xref: /openbmc/linux/net/ipv4/tcp_input.c (revision b454cc66)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:	$Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche, <flla@stud.uni-sb.de>
15  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *		Matthew Dillon, <dillon@apollo.west.oic.com>
19  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *		Jorge Cwik, <jorge@laser.satlink.net>
21  */
22 
23 /*
24  * Changes:
25  *		Pedro Roque	:	Fast Retransmit/Recovery.
26  *					Two receive queues.
27  *					Retransmit queue handled by TCP.
28  *					Better retransmit timer handling.
29  *					New congestion avoidance.
30  *					Header prediction.
31  *					Variable renaming.
32  *
33  *		Eric		:	Fast Retransmit.
34  *		Randy Scott	:	MSS option defines.
35  *		Eric Schenk	:	Fixes to slow start algorithm.
36  *		Eric Schenk	:	Yet another double ACK bug.
37  *		Eric Schenk	:	Delayed ACK bug fixes.
38  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
39  *		David S. Miller	:	Don't allow zero congestion window.
40  *		Eric Schenk	:	Fix retransmitter so that it sends
41  *					next packet on ack of previous packet.
42  *		Andi Kleen	:	Moved open_request checking here
43  *					and process RSTs for open_requests.
44  *		Andi Kleen	:	Better prune_queue, and other fixes.
45  *		Andrey Savochkin:	Fix RTT measurements in the presence of
46  *					timestamps.
47  *		Andrey Savochkin:	Check sequence numbers correctly when
48  *					removing SACKs due to in sequence incoming
49  *					data segments.
50  *		Andi Kleen:		Make sure we never ack data there is not
51  *					enough room for. Also make this condition
52  *					a fatal error if it might still happen.
53  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
54  *					connections with MSS<min(MTU,ann. MSS)
55  *					work without delayed acks.
56  *		Andi Kleen:		Process packets with PSH set in the
57  *					fast path.
58  *		J Hadi Salim:		ECN support
59  *	 	Andrei Gurtov,
60  *		Pasi Sarolahti,
61  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
62  *					engine. Lots of bugs are found.
63  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
64  */
65 
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74 
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84 
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly;
89 int sysctl_tcp_nometrics_save __read_mostly;
90 
91 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92 int sysctl_tcp_abc __read_mostly;
93 
94 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
95 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
96 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
97 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
98 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
99 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
100 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
101 #define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
102 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
103 
104 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
107 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
108 
109 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
110 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
111 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
112 
113 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
114 
115 /* Adapt the MSS value used to make delayed ack decision to the
116  * real world.
117  */
118 static void tcp_measure_rcv_mss(struct sock *sk,
119 				const struct sk_buff *skb)
120 {
121 	struct inet_connection_sock *icsk = inet_csk(sk);
122 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
123 	unsigned int len;
124 
125 	icsk->icsk_ack.last_seg_size = 0;
126 
127 	/* skb->len may jitter because of SACKs, even if peer
128 	 * sends good full-sized frames.
129 	 */
130 	len = skb_shinfo(skb)->gso_size ?: skb->len;
131 	if (len >= icsk->icsk_ack.rcv_mss) {
132 		icsk->icsk_ack.rcv_mss = len;
133 	} else {
134 		/* Otherwise, we make more careful check taking into account,
135 		 * that SACKs block is variable.
136 		 *
137 		 * "len" is invariant segment length, including TCP header.
138 		 */
139 		len += skb->data - skb->h.raw;
140 		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
141 		    /* If PSH is not set, packet should be
142 		     * full sized, provided peer TCP is not badly broken.
143 		     * This observation (if it is correct 8)) allows
144 		     * to handle super-low mtu links fairly.
145 		     */
146 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
147 		     !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
148 			/* Subtract also invariant (if peer is RFC compliant),
149 			 * tcp header plus fixed timestamp option length.
150 			 * Resulting "len" is MSS free of SACK jitter.
151 			 */
152 			len -= tcp_sk(sk)->tcp_header_len;
153 			icsk->icsk_ack.last_seg_size = len;
154 			if (len == lss) {
155 				icsk->icsk_ack.rcv_mss = len;
156 				return;
157 			}
158 		}
159 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
160 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
161 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
162 	}
163 }
164 
165 static void tcp_incr_quickack(struct sock *sk)
166 {
167 	struct inet_connection_sock *icsk = inet_csk(sk);
168 	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
169 
170 	if (quickacks==0)
171 		quickacks=2;
172 	if (quickacks > icsk->icsk_ack.quick)
173 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
174 }
175 
176 void tcp_enter_quickack_mode(struct sock *sk)
177 {
178 	struct inet_connection_sock *icsk = inet_csk(sk);
179 	tcp_incr_quickack(sk);
180 	icsk->icsk_ack.pingpong = 0;
181 	icsk->icsk_ack.ato = TCP_ATO_MIN;
182 }
183 
184 /* Send ACKs quickly, if "quick" count is not exhausted
185  * and the session is not interactive.
186  */
187 
188 static inline int tcp_in_quickack_mode(const struct sock *sk)
189 {
190 	const struct inet_connection_sock *icsk = inet_csk(sk);
191 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
192 }
193 
194 /* Buffer size and advertised window tuning.
195  *
196  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
197  */
198 
199 static void tcp_fixup_sndbuf(struct sock *sk)
200 {
201 	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
202 		     sizeof(struct sk_buff);
203 
204 	if (sk->sk_sndbuf < 3 * sndmem)
205 		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
206 }
207 
208 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
209  *
210  * All tcp_full_space() is split to two parts: "network" buffer, allocated
211  * forward and advertised in receiver window (tp->rcv_wnd) and
212  * "application buffer", required to isolate scheduling/application
213  * latencies from network.
214  * window_clamp is maximal advertised window. It can be less than
215  * tcp_full_space(), in this case tcp_full_space() - window_clamp
216  * is reserved for "application" buffer. The less window_clamp is
217  * the smoother our behaviour from viewpoint of network, but the lower
218  * throughput and the higher sensitivity of the connection to losses. 8)
219  *
220  * rcv_ssthresh is more strict window_clamp used at "slow start"
221  * phase to predict further behaviour of this connection.
222  * It is used for two goals:
223  * - to enforce header prediction at sender, even when application
224  *   requires some significant "application buffer". It is check #1.
225  * - to prevent pruning of receive queue because of misprediction
226  *   of receiver window. Check #2.
227  *
228  * The scheme does not work when sender sends good segments opening
229  * window and then starts to feed us spaghetti. But it should work
230  * in common situations. Otherwise, we have to rely on queue collapsing.
231  */
232 
233 /* Slow part of check#2. */
234 static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp,
235 			     const struct sk_buff *skb)
236 {
237 	/* Optimize this! */
238 	int truesize = tcp_win_from_space(skb->truesize)/2;
239 	int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
240 
241 	while (tp->rcv_ssthresh <= window) {
242 		if (truesize <= skb->len)
243 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
244 
245 		truesize >>= 1;
246 		window >>= 1;
247 	}
248 	return 0;
249 }
250 
251 static void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
252 			    struct sk_buff *skb)
253 {
254 	/* Check #1 */
255 	if (tp->rcv_ssthresh < tp->window_clamp &&
256 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
257 	    !tcp_memory_pressure) {
258 		int incr;
259 
260 		/* Check #2. Increase window, if skb with such overhead
261 		 * will fit to rcvbuf in future.
262 		 */
263 		if (tcp_win_from_space(skb->truesize) <= skb->len)
264 			incr = 2*tp->advmss;
265 		else
266 			incr = __tcp_grow_window(sk, tp, skb);
267 
268 		if (incr) {
269 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
270 			inet_csk(sk)->icsk_ack.quick |= 1;
271 		}
272 	}
273 }
274 
275 /* 3. Tuning rcvbuf, when connection enters established state. */
276 
277 static void tcp_fixup_rcvbuf(struct sock *sk)
278 {
279 	struct tcp_sock *tp = tcp_sk(sk);
280 	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
281 
282 	/* Try to select rcvbuf so that 4 mss-sized segments
283 	 * will fit to window and corresponding skbs will fit to our rcvbuf.
284 	 * (was 3; 4 is minimum to allow fast retransmit to work.)
285 	 */
286 	while (tcp_win_from_space(rcvmem) < tp->advmss)
287 		rcvmem += 128;
288 	if (sk->sk_rcvbuf < 4 * rcvmem)
289 		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
290 }
291 
292 /* 4. Try to fixup all. It is made immediately after connection enters
293  *    established state.
294  */
295 static void tcp_init_buffer_space(struct sock *sk)
296 {
297 	struct tcp_sock *tp = tcp_sk(sk);
298 	int maxwin;
299 
300 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
301 		tcp_fixup_rcvbuf(sk);
302 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
303 		tcp_fixup_sndbuf(sk);
304 
305 	tp->rcvq_space.space = tp->rcv_wnd;
306 
307 	maxwin = tcp_full_space(sk);
308 
309 	if (tp->window_clamp >= maxwin) {
310 		tp->window_clamp = maxwin;
311 
312 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
313 			tp->window_clamp = max(maxwin -
314 					       (maxwin >> sysctl_tcp_app_win),
315 					       4 * tp->advmss);
316 	}
317 
318 	/* Force reservation of one segment. */
319 	if (sysctl_tcp_app_win &&
320 	    tp->window_clamp > 2 * tp->advmss &&
321 	    tp->window_clamp + tp->advmss > maxwin)
322 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
323 
324 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
325 	tp->snd_cwnd_stamp = tcp_time_stamp;
326 }
327 
328 /* 5. Recalculate window clamp after socket hit its memory bounds. */
329 static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
330 {
331 	struct inet_connection_sock *icsk = inet_csk(sk);
332 
333 	icsk->icsk_ack.quick = 0;
334 
335 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
336 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
337 	    !tcp_memory_pressure &&
338 	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
339 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
340 				    sysctl_tcp_rmem[2]);
341 	}
342 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
343 		tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
344 }
345 
346 
347 /* Initialize RCV_MSS value.
348  * RCV_MSS is an our guess about MSS used by the peer.
349  * We haven't any direct information about the MSS.
350  * It's better to underestimate the RCV_MSS rather than overestimate.
351  * Overestimations make us ACKing less frequently than needed.
352  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
353  */
354 void tcp_initialize_rcv_mss(struct sock *sk)
355 {
356 	struct tcp_sock *tp = tcp_sk(sk);
357 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
358 
359 	hint = min(hint, tp->rcv_wnd/2);
360 	hint = min(hint, TCP_MIN_RCVMSS);
361 	hint = max(hint, TCP_MIN_MSS);
362 
363 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
364 }
365 
366 /* Receiver "autotuning" code.
367  *
368  * The algorithm for RTT estimation w/o timestamps is based on
369  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
370  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
371  *
372  * More detail on this code can be found at
373  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
374  * though this reference is out of date.  A new paper
375  * is pending.
376  */
377 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
378 {
379 	u32 new_sample = tp->rcv_rtt_est.rtt;
380 	long m = sample;
381 
382 	if (m == 0)
383 		m = 1;
384 
385 	if (new_sample != 0) {
386 		/* If we sample in larger samples in the non-timestamp
387 		 * case, we could grossly overestimate the RTT especially
388 		 * with chatty applications or bulk transfer apps which
389 		 * are stalled on filesystem I/O.
390 		 *
391 		 * Also, since we are only going for a minimum in the
392 		 * non-timestamp case, we do not smooth things out
393 		 * else with timestamps disabled convergence takes too
394 		 * long.
395 		 */
396 		if (!win_dep) {
397 			m -= (new_sample >> 3);
398 			new_sample += m;
399 		} else if (m < new_sample)
400 			new_sample = m << 3;
401 	} else {
402 		/* No previous measure. */
403 		new_sample = m << 3;
404 	}
405 
406 	if (tp->rcv_rtt_est.rtt != new_sample)
407 		tp->rcv_rtt_est.rtt = new_sample;
408 }
409 
410 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
411 {
412 	if (tp->rcv_rtt_est.time == 0)
413 		goto new_measure;
414 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
415 		return;
416 	tcp_rcv_rtt_update(tp,
417 			   jiffies - tp->rcv_rtt_est.time,
418 			   1);
419 
420 new_measure:
421 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
422 	tp->rcv_rtt_est.time = tcp_time_stamp;
423 }
424 
425 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
426 {
427 	struct tcp_sock *tp = tcp_sk(sk);
428 	if (tp->rx_opt.rcv_tsecr &&
429 	    (TCP_SKB_CB(skb)->end_seq -
430 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
431 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
432 }
433 
434 /*
435  * This function should be called every time data is copied to user space.
436  * It calculates the appropriate TCP receive buffer space.
437  */
438 void tcp_rcv_space_adjust(struct sock *sk)
439 {
440 	struct tcp_sock *tp = tcp_sk(sk);
441 	int time;
442 	int space;
443 
444 	if (tp->rcvq_space.time == 0)
445 		goto new_measure;
446 
447 	time = tcp_time_stamp - tp->rcvq_space.time;
448 	if (time < (tp->rcv_rtt_est.rtt >> 3) ||
449 	    tp->rcv_rtt_est.rtt == 0)
450 		return;
451 
452 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
453 
454 	space = max(tp->rcvq_space.space, space);
455 
456 	if (tp->rcvq_space.space != space) {
457 		int rcvmem;
458 
459 		tp->rcvq_space.space = space;
460 
461 		if (sysctl_tcp_moderate_rcvbuf &&
462 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
463 			int new_clamp = space;
464 
465 			/* Receive space grows, normalize in order to
466 			 * take into account packet headers and sk_buff
467 			 * structure overhead.
468 			 */
469 			space /= tp->advmss;
470 			if (!space)
471 				space = 1;
472 			rcvmem = (tp->advmss + MAX_TCP_HEADER +
473 				  16 + sizeof(struct sk_buff));
474 			while (tcp_win_from_space(rcvmem) < tp->advmss)
475 				rcvmem += 128;
476 			space *= rcvmem;
477 			space = min(space, sysctl_tcp_rmem[2]);
478 			if (space > sk->sk_rcvbuf) {
479 				sk->sk_rcvbuf = space;
480 
481 				/* Make the window clamp follow along.  */
482 				tp->window_clamp = new_clamp;
483 			}
484 		}
485 	}
486 
487 new_measure:
488 	tp->rcvq_space.seq = tp->copied_seq;
489 	tp->rcvq_space.time = tcp_time_stamp;
490 }
491 
492 /* There is something which you must keep in mind when you analyze the
493  * behavior of the tp->ato delayed ack timeout interval.  When a
494  * connection starts up, we want to ack as quickly as possible.  The
495  * problem is that "good" TCP's do slow start at the beginning of data
496  * transmission.  The means that until we send the first few ACK's the
497  * sender will sit on his end and only queue most of his data, because
498  * he can only send snd_cwnd unacked packets at any given time.  For
499  * each ACK we send, he increments snd_cwnd and transmits more of his
500  * queue.  -DaveM
501  */
502 static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
503 {
504 	struct inet_connection_sock *icsk = inet_csk(sk);
505 	u32 now;
506 
507 	inet_csk_schedule_ack(sk);
508 
509 	tcp_measure_rcv_mss(sk, skb);
510 
511 	tcp_rcv_rtt_measure(tp);
512 
513 	now = tcp_time_stamp;
514 
515 	if (!icsk->icsk_ack.ato) {
516 		/* The _first_ data packet received, initialize
517 		 * delayed ACK engine.
518 		 */
519 		tcp_incr_quickack(sk);
520 		icsk->icsk_ack.ato = TCP_ATO_MIN;
521 	} else {
522 		int m = now - icsk->icsk_ack.lrcvtime;
523 
524 		if (m <= TCP_ATO_MIN/2) {
525 			/* The fastest case is the first. */
526 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
527 		} else if (m < icsk->icsk_ack.ato) {
528 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
529 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
530 				icsk->icsk_ack.ato = icsk->icsk_rto;
531 		} else if (m > icsk->icsk_rto) {
532 			/* Too long gap. Apparently sender failed to
533 			 * restart window, so that we send ACKs quickly.
534 			 */
535 			tcp_incr_quickack(sk);
536 			sk_stream_mem_reclaim(sk);
537 		}
538 	}
539 	icsk->icsk_ack.lrcvtime = now;
540 
541 	TCP_ECN_check_ce(tp, skb);
542 
543 	if (skb->len >= 128)
544 		tcp_grow_window(sk, tp, skb);
545 }
546 
547 /* Called to compute a smoothed rtt estimate. The data fed to this
548  * routine either comes from timestamps, or from segments that were
549  * known _not_ to have been retransmitted [see Karn/Partridge
550  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
551  * piece by Van Jacobson.
552  * NOTE: the next three routines used to be one big routine.
553  * To save cycles in the RFC 1323 implementation it was better to break
554  * it up into three procedures. -- erics
555  */
556 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
557 {
558 	struct tcp_sock *tp = tcp_sk(sk);
559 	long m = mrtt; /* RTT */
560 
561 	/*	The following amusing code comes from Jacobson's
562 	 *	article in SIGCOMM '88.  Note that rtt and mdev
563 	 *	are scaled versions of rtt and mean deviation.
564 	 *	This is designed to be as fast as possible
565 	 *	m stands for "measurement".
566 	 *
567 	 *	On a 1990 paper the rto value is changed to:
568 	 *	RTO = rtt + 4 * mdev
569 	 *
570 	 * Funny. This algorithm seems to be very broken.
571 	 * These formulae increase RTO, when it should be decreased, increase
572 	 * too slowly, when it should be increased quickly, decrease too quickly
573 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
574 	 * does not matter how to _calculate_ it. Seems, it was trap
575 	 * that VJ failed to avoid. 8)
576 	 */
577 	if(m == 0)
578 		m = 1;
579 	if (tp->srtt != 0) {
580 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
581 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
582 		if (m < 0) {
583 			m = -m;		/* m is now abs(error) */
584 			m -= (tp->mdev >> 2);   /* similar update on mdev */
585 			/* This is similar to one of Eifel findings.
586 			 * Eifel blocks mdev updates when rtt decreases.
587 			 * This solution is a bit different: we use finer gain
588 			 * for mdev in this case (alpha*beta).
589 			 * Like Eifel it also prevents growth of rto,
590 			 * but also it limits too fast rto decreases,
591 			 * happening in pure Eifel.
592 			 */
593 			if (m > 0)
594 				m >>= 3;
595 		} else {
596 			m -= (tp->mdev >> 2);   /* similar update on mdev */
597 		}
598 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
599 		if (tp->mdev > tp->mdev_max) {
600 			tp->mdev_max = tp->mdev;
601 			if (tp->mdev_max > tp->rttvar)
602 				tp->rttvar = tp->mdev_max;
603 		}
604 		if (after(tp->snd_una, tp->rtt_seq)) {
605 			if (tp->mdev_max < tp->rttvar)
606 				tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
607 			tp->rtt_seq = tp->snd_nxt;
608 			tp->mdev_max = TCP_RTO_MIN;
609 		}
610 	} else {
611 		/* no previous measure. */
612 		tp->srtt = m<<3;	/* take the measured time to be rtt */
613 		tp->mdev = m<<1;	/* make sure rto = 3*rtt */
614 		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
615 		tp->rtt_seq = tp->snd_nxt;
616 	}
617 }
618 
619 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
620  * routine referred to above.
