1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/jump_label_ratelimit.h> 81 #include <net/busy_poll.h> 82 #include <net/mptcp.h> 83 84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 85 86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 92 #define FLAG_ECE 0x40 /* ECE in this ACK */ 93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 103 104 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 105 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 106 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 107 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 108 109 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 110 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 111 112 #define REXMIT_NONE 0 /* no loss recovery to do */ 113 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 114 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 115 116 #if IS_ENABLED(CONFIG_TLS_DEVICE) 117 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 118 119 void clean_acked_data_enable(struct inet_connection_sock *icsk, 120 void (*cad)(struct sock *sk, u32 ack_seq)) 121 { 122 icsk->icsk_clean_acked = cad; 123 static_branch_deferred_inc(&clean_acked_data_enabled); 124 } 125 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 126 127 void clean_acked_data_disable(struct inet_connection_sock *icsk) 128 { 129 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 130 icsk->icsk_clean_acked = NULL; 131 } 132 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 133 134 void clean_acked_data_flush(void) 135 { 136 static_key_deferred_flush(&clean_acked_data_enabled); 137 } 138 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 139 #endif 140 141 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 142 unsigned int len) 143 { 144 static bool __once __read_mostly; 145 146 if (!__once) { 147 struct net_device *dev; 148 149 __once = true; 150 151 rcu_read_lock(); 152 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 153 if (!dev || len >= dev->mtu) 154 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 155 dev ? dev->name : "Unknown driver"); 156 rcu_read_unlock(); 157 } 158 } 159 160 /* Adapt the MSS value used to make delayed ack decision to the 161 * real world. 162 */ 163 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 164 { 165 struct inet_connection_sock *icsk = inet_csk(sk); 166 const unsigned int lss = icsk->icsk_ack.last_seg_size; 167 unsigned int len; 168 169 icsk->icsk_ack.last_seg_size = 0; 170 171 /* skb->len may jitter because of SACKs, even if peer 172 * sends good full-sized frames. 173 */ 174 len = skb_shinfo(skb)->gso_size ? : skb->len; 175 if (len >= icsk->icsk_ack.rcv_mss) { 176 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 177 tcp_sk(sk)->advmss); 178 /* Account for possibly-removed options */ 179 if (unlikely(len > icsk->icsk_ack.rcv_mss + 180 MAX_TCP_OPTION_SPACE)) 181 tcp_gro_dev_warn(sk, skb, len); 182 } else { 183 /* Otherwise, we make more careful check taking into account, 184 * that SACKs block is variable. 185 * 186 * "len" is invariant segment length, including TCP header. 187 */ 188 len += skb->data - skb_transport_header(skb); 189 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 190 /* If PSH is not set, packet should be 191 * full sized, provided peer TCP is not badly broken. 192 * This observation (if it is correct 8)) allows 193 * to handle super-low mtu links fairly. 194 */ 195 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 196 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 197 /* Subtract also invariant (if peer is RFC compliant), 198 * tcp header plus fixed timestamp option length. 199 * Resulting "len" is MSS free of SACK jitter. 200 */ 201 len -= tcp_sk(sk)->tcp_header_len; 202 icsk->icsk_ack.last_seg_size = len; 203 if (len == lss) { 204 icsk->icsk_ack.rcv_mss = len; 205 return; 206 } 207 } 208 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 209 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 210 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 211 } 212 } 213 214 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 215 { 216 struct inet_connection_sock *icsk = inet_csk(sk); 217 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 218 219 if (quickacks == 0) 220 quickacks = 2; 221 quickacks = min(quickacks, max_quickacks); 222 if (quickacks > icsk->icsk_ack.quick) 223 icsk->icsk_ack.quick = quickacks; 224 } 225 226 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 227 { 228 struct inet_connection_sock *icsk = inet_csk(sk); 229 230 tcp_incr_quickack(sk, max_quickacks); 231 inet_csk_exit_pingpong_mode(sk); 232 icsk->icsk_ack.ato = TCP_ATO_MIN; 233 } 234 EXPORT_SYMBOL(tcp_enter_quickack_mode); 235 236 /* Send ACKs quickly, if "quick" count is not exhausted 237 * and the session is not interactive. 238 */ 239 240 static bool tcp_in_quickack_mode(struct sock *sk) 241 { 242 const struct inet_connection_sock *icsk = inet_csk(sk); 243 const struct dst_entry *dst = __sk_dst_get(sk); 244 245 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 246 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 247 } 248 249 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 250 { 251 if (tp->ecn_flags & TCP_ECN_OK) 252 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 253 } 254 255 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 256 { 257 if (tcp_hdr(skb)->cwr) { 258 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 259 260 /* If the sender is telling us it has entered CWR, then its 261 * cwnd may be very low (even just 1 packet), so we should ACK 262 * immediately. 263 */ 264 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) 265 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 266 } 267 } 268 269 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 270 { 271 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 272 } 273 274 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 275 { 276 struct tcp_sock *tp = tcp_sk(sk); 277 278 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 279 case INET_ECN_NOT_ECT: 280 /* Funny extension: if ECT is not set on a segment, 281 * and we already seen ECT on a previous segment, 282 * it is probably a retransmit. 283 */ 284 if (tp->ecn_flags & TCP_ECN_SEEN) 285 tcp_enter_quickack_mode(sk, 2); 286 break; 287 case INET_ECN_CE: 288 if (tcp_ca_needs_ecn(sk)) 289 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 290 291 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 292 /* Better not delay acks, sender can have a very low cwnd */ 293 tcp_enter_quickack_mode(sk, 2); 294 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 295 } 296 tp->ecn_flags |= TCP_ECN_SEEN; 297 break; 298 default: 299 if (tcp_ca_needs_ecn(sk)) 300 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 301 tp->ecn_flags |= TCP_ECN_SEEN; 302 break; 303 } 304 } 305 306 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 307 { 308 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 309 __tcp_ecn_check_ce(sk, skb); 310 } 311 312 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 313 { 314 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 315 tp->ecn_flags &= ~TCP_ECN_OK; 316 } 317 318 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 319 { 320 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 321 tp->ecn_flags &= ~TCP_ECN_OK; 322 } 323 324 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 325 { 326 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 327 return true; 328 return false; 329 } 330 331 /* Buffer size and advertised window tuning. 332 * 333 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 334 */ 335 336 static void tcp_sndbuf_expand(struct sock *sk) 337 { 338 const struct tcp_sock *tp = tcp_sk(sk); 339 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 340 int sndmem, per_mss; 341 u32 nr_segs; 342 343 /* Worst case is non GSO/TSO : each frame consumes one skb 344 * and skb->head is kmalloced using power of two area of memory 345 */ 346 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 347 MAX_TCP_HEADER + 348 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 349 350 per_mss = roundup_pow_of_two(per_mss) + 351 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 352 353 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 354 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 355 356 /* Fast Recovery (RFC 5681 3.2) : 357 * Cubic needs 1.7 factor, rounded to 2 to include 358 * extra cushion (application might react slowly to EPOLLOUT) 359 */ 360 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 361 sndmem *= nr_segs * per_mss; 362 363 if (sk->sk_sndbuf < sndmem) 364 WRITE_ONCE(sk->sk_sndbuf, 365 min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2])); 366 } 367 368 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 369 * 370 * All tcp_full_space() is split to two parts: "network" buffer, allocated 371 * forward and advertised in receiver window (tp->rcv_wnd) and 372 * "application buffer", required to isolate scheduling/application 373 * latencies from network. 374 * window_clamp is maximal advertised window. It can be less than 375 * tcp_full_space(), in this case tcp_full_space() - window_clamp 376 * is reserved for "application" buffer. The less window_clamp is 377 * the smoother our behaviour from viewpoint of network, but the lower 378 * throughput and the higher sensitivity of the connection to losses. 8) 379 * 380 * rcv_ssthresh is more strict window_clamp used at "slow start" 381 * phase to predict further behaviour of this connection. 382 * It is used for two goals: 383 * - to enforce header prediction at sender, even when application 384 * requires some significant "application buffer". It is check #1. 385 * - to prevent pruning of receive queue because of misprediction 386 * of receiver window. Check #2. 387 * 388 * The scheme does not work when sender sends good segments opening 389 * window and then starts to feed us spaghetti. But it should work 390 * in common situations. Otherwise, we have to rely on queue collapsing. 391 */ 392 393 /* Slow part of check#2. */ 394 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 395 { 396 struct tcp_sock *tp = tcp_sk(sk); 397 /* Optimize this! */ 398 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1; 399 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 400 401 while (tp->rcv_ssthresh <= window) { 402 if (truesize <= skb->len) 403 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 404 405 truesize >>= 1; 406 window >>= 1; 407 } 408 return 0; 409 } 410 411 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 412 { 413 struct tcp_sock *tp = tcp_sk(sk); 414 int room; 415 416 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 417 418 /* Check #1 */ 419 if (room > 0 && !tcp_under_memory_pressure(sk)) { 420 int incr; 421 422 /* Check #2. Increase window, if skb with such overhead 423 * will fit to rcvbuf in future. 424 */ 425 if (tcp_win_from_space(sk, skb->truesize) <= skb->len) 426 incr = 2 * tp->advmss; 427 else 428 incr = __tcp_grow_window(sk, skb); 429 430 if (incr) { 431 incr = max_t(int, incr, 2 * skb->len); 432 tp->rcv_ssthresh += min(room, incr); 433 inet_csk(sk)->icsk_ack.quick |= 1; 434 } 435 } 436 } 437 438 /* 3. Try to fixup all. It is made immediately after connection enters 439 * established state. 440 */ 441 static void tcp_init_buffer_space(struct sock *sk) 442 { 443 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win; 444 struct tcp_sock *tp = tcp_sk(sk); 445 int maxwin; 446 447 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 448 tcp_sndbuf_expand(sk); 449 450 tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss); 451 tcp_mstamp_refresh(tp); 452 tp->rcvq_space.time = tp->tcp_mstamp; 453 tp->rcvq_space.seq = tp->copied_seq; 454 455 maxwin = tcp_full_space(sk); 456 457 if (tp->window_clamp >= maxwin) { 458 tp->window_clamp = maxwin; 459 460 if (tcp_app_win && maxwin > 4 * tp->advmss) 461 tp->window_clamp = max(maxwin - 462 (maxwin >> tcp_app_win), 463 4 * tp->advmss); 464 } 465 466 /* Force reservation of one segment. */ 467 if (tcp_app_win && 468 tp->window_clamp > 2 * tp->advmss && 469 tp->window_clamp + tp->advmss > maxwin) 470 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 471 472 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 473 tp->snd_cwnd_stamp = tcp_jiffies32; 474 } 475 476 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 477 static void tcp_clamp_window(struct sock *sk) 478 { 479 struct tcp_sock *tp = tcp_sk(sk); 480 struct inet_connection_sock *icsk = inet_csk(sk); 481 struct net *net = sock_net(sk); 482 483 icsk->icsk_ack.quick = 0; 484 485 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] && 486 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 487 !tcp_under_memory_pressure(sk) && 488 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 489 WRITE_ONCE(sk->sk_rcvbuf, 490 min(atomic_read(&sk->sk_rmem_alloc), 491 net->ipv4.sysctl_tcp_rmem[2])); 492 } 493 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 494 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 495 } 496 497 /* Initialize RCV_MSS value. 498 * RCV_MSS is an our guess about MSS used by the peer. 499 * We haven't any direct information about the MSS. 500 * It's better to underestimate the RCV_MSS rather than overestimate. 501 * Overestimations make us ACKing less frequently than needed. 502 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 503 */ 504 void tcp_initialize_rcv_mss(struct sock *sk) 505 { 506 const struct tcp_sock *tp = tcp_sk(sk); 507 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 508 509 hint = min(hint, tp->rcv_wnd / 2); 510 hint = min(hint, TCP_MSS_DEFAULT); 511 hint = max(hint, TCP_MIN_MSS); 512 513 inet_csk(sk)->icsk_ack.rcv_mss = hint; 514 } 515 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 516 517 /* Receiver "autotuning" code. 518 * 519 * The algorithm for RTT estimation w/o timestamps is based on 520 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 521 * <https://public.lanl.gov/radiant/pubs.html#DRS> 522 * 523 * More detail on this code can be found at 524 * <http://staff.psc.edu/jheffner/>, 525 * though this reference is out of date. A new paper 526 * is pending. 527 */ 528 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 529 { 530 u32 new_sample = tp->rcv_rtt_est.rtt_us; 531 long m = sample; 532 533 if (new_sample != 0) { 534 /* If we sample in larger samples in the non-timestamp 535 * case, we could grossly overestimate the RTT especially 536 * with chatty applications or bulk transfer apps which 537 * are stalled on filesystem I/O. 538 * 539 * Also, since we are only going for a minimum in the 540 * non-timestamp case, we do not smooth things out 541 * else with timestamps disabled convergence takes too 542 * long. 543 */ 544 if (!win_dep) { 545 m -= (new_sample >> 3); 546 new_sample += m; 547 } else { 548 m <<= 3; 549 if (m < new_sample) 550 new_sample = m; 551 } 552 } else { 553 /* No previous measure. */ 554 new_sample = m << 3; 555 } 556 557 tp->rcv_rtt_est.rtt_us = new_sample; 558 } 559 560 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 561 { 562 u32 delta_us; 563 564 if (tp->rcv_rtt_est.time == 0) 565 goto new_measure; 566 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 567 return; 568 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 569 if (!delta_us) 570 delta_us = 1; 571 tcp_rcv_rtt_update(tp, delta_us, 1); 572 573 new_measure: 574 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 575 tp->rcv_rtt_est.time = tp->tcp_mstamp; 576 } 577 578 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 579 const struct sk_buff *skb) 580 { 581 struct tcp_sock *tp = tcp_sk(sk); 582 583 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 584 return; 585 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 586 587 if (TCP_SKB_CB(skb)->end_seq - 588 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 589 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 590 u32 delta_us; 591 592 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 593 if (!delta) 594 delta = 1; 595 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 596 tcp_rcv_rtt_update(tp, delta_us, 0); 597 } 598 } 599 } 600 601 /* 602 * This function should be called every time data is copied to user space. 603 * It calculates the appropriate TCP receive buffer space. 604 */ 605 void tcp_rcv_space_adjust(struct sock *sk) 606 { 607 struct tcp_sock *tp = tcp_sk(sk); 608 u32 copied; 609 int time; 610 611 trace_tcp_rcv_space_adjust(sk); 612 613 tcp_mstamp_refresh(tp); 614 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 615 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 616 return; 617 618 /* Number of bytes copied to user in last RTT */ 619 copied = tp->copied_seq - tp->rcvq_space.seq; 620 if (copied <= tp->rcvq_space.space) 621 goto new_measure; 622 623 /* A bit of theory : 624 * copied = bytes received in previous RTT, our base window 625 * To cope with packet losses, we need a 2x factor 626 * To cope with slow start, and sender growing its cwin by 100 % 627 * every RTT, we need a 4x factor, because the ACK we are sending 628 * now is for the next RTT, not the current one : 629 * <prev RTT . ><current RTT .. ><next RTT .... > 630 */ 631 632 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 633 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 634 int rcvmem, rcvbuf; 635 u64 rcvwin, grow; 636 637 /* minimal window to cope with packet losses, assuming 638 * steady state. Add some cushion because of small variations. 639 */ 640 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 641 642 /* Accommodate for sender rate increase (eg. slow start) */ 643 grow = rcvwin * (copied - tp->rcvq_space.space); 644 do_div(grow, tp->rcvq_space.space); 645 rcvwin += (grow << 1); 646 647 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 648 while (tcp_win_from_space(sk, rcvmem) < tp->advmss) 649 rcvmem += 128; 650 651 do_div(rcvwin, tp->advmss); 652 rcvbuf = min_t(u64, rcvwin * rcvmem, 653 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 654 if (rcvbuf > sk->sk_rcvbuf) { 655 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 656 657 /* Make the window clamp follow along. */ 658 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 659 } 660 } 661 tp->rcvq_space.space = copied; 662 663 new_measure: 664 tp->rcvq_space.seq = tp->copied_seq; 665 tp->rcvq_space.time = tp->tcp_mstamp; 666 } 667 668 /* There is something which you must keep in mind when you analyze the 669 * behavior of the tp->ato delayed ack timeout interval. When a 670 * connection starts up, we want to ack as quickly as possible. The 671 * problem is that "good" TCP's do slow start at the beginning of data 672 * transmission. The means that until we send the first few ACK's the 673 * sender will sit on his end and only queue most of his data, because 674 * he can only send snd_cwnd unacked packets at any given time. For 675 * each ACK we send, he increments snd_cwnd and transmits more of his 676 * queue. -DaveM 677 */ 678 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 679 { 680 struct tcp_sock *tp = tcp_sk(sk); 681 struct inet_connection_sock *icsk = inet_csk(sk); 682 u32 now; 683 684 inet_csk_schedule_ack(sk); 685 686 tcp_measure_rcv_mss(sk, skb); 687 688 tcp_rcv_rtt_measure(tp); 689 690 now = tcp_jiffies32; 691 692 if (!icsk->icsk_ack.ato) { 693 /* The _first_ data packet received, initialize 694 * delayed ACK engine. 695 */ 696 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 697 icsk->icsk_ack.ato = TCP_ATO_MIN; 698 } else { 699 int m = now - icsk->icsk_ack.lrcvtime; 700 701 if (m <= TCP_ATO_MIN / 2) { 702 /* The fastest case is the first. */ 703 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 704 } else if (m < icsk->icsk_ack.ato) { 705 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 706 if (icsk->icsk_ack.ato > icsk->icsk_rto) 707 icsk->icsk_ack.ato = icsk->icsk_rto; 708 } else if (m > icsk->icsk_rto) { 709 /* Too long gap. Apparently sender failed to 710 * restart window, so that we send ACKs quickly. 711 */ 712 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 713 sk_mem_reclaim(sk); 714 } 715 } 716 icsk->icsk_ack.lrcvtime = now; 717 718 tcp_ecn_check_ce(sk, skb); 719 720 if (skb->len >= 128) 721 tcp_grow_window(sk, skb); 722 } 723 724 /* Called to compute a smoothed rtt estimate. The data fed to this 725 * routine either comes from timestamps, or from segments that were 726 * known _not_ to have been retransmitted [see Karn/Partridge 727 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 728 * piece by Van Jacobson. 729 * NOTE: the next three routines used to be one big routine. 730 * To save cycles in the RFC 1323 implementation it was better to break 731 * it up into three procedures. -- erics 732 */ 733 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 734 { 735 struct tcp_sock *tp = tcp_sk(sk); 736 long m = mrtt_us; /* RTT */ 737 u32 srtt = tp->srtt_us; 738 739 /* The following amusing code comes from Jacobson's 740 * article in SIGCOMM '88. Note that rtt and mdev 741 * are scaled versions of rtt and mean deviation. 742 * This is designed to be as fast as possible 743 * m stands for "measurement". 744 * 745 * On a 1990 paper the rto value is changed to: 746 * RTO = rtt + 4 * mdev 747 * 748 * Funny. This algorithm seems to be very broken. 749 * These formulae increase RTO, when it should be decreased, increase 750 * too slowly, when it should be increased quickly, decrease too quickly 751 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 752 * does not matter how to _calculate_ it. Seems, it was trap 753 * that VJ failed to avoid. 8) 754 */ 755 if (srtt != 0) { 756 m -= (srtt >> 3); /* m is now error in rtt est */ 757 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 758 if (m < 0) { 759 m = -m; /* m is now abs(error) */ 760 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 761 /* This is similar to one of Eifel findings. 762 * Eifel blocks mdev updates when rtt decreases. 763 * This solution is a bit different: we use finer gain 764 * for mdev in this case (alpha*beta). 765 * Like Eifel it also prevents growth of rto, 766 * but also it limits too fast rto decreases, 767 * happening in pure Eifel. 768 */ 769 if (m > 0) 770 m >>= 3; 771 } else { 772 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 773 } 774 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 775 if (tp->mdev_us > tp->mdev_max_us) { 776 tp->mdev_max_us = tp->mdev_us; 777 if (tp->mdev_max_us > tp->rttvar_us) 778 tp->rttvar_us = tp->mdev_max_us; 779 } 780 if (after(tp->snd_una, tp->rtt_seq)) { 781 if (tp->mdev_max_us < tp->rttvar_us) 782 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 783 tp->rtt_seq = tp->snd_nxt; 784 tp->mdev_max_us = tcp_rto_min_us(sk); 785 786 tcp_bpf_rtt(sk); 787 } 788 } else { 789 /* no previous measure. */ 790 srtt = m << 3; /* take the measured time to be rtt */ 791 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 792 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 793 tp->mdev_max_us = tp->rttvar_us; 794 tp->rtt_seq = tp->snd_nxt; 795 796 tcp_bpf_rtt(sk); 797 } 798 tp->srtt_us = max(1U, srtt); 799 } 800 801 static void tcp_update_pacing_rate(struct sock *sk) 802 { 803 const struct tcp_sock *tp = tcp_sk(sk); 804 u64 rate; 805 806 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 807 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 808 809 /* current rate is (cwnd * mss) / srtt 810 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 811 * In Congestion Avoidance phase, set it to 120 % the current rate. 812 * 813 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 814 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 815 * end of slow start and should slow down. 816 */ 817 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 818 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio; 819 else 820 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio; 821 822 rate *= max(tp->snd_cwnd, tp->packets_out); 823 824 if (likely(tp->srtt_us)) 825 do_div(rate, tp->srtt_us); 826 827 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 828 * without any lock. We want to make sure compiler wont store 829 * intermediate values in this location. 830 */ 831 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 832 sk->sk_max_pacing_rate)); 833 } 834 835 /* Calculate rto without backoff. This is the second half of Van Jacobson's 836 * routine referred to above. 837 */ 838 static void tcp_set_rto(struct sock *sk) 839 { 840 const struct tcp_sock *tp = tcp_sk(sk); 841 /* Old crap is replaced with new one. 8) 842 * 843 * More seriously: 844 * 1. If rtt variance happened to be less 50msec, it is hallucination. 845 * It cannot be less due to utterly erratic ACK generation made 846 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 847 * to do with delayed acks, because at cwnd>2 true delack timeout 848 * is invisible. Actually, Linux-2.4 also generates erratic 849 * ACKs in some circumstances. 850 */ 851 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 852 853 /* 2. Fixups made earlier cannot be right. 854 * If we do not estimate RTO correctly without them, 855 * all the algo is pure shit and should be replaced 856 * with correct one. It is exactly, which we pretend to do. 857 */ 858 859 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 860 * guarantees that rto is higher. 861 */ 862 tcp_bound_rto(sk); 863 } 864 865 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 866 { 867 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 868 869 if (!cwnd) 870 cwnd = TCP_INIT_CWND; 871 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 872 } 873 874 struct tcp_sacktag_state { 875 /* Timestamps for earliest and latest never-retransmitted segment 876 * that was SACKed. RTO needs the earliest RTT to stay conservative, 877 * but congestion control should still get an accurate delay signal. 