1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #include <linux/mm.h> 65 #include <linux/module.h> 66 #include <linux/sysctl.h> 67 #include <linux/kernel.h> 68 #include <net/dst.h> 69 #include <net/tcp.h> 70 #include <net/inet_common.h> 71 #include <linux/ipsec.h> 72 #include <asm/unaligned.h> 73 #include <net/netdma.h> 74 75 int sysctl_tcp_timestamps __read_mostly = 1; 76 int sysctl_tcp_window_scaling __read_mostly = 1; 77 int sysctl_tcp_sack __read_mostly = 1; 78 int sysctl_tcp_fack __read_mostly = 1; 79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; 80 int sysctl_tcp_ecn __read_mostly; 81 int sysctl_tcp_dsack __read_mostly = 1; 82 int sysctl_tcp_app_win __read_mostly = 31; 83 int sysctl_tcp_adv_win_scale __read_mostly = 2; 84 85 int sysctl_tcp_stdurg __read_mostly; 86 int sysctl_tcp_rfc1337 __read_mostly; 87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 88 int sysctl_tcp_frto __read_mostly = 2; 89 int sysctl_tcp_frto_response __read_mostly; 90 int sysctl_tcp_nometrics_save __read_mostly; 91 92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 93 int sysctl_tcp_abc __read_mostly; 94 95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 101 #define FLAG_ECE 0x40 /* ECE in this ACK */ 102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */ 103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 104 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */ 105 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 106 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 107 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */ 108 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 109 110 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 111 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 112 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 113 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 114 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED) 115 116 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 117 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 118 119 /* Adapt the MSS value used to make delayed ack decision to the 120 * real world. 121 */ 122 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 123 { 124 struct inet_connection_sock *icsk = inet_csk(sk); 125 const unsigned int lss = icsk->icsk_ack.last_seg_size; 126 unsigned int len; 127 128 icsk->icsk_ack.last_seg_size = 0; 129 130 /* skb->len may jitter because of SACKs, even if peer 131 * sends good full-sized frames. 132 */ 133 len = skb_shinfo(skb)->gso_size ? : skb->len; 134 if (len >= icsk->icsk_ack.rcv_mss) { 135 icsk->icsk_ack.rcv_mss = len; 136 } else { 137 /* Otherwise, we make more careful check taking into account, 138 * that SACKs block is variable. 139 * 140 * "len" is invariant segment length, including TCP header. 141 */ 142 len += skb->data - skb_transport_header(skb); 143 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) || 144 /* If PSH is not set, packet should be 145 * full sized, provided peer TCP is not badly broken. 146 * This observation (if it is correct 8)) allows 147 * to handle super-low mtu links fairly. 148 */ 149 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 150 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 151 /* Subtract also invariant (if peer is RFC compliant), 152 * tcp header plus fixed timestamp option length. 153 * Resulting "len" is MSS free of SACK jitter. 154 */ 155 len -= tcp_sk(sk)->tcp_header_len; 156 icsk->icsk_ack.last_seg_size = len; 157 if (len == lss) { 158 icsk->icsk_ack.rcv_mss = len; 159 return; 160 } 161 } 162 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 163 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 164 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 165 } 166 } 167 168 static void tcp_incr_quickack(struct sock *sk) 169 { 170 struct inet_connection_sock *icsk = inet_csk(sk); 171 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 172 173 if (quickacks == 0) 174 quickacks = 2; 175 if (quickacks > icsk->icsk_ack.quick) 176 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 177 } 178 179 void tcp_enter_quickack_mode(struct sock *sk) 180 { 181 struct inet_connection_sock *icsk = inet_csk(sk); 182 tcp_incr_quickack(sk); 183 icsk->icsk_ack.pingpong = 0; 184 icsk->icsk_ack.ato = TCP_ATO_MIN; 185 } 186 187 /* Send ACKs quickly, if "quick" count is not exhausted 188 * and the session is not interactive. 189 */ 190 191 static inline int tcp_in_quickack_mode(const struct sock *sk) 192 { 193 const struct inet_connection_sock *icsk = inet_csk(sk); 194 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 195 } 196 197 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp) 198 { 199 if (tp->ecn_flags & TCP_ECN_OK) 200 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 201 } 202 203 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb) 204 { 205 if (tcp_hdr(skb)->cwr) 206 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 207 } 208 209 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp) 210 { 211 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 212 } 213 214 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb) 215 { 216 if (tp->ecn_flags & TCP_ECN_OK) { 217 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags)) 218 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 219 /* Funny extension: if ECT is not set on a segment, 220 * it is surely retransmit. It is not in ECN RFC, 221 * but Linux follows this rule. */ 222 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags))) 223 tcp_enter_quickack_mode((struct sock *)tp); 224 } 225 } 226 227 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th) 228 { 229 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 230 tp->ecn_flags &= ~TCP_ECN_OK; 231 } 232 233 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th) 234 { 235 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 236 tp->ecn_flags &= ~TCP_ECN_OK; 237 } 238 239 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th) 240 { 241 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 242 return 1; 243 return 0; 244 } 245 246 /* Buffer size and advertised window tuning. 247 * 248 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 249 */ 250 251 static void tcp_fixup_sndbuf(struct sock *sk) 252 { 253 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 + 254 sizeof(struct sk_buff); 255 256 if (sk->sk_sndbuf < 3 * sndmem) 257 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]); 258 } 259 260 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 261 * 262 * All tcp_full_space() is split to two parts: "network" buffer, allocated 263 * forward and advertised in receiver window (tp->rcv_wnd) and 264 * "application buffer", required to isolate scheduling/application 265 * latencies from network. 266 * window_clamp is maximal advertised window. It can be less than 267 * tcp_full_space(), in this case tcp_full_space() - window_clamp 268 * is reserved for "application" buffer. The less window_clamp is 269 * the smoother our behaviour from viewpoint of network, but the lower 270 * throughput and the higher sensitivity of the connection to losses. 8) 271 * 272 * rcv_ssthresh is more strict window_clamp used at "slow start" 273 * phase to predict further behaviour of this connection. 274 * It is used for two goals: 275 * - to enforce header prediction at sender, even when application 276 * requires some significant "application buffer". It is check #1. 277 * - to prevent pruning of receive queue because of misprediction 278 * of receiver window. Check #2. 279 * 280 * The scheme does not work when sender sends good segments opening 281 * window and then starts to feed us spaghetti. But it should work 282 * in common situations. Otherwise, we have to rely on queue collapsing. 283 */ 284 285 /* Slow part of check#2. */ 286 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 287 { 288 struct tcp_sock *tp = tcp_sk(sk); 289 /* Optimize this! */ 290 int truesize = tcp_win_from_space(skb->truesize) >> 1; 291 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 292 293 while (tp->rcv_ssthresh <= window) { 294 if (truesize <= skb->len) 295 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 296 297 truesize >>= 1; 298 window >>= 1; 299 } 300 return 0; 301 } 302 303 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb) 304 { 305 struct tcp_sock *tp = tcp_sk(sk); 306 307 /* Check #1 */ 308 if (tp->rcv_ssthresh < tp->window_clamp && 309 (int)tp->rcv_ssthresh < tcp_space(sk) && 310 !tcp_memory_pressure) { 311 int incr; 312 313 /* Check #2. Increase window, if skb with such overhead 314 * will fit to rcvbuf in future. 315 */ 316 if (tcp_win_from_space(skb->truesize) <= skb->len) 317 incr = 2 * tp->advmss; 318 else 319 incr = __tcp_grow_window(sk, skb); 320 321 if (incr) { 322 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 323 tp->window_clamp); 324 inet_csk(sk)->icsk_ack.quick |= 1; 325 } 326 } 327 } 328 329 /* 3. Tuning rcvbuf, when connection enters established state. */ 330 331 static void tcp_fixup_rcvbuf(struct sock *sk) 332 { 333 struct tcp_sock *tp = tcp_sk(sk); 334 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff); 335 336 /* Try to select rcvbuf so that 4 mss-sized segments 337 * will fit to window and corresponding skbs will fit to our rcvbuf. 338 * (was 3; 4 is minimum to allow fast retransmit to work.) 339 */ 340 while (tcp_win_from_space(rcvmem) < tp->advmss) 341 rcvmem += 128; 342 if (sk->sk_rcvbuf < 4 * rcvmem) 343 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]); 344 } 345 346 /* 4. Try to fixup all. It is made immediately after connection enters 347 * established state. 348 */ 349 static void tcp_init_buffer_space(struct sock *sk) 350 { 351 struct tcp_sock *tp = tcp_sk(sk); 352 int maxwin; 353 354 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 355 tcp_fixup_rcvbuf(sk); 356 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 357 tcp_fixup_sndbuf(sk); 358 359 tp->rcvq_space.space = tp->rcv_wnd; 360 361 maxwin = tcp_full_space(sk); 362 363 if (tp->window_clamp >= maxwin) { 364 tp->window_clamp = maxwin; 365 366 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 367 tp->window_clamp = max(maxwin - 368 (maxwin >> sysctl_tcp_app_win), 369 4 * tp->advmss); 370 } 371 372 /* Force reservation of one segment. */ 373 if (sysctl_tcp_app_win && 374 tp->window_clamp > 2 * tp->advmss && 375 tp->window_clamp + tp->advmss > maxwin) 376 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 377 378 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 379 tp->snd_cwnd_stamp = tcp_time_stamp; 380 } 381 382 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 383 static void tcp_clamp_window(struct sock *sk) 384 { 385 struct tcp_sock *tp = tcp_sk(sk); 386 struct inet_connection_sock *icsk = inet_csk(sk); 387 388 icsk->icsk_ack.quick = 0; 389 390 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 391 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 392 !tcp_memory_pressure && 393 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) { 394 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 395 sysctl_tcp_rmem[2]); 396 } 397 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 398 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 399 } 400 401 /* Initialize RCV_MSS value. 402 * RCV_MSS is an our guess about MSS used by the peer. 403 * We haven't any direct information about the MSS. 404 * It's better to underestimate the RCV_MSS rather than overestimate. 405 * Overestimations make us ACKing less frequently than needed. 406 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 407 */ 408 void tcp_initialize_rcv_mss(struct sock *sk) 409 { 410 struct tcp_sock *tp = tcp_sk(sk); 411 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 412 413 hint = min(hint, tp->rcv_wnd / 2); 414 hint = min(hint, TCP_MIN_RCVMSS); 415 hint = max(hint, TCP_MIN_MSS); 416 417 inet_csk(sk)->icsk_ack.rcv_mss = hint; 418 } 419 420 /* Receiver "autotuning" code. 421 * 422 * The algorithm for RTT estimation w/o timestamps is based on 423 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 424 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps> 425 * 426 * More detail on this code can be found at 427 * <http://www.psc.edu/~jheffner/senior_thesis.ps>, 428 * though this reference is out of date. A new paper 429 * is pending. 430 */ 431 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 432 { 433 u32 new_sample = tp->rcv_rtt_est.rtt; 434 long m = sample; 435 436 if (m == 0) 437 m = 1; 438 439 if (new_sample != 0) { 440 /* If we sample in larger samples in the non-timestamp 441 * case, we could grossly overestimate the RTT especially 442 * with chatty applications or bulk transfer apps which 443 * are stalled on filesystem I/O. 444 * 445 * Also, since we are only going for a minimum in the 446 * non-timestamp case, we do not smooth things out 447 * else with timestamps disabled convergence takes too 448 * long. 449 */ 450 if (!win_dep) { 451 m -= (new_sample >> 3); 452 new_sample += m; 453 } else if (m < new_sample) 454 new_sample = m << 3; 455 } else { 456 /* No previous measure. */ 457 new_sample = m << 3; 458 } 459 460 if (tp->rcv_rtt_est.rtt != new_sample) 461 tp->rcv_rtt_est.rtt = new_sample; 462 } 463 464 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 465 { 466 if (tp->rcv_rtt_est.time == 0) 467 goto new_measure; 468 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 469 return; 470 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1); 471 472 new_measure: 473 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 474 tp->rcv_rtt_est.time = tcp_time_stamp; 475 } 476 477 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 478 const struct sk_buff *skb) 479 { 480 struct tcp_sock *tp = tcp_sk(sk); 481 if (tp->rx_opt.rcv_tsecr && 482 (TCP_SKB_CB(skb)->end_seq - 483 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 484 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 485 } 486 487 /* 488 * This function should be called every time data is copied to user space. 489 * It calculates the appropriate TCP receive buffer space. 490 */ 491 void tcp_rcv_space_adjust(struct sock *sk) 492 { 493 struct tcp_sock *tp = tcp_sk(sk); 494 int time; 495 int space; 496 497 if (tp->rcvq_space.time == 0) 498 goto new_measure; 499 500 time = tcp_time_stamp - tp->rcvq_space.time; 501 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 502 return; 503 504 space = 2 * (tp->copied_seq - tp->rcvq_space.seq); 505 506 space = max(tp->rcvq_space.space, space); 507 508 if (tp->rcvq_space.space != space) { 509 int rcvmem; 510 511 tp->rcvq_space.space = space; 512 513 if (sysctl_tcp_moderate_rcvbuf && 514 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 515 int new_clamp = space; 516 517 /* Receive space grows, normalize in order to 518 * take into account packet headers and sk_buff 519 * structure overhead. 520 */ 521 space /= tp->advmss; 522 if (!space) 523 space = 1; 524 rcvmem = (tp->advmss + MAX_TCP_HEADER + 525 16 + sizeof(struct sk_buff)); 526 while (tcp_win_from_space(rcvmem) < tp->advmss) 527 rcvmem += 128; 528 space *= rcvmem; 529 space = min(space, sysctl_tcp_rmem[2]); 530 if (space > sk->sk_rcvbuf) { 531 sk->sk_rcvbuf = space; 532 533 /* Make the window clamp follow along. */ 534 tp->window_clamp = new_clamp; 535 } 536 } 537 } 538 539 new_measure: 540 tp->rcvq_space.seq = tp->copied_seq; 541 tp->rcvq_space.time = tcp_time_stamp; 542 } 543 544 /* There is something which you must keep in mind when you analyze the 545 * behavior of the tp->ato delayed ack timeout interval. When a 546 * connection starts up, we want to ack as quickly as possible. The 547 * problem is that "good" TCP's do slow start at the beginning of data 548 * transmission. The means that until we send the first few ACK's the 549 * sender will sit on his end and only queue most of his data, because 550 * he can only send snd_cwnd unacked packets at any given time. For 551 * each ACK we send, he increments snd_cwnd and transmits more of his 552 * queue. -DaveM 553 */ 554 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 555 { 556 struct tcp_sock *tp = tcp_sk(sk); 557 struct inet_connection_sock *icsk = inet_csk(sk); 558 u32 now; 559 560 inet_csk_schedule_ack(sk); 561 562 tcp_measure_rcv_mss(sk, skb); 563 564 tcp_rcv_rtt_measure(tp); 565 566 now = tcp_time_stamp; 567 568 if (!icsk->icsk_ack.ato) { 569 /* The _first_ data packet received, initialize 570 * delayed ACK engine. 571 */ 572 tcp_incr_quickack(sk); 573 icsk->icsk_ack.ato = TCP_ATO_MIN; 574 } else { 575 int m = now - icsk->icsk_ack.lrcvtime; 576 577 if (m <= TCP_ATO_MIN / 2) { 578 /* The fastest case is the first. */ 579 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 580 } else if (m < icsk->icsk_ack.ato) { 581 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 582 if (icsk->icsk_ack.ato > icsk->icsk_rto) 583 icsk->icsk_ack.ato = icsk->icsk_rto; 584 } else if (m > icsk->icsk_rto) { 585 /* Too long gap. Apparently sender failed to 586 * restart window, so that we send ACKs quickly. 587 */ 588 tcp_incr_quickack(sk); 589 sk_mem_reclaim(sk); 590 } 591 } 592 icsk->icsk_ack.lrcvtime = now; 593 594 TCP_ECN_check_ce(tp, skb); 595 596 if (skb->len >= 128) 597 tcp_grow_window(sk, skb); 598 } 599 600 static u32 tcp_rto_min(struct sock *sk) 601 { 602 struct dst_entry *dst = __sk_dst_get(sk); 603 u32 rto_min = TCP_RTO_MIN; 604 605 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) 606 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN); 607 return rto_min; 608 } 609 610 /* Called to compute a smoothed rtt estimate. The data fed to this 611 * routine either comes from timestamps, or from segments that were 612 * known _not_ to have been retransmitted [see Karn/Partridge 613 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 614 * piece by Van Jacobson. 615 * NOTE: the next three routines used to be one big routine. 616 * To save cycles in the RFC 1323 implementation it was better to break 617 * it up into three procedures. -- erics 618 */ 619 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt) 620 { 621 struct tcp_sock *tp = tcp_sk(sk); 622 long m = mrtt; /* RTT */ 623 624 /* The following amusing code comes from Jacobson's 625 * article in SIGCOMM '88. Note that rtt and mdev 626 * are scaled versions of rtt and mean deviation. 627 * This is designed to be as fast as possible 628 * m stands for "measurement". 629 * 630 * On a 1990 paper the rto value is changed to: 631 * RTO = rtt + 4 * mdev 632 * 633 * Funny. This algorithm seems to be very broken. 634 * These formulae increase RTO, when it should be decreased, increase 635 * too slowly, when it should be increased quickly, decrease too quickly 636 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 637 * does not matter how to _calculate_ it. Seems, it was trap 638 * that VJ failed to avoid. 8) 639 */ 640 if (m == 0) 641 m = 1; 642 if (tp->srtt != 0) { 643 m -= (tp->srtt >> 3); /* m is now error in rtt est */ 644 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 645 if (m < 0) { 646 m = -m; /* m is now abs(error) */ 647 m -= (tp->mdev >> 2); /* similar update on mdev */ 648 /* This is similar to one of Eifel findings. 649 * Eifel blocks mdev updates when rtt decreases. 650 * This solution is a bit different: we use finer gain 651 * for mdev in this case (alpha*beta). 652 * Like Eifel it also prevents growth of rto, 653 * but also it limits too fast rto decreases, 654 * happening in pure Eifel. 655 */ 656 if (m > 0) 657 m >>= 3; 658 } else { 659 m -= (tp->mdev >> 2); /* similar update on mdev */ 660 } 661 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */ 662 if (tp->mdev > tp->mdev_max) { 663 tp->mdev_max = tp->mdev; 664 if (tp->mdev_max > tp->rttvar) 665 tp->rttvar = tp->mdev_max; 666 } 667 if (after(tp->snd_una, tp->rtt_seq)) { 668 if (tp->mdev_max < tp->rttvar) 669 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2; 670 tp->rtt_seq = tp->snd_nxt; 671 tp->mdev_max = tcp_rto_min(sk); 672 } 673 } else { 674 /* no previous measure. */ 675 tp->srtt = m << 3; /* take the measured time to be rtt */ 676 tp->mdev = m << 1; /* make sure rto = 3*rtt */ 677 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 678 tp->rtt_seq = tp->snd_nxt; 679 } 680 } 681 682 /* Calculate rto without backoff. This is the second half of Van Jacobson's 683 * routine referred to above. 684 */ 685 static inline void tcp_set_rto(struct sock *sk) 686 { 687 const struct tcp_sock *tp = tcp_sk(sk); 688 /* Old crap is replaced with new one. 8) 689 * 690 * More seriously: 691 * 1. If rtt variance happened to be less 50msec, it is hallucination. 692 * It cannot be less due to utterly erratic ACK generation made 693 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 694 * to do with delayed acks, because at cwnd>2 true delack timeout 695 * is invisible. Actually, Linux-2.4 also generates erratic 696 * ACKs in some circumstances. 697 */ 698 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar; 699 700 /* 2. Fixups made earlier cannot be right. 701 * If we do not estimate RTO correctly without them, 702 * all the algo is pure shit and should be replaced 703 * with correct one. It is exactly, which we pretend to do. 704 */ 705 706 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 707 * guarantees that rto is higher. 708 */ 709 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX) 710 inet_csk(sk)->icsk_rto = TCP_RTO_MAX; 711 } 712 713 /* Save metrics learned by this TCP session. 714 This function is called only, when TCP finishes successfully 715 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE. 716 */ 717 void tcp_update_metrics(struct sock *sk) 718 { 719 struct tcp_sock *tp = tcp_sk(sk); 720 struct dst_entry *dst = __sk_dst_get(sk); 721 722 if (sysctl_tcp_nometrics_save) 723 return; 724 725 dst_confirm(dst); 726 727 if (dst && (dst->flags & DST_HOST)) { 728 const struct inet_connection_sock *icsk = inet_csk(sk); 729 int m; 730 unsigned long rtt; 731 732 if (icsk->icsk_backoff || !tp->srtt) { 733 /* This session failed to estimate rtt. Why? 734 * Probably, no packets returned in time. 735 * Reset our results. 736 */ 737 if (!(dst_metric_locked(dst, RTAX_RTT))) 738 dst->metrics[RTAX_RTT - 1] = 0; 739 return; 740 } 741 742 rtt = dst_metric_rtt(dst, RTAX_RTT); 743 m = rtt - tp->srtt; 744 745 /* If newly calculated rtt larger than stored one, 746 * store new one. Otherwise, use EWMA. Remember, 747 * rtt overestimation is always better than underestimation. 748 */ 749 if (!