xref: /openbmc/linux/net/ipv4/tcp_input.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #include <linux/mm.h>
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
75 
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 EXPORT_SYMBOL(sysctl_tcp_reordering);
82 int sysctl_tcp_ecn __read_mostly = 2;
83 EXPORT_SYMBOL(sysctl_tcp_ecn);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 2;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88 
89 int sysctl_tcp_stdurg __read_mostly;
90 int sysctl_tcp_rfc1337 __read_mostly;
91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
92 int sysctl_tcp_frto __read_mostly = 2;
93 int sysctl_tcp_frto_response __read_mostly;
94 int sysctl_tcp_nometrics_save __read_mostly;
95 
96 int sysctl_tcp_thin_dupack __read_mostly;
97 
98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99 int sysctl_tcp_abc __read_mostly;
100 
101 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
102 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
103 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
104 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
105 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
106 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
107 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
108 #define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
109 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
111 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
114 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
115 
116 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
120 #define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
121 
122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
124 
125 /* Adapt the MSS value used to make delayed ack decision to the
126  * real world.
127  */
128 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
129 {
130 	struct inet_connection_sock *icsk = inet_csk(sk);
131 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
132 	unsigned int len;
133 
134 	icsk->icsk_ack.last_seg_size = 0;
135 
136 	/* skb->len may jitter because of SACKs, even if peer
137 	 * sends good full-sized frames.
138 	 */
139 	len = skb_shinfo(skb)->gso_size ? : skb->len;
140 	if (len >= icsk->icsk_ack.rcv_mss) {
141 		icsk->icsk_ack.rcv_mss = len;
142 	} else {
143 		/* Otherwise, we make more careful check taking into account,
144 		 * that SACKs block is variable.
145 		 *
146 		 * "len" is invariant segment length, including TCP header.
147 		 */
148 		len += skb->data - skb_transport_header(skb);
149 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
150 		    /* If PSH is not set, packet should be
151 		     * full sized, provided peer TCP is not badly broken.
152 		     * This observation (if it is correct 8)) allows
153 		     * to handle super-low mtu links fairly.
154 		     */
155 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
156 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
157 			/* Subtract also invariant (if peer is RFC compliant),
158 			 * tcp header plus fixed timestamp option length.
159 			 * Resulting "len" is MSS free of SACK jitter.
160 			 */
161 			len -= tcp_sk(sk)->tcp_header_len;
162 			icsk->icsk_ack.last_seg_size = len;
163 			if (len == lss) {
164 				icsk->icsk_ack.rcv_mss = len;
165 				return;
166 			}
167 		}
168 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
169 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
170 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
171 	}
172 }
173 
174 static void tcp_incr_quickack(struct sock *sk)
175 {
176 	struct inet_connection_sock *icsk = inet_csk(sk);
177 	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
178 
179 	if (quickacks == 0)
180 		quickacks = 2;
181 	if (quickacks > icsk->icsk_ack.quick)
182 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
183 }
184 
185 static void tcp_enter_quickack_mode(struct sock *sk)
186 {
187 	struct inet_connection_sock *icsk = inet_csk(sk);
188 	tcp_incr_quickack(sk);
189 	icsk->icsk_ack.pingpong = 0;
190 	icsk->icsk_ack.ato = TCP_ATO_MIN;
191 }
192 
193 /* Send ACKs quickly, if "quick" count is not exhausted
194  * and the session is not interactive.
195  */
196 
197 static inline int tcp_in_quickack_mode(const struct sock *sk)
198 {
199 	const struct inet_connection_sock *icsk = inet_csk(sk);
200 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
201 }
202 
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204 {
205 	if (tp->ecn_flags & TCP_ECN_OK)
206 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207 }
208 
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
210 {
211 	if (tcp_hdr(skb)->cwr)
212 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 }
214 
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216 {
217 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218 }
219 
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
221 {
222 	if (tp->ecn_flags & TCP_ECN_OK) {
223 		if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
224 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
225 		/* Funny extension: if ECT is not set on a segment,
226 		 * it is surely retransmit. It is not in ECN RFC,
227 		 * but Linux follows this rule. */
228 		else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
229 			tcp_enter_quickack_mode((struct sock *)tp);
230 	}
231 }
232 
233 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
234 {
235 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
236 		tp->ecn_flags &= ~TCP_ECN_OK;
237 }
238 
239 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
240 {
241 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
242 		tp->ecn_flags &= ~TCP_ECN_OK;
243 }
244 
245 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
246 {
247 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
248 		return 1;
249 	return 0;
250 }
251 
252 /* Buffer size and advertised window tuning.
253  *
254  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
255  */
256 
257 static void tcp_fixup_sndbuf(struct sock *sk)
258 {
259 	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
260 		     sizeof(struct sk_buff);
261 
262 	if (sk->sk_sndbuf < 3 * sndmem) {
263 		sk->sk_sndbuf = 3 * sndmem;
264 		if (sk->sk_sndbuf > sysctl_tcp_wmem[2])
265 			sk->sk_sndbuf = sysctl_tcp_wmem[2];
266 	}
267 }
268 
269 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
270  *
271  * All tcp_full_space() is split to two parts: "network" buffer, allocated
272  * forward and advertised in receiver window (tp->rcv_wnd) and
273  * "application buffer", required to isolate scheduling/application
274  * latencies from network.
275  * window_clamp is maximal advertised window. It can be less than
276  * tcp_full_space(), in this case tcp_full_space() - window_clamp
277  * is reserved for "application" buffer. The less window_clamp is
278  * the smoother our behaviour from viewpoint of network, but the lower
279  * throughput and the higher sensitivity of the connection to losses. 8)
280  *
281  * rcv_ssthresh is more strict window_clamp used at "slow start"
282  * phase to predict further behaviour of this connection.
283  * It is used for two goals:
284  * - to enforce header prediction at sender, even when application
285  *   requires some significant "application buffer". It is check #1.
286  * - to prevent pruning of receive queue because of misprediction
287  *   of receiver window. Check #2.
288  *
289  * The scheme does not work when sender sends good segments opening
290  * window and then starts to feed us spaghetti. But it should work
291  * in common situations. Otherwise, we have to rely on queue collapsing.
292  */
293 
294 /* Slow part of check#2. */
295 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
296 {
297 	struct tcp_sock *tp = tcp_sk(sk);
298 	/* Optimize this! */
299 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
300 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
301 
302 	while (tp->rcv_ssthresh <= window) {
303 		if (truesize <= skb->len)
304 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
305 
306 		truesize >>= 1;
307 		window >>= 1;
308 	}
309 	return 0;
310 }
311 
312 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
313 {
314 	struct tcp_sock *tp = tcp_sk(sk);
315 
316 	/* Check #1 */
317 	if (tp->rcv_ssthresh < tp->window_clamp &&
318 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
319 	    !tcp_memory_pressure) {
320 		int incr;
321 
322 		/* Check #2. Increase window, if skb with such overhead
323 		 * will fit to rcvbuf in future.
324 		 */
325 		if (tcp_win_from_space(skb->truesize) <= skb->len)
326 			incr = 2 * tp->advmss;
327 		else
328 			incr = __tcp_grow_window(sk, skb);
329 
330 		if (incr) {
331 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
332 					       tp->window_clamp);
333 			inet_csk(sk)->icsk_ack.quick |= 1;
334 		}
335 	}
336 }
337 
338 /* 3. Tuning rcvbuf, when connection enters established state. */
339 
340 static void tcp_fixup_rcvbuf(struct sock *sk)
341 {
342 	struct tcp_sock *tp = tcp_sk(sk);
343 	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
344 
345 	/* Try to select rcvbuf so that 4 mss-sized segments
346 	 * will fit to window and corresponding skbs will fit to our rcvbuf.
347 	 * (was 3; 4 is minimum to allow fast retransmit to work.)
348 	 */
349 	while (tcp_win_from_space(rcvmem) < tp->advmss)
350 		rcvmem += 128;
351 	if (sk->sk_rcvbuf < 4 * rcvmem)
352 		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
353 }
354 
355 /* 4. Try to fixup all. It is made immediately after connection enters
356  *    established state.
357  */
358 static void tcp_init_buffer_space(struct sock *sk)
359 {
360 	struct tcp_sock *tp = tcp_sk(sk);
361 	int maxwin;
362 
363 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
364 		tcp_fixup_rcvbuf(sk);
365 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
366 		tcp_fixup_sndbuf(sk);
367 
368 	tp->rcvq_space.space = tp->rcv_wnd;
369 
370 	maxwin = tcp_full_space(sk);
371 
372 	if (tp->window_clamp >= maxwin) {
373 		tp->window_clamp = maxwin;
374 
375 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
376 			tp->window_clamp = max(maxwin -
377 					       (maxwin >> sysctl_tcp_app_win),
378 					       4 * tp->advmss);
379 	}
380 
381 	/* Force reservation of one segment. */
382 	if (sysctl_tcp_app_win &&
383 	    tp->window_clamp > 2 * tp->advmss &&
384 	    tp->window_clamp + tp->advmss > maxwin)
385 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
386 
387 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
388 	tp->snd_cwnd_stamp = tcp_time_stamp;
389 }
390 
391 /* 5. Recalculate window clamp after socket hit its memory bounds. */
392 static void tcp_clamp_window(struct sock *sk)
393 {
394 	struct tcp_sock *tp = tcp_sk(sk);
395 	struct inet_connection_sock *icsk = inet_csk(sk);
396 
397 	icsk->icsk_ack.quick = 0;
398 
399 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
400 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
401 	    !tcp_memory_pressure &&
402 	    atomic_long_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
403 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
404 				    sysctl_tcp_rmem[2]);
405 	}
406 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
407 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
408 }
409 
410 /* Initialize RCV_MSS value.
411  * RCV_MSS is an our guess about MSS used by the peer.
412  * We haven't any direct information about the MSS.
413  * It's better to underestimate the RCV_MSS rather than overestimate.
414  * Overestimations make us ACKing less frequently than needed.
415  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
416  */
417 void tcp_initialize_rcv_mss(struct sock *sk)
418 {
419 	struct tcp_sock *tp = tcp_sk(sk);
420 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
421 
422 	hint = min(hint, tp->rcv_wnd / 2);
423 	hint = min(hint, TCP_MSS_DEFAULT);
424 	hint = max(hint, TCP_MIN_MSS);
425 
426 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
427 }
428 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
429 
430 /* Receiver "autotuning" code.
431  *
432  * The algorithm for RTT estimation w/o timestamps is based on
433  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
434  * <http://public.lanl.gov/radiant/pubs.html#DRS>
435  *
436  * More detail on this code can be found at
437  * <http://staff.psc.edu/jheffner/>,
438  * though this reference is out of date.  A new paper
439  * is pending.
440  */
441 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
442 {
443 	u32 new_sample = tp->rcv_rtt_est.rtt;
444 	long m = sample;
445 
446 	if (m == 0)
447 		m = 1;
448 
449 	if (new_sample != 0) {
450 		/* If we sample in larger samples in the non-timestamp
451 		 * case, we could grossly overestimate the RTT especially
452 		 * with chatty applications or bulk transfer apps which
453 		 * are stalled on filesystem I/O.
454 		 *
455 		 * Also, since we are only going for a minimum in the
456 		 * non-timestamp case, we do not smooth things out
457 		 * else with timestamps disabled convergence takes too
458 		 * long.
459 		 */
460 		if (!win_dep) {
461 			m -= (new_sample >> 3);
462 			new_sample += m;
463 		} else if (m < new_sample)
464 			new_sample = m << 3;
465 	} else {
466 		/* No previous measure. */
467 		new_sample = m << 3;
468 	}
469 
470 	if (tp->rcv_rtt_est.rtt != new_sample)
471 		tp->rcv_rtt_est.rtt = new_sample;
472 }
473 
474 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
475 {
476 	if (tp->rcv_rtt_est.time == 0)
477 		goto new_measure;
478 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
479 		return;
480 	tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
481 
482 new_measure:
483 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
484 	tp->rcv_rtt_est.time = tcp_time_stamp;
485 }
486 
487 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
488 					  const struct sk_buff *skb)
489 {
490 	struct tcp_sock *tp = tcp_sk(sk);
491 	if (tp->rx_opt.rcv_tsecr &&
492 	    (TCP_SKB_CB(skb)->end_seq -
493 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
494 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
495 }
496 
497 /*
498  * This function should be called every time data is copied to user space.
499  * It calculates the appropriate TCP receive buffer space.
500  */
501 void tcp_rcv_space_adjust(struct sock *sk)
502 {
503 	struct tcp_sock *tp = tcp_sk(sk);
504 	int time;
505 	int space;
506 
507 	if (tp->rcvq_space.time == 0)
508 		goto new_measure;
509 
510 	time = tcp_time_stamp - tp->rcvq_space.time;
511 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
512 		return;
513 
514 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
515 
516 	space = max(tp->rcvq_space.space, space);
517 
518 	if (tp->rcvq_space.space != space) {
519 		int rcvmem;
520 
521 		tp->rcvq_space.space = space;
522 
523 		if (sysctl_tcp_moderate_rcvbuf &&
524 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
525 			int new_clamp = space;
526 
527 			/* Receive space grows, normalize in order to
528 			 * take into account packet headers and sk_buff
529 			 * structure overhead.
530 			 */
531 			space /= tp->advmss;
532 			if (!space)
533 				space = 1;
534 			rcvmem = (tp->advmss + MAX_TCP_HEADER +
535 				  16 + sizeof(struct sk_buff));
536 			while (tcp_win_from_space(rcvmem) < tp->advmss)
537 				rcvmem += 128;
538 			space *= rcvmem;
539 			space = min(space, sysctl_tcp_rmem[2]);
540 			if (space > sk->sk_rcvbuf) {
541 				sk->sk_rcvbuf = space;
542 
543 				/* Make the window clamp follow along.  */
544 				tp->window_clamp = new_clamp;
545 			}
546 		}
547 	}
548 
549 new_measure:
550 	tp->rcvq_space.seq = tp->copied_seq;
551 	tp->rcvq_space.time = tcp_time_stamp;
552 }
553 
554 /* There is something which you must keep in mind when you analyze the
555  * behavior of the tp->ato delayed ack timeout interval.  When a
556  * connection starts up, we want to ack as quickly as possible.  The
557  * problem is that "good" TCP's do slow start at the beginning of data
558  * transmission.  The means that until we send the first few ACK's the
559  * sender will sit on his end and only queue most of his data, because
560  * he can only send snd_cwnd unacked packets at any given time.  For
561  * each ACK we send, he increments snd_cwnd and transmits more of his
562  * queue.  -DaveM
563  */
564 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
565 {
566 	struct tcp_sock *tp = tcp_sk(sk);
567 	struct inet_connection_sock *icsk = inet_csk(sk);
568 	u32 now;
569 
570 	inet_csk_schedule_ack(sk);
571 
572 	tcp_measure_rcv_mss(sk, skb);
573 
574 	tcp_rcv_rtt_measure(tp);
575 
576 	now = tcp_time_stamp;
577 
578 	if (!icsk->icsk_ack.ato) {
579 		/* The _first_ data packet received, initialize
580 		 * delayed ACK engine.
581 		 */
582 		tcp_incr_quickack(sk);
583 		icsk->icsk_ack.ato = TCP_ATO_MIN;
584 	} else {
585 		int m = now - icsk->icsk_ack.lrcvtime;
586 
587 		if (m <= TCP_ATO_MIN / 2) {
588 			/* The fastest case is the first. */
589 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
590 		} else if (m < icsk->icsk_ack.ato) {
591 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
592 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
593 				icsk->icsk_ack.ato = icsk->icsk_rto;
594 		} else if (m > icsk->icsk_rto) {
595 			/* Too long gap. Apparently sender failed to
596 			 * restart window, so that we send ACKs quickly.
597 			 */
598 			tcp_incr_quickack(sk);
599 			sk_mem_reclaim(sk);
600 		}
601 	}
602 	icsk->icsk_ack.lrcvtime = now;
603 
604 	TCP_ECN_check_ce(tp, skb);
605 
606 	if (skb->len >= 128)
607 		tcp_grow_window(sk, skb);
608 }
609 
610 /* Called to compute a smoothed rtt estimate. The data fed to this
611  * routine either comes from timestamps, or from segments that were
612  * known _not_ to have been retransmitted [see Karn/Partridge
613  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
614  * piece by Van Jacobson.
615  * NOTE: the next three routines used to be one big routine.
616  * To save cycles in the RFC 1323 implementation it was better to break
617  * it up into three procedures. -- erics
618  */
619 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
620 {
621 	struct tcp_sock *tp = tcp_sk(sk);
622 	long m = mrtt; /* RTT */
623 
624 	/*	The following amusing code comes from Jacobson's
625 	 *	article in SIGCOMM '88.  Note that rtt and mdev
626 	 *	are scaled versions of rtt and mean deviation.
627 	 *	This is designed to be as fast as possible
628 	 *	m stands for "measurement".
629 	 *
630 	 *	On a 1990 paper the rto value is changed to:
631 	 *	RTO = rtt + 4 * mdev
632 	 *
633 	 * Funny. This algorithm seems to be very broken.
634 	 * These formulae increase RTO, when it should be decreased, increase
635 	 * too slowly, when it should be increased quickly, decrease too quickly
636 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
637 	 * does not matter how to _calculate_ it. Seems, it was trap
638 	 * that VJ failed to avoid. 8)
639 	 */
640 	if (m == 0)
641 		m = 1;
642 	if (tp->srtt != 0) {
643 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
644 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
645 		if (m < 0) {
646 			m = -m;		/* m is now abs(error) */
647 			m -= (tp->mdev >> 2);   /* similar update on mdev */
648 			/* This is similar to one of Eifel findings.
649 			 * Eifel blocks mdev updates when rtt decreases.
650 			 * This solution is a bit different: we use finer gain
651 			 * for mdev in this case (alpha*beta).
652 			 * Like Eifel it also prevents growth of rto,
653 			 * but also it limits too fast rto decreases,
654 			 * happening in pure Eifel.
655 			 */
656 			if (m > 0)
657 				m >>= 3;
658 		} else {
659 			m -= (tp->mdev >> 2);   /* similar update on mdev */
660 		}
661 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
662 		if (tp->mdev > tp->mdev_max) {
663 			tp->mdev_max = tp->mdev;
664 			if (tp->mdev_max > tp->rttvar)
665 				tp->rttvar = tp->mdev_max;
666 		}
667 		if (after(tp->snd_una, tp->rtt_seq)) {
668 			if (tp->mdev_max < tp->rttvar)
669 				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
670 			tp->rtt_seq = tp->snd_nxt;
671 			tp->mdev_max = tcp_rto_min(sk);
672 		}
673 	} else {
674 		/* no previous measure. */
675 		tp->srtt = m << 3;	/* take the measured time to be rtt */
676 		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
677 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
678 		tp->rtt_seq = tp->snd_nxt;
679 	}
680 }
681 
682 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
683  * routine referred to above.
684  */
685 static inline void tcp_set_rto(struct sock *sk)
686 {
687 	const struct tcp_sock *tp = tcp_sk(sk);
688 	/* Old crap is replaced with new one. 8)
689 	 *
690 	 * More seriously:
691 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
692 	 *    It cannot be less due to utterly erratic ACK generation made
693 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
694 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
695 	 *    is invisible. Actually, Linux-2.4 also generates erratic
696 	 *    ACKs in some circumstances.
697 	 */
698 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
699 
700 	/* 2. Fixups made earlier cannot be right.
701 	 *    If we do not estimate RTO correctly without them,
702 	 *    all the algo is pure shit and should be replaced
703 	 *    with correct one. It is exactly, which we pretend to do.
704 	 */
705 
706 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707 	 * guarantees that rto is higher.
708 	 */
709 	tcp_bound_rto(sk);
710 }
711 
712 /* Save metrics learned by this TCP session.
713    This function is called only, when TCP finishes successfully
714    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
715  */
716 void tcp_update_metrics(struct sock *sk)
717 {
718 	struct tcp_sock *tp = tcp_sk(sk);
719 	struct dst_entry *dst = __sk_dst_get(sk);
720 
721 	if (sysctl_tcp_nometrics_save)
722 		return;
723 
724 	dst_confirm(dst);
725 
726 	if (dst && (dst->flags & DST_HOST)) {
727 		const struct inet_connection_sock *icsk = inet_csk(sk);
728 		int m;
729 		unsigned long rtt;
730 
731 		if (icsk->icsk_backoff || !tp->srtt) {
732 			/* This session failed to estimate rtt. Why?
733 			 * Probably, no packets returned in time.
734 			 * Reset our results.
735 			 */
736 			if (!(dst_metric_locked(dst, RTAX_RTT)))
737 				dst_metric_set(dst, RTAX_RTT, 0);
738 			return;
739 		}
740 
741 		rtt = dst_metric_rtt(dst, RTAX_RTT);
742 		m = rtt - tp->srtt;
743 
744 		/* If newly calculated rtt larger than stored one,
745 		 * store new one. Otherwise, use EWMA. Remember,
746 		 * rtt overestimation is always better than underestimation.
747 		 */
748 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
749 			if (m <= 0)
750 				set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
751 			else
752 				set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
753 		}
754 
755 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
756 			unsigned long var;
757 			if (m < 0)
758 				m = -m;
759 
760 			/* Scale deviation to rttvar fixed point */
761 			m >>= 1;
762 			if (m < tp->mdev)
763 				m = tp->mdev;
764 
765 			var = dst_metric_rtt(dst, RTAX_RTTVAR);
766 			if (m >= var)
767 				var = m;
768 			else
769 				var -= (var - m) >> 2;
770 
771 			set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
772 		}
773 
774 		if (tcp_in_initial_slowstart(tp)) {
775 			/* Slow start still did not finish. */
776 			if (dst_metric(dst, RTAX_SSTHRESH) &&
777 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
778 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
779 				dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
780 			if (!dst_metric_locked(dst, RTAX_CWND) &&
781 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
782 				dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
783 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
784 			   icsk->icsk_ca_state == TCP_CA_Open) {
785 			/* Cong. avoidance phase, cwnd is reliable. */
786 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
787 				dst_metric_set(dst, RTAX_SSTHRESH,
788 					       max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
789 			if (!dst_metric_locked(dst, RTAX_CWND))
790 				dst_metric_set(dst, RTAX_CWND,
791 					       (dst_metric(dst, RTAX_CWND) +
792 						tp->snd_cwnd) >> 1);
793 		} else {
794 			/* Else slow start did not finish, cwnd is non-sense,
795 			   ssthresh may be also invalid.