878 */ 879 u64 first_sackt; 880 u64 last_sackt; 881 u32 reord; 882 u32 sack_delivered; 883 int flag; 884 unsigned int mss_now; 885 struct rate_sample *rate; 886 }; 887 888 /* Take a notice that peer is sending D-SACKs */ 889 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq, 890 u32 end_seq, struct tcp_sacktag_state *state) 891 { 892 u32 seq_len, dup_segs = 1; 893 894 if (before(start_seq, end_seq)) { 895 seq_len = end_seq - start_seq; 896 if (seq_len > tp->mss_cache) 897 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache); 898 } 899 900 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 901 tp->rack.dsack_seen = 1; 902 tp->dsack_dups += dup_segs; 903 904 state->flag |= FLAG_DSACKING_ACK; 905 /* A spurious retransmission is delivered */ 906 state->sack_delivered += dup_segs; 907 908 return dup_segs; 909 } 910 911 /* It's reordering when higher sequence was delivered (i.e. sacked) before 912 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 913 * distance is approximated in full-mss packet distance ("reordering"). 914 */ 915 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 916 const int ts) 917 { 918 struct tcp_sock *tp = tcp_sk(sk); 919 const u32 mss = tp->mss_cache; 920 u32 fack, metric; 921 922 fack = tcp_highest_sack_seq(tp); 923 if (!before(low_seq, fack)) 924 return; 925 926 metric = fack - low_seq; 927 if ((metric > tp->reordering * mss) && mss) { 928 #if FASTRETRANS_DEBUG > 1 929 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 930 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 931 tp->reordering, 932 0, 933 tp->sacked_out, 934 tp->undo_marker ? tp->undo_retrans : 0); 935 #endif 936 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 937 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 938 } 939 940 /* This exciting event is worth to be remembered. 8) */ 941 tp->reord_seen++; 942 NET_INC_STATS(sock_net(sk), 943 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 944 } 945 946 /* This must be called before lost_out is incremented */ 947 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 948 { 949 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) || 950 (tp->retransmit_skb_hint && 951 before(TCP_SKB_CB(skb)->seq, 952 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))) 953 tp->retransmit_skb_hint = skb; 954 } 955 956 /* Sum the number of packets on the wire we have marked as lost. 957 * There are two cases we care about here: 958 * a) Packet hasn't been marked lost (nor retransmitted), 959 * and this is the first loss. 960 * b) Packet has been marked both lost and retransmitted, 961 * and this means we think it was lost again. 962 */ 963 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 964 { 965 __u8 sacked = TCP_SKB_CB(skb)->sacked; 966 967 if (!(sacked & TCPCB_LOST) || 968 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 969 tp->lost += tcp_skb_pcount(skb); 970 } 971 972 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 973 { 974 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 975 tcp_verify_retransmit_hint(tp, skb); 976 977 tp->lost_out += tcp_skb_pcount(skb); 978 tcp_sum_lost(tp, skb); 979 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 980 } 981 } 982 983 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 984 { 985 tcp_verify_retransmit_hint(tp, skb); 986 987 tcp_sum_lost(tp, skb); 988 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 989 tp->lost_out += tcp_skb_pcount(skb); 990 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 991 } 992 } 993 994 /* Updates the delivered and delivered_ce counts */ 995 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered, 996 bool ece_ack) 997 { 998 tp->delivered += delivered; 999 if (ece_ack) 1000 tp->delivered_ce += delivered; 1001 } 1002 1003 /* This procedure tags the retransmission queue when SACKs arrive. 1004 * 1005 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1006 * Packets in queue with these bits set are counted in variables 1007 * sacked_out, retrans_out and lost_out, correspondingly. 1008 * 1009 * Valid combinations are: 1010 * Tag InFlight Description 1011 * 0 1 - orig segment is in flight. 1012 * S 0 - nothing flies, orig reached receiver. 1013 * L 0 - nothing flies, orig lost by net. 1014 * R 2 - both orig and retransmit are in flight. 1015 * L|R 1 - orig is lost, retransmit is in flight. 1016 * S|R 1 - orig reached receiver, retrans is still in flight. 1017 * (L|S|R is logically valid, it could occur when L|R is sacked, 1018 * but it is equivalent to plain S and code short-curcuits it to S. 1019 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1020 * 1021 * These 6 states form finite state machine, controlled by the following events: 1022 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1023 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1024 * 3. Loss detection event of two flavors: 1025 * A. Scoreboard estimator decided the packet is lost. 1026 * A'. Reno "three dupacks" marks head of queue lost. 1027 * B. SACK arrives sacking SND.NXT at the moment, when the 1028 * segment was retransmitted. 1029 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1030 * 1031 * It is pleasant to note, that state diagram turns out to be commutative, 1032 * so that we are allowed not to be bothered by order of our actions, 1033 * when multiple events arrive simultaneously. (see the function below). 1034 * 1035 * Reordering detection. 1036 * -------------------- 1037 * Reordering metric is maximal distance, which a packet can be displaced 1038 * in packet stream. With SACKs we can estimate it: 1039 * 1040 * 1. SACK fills old hole and the corresponding segment was not 1041 * ever retransmitted -> reordering. Alas, we cannot use it 1042 * when segment was retransmitted. 1043 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1044 * for retransmitted and already SACKed segment -> reordering.. 1045 * Both of these heuristics are not used in Loss state, when we cannot 1046 * account for retransmits accurately. 1047 * 1048 * SACK block validation. 1049 * ---------------------- 1050 * 1051 * SACK block range validation checks that the received SACK block fits to 1052 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1053 * Note that SND.UNA is not included to the range though being valid because 1054 * it means that the receiver is rather inconsistent with itself reporting 1055 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1056 * perfectly valid, however, in light of RFC2018 which explicitly states 1057 * that "SACK block MUST reflect the newest segment. Even if the newest 1058 * segment is going to be discarded ...", not that it looks very clever 1059 * in case of head skb. Due to potentional receiver driven attacks, we 1060 * choose to avoid immediate execution of a walk in write queue due to 1061 * reneging and defer head skb's loss recovery to standard loss recovery 1062 * procedure that will eventually trigger (nothing forbids us doing this). 1063 * 1064 * Implements also blockage to start_seq wrap-around. Problem lies in the 1065 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1066 * there's no guarantee that it will be before snd_nxt (n). The problem 1067 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1068 * wrap (s_w): 1069 * 1070 * <- outs wnd -> <- wrapzone -> 1071 * u e n u_w e_w s n_w 1072 * | | | | | | | 1073 * |<------------+------+----- TCP seqno space --------------+---------->| 1074 * ...-- <2^31 ->| |<--------... 1075 * ...---- >2^31 ------>| |<--------... 1076 * 1077 * Current code wouldn't be vulnerable but it's better still to discard such 1078 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1079 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1080 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1081 * equal to the ideal case (infinite seqno space without wrap caused issues). 1082 * 1083 * With D-SACK the lower bound is extended to cover sequence space below 1084 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1085 * again, D-SACK block must not to go across snd_una (for the same reason as 1086 * for the normal SACK blocks, explained above). But there all simplicity 1087 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1088 * fully below undo_marker they do not affect behavior in anyway and can 1089 * therefore be safely ignored. In rare cases (which are more or less 1090 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1091 * fragmentation and packet reordering past skb's retransmission. To consider 1092 * them correctly, the acceptable range must be extended even more though 1093 * the exact amount is rather hard to quantify. However, tp->max_window can 1094 * be used as an exaggerated estimate. 1095 */ 1096 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1097 u32 start_seq, u32 end_seq) 1098 { 1099 /* Too far in future, or reversed (interpretation is ambiguous) */ 1100 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1101 return false; 1102 1103 /* Nasty start_seq wrap-around check (see comments above) */ 1104 if (!before(start_seq, tp->snd_nxt)) 1105 return false; 1106 1107 /* In outstanding window? ...This is valid exit for D-SACKs too. 1108 * start_seq == snd_una is non-sensical (see comments above) 1109 */ 1110 if (after(start_seq, tp->snd_una)) 1111 return true; 1112 1113 if (!is_dsack || !tp->undo_marker) 1114 return false; 1115 1116 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1117 if (after(end_seq, tp->snd_una)) 1118 return false; 1119 1120 if (!before(start_seq, tp->undo_marker)) 1121 return true; 1122 1123 /* Too old */ 1124 if (!after(end_seq, tp->undo_marker)) 1125 return false; 1126 1127 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1128 * start_seq < undo_marker and end_seq >= undo_marker. 1129 */ 1130 return !before(start_seq, end_seq - tp->max_window); 1131 } 1132 1133 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1134 struct tcp_sack_block_wire *sp, int num_sacks, 1135 u32 prior_snd_una, struct tcp_sacktag_state *state) 1136 { 1137 struct tcp_sock *tp = tcp_sk(sk); 1138 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1139 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1140 u32 dup_segs; 1141 1142 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1143 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1144 } else if (num_sacks > 1) { 1145 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1146 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1147 1148 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1)) 1149 return false; 1150 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV); 1151 } else { 1152 return false; 1153 } 1154 1155 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state); 1156 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs); 1157 1158 /* D-SACK for already forgotten data... Do dumb counting. */ 1159 if (tp->undo_marker && tp->undo_retrans > 0 && 1160 !after(end_seq_0, prior_snd_una) && 1161 after(end_seq_0, tp->undo_marker)) 1162 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs); 1163 1164 return true; 1165 } 1166 1167 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1168 * the incoming SACK may not exactly match but we can find smaller MSS 1169 * aligned portion of it that matches. Therefore we might need to fragment 1170 * which may fail and creates some hassle (caller must handle error case 1171 * returns). 1172 * 1173 * FIXME: this could be merged to shift decision code 1174 */ 1175 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1176 u32 start_seq, u32 end_seq) 1177 { 1178 int err; 1179 bool in_sack; 1180 unsigned int pkt_len; 1181 unsigned int mss; 1182 1183 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1184 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1185 1186 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1187 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1188 mss = tcp_skb_mss(skb); 1189 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1190 1191 if (!in_sack) { 1192 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1193 if (pkt_len < mss) 1194 pkt_len = mss; 1195 } else { 1196 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1197 if (pkt_len < mss) 1198 return -EINVAL; 1199 } 1200 1201 /* Round if necessary so that SACKs cover only full MSSes 1202 * and/or the remaining small portion (if present) 1203 */ 1204 if (pkt_len > mss) { 1205 unsigned int new_len = (pkt_len / mss) * mss; 1206 if (!in_sack && new_len < pkt_len) 1207 new_len += mss; 1208 pkt_len = new_len; 1209 } 1210 1211 if (pkt_len >= skb->len && !in_sack) 1212 return 0; 1213 1214 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1215 pkt_len, mss, GFP_ATOMIC); 1216 if (err < 0) 1217 return err; 1218 } 1219 1220 return in_sack; 1221 } 1222 1223 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1224 static u8 tcp_sacktag_one(struct sock *sk, 1225 struct tcp_sacktag_state *state, u8 sacked, 1226 u32 start_seq, u32 end_seq, 1227 int dup_sack, int pcount, 1228 u64 xmit_time) 1229 { 1230 struct tcp_sock *tp = tcp_sk(sk); 1231 1232 /* Account D-SACK for retransmitted packet. */ 1233 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1234 if (tp->undo_marker && tp->undo_retrans > 0 && 1235 after(end_seq, tp->undo_marker)) 1236 tp->undo_retrans--; 1237 if ((sacked & TCPCB_SACKED_ACKED) && 1238 before(start_seq, state->reord)) 1239 state->reord = start_seq; 1240 } 1241 1242 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1243 if (!after(end_seq, tp->snd_una)) 1244 return sacked; 1245 1246 if (!(sacked & TCPCB_SACKED_ACKED)) { 1247 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1248 1249 if (sacked & TCPCB_SACKED_RETRANS) { 1250 /* If the segment is not tagged as lost, 1251 * we do not clear RETRANS, believing 1252 * that retransmission is still in flight. 1253 */ 1254 if (sacked & TCPCB_LOST) { 1255 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1256 tp->lost_out -= pcount; 1257 tp->retrans_out -= pcount; 1258 } 1259 } else { 1260 if (!(sacked & TCPCB_RETRANS)) { 1261 /* New sack for not retransmitted frame, 1262 * which was in hole. It is reordering. 1263 */ 1264 if (before(start_seq, 1265 tcp_highest_sack_seq(tp)) && 1266 before(start_seq, state->reord)) 1267 state->reord = start_seq; 1268 1269 if (!after(end_seq, tp->high_seq)) 1270 state->flag |= FLAG_ORIG_SACK_ACKED; 1271 if (state->first_sackt == 0) 1272 state->first_sackt = xmit_time; 1273 state->last_sackt = xmit_time; 1274 } 1275 1276 if (sacked & TCPCB_LOST) { 1277 sacked &= ~TCPCB_LOST; 1278 tp->lost_out -= pcount; 1279 } 1280 } 1281 1282 sacked |= TCPCB_SACKED_ACKED; 1283 state->flag |= FLAG_DATA_SACKED; 1284 tp->sacked_out += pcount; 1285 /* Out-of-order packets delivered */ 1286 state->sack_delivered += pcount; 1287 1288 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1289 if (tp->lost_skb_hint && 1290 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1291 tp->lost_cnt_hint += pcount; 1292 } 1293 1294 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1295 * frames and clear it. undo_retrans is decreased above, L|R frames 1296 * are accounted above as well. 1297 */ 1298 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1299 sacked &= ~TCPCB_SACKED_RETRANS; 1300 tp->retrans_out -= pcount; 1301 } 1302 1303 return sacked; 1304 } 1305 1306 /* Shift newly-SACKed bytes from this skb to the immediately previous 1307 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1308 */ 1309 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1310 struct sk_buff *skb, 1311 struct tcp_sacktag_state *state, 1312 unsigned int pcount, int shifted, int mss, 1313 bool dup_sack) 1314 { 1315 struct tcp_sock *tp = tcp_sk(sk); 1316 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1317 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1318 1319 BUG_ON(!pcount); 1320 1321 /* Adjust counters and hints for the newly sacked sequence 1322 * range but discard the return value since prev is already 1323 * marked. We must tag the range first because the seq 1324 * advancement below implicitly advances 1325 * tcp_highest_sack_seq() when skb is highest_sack. 1326 */ 1327 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1328 start_seq, end_seq, dup_sack, pcount, 1329 tcp_skb_timestamp_us(skb)); 1330 tcp_rate_skb_delivered(sk, skb, state->rate); 1331 1332 if (skb == tp->lost_skb_hint) 1333 tp->lost_cnt_hint += pcount; 1334 1335 TCP_SKB_CB(prev)->end_seq += shifted; 1336 TCP_SKB_CB(skb)->seq += shifted; 1337 1338 tcp_skb_pcount_add(prev, pcount); 1339 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1340 tcp_skb_pcount_add(skb, -pcount); 1341 1342 /* When we're adding to gso_segs == 1, gso_size will be zero, 1343 * in theory this shouldn't be necessary but as long as DSACK 1344 * code can come after this skb later on it's better to keep 1345 * setting gso_size to something. 1346 */ 1347 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1348 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1349 1350 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1351 if (tcp_skb_pcount(skb) <= 1) 1352 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1353 1354 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1355 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1356 1357 if (skb->len > 0) { 1358 BUG_ON(!tcp_skb_pcount(skb)); 1359 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1360 return false; 1361 } 1362 1363 /* Whole SKB was eaten :-) */ 1364 1365 if (skb == tp->retransmit_skb_hint) 1366 tp->retransmit_skb_hint = prev; 1367 if (skb == tp->lost_skb_hint) { 1368 tp->lost_skb_hint = prev; 1369 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1370 } 1371 1372 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1373 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1374 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1375 TCP_SKB_CB(prev)->end_seq++; 1376 1377 if (skb == tcp_highest_sack(sk)) 1378 tcp_advance_highest_sack(sk, skb); 1379 1380 tcp_skb_collapse_tstamp(prev, skb); 1381 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1382 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1383 1384 tcp_rtx_queue_unlink_and_free(skb, sk); 1385 1386 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1387 1388 return true; 1389 } 1390 1391 /* I wish gso_size would have a bit more sane initialization than 1392 * something-or-zero which complicates things 1393 */ 1394 static int tcp_skb_seglen(const struct sk_buff *skb) 1395 { 1396 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1397 } 1398 1399 /* Shifting pages past head area doesn't work */ 1400 static int skb_can_shift(const struct sk_buff *skb) 1401 { 1402 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1403 } 1404 1405 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1406 int pcount, int shiftlen) 1407 { 1408 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1409 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1410 * to make sure not storing more than 65535 * 8 bytes per skb, 1411 * even if current MSS is bigger. 1412 */ 1413 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1414 return 0; 1415 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1416 return 0; 1417 return skb_shift(to, from, shiftlen); 1418 } 1419 1420 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1421 * skb. 1422 */ 1423 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1424 struct tcp_sacktag_state *state, 1425 u32 start_seq, u32 end_seq, 1426 bool dup_sack) 1427 { 1428 struct tcp_sock *tp = tcp_sk(sk); 1429 struct sk_buff *prev; 1430 int mss; 1431 int pcount = 0; 1432 int len; 1433 int in_sack; 1434 1435 /* Normally R but no L won't result in plain S */ 1436 if (!dup_sack && 1437 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1438 goto fallback; 1439 if (!skb_can_shift(skb)) 1440 goto fallback; 1441 /* This frame is about to be dropped (was ACKed). */ 1442 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1443 goto fallback; 1444 1445 /* Can only happen with delayed DSACK + discard craziness */ 1446 prev = skb_rb_prev(skb); 1447 if (!prev) 1448 goto fallback; 1449 1450 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1451 goto fallback; 1452 1453 if (!tcp_skb_can_collapse(prev, skb)) 1454 goto fallback; 1455 1456 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1457 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1458 1459 if (in_sack) { 1460 len = skb->len; 1461 pcount = tcp_skb_pcount(skb); 1462 mss = tcp_skb_seglen(skb); 1463 1464 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1465 * drop this restriction as unnecessary 1466 */ 1467 if (mss != tcp_skb_seglen(prev)) 1468 goto fallback; 1469 } else { 1470 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1471 goto noop; 1472 /* CHECKME: This is non-MSS split case only?, this will 1473 * cause skipped skbs due to advancing loop btw, original 1474 * has that feature too 1475 */ 1476 if (tcp_skb_pcount(skb) <= 1) 1477 goto noop; 1478 1479 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1480 if (!in_sack) { 1481 /* TODO: head merge to next could be attempted here 1482 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1483 * though it might not be worth of the additional hassle 1484 * 1485 * ...we can probably just fallback to what was done 1486 * previously. We could try merging non-SACKed ones 1487 * as well but it probably isn't going to buy off 1488 * because later SACKs might again split them, and 1489 * it would make skb timestamp tracking considerably 1490 * harder problem. 1491 */ 1492 goto fallback; 1493 } 1494 1495 len = end_seq - TCP_SKB_CB(skb)->seq; 1496 BUG_ON(len < 0); 1497 BUG_ON(len > skb->len); 1498 1499 /* MSS boundaries should be honoured or else pcount will 1500 * severely break even though it makes things bit trickier. 1501 * Optimize common case to avoid most of the divides 1502 */ 1503 mss = tcp_skb_mss(skb); 1504 1505 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1506 * drop this restriction as unnecessary 1507 */ 1508 if (mss != tcp_skb_seglen(prev)) 1509 goto fallback; 1510 1511 if (len == mss) { 1512 pcount = 1; 1513 } else if (len < mss) { 1514 goto noop; 1515 } else { 1516 pcount = len / mss; 1517 len = pcount * mss; 1518 } 1519 } 1520 1521 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1522 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1523 goto fallback; 1524 1525 if (!tcp_skb_shift(prev, skb, pcount, len)) 1526 goto fallback; 1527 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1528 goto out; 1529 1530 /* Hole filled allows collapsing with the next as well, this is very 1531 * useful when hole on every nth skb pattern happens 1532 */ 1533 skb = skb_rb_next(prev); 1534 if (!skb) 1535 goto out; 1536 1537 if (!skb_can_shift(skb) || 1538 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1539 (mss != tcp_skb_seglen(skb))) 1540 goto out; 1541 1542 len = skb->len; 1543 pcount = tcp_skb_pcount(skb); 1544 if (tcp_skb_shift(prev, skb, pcount, len)) 1545 tcp_shifted_skb(sk, prev, skb, state, pcount, 1546 len, mss, 0); 1547 1548 out: 1549 return prev; 1550 1551 noop: 1552 return skb; 1553 1554 fallback: 1555 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1556 return NULL; 1557 } 1558 1559 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1560 struct tcp_sack_block *next_dup, 1561 struct tcp_sacktag_state *state, 1562 u32 start_seq, u32 end_seq, 1563 bool dup_sack_in) 1564 { 1565 struct tcp_sock *tp = tcp_sk(sk); 1566 struct sk_buff *tmp; 1567 1568 skb_rbtree_walk_from(skb) { 1569 int in_sack = 0; 1570 bool dup_sack = dup_sack_in; 1571 1572 /* queue is in-order => we can short-circuit the walk early */ 1573 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1574 break; 1575 1576 if (next_dup && 1577 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1578 in_sack = tcp_match_skb_to_sack(sk, skb, 1579 next_dup->start_seq, 1580 next_dup->end_seq); 1581 if (in_sack > 0) 1582 dup_sack = true; 1583 } 1584 1585 /* skb reference here is a bit tricky to get right, since 1586 * shifting can eat and free both this skb and the next, 1587 * so not even _safe variant of the loop is enough. 