1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/jump_label_ratelimit.h> 81 #include <net/busy_poll.h> 82 #include <net/mptcp.h> 83 84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 85 86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 92 #define FLAG_ECE 0x40 /* ECE in this ACK */ 93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 103 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */ 104 105 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 106 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 107 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 108 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 109 110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 112 113 #define REXMIT_NONE 0 /* no loss recovery to do */ 114 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 115 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 116 117 #if IS_ENABLED(CONFIG_TLS_DEVICE) 118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 119 120 void clean_acked_data_enable(struct inet_connection_sock *icsk, 121 void (*cad)(struct sock *sk, u32 ack_seq)) 122 { 123 icsk->icsk_clean_acked = cad; 124 static_branch_deferred_inc(&clean_acked_data_enabled); 125 } 126 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 127 128 void clean_acked_data_disable(struct inet_connection_sock *icsk) 129 { 130 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 131 icsk->icsk_clean_acked = NULL; 132 } 133 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 134 135 void clean_acked_data_flush(void) 136 { 137 static_key_deferred_flush(&clean_acked_data_enabled); 138 } 139 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 140 #endif 141 142 #ifdef CONFIG_CGROUP_BPF 143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 144 { 145 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown && 146 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 147 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG); 148 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 149 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG); 150 struct bpf_sock_ops_kern sock_ops; 151 152 if (likely(!unknown_opt && !parse_all_opt)) 153 return; 154 155 /* The skb will be handled in the 156 * bpf_skops_established() or 157 * bpf_skops_write_hdr_opt(). 158 */ 159 switch (sk->sk_state) { 160 case TCP_SYN_RECV: 161 case TCP_SYN_SENT: 162 case TCP_LISTEN: 163 return; 164 } 165 166 sock_owned_by_me(sk); 167 168 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 169 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB; 170 sock_ops.is_fullsock = 1; 171 sock_ops.sk = sk; 172 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 173 174 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 175 } 176 177 static void bpf_skops_established(struct sock *sk, int bpf_op, 178 struct sk_buff *skb) 179 { 180 struct bpf_sock_ops_kern sock_ops; 181 182 sock_owned_by_me(sk); 183 184 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 185 sock_ops.op = bpf_op; 186 sock_ops.is_fullsock = 1; 187 sock_ops.sk = sk; 188 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */ 189 if (skb) 190 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 191 192 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 193 } 194 #else 195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 196 { 197 } 198 199 static void bpf_skops_established(struct sock *sk, int bpf_op, 200 struct sk_buff *skb) 201 { 202 } 203 #endif 204 205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 206 unsigned int len) 207 { 208 static bool __once __read_mostly; 209 210 if (!__once) { 211 struct net_device *dev; 212 213 __once = true; 214 215 rcu_read_lock(); 216 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 217 if (!dev || len >= dev->mtu) 218 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 219 dev ? dev->name : "Unknown driver"); 220 rcu_read_unlock(); 221 } 222 } 223 224 /* Adapt the MSS value used to make delayed ack decision to the 225 * real world. 226 */ 227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 228 { 229 struct inet_connection_sock *icsk = inet_csk(sk); 230 const unsigned int lss = icsk->icsk_ack.last_seg_size; 231 unsigned int len; 232 233 icsk->icsk_ack.last_seg_size = 0; 234 235 /* skb->len may jitter because of SACKs, even if peer 236 * sends good full-sized frames. 237 */ 238 len = skb_shinfo(skb)->gso_size ? : skb->len; 239 if (len >= icsk->icsk_ack.rcv_mss) { 240 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 241 tcp_sk(sk)->advmss); 242 /* Account for possibly-removed options */ 243 if (unlikely(len > icsk->icsk_ack.rcv_mss + 244 MAX_TCP_OPTION_SPACE)) 245 tcp_gro_dev_warn(sk, skb, len); 246 } else { 247 /* Otherwise, we make more careful check taking into account, 248 * that SACKs block is variable. 249 * 250 * "len" is invariant segment length, including TCP header. 251 */ 252 len += skb->data - skb_transport_header(skb); 253 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 254 /* If PSH is not set, packet should be 255 * full sized, provided peer TCP is not badly broken. 256 * This observation (if it is correct 8)) allows 257 * to handle super-low mtu links fairly. 258 */ 259 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 260 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 261 /* Subtract also invariant (if peer is RFC compliant), 262 * tcp header plus fixed timestamp option length. 263 * Resulting "len" is MSS free of SACK jitter. 264 */ 265 len -= tcp_sk(sk)->tcp_header_len; 266 icsk->icsk_ack.last_seg_size = len; 267 if (len == lss) { 268 icsk->icsk_ack.rcv_mss = len; 269 return; 270 } 271 } 272 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 273 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 274 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 275 } 276 } 277 278 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 279 { 280 struct inet_connection_sock *icsk = inet_csk(sk); 281 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 282 283 if (quickacks == 0) 284 quickacks = 2; 285 quickacks = min(quickacks, max_quickacks); 286 if (quickacks > icsk->icsk_ack.quick) 287 icsk->icsk_ack.quick = quickacks; 288 } 289 290 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 291 { 292 struct inet_connection_sock *icsk = inet_csk(sk); 293 294 tcp_incr_quickack(sk, max_quickacks); 295 inet_csk_exit_pingpong_mode(sk); 296 icsk->icsk_ack.ato = TCP_ATO_MIN; 297 } 298 EXPORT_SYMBOL(tcp_enter_quickack_mode); 299 300 /* Send ACKs quickly, if "quick" count is not exhausted 301 * and the session is not interactive. 302 */ 303 304 static bool tcp_in_quickack_mode(struct sock *sk) 305 { 306 const struct inet_connection_sock *icsk = inet_csk(sk); 307 const struct dst_entry *dst = __sk_dst_get(sk); 308 309 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 310 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 311 } 312 313 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 314 { 315 if (tp->ecn_flags & TCP_ECN_OK) 316 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 317 } 318 319 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 320 { 321 if (tcp_hdr(skb)->cwr) { 322 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 323 324 /* If the sender is telling us it has entered CWR, then its 325 * cwnd may be very low (even just 1 packet), so we should ACK 326 * immediately. 327 */ 328 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) 329 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 330 } 331 } 332 333 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 334 { 335 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 336 } 337 338 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 339 { 340 struct tcp_sock *tp = tcp_sk(sk); 341 342 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 343 case INET_ECN_NOT_ECT: 344 /* Funny extension: if ECT is not set on a segment, 345 * and we already seen ECT on a previous segment, 346 * it is probably a retransmit. 347 */ 348 if (tp->ecn_flags & TCP_ECN_SEEN) 349 tcp_enter_quickack_mode(sk, 2); 350 break; 351 case INET_ECN_CE: 352 if (tcp_ca_needs_ecn(sk)) 353 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 354 355 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 356 /* Better not delay acks, sender can have a very low cwnd */ 357 tcp_enter_quickack_mode(sk, 2); 358 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 359 } 360 tp->ecn_flags |= TCP_ECN_SEEN; 361 break; 362 default: 363 if (tcp_ca_needs_ecn(sk)) 364 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 365 tp->ecn_flags |= TCP_ECN_SEEN; 366 break; 367 } 368 } 369 370 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 371 { 372 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 373 __tcp_ecn_check_ce(sk, skb); 374 } 375 376 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 377 { 378 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 379 tp->ecn_flags &= ~TCP_ECN_OK; 380 } 381 382 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 383 { 384 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 385 tp->ecn_flags &= ~TCP_ECN_OK; 386 } 387 388 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 389 { 390 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 391 return true; 392 return false; 393 } 394 395 /* Buffer size and advertised window tuning. 396 * 397 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 398 */ 399 400 static void tcp_sndbuf_expand(struct sock *sk) 401 { 402 const struct tcp_sock *tp = tcp_sk(sk); 403 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 404 int sndmem, per_mss; 405 u32 nr_segs; 406 407 /* Worst case is non GSO/TSO : each frame consumes one skb 408 * and skb->head is kmalloced using power of two area of memory 409 */ 410 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 411 MAX_TCP_HEADER + 412 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 413 414 per_mss = roundup_pow_of_two(per_mss) + 415 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 416 417 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 418 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 419 420 /* Fast Recovery (RFC 5681 3.2) : 421 * Cubic needs 1.7 factor, rounded to 2 to include 422 * extra cushion (application might react slowly to EPOLLOUT) 423 */ 424 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 425 sndmem *= nr_segs * per_mss; 426 427 if (sk->sk_sndbuf < sndmem) 428 WRITE_ONCE(sk->sk_sndbuf, 429 min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2])); 430 } 431 432 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 433 * 434 * All tcp_full_space() is split to two parts: "network" buffer, allocated 435 * forward and advertised in receiver window (tp->rcv_wnd) and 436 * "application buffer", required to isolate scheduling/application 437 * latencies from network. 438 * window_clamp is maximal advertised window. It can be less than 439 * tcp_full_space(), in this case tcp_full_space() - window_clamp 440 * is reserved for "application" buffer. The less window_clamp is 441 * the smoother our behaviour from viewpoint of network, but the lower 442 * throughput and the higher sensitivity of the connection to losses. 8) 443 * 444 * rcv_ssthresh is more strict window_clamp used at "slow start" 445 * phase to predict further behaviour of this connection. 446 * It is used for two goals: 447 * - to enforce header prediction at sender, even when application 448 * requires some significant "application buffer". It is check #1. 449 * - to prevent pruning of receive queue because of misprediction 450 * of receiver window. Check #2. 451 * 452 * The scheme does not work when sender sends good segments opening 453 * window and then starts to feed us spaghetti. But it should work 454 * in common situations. Otherwise, we have to rely on queue collapsing. 455 */ 456 457 /* Slow part of check#2. */ 458 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb, 459 unsigned int skbtruesize) 460 { 461 struct tcp_sock *tp = tcp_sk(sk); 462 /* Optimize this! */ 463 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1; 464 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 465 466 while (tp->rcv_ssthresh <= window) { 467 if (truesize <= skb->len) 468 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 469 470 truesize >>= 1; 471 window >>= 1; 472 } 473 return 0; 474 } 475 476 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing 477 * can play nice with us, as sk_buff and skb->head might be either 478 * freed or shared with up to MAX_SKB_FRAGS segments. 479 * Only give a boost to drivers using page frag(s) to hold the frame(s), 480 * and if no payload was pulled in skb->head before reaching us. 481 */ 482 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb) 483 { 484 u32 truesize = skb->truesize; 485 486 if (adjust && !skb_headlen(skb)) { 487 truesize -= SKB_TRUESIZE(skb_end_offset(skb)); 488 /* paranoid check, some drivers might be buggy */ 489 if (unlikely((int)truesize < (int)skb->len)) 490 truesize = skb->truesize; 491 } 492 return truesize; 493 } 494 495 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb, 496 bool adjust) 497 { 498 struct tcp_sock *tp = tcp_sk(sk); 499 int room; 500 501 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 502 503 if (room <= 0) 504 return; 505 506 /* Check #1 */ 507 if (!tcp_under_memory_pressure(sk)) { 508 unsigned int truesize = truesize_adjust(adjust, skb); 509 int incr; 510 511 /* Check #2. Increase window, if skb with such overhead 512 * will fit to rcvbuf in future. 513 */ 514 if (tcp_win_from_space(sk, truesize) <= skb->len) 515 incr = 2 * tp->advmss; 516 else 517 incr = __tcp_grow_window(sk, skb, truesize); 518 519 if (incr) { 520 incr = max_t(int, incr, 2 * skb->len); 521 tp->rcv_ssthresh += min(room, incr); 522 inet_csk(sk)->icsk_ack.quick |= 1; 523 } 524 } else { 525 /* Under pressure: 526 * Adjust rcv_ssthresh according to reserved mem 527 */ 528 tcp_adjust_rcv_ssthresh(sk); 529 } 530 } 531 532 /* 3. Try to fixup all. It is made immediately after connection enters 533 * established state. 534 */ 535 static void tcp_init_buffer_space(struct sock *sk) 536 { 537 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win; 538 struct tcp_sock *tp = tcp_sk(sk); 539 int maxwin; 540 541 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 542 tcp_sndbuf_expand(sk); 543 544 tcp_mstamp_refresh(tp); 545 tp->rcvq_space.time = tp->tcp_mstamp; 546 tp->rcvq_space.seq = tp->copied_seq; 547 548 maxwin = tcp_full_space(sk); 549 550 if (tp->window_clamp >= maxwin) { 551 tp->window_clamp = maxwin; 552 553 if (tcp_app_win && maxwin > 4 * tp->advmss) 554 tp->window_clamp = max(maxwin - 555 (maxwin >> tcp_app_win), 556 4 * tp->advmss); 557 } 558 559 /* Force reservation of one segment. */ 560 if (tcp_app_win && 561 tp->window_clamp > 2 * tp->advmss && 562 tp->window_clamp + tp->advmss > maxwin) 563 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 564 565 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 566 tp->snd_cwnd_stamp = tcp_jiffies32; 567 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd, 568 (u32)TCP_INIT_CWND * tp->advmss); 569 } 570 571 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 572 static void tcp_clamp_window(struct sock *sk) 573 { 574 struct tcp_sock *tp = tcp_sk(sk); 575 struct inet_connection_sock *icsk = inet_csk(sk); 576 struct net *net = sock_net(sk); 577 578 icsk->icsk_ack.quick = 0; 579 580 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] && 581 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 582 !tcp_under_memory_pressure(sk) && 583 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 584 WRITE_ONCE(sk->sk_rcvbuf, 585 min(atomic_read(&sk->sk_rmem_alloc), 586 net->ipv4.sysctl_tcp_rmem[2])); 587 } 588 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 589 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 590 } 591 592 /* Initialize RCV_MSS value. 593 * RCV_MSS is an our guess about MSS used by the peer. 594 * We haven't any direct information about the MSS. 595 * It's better to underestimate the RCV_MSS rather than overestimate. 596 * Overestimations make us ACKing less frequently than needed. 597 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 598 */ 599 void tcp_initialize_rcv_mss(struct sock *sk) 600 { 601 const struct tcp_sock *tp = tcp_sk(sk); 602 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 603 604 hint = min(hint, tp->rcv_wnd / 2); 605 hint = min(hint, TCP_MSS_DEFAULT); 606 hint = max(hint, TCP_MIN_MSS); 607 608 inet_csk(sk)->icsk_ack.rcv_mss = hint; 609 } 610 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 611 612 /* Receiver "autotuning" code. 613 * 614 * The algorithm for RTT estimation w/o timestamps is based on 615 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 616 * <https://public.lanl.gov/radiant/pubs.html#DRS> 617 * 618 * More detail on this code can be found at 619 * <http://staff.psc.edu/jheffner/>, 620 * though this reference is out of date. A new paper 621 * is pending. 622 */ 623 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 624 { 625 u32 new_sample = tp->rcv_rtt_est.rtt_us; 626 long m = sample; 627 628 if (new_sample != 0) { 629 /* If we sample in larger samples in the non-timestamp 630 * case, we could grossly overestimate the RTT especially 631 * with chatty applications or bulk transfer apps which 632 * are stalled on filesystem I/O. 633 * 634 * Also, since we are only going for a minimum in the 635 * non-timestamp case, we do not smooth things out 636 * else with timestamps disabled convergence takes too 637 * long. 638 */ 639 if (!win_dep) { 640 m -= (new_sample >> 3); 641 new_sample += m; 642 } else { 643 m <<= 3; 644 if (m < new_sample) 645 new_sample = m; 646 } 647 } else { 648 /* No previous measure. */ 649 new_sample = m << 3; 650 } 651 652 tp->rcv_rtt_est.rtt_us = new_sample; 653 } 654 655 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 656 { 657 u32 delta_us; 658 659 if (tp->rcv_rtt_est.time == 0) 660 goto new_measure; 661 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 662 return; 663 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 664 if (!delta_us) 665 delta_us = 1; 666 tcp_rcv_rtt_update(tp, delta_us, 1); 667 668 new_measure: 669 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 670 tp->rcv_rtt_est.time = tp->tcp_mstamp; 671 } 672 673 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 674 const struct sk_buff *skb) 675 { 676 struct tcp_sock *tp = tcp_sk(sk); 677 678 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 679 return; 680 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 681 682 if (TCP_SKB_CB(skb)->end_seq - 683 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 684 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 685 u32 delta_us; 686 687 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 688 if (!delta) 689 delta = 1; 690 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 691 tcp_rcv_rtt_update(tp, delta_us, 0); 692 } 693 } 694 } 695 696 /* 697 * This function should be called every time data is copied to user space. 698 * It calculates the appropriate TCP receive buffer space. 699 */ 700 void tcp_rcv_space_adjust(struct sock *sk) 701 { 702 struct tcp_sock *tp = tcp_sk(sk); 703 u32 copied; 704 int time; 705 706 trace_tcp_rcv_space_adjust(sk); 707 708 tcp_mstamp_refresh(tp); 709 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 710 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 711 return; 712 713 /* Number of bytes copied to user in last RTT */ 714 copied = tp->copied_seq - tp->rcvq_space.seq; 715 if (copied <= tp->rcvq_space.space) 716 goto new_measure; 717 718 /* A bit of theory : 719 * copied = bytes received in previous RTT, our base window 720 * To cope with packet losses, we need a 2x factor 721 * To cope with slow start, and sender growing its cwin by 100 % 722 * every RTT, we need a 4x factor, because the ACK we are sending 723 * now is for the next RTT, not the current one : 724 * <prev RTT . ><current RTT .. ><next RTT .... > 725 */ 726 727 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 728 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 729 int rcvmem, rcvbuf; 730 u64 rcvwin, grow; 731 732 /* minimal window to cope with packet losses, assuming 733 * steady state. Add some cushion because of small variations. 734 */ 735 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 736 737 /* Accommodate for sender rate increase (eg. slow start) */ 738 grow = rcvwin * (copied - tp->rcvq_space.space); 739 do_div(grow, tp->rcvq_space.space); 740 rcvwin += (grow << 1); 741 742 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 743 while (tcp_win_from_space(sk, rcvmem) < tp->advmss) 744 rcvmem += 128; 745 746 do_div(rcvwin, tp->advmss); 747 rcvbuf = min_t(u64, rcvwin * rcvmem, 748 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 749 if (rcvbuf > sk->sk_rcvbuf) { 750 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 751 752 /* Make the window clamp follow along. */ 753 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 754 } 755 } 756 tp->rcvq_space.space = copied; 757 758 new_measure: 759 tp->rcvq_space.seq = tp->copied_seq; 760 tp->rcvq_space.time = tp->tcp_mstamp; 761 } 762 763 /* There is something which you must keep in mind when you analyze the 764 * behavior of the tp->ato delayed ack timeout interval. When a 765 * connection starts up, we want to ack as quickly as possible. The 766 * problem is that "good" TCP's do slow start at the beginning of data 767 * transmission. The means that until we send the first few ACK's the 768 * sender will sit on his end and only queue most of his data, because 769 * he can only send snd_cwnd unacked packets at any given time. For 770 * each ACK we send, he increments snd_cwnd and transmits more of his 771 * queue. -DaveM 772 */ 773 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 774 { 775 struct tcp_sock *tp = tcp_sk(sk); 776 struct inet_connection_sock *icsk = inet_csk(sk); 777 u32 now; 778 779 inet_csk_schedule_ack(sk); 780 781 tcp_measure_rcv_mss(sk, skb); 782 783 tcp_rcv_rtt_measure(tp); 784 785 now = tcp_jiffies32; 786 787 if (!icsk->icsk_ack.ato) { 788 /* The _first_ data packet received, initialize 789 * delayed ACK engine. 790 */ 791 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 792 icsk->icsk_ack.ato = TCP_ATO_MIN; 793 } else { 794 int m = now - icsk->icsk_ack.lrcvtime; 795 796 if (m <= TCP_ATO_MIN / 2) { 797 /* The fastest case is the first. */ 798 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 799 } else if (m < icsk->icsk_ack.ato) { 800 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 801 if (icsk->icsk_ack.ato > icsk->icsk_rto) 802 icsk->icsk_ack.ato = icsk->icsk_rto; 803 } else if (m > icsk->icsk_rto) { 804 /* Too long gap. Apparently sender failed to 805 * restart window, so that we send ACKs quickly. 806 */ 807 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 808 sk_mem_reclaim(sk); 809 } 810 } 811 icsk->icsk_ack.lrcvtime = now; 812 813 tcp_ecn_check_ce(sk, skb); 814 815 if (skb->len >= 128) 816 tcp_grow_window(sk, skb, true); 817 } 818 819 /* Called to compute a smoothed rtt estimate. The data fed to this 820 * routine either comes from timestamps, or from segments that were 821 * known _not_ to have been retransmitted [see Karn/Partridge 822 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 823 * piece by Van Jacobson. 824 * NOTE: the next three routines used to be one big routine. 825 * To save cycles in the RFC 1323 implementation it was better to break 826 * it up into three procedures. -- erics 827 */ 828 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 829 { 830 struct tcp_sock *tp = tcp_sk(sk); 831 long m = mrtt_us; /* RTT */ 832 u32 srtt = tp->srtt_us; 833 834 /* The following amusing code comes from Jacobson's 835 * article in SIGCOMM '88. Note that rtt and mdev 836 * are scaled versions of rtt and mean deviation. 837 * This is designed to be as fast as possible 838 * m stands for "measurement". 839 * 840 * On a 1990 paper the rto value is changed to: 841 * RTO = rtt + 4 * mdev 842 * 843 * Funny. This algorithm seems to be very broken. 844 * These formulae increase RTO, when it should be decreased, increase 845 * too slowly, when it should be increased quickly, decrease too quickly 846 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 847 * does not matter how to _calculate_ it. Seems, it was trap 848 * that VJ failed to avoid. 8) 849 */ 850 if (srtt != 0) { 851 m -= (srtt >> 3); /* m is now error in rtt est */ 852 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 853 if (m < 0) { 854 m = -m; /* m is now abs(error) */ 855 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 856 /* This is similar to one of Eifel findings. 857 * Eifel blocks mdev updates when rtt decreases. 858 * This solution is a bit different: we use finer gain 859 * for mdev in this case (alpha*beta). 860 * Like Eifel it also prevents growth of rto, 861 * but also it limits too fast rto decreases, 862 * happening in pure Eifel. 863 */ 864 if (m > 0) 865 m >>= 3; 866 } else { 867 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 868 } 869 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 870 if (tp->mdev_us > tp->mdev_max_us) { 871 tp->mdev_max_us = tp->mdev_us; 872 if (tp->mdev_max_us > tp->rttvar_us) 873 tp->rttvar_us = tp->mdev_max_us; 874 } 875 if (after(tp->snd_una, tp->rtt_seq)) { 876 if (tp->mdev_max_us < tp->rttvar_us) 877 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 878 tp->rtt_seq = tp->snd_nxt; 879 tp->mdev_max_us = tcp_rto_min_us(sk); 880 881 tcp_bpf_rtt(sk); 882 } 883 } else { 884 /* no previous measure. */ 885 srtt = m << 3; /* take the measured time to be rtt */ 886 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 887 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 888 tp->mdev_max_us = tp->rttvar_us; 889 tp->rtt_seq = tp->snd_nxt; 890 891 tcp_bpf_rtt(sk); 892 } 893 tp->srtt_us = max(1U, srtt); 894 } 895 896 static void tcp_update_pacing_rate(struct sock *sk) 897 { 898 const struct tcp_sock *tp = tcp_sk(sk); 899 u64 rate; 900 901 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 902 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 903 904 /* current rate is (cwnd * mss) / srtt 905 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 906 * In Congestion Avoidance phase, set it to 120 % the current rate. 907 * 908 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 909 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 910 * end of slow start and should slow down. 911 */ 912 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 913 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio; 914 else 915 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio; 916 917 rate *= max(tp->snd_cwnd, tp->packets_out); 918 919 if (likely(tp->srtt_us)) 920 do_div(rate, tp->srtt_us); 921 922 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 923 * without any lock. We want to make sure compiler wont store 924 * intermediate values in this location. 925 */ 926 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 927 sk->sk_max_pacing_rate)); 928 } 929 930 /* Calculate rto without backoff. This is the second half of Van Jacobson's 931 * routine referred to above. 