796 			 */
797 			if (!dst_metric_locked(dst, RTAX_CWND))
798 				dst_metric_set(dst, RTAX_CWND,
799 					       (dst_metric(dst, RTAX_CWND) +
800 						tp->snd_ssthresh) >> 1);
801 			if (dst_metric(dst, RTAX_SSTHRESH) &&
802 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
803 			    tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
804 				dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
805 		}
806 
807 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
808 			if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
809 			    tp->reordering != sysctl_tcp_reordering)
810 				dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
811 		}
812 	}
813 }
814 
815 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
816 {
817 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
818 
819 	if (!cwnd)
820 		cwnd = rfc3390_bytes_to_packets(tp->mss_cache);
821 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
822 }
823 
824 /* Set slow start threshold and cwnd not falling to slow start */
825 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
826 {
827 	struct tcp_sock *tp = tcp_sk(sk);
828 	const struct inet_connection_sock *icsk = inet_csk(sk);
829 
830 	tp->prior_ssthresh = 0;
831 	tp->bytes_acked = 0;
832 	if (icsk->icsk_ca_state < TCP_CA_CWR) {
833 		tp->undo_marker = 0;
834 		if (set_ssthresh)
835 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
836 		tp->snd_cwnd = min(tp->snd_cwnd,
837 				   tcp_packets_in_flight(tp) + 1U);
838 		tp->snd_cwnd_cnt = 0;
839 		tp->high_seq = tp->snd_nxt;
840 		tp->snd_cwnd_stamp = tcp_time_stamp;
841 		TCP_ECN_queue_cwr(tp);
842 
843 		tcp_set_ca_state(sk, TCP_CA_CWR);
844 	}
845 }
846 
847 /*
848  * Packet counting of FACK is based on in-order assumptions, therefore TCP
849  * disables it when reordering is detected
850  */
851 static void tcp_disable_fack(struct tcp_sock *tp)
852 {
853 	/* RFC3517 uses different metric in lost marker => reset on change */
854 	if (tcp_is_fack(tp))
855 		tp->lost_skb_hint = NULL;
856 	tp->rx_opt.sack_ok &= ~2;
857 }
858 
859 /* Take a notice that peer is sending D-SACKs */
860 static void tcp_dsack_seen(struct tcp_sock *tp)
861 {
862 	tp->rx_opt.sack_ok |= 4;
863 }
864 
865 /* Initialize metrics on socket. */
866 
867 static void tcp_init_metrics(struct sock *sk)
868 {
869 	struct tcp_sock *tp = tcp_sk(sk);
870 	struct dst_entry *dst = __sk_dst_get(sk);
871 
872 	if (dst == NULL)
873 		goto reset;
874 
875 	dst_confirm(dst);
876 
877 	if (dst_metric_locked(dst, RTAX_CWND))
878 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
879 	if (dst_metric(dst, RTAX_SSTHRESH)) {
880 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
881 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
882 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
883 	}
884 	if (dst_metric(dst, RTAX_REORDERING) &&
885 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
886 		tcp_disable_fack(tp);
887 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
888 	}
889 
890 	if (dst_metric(dst, RTAX_RTT) == 0)
891 		goto reset;
892 
893 	if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
894 		goto reset;
895 
896 	/* Initial rtt is determined from SYN,SYN-ACK.
897 	 * The segment is small and rtt may appear much
898 	 * less than real one. Use per-dst memory
899 	 * to make it more realistic.
900 	 *
901 	 * A bit of theory. RTT is time passed after "normal" sized packet
902 	 * is sent until it is ACKed. In normal circumstances sending small
903 	 * packets force peer to delay ACKs and calculation is correct too.
904 	 * The algorithm is adaptive and, provided we follow specs, it
905 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
906 	 * tricks sort of "quick acks" for time long enough to decrease RTT
907 	 * to low value, and then abruptly stops to do it and starts to delay
908 	 * ACKs, wait for troubles.
909 	 */
910 	if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
911 		tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
912 		tp->rtt_seq = tp->snd_nxt;
913 	}
914 	if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
915 		tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
916 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
917 	}
918 	tcp_set_rto(sk);
919 	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp) {
920 reset:
921 		/* Play conservative. If timestamps are not
922 		 * supported, TCP will fail to recalculate correct
923 		 * rtt, if initial rto is too small. FORGET ALL AND RESET!
924 		 */
925 		if (!tp->rx_opt.saw_tstamp && tp->srtt) {
926 			tp->srtt = 0;
927 			tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
928 			inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
929 		}
930 	}
931 	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
932 	tp->snd_cwnd_stamp = tcp_time_stamp;
933 }
934 
935 static void tcp_update_reordering(struct sock *sk, const int metric,
936 				  const int ts)
937 {
938 	struct tcp_sock *tp = tcp_sk(sk);
939 	if (metric > tp->reordering) {
940 		int mib_idx;
941 
942 		tp->reordering = min(TCP_MAX_REORDERING, metric);
943 
944 		/* This exciting event is worth to be remembered. 8) */
945 		if (ts)
946 			mib_idx = LINUX_MIB_TCPTSREORDER;
947 		else if (tcp_is_reno(tp))
948 			mib_idx = LINUX_MIB_TCPRENOREORDER;
949 		else if (tcp_is_fack(tp))
950 			mib_idx = LINUX_MIB_TCPFACKREORDER;
951 		else
952 			mib_idx = LINUX_MIB_TCPSACKREORDER;
953 
954 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
955 #if FASTRETRANS_DEBUG > 1
956 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
957 		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
958 		       tp->reordering,
959 		       tp->fackets_out,
960 		       tp->sacked_out,
961 		       tp->undo_marker ? tp->undo_retrans : 0);
962 #endif
963 		tcp_disable_fack(tp);
964 	}
965 }
966 
967 /* This must be called before lost_out is incremented */
968 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
969 {
970 	if ((tp->retransmit_skb_hint == NULL) ||
971 	    before(TCP_SKB_CB(skb)->seq,
972 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
973 		tp->retransmit_skb_hint = skb;
974 
975 	if (!tp->lost_out ||
976 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
977 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
978 }
979 
980 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
981 {
982 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
983 		tcp_verify_retransmit_hint(tp, skb);
984 
985 		tp->lost_out += tcp_skb_pcount(skb);
986 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
987 	}
988 }
989 
990 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
991 					    struct sk_buff *skb)
992 {
993 	tcp_verify_retransmit_hint(tp, skb);
994 
995 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
996 		tp->lost_out += tcp_skb_pcount(skb);
997 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
998 	}
999 }
1000 
1001 /* This procedure tags the retransmission queue when SACKs arrive.
1002  *
1003  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1004  * Packets in queue with these bits set are counted in variables
1005  * sacked_out, retrans_out and lost_out, correspondingly.
1006  *
1007  * Valid combinations are:
1008  * Tag  InFlight	Description
1009  * 0	1		- orig segment is in flight.
1010  * S	0		- nothing flies, orig reached receiver.
1011  * L	0		- nothing flies, orig lost by net.
1012  * R	2		- both orig and retransmit are in flight.
1013  * L|R	1		- orig is lost, retransmit is in flight.
1014  * S|R  1		- orig reached receiver, retrans is still in flight.
1015  * (L|S|R is logically valid, it could occur when L|R is sacked,
1016  *  but it is equivalent to plain S and code short-curcuits it to S.
1017  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1018  *
1019  * These 6 states form finite state machine, controlled by the following events:
1020  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1021  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1022  * 3. Loss detection event of one of three flavors:
1023  *	A. Scoreboard estimator decided the packet is lost.
1024  *	   A'. Reno "three dupacks" marks head of queue lost.
1025  *	   A''. Its FACK modfication, head until snd.fack is lost.
1026  *	B. SACK arrives sacking data transmitted after never retransmitted
1027  *	   hole was sent out.
1028  *	C. SACK arrives sacking SND.NXT at the moment, when the
1029  *	   segment was retransmitted.
1030  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1031  *
1032  * It is pleasant to note, that state diagram turns out to be commutative,
1033  * so that we are allowed not to be bothered by order of our actions,
1034  * when multiple events arrive simultaneously. (see the function below).
1035  *
1036  * Reordering detection.
1037  * --------------------
1038  * Reordering metric is maximal distance, which a packet can be displaced
1039  * in packet stream. With SACKs we can estimate it:
1040  *
1041  * 1. SACK fills old hole and the corresponding segment was not
1042  *    ever retransmitted -> reordering. Alas, we cannot use it
1043  *    when segment was retransmitted.
1044  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1045  *    for retransmitted and already SACKed segment -> reordering..
1046  * Both of these heuristics are not used in Loss state, when we cannot
1047  * account for retransmits accurately.
1048  *
1049  * SACK block validation.
1050  * ----------------------
1051  *
1052  * SACK block range validation checks that the received SACK block fits to
1053  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1054  * Note that SND.UNA is not included to the range though being valid because
1055  * it means that the receiver is rather inconsistent with itself reporting
1056  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1057  * perfectly valid, however, in light of RFC2018 which explicitly states
1058  * that "SACK block MUST reflect the newest segment.  Even if the newest
1059  * segment is going to be discarded ...", not that it looks very clever
1060  * in case of head skb. Due to potentional receiver driven attacks, we
1061  * choose to avoid immediate execution of a walk in write queue due to
1062  * reneging and defer head skb's loss recovery to standard loss recovery
1063  * procedure that will eventually trigger (nothing forbids us doing this).
1064  *
1065  * Implements also blockage to start_seq wrap-around. Problem lies in the
1066  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1067  * there's no guarantee that it will be before snd_nxt (n). The problem
1068  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1069  * wrap (s_w):
1070  *
1071  *         <- outs wnd ->                          <- wrapzone ->
1072  *         u     e      n                         u_w   e_w  s n_w
1073  *         |     |      |                          |     |   |  |
1074  * |<------------+------+----- TCP seqno space --------------+---------->|
1075  * ...-- <2^31 ->|                                           |<--------...
1076  * ...---- >2^31 ------>|                                    |<--------...
1077  *
1078  * Current code wouldn't be vulnerable but it's better still to discard such
1079  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1080  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1081  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1082  * equal to the ideal case (infinite seqno space without wrap caused issues).
1083  *
1084  * With D-SACK the lower bound is extended to cover sequence space below
1085  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1086  * again, D-SACK block must not to go across snd_una (for the same reason as
1087  * for the normal SACK blocks, explained above). But there all simplicity
1088  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1089  * fully below undo_marker they do not affect behavior in anyway and can
1090  * therefore be safely ignored. In rare cases (which are more or less
1091  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1092  * fragmentation and packet reordering past skb's retransmission. To consider
1093  * them correctly, the acceptable range must be extended even more though
1094  * the exact amount is rather hard to quantify. However, tp->max_window can
1095  * be used as an exaggerated estimate.
1096  */
1097 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1098 				  u32 start_seq, u32 end_seq)
1099 {
1100 	/* Too far in future, or reversed (interpretation is ambiguous) */
1101 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1102 		return 0;
1103 
1104 	/* Nasty start_seq wrap-around check (see comments above) */
1105 	if (!before(start_seq, tp->snd_nxt))
1106 		return 0;
1107 
1108 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1109 	 * start_seq == snd_una is non-sensical (see comments above)
1110 	 */
1111 	if (after(start_seq, tp->snd_una))
1112 		return 1;
1113 
1114 	if (!is_dsack || !tp->undo_marker)
1115 		return 0;
1116 
1117 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1118 	if (!after(end_seq, tp->snd_una))
1119 		return 0;
1120 
1121 	if (!before(start_seq, tp->undo_marker))
1122 		return 1;
1123 
1124 	/* Too old */
1125 	if (!after(end_seq, tp->undo_marker))
1126 		return 0;
1127 
1128 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1129 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1130 	 */
1131 	return !before(start_seq, end_seq - tp->max_window);
1132 }
1133 
1134 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1135  * Event "C". Later note: FACK people cheated me again 8), we have to account
1136  * for reordering! Ugly, but should help.
1137  *
1138  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1139  * less than what is now known to be received by the other end (derived from
1140  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1141  * retransmitted skbs to avoid some costly processing per ACKs.
1142  */
1143 static void tcp_mark_lost_retrans(struct sock *sk)
1144 {
1145 	const struct inet_connection_sock *icsk = inet_csk(sk);
1146 	struct tcp_sock *tp = tcp_sk(sk);
1147 	struct sk_buff *skb;
1148 	int cnt = 0;
1149 	u32 new_low_seq = tp->snd_nxt;
1150 	u32 received_upto = tcp_highest_sack_seq(tp);
1151 
1152 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1153 	    !after(received_upto, tp->lost_retrans_low) ||
1154 	    icsk->icsk_ca_state != TCP_CA_Recovery)
1155 		return;
1156 
1157 	tcp_for_write_queue(skb, sk) {
1158 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1159 
1160 		if (skb == tcp_send_head(sk))
1161 			break;
1162 		if (cnt == tp->retrans_out)
1163 			break;
1164 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1165 			continue;
1166 
1167 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1168 			continue;
1169 
1170 		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1171 		 * constraint here (see above) but figuring out that at
1172 		 * least tp->reordering SACK blocks reside between ack_seq
1173 		 * and received_upto is not easy task to do cheaply with
1174 		 * the available datastructures.
1175 		 *
1176 		 * Whether FACK should check here for tp->reordering segs
1177 		 * in-between one could argue for either way (it would be
1178 		 * rather simple to implement as we could count fack_count
1179 		 * during the walk and do tp->fackets_out - fack_count).
1180 		 */
1181 		if (after(received_upto, ack_seq)) {
1182 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1183 			tp->retrans_out -= tcp_skb_pcount(skb);
1184 
1185 			tcp_skb_mark_lost_uncond_verify(tp, skb);
1186 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1187 		} else {
1188 			if (before(ack_seq, new_low_seq))
1189 				new_low_seq = ack_seq;
1190 			cnt += tcp_skb_pcount(skb);
1191 		}
1192 	}
1193 
1194 	if (tp->retrans_out)
1195 		tp->lost_retrans_low = new_low_seq;
1196 }
1197 
1198 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1199 			   struct tcp_sack_block_wire *sp, int num_sacks,
1200 			   u32 prior_snd_una)
1201 {
1202 	struct tcp_sock *tp = tcp_sk(sk);
1203 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1204 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1205 	int dup_sack = 0;
1206 
1207 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1208 		dup_sack = 1;
1209 		tcp_dsack_seen(tp);
1210 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1211 	} else if (num_sacks > 1) {
1212 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1213 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1214 
1215 		if (!after(end_seq_0, end_seq_1) &&
1216 		    !before(start_seq_0, start_seq_1)) {
1217 			dup_sack = 1;
1218 			tcp_dsack_seen(tp);
1219 			NET_INC_STATS_BH(sock_net(sk),
1220 					LINUX_MIB_TCPDSACKOFORECV);
1221 		}
1222 	}
1223 
1224 	/* D-SACK for already forgotten data... Do dumb counting. */
1225 	if (dup_sack &&
1226 	    !after(end_seq_0, prior_snd_una) &&
1227 	    after(end_seq_0, tp->undo_marker))
1228 		tp->undo_retrans--;
1229 
1230 	return dup_sack;
1231 }
1232 
1233 struct tcp_sacktag_state {
1234 	int reord;
1235 	int fack_count;
1236 	int flag;
1237 };
1238 
1239 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1240  * the incoming SACK may not exactly match but we can find smaller MSS
1241  * aligned portion of it that matches. Therefore we might need to fragment
1242  * which may fail and creates some hassle (caller must handle error case
1243  * returns).
1244  *
1245  * FIXME: this could be merged to shift decision code
1246  */
1247 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1248 				 u32 start_seq, u32 end_seq)
1249 {
1250 	int in_sack, err;
1251 	unsigned int pkt_len;
1252 	unsigned int mss;
1253 
1254 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1255 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1256 
1257 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1258 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1259 		mss = tcp_skb_mss(skb);
1260 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1261 
1262 		if (!in_sack) {
1263 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1264 			if (pkt_len < mss)
1265 				pkt_len = mss;
1266 		} else {
1267 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1268 			if (pkt_len < mss)
1269 				return -EINVAL;
1270 		}
1271 
1272 		/* Round if necessary so that SACKs cover only full MSSes
1273 		 * and/or the remaining small portion (if present)
1274 		 */
1275 		if (pkt_len > mss) {
1276 			unsigned int new_len = (pkt_len / mss) * mss;
1277 			if (!in_sack && new_len < pkt_len) {
1278 				new_len += mss;
1279 				if (new_len > skb->len)
1280 					return 0;
1281 			}
1282 			pkt_len = new_len;
1283 		}
1284 		err = tcp_fragment(sk, skb, pkt_len, mss);
1285 		if (err < 0)
1286 			return err;
1287 	}
1288 
1289 	return in_sack;
1290 }
1291 
1292 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1293 			  struct tcp_sacktag_state *state,
1294 			  int dup_sack, int pcount)
1295 {
1296 	struct tcp_sock *tp = tcp_sk(sk);
1297 	u8 sacked = TCP_SKB_CB(skb)->sacked;
1298 	int fack_count = state->fack_count;
1299 
1300 	/* Account D-SACK for retransmitted packet. */
1301 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1302 		if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1303 			tp->undo_retrans--;
1304 		if (sacked & TCPCB_SACKED_ACKED)
1305 			state->reord = min(fack_count, state->reord);
1306 	}
1307 
1308 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1309 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1310 		return sacked;
1311 
1312 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1313 		if (sacked & TCPCB_SACKED_RETRANS) {
1314 			/* If the segment is not tagged as lost,
1315 			 * we do not clear RETRANS, believing
1316 			 * that retransmission is still in flight.
1317 			 */
1318 			if (sacked & TCPCB_LOST) {
1319 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1320 				tp->lost_out -= pcount;
1321 				tp->retrans_out -= pcount;
1322 			}
1323 		} else {
1324 			if (!(sacked & TCPCB_RETRANS)) {
1325 				/* New sack for not retransmitted frame,
1326 				 * which was in hole. It is reordering.
1327 				 */
1328 				if (before(TCP_SKB_CB(skb)->seq,
1329 					   tcp_highest_sack_seq(tp)))
1330 					state->reord = min(fack_count,
1331 							   state->reord);
1332 
1333 				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1334 				if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1335 					state->flag |= FLAG_ONLY_ORIG_SACKED;
1336 			}
1337 
1338 			if (sacked & TCPCB_LOST) {
1339 				sacked &= ~TCPCB_LOST;
1340 				tp->lost_out -= pcount;
1341 			}
1342 		}
1343 
1344 		sacked |= TCPCB_SACKED_ACKED;
1345 		state->flag |= FLAG_DATA_SACKED;
1346 		tp->sacked_out += pcount;
1347 
1348 		fack_count += pcount;
1349 
1350 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1351 		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1352 		    before(TCP_SKB_CB(skb)->seq,
1353 			   TCP_SKB_CB(tp->lost_skb_hint)->seq))
1354 			tp->lost_cnt_hint += pcount;
1355 
1356 		if (fack_count > tp->fackets_out)
1357 			tp->fackets_out = fack_count;
1358 	}
1359 
1360 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1361 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1362 	 * are accounted above as well.
1363 	 */
1364 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1365 		sacked &= ~TCPCB_SACKED_RETRANS;
1366 		tp->retrans_out -= pcount;
1367 	}
1368 
1369 	return sacked;
1370 }
1371 
1372 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1373 			   struct tcp_sacktag_state *state,
1374 			   unsigned int pcount, int shifted, int mss,
1375 			   int dup_sack)
1376 {
1377 	struct tcp_sock *tp = tcp_sk(sk);
1378 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1379 
1380 	BUG_ON(!pcount);
1381 
1382 	/* Tweak before seqno plays */
1383 	if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1384 	    !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1385 		tp->lost_cnt_hint += pcount;
1386 
1387 	TCP_SKB_CB(prev)->end_seq += shifted;
1388 	TCP_SKB_CB(skb)->seq += shifted;
1389 
1390 	skb_shinfo(prev)->gso_segs += pcount;
1391 	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1392 	skb_shinfo(skb)->gso_segs -= pcount;
1393 
1394 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1395 	 * in theory this shouldn't be necessary but as long as DSACK
1396 	 * code can come after this skb later on it's better to keep
1397 	 * setting gso_size to something.
1398 	 */
1399 	if (!skb_shinfo(prev)->gso_size) {
1400 		skb_shinfo(prev)->gso_size = mss;
1401 		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1402 	}
1403 
1404 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1405 	if (skb_shinfo(skb)->gso_segs <= 1) {
1406 		skb_shinfo(skb)->gso_size = 0;
1407 		skb_shinfo(skb)->gso_type = 0;
1408 	}
1409 
1410 	/* We discard results */
1411 	tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1412 
1413 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1414 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1415 
1416 	if (skb->len > 0) {
1417 		BUG_ON(!tcp_skb_pcount(skb));
1418 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1419 		return 0;
1420 	}
1421 
1422 	/* Whole SKB was eaten :-) */
1423 
1424 	if (skb == tp->retransmit_skb_hint)
1425 		tp->retransmit_skb_hint = prev;
1426 	if (skb == tp->scoreboard_skb_hint)
1427 		tp->scoreboard_skb_hint = prev;
1428 	if (skb == tp->lost_skb_hint) {
1429 		tp->lost_skb_hint = prev;
1430 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1431 	}
1432 
1433 	TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1434 	if (skb == tcp_highest_sack(sk))
1435 		tcp_advance_highest_sack(sk, skb);
1436 
1437 	tcp_unlink_write_queue(skb, sk);
1438 	sk_wmem_free_skb(sk, skb);
1439 
1440 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1441 
1442 	return 1;
1443 }
1444 
1445 /* I wish gso_size would have a bit more sane initialization than
1446  * something-or-zero which complicates things
1447  */
1448 static int tcp_skb_seglen(struct sk_buff *skb)
1449 {
1450 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1451 }
1452 
1453 /* Shifting pages past head area doesn't work */
1454 static int skb_can_shift(struct sk_buff *skb)
1455 {
1456 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1457 }
1458 
1459 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1460  * skb.
1461  */
1462 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1463 					  struct tcp_sacktag_state *state,
1464 					  u32 start_seq, u32 end_seq,
1465 					  int dup_sack)
1466 {
1467 	struct tcp_sock *tp = tcp_sk(sk);
1468 	struct sk_buff *prev;
1469 	int mss;
1470 	int pcount = 0;
1471 	int len;
1472 	int in_sack;
1473 
1474 	if (!sk_can_gso(sk))
1475 		goto fallback;
1476 
1477 	/* Normally R but no L won't result in plain S */
1478 	if (!dup_sack &&
1479 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1480 		goto fallback;
1481 	if (!skb_can_shift(skb))
1482 		goto fallback;
1483 	/* This frame is about to be dropped (was ACKed). */
1484 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1485 		goto fallback;
1486 
1487 	/* Can only happen with delayed DSACK + discard craziness */
1488 	if (unlikely(skb == tcp_write_queue_head(sk)))
1489 		goto fallback;
1490 	prev = tcp_write_queue_prev(sk, skb);
1491 
1492 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1493 		goto fallback;
1494 
1495 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1496 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1497 
1498 	if (in_sack) {
1499 		len = skb->len;
1500 		pcount = tcp_skb_pcount(skb);
1501 		mss = tcp_skb_seglen(skb);
1502 
1503 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1504 		 * drop this restriction as unnecessary
1505 		 */
1506 		if (mss != tcp_skb_seglen(prev))
1507 			goto fallback;
1508 	} else {
1509 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1510 			goto noop;
1511 		/* CHECKME: This is non-MSS split case only?, this will
1512 		 * cause skipped skbs due to advancing loop btw, original
1513 		 * has that feature too
1514 		 */
1515 		if (tcp_skb_pcount(skb) <= 1)
1516 			goto noop;
1517 
1518 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1519 		if (!in_sack) {
1520 			/* TODO: head merge to next could be attempted here
1521 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1522 			 * though it might not be worth of the additional hassle
1523 			 *
1524 			 * ...we can probably just fallback to what was done
1525 			 * previously. We could try merging non-SACKed ones
1526 			 * as well but it probably isn't going to buy off
1527 			 * because later SACKs might again split them, and
1528 			 * it would make skb timestamp tracking considerably
1529 			 * harder problem.
1530 			 */
1531 			goto fallback;
1532 		}
1533 
1534 		len = end_seq - TCP_SKB_CB(skb)->seq;
1535 		BUG_ON(len < 0);
1536 		BUG_ON(len > skb->len);
1537 
1538 		/* MSS boundaries should be honoured or else pcount will
1539 		 * severely break even though it makes things bit trickier.
