xref: /openbmc/linux/net/ipv4/tcp_input.c (revision b6bec26c)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #define pr_fmt(fmt) "TCP: " fmt
65 
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
77 
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_ecn __read_mostly = 2;
85 EXPORT_SYMBOL(sysctl_tcp_ecn);
86 int sysctl_tcp_dsack __read_mostly = 1;
87 int sysctl_tcp_app_win __read_mostly = 31;
88 int sysctl_tcp_adv_win_scale __read_mostly = 1;
89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
90 
91 /* rfc5961 challenge ack rate limiting */
92 int sysctl_tcp_challenge_ack_limit = 100;
93 
94 int sysctl_tcp_stdurg __read_mostly;
95 int sysctl_tcp_rfc1337 __read_mostly;
96 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
97 int sysctl_tcp_frto __read_mostly = 2;
98 int sysctl_tcp_frto_response __read_mostly;
99 
100 int sysctl_tcp_thin_dupack __read_mostly;
101 
102 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
103 int sysctl_tcp_abc __read_mostly;
104 int sysctl_tcp_early_retrans __read_mostly = 2;
105 
106 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
107 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
108 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
109 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
110 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
111 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
112 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
113 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
114 #define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
115 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
116 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
117 #define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
118 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
119 
120 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
121 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
122 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
123 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
124 #define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
125 
126 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
127 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
128 
129 /* Adapt the MSS value used to make delayed ack decision to the
130  * real world.
131  */
132 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
133 {
134 	struct inet_connection_sock *icsk = inet_csk(sk);
135 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
136 	unsigned int len;
137 
138 	icsk->icsk_ack.last_seg_size = 0;
139 
140 	/* skb->len may jitter because of SACKs, even if peer
141 	 * sends good full-sized frames.
142 	 */
143 	len = skb_shinfo(skb)->gso_size ? : skb->len;
144 	if (len >= icsk->icsk_ack.rcv_mss) {
145 		icsk->icsk_ack.rcv_mss = len;
146 	} else {
147 		/* Otherwise, we make more careful check taking into account,
148 		 * that SACKs block is variable.
149 		 *
150 		 * "len" is invariant segment length, including TCP header.
151 		 */
152 		len += skb->data - skb_transport_header(skb);
153 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
154 		    /* If PSH is not set, packet should be
155 		     * full sized, provided peer TCP is not badly broken.
156 		     * This observation (if it is correct 8)) allows
157 		     * to handle super-low mtu links fairly.
158 		     */
159 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
160 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
161 			/* Subtract also invariant (if peer is RFC compliant),
162 			 * tcp header plus fixed timestamp option length.
163 			 * Resulting "len" is MSS free of SACK jitter.
164 			 */
165 			len -= tcp_sk(sk)->tcp_header_len;
166 			icsk->icsk_ack.last_seg_size = len;
167 			if (len == lss) {
168 				icsk->icsk_ack.rcv_mss = len;
169 				return;
170 			}
171 		}
172 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
173 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
174 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
175 	}
176 }
177 
178 static void tcp_incr_quickack(struct sock *sk)
179 {
180 	struct inet_connection_sock *icsk = inet_csk(sk);
181 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
182 
183 	if (quickacks == 0)
184 		quickacks = 2;
185 	if (quickacks > icsk->icsk_ack.quick)
186 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
187 }
188 
189 static void tcp_enter_quickack_mode(struct sock *sk)
190 {
191 	struct inet_connection_sock *icsk = inet_csk(sk);
192 	tcp_incr_quickack(sk);
193 	icsk->icsk_ack.pingpong = 0;
194 	icsk->icsk_ack.ato = TCP_ATO_MIN;
195 }
196 
197 /* Send ACKs quickly, if "quick" count is not exhausted
198  * and the session is not interactive.
199  */
200 
201 static inline bool tcp_in_quickack_mode(const struct sock *sk)
202 {
203 	const struct inet_connection_sock *icsk = inet_csk(sk);
204 
205 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
206 }
207 
208 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
209 {
210 	if (tp->ecn_flags & TCP_ECN_OK)
211 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
212 }
213 
214 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
215 {
216 	if (tcp_hdr(skb)->cwr)
217 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218 }
219 
220 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
221 {
222 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
223 }
224 
225 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
226 {
227 	if (!(tp->ecn_flags & TCP_ECN_OK))
228 		return;
229 
230 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
231 	case INET_ECN_NOT_ECT:
232 		/* Funny extension: if ECT is not set on a segment,
233 		 * and we already seen ECT on a previous segment,
234 		 * it is probably a retransmit.
235 		 */
236 		if (tp->ecn_flags & TCP_ECN_SEEN)
237 			tcp_enter_quickack_mode((struct sock *)tp);
238 		break;
239 	case INET_ECN_CE:
240 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
241 			/* Better not delay acks, sender can have a very low cwnd */
242 			tcp_enter_quickack_mode((struct sock *)tp);
243 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
244 		}
245 		/* fallinto */
246 	default:
247 		tp->ecn_flags |= TCP_ECN_SEEN;
248 	}
249 }
250 
251 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
252 {
253 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
254 		tp->ecn_flags &= ~TCP_ECN_OK;
255 }
256 
257 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
258 {
259 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
260 		tp->ecn_flags &= ~TCP_ECN_OK;
261 }
262 
263 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
264 {
265 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
266 		return true;
267 	return false;
268 }
269 
270 /* Buffer size and advertised window tuning.
271  *
272  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
273  */
274 
275 static void tcp_fixup_sndbuf(struct sock *sk)
276 {
277 	int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
278 
279 	sndmem *= TCP_INIT_CWND;
280 	if (sk->sk_sndbuf < sndmem)
281 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
282 }
283 
284 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
285  *
286  * All tcp_full_space() is split to two parts: "network" buffer, allocated
287  * forward and advertised in receiver window (tp->rcv_wnd) and
288  * "application buffer", required to isolate scheduling/application
289  * latencies from network.
290  * window_clamp is maximal advertised window. It can be less than
291  * tcp_full_space(), in this case tcp_full_space() - window_clamp
292  * is reserved for "application" buffer. The less window_clamp is
293  * the smoother our behaviour from viewpoint of network, but the lower
294  * throughput and the higher sensitivity of the connection to losses. 8)
295  *
296  * rcv_ssthresh is more strict window_clamp used at "slow start"
297  * phase to predict further behaviour of this connection.
298  * It is used for two goals:
299  * - to enforce header prediction at sender, even when application
300  *   requires some significant "application buffer". It is check #1.
301  * - to prevent pruning of receive queue because of misprediction
302  *   of receiver window. Check #2.
303  *
304  * The scheme does not work when sender sends good segments opening
305  * window and then starts to feed us spaghetti. But it should work
306  * in common situations. Otherwise, we have to rely on queue collapsing.
307  */
308 
309 /* Slow part of check#2. */
310 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
311 {
312 	struct tcp_sock *tp = tcp_sk(sk);
313 	/* Optimize this! */
314 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
315 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
316 
317 	while (tp->rcv_ssthresh <= window) {
318 		if (truesize <= skb->len)
319 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
320 
321 		truesize >>= 1;
322 		window >>= 1;
323 	}
324 	return 0;
325 }
326 
327 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
328 {
329 	struct tcp_sock *tp = tcp_sk(sk);
330 
331 	/* Check #1 */
332 	if (tp->rcv_ssthresh < tp->window_clamp &&
333 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
334 	    !sk_under_memory_pressure(sk)) {
335 		int incr;
336 
337 		/* Check #2. Increase window, if skb with such overhead
338 		 * will fit to rcvbuf in future.
339 		 */
340 		if (tcp_win_from_space(skb->truesize) <= skb->len)
341 			incr = 2 * tp->advmss;
342 		else
343 			incr = __tcp_grow_window(sk, skb);
344 
345 		if (incr) {
346 			incr = max_t(int, incr, 2 * skb->len);
347 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
348 					       tp->window_clamp);
349 			inet_csk(sk)->icsk_ack.quick |= 1;
350 		}
351 	}
352 }
353 
354 /* 3. Tuning rcvbuf, when connection enters established state. */
355 
356 static void tcp_fixup_rcvbuf(struct sock *sk)
357 {
358 	u32 mss = tcp_sk(sk)->advmss;
359 	u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
360 	int rcvmem;
361 
362 	/* Limit to 10 segments if mss <= 1460,
363 	 * or 14600/mss segments, with a minimum of two segments.
364 	 */
365 	if (mss > 1460)
366 		icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
367 
368 	rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
369 	while (tcp_win_from_space(rcvmem) < mss)
370 		rcvmem += 128;
371 
372 	rcvmem *= icwnd;
373 
374 	if (sk->sk_rcvbuf < rcvmem)
375 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
376 }
377 
378 /* 4. Try to fixup all. It is made immediately after connection enters
379  *    established state.
380  */
381 void tcp_init_buffer_space(struct sock *sk)
382 {
383 	struct tcp_sock *tp = tcp_sk(sk);
384 	int maxwin;
385 
386 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
387 		tcp_fixup_rcvbuf(sk);
388 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
389 		tcp_fixup_sndbuf(sk);
390 
391 	tp->rcvq_space.space = tp->rcv_wnd;
392 
393 	maxwin = tcp_full_space(sk);
394 
395 	if (tp->window_clamp >= maxwin) {
396 		tp->window_clamp = maxwin;
397 
398 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
399 			tp->window_clamp = max(maxwin -
400 					       (maxwin >> sysctl_tcp_app_win),
401 					       4 * tp->advmss);
402 	}
403 
404 	/* Force reservation of one segment. */
405 	if (sysctl_tcp_app_win &&
406 	    tp->window_clamp > 2 * tp->advmss &&
407 	    tp->window_clamp + tp->advmss > maxwin)
408 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
409 
410 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
411 	tp->snd_cwnd_stamp = tcp_time_stamp;
412 }
413 
414 /* 5. Recalculate window clamp after socket hit its memory bounds. */
415 static void tcp_clamp_window(struct sock *sk)
416 {
417 	struct tcp_sock *tp = tcp_sk(sk);
418 	struct inet_connection_sock *icsk = inet_csk(sk);
419 
420 	icsk->icsk_ack.quick = 0;
421 
422 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
423 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
424 	    !sk_under_memory_pressure(sk) &&
425 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
426 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
427 				    sysctl_tcp_rmem[2]);
428 	}
429 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
430 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
431 }
432 
433 /* Initialize RCV_MSS value.
434  * RCV_MSS is an our guess about MSS used by the peer.
435  * We haven't any direct information about the MSS.
436  * It's better to underestimate the RCV_MSS rather than overestimate.
437  * Overestimations make us ACKing less frequently than needed.
438  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
439  */
440 void tcp_initialize_rcv_mss(struct sock *sk)
441 {
442 	const struct tcp_sock *tp = tcp_sk(sk);
443 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
444 
445 	hint = min(hint, tp->rcv_wnd / 2);
446 	hint = min(hint, TCP_MSS_DEFAULT);
447 	hint = max(hint, TCP_MIN_MSS);
448 
449 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
450 }
451 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
452 
453 /* Receiver "autotuning" code.
454  *
455  * The algorithm for RTT estimation w/o timestamps is based on
456  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
457  * <http://public.lanl.gov/radiant/pubs.html#DRS>
458  *
459  * More detail on this code can be found at
460  * <http://staff.psc.edu/jheffner/>,
461  * though this reference is out of date.  A new paper
462  * is pending.
463  */
464 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
465 {
466 	u32 new_sample = tp->rcv_rtt_est.rtt;
467 	long m = sample;
468 
469 	if (m == 0)
470 		m = 1;
471 
472 	if (new_sample != 0) {
473 		/* If we sample in larger samples in the non-timestamp
474 		 * case, we could grossly overestimate the RTT especially
475 		 * with chatty applications or bulk transfer apps which
476 		 * are stalled on filesystem I/O.
477 		 *
478 		 * Also, since we are only going for a minimum in the
479 		 * non-timestamp case, we do not smooth things out
480 		 * else with timestamps disabled convergence takes too
481 		 * long.
482 		 */
483 		if (!win_dep) {
484 			m -= (new_sample >> 3);
485 			new_sample += m;
486 		} else {
487 			m <<= 3;
488 			if (m < new_sample)
489 				new_sample = m;
490 		}
491 	} else {
492 		/* No previous measure. */
493 		new_sample = m << 3;
494 	}
495 
496 	if (tp->rcv_rtt_est.rtt != new_sample)
497 		tp->rcv_rtt_est.rtt = new_sample;
498 }
499 
500 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
501 {
502 	if (tp->rcv_rtt_est.time == 0)
503 		goto new_measure;
504 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
505 		return;
506 	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
507 
508 new_measure:
509 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
510 	tp->rcv_rtt_est.time = tcp_time_stamp;
511 }
512 
513 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
514 					  const struct sk_buff *skb)
515 {
516 	struct tcp_sock *tp = tcp_sk(sk);
517 	if (tp->rx_opt.rcv_tsecr &&
518 	    (TCP_SKB_CB(skb)->end_seq -
519 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
520 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
521 }
522 
523 /*
524  * This function should be called every time data is copied to user space.
525  * It calculates the appropriate TCP receive buffer space.
526  */
527 void tcp_rcv_space_adjust(struct sock *sk)
528 {
529 	struct tcp_sock *tp = tcp_sk(sk);
530 	int time;
531 	int space;
532 
533 	if (tp->rcvq_space.time == 0)
534 		goto new_measure;
535 
536 	time = tcp_time_stamp - tp->rcvq_space.time;
537 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
538 		return;
539 
540 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
541 
542 	space = max(tp->rcvq_space.space, space);
543 
544 	if (tp->rcvq_space.space != space) {
545 		int rcvmem;
546 
547 		tp->rcvq_space.space = space;
548 
549 		if (sysctl_tcp_moderate_rcvbuf &&
550 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
551 			int new_clamp = space;
552 
553 			/* Receive space grows, normalize in order to
554 			 * take into account packet headers and sk_buff
555 			 * structure overhead.
556 			 */
557 			space /= tp->advmss;
558 			if (!space)
559 				space = 1;
560 			rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
561 			while (tcp_win_from_space(rcvmem) < tp->advmss)
562 				rcvmem += 128;
563 			space *= rcvmem;
564 			space = min(space, sysctl_tcp_rmem[2]);
565 			if (space > sk->sk_rcvbuf) {
566 				sk->sk_rcvbuf = space;
567 
568 				/* Make the window clamp follow along.  */
569 				tp->window_clamp = new_clamp;
570 			}
571 		}
572 	}
573 
574 new_measure:
575 	tp->rcvq_space.seq = tp->copied_seq;
576 	tp->rcvq_space.time = tcp_time_stamp;
577 }
578 
579 /* There is something which you must keep in mind when you analyze the
580  * behavior of the tp->ato delayed ack timeout interval.  When a
581  * connection starts up, we want to ack as quickly as possible.  The
582  * problem is that "good" TCP's do slow start at the beginning of data
583  * transmission.  The means that until we send the first few ACK's the
584  * sender will sit on his end and only queue most of his data, because
585  * he can only send snd_cwnd unacked packets at any given time.  For
586  * each ACK we send, he increments snd_cwnd and transmits more of his
587  * queue.  -DaveM
588  */
589 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
590 {
591 	struct tcp_sock *tp = tcp_sk(sk);
592 	struct inet_connection_sock *icsk = inet_csk(sk);
593 	u32 now;
594 
595 	inet_csk_schedule_ack(sk);
596 
597 	tcp_measure_rcv_mss(sk, skb);
598 
599 	tcp_rcv_rtt_measure(tp);
600 
601 	now = tcp_time_stamp;
602 
603 	if (!icsk->icsk_ack.ato) {
604 		/* The _first_ data packet received, initialize
605 		 * delayed ACK engine.
606 		 */
607 		tcp_incr_quickack(sk);
608 		icsk->icsk_ack.ato = TCP_ATO_MIN;
609 	} else {
610 		int m = now - icsk->icsk_ack.lrcvtime;
611 
612 		if (m <= TCP_ATO_MIN / 2) {
613 			/* The fastest case is the first. */
614 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
615 		} else if (m < icsk->icsk_ack.ato) {
616 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
617 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
618 				icsk->icsk_ack.ato = icsk->icsk_rto;
619 		} else if (m > icsk->icsk_rto) {
620 			/* Too long gap. Apparently sender failed to
621 			 * restart window, so that we send ACKs quickly.
622 			 */
623 			tcp_incr_quickack(sk);
624 			sk_mem_reclaim(sk);
625 		}
626 	}
627 	icsk->icsk_ack.lrcvtime = now;
628 
629 	TCP_ECN_check_ce(tp, skb);
630 
631 	if (skb->len >= 128)
632 		tcp_grow_window(sk, skb);
633 }
634 
635 /* Called to compute a smoothed rtt estimate. The data fed to this
636  * routine either comes from timestamps, or from segments that were
637  * known _not_ to have been retransmitted [see Karn/Partridge
638  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
639  * piece by Van Jacobson.
640  * NOTE: the next three routines used to be one big routine.
641  * To save cycles in the RFC 1323 implementation it was better to break
642  * it up into three procedures. -- erics
643  */
644 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
645 {
646 	struct tcp_sock *tp = tcp_sk(sk);
647 	long m = mrtt; /* RTT */
648 
649 	/*	The following amusing code comes from Jacobson's
650 	 *	article in SIGCOMM '88.  Note that rtt and mdev
651 	 *	are scaled versions of rtt and mean deviation.
652 	 *	This is designed to be as fast as possible
653 	 *	m stands for "measurement".
654 	 *
655 	 *	On a 1990 paper the rto value is changed to:
656 	 *	RTO = rtt + 4 * mdev
657 	 *
658 	 * Funny. This algorithm seems to be very broken.
659 	 * These formulae increase RTO, when it should be decreased, increase
660 	 * too slowly, when it should be increased quickly, decrease too quickly
661 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
662 	 * does not matter how to _calculate_ it. Seems, it was trap
663 	 * that VJ failed to avoid. 8)
664 	 */
665 	if (m == 0)
666 		m = 1;
667 	if (tp->srtt != 0) {
668 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
669 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
670 		if (m < 0) {
671 			m = -m;		/* m is now abs(error) */
672 			m -= (tp->mdev >> 2);   /* similar update on mdev */
673 			/* This is similar to one of Eifel findings.
674 			 * Eifel blocks mdev updates when rtt decreases.
675 			 * This solution is a bit different: we use finer gain
676 			 * for mdev in this case (alpha*beta).
677 			 * Like Eifel it also prevents growth of rto,
678 			 * but also it limits too fast rto decreases,
679 			 * happening in pure Eifel.
680 			 */
681 			if (m > 0)
682 				m >>= 3;
683 		} else {
684 			m -= (tp->mdev >> 2);   /* similar update on mdev */
685 		}
686 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
687 		if (tp->mdev > tp->mdev_max) {
688 			tp->mdev_max = tp->mdev;
689 			if (tp->mdev_max > tp->rttvar)
690 				tp->rttvar = tp->mdev_max;
691 		}
692 		if (after(tp->snd_una, tp->rtt_seq)) {
693 			if (tp->mdev_max < tp->rttvar)
694 				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
695 			tp->rtt_seq = tp->snd_nxt;
696 			tp->mdev_max = tcp_rto_min(sk);
697 		}
698 	} else {
699 		/* no previous measure. */
700 		tp->srtt = m << 3;	/* take the measured time to be rtt */
701 		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
702 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
703 		tp->rtt_seq = tp->snd_nxt;
704 	}
705 }
706 
707 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
708  * routine referred to above.
709  */
710 void tcp_set_rto(struct sock *sk)
711 {
712 	const struct tcp_sock *tp = tcp_sk(sk);
713 	/* Old crap is replaced with new one. 8)
714 	 *
715 	 * More seriously:
716 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
717 	 *    It cannot be less due to utterly erratic ACK generation made
718 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
719 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
720 	 *    is invisible. Actually, Linux-2.4 also generates erratic
721 	 *    ACKs in some circumstances.
722 	 */
723 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
724 
725 	/* 2. Fixups made earlier cannot be right.
726 	 *    If we do not estimate RTO correctly without them,
727 	 *    all the algo is pure shit and should be replaced
728 	 *    with correct one. It is exactly, which we pretend to do.
729 	 */
730 
731 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
732 	 * guarantees that rto is higher.
733 	 */
734 	tcp_bound_rto(sk);
735 }
736 
737 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
738 {
739 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
740 
741 	if (!cwnd)
742 		cwnd = TCP_INIT_CWND;
743 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
744 }
745 
746 /*
747  * Packet counting of FACK is based on in-order assumptions, therefore TCP
748  * disables it when reordering is detected
749  */
750 void tcp_disable_fack(struct tcp_sock *tp)
751 {
752 	/* RFC3517 uses different metric in lost marker => reset on change */
753 	if (tcp_is_fack(tp))
754 		tp->lost_skb_hint = NULL;
755 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
756 }
757 
758 /* Take a notice that peer is sending D-SACKs */
759 static void tcp_dsack_seen(struct tcp_sock *tp)
760 {
761 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
762 }
763 
764 static void tcp_update_reordering(struct sock *sk, const int metric,
765 				  const int ts)
766 {
767 	struct tcp_sock *tp = tcp_sk(sk);
768 	if (metric > tp->reordering) {
769 		int mib_idx;
770 
771 		tp->reordering = min(TCP_MAX_REORDERING, metric);
772 
773 		/* This exciting event is worth to be remembered. 8) */
774 		if (ts)
775 			mib_idx = LINUX_MIB_TCPTSREORDER;
776 		else if (tcp_is_reno(tp))
777 			mib_idx = LINUX_MIB_TCPRENOREORDER;
778 		else if (tcp_is_fack(tp))
779 			mib_idx = LINUX_MIB_TCPFACKREORDER;
780 		else
781 			mib_idx = LINUX_MIB_TCPSACKREORDER;
782 
783 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
784 #if FASTRETRANS_DEBUG > 1
785 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
786 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
787 			 tp->reordering,
788 			 tp->fackets_out,
789 			 tp->sacked_out,
790 			 tp->undo_marker ? tp->undo_retrans : 0);
791 #endif
792 		tcp_disable_fack(tp);
793 	}
794 
795 	if (metric > 0)
796 		tcp_disable_early_retrans(tp);
797 }
798 
799 /* This must be called before lost_out is incremented */
800 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
801 {
802 	if ((tp->retransmit_skb_hint == NULL) ||
803 	    before(TCP_SKB_CB(skb)->seq,
804 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
805 		tp->retransmit_skb_hint = skb;
806 
807 	if (!tp->lost_out ||
808 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
809 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
810 }
811 
812 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
813 {
814 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
815 		tcp_verify_retransmit_hint(tp, skb);
816 
817 		tp->lost_out += tcp_skb_pcount(skb);
818 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
819 	}
820 }
821 
822 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
823 					    struct sk_buff *skb)
824 {
825 	tcp_verify_retransmit_hint(tp, skb);
826 
827 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
828 		tp->lost_out += tcp_skb_pcount(skb);
829 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
830 	}
831 }
832 
833 /* This procedure tags the retransmission queue when SACKs arrive.
834  *
835  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
836  * Packets in queue with these bits set are counted in variables
837  * sacked_out, retrans_out and lost_out, correspondingly.
838  *
839  * Valid combinations are:
840  * Tag  InFlight	Description
841  * 0	1		- orig segment is in flight.
842  * S	0		- nothing flies, orig reached receiver.
843  * L	0		- nothing flies, orig lost by net.
844  * R	2		- both orig and retransmit are in flight.
845  * L|R	1		- orig is lost, retransmit is in flight.
846  * S|R  1		- orig reached receiver, retrans is still in flight.
847  * (L|S|R is logically valid, it could occur when L|R is sacked,
848  *  but it is equivalent to plain S and code short-curcuits it to S.
849  *  L|S is logically invalid, it would mean -1 packet in flight 8))
850  *
851  * These 6 states form finite state machine, controlled by the following events:
852  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
853  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
854  * 3. Loss detection event of two flavors:
855  *	A. Scoreboard estimator decided the packet is lost.
856  *	   A'. Reno "three dupacks" marks head of queue lost.
857  *	   A''. Its FACK modification, head until snd.fack is lost.
858  *	B. SACK arrives sacking SND.NXT at the moment, when the
859  *	   segment was retransmitted.
860  * 4. D-SACK added new rule: D-SACK changes any tag to S.
861  *
862  * It is pleasant to note, that state diagram turns out to be commutative,
863  * so that we are allowed not to be bothered by order of our actions,
864  * when multiple events arrive simultaneously. (see the function below).
