1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #include <linux/mm.h> 65 #include <linux/slab.h> 66 #include <linux/module.h> 67 #include <linux/sysctl.h> 68 #include <linux/kernel.h> 69 #include <net/dst.h> 70 #include <net/tcp.h> 71 #include <net/inet_common.h> 72 #include <linux/ipsec.h> 73 #include <asm/unaligned.h> 74 #include <net/netdma.h> 75 76 int sysctl_tcp_timestamps __read_mostly = 1; 77 int sysctl_tcp_window_scaling __read_mostly = 1; 78 int sysctl_tcp_sack __read_mostly = 1; 79 int sysctl_tcp_fack __read_mostly = 1; 80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; 81 EXPORT_SYMBOL(sysctl_tcp_reordering); 82 int sysctl_tcp_ecn __read_mostly = 2; 83 EXPORT_SYMBOL(sysctl_tcp_ecn); 84 int sysctl_tcp_dsack __read_mostly = 1; 85 int sysctl_tcp_app_win __read_mostly = 31; 86 int sysctl_tcp_adv_win_scale __read_mostly = 2; 87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 88 89 int sysctl_tcp_stdurg __read_mostly; 90 int sysctl_tcp_rfc1337 __read_mostly; 91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 92 int sysctl_tcp_frto __read_mostly = 2; 93 int sysctl_tcp_frto_response __read_mostly; 94 int sysctl_tcp_nometrics_save __read_mostly; 95 96 int sysctl_tcp_thin_dupack __read_mostly; 97 98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 99 int sysctl_tcp_abc __read_mostly; 100 101 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 102 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 103 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 104 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 105 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 106 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 107 #define FLAG_ECE 0x40 /* ECE in this ACK */ 108 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */ 109 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 110 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */ 111 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 112 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 113 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */ 114 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 115 116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 120 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED) 121 122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 124 125 /* Adapt the MSS value used to make delayed ack decision to the 126 * real world. 127 */ 128 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 129 { 130 struct inet_connection_sock *icsk = inet_csk(sk); 131 const unsigned int lss = icsk->icsk_ack.last_seg_size; 132 unsigned int len; 133 134 icsk->icsk_ack.last_seg_size = 0; 135 136 /* skb->len may jitter because of SACKs, even if peer 137 * sends good full-sized frames. 138 */ 139 len = skb_shinfo(skb)->gso_size ? : skb->len; 140 if (len >= icsk->icsk_ack.rcv_mss) { 141 icsk->icsk_ack.rcv_mss = len; 142 } else { 143 /* Otherwise, we make more careful check taking into account, 144 * that SACKs block is variable. 145 * 146 * "len" is invariant segment length, including TCP header. 147 */ 148 len += skb->data - skb_transport_header(skb); 149 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 150 /* If PSH is not set, packet should be 151 * full sized, provided peer TCP is not badly broken. 152 * This observation (if it is correct 8)) allows 153 * to handle super-low mtu links fairly. 154 */ 155 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 156 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 157 /* Subtract also invariant (if peer is RFC compliant), 158 * tcp header plus fixed timestamp option length. 159 * Resulting "len" is MSS free of SACK jitter. 160 */ 161 len -= tcp_sk(sk)->tcp_header_len; 162 icsk->icsk_ack.last_seg_size = len; 163 if (len == lss) { 164 icsk->icsk_ack.rcv_mss = len; 165 return; 166 } 167 } 168 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 170 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 171 } 172 } 173 174 static void tcp_incr_quickack(struct sock *sk) 175 { 176 struct inet_connection_sock *icsk = inet_csk(sk); 177 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 178 179 if (quickacks == 0) 180 quickacks = 2; 181 if (quickacks > icsk->icsk_ack.quick) 182 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 183 } 184 185 static void tcp_enter_quickack_mode(struct sock *sk) 186 { 187 struct inet_connection_sock *icsk = inet_csk(sk); 188 tcp_incr_quickack(sk); 189 icsk->icsk_ack.pingpong = 0; 190 icsk->icsk_ack.ato = TCP_ATO_MIN; 191 } 192 193 /* Send ACKs quickly, if "quick" count is not exhausted 194 * and the session is not interactive. 195 */ 196 197 static inline int tcp_in_quickack_mode(const struct sock *sk) 198 { 199 const struct inet_connection_sock *icsk = inet_csk(sk); 200 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 201 } 202 203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp) 204 { 205 if (tp->ecn_flags & TCP_ECN_OK) 206 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 207 } 208 209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb) 210 { 211 if (tcp_hdr(skb)->cwr) 212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 213 } 214 215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp) 216 { 217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 218 } 219 220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb) 221 { 222 if (tp->ecn_flags & TCP_ECN_OK) { 223 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags)) 224 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 225 /* Funny extension: if ECT is not set on a segment, 226 * it is surely retransmit. It is not in ECN RFC, 227 * but Linux follows this rule. */ 228 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags))) 229 tcp_enter_quickack_mode((struct sock *)tp); 230 } 231 } 232 233 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th) 234 { 235 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 236 tp->ecn_flags &= ~TCP_ECN_OK; 237 } 238 239 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th) 240 { 241 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 242 tp->ecn_flags &= ~TCP_ECN_OK; 243 } 244 245 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th) 246 { 247 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 248 return 1; 249 return 0; 250 } 251 252 /* Buffer size and advertised window tuning. 253 * 254 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 255 */ 256 257 static void tcp_fixup_sndbuf(struct sock *sk) 258 { 259 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 + 260 sizeof(struct sk_buff); 261 262 if (sk->sk_sndbuf < 3 * sndmem) { 263 sk->sk_sndbuf = 3 * sndmem; 264 if (sk->sk_sndbuf > sysctl_tcp_wmem[2]) 265 sk->sk_sndbuf = sysctl_tcp_wmem[2]; 266 } 267 } 268 269 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 270 * 271 * All tcp_full_space() is split to two parts: "network" buffer, allocated 272 * forward and advertised in receiver window (tp->rcv_wnd) and 273 * "application buffer", required to isolate scheduling/application 274 * latencies from network. 275 * window_clamp is maximal advertised window. It can be less than 276 * tcp_full_space(), in this case tcp_full_space() - window_clamp 277 * is reserved for "application" buffer. The less window_clamp is 278 * the smoother our behaviour from viewpoint of network, but the lower 279 * throughput and the higher sensitivity of the connection to losses. 8) 280 * 281 * rcv_ssthresh is more strict window_clamp used at "slow start" 282 * phase to predict further behaviour of this connection. 283 * It is used for two goals: 284 * - to enforce header prediction at sender, even when application 285 * requires some significant "application buffer". It is check #1. 286 * - to prevent pruning of receive queue because of misprediction 287 * of receiver window. Check #2. 288 * 289 * The scheme does not work when sender sends good segments opening 290 * window and then starts to feed us spaghetti. But it should work 291 * in common situations. Otherwise, we have to rely on queue collapsing. 292 */ 293 294 /* Slow part of check#2. */ 295 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 296 { 297 struct tcp_sock *tp = tcp_sk(sk); 298 /* Optimize this! */ 299 int truesize = tcp_win_from_space(skb->truesize) >> 1; 300 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 301 302 while (tp->rcv_ssthresh <= window) { 303 if (truesize <= skb->len) 304 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 305 306 truesize >>= 1; 307 window >>= 1; 308 } 309 return 0; 310 } 311 312 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb) 313 { 314 struct tcp_sock *tp = tcp_sk(sk); 315 316 /* Check #1 */ 317 if (tp->rcv_ssthresh < tp->window_clamp && 318 (int)tp->rcv_ssthresh < tcp_space(sk) && 319 !tcp_memory_pressure) { 320 int incr; 321 322 /* Check #2. Increase window, if skb with such overhead 323 * will fit to rcvbuf in future. 324 */ 325 if (tcp_win_from_space(skb->truesize) <= skb->len) 326 incr = 2 * tp->advmss; 327 else 328 incr = __tcp_grow_window(sk, skb); 329 330 if (incr) { 331 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 332 tp->window_clamp); 333 inet_csk(sk)->icsk_ack.quick |= 1; 334 } 335 } 336 } 337 338 /* 3. Tuning rcvbuf, when connection enters established state. */ 339 340 static void tcp_fixup_rcvbuf(struct sock *sk) 341 { 342 struct tcp_sock *tp = tcp_sk(sk); 343 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff); 344 345 /* Try to select rcvbuf so that 4 mss-sized segments 346 * will fit to window and corresponding skbs will fit to our rcvbuf. 347 * (was 3; 4 is minimum to allow fast retransmit to work.) 348 */ 349 while (tcp_win_from_space(rcvmem) < tp->advmss) 350 rcvmem += 128; 351 if (sk->sk_rcvbuf < 4 * rcvmem) 352 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]); 353 } 354 355 /* 4. Try to fixup all. It is made immediately after connection enters 356 * established state. 357 */ 358 static void tcp_init_buffer_space(struct sock *sk) 359 { 360 struct tcp_sock *tp = tcp_sk(sk); 361 int maxwin; 362 363 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 364 tcp_fixup_rcvbuf(sk); 365 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 366 tcp_fixup_sndbuf(sk); 367 368 tp->rcvq_space.space = tp->rcv_wnd; 369 370 maxwin = tcp_full_space(sk); 371 372 if (tp->window_clamp >= maxwin) { 373 tp->window_clamp = maxwin; 374 375 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 376 tp->window_clamp = max(maxwin - 377 (maxwin >> sysctl_tcp_app_win), 378 4 * tp->advmss); 379 } 380 381 /* Force reservation of one segment. */ 382 if (sysctl_tcp_app_win && 383 tp->window_clamp > 2 * tp->advmss && 384 tp->window_clamp + tp->advmss > maxwin) 385 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 386 387 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 388 tp->snd_cwnd_stamp = tcp_time_stamp; 389 } 390 391 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 392 static void tcp_clamp_window(struct sock *sk) 393 { 394 struct tcp_sock *tp = tcp_sk(sk); 395 struct inet_connection_sock *icsk = inet_csk(sk); 396 397 icsk->icsk_ack.quick = 0; 398 399 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 400 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 401 !tcp_memory_pressure && 402 atomic_long_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) { 403 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 404 sysctl_tcp_rmem[2]); 405 } 406 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 407 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 408 } 409 410 /* Initialize RCV_MSS value. 411 * RCV_MSS is an our guess about MSS used by the peer. 412 * We haven't any direct information about the MSS. 413 * It's better to underestimate the RCV_MSS rather than overestimate. 414 * Overestimations make us ACKing less frequently than needed. 415 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 416 */ 417 void tcp_initialize_rcv_mss(struct sock *sk) 418 { 419 struct tcp_sock *tp = tcp_sk(sk); 420 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 421 422 hint = min(hint, tp->rcv_wnd / 2); 423 hint = min(hint, TCP_MSS_DEFAULT); 424 hint = max(hint, TCP_MIN_MSS); 425 426 inet_csk(sk)->icsk_ack.rcv_mss = hint; 427 } 428 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 429 430 /* Receiver "autotuning" code. 431 * 432 * The algorithm for RTT estimation w/o timestamps is based on 433 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 434 * <http://public.lanl.gov/radiant/pubs.html#DRS> 435 * 436 * More detail on this code can be found at 437 * <http://staff.psc.edu/jheffner/>, 438 * though this reference is out of date. A new paper 439 * is pending. 440 */ 441 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 442 { 443 u32 new_sample = tp->rcv_rtt_est.rtt; 444 long m = sample; 445 446 if (m == 0) 447 m = 1; 448 449 if (new_sample != 0) { 450 /* If we sample in larger samples in the non-timestamp 451 * case, we could grossly overestimate the RTT especially 452 * with chatty applications or bulk transfer apps which 453 * are stalled on filesystem I/O. 454 * 455 * Also, since we are only going for a minimum in the 456 * non-timestamp case, we do not smooth things out 457 * else with timestamps disabled convergence takes too 458 * long. 459 */ 460 if (!win_dep) { 461 m -= (new_sample >> 3); 462 new_sample += m; 463 } else if (m < new_sample) 464 new_sample = m << 3; 465 } else { 466 /* No previous measure. */ 467 new_sample = m << 3; 468 } 469 470 if (tp->rcv_rtt_est.rtt != new_sample) 471 tp->rcv_rtt_est.rtt = new_sample; 472 } 473 474 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 475 { 476 if (tp->rcv_rtt_est.time == 0) 477 goto new_measure; 478 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 479 return; 480 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1); 481 482 new_measure: 483 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 484 tp->rcv_rtt_est.time = tcp_time_stamp; 485 } 486 487 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 488 const struct sk_buff *skb) 489 { 490 struct tcp_sock *tp = tcp_sk(sk); 491 if (tp->rx_opt.rcv_tsecr && 492 (TCP_SKB_CB(skb)->end_seq - 493 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 494 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 495 } 496 497 /* 498 * This function should be called every time data is copied to user space. 499 * It calculates the appropriate TCP receive buffer space. 500 */ 501 void tcp_rcv_space_adjust(struct sock *sk) 502 { 503 struct tcp_sock *tp = tcp_sk(sk); 504 int time; 505 int space; 506 507 if (tp->rcvq_space.time == 0) 508 goto new_measure; 509 510 time = tcp_time_stamp - tp->rcvq_space.time; 511 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 512 return; 513 514 space = 2 * (tp->copied_seq - tp->rcvq_space.seq); 515 516 space = max(tp->rcvq_space.space, space); 517 518 if (tp->rcvq_space.space != space) { 519 int rcvmem; 520 521 tp->rcvq_space.space = space; 522 523 if (sysctl_tcp_moderate_rcvbuf && 524 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 525 int new_clamp = space; 526 527 /* Receive space grows, normalize in order to 528 * take into account packet headers and sk_buff 529 * structure overhead. 530 */ 531 space /= tp->advmss; 532 if (!space) 533 space = 1; 534 rcvmem = (tp->advmss + MAX_TCP_HEADER + 535 16 + sizeof(struct sk_buff)); 536 while (tcp_win_from_space(rcvmem) < tp->advmss) 537 rcvmem += 128; 538 space *= rcvmem; 539 space = min(space, sysctl_tcp_rmem[2]); 540 if (space > sk->sk_rcvbuf) { 541 sk->sk_rcvbuf = space; 542 543 /* Make the window clamp follow along. */ 544 tp->window_clamp = new_clamp; 545 } 546 } 547 } 548 549 new_measure: 550 tp->rcvq_space.seq = tp->copied_seq; 551 tp->rcvq_space.time = tcp_time_stamp; 552 } 553 554 /* There is something which you must keep in mind when you analyze the 555 * behavior of the tp->ato delayed ack timeout interval. When a 556 * connection starts up, we want to ack as quickly as possible. The 557 * problem is that "good" TCP's do slow start at the beginning of data 558 * transmission. The means that until we send the first few ACK's the 559 * sender will sit on his end and only queue most of his data, because 560 * he can only send snd_cwnd unacked packets at any given time. For 561 * each ACK we send, he increments snd_cwnd and transmits more of his 562 * queue. -DaveM 563 */ 564 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 565 { 566 struct tcp_sock *tp = tcp_sk(sk); 567 struct inet_connection_sock *icsk = inet_csk(sk); 568 u32 now; 569 570 inet_csk_schedule_ack(sk); 571 572 tcp_measure_rcv_mss(sk, skb); 573 574 tcp_rcv_rtt_measure(tp); 575 576 now = tcp_time_stamp; 577 578 if (!icsk->icsk_ack.ato) { 579 /* The _first_ data packet received, initialize 580 * delayed ACK engine. 581 */ 582 tcp_incr_quickack(sk); 583 icsk->icsk_ack.ato = TCP_ATO_MIN; 584 } else { 585 int m = now - icsk->icsk_ack.lrcvtime; 586 587 if (m <= TCP_ATO_MIN / 2) { 588 /* The fastest case is the first. */ 589 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 590 } else if (m < icsk->icsk_ack.ato) { 591 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 592 if (icsk->icsk_ack.ato > icsk->icsk_rto) 593 icsk->icsk_ack.ato = icsk->icsk_rto; 594 } else if (m > icsk->icsk_rto) { 595 /* Too long gap. Apparently sender failed to 596 * restart window, so that we send ACKs quickly. 597 */ 598 tcp_incr_quickack(sk); 599 sk_mem_reclaim(sk); 600 } 601 } 602 icsk->icsk_ack.lrcvtime = now; 603 604 TCP_ECN_check_ce(tp, skb); 605 606 if (skb->len >= 128) 607 tcp_grow_window(sk, skb); 608 } 609 610 /* Called to compute a smoothed rtt estimate. The data fed to this 611 * routine either comes from timestamps, or from segments that were 612 * known _not_ to have been retransmitted [see Karn/Partridge 613 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 614 * piece by Van Jacobson. 615 * NOTE: the next three routines used to be one big routine. 616 * To save cycles in the RFC 1323 implementation it was better to break 617 * it up into three procedures. -- erics 618 */ 619 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt) 620 { 621 struct tcp_sock *tp = tcp_sk(sk); 622 long m = mrtt; /* RTT */ 623 624 /* The following amusing code comes from Jacobson's 625 * article in SIGCOMM '88. Note that rtt and mdev 626 * are scaled versions of rtt and mean deviation. 627 * This is designed to be as fast as possible 628 * m stands for "measurement". 629 * 630 * On a 1990 paper the rto value is changed to: 631 * RTO = rtt + 4 * mdev 632 * 633 * Funny. This algorithm seems to be very broken. 634 * These formulae increase RTO, when it should be decreased, increase 635 * too slowly, when it should be increased quickly, decrease too quickly 636 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 637 * does not matter how to _calculate_ it. Seems, it was trap 638 * that VJ failed to avoid. 8) 639 */ 640 if (m == 0) 641 m = 1; 642 if (tp->srtt != 0) { 643 m -= (tp->srtt >> 3); /* m is now error in rtt est */ 644 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 645 if (m < 0) { 646 m = -m; /* m is now abs(error) */ 647 m -= (tp->mdev >> 2); /* similar update on mdev */ 648 /* This is similar to one of Eifel findings. 649 * Eifel blocks mdev updates when rtt decreases. 650 * This solution is a bit different: we use finer gain 651 * for mdev in this case (alpha*beta). 652 * Like Eifel it also prevents growth of rto, 653 * but also it limits too fast rto decreases, 654 * happening in pure Eifel. 655 */ 656 if (m > 0) 657 m >>= 3; 658 } else { 659 m -= (tp->mdev >> 2); /* similar update on mdev */ 660 } 661 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */ 662 if (tp->mdev > tp->mdev_max) { 663 tp->mdev_max = tp->mdev; 664 if (tp->mdev_max > tp->rttvar) 665 tp->rttvar = tp->mdev_max; 666 } 667 if (after(tp->snd_una, tp->rtt_seq)) { 668 if (tp->mdev_max < tp->rttvar) 669 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2; 670 tp->rtt_seq = tp->snd_nxt; 671 tp->mdev_max = tcp_rto_min(sk); 672 } 673 } else { 674 /* no previous measure. */ 675 tp->srtt = m << 3; /* take the measured time to be rtt */ 676 tp->mdev = m << 1; /* make sure rto = 3*rtt */ 677 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 678 tp->rtt_seq = tp->snd_nxt; 679 } 680 } 681 682 /* Calculate rto without backoff. This is the second half of Van Jacobson's 683 * routine referred to above. 684 */ 685 static inline void tcp_set_rto(struct sock *sk) 686 { 687 const struct tcp_sock *tp = tcp_sk(sk); 688 /* Old crap is replaced with new one. 8) 689 * 690 * More seriously: 691 * 1. If rtt variance happened to be less 50msec, it is hallucination. 692 * It cannot be less due to utterly erratic ACK generation made 693 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 694 * to do with delayed acks, because at cwnd>2 true delack timeout 695 * is invisible. Actually, Linux-2.4 also generates erratic 696 * ACKs in some circumstances. 697 */ 698 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 699 700 /* 2. Fixups made earlier cannot be right. 701 * If we do not estimate RTO correctly without them, 702 * all the algo is pure shit and should be replaced 703 * with correct one. It is exactly, which we pretend to do. 704 */ 705 706 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 707 * guarantees that rto is higher. 708 */ 709 tcp_bound_rto(sk); 710 } 711 712 /* Save metrics learned by this TCP session. 713 This function is called only, when TCP finishes successfully 714 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE. 715 */ 716 void tcp_update_metrics(struct sock *sk) 717 { 718 struct tcp_sock *tp = tcp_sk(sk); 719 struct dst_entry *dst = __sk_dst_get(sk); 720 721 if (sysctl_tcp_nometrics_save) 722 return; 723 724 dst_confirm(dst); 725 726 if (dst && (dst->flags & DST_HOST)) { 727 const struct inet_connection_sock *icsk = inet_csk(sk); 728 int m; 729 unsigned long rtt; 730 731 if (icsk->icsk_backoff || !tp->srtt) { 732 /* This session failed to estimate rtt. Why? 733 * Probably, no packets returned in time. 734 * Reset our results. 735 */ 736 if (!(dst_metric_locked(dst, RTAX_RTT))) 737 dst_metric_set(dst, RTAX_RTT, 0); 738 return; 739 } 740 741 rtt = dst_metric_rtt(dst, RTAX_RTT); 742 m = rtt - tp->srtt; 743 744 /* If newly calculated rtt larger than stored one, 745 * store new one. Otherwise, use EWMA. Remember, 746 * rtt overestimation is always better than underestimation. 747 */ 748 if (!