1588 */ 1589 if (in_sack <= 0) { 1590 tmp = tcp_shift_skb_data(sk, skb, state, 1591 start_seq, end_seq, dup_sack); 1592 if (tmp) { 1593 if (tmp != skb) { 1594 skb = tmp; 1595 continue; 1596 } 1597 1598 in_sack = 0; 1599 } else { 1600 in_sack = tcp_match_skb_to_sack(sk, skb, 1601 start_seq, 1602 end_seq); 1603 } 1604 } 1605 1606 if (unlikely(in_sack < 0)) 1607 break; 1608 1609 if (in_sack) { 1610 TCP_SKB_CB(skb)->sacked = 1611 tcp_sacktag_one(sk, 1612 state, 1613 TCP_SKB_CB(skb)->sacked, 1614 TCP_SKB_CB(skb)->seq, 1615 TCP_SKB_CB(skb)->end_seq, 1616 dup_sack, 1617 tcp_skb_pcount(skb), 1618 tcp_skb_timestamp_us(skb)); 1619 tcp_rate_skb_delivered(sk, skb, state->rate); 1620 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1621 list_del_init(&skb->tcp_tsorted_anchor); 1622 1623 if (!before(TCP_SKB_CB(skb)->seq, 1624 tcp_highest_sack_seq(tp))) 1625 tcp_advance_highest_sack(sk, skb); 1626 } 1627 } 1628 return skb; 1629 } 1630 1631 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1632 { 1633 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1634 struct sk_buff *skb; 1635 1636 while (*p) { 1637 parent = *p; 1638 skb = rb_to_skb(parent); 1639 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1640 p = &parent->rb_left; 1641 continue; 1642 } 1643 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1644 p = &parent->rb_right; 1645 continue; 1646 } 1647 return skb; 1648 } 1649 return NULL; 1650 } 1651 1652 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1653 u32 skip_to_seq) 1654 { 1655 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1656 return skb; 1657 1658 return tcp_sacktag_bsearch(sk, skip_to_seq); 1659 } 1660 1661 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1662 struct sock *sk, 1663 struct tcp_sack_block *next_dup, 1664 struct tcp_sacktag_state *state, 1665 u32 skip_to_seq) 1666 { 1667 if (!next_dup) 1668 return skb; 1669 1670 if (before(next_dup->start_seq, skip_to_seq)) { 1671 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1672 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1673 next_dup->start_seq, next_dup->end_seq, 1674 1); 1675 } 1676 1677 return skb; 1678 } 1679 1680 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1681 { 1682 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1683 } 1684 1685 static int 1686 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1687 u32 prior_snd_una, struct tcp_sacktag_state *state) 1688 { 1689 struct tcp_sock *tp = tcp_sk(sk); 1690 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1691 TCP_SKB_CB(ack_skb)->sacked); 1692 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1693 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1694 struct tcp_sack_block *cache; 1695 struct sk_buff *skb; 1696 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1697 int used_sacks; 1698 bool found_dup_sack = false; 1699 int i, j; 1700 int first_sack_index; 1701 1702 state->flag = 0; 1703 state->reord = tp->snd_nxt; 1704 1705 if (!tp->sacked_out) 1706 tcp_highest_sack_reset(sk); 1707 1708 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1709 num_sacks, prior_snd_una, state); 1710 1711 /* Eliminate too old ACKs, but take into 1712 * account more or less fresh ones, they can 1713 * contain valid SACK info. 1714 */ 1715 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1716 return 0; 1717 1718 if (!tp->packets_out) 1719 goto out; 1720 1721 used_sacks = 0; 1722 first_sack_index = 0; 1723 for (i = 0; i < num_sacks; i++) { 1724 bool dup_sack = !i && found_dup_sack; 1725 1726 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1727 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1728 1729 if (!tcp_is_sackblock_valid(tp, dup_sack, 1730 sp[used_sacks].start_seq, 1731 sp[used_sacks].end_seq)) { 1732 int mib_idx; 1733 1734 if (dup_sack) { 1735 if (!tp->undo_marker) 1736 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1737 else 1738 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1739 } else { 1740 /* Don't count olds caused by ACK reordering */ 1741 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1742 !after(sp[used_sacks].end_seq, tp->snd_una)) 1743 continue; 1744 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1745 } 1746 1747 NET_INC_STATS(sock_net(sk), mib_idx); 1748 if (i == 0) 1749 first_sack_index = -1; 1750 continue; 1751 } 1752 1753 /* Ignore very old stuff early */ 1754 if (!after(sp[used_sacks].end_seq, prior_snd_una)) { 1755 if (i == 0) 1756 first_sack_index = -1; 1757 continue; 1758 } 1759 1760 used_sacks++; 1761 } 1762 1763 /* order SACK blocks to allow in order walk of the retrans queue */ 1764 for (i = used_sacks - 1; i > 0; i--) { 1765 for (j = 0; j < i; j++) { 1766 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1767 swap(sp[j], sp[j + 1]); 1768 1769 /* Track where the first SACK block goes to */ 1770 if (j == first_sack_index) 1771 first_sack_index = j + 1; 1772 } 1773 } 1774 } 1775 1776 state->mss_now = tcp_current_mss(sk); 1777 skb = NULL; 1778 i = 0; 1779 1780 if (!tp->sacked_out) { 1781 /* It's already past, so skip checking against it */ 1782 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1783 } else { 1784 cache = tp->recv_sack_cache; 1785 /* Skip empty blocks in at head of the cache */ 1786 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1787 !cache->end_seq) 1788 cache++; 1789 } 1790 1791 while (i < used_sacks) { 1792 u32 start_seq = sp[i].start_seq; 1793 u32 end_seq = sp[i].end_seq; 1794 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1795 struct tcp_sack_block *next_dup = NULL; 1796 1797 if (found_dup_sack && ((i + 1) == first_sack_index)) 1798 next_dup = &sp[i + 1]; 1799 1800 /* Skip too early cached blocks */ 1801 while (tcp_sack_cache_ok(tp, cache) && 1802 !before(start_seq, cache->end_seq)) 1803 cache++; 1804 1805 /* Can skip some work by looking recv_sack_cache? */ 1806 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1807 after(end_seq, cache->start_seq)) { 1808 1809 /* Head todo? */ 1810 if (before(start_seq, cache->start_seq)) { 1811 skb = tcp_sacktag_skip(skb, sk, start_seq); 1812 skb = tcp_sacktag_walk(skb, sk, next_dup, 1813 state, 1814 start_seq, 1815 cache->start_seq, 1816 dup_sack); 1817 } 1818 1819 /* Rest of the block already fully processed? */ 1820 if (!after(end_seq, cache->end_seq)) 1821 goto advance_sp; 1822 1823 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1824 state, 1825 cache->end_seq); 1826 1827 /* ...tail remains todo... */ 1828 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1829 /* ...but better entrypoint exists! */ 1830 skb = tcp_highest_sack(sk); 1831 if (!skb) 1832 break; 1833 cache++; 1834 goto walk; 1835 } 1836 1837 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 1838 /* Check overlap against next cached too (past this one already) */ 1839 cache++; 1840 continue; 1841 } 1842 1843 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1844 skb = tcp_highest_sack(sk); 1845 if (!skb) 1846 break; 1847 } 1848 skb = tcp_sacktag_skip(skb, sk, start_seq); 1849 1850 walk: 1851 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1852 start_seq, end_seq, dup_sack); 1853 1854 advance_sp: 1855 i++; 1856 } 1857 1858 /* Clear the head of the cache sack blocks so we can skip it next time */ 1859 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1860 tp->recv_sack_cache[i].start_seq = 0; 1861 tp->recv_sack_cache[i].end_seq = 0; 1862 } 1863 for (j = 0; j < used_sacks; j++) 1864 tp->recv_sack_cache[i++] = sp[j]; 1865 1866 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 1867 tcp_check_sack_reordering(sk, state->reord, 0); 1868 1869 tcp_verify_left_out(tp); 1870 out: 1871 1872 #if FASTRETRANS_DEBUG > 0 1873 WARN_ON((int)tp->sacked_out < 0); 1874 WARN_ON((int)tp->lost_out < 0); 1875 WARN_ON((int)tp->retrans_out < 0); 1876 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1877 #endif 1878 return state->flag; 1879 } 1880 1881 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1882 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1883 */ 1884 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1885 { 1886 u32 holes; 1887 1888 holes = max(tp->lost_out, 1U); 1889 holes = min(holes, tp->packets_out); 1890 1891 if ((tp->sacked_out + holes) > tp->packets_out) { 1892 tp->sacked_out = tp->packets_out - holes; 1893 return true; 1894 } 1895 return false; 1896 } 1897 1898 /* If we receive more dupacks than we expected counting segments 1899 * in assumption of absent reordering, interpret this as reordering. 1900 * The only another reason could be bug in receiver TCP. 1901 */ 1902 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1903 { 1904 struct tcp_sock *tp = tcp_sk(sk); 1905 1906 if (!tcp_limit_reno_sacked(tp)) 1907 return; 1908 1909 tp->reordering = min_t(u32, tp->packets_out + addend, 1910 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 1911 tp->reord_seen++; 1912 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 1913 } 1914 1915 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1916 1917 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack) 1918 { 1919 if (num_dupack) { 1920 struct tcp_sock *tp = tcp_sk(sk); 1921 u32 prior_sacked = tp->sacked_out; 1922 s32 delivered; 1923 1924 tp->sacked_out += num_dupack; 1925 tcp_check_reno_reordering(sk, 0); 1926 delivered = tp->sacked_out - prior_sacked; 1927 if (delivered > 0) 1928 tcp_count_delivered(tp, delivered, ece_ack); 1929 tcp_verify_left_out(tp); 1930 } 1931 } 1932 1933 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1934 1935 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack) 1936 { 1937 struct tcp_sock *tp = tcp_sk(sk); 1938 1939 if (acked > 0) { 1940 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1941 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1), 1942 ece_ack); 1943 if (acked - 1 >= tp->sacked_out) 1944 tp->sacked_out = 0; 1945 else 1946 tp->sacked_out -= acked - 1; 1947 } 1948 tcp_check_reno_reordering(sk, acked); 1949 tcp_verify_left_out(tp); 1950 } 1951 1952 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1953 { 1954 tp->sacked_out = 0; 1955 } 1956 1957 void tcp_clear_retrans(struct tcp_sock *tp) 1958 { 1959 tp->retrans_out = 0; 1960 tp->lost_out = 0; 1961 tp->undo_marker = 0; 1962 tp->undo_retrans = -1; 1963 tp->sacked_out = 0; 1964 } 1965 1966 static inline void tcp_init_undo(struct tcp_sock *tp) 1967 { 1968 tp->undo_marker = tp->snd_una; 1969 /* Retransmission still in flight may cause DSACKs later. */ 1970 tp->undo_retrans = tp->retrans_out ? : -1; 1971 } 1972 1973 static bool tcp_is_rack(const struct sock *sk) 1974 { 1975 return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION; 1976 } 1977 1978 /* If we detect SACK reneging, forget all SACK information 1979 * and reset tags completely, otherwise preserve SACKs. If receiver 1980 * dropped its ofo queue, we will know this due to reneging detection. 1981 */ 1982 static void tcp_timeout_mark_lost(struct sock *sk) 1983 { 1984 struct tcp_sock *tp = tcp_sk(sk); 1985 struct sk_buff *skb, *head; 1986 bool is_reneg; /* is receiver reneging on SACKs? */ 1987 1988 head = tcp_rtx_queue_head(sk); 1989 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 1990 if (is_reneg) { 1991 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1992 tp->sacked_out = 0; 1993 /* Mark SACK reneging until we recover from this loss event. */ 1994 tp->is_sack_reneg = 1; 1995 } else if (tcp_is_reno(tp)) { 1996 tcp_reset_reno_sack(tp); 1997 } 1998 1999 skb = head; 2000 skb_rbtree_walk_from(skb) { 2001 if (is_reneg) 2002 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2003 else if (tcp_is_rack(sk) && skb != head && 2004 tcp_rack_skb_timeout(tp, skb, 0) > 0) 2005 continue; /* Don't mark recently sent ones lost yet */ 2006 tcp_mark_skb_lost(sk, skb); 2007 } 2008 tcp_verify_left_out(tp); 2009 tcp_clear_all_retrans_hints(tp); 2010 } 2011 2012 /* Enter Loss state. */ 2013 void tcp_enter_loss(struct sock *sk) 2014 { 2015 const struct inet_connection_sock *icsk = inet_csk(sk); 2016 struct tcp_sock *tp = tcp_sk(sk); 2017 struct net *net = sock_net(sk); 2018 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 2019 2020 tcp_timeout_mark_lost(sk); 2021 2022 /* Reduce ssthresh if it has not yet been made inside this window. */ 2023 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 2024 !after(tp->high_seq, tp->snd_una) || 2025 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2026 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2027 tp->prior_cwnd = tp->snd_cwnd; 2028 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2029 tcp_ca_event(sk, CA_EVENT_LOSS); 2030 tcp_init_undo(tp); 2031 } 2032 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1; 2033 tp->snd_cwnd_cnt = 0; 2034 tp->snd_cwnd_stamp = tcp_jiffies32; 2035 2036 /* Timeout in disordered state after receiving substantial DUPACKs 2037 * suggests that the degree of reordering is over-estimated. 2038 */ 2039 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2040 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 2041 tp->reordering = min_t(unsigned int, tp->reordering, 2042 net->ipv4.sysctl_tcp_reordering); 2043 tcp_set_ca_state(sk, TCP_CA_Loss); 2044 tp->high_seq = tp->snd_nxt; 2045 tcp_ecn_queue_cwr(tp); 2046 2047 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2048 * loss recovery is underway except recurring timeout(s) on 2049 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2050 */ 2051 tp->frto = net->ipv4.sysctl_tcp_frto && 2052 (new_recovery || icsk->icsk_retransmits) && 2053 !inet_csk(sk)->icsk_mtup.probe_size; 2054 } 2055 2056 /* If ACK arrived pointing to a remembered SACK, it means that our 2057 * remembered SACKs do not reflect real state of receiver i.e. 2058 * receiver _host_ is heavily congested (or buggy). 2059 * 2060 * To avoid big spurious retransmission bursts due to transient SACK 2061 * scoreboard oddities that look like reneging, we give the receiver a 2062 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2063 * restore sanity to the SACK scoreboard. If the apparent reneging 2064 * persists until this RTO then we'll clear the SACK scoreboard. 2065 */ 2066 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2067 { 2068 if (flag & FLAG_SACK_RENEGING) { 2069 struct tcp_sock *tp = tcp_sk(sk); 2070 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2071 msecs_to_jiffies(10)); 2072 2073 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2074 delay, TCP_RTO_MAX); 2075 return true; 2076 } 2077 return false; 2078 } 2079 2080 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2081 * counter when SACK is enabled (without SACK, sacked_out is used for 2082 * that purpose). 2083 * 2084 * With reordering, holes may still be in flight, so RFC3517 recovery 2085 * uses pure sacked_out (total number of SACKed segments) even though 2086 * it violates the RFC that uses duplicate ACKs, often these are equal 2087 * but when e.g. out-of-window ACKs or packet duplication occurs, 2088 * they differ. Since neither occurs due to loss, TCP should really 2089 * ignore them. 2090 */ 2091 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2092 { 2093 return tp->sacked_out + 1; 2094 } 2095 2096 /* Linux NewReno/SACK/ECN state machine. 2097 * -------------------------------------- 2098 * 2099 * "Open" Normal state, no dubious events, fast path. 2100 * "Disorder" In all the respects it is "Open", 2101 * but requires a bit more attention. It is entered when 2102 * we see some SACKs or dupacks. It is split of "Open" 2103 * mainly to move some processing from fast path to slow one. 2104 * "CWR" CWND was reduced due to some Congestion Notification event. 2105 * It can be ECN, ICMP source quench, local device congestion. 2106 * "Recovery" CWND was reduced, we are fast-retransmitting. 2107 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2108 * 2109 * tcp_fastretrans_alert() is entered: 2110 * - each incoming ACK, if state is not "Open" 2111 * - when arrived ACK is unusual, namely: 2112 * * SACK 2113 * * Duplicate ACK. 2114 * * ECN ECE. 2115 * 2116 * Counting packets in flight is pretty simple. 2117 * 2118 * in_flight = packets_out - left_out + retrans_out 2119 * 2120 * packets_out is SND.NXT-SND.UNA counted in packets. 2121 * 2122 * retrans_out is number of retransmitted segments. 2123 * 2124 * left_out is number of segments left network, but not ACKed yet. 2125 * 2126 * left_out = sacked_out + lost_out 2127 * 2128 * sacked_out: Packets, which arrived to receiver out of order 2129 * and hence not ACKed. With SACKs this number is simply 2130 * amount of SACKed data. Even without SACKs 2131 * it is easy to give pretty reliable estimate of this number, 2132 * counting duplicate ACKs. 2133 * 2134 * lost_out: Packets lost by network. TCP has no explicit 2135 * "loss notification" feedback from network (for now). 2136 * It means that this number can be only _guessed_. 2137 * Actually, it is the heuristics to predict lossage that 2138 * distinguishes different algorithms. 2139 * 2140 * F.e. after RTO, when all the queue is considered as lost, 2141 * lost_out = packets_out and in_flight = retrans_out. 2142 * 2143 * Essentially, we have now a few algorithms detecting 2144 * lost packets. 2145 * 2146 * If the receiver supports SACK: 2147 * 2148 * RFC6675/3517: It is the conventional algorithm. A packet is 2149 * considered lost if the number of higher sequence packets 2150 * SACKed is greater than or equal the DUPACK thoreshold 2151 * (reordering). This is implemented in tcp_mark_head_lost and 2152 * tcp_update_scoreboard. 2153 * 2154 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2155 * (2017-) that checks timing instead of counting DUPACKs. 2156 * Essentially a packet is considered lost if it's not S/ACKed 2157 * after RTT + reordering_window, where both metrics are 2158 * dynamically measured and adjusted. This is implemented in 2159 * tcp_rack_mark_lost. 2160 * 2161 * If the receiver does not support SACK: 2162 * 2163 * NewReno (RFC6582): in Recovery we assume that one segment 2164 * is lost (classic Reno). While we are in Recovery and 2165 * a partial ACK arrives, we assume that one more packet 2166 * is lost (NewReno). This heuristics are the same in NewReno 2167 * and SACK. 2168 * 2169 * Really tricky (and requiring careful tuning) part of algorithm 2170 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2171 * The first determines the moment _when_ we should reduce CWND and, 2172 * hence, slow down forward transmission. In fact, it determines the moment 2173 * when we decide that hole is caused by loss, rather than by a reorder. 2174 * 2175 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2176 * holes, caused by lost packets. 2177 * 2178 * And the most logically complicated part of algorithm is undo 2179 * heuristics. We detect false retransmits due to both too early 2180 * fast retransmit (reordering) and underestimated RTO, analyzing 2181 * timestamps and D-SACKs. When we detect that some segments were 2182 * retransmitted by mistake and CWND reduction was wrong, we undo 2183 * window reduction and abort recovery phase. This logic is hidden 2184 * inside several functions named tcp_try_undo_<something>. 2185 */ 2186 2187 /* This function decides, when we should leave Disordered state 2188 * and enter Recovery phase, reducing congestion window. 2189 * 2190 * Main question: may we further continue forward transmission 2191 * with the same cwnd? 2192 */ 2193 static bool tcp_time_to_recover(struct sock *sk, int flag) 2194 { 2195 struct tcp_sock *tp = tcp_sk(sk); 2196 2197 /* Trick#1: The loss is proven. */ 2198 if (tp->lost_out) 2199 return true; 2200 2201 /* Not-A-Trick#2 : Classic rule... */ 2202 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2203 return true; 2204 2205 return false; 2206 } 2207 2208 /* Detect loss in event "A" above by marking head of queue up as lost. 2209 * For RFC3517 SACK, a segment is considered lost if it 2210 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2211 * the maximum SACKed segments to pass before reaching this limit. 2212 */ 2213 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2214 { 2215 struct tcp_sock *tp = tcp_sk(sk); 2216 struct sk_buff *skb; 2217 int cnt; 2218 /* Use SACK to deduce losses of new sequences sent during recovery */ 2219 const u32 loss_high = tp->snd_nxt; 2220 2221 WARN_ON(packets > tp->packets_out); 2222 skb = tp->lost_skb_hint; 2223 if (skb) { 2224 /* Head already handled? */ 2225 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2226 return; 2227 cnt = tp->lost_cnt_hint; 2228 } else { 2229 skb = tcp_rtx_queue_head(sk); 2230 cnt = 0; 2231 } 2232 2233 skb_rbtree_walk_from(skb) { 2234 /* TODO: do this better */ 2235 /* this is not the most efficient way to do this... */ 2236 tp->lost_skb_hint = skb; 2237 tp->lost_cnt_hint = cnt; 2238 2239 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2240 break; 2241 2242 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2243 cnt += tcp_skb_pcount(skb); 2244 2245 if (cnt > packets) 2246 break; 2247 2248 tcp_skb_mark_lost(tp, skb); 2249 2250 if (mark_head) 2251 break; 2252 } 2253 tcp_verify_left_out(tp); 2254 } 2255 2256 /* Account newly detected lost packet(s) */ 2257 2258 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2259 { 2260 struct tcp_sock *tp = tcp_sk(sk); 2261 2262 if (tcp_is_sack(tp)) { 2263 int sacked_upto = tp->sacked_out - tp->reordering; 2264 if (sacked_upto >= 0) 2265 tcp_mark_head_lost(sk, sacked_upto, 0); 2266 else if (fast_rexmit) 2267 tcp_mark_head_lost(sk, 1, 1); 2268 } 2269 } 2270 2271 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2272 { 2273 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2274 before(tp->rx_opt.rcv_tsecr, when); 2275 } 2276 2277 /* skb is spurious retransmitted if the returned timestamp echo 2278 * reply is prior to the skb transmission time 2279 */ 2280 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2281 const struct sk_buff *skb) 2282 { 2283 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2284 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2285 } 2286 2287 /* Nothing was retransmitted or returned timestamp is less 2288 * than timestamp of the first retransmission. 2289 */ 2290 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2291 { 2292 return tp->retrans_stamp && 2293 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2294 } 2295 2296 /* Undo procedures. */ 2297 2298 /* We can clear retrans_stamp when there are no retransmissions in the 2299 * window. It would seem that it is trivially available for us in 2300 * tp->retrans_out, however, that kind of assumptions doesn't consider 2301 * what will happen if errors occur when sending retransmission for the 2302 * second time. ...It could the that such segment has only 2303 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2304 * the head skb is enough except for some reneging corner cases that 2305 * are not worth the effort. 2306 * 2307 * Main reason for all this complexity is the fact that connection dying 2308 * time now depends on the validity of the retrans_stamp, in particular, 2309 * that successive retransmissions of a segment must not advance 2310 * retrans_stamp under any conditions. 2311 */ 2312 static bool tcp_any_retrans_done(const struct sock *sk) 2313 { 2314 const struct tcp_sock *tp = tcp_sk(sk); 2315 struct sk_buff *skb; 2316 2317 if (tp->retrans_out) 2318 return true; 2319 2320 skb = tcp_rtx_queue_head(sk); 2321 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2322 return true; 2323 2324 return false; 2325 } 2326 2327 static void DBGUNDO(struct sock *sk, const char *msg) 2328 { 2329 #if FASTRETRANS_DEBUG > 1 2330 struct tcp_sock *tp = tcp_sk(sk); 2331 struct inet_sock *inet = inet_sk(sk); 2332 2333 if (sk->sk_family == AF_INET) { 2334 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2335 msg, 2336 &inet->inet_daddr, ntohs(inet->inet_dport), 2337 tp->snd_cwnd, tcp_left_out(tp), 2338 tp->snd_ssthresh, tp->prior_ssthresh, 2339 tp->packets_out); 2340 } 2341 #if IS_ENABLED(CONFIG_IPV6) 2342 else if (sk->sk_family == AF_INET6) { 2343 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2344 msg, 2345 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2346 tp->snd_cwnd, tcp_left_out(tp), 2347 tp->snd_ssthresh, tp->prior_ssthresh, 2348 tp->packets_out); 2349 } 2350 #endif 2351 #endif 2352 } 2353 2354 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2355 { 2356 struct tcp_sock *tp = tcp_sk(sk); 2357 2358 if (unmark_loss) { 2359 struct sk_buff *skb; 2360 2361 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2362 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2363 } 2364 tp->lost_out = 0; 2365 tcp_clear_all_retrans_hints(tp); 2366 } 2367 2368 if (tp->prior_ssthresh) { 2369 const struct inet_connection_sock *icsk = inet_csk(sk); 2370 2371 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2372 2373 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2374 tp->snd_ssthresh = tp->prior_ssthresh; 2375 tcp_ecn_withdraw_cwr(tp); 2376 } 2377 } 2378 tp->snd_cwnd_stamp = tcp_jiffies32; 2379 tp->undo_marker = 0; 2380 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2381 } 2382 2383 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2384 { 2385 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2386 } 2387 2388 /* People celebrate: "We love our President!" */ 2389 static bool tcp_try_undo_recovery(struct sock *sk) 2390 { 2391 struct tcp_sock *tp = tcp_sk(sk); 2392 2393 if (tcp_may_undo(tp)) { 2394 int mib_idx; 2395 2396 /* Happy end! We did not retransmit anything 2397 * or our original transmission succeeded. 2398 */ 2399 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2400 tcp_undo_cwnd_reduction(sk, false); 2401 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2402 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2403 else 2404 mib_idx = LINUX_MIB_TCPFULLUNDO; 2405 2406 NET_INC_STATS(sock_net(sk), mib_idx); 2407 } else if (tp->rack.reo_wnd_persist) { 2408 tp->rack.reo_wnd_persist--; 2409 } 2410 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2411 /* Hold old state until something *above* high_seq 2412 * is ACKed. For Reno it is MUST to prevent false 2413 * fast retransmits (RFC2582). SACK TCP is safe. */ 2414 if (!tcp_any_retrans_done(sk)) 2415 tp->retrans_stamp = 0; 2416 return true; 2417 } 2418 tcp_set_ca_state(sk, TCP_CA_Open); 2419 tp->is_sack_reneg = 0; 2420 return false; 2421 } 2422 2423 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2424 static bool tcp_try_undo_dsack(struct sock *sk) 2425 { 2426 struct tcp_sock *tp = tcp_sk(sk); 2427 2428 if (tp->undo_marker && !tp->undo_retrans) { 2429 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2430 tp->rack.reo_wnd_persist + 1); 2431 DBGUNDO(sk, "D-SACK"); 2432 tcp_undo_cwnd_reduction(sk, false); 2433 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2434 return true; 2435 } 2436 return false; 2437 } 2438 2439 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2440 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2441 { 2442 struct tcp_sock *tp = tcp_sk(sk); 2443 2444 if (frto_undo || tcp_may_undo(tp)) { 2445 tcp_undo_cwnd_reduction(sk, true); 2446 2447 DBGUNDO(sk, "partial loss"); 2448 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2449 if (frto_undo) 2450 NET_INC_STATS(sock_net(sk), 2451 LINUX_MIB_TCPSPURIOUSRTOS); 2452 inet_csk(sk)->icsk_retransmits = 0; 2453 if (frto_undo || tcp_is_sack(tp)) { 2454 tcp_set_ca_state(sk, TCP_CA_Open); 2455 tp->is_sack_reneg = 0; 2456 } 2457 return true; 2458 } 2459 return false; 2460 } 2461 2462 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2463 * It computes the number of packets to send (sndcnt) based on packets newly 2464 * delivered: 2465 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2466 * cwnd reductions across a full RTT. 2467 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2468 * But when the retransmits are acked without further losses, PRR 2469 * slow starts cwnd up to ssthresh to speed up the recovery. 