1540 		 * Optimize common case to avoid most of the divides
1541 		 */
1542 		mss = tcp_skb_mss(skb);
1543 
1544 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1545 		 * drop this restriction as unnecessary
1546 		 */
1547 		if (mss != tcp_skb_seglen(prev))
1548 			goto fallback;
1549 
1550 		if (len == mss) {
1551 			pcount = 1;
1552 		} else if (len < mss) {
1553 			goto noop;
1554 		} else {
1555 			pcount = len / mss;
1556 			len = pcount * mss;
1557 		}
1558 	}
1559 
1560 	if (!skb_shift(prev, skb, len))
1561 		goto fallback;
1562 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1563 		goto out;
1564 
1565 	/* Hole filled allows collapsing with the next as well, this is very
1566 	 * useful when hole on every nth skb pattern happens
1567 	 */
1568 	if (prev == tcp_write_queue_tail(sk))
1569 		goto out;
1570 	skb = tcp_write_queue_next(sk, prev);
1571 
1572 	if (!skb_can_shift(skb) ||
1573 	    (skb == tcp_send_head(sk)) ||
1574 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1575 	    (mss != tcp_skb_seglen(skb)))
1576 		goto out;
1577 
1578 	len = skb->len;
1579 	if (skb_shift(prev, skb, len)) {
1580 		pcount += tcp_skb_pcount(skb);
1581 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1582 	}
1583 
1584 out:
1585 	state->fack_count += pcount;
1586 	return prev;
1587 
1588 noop:
1589 	return skb;
1590 
1591 fallback:
1592 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1593 	return NULL;
1594 }
1595 
1596 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1597 					struct tcp_sack_block *next_dup,
1598 					struct tcp_sacktag_state *state,
1599 					u32 start_seq, u32 end_seq,
1600 					int dup_sack_in)
1601 {
1602 	struct tcp_sock *tp = tcp_sk(sk);
1603 	struct sk_buff *tmp;
1604 
1605 	tcp_for_write_queue_from(skb, sk) {
1606 		int in_sack = 0;
1607 		int dup_sack = dup_sack_in;
1608 
1609 		if (skb == tcp_send_head(sk))
1610 			break;
1611 
1612 		/* queue is in-order => we can short-circuit the walk early */
1613 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1614 			break;
1615 
1616 		if ((next_dup != NULL) &&
1617 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1618 			in_sack = tcp_match_skb_to_sack(sk, skb,
1619 							next_dup->start_seq,
1620 							next_dup->end_seq);
1621 			if (in_sack > 0)
1622 				dup_sack = 1;
1623 		}
1624 
1625 		/* skb reference here is a bit tricky to get right, since
1626 		 * shifting can eat and free both this skb and the next,
1627 		 * so not even _safe variant of the loop is enough.
1628 		 */
1629 		if (in_sack <= 0) {
1630 			tmp = tcp_shift_skb_data(sk, skb, state,
1631 						 start_seq, end_seq, dup_sack);
1632 			if (tmp != NULL) {
1633 				if (tmp != skb) {
1634 					skb = tmp;
1635 					continue;
1636 				}
1637 
1638 				in_sack = 0;
1639 			} else {
1640 				in_sack = tcp_match_skb_to_sack(sk, skb,
1641 								start_seq,
1642 								end_seq);
1643 			}
1644 		}
1645 
1646 		if (unlikely(in_sack < 0))
1647 			break;
1648 
1649 		if (in_sack) {
1650 			TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1651 								  state,
1652 								  dup_sack,
1653 								  tcp_skb_pcount(skb));
1654 
1655 			if (!before(TCP_SKB_CB(skb)->seq,
1656 				    tcp_highest_sack_seq(tp)))
1657 				tcp_advance_highest_sack(sk, skb);
1658 		}
1659 
1660 		state->fack_count += tcp_skb_pcount(skb);
1661 	}
1662 	return skb;
1663 }
1664 
1665 /* Avoid all extra work that is being done by sacktag while walking in
1666  * a normal way
1667  */
1668 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1669 					struct tcp_sacktag_state *state,
1670 					u32 skip_to_seq)
1671 {
1672 	tcp_for_write_queue_from(skb, sk) {
1673 		if (skb == tcp_send_head(sk))
1674 			break;
1675 
1676 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1677 			break;
1678 
1679 		state->fack_count += tcp_skb_pcount(skb);
1680 	}
1681 	return skb;
1682 }
1683 
1684 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1685 						struct sock *sk,
1686 						struct tcp_sack_block *next_dup,
1687 						struct tcp_sacktag_state *state,
1688 						u32 skip_to_seq)
1689 {
1690 	if (next_dup == NULL)
1691 		return skb;
1692 
1693 	if (before(next_dup->start_seq, skip_to_seq)) {
1694 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1695 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1696 				       next_dup->start_seq, next_dup->end_seq,
1697 				       1);
1698 	}
1699 
1700 	return skb;
1701 }
1702 
1703 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1704 {
1705 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1706 }
1707 
1708 static int
1709 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1710 			u32 prior_snd_una)
1711 {
1712 	const struct inet_connection_sock *icsk = inet_csk(sk);
1713 	struct tcp_sock *tp = tcp_sk(sk);
1714 	unsigned char *ptr = (skb_transport_header(ack_skb) +
1715 			      TCP_SKB_CB(ack_skb)->sacked);
1716 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1717 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1718 	struct tcp_sack_block *cache;
1719 	struct tcp_sacktag_state state;
1720 	struct sk_buff *skb;
1721 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1722 	int used_sacks;
1723 	int found_dup_sack = 0;
1724 	int i, j;
1725 	int first_sack_index;
1726 
1727 	state.flag = 0;
1728 	state.reord = tp->packets_out;
1729 
1730 	if (!tp->sacked_out) {
1731 		if (WARN_ON(tp->fackets_out))
1732 			tp->fackets_out = 0;
1733 		tcp_highest_sack_reset(sk);
1734 	}
1735 
1736 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1737 					 num_sacks, prior_snd_una);
1738 	if (found_dup_sack)
1739 		state.flag |= FLAG_DSACKING_ACK;
1740 
1741 	/* Eliminate too old ACKs, but take into
1742 	 * account more or less fresh ones, they can
1743 	 * contain valid SACK info.
1744 	 */
1745 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1746 		return 0;
1747 
1748 	if (!tp->packets_out)
1749 		goto out;
1750 
1751 	used_sacks = 0;
1752 	first_sack_index = 0;
1753 	for (i = 0; i < num_sacks; i++) {
1754 		int dup_sack = !i && found_dup_sack;
1755 
1756 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1757 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1758 
1759 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1760 					    sp[used_sacks].start_seq,
1761 					    sp[used_sacks].end_seq)) {
1762 			int mib_idx;
1763 
1764 			if (dup_sack) {
1765 				if (!tp->undo_marker)
1766 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1767 				else
1768 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1769 			} else {
1770 				/* Don't count olds caused by ACK reordering */
1771 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1772 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1773 					continue;
1774 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1775 			}
1776 
1777 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1778 			if (i == 0)
1779 				first_sack_index = -1;
1780 			continue;
1781 		}
1782 
1783 		/* Ignore very old stuff early */
1784 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1785 			continue;
1786 
1787 		used_sacks++;
1788 	}
1789 
1790 	/* order SACK blocks to allow in order walk of the retrans queue */
1791 	for (i = used_sacks - 1; i > 0; i--) {
1792 		for (j = 0; j < i; j++) {
1793 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1794 				swap(sp[j], sp[j + 1]);
1795 
1796 				/* Track where the first SACK block goes to */
1797 				if (j == first_sack_index)
1798 					first_sack_index = j + 1;
1799 			}
1800 		}
1801 	}
1802 
1803 	skb = tcp_write_queue_head(sk);
1804 	state.fack_count = 0;
1805 	i = 0;
1806 
1807 	if (!tp->sacked_out) {
1808 		/* It's already past, so skip checking against it */
1809 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1810 	} else {
1811 		cache = tp->recv_sack_cache;
1812 		/* Skip empty blocks in at head of the cache */
1813 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1814 		       !cache->end_seq)
1815 			cache++;
1816 	}
1817 
1818 	while (i < used_sacks) {
1819 		u32 start_seq = sp[i].start_seq;
1820 		u32 end_seq = sp[i].end_seq;
1821 		int dup_sack = (found_dup_sack && (i == first_sack_index));
1822 		struct tcp_sack_block *next_dup = NULL;
1823 
1824 		if (found_dup_sack && ((i + 1) == first_sack_index))
1825 			next_dup = &sp[i + 1];
1826 
1827 		/* Event "B" in the comment above. */
1828 		if (after(end_seq, tp->high_seq))
1829 			state.flag |= FLAG_DATA_LOST;
1830 
1831 		/* Skip too early cached blocks */
1832 		while (tcp_sack_cache_ok(tp, cache) &&
1833 		       !before(start_seq, cache->end_seq))
1834 			cache++;
1835 
1836 		/* Can skip some work by looking recv_sack_cache? */
1837 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1838 		    after(end_seq, cache->start_seq)) {
1839 
1840 			/* Head todo? */
1841 			if (before(start_seq, cache->start_seq)) {
1842 				skb = tcp_sacktag_skip(skb, sk, &state,
1843 						       start_seq);
1844 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1845 						       &state,
1846 						       start_seq,
1847 						       cache->start_seq,
1848 						       dup_sack);
1849 			}
1850 
1851 			/* Rest of the block already fully processed? */
1852 			if (!after(end_seq, cache->end_seq))
1853 				goto advance_sp;
1854 
1855 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1856 						       &state,
1857 						       cache->end_seq);
1858 
1859 			/* ...tail remains todo... */
1860 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1861 				/* ...but better entrypoint exists! */
1862 				skb = tcp_highest_sack(sk);
1863 				if (skb == NULL)
1864 					break;
1865 				state.fack_count = tp->fackets_out;
1866 				cache++;
1867 				goto walk;
1868 			}
1869 
1870 			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1871 			/* Check overlap against next cached too (past this one already) */
1872 			cache++;
1873 			continue;
1874 		}
1875 
1876 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1877 			skb = tcp_highest_sack(sk);
1878 			if (skb == NULL)
1879 				break;
1880 			state.fack_count = tp->fackets_out;
1881 		}
1882 		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1883 
1884 walk:
1885 		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1886 				       start_seq, end_seq, dup_sack);
1887 
1888 advance_sp:
1889 		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1890 		 * due to in-order walk
1891 		 */
1892 		if (after(end_seq, tp->frto_highmark))
1893 			state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1894 
1895 		i++;
1896 	}
1897 
1898 	/* Clear the head of the cache sack blocks so we can skip it next time */
1899 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1900 		tp->recv_sack_cache[i].start_seq = 0;
1901 		tp->recv_sack_cache[i].end_seq = 0;
1902 	}
1903 	for (j = 0; j < used_sacks; j++)
1904 		tp->recv_sack_cache[i++] = sp[j];
1905 
1906 	tcp_mark_lost_retrans(sk);
1907 
1908 	tcp_verify_left_out(tp);
1909 
1910 	if ((state.reord < tp->fackets_out) &&
1911 	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1912 	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1913 		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1914 
1915 out:
1916 
1917 #if FASTRETRANS_DEBUG > 0
1918 	WARN_ON((int)tp->sacked_out < 0);
1919 	WARN_ON((int)tp->lost_out < 0);
1920 	WARN_ON((int)tp->retrans_out < 0);
1921 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1922 #endif
1923 	return state.flag;
1924 }
1925 
1926 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1927  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1928  */
1929 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1930 {
1931 	u32 holes;
1932 
1933 	holes = max(tp->lost_out, 1U);
1934 	holes = min(holes, tp->packets_out);
1935 
1936 	if ((tp->sacked_out + holes) > tp->packets_out) {
1937 		tp->sacked_out = tp->packets_out - holes;
1938 		return 1;
1939 	}
1940 	return 0;
1941 }
1942 
1943 /* If we receive more dupacks than we expected counting segments
1944  * in assumption of absent reordering, interpret this as reordering.
1945  * The only another reason could be bug in receiver TCP.
1946  */
1947 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1948 {
1949 	struct tcp_sock *tp = tcp_sk(sk);
1950 	if (tcp_limit_reno_sacked(tp))
1951 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1952 }
1953 
1954 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1955 
1956 static void tcp_add_reno_sack(struct sock *sk)
1957 {
1958 	struct tcp_sock *tp = tcp_sk(sk);
1959 	tp->sacked_out++;
1960 	tcp_check_reno_reordering(sk, 0);
1961 	tcp_verify_left_out(tp);
1962 }
1963 
1964 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1965 
1966 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1967 {
1968 	struct tcp_sock *tp = tcp_sk(sk);
1969 
1970 	if (acked > 0) {
1971 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1972 		if (acked - 1 >= tp->sacked_out)
1973 			tp->sacked_out = 0;
1974 		else
1975 			tp->sacked_out -= acked - 1;
1976 	}
1977 	tcp_check_reno_reordering(sk, acked);
1978 	tcp_verify_left_out(tp);
1979 }
1980 
1981 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1982 {
1983 	tp->sacked_out = 0;
1984 }
1985 
1986 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1987 {
1988 	return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1989 }
1990 
1991 /* F-RTO can only be used if TCP has never retransmitted anything other than
1992  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1993  */
1994 int tcp_use_frto(struct sock *sk)
1995 {
1996 	const struct tcp_sock *tp = tcp_sk(sk);
1997 	const struct inet_connection_sock *icsk = inet_csk(sk);
1998 	struct sk_buff *skb;
1999 
2000 	if (!sysctl_tcp_frto)
2001 		return 0;
2002 
2003 	/* MTU probe and F-RTO won't really play nicely along currently */
2004 	if (icsk->icsk_mtup.probe_size)
2005 		return 0;
2006 
2007 	if (tcp_is_sackfrto(tp))
2008 		return 1;
2009 
2010 	/* Avoid expensive walking of rexmit queue if possible */
2011 	if (tp->retrans_out > 1)
2012 		return 0;
2013 
2014 	skb = tcp_write_queue_head(sk);
2015 	if (tcp_skb_is_last(sk, skb))
2016 		return 1;
2017 	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
2018 	tcp_for_write_queue_from(skb, sk) {
2019 		if (skb == tcp_send_head(sk))
2020 			break;
2021 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2022 			return 0;
2023 		/* Short-circuit when first non-SACKed skb has been checked */
2024 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2025 			break;
2026 	}
2027 	return 1;
2028 }
2029 
2030 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2031  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2032  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2033  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2034  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2035  * bits are handled if the Loss state is really to be entered (in
2036  * tcp_enter_frto_loss).
2037  *
2038  * Do like tcp_enter_loss() would; when RTO expires the second time it
2039  * does:
2040  *  "Reduce ssthresh if it has not yet been made inside this window."
2041  */
2042 void tcp_enter_frto(struct sock *sk)
2043 {
2044 	const struct inet_connection_sock *icsk = inet_csk(sk);
2045 	struct tcp_sock *tp = tcp_sk(sk);
2046 	struct sk_buff *skb;
2047 
2048 	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2049 	    tp->snd_una == tp->high_seq ||
2050 	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2051 	     !icsk->icsk_retransmits)) {
2052 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2053 		/* Our state is too optimistic in ssthresh() call because cwnd
2054 		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2055 		 * recovery has not yet completed. Pattern would be this: RTO,
2056 		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2057 		 * up here twice).
2058 		 * RFC4138 should be more specific on what to do, even though
2059 		 * RTO is quite unlikely to occur after the first Cumulative ACK
2060 		 * due to back-off and complexity of triggering events ...
2061 		 */
2062 		if (tp->frto_counter) {
2063 			u32 stored_cwnd;
2064 			stored_cwnd = tp->snd_cwnd;
2065 			tp->snd_cwnd = 2;
2066 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2067 			tp->snd_cwnd = stored_cwnd;
2068 		} else {
2069 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2070 		}
2071 		/* ... in theory, cong.control module could do "any tricks" in
2072 		 * ssthresh(), which means that ca_state, lost bits and lost_out
2073 		 * counter would have to be faked before the call occurs. We
2074 		 * consider that too expensive, unlikely and hacky, so modules
2075 		 * using these in ssthresh() must deal these incompatibility
2076 		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2077 		 */
2078 		tcp_ca_event(sk, CA_EVENT_FRTO);
2079 	}
2080 
2081 	tp->undo_marker = tp->snd_una;
2082 	tp->undo_retrans = 0;
2083 
2084 	skb = tcp_write_queue_head(sk);
2085 	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2086 		tp->undo_marker = 0;
2087 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2088 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2089 		tp->retrans_out -= tcp_skb_pcount(skb);
2090 	}
2091 	tcp_verify_left_out(tp);
2092 
2093 	/* Too bad if TCP was application limited */
2094 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2095 
2096 	/* Earlier loss recovery underway (see RFC4138; Appendix B).
2097 	 * The last condition is necessary at least in tp->frto_counter case.
2098 	 */
2099 	if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2100 	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2101 	    after(tp->high_seq, tp->snd_una)) {
2102 		tp->frto_highmark = tp->high_seq;
2103 	} else {
2104 		tp->frto_highmark = tp->snd_nxt;
2105 	}
2106 	tcp_set_ca_state(sk, TCP_CA_Disorder);
2107 	tp->high_seq = tp->snd_nxt;
2108 	tp->frto_counter = 1;
2109 }
2110 
2111 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2112  * which indicates that we should follow the traditional RTO recovery,
2113  * i.e. mark everything lost and do go-back-N retransmission.
2114  */
2115 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2116 {
2117 	struct tcp_sock *tp = tcp_sk(sk);
2118 	struct sk_buff *skb;
2119 
2120 	tp->lost_out = 0;
2121 	tp->retrans_out = 0;
2122 	if (tcp_is_reno(tp))
2123 		tcp_reset_reno_sack(tp);
2124 
2125 	tcp_for_write_queue(skb, sk) {
2126 		if (skb == tcp_send_head(sk))
2127 			break;
2128 
2129 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2130 		/*
2131 		 * Count the retransmission made on RTO correctly (only when
2132 		 * waiting for the first ACK and did not get it)...
2133 		 */
2134 		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2135 			/* For some reason this R-bit might get cleared? */
2136 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2137 				tp->retrans_out += tcp_skb_pcount(skb);
2138 			/* ...enter this if branch just for the first segment */
2139 			flag |= FLAG_DATA_ACKED;
2140 		} else {
2141 			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2142 				tp->undo_marker = 0;
2143 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2144 		}
2145 
2146 		/* Marking forward transmissions that were made after RTO lost
2147 		 * can cause unnecessary retransmissions in some scenarios,
2148 		 * SACK blocks will mitigate that in some but not in all cases.
2149 		 * We used to not mark them but it was causing break-ups with
2150 		 * receivers that do only in-order receival.
2151 		 *
2152 		 * TODO: we could detect presence of such receiver and select
2153 		 * different behavior per flow.
2154 		 */
2155 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2156 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2157 			tp->lost_out += tcp_skb_pcount(skb);
2158 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2159 		}
2160 	}
2161 	tcp_verify_left_out(tp);
2162 
2163 	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2164 	tp->snd_cwnd_cnt = 0;
2165 	tp->snd_cwnd_stamp = tcp_time_stamp;
2166 	tp->frto_counter = 0;
2167 	tp->bytes_acked = 0;
2168 
2169 	tp->reordering = min_t(unsigned int, tp->reordering,
2170 			       sysctl_tcp_reordering);
2171 	tcp_set_ca_state(sk, TCP_CA_Loss);
2172 	tp->high_seq = tp->snd_nxt;
2173 	TCP_ECN_queue_cwr(tp);
2174 
2175 	tcp_clear_all_retrans_hints(tp);
2176 }
2177 
2178 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2179 {
2180 	tp->retrans_out = 0;
2181 	tp->lost_out = 0;
2182 
2183 	tp->undo_marker = 0;
2184 	tp->undo_retrans = 0;
2185 }
2186 
2187 void tcp_clear_retrans(struct tcp_sock *tp)
2188 {
2189 	tcp_clear_retrans_partial(tp);
2190 
2191 	tp->fackets_out = 0;
2192 	tp->sacked_out = 0;
2193 }
2194 
2195 /* Enter Loss state. If "how" is not zero, forget all SACK information
2196  * and reset tags completely, otherwise preserve SACKs. If receiver
2197  * dropped its ofo queue, we will know this due to reneging detection.
2198  */
2199 void tcp_enter_loss(struct sock *sk, int how)
2200 {
2201 	const struct inet_connection_sock *icsk = inet_csk(sk);
2202 	struct tcp_sock *tp = tcp_sk(sk);
2203 	struct sk_buff *skb;
2204 
2205 	/* Reduce ssthresh if it has not yet been made inside this window. */
2206 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2207 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2208 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2209 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2210 		tcp_ca_event(sk, CA_EVENT_LOSS);
2211 	}
2212 	tp->snd_cwnd	   = 1;
2213 	tp->snd_cwnd_cnt   = 0;
2214 	tp->snd_cwnd_stamp = tcp_time_stamp;
2215 
2216 	tp->bytes_acked = 0;
2217 	tcp_clear_retrans_partial(tp);
2218 
2219 	if (tcp_is_reno(tp))
2220 		tcp_reset_reno_sack(tp);
2221 
2222 	if (!how) {
2223 		/* Push undo marker, if it was plain RTO and nothing
2224 		 * was retransmitted. */
2225 		tp->undo_marker = tp->snd_una;
2226 	} else {
2227 		tp->sacked_out = 0;
2228 		tp->fackets_out = 0;
2229 	}
2230 	tcp_clear_all_retrans_hints(tp);
2231 
2232 	tcp_for_write_queue(skb, sk) {
2233 		if (skb == tcp_send_head(sk))
2234 			break;
2235 
2236 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2237 			tp->undo_marker = 0;
2238 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2239 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2240 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2241 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2242 			tp->lost_out += tcp_skb_pcount(skb);
2243 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2244 		}
2245 	}
2246 	tcp_verify_left_out(tp);
2247 
2248 	tp->reordering = min_t(unsigned int, tp->reordering,
2249 			       sysctl_tcp_reordering);
2250 	tcp_set_ca_state(sk, TCP_CA_Loss);
2251 	tp->high_seq = tp->snd_nxt;
2252 	TCP_ECN_queue_cwr(tp);
2253 	/* Abort F-RTO algorithm if one is in progress */
2254 	tp->frto_counter = 0;
2255 }
2256 
2257 /* If ACK arrived pointing to a remembered SACK, it means that our
2258  * remembered SACKs do not reflect real state of receiver i.e.
2259  * receiver _host_ is heavily congested (or buggy).
2260  *
2261  * Do processing similar to RTO timeout.
2262  */
2263 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2264 {
2265 	if (flag & FLAG_SACK_RENEGING) {
2266 		struct inet_connection_sock *icsk = inet_csk(sk);
2267 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2268 
2269 		tcp_enter_loss(sk, 1);
2270 		icsk->icsk_retransmits++;
2271 		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2272 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2273 					  icsk->icsk_rto, TCP_RTO_MAX);
2274 		return 1;
2275 	}
2276 	return 0;
2277 }
2278 
2279 static inline int tcp_fackets_out(struct tcp_sock *tp)
2280 {
2281 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2282 }
2283 
2284 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2285  * counter when SACK is enabled (without SACK, sacked_out is used for
2286  * that purpose).
2287  *
2288  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2289  * segments up to the highest received SACK block so far and holes in
2290  * between them.
2291  *
2292  * With reordering, holes may still be in flight, so RFC3517 recovery
2293  * uses pure sacked_out (total number of SACKed segments) even though
2294  * it violates the RFC that uses duplicate ACKs, often these are equal
2295  * but when e.g. out-of-window ACKs or packet duplication occurs,
2296  * they differ. Since neither occurs due to loss, TCP should really
2297  * ignore them.