(dst_metric_locked(dst, RTAX_RTT))) { 749 if (m <= 0) 750 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt); 751 else 752 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3)); 753 } 754 755 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) { 756 unsigned long var; 757 if (m < 0) 758 m = -m; 759 760 /* Scale deviation to rttvar fixed point */ 761 m >>= 1; 762 if (m < tp->mdev) 763 m = tp->mdev; 764 765 var = dst_metric_rtt(dst, RTAX_RTTVAR); 766 if (m >= var) 767 var = m; 768 else 769 var -= (var - m) >> 2; 770 771 set_dst_metric_rtt(dst, RTAX_RTTVAR, var); 772 } 773 774 if (tcp_in_initial_slowstart(tp)) { 775 /* Slow start still did not finish. */ 776 if (dst_metric(dst, RTAX_SSTHRESH) && 777 !dst_metric_locked(dst, RTAX_SSTHRESH) && 778 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH)) 779 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1); 780 if (!dst_metric_locked(dst, RTAX_CWND) && 781 tp->snd_cwnd > dst_metric(dst, RTAX_CWND)) 782 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd); 783 } else if (tp->snd_cwnd > tp->snd_ssthresh && 784 icsk->icsk_ca_state == TCP_CA_Open) { 785 /* Cong. avoidance phase, cwnd is reliable. */ 786 if (!dst_metric_locked(dst, RTAX_SSTHRESH)) 787 dst_metric_set(dst, RTAX_SSTHRESH, 788 max(tp->snd_cwnd >> 1, tp->snd_ssthresh)); 789 if (!dst_metric_locked(dst, RTAX_CWND)) 790 dst_metric_set(dst, RTAX_CWND, 791 (dst_metric(dst, RTAX_CWND) + 792 tp->snd_cwnd) >> 1); 793 } else { 794 /* Else slow start did not finish, cwnd is non-sense, 795 ssthresh may be also invalid. 796 */ 797 if (!dst_metric_locked(dst, RTAX_CWND)) 798 dst_metric_set(dst, RTAX_CWND, 799 (dst_metric(dst, RTAX_CWND) + 800 tp->snd_ssthresh) >> 1); 801 if (dst_metric(dst, RTAX_SSTHRESH) && 802 !dst_metric_locked(dst, RTAX_SSTHRESH) && 803 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH)) 804 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh); 805 } 806 807 if (!dst_metric_locked(dst, RTAX_REORDERING)) { 808 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering && 809 tp->reordering != sysctl_tcp_reordering) 810 dst_metric_set(dst, RTAX_REORDERING, tp->reordering); 811 } 812 } 813 } 814 815 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst) 816 { 817 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 818 819 if (!cwnd) 820 cwnd = rfc3390_bytes_to_packets(tp->mss_cache); 821 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 822 } 823 824 /* Set slow start threshold and cwnd not falling to slow start */ 825 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh) 826 { 827 struct tcp_sock *tp = tcp_sk(sk); 828 const struct inet_connection_sock *icsk = inet_csk(sk); 829 830 tp->prior_ssthresh = 0; 831 tp->bytes_acked = 0; 832 if (icsk->icsk_ca_state < TCP_CA_CWR) { 833 tp->undo_marker = 0; 834 if (set_ssthresh) 835 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 836 tp->snd_cwnd = min(tp->snd_cwnd, 837 tcp_packets_in_flight(tp) + 1U); 838 tp->snd_cwnd_cnt = 0; 839 tp->high_seq = tp->snd_nxt; 840 tp->snd_cwnd_stamp = tcp_time_stamp; 841 TCP_ECN_queue_cwr(tp); 842 843 tcp_set_ca_state(sk, TCP_CA_CWR); 844 } 845 } 846 847 /* 848 * Packet counting of FACK is based on in-order assumptions, therefore TCP 849 * disables it when reordering is detected 850 */ 851 static void tcp_disable_fack(struct tcp_sock *tp) 852 { 853 /* RFC3517 uses different metric in lost marker => reset on change */ 854 if (tcp_is_fack(tp)) 855 tp->lost_skb_hint = NULL; 856 tp->rx_opt.sack_ok &= ~2; 857 } 858 859 /* Take a notice that peer is sending D-SACKs */ 860 static void tcp_dsack_seen(struct tcp_sock *tp) 861 { 862 tp->rx_opt.sack_ok |= 4; 863 } 864 865 /* Initialize metrics on socket. */ 866 867 static void tcp_init_metrics(struct sock *sk) 868 { 869 struct tcp_sock *tp = tcp_sk(sk); 870 struct dst_entry *dst = __sk_dst_get(sk); 871 872 if (dst == NULL) 873 goto reset; 874 875 dst_confirm(dst); 876 877 if (dst_metric_locked(dst, RTAX_CWND)) 878 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND); 879 if (dst_metric(dst, RTAX_SSTHRESH)) { 880 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH); 881 if (tp->snd_ssthresh > tp->snd_cwnd_clamp) 882 tp->snd_ssthresh = tp->snd_cwnd_clamp; 883 } 884 if (dst_metric(dst, RTAX_REORDERING) && 885 tp->reordering != dst_metric(dst, RTAX_REORDERING)) { 886 tcp_disable_fack(tp); 887 tp->reordering = dst_metric(dst, RTAX_REORDERING); 888 } 889 890 if (dst_metric(dst, RTAX_RTT) == 0) 891 goto reset; 892 893 if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3)) 894 goto reset; 895 896 /* Initial rtt is determined from SYN,SYN-ACK. 897 * The segment is small and rtt may appear much 898 * less than real one. Use per-dst memory 899 * to make it more realistic. 900 * 901 * A bit of theory. RTT is time passed after "normal" sized packet 902 * is sent until it is ACKed. In normal circumstances sending small 903 * packets force peer to delay ACKs and calculation is correct too. 904 * The algorithm is adaptive and, provided we follow specs, it 905 * NEVER underestimate RTT. BUT! If peer tries to make some clever 906 * tricks sort of "quick acks" for time long enough to decrease RTT 907 * to low value, and then abruptly stops to do it and starts to delay 908 * ACKs, wait for troubles. 909 */ 910 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) { 911 tp->srtt = dst_metric_rtt(dst, RTAX_RTT); 912 tp->rtt_seq = tp->snd_nxt; 913 } 914 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) { 915 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR); 916 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 917 } 918 tcp_set_rto(sk); 919 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp) { 920 reset: 921 /* Play conservative. If timestamps are not 922 * supported, TCP will fail to recalculate correct 923 * rtt, if initial rto is too small. FORGET ALL AND RESET! 924 */ 925 if (!tp->rx_opt.saw_tstamp && tp->srtt) { 926 tp->srtt = 0; 927 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT; 928 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 929 } 930 } 931 tp->snd_cwnd = tcp_init_cwnd(tp, dst); 932 tp->snd_cwnd_stamp = tcp_time_stamp; 933 } 934 935 static void tcp_update_reordering(struct sock *sk, const int metric, 936 const int ts) 937 { 938 struct tcp_sock *tp = tcp_sk(sk); 939 if (metric > tp->reordering) { 940 int mib_idx; 941 942 tp->reordering = min(TCP_MAX_REORDERING, metric); 943 944 /* This exciting event is worth to be remembered. 8) */ 945 if (ts) 946 mib_idx = LINUX_MIB_TCPTSREORDER; 947 else if (tcp_is_reno(tp)) 948 mib_idx = LINUX_MIB_TCPRENOREORDER; 949 else if (tcp_is_fack(tp)) 950 mib_idx = LINUX_MIB_TCPFACKREORDER; 951 else 952 mib_idx = LINUX_MIB_TCPSACKREORDER; 953 954 NET_INC_STATS_BH(sock_net(sk), mib_idx); 955 #if FASTRETRANS_DEBUG > 1 956 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n", 957 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 958 tp->reordering, 959 tp->fackets_out, 960 tp->sacked_out, 961 tp->undo_marker ? tp->undo_retrans : 0); 962 #endif 963 tcp_disable_fack(tp); 964 } 965 } 966 967 /* This must be called before lost_out is incremented */ 968 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 969 { 970 if ((tp->retransmit_skb_hint == NULL) || 971 before(TCP_SKB_CB(skb)->seq, 972 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 973 tp->retransmit_skb_hint = skb; 974 975 if (!tp->lost_out || 976 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high)) 977 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 978 } 979 980 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 981 { 982 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 983 tcp_verify_retransmit_hint(tp, skb); 984 985 tp->lost_out += tcp_skb_pcount(skb); 986 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 987 } 988 } 989 990 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, 991 struct sk_buff *skb) 992 { 993 tcp_verify_retransmit_hint(tp, skb); 994 995 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 996 tp->lost_out += tcp_skb_pcount(skb); 997 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 998 } 999 } 1000 1001 /* This procedure tags the retransmission queue when SACKs arrive. 1002 * 1003 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1004 * Packets in queue with these bits set are counted in variables 1005 * sacked_out, retrans_out and lost_out, correspondingly. 1006 * 1007 * Valid combinations are: 1008 * Tag InFlight Description 1009 * 0 1 - orig segment is in flight. 1010 * S 0 - nothing flies, orig reached receiver. 1011 * L 0 - nothing flies, orig lost by net. 1012 * R 2 - both orig and retransmit are in flight. 1013 * L|R 1 - orig is lost, retransmit is in flight. 1014 * S|R 1 - orig reached receiver, retrans is still in flight. 1015 * (L|S|R is logically valid, it could occur when L|R is sacked, 1016 * but it is equivalent to plain S and code short-curcuits it to S. 1017 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1018 * 1019 * These 6 states form finite state machine, controlled by the following events: 1020 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1021 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1022 * 3. Loss detection event of one of three flavors: 1023 * A. Scoreboard estimator decided the packet is lost. 1024 * A'. Reno "three dupacks" marks head of queue lost. 1025 * A''. Its FACK modfication, head until snd.fack is lost. 1026 * B. SACK arrives sacking data transmitted after never retransmitted 1027 * hole was sent out. 1028 * C. SACK arrives sacking SND.NXT at the moment, when the 1029 * segment was retransmitted. 1030 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1031 * 1032 * It is pleasant to note, that state diagram turns out to be commutative, 1033 * so that we are allowed not to be bothered by order of our actions, 1034 * when multiple events arrive simultaneously. (see the function below). 1035 * 1036 * Reordering detection. 1037 * -------------------- 1038 * Reordering metric is maximal distance, which a packet can be displaced 1039 * in packet stream. With SACKs we can estimate it: 1040 * 1041 * 1. SACK fills old hole and the corresponding segment was not 1042 * ever retransmitted -> reordering. Alas, we cannot use it 1043 * when segment was retransmitted. 1044 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1045 * for retransmitted and already SACKed segment -> reordering.. 1046 * Both of these heuristics are not used in Loss state, when we cannot 1047 * account for retransmits accurately. 1048 * 1049 * SACK block validation. 1050 * ---------------------- 1051 * 1052 * SACK block range validation checks that the received SACK block fits to 1053 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1054 * Note that SND.UNA is not included to the range though being valid because 1055 * it means that the receiver is rather inconsistent with itself reporting 1056 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1057 * perfectly valid, however, in light of RFC2018 which explicitly states 1058 * that "SACK block MUST reflect the newest segment. Even if the newest 1059 * segment is going to be discarded ...", not that it looks very clever 1060 * in case of head skb. Due to potentional receiver driven attacks, we 1061 * choose to avoid immediate execution of a walk in write queue due to 1062 * reneging and defer head skb's loss recovery to standard loss recovery 1063 * procedure that will eventually trigger (nothing forbids us doing this). 1064 * 1065 * Implements also blockage to start_seq wrap-around. Problem lies in the 1066 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1067 * there's no guarantee that it will be before snd_nxt (n). The problem 1068 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1069 * wrap (s_w): 1070 * 1071 * <- outs wnd -> <- wrapzone -> 1072 * u e n u_w e_w s n_w 1073 * | | | | | | | 1074 * |<------------+------+----- TCP seqno space --------------+---------->| 1075 * ...-- <2^31 ->| |<--------... 1076 * ...---- >2^31 ------>| |<--------... 1077 * 1078 * Current code wouldn't be vulnerable but it's better still to discard such 1079 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1080 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1081 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1082 * equal to the ideal case (infinite seqno space without wrap caused issues). 1083 * 1084 * With D-SACK the lower bound is extended to cover sequence space below 1085 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1086 * again, D-SACK block must not to go across snd_una (for the same reason as 1087 * for the normal SACK blocks, explained above). But there all simplicity 1088 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1089 * fully below undo_marker they do not affect behavior in anyway and can 1090 * therefore be safely ignored. In rare cases (which are more or less 1091 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1092 * fragmentation and packet reordering past skb's retransmission. To consider 1093 * them correctly, the acceptable range must be extended even more though 1094 * the exact amount is rather hard to quantify. However, tp->max_window can 1095 * be used as an exaggerated estimate. 1096 */ 1097 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack, 1098 u32 start_seq, u32 end_seq) 1099 { 1100 /* Too far in future, or reversed (interpretation is ambiguous) */ 1101 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1102 return 0; 1103 1104 /* Nasty start_seq wrap-around check (see comments above) */ 1105 if (!before(start_seq, tp->snd_nxt)) 1106 return 0; 1107 1108 /* In outstanding window? ...This is valid exit for D-SACKs too. 1109 * start_seq == snd_una is non-sensical (see comments above) 1110 */ 1111 if (after(start_seq, tp->snd_una)) 1112 return 1; 1113 1114 if (!is_dsack || !tp->undo_marker) 1115 return 0; 1116 1117 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1118 if (!after(end_seq, tp->snd_una)) 1119 return 0; 1120 1121 if (!before(start_seq, tp->undo_marker)) 1122 return 1; 1123 1124 /* Too old */ 1125 if (!after(end_seq, tp->undo_marker)) 1126 return 0; 1127 1128 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1129 * start_seq < undo_marker and end_seq >= undo_marker. 1130 */ 1131 return !before(start_seq, end_seq - tp->max_window); 1132 } 1133 1134 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving". 1135 * Event "C". Later note: FACK people cheated me again 8), we have to account 1136 * for reordering! Ugly, but should help. 1137 * 1138 * Search retransmitted skbs from write_queue that were sent when snd_nxt was 1139 * less than what is now known to be received by the other end (derived from 1140 * highest SACK block). Also calculate the lowest snd_nxt among the remaining 1141 * retransmitted skbs to avoid some costly processing per ACKs. 1142 */ 1143 static void tcp_mark_lost_retrans(struct sock *sk) 1144 { 1145 const struct inet_connection_sock *icsk = inet_csk(sk); 1146 struct tcp_sock *tp = tcp_sk(sk); 1147 struct sk_buff *skb; 1148 int cnt = 0; 1149 u32 new_low_seq = tp->snd_nxt; 1150 u32 received_upto = tcp_highest_sack_seq(tp); 1151 1152 if (!tcp_is_fack(tp) || !tp->retrans_out || 1153 !after(received_upto, tp->lost_retrans_low) || 1154 icsk->icsk_ca_state != TCP_CA_Recovery) 1155 return; 1156 1157 tcp_for_write_queue(skb, sk) { 1158 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq; 1159 1160 if (skb == tcp_send_head(sk)) 1161 break; 1162 if (cnt == tp->retrans_out) 1163 break; 1164 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1165 continue; 1166 1167 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) 1168 continue; 1169 1170 /* TODO: We would like to get rid of tcp_is_fack(tp) only 1171 * constraint here (see above) but figuring out that at 1172 * least tp->reordering SACK blocks reside between ack_seq 1173 * and received_upto is not easy task to do cheaply with 1174 * the available datastructures. 1175 * 1176 * Whether FACK should check here for tp->reordering segs 1177 * in-between one could argue for either way (it would be 1178 * rather simple to implement as we could count fack_count 1179 * during the walk and do tp->fackets_out - fack_count). 1180 */ 1181 if (after(received_upto, ack_seq)) { 1182 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1183 tp->retrans_out -= tcp_skb_pcount(skb); 1184 1185 tcp_skb_mark_lost_uncond_verify(tp, skb); 1186 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT); 1187 } else { 1188 if (before(ack_seq, new_low_seq)) 1189 new_low_seq = ack_seq; 1190 cnt += tcp_skb_pcount(skb); 1191 } 1192 } 1193 1194 if (tp->retrans_out) 1195 tp->lost_retrans_low = new_low_seq; 1196 } 1197 1198 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb, 1199 struct tcp_sack_block_wire *sp, int num_sacks, 1200 u32 prior_snd_una) 1201 { 1202 struct tcp_sock *tp = tcp_sk(sk); 1203 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1204 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1205 int dup_sack = 0; 1206 1207 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1208 dup_sack = 1; 1209 tcp_dsack_seen(tp); 1210 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1211 } else if (num_sacks > 1) { 1212 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1213 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1214 1215 if (!after(end_seq_0, end_seq_1) && 1216 !before(start_seq_0, start_seq_1)) { 1217 dup_sack = 1; 1218 tcp_dsack_seen(tp); 1219 NET_INC_STATS_BH(sock_net(sk), 1220 LINUX_MIB_TCPDSACKOFORECV); 1221 } 1222 } 1223 1224 /* D-SACK for already forgotten data... Do dumb counting. */ 1225 if (dup_sack && 1226 !after(end_seq_0, prior_snd_una) && 1227 after(end_seq_0, tp->undo_marker)) 1228 tp->undo_retrans--; 1229 1230 return dup_sack; 1231 } 1232 1233 struct tcp_sacktag_state { 1234 int reord; 1235 int fack_count; 1236 int flag; 1237 }; 1238 1239 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1240 * the incoming SACK may not exactly match but we can find smaller MSS 1241 * aligned portion of it that matches. Therefore we might need to fragment 1242 * which may fail and creates some hassle (caller must handle error case 1243 * returns). 1244 * 1245 * FIXME: this could be merged to shift decision code 1246 */ 1247 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1248 u32 start_seq, u32 end_seq) 1249 { 1250 int in_sack, err; 1251 unsigned int pkt_len; 1252 unsigned int mss; 1253 1254 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1255 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1256 1257 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1258 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1259 mss = tcp_skb_mss(skb); 1260 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1261 1262 if (!in_sack) { 1263 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1264 if (pkt_len < mss) 1265 pkt_len = mss; 1266 } else { 1267 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1268 if (pkt_len < mss) 1269 return -EINVAL; 1270 } 1271 1272 /* Round if necessary so that SACKs cover only full MSSes 1273 * and/or the remaining small portion (if present) 1274 */ 1275 if (pkt_len > mss) { 1276 unsigned int new_len = (pkt_len / mss) * mss; 1277 if (!in_sack && new_len < pkt_len) { 1278 new_len += mss; 1279 if (new_len > skb->len) 1280 return 0; 1281 } 1282 pkt_len = new_len; 1283 } 1284 err = tcp_fragment(sk, skb, pkt_len, mss); 1285 if (err < 0) 1286 return err; 1287 } 1288 1289 return in_sack; 1290 } 1291 1292 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk, 1293 struct tcp_sacktag_state *state, 1294 int dup_sack, int pcount) 1295 { 1296 struct tcp_sock *tp = tcp_sk(sk); 1297 u8 sacked = TCP_SKB_CB(skb)->sacked; 1298 int fack_count = state->fack_count; 1299 1300 /* Account D-SACK for retransmitted packet. */ 1301 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1302 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker)) 1303 tp->undo_retrans--; 1304 if (sacked & TCPCB_SACKED_ACKED) 1305 state->reord = min(fack_count, state->reord); 1306 } 1307 1308 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1309 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1310 return sacked; 1311 1312 if (!(sacked & TCPCB_SACKED_ACKED)) { 1313 if (sacked & TCPCB_SACKED_RETRANS) { 1314 /* If the segment is not tagged as lost, 1315 * we do not clear RETRANS, believing 1316 * that retransmission is still in flight. 1317 */ 1318 if (sacked & TCPCB_LOST) { 1319 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1320 tp->lost_out -= pcount; 1321 tp->retrans_out -= pcount; 1322 } 1323 } else { 1324 if (!(sacked & TCPCB_RETRANS)) { 1325 /* New sack for not retransmitted frame, 1326 * which was in hole. It is reordering. 1327 */ 1328 if (before(TCP_SKB_CB(skb)->seq, 1329 tcp_highest_sack_seq(tp))) 1330 state->reord = min(fack_count, 1331 state->reord); 1332 1333 /* SACK enhanced F-RTO (RFC4138; Appendix B) */ 1334 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) 1335 state->flag |= FLAG_ONLY_ORIG_SACKED; 1336 } 1337 1338 if (sacked & TCPCB_LOST) { 1339 sacked &= ~TCPCB_LOST; 1340 tp->lost_out -= pcount; 1341 } 1342 } 1343 1344 sacked |= TCPCB_SACKED_ACKED; 1345 state->flag |= FLAG_DATA_SACKED; 1346 tp->sacked_out += pcount; 1347 1348 fack_count += pcount; 1349 1350 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1351 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) && 1352 before(TCP_SKB_CB(skb)->seq, 1353 TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1354 tp->lost_cnt_hint += pcount; 1355 1356 if (fack_count > tp->fackets_out) 1357 tp->fackets_out = fack_count; 1358 } 1359 1360 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1361 * frames and clear it. undo_retrans is decreased above, L|R frames 1362 * are accounted above as well. 1363 */ 1364 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1365 sacked &= ~TCPCB_SACKED_RETRANS; 1366 tp->retrans_out -= pcount; 1367 } 1368 1369 return sacked; 1370 } 1371 1372 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1373 struct tcp_sacktag_state *state, 1374 unsigned int pcount, int shifted, int mss, 1375 int dup_sack) 1376 { 1377 struct tcp_sock *tp = tcp_sk(sk); 1378 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1379 1380 BUG_ON(!pcount); 1381 1382 /* Tweak before seqno plays */ 1383 if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint && 1384 !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq)) 1385 tp->lost_cnt_hint += pcount; 1386 1387 TCP_SKB_CB(prev)->end_seq += shifted; 1388 TCP_SKB_CB(skb)->seq += shifted; 1389 1390 skb_shinfo(prev)->gso_segs += pcount; 1391 BUG_ON(skb_shinfo(skb)->gso_segs < pcount); 1392 skb_shinfo(skb)->gso_segs -= pcount; 1393 1394 /* When we're adding to gso_segs == 1, gso_size will be zero, 1395 * in theory this shouldn't be necessary but as long as DSACK 1396 * code can come after this skb later on it's better to keep 1397 * setting gso_size to something. 