872 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
873 			 tp->reordering,
874 			 0,
875 			 tp->sacked_out,
876 			 tp->undo_marker ? tp->undo_retrans : 0);
877 #endif
878 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
879 				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
880 	}
881 
882 	tp->rack.reord = 1;
883 	/* This exciting event is worth to be remembered. 8) */
884 	NET_INC_STATS(sock_net(sk),
885 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
886 }
887 
888 /* This must be called before lost_out is incremented */
889 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
890 {
891 	if (!tp->retransmit_skb_hint ||
892 	    before(TCP_SKB_CB(skb)->seq,
893 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
894 		tp->retransmit_skb_hint = skb;
895 }
896 
897 /* Sum the number of packets on the wire we have marked as lost.
898  * There are two cases we care about here:
899  * a) Packet hasn't been marked lost (nor retransmitted),
900  *    and this is the first loss.
901  * b) Packet has been marked both lost and retransmitted,
902  *    and this means we think it was lost again.
903  */
904 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
905 {
906 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
907 
908 	if (!(sacked & TCPCB_LOST) ||
909 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
910 		tp->lost += tcp_skb_pcount(skb);
911 }
912 
913 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
914 {
915 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
916 		tcp_verify_retransmit_hint(tp, skb);
917 
918 		tp->lost_out += tcp_skb_pcount(skb);
919 		tcp_sum_lost(tp, skb);
920 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
921 	}
922 }
923 
924 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
925 {
926 	tcp_verify_retransmit_hint(tp, skb);
927 
928 	tcp_sum_lost(tp, skb);
929 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
930 		tp->lost_out += tcp_skb_pcount(skb);
931 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
932 	}
933 }
934 
935 /* This procedure tags the retransmission queue when SACKs arrive.
936  *
937  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
938  * Packets in queue with these bits set are counted in variables
939  * sacked_out, retrans_out and lost_out, correspondingly.
940  *
941  * Valid combinations are:
942  * Tag  InFlight	Description
943  * 0	1		- orig segment is in flight.
944  * S	0		- nothing flies, orig reached receiver.
945  * L	0		- nothing flies, orig lost by net.
946  * R	2		- both orig and retransmit are in flight.
947  * L|R	1		- orig is lost, retransmit is in flight.
948  * S|R  1		- orig reached receiver, retrans is still in flight.
949  * (L|S|R is logically valid, it could occur when L|R is sacked,
950  *  but it is equivalent to plain S and code short-curcuits it to S.
951  *  L|S is logically invalid, it would mean -1 packet in flight 8))
952  *
953  * These 6 states form finite state machine, controlled by the following events:
954  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
955  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
956  * 3. Loss detection event of two flavors:
957  *	A. Scoreboard estimator decided the packet is lost.
958  *	   A'. Reno "three dupacks" marks head of queue lost.
959  *	B. SACK arrives sacking SND.NXT at the moment, when the
960  *	   segment was retransmitted.
961  * 4. D-SACK added new rule: D-SACK changes any tag to S.
962  *
963  * It is pleasant to note, that state diagram turns out to be commutative,
964  * so that we are allowed not to be bothered by order of our actions,
965  * when multiple events arrive simultaneously. (see the function below).
966  *
967  * Reordering detection.
968  * --------------------
969  * Reordering metric is maximal distance, which a packet can be displaced
970  * in packet stream. With SACKs we can estimate it:
971  *
972  * 1. SACK fills old hole and the corresponding segment was not
973  *    ever retransmitted -> reordering. Alas, we cannot use it
974  *    when segment was retransmitted.
975  * 2. The last flaw is solved with D-SACK. D-SACK arrives
976  *    for retransmitted and already SACKed segment -> reordering..
977  * Both of these heuristics are not used in Loss state, when we cannot
978  * account for retransmits accurately.
979  *
980  * SACK block validation.
981  * ----------------------
982  *
983  * SACK block range validation checks that the received SACK block fits to
984  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
985  * Note that SND.UNA is not included to the range though being valid because
986  * it means that the receiver is rather inconsistent with itself reporting
987  * SACK reneging when it should advance SND.UNA. Such SACK block this is
988  * perfectly valid, however, in light of RFC2018 which explicitly states
989  * that "SACK block MUST reflect the newest segment.  Even if the newest
990  * segment is going to be discarded ...", not that it looks very clever
991  * in case of head skb. Due to potentional receiver driven attacks, we
992  * choose to avoid immediate execution of a walk in write queue due to
993  * reneging and defer head skb's loss recovery to standard loss recovery
994  * procedure that will eventually trigger (nothing forbids us doing this).
995  *
996  * Implements also blockage to start_seq wrap-around. Problem lies in the
997  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
998  * there's no guarantee that it will be before snd_nxt (n). The problem
999  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1000  * wrap (s_w):
1001  *
1002  *         <- outs wnd ->                          <- wrapzone ->
1003  *         u     e      n                         u_w   e_w  s n_w
1004  *         |     |      |                          |     |   |  |
1005  * |<------------+------+----- TCP seqno space --------------+---------->|
1006  * ...-- <2^31 ->|                                           |<--------...
1007  * ...---- >2^31 ------>|                                    |<--------...
1008  *
1009  * Current code wouldn't be vulnerable but it's better still to discard such
1010  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1011  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1012  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1013  * equal to the ideal case (infinite seqno space without wrap caused issues).
1014  *
1015  * With D-SACK the lower bound is extended to cover sequence space below
1016  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1017  * again, D-SACK block must not to go across snd_una (for the same reason as
1018  * for the normal SACK blocks, explained above). But there all simplicity
1019  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1020  * fully below undo_marker they do not affect behavior in anyway and can
1021  * therefore be safely ignored. In rare cases (which are more or less
1022  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1023  * fragmentation and packet reordering past skb's retransmission. To consider
1024  * them correctly, the acceptable range must be extended even more though
1025  * the exact amount is rather hard to quantify. However, tp->max_window can
1026  * be used as an exaggerated estimate.
1027  */
1028 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1029 				   u32 start_seq, u32 end_seq)
1030 {
1031 	/* Too far in future, or reversed (interpretation is ambiguous) */
1032 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1033 		return false;
1034 
1035 	/* Nasty start_seq wrap-around check (see comments above) */
1036 	if (!before(start_seq, tp->snd_nxt))
1037 		return false;
1038 
1039 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1040 	 * start_seq == snd_una is non-sensical (see comments above)
1041 	 */
1042 	if (after(start_seq, tp->snd_una))
1043 		return true;
1044 
1045 	if (!is_dsack || !tp->undo_marker)
1046 		return false;
1047 
1048 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1049 	if (after(end_seq, tp->snd_una))
1050 		return false;
1051 
1052 	if (!before(start_seq, tp->undo_marker))
1053 		return true;
1054 
1055 	/* Too old */
1056 	if (!after(end_seq, tp->undo_marker))
1057 		return false;
1058 
1059 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1060 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1061 	 */
1062 	return !before(start_seq, end_seq - tp->max_window);
1063 }
1064 
1065 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1066 			    struct tcp_sack_block_wire *sp, int num_sacks,
1067 			    u32 prior_snd_una)
1068 {
1069 	struct tcp_sock *tp = tcp_sk(sk);
1070 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1071 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1072 	bool dup_sack = false;
1073 
1074 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1075 		dup_sack = true;
1076 		tcp_dsack_seen(tp);
1077 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1078 	} else if (num_sacks > 1) {
1079 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1080 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1081 
1082 		if (!after(end_seq_0, end_seq_1) &&
1083 		    !before(start_seq_0, start_seq_1)) {
1084 			dup_sack = true;
1085 			tcp_dsack_seen(tp);
1086 			NET_INC_STATS(sock_net(sk),
1087 					LINUX_MIB_TCPDSACKOFORECV);
1088 		}
1089 	}
1090 
1091 	/* D-SACK for already forgotten data... Do dumb counting. */
1092 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1093 	    !after(end_seq_0, prior_snd_una) &&
1094 	    after(end_seq_0, tp->undo_marker))
1095 		tp->undo_retrans--;
1096 
1097 	return dup_sack;
1098 }
1099 
1100 struct tcp_sacktag_state {
1101 	u32	reord;
1102 	/* Timestamps for earliest and latest never-retransmitted segment
1103 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1104 	 * but congestion control should still get an accurate delay signal.
1105 	 */
1106 	u64	first_sackt;
1107 	u64	last_sackt;
1108 	struct rate_sample *rate;
1109 	int	flag;
1110 	unsigned int mss_now;
1111 };
1112 
1113 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1114  * the incoming SACK may not exactly match but we can find smaller MSS
1115  * aligned portion of it that matches. Therefore we might need to fragment
1116  * which may fail and creates some hassle (caller must handle error case
1117  * returns).
1118  *
1119  * FIXME: this could be merged to shift decision code
1120  */
1121 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1122 				  u32 start_seq, u32 end_seq)
1123 {
1124 	int err;
1125 	bool in_sack;
1126 	unsigned int pkt_len;
1127 	unsigned int mss;
1128 
1129 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1130 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1131 
1132 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1133 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1134 		mss = tcp_skb_mss(skb);
1135 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1136 
1137 		if (!in_sack) {
1138 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1139 			if (pkt_len < mss)
1140 				pkt_len = mss;
1141 		} else {
1142 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1143 			if (pkt_len < mss)
1144 				return -EINVAL;
1145 		}
1146 
1147 		/* Round if necessary so that SACKs cover only full MSSes
1148 		 * and/or the remaining small portion (if present)
1149 		 */
1150 		if (pkt_len > mss) {
1151 			unsigned int new_len = (pkt_len / mss) * mss;
1152 			if (!in_sack && new_len < pkt_len)
1153 				new_len += mss;
1154 			pkt_len = new_len;
1155 		}
1156 
1157 		if (pkt_len >= skb->len && !in_sack)
1158 			return 0;
1159 
1160 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1161 				   pkt_len, mss, GFP_ATOMIC);
1162 		if (err < 0)
1163 			return err;
1164 	}
1165 
1166 	return in_sack;
1167 }
1168 
1169 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1170 static u8 tcp_sacktag_one(struct sock *sk,
1171 			  struct tcp_sacktag_state *state, u8 sacked,
1172 			  u32 start_seq, u32 end_seq,
1173 			  int dup_sack, int pcount,
1174 			  u64 xmit_time)
1175 {
1176 	struct tcp_sock *tp = tcp_sk(sk);
1177 
1178 	/* Account D-SACK for retransmitted packet. */
1179 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1180 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1181 		    after(end_seq, tp->undo_marker))
1182 			tp->undo_retrans--;
1183 		if ((sacked & TCPCB_SACKED_ACKED) &&
1184 		    before(start_seq, state->reord))
1185 				state->reord = start_seq;
1186 	}
1187 
1188 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1189 	if (!after(end_seq, tp->snd_una))
1190 		return sacked;
1191 
1192 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1193 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1194 
1195 		if (sacked & TCPCB_SACKED_RETRANS) {
1196 			/* If the segment is not tagged as lost,
1197 			 * we do not clear RETRANS, believing
1198 			 * that retransmission is still in flight.
1199 			 */
1200 			if (sacked & TCPCB_LOST) {
1201 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1202 				tp->lost_out -= pcount;
1203 				tp->retrans_out -= pcount;
1204 			}
1205 		} else {
1206 			if (!(sacked & TCPCB_RETRANS)) {
1207 				/* New sack for not retransmitted frame,
1208 				 * which was in hole. It is reordering.
1209 				 */
1210 				if (before(start_seq,
1211 					   tcp_highest_sack_seq(tp)) &&
1212 				    before(start_seq, state->reord))
1213 					state->reord = start_seq;
1214 
1215 				if (!after(end_seq, tp->high_seq))
1216 					state->flag |= FLAG_ORIG_SACK_ACKED;
1217 				if (state->first_sackt == 0)
1218 					state->first_sackt = xmit_time;
1219 				state->last_sackt = xmit_time;
1220 			}
1221 
1222 			if (sacked & TCPCB_LOST) {
1223 				sacked &= ~TCPCB_LOST;
1224 				tp->lost_out -= pcount;
1225 			}
1226 		}
1227 
1228 		sacked |= TCPCB_SACKED_ACKED;
1229 		state->flag |= FLAG_DATA_SACKED;
1230 		tp->sacked_out += pcount;
1231 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1232 
1233 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1234 		if (tp->lost_skb_hint &&
1235 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1236 			tp->lost_cnt_hint += pcount;
1237 	}
1238 
1239 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1240 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1241 	 * are accounted above as well.
1242 	 */
1243 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1244 		sacked &= ~TCPCB_SACKED_RETRANS;
1245 		tp->retrans_out -= pcount;
1246 	}
1247 
1248 	return sacked;
1249 }
1250 
1251 /* Shift newly-SACKed bytes from this skb to the immediately previous
1252  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1253  */
1254 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1255 			    struct sk_buff *skb,
1256 			    struct tcp_sacktag_state *state,
1257 			    unsigned int pcount, int shifted, int mss,
1258 			    bool dup_sack)
1259 {
1260 	struct tcp_sock *tp = tcp_sk(sk);
1261 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1262 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1263 
1264 	BUG_ON(!pcount);
1265 
1266 	/* Adjust counters and hints for the newly sacked sequence
1267 	 * range but discard the return value since prev is already
1268 	 * marked. We must tag the range first because the seq
1269 	 * advancement below implicitly advances
1270 	 * tcp_highest_sack_seq() when skb is highest_sack.
1271 	 */
1272 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1273 			start_seq, end_seq, dup_sack, pcount,
1274 			skb->skb_mstamp);
1275 	tcp_rate_skb_delivered(sk, skb, state->rate);
1276 
1277 	if (skb == tp->lost_skb_hint)
1278 		tp->lost_cnt_hint += pcount;
1279 
1280 	TCP_SKB_CB(prev)->end_seq += shifted;
1281 	TCP_SKB_CB(skb)->seq += shifted;
1282 
1283 	tcp_skb_pcount_add(prev, pcount);
1284 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1285 	tcp_skb_pcount_add(skb, -pcount);
1286 
1287 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1288 	 * in theory this shouldn't be necessary but as long as DSACK
1289 	 * code can come after this skb later on it's better to keep
1290 	 * setting gso_size to something.
1291 	 */
1292 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1293 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1294 
1295 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1296 	if (tcp_skb_pcount(skb) <= 1)
1297 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1298 
1299 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1300 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1301 
1302 	if (skb->len > 0) {
1303 		BUG_ON(!tcp_skb_pcount(skb));
1304 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1305 		return false;
1306 	}
1307 
1308 	/* Whole SKB was eaten :-) */
1309 
1310 	if (skb == tp->retransmit_skb_hint)
1311 		tp->retransmit_skb_hint = prev;
1312 	if (skb == tp->lost_skb_hint) {
1313 		tp->lost_skb_hint = prev;
1314 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1315 	}
1316 
1317 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1318 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1319 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1320 		TCP_SKB_CB(prev)->end_seq++;
1321 
1322 	if (skb == tcp_highest_sack(sk))
1323 		tcp_advance_highest_sack(sk, skb);
1324 
1325 	tcp_skb_collapse_tstamp(prev, skb);
1326 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1327 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1328 
1329 	tcp_rtx_queue_unlink_and_free(skb, sk);
1330 
1331 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1332 
1333 	return true;
1334 }
1335 
1336 /* I wish gso_size would have a bit more sane initialization than
1337  * something-or-zero which complicates things
1338  */
1339 static int tcp_skb_seglen(const struct sk_buff *skb)
1340 {
1341 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1342 }
1343 
1344 /* Shifting pages past head area doesn't work */
1345 static int skb_can_shift(const struct sk_buff *skb)
1346 {
1347 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1348 }
1349 
1350 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1351  * skb.
1352  */
1353 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1354 					  struct tcp_sacktag_state *state,
1355 					  u32 start_seq, u32 end_seq,
1356 					  bool dup_sack)
1357 {
1358 	struct tcp_sock *tp = tcp_sk(sk);
1359 	struct sk_buff *prev;
1360 	int mss;
1361 	int pcount = 0;
1362 	int len;
1363 	int in_sack;
1364 
1365 	if (!sk_can_gso(sk))
1366 		goto fallback;
1367 
1368 	/* Normally R but no L won't result in plain S */
1369 	if (!dup_sack &&
1370 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1371 		goto fallback;
1372 	if (!skb_can_shift(skb))
1373 		goto fallback;
1374 	/* This frame is about to be dropped (was ACKed). */
1375 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1376 		goto fallback;
1377 
1378 	/* Can only happen with delayed DSACK + discard craziness */
1379 	prev = skb_rb_prev(skb);
1380 	if (!prev)
1381 		goto fallback;
1382 
1383 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1384 		goto fallback;
1385 
1386 	if (!tcp_skb_can_collapse_to(prev))
1387 		goto fallback;
1388 
1389 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1390 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1391 
1392 	if (in_sack) {
1393 		len = skb->len;
1394 		pcount = tcp_skb_pcount(skb);
1395 		mss = tcp_skb_seglen(skb);
1396 
1397 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1398 		 * drop this restriction as unnecessary
1399 		 */
1400 		if (mss != tcp_skb_seglen(prev))
1401 			goto fallback;
1402 	} else {
1403 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1404 			goto noop;
1405 		/* CHECKME: This is non-MSS split case only?, this will
1406 		 * cause skipped skbs due to advancing loop btw, original
1407 		 * has that feature too
1408 		 */
1409 		if (tcp_skb_pcount(skb) <= 1)
1410 			goto noop;
1411 
1412 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1413 		if (!in_sack) {
1414 			/* TODO: head merge to next could be attempted here
1415 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1416 			 * though it might not be worth of the additional hassle
1417 			 *
1418 			 * ...we can probably just fallback to what was done
1419 			 * previously. We could try merging non-SACKed ones
1420 			 * as well but it probably isn't going to buy off
1421 			 * because later SACKs might again split them, and
1422 			 * it would make skb timestamp tracking considerably
1423 			 * harder problem.
1424 			 */
1425 			goto fallback;
1426 		}
1427 
1428 		len = end_seq - TCP_SKB_CB(skb)->seq;
1429 		BUG_ON(len < 0);
1430 		BUG_ON(len > skb->len);
1431 
1432 		/* MSS boundaries should be honoured or else pcount will
1433 		 * severely break even though it makes things bit trickier.
1434 		 * Optimize common case to avoid most of the divides
1435 		 */
1436 		mss = tcp_skb_mss(skb);
1437 
1438 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1439 		 * drop this restriction as unnecessary
1440 		 */
1441 		if (mss != tcp_skb_seglen(prev))
1442 			goto fallback;
1443 
1444 		if (len == mss) {
1445 			pcount = 1;
1446 		} else if (len < mss) {
1447 			goto noop;
1448 		} else {
1449 			pcount = len / mss;
1450 			len = pcount * mss;
1451 		}
1452 	}
1453 
1454 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1455 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1456 		goto fallback;
1457 
1458 	if (!skb_shift(prev, skb, len))
1459 		goto fallback;
1460 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1461 		goto out;
1462 
1463 	/* Hole filled allows collapsing with the next as well, this is very
1464 	 * useful when hole on every nth skb pattern happens
1465 	 */
1466 	skb = skb_rb_next(prev);
1467 	if (!skb)
1468 		goto out;
1469 
1470 	if (!skb_can_shift(skb) ||
1471 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1472 	    (mss != tcp_skb_seglen(skb)))
1473 		goto out;
1474 
1475 	len = skb->len;
1476 	if (skb_shift(prev, skb, len)) {
1477 		pcount += tcp_skb_pcount(skb);
1478 		tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb),
1479 				len, mss, 0);
1480 	}
1481 
1482 out:
1483 	return prev;
1484 
1485 noop:
1486 	return skb;
1487 
1488 fallback:
1489 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1490 	return NULL;
1491 }
1492 
1493 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1494 					struct tcp_sack_block *next_dup,
1495 					struct tcp_sacktag_state *state,
1496 					u32 start_seq, u32 end_seq,
1497 					bool dup_sack_in)
1498 {
1499 	struct tcp_sock *tp = tcp_sk(sk);
1500 	struct sk_buff *tmp;
1501 
1502 	skb_rbtree_walk_from(skb) {
1503 		int in_sack = 0;
1504 		bool dup_sack = dup_sack_in;
1505 
1506 		/* queue is in-order => we can short-circuit the walk early */
1507 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1508 			break;
1509 
1510 		if (next_dup  &&
1511 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1512 			in_sack = tcp_match_skb_to_sack(sk, skb,
1513 							next_dup->start_seq,
1514 							next_dup->end_seq);
1515 			if (in_sack > 0)
1516 				dup_sack = true;
1517 		}
1518 
1519 		/* skb reference here is a bit tricky to get right, since
1520 		 * shifting can eat and free both this skb and the next,
1521 		 * so not even _safe variant of the loop is enough.
