xref: /openbmc/linux/net/ipv4/tcp_input.c (revision ba61bb17)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/static_key.h>
81 
82 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
83 
84 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
85 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
86 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
87 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
88 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
89 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
90 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
91 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
92 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
93 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
94 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
95 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
96 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
97 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
98 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
99 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
100 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
101 
102 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
103 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
104 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
105 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
106 
107 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
108 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
109 
110 #define REXMIT_NONE	0 /* no loss recovery to do */
111 #define REXMIT_LOST	1 /* retransmit packets marked lost */
112 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
113 
114 #if IS_ENABLED(CONFIG_TLS_DEVICE)
115 static DEFINE_STATIC_KEY_FALSE(clean_acked_data_enabled);
116 
117 void clean_acked_data_enable(struct inet_connection_sock *icsk,
118 			     void (*cad)(struct sock *sk, u32 ack_seq))
119 {
120 	icsk->icsk_clean_acked = cad;
121 	static_branch_inc(&clean_acked_data_enabled);
122 }
123 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
124 
125 void clean_acked_data_disable(struct inet_connection_sock *icsk)
126 {
127 	static_branch_dec(&clean_acked_data_enabled);
128 	icsk->icsk_clean_acked = NULL;
129 }
130 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
131 #endif
132 
133 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
134 			     unsigned int len)
135 {
136 	static bool __once __read_mostly;
137 
138 	if (!__once) {
139 		struct net_device *dev;
140 
141 		__once = true;
142 
143 		rcu_read_lock();
144 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
145 		if (!dev || len >= dev->mtu)
146 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
147 				dev ? dev->name : "Unknown driver");
148 		rcu_read_unlock();
149 	}
150 }
151 
152 /* Adapt the MSS value used to make delayed ack decision to the
153  * real world.
154  */
155 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
156 {
157 	struct inet_connection_sock *icsk = inet_csk(sk);
158 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
159 	unsigned int len;
160 
161 	icsk->icsk_ack.last_seg_size = 0;
162 
163 	/* skb->len may jitter because of SACKs, even if peer
164 	 * sends good full-sized frames.
165 	 */
166 	len = skb_shinfo(skb)->gso_size ? : skb->len;
167 	if (len >= icsk->icsk_ack.rcv_mss) {
168 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
169 					       tcp_sk(sk)->advmss);
170 		/* Account for possibly-removed options */
171 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
172 				   MAX_TCP_OPTION_SPACE))
173 			tcp_gro_dev_warn(sk, skb, len);
174 	} else {
175 		/* Otherwise, we make more careful check taking into account,
176 		 * that SACKs block is variable.
177 		 *
178 		 * "len" is invariant segment length, including TCP header.
179 		 */
180 		len += skb->data - skb_transport_header(skb);
181 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
182 		    /* If PSH is not set, packet should be
183 		     * full sized, provided peer TCP is not badly broken.
184 		     * This observation (if it is correct 8)) allows
185 		     * to handle super-low mtu links fairly.
186 		     */
187 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
188 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
189 			/* Subtract also invariant (if peer is RFC compliant),
190 			 * tcp header plus fixed timestamp option length.
191 			 * Resulting "len" is MSS free of SACK jitter.
192 			 */
193 			len -= tcp_sk(sk)->tcp_header_len;
194 			icsk->icsk_ack.last_seg_size = len;
195 			if (len == lss) {
196 				icsk->icsk_ack.rcv_mss = len;
197 				return;
198 			}
199 		}
200 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
201 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
202 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
203 	}
204 }
205 
206 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
207 {
208 	struct inet_connection_sock *icsk = inet_csk(sk);
209 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
210 
211 	if (quickacks == 0)
212 		quickacks = 2;
213 	quickacks = min(quickacks, max_quickacks);
214 	if (quickacks > icsk->icsk_ack.quick)
215 		icsk->icsk_ack.quick = quickacks;
216 }
217 
218 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
219 {
220 	struct inet_connection_sock *icsk = inet_csk(sk);
221 
222 	tcp_incr_quickack(sk, max_quickacks);
223 	icsk->icsk_ack.pingpong = 0;
224 	icsk->icsk_ack.ato = TCP_ATO_MIN;
225 }
226 
227 /* Send ACKs quickly, if "quick" count is not exhausted
228  * and the session is not interactive.
229  */
230 
231 static bool tcp_in_quickack_mode(struct sock *sk)
232 {
233 	const struct inet_connection_sock *icsk = inet_csk(sk);
234 	const struct dst_entry *dst = __sk_dst_get(sk);
235 
236 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
237 		(icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
238 }
239 
240 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
241 {
242 	if (tp->ecn_flags & TCP_ECN_OK)
243 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
244 }
245 
246 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
247 {
248 	if (tcp_hdr(skb)->cwr)
249 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
250 }
251 
252 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
253 {
254 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
255 }
256 
257 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
258 {
259 	struct tcp_sock *tp = tcp_sk(sk);
260 
261 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
262 	case INET_ECN_NOT_ECT:
263 		/* Funny extension: if ECT is not set on a segment,
264 		 * and we already seen ECT on a previous segment,
265 		 * it is probably a retransmit.
266 		 */
267 		if (tp->ecn_flags & TCP_ECN_SEEN)
268 			tcp_enter_quickack_mode(sk, 1);
269 		break;
270 	case INET_ECN_CE:
271 		if (tcp_ca_needs_ecn(sk))
272 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
273 
274 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
275 			/* Better not delay acks, sender can have a very low cwnd */
276 			tcp_enter_quickack_mode(sk, 1);
277 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
278 		}
279 		tp->ecn_flags |= TCP_ECN_SEEN;
280 		break;
281 	default:
282 		if (tcp_ca_needs_ecn(sk))
283 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
284 		tp->ecn_flags |= TCP_ECN_SEEN;
285 		break;
286 	}
287 }
288 
289 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
290 {
291 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
292 		__tcp_ecn_check_ce(sk, skb);
293 }
294 
295 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
296 {
297 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
298 		tp->ecn_flags &= ~TCP_ECN_OK;
299 }
300 
301 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
302 {
303 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
304 		tp->ecn_flags &= ~TCP_ECN_OK;
305 }
306 
307 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
308 {
309 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
310 		return true;
311 	return false;
312 }
313 
314 /* Buffer size and advertised window tuning.
315  *
316  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
317  */
318 
319 static void tcp_sndbuf_expand(struct sock *sk)
320 {
321 	const struct tcp_sock *tp = tcp_sk(sk);
322 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
323 	int sndmem, per_mss;
324 	u32 nr_segs;
325 
326 	/* Worst case is non GSO/TSO : each frame consumes one skb
327 	 * and skb->head is kmalloced using power of two area of memory
328 	 */
329 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
330 		  MAX_TCP_HEADER +
331 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
332 
333 	per_mss = roundup_pow_of_two(per_mss) +
334 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
335 
336 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
337 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
338 
339 	/* Fast Recovery (RFC 5681 3.2) :
340 	 * Cubic needs 1.7 factor, rounded to 2 to include
341 	 * extra cushion (application might react slowly to EPOLLOUT)
342 	 */
343 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
344 	sndmem *= nr_segs * per_mss;
345 
346 	if (sk->sk_sndbuf < sndmem)
347 		sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
348 }
349 
350 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
351  *
352  * All tcp_full_space() is split to two parts: "network" buffer, allocated
353  * forward and advertised in receiver window (tp->rcv_wnd) and
354  * "application buffer", required to isolate scheduling/application
355  * latencies from network.
356  * window_clamp is maximal advertised window. It can be less than
357  * tcp_full_space(), in this case tcp_full_space() - window_clamp
358  * is reserved for "application" buffer. The less window_clamp is
359  * the smoother our behaviour from viewpoint of network, but the lower
360  * throughput and the higher sensitivity of the connection to losses. 8)
361  *
362  * rcv_ssthresh is more strict window_clamp used at "slow start"
363  * phase to predict further behaviour of this connection.
364  * It is used for two goals:
365  * - to enforce header prediction at sender, even when application
366  *   requires some significant "application buffer". It is check #1.
367  * - to prevent pruning of receive queue because of misprediction
368  *   of receiver window. Check #2.
369  *
370  * The scheme does not work when sender sends good segments opening
371  * window and then starts to feed us spaghetti. But it should work
372  * in common situations. Otherwise, we have to rely on queue collapsing.
373  */
374 
375 /* Slow part of check#2. */
376 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
377 {
378 	struct tcp_sock *tp = tcp_sk(sk);
379 	/* Optimize this! */
380 	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
381 	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
382 
383 	while (tp->rcv_ssthresh <= window) {
384 		if (truesize <= skb->len)
385 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
386 
387 		truesize >>= 1;
388 		window >>= 1;
389 	}
390 	return 0;
391 }
392 
393 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
394 {
395 	struct tcp_sock *tp = tcp_sk(sk);
396 
397 	/* Check #1 */
398 	if (tp->rcv_ssthresh < tp->window_clamp &&
399 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
400 	    !tcp_under_memory_pressure(sk)) {
401 		int incr;
402 
403 		/* Check #2. Increase window, if skb with such overhead
404 		 * will fit to rcvbuf in future.
405 		 */
406 		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
407 			incr = 2 * tp->advmss;
408 		else
409 			incr = __tcp_grow_window(sk, skb);
410 
411 		if (incr) {
412 			incr = max_t(int, incr, 2 * skb->len);
413 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
414 					       tp->window_clamp);
415 			inet_csk(sk)->icsk_ack.quick |= 1;
416 		}
417 	}
418 }
419 
420 /* 3. Tuning rcvbuf, when connection enters established state. */
421 static void tcp_fixup_rcvbuf(struct sock *sk)
422 {
423 	u32 mss = tcp_sk(sk)->advmss;
424 	int rcvmem;
425 
426 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
427 		 tcp_default_init_rwnd(mss);
428 
429 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
430 	 * Allow enough cushion so that sender is not limited by our window
431 	 */
432 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf)
433 		rcvmem <<= 2;
434 
435 	if (sk->sk_rcvbuf < rcvmem)
436 		sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
437 }
438 
439 /* 4. Try to fixup all. It is made immediately after connection enters
440  *    established state.
441  */
442 void tcp_init_buffer_space(struct sock *sk)
443 {
444 	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
445 	struct tcp_sock *tp = tcp_sk(sk);
446 	int maxwin;
447 
448 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
449 		tcp_fixup_rcvbuf(sk);
450 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
451 		tcp_sndbuf_expand(sk);
452 
453 	tp->rcvq_space.space = tp->rcv_wnd;
454 	tcp_mstamp_refresh(tp);
455 	tp->rcvq_space.time = tp->tcp_mstamp;
456 	tp->rcvq_space.seq = tp->copied_seq;
457 
458 	maxwin = tcp_full_space(sk);
459 
460 	if (tp->window_clamp >= maxwin) {
461 		tp->window_clamp = maxwin;
462 
463 		if (tcp_app_win && maxwin > 4 * tp->advmss)
464 			tp->window_clamp = max(maxwin -
465 					       (maxwin >> tcp_app_win),
466 					       4 * tp->advmss);
467 	}
468 
469 	/* Force reservation of one segment. */
470 	if (tcp_app_win &&
471 	    tp->window_clamp > 2 * tp->advmss &&
472 	    tp->window_clamp + tp->advmss > maxwin)
473 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
474 
475 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
476 	tp->snd_cwnd_stamp = tcp_jiffies32;
477 }
478 
479 /* 5. Recalculate window clamp after socket hit its memory bounds. */
480 static void tcp_clamp_window(struct sock *sk)
481 {
482 	struct tcp_sock *tp = tcp_sk(sk);
483 	struct inet_connection_sock *icsk = inet_csk(sk);
484 	struct net *net = sock_net(sk);
485 
486 	icsk->icsk_ack.quick = 0;
487 
488 	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
489 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
490 	    !tcp_under_memory_pressure(sk) &&
491 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
492 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
493 				    net->ipv4.sysctl_tcp_rmem[2]);
494 	}
495 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
496 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
497 }
498 
499 /* Initialize RCV_MSS value.
500  * RCV_MSS is an our guess about MSS used by the peer.
501  * We haven't any direct information about the MSS.
502  * It's better to underestimate the RCV_MSS rather than overestimate.
503  * Overestimations make us ACKing less frequently than needed.
504  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
505  */
506 void tcp_initialize_rcv_mss(struct sock *sk)
507 {
508 	const struct tcp_sock *tp = tcp_sk(sk);
509 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
510 
511 	hint = min(hint, tp->rcv_wnd / 2);
512 	hint = min(hint, TCP_MSS_DEFAULT);
513 	hint = max(hint, TCP_MIN_MSS);
514 
515 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
516 }
517 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
518 
519 /* Receiver "autotuning" code.
520  *
521  * The algorithm for RTT estimation w/o timestamps is based on
522  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
523  * <http://public.lanl.gov/radiant/pubs.html#DRS>
524  *
525  * More detail on this code can be found at
526  * <http://staff.psc.edu/jheffner/>,
527  * though this reference is out of date.  A new paper
528  * is pending.
529  */
530 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
531 {
532 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
533 	long m = sample;
534 
535 	if (new_sample != 0) {
536 		/* If we sample in larger samples in the non-timestamp
537 		 * case, we could grossly overestimate the RTT especially
538 		 * with chatty applications or bulk transfer apps which
539 		 * are stalled on filesystem I/O.
540 		 *
541 		 * Also, since we are only going for a minimum in the
542 		 * non-timestamp case, we do not smooth things out
543 		 * else with timestamps disabled convergence takes too
544 		 * long.
545 		 */
546 		if (!win_dep) {
547 			m -= (new_sample >> 3);
548 			new_sample += m;
549 		} else {
550 			m <<= 3;
551 			if (m < new_sample)
552 				new_sample = m;
553 		}
554 	} else {
555 		/* No previous measure. */
556 		new_sample = m << 3;
557 	}
558 
559 	tp->rcv_rtt_est.rtt_us = new_sample;
560 }
561 
562 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
563 {
564 	u32 delta_us;
565 
566 	if (tp->rcv_rtt_est.time == 0)
567 		goto new_measure;
568 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
569 		return;
570 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
571 	if (!delta_us)
572 		delta_us = 1;
573 	tcp_rcv_rtt_update(tp, delta_us, 1);
574 
575 new_measure:
576 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
577 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
578 }
579 
580 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
581 					  const struct sk_buff *skb)
582 {
583 	struct tcp_sock *tp = tcp_sk(sk);
584 
585 	if (tp->rx_opt.rcv_tsecr &&
586 	    (TCP_SKB_CB(skb)->end_seq -
587 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
588 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
589 		u32 delta_us;
590 
591 		if (!delta)
592 			delta = 1;
593 		delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
594 		tcp_rcv_rtt_update(tp, delta_us, 0);
595 	}
596 }
597 
598 /*
599  * This function should be called every time data is copied to user space.
600  * It calculates the appropriate TCP receive buffer space.
601  */
602 void tcp_rcv_space_adjust(struct sock *sk)
603 {
604 	struct tcp_sock *tp = tcp_sk(sk);
605 	u32 copied;
606 	int time;
607 
608 	trace_tcp_rcv_space_adjust(sk);
609 
610 	tcp_mstamp_refresh(tp);
611 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
612 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
613 		return;
614 
615 	/* Number of bytes copied to user in last RTT */
616 	copied = tp->copied_seq - tp->rcvq_space.seq;
617 	if (copied <= tp->rcvq_space.space)
618 		goto new_measure;
619 
620 	/* A bit of theory :
621 	 * copied = bytes received in previous RTT, our base window
622 	 * To cope with packet losses, we need a 2x factor
623 	 * To cope with slow start, and sender growing its cwin by 100 %
624 	 * every RTT, we need a 4x factor, because the ACK we are sending
625 	 * now is for the next RTT, not the current one :
626 	 * <prev RTT . ><current RTT .. ><next RTT .... >
627 	 */
628 
629 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
630 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
631 		int rcvmem, rcvbuf;
632 		u64 rcvwin, grow;
633 
634 		/* minimal window to cope with packet losses, assuming
635 		 * steady state. Add some cushion because of small variations.
636 		 */
637 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
638 
639 		/* Accommodate for sender rate increase (eg. slow start) */
640 		grow = rcvwin * (copied - tp->rcvq_space.space);
641 		do_div(grow, tp->rcvq_space.space);
642 		rcvwin += (grow << 1);
643 
644 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
645 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
646 			rcvmem += 128;
647 
648 		do_div(rcvwin, tp->advmss);
649 		rcvbuf = min_t(u64, rcvwin * rcvmem,
650 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
651 		if (rcvbuf > sk->sk_rcvbuf) {
652 			sk->sk_rcvbuf = rcvbuf;
653 
654 			/* Make the window clamp follow along.  */
655 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
656 		}
657 	}
658 	tp->rcvq_space.space = copied;
659 
660 new_measure:
661 	tp->rcvq_space.seq = tp->copied_seq;
662 	tp->rcvq_space.time = tp->tcp_mstamp;
663 }
664 
665 /* There is something which you must keep in mind when you analyze the
666  * behavior of the tp->ato delayed ack timeout interval.  When a
667  * connection starts up, we want to ack as quickly as possible.  The
668  * problem is that "good" TCP's do slow start at the beginning of data
669  * transmission.  The means that until we send the first few ACK's the
670  * sender will sit on his end and only queue most of his data, because
671  * he can only send snd_cwnd unacked packets at any given time.  For
672  * each ACK we send, he increments snd_cwnd and transmits more of his
673  * queue.  -DaveM
674  */
675 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
676 {
677 	struct tcp_sock *tp = tcp_sk(sk);
678 	struct inet_connection_sock *icsk = inet_csk(sk);
679 	u32 now;
680 
681 	inet_csk_schedule_ack(sk);
682 
683 	tcp_measure_rcv_mss(sk, skb);
684 
685 	tcp_rcv_rtt_measure(tp);
686 
687 	now = tcp_jiffies32;
688 
689 	if (!icsk->icsk_ack.ato) {
690 		/* The _first_ data packet received, initialize
691 		 * delayed ACK engine.
692 		 */
693 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
694 		icsk->icsk_ack.ato = TCP_ATO_MIN;
695 	} else {
696 		int m = now - icsk->icsk_ack.lrcvtime;
697 
698 		if (m <= TCP_ATO_MIN / 2) {
699 			/* The fastest case is the first. */
700 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
701 		} else if (m < icsk->icsk_ack.ato) {
702 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
703 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
704 				icsk->icsk_ack.ato = icsk->icsk_rto;
705 		} else if (m > icsk->icsk_rto) {
706 			/* Too long gap. Apparently sender failed to
707 			 * restart window, so that we send ACKs quickly.
708 			 */
709 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
710 			sk_mem_reclaim(sk);
711 		}
712 	}
713 	icsk->icsk_ack.lrcvtime = now;
714 
715 	tcp_ecn_check_ce(sk, skb);
716 
717 	if (skb->len >= 128)
718 		tcp_grow_window(sk, skb);
719 }
720 
721 /* Called to compute a smoothed rtt estimate. The data fed to this
722  * routine either comes from timestamps, or from segments that were
723  * known _not_ to have been retransmitted [see Karn/Partridge
724  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
725  * piece by Van Jacobson.
726  * NOTE: the next three routines used to be one big routine.
727  * To save cycles in the RFC 1323 implementation it was better to break
728  * it up into three procedures. -- erics
729  */
730 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
731 {
732 	struct tcp_sock *tp = tcp_sk(sk);
733 	long m = mrtt_us; /* RTT */
734 	u32 srtt = tp->srtt_us;
735 
736 	/*	The following amusing code comes from Jacobson's
737 	 *	article in SIGCOMM '88.  Note that rtt and mdev
738 	 *	are scaled versions of rtt and mean deviation.
739 	 *	This is designed to be as fast as possible
740 	 *	m stands for "measurement".
741 	 *
742 	 *	On a 1990 paper the rto value is changed to:
743 	 *	RTO = rtt + 4 * mdev
744 	 *
745 	 * Funny. This algorithm seems to be very broken.
746 	 * These formulae increase RTO, when it should be decreased, increase
747 	 * too slowly, when it should be increased quickly, decrease too quickly
748 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
749 	 * does not matter how to _calculate_ it. Seems, it was trap
750 	 * that VJ failed to avoid. 8)
751 	 */
752 	if (srtt != 0) {
753 		m -= (srtt >> 3);	/* m is now error in rtt est */
754 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
755 		if (m < 0) {
756 			m = -m;		/* m is now abs(error) */
757 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
758 			/* This is similar to one of Eifel findings.
759 			 * Eifel blocks mdev updates when rtt decreases.
760 			 * This solution is a bit different: we use finer gain
761 			 * for mdev in this case (alpha*beta).
762 			 * Like Eifel it also prevents growth of rto,
763 			 * but also it limits too fast rto decreases,
764 			 * happening in pure Eifel.
765 			 */
766 			if (m > 0)
767 				m >>= 3;
768 		} else {
769 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
770 		}
771 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
772 		if (tp->mdev_us > tp->mdev_max_us) {
773 			tp->mdev_max_us = tp->mdev_us;
774 			if (tp->mdev_max_us > tp->rttvar_us)
775 				tp->rttvar_us = tp->mdev_max_us;
776 		}
777 		if (after(tp->snd_una, tp->rtt_seq)) {
778 			if (tp->mdev_max_us < tp->rttvar_us)
779 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
780 			tp->rtt_seq = tp->snd_nxt;
781 			tp->mdev_max_us = tcp_rto_min_us(sk);
782 		}
783 	} else {
784 		/* no previous measure. */
785 		srtt = m << 3;		/* take the measured time to be rtt */
786 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
787 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
788 		tp->mdev_max_us = tp->rttvar_us;
789 		tp->rtt_seq = tp->snd_nxt;
790 	}
791 	tp->srtt_us = max(1U, srtt);
792 }
793 
794 static void tcp_update_pacing_rate(struct sock *sk)
795 {
796 	const struct tcp_sock *tp = tcp_sk(sk);
797 	u64 rate;
798 
799 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
800 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
801 
802 	/* current rate is (cwnd * mss) / srtt
803 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
804 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
805 	 *
806 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
807 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
808 	 *	 end of slow start and should slow down.
809 	 */
810 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
811 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
812 	else
813 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
814 
815 	rate *= max(tp->snd_cwnd, tp->packets_out);
816 
817 	if (likely(tp->srtt_us))
818 		do_div(rate, tp->srtt_us);
819 
820 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
821 	 * without any lock. We want to make sure compiler wont store
822 	 * intermediate values in this location.
823 	 */
824 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
825 					     sk->sk_max_pacing_rate));
826 }
827 
828 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
829  * routine referred to above.
830  */
831 static void tcp_set_rto(struct sock *sk)
832 {
833 	const struct tcp_sock *tp = tcp_sk(sk);
834 	/* Old crap is replaced with new one. 8)
835 	 *
836 	 * More seriously:
837 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
838 	 *    It cannot be less due to utterly erratic ACK generation made
839 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
840 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
841 	 *    is invisible. Actually, Linux-2.4 also generates erratic
842 	 *    ACKs in some circumstances.
843 	 */
844 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
845 
846 	/* 2. Fixups made earlier cannot be right.
847 	 *    If we do not estimate RTO correctly without them,
848 	 *    all the algo is pure shit and should be replaced
849 	 *    with correct one. It is exactly, which we pretend to do.
850 	 */
851 
852 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
853 	 * guarantees that rto is higher.
854 	 */
855 	tcp_bound_rto(sk);
856 }
857 
858 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
859 {
860 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
861 
862 	if (!cwnd)
863 		cwnd = TCP_INIT_CWND;
864 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
865 }
866 
867 /* Take a notice that peer is sending D-SACKs */
868 static void tcp_dsack_seen(struct tcp_sock *tp)
869 {
870 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
871 	tp->rack.dsack_seen = 1;
872 }
873 
874 /* It's reordering when higher sequence was delivered (i.e. sacked) before
875  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
876  * distance is approximated in full-mss packet distance ("reordering").
877  */
878 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
879 				      const int ts)
880 {
881 	struct tcp_sock *tp = tcp_sk(sk);
882 	const u32 mss = tp->mss_cache;
883 	u32 fack, metric;
884 
885 	fack = tcp_highest_sack_seq(tp);
886 	if (!before(low_seq, fack))
887 		return;
888 
889 	metric = fack - low_seq;
890 	if ((metric > tp->reordering * mss) && mss) {
891 #if FASTRETRANS_DEBUG > 1
892 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
893 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
894 			 tp->reordering,
895 			 0,
896 			 tp->sacked_out,
897 			 tp->undo_marker ? tp->undo_retrans : 0);
898 #endif
899 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
900 				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
901 	}
902 
903 	tp->rack.reord = 1;
904 	/* This exciting event is worth to be remembered. 8) */
905 	NET_INC_STATS(sock_net(sk),
906 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
907 }
908 
909 /* This must be called before lost_out is incremented */
910 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
911 {
912 	if (!tp->retransmit_skb_hint ||
913 	    before(TCP_SKB_CB(skb)->seq,
914 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
915 		tp->retransmit_skb_hint = skb;
916 }
917 
918 /* Sum the number of packets on the wire we have marked as lost.