621  */
622 static inline void tcp_set_rto(struct sock *sk)
623 {
624 	const struct tcp_sock *tp = tcp_sk(sk);
625 	/* Old crap is replaced with new one. 8)
626 	 *
627 	 * More seriously:
628 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
629 	 *    It cannot be less due to utterly erratic ACK generation made
630 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
631 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
632 	 *    is invisible. Actually, Linux-2.4 also generates erratic
633 	 *    ACKs in some circumstances.
634 	 */
635 	inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
636 
637 	/* 2. Fixups made earlier cannot be right.
638 	 *    If we do not estimate RTO correctly without them,
639 	 *    all the algo is pure shit and should be replaced
640 	 *    with correct one. It is exactly, which we pretend to do.
641 	 */
642 }
643 
644 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
645  * guarantees that rto is higher.
646  */
647 static inline void tcp_bound_rto(struct sock *sk)
648 {
649 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
650 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
651 }
652 
653 /* Save metrics learned by this TCP session.
654    This function is called only, when TCP finishes successfully
655    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
656  */
657 void tcp_update_metrics(struct sock *sk)
658 {
659 	struct tcp_sock *tp = tcp_sk(sk);
660 	struct dst_entry *dst = __sk_dst_get(sk);
661 
662 	if (sysctl_tcp_nometrics_save)
663 		return;
664 
665 	dst_confirm(dst);
666 
667 	if (dst && (dst->flags&DST_HOST)) {
668 		const struct inet_connection_sock *icsk = inet_csk(sk);
669 		int m;
670 
671 		if (icsk->icsk_backoff || !tp->srtt) {
672 			/* This session failed to estimate rtt. Why?
673 			 * Probably, no packets returned in time.
674 			 * Reset our results.
675 			 */
676 			if (!(dst_metric_locked(dst, RTAX_RTT)))
677 				dst->metrics[RTAX_RTT-1] = 0;
678 			return;
679 		}
680 
681 		m = dst_metric(dst, RTAX_RTT) - tp->srtt;
682 
683 		/* If newly calculated rtt larger than stored one,
684 		 * store new one. Otherwise, use EWMA. Remember,
685 		 * rtt overestimation is always better than underestimation.
686 		 */
687 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
688 			if (m <= 0)
689 				dst->metrics[RTAX_RTT-1] = tp->srtt;
690 			else
691 				dst->metrics[RTAX_RTT-1] -= (m>>3);
692 		}
693 
694 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
695 			if (m < 0)
696 				m = -m;
697 
698 			/* Scale deviation to rttvar fixed point */
699 			m >>= 1;
700 			if (m < tp->mdev)
701 				m = tp->mdev;
702 
703 			if (m >= dst_metric(dst, RTAX_RTTVAR))
704 				dst->metrics[RTAX_RTTVAR-1] = m;
705 			else
706 				dst->metrics[RTAX_RTTVAR-1] -=
707 					(dst->metrics[RTAX_RTTVAR-1] - m)>>2;
708 		}
709 
710 		if (tp->snd_ssthresh >= 0xFFFF) {
711 			/* Slow start still did not finish. */
712 			if (dst_metric(dst, RTAX_SSTHRESH) &&
713 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
714 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
715 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
716 			if (!dst_metric_locked(dst, RTAX_CWND) &&
717 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
718 				dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
719 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
720 			   icsk->icsk_ca_state == TCP_CA_Open) {
721 			/* Cong. avoidance phase, cwnd is reliable. */
722 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
723 				dst->metrics[RTAX_SSTHRESH-1] =
724 					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
725 			if (!dst_metric_locked(dst, RTAX_CWND))
726 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
727 		} else {
728 			/* Else slow start did not finish, cwnd is non-sense,
729 			   ssthresh may be also invalid.
730 			 */
731 			if (!dst_metric_locked(dst, RTAX_CWND))
732 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
733 			if (dst->metrics[RTAX_SSTHRESH-1] &&
734 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
735 			    tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
736 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
737 		}
738 
739 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
740 			if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
741 			    tp->reordering != sysctl_tcp_reordering)
742 				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
743 		}
744 	}
745 }
746 
747 /* Numbers are taken from RFC2414.  */
748 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
749 {
750 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
751 
752 	if (!cwnd) {
753 		if (tp->mss_cache > 1460)
754 			cwnd = 2;
755 		else
756 			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
757 	}
758 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
759 }
760 
761 /* Set slow start threshold and cwnd not falling to slow start */
762 void tcp_enter_cwr(struct sock *sk)
763 {
764 	struct tcp_sock *tp = tcp_sk(sk);
765 
766 	tp->prior_ssthresh = 0;
767 	tp->bytes_acked = 0;
768 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
769 		tp->undo_marker = 0;
770 		tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
771 		tp->snd_cwnd = min(tp->snd_cwnd,
772 				   tcp_packets_in_flight(tp) + 1U);
773 		tp->snd_cwnd_cnt = 0;
774 		tp->high_seq = tp->snd_nxt;
775 		tp->snd_cwnd_stamp = tcp_time_stamp;
776 		TCP_ECN_queue_cwr(tp);
777 
778 		tcp_set_ca_state(sk, TCP_CA_CWR);
779 	}
780 }
781 
782 /* Initialize metrics on socket. */
783 
784 static void tcp_init_metrics(struct sock *sk)
785 {
786 	struct tcp_sock *tp = tcp_sk(sk);
787 	struct dst_entry *dst = __sk_dst_get(sk);
788 
789 	if (dst == NULL)
790 		goto reset;
791 
792 	dst_confirm(dst);
793 
794 	if (dst_metric_locked(dst, RTAX_CWND))
795 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
796 	if (dst_metric(dst, RTAX_SSTHRESH)) {
797 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
798 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
799 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
800 	}
801 	if (dst_metric(dst, RTAX_REORDERING) &&
802 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
803 		tp->rx_opt.sack_ok &= ~2;
804 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
805 	}
806 
807 	if (dst_metric(dst, RTAX_RTT) == 0)
808 		goto reset;
809 
810 	if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
811 		goto reset;
812 
813 	/* Initial rtt is determined from SYN,SYN-ACK.
814 	 * The segment is small and rtt may appear much
815 	 * less than real one. Use per-dst memory
816 	 * to make it more realistic.
817 	 *
818 	 * A bit of theory. RTT is time passed after "normal" sized packet
819 	 * is sent until it is ACKed. In normal circumstances sending small
820 	 * packets force peer to delay ACKs and calculation is correct too.
821 	 * The algorithm is adaptive and, provided we follow specs, it
822 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
823 	 * tricks sort of "quick acks" for time long enough to decrease RTT
824 	 * to low value, and then abruptly stops to do it and starts to delay
825 	 * ACKs, wait for troubles.
826 	 */
827 	if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
828 		tp->srtt = dst_metric(dst, RTAX_RTT);
829 		tp->rtt_seq = tp->snd_nxt;
830 	}
831 	if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
832 		tp->mdev = dst_metric(dst, RTAX_RTTVAR);
833 		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
834 	}
835 	tcp_set_rto(sk);
836 	tcp_bound_rto(sk);
837 	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
838 		goto reset;
839 	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
840 	tp->snd_cwnd_stamp = tcp_time_stamp;
841 	return;
842 
843 reset:
844 	/* Play conservative. If timestamps are not
845 	 * supported, TCP will fail to recalculate correct
846 	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
847 	 */
848 	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
849 		tp->srtt = 0;
850 		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
851 		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
852 	}
853 }
854 
855 static void tcp_update_reordering(struct sock *sk, const int metric,
856 				  const int ts)
857 {
858 	struct tcp_sock *tp = tcp_sk(sk);
859 	if (metric > tp->reordering) {
860 		tp->reordering = min(TCP_MAX_REORDERING, metric);
861 
862 		/* This exciting event is worth to be remembered. 8) */
863 		if (ts)
864 			NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
865 		else if (IsReno(tp))
866 			NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
867 		else if (IsFack(tp))
868 			NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
869 		else
870 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
871 #if FASTRETRANS_DEBUG > 1
872 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
873 		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
874 		       tp->reordering,
875 		       tp->fackets_out,
876 		       tp->sacked_out,
877 		       tp->undo_marker ? tp->undo_retrans : 0);
878 #endif
879 		/* Disable FACK yet. */
880 		tp->rx_opt.sack_ok &= ~2;
881 	}
882 }
883 
884 /* This procedure tags the retransmission queue when SACKs arrive.
885  *
886  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
887  * Packets in queue with these bits set are counted in variables
888  * sacked_out, retrans_out and lost_out, correspondingly.
889  *
890  * Valid combinations are:
891  * Tag  InFlight	Description
892  * 0	1		- orig segment is in flight.
893  * S	0		- nothing flies, orig reached receiver.
894  * L	0		- nothing flies, orig lost by net.
895  * R	2		- both orig and retransmit are in flight.
896  * L|R	1		- orig is lost, retransmit is in flight.
897  * S|R  1		- orig reached receiver, retrans is still in flight.
898  * (L|S|R is logically valid, it could occur when L|R is sacked,
899  *  but it is equivalent to plain S and code short-curcuits it to S.
900  *  L|S is logically invalid, it would mean -1 packet in flight 8))
901  *
902  * These 6 states form finite state machine, controlled by the following events:
903  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
904  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
905  * 3. Loss detection event of one of three flavors:
906  *	A. Scoreboard estimator decided the packet is lost.
907  *	   A'. Reno "three dupacks" marks head of queue lost.
908  *	   A''. Its FACK modfication, head until snd.fack is lost.
909  *	B. SACK arrives sacking data transmitted after never retransmitted
910  *	   hole was sent out.
911  *	C. SACK arrives sacking SND.NXT at the moment, when the
912  *	   segment was retransmitted.
913  * 4. D-SACK added new rule: D-SACK changes any tag to S.
914  *
915  * It is pleasant to note, that state diagram turns out to be commutative,
916  * so that we are allowed not to be bothered by order of our actions,
917  * when multiple events arrive simultaneously. (see the function below).
918  *
919  * Reordering detection.
920  * --------------------
921  * Reordering metric is maximal distance, which a packet can be displaced
922  * in packet stream. With SACKs we can estimate it:
923  *
924  * 1. SACK fills old hole and the corresponding segment was not
925  *    ever retransmitted -> reordering. Alas, we cannot use it
926  *    when segment was retransmitted.
927  * 2. The last flaw is solved with D-SACK. D-SACK arrives
928  *    for retransmitted and already SACKed segment -> reordering..
929  * Both of these heuristics are not used in Loss state, when we cannot
930  * account for retransmits accurately.
931  */
932 static int
933 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
934 {
935 	const struct inet_connection_sock *icsk = inet_csk(sk);
936 	struct tcp_sock *tp = tcp_sk(sk);
937 	unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
938 	struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
939 	int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
940 	int reord = tp->packets_out;
941 	int prior_fackets;
942 	u32 lost_retrans = 0;
943 	int flag = 0;
944 	int dup_sack = 0;
945 	int i;
946 
947 	if (!tp->sacked_out)
948 		tp->fackets_out = 0;
949 	prior_fackets = tp->fackets_out;
950 
951 	/* SACK fastpath:
952 	 * if the only SACK change is the increase of the end_seq of
953 	 * the first block then only apply that SACK block
954 	 * and use retrans queue hinting otherwise slowpath */
955 	flag = 1;
956 	for (i = 0; i< num_sacks; i++) {
957 		__u32 start_seq = ntohl(sp[i].start_seq);
958 		__u32 end_seq =	 ntohl(sp[i].end_seq);
959 
960 		if (i == 0){
961 			if (tp->recv_sack_cache[i].start_seq != start_seq)
962 				flag = 0;
963 		} else {
964 			if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
965 			    (tp->recv_sack_cache[i].end_seq != end_seq))
966 				flag = 0;
967 		}
968 		tp->recv_sack_cache[i].start_seq = start_seq;
969 		tp->recv_sack_cache[i].end_seq = end_seq;
970 
971 		/* Check for D-SACK. */
972 		if (i == 0) {
973 			u32 ack = TCP_SKB_CB(ack_skb)->ack_seq;
974 
975 			if (before(start_seq, ack)) {
976 				dup_sack = 1;
977 				tp->rx_opt.sack_ok |= 4;
978 				NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
979 			} else if (num_sacks > 1 &&
980 				   !after(end_seq, ntohl(sp[1].end_seq)) &&
981 				   !before(start_seq, ntohl(sp[1].start_seq))) {
982 				dup_sack = 1;
983 				tp->rx_opt.sack_ok |= 4;
984 				NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
985 			}
986 
987 			/* D-SACK for already forgotten data...
988 			 * Do dumb counting. */
989 			if (dup_sack &&
990 			    !after(end_seq, prior_snd_una) &&
991 			    after(end_seq, tp->undo_marker))
992 				tp->undo_retrans--;
993 
994 			/* Eliminate too old ACKs, but take into
995 			 * account more or less fresh ones, they can
996 			 * contain valid SACK info.
997 			 */
998 			if (before(ack, prior_snd_una - tp->max_window))
999 				return 0;
1000 		}
1001 	}
1002 
1003 	if (flag)
1004 		num_sacks = 1;
1005 	else {
1006 		int j;
1007 		tp->fastpath_skb_hint = NULL;
1008 
1009 		/* order SACK blocks to allow in order walk of the retrans queue */
1010 		for (i = num_sacks-1; i > 0; i--) {
1011 			for (j = 0; j < i; j++){
1012 				if (after(ntohl(sp[j].start_seq),
1013 					  ntohl(sp[j+1].start_seq))){
1014 					struct tcp_sack_block_wire tmp;
1015 
1016 					tmp = sp[j];
1017 					sp[j] = sp[j+1];
1018 					sp[j+1] = tmp;
1019 				}
1020 
1021 			}
1022 		}
1023 	}
1024 
1025 	/* clear flag as used for different purpose in following code */
1026 	flag = 0;
1027 
1028 	for (i=0; i<num_sacks; i++, sp++) {
1029 		struct sk_buff *skb;
1030 		__u32 start_seq = ntohl(sp->start_seq);
1031 		__u32 end_seq = ntohl(sp->end_seq);
1032 		int fack_count;
1033 
1034 		/* Use SACK fastpath hint if valid */
1035 		if (tp->fastpath_skb_hint) {
1036 			skb = tp->fastpath_skb_hint;
1037 			fack_count = tp->fastpath_cnt_hint;
1038 		} else {
1039 			skb = sk->sk_write_queue.next;
1040 			fack_count = 0;
1041 		}
1042 
1043 		/* Event "B" in the comment above. */
1044 		if (after(end_seq, tp->high_seq))
1045 			flag |= FLAG_DATA_LOST;
1046 
1047 		sk_stream_for_retrans_queue_from(skb, sk) {
1048 			int in_sack, pcount;
1049 			u8 sacked;
1050 
1051 			tp->fastpath_skb_hint = skb;
1052 			tp->fastpath_cnt_hint = fack_count;
1053 
1054 			/* The retransmission queue is always in order, so
1055 			 * we can short-circuit the walk early.
1056 			 */
1057 			if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1058 				break;
1059 
1060 			in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1061 				!before(end_seq, TCP_SKB_CB(skb)->end_seq);
1062 
1063 			pcount = tcp_skb_pcount(skb);
1064 
1065 			if (pcount > 1 && !in_sack &&
1066 			    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1067 				unsigned int pkt_len;
1068 
1069 				in_sack = !after(start_seq,
1070 						 TCP_SKB_CB(skb)->seq);
1071 
1072 				if (!in_sack)
1073 					pkt_len = (start_seq -
1074 						   TCP_SKB_CB(skb)->seq);
1075 				else
1076 					pkt_len = (end_seq -
1077 						   TCP_SKB_CB(skb)->seq);
1078 				if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
1079 					break;
1080 				pcount = tcp_skb_pcount(skb);
1081 			}
1082 
1083 			fack_count += pcount;
1084 
1085 			sacked = TCP_SKB_CB(skb)->sacked;
1086 
1087 			/* Account D-SACK for retransmitted packet. */
1088 			if ((dup_sack && in_sack) &&
1089 			    (sacked & TCPCB_RETRANS) &&
1090 			    after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1091 				tp->undo_retrans--;
1092 
1093 			/* The frame is ACKed. */
1094 			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1095 				if (sacked&TCPCB_RETRANS) {
1096 					if ((dup_sack && in_sack) &&
1097 					    (sacked&TCPCB_SACKED_ACKED))
1098 						reord = min(fack_count, reord);
1099 				} else {
1100 					/* If it was in a hole, we detected reordering. */
1101 					if (fack_count < prior_fackets &&
1102 					    !(sacked&TCPCB_SACKED_ACKED))
1103 						reord = min(fack_count, reord);
1104 				}
1105 
1106 				/* Nothing to do; acked frame is about to be dropped. */
1107 				continue;
1108 			}
1109 
1110 			if ((sacked&TCPCB_SACKED_RETRANS) &&
1111 			    after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1112 			    (!lost_retrans || after(end_seq, lost_retrans)))
1113 				lost_retrans = end_seq;
1114 
1115 			if (!in_sack)
1116 				continue;
1117 
1118 			if (!(sacked&TCPCB_SACKED_ACKED)) {
1119 				if (sacked & TCPCB_SACKED_RETRANS) {
1120 					/* If the segment is not tagged as lost,
1121 					 * we do not clear RETRANS, believing
1122 					 * that retransmission is still in flight.
1123 					 */
1124 					if (sacked & TCPCB_LOST) {
1125 						TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1126 						tp->lost_out -= tcp_skb_pcount(skb);
1127 						tp->retrans_out -= tcp_skb_pcount(skb);
1128 
1129 						/* clear lost hint */
1130 						tp->retransmit_skb_hint = NULL;
1131 					}
1132 				} else {
1133 					/* New sack for not retransmitted frame,
1134 					 * which was in hole. It is reordering.
1135 					 */
1136 					if (!(sacked & TCPCB_RETRANS) &&
1137 					    fack_count < prior_fackets)
1138 						reord = min(fack_count, reord);
1139 
1140 					if (sacked & TCPCB_LOST) {
1141 						TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1142 						tp->lost_out -= tcp_skb_pcount(skb);
1143 
1144 						/* clear lost hint */
1145 						tp->retransmit_skb_hint = NULL;
1146 					}
1147 				}
1148 
1149 				TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1150 				flag |= FLAG_DATA_SACKED;
1151 				tp->sacked_out += tcp_skb_pcount(skb);
1152 
1153 				if (fack_count > tp->fackets_out)
1154 					tp->fackets_out = fack_count;
1155 			} else {
1156 				if (dup_sack && (sacked&TCPCB_RETRANS))
1157 					reord = min(fack_count, reord);
1158 			}
1159 
1160 			/* D-SACK. We can detect redundant retransmission
1161 			 * in S|R and plain R frames and clear it.
1162 			 * undo_retrans is decreased above, L|R frames
1163 			 * are accounted above as well.
1164 			 */
1165 			if (dup_sack &&
1166 			    (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1167 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1168 				tp->retrans_out -= tcp_skb_pcount(skb);
1169 				tp->retransmit_skb_hint = NULL;
1170 			}
1171 		}
1172 	}
1173 
1174 	/* Check for lost retransmit. This superb idea is
1175 	 * borrowed from "ratehalving". Event "C".
1176 	 * Later note: FACK people cheated me again 8),
1177 	 * we have to account for reordering! Ugly,
1178 	 * but should help.