1522 		 */
1523 		if (in_sack <= 0) {
1524 			tmp = tcp_shift_skb_data(sk, skb, state,
1525 						 start_seq, end_seq, dup_sack);
1526 			if (tmp) {
1527 				if (tmp != skb) {
1528 					skb = tmp;
1529 					continue;
1530 				}
1531 
1532 				in_sack = 0;
1533 			} else {
1534 				in_sack = tcp_match_skb_to_sack(sk, skb,
1535 								start_seq,
1536 								end_seq);
1537 			}
1538 		}
1539 
1540 		if (unlikely(in_sack < 0))
1541 			break;
1542 
1543 		if (in_sack) {
1544 			TCP_SKB_CB(skb)->sacked =
1545 				tcp_sacktag_one(sk,
1546 						state,
1547 						TCP_SKB_CB(skb)->sacked,
1548 						TCP_SKB_CB(skb)->seq,
1549 						TCP_SKB_CB(skb)->end_seq,
1550 						dup_sack,
1551 						tcp_skb_pcount(skb),
1552 						skb->skb_mstamp);
1553 			tcp_rate_skb_delivered(sk, skb, state->rate);
1554 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1555 				list_del_init(&skb->tcp_tsorted_anchor);
1556 
1557 			if (!before(TCP_SKB_CB(skb)->seq,
1558 				    tcp_highest_sack_seq(tp)))
1559 				tcp_advance_highest_sack(sk, skb);
1560 		}
1561 	}
1562 	return skb;
1563 }
1564 
1565 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk,
1566 					   struct tcp_sacktag_state *state,
1567 					   u32 seq)
1568 {
1569 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1570 	struct sk_buff *skb;
1571 
1572 	while (*p) {
1573 		parent = *p;
1574 		skb = rb_to_skb(parent);
1575 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1576 			p = &parent->rb_left;
1577 			continue;
1578 		}
1579 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1580 			p = &parent->rb_right;
1581 			continue;
1582 		}
1583 		return skb;
1584 	}
1585 	return NULL;
1586 }
1587 
1588 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1589 					struct tcp_sacktag_state *state,
1590 					u32 skip_to_seq)
1591 {
1592 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1593 		return skb;
1594 
1595 	return tcp_sacktag_bsearch(sk, state, skip_to_seq);
1596 }
1597 
1598 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1599 						struct sock *sk,
1600 						struct tcp_sack_block *next_dup,
1601 						struct tcp_sacktag_state *state,
1602 						u32 skip_to_seq)
1603 {
1604 	if (!next_dup)
1605 		return skb;
1606 
1607 	if (before(next_dup->start_seq, skip_to_seq)) {
1608 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1609 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1610 				       next_dup->start_seq, next_dup->end_seq,
1611 				       1);
1612 	}
1613 
1614 	return skb;
1615 }
1616 
1617 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1618 {
1619 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1620 }
1621 
1622 static int
1623 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1624 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1625 {
1626 	struct tcp_sock *tp = tcp_sk(sk);
1627 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1628 				    TCP_SKB_CB(ack_skb)->sacked);
1629 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1630 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1631 	struct tcp_sack_block *cache;
1632 	struct sk_buff *skb;
1633 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1634 	int used_sacks;
1635 	bool found_dup_sack = false;
1636 	int i, j;
1637 	int first_sack_index;
1638 
1639 	state->flag = 0;
1640 	state->reord = tp->snd_nxt;
1641 
1642 	if (!tp->sacked_out)
1643 		tcp_highest_sack_reset(sk);
1644 
1645 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1646 					 num_sacks, prior_snd_una);
1647 	if (found_dup_sack) {
1648 		state->flag |= FLAG_DSACKING_ACK;
1649 		tp->delivered++; /* A spurious retransmission is delivered */
1650 	}
1651 
1652 	/* Eliminate too old ACKs, but take into
1653 	 * account more or less fresh ones, they can
1654 	 * contain valid SACK info.
1655 	 */
1656 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1657 		return 0;
1658 
1659 	if (!tp->packets_out)
1660 		goto out;
1661 
1662 	used_sacks = 0;
1663 	first_sack_index = 0;
1664 	for (i = 0; i < num_sacks; i++) {
1665 		bool dup_sack = !i && found_dup_sack;
1666 
1667 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1668 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1669 
1670 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1671 					    sp[used_sacks].start_seq,
1672 					    sp[used_sacks].end_seq)) {
1673 			int mib_idx;
1674 
1675 			if (dup_sack) {
1676 				if (!tp->undo_marker)
1677 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1678 				else
1679 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1680 			} else {
1681 				/* Don't count olds caused by ACK reordering */
1682 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1683 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1684 					continue;
1685 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1686 			}
1687 
1688 			NET_INC_STATS(sock_net(sk), mib_idx);
1689 			if (i == 0)
1690 				first_sack_index = -1;
1691 			continue;
1692 		}
1693 
1694 		/* Ignore very old stuff early */
1695 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1696 			continue;
1697 
1698 		used_sacks++;
1699 	}
1700 
1701 	/* order SACK blocks to allow in order walk of the retrans queue */
1702 	for (i = used_sacks - 1; i > 0; i--) {
1703 		for (j = 0; j < i; j++) {
1704 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1705 				swap(sp[j], sp[j + 1]);
1706 
1707 				/* Track where the first SACK block goes to */
1708 				if (j == first_sack_index)
1709 					first_sack_index = j + 1;
1710 			}
1711 		}
1712 	}
1713 
1714 	state->mss_now = tcp_current_mss(sk);
1715 	skb = NULL;
1716 	i = 0;
1717 
1718 	if (!tp->sacked_out) {
1719 		/* It's already past, so skip checking against it */
1720 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1721 	} else {
1722 		cache = tp->recv_sack_cache;
1723 		/* Skip empty blocks in at head of the cache */
1724 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1725 		       !cache->end_seq)
1726 			cache++;
1727 	}
1728 
1729 	while (i < used_sacks) {
1730 		u32 start_seq = sp[i].start_seq;
1731 		u32 end_seq = sp[i].end_seq;
1732 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1733 		struct tcp_sack_block *next_dup = NULL;
1734 
1735 		if (found_dup_sack && ((i + 1) == first_sack_index))
1736 			next_dup = &sp[i + 1];
1737 
1738 		/* Skip too early cached blocks */
1739 		while (tcp_sack_cache_ok(tp, cache) &&
1740 		       !before(start_seq, cache->end_seq))
1741 			cache++;
1742 
1743 		/* Can skip some work by looking recv_sack_cache? */
1744 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1745 		    after(end_seq, cache->start_seq)) {
1746 
1747 			/* Head todo? */
1748 			if (before(start_seq, cache->start_seq)) {
1749 				skb = tcp_sacktag_skip(skb, sk, state,
1750 						       start_seq);
1751 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1752 						       state,
1753 						       start_seq,
1754 						       cache->start_seq,
1755 						       dup_sack);
1756 			}
1757 
1758 			/* Rest of the block already fully processed? */
1759 			if (!after(end_seq, cache->end_seq))
1760 				goto advance_sp;
1761 
1762 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1763 						       state,
1764 						       cache->end_seq);
1765 
1766 			/* ...tail remains todo... */
1767 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1768 				/* ...but better entrypoint exists! */
1769 				skb = tcp_highest_sack(sk);
1770 				if (!skb)
1771 					break;
1772 				cache++;
1773 				goto walk;
1774 			}
1775 
1776 			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1777 			/* Check overlap against next cached too (past this one already) */
1778 			cache++;
1779 			continue;
1780 		}
1781 
1782 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1783 			skb = tcp_highest_sack(sk);
1784 			if (!skb)
1785 				break;
1786 		}
1787 		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1788 
1789 walk:
1790 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1791 				       start_seq, end_seq, dup_sack);
1792 
1793 advance_sp:
1794 		i++;
1795 	}
1796 
1797 	/* Clear the head of the cache sack blocks so we can skip it next time */
1798 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1799 		tp->recv_sack_cache[i].start_seq = 0;
1800 		tp->recv_sack_cache[i].end_seq = 0;
1801 	}
1802 	for (j = 0; j < used_sacks; j++)
1803 		tp->recv_sack_cache[i++] = sp[j];
1804 
1805 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1806 		tcp_check_sack_reordering(sk, state->reord, 0);
1807 
1808 	tcp_verify_left_out(tp);
1809 out:
1810 
1811 #if FASTRETRANS_DEBUG > 0
1812 	WARN_ON((int)tp->sacked_out < 0);
1813 	WARN_ON((int)tp->lost_out < 0);
1814 	WARN_ON((int)tp->retrans_out < 0);
1815 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1816 #endif
1817 	return state->flag;
1818 }
1819 
1820 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1821  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1822  */
1823 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1824 {
1825 	u32 holes;
1826 
1827 	holes = max(tp->lost_out, 1U);
1828 	holes = min(holes, tp->packets_out);
1829 
1830 	if ((tp->sacked_out + holes) > tp->packets_out) {
1831 		tp->sacked_out = tp->packets_out - holes;
1832 		return true;
1833 	}
1834 	return false;
1835 }
1836 
1837 /* If we receive more dupacks than we expected counting segments
1838  * in assumption of absent reordering, interpret this as reordering.
1839  * The only another reason could be bug in receiver TCP.
1840  */
1841 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1842 {
1843 	struct tcp_sock *tp = tcp_sk(sk);
1844 
1845 	if (!tcp_limit_reno_sacked(tp))
1846 		return;
1847 
1848 	tp->reordering = min_t(u32, tp->packets_out + addend,
1849 			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1850 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1851 }
1852 
1853 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1854 
1855 static void tcp_add_reno_sack(struct sock *sk)
1856 {
1857 	struct tcp_sock *tp = tcp_sk(sk);
1858 	u32 prior_sacked = tp->sacked_out;
1859 
1860 	tp->sacked_out++;
1861 	tcp_check_reno_reordering(sk, 0);
1862 	if (tp->sacked_out > prior_sacked)
1863 		tp->delivered++; /* Some out-of-order packet is delivered */
1864 	tcp_verify_left_out(tp);
1865 }
1866 
1867 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1868 
1869 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1870 {
1871 	struct tcp_sock *tp = tcp_sk(sk);
1872 
1873 	if (acked > 0) {
1874 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1875 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1876 		if (acked - 1 >= tp->sacked_out)
1877 			tp->sacked_out = 0;
1878 		else
1879 			tp->sacked_out -= acked - 1;
1880 	}
1881 	tcp_check_reno_reordering(sk, acked);
1882 	tcp_verify_left_out(tp);
1883 }
1884 
1885 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1886 {
1887 	tp->sacked_out = 0;
1888 }
1889 
1890 void tcp_clear_retrans(struct tcp_sock *tp)
1891 {
1892 	tp->retrans_out = 0;
1893 	tp->lost_out = 0;
1894 	tp->undo_marker = 0;
1895 	tp->undo_retrans = -1;
1896 	tp->sacked_out = 0;
1897 }
1898 
1899 static inline void tcp_init_undo(struct tcp_sock *tp)
1900 {
1901 	tp->undo_marker = tp->snd_una;
1902 	/* Retransmission still in flight may cause DSACKs later. */
1903 	tp->undo_retrans = tp->retrans_out ? : -1;
1904 }
1905 
1906 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1907  * and reset tags completely, otherwise preserve SACKs. If receiver
1908  * dropped its ofo queue, we will know this due to reneging detection.
1909  */
1910 void tcp_enter_loss(struct sock *sk)
1911 {
1912 	const struct inet_connection_sock *icsk = inet_csk(sk);
1913 	struct tcp_sock *tp = tcp_sk(sk);
1914 	struct net *net = sock_net(sk);
1915 	struct sk_buff *skb;
1916 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1917 	bool is_reneg;			/* is receiver reneging on SACKs? */
1918 	bool mark_lost;
1919 
1920 	/* Reduce ssthresh if it has not yet been made inside this window. */
1921 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1922 	    !after(tp->high_seq, tp->snd_una) ||
1923 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1924 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1925 		tp->prior_cwnd = tp->snd_cwnd;
1926 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1927 		tcp_ca_event(sk, CA_EVENT_LOSS);
1928 		tcp_init_undo(tp);
1929 	}
1930 	tp->snd_cwnd	   = 1;
1931 	tp->snd_cwnd_cnt   = 0;
1932 	tp->snd_cwnd_stamp = tcp_jiffies32;
1933 
1934 	tp->retrans_out = 0;
1935 	tp->lost_out = 0;
1936 
1937 	if (tcp_is_reno(tp))
1938 		tcp_reset_reno_sack(tp);
1939 
1940 	skb = tcp_rtx_queue_head(sk);
1941 	is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1942 	if (is_reneg) {
1943 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1944 		tp->sacked_out = 0;
1945 		/* Mark SACK reneging until we recover from this loss event. */
1946 		tp->is_sack_reneg = 1;
1947 	}
1948 	tcp_clear_all_retrans_hints(tp);
1949 
1950 	skb_rbtree_walk_from(skb) {
1951 		mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
1952 			     is_reneg);
1953 		if (mark_lost)
1954 			tcp_sum_lost(tp, skb);
1955 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1956 		if (mark_lost) {
1957 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1958 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1959 			tp->lost_out += tcp_skb_pcount(skb);
1960 		}
1961 	}
1962 	tcp_verify_left_out(tp);
1963 
1964 	/* Timeout in disordered state after receiving substantial DUPACKs
1965 	 * suggests that the degree of reordering is over-estimated.
1966 	 */
1967 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1968 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1969 		tp->reordering = min_t(unsigned int, tp->reordering,
1970 				       net->ipv4.sysctl_tcp_reordering);
1971 	tcp_set_ca_state(sk, TCP_CA_Loss);
1972 	tp->high_seq = tp->snd_nxt;
1973 	tcp_ecn_queue_cwr(tp);
1974 
1975 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1976 	 * loss recovery is underway except recurring timeout(s) on
1977 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1978 	 *
1979 	 * In theory F-RTO can be used repeatedly during loss recovery.
1980 	 * In practice this interacts badly with broken middle-boxes that
1981 	 * falsely raise the receive window, which results in repeated
1982 	 * timeouts and stop-and-go behavior.
1983 	 */
1984 	tp->frto = net->ipv4.sysctl_tcp_frto &&
1985 		   (new_recovery || icsk->icsk_retransmits) &&
1986 		   !inet_csk(sk)->icsk_mtup.probe_size;
1987 }
1988 
1989 /* If ACK arrived pointing to a remembered SACK, it means that our
1990  * remembered SACKs do not reflect real state of receiver i.e.
1991  * receiver _host_ is heavily congested (or buggy).
1992  *
1993  * To avoid big spurious retransmission bursts due to transient SACK
1994  * scoreboard oddities that look like reneging, we give the receiver a
1995  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1996  * restore sanity to the SACK scoreboard. If the apparent reneging
1997  * persists until this RTO then we'll clear the SACK scoreboard.
1998  */
1999 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2000 {
2001 	if (flag & FLAG_SACK_RENEGING) {
2002 		struct tcp_sock *tp = tcp_sk(sk);
2003 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2004 					  msecs_to_jiffies(10));
2005 
2006 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2007 					  delay, TCP_RTO_MAX);
2008 		return true;
2009 	}
2010 	return false;
2011 }
2012 
2013 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2014  * counter when SACK is enabled (without SACK, sacked_out is used for
2015  * that purpose).
2016  *
2017  * With reordering, holes may still be in flight, so RFC3517 recovery
2018  * uses pure sacked_out (total number of SACKed segments) even though
2019  * it violates the RFC that uses duplicate ACKs, often these are equal
2020  * but when e.g. out-of-window ACKs or packet duplication occurs,
2021  * they differ. Since neither occurs due to loss, TCP should really
2022  * ignore them.
2023  */
2024 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2025 {
2026 	return tp->sacked_out + 1;
2027 }
2028 
2029 /* Linux NewReno/SACK/ECN state machine.
2030  * --------------------------------------
2031  *
2032  * "Open"	Normal state, no dubious events, fast path.
2033  * "Disorder"   In all the respects it is "Open",
2034  *		but requires a bit more attention. It is entered when
2035  *		we see some SACKs or dupacks. It is split of "Open"
2036  *		mainly to move some processing from fast path to slow one.
2037  * "CWR"	CWND was reduced due to some Congestion Notification event.
2038  *		It can be ECN, ICMP source quench, local device congestion.
2039  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2040  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2041  *
2042  * tcp_fastretrans_alert() is entered:
2043  * - each incoming ACK, if state is not "Open"
2044  * - when arrived ACK is unusual, namely:
2045  *	* SACK
2046  *	* Duplicate ACK.
2047  *	* ECN ECE.
2048  *
2049  * Counting packets in flight is pretty simple.
2050  *
2051  *	in_flight = packets_out - left_out + retrans_out
2052  *
2053  *	packets_out is SND.NXT-SND.UNA counted in packets.
2054  *
2055  *	retrans_out is number of retransmitted segments.
2056  *
2057  *	left_out is number of segments left network, but not ACKed yet.
2058  *
2059  *		left_out = sacked_out + lost_out
2060  *
2061  *     sacked_out: Packets, which arrived to receiver out of order
2062  *		   and hence not ACKed. With SACKs this number is simply
2063  *		   amount of SACKed data. Even without SACKs
2064  *		   it is easy to give pretty reliable estimate of this number,
2065  *		   counting duplicate ACKs.
2066  *
2067  *       lost_out: Packets lost by network. TCP has no explicit
2068  *		   "loss notification" feedback from network (for now).
2069  *		   It means that this number can be only _guessed_.
2070  *		   Actually, it is the heuristics to predict lossage that
2071  *		   distinguishes different algorithms.
2072  *
2073  *	F.e. after RTO, when all the queue is considered as lost,
2074  *	lost_out = packets_out and in_flight = retrans_out.
2075  *
2076  *		Essentially, we have now a few algorithms detecting
2077  *		lost packets.
2078  *
2079  *		If the receiver supports SACK:
2080  *
2081  *		RFC6675/3517: It is the conventional algorithm. A packet is
2082  *		considered lost if the number of higher sequence packets
2083  *		SACKed is greater than or equal the DUPACK thoreshold
2084  *		(reordering). This is implemented in tcp_mark_head_lost and
2085  *		tcp_update_scoreboard.
2086  *
2087  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2088  *		(2017-) that checks timing instead of counting DUPACKs.
2089  *		Essentially a packet is considered lost if it's not S/ACKed
2090  *		after RTT + reordering_window, where both metrics are
2091  *		dynamically measured and adjusted. This is implemented in
2092  *		tcp_rack_mark_lost.
2093  *
2094  *		If the receiver does not support SACK:
2095  *
2096  *		NewReno (RFC6582): in Recovery we assume that one segment
2097  *		is lost (classic Reno). While we are in Recovery and
2098  *		a partial ACK arrives, we assume that one more packet
2099  *		is lost (NewReno). This heuristics are the same in NewReno
2100  *		and SACK.
2101  *
2102  * Really tricky (and requiring careful tuning) part of algorithm
2103  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2104  * The first determines the moment _when_ we should reduce CWND and,
2105  * hence, slow down forward transmission. In fact, it determines the moment
2106  * when we decide that hole is caused by loss, rather than by a reorder.
2107  *
2108  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2109  * holes, caused by lost packets.
2110  *
2111  * And the most logically complicated part of algorithm is undo
2112  * heuristics. We detect false retransmits due to both too early
2113  * fast retransmit (reordering) and underestimated RTO, analyzing
2114  * timestamps and D-SACKs. When we detect that some segments were
2115  * retransmitted by mistake and CWND reduction was wrong, we undo
2116  * window reduction and abort recovery phase. This logic is hidden
2117  * inside several functions named tcp_try_undo_<something>.
2118  */
2119 
2120 /* This function decides, when we should leave Disordered state
2121  * and enter Recovery phase, reducing congestion window.
2122  *
2123  * Main question: may we further continue forward transmission
2124  * with the same cwnd?
2125  */
2126 static bool tcp_time_to_recover(struct sock *sk, int flag)
2127 {
2128 	struct tcp_sock *tp = tcp_sk(sk);
2129 
2130 	/* Trick#1: The loss is proven. */
2131 	if (tp->lost_out)
2132 		return true;
2133 
2134 	/* Not-A-Trick#2 : Classic rule... */
2135 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2136 		return true;
2137 
2138 	return false;
2139 }
2140 
2141 /* Detect loss in event "A" above by marking head of queue up as lost.
2142  * For non-SACK(Reno) senders, the first "packets" number of segments
2143  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2144  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2145  * the maximum SACKed segments to pass before reaching this limit.
2146  */
2147 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2148 {
2149 	struct tcp_sock *tp = tcp_sk(sk);
2150 	struct sk_buff *skb;
2151 	int cnt, oldcnt, lost;
2152 	unsigned int mss;
2153 	/* Use SACK to deduce losses of new sequences sent during recovery */
2154 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2155 
2156 	WARN_ON(packets > tp->packets_out);
2157 	skb = tp->lost_skb_hint;
2158 	if (skb) {
2159 		/* Head already handled? */
2160 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2161 			return;
2162 		cnt = tp->lost_cnt_hint;
2163 	} else {
2164 		skb = tcp_rtx_queue_head(sk);
2165 		cnt = 0;
2166 	}
2167 
2168 	skb_rbtree_walk_from(skb) {
2169 		/* TODO: do this better */
2170 		/* this is not the most efficient way to do this... */
2171 		tp->lost_skb_hint = skb;
2172 		tp->lost_cnt_hint = cnt;
2173 
2174 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2175 			break;
2176 
2177 		oldcnt = cnt;
2178 		if (tcp_is_reno(tp) ||
2179 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2180 			cnt += tcp_skb_pcount(skb);
2181 
2182 		if (cnt > packets) {
2183 			if (tcp_is_sack(tp) ||
2184 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2185 			    (oldcnt >= packets))
2186 				break;
2187 
2188 			mss = tcp_skb_mss(skb);
2189 			/* If needed, chop off the prefix to mark as lost. */
2190 			lost = (packets - oldcnt) * mss;
2191 			if (lost < skb->len &&
2192 			    tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2193 					 lost, mss, GFP_ATOMIC) < 0)
2194 				break;
2195 			cnt = packets;
2196 		}
2197 
2198 		tcp_skb_mark_lost(tp, skb);
2199 
2200 		if (mark_head)
2201 			break;
2202 	}
2203 	tcp_verify_left_out(tp);
2204 }
2205 
2206 /* Account newly detected lost packet(s) */
2207 
2208 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2209 {
2210 	struct tcp_sock *tp = tcp_sk(sk);
2211 
2212 	if (tcp_is_reno(tp)) {
2213 		tcp_mark_head_lost(sk, 1, 1);
2214 	} else {
2215 		int sacked_upto = tp->sacked_out - tp->reordering;
2216 		if (sacked_upto >= 0)
2217 			tcp_mark_head_lost(sk, sacked_upto, 0);
2218 		else if (fast_rexmit)
2219 			tcp_mark_head_lost(sk, 1, 1);
2220 	}
2221 }
2222 
2223 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2224 {
2225 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2226 	       before(tp->rx_opt.rcv_tsecr, when);
2227 }
2228 
2229 /* skb is spurious retransmitted if the returned timestamp echo
2230  * reply is prior to the skb transmission time
2231  */
2232 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2233 				     const struct sk_buff *skb)
2234 {
2235 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2236 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2237 }
2238 
2239 /* Nothing was retransmitted or returned timestamp is less
2240  * than timestamp of the first retransmission.