919  * There are two cases we care about here:
920  * a) Packet hasn't been marked lost (nor retransmitted),
921  *    and this is the first loss.
922  * b) Packet has been marked both lost and retransmitted,
923  *    and this means we think it was lost again.
924  */
925 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
926 {
927 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
928 
929 	if (!(sacked & TCPCB_LOST) ||
930 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
931 		tp->lost += tcp_skb_pcount(skb);
932 }
933 
934 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
935 {
936 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
937 		tcp_verify_retransmit_hint(tp, skb);
938 
939 		tp->lost_out += tcp_skb_pcount(skb);
940 		tcp_sum_lost(tp, skb);
941 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
942 	}
943 }
944 
945 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
946 {
947 	tcp_verify_retransmit_hint(tp, skb);
948 
949 	tcp_sum_lost(tp, skb);
950 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
951 		tp->lost_out += tcp_skb_pcount(skb);
952 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
953 	}
954 }
955 
956 /* This procedure tags the retransmission queue when SACKs arrive.
957  *
958  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
959  * Packets in queue with these bits set are counted in variables
960  * sacked_out, retrans_out and lost_out, correspondingly.
961  *
962  * Valid combinations are:
963  * Tag  InFlight	Description
964  * 0	1		- orig segment is in flight.
965  * S	0		- nothing flies, orig reached receiver.
966  * L	0		- nothing flies, orig lost by net.
967  * R	2		- both orig and retransmit are in flight.
968  * L|R	1		- orig is lost, retransmit is in flight.
969  * S|R  1		- orig reached receiver, retrans is still in flight.
970  * (L|S|R is logically valid, it could occur when L|R is sacked,
971  *  but it is equivalent to plain S and code short-curcuits it to S.
972  *  L|S is logically invalid, it would mean -1 packet in flight 8))
973  *
974  * These 6 states form finite state machine, controlled by the following events:
975  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
976  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
977  * 3. Loss detection event of two flavors:
978  *	A. Scoreboard estimator decided the packet is lost.
979  *	   A'. Reno "three dupacks" marks head of queue lost.
980  *	B. SACK arrives sacking SND.NXT at the moment, when the
981  *	   segment was retransmitted.
982  * 4. D-SACK added new rule: D-SACK changes any tag to S.
983  *
984  * It is pleasant to note, that state diagram turns out to be commutative,
985  * so that we are allowed not to be bothered by order of our actions,
986  * when multiple events arrive simultaneously. (see the function below).
987  *
988  * Reordering detection.
989  * --------------------
990  * Reordering metric is maximal distance, which a packet can be displaced
991  * in packet stream. With SACKs we can estimate it:
992  *
993  * 1. SACK fills old hole and the corresponding segment was not
994  *    ever retransmitted -> reordering. Alas, we cannot use it
995  *    when segment was retransmitted.
996  * 2. The last flaw is solved with D-SACK. D-SACK arrives
997  *    for retransmitted and already SACKed segment -> reordering..
998  * Both of these heuristics are not used in Loss state, when we cannot
999  * account for retransmits accurately.
1000  *
1001  * SACK block validation.
1002  * ----------------------
1003  *
1004  * SACK block range validation checks that the received SACK block fits to
1005  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1006  * Note that SND.UNA is not included to the range though being valid because
1007  * it means that the receiver is rather inconsistent with itself reporting
1008  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1009  * perfectly valid, however, in light of RFC2018 which explicitly states
1010  * that "SACK block MUST reflect the newest segment.  Even if the newest
1011  * segment is going to be discarded ...", not that it looks very clever
1012  * in case of head skb. Due to potentional receiver driven attacks, we
1013  * choose to avoid immediate execution of a walk in write queue due to
1014  * reneging and defer head skb's loss recovery to standard loss recovery
1015  * procedure that will eventually trigger (nothing forbids us doing this).
1016  *
1017  * Implements also blockage to start_seq wrap-around. Problem lies in the
1018  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1019  * there's no guarantee that it will be before snd_nxt (n). The problem
1020  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1021  * wrap (s_w):
1022  *
1023  *         <- outs wnd ->                          <- wrapzone ->
1024  *         u     e      n                         u_w   e_w  s n_w
1025  *         |     |      |                          |     |   |  |
1026  * |<------------+------+----- TCP seqno space --------------+---------->|
1027  * ...-- <2^31 ->|                                           |<--------...
1028  * ...---- >2^31 ------>|                                    |<--------...
1029  *
1030  * Current code wouldn't be vulnerable but it's better still to discard such
1031  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1032  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1033  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1034  * equal to the ideal case (infinite seqno space without wrap caused issues).
1035  *
1036  * With D-SACK the lower bound is extended to cover sequence space below
1037  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1038  * again, D-SACK block must not to go across snd_una (for the same reason as
1039  * for the normal SACK blocks, explained above). But there all simplicity
1040  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1041  * fully below undo_marker they do not affect behavior in anyway and can
1042  * therefore be safely ignored. In rare cases (which are more or less
1043  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1044  * fragmentation and packet reordering past skb's retransmission. To consider
1045  * them correctly, the acceptable range must be extended even more though
1046  * the exact amount is rather hard to quantify. However, tp->max_window can
1047  * be used as an exaggerated estimate.
1048  */
1049 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1050 				   u32 start_seq, u32 end_seq)
1051 {
1052 	/* Too far in future, or reversed (interpretation is ambiguous) */
1053 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1054 		return false;
1055 
1056 	/* Nasty start_seq wrap-around check (see comments above) */
1057 	if (!before(start_seq, tp->snd_nxt))
1058 		return false;
1059 
1060 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1061 	 * start_seq == snd_una is non-sensical (see comments above)
1062 	 */
1063 	if (after(start_seq, tp->snd_una))
1064 		return true;
1065 
1066 	if (!is_dsack || !tp->undo_marker)
1067 		return false;
1068 
1069 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1070 	if (after(end_seq, tp->snd_una))
1071 		return false;
1072 
1073 	if (!before(start_seq, tp->undo_marker))
1074 		return true;
1075 
1076 	/* Too old */
1077 	if (!after(end_seq, tp->undo_marker))
1078 		return false;
1079 
1080 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1081 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1082 	 */
1083 	return !before(start_seq, end_seq - tp->max_window);
1084 }
1085 
1086 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1087 			    struct tcp_sack_block_wire *sp, int num_sacks,
1088 			    u32 prior_snd_una)
1089 {
1090 	struct tcp_sock *tp = tcp_sk(sk);
1091 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1092 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1093 	bool dup_sack = false;
1094 
1095 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1096 		dup_sack = true;
1097 		tcp_dsack_seen(tp);
1098 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1099 	} else if (num_sacks > 1) {
1100 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1101 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1102 
1103 		if (!after(end_seq_0, end_seq_1) &&
1104 		    !before(start_seq_0, start_seq_1)) {
1105 			dup_sack = true;
1106 			tcp_dsack_seen(tp);
1107 			NET_INC_STATS(sock_net(sk),
1108 					LINUX_MIB_TCPDSACKOFORECV);
1109 		}
1110 	}
1111 
1112 	/* D-SACK for already forgotten data... Do dumb counting. */
1113 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1114 	    !after(end_seq_0, prior_snd_una) &&
1115 	    after(end_seq_0, tp->undo_marker))
1116 		tp->undo_retrans--;
1117 
1118 	return dup_sack;
1119 }
1120 
1121 struct tcp_sacktag_state {
1122 	u32	reord;
1123 	/* Timestamps for earliest and latest never-retransmitted segment
1124 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1125 	 * but congestion control should still get an accurate delay signal.
1126 	 */
1127 	u64	first_sackt;
1128 	u64	last_sackt;
1129 	struct rate_sample *rate;
1130 	int	flag;
1131 	unsigned int mss_now;
1132 };
1133 
1134 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1135  * the incoming SACK may not exactly match but we can find smaller MSS
1136  * aligned portion of it that matches. Therefore we might need to fragment
1137  * which may fail and creates some hassle (caller must handle error case
1138  * returns).
1139  *
1140  * FIXME: this could be merged to shift decision code
1141  */
1142 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1143 				  u32 start_seq, u32 end_seq)
1144 {
1145 	int err;
1146 	bool in_sack;
1147 	unsigned int pkt_len;
1148 	unsigned int mss;
1149 
1150 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1151 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1152 
1153 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1154 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1155 		mss = tcp_skb_mss(skb);
1156 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1157 
1158 		if (!in_sack) {
1159 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1160 			if (pkt_len < mss)
1161 				pkt_len = mss;
1162 		} else {
1163 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1164 			if (pkt_len < mss)
1165 				return -EINVAL;
1166 		}
1167 
1168 		/* Round if necessary so that SACKs cover only full MSSes
1169 		 * and/or the remaining small portion (if present)
1170 		 */
1171 		if (pkt_len > mss) {
1172 			unsigned int new_len = (pkt_len / mss) * mss;
1173 			if (!in_sack && new_len < pkt_len)
1174 				new_len += mss;
1175 			pkt_len = new_len;
1176 		}
1177 
1178 		if (pkt_len >= skb->len && !in_sack)
1179 			return 0;
1180 
1181 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1182 				   pkt_len, mss, GFP_ATOMIC);
1183 		if (err < 0)
1184 			return err;
1185 	}
1186 
1187 	return in_sack;
1188 }
1189 
1190 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1191 static u8 tcp_sacktag_one(struct sock *sk,
1192 			  struct tcp_sacktag_state *state, u8 sacked,
1193 			  u32 start_seq, u32 end_seq,
1194 			  int dup_sack, int pcount,
1195 			  u64 xmit_time)
1196 {
1197 	struct tcp_sock *tp = tcp_sk(sk);
1198 
1199 	/* Account D-SACK for retransmitted packet. */
1200 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1201 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1202 		    after(end_seq, tp->undo_marker))
1203 			tp->undo_retrans--;
1204 		if ((sacked & TCPCB_SACKED_ACKED) &&
1205 		    before(start_seq, state->reord))
1206 				state->reord = start_seq;
1207 	}
1208 
1209 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1210 	if (!after(end_seq, tp->snd_una))
1211 		return sacked;
1212 
1213 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1214 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1215 
1216 		if (sacked & TCPCB_SACKED_RETRANS) {
1217 			/* If the segment is not tagged as lost,
1218 			 * we do not clear RETRANS, believing
1219 			 * that retransmission is still in flight.
1220 			 */
1221 			if (sacked & TCPCB_LOST) {
1222 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1223 				tp->lost_out -= pcount;
1224 				tp->retrans_out -= pcount;
1225 			}
1226 		} else {
1227 			if (!(sacked & TCPCB_RETRANS)) {
1228 				/* New sack for not retransmitted frame,
1229 				 * which was in hole. It is reordering.
1230 				 */
1231 				if (before(start_seq,
1232 					   tcp_highest_sack_seq(tp)) &&
1233 				    before(start_seq, state->reord))
1234 					state->reord = start_seq;
1235 
1236 				if (!after(end_seq, tp->high_seq))
1237 					state->flag |= FLAG_ORIG_SACK_ACKED;
1238 				if (state->first_sackt == 0)
1239 					state->first_sackt = xmit_time;
1240 				state->last_sackt = xmit_time;
1241 			}
1242 
1243 			if (sacked & TCPCB_LOST) {
1244 				sacked &= ~TCPCB_LOST;
1245 				tp->lost_out -= pcount;
1246 			}
1247 		}
1248 
1249 		sacked |= TCPCB_SACKED_ACKED;
1250 		state->flag |= FLAG_DATA_SACKED;
1251 		tp->sacked_out += pcount;
1252 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1253 
1254 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1255 		if (tp->lost_skb_hint &&
1256 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1257 			tp->lost_cnt_hint += pcount;
1258 	}
1259 
1260 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1261 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1262 	 * are accounted above as well.
1263 	 */
1264 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1265 		sacked &= ~TCPCB_SACKED_RETRANS;
1266 		tp->retrans_out -= pcount;
1267 	}
1268 
1269 	return sacked;
1270 }
1271 
1272 /* Shift newly-SACKed bytes from this skb to the immediately previous
1273  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1274  */
1275 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1276 			    struct sk_buff *skb,
1277 			    struct tcp_sacktag_state *state,
1278 			    unsigned int pcount, int shifted, int mss,
1279 			    bool dup_sack)
1280 {
1281 	struct tcp_sock *tp = tcp_sk(sk);
1282 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1283 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1284 
1285 	BUG_ON(!pcount);
1286 
1287 	/* Adjust counters and hints for the newly sacked sequence
1288 	 * range but discard the return value since prev is already
1289 	 * marked. We must tag the range first because the seq
1290 	 * advancement below implicitly advances
1291 	 * tcp_highest_sack_seq() when skb is highest_sack.
1292 	 */
1293 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1294 			start_seq, end_seq, dup_sack, pcount,
1295 			skb->skb_mstamp);
1296 	tcp_rate_skb_delivered(sk, skb, state->rate);
1297 
1298 	if (skb == tp->lost_skb_hint)
1299 		tp->lost_cnt_hint += pcount;
1300 
1301 	TCP_SKB_CB(prev)->end_seq += shifted;
1302 	TCP_SKB_CB(skb)->seq += shifted;
1303 
1304 	tcp_skb_pcount_add(prev, pcount);
1305 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1306 	tcp_skb_pcount_add(skb, -pcount);
1307 
1308 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1309 	 * in theory this shouldn't be necessary but as long as DSACK
1310 	 * code can come after this skb later on it's better to keep
1311 	 * setting gso_size to something.
1312 	 */
1313 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1314 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1315 
1316 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1317 	if (tcp_skb_pcount(skb) <= 1)
1318 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1319 
1320 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1321 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1322 
1323 	if (skb->len > 0) {
1324 		BUG_ON(!tcp_skb_pcount(skb));
1325 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1326 		return false;
1327 	}
1328 
1329 	/* Whole SKB was eaten :-) */
1330 
1331 	if (skb == tp->retransmit_skb_hint)
1332 		tp->retransmit_skb_hint = prev;
1333 	if (skb == tp->lost_skb_hint) {
1334 		tp->lost_skb_hint = prev;
1335 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1336 	}
1337 
1338 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1339 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1340 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1341 		TCP_SKB_CB(prev)->end_seq++;
1342 
1343 	if (skb == tcp_highest_sack(sk))
1344 		tcp_advance_highest_sack(sk, skb);
1345 
1346 	tcp_skb_collapse_tstamp(prev, skb);
1347 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1348 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1349 
1350 	tcp_rtx_queue_unlink_and_free(skb, sk);
1351 
1352 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1353 
1354 	return true;
1355 }
1356 
1357 /* I wish gso_size would have a bit more sane initialization than
1358  * something-or-zero which complicates things
1359  */
1360 static int tcp_skb_seglen(const struct sk_buff *skb)
1361 {
1362 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1363 }
1364 
1365 /* Shifting pages past head area doesn't work */
1366 static int skb_can_shift(const struct sk_buff *skb)
1367 {
1368 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1369 }
1370 
1371 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1372  * skb.
1373  */
1374 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1375 					  struct tcp_sacktag_state *state,
1376 					  u32 start_seq, u32 end_seq,
1377 					  bool dup_sack)
1378 {
1379 	struct tcp_sock *tp = tcp_sk(sk);
1380 	struct sk_buff *prev;
1381 	int mss;
1382 	int pcount = 0;
1383 	int len;
1384 	int in_sack;
1385 
1386 	/* Normally R but no L won't result in plain S */
1387 	if (!dup_sack &&
1388 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1389 		goto fallback;
1390 	if (!skb_can_shift(skb))
1391 		goto fallback;
1392 	/* This frame is about to be dropped (was ACKed). */
1393 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1394 		goto fallback;
1395 
1396 	/* Can only happen with delayed DSACK + discard craziness */
1397 	prev = skb_rb_prev(skb);
1398 	if (!prev)
1399 		goto fallback;
1400 
1401 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1402 		goto fallback;
1403 
1404 	if (!tcp_skb_can_collapse_to(prev))
1405 		goto fallback;
1406 
1407 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1408 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1409 
1410 	if (in_sack) {
1411 		len = skb->len;
1412 		pcount = tcp_skb_pcount(skb);
1413 		mss = tcp_skb_seglen(skb);
1414 
1415 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1416 		 * drop this restriction as unnecessary
1417 		 */
1418 		if (mss != tcp_skb_seglen(prev))
1419 			goto fallback;
1420 	} else {
1421 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1422 			goto noop;
1423 		/* CHECKME: This is non-MSS split case only?, this will
1424 		 * cause skipped skbs due to advancing loop btw, original
1425 		 * has that feature too
1426 		 */
1427 		if (tcp_skb_pcount(skb) <= 1)
1428 			goto noop;
1429 
1430 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1431 		if (!in_sack) {
1432 			/* TODO: head merge to next could be attempted here
1433 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1434 			 * though it might not be worth of the additional hassle
1435 			 *
1436 			 * ...we can probably just fallback to what was done
1437 			 * previously. We could try merging non-SACKed ones
1438 			 * as well but it probably isn't going to buy off
1439 			 * because later SACKs might again split them, and
1440 			 * it would make skb timestamp tracking considerably
1441 			 * harder problem.
1442 			 */
1443 			goto fallback;
1444 		}
1445 
1446 		len = end_seq - TCP_SKB_CB(skb)->seq;
1447 		BUG_ON(len < 0);
1448 		BUG_ON(len > skb->len);
1449 
1450 		/* MSS boundaries should be honoured or else pcount will
1451 		 * severely break even though it makes things bit trickier.
1452 		 * Optimize common case to avoid most of the divides
1453 		 */
1454 		mss = tcp_skb_mss(skb);
1455 
1456 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1457 		 * drop this restriction as unnecessary
1458 		 */
1459 		if (mss != tcp_skb_seglen(prev))
1460 			goto fallback;
1461 
1462 		if (len == mss) {
1463 			pcount = 1;
1464 		} else if (len < mss) {
1465 			goto noop;
1466 		} else {
1467 			pcount = len / mss;
1468 			len = pcount * mss;
1469 		}
1470 	}
1471 
1472 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1473 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1474 		goto fallback;
1475 
1476 	if (!skb_shift(prev, skb, len))
1477 		goto fallback;
1478 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1479 		goto out;
1480 
1481 	/* Hole filled allows collapsing with the next as well, this is very
1482 	 * useful when hole on every nth skb pattern happens
1483 	 */
1484 	skb = skb_rb_next(prev);
1485 	if (!skb)
1486 		goto out;
1487 
1488 	if (!skb_can_shift(skb) ||
1489 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1490 	    (mss != tcp_skb_seglen(skb)))
1491 		goto out;
1492 
1493 	len = skb->len;
1494 	if (skb_shift(prev, skb, len)) {
1495 		pcount += tcp_skb_pcount(skb);
1496 		tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb),
1497 				len, mss, 0);
1498 	}
1499 
1500 out:
1501 	return prev;
1502 
1503 noop:
1504 	return skb;
1505 
1506 fallback:
1507 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1508 	return NULL;
1509 }
1510 
1511 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1512 					struct tcp_sack_block *next_dup,
1513 					struct tcp_sacktag_state *state,
1514 					u32 start_seq, u32 end_seq,
1515 					bool dup_sack_in)
1516 {
1517 	struct tcp_sock *tp = tcp_sk(sk);
1518 	struct sk_buff *tmp;
1519 
1520 	skb_rbtree_walk_from(skb) {
1521 		int in_sack = 0;
1522 		bool dup_sack = dup_sack_in;
1523 
1524 		/* queue is in-order => we can short-circuit the walk early */
1525 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1526 			break;
1527 
1528 		if (next_dup  &&
1529 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1530 			in_sack = tcp_match_skb_to_sack(sk, skb,
1531 							next_dup->start_seq,
1532 							next_dup->end_seq);
1533 			if (in_sack > 0)
1534 				dup_sack = true;
1535 		}
1536 
1537 		/* skb reference here is a bit tricky to get right, since
1538 		 * shifting can eat and free both this skb and the next,
1539 		 * so not even _safe variant of the loop is enough.
1540 		 */
1541 		if (in_sack <= 0) {
1542 			tmp = tcp_shift_skb_data(sk, skb, state,
1543 						 start_seq, end_seq, dup_sack);
1544 			if (tmp) {
1545 				if (tmp != skb) {
1546 					skb = tmp;
1547 					continue;
1548 				}
1549 
1550 				in_sack = 0;
1551 			} else {
1552 				in_sack = tcp_match_skb_to_sack(sk, skb,
1553 								start_seq,
1554 								end_seq);
1555 			}
1556 		}
1557 
1558 		if (unlikely(in_sack < 0))
1559 			break;
1560 
1561 		if (in_sack) {
1562 			TCP_SKB_CB(skb)->sacked =
1563 				tcp_sacktag_one(sk,
1564 						state,
1565 						TCP_SKB_CB(skb)->sacked,
1566 						TCP_SKB_CB(skb)->seq,
1567 						TCP_SKB_CB(skb)->end_seq,
1568 						dup_sack,
1569 						tcp_skb_pcount(skb),
1570 						skb->skb_mstamp);
1571 			tcp_rate_skb_delivered(sk, skb, state->rate);
1572 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1573 				list_del_init(&skb->tcp_tsorted_anchor);
1574 
1575 			if (!before(TCP_SKB_CB(skb)->seq,
1576 				    tcp_highest_sack_seq(tp)))
1577 				tcp_advance_highest_sack(sk, skb);
1578 		}
1579 	}
1580 	return skb;
1581 }
1582 
1583 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk,
1584 					   struct tcp_sacktag_state *state,
1585 					   u32 seq)
1586 {
1587 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1588 	struct sk_buff *skb;
1589 
1590 	while (*p) {
1591 		parent = *p;
1592 		skb = rb_to_skb(parent);
1593 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1594 			p = &parent->rb_left;
1595 			continue;
1596 		}
1597 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1598 			p = &parent->rb_right;
1599 			continue;
1600 		}
1601 		return skb;
1602 	}
1603 	return NULL;
1604 }
1605 
1606 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1607 					struct tcp_sacktag_state *state,
1608 					u32 skip_to_seq)
1609 {
1610 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1611 		return skb;
1612 
1613 	return tcp_sacktag_bsearch(sk, state, skip_to_seq);
1614 }
1615 
1616 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1617 						struct sock *sk,
1618 						struct tcp_sack_block *next_dup,
1619 						struct tcp_sacktag_state *state,
1620 						u32 skip_to_seq)
1621 {
1622 	if (!next_dup)
1623 		return skb;
1624 
1625 	if (before(next_dup->start_seq, skip_to_seq)) {
1626 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1627 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1628 				       next_dup->start_seq, next_dup->end_seq,
1629 				       1);
1630 	}
1631 
1632 	return skb;
1633 }
1634 
1635 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1636 {
1637 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1638 }
1639 
1640 static int
1641 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1642 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1643 {
1644 	struct tcp_sock *tp = tcp_sk(sk);
1645 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1646 				    TCP_SKB_CB(ack_skb)->sacked);
1647 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1648 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1649 	struct tcp_sack_block *cache;
1650 	struct sk_buff *skb;
1651 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1652 	int used_sacks;
1653 	bool found_dup_sack = false;
1654 	int i, j;
1655 	int first_sack_index;
1656 
1657 	state->flag = 0;
1658 	state->reord = tp->snd_nxt;
1659 
1660 	if (!tp->sacked_out)
1661 		tcp_highest_sack_reset(sk);
1662 
1663 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1664 					 num_sacks, prior_snd_una);
1665 	if (found_dup_sack) {
1666 		state->flag |= FLAG_DSACKING_ACK;
1667 		tp->delivered++; /* A spurious retransmission is delivered */
1668 	}
1669 
1670 	/* Eliminate too old ACKs, but take into
1671 	 * account more or less fresh ones, they can
1672 	 * contain valid SACK info.
