xref: /openbmc/linux/net/ipv4/tcp_input.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #include <linux/mm.h>
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
67 #include <linux/kernel.h>
68 #include <net/dst.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74 
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84 
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly = 2;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91 
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
94 
95 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
96 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
97 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
98 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
99 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
100 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
101 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
102 #define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
103 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
107 #define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
108 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
109 
110 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
111 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
112 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
113 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
114 #define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
115 
116 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
117 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
118 
119 /* Adapt the MSS value used to make delayed ack decision to the
120  * real world.
121  */
122 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
123 {
124 	struct inet_connection_sock *icsk = inet_csk(sk);
125 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
126 	unsigned int len;
127 
128 	icsk->icsk_ack.last_seg_size = 0;
129 
130 	/* skb->len may jitter because of SACKs, even if peer
131 	 * sends good full-sized frames.
132 	 */
133 	len = skb_shinfo(skb)->gso_size ? : skb->len;
134 	if (len >= icsk->icsk_ack.rcv_mss) {
135 		icsk->icsk_ack.rcv_mss = len;
136 	} else {
137 		/* Otherwise, we make more careful check taking into account,
138 		 * that SACKs block is variable.
139 		 *
140 		 * "len" is invariant segment length, including TCP header.
141 		 */
142 		len += skb->data - skb_transport_header(skb);
143 		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
144 		    /* If PSH is not set, packet should be
145 		     * full sized, provided peer TCP is not badly broken.
146 		     * This observation (if it is correct 8)) allows
147 		     * to handle super-low mtu links fairly.
148 		     */
149 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
150 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
151 			/* Subtract also invariant (if peer is RFC compliant),
152 			 * tcp header plus fixed timestamp option length.
153 			 * Resulting "len" is MSS free of SACK jitter.
154 			 */
155 			len -= tcp_sk(sk)->tcp_header_len;
156 			icsk->icsk_ack.last_seg_size = len;
157 			if (len == lss) {
158 				icsk->icsk_ack.rcv_mss = len;
159 				return;
160 			}
161 		}
162 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
163 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
164 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
165 	}
166 }
167 
168 static void tcp_incr_quickack(struct sock *sk)
169 {
170 	struct inet_connection_sock *icsk = inet_csk(sk);
171 	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
172 
173 	if (quickacks == 0)
174 		quickacks = 2;
175 	if (quickacks > icsk->icsk_ack.quick)
176 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
177 }
178 
179 void tcp_enter_quickack_mode(struct sock *sk)
180 {
181 	struct inet_connection_sock *icsk = inet_csk(sk);
182 	tcp_incr_quickack(sk);
183 	icsk->icsk_ack.pingpong = 0;
184 	icsk->icsk_ack.ato = TCP_ATO_MIN;
185 }
186 
187 /* Send ACKs quickly, if "quick" count is not exhausted
188  * and the session is not interactive.
189  */
190 
191 static inline int tcp_in_quickack_mode(const struct sock *sk)
192 {
193 	const struct inet_connection_sock *icsk = inet_csk(sk);
194 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
195 }
196 
197 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
198 {
199 	if (tp->ecn_flags & TCP_ECN_OK)
200 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
201 }
202 
203 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
204 {
205 	if (tcp_hdr(skb)->cwr)
206 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
207 }
208 
209 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
210 {
211 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
212 }
213 
214 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
215 {
216 	if (tp->ecn_flags & TCP_ECN_OK) {
217 		if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
218 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
219 		/* Funny extension: if ECT is not set on a segment,
220 		 * it is surely retransmit. It is not in ECN RFC,
221 		 * but Linux follows this rule. */
222 		else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
223 			tcp_enter_quickack_mode((struct sock *)tp);
224 	}
225 }
226 
227 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
228 {
229 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
230 		tp->ecn_flags &= ~TCP_ECN_OK;
231 }
232 
233 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
234 {
235 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
236 		tp->ecn_flags &= ~TCP_ECN_OK;
237 }
238 
239 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
240 {
241 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
242 		return 1;
243 	return 0;
244 }
245 
246 /* Buffer size and advertised window tuning.
247  *
248  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
249  */
250 
251 static void tcp_fixup_sndbuf(struct sock *sk)
252 {
253 	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
254 		     sizeof(struct sk_buff);
255 
256 	if (sk->sk_sndbuf < 3 * sndmem)
257 		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
258 }
259 
260 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
261  *
262  * All tcp_full_space() is split to two parts: "network" buffer, allocated
263  * forward and advertised in receiver window (tp->rcv_wnd) and
264  * "application buffer", required to isolate scheduling/application
265  * latencies from network.
266  * window_clamp is maximal advertised window. It can be less than
267  * tcp_full_space(), in this case tcp_full_space() - window_clamp
268  * is reserved for "application" buffer. The less window_clamp is
269  * the smoother our behaviour from viewpoint of network, but the lower
270  * throughput and the higher sensitivity of the connection to losses. 8)
271  *
272  * rcv_ssthresh is more strict window_clamp used at "slow start"
273  * phase to predict further behaviour of this connection.
274  * It is used for two goals:
275  * - to enforce header prediction at sender, even when application
276  *   requires some significant "application buffer". It is check #1.
277  * - to prevent pruning of receive queue because of misprediction
278  *   of receiver window. Check #2.
279  *
280  * The scheme does not work when sender sends good segments opening
281  * window and then starts to feed us spaghetti. But it should work
282  * in common situations. Otherwise, we have to rely on queue collapsing.
283  */
284 
285 /* Slow part of check#2. */
286 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
287 {
288 	struct tcp_sock *tp = tcp_sk(sk);
289 	/* Optimize this! */
290 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
291 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
292 
293 	while (tp->rcv_ssthresh <= window) {
294 		if (truesize <= skb->len)
295 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
296 
297 		truesize >>= 1;
298 		window >>= 1;
299 	}
300 	return 0;
301 }
302 
303 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
304 {
305 	struct tcp_sock *tp = tcp_sk(sk);
306 
307 	/* Check #1 */
308 	if (tp->rcv_ssthresh < tp->window_clamp &&
309 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
310 	    !tcp_memory_pressure) {
311 		int incr;
312 
313 		/* Check #2. Increase window, if skb with such overhead
314 		 * will fit to rcvbuf in future.
315 		 */
316 		if (tcp_win_from_space(skb->truesize) <= skb->len)
317 			incr = 2 * tp->advmss;
318 		else
319 			incr = __tcp_grow_window(sk, skb);
320 
321 		if (incr) {
322 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
323 					       tp->window_clamp);
324 			inet_csk(sk)->icsk_ack.quick |= 1;
325 		}
326 	}
327 }
328 
329 /* 3. Tuning rcvbuf, when connection enters established state. */
330 
331 static void tcp_fixup_rcvbuf(struct sock *sk)
332 {
333 	struct tcp_sock *tp = tcp_sk(sk);
334 	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
335 
336 	/* Try to select rcvbuf so that 4 mss-sized segments
337 	 * will fit to window and corresponding skbs will fit to our rcvbuf.
338 	 * (was 3; 4 is minimum to allow fast retransmit to work.)
339 	 */
340 	while (tcp_win_from_space(rcvmem) < tp->advmss)
341 		rcvmem += 128;
342 	if (sk->sk_rcvbuf < 4 * rcvmem)
343 		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
344 }
345 
346 /* 4. Try to fixup all. It is made immediately after connection enters
347  *    established state.
348  */
349 static void tcp_init_buffer_space(struct sock *sk)
350 {
351 	struct tcp_sock *tp = tcp_sk(sk);
352 	int maxwin;
353 
354 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
355 		tcp_fixup_rcvbuf(sk);
356 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
357 		tcp_fixup_sndbuf(sk);
358 
359 	tp->rcvq_space.space = tp->rcv_wnd;
360 
361 	maxwin = tcp_full_space(sk);
362 
363 	if (tp->window_clamp >= maxwin) {
364 		tp->window_clamp = maxwin;
365 
366 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
367 			tp->window_clamp = max(maxwin -
368 					       (maxwin >> sysctl_tcp_app_win),
369 					       4 * tp->advmss);
370 	}
371 
372 	/* Force reservation of one segment. */
373 	if (sysctl_tcp_app_win &&
374 	    tp->window_clamp > 2 * tp->advmss &&
375 	    tp->window_clamp + tp->advmss > maxwin)
376 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
377 
378 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
379 	tp->snd_cwnd_stamp = tcp_time_stamp;
380 }
381 
382 /* 5. Recalculate window clamp after socket hit its memory bounds. */
383 static void tcp_clamp_window(struct sock *sk)
384 {
385 	struct tcp_sock *tp = tcp_sk(sk);
386 	struct inet_connection_sock *icsk = inet_csk(sk);
387 
388 	icsk->icsk_ack.quick = 0;
389 
390 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
391 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
392 	    !tcp_memory_pressure &&
393 	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
394 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
395 				    sysctl_tcp_rmem[2]);
396 	}
397 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
398 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
399 }
400 
401 /* Initialize RCV_MSS value.
402  * RCV_MSS is an our guess about MSS used by the peer.
403  * We haven't any direct information about the MSS.
404  * It's better to underestimate the RCV_MSS rather than overestimate.
405  * Overestimations make us ACKing less frequently than needed.
406  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
407  */
408 void tcp_initialize_rcv_mss(struct sock *sk)
409 {
410 	struct tcp_sock *tp = tcp_sk(sk);
411 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
412 
413 	hint = min(hint, tp->rcv_wnd / 2);
414 	hint = min(hint, TCP_MIN_RCVMSS);
415 	hint = max(hint, TCP_MIN_MSS);
416 
417 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
418 }
419 
420 /* Receiver "autotuning" code.
421  *
422  * The algorithm for RTT estimation w/o timestamps is based on
423  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
424  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
425  *
426  * More detail on this code can be found at
427  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
428  * though this reference is out of date.  A new paper
429  * is pending.
430  */
431 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
432 {
433 	u32 new_sample = tp->rcv_rtt_est.rtt;
434 	long m = sample;
435 
436 	if (m == 0)
437 		m = 1;
438 
439 	if (new_sample != 0) {
440 		/* If we sample in larger samples in the non-timestamp
441 		 * case, we could grossly overestimate the RTT especially
442 		 * with chatty applications or bulk transfer apps which
443 		 * are stalled on filesystem I/O.
444 		 *
445 		 * Also, since we are only going for a minimum in the
446 		 * non-timestamp case, we do not smooth things out
447 		 * else with timestamps disabled convergence takes too
448 		 * long.
449 		 */
450 		if (!win_dep) {
451 			m -= (new_sample >> 3);
452 			new_sample += m;
453 		} else if (m < new_sample)
454 			new_sample = m << 3;
455 	} else {
456 		/* No previous measure. */
457 		new_sample = m << 3;
458 	}
459 
460 	if (tp->rcv_rtt_est.rtt != new_sample)
461 		tp->rcv_rtt_est.rtt = new_sample;
462 }
463 
464 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
465 {
466 	if (tp->rcv_rtt_est.time == 0)
467 		goto new_measure;
468 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
469 		return;
470 	tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
471 
472 new_measure:
473 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
474 	tp->rcv_rtt_est.time = tcp_time_stamp;
475 }
476 
477 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
478 					  const struct sk_buff *skb)
479 {
480 	struct tcp_sock *tp = tcp_sk(sk);
481 	if (tp->rx_opt.rcv_tsecr &&
482 	    (TCP_SKB_CB(skb)->end_seq -
483 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
484 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
485 }
486 
487 /*
488  * This function should be called every time data is copied to user space.
489  * It calculates the appropriate TCP receive buffer space.
490  */
491 void tcp_rcv_space_adjust(struct sock *sk)
492 {
493 	struct tcp_sock *tp = tcp_sk(sk);
494 	int time;
495 	int space;
496 
497 	if (tp->rcvq_space.time == 0)
498 		goto new_measure;
499 
500 	time = tcp_time_stamp - tp->rcvq_space.time;
501 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
502 		return;
503 
504 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
505 
506 	space = max(tp->rcvq_space.space, space);
507 
508 	if (tp->rcvq_space.space != space) {
509 		int rcvmem;
510 
511 		tp->rcvq_space.space = space;
512 
513 		if (sysctl_tcp_moderate_rcvbuf &&
514 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
515 			int new_clamp = space;
516 
517 			/* Receive space grows, normalize in order to
518 			 * take into account packet headers and sk_buff
519 			 * structure overhead.
520 			 */
521 			space /= tp->advmss;
522 			if (!space)
523 				space = 1;
524 			rcvmem = (tp->advmss + MAX_TCP_HEADER +
525 				  16 + sizeof(struct sk_buff));
526 			while (tcp_win_from_space(rcvmem) < tp->advmss)
527 				rcvmem += 128;
528 			space *= rcvmem;
529 			space = min(space, sysctl_tcp_rmem[2]);
530 			if (space > sk->sk_rcvbuf) {
531 				sk->sk_rcvbuf = space;
532 
533 				/* Make the window clamp follow along.  */
534 				tp->window_clamp = new_clamp;
535 			}
536 		}
537 	}
538 
539 new_measure:
540 	tp->rcvq_space.seq = tp->copied_seq;
541 	tp->rcvq_space.time = tcp_time_stamp;
542 }
543 
544 /* There is something which you must keep in mind when you analyze the
545  * behavior of the tp->ato delayed ack timeout interval.  When a
546  * connection starts up, we want to ack as quickly as possible.  The
547  * problem is that "good" TCP's do slow start at the beginning of data
548  * transmission.  The means that until we send the first few ACK's the
549  * sender will sit on his end and only queue most of his data, because
550  * he can only send snd_cwnd unacked packets at any given time.  For
551  * each ACK we send, he increments snd_cwnd and transmits more of his
552  * queue.  -DaveM
553  */
554 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
555 {
556 	struct tcp_sock *tp = tcp_sk(sk);
557 	struct inet_connection_sock *icsk = inet_csk(sk);
558 	u32 now;
559 
560 	inet_csk_schedule_ack(sk);
561 
562 	tcp_measure_rcv_mss(sk, skb);
563 
564 	tcp_rcv_rtt_measure(tp);
565 
566 	now = tcp_time_stamp;
567 
568 	if (!icsk->icsk_ack.ato) {
569 		/* The _first_ data packet received, initialize
570 		 * delayed ACK engine.
571 		 */
572 		tcp_incr_quickack(sk);
573 		icsk->icsk_ack.ato = TCP_ATO_MIN;
574 	} else {
575 		int m = now - icsk->icsk_ack.lrcvtime;
576 
577 		if (m <= TCP_ATO_MIN / 2) {
578 			/* The fastest case is the first. */
579 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
580 		} else if (m < icsk->icsk_ack.ato) {
581 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
582 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
583 				icsk->icsk_ack.ato = icsk->icsk_rto;
584 		} else if (m > icsk->icsk_rto) {
585 			/* Too long gap. Apparently sender failed to
586 			 * restart window, so that we send ACKs quickly.
587 			 */
588 			tcp_incr_quickack(sk);
589 			sk_mem_reclaim(sk);
590 		}
591 	}
592 	icsk->icsk_ack.lrcvtime = now;
593 
594 	TCP_ECN_check_ce(tp, skb);
595 
596 	if (skb->len >= 128)
597 		tcp_grow_window(sk, skb);
598 }
599 
600 static u32 tcp_rto_min(struct sock *sk)
601 {
602 	struct dst_entry *dst = __sk_dst_get(sk);
603 	u32 rto_min = TCP_RTO_MIN;
604 
605 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
606 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
607 	return rto_min;
608 }
609 
610 /* Called to compute a smoothed rtt estimate. The data fed to this
611  * routine either comes from timestamps, or from segments that were
612  * known _not_ to have been retransmitted [see Karn/Partridge
613  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
614  * piece by Van Jacobson.
615  * NOTE: the next three routines used to be one big routine.
616  * To save cycles in the RFC 1323 implementation it was better to break
617  * it up into three procedures. -- erics
618  */
619 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
620 {
621 	struct tcp_sock *tp = tcp_sk(sk);
622 	long m = mrtt; /* RTT */
623 
624 	/*	The following amusing code comes from Jacobson's
625 	 *	article in SIGCOMM '88.  Note that rtt and mdev
626 	 *	are scaled versions of rtt and mean deviation.
627 	 *	This is designed to be as fast as possible
628 	 *	m stands for "measurement".
629 	 *
630 	 *	On a 1990 paper the rto value is changed to:
631 	 *	RTO = rtt + 4 * mdev
632 	 *
633 	 * Funny. This algorithm seems to be very broken.
634 	 * These formulae increase RTO, when it should be decreased, increase
635 	 * too slowly, when it should be increased quickly, decrease too quickly
636 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
637 	 * does not matter how to _calculate_ it. Seems, it was trap
638 	 * that VJ failed to avoid. 8)
639 	 */
640 	if (m == 0)
641 		m = 1;
642 	if (tp->srtt != 0) {
643 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
644 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
645 		if (m < 0) {
646 			m = -m;		/* m is now abs(error) */
647 			m -= (tp->mdev >> 2);   /* similar update on mdev */
648 			/* This is similar to one of Eifel findings.
649 			 * Eifel blocks mdev updates when rtt decreases.
650 			 * This solution is a bit different: we use finer gain
651 			 * for mdev in this case (alpha*beta).
652 			 * Like Eifel it also prevents growth of rto,
653 			 * but also it limits too fast rto decreases,
654 			 * happening in pure Eifel.
655 			 */
656 			if (m > 0)
657 				m >>= 3;
658 		} else {
659 			m -= (tp->mdev >> 2);   /* similar update on mdev */
660 		}
661 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
662 		if (tp->mdev > tp->mdev_max) {
663 			tp->mdev_max = tp->mdev;
664 			if (tp->mdev_max > tp->rttvar)
665 				tp->rttvar = tp->mdev_max;
666 		}
667 		if (after(tp->snd_una, tp->rtt_seq)) {
668 			if (tp->mdev_max < tp->rttvar)
669 				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
670 			tp->rtt_seq = tp->snd_nxt;
671 			tp->mdev_max = tcp_rto_min(sk);
672 		}
673 	} else {
674 		/* no previous measure. */
675 		tp->srtt = m << 3;	/* take the measured time to be rtt */
676 		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
677 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
678 		tp->rtt_seq = tp->snd_nxt;
679 	}
680 }
681 
682 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
683  * routine referred to above.
684  */
685 static inline void tcp_set_rto(struct sock *sk)
686 {
687 	const struct tcp_sock *tp = tcp_sk(sk);
688 	/* Old crap is replaced with new one. 8)
689 	 *
690 	 * More seriously:
691 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
692 	 *    It cannot be less due to utterly erratic ACK generation made
693 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
694 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
695 	 *    is invisible. Actually, Linux-2.4 also generates erratic
696 	 *    ACKs in some circumstances.
697 	 */
698 	inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
699 
700 	/* 2. Fixups made earlier cannot be right.
701 	 *    If we do not estimate RTO correctly without them,
702 	 *    all the algo is pure shit and should be replaced
703 	 *    with correct one. It is exactly, which we pretend to do.
704 	 */
705 
706 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707 	 * guarantees that rto is higher.
708 	 */
709 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
710 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
711 }
712 
713 /* Save metrics learned by this TCP session.
714    This function is called only, when TCP finishes successfully
715    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
716  */
717 void tcp_update_metrics(struct sock *sk)
718 {
719 	struct tcp_sock *tp = tcp_sk(sk);
720 	struct dst_entry *dst = __sk_dst_get(sk);
721 
722 	if (sysctl_tcp_nometrics_save)
723 		return;
724 
725 	dst_confirm(dst);
726 
727 	if (dst && (dst->flags & DST_HOST)) {
728 		const struct inet_connection_sock *icsk = inet_csk(sk);
729 		int m;
730 		unsigned long rtt;
731 
732 		if (icsk->icsk_backoff || !tp->srtt) {
733 			/* This session failed to estimate rtt. Why?
734 			 * Probably, no packets returned in time.
735 			 * Reset our results.
736 			 */
737 			if (!(dst_metric_locked(dst, RTAX_RTT)))
738 				dst->metrics[RTAX_RTT - 1] = 0;
739 			return;
740 		}
741 
742 		rtt = dst_metric_rtt(dst, RTAX_RTT);
743 		m = rtt - tp->srtt;
744 
745 		/* If newly calculated rtt larger than stored one,
746 		 * store new one. Otherwise, use EWMA. Remember,
747 		 * rtt overestimation is always better than underestimation.
748 		 */
749 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
750 			if (m <= 0)
751 				set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
752 			else
753 				set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
754 		}
755 
756 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
757 			unsigned long var;
758 			if (m < 0)
759 				m = -m;
760 
761 			/* Scale deviation to rttvar fixed point */
762 			m >>= 1;
763 			if (m < tp->mdev)
764 				m = tp->mdev;
765 
766 			var = dst_metric_rtt(dst, RTAX_RTTVAR);
767 			if (m >= var)
768 				var = m;
769 			else
770 				var -= (var - m) >> 2;
771 
772 			set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
773 		}
774 
775 		if (tp->snd_ssthresh >= 0xFFFF) {
776 			/* Slow start still did not finish. */
777 			if (dst_metric(dst, RTAX_SSTHRESH) &&
778 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
779 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
780 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
781 			if (!dst_metric_locked(dst, RTAX_CWND) &&
782 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
783 				dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
784 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
785 			   icsk->icsk_ca_state == TCP_CA_Open) {
786 			/* Cong. avoidance phase, cwnd is reliable. */
787 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
788 				dst->metrics[RTAX_SSTHRESH-1] =
789 					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
790 			if (!dst_metric_locked(dst, RTAX_CWND))
791 				dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
792 		} else {
793 			/* Else slow start did not finish, cwnd is non-sense,
794 			   ssthresh may be also invalid.
795 			 */
796 			if (!dst_metric_locked(dst, RTAX_CWND))
797 				dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
798 			if (dst_metric(dst, RTAX_SSTHRESH) &&
799 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
800 			    tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
801 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
802 		}
803 
804 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
805 			if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
806 			    tp->reordering != sysctl_tcp_reordering)
807 				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
808 		}
809 	}
810 }
811 
812 /* Numbers are taken from RFC3390.
813  *
814  * John Heffner states:
815  *
816  *	The RFC specifies a window of no more than 4380 bytes
817  *	unless 2*MSS > 4380.  Reading the pseudocode in the RFC
818  *	is a bit misleading because they use a clamp at 4380 bytes
819  *	rather than use a multiplier in the relevant range.