2470 */ 2471 static void tcp_init_cwnd_reduction(struct sock *sk) 2472 { 2473 struct tcp_sock *tp = tcp_sk(sk); 2474 2475 tp->high_seq = tp->snd_nxt; 2476 tp->tlp_high_seq = 0; 2477 tp->snd_cwnd_cnt = 0; 2478 tp->prior_cwnd = tp->snd_cwnd; 2479 tp->prr_delivered = 0; 2480 tp->prr_out = 0; 2481 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2482 tcp_ecn_queue_cwr(tp); 2483 } 2484 2485 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2486 { 2487 struct tcp_sock *tp = tcp_sk(sk); 2488 int sndcnt = 0; 2489 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2490 2491 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2492 return; 2493 2494 tp->prr_delivered += newly_acked_sacked; 2495 if (delta < 0) { 2496 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2497 tp->prior_cwnd - 1; 2498 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2499 } else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) == 2500 FLAG_RETRANS_DATA_ACKED) { 2501 sndcnt = min_t(int, delta, 2502 max_t(int, tp->prr_delivered - tp->prr_out, 2503 newly_acked_sacked) + 1); 2504 } else { 2505 sndcnt = min(delta, newly_acked_sacked); 2506 } 2507 /* Force a fast retransmit upon entering fast recovery */ 2508 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2509 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2510 } 2511 2512 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2513 { 2514 struct tcp_sock *tp = tcp_sk(sk); 2515 2516 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2517 return; 2518 2519 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2520 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2521 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2522 tp->snd_cwnd = tp->snd_ssthresh; 2523 tp->snd_cwnd_stamp = tcp_jiffies32; 2524 } 2525 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2526 } 2527 2528 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2529 void tcp_enter_cwr(struct sock *sk) 2530 { 2531 struct tcp_sock *tp = tcp_sk(sk); 2532 2533 tp->prior_ssthresh = 0; 2534 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2535 tp->undo_marker = 0; 2536 tcp_init_cwnd_reduction(sk); 2537 tcp_set_ca_state(sk, TCP_CA_CWR); 2538 } 2539 } 2540 EXPORT_SYMBOL(tcp_enter_cwr); 2541 2542 static void tcp_try_keep_open(struct sock *sk) 2543 { 2544 struct tcp_sock *tp = tcp_sk(sk); 2545 int state = TCP_CA_Open; 2546 2547 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2548 state = TCP_CA_Disorder; 2549 2550 if (inet_csk(sk)->icsk_ca_state != state) { 2551 tcp_set_ca_state(sk, state); 2552 tp->high_seq = tp->snd_nxt; 2553 } 2554 } 2555 2556 static void tcp_try_to_open(struct sock *sk, int flag) 2557 { 2558 struct tcp_sock *tp = tcp_sk(sk); 2559 2560 tcp_verify_left_out(tp); 2561 2562 if (!tcp_any_retrans_done(sk)) 2563 tp->retrans_stamp = 0; 2564 2565 if (flag & FLAG_ECE) 2566 tcp_enter_cwr(sk); 2567 2568 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2569 tcp_try_keep_open(sk); 2570 } 2571 } 2572 2573 static void tcp_mtup_probe_failed(struct sock *sk) 2574 { 2575 struct inet_connection_sock *icsk = inet_csk(sk); 2576 2577 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2578 icsk->icsk_mtup.probe_size = 0; 2579 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2580 } 2581 2582 static void tcp_mtup_probe_success(struct sock *sk) 2583 { 2584 struct tcp_sock *tp = tcp_sk(sk); 2585 struct inet_connection_sock *icsk = inet_csk(sk); 2586 2587 /* FIXME: breaks with very large cwnd */ 2588 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2589 tp->snd_cwnd = tp->snd_cwnd * 2590 tcp_mss_to_mtu(sk, tp->mss_cache) / 2591 icsk->icsk_mtup.probe_size; 2592 tp->snd_cwnd_cnt = 0; 2593 tp->snd_cwnd_stamp = tcp_jiffies32; 2594 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2595 2596 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2597 icsk->icsk_mtup.probe_size = 0; 2598 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2599 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2600 } 2601 2602 /* Do a simple retransmit without using the backoff mechanisms in 2603 * tcp_timer. This is used for path mtu discovery. 2604 * The socket is already locked here. 2605 */ 2606 void tcp_simple_retransmit(struct sock *sk) 2607 { 2608 const struct inet_connection_sock *icsk = inet_csk(sk); 2609 struct tcp_sock *tp = tcp_sk(sk); 2610 struct sk_buff *skb; 2611 unsigned int mss = tcp_current_mss(sk); 2612 2613 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2614 if (tcp_skb_seglen(skb) > mss && 2615 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2616 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2617 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2618 tp->retrans_out -= tcp_skb_pcount(skb); 2619 } 2620 tcp_skb_mark_lost_uncond_verify(tp, skb); 2621 } 2622 } 2623 2624 tcp_clear_retrans_hints_partial(tp); 2625 2626 if (!tp->lost_out) 2627 return; 2628 2629 if (tcp_is_reno(tp)) 2630 tcp_limit_reno_sacked(tp); 2631 2632 tcp_verify_left_out(tp); 2633 2634 /* Don't muck with the congestion window here. 2635 * Reason is that we do not increase amount of _data_ 2636 * in network, but units changed and effective 2637 * cwnd/ssthresh really reduced now. 2638 */ 2639 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2640 tp->high_seq = tp->snd_nxt; 2641 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2642 tp->prior_ssthresh = 0; 2643 tp->undo_marker = 0; 2644 tcp_set_ca_state(sk, TCP_CA_Loss); 2645 } 2646 tcp_xmit_retransmit_queue(sk); 2647 } 2648 EXPORT_SYMBOL(tcp_simple_retransmit); 2649 2650 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2651 { 2652 struct tcp_sock *tp = tcp_sk(sk); 2653 int mib_idx; 2654 2655 if (tcp_is_reno(tp)) 2656 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2657 else 2658 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2659 2660 NET_INC_STATS(sock_net(sk), mib_idx); 2661 2662 tp->prior_ssthresh = 0; 2663 tcp_init_undo(tp); 2664 2665 if (!tcp_in_cwnd_reduction(sk)) { 2666 if (!ece_ack) 2667 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2668 tcp_init_cwnd_reduction(sk); 2669 } 2670 tcp_set_ca_state(sk, TCP_CA_Recovery); 2671 } 2672 2673 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2674 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2675 */ 2676 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2677 int *rexmit) 2678 { 2679 struct tcp_sock *tp = tcp_sk(sk); 2680 bool recovered = !before(tp->snd_una, tp->high_seq); 2681 2682 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 2683 tcp_try_undo_loss(sk, false)) 2684 return; 2685 2686 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2687 /* Step 3.b. A timeout is spurious if not all data are 2688 * lost, i.e., never-retransmitted data are (s)acked. 2689 */ 2690 if ((flag & FLAG_ORIG_SACK_ACKED) && 2691 tcp_try_undo_loss(sk, true)) 2692 return; 2693 2694 if (after(tp->snd_nxt, tp->high_seq)) { 2695 if (flag & FLAG_DATA_SACKED || num_dupack) 2696 tp->frto = 0; /* Step 3.a. loss was real */ 2697 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2698 tp->high_seq = tp->snd_nxt; 2699 /* Step 2.b. Try send new data (but deferred until cwnd 2700 * is updated in tcp_ack()). Otherwise fall back to 2701 * the conventional recovery. 2702 */ 2703 if (!tcp_write_queue_empty(sk) && 2704 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2705 *rexmit = REXMIT_NEW; 2706 return; 2707 } 2708 tp->frto = 0; 2709 } 2710 } 2711 2712 if (recovered) { 2713 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2714 tcp_try_undo_recovery(sk); 2715 return; 2716 } 2717 if (tcp_is_reno(tp)) { 2718 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2719 * delivered. Lower inflight to clock out (re)tranmissions. 2720 */ 2721 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2722 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE); 2723 else if (flag & FLAG_SND_UNA_ADVANCED) 2724 tcp_reset_reno_sack(tp); 2725 } 2726 *rexmit = REXMIT_LOST; 2727 } 2728 2729 /* Undo during fast recovery after partial ACK. */ 2730 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una) 2731 { 2732 struct tcp_sock *tp = tcp_sk(sk); 2733 2734 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2735 /* Plain luck! Hole if filled with delayed 2736 * packet, rather than with a retransmit. Check reordering. 2737 */ 2738 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2739 2740 /* We are getting evidence that the reordering degree is higher 2741 * than we realized. If there are no retransmits out then we 2742 * can undo. Otherwise we clock out new packets but do not 2743 * mark more packets lost or retransmit more. 2744 */ 2745 if (tp->retrans_out) 2746 return true; 2747 2748 if (!tcp_any_retrans_done(sk)) 2749 tp->retrans_stamp = 0; 2750 2751 DBGUNDO(sk, "partial recovery"); 2752 tcp_undo_cwnd_reduction(sk, true); 2753 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2754 tcp_try_keep_open(sk); 2755 return true; 2756 } 2757 return false; 2758 } 2759 2760 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2761 { 2762 struct tcp_sock *tp = tcp_sk(sk); 2763 2764 if (tcp_rtx_queue_empty(sk)) 2765 return; 2766 2767 if (unlikely(tcp_is_reno(tp))) { 2768 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2769 } else if (tcp_is_rack(sk)) { 2770 u32 prior_retrans = tp->retrans_out; 2771 2772 tcp_rack_mark_lost(sk); 2773 if (prior_retrans > tp->retrans_out) 2774 *ack_flag |= FLAG_LOST_RETRANS; 2775 } 2776 } 2777 2778 static bool tcp_force_fast_retransmit(struct sock *sk) 2779 { 2780 struct tcp_sock *tp = tcp_sk(sk); 2781 2782 return after(tcp_highest_sack_seq(tp), 2783 tp->snd_una + tp->reordering * tp->mss_cache); 2784 } 2785 2786 /* Process an event, which can update packets-in-flight not trivially. 2787 * Main goal of this function is to calculate new estimate for left_out, 2788 * taking into account both packets sitting in receiver's buffer and 2789 * packets lost by network. 2790 * 2791 * Besides that it updates the congestion state when packet loss or ECN 2792 * is detected. But it does not reduce the cwnd, it is done by the 2793 * congestion control later. 2794 * 2795 * It does _not_ decide what to send, it is made in function 2796 * tcp_xmit_retransmit_queue(). 2797 */ 2798 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2799 int num_dupack, int *ack_flag, int *rexmit) 2800 { 2801 struct inet_connection_sock *icsk = inet_csk(sk); 2802 struct tcp_sock *tp = tcp_sk(sk); 2803 int fast_rexmit = 0, flag = *ack_flag; 2804 bool ece_ack = flag & FLAG_ECE; 2805 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && 2806 tcp_force_fast_retransmit(sk)); 2807 2808 if (!tp->packets_out && tp->sacked_out) 2809 tp->sacked_out = 0; 2810 2811 /* Now state machine starts. 2812 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2813 if (ece_ack) 2814 tp->prior_ssthresh = 0; 2815 2816 /* B. In all the states check for reneging SACKs. */ 2817 if (tcp_check_sack_reneging(sk, flag)) 2818 return; 2819 2820 /* C. Check consistency of the current state. */ 2821 tcp_verify_left_out(tp); 2822 2823 /* D. Check state exit conditions. State can be terminated 2824 * when high_seq is ACKed. */ 2825 if (icsk->icsk_ca_state == TCP_CA_Open) { 2826 WARN_ON(tp->retrans_out != 0); 2827 tp->retrans_stamp = 0; 2828 } else if (!before(tp->snd_una, tp->high_seq)) { 2829 switch (icsk->icsk_ca_state) { 2830 case TCP_CA_CWR: 2831 /* CWR is to be held something *above* high_seq 2832 * is ACKed for CWR bit to reach receiver. */ 2833 if (tp->snd_una != tp->high_seq) { 2834 tcp_end_cwnd_reduction(sk); 2835 tcp_set_ca_state(sk, TCP_CA_Open); 2836 } 2837 break; 2838 2839 case TCP_CA_Recovery: 2840 if (tcp_is_reno(tp)) 2841 tcp_reset_reno_sack(tp); 2842 if (tcp_try_undo_recovery(sk)) 2843 return; 2844 tcp_end_cwnd_reduction(sk); 2845 break; 2846 } 2847 } 2848 2849 /* E. Process state. */ 2850 switch (icsk->icsk_ca_state) { 2851 case TCP_CA_Recovery: 2852 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2853 if (tcp_is_reno(tp)) 2854 tcp_add_reno_sack(sk, num_dupack, ece_ack); 2855 } else { 2856 if (tcp_try_undo_partial(sk, prior_snd_una)) 2857 return; 2858 /* Partial ACK arrived. Force fast retransmit. */ 2859 do_lost = tcp_force_fast_retransmit(sk); 2860 } 2861 if (tcp_try_undo_dsack(sk)) { 2862 tcp_try_keep_open(sk); 2863 return; 2864 } 2865 tcp_identify_packet_loss(sk, ack_flag); 2866 break; 2867 case TCP_CA_Loss: 2868 tcp_process_loss(sk, flag, num_dupack, rexmit); 2869 tcp_identify_packet_loss(sk, ack_flag); 2870 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2871 (*ack_flag & FLAG_LOST_RETRANS))) 2872 return; 2873 /* Change state if cwnd is undone or retransmits are lost */ 2874 fallthrough; 2875 default: 2876 if (tcp_is_reno(tp)) { 2877 if (flag & FLAG_SND_UNA_ADVANCED) 2878 tcp_reset_reno_sack(tp); 2879 tcp_add_reno_sack(sk, num_dupack, ece_ack); 2880 } 2881 2882 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2883 tcp_try_undo_dsack(sk); 2884 2885 tcp_identify_packet_loss(sk, ack_flag); 2886 if (!tcp_time_to_recover(sk, flag)) { 2887 tcp_try_to_open(sk, flag); 2888 return; 2889 } 2890 2891 /* MTU probe failure: don't reduce cwnd */ 2892 if (icsk->icsk_ca_state < TCP_CA_CWR && 2893 icsk->icsk_mtup.probe_size && 2894 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2895 tcp_mtup_probe_failed(sk); 2896 /* Restores the reduction we did in tcp_mtup_probe() */ 2897 tp->snd_cwnd++; 2898 tcp_simple_retransmit(sk); 2899 return; 2900 } 2901 2902 /* Otherwise enter Recovery state */ 2903 tcp_enter_recovery(sk, ece_ack); 2904 fast_rexmit = 1; 2905 } 2906 2907 if (!tcp_is_rack(sk) && do_lost) 2908 tcp_update_scoreboard(sk, fast_rexmit); 2909 *rexmit = REXMIT_LOST; 2910 } 2911 2912 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 2913 { 2914 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ; 2915 struct tcp_sock *tp = tcp_sk(sk); 2916 2917 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 2918 /* If the remote keeps returning delayed ACKs, eventually 2919 * the min filter would pick it up and overestimate the 2920 * prop. delay when it expires. Skip suspected delayed ACKs. 2921 */ 2922 return; 2923 } 2924 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 2925 rtt_us ? : jiffies_to_usecs(1)); 2926 } 2927 2928 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2929 long seq_rtt_us, long sack_rtt_us, 2930 long ca_rtt_us, struct rate_sample *rs) 2931 { 2932 const struct tcp_sock *tp = tcp_sk(sk); 2933 2934 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2935 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2936 * Karn's algorithm forbids taking RTT if some retransmitted data 2937 * is acked (RFC6298). 2938 */ 2939 if (seq_rtt_us < 0) 2940 seq_rtt_us = sack_rtt_us; 2941 2942 /* RTTM Rule: A TSecr value received in a segment is used to 2943 * update the averaged RTT measurement only if the segment 2944 * acknowledges some new data, i.e., only if it advances the 2945 * left edge of the send window. 2946 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2947 */ 2948 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2949 flag & FLAG_ACKED) { 2950 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 2951 2952 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 2953 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 2954 ca_rtt_us = seq_rtt_us; 2955 } 2956 } 2957 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 2958 if (seq_rtt_us < 0) 2959 return false; 2960 2961 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2962 * always taken together with ACK, SACK, or TS-opts. Any negative 2963 * values will be skipped with the seq_rtt_us < 0 check above. 2964 */ 2965 tcp_update_rtt_min(sk, ca_rtt_us, flag); 2966 tcp_rtt_estimator(sk, seq_rtt_us); 2967 tcp_set_rto(sk); 2968 2969 /* RFC6298: only reset backoff on valid RTT measurement. */ 2970 inet_csk(sk)->icsk_backoff = 0; 2971 return true; 2972 } 2973 2974 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2975 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2976 { 2977 struct rate_sample rs; 2978 long rtt_us = -1L; 2979 2980 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 2981 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 2982 2983 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 2984 } 2985 2986 2987 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2988 { 2989 const struct inet_connection_sock *icsk = inet_csk(sk); 2990 2991 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2992 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 2993 } 2994 2995 /* Restart timer after forward progress on connection. 2996 * RFC2988 recommends to restart timer to now+rto. 2997 */ 2998 void tcp_rearm_rto(struct sock *sk) 2999 { 3000 const struct inet_connection_sock *icsk = inet_csk(sk); 3001 struct tcp_sock *tp = tcp_sk(sk); 3002 3003 /* If the retrans timer is currently being used by Fast Open 3004 * for SYN-ACK retrans purpose, stay put. 3005 */ 3006 if (rcu_access_pointer(tp->fastopen_rsk)) 3007 return; 3008 3009 if (!tp->packets_out) { 3010 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3011 } else { 3012 u32 rto = inet_csk(sk)->icsk_rto; 3013 /* Offset the time elapsed after installing regular RTO */ 3014 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3015 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3016 s64 delta_us = tcp_rto_delta_us(sk); 3017 /* delta_us may not be positive if the socket is locked 3018 * when the retrans timer fires and is rescheduled. 3019 */ 3020 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3021 } 3022 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3023 TCP_RTO_MAX); 3024 } 3025 } 3026 3027 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3028 static void tcp_set_xmit_timer(struct sock *sk) 3029 { 3030 if (!tcp_schedule_loss_probe(sk, true)) 3031 tcp_rearm_rto(sk); 3032 } 3033 3034 /* If we get here, the whole TSO packet has not been acked. */ 3035 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3036 { 3037 struct tcp_sock *tp = tcp_sk(sk); 3038 u32 packets_acked; 3039 3040 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3041 3042 packets_acked = tcp_skb_pcount(skb); 3043 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3044 return 0; 3045 packets_acked -= tcp_skb_pcount(skb); 3046 3047 if (packets_acked) { 3048 BUG_ON(tcp_skb_pcount(skb) == 0); 3049 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3050 } 3051 3052 return packets_acked; 3053 } 3054 3055 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3056 u32 prior_snd_una) 3057 { 3058 const struct skb_shared_info *shinfo; 3059 3060 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3061 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3062 return; 3063 3064 shinfo = skb_shinfo(skb); 3065 if (!before(shinfo->tskey, prior_snd_una) && 3066 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3067 tcp_skb_tsorted_save(skb) { 3068 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3069 } tcp_skb_tsorted_restore(skb); 3070 } 3071 } 3072 3073 /* Remove acknowledged frames from the retransmission queue. If our packet 3074 * is before the ack sequence we can discard it as it's confirmed to have 3075 * arrived at the other end. 3076 */ 3077 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack, 3078 u32 prior_snd_una, 3079 struct tcp_sacktag_state *sack, bool ece_ack) 3080 { 3081 const struct inet_connection_sock *icsk = inet_csk(sk); 3082 u64 first_ackt, last_ackt; 3083 struct tcp_sock *tp = tcp_sk(sk); 3084 u32 prior_sacked = tp->sacked_out; 3085 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3086 struct sk_buff *skb, *next; 3087 bool fully_acked = true; 3088 long sack_rtt_us = -1L; 3089 long seq_rtt_us = -1L; 3090 long ca_rtt_us = -1L; 3091 u32 pkts_acked = 0; 3092 u32 last_in_flight = 0; 3093 bool rtt_update; 3094 int flag = 0; 3095 3096 first_ackt = 0; 3097 3098 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3099 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3100 const u32 start_seq = scb->seq; 3101 u8 sacked = scb->sacked; 3102 u32 acked_pcount; 3103 3104 /* Determine how many packets and what bytes were acked, tso and else */ 3105 if (after(scb->end_seq, tp->snd_una)) { 3106 if (tcp_skb_pcount(skb) == 1 || 3107 !after(tp->snd_una, scb->seq)) 3108 break; 3109 3110 acked_pcount = tcp_tso_acked(sk, skb); 3111 if (!acked_pcount) 3112 break; 3113 fully_acked = false; 3114 } else { 3115 acked_pcount = tcp_skb_pcount(skb); 3116 } 3117 3118 if (unlikely(sacked & TCPCB_RETRANS)) { 3119 if (sacked & TCPCB_SACKED_RETRANS) 3120 tp->retrans_out -= acked_pcount; 3121 flag |= FLAG_RETRANS_DATA_ACKED; 3122 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3123 last_ackt = tcp_skb_timestamp_us(skb); 3124 WARN_ON_ONCE(last_ackt == 0); 3125 if (!first_ackt) 3126 first_ackt = last_ackt; 3127 3128 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3129 if (before(start_seq, reord)) 3130 reord = start_seq; 3131 if (!after(scb->end_seq, tp->high_seq)) 3132 flag |= FLAG_ORIG_SACK_ACKED; 3133 } 3134 3135 if (sacked & TCPCB_SACKED_ACKED) { 3136 tp->sacked_out -= acked_pcount; 3137 } else if (tcp_is_sack(tp)) { 3138 tcp_count_delivered(tp, acked_pcount, ece_ack); 3139 if (!tcp_skb_spurious_retrans(tp, skb)) 3140 tcp_rack_advance(tp, sacked, scb->end_seq, 3141 tcp_skb_timestamp_us(skb)); 3142 } 3143 if (sacked & TCPCB_LOST) 3144 tp->lost_out -= acked_pcount; 3145 3146 tp->packets_out -= acked_pcount; 3147 pkts_acked += acked_pcount; 3148 tcp_rate_skb_delivered(sk, skb, sack->rate); 3149 3150 /* Initial outgoing SYN's get put onto the write_queue 3151 * just like anything else we transmit. It is not 3152 * true data, and if we misinform our callers that 3153 * this ACK acks real data, we will erroneously exit 3154 * connection startup slow start one packet too 3155 * quickly. This is severely frowned upon behavior. 3156 */ 3157 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3158 flag |= FLAG_DATA_ACKED; 3159 } else { 3160 flag |= FLAG_SYN_ACKED; 3161 tp->retrans_stamp = 0; 3162 } 3163 3164 if (!fully_acked) 3165 break; 3166 3167 tcp_ack_tstamp(sk, skb, prior_snd_una); 3168 3169 next = skb_rb_next(skb); 3170 if (unlikely(skb == tp->retransmit_skb_hint)) 3171 tp->retransmit_skb_hint = NULL; 3172 if (unlikely(skb == tp->lost_skb_hint)) 3173 tp->lost_skb_hint = NULL; 3174 tcp_highest_sack_replace(sk, skb, next); 3175 tcp_rtx_queue_unlink_and_free(skb, sk); 3176 } 3177 3178 if (!skb) 3179 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3180 3181 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3182 tp->snd_up = tp->snd_una; 3183 3184 if (skb) { 3185 tcp_ack_tstamp(sk, skb, prior_snd_una); 3186 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3187 flag |= FLAG_SACK_RENEGING; 3188 } 3189 3190 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3191 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3192 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3193 3194 if (pkts_acked == 1 && last_in_flight < tp->mss_cache && 3195 last_in_flight && !prior_sacked && fully_acked && 3196 sack->rate->prior_delivered + 1 == tp->delivered && 3197 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3198 /* Conservatively mark a delayed ACK. It's typically 3199 * from a lone runt packet over the round trip to 3200 * a receiver w/o out-of-order or CE events. 3201 */ 3202 flag |= FLAG_ACK_MAYBE_DELAYED; 3203 } 3204 } 3205 if (sack->first_sackt) { 3206 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3207 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3208 } 3209 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3210 ca_rtt_us, sack->rate); 3211 3212 if (flag & FLAG_ACKED) { 3213 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3214 if (unlikely(icsk->icsk_mtup.probe_size && 3215 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3216 tcp_mtup_probe_success(sk); 3217 } 3218 3219 if (tcp_is_reno(tp)) { 3220 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack); 3221 3222 /* If any of the cumulatively ACKed segments was 3223 * retransmitted, non-SACK case cannot confirm that 3224 * progress was due to original transmission due to 3225 * lack of TCPCB_SACKED_ACKED bits even if some of 3226 * the packets may have been never retransmitted. 3227 */ 3228 if (flag & FLAG_RETRANS_DATA_ACKED) 3229 flag &= ~FLAG_ORIG_SACK_ACKED; 3230 } else { 3231 int delta; 3232 3233 /* Non-retransmitted hole got filled? That's reordering */ 3234 if (before(reord, prior_fack)) 3235 tcp_check_sack_reordering(sk, reord, 0); 3236 3237 delta = prior_sacked - tp->sacked_out; 3238 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3239 } 3240 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3241 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3242 tcp_skb_timestamp_us(skb))) { 3243 /* Do not re-arm RTO if the sack RTT is measured from data sent 3244 * after when the head was last (re)transmitted. Otherwise the 3245 * timeout may continue to extend in loss recovery. 3246 */ 3247 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3248 } 3249 3250 if (icsk->icsk_ca_ops->pkts_acked) { 3251 struct ack_sample sample = { .pkts_acked = pkts_acked, 3252 .rtt_us = sack->rate->rtt_us, 3253 .in_flight = last_in_flight }; 3254 3255 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3256 } 3257 3258 #if FASTRETRANS_DEBUG > 0 3259 WARN_ON((int)tp->sacked_out < 0); 3260 WARN_ON((int)tp->lost_out < 0); 3261 WARN_ON((int)tp->retrans_out < 0); 3262 if (!tp->packets_out && tcp_is_sack(tp)) { 3263 icsk = inet_csk(sk); 3264 if (tp->lost_out) { 3265 pr_debug("Leak l=%u %d\n", 3266 tp->lost_out, icsk->icsk_ca_state); 3267 tp->lost_out = 0; 3268 } 3269 if (tp->sacked_out) { 3270 pr_debug("Leak s=%u %d\n", 3271 tp->sacked_out, icsk->icsk_ca_state); 3272 tp->sacked_out = 0; 3273 } 3274 if (tp->retrans_out) { 3275 pr_debug("Leak r=%u %d\n", 3276 tp->retrans_out, icsk->icsk_ca_state); 3277 tp->retrans_out = 0; 3278 } 3279 } 3280 #endif 3281 return flag; 3282 } 3283 3284 static void tcp_ack_probe(struct sock *sk) 3285 { 3286 struct inet_connection_sock *icsk = inet_csk(sk); 3287 struct sk_buff *head = tcp_send_head(sk); 3288 const struct tcp_sock *tp = tcp_sk(sk); 3289 3290 /* Was it a usable window open? */ 3291 if (!head) 3292 return; 3293 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3294 icsk->icsk_backoff = 0; 3295 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3296 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3297 * This function is not for random using! 3298 */ 3299 } else { 3300 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3301 3302 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3303 when, TCP_RTO_MAX); 3304 } 3305 } 3306 3307 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3308 { 3309 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3310 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3311 } 3312 3313 /* Decide wheather to run the increase function of congestion control. */ 3314 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3315 { 3316 /* If reordering is high then always grow cwnd whenever data is 3317 * delivered regardless of its ordering. Otherwise stay conservative 3318 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3319 * new SACK or ECE mark may first advance cwnd here and later reduce 3320 * cwnd in tcp_fastretrans_alert() based on more states. 3321 */ 3322 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3323 return flag & FLAG_FORWARD_PROGRESS; 3324 3325 return flag & FLAG_DATA_ACKED; 3326 } 3327 3328 /* The "ultimate" congestion control function that aims to replace the rigid 3329 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3330 * It's called toward the end of processing an ACK with precise rate 3331 * information. All transmission or retransmission are delayed afterwards. 