865  *
866  * Reordering detection.
867  * --------------------
868  * Reordering metric is maximal distance, which a packet can be displaced
869  * in packet stream. With SACKs we can estimate it:
870  *
871  * 1. SACK fills old hole and the corresponding segment was not
872  *    ever retransmitted -> reordering. Alas, we cannot use it
873  *    when segment was retransmitted.
874  * 2. The last flaw is solved with D-SACK. D-SACK arrives
875  *    for retransmitted and already SACKed segment -> reordering..
876  * Both of these heuristics are not used in Loss state, when we cannot
877  * account for retransmits accurately.
878  *
879  * SACK block validation.
880  * ----------------------
881  *
882  * SACK block range validation checks that the received SACK block fits to
883  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
884  * Note that SND.UNA is not included to the range though being valid because
885  * it means that the receiver is rather inconsistent with itself reporting
886  * SACK reneging when it should advance SND.UNA. Such SACK block this is
887  * perfectly valid, however, in light of RFC2018 which explicitly states
888  * that "SACK block MUST reflect the newest segment.  Even if the newest
889  * segment is going to be discarded ...", not that it looks very clever
890  * in case of head skb. Due to potentional receiver driven attacks, we
891  * choose to avoid immediate execution of a walk in write queue due to
892  * reneging and defer head skb's loss recovery to standard loss recovery
893  * procedure that will eventually trigger (nothing forbids us doing this).
894  *
895  * Implements also blockage to start_seq wrap-around. Problem lies in the
896  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
897  * there's no guarantee that it will be before snd_nxt (n). The problem
898  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
899  * wrap (s_w):
900  *
901  *         <- outs wnd ->                          <- wrapzone ->
902  *         u     e      n                         u_w   e_w  s n_w
903  *         |     |      |                          |     |   |  |
904  * |<------------+------+----- TCP seqno space --------------+---------->|
905  * ...-- <2^31 ->|                                           |<--------...
906  * ...---- >2^31 ------>|                                    |<--------...
907  *
908  * Current code wouldn't be vulnerable but it's better still to discard such
909  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
910  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
911  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
912  * equal to the ideal case (infinite seqno space without wrap caused issues).
913  *
914  * With D-SACK the lower bound is extended to cover sequence space below
915  * SND.UNA down to undo_marker, which is the last point of interest. Yet
916  * again, D-SACK block must not to go across snd_una (for the same reason as
917  * for the normal SACK blocks, explained above). But there all simplicity
918  * ends, TCP might receive valid D-SACKs below that. As long as they reside
919  * fully below undo_marker they do not affect behavior in anyway and can
920  * therefore be safely ignored. In rare cases (which are more or less
921  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
922  * fragmentation and packet reordering past skb's retransmission. To consider
923  * them correctly, the acceptable range must be extended even more though
924  * the exact amount is rather hard to quantify. However, tp->max_window can
925  * be used as an exaggerated estimate.
926  */
927 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
928 				   u32 start_seq, u32 end_seq)
929 {
930 	/* Too far in future, or reversed (interpretation is ambiguous) */
931 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
932 		return false;
933 
934 	/* Nasty start_seq wrap-around check (see comments above) */
935 	if (!before(start_seq, tp->snd_nxt))
936 		return false;
937 
938 	/* In outstanding window? ...This is valid exit for D-SACKs too.
939 	 * start_seq == snd_una is non-sensical (see comments above)
940 	 */
941 	if (after(start_seq, tp->snd_una))
942 		return true;
943 
944 	if (!is_dsack || !tp->undo_marker)
945 		return false;
946 
947 	/* ...Then it's D-SACK, and must reside below snd_una completely */
948 	if (after(end_seq, tp->snd_una))
949 		return false;
950 
951 	if (!before(start_seq, tp->undo_marker))
952 		return true;
953 
954 	/* Too old */
955 	if (!after(end_seq, tp->undo_marker))
956 		return false;
957 
958 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
959 	 *   start_seq < undo_marker and end_seq >= undo_marker.
960 	 */
961 	return !before(start_seq, end_seq - tp->max_window);
962 }
963 
964 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
965  * Event "B". Later note: FACK people cheated me again 8), we have to account
966  * for reordering! Ugly, but should help.
967  *
968  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
969  * less than what is now known to be received by the other end (derived from
970  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
971  * retransmitted skbs to avoid some costly processing per ACKs.
972  */
973 static void tcp_mark_lost_retrans(struct sock *sk)
974 {
975 	const struct inet_connection_sock *icsk = inet_csk(sk);
976 	struct tcp_sock *tp = tcp_sk(sk);
977 	struct sk_buff *skb;
978 	int cnt = 0;
979 	u32 new_low_seq = tp->snd_nxt;
980 	u32 received_upto = tcp_highest_sack_seq(tp);
981 
982 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
983 	    !after(received_upto, tp->lost_retrans_low) ||
984 	    icsk->icsk_ca_state != TCP_CA_Recovery)
985 		return;
986 
987 	tcp_for_write_queue(skb, sk) {
988 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
989 
990 		if (skb == tcp_send_head(sk))
991 			break;
992 		if (cnt == tp->retrans_out)
993 			break;
994 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
995 			continue;
996 
997 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
998 			continue;
999 
1000 		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1001 		 * constraint here (see above) but figuring out that at
1002 		 * least tp->reordering SACK blocks reside between ack_seq
1003 		 * and received_upto is not easy task to do cheaply with
1004 		 * the available datastructures.
1005 		 *
1006 		 * Whether FACK should check here for tp->reordering segs
1007 		 * in-between one could argue for either way (it would be
1008 		 * rather simple to implement as we could count fack_count
1009 		 * during the walk and do tp->fackets_out - fack_count).
1010 		 */
1011 		if (after(received_upto, ack_seq)) {
1012 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1013 			tp->retrans_out -= tcp_skb_pcount(skb);
1014 
1015 			tcp_skb_mark_lost_uncond_verify(tp, skb);
1016 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1017 		} else {
1018 			if (before(ack_seq, new_low_seq))
1019 				new_low_seq = ack_seq;
1020 			cnt += tcp_skb_pcount(skb);
1021 		}
1022 	}
1023 
1024 	if (tp->retrans_out)
1025 		tp->lost_retrans_low = new_low_seq;
1026 }
1027 
1028 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1029 			    struct tcp_sack_block_wire *sp, int num_sacks,
1030 			    u32 prior_snd_una)
1031 {
1032 	struct tcp_sock *tp = tcp_sk(sk);
1033 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1034 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1035 	bool dup_sack = false;
1036 
1037 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1038 		dup_sack = true;
1039 		tcp_dsack_seen(tp);
1040 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1041 	} else if (num_sacks > 1) {
1042 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1043 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1044 
1045 		if (!after(end_seq_0, end_seq_1) &&
1046 		    !before(start_seq_0, start_seq_1)) {
1047 			dup_sack = true;
1048 			tcp_dsack_seen(tp);
1049 			NET_INC_STATS_BH(sock_net(sk),
1050 					LINUX_MIB_TCPDSACKOFORECV);
1051 		}
1052 	}
1053 
1054 	/* D-SACK for already forgotten data... Do dumb counting. */
1055 	if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1056 	    !after(end_seq_0, prior_snd_una) &&
1057 	    after(end_seq_0, tp->undo_marker))
1058 		tp->undo_retrans--;
1059 
1060 	return dup_sack;
1061 }
1062 
1063 struct tcp_sacktag_state {
1064 	int reord;
1065 	int fack_count;
1066 	int flag;
1067 };
1068 
1069 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1070  * the incoming SACK may not exactly match but we can find smaller MSS
1071  * aligned portion of it that matches. Therefore we might need to fragment
1072  * which may fail and creates some hassle (caller must handle error case
1073  * returns).
1074  *
1075  * FIXME: this could be merged to shift decision code
1076  */
1077 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1078 				  u32 start_seq, u32 end_seq)
1079 {
1080 	int err;
1081 	bool in_sack;
1082 	unsigned int pkt_len;
1083 	unsigned int mss;
1084 
1085 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1086 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1087 
1088 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1089 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1090 		mss = tcp_skb_mss(skb);
1091 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1092 
1093 		if (!in_sack) {
1094 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1095 			if (pkt_len < mss)
1096 				pkt_len = mss;
1097 		} else {
1098 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1099 			if (pkt_len < mss)
1100 				return -EINVAL;
1101 		}
1102 
1103 		/* Round if necessary so that SACKs cover only full MSSes
1104 		 * and/or the remaining small portion (if present)
1105 		 */
1106 		if (pkt_len > mss) {
1107 			unsigned int new_len = (pkt_len / mss) * mss;
1108 			if (!in_sack && new_len < pkt_len) {
1109 				new_len += mss;
1110 				if (new_len > skb->len)
1111 					return 0;
1112 			}
1113 			pkt_len = new_len;
1114 		}
1115 		err = tcp_fragment(sk, skb, pkt_len, mss);
1116 		if (err < 0)
1117 			return err;
1118 	}
1119 
1120 	return in_sack;
1121 }
1122 
1123 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1124 static u8 tcp_sacktag_one(struct sock *sk,
1125 			  struct tcp_sacktag_state *state, u8 sacked,
1126 			  u32 start_seq, u32 end_seq,
1127 			  bool dup_sack, int pcount)
1128 {
1129 	struct tcp_sock *tp = tcp_sk(sk);
1130 	int fack_count = state->fack_count;
1131 
1132 	/* Account D-SACK for retransmitted packet. */
1133 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1134 		if (tp->undo_marker && tp->undo_retrans &&
1135 		    after(end_seq, tp->undo_marker))
1136 			tp->undo_retrans--;
1137 		if (sacked & TCPCB_SACKED_ACKED)
1138 			state->reord = min(fack_count, state->reord);
1139 	}
1140 
1141 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1142 	if (!after(end_seq, tp->snd_una))
1143 		return sacked;
1144 
1145 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1146 		if (sacked & TCPCB_SACKED_RETRANS) {
1147 			/* If the segment is not tagged as lost,
1148 			 * we do not clear RETRANS, believing
1149 			 * that retransmission is still in flight.
1150 			 */
1151 			if (sacked & TCPCB_LOST) {
1152 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1153 				tp->lost_out -= pcount;
1154 				tp->retrans_out -= pcount;
1155 			}
1156 		} else {
1157 			if (!(sacked & TCPCB_RETRANS)) {
1158 				/* New sack for not retransmitted frame,
1159 				 * which was in hole. It is reordering.
1160 				 */
1161 				if (before(start_seq,
1162 					   tcp_highest_sack_seq(tp)))
1163 					state->reord = min(fack_count,
1164 							   state->reord);
1165 
1166 				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1167 				if (!after(end_seq, tp->frto_highmark))
1168 					state->flag |= FLAG_ONLY_ORIG_SACKED;
1169 			}
1170 
1171 			if (sacked & TCPCB_LOST) {
1172 				sacked &= ~TCPCB_LOST;
1173 				tp->lost_out -= pcount;
1174 			}
1175 		}
1176 
1177 		sacked |= TCPCB_SACKED_ACKED;
1178 		state->flag |= FLAG_DATA_SACKED;
1179 		tp->sacked_out += pcount;
1180 
1181 		fack_count += pcount;
1182 
1183 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1184 		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1185 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1186 			tp->lost_cnt_hint += pcount;
1187 
1188 		if (fack_count > tp->fackets_out)
1189 			tp->fackets_out = fack_count;
1190 	}
1191 
1192 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1193 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1194 	 * are accounted above as well.
1195 	 */
1196 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1197 		sacked &= ~TCPCB_SACKED_RETRANS;
1198 		tp->retrans_out -= pcount;
1199 	}
1200 
1201 	return sacked;
1202 }
1203 
1204 /* Shift newly-SACKed bytes from this skb to the immediately previous
1205  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1206  */
1207 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1208 			    struct tcp_sacktag_state *state,
1209 			    unsigned int pcount, int shifted, int mss,
1210 			    bool dup_sack)
1211 {
1212 	struct tcp_sock *tp = tcp_sk(sk);
1213 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1214 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1215 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1216 
1217 	BUG_ON(!pcount);
1218 
1219 	/* Adjust counters and hints for the newly sacked sequence
1220 	 * range but discard the return value since prev is already
1221 	 * marked. We must tag the range first because the seq
1222 	 * advancement below implicitly advances
1223 	 * tcp_highest_sack_seq() when skb is highest_sack.
1224 	 */
1225 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1226 			start_seq, end_seq, dup_sack, pcount);
1227 
1228 	if (skb == tp->lost_skb_hint)
1229 		tp->lost_cnt_hint += pcount;
1230 
1231 	TCP_SKB_CB(prev)->end_seq += shifted;
1232 	TCP_SKB_CB(skb)->seq += shifted;
1233 
1234 	skb_shinfo(prev)->gso_segs += pcount;
1235 	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1236 	skb_shinfo(skb)->gso_segs -= pcount;
1237 
1238 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1239 	 * in theory this shouldn't be necessary but as long as DSACK
1240 	 * code can come after this skb later on it's better to keep
1241 	 * setting gso_size to something.
1242 	 */
1243 	if (!skb_shinfo(prev)->gso_size) {
1244 		skb_shinfo(prev)->gso_size = mss;
1245 		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1246 	}
1247 
1248 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1249 	if (skb_shinfo(skb)->gso_segs <= 1) {
1250 		skb_shinfo(skb)->gso_size = 0;
1251 		skb_shinfo(skb)->gso_type = 0;
1252 	}
1253 
1254 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1255 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1256 
1257 	if (skb->len > 0) {
1258 		BUG_ON(!tcp_skb_pcount(skb));
1259 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1260 		return false;
1261 	}
1262 
1263 	/* Whole SKB was eaten :-) */
1264 
1265 	if (skb == tp->retransmit_skb_hint)
1266 		tp->retransmit_skb_hint = prev;
1267 	if (skb == tp->scoreboard_skb_hint)
1268 		tp->scoreboard_skb_hint = prev;
1269 	if (skb == tp->lost_skb_hint) {
1270 		tp->lost_skb_hint = prev;
1271 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1272 	}
1273 
1274 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1275 	if (skb == tcp_highest_sack(sk))
1276 		tcp_advance_highest_sack(sk, skb);
1277 
1278 	tcp_unlink_write_queue(skb, sk);
1279 	sk_wmem_free_skb(sk, skb);
1280 
1281 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1282 
1283 	return true;
1284 }
1285 
1286 /* I wish gso_size would have a bit more sane initialization than
1287  * something-or-zero which complicates things
1288  */
1289 static int tcp_skb_seglen(const struct sk_buff *skb)
1290 {
1291 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1292 }
1293 
1294 /* Shifting pages past head area doesn't work */
1295 static int skb_can_shift(const struct sk_buff *skb)
1296 {
1297 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1298 }
1299 
1300 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1301  * skb.
1302  */
1303 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1304 					  struct tcp_sacktag_state *state,
1305 					  u32 start_seq, u32 end_seq,
1306 					  bool dup_sack)
1307 {
1308 	struct tcp_sock *tp = tcp_sk(sk);
1309 	struct sk_buff *prev;
1310 	int mss;
1311 	int pcount = 0;
1312 	int len;
1313 	int in_sack;
1314 
1315 	if (!sk_can_gso(sk))
1316 		goto fallback;
1317 
1318 	/* Normally R but no L won't result in plain S */
1319 	if (!dup_sack &&
1320 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1321 		goto fallback;
1322 	if (!skb_can_shift(skb))
1323 		goto fallback;
1324 	/* This frame is about to be dropped (was ACKed). */
1325 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1326 		goto fallback;
1327 
1328 	/* Can only happen with delayed DSACK + discard craziness */
1329 	if (unlikely(skb == tcp_write_queue_head(sk)))
1330 		goto fallback;
1331 	prev = tcp_write_queue_prev(sk, skb);
1332 
1333 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1334 		goto fallback;
1335 
1336 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1337 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1338 
1339 	if (in_sack) {
1340 		len = skb->len;
1341 		pcount = tcp_skb_pcount(skb);
1342 		mss = tcp_skb_seglen(skb);
1343 
1344 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1345 		 * drop this restriction as unnecessary
1346 		 */
1347 		if (mss != tcp_skb_seglen(prev))
1348 			goto fallback;
1349 	} else {
1350 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1351 			goto noop;
1352 		/* CHECKME: This is non-MSS split case only?, this will
1353 		 * cause skipped skbs due to advancing loop btw, original
1354 		 * has that feature too
1355 		 */
1356 		if (tcp_skb_pcount(skb) <= 1)
1357 			goto noop;
1358 
1359 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1360 		if (!in_sack) {
1361 			/* TODO: head merge to next could be attempted here
1362 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1363 			 * though it might not be worth of the additional hassle
1364 			 *
1365 			 * ...we can probably just fallback to what was done
1366 			 * previously. We could try merging non-SACKed ones
1367 			 * as well but it probably isn't going to buy off
1368 			 * because later SACKs might again split them, and
1369 			 * it would make skb timestamp tracking considerably
1370 			 * harder problem.
1371 			 */
1372 			goto fallback;
1373 		}
1374 
1375 		len = end_seq - TCP_SKB_CB(skb)->seq;
1376 		BUG_ON(len < 0);
1377 		BUG_ON(len > skb->len);
1378 
1379 		/* MSS boundaries should be honoured or else pcount will
1380 		 * severely break even though it makes things bit trickier.
1381 		 * Optimize common case to avoid most of the divides
1382 		 */
1383 		mss = tcp_skb_mss(skb);
1384 
1385 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1386 		 * drop this restriction as unnecessary
1387 		 */
1388 		if (mss != tcp_skb_seglen(prev))
1389 			goto fallback;
1390 
1391 		if (len == mss) {
1392 			pcount = 1;
1393 		} else if (len < mss) {
1394 			goto noop;
1395 		} else {
1396 			pcount = len / mss;
1397 			len = pcount * mss;
1398 		}
1399 	}
1400 
1401 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1402 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1403 		goto fallback;
1404 
1405 	if (!skb_shift(prev, skb, len))
1406 		goto fallback;
1407 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1408 		goto out;
1409 
1410 	/* Hole filled allows collapsing with the next as well, this is very
1411 	 * useful when hole on every nth skb pattern happens
1412 	 */
1413 	if (prev == tcp_write_queue_tail(sk))
1414 		goto out;
1415 	skb = tcp_write_queue_next(sk, prev);
1416 
1417 	if (!skb_can_shift(skb) ||
1418 	    (skb == tcp_send_head(sk)) ||
1419 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1420 	    (mss != tcp_skb_seglen(skb)))
1421 		goto out;
1422 
1423 	len = skb->len;
1424 	if (skb_shift(prev, skb, len)) {
1425 		pcount += tcp_skb_pcount(skb);
1426 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1427 	}
1428 
1429 out:
1430 	state->fack_count += pcount;
1431 	return prev;
1432 
1433 noop:
1434 	return skb;
1435 
1436 fallback:
1437 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1438 	return NULL;
1439 }
1440 
1441 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1442 					struct tcp_sack_block *next_dup,
1443 					struct tcp_sacktag_state *state,
1444 					u32 start_seq, u32 end_seq,
1445 					bool dup_sack_in)
1446 {
1447 	struct tcp_sock *tp = tcp_sk(sk);
1448 	struct sk_buff *tmp;
1449 
1450 	tcp_for_write_queue_from(skb, sk) {
1451 		int in_sack = 0;
1452 		bool dup_sack = dup_sack_in;
1453 
1454 		if (skb == tcp_send_head(sk))
1455 			break;
1456 
1457 		/* queue is in-order => we can short-circuit the walk early */
1458 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1459 			break;
1460 
1461 		if ((next_dup != NULL) &&
1462 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1463 			in_sack = tcp_match_skb_to_sack(sk, skb,
1464 							next_dup->start_seq,
1465 							next_dup->end_seq);
1466 			if (in_sack > 0)
1467 				dup_sack = true;
1468 		}
1469 
1470 		/* skb reference here is a bit tricky to get right, since
1471 		 * shifting can eat and free both this skb and the next,
1472 		 * so not even _safe variant of the loop is enough.
1473 		 */
1474 		if (in_sack <= 0) {
1475 			tmp = tcp_shift_skb_data(sk, skb, state,
1476 						 start_seq, end_seq, dup_sack);
1477 			if (tmp != NULL) {
1478 				if (tmp != skb) {
1479 					skb = tmp;
1480 					continue;
1481 				}
1482 
1483 				in_sack = 0;
1484 			} else {
1485 				in_sack = tcp_match_skb_to_sack(sk, skb,
1486 								start_seq,
1487 								end_seq);
1488 			}
1489 		}
1490 
1491 		if (unlikely(in_sack < 0))
1492 			break;
1493 
1494 		if (in_sack) {
1495 			TCP_SKB_CB(skb)->sacked =
1496 				tcp_sacktag_one(sk,
1497 						state,
1498 						TCP_SKB_CB(skb)->sacked,
1499 						TCP_SKB_CB(skb)->seq,
1500 						TCP_SKB_CB(skb)->end_seq,
1501 						dup_sack,
1502 						tcp_skb_pcount(skb));
1503 
1504 			if (!before(TCP_SKB_CB(skb)->seq,
1505 				    tcp_highest_sack_seq(tp)))
1506 				tcp_advance_highest_sack(sk, skb);
1507 		}
1508 
1509 		state->fack_count += tcp_skb_pcount(skb);
1510 	}
1511 	return skb;
1512 }
1513 
1514 /* Avoid all extra work that is being done by sacktag while walking in
1515  * a normal way
1516  */
1517 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1518 					struct tcp_sacktag_state *state,
1519 					u32 skip_to_seq)
1520 {
1521 	tcp_for_write_queue_from(skb, sk) {
1522 		if (skb == tcp_send_head(sk))
1523 			break;
1524 
1525 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1526 			break;
1527 
1528 		state->fack_count += tcp_skb_pcount(skb);
1529 	}
1530 	return skb;
1531 }
1532 
1533 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1534 						struct sock *sk,
1535 						struct tcp_sack_block *next_dup,
1536 						struct tcp_sacktag_state *state,
1537 						u32 skip_to_seq)
1538 {
1539 	if (next_dup == NULL)
1540 		return skb;
1541 
1542 	if (before(next_dup->start_seq, skip_to_seq)) {
1543 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1544 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1545 				       next_dup->start_seq, next_dup->end_seq,
1546 				       1);
1547 	}
1548 
1549 	return skb;
1550 }
1551 
1552 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1553 {
1554 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1555 }
1556 
1557 static int
1558 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1559 			u32 prior_snd_una)
1560 {
1561 	const struct inet_connection_sock *icsk = inet_csk(sk);
1562 	struct tcp_sock *tp = tcp_sk(sk);
1563 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1564 				    TCP_SKB_CB(ack_skb)->sacked);
1565 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1566 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1567 	struct tcp_sack_block *cache;
1568 	struct tcp_sacktag_state state;
1569 	struct sk_buff *skb;
1570 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1571 	int used_sacks;
1572 	bool found_dup_sack = false;
1573 	int i, j;
1574 	int first_sack_index;
1575 
1576 	state.flag = 0;
1577 	state.reord = tp->packets_out;
1578 
1579 	if (!tp->sacked_out) {
1580 		if (WARN_ON(tp->fackets_out))
1581 			tp->fackets_out = 0;
1582 		tcp_highest_sack_reset(sk);
1583 	}
1584 
1585 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1586 					 num_sacks, prior_snd_una);
1587 	if (found_dup_sack)
1588 		state.flag |= FLAG_DSACKING_ACK;
1589 
1590 	/* Eliminate too old ACKs, but take into
1591 	 * account more or less fresh ones, they can
1592 	 * contain valid SACK info.