820  */
821 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
822 {
823 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
824 
825 	if (!cwnd) {
826 		if (tp->mss_cache > 1460)
827 			cwnd = 2;
828 		else
829 			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
830 	}
831 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
832 }
833 
834 /* Set slow start threshold and cwnd not falling to slow start */
835 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
836 {
837 	struct tcp_sock *tp = tcp_sk(sk);
838 	const struct inet_connection_sock *icsk = inet_csk(sk);
839 
840 	tp->prior_ssthresh = 0;
841 	tp->bytes_acked = 0;
842 	if (icsk->icsk_ca_state < TCP_CA_CWR) {
843 		tp->undo_marker = 0;
844 		if (set_ssthresh)
845 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
846 		tp->snd_cwnd = min(tp->snd_cwnd,
847 				   tcp_packets_in_flight(tp) + 1U);
848 		tp->snd_cwnd_cnt = 0;
849 		tp->high_seq = tp->snd_nxt;
850 		tp->snd_cwnd_stamp = tcp_time_stamp;
851 		TCP_ECN_queue_cwr(tp);
852 
853 		tcp_set_ca_state(sk, TCP_CA_CWR);
854 	}
855 }
856 
857 /*
858  * Packet counting of FACK is based on in-order assumptions, therefore TCP
859  * disables it when reordering is detected
860  */
861 static void tcp_disable_fack(struct tcp_sock *tp)
862 {
863 	/* RFC3517 uses different metric in lost marker => reset on change */
864 	if (tcp_is_fack(tp))
865 		tp->lost_skb_hint = NULL;
866 	tp->rx_opt.sack_ok &= ~2;
867 }
868 
869 /* Take a notice that peer is sending D-SACKs */
870 static void tcp_dsack_seen(struct tcp_sock *tp)
871 {
872 	tp->rx_opt.sack_ok |= 4;
873 }
874 
875 /* Initialize metrics on socket. */
876 
877 static void tcp_init_metrics(struct sock *sk)
878 {
879 	struct tcp_sock *tp = tcp_sk(sk);
880 	struct dst_entry *dst = __sk_dst_get(sk);
881 
882 	if (dst == NULL)
883 		goto reset;
884 
885 	dst_confirm(dst);
886 
887 	if (dst_metric_locked(dst, RTAX_CWND))
888 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
889 	if (dst_metric(dst, RTAX_SSTHRESH)) {
890 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
891 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
892 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
893 	}
894 	if (dst_metric(dst, RTAX_REORDERING) &&
895 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
896 		tcp_disable_fack(tp);
897 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
898 	}
899 
900 	if (dst_metric(dst, RTAX_RTT) == 0)
901 		goto reset;
902 
903 	if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
904 		goto reset;
905 
906 	/* Initial rtt is determined from SYN,SYN-ACK.
907 	 * The segment is small and rtt may appear much
908 	 * less than real one. Use per-dst memory
909 	 * to make it more realistic.
910 	 *
911 	 * A bit of theory. RTT is time passed after "normal" sized packet
912 	 * is sent until it is ACKed. In normal circumstances sending small
913 	 * packets force peer to delay ACKs and calculation is correct too.
914 	 * The algorithm is adaptive and, provided we follow specs, it
915 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
916 	 * tricks sort of "quick acks" for time long enough to decrease RTT
917 	 * to low value, and then abruptly stops to do it and starts to delay
918 	 * ACKs, wait for troubles.
919 	 */
920 	if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
921 		tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
922 		tp->rtt_seq = tp->snd_nxt;
923 	}
924 	if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
925 		tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
926 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
927 	}
928 	tcp_set_rto(sk);
929 	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
930 		goto reset;
931 	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
932 	tp->snd_cwnd_stamp = tcp_time_stamp;
933 	return;
934 
935 reset:
936 	/* Play conservative. If timestamps are not
937 	 * supported, TCP will fail to recalculate correct
938 	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
939 	 */
940 	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
941 		tp->srtt = 0;
942 		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
943 		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
944 	}
945 }
946 
947 static void tcp_update_reordering(struct sock *sk, const int metric,
948 				  const int ts)
949 {
950 	struct tcp_sock *tp = tcp_sk(sk);
951 	if (metric > tp->reordering) {
952 		int mib_idx;
953 
954 		tp->reordering = min(TCP_MAX_REORDERING, metric);
955 
956 		/* This exciting event is worth to be remembered. 8) */
957 		if (ts)
958 			mib_idx = LINUX_MIB_TCPTSREORDER;
959 		else if (tcp_is_reno(tp))
960 			mib_idx = LINUX_MIB_TCPRENOREORDER;
961 		else if (tcp_is_fack(tp))
962 			mib_idx = LINUX_MIB_TCPFACKREORDER;
963 		else
964 			mib_idx = LINUX_MIB_TCPSACKREORDER;
965 
966 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
967 #if FASTRETRANS_DEBUG > 1
968 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
969 		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
970 		       tp->reordering,
971 		       tp->fackets_out,
972 		       tp->sacked_out,
973 		       tp->undo_marker ? tp->undo_retrans : 0);
974 #endif
975 		tcp_disable_fack(tp);
976 	}
977 }
978 
979 /* This must be called before lost_out is incremented */
980 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
981 {
982 	if ((tp->retransmit_skb_hint == NULL) ||
983 	    before(TCP_SKB_CB(skb)->seq,
984 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
985 		tp->retransmit_skb_hint = skb;
986 
987 	if (!tp->lost_out ||
988 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
989 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
990 }
991 
992 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
993 {
994 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
995 		tcp_verify_retransmit_hint(tp, skb);
996 
997 		tp->lost_out += tcp_skb_pcount(skb);
998 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
999 	}
1000 }
1001 
1002 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1003 					    struct sk_buff *skb)
1004 {
1005 	tcp_verify_retransmit_hint(tp, skb);
1006 
1007 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1008 		tp->lost_out += tcp_skb_pcount(skb);
1009 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1010 	}
1011 }
1012 
1013 /* This procedure tags the retransmission queue when SACKs arrive.
1014  *
1015  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1016  * Packets in queue with these bits set are counted in variables
1017  * sacked_out, retrans_out and lost_out, correspondingly.
1018  *
1019  * Valid combinations are:
1020  * Tag  InFlight	Description
1021  * 0	1		- orig segment is in flight.
1022  * S	0		- nothing flies, orig reached receiver.
1023  * L	0		- nothing flies, orig lost by net.
1024  * R	2		- both orig and retransmit are in flight.
1025  * L|R	1		- orig is lost, retransmit is in flight.
1026  * S|R  1		- orig reached receiver, retrans is still in flight.
1027  * (L|S|R is logically valid, it could occur when L|R is sacked,
1028  *  but it is equivalent to plain S and code short-curcuits it to S.
1029  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1030  *
1031  * These 6 states form finite state machine, controlled by the following events:
1032  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1033  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1034  * 3. Loss detection event of one of three flavors:
1035  *	A. Scoreboard estimator decided the packet is lost.
1036  *	   A'. Reno "three dupacks" marks head of queue lost.
1037  *	   A''. Its FACK modfication, head until snd.fack is lost.
1038  *	B. SACK arrives sacking data transmitted after never retransmitted
1039  *	   hole was sent out.
1040  *	C. SACK arrives sacking SND.NXT at the moment, when the
1041  *	   segment was retransmitted.
1042  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1043  *
1044  * It is pleasant to note, that state diagram turns out to be commutative,
1045  * so that we are allowed not to be bothered by order of our actions,
1046  * when multiple events arrive simultaneously. (see the function below).
1047  *
1048  * Reordering detection.
1049  * --------------------
1050  * Reordering metric is maximal distance, which a packet can be displaced
1051  * in packet stream. With SACKs we can estimate it:
1052  *
1053  * 1. SACK fills old hole and the corresponding segment was not
1054  *    ever retransmitted -> reordering. Alas, we cannot use it
1055  *    when segment was retransmitted.
1056  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1057  *    for retransmitted and already SACKed segment -> reordering..
1058  * Both of these heuristics are not used in Loss state, when we cannot
1059  * account for retransmits accurately.
1060  *
1061  * SACK block validation.
1062  * ----------------------
1063  *
1064  * SACK block range validation checks that the received SACK block fits to
1065  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1066  * Note that SND.UNA is not included to the range though being valid because
1067  * it means that the receiver is rather inconsistent with itself reporting
1068  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1069  * perfectly valid, however, in light of RFC2018 which explicitly states
1070  * that "SACK block MUST reflect the newest segment.  Even if the newest
1071  * segment is going to be discarded ...", not that it looks very clever
1072  * in case of head skb. Due to potentional receiver driven attacks, we
1073  * choose to avoid immediate execution of a walk in write queue due to
1074  * reneging and defer head skb's loss recovery to standard loss recovery
1075  * procedure that will eventually trigger (nothing forbids us doing this).
1076  *
1077  * Implements also blockage to start_seq wrap-around. Problem lies in the
1078  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1079  * there's no guarantee that it will be before snd_nxt (n). The problem
1080  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1081  * wrap (s_w):
1082  *
1083  *         <- outs wnd ->                          <- wrapzone ->
1084  *         u     e      n                         u_w   e_w  s n_w
1085  *         |     |      |                          |     |   |  |
1086  * |<------------+------+----- TCP seqno space --------------+---------->|
1087  * ...-- <2^31 ->|                                           |<--------...
1088  * ...---- >2^31 ------>|                                    |<--------...
1089  *
1090  * Current code wouldn't be vulnerable but it's better still to discard such
1091  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1092  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1093  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1094  * equal to the ideal case (infinite seqno space without wrap caused issues).
1095  *
1096  * With D-SACK the lower bound is extended to cover sequence space below
1097  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1098  * again, D-SACK block must not to go across snd_una (for the same reason as
1099  * for the normal SACK blocks, explained above). But there all simplicity
1100  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1101  * fully below undo_marker they do not affect behavior in anyway and can
1102  * therefore be safely ignored. In rare cases (which are more or less
1103  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1104  * fragmentation and packet reordering past skb's retransmission. To consider
1105  * them correctly, the acceptable range must be extended even more though
1106  * the exact amount is rather hard to quantify. However, tp->max_window can
1107  * be used as an exaggerated estimate.
1108  */
1109 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1110 				  u32 start_seq, u32 end_seq)
1111 {
1112 	/* Too far in future, or reversed (interpretation is ambiguous) */
1113 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1114 		return 0;
1115 
1116 	/* Nasty start_seq wrap-around check (see comments above) */
1117 	if (!before(start_seq, tp->snd_nxt))
1118 		return 0;
1119 
1120 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1121 	 * start_seq == snd_una is non-sensical (see comments above)
1122 	 */
1123 	if (after(start_seq, tp->snd_una))
1124 		return 1;
1125 
1126 	if (!is_dsack || !tp->undo_marker)
1127 		return 0;
1128 
1129 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1130 	if (!after(end_seq, tp->snd_una))
1131 		return 0;
1132 
1133 	if (!before(start_seq, tp->undo_marker))
1134 		return 1;
1135 
1136 	/* Too old */
1137 	if (!after(end_seq, tp->undo_marker))
1138 		return 0;
1139 
1140 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1141 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1142 	 */
1143 	return !before(start_seq, end_seq - tp->max_window);
1144 }
1145 
1146 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1147  * Event "C". Later note: FACK people cheated me again 8), we have to account
1148  * for reordering! Ugly, but should help.
1149  *
1150  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1151  * less than what is now known to be received by the other end (derived from
1152  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1153  * retransmitted skbs to avoid some costly processing per ACKs.
1154  */
1155 static void tcp_mark_lost_retrans(struct sock *sk)
1156 {
1157 	const struct inet_connection_sock *icsk = inet_csk(sk);
1158 	struct tcp_sock *tp = tcp_sk(sk);
1159 	struct sk_buff *skb;
1160 	int cnt = 0;
1161 	u32 new_low_seq = tp->snd_nxt;
1162 	u32 received_upto = tcp_highest_sack_seq(tp);
1163 
1164 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1165 	    !after(received_upto, tp->lost_retrans_low) ||
1166 	    icsk->icsk_ca_state != TCP_CA_Recovery)
1167 		return;
1168 
1169 	tcp_for_write_queue(skb, sk) {
1170 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1171 
1172 		if (skb == tcp_send_head(sk))
1173 			break;
1174 		if (cnt == tp->retrans_out)
1175 			break;
1176 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1177 			continue;
1178 
1179 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1180 			continue;
1181 
1182 		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1183 		 * constraint here (see above) but figuring out that at
1184 		 * least tp->reordering SACK blocks reside between ack_seq
1185 		 * and received_upto is not easy task to do cheaply with
1186 		 * the available datastructures.
1187 		 *
1188 		 * Whether FACK should check here for tp->reordering segs
1189 		 * in-between one could argue for either way (it would be
1190 		 * rather simple to implement as we could count fack_count
1191 		 * during the walk and do tp->fackets_out - fack_count).
1192 		 */
1193 		if (after(received_upto, ack_seq)) {
1194 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1195 			tp->retrans_out -= tcp_skb_pcount(skb);
1196 
1197 			tcp_skb_mark_lost_uncond_verify(tp, skb);
1198 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1199 		} else {
1200 			if (before(ack_seq, new_low_seq))
1201 				new_low_seq = ack_seq;
1202 			cnt += tcp_skb_pcount(skb);
1203 		}
1204 	}
1205 
1206 	if (tp->retrans_out)
1207 		tp->lost_retrans_low = new_low_seq;
1208 }
1209 
1210 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1211 			   struct tcp_sack_block_wire *sp, int num_sacks,
1212 			   u32 prior_snd_una)
1213 {
1214 	struct tcp_sock *tp = tcp_sk(sk);
1215 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1216 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1217 	int dup_sack = 0;
1218 
1219 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1220 		dup_sack = 1;
1221 		tcp_dsack_seen(tp);
1222 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1223 	} else if (num_sacks > 1) {
1224 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1225 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1226 
1227 		if (!after(end_seq_0, end_seq_1) &&
1228 		    !before(start_seq_0, start_seq_1)) {
1229 			dup_sack = 1;
1230 			tcp_dsack_seen(tp);
1231 			NET_INC_STATS_BH(sock_net(sk),
1232 					LINUX_MIB_TCPDSACKOFORECV);
1233 		}
1234 	}
1235 
1236 	/* D-SACK for already forgotten data... Do dumb counting. */
1237 	if (dup_sack &&
1238 	    !after(end_seq_0, prior_snd_una) &&
1239 	    after(end_seq_0, tp->undo_marker))
1240 		tp->undo_retrans--;
1241 
1242 	return dup_sack;
1243 }
1244 
1245 struct tcp_sacktag_state {
1246 	int reord;
1247 	int fack_count;
1248 	int flag;
1249 };
1250 
1251 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1252  * the incoming SACK may not exactly match but we can find smaller MSS
1253  * aligned portion of it that matches. Therefore we might need to fragment
1254  * which may fail and creates some hassle (caller must handle error case
1255  * returns).
1256  *
1257  * FIXME: this could be merged to shift decision code
1258  */
1259 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1260 				 u32 start_seq, u32 end_seq)
1261 {
1262 	int in_sack, err;
1263 	unsigned int pkt_len;
1264 	unsigned int mss;
1265 
1266 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1267 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1268 
1269 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1270 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1271 		mss = tcp_skb_mss(skb);
1272 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1273 
1274 		if (!in_sack) {
1275 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1276 			if (pkt_len < mss)
1277 				pkt_len = mss;
1278 		} else {
1279 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1280 			if (pkt_len < mss)
1281 				return -EINVAL;
1282 		}
1283 
1284 		/* Round if necessary so that SACKs cover only full MSSes
1285 		 * and/or the remaining small portion (if present)
1286 		 */
1287 		if (pkt_len > mss) {
1288 			unsigned int new_len = (pkt_len / mss) * mss;
1289 			if (!in_sack && new_len < pkt_len) {
1290 				new_len += mss;
1291 				if (new_len > skb->len)
1292 					return 0;
1293 			}
1294 			pkt_len = new_len;
1295 		}
1296 		err = tcp_fragment(sk, skb, pkt_len, mss);
1297 		if (err < 0)
1298 			return err;
1299 	}
1300 
1301 	return in_sack;
1302 }
1303 
1304 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1305 			  struct tcp_sacktag_state *state,
1306 			  int dup_sack, int pcount)
1307 {
1308 	struct tcp_sock *tp = tcp_sk(sk);
1309 	u8 sacked = TCP_SKB_CB(skb)->sacked;
1310 	int fack_count = state->fack_count;
1311 
1312 	/* Account D-SACK for retransmitted packet. */
1313 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1314 		if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1315 			tp->undo_retrans--;
1316 		if (sacked & TCPCB_SACKED_ACKED)
1317 			state->reord = min(fack_count, state->reord);
1318 	}
1319 
1320 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1321 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1322 		return sacked;
1323 
1324 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1325 		if (sacked & TCPCB_SACKED_RETRANS) {
1326 			/* If the segment is not tagged as lost,
1327 			 * we do not clear RETRANS, believing
1328 			 * that retransmission is still in flight.
1329 			 */
1330 			if (sacked & TCPCB_LOST) {
1331 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1332 				tp->lost_out -= pcount;
1333 				tp->retrans_out -= pcount;
1334 			}
1335 		} else {
1336 			if (!(sacked & TCPCB_RETRANS)) {
1337 				/* New sack for not retransmitted frame,
1338 				 * which was in hole. It is reordering.
1339 				 */
1340 				if (before(TCP_SKB_CB(skb)->seq,
1341 					   tcp_highest_sack_seq(tp)))
1342 					state->reord = min(fack_count,
1343 							   state->reord);
1344 
1345 				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1346 				if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1347 					state->flag |= FLAG_ONLY_ORIG_SACKED;
1348 			}
1349 
1350 			if (sacked & TCPCB_LOST) {
1351 				sacked &= ~TCPCB_LOST;
1352 				tp->lost_out -= pcount;
1353 			}
1354 		}
1355 
1356 		sacked |= TCPCB_SACKED_ACKED;
1357 		state->flag |= FLAG_DATA_SACKED;
1358 		tp->sacked_out += pcount;
1359 
1360 		fack_count += pcount;
1361 
1362 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1363 		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1364 		    before(TCP_SKB_CB(skb)->seq,
1365 			   TCP_SKB_CB(tp->lost_skb_hint)->seq))
1366 			tp->lost_cnt_hint += pcount;
1367 
1368 		if (fack_count > tp->fackets_out)
1369 			tp->fackets_out = fack_count;
1370 	}
1371 
1372 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1373 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1374 	 * are accounted above as well.
1375 	 */
1376 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1377 		sacked &= ~TCPCB_SACKED_RETRANS;
1378 		tp->retrans_out -= pcount;
1379 	}
1380 
1381 	return sacked;
1382 }
1383 
1384 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1385 			   struct tcp_sacktag_state *state,
1386 			   unsigned int pcount, int shifted, int mss,
1387 			   int dup_sack)
1388 {
1389 	struct tcp_sock *tp = tcp_sk(sk);
1390 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1391 
1392 	BUG_ON(!pcount);
1393 
1394 	/* Tweak before seqno plays */
1395 	if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1396 	    !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1397 		tp->lost_cnt_hint += pcount;
1398 
1399 	TCP_SKB_CB(prev)->end_seq += shifted;
1400 	TCP_SKB_CB(skb)->seq += shifted;
1401 
1402 	skb_shinfo(prev)->gso_segs += pcount;
1403 	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1404 	skb_shinfo(skb)->gso_segs -= pcount;
1405 
1406 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1407 	 * in theory this shouldn't be necessary but as long as DSACK
1408 	 * code can come after this skb later on it's better to keep
1409 	 * setting gso_size to something.
1410 	 */
1411 	if (!skb_shinfo(prev)->gso_size) {
1412 		skb_shinfo(prev)->gso_size = mss;
1413 		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1414 	}
1415 
1416 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1417 	if (skb_shinfo(skb)->gso_segs <= 1) {
1418 		skb_shinfo(skb)->gso_size = 0;
1419 		skb_shinfo(skb)->gso_type = 0;
1420 	}
1421 
1422 	/* We discard results */
1423 	tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1424 
1425 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1426 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1427 
1428 	if (skb->len > 0) {
1429 		BUG_ON(!tcp_skb_pcount(skb));
1430 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1431 		return 0;
1432 	}
1433 
1434 	/* Whole SKB was eaten :-) */
1435 
1436 	if (skb == tp->retransmit_skb_hint)
1437 		tp->retransmit_skb_hint = prev;
1438 	if (skb == tp->scoreboard_skb_hint)
1439 		tp->scoreboard_skb_hint = prev;
1440 	if (skb == tp->lost_skb_hint) {
1441 		tp->lost_skb_hint = prev;
1442 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1443 	}
1444 
1445 	TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1446 	if (skb == tcp_highest_sack(sk))
1447 		tcp_advance_highest_sack(sk, skb);
1448 
1449 	tcp_unlink_write_queue(skb, sk);
1450 	sk_wmem_free_skb(sk, skb);
1451 
1452 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1453 
1454 	return 1;
1455 }
1456 
1457 /* I wish gso_size would have a bit more sane initialization than
1458  * something-or-zero which complicates things
1459  */
1460 static int tcp_skb_seglen(struct sk_buff *skb)
1461 {
1462 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1463 }
1464 
1465 /* Shifting pages past head area doesn't work */
1466 static int skb_can_shift(struct sk_buff *skb)
1467 {
1468 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1469 }
1470 
1471 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1472  * skb.
1473  */
1474 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1475 					  struct tcp_sacktag_state *state,
1476 					  u32 start_seq, u32 end_seq,
1477 					  int dup_sack)
1478 {
1479 	struct tcp_sock *tp = tcp_sk(sk);
1480 	struct sk_buff *prev;
1481 	int mss;
1482 	int pcount = 0;
1483 	int len;
1484 	int in_sack;
1485 
1486 	if (!sk_can_gso(sk))
1487 		goto fallback;
1488 
1489 	/* Normally R but no L won't result in plain S */
1490 	if (!dup_sack &&
1491 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1492 		goto fallback;
1493 	if (!skb_can_shift(skb))
1494 		goto fallback;
1495 	/* This frame is about to be dropped (was ACKed). */
1496 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1497 		goto fallback;
1498 
1499 	/* Can only happen with delayed DSACK + discard craziness */
1500 	if (unlikely(skb == tcp_write_queue_head(sk)))
1501 		goto fallback;
1502 	prev = tcp_write_queue_prev(sk, skb);
1503 
1504 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1505 		goto fallback;
1506 
1507 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1508 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1509 
1510 	if (in_sack) {
1511 		len = skb->len;
1512 		pcount = tcp_skb_pcount(skb);
1513 		mss = tcp_skb_seglen(skb);
1514 
1515 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1516 		 * drop this restriction as unnecessary
1517 		 */
1518 		if (mss != tcp_skb_seglen(prev))
1519 			goto fallback;
1520 	} else {
1521 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1522 			goto noop;
1523 		/* CHECKME: This is non-MSS split case only?, this will
1524 		 * cause skipped skbs due to advancing loop btw, original
1525 		 * has that feature too
1526 		 */
1527 		if (tcp_skb_pcount(skb) <= 1)
1528 			goto noop;
1529 
1530 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1531 		if (!in_sack) {
1532 			/* TODO: head merge to next could be attempted here
1533 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1534 			 * though it might not be worth of the additional hassle
1535 			 *
1536 			 * ...we can probably just fallback to what was done
1537 			 * previously. We could try merging non-SACKed ones
1538 			 * as well but it probably isn't going to buy off
1539 			 * because later SACKs might again split them, and
1540 			 * it would make skb timestamp tracking considerably
1541 			 * harder problem.