932 */ 933 static void tcp_set_rto(struct sock *sk) 934 { 935 const struct tcp_sock *tp = tcp_sk(sk); 936 /* Old crap is replaced with new one. 8) 937 * 938 * More seriously: 939 * 1. If rtt variance happened to be less 50msec, it is hallucination. 940 * It cannot be less due to utterly erratic ACK generation made 941 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 942 * to do with delayed acks, because at cwnd>2 true delack timeout 943 * is invisible. Actually, Linux-2.4 also generates erratic 944 * ACKs in some circumstances. 945 */ 946 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 947 948 /* 2. Fixups made earlier cannot be right. 949 * If we do not estimate RTO correctly without them, 950 * all the algo is pure shit and should be replaced 951 * with correct one. It is exactly, which we pretend to do. 952 */ 953 954 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 955 * guarantees that rto is higher. 956 */ 957 tcp_bound_rto(sk); 958 } 959 960 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 961 { 962 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 963 964 if (!cwnd) 965 cwnd = TCP_INIT_CWND; 966 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 967 } 968 969 struct tcp_sacktag_state { 970 /* Timestamps for earliest and latest never-retransmitted segment 971 * that was SACKed. RTO needs the earliest RTT to stay conservative, 972 * but congestion control should still get an accurate delay signal. 973 */ 974 u64 first_sackt; 975 u64 last_sackt; 976 u32 reord; 977 u32 sack_delivered; 978 int flag; 979 unsigned int mss_now; 980 struct rate_sample *rate; 981 }; 982 983 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery 984 * and spurious retransmission information if this DSACK is unlikely caused by 985 * sender's action: 986 * - DSACKed sequence range is larger than maximum receiver's window. 987 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs. 988 */ 989 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq, 990 u32 end_seq, struct tcp_sacktag_state *state) 991 { 992 u32 seq_len, dup_segs = 1; 993 994 if (!before(start_seq, end_seq)) 995 return 0; 996 997 seq_len = end_seq - start_seq; 998 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */ 999 if (seq_len > tp->max_window) 1000 return 0; 1001 if (seq_len > tp->mss_cache) 1002 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache); 1003 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq) 1004 state->flag |= FLAG_DSACK_TLP; 1005 1006 tp->dsack_dups += dup_segs; 1007 /* Skip the DSACK if dup segs weren't retransmitted by sender */ 1008 if (tp->dsack_dups > tp->total_retrans) 1009 return 0; 1010 1011 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 1012 /* We increase the RACK ordering window in rounds where we receive 1013 * DSACKs that may have been due to reordering causing RACK to trigger 1014 * a spurious fast recovery. Thus RACK ignores DSACKs that happen 1015 * without having seen reordering, or that match TLP probes (TLP 1016 * is timer-driven, not triggered by RACK). 1017 */ 1018 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP)) 1019 tp->rack.dsack_seen = 1; 1020 1021 state->flag |= FLAG_DSACKING_ACK; 1022 /* A spurious retransmission is delivered */ 1023 state->sack_delivered += dup_segs; 1024 1025 return dup_segs; 1026 } 1027 1028 /* It's reordering when higher sequence was delivered (i.e. sacked) before 1029 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 1030 * distance is approximated in full-mss packet distance ("reordering"). 1031 */ 1032 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 1033 const int ts) 1034 { 1035 struct tcp_sock *tp = tcp_sk(sk); 1036 const u32 mss = tp->mss_cache; 1037 u32 fack, metric; 1038 1039 fack = tcp_highest_sack_seq(tp); 1040 if (!before(low_seq, fack)) 1041 return; 1042 1043 metric = fack - low_seq; 1044 if ((metric > tp->reordering * mss) && mss) { 1045 #if FASTRETRANS_DEBUG > 1 1046 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 1047 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 1048 tp->reordering, 1049 0, 1050 tp->sacked_out, 1051 tp->undo_marker ? tp->undo_retrans : 0); 1052 #endif 1053 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 1054 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 1055 } 1056 1057 /* This exciting event is worth to be remembered. 8) */ 1058 tp->reord_seen++; 1059 NET_INC_STATS(sock_net(sk), 1060 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 1061 } 1062 1063 /* This must be called before lost_out or retrans_out are updated 1064 * on a new loss, because we want to know if all skbs previously 1065 * known to be lost have already been retransmitted, indicating 1066 * that this newly lost skb is our next skb to retransmit. 1067 */ 1068 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 1069 { 1070 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) || 1071 (tp->retransmit_skb_hint && 1072 before(TCP_SKB_CB(skb)->seq, 1073 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))) 1074 tp->retransmit_skb_hint = skb; 1075 } 1076 1077 /* Sum the number of packets on the wire we have marked as lost, and 1078 * notify the congestion control module that the given skb was marked lost. 1079 */ 1080 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb) 1081 { 1082 tp->lost += tcp_skb_pcount(skb); 1083 } 1084 1085 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb) 1086 { 1087 __u8 sacked = TCP_SKB_CB(skb)->sacked; 1088 struct tcp_sock *tp = tcp_sk(sk); 1089 1090 if (sacked & TCPCB_SACKED_ACKED) 1091 return; 1092 1093 tcp_verify_retransmit_hint(tp, skb); 1094 if (sacked & TCPCB_LOST) { 1095 if (sacked & TCPCB_SACKED_RETRANS) { 1096 /* Account for retransmits that are lost again */ 1097 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1098 tp->retrans_out -= tcp_skb_pcount(skb); 1099 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT, 1100 tcp_skb_pcount(skb)); 1101 tcp_notify_skb_loss_event(tp, skb); 1102 } 1103 } else { 1104 tp->lost_out += tcp_skb_pcount(skb); 1105 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1106 tcp_notify_skb_loss_event(tp, skb); 1107 } 1108 } 1109 1110 /* Updates the delivered and delivered_ce counts */ 1111 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered, 1112 bool ece_ack) 1113 { 1114 tp->delivered += delivered; 1115 if (ece_ack) 1116 tp->delivered_ce += delivered; 1117 } 1118 1119 /* This procedure tags the retransmission queue when SACKs arrive. 1120 * 1121 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1122 * Packets in queue with these bits set are counted in variables 1123 * sacked_out, retrans_out and lost_out, correspondingly. 1124 * 1125 * Valid combinations are: 1126 * Tag InFlight Description 1127 * 0 1 - orig segment is in flight. 1128 * S 0 - nothing flies, orig reached receiver. 1129 * L 0 - nothing flies, orig lost by net. 1130 * R 2 - both orig and retransmit are in flight. 1131 * L|R 1 - orig is lost, retransmit is in flight. 1132 * S|R 1 - orig reached receiver, retrans is still in flight. 1133 * (L|S|R is logically valid, it could occur when L|R is sacked, 1134 * but it is equivalent to plain S and code short-curcuits it to S. 1135 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1136 * 1137 * These 6 states form finite state machine, controlled by the following events: 1138 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1139 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1140 * 3. Loss detection event of two flavors: 1141 * A. Scoreboard estimator decided the packet is lost. 1142 * A'. Reno "three dupacks" marks head of queue lost. 1143 * B. SACK arrives sacking SND.NXT at the moment, when the 1144 * segment was retransmitted. 1145 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1146 * 1147 * It is pleasant to note, that state diagram turns out to be commutative, 1148 * so that we are allowed not to be bothered by order of our actions, 1149 * when multiple events arrive simultaneously. (see the function below). 1150 * 1151 * Reordering detection. 1152 * -------------------- 1153 * Reordering metric is maximal distance, which a packet can be displaced 1154 * in packet stream. With SACKs we can estimate it: 1155 * 1156 * 1. SACK fills old hole and the corresponding segment was not 1157 * ever retransmitted -> reordering. Alas, we cannot use it 1158 * when segment was retransmitted. 1159 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1160 * for retransmitted and already SACKed segment -> reordering.. 1161 * Both of these heuristics are not used in Loss state, when we cannot 1162 * account for retransmits accurately. 1163 * 1164 * SACK block validation. 1165 * ---------------------- 1166 * 1167 * SACK block range validation checks that the received SACK block fits to 1168 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1169 * Note that SND.UNA is not included to the range though being valid because 1170 * it means that the receiver is rather inconsistent with itself reporting 1171 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1172 * perfectly valid, however, in light of RFC2018 which explicitly states 1173 * that "SACK block MUST reflect the newest segment. Even if the newest 1174 * segment is going to be discarded ...", not that it looks very clever 1175 * in case of head skb. Due to potentional receiver driven attacks, we 1176 * choose to avoid immediate execution of a walk in write queue due to 1177 * reneging and defer head skb's loss recovery to standard loss recovery 1178 * procedure that will eventually trigger (nothing forbids us doing this). 1179 * 1180 * Implements also blockage to start_seq wrap-around. Problem lies in the 1181 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1182 * there's no guarantee that it will be before snd_nxt (n). The problem 1183 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1184 * wrap (s_w): 1185 * 1186 * <- outs wnd -> <- wrapzone -> 1187 * u e n u_w e_w s n_w 1188 * | | | | | | | 1189 * |<------------+------+----- TCP seqno space --------------+---------->| 1190 * ...-- <2^31 ->| |<--------... 1191 * ...---- >2^31 ------>| |<--------... 1192 * 1193 * Current code wouldn't be vulnerable but it's better still to discard such 1194 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1195 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1196 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1197 * equal to the ideal case (infinite seqno space without wrap caused issues). 1198 * 1199 * With D-SACK the lower bound is extended to cover sequence space below 1200 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1201 * again, D-SACK block must not to go across snd_una (for the same reason as 1202 * for the normal SACK blocks, explained above). But there all simplicity 1203 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1204 * fully below undo_marker they do not affect behavior in anyway and can 1205 * therefore be safely ignored. In rare cases (which are more or less 1206 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1207 * fragmentation and packet reordering past skb's retransmission. To consider 1208 * them correctly, the acceptable range must be extended even more though 1209 * the exact amount is rather hard to quantify. However, tp->max_window can 1210 * be used as an exaggerated estimate. 1211 */ 1212 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1213 u32 start_seq, u32 end_seq) 1214 { 1215 /* Too far in future, or reversed (interpretation is ambiguous) */ 1216 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1217 return false; 1218 1219 /* Nasty start_seq wrap-around check (see comments above) */ 1220 if (!before(start_seq, tp->snd_nxt)) 1221 return false; 1222 1223 /* In outstanding window? ...This is valid exit for D-SACKs too. 1224 * start_seq == snd_una is non-sensical (see comments above) 1225 */ 1226 if (after(start_seq, tp->snd_una)) 1227 return true; 1228 1229 if (!is_dsack || !tp->undo_marker) 1230 return false; 1231 1232 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1233 if (after(end_seq, tp->snd_una)) 1234 return false; 1235 1236 if (!before(start_seq, tp->undo_marker)) 1237 return true; 1238 1239 /* Too old */ 1240 if (!after(end_seq, tp->undo_marker)) 1241 return false; 1242 1243 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1244 * start_seq < undo_marker and end_seq >= undo_marker. 1245 */ 1246 return !before(start_seq, end_seq - tp->max_window); 1247 } 1248 1249 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1250 struct tcp_sack_block_wire *sp, int num_sacks, 1251 u32 prior_snd_una, struct tcp_sacktag_state *state) 1252 { 1253 struct tcp_sock *tp = tcp_sk(sk); 1254 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1255 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1256 u32 dup_segs; 1257 1258 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1259 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1260 } else if (num_sacks > 1) { 1261 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1262 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1263 1264 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1)) 1265 return false; 1266 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV); 1267 } else { 1268 return false; 1269 } 1270 1271 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state); 1272 if (!dup_segs) { /* Skip dubious DSACK */ 1273 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS); 1274 return false; 1275 } 1276 1277 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs); 1278 1279 /* D-SACK for already forgotten data... Do dumb counting. */ 1280 if (tp->undo_marker && tp->undo_retrans > 0 && 1281 !after(end_seq_0, prior_snd_una) && 1282 after(end_seq_0, tp->undo_marker)) 1283 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs); 1284 1285 return true; 1286 } 1287 1288 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1289 * the incoming SACK may not exactly match but we can find smaller MSS 1290 * aligned portion of it that matches. Therefore we might need to fragment 1291 * which may fail and creates some hassle (caller must handle error case 1292 * returns). 1293 * 1294 * FIXME: this could be merged to shift decision code 1295 */ 1296 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1297 u32 start_seq, u32 end_seq) 1298 { 1299 int err; 1300 bool in_sack; 1301 unsigned int pkt_len; 1302 unsigned int mss; 1303 1304 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1305 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1306 1307 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1308 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1309 mss = tcp_skb_mss(skb); 1310 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1311 1312 if (!in_sack) { 1313 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1314 if (pkt_len < mss) 1315 pkt_len = mss; 1316 } else { 1317 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1318 if (pkt_len < mss) 1319 return -EINVAL; 1320 } 1321 1322 /* Round if necessary so that SACKs cover only full MSSes 1323 * and/or the remaining small portion (if present) 1324 */ 1325 if (pkt_len > mss) { 1326 unsigned int new_len = (pkt_len / mss) * mss; 1327 if (!in_sack && new_len < pkt_len) 1328 new_len += mss; 1329 pkt_len = new_len; 1330 } 1331 1332 if (pkt_len >= skb->len && !in_sack) 1333 return 0; 1334 1335 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1336 pkt_len, mss, GFP_ATOMIC); 1337 if (err < 0) 1338 return err; 1339 } 1340 1341 return in_sack; 1342 } 1343 1344 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1345 static u8 tcp_sacktag_one(struct sock *sk, 1346 struct tcp_sacktag_state *state, u8 sacked, 1347 u32 start_seq, u32 end_seq, 1348 int dup_sack, int pcount, 1349 u64 xmit_time) 1350 { 1351 struct tcp_sock *tp = tcp_sk(sk); 1352 1353 /* Account D-SACK for retransmitted packet. */ 1354 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1355 if (tp->undo_marker && tp->undo_retrans > 0 && 1356 after(end_seq, tp->undo_marker)) 1357 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount); 1358 if ((sacked & TCPCB_SACKED_ACKED) && 1359 before(start_seq, state->reord)) 1360 state->reord = start_seq; 1361 } 1362 1363 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1364 if (!after(end_seq, tp->snd_una)) 1365 return sacked; 1366 1367 if (!(sacked & TCPCB_SACKED_ACKED)) { 1368 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1369 1370 if (sacked & TCPCB_SACKED_RETRANS) { 1371 /* If the segment is not tagged as lost, 1372 * we do not clear RETRANS, believing 1373 * that retransmission is still in flight. 1374 */ 1375 if (sacked & TCPCB_LOST) { 1376 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1377 tp->lost_out -= pcount; 1378 tp->retrans_out -= pcount; 1379 } 1380 } else { 1381 if (!(sacked & TCPCB_RETRANS)) { 1382 /* New sack for not retransmitted frame, 1383 * which was in hole. It is reordering. 1384 */ 1385 if (before(start_seq, 1386 tcp_highest_sack_seq(tp)) && 1387 before(start_seq, state->reord)) 1388 state->reord = start_seq; 1389 1390 if (!after(end_seq, tp->high_seq)) 1391 state->flag |= FLAG_ORIG_SACK_ACKED; 1392 if (state->first_sackt == 0) 1393 state->first_sackt = xmit_time; 1394 state->last_sackt = xmit_time; 1395 } 1396 1397 if (sacked & TCPCB_LOST) { 1398 sacked &= ~TCPCB_LOST; 1399 tp->lost_out -= pcount; 1400 } 1401 } 1402 1403 sacked |= TCPCB_SACKED_ACKED; 1404 state->flag |= FLAG_DATA_SACKED; 1405 tp->sacked_out += pcount; 1406 /* Out-of-order packets delivered */ 1407 state->sack_delivered += pcount; 1408 1409 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1410 if (tp->lost_skb_hint && 1411 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1412 tp->lost_cnt_hint += pcount; 1413 } 1414 1415 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1416 * frames and clear it. undo_retrans is decreased above, L|R frames 1417 * are accounted above as well. 1418 */ 1419 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1420 sacked &= ~TCPCB_SACKED_RETRANS; 1421 tp->retrans_out -= pcount; 1422 } 1423 1424 return sacked; 1425 } 1426 1427 /* Shift newly-SACKed bytes from this skb to the immediately previous 1428 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1429 */ 1430 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1431 struct sk_buff *skb, 1432 struct tcp_sacktag_state *state, 1433 unsigned int pcount, int shifted, int mss, 1434 bool dup_sack) 1435 { 1436 struct tcp_sock *tp = tcp_sk(sk); 1437 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1438 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1439 1440 BUG_ON(!pcount); 1441 1442 /* Adjust counters and hints for the newly sacked sequence 1443 * range but discard the return value since prev is already 1444 * marked. We must tag the range first because the seq 1445 * advancement below implicitly advances 1446 * tcp_highest_sack_seq() when skb is highest_sack. 1447 */ 1448 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1449 start_seq, end_seq, dup_sack, pcount, 1450 tcp_skb_timestamp_us(skb)); 1451 tcp_rate_skb_delivered(sk, skb, state->rate); 1452 1453 if (skb == tp->lost_skb_hint) 1454 tp->lost_cnt_hint += pcount; 1455 1456 TCP_SKB_CB(prev)->end_seq += shifted; 1457 TCP_SKB_CB(skb)->seq += shifted; 1458 1459 tcp_skb_pcount_add(prev, pcount); 1460 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1461 tcp_skb_pcount_add(skb, -pcount); 1462 1463 /* When we're adding to gso_segs == 1, gso_size will be zero, 1464 * in theory this shouldn't be necessary but as long as DSACK 1465 * code can come after this skb later on it's better to keep 1466 * setting gso_size to something. 1467 */ 1468 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1469 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1470 1471 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1472 if (tcp_skb_pcount(skb) <= 1) 1473 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1474 1475 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1476 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1477 1478 if (skb->len > 0) { 1479 BUG_ON(!tcp_skb_pcount(skb)); 1480 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1481 return false; 1482 } 1483 1484 /* Whole SKB was eaten :-) */ 1485 1486 if (skb == tp->retransmit_skb_hint) 1487 tp->retransmit_skb_hint = prev; 1488 if (skb == tp->lost_skb_hint) { 1489 tp->lost_skb_hint = prev; 1490 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1491 } 1492 1493 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1494 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1495 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1496 TCP_SKB_CB(prev)->end_seq++; 1497 1498 if (skb == tcp_highest_sack(sk)) 1499 tcp_advance_highest_sack(sk, skb); 1500 1501 tcp_skb_collapse_tstamp(prev, skb); 1502 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1503 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1504 1505 tcp_rtx_queue_unlink_and_free(skb, sk); 1506 1507 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1508 1509 return true; 1510 } 1511 1512 /* I wish gso_size would have a bit more sane initialization than 1513 * something-or-zero which complicates things 1514 */ 1515 static int tcp_skb_seglen(const struct sk_buff *skb) 1516 { 1517 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1518 } 1519 1520 /* Shifting pages past head area doesn't work */ 1521 static int skb_can_shift(const struct sk_buff *skb) 1522 { 1523 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1524 } 1525 1526 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1527 int pcount, int shiftlen) 1528 { 1529 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1530 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1531 * to make sure not storing more than 65535 * 8 bytes per skb, 1532 * even if current MSS is bigger. 1533 */ 1534 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1535 return 0; 1536 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1537 return 0; 1538 return skb_shift(to, from, shiftlen); 1539 } 1540 1541 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1542 * skb. 1543 */ 1544 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1545 struct tcp_sacktag_state *state, 1546 u32 start_seq, u32 end_seq, 1547 bool dup_sack) 1548 { 1549 struct tcp_sock *tp = tcp_sk(sk); 1550 struct sk_buff *prev; 1551 int mss; 1552 int pcount = 0; 1553 int len; 1554 int in_sack; 1555 1556 /* Normally R but no L won't result in plain S */ 1557 if (!dup_sack && 1558 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1559 goto fallback; 1560 if (!skb_can_shift(skb)) 1561 goto fallback; 1562 /* This frame is about to be dropped (was ACKed). */ 1563 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1564 goto fallback; 1565 1566 /* Can only happen with delayed DSACK + discard craziness */ 1567 prev = skb_rb_prev(skb); 1568 if (!prev) 1569 goto fallback; 1570 1571 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1572 goto fallback; 1573 1574 if (!tcp_skb_can_collapse(prev, skb)) 1575 goto fallback; 1576 1577 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1578 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1579 1580 if (in_sack) { 1581 len = skb->len; 1582 pcount = tcp_skb_pcount(skb); 1583 mss = tcp_skb_seglen(skb); 1584 1585 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1586 * drop this restriction as unnecessary 1587 */ 1588 if (mss != tcp_skb_seglen(prev)) 1589 goto fallback; 1590 } else { 1591 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1592 goto noop; 1593 /* CHECKME: This is non-MSS split case only?, this will 1594 * cause skipped skbs due to advancing loop btw, original 1595 * has that feature too 1596 */ 1597 if (tcp_skb_pcount(skb) <= 1) 1598 goto noop; 1599 1600 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1601 if (!in_sack) { 1602 /* TODO: head merge to next could be attempted here 1603 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1604 * though it might not be worth of the additional hassle 1605 * 1606 * ...we can probably just fallback to what was done 1607 * previously. We could try merging non-SACKed ones 1608 * as well but it probably isn't going to buy off 1609 * because later SACKs might again split them, and 1610 * it would make skb timestamp tracking considerably 1611 * harder problem. 1612 */ 1613 goto fallback; 1614 } 1615 1616 len = end_seq - TCP_SKB_CB(skb)->seq; 1617 BUG_ON(len < 0); 1618 BUG_ON(len > skb->len); 1619 1620 /* MSS boundaries should be honoured or else pcount will 1621 * severely break even though it makes things bit trickier. 1622 * Optimize common case to avoid most of the divides 1623 */ 1624 mss = tcp_skb_mss(skb); 1625 1626 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1627 * drop this restriction as unnecessary 1628 */ 1629 if (mss != tcp_skb_seglen(prev)) 1630 goto fallback; 1631 1632 if (len == mss) { 1633 pcount = 1; 1634 } else if (len < mss) { 1635 goto noop; 1636 } else { 1637 pcount = len / mss; 1638 len = pcount * mss; 1639 } 1640 } 1641 1642 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1643 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1644 goto fallback; 1645 1646 if (!tcp_skb_shift(prev, skb, pcount, len)) 1647 goto fallback; 1648 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1649 goto out; 1650 1651 /* Hole filled allows collapsing with the next as well, this is very 1652 * useful when hole on every nth skb pattern happens 1653 */ 1654 skb = skb_rb_next(prev); 1655 if (!skb) 1656 goto out; 1657 1658 if (!skb_can_shift(skb) || 1659 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1660 (mss != tcp_skb_seglen(skb))) 1661 goto out; 1662 1663 if (!tcp_skb_can_collapse(prev, skb)) 1664 goto out; 1665 len = skb->len; 1666 pcount = tcp_skb_pcount(skb); 1667 if (tcp_skb_shift(prev, skb, pcount, len)) 1668 tcp_shifted_skb(sk, prev, skb, state, pcount, 1669 len, mss, 0); 1670 1671 out: 1672 return prev; 1673 1674 noop: 1675 return skb; 1676 1677 fallback: 1678 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1679 return NULL; 1680 } 1681 1682 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1683 struct tcp_sack_block *next_dup, 1684 struct tcp_sacktag_state *state, 1685 u32 start_seq, u32 end_seq, 1686 bool dup_sack_in) 1687 { 1688 struct tcp_sock *tp = tcp_sk(sk); 1689 struct sk_buff *tmp; 1690 1691 skb_rbtree_walk_from(skb) { 1692 int in_sack = 0; 1693 bool dup_sack = dup_sack_in; 1694 1695 /* queue is in-order => we can short-circuit the walk early */ 1696 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1697 break; 1698 1699 if (next_dup && 1700 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1701 in_sack = tcp_match_skb_to_sack(sk, skb, 1702 next_dup->start_seq, 1703 next_dup->end_seq); 1704 if (in_sack > 0) 1705 dup_sack = true; 1706 } 1707 1708 /* skb reference here is a bit tricky to get right, since 1709 * shifting can eat and free both this skb and the next, 1710 * so not even _safe variant of the loop is enough. 