1593 	 */
1594 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1595 		return 0;
1596 
1597 	if (!tp->packets_out)
1598 		goto out;
1599 
1600 	used_sacks = 0;
1601 	first_sack_index = 0;
1602 	for (i = 0; i < num_sacks; i++) {
1603 		bool dup_sack = !i && found_dup_sack;
1604 
1605 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1606 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1607 
1608 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1609 					    sp[used_sacks].start_seq,
1610 					    sp[used_sacks].end_seq)) {
1611 			int mib_idx;
1612 
1613 			if (dup_sack) {
1614 				if (!tp->undo_marker)
1615 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1616 				else
1617 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1618 			} else {
1619 				/* Don't count olds caused by ACK reordering */
1620 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1621 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1622 					continue;
1623 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1624 			}
1625 
1626 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1627 			if (i == 0)
1628 				first_sack_index = -1;
1629 			continue;
1630 		}
1631 
1632 		/* Ignore very old stuff early */
1633 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1634 			continue;
1635 
1636 		used_sacks++;
1637 	}
1638 
1639 	/* order SACK blocks to allow in order walk of the retrans queue */
1640 	for (i = used_sacks - 1; i > 0; i--) {
1641 		for (j = 0; j < i; j++) {
1642 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1643 				swap(sp[j], sp[j + 1]);
1644 
1645 				/* Track where the first SACK block goes to */
1646 				if (j == first_sack_index)
1647 					first_sack_index = j + 1;
1648 			}
1649 		}
1650 	}
1651 
1652 	skb = tcp_write_queue_head(sk);
1653 	state.fack_count = 0;
1654 	i = 0;
1655 
1656 	if (!tp->sacked_out) {
1657 		/* It's already past, so skip checking against it */
1658 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1659 	} else {
1660 		cache = tp->recv_sack_cache;
1661 		/* Skip empty blocks in at head of the cache */
1662 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1663 		       !cache->end_seq)
1664 			cache++;
1665 	}
1666 
1667 	while (i < used_sacks) {
1668 		u32 start_seq = sp[i].start_seq;
1669 		u32 end_seq = sp[i].end_seq;
1670 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1671 		struct tcp_sack_block *next_dup = NULL;
1672 
1673 		if (found_dup_sack && ((i + 1) == first_sack_index))
1674 			next_dup = &sp[i + 1];
1675 
1676 		/* Skip too early cached blocks */
1677 		while (tcp_sack_cache_ok(tp, cache) &&
1678 		       !before(start_seq, cache->end_seq))
1679 			cache++;
1680 
1681 		/* Can skip some work by looking recv_sack_cache? */
1682 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1683 		    after(end_seq, cache->start_seq)) {
1684 
1685 			/* Head todo? */
1686 			if (before(start_seq, cache->start_seq)) {
1687 				skb = tcp_sacktag_skip(skb, sk, &state,
1688 						       start_seq);
1689 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1690 						       &state,
1691 						       start_seq,
1692 						       cache->start_seq,
1693 						       dup_sack);
1694 			}
1695 
1696 			/* Rest of the block already fully processed? */
1697 			if (!after(end_seq, cache->end_seq))
1698 				goto advance_sp;
1699 
1700 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1701 						       &state,
1702 						       cache->end_seq);
1703 
1704 			/* ...tail remains todo... */
1705 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1706 				/* ...but better entrypoint exists! */
1707 				skb = tcp_highest_sack(sk);
1708 				if (skb == NULL)
1709 					break;
1710 				state.fack_count = tp->fackets_out;
1711 				cache++;
1712 				goto walk;
1713 			}
1714 
1715 			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1716 			/* Check overlap against next cached too (past this one already) */
1717 			cache++;
1718 			continue;
1719 		}
1720 
1721 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1722 			skb = tcp_highest_sack(sk);
1723 			if (skb == NULL)
1724 				break;
1725 			state.fack_count = tp->fackets_out;
1726 		}
1727 		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1728 
1729 walk:
1730 		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1731 				       start_seq, end_seq, dup_sack);
1732 
1733 advance_sp:
1734 		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1735 		 * due to in-order walk
1736 		 */
1737 		if (after(end_seq, tp->frto_highmark))
1738 			state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1739 
1740 		i++;
1741 	}
1742 
1743 	/* Clear the head of the cache sack blocks so we can skip it next time */
1744 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1745 		tp->recv_sack_cache[i].start_seq = 0;
1746 		tp->recv_sack_cache[i].end_seq = 0;
1747 	}
1748 	for (j = 0; j < used_sacks; j++)
1749 		tp->recv_sack_cache[i++] = sp[j];
1750 
1751 	tcp_mark_lost_retrans(sk);
1752 
1753 	tcp_verify_left_out(tp);
1754 
1755 	if ((state.reord < tp->fackets_out) &&
1756 	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1757 	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1758 		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1759 
1760 out:
1761 
1762 #if FASTRETRANS_DEBUG > 0
1763 	WARN_ON((int)tp->sacked_out < 0);
1764 	WARN_ON((int)tp->lost_out < 0);
1765 	WARN_ON((int)tp->retrans_out < 0);
1766 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1767 #endif
1768 	return state.flag;
1769 }
1770 
1771 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1772  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1773  */
1774 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1775 {
1776 	u32 holes;
1777 
1778 	holes = max(tp->lost_out, 1U);
1779 	holes = min(holes, tp->packets_out);
1780 
1781 	if ((tp->sacked_out + holes) > tp->packets_out) {
1782 		tp->sacked_out = tp->packets_out - holes;
1783 		return true;
1784 	}
1785 	return false;
1786 }
1787 
1788 /* If we receive more dupacks than we expected counting segments
1789  * in assumption of absent reordering, interpret this as reordering.
1790  * The only another reason could be bug in receiver TCP.
1791  */
1792 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1793 {
1794 	struct tcp_sock *tp = tcp_sk(sk);
1795 	if (tcp_limit_reno_sacked(tp))
1796 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1797 }
1798 
1799 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1800 
1801 static void tcp_add_reno_sack(struct sock *sk)
1802 {
1803 	struct tcp_sock *tp = tcp_sk(sk);
1804 	tp->sacked_out++;
1805 	tcp_check_reno_reordering(sk, 0);
1806 	tcp_verify_left_out(tp);
1807 }
1808 
1809 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1810 
1811 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1812 {
1813 	struct tcp_sock *tp = tcp_sk(sk);
1814 
1815 	if (acked > 0) {
1816 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1817 		if (acked - 1 >= tp->sacked_out)
1818 			tp->sacked_out = 0;
1819 		else
1820 			tp->sacked_out -= acked - 1;
1821 	}
1822 	tcp_check_reno_reordering(sk, acked);
1823 	tcp_verify_left_out(tp);
1824 }
1825 
1826 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1827 {
1828 	tp->sacked_out = 0;
1829 }
1830 
1831 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1832 {
1833 	return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1834 }
1835 
1836 /* F-RTO can only be used if TCP has never retransmitted anything other than
1837  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1838  */
1839 bool tcp_use_frto(struct sock *sk)
1840 {
1841 	const struct tcp_sock *tp = tcp_sk(sk);
1842 	const struct inet_connection_sock *icsk = inet_csk(sk);
1843 	struct sk_buff *skb;
1844 
1845 	if (!sysctl_tcp_frto)
1846 		return false;
1847 
1848 	/* MTU probe and F-RTO won't really play nicely along currently */
1849 	if (icsk->icsk_mtup.probe_size)
1850 		return false;
1851 
1852 	if (tcp_is_sackfrto(tp))
1853 		return true;
1854 
1855 	/* Avoid expensive walking of rexmit queue if possible */
1856 	if (tp->retrans_out > 1)
1857 		return false;
1858 
1859 	skb = tcp_write_queue_head(sk);
1860 	if (tcp_skb_is_last(sk, skb))
1861 		return true;
1862 	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
1863 	tcp_for_write_queue_from(skb, sk) {
1864 		if (skb == tcp_send_head(sk))
1865 			break;
1866 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1867 			return false;
1868 		/* Short-circuit when first non-SACKed skb has been checked */
1869 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1870 			break;
1871 	}
1872 	return true;
1873 }
1874 
1875 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1876  * recovery a bit and use heuristics in tcp_process_frto() to detect if
1877  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1878  * keep retrans_out counting accurate (with SACK F-RTO, other than head
1879  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1880  * bits are handled if the Loss state is really to be entered (in
1881  * tcp_enter_frto_loss).
1882  *
1883  * Do like tcp_enter_loss() would; when RTO expires the second time it
1884  * does:
1885  *  "Reduce ssthresh if it has not yet been made inside this window."
1886  */
1887 void tcp_enter_frto(struct sock *sk)
1888 {
1889 	const struct inet_connection_sock *icsk = inet_csk(sk);
1890 	struct tcp_sock *tp = tcp_sk(sk);
1891 	struct sk_buff *skb;
1892 
1893 	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1894 	    tp->snd_una == tp->high_seq ||
1895 	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1896 	     !icsk->icsk_retransmits)) {
1897 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1898 		/* Our state is too optimistic in ssthresh() call because cwnd
1899 		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1900 		 * recovery has not yet completed. Pattern would be this: RTO,
1901 		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1902 		 * up here twice).
1903 		 * RFC4138 should be more specific on what to do, even though
1904 		 * RTO is quite unlikely to occur after the first Cumulative ACK
1905 		 * due to back-off and complexity of triggering events ...
1906 		 */
1907 		if (tp->frto_counter) {
1908 			u32 stored_cwnd;
1909 			stored_cwnd = tp->snd_cwnd;
1910 			tp->snd_cwnd = 2;
1911 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1912 			tp->snd_cwnd = stored_cwnd;
1913 		} else {
1914 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1915 		}
1916 		/* ... in theory, cong.control module could do "any tricks" in
1917 		 * ssthresh(), which means that ca_state, lost bits and lost_out
1918 		 * counter would have to be faked before the call occurs. We
1919 		 * consider that too expensive, unlikely and hacky, so modules
1920 		 * using these in ssthresh() must deal these incompatibility
1921 		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1922 		 */
1923 		tcp_ca_event(sk, CA_EVENT_FRTO);
1924 	}
1925 
1926 	tp->undo_marker = tp->snd_una;
1927 	tp->undo_retrans = 0;
1928 
1929 	skb = tcp_write_queue_head(sk);
1930 	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1931 		tp->undo_marker = 0;
1932 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1933 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1934 		tp->retrans_out -= tcp_skb_pcount(skb);
1935 	}
1936 	tcp_verify_left_out(tp);
1937 
1938 	/* Too bad if TCP was application limited */
1939 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1940 
1941 	/* Earlier loss recovery underway (see RFC4138; Appendix B).
1942 	 * The last condition is necessary at least in tp->frto_counter case.
1943 	 */
1944 	if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
1945 	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1946 	    after(tp->high_seq, tp->snd_una)) {
1947 		tp->frto_highmark = tp->high_seq;
1948 	} else {
1949 		tp->frto_highmark = tp->snd_nxt;
1950 	}
1951 	tcp_set_ca_state(sk, TCP_CA_Disorder);
1952 	tp->high_seq = tp->snd_nxt;
1953 	tp->frto_counter = 1;
1954 }
1955 
1956 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1957  * which indicates that we should follow the traditional RTO recovery,
1958  * i.e. mark everything lost and do go-back-N retransmission.
1959  */
1960 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1961 {
1962 	struct tcp_sock *tp = tcp_sk(sk);
1963 	struct sk_buff *skb;
1964 
1965 	tp->lost_out = 0;
1966 	tp->retrans_out = 0;
1967 	if (tcp_is_reno(tp))
1968 		tcp_reset_reno_sack(tp);
1969 
1970 	tcp_for_write_queue(skb, sk) {
1971 		if (skb == tcp_send_head(sk))
1972 			break;
1973 
1974 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1975 		/*
1976 		 * Count the retransmission made on RTO correctly (only when
1977 		 * waiting for the first ACK and did not get it)...
1978 		 */
1979 		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
1980 			/* For some reason this R-bit might get cleared? */
1981 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1982 				tp->retrans_out += tcp_skb_pcount(skb);
1983 			/* ...enter this if branch just for the first segment */
1984 			flag |= FLAG_DATA_ACKED;
1985 		} else {
1986 			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1987 				tp->undo_marker = 0;
1988 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1989 		}
1990 
1991 		/* Marking forward transmissions that were made after RTO lost
1992 		 * can cause unnecessary retransmissions in some scenarios,
1993 		 * SACK blocks will mitigate that in some but not in all cases.
1994 		 * We used to not mark them but it was causing break-ups with
1995 		 * receivers that do only in-order receival.
1996 		 *
1997 		 * TODO: we could detect presence of such receiver and select
1998 		 * different behavior per flow.
1999 		 */
2000 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2001 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2002 			tp->lost_out += tcp_skb_pcount(skb);
2003 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2004 		}
2005 	}
2006 	tcp_verify_left_out(tp);
2007 
2008 	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2009 	tp->snd_cwnd_cnt = 0;
2010 	tp->snd_cwnd_stamp = tcp_time_stamp;
2011 	tp->frto_counter = 0;
2012 	tp->bytes_acked = 0;
2013 
2014 	tp->reordering = min_t(unsigned int, tp->reordering,
2015 			       sysctl_tcp_reordering);
2016 	tcp_set_ca_state(sk, TCP_CA_Loss);
2017 	tp->high_seq = tp->snd_nxt;
2018 	TCP_ECN_queue_cwr(tp);
2019 
2020 	tcp_clear_all_retrans_hints(tp);
2021 }
2022 
2023 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2024 {
2025 	tp->retrans_out = 0;
2026 	tp->lost_out = 0;
2027 
2028 	tp->undo_marker = 0;
2029 	tp->undo_retrans = 0;
2030 }
2031 
2032 void tcp_clear_retrans(struct tcp_sock *tp)
2033 {
2034 	tcp_clear_retrans_partial(tp);
2035 
2036 	tp->fackets_out = 0;
2037 	tp->sacked_out = 0;
2038 }
2039 
2040 /* Enter Loss state. If "how" is not zero, forget all SACK information
2041  * and reset tags completely, otherwise preserve SACKs. If receiver
2042  * dropped its ofo queue, we will know this due to reneging detection.
2043  */
2044 void tcp_enter_loss(struct sock *sk, int how)
2045 {
2046 	const struct inet_connection_sock *icsk = inet_csk(sk);
2047 	struct tcp_sock *tp = tcp_sk(sk);
2048 	struct sk_buff *skb;
2049 
2050 	/* Reduce ssthresh if it has not yet been made inside this window. */
2051 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2052 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2053 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2054 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2055 		tcp_ca_event(sk, CA_EVENT_LOSS);
2056 	}
2057 	tp->snd_cwnd	   = 1;
2058 	tp->snd_cwnd_cnt   = 0;
2059 	tp->snd_cwnd_stamp = tcp_time_stamp;
2060 
2061 	tp->bytes_acked = 0;
2062 	tcp_clear_retrans_partial(tp);
2063 
2064 	if (tcp_is_reno(tp))
2065 		tcp_reset_reno_sack(tp);
2066 
2067 	if (!how) {
2068 		/* Push undo marker, if it was plain RTO and nothing
2069 		 * was retransmitted. */
2070 		tp->undo_marker = tp->snd_una;
2071 	} else {
2072 		tp->sacked_out = 0;
2073 		tp->fackets_out = 0;
2074 	}
2075 	tcp_clear_all_retrans_hints(tp);
2076 
2077 	tcp_for_write_queue(skb, sk) {
2078 		if (skb == tcp_send_head(sk))
2079 			break;
2080 
2081 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2082 			tp->undo_marker = 0;
2083 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2084 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2085 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2086 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2087 			tp->lost_out += tcp_skb_pcount(skb);
2088 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2089 		}
2090 	}
2091 	tcp_verify_left_out(tp);
2092 
2093 	tp->reordering = min_t(unsigned int, tp->reordering,
2094 			       sysctl_tcp_reordering);
2095 	tcp_set_ca_state(sk, TCP_CA_Loss);
2096 	tp->high_seq = tp->snd_nxt;
2097 	TCP_ECN_queue_cwr(tp);
2098 	/* Abort F-RTO algorithm if one is in progress */
2099 	tp->frto_counter = 0;
2100 }
2101 
2102 /* If ACK arrived pointing to a remembered SACK, it means that our
2103  * remembered SACKs do not reflect real state of receiver i.e.
2104  * receiver _host_ is heavily congested (or buggy).
2105  *
2106  * Do processing similar to RTO timeout.
2107  */
2108 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2109 {
2110 	if (flag & FLAG_SACK_RENEGING) {
2111 		struct inet_connection_sock *icsk = inet_csk(sk);
2112 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2113 
2114 		tcp_enter_loss(sk, 1);
2115 		icsk->icsk_retransmits++;
2116 		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2117 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2118 					  icsk->icsk_rto, TCP_RTO_MAX);
2119 		return true;
2120 	}
2121 	return false;
2122 }
2123 
2124 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2125 {
2126 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2127 }
2128 
2129 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2130  * counter when SACK is enabled (without SACK, sacked_out is used for
2131  * that purpose).
2132  *
2133  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2134  * segments up to the highest received SACK block so far and holes in
2135  * between them.
2136  *
2137  * With reordering, holes may still be in flight, so RFC3517 recovery
2138  * uses pure sacked_out (total number of SACKed segments) even though
2139  * it violates the RFC that uses duplicate ACKs, often these are equal
2140  * but when e.g. out-of-window ACKs or packet duplication occurs,
2141  * they differ. Since neither occurs due to loss, TCP should really
2142  * ignore them.
2143  */
2144 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2145 {
2146 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2147 }
2148 
2149 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2150 {
2151 	struct tcp_sock *tp = tcp_sk(sk);
2152 	unsigned long delay;
2153 
2154 	/* Delay early retransmit and entering fast recovery for
2155 	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2156 	 * available, or RTO is scheduled to fire first.
2157 	 */
2158 	if (sysctl_tcp_early_retrans < 2 || (flag & FLAG_ECE) || !tp->srtt)
2159 		return false;
2160 
2161 	delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
2162 	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2163 		return false;
2164 
2165 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, TCP_RTO_MAX);
2166 	tp->early_retrans_delayed = 1;
2167 	return true;
2168 }
2169 
2170 static inline int tcp_skb_timedout(const struct sock *sk,
2171 				   const struct sk_buff *skb)
2172 {
2173 	return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2174 }
2175 
2176 static inline int tcp_head_timedout(const struct sock *sk)
2177 {
2178 	const struct tcp_sock *tp = tcp_sk(sk);
2179 
2180 	return tp->packets_out &&
2181 	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2182 }
2183 
2184 /* Linux NewReno/SACK/FACK/ECN state machine.
2185  * --------------------------------------
2186  *
2187  * "Open"	Normal state, no dubious events, fast path.
2188  * "Disorder"   In all the respects it is "Open",
2189  *		but requires a bit more attention. It is entered when
2190  *		we see some SACKs or dupacks. It is split of "Open"
2191  *		mainly to move some processing from fast path to slow one.
2192  * "CWR"	CWND was reduced due to some Congestion Notification event.
2193  *		It can be ECN, ICMP source quench, local device congestion.
2194  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2195  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2196  *
2197  * tcp_fastretrans_alert() is entered:
2198  * - each incoming ACK, if state is not "Open"
2199  * - when arrived ACK is unusual, namely:
2200  *	* SACK
2201  *	* Duplicate ACK.
2202  *	* ECN ECE.
2203  *
2204  * Counting packets in flight is pretty simple.
2205  *
2206  *	in_flight = packets_out - left_out + retrans_out
2207  *
2208  *	packets_out is SND.NXT-SND.UNA counted in packets.
2209  *
2210  *	retrans_out is number of retransmitted segments.
2211  *
2212  *	left_out is number of segments left network, but not ACKed yet.
2213  *
2214  *		left_out = sacked_out + lost_out
2215  *
2216  *     sacked_out: Packets, which arrived to receiver out of order
2217  *		   and hence not ACKed. With SACKs this number is simply
2218  *		   amount of SACKed data. Even without SACKs
2219  *		   it is easy to give pretty reliable estimate of this number,
2220  *		   counting duplicate ACKs.
2221  *
2222  *       lost_out: Packets lost by network. TCP has no explicit
2223  *		   "loss notification" feedback from network (for now).
2224  *		   It means that this number can be only _guessed_.
2225  *		   Actually, it is the heuristics to predict lossage that
2226  *		   distinguishes different algorithms.
2227  *
2228  *	F.e. after RTO, when all the queue is considered as lost,
2229  *	lost_out = packets_out and in_flight = retrans_out.
2230  *
2231  *		Essentially, we have now two algorithms counting
2232  *		lost packets.
2233  *
2234  *		FACK: It is the simplest heuristics. As soon as we decided
2235  *		that something is lost, we decide that _all_ not SACKed
2236  *		packets until the most forward SACK are lost. I.e.
2237  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2238  *		It is absolutely correct estimate, if network does not reorder
2239  *		packets. And it loses any connection to reality when reordering
2240  *		takes place. We use FACK by default until reordering
2241  *		is suspected on the path to this destination.
2242  *
2243  *		NewReno: when Recovery is entered, we assume that one segment
2244  *		is lost (classic Reno). While we are in Recovery and
2245  *		a partial ACK arrives, we assume that one more packet
2246  *		is lost (NewReno). This heuristics are the same in NewReno
2247  *		and SACK.
2248  *
2249  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2250  *  deflation etc. CWND is real congestion window, never inflated, changes
2251  *  only according to classic VJ rules.
2252  *
2253  * Really tricky (and requiring careful tuning) part of algorithm
2254  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2255  * The first determines the moment _when_ we should reduce CWND and,
2256  * hence, slow down forward transmission. In fact, it determines the moment
2257  * when we decide that hole is caused by loss, rather than by a reorder.
2258  *
2259  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2260  * holes, caused by lost packets.
2261  *
2262  * And the most logically complicated part of algorithm is undo
2263  * heuristics. We detect false retransmits due to both too early
2264  * fast retransmit (reordering) and underestimated RTO, analyzing
2265  * timestamps and D-SACKs. When we detect that some segments were
2266  * retransmitted by mistake and CWND reduction was wrong, we undo
2267  * window reduction and abort recovery phase. This logic is hidden
2268  * inside several functions named tcp_try_undo_<something>.
2269  */
2270 
2271 /* This function decides, when we should leave Disordered state
2272  * and enter Recovery phase, reducing congestion window.
2273  *
2274  * Main question: may we further continue forward transmission
2275  * with the same cwnd?
2276  */
2277 static bool tcp_time_to_recover(struct sock *sk, int flag)
2278 {
2279 	struct tcp_sock *tp = tcp_sk(sk);
2280 	__u32 packets_out;
2281 
2282 	/* Do not perform any recovery during F-RTO algorithm */
2283 	if (tp->frto_counter)
2284 		return false;
2285 
2286 	/* Trick#1: The loss is proven. */
2287 	if (tp->lost_out)
2288 		return true;
2289 
2290 	/* Not-A-Trick#2 : Classic rule... */
2291 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2292 		return true;
2293 
2294 	/* Trick#3 : when we use RFC2988 timer restart, fast
2295 	 * retransmit can be triggered by timeout of queue head.
2296 	 */
2297 	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2298 		return true;
2299 
2300 	/* Trick#4: It is still not OK... But will it be useful to delay
2301 	 * recovery more?
2302 	 */
2303 	packets_out = tp->packets_out;
2304 	if (packets_out <= tp->reordering &&
2305 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2306 	    !tcp_may_send_now(sk)) {
2307 		/* We have nothing to send. This connection is limited
2308 		 * either by receiver window or by application.
2309 		 */
2310 		return true;
2311 	}
2312 
2313 	/* If a thin stream is detected, retransmit after first
2314 	 * received dupack. Employ only if SACK is supported in order
2315 	 * to avoid possible corner-case series of spurious retransmissions
2316 	 * Use only if there are no unsent data.
2317 	 */
2318 	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2319 	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2320 	    tcp_is_sack(tp) && !tcp_send_head(sk))
2321 		return true;
2322 
2323 	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2324 	 * retransmissions due to small network reorderings, we implement
2325 	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2326 	 * interval if appropriate.
2327 	 */
2328 	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2329 	    (tp->packets_out == (tp->sacked_out + 1) && tp->packets_out < 4) &&
2330 	    !tcp_may_send_now(sk))
2331 		return !tcp_pause_early_retransmit(sk, flag);
2332 
2333 	return false;
2334 }
2335 
2336 /* New heuristics: it is possible only after we switched to restart timer
2337  * each time when something is ACKed. Hence, we can detect timed out packets
2338  * during fast retransmit without falling to slow start.
2339  *
2340  * Usefulness of this as is very questionable, since we should know which of
2341  * the segments is the next to timeout which is relatively expensive to find
2342  * in general case unless we add some data structure just for that. The
2343  * current approach certainly won't find the right one too often and when it
2344  * finally does find _something_ it usually marks large part of the window
2345  * right away (because a retransmission with a larger timestamp blocks the
2346  * loop from advancing). -ij
2347  */
2348 static void tcp_timeout_skbs(struct sock *sk)
2349 {
2350 	struct tcp_sock *tp = tcp_sk(sk);
2351 	struct sk_buff *skb;
2352 
2353 	if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2354 		return;
2355 
2356 	skb = tp->scoreboard_skb_hint;
2357 	if (tp->scoreboard_skb_hint == NULL)
2358 		skb = tcp_write_queue_head(sk);
2359 
2360 	tcp_for_write_queue_from(skb, sk) {
2361 		if (skb == tcp_send_head(sk))
2362 			break;
2363 		if (!tcp_skb_timedout(sk, skb))
2364 			break;
2365 
2366 		tcp_skb_mark_lost(tp, skb);
2367 	}
2368 
2369 	tp->scoreboard_skb_hint = skb;
2370 
2371 	tcp_verify_left_out(tp);
2372 }
2373 
2374 /* Detect loss in event "A" above by marking head of queue up as lost.