1398 */ 1399 if (!skb_shinfo(prev)->gso_size) { 1400 skb_shinfo(prev)->gso_size = mss; 1401 skb_shinfo(prev)->gso_type = sk->sk_gso_type; 1402 } 1403 1404 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1405 if (skb_shinfo(skb)->gso_segs <= 1) { 1406 skb_shinfo(skb)->gso_size = 0; 1407 skb_shinfo(skb)->gso_type = 0; 1408 } 1409 1410 /* We discard results */ 1411 tcp_sacktag_one(skb, sk, state, dup_sack, pcount); 1412 1413 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1414 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1415 1416 if (skb->len > 0) { 1417 BUG_ON(!tcp_skb_pcount(skb)); 1418 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1419 return 0; 1420 } 1421 1422 /* Whole SKB was eaten :-) */ 1423 1424 if (skb == tp->retransmit_skb_hint) 1425 tp->retransmit_skb_hint = prev; 1426 if (skb == tp->scoreboard_skb_hint) 1427 tp->scoreboard_skb_hint = prev; 1428 if (skb == tp->lost_skb_hint) { 1429 tp->lost_skb_hint = prev; 1430 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1431 } 1432 1433 TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags; 1434 if (skb == tcp_highest_sack(sk)) 1435 tcp_advance_highest_sack(sk, skb); 1436 1437 tcp_unlink_write_queue(skb, sk); 1438 sk_wmem_free_skb(sk, skb); 1439 1440 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED); 1441 1442 return 1; 1443 } 1444 1445 /* I wish gso_size would have a bit more sane initialization than 1446 * something-or-zero which complicates things 1447 */ 1448 static int tcp_skb_seglen(struct sk_buff *skb) 1449 { 1450 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1451 } 1452 1453 /* Shifting pages past head area doesn't work */ 1454 static int skb_can_shift(struct sk_buff *skb) 1455 { 1456 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1457 } 1458 1459 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1460 * skb. 1461 */ 1462 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1463 struct tcp_sacktag_state *state, 1464 u32 start_seq, u32 end_seq, 1465 int dup_sack) 1466 { 1467 struct tcp_sock *tp = tcp_sk(sk); 1468 struct sk_buff *prev; 1469 int mss; 1470 int pcount = 0; 1471 int len; 1472 int in_sack; 1473 1474 if (!sk_can_gso(sk)) 1475 goto fallback; 1476 1477 /* Normally R but no L won't result in plain S */ 1478 if (!dup_sack && 1479 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1480 goto fallback; 1481 if (!skb_can_shift(skb)) 1482 goto fallback; 1483 /* This frame is about to be dropped (was ACKed). */ 1484 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1485 goto fallback; 1486 1487 /* Can only happen with delayed DSACK + discard craziness */ 1488 if (unlikely(skb == tcp_write_queue_head(sk))) 1489 goto fallback; 1490 prev = tcp_write_queue_prev(sk, skb); 1491 1492 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1493 goto fallback; 1494 1495 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1496 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1497 1498 if (in_sack) { 1499 len = skb->len; 1500 pcount = tcp_skb_pcount(skb); 1501 mss = tcp_skb_seglen(skb); 1502 1503 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1504 * drop this restriction as unnecessary 1505 */ 1506 if (mss != tcp_skb_seglen(prev)) 1507 goto fallback; 1508 } else { 1509 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1510 goto noop; 1511 /* CHECKME: This is non-MSS split case only?, this will 1512 * cause skipped skbs due to advancing loop btw, original 1513 * has that feature too 1514 */ 1515 if (tcp_skb_pcount(skb) <= 1) 1516 goto noop; 1517 1518 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1519 if (!in_sack) { 1520 /* TODO: head merge to next could be attempted here 1521 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1522 * though it might not be worth of the additional hassle 1523 * 1524 * ...we can probably just fallback to what was done 1525 * previously. We could try merging non-SACKed ones 1526 * as well but it probably isn't going to buy off 1527 * because later SACKs might again split them, and 1528 * it would make skb timestamp tracking considerably 1529 * harder problem. 1530 */ 1531 goto fallback; 1532 } 1533 1534 len = end_seq - TCP_SKB_CB(skb)->seq; 1535 BUG_ON(len < 0); 1536 BUG_ON(len > skb->len); 1537 1538 /* MSS boundaries should be honoured or else pcount will 1539 * severely break even though it makes things bit trickier. 1540 * Optimize common case to avoid most of the divides 1541 */ 1542 mss = tcp_skb_mss(skb); 1543 1544 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1545 * drop this restriction as unnecessary 1546 */ 1547 if (mss != tcp_skb_seglen(prev)) 1548 goto fallback; 1549 1550 if (len == mss) { 1551 pcount = 1; 1552 } else if (len < mss) { 1553 goto noop; 1554 } else { 1555 pcount = len / mss; 1556 len = pcount * mss; 1557 } 1558 } 1559 1560 if (!skb_shift(prev, skb, len)) 1561 goto fallback; 1562 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1563 goto out; 1564 1565 /* Hole filled allows collapsing with the next as well, this is very 1566 * useful when hole on every nth skb pattern happens 1567 */ 1568 if (prev == tcp_write_queue_tail(sk)) 1569 goto out; 1570 skb = tcp_write_queue_next(sk, prev); 1571 1572 if (!skb_can_shift(skb) || 1573 (skb == tcp_send_head(sk)) || 1574 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1575 (mss != tcp_skb_seglen(skb))) 1576 goto out; 1577 1578 len = skb->len; 1579 if (skb_shift(prev, skb, len)) { 1580 pcount += tcp_skb_pcount(skb); 1581 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1582 } 1583 1584 out: 1585 state->fack_count += pcount; 1586 return prev; 1587 1588 noop: 1589 return skb; 1590 1591 fallback: 1592 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1593 return NULL; 1594 } 1595 1596 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1597 struct tcp_sack_block *next_dup, 1598 struct tcp_sacktag_state *state, 1599 u32 start_seq, u32 end_seq, 1600 int dup_sack_in) 1601 { 1602 struct tcp_sock *tp = tcp_sk(sk); 1603 struct sk_buff *tmp; 1604 1605 tcp_for_write_queue_from(skb, sk) { 1606 int in_sack = 0; 1607 int dup_sack = dup_sack_in; 1608 1609 if (skb == tcp_send_head(sk)) 1610 break; 1611 1612 /* queue is in-order => we can short-circuit the walk early */ 1613 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1614 break; 1615 1616 if ((next_dup != NULL) && 1617 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1618 in_sack = tcp_match_skb_to_sack(sk, skb, 1619 next_dup->start_seq, 1620 next_dup->end_seq); 1621 if (in_sack > 0) 1622 dup_sack = 1; 1623 } 1624 1625 /* skb reference here is a bit tricky to get right, since 1626 * shifting can eat and free both this skb and the next, 1627 * so not even _safe variant of the loop is enough. 1628 */ 1629 if (in_sack <= 0) { 1630 tmp = tcp_shift_skb_data(sk, skb, state, 1631 start_seq, end_seq, dup_sack); 1632 if (tmp != NULL) { 1633 if (tmp != skb) { 1634 skb = tmp; 1635 continue; 1636 } 1637 1638 in_sack = 0; 1639 } else { 1640 in_sack = tcp_match_skb_to_sack(sk, skb, 1641 start_seq, 1642 end_seq); 1643 } 1644 } 1645 1646 if (unlikely(in_sack < 0)) 1647 break; 1648 1649 if (in_sack) { 1650 TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk, 1651 state, 1652 dup_sack, 1653 tcp_skb_pcount(skb)); 1654 1655 if (!before(TCP_SKB_CB(skb)->seq, 1656 tcp_highest_sack_seq(tp))) 1657 tcp_advance_highest_sack(sk, skb); 1658 } 1659 1660 state->fack_count += tcp_skb_pcount(skb); 1661 } 1662 return skb; 1663 } 1664 1665 /* Avoid all extra work that is being done by sacktag while walking in 1666 * a normal way 1667 */ 1668 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1669 struct tcp_sacktag_state *state, 1670 u32 skip_to_seq) 1671 { 1672 tcp_for_write_queue_from(skb, sk) { 1673 if (skb == tcp_send_head(sk)) 1674 break; 1675 1676 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1677 break; 1678 1679 state->fack_count += tcp_skb_pcount(skb); 1680 } 1681 return skb; 1682 } 1683 1684 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1685 struct sock *sk, 1686 struct tcp_sack_block *next_dup, 1687 struct tcp_sacktag_state *state, 1688 u32 skip_to_seq) 1689 { 1690 if (next_dup == NULL) 1691 return skb; 1692 1693 if (before(next_dup->start_seq, skip_to_seq)) { 1694 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1695 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1696 next_dup->start_seq, next_dup->end_seq, 1697 1); 1698 } 1699 1700 return skb; 1701 } 1702 1703 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache) 1704 { 1705 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1706 } 1707 1708 static int 1709 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, 1710 u32 prior_snd_una) 1711 { 1712 const struct inet_connection_sock *icsk = inet_csk(sk); 1713 struct tcp_sock *tp = tcp_sk(sk); 1714 unsigned char *ptr = (skb_transport_header(ack_skb) + 1715 TCP_SKB_CB(ack_skb)->sacked); 1716 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1717 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1718 struct tcp_sack_block *cache; 1719 struct tcp_sacktag_state state; 1720 struct sk_buff *skb; 1721 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1722 int used_sacks; 1723 int found_dup_sack = 0; 1724 int i, j; 1725 int first_sack_index; 1726 1727 state.flag = 0; 1728 state.reord = tp->packets_out; 1729 1730 if (!tp->sacked_out) { 1731 if (WARN_ON(tp->fackets_out)) 1732 tp->fackets_out = 0; 1733 tcp_highest_sack_reset(sk); 1734 } 1735 1736 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1737 num_sacks, prior_snd_una); 1738 if (found_dup_sack) 1739 state.flag |= FLAG_DSACKING_ACK; 1740 1741 /* Eliminate too old ACKs, but take into 1742 * account more or less fresh ones, they can 1743 * contain valid SACK info. 1744 */ 1745 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1746 return 0; 1747 1748 if (!tp->packets_out) 1749 goto out; 1750 1751 used_sacks = 0; 1752 first_sack_index = 0; 1753 for (i = 0; i < num_sacks; i++) { 1754 int dup_sack = !i && found_dup_sack; 1755 1756 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1757 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1758 1759 if (!tcp_is_sackblock_valid(tp, dup_sack, 1760 sp[used_sacks].start_seq, 1761 sp[used_sacks].end_seq)) { 1762 int mib_idx; 1763 1764 if (dup_sack) { 1765 if (!tp->undo_marker) 1766 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1767 else 1768 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1769 } else { 1770 /* Don't count olds caused by ACK reordering */ 1771 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1772 !after(sp[used_sacks].end_seq, tp->snd_una)) 1773 continue; 1774 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1775 } 1776 1777 NET_INC_STATS_BH(sock_net(sk), mib_idx); 1778 if (i == 0) 1779 first_sack_index = -1; 1780 continue; 1781 } 1782 1783 /* Ignore very old stuff early */ 1784 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1785 continue; 1786 1787 used_sacks++; 1788 } 1789 1790 /* order SACK blocks to allow in order walk of the retrans queue */ 1791 for (i = used_sacks - 1; i > 0; i--) { 1792 for (j = 0; j < i; j++) { 1793 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1794 swap(sp[j], sp[j + 1]); 1795 1796 /* Track where the first SACK block goes to */ 1797 if (j == first_sack_index) 1798 first_sack_index = j + 1; 1799 } 1800 } 1801 } 1802 1803 skb = tcp_write_queue_head(sk); 1804 state.fack_count = 0; 1805 i = 0; 1806 1807 if (!tp->sacked_out) { 1808 /* It's already past, so skip checking against it */ 1809 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1810 } else { 1811 cache = tp->recv_sack_cache; 1812 /* Skip empty blocks in at head of the cache */ 1813 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1814 !cache->end_seq) 1815 cache++; 1816 } 1817 1818 while (i < used_sacks) { 1819 u32 start_seq = sp[i].start_seq; 1820 u32 end_seq = sp[i].end_seq; 1821 int dup_sack = (found_dup_sack && (i == first_sack_index)); 1822 struct tcp_sack_block *next_dup = NULL; 1823 1824 if (found_dup_sack && ((i + 1) == first_sack_index)) 1825 next_dup = &sp[i + 1]; 1826 1827 /* Event "B" in the comment above. */ 1828 if (after(end_seq, tp->high_seq)) 1829 state.flag |= FLAG_DATA_LOST; 1830 1831 /* Skip too early cached blocks */ 1832 while (tcp_sack_cache_ok(tp, cache) && 1833 !before(start_seq, cache->end_seq)) 1834 cache++; 1835 1836 /* Can skip some work by looking recv_sack_cache? */ 1837 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1838 after(end_seq, cache->start_seq)) { 1839 1840 /* Head todo? */ 1841 if (before(start_seq, cache->start_seq)) { 1842 skb = tcp_sacktag_skip(skb, sk, &state, 1843 start_seq); 1844 skb = tcp_sacktag_walk(skb, sk, next_dup, 1845 &state, 1846 start_seq, 1847 cache->start_seq, 1848 dup_sack); 1849 } 1850 1851 /* Rest of the block already fully processed? */ 1852 if (!after(end_seq, cache->end_seq)) 1853 goto advance_sp; 1854 1855 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1856 &state, 1857 cache->end_seq); 1858 1859 /* ...tail remains todo... */ 1860 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1861 /* ...but better entrypoint exists! */ 1862 skb = tcp_highest_sack(sk); 1863 if (skb == NULL) 1864 break; 1865 state.fack_count = tp->fackets_out; 1866 cache++; 1867 goto walk; 1868 } 1869 1870 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq); 1871 /* Check overlap against next cached too (past this one already) */ 1872 cache++; 1873 continue; 1874 } 1875 1876 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1877 skb = tcp_highest_sack(sk); 1878 if (skb == NULL) 1879 break; 1880 state.fack_count = tp->fackets_out; 1881 } 1882 skb = tcp_sacktag_skip(skb, sk, &state, start_seq); 1883 1884 walk: 1885 skb = tcp_sacktag_walk(skb, sk, next_dup, &state, 1886 start_seq, end_seq, dup_sack); 1887 1888 advance_sp: 1889 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct 1890 * due to in-order walk 1891 */ 1892 if (after(end_seq, tp->frto_highmark)) 1893 state.flag &= ~FLAG_ONLY_ORIG_SACKED; 1894 1895 i++; 1896 } 1897 1898 /* Clear the head of the cache sack blocks so we can skip it next time */ 1899 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1900 tp->recv_sack_cache[i].start_seq = 0; 1901 tp->recv_sack_cache[i].end_seq = 0; 1902 } 1903 for (j = 0; j < used_sacks; j++) 1904 tp->recv_sack_cache[i++] = sp[j]; 1905 1906 tcp_mark_lost_retrans(sk); 1907 1908 tcp_verify_left_out(tp); 1909 1910 if ((state.reord < tp->fackets_out) && 1911 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) && 1912 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark))) 1913 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0); 1914 1915 out: 1916 1917 #if FASTRETRANS_DEBUG > 0 1918 WARN_ON((int)tp->sacked_out < 0); 1919 WARN_ON((int)tp->lost_out < 0); 1920 WARN_ON((int)tp->retrans_out < 0); 1921 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1922 #endif 1923 return state.flag; 1924 } 1925 1926 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1927 * packets_out. Returns zero if sacked_out adjustement wasn't necessary. 1928 */ 1929 static int tcp_limit_reno_sacked(struct tcp_sock *tp) 1930 { 1931 u32 holes; 1932 1933 holes = max(tp->lost_out, 1U); 1934 holes = min(holes, tp->packets_out); 1935 1936 if ((tp->sacked_out + holes) > tp->packets_out) { 1937 tp->sacked_out = tp->packets_out - holes; 1938 return 1; 1939 } 1940 return 0; 1941 } 1942 1943 /* If we receive more dupacks than we expected counting segments 1944 * in assumption of absent reordering, interpret this as reordering. 1945 * The only another reason could be bug in receiver TCP. 1946 */ 1947 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1948 { 1949 struct tcp_sock *tp = tcp_sk(sk); 1950 if (tcp_limit_reno_sacked(tp)) 1951 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1952 } 1953 1954 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1955 1956 static void tcp_add_reno_sack(struct sock *sk) 1957 { 1958 struct tcp_sock *tp = tcp_sk(sk); 1959 tp->sacked_out++; 1960 tcp_check_reno_reordering(sk, 0); 1961 tcp_verify_left_out(tp); 1962 } 1963 1964 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1965 1966 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1967 { 1968 struct tcp_sock *tp = tcp_sk(sk); 1969 1970 if (acked > 0) { 1971 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1972 if (acked - 1 >= tp->sacked_out) 1973 tp->sacked_out = 0; 1974 else 1975 tp->sacked_out -= acked - 1; 1976 } 1977 tcp_check_reno_reordering(sk, acked); 1978 tcp_verify_left_out(tp); 1979 } 1980 1981 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1982 { 1983 tp->sacked_out = 0; 1984 } 1985 1986 static int tcp_is_sackfrto(const struct tcp_sock *tp) 1987 { 1988 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp); 1989 } 1990 1991 /* F-RTO can only be used if TCP has never retransmitted anything other than 1992 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here) 1993 */ 1994 int tcp_use_frto(struct sock *sk) 1995 { 1996 const struct tcp_sock *tp = tcp_sk(sk); 1997 const struct inet_connection_sock *icsk = inet_csk(sk); 1998 struct sk_buff *skb; 1999 2000 if (!sysctl_tcp_frto) 2001 return 0; 2002 2003 /* MTU probe and F-RTO won't really play nicely along currently */ 2004 if (icsk->icsk_mtup.probe_size) 2005 return 0; 2006 2007 if (tcp_is_sackfrto(tp)) 2008 return 1; 2009 2010 /* Avoid expensive walking of rexmit queue if possible */ 2011 if (tp->retrans_out > 1) 2012 return 0; 2013 2014 skb = tcp_write_queue_head(sk); 2015 if (tcp_skb_is_last(sk, skb)) 2016 return 1; 2017 skb = tcp_write_queue_next(sk, skb); /* Skips head */ 2018 tcp_for_write_queue_from(skb, sk) { 2019 if (skb == tcp_send_head(sk)) 2020 break; 2021 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2022 return 0; 2023 /* Short-circuit when first non-SACKed skb has been checked */ 2024 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2025 break; 2026 } 2027 return 1; 2028 } 2029 2030 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO 2031 * recovery a bit and use heuristics in tcp_process_frto() to detect if 2032 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to 2033 * keep retrans_out counting accurate (with SACK F-RTO, other than head 2034 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS 2035 * bits are handled if the Loss state is really to be entered (in 2036 * tcp_enter_frto_loss). 2037 * 2038 * Do like tcp_enter_loss() would; when RTO expires the second time it 2039 * does: 2040 * "Reduce ssthresh if it has not yet been made inside this window." 2041 */ 2042 void tcp_enter_frto(struct sock *sk) 2043 { 2044 const struct inet_connection_sock *icsk = inet_csk(sk); 2045 struct tcp_sock *tp = tcp_sk(sk); 2046 struct sk_buff *skb; 2047 2048 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) || 2049 tp->snd_una == tp->high_seq || 2050 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) && 2051 !icsk->icsk_retransmits)) { 2052 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2053 /* Our state is too optimistic in ssthresh() call because cwnd 2054 * is not reduced until tcp_enter_frto_loss() when previous F-RTO 2055 * recovery has not yet completed. Pattern would be this: RTO, 2056 * Cumulative ACK, RTO (2xRTO for the same segment does not end 2057 * up here twice). 2058 * RFC4138 should be more specific on what to do, even though 2059 * RTO is quite unlikely to occur after the first Cumulative ACK 2060 * due to back-off and complexity of triggering events ... 2061 */ 2062 if (tp->frto_counter) { 2063 u32 stored_cwnd; 2064 stored_cwnd = tp->snd_cwnd; 2065 tp->snd_cwnd = 2; 2066 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2067 tp->snd_cwnd = stored_cwnd; 2068 } else { 2069 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2070 } 2071 /* ... in theory, cong.control module could do "any tricks" in 2072 * ssthresh(), which means that ca_state, lost bits and lost_out 2073 * counter would have to be faked before the call occurs. We 2074 * consider that too expensive, unlikely and hacky, so modules 2075 * using these in ssthresh() must deal these incompatibility 2076 * issues if they receives CA_EVENT_FRTO and frto_counter != 0 2077 */ 2078 tcp_ca_event(sk, CA_EVENT_FRTO); 2079 } 2080 2081 tp->undo_marker = tp->snd_una; 2082 tp->undo_retrans = 0; 2083 2084 skb = tcp_write_queue_head(sk); 2085 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2086 tp->undo_marker = 0; 2087 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2088 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2089 tp->retrans_out -= tcp_skb_pcount(skb); 2090 } 2091 tcp_verify_left_out(tp); 2092 2093 /* Too bad if TCP was application limited */ 2094 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1); 2095 2096 /* Earlier loss recovery underway (see RFC4138; Appendix B). 2097 * The last condition is necessary at least in tp->frto_counter case. 2098 */ 2099 if (tcp_is_sackfrto(tp) && (tp->frto_counter || 2100 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) && 2101 after(tp->high_seq, tp->snd_una)) { 2102 tp->frto_highmark = tp->high_seq; 2103 } else { 2104 tp->frto_highmark = tp->snd_nxt; 2105 } 2106 tcp_set_ca_state(sk, TCP_CA_Disorder); 2107 tp->high_seq = tp->snd_nxt; 2108 tp->frto_counter = 1; 2109 } 2110 2111 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO, 2112 * which indicates that we should follow the traditional RTO recovery, 2113 * i.e. mark everything lost and do go-back-N retransmission. 2114 */ 2115 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag) 2116 { 2117 struct tcp_sock *tp = tcp_sk(sk); 2118 struct sk_buff *skb; 2119 2120 tp->lost_out = 0; 2121 tp->retrans_out = 0; 2122 if (tcp_is_reno(tp)) 2123 tcp_reset_reno_sack(tp); 2124 2125 tcp_for_write_queue(skb, sk) { 2126 if (skb == tcp_send_head(sk)) 2127 break; 2128 2129 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2130 /* 2131 * Count the retransmission made on RTO correctly (only when 2132 * waiting for the first ACK and did not get it)... 2133 */ 2134 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) { 2135 /* For some reason this R-bit might get cleared? */ 2136 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 2137 tp->retrans_out += tcp_skb_pcount(skb); 2138 /* ...enter this if branch just for the first segment */ 2139 flag |= FLAG_DATA_ACKED; 2140 } else { 2141 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2142 tp->undo_marker = 0; 2143 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2144 } 2145 2146 /* Marking forward transmissions that were made after RTO lost 2147 * can cause unnecessary retransmissions in some scenarios, 2148 * SACK blocks will mitigate that in some but not in all cases. 2149 * We used to not mark them but it was causing break-ups with 2150 * receivers that do only in-order receival. 2151 * 2152 * TODO: we could detect presence of such receiver and select 2153 * different behavior per flow. 2154 */ 2155 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2156 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 2157 tp->lost_out += tcp_skb_pcount(skb); 2158 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 2159 } 2160 } 2161 tcp_verify_left_out(tp); 2162 2163 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments; 2164 tp->snd_cwnd_cnt = 0; 2165 tp->snd_cwnd_stamp = tcp_time_stamp; 2166 tp->frto_counter = 0; 2167 tp->bytes_acked = 0; 2168 2169 tp->reordering = min_t(unsigned int, tp->reordering, 2170 sysctl_tcp_reordering); 2171 tcp_set_ca_state(sk, TCP_CA_Loss); 2172 tp->high_seq = tp->snd_nxt; 2173 TCP_ECN_queue_cwr(tp); 2174 2175 tcp_clear_all_retrans_hints(tp); 2176 } 2177 2178 static void tcp_clear_retrans_partial(struct tcp_sock *tp) 2179 { 2180 tp->retrans_out = 0; 2181 tp->lost_out = 0; 2182 2183 tp->undo_marker = 0; 2184 tp->undo_retrans = 0; 2185 } 2186 2187 void tcp_clear_retrans(struct tcp_sock *tp) 2188 { 2189 tcp_clear_retrans_partial(tp); 2190 2191 tp->fackets_out = 0; 2192 tp->sacked_out = 0; 2193 } 2194 2195 /* Enter Loss state. If "how" is not zero, forget all SACK information 2196 * and reset tags completely, otherwise preserve SACKs. If receiver 2197 * dropped its ofo queue, we will know this due to reneging detection. 