2241  */
2242 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2243 {
2244 	return !tp->retrans_stamp ||
2245 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2246 }
2247 
2248 /* Undo procedures. */
2249 
2250 /* We can clear retrans_stamp when there are no retransmissions in the
2251  * window. It would seem that it is trivially available for us in
2252  * tp->retrans_out, however, that kind of assumptions doesn't consider
2253  * what will happen if errors occur when sending retransmission for the
2254  * second time. ...It could the that such segment has only
2255  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2256  * the head skb is enough except for some reneging corner cases that
2257  * are not worth the effort.
2258  *
2259  * Main reason for all this complexity is the fact that connection dying
2260  * time now depends on the validity of the retrans_stamp, in particular,
2261  * that successive retransmissions of a segment must not advance
2262  * retrans_stamp under any conditions.
2263  */
2264 static bool tcp_any_retrans_done(const struct sock *sk)
2265 {
2266 	const struct tcp_sock *tp = tcp_sk(sk);
2267 	struct sk_buff *skb;
2268 
2269 	if (tp->retrans_out)
2270 		return true;
2271 
2272 	skb = tcp_rtx_queue_head(sk);
2273 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2274 		return true;
2275 
2276 	return false;
2277 }
2278 
2279 static void DBGUNDO(struct sock *sk, const char *msg)
2280 {
2281 #if FASTRETRANS_DEBUG > 1
2282 	struct tcp_sock *tp = tcp_sk(sk);
2283 	struct inet_sock *inet = inet_sk(sk);
2284 
2285 	if (sk->sk_family == AF_INET) {
2286 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2287 			 msg,
2288 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2289 			 tp->snd_cwnd, tcp_left_out(tp),
2290 			 tp->snd_ssthresh, tp->prior_ssthresh,
2291 			 tp->packets_out);
2292 	}
2293 #if IS_ENABLED(CONFIG_IPV6)
2294 	else if (sk->sk_family == AF_INET6) {
2295 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2296 			 msg,
2297 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2298 			 tp->snd_cwnd, tcp_left_out(tp),
2299 			 tp->snd_ssthresh, tp->prior_ssthresh,
2300 			 tp->packets_out);
2301 	}
2302 #endif
2303 #endif
2304 }
2305 
2306 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2307 {
2308 	struct tcp_sock *tp = tcp_sk(sk);
2309 
2310 	if (unmark_loss) {
2311 		struct sk_buff *skb;
2312 
2313 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2314 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2315 		}
2316 		tp->lost_out = 0;
2317 		tcp_clear_all_retrans_hints(tp);
2318 	}
2319 
2320 	if (tp->prior_ssthresh) {
2321 		const struct inet_connection_sock *icsk = inet_csk(sk);
2322 
2323 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2324 
2325 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2326 			tp->snd_ssthresh = tp->prior_ssthresh;
2327 			tcp_ecn_withdraw_cwr(tp);
2328 		}
2329 	}
2330 	tp->snd_cwnd_stamp = tcp_jiffies32;
2331 	tp->undo_marker = 0;
2332 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2333 }
2334 
2335 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2336 {
2337 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2338 }
2339 
2340 /* People celebrate: "We love our President!" */
2341 static bool tcp_try_undo_recovery(struct sock *sk)
2342 {
2343 	struct tcp_sock *tp = tcp_sk(sk);
2344 
2345 	if (tcp_may_undo(tp)) {
2346 		int mib_idx;
2347 
2348 		/* Happy end! We did not retransmit anything
2349 		 * or our original transmission succeeded.
2350 		 */
2351 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2352 		tcp_undo_cwnd_reduction(sk, false);
2353 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2354 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2355 		else
2356 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2357 
2358 		NET_INC_STATS(sock_net(sk), mib_idx);
2359 	} else if (tp->rack.reo_wnd_persist) {
2360 		tp->rack.reo_wnd_persist--;
2361 	}
2362 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2363 		/* Hold old state until something *above* high_seq
2364 		 * is ACKed. For Reno it is MUST to prevent false
2365 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2366 		if (!tcp_any_retrans_done(sk))
2367 			tp->retrans_stamp = 0;
2368 		return true;
2369 	}
2370 	tcp_set_ca_state(sk, TCP_CA_Open);
2371 	tp->is_sack_reneg = 0;
2372 	return false;
2373 }
2374 
2375 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2376 static bool tcp_try_undo_dsack(struct sock *sk)
2377 {
2378 	struct tcp_sock *tp = tcp_sk(sk);
2379 
2380 	if (tp->undo_marker && !tp->undo_retrans) {
2381 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2382 					       tp->rack.reo_wnd_persist + 1);
2383 		DBGUNDO(sk, "D-SACK");
2384 		tcp_undo_cwnd_reduction(sk, false);
2385 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2386 		return true;
2387 	}
2388 	return false;
2389 }
2390 
2391 /* Undo during loss recovery after partial ACK or using F-RTO. */
2392 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2393 {
2394 	struct tcp_sock *tp = tcp_sk(sk);
2395 
2396 	if (frto_undo || tcp_may_undo(tp)) {
2397 		tcp_undo_cwnd_reduction(sk, true);
2398 
2399 		DBGUNDO(sk, "partial loss");
2400 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2401 		if (frto_undo)
2402 			NET_INC_STATS(sock_net(sk),
2403 					LINUX_MIB_TCPSPURIOUSRTOS);
2404 		inet_csk(sk)->icsk_retransmits = 0;
2405 		if (frto_undo || tcp_is_sack(tp)) {
2406 			tcp_set_ca_state(sk, TCP_CA_Open);
2407 			tp->is_sack_reneg = 0;
2408 		}
2409 		return true;
2410 	}
2411 	return false;
2412 }
2413 
2414 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2415  * It computes the number of packets to send (sndcnt) based on packets newly
2416  * delivered:
2417  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2418  *	cwnd reductions across a full RTT.
2419  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2420  *      But when the retransmits are acked without further losses, PRR
2421  *      slow starts cwnd up to ssthresh to speed up the recovery.
2422  */
2423 static void tcp_init_cwnd_reduction(struct sock *sk)
2424 {
2425 	struct tcp_sock *tp = tcp_sk(sk);
2426 
2427 	tp->high_seq = tp->snd_nxt;
2428 	tp->tlp_high_seq = 0;
2429 	tp->snd_cwnd_cnt = 0;
2430 	tp->prior_cwnd = tp->snd_cwnd;
2431 	tp->prr_delivered = 0;
2432 	tp->prr_out = 0;
2433 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2434 	tcp_ecn_queue_cwr(tp);
2435 }
2436 
2437 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2438 {
2439 	struct tcp_sock *tp = tcp_sk(sk);
2440 	int sndcnt = 0;
2441 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2442 
2443 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2444 		return;
2445 
2446 	tp->prr_delivered += newly_acked_sacked;
2447 	if (delta < 0) {
2448 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2449 			       tp->prior_cwnd - 1;
2450 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2451 	} else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2452 		   !(flag & FLAG_LOST_RETRANS)) {
2453 		sndcnt = min_t(int, delta,
2454 			       max_t(int, tp->prr_delivered - tp->prr_out,
2455 				     newly_acked_sacked) + 1);
2456 	} else {
2457 		sndcnt = min(delta, newly_acked_sacked);
2458 	}
2459 	/* Force a fast retransmit upon entering fast recovery */
2460 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2461 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2462 }
2463 
2464 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2465 {
2466 	struct tcp_sock *tp = tcp_sk(sk);
2467 
2468 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2469 		return;
2470 
2471 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2472 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2473 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2474 		tp->snd_cwnd = tp->snd_ssthresh;
2475 		tp->snd_cwnd_stamp = tcp_jiffies32;
2476 	}
2477 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2478 }
2479 
2480 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2481 void tcp_enter_cwr(struct sock *sk)
2482 {
2483 	struct tcp_sock *tp = tcp_sk(sk);
2484 
2485 	tp->prior_ssthresh = 0;
2486 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2487 		tp->undo_marker = 0;
2488 		tcp_init_cwnd_reduction(sk);
2489 		tcp_set_ca_state(sk, TCP_CA_CWR);
2490 	}
2491 }
2492 EXPORT_SYMBOL(tcp_enter_cwr);
2493 
2494 static void tcp_try_keep_open(struct sock *sk)
2495 {
2496 	struct tcp_sock *tp = tcp_sk(sk);
2497 	int state = TCP_CA_Open;
2498 
2499 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2500 		state = TCP_CA_Disorder;
2501 
2502 	if (inet_csk(sk)->icsk_ca_state != state) {
2503 		tcp_set_ca_state(sk, state);
2504 		tp->high_seq = tp->snd_nxt;
2505 	}
2506 }
2507 
2508 static void tcp_try_to_open(struct sock *sk, int flag)
2509 {
2510 	struct tcp_sock *tp = tcp_sk(sk);
2511 
2512 	tcp_verify_left_out(tp);
2513 
2514 	if (!tcp_any_retrans_done(sk))
2515 		tp->retrans_stamp = 0;
2516 
2517 	if (flag & FLAG_ECE)
2518 		tcp_enter_cwr(sk);
2519 
2520 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2521 		tcp_try_keep_open(sk);
2522 	}
2523 }
2524 
2525 static void tcp_mtup_probe_failed(struct sock *sk)
2526 {
2527 	struct inet_connection_sock *icsk = inet_csk(sk);
2528 
2529 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2530 	icsk->icsk_mtup.probe_size = 0;
2531 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2532 }
2533 
2534 static void tcp_mtup_probe_success(struct sock *sk)
2535 {
2536 	struct tcp_sock *tp = tcp_sk(sk);
2537 	struct inet_connection_sock *icsk = inet_csk(sk);
2538 
2539 	/* FIXME: breaks with very large cwnd */
2540 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2541 	tp->snd_cwnd = tp->snd_cwnd *
2542 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2543 		       icsk->icsk_mtup.probe_size;
2544 	tp->snd_cwnd_cnt = 0;
2545 	tp->snd_cwnd_stamp = tcp_jiffies32;
2546 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2547 
2548 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2549 	icsk->icsk_mtup.probe_size = 0;
2550 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2551 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2552 }
2553 
2554 /* Do a simple retransmit without using the backoff mechanisms in
2555  * tcp_timer. This is used for path mtu discovery.
2556  * The socket is already locked here.
2557  */
2558 void tcp_simple_retransmit(struct sock *sk)
2559 {
2560 	const struct inet_connection_sock *icsk = inet_csk(sk);
2561 	struct tcp_sock *tp = tcp_sk(sk);
2562 	struct sk_buff *skb;
2563 	unsigned int mss = tcp_current_mss(sk);
2564 
2565 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2566 		if (tcp_skb_seglen(skb) > mss &&
2567 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2568 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2569 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2570 				tp->retrans_out -= tcp_skb_pcount(skb);
2571 			}
2572 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2573 		}
2574 	}
2575 
2576 	tcp_clear_retrans_hints_partial(tp);
2577 
2578 	if (!tp->lost_out)
2579 		return;
2580 
2581 	if (tcp_is_reno(tp))
2582 		tcp_limit_reno_sacked(tp);
2583 
2584 	tcp_verify_left_out(tp);
2585 
2586 	/* Don't muck with the congestion window here.
2587 	 * Reason is that we do not increase amount of _data_
2588 	 * in network, but units changed and effective
2589 	 * cwnd/ssthresh really reduced now.
2590 	 */
2591 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2592 		tp->high_seq = tp->snd_nxt;
2593 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2594 		tp->prior_ssthresh = 0;
2595 		tp->undo_marker = 0;
2596 		tcp_set_ca_state(sk, TCP_CA_Loss);
2597 	}
2598 	tcp_xmit_retransmit_queue(sk);
2599 }
2600 EXPORT_SYMBOL(tcp_simple_retransmit);
2601 
2602 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2603 {
2604 	struct tcp_sock *tp = tcp_sk(sk);
2605 	int mib_idx;
2606 
2607 	if (tcp_is_reno(tp))
2608 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2609 	else
2610 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2611 
2612 	NET_INC_STATS(sock_net(sk), mib_idx);
2613 
2614 	tp->prior_ssthresh = 0;
2615 	tcp_init_undo(tp);
2616 
2617 	if (!tcp_in_cwnd_reduction(sk)) {
2618 		if (!ece_ack)
2619 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2620 		tcp_init_cwnd_reduction(sk);
2621 	}
2622 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2623 }
2624 
2625 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2626  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2627  */
2628 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2629 			     int *rexmit)
2630 {
2631 	struct tcp_sock *tp = tcp_sk(sk);
2632 	bool recovered = !before(tp->snd_una, tp->high_seq);
2633 
2634 	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2635 	    tcp_try_undo_loss(sk, false))
2636 		return;
2637 
2638 	/* The ACK (s)acks some never-retransmitted data meaning not all
2639 	 * the data packets before the timeout were lost. Therefore we
2640 	 * undo the congestion window and state. This is essentially
2641 	 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since
2642 	 * a retransmitted skb is permantly marked, we can apply such an
2643 	 * operation even if F-RTO was not used.
2644 	 */
2645 	if ((flag & FLAG_ORIG_SACK_ACKED) &&
2646 	    tcp_try_undo_loss(sk, tp->undo_marker))
2647 		return;
2648 
2649 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2650 		if (after(tp->snd_nxt, tp->high_seq)) {
2651 			if (flag & FLAG_DATA_SACKED || is_dupack)
2652 				tp->frto = 0; /* Step 3.a. loss was real */
2653 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2654 			tp->high_seq = tp->snd_nxt;
2655 			/* Step 2.b. Try send new data (but deferred until cwnd
2656 			 * is updated in tcp_ack()). Otherwise fall back to
2657 			 * the conventional recovery.
2658 			 */
2659 			if (!tcp_write_queue_empty(sk) &&
2660 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2661 				*rexmit = REXMIT_NEW;
2662 				return;
2663 			}
2664 			tp->frto = 0;
2665 		}
2666 	}
2667 
2668 	if (recovered) {
2669 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2670 		tcp_try_undo_recovery(sk);
2671 		return;
2672 	}
2673 	if (tcp_is_reno(tp)) {
2674 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2675 		 * delivered. Lower inflight to clock out (re)tranmissions.
2676 		 */
2677 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2678 			tcp_add_reno_sack(sk);
2679 		else if (flag & FLAG_SND_UNA_ADVANCED)
2680 			tcp_reset_reno_sack(tp);
2681 	}
2682 	*rexmit = REXMIT_LOST;
2683 }
2684 
2685 /* Undo during fast recovery after partial ACK. */
2686 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2687 {
2688 	struct tcp_sock *tp = tcp_sk(sk);
2689 
2690 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2691 		/* Plain luck! Hole if filled with delayed
2692 		 * packet, rather than with a retransmit. Check reordering.
2693 		 */
2694 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2695 
2696 		/* We are getting evidence that the reordering degree is higher
2697 		 * than we realized. If there are no retransmits out then we
2698 		 * can undo. Otherwise we clock out new packets but do not
2699 		 * mark more packets lost or retransmit more.
2700 		 */
2701 		if (tp->retrans_out)
2702 			return true;
2703 
2704 		if (!tcp_any_retrans_done(sk))
2705 			tp->retrans_stamp = 0;
2706 
2707 		DBGUNDO(sk, "partial recovery");
2708 		tcp_undo_cwnd_reduction(sk, true);
2709 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2710 		tcp_try_keep_open(sk);
2711 		return true;
2712 	}
2713 	return false;
2714 }
2715 
2716 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag)
2717 {
2718 	struct tcp_sock *tp = tcp_sk(sk);
2719 
2720 	/* Use RACK to detect loss */
2721 	if (sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) {
2722 		u32 prior_retrans = tp->retrans_out;
2723 
2724 		tcp_rack_mark_lost(sk);
2725 		if (prior_retrans > tp->retrans_out)
2726 			*ack_flag |= FLAG_LOST_RETRANS;
2727 	}
2728 }
2729 
2730 static bool tcp_force_fast_retransmit(struct sock *sk)
2731 {
2732 	struct tcp_sock *tp = tcp_sk(sk);
2733 
2734 	return after(tcp_highest_sack_seq(tp),
2735 		     tp->snd_una + tp->reordering * tp->mss_cache);
2736 }
2737 
2738 /* Process an event, which can update packets-in-flight not trivially.
2739  * Main goal of this function is to calculate new estimate for left_out,
2740  * taking into account both packets sitting in receiver's buffer and
2741  * packets lost by network.
2742  *
2743  * Besides that it updates the congestion state when packet loss or ECN
2744  * is detected. But it does not reduce the cwnd, it is done by the
2745  * congestion control later.
2746  *
2747  * It does _not_ decide what to send, it is made in function
2748  * tcp_xmit_retransmit_queue().
2749  */
2750 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2751 				  bool is_dupack, int *ack_flag, int *rexmit)
2752 {
2753 	struct inet_connection_sock *icsk = inet_csk(sk);
2754 	struct tcp_sock *tp = tcp_sk(sk);
2755 	int fast_rexmit = 0, flag = *ack_flag;
2756 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2757 				     tcp_force_fast_retransmit(sk));
2758 
2759 	if (!tp->packets_out && tp->sacked_out)
2760 		tp->sacked_out = 0;
2761 
2762 	/* Now state machine starts.
2763 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2764 	if (flag & FLAG_ECE)
2765 		tp->prior_ssthresh = 0;
2766 
2767 	/* B. In all the states check for reneging SACKs. */
2768 	if (tcp_check_sack_reneging(sk, flag))
2769 		return;
2770 
2771 	/* C. Check consistency of the current state. */
2772 	tcp_verify_left_out(tp);
2773 
2774 	/* D. Check state exit conditions. State can be terminated
2775 	 *    when high_seq is ACKed. */
2776 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2777 		WARN_ON(tp->retrans_out != 0);
2778 		tp->retrans_stamp = 0;
2779 	} else if (!before(tp->snd_una, tp->high_seq)) {
2780 		switch (icsk->icsk_ca_state) {
2781 		case TCP_CA_CWR:
2782 			/* CWR is to be held something *above* high_seq
2783 			 * is ACKed for CWR bit to reach receiver. */
2784 			if (tp->snd_una != tp->high_seq) {
2785 				tcp_end_cwnd_reduction(sk);
2786 				tcp_set_ca_state(sk, TCP_CA_Open);
2787 			}
2788 			break;
2789 
2790 		case TCP_CA_Recovery:
2791 			if (tcp_is_reno(tp))
2792 				tcp_reset_reno_sack(tp);
2793 			if (tcp_try_undo_recovery(sk))
2794 				return;
2795 			tcp_end_cwnd_reduction(sk);
2796 			break;
2797 		}
2798 	}
2799 
2800 	/* E. Process state. */
2801 	switch (icsk->icsk_ca_state) {
2802 	case TCP_CA_Recovery:
2803 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2804 			if (tcp_is_reno(tp) && is_dupack)
2805 				tcp_add_reno_sack(sk);
2806 		} else {
2807 			if (tcp_try_undo_partial(sk, prior_snd_una))
2808 				return;
2809 			/* Partial ACK arrived. Force fast retransmit. */
2810 			do_lost = tcp_is_reno(tp) ||
2811 				  tcp_force_fast_retransmit(sk);
2812 		}
2813 		if (tcp_try_undo_dsack(sk)) {
2814 			tcp_try_keep_open(sk);
2815 			return;
2816 		}
2817 		tcp_rack_identify_loss(sk, ack_flag);
2818 		break;
2819 	case TCP_CA_Loss:
2820 		tcp_process_loss(sk, flag, is_dupack, rexmit);
2821 		tcp_rack_identify_loss(sk, ack_flag);
2822 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2823 		      (*ack_flag & FLAG_LOST_RETRANS)))
2824 			return;
2825 		/* Change state if cwnd is undone or retransmits are lost */
2826 		/* fall through */
2827 	default:
2828 		if (tcp_is_reno(tp)) {
2829 			if (flag & FLAG_SND_UNA_ADVANCED)
2830 				tcp_reset_reno_sack(tp);
2831 			if (is_dupack)
2832 				tcp_add_reno_sack(sk);
2833 		}
2834 
2835 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2836 			tcp_try_undo_dsack(sk);
2837 
2838 		tcp_rack_identify_loss(sk, ack_flag);
2839 		if (!tcp_time_to_recover(sk, flag)) {
2840 			tcp_try_to_open(sk, flag);
2841 			return;
2842 		}
2843 
2844 		/* MTU probe failure: don't reduce cwnd */
2845 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2846 		    icsk->icsk_mtup.probe_size &&
2847 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2848 			tcp_mtup_probe_failed(sk);
2849 			/* Restores the reduction we did in tcp_mtup_probe() */
2850 			tp->snd_cwnd++;
2851 			tcp_simple_retransmit(sk);
2852 			return;
2853 		}
2854 
2855 		/* Otherwise enter Recovery state */
2856 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2857 		fast_rexmit = 1;
2858 	}
2859 
2860 	if (do_lost)
2861 		tcp_update_scoreboard(sk, fast_rexmit);
2862 	*rexmit = REXMIT_LOST;
2863 }
2864 
2865 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2866 {
2867 	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2868 	struct tcp_sock *tp = tcp_sk(sk);
2869 
2870 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2871 			   rtt_us ? : jiffies_to_usecs(1));
2872 }
2873 
2874 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2875 			       long seq_rtt_us, long sack_rtt_us,
2876 			       long ca_rtt_us, struct rate_sample *rs)
2877 {
2878 	const struct tcp_sock *tp = tcp_sk(sk);
2879 
2880 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2881 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2882 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2883 	 * is acked (RFC6298).