1711 */ 1712 if (in_sack <= 0) { 1713 tmp = tcp_shift_skb_data(sk, skb, state, 1714 start_seq, end_seq, dup_sack); 1715 if (tmp) { 1716 if (tmp != skb) { 1717 skb = tmp; 1718 continue; 1719 } 1720 1721 in_sack = 0; 1722 } else { 1723 in_sack = tcp_match_skb_to_sack(sk, skb, 1724 start_seq, 1725 end_seq); 1726 } 1727 } 1728 1729 if (unlikely(in_sack < 0)) 1730 break; 1731 1732 if (in_sack) { 1733 TCP_SKB_CB(skb)->sacked = 1734 tcp_sacktag_one(sk, 1735 state, 1736 TCP_SKB_CB(skb)->sacked, 1737 TCP_SKB_CB(skb)->seq, 1738 TCP_SKB_CB(skb)->end_seq, 1739 dup_sack, 1740 tcp_skb_pcount(skb), 1741 tcp_skb_timestamp_us(skb)); 1742 tcp_rate_skb_delivered(sk, skb, state->rate); 1743 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1744 list_del_init(&skb->tcp_tsorted_anchor); 1745 1746 if (!before(TCP_SKB_CB(skb)->seq, 1747 tcp_highest_sack_seq(tp))) 1748 tcp_advance_highest_sack(sk, skb); 1749 } 1750 } 1751 return skb; 1752 } 1753 1754 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1755 { 1756 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1757 struct sk_buff *skb; 1758 1759 while (*p) { 1760 parent = *p; 1761 skb = rb_to_skb(parent); 1762 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1763 p = &parent->rb_left; 1764 continue; 1765 } 1766 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1767 p = &parent->rb_right; 1768 continue; 1769 } 1770 return skb; 1771 } 1772 return NULL; 1773 } 1774 1775 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1776 u32 skip_to_seq) 1777 { 1778 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1779 return skb; 1780 1781 return tcp_sacktag_bsearch(sk, skip_to_seq); 1782 } 1783 1784 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1785 struct sock *sk, 1786 struct tcp_sack_block *next_dup, 1787 struct tcp_sacktag_state *state, 1788 u32 skip_to_seq) 1789 { 1790 if (!next_dup) 1791 return skb; 1792 1793 if (before(next_dup->start_seq, skip_to_seq)) { 1794 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1795 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1796 next_dup->start_seq, next_dup->end_seq, 1797 1); 1798 } 1799 1800 return skb; 1801 } 1802 1803 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1804 { 1805 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1806 } 1807 1808 static int 1809 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1810 u32 prior_snd_una, struct tcp_sacktag_state *state) 1811 { 1812 struct tcp_sock *tp = tcp_sk(sk); 1813 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1814 TCP_SKB_CB(ack_skb)->sacked); 1815 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1816 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1817 struct tcp_sack_block *cache; 1818 struct sk_buff *skb; 1819 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1820 int used_sacks; 1821 bool found_dup_sack = false; 1822 int i, j; 1823 int first_sack_index; 1824 1825 state->flag = 0; 1826 state->reord = tp->snd_nxt; 1827 1828 if (!tp->sacked_out) 1829 tcp_highest_sack_reset(sk); 1830 1831 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1832 num_sacks, prior_snd_una, state); 1833 1834 /* Eliminate too old ACKs, but take into 1835 * account more or less fresh ones, they can 1836 * contain valid SACK info. 1837 */ 1838 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1839 return 0; 1840 1841 if (!tp->packets_out) 1842 goto out; 1843 1844 used_sacks = 0; 1845 first_sack_index = 0; 1846 for (i = 0; i < num_sacks; i++) { 1847 bool dup_sack = !i && found_dup_sack; 1848 1849 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1850 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1851 1852 if (!tcp_is_sackblock_valid(tp, dup_sack, 1853 sp[used_sacks].start_seq, 1854 sp[used_sacks].end_seq)) { 1855 int mib_idx; 1856 1857 if (dup_sack) { 1858 if (!tp->undo_marker) 1859 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1860 else 1861 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1862 } else { 1863 /* Don't count olds caused by ACK reordering */ 1864 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1865 !after(sp[used_sacks].end_seq, tp->snd_una)) 1866 continue; 1867 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1868 } 1869 1870 NET_INC_STATS(sock_net(sk), mib_idx); 1871 if (i == 0) 1872 first_sack_index = -1; 1873 continue; 1874 } 1875 1876 /* Ignore very old stuff early */ 1877 if (!after(sp[used_sacks].end_seq, prior_snd_una)) { 1878 if (i == 0) 1879 first_sack_index = -1; 1880 continue; 1881 } 1882 1883 used_sacks++; 1884 } 1885 1886 /* order SACK blocks to allow in order walk of the retrans queue */ 1887 for (i = used_sacks - 1; i > 0; i--) { 1888 for (j = 0; j < i; j++) { 1889 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1890 swap(sp[j], sp[j + 1]); 1891 1892 /* Track where the first SACK block goes to */ 1893 if (j == first_sack_index) 1894 first_sack_index = j + 1; 1895 } 1896 } 1897 } 1898 1899 state->mss_now = tcp_current_mss(sk); 1900 skb = NULL; 1901 i = 0; 1902 1903 if (!tp->sacked_out) { 1904 /* It's already past, so skip checking against it */ 1905 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1906 } else { 1907 cache = tp->recv_sack_cache; 1908 /* Skip empty blocks in at head of the cache */ 1909 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1910 !cache->end_seq) 1911 cache++; 1912 } 1913 1914 while (i < used_sacks) { 1915 u32 start_seq = sp[i].start_seq; 1916 u32 end_seq = sp[i].end_seq; 1917 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1918 struct tcp_sack_block *next_dup = NULL; 1919 1920 if (found_dup_sack && ((i + 1) == first_sack_index)) 1921 next_dup = &sp[i + 1]; 1922 1923 /* Skip too early cached blocks */ 1924 while (tcp_sack_cache_ok(tp, cache) && 1925 !before(start_seq, cache->end_seq)) 1926 cache++; 1927 1928 /* Can skip some work by looking recv_sack_cache? */ 1929 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1930 after(end_seq, cache->start_seq)) { 1931 1932 /* Head todo? */ 1933 if (before(start_seq, cache->start_seq)) { 1934 skb = tcp_sacktag_skip(skb, sk, start_seq); 1935 skb = tcp_sacktag_walk(skb, sk, next_dup, 1936 state, 1937 start_seq, 1938 cache->start_seq, 1939 dup_sack); 1940 } 1941 1942 /* Rest of the block already fully processed? */ 1943 if (!after(end_seq, cache->end_seq)) 1944 goto advance_sp; 1945 1946 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1947 state, 1948 cache->end_seq); 1949 1950 /* ...tail remains todo... */ 1951 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1952 /* ...but better entrypoint exists! */ 1953 skb = tcp_highest_sack(sk); 1954 if (!skb) 1955 break; 1956 cache++; 1957 goto walk; 1958 } 1959 1960 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 1961 /* Check overlap against next cached too (past this one already) */ 1962 cache++; 1963 continue; 1964 } 1965 1966 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1967 skb = tcp_highest_sack(sk); 1968 if (!skb) 1969 break; 1970 } 1971 skb = tcp_sacktag_skip(skb, sk, start_seq); 1972 1973 walk: 1974 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1975 start_seq, end_seq, dup_sack); 1976 1977 advance_sp: 1978 i++; 1979 } 1980 1981 /* Clear the head of the cache sack blocks so we can skip it next time */ 1982 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1983 tp->recv_sack_cache[i].start_seq = 0; 1984 tp->recv_sack_cache[i].end_seq = 0; 1985 } 1986 for (j = 0; j < used_sacks; j++) 1987 tp->recv_sack_cache[i++] = sp[j]; 1988 1989 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 1990 tcp_check_sack_reordering(sk, state->reord, 0); 1991 1992 tcp_verify_left_out(tp); 1993 out: 1994 1995 #if FASTRETRANS_DEBUG > 0 1996 WARN_ON((int)tp->sacked_out < 0); 1997 WARN_ON((int)tp->lost_out < 0); 1998 WARN_ON((int)tp->retrans_out < 0); 1999 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 2000 #endif 2001 return state->flag; 2002 } 2003 2004 /* Limits sacked_out so that sum with lost_out isn't ever larger than 2005 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 2006 */ 2007 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 2008 { 2009 u32 holes; 2010 2011 holes = max(tp->lost_out, 1U); 2012 holes = min(holes, tp->packets_out); 2013 2014 if ((tp->sacked_out + holes) > tp->packets_out) { 2015 tp->sacked_out = tp->packets_out - holes; 2016 return true; 2017 } 2018 return false; 2019 } 2020 2021 /* If we receive more dupacks than we expected counting segments 2022 * in assumption of absent reordering, interpret this as reordering. 2023 * The only another reason could be bug in receiver TCP. 2024 */ 2025 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 2026 { 2027 struct tcp_sock *tp = tcp_sk(sk); 2028 2029 if (!tcp_limit_reno_sacked(tp)) 2030 return; 2031 2032 tp->reordering = min_t(u32, tp->packets_out + addend, 2033 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 2034 tp->reord_seen++; 2035 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 2036 } 2037 2038 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 2039 2040 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack) 2041 { 2042 if (num_dupack) { 2043 struct tcp_sock *tp = tcp_sk(sk); 2044 u32 prior_sacked = tp->sacked_out; 2045 s32 delivered; 2046 2047 tp->sacked_out += num_dupack; 2048 tcp_check_reno_reordering(sk, 0); 2049 delivered = tp->sacked_out - prior_sacked; 2050 if (delivered > 0) 2051 tcp_count_delivered(tp, delivered, ece_ack); 2052 tcp_verify_left_out(tp); 2053 } 2054 } 2055 2056 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 2057 2058 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack) 2059 { 2060 struct tcp_sock *tp = tcp_sk(sk); 2061 2062 if (acked > 0) { 2063 /* One ACK acked hole. The rest eat duplicate ACKs. */ 2064 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1), 2065 ece_ack); 2066 if (acked - 1 >= tp->sacked_out) 2067 tp->sacked_out = 0; 2068 else 2069 tp->sacked_out -= acked - 1; 2070 } 2071 tcp_check_reno_reordering(sk, acked); 2072 tcp_verify_left_out(tp); 2073 } 2074 2075 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 2076 { 2077 tp->sacked_out = 0; 2078 } 2079 2080 void tcp_clear_retrans(struct tcp_sock *tp) 2081 { 2082 tp->retrans_out = 0; 2083 tp->lost_out = 0; 2084 tp->undo_marker = 0; 2085 tp->undo_retrans = -1; 2086 tp->sacked_out = 0; 2087 } 2088 2089 static inline void tcp_init_undo(struct tcp_sock *tp) 2090 { 2091 tp->undo_marker = tp->snd_una; 2092 /* Retransmission still in flight may cause DSACKs later. */ 2093 tp->undo_retrans = tp->retrans_out ? : -1; 2094 } 2095 2096 static bool tcp_is_rack(const struct sock *sk) 2097 { 2098 return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION; 2099 } 2100 2101 /* If we detect SACK reneging, forget all SACK information 2102 * and reset tags completely, otherwise preserve SACKs. If receiver 2103 * dropped its ofo queue, we will know this due to reneging detection. 2104 */ 2105 static void tcp_timeout_mark_lost(struct sock *sk) 2106 { 2107 struct tcp_sock *tp = tcp_sk(sk); 2108 struct sk_buff *skb, *head; 2109 bool is_reneg; /* is receiver reneging on SACKs? */ 2110 2111 head = tcp_rtx_queue_head(sk); 2112 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 2113 if (is_reneg) { 2114 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2115 tp->sacked_out = 0; 2116 /* Mark SACK reneging until we recover from this loss event. */ 2117 tp->is_sack_reneg = 1; 2118 } else if (tcp_is_reno(tp)) { 2119 tcp_reset_reno_sack(tp); 2120 } 2121 2122 skb = head; 2123 skb_rbtree_walk_from(skb) { 2124 if (is_reneg) 2125 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2126 else if (tcp_is_rack(sk) && skb != head && 2127 tcp_rack_skb_timeout(tp, skb, 0) > 0) 2128 continue; /* Don't mark recently sent ones lost yet */ 2129 tcp_mark_skb_lost(sk, skb); 2130 } 2131 tcp_verify_left_out(tp); 2132 tcp_clear_all_retrans_hints(tp); 2133 } 2134 2135 /* Enter Loss state. */ 2136 void tcp_enter_loss(struct sock *sk) 2137 { 2138 const struct inet_connection_sock *icsk = inet_csk(sk); 2139 struct tcp_sock *tp = tcp_sk(sk); 2140 struct net *net = sock_net(sk); 2141 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 2142 2143 tcp_timeout_mark_lost(sk); 2144 2145 /* Reduce ssthresh if it has not yet been made inside this window. */ 2146 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 2147 !after(tp->high_seq, tp->snd_una) || 2148 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2149 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2150 tp->prior_cwnd = tp->snd_cwnd; 2151 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2152 tcp_ca_event(sk, CA_EVENT_LOSS); 2153 tcp_init_undo(tp); 2154 } 2155 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1; 2156 tp->snd_cwnd_cnt = 0; 2157 tp->snd_cwnd_stamp = tcp_jiffies32; 2158 2159 /* Timeout in disordered state after receiving substantial DUPACKs 2160 * suggests that the degree of reordering is over-estimated. 2161 */ 2162 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2163 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 2164 tp->reordering = min_t(unsigned int, tp->reordering, 2165 net->ipv4.sysctl_tcp_reordering); 2166 tcp_set_ca_state(sk, TCP_CA_Loss); 2167 tp->high_seq = tp->snd_nxt; 2168 tcp_ecn_queue_cwr(tp); 2169 2170 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2171 * loss recovery is underway except recurring timeout(s) on 2172 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2173 */ 2174 tp->frto = net->ipv4.sysctl_tcp_frto && 2175 (new_recovery || icsk->icsk_retransmits) && 2176 !inet_csk(sk)->icsk_mtup.probe_size; 2177 } 2178 2179 /* If ACK arrived pointing to a remembered SACK, it means that our 2180 * remembered SACKs do not reflect real state of receiver i.e. 2181 * receiver _host_ is heavily congested (or buggy). 2182 * 2183 * To avoid big spurious retransmission bursts due to transient SACK 2184 * scoreboard oddities that look like reneging, we give the receiver a 2185 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2186 * restore sanity to the SACK scoreboard. If the apparent reneging 2187 * persists until this RTO then we'll clear the SACK scoreboard. 2188 */ 2189 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2190 { 2191 if (flag & FLAG_SACK_RENEGING) { 2192 struct tcp_sock *tp = tcp_sk(sk); 2193 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2194 msecs_to_jiffies(10)); 2195 2196 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2197 delay, TCP_RTO_MAX); 2198 return true; 2199 } 2200 return false; 2201 } 2202 2203 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2204 * counter when SACK is enabled (without SACK, sacked_out is used for 2205 * that purpose). 2206 * 2207 * With reordering, holes may still be in flight, so RFC3517 recovery 2208 * uses pure sacked_out (total number of SACKed segments) even though 2209 * it violates the RFC that uses duplicate ACKs, often these are equal 2210 * but when e.g. out-of-window ACKs or packet duplication occurs, 2211 * they differ. Since neither occurs due to loss, TCP should really 2212 * ignore them. 2213 */ 2214 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2215 { 2216 return tp->sacked_out + 1; 2217 } 2218 2219 /* Linux NewReno/SACK/ECN state machine. 2220 * -------------------------------------- 2221 * 2222 * "Open" Normal state, no dubious events, fast path. 2223 * "Disorder" In all the respects it is "Open", 2224 * but requires a bit more attention. It is entered when 2225 * we see some SACKs or dupacks. It is split of "Open" 2226 * mainly to move some processing from fast path to slow one. 2227 * "CWR" CWND was reduced due to some Congestion Notification event. 2228 * It can be ECN, ICMP source quench, local device congestion. 2229 * "Recovery" CWND was reduced, we are fast-retransmitting. 2230 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2231 * 2232 * tcp_fastretrans_alert() is entered: 2233 * - each incoming ACK, if state is not "Open" 2234 * - when arrived ACK is unusual, namely: 2235 * * SACK 2236 * * Duplicate ACK. 2237 * * ECN ECE. 2238 * 2239 * Counting packets in flight is pretty simple. 2240 * 2241 * in_flight = packets_out - left_out + retrans_out 2242 * 2243 * packets_out is SND.NXT-SND.UNA counted in packets. 2244 * 2245 * retrans_out is number of retransmitted segments. 2246 * 2247 * left_out is number of segments left network, but not ACKed yet. 2248 * 2249 * left_out = sacked_out + lost_out 2250 * 2251 * sacked_out: Packets, which arrived to receiver out of order 2252 * and hence not ACKed. With SACKs this number is simply 2253 * amount of SACKed data. Even without SACKs 2254 * it is easy to give pretty reliable estimate of this number, 2255 * counting duplicate ACKs. 2256 * 2257 * lost_out: Packets lost by network. TCP has no explicit 2258 * "loss notification" feedback from network (for now). 2259 * It means that this number can be only _guessed_. 2260 * Actually, it is the heuristics to predict lossage that 2261 * distinguishes different algorithms. 2262 * 2263 * F.e. after RTO, when all the queue is considered as lost, 2264 * lost_out = packets_out and in_flight = retrans_out. 2265 * 2266 * Essentially, we have now a few algorithms detecting 2267 * lost packets. 2268 * 2269 * If the receiver supports SACK: 2270 * 2271 * RFC6675/3517: It is the conventional algorithm. A packet is 2272 * considered lost if the number of higher sequence packets 2273 * SACKed is greater than or equal the DUPACK thoreshold 2274 * (reordering). This is implemented in tcp_mark_head_lost and 2275 * tcp_update_scoreboard. 2276 * 2277 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2278 * (2017-) that checks timing instead of counting DUPACKs. 2279 * Essentially a packet is considered lost if it's not S/ACKed 2280 * after RTT + reordering_window, where both metrics are 2281 * dynamically measured and adjusted. This is implemented in 2282 * tcp_rack_mark_lost. 2283 * 2284 * If the receiver does not support SACK: 2285 * 2286 * NewReno (RFC6582): in Recovery we assume that one segment 2287 * is lost (classic Reno). While we are in Recovery and 2288 * a partial ACK arrives, we assume that one more packet 2289 * is lost (NewReno). This heuristics are the same in NewReno 2290 * and SACK. 2291 * 2292 * Really tricky (and requiring careful tuning) part of algorithm 2293 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2294 * The first determines the moment _when_ we should reduce CWND and, 2295 * hence, slow down forward transmission. In fact, it determines the moment 2296 * when we decide that hole is caused by loss, rather than by a reorder. 2297 * 2298 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2299 * holes, caused by lost packets. 2300 * 2301 * And the most logically complicated part of algorithm is undo 2302 * heuristics. We detect false retransmits due to both too early 2303 * fast retransmit (reordering) and underestimated RTO, analyzing 2304 * timestamps and D-SACKs. When we detect that some segments were 2305 * retransmitted by mistake and CWND reduction was wrong, we undo 2306 * window reduction and abort recovery phase. This logic is hidden 2307 * inside several functions named tcp_try_undo_<something>. 2308 */ 2309 2310 /* This function decides, when we should leave Disordered state 2311 * and enter Recovery phase, reducing congestion window. 2312 * 2313 * Main question: may we further continue forward transmission 2314 * with the same cwnd? 2315 */ 2316 static bool tcp_time_to_recover(struct sock *sk, int flag) 2317 { 2318 struct tcp_sock *tp = tcp_sk(sk); 2319 2320 /* Trick#1: The loss is proven. */ 2321 if (tp->lost_out) 2322 return true; 2323 2324 /* Not-A-Trick#2 : Classic rule... */ 2325 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2326 return true; 2327 2328 return false; 2329 } 2330 2331 /* Detect loss in event "A" above by marking head of queue up as lost. 2332 * For RFC3517 SACK, a segment is considered lost if it 2333 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2334 * the maximum SACKed segments to pass before reaching this limit. 2335 */ 2336 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2337 { 2338 struct tcp_sock *tp = tcp_sk(sk); 2339 struct sk_buff *skb; 2340 int cnt; 2341 /* Use SACK to deduce losses of new sequences sent during recovery */ 2342 const u32 loss_high = tp->snd_nxt; 2343 2344 WARN_ON(packets > tp->packets_out); 2345 skb = tp->lost_skb_hint; 2346 if (skb) { 2347 /* Head already handled? */ 2348 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2349 return; 2350 cnt = tp->lost_cnt_hint; 2351 } else { 2352 skb = tcp_rtx_queue_head(sk); 2353 cnt = 0; 2354 } 2355 2356 skb_rbtree_walk_from(skb) { 2357 /* TODO: do this better */ 2358 /* this is not the most efficient way to do this... */ 2359 tp->lost_skb_hint = skb; 2360 tp->lost_cnt_hint = cnt; 2361 2362 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2363 break; 2364 2365 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2366 cnt += tcp_skb_pcount(skb); 2367 2368 if (cnt > packets) 2369 break; 2370 2371 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST)) 2372 tcp_mark_skb_lost(sk, skb); 2373 2374 if (mark_head) 2375 break; 2376 } 2377 tcp_verify_left_out(tp); 2378 } 2379 2380 /* Account newly detected lost packet(s) */ 2381 2382 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2383 { 2384 struct tcp_sock *tp = tcp_sk(sk); 2385 2386 if (tcp_is_sack(tp)) { 2387 int sacked_upto = tp->sacked_out - tp->reordering; 2388 if (sacked_upto >= 0) 2389 tcp_mark_head_lost(sk, sacked_upto, 0); 2390 else if (fast_rexmit) 2391 tcp_mark_head_lost(sk, 1, 1); 2392 } 2393 } 2394 2395 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2396 { 2397 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2398 before(tp->rx_opt.rcv_tsecr, when); 2399 } 2400 2401 /* skb is spurious retransmitted if the returned timestamp echo 2402 * reply is prior to the skb transmission time 2403 */ 2404 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2405 const struct sk_buff *skb) 2406 { 2407 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2408 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2409 } 2410 2411 /* Nothing was retransmitted or returned timestamp is less 2412 * than timestamp of the first retransmission. 2413 */ 2414 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2415 { 2416 return tp->retrans_stamp && 2417 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2418 } 2419 2420 /* Undo procedures. */ 2421 2422 /* We can clear retrans_stamp when there are no retransmissions in the 2423 * window. It would seem that it is trivially available for us in 2424 * tp->retrans_out, however, that kind of assumptions doesn't consider 2425 * what will happen if errors occur when sending retransmission for the 2426 * second time. ...It could the that such segment has only 2427 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2428 * the head skb is enough except for some reneging corner cases that 2429 * are not worth the effort. 2430 * 2431 * Main reason for all this complexity is the fact that connection dying 2432 * time now depends on the validity of the retrans_stamp, in particular, 2433 * that successive retransmissions of a segment must not advance 2434 * retrans_stamp under any conditions. 2435 */ 2436 static bool tcp_any_retrans_done(const struct sock *sk) 2437 { 2438 const struct tcp_sock *tp = tcp_sk(sk); 2439 struct sk_buff *skb; 2440 2441 if (tp->retrans_out) 2442 return true; 2443 2444 skb = tcp_rtx_queue_head(sk); 2445 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2446 return true; 2447 2448 return false; 2449 } 2450 2451 static void DBGUNDO(struct sock *sk, const char *msg) 2452 { 2453 #if FASTRETRANS_DEBUG > 1 2454 struct tcp_sock *tp = tcp_sk(sk); 2455 struct inet_sock *inet = inet_sk(sk); 2456 2457 if (sk->sk_family == AF_INET) { 2458 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2459 msg, 2460 &inet->inet_daddr, ntohs(inet->inet_dport), 2461 tp->snd_cwnd, tcp_left_out(tp), 2462 tp->snd_ssthresh, tp->prior_ssthresh, 2463 tp->packets_out); 2464 } 2465 #if IS_ENABLED(CONFIG_IPV6) 2466 else if (sk->sk_family == AF_INET6) { 2467 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2468 msg, 2469 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2470 tp->snd_cwnd, tcp_left_out(tp), 2471 tp->snd_ssthresh, tp->prior_ssthresh, 2472 tp->packets_out); 2473 } 2474 #endif 2475 #endif 2476 } 2477 2478 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2479 { 2480 struct tcp_sock *tp = tcp_sk(sk); 2481 2482 if (unmark_loss) { 2483 struct sk_buff *skb; 2484 2485 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2486 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2487 } 2488 tp->lost_out = 0; 2489 tcp_clear_all_retrans_hints(tp); 2490 } 2491 2492 if (tp->prior_ssthresh) { 2493 const struct inet_connection_sock *icsk = inet_csk(sk); 2494 2495 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2496 2497 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2498 tp->snd_ssthresh = tp->prior_ssthresh; 2499 tcp_ecn_withdraw_cwr(tp); 2500 } 2501 } 2502 tp->snd_cwnd_stamp = tcp_jiffies32; 2503 tp->undo_marker = 0; 2504 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2505 } 2506 2507 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2508 { 2509 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2510 } 2511 2512 /* People celebrate: "We love our President!" */ 2513 static bool tcp_try_undo_recovery(struct sock *sk) 2514 { 2515 struct tcp_sock *tp = tcp_sk(sk); 2516 2517 if (tcp_may_undo(tp)) { 2518 int mib_idx; 2519 2520 /* Happy end! We did not retransmit anything 2521 * or our original transmission succeeded. 2522 */ 2523 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2524 tcp_undo_cwnd_reduction(sk, false); 2525 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2526 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2527 else 2528 mib_idx = LINUX_MIB_TCPFULLUNDO; 2529 2530 NET_INC_STATS(sock_net(sk), mib_idx); 2531 } else if (tp->rack.reo_wnd_persist) { 2532 tp->rack.reo_wnd_persist--; 2533 } 2534 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2535 /* Hold old state until something *above* high_seq 2536 * is ACKed. For Reno it is MUST to prevent false 2537 * fast retransmits (RFC2582). SACK TCP is safe. */ 2538 if (!tcp_any_retrans_done(sk)) 2539 tp->retrans_stamp = 0; 2540 return true; 2541 } 2542 tcp_set_ca_state(sk, TCP_CA_Open); 2543 tp->is_sack_reneg = 0; 2544 return false; 2545 } 2546 2547 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2548 static bool tcp_try_undo_dsack(struct sock *sk) 2549 { 2550 struct tcp_sock *tp = tcp_sk(sk); 2551 2552 if (tp->undo_marker && !tp->undo_retrans) { 2553 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2554 tp->rack.reo_wnd_persist + 1); 2555 DBGUNDO(sk, "D-SACK"); 2556 tcp_undo_cwnd_reduction(sk, false); 2557 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2558 return true; 2559 } 2560 return false; 2561 } 2562 2563 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2564 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2565 { 2566 struct tcp_sock *tp = tcp_sk(sk); 2567 2568 if (frto_undo || tcp_may_undo(tp)) { 2569 tcp_undo_cwnd_reduction(sk, true); 2570 2571 DBGUNDO(sk, "partial loss"); 2572 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2573 if (frto_undo) 2574 NET_INC_STATS(sock_net(sk), 2575 LINUX_MIB_TCPSPURIOUSRTOS); 2576 inet_csk(sk)->icsk_retransmits = 0; 2577 if (frto_undo || tcp_is_sack(tp)) { 2578 tcp_set_ca_state(sk, TCP_CA_Open); 2579 tp->is_sack_reneg = 0; 2580 } 2581 return true; 2582 } 2583 return false; 2584 } 2585 2586 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2587 * It computes the number of packets to send (sndcnt) based on packets newly 2588 * delivered: 2589 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2590 * cwnd reductions across a full RTT. 2591 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2592 * But when SND_UNA is acked without further losses, 2593 * slow starts cwnd up to ssthresh to speed up the recovery. 