1179 	 */
1180 	if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1181 		struct sk_buff *skb;
1182 
1183 		sk_stream_for_retrans_queue(skb, sk) {
1184 			if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1185 				break;
1186 			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1187 				continue;
1188 			if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1189 			    after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1190 			    (IsFack(tp) ||
1191 			     !before(lost_retrans,
1192 				     TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1193 				     tp->mss_cache))) {
1194 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1195 				tp->retrans_out -= tcp_skb_pcount(skb);
1196 
1197 				/* clear lost hint */
1198 				tp->retransmit_skb_hint = NULL;
1199 
1200 				if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1201 					tp->lost_out += tcp_skb_pcount(skb);
1202 					TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1203 					flag |= FLAG_DATA_SACKED;
1204 					NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1205 				}
1206 			}
1207 		}
1208 	}
1209 
1210 	tp->left_out = tp->sacked_out + tp->lost_out;
1211 
1212 	if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss)
1213 		tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1214 
1215 #if FASTRETRANS_DEBUG > 0
1216 	BUG_TRAP((int)tp->sacked_out >= 0);
1217 	BUG_TRAP((int)tp->lost_out >= 0);
1218 	BUG_TRAP((int)tp->retrans_out >= 0);
1219 	BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1220 #endif
1221 	return flag;
1222 }
1223 
1224 /* RTO occurred, but do not yet enter loss state. Instead, transmit two new
1225  * segments to see from the next ACKs whether any data was really missing.
1226  * If the RTO was spurious, new ACKs should arrive.
1227  */
1228 void tcp_enter_frto(struct sock *sk)
1229 {
1230 	const struct inet_connection_sock *icsk = inet_csk(sk);
1231 	struct tcp_sock *tp = tcp_sk(sk);
1232 	struct sk_buff *skb;
1233 
1234 	tp->frto_counter = 1;
1235 
1236 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1237             tp->snd_una == tp->high_seq ||
1238             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1239 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1240 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1241 		tcp_ca_event(sk, CA_EVENT_FRTO);
1242 	}
1243 
1244 	/* Have to clear retransmission markers here to keep the bookkeeping
1245 	 * in shape, even though we are not yet in Loss state.
1246 	 * If something was really lost, it is eventually caught up
1247 	 * in tcp_enter_frto_loss.
1248 	 */
1249 	tp->retrans_out = 0;
1250 	tp->undo_marker = tp->snd_una;
1251 	tp->undo_retrans = 0;
1252 
1253 	sk_stream_for_retrans_queue(skb, sk) {
1254 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS;
1255 	}
1256 	tcp_sync_left_out(tp);
1257 
1258 	tcp_set_ca_state(sk, TCP_CA_Open);
1259 	tp->frto_highmark = tp->snd_nxt;
1260 }
1261 
1262 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1263  * which indicates that we should follow the traditional RTO recovery,
1264  * i.e. mark everything lost and do go-back-N retransmission.
1265  */
1266 static void tcp_enter_frto_loss(struct sock *sk)
1267 {
1268 	struct tcp_sock *tp = tcp_sk(sk);
1269 	struct sk_buff *skb;
1270 	int cnt = 0;
1271 
1272 	tp->sacked_out = 0;
1273 	tp->lost_out = 0;
1274 	tp->fackets_out = 0;
1275 
1276 	sk_stream_for_retrans_queue(skb, sk) {
1277 		cnt += tcp_skb_pcount(skb);
1278 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1279 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1280 
1281 			/* Do not mark those segments lost that were
1282 			 * forward transmitted after RTO
1283 			 */
1284 			if (!after(TCP_SKB_CB(skb)->end_seq,
1285 				   tp->frto_highmark)) {
1286 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1287 				tp->lost_out += tcp_skb_pcount(skb);
1288 			}
1289 		} else {
1290 			tp->sacked_out += tcp_skb_pcount(skb);
1291 			tp->fackets_out = cnt;
1292 		}
1293 	}
1294 	tcp_sync_left_out(tp);
1295 
1296 	tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1;
1297 	tp->snd_cwnd_cnt = 0;
1298 	tp->snd_cwnd_stamp = tcp_time_stamp;
1299 	tp->undo_marker = 0;
1300 	tp->frto_counter = 0;
1301 
1302 	tp->reordering = min_t(unsigned int, tp->reordering,
1303 					     sysctl_tcp_reordering);
1304 	tcp_set_ca_state(sk, TCP_CA_Loss);
1305 	tp->high_seq = tp->frto_highmark;
1306 	TCP_ECN_queue_cwr(tp);
1307 
1308 	clear_all_retrans_hints(tp);
1309 }
1310 
1311 void tcp_clear_retrans(struct tcp_sock *tp)
1312 {
1313 	tp->left_out = 0;
1314 	tp->retrans_out = 0;
1315 
1316 	tp->fackets_out = 0;
1317 	tp->sacked_out = 0;
1318 	tp->lost_out = 0;
1319 
1320 	tp->undo_marker = 0;
1321 	tp->undo_retrans = 0;
1322 }
1323 
1324 /* Enter Loss state. If "how" is not zero, forget all SACK information
1325  * and reset tags completely, otherwise preserve SACKs. If receiver
1326  * dropped its ofo queue, we will know this due to reneging detection.
1327  */
1328 void tcp_enter_loss(struct sock *sk, int how)
1329 {
1330 	const struct inet_connection_sock *icsk = inet_csk(sk);
1331 	struct tcp_sock *tp = tcp_sk(sk);
1332 	struct sk_buff *skb;
1333 	int cnt = 0;
1334 
1335 	/* Reduce ssthresh if it has not yet been made inside this window. */
1336 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1337 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1338 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1339 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1340 		tcp_ca_event(sk, CA_EVENT_LOSS);
1341 	}
1342 	tp->snd_cwnd	   = 1;
1343 	tp->snd_cwnd_cnt   = 0;
1344 	tp->snd_cwnd_stamp = tcp_time_stamp;
1345 
1346 	tp->bytes_acked = 0;
1347 	tcp_clear_retrans(tp);
1348 
1349 	/* Push undo marker, if it was plain RTO and nothing
1350 	 * was retransmitted. */
1351 	if (!how)
1352 		tp->undo_marker = tp->snd_una;
1353 
1354 	sk_stream_for_retrans_queue(skb, sk) {
1355 		cnt += tcp_skb_pcount(skb);
1356 		if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1357 			tp->undo_marker = 0;
1358 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1359 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1360 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1361 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1362 			tp->lost_out += tcp_skb_pcount(skb);
1363 		} else {
1364 			tp->sacked_out += tcp_skb_pcount(skb);
1365 			tp->fackets_out = cnt;
1366 		}
1367 	}
1368 	tcp_sync_left_out(tp);
1369 
1370 	tp->reordering = min_t(unsigned int, tp->reordering,
1371 					     sysctl_tcp_reordering);
1372 	tcp_set_ca_state(sk, TCP_CA_Loss);
1373 	tp->high_seq = tp->snd_nxt;
1374 	TCP_ECN_queue_cwr(tp);
1375 
1376 	clear_all_retrans_hints(tp);
1377 }
1378 
1379 static int tcp_check_sack_reneging(struct sock *sk)
1380 {
1381 	struct sk_buff *skb;
1382 
1383 	/* If ACK arrived pointing to a remembered SACK,
1384 	 * it means that our remembered SACKs do not reflect
1385 	 * real state of receiver i.e.
1386 	 * receiver _host_ is heavily congested (or buggy).
1387 	 * Do processing similar to RTO timeout.
1388 	 */
1389 	if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
1390 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1391 		struct inet_connection_sock *icsk = inet_csk(sk);
1392 		NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1393 
1394 		tcp_enter_loss(sk, 1);
1395 		icsk->icsk_retransmits++;
1396 		tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
1397 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1398 					  icsk->icsk_rto, TCP_RTO_MAX);
1399 		return 1;
1400 	}
1401 	return 0;
1402 }
1403 
1404 static inline int tcp_fackets_out(struct tcp_sock *tp)
1405 {
1406 	return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1407 }
1408 
1409 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1410 {
1411 	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1412 }
1413 
1414 static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
1415 {
1416 	return tp->packets_out &&
1417 	       tcp_skb_timedout(sk, skb_peek(&sk->sk_write_queue));
1418 }
1419 
1420 /* Linux NewReno/SACK/FACK/ECN state machine.
1421  * --------------------------------------
1422  *
1423  * "Open"	Normal state, no dubious events, fast path.
1424  * "Disorder"   In all the respects it is "Open",
1425  *		but requires a bit more attention. It is entered when
1426  *		we see some SACKs or dupacks. It is split of "Open"
1427  *		mainly to move some processing from fast path to slow one.
1428  * "CWR"	CWND was reduced due to some Congestion Notification event.
1429  *		It can be ECN, ICMP source quench, local device congestion.
1430  * "Recovery"	CWND was reduced, we are fast-retransmitting.
1431  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
1432  *
1433  * tcp_fastretrans_alert() is entered:
1434  * - each incoming ACK, if state is not "Open"
1435  * - when arrived ACK is unusual, namely:
1436  *	* SACK
1437  *	* Duplicate ACK.
1438  *	* ECN ECE.
1439  *
1440  * Counting packets in flight is pretty simple.
1441  *
1442  *	in_flight = packets_out - left_out + retrans_out
1443  *
1444  *	packets_out is SND.NXT-SND.UNA counted in packets.
1445  *
1446  *	retrans_out is number of retransmitted segments.
1447  *
1448  *	left_out is number of segments left network, but not ACKed yet.
1449  *
1450  *		left_out = sacked_out + lost_out
1451  *
1452  *     sacked_out: Packets, which arrived to receiver out of order
1453  *		   and hence not ACKed. With SACKs this number is simply
1454  *		   amount of SACKed data. Even without SACKs
1455  *		   it is easy to give pretty reliable estimate of this number,
1456  *		   counting duplicate ACKs.
1457  *
1458  *       lost_out: Packets lost by network. TCP has no explicit
1459  *		   "loss notification" feedback from network (for now).
1460  *		   It means that this number can be only _guessed_.
1461  *		   Actually, it is the heuristics to predict lossage that
1462  *		   distinguishes different algorithms.
1463  *
1464  *	F.e. after RTO, when all the queue is considered as lost,
1465  *	lost_out = packets_out and in_flight = retrans_out.
1466  *
1467  *		Essentially, we have now two algorithms counting
1468  *		lost packets.
1469  *
1470  *		FACK: It is the simplest heuristics. As soon as we decided
1471  *		that something is lost, we decide that _all_ not SACKed
1472  *		packets until the most forward SACK are lost. I.e.
1473  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
1474  *		It is absolutely correct estimate, if network does not reorder
1475  *		packets. And it loses any connection to reality when reordering
1476  *		takes place. We use FACK by default until reordering
1477  *		is suspected on the path to this destination.
1478  *
1479  *		NewReno: when Recovery is entered, we assume that one segment
1480  *		is lost (classic Reno). While we are in Recovery and
1481  *		a partial ACK arrives, we assume that one more packet
1482  *		is lost (NewReno). This heuristics are the same in NewReno
1483  *		and SACK.
1484  *
1485  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
1486  *  deflation etc. CWND is real congestion window, never inflated, changes
1487  *  only according to classic VJ rules.
1488  *
1489  * Really tricky (and requiring careful tuning) part of algorithm
1490  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1491  * The first determines the moment _when_ we should reduce CWND and,
1492  * hence, slow down forward transmission. In fact, it determines the moment
1493  * when we decide that hole is caused by loss, rather than by a reorder.
1494  *
1495  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1496  * holes, caused by lost packets.
1497  *
1498  * And the most logically complicated part of algorithm is undo
1499  * heuristics. We detect false retransmits due to both too early
1500  * fast retransmit (reordering) and underestimated RTO, analyzing
1501  * timestamps and D-SACKs. When we detect that some segments were
1502  * retransmitted by mistake and CWND reduction was wrong, we undo
1503  * window reduction and abort recovery phase. This logic is hidden
1504  * inside several functions named tcp_try_undo_<something>.
1505  */
1506 
1507 /* This function decides, when we should leave Disordered state
1508  * and enter Recovery phase, reducing congestion window.
1509  *
1510  * Main question: may we further continue forward transmission
1511  * with the same cwnd?
1512  */
1513 static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
1514 {
1515 	__u32 packets_out;
1516 
1517 	/* Trick#1: The loss is proven. */
1518 	if (tp->lost_out)
1519 		return 1;
1520 
1521 	/* Not-A-Trick#2 : Classic rule... */
1522 	if (tcp_fackets_out(tp) > tp->reordering)
1523 		return 1;
1524 
1525 	/* Trick#3 : when we use RFC2988 timer restart, fast
1526 	 * retransmit can be triggered by timeout of queue head.
1527 	 */
1528 	if (tcp_head_timedout(sk, tp))
1529 		return 1;
1530 
1531 	/* Trick#4: It is still not OK... But will it be useful to delay
1532 	 * recovery more?
1533 	 */
1534 	packets_out = tp->packets_out;
1535 	if (packets_out <= tp->reordering &&
1536 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1537 	    !tcp_may_send_now(sk, tp)) {
1538 		/* We have nothing to send. This connection is limited
1539 		 * either by receiver window or by application.
1540 		 */
1541 		return 1;
1542 	}
1543 
1544 	return 0;
1545 }
1546 
1547 /* If we receive more dupacks than we expected counting segments
1548  * in assumption of absent reordering, interpret this as reordering.
1549  * The only another reason could be bug in receiver TCP.
1550  */
1551 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1552 {
1553 	struct tcp_sock *tp = tcp_sk(sk);
1554 	u32 holes;
1555 
1556 	holes = max(tp->lost_out, 1U);
1557 	holes = min(holes, tp->packets_out);
1558 
1559 	if ((tp->sacked_out + holes) > tp->packets_out) {
1560 		tp->sacked_out = tp->packets_out - holes;
1561 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1562 	}
1563 }
1564 
1565 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1566 
1567 static void tcp_add_reno_sack(struct sock *sk)
1568 {
1569 	struct tcp_sock *tp = tcp_sk(sk);
1570 	tp->sacked_out++;
1571 	tcp_check_reno_reordering(sk, 0);
1572 	tcp_sync_left_out(tp);
1573 }
1574 
1575 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1576 
1577 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
1578 {
1579 	if (acked > 0) {
1580 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1581 		if (acked-1 >= tp->sacked_out)
1582 			tp->sacked_out = 0;
1583 		else
1584 			tp->sacked_out -= acked-1;
1585 	}
1586 	tcp_check_reno_reordering(sk, acked);
1587 	tcp_sync_left_out(tp);
1588 }
1589 
1590 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1591 {
1592 	tp->sacked_out = 0;
1593 	tp->left_out = tp->lost_out;
1594 }
1595 
1596 /* Mark head of queue up as lost. */
1597 static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
1598 			       int packets, u32 high_seq)
1599 {
1600 	struct sk_buff *skb;
1601 	int cnt;
1602 
1603 	BUG_TRAP(packets <= tp->packets_out);
1604 	if (tp->lost_skb_hint) {
1605 		skb = tp->lost_skb_hint;
1606 		cnt = tp->lost_cnt_hint;
1607 	} else {
1608 		skb = sk->sk_write_queue.next;
1609 		cnt = 0;
1610 	}
1611 
1612 	sk_stream_for_retrans_queue_from(skb, sk) {
1613 		/* TODO: do this better */
1614 		/* this is not the most efficient way to do this... */
1615 		tp->lost_skb_hint = skb;
1616 		tp->lost_cnt_hint = cnt;
1617 		cnt += tcp_skb_pcount(skb);
1618 		if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1619 			break;
1620 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1621 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1622 			tp->lost_out += tcp_skb_pcount(skb);
1623 
1624 			/* clear xmit_retransmit_queue hints
1625 			 *  if this is beyond hint */
1626 			if(tp->retransmit_skb_hint != NULL &&
1627 			   before(TCP_SKB_CB(skb)->seq,
1628 				  TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) {
1629 
1630 				tp->retransmit_skb_hint = NULL;
1631 			}
1632 		}
1633 	}
1634 	tcp_sync_left_out(tp);
1635 }
1636 
1637 /* Account newly detected lost packet(s) */
1638 
1639 static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
1640 {
1641 	if (IsFack(tp)) {
1642 		int lost = tp->fackets_out - tp->reordering;
1643 		if (lost <= 0)
1644 			lost = 1;
1645 		tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1646 	} else {
1647 		tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1648 	}
1649 
1650 	/* New heuristics: it is possible only after we switched
1651 	 * to restart timer each time when something is ACKed.
1652 	 * Hence, we can detect timed out packets during fast
1653 	 * retransmit without falling to slow start.
1654 	 */
1655 	if (!IsReno(tp) && tcp_head_timedout(sk, tp)) {
1656 		struct sk_buff *skb;
1657 
1658 		skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
1659 			: sk->sk_write_queue.next;
1660 
1661 		sk_stream_for_retrans_queue_from(skb, sk) {
1662 			if (!tcp_skb_timedout(sk, skb))
1663 				break;
1664 
1665 			if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1666 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1667 				tp->lost_out += tcp_skb_pcount(skb);
1668 
1669 				/* clear xmit_retrans hint */
1670 				if (tp->retransmit_skb_hint &&
1671 				    before(TCP_SKB_CB(skb)->seq,
1672 					   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1673 
1674 					tp->retransmit_skb_hint = NULL;
1675 			}
1676 		}
1677 
1678 		tp->scoreboard_skb_hint = skb;
1679 
1680 		tcp_sync_left_out(tp);
1681 	}
1682 }
1683 
1684 /* CWND moderation, preventing bursts due to too big ACKs
1685  * in dubious situations.
1686  */
1687 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1688 {
1689 	tp->snd_cwnd = min(tp->snd_cwnd,
1690 			   tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1691 	tp->snd_cwnd_stamp = tcp_time_stamp;
1692 }
1693 
1694 /* Lower bound on congestion window is slow start threshold
1695  * unless congestion avoidance choice decides to overide it.
1696  */
1697 static inline u32 tcp_cwnd_min(const struct sock *sk)
1698 {
1699 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1700 
1701 	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
1702 }
1703 
1704 /* Decrease cwnd each second ack. */
1705 static void tcp_cwnd_down(struct sock *sk)
1706 {
1707 	struct tcp_sock *tp = tcp_sk(sk);
1708 	int decr = tp->snd_cwnd_cnt + 1;
1709 
1710 	tp->snd_cwnd_cnt = decr&1;
1711 	decr >>= 1;
1712 
1713 	if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
1714 		tp->snd_cwnd -= decr;
1715 
1716 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1717 	tp->snd_cwnd_stamp = tcp_time_stamp;
1718 }
1719 
1720 /* Nothing was retransmitted or returned timestamp is less
1721  * than timestamp of the first retransmission.
