xref: /openbmc/linux/net/ipv4/tcp_input.c (revision b296a6d5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83 
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85 
86 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
87 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
88 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
89 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
90 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
91 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
92 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
93 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
96 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
102 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
103 
104 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
107 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
108 
109 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
110 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
111 
112 #define REXMIT_NONE	0 /* no loss recovery to do */
113 #define REXMIT_LOST	1 /* retransmit packets marked lost */
114 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
115 
116 #if IS_ENABLED(CONFIG_TLS_DEVICE)
117 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
118 
119 void clean_acked_data_enable(struct inet_connection_sock *icsk,
120 			     void (*cad)(struct sock *sk, u32 ack_seq))
121 {
122 	icsk->icsk_clean_acked = cad;
123 	static_branch_deferred_inc(&clean_acked_data_enabled);
124 }
125 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
126 
127 void clean_acked_data_disable(struct inet_connection_sock *icsk)
128 {
129 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
130 	icsk->icsk_clean_acked = NULL;
131 }
132 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
133 
134 void clean_acked_data_flush(void)
135 {
136 	static_key_deferred_flush(&clean_acked_data_enabled);
137 }
138 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
139 #endif
140 
141 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
142 			     unsigned int len)
143 {
144 	static bool __once __read_mostly;
145 
146 	if (!__once) {
147 		struct net_device *dev;
148 
149 		__once = true;
150 
151 		rcu_read_lock();
152 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
153 		if (!dev || len >= dev->mtu)
154 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
155 				dev ? dev->name : "Unknown driver");
156 		rcu_read_unlock();
157 	}
158 }
159 
160 /* Adapt the MSS value used to make delayed ack decision to the
161  * real world.
162  */
163 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
164 {
165 	struct inet_connection_sock *icsk = inet_csk(sk);
166 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
167 	unsigned int len;
168 
169 	icsk->icsk_ack.last_seg_size = 0;
170 
171 	/* skb->len may jitter because of SACKs, even if peer
172 	 * sends good full-sized frames.
173 	 */
174 	len = skb_shinfo(skb)->gso_size ? : skb->len;
175 	if (len >= icsk->icsk_ack.rcv_mss) {
176 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
177 					       tcp_sk(sk)->advmss);
178 		/* Account for possibly-removed options */
179 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
180 				   MAX_TCP_OPTION_SPACE))
181 			tcp_gro_dev_warn(sk, skb, len);
182 	} else {
183 		/* Otherwise, we make more careful check taking into account,
184 		 * that SACKs block is variable.
185 		 *
186 		 * "len" is invariant segment length, including TCP header.
187 		 */
188 		len += skb->data - skb_transport_header(skb);
189 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
190 		    /* If PSH is not set, packet should be
191 		     * full sized, provided peer TCP is not badly broken.
192 		     * This observation (if it is correct 8)) allows
193 		     * to handle super-low mtu links fairly.
194 		     */
195 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
196 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
197 			/* Subtract also invariant (if peer is RFC compliant),
198 			 * tcp header plus fixed timestamp option length.
199 			 * Resulting "len" is MSS free of SACK jitter.
200 			 */
201 			len -= tcp_sk(sk)->tcp_header_len;
202 			icsk->icsk_ack.last_seg_size = len;
203 			if (len == lss) {
204 				icsk->icsk_ack.rcv_mss = len;
205 				return;
206 			}
207 		}
208 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
209 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
210 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
211 	}
212 }
213 
214 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
215 {
216 	struct inet_connection_sock *icsk = inet_csk(sk);
217 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
218 
219 	if (quickacks == 0)
220 		quickacks = 2;
221 	quickacks = min(quickacks, max_quickacks);
222 	if (quickacks > icsk->icsk_ack.quick)
223 		icsk->icsk_ack.quick = quickacks;
224 }
225 
226 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
227 {
228 	struct inet_connection_sock *icsk = inet_csk(sk);
229 
230 	tcp_incr_quickack(sk, max_quickacks);
231 	inet_csk_exit_pingpong_mode(sk);
232 	icsk->icsk_ack.ato = TCP_ATO_MIN;
233 }
234 EXPORT_SYMBOL(tcp_enter_quickack_mode);
235 
236 /* Send ACKs quickly, if "quick" count is not exhausted
237  * and the session is not interactive.
238  */
239 
240 static bool tcp_in_quickack_mode(struct sock *sk)
241 {
242 	const struct inet_connection_sock *icsk = inet_csk(sk);
243 	const struct dst_entry *dst = __sk_dst_get(sk);
244 
245 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
246 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
247 }
248 
249 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
250 {
251 	if (tp->ecn_flags & TCP_ECN_OK)
252 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
253 }
254 
255 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
256 {
257 	if (tcp_hdr(skb)->cwr) {
258 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
259 
260 		/* If the sender is telling us it has entered CWR, then its
261 		 * cwnd may be very low (even just 1 packet), so we should ACK
262 		 * immediately.
263 		 */
264 		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
265 			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
266 	}
267 }
268 
269 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
270 {
271 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
272 }
273 
274 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
275 {
276 	struct tcp_sock *tp = tcp_sk(sk);
277 
278 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
279 	case INET_ECN_NOT_ECT:
280 		/* Funny extension: if ECT is not set on a segment,
281 		 * and we already seen ECT on a previous segment,
282 		 * it is probably a retransmit.