2884 	 */
2885 	if (seq_rtt_us < 0)
2886 		seq_rtt_us = sack_rtt_us;
2887 
2888 	/* RTTM Rule: A TSecr value received in a segment is used to
2889 	 * update the averaged RTT measurement only if the segment
2890 	 * acknowledges some new data, i.e., only if it advances the
2891 	 * left edge of the send window.
2892 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2893 	 */
2894 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2895 	    flag & FLAG_ACKED) {
2896 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2897 		u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2898 
2899 		seq_rtt_us = ca_rtt_us = delta_us;
2900 	}
2901 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2902 	if (seq_rtt_us < 0)
2903 		return false;
2904 
2905 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2906 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2907 	 * values will be skipped with the seq_rtt_us < 0 check above.
2908 	 */
2909 	tcp_update_rtt_min(sk, ca_rtt_us);
2910 	tcp_rtt_estimator(sk, seq_rtt_us);
2911 	tcp_set_rto(sk);
2912 
2913 	/* RFC6298: only reset backoff on valid RTT measurement. */
2914 	inet_csk(sk)->icsk_backoff = 0;
2915 	return true;
2916 }
2917 
2918 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2919 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2920 {
2921 	struct rate_sample rs;
2922 	long rtt_us = -1L;
2923 
2924 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2925 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2926 
2927 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2928 }
2929 
2930 
2931 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2932 {
2933 	const struct inet_connection_sock *icsk = inet_csk(sk);
2934 
2935 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2936 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2937 }
2938 
2939 /* Restart timer after forward progress on connection.
2940  * RFC2988 recommends to restart timer to now+rto.
2941  */
2942 void tcp_rearm_rto(struct sock *sk)
2943 {
2944 	const struct inet_connection_sock *icsk = inet_csk(sk);
2945 	struct tcp_sock *tp = tcp_sk(sk);
2946 
2947 	/* If the retrans timer is currently being used by Fast Open
2948 	 * for SYN-ACK retrans purpose, stay put.
2949 	 */
2950 	if (tp->fastopen_rsk)
2951 		return;
2952 
2953 	if (!tp->packets_out) {
2954 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2955 	} else {
2956 		u32 rto = inet_csk(sk)->icsk_rto;
2957 		/* Offset the time elapsed after installing regular RTO */
2958 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2959 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2960 			s64 delta_us = tcp_rto_delta_us(sk);
2961 			/* delta_us may not be positive if the socket is locked
2962 			 * when the retrans timer fires and is rescheduled.
2963 			 */
2964 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
2965 		}
2966 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2967 					  TCP_RTO_MAX);
2968 	}
2969 }
2970 
2971 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
2972 static void tcp_set_xmit_timer(struct sock *sk)
2973 {
2974 	if (!tcp_schedule_loss_probe(sk, true))
2975 		tcp_rearm_rto(sk);
2976 }
2977 
2978 /* If we get here, the whole TSO packet has not been acked. */
2979 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2980 {
2981 	struct tcp_sock *tp = tcp_sk(sk);
2982 	u32 packets_acked;
2983 
2984 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2985 
2986 	packets_acked = tcp_skb_pcount(skb);
2987 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2988 		return 0;
2989 	packets_acked -= tcp_skb_pcount(skb);
2990 
2991 	if (packets_acked) {
2992 		BUG_ON(tcp_skb_pcount(skb) == 0);
2993 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2994 	}
2995 
2996 	return packets_acked;
2997 }
2998 
2999 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3000 			   u32 prior_snd_una)
3001 {
3002 	const struct skb_shared_info *shinfo;
3003 
3004 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3005 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3006 		return;
3007 
3008 	shinfo = skb_shinfo(skb);
3009 	if (!before(shinfo->tskey, prior_snd_una) &&
3010 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3011 		tcp_skb_tsorted_save(skb) {
3012 			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3013 		} tcp_skb_tsorted_restore(skb);
3014 	}
3015 }
3016 
3017 /* Remove acknowledged frames from the retransmission queue. If our packet
3018  * is before the ack sequence we can discard it as it's confirmed to have
3019  * arrived at the other end.
3020  */
3021 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3022 			       u32 prior_snd_una,
3023 			       struct tcp_sacktag_state *sack)
3024 {
3025 	const struct inet_connection_sock *icsk = inet_csk(sk);
3026 	u64 first_ackt, last_ackt;
3027 	struct tcp_sock *tp = tcp_sk(sk);
3028 	u32 prior_sacked = tp->sacked_out;
3029 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3030 	struct sk_buff *skb, *next;
3031 	bool fully_acked = true;
3032 	long sack_rtt_us = -1L;
3033 	long seq_rtt_us = -1L;
3034 	long ca_rtt_us = -1L;
3035 	u32 pkts_acked = 0;
3036 	u32 last_in_flight = 0;
3037 	bool rtt_update;
3038 	int flag = 0;
3039 
3040 	first_ackt = 0;
3041 
3042 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3043 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3044 		const u32 start_seq = scb->seq;
3045 		u8 sacked = scb->sacked;
3046 		u32 acked_pcount;
3047 
3048 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3049 
3050 		/* Determine how many packets and what bytes were acked, tso and else */
3051 		if (after(scb->end_seq, tp->snd_una)) {
3052 			if (tcp_skb_pcount(skb) == 1 ||
3053 			    !after(tp->snd_una, scb->seq))
3054 				break;
3055 
3056 			acked_pcount = tcp_tso_acked(sk, skb);
3057 			if (!acked_pcount)
3058 				break;
3059 			fully_acked = false;
3060 		} else {
3061 			acked_pcount = tcp_skb_pcount(skb);
3062 		}
3063 
3064 		if (unlikely(sacked & TCPCB_RETRANS)) {
3065 			if (sacked & TCPCB_SACKED_RETRANS)
3066 				tp->retrans_out -= acked_pcount;
3067 			flag |= FLAG_RETRANS_DATA_ACKED;
3068 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3069 			last_ackt = skb->skb_mstamp;
3070 			WARN_ON_ONCE(last_ackt == 0);
3071 			if (!first_ackt)
3072 				first_ackt = last_ackt;
3073 
3074 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3075 			if (before(start_seq, reord))
3076 				reord = start_seq;
3077 			if (!after(scb->end_seq, tp->high_seq))
3078 				flag |= FLAG_ORIG_SACK_ACKED;
3079 		}
3080 
3081 		if (sacked & TCPCB_SACKED_ACKED) {
3082 			tp->sacked_out -= acked_pcount;
3083 		} else if (tcp_is_sack(tp)) {
3084 			tp->delivered += acked_pcount;
3085 			if (!tcp_skb_spurious_retrans(tp, skb))
3086 				tcp_rack_advance(tp, sacked, scb->end_seq,
3087 						 skb->skb_mstamp);
3088 		}
3089 		if (sacked & TCPCB_LOST)
3090 			tp->lost_out -= acked_pcount;
3091 
3092 		tp->packets_out -= acked_pcount;
3093 		pkts_acked += acked_pcount;
3094 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3095 
3096 		/* Initial outgoing SYN's get put onto the write_queue
3097 		 * just like anything else we transmit.  It is not
3098 		 * true data, and if we misinform our callers that
3099 		 * this ACK acks real data, we will erroneously exit
3100 		 * connection startup slow start one packet too
3101 		 * quickly.  This is severely frowned upon behavior.
3102 		 */
3103 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3104 			flag |= FLAG_DATA_ACKED;
3105 		} else {
3106 			flag |= FLAG_SYN_ACKED;
3107 			tp->retrans_stamp = 0;
3108 		}
3109 
3110 		if (!fully_acked)
3111 			break;
3112 
3113 		next = skb_rb_next(skb);
3114 		if (unlikely(skb == tp->retransmit_skb_hint))
3115 			tp->retransmit_skb_hint = NULL;
3116 		if (unlikely(skb == tp->lost_skb_hint))
3117 			tp->lost_skb_hint = NULL;
3118 		tcp_rtx_queue_unlink_and_free(skb, sk);
3119 	}
3120 
3121 	if (!skb)
3122 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3123 
3124 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3125 		tp->snd_up = tp->snd_una;
3126 
3127 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3128 		flag |= FLAG_SACK_RENEGING;
3129 
3130 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3131 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3132 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3133 	}
3134 	if (sack->first_sackt) {
3135 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3136 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3137 	}
3138 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3139 					ca_rtt_us, sack->rate);
3140 
3141 	if (flag & FLAG_ACKED) {
3142 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3143 		if (unlikely(icsk->icsk_mtup.probe_size &&
3144 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3145 			tcp_mtup_probe_success(sk);
3146 		}
3147 
3148 		if (tcp_is_reno(tp)) {
3149 			tcp_remove_reno_sacks(sk, pkts_acked);
3150 		} else {
3151 			int delta;
3152 
3153 			/* Non-retransmitted hole got filled? That's reordering */
3154 			if (before(reord, prior_fack))
3155 				tcp_check_sack_reordering(sk, reord, 0);
3156 
3157 			delta = prior_sacked - tp->sacked_out;
3158 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3159 		}
3160 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3161 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) {
3162 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3163 		 * after when the head was last (re)transmitted. Otherwise the
3164 		 * timeout may continue to extend in loss recovery.
3165 		 */
3166 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3167 	}
3168 
3169 	if (icsk->icsk_ca_ops->pkts_acked) {
3170 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3171 					     .rtt_us = sack->rate->rtt_us,
3172 					     .in_flight = last_in_flight };
3173 
3174 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3175 	}
3176 
3177 #if FASTRETRANS_DEBUG > 0
3178 	WARN_ON((int)tp->sacked_out < 0);
3179 	WARN_ON((int)tp->lost_out < 0);
3180 	WARN_ON((int)tp->retrans_out < 0);
3181 	if (!tp->packets_out && tcp_is_sack(tp)) {
3182 		icsk = inet_csk(sk);
3183 		if (tp->lost_out) {
3184 			pr_debug("Leak l=%u %d\n",
3185 				 tp->lost_out, icsk->icsk_ca_state);
3186 			tp->lost_out = 0;
3187 		}
3188 		if (tp->sacked_out) {
3189 			pr_debug("Leak s=%u %d\n",
3190 				 tp->sacked_out, icsk->icsk_ca_state);
3191 			tp->sacked_out = 0;
3192 		}
3193 		if (tp->retrans_out) {
3194 			pr_debug("Leak r=%u %d\n",
3195 				 tp->retrans_out, icsk->icsk_ca_state);
3196 			tp->retrans_out = 0;
3197 		}
3198 	}
3199 #endif
3200 	return flag;
3201 }
3202 
3203 static void tcp_ack_probe(struct sock *sk)
3204 {
3205 	struct inet_connection_sock *icsk = inet_csk(sk);
3206 	struct sk_buff *head = tcp_send_head(sk);
3207 	const struct tcp_sock *tp = tcp_sk(sk);
3208 
3209 	/* Was it a usable window open? */
3210 	if (!head)
3211 		return;
3212 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3213 		icsk->icsk_backoff = 0;
3214 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3215 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3216 		 * This function is not for random using!
3217 		 */
3218 	} else {
3219 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3220 
3221 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3222 					  when, TCP_RTO_MAX);
3223 	}
3224 }
3225 
3226 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3227 {
3228 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3229 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3230 }
3231 
3232 /* Decide wheather to run the increase function of congestion control. */
3233 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3234 {
3235 	/* If reordering is high then always grow cwnd whenever data is
3236 	 * delivered regardless of its ordering. Otherwise stay conservative
3237 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3238 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3239 	 * cwnd in tcp_fastretrans_alert() based on more states.
3240 	 */
3241 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3242 		return flag & FLAG_FORWARD_PROGRESS;
3243 
3244 	return flag & FLAG_DATA_ACKED;
3245 }
3246 
3247 /* The "ultimate" congestion control function that aims to replace the rigid
3248  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3249  * It's called toward the end of processing an ACK with precise rate
3250  * information. All transmission or retransmission are delayed afterwards.
3251  */
3252 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3253 			     int flag, const struct rate_sample *rs)
3254 {
3255 	const struct inet_connection_sock *icsk = inet_csk(sk);
3256 
3257 	if (icsk->icsk_ca_ops->cong_control) {
3258 		icsk->icsk_ca_ops->cong_control(sk, rs);
3259 		return;
3260 	}
3261 
3262 	if (tcp_in_cwnd_reduction(sk)) {
3263 		/* Reduce cwnd if state mandates */
3264 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3265 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3266 		/* Advance cwnd if state allows */
3267 		tcp_cong_avoid(sk, ack, acked_sacked);
3268 	}
3269 	tcp_update_pacing_rate(sk);
3270 }
3271 
3272 /* Check that window update is acceptable.
3273  * The function assumes that snd_una<=ack<=snd_next.
3274  */
3275 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3276 					const u32 ack, const u32 ack_seq,
3277 					const u32 nwin)
3278 {
3279 	return	after(ack, tp->snd_una) ||
3280 		after(ack_seq, tp->snd_wl1) ||
3281 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3282 }
3283 
3284 /* If we update tp->snd_una, also update tp->bytes_acked */
3285 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3286 {
3287 	u32 delta = ack - tp->snd_una;
3288 
3289 	sock_owned_by_me((struct sock *)tp);
3290 	tp->bytes_acked += delta;
3291 	tp->snd_una = ack;
3292 }
3293 
3294 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3295 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3296 {
3297 	u32 delta = seq - tp->rcv_nxt;
3298 
3299 	sock_owned_by_me((struct sock *)tp);
3300 	tp->bytes_received += delta;
3301 	tp->rcv_nxt = seq;
3302 }
3303 
3304 /* Update our send window.
3305  *
3306  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3307  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3308  */
3309 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3310 				 u32 ack_seq)
3311 {
3312 	struct tcp_sock *tp = tcp_sk(sk);
3313 	int flag = 0;
3314 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3315 
3316 	if (likely(!tcp_hdr(skb)->syn))
3317 		nwin <<= tp->rx_opt.snd_wscale;
3318 
3319 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3320 		flag |= FLAG_WIN_UPDATE;
3321 		tcp_update_wl(tp, ack_seq);
3322 
3323 		if (tp->snd_wnd != nwin) {
3324 			tp->snd_wnd = nwin;
3325 
3326 			/* Note, it is the only place, where
3327 			 * fast path is recovered for sending TCP.
3328 			 */
3329 			tp->pred_flags = 0;
3330 			tcp_fast_path_check(sk);
3331 
3332 			if (!tcp_write_queue_empty(sk))
3333 				tcp_slow_start_after_idle_check(sk);
3334 
3335 			if (nwin > tp->max_window) {
3336 				tp->max_window = nwin;
3337 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3338 			}
3339 		}
3340 	}
3341 
3342 	tcp_snd_una_update(tp, ack);
3343 
3344 	return flag;
3345 }
3346 
3347 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3348 				   u32 *last_oow_ack_time)
3349 {
3350 	if (*last_oow_ack_time) {
3351 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3352 
3353 		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3354 			NET_INC_STATS(net, mib_idx);
3355 			return true;	/* rate-limited: don't send yet! */
3356 		}
3357 	}
3358 
3359 	*last_oow_ack_time = tcp_jiffies32;
3360 
3361 	return false;	/* not rate-limited: go ahead, send dupack now! */
3362 }
3363 
3364 /* Return true if we're currently rate-limiting out-of-window ACKs and
3365  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3366  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3367  * attacks that send repeated SYNs or ACKs for the same connection. To
3368  * do this, we do not send a duplicate SYNACK or ACK if the remote
3369  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3370  */
3371 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3372 			  int mib_idx, u32 *last_oow_ack_time)
3373 {
3374 	/* Data packets without SYNs are not likely part of an ACK loop. */
3375 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3376 	    !tcp_hdr(skb)->syn)
3377 		return false;
3378 
3379 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3380 }
3381 
3382 /* RFC 5961 7 [ACK Throttling] */
3383 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3384 {
3385 	/* unprotected vars, we dont care of overwrites */
3386 	static u32 challenge_timestamp;
3387 	static unsigned int challenge_count;
3388 	struct tcp_sock *tp = tcp_sk(sk);
3389 	struct net *net = sock_net(sk);
3390 	u32 count, now;
3391 
3392 	/* First check our per-socket dupack rate limit. */
3393 	if (__tcp_oow_rate_limited(net,
3394 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3395 				   &tp->last_oow_ack_time))
3396 		return;
3397 
3398 	/* Then check host-wide RFC 5961 rate limit. */
3399 	now = jiffies / HZ;
3400 	if (now != challenge_timestamp) {
3401 		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3402 		u32 half = (ack_limit + 1) >> 1;
3403 
3404 		challenge_timestamp = now;
3405 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3406 	}
3407 	count = READ_ONCE(challenge_count);
3408 	if (count > 0) {
3409 		WRITE_ONCE(challenge_count, count - 1);
3410 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3411 		tcp_send_ack(sk);
3412 	}
3413 }
3414 
3415 static void tcp_store_ts_recent(struct tcp_sock *tp)
3416 {
3417 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3418 	tp->rx_opt.ts_recent_stamp = get_seconds();
3419 }
3420 
3421 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3422 {
3423 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3424 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3425 		 * extra check below makes sure this can only happen
3426 		 * for pure ACK frames.  -DaveM
3427 		 *
3428 		 * Not only, also it occurs for expired timestamps.
3429 		 */
3430 
3431 		if (tcp_paws_check(&tp->rx_opt, 0))
3432 			tcp_store_ts_recent(tp);
3433 	}
3434 }
3435 
3436 /* This routine deals with acks during a TLP episode.
3437  * We mark the end of a TLP episode on receiving TLP dupack or when
3438  * ack is after tlp_high_seq.
3439  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3440  */
3441 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3442 {
3443 	struct tcp_sock *tp = tcp_sk(sk);
3444 
3445 	if (before(ack, tp->tlp_high_seq))
3446 		return;
3447 
3448 	if (flag & FLAG_DSACKING_ACK) {
3449 		/* This DSACK means original and TLP probe arrived; no loss */
3450 		tp->tlp_high_seq = 0;
3451 	} else if (after(ack, tp->tlp_high_seq)) {
3452 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3453 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3454 		 */
3455 		tcp_init_cwnd_reduction(sk);
3456 		tcp_set_ca_state(sk, TCP_CA_CWR);
3457 		tcp_end_cwnd_reduction(sk);
3458 		tcp_try_keep_open(sk);
3459 		NET_INC_STATS(sock_net(sk),
3460 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3461 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3462 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3463 		/* Pure dupack: original and TLP probe arrived; no loss */
3464 		tp->tlp_high_seq = 0;
3465 	}
3466 }
3467 
3468 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3469 {
3470 	const struct inet_connection_sock *icsk = inet_csk(sk);
3471 
3472 	if (icsk->icsk_ca_ops->in_ack_event)
3473 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3474 }
3475 
3476 /* Congestion control has updated the cwnd already. So if we're in
3477  * loss recovery then now we do any new sends (for FRTO) or
3478  * retransmits (for CA_Loss or CA_recovery) that make sense.
3479  */
3480 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3481 {
3482 	struct tcp_sock *tp = tcp_sk(sk);
3483 
3484 	if (rexmit == REXMIT_NONE)
3485 		return;
3486 
3487 	if (unlikely(rexmit == 2)) {
3488 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3489 					  TCP_NAGLE_OFF);
3490 		if (after(tp->snd_nxt, tp->high_seq))
3491 			return;
3492 		tp->frto = 0;
3493 	}
3494 	tcp_xmit_retransmit_queue(sk);
3495 }
3496 
3497 /* This routine deals with incoming acks, but not outgoing ones. */
3498 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3499 {
3500 	struct inet_connection_sock *icsk = inet_csk(sk);
3501 	struct tcp_sock *tp = tcp_sk(sk);
3502 	struct tcp_sacktag_state sack_state;
3503 	struct rate_sample rs = { .prior_delivered = 0 };
3504 	u32 prior_snd_una = tp->snd_una;
3505 	bool is_sack_reneg = tp->is_sack_reneg;
3506 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3507 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3508 	bool is_dupack = false;
3509 	int prior_packets = tp->packets_out;
3510 	u32 delivered = tp->delivered;
3511 	u32 lost = tp->lost;
3512 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3513 	u32 prior_fack;
3514 
3515 	sack_state.first_sackt = 0;
3516 	sack_state.rate = &rs;
3517 
3518 	/* We very likely will need to access rtx queue. */
3519 	prefetch(sk->tcp_rtx_queue.rb_node);
3520 
3521 	/* If the ack is older than previous acks
3522 	 * then we can probably ignore it.
3523 	 */
3524 	if (before(ack, prior_snd_una)) {
3525 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3526 		if (before(ack, prior_snd_una - tp->max_window)) {
3527 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3528 				tcp_send_challenge_ack(sk, skb);
3529 			return -1;
3530 		}
3531 		goto old_ack;
3532 	}
3533 
3534 	/* If the ack includes data we haven't sent yet, discard
3535 	 * this segment (RFC793 Section 3.9).
3536 	 */
3537 	if (after(ack, tp->snd_nxt))
3538 		goto invalid_ack;
3539 
3540 	if (after(ack, prior_snd_una)) {
3541 		flag |= FLAG_SND_UNA_ADVANCED;
3542 		icsk->icsk_retransmits = 0;
3543 	}
3544 
3545 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3546 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3547 
3548 	/* ts_recent update must be made after we are sure that the packet
3549 	 * is in window.