3332 */ 3333 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3334 int flag, const struct rate_sample *rs) 3335 { 3336 const struct inet_connection_sock *icsk = inet_csk(sk); 3337 3338 if (icsk->icsk_ca_ops->cong_control) { 3339 icsk->icsk_ca_ops->cong_control(sk, rs); 3340 return; 3341 } 3342 3343 if (tcp_in_cwnd_reduction(sk)) { 3344 /* Reduce cwnd if state mandates */ 3345 tcp_cwnd_reduction(sk, acked_sacked, flag); 3346 } else if (tcp_may_raise_cwnd(sk, flag)) { 3347 /* Advance cwnd if state allows */ 3348 tcp_cong_avoid(sk, ack, acked_sacked); 3349 } 3350 tcp_update_pacing_rate(sk); 3351 } 3352 3353 /* Check that window update is acceptable. 3354 * The function assumes that snd_una<=ack<=snd_next. 3355 */ 3356 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3357 const u32 ack, const u32 ack_seq, 3358 const u32 nwin) 3359 { 3360 return after(ack, tp->snd_una) || 3361 after(ack_seq, tp->snd_wl1) || 3362 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3363 } 3364 3365 /* If we update tp->snd_una, also update tp->bytes_acked */ 3366 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3367 { 3368 u32 delta = ack - tp->snd_una; 3369 3370 sock_owned_by_me((struct sock *)tp); 3371 tp->bytes_acked += delta; 3372 tp->snd_una = ack; 3373 } 3374 3375 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3376 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3377 { 3378 u32 delta = seq - tp->rcv_nxt; 3379 3380 sock_owned_by_me((struct sock *)tp); 3381 tp->bytes_received += delta; 3382 WRITE_ONCE(tp->rcv_nxt, seq); 3383 } 3384 3385 /* Update our send window. 3386 * 3387 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3388 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3389 */ 3390 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3391 u32 ack_seq) 3392 { 3393 struct tcp_sock *tp = tcp_sk(sk); 3394 int flag = 0; 3395 u32 nwin = ntohs(tcp_hdr(skb)->window); 3396 3397 if (likely(!tcp_hdr(skb)->syn)) 3398 nwin <<= tp->rx_opt.snd_wscale; 3399 3400 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3401 flag |= FLAG_WIN_UPDATE; 3402 tcp_update_wl(tp, ack_seq); 3403 3404 if (tp->snd_wnd != nwin) { 3405 tp->snd_wnd = nwin; 3406 3407 /* Note, it is the only place, where 3408 * fast path is recovered for sending TCP. 3409 */ 3410 tp->pred_flags = 0; 3411 tcp_fast_path_check(sk); 3412 3413 if (!tcp_write_queue_empty(sk)) 3414 tcp_slow_start_after_idle_check(sk); 3415 3416 if (nwin > tp->max_window) { 3417 tp->max_window = nwin; 3418 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3419 } 3420 } 3421 } 3422 3423 tcp_snd_una_update(tp, ack); 3424 3425 return flag; 3426 } 3427 3428 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3429 u32 *last_oow_ack_time) 3430 { 3431 if (*last_oow_ack_time) { 3432 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3433 3434 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) { 3435 NET_INC_STATS(net, mib_idx); 3436 return true; /* rate-limited: don't send yet! */ 3437 } 3438 } 3439 3440 *last_oow_ack_time = tcp_jiffies32; 3441 3442 return false; /* not rate-limited: go ahead, send dupack now! */ 3443 } 3444 3445 /* Return true if we're currently rate-limiting out-of-window ACKs and 3446 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3447 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3448 * attacks that send repeated SYNs or ACKs for the same connection. To 3449 * do this, we do not send a duplicate SYNACK or ACK if the remote 3450 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3451 */ 3452 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3453 int mib_idx, u32 *last_oow_ack_time) 3454 { 3455 /* Data packets without SYNs are not likely part of an ACK loop. */ 3456 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3457 !tcp_hdr(skb)->syn) 3458 return false; 3459 3460 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3461 } 3462 3463 /* RFC 5961 7 [ACK Throttling] */ 3464 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3465 { 3466 /* unprotected vars, we dont care of overwrites */ 3467 static u32 challenge_timestamp; 3468 static unsigned int challenge_count; 3469 struct tcp_sock *tp = tcp_sk(sk); 3470 struct net *net = sock_net(sk); 3471 u32 count, now; 3472 3473 /* First check our per-socket dupack rate limit. */ 3474 if (__tcp_oow_rate_limited(net, 3475 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3476 &tp->last_oow_ack_time)) 3477 return; 3478 3479 /* Then check host-wide RFC 5961 rate limit. */ 3480 now = jiffies / HZ; 3481 if (now != challenge_timestamp) { 3482 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit; 3483 u32 half = (ack_limit + 1) >> 1; 3484 3485 challenge_timestamp = now; 3486 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit)); 3487 } 3488 count = READ_ONCE(challenge_count); 3489 if (count > 0) { 3490 WRITE_ONCE(challenge_count, count - 1); 3491 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3492 tcp_send_ack(sk); 3493 } 3494 } 3495 3496 static void tcp_store_ts_recent(struct tcp_sock *tp) 3497 { 3498 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3499 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3500 } 3501 3502 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3503 { 3504 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3505 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3506 * extra check below makes sure this can only happen 3507 * for pure ACK frames. -DaveM 3508 * 3509 * Not only, also it occurs for expired timestamps. 3510 */ 3511 3512 if (tcp_paws_check(&tp->rx_opt, 0)) 3513 tcp_store_ts_recent(tp); 3514 } 3515 } 3516 3517 /* This routine deals with acks during a TLP episode and ends an episode by 3518 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack 3519 */ 3520 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3521 { 3522 struct tcp_sock *tp = tcp_sk(sk); 3523 3524 if (before(ack, tp->tlp_high_seq)) 3525 return; 3526 3527 if (!tp->tlp_retrans) { 3528 /* TLP of new data has been acknowledged */ 3529 tp->tlp_high_seq = 0; 3530 } else if (flag & FLAG_DSACKING_ACK) { 3531 /* This DSACK means original and TLP probe arrived; no loss */ 3532 tp->tlp_high_seq = 0; 3533 } else if (after(ack, tp->tlp_high_seq)) { 3534 /* ACK advances: there was a loss, so reduce cwnd. Reset 3535 * tlp_high_seq in tcp_init_cwnd_reduction() 3536 */ 3537 tcp_init_cwnd_reduction(sk); 3538 tcp_set_ca_state(sk, TCP_CA_CWR); 3539 tcp_end_cwnd_reduction(sk); 3540 tcp_try_keep_open(sk); 3541 NET_INC_STATS(sock_net(sk), 3542 LINUX_MIB_TCPLOSSPROBERECOVERY); 3543 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3544 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3545 /* Pure dupack: original and TLP probe arrived; no loss */ 3546 tp->tlp_high_seq = 0; 3547 } 3548 } 3549 3550 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3551 { 3552 const struct inet_connection_sock *icsk = inet_csk(sk); 3553 3554 if (icsk->icsk_ca_ops->in_ack_event) 3555 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3556 } 3557 3558 /* Congestion control has updated the cwnd already. So if we're in 3559 * loss recovery then now we do any new sends (for FRTO) or 3560 * retransmits (for CA_Loss or CA_recovery) that make sense. 3561 */ 3562 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3563 { 3564 struct tcp_sock *tp = tcp_sk(sk); 3565 3566 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3567 return; 3568 3569 if (unlikely(rexmit == REXMIT_NEW)) { 3570 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3571 TCP_NAGLE_OFF); 3572 if (after(tp->snd_nxt, tp->high_seq)) 3573 return; 3574 tp->frto = 0; 3575 } 3576 tcp_xmit_retransmit_queue(sk); 3577 } 3578 3579 /* Returns the number of packets newly acked or sacked by the current ACK */ 3580 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3581 { 3582 const struct net *net = sock_net(sk); 3583 struct tcp_sock *tp = tcp_sk(sk); 3584 u32 delivered; 3585 3586 delivered = tp->delivered - prior_delivered; 3587 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3588 if (flag & FLAG_ECE) 3589 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3590 3591 return delivered; 3592 } 3593 3594 /* This routine deals with incoming acks, but not outgoing ones. */ 3595 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3596 { 3597 struct inet_connection_sock *icsk = inet_csk(sk); 3598 struct tcp_sock *tp = tcp_sk(sk); 3599 struct tcp_sacktag_state sack_state; 3600 struct rate_sample rs = { .prior_delivered = 0 }; 3601 u32 prior_snd_una = tp->snd_una; 3602 bool is_sack_reneg = tp->is_sack_reneg; 3603 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3604 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3605 int num_dupack = 0; 3606 int prior_packets = tp->packets_out; 3607 u32 delivered = tp->delivered; 3608 u32 lost = tp->lost; 3609 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3610 u32 prior_fack; 3611 3612 sack_state.first_sackt = 0; 3613 sack_state.rate = &rs; 3614 sack_state.sack_delivered = 0; 3615 3616 /* We very likely will need to access rtx queue. */ 3617 prefetch(sk->tcp_rtx_queue.rb_node); 3618 3619 /* If the ack is older than previous acks 3620 * then we can probably ignore it. 3621 */ 3622 if (before(ack, prior_snd_una)) { 3623 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3624 if (before(ack, prior_snd_una - tp->max_window)) { 3625 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3626 tcp_send_challenge_ack(sk, skb); 3627 return -1; 3628 } 3629 goto old_ack; 3630 } 3631 3632 /* If the ack includes data we haven't sent yet, discard 3633 * this segment (RFC793 Section 3.9). 3634 */ 3635 if (after(ack, tp->snd_nxt)) 3636 return -1; 3637 3638 if (after(ack, prior_snd_una)) { 3639 flag |= FLAG_SND_UNA_ADVANCED; 3640 icsk->icsk_retransmits = 0; 3641 3642 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3643 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 3644 if (icsk->icsk_clean_acked) 3645 icsk->icsk_clean_acked(sk, ack); 3646 #endif 3647 } 3648 3649 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3650 rs.prior_in_flight = tcp_packets_in_flight(tp); 3651 3652 /* ts_recent update must be made after we are sure that the packet 3653 * is in window. 3654 */ 3655 if (flag & FLAG_UPDATE_TS_RECENT) 3656 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3657 3658 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 3659 FLAG_SND_UNA_ADVANCED) { 3660 /* Window is constant, pure forward advance. 3661 * No more checks are required. 3662 * Note, we use the fact that SND.UNA>=SND.WL2. 3663 */ 3664 tcp_update_wl(tp, ack_seq); 3665 tcp_snd_una_update(tp, ack); 3666 flag |= FLAG_WIN_UPDATE; 3667 3668 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3669 3670 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3671 } else { 3672 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3673 3674 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3675 flag |= FLAG_DATA; 3676 else 3677 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3678 3679 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3680 3681 if (TCP_SKB_CB(skb)->sacked) 3682 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3683 &sack_state); 3684 3685 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3686 flag |= FLAG_ECE; 3687 ack_ev_flags |= CA_ACK_ECE; 3688 } 3689 3690 if (sack_state.sack_delivered) 3691 tcp_count_delivered(tp, sack_state.sack_delivered, 3692 flag & FLAG_ECE); 3693 3694 if (flag & FLAG_WIN_UPDATE) 3695 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3696 3697 tcp_in_ack_event(sk, ack_ev_flags); 3698 } 3699 3700 /* This is a deviation from RFC3168 since it states that: 3701 * "When the TCP data sender is ready to set the CWR bit after reducing 3702 * the congestion window, it SHOULD set the CWR bit only on the first 3703 * new data packet that it transmits." 3704 * We accept CWR on pure ACKs to be more robust 3705 * with widely-deployed TCP implementations that do this. 3706 */ 3707 tcp_ecn_accept_cwr(sk, skb); 3708 3709 /* We passed data and got it acked, remove any soft error 3710 * log. Something worked... 3711 */ 3712 sk->sk_err_soft = 0; 3713 icsk->icsk_probes_out = 0; 3714 tp->rcv_tstamp = tcp_jiffies32; 3715 if (!prior_packets) 3716 goto no_queue; 3717 3718 /* See if we can take anything off of the retransmit queue. */ 3719 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state, 3720 flag & FLAG_ECE); 3721 3722 tcp_rack_update_reo_wnd(sk, &rs); 3723 3724 if (tp->tlp_high_seq) 3725 tcp_process_tlp_ack(sk, ack, flag); 3726 /* If needed, reset TLP/RTO timer; RACK may later override this. */ 3727 if (flag & FLAG_SET_XMIT_TIMER) 3728 tcp_set_xmit_timer(sk); 3729 3730 if (tcp_ack_is_dubious(sk, flag)) { 3731 if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) { 3732 num_dupack = 1; 3733 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 3734 if (!(flag & FLAG_DATA)) 3735 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 3736 } 3737 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3738 &rexmit); 3739 } 3740 3741 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3742 sk_dst_confirm(sk); 3743 3744 delivered = tcp_newly_delivered(sk, delivered, flag); 3745 lost = tp->lost - lost; /* freshly marked lost */ 3746 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3747 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3748 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3749 tcp_xmit_recovery(sk, rexmit); 3750 return 1; 3751 3752 no_queue: 3753 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3754 if (flag & FLAG_DSACKING_ACK) { 3755 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3756 &rexmit); 3757 tcp_newly_delivered(sk, delivered, flag); 3758 } 3759 /* If this ack opens up a zero window, clear backoff. It was 3760 * being used to time the probes, and is probably far higher than 3761 * it needs to be for normal retransmission. 3762 */ 3763 tcp_ack_probe(sk); 3764 3765 if (tp->tlp_high_seq) 3766 tcp_process_tlp_ack(sk, ack, flag); 3767 return 1; 3768 3769 old_ack: 3770 /* If data was SACKed, tag it and see if we should send more data. 3771 * If data was DSACKed, see if we can undo a cwnd reduction. 3772 */ 3773 if (TCP_SKB_CB(skb)->sacked) { 3774 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3775 &sack_state); 3776 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3777 &rexmit); 3778 tcp_newly_delivered(sk, delivered, flag); 3779 tcp_xmit_recovery(sk, rexmit); 3780 } 3781 3782 return 0; 3783 } 3784 3785 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3786 bool syn, struct tcp_fastopen_cookie *foc, 3787 bool exp_opt) 3788 { 3789 /* Valid only in SYN or SYN-ACK with an even length. */ 3790 if (!foc || !syn || len < 0 || (len & 1)) 3791 return; 3792 3793 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3794 len <= TCP_FASTOPEN_COOKIE_MAX) 3795 memcpy(foc->val, cookie, len); 3796 else if (len != 0) 3797 len = -1; 3798 foc->len = len; 3799 foc->exp = exp_opt; 3800 } 3801 3802 static void smc_parse_options(const struct tcphdr *th, 3803 struct tcp_options_received *opt_rx, 3804 const unsigned char *ptr, 3805 int opsize) 3806 { 3807 #if IS_ENABLED(CONFIG_SMC) 3808 if (static_branch_unlikely(&tcp_have_smc)) { 3809 if (th->syn && !(opsize & 1) && 3810 opsize >= TCPOLEN_EXP_SMC_BASE && 3811 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) 3812 opt_rx->smc_ok = 1; 3813 } 3814 #endif 3815 } 3816 3817 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 3818 * value on success. 3819 */ 3820 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 3821 { 3822 const unsigned char *ptr = (const unsigned char *)(th + 1); 3823 int length = (th->doff * 4) - sizeof(struct tcphdr); 3824 u16 mss = 0; 3825 3826 while (length > 0) { 3827 int opcode = *ptr++; 3828 int opsize; 3829 3830 switch (opcode) { 3831 case TCPOPT_EOL: 3832 return mss; 3833 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3834 length--; 3835 continue; 3836 default: 3837 if (length < 2) 3838 return mss; 3839 opsize = *ptr++; 3840 if (opsize < 2) /* "silly options" */ 3841 return mss; 3842 if (opsize > length) 3843 return mss; /* fail on partial options */ 3844 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 3845 u16 in_mss = get_unaligned_be16(ptr); 3846 3847 if (in_mss) { 3848 if (user_mss && user_mss < in_mss) 3849 in_mss = user_mss; 3850 mss = in_mss; 3851 } 3852 } 3853 ptr += opsize - 2; 3854 length -= opsize; 3855 } 3856 } 3857 return mss; 3858 } 3859 3860 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3861 * But, this can also be called on packets in the established flow when 3862 * the fast version below fails. 3863 */ 3864 void tcp_parse_options(const struct net *net, 3865 const struct sk_buff *skb, 3866 struct tcp_options_received *opt_rx, int estab, 3867 struct tcp_fastopen_cookie *foc) 3868 { 3869 const unsigned char *ptr; 3870 const struct tcphdr *th = tcp_hdr(skb); 3871 int length = (th->doff * 4) - sizeof(struct tcphdr); 3872 3873 ptr = (const unsigned char *)(th + 1); 3874 opt_rx->saw_tstamp = 0; 3875 3876 while (length > 0) { 3877 int opcode = *ptr++; 3878 int opsize; 3879 3880 switch (opcode) { 3881 case TCPOPT_EOL: 3882 return; 3883 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3884 length--; 3885 continue; 3886 default: 3887 if (length < 2) 3888 return; 3889 opsize = *ptr++; 3890 if (opsize < 2) /* "silly options" */ 3891 return; 3892 if (opsize > length) 3893 return; /* don't parse partial options */ 3894 switch (opcode) { 3895 case TCPOPT_MSS: 3896 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3897 u16 in_mss = get_unaligned_be16(ptr); 3898 if (in_mss) { 3899 if (opt_rx->user_mss && 3900 opt_rx->user_mss < in_mss) 3901 in_mss = opt_rx->user_mss; 3902 opt_rx->mss_clamp = in_mss; 3903 } 3904 } 3905 break; 3906 case TCPOPT_WINDOW: 3907 if (opsize == TCPOLEN_WINDOW && th->syn && 3908 !estab && net->ipv4.sysctl_tcp_window_scaling) { 3909 __u8 snd_wscale = *(__u8 *)ptr; 3910 opt_rx->wscale_ok = 1; 3911 if (snd_wscale > TCP_MAX_WSCALE) { 3912 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 3913 __func__, 3914 snd_wscale, 3915 TCP_MAX_WSCALE); 3916 snd_wscale = TCP_MAX_WSCALE; 3917 } 3918 opt_rx->snd_wscale = snd_wscale; 3919 } 3920 break; 3921 case TCPOPT_TIMESTAMP: 3922 if ((opsize == TCPOLEN_TIMESTAMP) && 3923 ((estab && opt_rx->tstamp_ok) || 3924 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 3925 opt_rx->saw_tstamp = 1; 3926 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3927 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3928 } 3929 break; 3930 case TCPOPT_SACK_PERM: 3931 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3932 !estab && net->ipv4.sysctl_tcp_sack) { 3933 opt_rx->sack_ok = TCP_SACK_SEEN; 3934 tcp_sack_reset(opt_rx); 3935 } 3936 break; 3937 3938 case TCPOPT_SACK: 3939 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3940 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3941 opt_rx->sack_ok) { 3942 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3943 } 3944 break; 3945 #ifdef CONFIG_TCP_MD5SIG 3946 case TCPOPT_MD5SIG: 3947 /* 3948 * The MD5 Hash has already been 3949 * checked (see tcp_v{4,6}_do_rcv()). 3950 */ 3951 break; 3952 #endif 3953 case TCPOPT_FASTOPEN: 3954 tcp_parse_fastopen_option( 3955 opsize - TCPOLEN_FASTOPEN_BASE, 3956 ptr, th->syn, foc, false); 3957 break; 3958 3959 case TCPOPT_EXP: 3960 /* Fast Open option shares code 254 using a 3961 * 16 bits magic number. 3962 */ 3963 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3964 get_unaligned_be16(ptr) == 3965 TCPOPT_FASTOPEN_MAGIC) 3966 tcp_parse_fastopen_option(opsize - 3967 TCPOLEN_EXP_FASTOPEN_BASE, 3968 ptr + 2, th->syn, foc, true); 3969 else 3970 smc_parse_options(th, opt_rx, ptr, 3971 opsize); 3972 break; 3973 3974 } 3975 ptr += opsize-2; 3976 length -= opsize; 3977 } 3978 } 3979 } 3980 EXPORT_SYMBOL(tcp_parse_options); 3981 3982 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3983 { 3984 const __be32 *ptr = (const __be32 *)(th + 1); 3985 3986 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3987 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3988 tp->rx_opt.saw_tstamp = 1; 3989 ++ptr; 3990 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3991 ++ptr; 3992 if (*ptr) 3993 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3994 else 3995 tp->rx_opt.rcv_tsecr = 0; 3996 return true; 3997 } 3998 return false; 3999 } 4000 4001 /* Fast parse options. This hopes to only see timestamps. 4002 * If it is wrong it falls back on tcp_parse_options(). 4003 */ 4004 static bool tcp_fast_parse_options(const struct net *net, 4005 const struct sk_buff *skb, 4006 const struct tcphdr *th, struct tcp_sock *tp) 4007 { 4008 /* In the spirit of fast parsing, compare doff directly to constant 4009 * values. Because equality is used, short doff can be ignored here. 4010 */ 4011 if (th->doff == (sizeof(*th) / 4)) { 4012 tp->rx_opt.saw_tstamp = 0; 4013 return false; 4014 } else if (tp->rx_opt.tstamp_ok && 4015 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 4016 if (tcp_parse_aligned_timestamp(tp, th)) 4017 return true; 4018 } 4019 4020 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 4021 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 4022 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 4023 4024 return true; 4025 } 4026 4027 #ifdef CONFIG_TCP_MD5SIG 4028 /* 4029 * Parse MD5 Signature option 4030 */ 4031 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 4032 { 4033 int length = (th->doff << 2) - sizeof(*th); 4034 const u8 *ptr = (const u8 *)(th + 1); 4035 4036 /* If not enough data remaining, we can short cut */ 4037 while (length >= TCPOLEN_MD5SIG) { 4038 int opcode = *ptr++; 4039 int opsize; 4040 4041 switch (opcode) { 4042 case TCPOPT_EOL: 4043 return NULL; 4044 case TCPOPT_NOP: 4045 length--; 4046 continue; 4047 default: 4048 opsize = *ptr++; 4049 if (opsize < 2 || opsize > length) 4050 return NULL; 4051 if (opcode == TCPOPT_MD5SIG) 4052 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 4053 } 4054 ptr += opsize - 2; 4055 length -= opsize; 4056 } 4057 return NULL; 4058 } 4059 EXPORT_SYMBOL(tcp_parse_md5sig_option); 4060 #endif 4061 4062 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4063 * 4064 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4065 * it can pass through stack. So, the following predicate verifies that 4066 * this segment is not used for anything but congestion avoidance or 4067 * fast retransmit. Moreover, we even are able to eliminate most of such 4068 * second order effects, if we apply some small "replay" window (~RTO) 4069 * to timestamp space. 4070 * 4071 * All these measures still do not guarantee that we reject wrapped ACKs 4072 * on networks with high bandwidth, when sequence space is recycled fastly, 4073 * but it guarantees that such events will be very rare and do not affect 4074 * connection seriously. This doesn't look nice, but alas, PAWS is really 4075 * buggy extension. 4076 * 4077 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4078 * states that events when retransmit arrives after original data are rare. 4079 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4080 * the biggest problem on large power networks even with minor reordering. 4081 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4082 * up to bandwidth of 18Gigabit/sec. 8) ] 4083 */ 4084 4085 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 4086 { 4087 const struct tcp_sock *tp = tcp_sk(sk); 4088 const struct tcphdr *th = tcp_hdr(skb); 4089 u32 seq = TCP_SKB_CB(skb)->seq; 4090 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4091 4092 return (/* 1. Pure ACK with correct sequence number. */ 4093 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 4094 4095 /* 2. ... and duplicate ACK. */ 4096 ack == tp->snd_una && 4097 4098 /* 3. ... and does not update window. */ 4099 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4100 4101 /* 4. ... and sits in replay window. */ 4102 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4103 } 4104 4105 static inline bool tcp_paws_discard(const struct sock *sk, 4106 const struct sk_buff *skb) 4107 { 4108 const struct tcp_sock *tp = tcp_sk(sk); 4109 4110 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4111 !tcp_disordered_ack(sk, skb); 4112 } 4113 4114 /* Check segment sequence number for validity. 4115 * 4116 * Segment controls are considered valid, if the segment 4117 * fits to the window after truncation to the window. Acceptability 4118 * of data (and SYN, FIN, of course) is checked separately. 4119 * See tcp_data_queue(), for example. 4120 * 4121 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4122 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4123 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4124 * (borrowed from freebsd) 4125 */ 4126 4127 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4128 { 4129 return !before(end_seq, tp->rcv_wup) && 4130 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4131 } 4132 4133 /* When we get a reset we do this. */ 4134 void tcp_reset(struct sock *sk) 4135 { 4136 trace_tcp_receive_reset(sk); 4137 4138 /* We want the right error as BSD sees it (and indeed as we do). */ 4139 switch (sk->sk_state) { 4140 case TCP_SYN_SENT: 4141 sk->sk_err = ECONNREFUSED; 4142 break; 4143 case TCP_CLOSE_WAIT: 4144 sk->sk_err = EPIPE; 4145 break; 4146 case TCP_CLOSE: 4147 return; 4148 default: 4149 sk->sk_err = ECONNRESET; 4150 } 4151 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4152 smp_wmb(); 4153 4154 tcp_write_queue_purge(sk); 4155 tcp_done(sk); 4156 4157 if (!sock_flag(sk, SOCK_DEAD)) 4158 sk->sk_error_report(sk); 4159 } 4160 4161 /* 4162 * Process the FIN bit. This now behaves as it is supposed to work 4163 * and the FIN takes effect when it is validly part of sequence 4164 * space. Not before when we get holes. 