2594 */ 2595 static void tcp_init_cwnd_reduction(struct sock *sk) 2596 { 2597 struct tcp_sock *tp = tcp_sk(sk); 2598 2599 tp->high_seq = tp->snd_nxt; 2600 tp->tlp_high_seq = 0; 2601 tp->snd_cwnd_cnt = 0; 2602 tp->prior_cwnd = tp->snd_cwnd; 2603 tp->prr_delivered = 0; 2604 tp->prr_out = 0; 2605 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2606 tcp_ecn_queue_cwr(tp); 2607 } 2608 2609 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag) 2610 { 2611 struct tcp_sock *tp = tcp_sk(sk); 2612 int sndcnt = 0; 2613 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2614 2615 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2616 return; 2617 2618 tp->prr_delivered += newly_acked_sacked; 2619 if (delta < 0) { 2620 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2621 tp->prior_cwnd - 1; 2622 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2623 } else if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) { 2624 sndcnt = min_t(int, delta, 2625 max_t(int, tp->prr_delivered - tp->prr_out, 2626 newly_acked_sacked) + 1); 2627 } else { 2628 sndcnt = min(delta, newly_acked_sacked); 2629 } 2630 /* Force a fast retransmit upon entering fast recovery */ 2631 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2632 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2633 } 2634 2635 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2636 { 2637 struct tcp_sock *tp = tcp_sk(sk); 2638 2639 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2640 return; 2641 2642 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2643 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2644 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2645 tp->snd_cwnd = tp->snd_ssthresh; 2646 tp->snd_cwnd_stamp = tcp_jiffies32; 2647 } 2648 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2649 } 2650 2651 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2652 void tcp_enter_cwr(struct sock *sk) 2653 { 2654 struct tcp_sock *tp = tcp_sk(sk); 2655 2656 tp->prior_ssthresh = 0; 2657 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2658 tp->undo_marker = 0; 2659 tcp_init_cwnd_reduction(sk); 2660 tcp_set_ca_state(sk, TCP_CA_CWR); 2661 } 2662 } 2663 EXPORT_SYMBOL(tcp_enter_cwr); 2664 2665 static void tcp_try_keep_open(struct sock *sk) 2666 { 2667 struct tcp_sock *tp = tcp_sk(sk); 2668 int state = TCP_CA_Open; 2669 2670 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2671 state = TCP_CA_Disorder; 2672 2673 if (inet_csk(sk)->icsk_ca_state != state) { 2674 tcp_set_ca_state(sk, state); 2675 tp->high_seq = tp->snd_nxt; 2676 } 2677 } 2678 2679 static void tcp_try_to_open(struct sock *sk, int flag) 2680 { 2681 struct tcp_sock *tp = tcp_sk(sk); 2682 2683 tcp_verify_left_out(tp); 2684 2685 if (!tcp_any_retrans_done(sk)) 2686 tp->retrans_stamp = 0; 2687 2688 if (flag & FLAG_ECE) 2689 tcp_enter_cwr(sk); 2690 2691 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2692 tcp_try_keep_open(sk); 2693 } 2694 } 2695 2696 static void tcp_mtup_probe_failed(struct sock *sk) 2697 { 2698 struct inet_connection_sock *icsk = inet_csk(sk); 2699 2700 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2701 icsk->icsk_mtup.probe_size = 0; 2702 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2703 } 2704 2705 static void tcp_mtup_probe_success(struct sock *sk) 2706 { 2707 struct tcp_sock *tp = tcp_sk(sk); 2708 struct inet_connection_sock *icsk = inet_csk(sk); 2709 2710 /* FIXME: breaks with very large cwnd */ 2711 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2712 tp->snd_cwnd = tp->snd_cwnd * 2713 tcp_mss_to_mtu(sk, tp->mss_cache) / 2714 icsk->icsk_mtup.probe_size; 2715 tp->snd_cwnd_cnt = 0; 2716 tp->snd_cwnd_stamp = tcp_jiffies32; 2717 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2718 2719 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2720 icsk->icsk_mtup.probe_size = 0; 2721 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2722 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2723 } 2724 2725 /* Do a simple retransmit without using the backoff mechanisms in 2726 * tcp_timer. This is used for path mtu discovery. 2727 * The socket is already locked here. 2728 */ 2729 void tcp_simple_retransmit(struct sock *sk) 2730 { 2731 const struct inet_connection_sock *icsk = inet_csk(sk); 2732 struct tcp_sock *tp = tcp_sk(sk); 2733 struct sk_buff *skb; 2734 int mss; 2735 2736 /* A fastopen SYN request is stored as two separate packets within 2737 * the retransmit queue, this is done by tcp_send_syn_data(). 2738 * As a result simply checking the MSS of the frames in the queue 2739 * will not work for the SYN packet. 2740 * 2741 * Us being here is an indication of a path MTU issue so we can 2742 * assume that the fastopen SYN was lost and just mark all the 2743 * frames in the retransmit queue as lost. We will use an MSS of 2744 * -1 to mark all frames as lost, otherwise compute the current MSS. 2745 */ 2746 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT) 2747 mss = -1; 2748 else 2749 mss = tcp_current_mss(sk); 2750 2751 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2752 if (tcp_skb_seglen(skb) > mss) 2753 tcp_mark_skb_lost(sk, skb); 2754 } 2755 2756 tcp_clear_retrans_hints_partial(tp); 2757 2758 if (!tp->lost_out) 2759 return; 2760 2761 if (tcp_is_reno(tp)) 2762 tcp_limit_reno_sacked(tp); 2763 2764 tcp_verify_left_out(tp); 2765 2766 /* Don't muck with the congestion window here. 2767 * Reason is that we do not increase amount of _data_ 2768 * in network, but units changed and effective 2769 * cwnd/ssthresh really reduced now. 2770 */ 2771 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2772 tp->high_seq = tp->snd_nxt; 2773 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2774 tp->prior_ssthresh = 0; 2775 tp->undo_marker = 0; 2776 tcp_set_ca_state(sk, TCP_CA_Loss); 2777 } 2778 tcp_xmit_retransmit_queue(sk); 2779 } 2780 EXPORT_SYMBOL(tcp_simple_retransmit); 2781 2782 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2783 { 2784 struct tcp_sock *tp = tcp_sk(sk); 2785 int mib_idx; 2786 2787 if (tcp_is_reno(tp)) 2788 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2789 else 2790 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2791 2792 NET_INC_STATS(sock_net(sk), mib_idx); 2793 2794 tp->prior_ssthresh = 0; 2795 tcp_init_undo(tp); 2796 2797 if (!tcp_in_cwnd_reduction(sk)) { 2798 if (!ece_ack) 2799 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2800 tcp_init_cwnd_reduction(sk); 2801 } 2802 tcp_set_ca_state(sk, TCP_CA_Recovery); 2803 } 2804 2805 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2806 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2807 */ 2808 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2809 int *rexmit) 2810 { 2811 struct tcp_sock *tp = tcp_sk(sk); 2812 bool recovered = !before(tp->snd_una, tp->high_seq); 2813 2814 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 2815 tcp_try_undo_loss(sk, false)) 2816 return; 2817 2818 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2819 /* Step 3.b. A timeout is spurious if not all data are 2820 * lost, i.e., never-retransmitted data are (s)acked. 2821 */ 2822 if ((flag & FLAG_ORIG_SACK_ACKED) && 2823 tcp_try_undo_loss(sk, true)) 2824 return; 2825 2826 if (after(tp->snd_nxt, tp->high_seq)) { 2827 if (flag & FLAG_DATA_SACKED || num_dupack) 2828 tp->frto = 0; /* Step 3.a. loss was real */ 2829 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2830 tp->high_seq = tp->snd_nxt; 2831 /* Step 2.b. Try send new data (but deferred until cwnd 2832 * is updated in tcp_ack()). Otherwise fall back to 2833 * the conventional recovery. 2834 */ 2835 if (!tcp_write_queue_empty(sk) && 2836 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2837 *rexmit = REXMIT_NEW; 2838 return; 2839 } 2840 tp->frto = 0; 2841 } 2842 } 2843 2844 if (recovered) { 2845 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2846 tcp_try_undo_recovery(sk); 2847 return; 2848 } 2849 if (tcp_is_reno(tp)) { 2850 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2851 * delivered. Lower inflight to clock out (re)tranmissions. 2852 */ 2853 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2854 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE); 2855 else if (flag & FLAG_SND_UNA_ADVANCED) 2856 tcp_reset_reno_sack(tp); 2857 } 2858 *rexmit = REXMIT_LOST; 2859 } 2860 2861 static bool tcp_force_fast_retransmit(struct sock *sk) 2862 { 2863 struct tcp_sock *tp = tcp_sk(sk); 2864 2865 return after(tcp_highest_sack_seq(tp), 2866 tp->snd_una + tp->reordering * tp->mss_cache); 2867 } 2868 2869 /* Undo during fast recovery after partial ACK. */ 2870 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una, 2871 bool *do_lost) 2872 { 2873 struct tcp_sock *tp = tcp_sk(sk); 2874 2875 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2876 /* Plain luck! Hole if filled with delayed 2877 * packet, rather than with a retransmit. Check reordering. 2878 */ 2879 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2880 2881 /* We are getting evidence that the reordering degree is higher 2882 * than we realized. If there are no retransmits out then we 2883 * can undo. Otherwise we clock out new packets but do not 2884 * mark more packets lost or retransmit more. 2885 */ 2886 if (tp->retrans_out) 2887 return true; 2888 2889 if (!tcp_any_retrans_done(sk)) 2890 tp->retrans_stamp = 0; 2891 2892 DBGUNDO(sk, "partial recovery"); 2893 tcp_undo_cwnd_reduction(sk, true); 2894 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2895 tcp_try_keep_open(sk); 2896 } else { 2897 /* Partial ACK arrived. Force fast retransmit. */ 2898 *do_lost = tcp_force_fast_retransmit(sk); 2899 } 2900 return false; 2901 } 2902 2903 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2904 { 2905 struct tcp_sock *tp = tcp_sk(sk); 2906 2907 if (tcp_rtx_queue_empty(sk)) 2908 return; 2909 2910 if (unlikely(tcp_is_reno(tp))) { 2911 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2912 } else if (tcp_is_rack(sk)) { 2913 u32 prior_retrans = tp->retrans_out; 2914 2915 if (tcp_rack_mark_lost(sk)) 2916 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 2917 if (prior_retrans > tp->retrans_out) 2918 *ack_flag |= FLAG_LOST_RETRANS; 2919 } 2920 } 2921 2922 /* Process an event, which can update packets-in-flight not trivially. 2923 * Main goal of this function is to calculate new estimate for left_out, 2924 * taking into account both packets sitting in receiver's buffer and 2925 * packets lost by network. 2926 * 2927 * Besides that it updates the congestion state when packet loss or ECN 2928 * is detected. But it does not reduce the cwnd, it is done by the 2929 * congestion control later. 2930 * 2931 * It does _not_ decide what to send, it is made in function 2932 * tcp_xmit_retransmit_queue(). 2933 */ 2934 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2935 int num_dupack, int *ack_flag, int *rexmit) 2936 { 2937 struct inet_connection_sock *icsk = inet_csk(sk); 2938 struct tcp_sock *tp = tcp_sk(sk); 2939 int fast_rexmit = 0, flag = *ack_flag; 2940 bool ece_ack = flag & FLAG_ECE; 2941 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && 2942 tcp_force_fast_retransmit(sk)); 2943 2944 if (!tp->packets_out && tp->sacked_out) 2945 tp->sacked_out = 0; 2946 2947 /* Now state machine starts. 2948 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2949 if (ece_ack) 2950 tp->prior_ssthresh = 0; 2951 2952 /* B. In all the states check for reneging SACKs. */ 2953 if (tcp_check_sack_reneging(sk, flag)) 2954 return; 2955 2956 /* C. Check consistency of the current state. */ 2957 tcp_verify_left_out(tp); 2958 2959 /* D. Check state exit conditions. State can be terminated 2960 * when high_seq is ACKed. */ 2961 if (icsk->icsk_ca_state == TCP_CA_Open) { 2962 WARN_ON(tp->retrans_out != 0 && !tp->syn_data); 2963 tp->retrans_stamp = 0; 2964 } else if (!before(tp->snd_una, tp->high_seq)) { 2965 switch (icsk->icsk_ca_state) { 2966 case TCP_CA_CWR: 2967 /* CWR is to be held something *above* high_seq 2968 * is ACKed for CWR bit to reach receiver. */ 2969 if (tp->snd_una != tp->high_seq) { 2970 tcp_end_cwnd_reduction(sk); 2971 tcp_set_ca_state(sk, TCP_CA_Open); 2972 } 2973 break; 2974 2975 case TCP_CA_Recovery: 2976 if (tcp_is_reno(tp)) 2977 tcp_reset_reno_sack(tp); 2978 if (tcp_try_undo_recovery(sk)) 2979 return; 2980 tcp_end_cwnd_reduction(sk); 2981 break; 2982 } 2983 } 2984 2985 /* E. Process state. */ 2986 switch (icsk->icsk_ca_state) { 2987 case TCP_CA_Recovery: 2988 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2989 if (tcp_is_reno(tp)) 2990 tcp_add_reno_sack(sk, num_dupack, ece_ack); 2991 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost)) 2992 return; 2993 2994 if (tcp_try_undo_dsack(sk)) 2995 tcp_try_keep_open(sk); 2996 2997 tcp_identify_packet_loss(sk, ack_flag); 2998 if (icsk->icsk_ca_state != TCP_CA_Recovery) { 2999 if (!tcp_time_to_recover(sk, flag)) 3000 return; 3001 /* Undo reverts the recovery state. If loss is evident, 3002 * starts a new recovery (e.g. reordering then loss); 3003 */ 3004 tcp_enter_recovery(sk, ece_ack); 3005 } 3006 break; 3007 case TCP_CA_Loss: 3008 tcp_process_loss(sk, flag, num_dupack, rexmit); 3009 tcp_identify_packet_loss(sk, ack_flag); 3010 if (!(icsk->icsk_ca_state == TCP_CA_Open || 3011 (*ack_flag & FLAG_LOST_RETRANS))) 3012 return; 3013 /* Change state if cwnd is undone or retransmits are lost */ 3014 fallthrough; 3015 default: 3016 if (tcp_is_reno(tp)) { 3017 if (flag & FLAG_SND_UNA_ADVANCED) 3018 tcp_reset_reno_sack(tp); 3019 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3020 } 3021 3022 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 3023 tcp_try_undo_dsack(sk); 3024 3025 tcp_identify_packet_loss(sk, ack_flag); 3026 if (!tcp_time_to_recover(sk, flag)) { 3027 tcp_try_to_open(sk, flag); 3028 return; 3029 } 3030 3031 /* MTU probe failure: don't reduce cwnd */ 3032 if (icsk->icsk_ca_state < TCP_CA_CWR && 3033 icsk->icsk_mtup.probe_size && 3034 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3035 tcp_mtup_probe_failed(sk); 3036 /* Restores the reduction we did in tcp_mtup_probe() */ 3037 tp->snd_cwnd++; 3038 tcp_simple_retransmit(sk); 3039 return; 3040 } 3041 3042 /* Otherwise enter Recovery state */ 3043 tcp_enter_recovery(sk, ece_ack); 3044 fast_rexmit = 1; 3045 } 3046 3047 if (!tcp_is_rack(sk) && do_lost) 3048 tcp_update_scoreboard(sk, fast_rexmit); 3049 *rexmit = REXMIT_LOST; 3050 } 3051 3052 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 3053 { 3054 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ; 3055 struct tcp_sock *tp = tcp_sk(sk); 3056 3057 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 3058 /* If the remote keeps returning delayed ACKs, eventually 3059 * the min filter would pick it up and overestimate the 3060 * prop. delay when it expires. Skip suspected delayed ACKs. 3061 */ 3062 return; 3063 } 3064 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 3065 rtt_us ? : jiffies_to_usecs(1)); 3066 } 3067 3068 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 3069 long seq_rtt_us, long sack_rtt_us, 3070 long ca_rtt_us, struct rate_sample *rs) 3071 { 3072 const struct tcp_sock *tp = tcp_sk(sk); 3073 3074 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 3075 * broken middle-boxes or peers may corrupt TS-ECR fields. But 3076 * Karn's algorithm forbids taking RTT if some retransmitted data 3077 * is acked (RFC6298). 3078 */ 3079 if (seq_rtt_us < 0) 3080 seq_rtt_us = sack_rtt_us; 3081 3082 /* RTTM Rule: A TSecr value received in a segment is used to 3083 * update the averaged RTT measurement only if the segment 3084 * acknowledges some new data, i.e., only if it advances the 3085 * left edge of the send window. 3086 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3087 */ 3088 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 3089 flag & FLAG_ACKED) { 3090 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 3091 3092 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 3093 if (!delta) 3094 delta = 1; 3095 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 3096 ca_rtt_us = seq_rtt_us; 3097 } 3098 } 3099 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 3100 if (seq_rtt_us < 0) 3101 return false; 3102 3103 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 3104 * always taken together with ACK, SACK, or TS-opts. Any negative 3105 * values will be skipped with the seq_rtt_us < 0 check above. 3106 */ 3107 tcp_update_rtt_min(sk, ca_rtt_us, flag); 3108 tcp_rtt_estimator(sk, seq_rtt_us); 3109 tcp_set_rto(sk); 3110 3111 /* RFC6298: only reset backoff on valid RTT measurement. */ 3112 inet_csk(sk)->icsk_backoff = 0; 3113 return true; 3114 } 3115 3116 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 3117 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 3118 { 3119 struct rate_sample rs; 3120 long rtt_us = -1L; 3121 3122 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 3123 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 3124 3125 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 3126 } 3127 3128 3129 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 3130 { 3131 const struct inet_connection_sock *icsk = inet_csk(sk); 3132 3133 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 3134 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 3135 } 3136 3137 /* Restart timer after forward progress on connection. 3138 * RFC2988 recommends to restart timer to now+rto. 3139 */ 3140 void tcp_rearm_rto(struct sock *sk) 3141 { 3142 const struct inet_connection_sock *icsk = inet_csk(sk); 3143 struct tcp_sock *tp = tcp_sk(sk); 3144 3145 /* If the retrans timer is currently being used by Fast Open 3146 * for SYN-ACK retrans purpose, stay put. 3147 */ 3148 if (rcu_access_pointer(tp->fastopen_rsk)) 3149 return; 3150 3151 if (!tp->packets_out) { 3152 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3153 } else { 3154 u32 rto = inet_csk(sk)->icsk_rto; 3155 /* Offset the time elapsed after installing regular RTO */ 3156 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3157 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3158 s64 delta_us = tcp_rto_delta_us(sk); 3159 /* delta_us may not be positive if the socket is locked 3160 * when the retrans timer fires and is rescheduled. 3161 */ 3162 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3163 } 3164 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3165 TCP_RTO_MAX); 3166 } 3167 } 3168 3169 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3170 static void tcp_set_xmit_timer(struct sock *sk) 3171 { 3172 if (!tcp_schedule_loss_probe(sk, true)) 3173 tcp_rearm_rto(sk); 3174 } 3175 3176 /* If we get here, the whole TSO packet has not been acked. */ 3177 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3178 { 3179 struct tcp_sock *tp = tcp_sk(sk); 3180 u32 packets_acked; 3181 3182 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3183 3184 packets_acked = tcp_skb_pcount(skb); 3185 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3186 return 0; 3187 packets_acked -= tcp_skb_pcount(skb); 3188 3189 if (packets_acked) { 3190 BUG_ON(tcp_skb_pcount(skb) == 0); 3191 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3192 } 3193 3194 return packets_acked; 3195 } 3196 3197 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3198 const struct sk_buff *ack_skb, u32 prior_snd_una) 3199 { 3200 const struct skb_shared_info *shinfo; 3201 3202 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3203 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3204 return; 3205 3206 shinfo = skb_shinfo(skb); 3207 if (!before(shinfo->tskey, prior_snd_una) && 3208 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3209 tcp_skb_tsorted_save(skb) { 3210 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK); 3211 } tcp_skb_tsorted_restore(skb); 3212 } 3213 } 3214 3215 /* Remove acknowledged frames from the retransmission queue. If our packet 3216 * is before the ack sequence we can discard it as it's confirmed to have 3217 * arrived at the other end. 3218 */ 3219 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb, 3220 u32 prior_fack, u32 prior_snd_una, 3221 struct tcp_sacktag_state *sack, bool ece_ack) 3222 { 3223 const struct inet_connection_sock *icsk = inet_csk(sk); 3224 u64 first_ackt, last_ackt; 3225 struct tcp_sock *tp = tcp_sk(sk); 3226 u32 prior_sacked = tp->sacked_out; 3227 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3228 struct sk_buff *skb, *next; 3229 bool fully_acked = true; 3230 long sack_rtt_us = -1L; 3231 long seq_rtt_us = -1L; 3232 long ca_rtt_us = -1L; 3233 u32 pkts_acked = 0; 3234 bool rtt_update; 3235 int flag = 0; 3236 3237 first_ackt = 0; 3238 3239 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3240 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3241 const u32 start_seq = scb->seq; 3242 u8 sacked = scb->sacked; 3243 u32 acked_pcount; 3244 3245 /* Determine how many packets and what bytes were acked, tso and else */ 3246 if (after(scb->end_seq, tp->snd_una)) { 3247 if (tcp_skb_pcount(skb) == 1 || 3248 !after(tp->snd_una, scb->seq)) 3249 break; 3250 3251 acked_pcount = tcp_tso_acked(sk, skb); 3252 if (!acked_pcount) 3253 break; 3254 fully_acked = false; 3255 } else { 3256 acked_pcount = tcp_skb_pcount(skb); 3257 } 3258 3259 if (unlikely(sacked & TCPCB_RETRANS)) { 3260 if (sacked & TCPCB_SACKED_RETRANS) 3261 tp->retrans_out -= acked_pcount; 3262 flag |= FLAG_RETRANS_DATA_ACKED; 3263 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3264 last_ackt = tcp_skb_timestamp_us(skb); 3265 WARN_ON_ONCE(last_ackt == 0); 3266 if (!first_ackt) 3267 first_ackt = last_ackt; 3268 3269 if (before(start_seq, reord)) 3270 reord = start_seq; 3271 if (!after(scb->end_seq, tp->high_seq)) 3272 flag |= FLAG_ORIG_SACK_ACKED; 3273 } 3274 3275 if (sacked & TCPCB_SACKED_ACKED) { 3276 tp->sacked_out -= acked_pcount; 3277 } else if (tcp_is_sack(tp)) { 3278 tcp_count_delivered(tp, acked_pcount, ece_ack); 3279 if (!tcp_skb_spurious_retrans(tp, skb)) 3280 tcp_rack_advance(tp, sacked, scb->end_seq, 3281 tcp_skb_timestamp_us(skb)); 3282 } 3283 if (sacked & TCPCB_LOST) 3284 tp->lost_out -= acked_pcount; 3285 3286 tp->packets_out -= acked_pcount; 3287 pkts_acked += acked_pcount; 3288 tcp_rate_skb_delivered(sk, skb, sack->rate); 3289 3290 /* Initial outgoing SYN's get put onto the write_queue 3291 * just like anything else we transmit. It is not 3292 * true data, and if we misinform our callers that 3293 * this ACK acks real data, we will erroneously exit 3294 * connection startup slow start one packet too 3295 * quickly. This is severely frowned upon behavior. 3296 */ 3297 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3298 flag |= FLAG_DATA_ACKED; 3299 } else { 3300 flag |= FLAG_SYN_ACKED; 3301 tp->retrans_stamp = 0; 3302 } 3303 3304 if (!fully_acked) 3305 break; 3306 3307 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3308 3309 next = skb_rb_next(skb); 3310 if (unlikely(skb == tp->retransmit_skb_hint)) 3311 tp->retransmit_skb_hint = NULL; 3312 if (unlikely(skb == tp->lost_skb_hint)) 3313 tp->lost_skb_hint = NULL; 3314 tcp_highest_sack_replace(sk, skb, next); 3315 tcp_rtx_queue_unlink_and_free(skb, sk); 3316 } 3317 3318 if (!skb) 3319 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3320 3321 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3322 tp->snd_up = tp->snd_una; 3323 3324 if (skb) { 3325 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3326 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3327 flag |= FLAG_SACK_RENEGING; 3328 } 3329 3330 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3331 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3332 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3333 3334 if (pkts_acked == 1 && fully_acked && !prior_sacked && 3335 (tp->snd_una - prior_snd_una) < tp->mss_cache && 3336 sack->rate->prior_delivered + 1 == tp->delivered && 3337 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3338 /* Conservatively mark a delayed ACK. It's typically 3339 * from a lone runt packet over the round trip to 3340 * a receiver w/o out-of-order or CE events. 3341 */ 3342 flag |= FLAG_ACK_MAYBE_DELAYED; 3343 } 3344 } 3345 if (sack->first_sackt) { 3346 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3347 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3348 } 3349 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3350 ca_rtt_us, sack->rate); 3351 3352 if (flag & FLAG_ACKED) { 3353 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3354 if (unlikely(icsk->icsk_mtup.probe_size && 3355 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3356 tcp_mtup_probe_success(sk); 3357 } 3358 3359 if (tcp_is_reno(tp)) { 3360 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack); 3361 3362 /* If any of the cumulatively ACKed segments was 3363 * retransmitted, non-SACK case cannot confirm that 3364 * progress was due to original transmission due to 3365 * lack of TCPCB_SACKED_ACKED bits even if some of 3366 * the packets may have been never retransmitted. 3367 */ 3368 if (flag & FLAG_RETRANS_DATA_ACKED) 3369 flag &= ~FLAG_ORIG_SACK_ACKED; 3370 } else { 3371 int delta; 3372 3373 /* Non-retransmitted hole got filled? That's reordering */ 3374 if (before(reord, prior_fack)) 3375 tcp_check_sack_reordering(sk, reord, 0); 3376 3377 delta = prior_sacked - tp->sacked_out; 3378 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3379 } 3380 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3381 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3382 tcp_skb_timestamp_us(skb))) { 3383 /* Do not re-arm RTO if the sack RTT is measured from data sent 3384 * after when the head was last (re)transmitted. Otherwise the 3385 * timeout may continue to extend in loss recovery. 3386 */ 3387 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3388 } 3389 3390 if (icsk->icsk_ca_ops->pkts_acked) { 3391 struct ack_sample sample = { .pkts_acked = pkts_acked, 3392 .rtt_us = sack->rate->rtt_us }; 3393 3394 sample.in_flight = tp->mss_cache * 3395 (tp->delivered - sack->rate->prior_delivered); 3396 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3397 } 3398 3399 #if FASTRETRANS_DEBUG > 0 3400 WARN_ON((int)tp->sacked_out < 0); 3401 WARN_ON((int)tp->lost_out < 0); 3402 WARN_ON((int)tp->retrans_out < 0); 3403 if (!tp->packets_out && tcp_is_sack(tp)) { 3404 icsk = inet_csk(sk); 3405 if (tp->lost_out) { 3406 pr_debug("Leak l=%u %d\n", 3407 tp->lost_out, icsk->icsk_ca_state); 3408 tp->lost_out = 0; 3409 } 3410 if (tp->sacked_out) { 3411 pr_debug("Leak s=%u %d\n", 3412 tp->sacked_out, icsk->icsk_ca_state); 3413 tp->sacked_out = 0; 3414 } 3415 if (tp->retrans_out) { 3416 pr_debug("Leak r=%u %d\n", 3417 tp->retrans_out, icsk->icsk_ca_state); 3418 tp->retrans_out = 0; 3419 } 3420 } 3421 #endif 3422 return flag; 3423 } 3424 3425 static void tcp_ack_probe(struct sock *sk) 3426 { 3427 struct inet_connection_sock *icsk = inet_csk(sk); 3428 struct sk_buff *head = tcp_send_head(sk); 3429 const struct tcp_sock *tp = tcp_sk(sk); 3430 3431 /* Was it a usable window open? */ 3432 if (!head) 3433 return; 3434 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3435 icsk->icsk_backoff = 0; 3436 icsk->icsk_probes_tstamp = 0; 3437 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3438 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3439 * This function is not for random using! 