1722  */
1723 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1724 {
1725 	return !tp->retrans_stamp ||
1726 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1727 		 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1728 }
1729 
1730 /* Undo procedures. */
1731 
1732 #if FASTRETRANS_DEBUG > 1
1733 static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
1734 {
1735 	struct inet_sock *inet = inet_sk(sk);
1736 	printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1737 	       msg,
1738 	       NIPQUAD(inet->daddr), ntohs(inet->dport),
1739 	       tp->snd_cwnd, tp->left_out,
1740 	       tp->snd_ssthresh, tp->prior_ssthresh,
1741 	       tp->packets_out);
1742 }
1743 #else
1744 #define DBGUNDO(x...) do { } while (0)
1745 #endif
1746 
1747 static void tcp_undo_cwr(struct sock *sk, const int undo)
1748 {
1749 	struct tcp_sock *tp = tcp_sk(sk);
1750 
1751 	if (tp->prior_ssthresh) {
1752 		const struct inet_connection_sock *icsk = inet_csk(sk);
1753 
1754 		if (icsk->icsk_ca_ops->undo_cwnd)
1755 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1756 		else
1757 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1758 
1759 		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1760 			tp->snd_ssthresh = tp->prior_ssthresh;
1761 			TCP_ECN_withdraw_cwr(tp);
1762 		}
1763 	} else {
1764 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1765 	}
1766 	tcp_moderate_cwnd(tp);
1767 	tp->snd_cwnd_stamp = tcp_time_stamp;
1768 
1769 	/* There is something screwy going on with the retrans hints after
1770 	   an undo */
1771 	clear_all_retrans_hints(tp);
1772 }
1773 
1774 static inline int tcp_may_undo(struct tcp_sock *tp)
1775 {
1776 	return tp->undo_marker &&
1777 		(!tp->undo_retrans || tcp_packet_delayed(tp));
1778 }
1779 
1780 /* People celebrate: "We love our President!" */
1781 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
1782 {
1783 	if (tcp_may_undo(tp)) {
1784 		/* Happy end! We did not retransmit anything
1785 		 * or our original transmission succeeded.
1786 		 */
1787 		DBGUNDO(sk, tp, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1788 		tcp_undo_cwr(sk, 1);
1789 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1790 			NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1791 		else
1792 			NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1793 		tp->undo_marker = 0;
1794 	}
1795 	if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1796 		/* Hold old state until something *above* high_seq
1797 		 * is ACKed. For Reno it is MUST to prevent false
1798 		 * fast retransmits (RFC2582). SACK TCP is safe. */
1799 		tcp_moderate_cwnd(tp);
1800 		return 1;
1801 	}
1802 	tcp_set_ca_state(sk, TCP_CA_Open);
1803 	return 0;
1804 }
1805 
1806 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1807 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
1808 {
1809 	if (tp->undo_marker && !tp->undo_retrans) {
1810 		DBGUNDO(sk, tp, "D-SACK");
1811 		tcp_undo_cwr(sk, 1);
1812 		tp->undo_marker = 0;
1813 		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1814 	}
1815 }
1816 
1817 /* Undo during fast recovery after partial ACK. */
1818 
1819 static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
1820 				int acked)
1821 {
1822 	/* Partial ACK arrived. Force Hoe's retransmit. */
1823 	int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1824 
1825 	if (tcp_may_undo(tp)) {
1826 		/* Plain luck! Hole if filled with delayed
1827 		 * packet, rather than with a retransmit.
1828 		 */
1829 		if (tp->retrans_out == 0)
1830 			tp->retrans_stamp = 0;
1831 
1832 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1833 
1834 		DBGUNDO(sk, tp, "Hoe");
1835 		tcp_undo_cwr(sk, 0);
1836 		NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1837 
1838 		/* So... Do not make Hoe's retransmit yet.
1839 		 * If the first packet was delayed, the rest
1840 		 * ones are most probably delayed as well.
1841 		 */
1842 		failed = 0;
1843 	}
1844 	return failed;
1845 }
1846 
1847 /* Undo during loss recovery after partial ACK. */
1848 static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
1849 {
1850 	if (tcp_may_undo(tp)) {
1851 		struct sk_buff *skb;
1852 		sk_stream_for_retrans_queue(skb, sk) {
1853 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1854 		}
1855 
1856 		clear_all_retrans_hints(tp);
1857 
1858 		DBGUNDO(sk, tp, "partial loss");
1859 		tp->lost_out = 0;
1860 		tp->left_out = tp->sacked_out;
1861 		tcp_undo_cwr(sk, 1);
1862 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1863 		inet_csk(sk)->icsk_retransmits = 0;
1864 		tp->undo_marker = 0;
1865 		if (!IsReno(tp))
1866 			tcp_set_ca_state(sk, TCP_CA_Open);
1867 		return 1;
1868 	}
1869 	return 0;
1870 }
1871 
1872 static inline void tcp_complete_cwr(struct sock *sk)
1873 {
1874 	struct tcp_sock *tp = tcp_sk(sk);
1875 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1876 	tp->snd_cwnd_stamp = tcp_time_stamp;
1877 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
1878 }
1879 
1880 static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
1881 {
1882 	tp->left_out = tp->sacked_out;
1883 
1884 	if (tp->retrans_out == 0)
1885 		tp->retrans_stamp = 0;
1886 
1887 	if (flag&FLAG_ECE)
1888 		tcp_enter_cwr(sk);
1889 
1890 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
1891 		int state = TCP_CA_Open;
1892 
1893 		if (tp->left_out || tp->retrans_out || tp->undo_marker)
1894 			state = TCP_CA_Disorder;
1895 
1896 		if (inet_csk(sk)->icsk_ca_state != state) {
1897 			tcp_set_ca_state(sk, state);
1898 			tp->high_seq = tp->snd_nxt;
1899 		}
1900 		tcp_moderate_cwnd(tp);
1901 	} else {
1902 		tcp_cwnd_down(sk);
1903 	}
1904 }
1905 
1906 static void tcp_mtup_probe_failed(struct sock *sk)
1907 {
1908 	struct inet_connection_sock *icsk = inet_csk(sk);
1909 
1910 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
1911 	icsk->icsk_mtup.probe_size = 0;
1912 }
1913 
1914 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
1915 {
1916 	struct tcp_sock *tp = tcp_sk(sk);
1917 	struct inet_connection_sock *icsk = inet_csk(sk);
1918 
1919 	/* FIXME: breaks with very large cwnd */
1920 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
1921 	tp->snd_cwnd = tp->snd_cwnd *
1922 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
1923 		       icsk->icsk_mtup.probe_size;
1924 	tp->snd_cwnd_cnt = 0;
1925 	tp->snd_cwnd_stamp = tcp_time_stamp;
1926 	tp->rcv_ssthresh = tcp_current_ssthresh(sk);
1927 
1928 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
1929 	icsk->icsk_mtup.probe_size = 0;
1930 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1931 }
1932 
1933 
1934 /* Process an event, which can update packets-in-flight not trivially.
1935  * Main goal of this function is to calculate new estimate for left_out,
1936  * taking into account both packets sitting in receiver's buffer and
1937  * packets lost by network.
1938  *
1939  * Besides that it does CWND reduction, when packet loss is detected
1940  * and changes state of machine.
1941  *
1942  * It does _not_ decide what to send, it is made in function
1943  * tcp_xmit_retransmit_queue().
1944  */
1945 static void
1946 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
1947 		      int prior_packets, int flag)
1948 {
1949 	struct inet_connection_sock *icsk = inet_csk(sk);
1950 	struct tcp_sock *tp = tcp_sk(sk);
1951 	int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
1952 
1953 	/* Some technical things:
1954 	 * 1. Reno does not count dupacks (sacked_out) automatically. */
1955 	if (!tp->packets_out)
1956 		tp->sacked_out = 0;
1957         /* 2. SACK counts snd_fack in packets inaccurately. */
1958 	if (tp->sacked_out == 0)
1959 		tp->fackets_out = 0;
1960 
1961         /* Now state machine starts.
1962 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
1963 	if (flag&FLAG_ECE)
1964 		tp->prior_ssthresh = 0;
1965 
1966 	/* B. In all the states check for reneging SACKs. */
1967 	if (tp->sacked_out && tcp_check_sack_reneging(sk))
1968 		return;
1969 
1970 	/* C. Process data loss notification, provided it is valid. */
1971 	if ((flag&FLAG_DATA_LOST) &&
1972 	    before(tp->snd_una, tp->high_seq) &&
1973 	    icsk->icsk_ca_state != TCP_CA_Open &&
1974 	    tp->fackets_out > tp->reordering) {
1975 		tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
1976 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
1977 	}
1978 
1979 	/* D. Synchronize left_out to current state. */
1980 	tcp_sync_left_out(tp);
1981 
1982 	/* E. Check state exit conditions. State can be terminated
1983 	 *    when high_seq is ACKed. */
1984 	if (icsk->icsk_ca_state == TCP_CA_Open) {
1985 		if (!sysctl_tcp_frto)
1986 			BUG_TRAP(tp->retrans_out == 0);
1987 		tp->retrans_stamp = 0;
1988 	} else if (!before(tp->snd_una, tp->high_seq)) {
1989 		switch (icsk->icsk_ca_state) {
1990 		case TCP_CA_Loss:
1991 			icsk->icsk_retransmits = 0;
1992 			if (tcp_try_undo_recovery(sk, tp))
1993 				return;
1994 			break;
1995 
1996 		case TCP_CA_CWR:
1997 			/* CWR is to be held something *above* high_seq
1998 			 * is ACKed for CWR bit to reach receiver. */
1999 			if (tp->snd_una != tp->high_seq) {
2000 				tcp_complete_cwr(sk);
2001 				tcp_set_ca_state(sk, TCP_CA_Open);
2002 			}
2003 			break;
2004 
2005 		case TCP_CA_Disorder:
2006 			tcp_try_undo_dsack(sk, tp);
2007 			if (!tp->undo_marker ||
2008 			    /* For SACK case do not Open to allow to undo
2009 			     * catching for all duplicate ACKs. */
2010 			    IsReno(tp) || tp->snd_una != tp->high_seq) {
2011 				tp->undo_marker = 0;
2012 				tcp_set_ca_state(sk, TCP_CA_Open);
2013 			}
2014 			break;
2015 
2016 		case TCP_CA_Recovery:
2017 			if (IsReno(tp))
2018 				tcp_reset_reno_sack(tp);
2019 			if (tcp_try_undo_recovery(sk, tp))
2020 				return;
2021 			tcp_complete_cwr(sk);
2022 			break;
2023 		}
2024 	}
2025 
2026 	/* F. Process state. */
2027 	switch (icsk->icsk_ca_state) {
2028 	case TCP_CA_Recovery:
2029 		if (prior_snd_una == tp->snd_una) {
2030 			if (IsReno(tp) && is_dupack)
2031 				tcp_add_reno_sack(sk);
2032 		} else {
2033 			int acked = prior_packets - tp->packets_out;
2034 			if (IsReno(tp))
2035 				tcp_remove_reno_sacks(sk, tp, acked);
2036 			is_dupack = tcp_try_undo_partial(sk, tp, acked);
2037 		}
2038 		break;
2039 	case TCP_CA_Loss:
2040 		if (flag&FLAG_DATA_ACKED)
2041 			icsk->icsk_retransmits = 0;
2042 		if (!tcp_try_undo_loss(sk, tp)) {
2043 			tcp_moderate_cwnd(tp);
2044 			tcp_xmit_retransmit_queue(sk);
2045 			return;
2046 		}
2047 		if (icsk->icsk_ca_state != TCP_CA_Open)
2048 			return;
2049 		/* Loss is undone; fall through to processing in Open state. */
2050 	default:
2051 		if (IsReno(tp)) {
2052 			if (tp->snd_una != prior_snd_una)
2053 				tcp_reset_reno_sack(tp);
2054 			if (is_dupack)
2055 				tcp_add_reno_sack(sk);
2056 		}
2057 
2058 		if (icsk->icsk_ca_state == TCP_CA_Disorder)
2059 			tcp_try_undo_dsack(sk, tp);
2060 
2061 		if (!tcp_time_to_recover(sk, tp)) {
2062 			tcp_try_to_open(sk, tp, flag);
2063 			return;
2064 		}
2065 
2066 		/* MTU probe failure: don't reduce cwnd */
2067 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2068 		    icsk->icsk_mtup.probe_size &&
2069 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2070 			tcp_mtup_probe_failed(sk);
2071 			/* Restores the reduction we did in tcp_mtup_probe() */
2072 			tp->snd_cwnd++;
2073 			tcp_simple_retransmit(sk);
2074 			return;
2075 		}
2076 
2077 		/* Otherwise enter Recovery state */
2078 
2079 		if (IsReno(tp))
2080 			NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2081 		else
2082 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2083 
2084 		tp->high_seq = tp->snd_nxt;
2085 		tp->prior_ssthresh = 0;
2086 		tp->undo_marker = tp->snd_una;
2087 		tp->undo_retrans = tp->retrans_out;
2088 
2089 		if (icsk->icsk_ca_state < TCP_CA_CWR) {
2090 			if (!(flag&FLAG_ECE))
2091 				tp->prior_ssthresh = tcp_current_ssthresh(sk);
2092 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2093 			TCP_ECN_queue_cwr(tp);
2094 		}
2095 
2096 		tp->bytes_acked = 0;
2097 		tp->snd_cwnd_cnt = 0;
2098 		tcp_set_ca_state(sk, TCP_CA_Recovery);
2099 	}
2100 
2101 	if (is_dupack || tcp_head_timedout(sk, tp))
2102 		tcp_update_scoreboard(sk, tp);
2103 	tcp_cwnd_down(sk);
2104 	tcp_xmit_retransmit_queue(sk);
2105 }
2106 
2107 /* Read draft-ietf-tcplw-high-performance before mucking
2108  * with this code. (Supersedes RFC1323)
2109  */
2110 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2111 {
2112 	/* RTTM Rule: A TSecr value received in a segment is used to
2113 	 * update the averaged RTT measurement only if the segment
2114 	 * acknowledges some new data, i.e., only if it advances the
2115 	 * left edge of the send window.
2116 	 *
2117 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2118 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2119 	 *
2120 	 * Changed: reset backoff as soon as we see the first valid sample.
2121 	 * If we do not, we get strongly overestimated rto. With timestamps
2122 	 * samples are accepted even from very old segments: f.e., when rtt=1
2123 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2124 	 * answer arrives rto becomes 120 seconds! If at least one of segments
2125 	 * in window is lost... Voila.	 			--ANK (010210)
2126 	 */
2127 	struct tcp_sock *tp = tcp_sk(sk);
2128 	const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2129 	tcp_rtt_estimator(sk, seq_rtt);
2130 	tcp_set_rto(sk);
2131 	inet_csk(sk)->icsk_backoff = 0;
2132 	tcp_bound_rto(sk);
2133 }
2134 
2135 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2136 {
2137 	/* We don't have a timestamp. Can only use
2138 	 * packets that are not retransmitted to determine
2139 	 * rtt estimates. Also, we must not reset the
2140 	 * backoff for rto until we get a non-retransmitted
2141 	 * packet. This allows us to deal with a situation
2142 	 * where the network delay has increased suddenly.
2143 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2144 	 */
2145 
2146 	if (flag & FLAG_RETRANS_DATA_ACKED)
2147 		return;
2148 
2149 	tcp_rtt_estimator(sk, seq_rtt);
2150 	tcp_set_rto(sk);
2151 	inet_csk(sk)->icsk_backoff = 0;
2152 	tcp_bound_rto(sk);
2153 }
2154 
2155 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2156 				      const s32 seq_rtt)
2157 {
2158 	const struct tcp_sock *tp = tcp_sk(sk);
2159 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2160 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2161 		tcp_ack_saw_tstamp(sk, flag);
2162 	else if (seq_rtt >= 0)
2163 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
2164 }
2165 
2166 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
2167 			   u32 in_flight, int good)
2168 {
2169 	const struct inet_connection_sock *icsk = inet_csk(sk);
2170 	icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good);
2171 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2172 }
2173 
2174 /* Restart timer after forward progress on connection.
2175  * RFC2988 recommends to restart timer to now+rto.
2176  */
2177 
2178 static void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
2179 {
2180 	if (!tp->packets_out) {
2181 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2182 	} else {
2183 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2184 	}
2185 }
2186 
2187 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2188 			 __u32 now, __s32 *seq_rtt)
2189 {
2190 	struct tcp_sock *tp = tcp_sk(sk);
2191 	struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2192 	__u32 seq = tp->snd_una;
2193 	__u32 packets_acked;
2194 	int acked = 0;
2195 
2196 	/* If we get here, the whole TSO packet has not been
2197 	 * acked.
2198 	 */
2199 	BUG_ON(!after(scb->end_seq, seq));
2200 
2201 	packets_acked = tcp_skb_pcount(skb);
2202 	if (tcp_trim_head(sk, skb, seq - scb->seq))
2203 		return 0;
2204 	packets_acked -= tcp_skb_pcount(skb);
2205 
2206 	if (packets_acked) {
2207 		__u8 sacked = scb->sacked;
2208 
2209 		acked |= FLAG_DATA_ACKED;
2210 		if (sacked) {
2211 			if (sacked & TCPCB_RETRANS) {
2212 				if (sacked & TCPCB_SACKED_RETRANS)
2213 					tp->retrans_out -= packets_acked;
2214 				acked |= FLAG_RETRANS_DATA_ACKED;
2215 				*seq_rtt = -1;
2216 			} else if (*seq_rtt < 0)
2217 				*seq_rtt = now - scb->when;
2218 			if (sacked & TCPCB_SACKED_ACKED)
2219 				tp->sacked_out -= packets_acked;
2220 			if (sacked & TCPCB_LOST)
2221 				tp->lost_out -= packets_acked;
2222 			if (sacked & TCPCB_URG) {
2223 				if (tp->urg_mode &&
2224 				    !before(seq, tp->snd_up))
2225 					tp->urg_mode = 0;
2226 			}
2227 		} else if (*seq_rtt < 0)
2228 			*seq_rtt = now - scb->when;
2229 
2230 		if (tp->fackets_out) {
2231 			__u32 dval = min(tp->fackets_out, packets_acked);
2232 			tp->fackets_out -= dval;
2233 		}
2234 		tp->packets_out -= packets_acked;
2235 
2236 		BUG_ON(tcp_skb_pcount(skb) == 0);
2237 		BUG_ON(!before(scb->seq, scb->end_seq));
2238 	}
2239 
2240 	return acked;
2241 }
2242 
2243 static u32 tcp_usrtt(struct timeval *tv)
2244 {
2245 	struct timeval now;
2246 
2247 	do_gettimeofday(&now);
2248 	return (now.tv_sec - tv->tv_sec) * 1000000 + (now.tv_usec - tv->tv_usec);
2249 }
2250 
2251 /* Remove acknowledged frames from the retransmission queue. */
2252 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
2253 {
2254 	struct tcp_sock *tp = tcp_sk(sk);
2255 	const struct inet_connection_sock *icsk = inet_csk(sk);
2256 	struct sk_buff *skb;
2257 	__u32 now = tcp_time_stamp;
2258 	int acked = 0;
2259 	__s32 seq_rtt = -1;
2260 	u32 pkts_acked = 0;
2261 	void (*rtt_sample)(struct sock *sk, u32 usrtt)
2262 		= icsk->icsk_ca_ops->rtt_sample;
2263 	struct timeval tv = { .tv_sec = 0, .tv_usec = 0 };
2264 
2265 	while ((skb = skb_peek(&sk->sk_write_queue)) &&
2266 	       skb != sk->sk_send_head) {
2267 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2268 		__u8 sacked = scb->sacked;
2269 
2270 		/* If our packet is before the ack sequence we can
2271 		 * discard it as it's confirmed to have arrived at
2272 		 * the other end.
2273 		 */
2274 		if (after(scb->end_seq, tp->snd_una)) {
2275 			if (tcp_skb_pcount(skb) > 1 &&
2276 			    after(tp->snd_una, scb->seq))
2277 				acked |= tcp_tso_acked(sk, skb,
2278 						       now, &seq_rtt);
2279 			break;
2280 		}
2281 
2282 		/* Initial outgoing SYN's get put onto the write_queue
2283 		 * just like anything else we transmit.  It is not
2284 		 * true data, and if we misinform our callers that
2285 		 * this ACK acks real data, we will erroneously exit
2286 		 * connection startup slow start one packet too
2287 		 * quickly.  This is severely frowned upon behavior.