(dst_metric_locked(dst, RTAX_RTT))) { 750 if (m <= 0) 751 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt); 752 else 753 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3)); 754 } 755 756 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) { 757 unsigned long var; 758 if (m < 0) 759 m = -m; 760 761 /* Scale deviation to rttvar fixed point */ 762 m >>= 1; 763 if (m < tp->mdev) 764 m = tp->mdev; 765 766 var = dst_metric_rtt(dst, RTAX_RTTVAR); 767 if (m >= var) 768 var = m; 769 else 770 var -= (var - m) >> 2; 771 772 set_dst_metric_rtt(dst, RTAX_RTTVAR, var); 773 } 774 775 if (tp->snd_ssthresh >= 0xFFFF) { 776 /* Slow start still did not finish. */ 777 if (dst_metric(dst, RTAX_SSTHRESH) && 778 !dst_metric_locked(dst, RTAX_SSTHRESH) && 779 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH)) 780 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1; 781 if (!dst_metric_locked(dst, RTAX_CWND) && 782 tp->snd_cwnd > dst_metric(dst, RTAX_CWND)) 783 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd; 784 } else if (tp->snd_cwnd > tp->snd_ssthresh && 785 icsk->icsk_ca_state == TCP_CA_Open) { 786 /* Cong. avoidance phase, cwnd is reliable. */ 787 if (!dst_metric_locked(dst, RTAX_SSTHRESH)) 788 dst->metrics[RTAX_SSTHRESH-1] = 789 max(tp->snd_cwnd >> 1, tp->snd_ssthresh); 790 if (!dst_metric_locked(dst, RTAX_CWND)) 791 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1; 792 } else { 793 /* Else slow start did not finish, cwnd is non-sense, 794 ssthresh may be also invalid. 795 */ 796 if (!dst_metric_locked(dst, RTAX_CWND)) 797 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1; 798 if (dst_metric(dst, RTAX_SSTHRESH) && 799 !dst_metric_locked(dst, RTAX_SSTHRESH) && 800 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH)) 801 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh; 802 } 803 804 if (!dst_metric_locked(dst, RTAX_REORDERING)) { 805 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering && 806 tp->reordering != sysctl_tcp_reordering) 807 dst->metrics[RTAX_REORDERING-1] = tp->reordering; 808 } 809 } 810 } 811 812 /* Numbers are taken from RFC3390. 813 * 814 * John Heffner states: 815 * 816 * The RFC specifies a window of no more than 4380 bytes 817 * unless 2*MSS > 4380. Reading the pseudocode in the RFC 818 * is a bit misleading because they use a clamp at 4380 bytes 819 * rather than use a multiplier in the relevant range. 820 */ 821 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst) 822 { 823 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 824 825 if (!cwnd) { 826 if (tp->mss_cache > 1460) 827 cwnd = 2; 828 else 829 cwnd = (tp->mss_cache > 1095) ? 3 : 4; 830 } 831 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 832 } 833 834 /* Set slow start threshold and cwnd not falling to slow start */ 835 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh) 836 { 837 struct tcp_sock *tp = tcp_sk(sk); 838 const struct inet_connection_sock *icsk = inet_csk(sk); 839 840 tp->prior_ssthresh = 0; 841 tp->bytes_acked = 0; 842 if (icsk->icsk_ca_state < TCP_CA_CWR) { 843 tp->undo_marker = 0; 844 if (set_ssthresh) 845 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 846 tp->snd_cwnd = min(tp->snd_cwnd, 847 tcp_packets_in_flight(tp) + 1U); 848 tp->snd_cwnd_cnt = 0; 849 tp->high_seq = tp->snd_nxt; 850 tp->snd_cwnd_stamp = tcp_time_stamp; 851 TCP_ECN_queue_cwr(tp); 852 853 tcp_set_ca_state(sk, TCP_CA_CWR); 854 } 855 } 856 857 /* 858 * Packet counting of FACK is based on in-order assumptions, therefore TCP 859 * disables it when reordering is detected 860 */ 861 static void tcp_disable_fack(struct tcp_sock *tp) 862 { 863 /* RFC3517 uses different metric in lost marker => reset on change */ 864 if (tcp_is_fack(tp)) 865 tp->lost_skb_hint = NULL; 866 tp->rx_opt.sack_ok &= ~2; 867 } 868 869 /* Take a notice that peer is sending D-SACKs */ 870 static void tcp_dsack_seen(struct tcp_sock *tp) 871 { 872 tp->rx_opt.sack_ok |= 4; 873 } 874 875 /* Initialize metrics on socket. */ 876 877 static void tcp_init_metrics(struct sock *sk) 878 { 879 struct tcp_sock *tp = tcp_sk(sk); 880 struct dst_entry *dst = __sk_dst_get(sk); 881 882 if (dst == NULL) 883 goto reset; 884 885 dst_confirm(dst); 886 887 if (dst_metric_locked(dst, RTAX_CWND)) 888 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND); 889 if (dst_metric(dst, RTAX_SSTHRESH)) { 890 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH); 891 if (tp->snd_ssthresh > tp->snd_cwnd_clamp) 892 tp->snd_ssthresh = tp->snd_cwnd_clamp; 893 } 894 if (dst_metric(dst, RTAX_REORDERING) && 895 tp->reordering != dst_metric(dst, RTAX_REORDERING)) { 896 tcp_disable_fack(tp); 897 tp->reordering = dst_metric(dst, RTAX_REORDERING); 898 } 899 900 if (dst_metric(dst, RTAX_RTT) == 0) 901 goto reset; 902 903 if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3)) 904 goto reset; 905 906 /* Initial rtt is determined from SYN,SYN-ACK. 907 * The segment is small and rtt may appear much 908 * less than real one. Use per-dst memory 909 * to make it more realistic. 910 * 911 * A bit of theory. RTT is time passed after "normal" sized packet 912 * is sent until it is ACKed. In normal circumstances sending small 913 * packets force peer to delay ACKs and calculation is correct too. 914 * The algorithm is adaptive and, provided we follow specs, it 915 * NEVER underestimate RTT. BUT! If peer tries to make some clever 916 * tricks sort of "quick acks" for time long enough to decrease RTT 917 * to low value, and then abruptly stops to do it and starts to delay 918 * ACKs, wait for troubles. 919 */ 920 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) { 921 tp->srtt = dst_metric_rtt(dst, RTAX_RTT); 922 tp->rtt_seq = tp->snd_nxt; 923 } 924 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) { 925 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR); 926 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 927 } 928 tcp_set_rto(sk); 929 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp) 930 goto reset; 931 tp->snd_cwnd = tcp_init_cwnd(tp, dst); 932 tp->snd_cwnd_stamp = tcp_time_stamp; 933 return; 934 935 reset: 936 /* Play conservative. If timestamps are not 937 * supported, TCP will fail to recalculate correct 938 * rtt, if initial rto is too small. FORGET ALL AND RESET! 939 */ 940 if (!tp->rx_opt.saw_tstamp && tp->srtt) { 941 tp->srtt = 0; 942 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT; 943 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 944 } 945 } 946 947 static void tcp_update_reordering(struct sock *sk, const int metric, 948 const int ts) 949 { 950 struct tcp_sock *tp = tcp_sk(sk); 951 if (metric > tp->reordering) { 952 int mib_idx; 953 954 tp->reordering = min(TCP_MAX_REORDERING, metric); 955 956 /* This exciting event is worth to be remembered. 8) */ 957 if (ts) 958 mib_idx = LINUX_MIB_TCPTSREORDER; 959 else if (tcp_is_reno(tp)) 960 mib_idx = LINUX_MIB_TCPRENOREORDER; 961 else if (tcp_is_fack(tp)) 962 mib_idx = LINUX_MIB_TCPFACKREORDER; 963 else 964 mib_idx = LINUX_MIB_TCPSACKREORDER; 965 966 NET_INC_STATS_BH(sock_net(sk), mib_idx); 967 #if FASTRETRANS_DEBUG > 1 968 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n", 969 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 970 tp->reordering, 971 tp->fackets_out, 972 tp->sacked_out, 973 tp->undo_marker ? tp->undo_retrans : 0); 974 #endif 975 tcp_disable_fack(tp); 976 } 977 } 978 979 /* This must be called before lost_out is incremented */ 980 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 981 { 982 if ((tp->retransmit_skb_hint == NULL) || 983 before(TCP_SKB_CB(skb)->seq, 984 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 985 tp->retransmit_skb_hint = skb; 986 987 if (!tp->lost_out || 988 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high)) 989 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 990 } 991 992 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 993 { 994 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 995 tcp_verify_retransmit_hint(tp, skb); 996 997 tp->lost_out += tcp_skb_pcount(skb); 998 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 999 } 1000 } 1001 1002 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, 1003 struct sk_buff *skb) 1004 { 1005 tcp_verify_retransmit_hint(tp, skb); 1006 1007 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 1008 tp->lost_out += tcp_skb_pcount(skb); 1009 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1010 } 1011 } 1012 1013 /* This procedure tags the retransmission queue when SACKs arrive. 1014 * 1015 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1016 * Packets in queue with these bits set are counted in variables 1017 * sacked_out, retrans_out and lost_out, correspondingly. 1018 * 1019 * Valid combinations are: 1020 * Tag InFlight Description 1021 * 0 1 - orig segment is in flight. 1022 * S 0 - nothing flies, orig reached receiver. 1023 * L 0 - nothing flies, orig lost by net. 1024 * R 2 - both orig and retransmit are in flight. 1025 * L|R 1 - orig is lost, retransmit is in flight. 1026 * S|R 1 - orig reached receiver, retrans is still in flight. 1027 * (L|S|R is logically valid, it could occur when L|R is sacked, 1028 * but it is equivalent to plain S and code short-curcuits it to S. 1029 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1030 * 1031 * These 6 states form finite state machine, controlled by the following events: 1032 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1033 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1034 * 3. Loss detection event of one of three flavors: 1035 * A. Scoreboard estimator decided the packet is lost. 1036 * A'. Reno "three dupacks" marks head of queue lost. 1037 * A''. Its FACK modfication, head until snd.fack is lost. 1038 * B. SACK arrives sacking data transmitted after never retransmitted 1039 * hole was sent out. 1040 * C. SACK arrives sacking SND.NXT at the moment, when the 1041 * segment was retransmitted. 1042 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1043 * 1044 * It is pleasant to note, that state diagram turns out to be commutative, 1045 * so that we are allowed not to be bothered by order of our actions, 1046 * when multiple events arrive simultaneously. (see the function below). 1047 * 1048 * Reordering detection. 1049 * -------------------- 1050 * Reordering metric is maximal distance, which a packet can be displaced 1051 * in packet stream. With SACKs we can estimate it: 1052 * 1053 * 1. SACK fills old hole and the corresponding segment was not 1054 * ever retransmitted -> reordering. Alas, we cannot use it 1055 * when segment was retransmitted. 1056 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1057 * for retransmitted and already SACKed segment -> reordering.. 1058 * Both of these heuristics are not used in Loss state, when we cannot 1059 * account for retransmits accurately. 1060 * 1061 * SACK block validation. 1062 * ---------------------- 1063 * 1064 * SACK block range validation checks that the received SACK block fits to 1065 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1066 * Note that SND.UNA is not included to the range though being valid because 1067 * it means that the receiver is rather inconsistent with itself reporting 1068 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1069 * perfectly valid, however, in light of RFC2018 which explicitly states 1070 * that "SACK block MUST reflect the newest segment. Even if the newest 1071 * segment is going to be discarded ...", not that it looks very clever 1072 * in case of head skb. Due to potentional receiver driven attacks, we 1073 * choose to avoid immediate execution of a walk in write queue due to 1074 * reneging and defer head skb's loss recovery to standard loss recovery 1075 * procedure that will eventually trigger (nothing forbids us doing this). 1076 * 1077 * Implements also blockage to start_seq wrap-around. Problem lies in the 1078 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1079 * there's no guarantee that it will be before snd_nxt (n). The problem 1080 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1081 * wrap (s_w): 1082 * 1083 * <- outs wnd -> <- wrapzone -> 1084 * u e n u_w e_w s n_w 1085 * | | | | | | | 1086 * |<------------+------+----- TCP seqno space --------------+---------->| 1087 * ...-- <2^31 ->| |<--------... 1088 * ...---- >2^31 ------>| |<--------... 1089 * 1090 * Current code wouldn't be vulnerable but it's better still to discard such 1091 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1092 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1093 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1094 * equal to the ideal case (infinite seqno space without wrap caused issues). 1095 * 1096 * With D-SACK the lower bound is extended to cover sequence space below 1097 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1098 * again, D-SACK block must not to go across snd_una (for the same reason as 1099 * for the normal SACK blocks, explained above). But there all simplicity 1100 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1101 * fully below undo_marker they do not affect behavior in anyway and can 1102 * therefore be safely ignored. In rare cases (which are more or less 1103 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1104 * fragmentation and packet reordering past skb's retransmission. To consider 1105 * them correctly, the acceptable range must be extended even more though 1106 * the exact amount is rather hard to quantify. However, tp->max_window can 1107 * be used as an exaggerated estimate. 1108 */ 1109 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack, 1110 u32 start_seq, u32 end_seq) 1111 { 1112 /* Too far in future, or reversed (interpretation is ambiguous) */ 1113 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1114 return 0; 1115 1116 /* Nasty start_seq wrap-around check (see comments above) */ 1117 if (!before(start_seq, tp->snd_nxt)) 1118 return 0; 1119 1120 /* In outstanding window? ...This is valid exit for D-SACKs too. 1121 * start_seq == snd_una is non-sensical (see comments above) 1122 */ 1123 if (after(start_seq, tp->snd_una)) 1124 return 1; 1125 1126 if (!is_dsack || !tp->undo_marker) 1127 return 0; 1128 1129 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1130 if (!after(end_seq, tp->snd_una)) 1131 return 0; 1132 1133 if (!before(start_seq, tp->undo_marker)) 1134 return 1; 1135 1136 /* Too old */ 1137 if (!after(end_seq, tp->undo_marker)) 1138 return 0; 1139 1140 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1141 * start_seq < undo_marker and end_seq >= undo_marker. 1142 */ 1143 return !before(start_seq, end_seq - tp->max_window); 1144 } 1145 1146 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving". 1147 * Event "C". Later note: FACK people cheated me again 8), we have to account 1148 * for reordering! Ugly, but should help. 1149 * 1150 * Search retransmitted skbs from write_queue that were sent when snd_nxt was 1151 * less than what is now known to be received by the other end (derived from 1152 * highest SACK block). Also calculate the lowest snd_nxt among the remaining 1153 * retransmitted skbs to avoid some costly processing per ACKs. 1154 */ 1155 static void tcp_mark_lost_retrans(struct sock *sk) 1156 { 1157 const struct inet_connection_sock *icsk = inet_csk(sk); 1158 struct tcp_sock *tp = tcp_sk(sk); 1159 struct sk_buff *skb; 1160 int cnt = 0; 1161 u32 new_low_seq = tp->snd_nxt; 1162 u32 received_upto = tcp_highest_sack_seq(tp); 1163 1164 if (!tcp_is_fack(tp) || !tp->retrans_out || 1165 !after(received_upto, tp->lost_retrans_low) || 1166 icsk->icsk_ca_state != TCP_CA_Recovery) 1167 return; 1168 1169 tcp_for_write_queue(skb, sk) { 1170 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq; 1171 1172 if (skb == tcp_send_head(sk)) 1173 break; 1174 if (cnt == tp->retrans_out) 1175 break; 1176 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1177 continue; 1178 1179 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) 1180 continue; 1181 1182 /* TODO: We would like to get rid of tcp_is_fack(tp) only 1183 * constraint here (see above) but figuring out that at 1184 * least tp->reordering SACK blocks reside between ack_seq 1185 * and received_upto is not easy task to do cheaply with 1186 * the available datastructures. 1187 * 1188 * Whether FACK should check here for tp->reordering segs 1189 * in-between one could argue for either way (it would be 1190 * rather simple to implement as we could count fack_count 1191 * during the walk and do tp->fackets_out - fack_count). 1192 */ 1193 if (after(received_upto, ack_seq)) { 1194 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1195 tp->retrans_out -= tcp_skb_pcount(skb); 1196 1197 tcp_skb_mark_lost_uncond_verify(tp, skb); 1198 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT); 1199 } else { 1200 if (before(ack_seq, new_low_seq)) 1201 new_low_seq = ack_seq; 1202 cnt += tcp_skb_pcount(skb); 1203 } 1204 } 1205 1206 if (tp->retrans_out) 1207 tp->lost_retrans_low = new_low_seq; 1208 } 1209 1210 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb, 1211 struct tcp_sack_block_wire *sp, int num_sacks, 1212 u32 prior_snd_una) 1213 { 1214 struct tcp_sock *tp = tcp_sk(sk); 1215 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1216 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1217 int dup_sack = 0; 1218 1219 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1220 dup_sack = 1; 1221 tcp_dsack_seen(tp); 1222 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1223 } else if (num_sacks > 1) { 1224 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1225 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1226 1227 if (!after(end_seq_0, end_seq_1) && 1228 !before(start_seq_0, start_seq_1)) { 1229 dup_sack = 1; 1230 tcp_dsack_seen(tp); 1231 NET_INC_STATS_BH(sock_net(sk), 1232 LINUX_MIB_TCPDSACKOFORECV); 1233 } 1234 } 1235 1236 /* D-SACK for already forgotten data... Do dumb counting. */ 1237 if (dup_sack && 1238 !after(end_seq_0, prior_snd_una) && 1239 after(end_seq_0, tp->undo_marker)) 1240 tp->undo_retrans--; 1241 1242 return dup_sack; 1243 } 1244 1245 struct tcp_sacktag_state { 1246 int reord; 1247 int fack_count; 1248 int flag; 1249 }; 1250 1251 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1252 * the incoming SACK may not exactly match but we can find smaller MSS 1253 * aligned portion of it that matches. Therefore we might need to fragment 1254 * which may fail and creates some hassle (caller must handle error case 1255 * returns). 1256 * 1257 * FIXME: this could be merged to shift decision code 1258 */ 1259 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1260 u32 start_seq, u32 end_seq) 1261 { 1262 int in_sack, err; 1263 unsigned int pkt_len; 1264 unsigned int mss; 1265 1266 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1267 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1268 1269 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1270 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1271 mss = tcp_skb_mss(skb); 1272 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1273 1274 if (!in_sack) { 1275 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1276 if (pkt_len < mss) 1277 pkt_len = mss; 1278 } else { 1279 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1280 if (pkt_len < mss) 1281 return -EINVAL; 1282 } 1283 1284 /* Round if necessary so that SACKs cover only full MSSes 1285 * and/or the remaining small portion (if present) 1286 */ 1287 if (pkt_len > mss) { 1288 unsigned int new_len = (pkt_len / mss) * mss; 1289 if (!in_sack && new_len < pkt_len) { 1290 new_len += mss; 1291 if (new_len > skb->len) 1292 return 0; 1293 } 1294 pkt_len = new_len; 1295 } 1296 err = tcp_fragment(sk, skb, pkt_len, mss); 1297 if (err < 0) 1298 return err; 1299 } 1300 1301 return in_sack; 1302 } 1303 1304 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk, 1305 struct tcp_sacktag_state *state, 1306 int dup_sack, int pcount) 1307 { 1308 struct tcp_sock *tp = tcp_sk(sk); 1309 u8 sacked = TCP_SKB_CB(skb)->sacked; 1310 int fack_count = state->fack_count; 1311 1312 /* Account D-SACK for retransmitted packet. */ 1313 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1314 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker)) 1315 tp->undo_retrans--; 1316 if (sacked & TCPCB_SACKED_ACKED) 1317 state->reord = min(fack_count, state->reord); 1318 } 1319 1320 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1321 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1322 return sacked; 1323 1324 if (!(sacked & TCPCB_SACKED_ACKED)) { 1325 if (sacked & TCPCB_SACKED_RETRANS) { 1326 /* If the segment is not tagged as lost, 1327 * we do not clear RETRANS, believing 1328 * that retransmission is still in flight. 1329 */ 1330 if (sacked & TCPCB_LOST) { 1331 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1332 tp->lost_out -= pcount; 1333 tp->retrans_out -= pcount; 1334 } 1335 } else { 1336 if (!(sacked & TCPCB_RETRANS)) { 1337 /* New sack for not retransmitted frame, 1338 * which was in hole. It is reordering. 1339 */ 1340 if (before(TCP_SKB_CB(skb)->seq, 1341 tcp_highest_sack_seq(tp))) 1342 state->reord = min(fack_count, 1343 state->reord); 1344 1345 /* SACK enhanced F-RTO (RFC4138; Appendix B) */ 1346 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) 1347 state->flag |= FLAG_ONLY_ORIG_SACKED; 1348 } 1349 1350 if (sacked & TCPCB_LOST) { 1351 sacked &= ~TCPCB_LOST; 1352 tp->lost_out -= pcount; 1353 } 1354 } 1355 1356 sacked |= TCPCB_SACKED_ACKED; 1357 state->flag |= FLAG_DATA_SACKED; 1358 tp->sacked_out += pcount; 1359 1360 fack_count += pcount; 1361 1362 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1363 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) && 1364 before(TCP_SKB_CB(skb)->seq, 1365 TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1366 tp->lost_cnt_hint += pcount; 1367 1368 if (fack_count > tp->fackets_out) 1369 tp->fackets_out = fack_count; 1370 } 1371 1372 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1373 * frames and clear it. undo_retrans is decreased above, L|R frames 1374 * are accounted above as well. 1375 */ 1376 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1377 sacked &= ~TCPCB_SACKED_RETRANS; 1378 tp->retrans_out -= pcount; 1379 } 1380 1381 return sacked; 1382 } 1383 1384 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1385 struct tcp_sacktag_state *state, 1386 unsigned int pcount, int shifted, int mss, 1387 int dup_sack) 1388 { 1389 struct tcp_sock *tp = tcp_sk(sk); 1390 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1391 1392 BUG_ON(!pcount); 1393 1394 /* Tweak before seqno plays */ 1395 if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint && 1396 !