3550 	 */
3551 	if (flag & FLAG_UPDATE_TS_RECENT)
3552 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3553 
3554 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3555 		/* Window is constant, pure forward advance.
3556 		 * No more checks are required.
3557 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3558 		 */
3559 		tcp_update_wl(tp, ack_seq);
3560 		tcp_snd_una_update(tp, ack);
3561 		flag |= FLAG_WIN_UPDATE;
3562 
3563 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3564 
3565 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3566 	} else {
3567 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3568 
3569 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3570 			flag |= FLAG_DATA;
3571 		else
3572 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3573 
3574 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3575 
3576 		if (TCP_SKB_CB(skb)->sacked)
3577 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3578 							&sack_state);
3579 
3580 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3581 			flag |= FLAG_ECE;
3582 			ack_ev_flags |= CA_ACK_ECE;
3583 		}
3584 
3585 		if (flag & FLAG_WIN_UPDATE)
3586 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3587 
3588 		tcp_in_ack_event(sk, ack_ev_flags);
3589 	}
3590 
3591 	/* We passed data and got it acked, remove any soft error
3592 	 * log. Something worked...
3593 	 */
3594 	sk->sk_err_soft = 0;
3595 	icsk->icsk_probes_out = 0;
3596 	tp->rcv_tstamp = tcp_jiffies32;
3597 	if (!prior_packets)
3598 		goto no_queue;
3599 
3600 	/* See if we can take anything off of the retransmit queue. */
3601 	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3602 
3603 	tcp_rack_update_reo_wnd(sk, &rs);
3604 
3605 	if (tp->tlp_high_seq)
3606 		tcp_process_tlp_ack(sk, ack, flag);
3607 	/* If needed, reset TLP/RTO timer; RACK may later override this. */
3608 	if (flag & FLAG_SET_XMIT_TIMER)
3609 		tcp_set_xmit_timer(sk);
3610 
3611 	if (tcp_ack_is_dubious(sk, flag)) {
3612 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3613 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3614 				      &rexmit);
3615 	}
3616 
3617 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3618 		sk_dst_confirm(sk);
3619 
3620 	delivered = tp->delivered - delivered;	/* freshly ACKed or SACKed */
3621 	lost = tp->lost - lost;			/* freshly marked lost */
3622 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3623 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3624 	tcp_xmit_recovery(sk, rexmit);
3625 	return 1;
3626 
3627 no_queue:
3628 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3629 	if (flag & FLAG_DSACKING_ACK)
3630 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3631 				      &rexmit);
3632 	/* If this ack opens up a zero window, clear backoff.  It was
3633 	 * being used to time the probes, and is probably far higher than
3634 	 * it needs to be for normal retransmission.
3635 	 */
3636 	tcp_ack_probe(sk);
3637 
3638 	if (tp->tlp_high_seq)
3639 		tcp_process_tlp_ack(sk, ack, flag);
3640 	return 1;
3641 
3642 invalid_ack:
3643 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3644 	return -1;
3645 
3646 old_ack:
3647 	/* If data was SACKed, tag it and see if we should send more data.
3648 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3649 	 */
3650 	if (TCP_SKB_CB(skb)->sacked) {
3651 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3652 						&sack_state);
3653 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3654 				      &rexmit);
3655 		tcp_xmit_recovery(sk, rexmit);
3656 	}
3657 
3658 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3659 	return 0;
3660 }
3661 
3662 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3663 				      bool syn, struct tcp_fastopen_cookie *foc,
3664 				      bool exp_opt)
3665 {
3666 	/* Valid only in SYN or SYN-ACK with an even length.  */
3667 	if (!foc || !syn || len < 0 || (len & 1))
3668 		return;
3669 
3670 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3671 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3672 		memcpy(foc->val, cookie, len);
3673 	else if (len != 0)
3674 		len = -1;
3675 	foc->len = len;
3676 	foc->exp = exp_opt;
3677 }
3678 
3679 static void smc_parse_options(const struct tcphdr *th,
3680 			      struct tcp_options_received *opt_rx,
3681 			      const unsigned char *ptr,
3682 			      int opsize)
3683 {
3684 #if IS_ENABLED(CONFIG_SMC)
3685 	if (static_branch_unlikely(&tcp_have_smc)) {
3686 		if (th->syn && !(opsize & 1) &&
3687 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3688 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3689 			opt_rx->smc_ok = 1;
3690 	}
3691 #endif
3692 }
3693 
3694 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3695  * But, this can also be called on packets in the established flow when
3696  * the fast version below fails.
3697  */
3698 void tcp_parse_options(const struct net *net,
3699 		       const struct sk_buff *skb,
3700 		       struct tcp_options_received *opt_rx, int estab,
3701 		       struct tcp_fastopen_cookie *foc)
3702 {
3703 	const unsigned char *ptr;
3704 	const struct tcphdr *th = tcp_hdr(skb);
3705 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3706 
3707 	ptr = (const unsigned char *)(th + 1);
3708 	opt_rx->saw_tstamp = 0;
3709 
3710 	while (length > 0) {
3711 		int opcode = *ptr++;
3712 		int opsize;
3713 
3714 		switch (opcode) {
3715 		case TCPOPT_EOL:
3716 			return;
3717 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3718 			length--;
3719 			continue;
3720 		default:
3721 			opsize = *ptr++;
3722 			if (opsize < 2) /* "silly options" */
3723 				return;
3724 			if (opsize > length)
3725 				return;	/* don't parse partial options */
3726 			switch (opcode) {
3727 			case TCPOPT_MSS:
3728 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3729 					u16 in_mss = get_unaligned_be16(ptr);
3730 					if (in_mss) {
3731 						if (opt_rx->user_mss &&
3732 						    opt_rx->user_mss < in_mss)
3733 							in_mss = opt_rx->user_mss;
3734 						opt_rx->mss_clamp = in_mss;
3735 					}
3736 				}
3737 				break;
3738 			case TCPOPT_WINDOW:
3739 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3740 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3741 					__u8 snd_wscale = *(__u8 *)ptr;
3742 					opt_rx->wscale_ok = 1;
3743 					if (snd_wscale > TCP_MAX_WSCALE) {
3744 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3745 								     __func__,
3746 								     snd_wscale,
3747 								     TCP_MAX_WSCALE);
3748 						snd_wscale = TCP_MAX_WSCALE;
3749 					}
3750 					opt_rx->snd_wscale = snd_wscale;
3751 				}
3752 				break;
3753 			case TCPOPT_TIMESTAMP:
3754 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3755 				    ((estab && opt_rx->tstamp_ok) ||
3756 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3757 					opt_rx->saw_tstamp = 1;
3758 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3759 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3760 				}
3761 				break;
3762 			case TCPOPT_SACK_PERM:
3763 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3764 				    !estab && net->ipv4.sysctl_tcp_sack) {
3765 					opt_rx->sack_ok = TCP_SACK_SEEN;
3766 					tcp_sack_reset(opt_rx);
3767 				}
3768 				break;
3769 
3770 			case TCPOPT_SACK:
3771 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3772 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3773 				   opt_rx->sack_ok) {
3774 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3775 				}
3776 				break;
3777 #ifdef CONFIG_TCP_MD5SIG
3778 			case TCPOPT_MD5SIG:
3779 				/*
3780 				 * The MD5 Hash has already been
3781 				 * checked (see tcp_v{4,6}_do_rcv()).
3782 				 */
3783 				break;
3784 #endif
3785 			case TCPOPT_FASTOPEN:
3786 				tcp_parse_fastopen_option(
3787 					opsize - TCPOLEN_FASTOPEN_BASE,
3788 					ptr, th->syn, foc, false);
3789 				break;
3790 
3791 			case TCPOPT_EXP:
3792 				/* Fast Open option shares code 254 using a
3793 				 * 16 bits magic number.
3794 				 */
3795 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3796 				    get_unaligned_be16(ptr) ==
3797 				    TCPOPT_FASTOPEN_MAGIC)
3798 					tcp_parse_fastopen_option(opsize -
3799 						TCPOLEN_EXP_FASTOPEN_BASE,
3800 						ptr + 2, th->syn, foc, true);
3801 				else
3802 					smc_parse_options(th, opt_rx, ptr,
3803 							  opsize);
3804 				break;
3805 
3806 			}
3807 			ptr += opsize-2;
3808 			length -= opsize;
3809 		}
3810 	}
3811 }
3812 EXPORT_SYMBOL(tcp_parse_options);
3813 
3814 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3815 {
3816 	const __be32 *ptr = (const __be32 *)(th + 1);
3817 
3818 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3819 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3820 		tp->rx_opt.saw_tstamp = 1;
3821 		++ptr;
3822 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3823 		++ptr;
3824 		if (*ptr)
3825 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3826 		else
3827 			tp->rx_opt.rcv_tsecr = 0;
3828 		return true;
3829 	}
3830 	return false;
3831 }
3832 
3833 /* Fast parse options. This hopes to only see timestamps.
3834  * If it is wrong it falls back on tcp_parse_options().
3835  */
3836 static bool tcp_fast_parse_options(const struct net *net,
3837 				   const struct sk_buff *skb,
3838 				   const struct tcphdr *th, struct tcp_sock *tp)
3839 {
3840 	/* In the spirit of fast parsing, compare doff directly to constant
3841 	 * values.  Because equality is used, short doff can be ignored here.
3842 	 */
3843 	if (th->doff == (sizeof(*th) / 4)) {
3844 		tp->rx_opt.saw_tstamp = 0;
3845 		return false;
3846 	} else if (tp->rx_opt.tstamp_ok &&
3847 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3848 		if (tcp_parse_aligned_timestamp(tp, th))
3849 			return true;
3850 	}
3851 
3852 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3853 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3854 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3855 
3856 	return true;
3857 }
3858 
3859 #ifdef CONFIG_TCP_MD5SIG
3860 /*
3861  * Parse MD5 Signature option
3862  */
3863 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3864 {
3865 	int length = (th->doff << 2) - sizeof(*th);
3866 	const u8 *ptr = (const u8 *)(th + 1);
3867 
3868 	/* If the TCP option is too short, we can short cut */
3869 	if (length < TCPOLEN_MD5SIG)
3870 		return NULL;
3871 
3872 	while (length > 0) {
3873 		int opcode = *ptr++;
3874 		int opsize;
3875 
3876 		switch (opcode) {
3877 		case TCPOPT_EOL:
3878 			return NULL;
3879 		case TCPOPT_NOP:
3880 			length--;
3881 			continue;
3882 		default:
3883 			opsize = *ptr++;
3884 			if (opsize < 2 || opsize > length)
3885 				return NULL;
3886 			if (opcode == TCPOPT_MD5SIG)
3887 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3888 		}
3889 		ptr += opsize - 2;
3890 		length -= opsize;
3891 	}
3892 	return NULL;
3893 }
3894 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3895 #endif
3896 
3897 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3898  *
3899  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3900  * it can pass through stack. So, the following predicate verifies that
3901  * this segment is not used for anything but congestion avoidance or
3902  * fast retransmit. Moreover, we even are able to eliminate most of such
3903  * second order effects, if we apply some small "replay" window (~RTO)
3904  * to timestamp space.
3905  *
3906  * All these measures still do not guarantee that we reject wrapped ACKs
3907  * on networks with high bandwidth, when sequence space is recycled fastly,
3908  * but it guarantees that such events will be very rare and do not affect
3909  * connection seriously. This doesn't look nice, but alas, PAWS is really
3910  * buggy extension.
3911  *
3912  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3913  * states that events when retransmit arrives after original data are rare.
3914  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3915  * the biggest problem on large power networks even with minor reordering.
3916  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3917  * up to bandwidth of 18Gigabit/sec. 8) ]
3918  */
3919 
3920 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3921 {
3922 	const struct tcp_sock *tp = tcp_sk(sk);
3923 	const struct tcphdr *th = tcp_hdr(skb);
3924 	u32 seq = TCP_SKB_CB(skb)->seq;
3925 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3926 
3927 	return (/* 1. Pure ACK with correct sequence number. */
3928 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3929 
3930 		/* 2. ... and duplicate ACK. */
3931 		ack == tp->snd_una &&
3932 
3933 		/* 3. ... and does not update window. */
3934 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3935 
3936 		/* 4. ... and sits in replay window. */
3937 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3938 }
3939 
3940 static inline bool tcp_paws_discard(const struct sock *sk,
3941 				   const struct sk_buff *skb)
3942 {
3943 	const struct tcp_sock *tp = tcp_sk(sk);
3944 
3945 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3946 	       !tcp_disordered_ack(sk, skb);
3947 }
3948 
3949 /* Check segment sequence number for validity.
3950  *
3951  * Segment controls are considered valid, if the segment
3952  * fits to the window after truncation to the window. Acceptability
3953  * of data (and SYN, FIN, of course) is checked separately.
3954  * See tcp_data_queue(), for example.
3955  *
3956  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3957  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3958  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3959  * (borrowed from freebsd)
3960  */
3961 
3962 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3963 {
3964 	return	!before(end_seq, tp->rcv_wup) &&
3965 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3966 }
3967 
3968 /* When we get a reset we do this. */
3969 void tcp_reset(struct sock *sk)
3970 {
3971 	trace_tcp_receive_reset(sk);
3972 
3973 	/* We want the right error as BSD sees it (and indeed as we do). */
3974 	switch (sk->sk_state) {
3975 	case TCP_SYN_SENT:
3976 		sk->sk_err = ECONNREFUSED;
3977 		break;
3978 	case TCP_CLOSE_WAIT:
3979 		sk->sk_err = EPIPE;
3980 		break;
3981 	case TCP_CLOSE:
3982 		return;
3983 	default:
3984 		sk->sk_err = ECONNRESET;
3985 	}
3986 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
3987 	smp_wmb();
3988 
3989 	tcp_done(sk);
3990 
3991 	if (!sock_flag(sk, SOCK_DEAD))
3992 		sk->sk_error_report(sk);
3993 }
3994 
3995 /*
3996  * 	Process the FIN bit. This now behaves as it is supposed to work
3997  *	and the FIN takes effect when it is validly part of sequence
3998  *	space. Not before when we get holes.
3999  *
4000  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4001  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4002  *	TIME-WAIT)
4003  *
4004  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4005  *	close and we go into CLOSING (and later onto TIME-WAIT)
4006  *
4007  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4008  */
4009 void tcp_fin(struct sock *sk)
4010 {
4011 	struct tcp_sock *tp = tcp_sk(sk);
4012 
4013 	inet_csk_schedule_ack(sk);
4014 
4015 	sk->sk_shutdown |= RCV_SHUTDOWN;
4016 	sock_set_flag(sk, SOCK_DONE);
4017 
4018 	switch (sk->sk_state) {
4019 	case TCP_SYN_RECV:
4020 	case TCP_ESTABLISHED:
4021 		/* Move to CLOSE_WAIT */
4022 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4023 		inet_csk(sk)->icsk_ack.pingpong = 1;
4024 		break;
4025 
4026 	case TCP_CLOSE_WAIT:
4027 	case TCP_CLOSING:
4028 		/* Received a retransmission of the FIN, do
4029 		 * nothing.
4030 		 */
4031 		break;
4032 	case TCP_LAST_ACK:
4033 		/* RFC793: Remain in the LAST-ACK state. */
4034 		break;
4035 
4036 	case TCP_FIN_WAIT1:
4037 		/* This case occurs when a simultaneous close
4038 		 * happens, we must ack the received FIN and
4039 		 * enter the CLOSING state.
4040 		 */
4041 		tcp_send_ack(sk);
4042 		tcp_set_state(sk, TCP_CLOSING);
4043 		break;
4044 	case TCP_FIN_WAIT2:
4045 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4046 		tcp_send_ack(sk);
4047 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4048 		break;
4049 	default:
4050 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4051 		 * cases we should never reach this piece of code.
4052 		 */
4053 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4054 		       __func__, sk->sk_state);
4055 		break;
4056 	}
4057 
4058 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4059 	 * Probably, we should reset in this case. For now drop them.
4060 	 */
4061 	skb_rbtree_purge(&tp->out_of_order_queue);
4062 	if (tcp_is_sack(tp))
4063 		tcp_sack_reset(&tp->rx_opt);
4064 	sk_mem_reclaim(sk);
4065 
4066 	if (!sock_flag(sk, SOCK_DEAD)) {
4067 		sk->sk_state_change(sk);
4068 
4069 		/* Do not send POLL_HUP for half duplex close. */
4070 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4071 		    sk->sk_state == TCP_CLOSE)
4072 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4073 		else
4074 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4075 	}
4076 }
4077 
4078 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4079 				  u32 end_seq)
4080 {
4081 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4082 		if (before(seq, sp->start_seq))
4083 			sp->start_seq = seq;
4084 		if (after(end_seq, sp->end_seq))
4085 			sp->end_seq = end_seq;
4086 		return true;
4087 	}
4088 	return false;
4089 }
4090 
4091 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4092 {
4093 	struct tcp_sock *tp = tcp_sk(sk);
4094 
4095 	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4096 		int mib_idx;
4097 
4098 		if (before(seq, tp->rcv_nxt))
4099 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4100 		else
4101 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4102 
4103 		NET_INC_STATS(sock_net(sk), mib_idx);
4104 
4105 		tp->rx_opt.dsack = 1;
4106 		tp->duplicate_sack[0].start_seq = seq;
4107 		tp->duplicate_sack[0].end_seq = end_seq;
4108 	}
4109 }
4110 
4111 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4112 {
4113 	struct tcp_sock *tp = tcp_sk(sk);
4114 
4115 	if (!tp->rx_opt.dsack)
4116 		tcp_dsack_set(sk, seq, end_seq);
4117 	else
4118 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4119 }
4120 
4121 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4122 {
4123 	struct tcp_sock *tp = tcp_sk(sk);
4124 
4125 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4126 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4127 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4128 		tcp_enter_quickack_mode(sk);
4129 
4130 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4131 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4132 
4133 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4134 				end_seq = tp->rcv_nxt;
4135 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4136 		}
4137 	}
4138 
4139 	tcp_send_ack(sk);
4140 }
4141 
4142 /* These routines update the SACK block as out-of-order packets arrive or
4143  * in-order packets close up the sequence space.
4144  */
4145 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4146 {
4147 	int this_sack;
4148 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4149 	struct tcp_sack_block *swalk = sp + 1;
4150 
4151 	/* See if the recent change to the first SACK eats into
4152 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4153 	 */
4154 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4155 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4156 			int i;
4157 
4158 			/* Zap SWALK, by moving every further SACK up by one slot.
4159 			 * Decrease num_sacks.
4160 			 */
4161 			tp->rx_opt.num_sacks--;
4162 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4163 				sp[i] = sp[i + 1];
4164 			continue;
4165 		}
4166 		this_sack++, swalk++;
4167 	}
4168 }
4169 
4170 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4171 {
4172 	struct tcp_sock *tp = tcp_sk(sk);
4173 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4174 	int cur_sacks = tp->rx_opt.num_sacks;
4175 	int this_sack;
4176 
4177 	if (!cur_sacks)
4178 		goto new_sack;
4179 
4180 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4181 		if (tcp_sack_extend(sp, seq, end_seq)) {
4182 			/* Rotate this_sack to the first one. */
4183 			for (; this_sack > 0; this_sack--, sp--)
4184 				swap(*sp, *(sp - 1));
4185 			if (cur_sacks > 1)
4186 				tcp_sack_maybe_coalesce(tp);
4187 			return;
4188 		}
4189 	}
4190 
4191 	/* Could not find an adjacent existing SACK, build a new one,
4192 	 * put it at the front, and shift everyone else down.  We
4193 	 * always know there is at least one SACK present already here.
4194 	 *
4195 	 * If the sack array is full, forget about the last one.
4196 	 */
4197 	if (this_sack >= TCP_NUM_SACKS) {
4198 		this_sack--;
4199 		tp->rx_opt.num_sacks--;
4200 		sp--;
4201 	}
4202 	for (; this_sack > 0; this_sack--, sp--)
4203 		*sp = *(sp - 1);
4204 
4205 new_sack:
4206 	/* Build the new head SACK, and we're done. */
4207 	sp->start_seq = seq;
4208 	sp->end_seq = end_seq;
4209 	tp->rx_opt.num_sacks++;
4210 }
4211 
4212 /* RCV.NXT advances, some SACKs should be eaten. */
4213 
4214 static void tcp_sack_remove(struct tcp_sock *tp)
4215 {
4216 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4217 	int num_sacks = tp->rx_opt.num_sacks;
4218 	int this_sack;
4219 
4220 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4221 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4222 		tp->rx_opt.num_sacks = 0;
4223 		return;
4224 	}
4225 
4226 	for (this_sack = 0; this_sack < num_sacks;) {
4227 		/* Check if the start of the sack is covered by RCV.NXT. */
4228 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4229 			int i;
4230 
4231 			/* RCV.NXT must cover all the block! */
4232 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4233 
4234 			/* Zap this SACK, by moving forward any other SACKS. */
4235 			for (i = this_sack+1; i < num_sacks; i++)
4236 				tp->selective_acks[i-1] = tp->selective_acks[i];
4237 			num_sacks--;
4238 			continue;
4239 		}
4240 		this_sack++;
4241 		sp++;
4242 	}
4243 	tp->rx_opt.num_sacks = num_sacks;
4244 }
4245 
4246 /**
4247  * tcp_try_coalesce - try to merge skb to prior one
4248  * @sk: socket
4249  * @dest: destination queue
4250  * @to: prior buffer
4251  * @from: buffer to add in queue
4252  * @fragstolen: pointer to boolean
4253  *
4254  * Before queueing skb @from after @to, try to merge them
4255  * to reduce overall memory use and queue lengths, if cost is small.