2288 		 */
2289 		if (!(scb->flags & TCPCB_FLAG_SYN)) {
2290 			acked |= FLAG_DATA_ACKED;
2291 			++pkts_acked;
2292 		} else {
2293 			acked |= FLAG_SYN_ACKED;
2294 			tp->retrans_stamp = 0;
2295 		}
2296 
2297 		/* MTU probing checks */
2298 		if (icsk->icsk_mtup.probe_size) {
2299 			if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) {
2300 				tcp_mtup_probe_success(sk, skb);
2301 			}
2302 		}
2303 
2304 		if (sacked) {
2305 			if (sacked & TCPCB_RETRANS) {
2306 				if(sacked & TCPCB_SACKED_RETRANS)
2307 					tp->retrans_out -= tcp_skb_pcount(skb);
2308 				acked |= FLAG_RETRANS_DATA_ACKED;
2309 				seq_rtt = -1;
2310 			} else if (seq_rtt < 0) {
2311 				seq_rtt = now - scb->when;
2312 				skb_get_timestamp(skb, &tv);
2313 			}
2314 			if (sacked & TCPCB_SACKED_ACKED)
2315 				tp->sacked_out -= tcp_skb_pcount(skb);
2316 			if (sacked & TCPCB_LOST)
2317 				tp->lost_out -= tcp_skb_pcount(skb);
2318 			if (sacked & TCPCB_URG) {
2319 				if (tp->urg_mode &&
2320 				    !before(scb->end_seq, tp->snd_up))
2321 					tp->urg_mode = 0;
2322 			}
2323 		} else if (seq_rtt < 0) {
2324 			seq_rtt = now - scb->when;
2325 			skb_get_timestamp(skb, &tv);
2326 		}
2327 		tcp_dec_pcount_approx(&tp->fackets_out, skb);
2328 		tcp_packets_out_dec(tp, skb);
2329 		__skb_unlink(skb, &sk->sk_write_queue);
2330 		sk_stream_free_skb(sk, skb);
2331 		clear_all_retrans_hints(tp);
2332 	}
2333 
2334 	if (acked&FLAG_ACKED) {
2335 		tcp_ack_update_rtt(sk, acked, seq_rtt);
2336 		tcp_ack_packets_out(sk, tp);
2337 		if (rtt_sample && !(acked & FLAG_RETRANS_DATA_ACKED))
2338 			(*rtt_sample)(sk, tcp_usrtt(&tv));
2339 
2340 		if (icsk->icsk_ca_ops->pkts_acked)
2341 			icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked);
2342 	}
2343 
2344 #if FASTRETRANS_DEBUG > 0
2345 	BUG_TRAP((int)tp->sacked_out >= 0);
2346 	BUG_TRAP((int)tp->lost_out >= 0);
2347 	BUG_TRAP((int)tp->retrans_out >= 0);
2348 	if (!tp->packets_out && tp->rx_opt.sack_ok) {
2349 		const struct inet_connection_sock *icsk = inet_csk(sk);
2350 		if (tp->lost_out) {
2351 			printk(KERN_DEBUG "Leak l=%u %d\n",
2352 			       tp->lost_out, icsk->icsk_ca_state);
2353 			tp->lost_out = 0;
2354 		}
2355 		if (tp->sacked_out) {
2356 			printk(KERN_DEBUG "Leak s=%u %d\n",
2357 			       tp->sacked_out, icsk->icsk_ca_state);
2358 			tp->sacked_out = 0;
2359 		}
2360 		if (tp->retrans_out) {
2361 			printk(KERN_DEBUG "Leak r=%u %d\n",
2362 			       tp->retrans_out, icsk->icsk_ca_state);
2363 			tp->retrans_out = 0;
2364 		}
2365 	}
2366 #endif
2367 	*seq_rtt_p = seq_rtt;
2368 	return acked;
2369 }
2370 
2371 static void tcp_ack_probe(struct sock *sk)
2372 {
2373 	const struct tcp_sock *tp = tcp_sk(sk);
2374 	struct inet_connection_sock *icsk = inet_csk(sk);
2375 
2376 	/* Was it a usable window open? */
2377 
2378 	if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
2379 		   tp->snd_una + tp->snd_wnd)) {
2380 		icsk->icsk_backoff = 0;
2381 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2382 		/* Socket must be waked up by subsequent tcp_data_snd_check().
2383 		 * This function is not for random using!
2384 		 */
2385 	} else {
2386 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2387 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2388 					  TCP_RTO_MAX);
2389 	}
2390 }
2391 
2392 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2393 {
2394 	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2395 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2396 }
2397 
2398 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2399 {
2400 	const struct tcp_sock *tp = tcp_sk(sk);
2401 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2402 		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2403 }
2404 
2405 /* Check that window update is acceptable.
2406  * The function assumes that snd_una<=ack<=snd_next.
2407  */
2408 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2409 					const u32 ack_seq, const u32 nwin)
2410 {
2411 	return (after(ack, tp->snd_una) ||
2412 		after(ack_seq, tp->snd_wl1) ||
2413 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2414 }
2415 
2416 /* Update our send window.
2417  *
2418  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2419  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2420  */
2421 static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
2422 				 struct sk_buff *skb, u32 ack, u32 ack_seq)
2423 {
2424 	int flag = 0;
2425 	u32 nwin = ntohs(skb->h.th->window);
2426 
2427 	if (likely(!skb->h.th->syn))
2428 		nwin <<= tp->rx_opt.snd_wscale;
2429 
2430 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2431 		flag |= FLAG_WIN_UPDATE;
2432 		tcp_update_wl(tp, ack, ack_seq);
2433 
2434 		if (tp->snd_wnd != nwin) {
2435 			tp->snd_wnd = nwin;
2436 
2437 			/* Note, it is the only place, where
2438 			 * fast path is recovered for sending TCP.
2439 			 */
2440 			tp->pred_flags = 0;
2441 			tcp_fast_path_check(sk, tp);
2442 
2443 			if (nwin > tp->max_window) {
2444 				tp->max_window = nwin;
2445 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2446 			}
2447 		}
2448 	}
2449 
2450 	tp->snd_una = ack;
2451 
2452 	return flag;
2453 }
2454 
2455 static void tcp_process_frto(struct sock *sk, u32 prior_snd_una)
2456 {
2457 	struct tcp_sock *tp = tcp_sk(sk);
2458 
2459 	tcp_sync_left_out(tp);
2460 
2461 	if (tp->snd_una == prior_snd_una ||
2462 	    !before(tp->snd_una, tp->frto_highmark)) {
2463 		/* RTO was caused by loss, start retransmitting in
2464 		 * go-back-N slow start
2465 		 */
2466 		tcp_enter_frto_loss(sk);
2467 		return;
2468 	}
2469 
2470 	if (tp->frto_counter == 1) {
2471 		/* First ACK after RTO advances the window: allow two new
2472 		 * segments out.
2473 		 */
2474 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2475 	} else {
2476 		/* Also the second ACK after RTO advances the window.
2477 		 * The RTO was likely spurious. Reduce cwnd and continue
2478 		 * in congestion avoidance
2479 		 */
2480 		tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2481 		tcp_moderate_cwnd(tp);
2482 	}
2483 
2484 	/* F-RTO affects on two new ACKs following RTO.
2485 	 * At latest on third ACK the TCP behavior is back to normal.
2486 	 */
2487 	tp->frto_counter = (tp->frto_counter + 1) % 3;
2488 }
2489 
2490 /* This routine deals with incoming acks, but not outgoing ones. */
2491 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2492 {
2493 	struct inet_connection_sock *icsk = inet_csk(sk);
2494 	struct tcp_sock *tp = tcp_sk(sk);
2495 	u32 prior_snd_una = tp->snd_una;
2496 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
2497 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
2498 	u32 prior_in_flight;
2499 	s32 seq_rtt;
2500 	int prior_packets;
2501 
2502 	/* If the ack is newer than sent or older than previous acks
2503 	 * then we can probably ignore it.
2504 	 */
2505 	if (after(ack, tp->snd_nxt))
2506 		goto uninteresting_ack;
2507 
2508 	if (before(ack, prior_snd_una))
2509 		goto old_ack;
2510 
2511 	if (sysctl_tcp_abc) {
2512 		if (icsk->icsk_ca_state < TCP_CA_CWR)
2513 			tp->bytes_acked += ack - prior_snd_una;
2514 		else if (icsk->icsk_ca_state == TCP_CA_Loss)
2515 			/* we assume just one segment left network */
2516 			tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2517 	}
2518 
2519 	if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2520 		/* Window is constant, pure forward advance.
2521 		 * No more checks are required.
2522 		 * Note, we use the fact that SND.UNA>=SND.WL2.
2523 		 */
2524 		tcp_update_wl(tp, ack, ack_seq);
2525 		tp->snd_una = ack;
2526 		flag |= FLAG_WIN_UPDATE;
2527 
2528 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2529 
2530 		NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2531 	} else {
2532 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2533 			flag |= FLAG_DATA;
2534 		else
2535 			NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2536 
2537 		flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
2538 
2539 		if (TCP_SKB_CB(skb)->sacked)
2540 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2541 
2542 		if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
2543 			flag |= FLAG_ECE;
2544 
2545 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2546 	}
2547 
2548 	/* We passed data and got it acked, remove any soft error
2549 	 * log. Something worked...
2550 	 */
2551 	sk->sk_err_soft = 0;
2552 	tp->rcv_tstamp = tcp_time_stamp;
2553 	prior_packets = tp->packets_out;
2554 	if (!prior_packets)
2555 		goto no_queue;
2556 
2557 	prior_in_flight = tcp_packets_in_flight(tp);
2558 
2559 	/* See if we can take anything off of the retransmit queue. */
2560 	flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
2561 
2562 	if (tp->frto_counter)
2563 		tcp_process_frto(sk, prior_snd_una);
2564 
2565 	if (tcp_ack_is_dubious(sk, flag)) {
2566 		/* Advance CWND, if state allows this. */
2567 		if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
2568 			tcp_cong_avoid(sk, ack,  seq_rtt, prior_in_flight, 0);
2569 		tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2570 	} else {
2571 		if ((flag & FLAG_DATA_ACKED))
2572 			tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1);
2573 	}
2574 
2575 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2576 		dst_confirm(sk->sk_dst_cache);
2577 
2578 	return 1;
2579 
2580 no_queue:
2581 	icsk->icsk_probes_out = 0;
2582 
2583 	/* If this ack opens up a zero window, clear backoff.  It was
2584 	 * being used to time the probes, and is probably far higher than
2585 	 * it needs to be for normal retransmission.
2586 	 */
2587 	if (sk->sk_send_head)
2588 		tcp_ack_probe(sk);
2589 	return 1;
2590 
2591 old_ack:
2592 	if (TCP_SKB_CB(skb)->sacked)
2593 		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2594 
2595 uninteresting_ack:
2596 	SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2597 	return 0;
2598 }
2599 
2600 
2601 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2602  * But, this can also be called on packets in the established flow when
2603  * the fast version below fails.
2604  */
2605 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2606 {
2607 	unsigned char *ptr;
2608 	struct tcphdr *th = skb->h.th;
2609 	int length=(th->doff*4)-sizeof(struct tcphdr);
2610 
2611 	ptr = (unsigned char *)(th + 1);
2612 	opt_rx->saw_tstamp = 0;
2613 
2614 	while(length>0) {
2615 	  	int opcode=*ptr++;
2616 		int opsize;
2617 
2618 		switch (opcode) {
2619 			case TCPOPT_EOL:
2620 				return;
2621 			case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
2622 				length--;
2623 				continue;
2624 			default:
2625 				opsize=*ptr++;
2626 				if (opsize < 2) /* "silly options" */
2627 					return;
2628 				if (opsize > length)
2629 					return;	/* don't parse partial options */
2630 	  			switch(opcode) {
2631 				case TCPOPT_MSS:
2632 					if(opsize==TCPOLEN_MSS && th->syn && !estab) {
2633 						u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
2634 						if (in_mss) {
2635 							if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2636 								in_mss = opt_rx->user_mss;
2637 							opt_rx->mss_clamp = in_mss;
2638 						}
2639 					}
2640 					break;
2641 				case TCPOPT_WINDOW:
2642 					if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
2643 						if (sysctl_tcp_window_scaling) {
2644 							__u8 snd_wscale = *(__u8 *) ptr;
2645 							opt_rx->wscale_ok = 1;
2646 							if (snd_wscale > 14) {
2647 								if(net_ratelimit())
2648 									printk(KERN_INFO "tcp_parse_options: Illegal window "
2649 									       "scaling value %d >14 received.\n",
2650 									       snd_wscale);
2651 								snd_wscale = 14;
2652 							}
2653 							opt_rx->snd_wscale = snd_wscale;
2654 						}
2655 					break;
2656 				case TCPOPT_TIMESTAMP:
2657 					if(opsize==TCPOLEN_TIMESTAMP) {
2658 						if ((estab && opt_rx->tstamp_ok) ||
2659 						    (!estab && sysctl_tcp_timestamps)) {
2660 							opt_rx->saw_tstamp = 1;
2661 							opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
2662 							opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
2663 						}
2664 					}
2665 					break;
2666 				case TCPOPT_SACK_PERM:
2667 					if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2668 						if (sysctl_tcp_sack) {
2669 							opt_rx->sack_ok = 1;
2670 							tcp_sack_reset(opt_rx);
2671 						}
2672 					}
2673 					break;
2674 
2675 				case TCPOPT_SACK:
2676 					if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2677 					   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2678 					   opt_rx->sack_ok) {
2679 						TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2680 					}
2681 #ifdef CONFIG_TCP_MD5SIG
2682 				case TCPOPT_MD5SIG:
2683 					/*
2684 					 * The MD5 Hash has already been
2685 					 * checked (see tcp_v{4,6}_do_rcv()).
2686 					 */
2687 					break;
2688 #endif
2689 	  			};
2690 	  			ptr+=opsize-2;
2691 	  			length-=opsize;
2692 	  	};
2693 	}
2694 }
2695 
2696 /* Fast parse options. This hopes to only see timestamps.
2697  * If it is wrong it falls back on tcp_parse_options().
2698  */
2699 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2700 				  struct tcp_sock *tp)
2701 {
2702 	if (th->doff == sizeof(struct tcphdr)>>2) {
2703 		tp->rx_opt.saw_tstamp = 0;
2704 		return 0;
2705 	} else if (tp->rx_opt.tstamp_ok &&
2706 		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2707 		__be32 *ptr = (__be32 *)(th + 1);
2708 		if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2709 				  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2710 			tp->rx_opt.saw_tstamp = 1;
2711 			++ptr;
2712 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
2713 			++ptr;
2714 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2715 			return 1;
2716 		}
2717 	}
2718 	tcp_parse_options(skb, &tp->rx_opt, 1);
2719 	return 1;
2720 }
2721 
2722 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2723 {
2724 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2725 	tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
2726 }
2727 
2728 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2729 {
2730 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2731 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
2732 		 * extra check below makes sure this can only happen
2733 		 * for pure ACK frames.  -DaveM
2734 		 *
2735 		 * Not only, also it occurs for expired timestamps.
2736 		 */
2737 
2738 		if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2739 		   xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2740 			tcp_store_ts_recent(tp);
2741 	}
2742 }
2743 
2744 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2745  *
2746  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2747  * it can pass through stack. So, the following predicate verifies that
2748  * this segment is not used for anything but congestion avoidance or
2749  * fast retransmit. Moreover, we even are able to eliminate most of such
2750  * second order effects, if we apply some small "replay" window (~RTO)
2751  * to timestamp space.
2752  *
2753  * All these measures still do not guarantee that we reject wrapped ACKs
2754  * on networks with high bandwidth, when sequence space is recycled fastly,
2755  * but it guarantees that such events will be very rare and do not affect
2756  * connection seriously. This doesn't look nice, but alas, PAWS is really
2757  * buggy extension.
2758  *
2759  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2760  * states that events when retransmit arrives after original data are rare.
2761  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2762  * the biggest problem on large power networks even with minor reordering.
2763  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2764  * up to bandwidth of 18Gigabit/sec. 8) ]
2765  */
2766 
2767 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
2768 {
2769 	struct tcp_sock *tp = tcp_sk(sk);
2770 	struct tcphdr *th = skb->h.th;
2771 	u32 seq = TCP_SKB_CB(skb)->seq;
2772 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
2773 
2774 	return (/* 1. Pure ACK with correct sequence number. */
2775 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
2776 
2777 		/* 2. ... and duplicate ACK. */
2778 		ack == tp->snd_una &&
2779 
2780 		/* 3. ... and does not update window. */
2781 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
2782 
2783 		/* 4. ... and sits in replay window. */
2784 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
2785 }
2786 
2787 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
2788 {
2789 	const struct tcp_sock *tp = tcp_sk(sk);
2790 	return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
2791 		xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
2792 		!tcp_disordered_ack(sk, skb));
2793 }
2794 
2795 /* Check segment sequence number for validity.
2796  *
2797  * Segment controls are considered valid, if the segment
2798  * fits to the window after truncation to the window. Acceptability
2799  * of data (and SYN, FIN, of course) is checked separately.
2800  * See tcp_data_queue(), for example.
2801  *
2802  * Also, controls (RST is main one) are accepted using RCV.WUP instead
2803  * of RCV.NXT. Peer still did not advance his SND.UNA when we
2804  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
2805  * (borrowed from freebsd)
2806  */
2807 
2808 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
2809 {
2810 	return	!before(end_seq, tp->rcv_wup) &&
2811 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
2812 }
2813 
2814 /* When we get a reset we do this. */
2815 static void tcp_reset(struct sock *sk)
2816 {
2817 	/* We want the right error as BSD sees it (and indeed as we do). */
2818 	switch (sk->sk_state) {
2819 		case TCP_SYN_SENT:
2820 			sk->sk_err = ECONNREFUSED;
2821 			break;
2822 		case TCP_CLOSE_WAIT:
2823 			sk->sk_err = EPIPE;
2824 			break;
2825 		case TCP_CLOSE:
2826 			return;
2827 		default:
2828 			sk->sk_err = ECONNRESET;
2829 	}
2830 
2831 	if (!sock_flag(sk, SOCK_DEAD))
2832 		sk->sk_error_report(sk);
2833 
2834 	tcp_done(sk);
2835 }
2836 
2837 /*
2838  * 	Process the FIN bit. This now behaves as it is supposed to work
2839  *	and the FIN takes effect when it is validly part of sequence
2840  *	space. Not before when we get holes.
2841  *
2842  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
2843  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
2844  *	TIME-WAIT)
2845  *
2846  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
2847  *	close and we go into CLOSING (and later onto TIME-WAIT)
2848  *
2849  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
2850  */
2851 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
2852 {
2853 	struct tcp_sock *tp = tcp_sk(sk);
2854 
2855 	inet_csk_schedule_ack(sk);
2856 
2857 	sk->sk_shutdown |= RCV_SHUTDOWN;
2858 	sock_set_flag(sk, SOCK_DONE);
2859 
2860 	switch (sk->sk_state) {
2861 		case TCP_SYN_RECV:
2862 		case TCP_ESTABLISHED:
2863 			/* Move to CLOSE_WAIT */
2864 			tcp_set_state(sk, TCP_CLOSE_WAIT);
2865 			inet_csk(sk)->icsk_ack.pingpong = 1;
2866 			break;
2867 
2868 		case TCP_CLOSE_WAIT:
2869 		case TCP_CLOSING:
2870 			/* Received a retransmission of the FIN, do
2871 			 * nothing.