3440 */ 3441 } else { 3442 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3443 3444 when = tcp_clamp_probe0_to_user_timeout(sk, when); 3445 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX); 3446 } 3447 } 3448 3449 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3450 { 3451 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3452 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3453 } 3454 3455 /* Decide wheather to run the increase function of congestion control. */ 3456 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3457 { 3458 /* If reordering is high then always grow cwnd whenever data is 3459 * delivered regardless of its ordering. Otherwise stay conservative 3460 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3461 * new SACK or ECE mark may first advance cwnd here and later reduce 3462 * cwnd in tcp_fastretrans_alert() based on more states. 3463 */ 3464 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3465 return flag & FLAG_FORWARD_PROGRESS; 3466 3467 return flag & FLAG_DATA_ACKED; 3468 } 3469 3470 /* The "ultimate" congestion control function that aims to replace the rigid 3471 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3472 * It's called toward the end of processing an ACK with precise rate 3473 * information. All transmission or retransmission are delayed afterwards. 3474 */ 3475 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3476 int flag, const struct rate_sample *rs) 3477 { 3478 const struct inet_connection_sock *icsk = inet_csk(sk); 3479 3480 if (icsk->icsk_ca_ops->cong_control) { 3481 icsk->icsk_ca_ops->cong_control(sk, rs); 3482 return; 3483 } 3484 3485 if (tcp_in_cwnd_reduction(sk)) { 3486 /* Reduce cwnd if state mandates */ 3487 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag); 3488 } else if (tcp_may_raise_cwnd(sk, flag)) { 3489 /* Advance cwnd if state allows */ 3490 tcp_cong_avoid(sk, ack, acked_sacked); 3491 } 3492 tcp_update_pacing_rate(sk); 3493 } 3494 3495 /* Check that window update is acceptable. 3496 * The function assumes that snd_una<=ack<=snd_next. 3497 */ 3498 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3499 const u32 ack, const u32 ack_seq, 3500 const u32 nwin) 3501 { 3502 return after(ack, tp->snd_una) || 3503 after(ack_seq, tp->snd_wl1) || 3504 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3505 } 3506 3507 /* If we update tp->snd_una, also update tp->bytes_acked */ 3508 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3509 { 3510 u32 delta = ack - tp->snd_una; 3511 3512 sock_owned_by_me((struct sock *)tp); 3513 tp->bytes_acked += delta; 3514 tp->snd_una = ack; 3515 } 3516 3517 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3518 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3519 { 3520 u32 delta = seq - tp->rcv_nxt; 3521 3522 sock_owned_by_me((struct sock *)tp); 3523 tp->bytes_received += delta; 3524 WRITE_ONCE(tp->rcv_nxt, seq); 3525 } 3526 3527 /* Update our send window. 3528 * 3529 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3530 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3531 */ 3532 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3533 u32 ack_seq) 3534 { 3535 struct tcp_sock *tp = tcp_sk(sk); 3536 int flag = 0; 3537 u32 nwin = ntohs(tcp_hdr(skb)->window); 3538 3539 if (likely(!tcp_hdr(skb)->syn)) 3540 nwin <<= tp->rx_opt.snd_wscale; 3541 3542 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3543 flag |= FLAG_WIN_UPDATE; 3544 tcp_update_wl(tp, ack_seq); 3545 3546 if (tp->snd_wnd != nwin) { 3547 tp->snd_wnd = nwin; 3548 3549 /* Note, it is the only place, where 3550 * fast path is recovered for sending TCP. 3551 */ 3552 tp->pred_flags = 0; 3553 tcp_fast_path_check(sk); 3554 3555 if (!tcp_write_queue_empty(sk)) 3556 tcp_slow_start_after_idle_check(sk); 3557 3558 if (nwin > tp->max_window) { 3559 tp->max_window = nwin; 3560 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3561 } 3562 } 3563 } 3564 3565 tcp_snd_una_update(tp, ack); 3566 3567 return flag; 3568 } 3569 3570 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3571 u32 *last_oow_ack_time) 3572 { 3573 if (*last_oow_ack_time) { 3574 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3575 3576 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) { 3577 NET_INC_STATS(net, mib_idx); 3578 return true; /* rate-limited: don't send yet! */ 3579 } 3580 } 3581 3582 *last_oow_ack_time = tcp_jiffies32; 3583 3584 return false; /* not rate-limited: go ahead, send dupack now! */ 3585 } 3586 3587 /* Return true if we're currently rate-limiting out-of-window ACKs and 3588 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3589 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3590 * attacks that send repeated SYNs or ACKs for the same connection. To 3591 * do this, we do not send a duplicate SYNACK or ACK if the remote 3592 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3593 */ 3594 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3595 int mib_idx, u32 *last_oow_ack_time) 3596 { 3597 /* Data packets without SYNs are not likely part of an ACK loop. */ 3598 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3599 !tcp_hdr(skb)->syn) 3600 return false; 3601 3602 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3603 } 3604 3605 /* RFC 5961 7 [ACK Throttling] */ 3606 static void tcp_send_challenge_ack(struct sock *sk) 3607 { 3608 /* unprotected vars, we dont care of overwrites */ 3609 static u32 challenge_timestamp; 3610 static unsigned int challenge_count; 3611 struct tcp_sock *tp = tcp_sk(sk); 3612 struct net *net = sock_net(sk); 3613 u32 count, now; 3614 3615 /* First check our per-socket dupack rate limit. */ 3616 if (__tcp_oow_rate_limited(net, 3617 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3618 &tp->last_oow_ack_time)) 3619 return; 3620 3621 /* Then check host-wide RFC 5961 rate limit. */ 3622 now = jiffies / HZ; 3623 if (now != challenge_timestamp) { 3624 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit; 3625 u32 half = (ack_limit + 1) >> 1; 3626 3627 challenge_timestamp = now; 3628 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit)); 3629 } 3630 count = READ_ONCE(challenge_count); 3631 if (count > 0) { 3632 WRITE_ONCE(challenge_count, count - 1); 3633 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3634 tcp_send_ack(sk); 3635 } 3636 } 3637 3638 static void tcp_store_ts_recent(struct tcp_sock *tp) 3639 { 3640 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3641 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3642 } 3643 3644 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3645 { 3646 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3647 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3648 * extra check below makes sure this can only happen 3649 * for pure ACK frames. -DaveM 3650 * 3651 * Not only, also it occurs for expired timestamps. 3652 */ 3653 3654 if (tcp_paws_check(&tp->rx_opt, 0)) 3655 tcp_store_ts_recent(tp); 3656 } 3657 } 3658 3659 /* This routine deals with acks during a TLP episode and ends an episode by 3660 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack 3661 */ 3662 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3663 { 3664 struct tcp_sock *tp = tcp_sk(sk); 3665 3666 if (before(ack, tp->tlp_high_seq)) 3667 return; 3668 3669 if (!tp->tlp_retrans) { 3670 /* TLP of new data has been acknowledged */ 3671 tp->tlp_high_seq = 0; 3672 } else if (flag & FLAG_DSACK_TLP) { 3673 /* This DSACK means original and TLP probe arrived; no loss */ 3674 tp->tlp_high_seq = 0; 3675 } else if (after(ack, tp->tlp_high_seq)) { 3676 /* ACK advances: there was a loss, so reduce cwnd. Reset 3677 * tlp_high_seq in tcp_init_cwnd_reduction() 3678 */ 3679 tcp_init_cwnd_reduction(sk); 3680 tcp_set_ca_state(sk, TCP_CA_CWR); 3681 tcp_end_cwnd_reduction(sk); 3682 tcp_try_keep_open(sk); 3683 NET_INC_STATS(sock_net(sk), 3684 LINUX_MIB_TCPLOSSPROBERECOVERY); 3685 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3686 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3687 /* Pure dupack: original and TLP probe arrived; no loss */ 3688 tp->tlp_high_seq = 0; 3689 } 3690 } 3691 3692 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3693 { 3694 const struct inet_connection_sock *icsk = inet_csk(sk); 3695 3696 if (icsk->icsk_ca_ops->in_ack_event) 3697 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3698 } 3699 3700 /* Congestion control has updated the cwnd already. So if we're in 3701 * loss recovery then now we do any new sends (for FRTO) or 3702 * retransmits (for CA_Loss or CA_recovery) that make sense. 3703 */ 3704 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3705 { 3706 struct tcp_sock *tp = tcp_sk(sk); 3707 3708 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3709 return; 3710 3711 if (unlikely(rexmit == REXMIT_NEW)) { 3712 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3713 TCP_NAGLE_OFF); 3714 if (after(tp->snd_nxt, tp->high_seq)) 3715 return; 3716 tp->frto = 0; 3717 } 3718 tcp_xmit_retransmit_queue(sk); 3719 } 3720 3721 /* Returns the number of packets newly acked or sacked by the current ACK */ 3722 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3723 { 3724 const struct net *net = sock_net(sk); 3725 struct tcp_sock *tp = tcp_sk(sk); 3726 u32 delivered; 3727 3728 delivered = tp->delivered - prior_delivered; 3729 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3730 if (flag & FLAG_ECE) 3731 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3732 3733 return delivered; 3734 } 3735 3736 /* This routine deals with incoming acks, but not outgoing ones. */ 3737 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3738 { 3739 struct inet_connection_sock *icsk = inet_csk(sk); 3740 struct tcp_sock *tp = tcp_sk(sk); 3741 struct tcp_sacktag_state sack_state; 3742 struct rate_sample rs = { .prior_delivered = 0 }; 3743 u32 prior_snd_una = tp->snd_una; 3744 bool is_sack_reneg = tp->is_sack_reneg; 3745 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3746 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3747 int num_dupack = 0; 3748 int prior_packets = tp->packets_out; 3749 u32 delivered = tp->delivered; 3750 u32 lost = tp->lost; 3751 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3752 u32 prior_fack; 3753 3754 sack_state.first_sackt = 0; 3755 sack_state.rate = &rs; 3756 sack_state.sack_delivered = 0; 3757 3758 /* We very likely will need to access rtx queue. */ 3759 prefetch(sk->tcp_rtx_queue.rb_node); 3760 3761 /* If the ack is older than previous acks 3762 * then we can probably ignore it. 3763 */ 3764 if (before(ack, prior_snd_una)) { 3765 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3766 if (before(ack, prior_snd_una - tp->max_window)) { 3767 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3768 tcp_send_challenge_ack(sk); 3769 return -1; 3770 } 3771 goto old_ack; 3772 } 3773 3774 /* If the ack includes data we haven't sent yet, discard 3775 * this segment (RFC793 Section 3.9). 3776 */ 3777 if (after(ack, tp->snd_nxt)) 3778 return -1; 3779 3780 if (after(ack, prior_snd_una)) { 3781 flag |= FLAG_SND_UNA_ADVANCED; 3782 icsk->icsk_retransmits = 0; 3783 3784 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3785 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 3786 if (icsk->icsk_clean_acked) 3787 icsk->icsk_clean_acked(sk, ack); 3788 #endif 3789 } 3790 3791 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3792 rs.prior_in_flight = tcp_packets_in_flight(tp); 3793 3794 /* ts_recent update must be made after we are sure that the packet 3795 * is in window. 3796 */ 3797 if (flag & FLAG_UPDATE_TS_RECENT) 3798 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3799 3800 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 3801 FLAG_SND_UNA_ADVANCED) { 3802 /* Window is constant, pure forward advance. 3803 * No more checks are required. 3804 * Note, we use the fact that SND.UNA>=SND.WL2. 3805 */ 3806 tcp_update_wl(tp, ack_seq); 3807 tcp_snd_una_update(tp, ack); 3808 flag |= FLAG_WIN_UPDATE; 3809 3810 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3811 3812 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3813 } else { 3814 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3815 3816 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3817 flag |= FLAG_DATA; 3818 else 3819 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3820 3821 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3822 3823 if (TCP_SKB_CB(skb)->sacked) 3824 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3825 &sack_state); 3826 3827 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3828 flag |= FLAG_ECE; 3829 ack_ev_flags |= CA_ACK_ECE; 3830 } 3831 3832 if (sack_state.sack_delivered) 3833 tcp_count_delivered(tp, sack_state.sack_delivered, 3834 flag & FLAG_ECE); 3835 3836 if (flag & FLAG_WIN_UPDATE) 3837 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3838 3839 tcp_in_ack_event(sk, ack_ev_flags); 3840 } 3841 3842 /* This is a deviation from RFC3168 since it states that: 3843 * "When the TCP data sender is ready to set the CWR bit after reducing 3844 * the congestion window, it SHOULD set the CWR bit only on the first 3845 * new data packet that it transmits." 3846 * We accept CWR on pure ACKs to be more robust 3847 * with widely-deployed TCP implementations that do this. 3848 */ 3849 tcp_ecn_accept_cwr(sk, skb); 3850 3851 /* We passed data and got it acked, remove any soft error 3852 * log. Something worked... 3853 */ 3854 sk->sk_err_soft = 0; 3855 icsk->icsk_probes_out = 0; 3856 tp->rcv_tstamp = tcp_jiffies32; 3857 if (!prior_packets) 3858 goto no_queue; 3859 3860 /* See if we can take anything off of the retransmit queue. */ 3861 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una, 3862 &sack_state, flag & FLAG_ECE); 3863 3864 tcp_rack_update_reo_wnd(sk, &rs); 3865 3866 if (tp->tlp_high_seq) 3867 tcp_process_tlp_ack(sk, ack, flag); 3868 3869 if (tcp_ack_is_dubious(sk, flag)) { 3870 if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) { 3871 num_dupack = 1; 3872 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 3873 if (!(flag & FLAG_DATA)) 3874 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 3875 } 3876 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3877 &rexmit); 3878 } 3879 3880 /* If needed, reset TLP/RTO timer when RACK doesn't set. */ 3881 if (flag & FLAG_SET_XMIT_TIMER) 3882 tcp_set_xmit_timer(sk); 3883 3884 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3885 sk_dst_confirm(sk); 3886 3887 delivered = tcp_newly_delivered(sk, delivered, flag); 3888 lost = tp->lost - lost; /* freshly marked lost */ 3889 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3890 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3891 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3892 tcp_xmit_recovery(sk, rexmit); 3893 return 1; 3894 3895 no_queue: 3896 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3897 if (flag & FLAG_DSACKING_ACK) { 3898 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3899 &rexmit); 3900 tcp_newly_delivered(sk, delivered, flag); 3901 } 3902 /* If this ack opens up a zero window, clear backoff. It was 3903 * being used to time the probes, and is probably far higher than 3904 * it needs to be for normal retransmission. 3905 */ 3906 tcp_ack_probe(sk); 3907 3908 if (tp->tlp_high_seq) 3909 tcp_process_tlp_ack(sk, ack, flag); 3910 return 1; 3911 3912 old_ack: 3913 /* If data was SACKed, tag it and see if we should send more data. 3914 * If data was DSACKed, see if we can undo a cwnd reduction. 3915 */ 3916 if (TCP_SKB_CB(skb)->sacked) { 3917 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3918 &sack_state); 3919 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3920 &rexmit); 3921 tcp_newly_delivered(sk, delivered, flag); 3922 tcp_xmit_recovery(sk, rexmit); 3923 } 3924 3925 return 0; 3926 } 3927 3928 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3929 bool syn, struct tcp_fastopen_cookie *foc, 3930 bool exp_opt) 3931 { 3932 /* Valid only in SYN or SYN-ACK with an even length. */ 3933 if (!foc || !syn || len < 0 || (len & 1)) 3934 return; 3935 3936 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3937 len <= TCP_FASTOPEN_COOKIE_MAX) 3938 memcpy(foc->val, cookie, len); 3939 else if (len != 0) 3940 len = -1; 3941 foc->len = len; 3942 foc->exp = exp_opt; 3943 } 3944 3945 static bool smc_parse_options(const struct tcphdr *th, 3946 struct tcp_options_received *opt_rx, 3947 const unsigned char *ptr, 3948 int opsize) 3949 { 3950 #if IS_ENABLED(CONFIG_SMC) 3951 if (static_branch_unlikely(&tcp_have_smc)) { 3952 if (th->syn && !(opsize & 1) && 3953 opsize >= TCPOLEN_EXP_SMC_BASE && 3954 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) { 3955 opt_rx->smc_ok = 1; 3956 return true; 3957 } 3958 } 3959 #endif 3960 return false; 3961 } 3962 3963 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 3964 * value on success. 3965 */ 3966 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 3967 { 3968 const unsigned char *ptr = (const unsigned char *)(th + 1); 3969 int length = (th->doff * 4) - sizeof(struct tcphdr); 3970 u16 mss = 0; 3971 3972 while (length > 0) { 3973 int opcode = *ptr++; 3974 int opsize; 3975 3976 switch (opcode) { 3977 case TCPOPT_EOL: 3978 return mss; 3979 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3980 length--; 3981 continue; 3982 default: 3983 if (length < 2) 3984 return mss; 3985 opsize = *ptr++; 3986 if (opsize < 2) /* "silly options" */ 3987 return mss; 3988 if (opsize > length) 3989 return mss; /* fail on partial options */ 3990 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 3991 u16 in_mss = get_unaligned_be16(ptr); 3992 3993 if (in_mss) { 3994 if (user_mss && user_mss < in_mss) 3995 in_mss = user_mss; 3996 mss = in_mss; 3997 } 3998 } 3999 ptr += opsize - 2; 4000 length -= opsize; 4001 } 4002 } 4003 return mss; 4004 } 4005 4006 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 4007 * But, this can also be called on packets in the established flow when 4008 * the fast version below fails. 4009 */ 4010 void tcp_parse_options(const struct net *net, 4011 const struct sk_buff *skb, 4012 struct tcp_options_received *opt_rx, int estab, 4013 struct tcp_fastopen_cookie *foc) 4014 { 4015 const unsigned char *ptr; 4016 const struct tcphdr *th = tcp_hdr(skb); 4017 int length = (th->doff * 4) - sizeof(struct tcphdr); 4018 4019 ptr = (const unsigned char *)(th + 1); 4020 opt_rx->saw_tstamp = 0; 4021 opt_rx->saw_unknown = 0; 4022 4023 while (length > 0) { 4024 int opcode = *ptr++; 4025 int opsize; 4026 4027 switch (opcode) { 4028 case TCPOPT_EOL: 4029 return; 4030 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4031 length--; 4032 continue; 4033 default: 4034 if (length < 2) 4035 return; 4036 opsize = *ptr++; 4037 if (opsize < 2) /* "silly options" */ 4038 return; 4039 if (opsize > length) 4040 return; /* don't parse partial options */ 4041 switch (opcode) { 4042 case TCPOPT_MSS: 4043 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 4044 u16 in_mss = get_unaligned_be16(ptr); 4045 if (in_mss) { 4046 if (opt_rx->user_mss && 4047 opt_rx->user_mss < in_mss) 4048 in_mss = opt_rx->user_mss; 4049 opt_rx->mss_clamp = in_mss; 4050 } 4051 } 4052 break; 4053 case TCPOPT_WINDOW: 4054 if (opsize == TCPOLEN_WINDOW && th->syn && 4055 !estab && net->ipv4.sysctl_tcp_window_scaling) { 4056 __u8 snd_wscale = *(__u8 *)ptr; 4057 opt_rx->wscale_ok = 1; 4058 if (snd_wscale > TCP_MAX_WSCALE) { 4059 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 4060 __func__, 4061 snd_wscale, 4062 TCP_MAX_WSCALE); 4063 snd_wscale = TCP_MAX_WSCALE; 4064 } 4065 opt_rx->snd_wscale = snd_wscale; 4066 } 4067 break; 4068 case TCPOPT_TIMESTAMP: 4069 if ((opsize == TCPOLEN_TIMESTAMP) && 4070 ((estab && opt_rx->tstamp_ok) || 4071 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 4072 opt_rx->saw_tstamp = 1; 4073 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 4074 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 4075 } 4076 break; 4077 case TCPOPT_SACK_PERM: 4078 if (opsize == TCPOLEN_SACK_PERM && th->syn && 4079 !estab && net->ipv4.sysctl_tcp_sack) { 4080 opt_rx->sack_ok = TCP_SACK_SEEN; 4081 tcp_sack_reset(opt_rx); 4082 } 4083 break; 4084 4085 case TCPOPT_SACK: 4086 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 4087 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 4088 opt_rx->sack_ok) { 4089 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 4090 } 4091 break; 4092 #ifdef CONFIG_TCP_MD5SIG 4093 case TCPOPT_MD5SIG: 4094 /* 4095 * The MD5 Hash has already been 4096 * checked (see tcp_v{4,6}_do_rcv()). 4097 */ 4098 break; 4099 #endif 4100 case TCPOPT_FASTOPEN: 4101 tcp_parse_fastopen_option( 4102 opsize - TCPOLEN_FASTOPEN_BASE, 4103 ptr, th->syn, foc, false); 4104 break; 4105 4106 case TCPOPT_EXP: 4107 /* Fast Open option shares code 254 using a 4108 * 16 bits magic number. 4109 */ 4110 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 4111 get_unaligned_be16(ptr) == 4112 TCPOPT_FASTOPEN_MAGIC) { 4113 tcp_parse_fastopen_option(opsize - 4114 TCPOLEN_EXP_FASTOPEN_BASE, 4115 ptr + 2, th->syn, foc, true); 4116 break; 4117 } 4118 4119 if (smc_parse_options(th, opt_rx, ptr, opsize)) 4120 break; 4121 4122 opt_rx->saw_unknown = 1; 4123 break; 4124 4125 default: 4126 opt_rx->saw_unknown = 1; 4127 } 4128 ptr += opsize-2; 4129 length -= opsize; 4130 } 4131 } 4132 } 4133 EXPORT_SYMBOL(tcp_parse_options); 4134 4135 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 4136 { 4137 const __be32 *ptr = (const __be32 *)(th + 1); 4138 4139 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 4140 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 4141 tp->rx_opt.saw_tstamp = 1; 4142 ++ptr; 4143 tp->rx_opt.rcv_tsval = ntohl(*ptr); 4144 ++ptr; 4145 if (*ptr) 4146 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 4147 else 4148 tp->rx_opt.rcv_tsecr = 0; 4149 return true; 4150 } 4151 return false; 4152 } 4153 4154 /* Fast parse options. This hopes to only see timestamps. 4155 * If it is wrong it falls back on tcp_parse_options(). 4156 */ 4157 static bool tcp_fast_parse_options(const struct net *net, 4158 const struct sk_buff *skb, 4159 const struct tcphdr *th, struct tcp_sock *tp) 4160 { 4161 /* In the spirit of fast parsing, compare doff directly to constant 4162 * values. Because equality is used, short doff can be ignored here. 4163 */ 4164 if (th->doff == (sizeof(*th) / 4)) { 4165 tp->rx_opt.saw_tstamp = 0; 4166 return false; 4167 } else if (tp->rx_opt.tstamp_ok && 4168 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 4169 if (tcp_parse_aligned_timestamp(tp, th)) 4170 return true; 4171 } 4172 4173 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 4174 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 4175 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 4176 4177 return true; 4178 } 4179 4180 #ifdef CONFIG_TCP_MD5SIG 4181 /* 4182 * Parse MD5 Signature option 4183 */ 4184 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 4185 { 4186 int length = (th->doff << 2) - sizeof(*th); 4187 const u8 *ptr = (const u8 *)(th + 1); 4188 4189 /* If not enough data remaining, we can short cut */ 4190 while (length >= TCPOLEN_MD5SIG) { 4191 int opcode = *ptr++; 4192 int opsize; 4193 4194 switch (opcode) { 4195 case TCPOPT_EOL: 4196 return NULL; 4197 case TCPOPT_NOP: 4198 length--; 4199 continue; 4200 default: 4201 opsize = *ptr++; 4202 if (opsize < 2 || opsize > length) 4203 return NULL; 4204 if (opcode == TCPOPT_MD5SIG) 4205 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 4206 } 4207 ptr += opsize - 2; 4208 length -= opsize; 4209 } 4210 return NULL; 4211 } 4212 EXPORT_SYMBOL(tcp_parse_md5sig_option); 4213 #endif 4214 4215 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4216 * 4217 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4218 * it can pass through stack. So, the following predicate verifies that 4219 * this segment is not used for anything but congestion avoidance or 4220 * fast retransmit. Moreover, we even are able to eliminate most of such 4221 * second order effects, if we apply some small "replay" window (~RTO) 4222 * to timestamp space. 4223 * 4224 * All these measures still do not guarantee that we reject wrapped ACKs 4225 * on networks with high bandwidth, when sequence space is recycled fastly, 4226 * but it guarantees that such events will be very rare and do not affect 4227 * connection seriously. This doesn't look nice, but alas, PAWS is really 4228 * buggy extension. 4229 * 4230 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4231 * states that events when retransmit arrives after original data are rare. 4232 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4233 * the biggest problem on large power networks even with minor reordering. 4234 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4235 * up to bandwidth of 18Gigabit/sec. 8) ] 4236 */ 4237 4238 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 4239 { 4240 const struct tcp_sock *tp = tcp_sk(sk); 4241 const struct tcphdr *th = tcp_hdr(skb); 4242 u32 seq = TCP_SKB_CB(skb)->seq; 4243 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4244 4245 return (/* 1. Pure ACK with correct sequence number. */ 4246 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 4247 4248 /* 2. ... and duplicate ACK. */ 4249 ack == tp->snd_una && 4250 4251 /* 3. ... and does not update window. */ 4252 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4253 4254 /* 4. ... and sits in replay window. */ 4255 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4256 } 4257 4258 static inline bool tcp_paws_discard(const struct sock *sk, 4259 const struct sk_buff *skb) 4260 { 4261 const struct tcp_sock *tp = tcp_sk(sk); 4262 4263 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4264 !tcp_disordered_ack(sk, skb); 4265 } 4266 4267 /* Check segment sequence number for validity. 4268 * 4269 * Segment controls are considered valid, if the segment 4270 * fits to the window after truncation to the window. Acceptability 4271 * of data (and SYN, FIN, of course) is checked separately. 4272 * See tcp_data_queue(), for example. 4273 * 4274 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4275 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4276 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4277 * (borrowed from freebsd) 4278 */ 4279 4280 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4281 { 4282 return !before(end_seq, tp->rcv_wup) && 4283 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4284 } 4285 4286 /* When we get a reset we do this. */ 4287 void tcp_reset(struct sock *sk, struct sk_buff *skb) 4288 { 4289 trace_tcp_receive_reset(sk); 4290 4291 /* mptcp can't tell us to ignore reset pkts, 4292 * so just ignore the return value of mptcp_incoming_options(). 