1673 	 */
1674 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1675 		return 0;
1676 
1677 	if (!tp->packets_out)
1678 		goto out;
1679 
1680 	used_sacks = 0;
1681 	first_sack_index = 0;
1682 	for (i = 0; i < num_sacks; i++) {
1683 		bool dup_sack = !i && found_dup_sack;
1684 
1685 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1686 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1687 
1688 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1689 					    sp[used_sacks].start_seq,
1690 					    sp[used_sacks].end_seq)) {
1691 			int mib_idx;
1692 
1693 			if (dup_sack) {
1694 				if (!tp->undo_marker)
1695 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1696 				else
1697 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1698 			} else {
1699 				/* Don't count olds caused by ACK reordering */
1700 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1701 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1702 					continue;
1703 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1704 			}
1705 
1706 			NET_INC_STATS(sock_net(sk), mib_idx);
1707 			if (i == 0)
1708 				first_sack_index = -1;
1709 			continue;
1710 		}
1711 
1712 		/* Ignore very old stuff early */
1713 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1714 			continue;
1715 
1716 		used_sacks++;
1717 	}
1718 
1719 	/* order SACK blocks to allow in order walk of the retrans queue */
1720 	for (i = used_sacks - 1; i > 0; i--) {
1721 		for (j = 0; j < i; j++) {
1722 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1723 				swap(sp[j], sp[j + 1]);
1724 
1725 				/* Track where the first SACK block goes to */
1726 				if (j == first_sack_index)
1727 					first_sack_index = j + 1;
1728 			}
1729 		}
1730 	}
1731 
1732 	state->mss_now = tcp_current_mss(sk);
1733 	skb = NULL;
1734 	i = 0;
1735 
1736 	if (!tp->sacked_out) {
1737 		/* It's already past, so skip checking against it */
1738 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1739 	} else {
1740 		cache = tp->recv_sack_cache;
1741 		/* Skip empty blocks in at head of the cache */
1742 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1743 		       !cache->end_seq)
1744 			cache++;
1745 	}
1746 
1747 	while (i < used_sacks) {
1748 		u32 start_seq = sp[i].start_seq;
1749 		u32 end_seq = sp[i].end_seq;
1750 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1751 		struct tcp_sack_block *next_dup = NULL;
1752 
1753 		if (found_dup_sack && ((i + 1) == first_sack_index))
1754 			next_dup = &sp[i + 1];
1755 
1756 		/* Skip too early cached blocks */
1757 		while (tcp_sack_cache_ok(tp, cache) &&
1758 		       !before(start_seq, cache->end_seq))
1759 			cache++;
1760 
1761 		/* Can skip some work by looking recv_sack_cache? */
1762 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1763 		    after(end_seq, cache->start_seq)) {
1764 
1765 			/* Head todo? */
1766 			if (before(start_seq, cache->start_seq)) {
1767 				skb = tcp_sacktag_skip(skb, sk, state,
1768 						       start_seq);
1769 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1770 						       state,
1771 						       start_seq,
1772 						       cache->start_seq,
1773 						       dup_sack);
1774 			}
1775 
1776 			/* Rest of the block already fully processed? */
1777 			if (!after(end_seq, cache->end_seq))
1778 				goto advance_sp;
1779 
1780 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1781 						       state,
1782 						       cache->end_seq);
1783 
1784 			/* ...tail remains todo... */
1785 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1786 				/* ...but better entrypoint exists! */
1787 				skb = tcp_highest_sack(sk);
1788 				if (!skb)
1789 					break;
1790 				cache++;
1791 				goto walk;
1792 			}
1793 
1794 			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1795 			/* Check overlap against next cached too (past this one already) */
1796 			cache++;
1797 			continue;
1798 		}
1799 
1800 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1801 			skb = tcp_highest_sack(sk);
1802 			if (!skb)
1803 				break;
1804 		}
1805 		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1806 
1807 walk:
1808 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1809 				       start_seq, end_seq, dup_sack);
1810 
1811 advance_sp:
1812 		i++;
1813 	}
1814 
1815 	/* Clear the head of the cache sack blocks so we can skip it next time */
1816 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1817 		tp->recv_sack_cache[i].start_seq = 0;
1818 		tp->recv_sack_cache[i].end_seq = 0;
1819 	}
1820 	for (j = 0; j < used_sacks; j++)
1821 		tp->recv_sack_cache[i++] = sp[j];
1822 
1823 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1824 		tcp_check_sack_reordering(sk, state->reord, 0);
1825 
1826 	tcp_verify_left_out(tp);
1827 out:
1828 
1829 #if FASTRETRANS_DEBUG > 0
1830 	WARN_ON((int)tp->sacked_out < 0);
1831 	WARN_ON((int)tp->lost_out < 0);
1832 	WARN_ON((int)tp->retrans_out < 0);
1833 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1834 #endif
1835 	return state->flag;
1836 }
1837 
1838 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1839  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1840  */
1841 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1842 {
1843 	u32 holes;
1844 
1845 	holes = max(tp->lost_out, 1U);
1846 	holes = min(holes, tp->packets_out);
1847 
1848 	if ((tp->sacked_out + holes) > tp->packets_out) {
1849 		tp->sacked_out = tp->packets_out - holes;
1850 		return true;
1851 	}
1852 	return false;
1853 }
1854 
1855 /* If we receive more dupacks than we expected counting segments
1856  * in assumption of absent reordering, interpret this as reordering.
1857  * The only another reason could be bug in receiver TCP.
1858  */
1859 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1860 {
1861 	struct tcp_sock *tp = tcp_sk(sk);
1862 
1863 	if (!tcp_limit_reno_sacked(tp))
1864 		return;
1865 
1866 	tp->reordering = min_t(u32, tp->packets_out + addend,
1867 			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1868 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1869 }
1870 
1871 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1872 
1873 static void tcp_add_reno_sack(struct sock *sk)
1874 {
1875 	struct tcp_sock *tp = tcp_sk(sk);
1876 	u32 prior_sacked = tp->sacked_out;
1877 
1878 	tp->sacked_out++;
1879 	tcp_check_reno_reordering(sk, 0);
1880 	if (tp->sacked_out > prior_sacked)
1881 		tp->delivered++; /* Some out-of-order packet is delivered */
1882 	tcp_verify_left_out(tp);
1883 }
1884 
1885 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1886 
1887 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1888 {
1889 	struct tcp_sock *tp = tcp_sk(sk);
1890 
1891 	if (acked > 0) {
1892 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1893 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1894 		if (acked - 1 >= tp->sacked_out)
1895 			tp->sacked_out = 0;
1896 		else
1897 			tp->sacked_out -= acked - 1;
1898 	}
1899 	tcp_check_reno_reordering(sk, acked);
1900 	tcp_verify_left_out(tp);
1901 }
1902 
1903 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1904 {
1905 	tp->sacked_out = 0;
1906 }
1907 
1908 void tcp_clear_retrans(struct tcp_sock *tp)
1909 {
1910 	tp->retrans_out = 0;
1911 	tp->lost_out = 0;
1912 	tp->undo_marker = 0;
1913 	tp->undo_retrans = -1;
1914 	tp->sacked_out = 0;
1915 }
1916 
1917 static inline void tcp_init_undo(struct tcp_sock *tp)
1918 {
1919 	tp->undo_marker = tp->snd_una;
1920 	/* Retransmission still in flight may cause DSACKs later. */
1921 	tp->undo_retrans = tp->retrans_out ? : -1;
1922 }
1923 
1924 static bool tcp_is_rack(const struct sock *sk)
1925 {
1926 	return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
1927 }
1928 
1929 /* If we detect SACK reneging, forget all SACK information
1930  * and reset tags completely, otherwise preserve SACKs. If receiver
1931  * dropped its ofo queue, we will know this due to reneging detection.
1932  */
1933 static void tcp_timeout_mark_lost(struct sock *sk)
1934 {
1935 	struct tcp_sock *tp = tcp_sk(sk);
1936 	struct sk_buff *skb, *head;
1937 	bool is_reneg;			/* is receiver reneging on SACKs? */
1938 
1939 	head = tcp_rtx_queue_head(sk);
1940 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
1941 	if (is_reneg) {
1942 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1943 		tp->sacked_out = 0;
1944 		/* Mark SACK reneging until we recover from this loss event. */
1945 		tp->is_sack_reneg = 1;
1946 	} else if (tcp_is_reno(tp)) {
1947 		tcp_reset_reno_sack(tp);
1948 	}
1949 
1950 	skb = head;
1951 	skb_rbtree_walk_from(skb) {
1952 		if (is_reneg)
1953 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1954 		else if (tcp_is_rack(sk) && skb != head &&
1955 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
1956 			continue; /* Don't mark recently sent ones lost yet */
1957 		tcp_mark_skb_lost(sk, skb);
1958 	}
1959 	tcp_verify_left_out(tp);
1960 	tcp_clear_all_retrans_hints(tp);
1961 }
1962 
1963 /* Enter Loss state. */
1964 void tcp_enter_loss(struct sock *sk)
1965 {
1966 	const struct inet_connection_sock *icsk = inet_csk(sk);
1967 	struct tcp_sock *tp = tcp_sk(sk);
1968 	struct net *net = sock_net(sk);
1969 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1970 
1971 	tcp_timeout_mark_lost(sk);
1972 
1973 	/* Reduce ssthresh if it has not yet been made inside this window. */
1974 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1975 	    !after(tp->high_seq, tp->snd_una) ||
1976 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1977 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1978 		tp->prior_cwnd = tp->snd_cwnd;
1979 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1980 		tcp_ca_event(sk, CA_EVENT_LOSS);
1981 		tcp_init_undo(tp);
1982 	}
1983 	tp->snd_cwnd	   = tcp_packets_in_flight(tp) + 1;
1984 	tp->snd_cwnd_cnt   = 0;
1985 	tp->snd_cwnd_stamp = tcp_jiffies32;
1986 
1987 	/* Timeout in disordered state after receiving substantial DUPACKs
1988 	 * suggests that the degree of reordering is over-estimated.
1989 	 */
1990 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1991 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1992 		tp->reordering = min_t(unsigned int, tp->reordering,
1993 				       net->ipv4.sysctl_tcp_reordering);
1994 	tcp_set_ca_state(sk, TCP_CA_Loss);
1995 	tp->high_seq = tp->snd_nxt;
1996 	tcp_ecn_queue_cwr(tp);
1997 
1998 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1999 	 * loss recovery is underway except recurring timeout(s) on
2000 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2001 	 */
2002 	tp->frto = net->ipv4.sysctl_tcp_frto &&
2003 		   (new_recovery || icsk->icsk_retransmits) &&
2004 		   !inet_csk(sk)->icsk_mtup.probe_size;
2005 }
2006 
2007 /* If ACK arrived pointing to a remembered SACK, it means that our
2008  * remembered SACKs do not reflect real state of receiver i.e.
2009  * receiver _host_ is heavily congested (or buggy).
2010  *
2011  * To avoid big spurious retransmission bursts due to transient SACK
2012  * scoreboard oddities that look like reneging, we give the receiver a
2013  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2014  * restore sanity to the SACK scoreboard. If the apparent reneging
2015  * persists until this RTO then we'll clear the SACK scoreboard.
2016  */
2017 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2018 {
2019 	if (flag & FLAG_SACK_RENEGING) {
2020 		struct tcp_sock *tp = tcp_sk(sk);
2021 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2022 					  msecs_to_jiffies(10));
2023 
2024 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2025 					  delay, TCP_RTO_MAX);
2026 		return true;
2027 	}
2028 	return false;
2029 }
2030 
2031 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2032  * counter when SACK is enabled (without SACK, sacked_out is used for
2033  * that purpose).
2034  *
2035  * With reordering, holes may still be in flight, so RFC3517 recovery
2036  * uses pure sacked_out (total number of SACKed segments) even though
2037  * it violates the RFC that uses duplicate ACKs, often these are equal
2038  * but when e.g. out-of-window ACKs or packet duplication occurs,
2039  * they differ. Since neither occurs due to loss, TCP should really
2040  * ignore them.
2041  */
2042 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2043 {
2044 	return tp->sacked_out + 1;
2045 }
2046 
2047 /* Linux NewReno/SACK/ECN state machine.
2048  * --------------------------------------
2049  *
2050  * "Open"	Normal state, no dubious events, fast path.
2051  * "Disorder"   In all the respects it is "Open",
2052  *		but requires a bit more attention. It is entered when
2053  *		we see some SACKs or dupacks. It is split of "Open"
2054  *		mainly to move some processing from fast path to slow one.
2055  * "CWR"	CWND was reduced due to some Congestion Notification event.
2056  *		It can be ECN, ICMP source quench, local device congestion.
2057  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2058  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2059  *
2060  * tcp_fastretrans_alert() is entered:
2061  * - each incoming ACK, if state is not "Open"
2062  * - when arrived ACK is unusual, namely:
2063  *	* SACK
2064  *	* Duplicate ACK.
2065  *	* ECN ECE.
2066  *
2067  * Counting packets in flight is pretty simple.
2068  *
2069  *	in_flight = packets_out - left_out + retrans_out
2070  *
2071  *	packets_out is SND.NXT-SND.UNA counted in packets.
2072  *
2073  *	retrans_out is number of retransmitted segments.
2074  *
2075  *	left_out is number of segments left network, but not ACKed yet.
2076  *
2077  *		left_out = sacked_out + lost_out
2078  *
2079  *     sacked_out: Packets, which arrived to receiver out of order
2080  *		   and hence not ACKed. With SACKs this number is simply
2081  *		   amount of SACKed data. Even without SACKs
2082  *		   it is easy to give pretty reliable estimate of this number,
2083  *		   counting duplicate ACKs.
2084  *
2085  *       lost_out: Packets lost by network. TCP has no explicit
2086  *		   "loss notification" feedback from network (for now).
2087  *		   It means that this number can be only _guessed_.
2088  *		   Actually, it is the heuristics to predict lossage that
2089  *		   distinguishes different algorithms.
2090  *
2091  *	F.e. after RTO, when all the queue is considered as lost,
2092  *	lost_out = packets_out and in_flight = retrans_out.
2093  *
2094  *		Essentially, we have now a few algorithms detecting
2095  *		lost packets.
2096  *
2097  *		If the receiver supports SACK:
2098  *
2099  *		RFC6675/3517: It is the conventional algorithm. A packet is
2100  *		considered lost if the number of higher sequence packets
2101  *		SACKed is greater than or equal the DUPACK thoreshold
2102  *		(reordering). This is implemented in tcp_mark_head_lost and
2103  *		tcp_update_scoreboard.
2104  *
2105  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2106  *		(2017-) that checks timing instead of counting DUPACKs.
2107  *		Essentially a packet is considered lost if it's not S/ACKed
2108  *		after RTT + reordering_window, where both metrics are
2109  *		dynamically measured and adjusted. This is implemented in
2110  *		tcp_rack_mark_lost.
2111  *
2112  *		If the receiver does not support SACK:
2113  *
2114  *		NewReno (RFC6582): in Recovery we assume that one segment
2115  *		is lost (classic Reno). While we are in Recovery and
2116  *		a partial ACK arrives, we assume that one more packet
2117  *		is lost (NewReno). This heuristics are the same in NewReno
2118  *		and SACK.
2119  *
2120  * Really tricky (and requiring careful tuning) part of algorithm
2121  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2122  * The first determines the moment _when_ we should reduce CWND and,
2123  * hence, slow down forward transmission. In fact, it determines the moment
2124  * when we decide that hole is caused by loss, rather than by a reorder.
2125  *
2126  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2127  * holes, caused by lost packets.
2128  *
2129  * And the most logically complicated part of algorithm is undo
2130  * heuristics. We detect false retransmits due to both too early
2131  * fast retransmit (reordering) and underestimated RTO, analyzing
2132  * timestamps and D-SACKs. When we detect that some segments were
2133  * retransmitted by mistake and CWND reduction was wrong, we undo
2134  * window reduction and abort recovery phase. This logic is hidden
2135  * inside several functions named tcp_try_undo_<something>.
2136  */
2137 
2138 /* This function decides, when we should leave Disordered state
2139  * and enter Recovery phase, reducing congestion window.
2140  *
2141  * Main question: may we further continue forward transmission
2142  * with the same cwnd?
2143  */
2144 static bool tcp_time_to_recover(struct sock *sk, int flag)
2145 {
2146 	struct tcp_sock *tp = tcp_sk(sk);
2147 
2148 	/* Trick#1: The loss is proven. */
2149 	if (tp->lost_out)
2150 		return true;
2151 
2152 	/* Not-A-Trick#2 : Classic rule... */
2153 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2154 		return true;
2155 
2156 	return false;
2157 }
2158 
2159 /* Detect loss in event "A" above by marking head of queue up as lost.
2160  * For non-SACK(Reno) senders, the first "packets" number of segments
2161  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2162  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2163  * the maximum SACKed segments to pass before reaching this limit.
2164  */
2165 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2166 {
2167 	struct tcp_sock *tp = tcp_sk(sk);
2168 	struct sk_buff *skb;
2169 	int cnt, oldcnt, lost;
2170 	unsigned int mss;
2171 	/* Use SACK to deduce losses of new sequences sent during recovery */
2172 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2173 
2174 	WARN_ON(packets > tp->packets_out);
2175 	skb = tp->lost_skb_hint;
2176 	if (skb) {
2177 		/* Head already handled? */
2178 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2179 			return;
2180 		cnt = tp->lost_cnt_hint;
2181 	} else {
2182 		skb = tcp_rtx_queue_head(sk);
2183 		cnt = 0;
2184 	}
2185 
2186 	skb_rbtree_walk_from(skb) {
2187 		/* TODO: do this better */
2188 		/* this is not the most efficient way to do this... */
2189 		tp->lost_skb_hint = skb;
2190 		tp->lost_cnt_hint = cnt;
2191 
2192 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2193 			break;
2194 
2195 		oldcnt = cnt;
2196 		if (tcp_is_reno(tp) ||
2197 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2198 			cnt += tcp_skb_pcount(skb);
2199 
2200 		if (cnt > packets) {
2201 			if (tcp_is_sack(tp) ||
2202 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2203 			    (oldcnt >= packets))
2204 				break;
2205 
2206 			mss = tcp_skb_mss(skb);
2207 			/* If needed, chop off the prefix to mark as lost. */
2208 			lost = (packets - oldcnt) * mss;
2209 			if (lost < skb->len &&
2210 			    tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2211 					 lost, mss, GFP_ATOMIC) < 0)
2212 				break;
2213 			cnt = packets;
2214 		}
2215 
2216 		tcp_skb_mark_lost(tp, skb);
2217 
2218 		if (mark_head)
2219 			break;
2220 	}
2221 	tcp_verify_left_out(tp);
2222 }
2223 
2224 /* Account newly detected lost packet(s) */
2225 
2226 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2227 {
2228 	struct tcp_sock *tp = tcp_sk(sk);
2229 
2230 	if (tcp_is_sack(tp)) {
2231 		int sacked_upto = tp->sacked_out - tp->reordering;
2232 		if (sacked_upto >= 0)
2233 			tcp_mark_head_lost(sk, sacked_upto, 0);
2234 		else if (fast_rexmit)
2235 			tcp_mark_head_lost(sk, 1, 1);
2236 	}
2237 }
2238 
2239 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2240 {
2241 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2242 	       before(tp->rx_opt.rcv_tsecr, when);
2243 }
2244 
2245 /* skb is spurious retransmitted if the returned timestamp echo
2246  * reply is prior to the skb transmission time
2247  */
2248 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2249 				     const struct sk_buff *skb)
2250 {
2251 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2252 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2253 }
2254 
2255 /* Nothing was retransmitted or returned timestamp is less
2256  * than timestamp of the first retransmission.
2257  */
2258 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2259 {
2260 	return !tp->retrans_stamp ||
2261 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2262 }
2263 
2264 /* Undo procedures. */
2265 
2266 /* We can clear retrans_stamp when there are no retransmissions in the
2267  * window. It would seem that it is trivially available for us in
2268  * tp->retrans_out, however, that kind of assumptions doesn't consider
2269  * what will happen if errors occur when sending retransmission for the
2270  * second time. ...It could the that such segment has only
2271  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2272  * the head skb is enough except for some reneging corner cases that
2273  * are not worth the effort.
2274  *
2275  * Main reason for all this complexity is the fact that connection dying
2276  * time now depends on the validity of the retrans_stamp, in particular,
2277  * that successive retransmissions of a segment must not advance
2278  * retrans_stamp under any conditions.
2279  */
2280 static bool tcp_any_retrans_done(const struct sock *sk)
2281 {
2282 	const struct tcp_sock *tp = tcp_sk(sk);
2283 	struct sk_buff *skb;
2284 
2285 	if (tp->retrans_out)
2286 		return true;
2287 
2288 	skb = tcp_rtx_queue_head(sk);
2289 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2290 		return true;
2291 
2292 	return false;
2293 }
2294 
2295 static void DBGUNDO(struct sock *sk, const char *msg)
2296 {
2297 #if FASTRETRANS_DEBUG > 1
2298 	struct tcp_sock *tp = tcp_sk(sk);
2299 	struct inet_sock *inet = inet_sk(sk);
2300 
2301 	if (sk->sk_family == AF_INET) {
2302 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2303 			 msg,
2304 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2305 			 tp->snd_cwnd, tcp_left_out(tp),
2306 			 tp->snd_ssthresh, tp->prior_ssthresh,
2307 			 tp->packets_out);
2308 	}
2309 #if IS_ENABLED(CONFIG_IPV6)
2310 	else if (sk->sk_family == AF_INET6) {
2311 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2312 			 msg,
2313 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2314 			 tp->snd_cwnd, tcp_left_out(tp),
2315 			 tp->snd_ssthresh, tp->prior_ssthresh,
2316 			 tp->packets_out);
2317 	}
2318 #endif
2319 #endif
2320 }
2321 
2322 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2323 {
2324 	struct tcp_sock *tp = tcp_sk(sk);
2325 
2326 	if (unmark_loss) {
2327 		struct sk_buff *skb;
2328 
2329 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2330 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2331 		}
2332 		tp->lost_out = 0;
2333 		tcp_clear_all_retrans_hints(tp);
2334 	}
2335 
2336 	if (tp->prior_ssthresh) {
2337 		const struct inet_connection_sock *icsk = inet_csk(sk);
2338 
2339 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2340 
2341 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2342 			tp->snd_ssthresh = tp->prior_ssthresh;
2343 			tcp_ecn_withdraw_cwr(tp);
2344 		}
2345 	}
2346 	tp->snd_cwnd_stamp = tcp_jiffies32;
2347 	tp->undo_marker = 0;
2348 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2349 }
2350 
2351 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2352 {
2353 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2354 }
2355 
2356 /* People celebrate: "We love our President!" */
2357 static bool tcp_try_undo_recovery(struct sock *sk)
2358 {
2359 	struct tcp_sock *tp = tcp_sk(sk);
2360 
2361 	if (tcp_may_undo(tp)) {
2362 		int mib_idx;
2363 
2364 		/* Happy end! We did not retransmit anything
2365 		 * or our original transmission succeeded.
2366 		 */
2367 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2368 		tcp_undo_cwnd_reduction(sk, false);
2369 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2370 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2371 		else
2372 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2373 
2374 		NET_INC_STATS(sock_net(sk), mib_idx);
2375 	} else if (tp->rack.reo_wnd_persist) {
2376 		tp->rack.reo_wnd_persist--;
2377 	}
2378 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2379 		/* Hold old state until something *above* high_seq
2380 		 * is ACKed. For Reno it is MUST to prevent false
2381 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2382 		if (!tcp_any_retrans_done(sk))
2383 			tp->retrans_stamp = 0;
2384 		return true;
2385 	}
2386 	tcp_set_ca_state(sk, TCP_CA_Open);
2387 	tp->is_sack_reneg = 0;
2388 	return false;
2389 }
2390 
2391 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2392 static bool tcp_try_undo_dsack(struct sock *sk)
2393 {
2394 	struct tcp_sock *tp = tcp_sk(sk);
2395 
2396 	if (tp->undo_marker && !tp->undo_retrans) {
2397 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2398 					       tp->rack.reo_wnd_persist + 1);
2399 		DBGUNDO(sk, "D-SACK");
2400 		tcp_undo_cwnd_reduction(sk, false);
2401 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2402 		return true;
2403 	}
2404 	return false;
2405 }
2406 
2407 /* Undo during loss recovery after partial ACK or using F-RTO. */
2408 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2409 {
2410 	struct tcp_sock *tp = tcp_sk(sk);
2411 
2412 	if (frto_undo || tcp_may_undo(tp)) {
2413 		tcp_undo_cwnd_reduction(sk, true);
2414 
2415 		DBGUNDO(sk, "partial loss");
2416 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2417 		if (frto_undo)
2418 			NET_INC_STATS(sock_net(sk),
2419 					LINUX_MIB_TCPSPURIOUSRTOS);
2420 		inet_csk(sk)->icsk_retransmits = 0;
2421 		if (frto_undo || tcp_is_sack(tp)) {
2422 			tcp_set_ca_state(sk, TCP_CA_Open);
2423 			tp->is_sack_reneg = 0;
2424 		}
2425 		return true;
2426 	}
2427 	return false;
2428 }
2429 
2430 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2431  * It computes the number of packets to send (sndcnt) based on packets newly
2432  * delivered:
2433  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2434  *	cwnd reductions across a full RTT.
2435  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2436  *      But when the retransmits are acked without further losses, PRR
2437  *      slow starts cwnd up to ssthresh to speed up the recovery.