2198 */ 2199 void tcp_enter_loss(struct sock *sk, int how) 2200 { 2201 const struct inet_connection_sock *icsk = inet_csk(sk); 2202 struct tcp_sock *tp = tcp_sk(sk); 2203 struct sk_buff *skb; 2204 2205 /* Reduce ssthresh if it has not yet been made inside this window. */ 2206 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq || 2207 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2208 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2209 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2210 tcp_ca_event(sk, CA_EVENT_LOSS); 2211 } 2212 tp->snd_cwnd = 1; 2213 tp->snd_cwnd_cnt = 0; 2214 tp->snd_cwnd_stamp = tcp_time_stamp; 2215 2216 tp->bytes_acked = 0; 2217 tcp_clear_retrans_partial(tp); 2218 2219 if (tcp_is_reno(tp)) 2220 tcp_reset_reno_sack(tp); 2221 2222 if (!how) { 2223 /* Push undo marker, if it was plain RTO and nothing 2224 * was retransmitted. */ 2225 tp->undo_marker = tp->snd_una; 2226 } else { 2227 tp->sacked_out = 0; 2228 tp->fackets_out = 0; 2229 } 2230 tcp_clear_all_retrans_hints(tp); 2231 2232 tcp_for_write_queue(skb, sk) { 2233 if (skb == tcp_send_head(sk)) 2234 break; 2235 2236 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2237 tp->undo_marker = 0; 2238 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 2239 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) { 2240 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2241 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 2242 tp->lost_out += tcp_skb_pcount(skb); 2243 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 2244 } 2245 } 2246 tcp_verify_left_out(tp); 2247 2248 tp->reordering = min_t(unsigned int, tp->reordering, 2249 sysctl_tcp_reordering); 2250 tcp_set_ca_state(sk, TCP_CA_Loss); 2251 tp->high_seq = tp->snd_nxt; 2252 TCP_ECN_queue_cwr(tp); 2253 /* Abort F-RTO algorithm if one is in progress */ 2254 tp->frto_counter = 0; 2255 } 2256 2257 /* If ACK arrived pointing to a remembered SACK, it means that our 2258 * remembered SACKs do not reflect real state of receiver i.e. 2259 * receiver _host_ is heavily congested (or buggy). 2260 * 2261 * Do processing similar to RTO timeout. 2262 */ 2263 static int tcp_check_sack_reneging(struct sock *sk, int flag) 2264 { 2265 if (flag & FLAG_SACK_RENEGING) { 2266 struct inet_connection_sock *icsk = inet_csk(sk); 2267 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2268 2269 tcp_enter_loss(sk, 1); 2270 icsk->icsk_retransmits++; 2271 tcp_retransmit_skb(sk, tcp_write_queue_head(sk)); 2272 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2273 icsk->icsk_rto, TCP_RTO_MAX); 2274 return 1; 2275 } 2276 return 0; 2277 } 2278 2279 static inline int tcp_fackets_out(struct tcp_sock *tp) 2280 { 2281 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2282 } 2283 2284 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2285 * counter when SACK is enabled (without SACK, sacked_out is used for 2286 * that purpose). 2287 * 2288 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2289 * segments up to the highest received SACK block so far and holes in 2290 * between them. 2291 * 2292 * With reordering, holes may still be in flight, so RFC3517 recovery 2293 * uses pure sacked_out (total number of SACKed segments) even though 2294 * it violates the RFC that uses duplicate ACKs, often these are equal 2295 * but when e.g. out-of-window ACKs or packet duplication occurs, 2296 * they differ. Since neither occurs due to loss, TCP should really 2297 * ignore them. 2298 */ 2299 static inline int tcp_dupack_heuristics(struct tcp_sock *tp) 2300 { 2301 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2302 } 2303 2304 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb) 2305 { 2306 return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto; 2307 } 2308 2309 static inline int tcp_head_timedout(struct sock *sk) 2310 { 2311 struct tcp_sock *tp = tcp_sk(sk); 2312 2313 return tp->packets_out && 2314 tcp_skb_timedout(sk, tcp_write_queue_head(sk)); 2315 } 2316 2317 /* Linux NewReno/SACK/FACK/ECN state machine. 2318 * -------------------------------------- 2319 * 2320 * "Open" Normal state, no dubious events, fast path. 2321 * "Disorder" In all the respects it is "Open", 2322 * but requires a bit more attention. It is entered when 2323 * we see some SACKs or dupacks. It is split of "Open" 2324 * mainly to move some processing from fast path to slow one. 2325 * "CWR" CWND was reduced due to some Congestion Notification event. 2326 * It can be ECN, ICMP source quench, local device congestion. 2327 * "Recovery" CWND was reduced, we are fast-retransmitting. 2328 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2329 * 2330 * tcp_fastretrans_alert() is entered: 2331 * - each incoming ACK, if state is not "Open" 2332 * - when arrived ACK is unusual, namely: 2333 * * SACK 2334 * * Duplicate ACK. 2335 * * ECN ECE. 2336 * 2337 * Counting packets in flight is pretty simple. 2338 * 2339 * in_flight = packets_out - left_out + retrans_out 2340 * 2341 * packets_out is SND.NXT-SND.UNA counted in packets. 2342 * 2343 * retrans_out is number of retransmitted segments. 2344 * 2345 * left_out is number of segments left network, but not ACKed yet. 2346 * 2347 * left_out = sacked_out + lost_out 2348 * 2349 * sacked_out: Packets, which arrived to receiver out of order 2350 * and hence not ACKed. With SACKs this number is simply 2351 * amount of SACKed data. Even without SACKs 2352 * it is easy to give pretty reliable estimate of this number, 2353 * counting duplicate ACKs. 2354 * 2355 * lost_out: Packets lost by network. TCP has no explicit 2356 * "loss notification" feedback from network (for now). 2357 * It means that this number can be only _guessed_. 2358 * Actually, it is the heuristics to predict lossage that 2359 * distinguishes different algorithms. 2360 * 2361 * F.e. after RTO, when all the queue is considered as lost, 2362 * lost_out = packets_out and in_flight = retrans_out. 2363 * 2364 * Essentially, we have now two algorithms counting 2365 * lost packets. 2366 * 2367 * FACK: It is the simplest heuristics. As soon as we decided 2368 * that something is lost, we decide that _all_ not SACKed 2369 * packets until the most forward SACK are lost. I.e. 2370 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2371 * It is absolutely correct estimate, if network does not reorder 2372 * packets. And it loses any connection to reality when reordering 2373 * takes place. We use FACK by default until reordering 2374 * is suspected on the path to this destination. 2375 * 2376 * NewReno: when Recovery is entered, we assume that one segment 2377 * is lost (classic Reno). While we are in Recovery and 2378 * a partial ACK arrives, we assume that one more packet 2379 * is lost (NewReno). This heuristics are the same in NewReno 2380 * and SACK. 2381 * 2382 * Imagine, that's all! Forget about all this shamanism about CWND inflation 2383 * deflation etc. CWND is real congestion window, never inflated, changes 2384 * only according to classic VJ rules. 2385 * 2386 * Really tricky (and requiring careful tuning) part of algorithm 2387 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2388 * The first determines the moment _when_ we should reduce CWND and, 2389 * hence, slow down forward transmission. In fact, it determines the moment 2390 * when we decide that hole is caused by loss, rather than by a reorder. 2391 * 2392 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2393 * holes, caused by lost packets. 2394 * 2395 * And the most logically complicated part of algorithm is undo 2396 * heuristics. We detect false retransmits due to both too early 2397 * fast retransmit (reordering) and underestimated RTO, analyzing 2398 * timestamps and D-SACKs. When we detect that some segments were 2399 * retransmitted by mistake and CWND reduction was wrong, we undo 2400 * window reduction and abort recovery phase. This logic is hidden 2401 * inside several functions named tcp_try_undo_<something>. 2402 */ 2403 2404 /* This function decides, when we should leave Disordered state 2405 * and enter Recovery phase, reducing congestion window. 2406 * 2407 * Main question: may we further continue forward transmission 2408 * with the same cwnd? 2409 */ 2410 static int tcp_time_to_recover(struct sock *sk) 2411 { 2412 struct tcp_sock *tp = tcp_sk(sk); 2413 __u32 packets_out; 2414 2415 /* Do not perform any recovery during F-RTO algorithm */ 2416 if (tp->frto_counter) 2417 return 0; 2418 2419 /* Trick#1: The loss is proven. */ 2420 if (tp->lost_out) 2421 return 1; 2422 2423 /* Not-A-Trick#2 : Classic rule... */ 2424 if (tcp_dupack_heuristics(tp) > tp->reordering) 2425 return 1; 2426 2427 /* Trick#3 : when we use RFC2988 timer restart, fast 2428 * retransmit can be triggered by timeout of queue head. 2429 */ 2430 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) 2431 return 1; 2432 2433 /* Trick#4: It is still not OK... But will it be useful to delay 2434 * recovery more? 2435 */ 2436 packets_out = tp->packets_out; 2437 if (packets_out <= tp->reordering && 2438 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 2439 !tcp_may_send_now(sk)) { 2440 /* We have nothing to send. This connection is limited 2441 * either by receiver window or by application. 2442 */ 2443 return 1; 2444 } 2445 2446 /* If a thin stream is detected, retransmit after first 2447 * received dupack. Employ only if SACK is supported in order 2448 * to avoid possible corner-case series of spurious retransmissions 2449 * Use only if there are no unsent data. 2450 */ 2451 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) && 2452 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 && 2453 tcp_is_sack(tp) && !tcp_send_head(sk)) 2454 return 1; 2455 2456 return 0; 2457 } 2458 2459 /* New heuristics: it is possible only after we switched to restart timer 2460 * each time when something is ACKed. Hence, we can detect timed out packets 2461 * during fast retransmit without falling to slow start. 2462 * 2463 * Usefulness of this as is very questionable, since we should know which of 2464 * the segments is the next to timeout which is relatively expensive to find 2465 * in general case unless we add some data structure just for that. The 2466 * current approach certainly won't find the right one too often and when it 2467 * finally does find _something_ it usually marks large part of the window 2468 * right away (because a retransmission with a larger timestamp blocks the 2469 * loop from advancing). -ij 2470 */ 2471 static void tcp_timeout_skbs(struct sock *sk) 2472 { 2473 struct tcp_sock *tp = tcp_sk(sk); 2474 struct sk_buff *skb; 2475 2476 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk)) 2477 return; 2478 2479 skb = tp->scoreboard_skb_hint; 2480 if (tp->scoreboard_skb_hint == NULL) 2481 skb = tcp_write_queue_head(sk); 2482 2483 tcp_for_write_queue_from(skb, sk) { 2484 if (skb == tcp_send_head(sk)) 2485 break; 2486 if (!tcp_skb_timedout(sk, skb)) 2487 break; 2488 2489 tcp_skb_mark_lost(tp, skb); 2490 } 2491 2492 tp->scoreboard_skb_hint = skb; 2493 2494 tcp_verify_left_out(tp); 2495 } 2496 2497 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is 2498 * is against sacked "cnt", otherwise it's against facked "cnt" 2499 */ 2500 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2501 { 2502 struct tcp_sock *tp = tcp_sk(sk); 2503 struct sk_buff *skb; 2504 int cnt, oldcnt; 2505 int err; 2506 unsigned int mss; 2507 2508 WARN_ON(packets > tp->packets_out); 2509 if (tp->lost_skb_hint) { 2510 skb = tp->lost_skb_hint; 2511 cnt = tp->lost_cnt_hint; 2512 /* Head already handled? */ 2513 if (mark_head && skb != tcp_write_queue_head(sk)) 2514 return; 2515 } else { 2516 skb = tcp_write_queue_head(sk); 2517 cnt = 0; 2518 } 2519 2520 tcp_for_write_queue_from(skb, sk) { 2521 if (skb == tcp_send_head(sk)) 2522 break; 2523 /* TODO: do this better */ 2524 /* this is not the most efficient way to do this... */ 2525 tp->lost_skb_hint = skb; 2526 tp->lost_cnt_hint = cnt; 2527 2528 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq)) 2529 break; 2530 2531 oldcnt = cnt; 2532 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2533 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2534 cnt += tcp_skb_pcount(skb); 2535 2536 if (cnt > packets) { 2537 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2538 (oldcnt >= packets)) 2539 break; 2540 2541 mss = skb_shinfo(skb)->gso_size; 2542 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss); 2543 if (err < 0) 2544 break; 2545 cnt = packets; 2546 } 2547 2548 tcp_skb_mark_lost(tp, skb); 2549 2550 if (mark_head) 2551 break; 2552 } 2553 tcp_verify_left_out(tp); 2554 } 2555 2556 /* Account newly detected lost packet(s) */ 2557 2558 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2559 { 2560 struct tcp_sock *tp = tcp_sk(sk); 2561 2562 if (tcp_is_reno(tp)) { 2563 tcp_mark_head_lost(sk, 1, 1); 2564 } else if (tcp_is_fack(tp)) { 2565 int lost = tp->fackets_out - tp->reordering; 2566 if (lost <= 0) 2567 lost = 1; 2568 tcp_mark_head_lost(sk, lost, 0); 2569 } else { 2570 int sacked_upto = tp->sacked_out - tp->reordering; 2571 if (sacked_upto >= 0) 2572 tcp_mark_head_lost(sk, sacked_upto, 0); 2573 else if (fast_rexmit) 2574 tcp_mark_head_lost(sk, 1, 1); 2575 } 2576 2577 tcp_timeout_skbs(sk); 2578 } 2579 2580 /* CWND moderation, preventing bursts due to too big ACKs 2581 * in dubious situations. 2582 */ 2583 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 2584 { 2585 tp->snd_cwnd = min(tp->snd_cwnd, 2586 tcp_packets_in_flight(tp) + tcp_max_burst(tp)); 2587 tp->snd_cwnd_stamp = tcp_time_stamp; 2588 } 2589 2590 /* Lower bound on congestion window is slow start threshold 2591 * unless congestion avoidance choice decides to overide it. 2592 */ 2593 static inline u32 tcp_cwnd_min(const struct sock *sk) 2594 { 2595 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 2596 2597 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh; 2598 } 2599 2600 /* Decrease cwnd each second ack. */ 2601 static void tcp_cwnd_down(struct sock *sk, int flag) 2602 { 2603 struct tcp_sock *tp = tcp_sk(sk); 2604 int decr = tp->snd_cwnd_cnt + 1; 2605 2606 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) || 2607 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) { 2608 tp->snd_cwnd_cnt = decr & 1; 2609 decr >>= 1; 2610 2611 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk)) 2612 tp->snd_cwnd -= decr; 2613 2614 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1); 2615 tp->snd_cwnd_stamp = tcp_time_stamp; 2616 } 2617 } 2618 2619 /* Nothing was retransmitted or returned timestamp is less 2620 * than timestamp of the first retransmission. 2621 */ 2622 static inline int tcp_packet_delayed(struct tcp_sock *tp) 2623 { 2624 return !tp->retrans_stamp || 2625 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2626 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp)); 2627 } 2628 2629 /* Undo procedures. */ 2630 2631 #if FASTRETRANS_DEBUG > 1 2632 static void DBGUNDO(struct sock *sk, const char *msg) 2633 { 2634 struct tcp_sock *tp = tcp_sk(sk); 2635 struct inet_sock *inet = inet_sk(sk); 2636 2637 if (sk->sk_family == AF_INET) { 2638 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2639 msg, 2640 &inet->inet_daddr, ntohs(inet->inet_dport), 2641 tp->snd_cwnd, tcp_left_out(tp), 2642 tp->snd_ssthresh, tp->prior_ssthresh, 2643 tp->packets_out); 2644 } 2645 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 2646 else if (sk->sk_family == AF_INET6) { 2647 struct ipv6_pinfo *np = inet6_sk(sk); 2648 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2649 msg, 2650 &np->daddr, ntohs(inet->inet_dport), 2651 tp->snd_cwnd, tcp_left_out(tp), 2652 tp->snd_ssthresh, tp->prior_ssthresh, 2653 tp->packets_out); 2654 } 2655 #endif 2656 } 2657 #else 2658 #define DBGUNDO(x...) do { } while (0) 2659 #endif 2660 2661 static void tcp_undo_cwr(struct sock *sk, const int undo) 2662 { 2663 struct tcp_sock *tp = tcp_sk(sk); 2664 2665 if (tp->prior_ssthresh) { 2666 const struct inet_connection_sock *icsk = inet_csk(sk); 2667 2668 if (icsk->icsk_ca_ops->undo_cwnd) 2669 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2670 else 2671 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1); 2672 2673 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) { 2674 tp->snd_ssthresh = tp->prior_ssthresh; 2675 TCP_ECN_withdraw_cwr(tp); 2676 } 2677 } else { 2678 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 2679 } 2680 tcp_moderate_cwnd(tp); 2681 tp->snd_cwnd_stamp = tcp_time_stamp; 2682 } 2683 2684 static inline int tcp_may_undo(struct tcp_sock *tp) 2685 { 2686 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2687 } 2688 2689 /* People celebrate: "We love our President!" */ 2690 static int tcp_try_undo_recovery(struct sock *sk) 2691 { 2692 struct tcp_sock *tp = tcp_sk(sk); 2693 2694 if (tcp_may_undo(tp)) { 2695 int mib_idx; 2696 2697 /* Happy end! We did not retransmit anything 2698 * or our original transmission succeeded. 2699 */ 2700 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2701 tcp_undo_cwr(sk, 1); 2702 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2703 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2704 else 2705 mib_idx = LINUX_MIB_TCPFULLUNDO; 2706 2707 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2708 tp->undo_marker = 0; 2709 } 2710 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2711 /* Hold old state until something *above* high_seq 2712 * is ACKed. For Reno it is MUST to prevent false 2713 * fast retransmits (RFC2582). SACK TCP is safe. */ 2714 tcp_moderate_cwnd(tp); 2715 return 1; 2716 } 2717 tcp_set_ca_state(sk, TCP_CA_Open); 2718 return 0; 2719 } 2720 2721 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2722 static void tcp_try_undo_dsack(struct sock *sk) 2723 { 2724 struct tcp_sock *tp = tcp_sk(sk); 2725 2726 if (tp->undo_marker && !tp->undo_retrans) { 2727 DBGUNDO(sk, "D-SACK"); 2728 tcp_undo_cwr(sk, 1); 2729 tp->undo_marker = 0; 2730 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2731 } 2732 } 2733 2734 /* We can clear retrans_stamp when there are no retransmissions in the 2735 * window. It would seem that it is trivially available for us in 2736 * tp->retrans_out, however, that kind of assumptions doesn't consider 2737 * what will happen if errors occur when sending retransmission for the 2738 * second time. ...It could the that such segment has only 2739 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2740 * the head skb is enough except for some reneging corner cases that 2741 * are not worth the effort. 2742 * 2743 * Main reason for all this complexity is the fact that connection dying 2744 * time now depends on the validity of the retrans_stamp, in particular, 2745 * that successive retransmissions of a segment must not advance 2746 * retrans_stamp under any conditions. 2747 */ 2748 static int tcp_any_retrans_done(struct sock *sk) 2749 { 2750 struct tcp_sock *tp = tcp_sk(sk); 2751 struct sk_buff *skb; 2752 2753 if (tp->retrans_out) 2754 return 1; 2755 2756 skb = tcp_write_queue_head(sk); 2757 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2758 return 1; 2759 2760 return 0; 2761 } 2762 2763 /* Undo during fast recovery after partial ACK. */ 2764 2765 static int tcp_try_undo_partial(struct sock *sk, int acked) 2766 { 2767 struct tcp_sock *tp = tcp_sk(sk); 2768 /* Partial ACK arrived. Force Hoe's retransmit. */ 2769 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering); 2770 2771 if (tcp_may_undo(tp)) { 2772 /* Plain luck! Hole if filled with delayed 2773 * packet, rather than with a retransmit. 2774 */ 2775 if (!tcp_any_retrans_done(sk)) 2776 tp->retrans_stamp = 0; 2777 2778 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2779 2780 DBGUNDO(sk, "Hoe"); 2781 tcp_undo_cwr(sk, 0); 2782 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2783 2784 /* So... Do not make Hoe's retransmit yet. 2785 * If the first packet was delayed, the rest 2786 * ones are most probably delayed as well. 2787 */ 2788 failed = 0; 2789 } 2790 return failed; 2791 } 2792 2793 /* Undo during loss recovery after partial ACK. */ 2794 static int tcp_try_undo_loss(struct sock *sk) 2795 { 2796 struct tcp_sock *tp = tcp_sk(sk); 2797 2798 if (tcp_may_undo(tp)) { 2799 struct sk_buff *skb; 2800 tcp_for_write_queue(skb, sk) { 2801 if (skb == tcp_send_head(sk)) 2802 break; 2803 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2804 } 2805 2806 tcp_clear_all_retrans_hints(tp); 2807 2808 DBGUNDO(sk, "partial loss"); 2809 tp->lost_out = 0; 2810 tcp_undo_cwr(sk, 1); 2811 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2812 inet_csk(sk)->icsk_retransmits = 0; 2813 tp->undo_marker = 0; 2814 if (tcp_is_sack(tp)) 2815 tcp_set_ca_state(sk, TCP_CA_Open); 2816 return 1; 2817 } 2818 return 0; 2819 } 2820 2821 static inline void tcp_complete_cwr(struct sock *sk) 2822 { 2823 struct tcp_sock *tp = tcp_sk(sk); 2824 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 2825 tp->snd_cwnd_stamp = tcp_time_stamp; 2826 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2827 } 2828 2829 static void tcp_try_keep_open(struct sock *sk) 2830 { 2831 struct tcp_sock *tp = tcp_sk(sk); 2832 int state = TCP_CA_Open; 2833 2834 if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker) 2835 state = TCP_CA_Disorder; 2836 2837 if (inet_csk(sk)->icsk_ca_state != state) { 2838 tcp_set_ca_state(sk, state); 2839 tp->high_seq = tp->snd_nxt; 2840 } 2841 } 2842 2843 static void tcp_try_to_open(struct sock *sk, int flag) 2844 { 2845 struct tcp_sock *tp = tcp_sk(sk); 2846 2847 tcp_verify_left_out(tp); 2848 2849 if (!tp->frto_counter && !tcp_any_retrans_done(sk)) 2850 tp->retrans_stamp = 0; 2851 2852 if (flag & FLAG_ECE) 2853 tcp_enter_cwr(sk, 1); 2854 2855 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2856 tcp_try_keep_open(sk); 2857 tcp_moderate_cwnd(tp); 2858 } else { 2859 tcp_cwnd_down(sk, flag); 2860 } 2861 } 2862 2863 static void tcp_mtup_probe_failed(struct sock *sk) 2864 { 2865 struct inet_connection_sock *icsk = inet_csk(sk); 2866 2867 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2868 icsk->icsk_mtup.probe_size = 0; 2869 } 2870 2871 static void tcp_mtup_probe_success(struct sock *sk) 2872 { 2873 struct tcp_sock *tp = tcp_sk(sk); 2874 struct inet_connection_sock *icsk = inet_csk(sk); 2875 2876 /* FIXME: breaks with very large cwnd */ 2877 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2878 tp->snd_cwnd = tp->snd_cwnd * 2879 tcp_mss_to_mtu(sk, tp->mss_cache) / 2880 icsk->icsk_mtup.probe_size; 2881 tp->snd_cwnd_cnt = 0; 2882 tp->snd_cwnd_stamp = tcp_time_stamp; 2883 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2884 2885 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2886 icsk->icsk_mtup.probe_size = 0; 2887 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2888 } 2889 2890 /* Do a simple retransmit without using the backoff mechanisms in 2891 * tcp_timer. This is used for path mtu discovery. 