4165 * 4166 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4167 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4168 * TIME-WAIT) 4169 * 4170 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4171 * close and we go into CLOSING (and later onto TIME-WAIT) 4172 * 4173 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4174 */ 4175 void tcp_fin(struct sock *sk) 4176 { 4177 struct tcp_sock *tp = tcp_sk(sk); 4178 4179 inet_csk_schedule_ack(sk); 4180 4181 sk->sk_shutdown |= RCV_SHUTDOWN; 4182 sock_set_flag(sk, SOCK_DONE); 4183 4184 switch (sk->sk_state) { 4185 case TCP_SYN_RECV: 4186 case TCP_ESTABLISHED: 4187 /* Move to CLOSE_WAIT */ 4188 tcp_set_state(sk, TCP_CLOSE_WAIT); 4189 inet_csk_enter_pingpong_mode(sk); 4190 break; 4191 4192 case TCP_CLOSE_WAIT: 4193 case TCP_CLOSING: 4194 /* Received a retransmission of the FIN, do 4195 * nothing. 4196 */ 4197 break; 4198 case TCP_LAST_ACK: 4199 /* RFC793: Remain in the LAST-ACK state. */ 4200 break; 4201 4202 case TCP_FIN_WAIT1: 4203 /* This case occurs when a simultaneous close 4204 * happens, we must ack the received FIN and 4205 * enter the CLOSING state. 4206 */ 4207 tcp_send_ack(sk); 4208 tcp_set_state(sk, TCP_CLOSING); 4209 break; 4210 case TCP_FIN_WAIT2: 4211 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4212 tcp_send_ack(sk); 4213 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4214 break; 4215 default: 4216 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4217 * cases we should never reach this piece of code. 4218 */ 4219 pr_err("%s: Impossible, sk->sk_state=%d\n", 4220 __func__, sk->sk_state); 4221 break; 4222 } 4223 4224 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4225 * Probably, we should reset in this case. For now drop them. 4226 */ 4227 skb_rbtree_purge(&tp->out_of_order_queue); 4228 if (tcp_is_sack(tp)) 4229 tcp_sack_reset(&tp->rx_opt); 4230 sk_mem_reclaim(sk); 4231 4232 if (!sock_flag(sk, SOCK_DEAD)) { 4233 sk->sk_state_change(sk); 4234 4235 /* Do not send POLL_HUP for half duplex close. */ 4236 if (sk->sk_shutdown == SHUTDOWN_MASK || 4237 sk->sk_state == TCP_CLOSE) 4238 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4239 else 4240 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4241 } 4242 } 4243 4244 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4245 u32 end_seq) 4246 { 4247 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4248 if (before(seq, sp->start_seq)) 4249 sp->start_seq = seq; 4250 if (after(end_seq, sp->end_seq)) 4251 sp->end_seq = end_seq; 4252 return true; 4253 } 4254 return false; 4255 } 4256 4257 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4258 { 4259 struct tcp_sock *tp = tcp_sk(sk); 4260 4261 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4262 int mib_idx; 4263 4264 if (before(seq, tp->rcv_nxt)) 4265 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4266 else 4267 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4268 4269 NET_INC_STATS(sock_net(sk), mib_idx); 4270 4271 tp->rx_opt.dsack = 1; 4272 tp->duplicate_sack[0].start_seq = seq; 4273 tp->duplicate_sack[0].end_seq = end_seq; 4274 } 4275 } 4276 4277 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4278 { 4279 struct tcp_sock *tp = tcp_sk(sk); 4280 4281 if (!tp->rx_opt.dsack) 4282 tcp_dsack_set(sk, seq, end_seq); 4283 else 4284 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4285 } 4286 4287 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4288 { 4289 /* When the ACK path fails or drops most ACKs, the sender would 4290 * timeout and spuriously retransmit the same segment repeatedly. 4291 * The receiver remembers and reflects via DSACKs. Leverage the 4292 * DSACK state and change the txhash to re-route speculatively. 4293 */ 4294 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq) { 4295 sk_rethink_txhash(sk); 4296 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH); 4297 } 4298 } 4299 4300 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4301 { 4302 struct tcp_sock *tp = tcp_sk(sk); 4303 4304 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4305 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4306 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4307 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4308 4309 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4310 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4311 4312 tcp_rcv_spurious_retrans(sk, skb); 4313 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4314 end_seq = tp->rcv_nxt; 4315 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4316 } 4317 } 4318 4319 tcp_send_ack(sk); 4320 } 4321 4322 /* These routines update the SACK block as out-of-order packets arrive or 4323 * in-order packets close up the sequence space. 4324 */ 4325 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4326 { 4327 int this_sack; 4328 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4329 struct tcp_sack_block *swalk = sp + 1; 4330 4331 /* See if the recent change to the first SACK eats into 4332 * or hits the sequence space of other SACK blocks, if so coalesce. 4333 */ 4334 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4335 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4336 int i; 4337 4338 /* Zap SWALK, by moving every further SACK up by one slot. 4339 * Decrease num_sacks. 4340 */ 4341 tp->rx_opt.num_sacks--; 4342 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4343 sp[i] = sp[i + 1]; 4344 continue; 4345 } 4346 this_sack++, swalk++; 4347 } 4348 } 4349 4350 static void tcp_sack_compress_send_ack(struct sock *sk) 4351 { 4352 struct tcp_sock *tp = tcp_sk(sk); 4353 4354 if (!tp->compressed_ack) 4355 return; 4356 4357 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 4358 __sock_put(sk); 4359 4360 /* Since we have to send one ack finally, 4361 * substract one from tp->compressed_ack to keep 4362 * LINUX_MIB_TCPACKCOMPRESSED accurate. 4363 */ 4364 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 4365 tp->compressed_ack - 1); 4366 4367 tp->compressed_ack = 0; 4368 tcp_send_ack(sk); 4369 } 4370 4371 /* Reasonable amount of sack blocks included in TCP SACK option 4372 * The max is 4, but this becomes 3 if TCP timestamps are there. 4373 * Given that SACK packets might be lost, be conservative and use 2. 4374 */ 4375 #define TCP_SACK_BLOCKS_EXPECTED 2 4376 4377 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4378 { 4379 struct tcp_sock *tp = tcp_sk(sk); 4380 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4381 int cur_sacks = tp->rx_opt.num_sacks; 4382 int this_sack; 4383 4384 if (!cur_sacks) 4385 goto new_sack; 4386 4387 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4388 if (tcp_sack_extend(sp, seq, end_seq)) { 4389 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4390 tcp_sack_compress_send_ack(sk); 4391 /* Rotate this_sack to the first one. */ 4392 for (; this_sack > 0; this_sack--, sp--) 4393 swap(*sp, *(sp - 1)); 4394 if (cur_sacks > 1) 4395 tcp_sack_maybe_coalesce(tp); 4396 return; 4397 } 4398 } 4399 4400 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4401 tcp_sack_compress_send_ack(sk); 4402 4403 /* Could not find an adjacent existing SACK, build a new one, 4404 * put it at the front, and shift everyone else down. We 4405 * always know there is at least one SACK present already here. 4406 * 4407 * If the sack array is full, forget about the last one. 4408 */ 4409 if (this_sack >= TCP_NUM_SACKS) { 4410 this_sack--; 4411 tp->rx_opt.num_sacks--; 4412 sp--; 4413 } 4414 for (; this_sack > 0; this_sack--, sp--) 4415 *sp = *(sp - 1); 4416 4417 new_sack: 4418 /* Build the new head SACK, and we're done. */ 4419 sp->start_seq = seq; 4420 sp->end_seq = end_seq; 4421 tp->rx_opt.num_sacks++; 4422 } 4423 4424 /* RCV.NXT advances, some SACKs should be eaten. */ 4425 4426 static void tcp_sack_remove(struct tcp_sock *tp) 4427 { 4428 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4429 int num_sacks = tp->rx_opt.num_sacks; 4430 int this_sack; 4431 4432 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4433 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4434 tp->rx_opt.num_sacks = 0; 4435 return; 4436 } 4437 4438 for (this_sack = 0; this_sack < num_sacks;) { 4439 /* Check if the start of the sack is covered by RCV.NXT. */ 4440 if (!before(tp->rcv_nxt, sp->start_seq)) { 4441 int i; 4442 4443 /* RCV.NXT must cover all the block! */ 4444 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4445 4446 /* Zap this SACK, by moving forward any other SACKS. */ 4447 for (i = this_sack+1; i < num_sacks; i++) 4448 tp->selective_acks[i-1] = tp->selective_acks[i]; 4449 num_sacks--; 4450 continue; 4451 } 4452 this_sack++; 4453 sp++; 4454 } 4455 tp->rx_opt.num_sacks = num_sacks; 4456 } 4457 4458 /** 4459 * tcp_try_coalesce - try to merge skb to prior one 4460 * @sk: socket 4461 * @to: prior buffer 4462 * @from: buffer to add in queue 4463 * @fragstolen: pointer to boolean 4464 * 4465 * Before queueing skb @from after @to, try to merge them 4466 * to reduce overall memory use and queue lengths, if cost is small. 4467 * Packets in ofo or receive queues can stay a long time. 4468 * Better try to coalesce them right now to avoid future collapses. 4469 * Returns true if caller should free @from instead of queueing it 4470 */ 4471 static bool tcp_try_coalesce(struct sock *sk, 4472 struct sk_buff *to, 4473 struct sk_buff *from, 4474 bool *fragstolen) 4475 { 4476 int delta; 4477 4478 *fragstolen = false; 4479 4480 /* Its possible this segment overlaps with prior segment in queue */ 4481 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4482 return false; 4483 4484 if (!mptcp_skb_can_collapse(to, from)) 4485 return false; 4486 4487 #ifdef CONFIG_TLS_DEVICE 4488 if (from->decrypted != to->decrypted) 4489 return false; 4490 #endif 4491 4492 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4493 return false; 4494 4495 atomic_add(delta, &sk->sk_rmem_alloc); 4496 sk_mem_charge(sk, delta); 4497 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4498 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4499 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4500 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4501 4502 if (TCP_SKB_CB(from)->has_rxtstamp) { 4503 TCP_SKB_CB(to)->has_rxtstamp = true; 4504 to->tstamp = from->tstamp; 4505 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4506 } 4507 4508 return true; 4509 } 4510 4511 static bool tcp_ooo_try_coalesce(struct sock *sk, 4512 struct sk_buff *to, 4513 struct sk_buff *from, 4514 bool *fragstolen) 4515 { 4516 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4517 4518 /* In case tcp_drop() is called later, update to->gso_segs */ 4519 if (res) { 4520 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4521 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4522 4523 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4524 } 4525 return res; 4526 } 4527 4528 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4529 { 4530 sk_drops_add(sk, skb); 4531 __kfree_skb(skb); 4532 } 4533 4534 /* This one checks to see if we can put data from the 4535 * out_of_order queue into the receive_queue. 4536 */ 4537 static void tcp_ofo_queue(struct sock *sk) 4538 { 4539 struct tcp_sock *tp = tcp_sk(sk); 4540 __u32 dsack_high = tp->rcv_nxt; 4541 bool fin, fragstolen, eaten; 4542 struct sk_buff *skb, *tail; 4543 struct rb_node *p; 4544 4545 p = rb_first(&tp->out_of_order_queue); 4546 while (p) { 4547 skb = rb_to_skb(p); 4548 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4549 break; 4550 4551 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4552 __u32 dsack = dsack_high; 4553 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4554 dsack_high = TCP_SKB_CB(skb)->end_seq; 4555 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4556 } 4557 p = rb_next(p); 4558 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4559 4560 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4561 tcp_drop(sk, skb); 4562 continue; 4563 } 4564 4565 tail = skb_peek_tail(&sk->sk_receive_queue); 4566 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4567 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4568 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4569 if (!eaten) 4570 __skb_queue_tail(&sk->sk_receive_queue, skb); 4571 else 4572 kfree_skb_partial(skb, fragstolen); 4573 4574 if (unlikely(fin)) { 4575 tcp_fin(sk); 4576 /* tcp_fin() purges tp->out_of_order_queue, 4577 * so we must end this loop right now. 4578 */ 4579 break; 4580 } 4581 } 4582 } 4583 4584 static bool tcp_prune_ofo_queue(struct sock *sk); 4585 static int tcp_prune_queue(struct sock *sk); 4586 4587 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4588 unsigned int size) 4589 { 4590 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4591 !sk_rmem_schedule(sk, skb, size)) { 4592 4593 if (tcp_prune_queue(sk) < 0) 4594 return -1; 4595 4596 while (!sk_rmem_schedule(sk, skb, size)) { 4597 if (!tcp_prune_ofo_queue(sk)) 4598 return -1; 4599 } 4600 } 4601 return 0; 4602 } 4603 4604 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4605 { 4606 struct tcp_sock *tp = tcp_sk(sk); 4607 struct rb_node **p, *parent; 4608 struct sk_buff *skb1; 4609 u32 seq, end_seq; 4610 bool fragstolen; 4611 4612 tcp_ecn_check_ce(sk, skb); 4613 4614 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4615 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4616 sk->sk_data_ready(sk); 4617 tcp_drop(sk, skb); 4618 return; 4619 } 4620 4621 /* Disable header prediction. */ 4622 tp->pred_flags = 0; 4623 inet_csk_schedule_ack(sk); 4624 4625 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4626 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4627 seq = TCP_SKB_CB(skb)->seq; 4628 end_seq = TCP_SKB_CB(skb)->end_seq; 4629 4630 p = &tp->out_of_order_queue.rb_node; 4631 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4632 /* Initial out of order segment, build 1 SACK. */ 4633 if (tcp_is_sack(tp)) { 4634 tp->rx_opt.num_sacks = 1; 4635 tp->selective_acks[0].start_seq = seq; 4636 tp->selective_acks[0].end_seq = end_seq; 4637 } 4638 rb_link_node(&skb->rbnode, NULL, p); 4639 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4640 tp->ooo_last_skb = skb; 4641 goto end; 4642 } 4643 4644 /* In the typical case, we are adding an skb to the end of the list. 4645 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4646 */ 4647 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 4648 skb, &fragstolen)) { 4649 coalesce_done: 4650 /* For non sack flows, do not grow window to force DUPACK 4651 * and trigger fast retransmit. 4652 */ 4653 if (tcp_is_sack(tp)) 4654 tcp_grow_window(sk, skb); 4655 kfree_skb_partial(skb, fragstolen); 4656 skb = NULL; 4657 goto add_sack; 4658 } 4659 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4660 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4661 parent = &tp->ooo_last_skb->rbnode; 4662 p = &parent->rb_right; 4663 goto insert; 4664 } 4665 4666 /* Find place to insert this segment. Handle overlaps on the way. */ 4667 parent = NULL; 4668 while (*p) { 4669 parent = *p; 4670 skb1 = rb_to_skb(parent); 4671 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4672 p = &parent->rb_left; 4673 continue; 4674 } 4675 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4676 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4677 /* All the bits are present. Drop. */ 4678 NET_INC_STATS(sock_net(sk), 4679 LINUX_MIB_TCPOFOMERGE); 4680 tcp_drop(sk, skb); 4681 skb = NULL; 4682 tcp_dsack_set(sk, seq, end_seq); 4683 goto add_sack; 4684 } 4685 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4686 /* Partial overlap. */ 4687 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4688 } else { 4689 /* skb's seq == skb1's seq and skb covers skb1. 4690 * Replace skb1 with skb. 4691 */ 4692 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4693 &tp->out_of_order_queue); 4694 tcp_dsack_extend(sk, 4695 TCP_SKB_CB(skb1)->seq, 4696 TCP_SKB_CB(skb1)->end_seq); 4697 NET_INC_STATS(sock_net(sk), 4698 LINUX_MIB_TCPOFOMERGE); 4699 tcp_drop(sk, skb1); 4700 goto merge_right; 4701 } 4702 } else if (tcp_ooo_try_coalesce(sk, skb1, 4703 skb, &fragstolen)) { 4704 goto coalesce_done; 4705 } 4706 p = &parent->rb_right; 4707 } 4708 insert: 4709 /* Insert segment into RB tree. */ 4710 rb_link_node(&skb->rbnode, parent, p); 4711 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4712 4713 merge_right: 4714 /* Remove other segments covered by skb. */ 4715 while ((skb1 = skb_rb_next(skb)) != NULL) { 4716 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4717 break; 4718 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4719 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4720 end_seq); 4721 break; 4722 } 4723 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4724 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4725 TCP_SKB_CB(skb1)->end_seq); 4726 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4727 tcp_drop(sk, skb1); 4728 } 4729 /* If there is no skb after us, we are the last_skb ! */ 4730 if (!skb1) 4731 tp->ooo_last_skb = skb; 4732 4733 add_sack: 4734 if (tcp_is_sack(tp)) 4735 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4736 end: 4737 if (skb) { 4738 /* For non sack flows, do not grow window to force DUPACK 4739 * and trigger fast retransmit. 4740 */ 4741 if (tcp_is_sack(tp)) 4742 tcp_grow_window(sk, skb); 4743 skb_condense(skb); 4744 skb_set_owner_r(skb, sk); 4745 } 4746 } 4747 4748 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 4749 bool *fragstolen) 4750 { 4751 int eaten; 4752 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4753 4754 eaten = (tail && 4755 tcp_try_coalesce(sk, tail, 4756 skb, fragstolen)) ? 1 : 0; 4757 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4758 if (!eaten) { 4759 __skb_queue_tail(&sk->sk_receive_queue, skb); 4760 skb_set_owner_r(skb, sk); 4761 } 4762 return eaten; 4763 } 4764 4765 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4766 { 4767 struct sk_buff *skb; 4768 int err = -ENOMEM; 4769 int data_len = 0; 4770 bool fragstolen; 4771 4772 if (size == 0) 4773 return 0; 4774 4775 if (size > PAGE_SIZE) { 4776 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4777 4778 data_len = npages << PAGE_SHIFT; 4779 size = data_len + (size & ~PAGE_MASK); 4780 } 4781 skb = alloc_skb_with_frags(size - data_len, data_len, 4782 PAGE_ALLOC_COSTLY_ORDER, 4783 &err, sk->sk_allocation); 4784 if (!skb) 4785 goto err; 4786 4787 skb_put(skb, size - data_len); 4788 skb->data_len = data_len; 4789 skb->len = size; 4790 4791 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 4792 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 4793 goto err_free; 4794 } 4795 4796 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4797 if (err) 4798 goto err_free; 4799 4800 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4801 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4802 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4803 4804 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 4805 WARN_ON_ONCE(fragstolen); /* should not happen */ 4806 __kfree_skb(skb); 4807 } 4808 return size; 4809 4810 err_free: 4811 kfree_skb(skb); 4812 err: 4813 return err; 4814 4815 } 4816 4817 void tcp_data_ready(struct sock *sk) 4818 { 4819 const struct tcp_sock *tp = tcp_sk(sk); 4820 int avail = tp->rcv_nxt - tp->copied_seq; 4821 4822 if (avail < sk->sk_rcvlowat && !tcp_rmem_pressure(sk) && 4823 !sock_flag(sk, SOCK_DONE)) 4824 return; 4825 4826 sk->sk_data_ready(sk); 4827 } 4828 4829 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4830 { 4831 struct tcp_sock *tp = tcp_sk(sk); 4832 bool fragstolen; 4833 int eaten; 4834 4835 if (sk_is_mptcp(sk)) 4836 mptcp_incoming_options(sk, skb, &tp->rx_opt); 4837 4838 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4839 __kfree_skb(skb); 4840 return; 4841 } 4842 skb_dst_drop(skb); 4843 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4844 4845 tp->rx_opt.dsack = 0; 4846 4847 /* Queue data for delivery to the user. 4848 * Packets in sequence go to the receive queue. 4849 * Out of sequence packets to the out_of_order_queue. 4850 */ 4851 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4852 if (tcp_receive_window(tp) == 0) { 4853 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 4854 goto out_of_window; 4855 } 4856 4857 /* Ok. In sequence. In window. */ 4858 queue_and_out: 4859 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4860 sk_forced_mem_schedule(sk, skb->truesize); 4861 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 4862 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 4863 sk->sk_data_ready(sk); 4864 goto drop; 4865 } 4866 4867 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 4868 if (skb->len) 4869 tcp_event_data_recv(sk, skb); 4870 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4871 tcp_fin(sk); 4872 4873 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4874 tcp_ofo_queue(sk); 4875 4876 /* RFC5681. 4.2. SHOULD send immediate ACK, when 4877 * gap in queue is filled. 4878 */ 4879 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4880 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 4881 } 4882 4883 if (tp->rx_opt.num_sacks) 4884 tcp_sack_remove(tp); 4885 4886 tcp_fast_path_check(sk); 4887 4888 if (eaten > 0) 4889 kfree_skb_partial(skb, fragstolen); 4890 if (!sock_flag(sk, SOCK_DEAD)) 4891 tcp_data_ready(sk); 4892 return; 4893 } 4894 4895 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4896 tcp_rcv_spurious_retrans(sk, skb); 4897 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4898 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4899 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4900 4901 out_of_window: 4902 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4903 inet_csk_schedule_ack(sk); 4904 drop: 4905 tcp_drop(sk, skb); 4906 return; 4907 } 4908 4909 /* Out of window. F.e. zero window probe. */ 4910 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4911 goto out_of_window; 4912 4913 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4914 /* Partial packet, seq < rcv_next < end_seq */ 4915 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4916 4917 /* If window is closed, drop tail of packet. But after 4918 * remembering D-SACK for its head made in previous line. 4919 */ 4920 if (!tcp_receive_window(tp)) { 4921 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 4922 goto out_of_window; 4923 } 4924 goto queue_and_out; 4925 } 4926 4927 tcp_data_queue_ofo(sk, skb); 4928 } 4929 4930 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4931 { 4932 if (list) 4933 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4934 4935 return skb_rb_next(skb); 4936 } 4937 4938 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4939 struct sk_buff_head *list, 4940 struct rb_root *root) 4941 { 4942 struct sk_buff *next = tcp_skb_next(skb, list); 4943 4944 if (list) 4945 __skb_unlink(skb, list); 4946 else 4947 rb_erase(&skb->rbnode, root); 4948 4949 __kfree_skb(skb); 4950 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4951 4952 return next; 4953 } 4954 4955 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4956 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4957 { 4958 struct rb_node **p = &root->rb_node; 4959 struct rb_node *parent = NULL; 4960 struct sk_buff *skb1; 4961 4962 while (*p) { 4963 parent = *p; 4964 skb1 = rb_to_skb(parent); 4965 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4966 p = &parent->rb_left; 4967 else 4968 p = &parent->rb_right; 4969 } 4970 rb_link_node(&skb->rbnode, parent, p); 4971 rb_insert_color(&skb->rbnode, root); 4972 } 4973 4974 /* Collapse contiguous sequence of skbs head..tail with 4975 * sequence numbers start..end. 4976 * 4977 * If tail is NULL, this means until the end of the queue. 4978 * 4979 * Segments with FIN/SYN are not collapsed (only because this 4980 * simplifies code) 4981 */ 4982 static void 4983 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4984 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4985 { 4986 struct sk_buff *skb = head, *n; 4987 struct sk_buff_head tmp; 4988 bool end_of_skbs; 4989 4990 /* First, check that queue is collapsible and find 4991 * the point where collapsing can be useful. 4992 */ 4993 restart: 4994 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4995 n = tcp_skb_next(skb, list); 4996 4997 /* No new bits? It is possible on ofo queue. */ 4998 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4999 skb = tcp_collapse_one(sk, skb, list, root); 5000 if (!skb) 5001 break; 5002 goto restart; 5003 } 5004 5005 /* The first skb to collapse is: 5006 * - not SYN/FIN and 5007 * - bloated or contains data before "start" or 5008 * overlaps to the next one and mptcp allow collapsing. 5009 */ 5010 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 5011 (tcp_win_from_space(sk, skb->truesize) > skb->len || 5012 before(TCP_SKB_CB(skb)->seq, start))) { 5013 end_of_skbs = false; 5014 break; 5015 } 5016 5017 if (n && n != tail && mptcp_skb_can_collapse(skb, n) && 5018 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 5019 end_of_skbs = false; 5020 break; 5021 } 5022 5023 /* Decided to skip this, advance start seq. */ 5024 start = TCP_SKB_CB(skb)->end_seq; 5025 } 5026 if (end_of_skbs || 5027 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5028 return; 5029 5030 __skb_queue_head_init(&tmp); 5031 5032 while (before(start, end)) { 5033 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 5034 struct sk_buff *nskb; 5035 5036 nskb = alloc_skb(copy, GFP_ATOMIC); 5037 if (!nskb) 5038 break; 5039 5040 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 5041 #ifdef CONFIG_TLS_DEVICE 5042 nskb->decrypted = skb->decrypted; 5043 #endif 5044 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 5045 if (list) 5046 __skb_queue_before(list, skb, nskb); 5047 else 5048 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 5049 skb_set_owner_r(nskb, sk); 5050 mptcp_skb_ext_move(nskb, skb); 5051 5052 /* Copy data, releasing collapsed skbs. */ 5053 while (copy > 0) { 5054 int offset = start - TCP_SKB_CB(skb)->seq; 5055 int size = TCP_SKB_CB(skb)->end_seq - start; 5056 5057 BUG_ON(offset < 0); 5058 if (size > 0) { 5059 size = min(copy, size); 5060 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 5061 BUG(); 5062 TCP_SKB_CB(nskb)->end_seq += size; 5063 copy -= size; 5064 start += size; 5065 } 5066 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5067 skb = tcp_collapse_one(sk, skb, list, root); 5068 if (!skb || 5069 skb == tail || 5070 !mptcp_skb_can_collapse(nskb, skb) || 5071 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5072 goto end; 5073 #ifdef CONFIG_TLS_DEVICE 5074 if (skb->decrypted != nskb->decrypted) 5075 goto end; 5076 #endif 5077 } 5078 } 5079 } 5080 end: 5081 skb_queue_walk_safe(&tmp, skb, n) 5082 tcp_rbtree_insert(root, skb); 5083 } 5084 5085 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5086 * and tcp_collapse() them until all the queue is collapsed. 