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq)) 1397 tp->lost_cnt_hint += pcount; 1398 1399 TCP_SKB_CB(prev)->end_seq += shifted; 1400 TCP_SKB_CB(skb)->seq += shifted; 1401 1402 skb_shinfo(prev)->gso_segs += pcount; 1403 BUG_ON(skb_shinfo(skb)->gso_segs < pcount); 1404 skb_shinfo(skb)->gso_segs -= pcount; 1405 1406 /* When we're adding to gso_segs == 1, gso_size will be zero, 1407 * in theory this shouldn't be necessary but as long as DSACK 1408 * code can come after this skb later on it's better to keep 1409 * setting gso_size to something. 1410 */ 1411 if (!skb_shinfo(prev)->gso_size) { 1412 skb_shinfo(prev)->gso_size = mss; 1413 skb_shinfo(prev)->gso_type = sk->sk_gso_type; 1414 } 1415 1416 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1417 if (skb_shinfo(skb)->gso_segs <= 1) { 1418 skb_shinfo(skb)->gso_size = 0; 1419 skb_shinfo(skb)->gso_type = 0; 1420 } 1421 1422 /* We discard results */ 1423 tcp_sacktag_one(skb, sk, state, dup_sack, pcount); 1424 1425 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1426 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1427 1428 if (skb->len > 0) { 1429 BUG_ON(!tcp_skb_pcount(skb)); 1430 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1431 return 0; 1432 } 1433 1434 /* Whole SKB was eaten :-) */ 1435 1436 if (skb == tp->retransmit_skb_hint) 1437 tp->retransmit_skb_hint = prev; 1438 if (skb == tp->scoreboard_skb_hint) 1439 tp->scoreboard_skb_hint = prev; 1440 if (skb == tp->lost_skb_hint) { 1441 tp->lost_skb_hint = prev; 1442 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1443 } 1444 1445 TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags; 1446 if (skb == tcp_highest_sack(sk)) 1447 tcp_advance_highest_sack(sk, skb); 1448 1449 tcp_unlink_write_queue(skb, sk); 1450 sk_wmem_free_skb(sk, skb); 1451 1452 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED); 1453 1454 return 1; 1455 } 1456 1457 /* I wish gso_size would have a bit more sane initialization than 1458 * something-or-zero which complicates things 1459 */ 1460 static int tcp_skb_seglen(struct sk_buff *skb) 1461 { 1462 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1463 } 1464 1465 /* Shifting pages past head area doesn't work */ 1466 static int skb_can_shift(struct sk_buff *skb) 1467 { 1468 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1469 } 1470 1471 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1472 * skb. 1473 */ 1474 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1475 struct tcp_sacktag_state *state, 1476 u32 start_seq, u32 end_seq, 1477 int dup_sack) 1478 { 1479 struct tcp_sock *tp = tcp_sk(sk); 1480 struct sk_buff *prev; 1481 int mss; 1482 int pcount = 0; 1483 int len; 1484 int in_sack; 1485 1486 if (!sk_can_gso(sk)) 1487 goto fallback; 1488 1489 /* Normally R but no L won't result in plain S */ 1490 if (!dup_sack && 1491 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1492 goto fallback; 1493 if (!skb_can_shift(skb)) 1494 goto fallback; 1495 /* This frame is about to be dropped (was ACKed). */ 1496 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1497 goto fallback; 1498 1499 /* Can only happen with delayed DSACK + discard craziness */ 1500 if (unlikely(skb == tcp_write_queue_head(sk))) 1501 goto fallback; 1502 prev = tcp_write_queue_prev(sk, skb); 1503 1504 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1505 goto fallback; 1506 1507 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1508 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1509 1510 if (in_sack) { 1511 len = skb->len; 1512 pcount = tcp_skb_pcount(skb); 1513 mss = tcp_skb_seglen(skb); 1514 1515 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1516 * drop this restriction as unnecessary 1517 */ 1518 if (mss != tcp_skb_seglen(prev)) 1519 goto fallback; 1520 } else { 1521 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1522 goto noop; 1523 /* CHECKME: This is non-MSS split case only?, this will 1524 * cause skipped skbs due to advancing loop btw, original 1525 * has that feature too 1526 */ 1527 if (tcp_skb_pcount(skb) <= 1) 1528 goto noop; 1529 1530 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1531 if (!in_sack) { 1532 /* TODO: head merge to next could be attempted here 1533 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1534 * though it might not be worth of the additional hassle 1535 * 1536 * ...we can probably just fallback to what was done 1537 * previously. We could try merging non-SACKed ones 1538 * as well but it probably isn't going to buy off 1539 * because later SACKs might again split them, and 1540 * it would make skb timestamp tracking considerably 1541 * harder problem. 1542 */ 1543 goto fallback; 1544 } 1545 1546 len = end_seq - TCP_SKB_CB(skb)->seq; 1547 BUG_ON(len < 0); 1548 BUG_ON(len > skb->len); 1549 1550 /* MSS boundaries should be honoured or else pcount will 1551 * severely break even though it makes things bit trickier. 1552 * Optimize common case to avoid most of the divides 1553 */ 1554 mss = tcp_skb_mss(skb); 1555 1556 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1557 * drop this restriction as unnecessary 1558 */ 1559 if (mss != tcp_skb_seglen(prev)) 1560 goto fallback; 1561 1562 if (len == mss) { 1563 pcount = 1; 1564 } else if (len < mss) { 1565 goto noop; 1566 } else { 1567 pcount = len / mss; 1568 len = pcount * mss; 1569 } 1570 } 1571 1572 if (!skb_shift(prev, skb, len)) 1573 goto fallback; 1574 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1575 goto out; 1576 1577 /* Hole filled allows collapsing with the next as well, this is very 1578 * useful when hole on every nth skb pattern happens 1579 */ 1580 if (prev == tcp_write_queue_tail(sk)) 1581 goto out; 1582 skb = tcp_write_queue_next(sk, prev); 1583 1584 if (!skb_can_shift(skb) || 1585 (skb == tcp_send_head(sk)) || 1586 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1587 (mss != tcp_skb_seglen(skb))) 1588 goto out; 1589 1590 len = skb->len; 1591 if (skb_shift(prev, skb, len)) { 1592 pcount += tcp_skb_pcount(skb); 1593 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1594 } 1595 1596 out: 1597 state->fack_count += pcount; 1598 return prev; 1599 1600 noop: 1601 return skb; 1602 1603 fallback: 1604 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1605 return NULL; 1606 } 1607 1608 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1609 struct tcp_sack_block *next_dup, 1610 struct tcp_sacktag_state *state, 1611 u32 start_seq, u32 end_seq, 1612 int dup_sack_in) 1613 { 1614 struct tcp_sock *tp = tcp_sk(sk); 1615 struct sk_buff *tmp; 1616 1617 tcp_for_write_queue_from(skb, sk) { 1618 int in_sack = 0; 1619 int dup_sack = dup_sack_in; 1620 1621 if (skb == tcp_send_head(sk)) 1622 break; 1623 1624 /* queue is in-order => we can short-circuit the walk early */ 1625 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1626 break; 1627 1628 if ((next_dup != NULL) && 1629 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1630 in_sack = tcp_match_skb_to_sack(sk, skb, 1631 next_dup->start_seq, 1632 next_dup->end_seq); 1633 if (in_sack > 0) 1634 dup_sack = 1; 1635 } 1636 1637 /* skb reference here is a bit tricky to get right, since 1638 * shifting can eat and free both this skb and the next, 1639 * so not even _safe variant of the loop is enough. 1640 */ 1641 if (in_sack <= 0) { 1642 tmp = tcp_shift_skb_data(sk, skb, state, 1643 start_seq, end_seq, dup_sack); 1644 if (tmp != NULL) { 1645 if (tmp != skb) { 1646 skb = tmp; 1647 continue; 1648 } 1649 1650 in_sack = 0; 1651 } else { 1652 in_sack = tcp_match_skb_to_sack(sk, skb, 1653 start_seq, 1654 end_seq); 1655 } 1656 } 1657 1658 if (unlikely(in_sack < 0)) 1659 break; 1660 1661 if (in_sack) { 1662 TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk, 1663 state, 1664 dup_sack, 1665 tcp_skb_pcount(skb)); 1666 1667 if (!before(TCP_SKB_CB(skb)->seq, 1668 tcp_highest_sack_seq(tp))) 1669 tcp_advance_highest_sack(sk, skb); 1670 } 1671 1672 state->fack_count += tcp_skb_pcount(skb); 1673 } 1674 return skb; 1675 } 1676 1677 /* Avoid all extra work that is being done by sacktag while walking in 1678 * a normal way 1679 */ 1680 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1681 struct tcp_sacktag_state *state, 1682 u32 skip_to_seq) 1683 { 1684 tcp_for_write_queue_from(skb, sk) { 1685 if (skb == tcp_send_head(sk)) 1686 break; 1687 1688 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1689 break; 1690 1691 state->fack_count += tcp_skb_pcount(skb); 1692 } 1693 return skb; 1694 } 1695 1696 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1697 struct sock *sk, 1698 struct tcp_sack_block *next_dup, 1699 struct tcp_sacktag_state *state, 1700 u32 skip_to_seq) 1701 { 1702 if (next_dup == NULL) 1703 return skb; 1704 1705 if (before(next_dup->start_seq, skip_to_seq)) { 1706 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1707 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1708 next_dup->start_seq, next_dup->end_seq, 1709 1); 1710 } 1711 1712 return skb; 1713 } 1714 1715 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache) 1716 { 1717 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1718 } 1719 1720 static int 1721 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, 1722 u32 prior_snd_una) 1723 { 1724 const struct inet_connection_sock *icsk = inet_csk(sk); 1725 struct tcp_sock *tp = tcp_sk(sk); 1726 unsigned char *ptr = (skb_transport_header(ack_skb) + 1727 TCP_SKB_CB(ack_skb)->sacked); 1728 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1729 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1730 struct tcp_sack_block *cache; 1731 struct tcp_sacktag_state state; 1732 struct sk_buff *skb; 1733 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1734 int used_sacks; 1735 int found_dup_sack = 0; 1736 int i, j; 1737 int first_sack_index; 1738 1739 state.flag = 0; 1740 state.reord = tp->packets_out; 1741 1742 if (!tp->sacked_out) { 1743 if (WARN_ON(tp->fackets_out)) 1744 tp->fackets_out = 0; 1745 tcp_highest_sack_reset(sk); 1746 } 1747 1748 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1749 num_sacks, prior_snd_una); 1750 if (found_dup_sack) 1751 state.flag |= FLAG_DSACKING_ACK; 1752 1753 /* Eliminate too old ACKs, but take into 1754 * account more or less fresh ones, they can 1755 * contain valid SACK info. 1756 */ 1757 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1758 return 0; 1759 1760 if (!tp->packets_out) 1761 goto out; 1762 1763 used_sacks = 0; 1764 first_sack_index = 0; 1765 for (i = 0; i < num_sacks; i++) { 1766 int dup_sack = !i && found_dup_sack; 1767 1768 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1769 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1770 1771 if (!tcp_is_sackblock_valid(tp, dup_sack, 1772 sp[used_sacks].start_seq, 1773 sp[used_sacks].end_seq)) { 1774 int mib_idx; 1775 1776 if (dup_sack) { 1777 if (!tp->undo_marker) 1778 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1779 else 1780 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1781 } else { 1782 /* Don't count olds caused by ACK reordering */ 1783 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1784 !after(sp[used_sacks].end_seq, tp->snd_una)) 1785 continue; 1786 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1787 } 1788 1789 NET_INC_STATS_BH(sock_net(sk), mib_idx); 1790 if (i == 0) 1791 first_sack_index = -1; 1792 continue; 1793 } 1794 1795 /* Ignore very old stuff early */ 1796 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1797 continue; 1798 1799 used_sacks++; 1800 } 1801 1802 /* order SACK blocks to allow in order walk of the retrans queue */ 1803 for (i = used_sacks - 1; i > 0; i--) { 1804 for (j = 0; j < i; j++) { 1805 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1806 swap(sp[j], sp[j + 1]); 1807 1808 /* Track where the first SACK block goes to */ 1809 if (j == first_sack_index) 1810 first_sack_index = j + 1; 1811 } 1812 } 1813 } 1814 1815 skb = tcp_write_queue_head(sk); 1816 state.fack_count = 0; 1817 i = 0; 1818 1819 if (!tp->sacked_out) { 1820 /* It's already past, so skip checking against it */ 1821 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1822 } else { 1823 cache = tp->recv_sack_cache; 1824 /* Skip empty blocks in at head of the cache */ 1825 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1826 !cache->end_seq) 1827 cache++; 1828 } 1829 1830 while (i < used_sacks) { 1831 u32 start_seq = sp[i].start_seq; 1832 u32 end_seq = sp[i].end_seq; 1833 int dup_sack = (found_dup_sack && (i == first_sack_index)); 1834 struct tcp_sack_block *next_dup = NULL; 1835 1836 if (found_dup_sack && ((i + 1) == first_sack_index)) 1837 next_dup = &sp[i + 1]; 1838 1839 /* Event "B" in the comment above. */ 1840 if (after(end_seq, tp->high_seq)) 1841 state.flag |= FLAG_DATA_LOST; 1842 1843 /* Skip too early cached blocks */ 1844 while (tcp_sack_cache_ok(tp, cache) && 1845 !before(start_seq, cache->end_seq)) 1846 cache++; 1847 1848 /* Can skip some work by looking recv_sack_cache? */ 1849 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1850 after(end_seq, cache->start_seq)) { 1851 1852 /* Head todo? */ 1853 if (before(start_seq, cache->start_seq)) { 1854 skb = tcp_sacktag_skip(skb, sk, &state, 1855 start_seq); 1856 skb = tcp_sacktag_walk(skb, sk, next_dup, 1857 &state, 1858 start_seq, 1859 cache->start_seq, 1860 dup_sack); 1861 } 1862 1863 /* Rest of the block already fully processed? */ 1864 if (!after(end_seq, cache->end_seq)) 1865 goto advance_sp; 1866 1867 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1868 &state, 1869 cache->end_seq); 1870 1871 /* ...tail remains todo... */ 1872 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1873 /* ...but better entrypoint exists! */ 1874 skb = tcp_highest_sack(sk); 1875 if (skb == NULL) 1876 break; 1877 state.fack_count = tp->fackets_out; 1878 cache++; 1879 goto walk; 1880 } 1881 1882 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq); 1883 /* Check overlap against next cached too (past this one already) */ 1884 cache++; 1885 continue; 1886 } 1887 1888 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1889 skb = tcp_highest_sack(sk); 1890 if (skb == NULL) 1891 break; 1892 state.fack_count = tp->fackets_out; 1893 } 1894 skb = tcp_sacktag_skip(skb, sk, &state, start_seq); 1895 1896 walk: 1897 skb = tcp_sacktag_walk(skb, sk, next_dup, &state, 1898 start_seq, end_seq, dup_sack); 1899 1900 advance_sp: 1901 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct 1902 * due to in-order walk 1903 */ 1904 if (after(end_seq, tp->frto_highmark)) 1905 state.flag &= ~FLAG_ONLY_ORIG_SACKED; 1906 1907 i++; 1908 } 1909 1910 /* Clear the head of the cache sack blocks so we can skip it next time */ 1911 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1912 tp->recv_sack_cache[i].start_seq = 0; 1913 tp->recv_sack_cache[i].end_seq = 0; 1914 } 1915 for (j = 0; j < used_sacks; j++) 1916 tp->recv_sack_cache[i++] = sp[j]; 1917 1918 tcp_mark_lost_retrans(sk); 1919 1920 tcp_verify_left_out(tp); 1921 1922 if ((state.reord < tp->fackets_out) && 1923 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) && 1924 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark))) 1925 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0); 1926 1927 out: 1928 1929 #if FASTRETRANS_DEBUG > 0 1930 WARN_ON((int)tp->sacked_out < 0); 1931 WARN_ON((int)tp->lost_out < 0); 1932 WARN_ON((int)tp->retrans_out < 0); 1933 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1934 #endif 1935 return state.flag; 1936 } 1937 1938 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1939 * packets_out. Returns zero if sacked_out adjustement wasn't necessary. 1940 */ 1941 static int tcp_limit_reno_sacked(struct tcp_sock *tp) 1942 { 1943 u32 holes; 1944 1945 holes = max(tp->lost_out, 1U); 1946 holes = min(holes, tp->packets_out); 1947 1948 if ((tp->sacked_out + holes) > tp->packets_out) { 1949 tp->sacked_out = tp->packets_out - holes; 1950 return 1; 1951 } 1952 return 0; 1953 } 1954 1955 /* If we receive more dupacks than we expected counting segments 1956 * in assumption of absent reordering, interpret this as reordering. 1957 * The only another reason could be bug in receiver TCP. 1958 */ 1959 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1960 { 1961 struct tcp_sock *tp = tcp_sk(sk); 1962 if (tcp_limit_reno_sacked(tp)) 1963 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1964 } 1965 1966 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1967 1968 static void tcp_add_reno_sack(struct sock *sk) 1969 { 1970 struct tcp_sock *tp = tcp_sk(sk); 1971 tp->sacked_out++; 1972 tcp_check_reno_reordering(sk, 0); 1973 tcp_verify_left_out(tp); 1974 } 1975 1976 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1977 1978 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1979 { 1980 struct tcp_sock *tp = tcp_sk(sk); 1981 1982 if (acked > 0) { 1983 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1984 if (acked - 1 >= tp->sacked_out) 1985 tp->sacked_out = 0; 1986 else 1987 tp->sacked_out -= acked - 1; 1988 } 1989 tcp_check_reno_reordering(sk, acked); 1990 tcp_verify_left_out(tp); 1991 } 1992 1993 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1994 { 1995 tp->sacked_out = 0; 1996 } 1997 1998 static int tcp_is_sackfrto(const struct tcp_sock *tp) 1999 { 2000 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp); 2001 } 2002 2003 /* F-RTO can only be used if TCP has never retransmitted anything other than 2004 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here) 2005 */ 2006 int tcp_use_frto(struct sock *sk) 2007 { 2008 const struct tcp_sock *tp = tcp_sk(sk); 2009 const struct inet_connection_sock *icsk = inet_csk(sk); 2010 struct sk_buff *skb; 2011 2012 if (!sysctl_tcp_frto) 2013 return 0; 2014 2015 /* MTU probe and F-RTO won't really play nicely along currently */ 2016 if (icsk->icsk_mtup.probe_size) 2017 return 0; 2018 2019 if (tcp_is_sackfrto(tp)) 2020 return 1; 2021 2022 /* Avoid expensive walking of rexmit queue if possible */ 2023 if (tp->retrans_out > 1) 2024 return 0; 2025 2026 skb = tcp_write_queue_head(sk); 2027 if (tcp_skb_is_last(sk, skb)) 2028 return 1; 2029 skb = tcp_write_queue_next(sk, skb); /* Skips head */ 2030 tcp_for_write_queue_from(skb, sk) { 2031 if (skb == tcp_send_head(sk)) 2032 break; 2033 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2034 return 0; 2035 /* Short-circuit when first non-SACKed skb has been checked */ 2036 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2037 break; 2038 } 2039 return 1; 2040 } 2041 2042 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO 2043 * recovery a bit and use heuristics in tcp_process_frto() to detect if 2044 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to 2045 * keep retrans_out counting accurate (with SACK F-RTO, other than head 2046 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS 2047 * bits are handled if the Loss state is really to be entered (in 2048 * tcp_enter_frto_loss). 2049 * 2050 * Do like tcp_enter_loss() would; when RTO expires the second time it 2051 * does: 2052 * "Reduce ssthresh if it has not yet been made inside this window." 2053 */ 2054 void tcp_enter_frto(struct sock *sk) 2055 { 2056 const struct inet_connection_sock *icsk = inet_csk(sk); 2057 struct tcp_sock *tp = tcp_sk(sk); 2058 struct sk_buff *skb; 2059 2060 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) || 2061 tp->snd_una == tp->high_seq || 2062 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) && 2063 !icsk->icsk_retransmits)) { 2064 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2065 /* Our state is too optimistic in ssthresh() call because cwnd 2066 * is not reduced until tcp_enter_frto_loss() when previous F-RTO 2067 * recovery has not yet completed. Pattern would be this: RTO, 2068 * Cumulative ACK, RTO (2xRTO for the same segment does not end 2069 * up here twice). 2070 * RFC4138 should be more specific on what to do, even though 2071 * RTO is quite unlikely to occur after the first Cumulative ACK 2072 * due to back-off and complexity of triggering events ... 2073 */ 2074 if (tp->frto_counter) { 2075 u32 stored_cwnd; 2076 stored_cwnd = tp->snd_cwnd; 2077 tp->snd_cwnd = 2; 2078 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2079 tp->snd_cwnd = stored_cwnd; 2080 } else { 2081 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2082 } 2083 /* ... in theory, cong.control module could do "any tricks" in 2084 * ssthresh(), which means that ca_state, lost bits and lost_out 2085 * counter would have to be faked before the call occurs. We 2086 * consider that too expensive, unlikely and hacky, so modules 2087 * using these in ssthresh() must deal these incompatibility 2088 * issues if they receives CA_EVENT_FRTO and frto_counter != 0 2089 */ 2090 tcp_ca_event(sk, CA_EVENT_FRTO); 2091 } 2092 2093 tp->undo_marker = tp->snd_una; 2094 tp->undo_retrans = 0; 2095 2096 skb = tcp_write_queue_head(sk); 2097 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2098 tp->undo_marker = 0; 2099 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2100 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2101 tp->retrans_out -= tcp_skb_pcount(skb); 2102 } 2103 tcp_verify_left_out(tp); 2104 2105 /* Too bad if TCP was application limited */ 2106 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1); 2107 2108 /* Earlier loss recovery underway (see RFC4138; Appendix B). 2109 * The last condition is necessary at least in tp->frto_counter case. 2110 */ 2111 if (tcp_is_sackfrto(tp) && (tp->frto_counter || 2112 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) && 2113 after(tp->high_seq, tp->snd_una)) { 2114 tp->frto_highmark = tp->high_seq; 2115 } else { 2116 tp->frto_highmark = tp->snd_nxt; 2117 } 2118 tcp_set_ca_state(sk, TCP_CA_Disorder); 2119 tp->high_seq = tp->snd_nxt; 2120 tp->frto_counter = 1; 2121 } 2122 2123 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO, 2124 * which indicates that we should follow the traditional RTO recovery, 2125 * i.e. mark everything lost and do go-back-N retransmission. 2126 */ 2127 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag) 2128 { 2129 struct tcp_sock *tp = tcp_sk(sk); 2130 struct sk_buff *skb; 2131 2132 tp->lost_out = 0; 2133 tp->retrans_out = 0; 2134 if (tcp_is_reno(tp)) 2135 tcp_reset_reno_sack(tp); 2136 2137 tcp_for_write_queue(skb, sk) { 2138 if (skb == tcp_send_head(sk)) 2139 break; 2140 2141 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2142 /* 2143 * Count the retransmission made on RTO correctly (only when 2144 * waiting for the first ACK and did not get it)... 