2872 			 */
2873 			break;
2874 		case TCP_LAST_ACK:
2875 			/* RFC793: Remain in the LAST-ACK state. */
2876 			break;
2877 
2878 		case TCP_FIN_WAIT1:
2879 			/* This case occurs when a simultaneous close
2880 			 * happens, we must ack the received FIN and
2881 			 * enter the CLOSING state.
2882 			 */
2883 			tcp_send_ack(sk);
2884 			tcp_set_state(sk, TCP_CLOSING);
2885 			break;
2886 		case TCP_FIN_WAIT2:
2887 			/* Received a FIN -- send ACK and enter TIME_WAIT. */
2888 			tcp_send_ack(sk);
2889 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
2890 			break;
2891 		default:
2892 			/* Only TCP_LISTEN and TCP_CLOSE are left, in these
2893 			 * cases we should never reach this piece of code.
2894 			 */
2895 			printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
2896 			       __FUNCTION__, sk->sk_state);
2897 			break;
2898 	};
2899 
2900 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
2901 	 * Probably, we should reset in this case. For now drop them.
2902 	 */
2903 	__skb_queue_purge(&tp->out_of_order_queue);
2904 	if (tp->rx_opt.sack_ok)
2905 		tcp_sack_reset(&tp->rx_opt);
2906 	sk_stream_mem_reclaim(sk);
2907 
2908 	if (!sock_flag(sk, SOCK_DEAD)) {
2909 		sk->sk_state_change(sk);
2910 
2911 		/* Do not send POLL_HUP for half duplex close. */
2912 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
2913 		    sk->sk_state == TCP_CLOSE)
2914 			sk_wake_async(sk, 1, POLL_HUP);
2915 		else
2916 			sk_wake_async(sk, 1, POLL_IN);
2917 	}
2918 }
2919 
2920 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
2921 {
2922 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
2923 		if (before(seq, sp->start_seq))
2924 			sp->start_seq = seq;
2925 		if (after(end_seq, sp->end_seq))
2926 			sp->end_seq = end_seq;
2927 		return 1;
2928 	}
2929 	return 0;
2930 }
2931 
2932 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
2933 {
2934 	if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2935 		if (before(seq, tp->rcv_nxt))
2936 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
2937 		else
2938 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
2939 
2940 		tp->rx_opt.dsack = 1;
2941 		tp->duplicate_sack[0].start_seq = seq;
2942 		tp->duplicate_sack[0].end_seq = end_seq;
2943 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
2944 	}
2945 }
2946 
2947 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
2948 {
2949 	if (!tp->rx_opt.dsack)
2950 		tcp_dsack_set(tp, seq, end_seq);
2951 	else
2952 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
2953 }
2954 
2955 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
2956 {
2957 	struct tcp_sock *tp = tcp_sk(sk);
2958 
2959 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
2960 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
2961 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
2962 		tcp_enter_quickack_mode(sk);
2963 
2964 		if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2965 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2966 
2967 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
2968 				end_seq = tp->rcv_nxt;
2969 			tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
2970 		}
2971 	}
2972 
2973 	tcp_send_ack(sk);
2974 }
2975 
2976 /* These routines update the SACK block as out-of-order packets arrive or
2977  * in-order packets close up the sequence space.
2978  */
2979 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
2980 {
2981 	int this_sack;
2982 	struct tcp_sack_block *sp = &tp->selective_acks[0];
2983 	struct tcp_sack_block *swalk = sp+1;
2984 
2985 	/* See if the recent change to the first SACK eats into
2986 	 * or hits the sequence space of other SACK blocks, if so coalesce.
2987 	 */
2988 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
2989 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
2990 			int i;
2991 
2992 			/* Zap SWALK, by moving every further SACK up by one slot.
2993 			 * Decrease num_sacks.
2994 			 */
2995 			tp->rx_opt.num_sacks--;
2996 			tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2997 			for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
2998 				sp[i] = sp[i+1];
2999 			continue;
3000 		}
3001 		this_sack++, swalk++;
3002 	}
3003 }
3004 
3005 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3006 {
3007 	__u32 tmp;
3008 
3009 	tmp = sack1->start_seq;
3010 	sack1->start_seq = sack2->start_seq;
3011 	sack2->start_seq = tmp;
3012 
3013 	tmp = sack1->end_seq;
3014 	sack1->end_seq = sack2->end_seq;
3015 	sack2->end_seq = tmp;
3016 }
3017 
3018 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3019 {
3020 	struct tcp_sock *tp = tcp_sk(sk);
3021 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3022 	int cur_sacks = tp->rx_opt.num_sacks;
3023 	int this_sack;
3024 
3025 	if (!cur_sacks)
3026 		goto new_sack;
3027 
3028 	for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3029 		if (tcp_sack_extend(sp, seq, end_seq)) {
3030 			/* Rotate this_sack to the first one. */
3031 			for (; this_sack>0; this_sack--, sp--)
3032 				tcp_sack_swap(sp, sp-1);
3033 			if (cur_sacks > 1)
3034 				tcp_sack_maybe_coalesce(tp);
3035 			return;
3036 		}
3037 	}
3038 
3039 	/* Could not find an adjacent existing SACK, build a new one,
3040 	 * put it at the front, and shift everyone else down.  We
3041 	 * always know there is at least one SACK present already here.
3042 	 *
3043 	 * If the sack array is full, forget about the last one.
3044 	 */
3045 	if (this_sack >= 4) {
3046 		this_sack--;
3047 		tp->rx_opt.num_sacks--;
3048 		sp--;
3049 	}
3050 	for(; this_sack > 0; this_sack--, sp--)
3051 		*sp = *(sp-1);
3052 
3053 new_sack:
3054 	/* Build the new head SACK, and we're done. */
3055 	sp->start_seq = seq;
3056 	sp->end_seq = end_seq;
3057 	tp->rx_opt.num_sacks++;
3058 	tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3059 }
3060 
3061 /* RCV.NXT advances, some SACKs should be eaten. */
3062 
3063 static void tcp_sack_remove(struct tcp_sock *tp)
3064 {
3065 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3066 	int num_sacks = tp->rx_opt.num_sacks;
3067 	int this_sack;
3068 
3069 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3070 	if (skb_queue_empty(&tp->out_of_order_queue)) {
3071 		tp->rx_opt.num_sacks = 0;
3072 		tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3073 		return;
3074 	}
3075 
3076 	for(this_sack = 0; this_sack < num_sacks; ) {
3077 		/* Check if the start of the sack is covered by RCV.NXT. */
3078 		if (!before(tp->rcv_nxt, sp->start_seq)) {
3079 			int i;
3080 
3081 			/* RCV.NXT must cover all the block! */
3082 			BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3083 
3084 			/* Zap this SACK, by moving forward any other SACKS. */
3085 			for (i=this_sack+1; i < num_sacks; i++)
3086 				tp->selective_acks[i-1] = tp->selective_acks[i];
3087 			num_sacks--;
3088 			continue;
3089 		}
3090 		this_sack++;
3091 		sp++;
3092 	}
3093 	if (num_sacks != tp->rx_opt.num_sacks) {
3094 		tp->rx_opt.num_sacks = num_sacks;
3095 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3096 	}
3097 }
3098 
3099 /* This one checks to see if we can put data from the
3100  * out_of_order queue into the receive_queue.
3101  */
3102 static void tcp_ofo_queue(struct sock *sk)
3103 {
3104 	struct tcp_sock *tp = tcp_sk(sk);
3105 	__u32 dsack_high = tp->rcv_nxt;
3106 	struct sk_buff *skb;
3107 
3108 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3109 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3110 			break;
3111 
3112 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3113 			__u32 dsack = dsack_high;
3114 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3115 				dsack_high = TCP_SKB_CB(skb)->end_seq;
3116 			tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3117 		}
3118 
3119 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3120 			SOCK_DEBUG(sk, "ofo packet was already received \n");
3121 			__skb_unlink(skb, &tp->out_of_order_queue);
3122 			__kfree_skb(skb);
3123 			continue;
3124 		}
3125 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3126 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3127 			   TCP_SKB_CB(skb)->end_seq);
3128 
3129 		__skb_unlink(skb, &tp->out_of_order_queue);
3130 		__skb_queue_tail(&sk->sk_receive_queue, skb);
3131 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3132 		if(skb->h.th->fin)
3133 			tcp_fin(skb, sk, skb->h.th);
3134 	}
3135 }
3136 
3137 static int tcp_prune_queue(struct sock *sk);
3138 
3139 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3140 {
3141 	struct tcphdr *th = skb->h.th;
3142 	struct tcp_sock *tp = tcp_sk(sk);
3143 	int eaten = -1;
3144 
3145 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3146 		goto drop;
3147 
3148 	__skb_pull(skb, th->doff*4);
3149 
3150 	TCP_ECN_accept_cwr(tp, skb);
3151 
3152 	if (tp->rx_opt.dsack) {
3153 		tp->rx_opt.dsack = 0;
3154 		tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3155 						    4 - tp->rx_opt.tstamp_ok);
3156 	}
3157 
3158 	/*  Queue data for delivery to the user.
3159 	 *  Packets in sequence go to the receive queue.
3160 	 *  Out of sequence packets to the out_of_order_queue.
3161 	 */
3162 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3163 		if (tcp_receive_window(tp) == 0)
3164 			goto out_of_window;
3165 
3166 		/* Ok. In sequence. In window. */
3167 		if (tp->ucopy.task == current &&
3168 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3169 		    sock_owned_by_user(sk) && !tp->urg_data) {
3170 			int chunk = min_t(unsigned int, skb->len,
3171 							tp->ucopy.len);
3172 
3173 			__set_current_state(TASK_RUNNING);
3174 
3175 			local_bh_enable();
3176 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3177 				tp->ucopy.len -= chunk;
3178 				tp->copied_seq += chunk;
3179 				eaten = (chunk == skb->len && !th->fin);
3180 				tcp_rcv_space_adjust(sk);
3181 			}
3182 			local_bh_disable();
3183 		}
3184 
3185 		if (eaten <= 0) {
3186 queue_and_out:
3187 			if (eaten < 0 &&
3188 			    (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3189 			     !sk_stream_rmem_schedule(sk, skb))) {
3190 				if (tcp_prune_queue(sk) < 0 ||
3191 				    !sk_stream_rmem_schedule(sk, skb))
3192 					goto drop;
3193 			}
3194 			sk_stream_set_owner_r(skb, sk);
3195 			__skb_queue_tail(&sk->sk_receive_queue, skb);
3196 		}
3197 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3198 		if(skb->len)
3199 			tcp_event_data_recv(sk, tp, skb);
3200 		if(th->fin)
3201 			tcp_fin(skb, sk, th);
3202 
3203 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
3204 			tcp_ofo_queue(sk);
3205 
3206 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
3207 			 * gap in queue is filled.
3208 			 */
3209 			if (skb_queue_empty(&tp->out_of_order_queue))
3210 				inet_csk(sk)->icsk_ack.pingpong = 0;
3211 		}
3212 
3213 		if (tp->rx_opt.num_sacks)
3214 			tcp_sack_remove(tp);
3215 
3216 		tcp_fast_path_check(sk, tp);
3217 
3218 		if (eaten > 0)
3219 			__kfree_skb(skb);
3220 		else if (!sock_flag(sk, SOCK_DEAD))
3221 			sk->sk_data_ready(sk, 0);
3222 		return;
3223 	}
3224 
3225 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3226 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
3227 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3228 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3229 
3230 out_of_window:
3231 		tcp_enter_quickack_mode(sk);
3232 		inet_csk_schedule_ack(sk);
3233 drop:
3234 		__kfree_skb(skb);
3235 		return;
3236 	}
3237 
3238 	/* Out of window. F.e. zero window probe. */
3239 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3240 		goto out_of_window;
3241 
3242 	tcp_enter_quickack_mode(sk);
3243 
3244 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3245 		/* Partial packet, seq < rcv_next < end_seq */
3246 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3247 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3248 			   TCP_SKB_CB(skb)->end_seq);
3249 
3250 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3251 
3252 		/* If window is closed, drop tail of packet. But after
3253 		 * remembering D-SACK for its head made in previous line.
3254 		 */
3255 		if (!tcp_receive_window(tp))
3256 			goto out_of_window;
3257 		goto queue_and_out;
3258 	}
3259 
3260 	TCP_ECN_check_ce(tp, skb);
3261 
3262 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3263 	    !sk_stream_rmem_schedule(sk, skb)) {
3264 		if (tcp_prune_queue(sk) < 0 ||
3265 		    !sk_stream_rmem_schedule(sk, skb))
3266 			goto drop;
3267 	}
3268 
3269 	/* Disable header prediction. */
3270 	tp->pred_flags = 0;
3271 	inet_csk_schedule_ack(sk);
3272 
3273 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3274 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3275 
3276 	sk_stream_set_owner_r(skb, sk);
3277 
3278 	if (!skb_peek(&tp->out_of_order_queue)) {
3279 		/* Initial out of order segment, build 1 SACK. */
3280 		if (tp->rx_opt.sack_ok) {
3281 			tp->rx_opt.num_sacks = 1;
3282 			tp->rx_opt.dsack     = 0;
3283 			tp->rx_opt.eff_sacks = 1;
3284 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3285 			tp->selective_acks[0].end_seq =
3286 						TCP_SKB_CB(skb)->end_seq;
3287 		}
3288 		__skb_queue_head(&tp->out_of_order_queue,skb);
3289 	} else {
3290 		struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3291 		u32 seq = TCP_SKB_CB(skb)->seq;
3292 		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3293 
3294 		if (seq == TCP_SKB_CB(skb1)->end_seq) {
3295 			__skb_append(skb1, skb, &tp->out_of_order_queue);
3296 
3297 			if (!tp->rx_opt.num_sacks ||
3298 			    tp->selective_acks[0].end_seq != seq)
3299 				goto add_sack;
3300 
3301 			/* Common case: data arrive in order after hole. */
3302 			tp->selective_acks[0].end_seq = end_seq;
3303 			return;
3304 		}
3305 
3306 		/* Find place to insert this segment. */
3307 		do {
3308 			if (!after(TCP_SKB_CB(skb1)->seq, seq))
3309 				break;
3310 		} while ((skb1 = skb1->prev) !=
3311 			 (struct sk_buff*)&tp->out_of_order_queue);
3312 
3313 		/* Do skb overlap to previous one? */
3314 		if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3315 		    before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3316 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3317 				/* All the bits are present. Drop. */
3318 				__kfree_skb(skb);
3319 				tcp_dsack_set(tp, seq, end_seq);
3320 				goto add_sack;
3321 			}
3322 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3323 				/* Partial overlap. */
3324 				tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3325 			} else {
3326 				skb1 = skb1->prev;
3327 			}
3328 		}
3329 		__skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3330 
3331 		/* And clean segments covered by new one as whole. */
3332 		while ((skb1 = skb->next) !=
3333 		       (struct sk_buff*)&tp->out_of_order_queue &&
3334 		       after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3335 		       if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3336 			       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3337 			       break;
3338 		       }
3339 		       __skb_unlink(skb1, &tp->out_of_order_queue);
3340 		       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3341 		       __kfree_skb(skb1);
3342 		}
3343 
3344 add_sack:
3345 		if (tp->rx_opt.sack_ok)
3346 			tcp_sack_new_ofo_skb(sk, seq, end_seq);
3347 	}
3348 }
3349 
3350 /* Collapse contiguous sequence of skbs head..tail with
3351  * sequence numbers start..end.
3352  * Segments with FIN/SYN are not collapsed (only because this
3353  * simplifies code)
3354  */
3355 static void
3356 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3357 	     struct sk_buff *head, struct sk_buff *tail,
3358 	     u32 start, u32 end)
3359 {
3360 	struct sk_buff *skb;
3361 
3362 	/* First, check that queue is collapsible and find
3363 	 * the point where collapsing can be useful. */
3364 	for (skb = head; skb != tail; ) {
3365 		/* No new bits? It is possible on ofo queue. */
3366 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3367 			struct sk_buff *next = skb->next;
3368 			__skb_unlink(skb, list);
3369 			__kfree_skb(skb);
3370 			NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3371 			skb = next;
3372 			continue;
3373 		}
3374 
3375 		/* The first skb to collapse is:
3376 		 * - not SYN/FIN and
3377 		 * - bloated or contains data before "start" or
3378 		 *   overlaps to the next one.
3379 		 */
3380 		if (!skb->h.th->syn && !skb->h.th->fin &&
3381 		    (tcp_win_from_space(skb->truesize) > skb->len ||
3382 		     before(TCP_SKB_CB(skb)->seq, start) ||
3383 		     (skb->next != tail &&
3384 		      TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3385 			break;
3386 
3387 		/* Decided to skip this, advance start seq. */
3388 		start = TCP_SKB_CB(skb)->end_seq;
3389 		skb = skb->next;
3390 	}
3391 	if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3392 		return;
3393 
3394 	while (before(start, end)) {
3395 		struct sk_buff *nskb;
3396 		int header = skb_headroom(skb);
3397 		int copy = SKB_MAX_ORDER(header, 0);
3398 
3399 		/* Too big header? This can happen with IPv6. */
3400 		if (copy < 0)
3401 			return;
3402 		if (end-start < copy)
3403 			copy = end-start;
3404 		nskb = alloc_skb(copy+header, GFP_ATOMIC);
3405 		if (!nskb)
3406 			return;
3407 		skb_reserve(nskb, header);
3408 		memcpy(nskb->head, skb->head, header);
3409 		nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
3410 		nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
3411 		nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
3412 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3413 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3414 		__skb_insert(nskb, skb->prev, skb, list);
3415 		sk_stream_set_owner_r(nskb, sk);
3416 
3417 		/* Copy data, releasing collapsed skbs. */
3418 		while (copy > 0) {
3419 			int offset = start - TCP_SKB_CB(skb)->seq;
3420 			int size = TCP_SKB_CB(skb)->end_seq - start;
3421 
3422 			BUG_ON(offset < 0);
3423 			if (size > 0) {
3424 				size = min(copy, size);
3425 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3426 					BUG();
3427 				TCP_SKB_CB(nskb)->end_seq += size;
3428 				copy -= size;
3429 				start += size;
3430 			}
3431 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3432 				struct sk_buff *next = skb->next;
3433 				__skb_unlink(skb, list);
3434 				__kfree_skb(skb);
3435 				NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3436 				skb = next;
3437 				if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3438 					return;
3439 			}
3440 		}
3441 	}
3442 }
3443 
3444 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3445  * and tcp_collapse() them until all the queue is collapsed.
3446  */
3447 static void tcp_collapse_ofo_queue(struct sock *sk)
3448 {
3449 	struct tcp_sock *tp = tcp_sk(sk);
3450 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3451 	struct sk_buff *head;
3452 	u32 start, end;
3453 
3454 	if (skb == NULL)
3455 		return;
3456 
3457 	start = TCP_SKB_CB(skb)->seq;
3458 	end = TCP_SKB_CB(skb)->end_seq;
3459 	head = skb;
3460 
3461 	for (;;) {
3462 		skb = skb->next;
3463 
3464 		/* Segment is terminated when we see gap or when
3465 		 * we are at the end of all the queue. */
3466 		if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3467 		    after(TCP_SKB_CB(skb)->seq, end) ||
3468 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
3469 			tcp_collapse(sk, &tp->out_of_order_queue,
3470 				     head, skb, start, end);
3471 			head = skb;
3472 			if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3473 				break;
3474 			/* Start new segment */
3475 			start = TCP_SKB_CB(skb)->seq;
3476 			end = TCP_SKB_CB(skb)->end_seq;
3477 		} else {
3478 			if (before(TCP_SKB_CB(skb)->seq, start))
3479 				start = TCP_SKB_CB(skb)->seq;
3480 			if (after(TCP_SKB_CB(skb)->end_seq, end))
3481 				end = TCP_SKB_CB(skb)->end_seq;
3482 		}
3483 	}
3484 }
3485 
3486 /* Reduce allocated memory if we can, trying to get
3487  * the socket within its memory limits again.