2438  */
2439 static void tcp_init_cwnd_reduction(struct sock *sk)
2440 {
2441 	struct tcp_sock *tp = tcp_sk(sk);
2442 
2443 	tp->high_seq = tp->snd_nxt;
2444 	tp->tlp_high_seq = 0;
2445 	tp->snd_cwnd_cnt = 0;
2446 	tp->prior_cwnd = tp->snd_cwnd;
2447 	tp->prr_delivered = 0;
2448 	tp->prr_out = 0;
2449 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2450 	tcp_ecn_queue_cwr(tp);
2451 }
2452 
2453 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2454 {
2455 	struct tcp_sock *tp = tcp_sk(sk);
2456 	int sndcnt = 0;
2457 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2458 
2459 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2460 		return;
2461 
2462 	tp->prr_delivered += newly_acked_sacked;
2463 	if (delta < 0) {
2464 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2465 			       tp->prior_cwnd - 1;
2466 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2467 	} else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2468 		   !(flag & FLAG_LOST_RETRANS)) {
2469 		sndcnt = min_t(int, delta,
2470 			       max_t(int, tp->prr_delivered - tp->prr_out,
2471 				     newly_acked_sacked) + 1);
2472 	} else {
2473 		sndcnt = min(delta, newly_acked_sacked);
2474 	}
2475 	/* Force a fast retransmit upon entering fast recovery */
2476 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2477 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2478 }
2479 
2480 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2481 {
2482 	struct tcp_sock *tp = tcp_sk(sk);
2483 
2484 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2485 		return;
2486 
2487 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2488 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2489 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2490 		tp->snd_cwnd = tp->snd_ssthresh;
2491 		tp->snd_cwnd_stamp = tcp_jiffies32;
2492 	}
2493 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2494 }
2495 
2496 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2497 void tcp_enter_cwr(struct sock *sk)
2498 {
2499 	struct tcp_sock *tp = tcp_sk(sk);
2500 
2501 	tp->prior_ssthresh = 0;
2502 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2503 		tp->undo_marker = 0;
2504 		tcp_init_cwnd_reduction(sk);
2505 		tcp_set_ca_state(sk, TCP_CA_CWR);
2506 	}
2507 }
2508 EXPORT_SYMBOL(tcp_enter_cwr);
2509 
2510 static void tcp_try_keep_open(struct sock *sk)
2511 {
2512 	struct tcp_sock *tp = tcp_sk(sk);
2513 	int state = TCP_CA_Open;
2514 
2515 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2516 		state = TCP_CA_Disorder;
2517 
2518 	if (inet_csk(sk)->icsk_ca_state != state) {
2519 		tcp_set_ca_state(sk, state);
2520 		tp->high_seq = tp->snd_nxt;
2521 	}
2522 }
2523 
2524 static void tcp_try_to_open(struct sock *sk, int flag)
2525 {
2526 	struct tcp_sock *tp = tcp_sk(sk);
2527 
2528 	tcp_verify_left_out(tp);
2529 
2530 	if (!tcp_any_retrans_done(sk))
2531 		tp->retrans_stamp = 0;
2532 
2533 	if (flag & FLAG_ECE)
2534 		tcp_enter_cwr(sk);
2535 
2536 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2537 		tcp_try_keep_open(sk);
2538 	}
2539 }
2540 
2541 static void tcp_mtup_probe_failed(struct sock *sk)
2542 {
2543 	struct inet_connection_sock *icsk = inet_csk(sk);
2544 
2545 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2546 	icsk->icsk_mtup.probe_size = 0;
2547 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2548 }
2549 
2550 static void tcp_mtup_probe_success(struct sock *sk)
2551 {
2552 	struct tcp_sock *tp = tcp_sk(sk);
2553 	struct inet_connection_sock *icsk = inet_csk(sk);
2554 
2555 	/* FIXME: breaks with very large cwnd */
2556 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2557 	tp->snd_cwnd = tp->snd_cwnd *
2558 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2559 		       icsk->icsk_mtup.probe_size;
2560 	tp->snd_cwnd_cnt = 0;
2561 	tp->snd_cwnd_stamp = tcp_jiffies32;
2562 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2563 
2564 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2565 	icsk->icsk_mtup.probe_size = 0;
2566 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2567 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2568 }
2569 
2570 /* Do a simple retransmit without using the backoff mechanisms in
2571  * tcp_timer. This is used for path mtu discovery.
2572  * The socket is already locked here.
2573  */
2574 void tcp_simple_retransmit(struct sock *sk)
2575 {
2576 	const struct inet_connection_sock *icsk = inet_csk(sk);
2577 	struct tcp_sock *tp = tcp_sk(sk);
2578 	struct sk_buff *skb;
2579 	unsigned int mss = tcp_current_mss(sk);
2580 
2581 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2582 		if (tcp_skb_seglen(skb) > mss &&
2583 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2584 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2585 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2586 				tp->retrans_out -= tcp_skb_pcount(skb);
2587 			}
2588 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2589 		}
2590 	}
2591 
2592 	tcp_clear_retrans_hints_partial(tp);
2593 
2594 	if (!tp->lost_out)
2595 		return;
2596 
2597 	if (tcp_is_reno(tp))
2598 		tcp_limit_reno_sacked(tp);
2599 
2600 	tcp_verify_left_out(tp);
2601 
2602 	/* Don't muck with the congestion window here.
2603 	 * Reason is that we do not increase amount of _data_
2604 	 * in network, but units changed and effective
2605 	 * cwnd/ssthresh really reduced now.
2606 	 */
2607 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2608 		tp->high_seq = tp->snd_nxt;
2609 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2610 		tp->prior_ssthresh = 0;
2611 		tp->undo_marker = 0;
2612 		tcp_set_ca_state(sk, TCP_CA_Loss);
2613 	}
2614 	tcp_xmit_retransmit_queue(sk);
2615 }
2616 EXPORT_SYMBOL(tcp_simple_retransmit);
2617 
2618 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2619 {
2620 	struct tcp_sock *tp = tcp_sk(sk);
2621 	int mib_idx;
2622 
2623 	if (tcp_is_reno(tp))
2624 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2625 	else
2626 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2627 
2628 	NET_INC_STATS(sock_net(sk), mib_idx);
2629 
2630 	tp->prior_ssthresh = 0;
2631 	tcp_init_undo(tp);
2632 
2633 	if (!tcp_in_cwnd_reduction(sk)) {
2634 		if (!ece_ack)
2635 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2636 		tcp_init_cwnd_reduction(sk);
2637 	}
2638 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2639 }
2640 
2641 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2642  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2643  */
2644 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2645 			     int *rexmit)
2646 {
2647 	struct tcp_sock *tp = tcp_sk(sk);
2648 	bool recovered = !before(tp->snd_una, tp->high_seq);
2649 
2650 	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2651 	    tcp_try_undo_loss(sk, false))
2652 		return;
2653 
2654 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2655 		/* Step 3.b. A timeout is spurious if not all data are
2656 		 * lost, i.e., never-retransmitted data are (s)acked.
2657 		 */
2658 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2659 		    tcp_try_undo_loss(sk, true))
2660 			return;
2661 
2662 		if (after(tp->snd_nxt, tp->high_seq)) {
2663 			if (flag & FLAG_DATA_SACKED || is_dupack)
2664 				tp->frto = 0; /* Step 3.a. loss was real */
2665 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2666 			tp->high_seq = tp->snd_nxt;
2667 			/* Step 2.b. Try send new data (but deferred until cwnd
2668 			 * is updated in tcp_ack()). Otherwise fall back to
2669 			 * the conventional recovery.
2670 			 */
2671 			if (!tcp_write_queue_empty(sk) &&
2672 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2673 				*rexmit = REXMIT_NEW;
2674 				return;
2675 			}
2676 			tp->frto = 0;
2677 		}
2678 	}
2679 
2680 	if (recovered) {
2681 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2682 		tcp_try_undo_recovery(sk);
2683 		return;
2684 	}
2685 	if (tcp_is_reno(tp)) {
2686 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2687 		 * delivered. Lower inflight to clock out (re)tranmissions.
2688 		 */
2689 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2690 			tcp_add_reno_sack(sk);
2691 		else if (flag & FLAG_SND_UNA_ADVANCED)
2692 			tcp_reset_reno_sack(tp);
2693 	}
2694 	*rexmit = REXMIT_LOST;
2695 }
2696 
2697 /* Undo during fast recovery after partial ACK. */
2698 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2699 {
2700 	struct tcp_sock *tp = tcp_sk(sk);
2701 
2702 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2703 		/* Plain luck! Hole if filled with delayed
2704 		 * packet, rather than with a retransmit. Check reordering.
2705 		 */
2706 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2707 
2708 		/* We are getting evidence that the reordering degree is higher
2709 		 * than we realized. If there are no retransmits out then we
2710 		 * can undo. Otherwise we clock out new packets but do not
2711 		 * mark more packets lost or retransmit more.
2712 		 */
2713 		if (tp->retrans_out)
2714 			return true;
2715 
2716 		if (!tcp_any_retrans_done(sk))
2717 			tp->retrans_stamp = 0;
2718 
2719 		DBGUNDO(sk, "partial recovery");
2720 		tcp_undo_cwnd_reduction(sk, true);
2721 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2722 		tcp_try_keep_open(sk);
2723 		return true;
2724 	}
2725 	return false;
2726 }
2727 
2728 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2729 {
2730 	struct tcp_sock *tp = tcp_sk(sk);
2731 
2732 	if (tcp_rtx_queue_empty(sk))
2733 		return;
2734 
2735 	if (unlikely(tcp_is_reno(tp))) {
2736 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2737 	} else if (tcp_is_rack(sk)) {
2738 		u32 prior_retrans = tp->retrans_out;
2739 
2740 		tcp_rack_mark_lost(sk);
2741 		if (prior_retrans > tp->retrans_out)
2742 			*ack_flag |= FLAG_LOST_RETRANS;
2743 	}
2744 }
2745 
2746 static bool tcp_force_fast_retransmit(struct sock *sk)
2747 {
2748 	struct tcp_sock *tp = tcp_sk(sk);
2749 
2750 	return after(tcp_highest_sack_seq(tp),
2751 		     tp->snd_una + tp->reordering * tp->mss_cache);
2752 }
2753 
2754 /* Process an event, which can update packets-in-flight not trivially.
2755  * Main goal of this function is to calculate new estimate for left_out,
2756  * taking into account both packets sitting in receiver's buffer and
2757  * packets lost by network.
2758  *
2759  * Besides that it updates the congestion state when packet loss or ECN
2760  * is detected. But it does not reduce the cwnd, it is done by the
2761  * congestion control later.
2762  *
2763  * It does _not_ decide what to send, it is made in function
2764  * tcp_xmit_retransmit_queue().
2765  */
2766 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2767 				  bool is_dupack, int *ack_flag, int *rexmit)
2768 {
2769 	struct inet_connection_sock *icsk = inet_csk(sk);
2770 	struct tcp_sock *tp = tcp_sk(sk);
2771 	int fast_rexmit = 0, flag = *ack_flag;
2772 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2773 				     tcp_force_fast_retransmit(sk));
2774 
2775 	if (!tp->packets_out && tp->sacked_out)
2776 		tp->sacked_out = 0;
2777 
2778 	/* Now state machine starts.
2779 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2780 	if (flag & FLAG_ECE)
2781 		tp->prior_ssthresh = 0;
2782 
2783 	/* B. In all the states check for reneging SACKs. */
2784 	if (tcp_check_sack_reneging(sk, flag))
2785 		return;
2786 
2787 	/* C. Check consistency of the current state. */
2788 	tcp_verify_left_out(tp);
2789 
2790 	/* D. Check state exit conditions. State can be terminated
2791 	 *    when high_seq is ACKed. */
2792 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2793 		WARN_ON(tp->retrans_out != 0);
2794 		tp->retrans_stamp = 0;
2795 	} else if (!before(tp->snd_una, tp->high_seq)) {
2796 		switch (icsk->icsk_ca_state) {
2797 		case TCP_CA_CWR:
2798 			/* CWR is to be held something *above* high_seq
2799 			 * is ACKed for CWR bit to reach receiver. */
2800 			if (tp->snd_una != tp->high_seq) {
2801 				tcp_end_cwnd_reduction(sk);
2802 				tcp_set_ca_state(sk, TCP_CA_Open);
2803 			}
2804 			break;
2805 
2806 		case TCP_CA_Recovery:
2807 			if (tcp_is_reno(tp))
2808 				tcp_reset_reno_sack(tp);
2809 			if (tcp_try_undo_recovery(sk))
2810 				return;
2811 			tcp_end_cwnd_reduction(sk);
2812 			break;
2813 		}
2814 	}
2815 
2816 	/* E. Process state. */
2817 	switch (icsk->icsk_ca_state) {
2818 	case TCP_CA_Recovery:
2819 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2820 			if (tcp_is_reno(tp) && is_dupack)
2821 				tcp_add_reno_sack(sk);
2822 		} else {
2823 			if (tcp_try_undo_partial(sk, prior_snd_una))
2824 				return;
2825 			/* Partial ACK arrived. Force fast retransmit. */
2826 			do_lost = tcp_is_reno(tp) ||
2827 				  tcp_force_fast_retransmit(sk);
2828 		}
2829 		if (tcp_try_undo_dsack(sk)) {
2830 			tcp_try_keep_open(sk);
2831 			return;
2832 		}
2833 		tcp_identify_packet_loss(sk, ack_flag);
2834 		break;
2835 	case TCP_CA_Loss:
2836 		tcp_process_loss(sk, flag, is_dupack, rexmit);
2837 		tcp_identify_packet_loss(sk, ack_flag);
2838 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2839 		      (*ack_flag & FLAG_LOST_RETRANS)))
2840 			return;
2841 		/* Change state if cwnd is undone or retransmits are lost */
2842 		/* fall through */
2843 	default:
2844 		if (tcp_is_reno(tp)) {
2845 			if (flag & FLAG_SND_UNA_ADVANCED)
2846 				tcp_reset_reno_sack(tp);
2847 			if (is_dupack)
2848 				tcp_add_reno_sack(sk);
2849 		}
2850 
2851 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2852 			tcp_try_undo_dsack(sk);
2853 
2854 		tcp_identify_packet_loss(sk, ack_flag);
2855 		if (!tcp_time_to_recover(sk, flag)) {
2856 			tcp_try_to_open(sk, flag);
2857 			return;
2858 		}
2859 
2860 		/* MTU probe failure: don't reduce cwnd */
2861 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2862 		    icsk->icsk_mtup.probe_size &&
2863 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2864 			tcp_mtup_probe_failed(sk);
2865 			/* Restores the reduction we did in tcp_mtup_probe() */
2866 			tp->snd_cwnd++;
2867 			tcp_simple_retransmit(sk);
2868 			return;
2869 		}
2870 
2871 		/* Otherwise enter Recovery state */
2872 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2873 		fast_rexmit = 1;
2874 	}
2875 
2876 	if (!tcp_is_rack(sk) && do_lost)
2877 		tcp_update_scoreboard(sk, fast_rexmit);
2878 	*rexmit = REXMIT_LOST;
2879 }
2880 
2881 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2882 {
2883 	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2884 	struct tcp_sock *tp = tcp_sk(sk);
2885 
2886 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2887 		/* If the remote keeps returning delayed ACKs, eventually
2888 		 * the min filter would pick it up and overestimate the
2889 		 * prop. delay when it expires. Skip suspected delayed ACKs.
2890 		 */
2891 		return;
2892 	}
2893 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2894 			   rtt_us ? : jiffies_to_usecs(1));
2895 }
2896 
2897 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2898 			       long seq_rtt_us, long sack_rtt_us,
2899 			       long ca_rtt_us, struct rate_sample *rs)
2900 {
2901 	const struct tcp_sock *tp = tcp_sk(sk);
2902 
2903 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2904 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2905 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2906 	 * is acked (RFC6298).
2907 	 */
2908 	if (seq_rtt_us < 0)
2909 		seq_rtt_us = sack_rtt_us;
2910 
2911 	/* RTTM Rule: A TSecr value received in a segment is used to
2912 	 * update the averaged RTT measurement only if the segment
2913 	 * acknowledges some new data, i.e., only if it advances the
2914 	 * left edge of the send window.
2915 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2916 	 */
2917 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2918 	    flag & FLAG_ACKED) {
2919 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2920 		u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2921 
2922 		seq_rtt_us = ca_rtt_us = delta_us;
2923 	}
2924 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2925 	if (seq_rtt_us < 0)
2926 		return false;
2927 
2928 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2929 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2930 	 * values will be skipped with the seq_rtt_us < 0 check above.
2931 	 */
2932 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
2933 	tcp_rtt_estimator(sk, seq_rtt_us);
2934 	tcp_set_rto(sk);
2935 
2936 	/* RFC6298: only reset backoff on valid RTT measurement. */
2937 	inet_csk(sk)->icsk_backoff = 0;
2938 	return true;
2939 }
2940 
2941 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2942 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2943 {
2944 	struct rate_sample rs;
2945 	long rtt_us = -1L;
2946 
2947 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2948 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2949 
2950 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2951 }
2952 
2953 
2954 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2955 {
2956 	const struct inet_connection_sock *icsk = inet_csk(sk);
2957 
2958 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2959 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2960 }
2961 
2962 /* Restart timer after forward progress on connection.
2963  * RFC2988 recommends to restart timer to now+rto.
2964  */
2965 void tcp_rearm_rto(struct sock *sk)
2966 {
2967 	const struct inet_connection_sock *icsk = inet_csk(sk);
2968 	struct tcp_sock *tp = tcp_sk(sk);
2969 
2970 	/* If the retrans timer is currently being used by Fast Open
2971 	 * for SYN-ACK retrans purpose, stay put.
2972 	 */
2973 	if (tp->fastopen_rsk)
2974 		return;
2975 
2976 	if (!tp->packets_out) {
2977 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2978 	} else {
2979 		u32 rto = inet_csk(sk)->icsk_rto;
2980 		/* Offset the time elapsed after installing regular RTO */
2981 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2982 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2983 			s64 delta_us = tcp_rto_delta_us(sk);
2984 			/* delta_us may not be positive if the socket is locked
2985 			 * when the retrans timer fires and is rescheduled.
2986 			 */
2987 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
2988 		}
2989 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2990 					  TCP_RTO_MAX);
2991 	}
2992 }
2993 
2994 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
2995 static void tcp_set_xmit_timer(struct sock *sk)
2996 {
2997 	if (!tcp_schedule_loss_probe(sk, true))
2998 		tcp_rearm_rto(sk);
2999 }
3000 
3001 /* If we get here, the whole TSO packet has not been acked. */
3002 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3003 {
3004 	struct tcp_sock *tp = tcp_sk(sk);
3005 	u32 packets_acked;
3006 
3007 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3008 
3009 	packets_acked = tcp_skb_pcount(skb);
3010 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3011 		return 0;
3012 	packets_acked -= tcp_skb_pcount(skb);
3013 
3014 	if (packets_acked) {
3015 		BUG_ON(tcp_skb_pcount(skb) == 0);
3016 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3017 	}
3018 
3019 	return packets_acked;
3020 }
3021 
3022 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3023 			   u32 prior_snd_una)
3024 {
3025 	const struct skb_shared_info *shinfo;
3026 
3027 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3028 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3029 		return;
3030 
3031 	shinfo = skb_shinfo(skb);
3032 	if (!before(shinfo->tskey, prior_snd_una) &&
3033 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3034 		tcp_skb_tsorted_save(skb) {
3035 			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3036 		} tcp_skb_tsorted_restore(skb);
3037 	}
3038 }
3039 
3040 /* Remove acknowledged frames from the retransmission queue. If our packet
3041  * is before the ack sequence we can discard it as it's confirmed to have
3042  * arrived at the other end.
3043  */
3044 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3045 			       u32 prior_snd_una,
3046 			       struct tcp_sacktag_state *sack)
3047 {
3048 	const struct inet_connection_sock *icsk = inet_csk(sk);
3049 	u64 first_ackt, last_ackt;
3050 	struct tcp_sock *tp = tcp_sk(sk);
3051 	u32 prior_sacked = tp->sacked_out;
3052 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3053 	struct sk_buff *skb, *next;
3054 	bool fully_acked = true;
3055 	long sack_rtt_us = -1L;
3056 	long seq_rtt_us = -1L;
3057 	long ca_rtt_us = -1L;
3058 	u32 pkts_acked = 0;
3059 	u32 last_in_flight = 0;
3060 	bool rtt_update;
3061 	int flag = 0;
3062 
3063 	first_ackt = 0;
3064 
3065 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3066 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3067 		const u32 start_seq = scb->seq;
3068 		u8 sacked = scb->sacked;
3069 		u32 acked_pcount;
3070 
3071 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3072 
3073 		/* Determine how many packets and what bytes were acked, tso and else */
3074 		if (after(scb->end_seq, tp->snd_una)) {
3075 			if (tcp_skb_pcount(skb) == 1 ||
3076 			    !after(tp->snd_una, scb->seq))
3077 				break;
3078 
3079 			acked_pcount = tcp_tso_acked(sk, skb);
3080 			if (!acked_pcount)
3081 				break;
3082 			fully_acked = false;
3083 		} else {
3084 			acked_pcount = tcp_skb_pcount(skb);
3085 		}
3086 
3087 		if (unlikely(sacked & TCPCB_RETRANS)) {
3088 			if (sacked & TCPCB_SACKED_RETRANS)
3089 				tp->retrans_out -= acked_pcount;
3090 			flag |= FLAG_RETRANS_DATA_ACKED;
3091 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3092 			last_ackt = skb->skb_mstamp;
3093 			WARN_ON_ONCE(last_ackt == 0);
3094 			if (!first_ackt)
3095 				first_ackt = last_ackt;
3096 
3097 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3098 			if (before(start_seq, reord))
3099 				reord = start_seq;
3100 			if (!after(scb->end_seq, tp->high_seq))
3101 				flag |= FLAG_ORIG_SACK_ACKED;
3102 		}
3103 
3104 		if (sacked & TCPCB_SACKED_ACKED) {
3105 			tp->sacked_out -= acked_pcount;
3106 		} else if (tcp_is_sack(tp)) {
3107 			tp->delivered += acked_pcount;
3108 			if (!tcp_skb_spurious_retrans(tp, skb))
3109 				tcp_rack_advance(tp, sacked, scb->end_seq,
3110 						 skb->skb_mstamp);
3111 		}
3112 		if (sacked & TCPCB_LOST)
3113 			tp->lost_out -= acked_pcount;
3114 
3115 		tp->packets_out -= acked_pcount;
3116 		pkts_acked += acked_pcount;
3117 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3118 
3119 		/* Initial outgoing SYN's get put onto the write_queue
3120 		 * just like anything else we transmit.  It is not
3121 		 * true data, and if we misinform our callers that
3122 		 * this ACK acks real data, we will erroneously exit
3123 		 * connection startup slow start one packet too
3124 		 * quickly.  This is severely frowned upon behavior.
3125 		 */
3126 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3127 			flag |= FLAG_DATA_ACKED;
3128 		} else {
3129 			flag |= FLAG_SYN_ACKED;
3130 			tp->retrans_stamp = 0;
3131 		}
3132 
3133 		if (!fully_acked)
3134 			break;
3135 
3136 		next = skb_rb_next(skb);
3137 		if (unlikely(skb == tp->retransmit_skb_hint))
3138 			tp->retransmit_skb_hint = NULL;
3139 		if (unlikely(skb == tp->lost_skb_hint))
3140 			tp->lost_skb_hint = NULL;
3141 		tcp_rtx_queue_unlink_and_free(skb, sk);
3142 	}
3143 
3144 	if (!skb)
3145 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3146 
3147 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3148 		tp->snd_up = tp->snd_una;
3149 
3150 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3151 		flag |= FLAG_SACK_RENEGING;
3152 
3153 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3154 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3155 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3156 
3157 		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3158 		    last_in_flight && !prior_sacked && fully_acked &&
3159 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3160 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3161 			/* Conservatively mark a delayed ACK. It's typically
3162 			 * from a lone runt packet over the round trip to
3163 			 * a receiver w/o out-of-order or CE events.
3164 			 */
3165 			flag |= FLAG_ACK_MAYBE_DELAYED;
3166 		}
3167 	}
3168 	if (sack->first_sackt) {
3169 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3170 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3171 	}
3172 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3173 					ca_rtt_us, sack->rate);
3174 
3175 	if (flag & FLAG_ACKED) {
3176 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3177 		if (unlikely(icsk->icsk_mtup.probe_size &&
3178 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3179 			tcp_mtup_probe_success(sk);
3180 		}
3181 
3182 		if (tcp_is_reno(tp)) {
3183 			tcp_remove_reno_sacks(sk, pkts_acked);
3184 		} else {
3185 			int delta;
3186 
3187 			/* Non-retransmitted hole got filled? That's reordering */
3188 			if (before(reord, prior_fack))
3189 				tcp_check_sack_reordering(sk, reord, 0);
3190 
3191 			delta = prior_sacked - tp->sacked_out;
3192 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3193 		}
3194 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3195 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) {
3196 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3197 		 * after when the head was last (re)transmitted. Otherwise the
3198 		 * timeout may continue to extend in loss recovery.