2145 */ 2146 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) { 2147 /* For some reason this R-bit might get cleared? */ 2148 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 2149 tp->retrans_out += tcp_skb_pcount(skb); 2150 /* ...enter this if branch just for the first segment */ 2151 flag |= FLAG_DATA_ACKED; 2152 } else { 2153 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2154 tp->undo_marker = 0; 2155 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2156 } 2157 2158 /* Marking forward transmissions that were made after RTO lost 2159 * can cause unnecessary retransmissions in some scenarios, 2160 * SACK blocks will mitigate that in some but not in all cases. 2161 * We used to not mark them but it was causing break-ups with 2162 * receivers that do only in-order receival. 2163 * 2164 * TODO: we could detect presence of such receiver and select 2165 * different behavior per flow. 2166 */ 2167 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2168 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 2169 tp->lost_out += tcp_skb_pcount(skb); 2170 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 2171 } 2172 } 2173 tcp_verify_left_out(tp); 2174 2175 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments; 2176 tp->snd_cwnd_cnt = 0; 2177 tp->snd_cwnd_stamp = tcp_time_stamp; 2178 tp->frto_counter = 0; 2179 tp->bytes_acked = 0; 2180 2181 tp->reordering = min_t(unsigned int, tp->reordering, 2182 sysctl_tcp_reordering); 2183 tcp_set_ca_state(sk, TCP_CA_Loss); 2184 tp->high_seq = tp->snd_nxt; 2185 TCP_ECN_queue_cwr(tp); 2186 2187 tcp_clear_all_retrans_hints(tp); 2188 } 2189 2190 static void tcp_clear_retrans_partial(struct tcp_sock *tp) 2191 { 2192 tp->retrans_out = 0; 2193 tp->lost_out = 0; 2194 2195 tp->undo_marker = 0; 2196 tp->undo_retrans = 0; 2197 } 2198 2199 void tcp_clear_retrans(struct tcp_sock *tp) 2200 { 2201 tcp_clear_retrans_partial(tp); 2202 2203 tp->fackets_out = 0; 2204 tp->sacked_out = 0; 2205 } 2206 2207 /* Enter Loss state. If "how" is not zero, forget all SACK information 2208 * and reset tags completely, otherwise preserve SACKs. If receiver 2209 * dropped its ofo queue, we will know this due to reneging detection. 2210 */ 2211 void tcp_enter_loss(struct sock *sk, int how) 2212 { 2213 const struct inet_connection_sock *icsk = inet_csk(sk); 2214 struct tcp_sock *tp = tcp_sk(sk); 2215 struct sk_buff *skb; 2216 2217 /* Reduce ssthresh if it has not yet been made inside this window. */ 2218 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq || 2219 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2220 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2221 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2222 tcp_ca_event(sk, CA_EVENT_LOSS); 2223 } 2224 tp->snd_cwnd = 1; 2225 tp->snd_cwnd_cnt = 0; 2226 tp->snd_cwnd_stamp = tcp_time_stamp; 2227 2228 tp->bytes_acked = 0; 2229 tcp_clear_retrans_partial(tp); 2230 2231 if (tcp_is_reno(tp)) 2232 tcp_reset_reno_sack(tp); 2233 2234 if (!how) { 2235 /* Push undo marker, if it was plain RTO and nothing 2236 * was retransmitted. */ 2237 tp->undo_marker = tp->snd_una; 2238 } else { 2239 tp->sacked_out = 0; 2240 tp->fackets_out = 0; 2241 } 2242 tcp_clear_all_retrans_hints(tp); 2243 2244 tcp_for_write_queue(skb, sk) { 2245 if (skb == tcp_send_head(sk)) 2246 break; 2247 2248 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2249 tp->undo_marker = 0; 2250 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 2251 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) { 2252 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2253 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 2254 tp->lost_out += tcp_skb_pcount(skb); 2255 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 2256 } 2257 } 2258 tcp_verify_left_out(tp); 2259 2260 tp->reordering = min_t(unsigned int, tp->reordering, 2261 sysctl_tcp_reordering); 2262 tcp_set_ca_state(sk, TCP_CA_Loss); 2263 tp->high_seq = tp->snd_nxt; 2264 TCP_ECN_queue_cwr(tp); 2265 /* Abort F-RTO algorithm if one is in progress */ 2266 tp->frto_counter = 0; 2267 } 2268 2269 /* If ACK arrived pointing to a remembered SACK, it means that our 2270 * remembered SACKs do not reflect real state of receiver i.e. 2271 * receiver _host_ is heavily congested (or buggy). 2272 * 2273 * Do processing similar to RTO timeout. 2274 */ 2275 static int tcp_check_sack_reneging(struct sock *sk, int flag) 2276 { 2277 if (flag & FLAG_SACK_RENEGING) { 2278 struct inet_connection_sock *icsk = inet_csk(sk); 2279 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2280 2281 tcp_enter_loss(sk, 1); 2282 icsk->icsk_retransmits++; 2283 tcp_retransmit_skb(sk, tcp_write_queue_head(sk)); 2284 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2285 icsk->icsk_rto, TCP_RTO_MAX); 2286 return 1; 2287 } 2288 return 0; 2289 } 2290 2291 static inline int tcp_fackets_out(struct tcp_sock *tp) 2292 { 2293 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2294 } 2295 2296 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2297 * counter when SACK is enabled (without SACK, sacked_out is used for 2298 * that purpose). 2299 * 2300 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2301 * segments up to the highest received SACK block so far and holes in 2302 * between them. 2303 * 2304 * With reordering, holes may still be in flight, so RFC3517 recovery 2305 * uses pure sacked_out (total number of SACKed segments) even though 2306 * it violates the RFC that uses duplicate ACKs, often these are equal 2307 * but when e.g. out-of-window ACKs or packet duplication occurs, 2308 * they differ. Since neither occurs due to loss, TCP should really 2309 * ignore them. 2310 */ 2311 static inline int tcp_dupack_heurestics(struct tcp_sock *tp) 2312 { 2313 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2314 } 2315 2316 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb) 2317 { 2318 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto); 2319 } 2320 2321 static inline int tcp_head_timedout(struct sock *sk) 2322 { 2323 struct tcp_sock *tp = tcp_sk(sk); 2324 2325 return tp->packets_out && 2326 tcp_skb_timedout(sk, tcp_write_queue_head(sk)); 2327 } 2328 2329 /* Linux NewReno/SACK/FACK/ECN state machine. 2330 * -------------------------------------- 2331 * 2332 * "Open" Normal state, no dubious events, fast path. 2333 * "Disorder" In all the respects it is "Open", 2334 * but requires a bit more attention. It is entered when 2335 * we see some SACKs or dupacks. It is split of "Open" 2336 * mainly to move some processing from fast path to slow one. 2337 * "CWR" CWND was reduced due to some Congestion Notification event. 2338 * It can be ECN, ICMP source quench, local device congestion. 2339 * "Recovery" CWND was reduced, we are fast-retransmitting. 2340 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2341 * 2342 * tcp_fastretrans_alert() is entered: 2343 * - each incoming ACK, if state is not "Open" 2344 * - when arrived ACK is unusual, namely: 2345 * * SACK 2346 * * Duplicate ACK. 2347 * * ECN ECE. 2348 * 2349 * Counting packets in flight is pretty simple. 2350 * 2351 * in_flight = packets_out - left_out + retrans_out 2352 * 2353 * packets_out is SND.NXT-SND.UNA counted in packets. 2354 * 2355 * retrans_out is number of retransmitted segments. 2356 * 2357 * left_out is number of segments left network, but not ACKed yet. 2358 * 2359 * left_out = sacked_out + lost_out 2360 * 2361 * sacked_out: Packets, which arrived to receiver out of order 2362 * and hence not ACKed. With SACKs this number is simply 2363 * amount of SACKed data. Even without SACKs 2364 * it is easy to give pretty reliable estimate of this number, 2365 * counting duplicate ACKs. 2366 * 2367 * lost_out: Packets lost by network. TCP has no explicit 2368 * "loss notification" feedback from network (for now). 2369 * It means that this number can be only _guessed_. 2370 * Actually, it is the heuristics to predict lossage that 2371 * distinguishes different algorithms. 2372 * 2373 * F.e. after RTO, when all the queue is considered as lost, 2374 * lost_out = packets_out and in_flight = retrans_out. 2375 * 2376 * Essentially, we have now two algorithms counting 2377 * lost packets. 2378 * 2379 * FACK: It is the simplest heuristics. As soon as we decided 2380 * that something is lost, we decide that _all_ not SACKed 2381 * packets until the most forward SACK are lost. I.e. 2382 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2383 * It is absolutely correct estimate, if network does not reorder 2384 * packets. And it loses any connection to reality when reordering 2385 * takes place. We use FACK by default until reordering 2386 * is suspected on the path to this destination. 2387 * 2388 * NewReno: when Recovery is entered, we assume that one segment 2389 * is lost (classic Reno). While we are in Recovery and 2390 * a partial ACK arrives, we assume that one more packet 2391 * is lost (NewReno). This heuristics are the same in NewReno 2392 * and SACK. 2393 * 2394 * Imagine, that's all! Forget about all this shamanism about CWND inflation 2395 * deflation etc. CWND is real congestion window, never inflated, changes 2396 * only according to classic VJ rules. 2397 * 2398 * Really tricky (and requiring careful tuning) part of algorithm 2399 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2400 * The first determines the moment _when_ we should reduce CWND and, 2401 * hence, slow down forward transmission. In fact, it determines the moment 2402 * when we decide that hole is caused by loss, rather than by a reorder. 2403 * 2404 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2405 * holes, caused by lost packets. 2406 * 2407 * And the most logically complicated part of algorithm is undo 2408 * heuristics. We detect false retransmits due to both too early 2409 * fast retransmit (reordering) and underestimated RTO, analyzing 2410 * timestamps and D-SACKs. When we detect that some segments were 2411 * retransmitted by mistake and CWND reduction was wrong, we undo 2412 * window reduction and abort recovery phase. This logic is hidden 2413 * inside several functions named tcp_try_undo_<something>. 2414 */ 2415 2416 /* This function decides, when we should leave Disordered state 2417 * and enter Recovery phase, reducing congestion window. 2418 * 2419 * Main question: may we further continue forward transmission 2420 * with the same cwnd? 2421 */ 2422 static int tcp_time_to_recover(struct sock *sk) 2423 { 2424 struct tcp_sock *tp = tcp_sk(sk); 2425 __u32 packets_out; 2426 2427 /* Do not perform any recovery during F-RTO algorithm */ 2428 if (tp->frto_counter) 2429 return 0; 2430 2431 /* Trick#1: The loss is proven. */ 2432 if (tp->lost_out) 2433 return 1; 2434 2435 /* Not-A-Trick#2 : Classic rule... */ 2436 if (tcp_dupack_heurestics(tp) > tp->reordering) 2437 return 1; 2438 2439 /* Trick#3 : when we use RFC2988 timer restart, fast 2440 * retransmit can be triggered by timeout of queue head. 2441 */ 2442 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) 2443 return 1; 2444 2445 /* Trick#4: It is still not OK... But will it be useful to delay 2446 * recovery more? 2447 */ 2448 packets_out = tp->packets_out; 2449 if (packets_out <= tp->reordering && 2450 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 2451 !tcp_may_send_now(sk)) { 2452 /* We have nothing to send. This connection is limited 2453 * either by receiver window or by application. 2454 */ 2455 return 1; 2456 } 2457 2458 return 0; 2459 } 2460 2461 /* New heuristics: it is possible only after we switched to restart timer 2462 * each time when something is ACKed. Hence, we can detect timed out packets 2463 * during fast retransmit without falling to slow start. 2464 * 2465 * Usefulness of this as is very questionable, since we should know which of 2466 * the segments is the next to timeout which is relatively expensive to find 2467 * in general case unless we add some data structure just for that. The 2468 * current approach certainly won't find the right one too often and when it 2469 * finally does find _something_ it usually marks large part of the window 2470 * right away (because a retransmission with a larger timestamp blocks the 2471 * loop from advancing). -ij 2472 */ 2473 static void tcp_timeout_skbs(struct sock *sk) 2474 { 2475 struct tcp_sock *tp = tcp_sk(sk); 2476 struct sk_buff *skb; 2477 2478 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk)) 2479 return; 2480 2481 skb = tp->scoreboard_skb_hint; 2482 if (tp->scoreboard_skb_hint == NULL) 2483 skb = tcp_write_queue_head(sk); 2484 2485 tcp_for_write_queue_from(skb, sk) { 2486 if (skb == tcp_send_head(sk)) 2487 break; 2488 if (!tcp_skb_timedout(sk, skb)) 2489 break; 2490 2491 tcp_skb_mark_lost(tp, skb); 2492 } 2493 2494 tp->scoreboard_skb_hint = skb; 2495 2496 tcp_verify_left_out(tp); 2497 } 2498 2499 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is 2500 * is against sacked "cnt", otherwise it's against facked "cnt" 2501 */ 2502 static void tcp_mark_head_lost(struct sock *sk, int packets) 2503 { 2504 struct tcp_sock *tp = tcp_sk(sk); 2505 struct sk_buff *skb; 2506 int cnt, oldcnt; 2507 int err; 2508 unsigned int mss; 2509 2510 WARN_ON(packets > tp->packets_out); 2511 if (tp->lost_skb_hint) { 2512 skb = tp->lost_skb_hint; 2513 cnt = tp->lost_cnt_hint; 2514 } else { 2515 skb = tcp_write_queue_head(sk); 2516 cnt = 0; 2517 } 2518 2519 tcp_for_write_queue_from(skb, sk) { 2520 if (skb == tcp_send_head(sk)) 2521 break; 2522 /* TODO: do this better */ 2523 /* this is not the most efficient way to do this... */ 2524 tp->lost_skb_hint = skb; 2525 tp->lost_cnt_hint = cnt; 2526 2527 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq)) 2528 break; 2529 2530 oldcnt = cnt; 2531 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2532 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2533 cnt += tcp_skb_pcount(skb); 2534 2535 if (cnt > packets) { 2536 if (tcp_is_sack(tp) || (oldcnt >= packets)) 2537 break; 2538 2539 mss = skb_shinfo(skb)->gso_size; 2540 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss); 2541 if (err < 0) 2542 break; 2543 cnt = packets; 2544 } 2545 2546 tcp_skb_mark_lost(tp, skb); 2547 } 2548 tcp_verify_left_out(tp); 2549 } 2550 2551 /* Account newly detected lost packet(s) */ 2552 2553 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2554 { 2555 struct tcp_sock *tp = tcp_sk(sk); 2556 2557 if (tcp_is_reno(tp)) { 2558 tcp_mark_head_lost(sk, 1); 2559 } else if (tcp_is_fack(tp)) { 2560 int lost = tp->fackets_out - tp->reordering; 2561 if (lost <= 0) 2562 lost = 1; 2563 tcp_mark_head_lost(sk, lost); 2564 } else { 2565 int sacked_upto = tp->sacked_out - tp->reordering; 2566 if (sacked_upto < fast_rexmit) 2567 sacked_upto = fast_rexmit; 2568 tcp_mark_head_lost(sk, sacked_upto); 2569 } 2570 2571 tcp_timeout_skbs(sk); 2572 } 2573 2574 /* CWND moderation, preventing bursts due to too big ACKs 2575 * in dubious situations. 2576 */ 2577 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 2578 { 2579 tp->snd_cwnd = min(tp->snd_cwnd, 2580 tcp_packets_in_flight(tp) + tcp_max_burst(tp)); 2581 tp->snd_cwnd_stamp = tcp_time_stamp; 2582 } 2583 2584 /* Lower bound on congestion window is slow start threshold 2585 * unless congestion avoidance choice decides to overide it. 2586 */ 2587 static inline u32 tcp_cwnd_min(const struct sock *sk) 2588 { 2589 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 2590 2591 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh; 2592 } 2593 2594 /* Decrease cwnd each second ack. */ 2595 static void tcp_cwnd_down(struct sock *sk, int flag) 2596 { 2597 struct tcp_sock *tp = tcp_sk(sk); 2598 int decr = tp->snd_cwnd_cnt + 1; 2599 2600 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) || 2601 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) { 2602 tp->snd_cwnd_cnt = decr & 1; 2603 decr >>= 1; 2604 2605 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk)) 2606 tp->snd_cwnd -= decr; 2607 2608 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1); 2609 tp->snd_cwnd_stamp = tcp_time_stamp; 2610 } 2611 } 2612 2613 /* Nothing was retransmitted or returned timestamp is less 2614 * than timestamp of the first retransmission. 2615 */ 2616 static inline int tcp_packet_delayed(struct tcp_sock *tp) 2617 { 2618 return !tp->retrans_stamp || 2619 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2620 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp)); 2621 } 2622 2623 /* Undo procedures. */ 2624 2625 #if FASTRETRANS_DEBUG > 1 2626 static void DBGUNDO(struct sock *sk, const char *msg) 2627 { 2628 struct tcp_sock *tp = tcp_sk(sk); 2629 struct inet_sock *inet = inet_sk(sk); 2630 2631 if (sk->sk_family == AF_INET) { 2632 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2633 msg, 2634 &inet->daddr, ntohs(inet->dport), 2635 tp->snd_cwnd, tcp_left_out(tp), 2636 tp->snd_ssthresh, tp->prior_ssthresh, 2637 tp->packets_out); 2638 } 2639 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 2640 else if (sk->sk_family == AF_INET6) { 2641 struct ipv6_pinfo *np = inet6_sk(sk); 2642 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2643 msg, 2644 &np->daddr, ntohs(inet->dport), 2645 tp->snd_cwnd, tcp_left_out(tp), 2646 tp->snd_ssthresh, tp->prior_ssthresh, 2647 tp->packets_out); 2648 } 2649 #endif 2650 } 2651 #else 2652 #define DBGUNDO(x...) do { } while (0) 2653 #endif 2654 2655 static void tcp_undo_cwr(struct sock *sk, const int undo) 2656 { 2657 struct tcp_sock *tp = tcp_sk(sk); 2658 2659 if (tp->prior_ssthresh) { 2660 const struct inet_connection_sock *icsk = inet_csk(sk); 2661 2662 if (icsk->icsk_ca_ops->undo_cwnd) 2663 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2664 else 2665 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1); 2666 2667 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) { 2668 tp->snd_ssthresh = tp->prior_ssthresh; 2669 TCP_ECN_withdraw_cwr(tp); 2670 } 2671 } else { 2672 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 2673 } 2674 tcp_moderate_cwnd(tp); 2675 tp->snd_cwnd_stamp = tcp_time_stamp; 2676 } 2677 2678 static inline int tcp_may_undo(struct tcp_sock *tp) 2679 { 2680 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2681 } 2682 2683 /* People celebrate: "We love our President!" */ 2684 static int tcp_try_undo_recovery(struct sock *sk) 2685 { 2686 struct tcp_sock *tp = tcp_sk(sk); 2687 2688 if (tcp_may_undo(tp)) { 2689 int mib_idx; 2690 2691 /* Happy end! We did not retransmit anything 2692 * or our original transmission succeeded. 2693 */ 2694 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2695 tcp_undo_cwr(sk, 1); 2696 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2697 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2698 else 2699 mib_idx = LINUX_MIB_TCPFULLUNDO; 2700 2701 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2702 tp->undo_marker = 0; 2703 } 2704 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2705 /* Hold old state until something *above* high_seq 2706 * is ACKed. For Reno it is MUST to prevent false 2707 * fast retransmits (RFC2582). SACK TCP is safe. */ 2708 tcp_moderate_cwnd(tp); 2709 return 1; 2710 } 2711 tcp_set_ca_state(sk, TCP_CA_Open); 2712 return 0; 2713 } 2714 2715 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2716 static void tcp_try_undo_dsack(struct sock *sk) 2717 { 2718 struct tcp_sock *tp = tcp_sk(sk); 2719 2720 if (tp->undo_marker && !tp->undo_retrans) { 2721 DBGUNDO(sk, "D-SACK"); 2722 tcp_undo_cwr(sk, 1); 2723 tp->undo_marker = 0; 2724 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2725 } 2726 } 2727 2728 /* Undo during fast recovery after partial ACK. */ 2729 2730 static int tcp_try_undo_partial(struct sock *sk, int acked) 2731 { 2732 struct tcp_sock *tp = tcp_sk(sk); 2733 /* Partial ACK arrived. Force Hoe's retransmit. */ 2734 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering); 2735 2736 if (tcp_may_undo(tp)) { 2737 /* Plain luck! Hole if filled with delayed 2738 * packet, rather than with a retransmit. 2739 */ 2740 if (tp->retrans_out == 0) 2741 tp->retrans_stamp = 0; 2742 2743 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2744 2745 DBGUNDO(sk, "Hoe"); 2746 tcp_undo_cwr(sk, 0); 2747 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2748 2749 /* So... Do not make Hoe's retransmit yet. 2750 * If the first packet was delayed, the rest 2751 * ones are most probably delayed as well. 2752 */ 2753 failed = 0; 2754 } 2755 return failed; 2756 } 2757 2758 /* Undo during loss recovery after partial ACK. */ 2759 static int tcp_try_undo_loss(struct sock *sk) 2760 { 2761 struct tcp_sock *tp = tcp_sk(sk); 2762 2763 if (tcp_may_undo(tp)) { 2764 struct sk_buff *skb; 2765 tcp_for_write_queue(skb, sk) { 2766 if (skb == tcp_send_head(sk)) 2767 break; 2768 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2769 } 2770 2771 tcp_clear_all_retrans_hints(tp); 2772 2773 DBGUNDO(sk, "partial loss"); 2774 tp->lost_out = 0; 2775 tcp_undo_cwr(sk, 1); 2776 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2777 inet_csk(sk)->icsk_retransmits = 0; 2778 tp->undo_marker = 0; 2779 if (tcp_is_sack(tp)) 2780 tcp_set_ca_state(sk, TCP_CA_Open); 2781 return 1; 2782 } 2783 return 0; 2784 } 2785 2786 static inline void tcp_complete_cwr(struct sock *sk) 2787 { 2788 struct tcp_sock *tp = tcp_sk(sk); 2789 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 2790 tp->snd_cwnd_stamp = tcp_time_stamp; 2791 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2792 } 2793 2794 static void tcp_try_keep_open(struct sock *sk) 2795 { 2796 struct tcp_sock *tp = tcp_sk(sk); 2797 int state = TCP_CA_Open; 2798 2799 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker) 2800 state = TCP_CA_Disorder; 2801 2802 if (inet_csk(sk)->icsk_ca_state != state) { 2803 tcp_set_ca_state(sk, state); 2804 tp->high_seq = tp->snd_nxt; 2805 } 2806 } 2807 2808 static void tcp_try_to_open(struct sock *sk, int flag) 2809 { 2810 struct tcp_sock *tp = tcp_sk(sk); 2811 2812 tcp_verify_left_out(tp); 2813 2814 if (!tp->frto_counter && tp->retrans_out == 0) 2815 tp->retrans_stamp = 0; 2816 2817 if (flag & FLAG_ECE) 2818 tcp_enter_cwr(sk, 1); 2819 2820 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2821 tcp_try_keep_open(sk); 2822 tcp_moderate_cwnd(tp); 2823 } else { 2824 tcp_cwnd_down(sk, flag); 2825 } 2826 } 2827 2828 static void tcp_mtup_probe_failed(struct sock *sk) 2829 { 2830 struct inet_connection_sock *icsk = inet_csk(sk); 2831 2832 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2833 icsk->icsk_mtup.probe_size = 0; 2834 } 2835 2836 static void tcp_mtup_probe_success(struct sock *sk) 2837 { 2838 struct tcp_sock *tp = tcp_sk(sk); 2839 struct inet_connection_sock *icsk = inet_csk(sk); 2840 2841 /* FIXME: breaks with very large cwnd */ 2842 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2843 tp->snd_cwnd = tp->snd_cwnd * 2844 tcp_mss_to_mtu(sk, tp->mss_cache) / 2845 icsk->icsk_mtup.probe_size; 2846 tp->snd_cwnd_cnt = 0; 2847 tp->snd_cwnd_stamp = tcp_time_stamp; 2848 tp->rcv_ssthresh = tcp_current_ssthresh(sk); 2849 2850 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2851 icsk->icsk_mtup.probe_size = 0; 2852 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2853 } 2854 2855 /* Do a simple retransmit without using the backoff mechanisms in 2856 * tcp_timer. This is used for path mtu discovery. 