283 		 */
284 		if (tp->ecn_flags & TCP_ECN_SEEN)
285 			tcp_enter_quickack_mode(sk, 2);
286 		break;
287 	case INET_ECN_CE:
288 		if (tcp_ca_needs_ecn(sk))
289 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
290 
291 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
292 			/* Better not delay acks, sender can have a very low cwnd */
293 			tcp_enter_quickack_mode(sk, 2);
294 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
295 		}
296 		tp->ecn_flags |= TCP_ECN_SEEN;
297 		break;
298 	default:
299 		if (tcp_ca_needs_ecn(sk))
300 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
301 		tp->ecn_flags |= TCP_ECN_SEEN;
302 		break;
303 	}
304 }
305 
306 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
307 {
308 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
309 		__tcp_ecn_check_ce(sk, skb);
310 }
311 
312 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
313 {
314 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
315 		tp->ecn_flags &= ~TCP_ECN_OK;
316 }
317 
318 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
319 {
320 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
321 		tp->ecn_flags &= ~TCP_ECN_OK;
322 }
323 
324 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
325 {
326 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
327 		return true;
328 	return false;
329 }
330 
331 /* Buffer size and advertised window tuning.
332  *
333  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
334  */
335 
336 static void tcp_sndbuf_expand(struct sock *sk)
337 {
338 	const struct tcp_sock *tp = tcp_sk(sk);
339 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
340 	int sndmem, per_mss;
341 	u32 nr_segs;
342 
343 	/* Worst case is non GSO/TSO : each frame consumes one skb
344 	 * and skb->head is kmalloced using power of two area of memory
345 	 */
346 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
347 		  MAX_TCP_HEADER +
348 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
349 
350 	per_mss = roundup_pow_of_two(per_mss) +
351 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
352 
353 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
354 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
355 
356 	/* Fast Recovery (RFC 5681 3.2) :
357 	 * Cubic needs 1.7 factor, rounded to 2 to include
358 	 * extra cushion (application might react slowly to EPOLLOUT)
359 	 */
360 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
361 	sndmem *= nr_segs * per_mss;
362 
363 	if (sk->sk_sndbuf < sndmem)
364 		WRITE_ONCE(sk->sk_sndbuf,
365 			   min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]));
366 }
367 
368 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
369  *
370  * All tcp_full_space() is split to two parts: "network" buffer, allocated
371  * forward and advertised in receiver window (tp->rcv_wnd) and
372  * "application buffer", required to isolate scheduling/application
373  * latencies from network.
374  * window_clamp is maximal advertised window. It can be less than
375  * tcp_full_space(), in this case tcp_full_space() - window_clamp
376  * is reserved for "application" buffer. The less window_clamp is
377  * the smoother our behaviour from viewpoint of network, but the lower
378  * throughput and the higher sensitivity of the connection to losses. 8)
379  *
380  * rcv_ssthresh is more strict window_clamp used at "slow start"
381  * phase to predict further behaviour of this connection.
382  * It is used for two goals:
383  * - to enforce header prediction at sender, even when application
384  *   requires some significant "application buffer". It is check #1.
385  * - to prevent pruning of receive queue because of misprediction
386  *   of receiver window. Check #2.
387  *
388  * The scheme does not work when sender sends good segments opening
389  * window and then starts to feed us spaghetti. But it should work
390  * in common situations. Otherwise, we have to rely on queue collapsing.
391  */
392 
393 /* Slow part of check#2. */
394 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
395 {
396 	struct tcp_sock *tp = tcp_sk(sk);
397 	/* Optimize this! */
398 	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
399 	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
400 
401 	while (tp->rcv_ssthresh <= window) {
402 		if (truesize <= skb->len)
403 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
404 
405 		truesize >>= 1;
406 		window >>= 1;
407 	}
408 	return 0;
409 }
410 
411 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
412 {
413 	struct tcp_sock *tp = tcp_sk(sk);
414 	int room;
415 
416 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
417 
418 	/* Check #1 */
419 	if (room > 0 && !tcp_under_memory_pressure(sk)) {
420 		int incr;
421 
422 		/* Check #2. Increase window, if skb with such overhead
423 		 * will fit to rcvbuf in future.
424 		 */
425 		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
426 			incr = 2 * tp->advmss;
427 		else
428 			incr = __tcp_grow_window(sk, skb);
429 
430 		if (incr) {
431 			incr = max_t(int, incr, 2 * skb->len);
432 			tp->rcv_ssthresh += min(room, incr);
433 			inet_csk(sk)->icsk_ack.quick |= 1;
434 		}
435 	}
436 }
437 
438 /* 3. Try to fixup all. It is made immediately after connection enters
439  *    established state.
440  */
441 static void tcp_init_buffer_space(struct sock *sk)
442 {
443 	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
444 	struct tcp_sock *tp = tcp_sk(sk);
445 	int maxwin;
446 
447 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
448 		tcp_sndbuf_expand(sk);
449 
450 	tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss);
451 	tcp_mstamp_refresh(tp);
452 	tp->rcvq_space.time = tp->tcp_mstamp;
453 	tp->rcvq_space.seq = tp->copied_seq;
454 
455 	maxwin = tcp_full_space(sk);
456 
457 	if (tp->window_clamp >= maxwin) {
458 		tp->window_clamp = maxwin;
459 
460 		if (tcp_app_win && maxwin > 4 * tp->advmss)
461 			tp->window_clamp = max(maxwin -
462 					       (maxwin >> tcp_app_win),
463 					       4 * tp->advmss);
464 	}
465 
466 	/* Force reservation of one segment. */
467 	if (tcp_app_win &&
468 	    tp->window_clamp > 2 * tp->advmss &&
469 	    tp->window_clamp + tp->advmss > maxwin)
470 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
471 
472 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
473 	tp->snd_cwnd_stamp = tcp_jiffies32;
474 }
475 
476 /* 4. Recalculate window clamp after socket hit its memory bounds. */
477 static void tcp_clamp_window(struct sock *sk)
478 {
479 	struct tcp_sock *tp = tcp_sk(sk);
480 	struct inet_connection_sock *icsk = inet_csk(sk);
481 	struct net *net = sock_net(sk);
482 
483 	icsk->icsk_ack.quick = 0;
484 
485 	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
486 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
487 	    !tcp_under_memory_pressure(sk) &&
488 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
489 		WRITE_ONCE(sk->sk_rcvbuf,
490 			   min(atomic_read(&sk->sk_rmem_alloc),
491 			       net->ipv4.sysctl_tcp_rmem[2]));
492 	}
493 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
494 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
495 }
496 
497 /* Initialize RCV_MSS value.