1542 			 */
1543 			goto fallback;
1544 		}
1545 
1546 		len = end_seq - TCP_SKB_CB(skb)->seq;
1547 		BUG_ON(len < 0);
1548 		BUG_ON(len > skb->len);
1549 
1550 		/* MSS boundaries should be honoured or else pcount will
1551 		 * severely break even though it makes things bit trickier.
1552 		 * Optimize common case to avoid most of the divides
1553 		 */
1554 		mss = tcp_skb_mss(skb);
1555 
1556 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1557 		 * drop this restriction as unnecessary
1558 		 */
1559 		if (mss != tcp_skb_seglen(prev))
1560 			goto fallback;
1561 
1562 		if (len == mss) {
1563 			pcount = 1;
1564 		} else if (len < mss) {
1565 			goto noop;
1566 		} else {
1567 			pcount = len / mss;
1568 			len = pcount * mss;
1569 		}
1570 	}
1571 
1572 	if (!skb_shift(prev, skb, len))
1573 		goto fallback;
1574 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1575 		goto out;
1576 
1577 	/* Hole filled allows collapsing with the next as well, this is very
1578 	 * useful when hole on every nth skb pattern happens
1579 	 */
1580 	if (prev == tcp_write_queue_tail(sk))
1581 		goto out;
1582 	skb = tcp_write_queue_next(sk, prev);
1583 
1584 	if (!skb_can_shift(skb) ||
1585 	    (skb == tcp_send_head(sk)) ||
1586 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1587 	    (mss != tcp_skb_seglen(skb)))
1588 		goto out;
1589 
1590 	len = skb->len;
1591 	if (skb_shift(prev, skb, len)) {
1592 		pcount += tcp_skb_pcount(skb);
1593 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1594 	}
1595 
1596 out:
1597 	state->fack_count += pcount;
1598 	return prev;
1599 
1600 noop:
1601 	return skb;
1602 
1603 fallback:
1604 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1605 	return NULL;
1606 }
1607 
1608 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1609 					struct tcp_sack_block *next_dup,
1610 					struct tcp_sacktag_state *state,
1611 					u32 start_seq, u32 end_seq,
1612 					int dup_sack_in)
1613 {
1614 	struct tcp_sock *tp = tcp_sk(sk);
1615 	struct sk_buff *tmp;
1616 
1617 	tcp_for_write_queue_from(skb, sk) {
1618 		int in_sack = 0;
1619 		int dup_sack = dup_sack_in;
1620 
1621 		if (skb == tcp_send_head(sk))
1622 			break;
1623 
1624 		/* queue is in-order => we can short-circuit the walk early */
1625 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1626 			break;
1627 
1628 		if ((next_dup != NULL) &&
1629 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1630 			in_sack = tcp_match_skb_to_sack(sk, skb,
1631 							next_dup->start_seq,
1632 							next_dup->end_seq);
1633 			if (in_sack > 0)
1634 				dup_sack = 1;
1635 		}
1636 
1637 		/* skb reference here is a bit tricky to get right, since
1638 		 * shifting can eat and free both this skb and the next,
1639 		 * so not even _safe variant of the loop is enough.
1640 		 */
1641 		if (in_sack <= 0) {
1642 			tmp = tcp_shift_skb_data(sk, skb, state,
1643 						 start_seq, end_seq, dup_sack);
1644 			if (tmp != NULL) {
1645 				if (tmp != skb) {
1646 					skb = tmp;
1647 					continue;
1648 				}
1649 
1650 				in_sack = 0;
1651 			} else {
1652 				in_sack = tcp_match_skb_to_sack(sk, skb,
1653 								start_seq,
1654 								end_seq);
1655 			}
1656 		}
1657 
1658 		if (unlikely(in_sack < 0))
1659 			break;
1660 
1661 		if (in_sack) {
1662 			TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1663 								  state,
1664 								  dup_sack,
1665 								  tcp_skb_pcount(skb));
1666 
1667 			if (!before(TCP_SKB_CB(skb)->seq,
1668 				    tcp_highest_sack_seq(tp)))
1669 				tcp_advance_highest_sack(sk, skb);
1670 		}
1671 
1672 		state->fack_count += tcp_skb_pcount(skb);
1673 	}
1674 	return skb;
1675 }
1676 
1677 /* Avoid all extra work that is being done by sacktag while walking in
1678  * a normal way
1679  */
1680 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1681 					struct tcp_sacktag_state *state,
1682 					u32 skip_to_seq)
1683 {
1684 	tcp_for_write_queue_from(skb, sk) {
1685 		if (skb == tcp_send_head(sk))
1686 			break;
1687 
1688 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1689 			break;
1690 
1691 		state->fack_count += tcp_skb_pcount(skb);
1692 	}
1693 	return skb;
1694 }
1695 
1696 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1697 						struct sock *sk,
1698 						struct tcp_sack_block *next_dup,
1699 						struct tcp_sacktag_state *state,
1700 						u32 skip_to_seq)
1701 {
1702 	if (next_dup == NULL)
1703 		return skb;
1704 
1705 	if (before(next_dup->start_seq, skip_to_seq)) {
1706 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1707 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1708 				       next_dup->start_seq, next_dup->end_seq,
1709 				       1);
1710 	}
1711 
1712 	return skb;
1713 }
1714 
1715 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1716 {
1717 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1718 }
1719 
1720 static int
1721 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1722 			u32 prior_snd_una)
1723 {
1724 	const struct inet_connection_sock *icsk = inet_csk(sk);
1725 	struct tcp_sock *tp = tcp_sk(sk);
1726 	unsigned char *ptr = (skb_transport_header(ack_skb) +
1727 			      TCP_SKB_CB(ack_skb)->sacked);
1728 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1729 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1730 	struct tcp_sack_block *cache;
1731 	struct tcp_sacktag_state state;
1732 	struct sk_buff *skb;
1733 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1734 	int used_sacks;
1735 	int found_dup_sack = 0;
1736 	int i, j;
1737 	int first_sack_index;
1738 
1739 	state.flag = 0;
1740 	state.reord = tp->packets_out;
1741 
1742 	if (!tp->sacked_out) {
1743 		if (WARN_ON(tp->fackets_out))
1744 			tp->fackets_out = 0;
1745 		tcp_highest_sack_reset(sk);
1746 	}
1747 
1748 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1749 					 num_sacks, prior_snd_una);
1750 	if (found_dup_sack)
1751 		state.flag |= FLAG_DSACKING_ACK;
1752 
1753 	/* Eliminate too old ACKs, but take into
1754 	 * account more or less fresh ones, they can
1755 	 * contain valid SACK info.
1756 	 */
1757 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1758 		return 0;
1759 
1760 	if (!tp->packets_out)
1761 		goto out;
1762 
1763 	used_sacks = 0;
1764 	first_sack_index = 0;
1765 	for (i = 0; i < num_sacks; i++) {
1766 		int dup_sack = !i && found_dup_sack;
1767 
1768 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1769 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1770 
1771 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1772 					    sp[used_sacks].start_seq,
1773 					    sp[used_sacks].end_seq)) {
1774 			int mib_idx;
1775 
1776 			if (dup_sack) {
1777 				if (!tp->undo_marker)
1778 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1779 				else
1780 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1781 			} else {
1782 				/* Don't count olds caused by ACK reordering */
1783 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1784 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1785 					continue;
1786 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1787 			}
1788 
1789 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1790 			if (i == 0)
1791 				first_sack_index = -1;
1792 			continue;
1793 		}
1794 
1795 		/* Ignore very old stuff early */
1796 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1797 			continue;
1798 
1799 		used_sacks++;
1800 	}
1801 
1802 	/* order SACK blocks to allow in order walk of the retrans queue */
1803 	for (i = used_sacks - 1; i > 0; i--) {
1804 		for (j = 0; j < i; j++) {
1805 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1806 				swap(sp[j], sp[j + 1]);
1807 
1808 				/* Track where the first SACK block goes to */
1809 				if (j == first_sack_index)
1810 					first_sack_index = j + 1;
1811 			}
1812 		}
1813 	}
1814 
1815 	skb = tcp_write_queue_head(sk);
1816 	state.fack_count = 0;
1817 	i = 0;
1818 
1819 	if (!tp->sacked_out) {
1820 		/* It's already past, so skip checking against it */
1821 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1822 	} else {
1823 		cache = tp->recv_sack_cache;
1824 		/* Skip empty blocks in at head of the cache */
1825 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1826 		       !cache->end_seq)
1827 			cache++;
1828 	}
1829 
1830 	while (i < used_sacks) {
1831 		u32 start_seq = sp[i].start_seq;
1832 		u32 end_seq = sp[i].end_seq;
1833 		int dup_sack = (found_dup_sack && (i == first_sack_index));
1834 		struct tcp_sack_block *next_dup = NULL;
1835 
1836 		if (found_dup_sack && ((i + 1) == first_sack_index))
1837 			next_dup = &sp[i + 1];
1838 
1839 		/* Event "B" in the comment above. */
1840 		if (after(end_seq, tp->high_seq))
1841 			state.flag |= FLAG_DATA_LOST;
1842 
1843 		/* Skip too early cached blocks */
1844 		while (tcp_sack_cache_ok(tp, cache) &&
1845 		       !before(start_seq, cache->end_seq))
1846 			cache++;
1847 
1848 		/* Can skip some work by looking recv_sack_cache? */
1849 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1850 		    after(end_seq, cache->start_seq)) {
1851 
1852 			/* Head todo? */
1853 			if (before(start_seq, cache->start_seq)) {
1854 				skb = tcp_sacktag_skip(skb, sk, &state,
1855 						       start_seq);
1856 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1857 						       &state,
1858 						       start_seq,
1859 						       cache->start_seq,
1860 						       dup_sack);
1861 			}
1862 
1863 			/* Rest of the block already fully processed? */
1864 			if (!after(end_seq, cache->end_seq))
1865 				goto advance_sp;
1866 
1867 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1868 						       &state,
1869 						       cache->end_seq);
1870 
1871 			/* ...tail remains todo... */
1872 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1873 				/* ...but better entrypoint exists! */
1874 				skb = tcp_highest_sack(sk);
1875 				if (skb == NULL)
1876 					break;
1877 				state.fack_count = tp->fackets_out;
1878 				cache++;
1879 				goto walk;
1880 			}
1881 
1882 			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1883 			/* Check overlap against next cached too (past this one already) */
1884 			cache++;
1885 			continue;
1886 		}
1887 
1888 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1889 			skb = tcp_highest_sack(sk);
1890 			if (skb == NULL)
1891 				break;
1892 			state.fack_count = tp->fackets_out;
1893 		}
1894 		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1895 
1896 walk:
1897 		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1898 				       start_seq, end_seq, dup_sack);
1899 
1900 advance_sp:
1901 		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1902 		 * due to in-order walk
1903 		 */
1904 		if (after(end_seq, tp->frto_highmark))
1905 			state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1906 
1907 		i++;
1908 	}
1909 
1910 	/* Clear the head of the cache sack blocks so we can skip it next time */
1911 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1912 		tp->recv_sack_cache[i].start_seq = 0;
1913 		tp->recv_sack_cache[i].end_seq = 0;
1914 	}
1915 	for (j = 0; j < used_sacks; j++)
1916 		tp->recv_sack_cache[i++] = sp[j];
1917 
1918 	tcp_mark_lost_retrans(sk);
1919 
1920 	tcp_verify_left_out(tp);
1921 
1922 	if ((state.reord < tp->fackets_out) &&
1923 	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1924 	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1925 		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1926 
1927 out:
1928 
1929 #if FASTRETRANS_DEBUG > 0
1930 	WARN_ON((int)tp->sacked_out < 0);
1931 	WARN_ON((int)tp->lost_out < 0);
1932 	WARN_ON((int)tp->retrans_out < 0);
1933 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1934 #endif
1935 	return state.flag;
1936 }
1937 
1938 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1939  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1940  */
1941 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1942 {
1943 	u32 holes;
1944 
1945 	holes = max(tp->lost_out, 1U);
1946 	holes = min(holes, tp->packets_out);
1947 
1948 	if ((tp->sacked_out + holes) > tp->packets_out) {
1949 		tp->sacked_out = tp->packets_out - holes;
1950 		return 1;
1951 	}
1952 	return 0;
1953 }
1954 
1955 /* If we receive more dupacks than we expected counting segments
1956  * in assumption of absent reordering, interpret this as reordering.
1957  * The only another reason could be bug in receiver TCP.
1958  */
1959 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1960 {
1961 	struct tcp_sock *tp = tcp_sk(sk);
1962 	if (tcp_limit_reno_sacked(tp))
1963 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1964 }
1965 
1966 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1967 
1968 static void tcp_add_reno_sack(struct sock *sk)
1969 {
1970 	struct tcp_sock *tp = tcp_sk(sk);
1971 	tp->sacked_out++;
1972 	tcp_check_reno_reordering(sk, 0);
1973 	tcp_verify_left_out(tp);
1974 }
1975 
1976 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1977 
1978 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1979 {
1980 	struct tcp_sock *tp = tcp_sk(sk);
1981 
1982 	if (acked > 0) {
1983 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1984 		if (acked - 1 >= tp->sacked_out)
1985 			tp->sacked_out = 0;
1986 		else
1987 			tp->sacked_out -= acked - 1;
1988 	}
1989 	tcp_check_reno_reordering(sk, acked);
1990 	tcp_verify_left_out(tp);
1991 }
1992 
1993 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1994 {
1995 	tp->sacked_out = 0;
1996 }
1997 
1998 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1999 {
2000 	return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2001 }
2002 
2003 /* F-RTO can only be used if TCP has never retransmitted anything other than
2004  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2005  */
2006 int tcp_use_frto(struct sock *sk)
2007 {
2008 	const struct tcp_sock *tp = tcp_sk(sk);
2009 	const struct inet_connection_sock *icsk = inet_csk(sk);
2010 	struct sk_buff *skb;
2011 
2012 	if (!sysctl_tcp_frto)
2013 		return 0;
2014 
2015 	/* MTU probe and F-RTO won't really play nicely along currently */
2016 	if (icsk->icsk_mtup.probe_size)
2017 		return 0;
2018 
2019 	if (tcp_is_sackfrto(tp))
2020 		return 1;
2021 
2022 	/* Avoid expensive walking of rexmit queue if possible */
2023 	if (tp->retrans_out > 1)
2024 		return 0;
2025 
2026 	skb = tcp_write_queue_head(sk);
2027 	if (tcp_skb_is_last(sk, skb))
2028 		return 1;
2029 	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
2030 	tcp_for_write_queue_from(skb, sk) {
2031 		if (skb == tcp_send_head(sk))
2032 			break;
2033 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2034 			return 0;
2035 		/* Short-circuit when first non-SACKed skb has been checked */
2036 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2037 			break;
2038 	}
2039 	return 1;
2040 }
2041 
2042 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2043  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2044  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2045  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2046  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2047  * bits are handled if the Loss state is really to be entered (in
2048  * tcp_enter_frto_loss).
2049  *
2050  * Do like tcp_enter_loss() would; when RTO expires the second time it
2051  * does:
2052  *  "Reduce ssthresh if it has not yet been made inside this window."
2053  */
2054 void tcp_enter_frto(struct sock *sk)
2055 {
2056 	const struct inet_connection_sock *icsk = inet_csk(sk);
2057 	struct tcp_sock *tp = tcp_sk(sk);
2058 	struct sk_buff *skb;
2059 
2060 	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2061 	    tp->snd_una == tp->high_seq ||
2062 	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2063 	     !icsk->icsk_retransmits)) {
2064 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2065 		/* Our state is too optimistic in ssthresh() call because cwnd
2066 		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2067 		 * recovery has not yet completed. Pattern would be this: RTO,
2068 		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2069 		 * up here twice).
2070 		 * RFC4138 should be more specific on what to do, even though
2071 		 * RTO is quite unlikely to occur after the first Cumulative ACK
2072 		 * due to back-off and complexity of triggering events ...
2073 		 */
2074 		if (tp->frto_counter) {
2075 			u32 stored_cwnd;
2076 			stored_cwnd = tp->snd_cwnd;
2077 			tp->snd_cwnd = 2;
2078 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2079 			tp->snd_cwnd = stored_cwnd;
2080 		} else {
2081 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2082 		}
2083 		/* ... in theory, cong.control module could do "any tricks" in
2084 		 * ssthresh(), which means that ca_state, lost bits and lost_out
2085 		 * counter would have to be faked before the call occurs. We
2086 		 * consider that too expensive, unlikely and hacky, so modules
2087 		 * using these in ssthresh() must deal these incompatibility
2088 		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2089 		 */
2090 		tcp_ca_event(sk, CA_EVENT_FRTO);
2091 	}
2092 
2093 	tp->undo_marker = tp->snd_una;
2094 	tp->undo_retrans = 0;
2095 
2096 	skb = tcp_write_queue_head(sk);
2097 	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2098 		tp->undo_marker = 0;
2099 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2100 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2101 		tp->retrans_out -= tcp_skb_pcount(skb);
2102 	}
2103 	tcp_verify_left_out(tp);
2104 
2105 	/* Too bad if TCP was application limited */
2106 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2107 
2108 	/* Earlier loss recovery underway (see RFC4138; Appendix B).
2109 	 * The last condition is necessary at least in tp->frto_counter case.
2110 	 */
2111 	if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2112 	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2113 	    after(tp->high_seq, tp->snd_una)) {
2114 		tp->frto_highmark = tp->high_seq;
2115 	} else {
2116 		tp->frto_highmark = tp->snd_nxt;
2117 	}
2118 	tcp_set_ca_state(sk, TCP_CA_Disorder);
2119 	tp->high_seq = tp->snd_nxt;
2120 	tp->frto_counter = 1;
2121 }
2122 
2123 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2124  * which indicates that we should follow the traditional RTO recovery,
2125  * i.e. mark everything lost and do go-back-N retransmission.
2126  */
2127 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2128 {
2129 	struct tcp_sock *tp = tcp_sk(sk);
2130 	struct sk_buff *skb;
2131 
2132 	tp->lost_out = 0;
2133 	tp->retrans_out = 0;
2134 	if (tcp_is_reno(tp))
2135 		tcp_reset_reno_sack(tp);
2136 
2137 	tcp_for_write_queue(skb, sk) {
2138 		if (skb == tcp_send_head(sk))
2139 			break;
2140 
2141 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2142 		/*
2143 		 * Count the retransmission made on RTO correctly (only when
2144 		 * waiting for the first ACK and did not get it)...
2145 		 */
2146 		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2147 			/* For some reason this R-bit might get cleared? */
2148 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2149 				tp->retrans_out += tcp_skb_pcount(skb);
2150 			/* ...enter this if branch just for the first segment */
2151 			flag |= FLAG_DATA_ACKED;
2152 		} else {
2153 			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2154 				tp->undo_marker = 0;
2155 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2156 		}
2157 
2158 		/* Marking forward transmissions that were made after RTO lost
2159 		 * can cause unnecessary retransmissions in some scenarios,
2160 		 * SACK blocks will mitigate that in some but not in all cases.
2161 		 * We used to not mark them but it was causing break-ups with
2162 		 * receivers that do only in-order receival.
2163 		 *
2164 		 * TODO: we could detect presence of such receiver and select
2165 		 * different behavior per flow.
2166 		 */
2167 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2168 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2169 			tp->lost_out += tcp_skb_pcount(skb);
2170 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2171 		}
2172 	}
2173 	tcp_verify_left_out(tp);
2174 
2175 	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2176 	tp->snd_cwnd_cnt = 0;
2177 	tp->snd_cwnd_stamp = tcp_time_stamp;
2178 	tp->frto_counter = 0;
2179 	tp->bytes_acked = 0;
2180 
2181 	tp->reordering = min_t(unsigned int, tp->reordering,
2182 			       sysctl_tcp_reordering);
2183 	tcp_set_ca_state(sk, TCP_CA_Loss);
2184 	tp->high_seq = tp->snd_nxt;
2185 	TCP_ECN_queue_cwr(tp);
2186 
2187 	tcp_clear_all_retrans_hints(tp);
2188 }
2189 
2190 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2191 {
2192 	tp->retrans_out = 0;
2193 	tp->lost_out = 0;
2194 
2195 	tp->undo_marker = 0;
2196 	tp->undo_retrans = 0;
2197 }
2198 
2199 void tcp_clear_retrans(struct tcp_sock *tp)
2200 {
2201 	tcp_clear_retrans_partial(tp);
2202 
2203 	tp->fackets_out = 0;
2204 	tp->sacked_out = 0;
2205 }
2206 
2207 /* Enter Loss state. If "how" is not zero, forget all SACK information
2208  * and reset tags completely, otherwise preserve SACKs. If receiver
2209  * dropped its ofo queue, we will know this due to reneging detection.
2210  */
2211 void tcp_enter_loss(struct sock *sk, int how)
2212 {
2213 	const struct inet_connection_sock *icsk = inet_csk(sk);
2214 	struct tcp_sock *tp = tcp_sk(sk);
2215 	struct sk_buff *skb;
2216 
2217 	/* Reduce ssthresh if it has not yet been made inside this window. */
2218 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2219 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2220 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2221 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2222 		tcp_ca_event(sk, CA_EVENT_LOSS);
2223 	}
2224 	tp->snd_cwnd	   = 1;
2225 	tp->snd_cwnd_cnt   = 0;
2226 	tp->snd_cwnd_stamp = tcp_time_stamp;
2227 
2228 	tp->bytes_acked = 0;
2229 	tcp_clear_retrans_partial(tp);
2230 
2231 	if (tcp_is_reno(tp))
2232 		tcp_reset_reno_sack(tp);
2233 
2234 	if (!how) {
2235 		/* Push undo marker, if it was plain RTO and nothing
2236 		 * was retransmitted. */
2237 		tp->undo_marker = tp->snd_una;
2238 	} else {
2239 		tp->sacked_out = 0;
2240 		tp->fackets_out = 0;
2241 	}
2242 	tcp_clear_all_retrans_hints(tp);
2243 
2244 	tcp_for_write_queue(skb, sk) {
2245 		if (skb == tcp_send_head(sk))
2246 			break;
2247 
2248 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2249 			tp->undo_marker = 0;
2250 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2251 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2252 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2253 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2254 			tp->lost_out += tcp_skb_pcount(skb);
2255 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2256 		}
2257 	}
2258 	tcp_verify_left_out(tp);
2259 
2260 	tp->reordering = min_t(unsigned int, tp->reordering,
2261 			       sysctl_tcp_reordering);
2262 	tcp_set_ca_state(sk, TCP_CA_Loss);
2263 	tp->high_seq = tp->snd_nxt;
2264 	TCP_ECN_queue_cwr(tp);
2265 	/* Abort F-RTO algorithm if one is in progress */
2266 	tp->frto_counter = 0;
2267 }
2268 
2269 /* If ACK arrived pointing to a remembered SACK, it means that our
2270  * remembered SACKs do not reflect real state of receiver i.e.