2857 * The socket is already locked here. 2858 */ 2859 void tcp_simple_retransmit(struct sock *sk) 2860 { 2861 const struct inet_connection_sock *icsk = inet_csk(sk); 2862 struct tcp_sock *tp = tcp_sk(sk); 2863 struct sk_buff *skb; 2864 unsigned int mss = tcp_current_mss(sk); 2865 u32 prior_lost = tp->lost_out; 2866 2867 tcp_for_write_queue(skb, sk) { 2868 if (skb == tcp_send_head(sk)) 2869 break; 2870 if (tcp_skb_seglen(skb) > mss && 2871 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2872 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2873 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2874 tp->retrans_out -= tcp_skb_pcount(skb); 2875 } 2876 tcp_skb_mark_lost_uncond_verify(tp, skb); 2877 } 2878 } 2879 2880 tcp_clear_retrans_hints_partial(tp); 2881 2882 if (prior_lost == tp->lost_out) 2883 return; 2884 2885 if (tcp_is_reno(tp)) 2886 tcp_limit_reno_sacked(tp); 2887 2888 tcp_verify_left_out(tp); 2889 2890 /* Don't muck with the congestion window here. 2891 * Reason is that we do not increase amount of _data_ 2892 * in network, but units changed and effective 2893 * cwnd/ssthresh really reduced now. 2894 */ 2895 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2896 tp->high_seq = tp->snd_nxt; 2897 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2898 tp->prior_ssthresh = 0; 2899 tp->undo_marker = 0; 2900 tcp_set_ca_state(sk, TCP_CA_Loss); 2901 } 2902 tcp_xmit_retransmit_queue(sk); 2903 } 2904 2905 /* Process an event, which can update packets-in-flight not trivially. 2906 * Main goal of this function is to calculate new estimate for left_out, 2907 * taking into account both packets sitting in receiver's buffer and 2908 * packets lost by network. 2909 * 2910 * Besides that it does CWND reduction, when packet loss is detected 2911 * and changes state of machine. 2912 * 2913 * It does _not_ decide what to send, it is made in function 2914 * tcp_xmit_retransmit_queue(). 2915 */ 2916 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag) 2917 { 2918 struct inet_connection_sock *icsk = inet_csk(sk); 2919 struct tcp_sock *tp = tcp_sk(sk); 2920 int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 2921 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2922 (tcp_fackets_out(tp) > tp->reordering)); 2923 int fast_rexmit = 0, mib_idx; 2924 2925 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2926 tp->sacked_out = 0; 2927 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2928 tp->fackets_out = 0; 2929 2930 /* Now state machine starts. 2931 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2932 if (flag & FLAG_ECE) 2933 tp->prior_ssthresh = 0; 2934 2935 /* B. In all the states check for reneging SACKs. */ 2936 if (tcp_check_sack_reneging(sk, flag)) 2937 return; 2938 2939 /* C. Process data loss notification, provided it is valid. */ 2940 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) && 2941 before(tp->snd_una, tp->high_seq) && 2942 icsk->icsk_ca_state != TCP_CA_Open && 2943 tp->fackets_out > tp->reordering) { 2944 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering); 2945 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS); 2946 } 2947 2948 /* D. Check consistency of the current state. */ 2949 tcp_verify_left_out(tp); 2950 2951 /* E. Check state exit conditions. State can be terminated 2952 * when high_seq is ACKed. */ 2953 if (icsk->icsk_ca_state == TCP_CA_Open) { 2954 WARN_ON(tp->retrans_out != 0); 2955 tp->retrans_stamp = 0; 2956 } else if (!before(tp->snd_una, tp->high_seq)) { 2957 switch (icsk->icsk_ca_state) { 2958 case TCP_CA_Loss: 2959 icsk->icsk_retransmits = 0; 2960 if (tcp_try_undo_recovery(sk)) 2961 return; 2962 break; 2963 2964 case TCP_CA_CWR: 2965 /* CWR is to be held something *above* high_seq 2966 * is ACKed for CWR bit to reach receiver. */ 2967 if (tp->snd_una != tp->high_seq) { 2968 tcp_complete_cwr(sk); 2969 tcp_set_ca_state(sk, TCP_CA_Open); 2970 } 2971 break; 2972 2973 case TCP_CA_Disorder: 2974 tcp_try_undo_dsack(sk); 2975 if (!tp->undo_marker || 2976 /* For SACK case do not Open to allow to undo 2977 * catching for all duplicate ACKs. */ 2978 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) { 2979 tp->undo_marker = 0; 2980 tcp_set_ca_state(sk, TCP_CA_Open); 2981 } 2982 break; 2983 2984 case TCP_CA_Recovery: 2985 if (tcp_is_reno(tp)) 2986 tcp_reset_reno_sack(tp); 2987 if (tcp_try_undo_recovery(sk)) 2988 return; 2989 tcp_complete_cwr(sk); 2990 break; 2991 } 2992 } 2993 2994 /* F. Process state. */ 2995 switch (icsk->icsk_ca_state) { 2996 case TCP_CA_Recovery: 2997 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2998 if (tcp_is_reno(tp) && is_dupack) 2999 tcp_add_reno_sack(sk); 3000 } else 3001 do_lost = tcp_try_undo_partial(sk, pkts_acked); 3002 break; 3003 case TCP_CA_Loss: 3004 if (flag & FLAG_DATA_ACKED) 3005 icsk->icsk_retransmits = 0; 3006 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED) 3007 tcp_reset_reno_sack(tp); 3008 if (!tcp_try_undo_loss(sk)) { 3009 tcp_moderate_cwnd(tp); 3010 tcp_xmit_retransmit_queue(sk); 3011 return; 3012 } 3013 if (icsk->icsk_ca_state != TCP_CA_Open) 3014 return; 3015 /* Loss is undone; fall through to processing in Open state. */ 3016 default: 3017 if (tcp_is_reno(tp)) { 3018 if (flag & FLAG_SND_UNA_ADVANCED) 3019 tcp_reset_reno_sack(tp); 3020 if (is_dupack) 3021 tcp_add_reno_sack(sk); 3022 } 3023 3024 if (icsk->icsk_ca_state == TCP_CA_Disorder) 3025 tcp_try_undo_dsack(sk); 3026 3027 if (!tcp_time_to_recover(sk)) { 3028 tcp_try_to_open(sk, flag); 3029 return; 3030 } 3031 3032 /* MTU probe failure: don't reduce cwnd */ 3033 if (icsk->icsk_ca_state < TCP_CA_CWR && 3034 icsk->icsk_mtup.probe_size && 3035 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3036 tcp_mtup_probe_failed(sk); 3037 /* Restores the reduction we did in tcp_mtup_probe() */ 3038 tp->snd_cwnd++; 3039 tcp_simple_retransmit(sk); 3040 return; 3041 } 3042 3043 /* Otherwise enter Recovery state */ 3044 3045 if (tcp_is_reno(tp)) 3046 mib_idx = LINUX_MIB_TCPRENORECOVERY; 3047 else 3048 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 3049 3050 NET_INC_STATS_BH(sock_net(sk), mib_idx); 3051 3052 tp->high_seq = tp->snd_nxt; 3053 tp->prior_ssthresh = 0; 3054 tp->undo_marker = tp->snd_una; 3055 tp->undo_retrans = tp->retrans_out; 3056 3057 if (icsk->icsk_ca_state < TCP_CA_CWR) { 3058 if (!(flag & FLAG_ECE)) 3059 tp->prior_ssthresh = tcp_current_ssthresh(sk); 3060 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 3061 TCP_ECN_queue_cwr(tp); 3062 } 3063 3064 tp->bytes_acked = 0; 3065 tp->snd_cwnd_cnt = 0; 3066 tcp_set_ca_state(sk, TCP_CA_Recovery); 3067 fast_rexmit = 1; 3068 } 3069 3070 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk))) 3071 tcp_update_scoreboard(sk, fast_rexmit); 3072 tcp_cwnd_down(sk, flag); 3073 tcp_xmit_retransmit_queue(sk); 3074 } 3075 3076 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt) 3077 { 3078 tcp_rtt_estimator(sk, seq_rtt); 3079 tcp_set_rto(sk); 3080 inet_csk(sk)->icsk_backoff = 0; 3081 } 3082 3083 /* Read draft-ietf-tcplw-high-performance before mucking 3084 * with this code. (Supersedes RFC1323) 3085 */ 3086 static void tcp_ack_saw_tstamp(struct sock *sk, int flag) 3087 { 3088 /* RTTM Rule: A TSecr value received in a segment is used to 3089 * update the averaged RTT measurement only if the segment 3090 * acknowledges some new data, i.e., only if it advances the 3091 * left edge of the send window. 3092 * 3093 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3094 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru> 3095 * 3096 * Changed: reset backoff as soon as we see the first valid sample. 3097 * If we do not, we get strongly overestimated rto. With timestamps 3098 * samples are accepted even from very old segments: f.e., when rtt=1 3099 * increases to 8, we retransmit 5 times and after 8 seconds delayed 3100 * answer arrives rto becomes 120 seconds! If at least one of segments 3101 * in window is lost... Voila. --ANK (010210) 3102 */ 3103 struct tcp_sock *tp = tcp_sk(sk); 3104 3105 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr); 3106 } 3107 3108 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag) 3109 { 3110 /* We don't have a timestamp. Can only use 3111 * packets that are not retransmitted to determine 3112 * rtt estimates. Also, we must not reset the 3113 * backoff for rto until we get a non-retransmitted 3114 * packet. This allows us to deal with a situation 3115 * where the network delay has increased suddenly. 3116 * I.e. Karn's algorithm. (SIGCOMM '87, p5.) 3117 */ 3118 3119 if (flag & FLAG_RETRANS_DATA_ACKED) 3120 return; 3121 3122 tcp_valid_rtt_meas(sk, seq_rtt); 3123 } 3124 3125 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag, 3126 const s32 seq_rtt) 3127 { 3128 const struct tcp_sock *tp = tcp_sk(sk); 3129 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */ 3130 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3131 tcp_ack_saw_tstamp(sk, flag); 3132 else if (seq_rtt >= 0) 3133 tcp_ack_no_tstamp(sk, seq_rtt, flag); 3134 } 3135 3136 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight) 3137 { 3138 const struct inet_connection_sock *icsk = inet_csk(sk); 3139 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight); 3140 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 3141 } 3142 3143 /* Restart timer after forward progress on connection. 3144 * RFC2988 recommends to restart timer to now+rto. 3145 */ 3146 static void tcp_rearm_rto(struct sock *sk) 3147 { 3148 struct tcp_sock *tp = tcp_sk(sk); 3149 3150 if (!tp->packets_out) { 3151 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3152 } else { 3153 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3154 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3155 } 3156 } 3157 3158 /* If we get here, the whole TSO packet has not been acked. */ 3159 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3160 { 3161 struct tcp_sock *tp = tcp_sk(sk); 3162 u32 packets_acked; 3163 3164 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3165 3166 packets_acked = tcp_skb_pcount(skb); 3167 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3168 return 0; 3169 packets_acked -= tcp_skb_pcount(skb); 3170 3171 if (packets_acked) { 3172 BUG_ON(tcp_skb_pcount(skb) == 0); 3173 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3174 } 3175 3176 return packets_acked; 3177 } 3178 3179 /* Remove acknowledged frames from the retransmission queue. If our packet 3180 * is before the ack sequence we can discard it as it's confirmed to have 3181 * arrived at the other end. 3182 */ 3183 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3184 u32 prior_snd_una) 3185 { 3186 struct tcp_sock *tp = tcp_sk(sk); 3187 const struct inet_connection_sock *icsk = inet_csk(sk); 3188 struct sk_buff *skb; 3189 u32 now = tcp_time_stamp; 3190 int fully_acked = 1; 3191 int flag = 0; 3192 u32 pkts_acked = 0; 3193 u32 reord = tp->packets_out; 3194 u32 prior_sacked = tp->sacked_out; 3195 s32 seq_rtt = -1; 3196 s32 ca_seq_rtt = -1; 3197 ktime_t last_ackt = net_invalid_timestamp(); 3198 3199 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3200 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3201 u32 acked_pcount; 3202 u8 sacked = scb->sacked; 3203 3204 /* Determine how many packets and what bytes were acked, tso and else */ 3205 if (after(scb->end_seq, tp->snd_una)) { 3206 if (tcp_skb_pcount(skb) == 1 || 3207 !after(tp->snd_una, scb->seq)) 3208 break; 3209 3210 acked_pcount = tcp_tso_acked(sk, skb); 3211 if (!acked_pcount) 3212 break; 3213 3214 fully_acked = 0; 3215 } else { 3216 acked_pcount = tcp_skb_pcount(skb); 3217 } 3218 3219 if (sacked & TCPCB_RETRANS) { 3220 if (sacked & TCPCB_SACKED_RETRANS) 3221 tp->retrans_out -= acked_pcount; 3222 flag |= FLAG_RETRANS_DATA_ACKED; 3223 ca_seq_rtt = -1; 3224 seq_rtt = -1; 3225 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1)) 3226 flag |= FLAG_NONHEAD_RETRANS_ACKED; 3227 } else { 3228 ca_seq_rtt = now - scb->when; 3229 last_ackt = skb->tstamp; 3230 if (seq_rtt < 0) { 3231 seq_rtt = ca_seq_rtt; 3232 } 3233 if (!(sacked & TCPCB_SACKED_ACKED)) 3234 reord = min(pkts_acked, reord); 3235 } 3236 3237 if (sacked & TCPCB_SACKED_ACKED) 3238 tp->sacked_out -= acked_pcount; 3239 if (sacked & TCPCB_LOST) 3240 tp->lost_out -= acked_pcount; 3241 3242 tp->packets_out -= acked_pcount; 3243 pkts_acked += acked_pcount; 3244 3245 /* Initial outgoing SYN's get put onto the write_queue 3246 * just like anything else we transmit. It is not 3247 * true data, and if we misinform our callers that 3248 * this ACK acks real data, we will erroneously exit 3249 * connection startup slow start one packet too 3250 * quickly. This is severely frowned upon behavior. 3251 */ 3252 if (!(scb->flags & TCPCB_FLAG_SYN)) { 3253 flag |= FLAG_DATA_ACKED; 3254 } else { 3255 flag |= FLAG_SYN_ACKED; 3256 tp->retrans_stamp = 0; 3257 } 3258 3259 if (!fully_acked) 3260 break; 3261 3262 tcp_unlink_write_queue(skb, sk); 3263 sk_wmem_free_skb(sk, skb); 3264 tp->scoreboard_skb_hint = NULL; 3265 if (skb == tp->retransmit_skb_hint) 3266 tp->retransmit_skb_hint = NULL; 3267 if (skb == tp->lost_skb_hint) 3268 tp->lost_skb_hint = NULL; 3269 } 3270 3271 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3272 tp->snd_up = tp->snd_una; 3273 3274 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3275 flag |= FLAG_SACK_RENEGING; 3276 3277 if (flag & FLAG_ACKED) { 3278 const struct tcp_congestion_ops *ca_ops 3279 = inet_csk(sk)->icsk_ca_ops; 3280 3281 if (unlikely(icsk->icsk_mtup.probe_size && 3282 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3283 tcp_mtup_probe_success(sk); 3284 } 3285 3286 tcp_ack_update_rtt(sk, flag, seq_rtt); 3287 tcp_rearm_rto(sk); 3288 3289 if (tcp_is_reno(tp)) { 3290 tcp_remove_reno_sacks(sk, pkts_acked); 3291 } else { 3292 int delta; 3293 3294 /* Non-retransmitted hole got filled? That's reordering */ 3295 if (reord < prior_fackets) 3296 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3297 3298 delta = tcp_is_fack(tp) ? pkts_acked : 3299 prior_sacked - tp->sacked_out; 3300 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3301 } 3302 3303 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3304 3305 if (ca_ops->pkts_acked) { 3306 s32 rtt_us = -1; 3307 3308 /* Is the ACK triggering packet unambiguous? */ 3309 if (!(flag & FLAG_RETRANS_DATA_ACKED)) { 3310 /* High resolution needed and available? */ 3311 if (ca_ops->flags & TCP_CONG_RTT_STAMP && 3312 !ktime_equal(last_ackt, 3313 net_invalid_timestamp())) 3314 rtt_us = ktime_us_delta(ktime_get_real(), 3315 last_ackt); 3316 else if (ca_seq_rtt > 0) 3317 rtt_us = jiffies_to_usecs(ca_seq_rtt); 3318 } 3319 3320 ca_ops->pkts_acked(sk, pkts_acked, rtt_us); 3321 } 3322 } 3323 3324 #if FASTRETRANS_DEBUG > 0 3325 WARN_ON((int)tp->sacked_out < 0); 3326 WARN_ON((int)tp->lost_out < 0); 3327 WARN_ON((int)tp->retrans_out < 0); 3328 if (!tp->packets_out && tcp_is_sack(tp)) { 3329 icsk = inet_csk(sk); 3330 if (tp->lost_out) { 3331 printk(KERN_DEBUG "Leak l=%u %d\n", 3332 tp->lost_out, icsk->icsk_ca_state); 3333 tp->lost_out = 0; 3334 } 3335 if (tp->sacked_out) { 3336 printk(KERN_DEBUG "Leak s=%u %d\n", 3337 tp->sacked_out, icsk->icsk_ca_state); 3338 tp->sacked_out = 0; 3339 } 3340 if (tp->retrans_out) { 3341 printk(KERN_DEBUG "Leak r=%u %d\n", 3342 tp->retrans_out, icsk->icsk_ca_state); 3343 tp->retrans_out = 0; 3344 } 3345 } 3346 #endif 3347 return flag; 3348 } 3349 3350 static void tcp_ack_probe(struct sock *sk) 3351 { 3352 const struct tcp_sock *tp = tcp_sk(sk); 3353 struct inet_connection_sock *icsk = inet_csk(sk); 3354 3355 /* Was it a usable window open? */ 3356 3357 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3358 icsk->icsk_backoff = 0; 3359 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3360 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3361 * This function is not for random using! 3362 */ 3363 } else { 3364 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3365 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 3366 TCP_RTO_MAX); 3367 } 3368 } 3369 3370 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag) 3371 { 3372 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3373 inet_csk(sk)->icsk_ca_state != TCP_CA_Open); 3374 } 3375 3376 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3377 { 3378 const struct tcp_sock *tp = tcp_sk(sk); 3379 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) && 3380 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR)); 3381 } 3382 3383 /* Check that window update is acceptable. 3384 * The function assumes that snd_una<=ack<=snd_next. 3385 */ 3386 static inline int tcp_may_update_window(const struct tcp_sock *tp, 3387 const u32 ack, const u32 ack_seq, 3388 const u32 nwin) 3389 { 3390 return (after(ack, tp->snd_una) || 3391 after(ack_seq, tp->snd_wl1) || 3392 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd)); 3393 } 3394 3395 /* Update our send window. 3396 * 3397 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3398 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3399 */ 3400 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack, 3401 u32 ack_seq) 3402 { 3403 struct tcp_sock *tp = tcp_sk(sk); 3404 int flag = 0; 3405 u32 nwin = ntohs(tcp_hdr(skb)->window); 3406 3407 if (likely(!tcp_hdr(skb)->syn)) 3408 nwin <<= tp->rx_opt.snd_wscale; 3409 3410 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3411 flag |= FLAG_WIN_UPDATE; 3412 tcp_update_wl(tp, ack_seq); 3413 3414 if (tp->snd_wnd != nwin) { 3415 tp->snd_wnd = nwin; 3416 3417 /* Note, it is the only place, where 3418 * fast path is recovered for sending TCP. 3419 */ 3420 tp->pred_flags = 0; 3421 tcp_fast_path_check(sk); 3422 3423 if (nwin > tp->max_window) { 3424 tp->max_window = nwin; 3425 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3426 } 3427 } 3428 } 3429 3430 tp->snd_una = ack; 3431 3432 return flag; 3433 } 3434 3435 /* A very conservative spurious RTO response algorithm: reduce cwnd and 3436 * continue in congestion avoidance. 3437 */ 3438 static void tcp_conservative_spur_to_response(struct tcp_sock *tp) 3439 { 3440 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 3441 tp->snd_cwnd_cnt = 0; 3442 tp->bytes_acked = 0; 3443 TCP_ECN_queue_cwr(tp); 3444 tcp_moderate_cwnd(tp); 3445 } 3446 3447 /* A conservative spurious RTO response algorithm: reduce cwnd using 3448 * rate halving and continue in congestion avoidance. 3449 */ 3450 static void tcp_ratehalving_spur_to_response(struct sock *sk) 3451 { 3452 tcp_enter_cwr(sk, 0); 3453 } 3454 3455 static void tcp_undo_spur_to_response(struct sock *sk, int flag) 3456 { 3457 if (flag & FLAG_ECE) 3458 tcp_ratehalving_spur_to_response(sk); 3459 else 3460 tcp_undo_cwr(sk, 1); 3461 } 3462 3463 /* F-RTO spurious RTO detection algorithm (RFC4138) 3464 * 3465 * F-RTO affects during two new ACKs following RTO (well, almost, see inline 3466 * comments). State (ACK number) is kept in frto_counter. When ACK advances 3467 * window (but not to or beyond highest sequence sent before RTO): 3468 * On First ACK, send two new segments out. 3469 * On Second ACK, RTO was likely spurious. Do spurious response (response 3470 * algorithm is not part of the F-RTO detection algorithm 3471 * given in RFC4138 but can be selected separately). 3472 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss 3473 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding 3474 * of Nagle, this is done using frto_counter states 2 and 3, when a new data 3475 * segment of any size sent during F-RTO, state 2 is upgraded to 3. 3476 * 3477 * Rationale: if the RTO was spurious, new ACKs should arrive from the 3478 * original window even after we transmit two new data segments. 3479 * 3480 * SACK version: 3481 * on first step, wait until first cumulative ACK arrives, then move to 3482 * the second step. In second step, the next ACK decides. 3483 * 3484 * F-RTO is implemented (mainly) in four functions: 3485 * - tcp_use_frto() is used to determine if TCP is can use F-RTO 3486 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is 3487 * called when tcp_use_frto() showed green light 3488 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm 3489 * - tcp_enter_frto_loss() is called if there is not enough evidence 3490 * to prove that the RTO is indeed spurious. It transfers the control 3491 * from F-RTO to the conventional RTO recovery 3492 */ 3493 static int tcp_process_frto(struct sock *sk, int flag) 3494 { 3495 struct tcp_sock *tp = tcp_sk(sk); 3496 3497 tcp_verify_left_out(tp); 3498 3499 /* Duplicate the behavior from Loss state (fastretrans_alert) */ 3500 if (flag & FLAG_DATA_ACKED) 3501 inet_csk(sk)->icsk_retransmits = 0; 3502 3503 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) || 3504 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED))) 3505 tp->undo_marker = 0; 3506 3507 if (!before(tp->snd_una, tp->frto_highmark)) { 3508 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag); 3509 return 1; 3510 } 3511 3512 if (!tcp_is_sackfrto(tp)) { 3513 /* RFC4138 shortcoming in step 2; should also have case c): 3514 * ACK isn't duplicate nor advances window, e.g., opposite dir 3515 * data, winupdate 3516 */ 3517 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP)) 3518 return 1; 3519 3520 if (!(flag & FLAG_DATA_ACKED)) { 3521 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3), 3522 flag); 3523 return 1; 3524 } 3525 } else { 3526 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) { 3527 /* Prevent sending of new data. */ 3528 tp->snd_cwnd = min(tp->snd_cwnd, 3529 tcp_packets_in_flight(tp)); 3530 return 1; 3531 } 3532 3533 if ((tp->frto_counter >= 2) && 3534 (!(flag & FLAG_FORWARD_PROGRESS) || 3535 ((flag & FLAG_DATA_SACKED) && 3536 !