498  * RCV_MSS is an our guess about MSS used by the peer.
499  * We haven't any direct information about the MSS.
500  * It's better to underestimate the RCV_MSS rather than overestimate.
501  * Overestimations make us ACKing less frequently than needed.
502  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
503  */
504 void tcp_initialize_rcv_mss(struct sock *sk)
505 {
506 	const struct tcp_sock *tp = tcp_sk(sk);
507 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
508 
509 	hint = min(hint, tp->rcv_wnd / 2);
510 	hint = min(hint, TCP_MSS_DEFAULT);
511 	hint = max(hint, TCP_MIN_MSS);
512 
513 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
514 }
515 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
516 
517 /* Receiver "autotuning" code.
518  *
519  * The algorithm for RTT estimation w/o timestamps is based on
520  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
521  * <https://public.lanl.gov/radiant/pubs.html#DRS>
522  *
523  * More detail on this code can be found at
524  * <http://staff.psc.edu/jheffner/>,
525  * though this reference is out of date.  A new paper
526  * is pending.
527  */
528 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
529 {
530 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
531 	long m = sample;
532 
533 	if (new_sample != 0) {
534 		/* If we sample in larger samples in the non-timestamp
535 		 * case, we could grossly overestimate the RTT especially
536 		 * with chatty applications or bulk transfer apps which
537 		 * are stalled on filesystem I/O.
538 		 *
539 		 * Also, since we are only going for a minimum in the
540 		 * non-timestamp case, we do not smooth things out
541 		 * else with timestamps disabled convergence takes too
542 		 * long.
543 		 */
544 		if (!win_dep) {
545 			m -= (new_sample >> 3);
546 			new_sample += m;
547 		} else {
548 			m <<= 3;
549 			if (m < new_sample)
550 				new_sample = m;
551 		}
552 	} else {
553 		/* No previous measure. */
554 		new_sample = m << 3;
555 	}
556 
557 	tp->rcv_rtt_est.rtt_us = new_sample;
558 }
559 
560 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
561 {
562 	u32 delta_us;
563 
564 	if (tp->rcv_rtt_est.time == 0)
565 		goto new_measure;
566 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
567 		return;
568 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
569 	if (!delta_us)
570 		delta_us = 1;
571 	tcp_rcv_rtt_update(tp, delta_us, 1);
572 
573 new_measure:
574 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
575 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
576 }
577 
578 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
579 					  const struct sk_buff *skb)
580 {
581 	struct tcp_sock *tp = tcp_sk(sk);
582 
583 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
584 		return;
585 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
586 
587 	if (TCP_SKB_CB(skb)->end_seq -
588 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
589 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
590 		u32 delta_us;
591 
592 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
593 			if (!delta)
594 				delta = 1;
595 			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
596 			tcp_rcv_rtt_update(tp, delta_us, 0);
597 		}
598 	}
599 }
600 
601 /*
602  * This function should be called every time data is copied to user space.
603  * It calculates the appropriate TCP receive buffer space.
604  */
605 void tcp_rcv_space_adjust(struct sock *sk)
606 {
607 	struct tcp_sock *tp = tcp_sk(sk);
608 	u32 copied;
609 	int time;
610 
611 	trace_tcp_rcv_space_adjust(sk);
612 
613 	tcp_mstamp_refresh(tp);
614 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
615 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
616 		return;
617 
618 	/* Number of bytes copied to user in last RTT */
619 	copied = tp->copied_seq - tp->rcvq_space.seq;
620 	if (copied <= tp->rcvq_space.space)
621 		goto new_measure;
622 
623 	/* A bit of theory :
624 	 * copied = bytes received in previous RTT, our base window
625 	 * To cope with packet losses, we need a 2x factor
626 	 * To cope with slow start, and sender growing its cwin by 100 %
627 	 * every RTT, we need a 4x factor, because the ACK we are sending
628 	 * now is for the next RTT, not the current one :
629 	 * <prev RTT . ><current RTT .. ><next RTT .... >
630 	 */
631 
632 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
633 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
634 		int rcvmem, rcvbuf;
635 		u64 rcvwin, grow;
636 
637 		/* minimal window to cope with packet losses, assuming
638 		 * steady state. Add some cushion because of small variations.
639 		 */
640 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
641 
642 		/* Accommodate for sender rate increase (eg. slow start) */
643 		grow = rcvwin * (copied - tp->rcvq_space.space);
644 		do_div(grow, tp->rcvq_space.space);
645 		rcvwin += (grow << 1);
646 
647 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
648 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
649 			rcvmem += 128;
650 
651 		do_div(rcvwin, tp->advmss);
652 		rcvbuf = min_t(u64, rcvwin * rcvmem,
653 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
654 		if (rcvbuf > sk->sk_rcvbuf) {
655 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
656 
657 			/* Make the window clamp follow along.  */
658 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
659 		}
660 	}
661 	tp->rcvq_space.space = copied;
662 
663 new_measure:
664 	tp->rcvq_space.seq = tp->copied_seq;
665 	tp->rcvq_space.time = tp->tcp_mstamp;
666 }
667 
668 /* There is something which you must keep in mind when you analyze the
669  * behavior of the tp->ato delayed ack timeout interval.  When a
670  * connection starts up, we want to ack as quickly as possible.  The
671  * problem is that "good" TCP's do slow start at the beginning of data
672  * transmission.  The means that until we send the first few ACK's the
673  * sender will sit on his end and only queue most of his data, because
674  * he can only send snd_cwnd unacked packets at any given time.  For
675  * each ACK we send, he increments snd_cwnd and transmits more of his
676  * queue.  -DaveM
677  */
678 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
679 {
680 	struct tcp_sock *tp = tcp_sk(sk);
681 	struct inet_connection_sock *icsk = inet_csk(sk);
682 	u32 now;
683 
684 	inet_csk_schedule_ack(sk);
685 
686 	tcp_measure_rcv_mss(sk, skb);
687 
688 	tcp_rcv_rtt_measure(tp);
689 
690 	now = tcp_jiffies32;
691 
692 	if (!icsk->icsk_ack.ato) {
693 		/* The _first_ data packet received, initialize
694 		 * delayed ACK engine.