2375  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2376  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2377  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2378  * the maximum SACKed segments to pass before reaching this limit.
2379  */
2380 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2381 {
2382 	struct tcp_sock *tp = tcp_sk(sk);
2383 	struct sk_buff *skb;
2384 	int cnt, oldcnt;
2385 	int err;
2386 	unsigned int mss;
2387 	/* Use SACK to deduce losses of new sequences sent during recovery */
2388 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2389 
2390 	WARN_ON(packets > tp->packets_out);
2391 	if (tp->lost_skb_hint) {
2392 		skb = tp->lost_skb_hint;
2393 		cnt = tp->lost_cnt_hint;
2394 		/* Head already handled? */
2395 		if (mark_head && skb != tcp_write_queue_head(sk))
2396 			return;
2397 	} else {
2398 		skb = tcp_write_queue_head(sk);
2399 		cnt = 0;
2400 	}
2401 
2402 	tcp_for_write_queue_from(skb, sk) {
2403 		if (skb == tcp_send_head(sk))
2404 			break;
2405 		/* TODO: do this better */
2406 		/* this is not the most efficient way to do this... */
2407 		tp->lost_skb_hint = skb;
2408 		tp->lost_cnt_hint = cnt;
2409 
2410 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2411 			break;
2412 
2413 		oldcnt = cnt;
2414 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2415 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2416 			cnt += tcp_skb_pcount(skb);
2417 
2418 		if (cnt > packets) {
2419 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2420 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2421 			    (oldcnt >= packets))
2422 				break;
2423 
2424 			mss = skb_shinfo(skb)->gso_size;
2425 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2426 			if (err < 0)
2427 				break;
2428 			cnt = packets;
2429 		}
2430 
2431 		tcp_skb_mark_lost(tp, skb);
2432 
2433 		if (mark_head)
2434 			break;
2435 	}
2436 	tcp_verify_left_out(tp);
2437 }
2438 
2439 /* Account newly detected lost packet(s) */
2440 
2441 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2442 {
2443 	struct tcp_sock *tp = tcp_sk(sk);
2444 
2445 	if (tcp_is_reno(tp)) {
2446 		tcp_mark_head_lost(sk, 1, 1);
2447 	} else if (tcp_is_fack(tp)) {
2448 		int lost = tp->fackets_out - tp->reordering;
2449 		if (lost <= 0)
2450 			lost = 1;
2451 		tcp_mark_head_lost(sk, lost, 0);
2452 	} else {
2453 		int sacked_upto = tp->sacked_out - tp->reordering;
2454 		if (sacked_upto >= 0)
2455 			tcp_mark_head_lost(sk, sacked_upto, 0);
2456 		else if (fast_rexmit)
2457 			tcp_mark_head_lost(sk, 1, 1);
2458 	}
2459 
2460 	tcp_timeout_skbs(sk);
2461 }
2462 
2463 /* CWND moderation, preventing bursts due to too big ACKs
2464  * in dubious situations.
2465  */
2466 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2467 {
2468 	tp->snd_cwnd = min(tp->snd_cwnd,
2469 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2470 	tp->snd_cwnd_stamp = tcp_time_stamp;
2471 }
2472 
2473 /* Nothing was retransmitted or returned timestamp is less
2474  * than timestamp of the first retransmission.
2475  */
2476 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2477 {
2478 	return !tp->retrans_stamp ||
2479 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2480 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2481 }
2482 
2483 /* Undo procedures. */
2484 
2485 #if FASTRETRANS_DEBUG > 1
2486 static void DBGUNDO(struct sock *sk, const char *msg)
2487 {
2488 	struct tcp_sock *tp = tcp_sk(sk);
2489 	struct inet_sock *inet = inet_sk(sk);
2490 
2491 	if (sk->sk_family == AF_INET) {
2492 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2493 			 msg,
2494 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2495 			 tp->snd_cwnd, tcp_left_out(tp),
2496 			 tp->snd_ssthresh, tp->prior_ssthresh,
2497 			 tp->packets_out);
2498 	}
2499 #if IS_ENABLED(CONFIG_IPV6)
2500 	else if (sk->sk_family == AF_INET6) {
2501 		struct ipv6_pinfo *np = inet6_sk(sk);
2502 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2503 			 msg,
2504 			 &np->daddr, ntohs(inet->inet_dport),
2505 			 tp->snd_cwnd, tcp_left_out(tp),
2506 			 tp->snd_ssthresh, tp->prior_ssthresh,
2507 			 tp->packets_out);
2508 	}
2509 #endif
2510 }
2511 #else
2512 #define DBGUNDO(x...) do { } while (0)
2513 #endif
2514 
2515 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2516 {
2517 	struct tcp_sock *tp = tcp_sk(sk);
2518 
2519 	if (tp->prior_ssthresh) {
2520 		const struct inet_connection_sock *icsk = inet_csk(sk);
2521 
2522 		if (icsk->icsk_ca_ops->undo_cwnd)
2523 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2524 		else
2525 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2526 
2527 		if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2528 			tp->snd_ssthresh = tp->prior_ssthresh;
2529 			TCP_ECN_withdraw_cwr(tp);
2530 		}
2531 	} else {
2532 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2533 	}
2534 	tp->snd_cwnd_stamp = tcp_time_stamp;
2535 }
2536 
2537 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2538 {
2539 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2540 }
2541 
2542 /* People celebrate: "We love our President!" */
2543 static bool tcp_try_undo_recovery(struct sock *sk)
2544 {
2545 	struct tcp_sock *tp = tcp_sk(sk);
2546 
2547 	if (tcp_may_undo(tp)) {
2548 		int mib_idx;
2549 
2550 		/* Happy end! We did not retransmit anything
2551 		 * or our original transmission succeeded.
2552 		 */
2553 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2554 		tcp_undo_cwr(sk, true);
2555 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2556 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2557 		else
2558 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2559 
2560 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2561 		tp->undo_marker = 0;
2562 	}
2563 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2564 		/* Hold old state until something *above* high_seq
2565 		 * is ACKed. For Reno it is MUST to prevent false
2566 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2567 		tcp_moderate_cwnd(tp);
2568 		return true;
2569 	}
2570 	tcp_set_ca_state(sk, TCP_CA_Open);
2571 	return false;
2572 }
2573 
2574 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2575 static void tcp_try_undo_dsack(struct sock *sk)
2576 {
2577 	struct tcp_sock *tp = tcp_sk(sk);
2578 
2579 	if (tp->undo_marker && !tp->undo_retrans) {
2580 		DBGUNDO(sk, "D-SACK");
2581 		tcp_undo_cwr(sk, true);
2582 		tp->undo_marker = 0;
2583 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2584 	}
2585 }
2586 
2587 /* We can clear retrans_stamp when there are no retransmissions in the
2588  * window. It would seem that it is trivially available for us in
2589  * tp->retrans_out, however, that kind of assumptions doesn't consider
2590  * what will happen if errors occur when sending retransmission for the
2591  * second time. ...It could the that such segment has only
2592  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2593  * the head skb is enough except for some reneging corner cases that
2594  * are not worth the effort.
2595  *
2596  * Main reason for all this complexity is the fact that connection dying
2597  * time now depends on the validity of the retrans_stamp, in particular,
2598  * that successive retransmissions of a segment must not advance
2599  * retrans_stamp under any conditions.
2600  */
2601 static bool tcp_any_retrans_done(const struct sock *sk)
2602 {
2603 	const struct tcp_sock *tp = tcp_sk(sk);
2604 	struct sk_buff *skb;
2605 
2606 	if (tp->retrans_out)
2607 		return true;
2608 
2609 	skb = tcp_write_queue_head(sk);
2610 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2611 		return true;
2612 
2613 	return false;
2614 }
2615 
2616 /* Undo during fast recovery after partial ACK. */
2617 
2618 static int tcp_try_undo_partial(struct sock *sk, int acked)
2619 {
2620 	struct tcp_sock *tp = tcp_sk(sk);
2621 	/* Partial ACK arrived. Force Hoe's retransmit. */
2622 	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2623 
2624 	if (tcp_may_undo(tp)) {
2625 		/* Plain luck! Hole if filled with delayed
2626 		 * packet, rather than with a retransmit.
2627 		 */
2628 		if (!tcp_any_retrans_done(sk))
2629 			tp->retrans_stamp = 0;
2630 
2631 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2632 
2633 		DBGUNDO(sk, "Hoe");
2634 		tcp_undo_cwr(sk, false);
2635 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2636 
2637 		/* So... Do not make Hoe's retransmit yet.
2638 		 * If the first packet was delayed, the rest
2639 		 * ones are most probably delayed as well.
2640 		 */
2641 		failed = 0;
2642 	}
2643 	return failed;
2644 }
2645 
2646 /* Undo during loss recovery after partial ACK. */
2647 static bool tcp_try_undo_loss(struct sock *sk)
2648 {
2649 	struct tcp_sock *tp = tcp_sk(sk);
2650 
2651 	if (tcp_may_undo(tp)) {
2652 		struct sk_buff *skb;
2653 		tcp_for_write_queue(skb, sk) {
2654 			if (skb == tcp_send_head(sk))
2655 				break;
2656 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2657 		}
2658 
2659 		tcp_clear_all_retrans_hints(tp);
2660 
2661 		DBGUNDO(sk, "partial loss");
2662 		tp->lost_out = 0;
2663 		tcp_undo_cwr(sk, true);
2664 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2665 		inet_csk(sk)->icsk_retransmits = 0;
2666 		tp->undo_marker = 0;
2667 		if (tcp_is_sack(tp))
2668 			tcp_set_ca_state(sk, TCP_CA_Open);
2669 		return true;
2670 	}
2671 	return false;
2672 }
2673 
2674 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2675  * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2676  * It computes the number of packets to send (sndcnt) based on packets newly
2677  * delivered:
2678  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2679  *	cwnd reductions across a full RTT.
2680  *   2) If packets in flight is lower than ssthresh (such as due to excess
2681  *	losses and/or application stalls), do not perform any further cwnd
2682  *	reductions, but instead slow start up to ssthresh.
2683  */
2684 static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
2685 {
2686 	struct tcp_sock *tp = tcp_sk(sk);
2687 
2688 	tp->high_seq = tp->snd_nxt;
2689 	tp->bytes_acked = 0;
2690 	tp->snd_cwnd_cnt = 0;
2691 	tp->prior_cwnd = tp->snd_cwnd;
2692 	tp->prr_delivered = 0;
2693 	tp->prr_out = 0;
2694 	if (set_ssthresh)
2695 		tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2696 	TCP_ECN_queue_cwr(tp);
2697 }
2698 
2699 static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
2700 			       int fast_rexmit)
2701 {
2702 	struct tcp_sock *tp = tcp_sk(sk);
2703 	int sndcnt = 0;
2704 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2705 
2706 	tp->prr_delivered += newly_acked_sacked;
2707 	if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2708 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2709 			       tp->prior_cwnd - 1;
2710 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2711 	} else {
2712 		sndcnt = min_t(int, delta,
2713 			       max_t(int, tp->prr_delivered - tp->prr_out,
2714 				     newly_acked_sacked) + 1);
2715 	}
2716 
2717 	sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2718 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2719 }
2720 
2721 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2722 {
2723 	struct tcp_sock *tp = tcp_sk(sk);
2724 
2725 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2726 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2727 	    (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2728 		tp->snd_cwnd = tp->snd_ssthresh;
2729 		tp->snd_cwnd_stamp = tcp_time_stamp;
2730 	}
2731 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2732 }
2733 
2734 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2735 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
2736 {
2737 	struct tcp_sock *tp = tcp_sk(sk);
2738 
2739 	tp->prior_ssthresh = 0;
2740 	tp->bytes_acked = 0;
2741 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2742 		tp->undo_marker = 0;
2743 		tcp_init_cwnd_reduction(sk, set_ssthresh);
2744 		tcp_set_ca_state(sk, TCP_CA_CWR);
2745 	}
2746 }
2747 
2748 static void tcp_try_keep_open(struct sock *sk)
2749 {
2750 	struct tcp_sock *tp = tcp_sk(sk);
2751 	int state = TCP_CA_Open;
2752 
2753 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2754 		state = TCP_CA_Disorder;
2755 
2756 	if (inet_csk(sk)->icsk_ca_state != state) {
2757 		tcp_set_ca_state(sk, state);
2758 		tp->high_seq = tp->snd_nxt;
2759 	}
2760 }
2761 
2762 static void tcp_try_to_open(struct sock *sk, int flag, int newly_acked_sacked)
2763 {
2764 	struct tcp_sock *tp = tcp_sk(sk);
2765 
2766 	tcp_verify_left_out(tp);
2767 
2768 	if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2769 		tp->retrans_stamp = 0;
2770 
2771 	if (flag & FLAG_ECE)
2772 		tcp_enter_cwr(sk, 1);
2773 
2774 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2775 		tcp_try_keep_open(sk);
2776 		if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2777 			tcp_moderate_cwnd(tp);
2778 	} else {
2779 		tcp_cwnd_reduction(sk, newly_acked_sacked, 0);
2780 	}
2781 }
2782 
2783 static void tcp_mtup_probe_failed(struct sock *sk)
2784 {
2785 	struct inet_connection_sock *icsk = inet_csk(sk);
2786 
2787 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2788 	icsk->icsk_mtup.probe_size = 0;
2789 }
2790 
2791 static void tcp_mtup_probe_success(struct sock *sk)
2792 {
2793 	struct tcp_sock *tp = tcp_sk(sk);
2794 	struct inet_connection_sock *icsk = inet_csk(sk);
2795 
2796 	/* FIXME: breaks with very large cwnd */
2797 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2798 	tp->snd_cwnd = tp->snd_cwnd *
2799 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2800 		       icsk->icsk_mtup.probe_size;
2801 	tp->snd_cwnd_cnt = 0;
2802 	tp->snd_cwnd_stamp = tcp_time_stamp;
2803 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2804 
2805 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2806 	icsk->icsk_mtup.probe_size = 0;
2807 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2808 }
2809 
2810 /* Do a simple retransmit without using the backoff mechanisms in
2811  * tcp_timer. This is used for path mtu discovery.
2812  * The socket is already locked here.
2813  */
2814 void tcp_simple_retransmit(struct sock *sk)
2815 {
2816 	const struct inet_connection_sock *icsk = inet_csk(sk);
2817 	struct tcp_sock *tp = tcp_sk(sk);
2818 	struct sk_buff *skb;
2819 	unsigned int mss = tcp_current_mss(sk);
2820 	u32 prior_lost = tp->lost_out;
2821 
2822 	tcp_for_write_queue(skb, sk) {
2823 		if (skb == tcp_send_head(sk))
2824 			break;
2825 		if (tcp_skb_seglen(skb) > mss &&
2826 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2827 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2828 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2829 				tp->retrans_out -= tcp_skb_pcount(skb);
2830 			}
2831 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2832 		}
2833 	}
2834 
2835 	tcp_clear_retrans_hints_partial(tp);
2836 
2837 	if (prior_lost == tp->lost_out)
2838 		return;
2839 
2840 	if (tcp_is_reno(tp))
2841 		tcp_limit_reno_sacked(tp);
2842 
2843 	tcp_verify_left_out(tp);
2844 
2845 	/* Don't muck with the congestion window here.
2846 	 * Reason is that we do not increase amount of _data_
2847 	 * in network, but units changed and effective
2848 	 * cwnd/ssthresh really reduced now.
2849 	 */
2850 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2851 		tp->high_seq = tp->snd_nxt;
2852 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2853 		tp->prior_ssthresh = 0;
2854 		tp->undo_marker = 0;
2855 		tcp_set_ca_state(sk, TCP_CA_Loss);
2856 	}
2857 	tcp_xmit_retransmit_queue(sk);
2858 }
2859 EXPORT_SYMBOL(tcp_simple_retransmit);
2860 
2861 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2862 {
2863 	struct tcp_sock *tp = tcp_sk(sk);
2864 	int mib_idx;
2865 
2866 	if (tcp_is_reno(tp))
2867 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2868 	else
2869 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2870 
2871 	NET_INC_STATS_BH(sock_net(sk), mib_idx);
2872 
2873 	tp->prior_ssthresh = 0;
2874 	tp->undo_marker = tp->snd_una;
2875 	tp->undo_retrans = tp->retrans_out;
2876 
2877 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2878 		if (!ece_ack)
2879 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2880 		tcp_init_cwnd_reduction(sk, true);
2881 	}
2882 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2883 }
2884 
2885 /* Process an event, which can update packets-in-flight not trivially.
2886  * Main goal of this function is to calculate new estimate for left_out,
2887  * taking into account both packets sitting in receiver's buffer and
2888  * packets lost by network.
2889  *
2890  * Besides that it does CWND reduction, when packet loss is detected
2891  * and changes state of machine.
2892  *
2893  * It does _not_ decide what to send, it is made in function
2894  * tcp_xmit_retransmit_queue().
2895  */
2896 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
2897 				  int prior_sacked, bool is_dupack,
2898 				  int flag)
2899 {
2900 	struct inet_connection_sock *icsk = inet_csk(sk);
2901 	struct tcp_sock *tp = tcp_sk(sk);
2902 	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2903 				    (tcp_fackets_out(tp) > tp->reordering));
2904 	int newly_acked_sacked = 0;
2905 	int fast_rexmit = 0;
2906 
2907 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2908 		tp->sacked_out = 0;
2909 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2910 		tp->fackets_out = 0;
2911 
2912 	/* Now state machine starts.
2913 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2914 	if (flag & FLAG_ECE)
2915 		tp->prior_ssthresh = 0;
2916 
2917 	/* B. In all the states check for reneging SACKs. */
2918 	if (tcp_check_sack_reneging(sk, flag))
2919 		return;
2920 
2921 	/* C. Check consistency of the current state. */
2922 	tcp_verify_left_out(tp);
2923 
2924 	/* D. Check state exit conditions. State can be terminated
2925 	 *    when high_seq is ACKed. */
2926 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2927 		WARN_ON(tp->retrans_out != 0);
2928 		tp->retrans_stamp = 0;
2929 	} else if (!before(tp->snd_una, tp->high_seq)) {
2930 		switch (icsk->icsk_ca_state) {
2931 		case TCP_CA_Loss:
2932 			icsk->icsk_retransmits = 0;
2933 			if (tcp_try_undo_recovery(sk))
2934 				return;
2935 			break;
2936 
2937 		case TCP_CA_CWR:
2938 			/* CWR is to be held something *above* high_seq
2939 			 * is ACKed for CWR bit to reach receiver. */
2940 			if (tp->snd_una != tp->high_seq) {
2941 				tcp_end_cwnd_reduction(sk);
2942 				tcp_set_ca_state(sk, TCP_CA_Open);
2943 			}
2944 			break;
2945 
2946 		case TCP_CA_Recovery:
2947 			if (tcp_is_reno(tp))
2948 				tcp_reset_reno_sack(tp);
2949 			if (tcp_try_undo_recovery(sk))
2950 				return;
2951 			tcp_end_cwnd_reduction(sk);
2952 			break;
2953 		}
2954 	}
2955 
2956 	/* E. Process state. */
2957 	switch (icsk->icsk_ca_state) {
2958 	case TCP_CA_Recovery:
2959 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2960 			if (tcp_is_reno(tp) && is_dupack)
2961 				tcp_add_reno_sack(sk);
2962 		} else
2963 			do_lost = tcp_try_undo_partial(sk, pkts_acked);
2964 		newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
2965 		break;
2966 	case TCP_CA_Loss:
2967 		if (flag & FLAG_DATA_ACKED)
2968 			icsk->icsk_retransmits = 0;
2969 		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2970 			tcp_reset_reno_sack(tp);
2971 		if (!tcp_try_undo_loss(sk)) {
2972 			tcp_moderate_cwnd(tp);
2973 			tcp_xmit_retransmit_queue(sk);
2974 			return;
2975 		}
2976 		if (icsk->icsk_ca_state != TCP_CA_Open)
2977 			return;
2978 		/* Loss is undone; fall through to processing in Open state. */
2979 	default:
2980 		if (tcp_is_reno(tp)) {
2981 			if (flag & FLAG_SND_UNA_ADVANCED)
2982 				tcp_reset_reno_sack(tp);
2983 			if (is_dupack)
2984 				tcp_add_reno_sack(sk);
2985 		}
2986 		newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
2987 
2988 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2989 			tcp_try_undo_dsack(sk);
2990 
2991 		if (!tcp_time_to_recover(sk, flag)) {
2992 			tcp_try_to_open(sk, flag, newly_acked_sacked);
2993 			return;
2994 		}
2995 
2996 		/* MTU probe failure: don't reduce cwnd */
2997 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2998 		    icsk->icsk_mtup.probe_size &&
2999 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3000 			tcp_mtup_probe_failed(sk);
3001 			/* Restores the reduction we did in tcp_mtup_probe() */
3002 			tp->snd_cwnd++;
3003 			tcp_simple_retransmit(sk);
3004 			return;
3005 		}
3006 
3007 		/* Otherwise enter Recovery state */
3008 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
3009 		fast_rexmit = 1;
3010 	}
3011 
3012 	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3013 		tcp_update_scoreboard(sk, fast_rexmit);
3014 	tcp_cwnd_reduction(sk, newly_acked_sacked, fast_rexmit);
3015 	tcp_xmit_retransmit_queue(sk);
3016 }
3017 
3018 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3019 {
3020 	tcp_rtt_estimator(sk, seq_rtt);
3021 	tcp_set_rto(sk);
3022 	inet_csk(sk)->icsk_backoff = 0;
3023 }
3024 EXPORT_SYMBOL(tcp_valid_rtt_meas);
3025 
3026 /* Read draft-ietf-tcplw-high-performance before mucking
3027  * with this code. (Supersedes RFC1323)
3028  */
3029 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3030 {
3031 	/* RTTM Rule: A TSecr value received in a segment is used to
3032 	 * update the averaged RTT measurement only if the segment
3033 	 * acknowledges some new data, i.e., only if it advances the
3034 	 * left edge of the send window.
3035 	 *
3036 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3037 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3038 	 *
3039 	 * Changed: reset backoff as soon as we see the first valid sample.
3040 	 * If we do not, we get strongly overestimated rto. With timestamps
3041 	 * samples are accepted even from very old segments: f.e., when rtt=1
3042 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3043 	 * answer arrives rto becomes 120 seconds! If at least one of segments
3044 	 * in window is lost... Voila.	 			--ANK (010210)
3045 	 */
3046 	struct tcp_sock *tp = tcp_sk(sk);
3047 
3048 	tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3049 }
3050 
3051 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3052 {
3053 	/* We don't have a timestamp. Can only use
3054 	 * packets that are not retransmitted to determine
3055 	 * rtt estimates. Also, we must not reset the
3056 	 * backoff for rto until we get a non-retransmitted
3057 	 * packet. This allows us to deal with a situation
3058 	 * where the network delay has increased suddenly.
3059 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3060 	 */
3061 
3062 	if (flag & FLAG_RETRANS_DATA_ACKED)
3063 		return;
3064 
3065 	tcp_valid_rtt_meas(sk, seq_rtt);
3066 }
3067 
3068 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3069 				      const s32 seq_rtt)
3070 {
3071 	const struct tcp_sock *tp = tcp_sk(sk);
3072 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3073 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3074 		tcp_ack_saw_tstamp(sk, flag);
3075 	else if (seq_rtt >= 0)
3076 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
3077 }
3078 
3079 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3080 {
3081 	const struct inet_connection_sock *icsk = inet_csk(sk);
3082 	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3083 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3084 }
3085 
3086 /* Restart timer after forward progress on connection.
3087  * RFC2988 recommends to restart timer to now+rto.
3088  */
3089 void tcp_rearm_rto(struct sock *sk)
3090 {
3091 	struct tcp_sock *tp = tcp_sk(sk);
3092 
3093 	/* If the retrans timer is currently being used by Fast Open
3094 	 * for SYN-ACK retrans purpose, stay put.