5087 */ 5088 static void tcp_collapse_ofo_queue(struct sock *sk) 5089 { 5090 struct tcp_sock *tp = tcp_sk(sk); 5091 u32 range_truesize, sum_tiny = 0; 5092 struct sk_buff *skb, *head; 5093 u32 start, end; 5094 5095 skb = skb_rb_first(&tp->out_of_order_queue); 5096 new_range: 5097 if (!skb) { 5098 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5099 return; 5100 } 5101 start = TCP_SKB_CB(skb)->seq; 5102 end = TCP_SKB_CB(skb)->end_seq; 5103 range_truesize = skb->truesize; 5104 5105 for (head = skb;;) { 5106 skb = skb_rb_next(skb); 5107 5108 /* Range is terminated when we see a gap or when 5109 * we are at the queue end. 5110 */ 5111 if (!skb || 5112 after(TCP_SKB_CB(skb)->seq, end) || 5113 before(TCP_SKB_CB(skb)->end_seq, start)) { 5114 /* Do not attempt collapsing tiny skbs */ 5115 if (range_truesize != head->truesize || 5116 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) { 5117 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5118 head, skb, start, end); 5119 } else { 5120 sum_tiny += range_truesize; 5121 if (sum_tiny > sk->sk_rcvbuf >> 3) 5122 return; 5123 } 5124 goto new_range; 5125 } 5126 5127 range_truesize += skb->truesize; 5128 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5129 start = TCP_SKB_CB(skb)->seq; 5130 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5131 end = TCP_SKB_CB(skb)->end_seq; 5132 } 5133 } 5134 5135 /* 5136 * Clean the out-of-order queue to make room. 5137 * We drop high sequences packets to : 5138 * 1) Let a chance for holes to be filled. 5139 * 2) not add too big latencies if thousands of packets sit there. 5140 * (But if application shrinks SO_RCVBUF, we could still end up 5141 * freeing whole queue here) 5142 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5143 * 5144 * Return true if queue has shrunk. 5145 */ 5146 static bool tcp_prune_ofo_queue(struct sock *sk) 5147 { 5148 struct tcp_sock *tp = tcp_sk(sk); 5149 struct rb_node *node, *prev; 5150 int goal; 5151 5152 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5153 return false; 5154 5155 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5156 goal = sk->sk_rcvbuf >> 3; 5157 node = &tp->ooo_last_skb->rbnode; 5158 do { 5159 prev = rb_prev(node); 5160 rb_erase(node, &tp->out_of_order_queue); 5161 goal -= rb_to_skb(node)->truesize; 5162 tcp_drop(sk, rb_to_skb(node)); 5163 if (!prev || goal <= 0) { 5164 sk_mem_reclaim(sk); 5165 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5166 !tcp_under_memory_pressure(sk)) 5167 break; 5168 goal = sk->sk_rcvbuf >> 3; 5169 } 5170 node = prev; 5171 } while (node); 5172 tp->ooo_last_skb = rb_to_skb(prev); 5173 5174 /* Reset SACK state. A conforming SACK implementation will 5175 * do the same at a timeout based retransmit. When a connection 5176 * is in a sad state like this, we care only about integrity 5177 * of the connection not performance. 5178 */ 5179 if (tp->rx_opt.sack_ok) 5180 tcp_sack_reset(&tp->rx_opt); 5181 return true; 5182 } 5183 5184 /* Reduce allocated memory if we can, trying to get 5185 * the socket within its memory limits again. 5186 * 5187 * Return less than zero if we should start dropping frames 5188 * until the socket owning process reads some of the data 5189 * to stabilize the situation. 5190 */ 5191 static int tcp_prune_queue(struct sock *sk) 5192 { 5193 struct tcp_sock *tp = tcp_sk(sk); 5194 5195 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5196 5197 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5198 tcp_clamp_window(sk); 5199 else if (tcp_under_memory_pressure(sk)) 5200 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 5201 5202 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5203 return 0; 5204 5205 tcp_collapse_ofo_queue(sk); 5206 if (!skb_queue_empty(&sk->sk_receive_queue)) 5207 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5208 skb_peek(&sk->sk_receive_queue), 5209 NULL, 5210 tp->copied_seq, tp->rcv_nxt); 5211 sk_mem_reclaim(sk); 5212 5213 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5214 return 0; 5215 5216 /* Collapsing did not help, destructive actions follow. 5217 * This must not ever occur. */ 5218 5219 tcp_prune_ofo_queue(sk); 5220 5221 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5222 return 0; 5223 5224 /* If we are really being abused, tell the caller to silently 5225 * drop receive data on the floor. It will get retransmitted 5226 * and hopefully then we'll have sufficient space. 5227 */ 5228 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5229 5230 /* Massive buffer overcommit. */ 5231 tp->pred_flags = 0; 5232 return -1; 5233 } 5234 5235 static bool tcp_should_expand_sndbuf(const struct sock *sk) 5236 { 5237 const struct tcp_sock *tp = tcp_sk(sk); 5238 5239 /* If the user specified a specific send buffer setting, do 5240 * not modify it. 5241 */ 5242 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5243 return false; 5244 5245 /* If we are under global TCP memory pressure, do not expand. */ 5246 if (tcp_under_memory_pressure(sk)) 5247 return false; 5248 5249 /* If we are under soft global TCP memory pressure, do not expand. */ 5250 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5251 return false; 5252 5253 /* If we filled the congestion window, do not expand. */ 5254 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5255 return false; 5256 5257 return true; 5258 } 5259 5260 /* When incoming ACK allowed to free some skb from write_queue, 5261 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5262 * on the exit from tcp input handler. 5263 * 5264 * PROBLEM: sndbuf expansion does not work well with largesend. 5265 */ 5266 static void tcp_new_space(struct sock *sk) 5267 { 5268 struct tcp_sock *tp = tcp_sk(sk); 5269 5270 if (tcp_should_expand_sndbuf(sk)) { 5271 tcp_sndbuf_expand(sk); 5272 tp->snd_cwnd_stamp = tcp_jiffies32; 5273 } 5274 5275 sk->sk_write_space(sk); 5276 } 5277 5278 static void tcp_check_space(struct sock *sk) 5279 { 5280 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5281 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5282 /* pairs with tcp_poll() */ 5283 smp_mb(); 5284 if (sk->sk_socket && 5285 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5286 tcp_new_space(sk); 5287 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5288 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5289 } 5290 } 5291 } 5292 5293 static inline void tcp_data_snd_check(struct sock *sk) 5294 { 5295 tcp_push_pending_frames(sk); 5296 tcp_check_space(sk); 5297 } 5298 5299 /* 5300 * Check if sending an ack is needed. 5301 */ 5302 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5303 { 5304 struct tcp_sock *tp = tcp_sk(sk); 5305 unsigned long rtt, delay; 5306 5307 /* More than one full frame received... */ 5308 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5309 /* ... and right edge of window advances far enough. 5310 * (tcp_recvmsg() will send ACK otherwise). 5311 * If application uses SO_RCVLOWAT, we want send ack now if 5312 * we have not received enough bytes to satisfy the condition. 5313 */ 5314 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5315 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5316 /* We ACK each frame or... */ 5317 tcp_in_quickack_mode(sk) || 5318 /* Protocol state mandates a one-time immediate ACK */ 5319 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5320 send_now: 5321 tcp_send_ack(sk); 5322 return; 5323 } 5324 5325 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5326 tcp_send_delayed_ack(sk); 5327 return; 5328 } 5329 5330 if (!tcp_is_sack(tp) || 5331 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr) 5332 goto send_now; 5333 5334 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5335 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5336 tp->dup_ack_counter = 0; 5337 } 5338 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) { 5339 tp->dup_ack_counter++; 5340 goto send_now; 5341 } 5342 tp->compressed_ack++; 5343 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5344 return; 5345 5346 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5347 5348 rtt = tp->rcv_rtt_est.rtt_us; 5349 if (tp->srtt_us && tp->srtt_us < rtt) 5350 rtt = tp->srtt_us; 5351 5352 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns, 5353 rtt * (NSEC_PER_USEC >> 3)/20); 5354 sock_hold(sk); 5355 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay), 5356 sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns, 5357 HRTIMER_MODE_REL_PINNED_SOFT); 5358 } 5359 5360 static inline void tcp_ack_snd_check(struct sock *sk) 5361 { 5362 if (!inet_csk_ack_scheduled(sk)) { 5363 /* We sent a data segment already. */ 5364 return; 5365 } 5366 __tcp_ack_snd_check(sk, 1); 5367 } 5368 5369 /* 5370 * This routine is only called when we have urgent data 5371 * signaled. Its the 'slow' part of tcp_urg. It could be 5372 * moved inline now as tcp_urg is only called from one 5373 * place. We handle URGent data wrong. We have to - as 5374 * BSD still doesn't use the correction from RFC961. 5375 * For 1003.1g we should support a new option TCP_STDURG to permit 5376 * either form (or just set the sysctl tcp_stdurg). 5377 */ 5378 5379 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5380 { 5381 struct tcp_sock *tp = tcp_sk(sk); 5382 u32 ptr = ntohs(th->urg_ptr); 5383 5384 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg) 5385 ptr--; 5386 ptr += ntohl(th->seq); 5387 5388 /* Ignore urgent data that we've already seen and read. */ 5389 if (after(tp->copied_seq, ptr)) 5390 return; 5391 5392 /* Do not replay urg ptr. 5393 * 5394 * NOTE: interesting situation not covered by specs. 5395 * Misbehaving sender may send urg ptr, pointing to segment, 5396 * which we already have in ofo queue. We are not able to fetch 5397 * such data and will stay in TCP_URG_NOTYET until will be eaten 5398 * by recvmsg(). Seems, we are not obliged to handle such wicked 5399 * situations. But it is worth to think about possibility of some 5400 * DoSes using some hypothetical application level deadlock. 5401 */ 5402 if (before(ptr, tp->rcv_nxt)) 5403 return; 5404 5405 /* Do we already have a newer (or duplicate) urgent pointer? */ 5406 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5407 return; 5408 5409 /* Tell the world about our new urgent pointer. */ 5410 sk_send_sigurg(sk); 5411 5412 /* We may be adding urgent data when the last byte read was 5413 * urgent. To do this requires some care. We cannot just ignore 5414 * tp->copied_seq since we would read the last urgent byte again 5415 * as data, nor can we alter copied_seq until this data arrives 5416 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5417 * 5418 * NOTE. Double Dutch. Rendering to plain English: author of comment 5419 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5420 * and expect that both A and B disappear from stream. This is _wrong_. 5421 * Though this happens in BSD with high probability, this is occasional. 5422 * Any application relying on this is buggy. Note also, that fix "works" 5423 * only in this artificial test. Insert some normal data between A and B and we will 5424 * decline of BSD again. Verdict: it is better to remove to trap 5425 * buggy users. 5426 */ 5427 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5428 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5429 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5430 tp->copied_seq++; 5431 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5432 __skb_unlink(skb, &sk->sk_receive_queue); 5433 __kfree_skb(skb); 5434 } 5435 } 5436 5437 tp->urg_data = TCP_URG_NOTYET; 5438 WRITE_ONCE(tp->urg_seq, ptr); 5439 5440 /* Disable header prediction. */ 5441 tp->pred_flags = 0; 5442 } 5443 5444 /* This is the 'fast' part of urgent handling. */ 5445 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5446 { 5447 struct tcp_sock *tp = tcp_sk(sk); 5448 5449 /* Check if we get a new urgent pointer - normally not. */ 5450 if (th->urg) 5451 tcp_check_urg(sk, th); 5452 5453 /* Do we wait for any urgent data? - normally not... */ 5454 if (tp->urg_data == TCP_URG_NOTYET) { 5455 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5456 th->syn; 5457 5458 /* Is the urgent pointer pointing into this packet? */ 5459 if (ptr < skb->len) { 5460 u8 tmp; 5461 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5462 BUG(); 5463 tp->urg_data = TCP_URG_VALID | tmp; 5464 if (!sock_flag(sk, SOCK_DEAD)) 5465 sk->sk_data_ready(sk); 5466 } 5467 } 5468 } 5469 5470 /* Accept RST for rcv_nxt - 1 after a FIN. 5471 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5472 * FIN is sent followed by a RST packet. The RST is sent with the same 5473 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5474 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5475 * ACKs on the closed socket. In addition middleboxes can drop either the 5476 * challenge ACK or a subsequent RST. 5477 */ 5478 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5479 { 5480 struct tcp_sock *tp = tcp_sk(sk); 5481 5482 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5483 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5484 TCPF_CLOSING)); 5485 } 5486 5487 /* Does PAWS and seqno based validation of an incoming segment, flags will 5488 * play significant role here. 5489 */ 5490 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5491 const struct tcphdr *th, int syn_inerr) 5492 { 5493 struct tcp_sock *tp = tcp_sk(sk); 5494 bool rst_seq_match = false; 5495 5496 /* RFC1323: H1. Apply PAWS check first. */ 5497 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5498 tp->rx_opt.saw_tstamp && 5499 tcp_paws_discard(sk, skb)) { 5500 if (!th->rst) { 5501 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5502 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5503 LINUX_MIB_TCPACKSKIPPEDPAWS, 5504 &tp->last_oow_ack_time)) 5505 tcp_send_dupack(sk, skb); 5506 goto discard; 5507 } 5508 /* Reset is accepted even if it did not pass PAWS. */ 5509 } 5510 5511 /* Step 1: check sequence number */ 5512 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5513 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5514 * (RST) segments are validated by checking their SEQ-fields." 5515 * And page 69: "If an incoming segment is not acceptable, 5516 * an acknowledgment should be sent in reply (unless the RST 5517 * bit is set, if so drop the segment and return)". 5518 */ 5519 if (!th->rst) { 5520 if (th->syn) 5521 goto syn_challenge; 5522 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5523 LINUX_MIB_TCPACKSKIPPEDSEQ, 5524 &tp->last_oow_ack_time)) 5525 tcp_send_dupack(sk, skb); 5526 } else if (tcp_reset_check(sk, skb)) { 5527 tcp_reset(sk); 5528 } 5529 goto discard; 5530 } 5531 5532 /* Step 2: check RST bit */ 5533 if (th->rst) { 5534 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5535 * FIN and SACK too if available): 5536 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5537 * the right-most SACK block, 5538 * then 5539 * RESET the connection 5540 * else 5541 * Send a challenge ACK 5542 */ 5543 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5544 tcp_reset_check(sk, skb)) { 5545 rst_seq_match = true; 5546 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5547 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5548 int max_sack = sp[0].end_seq; 5549 int this_sack; 5550 5551 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5552 ++this_sack) { 5553 max_sack = after(sp[this_sack].end_seq, 5554 max_sack) ? 5555 sp[this_sack].end_seq : max_sack; 5556 } 5557 5558 if (TCP_SKB_CB(skb)->seq == max_sack) 5559 rst_seq_match = true; 5560 } 5561 5562 if (rst_seq_match) 5563 tcp_reset(sk); 5564 else { 5565 /* Disable TFO if RST is out-of-order 5566 * and no data has been received 5567 * for current active TFO socket 5568 */ 5569 if (tp->syn_fastopen && !tp->data_segs_in && 5570 sk->sk_state == TCP_ESTABLISHED) 5571 tcp_fastopen_active_disable(sk); 5572 tcp_send_challenge_ack(sk, skb); 5573 } 5574 goto discard; 5575 } 5576 5577 /* step 3: check security and precedence [ignored] */ 5578 5579 /* step 4: Check for a SYN 5580 * RFC 5961 4.2 : Send a challenge ack 5581 */ 5582 if (th->syn) { 5583 syn_challenge: 5584 if (syn_inerr) 5585 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5586 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5587 tcp_send_challenge_ack(sk, skb); 5588 goto discard; 5589 } 5590 5591 return true; 5592 5593 discard: 5594 tcp_drop(sk, skb); 5595 return false; 5596 } 5597 5598 /* 5599 * TCP receive function for the ESTABLISHED state. 5600 * 5601 * It is split into a fast path and a slow path. The fast path is 5602 * disabled when: 5603 * - A zero window was announced from us - zero window probing 5604 * is only handled properly in the slow path. 5605 * - Out of order segments arrived. 5606 * - Urgent data is expected. 5607 * - There is no buffer space left 5608 * - Unexpected TCP flags/window values/header lengths are received 5609 * (detected by checking the TCP header against pred_flags) 5610 * - Data is sent in both directions. Fast path only supports pure senders 5611 * or pure receivers (this means either the sequence number or the ack 5612 * value must stay constant) 5613 * - Unexpected TCP option. 5614 * 5615 * When these conditions are not satisfied it drops into a standard 5616 * receive procedure patterned after RFC793 to handle all cases. 5617 * The first three cases are guaranteed by proper pred_flags setting, 5618 * the rest is checked inline. Fast processing is turned on in 5619 * tcp_data_queue when everything is OK. 5620 */ 5621 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5622 { 5623 const struct tcphdr *th = (const struct tcphdr *)skb->data; 5624 struct tcp_sock *tp = tcp_sk(sk); 5625 unsigned int len = skb->len; 5626 5627 /* TCP congestion window tracking */ 5628 trace_tcp_probe(sk, skb); 5629 5630 tcp_mstamp_refresh(tp); 5631 if (unlikely(!sk->sk_rx_dst)) 5632 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5633 /* 5634 * Header prediction. 5635 * The code loosely follows the one in the famous 5636 * "30 instruction TCP receive" Van Jacobson mail. 5637 * 5638 * Van's trick is to deposit buffers into socket queue 5639 * on a device interrupt, to call tcp_recv function 5640 * on the receive process context and checksum and copy 5641 * the buffer to user space. smart... 5642 * 5643 * Our current scheme is not silly either but we take the 5644 * extra cost of the net_bh soft interrupt processing... 5645 * We do checksum and copy also but from device to kernel. 5646 */ 5647 5648 tp->rx_opt.saw_tstamp = 0; 5649 5650 /* pred_flags is 0xS?10 << 16 + snd_wnd 5651 * if header_prediction is to be made 5652 * 'S' will always be tp->tcp_header_len >> 2 5653 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5654 * turn it off (when there are holes in the receive 5655 * space for instance) 5656 * PSH flag is ignored. 5657 */ 5658 5659 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5660 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5661 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5662 int tcp_header_len = tp->tcp_header_len; 5663 5664 /* Timestamp header prediction: tcp_header_len 5665 * is automatically equal to th->doff*4 due to pred_flags 5666 * match. 5667 */ 5668 5669 /* Check timestamp */ 5670 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5671 /* No? Slow path! */ 5672 if (!tcp_parse_aligned_timestamp(tp, th)) 5673 goto slow_path; 5674 5675 /* If PAWS failed, check it more carefully in slow path */ 5676 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5677 goto slow_path; 5678 5679 /* DO NOT update ts_recent here, if checksum fails 5680 * and timestamp was corrupted part, it will result 5681 * in a hung connection since we will drop all 5682 * future packets due to the PAWS test. 5683 */ 5684 } 5685 5686 if (len <= tcp_header_len) { 5687 /* Bulk data transfer: sender */ 5688 if (len == tcp_header_len) { 5689 /* Predicted packet is in window by definition. 5690 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5691 * Hence, check seq<=rcv_wup reduces to: 5692 */ 5693 if (tcp_header_len == 5694 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5695 tp->rcv_nxt == tp->rcv_wup) 5696 tcp_store_ts_recent(tp); 5697 5698 /* We know that such packets are checksummed 5699 * on entry. 5700 */ 5701 tcp_ack(sk, skb, 0); 5702 __kfree_skb(skb); 5703 tcp_data_snd_check(sk); 5704 /* When receiving pure ack in fast path, update 5705 * last ts ecr directly instead of calling 5706 * tcp_rcv_rtt_measure_ts() 5707 */ 5708 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 5709 return; 5710 } else { /* Header too small */ 5711 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5712 goto discard; 5713 } 5714 } else { 5715 int eaten = 0; 5716 bool fragstolen = false; 5717 5718 if (tcp_checksum_complete(skb)) 5719 goto csum_error; 5720 5721 if ((int)skb->truesize > sk->sk_forward_alloc) 5722 goto step5; 5723 5724 /* Predicted packet is in window by definition. 5725 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5726 * Hence, check seq<=rcv_wup reduces to: 5727 */ 5728 if (tcp_header_len == 5729 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5730 tp->rcv_nxt == tp->rcv_wup) 5731 tcp_store_ts_recent(tp); 5732 5733 tcp_rcv_rtt_measure_ts(sk, skb); 5734 5735 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5736 5737 /* Bulk data transfer: receiver */ 5738 __skb_pull(skb, tcp_header_len); 5739 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5740 5741 tcp_event_data_recv(sk, skb); 5742 5743 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5744 /* Well, only one small jumplet in fast path... */ 5745 tcp_ack(sk, skb, FLAG_DATA); 5746 tcp_data_snd_check(sk); 5747 if (!inet_csk_ack_scheduled(sk)) 5748 goto no_ack; 5749 } 5750 5751 __tcp_ack_snd_check(sk, 0); 5752 no_ack: 5753 if (eaten) 5754 kfree_skb_partial(skb, fragstolen); 5755 tcp_data_ready(sk); 5756 return; 5757 } 5758 } 5759 5760 slow_path: 5761 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5762 goto csum_error; 5763 5764 if (!th->ack && !th->rst && !th->syn) 5765 goto discard; 5766 5767 /* 5768 * Standard slow path. 5769 */ 5770 5771 if (!tcp_validate_incoming(sk, skb, th, 1)) 5772 return; 5773 5774 step5: 5775 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5776 goto discard; 5777 5778 tcp_rcv_rtt_measure_ts(sk, skb); 5779 5780 /* Process urgent data. */ 5781 tcp_urg(sk, skb, th); 5782 5783 /* step 7: process the segment text */ 5784 tcp_data_queue(sk, skb); 5785 5786 tcp_data_snd_check(sk); 5787 tcp_ack_snd_check(sk); 5788 return; 5789 5790 csum_error: 5791 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5792 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5793 5794 discard: 5795 tcp_drop(sk, skb); 5796 } 5797 EXPORT_SYMBOL(tcp_rcv_established); 5798 5799 void tcp_init_transfer(struct sock *sk, int bpf_op) 5800 { 5801 struct inet_connection_sock *icsk = inet_csk(sk); 5802 struct tcp_sock *tp = tcp_sk(sk); 5803 5804 tcp_mtup_init(sk); 5805 icsk->icsk_af_ops->rebuild_header(sk); 5806 tcp_init_metrics(sk); 5807 5808 /* Initialize the congestion window to start the transfer. 5809 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 5810 * retransmitted. In light of RFC6298 more aggressive 1sec 5811 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 5812 * retransmission has occurred. 5813 */ 5814 if (tp->total_retrans > 1 && tp->undo_marker) 5815 tp->snd_cwnd = 1; 5816 else 5817 tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 5818 tp->snd_cwnd_stamp = tcp_jiffies32; 5819 5820 tcp_call_bpf(sk, bpf_op, 0, NULL); 5821 tcp_init_congestion_control(sk); 5822 tcp_init_buffer_space(sk); 5823 } 5824 5825 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5826 { 5827 struct tcp_sock *tp = tcp_sk(sk); 5828 struct inet_connection_sock *icsk = inet_csk(sk); 5829 5830 tcp_set_state(sk, TCP_ESTABLISHED); 5831 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5832 5833 if (skb) { 5834 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5835 security_inet_conn_established(sk, skb); 5836 sk_mark_napi_id(sk, skb); 5837 } 5838 5839 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB); 5840 5841 /* Prevent spurious tcp_cwnd_restart() on first data 5842 * packet. 5843 */ 5844 tp->lsndtime = tcp_jiffies32; 5845 5846 if (sock_flag(sk, SOCK_KEEPOPEN)) 5847 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5848 5849 if (!tp->rx_opt.snd_wscale) 5850 __tcp_fast_path_on(tp, tp->snd_wnd); 5851 else 5852 tp->pred_flags = 0; 5853 } 5854 5855 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5856 struct tcp_fastopen_cookie *cookie) 5857 { 5858 struct tcp_sock *tp = tcp_sk(sk); 5859 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 5860 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5861 bool syn_drop = false; 5862 5863 if (mss == tp->rx_opt.user_mss) { 5864 struct tcp_options_received opt; 5865 5866 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5867 tcp_clear_options(&opt); 5868 opt.user_mss = opt.mss_clamp = 0; 5869 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 5870 mss = opt.mss_clamp; 5871 } 5872 5873 if (!tp->syn_fastopen) { 5874 /* Ignore an unsolicited cookie */ 5875 cookie->len = -1; 5876 } else if (tp->total_retrans) { 5877 /* SYN timed out and the SYN-ACK neither has a cookie nor 5878 * acknowledges data. Presumably the remote received only 5879 * the retransmitted (regular) SYNs: either the original 5880 * SYN-data or the corresponding SYN-ACK was dropped. 5881 */ 5882 syn_drop = (cookie->len < 0 && data); 5883 } else if (cookie->len < 0 && !tp->syn_data) { 5884 /* We requested a cookie but didn't get it. If we did not use 5885 * the (old) exp opt format then try so next time (try_exp=1). 