2892 * The socket is already locked here. 2893 */ 2894 void tcp_simple_retransmit(struct sock *sk) 2895 { 2896 const struct inet_connection_sock *icsk = inet_csk(sk); 2897 struct tcp_sock *tp = tcp_sk(sk); 2898 struct sk_buff *skb; 2899 unsigned int mss = tcp_current_mss(sk); 2900 u32 prior_lost = tp->lost_out; 2901 2902 tcp_for_write_queue(skb, sk) { 2903 if (skb == tcp_send_head(sk)) 2904 break; 2905 if (tcp_skb_seglen(skb) > mss && 2906 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2907 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2908 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2909 tp->retrans_out -= tcp_skb_pcount(skb); 2910 } 2911 tcp_skb_mark_lost_uncond_verify(tp, skb); 2912 } 2913 } 2914 2915 tcp_clear_retrans_hints_partial(tp); 2916 2917 if (prior_lost == tp->lost_out) 2918 return; 2919 2920 if (tcp_is_reno(tp)) 2921 tcp_limit_reno_sacked(tp); 2922 2923 tcp_verify_left_out(tp); 2924 2925 /* Don't muck with the congestion window here. 2926 * Reason is that we do not increase amount of _data_ 2927 * in network, but units changed and effective 2928 * cwnd/ssthresh really reduced now. 2929 */ 2930 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2931 tp->high_seq = tp->snd_nxt; 2932 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2933 tp->prior_ssthresh = 0; 2934 tp->undo_marker = 0; 2935 tcp_set_ca_state(sk, TCP_CA_Loss); 2936 } 2937 tcp_xmit_retransmit_queue(sk); 2938 } 2939 EXPORT_SYMBOL(tcp_simple_retransmit); 2940 2941 /* Process an event, which can update packets-in-flight not trivially. 2942 * Main goal of this function is to calculate new estimate for left_out, 2943 * taking into account both packets sitting in receiver's buffer and 2944 * packets lost by network. 2945 * 2946 * Besides that it does CWND reduction, when packet loss is detected 2947 * and changes state of machine. 2948 * 2949 * It does _not_ decide what to send, it is made in function 2950 * tcp_xmit_retransmit_queue(). 2951 */ 2952 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag) 2953 { 2954 struct inet_connection_sock *icsk = inet_csk(sk); 2955 struct tcp_sock *tp = tcp_sk(sk); 2956 int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 2957 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2958 (tcp_fackets_out(tp) > tp->reordering)); 2959 int fast_rexmit = 0, mib_idx; 2960 2961 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2962 tp->sacked_out = 0; 2963 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2964 tp->fackets_out = 0; 2965 2966 /* Now state machine starts. 2967 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2968 if (flag & FLAG_ECE) 2969 tp->prior_ssthresh = 0; 2970 2971 /* B. In all the states check for reneging SACKs. */ 2972 if (tcp_check_sack_reneging(sk, flag)) 2973 return; 2974 2975 /* C. Process data loss notification, provided it is valid. */ 2976 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) && 2977 before(tp->snd_una, tp->high_seq) && 2978 icsk->icsk_ca_state != TCP_CA_Open && 2979 tp->fackets_out > tp->reordering) { 2980 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering, 0); 2981 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS); 2982 } 2983 2984 /* D. Check consistency of the current state. */ 2985 tcp_verify_left_out(tp); 2986 2987 /* E. Check state exit conditions. State can be terminated 2988 * when high_seq is ACKed. */ 2989 if (icsk->icsk_ca_state == TCP_CA_Open) { 2990 WARN_ON(tp->retrans_out != 0); 2991 tp->retrans_stamp = 0; 2992 } else if (!before(tp->snd_una, tp->high_seq)) { 2993 switch (icsk->icsk_ca_state) { 2994 case TCP_CA_Loss: 2995 icsk->icsk_retransmits = 0; 2996 if (tcp_try_undo_recovery(sk)) 2997 return; 2998 break; 2999 3000 case TCP_CA_CWR: 3001 /* CWR is to be held something *above* high_seq 3002 * is ACKed for CWR bit to reach receiver. */ 3003 if (tp->snd_una != tp->high_seq) { 3004 tcp_complete_cwr(sk); 3005 tcp_set_ca_state(sk, TCP_CA_Open); 3006 } 3007 break; 3008 3009 case TCP_CA_Disorder: 3010 tcp_try_undo_dsack(sk); 3011 if (!tp->undo_marker || 3012 /* For SACK case do not Open to allow to undo 3013 * catching for all duplicate ACKs. */ 3014 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) { 3015 tp->undo_marker = 0; 3016 tcp_set_ca_state(sk, TCP_CA_Open); 3017 } 3018 break; 3019 3020 case TCP_CA_Recovery: 3021 if (tcp_is_reno(tp)) 3022 tcp_reset_reno_sack(tp); 3023 if (tcp_try_undo_recovery(sk)) 3024 return; 3025 tcp_complete_cwr(sk); 3026 break; 3027 } 3028 } 3029 3030 /* F. Process state. */ 3031 switch (icsk->icsk_ca_state) { 3032 case TCP_CA_Recovery: 3033 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 3034 if (tcp_is_reno(tp) && is_dupack) 3035 tcp_add_reno_sack(sk); 3036 } else 3037 do_lost = tcp_try_undo_partial(sk, pkts_acked); 3038 break; 3039 case TCP_CA_Loss: 3040 if (flag & FLAG_DATA_ACKED) 3041 icsk->icsk_retransmits = 0; 3042 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED) 3043 tcp_reset_reno_sack(tp); 3044 if (!tcp_try_undo_loss(sk)) { 3045 tcp_moderate_cwnd(tp); 3046 tcp_xmit_retransmit_queue(sk); 3047 return; 3048 } 3049 if (icsk->icsk_ca_state != TCP_CA_Open) 3050 return; 3051 /* Loss is undone; fall through to processing in Open state. */ 3052 default: 3053 if (tcp_is_reno(tp)) { 3054 if (flag & FLAG_SND_UNA_ADVANCED) 3055 tcp_reset_reno_sack(tp); 3056 if (is_dupack) 3057 tcp_add_reno_sack(sk); 3058 } 3059 3060 if (icsk->icsk_ca_state == TCP_CA_Disorder) 3061 tcp_try_undo_dsack(sk); 3062 3063 if (!tcp_time_to_recover(sk)) { 3064 tcp_try_to_open(sk, flag); 3065 return; 3066 } 3067 3068 /* MTU probe failure: don't reduce cwnd */ 3069 if (icsk->icsk_ca_state < TCP_CA_CWR && 3070 icsk->icsk_mtup.probe_size && 3071 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3072 tcp_mtup_probe_failed(sk); 3073 /* Restores the reduction we did in tcp_mtup_probe() */ 3074 tp->snd_cwnd++; 3075 tcp_simple_retransmit(sk); 3076 return; 3077 } 3078 3079 /* Otherwise enter Recovery state */ 3080 3081 if (tcp_is_reno(tp)) 3082 mib_idx = LINUX_MIB_TCPRENORECOVERY; 3083 else 3084 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 3085 3086 NET_INC_STATS_BH(sock_net(sk), mib_idx); 3087 3088 tp->high_seq = tp->snd_nxt; 3089 tp->prior_ssthresh = 0; 3090 tp->undo_marker = tp->snd_una; 3091 tp->undo_retrans = tp->retrans_out; 3092 3093 if (icsk->icsk_ca_state < TCP_CA_CWR) { 3094 if (!(flag & FLAG_ECE)) 3095 tp->prior_ssthresh = tcp_current_ssthresh(sk); 3096 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 3097 TCP_ECN_queue_cwr(tp); 3098 } 3099 3100 tp->bytes_acked = 0; 3101 tp->snd_cwnd_cnt = 0; 3102 tcp_set_ca_state(sk, TCP_CA_Recovery); 3103 fast_rexmit = 1; 3104 } 3105 3106 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk))) 3107 tcp_update_scoreboard(sk, fast_rexmit); 3108 tcp_cwnd_down(sk, flag); 3109 tcp_xmit_retransmit_queue(sk); 3110 } 3111 3112 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt) 3113 { 3114 tcp_rtt_estimator(sk, seq_rtt); 3115 tcp_set_rto(sk); 3116 inet_csk(sk)->icsk_backoff = 0; 3117 } 3118 3119 /* Read draft-ietf-tcplw-high-performance before mucking 3120 * with this code. (Supersedes RFC1323) 3121 */ 3122 static void tcp_ack_saw_tstamp(struct sock *sk, int flag) 3123 { 3124 /* RTTM Rule: A TSecr value received in a segment is used to 3125 * update the averaged RTT measurement only if the segment 3126 * acknowledges some new data, i.e., only if it advances the 3127 * left edge of the send window. 3128 * 3129 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3130 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru> 3131 * 3132 * Changed: reset backoff as soon as we see the first valid sample. 3133 * If we do not, we get strongly overestimated rto. With timestamps 3134 * samples are accepted even from very old segments: f.e., when rtt=1 3135 * increases to 8, we retransmit 5 times and after 8 seconds delayed 3136 * answer arrives rto becomes 120 seconds! If at least one of segments 3137 * in window is lost... Voila. --ANK (010210) 3138 */ 3139 struct tcp_sock *tp = tcp_sk(sk); 3140 3141 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr); 3142 } 3143 3144 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag) 3145 { 3146 /* We don't have a timestamp. Can only use 3147 * packets that are not retransmitted to determine 3148 * rtt estimates. Also, we must not reset the 3149 * backoff for rto until we get a non-retransmitted 3150 * packet. This allows us to deal with a situation 3151 * where the network delay has increased suddenly. 3152 * I.e. Karn's algorithm. (SIGCOMM '87, p5.) 3153 */ 3154 3155 if (flag & FLAG_RETRANS_DATA_ACKED) 3156 return; 3157 3158 tcp_valid_rtt_meas(sk, seq_rtt); 3159 } 3160 3161 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag, 3162 const s32 seq_rtt) 3163 { 3164 const struct tcp_sock *tp = tcp_sk(sk); 3165 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */ 3166 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3167 tcp_ack_saw_tstamp(sk, flag); 3168 else if (seq_rtt >= 0) 3169 tcp_ack_no_tstamp(sk, seq_rtt, flag); 3170 } 3171 3172 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight) 3173 { 3174 const struct inet_connection_sock *icsk = inet_csk(sk); 3175 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight); 3176 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 3177 } 3178 3179 /* Restart timer after forward progress on connection. 3180 * RFC2988 recommends to restart timer to now+rto. 3181 */ 3182 static void tcp_rearm_rto(struct sock *sk) 3183 { 3184 struct tcp_sock *tp = tcp_sk(sk); 3185 3186 if (!tp->packets_out) { 3187 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3188 } else { 3189 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3190 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3191 } 3192 } 3193 3194 /* If we get here, the whole TSO packet has not been acked. */ 3195 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3196 { 3197 struct tcp_sock *tp = tcp_sk(sk); 3198 u32 packets_acked; 3199 3200 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3201 3202 packets_acked = tcp_skb_pcount(skb); 3203 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3204 return 0; 3205 packets_acked -= tcp_skb_pcount(skb); 3206 3207 if (packets_acked) { 3208 BUG_ON(tcp_skb_pcount(skb) == 0); 3209 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3210 } 3211 3212 return packets_acked; 3213 } 3214 3215 /* Remove acknowledged frames from the retransmission queue. If our packet 3216 * is before the ack sequence we can discard it as it's confirmed to have 3217 * arrived at the other end. 3218 */ 3219 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3220 u32 prior_snd_una) 3221 { 3222 struct tcp_sock *tp = tcp_sk(sk); 3223 const struct inet_connection_sock *icsk = inet_csk(sk); 3224 struct sk_buff *skb; 3225 u32 now = tcp_time_stamp; 3226 int fully_acked = 1; 3227 int flag = 0; 3228 u32 pkts_acked = 0; 3229 u32 reord = tp->packets_out; 3230 u32 prior_sacked = tp->sacked_out; 3231 s32 seq_rtt = -1; 3232 s32 ca_seq_rtt = -1; 3233 ktime_t last_ackt = net_invalid_timestamp(); 3234 3235 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3236 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3237 u32 acked_pcount; 3238 u8 sacked = scb->sacked; 3239 3240 /* Determine how many packets and what bytes were acked, tso and else */ 3241 if (after(scb->end_seq, tp->snd_una)) { 3242 if (tcp_skb_pcount(skb) == 1 || 3243 !after(tp->snd_una, scb->seq)) 3244 break; 3245 3246 acked_pcount = tcp_tso_acked(sk, skb); 3247 if (!acked_pcount) 3248 break; 3249 3250 fully_acked = 0; 3251 } else { 3252 acked_pcount = tcp_skb_pcount(skb); 3253 } 3254 3255 if (sacked & TCPCB_RETRANS) { 3256 if (sacked & TCPCB_SACKED_RETRANS) 3257 tp->retrans_out -= acked_pcount; 3258 flag |= FLAG_RETRANS_DATA_ACKED; 3259 ca_seq_rtt = -1; 3260 seq_rtt = -1; 3261 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1)) 3262 flag |= FLAG_NONHEAD_RETRANS_ACKED; 3263 } else { 3264 ca_seq_rtt = now - scb->when; 3265 last_ackt = skb->tstamp; 3266 if (seq_rtt < 0) { 3267 seq_rtt = ca_seq_rtt; 3268 } 3269 if (!(sacked & TCPCB_SACKED_ACKED)) 3270 reord = min(pkts_acked, reord); 3271 } 3272 3273 if (sacked & TCPCB_SACKED_ACKED) 3274 tp->sacked_out -= acked_pcount; 3275 if (sacked & TCPCB_LOST) 3276 tp->lost_out -= acked_pcount; 3277 3278 tp->packets_out -= acked_pcount; 3279 pkts_acked += acked_pcount; 3280 3281 /* Initial outgoing SYN's get put onto the write_queue 3282 * just like anything else we transmit. It is not 3283 * true data, and if we misinform our callers that 3284 * this ACK acks real data, we will erroneously exit 3285 * connection startup slow start one packet too 3286 * quickly. This is severely frowned upon behavior. 3287 */ 3288 if (!(scb->flags & TCPHDR_SYN)) { 3289 flag |= FLAG_DATA_ACKED; 3290 } else { 3291 flag |= FLAG_SYN_ACKED; 3292 tp->retrans_stamp = 0; 3293 } 3294 3295 if (!fully_acked) 3296 break; 3297 3298 tcp_unlink_write_queue(skb, sk); 3299 sk_wmem_free_skb(sk, skb); 3300 tp->scoreboard_skb_hint = NULL; 3301 if (skb == tp->retransmit_skb_hint) 3302 tp->retransmit_skb_hint = NULL; 3303 if (skb == tp->lost_skb_hint) 3304 tp->lost_skb_hint = NULL; 3305 } 3306 3307 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3308 tp->snd_up = tp->snd_una; 3309 3310 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3311 flag |= FLAG_SACK_RENEGING; 3312 3313 if (flag & FLAG_ACKED) { 3314 const struct tcp_congestion_ops *ca_ops 3315 = inet_csk(sk)->icsk_ca_ops; 3316 3317 if (unlikely(icsk->icsk_mtup.probe_size && 3318 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3319 tcp_mtup_probe_success(sk); 3320 } 3321 3322 tcp_ack_update_rtt(sk, flag, seq_rtt); 3323 tcp_rearm_rto(sk); 3324 3325 if (tcp_is_reno(tp)) { 3326 tcp_remove_reno_sacks(sk, pkts_acked); 3327 } else { 3328 int delta; 3329 3330 /* Non-retransmitted hole got filled? That's reordering */ 3331 if (reord < prior_fackets) 3332 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3333 3334 delta = tcp_is_fack(tp) ? pkts_acked : 3335 prior_sacked - tp->sacked_out; 3336 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3337 } 3338 3339 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3340 3341 if (ca_ops->pkts_acked) { 3342 s32 rtt_us = -1; 3343 3344 /* Is the ACK triggering packet unambiguous? */ 3345 if (!(flag & FLAG_RETRANS_DATA_ACKED)) { 3346 /* High resolution needed and available? */ 3347 if (ca_ops->flags & TCP_CONG_RTT_STAMP && 3348 !ktime_equal(last_ackt, 3349 net_invalid_timestamp())) 3350 rtt_us = ktime_us_delta(ktime_get_real(), 3351 last_ackt); 3352 else if (ca_seq_rtt > 0) 3353 rtt_us = jiffies_to_usecs(ca_seq_rtt); 3354 } 3355 3356 ca_ops->pkts_acked(sk, pkts_acked, rtt_us); 3357 } 3358 } 3359 3360 #if FASTRETRANS_DEBUG > 0 3361 WARN_ON((int)tp->sacked_out < 0); 3362 WARN_ON((int)tp->lost_out < 0); 3363 WARN_ON((int)tp->retrans_out < 0); 3364 if (!tp->packets_out && tcp_is_sack(tp)) { 3365 icsk = inet_csk(sk); 3366 if (tp->lost_out) { 3367 printk(KERN_DEBUG "Leak l=%u %d\n", 3368 tp->lost_out, icsk->icsk_ca_state); 3369 tp->lost_out = 0; 3370 } 3371 if (tp->sacked_out) { 3372 printk(KERN_DEBUG "Leak s=%u %d\n", 3373 tp->sacked_out, icsk->icsk_ca_state); 3374 tp->sacked_out = 0; 3375 } 3376 if (tp->retrans_out) { 3377 printk(KERN_DEBUG "Leak r=%u %d\n", 3378 tp->retrans_out, icsk->icsk_ca_state); 3379 tp->retrans_out = 0; 3380 } 3381 } 3382 #endif 3383 return flag; 3384 } 3385 3386 static void tcp_ack_probe(struct sock *sk) 3387 { 3388 const struct tcp_sock *tp = tcp_sk(sk); 3389 struct inet_connection_sock *icsk = inet_csk(sk); 3390 3391 /* Was it a usable window open? */ 3392 3393 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3394 icsk->icsk_backoff = 0; 3395 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3396 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3397 * This function is not for random using! 3398 */ 3399 } else { 3400 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3401 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 3402 TCP_RTO_MAX); 3403 } 3404 } 3405 3406 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag) 3407 { 3408 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3409 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3410 } 3411 3412 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3413 { 3414 const struct tcp_sock *tp = tcp_sk(sk); 3415 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) && 3416 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR)); 3417 } 3418 3419 /* Check that window update is acceptable. 3420 * The function assumes that snd_una<=ack<=snd_next. 3421 */ 3422 static inline int tcp_may_update_window(const struct tcp_sock *tp, 3423 const u32 ack, const u32 ack_seq, 3424 const u32 nwin) 3425 { 3426 return after(ack, tp->snd_una) || 3427 after(ack_seq, tp->snd_wl1) || 3428 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3429 } 3430 3431 /* Update our send window. 3432 * 3433 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3434 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3435 */ 3436 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack, 3437 u32 ack_seq) 3438 { 3439 struct tcp_sock *tp = tcp_sk(sk); 3440 int flag = 0; 3441 u32 nwin = ntohs(tcp_hdr(skb)->window); 3442 3443 if (likely(!tcp_hdr(skb)->syn)) 3444 nwin <<= tp->rx_opt.snd_wscale; 3445 3446 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3447 flag |= FLAG_WIN_UPDATE; 3448 tcp_update_wl(tp, ack_seq); 3449 3450 if (tp->snd_wnd != nwin) { 3451 tp->snd_wnd = nwin; 3452 3453 /* Note, it is the only place, where 3454 * fast path is recovered for sending TCP. 3455 */ 3456 tp->pred_flags = 0; 3457 tcp_fast_path_check(sk); 3458 3459 if (nwin > tp->max_window) { 3460 tp->max_window = nwin; 3461 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3462 } 3463 } 3464 } 3465 3466 tp->snd_una = ack; 3467 3468 return flag; 3469 } 3470 3471 /* A very conservative spurious RTO response algorithm: reduce cwnd and 3472 * continue in congestion avoidance. 3473 */ 3474 static void tcp_conservative_spur_to_response(struct tcp_sock *tp) 3475 { 3476 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 3477 tp->snd_cwnd_cnt = 0; 3478 tp->bytes_acked = 0; 3479 TCP_ECN_queue_cwr(tp); 3480 tcp_moderate_cwnd(tp); 3481 } 3482 3483 /* A conservative spurious RTO response algorithm: reduce cwnd using 3484 * rate halving and continue in congestion avoidance. 3485 */ 3486 static void tcp_ratehalving_spur_to_response(struct sock *sk) 3487 { 3488 tcp_enter_cwr(sk, 0); 3489 } 3490 3491 static void tcp_undo_spur_to_response(struct sock *sk, int flag) 3492 { 3493 if (flag & FLAG_ECE) 3494 tcp_ratehalving_spur_to_response(sk); 3495 else 3496 tcp_undo_cwr(sk, 1); 3497 } 3498 3499 /* F-RTO spurious RTO detection algorithm (RFC4138) 3500 * 3501 * F-RTO affects during two new ACKs following RTO (well, almost, see inline 3502 * comments). State (ACK number) is kept in frto_counter. When ACK advances 3503 * window (but not to or beyond highest sequence sent before RTO): 3504 * On First ACK, send two new segments out. 3505 * On Second ACK, RTO was likely spurious. Do spurious response (response 3506 * algorithm is not part of the F-RTO detection algorithm 3507 * given in RFC4138 but can be selected separately). 3508 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss 3509 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding 3510 * of Nagle, this is done using frto_counter states 2 and 3, when a new data 3511 * segment of any size sent during F-RTO, state 2 is upgraded to 3. 3512 * 3513 * Rationale: if the RTO was spurious, new ACKs should arrive from the 3514 * original window even after we transmit two new data segments. 3515 * 3516 * SACK version: 3517 * on first step, wait until first cumulative ACK arrives, then move to 3518 * the second step. In second step, the next ACK decides. 3519 * 3520 * F-RTO is implemented (mainly) in four functions: 3521 * - tcp_use_frto() is used to determine if TCP is can use F-RTO 3522 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is 3523 * called when tcp_use_frto() showed green light 3524 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm 3525 * - tcp_enter_frto_loss() is called if there is not enough evidence 3526 * to prove that the RTO is indeed spurious. It transfers the control 3527 * from F-RTO to the conventional RTO recovery 3528 */ 3529 static int tcp_process_frto(struct sock *sk, int flag) 3530 { 3531 struct tcp_sock *tp = tcp_sk(sk); 3532 3533 tcp_verify_left_out(tp); 3534 3535 /* Duplicate the behavior from Loss state (fastretrans_alert) */ 3536 if (flag & FLAG_DATA_ACKED) 3537 inet_csk(sk)->icsk_retransmits = 0; 3538 3539 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) || 3540 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED))) 3541 tp->undo_marker = 0; 3542 3543 if (!before(tp->snd_una, tp->frto_highmark)) { 3544 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag); 3545 return 1; 3546 } 3547 3548 if (!tcp_is_sackfrto(tp)) { 3549 /* RFC4138 shortcoming in step 2; should also have case c): 3550 * ACK isn't duplicate nor advances window, e.g., opposite dir 3551 * data, winupdate 3552 */ 3553 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP)) 3554 return 1; 3555 3556 if (!(flag & FLAG_DATA_ACKED)) { 3557 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3), 3558 flag); 3559 return 1; 3560 } 3561 } else { 3562 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) { 3563 /* Prevent sending of new data. */ 3564 tp->snd_cwnd = min(tp->snd_cwnd, 3565 tcp_packets_in_flight(tp)); 3566 return 1; 3567 } 3568 3569 if ((tp->frto_counter >= 2) && 3570 (!(flag & FLAG_FORWARD_PROGRESS) || 3571 ((flag & FLAG_DATA_SACKED) && 3572 !(flag & FLAG_ONLY_ORIG_SACKED)))) { 3573 /* RFC4138 shortcoming (see comment above) */ 3574 if (!(flag & FLAG_FORWARD_PROGRESS) && 3575 (flag & FLAG_NOT_DUP)) 3576 return 1; 3577 3578 tcp_enter_frto_loss(sk, 3, flag); 3579 return 1; 3580 } 3581 } 3582 3583 if (tp->frto_counter == 1) { 3584 /* tcp_may_send_now needs to see updated state */ 3585 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2; 3586 tp->frto_counter = 2; 3587 3588 if (!tcp_may_send_now(sk)) 3589 tcp_enter_frto_loss(sk, 2, flag); 3590 3591 return 1; 3592 } else { 3593 switch (sysctl_tcp_frto_response) { 3594 case 2: 3595 tcp_undo_spur_to_response(sk, flag); 3596 break; 3597 case 1: 3598 tcp_conservative_spur_to_response(tp); 3599 break; 3600 default: 3601 tcp_ratehalving_spur_to_response(sk); 3602 break; 3603 } 3604 tp->frto_counter = 0; 3605 tp->undo_marker = 0; 3606 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS); 3607 } 3608 return 0; 3609 } 3610 3611 /* This routine deals with incoming acks, but not outgoing ones. */ 3612 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag) 3613 { 3614 struct inet_connection_sock *icsk = inet_csk(sk); 3615 struct tcp_sock *tp = tcp_sk(sk); 3616 u32 prior_snd_una = tp->snd_una; 3617 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3618 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3619 u32 prior_in_flight; 3620 u32 prior_fackets; 3621 int prior_packets; 3622 int frto_cwnd = 0; 3623 3624 /* If the ack is older than previous acks 3625 * then we can probably ignore it. 3626 */ 3627 if (before(ack, prior_snd_una)) 3628 goto old_ack; 3629 3630 /* If the ack includes data we haven't sent yet, discard 3631 * this segment (RFC793 Section 3.9). 