4293 */ 4294 if (sk_is_mptcp(sk)) 4295 mptcp_incoming_options(sk, skb); 4296 4297 /* We want the right error as BSD sees it (and indeed as we do). */ 4298 switch (sk->sk_state) { 4299 case TCP_SYN_SENT: 4300 sk->sk_err = ECONNREFUSED; 4301 break; 4302 case TCP_CLOSE_WAIT: 4303 sk->sk_err = EPIPE; 4304 break; 4305 case TCP_CLOSE: 4306 return; 4307 default: 4308 sk->sk_err = ECONNRESET; 4309 } 4310 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4311 smp_wmb(); 4312 4313 tcp_write_queue_purge(sk); 4314 tcp_done(sk); 4315 4316 if (!sock_flag(sk, SOCK_DEAD)) 4317 sk_error_report(sk); 4318 } 4319 4320 /* 4321 * Process the FIN bit. This now behaves as it is supposed to work 4322 * and the FIN takes effect when it is validly part of sequence 4323 * space. Not before when we get holes. 4324 * 4325 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4326 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4327 * TIME-WAIT) 4328 * 4329 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4330 * close and we go into CLOSING (and later onto TIME-WAIT) 4331 * 4332 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4333 */ 4334 void tcp_fin(struct sock *sk) 4335 { 4336 struct tcp_sock *tp = tcp_sk(sk); 4337 4338 inet_csk_schedule_ack(sk); 4339 4340 sk->sk_shutdown |= RCV_SHUTDOWN; 4341 sock_set_flag(sk, SOCK_DONE); 4342 4343 switch (sk->sk_state) { 4344 case TCP_SYN_RECV: 4345 case TCP_ESTABLISHED: 4346 /* Move to CLOSE_WAIT */ 4347 tcp_set_state(sk, TCP_CLOSE_WAIT); 4348 inet_csk_enter_pingpong_mode(sk); 4349 break; 4350 4351 case TCP_CLOSE_WAIT: 4352 case TCP_CLOSING: 4353 /* Received a retransmission of the FIN, do 4354 * nothing. 4355 */ 4356 break; 4357 case TCP_LAST_ACK: 4358 /* RFC793: Remain in the LAST-ACK state. */ 4359 break; 4360 4361 case TCP_FIN_WAIT1: 4362 /* This case occurs when a simultaneous close 4363 * happens, we must ack the received FIN and 4364 * enter the CLOSING state. 4365 */ 4366 tcp_send_ack(sk); 4367 tcp_set_state(sk, TCP_CLOSING); 4368 break; 4369 case TCP_FIN_WAIT2: 4370 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4371 tcp_send_ack(sk); 4372 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4373 break; 4374 default: 4375 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4376 * cases we should never reach this piece of code. 4377 */ 4378 pr_err("%s: Impossible, sk->sk_state=%d\n", 4379 __func__, sk->sk_state); 4380 break; 4381 } 4382 4383 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4384 * Probably, we should reset in this case. For now drop them. 4385 */ 4386 skb_rbtree_purge(&tp->out_of_order_queue); 4387 if (tcp_is_sack(tp)) 4388 tcp_sack_reset(&tp->rx_opt); 4389 sk_mem_reclaim(sk); 4390 4391 if (!sock_flag(sk, SOCK_DEAD)) { 4392 sk->sk_state_change(sk); 4393 4394 /* Do not send POLL_HUP for half duplex close. */ 4395 if (sk->sk_shutdown == SHUTDOWN_MASK || 4396 sk->sk_state == TCP_CLOSE) 4397 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4398 else 4399 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4400 } 4401 } 4402 4403 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4404 u32 end_seq) 4405 { 4406 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4407 if (before(seq, sp->start_seq)) 4408 sp->start_seq = seq; 4409 if (after(end_seq, sp->end_seq)) 4410 sp->end_seq = end_seq; 4411 return true; 4412 } 4413 return false; 4414 } 4415 4416 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4417 { 4418 struct tcp_sock *tp = tcp_sk(sk); 4419 4420 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4421 int mib_idx; 4422 4423 if (before(seq, tp->rcv_nxt)) 4424 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4425 else 4426 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4427 4428 NET_INC_STATS(sock_net(sk), mib_idx); 4429 4430 tp->rx_opt.dsack = 1; 4431 tp->duplicate_sack[0].start_seq = seq; 4432 tp->duplicate_sack[0].end_seq = end_seq; 4433 } 4434 } 4435 4436 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4437 { 4438 struct tcp_sock *tp = tcp_sk(sk); 4439 4440 if (!tp->rx_opt.dsack) 4441 tcp_dsack_set(sk, seq, end_seq); 4442 else 4443 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4444 } 4445 4446 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4447 { 4448 /* When the ACK path fails or drops most ACKs, the sender would 4449 * timeout and spuriously retransmit the same segment repeatedly. 4450 * The receiver remembers and reflects via DSACKs. Leverage the 4451 * DSACK state and change the txhash to re-route speculatively. 4452 */ 4453 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq && 4454 sk_rethink_txhash(sk)) 4455 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH); 4456 } 4457 4458 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4459 { 4460 struct tcp_sock *tp = tcp_sk(sk); 4461 4462 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4463 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4464 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4465 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4466 4467 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4468 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4469 4470 tcp_rcv_spurious_retrans(sk, skb); 4471 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4472 end_seq = tp->rcv_nxt; 4473 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4474 } 4475 } 4476 4477 tcp_send_ack(sk); 4478 } 4479 4480 /* These routines update the SACK block as out-of-order packets arrive or 4481 * in-order packets close up the sequence space. 4482 */ 4483 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4484 { 4485 int this_sack; 4486 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4487 struct tcp_sack_block *swalk = sp + 1; 4488 4489 /* See if the recent change to the first SACK eats into 4490 * or hits the sequence space of other SACK blocks, if so coalesce. 4491 */ 4492 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4493 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4494 int i; 4495 4496 /* Zap SWALK, by moving every further SACK up by one slot. 4497 * Decrease num_sacks. 4498 */ 4499 tp->rx_opt.num_sacks--; 4500 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4501 sp[i] = sp[i + 1]; 4502 continue; 4503 } 4504 this_sack++; 4505 swalk++; 4506 } 4507 } 4508 4509 static void tcp_sack_compress_send_ack(struct sock *sk) 4510 { 4511 struct tcp_sock *tp = tcp_sk(sk); 4512 4513 if (!tp->compressed_ack) 4514 return; 4515 4516 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 4517 __sock_put(sk); 4518 4519 /* Since we have to send one ack finally, 4520 * substract one from tp->compressed_ack to keep 4521 * LINUX_MIB_TCPACKCOMPRESSED accurate. 4522 */ 4523 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 4524 tp->compressed_ack - 1); 4525 4526 tp->compressed_ack = 0; 4527 tcp_send_ack(sk); 4528 } 4529 4530 /* Reasonable amount of sack blocks included in TCP SACK option 4531 * The max is 4, but this becomes 3 if TCP timestamps are there. 4532 * Given that SACK packets might be lost, be conservative and use 2. 4533 */ 4534 #define TCP_SACK_BLOCKS_EXPECTED 2 4535 4536 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4537 { 4538 struct tcp_sock *tp = tcp_sk(sk); 4539 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4540 int cur_sacks = tp->rx_opt.num_sacks; 4541 int this_sack; 4542 4543 if (!cur_sacks) 4544 goto new_sack; 4545 4546 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4547 if (tcp_sack_extend(sp, seq, end_seq)) { 4548 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4549 tcp_sack_compress_send_ack(sk); 4550 /* Rotate this_sack to the first one. */ 4551 for (; this_sack > 0; this_sack--, sp--) 4552 swap(*sp, *(sp - 1)); 4553 if (cur_sacks > 1) 4554 tcp_sack_maybe_coalesce(tp); 4555 return; 4556 } 4557 } 4558 4559 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4560 tcp_sack_compress_send_ack(sk); 4561 4562 /* Could not find an adjacent existing SACK, build a new one, 4563 * put it at the front, and shift everyone else down. We 4564 * always know there is at least one SACK present already here. 4565 * 4566 * If the sack array is full, forget about the last one. 4567 */ 4568 if (this_sack >= TCP_NUM_SACKS) { 4569 this_sack--; 4570 tp->rx_opt.num_sacks--; 4571 sp--; 4572 } 4573 for (; this_sack > 0; this_sack--, sp--) 4574 *sp = *(sp - 1); 4575 4576 new_sack: 4577 /* Build the new head SACK, and we're done. */ 4578 sp->start_seq = seq; 4579 sp->end_seq = end_seq; 4580 tp->rx_opt.num_sacks++; 4581 } 4582 4583 /* RCV.NXT advances, some SACKs should be eaten. */ 4584 4585 static void tcp_sack_remove(struct tcp_sock *tp) 4586 { 4587 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4588 int num_sacks = tp->rx_opt.num_sacks; 4589 int this_sack; 4590 4591 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4592 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4593 tp->rx_opt.num_sacks = 0; 4594 return; 4595 } 4596 4597 for (this_sack = 0; this_sack < num_sacks;) { 4598 /* Check if the start of the sack is covered by RCV.NXT. */ 4599 if (!before(tp->rcv_nxt, sp->start_seq)) { 4600 int i; 4601 4602 /* RCV.NXT must cover all the block! */ 4603 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4604 4605 /* Zap this SACK, by moving forward any other SACKS. */ 4606 for (i = this_sack+1; i < num_sacks; i++) 4607 tp->selective_acks[i-1] = tp->selective_acks[i]; 4608 num_sacks--; 4609 continue; 4610 } 4611 this_sack++; 4612 sp++; 4613 } 4614 tp->rx_opt.num_sacks = num_sacks; 4615 } 4616 4617 /** 4618 * tcp_try_coalesce - try to merge skb to prior one 4619 * @sk: socket 4620 * @to: prior buffer 4621 * @from: buffer to add in queue 4622 * @fragstolen: pointer to boolean 4623 * 4624 * Before queueing skb @from after @to, try to merge them 4625 * to reduce overall memory use and queue lengths, if cost is small. 4626 * Packets in ofo or receive queues can stay a long time. 4627 * Better try to coalesce them right now to avoid future collapses. 4628 * Returns true if caller should free @from instead of queueing it 4629 */ 4630 static bool tcp_try_coalesce(struct sock *sk, 4631 struct sk_buff *to, 4632 struct sk_buff *from, 4633 bool *fragstolen) 4634 { 4635 int delta; 4636 4637 *fragstolen = false; 4638 4639 /* Its possible this segment overlaps with prior segment in queue */ 4640 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4641 return false; 4642 4643 if (!mptcp_skb_can_collapse(to, from)) 4644 return false; 4645 4646 #ifdef CONFIG_TLS_DEVICE 4647 if (from->decrypted != to->decrypted) 4648 return false; 4649 #endif 4650 4651 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4652 return false; 4653 4654 atomic_add(delta, &sk->sk_rmem_alloc); 4655 sk_mem_charge(sk, delta); 4656 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4657 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4658 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4659 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4660 4661 if (TCP_SKB_CB(from)->has_rxtstamp) { 4662 TCP_SKB_CB(to)->has_rxtstamp = true; 4663 to->tstamp = from->tstamp; 4664 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4665 } 4666 4667 return true; 4668 } 4669 4670 static bool tcp_ooo_try_coalesce(struct sock *sk, 4671 struct sk_buff *to, 4672 struct sk_buff *from, 4673 bool *fragstolen) 4674 { 4675 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4676 4677 /* In case tcp_drop() is called later, update to->gso_segs */ 4678 if (res) { 4679 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4680 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4681 4682 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4683 } 4684 return res; 4685 } 4686 4687 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb, 4688 enum skb_drop_reason reason) 4689 { 4690 sk_drops_add(sk, skb); 4691 kfree_skb_reason(skb, reason); 4692 } 4693 4694 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4695 { 4696 tcp_drop_reason(sk, skb, SKB_DROP_REASON_NOT_SPECIFIED); 4697 } 4698 4699 /* This one checks to see if we can put data from the 4700 * out_of_order queue into the receive_queue. 4701 */ 4702 static void tcp_ofo_queue(struct sock *sk) 4703 { 4704 struct tcp_sock *tp = tcp_sk(sk); 4705 __u32 dsack_high = tp->rcv_nxt; 4706 bool fin, fragstolen, eaten; 4707 struct sk_buff *skb, *tail; 4708 struct rb_node *p; 4709 4710 p = rb_first(&tp->out_of_order_queue); 4711 while (p) { 4712 skb = rb_to_skb(p); 4713 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4714 break; 4715 4716 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4717 __u32 dsack = dsack_high; 4718 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4719 dsack_high = TCP_SKB_CB(skb)->end_seq; 4720 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4721 } 4722 p = rb_next(p); 4723 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4724 4725 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4726 tcp_drop(sk, skb); 4727 continue; 4728 } 4729 4730 tail = skb_peek_tail(&sk->sk_receive_queue); 4731 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4732 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4733 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4734 if (!eaten) 4735 __skb_queue_tail(&sk->sk_receive_queue, skb); 4736 else 4737 kfree_skb_partial(skb, fragstolen); 4738 4739 if (unlikely(fin)) { 4740 tcp_fin(sk); 4741 /* tcp_fin() purges tp->out_of_order_queue, 4742 * so we must end this loop right now. 4743 */ 4744 break; 4745 } 4746 } 4747 } 4748 4749 static bool tcp_prune_ofo_queue(struct sock *sk); 4750 static int tcp_prune_queue(struct sock *sk); 4751 4752 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4753 unsigned int size) 4754 { 4755 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4756 !sk_rmem_schedule(sk, skb, size)) { 4757 4758 if (tcp_prune_queue(sk) < 0) 4759 return -1; 4760 4761 while (!sk_rmem_schedule(sk, skb, size)) { 4762 if (!tcp_prune_ofo_queue(sk)) 4763 return -1; 4764 } 4765 } 4766 return 0; 4767 } 4768 4769 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4770 { 4771 struct tcp_sock *tp = tcp_sk(sk); 4772 struct rb_node **p, *parent; 4773 struct sk_buff *skb1; 4774 u32 seq, end_seq; 4775 bool fragstolen; 4776 4777 tcp_ecn_check_ce(sk, skb); 4778 4779 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4780 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4781 sk->sk_data_ready(sk); 4782 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM); 4783 return; 4784 } 4785 4786 /* Disable header prediction. */ 4787 tp->pred_flags = 0; 4788 inet_csk_schedule_ack(sk); 4789 4790 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4791 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4792 seq = TCP_SKB_CB(skb)->seq; 4793 end_seq = TCP_SKB_CB(skb)->end_seq; 4794 4795 p = &tp->out_of_order_queue.rb_node; 4796 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4797 /* Initial out of order segment, build 1 SACK. */ 4798 if (tcp_is_sack(tp)) { 4799 tp->rx_opt.num_sacks = 1; 4800 tp->selective_acks[0].start_seq = seq; 4801 tp->selective_acks[0].end_seq = end_seq; 4802 } 4803 rb_link_node(&skb->rbnode, NULL, p); 4804 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4805 tp->ooo_last_skb = skb; 4806 goto end; 4807 } 4808 4809 /* In the typical case, we are adding an skb to the end of the list. 4810 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4811 */ 4812 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 4813 skb, &fragstolen)) { 4814 coalesce_done: 4815 /* For non sack flows, do not grow window to force DUPACK 4816 * and trigger fast retransmit. 4817 */ 4818 if (tcp_is_sack(tp)) 4819 tcp_grow_window(sk, skb, true); 4820 kfree_skb_partial(skb, fragstolen); 4821 skb = NULL; 4822 goto add_sack; 4823 } 4824 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4825 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4826 parent = &tp->ooo_last_skb->rbnode; 4827 p = &parent->rb_right; 4828 goto insert; 4829 } 4830 4831 /* Find place to insert this segment. Handle overlaps on the way. */ 4832 parent = NULL; 4833 while (*p) { 4834 parent = *p; 4835 skb1 = rb_to_skb(parent); 4836 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4837 p = &parent->rb_left; 4838 continue; 4839 } 4840 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4841 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4842 /* All the bits are present. Drop. */ 4843 NET_INC_STATS(sock_net(sk), 4844 LINUX_MIB_TCPOFOMERGE); 4845 tcp_drop_reason(sk, skb, 4846 SKB_DROP_REASON_TCP_OFOMERGE); 4847 skb = NULL; 4848 tcp_dsack_set(sk, seq, end_seq); 4849 goto add_sack; 4850 } 4851 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4852 /* Partial overlap. */ 4853 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4854 } else { 4855 /* skb's seq == skb1's seq and skb covers skb1. 4856 * Replace skb1 with skb. 4857 */ 4858 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4859 &tp->out_of_order_queue); 4860 tcp_dsack_extend(sk, 4861 TCP_SKB_CB(skb1)->seq, 4862 TCP_SKB_CB(skb1)->end_seq); 4863 NET_INC_STATS(sock_net(sk), 4864 LINUX_MIB_TCPOFOMERGE); 4865 tcp_drop_reason(sk, skb1, 4866 SKB_DROP_REASON_TCP_OFOMERGE); 4867 goto merge_right; 4868 } 4869 } else if (tcp_ooo_try_coalesce(sk, skb1, 4870 skb, &fragstolen)) { 4871 goto coalesce_done; 4872 } 4873 p = &parent->rb_right; 4874 } 4875 insert: 4876 /* Insert segment into RB tree. */ 4877 rb_link_node(&skb->rbnode, parent, p); 4878 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4879 4880 merge_right: 4881 /* Remove other segments covered by skb. */ 4882 while ((skb1 = skb_rb_next(skb)) != NULL) { 4883 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4884 break; 4885 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4886 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4887 end_seq); 4888 break; 4889 } 4890 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4891 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4892 TCP_SKB_CB(skb1)->end_seq); 4893 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4894 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE); 4895 } 4896 /* If there is no skb after us, we are the last_skb ! */ 4897 if (!skb1) 4898 tp->ooo_last_skb = skb; 4899 4900 add_sack: 4901 if (tcp_is_sack(tp)) 4902 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4903 end: 4904 if (skb) { 4905 /* For non sack flows, do not grow window to force DUPACK 4906 * and trigger fast retransmit. 4907 */ 4908 if (tcp_is_sack(tp)) 4909 tcp_grow_window(sk, skb, false); 4910 skb_condense(skb); 4911 skb_set_owner_r(skb, sk); 4912 } 4913 } 4914 4915 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 4916 bool *fragstolen) 4917 { 4918 int eaten; 4919 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4920 4921 eaten = (tail && 4922 tcp_try_coalesce(sk, tail, 4923 skb, fragstolen)) ? 1 : 0; 4924 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4925 if (!eaten) { 4926 __skb_queue_tail(&sk->sk_receive_queue, skb); 4927 skb_set_owner_r(skb, sk); 4928 } 4929 return eaten; 4930 } 4931 4932 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4933 { 4934 struct sk_buff *skb; 4935 int err = -ENOMEM; 4936 int data_len = 0; 4937 bool fragstolen; 4938 4939 if (size == 0) 4940 return 0; 4941 4942 if (size > PAGE_SIZE) { 4943 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4944 4945 data_len = npages << PAGE_SHIFT; 4946 size = data_len + (size & ~PAGE_MASK); 4947 } 4948 skb = alloc_skb_with_frags(size - data_len, data_len, 4949 PAGE_ALLOC_COSTLY_ORDER, 4950 &err, sk->sk_allocation); 4951 if (!skb) 4952 goto err; 4953 4954 skb_put(skb, size - data_len); 4955 skb->data_len = data_len; 4956 skb->len = size; 4957 4958 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 4959 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 4960 goto err_free; 4961 } 4962 4963 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4964 if (err) 4965 goto err_free; 4966 4967 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4968 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4969 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4970 4971 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 4972 WARN_ON_ONCE(fragstolen); /* should not happen */ 4973 __kfree_skb(skb); 4974 } 4975 return size; 4976 4977 err_free: 4978 kfree_skb(skb); 4979 err: 4980 return err; 4981 4982 } 4983 4984 void tcp_data_ready(struct sock *sk) 4985 { 4986 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE)) 4987 sk->sk_data_ready(sk); 4988 } 4989 4990 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4991 { 4992 struct tcp_sock *tp = tcp_sk(sk); 4993 enum skb_drop_reason reason; 4994 bool fragstolen; 4995 int eaten; 4996 4997 /* If a subflow has been reset, the packet should not continue 4998 * to be processed, drop the packet. 4999 */ 5000 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) { 5001 __kfree_skb(skb); 5002 return; 5003 } 5004 5005 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 5006 __kfree_skb(skb); 5007 return; 5008 } 5009 skb_dst_drop(skb); 5010 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 5011 5012 reason = SKB_DROP_REASON_NOT_SPECIFIED; 5013 tp->rx_opt.dsack = 0; 5014 5015 /* Queue data for delivery to the user. 5016 * Packets in sequence go to the receive queue. 5017 * Out of sequence packets to the out_of_order_queue. 5018 */ 5019 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 5020 if (tcp_receive_window(tp) == 0) { 5021 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5022 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5023 goto out_of_window; 5024 } 5025 5026 /* Ok. In sequence. In window. */ 5027 queue_and_out: 5028 if (skb_queue_len(&sk->sk_receive_queue) == 0) 5029 sk_forced_mem_schedule(sk, skb->truesize); 5030 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5031 reason = SKB_DROP_REASON_PROTO_MEM; 5032 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5033 sk->sk_data_ready(sk); 5034 goto drop; 5035 } 5036 5037 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5038 if (skb->len) 5039 tcp_event_data_recv(sk, skb); 5040 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 5041 tcp_fin(sk); 5042 5043 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5044 tcp_ofo_queue(sk); 5045 5046 /* RFC5681. 4.2. SHOULD send immediate ACK, when 5047 * gap in queue is filled. 5048 */ 5049 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5050 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 5051 } 5052 5053 if (tp->rx_opt.num_sacks) 5054 tcp_sack_remove(tp); 5055 5056 tcp_fast_path_check(sk); 5057 5058 if (eaten > 0) 5059 kfree_skb_partial(skb, fragstolen); 5060 if (!sock_flag(sk, SOCK_DEAD)) 5061 tcp_data_ready(sk); 5062 return; 5063 } 5064 5065 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 5066 tcp_rcv_spurious_retrans(sk, skb); 5067 /* A retransmit, 2nd most common case. Force an immediate ack. */ 5068 reason = SKB_DROP_REASON_TCP_OLD_DATA; 5069 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 5070 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5071 5072 out_of_window: 5073 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5074 inet_csk_schedule_ack(sk); 5075 drop: 5076 tcp_drop_reason(sk, skb, reason); 5077 return; 5078 } 5079 5080 /* Out of window. F.e. zero window probe. */ 5081 if (!before(TCP_SKB_CB(skb)->seq, 5082 tp->rcv_nxt + tcp_receive_window(tp))) { 5083 reason = SKB_DROP_REASON_TCP_OVERWINDOW; 5084 goto out_of_window; 5085 } 5086 5087 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5088 /* Partial packet, seq < rcv_next < end_seq */ 5089 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 5090 5091 /* If window is closed, drop tail of packet. But after 5092 * remembering D-SACK for its head made in previous line. 5093 */ 5094 if (!tcp_receive_window(tp)) { 5095 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5096 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5097 goto out_of_window; 5098 } 5099 goto queue_and_out; 5100 } 5101 5102 tcp_data_queue_ofo(sk, skb); 5103 } 5104 5105 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 5106 { 5107 if (list) 5108 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 5109 5110 return skb_rb_next(skb); 5111 } 5112 5113 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 5114 struct sk_buff_head *list, 5115 struct rb_root *root) 5116 { 5117 struct sk_buff *next = tcp_skb_next(skb, list); 5118 5119 if (list) 5120 __skb_unlink(skb, list); 5121 else 5122 rb_erase(&skb->rbnode, root); 5123 5124 __kfree_skb(skb); 5125 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 5126 5127 return next; 5128 } 5129 5130 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 5131 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 5132 { 5133 struct rb_node **p = &root->rb_node; 5134 struct rb_node *parent = NULL; 5135 struct sk_buff *skb1; 5136 5137 while (*p) { 5138 parent = *p; 5139 skb1 = rb_to_skb(parent); 5140 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 5141 p = &parent->rb_left; 5142 else 5143 p = &parent->rb_right; 5144 } 5145 rb_link_node(&skb->rbnode, parent, p); 5146 rb_insert_color(&skb->rbnode, root); 5147 } 5148 5149 /* Collapse contiguous sequence of skbs head..tail with 5150 * sequence numbers start..end. 5151 * 5152 * If tail is NULL, this means until the end of the queue. 5153 * 5154 * Segments with FIN/SYN are not collapsed (only because this 5155 * simplifies code) 5156 */ 5157 static void 5158 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 5159 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 5160 { 5161 struct sk_buff *skb = head, *n; 5162 struct sk_buff_head tmp; 5163 bool end_of_skbs; 5164 5165 /* First, check that queue is collapsible and find 5166 * the point where collapsing can be useful. 5167 */ 5168 restart: 5169 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 5170 n = tcp_skb_next(skb, list); 5171 5172 /* No new bits? It is possible on ofo queue. */ 5173 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5174 skb = tcp_collapse_one(sk, skb, list, root); 5175 if (!skb) 5176 break; 5177 goto restart; 5178 } 5179 5180 /* The first skb to collapse is: 5181 * - not SYN/FIN and 5182 * - bloated or contains data before "start" or 5183 * overlaps to the next one and mptcp allow collapsing. 5184 */ 5185 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 5186 (tcp_win_from_space(sk, skb->truesize) > skb->len || 5187 before(TCP_SKB_CB(skb)->seq, start))) { 5188 end_of_skbs = false; 5189 break; 5190 } 5191 5192 if (n && n != tail && mptcp_skb_can_collapse(skb, n) && 5193 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 5194 end_of_skbs = false; 5195 break; 5196 } 5197 5198 /* Decided to skip this, advance start seq. */ 5199 start = TCP_SKB_CB(skb)->end_seq; 5200 } 5201 if (end_of_skbs || 5202 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5203 return; 5204 5205 __skb_queue_head_init(&tmp); 5206 5207 while (before(start, end)) { 5208 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 5209 struct sk_buff *nskb; 5210 5211 nskb = alloc_skb(copy, GFP_ATOMIC); 5212 if (!nskb) 5213 break; 5214 5215 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 5216 #ifdef CONFIG_TLS_DEVICE 5217 nskb->decrypted = skb->decrypted; 5218 #endif 5219 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 5220 if (list) 5221 __skb_queue_before(list, skb, nskb); 5222 else 5223 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 5224 skb_set_owner_r(nskb, sk); 5225 mptcp_skb_ext_move(nskb, skb); 5226 5227 /* Copy data, releasing collapsed skbs. */ 5228 while (copy > 0) { 5229 int offset = start - TCP_SKB_CB(skb)->seq; 5230 int size = TCP_SKB_CB(skb)->end_seq - start; 5231 5232 BUG_ON(offset < 0); 5233 if (size > 0) { 5234 size = min(copy, size); 5235 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 5236 BUG(); 5237 TCP_SKB_CB(nskb)->end_seq += size; 5238 copy -= size; 5239 start += size; 5240 } 5241 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5242 skb = tcp_collapse_one(sk, skb, list, root); 5243 if (!skb || 5244 skb == tail || 5245 !mptcp_skb_can_collapse(nskb, skb) || 5246 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5247 goto end; 5248 #ifdef CONFIG_TLS_DEVICE 5249 if (skb->decrypted != nskb->decrypted) 5250 goto end; 5251 #endif 5252 } 5253 } 5254 } 5255 end: 5256 skb_queue_walk_safe(&tmp, skb, n) 5257 tcp_rbtree_insert(root, skb); 5258 } 5259 5260 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5261 * and tcp_collapse() them until all the queue is collapsed. 