5886 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5887 */ 5888 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5889 } 5890 5891 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5892 5893 if (data) { /* Retransmit unacked data in SYN */ 5894 if (tp->total_retrans) 5895 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 5896 else 5897 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 5898 skb_rbtree_walk_from(data) { 5899 if (__tcp_retransmit_skb(sk, data, 1)) 5900 break; 5901 } 5902 tcp_rearm_rto(sk); 5903 NET_INC_STATS(sock_net(sk), 5904 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5905 return true; 5906 } 5907 tp->syn_data_acked = tp->syn_data; 5908 if (tp->syn_data_acked) { 5909 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 5910 /* SYN-data is counted as two separate packets in tcp_ack() */ 5911 if (tp->delivered > 1) 5912 --tp->delivered; 5913 } 5914 5915 tcp_fastopen_add_skb(sk, synack); 5916 5917 return false; 5918 } 5919 5920 static void smc_check_reset_syn(struct tcp_sock *tp) 5921 { 5922 #if IS_ENABLED(CONFIG_SMC) 5923 if (static_branch_unlikely(&tcp_have_smc)) { 5924 if (tp->syn_smc && !tp->rx_opt.smc_ok) 5925 tp->syn_smc = 0; 5926 } 5927 #endif 5928 } 5929 5930 static void tcp_try_undo_spurious_syn(struct sock *sk) 5931 { 5932 struct tcp_sock *tp = tcp_sk(sk); 5933 u32 syn_stamp; 5934 5935 /* undo_marker is set when SYN or SYNACK times out. The timeout is 5936 * spurious if the ACK's timestamp option echo value matches the 5937 * original SYN timestamp. 5938 */ 5939 syn_stamp = tp->retrans_stamp; 5940 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 5941 syn_stamp == tp->rx_opt.rcv_tsecr) 5942 tp->undo_marker = 0; 5943 } 5944 5945 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5946 const struct tcphdr *th) 5947 { 5948 struct inet_connection_sock *icsk = inet_csk(sk); 5949 struct tcp_sock *tp = tcp_sk(sk); 5950 struct tcp_fastopen_cookie foc = { .len = -1 }; 5951 int saved_clamp = tp->rx_opt.mss_clamp; 5952 bool fastopen_fail; 5953 5954 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 5955 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5956 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5957 5958 if (th->ack) { 5959 /* rfc793: 5960 * "If the state is SYN-SENT then 5961 * first check the ACK bit 5962 * If the ACK bit is set 5963 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5964 * a reset (unless the RST bit is set, if so drop 5965 * the segment and return)" 5966 */ 5967 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5968 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5969 /* Previous FIN/ACK or RST/ACK might be ignored. */ 5970 if (icsk->icsk_retransmits == 0) 5971 inet_csk_reset_xmit_timer(sk, 5972 ICSK_TIME_RETRANS, 5973 TCP_TIMEOUT_MIN, TCP_RTO_MAX); 5974 goto reset_and_undo; 5975 } 5976 5977 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5978 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5979 tcp_time_stamp(tp))) { 5980 NET_INC_STATS(sock_net(sk), 5981 LINUX_MIB_PAWSACTIVEREJECTED); 5982 goto reset_and_undo; 5983 } 5984 5985 /* Now ACK is acceptable. 5986 * 5987 * "If the RST bit is set 5988 * If the ACK was acceptable then signal the user "error: 5989 * connection reset", drop the segment, enter CLOSED state, 5990 * delete TCB, and return." 5991 */ 5992 5993 if (th->rst) { 5994 tcp_reset(sk); 5995 goto discard; 5996 } 5997 5998 /* rfc793: 5999 * "fifth, if neither of the SYN or RST bits is set then 6000 * drop the segment and return." 6001 * 6002 * See note below! 6003 * --ANK(990513) 6004 */ 6005 if (!th->syn) 6006 goto discard_and_undo; 6007 6008 /* rfc793: 6009 * "If the SYN bit is on ... 6010 * are acceptable then ... 6011 * (our SYN has been ACKed), change the connection 6012 * state to ESTABLISHED..." 6013 */ 6014 6015 tcp_ecn_rcv_synack(tp, th); 6016 6017 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6018 tcp_try_undo_spurious_syn(sk); 6019 tcp_ack(sk, skb, FLAG_SLOWPATH); 6020 6021 /* Ok.. it's good. Set up sequence numbers and 6022 * move to established. 6023 */ 6024 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6025 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6026 6027 /* RFC1323: The window in SYN & SYN/ACK segments is 6028 * never scaled. 6029 */ 6030 tp->snd_wnd = ntohs(th->window); 6031 6032 if (!tp->rx_opt.wscale_ok) { 6033 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 6034 tp->window_clamp = min(tp->window_clamp, 65535U); 6035 } 6036 6037 if (tp->rx_opt.saw_tstamp) { 6038 tp->rx_opt.tstamp_ok = 1; 6039 tp->tcp_header_len = 6040 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6041 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6042 tcp_store_ts_recent(tp); 6043 } else { 6044 tp->tcp_header_len = sizeof(struct tcphdr); 6045 } 6046 6047 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6048 tcp_initialize_rcv_mss(sk); 6049 6050 /* Remember, tcp_poll() does not lock socket! 6051 * Change state from SYN-SENT only after copied_seq 6052 * is initialized. */ 6053 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6054 6055 smc_check_reset_syn(tp); 6056 6057 smp_mb(); 6058 6059 tcp_finish_connect(sk, skb); 6060 6061 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 6062 tcp_rcv_fastopen_synack(sk, skb, &foc); 6063 6064 if (!sock_flag(sk, SOCK_DEAD)) { 6065 sk->sk_state_change(sk); 6066 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6067 } 6068 if (fastopen_fail) 6069 return -1; 6070 if (sk->sk_write_pending || 6071 icsk->icsk_accept_queue.rskq_defer_accept || 6072 inet_csk_in_pingpong_mode(sk)) { 6073 /* Save one ACK. Data will be ready after 6074 * several ticks, if write_pending is set. 6075 * 6076 * It may be deleted, but with this feature tcpdumps 6077 * look so _wonderfully_ clever, that I was not able 6078 * to stand against the temptation 8) --ANK 6079 */ 6080 inet_csk_schedule_ack(sk); 6081 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 6082 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 6083 TCP_DELACK_MAX, TCP_RTO_MAX); 6084 6085 discard: 6086 tcp_drop(sk, skb); 6087 return 0; 6088 } else { 6089 tcp_send_ack(sk); 6090 } 6091 return -1; 6092 } 6093 6094 /* No ACK in the segment */ 6095 6096 if (th->rst) { 6097 /* rfc793: 6098 * "If the RST bit is set 6099 * 6100 * Otherwise (no ACK) drop the segment and return." 6101 */ 6102 6103 goto discard_and_undo; 6104 } 6105 6106 /* PAWS check. */ 6107 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 6108 tcp_paws_reject(&tp->rx_opt, 0)) 6109 goto discard_and_undo; 6110 6111 if (th->syn) { 6112 /* We see SYN without ACK. It is attempt of 6113 * simultaneous connect with crossed SYNs. 6114 * Particularly, it can be connect to self. 6115 */ 6116 tcp_set_state(sk, TCP_SYN_RECV); 6117 6118 if (tp->rx_opt.saw_tstamp) { 6119 tp->rx_opt.tstamp_ok = 1; 6120 tcp_store_ts_recent(tp); 6121 tp->tcp_header_len = 6122 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6123 } else { 6124 tp->tcp_header_len = sizeof(struct tcphdr); 6125 } 6126 6127 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6128 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6129 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6130 6131 /* RFC1323: The window in SYN & SYN/ACK segments is 6132 * never scaled. 6133 */ 6134 tp->snd_wnd = ntohs(th->window); 6135 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6136 tp->max_window = tp->snd_wnd; 6137 6138 tcp_ecn_rcv_syn(tp, th); 6139 6140 tcp_mtup_init(sk); 6141 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6142 tcp_initialize_rcv_mss(sk); 6143 6144 tcp_send_synack(sk); 6145 #if 0 6146 /* Note, we could accept data and URG from this segment. 6147 * There are no obstacles to make this (except that we must 6148 * either change tcp_recvmsg() to prevent it from returning data 6149 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6150 * 6151 * However, if we ignore data in ACKless segments sometimes, 6152 * we have no reasons to accept it sometimes. 6153 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6154 * is not flawless. So, discard packet for sanity. 6155 * Uncomment this return to process the data. 6156 */ 6157 return -1; 6158 #else 6159 goto discard; 6160 #endif 6161 } 6162 /* "fifth, if neither of the SYN or RST bits is set then 6163 * drop the segment and return." 6164 */ 6165 6166 discard_and_undo: 6167 tcp_clear_options(&tp->rx_opt); 6168 tp->rx_opt.mss_clamp = saved_clamp; 6169 goto discard; 6170 6171 reset_and_undo: 6172 tcp_clear_options(&tp->rx_opt); 6173 tp->rx_opt.mss_clamp = saved_clamp; 6174 return 1; 6175 } 6176 6177 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6178 { 6179 struct request_sock *req; 6180 6181 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows 6182 * undo. If peer SACKs triggered fast recovery, we can't undo here. 6183 */ 6184 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 6185 tcp_try_undo_loss(sk, false); 6186 6187 /* Reset rtx states to prevent spurious retransmits_timed_out() */ 6188 tcp_sk(sk)->retrans_stamp = 0; 6189 inet_csk(sk)->icsk_retransmits = 0; 6190 6191 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6192 * we no longer need req so release it. 6193 */ 6194 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 6195 lockdep_sock_is_held(sk)); 6196 reqsk_fastopen_remove(sk, req, false); 6197 6198 /* Re-arm the timer because data may have been sent out. 6199 * This is similar to the regular data transmission case 6200 * when new data has just been ack'ed. 6201 * 6202 * (TFO) - we could try to be more aggressive and 6203 * retransmitting any data sooner based on when they 6204 * are sent out. 6205 */ 6206 tcp_rearm_rto(sk); 6207 } 6208 6209 /* 6210 * This function implements the receiving procedure of RFC 793 for 6211 * all states except ESTABLISHED and TIME_WAIT. 6212 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6213 * address independent. 6214 */ 6215 6216 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6217 { 6218 struct tcp_sock *tp = tcp_sk(sk); 6219 struct inet_connection_sock *icsk = inet_csk(sk); 6220 const struct tcphdr *th = tcp_hdr(skb); 6221 struct request_sock *req; 6222 int queued = 0; 6223 bool acceptable; 6224 6225 switch (sk->sk_state) { 6226 case TCP_CLOSE: 6227 goto discard; 6228 6229 case TCP_LISTEN: 6230 if (th->ack) 6231 return 1; 6232 6233 if (th->rst) 6234 goto discard; 6235 6236 if (th->syn) { 6237 if (th->fin) 6238 goto discard; 6239 /* It is possible that we process SYN packets from backlog, 6240 * so we need to make sure to disable BH and RCU right there. 6241 */ 6242 rcu_read_lock(); 6243 local_bh_disable(); 6244 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 6245 local_bh_enable(); 6246 rcu_read_unlock(); 6247 6248 if (!acceptable) 6249 return 1; 6250 consume_skb(skb); 6251 return 0; 6252 } 6253 goto discard; 6254 6255 case TCP_SYN_SENT: 6256 tp->rx_opt.saw_tstamp = 0; 6257 tcp_mstamp_refresh(tp); 6258 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6259 if (queued >= 0) 6260 return queued; 6261 6262 /* Do step6 onward by hand. */ 6263 tcp_urg(sk, skb, th); 6264 __kfree_skb(skb); 6265 tcp_data_snd_check(sk); 6266 return 0; 6267 } 6268 6269 tcp_mstamp_refresh(tp); 6270 tp->rx_opt.saw_tstamp = 0; 6271 req = rcu_dereference_protected(tp->fastopen_rsk, 6272 lockdep_sock_is_held(sk)); 6273 if (req) { 6274 bool req_stolen; 6275 6276 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6277 sk->sk_state != TCP_FIN_WAIT1); 6278 6279 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) 6280 goto discard; 6281 } 6282 6283 if (!th->ack && !th->rst && !th->syn) 6284 goto discard; 6285 6286 if (!tcp_validate_incoming(sk, skb, th, 0)) 6287 return 0; 6288 6289 /* step 5: check the ACK field */ 6290 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 6291 FLAG_UPDATE_TS_RECENT | 6292 FLAG_NO_CHALLENGE_ACK) > 0; 6293 6294 if (!acceptable) { 6295 if (sk->sk_state == TCP_SYN_RECV) 6296 return 1; /* send one RST */ 6297 tcp_send_challenge_ack(sk, skb); 6298 goto discard; 6299 } 6300 switch (sk->sk_state) { 6301 case TCP_SYN_RECV: 6302 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6303 if (!tp->srtt_us) 6304 tcp_synack_rtt_meas(sk, req); 6305 6306 if (req) { 6307 tcp_rcv_synrecv_state_fastopen(sk); 6308 } else { 6309 tcp_try_undo_spurious_syn(sk); 6310 tp->retrans_stamp = 0; 6311 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB); 6312 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6313 } 6314 smp_mb(); 6315 tcp_set_state(sk, TCP_ESTABLISHED); 6316 sk->sk_state_change(sk); 6317 6318 /* Note, that this wakeup is only for marginal crossed SYN case. 6319 * Passively open sockets are not waked up, because 6320 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6321 */ 6322 if (sk->sk_socket) 6323 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6324 6325 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6326 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6327 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6328 6329 if (tp->rx_opt.tstamp_ok) 6330 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6331 6332 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6333 tcp_update_pacing_rate(sk); 6334 6335 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6336 tp->lsndtime = tcp_jiffies32; 6337 6338 tcp_initialize_rcv_mss(sk); 6339 tcp_fast_path_on(tp); 6340 break; 6341 6342 case TCP_FIN_WAIT1: { 6343 int tmo; 6344 6345 if (req) 6346 tcp_rcv_synrecv_state_fastopen(sk); 6347 6348 if (tp->snd_una != tp->write_seq) 6349 break; 6350 6351 tcp_set_state(sk, TCP_FIN_WAIT2); 6352 sk->sk_shutdown |= SEND_SHUTDOWN; 6353 6354 sk_dst_confirm(sk); 6355 6356 if (!sock_flag(sk, SOCK_DEAD)) { 6357 /* Wake up lingering close() */ 6358 sk->sk_state_change(sk); 6359 break; 6360 } 6361 6362 if (tp->linger2 < 0) { 6363 tcp_done(sk); 6364 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6365 return 1; 6366 } 6367 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6368 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6369 /* Receive out of order FIN after close() */ 6370 if (tp->syn_fastopen && th->fin) 6371 tcp_fastopen_active_disable(sk); 6372 tcp_done(sk); 6373 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6374 return 1; 6375 } 6376 6377 tmo = tcp_fin_time(sk); 6378 if (tmo > TCP_TIMEWAIT_LEN) { 6379 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6380 } else if (th->fin || sock_owned_by_user(sk)) { 6381 /* Bad case. We could lose such FIN otherwise. 6382 * It is not a big problem, but it looks confusing 6383 * and not so rare event. We still can lose it now, 6384 * if it spins in bh_lock_sock(), but it is really 6385 * marginal case. 6386 */ 6387 inet_csk_reset_keepalive_timer(sk, tmo); 6388 } else { 6389 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6390 goto discard; 6391 } 6392 break; 6393 } 6394 6395 case TCP_CLOSING: 6396 if (tp->snd_una == tp->write_seq) { 6397 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6398 goto discard; 6399 } 6400 break; 6401 6402 case TCP_LAST_ACK: 6403 if (tp->snd_una == tp->write_seq) { 6404 tcp_update_metrics(sk); 6405 tcp_done(sk); 6406 goto discard; 6407 } 6408 break; 6409 } 6410 6411 /* step 6: check the URG bit */ 6412 tcp_urg(sk, skb, th); 6413 6414 /* step 7: process the segment text */ 6415 switch (sk->sk_state) { 6416 case TCP_CLOSE_WAIT: 6417 case TCP_CLOSING: 6418 case TCP_LAST_ACK: 6419 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 6420 if (sk_is_mptcp(sk)) 6421 mptcp_incoming_options(sk, skb, &tp->rx_opt); 6422 break; 6423 } 6424 fallthrough; 6425 case TCP_FIN_WAIT1: 6426 case TCP_FIN_WAIT2: 6427 /* RFC 793 says to queue data in these states, 6428 * RFC 1122 says we MUST send a reset. 6429 * BSD 4.4 also does reset. 6430 */ 6431 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6432 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6433 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6434 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6435 tcp_reset(sk); 6436 return 1; 6437 } 6438 } 6439 fallthrough; 6440 case TCP_ESTABLISHED: 6441 tcp_data_queue(sk, skb); 6442 queued = 1; 6443 break; 6444 } 6445 6446 /* tcp_data could move socket to TIME-WAIT */ 6447 if (sk->sk_state != TCP_CLOSE) { 6448 tcp_data_snd_check(sk); 6449 tcp_ack_snd_check(sk); 6450 } 6451 6452 if (!queued) { 6453 discard: 6454 tcp_drop(sk, skb); 6455 } 6456 return 0; 6457 } 6458 EXPORT_SYMBOL(tcp_rcv_state_process); 6459 6460 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6461 { 6462 struct inet_request_sock *ireq = inet_rsk(req); 6463 6464 if (family == AF_INET) 6465 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6466 &ireq->ir_rmt_addr, port); 6467 #if IS_ENABLED(CONFIG_IPV6) 6468 else if (family == AF_INET6) 6469 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6470 &ireq->ir_v6_rmt_addr, port); 6471 #endif 6472 } 6473 6474 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6475 * 6476 * If we receive a SYN packet with these bits set, it means a 6477 * network is playing bad games with TOS bits. In order to 6478 * avoid possible false congestion notifications, we disable 6479 * TCP ECN negotiation. 6480 * 6481 * Exception: tcp_ca wants ECN. This is required for DCTCP 6482 * congestion control: Linux DCTCP asserts ECT on all packets, 6483 * including SYN, which is most optimal solution; however, 6484 * others, such as FreeBSD do not. 6485 * 6486 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 6487 * set, indicating the use of a future TCP extension (such as AccECN). See 6488 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 6489 * extensions. 6490 */ 6491 static void tcp_ecn_create_request(struct request_sock *req, 6492 const struct sk_buff *skb, 6493 const struct sock *listen_sk, 6494 const struct dst_entry *dst) 6495 { 6496 const struct tcphdr *th = tcp_hdr(skb); 6497 const struct net *net = sock_net(listen_sk); 6498 bool th_ecn = th->ece && th->cwr; 6499 bool ect, ecn_ok; 6500 u32 ecn_ok_dst; 6501 6502 if (!th_ecn) 6503 return; 6504 6505 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6506 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6507 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6508 6509 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6510 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6511 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6512 inet_rsk(req)->ecn_ok = 1; 6513 } 6514 6515 static void tcp_openreq_init(struct request_sock *req, 6516 const struct tcp_options_received *rx_opt, 6517 struct sk_buff *skb, const struct sock *sk) 6518 { 6519 struct inet_request_sock *ireq = inet_rsk(req); 6520 6521 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6522 req->cookie_ts = 0; 6523 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6524 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6525 tcp_rsk(req)->snt_synack = 0; 6526 tcp_rsk(req)->last_oow_ack_time = 0; 6527 req->mss = rx_opt->mss_clamp; 6528 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6529 ireq->tstamp_ok = rx_opt->tstamp_ok; 6530 ireq->sack_ok = rx_opt->sack_ok; 6531 ireq->snd_wscale = rx_opt->snd_wscale; 6532 ireq->wscale_ok = rx_opt->wscale_ok; 6533 ireq->acked = 0; 6534 ireq->ecn_ok = 0; 6535 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6536 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6537 ireq->ir_mark = inet_request_mark(sk, skb); 6538 #if IS_ENABLED(CONFIG_SMC) 6539 ireq->smc_ok = rx_opt->smc_ok; 6540 #endif 6541 } 6542 6543 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6544 struct sock *sk_listener, 6545 bool attach_listener) 6546 { 6547 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6548 attach_listener); 6549 6550 if (req) { 6551 struct inet_request_sock *ireq = inet_rsk(req); 6552 6553 ireq->ireq_opt = NULL; 6554 #if IS_ENABLED(CONFIG_IPV6) 6555 ireq->pktopts = NULL; 6556 #endif 6557 atomic64_set(&ireq->ir_cookie, 0); 6558 ireq->ireq_state = TCP_NEW_SYN_RECV; 6559 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6560 ireq->ireq_family = sk_listener->sk_family; 6561 } 6562 6563 return req; 6564 } 6565 EXPORT_SYMBOL(inet_reqsk_alloc); 6566 6567 /* 6568 * Return true if a syncookie should be sent 6569 */ 6570 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto) 6571 { 6572 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6573 const char *msg = "Dropping request"; 6574 bool want_cookie = false; 6575 struct net *net = sock_net(sk); 6576 6577 #ifdef CONFIG_SYN_COOKIES 6578 if (net->ipv4.sysctl_tcp_syncookies) { 6579 msg = "Sending cookies"; 6580 want_cookie = true; 6581 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6582 } else 6583 #endif 6584 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6585 6586 if (!queue->synflood_warned && 6587 net->ipv4.sysctl_tcp_syncookies != 2 && 6588 xchg(&queue->synflood_warned, 1) == 0) 6589 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6590 proto, sk->sk_num, msg); 6591 6592 return want_cookie; 6593 } 6594 6595 static void tcp_reqsk_record_syn(const struct sock *sk, 6596 struct request_sock *req, 6597 const struct sk_buff *skb) 6598 { 6599 if (tcp_sk(sk)->save_syn) { 6600 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6601 u32 *copy; 6602 6603 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6604 if (copy) { 6605 copy[0] = len; 6606 memcpy(©[1], skb_network_header(skb), len); 6607 req->saved_syn = copy; 6608 } 6609 } 6610 } 6611 6612 /* If a SYN cookie is required and supported, returns a clamped MSS value to be 6613 * used for SYN cookie generation. 6614 */ 6615 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 6616 const struct tcp_request_sock_ops *af_ops, 6617 struct sock *sk, struct tcphdr *th) 6618 { 6619 struct tcp_sock *tp = tcp_sk(sk); 6620 u16 mss; 6621 6622 if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 && 6623 !inet_csk_reqsk_queue_is_full(sk)) 6624 return 0; 6625 6626 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 6627 return 0; 6628 6629 if (sk_acceptq_is_full(sk)) { 6630 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6631 return 0; 6632 } 6633 6634 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss); 6635 if (!mss) 6636 mss = af_ops->mss_clamp; 6637 6638 return mss; 6639 } 6640 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss); 6641 6642 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6643 const struct tcp_request_sock_ops *af_ops, 6644 struct sock *sk, struct sk_buff *skb) 6645 { 6646 struct tcp_fastopen_cookie foc = { .len = -1 }; 6647 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6648 struct tcp_options_received tmp_opt; 6649 struct tcp_sock *tp = tcp_sk(sk); 6650 struct net *net = sock_net(sk); 6651 struct sock *fastopen_sk = NULL; 6652 struct request_sock *req; 6653 bool want_cookie = false; 6654 struct dst_entry *dst; 6655 struct flowi fl; 6656 6657 /* TW buckets are converted to open requests without 6658 * limitations, they conserve resources and peer is 6659 * evidently real one. 6660 */ 6661 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6662 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6663 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name); 6664 if (!want_cookie) 6665 goto drop; 6666 } 6667 6668 if (sk_acceptq_is_full(sk)) { 6669 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6670 goto drop; 6671 } 6672 6673 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6674 if (!req) 6675 goto drop; 6676 6677 tcp_rsk(req)->af_specific = af_ops; 6678 tcp_rsk(req)->ts_off = 0; 6679 #if IS_ENABLED(CONFIG_MPTCP) 6680 tcp_rsk(req)->is_mptcp = 0; 6681 #endif 6682 6683 tcp_clear_options(&tmp_opt); 6684 tmp_opt.mss_clamp = af_ops->mss_clamp; 6685 tmp_opt.user_mss = tp->rx_opt.user_mss; 6686 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6687 want_cookie ? NULL : &foc); 6688 6689 if (want_cookie && !tmp_opt.saw_tstamp) 6690 tcp_clear_options(&tmp_opt); 6691 6692 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 6693 tmp_opt.smc_ok = 0; 6694 6695 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6696 tcp_openreq_init(req, &tmp_opt, skb, sk); 6697 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6698 6699 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6700 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6701 6702 af_ops->init_req(req, sk, skb); 6703 6704 if (IS_ENABLED(CONFIG_MPTCP) && want_cookie) 6705 tcp_rsk(req)->is_mptcp = 0; 6706 6707 if (security_inet_conn_request(sk, skb, req)) 6708 goto drop_and_free; 6709 6710 if (tmp_opt.tstamp_ok) 6711 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6712 6713 dst = af_ops->route_req(sk, &fl, req); 6714 if (!dst) 6715 goto drop_and_free; 6716 6717 if (!want_cookie && !isn) { 6718 /* Kill the following clause, if you dislike this way. */ 6719 if (!net->ipv4.sysctl_tcp_syncookies && 6720 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6721 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6722 !tcp_peer_is_proven(req, dst)) { 6723 /* Without syncookies last quarter of 6724 * backlog is filled with destinations, 6725 * proven to be alive. 6726 * It means that we continue to communicate 6727 * to destinations, already remembered 6728 * to the moment of synflood. 6729 */ 6730 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6731 rsk_ops->family); 6732 goto drop_and_release; 6733 } 6734 6735 isn = af_ops->init_seq(skb); 6736 } 6737 6738 tcp_ecn_create_request(req, skb, sk, dst); 6739 6740 if (want_cookie) { 6741 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6742 req->cookie_ts = tmp_opt.tstamp_ok; 6743 if (!tmp_opt.tstamp_ok) 6744 inet_rsk(req)->ecn_ok = 0; 6745 } 6746 6747 tcp_rsk(req)->snt_isn = isn; 6748 tcp_rsk(req)->txhash = net_tx_rndhash(); 6749 tcp_openreq_init_rwin(req, sk, dst); 6750 sk_rx_queue_set(req_to_sk(req), skb); 6751 if (!want_cookie) { 6752 tcp_reqsk_record_syn(sk, req, skb); 6753 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6754 } 6755 if (fastopen_sk) { 6756 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6757 &foc, TCP_SYNACK_FASTOPEN); 6758 /* Add the child socket directly into the accept queue */ 6759 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 6760 reqsk_fastopen_remove(fastopen_sk, req, false); 6761 bh_unlock_sock(fastopen_sk); 6762 sock_put(fastopen_sk); 6763 goto drop_and_free; 6764 } 6765 sk->sk_data_ready(sk); 6766 bh_unlock_sock(fastopen_sk); 6767 sock_put(fastopen_sk); 6768 } else { 6769 tcp_rsk(req)->tfo_listener = false; 6770 if (!want_cookie) 6771 inet_csk_reqsk_queue_hash_add(sk, req, 6772 tcp_timeout_init((struct sock *)req)); 6773 af_ops->send_synack(sk, dst, &fl, req, &foc, 6774 !want_cookie ? TCP_SYNACK_NORMAL : 6775 TCP_SYNACK_COOKIE); 6776 if (want_cookie) { 6777 reqsk_free(req); 6778 return 0; 6779 } 6780 } 6781 reqsk_put(req); 6782 return 0; 6783 6784 drop_and_release: 6785 dst_release(dst); 6786 drop_and_free: 6787 __reqsk_free(req); 6788 drop: 6789 tcp_listendrop(sk); 6790 return 0; 6791 } 6792 EXPORT_SYMBOL(tcp_conn_request); 6793