2271  * receiver _host_ is heavily congested (or buggy).
2272  *
2273  * Do processing similar to RTO timeout.
2274  */
2275 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2276 {
2277 	if (flag & FLAG_SACK_RENEGING) {
2278 		struct inet_connection_sock *icsk = inet_csk(sk);
2279 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2280 
2281 		tcp_enter_loss(sk, 1);
2282 		icsk->icsk_retransmits++;
2283 		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2284 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2285 					  icsk->icsk_rto, TCP_RTO_MAX);
2286 		return 1;
2287 	}
2288 	return 0;
2289 }
2290 
2291 static inline int tcp_fackets_out(struct tcp_sock *tp)
2292 {
2293 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2294 }
2295 
2296 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2297  * counter when SACK is enabled (without SACK, sacked_out is used for
2298  * that purpose).
2299  *
2300  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2301  * segments up to the highest received SACK block so far and holes in
2302  * between them.
2303  *
2304  * With reordering, holes may still be in flight, so RFC3517 recovery
2305  * uses pure sacked_out (total number of SACKed segments) even though
2306  * it violates the RFC that uses duplicate ACKs, often these are equal
2307  * but when e.g. out-of-window ACKs or packet duplication occurs,
2308  * they differ. Since neither occurs due to loss, TCP should really
2309  * ignore them.
2310  */
2311 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
2312 {
2313 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2314 }
2315 
2316 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2317 {
2318 	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2319 }
2320 
2321 static inline int tcp_head_timedout(struct sock *sk)
2322 {
2323 	struct tcp_sock *tp = tcp_sk(sk);
2324 
2325 	return tp->packets_out &&
2326 	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2327 }
2328 
2329 /* Linux NewReno/SACK/FACK/ECN state machine.
2330  * --------------------------------------
2331  *
2332  * "Open"	Normal state, no dubious events, fast path.
2333  * "Disorder"   In all the respects it is "Open",
2334  *		but requires a bit more attention. It is entered when
2335  *		we see some SACKs or dupacks. It is split of "Open"
2336  *		mainly to move some processing from fast path to slow one.
2337  * "CWR"	CWND was reduced due to some Congestion Notification event.
2338  *		It can be ECN, ICMP source quench, local device congestion.
2339  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2340  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2341  *
2342  * tcp_fastretrans_alert() is entered:
2343  * - each incoming ACK, if state is not "Open"
2344  * - when arrived ACK is unusual, namely:
2345  *	* SACK
2346  *	* Duplicate ACK.
2347  *	* ECN ECE.
2348  *
2349  * Counting packets in flight is pretty simple.
2350  *
2351  *	in_flight = packets_out - left_out + retrans_out
2352  *
2353  *	packets_out is SND.NXT-SND.UNA counted in packets.
2354  *
2355  *	retrans_out is number of retransmitted segments.
2356  *
2357  *	left_out is number of segments left network, but not ACKed yet.
2358  *
2359  *		left_out = sacked_out + lost_out
2360  *
2361  *     sacked_out: Packets, which arrived to receiver out of order
2362  *		   and hence not ACKed. With SACKs this number is simply
2363  *		   amount of SACKed data. Even without SACKs
2364  *		   it is easy to give pretty reliable estimate of this number,
2365  *		   counting duplicate ACKs.
2366  *
2367  *       lost_out: Packets lost by network. TCP has no explicit
2368  *		   "loss notification" feedback from network (for now).
2369  *		   It means that this number can be only _guessed_.
2370  *		   Actually, it is the heuristics to predict lossage that
2371  *		   distinguishes different algorithms.
2372  *
2373  *	F.e. after RTO, when all the queue is considered as lost,
2374  *	lost_out = packets_out and in_flight = retrans_out.
2375  *
2376  *		Essentially, we have now two algorithms counting
2377  *		lost packets.
2378  *
2379  *		FACK: It is the simplest heuristics. As soon as we decided
2380  *		that something is lost, we decide that _all_ not SACKed
2381  *		packets until the most forward SACK are lost. I.e.
2382  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2383  *		It is absolutely correct estimate, if network does not reorder
2384  *		packets. And it loses any connection to reality when reordering
2385  *		takes place. We use FACK by default until reordering
2386  *		is suspected on the path to this destination.
2387  *
2388  *		NewReno: when Recovery is entered, we assume that one segment
2389  *		is lost (classic Reno). While we are in Recovery and
2390  *		a partial ACK arrives, we assume that one more packet
2391  *		is lost (NewReno). This heuristics are the same in NewReno
2392  *		and SACK.
2393  *
2394  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2395  *  deflation etc. CWND is real congestion window, never inflated, changes
2396  *  only according to classic VJ rules.
2397  *
2398  * Really tricky (and requiring careful tuning) part of algorithm
2399  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2400  * The first determines the moment _when_ we should reduce CWND and,
2401  * hence, slow down forward transmission. In fact, it determines the moment
2402  * when we decide that hole is caused by loss, rather than by a reorder.
2403  *
2404  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2405  * holes, caused by lost packets.
2406  *
2407  * And the most logically complicated part of algorithm is undo
2408  * heuristics. We detect false retransmits due to both too early
2409  * fast retransmit (reordering) and underestimated RTO, analyzing
2410  * timestamps and D-SACKs. When we detect that some segments were
2411  * retransmitted by mistake and CWND reduction was wrong, we undo
2412  * window reduction and abort recovery phase. This logic is hidden
2413  * inside several functions named tcp_try_undo_<something>.
2414  */
2415 
2416 /* This function decides, when we should leave Disordered state
2417  * and enter Recovery phase, reducing congestion window.
2418  *
2419  * Main question: may we further continue forward transmission
2420  * with the same cwnd?
2421  */
2422 static int tcp_time_to_recover(struct sock *sk)
2423 {
2424 	struct tcp_sock *tp = tcp_sk(sk);
2425 	__u32 packets_out;
2426 
2427 	/* Do not perform any recovery during F-RTO algorithm */
2428 	if (tp->frto_counter)
2429 		return 0;
2430 
2431 	/* Trick#1: The loss is proven. */
2432 	if (tp->lost_out)
2433 		return 1;
2434 
2435 	/* Not-A-Trick#2 : Classic rule... */
2436 	if (tcp_dupack_heurestics(tp) > tp->reordering)
2437 		return 1;
2438 
2439 	/* Trick#3 : when we use RFC2988 timer restart, fast
2440 	 * retransmit can be triggered by timeout of queue head.
2441 	 */
2442 	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2443 		return 1;
2444 
2445 	/* Trick#4: It is still not OK... But will it be useful to delay
2446 	 * recovery more?
2447 	 */
2448 	packets_out = tp->packets_out;
2449 	if (packets_out <= tp->reordering &&
2450 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2451 	    !tcp_may_send_now(sk)) {
2452 		/* We have nothing to send. This connection is limited
2453 		 * either by receiver window or by application.
2454 		 */
2455 		return 1;
2456 	}
2457 
2458 	return 0;
2459 }
2460 
2461 /* New heuristics: it is possible only after we switched to restart timer
2462  * each time when something is ACKed. Hence, we can detect timed out packets
2463  * during fast retransmit without falling to slow start.
2464  *
2465  * Usefulness of this as is very questionable, since we should know which of
2466  * the segments is the next to timeout which is relatively expensive to find
2467  * in general case unless we add some data structure just for that. The
2468  * current approach certainly won't find the right one too often and when it
2469  * finally does find _something_ it usually marks large part of the window
2470  * right away (because a retransmission with a larger timestamp blocks the
2471  * loop from advancing). -ij
2472  */
2473 static void tcp_timeout_skbs(struct sock *sk)
2474 {
2475 	struct tcp_sock *tp = tcp_sk(sk);
2476 	struct sk_buff *skb;
2477 
2478 	if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2479 		return;
2480 
2481 	skb = tp->scoreboard_skb_hint;
2482 	if (tp->scoreboard_skb_hint == NULL)
2483 		skb = tcp_write_queue_head(sk);
2484 
2485 	tcp_for_write_queue_from(skb, sk) {
2486 		if (skb == tcp_send_head(sk))
2487 			break;
2488 		if (!tcp_skb_timedout(sk, skb))
2489 			break;
2490 
2491 		tcp_skb_mark_lost(tp, skb);
2492 	}
2493 
2494 	tp->scoreboard_skb_hint = skb;
2495 
2496 	tcp_verify_left_out(tp);
2497 }
2498 
2499 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2500  * is against sacked "cnt", otherwise it's against facked "cnt"
2501  */
2502 static void tcp_mark_head_lost(struct sock *sk, int packets)
2503 {
2504 	struct tcp_sock *tp = tcp_sk(sk);
2505 	struct sk_buff *skb;
2506 	int cnt, oldcnt;
2507 	int err;
2508 	unsigned int mss;
2509 
2510 	WARN_ON(packets > tp->packets_out);
2511 	if (tp->lost_skb_hint) {
2512 		skb = tp->lost_skb_hint;
2513 		cnt = tp->lost_cnt_hint;
2514 	} else {
2515 		skb = tcp_write_queue_head(sk);
2516 		cnt = 0;
2517 	}
2518 
2519 	tcp_for_write_queue_from(skb, sk) {
2520 		if (skb == tcp_send_head(sk))
2521 			break;
2522 		/* TODO: do this better */
2523 		/* this is not the most efficient way to do this... */
2524 		tp->lost_skb_hint = skb;
2525 		tp->lost_cnt_hint = cnt;
2526 
2527 		if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2528 			break;
2529 
2530 		oldcnt = cnt;
2531 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2532 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2533 			cnt += tcp_skb_pcount(skb);
2534 
2535 		if (cnt > packets) {
2536 			if (tcp_is_sack(tp) || (oldcnt >= packets))
2537 				break;
2538 
2539 			mss = skb_shinfo(skb)->gso_size;
2540 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2541 			if (err < 0)
2542 				break;
2543 			cnt = packets;
2544 		}
2545 
2546 		tcp_skb_mark_lost(tp, skb);
2547 	}
2548 	tcp_verify_left_out(tp);
2549 }
2550 
2551 /* Account newly detected lost packet(s) */
2552 
2553 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2554 {
2555 	struct tcp_sock *tp = tcp_sk(sk);
2556 
2557 	if (tcp_is_reno(tp)) {
2558 		tcp_mark_head_lost(sk, 1);
2559 	} else if (tcp_is_fack(tp)) {
2560 		int lost = tp->fackets_out - tp->reordering;
2561 		if (lost <= 0)
2562 			lost = 1;
2563 		tcp_mark_head_lost(sk, lost);
2564 	} else {
2565 		int sacked_upto = tp->sacked_out - tp->reordering;
2566 		if (sacked_upto < fast_rexmit)
2567 			sacked_upto = fast_rexmit;
2568 		tcp_mark_head_lost(sk, sacked_upto);
2569 	}
2570 
2571 	tcp_timeout_skbs(sk);
2572 }
2573 
2574 /* CWND moderation, preventing bursts due to too big ACKs
2575  * in dubious situations.
2576  */
2577 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2578 {
2579 	tp->snd_cwnd = min(tp->snd_cwnd,
2580 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2581 	tp->snd_cwnd_stamp = tcp_time_stamp;
2582 }
2583 
2584 /* Lower bound on congestion window is slow start threshold
2585  * unless congestion avoidance choice decides to overide it.
2586  */
2587 static inline u32 tcp_cwnd_min(const struct sock *sk)
2588 {
2589 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2590 
2591 	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2592 }
2593 
2594 /* Decrease cwnd each second ack. */
2595 static void tcp_cwnd_down(struct sock *sk, int flag)
2596 {
2597 	struct tcp_sock *tp = tcp_sk(sk);
2598 	int decr = tp->snd_cwnd_cnt + 1;
2599 
2600 	if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2601 	    (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2602 		tp->snd_cwnd_cnt = decr & 1;
2603 		decr >>= 1;
2604 
2605 		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2606 			tp->snd_cwnd -= decr;
2607 
2608 		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2609 		tp->snd_cwnd_stamp = tcp_time_stamp;
2610 	}
2611 }
2612 
2613 /* Nothing was retransmitted or returned timestamp is less
2614  * than timestamp of the first retransmission.
2615  */
2616 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2617 {
2618 	return !tp->retrans_stamp ||
2619 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2620 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2621 }
2622 
2623 /* Undo procedures. */
2624 
2625 #if FASTRETRANS_DEBUG > 1
2626 static void DBGUNDO(struct sock *sk, const char *msg)
2627 {
2628 	struct tcp_sock *tp = tcp_sk(sk);
2629 	struct inet_sock *inet = inet_sk(sk);
2630 
2631 	if (sk->sk_family == AF_INET) {
2632 		printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2633 		       msg,
2634 		       &inet->daddr, ntohs(inet->dport),
2635 		       tp->snd_cwnd, tcp_left_out(tp),
2636 		       tp->snd_ssthresh, tp->prior_ssthresh,
2637 		       tp->packets_out);
2638 	}
2639 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2640 	else if (sk->sk_family == AF_INET6) {
2641 		struct ipv6_pinfo *np = inet6_sk(sk);
2642 		printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2643 		       msg,
2644 		       &np->daddr, ntohs(inet->dport),
2645 		       tp->snd_cwnd, tcp_left_out(tp),
2646 		       tp->snd_ssthresh, tp->prior_ssthresh,
2647 		       tp->packets_out);
2648 	}
2649 #endif
2650 }
2651 #else
2652 #define DBGUNDO(x...) do { } while (0)
2653 #endif
2654 
2655 static void tcp_undo_cwr(struct sock *sk, const int undo)
2656 {
2657 	struct tcp_sock *tp = tcp_sk(sk);
2658 
2659 	if (tp->prior_ssthresh) {
2660 		const struct inet_connection_sock *icsk = inet_csk(sk);
2661 
2662 		if (icsk->icsk_ca_ops->undo_cwnd)
2663 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2664 		else
2665 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2666 
2667 		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2668 			tp->snd_ssthresh = tp->prior_ssthresh;
2669 			TCP_ECN_withdraw_cwr(tp);
2670 		}
2671 	} else {
2672 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2673 	}
2674 	tcp_moderate_cwnd(tp);
2675 	tp->snd_cwnd_stamp = tcp_time_stamp;
2676 }
2677 
2678 static inline int tcp_may_undo(struct tcp_sock *tp)
2679 {
2680 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2681 }
2682 
2683 /* People celebrate: "We love our President!" */
2684 static int tcp_try_undo_recovery(struct sock *sk)
2685 {
2686 	struct tcp_sock *tp = tcp_sk(sk);
2687 
2688 	if (tcp_may_undo(tp)) {
2689 		int mib_idx;
2690 
2691 		/* Happy end! We did not retransmit anything
2692 		 * or our original transmission succeeded.
2693 		 */
2694 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2695 		tcp_undo_cwr(sk, 1);
2696 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2697 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2698 		else
2699 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2700 
2701 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2702 		tp->undo_marker = 0;
2703 	}
2704 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2705 		/* Hold old state until something *above* high_seq
2706 		 * is ACKed. For Reno it is MUST to prevent false
2707 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2708 		tcp_moderate_cwnd(tp);
2709 		return 1;
2710 	}
2711 	tcp_set_ca_state(sk, TCP_CA_Open);
2712 	return 0;
2713 }
2714 
2715 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2716 static void tcp_try_undo_dsack(struct sock *sk)
2717 {
2718 	struct tcp_sock *tp = tcp_sk(sk);
2719 
2720 	if (tp->undo_marker && !tp->undo_retrans) {
2721 		DBGUNDO(sk, "D-SACK");
2722 		tcp_undo_cwr(sk, 1);
2723 		tp->undo_marker = 0;
2724 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2725 	}
2726 }
2727 
2728 /* Undo during fast recovery after partial ACK. */
2729 
2730 static int tcp_try_undo_partial(struct sock *sk, int acked)
2731 {
2732 	struct tcp_sock *tp = tcp_sk(sk);
2733 	/* Partial ACK arrived. Force Hoe's retransmit. */
2734 	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2735 
2736 	if (tcp_may_undo(tp)) {
2737 		/* Plain luck! Hole if filled with delayed
2738 		 * packet, rather than with a retransmit.
2739 		 */
2740 		if (tp->retrans_out == 0)
2741 			tp->retrans_stamp = 0;
2742 
2743 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2744 
2745 		DBGUNDO(sk, "Hoe");
2746 		tcp_undo_cwr(sk, 0);
2747 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2748 
2749 		/* So... Do not make Hoe's retransmit yet.
2750 		 * If the first packet was delayed, the rest
2751 		 * ones are most probably delayed as well.
2752 		 */
2753 		failed = 0;
2754 	}
2755 	return failed;
2756 }
2757 
2758 /* Undo during loss recovery after partial ACK. */
2759 static int tcp_try_undo_loss(struct sock *sk)
2760 {
2761 	struct tcp_sock *tp = tcp_sk(sk);
2762 
2763 	if (tcp_may_undo(tp)) {
2764 		struct sk_buff *skb;
2765 		tcp_for_write_queue(skb, sk) {
2766 			if (skb == tcp_send_head(sk))
2767 				break;
2768 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2769 		}
2770 
2771 		tcp_clear_all_retrans_hints(tp);
2772 
2773 		DBGUNDO(sk, "partial loss");
2774 		tp->lost_out = 0;
2775 		tcp_undo_cwr(sk, 1);
2776 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2777 		inet_csk(sk)->icsk_retransmits = 0;
2778 		tp->undo_marker = 0;
2779 		if (tcp_is_sack(tp))
2780 			tcp_set_ca_state(sk, TCP_CA_Open);
2781 		return 1;
2782 	}
2783 	return 0;
2784 }
2785 
2786 static inline void tcp_complete_cwr(struct sock *sk)
2787 {
2788 	struct tcp_sock *tp = tcp_sk(sk);
2789 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2790 	tp->snd_cwnd_stamp = tcp_time_stamp;
2791 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2792 }
2793 
2794 static void tcp_try_keep_open(struct sock *sk)
2795 {
2796 	struct tcp_sock *tp = tcp_sk(sk);
2797 	int state = TCP_CA_Open;
2798 
2799 	if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2800 		state = TCP_CA_Disorder;
2801 
2802 	if (inet_csk(sk)->icsk_ca_state != state) {
2803 		tcp_set_ca_state(sk, state);
2804 		tp->high_seq = tp->snd_nxt;
2805 	}
2806 }
2807 
2808 static void tcp_try_to_open(struct sock *sk, int flag)
2809 {
2810 	struct tcp_sock *tp = tcp_sk(sk);
2811 
2812 	tcp_verify_left_out(tp);
2813 
2814 	if (!tp->frto_counter && tp->retrans_out == 0)
2815 		tp->retrans_stamp = 0;
2816 
2817 	if (flag & FLAG_ECE)
2818 		tcp_enter_cwr(sk, 1);
2819 
2820 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2821 		tcp_try_keep_open(sk);
2822 		tcp_moderate_cwnd(tp);
2823 	} else {
2824 		tcp_cwnd_down(sk, flag);
2825 	}
2826 }
2827 
2828 static void tcp_mtup_probe_failed(struct sock *sk)
2829 {
2830 	struct inet_connection_sock *icsk = inet_csk(sk);
2831 
2832 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2833 	icsk->icsk_mtup.probe_size = 0;
2834 }
2835 
2836 static void tcp_mtup_probe_success(struct sock *sk)
2837 {
2838 	struct tcp_sock *tp = tcp_sk(sk);
2839 	struct inet_connection_sock *icsk = inet_csk(sk);
2840 
2841 	/* FIXME: breaks with very large cwnd */
2842 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2843 	tp->snd_cwnd = tp->snd_cwnd *
2844 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2845 		       icsk->icsk_mtup.probe_size;
2846 	tp->snd_cwnd_cnt = 0;
2847 	tp->snd_cwnd_stamp = tcp_time_stamp;
2848 	tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2849 
2850 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2851 	icsk->icsk_mtup.probe_size = 0;
2852 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2853 }
2854 
2855 /* Do a simple retransmit without using the backoff mechanisms in
2856  * tcp_timer. This is used for path mtu discovery.
2857  * The socket is already locked here.
2858  */
2859 void tcp_simple_retransmit(struct sock *sk)
2860 {
2861 	const struct inet_connection_sock *icsk = inet_csk(sk);
2862 	struct tcp_sock *tp = tcp_sk(sk);
2863 	struct sk_buff *skb;
2864 	unsigned int mss = tcp_current_mss(sk);
2865 	u32 prior_lost = tp->lost_out;
2866 
2867 	tcp_for_write_queue(skb, sk) {
2868 		if (skb == tcp_send_head(sk))
2869 			break;
2870 		if (tcp_skb_seglen(skb) > mss &&
2871 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2872 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2873 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2874 				tp->retrans_out -= tcp_skb_pcount(skb);
2875 			}
2876 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2877 		}
2878 	}
2879 
2880 	tcp_clear_retrans_hints_partial(tp);
2881 
2882 	if (prior_lost == tp->lost_out)
2883 		return;
2884 
2885 	if (tcp_is_reno(tp))
2886 		tcp_limit_reno_sacked(tp);
2887 
2888 	tcp_verify_left_out(tp);
2889 
2890 	/* Don't muck with the congestion window here.
2891 	 * Reason is that we do not increase amount of _data_
2892 	 * in network, but units changed and effective
2893 	 * cwnd/ssthresh really reduced now.
2894 	 */
2895 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2896 		tp->high_seq = tp->snd_nxt;
2897 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2898 		tp->prior_ssthresh = 0;
2899 		tp->undo_marker = 0;
2900 		tcp_set_ca_state(sk, TCP_CA_Loss);
2901 	}
2902 	tcp_xmit_retransmit_queue(sk);
2903 }
2904 
2905 /* Process an event, which can update packets-in-flight not trivially.
2906  * Main goal of this function is to calculate new estimate for left_out,
2907  * taking into account both packets sitting in receiver's buffer and
2908  * packets lost by network.
2909  *
2910  * Besides that it does CWND reduction, when packet loss is detected
2911  * and changes state of machine.
2912  *
2913  * It does _not_ decide what to send, it is made in function
2914  * tcp_xmit_retransmit_queue().
2915  */
2916 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2917 {
2918 	struct inet_connection_sock *icsk = inet_csk(sk);
2919 	struct tcp_sock *tp = tcp_sk(sk);
2920 	int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2921 	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2922 				    (tcp_fackets_out(tp) > tp->reordering));
2923 	int fast_rexmit = 0, mib_idx;
2924 
2925 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2926 		tp->sacked_out = 0;
2927 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2928 		tp->fackets_out = 0;
2929 
2930 	/* Now state machine starts.