5262 */ 5263 static void tcp_collapse_ofo_queue(struct sock *sk) 5264 { 5265 struct tcp_sock *tp = tcp_sk(sk); 5266 u32 range_truesize, sum_tiny = 0; 5267 struct sk_buff *skb, *head; 5268 u32 start, end; 5269 5270 skb = skb_rb_first(&tp->out_of_order_queue); 5271 new_range: 5272 if (!skb) { 5273 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5274 return; 5275 } 5276 start = TCP_SKB_CB(skb)->seq; 5277 end = TCP_SKB_CB(skb)->end_seq; 5278 range_truesize = skb->truesize; 5279 5280 for (head = skb;;) { 5281 skb = skb_rb_next(skb); 5282 5283 /* Range is terminated when we see a gap or when 5284 * we are at the queue end. 5285 */ 5286 if (!skb || 5287 after(TCP_SKB_CB(skb)->seq, end) || 5288 before(TCP_SKB_CB(skb)->end_seq, start)) { 5289 /* Do not attempt collapsing tiny skbs */ 5290 if (range_truesize != head->truesize || 5291 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) { 5292 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5293 head, skb, start, end); 5294 } else { 5295 sum_tiny += range_truesize; 5296 if (sum_tiny > sk->sk_rcvbuf >> 3) 5297 return; 5298 } 5299 goto new_range; 5300 } 5301 5302 range_truesize += skb->truesize; 5303 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5304 start = TCP_SKB_CB(skb)->seq; 5305 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5306 end = TCP_SKB_CB(skb)->end_seq; 5307 } 5308 } 5309 5310 /* 5311 * Clean the out-of-order queue to make room. 5312 * We drop high sequences packets to : 5313 * 1) Let a chance for holes to be filled. 5314 * 2) not add too big latencies if thousands of packets sit there. 5315 * (But if application shrinks SO_RCVBUF, we could still end up 5316 * freeing whole queue here) 5317 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5318 * 5319 * Return true if queue has shrunk. 5320 */ 5321 static bool tcp_prune_ofo_queue(struct sock *sk) 5322 { 5323 struct tcp_sock *tp = tcp_sk(sk); 5324 struct rb_node *node, *prev; 5325 int goal; 5326 5327 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5328 return false; 5329 5330 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5331 goal = sk->sk_rcvbuf >> 3; 5332 node = &tp->ooo_last_skb->rbnode; 5333 do { 5334 prev = rb_prev(node); 5335 rb_erase(node, &tp->out_of_order_queue); 5336 goal -= rb_to_skb(node)->truesize; 5337 tcp_drop(sk, rb_to_skb(node)); 5338 if (!prev || goal <= 0) { 5339 sk_mem_reclaim(sk); 5340 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5341 !tcp_under_memory_pressure(sk)) 5342 break; 5343 goal = sk->sk_rcvbuf >> 3; 5344 } 5345 node = prev; 5346 } while (node); 5347 tp->ooo_last_skb = rb_to_skb(prev); 5348 5349 /* Reset SACK state. A conforming SACK implementation will 5350 * do the same at a timeout based retransmit. When a connection 5351 * is in a sad state like this, we care only about integrity 5352 * of the connection not performance. 5353 */ 5354 if (tp->rx_opt.sack_ok) 5355 tcp_sack_reset(&tp->rx_opt); 5356 return true; 5357 } 5358 5359 /* Reduce allocated memory if we can, trying to get 5360 * the socket within its memory limits again. 5361 * 5362 * Return less than zero if we should start dropping frames 5363 * until the socket owning process reads some of the data 5364 * to stabilize the situation. 5365 */ 5366 static int tcp_prune_queue(struct sock *sk) 5367 { 5368 struct tcp_sock *tp = tcp_sk(sk); 5369 5370 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5371 5372 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5373 tcp_clamp_window(sk); 5374 else if (tcp_under_memory_pressure(sk)) 5375 tcp_adjust_rcv_ssthresh(sk); 5376 5377 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5378 return 0; 5379 5380 tcp_collapse_ofo_queue(sk); 5381 if (!skb_queue_empty(&sk->sk_receive_queue)) 5382 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5383 skb_peek(&sk->sk_receive_queue), 5384 NULL, 5385 tp->copied_seq, tp->rcv_nxt); 5386 sk_mem_reclaim(sk); 5387 5388 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5389 return 0; 5390 5391 /* Collapsing did not help, destructive actions follow. 5392 * This must not ever occur. */ 5393 5394 tcp_prune_ofo_queue(sk); 5395 5396 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5397 return 0; 5398 5399 /* If we are really being abused, tell the caller to silently 5400 * drop receive data on the floor. It will get retransmitted 5401 * and hopefully then we'll have sufficient space. 5402 */ 5403 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5404 5405 /* Massive buffer overcommit. */ 5406 tp->pred_flags = 0; 5407 return -1; 5408 } 5409 5410 static bool tcp_should_expand_sndbuf(struct sock *sk) 5411 { 5412 const struct tcp_sock *tp = tcp_sk(sk); 5413 5414 /* If the user specified a specific send buffer setting, do 5415 * not modify it. 5416 */ 5417 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5418 return false; 5419 5420 /* If we are under global TCP memory pressure, do not expand. */ 5421 if (tcp_under_memory_pressure(sk)) { 5422 int unused_mem = sk_unused_reserved_mem(sk); 5423 5424 /* Adjust sndbuf according to reserved mem. But make sure 5425 * it never goes below SOCK_MIN_SNDBUF. 5426 * See sk_stream_moderate_sndbuf() for more details. 5427 */ 5428 if (unused_mem > SOCK_MIN_SNDBUF) 5429 WRITE_ONCE(sk->sk_sndbuf, unused_mem); 5430 5431 return false; 5432 } 5433 5434 /* If we are under soft global TCP memory pressure, do not expand. */ 5435 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5436 return false; 5437 5438 /* If we filled the congestion window, do not expand. */ 5439 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5440 return false; 5441 5442 return true; 5443 } 5444 5445 static void tcp_new_space(struct sock *sk) 5446 { 5447 struct tcp_sock *tp = tcp_sk(sk); 5448 5449 if (tcp_should_expand_sndbuf(sk)) { 5450 tcp_sndbuf_expand(sk); 5451 tp->snd_cwnd_stamp = tcp_jiffies32; 5452 } 5453 5454 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk); 5455 } 5456 5457 static void tcp_check_space(struct sock *sk) 5458 { 5459 /* pairs with tcp_poll() */ 5460 smp_mb(); 5461 if (sk->sk_socket && 5462 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5463 tcp_new_space(sk); 5464 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5465 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5466 } 5467 } 5468 5469 static inline void tcp_data_snd_check(struct sock *sk) 5470 { 5471 tcp_push_pending_frames(sk); 5472 tcp_check_space(sk); 5473 } 5474 5475 /* 5476 * Check if sending an ack is needed. 5477 */ 5478 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5479 { 5480 struct tcp_sock *tp = tcp_sk(sk); 5481 unsigned long rtt, delay; 5482 5483 /* More than one full frame received... */ 5484 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5485 /* ... and right edge of window advances far enough. 5486 * (tcp_recvmsg() will send ACK otherwise). 5487 * If application uses SO_RCVLOWAT, we want send ack now if 5488 * we have not received enough bytes to satisfy the condition. 5489 */ 5490 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5491 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5492 /* We ACK each frame or... */ 5493 tcp_in_quickack_mode(sk) || 5494 /* Protocol state mandates a one-time immediate ACK */ 5495 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5496 send_now: 5497 tcp_send_ack(sk); 5498 return; 5499 } 5500 5501 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5502 tcp_send_delayed_ack(sk); 5503 return; 5504 } 5505 5506 if (!tcp_is_sack(tp) || 5507 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr) 5508 goto send_now; 5509 5510 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5511 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5512 tp->dup_ack_counter = 0; 5513 } 5514 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) { 5515 tp->dup_ack_counter++; 5516 goto send_now; 5517 } 5518 tp->compressed_ack++; 5519 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5520 return; 5521 5522 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5523 5524 rtt = tp->rcv_rtt_est.rtt_us; 5525 if (tp->srtt_us && tp->srtt_us < rtt) 5526 rtt = tp->srtt_us; 5527 5528 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns, 5529 rtt * (NSEC_PER_USEC >> 3)/20); 5530 sock_hold(sk); 5531 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay), 5532 sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns, 5533 HRTIMER_MODE_REL_PINNED_SOFT); 5534 } 5535 5536 static inline void tcp_ack_snd_check(struct sock *sk) 5537 { 5538 if (!inet_csk_ack_scheduled(sk)) { 5539 /* We sent a data segment already. */ 5540 return; 5541 } 5542 __tcp_ack_snd_check(sk, 1); 5543 } 5544 5545 /* 5546 * This routine is only called when we have urgent data 5547 * signaled. Its the 'slow' part of tcp_urg. It could be 5548 * moved inline now as tcp_urg is only called from one 5549 * place. We handle URGent data wrong. We have to - as 5550 * BSD still doesn't use the correction from RFC961. 5551 * For 1003.1g we should support a new option TCP_STDURG to permit 5552 * either form (or just set the sysctl tcp_stdurg). 5553 */ 5554 5555 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5556 { 5557 struct tcp_sock *tp = tcp_sk(sk); 5558 u32 ptr = ntohs(th->urg_ptr); 5559 5560 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg) 5561 ptr--; 5562 ptr += ntohl(th->seq); 5563 5564 /* Ignore urgent data that we've already seen and read. */ 5565 if (after(tp->copied_seq, ptr)) 5566 return; 5567 5568 /* Do not replay urg ptr. 5569 * 5570 * NOTE: interesting situation not covered by specs. 5571 * Misbehaving sender may send urg ptr, pointing to segment, 5572 * which we already have in ofo queue. We are not able to fetch 5573 * such data and will stay in TCP_URG_NOTYET until will be eaten 5574 * by recvmsg(). Seems, we are not obliged to handle such wicked 5575 * situations. But it is worth to think about possibility of some 5576 * DoSes using some hypothetical application level deadlock. 5577 */ 5578 if (before(ptr, tp->rcv_nxt)) 5579 return; 5580 5581 /* Do we already have a newer (or duplicate) urgent pointer? */ 5582 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5583 return; 5584 5585 /* Tell the world about our new urgent pointer. */ 5586 sk_send_sigurg(sk); 5587 5588 /* We may be adding urgent data when the last byte read was 5589 * urgent. To do this requires some care. We cannot just ignore 5590 * tp->copied_seq since we would read the last urgent byte again 5591 * as data, nor can we alter copied_seq until this data arrives 5592 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5593 * 5594 * NOTE. Double Dutch. Rendering to plain English: author of comment 5595 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5596 * and expect that both A and B disappear from stream. This is _wrong_. 5597 * Though this happens in BSD with high probability, this is occasional. 5598 * Any application relying on this is buggy. Note also, that fix "works" 5599 * only in this artificial test. Insert some normal data between A and B and we will 5600 * decline of BSD again. Verdict: it is better to remove to trap 5601 * buggy users. 5602 */ 5603 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5604 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5605 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5606 tp->copied_seq++; 5607 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5608 __skb_unlink(skb, &sk->sk_receive_queue); 5609 __kfree_skb(skb); 5610 } 5611 } 5612 5613 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET); 5614 WRITE_ONCE(tp->urg_seq, ptr); 5615 5616 /* Disable header prediction. */ 5617 tp->pred_flags = 0; 5618 } 5619 5620 /* This is the 'fast' part of urgent handling. */ 5621 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5622 { 5623 struct tcp_sock *tp = tcp_sk(sk); 5624 5625 /* Check if we get a new urgent pointer - normally not. */ 5626 if (unlikely(th->urg)) 5627 tcp_check_urg(sk, th); 5628 5629 /* Do we wait for any urgent data? - normally not... */ 5630 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) { 5631 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5632 th->syn; 5633 5634 /* Is the urgent pointer pointing into this packet? */ 5635 if (ptr < skb->len) { 5636 u8 tmp; 5637 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5638 BUG(); 5639 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp); 5640 if (!sock_flag(sk, SOCK_DEAD)) 5641 sk->sk_data_ready(sk); 5642 } 5643 } 5644 } 5645 5646 /* Accept RST for rcv_nxt - 1 after a FIN. 5647 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5648 * FIN is sent followed by a RST packet. The RST is sent with the same 5649 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5650 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5651 * ACKs on the closed socket. In addition middleboxes can drop either the 5652 * challenge ACK or a subsequent RST. 5653 */ 5654 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5655 { 5656 struct tcp_sock *tp = tcp_sk(sk); 5657 5658 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5659 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5660 TCPF_CLOSING)); 5661 } 5662 5663 /* Does PAWS and seqno based validation of an incoming segment, flags will 5664 * play significant role here. 5665 */ 5666 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5667 const struct tcphdr *th, int syn_inerr) 5668 { 5669 struct tcp_sock *tp = tcp_sk(sk); 5670 bool rst_seq_match = false; 5671 5672 /* RFC1323: H1. Apply PAWS check first. */ 5673 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5674 tp->rx_opt.saw_tstamp && 5675 tcp_paws_discard(sk, skb)) { 5676 if (!th->rst) { 5677 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5678 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5679 LINUX_MIB_TCPACKSKIPPEDPAWS, 5680 &tp->last_oow_ack_time)) 5681 tcp_send_dupack(sk, skb); 5682 goto discard; 5683 } 5684 /* Reset is accepted even if it did not pass PAWS. */ 5685 } 5686 5687 /* Step 1: check sequence number */ 5688 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5689 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5690 * (RST) segments are validated by checking their SEQ-fields." 5691 * And page 69: "If an incoming segment is not acceptable, 5692 * an acknowledgment should be sent in reply (unless the RST 5693 * bit is set, if so drop the segment and return)". 5694 */ 5695 if (!th->rst) { 5696 if (th->syn) 5697 goto syn_challenge; 5698 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5699 LINUX_MIB_TCPACKSKIPPEDSEQ, 5700 &tp->last_oow_ack_time)) 5701 tcp_send_dupack(sk, skb); 5702 } else if (tcp_reset_check(sk, skb)) { 5703 tcp_reset(sk, skb); 5704 } 5705 goto discard; 5706 } 5707 5708 /* Step 2: check RST bit */ 5709 if (th->rst) { 5710 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5711 * FIN and SACK too if available): 5712 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5713 * the right-most SACK block, 5714 * then 5715 * RESET the connection 5716 * else 5717 * Send a challenge ACK 5718 */ 5719 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5720 tcp_reset_check(sk, skb)) { 5721 rst_seq_match = true; 5722 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5723 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5724 int max_sack = sp[0].end_seq; 5725 int this_sack; 5726 5727 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5728 ++this_sack) { 5729 max_sack = after(sp[this_sack].end_seq, 5730 max_sack) ? 5731 sp[this_sack].end_seq : max_sack; 5732 } 5733 5734 if (TCP_SKB_CB(skb)->seq == max_sack) 5735 rst_seq_match = true; 5736 } 5737 5738 if (rst_seq_match) 5739 tcp_reset(sk, skb); 5740 else { 5741 /* Disable TFO if RST is out-of-order 5742 * and no data has been received 5743 * for current active TFO socket 5744 */ 5745 if (tp->syn_fastopen && !tp->data_segs_in && 5746 sk->sk_state == TCP_ESTABLISHED) 5747 tcp_fastopen_active_disable(sk); 5748 tcp_send_challenge_ack(sk); 5749 } 5750 goto discard; 5751 } 5752 5753 /* step 3: check security and precedence [ignored] */ 5754 5755 /* step 4: Check for a SYN 5756 * RFC 5961 4.2 : Send a challenge ack 5757 */ 5758 if (th->syn) { 5759 syn_challenge: 5760 if (syn_inerr) 5761 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5762 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5763 tcp_send_challenge_ack(sk); 5764 goto discard; 5765 } 5766 5767 bpf_skops_parse_hdr(sk, skb); 5768 5769 return true; 5770 5771 discard: 5772 tcp_drop(sk, skb); 5773 return false; 5774 } 5775 5776 /* 5777 * TCP receive function for the ESTABLISHED state. 5778 * 5779 * It is split into a fast path and a slow path. The fast path is 5780 * disabled when: 5781 * - A zero window was announced from us - zero window probing 5782 * is only handled properly in the slow path. 5783 * - Out of order segments arrived. 5784 * - Urgent data is expected. 5785 * - There is no buffer space left 5786 * - Unexpected TCP flags/window values/header lengths are received 5787 * (detected by checking the TCP header against pred_flags) 5788 * - Data is sent in both directions. Fast path only supports pure senders 5789 * or pure receivers (this means either the sequence number or the ack 5790 * value must stay constant) 5791 * - Unexpected TCP option. 5792 * 5793 * When these conditions are not satisfied it drops into a standard 5794 * receive procedure patterned after RFC793 to handle all cases. 5795 * The first three cases are guaranteed by proper pred_flags setting, 5796 * the rest is checked inline. Fast processing is turned on in 5797 * tcp_data_queue when everything is OK. 5798 */ 5799 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5800 { 5801 enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED; 5802 const struct tcphdr *th = (const struct tcphdr *)skb->data; 5803 struct tcp_sock *tp = tcp_sk(sk); 5804 unsigned int len = skb->len; 5805 5806 /* TCP congestion window tracking */ 5807 trace_tcp_probe(sk, skb); 5808 5809 tcp_mstamp_refresh(tp); 5810 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst))) 5811 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5812 /* 5813 * Header prediction. 5814 * The code loosely follows the one in the famous 5815 * "30 instruction TCP receive" Van Jacobson mail. 5816 * 5817 * Van's trick is to deposit buffers into socket queue 5818 * on a device interrupt, to call tcp_recv function 5819 * on the receive process context and checksum and copy 5820 * the buffer to user space. smart... 5821 * 5822 * Our current scheme is not silly either but we take the 5823 * extra cost of the net_bh soft interrupt processing... 5824 * We do checksum and copy also but from device to kernel. 5825 */ 5826 5827 tp->rx_opt.saw_tstamp = 0; 5828 5829 /* pred_flags is 0xS?10 << 16 + snd_wnd 5830 * if header_prediction is to be made 5831 * 'S' will always be tp->tcp_header_len >> 2 5832 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5833 * turn it off (when there are holes in the receive 5834 * space for instance) 5835 * PSH flag is ignored. 5836 */ 5837 5838 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5839 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5840 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5841 int tcp_header_len = tp->tcp_header_len; 5842 5843 /* Timestamp header prediction: tcp_header_len 5844 * is automatically equal to th->doff*4 due to pred_flags 5845 * match. 5846 */ 5847 5848 /* Check timestamp */ 5849 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5850 /* No? Slow path! */ 5851 if (!tcp_parse_aligned_timestamp(tp, th)) 5852 goto slow_path; 5853 5854 /* If PAWS failed, check it more carefully in slow path */ 5855 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5856 goto slow_path; 5857 5858 /* DO NOT update ts_recent here, if checksum fails 5859 * and timestamp was corrupted part, it will result 5860 * in a hung connection since we will drop all 5861 * future packets due to the PAWS test. 5862 */ 5863 } 5864 5865 if (len <= tcp_header_len) { 5866 /* Bulk data transfer: sender */ 5867 if (len == tcp_header_len) { 5868 /* Predicted packet is in window by definition. 5869 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5870 * Hence, check seq<=rcv_wup reduces to: 5871 */ 5872 if (tcp_header_len == 5873 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5874 tp->rcv_nxt == tp->rcv_wup) 5875 tcp_store_ts_recent(tp); 5876 5877 /* We know that such packets are checksummed 5878 * on entry. 5879 */ 5880 tcp_ack(sk, skb, 0); 5881 __kfree_skb(skb); 5882 tcp_data_snd_check(sk); 5883 /* When receiving pure ack in fast path, update 5884 * last ts ecr directly instead of calling 5885 * tcp_rcv_rtt_measure_ts() 5886 */ 5887 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 5888 return; 5889 } else { /* Header too small */ 5890 reason = SKB_DROP_REASON_PKT_TOO_SMALL; 5891 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5892 goto discard; 5893 } 5894 } else { 5895 int eaten = 0; 5896 bool fragstolen = false; 5897 5898 if (tcp_checksum_complete(skb)) 5899 goto csum_error; 5900 5901 if ((int)skb->truesize > sk->sk_forward_alloc) 5902 goto step5; 5903 5904 /* Predicted packet is in window by definition. 5905 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5906 * Hence, check seq<=rcv_wup reduces to: 5907 */ 5908 if (tcp_header_len == 5909 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5910 tp->rcv_nxt == tp->rcv_wup) 5911 tcp_store_ts_recent(tp); 5912 5913 tcp_rcv_rtt_measure_ts(sk, skb); 5914 5915 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5916 5917 /* Bulk data transfer: receiver */ 5918 __skb_pull(skb, tcp_header_len); 5919 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5920 5921 tcp_event_data_recv(sk, skb); 5922 5923 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5924 /* Well, only one small jumplet in fast path... */ 5925 tcp_ack(sk, skb, FLAG_DATA); 5926 tcp_data_snd_check(sk); 5927 if (!inet_csk_ack_scheduled(sk)) 5928 goto no_ack; 5929 } else { 5930 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq); 5931 } 5932 5933 __tcp_ack_snd_check(sk, 0); 5934 no_ack: 5935 if (eaten) 5936 kfree_skb_partial(skb, fragstolen); 5937 tcp_data_ready(sk); 5938 return; 5939 } 5940 } 5941 5942 slow_path: 5943 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5944 goto csum_error; 5945 5946 if (!th->ack && !th->rst && !th->syn) { 5947 reason = SKB_DROP_REASON_TCP_FLAGS; 5948 goto discard; 5949 } 5950 5951 /* 5952 * Standard slow path. 5953 */ 5954 5955 if (!tcp_validate_incoming(sk, skb, th, 1)) 5956 return; 5957 5958 step5: 5959 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5960 goto discard; 5961 5962 tcp_rcv_rtt_measure_ts(sk, skb); 5963 5964 /* Process urgent data. */ 5965 tcp_urg(sk, skb, th); 5966 5967 /* step 7: process the segment text */ 5968 tcp_data_queue(sk, skb); 5969 5970 tcp_data_snd_check(sk); 5971 tcp_ack_snd_check(sk); 5972 return; 5973 5974 csum_error: 5975 reason = SKB_DROP_REASON_TCP_CSUM; 5976 trace_tcp_bad_csum(skb); 5977 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5978 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5979 5980 discard: 5981 tcp_drop_reason(sk, skb, reason); 5982 } 5983 EXPORT_SYMBOL(tcp_rcv_established); 5984 5985 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb) 5986 { 5987 struct inet_connection_sock *icsk = inet_csk(sk); 5988 struct tcp_sock *tp = tcp_sk(sk); 5989 5990 tcp_mtup_init(sk); 5991 icsk->icsk_af_ops->rebuild_header(sk); 5992 tcp_init_metrics(sk); 5993 5994 /* Initialize the congestion window to start the transfer. 5995 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 5996 * retransmitted. In light of RFC6298 more aggressive 1sec 5997 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 5998 * retransmission has occurred. 5999 */ 6000 if (tp->total_retrans > 1 && tp->undo_marker) 6001 tp->snd_cwnd = 1; 6002 else 6003 tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 6004 tp->snd_cwnd_stamp = tcp_jiffies32; 6005 6006 bpf_skops_established(sk, bpf_op, skb); 6007 /* Initialize congestion control unless BPF initialized it already: */ 6008 if (!icsk->icsk_ca_initialized) 6009 tcp_init_congestion_control(sk); 6010 tcp_init_buffer_space(sk); 6011 } 6012 6013 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 6014 { 6015 struct tcp_sock *tp = tcp_sk(sk); 6016 struct inet_connection_sock *icsk = inet_csk(sk); 6017 6018 tcp_set_state(sk, TCP_ESTABLISHED); 6019 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 6020 6021 if (skb) { 6022 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 6023 security_inet_conn_established(sk, skb); 6024 sk_mark_napi_id(sk, skb); 6025 } 6026 6027 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb); 6028 6029 /* Prevent spurious tcp_cwnd_restart() on first data 6030 * packet. 6031 */ 6032 tp->lsndtime = tcp_jiffies32; 6033 6034 if (sock_flag(sk, SOCK_KEEPOPEN)) 6035 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 6036 6037 if (!tp->rx_opt.snd_wscale) 6038 __tcp_fast_path_on(tp, tp->snd_wnd); 6039 else 6040 tp->pred_flags = 0; 6041 } 6042 6043 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 6044 struct tcp_fastopen_cookie *cookie) 6045 { 6046 struct tcp_sock *tp = tcp_sk(sk); 6047 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 6048 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 6049 bool syn_drop = false; 6050 6051 if (mss == tp->rx_opt.user_mss) { 6052 struct tcp_options_received opt; 6053 6054 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 6055 tcp_clear_options(&opt); 6056 opt.user_mss = opt.mss_clamp = 0; 6057 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 6058 mss = opt.mss_clamp; 6059 } 6060 6061 if (!tp->syn_fastopen) { 6062 /* Ignore an unsolicited cookie */ 6063 cookie->len = -1; 6064 } else if (tp->total_retrans) { 6065 /* SYN timed out and the SYN-ACK neither has a cookie nor 6066 * acknowledges data. Presumably the remote received only 6067 * the retransmitted (regular) SYNs: either the original 6068 * SYN-data or the corresponding SYN-ACK was dropped. 6069 */ 6070 syn_drop = (cookie->len < 0 && data); 6071 } else if (cookie->len < 0 && !tp->syn_data) { 6072 /* We requested a cookie but didn't get it. If we did not use 6073 * the (old) exp opt format then try so next time (try_exp=1). 6074 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 6075 */ 6076 try_exp = tp->syn_fastopen_exp ? 