3632 */ 3633 if (after(ack, tp->snd_nxt)) 3634 goto invalid_ack; 3635 3636 if (after(ack, prior_snd_una)) 3637 flag |= FLAG_SND_UNA_ADVANCED; 3638 3639 if (sysctl_tcp_abc) { 3640 if (icsk->icsk_ca_state < TCP_CA_CWR) 3641 tp->bytes_acked += ack - prior_snd_una; 3642 else if (icsk->icsk_ca_state == TCP_CA_Loss) 3643 /* we assume just one segment left network */ 3644 tp->bytes_acked += min(ack - prior_snd_una, 3645 tp->mss_cache); 3646 } 3647 3648 prior_fackets = tp->fackets_out; 3649 prior_in_flight = tcp_packets_in_flight(tp); 3650 3651 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3652 /* Window is constant, pure forward advance. 3653 * No more checks are required. 3654 * Note, we use the fact that SND.UNA>=SND.WL2. 3655 */ 3656 tcp_update_wl(tp, ack_seq); 3657 tp->snd_una = ack; 3658 flag |= FLAG_WIN_UPDATE; 3659 3660 tcp_ca_event(sk, CA_EVENT_FAST_ACK); 3661 3662 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS); 3663 } else { 3664 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3665 flag |= FLAG_DATA; 3666 else 3667 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3668 3669 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3670 3671 if (TCP_SKB_CB(skb)->sacked) 3672 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3673 3674 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb))) 3675 flag |= FLAG_ECE; 3676 3677 tcp_ca_event(sk, CA_EVENT_SLOW_ACK); 3678 } 3679 3680 /* We passed data and got it acked, remove any soft error 3681 * log. Something worked... 3682 */ 3683 sk->sk_err_soft = 0; 3684 icsk->icsk_probes_out = 0; 3685 tp->rcv_tstamp = tcp_time_stamp; 3686 prior_packets = tp->packets_out; 3687 if (!prior_packets) 3688 goto no_queue; 3689 3690 /* See if we can take anything off of the retransmit queue. */ 3691 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una); 3692 3693 if (tp->frto_counter) 3694 frto_cwnd = tcp_process_frto(sk, flag); 3695 /* Guarantee sacktag reordering detection against wrap-arounds */ 3696 if (before(tp->frto_highmark, tp->snd_una)) 3697 tp->frto_highmark = 0; 3698 3699 if (tcp_ack_is_dubious(sk, flag)) { 3700 /* Advance CWND, if state allows this. */ 3701 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd && 3702 tcp_may_raise_cwnd(sk, flag)) 3703 tcp_cong_avoid(sk, ack, prior_in_flight); 3704 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, 3705 flag); 3706 } else { 3707 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd) 3708 tcp_cong_avoid(sk, ack, prior_in_flight); 3709 } 3710 3711 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3712 dst_confirm(__sk_dst_get(sk)); 3713 3714 return 1; 3715 3716 no_queue: 3717 /* If this ack opens up a zero window, clear backoff. It was 3718 * being used to time the probes, and is probably far higher than 3719 * it needs to be for normal retransmission. 3720 */ 3721 if (tcp_send_head(sk)) 3722 tcp_ack_probe(sk); 3723 return 1; 3724 3725 invalid_ack: 3726 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3727 return -1; 3728 3729 old_ack: 3730 if (TCP_SKB_CB(skb)->sacked) { 3731 tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3732 if (icsk->icsk_ca_state == TCP_CA_Open) 3733 tcp_try_keep_open(sk); 3734 } 3735 3736 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3737 return 0; 3738 } 3739 3740 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3741 * But, this can also be called on packets in the established flow when 3742 * the fast version below fails. 3743 */ 3744 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, 3745 u8 **hvpp, int estab) 3746 { 3747 unsigned char *ptr; 3748 struct tcphdr *th = tcp_hdr(skb); 3749 int length = (th->doff * 4) - sizeof(struct tcphdr); 3750 3751 ptr = (unsigned char *)(th + 1); 3752 opt_rx->saw_tstamp = 0; 3753 3754 while (length > 0) { 3755 int opcode = *ptr++; 3756 int opsize; 3757 3758 switch (opcode) { 3759 case TCPOPT_EOL: 3760 return; 3761 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3762 length--; 3763 continue; 3764 default: 3765 opsize = *ptr++; 3766 if (opsize < 2) /* "silly options" */ 3767 return; 3768 if (opsize > length) 3769 return; /* don't parse partial options */ 3770 switch (opcode) { 3771 case TCPOPT_MSS: 3772 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3773 u16 in_mss = get_unaligned_be16(ptr); 3774 if (in_mss) { 3775 if (opt_rx->user_mss && 3776 opt_rx->user_mss < in_mss) 3777 in_mss = opt_rx->user_mss; 3778 opt_rx->mss_clamp = in_mss; 3779 } 3780 } 3781 break; 3782 case TCPOPT_WINDOW: 3783 if (opsize == TCPOLEN_WINDOW && th->syn && 3784 !estab && sysctl_tcp_window_scaling) { 3785 __u8 snd_wscale = *(__u8 *)ptr; 3786 opt_rx->wscale_ok = 1; 3787 if (snd_wscale > 14) { 3788 if (net_ratelimit()) 3789 printk(KERN_INFO "tcp_parse_options: Illegal window " 3790 "scaling value %d >14 received.\n", 3791 snd_wscale); 3792 snd_wscale = 14; 3793 } 3794 opt_rx->snd_wscale = snd_wscale; 3795 } 3796 break; 3797 case TCPOPT_TIMESTAMP: 3798 if ((opsize == TCPOLEN_TIMESTAMP) && 3799 ((estab && opt_rx->tstamp_ok) || 3800 (!estab && sysctl_tcp_timestamps))) { 3801 opt_rx->saw_tstamp = 1; 3802 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3803 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3804 } 3805 break; 3806 case TCPOPT_SACK_PERM: 3807 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3808 !estab && sysctl_tcp_sack) { 3809 opt_rx->sack_ok = 1; 3810 tcp_sack_reset(opt_rx); 3811 } 3812 break; 3813 3814 case TCPOPT_SACK: 3815 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3816 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3817 opt_rx->sack_ok) { 3818 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3819 } 3820 break; 3821 #ifdef CONFIG_TCP_MD5SIG 3822 case TCPOPT_MD5SIG: 3823 /* 3824 * The MD5 Hash has already been 3825 * checked (see tcp_v{4,6}_do_rcv()). 3826 */ 3827 break; 3828 #endif 3829 case TCPOPT_COOKIE: 3830 /* This option is variable length. 3831 */ 3832 switch (opsize) { 3833 case TCPOLEN_COOKIE_BASE: 3834 /* not yet implemented */ 3835 break; 3836 case TCPOLEN_COOKIE_PAIR: 3837 /* not yet implemented */ 3838 break; 3839 case TCPOLEN_COOKIE_MIN+0: 3840 case TCPOLEN_COOKIE_MIN+2: 3841 case TCPOLEN_COOKIE_MIN+4: 3842 case TCPOLEN_COOKIE_MIN+6: 3843 case TCPOLEN_COOKIE_MAX: 3844 /* 16-bit multiple */ 3845 opt_rx->cookie_plus = opsize; 3846 *hvpp = ptr; 3847 break; 3848 default: 3849 /* ignore option */ 3850 break; 3851 } 3852 break; 3853 } 3854 3855 ptr += opsize-2; 3856 length -= opsize; 3857 } 3858 } 3859 } 3860 EXPORT_SYMBOL(tcp_parse_options); 3861 3862 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th) 3863 { 3864 __be32 *ptr = (__be32 *)(th + 1); 3865 3866 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3867 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3868 tp->rx_opt.saw_tstamp = 1; 3869 ++ptr; 3870 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3871 ++ptr; 3872 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 3873 return 1; 3874 } 3875 return 0; 3876 } 3877 3878 /* Fast parse options. This hopes to only see timestamps. 3879 * If it is wrong it falls back on tcp_parse_options(). 3880 */ 3881 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th, 3882 struct tcp_sock *tp, u8 **hvpp) 3883 { 3884 /* In the spirit of fast parsing, compare doff directly to constant 3885 * values. Because equality is used, short doff can be ignored here. 3886 */ 3887 if (th->doff == (sizeof(*th) / 4)) { 3888 tp->rx_opt.saw_tstamp = 0; 3889 return 0; 3890 } else if (tp->rx_opt.tstamp_ok && 3891 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3892 if (tcp_parse_aligned_timestamp(tp, th)) 3893 return 1; 3894 } 3895 tcp_parse_options(skb, &tp->rx_opt, hvpp, 1); 3896 return 1; 3897 } 3898 3899 #ifdef CONFIG_TCP_MD5SIG 3900 /* 3901 * Parse MD5 Signature option 3902 */ 3903 u8 *tcp_parse_md5sig_option(struct tcphdr *th) 3904 { 3905 int length = (th->doff << 2) - sizeof (*th); 3906 u8 *ptr = (u8*)(th + 1); 3907 3908 /* If the TCP option is too short, we can short cut */ 3909 if (length < TCPOLEN_MD5SIG) 3910 return NULL; 3911 3912 while (length > 0) { 3913 int opcode = *ptr++; 3914 int opsize; 3915 3916 switch(opcode) { 3917 case TCPOPT_EOL: 3918 return NULL; 3919 case TCPOPT_NOP: 3920 length--; 3921 continue; 3922 default: 3923 opsize = *ptr++; 3924 if (opsize < 2 || opsize > length) 3925 return NULL; 3926 if (opcode == TCPOPT_MD5SIG) 3927 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3928 } 3929 ptr += opsize - 2; 3930 length -= opsize; 3931 } 3932 return NULL; 3933 } 3934 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3935 #endif 3936 3937 static inline void tcp_store_ts_recent(struct tcp_sock *tp) 3938 { 3939 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3940 tp->rx_opt.ts_recent_stamp = get_seconds(); 3941 } 3942 3943 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3944 { 3945 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3946 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3947 * extra check below makes sure this can only happen 3948 * for pure ACK frames. -DaveM 3949 * 3950 * Not only, also it occurs for expired timestamps. 3951 */ 3952 3953 if (tcp_paws_check(&tp->rx_opt, 0)) 3954 tcp_store_ts_recent(tp); 3955 } 3956 } 3957 3958 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3959 * 3960 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3961 * it can pass through stack. So, the following predicate verifies that 3962 * this segment is not used for anything but congestion avoidance or 3963 * fast retransmit. Moreover, we even are able to eliminate most of such 3964 * second order effects, if we apply some small "replay" window (~RTO) 3965 * to timestamp space. 3966 * 3967 * All these measures still do not guarantee that we reject wrapped ACKs 3968 * on networks with high bandwidth, when sequence space is recycled fastly, 3969 * but it guarantees that such events will be very rare and do not affect 3970 * connection seriously. This doesn't look nice, but alas, PAWS is really 3971 * buggy extension. 3972 * 3973 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3974 * states that events when retransmit arrives after original data are rare. 3975 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3976 * the biggest problem on large power networks even with minor reordering. 3977 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3978 * up to bandwidth of 18Gigabit/sec. 8) ] 3979 */ 3980 3981 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3982 { 3983 struct tcp_sock *tp = tcp_sk(sk); 3984 struct tcphdr *th = tcp_hdr(skb); 3985 u32 seq = TCP_SKB_CB(skb)->seq; 3986 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3987 3988 return (/* 1. Pure ACK with correct sequence number. */ 3989 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3990 3991 /* 2. ... and duplicate ACK. */ 3992 ack == tp->snd_una && 3993 3994 /* 3. ... and does not update window. */ 3995 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3996 3997 /* 4. ... and sits in replay window. */ 3998 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3999 } 4000 4001 static inline int tcp_paws_discard(const struct sock *sk, 4002 const struct sk_buff *skb) 4003 { 4004 const struct tcp_sock *tp = tcp_sk(sk); 4005 4006 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4007 !tcp_disordered_ack(sk, skb); 4008 } 4009 4010 /* Check segment sequence number for validity. 4011 * 4012 * Segment controls are considered valid, if the segment 4013 * fits to the window after truncation to the window. Acceptability 4014 * of data (and SYN, FIN, of course) is checked separately. 4015 * See tcp_data_queue(), for example. 4016 * 4017 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4018 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4019 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4020 * (borrowed from freebsd) 4021 */ 4022 4023 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq) 4024 { 4025 return !before(end_seq, tp->rcv_wup) && 4026 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4027 } 4028 4029 /* When we get a reset we do this. */ 4030 static void tcp_reset(struct sock *sk) 4031 { 4032 /* We want the right error as BSD sees it (and indeed as we do). */ 4033 switch (sk->sk_state) { 4034 case TCP_SYN_SENT: 4035 sk->sk_err = ECONNREFUSED; 4036 break; 4037 case TCP_CLOSE_WAIT: 4038 sk->sk_err = EPIPE; 4039 break; 4040 case TCP_CLOSE: 4041 return; 4042 default: 4043 sk->sk_err = ECONNRESET; 4044 } 4045 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4046 smp_wmb(); 4047 4048 if (!sock_flag(sk, SOCK_DEAD)) 4049 sk->sk_error_report(sk); 4050 4051 tcp_done(sk); 4052 } 4053 4054 /* 4055 * Process the FIN bit. This now behaves as it is supposed to work 4056 * and the FIN takes effect when it is validly part of sequence 4057 * space. Not before when we get holes. 4058 * 4059 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4060 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4061 * TIME-WAIT) 4062 * 4063 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4064 * close and we go into CLOSING (and later onto TIME-WAIT) 4065 * 4066 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4067 */ 4068 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th) 4069 { 4070 struct tcp_sock *tp = tcp_sk(sk); 4071 4072 inet_csk_schedule_ack(sk); 4073 4074 sk->sk_shutdown |= RCV_SHUTDOWN; 4075 sock_set_flag(sk, SOCK_DONE); 4076 4077 switch (sk->sk_state) { 4078 case TCP_SYN_RECV: 4079 case TCP_ESTABLISHED: 4080 /* Move to CLOSE_WAIT */ 4081 tcp_set_state(sk, TCP_CLOSE_WAIT); 4082 inet_csk(sk)->icsk_ack.pingpong = 1; 4083 break; 4084 4085 case TCP_CLOSE_WAIT: 4086 case TCP_CLOSING: 4087 /* Received a retransmission of the FIN, do 4088 * nothing. 4089 */ 4090 break; 4091 case TCP_LAST_ACK: 4092 /* RFC793: Remain in the LAST-ACK state. */ 4093 break; 4094 4095 case TCP_FIN_WAIT1: 4096 /* This case occurs when a simultaneous close 4097 * happens, we must ack the received FIN and 4098 * enter the CLOSING state. 4099 */ 4100 tcp_send_ack(sk); 4101 tcp_set_state(sk, TCP_CLOSING); 4102 break; 4103 case TCP_FIN_WAIT2: 4104 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4105 tcp_send_ack(sk); 4106 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4107 break; 4108 default: 4109 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4110 * cases we should never reach this piece of code. 4111 */ 4112 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n", 4113 __func__, sk->sk_state); 4114 break; 4115 } 4116 4117 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4118 * Probably, we should reset in this case. For now drop them. 4119 */ 4120 __skb_queue_purge(&tp->out_of_order_queue); 4121 if (tcp_is_sack(tp)) 4122 tcp_sack_reset(&tp->rx_opt); 4123 sk_mem_reclaim(sk); 4124 4125 if (!sock_flag(sk, SOCK_DEAD)) { 4126 sk->sk_state_change(sk); 4127 4128 /* Do not send POLL_HUP for half duplex close. */ 4129 if (sk->sk_shutdown == SHUTDOWN_MASK || 4130 sk->sk_state == TCP_CLOSE) 4131 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4132 else 4133 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4134 } 4135 } 4136 4137 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4138 u32 end_seq) 4139 { 4140 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4141 if (before(seq, sp->start_seq)) 4142 sp->start_seq = seq; 4143 if (after(end_seq, sp->end_seq)) 4144 sp->end_seq = end_seq; 4145 return 1; 4146 } 4147 return 0; 4148 } 4149 4150 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4151 { 4152 struct tcp_sock *tp = tcp_sk(sk); 4153 4154 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4155 int mib_idx; 4156 4157 if (before(seq, tp->rcv_nxt)) 4158 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4159 else 4160 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4161 4162 NET_INC_STATS_BH(sock_net(sk), mib_idx); 4163 4164 tp->rx_opt.dsack = 1; 4165 tp->duplicate_sack[0].start_seq = seq; 4166 tp->duplicate_sack[0].end_seq = end_seq; 4167 } 4168 } 4169 4170 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4171 { 4172 struct tcp_sock *tp = tcp_sk(sk); 4173 4174 if (!tp->rx_opt.dsack) 4175 tcp_dsack_set(sk, seq, end_seq); 4176 else 4177 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4178 } 4179 4180 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb) 4181 { 4182 struct tcp_sock *tp = tcp_sk(sk); 4183 4184 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4185 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4186 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4187 tcp_enter_quickack_mode(sk); 4188 4189 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4190 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4191 4192 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4193 end_seq = tp->rcv_nxt; 4194 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4195 } 4196 } 4197 4198 tcp_send_ack(sk); 4199 } 4200 4201 /* These routines update the SACK block as out-of-order packets arrive or 4202 * in-order packets close up the sequence space. 4203 */ 4204 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4205 { 4206 int this_sack; 4207 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4208 struct tcp_sack_block *swalk = sp + 1; 4209 4210 /* See if the recent change to the first SACK eats into 4211 * or hits the sequence space of other SACK blocks, if so coalesce. 4212 */ 4213 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4214 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4215 int i; 4216 4217 /* Zap SWALK, by moving every further SACK up by one slot. 4218 * Decrease num_sacks. 4219 */ 4220 tp->rx_opt.num_sacks--; 4221 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4222 sp[i] = sp[i + 1]; 4223 continue; 4224 } 4225 this_sack++, swalk++; 4226 } 4227 } 4228 4229 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4230 { 4231 struct tcp_sock *tp = tcp_sk(sk); 4232 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4233 int cur_sacks = tp->rx_opt.num_sacks; 4234 int this_sack; 4235 4236 if (!cur_sacks) 4237 goto new_sack; 4238 4239 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4240 if (tcp_sack_extend(sp, seq, end_seq)) { 4241 /* Rotate this_sack to the first one. */ 4242 for (; this_sack > 0; this_sack--, sp--) 4243 swap(*sp, *(sp - 1)); 4244 if (cur_sacks > 1) 4245 tcp_sack_maybe_coalesce(tp); 4246 return; 4247 } 4248 } 4249 4250 /* Could not find an adjacent existing SACK, build a new one, 4251 * put it at the front, and shift everyone else down. We 4252 * always know there is at least one SACK present already here. 4253 * 4254 * If the sack array is full, forget about the last one. 4255 */ 4256 if (this_sack >= TCP_NUM_SACKS) { 4257 this_sack--; 4258 tp->rx_opt.num_sacks--; 4259 sp--; 4260 } 4261 for (; this_sack > 0; this_sack--, sp--) 4262 *sp = *(sp - 1); 4263 4264 new_sack: 4265 /* Build the new head SACK, and we're done. */ 4266 sp->start_seq = seq; 4267 sp->end_seq = end_seq; 4268 tp->rx_opt.num_sacks++; 4269 } 4270 4271 /* RCV.NXT advances, some SACKs should be eaten. */ 4272 4273 static void tcp_sack_remove(struct tcp_sock *tp) 4274 { 4275 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4276 int num_sacks = tp->rx_opt.num_sacks; 4277 int this_sack; 4278 4279 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4280 if (skb_queue_empty(&tp->out_of_order_queue)) { 4281 tp->rx_opt.num_sacks = 0; 4282 return; 4283 } 4284 4285 for (this_sack = 0; this_sack < num_sacks;) { 4286 /* Check if the start of the sack is covered by RCV.NXT. */ 4287 if (!before(tp->rcv_nxt, sp->start_seq)) { 4288 int i; 4289 4290 /* RCV.NXT must cover all the block! */ 4291 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4292 4293 /* Zap this SACK, by moving forward any other SACKS. */ 4294 for (i=this_sack+1; i < num_sacks; i++) 4295 tp->selective_acks[i-1] = tp->selective_acks[i]; 4296 num_sacks--; 4297 continue; 4298 } 4299 this_sack++; 4300 sp++; 4301 } 4302 tp->rx_opt.num_sacks = num_sacks; 4303 } 4304 4305 /* This one checks to see if we can put data from the 4306 * out_of_order queue into the receive_queue. 4307 */ 4308 static void tcp_ofo_queue(struct sock *sk) 4309 { 4310 struct tcp_sock *tp = tcp_sk(sk); 4311 __u32 dsack_high = tp->rcv_nxt; 4312 struct sk_buff *skb; 4313 4314 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 4315 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4316 break; 4317 4318 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4319 __u32 dsack = dsack_high; 4320 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4321 dsack_high = TCP_SKB_CB(skb)->end_seq; 4322 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4323 } 4324 4325 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4326 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4327 __skb_unlink(skb, &tp->out_of_order_queue); 4328 __kfree_skb(skb); 4329 continue; 4330 } 4331 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4332 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4333 TCP_SKB_CB(skb)->end_seq); 4334 4335 __skb_unlink(skb, &tp->out_of_order_queue); 4336 __skb_queue_tail(&sk->sk_receive_queue, skb); 4337 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4338 if (tcp_hdr(skb)->fin) 4339 tcp_fin(skb, sk, tcp_hdr(skb)); 4340 } 4341 } 4342 4343 static int tcp_prune_ofo_queue(struct sock *sk); 4344 static int tcp_prune_queue(struct sock *sk); 4345 4346 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size) 4347 { 4348 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4349 !sk_rmem_schedule(sk, size)) { 4350 4351 if (tcp_prune_queue(sk) < 0) 4352 return -1; 4353 4354 if (!sk_rmem_schedule(sk, size)) { 4355 if (!tcp_prune_ofo_queue(sk)) 4356 return -1; 4357 4358 if (!sk_rmem_schedule(sk, size)) 4359 return -1; 4360 } 4361 } 4362 return 0; 4363 } 4364 4365 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4366 { 4367 struct tcphdr *th = tcp_hdr(skb); 4368 struct tcp_sock *tp = tcp_sk(sk); 4369 int eaten = -1; 4370 4371 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 4372 goto drop; 4373 4374 skb_dst_drop(skb); 4375 __skb_pull(skb, th->doff * 4); 4376 4377 TCP_ECN_accept_cwr(tp, skb); 4378 4379 tp->rx_opt.dsack = 0; 4380 4381 /* Queue data for delivery to the user. 4382 * Packets in sequence go to the receive queue. 4383 * Out of sequence packets to the out_of_order_queue. 