3199 		 */
3200 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3201 	}
3202 
3203 	if (icsk->icsk_ca_ops->pkts_acked) {
3204 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3205 					     .rtt_us = sack->rate->rtt_us,
3206 					     .in_flight = last_in_flight };
3207 
3208 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3209 	}
3210 
3211 #if FASTRETRANS_DEBUG > 0
3212 	WARN_ON((int)tp->sacked_out < 0);
3213 	WARN_ON((int)tp->lost_out < 0);
3214 	WARN_ON((int)tp->retrans_out < 0);
3215 	if (!tp->packets_out && tcp_is_sack(tp)) {
3216 		icsk = inet_csk(sk);
3217 		if (tp->lost_out) {
3218 			pr_debug("Leak l=%u %d\n",
3219 				 tp->lost_out, icsk->icsk_ca_state);
3220 			tp->lost_out = 0;
3221 		}
3222 		if (tp->sacked_out) {
3223 			pr_debug("Leak s=%u %d\n",
3224 				 tp->sacked_out, icsk->icsk_ca_state);
3225 			tp->sacked_out = 0;
3226 		}
3227 		if (tp->retrans_out) {
3228 			pr_debug("Leak r=%u %d\n",
3229 				 tp->retrans_out, icsk->icsk_ca_state);
3230 			tp->retrans_out = 0;
3231 		}
3232 	}
3233 #endif
3234 	return flag;
3235 }
3236 
3237 static void tcp_ack_probe(struct sock *sk)
3238 {
3239 	struct inet_connection_sock *icsk = inet_csk(sk);
3240 	struct sk_buff *head = tcp_send_head(sk);
3241 	const struct tcp_sock *tp = tcp_sk(sk);
3242 
3243 	/* Was it a usable window open? */
3244 	if (!head)
3245 		return;
3246 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3247 		icsk->icsk_backoff = 0;
3248 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3249 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3250 		 * This function is not for random using!
3251 		 */
3252 	} else {
3253 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3254 
3255 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3256 					  when, TCP_RTO_MAX);
3257 	}
3258 }
3259 
3260 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3261 {
3262 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3263 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3264 }
3265 
3266 /* Decide wheather to run the increase function of congestion control. */
3267 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3268 {
3269 	/* If reordering is high then always grow cwnd whenever data is
3270 	 * delivered regardless of its ordering. Otherwise stay conservative
3271 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3272 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3273 	 * cwnd in tcp_fastretrans_alert() based on more states.
3274 	 */
3275 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3276 		return flag & FLAG_FORWARD_PROGRESS;
3277 
3278 	return flag & FLAG_DATA_ACKED;
3279 }
3280 
3281 /* The "ultimate" congestion control function that aims to replace the rigid
3282  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3283  * It's called toward the end of processing an ACK with precise rate
3284  * information. All transmission or retransmission are delayed afterwards.
3285  */
3286 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3287 			     int flag, const struct rate_sample *rs)
3288 {
3289 	const struct inet_connection_sock *icsk = inet_csk(sk);
3290 
3291 	if (icsk->icsk_ca_ops->cong_control) {
3292 		icsk->icsk_ca_ops->cong_control(sk, rs);
3293 		return;
3294 	}
3295 
3296 	if (tcp_in_cwnd_reduction(sk)) {
3297 		/* Reduce cwnd if state mandates */
3298 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3299 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3300 		/* Advance cwnd if state allows */
3301 		tcp_cong_avoid(sk, ack, acked_sacked);
3302 	}
3303 	tcp_update_pacing_rate(sk);
3304 }
3305 
3306 /* Check that window update is acceptable.
3307  * The function assumes that snd_una<=ack<=snd_next.
3308  */
3309 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3310 					const u32 ack, const u32 ack_seq,
3311 					const u32 nwin)
3312 {
3313 	return	after(ack, tp->snd_una) ||
3314 		after(ack_seq, tp->snd_wl1) ||
3315 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3316 }
3317 
3318 /* If we update tp->snd_una, also update tp->bytes_acked */
3319 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3320 {
3321 	u32 delta = ack - tp->snd_una;
3322 
3323 	sock_owned_by_me((struct sock *)tp);
3324 	tp->bytes_acked += delta;
3325 	tp->snd_una = ack;
3326 }
3327 
3328 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3329 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3330 {
3331 	u32 delta = seq - tp->rcv_nxt;
3332 
3333 	sock_owned_by_me((struct sock *)tp);
3334 	tp->bytes_received += delta;
3335 	tp->rcv_nxt = seq;
3336 }
3337 
3338 /* Update our send window.
3339  *
3340  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3341  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3342  */
3343 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3344 				 u32 ack_seq)
3345 {
3346 	struct tcp_sock *tp = tcp_sk(sk);
3347 	int flag = 0;
3348 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3349 
3350 	if (likely(!tcp_hdr(skb)->syn))
3351 		nwin <<= tp->rx_opt.snd_wscale;
3352 
3353 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3354 		flag |= FLAG_WIN_UPDATE;
3355 		tcp_update_wl(tp, ack_seq);
3356 
3357 		if (tp->snd_wnd != nwin) {
3358 			tp->snd_wnd = nwin;
3359 
3360 			/* Note, it is the only place, where
3361 			 * fast path is recovered for sending TCP.
3362 			 */
3363 			tp->pred_flags = 0;
3364 			tcp_fast_path_check(sk);
3365 
3366 			if (!tcp_write_queue_empty(sk))
3367 				tcp_slow_start_after_idle_check(sk);
3368 
3369 			if (nwin > tp->max_window) {
3370 				tp->max_window = nwin;
3371 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3372 			}
3373 		}
3374 	}
3375 
3376 	tcp_snd_una_update(tp, ack);
3377 
3378 	return flag;
3379 }
3380 
3381 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3382 				   u32 *last_oow_ack_time)
3383 {
3384 	if (*last_oow_ack_time) {
3385 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3386 
3387 		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3388 			NET_INC_STATS(net, mib_idx);
3389 			return true;	/* rate-limited: don't send yet! */
3390 		}
3391 	}
3392 
3393 	*last_oow_ack_time = tcp_jiffies32;
3394 
3395 	return false;	/* not rate-limited: go ahead, send dupack now! */
3396 }
3397 
3398 /* Return true if we're currently rate-limiting out-of-window ACKs and
3399  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3400  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3401  * attacks that send repeated SYNs or ACKs for the same connection. To
3402  * do this, we do not send a duplicate SYNACK or ACK if the remote
3403  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3404  */
3405 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3406 			  int mib_idx, u32 *last_oow_ack_time)
3407 {
3408 	/* Data packets without SYNs are not likely part of an ACK loop. */
3409 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3410 	    !tcp_hdr(skb)->syn)
3411 		return false;
3412 
3413 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3414 }
3415 
3416 /* RFC 5961 7 [ACK Throttling] */
3417 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3418 {
3419 	/* unprotected vars, we dont care of overwrites */
3420 	static u32 challenge_timestamp;
3421 	static unsigned int challenge_count;
3422 	struct tcp_sock *tp = tcp_sk(sk);
3423 	struct net *net = sock_net(sk);
3424 	u32 count, now;
3425 
3426 	/* First check our per-socket dupack rate limit. */
3427 	if (__tcp_oow_rate_limited(net,
3428 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3429 				   &tp->last_oow_ack_time))
3430 		return;
3431 
3432 	/* Then check host-wide RFC 5961 rate limit. */
3433 	now = jiffies / HZ;
3434 	if (now != challenge_timestamp) {
3435 		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3436 		u32 half = (ack_limit + 1) >> 1;
3437 
3438 		challenge_timestamp = now;
3439 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3440 	}
3441 	count = READ_ONCE(challenge_count);
3442 	if (count > 0) {
3443 		WRITE_ONCE(challenge_count, count - 1);
3444 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3445 		tcp_send_ack(sk);
3446 	}
3447 }
3448 
3449 static void tcp_store_ts_recent(struct tcp_sock *tp)
3450 {
3451 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3452 	tp->rx_opt.ts_recent_stamp = get_seconds();
3453 }
3454 
3455 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3456 {
3457 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3458 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3459 		 * extra check below makes sure this can only happen
3460 		 * for pure ACK frames.  -DaveM
3461 		 *
3462 		 * Not only, also it occurs for expired timestamps.
3463 		 */
3464 
3465 		if (tcp_paws_check(&tp->rx_opt, 0))
3466 			tcp_store_ts_recent(tp);
3467 	}
3468 }
3469 
3470 /* This routine deals with acks during a TLP episode.
3471  * We mark the end of a TLP episode on receiving TLP dupack or when
3472  * ack is after tlp_high_seq.
3473  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3474  */
3475 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3476 {
3477 	struct tcp_sock *tp = tcp_sk(sk);
3478 
3479 	if (before(ack, tp->tlp_high_seq))
3480 		return;
3481 
3482 	if (flag & FLAG_DSACKING_ACK) {
3483 		/* This DSACK means original and TLP probe arrived; no loss */
3484 		tp->tlp_high_seq = 0;
3485 	} else if (after(ack, tp->tlp_high_seq)) {
3486 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3487 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3488 		 */
3489 		tcp_init_cwnd_reduction(sk);
3490 		tcp_set_ca_state(sk, TCP_CA_CWR);
3491 		tcp_end_cwnd_reduction(sk);
3492 		tcp_try_keep_open(sk);
3493 		NET_INC_STATS(sock_net(sk),
3494 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3495 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3496 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3497 		/* Pure dupack: original and TLP probe arrived; no loss */
3498 		tp->tlp_high_seq = 0;
3499 	}
3500 }
3501 
3502 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3503 {
3504 	const struct inet_connection_sock *icsk = inet_csk(sk);
3505 
3506 	if (icsk->icsk_ca_ops->in_ack_event)
3507 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3508 }
3509 
3510 /* Congestion control has updated the cwnd already. So if we're in
3511  * loss recovery then now we do any new sends (for FRTO) or
3512  * retransmits (for CA_Loss or CA_recovery) that make sense.
3513  */
3514 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3515 {
3516 	struct tcp_sock *tp = tcp_sk(sk);
3517 
3518 	if (rexmit == REXMIT_NONE)
3519 		return;
3520 
3521 	if (unlikely(rexmit == 2)) {
3522 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3523 					  TCP_NAGLE_OFF);
3524 		if (after(tp->snd_nxt, tp->high_seq))
3525 			return;
3526 		tp->frto = 0;
3527 	}
3528 	tcp_xmit_retransmit_queue(sk);
3529 }
3530 
3531 /* Returns the number of packets newly acked or sacked by the current ACK */
3532 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3533 {
3534 	const struct net *net = sock_net(sk);
3535 	struct tcp_sock *tp = tcp_sk(sk);
3536 	u32 delivered;
3537 
3538 	delivered = tp->delivered - prior_delivered;
3539 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3540 	if (flag & FLAG_ECE) {
3541 		tp->delivered_ce += delivered;
3542 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3543 	}
3544 	return delivered;
3545 }
3546 
3547 /* This routine deals with incoming acks, but not outgoing ones. */
3548 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3549 {
3550 	struct inet_connection_sock *icsk = inet_csk(sk);
3551 	struct tcp_sock *tp = tcp_sk(sk);
3552 	struct tcp_sacktag_state sack_state;
3553 	struct rate_sample rs = { .prior_delivered = 0 };
3554 	u32 prior_snd_una = tp->snd_una;
3555 	bool is_sack_reneg = tp->is_sack_reneg;
3556 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3557 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3558 	bool is_dupack = false;
3559 	int prior_packets = tp->packets_out;
3560 	u32 delivered = tp->delivered;
3561 	u32 lost = tp->lost;
3562 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3563 	u32 prior_fack;
3564 
3565 	sack_state.first_sackt = 0;
3566 	sack_state.rate = &rs;
3567 
3568 	/* We very likely will need to access rtx queue. */
3569 	prefetch(sk->tcp_rtx_queue.rb_node);
3570 
3571 	/* If the ack is older than previous acks
3572 	 * then we can probably ignore it.
3573 	 */
3574 	if (before(ack, prior_snd_una)) {
3575 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3576 		if (before(ack, prior_snd_una - tp->max_window)) {
3577 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3578 				tcp_send_challenge_ack(sk, skb);
3579 			return -1;
3580 		}
3581 		goto old_ack;
3582 	}
3583 
3584 	/* If the ack includes data we haven't sent yet, discard
3585 	 * this segment (RFC793 Section 3.9).
3586 	 */
3587 	if (after(ack, tp->snd_nxt))
3588 		goto invalid_ack;
3589 
3590 	if (after(ack, prior_snd_una)) {
3591 		flag |= FLAG_SND_UNA_ADVANCED;
3592 		icsk->icsk_retransmits = 0;
3593 
3594 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3595 		if (static_branch_unlikely(&clean_acked_data_enabled))
3596 			if (icsk->icsk_clean_acked)
3597 				icsk->icsk_clean_acked(sk, ack);
3598 #endif
3599 	}
3600 
3601 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3602 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3603 
3604 	/* ts_recent update must be made after we are sure that the packet
3605 	 * is in window.
3606 	 */
3607 	if (flag & FLAG_UPDATE_TS_RECENT)
3608 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3609 
3610 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3611 		/* Window is constant, pure forward advance.
3612 		 * No more checks are required.
3613 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3614 		 */
3615 		tcp_update_wl(tp, ack_seq);
3616 		tcp_snd_una_update(tp, ack);
3617 		flag |= FLAG_WIN_UPDATE;
3618 
3619 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3620 
3621 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3622 	} else {
3623 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3624 
3625 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3626 			flag |= FLAG_DATA;
3627 		else
3628 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3629 
3630 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3631 
3632 		if (TCP_SKB_CB(skb)->sacked)
3633 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3634 							&sack_state);
3635 
3636 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3637 			flag |= FLAG_ECE;
3638 			ack_ev_flags |= CA_ACK_ECE;
3639 		}
3640 
3641 		if (flag & FLAG_WIN_UPDATE)
3642 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3643 
3644 		tcp_in_ack_event(sk, ack_ev_flags);
3645 	}
3646 
3647 	/* We passed data and got it acked, remove any soft error
3648 	 * log. Something worked...
3649 	 */
3650 	sk->sk_err_soft = 0;
3651 	icsk->icsk_probes_out = 0;
3652 	tp->rcv_tstamp = tcp_jiffies32;
3653 	if (!prior_packets)
3654 		goto no_queue;
3655 
3656 	/* See if we can take anything off of the retransmit queue. */
3657 	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3658 
3659 	tcp_rack_update_reo_wnd(sk, &rs);
3660 
3661 	if (tp->tlp_high_seq)
3662 		tcp_process_tlp_ack(sk, ack, flag);
3663 	/* If needed, reset TLP/RTO timer; RACK may later override this. */
3664 	if (flag & FLAG_SET_XMIT_TIMER)
3665 		tcp_set_xmit_timer(sk);
3666 
3667 	if (tcp_ack_is_dubious(sk, flag)) {
3668 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3669 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3670 				      &rexmit);
3671 	}
3672 
3673 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3674 		sk_dst_confirm(sk);
3675 
3676 	delivered = tcp_newly_delivered(sk, delivered, flag);
3677 	lost = tp->lost - lost;			/* freshly marked lost */
3678 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3679 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3680 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3681 	tcp_xmit_recovery(sk, rexmit);
3682 	return 1;
3683 
3684 no_queue:
3685 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3686 	if (flag & FLAG_DSACKING_ACK) {
3687 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3688 				      &rexmit);
3689 		tcp_newly_delivered(sk, delivered, flag);
3690 	}
3691 	/* If this ack opens up a zero window, clear backoff.  It was
3692 	 * being used to time the probes, and is probably far higher than
3693 	 * it needs to be for normal retransmission.
3694 	 */
3695 	tcp_ack_probe(sk);
3696 
3697 	if (tp->tlp_high_seq)
3698 		tcp_process_tlp_ack(sk, ack, flag);
3699 	return 1;
3700 
3701 invalid_ack:
3702 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3703 	return -1;
3704 
3705 old_ack:
3706 	/* If data was SACKed, tag it and see if we should send more data.
3707 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3708 	 */
3709 	if (TCP_SKB_CB(skb)->sacked) {
3710 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3711 						&sack_state);
3712 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3713 				      &rexmit);
3714 		tcp_newly_delivered(sk, delivered, flag);
3715 		tcp_xmit_recovery(sk, rexmit);
3716 	}
3717 
3718 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3719 	return 0;
3720 }
3721 
3722 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3723 				      bool syn, struct tcp_fastopen_cookie *foc,
3724 				      bool exp_opt)
3725 {
3726 	/* Valid only in SYN or SYN-ACK with an even length.  */
3727 	if (!foc || !syn || len < 0 || (len & 1))
3728 		return;
3729 
3730 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3731 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3732 		memcpy(foc->val, cookie, len);
3733 	else if (len != 0)
3734 		len = -1;
3735 	foc->len = len;
3736 	foc->exp = exp_opt;
3737 }
3738 
3739 static void smc_parse_options(const struct tcphdr *th,
3740 			      struct tcp_options_received *opt_rx,
3741 			      const unsigned char *ptr,
3742 			      int opsize)
3743 {
3744 #if IS_ENABLED(CONFIG_SMC)
3745 	if (static_branch_unlikely(&tcp_have_smc)) {
3746 		if (th->syn && !(opsize & 1) &&
3747 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3748 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3749 			opt_rx->smc_ok = 1;
3750 	}
3751 #endif
3752 }
3753 
3754 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3755  * But, this can also be called on packets in the established flow when
3756  * the fast version below fails.
3757  */
3758 void tcp_parse_options(const struct net *net,
3759 		       const struct sk_buff *skb,
3760 		       struct tcp_options_received *opt_rx, int estab,
3761 		       struct tcp_fastopen_cookie *foc)
3762 {
3763 	const unsigned char *ptr;
3764 	const struct tcphdr *th = tcp_hdr(skb);
3765 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3766 
3767 	ptr = (const unsigned char *)(th + 1);
3768 	opt_rx->saw_tstamp = 0;
3769 
3770 	while (length > 0) {
3771 		int opcode = *ptr++;
3772 		int opsize;
3773 
3774 		switch (opcode) {
3775 		case TCPOPT_EOL:
3776 			return;
3777 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3778 			length--;
3779 			continue;
3780 		default:
3781 			opsize = *ptr++;
3782 			if (opsize < 2) /* "silly options" */
3783 				return;
3784 			if (opsize > length)
3785 				return;	/* don't parse partial options */
3786 			switch (opcode) {
3787 			case TCPOPT_MSS:
3788 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3789 					u16 in_mss = get_unaligned_be16(ptr);
3790 					if (in_mss) {
3791 						if (opt_rx->user_mss &&
3792 						    opt_rx->user_mss < in_mss)
3793 							in_mss = opt_rx->user_mss;
3794 						opt_rx->mss_clamp = in_mss;
3795 					}
3796 				}
3797 				break;
3798 			case TCPOPT_WINDOW:
3799 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3800 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3801 					__u8 snd_wscale = *(__u8 *)ptr;
3802 					opt_rx->wscale_ok = 1;
3803 					if (snd_wscale > TCP_MAX_WSCALE) {
3804 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3805 								     __func__,
3806 								     snd_wscale,
3807 								     TCP_MAX_WSCALE);
3808 						snd_wscale = TCP_MAX_WSCALE;
3809 					}
3810 					opt_rx->snd_wscale = snd_wscale;
3811 				}
3812 				break;
3813 			case TCPOPT_TIMESTAMP:
3814 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3815 				    ((estab && opt_rx->tstamp_ok) ||
3816 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3817 					opt_rx->saw_tstamp = 1;
3818 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3819 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3820 				}
3821 				break;
3822 			case TCPOPT_SACK_PERM:
3823 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3824 				    !estab && net->ipv4.sysctl_tcp_sack) {
3825 					opt_rx->sack_ok = TCP_SACK_SEEN;
3826 					tcp_sack_reset(opt_rx);
3827 				}
3828 				break;
3829 
3830 			case TCPOPT_SACK:
3831 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3832 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3833 				   opt_rx->sack_ok) {
3834 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3835 				}
3836 				break;
3837 #ifdef CONFIG_TCP_MD5SIG
3838 			case TCPOPT_MD5SIG:
3839 				/*
3840 				 * The MD5 Hash has already been
3841 				 * checked (see tcp_v{4,6}_do_rcv()).
3842 				 */
3843 				break;
3844 #endif
3845 			case TCPOPT_FASTOPEN:
3846 				tcp_parse_fastopen_option(
3847 					opsize - TCPOLEN_FASTOPEN_BASE,
3848 					ptr, th->syn, foc, false);
3849 				break;
3850 
3851 			case TCPOPT_EXP:
3852 				/* Fast Open option shares code 254 using a
3853 				 * 16 bits magic number.
3854 				 */
3855 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3856 				    get_unaligned_be16(ptr) ==
3857 				    TCPOPT_FASTOPEN_MAGIC)
3858 					tcp_parse_fastopen_option(opsize -
3859 						TCPOLEN_EXP_FASTOPEN_BASE,
3860 						ptr + 2, th->syn, foc, true);
3861 				else
3862 					smc_parse_options(th, opt_rx, ptr,
3863 							  opsize);
3864 				break;
3865 
3866 			}
3867 			ptr += opsize-2;
3868 			length -= opsize;
3869 		}
3870 	}
3871 }
3872 EXPORT_SYMBOL(tcp_parse_options);
3873 
3874 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3875 {
3876 	const __be32 *ptr = (const __be32 *)(th + 1);
3877 
3878 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3879 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3880 		tp->rx_opt.saw_tstamp = 1;
3881 		++ptr;
3882 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3883 		++ptr;
3884 		if (*ptr)
3885 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3886 		else
3887 			tp->rx_opt.rcv_tsecr = 0;
3888 		return true;
3889 	}
3890 	return false;
3891 }
3892 
3893 /* Fast parse options. This hopes to only see timestamps.
3894  * If it is wrong it falls back on tcp_parse_options().
3895  */
3896 static bool tcp_fast_parse_options(const struct net *net,
3897 				   const struct sk_buff *skb,
3898 				   const struct tcphdr *th, struct tcp_sock *tp)
3899 {
3900 	/* In the spirit of fast parsing, compare doff directly to constant
3901 	 * values.  Because equality is used, short doff can be ignored here.
3902 	 */
3903 	if (th->doff == (sizeof(*th) / 4)) {
3904 		tp->rx_opt.saw_tstamp = 0;
3905 		return false;
3906 	} else if (tp->rx_opt.tstamp_ok &&
3907 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3908 		if (tcp_parse_aligned_timestamp(tp, th))
3909 			return true;
3910 	}
3911 
3912 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3913 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3914 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3915 
3916 	return true;
3917 }
3918 
3919 #ifdef CONFIG_TCP_MD5SIG
3920 /*
3921  * Parse MD5 Signature option
3922  */
3923 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3924 {
3925 	int length = (th->doff << 2) - sizeof(*th);
3926 	const u8 *ptr = (const u8 *)(th + 1);
3927 
3928 	/* If not enough data remaining, we can short cut */
3929 	while (length >= TCPOLEN_MD5SIG) {
3930 		int opcode = *ptr++;
3931 		int opsize;
3932 
3933 		switch (opcode) {
3934 		case TCPOPT_EOL:
3935 			return NULL;
3936 		case TCPOPT_NOP:
3937 			length--;
3938 			continue;
3939 		default:
3940 			opsize = *ptr++;
3941 			if (opsize < 2 || opsize > length)
3942 				return NULL;
3943 			if (opcode == TCPOPT_MD5SIG)
3944 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3945 		}
3946 		ptr += opsize - 2;
3947 		length -= opsize;
3948 	}
3949 	return NULL;
3950 }
3951 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3952 #endif
3953 
3954 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3955  *
3956  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3957  * it can pass through stack. So, the following predicate verifies that
3958  * this segment is not used for anything but congestion avoidance or
3959  * fast retransmit. Moreover, we even are able to eliminate most of such
3960  * second order effects, if we apply some small "replay" window (~RTO)
3961  * to timestamp space.
3962  *
3963  * All these measures still do not guarantee that we reject wrapped ACKs
3964  * on networks with high bandwidth, when sequence space is recycled fastly,
3965  * but it guarantees that such events will be very rare and do not affect
3966  * connection seriously. This doesn't look nice, but alas, PAWS is really
3967  * buggy extension.
3968  *
3969  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3970  * states that events when retransmit arrives after original data are rare.
3971  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3972  * the biggest problem on large power networks even with minor reordering.
3973  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3974  * up to bandwidth of 18Gigabit/sec. 8) ]
3975  */
3976 
3977 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3978 {
3979 	const struct tcp_sock *tp = tcp_sk(sk);
3980 	const struct tcphdr *th = tcp_hdr(skb);
3981 	u32 seq = TCP_SKB_CB(skb)->seq;
3982 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3983 
3984 	return (/* 1. Pure ACK with correct sequence number. */
3985 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3986 
3987 		/* 2. ... and duplicate ACK. */
3988 		ack == tp->snd_una &&
3989 
3990 		/* 3. ... and does not update window. */
3991 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3992 
3993 		/* 4. ... and sits in replay window. */
3994 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3995 }
3996 
3997 static inline bool tcp_paws_discard(const struct sock *sk,
3998 				   const struct sk_buff *skb)
3999 {
4000 	const struct tcp_sock *tp = tcp_sk(sk);
4001 
4002 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4003 	       !tcp_disordered_ack(sk, skb);
4004 }
4005 
4006 /* Check segment sequence number for validity.
4007  *
4008  * Segment controls are considered valid, if the segment
4009  * fits to the window after truncation to the window. Acceptability
4010  * of data (and SYN, FIN, of course) is checked separately.