2298  */
2299 static inline int tcp_dupack_heuristics(struct tcp_sock *tp)
2300 {
2301 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2302 }
2303 
2304 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2305 {
2306 	return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2307 }
2308 
2309 static inline int tcp_head_timedout(struct sock *sk)
2310 {
2311 	struct tcp_sock *tp = tcp_sk(sk);
2312 
2313 	return tp->packets_out &&
2314 	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2315 }
2316 
2317 /* Linux NewReno/SACK/FACK/ECN state machine.
2318  * --------------------------------------
2319  *
2320  * "Open"	Normal state, no dubious events, fast path.
2321  * "Disorder"   In all the respects it is "Open",
2322  *		but requires a bit more attention. It is entered when
2323  *		we see some SACKs or dupacks. It is split of "Open"
2324  *		mainly to move some processing from fast path to slow one.
2325  * "CWR"	CWND was reduced due to some Congestion Notification event.
2326  *		It can be ECN, ICMP source quench, local device congestion.
2327  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2328  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2329  *
2330  * tcp_fastretrans_alert() is entered:
2331  * - each incoming ACK, if state is not "Open"
2332  * - when arrived ACK is unusual, namely:
2333  *	* SACK
2334  *	* Duplicate ACK.
2335  *	* ECN ECE.
2336  *
2337  * Counting packets in flight is pretty simple.
2338  *
2339  *	in_flight = packets_out - left_out + retrans_out
2340  *
2341  *	packets_out is SND.NXT-SND.UNA counted in packets.
2342  *
2343  *	retrans_out is number of retransmitted segments.
2344  *
2345  *	left_out is number of segments left network, but not ACKed yet.
2346  *
2347  *		left_out = sacked_out + lost_out
2348  *
2349  *     sacked_out: Packets, which arrived to receiver out of order
2350  *		   and hence not ACKed. With SACKs this number is simply
2351  *		   amount of SACKed data. Even without SACKs
2352  *		   it is easy to give pretty reliable estimate of this number,
2353  *		   counting duplicate ACKs.
2354  *
2355  *       lost_out: Packets lost by network. TCP has no explicit
2356  *		   "loss notification" feedback from network (for now).
2357  *		   It means that this number can be only _guessed_.
2358  *		   Actually, it is the heuristics to predict lossage that
2359  *		   distinguishes different algorithms.
2360  *
2361  *	F.e. after RTO, when all the queue is considered as lost,
2362  *	lost_out = packets_out and in_flight = retrans_out.
2363  *
2364  *		Essentially, we have now two algorithms counting
2365  *		lost packets.
2366  *
2367  *		FACK: It is the simplest heuristics. As soon as we decided
2368  *		that something is lost, we decide that _all_ not SACKed
2369  *		packets until the most forward SACK are lost. I.e.
2370  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2371  *		It is absolutely correct estimate, if network does not reorder
2372  *		packets. And it loses any connection to reality when reordering
2373  *		takes place. We use FACK by default until reordering
2374  *		is suspected on the path to this destination.
2375  *
2376  *		NewReno: when Recovery is entered, we assume that one segment
2377  *		is lost (classic Reno). While we are in Recovery and
2378  *		a partial ACK arrives, we assume that one more packet
2379  *		is lost (NewReno). This heuristics are the same in NewReno
2380  *		and SACK.
2381  *
2382  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2383  *  deflation etc. CWND is real congestion window, never inflated, changes
2384  *  only according to classic VJ rules.
2385  *
2386  * Really tricky (and requiring careful tuning) part of algorithm
2387  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2388  * The first determines the moment _when_ we should reduce CWND and,
2389  * hence, slow down forward transmission. In fact, it determines the moment
2390  * when we decide that hole is caused by loss, rather than by a reorder.
2391  *
2392  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2393  * holes, caused by lost packets.
2394  *
2395  * And the most logically complicated part of algorithm is undo
2396  * heuristics. We detect false retransmits due to both too early
2397  * fast retransmit (reordering) and underestimated RTO, analyzing
2398  * timestamps and D-SACKs. When we detect that some segments were
2399  * retransmitted by mistake and CWND reduction was wrong, we undo
2400  * window reduction and abort recovery phase. This logic is hidden
2401  * inside several functions named tcp_try_undo_<something>.
2402  */
2403 
2404 /* This function decides, when we should leave Disordered state
2405  * and enter Recovery phase, reducing congestion window.
2406  *
2407  * Main question: may we further continue forward transmission
2408  * with the same cwnd?
2409  */
2410 static int tcp_time_to_recover(struct sock *sk)
2411 {
2412 	struct tcp_sock *tp = tcp_sk(sk);
2413 	__u32 packets_out;
2414 
2415 	/* Do not perform any recovery during F-RTO algorithm */
2416 	if (tp->frto_counter)
2417 		return 0;
2418 
2419 	/* Trick#1: The loss is proven. */
2420 	if (tp->lost_out)
2421 		return 1;
2422 
2423 	/* Not-A-Trick#2 : Classic rule... */
2424 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2425 		return 1;
2426 
2427 	/* Trick#3 : when we use RFC2988 timer restart, fast
2428 	 * retransmit can be triggered by timeout of queue head.
2429 	 */
2430 	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2431 		return 1;
2432 
2433 	/* Trick#4: It is still not OK... But will it be useful to delay
2434 	 * recovery more?
2435 	 */
2436 	packets_out = tp->packets_out;
2437 	if (packets_out <= tp->reordering &&
2438 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2439 	    !tcp_may_send_now(sk)) {
2440 		/* We have nothing to send. This connection is limited
2441 		 * either by receiver window or by application.
2442 		 */
2443 		return 1;
2444 	}
2445 
2446 	/* If a thin stream is detected, retransmit after first
2447 	 * received dupack. Employ only if SACK is supported in order
2448 	 * to avoid possible corner-case series of spurious retransmissions
2449 	 * Use only if there are no unsent data.
2450 	 */
2451 	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2452 	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2453 	    tcp_is_sack(tp) && !tcp_send_head(sk))
2454 		return 1;
2455 
2456 	return 0;
2457 }
2458 
2459 /* New heuristics: it is possible only after we switched to restart timer
2460  * each time when something is ACKed. Hence, we can detect timed out packets
2461  * during fast retransmit without falling to slow start.
2462  *
2463  * Usefulness of this as is very questionable, since we should know which of
2464  * the segments is the next to timeout which is relatively expensive to find
2465  * in general case unless we add some data structure just for that. The
2466  * current approach certainly won't find the right one too often and when it
2467  * finally does find _something_ it usually marks large part of the window
2468  * right away (because a retransmission with a larger timestamp blocks the
2469  * loop from advancing). -ij
2470  */
2471 static void tcp_timeout_skbs(struct sock *sk)
2472 {
2473 	struct tcp_sock *tp = tcp_sk(sk);
2474 	struct sk_buff *skb;
2475 
2476 	if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2477 		return;
2478 
2479 	skb = tp->scoreboard_skb_hint;
2480 	if (tp->scoreboard_skb_hint == NULL)
2481 		skb = tcp_write_queue_head(sk);
2482 
2483 	tcp_for_write_queue_from(skb, sk) {
2484 		if (skb == tcp_send_head(sk))
2485 			break;
2486 		if (!tcp_skb_timedout(sk, skb))
2487 			break;
2488 
2489 		tcp_skb_mark_lost(tp, skb);
2490 	}
2491 
2492 	tp->scoreboard_skb_hint = skb;
2493 
2494 	tcp_verify_left_out(tp);
2495 }
2496 
2497 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2498  * is against sacked "cnt", otherwise it's against facked "cnt"
2499  */
2500 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2501 {
2502 	struct tcp_sock *tp = tcp_sk(sk);
2503 	struct sk_buff *skb;
2504 	int cnt, oldcnt;
2505 	int err;
2506 	unsigned int mss;
2507 
2508 	WARN_ON(packets > tp->packets_out);
2509 	if (tp->lost_skb_hint) {
2510 		skb = tp->lost_skb_hint;
2511 		cnt = tp->lost_cnt_hint;
2512 		/* Head already handled? */
2513 		if (mark_head && skb != tcp_write_queue_head(sk))
2514 			return;
2515 	} else {
2516 		skb = tcp_write_queue_head(sk);
2517 		cnt = 0;
2518 	}
2519 
2520 	tcp_for_write_queue_from(skb, sk) {
2521 		if (skb == tcp_send_head(sk))
2522 			break;
2523 		/* TODO: do this better */
2524 		/* this is not the most efficient way to do this... */
2525 		tp->lost_skb_hint = skb;
2526 		tp->lost_cnt_hint = cnt;
2527 
2528 		if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2529 			break;
2530 
2531 		oldcnt = cnt;
2532 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2533 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2534 			cnt += tcp_skb_pcount(skb);
2535 
2536 		if (cnt > packets) {
2537 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2538 			    (oldcnt >= packets))
2539 				break;
2540 
2541 			mss = skb_shinfo(skb)->gso_size;
2542 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2543 			if (err < 0)
2544 				break;
2545 			cnt = packets;
2546 		}
2547 
2548 		tcp_skb_mark_lost(tp, skb);
2549 
2550 		if (mark_head)
2551 			break;
2552 	}
2553 	tcp_verify_left_out(tp);
2554 }
2555 
2556 /* Account newly detected lost packet(s) */
2557 
2558 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2559 {
2560 	struct tcp_sock *tp = tcp_sk(sk);
2561 
2562 	if (tcp_is_reno(tp)) {
2563 		tcp_mark_head_lost(sk, 1, 1);
2564 	} else if (tcp_is_fack(tp)) {
2565 		int lost = tp->fackets_out - tp->reordering;
2566 		if (lost <= 0)
2567 			lost = 1;
2568 		tcp_mark_head_lost(sk, lost, 0);
2569 	} else {
2570 		int sacked_upto = tp->sacked_out - tp->reordering;
2571 		if (sacked_upto >= 0)
2572 			tcp_mark_head_lost(sk, sacked_upto, 0);
2573 		else if (fast_rexmit)
2574 			tcp_mark_head_lost(sk, 1, 1);
2575 	}
2576 
2577 	tcp_timeout_skbs(sk);
2578 }
2579 
2580 /* CWND moderation, preventing bursts due to too big ACKs
2581  * in dubious situations.
2582  */
2583 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2584 {
2585 	tp->snd_cwnd = min(tp->snd_cwnd,
2586 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2587 	tp->snd_cwnd_stamp = tcp_time_stamp;
2588 }
2589 
2590 /* Lower bound on congestion window is slow start threshold
2591  * unless congestion avoidance choice decides to overide it.
2592  */
2593 static inline u32 tcp_cwnd_min(const struct sock *sk)
2594 {
2595 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2596 
2597 	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2598 }
2599 
2600 /* Decrease cwnd each second ack. */
2601 static void tcp_cwnd_down(struct sock *sk, int flag)
2602 {
2603 	struct tcp_sock *tp = tcp_sk(sk);
2604 	int decr = tp->snd_cwnd_cnt + 1;
2605 
2606 	if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2607 	    (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2608 		tp->snd_cwnd_cnt = decr & 1;
2609 		decr >>= 1;
2610 
2611 		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2612 			tp->snd_cwnd -= decr;
2613 
2614 		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2615 		tp->snd_cwnd_stamp = tcp_time_stamp;
2616 	}
2617 }
2618 
2619 /* Nothing was retransmitted or returned timestamp is less
2620  * than timestamp of the first retransmission.
2621  */
2622 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2623 {
2624 	return !tp->retrans_stamp ||
2625 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2626 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2627 }
2628 
2629 /* Undo procedures. */
2630 
2631 #if FASTRETRANS_DEBUG > 1
2632 static void DBGUNDO(struct sock *sk, const char *msg)
2633 {
2634 	struct tcp_sock *tp = tcp_sk(sk);
2635 	struct inet_sock *inet = inet_sk(sk);
2636 
2637 	if (sk->sk_family == AF_INET) {
2638 		printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2639 		       msg,
2640 		       &inet->inet_daddr, ntohs(inet->inet_dport),
2641 		       tp->snd_cwnd, tcp_left_out(tp),
2642 		       tp->snd_ssthresh, tp->prior_ssthresh,
2643 		       tp->packets_out);
2644 	}
2645 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2646 	else if (sk->sk_family == AF_INET6) {
2647 		struct ipv6_pinfo *np = inet6_sk(sk);
2648 		printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2649 		       msg,
2650 		       &np->daddr, ntohs(inet->inet_dport),
2651 		       tp->snd_cwnd, tcp_left_out(tp),
2652 		       tp->snd_ssthresh, tp->prior_ssthresh,
2653 		       tp->packets_out);
2654 	}
2655 #endif
2656 }
2657 #else
2658 #define DBGUNDO(x...) do { } while (0)
2659 #endif
2660 
2661 static void tcp_undo_cwr(struct sock *sk, const int undo)
2662 {
2663 	struct tcp_sock *tp = tcp_sk(sk);
2664 
2665 	if (tp->prior_ssthresh) {
2666 		const struct inet_connection_sock *icsk = inet_csk(sk);
2667 
2668 		if (icsk->icsk_ca_ops->undo_cwnd)
2669 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2670 		else
2671 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2672 
2673 		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2674 			tp->snd_ssthresh = tp->prior_ssthresh;
2675 			TCP_ECN_withdraw_cwr(tp);
2676 		}
2677 	} else {
2678 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2679 	}
2680 	tcp_moderate_cwnd(tp);
2681 	tp->snd_cwnd_stamp = tcp_time_stamp;
2682 }
2683 
2684 static inline int tcp_may_undo(struct tcp_sock *tp)
2685 {
2686 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2687 }
2688 
2689 /* People celebrate: "We love our President!" */
2690 static int tcp_try_undo_recovery(struct sock *sk)
2691 {
2692 	struct tcp_sock *tp = tcp_sk(sk);
2693 
2694 	if (tcp_may_undo(tp)) {
2695 		int mib_idx;
2696 
2697 		/* Happy end! We did not retransmit anything
2698 		 * or our original transmission succeeded.
2699 		 */
2700 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2701 		tcp_undo_cwr(sk, 1);
2702 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2703 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2704 		else
2705 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2706 
2707 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2708 		tp->undo_marker = 0;
2709 	}
2710 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2711 		/* Hold old state until something *above* high_seq
2712 		 * is ACKed. For Reno it is MUST to prevent false
2713 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2714 		tcp_moderate_cwnd(tp);
2715 		return 1;
2716 	}
2717 	tcp_set_ca_state(sk, TCP_CA_Open);
2718 	return 0;
2719 }
2720 
2721 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2722 static void tcp_try_undo_dsack(struct sock *sk)
2723 {
2724 	struct tcp_sock *tp = tcp_sk(sk);
2725 
2726 	if (tp->undo_marker && !tp->undo_retrans) {
2727 		DBGUNDO(sk, "D-SACK");
2728 		tcp_undo_cwr(sk, 1);
2729 		tp->undo_marker = 0;
2730 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2731 	}
2732 }
2733 
2734 /* We can clear retrans_stamp when there are no retransmissions in the
2735  * window. It would seem that it is trivially available for us in
2736  * tp->retrans_out, however, that kind of assumptions doesn't consider
2737  * what will happen if errors occur when sending retransmission for the
2738  * second time. ...It could the that such segment has only
2739  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2740  * the head skb is enough except for some reneging corner cases that
2741  * are not worth the effort.
2742  *
2743  * Main reason for all this complexity is the fact that connection dying
2744  * time now depends on the validity of the retrans_stamp, in particular,
2745  * that successive retransmissions of a segment must not advance
2746  * retrans_stamp under any conditions.
2747  */
2748 static int tcp_any_retrans_done(struct sock *sk)
2749 {
2750 	struct tcp_sock *tp = tcp_sk(sk);
2751 	struct sk_buff *skb;
2752 
2753 	if (tp->retrans_out)
2754 		return 1;
2755 
2756 	skb = tcp_write_queue_head(sk);
2757 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2758 		return 1;
2759 
2760 	return 0;
2761 }
2762 
2763 /* Undo during fast recovery after partial ACK. */
2764 
2765 static int tcp_try_undo_partial(struct sock *sk, int acked)
2766 {
2767 	struct tcp_sock *tp = tcp_sk(sk);
2768 	/* Partial ACK arrived. Force Hoe's retransmit. */
2769 	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2770 
2771 	if (tcp_may_undo(tp)) {
2772 		/* Plain luck! Hole if filled with delayed
2773 		 * packet, rather than with a retransmit.
2774 		 */
2775 		if (!tcp_any_retrans_done(sk))
2776 			tp->retrans_stamp = 0;
2777 
2778 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2779 
2780 		DBGUNDO(sk, "Hoe");
2781 		tcp_undo_cwr(sk, 0);
2782 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2783 
2784 		/* So... Do not make Hoe's retransmit yet.
2785 		 * If the first packet was delayed, the rest
2786 		 * ones are most probably delayed as well.
2787 		 */
2788 		failed = 0;
2789 	}
2790 	return failed;
2791 }
2792 
2793 /* Undo during loss recovery after partial ACK. */
2794 static int tcp_try_undo_loss(struct sock *sk)
2795 {
2796 	struct tcp_sock *tp = tcp_sk(sk);
2797 
2798 	if (tcp_may_undo(tp)) {
2799 		struct sk_buff *skb;
2800 		tcp_for_write_queue(skb, sk) {
2801 			if (skb == tcp_send_head(sk))
2802 				break;
2803 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2804 		}
2805 
2806 		tcp_clear_all_retrans_hints(tp);
2807 
2808 		DBGUNDO(sk, "partial loss");
2809 		tp->lost_out = 0;
2810 		tcp_undo_cwr(sk, 1);
2811 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2812 		inet_csk(sk)->icsk_retransmits = 0;
2813 		tp->undo_marker = 0;
2814 		if (tcp_is_sack(tp))
2815 			tcp_set_ca_state(sk, TCP_CA_Open);
2816 		return 1;
2817 	}
2818 	return 0;
2819 }
2820 
2821 static inline void tcp_complete_cwr(struct sock *sk)
2822 {
2823 	struct tcp_sock *tp = tcp_sk(sk);
2824 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2825 	tp->snd_cwnd_stamp = tcp_time_stamp;
2826 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2827 }
2828 
2829 static void tcp_try_keep_open(struct sock *sk)
2830 {
2831 	struct tcp_sock *tp = tcp_sk(sk);
2832 	int state = TCP_CA_Open;
2833 
2834 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
2835 		state = TCP_CA_Disorder;
2836 
2837 	if (inet_csk(sk)->icsk_ca_state != state) {
2838 		tcp_set_ca_state(sk, state);
2839 		tp->high_seq = tp->snd_nxt;
2840 	}
2841 }
2842 
2843 static void tcp_try_to_open(struct sock *sk, int flag)
2844 {
2845 	struct tcp_sock *tp = tcp_sk(sk);
2846 
2847 	tcp_verify_left_out(tp);
2848 
2849 	if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2850 		tp->retrans_stamp = 0;
2851 
2852 	if (flag & FLAG_ECE)
2853 		tcp_enter_cwr(sk, 1);
2854 
2855 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2856 		tcp_try_keep_open(sk);
2857 		tcp_moderate_cwnd(tp);
2858 	} else {
2859 		tcp_cwnd_down(sk, flag);
2860 	}
2861 }
2862 
2863 static void tcp_mtup_probe_failed(struct sock *sk)
2864 {
2865 	struct inet_connection_sock *icsk = inet_csk(sk);
2866 
2867 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2868 	icsk->icsk_mtup.probe_size = 0;
2869 }
2870 
2871 static void tcp_mtup_probe_success(struct sock *sk)
2872 {
2873 	struct tcp_sock *tp = tcp_sk(sk);
2874 	struct inet_connection_sock *icsk = inet_csk(sk);
2875 
2876 	/* FIXME: breaks with very large cwnd */
2877 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2878 	tp->snd_cwnd = tp->snd_cwnd *
2879 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2880 		       icsk->icsk_mtup.probe_size;
2881 	tp->snd_cwnd_cnt = 0;
2882 	tp->snd_cwnd_stamp = tcp_time_stamp;
2883 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2884 
2885 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2886 	icsk->icsk_mtup.probe_size = 0;
2887 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2888 }
2889 
2890 /* Do a simple retransmit without using the backoff mechanisms in
2891  * tcp_timer. This is used for path mtu discovery.
2892  * The socket is already locked here.
2893  */
2894 void tcp_simple_retransmit(struct sock *sk)
2895 {
2896 	const struct inet_connection_sock *icsk = inet_csk(sk);
2897 	struct tcp_sock *tp = tcp_sk(sk);
2898 	struct sk_buff *skb;
2899 	unsigned int mss = tcp_current_mss(sk);
2900 	u32 prior_lost = tp->lost_out;
2901 
2902 	tcp_for_write_queue(skb, sk) {
2903 		if (skb == tcp_send_head(sk))
2904 			break;
2905 		if (tcp_skb_seglen(skb) > mss &&
2906 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2907 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2908 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2909 				tp->retrans_out -= tcp_skb_pcount(skb);
2910 			}
2911 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2912 		}
2913 	}
2914 
2915 	tcp_clear_retrans_hints_partial(tp);
2916 
2917 	if (prior_lost == tp->lost_out)
2918 		return;
2919 
2920 	if (tcp_is_reno(tp))
2921 		tcp_limit_reno_sacked(tp);
2922 
2923 	tcp_verify_left_out(tp);
2924 
2925 	/* Don't muck with the congestion window here.
2926 	 * Reason is that we do not increase amount of _data_
2927 	 * in network, but units changed and effective
2928 	 * cwnd/ssthresh really reduced now.
2929 	 */
2930 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2931 		tp->high_seq = tp->snd_nxt;
2932 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2933 		tp->prior_ssthresh = 0;
2934 		tp->undo_marker = 0;
2935 		tcp_set_ca_state(sk, TCP_CA_Loss);
2936 	}
2937 	tcp_xmit_retransmit_queue(sk);
2938 }
2939 EXPORT_SYMBOL(tcp_simple_retransmit);
2940 
2941 /* Process an event, which can update packets-in-flight not trivially.
2942  * Main goal of this function is to calculate new estimate for left_out,
2943  * taking into account both packets sitting in receiver's buffer and
2944  * packets lost by network.
2945  *
2946  * Besides that it does CWND reduction, when packet loss is detected
2947  * and changes state of machine.
2948  *
2949  * It does _not_ decide what to send, it is made in function
2950  * tcp_xmit_retransmit_queue().
2951  */
2952 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2953 {
2954 	struct inet_connection_sock *icsk = inet_csk(sk);
2955 	struct tcp_sock *tp = tcp_sk(sk);
2956 	int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2957 	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2958 				    (tcp_fackets_out(tp) > tp->reordering));
2959 	int fast_rexmit = 0, mib_idx;
2960 
2961 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2962 		tp->sacked_out = 0;
2963 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2964 		tp->fackets_out = 0;
2965 
2966 	/* Now state machine starts.