(flag & FLAG_ONLY_ORIG_SACKED)))) { 3537 /* RFC4138 shortcoming (see comment above) */ 3538 if (!(flag & FLAG_FORWARD_PROGRESS) && 3539 (flag & FLAG_NOT_DUP)) 3540 return 1; 3541 3542 tcp_enter_frto_loss(sk, 3, flag); 3543 return 1; 3544 } 3545 } 3546 3547 if (tp->frto_counter == 1) { 3548 /* tcp_may_send_now needs to see updated state */ 3549 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2; 3550 tp->frto_counter = 2; 3551 3552 if (!tcp_may_send_now(sk)) 3553 tcp_enter_frto_loss(sk, 2, flag); 3554 3555 return 1; 3556 } else { 3557 switch (sysctl_tcp_frto_response) { 3558 case 2: 3559 tcp_undo_spur_to_response(sk, flag); 3560 break; 3561 case 1: 3562 tcp_conservative_spur_to_response(tp); 3563 break; 3564 default: 3565 tcp_ratehalving_spur_to_response(sk); 3566 break; 3567 } 3568 tp->frto_counter = 0; 3569 tp->undo_marker = 0; 3570 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS); 3571 } 3572 return 0; 3573 } 3574 3575 /* This routine deals with incoming acks, but not outgoing ones. */ 3576 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag) 3577 { 3578 struct inet_connection_sock *icsk = inet_csk(sk); 3579 struct tcp_sock *tp = tcp_sk(sk); 3580 u32 prior_snd_una = tp->snd_una; 3581 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3582 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3583 u32 prior_in_flight; 3584 u32 prior_fackets; 3585 int prior_packets; 3586 int frto_cwnd = 0; 3587 3588 /* If the ack is older than previous acks 3589 * then we can probably ignore it. 3590 */ 3591 if (before(ack, prior_snd_una)) 3592 goto old_ack; 3593 3594 /* If the ack includes data we haven't sent yet, discard 3595 * this segment (RFC793 Section 3.9). 3596 */ 3597 if (after(ack, tp->snd_nxt)) 3598 goto invalid_ack; 3599 3600 if (after(ack, prior_snd_una)) 3601 flag |= FLAG_SND_UNA_ADVANCED; 3602 3603 if (sysctl_tcp_abc) { 3604 if (icsk->icsk_ca_state < TCP_CA_CWR) 3605 tp->bytes_acked += ack - prior_snd_una; 3606 else if (icsk->icsk_ca_state == TCP_CA_Loss) 3607 /* we assume just one segment left network */ 3608 tp->bytes_acked += min(ack - prior_snd_una, 3609 tp->mss_cache); 3610 } 3611 3612 prior_fackets = tp->fackets_out; 3613 prior_in_flight = tcp_packets_in_flight(tp); 3614 3615 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3616 /* Window is constant, pure forward advance. 3617 * No more checks are required. 3618 * Note, we use the fact that SND.UNA>=SND.WL2. 3619 */ 3620 tcp_update_wl(tp, ack_seq); 3621 tp->snd_una = ack; 3622 flag |= FLAG_WIN_UPDATE; 3623 3624 tcp_ca_event(sk, CA_EVENT_FAST_ACK); 3625 3626 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS); 3627 } else { 3628 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3629 flag |= FLAG_DATA; 3630 else 3631 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3632 3633 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3634 3635 if (TCP_SKB_CB(skb)->sacked) 3636 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3637 3638 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb))) 3639 flag |= FLAG_ECE; 3640 3641 tcp_ca_event(sk, CA_EVENT_SLOW_ACK); 3642 } 3643 3644 /* We passed data and got it acked, remove any soft error 3645 * log. Something worked... 3646 */ 3647 sk->sk_err_soft = 0; 3648 icsk->icsk_probes_out = 0; 3649 tp->rcv_tstamp = tcp_time_stamp; 3650 prior_packets = tp->packets_out; 3651 if (!prior_packets) 3652 goto no_queue; 3653 3654 /* See if we can take anything off of the retransmit queue. */ 3655 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una); 3656 3657 if (tp->frto_counter) 3658 frto_cwnd = tcp_process_frto(sk, flag); 3659 /* Guarantee sacktag reordering detection against wrap-arounds */ 3660 if (before(tp->frto_highmark, tp->snd_una)) 3661 tp->frto_highmark = 0; 3662 3663 if (tcp_ack_is_dubious(sk, flag)) { 3664 /* Advance CWND, if state allows this. */ 3665 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd && 3666 tcp_may_raise_cwnd(sk, flag)) 3667 tcp_cong_avoid(sk, ack, prior_in_flight); 3668 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, 3669 flag); 3670 } else { 3671 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd) 3672 tcp_cong_avoid(sk, ack, prior_in_flight); 3673 } 3674 3675 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3676 dst_confirm(sk->sk_dst_cache); 3677 3678 return 1; 3679 3680 no_queue: 3681 /* If this ack opens up a zero window, clear backoff. It was 3682 * being used to time the probes, and is probably far higher than 3683 * it needs to be for normal retransmission. 3684 */ 3685 if (tcp_send_head(sk)) 3686 tcp_ack_probe(sk); 3687 return 1; 3688 3689 invalid_ack: 3690 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3691 return -1; 3692 3693 old_ack: 3694 if (TCP_SKB_CB(skb)->sacked) { 3695 tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3696 if (icsk->icsk_ca_state == TCP_CA_Open) 3697 tcp_try_keep_open(sk); 3698 } 3699 3700 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3701 return 0; 3702 } 3703 3704 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3705 * But, this can also be called on packets in the established flow when 3706 * the fast version below fails. 3707 */ 3708 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, 3709 int estab) 3710 { 3711 unsigned char *ptr; 3712 struct tcphdr *th = tcp_hdr(skb); 3713 int length = (th->doff * 4) - sizeof(struct tcphdr); 3714 3715 ptr = (unsigned char *)(th + 1); 3716 opt_rx->saw_tstamp = 0; 3717 3718 while (length > 0) { 3719 int opcode = *ptr++; 3720 int opsize; 3721 3722 switch (opcode) { 3723 case TCPOPT_EOL: 3724 return; 3725 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3726 length--; 3727 continue; 3728 default: 3729 opsize = *ptr++; 3730 if (opsize < 2) /* "silly options" */ 3731 return; 3732 if (opsize > length) 3733 return; /* don't parse partial options */ 3734 switch (opcode) { 3735 case TCPOPT_MSS: 3736 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3737 u16 in_mss = get_unaligned_be16(ptr); 3738 if (in_mss) { 3739 if (opt_rx->user_mss && 3740 opt_rx->user_mss < in_mss) 3741 in_mss = opt_rx->user_mss; 3742 opt_rx->mss_clamp = in_mss; 3743 } 3744 } 3745 break; 3746 case TCPOPT_WINDOW: 3747 if (opsize == TCPOLEN_WINDOW && th->syn && 3748 !estab && sysctl_tcp_window_scaling) { 3749 __u8 snd_wscale = *(__u8 *)ptr; 3750 opt_rx->wscale_ok = 1; 3751 if (snd_wscale > 14) { 3752 if (net_ratelimit()) 3753 printk(KERN_INFO "tcp_parse_options: Illegal window " 3754 "scaling value %d >14 received.\n", 3755 snd_wscale); 3756 snd_wscale = 14; 3757 } 3758 opt_rx->snd_wscale = snd_wscale; 3759 } 3760 break; 3761 case TCPOPT_TIMESTAMP: 3762 if ((opsize == TCPOLEN_TIMESTAMP) && 3763 ((estab && opt_rx->tstamp_ok) || 3764 (!estab && sysctl_tcp_timestamps))) { 3765 opt_rx->saw_tstamp = 1; 3766 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3767 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3768 } 3769 break; 3770 case TCPOPT_SACK_PERM: 3771 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3772 !estab && sysctl_tcp_sack) { 3773 opt_rx->sack_ok = 1; 3774 tcp_sack_reset(opt_rx); 3775 } 3776 break; 3777 3778 case TCPOPT_SACK: 3779 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3780 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3781 opt_rx->sack_ok) { 3782 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3783 } 3784 break; 3785 #ifdef CONFIG_TCP_MD5SIG 3786 case TCPOPT_MD5SIG: 3787 /* 3788 * The MD5 Hash has already been 3789 * checked (see tcp_v{4,6}_do_rcv()). 3790 */ 3791 break; 3792 #endif 3793 } 3794 3795 ptr += opsize-2; 3796 length -= opsize; 3797 } 3798 } 3799 } 3800 3801 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th) 3802 { 3803 __be32 *ptr = (__be32 *)(th + 1); 3804 3805 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3806 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3807 tp->rx_opt.saw_tstamp = 1; 3808 ++ptr; 3809 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3810 ++ptr; 3811 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 3812 return 1; 3813 } 3814 return 0; 3815 } 3816 3817 /* Fast parse options. This hopes to only see timestamps. 3818 * If it is wrong it falls back on tcp_parse_options(). 3819 */ 3820 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th, 3821 struct tcp_sock *tp) 3822 { 3823 if (th->doff == sizeof(struct tcphdr) >> 2) { 3824 tp->rx_opt.saw_tstamp = 0; 3825 return 0; 3826 } else if (tp->rx_opt.tstamp_ok && 3827 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) { 3828 if (tcp_parse_aligned_timestamp(tp, th)) 3829 return 1; 3830 } 3831 tcp_parse_options(skb, &tp->rx_opt, 1); 3832 return 1; 3833 } 3834 3835 #ifdef CONFIG_TCP_MD5SIG 3836 /* 3837 * Parse MD5 Signature option 3838 */ 3839 u8 *tcp_parse_md5sig_option(struct tcphdr *th) 3840 { 3841 int length = (th->doff << 2) - sizeof (*th); 3842 u8 *ptr = (u8*)(th + 1); 3843 3844 /* If the TCP option is too short, we can short cut */ 3845 if (length < TCPOLEN_MD5SIG) 3846 return NULL; 3847 3848 while (length > 0) { 3849 int opcode = *ptr++; 3850 int opsize; 3851 3852 switch(opcode) { 3853 case TCPOPT_EOL: 3854 return NULL; 3855 case TCPOPT_NOP: 3856 length--; 3857 continue; 3858 default: 3859 opsize = *ptr++; 3860 if (opsize < 2 || opsize > length) 3861 return NULL; 3862 if (opcode == TCPOPT_MD5SIG) 3863 return ptr; 3864 } 3865 ptr += opsize - 2; 3866 length -= opsize; 3867 } 3868 return NULL; 3869 } 3870 #endif 3871 3872 static inline void tcp_store_ts_recent(struct tcp_sock *tp) 3873 { 3874 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3875 tp->rx_opt.ts_recent_stamp = get_seconds(); 3876 } 3877 3878 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3879 { 3880 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3881 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3882 * extra check below makes sure this can only happen 3883 * for pure ACK frames. -DaveM 3884 * 3885 * Not only, also it occurs for expired timestamps. 3886 */ 3887 3888 if (tcp_paws_check(&tp->rx_opt, 0)) 3889 tcp_store_ts_recent(tp); 3890 } 3891 } 3892 3893 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3894 * 3895 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3896 * it can pass through stack. So, the following predicate verifies that 3897 * this segment is not used for anything but congestion avoidance or 3898 * fast retransmit. Moreover, we even are able to eliminate most of such 3899 * second order effects, if we apply some small "replay" window (~RTO) 3900 * to timestamp space. 3901 * 3902 * All these measures still do not guarantee that we reject wrapped ACKs 3903 * on networks with high bandwidth, when sequence space is recycled fastly, 3904 * but it guarantees that such events will be very rare and do not affect 3905 * connection seriously. This doesn't look nice, but alas, PAWS is really 3906 * buggy extension. 3907 * 3908 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3909 * states that events when retransmit arrives after original data are rare. 3910 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3911 * the biggest problem on large power networks even with minor reordering. 3912 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3913 * up to bandwidth of 18Gigabit/sec. 8) ] 3914 */ 3915 3916 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3917 { 3918 struct tcp_sock *tp = tcp_sk(sk); 3919 struct tcphdr *th = tcp_hdr(skb); 3920 u32 seq = TCP_SKB_CB(skb)->seq; 3921 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3922 3923 return (/* 1. Pure ACK with correct sequence number. */ 3924 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3925 3926 /* 2. ... and duplicate ACK. */ 3927 ack == tp->snd_una && 3928 3929 /* 3. ... and does not update window. */ 3930 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3931 3932 /* 4. ... and sits in replay window. */ 3933 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3934 } 3935 3936 static inline int tcp_paws_discard(const struct sock *sk, 3937 const struct sk_buff *skb) 3938 { 3939 const struct tcp_sock *tp = tcp_sk(sk); 3940 3941 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3942 !tcp_disordered_ack(sk, skb); 3943 } 3944 3945 /* Check segment sequence number for validity. 3946 * 3947 * Segment controls are considered valid, if the segment 3948 * fits to the window after truncation to the window. Acceptability 3949 * of data (and SYN, FIN, of course) is checked separately. 3950 * See tcp_data_queue(), for example. 3951 * 3952 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3953 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3954 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3955 * (borrowed from freebsd) 3956 */ 3957 3958 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq) 3959 { 3960 return !before(end_seq, tp->rcv_wup) && 3961 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3962 } 3963 3964 /* When we get a reset we do this. */ 3965 static void tcp_reset(struct sock *sk) 3966 { 3967 /* We want the right error as BSD sees it (and indeed as we do). */ 3968 switch (sk->sk_state) { 3969 case TCP_SYN_SENT: 3970 sk->sk_err = ECONNREFUSED; 3971 break; 3972 case TCP_CLOSE_WAIT: 3973 sk->sk_err = EPIPE; 3974 break; 3975 case TCP_CLOSE: 3976 return; 3977 default: 3978 sk->sk_err = ECONNRESET; 3979 } 3980 3981 if (!sock_flag(sk, SOCK_DEAD)) 3982 sk->sk_error_report(sk); 3983 3984 tcp_done(sk); 3985 } 3986 3987 /* 3988 * Process the FIN bit. This now behaves as it is supposed to work 3989 * and the FIN takes effect when it is validly part of sequence 3990 * space. Not before when we get holes. 3991 * 3992 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 3993 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 3994 * TIME-WAIT) 3995 * 3996 * If we are in FINWAIT-1, a received FIN indicates simultaneous 3997 * close and we go into CLOSING (and later onto TIME-WAIT) 3998 * 3999 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4000 */ 4001 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th) 4002 { 4003 struct tcp_sock *tp = tcp_sk(sk); 4004 4005 inet_csk_schedule_ack(sk); 4006 4007 sk->sk_shutdown |= RCV_SHUTDOWN; 4008 sock_set_flag(sk, SOCK_DONE); 4009 4010 switch (sk->sk_state) { 4011 case TCP_SYN_RECV: 4012 case TCP_ESTABLISHED: 4013 /* Move to CLOSE_WAIT */ 4014 tcp_set_state(sk, TCP_CLOSE_WAIT); 4015 inet_csk(sk)->icsk_ack.pingpong = 1; 4016 break; 4017 4018 case TCP_CLOSE_WAIT: 4019 case TCP_CLOSING: 4020 /* Received a retransmission of the FIN, do 4021 * nothing. 4022 */ 4023 break; 4024 case TCP_LAST_ACK: 4025 /* RFC793: Remain in the LAST-ACK state. */ 4026 break; 4027 4028 case TCP_FIN_WAIT1: 4029 /* This case occurs when a simultaneous close 4030 * happens, we must ack the received FIN and 4031 * enter the CLOSING state. 4032 */ 4033 tcp_send_ack(sk); 4034 tcp_set_state(sk, TCP_CLOSING); 4035 break; 4036 case TCP_FIN_WAIT2: 4037 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4038 tcp_send_ack(sk); 4039 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4040 break; 4041 default: 4042 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4043 * cases we should never reach this piece of code. 4044 */ 4045 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n", 4046 __func__, sk->sk_state); 4047 break; 4048 } 4049 4050 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4051 * Probably, we should reset in this case. For now drop them. 4052 */ 4053 __skb_queue_purge(&tp->out_of_order_queue); 4054 if (tcp_is_sack(tp)) 4055 tcp_sack_reset(&tp->rx_opt); 4056 sk_mem_reclaim(sk); 4057 4058 if (!sock_flag(sk, SOCK_DEAD)) { 4059 sk->sk_state_change(sk); 4060 4061 /* Do not send POLL_HUP for half duplex close. */ 4062 if (sk->sk_shutdown == SHUTDOWN_MASK || 4063 sk->sk_state == TCP_CLOSE) 4064 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4065 else 4066 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4067 } 4068 } 4069 4070 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4071 u32 end_seq) 4072 { 4073 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4074 if (before(seq, sp->start_seq)) 4075 sp->start_seq = seq; 4076 if (after(end_seq, sp->end_seq)) 4077 sp->end_seq = end_seq; 4078 return 1; 4079 } 4080 return 0; 4081 } 4082 4083 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4084 { 4085 struct tcp_sock *tp = tcp_sk(sk); 4086 4087 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4088 int mib_idx; 4089 4090 if (before(seq, tp->rcv_nxt)) 4091 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4092 else 4093 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4094 4095 NET_INC_STATS_BH(sock_net(sk), mib_idx); 4096 4097 tp->rx_opt.dsack = 1; 4098 tp->duplicate_sack[0].start_seq = seq; 4099 tp->duplicate_sack[0].end_seq = end_seq; 4100 } 4101 } 4102 4103 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4104 { 4105 struct tcp_sock *tp = tcp_sk(sk); 4106 4107 if (!tp->rx_opt.dsack) 4108 tcp_dsack_set(sk, seq, end_seq); 4109 else 4110 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4111 } 4112 4113 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb) 4114 { 4115 struct tcp_sock *tp = tcp_sk(sk); 4116 4117 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4118 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4119 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4120 tcp_enter_quickack_mode(sk); 4121 4122 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4123 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4124 4125 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4126 end_seq = tp->rcv_nxt; 4127 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4128 } 4129 } 4130 4131 tcp_send_ack(sk); 4132 } 4133 4134 /* These routines update the SACK block as out-of-order packets arrive or 4135 * in-order packets close up the sequence space. 4136 */ 4137 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4138 { 4139 int this_sack; 4140 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4141 struct tcp_sack_block *swalk = sp + 1; 4142 4143 /* See if the recent change to the first SACK eats into 4144 * or hits the sequence space of other SACK blocks, if so coalesce. 4145 */ 4146 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4147 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4148 int i; 4149 4150 /* Zap SWALK, by moving every further SACK up by one slot. 4151 * Decrease num_sacks. 4152 */ 4153 tp->rx_opt.num_sacks--; 4154 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4155 sp[i] = sp[i + 1]; 4156 continue; 4157 } 4158 this_sack++, swalk++; 4159 } 4160 } 4161 4162 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4163 { 4164 struct tcp_sock *tp = tcp_sk(sk); 4165 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4166 int cur_sacks = tp->rx_opt.num_sacks; 4167 int this_sack; 4168 4169 if (!cur_sacks) 4170 goto new_sack; 4171 4172 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4173 if (tcp_sack_extend(sp, seq, end_seq)) { 4174 /* Rotate this_sack to the first one. */ 4175 for (; this_sack > 0; this_sack--, sp--) 4176 swap(*sp, *(sp - 1)); 4177 if (cur_sacks > 1) 4178 tcp_sack_maybe_coalesce(tp); 4179 return; 4180 } 4181 } 4182 4183 /* Could not find an adjacent existing SACK, build a new one, 4184 * put it at the front, and shift everyone else down. We 4185 * always know there is at least one SACK present already here. 4186 * 4187 * If the sack array is full, forget about the last one. 4188 */ 4189 if (this_sack >= TCP_NUM_SACKS) { 4190 this_sack--; 4191 tp->rx_opt.num_sacks--; 4192 sp--; 4193 } 4194 for (; this_sack > 0; this_sack--, sp--) 4195 *sp = *(sp - 1); 4196 4197 new_sack: 4198 /* Build the new head SACK, and we're done. */ 4199 sp->start_seq = seq; 4200 sp->end_seq = end_seq; 4201 tp->rx_opt.num_sacks++; 4202 } 4203 4204 /* RCV.NXT advances, some SACKs should be eaten. */ 4205 4206 static void tcp_sack_remove(struct tcp_sock *tp) 4207 { 4208 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4209 int num_sacks = tp->rx_opt.num_sacks; 4210 int this_sack; 4211 4212 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4213 if (skb_queue_empty(&tp->out_of_order_queue)) { 4214 tp->rx_opt.num_sacks = 0; 4215 return; 4216 } 4217 4218 for (this_sack = 0; this_sack < num_sacks;) { 4219 /* Check if the start of the sack is covered by RCV.NXT. */ 4220 if (!before(tp->rcv_nxt, sp->start_seq)) { 4221 int i; 4222 4223 /* RCV.NXT must cover all the block! */ 4224 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4225 4226 /* Zap this SACK, by moving forward any other SACKS. */ 4227 for (i=this_sack+1; i < num_sacks; i++) 4228 tp->selective_acks[i-1] = tp->selective_acks[i]; 4229 num_sacks--; 4230 continue; 4231 } 4232 this_sack++; 4233 sp++; 4234 } 4235 tp->rx_opt.num_sacks = num_sacks; 4236 } 4237 4238 /* This one checks to see if we can put data from the 4239 * out_of_order queue into the receive_queue. 4240 */ 4241 static void tcp_ofo_queue(struct sock *sk) 4242 { 4243 struct tcp_sock *tp = tcp_sk(sk); 4244 __u32 dsack_high = tp->rcv_nxt; 4245 struct sk_buff *skb; 4246 4247 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 4248 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4249 break; 4250 4251 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4252 __u32 dsack = dsack_high; 4253 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4254 dsack_high = TCP_SKB_CB(skb)->end_seq; 4255 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4256 } 4257 4258 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4259 SOCK_DEBUG(sk, "ofo packet was already received \n"); 4260 __skb_unlink(skb, &tp->out_of_order_queue); 4261 __kfree_skb(skb); 4262 continue; 4263 } 4264 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4265 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4266 TCP_SKB_CB(skb)->end_seq); 4267 4268 __skb_unlink(skb, &tp->out_of_order_queue); 4269 __skb_queue_tail(&sk->sk_receive_queue, skb); 4270 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4271 if (tcp_hdr(skb)->fin) 4272 tcp_fin(skb, sk, tcp_hdr(skb)); 4273 } 4274 } 4275 4276 static int tcp_prune_ofo_queue(struct sock *sk); 4277 static int tcp_prune_queue(struct sock *sk); 4278 4279 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size) 4280 { 4281 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4282 !sk_rmem_schedule(sk, size)) { 4283 4284 if (tcp_prune_queue(sk) < 0) 4285 return -1; 4286 4287 if (!sk_rmem_schedule(sk, size)) { 4288 if (!tcp_prune_ofo_queue(sk)) 4289 return -1; 4290 4291 if (!sk_rmem_schedule(sk, size)) 4292 return -1; 4293 } 4294 } 4295 return 0; 4296 } 4297 4298 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4299 { 4300 struct tcphdr *th = tcp_hdr(skb); 4301 struct tcp_sock *tp = tcp_sk(sk); 4302 int eaten = -1; 4303 4304 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 4305 goto drop; 4306 4307 __skb_pull(skb, th->doff * 4); 4308 4309 TCP_ECN_accept_cwr(tp, skb); 4310 4311 tp->rx_opt.dsack = 0; 4312 4313 /* Queue data for delivery to the user. 4314 * Packets in sequence go to the receive queue. 