4256  * Packets in ofo or receive queues can stay a long time.
4257  * Better try to coalesce them right now to avoid future collapses.
4258  * Returns true if caller should free @from instead of queueing it
4259  */
4260 static bool tcp_try_coalesce(struct sock *sk,
4261 			     struct sk_buff *to,
4262 			     struct sk_buff *from,
4263 			     bool *fragstolen)
4264 {
4265 	int delta;
4266 
4267 	*fragstolen = false;
4268 
4269 	/* Its possible this segment overlaps with prior segment in queue */
4270 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4271 		return false;
4272 
4273 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4274 		return false;
4275 
4276 	atomic_add(delta, &sk->sk_rmem_alloc);
4277 	sk_mem_charge(sk, delta);
4278 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4279 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4280 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4281 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4282 
4283 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4284 		TCP_SKB_CB(to)->has_rxtstamp = true;
4285 		to->tstamp = from->tstamp;
4286 	}
4287 
4288 	return true;
4289 }
4290 
4291 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4292 {
4293 	sk_drops_add(sk, skb);
4294 	__kfree_skb(skb);
4295 }
4296 
4297 /* This one checks to see if we can put data from the
4298  * out_of_order queue into the receive_queue.
4299  */
4300 static void tcp_ofo_queue(struct sock *sk)
4301 {
4302 	struct tcp_sock *tp = tcp_sk(sk);
4303 	__u32 dsack_high = tp->rcv_nxt;
4304 	bool fin, fragstolen, eaten;
4305 	struct sk_buff *skb, *tail;
4306 	struct rb_node *p;
4307 
4308 	p = rb_first(&tp->out_of_order_queue);
4309 	while (p) {
4310 		skb = rb_to_skb(p);
4311 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4312 			break;
4313 
4314 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4315 			__u32 dsack = dsack_high;
4316 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4317 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4318 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4319 		}
4320 		p = rb_next(p);
4321 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4322 
4323 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4324 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4325 			tcp_drop(sk, skb);
4326 			continue;
4327 		}
4328 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4329 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4330 			   TCP_SKB_CB(skb)->end_seq);
4331 
4332 		tail = skb_peek_tail(&sk->sk_receive_queue);
4333 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4334 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4335 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4336 		if (!eaten)
4337 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4338 		else
4339 			kfree_skb_partial(skb, fragstolen);
4340 
4341 		if (unlikely(fin)) {
4342 			tcp_fin(sk);
4343 			/* tcp_fin() purges tp->out_of_order_queue,
4344 			 * so we must end this loop right now.
4345 			 */
4346 			break;
4347 		}
4348 	}
4349 }
4350 
4351 static bool tcp_prune_ofo_queue(struct sock *sk);
4352 static int tcp_prune_queue(struct sock *sk);
4353 
4354 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4355 				 unsigned int size)
4356 {
4357 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4358 	    !sk_rmem_schedule(sk, skb, size)) {
4359 
4360 		if (tcp_prune_queue(sk) < 0)
4361 			return -1;
4362 
4363 		while (!sk_rmem_schedule(sk, skb, size)) {
4364 			if (!tcp_prune_ofo_queue(sk))
4365 				return -1;
4366 		}
4367 	}
4368 	return 0;
4369 }
4370 
4371 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4372 {
4373 	struct tcp_sock *tp = tcp_sk(sk);
4374 	struct rb_node **p, *parent;
4375 	struct sk_buff *skb1;
4376 	u32 seq, end_seq;
4377 	bool fragstolen;
4378 
4379 	tcp_ecn_check_ce(tp, skb);
4380 
4381 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4382 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4383 		tcp_drop(sk, skb);
4384 		return;
4385 	}
4386 
4387 	/* Disable header prediction. */
4388 	tp->pred_flags = 0;
4389 	inet_csk_schedule_ack(sk);
4390 
4391 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4392 	seq = TCP_SKB_CB(skb)->seq;
4393 	end_seq = TCP_SKB_CB(skb)->end_seq;
4394 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4395 		   tp->rcv_nxt, seq, end_seq);
4396 
4397 	p = &tp->out_of_order_queue.rb_node;
4398 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4399 		/* Initial out of order segment, build 1 SACK. */
4400 		if (tcp_is_sack(tp)) {
4401 			tp->rx_opt.num_sacks = 1;
4402 			tp->selective_acks[0].start_seq = seq;
4403 			tp->selective_acks[0].end_seq = end_seq;
4404 		}
4405 		rb_link_node(&skb->rbnode, NULL, p);
4406 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4407 		tp->ooo_last_skb = skb;
4408 		goto end;
4409 	}
4410 
4411 	/* In the typical case, we are adding an skb to the end of the list.
4412 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4413 	 */
4414 	if (tcp_try_coalesce(sk, tp->ooo_last_skb,
4415 			     skb, &fragstolen)) {
4416 coalesce_done:
4417 		tcp_grow_window(sk, skb);
4418 		kfree_skb_partial(skb, fragstolen);
4419 		skb = NULL;
4420 		goto add_sack;
4421 	}
4422 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4423 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4424 		parent = &tp->ooo_last_skb->rbnode;
4425 		p = &parent->rb_right;
4426 		goto insert;
4427 	}
4428 
4429 	/* Find place to insert this segment. Handle overlaps on the way. */
4430 	parent = NULL;
4431 	while (*p) {
4432 		parent = *p;
4433 		skb1 = rb_to_skb(parent);
4434 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4435 			p = &parent->rb_left;
4436 			continue;
4437 		}
4438 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4439 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4440 				/* All the bits are present. Drop. */
4441 				NET_INC_STATS(sock_net(sk),
4442 					      LINUX_MIB_TCPOFOMERGE);
4443 				__kfree_skb(skb);
4444 				skb = NULL;
4445 				tcp_dsack_set(sk, seq, end_seq);
4446 				goto add_sack;
4447 			}
4448 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4449 				/* Partial overlap. */
4450 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4451 			} else {
4452 				/* skb's seq == skb1's seq and skb covers skb1.
4453 				 * Replace skb1 with skb.
4454 				 */
4455 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4456 						&tp->out_of_order_queue);
4457 				tcp_dsack_extend(sk,
4458 						 TCP_SKB_CB(skb1)->seq,
4459 						 TCP_SKB_CB(skb1)->end_seq);
4460 				NET_INC_STATS(sock_net(sk),
4461 					      LINUX_MIB_TCPOFOMERGE);
4462 				__kfree_skb(skb1);
4463 				goto merge_right;
4464 			}
4465 		} else if (tcp_try_coalesce(sk, skb1,
4466 					    skb, &fragstolen)) {
4467 			goto coalesce_done;
4468 		}
4469 		p = &parent->rb_right;
4470 	}
4471 insert:
4472 	/* Insert segment into RB tree. */
4473 	rb_link_node(&skb->rbnode, parent, p);
4474 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4475 
4476 merge_right:
4477 	/* Remove other segments covered by skb. */
4478 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4479 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4480 			break;
4481 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4482 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4483 					 end_seq);
4484 			break;
4485 		}
4486 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4487 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4488 				 TCP_SKB_CB(skb1)->end_seq);
4489 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4490 		tcp_drop(sk, skb1);
4491 	}
4492 	/* If there is no skb after us, we are the last_skb ! */
4493 	if (!skb1)
4494 		tp->ooo_last_skb = skb;
4495 
4496 add_sack:
4497 	if (tcp_is_sack(tp))
4498 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4499 end:
4500 	if (skb) {
4501 		tcp_grow_window(sk, skb);
4502 		skb_condense(skb);
4503 		skb_set_owner_r(skb, sk);
4504 	}
4505 }
4506 
4507 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4508 		  bool *fragstolen)
4509 {
4510 	int eaten;
4511 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4512 
4513 	__skb_pull(skb, hdrlen);
4514 	eaten = (tail &&
4515 		 tcp_try_coalesce(sk, tail,
4516 				  skb, fragstolen)) ? 1 : 0;
4517 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4518 	if (!eaten) {
4519 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4520 		skb_set_owner_r(skb, sk);
4521 	}
4522 	return eaten;
4523 }
4524 
4525 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4526 {
4527 	struct sk_buff *skb;
4528 	int err = -ENOMEM;
4529 	int data_len = 0;
4530 	bool fragstolen;
4531 
4532 	if (size == 0)
4533 		return 0;
4534 
4535 	if (size > PAGE_SIZE) {
4536 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4537 
4538 		data_len = npages << PAGE_SHIFT;
4539 		size = data_len + (size & ~PAGE_MASK);
4540 	}
4541 	skb = alloc_skb_with_frags(size - data_len, data_len,
4542 				   PAGE_ALLOC_COSTLY_ORDER,
4543 				   &err, sk->sk_allocation);
4544 	if (!skb)
4545 		goto err;
4546 
4547 	skb_put(skb, size - data_len);
4548 	skb->data_len = data_len;
4549 	skb->len = size;
4550 
4551 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4552 		goto err_free;
4553 
4554 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4555 	if (err)
4556 		goto err_free;
4557 
4558 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4559 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4560 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4561 
4562 	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4563 		WARN_ON_ONCE(fragstolen); /* should not happen */
4564 		__kfree_skb(skb);
4565 	}
4566 	return size;
4567 
4568 err_free:
4569 	kfree_skb(skb);
4570 err:
4571 	return err;
4572 
4573 }
4574 
4575 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4576 {
4577 	struct tcp_sock *tp = tcp_sk(sk);
4578 	bool fragstolen;
4579 	int eaten;
4580 
4581 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4582 		__kfree_skb(skb);
4583 		return;
4584 	}
4585 	skb_dst_drop(skb);
4586 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4587 
4588 	tcp_ecn_accept_cwr(tp, skb);
4589 
4590 	tp->rx_opt.dsack = 0;
4591 
4592 	/*  Queue data for delivery to the user.
4593 	 *  Packets in sequence go to the receive queue.
4594 	 *  Out of sequence packets to the out_of_order_queue.
4595 	 */
4596 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4597 		if (tcp_receive_window(tp) == 0)
4598 			goto out_of_window;
4599 
4600 		/* Ok. In sequence. In window. */
4601 queue_and_out:
4602 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4603 			sk_forced_mem_schedule(sk, skb->truesize);
4604 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4605 			goto drop;
4606 
4607 		eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4608 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4609 		if (skb->len)
4610 			tcp_event_data_recv(sk, skb);
4611 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4612 			tcp_fin(sk);
4613 
4614 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4615 			tcp_ofo_queue(sk);
4616 
4617 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4618 			 * gap in queue is filled.
4619 			 */
4620 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4621 				inet_csk(sk)->icsk_ack.pingpong = 0;
4622 		}
4623 
4624 		if (tp->rx_opt.num_sacks)
4625 			tcp_sack_remove(tp);
4626 
4627 		tcp_fast_path_check(sk);
4628 
4629 		if (eaten > 0)
4630 			kfree_skb_partial(skb, fragstolen);
4631 		if (!sock_flag(sk, SOCK_DEAD))
4632 			sk->sk_data_ready(sk);
4633 		return;
4634 	}
4635 
4636 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4637 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4638 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4639 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4640 
4641 out_of_window:
4642 		tcp_enter_quickack_mode(sk);
4643 		inet_csk_schedule_ack(sk);
4644 drop:
4645 		tcp_drop(sk, skb);
4646 		return;
4647 	}
4648 
4649 	/* Out of window. F.e. zero window probe. */
4650 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4651 		goto out_of_window;
4652 
4653 	tcp_enter_quickack_mode(sk);
4654 
4655 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4656 		/* Partial packet, seq < rcv_next < end_seq */
4657 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4658 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4659 			   TCP_SKB_CB(skb)->end_seq);
4660 
4661 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4662 
4663 		/* If window is closed, drop tail of packet. But after
4664 		 * remembering D-SACK for its head made in previous line.
4665 		 */
4666 		if (!tcp_receive_window(tp))
4667 			goto out_of_window;
4668 		goto queue_and_out;
4669 	}
4670 
4671 	tcp_data_queue_ofo(sk, skb);
4672 }
4673 
4674 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4675 {
4676 	if (list)
4677 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4678 
4679 	return skb_rb_next(skb);
4680 }
4681 
4682 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4683 					struct sk_buff_head *list,
4684 					struct rb_root *root)
4685 {
4686 	struct sk_buff *next = tcp_skb_next(skb, list);
4687 
4688 	if (list)
4689 		__skb_unlink(skb, list);
4690 	else
4691 		rb_erase(&skb->rbnode, root);
4692 
4693 	__kfree_skb(skb);
4694 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4695 
4696 	return next;
4697 }
4698 
4699 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4700 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4701 {
4702 	struct rb_node **p = &root->rb_node;
4703 	struct rb_node *parent = NULL;
4704 	struct sk_buff *skb1;
4705 
4706 	while (*p) {
4707 		parent = *p;
4708 		skb1 = rb_to_skb(parent);
4709 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4710 			p = &parent->rb_left;
4711 		else
4712 			p = &parent->rb_right;
4713 	}
4714 	rb_link_node(&skb->rbnode, parent, p);
4715 	rb_insert_color(&skb->rbnode, root);
4716 }
4717 
4718 /* Collapse contiguous sequence of skbs head..tail with
4719  * sequence numbers start..end.
4720  *
4721  * If tail is NULL, this means until the end of the queue.
4722  *
4723  * Segments with FIN/SYN are not collapsed (only because this
4724  * simplifies code)
4725  */
4726 static void
4727 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4728 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4729 {
4730 	struct sk_buff *skb = head, *n;
4731 	struct sk_buff_head tmp;
4732 	bool end_of_skbs;
4733 
4734 	/* First, check that queue is collapsible and find
4735 	 * the point where collapsing can be useful.
4736 	 */
4737 restart:
4738 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4739 		n = tcp_skb_next(skb, list);
4740 
4741 		/* No new bits? It is possible on ofo queue. */
4742 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4743 			skb = tcp_collapse_one(sk, skb, list, root);
4744 			if (!skb)
4745 				break;
4746 			goto restart;
4747 		}
4748 
4749 		/* The first skb to collapse is:
4750 		 * - not SYN/FIN and
4751 		 * - bloated or contains data before "start" or
4752 		 *   overlaps to the next one.
4753 		 */
4754 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4755 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4756 		     before(TCP_SKB_CB(skb)->seq, start))) {
4757 			end_of_skbs = false;
4758 			break;
4759 		}
4760 
4761 		if (n && n != tail &&
4762 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4763 			end_of_skbs = false;
4764 			break;
4765 		}
4766 
4767 		/* Decided to skip this, advance start seq. */
4768 		start = TCP_SKB_CB(skb)->end_seq;
4769 	}
4770 	if (end_of_skbs ||
4771 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4772 		return;
4773 
4774 	__skb_queue_head_init(&tmp);
4775 
4776 	while (before(start, end)) {
4777 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4778 		struct sk_buff *nskb;
4779 
4780 		nskb = alloc_skb(copy, GFP_ATOMIC);
4781 		if (!nskb)
4782 			break;
4783 
4784 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4785 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4786 		if (list)
4787 			__skb_queue_before(list, skb, nskb);
4788 		else
4789 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4790 		skb_set_owner_r(nskb, sk);
4791 
4792 		/* Copy data, releasing collapsed skbs. */
4793 		while (copy > 0) {
4794 			int offset = start - TCP_SKB_CB(skb)->seq;
4795 			int size = TCP_SKB_CB(skb)->end_seq - start;
4796 
4797 			BUG_ON(offset < 0);
4798 			if (size > 0) {
4799 				size = min(copy, size);
4800 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4801 					BUG();
4802 				TCP_SKB_CB(nskb)->end_seq += size;
4803 				copy -= size;
4804 				start += size;
4805 			}
4806 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4807 				skb = tcp_collapse_one(sk, skb, list, root);
4808 				if (!skb ||
4809 				    skb == tail ||
4810 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4811 					goto end;
4812 			}
4813 		}
4814 	}
4815 end:
4816 	skb_queue_walk_safe(&tmp, skb, n)
4817 		tcp_rbtree_insert(root, skb);
4818 }
4819 
4820 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4821  * and tcp_collapse() them until all the queue is collapsed.
4822  */
4823 static void tcp_collapse_ofo_queue(struct sock *sk)
4824 {
4825 	struct tcp_sock *tp = tcp_sk(sk);
4826 	struct sk_buff *skb, *head;
4827 	u32 start, end;
4828 
4829 	skb = skb_rb_first(&tp->out_of_order_queue);
4830 new_range:
4831 	if (!skb) {
4832 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
4833 		return;
4834 	}
4835 	start = TCP_SKB_CB(skb)->seq;
4836 	end = TCP_SKB_CB(skb)->end_seq;
4837 
4838 	for (head = skb;;) {
4839 		skb = skb_rb_next(skb);
4840 
4841 		/* Range is terminated when we see a gap or when
4842 		 * we are at the queue end.
4843 		 */
4844 		if (!skb ||
4845 		    after(TCP_SKB_CB(skb)->seq, end) ||
4846 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4847 			tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4848 				     head, skb, start, end);
4849 			goto new_range;
4850 		}
4851 
4852 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4853 			start = TCP_SKB_CB(skb)->seq;
4854 		if (after(TCP_SKB_CB(skb)->end_seq, end))
4855 			end = TCP_SKB_CB(skb)->end_seq;
4856 	}
4857 }
4858 
4859 /*
4860  * Clean the out-of-order queue to make room.
4861  * We drop high sequences packets to :
4862  * 1) Let a chance for holes to be filled.
4863  * 2) not add too big latencies if thousands of packets sit there.
4864  *    (But if application shrinks SO_RCVBUF, we could still end up
4865  *     freeing whole queue here)
4866  *
4867  * Return true if queue has shrunk.
4868  */
4869 static bool tcp_prune_ofo_queue(struct sock *sk)
4870 {
4871 	struct tcp_sock *tp = tcp_sk(sk);
4872 	struct rb_node *node, *prev;
4873 
4874 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4875 		return false;
4876 
4877 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4878 	node = &tp->ooo_last_skb->rbnode;
4879 	do {
4880 		prev = rb_prev(node);
4881 		rb_erase(node, &tp->out_of_order_queue);
4882 		tcp_drop(sk, rb_to_skb(node));
4883 		sk_mem_reclaim(sk);
4884 		if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4885 		    !tcp_under_memory_pressure(sk))
4886 			break;
4887 		node = prev;
4888 	} while (node);
4889 	tp->ooo_last_skb = rb_to_skb(prev);
4890 
4891 	/* Reset SACK state.  A conforming SACK implementation will
4892 	 * do the same at a timeout based retransmit.  When a connection
4893 	 * is in a sad state like this, we care only about integrity
4894 	 * of the connection not performance.
4895 	 */
4896 	if (tp->rx_opt.sack_ok)
4897 		tcp_sack_reset(&tp->rx_opt);
4898 	return true;
4899 }
4900 
4901 /* Reduce allocated memory if we can, trying to get
4902  * the socket within its memory limits again.
4903  *
4904  * Return less than zero if we should start dropping frames
4905  * until the socket owning process reads some of the data
4906  * to stabilize the situation.
4907  */
4908 static int tcp_prune_queue(struct sock *sk)
4909 {
4910 	struct tcp_sock *tp = tcp_sk(sk);
4911 
4912 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4913 
4914 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4915 
4916 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4917 		tcp_clamp_window(sk);
4918 	else if (tcp_under_memory_pressure(sk))
4919 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4920 
4921 	tcp_collapse_ofo_queue(sk);
4922 	if (!skb_queue_empty(&sk->sk_receive_queue))
4923 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
4924 			     skb_peek(&sk->sk_receive_queue),
4925 			     NULL,
4926 			     tp->copied_seq, tp->rcv_nxt);
4927 	sk_mem_reclaim(sk);
4928 
4929 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4930 		return 0;
4931 
4932 	/* Collapsing did not help, destructive actions follow.
4933 	 * This must not ever occur. */
4934 
4935 	tcp_prune_ofo_queue(sk);
4936 
4937 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4938 		return 0;
4939 
4940 	/* If we are really being abused, tell the caller to silently
4941 	 * drop receive data on the floor.  It will get retransmitted
4942 	 * and hopefully then we'll have sufficient space.
4943 	 */
4944 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
4945 
4946 	/* Massive buffer overcommit. */
4947 	tp->pred_flags = 0;
4948 	return -1;
4949 }
4950 
4951 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4952 {
4953 	const struct tcp_sock *tp = tcp_sk(sk);
4954 
4955 	/* If the user specified a specific send buffer setting, do
4956 	 * not modify it.
4957 	 */
4958 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4959 		return false;
4960 
4961 	/* If we are under global TCP memory pressure, do not expand.  */
4962 	if (tcp_under_memory_pressure(sk))
4963 		return false;
4964 
4965 	/* If we are under soft global TCP memory pressure, do not expand.  */
4966 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4967 		return false;
4968 
4969 	/* If we filled the congestion window, do not expand.  */
4970 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
4971 		return false;
4972 
4973 	return true;
4974 }
4975 
4976 /* When incoming ACK allowed to free some skb from write_queue,
4977  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4978  * on the exit from tcp input handler.
4979  *
4980  * PROBLEM: sndbuf expansion does not work well with largesend.
4981  */
4982 static void tcp_new_space(struct sock *sk)
4983 {
4984 	struct tcp_sock *tp = tcp_sk(sk);
4985 
4986 	if (tcp_should_expand_sndbuf(sk)) {
4987 		tcp_sndbuf_expand(sk);
4988 		tp->snd_cwnd_stamp = tcp_jiffies32;
4989 	}
4990 
4991 	sk->sk_write_space(sk);
4992 }
4993 
4994 static void tcp_check_space(struct sock *sk)
4995 {
4996 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4997 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4998 		/* pairs with tcp_poll() */
4999 		smp_mb();
5000 		if (sk->sk_socket &&
5001 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5002 			tcp_new_space(sk);
5003 			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5004 				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5005 		}
5006 	}
5007 }
5008 
5009 static inline void tcp_data_snd_check(struct sock *sk)
5010 {
5011 	tcp_push_pending_frames(sk);
5012 	tcp_check_space(sk);
5013 }
5014 
5015 /*
5016  * Check if sending an ack is needed.