695 		 */
696 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
697 		icsk->icsk_ack.ato = TCP_ATO_MIN;
698 	} else {
699 		int m = now - icsk->icsk_ack.lrcvtime;
700 
701 		if (m <= TCP_ATO_MIN / 2) {
702 			/* The fastest case is the first. */
703 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
704 		} else if (m < icsk->icsk_ack.ato) {
705 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
706 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
707 				icsk->icsk_ack.ato = icsk->icsk_rto;
708 		} else if (m > icsk->icsk_rto) {
709 			/* Too long gap. Apparently sender failed to
710 			 * restart window, so that we send ACKs quickly.
711 			 */
712 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
713 			sk_mem_reclaim(sk);
714 		}
715 	}
716 	icsk->icsk_ack.lrcvtime = now;
717 
718 	tcp_ecn_check_ce(sk, skb);
719 
720 	if (skb->len >= 128)
721 		tcp_grow_window(sk, skb);
722 }
723 
724 /* Called to compute a smoothed rtt estimate. The data fed to this
725  * routine either comes from timestamps, or from segments that were
726  * known _not_ to have been retransmitted [see Karn/Partridge
727  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
728  * piece by Van Jacobson.
729  * NOTE: the next three routines used to be one big routine.
730  * To save cycles in the RFC 1323 implementation it was better to break
731  * it up into three procedures. -- erics
732  */
733 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
734 {
735 	struct tcp_sock *tp = tcp_sk(sk);
736 	long m = mrtt_us; /* RTT */
737 	u32 srtt = tp->srtt_us;
738 
739 	/*	The following amusing code comes from Jacobson's
740 	 *	article in SIGCOMM '88.  Note that rtt and mdev
741 	 *	are scaled versions of rtt and mean deviation.
742 	 *	This is designed to be as fast as possible
743 	 *	m stands for "measurement".
744 	 *
745 	 *	On a 1990 paper the rto value is changed to:
746 	 *	RTO = rtt + 4 * mdev
747 	 *
748 	 * Funny. This algorithm seems to be very broken.
749 	 * These formulae increase RTO, when it should be decreased, increase
750 	 * too slowly, when it should be increased quickly, decrease too quickly
751 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
752 	 * does not matter how to _calculate_ it. Seems, it was trap
753 	 * that VJ failed to avoid. 8)
754 	 */
755 	if (srtt != 0) {
756 		m -= (srtt >> 3);	/* m is now error in rtt est */
757 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
758 		if (m < 0) {
759 			m = -m;		/* m is now abs(error) */
760 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
761 			/* This is similar to one of Eifel findings.
762 			 * Eifel blocks mdev updates when rtt decreases.
763 			 * This solution is a bit different: we use finer gain
764 			 * for mdev in this case (alpha*beta).
765 			 * Like Eifel it also prevents growth of rto,
766 			 * but also it limits too fast rto decreases,
767 			 * happening in pure Eifel.
768 			 */
769 			if (m > 0)
770 				m >>= 3;
771 		} else {
772 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
773 		}
774 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
775 		if (tp->mdev_us > tp->mdev_max_us) {
776 			tp->mdev_max_us = tp->mdev_us;
777 			if (tp->mdev_max_us > tp->rttvar_us)
778 				tp->rttvar_us = tp->mdev_max_us;
779 		}
780 		if (after(tp->snd_una, tp->rtt_seq)) {
781 			if (tp->mdev_max_us < tp->rttvar_us)
782 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
783 			tp->rtt_seq = tp->snd_nxt;
784 			tp->mdev_max_us = tcp_rto_min_us(sk);
785 
786 			tcp_bpf_rtt(sk);
787 		}
788 	} else {
789 		/* no previous measure. */
790 		srtt = m << 3;		/* take the measured time to be rtt */
791 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
792 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
793 		tp->mdev_max_us = tp->rttvar_us;
794 		tp->rtt_seq = tp->snd_nxt;
795 
796 		tcp_bpf_rtt(sk);
797 	}
798 	tp->srtt_us = max(1U, srtt);
799 }
800 
801 static void tcp_update_pacing_rate(struct sock *sk)
802 {
803 	const struct tcp_sock *tp = tcp_sk(sk);
804 	u64 rate;
805 
806 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
807 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
808 
809 	/* current rate is (cwnd * mss) / srtt
810 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
811 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
812 	 *
813 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
814 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
815 	 *	 end of slow start and should slow down.
816 	 */
817 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
818 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
819 	else
820 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
821 
822 	rate *= max(tp->snd_cwnd, tp->packets_out);
823 
824 	if (likely(tp->srtt_us))
825 		do_div(rate, tp->srtt_us);
826 
827 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
828 	 * without any lock. We want to make sure compiler wont store
829 	 * intermediate values in this location.
830 	 */
831 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
832 					     sk->sk_max_pacing_rate));
833 }
834 
835 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
836  * routine referred to above.