3488  *
3489  * Return less than zero if we should start dropping frames
3490  * until the socket owning process reads some of the data
3491  * to stabilize the situation.
3492  */
3493 static int tcp_prune_queue(struct sock *sk)
3494 {
3495 	struct tcp_sock *tp = tcp_sk(sk);
3496 
3497 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3498 
3499 	NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3500 
3501 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3502 		tcp_clamp_window(sk, tp);
3503 	else if (tcp_memory_pressure)
3504 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3505 
3506 	tcp_collapse_ofo_queue(sk);
3507 	tcp_collapse(sk, &sk->sk_receive_queue,
3508 		     sk->sk_receive_queue.next,
3509 		     (struct sk_buff*)&sk->sk_receive_queue,
3510 		     tp->copied_seq, tp->rcv_nxt);
3511 	sk_stream_mem_reclaim(sk);
3512 
3513 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3514 		return 0;
3515 
3516 	/* Collapsing did not help, destructive actions follow.
3517 	 * This must not ever occur. */
3518 
3519 	/* First, purge the out_of_order queue. */
3520 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
3521 		NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3522 		__skb_queue_purge(&tp->out_of_order_queue);
3523 
3524 		/* Reset SACK state.  A conforming SACK implementation will
3525 		 * do the same at a timeout based retransmit.  When a connection
3526 		 * is in a sad state like this, we care only about integrity
3527 		 * of the connection not performance.
3528 		 */
3529 		if (tp->rx_opt.sack_ok)
3530 			tcp_sack_reset(&tp->rx_opt);
3531 		sk_stream_mem_reclaim(sk);
3532 	}
3533 
3534 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3535 		return 0;
3536 
3537 	/* If we are really being abused, tell the caller to silently
3538 	 * drop receive data on the floor.  It will get retransmitted
3539 	 * and hopefully then we'll have sufficient space.
3540 	 */
3541 	NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3542 
3543 	/* Massive buffer overcommit. */
3544 	tp->pred_flags = 0;
3545 	return -1;
3546 }
3547 
3548 
3549 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3550  * As additional protections, we do not touch cwnd in retransmission phases,
3551  * and if application hit its sndbuf limit recently.
3552  */
3553 void tcp_cwnd_application_limited(struct sock *sk)
3554 {
3555 	struct tcp_sock *tp = tcp_sk(sk);
3556 
3557 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
3558 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3559 		/* Limited by application or receiver window. */
3560 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
3561 		u32 win_used = max(tp->snd_cwnd_used, init_win);
3562 		if (win_used < tp->snd_cwnd) {
3563 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
3564 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3565 		}
3566 		tp->snd_cwnd_used = 0;
3567 	}
3568 	tp->snd_cwnd_stamp = tcp_time_stamp;
3569 }
3570 
3571 static int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp)
3572 {
3573 	/* If the user specified a specific send buffer setting, do
3574 	 * not modify it.
3575 	 */
3576 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3577 		return 0;
3578 
3579 	/* If we are under global TCP memory pressure, do not expand.  */
3580 	if (tcp_memory_pressure)
3581 		return 0;
3582 
3583 	/* If we are under soft global TCP memory pressure, do not expand.  */
3584 	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3585 		return 0;
3586 
3587 	/* If we filled the congestion window, do not expand.  */
3588 	if (tp->packets_out >= tp->snd_cwnd)
3589 		return 0;
3590 
3591 	return 1;
3592 }
3593 
3594 /* When incoming ACK allowed to free some skb from write_queue,
3595  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3596  * on the exit from tcp input handler.
3597  *
3598  * PROBLEM: sndbuf expansion does not work well with largesend.
3599  */
3600 static void tcp_new_space(struct sock *sk)
3601 {
3602 	struct tcp_sock *tp = tcp_sk(sk);
3603 
3604 	if (tcp_should_expand_sndbuf(sk, tp)) {
3605  		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3606 			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3607 		    demanded = max_t(unsigned int, tp->snd_cwnd,
3608 						   tp->reordering + 1);
3609 		sndmem *= 2*demanded;
3610 		if (sndmem > sk->sk_sndbuf)
3611 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3612 		tp->snd_cwnd_stamp = tcp_time_stamp;
3613 	}
3614 
3615 	sk->sk_write_space(sk);
3616 }
3617 
3618 static void tcp_check_space(struct sock *sk)
3619 {
3620 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3621 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3622 		if (sk->sk_socket &&
3623 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3624 			tcp_new_space(sk);
3625 	}
3626 }
3627 
3628 static inline void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp)
3629 {
3630 	tcp_push_pending_frames(sk, tp);
3631 	tcp_check_space(sk);
3632 }
3633 
3634 /*
3635  * Check if sending an ack is needed.
3636  */
3637 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3638 {
3639 	struct tcp_sock *tp = tcp_sk(sk);
3640 
3641 	    /* More than one full frame received... */
3642 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3643 	     /* ... and right edge of window advances far enough.
3644 	      * (tcp_recvmsg() will send ACK otherwise). Or...
3645 	      */
3646 	     && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3647 	    /* We ACK each frame or... */
3648 	    tcp_in_quickack_mode(sk) ||
3649 	    /* We have out of order data. */
3650 	    (ofo_possible &&
3651 	     skb_peek(&tp->out_of_order_queue))) {
3652 		/* Then ack it now */
3653 		tcp_send_ack(sk);
3654 	} else {
3655 		/* Else, send delayed ack. */
3656 		tcp_send_delayed_ack(sk);
3657 	}
3658 }
3659 
3660 static inline void tcp_ack_snd_check(struct sock *sk)
3661 {
3662 	if (!inet_csk_ack_scheduled(sk)) {
3663 		/* We sent a data segment already. */
3664 		return;
3665 	}
3666 	__tcp_ack_snd_check(sk, 1);
3667 }
3668 
3669 /*
3670  *	This routine is only called when we have urgent data
3671  *	signaled. Its the 'slow' part of tcp_urg. It could be
3672  *	moved inline now as tcp_urg is only called from one
3673  *	place. We handle URGent data wrong. We have to - as
3674  *	BSD still doesn't use the correction from RFC961.
3675  *	For 1003.1g we should support a new option TCP_STDURG to permit
3676  *	either form (or just set the sysctl tcp_stdurg).
3677  */
3678 
3679 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3680 {
3681 	struct tcp_sock *tp = tcp_sk(sk);
3682 	u32 ptr = ntohs(th->urg_ptr);
3683 
3684 	if (ptr && !sysctl_tcp_stdurg)
3685 		ptr--;
3686 	ptr += ntohl(th->seq);
3687 
3688 	/* Ignore urgent data that we've already seen and read. */
3689 	if (after(tp->copied_seq, ptr))
3690 		return;
3691 
3692 	/* Do not replay urg ptr.
3693 	 *
3694 	 * NOTE: interesting situation not covered by specs.
3695 	 * Misbehaving sender may send urg ptr, pointing to segment,
3696 	 * which we already have in ofo queue. We are not able to fetch
3697 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
3698 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
3699 	 * situations. But it is worth to think about possibility of some
3700 	 * DoSes using some hypothetical application level deadlock.
3701 	 */
3702 	if (before(ptr, tp->rcv_nxt))
3703 		return;
3704 
3705 	/* Do we already have a newer (or duplicate) urgent pointer? */
3706 	if (tp->urg_data && !after(ptr, tp->urg_seq))
3707 		return;
3708 
3709 	/* Tell the world about our new urgent pointer. */
3710 	sk_send_sigurg(sk);
3711 
3712 	/* We may be adding urgent data when the last byte read was
3713 	 * urgent. To do this requires some care. We cannot just ignore
3714 	 * tp->copied_seq since we would read the last urgent byte again
3715 	 * as data, nor can we alter copied_seq until this data arrives
3716 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
3717 	 *
3718 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
3719 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
3720 	 * and expect that both A and B disappear from stream. This is _wrong_.
3721 	 * Though this happens in BSD with high probability, this is occasional.
3722 	 * Any application relying on this is buggy. Note also, that fix "works"
3723 	 * only in this artificial test. Insert some normal data between A and B and we will
3724 	 * decline of BSD again. Verdict: it is better to remove to trap
3725 	 * buggy users.
3726 	 */
3727 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3728 	    !sock_flag(sk, SOCK_URGINLINE) &&
3729 	    tp->copied_seq != tp->rcv_nxt) {
3730 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3731 		tp->copied_seq++;
3732 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
3733 			__skb_unlink(skb, &sk->sk_receive_queue);
3734 			__kfree_skb(skb);
3735 		}
3736 	}
3737 
3738 	tp->urg_data   = TCP_URG_NOTYET;
3739 	tp->urg_seq    = ptr;
3740 
3741 	/* Disable header prediction. */
3742 	tp->pred_flags = 0;
3743 }
3744 
3745 /* This is the 'fast' part of urgent handling. */
3746 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
3747 {
3748 	struct tcp_sock *tp = tcp_sk(sk);
3749 
3750 	/* Check if we get a new urgent pointer - normally not. */
3751 	if (th->urg)
3752 		tcp_check_urg(sk,th);
3753 
3754 	/* Do we wait for any urgent data? - normally not... */
3755 	if (tp->urg_data == TCP_URG_NOTYET) {
3756 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
3757 			  th->syn;
3758 
3759 		/* Is the urgent pointer pointing into this packet? */
3760 		if (ptr < skb->len) {
3761 			u8 tmp;
3762 			if (skb_copy_bits(skb, ptr, &tmp, 1))
3763 				BUG();
3764 			tp->urg_data = TCP_URG_VALID | tmp;
3765 			if (!sock_flag(sk, SOCK_DEAD))
3766 				sk->sk_data_ready(sk, 0);
3767 		}
3768 	}
3769 }
3770 
3771 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
3772 {
3773 	struct tcp_sock *tp = tcp_sk(sk);
3774 	int chunk = skb->len - hlen;
3775 	int err;
3776 
3777 	local_bh_enable();
3778 	if (skb->ip_summed==CHECKSUM_UNNECESSARY)
3779 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
3780 	else
3781 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
3782 						       tp->ucopy.iov);
3783 
3784 	if (!err) {
3785 		tp->ucopy.len -= chunk;
3786 		tp->copied_seq += chunk;
3787 		tcp_rcv_space_adjust(sk);
3788 	}
3789 
3790 	local_bh_disable();
3791 	return err;
3792 }
3793 
3794 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3795 {
3796 	__sum16 result;
3797 
3798 	if (sock_owned_by_user(sk)) {
3799 		local_bh_enable();
3800 		result = __tcp_checksum_complete(skb);
3801 		local_bh_disable();
3802 	} else {
3803 		result = __tcp_checksum_complete(skb);
3804 	}
3805 	return result;
3806 }
3807 
3808 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3809 {
3810 	return skb->ip_summed != CHECKSUM_UNNECESSARY &&
3811 		__tcp_checksum_complete_user(sk, skb);
3812 }
3813 
3814 #ifdef CONFIG_NET_DMA
3815 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
3816 {
3817 	struct tcp_sock *tp = tcp_sk(sk);
3818 	int chunk = skb->len - hlen;
3819 	int dma_cookie;
3820 	int copied_early = 0;
3821 
3822 	if (tp->ucopy.wakeup)
3823           	return 0;
3824 
3825 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
3826 		tp->ucopy.dma_chan = get_softnet_dma();
3827 
3828 	if (tp->ucopy.dma_chan && skb->ip_summed == CHECKSUM_UNNECESSARY) {
3829 
3830 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
3831 			skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
3832 
3833 		if (dma_cookie < 0)
3834 			goto out;
3835 
3836 		tp->ucopy.dma_cookie = dma_cookie;
3837 		copied_early = 1;
3838 
3839 		tp->ucopy.len -= chunk;
3840 		tp->copied_seq += chunk;
3841 		tcp_rcv_space_adjust(sk);
3842 
3843 		if ((tp->ucopy.len == 0) ||
3844 		    (tcp_flag_word(skb->h.th) & TCP_FLAG_PSH) ||
3845 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
3846 			tp->ucopy.wakeup = 1;
3847 			sk->sk_data_ready(sk, 0);
3848 		}
3849 	} else if (chunk > 0) {
3850 		tp->ucopy.wakeup = 1;
3851 		sk->sk_data_ready(sk, 0);
3852 	}
3853 out:
3854 	return copied_early;
3855 }
3856 #endif /* CONFIG_NET_DMA */
3857 
3858 /*
3859  *	TCP receive function for the ESTABLISHED state.
3860  *
3861  *	It is split into a fast path and a slow path. The fast path is
3862  * 	disabled when:
3863  *	- A zero window was announced from us - zero window probing
3864  *        is only handled properly in the slow path.
3865  *	- Out of order segments arrived.
3866  *	- Urgent data is expected.
3867  *	- There is no buffer space left
3868  *	- Unexpected TCP flags/window values/header lengths are received
3869  *	  (detected by checking the TCP header against pred_flags)
3870  *	- Data is sent in both directions. Fast path only supports pure senders
3871  *	  or pure receivers (this means either the sequence number or the ack
3872  *	  value must stay constant)
3873  *	- Unexpected TCP option.
3874  *
3875  *	When these conditions are not satisfied it drops into a standard
3876  *	receive procedure patterned after RFC793 to handle all cases.
3877  *	The first three cases are guaranteed by proper pred_flags setting,
3878  *	the rest is checked inline. Fast processing is turned on in
3879  *	tcp_data_queue when everything is OK.
3880  */
3881 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
3882 			struct tcphdr *th, unsigned len)
3883 {
3884 	struct tcp_sock *tp = tcp_sk(sk);
3885 
3886 	/*
3887 	 *	Header prediction.
3888 	 *	The code loosely follows the one in the famous
3889 	 *	"30 instruction TCP receive" Van Jacobson mail.
3890 	 *
3891 	 *	Van's trick is to deposit buffers into socket queue
3892 	 *	on a device interrupt, to call tcp_recv function
3893 	 *	on the receive process context and checksum and copy
3894 	 *	the buffer to user space. smart...
3895 	 *
3896 	 *	Our current scheme is not silly either but we take the
3897 	 *	extra cost of the net_bh soft interrupt processing...
3898 	 *	We do checksum and copy also but from device to kernel.
3899 	 */
3900 
3901 	tp->rx_opt.saw_tstamp = 0;
3902 
3903 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
3904 	 *	if header_prediction is to be made
3905 	 *	'S' will always be tp->tcp_header_len >> 2
3906 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
3907 	 *  turn it off	(when there are holes in the receive
3908 	 *	 space for instance)
3909 	 *	PSH flag is ignored.
3910 	 */
3911 
3912 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
3913 		TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3914 		int tcp_header_len = tp->tcp_header_len;
3915 
3916 		/* Timestamp header prediction: tcp_header_len
3917 		 * is automatically equal to th->doff*4 due to pred_flags
3918 		 * match.
3919 		 */
3920 
3921 		/* Check timestamp */
3922 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
3923 			__be32 *ptr = (__be32 *)(th + 1);
3924 
3925 			/* No? Slow path! */
3926 			if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3927 					  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
3928 				goto slow_path;
3929 
3930 			tp->rx_opt.saw_tstamp = 1;
3931 			++ptr;
3932 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
3933 			++ptr;
3934 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3935 
3936 			/* If PAWS failed, check it more carefully in slow path */
3937 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
3938 				goto slow_path;
3939 
3940 			/* DO NOT update ts_recent here, if checksum fails
3941 			 * and timestamp was corrupted part, it will result
3942 			 * in a hung connection since we will drop all
3943 			 * future packets due to the PAWS test.
3944 			 */
3945 		}
3946 
3947 		if (len <= tcp_header_len) {
3948 			/* Bulk data transfer: sender */
3949 			if (len == tcp_header_len) {
3950 				/* Predicted packet is in window by definition.
3951 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3952 				 * Hence, check seq<=rcv_wup reduces to:
3953 				 */
3954 				if (tcp_header_len ==
3955 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3956 				    tp->rcv_nxt == tp->rcv_wup)
3957 					tcp_store_ts_recent(tp);
3958 
3959 				/* We know that such packets are checksummed
3960 				 * on entry.
3961 				 */
3962 				tcp_ack(sk, skb, 0);
3963 				__kfree_skb(skb);
3964 				tcp_data_snd_check(sk, tp);
3965 				return 0;
3966 			} else { /* Header too small */
3967 				TCP_INC_STATS_BH(TCP_MIB_INERRS);
3968 				goto discard;
3969 			}
3970 		} else {
3971 			int eaten = 0;
3972 			int copied_early = 0;
3973 
3974 			if (tp->copied_seq == tp->rcv_nxt &&
3975 			    len - tcp_header_len <= tp->ucopy.len) {
3976 #ifdef CONFIG_NET_DMA
3977 				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
3978 					copied_early = 1;
3979 					eaten = 1;
3980 				}
3981 #endif
3982 				if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
3983 					__set_current_state(TASK_RUNNING);
3984 
3985 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
3986 						eaten = 1;
3987 				}
3988 				if (eaten) {
3989 					/* Predicted packet is in window by definition.
3990 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3991 					 * Hence, check seq<=rcv_wup reduces to:
3992 					 */
3993 					if (tcp_header_len ==
3994 					    (sizeof(struct tcphdr) +
3995 					     TCPOLEN_TSTAMP_ALIGNED) &&
3996 					    tp->rcv_nxt == tp->rcv_wup)
3997 						tcp_store_ts_recent(tp);
3998 
3999 					tcp_rcv_rtt_measure_ts(sk, skb);
4000 
4001 					__skb_pull(skb, tcp_header_len);
4002 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4003 					NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4004 				}
4005 				if (copied_early)
4006 					tcp_cleanup_rbuf(sk, skb->len);
4007 			}
4008 			if (!eaten) {
4009 				if (tcp_checksum_complete_user(sk, skb))
4010 					goto csum_error;
4011 
4012 				/* Predicted packet is in window by definition.
4013 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4014 				 * Hence, check seq<=rcv_wup reduces to:
4015 				 */
4016 				if (tcp_header_len ==
4017 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4018 				    tp->rcv_nxt == tp->rcv_wup)
4019 					tcp_store_ts_recent(tp);
4020 
4021 				tcp_rcv_rtt_measure_ts(sk, skb);
4022 
4023 				if ((int)skb->truesize > sk->sk_forward_alloc)
4024 					goto step5;
4025 
4026 				NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4027 
4028 				/* Bulk data transfer: receiver */
4029 				__skb_pull(skb,tcp_header_len);
4030 				__skb_queue_tail(&sk->sk_receive_queue, skb);
4031 				sk_stream_set_owner_r(skb, sk);
4032 				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4033 			}
4034 
4035 			tcp_event_data_recv(sk, tp, skb);
4036 
4037 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4038 				/* Well, only one small jumplet in fast path... */
4039 				tcp_ack(sk, skb, FLAG_DATA);
4040 				tcp_data_snd_check(sk, tp);
4041 				if (!inet_csk_ack_scheduled(sk))
4042 					goto no_ack;
4043 			}
4044 
4045 			__tcp_ack_snd_check(sk, 0);
4046 no_ack:
4047 #ifdef CONFIG_NET_DMA
4048 			if (copied_early)
4049 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
4050 			else
4051 #endif
4052 			if (eaten)
4053 				__kfree_skb(skb);
4054 			else
4055 				sk->sk_data_ready(sk, 0);
4056 			return 0;
4057 		}
4058 	}
4059 
4060 slow_path:
4061 	if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4062 		goto csum_error;
4063 
4064 	/*
4065 	 * RFC1323: H1. Apply PAWS check first.