4011  * See tcp_data_queue(), for example.
4012  *
4013  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4014  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4015  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4016  * (borrowed from freebsd)
4017  */
4018 
4019 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4020 {
4021 	return	!before(end_seq, tp->rcv_wup) &&
4022 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4023 }
4024 
4025 /* When we get a reset we do this. */
4026 void tcp_reset(struct sock *sk)
4027 {
4028 	trace_tcp_receive_reset(sk);
4029 
4030 	/* We want the right error as BSD sees it (and indeed as we do). */
4031 	switch (sk->sk_state) {
4032 	case TCP_SYN_SENT:
4033 		sk->sk_err = ECONNREFUSED;
4034 		break;
4035 	case TCP_CLOSE_WAIT:
4036 		sk->sk_err = EPIPE;
4037 		break;
4038 	case TCP_CLOSE:
4039 		return;
4040 	default:
4041 		sk->sk_err = ECONNRESET;
4042 	}
4043 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4044 	smp_wmb();
4045 
4046 	tcp_write_queue_purge(sk);
4047 	tcp_done(sk);
4048 
4049 	if (!sock_flag(sk, SOCK_DEAD))
4050 		sk->sk_error_report(sk);
4051 }
4052 
4053 /*
4054  * 	Process the FIN bit. This now behaves as it is supposed to work
4055  *	and the FIN takes effect when it is validly part of sequence
4056  *	space. Not before when we get holes.
4057  *
4058  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4059  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4060  *	TIME-WAIT)
4061  *
4062  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4063  *	close and we go into CLOSING (and later onto TIME-WAIT)
4064  *
4065  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4066  */
4067 void tcp_fin(struct sock *sk)
4068 {
4069 	struct tcp_sock *tp = tcp_sk(sk);
4070 
4071 	inet_csk_schedule_ack(sk);
4072 
4073 	sk->sk_shutdown |= RCV_SHUTDOWN;
4074 	sock_set_flag(sk, SOCK_DONE);
4075 
4076 	switch (sk->sk_state) {
4077 	case TCP_SYN_RECV:
4078 	case TCP_ESTABLISHED:
4079 		/* Move to CLOSE_WAIT */
4080 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4081 		inet_csk(sk)->icsk_ack.pingpong = 1;
4082 		break;
4083 
4084 	case TCP_CLOSE_WAIT:
4085 	case TCP_CLOSING:
4086 		/* Received a retransmission of the FIN, do
4087 		 * nothing.
4088 		 */
4089 		break;
4090 	case TCP_LAST_ACK:
4091 		/* RFC793: Remain in the LAST-ACK state. */
4092 		break;
4093 
4094 	case TCP_FIN_WAIT1:
4095 		/* This case occurs when a simultaneous close
4096 		 * happens, we must ack the received FIN and
4097 		 * enter the CLOSING state.
4098 		 */
4099 		tcp_send_ack(sk);
4100 		tcp_set_state(sk, TCP_CLOSING);
4101 		break;
4102 	case TCP_FIN_WAIT2:
4103 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4104 		tcp_send_ack(sk);
4105 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4106 		break;
4107 	default:
4108 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4109 		 * cases we should never reach this piece of code.
4110 		 */
4111 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4112 		       __func__, sk->sk_state);
4113 		break;
4114 	}
4115 
4116 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4117 	 * Probably, we should reset in this case. For now drop them.
4118 	 */
4119 	skb_rbtree_purge(&tp->out_of_order_queue);
4120 	if (tcp_is_sack(tp))
4121 		tcp_sack_reset(&tp->rx_opt);
4122 	sk_mem_reclaim(sk);
4123 
4124 	if (!sock_flag(sk, SOCK_DEAD)) {
4125 		sk->sk_state_change(sk);
4126 
4127 		/* Do not send POLL_HUP for half duplex close. */
4128 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4129 		    sk->sk_state == TCP_CLOSE)
4130 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4131 		else
4132 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4133 	}
4134 }
4135 
4136 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4137 				  u32 end_seq)
4138 {
4139 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4140 		if (before(seq, sp->start_seq))
4141 			sp->start_seq = seq;
4142 		if (after(end_seq, sp->end_seq))
4143 			sp->end_seq = end_seq;
4144 		return true;
4145 	}
4146 	return false;
4147 }
4148 
4149 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4150 {
4151 	struct tcp_sock *tp = tcp_sk(sk);
4152 
4153 	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4154 		int mib_idx;
4155 
4156 		if (before(seq, tp->rcv_nxt))
4157 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4158 		else
4159 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4160 
4161 		NET_INC_STATS(sock_net(sk), mib_idx);
4162 
4163 		tp->rx_opt.dsack = 1;
4164 		tp->duplicate_sack[0].start_seq = seq;
4165 		tp->duplicate_sack[0].end_seq = end_seq;
4166 	}
4167 }
4168 
4169 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4170 {
4171 	struct tcp_sock *tp = tcp_sk(sk);
4172 
4173 	if (!tp->rx_opt.dsack)
4174 		tcp_dsack_set(sk, seq, end_seq);
4175 	else
4176 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4177 }
4178 
4179 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4180 {
4181 	struct tcp_sock *tp = tcp_sk(sk);
4182 
4183 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4184 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4185 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4186 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4187 
4188 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4189 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4190 
4191 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4192 				end_seq = tp->rcv_nxt;
4193 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4194 		}
4195 	}
4196 
4197 	tcp_send_ack(sk);
4198 }
4199 
4200 /* These routines update the SACK block as out-of-order packets arrive or
4201  * in-order packets close up the sequence space.
4202  */
4203 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4204 {
4205 	int this_sack;
4206 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4207 	struct tcp_sack_block *swalk = sp + 1;
4208 
4209 	/* See if the recent change to the first SACK eats into
4210 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4211 	 */
4212 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4213 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4214 			int i;
4215 
4216 			/* Zap SWALK, by moving every further SACK up by one slot.
4217 			 * Decrease num_sacks.
4218 			 */
4219 			tp->rx_opt.num_sacks--;
4220 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4221 				sp[i] = sp[i + 1];
4222 			continue;
4223 		}
4224 		this_sack++, swalk++;
4225 	}
4226 }
4227 
4228 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4229 {
4230 	struct tcp_sock *tp = tcp_sk(sk);
4231 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4232 	int cur_sacks = tp->rx_opt.num_sacks;
4233 	int this_sack;
4234 
4235 	if (!cur_sacks)
4236 		goto new_sack;
4237 
4238 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4239 		if (tcp_sack_extend(sp, seq, end_seq)) {
4240 			/* Rotate this_sack to the first one. */
4241 			for (; this_sack > 0; this_sack--, sp--)
4242 				swap(*sp, *(sp - 1));
4243 			if (cur_sacks > 1)
4244 				tcp_sack_maybe_coalesce(tp);
4245 			return;
4246 		}
4247 	}
4248 
4249 	/* Could not find an adjacent existing SACK, build a new one,
4250 	 * put it at the front, and shift everyone else down.  We
4251 	 * always know there is at least one SACK present already here.
4252 	 *
4253 	 * If the sack array is full, forget about the last one.
4254 	 */
4255 	if (this_sack >= TCP_NUM_SACKS) {
4256 		if (tp->compressed_ack)
4257 			tcp_send_ack(sk);
4258 		this_sack--;
4259 		tp->rx_opt.num_sacks--;
4260 		sp--;
4261 	}
4262 	for (; this_sack > 0; this_sack--, sp--)
4263 		*sp = *(sp - 1);
4264 
4265 new_sack:
4266 	/* Build the new head SACK, and we're done. */
4267 	sp->start_seq = seq;
4268 	sp->end_seq = end_seq;
4269 	tp->rx_opt.num_sacks++;
4270 }
4271 
4272 /* RCV.NXT advances, some SACKs should be eaten. */
4273 
4274 static void tcp_sack_remove(struct tcp_sock *tp)
4275 {
4276 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4277 	int num_sacks = tp->rx_opt.num_sacks;
4278 	int this_sack;
4279 
4280 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4281 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4282 		tp->rx_opt.num_sacks = 0;
4283 		return;
4284 	}
4285 
4286 	for (this_sack = 0; this_sack < num_sacks;) {
4287 		/* Check if the start of the sack is covered by RCV.NXT. */
4288 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4289 			int i;
4290 
4291 			/* RCV.NXT must cover all the block! */
4292 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4293 
4294 			/* Zap this SACK, by moving forward any other SACKS. */
4295 			for (i = this_sack+1; i < num_sacks; i++)
4296 				tp->selective_acks[i-1] = tp->selective_acks[i];
4297 			num_sacks--;
4298 			continue;
4299 		}
4300 		this_sack++;
4301 		sp++;
4302 	}
4303 	tp->rx_opt.num_sacks = num_sacks;
4304 }
4305 
4306 /**
4307  * tcp_try_coalesce - try to merge skb to prior one
4308  * @sk: socket
4309  * @dest: destination queue
4310  * @to: prior buffer
4311  * @from: buffer to add in queue
4312  * @fragstolen: pointer to boolean
4313  *
4314  * Before queueing skb @from after @to, try to merge them
4315  * to reduce overall memory use and queue lengths, if cost is small.
4316  * Packets in ofo or receive queues can stay a long time.
4317  * Better try to coalesce them right now to avoid future collapses.
4318  * Returns true if caller should free @from instead of queueing it
4319  */
4320 static bool tcp_try_coalesce(struct sock *sk,
4321 			     struct sk_buff *to,
4322 			     struct sk_buff *from,
4323 			     bool *fragstolen)
4324 {
4325 	int delta;
4326 
4327 	*fragstolen = false;
4328 
4329 	/* Its possible this segment overlaps with prior segment in queue */
4330 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4331 		return false;
4332 
4333 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4334 		return false;
4335 
4336 	atomic_add(delta, &sk->sk_rmem_alloc);
4337 	sk_mem_charge(sk, delta);
4338 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4339 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4340 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4341 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4342 
4343 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4344 		TCP_SKB_CB(to)->has_rxtstamp = true;
4345 		to->tstamp = from->tstamp;
4346 	}
4347 
4348 	return true;
4349 }
4350 
4351 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4352 {
4353 	sk_drops_add(sk, skb);
4354 	__kfree_skb(skb);
4355 }
4356 
4357 /* This one checks to see if we can put data from the
4358  * out_of_order queue into the receive_queue.
4359  */
4360 static void tcp_ofo_queue(struct sock *sk)
4361 {
4362 	struct tcp_sock *tp = tcp_sk(sk);
4363 	__u32 dsack_high = tp->rcv_nxt;
4364 	bool fin, fragstolen, eaten;
4365 	struct sk_buff *skb, *tail;
4366 	struct rb_node *p;
4367 
4368 	p = rb_first(&tp->out_of_order_queue);
4369 	while (p) {
4370 		skb = rb_to_skb(p);
4371 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4372 			break;
4373 
4374 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4375 			__u32 dsack = dsack_high;
4376 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4377 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4378 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4379 		}
4380 		p = rb_next(p);
4381 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4382 
4383 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4384 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4385 			tcp_drop(sk, skb);
4386 			continue;
4387 		}
4388 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4389 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4390 			   TCP_SKB_CB(skb)->end_seq);
4391 
4392 		tail = skb_peek_tail(&sk->sk_receive_queue);
4393 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4394 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4395 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4396 		if (!eaten)
4397 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4398 		else
4399 			kfree_skb_partial(skb, fragstolen);
4400 
4401 		if (unlikely(fin)) {
4402 			tcp_fin(sk);
4403 			/* tcp_fin() purges tp->out_of_order_queue,
4404 			 * so we must end this loop right now.
4405 			 */
4406 			break;
4407 		}
4408 	}
4409 }
4410 
4411 static bool tcp_prune_ofo_queue(struct sock *sk);
4412 static int tcp_prune_queue(struct sock *sk);
4413 
4414 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4415 				 unsigned int size)
4416 {
4417 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4418 	    !sk_rmem_schedule(sk, skb, size)) {
4419 
4420 		if (tcp_prune_queue(sk) < 0)
4421 			return -1;
4422 
4423 		while (!sk_rmem_schedule(sk, skb, size)) {
4424 			if (!tcp_prune_ofo_queue(sk))
4425 				return -1;
4426 		}
4427 	}
4428 	return 0;
4429 }
4430 
4431 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4432 {
4433 	struct tcp_sock *tp = tcp_sk(sk);
4434 	struct rb_node **p, *parent;
4435 	struct sk_buff *skb1;
4436 	u32 seq, end_seq;
4437 	bool fragstolen;
4438 
4439 	tcp_ecn_check_ce(sk, skb);
4440 
4441 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4442 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4443 		tcp_drop(sk, skb);
4444 		return;
4445 	}
4446 
4447 	/* Disable header prediction. */
4448 	tp->pred_flags = 0;
4449 	inet_csk_schedule_ack(sk);
4450 
4451 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4452 	seq = TCP_SKB_CB(skb)->seq;
4453 	end_seq = TCP_SKB_CB(skb)->end_seq;
4454 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4455 		   tp->rcv_nxt, seq, end_seq);
4456 
4457 	p = &tp->out_of_order_queue.rb_node;
4458 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4459 		/* Initial out of order segment, build 1 SACK. */
4460 		if (tcp_is_sack(tp)) {
4461 			tp->rx_opt.num_sacks = 1;
4462 			tp->selective_acks[0].start_seq = seq;
4463 			tp->selective_acks[0].end_seq = end_seq;
4464 		}
4465 		rb_link_node(&skb->rbnode, NULL, p);
4466 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4467 		tp->ooo_last_skb = skb;
4468 		goto end;
4469 	}
4470 
4471 	/* In the typical case, we are adding an skb to the end of the list.
4472 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4473 	 */
4474 	if (tcp_try_coalesce(sk, tp->ooo_last_skb,
4475 			     skb, &fragstolen)) {
4476 coalesce_done:
4477 		tcp_grow_window(sk, skb);
4478 		kfree_skb_partial(skb, fragstolen);
4479 		skb = NULL;
4480 		goto add_sack;
4481 	}
4482 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4483 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4484 		parent = &tp->ooo_last_skb->rbnode;
4485 		p = &parent->rb_right;
4486 		goto insert;
4487 	}
4488 
4489 	/* Find place to insert this segment. Handle overlaps on the way. */
4490 	parent = NULL;
4491 	while (*p) {
4492 		parent = *p;
4493 		skb1 = rb_to_skb(parent);
4494 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4495 			p = &parent->rb_left;
4496 			continue;
4497 		}
4498 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4499 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4500 				/* All the bits are present. Drop. */
4501 				NET_INC_STATS(sock_net(sk),
4502 					      LINUX_MIB_TCPOFOMERGE);
4503 				__kfree_skb(skb);
4504 				skb = NULL;
4505 				tcp_dsack_set(sk, seq, end_seq);
4506 				goto add_sack;
4507 			}
4508 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4509 				/* Partial overlap. */
4510 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4511 			} else {
4512 				/* skb's seq == skb1's seq and skb covers skb1.
4513 				 * Replace skb1 with skb.
4514 				 */
4515 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4516 						&tp->out_of_order_queue);
4517 				tcp_dsack_extend(sk,
4518 						 TCP_SKB_CB(skb1)->seq,
4519 						 TCP_SKB_CB(skb1)->end_seq);
4520 				NET_INC_STATS(sock_net(sk),
4521 					      LINUX_MIB_TCPOFOMERGE);
4522 				__kfree_skb(skb1);
4523 				goto merge_right;
4524 			}
4525 		} else if (tcp_try_coalesce(sk, skb1,
4526 					    skb, &fragstolen)) {
4527 			goto coalesce_done;
4528 		}
4529 		p = &parent->rb_right;
4530 	}
4531 insert:
4532 	/* Insert segment into RB tree. */
4533 	rb_link_node(&skb->rbnode, parent, p);
4534 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4535 
4536 merge_right:
4537 	/* Remove other segments covered by skb. */
4538 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4539 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4540 			break;
4541 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4542 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4543 					 end_seq);
4544 			break;
4545 		}
4546 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4547 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4548 				 TCP_SKB_CB(skb1)->end_seq);
4549 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4550 		tcp_drop(sk, skb1);
4551 	}
4552 	/* If there is no skb after us, we are the last_skb ! */
4553 	if (!skb1)
4554 		tp->ooo_last_skb = skb;
4555 
4556 add_sack:
4557 	if (tcp_is_sack(tp))
4558 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4559 end:
4560 	if (skb) {
4561 		tcp_grow_window(sk, skb);
4562 		skb_condense(skb);
4563 		skb_set_owner_r(skb, sk);
4564 	}
4565 }
4566 
4567 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4568 		  bool *fragstolen)
4569 {
4570 	int eaten;
4571 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4572 
4573 	__skb_pull(skb, hdrlen);
4574 	eaten = (tail &&
4575 		 tcp_try_coalesce(sk, tail,
4576 				  skb, fragstolen)) ? 1 : 0;
4577 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4578 	if (!eaten) {
4579 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4580 		skb_set_owner_r(skb, sk);
4581 	}
4582 	return eaten;
4583 }
4584 
4585 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4586 {
4587 	struct sk_buff *skb;
4588 	int err = -ENOMEM;
4589 	int data_len = 0;
4590 	bool fragstolen;
4591 
4592 	if (size == 0)
4593 		return 0;
4594 
4595 	if (size > PAGE_SIZE) {
4596 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4597 
4598 		data_len = npages << PAGE_SHIFT;
4599 		size = data_len + (size & ~PAGE_MASK);
4600 	}
4601 	skb = alloc_skb_with_frags(size - data_len, data_len,
4602 				   PAGE_ALLOC_COSTLY_ORDER,
4603 				   &err, sk->sk_allocation);
4604 	if (!skb)
4605 		goto err;
4606 
4607 	skb_put(skb, size - data_len);
4608 	skb->data_len = data_len;
4609 	skb->len = size;
4610 
4611 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4612 		goto err_free;
4613 
4614 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4615 	if (err)
4616 		goto err_free;
4617 
4618 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4619 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4620 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4621 
4622 	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4623 		WARN_ON_ONCE(fragstolen); /* should not happen */
4624 		__kfree_skb(skb);
4625 	}
4626 	return size;
4627 
4628 err_free:
4629 	kfree_skb(skb);
4630 err:
4631 	return err;
4632 
4633 }
4634 
4635 void tcp_data_ready(struct sock *sk)
4636 {
4637 	const struct tcp_sock *tp = tcp_sk(sk);
4638 	int avail = tp->rcv_nxt - tp->copied_seq;
4639 
4640 	if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE))
4641 		return;
4642 
4643 	sk->sk_data_ready(sk);
4644 }
4645 
4646 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4647 {
4648 	struct tcp_sock *tp = tcp_sk(sk);
4649 	bool fragstolen;
4650 	int eaten;
4651 
4652 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4653 		__kfree_skb(skb);
4654 		return;
4655 	}
4656 	skb_dst_drop(skb);
4657 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4658 
4659 	tcp_ecn_accept_cwr(tp, skb);
4660 
4661 	tp->rx_opt.dsack = 0;
4662 
4663 	/*  Queue data for delivery to the user.
4664 	 *  Packets in sequence go to the receive queue.
4665 	 *  Out of sequence packets to the out_of_order_queue.
4666 	 */
4667 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4668 		if (tcp_receive_window(tp) == 0)
4669 			goto out_of_window;
4670 
4671 		/* Ok. In sequence. In window. */
4672 queue_and_out:
4673 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4674 			sk_forced_mem_schedule(sk, skb->truesize);
4675 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4676 			goto drop;
4677 
4678 		eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4679 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4680 		if (skb->len)
4681 			tcp_event_data_recv(sk, skb);
4682 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4683 			tcp_fin(sk);
4684 
4685 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4686 			tcp_ofo_queue(sk);
4687 
4688 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4689 			 * gap in queue is filled.
4690 			 */
4691 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4692 				inet_csk(sk)->icsk_ack.pingpong = 0;
4693 		}
4694 
4695 		if (tp->rx_opt.num_sacks)
4696 			tcp_sack_remove(tp);
4697 
4698 		tcp_fast_path_check(sk);
4699 
4700 		if (eaten > 0)
4701 			kfree_skb_partial(skb, fragstolen);
4702 		if (!sock_flag(sk, SOCK_DEAD))
4703 			tcp_data_ready(sk);
4704 		return;
4705 	}
4706 
4707 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4708 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4709 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4710 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4711 
4712 out_of_window:
4713 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4714 		inet_csk_schedule_ack(sk);
4715 drop:
4716 		tcp_drop(sk, skb);
4717 		return;
4718 	}
4719 
4720 	/* Out of window. F.e. zero window probe. */
4721 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4722 		goto out_of_window;
4723 
4724 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4725 		/* Partial packet, seq < rcv_next < end_seq */
4726 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4727 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4728 			   TCP_SKB_CB(skb)->end_seq);
4729 
4730 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4731 
4732 		/* If window is closed, drop tail of packet. But after
4733 		 * remembering D-SACK for its head made in previous line.
4734 		 */
4735 		if (!tcp_receive_window(tp))
4736 			goto out_of_window;
4737 		goto queue_and_out;
4738 	}
4739 
4740 	tcp_data_queue_ofo(sk, skb);
4741 }
4742 
4743 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4744 {
4745 	if (list)
4746 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4747 
4748 	return skb_rb_next(skb);
4749 }
4750 
4751 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4752 					struct sk_buff_head *list,
4753 					struct rb_root *root)
4754 {
4755 	struct sk_buff *next = tcp_skb_next(skb, list);
4756 
4757 	if (list)
4758 		__skb_unlink(skb, list);
4759 	else
4760 		rb_erase(&skb->rbnode, root);
4761 
4762 	__kfree_skb(skb);
4763 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4764 
4765 	return next;
4766 }
4767 
4768 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4769 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4770 {
4771 	struct rb_node **p = &root->rb_node;
4772 	struct rb_node *parent = NULL;
4773 	struct sk_buff *skb1;
4774 
4775 	while (*p) {
4776 		parent = *p;
4777 		skb1 = rb_to_skb(parent);
4778 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4779 			p = &parent->rb_left;
4780 		else
4781 			p = &parent->rb_right;
4782 	}
4783 	rb_link_node(&skb->rbnode, parent, p);
4784 	rb_insert_color(&skb->rbnode, root);
4785 }
4786 
4787 /* Collapse contiguous sequence of skbs head..tail with
4788  * sequence numbers start..end.
4789  *
4790  * If tail is NULL, this means until the end of the queue.
4791  *
4792  * Segments with FIN/SYN are not collapsed (only because this
4793  * simplifies code)
4794  */
4795 static void
4796 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4797 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4798 {
4799 	struct sk_buff *skb = head, *n;
4800 	struct sk_buff_head tmp;
4801 	bool end_of_skbs;
4802 
4803 	/* First, check that queue is collapsible and find
4804 	 * the point where collapsing can be useful.
4805 	 */
4806 restart:
4807 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4808 		n = tcp_skb_next(skb, list);
4809 
4810 		/* No new bits? It is possible on ofo queue. */
4811 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4812 			skb = tcp_collapse_one(sk, skb, list, root);
4813 			if (!skb)
4814 				break;
4815 			goto restart;
4816 		}
4817 
4818 		/* The first skb to collapse is:
4819 		 * - not SYN/FIN and
4820 		 * - bloated or contains data before "start" or
4821 		 *   overlaps to the next one.
4822 		 */
4823 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4824 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4825 		     before(TCP_SKB_CB(skb)->seq, start))) {
4826 			end_of_skbs = false;
4827 			break;
4828 		}
4829 
4830 		if (n && n != tail &&
4831 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4832 			end_of_skbs = false;
4833 			break;
4834 		}
4835 
4836 		/* Decided to skip this, advance start seq. */
4837 		start = TCP_SKB_CB(skb)->end_seq;
4838 	}
4839 	if (end_of_skbs ||
4840 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4841 		return;
4842 
4843 	__skb_queue_head_init(&tmp);
4844 
4845 	while (before(start, end)) {
4846 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4847 		struct sk_buff *nskb;
4848 
4849 		nskb = alloc_skb(copy, GFP_ATOMIC);
4850 		if (!nskb)
4851 			break;
4852 
4853 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4854 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4855 		if (list)
4856 			__skb_queue_before(list, skb, nskb);
4857 		else
4858 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4859 		skb_set_owner_r(nskb, sk);
4860 
4861 		/* Copy data, releasing collapsed skbs. */
4862 		while (copy > 0) {
4863 			int offset = start - TCP_SKB_CB(skb)->seq;
4864 			int size = TCP_SKB_CB(skb)->end_seq - start;
4865 
4866 			BUG_ON(offset < 0);
4867 			if (size > 0) {
4868 				size = min(copy, size);
4869 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4870 					BUG();
4871 				TCP_SKB_CB(nskb)->end_seq += size;
4872 				copy -= size;
4873 				start += size;
4874 			}
4875 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4876 				skb = tcp_collapse_one(sk, skb, list, root);
4877 				if (!skb ||
4878 				    skb == tail ||
4879 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4880 					goto end;
4881 			}
4882 		}
4883 	}
4884 end:
4885 	skb_queue_walk_safe(&tmp, skb, n)
4886 		tcp_rbtree_insert(root, skb);
4887 }
4888 
4889 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4890  * and tcp_collapse() them until all the queue is collapsed.