837  */
838 static void tcp_set_rto(struct sock *sk)
839 {
840 	const struct tcp_sock *tp = tcp_sk(sk);
841 	/* Old crap is replaced with new one. 8)
842 	 *
843 	 * More seriously:
844 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
845 	 *    It cannot be less due to utterly erratic ACK generation made
846 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
847 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
848 	 *    is invisible. Actually, Linux-2.4 also generates erratic
849 	 *    ACKs in some circumstances.
850 	 */
851 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
852 
853 	/* 2. Fixups made earlier cannot be right.
854 	 *    If we do not estimate RTO correctly without them,
855 	 *    all the algo is pure shit and should be replaced
856 	 *    with correct one. It is exactly, which we pretend to do.
857 	 */
858 
859 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
860 	 * guarantees that rto is higher.
861 	 */
862 	tcp_bound_rto(sk);
863 }
864 
865 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
866 {
867 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
868 
869 	if (!cwnd)
870 		cwnd = TCP_INIT_CWND;
871 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
872 }
873 
874 struct tcp_sacktag_state {
875 	/* Timestamps for earliest and latest never-retransmitted segment
876 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
877 	 * but congestion control should still get an accurate delay signal.
878 	 */
879 	u64	first_sackt;
880 	u64	last_sackt;
881 	u32	reord;
882 	u32	sack_delivered;
883 	int	flag;
884 	unsigned int mss_now;
885 	struct rate_sample *rate;
886 };
887 
888 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
889  * and spurious retransmission information if this DSACK is unlikely caused by
890  * sender's action:
891  * - DSACKed sequence range is larger than maximum receiver's window.
892  * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
893  */
894 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
895 			  u32 end_seq, struct tcp_sacktag_state *state)
896 {
897 	u32 seq_len, dup_segs = 1;
898 
899 	if (!before(start_seq, end_seq))
900 		return 0;
901 
902 	seq_len = end_seq - start_seq;
903 	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
904 	if (seq_len > tp->max_window)
905 		return 0;
906 	if (seq_len > tp->mss_cache)
907 		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
908 
909 	tp->dsack_dups += dup_segs;
910 	/* Skip the DSACK if dup segs weren't retransmitted by sender */
911 	if (tp->dsack_dups > tp->total_retrans)
912 		return 0;
913 
914 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
915 	tp->rack.dsack_seen = 1;
916 
917 	state->flag |= FLAG_DSACKING_ACK;
918 	/* A spurious retransmission is delivered */
919 	state->sack_delivered += dup_segs;
920 
921 	return dup_segs;
922 }
923 
924 /* It's reordering when higher sequence was delivered (i.e. sacked) before
925  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
926  * distance is approximated in full-mss packet distance ("reordering").
927  */
928 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
929 				      const int ts)
930 {
931 	struct tcp_sock *tp = tcp_sk(sk);
932 	const u32 mss = tp->mss_cache;
933 	u32 fack, metric;
934 
935 	fack = tcp_highest_sack_seq(tp);
936 	if (!before(low_seq, fack))
937 		return;
938 
939 	metric = fack - low_seq;
940 	if ((metric > tp->reordering * mss) && mss) {
941 #if FASTRETRANS_DEBUG > 1
942 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
943 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
944 			 tp->reordering,
945 			 0,
946 			 tp->sacked_out,
947 			 tp->undo_marker ? tp->undo_retrans : 0);
948 #endif
949 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
950 				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
951 	}
952 
953 	/* This exciting event is worth to be remembered. 8) */
954 	tp->reord_seen++;
955 	NET_INC_STATS(sock_net(sk),
956 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
957 }
958 
959 /* This must be called before lost_out is incremented */
960 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
961 {
962 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
963 	    (tp->retransmit_skb_hint &&
964 	     before(TCP_SKB_CB(skb)->seq,
965 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
966 		tp->retransmit_skb_hint = skb;
967 }
968 
969 /* Sum the number of packets on the wire we have marked as lost.
970  * There are two cases we care about here:
971  * a) Packet hasn't been marked lost (nor retransmitted),
972  *    and this is the first loss.
973  * b) Packet has been marked both lost and retransmitted,
974  *    and this means we think it was lost again.
975  */
976 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
977 {
978 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
979 
980 	if (!(sacked & TCPCB_LOST) ||
981 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
982 		tp->lost += tcp_skb_pcount(skb);
983 }
984 
985 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
986 {
987 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
988 		tcp_verify_retransmit_hint(tp, skb);
989 
990 		tp->lost_out += tcp_skb_pcount(skb);
991 		tcp_sum_lost(tp, skb);
992 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
993 	}
994 }
995 
996 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
997 {
998 	tcp_verify_retransmit_hint(tp, skb);
999 
1000 	tcp_sum_lost(tp, skb);
1001 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1002 		tp->lost_out += tcp_skb_pcount(skb);
1003 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1004 	}
1005 }
1006 
1007 /* Updates the delivered and delivered_ce counts */
1008 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1009 				bool ece_ack)
1010 {
1011 	tp->delivered += delivered;
1012 	if (ece_ack)
1013 		tp->delivered_ce += delivered;
1014 }
1015 
1016 /* This procedure tags the retransmission queue when SACKs arrive.
1017  *
1018  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1019  * Packets in queue with these bits set are counted in variables
1020  * sacked_out, retrans_out and lost_out, correspondingly.
1021  *
1022  * Valid combinations are:
1023  * Tag  InFlight	Description
1024  * 0	1		- orig segment is in flight.
1025  * S	0		- nothing flies, orig reached receiver.
1026  * L	0		- nothing flies, orig lost by net.
1027  * R	2		- both orig and retransmit are in flight.
1028  * L|R	1		- orig is lost, retransmit is in flight.
1029  * S|R  1		- orig reached receiver, retrans is still in flight.
1030  * (L|S|R is logically valid, it could occur when L|R is sacked,
1031  *  but it is equivalent to plain S and code short-curcuits it to S.