2967 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2968 	if (flag & FLAG_ECE)
2969 		tp->prior_ssthresh = 0;
2970 
2971 	/* B. In all the states check for reneging SACKs. */
2972 	if (tcp_check_sack_reneging(sk, flag))
2973 		return;
2974 
2975 	/* C. Process data loss notification, provided it is valid. */
2976 	if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2977 	    before(tp->snd_una, tp->high_seq) &&
2978 	    icsk->icsk_ca_state != TCP_CA_Open &&
2979 	    tp->fackets_out > tp->reordering) {
2980 		tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering, 0);
2981 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2982 	}
2983 
2984 	/* D. Check consistency of the current state. */
2985 	tcp_verify_left_out(tp);
2986 
2987 	/* E. Check state exit conditions. State can be terminated
2988 	 *    when high_seq is ACKed. */
2989 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2990 		WARN_ON(tp->retrans_out != 0);
2991 		tp->retrans_stamp = 0;
2992 	} else if (!before(tp->snd_una, tp->high_seq)) {
2993 		switch (icsk->icsk_ca_state) {
2994 		case TCP_CA_Loss:
2995 			icsk->icsk_retransmits = 0;
2996 			if (tcp_try_undo_recovery(sk))
2997 				return;
2998 			break;
2999 
3000 		case TCP_CA_CWR:
3001 			/* CWR is to be held something *above* high_seq
3002 			 * is ACKed for CWR bit to reach receiver. */
3003 			if (tp->snd_una != tp->high_seq) {
3004 				tcp_complete_cwr(sk);
3005 				tcp_set_ca_state(sk, TCP_CA_Open);
3006 			}
3007 			break;
3008 
3009 		case TCP_CA_Disorder:
3010 			tcp_try_undo_dsack(sk);
3011 			if (!tp->undo_marker ||
3012 			    /* For SACK case do not Open to allow to undo
3013 			     * catching for all duplicate ACKs. */
3014 			    tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
3015 				tp->undo_marker = 0;
3016 				tcp_set_ca_state(sk, TCP_CA_Open);
3017 			}
3018 			break;
3019 
3020 		case TCP_CA_Recovery:
3021 			if (tcp_is_reno(tp))
3022 				tcp_reset_reno_sack(tp);
3023 			if (tcp_try_undo_recovery(sk))
3024 				return;
3025 			tcp_complete_cwr(sk);
3026 			break;
3027 		}
3028 	}
3029 
3030 	/* F. Process state. */
3031 	switch (icsk->icsk_ca_state) {
3032 	case TCP_CA_Recovery:
3033 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3034 			if (tcp_is_reno(tp) && is_dupack)
3035 				tcp_add_reno_sack(sk);
3036 		} else
3037 			do_lost = tcp_try_undo_partial(sk, pkts_acked);
3038 		break;
3039 	case TCP_CA_Loss:
3040 		if (flag & FLAG_DATA_ACKED)
3041 			icsk->icsk_retransmits = 0;
3042 		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3043 			tcp_reset_reno_sack(tp);
3044 		if (!tcp_try_undo_loss(sk)) {
3045 			tcp_moderate_cwnd(tp);
3046 			tcp_xmit_retransmit_queue(sk);
3047 			return;
3048 		}
3049 		if (icsk->icsk_ca_state != TCP_CA_Open)
3050 			return;
3051 		/* Loss is undone; fall through to processing in Open state. */
3052 	default:
3053 		if (tcp_is_reno(tp)) {
3054 			if (flag & FLAG_SND_UNA_ADVANCED)
3055 				tcp_reset_reno_sack(tp);
3056 			if (is_dupack)
3057 				tcp_add_reno_sack(sk);
3058 		}
3059 
3060 		if (icsk->icsk_ca_state == TCP_CA_Disorder)
3061 			tcp_try_undo_dsack(sk);
3062 
3063 		if (!tcp_time_to_recover(sk)) {
3064 			tcp_try_to_open(sk, flag);
3065 			return;
3066 		}
3067 
3068 		/* MTU probe failure: don't reduce cwnd */
3069 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3070 		    icsk->icsk_mtup.probe_size &&
3071 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3072 			tcp_mtup_probe_failed(sk);
3073 			/* Restores the reduction we did in tcp_mtup_probe() */
3074 			tp->snd_cwnd++;
3075 			tcp_simple_retransmit(sk);
3076 			return;
3077 		}
3078 
3079 		/* Otherwise enter Recovery state */
3080 
3081 		if (tcp_is_reno(tp))
3082 			mib_idx = LINUX_MIB_TCPRENORECOVERY;
3083 		else
3084 			mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3085 
3086 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
3087 
3088 		tp->high_seq = tp->snd_nxt;
3089 		tp->prior_ssthresh = 0;
3090 		tp->undo_marker = tp->snd_una;
3091 		tp->undo_retrans = tp->retrans_out;
3092 
3093 		if (icsk->icsk_ca_state < TCP_CA_CWR) {
3094 			if (!(flag & FLAG_ECE))
3095 				tp->prior_ssthresh = tcp_current_ssthresh(sk);
3096 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3097 			TCP_ECN_queue_cwr(tp);
3098 		}
3099 
3100 		tp->bytes_acked = 0;
3101 		tp->snd_cwnd_cnt = 0;
3102 		tcp_set_ca_state(sk, TCP_CA_Recovery);
3103 		fast_rexmit = 1;
3104 	}
3105 
3106 	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3107 		tcp_update_scoreboard(sk, fast_rexmit);
3108 	tcp_cwnd_down(sk, flag);
3109 	tcp_xmit_retransmit_queue(sk);
3110 }
3111 
3112 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3113 {
3114 	tcp_rtt_estimator(sk, seq_rtt);
3115 	tcp_set_rto(sk);
3116 	inet_csk(sk)->icsk_backoff = 0;
3117 }
3118 
3119 /* Read draft-ietf-tcplw-high-performance before mucking
3120  * with this code. (Supersedes RFC1323)
3121  */
3122 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3123 {
3124 	/* RTTM Rule: A TSecr value received in a segment is used to
3125 	 * update the averaged RTT measurement only if the segment
3126 	 * acknowledges some new data, i.e., only if it advances the
3127 	 * left edge of the send window.
3128 	 *
3129 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3130 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3131 	 *
3132 	 * Changed: reset backoff as soon as we see the first valid sample.
3133 	 * If we do not, we get strongly overestimated rto. With timestamps
3134 	 * samples are accepted even from very old segments: f.e., when rtt=1
3135 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3136 	 * answer arrives rto becomes 120 seconds! If at least one of segments
3137 	 * in window is lost... Voila.	 			--ANK (010210)
3138 	 */
3139 	struct tcp_sock *tp = tcp_sk(sk);
3140 
3141 	tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3142 }
3143 
3144 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3145 {
3146 	/* We don't have a timestamp. Can only use
3147 	 * packets that are not retransmitted to determine
3148 	 * rtt estimates. Also, we must not reset the
3149 	 * backoff for rto until we get a non-retransmitted
3150 	 * packet. This allows us to deal with a situation
3151 	 * where the network delay has increased suddenly.
3152 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3153 	 */
3154 
3155 	if (flag & FLAG_RETRANS_DATA_ACKED)
3156 		return;
3157 
3158 	tcp_valid_rtt_meas(sk, seq_rtt);
3159 }
3160 
3161 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3162 				      const s32 seq_rtt)
3163 {
3164 	const struct tcp_sock *tp = tcp_sk(sk);
3165 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3166 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3167 		tcp_ack_saw_tstamp(sk, flag);
3168 	else if (seq_rtt >= 0)
3169 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
3170 }
3171 
3172 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3173 {
3174 	const struct inet_connection_sock *icsk = inet_csk(sk);
3175 	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3176 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3177 }
3178 
3179 /* Restart timer after forward progress on connection.
3180  * RFC2988 recommends to restart timer to now+rto.
3181  */
3182 static void tcp_rearm_rto(struct sock *sk)
3183 {
3184 	struct tcp_sock *tp = tcp_sk(sk);
3185 
3186 	if (!tp->packets_out) {
3187 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3188 	} else {
3189 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3190 					  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3191 	}
3192 }
3193 
3194 /* If we get here, the whole TSO packet has not been acked. */
3195 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3196 {
3197 	struct tcp_sock *tp = tcp_sk(sk);
3198 	u32 packets_acked;
3199 
3200 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3201 
3202 	packets_acked = tcp_skb_pcount(skb);
3203 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3204 		return 0;
3205 	packets_acked -= tcp_skb_pcount(skb);
3206 
3207 	if (packets_acked) {
3208 		BUG_ON(tcp_skb_pcount(skb) == 0);
3209 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3210 	}
3211 
3212 	return packets_acked;
3213 }
3214 
3215 /* Remove acknowledged frames from the retransmission queue. If our packet
3216  * is before the ack sequence we can discard it as it's confirmed to have
3217  * arrived at the other end.
3218  */
3219 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3220 			       u32 prior_snd_una)
3221 {
3222 	struct tcp_sock *tp = tcp_sk(sk);
3223 	const struct inet_connection_sock *icsk = inet_csk(sk);
3224 	struct sk_buff *skb;
3225 	u32 now = tcp_time_stamp;
3226 	int fully_acked = 1;
3227 	int flag = 0;
3228 	u32 pkts_acked = 0;
3229 	u32 reord = tp->packets_out;
3230 	u32 prior_sacked = tp->sacked_out;
3231 	s32 seq_rtt = -1;
3232 	s32 ca_seq_rtt = -1;
3233 	ktime_t last_ackt = net_invalid_timestamp();
3234 
3235 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3236 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3237 		u32 acked_pcount;
3238 		u8 sacked = scb->sacked;
3239 
3240 		/* Determine how many packets and what bytes were acked, tso and else */
3241 		if (after(scb->end_seq, tp->snd_una)) {
3242 			if (tcp_skb_pcount(skb) == 1 ||
3243 			    !after(tp->snd_una, scb->seq))
3244 				break;
3245 
3246 			acked_pcount = tcp_tso_acked(sk, skb);
3247 			if (!acked_pcount)
3248 				break;
3249 
3250 			fully_acked = 0;
3251 		} else {
3252 			acked_pcount = tcp_skb_pcount(skb);
3253 		}
3254 
3255 		if (sacked & TCPCB_RETRANS) {
3256 			if (sacked & TCPCB_SACKED_RETRANS)
3257 				tp->retrans_out -= acked_pcount;
3258 			flag |= FLAG_RETRANS_DATA_ACKED;
3259 			ca_seq_rtt = -1;
3260 			seq_rtt = -1;
3261 			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3262 				flag |= FLAG_NONHEAD_RETRANS_ACKED;
3263 		} else {
3264 			ca_seq_rtt = now - scb->when;
3265 			last_ackt = skb->tstamp;
3266 			if (seq_rtt < 0) {
3267 				seq_rtt = ca_seq_rtt;
3268 			}
3269 			if (!(sacked & TCPCB_SACKED_ACKED))
3270 				reord = min(pkts_acked, reord);
3271 		}
3272 
3273 		if (sacked & TCPCB_SACKED_ACKED)
3274 			tp->sacked_out -= acked_pcount;
3275 		if (sacked & TCPCB_LOST)
3276 			tp->lost_out -= acked_pcount;
3277 
3278 		tp->packets_out -= acked_pcount;
3279 		pkts_acked += acked_pcount;
3280 
3281 		/* Initial outgoing SYN's get put onto the write_queue
3282 		 * just like anything else we transmit.  It is not
3283 		 * true data, and if we misinform our callers that
3284 		 * this ACK acks real data, we will erroneously exit
3285 		 * connection startup slow start one packet too
3286 		 * quickly.  This is severely frowned upon behavior.
3287 		 */
3288 		if (!(scb->flags & TCPHDR_SYN)) {
3289 			flag |= FLAG_DATA_ACKED;
3290 		} else {
3291 			flag |= FLAG_SYN_ACKED;
3292 			tp->retrans_stamp = 0;
3293 		}
3294 
3295 		if (!fully_acked)
3296 			break;
3297 
3298 		tcp_unlink_write_queue(skb, sk);
3299 		sk_wmem_free_skb(sk, skb);
3300 		tp->scoreboard_skb_hint = NULL;
3301 		if (skb == tp->retransmit_skb_hint)
3302 			tp->retransmit_skb_hint = NULL;
3303 		if (skb == tp->lost_skb_hint)
3304 			tp->lost_skb_hint = NULL;
3305 	}
3306 
3307 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3308 		tp->snd_up = tp->snd_una;
3309 
3310 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3311 		flag |= FLAG_SACK_RENEGING;
3312 
3313 	if (flag & FLAG_ACKED) {
3314 		const struct tcp_congestion_ops *ca_ops
3315 			= inet_csk(sk)->icsk_ca_ops;
3316 
3317 		if (unlikely(icsk->icsk_mtup.probe_size &&
3318 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3319 			tcp_mtup_probe_success(sk);
3320 		}
3321 
3322 		tcp_ack_update_rtt(sk, flag, seq_rtt);
3323 		tcp_rearm_rto(sk);
3324 
3325 		if (tcp_is_reno(tp)) {
3326 			tcp_remove_reno_sacks(sk, pkts_acked);
3327 		} else {
3328 			int delta;
3329 
3330 			/* Non-retransmitted hole got filled? That's reordering */
3331 			if (reord < prior_fackets)
3332 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3333 
3334 			delta = tcp_is_fack(tp) ? pkts_acked :
3335 						  prior_sacked - tp->sacked_out;
3336 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3337 		}
3338 
3339 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3340 
3341 		if (ca_ops->pkts_acked) {
3342 			s32 rtt_us = -1;
3343 
3344 			/* Is the ACK triggering packet unambiguous? */
3345 			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3346 				/* High resolution needed and available? */
3347 				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3348 				    !ktime_equal(last_ackt,
3349 						 net_invalid_timestamp()))
3350 					rtt_us = ktime_us_delta(ktime_get_real(),
3351 								last_ackt);
3352 				else if (ca_seq_rtt > 0)
3353 					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3354 			}
3355 
3356 			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3357 		}
3358 	}
3359 
3360 #if FASTRETRANS_DEBUG > 0
3361 	WARN_ON((int)tp->sacked_out < 0);
3362 	WARN_ON((int)tp->lost_out < 0);
3363 	WARN_ON((int)tp->retrans_out < 0);
3364 	if (!tp->packets_out && tcp_is_sack(tp)) {
3365 		icsk = inet_csk(sk);
3366 		if (tp->lost_out) {
3367 			printk(KERN_DEBUG "Leak l=%u %d\n",
3368 			       tp->lost_out, icsk->icsk_ca_state);
3369 			tp->lost_out = 0;
3370 		}
3371 		if (tp->sacked_out) {
3372 			printk(KERN_DEBUG "Leak s=%u %d\n",
3373 			       tp->sacked_out, icsk->icsk_ca_state);
3374 			tp->sacked_out = 0;
3375 		}
3376 		if (tp->retrans_out) {
3377 			printk(KERN_DEBUG "Leak r=%u %d\n",
3378 			       tp->retrans_out, icsk->icsk_ca_state);
3379 			tp->retrans_out = 0;
3380 		}
3381 	}
3382 #endif
3383 	return flag;
3384 }
3385 
3386 static void tcp_ack_probe(struct sock *sk)
3387 {
3388 	const struct tcp_sock *tp = tcp_sk(sk);
3389 	struct inet_connection_sock *icsk = inet_csk(sk);
3390 
3391 	/* Was it a usable window open? */
3392 
3393 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3394 		icsk->icsk_backoff = 0;
3395 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3396 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3397 		 * This function is not for random using!
3398 		 */
3399 	} else {
3400 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3401 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3402 					  TCP_RTO_MAX);
3403 	}
3404 }
3405 
3406 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3407 {
3408 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3409 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3410 }
3411 
3412 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3413 {
3414 	const struct tcp_sock *tp = tcp_sk(sk);
3415 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3416 		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3417 }
3418 
3419 /* Check that window update is acceptable.
3420  * The function assumes that snd_una<=ack<=snd_next.
3421  */
3422 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3423 					const u32 ack, const u32 ack_seq,
3424 					const u32 nwin)
3425 {
3426 	return	after(ack, tp->snd_una) ||
3427 		after(ack_seq, tp->snd_wl1) ||
3428 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3429 }
3430 
3431 /* Update our send window.
3432  *
3433  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3434  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3435  */
3436 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3437 				 u32 ack_seq)
3438 {
3439 	struct tcp_sock *tp = tcp_sk(sk);
3440 	int flag = 0;
3441 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3442 
3443 	if (likely(!tcp_hdr(skb)->syn))
3444 		nwin <<= tp->rx_opt.snd_wscale;
3445 
3446 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3447 		flag |= FLAG_WIN_UPDATE;
3448 		tcp_update_wl(tp, ack_seq);
3449 
3450 		if (tp->snd_wnd != nwin) {
3451 			tp->snd_wnd = nwin;
3452 
3453 			/* Note, it is the only place, where
3454 			 * fast path is recovered for sending TCP.
3455 			 */
3456 			tp->pred_flags = 0;
3457 			tcp_fast_path_check(sk);
3458 
3459 			if (nwin > tp->max_window) {
3460 				tp->max_window = nwin;
3461 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3462 			}
3463 		}
3464 	}
3465 
3466 	tp->snd_una = ack;
3467 
3468 	return flag;
3469 }
3470 
3471 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3472  * continue in congestion avoidance.
3473  */
3474 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3475 {
3476 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3477 	tp->snd_cwnd_cnt = 0;
3478 	tp->bytes_acked = 0;
3479 	TCP_ECN_queue_cwr(tp);
3480 	tcp_moderate_cwnd(tp);
3481 }
3482 
3483 /* A conservative spurious RTO response algorithm: reduce cwnd using
3484  * rate halving and continue in congestion avoidance.
3485  */
3486 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3487 {
3488 	tcp_enter_cwr(sk, 0);
3489 }
3490 
3491 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3492 {
3493 	if (flag & FLAG_ECE)
3494 		tcp_ratehalving_spur_to_response(sk);
3495 	else
3496 		tcp_undo_cwr(sk, 1);
3497 }
3498 
3499 /* F-RTO spurious RTO detection algorithm (RFC4138)
3500  *
3501  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3502  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3503  * window (but not to or beyond highest sequence sent before RTO):
3504  *   On First ACK,  send two new segments out.
3505  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3506  *                  algorithm is not part of the F-RTO detection algorithm
3507  *                  given in RFC4138 but can be selected separately).
3508  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3509  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3510  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3511  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3512  *
3513  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3514  * original window even after we transmit two new data segments.
3515  *
3516  * SACK version:
3517  *   on first step, wait until first cumulative ACK arrives, then move to
3518  *   the second step. In second step, the next ACK decides.
3519  *
3520  * F-RTO is implemented (mainly) in four functions:
3521  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3522  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3523  *     called when tcp_use_frto() showed green light
3524  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3525  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3526  *     to prove that the RTO is indeed spurious. It transfers the control
3527  *     from F-RTO to the conventional RTO recovery
3528  */
3529 static int tcp_process_frto(struct sock *sk, int flag)
3530 {
3531 	struct tcp_sock *tp = tcp_sk(sk);
3532 
3533 	tcp_verify_left_out(tp);
3534 
3535 	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3536 	if (flag & FLAG_DATA_ACKED)
3537 		inet_csk(sk)->icsk_retransmits = 0;
3538 
3539 	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3540 	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3541 		tp->undo_marker = 0;
3542 
3543 	if (!before(tp->snd_una, tp->frto_highmark)) {
3544 		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3545 		return 1;
3546 	}
3547 
3548 	if (!tcp_is_sackfrto(tp)) {
3549 		/* RFC4138 shortcoming in step 2; should also have case c):
3550 		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3551 		 * data, winupdate
3552 		 */
3553 		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3554 			return 1;
3555 
3556 		if (!(flag & FLAG_DATA_ACKED)) {
3557 			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3558 					    flag);
3559 			return 1;
3560 		}
3561 	} else {
3562 		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3563 			/* Prevent sending of new data. */
3564 			tp->snd_cwnd = min(tp->snd_cwnd,
3565 					   tcp_packets_in_flight(tp));
3566 			return 1;
3567 		}
3568 
3569 		if ((tp->frto_counter >= 2) &&
3570 		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3571 		     ((flag & FLAG_DATA_SACKED) &&
3572 		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3573 			/* RFC4138 shortcoming (see comment above) */
3574 			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3575 			    (flag & FLAG_NOT_DUP))
3576 				return 1;
3577 
3578 			tcp_enter_frto_loss(sk, 3, flag);
3579 			return 1;
3580 		}
3581 	}
3582 
3583 	if (tp->frto_counter == 1) {
3584 		/* tcp_may_send_now needs to see updated state */
3585 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3586 		tp->frto_counter = 2;
3587 
3588 		if (!tcp_may_send_now(sk))
3589 			tcp_enter_frto_loss(sk, 2, flag);
3590 
3591 		return 1;
3592 	} else {
3593 		switch (sysctl_tcp_frto_response) {
3594 		case 2:
3595 			tcp_undo_spur_to_response(sk, flag);
3596 			break;
3597 		case 1:
3598 			tcp_conservative_spur_to_response(tp);
3599 			break;
3600 		default:
3601 			tcp_ratehalving_spur_to_response(sk);
3602 			break;
3603 		}
3604 		tp->frto_counter = 0;
3605 		tp->undo_marker = 0;
3606 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3607 	}
3608 	return 0;
3609 }
3610 
3611 /* This routine deals with incoming acks, but not outgoing ones. */
3612 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3613 {
3614 	struct inet_connection_sock *icsk = inet_csk(sk);
3615 	struct tcp_sock *tp = tcp_sk(sk);
3616 	u32 prior_snd_una = tp->snd_una;
3617 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3618 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3619 	u32 prior_in_flight;
3620 	u32 prior_fackets;
3621 	int prior_packets;
3622 	int frto_cwnd = 0;
3623 
3624 	/* If the ack is older than previous acks
3625 	 * then we can probably ignore it.
3626 	 */
3627 	if (before(ack, prior_snd_una))
3628 		goto old_ack;
3629 
3630 	/* If the ack includes data we haven't sent yet, discard
3631 	 * this segment (RFC793 Section 3.9).
3632 	 */
3633 	if (after(ack, tp->snd_nxt))
3634 		goto invalid_ack;
3635 
3636 	if (after(ack, prior_snd_una))
3637 		flag |= FLAG_SND_UNA_ADVANCED;
3638 
3639 	if (sysctl_tcp_abc) {
3640 		if (icsk->icsk_ca_state < TCP_CA_CWR)
3641 			tp->bytes_acked += ack - prior_snd_una;
3642 		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3643 			/* we assume just one segment left network */
3644 			tp->bytes_acked += min(ack - prior_snd_una,
3645 					       tp->mss_cache);
3646 	}
3647 
3648 	prior_fackets = tp->fackets_out;
3649 	prior_in_flight = tcp_packets_in_flight(tp);
3650 
3651 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3652 		/* Window is constant, pure forward advance.
3653 		 * No more checks are required.
3654 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3655 		 */
3656 		tcp_update_wl(tp, ack_seq);
3657 		tp->snd_una = ack;
3658 		flag |= FLAG_WIN_UPDATE;
3659 
3660 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3661 
3662 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3663 	} else {
3664 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3665 			flag |= FLAG_DATA;
3666 		else
3667 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3668 
3669 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3670 
3671 		if (TCP_SKB_CB(skb)->sacked)
3672 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3673 
3674 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3675 			flag |= FLAG_ECE;
3676 
3677 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3678 	}
3679 
3680 	/* We passed data and got it acked, remove any soft error
3681 	 * log. Something worked...