5017  */
5018 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5019 {
5020 	struct tcp_sock *tp = tcp_sk(sk);
5021 
5022 	    /* More than one full frame received... */
5023 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5024 	     /* ... and right edge of window advances far enough.
5025 	      * (tcp_recvmsg() will send ACK otherwise). Or...
5026 	      */
5027 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
5028 	    /* We ACK each frame or... */
5029 	    tcp_in_quickack_mode(sk) ||
5030 	    /* We have out of order data. */
5031 	    (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
5032 		/* Then ack it now */
5033 		tcp_send_ack(sk);
5034 	} else {
5035 		/* Else, send delayed ack. */
5036 		tcp_send_delayed_ack(sk);
5037 	}
5038 }
5039 
5040 static inline void tcp_ack_snd_check(struct sock *sk)
5041 {
5042 	if (!inet_csk_ack_scheduled(sk)) {
5043 		/* We sent a data segment already. */
5044 		return;
5045 	}
5046 	__tcp_ack_snd_check(sk, 1);
5047 }
5048 
5049 /*
5050  *	This routine is only called when we have urgent data
5051  *	signaled. Its the 'slow' part of tcp_urg. It could be
5052  *	moved inline now as tcp_urg is only called from one
5053  *	place. We handle URGent data wrong. We have to - as
5054  *	BSD still doesn't use the correction from RFC961.
5055  *	For 1003.1g we should support a new option TCP_STDURG to permit
5056  *	either form (or just set the sysctl tcp_stdurg).
5057  */
5058 
5059 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5060 {
5061 	struct tcp_sock *tp = tcp_sk(sk);
5062 	u32 ptr = ntohs(th->urg_ptr);
5063 
5064 	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5065 		ptr--;
5066 	ptr += ntohl(th->seq);
5067 
5068 	/* Ignore urgent data that we've already seen and read. */
5069 	if (after(tp->copied_seq, ptr))
5070 		return;
5071 
5072 	/* Do not replay urg ptr.
5073 	 *
5074 	 * NOTE: interesting situation not covered by specs.
5075 	 * Misbehaving sender may send urg ptr, pointing to segment,
5076 	 * which we already have in ofo queue. We are not able to fetch
5077 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5078 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5079 	 * situations. But it is worth to think about possibility of some
5080 	 * DoSes using some hypothetical application level deadlock.
5081 	 */
5082 	if (before(ptr, tp->rcv_nxt))
5083 		return;
5084 
5085 	/* Do we already have a newer (or duplicate) urgent pointer? */
5086 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5087 		return;
5088 
5089 	/* Tell the world about our new urgent pointer. */
5090 	sk_send_sigurg(sk);
5091 
5092 	/* We may be adding urgent data when the last byte read was
5093 	 * urgent. To do this requires some care. We cannot just ignore
5094 	 * tp->copied_seq since we would read the last urgent byte again
5095 	 * as data, nor can we alter copied_seq until this data arrives
5096 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5097 	 *
5098 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5099 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5100 	 * and expect that both A and B disappear from stream. This is _wrong_.
5101 	 * Though this happens in BSD with high probability, this is occasional.
5102 	 * Any application relying on this is buggy. Note also, that fix "works"
5103 	 * only in this artificial test. Insert some normal data between A and B and we will
5104 	 * decline of BSD again. Verdict: it is better to remove to trap
5105 	 * buggy users.
5106 	 */
5107 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5108 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5109 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5110 		tp->copied_seq++;
5111 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5112 			__skb_unlink(skb, &sk->sk_receive_queue);
5113 			__kfree_skb(skb);
5114 		}
5115 	}
5116 
5117 	tp->urg_data = TCP_URG_NOTYET;
5118 	tp->urg_seq = ptr;
5119 
5120 	/* Disable header prediction. */
5121 	tp->pred_flags = 0;
5122 }
5123 
5124 /* This is the 'fast' part of urgent handling. */
5125 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5126 {
5127 	struct tcp_sock *tp = tcp_sk(sk);
5128 
5129 	/* Check if we get a new urgent pointer - normally not. */
5130 	if (th->urg)
5131 		tcp_check_urg(sk, th);
5132 
5133 	/* Do we wait for any urgent data? - normally not... */
5134 	if (tp->urg_data == TCP_URG_NOTYET) {
5135 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5136 			  th->syn;
5137 
5138 		/* Is the urgent pointer pointing into this packet? */
5139 		if (ptr < skb->len) {
5140 			u8 tmp;
5141 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5142 				BUG();
5143 			tp->urg_data = TCP_URG_VALID | tmp;
5144 			if (!sock_flag(sk, SOCK_DEAD))
5145 				sk->sk_data_ready(sk);
5146 		}
5147 	}
5148 }
5149 
5150 /* Accept RST for rcv_nxt - 1 after a FIN.
5151  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5152  * FIN is sent followed by a RST packet. The RST is sent with the same
5153  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5154  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5155  * ACKs on the closed socket. In addition middleboxes can drop either the
5156  * challenge ACK or a subsequent RST.
5157  */
5158 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5159 {
5160 	struct tcp_sock *tp = tcp_sk(sk);
5161 
5162 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5163 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5164 					       TCPF_CLOSING));
5165 }
5166 
5167 /* Does PAWS and seqno based validation of an incoming segment, flags will
5168  * play significant role here.
5169  */
5170 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5171 				  const struct tcphdr *th, int syn_inerr)
5172 {
5173 	struct tcp_sock *tp = tcp_sk(sk);
5174 	bool rst_seq_match = false;
5175 
5176 	/* RFC1323: H1. Apply PAWS check first. */
5177 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5178 	    tp->rx_opt.saw_tstamp &&
5179 	    tcp_paws_discard(sk, skb)) {
5180 		if (!th->rst) {
5181 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5182 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5183 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5184 						  &tp->last_oow_ack_time))
5185 				tcp_send_dupack(sk, skb);
5186 			goto discard;
5187 		}
5188 		/* Reset is accepted even if it did not pass PAWS. */
5189 	}
5190 
5191 	/* Step 1: check sequence number */
5192 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5193 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5194 		 * (RST) segments are validated by checking their SEQ-fields."
5195 		 * And page 69: "If an incoming segment is not acceptable,
5196 		 * an acknowledgment should be sent in reply (unless the RST
5197 		 * bit is set, if so drop the segment and return)".
5198 		 */
5199 		if (!th->rst) {
5200 			if (th->syn)
5201 				goto syn_challenge;
5202 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5203 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5204 						  &tp->last_oow_ack_time))
5205 				tcp_send_dupack(sk, skb);
5206 		} else if (tcp_reset_check(sk, skb)) {
5207 			tcp_reset(sk);
5208 		}
5209 		goto discard;
5210 	}
5211 
5212 	/* Step 2: check RST bit */
5213 	if (th->rst) {
5214 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5215 		 * FIN and SACK too if available):
5216 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5217 		 * the right-most SACK block,
5218 		 * then
5219 		 *     RESET the connection
5220 		 * else
5221 		 *     Send a challenge ACK
5222 		 */
5223 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5224 		    tcp_reset_check(sk, skb)) {
5225 			rst_seq_match = true;
5226 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5227 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5228 			int max_sack = sp[0].end_seq;
5229 			int this_sack;
5230 
5231 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5232 			     ++this_sack) {
5233 				max_sack = after(sp[this_sack].end_seq,
5234 						 max_sack) ?
5235 					sp[this_sack].end_seq : max_sack;
5236 			}
5237 
5238 			if (TCP_SKB_CB(skb)->seq == max_sack)
5239 				rst_seq_match = true;
5240 		}
5241 
5242 		if (rst_seq_match)
5243 			tcp_reset(sk);
5244 		else {
5245 			/* Disable TFO if RST is out-of-order
5246 			 * and no data has been received
5247 			 * for current active TFO socket
5248 			 */
5249 			if (tp->syn_fastopen && !tp->data_segs_in &&
5250 			    sk->sk_state == TCP_ESTABLISHED)
5251 				tcp_fastopen_active_disable(sk);
5252 			tcp_send_challenge_ack(sk, skb);
5253 		}
5254 		goto discard;
5255 	}
5256 
5257 	/* step 3: check security and precedence [ignored] */
5258 
5259 	/* step 4: Check for a SYN
5260 	 * RFC 5961 4.2 : Send a challenge ack
5261 	 */
5262 	if (th->syn) {
5263 syn_challenge:
5264 		if (syn_inerr)
5265 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5266 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5267 		tcp_send_challenge_ack(sk, skb);
5268 		goto discard;
5269 	}
5270 
5271 	return true;
5272 
5273 discard:
5274 	tcp_drop(sk, skb);
5275 	return false;
5276 }
5277 
5278 /*
5279  *	TCP receive function for the ESTABLISHED state.
5280  *
5281  *	It is split into a fast path and a slow path. The fast path is
5282  * 	disabled when:
5283  *	- A zero window was announced from us - zero window probing
5284  *        is only handled properly in the slow path.
5285  *	- Out of order segments arrived.
5286  *	- Urgent data is expected.
5287  *	- There is no buffer space left
5288  *	- Unexpected TCP flags/window values/header lengths are received
5289  *	  (detected by checking the TCP header against pred_flags)
5290  *	- Data is sent in both directions. Fast path only supports pure senders
5291  *	  or pure receivers (this means either the sequence number or the ack
5292  *	  value must stay constant)
5293  *	- Unexpected TCP option.
5294  *
5295  *	When these conditions are not satisfied it drops into a standard
5296  *	receive procedure patterned after RFC793 to handle all cases.
5297  *	The first three cases are guaranteed by proper pred_flags setting,
5298  *	the rest is checked inline. Fast processing is turned on in
5299  *	tcp_data_queue when everything is OK.
5300  */
5301 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5302 			 const struct tcphdr *th)
5303 {
5304 	unsigned int len = skb->len;
5305 	struct tcp_sock *tp = tcp_sk(sk);
5306 
5307 	tcp_mstamp_refresh(tp);
5308 	if (unlikely(!sk->sk_rx_dst))
5309 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5310 	/*
5311 	 *	Header prediction.
5312 	 *	The code loosely follows the one in the famous
5313 	 *	"30 instruction TCP receive" Van Jacobson mail.
5314 	 *
5315 	 *	Van's trick is to deposit buffers into socket queue
5316 	 *	on a device interrupt, to call tcp_recv function
5317 	 *	on the receive process context and checksum and copy
5318 	 *	the buffer to user space. smart...
5319 	 *
5320 	 *	Our current scheme is not silly either but we take the
5321 	 *	extra cost of the net_bh soft interrupt processing...
5322 	 *	We do checksum and copy also but from device to kernel.
5323 	 */
5324 
5325 	tp->rx_opt.saw_tstamp = 0;
5326 
5327 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5328 	 *	if header_prediction is to be made
5329 	 *	'S' will always be tp->tcp_header_len >> 2
5330 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5331 	 *  turn it off	(when there are holes in the receive
5332 	 *	 space for instance)
5333 	 *	PSH flag is ignored.
5334 	 */
5335 
5336 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5337 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5338 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5339 		int tcp_header_len = tp->tcp_header_len;
5340 
5341 		/* Timestamp header prediction: tcp_header_len
5342 		 * is automatically equal to th->doff*4 due to pred_flags
5343 		 * match.
5344 		 */
5345 
5346 		/* Check timestamp */
5347 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5348 			/* No? Slow path! */
5349 			if (!tcp_parse_aligned_timestamp(tp, th))
5350 				goto slow_path;
5351 
5352 			/* If PAWS failed, check it more carefully in slow path */
5353 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5354 				goto slow_path;
5355 
5356 			/* DO NOT update ts_recent here, if checksum fails
5357 			 * and timestamp was corrupted part, it will result
5358 			 * in a hung connection since we will drop all
5359 			 * future packets due to the PAWS test.
5360 			 */
5361 		}
5362 
5363 		if (len <= tcp_header_len) {
5364 			/* Bulk data transfer: sender */
5365 			if (len == tcp_header_len) {
5366 				/* Predicted packet is in window by definition.
5367 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5368 				 * Hence, check seq<=rcv_wup reduces to:
5369 				 */
5370 				if (tcp_header_len ==
5371 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5372 				    tp->rcv_nxt == tp->rcv_wup)
5373 					tcp_store_ts_recent(tp);
5374 
5375 				/* We know that such packets are checksummed
5376 				 * on entry.
5377 				 */
5378 				tcp_ack(sk, skb, 0);
5379 				__kfree_skb(skb);
5380 				tcp_data_snd_check(sk);
5381 				return;
5382 			} else { /* Header too small */
5383 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5384 				goto discard;
5385 			}
5386 		} else {
5387 			int eaten = 0;
5388 			bool fragstolen = false;
5389 
5390 			if (tcp_checksum_complete(skb))
5391 				goto csum_error;
5392 
5393 			if ((int)skb->truesize > sk->sk_forward_alloc)
5394 				goto step5;
5395 
5396 			/* Predicted packet is in window by definition.
5397 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5398 			 * Hence, check seq<=rcv_wup reduces to:
5399 			 */
5400 			if (tcp_header_len ==
5401 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5402 			    tp->rcv_nxt == tp->rcv_wup)
5403 				tcp_store_ts_recent(tp);
5404 
5405 			tcp_rcv_rtt_measure_ts(sk, skb);
5406 
5407 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5408 
5409 			/* Bulk data transfer: receiver */
5410 			eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5411 					      &fragstolen);
5412 
5413 			tcp_event_data_recv(sk, skb);
5414 
5415 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5416 				/* Well, only one small jumplet in fast path... */
5417 				tcp_ack(sk, skb, FLAG_DATA);
5418 				tcp_data_snd_check(sk);
5419 				if (!inet_csk_ack_scheduled(sk))
5420 					goto no_ack;
5421 			}
5422 
5423 			__tcp_ack_snd_check(sk, 0);
5424 no_ack:
5425 			if (eaten)
5426 				kfree_skb_partial(skb, fragstolen);
5427 			sk->sk_data_ready(sk);
5428 			return;
5429 		}
5430 	}
5431 
5432 slow_path:
5433 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5434 		goto csum_error;
5435 
5436 	if (!th->ack && !th->rst && !th->syn)
5437 		goto discard;
5438 
5439 	/*
5440 	 *	Standard slow path.
5441 	 */
5442 
5443 	if (!tcp_validate_incoming(sk, skb, th, 1))
5444 		return;
5445 
5446 step5:
5447 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5448 		goto discard;
5449 
5450 	tcp_rcv_rtt_measure_ts(sk, skb);
5451 
5452 	/* Process urgent data. */
5453 	tcp_urg(sk, skb, th);
5454 
5455 	/* step 7: process the segment text */
5456 	tcp_data_queue(sk, skb);
5457 
5458 	tcp_data_snd_check(sk);
5459 	tcp_ack_snd_check(sk);
5460 	return;
5461 
5462 csum_error:
5463 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5464 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5465 
5466 discard:
5467 	tcp_drop(sk, skb);
5468 }
5469 EXPORT_SYMBOL(tcp_rcv_established);
5470 
5471 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5472 {
5473 	struct tcp_sock *tp = tcp_sk(sk);
5474 	struct inet_connection_sock *icsk = inet_csk(sk);
5475 
5476 	tcp_set_state(sk, TCP_ESTABLISHED);
5477 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5478 
5479 	if (skb) {
5480 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5481 		security_inet_conn_established(sk, skb);
5482 	}
5483 
5484 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5485 
5486 	/* Prevent spurious tcp_cwnd_restart() on first data
5487 	 * packet.
5488 	 */
5489 	tp->lsndtime = tcp_jiffies32;
5490 
5491 	if (sock_flag(sk, SOCK_KEEPOPEN))
5492 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5493 
5494 	if (!tp->rx_opt.snd_wscale)
5495 		__tcp_fast_path_on(tp, tp->snd_wnd);
5496 	else
5497 		tp->pred_flags = 0;
5498 }
5499 
5500 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5501 				    struct tcp_fastopen_cookie *cookie)
5502 {
5503 	struct tcp_sock *tp = tcp_sk(sk);
5504 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5505 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5506 	bool syn_drop = false;
5507 
5508 	if (mss == tp->rx_opt.user_mss) {
5509 		struct tcp_options_received opt;
5510 
5511 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5512 		tcp_clear_options(&opt);
5513 		opt.user_mss = opt.mss_clamp = 0;
5514 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5515 		mss = opt.mss_clamp;
5516 	}
5517 
5518 	if (!tp->syn_fastopen) {
5519 		/* Ignore an unsolicited cookie */
5520 		cookie->len = -1;
5521 	} else if (tp->total_retrans) {
5522 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5523 		 * acknowledges data. Presumably the remote received only
5524 		 * the retransmitted (regular) SYNs: either the original
5525 		 * SYN-data or the corresponding SYN-ACK was dropped.
5526 		 */
5527 		syn_drop = (cookie->len < 0 && data);
5528 	} else if (cookie->len < 0 && !tp->syn_data) {
5529 		/* We requested a cookie but didn't get it. If we did not use
5530 		 * the (old) exp opt format then try so next time (try_exp=1).
5531 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5532 		 */
5533 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5534 	}
5535 
5536 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5537 
5538 	if (data) { /* Retransmit unacked data in SYN */
5539 		skb_rbtree_walk_from(data) {
5540 			if (__tcp_retransmit_skb(sk, data, 1))
5541 				break;
5542 		}
5543 		tcp_rearm_rto(sk);
5544 		NET_INC_STATS(sock_net(sk),
5545 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5546 		return true;
5547 	}
5548 	tp->syn_data_acked = tp->syn_data;
5549 	if (tp->syn_data_acked)
5550 		NET_INC_STATS(sock_net(sk),
5551 				LINUX_MIB_TCPFASTOPENACTIVE);
5552 
5553 	tcp_fastopen_add_skb(sk, synack);
5554 
5555 	return false;
5556 }
5557 
5558 static void smc_check_reset_syn(struct tcp_sock *tp)
5559 {
5560 #if IS_ENABLED(CONFIG_SMC)
5561 	if (static_branch_unlikely(&tcp_have_smc)) {
5562 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
5563 			tp->syn_smc = 0;
5564 	}
5565 #endif
5566 }
5567 
5568 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5569 					 const struct tcphdr *th)
5570 {
5571 	struct inet_connection_sock *icsk = inet_csk(sk);
5572 	struct tcp_sock *tp = tcp_sk(sk);
5573 	struct tcp_fastopen_cookie foc = { .len = -1 };
5574 	int saved_clamp = tp->rx_opt.mss_clamp;
5575 	bool fastopen_fail;
5576 
5577 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5578 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5579 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5580 
5581 	if (th->ack) {
5582 		/* rfc793:
5583 		 * "If the state is SYN-SENT then
5584 		 *    first check the ACK bit
5585 		 *      If the ACK bit is set
5586 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5587 		 *        a reset (unless the RST bit is set, if so drop
5588 		 *        the segment and return)"
5589 		 */
5590 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5591 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5592 			goto reset_and_undo;
5593 
5594 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5595 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5596 			     tcp_time_stamp(tp))) {
5597 			NET_INC_STATS(sock_net(sk),
5598 					LINUX_MIB_PAWSACTIVEREJECTED);
5599 			goto reset_and_undo;
5600 		}
5601 
5602 		/* Now ACK is acceptable.
5603 		 *
5604 		 * "If the RST bit is set
5605 		 *    If the ACK was acceptable then signal the user "error:
5606 		 *    connection reset", drop the segment, enter CLOSED state,
5607 		 *    delete TCB, and return."
5608 		 */
5609 
5610 		if (th->rst) {
5611 			tcp_reset(sk);
5612 			goto discard;
5613 		}
5614 
5615 		/* rfc793:
5616 		 *   "fifth, if neither of the SYN or RST bits is set then
5617 		 *    drop the segment and return."
5618 		 *
5619 		 *    See note below!
5620 		 *                                        --ANK(990513)
5621 		 */
5622 		if (!th->syn)
5623 			goto discard_and_undo;
5624 
5625 		/* rfc793:
5626 		 *   "If the SYN bit is on ...
5627 		 *    are acceptable then ...
5628 		 *    (our SYN has been ACKed), change the connection
5629 		 *    state to ESTABLISHED..."
5630 		 */
5631 
5632 		tcp_ecn_rcv_synack(tp, th);
5633 
5634 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5635 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5636 
5637 		/* Ok.. it's good. Set up sequence numbers and
5638 		 * move to established.
5639 		 */
5640 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5641 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5642 
5643 		/* RFC1323: The window in SYN & SYN/ACK segments is
5644 		 * never scaled.
5645 		 */
5646 		tp->snd_wnd = ntohs(th->window);
5647 
5648 		if (!tp->rx_opt.wscale_ok) {
5649 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5650 			tp->window_clamp = min(tp->window_clamp, 65535U);
5651 		}
5652 
5653 		if (tp->rx_opt.saw_tstamp) {
5654 			tp->rx_opt.tstamp_ok	   = 1;
5655 			tp->tcp_header_len =
5656 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5657 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5658 			tcp_store_ts_recent(tp);
5659 		} else {
5660 			tp->tcp_header_len = sizeof(struct tcphdr);
5661 		}
5662 
5663 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5664 		tcp_initialize_rcv_mss(sk);
5665 
5666 		/* Remember, tcp_poll() does not lock socket!