3095 	 */
3096 	if (tp->fastopen_rsk)
3097 		return;
3098 
3099 	if (!tp->packets_out) {
3100 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3101 	} else {
3102 		u32 rto = inet_csk(sk)->icsk_rto;
3103 		/* Offset the time elapsed after installing regular RTO */
3104 		if (tp->early_retrans_delayed) {
3105 			struct sk_buff *skb = tcp_write_queue_head(sk);
3106 			const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
3107 			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3108 			/* delta may not be positive if the socket is locked
3109 			 * when the delayed ER timer fires and is rescheduled.
3110 			 */
3111 			if (delta > 0)
3112 				rto = delta;
3113 		}
3114 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3115 					  TCP_RTO_MAX);
3116 	}
3117 	tp->early_retrans_delayed = 0;
3118 }
3119 
3120 /* This function is called when the delayed ER timer fires. TCP enters
3121  * fast recovery and performs fast-retransmit.
3122  */
3123 void tcp_resume_early_retransmit(struct sock *sk)
3124 {
3125 	struct tcp_sock *tp = tcp_sk(sk);
3126 
3127 	tcp_rearm_rto(sk);
3128 
3129 	/* Stop if ER is disabled after the delayed ER timer is scheduled */
3130 	if (!tp->do_early_retrans)
3131 		return;
3132 
3133 	tcp_enter_recovery(sk, false);
3134 	tcp_update_scoreboard(sk, 1);
3135 	tcp_xmit_retransmit_queue(sk);
3136 }
3137 
3138 /* If we get here, the whole TSO packet has not been acked. */
3139 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3140 {
3141 	struct tcp_sock *tp = tcp_sk(sk);
3142 	u32 packets_acked;
3143 
3144 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3145 
3146 	packets_acked = tcp_skb_pcount(skb);
3147 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3148 		return 0;
3149 	packets_acked -= tcp_skb_pcount(skb);
3150 
3151 	if (packets_acked) {
3152 		BUG_ON(tcp_skb_pcount(skb) == 0);
3153 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3154 	}
3155 
3156 	return packets_acked;
3157 }
3158 
3159 /* Remove acknowledged frames from the retransmission queue. If our packet
3160  * is before the ack sequence we can discard it as it's confirmed to have
3161  * arrived at the other end.
3162  */
3163 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3164 			       u32 prior_snd_una)
3165 {
3166 	struct tcp_sock *tp = tcp_sk(sk);
3167 	const struct inet_connection_sock *icsk = inet_csk(sk);
3168 	struct sk_buff *skb;
3169 	u32 now = tcp_time_stamp;
3170 	int fully_acked = true;
3171 	int flag = 0;
3172 	u32 pkts_acked = 0;
3173 	u32 reord = tp->packets_out;
3174 	u32 prior_sacked = tp->sacked_out;
3175 	s32 seq_rtt = -1;
3176 	s32 ca_seq_rtt = -1;
3177 	ktime_t last_ackt = net_invalid_timestamp();
3178 
3179 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3180 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3181 		u32 acked_pcount;
3182 		u8 sacked = scb->sacked;
3183 
3184 		/* Determine how many packets and what bytes were acked, tso and else */
3185 		if (after(scb->end_seq, tp->snd_una)) {
3186 			if (tcp_skb_pcount(skb) == 1 ||
3187 			    !after(tp->snd_una, scb->seq))
3188 				break;
3189 
3190 			acked_pcount = tcp_tso_acked(sk, skb);
3191 			if (!acked_pcount)
3192 				break;
3193 
3194 			fully_acked = false;
3195 		} else {
3196 			acked_pcount = tcp_skb_pcount(skb);
3197 		}
3198 
3199 		if (sacked & TCPCB_RETRANS) {
3200 			if (sacked & TCPCB_SACKED_RETRANS)
3201 				tp->retrans_out -= acked_pcount;
3202 			flag |= FLAG_RETRANS_DATA_ACKED;
3203 			ca_seq_rtt = -1;
3204 			seq_rtt = -1;
3205 			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3206 				flag |= FLAG_NONHEAD_RETRANS_ACKED;
3207 		} else {
3208 			ca_seq_rtt = now - scb->when;
3209 			last_ackt = skb->tstamp;
3210 			if (seq_rtt < 0) {
3211 				seq_rtt = ca_seq_rtt;
3212 			}
3213 			if (!(sacked & TCPCB_SACKED_ACKED))
3214 				reord = min(pkts_acked, reord);
3215 		}
3216 
3217 		if (sacked & TCPCB_SACKED_ACKED)
3218 			tp->sacked_out -= acked_pcount;
3219 		if (sacked & TCPCB_LOST)
3220 			tp->lost_out -= acked_pcount;
3221 
3222 		tp->packets_out -= acked_pcount;
3223 		pkts_acked += acked_pcount;
3224 
3225 		/* Initial outgoing SYN's get put onto the write_queue
3226 		 * just like anything else we transmit.  It is not
3227 		 * true data, and if we misinform our callers that
3228 		 * this ACK acks real data, we will erroneously exit
3229 		 * connection startup slow start one packet too
3230 		 * quickly.  This is severely frowned upon behavior.
3231 		 */
3232 		if (!(scb->tcp_flags & TCPHDR_SYN)) {
3233 			flag |= FLAG_DATA_ACKED;
3234 		} else {
3235 			flag |= FLAG_SYN_ACKED;
3236 			tp->retrans_stamp = 0;
3237 		}
3238 
3239 		if (!fully_acked)
3240 			break;
3241 
3242 		tcp_unlink_write_queue(skb, sk);
3243 		sk_wmem_free_skb(sk, skb);
3244 		tp->scoreboard_skb_hint = NULL;
3245 		if (skb == tp->retransmit_skb_hint)
3246 			tp->retransmit_skb_hint = NULL;
3247 		if (skb == tp->lost_skb_hint)
3248 			tp->lost_skb_hint = NULL;
3249 	}
3250 
3251 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3252 		tp->snd_up = tp->snd_una;
3253 
3254 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3255 		flag |= FLAG_SACK_RENEGING;
3256 
3257 	if (flag & FLAG_ACKED) {
3258 		const struct tcp_congestion_ops *ca_ops
3259 			= inet_csk(sk)->icsk_ca_ops;
3260 
3261 		if (unlikely(icsk->icsk_mtup.probe_size &&
3262 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3263 			tcp_mtup_probe_success(sk);
3264 		}
3265 
3266 		tcp_ack_update_rtt(sk, flag, seq_rtt);
3267 		tcp_rearm_rto(sk);
3268 
3269 		if (tcp_is_reno(tp)) {
3270 			tcp_remove_reno_sacks(sk, pkts_acked);
3271 		} else {
3272 			int delta;
3273 
3274 			/* Non-retransmitted hole got filled? That's reordering */
3275 			if (reord < prior_fackets)
3276 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3277 
3278 			delta = tcp_is_fack(tp) ? pkts_acked :
3279 						  prior_sacked - tp->sacked_out;
3280 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3281 		}
3282 
3283 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3284 
3285 		if (ca_ops->pkts_acked) {
3286 			s32 rtt_us = -1;
3287 
3288 			/* Is the ACK triggering packet unambiguous? */
3289 			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3290 				/* High resolution needed and available? */
3291 				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3292 				    !ktime_equal(last_ackt,
3293 						 net_invalid_timestamp()))
3294 					rtt_us = ktime_us_delta(ktime_get_real(),
3295 								last_ackt);
3296 				else if (ca_seq_rtt >= 0)
3297 					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3298 			}
3299 
3300 			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3301 		}
3302 	}
3303 
3304 #if FASTRETRANS_DEBUG > 0
3305 	WARN_ON((int)tp->sacked_out < 0);
3306 	WARN_ON((int)tp->lost_out < 0);
3307 	WARN_ON((int)tp->retrans_out < 0);
3308 	if (!tp->packets_out && tcp_is_sack(tp)) {
3309 		icsk = inet_csk(sk);
3310 		if (tp->lost_out) {
3311 			pr_debug("Leak l=%u %d\n",
3312 				 tp->lost_out, icsk->icsk_ca_state);
3313 			tp->lost_out = 0;
3314 		}
3315 		if (tp->sacked_out) {
3316 			pr_debug("Leak s=%u %d\n",
3317 				 tp->sacked_out, icsk->icsk_ca_state);
3318 			tp->sacked_out = 0;
3319 		}
3320 		if (tp->retrans_out) {
3321 			pr_debug("Leak r=%u %d\n",
3322 				 tp->retrans_out, icsk->icsk_ca_state);
3323 			tp->retrans_out = 0;
3324 		}
3325 	}
3326 #endif
3327 	return flag;
3328 }
3329 
3330 static void tcp_ack_probe(struct sock *sk)
3331 {
3332 	const struct tcp_sock *tp = tcp_sk(sk);
3333 	struct inet_connection_sock *icsk = inet_csk(sk);
3334 
3335 	/* Was it a usable window open? */
3336 
3337 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3338 		icsk->icsk_backoff = 0;
3339 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3340 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3341 		 * This function is not for random using!
3342 		 */
3343 	} else {
3344 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3345 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3346 					  TCP_RTO_MAX);
3347 	}
3348 }
3349 
3350 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3351 {
3352 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3353 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3354 }
3355 
3356 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3357 {
3358 	const struct tcp_sock *tp = tcp_sk(sk);
3359 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3360 		!tcp_in_cwnd_reduction(sk);
3361 }
3362 
3363 /* Check that window update is acceptable.
3364  * The function assumes that snd_una<=ack<=snd_next.
3365  */
3366 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3367 					const u32 ack, const u32 ack_seq,
3368 					const u32 nwin)
3369 {
3370 	return	after(ack, tp->snd_una) ||
3371 		after(ack_seq, tp->snd_wl1) ||
3372 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3373 }
3374 
3375 /* Update our send window.
3376  *
3377  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3378  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3379  */
3380 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3381 				 u32 ack_seq)
3382 {
3383 	struct tcp_sock *tp = tcp_sk(sk);
3384 	int flag = 0;
3385 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3386 
3387 	if (likely(!tcp_hdr(skb)->syn))
3388 		nwin <<= tp->rx_opt.snd_wscale;
3389 
3390 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3391 		flag |= FLAG_WIN_UPDATE;
3392 		tcp_update_wl(tp, ack_seq);
3393 
3394 		if (tp->snd_wnd != nwin) {
3395 			tp->snd_wnd = nwin;
3396 
3397 			/* Note, it is the only place, where
3398 			 * fast path is recovered for sending TCP.
3399 			 */
3400 			tp->pred_flags = 0;
3401 			tcp_fast_path_check(sk);
3402 
3403 			if (nwin > tp->max_window) {
3404 				tp->max_window = nwin;
3405 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3406 			}
3407 		}
3408 	}
3409 
3410 	tp->snd_una = ack;
3411 
3412 	return flag;
3413 }
3414 
3415 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3416  * continue in congestion avoidance.
3417  */
3418 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3419 {
3420 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3421 	tp->snd_cwnd_cnt = 0;
3422 	tp->bytes_acked = 0;
3423 	TCP_ECN_queue_cwr(tp);
3424 	tcp_moderate_cwnd(tp);
3425 }
3426 
3427 /* A conservative spurious RTO response algorithm: reduce cwnd using
3428  * PRR and continue in congestion avoidance.
3429  */
3430 static void tcp_cwr_spur_to_response(struct sock *sk)
3431 {
3432 	tcp_enter_cwr(sk, 0);
3433 }
3434 
3435 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3436 {
3437 	if (flag & FLAG_ECE)
3438 		tcp_cwr_spur_to_response(sk);
3439 	else
3440 		tcp_undo_cwr(sk, true);
3441 }
3442 
3443 /* F-RTO spurious RTO detection algorithm (RFC4138)
3444  *
3445  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3446  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3447  * window (but not to or beyond highest sequence sent before RTO):
3448  *   On First ACK,  send two new segments out.
3449  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3450  *                  algorithm is not part of the F-RTO detection algorithm
3451  *                  given in RFC4138 but can be selected separately).
3452  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3453  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3454  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3455  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3456  *
3457  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3458  * original window even after we transmit two new data segments.
3459  *
3460  * SACK version:
3461  *   on first step, wait until first cumulative ACK arrives, then move to
3462  *   the second step. In second step, the next ACK decides.
3463  *
3464  * F-RTO is implemented (mainly) in four functions:
3465  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3466  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3467  *     called when tcp_use_frto() showed green light
3468  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3469  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3470  *     to prove that the RTO is indeed spurious. It transfers the control
3471  *     from F-RTO to the conventional RTO recovery
3472  */
3473 static bool tcp_process_frto(struct sock *sk, int flag)
3474 {
3475 	struct tcp_sock *tp = tcp_sk(sk);
3476 
3477 	tcp_verify_left_out(tp);
3478 
3479 	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3480 	if (flag & FLAG_DATA_ACKED)
3481 		inet_csk(sk)->icsk_retransmits = 0;
3482 
3483 	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3484 	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3485 		tp->undo_marker = 0;
3486 
3487 	if (!before(tp->snd_una, tp->frto_highmark)) {
3488 		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3489 		return true;
3490 	}
3491 
3492 	if (!tcp_is_sackfrto(tp)) {
3493 		/* RFC4138 shortcoming in step 2; should also have case c):
3494 		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3495 		 * data, winupdate
3496 		 */
3497 		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3498 			return true;
3499 
3500 		if (!(flag & FLAG_DATA_ACKED)) {
3501 			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3502 					    flag);
3503 			return true;
3504 		}
3505 	} else {
3506 		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3507 			if (!tcp_packets_in_flight(tp)) {
3508 				tcp_enter_frto_loss(sk, 2, flag);
3509 				return true;
3510 			}
3511 
3512 			/* Prevent sending of new data. */
3513 			tp->snd_cwnd = min(tp->snd_cwnd,
3514 					   tcp_packets_in_flight(tp));
3515 			return true;
3516 		}
3517 
3518 		if ((tp->frto_counter >= 2) &&
3519 		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3520 		     ((flag & FLAG_DATA_SACKED) &&
3521 		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3522 			/* RFC4138 shortcoming (see comment above) */
3523 			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3524 			    (flag & FLAG_NOT_DUP))
3525 				return true;
3526 
3527 			tcp_enter_frto_loss(sk, 3, flag);
3528 			return true;
3529 		}
3530 	}
3531 
3532 	if (tp->frto_counter == 1) {
3533 		/* tcp_may_send_now needs to see updated state */
3534 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3535 		tp->frto_counter = 2;
3536 
3537 		if (!tcp_may_send_now(sk))
3538 			tcp_enter_frto_loss(sk, 2, flag);
3539 
3540 		return true;
3541 	} else {
3542 		switch (sysctl_tcp_frto_response) {
3543 		case 2:
3544 			tcp_undo_spur_to_response(sk, flag);
3545 			break;
3546 		case 1:
3547 			tcp_conservative_spur_to_response(tp);
3548 			break;
3549 		default:
3550 			tcp_cwr_spur_to_response(sk);
3551 			break;
3552 		}
3553 		tp->frto_counter = 0;
3554 		tp->undo_marker = 0;
3555 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3556 	}
3557 	return false;
3558 }
3559 
3560 /* RFC 5961 7 [ACK Throttling] */
3561 static void tcp_send_challenge_ack(struct sock *sk)
3562 {
3563 	/* unprotected vars, we dont care of overwrites */
3564 	static u32 challenge_timestamp;
3565 	static unsigned int challenge_count;
3566 	u32 now = jiffies / HZ;
3567 
3568 	if (now != challenge_timestamp) {
3569 		challenge_timestamp = now;
3570 		challenge_count = 0;
3571 	}
3572 	if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3573 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3574 		tcp_send_ack(sk);
3575 	}
3576 }
3577 
3578 /* This routine deals with incoming acks, but not outgoing ones. */
3579 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3580 {
3581 	struct inet_connection_sock *icsk = inet_csk(sk);
3582 	struct tcp_sock *tp = tcp_sk(sk);
3583 	u32 prior_snd_una = tp->snd_una;
3584 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3585 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3586 	bool is_dupack = false;
3587 	u32 prior_in_flight;
3588 	u32 prior_fackets;
3589 	int prior_packets;
3590 	int prior_sacked = tp->sacked_out;
3591 	int pkts_acked = 0;
3592 	bool frto_cwnd = false;
3593 
3594 	/* If the ack is older than previous acks
3595 	 * then we can probably ignore it.
3596 	 */
3597 	if (before(ack, prior_snd_una)) {
3598 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3599 		if (before(ack, prior_snd_una - tp->max_window)) {
3600 			tcp_send_challenge_ack(sk);
3601 			return -1;
3602 		}
3603 		goto old_ack;
3604 	}
3605 
3606 	/* If the ack includes data we haven't sent yet, discard
3607 	 * this segment (RFC793 Section 3.9).
3608 	 */
3609 	if (after(ack, tp->snd_nxt))
3610 		goto invalid_ack;
3611 
3612 	if (tp->early_retrans_delayed)
3613 		tcp_rearm_rto(sk);
3614 
3615 	if (after(ack, prior_snd_una))
3616 		flag |= FLAG_SND_UNA_ADVANCED;
3617 
3618 	if (sysctl_tcp_abc) {
3619 		if (icsk->icsk_ca_state < TCP_CA_CWR)
3620 			tp->bytes_acked += ack - prior_snd_una;
3621 		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3622 			/* we assume just one segment left network */
3623 			tp->bytes_acked += min(ack - prior_snd_una,
3624 					       tp->mss_cache);
3625 	}
3626 
3627 	prior_fackets = tp->fackets_out;
3628 	prior_in_flight = tcp_packets_in_flight(tp);
3629 
3630 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3631 		/* Window is constant, pure forward advance.
3632 		 * No more checks are required.
3633 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3634 		 */
3635 		tcp_update_wl(tp, ack_seq);
3636 		tp->snd_una = ack;
3637 		flag |= FLAG_WIN_UPDATE;
3638 
3639 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3640 
3641 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3642 	} else {
3643 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3644 			flag |= FLAG_DATA;
3645 		else
3646 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3647 
3648 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3649 
3650 		if (TCP_SKB_CB(skb)->sacked)
3651 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3652 
3653 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3654 			flag |= FLAG_ECE;
3655 
3656 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3657 	}
3658 
3659 	/* We passed data and got it acked, remove any soft error
3660 	 * log. Something worked...
3661 	 */
3662 	sk->sk_err_soft = 0;
3663 	icsk->icsk_probes_out = 0;
3664 	tp->rcv_tstamp = tcp_time_stamp;
3665 	prior_packets = tp->packets_out;
3666 	if (!prior_packets)
3667 		goto no_queue;
3668 
3669 	/* See if we can take anything off of the retransmit queue. */
3670 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3671 
3672 	pkts_acked = prior_packets - tp->packets_out;
3673 
3674 	if (tp->frto_counter)
3675 		frto_cwnd = tcp_process_frto(sk, flag);
3676 	/* Guarantee sacktag reordering detection against wrap-arounds */
3677 	if (before(tp->frto_highmark, tp->snd_una))
3678 		tp->frto_highmark = 0;
3679 
3680 	if (tcp_ack_is_dubious(sk, flag)) {
3681 		/* Advance CWND, if state allows this. */
3682 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3683 		    tcp_may_raise_cwnd(sk, flag))
3684 			tcp_cong_avoid(sk, ack, prior_in_flight);
3685 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3686 		tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3687 				      is_dupack, flag);
3688 	} else {
3689 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3690 			tcp_cong_avoid(sk, ack, prior_in_flight);
3691 	}
3692 
3693 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3694 		struct dst_entry *dst = __sk_dst_get(sk);
3695 		if (dst)
3696 			dst_confirm(dst);
3697 	}
3698 	return 1;
3699 
3700 no_queue:
3701 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3702 	if (flag & FLAG_DSACKING_ACK)
3703 		tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3704 				      is_dupack, flag);
3705 	/* If this ack opens up a zero window, clear backoff.  It was
3706 	 * being used to time the probes, and is probably far higher than
3707 	 * it needs to be for normal retransmission.
3708 	 */
3709 	if (tcp_send_head(sk))
3710 		tcp_ack_probe(sk);
3711 	return 1;
3712 
3713 invalid_ack:
3714 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3715 	return -1;
3716 
3717 old_ack:
3718 	/* If data was SACKed, tag it and see if we should send more data.
3719 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3720 	 */
3721 	if (TCP_SKB_CB(skb)->sacked) {
3722 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3723 		tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3724 				      is_dupack, flag);
3725 	}
3726 
3727 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3728 	return 0;
3729 }
3730 
3731 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3732  * But, this can also be called on packets in the established flow when
3733  * the fast version below fails.
3734  */
3735 void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3736 		       const u8 **hvpp, int estab,
3737 		       struct tcp_fastopen_cookie *foc)
3738 {
3739 	const unsigned char *ptr;
3740 	const struct tcphdr *th = tcp_hdr(skb);
3741 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3742 
3743 	ptr = (const unsigned char *)(th + 1);
3744 	opt_rx->saw_tstamp = 0;
3745 
3746 	while (length > 0) {
3747 		int opcode = *ptr++;
3748 		int opsize;
3749 
3750 		switch (opcode) {
3751 		case TCPOPT_EOL:
3752 			return;
3753 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3754 			length--;
3755 			continue;
3756 		default:
3757 			opsize = *ptr++;
3758 			if (opsize < 2) /* "silly options" */
3759 				return;
3760 			if (opsize > length)
3761 				return;	/* don't parse partial options */
3762 			switch (opcode) {
3763 			case TCPOPT_MSS:
3764 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3765 					u16 in_mss = get_unaligned_be16(ptr);
3766 					if (in_mss) {
3767 						if (opt_rx->user_mss &&
3768 						    opt_rx->user_mss < in_mss)
3769 							in_mss = opt_rx->user_mss;
3770 						opt_rx->mss_clamp = in_mss;
3771 					}
3772 				}
3773 				break;
3774 			case TCPOPT_WINDOW:
3775 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3776 				    !estab && sysctl_tcp_window_scaling) {
3777 					__u8 snd_wscale = *(__u8 *)ptr;
3778 					opt_rx->wscale_ok = 1;
3779 					if (snd_wscale > 14) {
3780 						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3781 								     __func__,
3782 								     snd_wscale);
3783 						snd_wscale = 14;
3784 					}
3785 					opt_rx->snd_wscale = snd_wscale;
3786 				}
3787 				break;
3788 			case TCPOPT_TIMESTAMP:
3789 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3790 				    ((estab && opt_rx->tstamp_ok) ||
3791 				     (!estab && sysctl_tcp_timestamps))) {
3792 					opt_rx->saw_tstamp = 1;
3793 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3794 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3795 				}
3796 				break;
3797 			case TCPOPT_SACK_PERM:
3798 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3799 				    !estab && sysctl_tcp_sack) {
3800 					opt_rx->sack_ok = TCP_SACK_SEEN;
3801 					tcp_sack_reset(opt_rx);
3802 				}
3803 				break;
3804 
3805 			case TCPOPT_SACK:
3806 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3807 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3808 				   opt_rx->sack_ok) {
3809 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3810 				}
3811 				break;
3812 #ifdef CONFIG_TCP_MD5SIG
3813 			case TCPOPT_MD5SIG:
3814 				/*
3815 				 * The MD5 Hash has already been
3816 				 * checked (see tcp_v{4,6}_do_rcv()).
3817 				 */
3818 				break;
3819 #endif
3820 			case TCPOPT_COOKIE:
3821 				/* This option is variable length.
3822 				 */
3823 				switch (opsize) {
3824 				case TCPOLEN_COOKIE_BASE:
3825 					/* not yet implemented */
3826 					break;
3827 				case TCPOLEN_COOKIE_PAIR:
3828 					/* not yet implemented */
3829 					break;
3830 				case TCPOLEN_COOKIE_MIN+0:
3831 				case TCPOLEN_COOKIE_MIN+2:
3832 				case TCPOLEN_COOKIE_MIN+4:
3833 				case TCPOLEN_COOKIE_MIN+6:
3834 				case TCPOLEN_COOKIE_MAX:
3835 					/* 16-bit multiple */
3836 					opt_rx->cookie_plus = opsize;
3837 					*hvpp = ptr;
3838 					break;
3839 				default:
3840 					/* ignore option */
3841 					break;
3842 				}
3843 				break;
3844 
3845 			case TCPOPT_EXP:
3846 				/* Fast Open option shares code 254 using a
3847 				 * 16 bits magic number. It's valid only in
3848 				 * SYN or SYN-ACK with an even size.