4384 */ 4385 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4386 if (tcp_receive_window(tp) == 0) 4387 goto out_of_window; 4388 4389 /* Ok. In sequence. In window. */ 4390 if (tp->ucopy.task == current && 4391 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4392 sock_owned_by_user(sk) && !tp->urg_data) { 4393 int chunk = min_t(unsigned int, skb->len, 4394 tp->ucopy.len); 4395 4396 __set_current_state(TASK_RUNNING); 4397 4398 local_bh_enable(); 4399 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { 4400 tp->ucopy.len -= chunk; 4401 tp->copied_seq += chunk; 4402 eaten = (chunk == skb->len && !th->fin); 4403 tcp_rcv_space_adjust(sk); 4404 } 4405 local_bh_disable(); 4406 } 4407 4408 if (eaten <= 0) { 4409 queue_and_out: 4410 if (eaten < 0 && 4411 tcp_try_rmem_schedule(sk, skb->truesize)) 4412 goto drop; 4413 4414 skb_set_owner_r(skb, sk); 4415 __skb_queue_tail(&sk->sk_receive_queue, skb); 4416 } 4417 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4418 if (skb->len) 4419 tcp_event_data_recv(sk, skb); 4420 if (th->fin) 4421 tcp_fin(skb, sk, th); 4422 4423 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4424 tcp_ofo_queue(sk); 4425 4426 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4427 * gap in queue is filled. 4428 */ 4429 if (skb_queue_empty(&tp->out_of_order_queue)) 4430 inet_csk(sk)->icsk_ack.pingpong = 0; 4431 } 4432 4433 if (tp->rx_opt.num_sacks) 4434 tcp_sack_remove(tp); 4435 4436 tcp_fast_path_check(sk); 4437 4438 if (eaten > 0) 4439 __kfree_skb(skb); 4440 else if (!sock_flag(sk, SOCK_DEAD)) 4441 sk->sk_data_ready(sk, 0); 4442 return; 4443 } 4444 4445 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4446 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4447 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4448 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4449 4450 out_of_window: 4451 tcp_enter_quickack_mode(sk); 4452 inet_csk_schedule_ack(sk); 4453 drop: 4454 __kfree_skb(skb); 4455 return; 4456 } 4457 4458 /* Out of window. F.e. zero window probe. */ 4459 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4460 goto out_of_window; 4461 4462 tcp_enter_quickack_mode(sk); 4463 4464 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4465 /* Partial packet, seq < rcv_next < end_seq */ 4466 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4467 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4468 TCP_SKB_CB(skb)->end_seq); 4469 4470 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4471 4472 /* If window is closed, drop tail of packet. But after 4473 * remembering D-SACK for its head made in previous line. 4474 */ 4475 if (!tcp_receive_window(tp)) 4476 goto out_of_window; 4477 goto queue_and_out; 4478 } 4479 4480 TCP_ECN_check_ce(tp, skb); 4481 4482 if (tcp_try_rmem_schedule(sk, skb->truesize)) 4483 goto drop; 4484 4485 /* Disable header prediction. */ 4486 tp->pred_flags = 0; 4487 inet_csk_schedule_ack(sk); 4488 4489 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4490 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4491 4492 skb_set_owner_r(skb, sk); 4493 4494 if (!skb_peek(&tp->out_of_order_queue)) { 4495 /* Initial out of order segment, build 1 SACK. */ 4496 if (tcp_is_sack(tp)) { 4497 tp->rx_opt.num_sacks = 1; 4498 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 4499 tp->selective_acks[0].end_seq = 4500 TCP_SKB_CB(skb)->end_seq; 4501 } 4502 __skb_queue_head(&tp->out_of_order_queue, skb); 4503 } else { 4504 struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue); 4505 u32 seq = TCP_SKB_CB(skb)->seq; 4506 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4507 4508 if (seq == TCP_SKB_CB(skb1)->end_seq) { 4509 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4510 4511 if (!tp->rx_opt.num_sacks || 4512 tp->selective_acks[0].end_seq != seq) 4513 goto add_sack; 4514 4515 /* Common case: data arrive in order after hole. */ 4516 tp->selective_acks[0].end_seq = end_seq; 4517 return; 4518 } 4519 4520 /* Find place to insert this segment. */ 4521 while (1) { 4522 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 4523 break; 4524 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) { 4525 skb1 = NULL; 4526 break; 4527 } 4528 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1); 4529 } 4530 4531 /* Do skb overlap to previous one? */ 4532 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4533 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4534 /* All the bits are present. Drop. */ 4535 __kfree_skb(skb); 4536 tcp_dsack_set(sk, seq, end_seq); 4537 goto add_sack; 4538 } 4539 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4540 /* Partial overlap. */ 4541 tcp_dsack_set(sk, seq, 4542 TCP_SKB_CB(skb1)->end_seq); 4543 } else { 4544 if (skb_queue_is_first(&tp->out_of_order_queue, 4545 skb1)) 4546 skb1 = NULL; 4547 else 4548 skb1 = skb_queue_prev( 4549 &tp->out_of_order_queue, 4550 skb1); 4551 } 4552 } 4553 if (!skb1) 4554 __skb_queue_head(&tp->out_of_order_queue, skb); 4555 else 4556 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4557 4558 /* And clean segments covered by new one as whole. */ 4559 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) { 4560 skb1 = skb_queue_next(&tp->out_of_order_queue, skb); 4561 4562 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4563 break; 4564 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4565 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4566 end_seq); 4567 break; 4568 } 4569 __skb_unlink(skb1, &tp->out_of_order_queue); 4570 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4571 TCP_SKB_CB(skb1)->end_seq); 4572 __kfree_skb(skb1); 4573 } 4574 4575 add_sack: 4576 if (tcp_is_sack(tp)) 4577 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4578 } 4579 } 4580 4581 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4582 struct sk_buff_head *list) 4583 { 4584 struct sk_buff *next = NULL; 4585 4586 if (!skb_queue_is_last(list, skb)) 4587 next = skb_queue_next(list, skb); 4588 4589 __skb_unlink(skb, list); 4590 __kfree_skb(skb); 4591 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4592 4593 return next; 4594 } 4595 4596 /* Collapse contiguous sequence of skbs head..tail with 4597 * sequence numbers start..end. 4598 * 4599 * If tail is NULL, this means until the end of the list. 4600 * 4601 * Segments with FIN/SYN are not collapsed (only because this 4602 * simplifies code) 4603 */ 4604 static void 4605 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 4606 struct sk_buff *head, struct sk_buff *tail, 4607 u32 start, u32 end) 4608 { 4609 struct sk_buff *skb, *n; 4610 bool end_of_skbs; 4611 4612 /* First, check that queue is collapsible and find 4613 * the point where collapsing can be useful. */ 4614 skb = head; 4615 restart: 4616 end_of_skbs = true; 4617 skb_queue_walk_from_safe(list, skb, n) { 4618 if (skb == tail) 4619 break; 4620 /* No new bits? It is possible on ofo queue. */ 4621 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4622 skb = tcp_collapse_one(sk, skb, list); 4623 if (!skb) 4624 break; 4625 goto restart; 4626 } 4627 4628 /* The first skb to collapse is: 4629 * - not SYN/FIN and 4630 * - bloated or contains data before "start" or 4631 * overlaps to the next one. 4632 */ 4633 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin && 4634 (tcp_win_from_space(skb->truesize) > skb->len || 4635 before(TCP_SKB_CB(skb)->seq, start))) { 4636 end_of_skbs = false; 4637 break; 4638 } 4639 4640 if (!skb_queue_is_last(list, skb)) { 4641 struct sk_buff *next = skb_queue_next(list, skb); 4642 if (next != tail && 4643 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) { 4644 end_of_skbs = false; 4645 break; 4646 } 4647 } 4648 4649 /* Decided to skip this, advance start seq. */ 4650 start = TCP_SKB_CB(skb)->end_seq; 4651 } 4652 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin) 4653 return; 4654 4655 while (before(start, end)) { 4656 struct sk_buff *nskb; 4657 unsigned int header = skb_headroom(skb); 4658 int copy = SKB_MAX_ORDER(header, 0); 4659 4660 /* Too big header? This can happen with IPv6. */ 4661 if (copy < 0) 4662 return; 4663 if (end - start < copy) 4664 copy = end - start; 4665 nskb = alloc_skb(copy + header, GFP_ATOMIC); 4666 if (!nskb) 4667 return; 4668 4669 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head); 4670 skb_set_network_header(nskb, (skb_network_header(skb) - 4671 skb->head)); 4672 skb_set_transport_header(nskb, (skb_transport_header(skb) - 4673 skb->head)); 4674 skb_reserve(nskb, header); 4675 memcpy(nskb->head, skb->head, header); 4676 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4677 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4678 __skb_queue_before(list, skb, nskb); 4679 skb_set_owner_r(nskb, sk); 4680 4681 /* Copy data, releasing collapsed skbs. */ 4682 while (copy > 0) { 4683 int offset = start - TCP_SKB_CB(skb)->seq; 4684 int size = TCP_SKB_CB(skb)->end_seq - start; 4685 4686 BUG_ON(offset < 0); 4687 if (size > 0) { 4688 size = min(copy, size); 4689 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4690 BUG(); 4691 TCP_SKB_CB(nskb)->end_seq += size; 4692 copy -= size; 4693 start += size; 4694 } 4695 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4696 skb = tcp_collapse_one(sk, skb, list); 4697 if (!skb || 4698 skb == tail || 4699 tcp_hdr(skb)->syn || 4700 tcp_hdr(skb)->fin) 4701 return; 4702 } 4703 } 4704 } 4705 } 4706 4707 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4708 * and tcp_collapse() them until all the queue is collapsed. 4709 */ 4710 static void tcp_collapse_ofo_queue(struct sock *sk) 4711 { 4712 struct tcp_sock *tp = tcp_sk(sk); 4713 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 4714 struct sk_buff *head; 4715 u32 start, end; 4716 4717 if (skb == NULL) 4718 return; 4719 4720 start = TCP_SKB_CB(skb)->seq; 4721 end = TCP_SKB_CB(skb)->end_seq; 4722 head = skb; 4723 4724 for (;;) { 4725 struct sk_buff *next = NULL; 4726 4727 if (!skb_queue_is_last(&tp->out_of_order_queue, skb)) 4728 next = skb_queue_next(&tp->out_of_order_queue, skb); 4729 skb = next; 4730 4731 /* Segment is terminated when we see gap or when 4732 * we are at the end of all the queue. */ 4733 if (!skb || 4734 after(TCP_SKB_CB(skb)->seq, end) || 4735 before(TCP_SKB_CB(skb)->end_seq, start)) { 4736 tcp_collapse(sk, &tp->out_of_order_queue, 4737 head, skb, start, end); 4738 head = skb; 4739 if (!skb) 4740 break; 4741 /* Start new segment */ 4742 start = TCP_SKB_CB(skb)->seq; 4743 end = TCP_SKB_CB(skb)->end_seq; 4744 } else { 4745 if (before(TCP_SKB_CB(skb)->seq, start)) 4746 start = TCP_SKB_CB(skb)->seq; 4747 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4748 end = TCP_SKB_CB(skb)->end_seq; 4749 } 4750 } 4751 } 4752 4753 /* 4754 * Purge the out-of-order queue. 4755 * Return true if queue was pruned. 4756 */ 4757 static int tcp_prune_ofo_queue(struct sock *sk) 4758 { 4759 struct tcp_sock *tp = tcp_sk(sk); 4760 int res = 0; 4761 4762 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4763 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED); 4764 __skb_queue_purge(&tp->out_of_order_queue); 4765 4766 /* Reset SACK state. A conforming SACK implementation will 4767 * do the same at a timeout based retransmit. When a connection 4768 * is in a sad state like this, we care only about integrity 4769 * of the connection not performance. 4770 */ 4771 if (tp->rx_opt.sack_ok) 4772 tcp_sack_reset(&tp->rx_opt); 4773 sk_mem_reclaim(sk); 4774 res = 1; 4775 } 4776 return res; 4777 } 4778 4779 /* Reduce allocated memory if we can, trying to get 4780 * the socket within its memory limits again. 4781 * 4782 * Return less than zero if we should start dropping frames 4783 * until the socket owning process reads some of the data 4784 * to stabilize the situation. 4785 */ 4786 static int tcp_prune_queue(struct sock *sk) 4787 { 4788 struct tcp_sock *tp = tcp_sk(sk); 4789 4790 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4791 4792 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED); 4793 4794 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4795 tcp_clamp_window(sk); 4796 else if (tcp_memory_pressure) 4797 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4798 4799 tcp_collapse_ofo_queue(sk); 4800 if (!skb_queue_empty(&sk->sk_receive_queue)) 4801 tcp_collapse(sk, &sk->sk_receive_queue, 4802 skb_peek(&sk->sk_receive_queue), 4803 NULL, 4804 tp->copied_seq, tp->rcv_nxt); 4805 sk_mem_reclaim(sk); 4806 4807 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4808 return 0; 4809 4810 /* Collapsing did not help, destructive actions follow. 4811 * This must not ever occur. */ 4812 4813 tcp_prune_ofo_queue(sk); 4814 4815 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4816 return 0; 4817 4818 /* If we are really being abused, tell the caller to silently 4819 * drop receive data on the floor. It will get retransmitted 4820 * and hopefully then we'll have sufficient space. 4821 */ 4822 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED); 4823 4824 /* Massive buffer overcommit. */ 4825 tp->pred_flags = 0; 4826 return -1; 4827 } 4828 4829 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 4830 * As additional protections, we do not touch cwnd in retransmission phases, 4831 * and if application hit its sndbuf limit recently. 4832 */ 4833 void tcp_cwnd_application_limited(struct sock *sk) 4834 { 4835 struct tcp_sock *tp = tcp_sk(sk); 4836 4837 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 4838 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 4839 /* Limited by application or receiver window. */ 4840 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 4841 u32 win_used = max(tp->snd_cwnd_used, init_win); 4842 if (win_used < tp->snd_cwnd) { 4843 tp->snd_ssthresh = tcp_current_ssthresh(sk); 4844 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 4845 } 4846 tp->snd_cwnd_used = 0; 4847 } 4848 tp->snd_cwnd_stamp = tcp_time_stamp; 4849 } 4850 4851 static int tcp_should_expand_sndbuf(struct sock *sk) 4852 { 4853 struct tcp_sock *tp = tcp_sk(sk); 4854 4855 /* If the user specified a specific send buffer setting, do 4856 * not modify it. 4857 */ 4858 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4859 return 0; 4860 4861 /* If we are under global TCP memory pressure, do not expand. */ 4862 if (tcp_memory_pressure) 4863 return 0; 4864 4865 /* If we are under soft global TCP memory pressure, do not expand. */ 4866 if (atomic_long_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0]) 4867 return 0; 4868 4869 /* If we filled the congestion window, do not expand. */ 4870 if (tp->packets_out >= tp->snd_cwnd) 4871 return 0; 4872 4873 return 1; 4874 } 4875 4876 /* When incoming ACK allowed to free some skb from write_queue, 4877 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 4878 * on the exit from tcp input handler. 4879 * 4880 * PROBLEM: sndbuf expansion does not work well with largesend. 4881 */ 4882 static void tcp_new_space(struct sock *sk) 4883 { 4884 struct tcp_sock *tp = tcp_sk(sk); 4885 4886 if (tcp_should_expand_sndbuf(sk)) { 4887 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 4888 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff); 4889 int demanded = max_t(unsigned int, tp->snd_cwnd, 4890 tp->reordering + 1); 4891 sndmem *= 2 * demanded; 4892 if (sndmem > sk->sk_sndbuf) 4893 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 4894 tp->snd_cwnd_stamp = tcp_time_stamp; 4895 } 4896 4897 sk->sk_write_space(sk); 4898 } 4899 4900 static void tcp_check_space(struct sock *sk) 4901 { 4902 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 4903 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 4904 if (sk->sk_socket && 4905 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 4906 tcp_new_space(sk); 4907 } 4908 } 4909 4910 static inline void tcp_data_snd_check(struct sock *sk) 4911 { 4912 tcp_push_pending_frames(sk); 4913 tcp_check_space(sk); 4914 } 4915 4916 /* 4917 * Check if sending an ack is needed. 4918 */ 4919 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 4920 { 4921 struct tcp_sock *tp = tcp_sk(sk); 4922 4923 /* More than one full frame received... */ 4924 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 4925 /* ... and right edge of window advances far enough. 4926 * (tcp_recvmsg() will send ACK otherwise). Or... 4927 */ 4928 __tcp_select_window(sk) >= tp->rcv_wnd) || 4929 /* We ACK each frame or... */ 4930 tcp_in_quickack_mode(sk) || 4931 /* We have out of order data. */ 4932 (ofo_possible && skb_peek(&tp->out_of_order_queue))) { 4933 /* Then ack it now */ 4934 tcp_send_ack(sk); 4935 } else { 4936 /* Else, send delayed ack. */ 4937 tcp_send_delayed_ack(sk); 4938 } 4939 } 4940 4941 static inline void tcp_ack_snd_check(struct sock *sk) 4942 { 4943 if (!inet_csk_ack_scheduled(sk)) { 4944 /* We sent a data segment already. */ 4945 return; 4946 } 4947 __tcp_ack_snd_check(sk, 1); 4948 } 4949 4950 /* 4951 * This routine is only called when we have urgent data 4952 * signaled. Its the 'slow' part of tcp_urg. It could be 4953 * moved inline now as tcp_urg is only called from one 4954 * place. We handle URGent data wrong. We have to - as 4955 * BSD still doesn't use the correction from RFC961. 4956 * For 1003.1g we should support a new option TCP_STDURG to permit 4957 * either form (or just set the sysctl tcp_stdurg). 4958 */ 4959 4960 static void tcp_check_urg(struct sock *sk, struct tcphdr *th) 4961 { 4962 struct tcp_sock *tp = tcp_sk(sk); 4963 u32 ptr = ntohs(th->urg_ptr); 4964 4965 if (ptr && !sysctl_tcp_stdurg) 4966 ptr--; 4967 ptr += ntohl(th->seq); 4968 4969 /* Ignore urgent data that we've already seen and read. */ 4970 if (after(tp->copied_seq, ptr)) 4971 return; 4972 4973 /* Do not replay urg ptr. 4974 * 4975 * NOTE: interesting situation not covered by specs. 4976 * Misbehaving sender may send urg ptr, pointing to segment, 4977 * which we already have in ofo queue. We are not able to fetch 4978 * such data and will stay in TCP_URG_NOTYET until will be eaten 4979 * by recvmsg(). Seems, we are not obliged to handle such wicked 4980 * situations. But it is worth to think about possibility of some 4981 * DoSes using some hypothetical application level deadlock. 4982 */ 4983 if (before(ptr, tp->rcv_nxt)) 4984 return; 4985 4986 /* Do we already have a newer (or duplicate) urgent pointer? */ 4987 if (tp->urg_data && !after(ptr, tp->urg_seq)) 4988 return; 4989 4990 /* Tell the world about our new urgent pointer. */ 4991 sk_send_sigurg(sk); 4992 4993 /* We may be adding urgent data when the last byte read was 4994 * urgent. To do this requires some care. We cannot just ignore 4995 * tp->copied_seq since we would read the last urgent byte again 4996 * as data, nor can we alter copied_seq until this data arrives 4997 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 4998 * 4999 * NOTE. Double Dutch. Rendering to plain English: author of comment 5000 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5001 * and expect that both A and B disappear from stream. This is _wrong_. 5002 * Though this happens in BSD with high probability, this is occasional. 5003 * Any application relying on this is buggy. Note also, that fix "works" 5004 * only in this artificial test. Insert some normal data between A and B and we will 5005 * decline of BSD again. Verdict: it is better to remove to trap 5006 * buggy users. 5007 */ 5008 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5009 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5010 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5011 tp->copied_seq++; 5012 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5013 __skb_unlink(skb, &sk->sk_receive_queue); 5014 __kfree_skb(skb); 5015 } 5016 } 5017 5018 tp->urg_data = TCP_URG_NOTYET; 5019 tp->urg_seq = ptr; 5020 5021 /* Disable header prediction. */ 5022 tp->pred_flags = 0; 5023 } 5024 5025 /* This is the 'fast' part of urgent handling. */ 5026 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th) 5027 { 5028 struct tcp_sock *tp = tcp_sk(sk); 5029 5030 /* Check if we get a new urgent pointer - normally not. */ 5031 if (th->urg) 5032 tcp_check_urg(sk, th); 5033 5034 /* Do we wait for any urgent data? - normally not... */ 5035 if (tp->urg_data == TCP_URG_NOTYET) { 5036 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5037 th->syn; 5038 5039 /* Is the urgent pointer pointing into this packet? */ 5040 if (ptr < skb->len) { 5041 u8 tmp; 5042 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5043 BUG(); 5044 tp->urg_data = TCP_URG_VALID | tmp; 5045 if (!sock_flag(sk, SOCK_DEAD)) 5046 sk->sk_data_ready(sk, 0); 5047 } 5048 } 5049 } 5050 5051 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 5052 { 5053 struct tcp_sock *tp = tcp_sk(sk); 5054 int chunk = skb->len - hlen; 5055 int err; 5056 5057 local_bh_enable(); 5058 if (skb_csum_unnecessary(skb)) 5059 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); 5060 else 5061 err = skb_copy_and_csum_datagram_iovec(skb, hlen, 5062 tp->ucopy.iov); 5063 5064 if (!err) { 5065 tp->ucopy.len -= chunk; 5066 tp->copied_seq += chunk; 5067 tcp_rcv_space_adjust(sk); 5068 } 5069 5070 local_bh_disable(); 5071 return err; 5072 } 5073 5074 static __sum16 __tcp_checksum_complete_user(struct sock *sk, 5075 struct sk_buff *skb) 5076 { 5077 __sum16 result; 5078 5079 if (sock_owned_by_user(sk)) { 5080 local_bh_enable(); 5081 result = __tcp_checksum_complete(skb); 5082 local_bh_disable(); 5083 } else { 5084 result = __tcp_checksum_complete(skb); 5085 } 5086 return result; 5087 } 5088 5089 static inline int tcp_checksum_complete_user(struct sock *sk, 5090 struct sk_buff *skb) 5091 { 5092 return !skb_csum_unnecessary(skb) && 5093 __tcp_checksum_complete_user(sk, skb); 5094 } 5095 5096 #ifdef CONFIG_NET_DMA 5097 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, 5098 int hlen) 5099 { 5100 struct tcp_sock *tp = tcp_sk(sk); 5101 int chunk = skb->len - hlen; 5102 int dma_cookie; 5103 int copied_early = 0; 5104 5105 if (tp->ucopy.wakeup) 5106 return 0; 5107 5108 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 5109 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY); 5110 5111 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) { 5112 5113 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan, 5114 skb, hlen, 5115 tp->ucopy.iov, chunk, 5116 tp->ucopy.pinned_list); 5117 5118 if (dma_cookie < 0) 5119 goto out; 5120 5121 tp->ucopy.dma_cookie = dma_cookie; 5122 copied_early = 1; 5123 5124 tp->ucopy.len -= chunk; 5125 tp->copied_seq += chunk; 5126 tcp_rcv_space_adjust(sk); 5127 5128 if ((tp->ucopy.len == 0) || 5129 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) || 5130 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) { 5131 tp->ucopy.wakeup = 1; 5132 sk->sk_data_ready(sk, 0); 5133 } 5134 } else if (chunk > 0) { 5135 tp->ucopy.wakeup = 1; 5136 sk->sk_data_ready(sk, 0); 5137 } 5138 out: 5139 return copied_early; 5140 } 5141 #endif /* CONFIG_NET_DMA */ 5142 5143 /* Does PAWS and seqno based validation of an incoming segment, flags will 5144 * play significant role here. 5145 */ 5146 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5147 struct tcphdr *th, int syn_inerr) 5148 { 5149 u8 *hash_location; 5150 struct tcp_sock *tp = tcp_sk(sk); 5151 5152 /* RFC1323: H1. Apply PAWS check first. */ 5153 if (tcp_fast_parse_options(skb, th, tp, &hash_location) && 5154 tp->rx_opt.saw_tstamp && 5155 tcp_paws_discard(sk, skb)) { 5156 if (!th->rst) { 5157 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5158 tcp_send_dupack(sk, skb); 5159 goto discard; 5160 } 5161 /* Reset is accepted even if it did not pass PAWS. */ 5162 } 5163 5164 /* Step 1: check sequence number */ 5165 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5166 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5167 * (RST) segments are validated by checking their SEQ-fields." 