1032  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1033  *
1034  * These 6 states form finite state machine, controlled by the following events:
1035  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1036  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1037  * 3. Loss detection event of two flavors:
1038  *	A. Scoreboard estimator decided the packet is lost.
1039  *	   A'. Reno "three dupacks" marks head of queue lost.
1040  *	B. SACK arrives sacking SND.NXT at the moment, when the
1041  *	   segment was retransmitted.
1042  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1043  *
1044  * It is pleasant to note, that state diagram turns out to be commutative,
1045  * so that we are allowed not to be bothered by order of our actions,
1046  * when multiple events arrive simultaneously. (see the function below).
1047  *
1048  * Reordering detection.
1049  * --------------------
1050  * Reordering metric is maximal distance, which a packet can be displaced
1051  * in packet stream. With SACKs we can estimate it:
1052  *
1053  * 1. SACK fills old hole and the corresponding segment was not
1054  *    ever retransmitted -> reordering. Alas, we cannot use it
1055  *    when segment was retransmitted.
1056  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1057  *    for retransmitted and already SACKed segment -> reordering..
1058  * Both of these heuristics are not used in Loss state, when we cannot
1059  * account for retransmits accurately.
1060  *
1061  * SACK block validation.
1062  * ----------------------
1063  *
1064  * SACK block range validation checks that the received SACK block fits to
1065  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1066  * Note that SND.UNA is not included to the range though being valid because
1067  * it means that the receiver is rather inconsistent with itself reporting
1068  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1069  * perfectly valid, however, in light of RFC2018 which explicitly states
1070  * that "SACK block MUST reflect the newest segment.  Even if the newest
1071  * segment is going to be discarded ...", not that it looks very clever
1072  * in case of head skb. Due to potentional receiver driven attacks, we
1073  * choose to avoid immediate execution of a walk in write queue due to
1074  * reneging and defer head skb's loss recovery to standard loss recovery
1075  * procedure that will eventually trigger (nothing forbids us doing this).
1076  *
1077  * Implements also blockage to start_seq wrap-around. Problem lies in the
1078  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1079  * there's no guarantee that it will be before snd_nxt (n). The problem
1080  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1081  * wrap (s_w):
1082  *
1083  *         <- outs wnd ->                          <- wrapzone ->
1084  *         u     e      n                         u_w   e_w  s n_w
1085  *         |     |      |                          |     |   |  |
1086  * |<------------+------+----- TCP seqno space --------------+---------->|
1087  * ...-- <2^31 ->|                                           |<--------...
1088  * ...---- >2^31 ------>|                                    |<--------...
1089  *
1090  * Current code wouldn't be vulnerable but it's better still to discard such
1091  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1092  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1093  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1094  * equal to the ideal case (infinite seqno space without wrap caused issues).
1095  *
1096  * With D-SACK the lower bound is extended to cover sequence space below
1097  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1098  * again, D-SACK block must not to go across snd_una (for the same reason as
1099  * for the normal SACK blocks, explained above). But there all simplicity
1100  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1101  * fully below undo_marker they do not affect behavior in anyway and can
1102  * therefore be safely ignored. In rare cases (which are more or less
1103  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1104  * fragmentation and packet reordering past skb's retransmission. To consider
1105  * them correctly, the acceptable range must be extended even more though
1106  * the exact amount is rather hard to quantify. However, tp->max_window can
1107  * be used as an exaggerated estimate.
1108  */
1109 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1110 				   u32 start_seq, u32 end_seq)
1111 {
1112 	/* Too far in future, or reversed (interpretation is ambiguous) */
1113 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1114 		return false;
1115 
1116 	/* Nasty start_seq wrap-around check (see comments above) */
1117 	if (!before(start_seq, tp->snd_nxt))
1118 		return false;
1119 
1120 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1121 	 * start_seq == snd_una is non-sensical (see comments above)
1122 	 */
1123 	if (after(start_seq, tp->snd_una))
1124 		return true;
1125 
1126 	if (!is_dsack || !tp->undo_marker)
1127 		return false;
1128 
1129 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1130 	if (after(end_seq, tp->snd_una))
1131 		return false;
1132 
1133 	if (!before(start_seq, tp->undo_marker))
1134 		return true;
1135 
1136 	/* Too old */
1137 	if (!after(end_seq, tp->undo_marker))
1138 		return false;
1139 
1140 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1141 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1142 	 */
1143 	return !before(start_seq, end_seq - tp->max_window);
1144 }
1145 
1146 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1147 			    struct tcp_sack_block_wire *sp, int num_sacks,
1148 			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1149 {
1150 	struct tcp_sock *tp = tcp_sk(sk);
1151 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1152 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1153 	u32 dup_segs;
1154 
1155 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1156 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1157 	} else if (num_sacks > 1) {
1158 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1159 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1160 
1161 		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1162 			return false;
1163 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1164 	} else {
1165 		return false;
1166 	}
1167 
1168 	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1169 	if (!dup_segs) {	/* Skip dubious DSACK */
1170 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1171 		return false;
1172 	}
1173 
1174 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1175 
1176 	/* D-SACK for already forgotten data... Do dumb counting. */
1177 	if (tp->undo_marker && tp->undo_retrans > 0 &&
1178 	    !after(end_seq_0, prior_snd_una) &&
1179 	    after(end_seq_0, tp->undo_marker))
1180 		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1181 
1182 	return true;
1183 }
1184 
1185 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1186  * the incoming SACK may not exactly match but we can find smaller MSS
1187  * aligned portion of it that matches. Therefore we might need to fragment
1188  * which may fail and creates some hassle (caller must handle error case
1189  * returns).