5667 		 * Change state from SYN-SENT only after copied_seq
5668 		 * is initialized. */
5669 		tp->copied_seq = tp->rcv_nxt;
5670 
5671 		smc_check_reset_syn(tp);
5672 
5673 		smp_mb();
5674 
5675 		tcp_finish_connect(sk, skb);
5676 
5677 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5678 				tcp_rcv_fastopen_synack(sk, skb, &foc);
5679 
5680 		if (!sock_flag(sk, SOCK_DEAD)) {
5681 			sk->sk_state_change(sk);
5682 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5683 		}
5684 		if (fastopen_fail)
5685 			return -1;
5686 		if (sk->sk_write_pending ||
5687 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5688 		    icsk->icsk_ack.pingpong) {
5689 			/* Save one ACK. Data will be ready after
5690 			 * several ticks, if write_pending is set.
5691 			 *
5692 			 * It may be deleted, but with this feature tcpdumps
5693 			 * look so _wonderfully_ clever, that I was not able
5694 			 * to stand against the temptation 8)     --ANK
5695 			 */
5696 			inet_csk_schedule_ack(sk);
5697 			tcp_enter_quickack_mode(sk);
5698 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5699 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5700 
5701 discard:
5702 			tcp_drop(sk, skb);
5703 			return 0;
5704 		} else {
5705 			tcp_send_ack(sk);
5706 		}
5707 		return -1;
5708 	}
5709 
5710 	/* No ACK in the segment */
5711 
5712 	if (th->rst) {
5713 		/* rfc793:
5714 		 * "If the RST bit is set
5715 		 *
5716 		 *      Otherwise (no ACK) drop the segment and return."
5717 		 */
5718 
5719 		goto discard_and_undo;
5720 	}
5721 
5722 	/* PAWS check. */
5723 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5724 	    tcp_paws_reject(&tp->rx_opt, 0))
5725 		goto discard_and_undo;
5726 
5727 	if (th->syn) {
5728 		/* We see SYN without ACK. It is attempt of
5729 		 * simultaneous connect with crossed SYNs.
5730 		 * Particularly, it can be connect to self.
5731 		 */
5732 		tcp_set_state(sk, TCP_SYN_RECV);
5733 
5734 		if (tp->rx_opt.saw_tstamp) {
5735 			tp->rx_opt.tstamp_ok = 1;
5736 			tcp_store_ts_recent(tp);
5737 			tp->tcp_header_len =
5738 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5739 		} else {
5740 			tp->tcp_header_len = sizeof(struct tcphdr);
5741 		}
5742 
5743 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5744 		tp->copied_seq = tp->rcv_nxt;
5745 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5746 
5747 		/* RFC1323: The window in SYN & SYN/ACK segments is
5748 		 * never scaled.
5749 		 */
5750 		tp->snd_wnd    = ntohs(th->window);
5751 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5752 		tp->max_window = tp->snd_wnd;
5753 
5754 		tcp_ecn_rcv_syn(tp, th);
5755 
5756 		tcp_mtup_init(sk);
5757 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5758 		tcp_initialize_rcv_mss(sk);
5759 
5760 		tcp_send_synack(sk);
5761 #if 0
5762 		/* Note, we could accept data and URG from this segment.
5763 		 * There are no obstacles to make this (except that we must
5764 		 * either change tcp_recvmsg() to prevent it from returning data
5765 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5766 		 *
5767 		 * However, if we ignore data in ACKless segments sometimes,
5768 		 * we have no reasons to accept it sometimes.
5769 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5770 		 * is not flawless. So, discard packet for sanity.
5771 		 * Uncomment this return to process the data.
5772 		 */
5773 		return -1;
5774 #else
5775 		goto discard;
5776 #endif
5777 	}
5778 	/* "fifth, if neither of the SYN or RST bits is set then
5779 	 * drop the segment and return."
5780 	 */
5781 
5782 discard_and_undo:
5783 	tcp_clear_options(&tp->rx_opt);
5784 	tp->rx_opt.mss_clamp = saved_clamp;
5785 	goto discard;
5786 
5787 reset_and_undo:
5788 	tcp_clear_options(&tp->rx_opt);
5789 	tp->rx_opt.mss_clamp = saved_clamp;
5790 	return 1;
5791 }
5792 
5793 /*
5794  *	This function implements the receiving procedure of RFC 793 for
5795  *	all states except ESTABLISHED and TIME_WAIT.
5796  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5797  *	address independent.
5798  */
5799 
5800 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5801 {
5802 	struct tcp_sock *tp = tcp_sk(sk);
5803 	struct inet_connection_sock *icsk = inet_csk(sk);
5804 	const struct tcphdr *th = tcp_hdr(skb);
5805 	struct request_sock *req;
5806 	int queued = 0;
5807 	bool acceptable;
5808 
5809 	switch (sk->sk_state) {
5810 	case TCP_CLOSE:
5811 		goto discard;
5812 
5813 	case TCP_LISTEN:
5814 		if (th->ack)
5815 			return 1;
5816 
5817 		if (th->rst)
5818 			goto discard;
5819 
5820 		if (th->syn) {
5821 			if (th->fin)
5822 				goto discard;
5823 			/* It is possible that we process SYN packets from backlog,
5824 			 * so we need to make sure to disable BH right there.
5825 			 */
5826 			local_bh_disable();
5827 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
5828 			local_bh_enable();
5829 
5830 			if (!acceptable)
5831 				return 1;
5832 			consume_skb(skb);
5833 			return 0;
5834 		}
5835 		goto discard;
5836 
5837 	case TCP_SYN_SENT:
5838 		tp->rx_opt.saw_tstamp = 0;
5839 		tcp_mstamp_refresh(tp);
5840 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
5841 		if (queued >= 0)
5842 			return queued;
5843 
5844 		/* Do step6 onward by hand. */
5845 		tcp_urg(sk, skb, th);
5846 		__kfree_skb(skb);
5847 		tcp_data_snd_check(sk);
5848 		return 0;
5849 	}
5850 
5851 	tcp_mstamp_refresh(tp);
5852 	tp->rx_opt.saw_tstamp = 0;
5853 	req = tp->fastopen_rsk;
5854 	if (req) {
5855 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5856 		    sk->sk_state != TCP_FIN_WAIT1);
5857 
5858 		if (!tcp_check_req(sk, skb, req, true))
5859 			goto discard;
5860 	}
5861 
5862 	if (!th->ack && !th->rst && !th->syn)
5863 		goto discard;
5864 
5865 	if (!tcp_validate_incoming(sk, skb, th, 0))
5866 		return 0;
5867 
5868 	/* step 5: check the ACK field */
5869 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5870 				      FLAG_UPDATE_TS_RECENT |
5871 				      FLAG_NO_CHALLENGE_ACK) > 0;
5872 
5873 	if (!acceptable) {
5874 		if (sk->sk_state == TCP_SYN_RECV)
5875 			return 1;	/* send one RST */
5876 		tcp_send_challenge_ack(sk, skb);
5877 		goto discard;
5878 	}
5879 	switch (sk->sk_state) {
5880 	case TCP_SYN_RECV:
5881 		if (!tp->srtt_us)
5882 			tcp_synack_rtt_meas(sk, req);
5883 
5884 		/* Once we leave TCP_SYN_RECV, we no longer need req
5885 		 * so release it.
5886 		 */
5887 		if (req) {
5888 			inet_csk(sk)->icsk_retransmits = 0;
5889 			reqsk_fastopen_remove(sk, req, false);
5890 			/* Re-arm the timer because data may have been sent out.
5891 			 * This is similar to the regular data transmission case
5892 			 * when new data has just been ack'ed.
5893 			 *
5894 			 * (TFO) - we could try to be more aggressive and
5895 			 * retransmitting any data sooner based on when they
5896 			 * are sent out.
5897 			 */
5898 			tcp_rearm_rto(sk);
5899 		} else {
5900 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
5901 			tp->copied_seq = tp->rcv_nxt;
5902 		}
5903 		smp_mb();
5904 		tcp_set_state(sk, TCP_ESTABLISHED);
5905 		sk->sk_state_change(sk);
5906 
5907 		/* Note, that this wakeup is only for marginal crossed SYN case.
5908 		 * Passively open sockets are not waked up, because
5909 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5910 		 */
5911 		if (sk->sk_socket)
5912 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5913 
5914 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5915 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5916 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5917 
5918 		if (tp->rx_opt.tstamp_ok)
5919 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5920 
5921 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
5922 			tcp_update_pacing_rate(sk);
5923 
5924 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5925 		tp->lsndtime = tcp_jiffies32;
5926 
5927 		tcp_initialize_rcv_mss(sk);
5928 		tcp_fast_path_on(tp);
5929 		break;
5930 
5931 	case TCP_FIN_WAIT1: {
5932 		int tmo;
5933 
5934 		/* If we enter the TCP_FIN_WAIT1 state and we are a
5935 		 * Fast Open socket and this is the first acceptable
5936 		 * ACK we have received, this would have acknowledged
5937 		 * our SYNACK so stop the SYNACK timer.
5938 		 */
5939 		if (req) {
5940 			/* We no longer need the request sock. */
5941 			reqsk_fastopen_remove(sk, req, false);
5942 			tcp_rearm_rto(sk);
5943 		}
5944 		if (tp->snd_una != tp->write_seq)
5945 			break;
5946 
5947 		tcp_set_state(sk, TCP_FIN_WAIT2);
5948 		sk->sk_shutdown |= SEND_SHUTDOWN;
5949 
5950 		sk_dst_confirm(sk);
5951 
5952 		if (!sock_flag(sk, SOCK_DEAD)) {
5953 			/* Wake up lingering close() */
5954 			sk->sk_state_change(sk);
5955 			break;
5956 		}
5957 
5958 		if (tp->linger2 < 0) {
5959 			tcp_done(sk);
5960 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5961 			return 1;
5962 		}
5963 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5964 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5965 			/* Receive out of order FIN after close() */
5966 			if (tp->syn_fastopen && th->fin)
5967 				tcp_fastopen_active_disable(sk);
5968 			tcp_done(sk);
5969 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5970 			return 1;
5971 		}
5972 
5973 		tmo = tcp_fin_time(sk);
5974 		if (tmo > TCP_TIMEWAIT_LEN) {
5975 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5976 		} else if (th->fin || sock_owned_by_user(sk)) {
5977 			/* Bad case. We could lose such FIN otherwise.
5978 			 * It is not a big problem, but it looks confusing
5979 			 * and not so rare event. We still can lose it now,
5980 			 * if it spins in bh_lock_sock(), but it is really
5981 			 * marginal case.
5982 			 */
5983 			inet_csk_reset_keepalive_timer(sk, tmo);
5984 		} else {
5985 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5986 			goto discard;
5987 		}
5988 		break;
5989 	}
5990 
5991 	case TCP_CLOSING:
5992 		if (tp->snd_una == tp->write_seq) {
5993 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5994 			goto discard;
5995 		}
5996 		break;
5997 
5998 	case TCP_LAST_ACK:
5999 		if (tp->snd_una == tp->write_seq) {
6000 			tcp_update_metrics(sk);
6001 			tcp_done(sk);
6002 			goto discard;
6003 		}
6004 		break;
6005 	}
6006 
6007 	/* step 6: check the URG bit */
6008 	tcp_urg(sk, skb, th);
6009 
6010 	/* step 7: process the segment text */
6011 	switch (sk->sk_state) {
6012 	case TCP_CLOSE_WAIT:
6013 	case TCP_CLOSING:
6014 	case TCP_LAST_ACK:
6015 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6016 			break;
6017 		/* fall through */
6018 	case TCP_FIN_WAIT1:
6019 	case TCP_FIN_WAIT2:
6020 		/* RFC 793 says to queue data in these states,
6021 		 * RFC 1122 says we MUST send a reset.
6022 		 * BSD 4.4 also does reset.
6023 		 */
6024 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6025 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6026 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6027 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6028 				tcp_reset(sk);
6029 				return 1;
6030 			}
6031 		}
6032 		/* Fall through */
6033 	case TCP_ESTABLISHED:
6034 		tcp_data_queue(sk, skb);
6035 		queued = 1;
6036 		break;
6037 	}
6038 
6039 	/* tcp_data could move socket to TIME-WAIT */
6040 	if (sk->sk_state != TCP_CLOSE) {
6041 		tcp_data_snd_check(sk);
6042 		tcp_ack_snd_check(sk);
6043 	}
6044 
6045 	if (!queued) {
6046 discard:
6047 		tcp_drop(sk, skb);
6048 	}
6049 	return 0;
6050 }
6051 EXPORT_SYMBOL(tcp_rcv_state_process);
6052 
6053 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6054 {
6055 	struct inet_request_sock *ireq = inet_rsk(req);
6056 
6057 	if (family == AF_INET)
6058 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6059 				    &ireq->ir_rmt_addr, port);
6060 #if IS_ENABLED(CONFIG_IPV6)
6061 	else if (family == AF_INET6)
6062 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6063 				    &ireq->ir_v6_rmt_addr, port);
6064 #endif
6065 }
6066 
6067 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6068  *
6069  * If we receive a SYN packet with these bits set, it means a
6070  * network is playing bad games with TOS bits. In order to
6071  * avoid possible false congestion notifications, we disable
6072  * TCP ECN negotiation.
6073  *
6074  * Exception: tcp_ca wants ECN. This is required for DCTCP
6075  * congestion control: Linux DCTCP asserts ECT on all packets,
6076  * including SYN, which is most optimal solution; however,
6077  * others, such as FreeBSD do not.
6078  */
6079 static void tcp_ecn_create_request(struct request_sock *req,
6080 				   const struct sk_buff *skb,
6081 				   const struct sock *listen_sk,
6082 				   const struct dst_entry *dst)
6083 {
6084 	const struct tcphdr *th = tcp_hdr(skb);
6085 	const struct net *net = sock_net(listen_sk);
6086 	bool th_ecn = th->ece && th->cwr;
6087 	bool ect, ecn_ok;
6088 	u32 ecn_ok_dst;
6089 
6090 	if (!th_ecn)
6091 		return;
6092 
6093 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6094 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6095 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6096 
6097 	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6098 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6099 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6100 		inet_rsk(req)->ecn_ok = 1;
6101 }
6102 
6103 static void tcp_openreq_init(struct request_sock *req,
6104 			     const struct tcp_options_received *rx_opt,
6105 			     struct sk_buff *skb, const struct sock *sk)
6106 {
6107 	struct inet_request_sock *ireq = inet_rsk(req);
6108 
6109 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6110 	req->cookie_ts = 0;
6111 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6112 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6113 	tcp_rsk(req)->snt_synack = tcp_clock_us();
6114 	tcp_rsk(req)->last_oow_ack_time = 0;
6115 	req->mss = rx_opt->mss_clamp;
6116 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6117 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6118 	ireq->sack_ok = rx_opt->sack_ok;
6119 	ireq->snd_wscale = rx_opt->snd_wscale;
6120 	ireq->wscale_ok = rx_opt->wscale_ok;
6121 	ireq->acked = 0;
6122 	ireq->ecn_ok = 0;
6123 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6124 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6125 	ireq->ir_mark = inet_request_mark(sk, skb);
6126 #if IS_ENABLED(CONFIG_SMC)
6127 	ireq->smc_ok = rx_opt->smc_ok;
6128 #endif
6129 }
6130 
6131 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6132 				      struct sock *sk_listener,
6133 				      bool attach_listener)
6134 {
6135 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6136 					       attach_listener);
6137 
6138 	if (req) {
6139 		struct inet_request_sock *ireq = inet_rsk(req);
6140 
6141 		ireq->ireq_opt = NULL;
6142 #if IS_ENABLED(CONFIG_IPV6)
6143 		ireq->pktopts = NULL;
6144 #endif
6145 		atomic64_set(&ireq->ir_cookie, 0);
6146 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6147 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6148 		ireq->ireq_family = sk_listener->sk_family;
6149 	}
6150 
6151 	return req;
6152 }
6153 EXPORT_SYMBOL(inet_reqsk_alloc);
6154 
6155 /*
6156  * Return true if a syncookie should be sent
6157  */
6158 static bool tcp_syn_flood_action(const struct sock *sk,
6159 				 const struct sk_buff *skb,
6160 				 const char *proto)
6161 {
6162 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6163 	const char *msg = "Dropping request";
6164 	bool want_cookie = false;
6165 	struct net *net = sock_net(sk);
6166 
6167 #ifdef CONFIG_SYN_COOKIES
6168 	if (net->ipv4.sysctl_tcp_syncookies) {
6169 		msg = "Sending cookies";
6170 		want_cookie = true;
6171 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6172 	} else
6173 #endif
6174 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6175 
6176 	if (!queue->synflood_warned &&
6177 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6178 	    xchg(&queue->synflood_warned, 1) == 0)
6179 		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6180 			proto, ntohs(tcp_hdr(skb)->dest), msg);
6181 
6182 	return want_cookie;
6183 }
6184 
6185 static void tcp_reqsk_record_syn(const struct sock *sk,
6186 				 struct request_sock *req,
6187 				 const struct sk_buff *skb)
6188 {
6189 	if (tcp_sk(sk)->save_syn) {
6190 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6191 		u32 *copy;
6192 
6193 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6194 		if (copy) {
6195 			copy[0] = len;
6196 			memcpy(&copy[1], skb_network_header(skb), len);
6197 			req->saved_syn = copy;
6198 		}
6199 	}
6200 }
6201 
6202 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6203 		     const struct tcp_request_sock_ops *af_ops,
6204 		     struct sock *sk, struct sk_buff *skb)
6205 {
6206 	struct tcp_fastopen_cookie foc = { .len = -1 };
6207 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6208 	struct tcp_options_received tmp_opt;
6209 	struct tcp_sock *tp = tcp_sk(sk);
6210 	struct net *net = sock_net(sk);
6211 	struct sock *fastopen_sk = NULL;
6212 	struct request_sock *req;
6213 	bool want_cookie = false;
6214 	struct dst_entry *dst;
6215 	struct flowi fl;
6216 
6217 	/* TW buckets are converted to open requests without
6218 	 * limitations, they conserve resources and peer is
6219 	 * evidently real one.
6220 	 */
6221 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6222 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6223 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6224 		if (!want_cookie)
6225 			goto drop;
6226 	}
6227 
6228 	if (sk_acceptq_is_full(sk)) {
6229 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6230 		goto drop;
6231 	}
6232 
6233 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6234 	if (!req)
6235 		goto drop;
6236 
6237 	tcp_rsk(req)->af_specific = af_ops;
6238 	tcp_rsk(req)->ts_off = 0;
6239 
6240 	tcp_clear_options(&tmp_opt);
6241 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6242 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6243 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6244 			  want_cookie ? NULL : &foc);
6245 
6246 	if (want_cookie && !tmp_opt.saw_tstamp)
6247 		tcp_clear_options(&tmp_opt);
6248 
6249 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6250 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6251 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6252 
6253 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6254 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6255 
6256 	af_ops->init_req(req, sk, skb);
6257 
6258 	if (security_inet_conn_request(sk, skb, req))
6259 		goto drop_and_free;
6260 
6261 	if (tmp_opt.tstamp_ok)
6262 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6263 
6264 	dst = af_ops->route_req(sk, &fl, req);
6265 	if (!dst)
6266 		goto drop_and_free;
6267 
6268 	if (!want_cookie && !isn) {
6269 		/* Kill the following clause, if you dislike this way. */
6270 		if (!net->ipv4.sysctl_tcp_syncookies &&
6271 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6272 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6273 		    !tcp_peer_is_proven(req, dst)) {
6274 			/* Without syncookies last quarter of
6275 			 * backlog is filled with destinations,
6276 			 * proven to be alive.
6277 			 * It means that we continue to communicate
6278 			 * to destinations, already remembered
6279 			 * to the moment of synflood.
6280 			 */
6281 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6282 				    rsk_ops->family);
6283 			goto drop_and_release;
6284 		}
6285 
6286 		isn = af_ops->init_seq(skb);
6287 	}
6288 
6289 	tcp_ecn_create_request(req, skb, sk, dst);
6290 
6291 	if (want_cookie) {
6292 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6293 		req->cookie_ts = tmp_opt.tstamp_ok;
6294 		if (!tmp_opt.tstamp_ok)
6295 			inet_rsk(req)->ecn_ok = 0;
6296 	}
6297 
6298 	tcp_rsk(req)->snt_isn = isn;
6299 	tcp_rsk(req)->txhash = net_tx_rndhash();
6300 	tcp_openreq_init_rwin(req, sk, dst);
6301 	if (!want_cookie) {
6302 		tcp_reqsk_record_syn(sk, req, skb);
6303 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6304 	}
6305 	if (fastopen_sk) {
6306 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6307 				    &foc, TCP_SYNACK_FASTOPEN);
6308 		/* Add the child socket directly into the accept queue */
6309 		inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6310 		sk->sk_data_ready(sk);
6311 		bh_unlock_sock(fastopen_sk);
6312 		sock_put(fastopen_sk);
6313 	} else {
6314 		tcp_rsk(req)->tfo_listener = false;
6315 		if (!want_cookie)
6316 			inet_csk_reqsk_queue_hash_add(sk, req,
6317 				tcp_timeout_init((struct sock *)req));
6318 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6319 				    !want_cookie ? TCP_SYNACK_NORMAL :
6320 						   TCP_SYNACK_COOKIE);
6321 		if (want_cookie) {
6322 			reqsk_free(req);
6323 			return 0;
6324 		}
6325 	}
6326 	reqsk_put(req);
6327 	return 0;
6328 
6329 drop_and_release:
6330 	dst_release(dst);
6331 drop_and_free:
6332 	reqsk_free(req);
6333 drop:
6334 	tcp_listendrop(sk);
6335 	return 0;
6336 }
6337 EXPORT_SYMBOL(tcp_conn_request);
6338