3849 				 */
3850 				if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3851 				    get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3852 				    foc == NULL || !th->syn || (opsize & 1))
3853 					break;
3854 				foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3855 				if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3856 				    foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3857 					memcpy(foc->val, ptr + 2, foc->len);
3858 				else if (foc->len != 0)
3859 					foc->len = -1;
3860 				break;
3861 
3862 			}
3863 			ptr += opsize-2;
3864 			length -= opsize;
3865 		}
3866 	}
3867 }
3868 EXPORT_SYMBOL(tcp_parse_options);
3869 
3870 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3871 {
3872 	const __be32 *ptr = (const __be32 *)(th + 1);
3873 
3874 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3875 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3876 		tp->rx_opt.saw_tstamp = 1;
3877 		++ptr;
3878 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3879 		++ptr;
3880 		tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3881 		return true;
3882 	}
3883 	return false;
3884 }
3885 
3886 /* Fast parse options. This hopes to only see timestamps.
3887  * If it is wrong it falls back on tcp_parse_options().
3888  */
3889 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3890 				   const struct tcphdr *th,
3891 				   struct tcp_sock *tp, const u8 **hvpp)
3892 {
3893 	/* In the spirit of fast parsing, compare doff directly to constant
3894 	 * values.  Because equality is used, short doff can be ignored here.
3895 	 */
3896 	if (th->doff == (sizeof(*th) / 4)) {
3897 		tp->rx_opt.saw_tstamp = 0;
3898 		return false;
3899 	} else if (tp->rx_opt.tstamp_ok &&
3900 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3901 		if (tcp_parse_aligned_timestamp(tp, th))
3902 			return true;
3903 	}
3904 	tcp_parse_options(skb, &tp->rx_opt, hvpp, 1, NULL);
3905 	return true;
3906 }
3907 
3908 #ifdef CONFIG_TCP_MD5SIG
3909 /*
3910  * Parse MD5 Signature option
3911  */
3912 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3913 {
3914 	int length = (th->doff << 2) - sizeof(*th);
3915 	const u8 *ptr = (const u8 *)(th + 1);
3916 
3917 	/* If the TCP option is too short, we can short cut */
3918 	if (length < TCPOLEN_MD5SIG)
3919 		return NULL;
3920 
3921 	while (length > 0) {
3922 		int opcode = *ptr++;
3923 		int opsize;
3924 
3925 		switch(opcode) {
3926 		case TCPOPT_EOL:
3927 			return NULL;
3928 		case TCPOPT_NOP:
3929 			length--;
3930 			continue;
3931 		default:
3932 			opsize = *ptr++;
3933 			if (opsize < 2 || opsize > length)
3934 				return NULL;
3935 			if (opcode == TCPOPT_MD5SIG)
3936 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3937 		}
3938 		ptr += opsize - 2;
3939 		length -= opsize;
3940 	}
3941 	return NULL;
3942 }
3943 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3944 #endif
3945 
3946 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3947 {
3948 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3949 	tp->rx_opt.ts_recent_stamp = get_seconds();
3950 }
3951 
3952 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3953 {
3954 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3955 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3956 		 * extra check below makes sure this can only happen
3957 		 * for pure ACK frames.  -DaveM
3958 		 *
3959 		 * Not only, also it occurs for expired timestamps.
3960 		 */
3961 
3962 		if (tcp_paws_check(&tp->rx_opt, 0))
3963 			tcp_store_ts_recent(tp);
3964 	}
3965 }
3966 
3967 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3968  *
3969  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3970  * it can pass through stack. So, the following predicate verifies that
3971  * this segment is not used for anything but congestion avoidance or
3972  * fast retransmit. Moreover, we even are able to eliminate most of such
3973  * second order effects, if we apply some small "replay" window (~RTO)
3974  * to timestamp space.
3975  *
3976  * All these measures still do not guarantee that we reject wrapped ACKs
3977  * on networks with high bandwidth, when sequence space is recycled fastly,
3978  * but it guarantees that such events will be very rare and do not affect
3979  * connection seriously. This doesn't look nice, but alas, PAWS is really
3980  * buggy extension.
3981  *
3982  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3983  * states that events when retransmit arrives after original data are rare.
3984  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3985  * the biggest problem on large power networks even with minor reordering.
3986  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3987  * up to bandwidth of 18Gigabit/sec. 8) ]
3988  */
3989 
3990 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3991 {
3992 	const struct tcp_sock *tp = tcp_sk(sk);
3993 	const struct tcphdr *th = tcp_hdr(skb);
3994 	u32 seq = TCP_SKB_CB(skb)->seq;
3995 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3996 
3997 	return (/* 1. Pure ACK with correct sequence number. */
3998 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3999 
4000 		/* 2. ... and duplicate ACK. */
4001 		ack == tp->snd_una &&
4002 
4003 		/* 3. ... and does not update window. */
4004 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4005 
4006 		/* 4. ... and sits in replay window. */
4007 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4008 }
4009 
4010 static inline bool tcp_paws_discard(const struct sock *sk,
4011 				   const struct sk_buff *skb)
4012 {
4013 	const struct tcp_sock *tp = tcp_sk(sk);
4014 
4015 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4016 	       !tcp_disordered_ack(sk, skb);
4017 }
4018 
4019 /* Check segment sequence number for validity.
4020  *
4021  * Segment controls are considered valid, if the segment
4022  * fits to the window after truncation to the window. Acceptability
4023  * of data (and SYN, FIN, of course) is checked separately.
4024  * See tcp_data_queue(), for example.
4025  *
4026  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4027  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4028  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4029  * (borrowed from freebsd)
4030  */
4031 
4032 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4033 {
4034 	return	!before(end_seq, tp->rcv_wup) &&
4035 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4036 }
4037 
4038 /* When we get a reset we do this. */
4039 void tcp_reset(struct sock *sk)
4040 {
4041 	/* We want the right error as BSD sees it (and indeed as we do). */
4042 	switch (sk->sk_state) {
4043 	case TCP_SYN_SENT:
4044 		sk->sk_err = ECONNREFUSED;
4045 		break;
4046 	case TCP_CLOSE_WAIT:
4047 		sk->sk_err = EPIPE;
4048 		break;
4049 	case TCP_CLOSE:
4050 		return;
4051 	default:
4052 		sk->sk_err = ECONNRESET;
4053 	}
4054 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4055 	smp_wmb();
4056 
4057 	if (!sock_flag(sk, SOCK_DEAD))
4058 		sk->sk_error_report(sk);
4059 
4060 	tcp_done(sk);
4061 }
4062 
4063 /*
4064  * 	Process the FIN bit. This now behaves as it is supposed to work
4065  *	and the FIN takes effect when it is validly part of sequence
4066  *	space. Not before when we get holes.
4067  *
4068  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4069  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4070  *	TIME-WAIT)
4071  *
4072  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4073  *	close and we go into CLOSING (and later onto TIME-WAIT)
4074  *
4075  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4076  */
4077 static void tcp_fin(struct sock *sk)
4078 {
4079 	struct tcp_sock *tp = tcp_sk(sk);
4080 
4081 	inet_csk_schedule_ack(sk);
4082 
4083 	sk->sk_shutdown |= RCV_SHUTDOWN;
4084 	sock_set_flag(sk, SOCK_DONE);
4085 
4086 	switch (sk->sk_state) {
4087 	case TCP_SYN_RECV:
4088 	case TCP_ESTABLISHED:
4089 		/* Move to CLOSE_WAIT */
4090 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4091 		inet_csk(sk)->icsk_ack.pingpong = 1;
4092 		break;
4093 
4094 	case TCP_CLOSE_WAIT:
4095 	case TCP_CLOSING:
4096 		/* Received a retransmission of the FIN, do
4097 		 * nothing.
4098 		 */
4099 		break;
4100 	case TCP_LAST_ACK:
4101 		/* RFC793: Remain in the LAST-ACK state. */
4102 		break;
4103 
4104 	case TCP_FIN_WAIT1:
4105 		/* This case occurs when a simultaneous close
4106 		 * happens, we must ack the received FIN and
4107 		 * enter the CLOSING state.
4108 		 */
4109 		tcp_send_ack(sk);
4110 		tcp_set_state(sk, TCP_CLOSING);
4111 		break;
4112 	case TCP_FIN_WAIT2:
4113 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4114 		tcp_send_ack(sk);
4115 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4116 		break;
4117 	default:
4118 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4119 		 * cases we should never reach this piece of code.
4120 		 */
4121 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4122 		       __func__, sk->sk_state);
4123 		break;
4124 	}
4125 
4126 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4127 	 * Probably, we should reset in this case. For now drop them.
4128 	 */
4129 	__skb_queue_purge(&tp->out_of_order_queue);
4130 	if (tcp_is_sack(tp))
4131 		tcp_sack_reset(&tp->rx_opt);
4132 	sk_mem_reclaim(sk);
4133 
4134 	if (!sock_flag(sk, SOCK_DEAD)) {
4135 		sk->sk_state_change(sk);
4136 
4137 		/* Do not send POLL_HUP for half duplex close. */
4138 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4139 		    sk->sk_state == TCP_CLOSE)
4140 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4141 		else
4142 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4143 	}
4144 }
4145 
4146 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4147 				  u32 end_seq)
4148 {
4149 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4150 		if (before(seq, sp->start_seq))
4151 			sp->start_seq = seq;
4152 		if (after(end_seq, sp->end_seq))
4153 			sp->end_seq = end_seq;
4154 		return true;
4155 	}
4156 	return false;
4157 }
4158 
4159 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4160 {
4161 	struct tcp_sock *tp = tcp_sk(sk);
4162 
4163 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4164 		int mib_idx;
4165 
4166 		if (before(seq, tp->rcv_nxt))
4167 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4168 		else
4169 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4170 
4171 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4172 
4173 		tp->rx_opt.dsack = 1;
4174 		tp->duplicate_sack[0].start_seq = seq;
4175 		tp->duplicate_sack[0].end_seq = end_seq;
4176 	}
4177 }
4178 
4179 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4180 {
4181 	struct tcp_sock *tp = tcp_sk(sk);
4182 
4183 	if (!tp->rx_opt.dsack)
4184 		tcp_dsack_set(sk, seq, end_seq);
4185 	else
4186 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4187 }
4188 
4189 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4190 {
4191 	struct tcp_sock *tp = tcp_sk(sk);
4192 
4193 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4194 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4195 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4196 		tcp_enter_quickack_mode(sk);
4197 
4198 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4199 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4200 
4201 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4202 				end_seq = tp->rcv_nxt;
4203 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4204 		}
4205 	}
4206 
4207 	tcp_send_ack(sk);
4208 }
4209 
4210 /* These routines update the SACK block as out-of-order packets arrive or
4211  * in-order packets close up the sequence space.
4212  */
4213 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4214 {
4215 	int this_sack;
4216 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4217 	struct tcp_sack_block *swalk = sp + 1;
4218 
4219 	/* See if the recent change to the first SACK eats into
4220 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4221 	 */
4222 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4223 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4224 			int i;
4225 
4226 			/* Zap SWALK, by moving every further SACK up by one slot.
4227 			 * Decrease num_sacks.
4228 			 */
4229 			tp->rx_opt.num_sacks--;
4230 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4231 				sp[i] = sp[i + 1];
4232 			continue;
4233 		}
4234 		this_sack++, swalk++;
4235 	}
4236 }
4237 
4238 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4239 {
4240 	struct tcp_sock *tp = tcp_sk(sk);
4241 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4242 	int cur_sacks = tp->rx_opt.num_sacks;
4243 	int this_sack;
4244 
4245 	if (!cur_sacks)
4246 		goto new_sack;
4247 
4248 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4249 		if (tcp_sack_extend(sp, seq, end_seq)) {
4250 			/* Rotate this_sack to the first one. */
4251 			for (; this_sack > 0; this_sack--, sp--)
4252 				swap(*sp, *(sp - 1));
4253 			if (cur_sacks > 1)
4254 				tcp_sack_maybe_coalesce(tp);
4255 			return;
4256 		}
4257 	}
4258 
4259 	/* Could not find an adjacent existing SACK, build a new one,
4260 	 * put it at the front, and shift everyone else down.  We
4261 	 * always know there is at least one SACK present already here.
4262 	 *
4263 	 * If the sack array is full, forget about the last one.
4264 	 */
4265 	if (this_sack >= TCP_NUM_SACKS) {
4266 		this_sack--;
4267 		tp->rx_opt.num_sacks--;
4268 		sp--;
4269 	}
4270 	for (; this_sack > 0; this_sack--, sp--)
4271 		*sp = *(sp - 1);
4272 
4273 new_sack:
4274 	/* Build the new head SACK, and we're done. */
4275 	sp->start_seq = seq;
4276 	sp->end_seq = end_seq;
4277 	tp->rx_opt.num_sacks++;
4278 }
4279 
4280 /* RCV.NXT advances, some SACKs should be eaten. */
4281 
4282 static void tcp_sack_remove(struct tcp_sock *tp)
4283 {
4284 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4285 	int num_sacks = tp->rx_opt.num_sacks;
4286 	int this_sack;
4287 
4288 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4289 	if (skb_queue_empty(&tp->out_of_order_queue)) {
4290 		tp->rx_opt.num_sacks = 0;
4291 		return;
4292 	}
4293 
4294 	for (this_sack = 0; this_sack < num_sacks;) {
4295 		/* Check if the start of the sack is covered by RCV.NXT. */
4296 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4297 			int i;
4298 
4299 			/* RCV.NXT must cover all the block! */
4300 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4301 
4302 			/* Zap this SACK, by moving forward any other SACKS. */
4303 			for (i=this_sack+1; i < num_sacks; i++)
4304 				tp->selective_acks[i-1] = tp->selective_acks[i];
4305 			num_sacks--;
4306 			continue;
4307 		}
4308 		this_sack++;
4309 		sp++;
4310 	}
4311 	tp->rx_opt.num_sacks = num_sacks;
4312 }
4313 
4314 /* This one checks to see if we can put data from the
4315  * out_of_order queue into the receive_queue.
4316  */
4317 static void tcp_ofo_queue(struct sock *sk)
4318 {
4319 	struct tcp_sock *tp = tcp_sk(sk);
4320 	__u32 dsack_high = tp->rcv_nxt;
4321 	struct sk_buff *skb;
4322 
4323 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4324 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4325 			break;
4326 
4327 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4328 			__u32 dsack = dsack_high;
4329 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4330 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4331 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4332 		}
4333 
4334 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4335 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4336 			__skb_unlink(skb, &tp->out_of_order_queue);
4337 			__kfree_skb(skb);
4338 			continue;
4339 		}
4340 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4341 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4342 			   TCP_SKB_CB(skb)->end_seq);
4343 
4344 		__skb_unlink(skb, &tp->out_of_order_queue);
4345 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4346 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4347 		if (tcp_hdr(skb)->fin)
4348 			tcp_fin(sk);
4349 	}
4350 }
4351 
4352 static bool tcp_prune_ofo_queue(struct sock *sk);
4353 static int tcp_prune_queue(struct sock *sk);
4354 
4355 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4356 				 unsigned int size)
4357 {
4358 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4359 	    !sk_rmem_schedule(sk, skb, size)) {
4360 
4361 		if (tcp_prune_queue(sk) < 0)
4362 			return -1;
4363 
4364 		if (!sk_rmem_schedule(sk, skb, size)) {
4365 			if (!tcp_prune_ofo_queue(sk))
4366 				return -1;
4367 
4368 			if (!sk_rmem_schedule(sk, skb, size))
4369 				return -1;
4370 		}
4371 	}
4372 	return 0;
4373 }
4374 
4375 /**
4376  * tcp_try_coalesce - try to merge skb to prior one
4377  * @sk: socket
4378  * @to: prior buffer
4379  * @from: buffer to add in queue
4380  * @fragstolen: pointer to boolean
4381  *
4382  * Before queueing skb @from after @to, try to merge them
4383  * to reduce overall memory use and queue lengths, if cost is small.
4384  * Packets in ofo or receive queues can stay a long time.
4385  * Better try to coalesce them right now to avoid future collapses.
4386  * Returns true if caller should free @from instead of queueing it
4387  */
4388 static bool tcp_try_coalesce(struct sock *sk,
4389 			     struct sk_buff *to,
4390 			     struct sk_buff *from,
4391 			     bool *fragstolen)
4392 {
4393 	int delta;
4394 
4395 	*fragstolen = false;
4396 
4397 	if (tcp_hdr(from)->fin)
4398 		return false;
4399 
4400 	/* Its possible this segment overlaps with prior segment in queue */
4401 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4402 		return false;
4403 
4404 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4405 		return false;
4406 
4407 	atomic_add(delta, &sk->sk_rmem_alloc);
4408 	sk_mem_charge(sk, delta);
4409 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4410 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4411 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4412 	return true;
4413 }
4414 
4415 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4416 {
4417 	struct tcp_sock *tp = tcp_sk(sk);
4418 	struct sk_buff *skb1;
4419 	u32 seq, end_seq;
4420 
4421 	TCP_ECN_check_ce(tp, skb);
4422 
4423 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4424 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4425 		__kfree_skb(skb);
4426 		return;
4427 	}
4428 
4429 	/* Disable header prediction. */
4430 	tp->pred_flags = 0;
4431 	inet_csk_schedule_ack(sk);
4432 
4433 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4434 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4435 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4436 
4437 	skb1 = skb_peek_tail(&tp->out_of_order_queue);
4438 	if (!skb1) {
4439 		/* Initial out of order segment, build 1 SACK. */
4440 		if (tcp_is_sack(tp)) {
4441 			tp->rx_opt.num_sacks = 1;
4442 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4443 			tp->selective_acks[0].end_seq =
4444 						TCP_SKB_CB(skb)->end_seq;
4445 		}
4446 		__skb_queue_head(&tp->out_of_order_queue, skb);
4447 		goto end;
4448 	}
4449 
4450 	seq = TCP_SKB_CB(skb)->seq;
4451 	end_seq = TCP_SKB_CB(skb)->end_seq;
4452 
4453 	if (seq == TCP_SKB_CB(skb1)->end_seq) {
4454 		bool fragstolen;
4455 
4456 		if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4457 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4458 		} else {
4459 			kfree_skb_partial(skb, fragstolen);
4460 			skb = NULL;
4461 		}
4462 
4463 		if (!tp->rx_opt.num_sacks ||
4464 		    tp->selective_acks[0].end_seq != seq)
4465 			goto add_sack;
4466 
4467 		/* Common case: data arrive in order after hole. */
4468 		tp->selective_acks[0].end_seq = end_seq;
4469 		goto end;
4470 	}
4471 
4472 	/* Find place to insert this segment. */
4473 	while (1) {
4474 		if (!after(TCP_SKB_CB(skb1)->seq, seq))
4475 			break;
4476 		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4477 			skb1 = NULL;
4478 			break;
4479 		}
4480 		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4481 	}
4482 
4483 	/* Do skb overlap to previous one? */
4484 	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4485 		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4486 			/* All the bits are present. Drop. */
4487 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4488 			__kfree_skb(skb);
4489 			skb = NULL;
4490 			tcp_dsack_set(sk, seq, end_seq);
4491 			goto add_sack;
4492 		}
4493 		if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4494 			/* Partial overlap. */
4495 			tcp_dsack_set(sk, seq,
4496 				      TCP_SKB_CB(skb1)->end_seq);
4497 		} else {
4498 			if (skb_queue_is_first(&tp->out_of_order_queue,
4499 					       skb1))
4500 				skb1 = NULL;
4501 			else
4502 				skb1 = skb_queue_prev(
4503 					&tp->out_of_order_queue,
4504 					skb1);
4505 		}
4506 	}
4507 	if (!skb1)
4508 		__skb_queue_head(&tp->out_of_order_queue, skb);
4509 	else
4510 		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4511 
4512 	/* And clean segments covered by new one as whole. */
4513 	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4514 		skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4515 
4516 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4517 			break;
4518 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4519 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4520 					 end_seq);
4521 			break;
4522 		}
4523 		__skb_unlink(skb1, &tp->out_of_order_queue);
4524 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4525 				 TCP_SKB_CB(skb1)->end_seq);
4526 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4527 		__kfree_skb(skb1);
4528 	}
4529 
4530 add_sack:
4531 	if (tcp_is_sack(tp))
4532 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4533 end:
4534 	if (skb)
4535 		skb_set_owner_r(skb, sk);
4536 }
4537 
4538 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4539 		  bool *fragstolen)
4540 {
4541 	int eaten;
4542 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4543 
4544 	__skb_pull(skb, hdrlen);
4545 	eaten = (tail &&
4546 		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4547 	tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4548 	if (!eaten) {
4549 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4550 		skb_set_owner_r(skb, sk);
4551 	}
4552 	return eaten;
4553 }
4554 
4555 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4556 {
4557 	struct sk_buff *skb = NULL;
4558 	struct tcphdr *th;
4559 	bool fragstolen;
4560 
4561 	if (size == 0)
4562 		return 0;
4563 
4564 	skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4565 	if (!skb)
4566 		goto err;
4567 
4568 	if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
4569 		goto err_free;
4570 
4571 	th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4572 	skb_reset_transport_header(skb);
4573 	memset(th, 0, sizeof(*th));
4574 
4575 	if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4576 		goto err_free;
4577 
4578 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4579 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4580 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4581 
4582 	if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4583 		WARN_ON_ONCE(fragstolen); /* should not happen */
4584 		__kfree_skb(skb);
4585 	}
4586 	return size;
4587 
4588 err_free:
4589 	kfree_skb(skb);
4590 err:
4591 	return -ENOMEM;
4592 }
4593 
4594 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4595 {
4596 	const struct tcphdr *th = tcp_hdr(skb);
4597 	struct tcp_sock *tp = tcp_sk(sk);
4598 	int eaten = -1;
4599 	bool fragstolen = false;
4600 
4601 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4602 		goto drop;
4603 
4604 	skb_dst_drop(skb);
4605 	__skb_pull(skb, th->doff * 4);
4606 
4607 	TCP_ECN_accept_cwr(tp, skb);
4608 
4609 	tp->rx_opt.dsack = 0;
4610 
4611 	/*  Queue data for delivery to the user.
4612 	 *  Packets in sequence go to the receive queue.
4613 	 *  Out of sequence packets to the out_of_order_queue.
4614 	 */
4615 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4616 		if (tcp_receive_window(tp) == 0)
4617 			goto out_of_window;
4618 
4619 		/* Ok. In sequence. In window. */
4620 		if (tp->ucopy.task == current &&
4621 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4622 		    sock_owned_by_user(sk) && !tp->urg_data) {
4623 			int chunk = min_t(unsigned int, skb->len,
4624 					  tp->ucopy.len);
4625 
4626 			__set_current_state(TASK_RUNNING);
4627 
4628 			local_bh_enable();
4629 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4630 				tp->ucopy.len -= chunk;
4631 				tp->copied_seq += chunk;
4632 				eaten = (chunk == skb->len);
4633 				tcp_rcv_space_adjust(sk);
4634 			}
4635 			local_bh_disable();
4636 		}
4637 
4638 		if (eaten <= 0) {
4639 queue_and_out:
4640 			if (eaten < 0 &&
4641 			    tcp_try_rmem_schedule(sk, skb, skb->truesize))
4642 				goto drop;
4643 
4644 			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4645 		}
4646 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4647 		if (skb->len)
4648 			tcp_event_data_recv(sk, skb);
4649 		if (th->fin)
4650 			tcp_fin(sk);
4651 
4652 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4653 			tcp_ofo_queue(sk);
4654 
4655 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4656 			 * gap in queue is filled.
4657 			 */
4658 			if (skb_queue_empty(&tp->out_of_order_queue))
4659 				inet_csk(sk)->icsk_ack.pingpong = 0;
4660 		}
4661 
4662 		if (tp->rx_opt.num_sacks)
4663 			tcp_sack_remove(tp);
4664 
4665 		tcp_fast_path_check(sk);
4666 
4667 		if (eaten > 0)
4668 			kfree_skb_partial(skb, fragstolen);
4669 		if (!sock_flag(sk, SOCK_DEAD))
4670 			sk->sk_data_ready(sk, 0);
4671 		return;
4672 	}
4673 
4674 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4675 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4676 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4677 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4678 
4679 out_of_window:
4680 		tcp_enter_quickack_mode(sk);
4681 		inet_csk_schedule_ack(sk);
4682 drop:
4683 		__kfree_skb(skb);
4684 		return;
4685 	}
4686 
4687 	/* Out of window. F.e. zero window probe. */
4688 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4689 		goto out_of_window;
4690 
4691 	tcp_enter_quickack_mode(sk);
4692 
4693 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4694 		/* Partial packet, seq < rcv_next < end_seq */
4695 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4696 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4697 			   TCP_SKB_CB(skb)->end_seq);
4698 
4699 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4700 
4701 		/* If window is closed, drop tail of packet. But after
4702 		 * remembering D-SACK for its head made in previous line.