2931 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2932 	if (flag & FLAG_ECE)
2933 		tp->prior_ssthresh = 0;
2934 
2935 	/* B. In all the states check for reneging SACKs. */
2936 	if (tcp_check_sack_reneging(sk, flag))
2937 		return;
2938 
2939 	/* C. Process data loss notification, provided it is valid. */
2940 	if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2941 	    before(tp->snd_una, tp->high_seq) &&
2942 	    icsk->icsk_ca_state != TCP_CA_Open &&
2943 	    tp->fackets_out > tp->reordering) {
2944 		tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2945 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2946 	}
2947 
2948 	/* D. Check consistency of the current state. */
2949 	tcp_verify_left_out(tp);
2950 
2951 	/* E. Check state exit conditions. State can be terminated
2952 	 *    when high_seq is ACKed. */
2953 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2954 		WARN_ON(tp->retrans_out != 0);
2955 		tp->retrans_stamp = 0;
2956 	} else if (!before(tp->snd_una, tp->high_seq)) {
2957 		switch (icsk->icsk_ca_state) {
2958 		case TCP_CA_Loss:
2959 			icsk->icsk_retransmits = 0;
2960 			if (tcp_try_undo_recovery(sk))
2961 				return;
2962 			break;
2963 
2964 		case TCP_CA_CWR:
2965 			/* CWR is to be held something *above* high_seq
2966 			 * is ACKed for CWR bit to reach receiver. */
2967 			if (tp->snd_una != tp->high_seq) {
2968 				tcp_complete_cwr(sk);
2969 				tcp_set_ca_state(sk, TCP_CA_Open);
2970 			}
2971 			break;
2972 
2973 		case TCP_CA_Disorder:
2974 			tcp_try_undo_dsack(sk);
2975 			if (!tp->undo_marker ||
2976 			    /* For SACK case do not Open to allow to undo
2977 			     * catching for all duplicate ACKs. */
2978 			    tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2979 				tp->undo_marker = 0;
2980 				tcp_set_ca_state(sk, TCP_CA_Open);
2981 			}
2982 			break;
2983 
2984 		case TCP_CA_Recovery:
2985 			if (tcp_is_reno(tp))
2986 				tcp_reset_reno_sack(tp);
2987 			if (tcp_try_undo_recovery(sk))
2988 				return;
2989 			tcp_complete_cwr(sk);
2990 			break;
2991 		}
2992 	}
2993 
2994 	/* F. Process state. */
2995 	switch (icsk->icsk_ca_state) {
2996 	case TCP_CA_Recovery:
2997 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2998 			if (tcp_is_reno(tp) && is_dupack)
2999 				tcp_add_reno_sack(sk);
3000 		} else
3001 			do_lost = tcp_try_undo_partial(sk, pkts_acked);
3002 		break;
3003 	case TCP_CA_Loss:
3004 		if (flag & FLAG_DATA_ACKED)
3005 			icsk->icsk_retransmits = 0;
3006 		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3007 			tcp_reset_reno_sack(tp);
3008 		if (!tcp_try_undo_loss(sk)) {
3009 			tcp_moderate_cwnd(tp);
3010 			tcp_xmit_retransmit_queue(sk);
3011 			return;
3012 		}
3013 		if (icsk->icsk_ca_state != TCP_CA_Open)
3014 			return;
3015 		/* Loss is undone; fall through to processing in Open state. */
3016 	default:
3017 		if (tcp_is_reno(tp)) {
3018 			if (flag & FLAG_SND_UNA_ADVANCED)
3019 				tcp_reset_reno_sack(tp);
3020 			if (is_dupack)
3021 				tcp_add_reno_sack(sk);
3022 		}
3023 
3024 		if (icsk->icsk_ca_state == TCP_CA_Disorder)
3025 			tcp_try_undo_dsack(sk);
3026 
3027 		if (!tcp_time_to_recover(sk)) {
3028 			tcp_try_to_open(sk, flag);
3029 			return;
3030 		}
3031 
3032 		/* MTU probe failure: don't reduce cwnd */
3033 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3034 		    icsk->icsk_mtup.probe_size &&
3035 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3036 			tcp_mtup_probe_failed(sk);
3037 			/* Restores the reduction we did in tcp_mtup_probe() */
3038 			tp->snd_cwnd++;
3039 			tcp_simple_retransmit(sk);
3040 			return;
3041 		}
3042 
3043 		/* Otherwise enter Recovery state */
3044 
3045 		if (tcp_is_reno(tp))
3046 			mib_idx = LINUX_MIB_TCPRENORECOVERY;
3047 		else
3048 			mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3049 
3050 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
3051 
3052 		tp->high_seq = tp->snd_nxt;
3053 		tp->prior_ssthresh = 0;
3054 		tp->undo_marker = tp->snd_una;
3055 		tp->undo_retrans = tp->retrans_out;
3056 
3057 		if (icsk->icsk_ca_state < TCP_CA_CWR) {
3058 			if (!(flag & FLAG_ECE))
3059 				tp->prior_ssthresh = tcp_current_ssthresh(sk);
3060 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3061 			TCP_ECN_queue_cwr(tp);
3062 		}
3063 
3064 		tp->bytes_acked = 0;
3065 		tp->snd_cwnd_cnt = 0;
3066 		tcp_set_ca_state(sk, TCP_CA_Recovery);
3067 		fast_rexmit = 1;
3068 	}
3069 
3070 	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3071 		tcp_update_scoreboard(sk, fast_rexmit);
3072 	tcp_cwnd_down(sk, flag);
3073 	tcp_xmit_retransmit_queue(sk);
3074 }
3075 
3076 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3077 {
3078 	tcp_rtt_estimator(sk, seq_rtt);
3079 	tcp_set_rto(sk);
3080 	inet_csk(sk)->icsk_backoff = 0;
3081 }
3082 
3083 /* Read draft-ietf-tcplw-high-performance before mucking
3084  * with this code. (Supersedes RFC1323)
3085  */
3086 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3087 {
3088 	/* RTTM Rule: A TSecr value received in a segment is used to
3089 	 * update the averaged RTT measurement only if the segment
3090 	 * acknowledges some new data, i.e., only if it advances the
3091 	 * left edge of the send window.
3092 	 *
3093 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3094 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3095 	 *
3096 	 * Changed: reset backoff as soon as we see the first valid sample.
3097 	 * If we do not, we get strongly overestimated rto. With timestamps
3098 	 * samples are accepted even from very old segments: f.e., when rtt=1
3099 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3100 	 * answer arrives rto becomes 120 seconds! If at least one of segments
3101 	 * in window is lost... Voila.	 			--ANK (010210)
3102 	 */
3103 	struct tcp_sock *tp = tcp_sk(sk);
3104 
3105 	tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3106 }
3107 
3108 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3109 {
3110 	/* We don't have a timestamp. Can only use
3111 	 * packets that are not retransmitted to determine
3112 	 * rtt estimates. Also, we must not reset the
3113 	 * backoff for rto until we get a non-retransmitted
3114 	 * packet. This allows us to deal with a situation
3115 	 * where the network delay has increased suddenly.
3116 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3117 	 */
3118 
3119 	if (flag & FLAG_RETRANS_DATA_ACKED)
3120 		return;
3121 
3122 	tcp_valid_rtt_meas(sk, seq_rtt);
3123 }
3124 
3125 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3126 				      const s32 seq_rtt)
3127 {
3128 	const struct tcp_sock *tp = tcp_sk(sk);
3129 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3130 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3131 		tcp_ack_saw_tstamp(sk, flag);
3132 	else if (seq_rtt >= 0)
3133 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
3134 }
3135 
3136 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3137 {
3138 	const struct inet_connection_sock *icsk = inet_csk(sk);
3139 	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3140 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3141 }
3142 
3143 /* Restart timer after forward progress on connection.
3144  * RFC2988 recommends to restart timer to now+rto.
3145  */
3146 static void tcp_rearm_rto(struct sock *sk)
3147 {
3148 	struct tcp_sock *tp = tcp_sk(sk);
3149 
3150 	if (!tp->packets_out) {
3151 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3152 	} else {
3153 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3154 					  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3155 	}
3156 }
3157 
3158 /* If we get here, the whole TSO packet has not been acked. */
3159 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3160 {
3161 	struct tcp_sock *tp = tcp_sk(sk);
3162 	u32 packets_acked;
3163 
3164 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3165 
3166 	packets_acked = tcp_skb_pcount(skb);
3167 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3168 		return 0;
3169 	packets_acked -= tcp_skb_pcount(skb);
3170 
3171 	if (packets_acked) {
3172 		BUG_ON(tcp_skb_pcount(skb) == 0);
3173 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3174 	}
3175 
3176 	return packets_acked;
3177 }
3178 
3179 /* Remove acknowledged frames from the retransmission queue. If our packet
3180  * is before the ack sequence we can discard it as it's confirmed to have
3181  * arrived at the other end.
3182  */
3183 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3184 			       u32 prior_snd_una)
3185 {
3186 	struct tcp_sock *tp = tcp_sk(sk);
3187 	const struct inet_connection_sock *icsk = inet_csk(sk);
3188 	struct sk_buff *skb;
3189 	u32 now = tcp_time_stamp;
3190 	int fully_acked = 1;
3191 	int flag = 0;
3192 	u32 pkts_acked = 0;
3193 	u32 reord = tp->packets_out;
3194 	u32 prior_sacked = tp->sacked_out;
3195 	s32 seq_rtt = -1;
3196 	s32 ca_seq_rtt = -1;
3197 	ktime_t last_ackt = net_invalid_timestamp();
3198 
3199 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3200 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3201 		u32 acked_pcount;
3202 		u8 sacked = scb->sacked;
3203 
3204 		/* Determine how many packets and what bytes were acked, tso and else */
3205 		if (after(scb->end_seq, tp->snd_una)) {
3206 			if (tcp_skb_pcount(skb) == 1 ||
3207 			    !after(tp->snd_una, scb->seq))
3208 				break;
3209 
3210 			acked_pcount = tcp_tso_acked(sk, skb);
3211 			if (!acked_pcount)
3212 				break;
3213 
3214 			fully_acked = 0;
3215 		} else {
3216 			acked_pcount = tcp_skb_pcount(skb);
3217 		}
3218 
3219 		if (sacked & TCPCB_RETRANS) {
3220 			if (sacked & TCPCB_SACKED_RETRANS)
3221 				tp->retrans_out -= acked_pcount;
3222 			flag |= FLAG_RETRANS_DATA_ACKED;
3223 			ca_seq_rtt = -1;
3224 			seq_rtt = -1;
3225 			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3226 				flag |= FLAG_NONHEAD_RETRANS_ACKED;
3227 		} else {
3228 			ca_seq_rtt = now - scb->when;
3229 			last_ackt = skb->tstamp;
3230 			if (seq_rtt < 0) {
3231 				seq_rtt = ca_seq_rtt;
3232 			}
3233 			if (!(sacked & TCPCB_SACKED_ACKED))
3234 				reord = min(pkts_acked, reord);
3235 		}
3236 
3237 		if (sacked & TCPCB_SACKED_ACKED)
3238 			tp->sacked_out -= acked_pcount;
3239 		if (sacked & TCPCB_LOST)
3240 			tp->lost_out -= acked_pcount;
3241 
3242 		tp->packets_out -= acked_pcount;
3243 		pkts_acked += acked_pcount;
3244 
3245 		/* Initial outgoing SYN's get put onto the write_queue
3246 		 * just like anything else we transmit.  It is not
3247 		 * true data, and if we misinform our callers that
3248 		 * this ACK acks real data, we will erroneously exit
3249 		 * connection startup slow start one packet too
3250 		 * quickly.  This is severely frowned upon behavior.
3251 		 */
3252 		if (!(scb->flags & TCPCB_FLAG_SYN)) {
3253 			flag |= FLAG_DATA_ACKED;
3254 		} else {
3255 			flag |= FLAG_SYN_ACKED;
3256 			tp->retrans_stamp = 0;
3257 		}
3258 
3259 		if (!fully_acked)
3260 			break;
3261 
3262 		tcp_unlink_write_queue(skb, sk);
3263 		sk_wmem_free_skb(sk, skb);
3264 		tp->scoreboard_skb_hint = NULL;
3265 		if (skb == tp->retransmit_skb_hint)
3266 			tp->retransmit_skb_hint = NULL;
3267 		if (skb == tp->lost_skb_hint)
3268 			tp->lost_skb_hint = NULL;
3269 	}
3270 
3271 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3272 		tp->snd_up = tp->snd_una;
3273 
3274 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3275 		flag |= FLAG_SACK_RENEGING;
3276 
3277 	if (flag & FLAG_ACKED) {
3278 		const struct tcp_congestion_ops *ca_ops
3279 			= inet_csk(sk)->icsk_ca_ops;
3280 
3281 		if (unlikely(icsk->icsk_mtup.probe_size &&
3282 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3283 			tcp_mtup_probe_success(sk);
3284 		}
3285 
3286 		tcp_ack_update_rtt(sk, flag, seq_rtt);
3287 		tcp_rearm_rto(sk);
3288 
3289 		if (tcp_is_reno(tp)) {
3290 			tcp_remove_reno_sacks(sk, pkts_acked);
3291 		} else {
3292 			int delta;
3293 
3294 			/* Non-retransmitted hole got filled? That's reordering */
3295 			if (reord < prior_fackets)
3296 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3297 
3298 			delta = tcp_is_fack(tp) ? pkts_acked :
3299 						  prior_sacked - tp->sacked_out;
3300 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3301 		}
3302 
3303 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3304 
3305 		if (ca_ops->pkts_acked) {
3306 			s32 rtt_us = -1;
3307 
3308 			/* Is the ACK triggering packet unambiguous? */
3309 			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3310 				/* High resolution needed and available? */
3311 				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3312 				    !ktime_equal(last_ackt,
3313 						 net_invalid_timestamp()))
3314 					rtt_us = ktime_us_delta(ktime_get_real(),
3315 								last_ackt);
3316 				else if (ca_seq_rtt > 0)
3317 					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3318 			}
3319 
3320 			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3321 		}
3322 	}
3323 
3324 #if FASTRETRANS_DEBUG > 0
3325 	WARN_ON((int)tp->sacked_out < 0);
3326 	WARN_ON((int)tp->lost_out < 0);
3327 	WARN_ON((int)tp->retrans_out < 0);
3328 	if (!tp->packets_out && tcp_is_sack(tp)) {
3329 		icsk = inet_csk(sk);
3330 		if (tp->lost_out) {
3331 			printk(KERN_DEBUG "Leak l=%u %d\n",
3332 			       tp->lost_out, icsk->icsk_ca_state);
3333 			tp->lost_out = 0;
3334 		}
3335 		if (tp->sacked_out) {
3336 			printk(KERN_DEBUG "Leak s=%u %d\n",
3337 			       tp->sacked_out, icsk->icsk_ca_state);
3338 			tp->sacked_out = 0;
3339 		}
3340 		if (tp->retrans_out) {
3341 			printk(KERN_DEBUG "Leak r=%u %d\n",
3342 			       tp->retrans_out, icsk->icsk_ca_state);
3343 			tp->retrans_out = 0;
3344 		}
3345 	}
3346 #endif
3347 	return flag;
3348 }
3349 
3350 static void tcp_ack_probe(struct sock *sk)
3351 {
3352 	const struct tcp_sock *tp = tcp_sk(sk);
3353 	struct inet_connection_sock *icsk = inet_csk(sk);
3354 
3355 	/* Was it a usable window open? */
3356 
3357 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3358 		icsk->icsk_backoff = 0;
3359 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3360 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3361 		 * This function is not for random using!
3362 		 */
3363 	} else {
3364 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3365 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3366 					  TCP_RTO_MAX);
3367 	}
3368 }
3369 
3370 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3371 {
3372 	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3373 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3374 }
3375 
3376 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3377 {
3378 	const struct tcp_sock *tp = tcp_sk(sk);
3379 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3380 		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3381 }
3382 
3383 /* Check that window update is acceptable.
3384  * The function assumes that snd_una<=ack<=snd_next.
3385  */
3386 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3387 					const u32 ack, const u32 ack_seq,
3388 					const u32 nwin)
3389 {
3390 	return (after(ack, tp->snd_una) ||
3391 		after(ack_seq, tp->snd_wl1) ||
3392 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3393 }
3394 
3395 /* Update our send window.
3396  *
3397  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3398  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3399  */
3400 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3401 				 u32 ack_seq)
3402 {
3403 	struct tcp_sock *tp = tcp_sk(sk);
3404 	int flag = 0;
3405 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3406 
3407 	if (likely(!tcp_hdr(skb)->syn))
3408 		nwin <<= tp->rx_opt.snd_wscale;
3409 
3410 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3411 		flag |= FLAG_WIN_UPDATE;
3412 		tcp_update_wl(tp, ack_seq);
3413 
3414 		if (tp->snd_wnd != nwin) {
3415 			tp->snd_wnd = nwin;
3416 
3417 			/* Note, it is the only place, where
3418 			 * fast path is recovered for sending TCP.
3419 			 */
3420 			tp->pred_flags = 0;
3421 			tcp_fast_path_check(sk);
3422 
3423 			if (nwin > tp->max_window) {
3424 				tp->max_window = nwin;
3425 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3426 			}
3427 		}
3428 	}
3429 
3430 	tp->snd_una = ack;
3431 
3432 	return flag;
3433 }
3434 
3435 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3436  * continue in congestion avoidance.
3437  */
3438 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3439 {
3440 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3441 	tp->snd_cwnd_cnt = 0;
3442 	tp->bytes_acked = 0;
3443 	TCP_ECN_queue_cwr(tp);
3444 	tcp_moderate_cwnd(tp);
3445 }
3446 
3447 /* A conservative spurious RTO response algorithm: reduce cwnd using
3448  * rate halving and continue in congestion avoidance.
3449  */
3450 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3451 {
3452 	tcp_enter_cwr(sk, 0);
3453 }
3454 
3455 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3456 {
3457 	if (flag & FLAG_ECE)
3458 		tcp_ratehalving_spur_to_response(sk);
3459 	else
3460 		tcp_undo_cwr(sk, 1);
3461 }
3462 
3463 /* F-RTO spurious RTO detection algorithm (RFC4138)
3464  *
3465  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3466  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3467  * window (but not to or beyond highest sequence sent before RTO):
3468  *   On First ACK,  send two new segments out.
3469  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3470  *                  algorithm is not part of the F-RTO detection algorithm
3471  *                  given in RFC4138 but can be selected separately).
3472  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3473  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3474  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3475  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3476  *
3477  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3478  * original window even after we transmit two new data segments.
3479  *
3480  * SACK version:
3481  *   on first step, wait until first cumulative ACK arrives, then move to
3482  *   the second step. In second step, the next ACK decides.
3483  *
3484  * F-RTO is implemented (mainly) in four functions:
3485  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3486  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3487  *     called when tcp_use_frto() showed green light
3488  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3489  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3490  *     to prove that the RTO is indeed spurious. It transfers the control
3491  *     from F-RTO to the conventional RTO recovery
3492  */
3493 static int tcp_process_frto(struct sock *sk, int flag)
3494 {
3495 	struct tcp_sock *tp = tcp_sk(sk);
3496 
3497 	tcp_verify_left_out(tp);
3498 
3499 	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3500 	if (flag & FLAG_DATA_ACKED)
3501 		inet_csk(sk)->icsk_retransmits = 0;
3502 
3503 	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3504 	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3505 		tp->undo_marker = 0;
3506 
3507 	if (!before(tp->snd_una, tp->frto_highmark)) {
3508 		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3509 		return 1;
3510 	}
3511 
3512 	if (!tcp_is_sackfrto(tp)) {
3513 		/* RFC4138 shortcoming in step 2; should also have case c):
3514 		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3515 		 * data, winupdate
3516 		 */
3517 		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3518 			return 1;
3519 
3520 		if (!(flag & FLAG_DATA_ACKED)) {
3521 			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3522 					    flag);
3523 			return 1;
3524 		}
3525 	} else {
3526 		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3527 			/* Prevent sending of new data. */
3528 			tp->snd_cwnd = min(tp->snd_cwnd,
3529 					   tcp_packets_in_flight(tp));
3530 			return 1;
3531 		}
3532 
3533 		if ((tp->frto_counter >= 2) &&
3534 		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3535 		     ((flag & FLAG_DATA_SACKED) &&
3536 		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3537 			/* RFC4138 shortcoming (see comment above) */
3538 			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3539 			    (flag & FLAG_NOT_DUP))
3540 				return 1;
3541 
3542 			tcp_enter_frto_loss(sk, 3, flag);
3543 			return 1;
3544 		}
3545 	}
3546 
3547 	if (tp->frto_counter == 1) {
3548 		/* tcp_may_send_now needs to see updated state */
3549 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3550 		tp->frto_counter = 2;
3551 
3552 		if (!tcp_may_send_now(sk))
3553 			tcp_enter_frto_loss(sk, 2, flag);
3554 
3555 		return 1;
3556 	} else {
3557 		switch (sysctl_tcp_frto_response) {
3558 		case 2:
3559 			tcp_undo_spur_to_response(sk, flag);
3560 			break;
3561 		case 1:
3562 			tcp_conservative_spur_to_response(tp);
3563 			break;
3564 		default:
3565 			tcp_ratehalving_spur_to_response(sk);
3566 			break;
3567 		}
3568 		tp->frto_counter = 0;
3569 		tp->undo_marker = 0;
3570 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3571 	}
3572 	return 0;
3573 }
3574 
3575 /* This routine deals with incoming acks, but not outgoing ones. */
3576 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3577 {
3578 	struct inet_connection_sock *icsk = inet_csk(sk);
3579 	struct tcp_sock *tp = tcp_sk(sk);
3580 	u32 prior_snd_una = tp->snd_una;
3581 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3582 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3583 	u32 prior_in_flight;
3584 	u32 prior_fackets;
3585 	int prior_packets;
3586 	int frto_cwnd = 0;
3587 
3588 	/* If the ack is older than previous acks
3589 	 * then we can probably ignore it.
3590 	 */
3591 	if (before(ack, prior_snd_una))
3592 		goto old_ack;
3593 
3594 	/* If the ack includes data we haven't sent yet, discard
3595 	 * this segment (RFC793 Section 3.9).
3596 	 */
3597 	if (after(ack, tp->snd_nxt))
3598 		goto invalid_ack;
3599 
3600 	if (after(ack, prior_snd_una))
3601 		flag |= FLAG_SND_UNA_ADVANCED;
3602 
3603 	if (sysctl_tcp_abc) {
3604 		if (icsk->icsk_ca_state < TCP_CA_CWR)
3605 			tp->bytes_acked += ack - prior_snd_una;
3606 		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3607 			/* we assume just one segment left network */
3608 			tp->bytes_acked += min(ack - prior_snd_una,
3609 					       tp->mss_cache);
3610 	}
3611 
3612 	prior_fackets = tp->fackets_out;
3613 	prior_in_flight = tcp_packets_in_flight(tp);
3614 
3615 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3616 		/* Window is constant, pure forward advance.
3617 		 * No more checks are required.
3618 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3619 		 */
3620 		tcp_update_wl(tp, ack_seq);
3621 		tp->snd_una = ack;
3622 		flag |= FLAG_WIN_UPDATE;
3623 
3624 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3625 
3626 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3627 	} else {
3628 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3629 			flag |= FLAG_DATA;
3630 		else
3631 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3632 
3633 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3634 
3635 		if (TCP_SKB_CB(skb)->sacked)
3636 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3637 
3638 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3639 			flag |= FLAG_ECE;
3640 
3641 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3642 	}
3643 
3644 	/* We passed data and got it acked, remove any soft error
3645 	 * log. Something worked...