4891  */
4892 static void tcp_collapse_ofo_queue(struct sock *sk)
4893 {
4894 	struct tcp_sock *tp = tcp_sk(sk);
4895 	struct sk_buff *skb, *head;
4896 	u32 start, end;
4897 
4898 	skb = skb_rb_first(&tp->out_of_order_queue);
4899 new_range:
4900 	if (!skb) {
4901 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
4902 		return;
4903 	}
4904 	start = TCP_SKB_CB(skb)->seq;
4905 	end = TCP_SKB_CB(skb)->end_seq;
4906 
4907 	for (head = skb;;) {
4908 		skb = skb_rb_next(skb);
4909 
4910 		/* Range is terminated when we see a gap or when
4911 		 * we are at the queue end.
4912 		 */
4913 		if (!skb ||
4914 		    after(TCP_SKB_CB(skb)->seq, end) ||
4915 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4916 			tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4917 				     head, skb, start, end);
4918 			goto new_range;
4919 		}
4920 
4921 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4922 			start = TCP_SKB_CB(skb)->seq;
4923 		if (after(TCP_SKB_CB(skb)->end_seq, end))
4924 			end = TCP_SKB_CB(skb)->end_seq;
4925 	}
4926 }
4927 
4928 /*
4929  * Clean the out-of-order queue to make room.
4930  * We drop high sequences packets to :
4931  * 1) Let a chance for holes to be filled.
4932  * 2) not add too big latencies if thousands of packets sit there.
4933  *    (But if application shrinks SO_RCVBUF, we could still end up
4934  *     freeing whole queue here)
4935  *
4936  * Return true if queue has shrunk.
4937  */
4938 static bool tcp_prune_ofo_queue(struct sock *sk)
4939 {
4940 	struct tcp_sock *tp = tcp_sk(sk);
4941 	struct rb_node *node, *prev;
4942 
4943 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4944 		return false;
4945 
4946 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4947 	node = &tp->ooo_last_skb->rbnode;
4948 	do {
4949 		prev = rb_prev(node);
4950 		rb_erase(node, &tp->out_of_order_queue);
4951 		tcp_drop(sk, rb_to_skb(node));
4952 		sk_mem_reclaim(sk);
4953 		if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4954 		    !tcp_under_memory_pressure(sk))
4955 			break;
4956 		node = prev;
4957 	} while (node);
4958 	tp->ooo_last_skb = rb_to_skb(prev);
4959 
4960 	/* Reset SACK state.  A conforming SACK implementation will
4961 	 * do the same at a timeout based retransmit.  When a connection
4962 	 * is in a sad state like this, we care only about integrity
4963 	 * of the connection not performance.
4964 	 */
4965 	if (tp->rx_opt.sack_ok)
4966 		tcp_sack_reset(&tp->rx_opt);
4967 	return true;
4968 }
4969 
4970 /* Reduce allocated memory if we can, trying to get
4971  * the socket within its memory limits again.
4972  *
4973  * Return less than zero if we should start dropping frames
4974  * until the socket owning process reads some of the data
4975  * to stabilize the situation.
4976  */
4977 static int tcp_prune_queue(struct sock *sk)
4978 {
4979 	struct tcp_sock *tp = tcp_sk(sk);
4980 
4981 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4982 
4983 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4984 
4985 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4986 		tcp_clamp_window(sk);
4987 	else if (tcp_under_memory_pressure(sk))
4988 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4989 
4990 	tcp_collapse_ofo_queue(sk);
4991 	if (!skb_queue_empty(&sk->sk_receive_queue))
4992 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
4993 			     skb_peek(&sk->sk_receive_queue),
4994 			     NULL,
4995 			     tp->copied_seq, tp->rcv_nxt);
4996 	sk_mem_reclaim(sk);
4997 
4998 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4999 		return 0;
5000 
5001 	/* Collapsing did not help, destructive actions follow.
5002 	 * This must not ever occur. */
5003 
5004 	tcp_prune_ofo_queue(sk);
5005 
5006 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5007 		return 0;
5008 
5009 	/* If we are really being abused, tell the caller to silently
5010 	 * drop receive data on the floor.  It will get retransmitted
5011 	 * and hopefully then we'll have sufficient space.
5012 	 */
5013 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5014 
5015 	/* Massive buffer overcommit. */
5016 	tp->pred_flags = 0;
5017 	return -1;
5018 }
5019 
5020 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5021 {
5022 	const struct tcp_sock *tp = tcp_sk(sk);
5023 
5024 	/* If the user specified a specific send buffer setting, do
5025 	 * not modify it.
5026 	 */
5027 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5028 		return false;
5029 
5030 	/* If we are under global TCP memory pressure, do not expand.  */
5031 	if (tcp_under_memory_pressure(sk))
5032 		return false;
5033 
5034 	/* If we are under soft global TCP memory pressure, do not expand.  */
5035 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5036 		return false;
5037 
5038 	/* If we filled the congestion window, do not expand.  */
5039 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5040 		return false;
5041 
5042 	return true;
5043 }
5044 
5045 /* When incoming ACK allowed to free some skb from write_queue,
5046  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5047  * on the exit from tcp input handler.
5048  *
5049  * PROBLEM: sndbuf expansion does not work well with largesend.
5050  */
5051 static void tcp_new_space(struct sock *sk)
5052 {
5053 	struct tcp_sock *tp = tcp_sk(sk);
5054 
5055 	if (tcp_should_expand_sndbuf(sk)) {
5056 		tcp_sndbuf_expand(sk);
5057 		tp->snd_cwnd_stamp = tcp_jiffies32;
5058 	}
5059 
5060 	sk->sk_write_space(sk);
5061 }
5062 
5063 static void tcp_check_space(struct sock *sk)
5064 {
5065 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5066 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5067 		/* pairs with tcp_poll() */
5068 		smp_mb();
5069 		if (sk->sk_socket &&
5070 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5071 			tcp_new_space(sk);
5072 			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5073 				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5074 		}
5075 	}
5076 }
5077 
5078 static inline void tcp_data_snd_check(struct sock *sk)
5079 {
5080 	tcp_push_pending_frames(sk);
5081 	tcp_check_space(sk);
5082 }
5083 
5084 /*
5085  * Check if sending an ack is needed.
5086  */
5087 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5088 {
5089 	struct tcp_sock *tp = tcp_sk(sk);
5090 	unsigned long rtt, delay;
5091 
5092 	    /* More than one full frame received... */
5093 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5094 	     /* ... and right edge of window advances far enough.
5095 	      * (tcp_recvmsg() will send ACK otherwise).
5096 	      * If application uses SO_RCVLOWAT, we want send ack now if
5097 	      * we have not received enough bytes to satisfy the condition.
5098 	      */
5099 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5100 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5101 	    /* We ACK each frame or... */
5102 	    tcp_in_quickack_mode(sk)) {
5103 send_now:
5104 		tcp_send_ack(sk);
5105 		return;
5106 	}
5107 
5108 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5109 		tcp_send_delayed_ack(sk);
5110 		return;
5111 	}
5112 
5113 	if (!tcp_is_sack(tp) ||
5114 	    tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5115 		goto send_now;
5116 	tp->compressed_ack++;
5117 
5118 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5119 		return;
5120 
5121 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5122 
5123 	rtt = tp->rcv_rtt_est.rtt_us;
5124 	if (tp->srtt_us && tp->srtt_us < rtt)
5125 		rtt = tp->srtt_us;
5126 
5127 	delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5128 		      rtt * (NSEC_PER_USEC >> 3)/20);
5129 	sock_hold(sk);
5130 	hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay),
5131 		      HRTIMER_MODE_REL_PINNED_SOFT);
5132 }
5133 
5134 static inline void tcp_ack_snd_check(struct sock *sk)
5135 {
5136 	if (!inet_csk_ack_scheduled(sk)) {
5137 		/* We sent a data segment already. */
5138 		return;
5139 	}
5140 	__tcp_ack_snd_check(sk, 1);
5141 }
5142 
5143 /*
5144  *	This routine is only called when we have urgent data
5145  *	signaled. Its the 'slow' part of tcp_urg. It could be
5146  *	moved inline now as tcp_urg is only called from one
5147  *	place. We handle URGent data wrong. We have to - as
5148  *	BSD still doesn't use the correction from RFC961.
5149  *	For 1003.1g we should support a new option TCP_STDURG to permit
5150  *	either form (or just set the sysctl tcp_stdurg).
5151  */
5152 
5153 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5154 {
5155 	struct tcp_sock *tp = tcp_sk(sk);
5156 	u32 ptr = ntohs(th->urg_ptr);
5157 
5158 	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5159 		ptr--;
5160 	ptr += ntohl(th->seq);
5161 
5162 	/* Ignore urgent data that we've already seen and read. */
5163 	if (after(tp->copied_seq, ptr))
5164 		return;
5165 
5166 	/* Do not replay urg ptr.
5167 	 *
5168 	 * NOTE: interesting situation not covered by specs.
5169 	 * Misbehaving sender may send urg ptr, pointing to segment,
5170 	 * which we already have in ofo queue. We are not able to fetch
5171 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5172 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5173 	 * situations. But it is worth to think about possibility of some
5174 	 * DoSes using some hypothetical application level deadlock.
5175 	 */
5176 	if (before(ptr, tp->rcv_nxt))
5177 		return;
5178 
5179 	/* Do we already have a newer (or duplicate) urgent pointer? */
5180 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5181 		return;
5182 
5183 	/* Tell the world about our new urgent pointer. */
5184 	sk_send_sigurg(sk);
5185 
5186 	/* We may be adding urgent data when the last byte read was
5187 	 * urgent. To do this requires some care. We cannot just ignore
5188 	 * tp->copied_seq since we would read the last urgent byte again
5189 	 * as data, nor can we alter copied_seq until this data arrives
5190 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5191 	 *
5192 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5193 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5194 	 * and expect that both A and B disappear from stream. This is _wrong_.
5195 	 * Though this happens in BSD with high probability, this is occasional.
5196 	 * Any application relying on this is buggy. Note also, that fix "works"
5197 	 * only in this artificial test. Insert some normal data between A and B and we will
5198 	 * decline of BSD again. Verdict: it is better to remove to trap
5199 	 * buggy users.
5200 	 */
5201 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5202 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5203 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5204 		tp->copied_seq++;
5205 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5206 			__skb_unlink(skb, &sk->sk_receive_queue);
5207 			__kfree_skb(skb);
5208 		}
5209 	}
5210 
5211 	tp->urg_data = TCP_URG_NOTYET;
5212 	tp->urg_seq = ptr;
5213 
5214 	/* Disable header prediction. */
5215 	tp->pred_flags = 0;
5216 }
5217 
5218 /* This is the 'fast' part of urgent handling. */
5219 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5220 {
5221 	struct tcp_sock *tp = tcp_sk(sk);
5222 
5223 	/* Check if we get a new urgent pointer - normally not. */
5224 	if (th->urg)
5225 		tcp_check_urg(sk, th);
5226 
5227 	/* Do we wait for any urgent data? - normally not... */
5228 	if (tp->urg_data == TCP_URG_NOTYET) {
5229 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5230 			  th->syn;
5231 
5232 		/* Is the urgent pointer pointing into this packet? */
5233 		if (ptr < skb->len) {
5234 			u8 tmp;
5235 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5236 				BUG();
5237 			tp->urg_data = TCP_URG_VALID | tmp;
5238 			if (!sock_flag(sk, SOCK_DEAD))
5239 				sk->sk_data_ready(sk);
5240 		}
5241 	}
5242 }
5243 
5244 /* Accept RST for rcv_nxt - 1 after a FIN.
5245  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5246  * FIN is sent followed by a RST packet. The RST is sent with the same
5247  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5248  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5249  * ACKs on the closed socket. In addition middleboxes can drop either the
5250  * challenge ACK or a subsequent RST.
5251  */
5252 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5253 {
5254 	struct tcp_sock *tp = tcp_sk(sk);
5255 
5256 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5257 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5258 					       TCPF_CLOSING));
5259 }
5260 
5261 /* Does PAWS and seqno based validation of an incoming segment, flags will
5262  * play significant role here.
5263  */
5264 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5265 				  const struct tcphdr *th, int syn_inerr)
5266 {
5267 	struct tcp_sock *tp = tcp_sk(sk);
5268 	bool rst_seq_match = false;
5269 
5270 	/* RFC1323: H1. Apply PAWS check first. */
5271 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5272 	    tp->rx_opt.saw_tstamp &&
5273 	    tcp_paws_discard(sk, skb)) {
5274 		if (!th->rst) {
5275 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5276 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5277 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5278 						  &tp->last_oow_ack_time))
5279 				tcp_send_dupack(sk, skb);
5280 			goto discard;
5281 		}
5282 		/* Reset is accepted even if it did not pass PAWS. */
5283 	}
5284 
5285 	/* Step 1: check sequence number */
5286 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5287 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5288 		 * (RST) segments are validated by checking their SEQ-fields."
5289 		 * And page 69: "If an incoming segment is not acceptable,
5290 		 * an acknowledgment should be sent in reply (unless the RST
5291 		 * bit is set, if so drop the segment and return)".
5292 		 */
5293 		if (!th->rst) {
5294 			if (th->syn)
5295 				goto syn_challenge;
5296 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5297 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5298 						  &tp->last_oow_ack_time))
5299 				tcp_send_dupack(sk, skb);
5300 		} else if (tcp_reset_check(sk, skb)) {
5301 			tcp_reset(sk);
5302 		}
5303 		goto discard;
5304 	}
5305 
5306 	/* Step 2: check RST bit */
5307 	if (th->rst) {
5308 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5309 		 * FIN and SACK too if available):
5310 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5311 		 * the right-most SACK block,
5312 		 * then
5313 		 *     RESET the connection
5314 		 * else
5315 		 *     Send a challenge ACK
5316 		 */
5317 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5318 		    tcp_reset_check(sk, skb)) {
5319 			rst_seq_match = true;
5320 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5321 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5322 			int max_sack = sp[0].end_seq;
5323 			int this_sack;
5324 
5325 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5326 			     ++this_sack) {
5327 				max_sack = after(sp[this_sack].end_seq,
5328 						 max_sack) ?
5329 					sp[this_sack].end_seq : max_sack;
5330 			}
5331 
5332 			if (TCP_SKB_CB(skb)->seq == max_sack)
5333 				rst_seq_match = true;
5334 		}
5335 
5336 		if (rst_seq_match)
5337 			tcp_reset(sk);
5338 		else {
5339 			/* Disable TFO if RST is out-of-order
5340 			 * and no data has been received
5341 			 * for current active TFO socket
5342 			 */
5343 			if (tp->syn_fastopen && !tp->data_segs_in &&
5344 			    sk->sk_state == TCP_ESTABLISHED)
5345 				tcp_fastopen_active_disable(sk);
5346 			tcp_send_challenge_ack(sk, skb);
5347 		}
5348 		goto discard;
5349 	}
5350 
5351 	/* step 3: check security and precedence [ignored] */
5352 
5353 	/* step 4: Check for a SYN
5354 	 * RFC 5961 4.2 : Send a challenge ack
5355 	 */
5356 	if (th->syn) {
5357 syn_challenge:
5358 		if (syn_inerr)
5359 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5360 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5361 		tcp_send_challenge_ack(sk, skb);
5362 		goto discard;
5363 	}
5364 
5365 	return true;
5366 
5367 discard:
5368 	tcp_drop(sk, skb);
5369 	return false;
5370 }
5371 
5372 /*
5373  *	TCP receive function for the ESTABLISHED state.
5374  *
5375  *	It is split into a fast path and a slow path. The fast path is
5376  * 	disabled when:
5377  *	- A zero window was announced from us - zero window probing
5378  *        is only handled properly in the slow path.
5379  *	- Out of order segments arrived.
5380  *	- Urgent data is expected.
5381  *	- There is no buffer space left
5382  *	- Unexpected TCP flags/window values/header lengths are received
5383  *	  (detected by checking the TCP header against pred_flags)
5384  *	- Data is sent in both directions. Fast path only supports pure senders
5385  *	  or pure receivers (this means either the sequence number or the ack
5386  *	  value must stay constant)
5387  *	- Unexpected TCP option.
5388  *
5389  *	When these conditions are not satisfied it drops into a standard
5390  *	receive procedure patterned after RFC793 to handle all cases.
5391  *	The first three cases are guaranteed by proper pred_flags setting,
5392  *	the rest is checked inline. Fast processing is turned on in
5393  *	tcp_data_queue when everything is OK.
5394  */
5395 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5396 {
5397 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5398 	struct tcp_sock *tp = tcp_sk(sk);
5399 	unsigned int len = skb->len;
5400 
5401 	/* TCP congestion window tracking */
5402 	trace_tcp_probe(sk, skb);
5403 
5404 	tcp_mstamp_refresh(tp);
5405 	if (unlikely(!sk->sk_rx_dst))
5406 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5407 	/*
5408 	 *	Header prediction.
5409 	 *	The code loosely follows the one in the famous
5410 	 *	"30 instruction TCP receive" Van Jacobson mail.
5411 	 *
5412 	 *	Van's trick is to deposit buffers into socket queue
5413 	 *	on a device interrupt, to call tcp_recv function
5414 	 *	on the receive process context and checksum and copy
5415 	 *	the buffer to user space. smart...
5416 	 *
5417 	 *	Our current scheme is not silly either but we take the
5418 	 *	extra cost of the net_bh soft interrupt processing...
5419 	 *	We do checksum and copy also but from device to kernel.
5420 	 */
5421 
5422 	tp->rx_opt.saw_tstamp = 0;
5423 
5424 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5425 	 *	if header_prediction is to be made
5426 	 *	'S' will always be tp->tcp_header_len >> 2
5427 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5428 	 *  turn it off	(when there are holes in the receive
5429 	 *	 space for instance)
5430 	 *	PSH flag is ignored.
5431 	 */
5432 
5433 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5434 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5435 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5436 		int tcp_header_len = tp->tcp_header_len;
5437 
5438 		/* Timestamp header prediction: tcp_header_len
5439 		 * is automatically equal to th->doff*4 due to pred_flags
5440 		 * match.
5441 		 */
5442 
5443 		/* Check timestamp */
5444 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5445 			/* No? Slow path! */
5446 			if (!tcp_parse_aligned_timestamp(tp, th))
5447 				goto slow_path;
5448 
5449 			/* If PAWS failed, check it more carefully in slow path */
5450 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5451 				goto slow_path;
5452 
5453 			/* DO NOT update ts_recent here, if checksum fails
5454 			 * and timestamp was corrupted part, it will result
5455 			 * in a hung connection since we will drop all
5456 			 * future packets due to the PAWS test.
5457 			 */
5458 		}
5459 
5460 		if (len <= tcp_header_len) {
5461 			/* Bulk data transfer: sender */
5462 			if (len == tcp_header_len) {
5463 				/* Predicted packet is in window by definition.
5464 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5465 				 * Hence, check seq<=rcv_wup reduces to:
5466 				 */
5467 				if (tcp_header_len ==
5468 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5469 				    tp->rcv_nxt == tp->rcv_wup)
5470 					tcp_store_ts_recent(tp);
5471 
5472 				/* We know that such packets are checksummed
5473 				 * on entry.
5474 				 */
5475 				tcp_ack(sk, skb, 0);
5476 				__kfree_skb(skb);
5477 				tcp_data_snd_check(sk);
5478 				return;
5479 			} else { /* Header too small */
5480 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5481 				goto discard;
5482 			}
5483 		} else {
5484 			int eaten = 0;
5485 			bool fragstolen = false;
5486 
5487 			if (tcp_checksum_complete(skb))
5488 				goto csum_error;
5489 
5490 			if ((int)skb->truesize > sk->sk_forward_alloc)
5491 				goto step5;
5492 
5493 			/* Predicted packet is in window by definition.
5494 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5495 			 * Hence, check seq<=rcv_wup reduces to:
5496 			 */
5497 			if (tcp_header_len ==
5498 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5499 			    tp->rcv_nxt == tp->rcv_wup)
5500 				tcp_store_ts_recent(tp);
5501 
5502 			tcp_rcv_rtt_measure_ts(sk, skb);
5503 
5504 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5505 
5506 			/* Bulk data transfer: receiver */
5507 			eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5508 					      &fragstolen);
5509 
5510 			tcp_event_data_recv(sk, skb);
5511 
5512 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5513 				/* Well, only one small jumplet in fast path... */
5514 				tcp_ack(sk, skb, FLAG_DATA);
5515 				tcp_data_snd_check(sk);
5516 				if (!inet_csk_ack_scheduled(sk))
5517 					goto no_ack;
5518 			}
5519 
5520 			__tcp_ack_snd_check(sk, 0);
5521 no_ack:
5522 			if (eaten)
5523 				kfree_skb_partial(skb, fragstolen);
5524 			tcp_data_ready(sk);
5525 			return;
5526 		}
5527 	}
5528 
5529 slow_path:
5530 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5531 		goto csum_error;
5532 
5533 	if (!th->ack && !th->rst && !th->syn)
5534 		goto discard;
5535 
5536 	/*
5537 	 *	Standard slow path.
5538 	 */
5539 
5540 	if (!tcp_validate_incoming(sk, skb, th, 1))
5541 		return;
5542 
5543 step5:
5544 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5545 		goto discard;
5546 
5547 	tcp_rcv_rtt_measure_ts(sk, skb);
5548 
5549 	/* Process urgent data. */
5550 	tcp_urg(sk, skb, th);
5551 
5552 	/* step 7: process the segment text */
5553 	tcp_data_queue(sk, skb);
5554 
5555 	tcp_data_snd_check(sk);
5556 	tcp_ack_snd_check(sk);
5557 	return;
5558 
5559 csum_error:
5560 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5561 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5562 
5563 discard:
5564 	tcp_drop(sk, skb);
5565 }
5566 EXPORT_SYMBOL(tcp_rcv_established);
5567 
5568 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5569 {
5570 	struct tcp_sock *tp = tcp_sk(sk);
5571 	struct inet_connection_sock *icsk = inet_csk(sk);
5572 
5573 	tcp_set_state(sk, TCP_ESTABLISHED);
5574 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5575 
5576 	if (skb) {
5577 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5578 		security_inet_conn_established(sk, skb);
5579 	}
5580 
5581 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5582 
5583 	/* Prevent spurious tcp_cwnd_restart() on first data
5584 	 * packet.
5585 	 */
5586 	tp->lsndtime = tcp_jiffies32;
5587 
5588 	if (sock_flag(sk, SOCK_KEEPOPEN))
5589 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5590 
5591 	if (!tp->rx_opt.snd_wscale)
5592 		__tcp_fast_path_on(tp, tp->snd_wnd);
5593 	else
5594 		tp->pred_flags = 0;
5595 }
5596 
5597 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5598 				    struct tcp_fastopen_cookie *cookie)
5599 {
5600 	struct tcp_sock *tp = tcp_sk(sk);
5601 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5602 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5603 	bool syn_drop = false;
5604 
5605 	if (mss == tp->rx_opt.user_mss) {
5606 		struct tcp_options_received opt;
5607 
5608 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5609 		tcp_clear_options(&opt);
5610 		opt.user_mss = opt.mss_clamp = 0;
5611 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5612 		mss = opt.mss_clamp;
5613 	}
5614 
5615 	if (!tp->syn_fastopen) {
5616 		/* Ignore an unsolicited cookie */
5617 		cookie->len = -1;
5618 	} else if (tp->total_retrans) {
5619 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5620 		 * acknowledges data. Presumably the remote received only
5621 		 * the retransmitted (regular) SYNs: either the original
5622 		 * SYN-data or the corresponding SYN-ACK was dropped.
5623 		 */
5624 		syn_drop = (cookie->len < 0 && data);
5625 	} else if (cookie->len < 0 && !tp->syn_data) {
5626 		/* We requested a cookie but didn't get it. If we did not use
5627 		 * the (old) exp opt format then try so next time (try_exp=1).