5168 * And page 69: "If an incoming segment is not acceptable, 5169 * an acknowledgment should be sent in reply (unless the RST 5170 * bit is set, if so drop the segment and return)". 5171 */ 5172 if (!th->rst) 5173 tcp_send_dupack(sk, skb); 5174 goto discard; 5175 } 5176 5177 /* Step 2: check RST bit */ 5178 if (th->rst) { 5179 tcp_reset(sk); 5180 goto discard; 5181 } 5182 5183 /* ts_recent update must be made after we are sure that the packet 5184 * is in window. 5185 */ 5186 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 5187 5188 /* step 3: check security and precedence [ignored] */ 5189 5190 /* step 4: Check for a SYN in window. */ 5191 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5192 if (syn_inerr) 5193 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5194 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN); 5195 tcp_reset(sk); 5196 return -1; 5197 } 5198 5199 return 1; 5200 5201 discard: 5202 __kfree_skb(skb); 5203 return 0; 5204 } 5205 5206 /* 5207 * TCP receive function for the ESTABLISHED state. 5208 * 5209 * It is split into a fast path and a slow path. The fast path is 5210 * disabled when: 5211 * - A zero window was announced from us - zero window probing 5212 * is only handled properly in the slow path. 5213 * - Out of order segments arrived. 5214 * - Urgent data is expected. 5215 * - There is no buffer space left 5216 * - Unexpected TCP flags/window values/header lengths are received 5217 * (detected by checking the TCP header against pred_flags) 5218 * - Data is sent in both directions. Fast path only supports pure senders 5219 * or pure receivers (this means either the sequence number or the ack 5220 * value must stay constant) 5221 * - Unexpected TCP option. 5222 * 5223 * When these conditions are not satisfied it drops into a standard 5224 * receive procedure patterned after RFC793 to handle all cases. 5225 * The first three cases are guaranteed by proper pred_flags setting, 5226 * the rest is checked inline. Fast processing is turned on in 5227 * tcp_data_queue when everything is OK. 5228 */ 5229 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5230 struct tcphdr *th, unsigned len) 5231 { 5232 struct tcp_sock *tp = tcp_sk(sk); 5233 int res; 5234 5235 /* 5236 * Header prediction. 5237 * The code loosely follows the one in the famous 5238 * "30 instruction TCP receive" Van Jacobson mail. 5239 * 5240 * Van's trick is to deposit buffers into socket queue 5241 * on a device interrupt, to call tcp_recv function 5242 * on the receive process context and checksum and copy 5243 * the buffer to user space. smart... 5244 * 5245 * Our current scheme is not silly either but we take the 5246 * extra cost of the net_bh soft interrupt processing... 5247 * We do checksum and copy also but from device to kernel. 5248 */ 5249 5250 tp->rx_opt.saw_tstamp = 0; 5251 5252 /* pred_flags is 0xS?10 << 16 + snd_wnd 5253 * if header_prediction is to be made 5254 * 'S' will always be tp->tcp_header_len >> 2 5255 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5256 * turn it off (when there are holes in the receive 5257 * space for instance) 5258 * PSH flag is ignored. 5259 */ 5260 5261 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5262 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5263 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5264 int tcp_header_len = tp->tcp_header_len; 5265 5266 /* Timestamp header prediction: tcp_header_len 5267 * is automatically equal to th->doff*4 due to pred_flags 5268 * match. 5269 */ 5270 5271 /* Check timestamp */ 5272 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5273 /* No? Slow path! */ 5274 if (!tcp_parse_aligned_timestamp(tp, th)) 5275 goto slow_path; 5276 5277 /* If PAWS failed, check it more carefully in slow path */ 5278 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5279 goto slow_path; 5280 5281 /* DO NOT update ts_recent here, if checksum fails 5282 * and timestamp was corrupted part, it will result 5283 * in a hung connection since we will drop all 5284 * future packets due to the PAWS test. 5285 */ 5286 } 5287 5288 if (len <= tcp_header_len) { 5289 /* Bulk data transfer: sender */ 5290 if (len == tcp_header_len) { 5291 /* Predicted packet is in window by definition. 5292 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5293 * Hence, check seq<=rcv_wup reduces to: 5294 */ 5295 if (tcp_header_len == 5296 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5297 tp->rcv_nxt == tp->rcv_wup) 5298 tcp_store_ts_recent(tp); 5299 5300 /* We know that such packets are checksummed 5301 * on entry. 5302 */ 5303 tcp_ack(sk, skb, 0); 5304 __kfree_skb(skb); 5305 tcp_data_snd_check(sk); 5306 return 0; 5307 } else { /* Header too small */ 5308 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5309 goto discard; 5310 } 5311 } else { 5312 int eaten = 0; 5313 int copied_early = 0; 5314 5315 if (tp->copied_seq == tp->rcv_nxt && 5316 len - tcp_header_len <= tp->ucopy.len) { 5317 #ifdef CONFIG_NET_DMA 5318 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) { 5319 copied_early = 1; 5320 eaten = 1; 5321 } 5322 #endif 5323 if (tp->ucopy.task == current && 5324 sock_owned_by_user(sk) && !copied_early) { 5325 __set_current_state(TASK_RUNNING); 5326 5327 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) 5328 eaten = 1; 5329 } 5330 if (eaten) { 5331 /* Predicted packet is in window by definition. 5332 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5333 * Hence, check seq<=rcv_wup reduces to: 5334 */ 5335 if (tcp_header_len == 5336 (sizeof(struct tcphdr) + 5337 TCPOLEN_TSTAMP_ALIGNED) && 5338 tp->rcv_nxt == tp->rcv_wup) 5339 tcp_store_ts_recent(tp); 5340 5341 tcp_rcv_rtt_measure_ts(sk, skb); 5342 5343 __skb_pull(skb, tcp_header_len); 5344 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 5345 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER); 5346 } 5347 if (copied_early) 5348 tcp_cleanup_rbuf(sk, skb->len); 5349 } 5350 if (!eaten) { 5351 if (tcp_checksum_complete_user(sk, skb)) 5352 goto csum_error; 5353 5354 /* Predicted packet is in window by definition. 5355 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5356 * Hence, check seq<=rcv_wup reduces to: 5357 */ 5358 if (tcp_header_len == 5359 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5360 tp->rcv_nxt == tp->rcv_wup) 5361 tcp_store_ts_recent(tp); 5362 5363 tcp_rcv_rtt_measure_ts(sk, skb); 5364 5365 if ((int)skb->truesize > sk->sk_forward_alloc) 5366 goto step5; 5367 5368 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS); 5369 5370 /* Bulk data transfer: receiver */ 5371 __skb_pull(skb, tcp_header_len); 5372 __skb_queue_tail(&sk->sk_receive_queue, skb); 5373 skb_set_owner_r(skb, sk); 5374 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 5375 } 5376 5377 tcp_event_data_recv(sk, skb); 5378 5379 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5380 /* Well, only one small jumplet in fast path... */ 5381 tcp_ack(sk, skb, FLAG_DATA); 5382 tcp_data_snd_check(sk); 5383 if (!inet_csk_ack_scheduled(sk)) 5384 goto no_ack; 5385 } 5386 5387 if (!copied_early || tp->rcv_nxt != tp->rcv_wup) 5388 __tcp_ack_snd_check(sk, 0); 5389 no_ack: 5390 #ifdef CONFIG_NET_DMA 5391 if (copied_early) 5392 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 5393 else 5394 #endif 5395 if (eaten) 5396 __kfree_skb(skb); 5397 else 5398 sk->sk_data_ready(sk, 0); 5399 return 0; 5400 } 5401 } 5402 5403 slow_path: 5404 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb)) 5405 goto csum_error; 5406 5407 /* 5408 * Standard slow path. 5409 */ 5410 5411 res = tcp_validate_incoming(sk, skb, th, 1); 5412 if (res <= 0) 5413 return -res; 5414 5415 step5: 5416 if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0) 5417 goto discard; 5418 5419 tcp_rcv_rtt_measure_ts(sk, skb); 5420 5421 /* Process urgent data. */ 5422 tcp_urg(sk, skb, th); 5423 5424 /* step 7: process the segment text */ 5425 tcp_data_queue(sk, skb); 5426 5427 tcp_data_snd_check(sk); 5428 tcp_ack_snd_check(sk); 5429 return 0; 5430 5431 csum_error: 5432 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5433 5434 discard: 5435 __kfree_skb(skb); 5436 return 0; 5437 } 5438 EXPORT_SYMBOL(tcp_rcv_established); 5439 5440 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5441 struct tcphdr *th, unsigned len) 5442 { 5443 u8 *hash_location; 5444 struct inet_connection_sock *icsk = inet_csk(sk); 5445 struct tcp_sock *tp = tcp_sk(sk); 5446 struct tcp_cookie_values *cvp = tp->cookie_values; 5447 int saved_clamp = tp->rx_opt.mss_clamp; 5448 5449 tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0); 5450 5451 if (th->ack) { 5452 /* rfc793: 5453 * "If the state is SYN-SENT then 5454 * first check the ACK bit 5455 * If the ACK bit is set 5456 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5457 * a reset (unless the RST bit is set, if so drop 5458 * the segment and return)" 5459 * 5460 * We do not send data with SYN, so that RFC-correct 5461 * test reduces to: 5462 */ 5463 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt) 5464 goto reset_and_undo; 5465 5466 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5467 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5468 tcp_time_stamp)) { 5469 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED); 5470 goto reset_and_undo; 5471 } 5472 5473 /* Now ACK is acceptable. 5474 * 5475 * "If the RST bit is set 5476 * If the ACK was acceptable then signal the user "error: 5477 * connection reset", drop the segment, enter CLOSED state, 5478 * delete TCB, and return." 5479 */ 5480 5481 if (th->rst) { 5482 tcp_reset(sk); 5483 goto discard; 5484 } 5485 5486 /* rfc793: 5487 * "fifth, if neither of the SYN or RST bits is set then 5488 * drop the segment and return." 5489 * 5490 * See note below! 5491 * --ANK(990513) 5492 */ 5493 if (!th->syn) 5494 goto discard_and_undo; 5495 5496 /* rfc793: 5497 * "If the SYN bit is on ... 5498 * are acceptable then ... 5499 * (our SYN has been ACKed), change the connection 5500 * state to ESTABLISHED..." 5501 */ 5502 5503 TCP_ECN_rcv_synack(tp, th); 5504 5505 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5506 tcp_ack(sk, skb, FLAG_SLOWPATH); 5507 5508 /* Ok.. it's good. Set up sequence numbers and 5509 * move to established. 5510 */ 5511 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5512 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5513 5514 /* RFC1323: The window in SYN & SYN/ACK segments is 5515 * never scaled. 5516 */ 5517 tp->snd_wnd = ntohs(th->window); 5518 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5519 5520 if (!tp->rx_opt.wscale_ok) { 5521 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5522 tp->window_clamp = min(tp->window_clamp, 65535U); 5523 } 5524 5525 if (tp->rx_opt.saw_tstamp) { 5526 tp->rx_opt.tstamp_ok = 1; 5527 tp->tcp_header_len = 5528 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5529 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5530 tcp_store_ts_recent(tp); 5531 } else { 5532 tp->tcp_header_len = sizeof(struct tcphdr); 5533 } 5534 5535 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5536 tcp_enable_fack(tp); 5537 5538 tcp_mtup_init(sk); 5539 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5540 tcp_initialize_rcv_mss(sk); 5541 5542 /* Remember, tcp_poll() does not lock socket! 5543 * Change state from SYN-SENT only after copied_seq 5544 * is initialized. */ 5545 tp->copied_seq = tp->rcv_nxt; 5546 5547 if (cvp != NULL && 5548 cvp->cookie_pair_size > 0 && 5549 tp->rx_opt.cookie_plus > 0) { 5550 int cookie_size = tp->rx_opt.cookie_plus 5551 - TCPOLEN_COOKIE_BASE; 5552 int cookie_pair_size = cookie_size 5553 + cvp->cookie_desired; 5554 5555 /* A cookie extension option was sent and returned. 5556 * Note that each incoming SYNACK replaces the 5557 * Responder cookie. The initial exchange is most 5558 * fragile, as protection against spoofing relies 5559 * entirely upon the sequence and timestamp (above). 5560 * This replacement strategy allows the correct pair to 5561 * pass through, while any others will be filtered via 5562 * Responder verification later. 5563 */ 5564 if (sizeof(cvp->cookie_pair) >= cookie_pair_size) { 5565 memcpy(&cvp->cookie_pair[cvp->cookie_desired], 5566 hash_location, cookie_size); 5567 cvp->cookie_pair_size = cookie_pair_size; 5568 } 5569 } 5570 5571 smp_mb(); 5572 tcp_set_state(sk, TCP_ESTABLISHED); 5573 5574 security_inet_conn_established(sk, skb); 5575 5576 /* Make sure socket is routed, for correct metrics. */ 5577 icsk->icsk_af_ops->rebuild_header(sk); 5578 5579 tcp_init_metrics(sk); 5580 5581 tcp_init_congestion_control(sk); 5582 5583 /* Prevent spurious tcp_cwnd_restart() on first data 5584 * packet. 5585 */ 5586 tp->lsndtime = tcp_time_stamp; 5587 5588 tcp_init_buffer_space(sk); 5589 5590 if (sock_flag(sk, SOCK_KEEPOPEN)) 5591 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5592 5593 if (!tp->rx_opt.snd_wscale) 5594 __tcp_fast_path_on(tp, tp->snd_wnd); 5595 else 5596 tp->pred_flags = 0; 5597 5598 if (!sock_flag(sk, SOCK_DEAD)) { 5599 sk->sk_state_change(sk); 5600 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5601 } 5602 5603 if (sk->sk_write_pending || 5604 icsk->icsk_accept_queue.rskq_defer_accept || 5605 icsk->icsk_ack.pingpong) { 5606 /* Save one ACK. Data will be ready after 5607 * several ticks, if write_pending is set. 5608 * 5609 * It may be deleted, but with this feature tcpdumps 5610 * look so _wonderfully_ clever, that I was not able 5611 * to stand against the temptation 8) --ANK 5612 */ 5613 inet_csk_schedule_ack(sk); 5614 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5615 icsk->icsk_ack.ato = TCP_ATO_MIN; 5616 tcp_incr_quickack(sk); 5617 tcp_enter_quickack_mode(sk); 5618 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5619 TCP_DELACK_MAX, TCP_RTO_MAX); 5620 5621 discard: 5622 __kfree_skb(skb); 5623 return 0; 5624 } else { 5625 tcp_send_ack(sk); 5626 } 5627 return -1; 5628 } 5629 5630 /* No ACK in the segment */ 5631 5632 if (th->rst) { 5633 /* rfc793: 5634 * "If the RST bit is set 5635 * 5636 * Otherwise (no ACK) drop the segment and return." 5637 */ 5638 5639 goto discard_and_undo; 5640 } 5641 5642 /* PAWS check. */ 5643 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5644 tcp_paws_reject(&tp->rx_opt, 0)) 5645 goto discard_and_undo; 5646 5647 if (th->syn) { 5648 /* We see SYN without ACK. It is attempt of 5649 * simultaneous connect with crossed SYNs. 5650 * Particularly, it can be connect to self. 5651 */ 5652 tcp_set_state(sk, TCP_SYN_RECV); 5653 5654 if (tp->rx_opt.saw_tstamp) { 5655 tp->rx_opt.tstamp_ok = 1; 5656 tcp_store_ts_recent(tp); 5657 tp->tcp_header_len = 5658 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5659 } else { 5660 tp->tcp_header_len = sizeof(struct tcphdr); 5661 } 5662 5663 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5664 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5665 5666 /* RFC1323: The window in SYN & SYN/ACK segments is 5667 * never scaled. 5668 */ 5669 tp->snd_wnd = ntohs(th->window); 5670 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5671 tp->max_window = tp->snd_wnd; 5672 5673 TCP_ECN_rcv_syn(tp, th); 5674 5675 tcp_mtup_init(sk); 5676 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5677 tcp_initialize_rcv_mss(sk); 5678 5679 tcp_send_synack(sk); 5680 #if 0 5681 /* Note, we could accept data and URG from this segment. 5682 * There are no obstacles to make this. 5683 * 5684 * However, if we ignore data in ACKless segments sometimes, 5685 * we have no reasons to accept it sometimes. 5686 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5687 * is not flawless. So, discard packet for sanity. 5688 * Uncomment this return to process the data. 5689 */ 5690 return -1; 5691 #else 5692 goto discard; 5693 #endif 5694 } 5695 /* "fifth, if neither of the SYN or RST bits is set then 5696 * drop the segment and return." 5697 */ 5698 5699 discard_and_undo: 5700 tcp_clear_options(&tp->rx_opt); 5701 tp->rx_opt.mss_clamp = saved_clamp; 5702 goto discard; 5703 5704 reset_and_undo: 5705 tcp_clear_options(&tp->rx_opt); 5706 tp->rx_opt.mss_clamp = saved_clamp; 5707 return 1; 5708 } 5709 5710 /* 5711 * This function implements the receiving procedure of RFC 793 for 5712 * all states except ESTABLISHED and TIME_WAIT. 5713 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5714 * address independent. 5715 */ 5716 5717 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 5718 struct tcphdr *th, unsigned len) 5719 { 5720 struct tcp_sock *tp = tcp_sk(sk); 5721 struct inet_connection_sock *icsk = inet_csk(sk); 5722 int queued = 0; 5723 int res; 5724 5725 tp->rx_opt.saw_tstamp = 0; 5726 5727 switch (sk->sk_state) { 5728 case TCP_CLOSE: 5729 goto discard; 5730 5731 case TCP_LISTEN: 5732 if (th->ack) 5733 return 1; 5734 5735 if (th->rst) 5736 goto discard; 5737 5738 if (th->syn) { 5739 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 5740 return 1; 5741 5742 /* Now we have several options: In theory there is 5743 * nothing else in the frame. KA9Q has an option to 5744 * send data with the syn, BSD accepts data with the 5745 * syn up to the [to be] advertised window and 5746 * Solaris 2.1 gives you a protocol error. For now 5747 * we just ignore it, that fits the spec precisely 5748 * and avoids incompatibilities. It would be nice in 5749 * future to drop through and process the data. 5750 * 5751 * Now that TTCP is starting to be used we ought to 5752 * queue this data. 5753 * But, this leaves one open to an easy denial of 5754 * service attack, and SYN cookies can't defend 5755 * against this problem. So, we drop the data 5756 * in the interest of security over speed unless 5757 * it's still in use. 5758 */ 5759 kfree_skb(skb); 5760 return 0; 5761 } 5762 goto discard; 5763 5764 case TCP_SYN_SENT: 5765 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 5766 if (queued >= 0) 5767 return queued; 5768 5769 /* Do step6 onward by hand. */ 5770 tcp_urg(sk, skb, th); 5771 __kfree_skb(skb); 5772 tcp_data_snd_check(sk); 5773 return 0; 5774 } 5775 5776 res = tcp_validate_incoming(sk, skb, th, 0); 5777 if (res <= 0) 5778 return -res; 5779 5780 /* step 5: check the ACK field */ 5781 if (th->ack) { 5782 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0; 5783 5784 switch (sk->sk_state) { 5785 case TCP_SYN_RECV: 5786 if (acceptable) { 5787 tp->copied_seq = tp->rcv_nxt; 5788 smp_mb(); 5789 tcp_set_state(sk, TCP_ESTABLISHED); 5790 sk->sk_state_change(sk); 5791 5792 /* Note, that this wakeup is only for marginal 5793 * crossed SYN case. Passively open sockets 5794 * are not waked up, because sk->sk_sleep == 5795 * NULL and sk->sk_socket == NULL. 5796 */ 5797 if (sk->sk_socket) 5798 sk_wake_async(sk, 5799 SOCK_WAKE_IO, POLL_OUT); 5800 5801 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5802 tp->snd_wnd = ntohs(th->window) << 5803 tp->rx_opt.snd_wscale; 5804 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5805 5806 /* tcp_ack considers this ACK as duplicate 5807 * and does not calculate rtt. 5808 * Force it here. 5809 */ 5810 tcp_ack_update_rtt(sk, 0, 0); 5811 5812 if (tp->rx_opt.tstamp_ok) 5813 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5814 5815 /* Make sure socket is routed, for 5816 * correct metrics. 5817 */ 5818 icsk->icsk_af_ops->rebuild_header(sk); 5819 5820 tcp_init_metrics(sk); 5821 5822 tcp_init_congestion_control(sk); 5823 5824 /* Prevent spurious tcp_cwnd_restart() on 5825 * first data packet. 5826 */ 5827 tp->lsndtime = tcp_time_stamp; 5828 5829 tcp_mtup_init(sk); 5830 tcp_initialize_rcv_mss(sk); 5831 tcp_init_buffer_space(sk); 5832 tcp_fast_path_on(tp); 5833 } else { 5834 return 1; 5835 } 5836 break; 5837 5838 case TCP_FIN_WAIT1: 5839 if (tp->snd_una == tp->write_seq) { 5840 tcp_set_state(sk, TCP_FIN_WAIT2); 5841 sk->sk_shutdown |= SEND_SHUTDOWN; 5842 dst_confirm(__sk_dst_get(sk)); 5843 5844 if (!sock_flag(sk, SOCK_DEAD)) 5845 /* Wake up lingering close() */ 5846 sk->sk_state_change(sk); 5847 else { 5848 int tmo; 5849 5850 if (tp->linger2 < 0 || 5851 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5852 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 5853 tcp_done(sk); 5854 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5855 return 1; 5856 } 5857 5858 tmo = tcp_fin_time(sk); 5859 if (tmo > TCP_TIMEWAIT_LEN) { 5860 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 5861 } else if (th->fin || sock_owned_by_user(sk)) { 5862 /* Bad case. We could lose such FIN otherwise. 5863 * It is not a big problem, but it looks confusing 5864 * and not so rare event. We still can lose it now, 5865 * if it spins in bh_lock_sock(), but it is really 5866 * marginal case. 5867 */ 5868 inet_csk_reset_keepalive_timer(sk, tmo); 5869 } else { 5870 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 5871 goto discard; 5872 } 5873 } 5874 } 5875 break; 5876 5877 case TCP_CLOSING: 5878 if (tp->snd_una == tp->write_seq) { 5879 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 5880 goto discard; 5881 } 5882 break; 5883 5884 case TCP_LAST_ACK: 5885 if (tp->snd_una == tp->write_seq) { 5886 tcp_update_metrics(sk); 5887 tcp_done(sk); 5888 goto discard; 5889 } 5890 break; 5891 } 5892 } else 5893 goto discard; 5894 5895 /* step 6: check the URG bit */ 5896 tcp_urg(sk, skb, th); 5897 5898 /* step 7: process the segment text */ 5899 switch (sk->sk_state) { 5900 case TCP_CLOSE_WAIT: 5901 case TCP_CLOSING: 5902 case TCP_LAST_ACK: 5903 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 5904 break; 5905 case TCP_FIN_WAIT1: 5906 case TCP_FIN_WAIT2: 5907 /* RFC 793 says to queue data in these states, 5908 * RFC 1122 says we MUST send a reset. 5909 * BSD 4.4 also does reset. 5910 */ 5911 if (sk->sk_shutdown & RCV_SHUTDOWN) { 5912 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5913 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 5914 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5915 tcp_reset(sk); 5916 return 1; 5917 } 5918 } 5919 /* Fall through */ 5920 case TCP_ESTABLISHED: 5921 tcp_data_queue(sk, skb); 5922 queued = 1; 5923 break; 5924 } 5925 5926 /* tcp_data could move socket to TIME-WAIT */ 5927 if (sk->sk_state != TCP_CLOSE) { 5928 tcp_data_snd_check(sk); 5929 tcp_ack_snd_check(sk); 5930 } 5931 5932 if (!queued) { 5933 discard: 5934 __kfree_skb(skb); 5935 } 5936 return 0; 5937 } 5938 EXPORT_SYMBOL(tcp_rcv_state_process); 5939