3646 	 */
3647 	sk->sk_err_soft = 0;
3648 	icsk->icsk_probes_out = 0;
3649 	tp->rcv_tstamp = tcp_time_stamp;
3650 	prior_packets = tp->packets_out;
3651 	if (!prior_packets)
3652 		goto no_queue;
3653 
3654 	/* See if we can take anything off of the retransmit queue. */
3655 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3656 
3657 	if (tp->frto_counter)
3658 		frto_cwnd = tcp_process_frto(sk, flag);
3659 	/* Guarantee sacktag reordering detection against wrap-arounds */
3660 	if (before(tp->frto_highmark, tp->snd_una))
3661 		tp->frto_highmark = 0;
3662 
3663 	if (tcp_ack_is_dubious(sk, flag)) {
3664 		/* Advance CWND, if state allows this. */
3665 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3666 		    tcp_may_raise_cwnd(sk, flag))
3667 			tcp_cong_avoid(sk, ack, prior_in_flight);
3668 		tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3669 				      flag);
3670 	} else {
3671 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3672 			tcp_cong_avoid(sk, ack, prior_in_flight);
3673 	}
3674 
3675 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3676 		dst_confirm(sk->sk_dst_cache);
3677 
3678 	return 1;
3679 
3680 no_queue:
3681 	/* If this ack opens up a zero window, clear backoff.  It was
3682 	 * being used to time the probes, and is probably far higher than
3683 	 * it needs to be for normal retransmission.
3684 	 */
3685 	if (tcp_send_head(sk))
3686 		tcp_ack_probe(sk);
3687 	return 1;
3688 
3689 invalid_ack:
3690 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3691 	return -1;
3692 
3693 old_ack:
3694 	if (TCP_SKB_CB(skb)->sacked) {
3695 		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3696 		if (icsk->icsk_ca_state == TCP_CA_Open)
3697 			tcp_try_keep_open(sk);
3698 	}
3699 
3700 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3701 	return 0;
3702 }
3703 
3704 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3705  * But, this can also be called on packets in the established flow when
3706  * the fast version below fails.
3707  */
3708 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3709 		       int estab)
3710 {
3711 	unsigned char *ptr;
3712 	struct tcphdr *th = tcp_hdr(skb);
3713 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3714 
3715 	ptr = (unsigned char *)(th + 1);
3716 	opt_rx->saw_tstamp = 0;
3717 
3718 	while (length > 0) {
3719 		int opcode = *ptr++;
3720 		int opsize;
3721 
3722 		switch (opcode) {
3723 		case TCPOPT_EOL:
3724 			return;
3725 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3726 			length--;
3727 			continue;
3728 		default:
3729 			opsize = *ptr++;
3730 			if (opsize < 2) /* "silly options" */
3731 				return;
3732 			if (opsize > length)
3733 				return;	/* don't parse partial options */
3734 			switch (opcode) {
3735 			case TCPOPT_MSS:
3736 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3737 					u16 in_mss = get_unaligned_be16(ptr);
3738 					if (in_mss) {
3739 						if (opt_rx->user_mss &&
3740 						    opt_rx->user_mss < in_mss)
3741 							in_mss = opt_rx->user_mss;
3742 						opt_rx->mss_clamp = in_mss;
3743 					}
3744 				}
3745 				break;
3746 			case TCPOPT_WINDOW:
3747 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3748 				    !estab && sysctl_tcp_window_scaling) {
3749 					__u8 snd_wscale = *(__u8 *)ptr;
3750 					opt_rx->wscale_ok = 1;
3751 					if (snd_wscale > 14) {
3752 						if (net_ratelimit())
3753 							printk(KERN_INFO "tcp_parse_options: Illegal window "
3754 							       "scaling value %d >14 received.\n",
3755 							       snd_wscale);
3756 						snd_wscale = 14;
3757 					}
3758 					opt_rx->snd_wscale = snd_wscale;
3759 				}
3760 				break;
3761 			case TCPOPT_TIMESTAMP:
3762 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3763 				    ((estab && opt_rx->tstamp_ok) ||
3764 				     (!estab && sysctl_tcp_timestamps))) {
3765 					opt_rx->saw_tstamp = 1;
3766 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3767 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3768 				}
3769 				break;
3770 			case TCPOPT_SACK_PERM:
3771 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3772 				    !estab && sysctl_tcp_sack) {
3773 					opt_rx->sack_ok = 1;
3774 					tcp_sack_reset(opt_rx);
3775 				}
3776 				break;
3777 
3778 			case TCPOPT_SACK:
3779 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3780 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3781 				   opt_rx->sack_ok) {
3782 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3783 				}
3784 				break;
3785 #ifdef CONFIG_TCP_MD5SIG
3786 			case TCPOPT_MD5SIG:
3787 				/*
3788 				 * The MD5 Hash has already been
3789 				 * checked (see tcp_v{4,6}_do_rcv()).
3790 				 */
3791 				break;
3792 #endif
3793 			}
3794 
3795 			ptr += opsize-2;
3796 			length -= opsize;
3797 		}
3798 	}
3799 }
3800 
3801 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3802 {
3803 	__be32 *ptr = (__be32 *)(th + 1);
3804 
3805 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3806 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3807 		tp->rx_opt.saw_tstamp = 1;
3808 		++ptr;
3809 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3810 		++ptr;
3811 		tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3812 		return 1;
3813 	}
3814 	return 0;
3815 }
3816 
3817 /* Fast parse options. This hopes to only see timestamps.
3818  * If it is wrong it falls back on tcp_parse_options().
3819  */
3820 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3821 				  struct tcp_sock *tp)
3822 {
3823 	if (th->doff == sizeof(struct tcphdr) >> 2) {
3824 		tp->rx_opt.saw_tstamp = 0;
3825 		return 0;
3826 	} else if (tp->rx_opt.tstamp_ok &&
3827 		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3828 		if (tcp_parse_aligned_timestamp(tp, th))
3829 			return 1;
3830 	}
3831 	tcp_parse_options(skb, &tp->rx_opt, 1);
3832 	return 1;
3833 }
3834 
3835 #ifdef CONFIG_TCP_MD5SIG
3836 /*
3837  * Parse MD5 Signature option
3838  */
3839 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3840 {
3841 	int length = (th->doff << 2) - sizeof (*th);
3842 	u8 *ptr = (u8*)(th + 1);
3843 
3844 	/* If the TCP option is too short, we can short cut */
3845 	if (length < TCPOLEN_MD5SIG)
3846 		return NULL;
3847 
3848 	while (length > 0) {
3849 		int opcode = *ptr++;
3850 		int opsize;
3851 
3852 		switch(opcode) {
3853 		case TCPOPT_EOL:
3854 			return NULL;
3855 		case TCPOPT_NOP:
3856 			length--;
3857 			continue;
3858 		default:
3859 			opsize = *ptr++;
3860 			if (opsize < 2 || opsize > length)
3861 				return NULL;
3862 			if (opcode == TCPOPT_MD5SIG)
3863 				return ptr;
3864 		}
3865 		ptr += opsize - 2;
3866 		length -= opsize;
3867 	}
3868 	return NULL;
3869 }
3870 #endif
3871 
3872 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3873 {
3874 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3875 	tp->rx_opt.ts_recent_stamp = get_seconds();
3876 }
3877 
3878 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3879 {
3880 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3881 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3882 		 * extra check below makes sure this can only happen
3883 		 * for pure ACK frames.  -DaveM
3884 		 *
3885 		 * Not only, also it occurs for expired timestamps.
3886 		 */
3887 
3888 		if (tcp_paws_check(&tp->rx_opt, 0))
3889 			tcp_store_ts_recent(tp);
3890 	}
3891 }
3892 
3893 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3894  *
3895  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3896  * it can pass through stack. So, the following predicate verifies that
3897  * this segment is not used for anything but congestion avoidance or
3898  * fast retransmit. Moreover, we even are able to eliminate most of such
3899  * second order effects, if we apply some small "replay" window (~RTO)
3900  * to timestamp space.
3901  *
3902  * All these measures still do not guarantee that we reject wrapped ACKs
3903  * on networks with high bandwidth, when sequence space is recycled fastly,
3904  * but it guarantees that such events will be very rare and do not affect
3905  * connection seriously. This doesn't look nice, but alas, PAWS is really
3906  * buggy extension.
3907  *
3908  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3909  * states that events when retransmit arrives after original data are rare.
3910  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3911  * the biggest problem on large power networks even with minor reordering.
3912  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3913  * up to bandwidth of 18Gigabit/sec. 8) ]
3914  */
3915 
3916 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3917 {
3918 	struct tcp_sock *tp = tcp_sk(sk);
3919 	struct tcphdr *th = tcp_hdr(skb);
3920 	u32 seq = TCP_SKB_CB(skb)->seq;
3921 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3922 
3923 	return (/* 1. Pure ACK with correct sequence number. */
3924 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3925 
3926 		/* 2. ... and duplicate ACK. */
3927 		ack == tp->snd_una &&
3928 
3929 		/* 3. ... and does not update window. */
3930 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3931 
3932 		/* 4. ... and sits in replay window. */
3933 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3934 }
3935 
3936 static inline int tcp_paws_discard(const struct sock *sk,
3937 				   const struct sk_buff *skb)
3938 {
3939 	const struct tcp_sock *tp = tcp_sk(sk);
3940 
3941 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3942 	       !tcp_disordered_ack(sk, skb);
3943 }
3944 
3945 /* Check segment sequence number for validity.
3946  *
3947  * Segment controls are considered valid, if the segment
3948  * fits to the window after truncation to the window. Acceptability
3949  * of data (and SYN, FIN, of course) is checked separately.
3950  * See tcp_data_queue(), for example.
3951  *
3952  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3953  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3954  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3955  * (borrowed from freebsd)
3956  */
3957 
3958 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3959 {
3960 	return	!before(end_seq, tp->rcv_wup) &&
3961 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3962 }
3963 
3964 /* When we get a reset we do this. */
3965 static void tcp_reset(struct sock *sk)
3966 {
3967 	/* We want the right error as BSD sees it (and indeed as we do). */
3968 	switch (sk->sk_state) {
3969 	case TCP_SYN_SENT:
3970 		sk->sk_err = ECONNREFUSED;
3971 		break;
3972 	case TCP_CLOSE_WAIT:
3973 		sk->sk_err = EPIPE;
3974 		break;
3975 	case TCP_CLOSE:
3976 		return;
3977 	default:
3978 		sk->sk_err = ECONNRESET;
3979 	}
3980 
3981 	if (!sock_flag(sk, SOCK_DEAD))
3982 		sk->sk_error_report(sk);
3983 
3984 	tcp_done(sk);
3985 }
3986 
3987 /*
3988  * 	Process the FIN bit. This now behaves as it is supposed to work
3989  *	and the FIN takes effect when it is validly part of sequence
3990  *	space. Not before when we get holes.
3991  *
3992  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3993  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3994  *	TIME-WAIT)
3995  *
3996  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3997  *	close and we go into CLOSING (and later onto TIME-WAIT)
3998  *
3999  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4000  */
4001 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
4002 {
4003 	struct tcp_sock *tp = tcp_sk(sk);
4004 
4005 	inet_csk_schedule_ack(sk);
4006 
4007 	sk->sk_shutdown |= RCV_SHUTDOWN;
4008 	sock_set_flag(sk, SOCK_DONE);
4009 
4010 	switch (sk->sk_state) {
4011 	case TCP_SYN_RECV:
4012 	case TCP_ESTABLISHED:
4013 		/* Move to CLOSE_WAIT */
4014 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4015 		inet_csk(sk)->icsk_ack.pingpong = 1;
4016 		break;
4017 
4018 	case TCP_CLOSE_WAIT:
4019 	case TCP_CLOSING:
4020 		/* Received a retransmission of the FIN, do
4021 		 * nothing.
4022 		 */
4023 		break;
4024 	case TCP_LAST_ACK:
4025 		/* RFC793: Remain in the LAST-ACK state. */
4026 		break;
4027 
4028 	case TCP_FIN_WAIT1:
4029 		/* This case occurs when a simultaneous close
4030 		 * happens, we must ack the received FIN and
4031 		 * enter the CLOSING state.
4032 		 */
4033 		tcp_send_ack(sk);
4034 		tcp_set_state(sk, TCP_CLOSING);
4035 		break;
4036 	case TCP_FIN_WAIT2:
4037 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4038 		tcp_send_ack(sk);
4039 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4040 		break;
4041 	default:
4042 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4043 		 * cases we should never reach this piece of code.
4044 		 */
4045 		printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4046 		       __func__, sk->sk_state);
4047 		break;
4048 	}
4049 
4050 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4051 	 * Probably, we should reset in this case. For now drop them.
4052 	 */
4053 	__skb_queue_purge(&tp->out_of_order_queue);
4054 	if (tcp_is_sack(tp))
4055 		tcp_sack_reset(&tp->rx_opt);
4056 	sk_mem_reclaim(sk);
4057 
4058 	if (!sock_flag(sk, SOCK_DEAD)) {
4059 		sk->sk_state_change(sk);
4060 
4061 		/* Do not send POLL_HUP for half duplex close. */
4062 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4063 		    sk->sk_state == TCP_CLOSE)
4064 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4065 		else
4066 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4067 	}
4068 }
4069 
4070 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4071 				  u32 end_seq)
4072 {
4073 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4074 		if (before(seq, sp->start_seq))
4075 			sp->start_seq = seq;
4076 		if (after(end_seq, sp->end_seq))
4077 			sp->end_seq = end_seq;
4078 		return 1;
4079 	}
4080 	return 0;
4081 }
4082 
4083 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4084 {
4085 	struct tcp_sock *tp = tcp_sk(sk);
4086 
4087 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4088 		int mib_idx;
4089 
4090 		if (before(seq, tp->rcv_nxt))
4091 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4092 		else
4093 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4094 
4095 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4096 
4097 		tp->rx_opt.dsack = 1;
4098 		tp->duplicate_sack[0].start_seq = seq;
4099 		tp->duplicate_sack[0].end_seq = end_seq;
4100 	}
4101 }
4102 
4103 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4104 {
4105 	struct tcp_sock *tp = tcp_sk(sk);
4106 
4107 	if (!tp->rx_opt.dsack)
4108 		tcp_dsack_set(sk, seq, end_seq);
4109 	else
4110 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4111 }
4112 
4113 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4114 {
4115 	struct tcp_sock *tp = tcp_sk(sk);
4116 
4117 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4118 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4119 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4120 		tcp_enter_quickack_mode(sk);
4121 
4122 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4123 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4124 
4125 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4126 				end_seq = tp->rcv_nxt;
4127 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4128 		}
4129 	}
4130 
4131 	tcp_send_ack(sk);
4132 }
4133 
4134 /* These routines update the SACK block as out-of-order packets arrive or
4135  * in-order packets close up the sequence space.
4136  */
4137 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4138 {
4139 	int this_sack;
4140 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4141 	struct tcp_sack_block *swalk = sp + 1;
4142 
4143 	/* See if the recent change to the first SACK eats into
4144 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4145 	 */
4146 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4147 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4148 			int i;
4149 
4150 			/* Zap SWALK, by moving every further SACK up by one slot.
4151 			 * Decrease num_sacks.
4152 			 */
4153 			tp->rx_opt.num_sacks--;
4154 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4155 				sp[i] = sp[i + 1];
4156 			continue;
4157 		}
4158 		this_sack++, swalk++;
4159 	}
4160 }
4161 
4162 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4163 {
4164 	struct tcp_sock *tp = tcp_sk(sk);
4165 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4166 	int cur_sacks = tp->rx_opt.num_sacks;
4167 	int this_sack;
4168 
4169 	if (!cur_sacks)
4170 		goto new_sack;
4171 
4172 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4173 		if (tcp_sack_extend(sp, seq, end_seq)) {
4174 			/* Rotate this_sack to the first one. */
4175 			for (; this_sack > 0; this_sack--, sp--)
4176 				swap(*sp, *(sp - 1));
4177 			if (cur_sacks > 1)
4178 				tcp_sack_maybe_coalesce(tp);
4179 			return;
4180 		}
4181 	}
4182 
4183 	/* Could not find an adjacent existing SACK, build a new one,
4184 	 * put it at the front, and shift everyone else down.  We
4185 	 * always know there is at least one SACK present already here.
4186 	 *
4187 	 * If the sack array is full, forget about the last one.
4188 	 */
4189 	if (this_sack >= TCP_NUM_SACKS) {
4190 		this_sack--;
4191 		tp->rx_opt.num_sacks--;
4192 		sp--;
4193 	}
4194 	for (; this_sack > 0; this_sack--, sp--)
4195 		*sp = *(sp - 1);
4196 
4197 new_sack:
4198 	/* Build the new head SACK, and we're done. */
4199 	sp->start_seq = seq;
4200 	sp->end_seq = end_seq;
4201 	tp->rx_opt.num_sacks++;
4202 }
4203 
4204 /* RCV.NXT advances, some SACKs should be eaten. */
4205 
4206 static void tcp_sack_remove(struct tcp_sock *tp)
4207 {
4208 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4209 	int num_sacks = tp->rx_opt.num_sacks;
4210 	int this_sack;
4211 
4212 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4213 	if (skb_queue_empty(&tp->out_of_order_queue)) {
4214 		tp->rx_opt.num_sacks = 0;
4215 		return;
4216 	}
4217 
4218 	for (this_sack = 0; this_sack < num_sacks;) {
4219 		/* Check if the start of the sack is covered by RCV.NXT. */
4220 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4221 			int i;
4222 
4223 			/* RCV.NXT must cover all the block! */
4224 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4225 
4226 			/* Zap this SACK, by moving forward any other SACKS. */
4227 			for (i=this_sack+1; i < num_sacks; i++)
4228 				tp->selective_acks[i-1] = tp->selective_acks[i];
4229 			num_sacks--;
4230 			continue;
4231 		}
4232 		this_sack++;
4233 		sp++;
4234 	}
4235 	tp->rx_opt.num_sacks = num_sacks;
4236 }
4237 
4238 /* This one checks to see if we can put data from the
4239  * out_of_order queue into the receive_queue.
4240  */
4241 static void tcp_ofo_queue(struct sock *sk)
4242 {
4243 	struct tcp_sock *tp = tcp_sk(sk);
4244 	__u32 dsack_high = tp->rcv_nxt;
4245 	struct sk_buff *skb;
4246 
4247 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4248 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4249 			break;
4250 
4251 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4252 			__u32 dsack = dsack_high;
4253 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4254 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4255 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4256 		}
4257 
4258 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4259 			SOCK_DEBUG(sk, "ofo packet was already received \n");
4260 			__skb_unlink(skb, &tp->out_of_order_queue);
4261 			__kfree_skb(skb);
4262 			continue;
4263 		}
4264 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4265 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4266 			   TCP_SKB_CB(skb)->end_seq);
4267 
4268 		__skb_unlink(skb, &tp->out_of_order_queue);
4269 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4270 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4271 		if (tcp_hdr(skb)->fin)
4272 			tcp_fin(skb, sk, tcp_hdr(skb));
4273 	}
4274 }
4275 
4276 static int tcp_prune_ofo_queue(struct sock *sk);
4277 static int tcp_prune_queue(struct sock *sk);
4278 
4279 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4280 {
4281 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4282 	    !sk_rmem_schedule(sk, size)) {
4283 
4284 		if (tcp_prune_queue(sk) < 0)
4285 			return -1;
4286 
4287 		if (!sk_rmem_schedule(sk, size)) {
4288 			if (!tcp_prune_ofo_queue(sk))
4289 				return -1;
4290 
4291 			if (!sk_rmem_schedule(sk, size))
4292 				return -1;
4293 		}
4294 	}
4295 	return 0;
4296 }
4297 
4298 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4299 {
4300 	struct tcphdr *th = tcp_hdr(skb);
4301 	struct tcp_sock *tp = tcp_sk(sk);
4302 	int eaten = -1;
4303 
4304 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4305 		goto drop;
4306 
4307 	__skb_pull(skb, th->doff * 4);
4308 
4309 	TCP_ECN_accept_cwr(tp, skb);
4310 
4311 	tp->rx_opt.dsack = 0;
4312 
4313 	/*  Queue data for delivery to the user.
4314 	 *  Packets in sequence go to the receive queue.
4315 	 *  Out of sequence packets to the out_of_order_queue.
4316 	 */
4317 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4318 		if (tcp_receive_window(tp) == 0)
4319 			goto out_of_window;
4320 
4321 		/* Ok. In sequence. In window. */
4322 		if (tp->ucopy.task == current &&
4323 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4324 		    sock_owned_by_user(sk) && !tp->urg_data) {
4325 			int chunk = min_t(unsigned int, skb->len,
4326 					  tp->ucopy.len);
4327 
4328 			__set_current_state(TASK_RUNNING);
4329 
4330 			local_bh_enable();
4331 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4332 				tp->ucopy.len -= chunk;
4333 				tp->copied_seq += chunk;
4334 				eaten = (chunk == skb->len && !th->fin);
4335 				tcp_rcv_space_adjust(sk);
4336 			}
4337 			local_bh_disable();
4338 		}
4339 
4340 		if (eaten <= 0) {
4341 queue_and_out:
4342 			if (eaten < 0 &&
4343 			    tcp_try_rmem_schedule(sk, skb->truesize))
4344 				goto drop;
4345 
4346 			skb_set_owner_r(skb, sk);
4347 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4348 		}
4349 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4350 		if (skb->len)
4351 			tcp_event_data_recv(sk, skb);
4352 		if (th->fin)
4353 			tcp_fin(skb, sk, th);
4354 
4355 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4356 			tcp_ofo_queue(sk);
4357 
4358 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4359 			 * gap in queue is filled.
4360 			 */
4361 			if (skb_queue_empty(&tp->out_of_order_queue))
4362 				inet_csk(sk)->icsk_ack.pingpong = 0;
4363 		}
4364 
4365 		if (tp->rx_opt.num_sacks)
4366 			tcp_sack_remove(tp);
4367 
4368 		tcp_fast_path_check(sk);
4369 
4370 		if (eaten > 0)
4371 			__kfree_skb(skb);
4372 		else if (!sock_flag(sk, SOCK_DEAD))
4373 			sk->sk_data_ready(sk, 0);
4374 		return;
4375 	}
4376 
4377 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4378 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4379 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4380 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4381 
4382 out_of_window:
4383 		tcp_enter_quickack_mode(sk);
4384 		inet_csk_schedule_ack(sk);
4385 drop:
4386 		__kfree_skb(skb);
4387 		return;
4388 	}
4389 
4390 	/* Out of window. F.e. zero window probe. */
4391 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4392 		goto out_of_window;
4393 
4394 	tcp_enter_quickack_mode(sk);
4395 
4396 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4397 		/* Partial packet, seq < rcv_next < end_seq */
4398 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4399 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4400 			   TCP_SKB_CB(skb)->end_seq);
4401 
4402 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4403 
4404 		/* If window is closed, drop tail of packet. But after
4405 		 * remembering D-SACK for its head made in previous line.