3682 	 */
3683 	sk->sk_err_soft = 0;
3684 	icsk->icsk_probes_out = 0;
3685 	tp->rcv_tstamp = tcp_time_stamp;
3686 	prior_packets = tp->packets_out;
3687 	if (!prior_packets)
3688 		goto no_queue;
3689 
3690 	/* See if we can take anything off of the retransmit queue. */
3691 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3692 
3693 	if (tp->frto_counter)
3694 		frto_cwnd = tcp_process_frto(sk, flag);
3695 	/* Guarantee sacktag reordering detection against wrap-arounds */
3696 	if (before(tp->frto_highmark, tp->snd_una))
3697 		tp->frto_highmark = 0;
3698 
3699 	if (tcp_ack_is_dubious(sk, flag)) {
3700 		/* Advance CWND, if state allows this. */
3701 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3702 		    tcp_may_raise_cwnd(sk, flag))
3703 			tcp_cong_avoid(sk, ack, prior_in_flight);
3704 		tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3705 				      flag);
3706 	} else {
3707 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3708 			tcp_cong_avoid(sk, ack, prior_in_flight);
3709 	}
3710 
3711 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3712 		dst_confirm(__sk_dst_get(sk));
3713 
3714 	return 1;
3715 
3716 no_queue:
3717 	/* If this ack opens up a zero window, clear backoff.  It was
3718 	 * being used to time the probes, and is probably far higher than
3719 	 * it needs to be for normal retransmission.
3720 	 */
3721 	if (tcp_send_head(sk))
3722 		tcp_ack_probe(sk);
3723 	return 1;
3724 
3725 invalid_ack:
3726 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3727 	return -1;
3728 
3729 old_ack:
3730 	if (TCP_SKB_CB(skb)->sacked) {
3731 		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3732 		if (icsk->icsk_ca_state == TCP_CA_Open)
3733 			tcp_try_keep_open(sk);
3734 	}
3735 
3736 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3737 	return 0;
3738 }
3739 
3740 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3741  * But, this can also be called on packets in the established flow when
3742  * the fast version below fails.
3743  */
3744 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3745 		       u8 **hvpp, int estab)
3746 {
3747 	unsigned char *ptr;
3748 	struct tcphdr *th = tcp_hdr(skb);
3749 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3750 
3751 	ptr = (unsigned char *)(th + 1);
3752 	opt_rx->saw_tstamp = 0;
3753 
3754 	while (length > 0) {
3755 		int opcode = *ptr++;
3756 		int opsize;
3757 
3758 		switch (opcode) {
3759 		case TCPOPT_EOL:
3760 			return;
3761 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3762 			length--;
3763 			continue;
3764 		default:
3765 			opsize = *ptr++;
3766 			if (opsize < 2) /* "silly options" */
3767 				return;
3768 			if (opsize > length)
3769 				return;	/* don't parse partial options */
3770 			switch (opcode) {
3771 			case TCPOPT_MSS:
3772 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3773 					u16 in_mss = get_unaligned_be16(ptr);
3774 					if (in_mss) {
3775 						if (opt_rx->user_mss &&
3776 						    opt_rx->user_mss < in_mss)
3777 							in_mss = opt_rx->user_mss;
3778 						opt_rx->mss_clamp = in_mss;
3779 					}
3780 				}
3781 				break;
3782 			case TCPOPT_WINDOW:
3783 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3784 				    !estab && sysctl_tcp_window_scaling) {
3785 					__u8 snd_wscale = *(__u8 *)ptr;
3786 					opt_rx->wscale_ok = 1;
3787 					if (snd_wscale > 14) {
3788 						if (net_ratelimit())
3789 							printk(KERN_INFO "tcp_parse_options: Illegal window "
3790 							       "scaling value %d >14 received.\n",
3791 							       snd_wscale);
3792 						snd_wscale = 14;
3793 					}
3794 					opt_rx->snd_wscale = snd_wscale;
3795 				}
3796 				break;
3797 			case TCPOPT_TIMESTAMP:
3798 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3799 				    ((estab && opt_rx->tstamp_ok) ||
3800 				     (!estab && sysctl_tcp_timestamps))) {
3801 					opt_rx->saw_tstamp = 1;
3802 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3803 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3804 				}
3805 				break;
3806 			case TCPOPT_SACK_PERM:
3807 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3808 				    !estab && sysctl_tcp_sack) {
3809 					opt_rx->sack_ok = 1;
3810 					tcp_sack_reset(opt_rx);
3811 				}
3812 				break;
3813 
3814 			case TCPOPT_SACK:
3815 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3816 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3817 				   opt_rx->sack_ok) {
3818 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3819 				}
3820 				break;
3821 #ifdef CONFIG_TCP_MD5SIG
3822 			case TCPOPT_MD5SIG:
3823 				/*
3824 				 * The MD5 Hash has already been
3825 				 * checked (see tcp_v{4,6}_do_rcv()).
3826 				 */
3827 				break;
3828 #endif
3829 			case TCPOPT_COOKIE:
3830 				/* This option is variable length.
3831 				 */
3832 				switch (opsize) {
3833 				case TCPOLEN_COOKIE_BASE:
3834 					/* not yet implemented */
3835 					break;
3836 				case TCPOLEN_COOKIE_PAIR:
3837 					/* not yet implemented */
3838 					break;
3839 				case TCPOLEN_COOKIE_MIN+0:
3840 				case TCPOLEN_COOKIE_MIN+2:
3841 				case TCPOLEN_COOKIE_MIN+4:
3842 				case TCPOLEN_COOKIE_MIN+6:
3843 				case TCPOLEN_COOKIE_MAX:
3844 					/* 16-bit multiple */
3845 					opt_rx->cookie_plus = opsize;
3846 					*hvpp = ptr;
3847 					break;
3848 				default:
3849 					/* ignore option */
3850 					break;
3851 				}
3852 				break;
3853 			}
3854 
3855 			ptr += opsize-2;
3856 			length -= opsize;
3857 		}
3858 	}
3859 }
3860 EXPORT_SYMBOL(tcp_parse_options);
3861 
3862 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3863 {
3864 	__be32 *ptr = (__be32 *)(th + 1);
3865 
3866 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3867 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3868 		tp->rx_opt.saw_tstamp = 1;
3869 		++ptr;
3870 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3871 		++ptr;
3872 		tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3873 		return 1;
3874 	}
3875 	return 0;
3876 }
3877 
3878 /* Fast parse options. This hopes to only see timestamps.
3879  * If it is wrong it falls back on tcp_parse_options().
3880  */
3881 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3882 				  struct tcp_sock *tp, u8 **hvpp)
3883 {
3884 	/* In the spirit of fast parsing, compare doff directly to constant
3885 	 * values.  Because equality is used, short doff can be ignored here.
3886 	 */
3887 	if (th->doff == (sizeof(*th) / 4)) {
3888 		tp->rx_opt.saw_tstamp = 0;
3889 		return 0;
3890 	} else if (tp->rx_opt.tstamp_ok &&
3891 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3892 		if (tcp_parse_aligned_timestamp(tp, th))
3893 			return 1;
3894 	}
3895 	tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3896 	return 1;
3897 }
3898 
3899 #ifdef CONFIG_TCP_MD5SIG
3900 /*
3901  * Parse MD5 Signature option
3902  */
3903 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3904 {
3905 	int length = (th->doff << 2) - sizeof (*th);
3906 	u8 *ptr = (u8*)(th + 1);
3907 
3908 	/* If the TCP option is too short, we can short cut */
3909 	if (length < TCPOLEN_MD5SIG)
3910 		return NULL;
3911 
3912 	while (length > 0) {
3913 		int opcode = *ptr++;
3914 		int opsize;
3915 
3916 		switch(opcode) {
3917 		case TCPOPT_EOL:
3918 			return NULL;
3919 		case TCPOPT_NOP:
3920 			length--;
3921 			continue;
3922 		default:
3923 			opsize = *ptr++;
3924 			if (opsize < 2 || opsize > length)
3925 				return NULL;
3926 			if (opcode == TCPOPT_MD5SIG)
3927 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3928 		}
3929 		ptr += opsize - 2;
3930 		length -= opsize;
3931 	}
3932 	return NULL;
3933 }
3934 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3935 #endif
3936 
3937 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3938 {
3939 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3940 	tp->rx_opt.ts_recent_stamp = get_seconds();
3941 }
3942 
3943 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3944 {
3945 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3946 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3947 		 * extra check below makes sure this can only happen
3948 		 * for pure ACK frames.  -DaveM
3949 		 *
3950 		 * Not only, also it occurs for expired timestamps.
3951 		 */
3952 
3953 		if (tcp_paws_check(&tp->rx_opt, 0))
3954 			tcp_store_ts_recent(tp);
3955 	}
3956 }
3957 
3958 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3959  *
3960  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3961  * it can pass through stack. So, the following predicate verifies that
3962  * this segment is not used for anything but congestion avoidance or
3963  * fast retransmit. Moreover, we even are able to eliminate most of such
3964  * second order effects, if we apply some small "replay" window (~RTO)
3965  * to timestamp space.
3966  *
3967  * All these measures still do not guarantee that we reject wrapped ACKs
3968  * on networks with high bandwidth, when sequence space is recycled fastly,
3969  * but it guarantees that such events will be very rare and do not affect
3970  * connection seriously. This doesn't look nice, but alas, PAWS is really
3971  * buggy extension.
3972  *
3973  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3974  * states that events when retransmit arrives after original data are rare.
3975  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3976  * the biggest problem on large power networks even with minor reordering.
3977  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3978  * up to bandwidth of 18Gigabit/sec. 8) ]
3979  */
3980 
3981 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3982 {
3983 	struct tcp_sock *tp = tcp_sk(sk);
3984 	struct tcphdr *th = tcp_hdr(skb);
3985 	u32 seq = TCP_SKB_CB(skb)->seq;
3986 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3987 
3988 	return (/* 1. Pure ACK with correct sequence number. */
3989 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3990 
3991 		/* 2. ... and duplicate ACK. */
3992 		ack == tp->snd_una &&
3993 
3994 		/* 3. ... and does not update window. */
3995 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3996 
3997 		/* 4. ... and sits in replay window. */
3998 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3999 }
4000 
4001 static inline int tcp_paws_discard(const struct sock *sk,
4002 				   const struct sk_buff *skb)
4003 {
4004 	const struct tcp_sock *tp = tcp_sk(sk);
4005 
4006 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4007 	       !tcp_disordered_ack(sk, skb);
4008 }
4009 
4010 /* Check segment sequence number for validity.
4011  *
4012  * Segment controls are considered valid, if the segment
4013  * fits to the window after truncation to the window. Acceptability
4014  * of data (and SYN, FIN, of course) is checked separately.
4015  * See tcp_data_queue(), for example.
4016  *
4017  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4018  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4019  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4020  * (borrowed from freebsd)
4021  */
4022 
4023 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
4024 {
4025 	return	!before(end_seq, tp->rcv_wup) &&
4026 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4027 }
4028 
4029 /* When we get a reset we do this. */
4030 static void tcp_reset(struct sock *sk)
4031 {
4032 	/* We want the right error as BSD sees it (and indeed as we do). */
4033 	switch (sk->sk_state) {
4034 	case TCP_SYN_SENT:
4035 		sk->sk_err = ECONNREFUSED;
4036 		break;
4037 	case TCP_CLOSE_WAIT:
4038 		sk->sk_err = EPIPE;
4039 		break;
4040 	case TCP_CLOSE:
4041 		return;
4042 	default:
4043 		sk->sk_err = ECONNRESET;
4044 	}
4045 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4046 	smp_wmb();
4047 
4048 	if (!sock_flag(sk, SOCK_DEAD))
4049 		sk->sk_error_report(sk);
4050 
4051 	tcp_done(sk);
4052 }
4053 
4054 /*
4055  * 	Process the FIN bit. This now behaves as it is supposed to work
4056  *	and the FIN takes effect when it is validly part of sequence
4057  *	space. Not before when we get holes.
4058  *
4059  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4060  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4061  *	TIME-WAIT)
4062  *
4063  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4064  *	close and we go into CLOSING (and later onto TIME-WAIT)
4065  *
4066  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4067  */
4068 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
4069 {
4070 	struct tcp_sock *tp = tcp_sk(sk);
4071 
4072 	inet_csk_schedule_ack(sk);
4073 
4074 	sk->sk_shutdown |= RCV_SHUTDOWN;
4075 	sock_set_flag(sk, SOCK_DONE);
4076 
4077 	switch (sk->sk_state) {
4078 	case TCP_SYN_RECV:
4079 	case TCP_ESTABLISHED:
4080 		/* Move to CLOSE_WAIT */
4081 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4082 		inet_csk(sk)->icsk_ack.pingpong = 1;
4083 		break;
4084 
4085 	case TCP_CLOSE_WAIT:
4086 	case TCP_CLOSING:
4087 		/* Received a retransmission of the FIN, do
4088 		 * nothing.
4089 		 */
4090 		break;
4091 	case TCP_LAST_ACK:
4092 		/* RFC793: Remain in the LAST-ACK state. */
4093 		break;
4094 
4095 	case TCP_FIN_WAIT1:
4096 		/* This case occurs when a simultaneous close
4097 		 * happens, we must ack the received FIN and
4098 		 * enter the CLOSING state.
4099 		 */
4100 		tcp_send_ack(sk);
4101 		tcp_set_state(sk, TCP_CLOSING);
4102 		break;
4103 	case TCP_FIN_WAIT2:
4104 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4105 		tcp_send_ack(sk);
4106 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4107 		break;
4108 	default:
4109 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4110 		 * cases we should never reach this piece of code.
4111 		 */
4112 		printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4113 		       __func__, sk->sk_state);
4114 		break;
4115 	}
4116 
4117 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4118 	 * Probably, we should reset in this case. For now drop them.
4119 	 */
4120 	__skb_queue_purge(&tp->out_of_order_queue);
4121 	if (tcp_is_sack(tp))
4122 		tcp_sack_reset(&tp->rx_opt);
4123 	sk_mem_reclaim(sk);
4124 
4125 	if (!sock_flag(sk, SOCK_DEAD)) {
4126 		sk->sk_state_change(sk);
4127 
4128 		/* Do not send POLL_HUP for half duplex close. */
4129 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4130 		    sk->sk_state == TCP_CLOSE)
4131 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4132 		else
4133 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4134 	}
4135 }
4136 
4137 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4138 				  u32 end_seq)
4139 {
4140 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4141 		if (before(seq, sp->start_seq))
4142 			sp->start_seq = seq;
4143 		if (after(end_seq, sp->end_seq))
4144 			sp->end_seq = end_seq;
4145 		return 1;
4146 	}
4147 	return 0;
4148 }
4149 
4150 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4151 {
4152 	struct tcp_sock *tp = tcp_sk(sk);
4153 
4154 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4155 		int mib_idx;
4156 
4157 		if (before(seq, tp->rcv_nxt))
4158 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4159 		else
4160 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4161 
4162 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4163 
4164 		tp->rx_opt.dsack = 1;
4165 		tp->duplicate_sack[0].start_seq = seq;
4166 		tp->duplicate_sack[0].end_seq = end_seq;
4167 	}
4168 }
4169 
4170 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4171 {
4172 	struct tcp_sock *tp = tcp_sk(sk);
4173 
4174 	if (!tp->rx_opt.dsack)
4175 		tcp_dsack_set(sk, seq, end_seq);
4176 	else
4177 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4178 }
4179 
4180 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4181 {
4182 	struct tcp_sock *tp = tcp_sk(sk);
4183 
4184 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4185 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4186 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4187 		tcp_enter_quickack_mode(sk);
4188 
4189 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4190 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4191 
4192 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4193 				end_seq = tp->rcv_nxt;
4194 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4195 		}
4196 	}
4197 
4198 	tcp_send_ack(sk);
4199 }
4200 
4201 /* These routines update the SACK block as out-of-order packets arrive or
4202  * in-order packets close up the sequence space.
4203  */
4204 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4205 {
4206 	int this_sack;
4207 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4208 	struct tcp_sack_block *swalk = sp + 1;
4209 
4210 	/* See if the recent change to the first SACK eats into
4211 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4212 	 */
4213 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4214 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4215 			int i;
4216 
4217 			/* Zap SWALK, by moving every further SACK up by one slot.
4218 			 * Decrease num_sacks.
4219 			 */
4220 			tp->rx_opt.num_sacks--;
4221 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4222 				sp[i] = sp[i + 1];
4223 			continue;
4224 		}
4225 		this_sack++, swalk++;
4226 	}
4227 }
4228 
4229 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4230 {
4231 	struct tcp_sock *tp = tcp_sk(sk);
4232 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4233 	int cur_sacks = tp->rx_opt.num_sacks;
4234 	int this_sack;
4235 
4236 	if (!cur_sacks)
4237 		goto new_sack;
4238 
4239 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4240 		if (tcp_sack_extend(sp, seq, end_seq)) {
4241 			/* Rotate this_sack to the first one. */
4242 			for (; this_sack > 0; this_sack--, sp--)
4243 				swap(*sp, *(sp - 1));
4244 			if (cur_sacks > 1)
4245 				tcp_sack_maybe_coalesce(tp);
4246 			return;
4247 		}
4248 	}
4249 
4250 	/* Could not find an adjacent existing SACK, build a new one,
4251 	 * put it at the front, and shift everyone else down.  We
4252 	 * always know there is at least one SACK present already here.
4253 	 *
4254 	 * If the sack array is full, forget about the last one.
4255 	 */
4256 	if (this_sack >= TCP_NUM_SACKS) {
4257 		this_sack--;
4258 		tp->rx_opt.num_sacks--;
4259 		sp--;
4260 	}
4261 	for (; this_sack > 0; this_sack--, sp--)
4262 		*sp = *(sp - 1);
4263 
4264 new_sack:
4265 	/* Build the new head SACK, and we're done. */
4266 	sp->start_seq = seq;
4267 	sp->end_seq = end_seq;
4268 	tp->rx_opt.num_sacks++;
4269 }
4270 
4271 /* RCV.NXT advances, some SACKs should be eaten. */
4272 
4273 static void tcp_sack_remove(struct tcp_sock *tp)
4274 {
4275 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4276 	int num_sacks = tp->rx_opt.num_sacks;
4277 	int this_sack;
4278 
4279 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4280 	if (skb_queue_empty(&tp->out_of_order_queue)) {
4281 		tp->rx_opt.num_sacks = 0;
4282 		return;
4283 	}
4284 
4285 	for (this_sack = 0; this_sack < num_sacks;) {
4286 		/* Check if the start of the sack is covered by RCV.NXT. */
4287 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4288 			int i;
4289 
4290 			/* RCV.NXT must cover all the block! */
4291 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4292 
4293 			/* Zap this SACK, by moving forward any other SACKS. */
4294 			for (i=this_sack+1; i < num_sacks; i++)
4295 				tp->selective_acks[i-1] = tp->selective_acks[i];
4296 			num_sacks--;
4297 			continue;
4298 		}
4299 		this_sack++;
4300 		sp++;
4301 	}
4302 	tp->rx_opt.num_sacks = num_sacks;
4303 }
4304 
4305 /* This one checks to see if we can put data from the
4306  * out_of_order queue into the receive_queue.
4307  */
4308 static void tcp_ofo_queue(struct sock *sk)
4309 {
4310 	struct tcp_sock *tp = tcp_sk(sk);
4311 	__u32 dsack_high = tp->rcv_nxt;
4312 	struct sk_buff *skb;
4313 
4314 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4315 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4316 			break;
4317 
4318 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4319 			__u32 dsack = dsack_high;
4320 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4321 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4322 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4323 		}
4324 
4325 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4326 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4327 			__skb_unlink(skb, &tp->out_of_order_queue);
4328 			__kfree_skb(skb);
4329 			continue;
4330 		}
4331 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4332 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4333 			   TCP_SKB_CB(skb)->end_seq);
4334 
4335 		__skb_unlink(skb, &tp->out_of_order_queue);
4336 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4337 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4338 		if (tcp_hdr(skb)->fin)
4339 			tcp_fin(skb, sk, tcp_hdr(skb));
4340 	}
4341 }
4342 
4343 static int tcp_prune_ofo_queue(struct sock *sk);
4344 static int tcp_prune_queue(struct sock *sk);
4345 
4346 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4347 {
4348 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4349 	    !sk_rmem_schedule(sk, size)) {
4350 
4351 		if (tcp_prune_queue(sk) < 0)
4352 			return -1;
4353 
4354 		if (!sk_rmem_schedule(sk, size)) {
4355 			if (!tcp_prune_ofo_queue(sk))
4356 				return -1;
4357 
4358 			if (!sk_rmem_schedule(sk, size))
4359 				return -1;
4360 		}
4361 	}
4362 	return 0;
4363 }
4364 
4365 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4366 {
4367 	struct tcphdr *th = tcp_hdr(skb);
4368 	struct tcp_sock *tp = tcp_sk(sk);
4369 	int eaten = -1;
4370 
4371 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4372 		goto drop;
4373 
4374 	skb_dst_drop(skb);
4375 	__skb_pull(skb, th->doff * 4);
4376 
4377 	TCP_ECN_accept_cwr(tp, skb);
4378 
4379 	tp->rx_opt.dsack = 0;
4380 
4381 	/*  Queue data for delivery to the user.
4382 	 *  Packets in sequence go to the receive queue.
4383 	 *  Out of sequence packets to the out_of_order_queue.
4384 	 */
4385 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4386 		if (tcp_receive_window(tp) == 0)
4387 			goto out_of_window;
4388 
4389 		/* Ok. In sequence. In window. */
4390 		if (tp->ucopy.task == current &&
4391 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4392 		    sock_owned_by_user(sk) && !tp->urg_data) {
4393 			int chunk = min_t(unsigned int, skb->len,
4394 					  tp->ucopy.len);
4395 
4396 			__set_current_state(TASK_RUNNING);
4397 
4398 			local_bh_enable();
4399 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4400 				tp->ucopy.len -= chunk;
4401 				tp->copied_seq += chunk;
4402 				eaten = (chunk == skb->len && !th->fin);
4403 				tcp_rcv_space_adjust(sk);
4404 			}
4405 			local_bh_disable();
4406 		}
4407 
4408 		if (eaten <= 0) {
4409 queue_and_out:
4410 			if (eaten < 0 &&
4411 			    tcp_try_rmem_schedule(sk, skb->truesize))
4412 				goto drop;
4413 
4414 			skb_set_owner_r(skb, sk);
4415 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4416 		}
4417 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4418 		if (skb->len)
4419 			tcp_event_data_recv(sk, skb);
4420 		if (th->fin)
4421 			tcp_fin(skb, sk, th);
4422 
4423 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4424 			tcp_ofo_queue(sk);
4425 
4426 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4427 			 * gap in queue is filled.
4428 			 */
4429 			if (skb_queue_empty(&tp->out_of_order_queue))
4430 				inet_csk(sk)->icsk_ack.pingpong = 0;
4431 		}
4432 
4433 		if (tp->rx_opt.num_sacks)
4434 			tcp_sack_remove(tp);
4435 
4436 		tcp_fast_path_check(sk);
4437 
4438 		if (eaten > 0)
4439 			__kfree_skb(skb);
4440 		else if (!sock_flag(sk, SOCK_DEAD))
4441 			sk->sk_data_ready(sk, 0);
4442 		return;
4443 	}
4444 
4445 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4446 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4447 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4448 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4449 
4450 out_of_window:
4451 		tcp_enter_quickack_mode(sk);
4452 		inet_csk_schedule_ack(sk);
4453 drop:
4454 		__kfree_skb(skb);
4455 		return;
4456 	}
4457 
4458 	/* Out of window. F.e. zero window probe. */
4459 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4460 		goto out_of_window;
4461 
4462 	tcp_enter_quickack_mode(sk);
4463 
4464 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4465 		/* Partial packet, seq < rcv_next < end_seq */
4466 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4467 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4468 			   TCP_SKB_CB(skb)->end_seq);
4469 
4470 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4471 
4472 		/* If window is closed, drop tail of packet. But after
4473 		 * remembering D-SACK for its head made in previous line.