4703 		 */
4704 		if (!tcp_receive_window(tp))
4705 			goto out_of_window;
4706 		goto queue_and_out;
4707 	}
4708 
4709 	tcp_data_queue_ofo(sk, skb);
4710 }
4711 
4712 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4713 					struct sk_buff_head *list)
4714 {
4715 	struct sk_buff *next = NULL;
4716 
4717 	if (!skb_queue_is_last(list, skb))
4718 		next = skb_queue_next(list, skb);
4719 
4720 	__skb_unlink(skb, list);
4721 	__kfree_skb(skb);
4722 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4723 
4724 	return next;
4725 }
4726 
4727 /* Collapse contiguous sequence of skbs head..tail with
4728  * sequence numbers start..end.
4729  *
4730  * If tail is NULL, this means until the end of the list.
4731  *
4732  * Segments with FIN/SYN are not collapsed (only because this
4733  * simplifies code)
4734  */
4735 static void
4736 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4737 	     struct sk_buff *head, struct sk_buff *tail,
4738 	     u32 start, u32 end)
4739 {
4740 	struct sk_buff *skb, *n;
4741 	bool end_of_skbs;
4742 
4743 	/* First, check that queue is collapsible and find
4744 	 * the point where collapsing can be useful. */
4745 	skb = head;
4746 restart:
4747 	end_of_skbs = true;
4748 	skb_queue_walk_from_safe(list, skb, n) {
4749 		if (skb == tail)
4750 			break;
4751 		/* No new bits? It is possible on ofo queue. */
4752 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4753 			skb = tcp_collapse_one(sk, skb, list);
4754 			if (!skb)
4755 				break;
4756 			goto restart;
4757 		}
4758 
4759 		/* The first skb to collapse is:
4760 		 * - not SYN/FIN and
4761 		 * - bloated or contains data before "start" or
4762 		 *   overlaps to the next one.
4763 		 */
4764 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4765 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4766 		     before(TCP_SKB_CB(skb)->seq, start))) {
4767 			end_of_skbs = false;
4768 			break;
4769 		}
4770 
4771 		if (!skb_queue_is_last(list, skb)) {
4772 			struct sk_buff *next = skb_queue_next(list, skb);
4773 			if (next != tail &&
4774 			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4775 				end_of_skbs = false;
4776 				break;
4777 			}
4778 		}
4779 
4780 		/* Decided to skip this, advance start seq. */
4781 		start = TCP_SKB_CB(skb)->end_seq;
4782 	}
4783 	if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4784 		return;
4785 
4786 	while (before(start, end)) {
4787 		struct sk_buff *nskb;
4788 		unsigned int header = skb_headroom(skb);
4789 		int copy = SKB_MAX_ORDER(header, 0);
4790 
4791 		/* Too big header? This can happen with IPv6. */
4792 		if (copy < 0)
4793 			return;
4794 		if (end - start < copy)
4795 			copy = end - start;
4796 		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4797 		if (!nskb)
4798 			return;
4799 
4800 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4801 		skb_set_network_header(nskb, (skb_network_header(skb) -
4802 					      skb->head));
4803 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4804 						skb->head));
4805 		skb_reserve(nskb, header);
4806 		memcpy(nskb->head, skb->head, header);
4807 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4808 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4809 		__skb_queue_before(list, skb, nskb);
4810 		skb_set_owner_r(nskb, sk);
4811 
4812 		/* Copy data, releasing collapsed skbs. */
4813 		while (copy > 0) {
4814 			int offset = start - TCP_SKB_CB(skb)->seq;
4815 			int size = TCP_SKB_CB(skb)->end_seq - start;
4816 
4817 			BUG_ON(offset < 0);
4818 			if (size > 0) {
4819 				size = min(copy, size);
4820 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4821 					BUG();
4822 				TCP_SKB_CB(nskb)->end_seq += size;
4823 				copy -= size;
4824 				start += size;
4825 			}
4826 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4827 				skb = tcp_collapse_one(sk, skb, list);
4828 				if (!skb ||
4829 				    skb == tail ||
4830 				    tcp_hdr(skb)->syn ||
4831 				    tcp_hdr(skb)->fin)
4832 					return;
4833 			}
4834 		}
4835 	}
4836 }
4837 
4838 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4839  * and tcp_collapse() them until all the queue is collapsed.
4840  */
4841 static void tcp_collapse_ofo_queue(struct sock *sk)
4842 {
4843 	struct tcp_sock *tp = tcp_sk(sk);
4844 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4845 	struct sk_buff *head;
4846 	u32 start, end;
4847 
4848 	if (skb == NULL)
4849 		return;
4850 
4851 	start = TCP_SKB_CB(skb)->seq;
4852 	end = TCP_SKB_CB(skb)->end_seq;
4853 	head = skb;
4854 
4855 	for (;;) {
4856 		struct sk_buff *next = NULL;
4857 
4858 		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4859 			next = skb_queue_next(&tp->out_of_order_queue, skb);
4860 		skb = next;
4861 
4862 		/* Segment is terminated when we see gap or when
4863 		 * we are at the end of all the queue. */
4864 		if (!skb ||
4865 		    after(TCP_SKB_CB(skb)->seq, end) ||
4866 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4867 			tcp_collapse(sk, &tp->out_of_order_queue,
4868 				     head, skb, start, end);
4869 			head = skb;
4870 			if (!skb)
4871 				break;
4872 			/* Start new segment */
4873 			start = TCP_SKB_CB(skb)->seq;
4874 			end = TCP_SKB_CB(skb)->end_seq;
4875 		} else {
4876 			if (before(TCP_SKB_CB(skb)->seq, start))
4877 				start = TCP_SKB_CB(skb)->seq;
4878 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4879 				end = TCP_SKB_CB(skb)->end_seq;
4880 		}
4881 	}
4882 }
4883 
4884 /*
4885  * Purge the out-of-order queue.
4886  * Return true if queue was pruned.
4887  */
4888 static bool tcp_prune_ofo_queue(struct sock *sk)
4889 {
4890 	struct tcp_sock *tp = tcp_sk(sk);
4891 	bool res = false;
4892 
4893 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4894 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4895 		__skb_queue_purge(&tp->out_of_order_queue);
4896 
4897 		/* Reset SACK state.  A conforming SACK implementation will
4898 		 * do the same at a timeout based retransmit.  When a connection
4899 		 * is in a sad state like this, we care only about integrity
4900 		 * of the connection not performance.
4901 		 */
4902 		if (tp->rx_opt.sack_ok)
4903 			tcp_sack_reset(&tp->rx_opt);
4904 		sk_mem_reclaim(sk);
4905 		res = true;
4906 	}
4907 	return res;
4908 }
4909 
4910 /* Reduce allocated memory if we can, trying to get
4911  * the socket within its memory limits again.
4912  *
4913  * Return less than zero if we should start dropping frames
4914  * until the socket owning process reads some of the data
4915  * to stabilize the situation.
4916  */
4917 static int tcp_prune_queue(struct sock *sk)
4918 {
4919 	struct tcp_sock *tp = tcp_sk(sk);
4920 
4921 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4922 
4923 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4924 
4925 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4926 		tcp_clamp_window(sk);
4927 	else if (sk_under_memory_pressure(sk))
4928 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4929 
4930 	tcp_collapse_ofo_queue(sk);
4931 	if (!skb_queue_empty(&sk->sk_receive_queue))
4932 		tcp_collapse(sk, &sk->sk_receive_queue,
4933 			     skb_peek(&sk->sk_receive_queue),
4934 			     NULL,
4935 			     tp->copied_seq, tp->rcv_nxt);
4936 	sk_mem_reclaim(sk);
4937 
4938 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4939 		return 0;
4940 
4941 	/* Collapsing did not help, destructive actions follow.
4942 	 * This must not ever occur. */
4943 
4944 	tcp_prune_ofo_queue(sk);
4945 
4946 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4947 		return 0;
4948 
4949 	/* If we are really being abused, tell the caller to silently
4950 	 * drop receive data on the floor.  It will get retransmitted
4951 	 * and hopefully then we'll have sufficient space.
4952 	 */
4953 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4954 
4955 	/* Massive buffer overcommit. */
4956 	tp->pred_flags = 0;
4957 	return -1;
4958 }
4959 
4960 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4961  * As additional protections, we do not touch cwnd in retransmission phases,
4962  * and if application hit its sndbuf limit recently.
4963  */
4964 void tcp_cwnd_application_limited(struct sock *sk)
4965 {
4966 	struct tcp_sock *tp = tcp_sk(sk);
4967 
4968 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4969 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4970 		/* Limited by application or receiver window. */
4971 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4972 		u32 win_used = max(tp->snd_cwnd_used, init_win);
4973 		if (win_used < tp->snd_cwnd) {
4974 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4975 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4976 		}
4977 		tp->snd_cwnd_used = 0;
4978 	}
4979 	tp->snd_cwnd_stamp = tcp_time_stamp;
4980 }
4981 
4982 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4983 {
4984 	const struct tcp_sock *tp = tcp_sk(sk);
4985 
4986 	/* If the user specified a specific send buffer setting, do
4987 	 * not modify it.
4988 	 */
4989 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4990 		return false;
4991 
4992 	/* If we are under global TCP memory pressure, do not expand.  */
4993 	if (sk_under_memory_pressure(sk))
4994 		return false;
4995 
4996 	/* If we are under soft global TCP memory pressure, do not expand.  */
4997 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4998 		return false;
4999 
5000 	/* If we filled the congestion window, do not expand.  */
5001 	if (tp->packets_out >= tp->snd_cwnd)
5002 		return false;
5003 
5004 	return true;
5005 }
5006 
5007 /* When incoming ACK allowed to free some skb from write_queue,
5008  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5009  * on the exit from tcp input handler.
5010  *
5011  * PROBLEM: sndbuf expansion does not work well with largesend.
5012  */
5013 static void tcp_new_space(struct sock *sk)
5014 {
5015 	struct tcp_sock *tp = tcp_sk(sk);
5016 
5017 	if (tcp_should_expand_sndbuf(sk)) {
5018 		int sndmem = SKB_TRUESIZE(max_t(u32,
5019 						tp->rx_opt.mss_clamp,
5020 						tp->mss_cache) +
5021 					  MAX_TCP_HEADER);
5022 		int demanded = max_t(unsigned int, tp->snd_cwnd,
5023 				     tp->reordering + 1);
5024 		sndmem *= 2 * demanded;
5025 		if (sndmem > sk->sk_sndbuf)
5026 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
5027 		tp->snd_cwnd_stamp = tcp_time_stamp;
5028 	}
5029 
5030 	sk->sk_write_space(sk);
5031 }
5032 
5033 static void tcp_check_space(struct sock *sk)
5034 {
5035 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5036 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5037 		if (sk->sk_socket &&
5038 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5039 			tcp_new_space(sk);
5040 	}
5041 }
5042 
5043 static inline void tcp_data_snd_check(struct sock *sk)
5044 {
5045 	tcp_push_pending_frames(sk);
5046 	tcp_check_space(sk);
5047 }
5048 
5049 /*
5050  * Check if sending an ack is needed.
5051  */
5052 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5053 {
5054 	struct tcp_sock *tp = tcp_sk(sk);
5055 
5056 	    /* More than one full frame received... */
5057 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5058 	     /* ... and right edge of window advances far enough.
5059 	      * (tcp_recvmsg() will send ACK otherwise). Or...
5060 	      */
5061 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
5062 	    /* We ACK each frame or... */
5063 	    tcp_in_quickack_mode(sk) ||
5064 	    /* We have out of order data. */
5065 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5066 		/* Then ack it now */
5067 		tcp_send_ack(sk);
5068 	} else {
5069 		/* Else, send delayed ack. */
5070 		tcp_send_delayed_ack(sk);
5071 	}
5072 }
5073 
5074 static inline void tcp_ack_snd_check(struct sock *sk)
5075 {
5076 	if (!inet_csk_ack_scheduled(sk)) {
5077 		/* We sent a data segment already. */
5078 		return;
5079 	}
5080 	__tcp_ack_snd_check(sk, 1);
5081 }
5082 
5083 /*
5084  *	This routine is only called when we have urgent data
5085  *	signaled. Its the 'slow' part of tcp_urg. It could be
5086  *	moved inline now as tcp_urg is only called from one
5087  *	place. We handle URGent data wrong. We have to - as
5088  *	BSD still doesn't use the correction from RFC961.
5089  *	For 1003.1g we should support a new option TCP_STDURG to permit
5090  *	either form (or just set the sysctl tcp_stdurg).
5091  */
5092 
5093 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5094 {
5095 	struct tcp_sock *tp = tcp_sk(sk);
5096 	u32 ptr = ntohs(th->urg_ptr);
5097 
5098 	if (ptr && !sysctl_tcp_stdurg)
5099 		ptr--;
5100 	ptr += ntohl(th->seq);
5101 
5102 	/* Ignore urgent data that we've already seen and read. */
5103 	if (after(tp->copied_seq, ptr))
5104 		return;
5105 
5106 	/* Do not replay urg ptr.
5107 	 *
5108 	 * NOTE: interesting situation not covered by specs.
5109 	 * Misbehaving sender may send urg ptr, pointing to segment,
5110 	 * which we already have in ofo queue. We are not able to fetch
5111 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5112 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5113 	 * situations. But it is worth to think about possibility of some
5114 	 * DoSes using some hypothetical application level deadlock.
5115 	 */
5116 	if (before(ptr, tp->rcv_nxt))
5117 		return;
5118 
5119 	/* Do we already have a newer (or duplicate) urgent pointer? */
5120 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5121 		return;
5122 
5123 	/* Tell the world about our new urgent pointer. */
5124 	sk_send_sigurg(sk);
5125 
5126 	/* We may be adding urgent data when the last byte read was
5127 	 * urgent. To do this requires some care. We cannot just ignore
5128 	 * tp->copied_seq since we would read the last urgent byte again
5129 	 * as data, nor can we alter copied_seq until this data arrives
5130 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5131 	 *
5132 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5133 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5134 	 * and expect that both A and B disappear from stream. This is _wrong_.
5135 	 * Though this happens in BSD with high probability, this is occasional.
5136 	 * Any application relying on this is buggy. Note also, that fix "works"
5137 	 * only in this artificial test. Insert some normal data between A and B and we will
5138 	 * decline of BSD again. Verdict: it is better to remove to trap
5139 	 * buggy users.
5140 	 */
5141 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5142 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5143 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5144 		tp->copied_seq++;
5145 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5146 			__skb_unlink(skb, &sk->sk_receive_queue);
5147 			__kfree_skb(skb);
5148 		}
5149 	}
5150 
5151 	tp->urg_data = TCP_URG_NOTYET;
5152 	tp->urg_seq = ptr;
5153 
5154 	/* Disable header prediction. */
5155 	tp->pred_flags = 0;
5156 }
5157 
5158 /* This is the 'fast' part of urgent handling. */
5159 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5160 {
5161 	struct tcp_sock *tp = tcp_sk(sk);
5162 
5163 	/* Check if we get a new urgent pointer - normally not. */
5164 	if (th->urg)
5165 		tcp_check_urg(sk, th);
5166 
5167 	/* Do we wait for any urgent data? - normally not... */
5168 	if (tp->urg_data == TCP_URG_NOTYET) {
5169 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5170 			  th->syn;
5171 
5172 		/* Is the urgent pointer pointing into this packet? */
5173 		if (ptr < skb->len) {
5174 			u8 tmp;
5175 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5176 				BUG();
5177 			tp->urg_data = TCP_URG_VALID | tmp;
5178 			if (!sock_flag(sk, SOCK_DEAD))
5179 				sk->sk_data_ready(sk, 0);
5180 		}
5181 	}
5182 }
5183 
5184 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5185 {
5186 	struct tcp_sock *tp = tcp_sk(sk);
5187 	int chunk = skb->len - hlen;
5188 	int err;
5189 
5190 	local_bh_enable();
5191 	if (skb_csum_unnecessary(skb))
5192 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5193 	else
5194 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5195 						       tp->ucopy.iov);
5196 
5197 	if (!err) {
5198 		tp->ucopy.len -= chunk;
5199 		tp->copied_seq += chunk;
5200 		tcp_rcv_space_adjust(sk);
5201 	}
5202 
5203 	local_bh_disable();
5204 	return err;
5205 }
5206 
5207 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5208 					    struct sk_buff *skb)
5209 {
5210 	__sum16 result;
5211 
5212 	if (sock_owned_by_user(sk)) {
5213 		local_bh_enable();
5214 		result = __tcp_checksum_complete(skb);
5215 		local_bh_disable();
5216 	} else {
5217 		result = __tcp_checksum_complete(skb);
5218 	}
5219 	return result;
5220 }
5221 
5222 static inline bool tcp_checksum_complete_user(struct sock *sk,
5223 					     struct sk_buff *skb)
5224 {
5225 	return !skb_csum_unnecessary(skb) &&
5226 	       __tcp_checksum_complete_user(sk, skb);
5227 }
5228 
5229 #ifdef CONFIG_NET_DMA
5230 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5231 				  int hlen)
5232 {
5233 	struct tcp_sock *tp = tcp_sk(sk);
5234 	int chunk = skb->len - hlen;
5235 	int dma_cookie;
5236 	bool copied_early = false;
5237 
5238 	if (tp->ucopy.wakeup)
5239 		return false;
5240 
5241 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5242 		tp->ucopy.dma_chan = net_dma_find_channel();
5243 
5244 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5245 
5246 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5247 							 skb, hlen,
5248 							 tp->ucopy.iov, chunk,
5249 							 tp->ucopy.pinned_list);
5250 
5251 		if (dma_cookie < 0)
5252 			goto out;
5253 
5254 		tp->ucopy.dma_cookie = dma_cookie;
5255 		copied_early = true;
5256 
5257 		tp->ucopy.len -= chunk;
5258 		tp->copied_seq += chunk;
5259 		tcp_rcv_space_adjust(sk);
5260 
5261 		if ((tp->ucopy.len == 0) ||
5262 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5263 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5264 			tp->ucopy.wakeup = 1;
5265 			sk->sk_data_ready(sk, 0);
5266 		}
5267 	} else if (chunk > 0) {
5268 		tp->ucopy.wakeup = 1;
5269 		sk->sk_data_ready(sk, 0);
5270 	}
5271 out:
5272 	return copied_early;
5273 }
5274 #endif /* CONFIG_NET_DMA */
5275 
5276 /* Does PAWS and seqno based validation of an incoming segment, flags will
5277  * play significant role here.
5278  */
5279 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5280 				  const struct tcphdr *th, int syn_inerr)
5281 {
5282 	const u8 *hash_location;
5283 	struct tcp_sock *tp = tcp_sk(sk);
5284 
5285 	/* RFC1323: H1. Apply PAWS check first. */
5286 	if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5287 	    tp->rx_opt.saw_tstamp &&
5288 	    tcp_paws_discard(sk, skb)) {
5289 		if (!th->rst) {
5290 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5291 			tcp_send_dupack(sk, skb);
5292 			goto discard;
5293 		}
5294 		/* Reset is accepted even if it did not pass PAWS. */
5295 	}
5296 
5297 	/* Step 1: check sequence number */
5298 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5299 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5300 		 * (RST) segments are validated by checking their SEQ-fields."
5301 		 * And page 69: "If an incoming segment is not acceptable,
5302 		 * an acknowledgment should be sent in reply (unless the RST
5303 		 * bit is set, if so drop the segment and return)".
5304 		 */
5305 		if (!th->rst) {
5306 			if (th->syn)
5307 				goto syn_challenge;
5308 			tcp_send_dupack(sk, skb);
5309 		}
5310 		goto discard;
5311 	}
5312 
5313 	/* Step 2: check RST bit */
5314 	if (th->rst) {
5315 		/* RFC 5961 3.2 :
5316 		 * If sequence number exactly matches RCV.NXT, then
5317 		 *     RESET the connection
5318 		 * else
5319 		 *     Send a challenge ACK
5320 		 */
5321 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5322 			tcp_reset(sk);
5323 		else
5324 			tcp_send_challenge_ack(sk);
5325 		goto discard;
5326 	}
5327 
5328 	/* step 3: check security and precedence [ignored] */
5329 
5330 	/* step 4: Check for a SYN
5331 	 * RFC 5691 4.2 : Send a challenge ack
5332 	 */
5333 	if (th->syn) {
5334 syn_challenge:
5335 		if (syn_inerr)
5336 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5337 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5338 		tcp_send_challenge_ack(sk);
5339 		goto discard;
5340 	}
5341 
5342 	return true;
5343 
5344 discard:
5345 	__kfree_skb(skb);
5346 	return false;
5347 }
5348 
5349 /*
5350  *	TCP receive function for the ESTABLISHED state.
5351  *
5352  *	It is split into a fast path and a slow path. The fast path is
5353  * 	disabled when:
5354  *	- A zero window was announced from us - zero window probing
5355  *        is only handled properly in the slow path.
5356  *	- Out of order segments arrived.
5357  *	- Urgent data is expected.
5358  *	- There is no buffer space left
5359  *	- Unexpected TCP flags/window values/header lengths are received
5360  *	  (detected by checking the TCP header against pred_flags)
5361  *	- Data is sent in both directions. Fast path only supports pure senders
5362  *	  or pure receivers (this means either the sequence number or the ack
5363  *	  value must stay constant)
5364  *	- Unexpected TCP option.
5365  *
5366  *	When these conditions are not satisfied it drops into a standard
5367  *	receive procedure patterned after RFC793 to handle all cases.
5368  *	The first three cases are guaranteed by proper pred_flags setting,
5369  *	the rest is checked inline. Fast processing is turned on in
5370  *	tcp_data_queue when everything is OK.
5371  */
5372 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5373 			const struct tcphdr *th, unsigned int len)
5374 {
5375 	struct tcp_sock *tp = tcp_sk(sk);
5376 
5377 	if (unlikely(sk->sk_rx_dst == NULL))
5378 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5379 	/*
5380 	 *	Header prediction.
5381 	 *	The code loosely follows the one in the famous
5382 	 *	"30 instruction TCP receive" Van Jacobson mail.
5383 	 *
5384 	 *	Van's trick is to deposit buffers into socket queue
5385 	 *	on a device interrupt, to call tcp_recv function
5386 	 *	on the receive process context and checksum and copy
5387 	 *	the buffer to user space. smart...
5388 	 *
5389 	 *	Our current scheme is not silly either but we take the
5390 	 *	extra cost of the net_bh soft interrupt processing...
5391 	 *	We do checksum and copy also but from device to kernel.
5392 	 */
5393 
5394 	tp->rx_opt.saw_tstamp = 0;
5395 
5396 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5397 	 *	if header_prediction is to be made
5398 	 *	'S' will always be tp->tcp_header_len >> 2
5399 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5400 	 *  turn it off	(when there are holes in the receive
5401 	 *	 space for instance)
5402 	 *	PSH flag is ignored.
5403 	 */
5404 
5405 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5406 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5407 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5408 		int tcp_header_len = tp->tcp_header_len;
5409 
5410 		/* Timestamp header prediction: tcp_header_len
5411 		 * is automatically equal to th->doff*4 due to pred_flags
5412 		 * match.
5413 		 */
5414 
5415 		/* Check timestamp */
5416 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5417 			/* No? Slow path! */
5418 			if (!tcp_parse_aligned_timestamp(tp, th))
5419 				goto slow_path;
5420 
5421 			/* If PAWS failed, check it more carefully in slow path */
5422 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5423 				goto slow_path;
5424 
5425 			/* DO NOT update ts_recent here, if checksum fails
5426 			 * and timestamp was corrupted part, it will result
5427 			 * in a hung connection since we will drop all
5428 			 * future packets due to the PAWS test.
5429 			 */
5430 		}
5431 
5432 		if (len <= tcp_header_len) {
5433 			/* Bulk data transfer: sender */
5434 			if (len == tcp_header_len) {
5435 				/* Predicted packet is in window by definition.
5436 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5437 				 * Hence, check seq<=rcv_wup reduces to:
5438 				 */
5439 				if (tcp_header_len ==
5440 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5441 				    tp->rcv_nxt == tp->rcv_wup)
5442 					tcp_store_ts_recent(tp);
5443 
5444 				/* We know that such packets are checksummed
5445 				 * on entry.