1190  *
1191  * FIXME: this could be merged to shift decision code
1192  */
1193 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1194 				  u32 start_seq, u32 end_seq)
1195 {
1196 	int err;
1197 	bool in_sack;
1198 	unsigned int pkt_len;
1199 	unsigned int mss;
1200 
1201 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1202 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1203 
1204 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1205 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1206 		mss = tcp_skb_mss(skb);
1207 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1208 
1209 		if (!in_sack) {
1210 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1211 			if (pkt_len < mss)
1212 				pkt_len = mss;
1213 		} else {
1214 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1215 			if (pkt_len < mss)
1216 				return -EINVAL;
1217 		}
1218 
1219 		/* Round if necessary so that SACKs cover only full MSSes
1220 		 * and/or the remaining small portion (if present)
1221 		 */
1222 		if (pkt_len > mss) {
1223 			unsigned int new_len = (pkt_len / mss) * mss;
1224 			if (!in_sack && new_len < pkt_len)
1225 				new_len += mss;
1226 			pkt_len = new_len;
1227 		}
1228 
1229 		if (pkt_len >= skb->len && !in_sack)
1230 			return 0;
1231 
1232 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1233 				   pkt_len, mss, GFP_ATOMIC);
1234 		if (err < 0)
1235 			return err;
1236 	}
1237 
1238 	return in_sack;
1239 }
1240 
1241 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1242 static u8 tcp_sacktag_one(struct sock *sk,
1243 			  struct tcp_sacktag_state *state, u8 sacked,
1244 			  u32 start_seq, u32 end_seq,
1245 			  int dup_sack, int pcount,
1246 			  u64 xmit_time)
1247 {
1248 	struct tcp_sock *tp = tcp_sk(sk);
1249 
1250 	/* Account D-SACK for retransmitted packet. */
1251 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1252 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1253 		    after(end_seq, tp->undo_marker))
1254 			tp->undo_retrans--;
1255 		if ((sacked & TCPCB_SACKED_ACKED) &&
1256 		    before(start_seq, state->reord))
1257 				state->reord = start_seq;
1258 	}
1259 
1260 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1261 	if (!after(end_seq, tp->snd_una))
1262 		return sacked;
1263 
1264 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1265 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1266 
1267 		if (sacked & TCPCB_SACKED_RETRANS) {
1268 			/* If the segment is not tagged as lost,
1269 			 * we do not clear RETRANS, believing
1270 			 * that retransmission is still in flight.
1271 			 */
1272 			if (sacked & TCPCB_LOST) {
1273 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1274 				tp->lost_out -= pcount;
1275 				tp->retrans_out -= pcount;
1276 			}
1277 		} else {
1278 			if (!(sacked & TCPCB_RETRANS)) {
1279 				/* New sack for not retransmitted frame,
1280 				 * which was in hole. It is reordering.
1281 				 */
1282 				if (before(start_seq,
1283 					   tcp_highest_sack_seq(tp)) &&
1284 				    before(start_seq, state->reord))
1285 					state->reord = start_seq;
1286 
1287 				if (!after(end_seq, tp->high_seq))
1288 					state->flag |= FLAG_ORIG_SACK_ACKED;
1289 				if (state->first_sackt == 0)
1290 					state->first_sackt = xmit_time;
1291 				state->last_sackt = xmit_time;
1292 			}
1293 
1294 			if (sacked & TCPCB_LOST) {
1295 				sacked &= ~TCPCB_LOST;
1296 				tp->lost_out -= pcount;
1297 			}
1298 		}
1299 
1300 		sacked |= TCPCB_SACKED_ACKED;
1301 		state->flag |= FLAG_DATA_SACKED;
1302 		tp->sacked_out += pcount;
1303 		/* Out-of-order packets delivered */
1304 		state->sack_delivered += pcount;
1305 
1306 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1307 		if (tp->lost_skb_hint &&
1308 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1309 			tp->lost_cnt_hint += pcount;
1310 	}
1311 
1312 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1313 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1314 	 * are accounted above as well.
1315 	 */
1316 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1317 		sacked &= ~TCPCB_SACKED_RETRANS;
1318 		tp->retrans_out -= pcount;
1319 	}
1320 
1321 	return sacked;
1322 }
1323 
1324 /* Shift newly-SACKed bytes from this skb to the immediately previous
1325  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1326  */
1327 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1328 			    struct sk_buff *skb,
1329 			    struct tcp_sacktag_state *state,
1330 			    unsigned int pcount, int shifted, int mss,
1331 			    bool dup_sack)
1332 {
1333 	struct tcp_sock *tp = tcp_sk(sk);
1334 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1335 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1336 
1337 	BUG_ON(!pcount);
1338 
1339 	/* Adjust counters and hints for the newly sacked sequence
1340 	 * range but discard the return value since prev is already
1341 	 * marked. We must tag the range first because the seq
1342 	 * advancement below implicitly advances
1343 	 * tcp_highest_sack_seq() when skb is highest_sack.
1344 	 */
1345 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1346 			start_seq, end_seq, dup_sack, pcount,
1347 			tcp_skb_timestamp_us(skb));
1348 	tcp_rate_skb_delivered(sk, skb, state->rate);
1349 
1350 	if (skb == tp->lost_skb_hint)
1351 		tp->lost_cnt_hint += pcount;
1352 
1353 	TCP_SKB_CB(prev)->end_seq += shifted;
1354 	TCP_SKB_CB(skb)->seq += shifted;
1355 
1356 	tcp_skb_pcount_add(prev, pcount);
1357 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1358 	tcp_skb_pcount_add(skb, -pcount);
1359 
1360 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1361 	 * in theory this shouldn't be necessary but as long as DSACK
1362 	 * code can come after this skb later on it's better to keep
1363 	 * setting gso_size to something.