4474 		 */
4475 		if (!tcp_receive_window(tp))
4476 			goto out_of_window;
4477 		goto queue_and_out;
4478 	}
4479 
4480 	TCP_ECN_check_ce(tp, skb);
4481 
4482 	if (tcp_try_rmem_schedule(sk, skb->truesize))
4483 		goto drop;
4484 
4485 	/* Disable header prediction. */
4486 	tp->pred_flags = 0;
4487 	inet_csk_schedule_ack(sk);
4488 
4489 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4490 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4491 
4492 	skb_set_owner_r(skb, sk);
4493 
4494 	if (!skb_peek(&tp->out_of_order_queue)) {
4495 		/* Initial out of order segment, build 1 SACK. */
4496 		if (tcp_is_sack(tp)) {
4497 			tp->rx_opt.num_sacks = 1;
4498 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4499 			tp->selective_acks[0].end_seq =
4500 						TCP_SKB_CB(skb)->end_seq;
4501 		}
4502 		__skb_queue_head(&tp->out_of_order_queue, skb);
4503 	} else {
4504 		struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4505 		u32 seq = TCP_SKB_CB(skb)->seq;
4506 		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4507 
4508 		if (seq == TCP_SKB_CB(skb1)->end_seq) {
4509 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4510 
4511 			if (!tp->rx_opt.num_sacks ||
4512 			    tp->selective_acks[0].end_seq != seq)
4513 				goto add_sack;
4514 
4515 			/* Common case: data arrive in order after hole. */
4516 			tp->selective_acks[0].end_seq = end_seq;
4517 			return;
4518 		}
4519 
4520 		/* Find place to insert this segment. */
4521 		while (1) {
4522 			if (!after(TCP_SKB_CB(skb1)->seq, seq))
4523 				break;
4524 			if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4525 				skb1 = NULL;
4526 				break;
4527 			}
4528 			skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4529 		}
4530 
4531 		/* Do skb overlap to previous one? */
4532 		if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4533 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4534 				/* All the bits are present. Drop. */
4535 				__kfree_skb(skb);
4536 				tcp_dsack_set(sk, seq, end_seq);
4537 				goto add_sack;
4538 			}
4539 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4540 				/* Partial overlap. */
4541 				tcp_dsack_set(sk, seq,
4542 					      TCP_SKB_CB(skb1)->end_seq);
4543 			} else {
4544 				if (skb_queue_is_first(&tp->out_of_order_queue,
4545 						       skb1))
4546 					skb1 = NULL;
4547 				else
4548 					skb1 = skb_queue_prev(
4549 						&tp->out_of_order_queue,
4550 						skb1);
4551 			}
4552 		}
4553 		if (!skb1)
4554 			__skb_queue_head(&tp->out_of_order_queue, skb);
4555 		else
4556 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4557 
4558 		/* And clean segments covered by new one as whole. */
4559 		while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4560 			skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4561 
4562 			if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4563 				break;
4564 			if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4565 				tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4566 						 end_seq);
4567 				break;
4568 			}
4569 			__skb_unlink(skb1, &tp->out_of_order_queue);
4570 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4571 					 TCP_SKB_CB(skb1)->end_seq);
4572 			__kfree_skb(skb1);
4573 		}
4574 
4575 add_sack:
4576 		if (tcp_is_sack(tp))
4577 			tcp_sack_new_ofo_skb(sk, seq, end_seq);
4578 	}
4579 }
4580 
4581 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4582 					struct sk_buff_head *list)
4583 {
4584 	struct sk_buff *next = NULL;
4585 
4586 	if (!skb_queue_is_last(list, skb))
4587 		next = skb_queue_next(list, skb);
4588 
4589 	__skb_unlink(skb, list);
4590 	__kfree_skb(skb);
4591 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4592 
4593 	return next;
4594 }
4595 
4596 /* Collapse contiguous sequence of skbs head..tail with
4597  * sequence numbers start..end.
4598  *
4599  * If tail is NULL, this means until the end of the list.
4600  *
4601  * Segments with FIN/SYN are not collapsed (only because this
4602  * simplifies code)
4603  */
4604 static void
4605 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4606 	     struct sk_buff *head, struct sk_buff *tail,
4607 	     u32 start, u32 end)
4608 {
4609 	struct sk_buff *skb, *n;
4610 	bool end_of_skbs;
4611 
4612 	/* First, check that queue is collapsible and find
4613 	 * the point where collapsing can be useful. */
4614 	skb = head;
4615 restart:
4616 	end_of_skbs = true;
4617 	skb_queue_walk_from_safe(list, skb, n) {
4618 		if (skb == tail)
4619 			break;
4620 		/* No new bits? It is possible on ofo queue. */
4621 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4622 			skb = tcp_collapse_one(sk, skb, list);
4623 			if (!skb)
4624 				break;
4625 			goto restart;
4626 		}
4627 
4628 		/* The first skb to collapse is:
4629 		 * - not SYN/FIN and
4630 		 * - bloated or contains data before "start" or
4631 		 *   overlaps to the next one.
4632 		 */
4633 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4634 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4635 		     before(TCP_SKB_CB(skb)->seq, start))) {
4636 			end_of_skbs = false;
4637 			break;
4638 		}
4639 
4640 		if (!skb_queue_is_last(list, skb)) {
4641 			struct sk_buff *next = skb_queue_next(list, skb);
4642 			if (next != tail &&
4643 			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4644 				end_of_skbs = false;
4645 				break;
4646 			}
4647 		}
4648 
4649 		/* Decided to skip this, advance start seq. */
4650 		start = TCP_SKB_CB(skb)->end_seq;
4651 	}
4652 	if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4653 		return;
4654 
4655 	while (before(start, end)) {
4656 		struct sk_buff *nskb;
4657 		unsigned int header = skb_headroom(skb);
4658 		int copy = SKB_MAX_ORDER(header, 0);
4659 
4660 		/* Too big header? This can happen with IPv6. */
4661 		if (copy < 0)
4662 			return;
4663 		if (end - start < copy)
4664 			copy = end - start;
4665 		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4666 		if (!nskb)
4667 			return;
4668 
4669 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4670 		skb_set_network_header(nskb, (skb_network_header(skb) -
4671 					      skb->head));
4672 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4673 						skb->head));
4674 		skb_reserve(nskb, header);
4675 		memcpy(nskb->head, skb->head, header);
4676 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4677 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4678 		__skb_queue_before(list, skb, nskb);
4679 		skb_set_owner_r(nskb, sk);
4680 
4681 		/* Copy data, releasing collapsed skbs. */
4682 		while (copy > 0) {
4683 			int offset = start - TCP_SKB_CB(skb)->seq;
4684 			int size = TCP_SKB_CB(skb)->end_seq - start;
4685 
4686 			BUG_ON(offset < 0);
4687 			if (size > 0) {
4688 				size = min(copy, size);
4689 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4690 					BUG();
4691 				TCP_SKB_CB(nskb)->end_seq += size;
4692 				copy -= size;
4693 				start += size;
4694 			}
4695 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4696 				skb = tcp_collapse_one(sk, skb, list);
4697 				if (!skb ||
4698 				    skb == tail ||
4699 				    tcp_hdr(skb)->syn ||
4700 				    tcp_hdr(skb)->fin)
4701 					return;
4702 			}
4703 		}
4704 	}
4705 }
4706 
4707 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4708  * and tcp_collapse() them until all the queue is collapsed.
4709  */
4710 static void tcp_collapse_ofo_queue(struct sock *sk)
4711 {
4712 	struct tcp_sock *tp = tcp_sk(sk);
4713 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4714 	struct sk_buff *head;
4715 	u32 start, end;
4716 
4717 	if (skb == NULL)
4718 		return;
4719 
4720 	start = TCP_SKB_CB(skb)->seq;
4721 	end = TCP_SKB_CB(skb)->end_seq;
4722 	head = skb;
4723 
4724 	for (;;) {
4725 		struct sk_buff *next = NULL;
4726 
4727 		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4728 			next = skb_queue_next(&tp->out_of_order_queue, skb);
4729 		skb = next;
4730 
4731 		/* Segment is terminated when we see gap or when
4732 		 * we are at the end of all the queue. */
4733 		if (!skb ||
4734 		    after(TCP_SKB_CB(skb)->seq, end) ||
4735 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4736 			tcp_collapse(sk, &tp->out_of_order_queue,
4737 				     head, skb, start, end);
4738 			head = skb;
4739 			if (!skb)
4740 				break;
4741 			/* Start new segment */
4742 			start = TCP_SKB_CB(skb)->seq;
4743 			end = TCP_SKB_CB(skb)->end_seq;
4744 		} else {
4745 			if (before(TCP_SKB_CB(skb)->seq, start))
4746 				start = TCP_SKB_CB(skb)->seq;
4747 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4748 				end = TCP_SKB_CB(skb)->end_seq;
4749 		}
4750 	}
4751 }
4752 
4753 /*
4754  * Purge the out-of-order queue.
4755  * Return true if queue was pruned.
4756  */
4757 static int tcp_prune_ofo_queue(struct sock *sk)
4758 {
4759 	struct tcp_sock *tp = tcp_sk(sk);
4760 	int res = 0;
4761 
4762 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4763 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4764 		__skb_queue_purge(&tp->out_of_order_queue);
4765 
4766 		/* Reset SACK state.  A conforming SACK implementation will
4767 		 * do the same at a timeout based retransmit.  When a connection
4768 		 * is in a sad state like this, we care only about integrity
4769 		 * of the connection not performance.
4770 		 */
4771 		if (tp->rx_opt.sack_ok)
4772 			tcp_sack_reset(&tp->rx_opt);
4773 		sk_mem_reclaim(sk);
4774 		res = 1;
4775 	}
4776 	return res;
4777 }
4778 
4779 /* Reduce allocated memory if we can, trying to get
4780  * the socket within its memory limits again.
4781  *
4782  * Return less than zero if we should start dropping frames
4783  * until the socket owning process reads some of the data
4784  * to stabilize the situation.
4785  */
4786 static int tcp_prune_queue(struct sock *sk)
4787 {
4788 	struct tcp_sock *tp = tcp_sk(sk);
4789 
4790 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4791 
4792 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4793 
4794 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4795 		tcp_clamp_window(sk);
4796 	else if (tcp_memory_pressure)
4797 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4798 
4799 	tcp_collapse_ofo_queue(sk);
4800 	if (!skb_queue_empty(&sk->sk_receive_queue))
4801 		tcp_collapse(sk, &sk->sk_receive_queue,
4802 			     skb_peek(&sk->sk_receive_queue),
4803 			     NULL,
4804 			     tp->copied_seq, tp->rcv_nxt);
4805 	sk_mem_reclaim(sk);
4806 
4807 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4808 		return 0;
4809 
4810 	/* Collapsing did not help, destructive actions follow.
4811 	 * This must not ever occur. */
4812 
4813 	tcp_prune_ofo_queue(sk);
4814 
4815 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4816 		return 0;
4817 
4818 	/* If we are really being abused, tell the caller to silently
4819 	 * drop receive data on the floor.  It will get retransmitted
4820 	 * and hopefully then we'll have sufficient space.
4821 	 */
4822 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4823 
4824 	/* Massive buffer overcommit. */
4825 	tp->pred_flags = 0;
4826 	return -1;
4827 }
4828 
4829 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4830  * As additional protections, we do not touch cwnd in retransmission phases,
4831  * and if application hit its sndbuf limit recently.
4832  */
4833 void tcp_cwnd_application_limited(struct sock *sk)
4834 {
4835 	struct tcp_sock *tp = tcp_sk(sk);
4836 
4837 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4838 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4839 		/* Limited by application or receiver window. */
4840 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4841 		u32 win_used = max(tp->snd_cwnd_used, init_win);
4842 		if (win_used < tp->snd_cwnd) {
4843 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4844 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4845 		}
4846 		tp->snd_cwnd_used = 0;
4847 	}
4848 	tp->snd_cwnd_stamp = tcp_time_stamp;
4849 }
4850 
4851 static int tcp_should_expand_sndbuf(struct sock *sk)
4852 {
4853 	struct tcp_sock *tp = tcp_sk(sk);
4854 
4855 	/* If the user specified a specific send buffer setting, do
4856 	 * not modify it.
4857 	 */
4858 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4859 		return 0;
4860 
4861 	/* If we are under global TCP memory pressure, do not expand.  */
4862 	if (tcp_memory_pressure)
4863 		return 0;
4864 
4865 	/* If we are under soft global TCP memory pressure, do not expand.  */
4866 	if (atomic_long_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4867 		return 0;
4868 
4869 	/* If we filled the congestion window, do not expand.  */
4870 	if (tp->packets_out >= tp->snd_cwnd)
4871 		return 0;
4872 
4873 	return 1;
4874 }
4875 
4876 /* When incoming ACK allowed to free some skb from write_queue,
4877  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4878  * on the exit from tcp input handler.
4879  *
4880  * PROBLEM: sndbuf expansion does not work well with largesend.
4881  */
4882 static void tcp_new_space(struct sock *sk)
4883 {
4884 	struct tcp_sock *tp = tcp_sk(sk);
4885 
4886 	if (tcp_should_expand_sndbuf(sk)) {
4887 		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4888 			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4889 		int demanded = max_t(unsigned int, tp->snd_cwnd,
4890 				     tp->reordering + 1);
4891 		sndmem *= 2 * demanded;
4892 		if (sndmem > sk->sk_sndbuf)
4893 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4894 		tp->snd_cwnd_stamp = tcp_time_stamp;
4895 	}
4896 
4897 	sk->sk_write_space(sk);
4898 }
4899 
4900 static void tcp_check_space(struct sock *sk)
4901 {
4902 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4903 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4904 		if (sk->sk_socket &&
4905 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4906 			tcp_new_space(sk);
4907 	}
4908 }
4909 
4910 static inline void tcp_data_snd_check(struct sock *sk)
4911 {
4912 	tcp_push_pending_frames(sk);
4913 	tcp_check_space(sk);
4914 }
4915 
4916 /*
4917  * Check if sending an ack is needed.
4918  */
4919 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4920 {
4921 	struct tcp_sock *tp = tcp_sk(sk);
4922 
4923 	    /* More than one full frame received... */
4924 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4925 	     /* ... and right edge of window advances far enough.
4926 	      * (tcp_recvmsg() will send ACK otherwise). Or...
4927 	      */
4928 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
4929 	    /* We ACK each frame or... */
4930 	    tcp_in_quickack_mode(sk) ||
4931 	    /* We have out of order data. */
4932 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4933 		/* Then ack it now */
4934 		tcp_send_ack(sk);
4935 	} else {
4936 		/* Else, send delayed ack. */
4937 		tcp_send_delayed_ack(sk);
4938 	}
4939 }
4940 
4941 static inline void tcp_ack_snd_check(struct sock *sk)
4942 {
4943 	if (!inet_csk_ack_scheduled(sk)) {
4944 		/* We sent a data segment already. */
4945 		return;
4946 	}
4947 	__tcp_ack_snd_check(sk, 1);
4948 }
4949 
4950 /*
4951  *	This routine is only called when we have urgent data
4952  *	signaled. Its the 'slow' part of tcp_urg. It could be
4953  *	moved inline now as tcp_urg is only called from one
4954  *	place. We handle URGent data wrong. We have to - as
4955  *	BSD still doesn't use the correction from RFC961.
4956  *	For 1003.1g we should support a new option TCP_STDURG to permit
4957  *	either form (or just set the sysctl tcp_stdurg).
4958  */
4959 
4960 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4961 {
4962 	struct tcp_sock *tp = tcp_sk(sk);
4963 	u32 ptr = ntohs(th->urg_ptr);
4964 
4965 	if (ptr && !sysctl_tcp_stdurg)
4966 		ptr--;
4967 	ptr += ntohl(th->seq);
4968 
4969 	/* Ignore urgent data that we've already seen and read. */
4970 	if (after(tp->copied_seq, ptr))
4971 		return;
4972 
4973 	/* Do not replay urg ptr.
4974 	 *
4975 	 * NOTE: interesting situation not covered by specs.
4976 	 * Misbehaving sender may send urg ptr, pointing to segment,
4977 	 * which we already have in ofo queue. We are not able to fetch
4978 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4979 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4980 	 * situations. But it is worth to think about possibility of some
4981 	 * DoSes using some hypothetical application level deadlock.
4982 	 */
4983 	if (before(ptr, tp->rcv_nxt))
4984 		return;
4985 
4986 	/* Do we already have a newer (or duplicate) urgent pointer? */
4987 	if (tp->urg_data && !after(ptr, tp->urg_seq))
4988 		return;
4989 
4990 	/* Tell the world about our new urgent pointer. */
4991 	sk_send_sigurg(sk);
4992 
4993 	/* We may be adding urgent data when the last byte read was
4994 	 * urgent. To do this requires some care. We cannot just ignore
4995 	 * tp->copied_seq since we would read the last urgent byte again
4996 	 * as data, nor can we alter copied_seq until this data arrives
4997 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4998 	 *
4999 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5000 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5001 	 * and expect that both A and B disappear from stream. This is _wrong_.
5002 	 * Though this happens in BSD with high probability, this is occasional.
5003 	 * Any application relying on this is buggy. Note also, that fix "works"
5004 	 * only in this artificial test. Insert some normal data between A and B and we will
5005 	 * decline of BSD again. Verdict: it is better to remove to trap
5006 	 * buggy users.
5007 	 */
5008 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5009 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5010 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5011 		tp->copied_seq++;
5012 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5013 			__skb_unlink(skb, &sk->sk_receive_queue);
5014 			__kfree_skb(skb);
5015 		}
5016 	}
5017 
5018 	tp->urg_data = TCP_URG_NOTYET;
5019 	tp->urg_seq = ptr;
5020 
5021 	/* Disable header prediction. */
5022 	tp->pred_flags = 0;
5023 }
5024 
5025 /* This is the 'fast' part of urgent handling. */
5026 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
5027 {
5028 	struct tcp_sock *tp = tcp_sk(sk);
5029 
5030 	/* Check if we get a new urgent pointer - normally not. */
5031 	if (th->urg)
5032 		tcp_check_urg(sk, th);
5033 
5034 	/* Do we wait for any urgent data? - normally not... */
5035 	if (tp->urg_data == TCP_URG_NOTYET) {
5036 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5037 			  th->syn;
5038 
5039 		/* Is the urgent pointer pointing into this packet? */
5040 		if (ptr < skb->len) {
5041 			u8 tmp;
5042 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5043 				BUG();
5044 			tp->urg_data = TCP_URG_VALID | tmp;
5045 			if (!sock_flag(sk, SOCK_DEAD))
5046 				sk->sk_data_ready(sk, 0);
5047 		}
5048 	}
5049 }
5050 
5051 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5052 {
5053 	struct tcp_sock *tp = tcp_sk(sk);
5054 	int chunk = skb->len - hlen;
5055 	int err;
5056 
5057 	local_bh_enable();
5058 	if (skb_csum_unnecessary(skb))
5059 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5060 	else
5061 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5062 						       tp->ucopy.iov);
5063 
5064 	if (!err) {
5065 		tp->ucopy.len -= chunk;
5066 		tp->copied_seq += chunk;
5067 		tcp_rcv_space_adjust(sk);
5068 	}
5069 
5070 	local_bh_disable();
5071 	return err;
5072 }
5073 
5074 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5075 					    struct sk_buff *skb)
5076 {
5077 	__sum16 result;
5078 
5079 	if (sock_owned_by_user(sk)) {
5080 		local_bh_enable();
5081 		result = __tcp_checksum_complete(skb);
5082 		local_bh_disable();
5083 	} else {
5084 		result = __tcp_checksum_complete(skb);
5085 	}
5086 	return result;
5087 }
5088 
5089 static inline int tcp_checksum_complete_user(struct sock *sk,
5090 					     struct sk_buff *skb)
5091 {
5092 	return !skb_csum_unnecessary(skb) &&
5093 	       __tcp_checksum_complete_user(sk, skb);
5094 }
5095 
5096 #ifdef CONFIG_NET_DMA
5097 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5098 				  int hlen)
5099 {
5100 	struct tcp_sock *tp = tcp_sk(sk);
5101 	int chunk = skb->len - hlen;
5102 	int dma_cookie;
5103 	int copied_early = 0;
5104 
5105 	if (tp->ucopy.wakeup)
5106 		return 0;
5107 
5108 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5109 		tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5110 
5111 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5112 
5113 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5114 							 skb, hlen,
5115 							 tp->ucopy.iov, chunk,
5116 							 tp->ucopy.pinned_list);
5117 
5118 		if (dma_cookie < 0)
5119 			goto out;
5120 
5121 		tp->ucopy.dma_cookie = dma_cookie;
5122 		copied_early = 1;
5123 
5124 		tp->ucopy.len -= chunk;
5125 		tp->copied_seq += chunk;
5126 		tcp_rcv_space_adjust(sk);
5127 
5128 		if ((tp->ucopy.len == 0) ||
5129 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5130 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5131 			tp->ucopy.wakeup = 1;
5132 			sk->sk_data_ready(sk, 0);
5133 		}
5134 	} else if (chunk > 0) {
5135 		tp->ucopy.wakeup = 1;
5136 		sk->sk_data_ready(sk, 0);
5137 	}
5138 out:
5139 	return copied_early;
5140 }
5141 #endif /* CONFIG_NET_DMA */
5142 
5143 /* Does PAWS and seqno based validation of an incoming segment, flags will
5144  * play significant role here.
5145  */
5146 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5147 			      struct tcphdr *th, int syn_inerr)
5148 {
5149 	u8 *hash_location;
5150 	struct tcp_sock *tp = tcp_sk(sk);
5151 
5152 	/* RFC1323: H1. Apply PAWS check first. */
5153 	if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5154 	    tp->rx_opt.saw_tstamp &&
5155 	    tcp_paws_discard(sk, skb)) {
5156 		if (!th->rst) {
5157 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5158 			tcp_send_dupack(sk, skb);
5159 			goto discard;
5160 		}
5161 		/* Reset is accepted even if it did not pass PAWS. */
5162 	}
5163 
5164 	/* Step 1: check sequence number */
5165 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5166 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5167 		 * (RST) segments are validated by checking their SEQ-fields."
5168 		 * And page 69: "If an incoming segment is not acceptable,
5169 		 * an acknowledgment should be sent in reply (unless the RST
5170 		 * bit is set, if so drop the segment and return)".
5171 		 */
5172 		if (!th->rst)
5173 			tcp_send_dupack(sk, skb);
5174 		goto discard;
5175 	}
5176 
5177 	/* Step 2: check RST bit */
5178 	if (th->rst) {
5179 		tcp_reset(sk);
5180 		goto discard;
5181 	}
5182 
5183 	/* ts_recent update must be made after we are sure that the packet
5184 	 * is in window.
5185 	 */
5186 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5187 
5188 	/* step 3: check security and precedence [ignored] */
5189 
5190 	/* step 4: Check for a SYN in window. */
5191 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5192 		if (syn_inerr)
5193 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5194 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5195 		tcp_reset(sk);
5196 		return -1;
5197 	}
5198 
5199 	return 1;
5200 
5201 discard:
5202 	__kfree_skb(skb);
5203 	return 0;
5204 }
5205 
5206 /*
5207  *	TCP receive function for the ESTABLISHED state.
5208  *
5209  *	It is split into a fast path and a slow path. The fast path is
5210  * 	disabled when:
5211  *	- A zero window was announced from us - zero window probing
5212  *        is only handled properly in the slow path.
5213  *	- Out of order segments arrived.
5214  *	- Urgent data is expected.
5215  *	- There is no buffer space left
5216  *	- Unexpected TCP flags/window values/header lengths are received
5217  *	  (detected by checking the TCP header against pred_flags)
5218  *	- Data is sent in both directions. Fast path only supports pure senders
5219  *	  or pure receivers (this means either the sequence number or the ack
5220  *	  value must stay constant)
5221  *	- Unexpected TCP option.