4406 		 */
4407 		if (!tcp_receive_window(tp))
4408 			goto out_of_window;
4409 		goto queue_and_out;
4410 	}
4411 
4412 	TCP_ECN_check_ce(tp, skb);
4413 
4414 	if (tcp_try_rmem_schedule(sk, skb->truesize))
4415 		goto drop;
4416 
4417 	/* Disable header prediction. */
4418 	tp->pred_flags = 0;
4419 	inet_csk_schedule_ack(sk);
4420 
4421 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4422 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4423 
4424 	skb_set_owner_r(skb, sk);
4425 
4426 	if (!skb_peek(&tp->out_of_order_queue)) {
4427 		/* Initial out of order segment, build 1 SACK. */
4428 		if (tcp_is_sack(tp)) {
4429 			tp->rx_opt.num_sacks = 1;
4430 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4431 			tp->selective_acks[0].end_seq =
4432 						TCP_SKB_CB(skb)->end_seq;
4433 		}
4434 		__skb_queue_head(&tp->out_of_order_queue, skb);
4435 	} else {
4436 		struct sk_buff *skb1 = tp->out_of_order_queue.prev;
4437 		u32 seq = TCP_SKB_CB(skb)->seq;
4438 		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4439 
4440 		if (seq == TCP_SKB_CB(skb1)->end_seq) {
4441 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4442 
4443 			if (!tp->rx_opt.num_sacks ||
4444 			    tp->selective_acks[0].end_seq != seq)
4445 				goto add_sack;
4446 
4447 			/* Common case: data arrive in order after hole. */
4448 			tp->selective_acks[0].end_seq = end_seq;
4449 			return;
4450 		}
4451 
4452 		/* Find place to insert this segment. */
4453 		do {
4454 			if (!after(TCP_SKB_CB(skb1)->seq, seq))
4455 				break;
4456 		} while ((skb1 = skb1->prev) !=
4457 			 (struct sk_buff *)&tp->out_of_order_queue);
4458 
4459 		/* Do skb overlap to previous one? */
4460 		if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
4461 		    before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4462 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4463 				/* All the bits are present. Drop. */
4464 				__kfree_skb(skb);
4465 				tcp_dsack_set(sk, seq, end_seq);
4466 				goto add_sack;
4467 			}
4468 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4469 				/* Partial overlap. */
4470 				tcp_dsack_set(sk, seq,
4471 					      TCP_SKB_CB(skb1)->end_seq);
4472 			} else {
4473 				skb1 = skb1->prev;
4474 			}
4475 		}
4476 		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4477 
4478 		/* And clean segments covered by new one as whole. */
4479 		while ((skb1 = skb->next) !=
4480 		       (struct sk_buff *)&tp->out_of_order_queue &&
4481 		       after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4482 			if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4483 				tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4484 						 end_seq);
4485 				break;
4486 			}
4487 			__skb_unlink(skb1, &tp->out_of_order_queue);
4488 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4489 					 TCP_SKB_CB(skb1)->end_seq);
4490 			__kfree_skb(skb1);
4491 		}
4492 
4493 add_sack:
4494 		if (tcp_is_sack(tp))
4495 			tcp_sack_new_ofo_skb(sk, seq, end_seq);
4496 	}
4497 }
4498 
4499 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4500 					struct sk_buff_head *list)
4501 {
4502 	struct sk_buff *next = skb->next;
4503 
4504 	__skb_unlink(skb, list);
4505 	__kfree_skb(skb);
4506 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4507 
4508 	return next;
4509 }
4510 
4511 /* Collapse contiguous sequence of skbs head..tail with
4512  * sequence numbers start..end.
4513  * Segments with FIN/SYN are not collapsed (only because this
4514  * simplifies code)
4515  */
4516 static void
4517 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4518 	     struct sk_buff *head, struct sk_buff *tail,
4519 	     u32 start, u32 end)
4520 {
4521 	struct sk_buff *skb;
4522 
4523 	/* First, check that queue is collapsible and find
4524 	 * the point where collapsing can be useful. */
4525 	for (skb = head; skb != tail;) {
4526 		/* No new bits? It is possible on ofo queue. */
4527 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4528 			skb = tcp_collapse_one(sk, skb, list);
4529 			continue;
4530 		}
4531 
4532 		/* The first skb to collapse is:
4533 		 * - not SYN/FIN and
4534 		 * - bloated or contains data before "start" or
4535 		 *   overlaps to the next one.
4536 		 */
4537 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4538 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4539 		     before(TCP_SKB_CB(skb)->seq, start) ||
4540 		     (skb->next != tail &&
4541 		      TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4542 			break;
4543 
4544 		/* Decided to skip this, advance start seq. */
4545 		start = TCP_SKB_CB(skb)->end_seq;
4546 		skb = skb->next;
4547 	}
4548 	if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4549 		return;
4550 
4551 	while (before(start, end)) {
4552 		struct sk_buff *nskb;
4553 		unsigned int header = skb_headroom(skb);
4554 		int copy = SKB_MAX_ORDER(header, 0);
4555 
4556 		/* Too big header? This can happen with IPv6. */
4557 		if (copy < 0)
4558 			return;
4559 		if (end - start < copy)
4560 			copy = end - start;
4561 		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4562 		if (!nskb)
4563 			return;
4564 
4565 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4566 		skb_set_network_header(nskb, (skb_network_header(skb) -
4567 					      skb->head));
4568 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4569 						skb->head));
4570 		skb_reserve(nskb, header);
4571 		memcpy(nskb->head, skb->head, header);
4572 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4573 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4574 		__skb_queue_before(list, skb, nskb);
4575 		skb_set_owner_r(nskb, sk);
4576 
4577 		/* Copy data, releasing collapsed skbs. */
4578 		while (copy > 0) {
4579 			int offset = start - TCP_SKB_CB(skb)->seq;
4580 			int size = TCP_SKB_CB(skb)->end_seq - start;
4581 
4582 			BUG_ON(offset < 0);
4583 			if (size > 0) {
4584 				size = min(copy, size);
4585 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4586 					BUG();
4587 				TCP_SKB_CB(nskb)->end_seq += size;
4588 				copy -= size;
4589 				start += size;
4590 			}
4591 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4592 				skb = tcp_collapse_one(sk, skb, list);
4593 				if (skb == tail ||
4594 				    tcp_hdr(skb)->syn ||
4595 				    tcp_hdr(skb)->fin)
4596 					return;
4597 			}
4598 		}
4599 	}
4600 }
4601 
4602 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4603  * and tcp_collapse() them until all the queue is collapsed.
4604  */
4605 static void tcp_collapse_ofo_queue(struct sock *sk)
4606 {
4607 	struct tcp_sock *tp = tcp_sk(sk);
4608 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4609 	struct sk_buff *head;
4610 	u32 start, end;
4611 
4612 	if (skb == NULL)
4613 		return;
4614 
4615 	start = TCP_SKB_CB(skb)->seq;
4616 	end = TCP_SKB_CB(skb)->end_seq;
4617 	head = skb;
4618 
4619 	for (;;) {
4620 		skb = skb->next;
4621 
4622 		/* Segment is terminated when we see gap or when
4623 		 * we are at the end of all the queue. */
4624 		if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4625 		    after(TCP_SKB_CB(skb)->seq, end) ||
4626 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4627 			tcp_collapse(sk, &tp->out_of_order_queue,
4628 				     head, skb, start, end);
4629 			head = skb;
4630 			if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4631 				break;
4632 			/* Start new segment */
4633 			start = TCP_SKB_CB(skb)->seq;
4634 			end = TCP_SKB_CB(skb)->end_seq;
4635 		} else {
4636 			if (before(TCP_SKB_CB(skb)->seq, start))
4637 				start = TCP_SKB_CB(skb)->seq;
4638 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4639 				end = TCP_SKB_CB(skb)->end_seq;
4640 		}
4641 	}
4642 }
4643 
4644 /*
4645  * Purge the out-of-order queue.
4646  * Return true if queue was pruned.
4647  */
4648 static int tcp_prune_ofo_queue(struct sock *sk)
4649 {
4650 	struct tcp_sock *tp = tcp_sk(sk);
4651 	int res = 0;
4652 
4653 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4654 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4655 		__skb_queue_purge(&tp->out_of_order_queue);
4656 
4657 		/* Reset SACK state.  A conforming SACK implementation will
4658 		 * do the same at a timeout based retransmit.  When a connection
4659 		 * is in a sad state like this, we care only about integrity
4660 		 * of the connection not performance.
4661 		 */
4662 		if (tp->rx_opt.sack_ok)
4663 			tcp_sack_reset(&tp->rx_opt);
4664 		sk_mem_reclaim(sk);
4665 		res = 1;
4666 	}
4667 	return res;
4668 }
4669 
4670 /* Reduce allocated memory if we can, trying to get
4671  * the socket within its memory limits again.
4672  *
4673  * Return less than zero if we should start dropping frames
4674  * until the socket owning process reads some of the data
4675  * to stabilize the situation.
4676  */
4677 static int tcp_prune_queue(struct sock *sk)
4678 {
4679 	struct tcp_sock *tp = tcp_sk(sk);
4680 
4681 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4682 
4683 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4684 
4685 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4686 		tcp_clamp_window(sk);
4687 	else if (tcp_memory_pressure)
4688 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4689 
4690 	tcp_collapse_ofo_queue(sk);
4691 	tcp_collapse(sk, &sk->sk_receive_queue,
4692 		     sk->sk_receive_queue.next,
4693 		     (struct sk_buff *)&sk->sk_receive_queue,
4694 		     tp->copied_seq, tp->rcv_nxt);
4695 	sk_mem_reclaim(sk);
4696 
4697 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4698 		return 0;
4699 
4700 	/* Collapsing did not help, destructive actions follow.
4701 	 * This must not ever occur. */
4702 
4703 	tcp_prune_ofo_queue(sk);
4704 
4705 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4706 		return 0;
4707 
4708 	/* If we are really being abused, tell the caller to silently
4709 	 * drop receive data on the floor.  It will get retransmitted
4710 	 * and hopefully then we'll have sufficient space.
4711 	 */
4712 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4713 
4714 	/* Massive buffer overcommit. */
4715 	tp->pred_flags = 0;
4716 	return -1;
4717 }
4718 
4719 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4720  * As additional protections, we do not touch cwnd in retransmission phases,
4721  * and if application hit its sndbuf limit recently.
4722  */
4723 void tcp_cwnd_application_limited(struct sock *sk)
4724 {
4725 	struct tcp_sock *tp = tcp_sk(sk);
4726 
4727 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4728 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4729 		/* Limited by application or receiver window. */
4730 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4731 		u32 win_used = max(tp->snd_cwnd_used, init_win);
4732 		if (win_used < tp->snd_cwnd) {
4733 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4734 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4735 		}
4736 		tp->snd_cwnd_used = 0;
4737 	}
4738 	tp->snd_cwnd_stamp = tcp_time_stamp;
4739 }
4740 
4741 static int tcp_should_expand_sndbuf(struct sock *sk)
4742 {
4743 	struct tcp_sock *tp = tcp_sk(sk);
4744 
4745 	/* If the user specified a specific send buffer setting, do
4746 	 * not modify it.
4747 	 */
4748 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4749 		return 0;
4750 
4751 	/* If we are under global TCP memory pressure, do not expand.  */
4752 	if (tcp_memory_pressure)
4753 		return 0;
4754 
4755 	/* If we are under soft global TCP memory pressure, do not expand.  */
4756 	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4757 		return 0;
4758 
4759 	/* If we filled the congestion window, do not expand.  */
4760 	if (tp->packets_out >= tp->snd_cwnd)
4761 		return 0;
4762 
4763 	return 1;
4764 }
4765 
4766 /* When incoming ACK allowed to free some skb from write_queue,
4767  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4768  * on the exit from tcp input handler.
4769  *
4770  * PROBLEM: sndbuf expansion does not work well with largesend.
4771  */
4772 static void tcp_new_space(struct sock *sk)
4773 {
4774 	struct tcp_sock *tp = tcp_sk(sk);
4775 
4776 	if (tcp_should_expand_sndbuf(sk)) {
4777 		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4778 			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4779 		int demanded = max_t(unsigned int, tp->snd_cwnd,
4780 				     tp->reordering + 1);
4781 		sndmem *= 2 * demanded;
4782 		if (sndmem > sk->sk_sndbuf)
4783 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4784 		tp->snd_cwnd_stamp = tcp_time_stamp;
4785 	}
4786 
4787 	sk->sk_write_space(sk);
4788 }
4789 
4790 static void tcp_check_space(struct sock *sk)
4791 {
4792 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4793 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4794 		if (sk->sk_socket &&
4795 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4796 			tcp_new_space(sk);
4797 	}
4798 }
4799 
4800 static inline void tcp_data_snd_check(struct sock *sk)
4801 {
4802 	tcp_push_pending_frames(sk);
4803 	tcp_check_space(sk);
4804 }
4805 
4806 /*
4807  * Check if sending an ack is needed.
4808  */
4809 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4810 {
4811 	struct tcp_sock *tp = tcp_sk(sk);
4812 
4813 	    /* More than one full frame received... */
4814 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4815 	     /* ... and right edge of window advances far enough.
4816 	      * (tcp_recvmsg() will send ACK otherwise). Or...
4817 	      */
4818 	     && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4819 	    /* We ACK each frame or... */
4820 	    tcp_in_quickack_mode(sk) ||
4821 	    /* We have out of order data. */
4822 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4823 		/* Then ack it now */
4824 		tcp_send_ack(sk);
4825 	} else {
4826 		/* Else, send delayed ack. */
4827 		tcp_send_delayed_ack(sk);
4828 	}
4829 }
4830 
4831 static inline void tcp_ack_snd_check(struct sock *sk)
4832 {
4833 	if (!inet_csk_ack_scheduled(sk)) {
4834 		/* We sent a data segment already. */
4835 		return;
4836 	}
4837 	__tcp_ack_snd_check(sk, 1);
4838 }
4839 
4840 /*
4841  *	This routine is only called when we have urgent data
4842  *	signaled. Its the 'slow' part of tcp_urg. It could be
4843  *	moved inline now as tcp_urg is only called from one
4844  *	place. We handle URGent data wrong. We have to - as
4845  *	BSD still doesn't use the correction from RFC961.
4846  *	For 1003.1g we should support a new option TCP_STDURG to permit
4847  *	either form (or just set the sysctl tcp_stdurg).
4848  */
4849 
4850 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4851 {
4852 	struct tcp_sock *tp = tcp_sk(sk);
4853 	u32 ptr = ntohs(th->urg_ptr);
4854 
4855 	if (ptr && !sysctl_tcp_stdurg)
4856 		ptr--;
4857 	ptr += ntohl(th->seq);
4858 
4859 	/* Ignore urgent data that we've already seen and read. */
4860 	if (after(tp->copied_seq, ptr))
4861 		return;
4862 
4863 	/* Do not replay urg ptr.
4864 	 *
4865 	 * NOTE: interesting situation not covered by specs.
4866 	 * Misbehaving sender may send urg ptr, pointing to segment,
4867 	 * which we already have in ofo queue. We are not able to fetch
4868 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4869 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4870 	 * situations. But it is worth to think about possibility of some
4871 	 * DoSes using some hypothetical application level deadlock.
4872 	 */
4873 	if (before(ptr, tp->rcv_nxt))
4874 		return;
4875 
4876 	/* Do we already have a newer (or duplicate) urgent pointer? */
4877 	if (tp->urg_data && !after(ptr, tp->urg_seq))
4878 		return;
4879 
4880 	/* Tell the world about our new urgent pointer. */
4881 	sk_send_sigurg(sk);
4882 
4883 	/* We may be adding urgent data when the last byte read was
4884 	 * urgent. To do this requires some care. We cannot just ignore
4885 	 * tp->copied_seq since we would read the last urgent byte again
4886 	 * as data, nor can we alter copied_seq until this data arrives
4887 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4888 	 *
4889 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4890 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4891 	 * and expect that both A and B disappear from stream. This is _wrong_.
4892 	 * Though this happens in BSD with high probability, this is occasional.
4893 	 * Any application relying on this is buggy. Note also, that fix "works"
4894 	 * only in this artificial test. Insert some normal data between A and B and we will
4895 	 * decline of BSD again. Verdict: it is better to remove to trap
4896 	 * buggy users.
4897 	 */
4898 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4899 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4900 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4901 		tp->copied_seq++;
4902 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4903 			__skb_unlink(skb, &sk->sk_receive_queue);
4904 			__kfree_skb(skb);
4905 		}
4906 	}
4907 
4908 	tp->urg_data = TCP_URG_NOTYET;
4909 	tp->urg_seq = ptr;
4910 
4911 	/* Disable header prediction. */
4912 	tp->pred_flags = 0;
4913 }
4914 
4915 /* This is the 'fast' part of urgent handling. */
4916 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4917 {
4918 	struct tcp_sock *tp = tcp_sk(sk);
4919 
4920 	/* Check if we get a new urgent pointer - normally not. */
4921 	if (th->urg)
4922 		tcp_check_urg(sk, th);
4923 
4924 	/* Do we wait for any urgent data? - normally not... */
4925 	if (tp->urg_data == TCP_URG_NOTYET) {
4926 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4927 			  th->syn;
4928 
4929 		/* Is the urgent pointer pointing into this packet? */
4930 		if (ptr < skb->len) {
4931 			u8 tmp;
4932 			if (skb_copy_bits(skb, ptr, &tmp, 1))
4933 				BUG();
4934 			tp->urg_data = TCP_URG_VALID | tmp;
4935 			if (!sock_flag(sk, SOCK_DEAD))
4936 				sk->sk_data_ready(sk, 0);
4937 		}
4938 	}
4939 }
4940 
4941 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4942 {
4943 	struct tcp_sock *tp = tcp_sk(sk);
4944 	int chunk = skb->len - hlen;
4945 	int err;
4946 
4947 	local_bh_enable();
4948 	if (skb_csum_unnecessary(skb))
4949 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4950 	else
4951 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4952 						       tp->ucopy.iov);
4953 
4954 	if (!err) {
4955 		tp->ucopy.len -= chunk;
4956 		tp->copied_seq += chunk;
4957 		tcp_rcv_space_adjust(sk);
4958 	}
4959 
4960 	local_bh_disable();
4961 	return err;
4962 }
4963 
4964 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4965 					    struct sk_buff *skb)
4966 {
4967 	__sum16 result;
4968 
4969 	if (sock_owned_by_user(sk)) {
4970 		local_bh_enable();
4971 		result = __tcp_checksum_complete(skb);
4972 		local_bh_disable();
4973 	} else {
4974 		result = __tcp_checksum_complete(skb);
4975 	}
4976 	return result;
4977 }
4978 
4979 static inline int tcp_checksum_complete_user(struct sock *sk,
4980 					     struct sk_buff *skb)
4981 {
4982 	return !skb_csum_unnecessary(skb) &&
4983 	       __tcp_checksum_complete_user(sk, skb);
4984 }
4985 
4986 #ifdef CONFIG_NET_DMA
4987 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4988 				  int hlen)
4989 {
4990 	struct tcp_sock *tp = tcp_sk(sk);
4991 	int chunk = skb->len - hlen;
4992 	int dma_cookie;
4993 	int copied_early = 0;
4994 
4995 	if (tp->ucopy.wakeup)
4996 		return 0;
4997 
4998 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4999 		tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5000 
5001 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5002 
5003 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5004 							 skb, hlen,
5005 							 tp->ucopy.iov, chunk,
5006 							 tp->ucopy.pinned_list);
5007 
5008 		if (dma_cookie < 0)
5009 			goto out;
5010 
5011 		tp->ucopy.dma_cookie = dma_cookie;
5012 		copied_early = 1;
5013 
5014 		tp->ucopy.len -= chunk;
5015 		tp->copied_seq += chunk;
5016 		tcp_rcv_space_adjust(sk);
5017 
5018 		if ((tp->ucopy.len == 0) ||
5019 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5020 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5021 			tp->ucopy.wakeup = 1;
5022 			sk->sk_data_ready(sk, 0);
5023 		}
5024 	} else if (chunk > 0) {
5025 		tp->ucopy.wakeup = 1;
5026 		sk->sk_data_ready(sk, 0);
5027 	}
5028 out:
5029 	return copied_early;
5030 }
5031 #endif /* CONFIG_NET_DMA */
5032 
5033 /* Does PAWS and seqno based validation of an incoming segment, flags will
5034  * play significant role here.
5035  */
5036 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5037 			      struct tcphdr *th, int syn_inerr)
5038 {
5039 	struct tcp_sock *tp = tcp_sk(sk);
5040 
5041 	/* RFC1323: H1. Apply PAWS check first. */
5042 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5043 	    tcp_paws_discard(sk, skb)) {
5044 		if (!th->rst) {
5045 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5046 			tcp_send_dupack(sk, skb);
5047 			goto discard;
5048 		}
5049 		/* Reset is accepted even if it did not pass PAWS. */
5050 	}
5051 
5052 	/* Step 1: check sequence number */
5053 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5054 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5055 		 * (RST) segments are validated by checking their SEQ-fields."
5056 		 * And page 69: "If an incoming segment is not acceptable,
5057 		 * an acknowledgment should be sent in reply (unless the RST
5058 		 * bit is set, if so drop the segment and return)".
5059 		 */
5060 		if (!th->rst)
5061 			tcp_send_dupack(sk, skb);
5062 		goto discard;
5063 	}
5064 
5065 	/* Step 2: check RST bit */
5066 	if (th->rst) {
5067 		tcp_reset(sk);
5068 		goto discard;
5069 	}
5070 
5071 	/* ts_recent update must be made after we are sure that the packet
5072 	 * is in window.
5073 	 */
5074 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5075 
5076 	/* step 3: check security and precedence [ignored] */
5077 
5078 	/* step 4: Check for a SYN in window. */
5079 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5080 		if (syn_inerr)
5081 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5082 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5083 		tcp_reset(sk);
5084 		return -1;
5085 	}
5086 
5087 	return 1;
5088 
5089 discard:
5090 	__kfree_skb(skb);
5091 	return 0;
5092 }
5093 
5094 /*
5095  *	TCP receive function for the ESTABLISHED state.
5096  *
5097  *	It is split into a fast path and a slow path. The fast path is
5098  * 	disabled when:
5099  *	- A zero window was announced from us - zero window probing
5100  *        is only handled properly in the slow path.
5101  *	- Out of order segments arrived.
5102  *	- Urgent data is expected.
5103  *	- There is no buffer space left
5104  *	- Unexpected TCP flags/window values/header lengths are received
5105  *	  (detected by checking the TCP header against pred_flags)
5106  *	- Data is sent in both directions. Fast path only supports pure senders
5107  *	  or pure receivers (this means either the sequence number or the ack
5108  *	  value must stay constant)
5109  *	- Unexpected TCP option.