4315 * Out of sequence packets to the out_of_order_queue. 4316 */ 4317 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4318 if (tcp_receive_window(tp) == 0) 4319 goto out_of_window; 4320 4321 /* Ok. In sequence. In window. */ 4322 if (tp->ucopy.task == current && 4323 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4324 sock_owned_by_user(sk) && !tp->urg_data) { 4325 int chunk = min_t(unsigned int, skb->len, 4326 tp->ucopy.len); 4327 4328 __set_current_state(TASK_RUNNING); 4329 4330 local_bh_enable(); 4331 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { 4332 tp->ucopy.len -= chunk; 4333 tp->copied_seq += chunk; 4334 eaten = (chunk == skb->len && !th->fin); 4335 tcp_rcv_space_adjust(sk); 4336 } 4337 local_bh_disable(); 4338 } 4339 4340 if (eaten <= 0) { 4341 queue_and_out: 4342 if (eaten < 0 && 4343 tcp_try_rmem_schedule(sk, skb->truesize)) 4344 goto drop; 4345 4346 skb_set_owner_r(skb, sk); 4347 __skb_queue_tail(&sk->sk_receive_queue, skb); 4348 } 4349 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4350 if (skb->len) 4351 tcp_event_data_recv(sk, skb); 4352 if (th->fin) 4353 tcp_fin(skb, sk, th); 4354 4355 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4356 tcp_ofo_queue(sk); 4357 4358 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4359 * gap in queue is filled. 4360 */ 4361 if (skb_queue_empty(&tp->out_of_order_queue)) 4362 inet_csk(sk)->icsk_ack.pingpong = 0; 4363 } 4364 4365 if (tp->rx_opt.num_sacks) 4366 tcp_sack_remove(tp); 4367 4368 tcp_fast_path_check(sk); 4369 4370 if (eaten > 0) 4371 __kfree_skb(skb); 4372 else if (!sock_flag(sk, SOCK_DEAD)) 4373 sk->sk_data_ready(sk, 0); 4374 return; 4375 } 4376 4377 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4378 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4379 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4380 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4381 4382 out_of_window: 4383 tcp_enter_quickack_mode(sk); 4384 inet_csk_schedule_ack(sk); 4385 drop: 4386 __kfree_skb(skb); 4387 return; 4388 } 4389 4390 /* Out of window. F.e. zero window probe. */ 4391 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4392 goto out_of_window; 4393 4394 tcp_enter_quickack_mode(sk); 4395 4396 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4397 /* Partial packet, seq < rcv_next < end_seq */ 4398 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4399 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4400 TCP_SKB_CB(skb)->end_seq); 4401 4402 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4403 4404 /* If window is closed, drop tail of packet. But after 4405 * remembering D-SACK for its head made in previous line. 4406 */ 4407 if (!tcp_receive_window(tp)) 4408 goto out_of_window; 4409 goto queue_and_out; 4410 } 4411 4412 TCP_ECN_check_ce(tp, skb); 4413 4414 if (tcp_try_rmem_schedule(sk, skb->truesize)) 4415 goto drop; 4416 4417 /* Disable header prediction. */ 4418 tp->pred_flags = 0; 4419 inet_csk_schedule_ack(sk); 4420 4421 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4422 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4423 4424 skb_set_owner_r(skb, sk); 4425 4426 if (!skb_peek(&tp->out_of_order_queue)) { 4427 /* Initial out of order segment, build 1 SACK. */ 4428 if (tcp_is_sack(tp)) { 4429 tp->rx_opt.num_sacks = 1; 4430 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 4431 tp->selective_acks[0].end_seq = 4432 TCP_SKB_CB(skb)->end_seq; 4433 } 4434 __skb_queue_head(&tp->out_of_order_queue, skb); 4435 } else { 4436 struct sk_buff *skb1 = tp->out_of_order_queue.prev; 4437 u32 seq = TCP_SKB_CB(skb)->seq; 4438 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4439 4440 if (seq == TCP_SKB_CB(skb1)->end_seq) { 4441 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4442 4443 if (!tp->rx_opt.num_sacks || 4444 tp->selective_acks[0].end_seq != seq) 4445 goto add_sack; 4446 4447 /* Common case: data arrive in order after hole. */ 4448 tp->selective_acks[0].end_seq = end_seq; 4449 return; 4450 } 4451 4452 /* Find place to insert this segment. */ 4453 do { 4454 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 4455 break; 4456 } while ((skb1 = skb1->prev) != 4457 (struct sk_buff *)&tp->out_of_order_queue); 4458 4459 /* Do skb overlap to previous one? */ 4460 if (skb1 != (struct sk_buff *)&tp->out_of_order_queue && 4461 before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4462 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4463 /* All the bits are present. Drop. */ 4464 __kfree_skb(skb); 4465 tcp_dsack_set(sk, seq, end_seq); 4466 goto add_sack; 4467 } 4468 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4469 /* Partial overlap. */ 4470 tcp_dsack_set(sk, seq, 4471 TCP_SKB_CB(skb1)->end_seq); 4472 } else { 4473 skb1 = skb1->prev; 4474 } 4475 } 4476 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4477 4478 /* And clean segments covered by new one as whole. */ 4479 while ((skb1 = skb->next) != 4480 (struct sk_buff *)&tp->out_of_order_queue && 4481 after(end_seq, TCP_SKB_CB(skb1)->seq)) { 4482 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4483 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4484 end_seq); 4485 break; 4486 } 4487 __skb_unlink(skb1, &tp->out_of_order_queue); 4488 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4489 TCP_SKB_CB(skb1)->end_seq); 4490 __kfree_skb(skb1); 4491 } 4492 4493 add_sack: 4494 if (tcp_is_sack(tp)) 4495 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4496 } 4497 } 4498 4499 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4500 struct sk_buff_head *list) 4501 { 4502 struct sk_buff *next = skb->next; 4503 4504 __skb_unlink(skb, list); 4505 __kfree_skb(skb); 4506 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4507 4508 return next; 4509 } 4510 4511 /* Collapse contiguous sequence of skbs head..tail with 4512 * sequence numbers start..end. 4513 * Segments with FIN/SYN are not collapsed (only because this 4514 * simplifies code) 4515 */ 4516 static void 4517 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 4518 struct sk_buff *head, struct sk_buff *tail, 4519 u32 start, u32 end) 4520 { 4521 struct sk_buff *skb; 4522 4523 /* First, check that queue is collapsible and find 4524 * the point where collapsing can be useful. */ 4525 for (skb = head; skb != tail;) { 4526 /* No new bits? It is possible on ofo queue. */ 4527 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4528 skb = tcp_collapse_one(sk, skb, list); 4529 continue; 4530 } 4531 4532 /* The first skb to collapse is: 4533 * - not SYN/FIN and 4534 * - bloated or contains data before "start" or 4535 * overlaps to the next one. 4536 */ 4537 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin && 4538 (tcp_win_from_space(skb->truesize) > skb->len || 4539 before(TCP_SKB_CB(skb)->seq, start) || 4540 (skb->next != tail && 4541 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq))) 4542 break; 4543 4544 /* Decided to skip this, advance start seq. */ 4545 start = TCP_SKB_CB(skb)->end_seq; 4546 skb = skb->next; 4547 } 4548 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin) 4549 return; 4550 4551 while (before(start, end)) { 4552 struct sk_buff *nskb; 4553 unsigned int header = skb_headroom(skb); 4554 int copy = SKB_MAX_ORDER(header, 0); 4555 4556 /* Too big header? This can happen with IPv6. */ 4557 if (copy < 0) 4558 return; 4559 if (end - start < copy) 4560 copy = end - start; 4561 nskb = alloc_skb(copy + header, GFP_ATOMIC); 4562 if (!nskb) 4563 return; 4564 4565 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head); 4566 skb_set_network_header(nskb, (skb_network_header(skb) - 4567 skb->head)); 4568 skb_set_transport_header(nskb, (skb_transport_header(skb) - 4569 skb->head)); 4570 skb_reserve(nskb, header); 4571 memcpy(nskb->head, skb->head, header); 4572 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4573 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4574 __skb_queue_before(list, skb, nskb); 4575 skb_set_owner_r(nskb, sk); 4576 4577 /* Copy data, releasing collapsed skbs. */ 4578 while (copy > 0) { 4579 int offset = start - TCP_SKB_CB(skb)->seq; 4580 int size = TCP_SKB_CB(skb)->end_seq - start; 4581 4582 BUG_ON(offset < 0); 4583 if (size > 0) { 4584 size = min(copy, size); 4585 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4586 BUG(); 4587 TCP_SKB_CB(nskb)->end_seq += size; 4588 copy -= size; 4589 start += size; 4590 } 4591 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4592 skb = tcp_collapse_one(sk, skb, list); 4593 if (skb == tail || 4594 tcp_hdr(skb)->syn || 4595 tcp_hdr(skb)->fin) 4596 return; 4597 } 4598 } 4599 } 4600 } 4601 4602 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4603 * and tcp_collapse() them until all the queue is collapsed. 4604 */ 4605 static void tcp_collapse_ofo_queue(struct sock *sk) 4606 { 4607 struct tcp_sock *tp = tcp_sk(sk); 4608 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 4609 struct sk_buff *head; 4610 u32 start, end; 4611 4612 if (skb == NULL) 4613 return; 4614 4615 start = TCP_SKB_CB(skb)->seq; 4616 end = TCP_SKB_CB(skb)->end_seq; 4617 head = skb; 4618 4619 for (;;) { 4620 skb = skb->next; 4621 4622 /* Segment is terminated when we see gap or when 4623 * we are at the end of all the queue. */ 4624 if (skb == (struct sk_buff *)&tp->out_of_order_queue || 4625 after(TCP_SKB_CB(skb)->seq, end) || 4626 before(TCP_SKB_CB(skb)->end_seq, start)) { 4627 tcp_collapse(sk, &tp->out_of_order_queue, 4628 head, skb, start, end); 4629 head = skb; 4630 if (skb == (struct sk_buff *)&tp->out_of_order_queue) 4631 break; 4632 /* Start new segment */ 4633 start = TCP_SKB_CB(skb)->seq; 4634 end = TCP_SKB_CB(skb)->end_seq; 4635 } else { 4636 if (before(TCP_SKB_CB(skb)->seq, start)) 4637 start = TCP_SKB_CB(skb)->seq; 4638 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4639 end = TCP_SKB_CB(skb)->end_seq; 4640 } 4641 } 4642 } 4643 4644 /* 4645 * Purge the out-of-order queue. 4646 * Return true if queue was pruned. 4647 */ 4648 static int tcp_prune_ofo_queue(struct sock *sk) 4649 { 4650 struct tcp_sock *tp = tcp_sk(sk); 4651 int res = 0; 4652 4653 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4654 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED); 4655 __skb_queue_purge(&tp->out_of_order_queue); 4656 4657 /* Reset SACK state. A conforming SACK implementation will 4658 * do the same at a timeout based retransmit. When a connection 4659 * is in a sad state like this, we care only about integrity 4660 * of the connection not performance. 4661 */ 4662 if (tp->rx_opt.sack_ok) 4663 tcp_sack_reset(&tp->rx_opt); 4664 sk_mem_reclaim(sk); 4665 res = 1; 4666 } 4667 return res; 4668 } 4669 4670 /* Reduce allocated memory if we can, trying to get 4671 * the socket within its memory limits again. 4672 * 4673 * Return less than zero if we should start dropping frames 4674 * until the socket owning process reads some of the data 4675 * to stabilize the situation. 4676 */ 4677 static int tcp_prune_queue(struct sock *sk) 4678 { 4679 struct tcp_sock *tp = tcp_sk(sk); 4680 4681 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4682 4683 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED); 4684 4685 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4686 tcp_clamp_window(sk); 4687 else if (tcp_memory_pressure) 4688 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4689 4690 tcp_collapse_ofo_queue(sk); 4691 tcp_collapse(sk, &sk->sk_receive_queue, 4692 sk->sk_receive_queue.next, 4693 (struct sk_buff *)&sk->sk_receive_queue, 4694 tp->copied_seq, tp->rcv_nxt); 4695 sk_mem_reclaim(sk); 4696 4697 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4698 return 0; 4699 4700 /* Collapsing did not help, destructive actions follow. 4701 * This must not ever occur. */ 4702 4703 tcp_prune_ofo_queue(sk); 4704 4705 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4706 return 0; 4707 4708 /* If we are really being abused, tell the caller to silently 4709 * drop receive data on the floor. It will get retransmitted 4710 * and hopefully then we'll have sufficient space. 4711 */ 4712 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED); 4713 4714 /* Massive buffer overcommit. */ 4715 tp->pred_flags = 0; 4716 return -1; 4717 } 4718 4719 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 4720 * As additional protections, we do not touch cwnd in retransmission phases, 4721 * and if application hit its sndbuf limit recently. 4722 */ 4723 void tcp_cwnd_application_limited(struct sock *sk) 4724 { 4725 struct tcp_sock *tp = tcp_sk(sk); 4726 4727 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 4728 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 4729 /* Limited by application or receiver window. */ 4730 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 4731 u32 win_used = max(tp->snd_cwnd_used, init_win); 4732 if (win_used < tp->snd_cwnd) { 4733 tp->snd_ssthresh = tcp_current_ssthresh(sk); 4734 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 4735 } 4736 tp->snd_cwnd_used = 0; 4737 } 4738 tp->snd_cwnd_stamp = tcp_time_stamp; 4739 } 4740 4741 static int tcp_should_expand_sndbuf(struct sock *sk) 4742 { 4743 struct tcp_sock *tp = tcp_sk(sk); 4744 4745 /* If the user specified a specific send buffer setting, do 4746 * not modify it. 4747 */ 4748 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4749 return 0; 4750 4751 /* If we are under global TCP memory pressure, do not expand. */ 4752 if (tcp_memory_pressure) 4753 return 0; 4754 4755 /* If we are under soft global TCP memory pressure, do not expand. */ 4756 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0]) 4757 return 0; 4758 4759 /* If we filled the congestion window, do not expand. */ 4760 if (tp->packets_out >= tp->snd_cwnd) 4761 return 0; 4762 4763 return 1; 4764 } 4765 4766 /* When incoming ACK allowed to free some skb from write_queue, 4767 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 4768 * on the exit from tcp input handler. 4769 * 4770 * PROBLEM: sndbuf expansion does not work well with largesend. 4771 */ 4772 static void tcp_new_space(struct sock *sk) 4773 { 4774 struct tcp_sock *tp = tcp_sk(sk); 4775 4776 if (tcp_should_expand_sndbuf(sk)) { 4777 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 4778 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff); 4779 int demanded = max_t(unsigned int, tp->snd_cwnd, 4780 tp->reordering + 1); 4781 sndmem *= 2 * demanded; 4782 if (sndmem > sk->sk_sndbuf) 4783 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 4784 tp->snd_cwnd_stamp = tcp_time_stamp; 4785 } 4786 4787 sk->sk_write_space(sk); 4788 } 4789 4790 static void tcp_check_space(struct sock *sk) 4791 { 4792 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 4793 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 4794 if (sk->sk_socket && 4795 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 4796 tcp_new_space(sk); 4797 } 4798 } 4799 4800 static inline void tcp_data_snd_check(struct sock *sk) 4801 { 4802 tcp_push_pending_frames(sk); 4803 tcp_check_space(sk); 4804 } 4805 4806 /* 4807 * Check if sending an ack is needed. 4808 */ 4809 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 4810 { 4811 struct tcp_sock *tp = tcp_sk(sk); 4812 4813 /* More than one full frame received... */ 4814 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss 4815 /* ... and right edge of window advances far enough. 4816 * (tcp_recvmsg() will send ACK otherwise). Or... 4817 */ 4818 && __tcp_select_window(sk) >= tp->rcv_wnd) || 4819 /* We ACK each frame or... */ 4820 tcp_in_quickack_mode(sk) || 4821 /* We have out of order data. */ 4822 (ofo_possible && skb_peek(&tp->out_of_order_queue))) { 4823 /* Then ack it now */ 4824 tcp_send_ack(sk); 4825 } else { 4826 /* Else, send delayed ack. */ 4827 tcp_send_delayed_ack(sk); 4828 } 4829 } 4830 4831 static inline void tcp_ack_snd_check(struct sock *sk) 4832 { 4833 if (!inet_csk_ack_scheduled(sk)) { 4834 /* We sent a data segment already. */ 4835 return; 4836 } 4837 __tcp_ack_snd_check(sk, 1); 4838 } 4839 4840 /* 4841 * This routine is only called when we have urgent data 4842 * signaled. Its the 'slow' part of tcp_urg. It could be 4843 * moved inline now as tcp_urg is only called from one 4844 * place. We handle URGent data wrong. We have to - as 4845 * BSD still doesn't use the correction from RFC961. 4846 * For 1003.1g we should support a new option TCP_STDURG to permit 4847 * either form (or just set the sysctl tcp_stdurg). 4848 */ 4849 4850 static void tcp_check_urg(struct sock *sk, struct tcphdr *th) 4851 { 4852 struct tcp_sock *tp = tcp_sk(sk); 4853 u32 ptr = ntohs(th->urg_ptr); 4854 4855 if (ptr && !sysctl_tcp_stdurg) 4856 ptr--; 4857 ptr += ntohl(th->seq); 4858 4859 /* Ignore urgent data that we've already seen and read. */ 4860 if (after(tp->copied_seq, ptr)) 4861 return; 4862 4863 /* Do not replay urg ptr. 4864 * 4865 * NOTE: interesting situation not covered by specs. 4866 * Misbehaving sender may send urg ptr, pointing to segment, 4867 * which we already have in ofo queue. We are not able to fetch 4868 * such data and will stay in TCP_URG_NOTYET until will be eaten 4869 * by recvmsg(). Seems, we are not obliged to handle such wicked 4870 * situations. But it is worth to think about possibility of some 4871 * DoSes using some hypothetical application level deadlock. 4872 */ 4873 if (before(ptr, tp->rcv_nxt)) 4874 return; 4875 4876 /* Do we already have a newer (or duplicate) urgent pointer? */ 4877 if (tp->urg_data && !after(ptr, tp->urg_seq)) 4878 return; 4879 4880 /* Tell the world about our new urgent pointer. */ 4881 sk_send_sigurg(sk); 4882 4883 /* We may be adding urgent data when the last byte read was 4884 * urgent. To do this requires some care. We cannot just ignore 4885 * tp->copied_seq since we would read the last urgent byte again 4886 * as data, nor can we alter copied_seq until this data arrives 4887 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 4888 * 4889 * NOTE. Double Dutch. Rendering to plain English: author of comment 4890 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 4891 * and expect that both A and B disappear from stream. This is _wrong_. 4892 * Though this happens in BSD with high probability, this is occasional. 4893 * Any application relying on this is buggy. Note also, that fix "works" 4894 * only in this artificial test. Insert some normal data between A and B and we will 4895 * decline of BSD again. Verdict: it is better to remove to trap 4896 * buggy users. 4897 */ 4898 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 4899 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 4900 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 4901 tp->copied_seq++; 4902 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 4903 __skb_unlink(skb, &sk->sk_receive_queue); 4904 __kfree_skb(skb); 4905 } 4906 } 4907 4908 tp->urg_data = TCP_URG_NOTYET; 4909 tp->urg_seq = ptr; 4910 4911 /* Disable header prediction. */ 4912 tp->pred_flags = 0; 4913 } 4914 4915 /* This is the 'fast' part of urgent handling. */ 4916 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th) 4917 { 4918 struct tcp_sock *tp = tcp_sk(sk); 4919 4920 /* Check if we get a new urgent pointer - normally not. */ 4921 if (th->urg) 4922 tcp_check_urg(sk, th); 4923 4924 /* Do we wait for any urgent data? - normally not... */ 4925 if (tp->urg_data == TCP_URG_NOTYET) { 4926 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 4927 th->syn; 4928 4929 /* Is the urgent pointer pointing into this packet? */ 4930 if (ptr < skb->len) { 4931 u8 tmp; 4932 if (skb_copy_bits(skb, ptr, &tmp, 1)) 4933 BUG(); 4934 tp->urg_data = TCP_URG_VALID | tmp; 4935 if (!sock_flag(sk, SOCK_DEAD)) 4936 sk->sk_data_ready(sk, 0); 4937 } 4938 } 4939 } 4940 4941 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 4942 { 4943 struct tcp_sock *tp = tcp_sk(sk); 4944 int chunk = skb->len - hlen; 4945 int err; 4946 4947 local_bh_enable(); 4948 if (skb_csum_unnecessary(skb)) 4949 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); 4950 else 4951 err = skb_copy_and_csum_datagram_iovec(skb, hlen, 4952 tp->ucopy.iov); 4953 4954 if (!err) { 4955 tp->ucopy.len -= chunk; 4956 tp->copied_seq += chunk; 4957 tcp_rcv_space_adjust(sk); 4958 } 4959 4960 local_bh_disable(); 4961 return err; 4962 } 4963 4964 static __sum16 __tcp_checksum_complete_user(struct sock *sk, 4965 struct sk_buff *skb) 4966 { 4967 __sum16 result; 4968 4969 if (sock_owned_by_user(sk)) { 4970 local_bh_enable(); 4971 result = __tcp_checksum_complete(skb); 4972 local_bh_disable(); 4973 } else { 4974 result = __tcp_checksum_complete(skb); 4975 } 4976 return result; 4977 } 4978 4979 static inline int tcp_checksum_complete_user(struct sock *sk, 4980 struct sk_buff *skb) 4981 { 4982 return !skb_csum_unnecessary(skb) && 4983 __tcp_checksum_complete_user(sk, skb); 4984 } 4985 4986 #ifdef CONFIG_NET_DMA 4987 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, 4988 int hlen) 4989 { 4990 struct tcp_sock *tp = tcp_sk(sk); 4991 int chunk = skb->len - hlen; 4992 int dma_cookie; 4993 int copied_early = 0; 4994 4995 if (tp->ucopy.wakeup) 4996 return 0; 4997 4998 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 4999 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY); 5000 5001 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) { 5002 5003 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan, 5004 skb, hlen, 5005 tp->ucopy.iov, chunk, 5006 tp->ucopy.pinned_list); 5007 5008 if (dma_cookie < 0) 5009 goto out; 5010 5011 tp->ucopy.dma_cookie = dma_cookie; 5012 copied_early = 1; 5013 5014 tp->ucopy.len -= chunk; 5015 tp->copied_seq += chunk; 5016 tcp_rcv_space_adjust(sk); 5017 5018 if ((tp->ucopy.len == 0) || 5019 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) || 5020 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) { 5021 tp->ucopy.wakeup = 1; 5022 sk->sk_data_ready(sk, 0); 5023 } 5024 } else if (chunk > 0) { 5025 tp->ucopy.wakeup = 1; 5026 sk->sk_data_ready(sk, 0); 5027 } 5028 out: 5029 return copied_early; 5030 } 5031 #endif /* CONFIG_NET_DMA */ 5032 5033 /* Does PAWS and seqno based validation of an incoming segment, flags will 5034 * play significant role here. 5035 */ 5036 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5037 struct tcphdr *th, int syn_inerr) 5038 { 5039 struct tcp_sock *tp = tcp_sk(sk); 5040 5041 /* RFC1323: H1. Apply PAWS check first. */ 5042 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 5043 tcp_paws_discard(sk, skb)) { 5044 if (!th->rst) { 5045 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5046 tcp_send_dupack(sk, skb); 5047 goto discard; 5048 } 5049 /* Reset is accepted even if it did not pass PAWS. */ 5050 } 5051 5052 /* Step 1: check sequence number */ 5053 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5054 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5055 * (RST) segments are validated by checking their SEQ-fields." 