5222  *
5223  *	When these conditions are not satisfied it drops into a standard
5224  *	receive procedure patterned after RFC793 to handle all cases.
5225  *	The first three cases are guaranteed by proper pred_flags setting,
5226  *	the rest is checked inline. Fast processing is turned on in
5227  *	tcp_data_queue when everything is OK.
5228  */
5229 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5230 			struct tcphdr *th, unsigned len)
5231 {
5232 	struct tcp_sock *tp = tcp_sk(sk);
5233 	int res;
5234 
5235 	/*
5236 	 *	Header prediction.
5237 	 *	The code loosely follows the one in the famous
5238 	 *	"30 instruction TCP receive" Van Jacobson mail.
5239 	 *
5240 	 *	Van's trick is to deposit buffers into socket queue
5241 	 *	on a device interrupt, to call tcp_recv function
5242 	 *	on the receive process context and checksum and copy
5243 	 *	the buffer to user space. smart...
5244 	 *
5245 	 *	Our current scheme is not silly either but we take the
5246 	 *	extra cost of the net_bh soft interrupt processing...
5247 	 *	We do checksum and copy also but from device to kernel.
5248 	 */
5249 
5250 	tp->rx_opt.saw_tstamp = 0;
5251 
5252 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5253 	 *	if header_prediction is to be made
5254 	 *	'S' will always be tp->tcp_header_len >> 2
5255 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5256 	 *  turn it off	(when there are holes in the receive
5257 	 *	 space for instance)
5258 	 *	PSH flag is ignored.
5259 	 */
5260 
5261 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5262 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5263 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5264 		int tcp_header_len = tp->tcp_header_len;
5265 
5266 		/* Timestamp header prediction: tcp_header_len
5267 		 * is automatically equal to th->doff*4 due to pred_flags
5268 		 * match.
5269 		 */
5270 
5271 		/* Check timestamp */
5272 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5273 			/* No? Slow path! */
5274 			if (!tcp_parse_aligned_timestamp(tp, th))
5275 				goto slow_path;
5276 
5277 			/* If PAWS failed, check it more carefully in slow path */
5278 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5279 				goto slow_path;
5280 
5281 			/* DO NOT update ts_recent here, if checksum fails
5282 			 * and timestamp was corrupted part, it will result
5283 			 * in a hung connection since we will drop all
5284 			 * future packets due to the PAWS test.
5285 			 */
5286 		}
5287 
5288 		if (len <= tcp_header_len) {
5289 			/* Bulk data transfer: sender */
5290 			if (len == tcp_header_len) {
5291 				/* Predicted packet is in window by definition.
5292 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5293 				 * Hence, check seq<=rcv_wup reduces to:
5294 				 */
5295 				if (tcp_header_len ==
5296 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5297 				    tp->rcv_nxt == tp->rcv_wup)
5298 					tcp_store_ts_recent(tp);
5299 
5300 				/* We know that such packets are checksummed
5301 				 * on entry.
5302 				 */
5303 				tcp_ack(sk, skb, 0);
5304 				__kfree_skb(skb);
5305 				tcp_data_snd_check(sk);
5306 				return 0;
5307 			} else { /* Header too small */
5308 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5309 				goto discard;
5310 			}
5311 		} else {
5312 			int eaten = 0;
5313 			int copied_early = 0;
5314 
5315 			if (tp->copied_seq == tp->rcv_nxt &&
5316 			    len - tcp_header_len <= tp->ucopy.len) {
5317 #ifdef CONFIG_NET_DMA
5318 				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5319 					copied_early = 1;
5320 					eaten = 1;
5321 				}
5322 #endif
5323 				if (tp->ucopy.task == current &&
5324 				    sock_owned_by_user(sk) && !copied_early) {
5325 					__set_current_state(TASK_RUNNING);
5326 
5327 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5328 						eaten = 1;
5329 				}
5330 				if (eaten) {
5331 					/* Predicted packet is in window by definition.
5332 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5333 					 * Hence, check seq<=rcv_wup reduces to:
5334 					 */
5335 					if (tcp_header_len ==
5336 					    (sizeof(struct tcphdr) +
5337 					     TCPOLEN_TSTAMP_ALIGNED) &&
5338 					    tp->rcv_nxt == tp->rcv_wup)
5339 						tcp_store_ts_recent(tp);
5340 
5341 					tcp_rcv_rtt_measure_ts(sk, skb);
5342 
5343 					__skb_pull(skb, tcp_header_len);
5344 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5345 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5346 				}
5347 				if (copied_early)
5348 					tcp_cleanup_rbuf(sk, skb->len);
5349 			}
5350 			if (!eaten) {
5351 				if (tcp_checksum_complete_user(sk, skb))
5352 					goto csum_error;
5353 
5354 				/* Predicted packet is in window by definition.
5355 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5356 				 * Hence, check seq<=rcv_wup reduces to:
5357 				 */
5358 				if (tcp_header_len ==
5359 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5360 				    tp->rcv_nxt == tp->rcv_wup)
5361 					tcp_store_ts_recent(tp);
5362 
5363 				tcp_rcv_rtt_measure_ts(sk, skb);
5364 
5365 				if ((int)skb->truesize > sk->sk_forward_alloc)
5366 					goto step5;
5367 
5368 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5369 
5370 				/* Bulk data transfer: receiver */
5371 				__skb_pull(skb, tcp_header_len);
5372 				__skb_queue_tail(&sk->sk_receive_queue, skb);
5373 				skb_set_owner_r(skb, sk);
5374 				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5375 			}
5376 
5377 			tcp_event_data_recv(sk, skb);
5378 
5379 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5380 				/* Well, only one small jumplet in fast path... */
5381 				tcp_ack(sk, skb, FLAG_DATA);
5382 				tcp_data_snd_check(sk);
5383 				if (!inet_csk_ack_scheduled(sk))
5384 					goto no_ack;
5385 			}
5386 
5387 			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5388 				__tcp_ack_snd_check(sk, 0);
5389 no_ack:
5390 #ifdef CONFIG_NET_DMA
5391 			if (copied_early)
5392 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5393 			else
5394 #endif
5395 			if (eaten)
5396 				__kfree_skb(skb);
5397 			else
5398 				sk->sk_data_ready(sk, 0);
5399 			return 0;
5400 		}
5401 	}
5402 
5403 slow_path:
5404 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5405 		goto csum_error;
5406 
5407 	/*
5408 	 *	Standard slow path.
5409 	 */
5410 
5411 	res = tcp_validate_incoming(sk, skb, th, 1);
5412 	if (res <= 0)
5413 		return -res;
5414 
5415 step5:
5416 	if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5417 		goto discard;
5418 
5419 	tcp_rcv_rtt_measure_ts(sk, skb);
5420 
5421 	/* Process urgent data. */
5422 	tcp_urg(sk, skb, th);
5423 
5424 	/* step 7: process the segment text */
5425 	tcp_data_queue(sk, skb);
5426 
5427 	tcp_data_snd_check(sk);
5428 	tcp_ack_snd_check(sk);
5429 	return 0;
5430 
5431 csum_error:
5432 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5433 
5434 discard:
5435 	__kfree_skb(skb);
5436 	return 0;
5437 }
5438 EXPORT_SYMBOL(tcp_rcv_established);
5439 
5440 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5441 					 struct tcphdr *th, unsigned len)
5442 {
5443 	u8 *hash_location;
5444 	struct inet_connection_sock *icsk = inet_csk(sk);
5445 	struct tcp_sock *tp = tcp_sk(sk);
5446 	struct tcp_cookie_values *cvp = tp->cookie_values;
5447 	int saved_clamp = tp->rx_opt.mss_clamp;
5448 
5449 	tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5450 
5451 	if (th->ack) {
5452 		/* rfc793:
5453 		 * "If the state is SYN-SENT then
5454 		 *    first check the ACK bit
5455 		 *      If the ACK bit is set
5456 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5457 		 *        a reset (unless the RST bit is set, if so drop
5458 		 *        the segment and return)"
5459 		 *
5460 		 *  We do not send data with SYN, so that RFC-correct
5461 		 *  test reduces to:
5462 		 */
5463 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5464 			goto reset_and_undo;
5465 
5466 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5467 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5468 			     tcp_time_stamp)) {
5469 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5470 			goto reset_and_undo;
5471 		}
5472 
5473 		/* Now ACK is acceptable.
5474 		 *
5475 		 * "If the RST bit is set
5476 		 *    If the ACK was acceptable then signal the user "error:
5477 		 *    connection reset", drop the segment, enter CLOSED state,
5478 		 *    delete TCB, and return."
5479 		 */
5480 
5481 		if (th->rst) {
5482 			tcp_reset(sk);
5483 			goto discard;
5484 		}
5485 
5486 		/* rfc793:
5487 		 *   "fifth, if neither of the SYN or RST bits is set then
5488 		 *    drop the segment and return."
5489 		 *
5490 		 *    See note below!
5491 		 *                                        --ANK(990513)
5492 		 */
5493 		if (!th->syn)
5494 			goto discard_and_undo;
5495 
5496 		/* rfc793:
5497 		 *   "If the SYN bit is on ...
5498 		 *    are acceptable then ...
5499 		 *    (our SYN has been ACKed), change the connection
5500 		 *    state to ESTABLISHED..."
5501 		 */
5502 
5503 		TCP_ECN_rcv_synack(tp, th);
5504 
5505 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5506 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5507 
5508 		/* Ok.. it's good. Set up sequence numbers and
5509 		 * move to established.
5510 		 */
5511 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5512 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5513 
5514 		/* RFC1323: The window in SYN & SYN/ACK segments is
5515 		 * never scaled.
5516 		 */
5517 		tp->snd_wnd = ntohs(th->window);
5518 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5519 
5520 		if (!tp->rx_opt.wscale_ok) {
5521 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5522 			tp->window_clamp = min(tp->window_clamp, 65535U);
5523 		}
5524 
5525 		if (tp->rx_opt.saw_tstamp) {
5526 			tp->rx_opt.tstamp_ok	   = 1;
5527 			tp->tcp_header_len =
5528 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5529 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5530 			tcp_store_ts_recent(tp);
5531 		} else {
5532 			tp->tcp_header_len = sizeof(struct tcphdr);
5533 		}
5534 
5535 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5536 			tcp_enable_fack(tp);
5537 
5538 		tcp_mtup_init(sk);
5539 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5540 		tcp_initialize_rcv_mss(sk);
5541 
5542 		/* Remember, tcp_poll() does not lock socket!
5543 		 * Change state from SYN-SENT only after copied_seq
5544 		 * is initialized. */
5545 		tp->copied_seq = tp->rcv_nxt;
5546 
5547 		if (cvp != NULL &&
5548 		    cvp->cookie_pair_size > 0 &&
5549 		    tp->rx_opt.cookie_plus > 0) {
5550 			int cookie_size = tp->rx_opt.cookie_plus
5551 					- TCPOLEN_COOKIE_BASE;
5552 			int cookie_pair_size = cookie_size
5553 					     + cvp->cookie_desired;
5554 
5555 			/* A cookie extension option was sent and returned.
5556 			 * Note that each incoming SYNACK replaces the
5557 			 * Responder cookie.  The initial exchange is most
5558 			 * fragile, as protection against spoofing relies
5559 			 * entirely upon the sequence and timestamp (above).
5560 			 * This replacement strategy allows the correct pair to
5561 			 * pass through, while any others will be filtered via
5562 			 * Responder verification later.
5563 			 */
5564 			if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5565 				memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5566 				       hash_location, cookie_size);
5567 				cvp->cookie_pair_size = cookie_pair_size;
5568 			}
5569 		}
5570 
5571 		smp_mb();
5572 		tcp_set_state(sk, TCP_ESTABLISHED);
5573 
5574 		security_inet_conn_established(sk, skb);
5575 
5576 		/* Make sure socket is routed, for correct metrics.  */
5577 		icsk->icsk_af_ops->rebuild_header(sk);
5578 
5579 		tcp_init_metrics(sk);
5580 
5581 		tcp_init_congestion_control(sk);
5582 
5583 		/* Prevent spurious tcp_cwnd_restart() on first data
5584 		 * packet.
5585 		 */
5586 		tp->lsndtime = tcp_time_stamp;
5587 
5588 		tcp_init_buffer_space(sk);
5589 
5590 		if (sock_flag(sk, SOCK_KEEPOPEN))
5591 			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5592 
5593 		if (!tp->rx_opt.snd_wscale)
5594 			__tcp_fast_path_on(tp, tp->snd_wnd);
5595 		else
5596 			tp->pred_flags = 0;
5597 
5598 		if (!sock_flag(sk, SOCK_DEAD)) {
5599 			sk->sk_state_change(sk);
5600 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5601 		}
5602 
5603 		if (sk->sk_write_pending ||
5604 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5605 		    icsk->icsk_ack.pingpong) {
5606 			/* Save one ACK. Data will be ready after
5607 			 * several ticks, if write_pending is set.
5608 			 *
5609 			 * It may be deleted, but with this feature tcpdumps
5610 			 * look so _wonderfully_ clever, that I was not able
5611 			 * to stand against the temptation 8)     --ANK
5612 			 */
5613 			inet_csk_schedule_ack(sk);
5614 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5615 			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
5616 			tcp_incr_quickack(sk);
5617 			tcp_enter_quickack_mode(sk);
5618 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5619 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5620 
5621 discard:
5622 			__kfree_skb(skb);
5623 			return 0;
5624 		} else {
5625 			tcp_send_ack(sk);
5626 		}
5627 		return -1;
5628 	}
5629 
5630 	/* No ACK in the segment */
5631 
5632 	if (th->rst) {
5633 		/* rfc793:
5634 		 * "If the RST bit is set
5635 		 *
5636 		 *      Otherwise (no ACK) drop the segment and return."
5637 		 */
5638 
5639 		goto discard_and_undo;
5640 	}
5641 
5642 	/* PAWS check. */
5643 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5644 	    tcp_paws_reject(&tp->rx_opt, 0))
5645 		goto discard_and_undo;
5646 
5647 	if (th->syn) {
5648 		/* We see SYN without ACK. It is attempt of
5649 		 * simultaneous connect with crossed SYNs.
5650 		 * Particularly, it can be connect to self.
5651 		 */
5652 		tcp_set_state(sk, TCP_SYN_RECV);
5653 
5654 		if (tp->rx_opt.saw_tstamp) {
5655 			tp->rx_opt.tstamp_ok = 1;
5656 			tcp_store_ts_recent(tp);
5657 			tp->tcp_header_len =
5658 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5659 		} else {
5660 			tp->tcp_header_len = sizeof(struct tcphdr);
5661 		}
5662 
5663 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5664 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5665 
5666 		/* RFC1323: The window in SYN & SYN/ACK segments is
5667 		 * never scaled.
5668 		 */
5669 		tp->snd_wnd    = ntohs(th->window);
5670 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5671 		tp->max_window = tp->snd_wnd;
5672 
5673 		TCP_ECN_rcv_syn(tp, th);
5674 
5675 		tcp_mtup_init(sk);
5676 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5677 		tcp_initialize_rcv_mss(sk);
5678 
5679 		tcp_send_synack(sk);
5680 #if 0
5681 		/* Note, we could accept data and URG from this segment.
5682 		 * There are no obstacles to make this.
5683 		 *
5684 		 * However, if we ignore data in ACKless segments sometimes,
5685 		 * we have no reasons to accept it sometimes.
5686 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5687 		 * is not flawless. So, discard packet for sanity.
5688 		 * Uncomment this return to process the data.
5689 		 */
5690 		return -1;
5691 #else
5692 		goto discard;
5693 #endif
5694 	}
5695 	/* "fifth, if neither of the SYN or RST bits is set then
5696 	 * drop the segment and return."
5697 	 */
5698 
5699 discard_and_undo:
5700 	tcp_clear_options(&tp->rx_opt);
5701 	tp->rx_opt.mss_clamp = saved_clamp;
5702 	goto discard;
5703 
5704 reset_and_undo:
5705 	tcp_clear_options(&tp->rx_opt);
5706 	tp->rx_opt.mss_clamp = saved_clamp;
5707 	return 1;
5708 }
5709 
5710 /*
5711  *	This function implements the receiving procedure of RFC 793 for
5712  *	all states except ESTABLISHED and TIME_WAIT.
5713  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5714  *	address independent.
5715  */
5716 
5717 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5718 			  struct tcphdr *th, unsigned len)
5719 {
5720 	struct tcp_sock *tp = tcp_sk(sk);
5721 	struct inet_connection_sock *icsk = inet_csk(sk);
5722 	int queued = 0;
5723 	int res;
5724 
5725 	tp->rx_opt.saw_tstamp = 0;
5726 
5727 	switch (sk->sk_state) {
5728 	case TCP_CLOSE:
5729 		goto discard;
5730 
5731 	case TCP_LISTEN:
5732 		if (th->ack)
5733 			return 1;
5734 
5735 		if (th->rst)
5736 			goto discard;
5737 
5738 		if (th->syn) {
5739 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5740 				return 1;
5741 
5742 			/* Now we have several options: In theory there is
5743 			 * nothing else in the frame. KA9Q has an option to
5744 			 * send data with the syn, BSD accepts data with the
5745 			 * syn up to the [to be] advertised window and
5746 			 * Solaris 2.1 gives you a protocol error. For now
5747 			 * we just ignore it, that fits the spec precisely
5748 			 * and avoids incompatibilities. It would be nice in
5749 			 * future to drop through and process the data.
5750 			 *
5751 			 * Now that TTCP is starting to be used we ought to
5752 			 * queue this data.
5753 			 * But, this leaves one open to an easy denial of
5754 			 * service attack, and SYN cookies can't defend
5755 			 * against this problem. So, we drop the data
5756 			 * in the interest of security over speed unless
5757 			 * it's still in use.
5758 			 */
5759 			kfree_skb(skb);
5760 			return 0;
5761 		}
5762 		goto discard;
5763 
5764 	case TCP_SYN_SENT:
5765 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5766 		if (queued >= 0)
5767 			return queued;
5768 
5769 		/* Do step6 onward by hand. */
5770 		tcp_urg(sk, skb, th);
5771 		__kfree_skb(skb);
5772 		tcp_data_snd_check(sk);
5773 		return 0;
5774 	}
5775 
5776 	res = tcp_validate_incoming(sk, skb, th, 0);
5777 	if (res <= 0)
5778 		return -res;
5779 
5780 	/* step 5: check the ACK field */
5781 	if (th->ack) {
5782 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5783 
5784 		switch (sk->sk_state) {
5785 		case TCP_SYN_RECV:
5786 			if (acceptable) {
5787 				tp->copied_seq = tp->rcv_nxt;
5788 				smp_mb();
5789 				tcp_set_state(sk, TCP_ESTABLISHED);
5790 				sk->sk_state_change(sk);
5791 
5792 				/* Note, that this wakeup is only for marginal
5793 				 * crossed SYN case. Passively open sockets
5794 				 * are not waked up, because sk->sk_sleep ==
5795 				 * NULL and sk->sk_socket == NULL.
5796 				 */
5797 				if (sk->sk_socket)
5798 					sk_wake_async(sk,
5799 						      SOCK_WAKE_IO, POLL_OUT);
5800 
5801 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5802 				tp->snd_wnd = ntohs(th->window) <<
5803 					      tp->rx_opt.snd_wscale;
5804 				tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5805 
5806 				/* tcp_ack considers this ACK as duplicate
5807 				 * and does not calculate rtt.
5808 				 * Force it here.
5809 				 */
5810 				tcp_ack_update_rtt(sk, 0, 0);
5811 
5812 				if (tp->rx_opt.tstamp_ok)
5813 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5814 
5815 				/* Make sure socket is routed, for
5816 				 * correct metrics.
5817 				 */
5818 				icsk->icsk_af_ops->rebuild_header(sk);
5819 
5820 				tcp_init_metrics(sk);
5821 
5822 				tcp_init_congestion_control(sk);
5823 
5824 				/* Prevent spurious tcp_cwnd_restart() on
5825 				 * first data packet.
5826 				 */
5827 				tp->lsndtime = tcp_time_stamp;
5828 
5829 				tcp_mtup_init(sk);
5830 				tcp_initialize_rcv_mss(sk);
5831 				tcp_init_buffer_space(sk);
5832 				tcp_fast_path_on(tp);
5833 			} else {
5834 				return 1;
5835 			}
5836 			break;
5837 
5838 		case TCP_FIN_WAIT1:
5839 			if (tp->snd_una == tp->write_seq) {
5840 				tcp_set_state(sk, TCP_FIN_WAIT2);
5841 				sk->sk_shutdown |= SEND_SHUTDOWN;
5842 				dst_confirm(__sk_dst_get(sk));
5843 
5844 				if (!sock_flag(sk, SOCK_DEAD))
5845 					/* Wake up lingering close() */
5846 					sk->sk_state_change(sk);
5847 				else {
5848 					int tmo;
5849 
5850 					if (tp->linger2 < 0 ||
5851 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5852 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5853 						tcp_done(sk);
5854 						NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5855 						return 1;
5856 					}
5857 
5858 					tmo = tcp_fin_time(sk);
5859 					if (tmo > TCP_TIMEWAIT_LEN) {
5860 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5861 					} else if (th->fin || sock_owned_by_user(sk)) {
5862 						/* Bad case. We could lose such FIN otherwise.
5863 						 * It is not a big problem, but it looks confusing
5864 						 * and not so rare event. We still can lose it now,
5865 						 * if it spins in bh_lock_sock(), but it is really
5866 						 * marginal case.
5867 						 */
5868 						inet_csk_reset_keepalive_timer(sk, tmo);
5869 					} else {
5870 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5871 						goto discard;
5872 					}
5873 				}
5874 			}
5875 			break;
5876 
5877 		case TCP_CLOSING:
5878 			if (tp->snd_una == tp->write_seq) {
5879 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5880 				goto discard;
5881 			}
5882 			break;
5883 
5884 		case TCP_LAST_ACK:
5885 			if (tp->snd_una == tp->write_seq) {
5886 				tcp_update_metrics(sk);
5887 				tcp_done(sk);
5888 				goto discard;
5889 			}
5890 			break;
5891 		}
5892 	} else
5893 		goto discard;
5894 
5895 	/* step 6: check the URG bit */
5896 	tcp_urg(sk, skb, th);
5897 
5898 	/* step 7: process the segment text */
5899 	switch (sk->sk_state) {
5900 	case TCP_CLOSE_WAIT:
5901 	case TCP_CLOSING:
5902 	case TCP_LAST_ACK:
5903 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5904 			break;
5905 	case TCP_FIN_WAIT1:
5906 	case TCP_FIN_WAIT2:
5907 		/* RFC 793 says to queue data in these states,
5908 		 * RFC 1122 says we MUST send a reset.
5909 		 * BSD 4.4 also does reset.
5910 		 */
5911 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5912 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5913 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5914 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5915 				tcp_reset(sk);
5916 				return 1;
5917 			}
5918 		}
5919 		/* Fall through */
5920 	case TCP_ESTABLISHED:
5921 		tcp_data_queue(sk, skb);
5922 		queued = 1;
5923 		break;
5924 	}
5925 
5926 	/* tcp_data could move socket to TIME-WAIT */
5927 	if (sk->sk_state != TCP_CLOSE) {
5928 		tcp_data_snd_check(sk);
5929 		tcp_ack_snd_check(sk);
5930 	}
5931 
5932 	if (!queued) {
5933 discard:
5934 		__kfree_skb(skb);
5935 	}
5936 	return 0;
5937 }
5938 EXPORT_SYMBOL(tcp_rcv_state_process);
5939