2 : 1; 6077 } 6078 6079 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 6080 6081 if (data) { /* Retransmit unacked data in SYN */ 6082 if (tp->total_retrans) 6083 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 6084 else 6085 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 6086 skb_rbtree_walk_from(data) 6087 tcp_mark_skb_lost(sk, data); 6088 tcp_xmit_retransmit_queue(sk); 6089 NET_INC_STATS(sock_net(sk), 6090 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 6091 return true; 6092 } 6093 tp->syn_data_acked = tp->syn_data; 6094 if (tp->syn_data_acked) { 6095 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 6096 /* SYN-data is counted as two separate packets in tcp_ack() */ 6097 if (tp->delivered > 1) 6098 --tp->delivered; 6099 } 6100 6101 tcp_fastopen_add_skb(sk, synack); 6102 6103 return false; 6104 } 6105 6106 static void smc_check_reset_syn(struct tcp_sock *tp) 6107 { 6108 #if IS_ENABLED(CONFIG_SMC) 6109 if (static_branch_unlikely(&tcp_have_smc)) { 6110 if (tp->syn_smc && !tp->rx_opt.smc_ok) 6111 tp->syn_smc = 0; 6112 } 6113 #endif 6114 } 6115 6116 static void tcp_try_undo_spurious_syn(struct sock *sk) 6117 { 6118 struct tcp_sock *tp = tcp_sk(sk); 6119 u32 syn_stamp; 6120 6121 /* undo_marker is set when SYN or SYNACK times out. The timeout is 6122 * spurious if the ACK's timestamp option echo value matches the 6123 * original SYN timestamp. 6124 */ 6125 syn_stamp = tp->retrans_stamp; 6126 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 6127 syn_stamp == tp->rx_opt.rcv_tsecr) 6128 tp->undo_marker = 0; 6129 } 6130 6131 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 6132 const struct tcphdr *th) 6133 { 6134 struct inet_connection_sock *icsk = inet_csk(sk); 6135 struct tcp_sock *tp = tcp_sk(sk); 6136 struct tcp_fastopen_cookie foc = { .len = -1 }; 6137 int saved_clamp = tp->rx_opt.mss_clamp; 6138 bool fastopen_fail; 6139 6140 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 6141 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 6142 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 6143 6144 if (th->ack) { 6145 /* rfc793: 6146 * "If the state is SYN-SENT then 6147 * first check the ACK bit 6148 * If the ACK bit is set 6149 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 6150 * a reset (unless the RST bit is set, if so drop 6151 * the segment and return)" 6152 */ 6153 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 6154 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6155 /* Previous FIN/ACK or RST/ACK might be ignored. */ 6156 if (icsk->icsk_retransmits == 0) 6157 inet_csk_reset_xmit_timer(sk, 6158 ICSK_TIME_RETRANS, 6159 TCP_TIMEOUT_MIN, TCP_RTO_MAX); 6160 goto reset_and_undo; 6161 } 6162 6163 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 6164 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 6165 tcp_time_stamp(tp))) { 6166 NET_INC_STATS(sock_net(sk), 6167 LINUX_MIB_PAWSACTIVEREJECTED); 6168 goto reset_and_undo; 6169 } 6170 6171 /* Now ACK is acceptable. 6172 * 6173 * "If the RST bit is set 6174 * If the ACK was acceptable then signal the user "error: 6175 * connection reset", drop the segment, enter CLOSED state, 6176 * delete TCB, and return." 6177 */ 6178 6179 if (th->rst) { 6180 tcp_reset(sk, skb); 6181 goto discard; 6182 } 6183 6184 /* rfc793: 6185 * "fifth, if neither of the SYN or RST bits is set then 6186 * drop the segment and return." 6187 * 6188 * See note below! 6189 * --ANK(990513) 6190 */ 6191 if (!th->syn) 6192 goto discard_and_undo; 6193 6194 /* rfc793: 6195 * "If the SYN bit is on ... 6196 * are acceptable then ... 6197 * (our SYN has been ACKed), change the connection 6198 * state to ESTABLISHED..." 6199 */ 6200 6201 tcp_ecn_rcv_synack(tp, th); 6202 6203 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6204 tcp_try_undo_spurious_syn(sk); 6205 tcp_ack(sk, skb, FLAG_SLOWPATH); 6206 6207 /* Ok.. it's good. Set up sequence numbers and 6208 * move to established. 6209 */ 6210 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6211 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6212 6213 /* RFC1323: The window in SYN & SYN/ACK segments is 6214 * never scaled. 6215 */ 6216 tp->snd_wnd = ntohs(th->window); 6217 6218 if (!tp->rx_opt.wscale_ok) { 6219 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 6220 tp->window_clamp = min(tp->window_clamp, 65535U); 6221 } 6222 6223 if (tp->rx_opt.saw_tstamp) { 6224 tp->rx_opt.tstamp_ok = 1; 6225 tp->tcp_header_len = 6226 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6227 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6228 tcp_store_ts_recent(tp); 6229 } else { 6230 tp->tcp_header_len = sizeof(struct tcphdr); 6231 } 6232 6233 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6234 tcp_initialize_rcv_mss(sk); 6235 6236 /* Remember, tcp_poll() does not lock socket! 6237 * Change state from SYN-SENT only after copied_seq 6238 * is initialized. */ 6239 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6240 6241 smc_check_reset_syn(tp); 6242 6243 smp_mb(); 6244 6245 tcp_finish_connect(sk, skb); 6246 6247 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 6248 tcp_rcv_fastopen_synack(sk, skb, &foc); 6249 6250 if (!sock_flag(sk, SOCK_DEAD)) { 6251 sk->sk_state_change(sk); 6252 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6253 } 6254 if (fastopen_fail) 6255 return -1; 6256 if (sk->sk_write_pending || 6257 icsk->icsk_accept_queue.rskq_defer_accept || 6258 inet_csk_in_pingpong_mode(sk)) { 6259 /* Save one ACK. Data will be ready after 6260 * several ticks, if write_pending is set. 6261 * 6262 * It may be deleted, but with this feature tcpdumps 6263 * look so _wonderfully_ clever, that I was not able 6264 * to stand against the temptation 8) --ANK 6265 */ 6266 inet_csk_schedule_ack(sk); 6267 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 6268 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 6269 TCP_DELACK_MAX, TCP_RTO_MAX); 6270 6271 discard: 6272 tcp_drop(sk, skb); 6273 return 0; 6274 } else { 6275 tcp_send_ack(sk); 6276 } 6277 return -1; 6278 } 6279 6280 /* No ACK in the segment */ 6281 6282 if (th->rst) { 6283 /* rfc793: 6284 * "If the RST bit is set 6285 * 6286 * Otherwise (no ACK) drop the segment and return." 6287 */ 6288 6289 goto discard_and_undo; 6290 } 6291 6292 /* PAWS check. */ 6293 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 6294 tcp_paws_reject(&tp->rx_opt, 0)) 6295 goto discard_and_undo; 6296 6297 if (th->syn) { 6298 /* We see SYN without ACK. It is attempt of 6299 * simultaneous connect with crossed SYNs. 6300 * Particularly, it can be connect to self. 6301 */ 6302 tcp_set_state(sk, TCP_SYN_RECV); 6303 6304 if (tp->rx_opt.saw_tstamp) { 6305 tp->rx_opt.tstamp_ok = 1; 6306 tcp_store_ts_recent(tp); 6307 tp->tcp_header_len = 6308 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6309 } else { 6310 tp->tcp_header_len = sizeof(struct tcphdr); 6311 } 6312 6313 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6314 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6315 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6316 6317 /* RFC1323: The window in SYN & SYN/ACK segments is 6318 * never scaled. 6319 */ 6320 tp->snd_wnd = ntohs(th->window); 6321 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6322 tp->max_window = tp->snd_wnd; 6323 6324 tcp_ecn_rcv_syn(tp, th); 6325 6326 tcp_mtup_init(sk); 6327 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6328 tcp_initialize_rcv_mss(sk); 6329 6330 tcp_send_synack(sk); 6331 #if 0 6332 /* Note, we could accept data and URG from this segment. 6333 * There are no obstacles to make this (except that we must 6334 * either change tcp_recvmsg() to prevent it from returning data 6335 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6336 * 6337 * However, if we ignore data in ACKless segments sometimes, 6338 * we have no reasons to accept it sometimes. 6339 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6340 * is not flawless. So, discard packet for sanity. 6341 * Uncomment this return to process the data. 6342 */ 6343 return -1; 6344 #else 6345 goto discard; 6346 #endif 6347 } 6348 /* "fifth, if neither of the SYN or RST bits is set then 6349 * drop the segment and return." 6350 */ 6351 6352 discard_and_undo: 6353 tcp_clear_options(&tp->rx_opt); 6354 tp->rx_opt.mss_clamp = saved_clamp; 6355 goto discard; 6356 6357 reset_and_undo: 6358 tcp_clear_options(&tp->rx_opt); 6359 tp->rx_opt.mss_clamp = saved_clamp; 6360 return 1; 6361 } 6362 6363 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6364 { 6365 struct request_sock *req; 6366 6367 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows 6368 * undo. If peer SACKs triggered fast recovery, we can't undo here. 6369 */ 6370 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 6371 tcp_try_undo_loss(sk, false); 6372 6373 /* Reset rtx states to prevent spurious retransmits_timed_out() */ 6374 tcp_sk(sk)->retrans_stamp = 0; 6375 inet_csk(sk)->icsk_retransmits = 0; 6376 6377 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6378 * we no longer need req so release it. 6379 */ 6380 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 6381 lockdep_sock_is_held(sk)); 6382 reqsk_fastopen_remove(sk, req, false); 6383 6384 /* Re-arm the timer because data may have been sent out. 6385 * This is similar to the regular data transmission case 6386 * when new data has just been ack'ed. 6387 * 6388 * (TFO) - we could try to be more aggressive and 6389 * retransmitting any data sooner based on when they 6390 * are sent out. 6391 */ 6392 tcp_rearm_rto(sk); 6393 } 6394 6395 /* 6396 * This function implements the receiving procedure of RFC 793 for 6397 * all states except ESTABLISHED and TIME_WAIT. 6398 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6399 * address independent. 6400 */ 6401 6402 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6403 { 6404 struct tcp_sock *tp = tcp_sk(sk); 6405 struct inet_connection_sock *icsk = inet_csk(sk); 6406 const struct tcphdr *th = tcp_hdr(skb); 6407 struct request_sock *req; 6408 int queued = 0; 6409 bool acceptable; 6410 6411 switch (sk->sk_state) { 6412 case TCP_CLOSE: 6413 goto discard; 6414 6415 case TCP_LISTEN: 6416 if (th->ack) 6417 return 1; 6418 6419 if (th->rst) 6420 goto discard; 6421 6422 if (th->syn) { 6423 if (th->fin) 6424 goto discard; 6425 /* It is possible that we process SYN packets from backlog, 6426 * so we need to make sure to disable BH and RCU right there. 6427 */ 6428 rcu_read_lock(); 6429 local_bh_disable(); 6430 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 6431 local_bh_enable(); 6432 rcu_read_unlock(); 6433 6434 if (!acceptable) 6435 return 1; 6436 consume_skb(skb); 6437 return 0; 6438 } 6439 goto discard; 6440 6441 case TCP_SYN_SENT: 6442 tp->rx_opt.saw_tstamp = 0; 6443 tcp_mstamp_refresh(tp); 6444 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6445 if (queued >= 0) 6446 return queued; 6447 6448 /* Do step6 onward by hand. */ 6449 tcp_urg(sk, skb, th); 6450 __kfree_skb(skb); 6451 tcp_data_snd_check(sk); 6452 return 0; 6453 } 6454 6455 tcp_mstamp_refresh(tp); 6456 tp->rx_opt.saw_tstamp = 0; 6457 req = rcu_dereference_protected(tp->fastopen_rsk, 6458 lockdep_sock_is_held(sk)); 6459 if (req) { 6460 bool req_stolen; 6461 6462 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6463 sk->sk_state != TCP_FIN_WAIT1); 6464 6465 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) 6466 goto discard; 6467 } 6468 6469 if (!th->ack && !th->rst && !th->syn) 6470 goto discard; 6471 6472 if (!tcp_validate_incoming(sk, skb, th, 0)) 6473 return 0; 6474 6475 /* step 5: check the ACK field */ 6476 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 6477 FLAG_UPDATE_TS_RECENT | 6478 FLAG_NO_CHALLENGE_ACK) > 0; 6479 6480 if (!acceptable) { 6481 if (sk->sk_state == TCP_SYN_RECV) 6482 return 1; /* send one RST */ 6483 tcp_send_challenge_ack(sk); 6484 goto discard; 6485 } 6486 switch (sk->sk_state) { 6487 case TCP_SYN_RECV: 6488 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6489 if (!tp->srtt_us) 6490 tcp_synack_rtt_meas(sk, req); 6491 6492 if (req) { 6493 tcp_rcv_synrecv_state_fastopen(sk); 6494 } else { 6495 tcp_try_undo_spurious_syn(sk); 6496 tp->retrans_stamp = 0; 6497 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, 6498 skb); 6499 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6500 } 6501 smp_mb(); 6502 tcp_set_state(sk, TCP_ESTABLISHED); 6503 sk->sk_state_change(sk); 6504 6505 /* Note, that this wakeup is only for marginal crossed SYN case. 6506 * Passively open sockets are not waked up, because 6507 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6508 */ 6509 if (sk->sk_socket) 6510 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6511 6512 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6513 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6514 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6515 6516 if (tp->rx_opt.tstamp_ok) 6517 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6518 6519 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6520 tcp_update_pacing_rate(sk); 6521 6522 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6523 tp->lsndtime = tcp_jiffies32; 6524 6525 tcp_initialize_rcv_mss(sk); 6526 tcp_fast_path_on(tp); 6527 break; 6528 6529 case TCP_FIN_WAIT1: { 6530 int tmo; 6531 6532 if (req) 6533 tcp_rcv_synrecv_state_fastopen(sk); 6534 6535 if (tp->snd_una != tp->write_seq) 6536 break; 6537 6538 tcp_set_state(sk, TCP_FIN_WAIT2); 6539 sk->sk_shutdown |= SEND_SHUTDOWN; 6540 6541 sk_dst_confirm(sk); 6542 6543 if (!sock_flag(sk, SOCK_DEAD)) { 6544 /* Wake up lingering close() */ 6545 sk->sk_state_change(sk); 6546 break; 6547 } 6548 6549 if (tp->linger2 < 0) { 6550 tcp_done(sk); 6551 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6552 return 1; 6553 } 6554 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6555 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6556 /* Receive out of order FIN after close() */ 6557 if (tp->syn_fastopen && th->fin) 6558 tcp_fastopen_active_disable(sk); 6559 tcp_done(sk); 6560 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6561 return 1; 6562 } 6563 6564 tmo = tcp_fin_time(sk); 6565 if (tmo > TCP_TIMEWAIT_LEN) { 6566 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6567 } else if (th->fin || sock_owned_by_user(sk)) { 6568 /* Bad case. We could lose such FIN otherwise. 6569 * It is not a big problem, but it looks confusing 6570 * and not so rare event. We still can lose it now, 6571 * if it spins in bh_lock_sock(), but it is really 6572 * marginal case. 6573 */ 6574 inet_csk_reset_keepalive_timer(sk, tmo); 6575 } else { 6576 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6577 goto discard; 6578 } 6579 break; 6580 } 6581 6582 case TCP_CLOSING: 6583 if (tp->snd_una == tp->write_seq) { 6584 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6585 goto discard; 6586 } 6587 break; 6588 6589 case TCP_LAST_ACK: 6590 if (tp->snd_una == tp->write_seq) { 6591 tcp_update_metrics(sk); 6592 tcp_done(sk); 6593 goto discard; 6594 } 6595 break; 6596 } 6597 6598 /* step 6: check the URG bit */ 6599 tcp_urg(sk, skb, th); 6600 6601 /* step 7: process the segment text */ 6602 switch (sk->sk_state) { 6603 case TCP_CLOSE_WAIT: 6604 case TCP_CLOSING: 6605 case TCP_LAST_ACK: 6606 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 6607 /* If a subflow has been reset, the packet should not 6608 * continue to be processed, drop the packet. 6609 */ 6610 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) 6611 goto discard; 6612 break; 6613 } 6614 fallthrough; 6615 case TCP_FIN_WAIT1: 6616 case TCP_FIN_WAIT2: 6617 /* RFC 793 says to queue data in these states, 6618 * RFC 1122 says we MUST send a reset. 6619 * BSD 4.4 also does reset. 6620 */ 6621 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6622 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6623 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6624 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6625 tcp_reset(sk, skb); 6626 return 1; 6627 } 6628 } 6629 fallthrough; 6630 case TCP_ESTABLISHED: 6631 tcp_data_queue(sk, skb); 6632 queued = 1; 6633 break; 6634 } 6635 6636 /* tcp_data could move socket to TIME-WAIT */ 6637 if (sk->sk_state != TCP_CLOSE) { 6638 tcp_data_snd_check(sk); 6639 tcp_ack_snd_check(sk); 6640 } 6641 6642 if (!queued) { 6643 discard: 6644 tcp_drop(sk, skb); 6645 } 6646 return 0; 6647 } 6648 EXPORT_SYMBOL(tcp_rcv_state_process); 6649 6650 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6651 { 6652 struct inet_request_sock *ireq = inet_rsk(req); 6653 6654 if (family == AF_INET) 6655 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6656 &ireq->ir_rmt_addr, port); 6657 #if IS_ENABLED(CONFIG_IPV6) 6658 else if (family == AF_INET6) 6659 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6660 &ireq->ir_v6_rmt_addr, port); 6661 #endif 6662 } 6663 6664 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6665 * 6666 * If we receive a SYN packet with these bits set, it means a 6667 * network is playing bad games with TOS bits. In order to 6668 * avoid possible false congestion notifications, we disable 6669 * TCP ECN negotiation. 6670 * 6671 * Exception: tcp_ca wants ECN. This is required for DCTCP 6672 * congestion control: Linux DCTCP asserts ECT on all packets, 6673 * including SYN, which is most optimal solution; however, 6674 * others, such as FreeBSD do not. 6675 * 6676 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 6677 * set, indicating the use of a future TCP extension (such as AccECN). See 6678 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 6679 * extensions. 6680 */ 6681 static void tcp_ecn_create_request(struct request_sock *req, 6682 const struct sk_buff *skb, 6683 const struct sock *listen_sk, 6684 const struct dst_entry *dst) 6685 { 6686 const struct tcphdr *th = tcp_hdr(skb); 6687 const struct net *net = sock_net(listen_sk); 6688 bool th_ecn = th->ece && th->cwr; 6689 bool ect, ecn_ok; 6690 u32 ecn_ok_dst; 6691 6692 if (!th_ecn) 6693 return; 6694 6695 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6696 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6697 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6698 6699 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6700 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6701 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6702 inet_rsk(req)->ecn_ok = 1; 6703 } 6704 6705 static void tcp_openreq_init(struct request_sock *req, 6706 const struct tcp_options_received *rx_opt, 6707 struct sk_buff *skb, const struct sock *sk) 6708 { 6709 struct inet_request_sock *ireq = inet_rsk(req); 6710 6711 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6712 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6713 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6714 tcp_rsk(req)->snt_synack = 0; 6715 tcp_rsk(req)->last_oow_ack_time = 0; 6716 req->mss = rx_opt->mss_clamp; 6717 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6718 ireq->tstamp_ok = rx_opt->tstamp_ok; 6719 ireq->sack_ok = rx_opt->sack_ok; 6720 ireq->snd_wscale = rx_opt->snd_wscale; 6721 ireq->wscale_ok = rx_opt->wscale_ok; 6722 ireq->acked = 0; 6723 ireq->ecn_ok = 0; 6724 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6725 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6726 ireq->ir_mark = inet_request_mark(sk, skb); 6727 #if IS_ENABLED(CONFIG_SMC) 6728 ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested && 6729 tcp_sk(sk)->smc_hs_congested(sk)); 6730 #endif 6731 } 6732 6733 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6734 struct sock *sk_listener, 6735 bool attach_listener) 6736 { 6737 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6738 attach_listener); 6739 6740 if (req) { 6741 struct inet_request_sock *ireq = inet_rsk(req); 6742 6743 ireq->ireq_opt = NULL; 6744 #if IS_ENABLED(CONFIG_IPV6) 6745 ireq->pktopts = NULL; 6746 #endif 6747 atomic64_set(&ireq->ir_cookie, 0); 6748 ireq->ireq_state = TCP_NEW_SYN_RECV; 6749 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6750 ireq->ireq_family = sk_listener->sk_family; 6751 req->timeout = TCP_TIMEOUT_INIT; 6752 } 6753 6754 return req; 6755 } 6756 EXPORT_SYMBOL(inet_reqsk_alloc); 6757 6758 /* 6759 * Return true if a syncookie should be sent 6760 */ 6761 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto) 6762 { 6763 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6764 const char *msg = "Dropping request"; 6765 bool want_cookie = false; 6766 struct net *net = sock_net(sk); 6767 6768 #ifdef CONFIG_SYN_COOKIES 6769 if (net->ipv4.sysctl_tcp_syncookies) { 6770 msg = "Sending cookies"; 6771 want_cookie = true; 6772 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6773 } else 6774 #endif 6775 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6776 6777 if (!queue->synflood_warned && 6778 net->ipv4.sysctl_tcp_syncookies != 2 && 6779 xchg(&queue->synflood_warned, 1) == 0) 6780 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6781 proto, sk->sk_num, msg); 6782 6783 return want_cookie; 6784 } 6785 6786 static void tcp_reqsk_record_syn(const struct sock *sk, 6787 struct request_sock *req, 6788 const struct sk_buff *skb) 6789 { 6790 if (tcp_sk(sk)->save_syn) { 6791 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6792 struct saved_syn *saved_syn; 6793 u32 mac_hdrlen; 6794 void *base; 6795 6796 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */ 6797 base = skb_mac_header(skb); 6798 mac_hdrlen = skb_mac_header_len(skb); 6799 len += mac_hdrlen; 6800 } else { 6801 base = skb_network_header(skb); 6802 mac_hdrlen = 0; 6803 } 6804 6805 saved_syn = kmalloc(struct_size(saved_syn, data, len), 6806 GFP_ATOMIC); 6807 if (saved_syn) { 6808 saved_syn->mac_hdrlen = mac_hdrlen; 6809 saved_syn->network_hdrlen = skb_network_header_len(skb); 6810 saved_syn->tcp_hdrlen = tcp_hdrlen(skb); 6811 memcpy(saved_syn->data, base, len); 6812 req->saved_syn = saved_syn; 6813 } 6814 } 6815 } 6816 6817 /* If a SYN cookie is required and supported, returns a clamped MSS value to be 6818 * used for SYN cookie generation. 6819 */ 6820 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 6821 const struct tcp_request_sock_ops *af_ops, 6822 struct sock *sk, struct tcphdr *th) 6823 { 6824 struct tcp_sock *tp = tcp_sk(sk); 6825 u16 mss; 6826 6827 if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 && 6828 !inet_csk_reqsk_queue_is_full(sk)) 6829 return 0; 6830 6831 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 6832 return 0; 6833 6834 if (sk_acceptq_is_full(sk)) { 6835 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6836 return 0; 6837 } 6838 6839 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss); 6840 if (!mss) 6841 mss = af_ops->mss_clamp; 6842 6843 return mss; 6844 } 6845 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss); 6846 6847 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6848 const struct tcp_request_sock_ops *af_ops, 6849 struct sock *sk, struct sk_buff *skb) 6850 { 6851 struct tcp_fastopen_cookie foc = { .len = -1 }; 6852 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6853 struct tcp_options_received tmp_opt; 6854 struct tcp_sock *tp = tcp_sk(sk); 6855 struct net *net = sock_net(sk); 6856 struct sock *fastopen_sk = NULL; 6857 struct request_sock *req; 6858 bool want_cookie = false; 6859 struct dst_entry *dst; 6860 struct flowi fl; 6861 6862 /* TW buckets are converted to open requests without 6863 * limitations, they conserve resources and peer is 6864 * evidently real one. 6865 */ 6866 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6867 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6868 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name); 6869 if (!want_cookie) 6870 goto drop; 6871 } 6872 6873 if (sk_acceptq_is_full(sk)) { 6874 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6875 goto drop; 6876 } 6877 6878 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6879 if (!req) 6880 goto drop; 6881 6882 req->syncookie = want_cookie; 6883 tcp_rsk(req)->af_specific = af_ops; 6884 tcp_rsk(req)->ts_off = 0; 6885 #if IS_ENABLED(CONFIG_MPTCP) 6886 tcp_rsk(req)->is_mptcp = 0; 6887 #endif 6888 6889 tcp_clear_options(&tmp_opt); 6890 tmp_opt.mss_clamp = af_ops->mss_clamp; 6891 tmp_opt.user_mss = tp->rx_opt.user_mss; 6892 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6893 want_cookie ? NULL : &foc); 6894 6895 if (want_cookie && !tmp_opt.saw_tstamp) 6896 tcp_clear_options(&tmp_opt); 6897 6898 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 6899 tmp_opt.smc_ok = 0; 6900 6901 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6902 tcp_openreq_init(req, &tmp_opt, skb, sk); 6903 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6904 6905 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6906 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6907 6908 dst = af_ops->route_req(sk, skb, &fl, req); 6909 if (!dst) 6910 goto drop_and_free; 6911 6912 if (tmp_opt.tstamp_ok) 6913 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6914 6915 if (!want_cookie && !isn) { 6916 /* Kill the following clause, if you dislike this way. */ 6917 if (!net->ipv4.sysctl_tcp_syncookies && 6918 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6919 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6920 !tcp_peer_is_proven(req, dst)) { 6921 /* Without syncookies last quarter of 6922 * backlog is filled with destinations, 6923 * proven to be alive. 6924 * It means that we continue to communicate 6925 * to destinations, already remembered 6926 * to the moment of synflood. 6927 */ 6928 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6929 rsk_ops->family); 6930 goto drop_and_release; 6931 } 6932 6933 isn = af_ops->init_seq(skb); 6934 } 6935 6936 tcp_ecn_create_request(req, skb, sk, dst); 6937 6938 if (want_cookie) { 6939 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6940 if (!tmp_opt.tstamp_ok) 6941 inet_rsk(req)->ecn_ok = 0; 6942 } 6943 6944 tcp_rsk(req)->snt_isn = isn; 6945 tcp_rsk(req)->txhash = net_tx_rndhash(); 6946 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield; 6947 tcp_openreq_init_rwin(req, sk, dst); 6948 sk_rx_queue_set(req_to_sk(req), skb); 6949 if (!want_cookie) { 6950 tcp_reqsk_record_syn(sk, req, skb); 6951 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6952 } 6953 if (fastopen_sk) { 6954 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6955 &foc, TCP_SYNACK_FASTOPEN, skb); 6956 /* Add the child socket directly into the accept queue */ 6957 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 6958 reqsk_fastopen_remove(fastopen_sk, req, false); 6959 bh_unlock_sock(fastopen_sk); 6960 sock_put(fastopen_sk); 6961 goto drop_and_free; 6962 } 6963 sk->sk_data_ready(sk); 6964 bh_unlock_sock(fastopen_sk); 6965 sock_put(fastopen_sk); 6966 } else { 6967 tcp_rsk(req)->tfo_listener = false; 6968 if (!want_cookie) { 6969 req->timeout = tcp_timeout_init((struct sock *)req); 6970 inet_csk_reqsk_queue_hash_add(sk, req, req->timeout); 6971 } 6972 af_ops->send_synack(sk, dst, &fl, req, &foc, 6973 !want_cookie ? TCP_SYNACK_NORMAL : 6974 TCP_SYNACK_COOKIE, 6975 skb); 6976 if (want_cookie) { 6977 reqsk_free(req); 6978 return 0; 6979 } 6980 } 6981 reqsk_put(req); 6982 return 0; 6983 6984 drop_and_release: 6985 dst_release(dst); 6986 drop_and_free: 6987 __reqsk_free(req); 6988 drop: 6989 tcp_listendrop(sk); 6990 return 0; 6991 } 6992 EXPORT_SYMBOL(tcp_conn_request); 6993