5628 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5629 		 */
5630 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5631 	}
5632 
5633 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5634 
5635 	if (data) { /* Retransmit unacked data in SYN */
5636 		skb_rbtree_walk_from(data) {
5637 			if (__tcp_retransmit_skb(sk, data, 1))
5638 				break;
5639 		}
5640 		tcp_rearm_rto(sk);
5641 		NET_INC_STATS(sock_net(sk),
5642 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5643 		return true;
5644 	}
5645 	tp->syn_data_acked = tp->syn_data;
5646 	if (tp->syn_data_acked) {
5647 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5648 		/* SYN-data is counted as two separate packets in tcp_ack() */
5649 		if (tp->delivered > 1)
5650 			--tp->delivered;
5651 	}
5652 
5653 	tcp_fastopen_add_skb(sk, synack);
5654 
5655 	return false;
5656 }
5657 
5658 static void smc_check_reset_syn(struct tcp_sock *tp)
5659 {
5660 #if IS_ENABLED(CONFIG_SMC)
5661 	if (static_branch_unlikely(&tcp_have_smc)) {
5662 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
5663 			tp->syn_smc = 0;
5664 	}
5665 #endif
5666 }
5667 
5668 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5669 					 const struct tcphdr *th)
5670 {
5671 	struct inet_connection_sock *icsk = inet_csk(sk);
5672 	struct tcp_sock *tp = tcp_sk(sk);
5673 	struct tcp_fastopen_cookie foc = { .len = -1 };
5674 	int saved_clamp = tp->rx_opt.mss_clamp;
5675 	bool fastopen_fail;
5676 
5677 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5678 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5679 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5680 
5681 	if (th->ack) {
5682 		/* rfc793:
5683 		 * "If the state is SYN-SENT then
5684 		 *    first check the ACK bit
5685 		 *      If the ACK bit is set
5686 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5687 		 *        a reset (unless the RST bit is set, if so drop
5688 		 *        the segment and return)"
5689 		 */
5690 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5691 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5692 			goto reset_and_undo;
5693 
5694 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5695 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5696 			     tcp_time_stamp(tp))) {
5697 			NET_INC_STATS(sock_net(sk),
5698 					LINUX_MIB_PAWSACTIVEREJECTED);
5699 			goto reset_and_undo;
5700 		}
5701 
5702 		/* Now ACK is acceptable.
5703 		 *
5704 		 * "If the RST bit is set
5705 		 *    If the ACK was acceptable then signal the user "error:
5706 		 *    connection reset", drop the segment, enter CLOSED state,
5707 		 *    delete TCB, and return."
5708 		 */
5709 
5710 		if (th->rst) {
5711 			tcp_reset(sk);
5712 			goto discard;
5713 		}
5714 
5715 		/* rfc793:
5716 		 *   "fifth, if neither of the SYN or RST bits is set then
5717 		 *    drop the segment and return."
5718 		 *
5719 		 *    See note below!
5720 		 *                                        --ANK(990513)
5721 		 */
5722 		if (!th->syn)
5723 			goto discard_and_undo;
5724 
5725 		/* rfc793:
5726 		 *   "If the SYN bit is on ...
5727 		 *    are acceptable then ...
5728 		 *    (our SYN has been ACKed), change the connection
5729 		 *    state to ESTABLISHED..."
5730 		 */
5731 
5732 		tcp_ecn_rcv_synack(tp, th);
5733 
5734 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5735 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5736 
5737 		/* Ok.. it's good. Set up sequence numbers and
5738 		 * move to established.
5739 		 */
5740 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5741 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5742 
5743 		/* RFC1323: The window in SYN & SYN/ACK segments is
5744 		 * never scaled.
5745 		 */
5746 		tp->snd_wnd = ntohs(th->window);
5747 
5748 		if (!tp->rx_opt.wscale_ok) {
5749 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5750 			tp->window_clamp = min(tp->window_clamp, 65535U);
5751 		}
5752 
5753 		if (tp->rx_opt.saw_tstamp) {
5754 			tp->rx_opt.tstamp_ok	   = 1;
5755 			tp->tcp_header_len =
5756 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5757 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5758 			tcp_store_ts_recent(tp);
5759 		} else {
5760 			tp->tcp_header_len = sizeof(struct tcphdr);
5761 		}
5762 
5763 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5764 		tcp_initialize_rcv_mss(sk);
5765 
5766 		/* Remember, tcp_poll() does not lock socket!
5767 		 * Change state from SYN-SENT only after copied_seq
5768 		 * is initialized. */
5769 		tp->copied_seq = tp->rcv_nxt;
5770 
5771 		smc_check_reset_syn(tp);
5772 
5773 		smp_mb();
5774 
5775 		tcp_finish_connect(sk, skb);
5776 
5777 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5778 				tcp_rcv_fastopen_synack(sk, skb, &foc);
5779 
5780 		if (!sock_flag(sk, SOCK_DEAD)) {
5781 			sk->sk_state_change(sk);
5782 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5783 		}
5784 		if (fastopen_fail)
5785 			return -1;
5786 		if (sk->sk_write_pending ||
5787 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5788 		    icsk->icsk_ack.pingpong) {
5789 			/* Save one ACK. Data will be ready after
5790 			 * several ticks, if write_pending is set.
5791 			 *
5792 			 * It may be deleted, but with this feature tcpdumps
5793 			 * look so _wonderfully_ clever, that I was not able
5794 			 * to stand against the temptation 8)     --ANK
5795 			 */
5796 			inet_csk_schedule_ack(sk);
5797 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5798 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5799 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5800 
5801 discard:
5802 			tcp_drop(sk, skb);
5803 			return 0;
5804 		} else {
5805 			tcp_send_ack(sk);
5806 		}
5807 		return -1;
5808 	}
5809 
5810 	/* No ACK in the segment */
5811 
5812 	if (th->rst) {
5813 		/* rfc793:
5814 		 * "If the RST bit is set
5815 		 *
5816 		 *      Otherwise (no ACK) drop the segment and return."
5817 		 */
5818 
5819 		goto discard_and_undo;
5820 	}
5821 
5822 	/* PAWS check. */
5823 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5824 	    tcp_paws_reject(&tp->rx_opt, 0))
5825 		goto discard_and_undo;
5826 
5827 	if (th->syn) {
5828 		/* We see SYN without ACK. It is attempt of
5829 		 * simultaneous connect with crossed SYNs.
5830 		 * Particularly, it can be connect to self.
5831 		 */
5832 		tcp_set_state(sk, TCP_SYN_RECV);
5833 
5834 		if (tp->rx_opt.saw_tstamp) {
5835 			tp->rx_opt.tstamp_ok = 1;
5836 			tcp_store_ts_recent(tp);
5837 			tp->tcp_header_len =
5838 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5839 		} else {
5840 			tp->tcp_header_len = sizeof(struct tcphdr);
5841 		}
5842 
5843 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5844 		tp->copied_seq = tp->rcv_nxt;
5845 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5846 
5847 		/* RFC1323: The window in SYN & SYN/ACK segments is
5848 		 * never scaled.
5849 		 */
5850 		tp->snd_wnd    = ntohs(th->window);
5851 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5852 		tp->max_window = tp->snd_wnd;
5853 
5854 		tcp_ecn_rcv_syn(tp, th);
5855 
5856 		tcp_mtup_init(sk);
5857 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5858 		tcp_initialize_rcv_mss(sk);
5859 
5860 		tcp_send_synack(sk);
5861 #if 0
5862 		/* Note, we could accept data and URG from this segment.
5863 		 * There are no obstacles to make this (except that we must
5864 		 * either change tcp_recvmsg() to prevent it from returning data
5865 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5866 		 *
5867 		 * However, if we ignore data in ACKless segments sometimes,
5868 		 * we have no reasons to accept it sometimes.
5869 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5870 		 * is not flawless. So, discard packet for sanity.
5871 		 * Uncomment this return to process the data.
5872 		 */
5873 		return -1;
5874 #else
5875 		goto discard;
5876 #endif
5877 	}
5878 	/* "fifth, if neither of the SYN or RST bits is set then
5879 	 * drop the segment and return."
5880 	 */
5881 
5882 discard_and_undo:
5883 	tcp_clear_options(&tp->rx_opt);
5884 	tp->rx_opt.mss_clamp = saved_clamp;
5885 	goto discard;
5886 
5887 reset_and_undo:
5888 	tcp_clear_options(&tp->rx_opt);
5889 	tp->rx_opt.mss_clamp = saved_clamp;
5890 	return 1;
5891 }
5892 
5893 /*
5894  *	This function implements the receiving procedure of RFC 793 for
5895  *	all states except ESTABLISHED and TIME_WAIT.
5896  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5897  *	address independent.
5898  */
5899 
5900 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5901 {
5902 	struct tcp_sock *tp = tcp_sk(sk);
5903 	struct inet_connection_sock *icsk = inet_csk(sk);
5904 	const struct tcphdr *th = tcp_hdr(skb);
5905 	struct request_sock *req;
5906 	int queued = 0;
5907 	bool acceptable;
5908 
5909 	switch (sk->sk_state) {
5910 	case TCP_CLOSE:
5911 		goto discard;
5912 
5913 	case TCP_LISTEN:
5914 		if (th->ack)
5915 			return 1;
5916 
5917 		if (th->rst)
5918 			goto discard;
5919 
5920 		if (th->syn) {
5921 			if (th->fin)
5922 				goto discard;
5923 			/* It is possible that we process SYN packets from backlog,
5924 			 * so we need to make sure to disable BH right there.
5925 			 */
5926 			local_bh_disable();
5927 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
5928 			local_bh_enable();
5929 
5930 			if (!acceptable)
5931 				return 1;
5932 			consume_skb(skb);
5933 			return 0;
5934 		}
5935 		goto discard;
5936 
5937 	case TCP_SYN_SENT:
5938 		tp->rx_opt.saw_tstamp = 0;
5939 		tcp_mstamp_refresh(tp);
5940 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
5941 		if (queued >= 0)
5942 			return queued;
5943 
5944 		/* Do step6 onward by hand. */
5945 		tcp_urg(sk, skb, th);
5946 		__kfree_skb(skb);
5947 		tcp_data_snd_check(sk);
5948 		return 0;
5949 	}
5950 
5951 	tcp_mstamp_refresh(tp);
5952 	tp->rx_opt.saw_tstamp = 0;
5953 	req = tp->fastopen_rsk;
5954 	if (req) {
5955 		bool req_stolen;
5956 
5957 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5958 		    sk->sk_state != TCP_FIN_WAIT1);
5959 
5960 		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
5961 			goto discard;
5962 	}
5963 
5964 	if (!th->ack && !th->rst && !th->syn)
5965 		goto discard;
5966 
5967 	if (!tcp_validate_incoming(sk, skb, th, 0))
5968 		return 0;
5969 
5970 	/* step 5: check the ACK field */
5971 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5972 				      FLAG_UPDATE_TS_RECENT |
5973 				      FLAG_NO_CHALLENGE_ACK) > 0;
5974 
5975 	if (!acceptable) {
5976 		if (sk->sk_state == TCP_SYN_RECV)
5977 			return 1;	/* send one RST */
5978 		tcp_send_challenge_ack(sk, skb);
5979 		goto discard;
5980 	}
5981 	switch (sk->sk_state) {
5982 	case TCP_SYN_RECV:
5983 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
5984 		if (!tp->srtt_us)
5985 			tcp_synack_rtt_meas(sk, req);
5986 
5987 		/* Once we leave TCP_SYN_RECV, we no longer need req
5988 		 * so release it.
5989 		 */
5990 		if (req) {
5991 			inet_csk(sk)->icsk_retransmits = 0;
5992 			reqsk_fastopen_remove(sk, req, false);
5993 			/* Re-arm the timer because data may have been sent out.
5994 			 * This is similar to the regular data transmission case
5995 			 * when new data has just been ack'ed.
5996 			 *
5997 			 * (TFO) - we could try to be more aggressive and
5998 			 * retransmitting any data sooner based on when they
5999 			 * are sent out.
6000 			 */
6001 			tcp_rearm_rto(sk);
6002 		} else {
6003 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
6004 			tp->copied_seq = tp->rcv_nxt;
6005 		}
6006 		smp_mb();
6007 		tcp_set_state(sk, TCP_ESTABLISHED);
6008 		sk->sk_state_change(sk);
6009 
6010 		/* Note, that this wakeup is only for marginal crossed SYN case.
6011 		 * Passively open sockets are not waked up, because
6012 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6013 		 */
6014 		if (sk->sk_socket)
6015 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6016 
6017 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6018 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6019 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6020 
6021 		if (tp->rx_opt.tstamp_ok)
6022 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6023 
6024 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6025 			tcp_update_pacing_rate(sk);
6026 
6027 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6028 		tp->lsndtime = tcp_jiffies32;
6029 
6030 		tcp_initialize_rcv_mss(sk);
6031 		tcp_fast_path_on(tp);
6032 		break;
6033 
6034 	case TCP_FIN_WAIT1: {
6035 		int tmo;
6036 
6037 		/* If we enter the TCP_FIN_WAIT1 state and we are a
6038 		 * Fast Open socket and this is the first acceptable
6039 		 * ACK we have received, this would have acknowledged
6040 		 * our SYNACK so stop the SYNACK timer.
6041 		 */
6042 		if (req) {
6043 			/* We no longer need the request sock. */
6044 			reqsk_fastopen_remove(sk, req, false);
6045 			tcp_rearm_rto(sk);
6046 		}
6047 		if (tp->snd_una != tp->write_seq)
6048 			break;
6049 
6050 		tcp_set_state(sk, TCP_FIN_WAIT2);
6051 		sk->sk_shutdown |= SEND_SHUTDOWN;
6052 
6053 		sk_dst_confirm(sk);
6054 
6055 		if (!sock_flag(sk, SOCK_DEAD)) {
6056 			/* Wake up lingering close() */
6057 			sk->sk_state_change(sk);
6058 			break;
6059 		}
6060 
6061 		if (tp->linger2 < 0) {
6062 			tcp_done(sk);
6063 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6064 			return 1;
6065 		}
6066 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6067 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6068 			/* Receive out of order FIN after close() */
6069 			if (tp->syn_fastopen && th->fin)
6070 				tcp_fastopen_active_disable(sk);
6071 			tcp_done(sk);
6072 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6073 			return 1;
6074 		}
6075 
6076 		tmo = tcp_fin_time(sk);
6077 		if (tmo > TCP_TIMEWAIT_LEN) {
6078 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6079 		} else if (th->fin || sock_owned_by_user(sk)) {
6080 			/* Bad case. We could lose such FIN otherwise.
6081 			 * It is not a big problem, but it looks confusing
6082 			 * and not so rare event. We still can lose it now,
6083 			 * if it spins in bh_lock_sock(), but it is really
6084 			 * marginal case.
6085 			 */
6086 			inet_csk_reset_keepalive_timer(sk, tmo);
6087 		} else {
6088 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6089 			goto discard;
6090 		}
6091 		break;
6092 	}
6093 
6094 	case TCP_CLOSING:
6095 		if (tp->snd_una == tp->write_seq) {
6096 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6097 			goto discard;
6098 		}
6099 		break;
6100 
6101 	case TCP_LAST_ACK:
6102 		if (tp->snd_una == tp->write_seq) {
6103 			tcp_update_metrics(sk);
6104 			tcp_done(sk);
6105 			goto discard;
6106 		}
6107 		break;
6108 	}
6109 
6110 	/* step 6: check the URG bit */
6111 	tcp_urg(sk, skb, th);
6112 
6113 	/* step 7: process the segment text */
6114 	switch (sk->sk_state) {
6115 	case TCP_CLOSE_WAIT:
6116 	case TCP_CLOSING:
6117 	case TCP_LAST_ACK:
6118 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6119 			break;
6120 		/* fall through */
6121 	case TCP_FIN_WAIT1:
6122 	case TCP_FIN_WAIT2:
6123 		/* RFC 793 says to queue data in these states,
6124 		 * RFC 1122 says we MUST send a reset.
6125 		 * BSD 4.4 also does reset.
6126 		 */
6127 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6128 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6129 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6130 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6131 				tcp_reset(sk);
6132 				return 1;
6133 			}
6134 		}
6135 		/* Fall through */
6136 	case TCP_ESTABLISHED:
6137 		tcp_data_queue(sk, skb);
6138 		queued = 1;
6139 		break;
6140 	}
6141 
6142 	/* tcp_data could move socket to TIME-WAIT */
6143 	if (sk->sk_state != TCP_CLOSE) {
6144 		tcp_data_snd_check(sk);
6145 		tcp_ack_snd_check(sk);
6146 	}
6147 
6148 	if (!queued) {
6149 discard:
6150 		tcp_drop(sk, skb);
6151 	}
6152 	return 0;
6153 }
6154 EXPORT_SYMBOL(tcp_rcv_state_process);
6155 
6156 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6157 {
6158 	struct inet_request_sock *ireq = inet_rsk(req);
6159 
6160 	if (family == AF_INET)
6161 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6162 				    &ireq->ir_rmt_addr, port);
6163 #if IS_ENABLED(CONFIG_IPV6)
6164 	else if (family == AF_INET6)
6165 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6166 				    &ireq->ir_v6_rmt_addr, port);
6167 #endif
6168 }
6169 
6170 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6171  *
6172  * If we receive a SYN packet with these bits set, it means a
6173  * network is playing bad games with TOS bits. In order to
6174  * avoid possible false congestion notifications, we disable
6175  * TCP ECN negotiation.
6176  *
6177  * Exception: tcp_ca wants ECN. This is required for DCTCP
6178  * congestion control: Linux DCTCP asserts ECT on all packets,
6179  * including SYN, which is most optimal solution; however,
6180  * others, such as FreeBSD do not.
6181  */
6182 static void tcp_ecn_create_request(struct request_sock *req,
6183 				   const struct sk_buff *skb,
6184 				   const struct sock *listen_sk,
6185 				   const struct dst_entry *dst)
6186 {
6187 	const struct tcphdr *th = tcp_hdr(skb);
6188 	const struct net *net = sock_net(listen_sk);
6189 	bool th_ecn = th->ece && th->cwr;
6190 	bool ect, ecn_ok;
6191 	u32 ecn_ok_dst;
6192 
6193 	if (!th_ecn)
6194 		return;
6195 
6196 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6197 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6198 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6199 
6200 	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6201 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6202 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6203 		inet_rsk(req)->ecn_ok = 1;
6204 }
6205 
6206 static void tcp_openreq_init(struct request_sock *req,
6207 			     const struct tcp_options_received *rx_opt,
6208 			     struct sk_buff *skb, const struct sock *sk)
6209 {
6210 	struct inet_request_sock *ireq = inet_rsk(req);
6211 
6212 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6213 	req->cookie_ts = 0;
6214 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6215 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6216 	tcp_rsk(req)->snt_synack = tcp_clock_us();
6217 	tcp_rsk(req)->last_oow_ack_time = 0;
6218 	req->mss = rx_opt->mss_clamp;
6219 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6220 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6221 	ireq->sack_ok = rx_opt->sack_ok;
6222 	ireq->snd_wscale = rx_opt->snd_wscale;
6223 	ireq->wscale_ok = rx_opt->wscale_ok;
6224 	ireq->acked = 0;
6225 	ireq->ecn_ok = 0;
6226 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6227 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6228 	ireq->ir_mark = inet_request_mark(sk, skb);
6229 #if IS_ENABLED(CONFIG_SMC)
6230 	ireq->smc_ok = rx_opt->smc_ok;
6231 #endif
6232 }
6233 
6234 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6235 				      struct sock *sk_listener,
6236 				      bool attach_listener)
6237 {
6238 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6239 					       attach_listener);
6240 
6241 	if (req) {
6242 		struct inet_request_sock *ireq = inet_rsk(req);
6243 
6244 		ireq->ireq_opt = NULL;
6245 #if IS_ENABLED(CONFIG_IPV6)
6246 		ireq->pktopts = NULL;
6247 #endif
6248 		atomic64_set(&ireq->ir_cookie, 0);
6249 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6250 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6251 		ireq->ireq_family = sk_listener->sk_family;
6252 	}
6253 
6254 	return req;
6255 }
6256 EXPORT_SYMBOL(inet_reqsk_alloc);
6257 
6258 /*
6259  * Return true if a syncookie should be sent
6260  */
6261 static bool tcp_syn_flood_action(const struct sock *sk,
6262 				 const struct sk_buff *skb,
6263 				 const char *proto)
6264 {
6265 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6266 	const char *msg = "Dropping request";
6267 	bool want_cookie = false;
6268 	struct net *net = sock_net(sk);
6269 
6270 #ifdef CONFIG_SYN_COOKIES
6271 	if (net->ipv4.sysctl_tcp_syncookies) {
6272 		msg = "Sending cookies";
6273 		want_cookie = true;
6274 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6275 	} else
6276 #endif
6277 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6278 
6279 	if (!queue->synflood_warned &&
6280 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6281 	    xchg(&queue->synflood_warned, 1) == 0)
6282 		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6283 			proto, ntohs(tcp_hdr(skb)->dest), msg);
6284 
6285 	return want_cookie;
6286 }
6287 
6288 static void tcp_reqsk_record_syn(const struct sock *sk,
6289 				 struct request_sock *req,
6290 				 const struct sk_buff *skb)
6291 {
6292 	if (tcp_sk(sk)->save_syn) {
6293 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6294 		u32 *copy;
6295 
6296 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6297 		if (copy) {
6298 			copy[0] = len;
6299 			memcpy(&copy[1], skb_network_header(skb), len);
6300 			req->saved_syn = copy;
6301 		}
6302 	}
6303 }
6304 
6305 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6306 		     const struct tcp_request_sock_ops *af_ops,
6307 		     struct sock *sk, struct sk_buff *skb)
6308 {
6309 	struct tcp_fastopen_cookie foc = { .len = -1 };
6310 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6311 	struct tcp_options_received tmp_opt;
6312 	struct tcp_sock *tp = tcp_sk(sk);
6313 	struct net *net = sock_net(sk);
6314 	struct sock *fastopen_sk = NULL;
6315 	struct request_sock *req;
6316 	bool want_cookie = false;
6317 	struct dst_entry *dst;
6318 	struct flowi fl;
6319 
6320 	/* TW buckets are converted to open requests without
6321 	 * limitations, they conserve resources and peer is
6322 	 * evidently real one.
6323 	 */
6324 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6325 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6326 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6327 		if (!want_cookie)
6328 			goto drop;
6329 	}
6330 
6331 	if (sk_acceptq_is_full(sk)) {
6332 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6333 		goto drop;
6334 	}
6335 
6336 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6337 	if (!req)
6338 		goto drop;
6339 
6340 	tcp_rsk(req)->af_specific = af_ops;
6341 	tcp_rsk(req)->ts_off = 0;
6342 
6343 	tcp_clear_options(&tmp_opt);
6344 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6345 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6346 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6347 			  want_cookie ? NULL : &foc);
6348 
6349 	if (want_cookie && !tmp_opt.saw_tstamp)
6350 		tcp_clear_options(&tmp_opt);
6351 
6352 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6353 		tmp_opt.smc_ok = 0;
6354 
6355 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6356 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6357 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6358 
6359 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6360 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6361 
6362 	af_ops->init_req(req, sk, skb);
6363 
6364 	if (security_inet_conn_request(sk, skb, req))
6365 		goto drop_and_free;
6366 
6367 	if (tmp_opt.tstamp_ok)
6368 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6369 
6370 	dst = af_ops->route_req(sk, &fl, req);
6371 	if (!dst)
6372 		goto drop_and_free;
6373 
6374 	if (!want_cookie && !isn) {
6375 		/* Kill the following clause, if you dislike this way. */
6376 		if (!net->ipv4.sysctl_tcp_syncookies &&
6377 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6378 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6379 		    !tcp_peer_is_proven(req, dst)) {
6380 			/* Without syncookies last quarter of
6381 			 * backlog is filled with destinations,
6382 			 * proven to be alive.
6383 			 * It means that we continue to communicate
6384 			 * to destinations, already remembered
6385 			 * to the moment of synflood.
6386 			 */
6387 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6388 				    rsk_ops->family);
6389 			goto drop_and_release;
6390 		}
6391 
6392 		isn = af_ops->init_seq(skb);
6393 	}
6394 
6395 	tcp_ecn_create_request(req, skb, sk, dst);
6396 
6397 	if (want_cookie) {
6398 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6399 		req->cookie_ts = tmp_opt.tstamp_ok;
6400 		if (!tmp_opt.tstamp_ok)
6401 			inet_rsk(req)->ecn_ok = 0;
6402 	}
6403 
6404 	tcp_rsk(req)->snt_isn = isn;
6405 	tcp_rsk(req)->txhash = net_tx_rndhash();
6406 	tcp_openreq_init_rwin(req, sk, dst);
6407 	if (!want_cookie) {
6408 		tcp_reqsk_record_syn(sk, req, skb);
6409 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6410 	}
6411 	if (fastopen_sk) {
6412 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6413 				    &foc, TCP_SYNACK_FASTOPEN);
6414 		/* Add the child socket directly into the accept queue */
6415 		inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6416 		sk->sk_data_ready(sk);
6417 		bh_unlock_sock(fastopen_sk);
6418 		sock_put(fastopen_sk);
6419 	} else {
6420 		tcp_rsk(req)->tfo_listener = false;
6421 		if (!want_cookie)
6422 			inet_csk_reqsk_queue_hash_add(sk, req,
6423 				tcp_timeout_init((struct sock *)req));
6424 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6425 				    !want_cookie ? TCP_SYNACK_NORMAL :
6426 						   TCP_SYNACK_COOKIE);
6427 		if (want_cookie) {
6428 			reqsk_free(req);
6429 			return 0;
6430 		}
6431 	}
6432 	reqsk_put(req);
6433 	return 0;
6434 
6435 drop_and_release:
6436 	dst_release(dst);
6437 drop_and_free:
6438 	reqsk_free(req);
6439 drop:
6440 	tcp_listendrop(sk);
6441 	return 0;
6442 }
6443 EXPORT_SYMBOL(tcp_conn_request);
6444