5446 				 */
5447 				tcp_ack(sk, skb, 0);
5448 				__kfree_skb(skb);
5449 				tcp_data_snd_check(sk);
5450 				return 0;
5451 			} else { /* Header too small */
5452 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5453 				goto discard;
5454 			}
5455 		} else {
5456 			int eaten = 0;
5457 			int copied_early = 0;
5458 			bool fragstolen = false;
5459 
5460 			if (tp->copied_seq == tp->rcv_nxt &&
5461 			    len - tcp_header_len <= tp->ucopy.len) {
5462 #ifdef CONFIG_NET_DMA
5463 				if (tp->ucopy.task == current &&
5464 				    sock_owned_by_user(sk) &&
5465 				    tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5466 					copied_early = 1;
5467 					eaten = 1;
5468 				}
5469 #endif
5470 				if (tp->ucopy.task == current &&
5471 				    sock_owned_by_user(sk) && !copied_early) {
5472 					__set_current_state(TASK_RUNNING);
5473 
5474 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5475 						eaten = 1;
5476 				}
5477 				if (eaten) {
5478 					/* Predicted packet is in window by definition.
5479 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5480 					 * Hence, check seq<=rcv_wup reduces to:
5481 					 */
5482 					if (tcp_header_len ==
5483 					    (sizeof(struct tcphdr) +
5484 					     TCPOLEN_TSTAMP_ALIGNED) &&
5485 					    tp->rcv_nxt == tp->rcv_wup)
5486 						tcp_store_ts_recent(tp);
5487 
5488 					tcp_rcv_rtt_measure_ts(sk, skb);
5489 
5490 					__skb_pull(skb, tcp_header_len);
5491 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5492 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5493 				}
5494 				if (copied_early)
5495 					tcp_cleanup_rbuf(sk, skb->len);
5496 			}
5497 			if (!eaten) {
5498 				if (tcp_checksum_complete_user(sk, skb))
5499 					goto csum_error;
5500 
5501 				/* Predicted packet is in window by definition.
5502 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5503 				 * Hence, check seq<=rcv_wup reduces to:
5504 				 */
5505 				if (tcp_header_len ==
5506 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5507 				    tp->rcv_nxt == tp->rcv_wup)
5508 					tcp_store_ts_recent(tp);
5509 
5510 				tcp_rcv_rtt_measure_ts(sk, skb);
5511 
5512 				if ((int)skb->truesize > sk->sk_forward_alloc)
5513 					goto step5;
5514 
5515 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5516 
5517 				/* Bulk data transfer: receiver */
5518 				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5519 						      &fragstolen);
5520 			}
5521 
5522 			tcp_event_data_recv(sk, skb);
5523 
5524 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5525 				/* Well, only one small jumplet in fast path... */
5526 				tcp_ack(sk, skb, FLAG_DATA);
5527 				tcp_data_snd_check(sk);
5528 				if (!inet_csk_ack_scheduled(sk))
5529 					goto no_ack;
5530 			}
5531 
5532 			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5533 				__tcp_ack_snd_check(sk, 0);
5534 no_ack:
5535 #ifdef CONFIG_NET_DMA
5536 			if (copied_early)
5537 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5538 			else
5539 #endif
5540 			if (eaten)
5541 				kfree_skb_partial(skb, fragstolen);
5542 			sk->sk_data_ready(sk, 0);
5543 			return 0;
5544 		}
5545 	}
5546 
5547 slow_path:
5548 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5549 		goto csum_error;
5550 
5551 	if (!th->ack && !th->rst)
5552 		goto discard;
5553 
5554 	/*
5555 	 *	Standard slow path.
5556 	 */
5557 
5558 	if (!tcp_validate_incoming(sk, skb, th, 1))
5559 		return 0;
5560 
5561 step5:
5562 	if (tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5563 		goto discard;
5564 
5565 	/* ts_recent update must be made after we are sure that the packet
5566 	 * is in window.
5567 	 */
5568 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5569 
5570 	tcp_rcv_rtt_measure_ts(sk, skb);
5571 
5572 	/* Process urgent data. */
5573 	tcp_urg(sk, skb, th);
5574 
5575 	/* step 7: process the segment text */
5576 	tcp_data_queue(sk, skb);
5577 
5578 	tcp_data_snd_check(sk);
5579 	tcp_ack_snd_check(sk);
5580 	return 0;
5581 
5582 csum_error:
5583 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5584 
5585 discard:
5586 	__kfree_skb(skb);
5587 	return 0;
5588 }
5589 EXPORT_SYMBOL(tcp_rcv_established);
5590 
5591 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5592 {
5593 	struct tcp_sock *tp = tcp_sk(sk);
5594 	struct inet_connection_sock *icsk = inet_csk(sk);
5595 
5596 	tcp_set_state(sk, TCP_ESTABLISHED);
5597 
5598 	if (skb != NULL) {
5599 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5600 		security_inet_conn_established(sk, skb);
5601 	}
5602 
5603 	/* Make sure socket is routed, for correct metrics.  */
5604 	icsk->icsk_af_ops->rebuild_header(sk);
5605 
5606 	tcp_init_metrics(sk);
5607 
5608 	tcp_init_congestion_control(sk);
5609 
5610 	/* Prevent spurious tcp_cwnd_restart() on first data
5611 	 * packet.
5612 	 */
5613 	tp->lsndtime = tcp_time_stamp;
5614 
5615 	tcp_init_buffer_space(sk);
5616 
5617 	if (sock_flag(sk, SOCK_KEEPOPEN))
5618 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5619 
5620 	if (!tp->rx_opt.snd_wscale)
5621 		__tcp_fast_path_on(tp, tp->snd_wnd);
5622 	else
5623 		tp->pred_flags = 0;
5624 
5625 	if (!sock_flag(sk, SOCK_DEAD)) {
5626 		sk->sk_state_change(sk);
5627 		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5628 	}
5629 }
5630 
5631 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5632 				    struct tcp_fastopen_cookie *cookie)
5633 {
5634 	struct tcp_sock *tp = tcp_sk(sk);
5635 	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5636 	u16 mss = tp->rx_opt.mss_clamp;
5637 	bool syn_drop;
5638 
5639 	if (mss == tp->rx_opt.user_mss) {
5640 		struct tcp_options_received opt;
5641 		const u8 *hash_location;
5642 
5643 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5644 		tcp_clear_options(&opt);
5645 		opt.user_mss = opt.mss_clamp = 0;
5646 		tcp_parse_options(synack, &opt, &hash_location, 0, NULL);
5647 		mss = opt.mss_clamp;
5648 	}
5649 
5650 	if (!tp->syn_fastopen)  /* Ignore an unsolicited cookie */
5651 		cookie->len = -1;
5652 
5653 	/* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5654 	 * the remote receives only the retransmitted (regular) SYNs: either
5655 	 * the original SYN-data or the corresponding SYN-ACK is lost.
5656 	 */
5657 	syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
5658 
5659 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5660 
5661 	if (data) { /* Retransmit unacked data in SYN */
5662 		tcp_for_write_queue_from(data, sk) {
5663 			if (data == tcp_send_head(sk) ||
5664 			    __tcp_retransmit_skb(sk, data))
5665 				break;
5666 		}
5667 		tcp_rearm_rto(sk);
5668 		return true;
5669 	}
5670 	tp->syn_data_acked = tp->syn_data;
5671 	return false;
5672 }
5673 
5674 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5675 					 const struct tcphdr *th, unsigned int len)
5676 {
5677 	const u8 *hash_location;
5678 	struct inet_connection_sock *icsk = inet_csk(sk);
5679 	struct tcp_sock *tp = tcp_sk(sk);
5680 	struct tcp_cookie_values *cvp = tp->cookie_values;
5681 	struct tcp_fastopen_cookie foc = { .len = -1 };
5682 	int saved_clamp = tp->rx_opt.mss_clamp;
5683 
5684 	tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0, &foc);
5685 
5686 	if (th->ack) {
5687 		/* rfc793:
5688 		 * "If the state is SYN-SENT then
5689 		 *    first check the ACK bit
5690 		 *      If the ACK bit is set
5691 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5692 		 *        a reset (unless the RST bit is set, if so drop
5693 		 *        the segment and return)"
5694 		 */
5695 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5696 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5697 			goto reset_and_undo;
5698 
5699 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5700 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5701 			     tcp_time_stamp)) {
5702 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5703 			goto reset_and_undo;
5704 		}
5705 
5706 		/* Now ACK is acceptable.
5707 		 *
5708 		 * "If the RST bit is set
5709 		 *    If the ACK was acceptable then signal the user "error:
5710 		 *    connection reset", drop the segment, enter CLOSED state,
5711 		 *    delete TCB, and return."
5712 		 */
5713 
5714 		if (th->rst) {
5715 			tcp_reset(sk);
5716 			goto discard;
5717 		}
5718 
5719 		/* rfc793:
5720 		 *   "fifth, if neither of the SYN or RST bits is set then
5721 		 *    drop the segment and return."
5722 		 *
5723 		 *    See note below!
5724 		 *                                        --ANK(990513)
5725 		 */
5726 		if (!th->syn)
5727 			goto discard_and_undo;
5728 
5729 		/* rfc793:
5730 		 *   "If the SYN bit is on ...
5731 		 *    are acceptable then ...
5732 		 *    (our SYN has been ACKed), change the connection
5733 		 *    state to ESTABLISHED..."
5734 		 */
5735 
5736 		TCP_ECN_rcv_synack(tp, th);
5737 
5738 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5739 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5740 
5741 		/* Ok.. it's good. Set up sequence numbers and
5742 		 * move to established.
5743 		 */
5744 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5745 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5746 
5747 		/* RFC1323: The window in SYN & SYN/ACK segments is
5748 		 * never scaled.
5749 		 */
5750 		tp->snd_wnd = ntohs(th->window);
5751 
5752 		if (!tp->rx_opt.wscale_ok) {
5753 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5754 			tp->window_clamp = min(tp->window_clamp, 65535U);
5755 		}
5756 
5757 		if (tp->rx_opt.saw_tstamp) {
5758 			tp->rx_opt.tstamp_ok	   = 1;
5759 			tp->tcp_header_len =
5760 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5761 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5762 			tcp_store_ts_recent(tp);
5763 		} else {
5764 			tp->tcp_header_len = sizeof(struct tcphdr);
5765 		}
5766 
5767 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5768 			tcp_enable_fack(tp);
5769 
5770 		tcp_mtup_init(sk);
5771 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5772 		tcp_initialize_rcv_mss(sk);
5773 
5774 		/* Remember, tcp_poll() does not lock socket!
5775 		 * Change state from SYN-SENT only after copied_seq
5776 		 * is initialized. */
5777 		tp->copied_seq = tp->rcv_nxt;
5778 
5779 		if (cvp != NULL &&
5780 		    cvp->cookie_pair_size > 0 &&
5781 		    tp->rx_opt.cookie_plus > 0) {
5782 			int cookie_size = tp->rx_opt.cookie_plus
5783 					- TCPOLEN_COOKIE_BASE;
5784 			int cookie_pair_size = cookie_size
5785 					     + cvp->cookie_desired;
5786 
5787 			/* A cookie extension option was sent and returned.
5788 			 * Note that each incoming SYNACK replaces the
5789 			 * Responder cookie.  The initial exchange is most
5790 			 * fragile, as protection against spoofing relies
5791 			 * entirely upon the sequence and timestamp (above).
5792 			 * This replacement strategy allows the correct pair to
5793 			 * pass through, while any others will be filtered via
5794 			 * Responder verification later.
5795 			 */
5796 			if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5797 				memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5798 				       hash_location, cookie_size);
5799 				cvp->cookie_pair_size = cookie_pair_size;
5800 			}
5801 		}
5802 
5803 		smp_mb();
5804 
5805 		tcp_finish_connect(sk, skb);
5806 
5807 		if ((tp->syn_fastopen || tp->syn_data) &&
5808 		    tcp_rcv_fastopen_synack(sk, skb, &foc))
5809 			return -1;
5810 
5811 		if (sk->sk_write_pending ||
5812 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5813 		    icsk->icsk_ack.pingpong) {
5814 			/* Save one ACK. Data will be ready after
5815 			 * several ticks, if write_pending is set.
5816 			 *
5817 			 * It may be deleted, but with this feature tcpdumps
5818 			 * look so _wonderfully_ clever, that I was not able
5819 			 * to stand against the temptation 8)     --ANK
5820 			 */
5821 			inet_csk_schedule_ack(sk);
5822 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5823 			tcp_enter_quickack_mode(sk);
5824 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5825 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5826 
5827 discard:
5828 			__kfree_skb(skb);
5829 			return 0;
5830 		} else {
5831 			tcp_send_ack(sk);
5832 		}
5833 		return -1;
5834 	}
5835 
5836 	/* No ACK in the segment */
5837 
5838 	if (th->rst) {
5839 		/* rfc793:
5840 		 * "If the RST bit is set
5841 		 *
5842 		 *      Otherwise (no ACK) drop the segment and return."
5843 		 */
5844 
5845 		goto discard_and_undo;
5846 	}
5847 
5848 	/* PAWS check. */
5849 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5850 	    tcp_paws_reject(&tp->rx_opt, 0))
5851 		goto discard_and_undo;
5852 
5853 	if (th->syn) {
5854 		/* We see SYN without ACK. It is attempt of
5855 		 * simultaneous connect with crossed SYNs.
5856 		 * Particularly, it can be connect to self.
5857 		 */
5858 		tcp_set_state(sk, TCP_SYN_RECV);
5859 
5860 		if (tp->rx_opt.saw_tstamp) {
5861 			tp->rx_opt.tstamp_ok = 1;
5862 			tcp_store_ts_recent(tp);
5863 			tp->tcp_header_len =
5864 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5865 		} else {
5866 			tp->tcp_header_len = sizeof(struct tcphdr);
5867 		}
5868 
5869 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5870 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5871 
5872 		/* RFC1323: The window in SYN & SYN/ACK segments is
5873 		 * never scaled.
5874 		 */
5875 		tp->snd_wnd    = ntohs(th->window);
5876 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5877 		tp->max_window = tp->snd_wnd;
5878 
5879 		TCP_ECN_rcv_syn(tp, th);
5880 
5881 		tcp_mtup_init(sk);
5882 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5883 		tcp_initialize_rcv_mss(sk);
5884 
5885 		tcp_send_synack(sk);
5886 #if 0
5887 		/* Note, we could accept data and URG from this segment.
5888 		 * There are no obstacles to make this (except that we must
5889 		 * either change tcp_recvmsg() to prevent it from returning data
5890 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5891 		 *
5892 		 * However, if we ignore data in ACKless segments sometimes,
5893 		 * we have no reasons to accept it sometimes.
5894 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5895 		 * is not flawless. So, discard packet for sanity.
5896 		 * Uncomment this return to process the data.
5897 		 */
5898 		return -1;
5899 #else
5900 		goto discard;
5901 #endif
5902 	}
5903 	/* "fifth, if neither of the SYN or RST bits is set then
5904 	 * drop the segment and return."
5905 	 */
5906 
5907 discard_and_undo:
5908 	tcp_clear_options(&tp->rx_opt);
5909 	tp->rx_opt.mss_clamp = saved_clamp;
5910 	goto discard;
5911 
5912 reset_and_undo:
5913 	tcp_clear_options(&tp->rx_opt);
5914 	tp->rx_opt.mss_clamp = saved_clamp;
5915 	return 1;
5916 }
5917 
5918 /*
5919  *	This function implements the receiving procedure of RFC 793 for
5920  *	all states except ESTABLISHED and TIME_WAIT.
5921  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5922  *	address independent.
5923  */
5924 
5925 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5926 			  const struct tcphdr *th, unsigned int len)
5927 {
5928 	struct tcp_sock *tp = tcp_sk(sk);
5929 	struct inet_connection_sock *icsk = inet_csk(sk);
5930 	struct request_sock *req;
5931 	int queued = 0;
5932 
5933 	tp->rx_opt.saw_tstamp = 0;
5934 
5935 	switch (sk->sk_state) {
5936 	case TCP_CLOSE:
5937 		goto discard;
5938 
5939 	case TCP_LISTEN:
5940 		if (th->ack)
5941 			return 1;
5942 
5943 		if (th->rst)
5944 			goto discard;
5945 
5946 		if (th->syn) {
5947 			if (th->fin)
5948 				goto discard;
5949 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5950 				return 1;
5951 
5952 			/* Now we have several options: In theory there is
5953 			 * nothing else in the frame. KA9Q has an option to
5954 			 * send data with the syn, BSD accepts data with the
5955 			 * syn up to the [to be] advertised window and
5956 			 * Solaris 2.1 gives you a protocol error. For now
5957 			 * we just ignore it, that fits the spec precisely
5958 			 * and avoids incompatibilities. It would be nice in
5959 			 * future to drop through and process the data.
5960 			 *
5961 			 * Now that TTCP is starting to be used we ought to
5962 			 * queue this data.
5963 			 * But, this leaves one open to an easy denial of
5964 			 * service attack, and SYN cookies can't defend
5965 			 * against this problem. So, we drop the data
5966 			 * in the interest of security over speed unless
5967 			 * it's still in use.
5968 			 */
5969 			kfree_skb(skb);
5970 			return 0;
5971 		}
5972 		goto discard;
5973 
5974 	case TCP_SYN_SENT:
5975 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5976 		if (queued >= 0)
5977 			return queued;
5978 
5979 		/* Do step6 onward by hand. */
5980 		tcp_urg(sk, skb, th);
5981 		__kfree_skb(skb);
5982 		tcp_data_snd_check(sk);
5983 		return 0;
5984 	}
5985 
5986 	req = tp->fastopen_rsk;
5987 	if (req != NULL) {
5988 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5989 		    sk->sk_state != TCP_FIN_WAIT1);
5990 
5991 		if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5992 			goto discard;
5993 	}
5994 
5995 	if (!th->ack && !th->rst)
5996 		goto discard;
5997 
5998 	if (!tcp_validate_incoming(sk, skb, th, 0))
5999 		return 0;
6000 
6001 	/* step 5: check the ACK field */
6002 	if (true) {
6003 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
6004 
6005 		switch (sk->sk_state) {
6006 		case TCP_SYN_RECV:
6007 			if (acceptable) {
6008 				/* Once we leave TCP_SYN_RECV, we no longer
6009 				 * need req so release it.
6010 				 */
6011 				if (req) {
6012 					tcp_synack_rtt_meas(sk, req);
6013 					tp->total_retrans = req->num_retrans;
6014 
6015 					reqsk_fastopen_remove(sk, req, false);
6016 				} else {
6017 					/* Make sure socket is routed, for
6018 					 * correct metrics.
6019 					 */
6020 					icsk->icsk_af_ops->rebuild_header(sk);
6021 					tcp_init_congestion_control(sk);
6022 
6023 					tcp_mtup_init(sk);
6024 					tcp_init_buffer_space(sk);
6025 					tp->copied_seq = tp->rcv_nxt;
6026 				}
6027 				smp_mb();
6028 				tcp_set_state(sk, TCP_ESTABLISHED);
6029 				sk->sk_state_change(sk);
6030 
6031 				/* Note, that this wakeup is only for marginal
6032 				 * crossed SYN case. Passively open sockets
6033 				 * are not waked up, because sk->sk_sleep ==
6034 				 * NULL and sk->sk_socket == NULL.
6035 				 */
6036 				if (sk->sk_socket)
6037 					sk_wake_async(sk,
6038 						      SOCK_WAKE_IO, POLL_OUT);
6039 
6040 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6041 				tp->snd_wnd = ntohs(th->window) <<
6042 					      tp->rx_opt.snd_wscale;
6043 				tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6044 
6045 				if (tp->rx_opt.tstamp_ok)
6046 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6047 
6048 				if (req) {
6049 					/* Re-arm the timer because data may
6050 					 * have been sent out. This is similar
6051 					 * to the regular data transmission case
6052 					 * when new data has just been ack'ed.
6053 					 *
6054 					 * (TFO) - we could try to be more
6055 					 * aggressive and retranmitting any data
6056 					 * sooner based on when they were sent
6057 					 * out.
6058 					 */
6059 					tcp_rearm_rto(sk);
6060 				} else
6061 					tcp_init_metrics(sk);
6062 
6063 				/* Prevent spurious tcp_cwnd_restart() on
6064 				 * first data packet.
6065 				 */
6066 				tp->lsndtime = tcp_time_stamp;
6067 
6068 				tcp_initialize_rcv_mss(sk);
6069 				tcp_fast_path_on(tp);
6070 			} else {
6071 				return 1;
6072 			}
6073 			break;
6074 
6075 		case TCP_FIN_WAIT1:
6076 			/* If we enter the TCP_FIN_WAIT1 state and we are a
6077 			 * Fast Open socket and this is the first acceptable
6078 			 * ACK we have received, this would have acknowledged
6079 			 * our SYNACK so stop the SYNACK timer.
6080 			 */
6081 			if (req != NULL) {
6082 				/* Return RST if ack_seq is invalid.
6083 				 * Note that RFC793 only says to generate a
6084 				 * DUPACK for it but for TCP Fast Open it seems
6085 				 * better to treat this case like TCP_SYN_RECV
6086 				 * above.
6087 				 */
6088 				if (!acceptable)
6089 					return 1;
6090 				/* We no longer need the request sock. */
6091 				reqsk_fastopen_remove(sk, req, false);
6092 				tcp_rearm_rto(sk);
6093 			}
6094 			if (tp->snd_una == tp->write_seq) {
6095 				struct dst_entry *dst;
6096 
6097 				tcp_set_state(sk, TCP_FIN_WAIT2);
6098 				sk->sk_shutdown |= SEND_SHUTDOWN;
6099 
6100 				dst = __sk_dst_get(sk);
6101 				if (dst)
6102 					dst_confirm(dst);
6103 
6104 				if (!sock_flag(sk, SOCK_DEAD))
6105 					/* Wake up lingering close() */
6106 					sk->sk_state_change(sk);
6107 				else {
6108 					int tmo;
6109 
6110 					if (tp->linger2 < 0 ||
6111 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6112 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
6113 						tcp_done(sk);
6114 						NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6115 						return 1;
6116 					}
6117 
6118 					tmo = tcp_fin_time(sk);
6119 					if (tmo > TCP_TIMEWAIT_LEN) {
6120 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6121 					} else if (th->fin || sock_owned_by_user(sk)) {
6122 						/* Bad case. We could lose such FIN otherwise.
6123 						 * It is not a big problem, but it looks confusing
6124 						 * and not so rare event. We still can lose it now,
6125 						 * if it spins in bh_lock_sock(), but it is really
6126 						 * marginal case.
6127 						 */
6128 						inet_csk_reset_keepalive_timer(sk, tmo);
6129 					} else {
6130 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6131 						goto discard;
6132 					}
6133 				}
6134 			}
6135 			break;
6136 
6137 		case TCP_CLOSING:
6138 			if (tp->snd_una == tp->write_seq) {
6139 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6140 				goto discard;
6141 			}
6142 			break;
6143 
6144 		case TCP_LAST_ACK:
6145 			if (tp->snd_una == tp->write_seq) {
6146 				tcp_update_metrics(sk);
6147 				tcp_done(sk);
6148 				goto discard;
6149 			}
6150 			break;
6151 		}
6152 	}
6153 
6154 	/* ts_recent update must be made after we are sure that the packet
6155 	 * is in window.
6156 	 */
6157 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
6158 
6159 	/* step 6: check the URG bit */
6160 	tcp_urg(sk, skb, th);
6161 
6162 	/* step 7: process the segment text */
6163 	switch (sk->sk_state) {
6164 	case TCP_CLOSE_WAIT:
6165 	case TCP_CLOSING:
6166 	case TCP_LAST_ACK:
6167 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6168 			break;
6169 	case TCP_FIN_WAIT1:
6170 	case TCP_FIN_WAIT2:
6171 		/* RFC 793 says to queue data in these states,
6172 		 * RFC 1122 says we MUST send a reset.
6173 		 * BSD 4.4 also does reset.
6174 		 */
6175 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6176 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6177 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6178 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6179 				tcp_reset(sk);
6180 				return 1;
6181 			}
6182 		}
6183 		/* Fall through */
6184 	case TCP_ESTABLISHED:
6185 		tcp_data_queue(sk, skb);
6186 		queued = 1;
6187 		break;
6188 	}
6189 
6190 	/* tcp_data could move socket to TIME-WAIT */
6191 	if (sk->sk_state != TCP_CLOSE) {
6192 		tcp_data_snd_check(sk);
6193 		tcp_ack_snd_check(sk);
6194 	}
6195 
6196 	if (!queued) {
6197 discard:
6198 		__kfree_skb(skb);
6199 	}
6200 	return 0;
6201 }
6202 EXPORT_SYMBOL(tcp_rcv_state_process);
6203