5110  *
5111  *	When these conditions are not satisfied it drops into a standard
5112  *	receive procedure patterned after RFC793 to handle all cases.
5113  *	The first three cases are guaranteed by proper pred_flags setting,
5114  *	the rest is checked inline. Fast processing is turned on in
5115  *	tcp_data_queue when everything is OK.
5116  */
5117 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5118 			struct tcphdr *th, unsigned len)
5119 {
5120 	struct tcp_sock *tp = tcp_sk(sk);
5121 	int res;
5122 
5123 	/*
5124 	 *	Header prediction.
5125 	 *	The code loosely follows the one in the famous
5126 	 *	"30 instruction TCP receive" Van Jacobson mail.
5127 	 *
5128 	 *	Van's trick is to deposit buffers into socket queue
5129 	 *	on a device interrupt, to call tcp_recv function
5130 	 *	on the receive process context and checksum and copy
5131 	 *	the buffer to user space. smart...
5132 	 *
5133 	 *	Our current scheme is not silly either but we take the
5134 	 *	extra cost of the net_bh soft interrupt processing...
5135 	 *	We do checksum and copy also but from device to kernel.
5136 	 */
5137 
5138 	tp->rx_opt.saw_tstamp = 0;
5139 
5140 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5141 	 *	if header_prediction is to be made
5142 	 *	'S' will always be tp->tcp_header_len >> 2
5143 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5144 	 *  turn it off	(when there are holes in the receive
5145 	 *	 space for instance)
5146 	 *	PSH flag is ignored.
5147 	 */
5148 
5149 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5150 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5151 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5152 		int tcp_header_len = tp->tcp_header_len;
5153 
5154 		/* Timestamp header prediction: tcp_header_len
5155 		 * is automatically equal to th->doff*4 due to pred_flags
5156 		 * match.
5157 		 */
5158 
5159 		/* Check timestamp */
5160 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5161 			/* No? Slow path! */
5162 			if (!tcp_parse_aligned_timestamp(tp, th))
5163 				goto slow_path;
5164 
5165 			/* If PAWS failed, check it more carefully in slow path */
5166 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5167 				goto slow_path;
5168 
5169 			/* DO NOT update ts_recent here, if checksum fails
5170 			 * and timestamp was corrupted part, it will result
5171 			 * in a hung connection since we will drop all
5172 			 * future packets due to the PAWS test.
5173 			 */
5174 		}
5175 
5176 		if (len <= tcp_header_len) {
5177 			/* Bulk data transfer: sender */
5178 			if (len == tcp_header_len) {
5179 				/* Predicted packet is in window by definition.
5180 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5181 				 * Hence, check seq<=rcv_wup reduces to:
5182 				 */
5183 				if (tcp_header_len ==
5184 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5185 				    tp->rcv_nxt == tp->rcv_wup)
5186 					tcp_store_ts_recent(tp);
5187 
5188 				/* We know that such packets are checksummed
5189 				 * on entry.
5190 				 */
5191 				tcp_ack(sk, skb, 0);
5192 				__kfree_skb(skb);
5193 				tcp_data_snd_check(sk);
5194 				return 0;
5195 			} else { /* Header too small */
5196 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5197 				goto discard;
5198 			}
5199 		} else {
5200 			int eaten = 0;
5201 			int copied_early = 0;
5202 
5203 			if (tp->copied_seq == tp->rcv_nxt &&
5204 			    len - tcp_header_len <= tp->ucopy.len) {
5205 #ifdef CONFIG_NET_DMA
5206 				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5207 					copied_early = 1;
5208 					eaten = 1;
5209 				}
5210 #endif
5211 				if (tp->ucopy.task == current &&
5212 				    sock_owned_by_user(sk) && !copied_early) {
5213 					__set_current_state(TASK_RUNNING);
5214 
5215 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5216 						eaten = 1;
5217 				}
5218 				if (eaten) {
5219 					/* Predicted packet is in window by definition.
5220 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5221 					 * Hence, check seq<=rcv_wup reduces to:
5222 					 */
5223 					if (tcp_header_len ==
5224 					    (sizeof(struct tcphdr) +
5225 					     TCPOLEN_TSTAMP_ALIGNED) &&
5226 					    tp->rcv_nxt == tp->rcv_wup)
5227 						tcp_store_ts_recent(tp);
5228 
5229 					tcp_rcv_rtt_measure_ts(sk, skb);
5230 
5231 					__skb_pull(skb, tcp_header_len);
5232 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5233 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5234 				}
5235 				if (copied_early)
5236 					tcp_cleanup_rbuf(sk, skb->len);
5237 			}
5238 			if (!eaten) {
5239 				if (tcp_checksum_complete_user(sk, skb))
5240 					goto csum_error;
5241 
5242 				/* Predicted packet is in window by definition.
5243 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5244 				 * Hence, check seq<=rcv_wup reduces to:
5245 				 */
5246 				if (tcp_header_len ==
5247 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5248 				    tp->rcv_nxt == tp->rcv_wup)
5249 					tcp_store_ts_recent(tp);
5250 
5251 				tcp_rcv_rtt_measure_ts(sk, skb);
5252 
5253 				if ((int)skb->truesize > sk->sk_forward_alloc)
5254 					goto step5;
5255 
5256 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5257 
5258 				/* Bulk data transfer: receiver */
5259 				__skb_pull(skb, tcp_header_len);
5260 				__skb_queue_tail(&sk->sk_receive_queue, skb);
5261 				skb_set_owner_r(skb, sk);
5262 				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5263 			}
5264 
5265 			tcp_event_data_recv(sk, skb);
5266 
5267 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5268 				/* Well, only one small jumplet in fast path... */
5269 				tcp_ack(sk, skb, FLAG_DATA);
5270 				tcp_data_snd_check(sk);
5271 				if (!inet_csk_ack_scheduled(sk))
5272 					goto no_ack;
5273 			}
5274 
5275 			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5276 				__tcp_ack_snd_check(sk, 0);
5277 no_ack:
5278 #ifdef CONFIG_NET_DMA
5279 			if (copied_early)
5280 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5281 			else
5282 #endif
5283 			if (eaten)
5284 				__kfree_skb(skb);
5285 			else
5286 				sk->sk_data_ready(sk, 0);
5287 			return 0;
5288 		}
5289 	}
5290 
5291 slow_path:
5292 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5293 		goto csum_error;
5294 
5295 	/*
5296 	 *	Standard slow path.
5297 	 */
5298 
5299 	res = tcp_validate_incoming(sk, skb, th, 1);
5300 	if (res <= 0)
5301 		return -res;
5302 
5303 step5:
5304 	if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5305 		goto discard;
5306 
5307 	tcp_rcv_rtt_measure_ts(sk, skb);
5308 
5309 	/* Process urgent data. */
5310 	tcp_urg(sk, skb, th);
5311 
5312 	/* step 7: process the segment text */
5313 	tcp_data_queue(sk, skb);
5314 
5315 	tcp_data_snd_check(sk);
5316 	tcp_ack_snd_check(sk);
5317 	return 0;
5318 
5319 csum_error:
5320 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5321 
5322 discard:
5323 	__kfree_skb(skb);
5324 	return 0;
5325 }
5326 
5327 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5328 					 struct tcphdr *th, unsigned len)
5329 {
5330 	struct tcp_sock *tp = tcp_sk(sk);
5331 	struct inet_connection_sock *icsk = inet_csk(sk);
5332 	int saved_clamp = tp->rx_opt.mss_clamp;
5333 
5334 	tcp_parse_options(skb, &tp->rx_opt, 0);
5335 
5336 	if (th->ack) {
5337 		/* rfc793:
5338 		 * "If the state is SYN-SENT then
5339 		 *    first check the ACK bit
5340 		 *      If the ACK bit is set
5341 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5342 		 *        a reset (unless the RST bit is set, if so drop
5343 		 *        the segment and return)"
5344 		 *
5345 		 *  We do not send data with SYN, so that RFC-correct
5346 		 *  test reduces to:
5347 		 */
5348 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5349 			goto reset_and_undo;
5350 
5351 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5352 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5353 			     tcp_time_stamp)) {
5354 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5355 			goto reset_and_undo;
5356 		}
5357 
5358 		/* Now ACK is acceptable.
5359 		 *
5360 		 * "If the RST bit is set
5361 		 *    If the ACK was acceptable then signal the user "error:
5362 		 *    connection reset", drop the segment, enter CLOSED state,
5363 		 *    delete TCB, and return."
5364 		 */
5365 
5366 		if (th->rst) {
5367 			tcp_reset(sk);
5368 			goto discard;
5369 		}
5370 
5371 		/* rfc793:
5372 		 *   "fifth, if neither of the SYN or RST bits is set then
5373 		 *    drop the segment and return."
5374 		 *
5375 		 *    See note below!
5376 		 *                                        --ANK(990513)
5377 		 */
5378 		if (!th->syn)
5379 			goto discard_and_undo;
5380 
5381 		/* rfc793:
5382 		 *   "If the SYN bit is on ...
5383 		 *    are acceptable then ...
5384 		 *    (our SYN has been ACKed), change the connection
5385 		 *    state to ESTABLISHED..."
5386 		 */
5387 
5388 		TCP_ECN_rcv_synack(tp, th);
5389 
5390 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5391 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5392 
5393 		/* Ok.. it's good. Set up sequence numbers and
5394 		 * move to established.
5395 		 */
5396 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5397 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5398 
5399 		/* RFC1323: The window in SYN & SYN/ACK segments is
5400 		 * never scaled.
5401 		 */
5402 		tp->snd_wnd = ntohs(th->window);
5403 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5404 
5405 		if (!tp->rx_opt.wscale_ok) {
5406 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5407 			tp->window_clamp = min(tp->window_clamp, 65535U);
5408 		}
5409 
5410 		if (tp->rx_opt.saw_tstamp) {
5411 			tp->rx_opt.tstamp_ok	   = 1;
5412 			tp->tcp_header_len =
5413 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5414 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5415 			tcp_store_ts_recent(tp);
5416 		} else {
5417 			tp->tcp_header_len = sizeof(struct tcphdr);
5418 		}
5419 
5420 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5421 			tcp_enable_fack(tp);
5422 
5423 		tcp_mtup_init(sk);
5424 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5425 		tcp_initialize_rcv_mss(sk);
5426 
5427 		/* Remember, tcp_poll() does not lock socket!
5428 		 * Change state from SYN-SENT only after copied_seq
5429 		 * is initialized. */
5430 		tp->copied_seq = tp->rcv_nxt;
5431 		smp_mb();
5432 		tcp_set_state(sk, TCP_ESTABLISHED);
5433 
5434 		security_inet_conn_established(sk, skb);
5435 
5436 		/* Make sure socket is routed, for correct metrics.  */
5437 		icsk->icsk_af_ops->rebuild_header(sk);
5438 
5439 		tcp_init_metrics(sk);
5440 
5441 		tcp_init_congestion_control(sk);
5442 
5443 		/* Prevent spurious tcp_cwnd_restart() on first data
5444 		 * packet.
5445 		 */
5446 		tp->lsndtime = tcp_time_stamp;
5447 
5448 		tcp_init_buffer_space(sk);
5449 
5450 		if (sock_flag(sk, SOCK_KEEPOPEN))
5451 			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5452 
5453 		if (!tp->rx_opt.snd_wscale)
5454 			__tcp_fast_path_on(tp, tp->snd_wnd);
5455 		else
5456 			tp->pred_flags = 0;
5457 
5458 		if (!sock_flag(sk, SOCK_DEAD)) {
5459 			sk->sk_state_change(sk);
5460 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5461 		}
5462 
5463 		if (sk->sk_write_pending ||
5464 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5465 		    icsk->icsk_ack.pingpong) {
5466 			/* Save one ACK. Data will be ready after
5467 			 * several ticks, if write_pending is set.
5468 			 *
5469 			 * It may be deleted, but with this feature tcpdumps
5470 			 * look so _wonderfully_ clever, that I was not able
5471 			 * to stand against the temptation 8)     --ANK
5472 			 */
5473 			inet_csk_schedule_ack(sk);
5474 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5475 			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
5476 			tcp_incr_quickack(sk);
5477 			tcp_enter_quickack_mode(sk);
5478 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5479 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5480 
5481 discard:
5482 			__kfree_skb(skb);
5483 			return 0;
5484 		} else {
5485 			tcp_send_ack(sk);
5486 		}
5487 		return -1;
5488 	}
5489 
5490 	/* No ACK in the segment */
5491 
5492 	if (th->rst) {
5493 		/* rfc793:
5494 		 * "If the RST bit is set
5495 		 *
5496 		 *      Otherwise (no ACK) drop the segment and return."
5497 		 */
5498 
5499 		goto discard_and_undo;
5500 	}
5501 
5502 	/* PAWS check. */
5503 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5504 	    tcp_paws_reject(&tp->rx_opt, 0))
5505 		goto discard_and_undo;
5506 
5507 	if (th->syn) {
5508 		/* We see SYN without ACK. It is attempt of
5509 		 * simultaneous connect with crossed SYNs.
5510 		 * Particularly, it can be connect to self.
5511 		 */
5512 		tcp_set_state(sk, TCP_SYN_RECV);
5513 
5514 		if (tp->rx_opt.saw_tstamp) {
5515 			tp->rx_opt.tstamp_ok = 1;
5516 			tcp_store_ts_recent(tp);
5517 			tp->tcp_header_len =
5518 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5519 		} else {
5520 			tp->tcp_header_len = sizeof(struct tcphdr);
5521 		}
5522 
5523 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5524 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5525 
5526 		/* RFC1323: The window in SYN & SYN/ACK segments is
5527 		 * never scaled.
5528 		 */
5529 		tp->snd_wnd    = ntohs(th->window);
5530 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5531 		tp->max_window = tp->snd_wnd;
5532 
5533 		TCP_ECN_rcv_syn(tp, th);
5534 
5535 		tcp_mtup_init(sk);
5536 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5537 		tcp_initialize_rcv_mss(sk);
5538 
5539 		tcp_send_synack(sk);
5540 #if 0
5541 		/* Note, we could accept data and URG from this segment.
5542 		 * There are no obstacles to make this.
5543 		 *
5544 		 * However, if we ignore data in ACKless segments sometimes,
5545 		 * we have no reasons to accept it sometimes.
5546 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5547 		 * is not flawless. So, discard packet for sanity.
5548 		 * Uncomment this return to process the data.
5549 		 */
5550 		return -1;
5551 #else
5552 		goto discard;
5553 #endif
5554 	}
5555 	/* "fifth, if neither of the SYN or RST bits is set then
5556 	 * drop the segment and return."
5557 	 */
5558 
5559 discard_and_undo:
5560 	tcp_clear_options(&tp->rx_opt);
5561 	tp->rx_opt.mss_clamp = saved_clamp;
5562 	goto discard;
5563 
5564 reset_and_undo:
5565 	tcp_clear_options(&tp->rx_opt);
5566 	tp->rx_opt.mss_clamp = saved_clamp;
5567 	return 1;
5568 }
5569 
5570 /*
5571  *	This function implements the receiving procedure of RFC 793 for
5572  *	all states except ESTABLISHED and TIME_WAIT.
5573  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5574  *	address independent.
5575  */
5576 
5577 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5578 			  struct tcphdr *th, unsigned len)
5579 {
5580 	struct tcp_sock *tp = tcp_sk(sk);
5581 	struct inet_connection_sock *icsk = inet_csk(sk);
5582 	int queued = 0;
5583 	int res;
5584 
5585 	tp->rx_opt.saw_tstamp = 0;
5586 
5587 	switch (sk->sk_state) {
5588 	case TCP_CLOSE:
5589 		goto discard;
5590 
5591 	case TCP_LISTEN:
5592 		if (th->ack)
5593 			return 1;
5594 
5595 		if (th->rst)
5596 			goto discard;
5597 
5598 		if (th->syn) {
5599 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5600 				return 1;
5601 
5602 			/* Now we have several options: In theory there is
5603 			 * nothing else in the frame. KA9Q has an option to
5604 			 * send data with the syn, BSD accepts data with the
5605 			 * syn up to the [to be] advertised window and
5606 			 * Solaris 2.1 gives you a protocol error. For now
5607 			 * we just ignore it, that fits the spec precisely
5608 			 * and avoids incompatibilities. It would be nice in
5609 			 * future to drop through and process the data.
5610 			 *
5611 			 * Now that TTCP is starting to be used we ought to
5612 			 * queue this data.
5613 			 * But, this leaves one open to an easy denial of
5614 			 * service attack, and SYN cookies can't defend
5615 			 * against this problem. So, we drop the data
5616 			 * in the interest of security over speed unless
5617 			 * it's still in use.
5618 			 */
5619 			kfree_skb(skb);
5620 			return 0;
5621 		}
5622 		goto discard;
5623 
5624 	case TCP_SYN_SENT:
5625 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5626 		if (queued >= 0)
5627 			return queued;
5628 
5629 		/* Do step6 onward by hand. */
5630 		tcp_urg(sk, skb, th);
5631 		__kfree_skb(skb);
5632 		tcp_data_snd_check(sk);
5633 		return 0;
5634 	}
5635 
5636 	res = tcp_validate_incoming(sk, skb, th, 0);
5637 	if (res <= 0)
5638 		return -res;
5639 
5640 	/* step 5: check the ACK field */
5641 	if (th->ack) {
5642 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5643 
5644 		switch (sk->sk_state) {
5645 		case TCP_SYN_RECV:
5646 			if (acceptable) {
5647 				tp->copied_seq = tp->rcv_nxt;
5648 				smp_mb();
5649 				tcp_set_state(sk, TCP_ESTABLISHED);
5650 				sk->sk_state_change(sk);
5651 
5652 				/* Note, that this wakeup is only for marginal
5653 				 * crossed SYN case. Passively open sockets
5654 				 * are not waked up, because sk->sk_sleep ==
5655 				 * NULL and sk->sk_socket == NULL.
5656 				 */
5657 				if (sk->sk_socket)
5658 					sk_wake_async(sk,
5659 						      SOCK_WAKE_IO, POLL_OUT);
5660 
5661 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5662 				tp->snd_wnd = ntohs(th->window) <<
5663 					      tp->rx_opt.snd_wscale;
5664 				tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5665 
5666 				/* tcp_ack considers this ACK as duplicate
5667 				 * and does not calculate rtt.
5668 				 * Fix it at least with timestamps.
5669 				 */
5670 				if (tp->rx_opt.saw_tstamp &&
5671 				    tp->rx_opt.rcv_tsecr && !tp->srtt)
5672 					tcp_ack_saw_tstamp(sk, 0);
5673 
5674 				if (tp->rx_opt.tstamp_ok)
5675 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5676 
5677 				/* Make sure socket is routed, for
5678 				 * correct metrics.
5679 				 */
5680 				icsk->icsk_af_ops->rebuild_header(sk);
5681 
5682 				tcp_init_metrics(sk);
5683 
5684 				tcp_init_congestion_control(sk);
5685 
5686 				/* Prevent spurious tcp_cwnd_restart() on
5687 				 * first data packet.
5688 				 */
5689 				tp->lsndtime = tcp_time_stamp;
5690 
5691 				tcp_mtup_init(sk);
5692 				tcp_initialize_rcv_mss(sk);
5693 				tcp_init_buffer_space(sk);
5694 				tcp_fast_path_on(tp);
5695 			} else {
5696 				return 1;
5697 			}
5698 			break;
5699 
5700 		case TCP_FIN_WAIT1:
5701 			if (tp->snd_una == tp->write_seq) {
5702 				tcp_set_state(sk, TCP_FIN_WAIT2);
5703 				sk->sk_shutdown |= SEND_SHUTDOWN;
5704 				dst_confirm(sk->sk_dst_cache);
5705 
5706 				if (!sock_flag(sk, SOCK_DEAD))
5707 					/* Wake up lingering close() */
5708 					sk->sk_state_change(sk);
5709 				else {
5710 					int tmo;
5711 
5712 					if (tp->linger2 < 0 ||
5713 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5714 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5715 						tcp_done(sk);
5716 						NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5717 						return 1;
5718 					}
5719 
5720 					tmo = tcp_fin_time(sk);
5721 					if (tmo > TCP_TIMEWAIT_LEN) {
5722 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5723 					} else if (th->fin || sock_owned_by_user(sk)) {
5724 						/* Bad case. We could lose such FIN otherwise.
5725 						 * It is not a big problem, but it looks confusing
5726 						 * and not so rare event. We still can lose it now,
5727 						 * if it spins in bh_lock_sock(), but it is really
5728 						 * marginal case.
5729 						 */
5730 						inet_csk_reset_keepalive_timer(sk, tmo);
5731 					} else {
5732 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5733 						goto discard;
5734 					}
5735 				}
5736 			}
5737 			break;
5738 
5739 		case TCP_CLOSING:
5740 			if (tp->snd_una == tp->write_seq) {
5741 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5742 				goto discard;
5743 			}
5744 			break;
5745 
5746 		case TCP_LAST_ACK:
5747 			if (tp->snd_una == tp->write_seq) {
5748 				tcp_update_metrics(sk);
5749 				tcp_done(sk);
5750 				goto discard;
5751 			}
5752 			break;
5753 		}
5754 	} else
5755 		goto discard;
5756 
5757 	/* step 6: check the URG bit */
5758 	tcp_urg(sk, skb, th);
5759 
5760 	/* step 7: process the segment text */
5761 	switch (sk->sk_state) {
5762 	case TCP_CLOSE_WAIT:
5763 	case TCP_CLOSING:
5764 	case TCP_LAST_ACK:
5765 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5766 			break;
5767 	case TCP_FIN_WAIT1:
5768 	case TCP_FIN_WAIT2:
5769 		/* RFC 793 says to queue data in these states,
5770 		 * RFC 1122 says we MUST send a reset.
5771 		 * BSD 4.4 also does reset.
5772 		 */
5773 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5774 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5775 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5776 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5777 				tcp_reset(sk);
5778 				return 1;
5779 			}
5780 		}
5781 		/* Fall through */
5782 	case TCP_ESTABLISHED:
5783 		tcp_data_queue(sk, skb);
5784 		queued = 1;
5785 		break;
5786 	}
5787 
5788 	/* tcp_data could move socket to TIME-WAIT */
5789 	if (sk->sk_state != TCP_CLOSE) {
5790 		tcp_data_snd_check(sk);
5791 		tcp_ack_snd_check(sk);
5792 	}
5793 
5794 	if (!queued) {
5795 discard:
5796 		__kfree_skb(skb);
5797 	}
5798 	return 0;
5799 }
5800 
5801 EXPORT_SYMBOL(sysctl_tcp_ecn);
5802 EXPORT_SYMBOL(sysctl_tcp_reordering);
5803 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5804 EXPORT_SYMBOL(tcp_parse_options);
5805 #ifdef CONFIG_TCP_MD5SIG
5806 EXPORT_SYMBOL(tcp_parse_md5sig_option);
5807 #endif
5808 EXPORT_SYMBOL(tcp_rcv_established);
5809 EXPORT_SYMBOL(tcp_rcv_state_process);
5810 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
5811