4066 	 */
4067 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4068 	    tcp_paws_discard(sk, skb)) {
4069 		if (!th->rst) {
4070 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4071 			tcp_send_dupack(sk, skb);
4072 			goto discard;
4073 		}
4074 		/* Resets are accepted even if PAWS failed.
4075 
4076 		   ts_recent update must be made after we are sure
4077 		   that the packet is in window.
4078 		 */
4079 	}
4080 
4081 	/*
4082 	 *	Standard slow path.
4083 	 */
4084 
4085 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4086 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
4087 		 * (RST) segments are validated by checking their SEQ-fields."
4088 		 * And page 69: "If an incoming segment is not acceptable,
4089 		 * an acknowledgment should be sent in reply (unless the RST bit
4090 		 * is set, if so drop the segment and return)".
4091 		 */
4092 		if (!th->rst)
4093 			tcp_send_dupack(sk, skb);
4094 		goto discard;
4095 	}
4096 
4097 	if(th->rst) {
4098 		tcp_reset(sk);
4099 		goto discard;
4100 	}
4101 
4102 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4103 
4104 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4105 		TCP_INC_STATS_BH(TCP_MIB_INERRS);
4106 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4107 		tcp_reset(sk);
4108 		return 1;
4109 	}
4110 
4111 step5:
4112 	if(th->ack)
4113 		tcp_ack(sk, skb, FLAG_SLOWPATH);
4114 
4115 	tcp_rcv_rtt_measure_ts(sk, skb);
4116 
4117 	/* Process urgent data. */
4118 	tcp_urg(sk, skb, th);
4119 
4120 	/* step 7: process the segment text */
4121 	tcp_data_queue(sk, skb);
4122 
4123 	tcp_data_snd_check(sk, tp);
4124 	tcp_ack_snd_check(sk);
4125 	return 0;
4126 
4127 csum_error:
4128 	TCP_INC_STATS_BH(TCP_MIB_INERRS);
4129 
4130 discard:
4131 	__kfree_skb(skb);
4132 	return 0;
4133 }
4134 
4135 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4136 					 struct tcphdr *th, unsigned len)
4137 {
4138 	struct tcp_sock *tp = tcp_sk(sk);
4139 	struct inet_connection_sock *icsk = inet_csk(sk);
4140 	int saved_clamp = tp->rx_opt.mss_clamp;
4141 
4142 	tcp_parse_options(skb, &tp->rx_opt, 0);
4143 
4144 	if (th->ack) {
4145 		/* rfc793:
4146 		 * "If the state is SYN-SENT then
4147 		 *    first check the ACK bit
4148 		 *      If the ACK bit is set
4149 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4150 		 *        a reset (unless the RST bit is set, if so drop
4151 		 *        the segment and return)"
4152 		 *
4153 		 *  We do not send data with SYN, so that RFC-correct
4154 		 *  test reduces to:
4155 		 */
4156 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4157 			goto reset_and_undo;
4158 
4159 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4160 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4161 			     tcp_time_stamp)) {
4162 			NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4163 			goto reset_and_undo;
4164 		}
4165 
4166 		/* Now ACK is acceptable.
4167 		 *
4168 		 * "If the RST bit is set
4169 		 *    If the ACK was acceptable then signal the user "error:
4170 		 *    connection reset", drop the segment, enter CLOSED state,
4171 		 *    delete TCB, and return."
4172 		 */
4173 
4174 		if (th->rst) {
4175 			tcp_reset(sk);
4176 			goto discard;
4177 		}
4178 
4179 		/* rfc793:
4180 		 *   "fifth, if neither of the SYN or RST bits is set then
4181 		 *    drop the segment and return."
4182 		 *
4183 		 *    See note below!
4184 		 *                                        --ANK(990513)
4185 		 */
4186 		if (!th->syn)
4187 			goto discard_and_undo;
4188 
4189 		/* rfc793:
4190 		 *   "If the SYN bit is on ...
4191 		 *    are acceptable then ...
4192 		 *    (our SYN has been ACKed), change the connection
4193 		 *    state to ESTABLISHED..."
4194 		 */
4195 
4196 		TCP_ECN_rcv_synack(tp, th);
4197 
4198 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4199 		tcp_ack(sk, skb, FLAG_SLOWPATH);
4200 
4201 		/* Ok.. it's good. Set up sequence numbers and
4202 		 * move to established.
4203 		 */
4204 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4205 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4206 
4207 		/* RFC1323: The window in SYN & SYN/ACK segments is
4208 		 * never scaled.
4209 		 */
4210 		tp->snd_wnd = ntohs(th->window);
4211 		tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4212 
4213 		if (!tp->rx_opt.wscale_ok) {
4214 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4215 			tp->window_clamp = min(tp->window_clamp, 65535U);
4216 		}
4217 
4218 		if (tp->rx_opt.saw_tstamp) {
4219 			tp->rx_opt.tstamp_ok	   = 1;
4220 			tp->tcp_header_len =
4221 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4222 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
4223 			tcp_store_ts_recent(tp);
4224 		} else {
4225 			tp->tcp_header_len = sizeof(struct tcphdr);
4226 		}
4227 
4228 		if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4229 			tp->rx_opt.sack_ok |= 2;
4230 
4231 		tcp_mtup_init(sk);
4232 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4233 		tcp_initialize_rcv_mss(sk);
4234 
4235 		/* Remember, tcp_poll() does not lock socket!
4236 		 * Change state from SYN-SENT only after copied_seq
4237 		 * is initialized. */
4238 		tp->copied_seq = tp->rcv_nxt;
4239 		smp_mb();
4240 		tcp_set_state(sk, TCP_ESTABLISHED);
4241 
4242 		security_inet_conn_established(sk, skb);
4243 
4244 		/* Make sure socket is routed, for correct metrics.  */
4245 		icsk->icsk_af_ops->rebuild_header(sk);
4246 
4247 		tcp_init_metrics(sk);
4248 
4249 		tcp_init_congestion_control(sk);
4250 
4251 		/* Prevent spurious tcp_cwnd_restart() on first data
4252 		 * packet.
4253 		 */
4254 		tp->lsndtime = tcp_time_stamp;
4255 
4256 		tcp_init_buffer_space(sk);
4257 
4258 		if (sock_flag(sk, SOCK_KEEPOPEN))
4259 			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4260 
4261 		if (!tp->rx_opt.snd_wscale)
4262 			__tcp_fast_path_on(tp, tp->snd_wnd);
4263 		else
4264 			tp->pred_flags = 0;
4265 
4266 		if (!sock_flag(sk, SOCK_DEAD)) {
4267 			sk->sk_state_change(sk);
4268 			sk_wake_async(sk, 0, POLL_OUT);
4269 		}
4270 
4271 		if (sk->sk_write_pending ||
4272 		    icsk->icsk_accept_queue.rskq_defer_accept ||
4273 		    icsk->icsk_ack.pingpong) {
4274 			/* Save one ACK. Data will be ready after
4275 			 * several ticks, if write_pending is set.
4276 			 *
4277 			 * It may be deleted, but with this feature tcpdumps
4278 			 * look so _wonderfully_ clever, that I was not able
4279 			 * to stand against the temptation 8)     --ANK
4280 			 */
4281 			inet_csk_schedule_ack(sk);
4282 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4283 			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
4284 			tcp_incr_quickack(sk);
4285 			tcp_enter_quickack_mode(sk);
4286 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4287 						  TCP_DELACK_MAX, TCP_RTO_MAX);
4288 
4289 discard:
4290 			__kfree_skb(skb);
4291 			return 0;
4292 		} else {
4293 			tcp_send_ack(sk);
4294 		}
4295 		return -1;
4296 	}
4297 
4298 	/* No ACK in the segment */
4299 
4300 	if (th->rst) {
4301 		/* rfc793:
4302 		 * "If the RST bit is set
4303 		 *
4304 		 *      Otherwise (no ACK) drop the segment and return."
4305 		 */
4306 
4307 		goto discard_and_undo;
4308 	}
4309 
4310 	/* PAWS check. */
4311 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4312 		goto discard_and_undo;
4313 
4314 	if (th->syn) {
4315 		/* We see SYN without ACK. It is attempt of
4316 		 * simultaneous connect with crossed SYNs.
4317 		 * Particularly, it can be connect to self.
4318 		 */
4319 		tcp_set_state(sk, TCP_SYN_RECV);
4320 
4321 		if (tp->rx_opt.saw_tstamp) {
4322 			tp->rx_opt.tstamp_ok = 1;
4323 			tcp_store_ts_recent(tp);
4324 			tp->tcp_header_len =
4325 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4326 		} else {
4327 			tp->tcp_header_len = sizeof(struct tcphdr);
4328 		}
4329 
4330 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4331 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4332 
4333 		/* RFC1323: The window in SYN & SYN/ACK segments is
4334 		 * never scaled.
4335 		 */
4336 		tp->snd_wnd    = ntohs(th->window);
4337 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
4338 		tp->max_window = tp->snd_wnd;
4339 
4340 		TCP_ECN_rcv_syn(tp, th);
4341 
4342 		tcp_mtup_init(sk);
4343 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4344 		tcp_initialize_rcv_mss(sk);
4345 
4346 
4347 		tcp_send_synack(sk);
4348 #if 0
4349 		/* Note, we could accept data and URG from this segment.
4350 		 * There are no obstacles to make this.
4351 		 *
4352 		 * However, if we ignore data in ACKless segments sometimes,
4353 		 * we have no reasons to accept it sometimes.
4354 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4355 		 * is not flawless. So, discard packet for sanity.
4356 		 * Uncomment this return to process the data.
4357 		 */
4358 		return -1;
4359 #else
4360 		goto discard;
4361 #endif
4362 	}
4363 	/* "fifth, if neither of the SYN or RST bits is set then
4364 	 * drop the segment and return."
4365 	 */
4366 
4367 discard_and_undo:
4368 	tcp_clear_options(&tp->rx_opt);
4369 	tp->rx_opt.mss_clamp = saved_clamp;
4370 	goto discard;
4371 
4372 reset_and_undo:
4373 	tcp_clear_options(&tp->rx_opt);
4374 	tp->rx_opt.mss_clamp = saved_clamp;
4375 	return 1;
4376 }
4377 
4378 
4379 /*
4380  *	This function implements the receiving procedure of RFC 793 for
4381  *	all states except ESTABLISHED and TIME_WAIT.
4382  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4383  *	address independent.
4384  */
4385 
4386 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4387 			  struct tcphdr *th, unsigned len)
4388 {
4389 	struct tcp_sock *tp = tcp_sk(sk);
4390 	struct inet_connection_sock *icsk = inet_csk(sk);
4391 	int queued = 0;
4392 
4393 	tp->rx_opt.saw_tstamp = 0;
4394 
4395 	switch (sk->sk_state) {
4396 	case TCP_CLOSE:
4397 		goto discard;
4398 
4399 	case TCP_LISTEN:
4400 		if(th->ack)
4401 			return 1;
4402 
4403 		if(th->rst)
4404 			goto discard;
4405 
4406 		if(th->syn) {
4407 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4408 				return 1;
4409 
4410 			/* Now we have several options: In theory there is
4411 			 * nothing else in the frame. KA9Q has an option to
4412 			 * send data with the syn, BSD accepts data with the
4413 			 * syn up to the [to be] advertised window and
4414 			 * Solaris 2.1 gives you a protocol error. For now
4415 			 * we just ignore it, that fits the spec precisely
4416 			 * and avoids incompatibilities. It would be nice in
4417 			 * future to drop through and process the data.
4418 			 *
4419 			 * Now that TTCP is starting to be used we ought to
4420 			 * queue this data.
4421 			 * But, this leaves one open to an easy denial of
4422 		 	 * service attack, and SYN cookies can't defend
4423 			 * against this problem. So, we drop the data
4424 			 * in the interest of security over speed unless
4425 			 * it's still in use.
4426 			 */
4427 			kfree_skb(skb);
4428 			return 0;
4429 		}
4430 		goto discard;
4431 
4432 	case TCP_SYN_SENT:
4433 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4434 		if (queued >= 0)
4435 			return queued;
4436 
4437 		/* Do step6 onward by hand. */
4438 		tcp_urg(sk, skb, th);
4439 		__kfree_skb(skb);
4440 		tcp_data_snd_check(sk, tp);
4441 		return 0;
4442 	}
4443 
4444 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4445 	    tcp_paws_discard(sk, skb)) {
4446 		if (!th->rst) {
4447 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4448 			tcp_send_dupack(sk, skb);
4449 			goto discard;
4450 		}
4451 		/* Reset is accepted even if it did not pass PAWS. */
4452 	}
4453 
4454 	/* step 1: check sequence number */
4455 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4456 		if (!th->rst)
4457 			tcp_send_dupack(sk, skb);
4458 		goto discard;
4459 	}
4460 
4461 	/* step 2: check RST bit */
4462 	if(th->rst) {
4463 		tcp_reset(sk);
4464 		goto discard;
4465 	}
4466 
4467 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4468 
4469 	/* step 3: check security and precedence [ignored] */
4470 
4471 	/*	step 4:
4472 	 *
4473 	 *	Check for a SYN in window.
4474 	 */
4475 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4476 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4477 		tcp_reset(sk);
4478 		return 1;
4479 	}
4480 
4481 	/* step 5: check the ACK field */
4482 	if (th->ack) {
4483 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4484 
4485 		switch(sk->sk_state) {
4486 		case TCP_SYN_RECV:
4487 			if (acceptable) {
4488 				tp->copied_seq = tp->rcv_nxt;
4489 				smp_mb();
4490 				tcp_set_state(sk, TCP_ESTABLISHED);
4491 				sk->sk_state_change(sk);
4492 
4493 				/* Note, that this wakeup is only for marginal
4494 				 * crossed SYN case. Passively open sockets
4495 				 * are not waked up, because sk->sk_sleep ==
4496 				 * NULL and sk->sk_socket == NULL.
4497 				 */
4498 				if (sk->sk_socket) {
4499 					sk_wake_async(sk,0,POLL_OUT);
4500 				}
4501 
4502 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4503 				tp->snd_wnd = ntohs(th->window) <<
4504 					      tp->rx_opt.snd_wscale;
4505 				tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4506 					    TCP_SKB_CB(skb)->seq);
4507 
4508 				/* tcp_ack considers this ACK as duplicate
4509 				 * and does not calculate rtt.
4510 				 * Fix it at least with timestamps.
4511 				 */
4512 				if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4513 				    !tp->srtt)
4514 					tcp_ack_saw_tstamp(sk, 0);
4515 
4516 				if (tp->rx_opt.tstamp_ok)
4517 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4518 
4519 				/* Make sure socket is routed, for
4520 				 * correct metrics.
4521 				 */
4522 				icsk->icsk_af_ops->rebuild_header(sk);
4523 
4524 				tcp_init_metrics(sk);
4525 
4526 				tcp_init_congestion_control(sk);
4527 
4528 				/* Prevent spurious tcp_cwnd_restart() on
4529 				 * first data packet.
4530 				 */
4531 				tp->lsndtime = tcp_time_stamp;
4532 
4533 				tcp_mtup_init(sk);
4534 				tcp_initialize_rcv_mss(sk);
4535 				tcp_init_buffer_space(sk);
4536 				tcp_fast_path_on(tp);
4537 			} else {
4538 				return 1;
4539 			}
4540 			break;
4541 
4542 		case TCP_FIN_WAIT1:
4543 			if (tp->snd_una == tp->write_seq) {
4544 				tcp_set_state(sk, TCP_FIN_WAIT2);
4545 				sk->sk_shutdown |= SEND_SHUTDOWN;
4546 				dst_confirm(sk->sk_dst_cache);
4547 
4548 				if (!sock_flag(sk, SOCK_DEAD))
4549 					/* Wake up lingering close() */
4550 					sk->sk_state_change(sk);
4551 				else {
4552 					int tmo;
4553 
4554 					if (tp->linger2 < 0 ||
4555 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4556 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4557 						tcp_done(sk);
4558 						NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4559 						return 1;
4560 					}
4561 
4562 					tmo = tcp_fin_time(sk);
4563 					if (tmo > TCP_TIMEWAIT_LEN) {
4564 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4565 					} else if (th->fin || sock_owned_by_user(sk)) {
4566 						/* Bad case. We could lose such FIN otherwise.
4567 						 * It is not a big problem, but it looks confusing
4568 						 * and not so rare event. We still can lose it now,
4569 						 * if it spins in bh_lock_sock(), but it is really
4570 						 * marginal case.
4571 						 */
4572 						inet_csk_reset_keepalive_timer(sk, tmo);
4573 					} else {
4574 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4575 						goto discard;
4576 					}
4577 				}
4578 			}
4579 			break;
4580 
4581 		case TCP_CLOSING:
4582 			if (tp->snd_una == tp->write_seq) {
4583 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4584 				goto discard;
4585 			}
4586 			break;
4587 
4588 		case TCP_LAST_ACK:
4589 			if (tp->snd_una == tp->write_seq) {
4590 				tcp_update_metrics(sk);
4591 				tcp_done(sk);
4592 				goto discard;
4593 			}
4594 			break;
4595 		}
4596 	} else
4597 		goto discard;
4598 
4599 	/* step 6: check the URG bit */
4600 	tcp_urg(sk, skb, th);
4601 
4602 	/* step 7: process the segment text */
4603 	switch (sk->sk_state) {
4604 	case TCP_CLOSE_WAIT:
4605 	case TCP_CLOSING:
4606 	case TCP_LAST_ACK:
4607 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4608 			break;
4609 	case TCP_FIN_WAIT1:
4610 	case TCP_FIN_WAIT2:
4611 		/* RFC 793 says to queue data in these states,
4612 		 * RFC 1122 says we MUST send a reset.
4613 		 * BSD 4.4 also does reset.
4614 		 */
4615 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
4616 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4617 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4618 				NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4619 				tcp_reset(sk);
4620 				return 1;
4621 			}
4622 		}
4623 		/* Fall through */
4624 	case TCP_ESTABLISHED:
4625 		tcp_data_queue(sk, skb);
4626 		queued = 1;
4627 		break;
4628 	}
4629 
4630 	/* tcp_data could move socket to TIME-WAIT */
4631 	if (sk->sk_state != TCP_CLOSE) {
4632 		tcp_data_snd_check(sk, tp);
4633 		tcp_ack_snd_check(sk);
4634 	}
4635 
4636 	if (!queued) {
4637 discard:
4638 		__kfree_skb(skb);
4639 	}
4640 	return 0;
4641 }
4642 
4643 EXPORT_SYMBOL(sysctl_tcp_ecn);
4644 EXPORT_SYMBOL(sysctl_tcp_reordering);
4645 EXPORT_SYMBOL(tcp_parse_options);
4646 EXPORT_SYMBOL(tcp_rcv_established);
4647 EXPORT_SYMBOL(tcp_rcv_state_process);
4648 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
4649