5056 * And page 69: "If an incoming segment is not acceptable, 5057 * an acknowledgment should be sent in reply (unless the RST 5058 * bit is set, if so drop the segment and return)". 5059 */ 5060 if (!th->rst) 5061 tcp_send_dupack(sk, skb); 5062 goto discard; 5063 } 5064 5065 /* Step 2: check RST bit */ 5066 if (th->rst) { 5067 tcp_reset(sk); 5068 goto discard; 5069 } 5070 5071 /* ts_recent update must be made after we are sure that the packet 5072 * is in window. 5073 */ 5074 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 5075 5076 /* step 3: check security and precedence [ignored] */ 5077 5078 /* step 4: Check for a SYN in window. */ 5079 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5080 if (syn_inerr) 5081 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5082 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN); 5083 tcp_reset(sk); 5084 return -1; 5085 } 5086 5087 return 1; 5088 5089 discard: 5090 __kfree_skb(skb); 5091 return 0; 5092 } 5093 5094 /* 5095 * TCP receive function for the ESTABLISHED state. 5096 * 5097 * It is split into a fast path and a slow path. The fast path is 5098 * disabled when: 5099 * - A zero window was announced from us - zero window probing 5100 * is only handled properly in the slow path. 5101 * - Out of order segments arrived. 5102 * - Urgent data is expected. 5103 * - There is no buffer space left 5104 * - Unexpected TCP flags/window values/header lengths are received 5105 * (detected by checking the TCP header against pred_flags) 5106 * - Data is sent in both directions. Fast path only supports pure senders 5107 * or pure receivers (this means either the sequence number or the ack 5108 * value must stay constant) 5109 * - Unexpected TCP option. 5110 * 5111 * When these conditions are not satisfied it drops into a standard 5112 * receive procedure patterned after RFC793 to handle all cases. 5113 * The first three cases are guaranteed by proper pred_flags setting, 5114 * the rest is checked inline. Fast processing is turned on in 5115 * tcp_data_queue when everything is OK. 5116 */ 5117 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5118 struct tcphdr *th, unsigned len) 5119 { 5120 struct tcp_sock *tp = tcp_sk(sk); 5121 int res; 5122 5123 /* 5124 * Header prediction. 5125 * The code loosely follows the one in the famous 5126 * "30 instruction TCP receive" Van Jacobson mail. 5127 * 5128 * Van's trick is to deposit buffers into socket queue 5129 * on a device interrupt, to call tcp_recv function 5130 * on the receive process context and checksum and copy 5131 * the buffer to user space. smart... 5132 * 5133 * Our current scheme is not silly either but we take the 5134 * extra cost of the net_bh soft interrupt processing... 5135 * We do checksum and copy also but from device to kernel. 5136 */ 5137 5138 tp->rx_opt.saw_tstamp = 0; 5139 5140 /* pred_flags is 0xS?10 << 16 + snd_wnd 5141 * if header_prediction is to be made 5142 * 'S' will always be tp->tcp_header_len >> 2 5143 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5144 * turn it off (when there are holes in the receive 5145 * space for instance) 5146 * PSH flag is ignored. 5147 */ 5148 5149 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5150 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5151 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5152 int tcp_header_len = tp->tcp_header_len; 5153 5154 /* Timestamp header prediction: tcp_header_len 5155 * is automatically equal to th->doff*4 due to pred_flags 5156 * match. 5157 */ 5158 5159 /* Check timestamp */ 5160 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5161 /* No? Slow path! */ 5162 if (!tcp_parse_aligned_timestamp(tp, th)) 5163 goto slow_path; 5164 5165 /* If PAWS failed, check it more carefully in slow path */ 5166 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5167 goto slow_path; 5168 5169 /* DO NOT update ts_recent here, if checksum fails 5170 * and timestamp was corrupted part, it will result 5171 * in a hung connection since we will drop all 5172 * future packets due to the PAWS test. 5173 */ 5174 } 5175 5176 if (len <= tcp_header_len) { 5177 /* Bulk data transfer: sender */ 5178 if (len == tcp_header_len) { 5179 /* Predicted packet is in window by definition. 5180 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5181 * Hence, check seq<=rcv_wup reduces to: 5182 */ 5183 if (tcp_header_len == 5184 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5185 tp->rcv_nxt == tp->rcv_wup) 5186 tcp_store_ts_recent(tp); 5187 5188 /* We know that such packets are checksummed 5189 * on entry. 5190 */ 5191 tcp_ack(sk, skb, 0); 5192 __kfree_skb(skb); 5193 tcp_data_snd_check(sk); 5194 return 0; 5195 } else { /* Header too small */ 5196 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5197 goto discard; 5198 } 5199 } else { 5200 int eaten = 0; 5201 int copied_early = 0; 5202 5203 if (tp->copied_seq == tp->rcv_nxt && 5204 len - tcp_header_len <= tp->ucopy.len) { 5205 #ifdef CONFIG_NET_DMA 5206 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) { 5207 copied_early = 1; 5208 eaten = 1; 5209 } 5210 #endif 5211 if (tp->ucopy.task == current && 5212 sock_owned_by_user(sk) && !copied_early) { 5213 __set_current_state(TASK_RUNNING); 5214 5215 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) 5216 eaten = 1; 5217 } 5218 if (eaten) { 5219 /* Predicted packet is in window by definition. 5220 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5221 * Hence, check seq<=rcv_wup reduces to: 5222 */ 5223 if (tcp_header_len == 5224 (sizeof(struct tcphdr) + 5225 TCPOLEN_TSTAMP_ALIGNED) && 5226 tp->rcv_nxt == tp->rcv_wup) 5227 tcp_store_ts_recent(tp); 5228 5229 tcp_rcv_rtt_measure_ts(sk, skb); 5230 5231 __skb_pull(skb, tcp_header_len); 5232 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 5233 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER); 5234 } 5235 if (copied_early) 5236 tcp_cleanup_rbuf(sk, skb->len); 5237 } 5238 if (!eaten) { 5239 if (tcp_checksum_complete_user(sk, skb)) 5240 goto csum_error; 5241 5242 /* Predicted packet is in window by definition. 5243 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5244 * Hence, check seq<=rcv_wup reduces to: 5245 */ 5246 if (tcp_header_len == 5247 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5248 tp->rcv_nxt == tp->rcv_wup) 5249 tcp_store_ts_recent(tp); 5250 5251 tcp_rcv_rtt_measure_ts(sk, skb); 5252 5253 if ((int)skb->truesize > sk->sk_forward_alloc) 5254 goto step5; 5255 5256 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS); 5257 5258 /* Bulk data transfer: receiver */ 5259 __skb_pull(skb, tcp_header_len); 5260 __skb_queue_tail(&sk->sk_receive_queue, skb); 5261 skb_set_owner_r(skb, sk); 5262 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 5263 } 5264 5265 tcp_event_data_recv(sk, skb); 5266 5267 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5268 /* Well, only one small jumplet in fast path... */ 5269 tcp_ack(sk, skb, FLAG_DATA); 5270 tcp_data_snd_check(sk); 5271 if (!inet_csk_ack_scheduled(sk)) 5272 goto no_ack; 5273 } 5274 5275 if (!copied_early || tp->rcv_nxt != tp->rcv_wup) 5276 __tcp_ack_snd_check(sk, 0); 5277 no_ack: 5278 #ifdef CONFIG_NET_DMA 5279 if (copied_early) 5280 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 5281 else 5282 #endif 5283 if (eaten) 5284 __kfree_skb(skb); 5285 else 5286 sk->sk_data_ready(sk, 0); 5287 return 0; 5288 } 5289 } 5290 5291 slow_path: 5292 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb)) 5293 goto csum_error; 5294 5295 /* 5296 * Standard slow path. 5297 */ 5298 5299 res = tcp_validate_incoming(sk, skb, th, 1); 5300 if (res <= 0) 5301 return -res; 5302 5303 step5: 5304 if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0) 5305 goto discard; 5306 5307 tcp_rcv_rtt_measure_ts(sk, skb); 5308 5309 /* Process urgent data. */ 5310 tcp_urg(sk, skb, th); 5311 5312 /* step 7: process the segment text */ 5313 tcp_data_queue(sk, skb); 5314 5315 tcp_data_snd_check(sk); 5316 tcp_ack_snd_check(sk); 5317 return 0; 5318 5319 csum_error: 5320 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5321 5322 discard: 5323 __kfree_skb(skb); 5324 return 0; 5325 } 5326 5327 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5328 struct tcphdr *th, unsigned len) 5329 { 5330 struct tcp_sock *tp = tcp_sk(sk); 5331 struct inet_connection_sock *icsk = inet_csk(sk); 5332 int saved_clamp = tp->rx_opt.mss_clamp; 5333 5334 tcp_parse_options(skb, &tp->rx_opt, 0); 5335 5336 if (th->ack) { 5337 /* rfc793: 5338 * "If the state is SYN-SENT then 5339 * first check the ACK bit 5340 * If the ACK bit is set 5341 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5342 * a reset (unless the RST bit is set, if so drop 5343 * the segment and return)" 5344 * 5345 * We do not send data with SYN, so that RFC-correct 5346 * test reduces to: 5347 */ 5348 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt) 5349 goto reset_and_undo; 5350 5351 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5352 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5353 tcp_time_stamp)) { 5354 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED); 5355 goto reset_and_undo; 5356 } 5357 5358 /* Now ACK is acceptable. 5359 * 5360 * "If the RST bit is set 5361 * If the ACK was acceptable then signal the user "error: 5362 * connection reset", drop the segment, enter CLOSED state, 5363 * delete TCB, and return." 5364 */ 5365 5366 if (th->rst) { 5367 tcp_reset(sk); 5368 goto discard; 5369 } 5370 5371 /* rfc793: 5372 * "fifth, if neither of the SYN or RST bits is set then 5373 * drop the segment and return." 5374 * 5375 * See note below! 5376 * --ANK(990513) 5377 */ 5378 if (!th->syn) 5379 goto discard_and_undo; 5380 5381 /* rfc793: 5382 * "If the SYN bit is on ... 5383 * are acceptable then ... 5384 * (our SYN has been ACKed), change the connection 5385 * state to ESTABLISHED..." 5386 */ 5387 5388 TCP_ECN_rcv_synack(tp, th); 5389 5390 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5391 tcp_ack(sk, skb, FLAG_SLOWPATH); 5392 5393 /* Ok.. it's good. Set up sequence numbers and 5394 * move to established. 5395 */ 5396 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5397 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5398 5399 /* RFC1323: The window in SYN & SYN/ACK segments is 5400 * never scaled. 5401 */ 5402 tp->snd_wnd = ntohs(th->window); 5403 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5404 5405 if (!tp->rx_opt.wscale_ok) { 5406 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5407 tp->window_clamp = min(tp->window_clamp, 65535U); 5408 } 5409 5410 if (tp->rx_opt.saw_tstamp) { 5411 tp->rx_opt.tstamp_ok = 1; 5412 tp->tcp_header_len = 5413 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5414 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5415 tcp_store_ts_recent(tp); 5416 } else { 5417 tp->tcp_header_len = sizeof(struct tcphdr); 5418 } 5419 5420 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5421 tcp_enable_fack(tp); 5422 5423 tcp_mtup_init(sk); 5424 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5425 tcp_initialize_rcv_mss(sk); 5426 5427 /* Remember, tcp_poll() does not lock socket! 5428 * Change state from SYN-SENT only after copied_seq 5429 * is initialized. */ 5430 tp->copied_seq = tp->rcv_nxt; 5431 smp_mb(); 5432 tcp_set_state(sk, TCP_ESTABLISHED); 5433 5434 security_inet_conn_established(sk, skb); 5435 5436 /* Make sure socket is routed, for correct metrics. */ 5437 icsk->icsk_af_ops->rebuild_header(sk); 5438 5439 tcp_init_metrics(sk); 5440 5441 tcp_init_congestion_control(sk); 5442 5443 /* Prevent spurious tcp_cwnd_restart() on first data 5444 * packet. 5445 */ 5446 tp->lsndtime = tcp_time_stamp; 5447 5448 tcp_init_buffer_space(sk); 5449 5450 if (sock_flag(sk, SOCK_KEEPOPEN)) 5451 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5452 5453 if (!tp->rx_opt.snd_wscale) 5454 __tcp_fast_path_on(tp, tp->snd_wnd); 5455 else 5456 tp->pred_flags = 0; 5457 5458 if (!sock_flag(sk, SOCK_DEAD)) { 5459 sk->sk_state_change(sk); 5460 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5461 } 5462 5463 if (sk->sk_write_pending || 5464 icsk->icsk_accept_queue.rskq_defer_accept || 5465 icsk->icsk_ack.pingpong) { 5466 /* Save one ACK. Data will be ready after 5467 * several ticks, if write_pending is set. 5468 * 5469 * It may be deleted, but with this feature tcpdumps 5470 * look so _wonderfully_ clever, that I was not able 5471 * to stand against the temptation 8) --ANK 5472 */ 5473 inet_csk_schedule_ack(sk); 5474 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5475 icsk->icsk_ack.ato = TCP_ATO_MIN; 5476 tcp_incr_quickack(sk); 5477 tcp_enter_quickack_mode(sk); 5478 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5479 TCP_DELACK_MAX, TCP_RTO_MAX); 5480 5481 discard: 5482 __kfree_skb(skb); 5483 return 0; 5484 } else { 5485 tcp_send_ack(sk); 5486 } 5487 return -1; 5488 } 5489 5490 /* No ACK in the segment */ 5491 5492 if (th->rst) { 5493 /* rfc793: 5494 * "If the RST bit is set 5495 * 5496 * Otherwise (no ACK) drop the segment and return." 5497 */ 5498 5499 goto discard_and_undo; 5500 } 5501 5502 /* PAWS check. */ 5503 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5504 tcp_paws_reject(&tp->rx_opt, 0)) 5505 goto discard_and_undo; 5506 5507 if (th->syn) { 5508 /* We see SYN without ACK. It is attempt of 5509 * simultaneous connect with crossed SYNs. 5510 * Particularly, it can be connect to self. 5511 */ 5512 tcp_set_state(sk, TCP_SYN_RECV); 5513 5514 if (tp->rx_opt.saw_tstamp) { 5515 tp->rx_opt.tstamp_ok = 1; 5516 tcp_store_ts_recent(tp); 5517 tp->tcp_header_len = 5518 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5519 } else { 5520 tp->tcp_header_len = sizeof(struct tcphdr); 5521 } 5522 5523 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5524 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5525 5526 /* RFC1323: The window in SYN & SYN/ACK segments is 5527 * never scaled. 5528 */ 5529 tp->snd_wnd = ntohs(th->window); 5530 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5531 tp->max_window = tp->snd_wnd; 5532 5533 TCP_ECN_rcv_syn(tp, th); 5534 5535 tcp_mtup_init(sk); 5536 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5537 tcp_initialize_rcv_mss(sk); 5538 5539 tcp_send_synack(sk); 5540 #if 0 5541 /* Note, we could accept data and URG from this segment. 5542 * There are no obstacles to make this. 5543 * 5544 * However, if we ignore data in ACKless segments sometimes, 5545 * we have no reasons to accept it sometimes. 5546 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5547 * is not flawless. So, discard packet for sanity. 5548 * Uncomment this return to process the data. 5549 */ 5550 return -1; 5551 #else 5552 goto discard; 5553 #endif 5554 } 5555 /* "fifth, if neither of the SYN or RST bits is set then 5556 * drop the segment and return." 5557 */ 5558 5559 discard_and_undo: 5560 tcp_clear_options(&tp->rx_opt); 5561 tp->rx_opt.mss_clamp = saved_clamp; 5562 goto discard; 5563 5564 reset_and_undo: 5565 tcp_clear_options(&tp->rx_opt); 5566 tp->rx_opt.mss_clamp = saved_clamp; 5567 return 1; 5568 } 5569 5570 /* 5571 * This function implements the receiving procedure of RFC 793 for 5572 * all states except ESTABLISHED and TIME_WAIT. 5573 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5574 * address independent. 5575 */ 5576 5577 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 5578 struct tcphdr *th, unsigned len) 5579 { 5580 struct tcp_sock *tp = tcp_sk(sk); 5581 struct inet_connection_sock *icsk = inet_csk(sk); 5582 int queued = 0; 5583 int res; 5584 5585 tp->rx_opt.saw_tstamp = 0; 5586 5587 switch (sk->sk_state) { 5588 case TCP_CLOSE: 5589 goto discard; 5590 5591 case TCP_LISTEN: 5592 if (th->ack) 5593 return 1; 5594 5595 if (th->rst) 5596 goto discard; 5597 5598 if (th->syn) { 5599 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 5600 return 1; 5601 5602 /* Now we have several options: In theory there is 5603 * nothing else in the frame. KA9Q has an option to 5604 * send data with the syn, BSD accepts data with the 5605 * syn up to the [to be] advertised window and 5606 * Solaris 2.1 gives you a protocol error. For now 5607 * we just ignore it, that fits the spec precisely 5608 * and avoids incompatibilities. It would be nice in 5609 * future to drop through and process the data. 5610 * 5611 * Now that TTCP is starting to be used we ought to 5612 * queue this data. 5613 * But, this leaves one open to an easy denial of 5614 * service attack, and SYN cookies can't defend 5615 * against this problem. So, we drop the data 5616 * in the interest of security over speed unless 5617 * it's still in use. 5618 */ 5619 kfree_skb(skb); 5620 return 0; 5621 } 5622 goto discard; 5623 5624 case TCP_SYN_SENT: 5625 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 5626 if (queued >= 0) 5627 return queued; 5628 5629 /* Do step6 onward by hand. */ 5630 tcp_urg(sk, skb, th); 5631 __kfree_skb(skb); 5632 tcp_data_snd_check(sk); 5633 return 0; 5634 } 5635 5636 res = tcp_validate_incoming(sk, skb, th, 0); 5637 if (res <= 0) 5638 return -res; 5639 5640 /* step 5: check the ACK field */ 5641 if (th->ack) { 5642 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0; 5643 5644 switch (sk->sk_state) { 5645 case TCP_SYN_RECV: 5646 if (acceptable) { 5647 tp->copied_seq = tp->rcv_nxt; 5648 smp_mb(); 5649 tcp_set_state(sk, TCP_ESTABLISHED); 5650 sk->sk_state_change(sk); 5651 5652 /* Note, that this wakeup is only for marginal 5653 * crossed SYN case. Passively open sockets 5654 * are not waked up, because sk->sk_sleep == 5655 * NULL and sk->sk_socket == NULL. 5656 */ 5657 if (sk->sk_socket) 5658 sk_wake_async(sk, 5659 SOCK_WAKE_IO, POLL_OUT); 5660 5661 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5662 tp->snd_wnd = ntohs(th->window) << 5663 tp->rx_opt.snd_wscale; 5664 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5665 5666 /* tcp_ack considers this ACK as duplicate 5667 * and does not calculate rtt. 5668 * Fix it at least with timestamps. 5669 */ 5670 if (tp->rx_opt.saw_tstamp && 5671 tp->rx_opt.rcv_tsecr && !tp->srtt) 5672 tcp_ack_saw_tstamp(sk, 0); 5673 5674 if (tp->rx_opt.tstamp_ok) 5675 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5676 5677 /* Make sure socket is routed, for 5678 * correct metrics. 5679 */ 5680 icsk->icsk_af_ops->rebuild_header(sk); 5681 5682 tcp_init_metrics(sk); 5683 5684 tcp_init_congestion_control(sk); 5685 5686 /* Prevent spurious tcp_cwnd_restart() on 5687 * first data packet. 5688 */ 5689 tp->lsndtime = tcp_time_stamp; 5690 5691 tcp_mtup_init(sk); 5692 tcp_initialize_rcv_mss(sk); 5693 tcp_init_buffer_space(sk); 5694 tcp_fast_path_on(tp); 5695 } else { 5696 return 1; 5697 } 5698 break; 5699 5700 case TCP_FIN_WAIT1: 5701 if (tp->snd_una == tp->write_seq) { 5702 tcp_set_state(sk, TCP_FIN_WAIT2); 5703 sk->sk_shutdown |= SEND_SHUTDOWN; 5704 dst_confirm(sk->sk_dst_cache); 5705 5706 if (!sock_flag(sk, SOCK_DEAD)) 5707 /* Wake up lingering close() */ 5708 sk->sk_state_change(sk); 5709 else { 5710 int tmo; 5711 5712 if (tp->linger2 < 0 || 5713 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5714 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 5715 tcp_done(sk); 5716 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5717 return 1; 5718 } 5719 5720 tmo = tcp_fin_time(sk); 5721 if (tmo > TCP_TIMEWAIT_LEN) { 5722 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 5723 } else if (th->fin || sock_owned_by_user(sk)) { 5724 /* Bad case. We could lose such FIN otherwise. 5725 * It is not a big problem, but it looks confusing 5726 * and not so rare event. We still can lose it now, 5727 * if it spins in bh_lock_sock(), but it is really 5728 * marginal case. 5729 */ 5730 inet_csk_reset_keepalive_timer(sk, tmo); 5731 } else { 5732 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 5733 goto discard; 5734 } 5735 } 5736 } 5737 break; 5738 5739 case TCP_CLOSING: 5740 if (tp->snd_una == tp->write_seq) { 5741 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 5742 goto discard; 5743 } 5744 break; 5745 5746 case TCP_LAST_ACK: 5747 if (tp->snd_una == tp->write_seq) { 5748 tcp_update_metrics(sk); 5749 tcp_done(sk); 5750 goto discard; 5751 } 5752 break; 5753 } 5754 } else 5755 goto discard; 5756 5757 /* step 6: check the URG bit */ 5758 tcp_urg(sk, skb, th); 5759 5760 /* step 7: process the segment text */ 5761 switch (sk->sk_state) { 5762 case TCP_CLOSE_WAIT: 5763 case TCP_CLOSING: 5764 case TCP_LAST_ACK: 5765 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 5766 break; 5767 case TCP_FIN_WAIT1: 5768 case TCP_FIN_WAIT2: 5769 /* RFC 793 says to queue data in these states, 5770 * RFC 1122 says we MUST send a reset. 5771 * BSD 4.4 also does reset. 5772 */ 5773 if (sk->sk_shutdown & RCV_SHUTDOWN) { 5774 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5775 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 5776 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5777 tcp_reset(sk); 5778 return 1; 5779 } 5780 } 5781 /* Fall through */ 5782 case TCP_ESTABLISHED: 5783 tcp_data_queue(sk, skb); 5784 queued = 1; 5785 break; 5786 } 5787 5788 /* tcp_data could move socket to TIME-WAIT */ 5789 if (sk->sk_state != TCP_CLOSE) { 5790 tcp_data_snd_check(sk); 5791 tcp_ack_snd_check(sk); 5792 } 5793 5794 if (!queued) { 5795 discard: 5796 __kfree_skb(skb); 5797 } 5798 return 0; 5799 } 5800 5801 EXPORT_SYMBOL(sysctl_tcp_ecn); 5802 EXPORT_SYMBOL(sysctl_tcp_reordering); 5803 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 5804 EXPORT_SYMBOL(tcp_parse_options); 5805 #ifdef CONFIG_TCP_MD5SIG 5806 EXPORT_SYMBOL(tcp_parse_md5sig_option); 5807 #endif 5808 EXPORT_SYMBOL(tcp_rcv_established); 5809 EXPORT_SYMBOL(tcp_rcv_state_process); 5810 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 5811