1364 	 */
1365 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1366 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1367 
1368 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1369 	if (tcp_skb_pcount(skb) <= 1)
1370 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1371 
1372 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1373 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1374 
1375 	if (skb->len > 0) {
1376 		BUG_ON(!tcp_skb_pcount(skb));
1377 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1378 		return false;
1379 	}
1380 
1381 	/* Whole SKB was eaten :-) */
1382 
1383 	if (skb == tp->retransmit_skb_hint)
1384 		tp->retransmit_skb_hint = prev;
1385 	if (skb == tp->lost_skb_hint) {
1386 		tp->lost_skb_hint = prev;
1387 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1388 	}
1389 
1390 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1391 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1392 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1393 		TCP_SKB_CB(prev)->end_seq++;
1394 
1395 	if (skb == tcp_highest_sack(sk))
1396 		tcp_advance_highest_sack(sk, skb);
1397 
1398 	tcp_skb_collapse_tstamp(prev, skb);
1399 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1400 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1401 
1402 	tcp_rtx_queue_unlink_and_free(skb, sk);
1403 
1404 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1405 
1406 	return true;
1407 }
1408 
1409 /* I wish gso_size would have a bit more sane initialization than
1410  * something-or-zero which complicates things
1411  */
1412 static int tcp_skb_seglen(const struct sk_buff *skb)
1413 {
1414 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1415 }
1416 
1417 /* Shifting pages past head area doesn't work */
1418 static int skb_can_shift(const struct sk_buff *skb)
1419 {
1420 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1421 }
1422 
1423 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1424 		  int pcount, int shiftlen)
1425 {
1426 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1427 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1428 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1429 	 * even if current MSS is bigger.
1430 	 */
1431 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1432 		return 0;
1433 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1434 		return 0;
1435 	return skb_shift(to, from, shiftlen);
1436 }
1437 
1438 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1439  * skb.
1440  */
1441 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1442 					  struct tcp_sacktag_state *state,
1443 					  u32 start_seq, u32 end_seq,
1444 					  bool dup_sack)
1445 {
1446 	struct tcp_sock *tp = tcp_sk(sk);
1447 	struct sk_buff *prev;
1448 	int mss;
1449 	int pcount = 0;
1450 	int len;
1451 	int in_sack;
1452 
1453 	/* Normally R but no L won't result in plain S */
1454 	if (!dup_sack &&
1455 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1456 		goto fallback;
1457 	if (!skb_can_shift(skb))
1458 		goto fallback;
1459 	/* This frame is about to be dropped (was ACKed). */
1460 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1461 		goto fallback;
1462 
1463 	/* Can only happen with delayed DSACK + discard craziness */
1464 	prev = skb_rb_prev(skb);
1465 	if (!prev)
1466 		goto fallback;
1467 
1468 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1469 		goto fallback;
1470 
1471 	if (!tcp_skb_can_collapse(prev, skb))
1472 		goto fallback;
1473 
1474 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1475 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1476 
1477 	if (in_sack) {
1478 		len = skb->len;
1479 		pcount = tcp_skb_pcount(skb);
1480 		mss = tcp_skb_seglen(skb);
1481 
1482 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1483 		 * drop this restriction as unnecessary
1484 		 */
1485 		if (mss != tcp_skb_seglen(prev))
1486 			goto fallback;
1487 	} else {
1488 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1489 			goto noop;
1490 		/* CHECKME: This is non-MSS split case only?, this will
1491 		 * cause skipped skbs due to advancing loop btw, original
1492 		 * has that feature too
1493 		 */
1494 		if (tcp_skb_pcount(skb) <= 1)
1495 			goto noop;
1496 
1497 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1498 		if (!in_sack) {
1499 			/* TODO: head merge to next could be attempted here
1500 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1501 			 * though it might not be worth of the additional hassle
1502 			 *
1503 			 * ...we can probably just fallback to what was done
1504 			 * previously. We could try merging non-SACKed ones
1505 			 * as well but it probably isn't going to buy off
1506 			 * because later SACKs might again split them, and
1507 			 * it would make skb timestamp tracking considerably
1508 			 * harder problem.
1509 			 */
1510 			goto fallback;
1511 		}
1512 
1513 		len = end_seq - TCP_SKB_CB(skb)->seq;
1514 		BUG_ON(len < 0);
1515 		BUG_ON(len > skb->len);
1516 
1517 		/* MSS boundaries should be honoured or else pcount will
1518 		 * severely break even though it makes things bit trickier.
1519 		 * Optimize common case to avoid most of the divides
1520 		 */
1521 		mss = tcp_skb_mss(skb);
1522 
1523 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1524 		 * drop this restriction as unnecessary
1525 		 */
1526 		if (mss != tcp_skb_seglen(prev))
1527 			goto fallback;
1528 
1529 		if (len == mss) {
1530 			pcount = 1;
1531 		} else if (len < mss) {
1532 			goto noop;
1533 		} else {
1534 			pcount = len / mss;
1535 			len = pcount * mss;
1536 		}
1537 	}
1538 
1539 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1540 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1541 		goto fallback;
1542 
1543 	if (!tcp_skb_shift(prev, skb, pcount, len))
1544 		goto fallback;
1545 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1546 		goto out;
1547 
1548 	/* Hole filled allows collapsing with the next as well, this is very
1549 	 * useful when hole on every nth skb pattern happens
1550 	 */
1551 	skb = skb_rb_next(prev);
1552 	if (!skb)
1553 		goto out;
1554 
1555 	if (!skb_can_shift(skb) ||
1556 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1557 	    (mss != tcp_skb_seglen(skb)))
1558 		goto out;
1559 
1560 	len = skb->len;
1561 	pcount = tcp_skb_pcount(skb);
1562 	if (tcp_skb_shift(prev, skb, pcount, len))
1563 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1564 				len, mss, 0);
1565 
1566 out:
1567 	return prev;
1568 
1569 noop:
1570 	return skb;
1571 
1572 fallback:
1573 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1574 	return NULL;
1575 }
1576 
1577 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1578 					struct tcp_sack_block *next_dup,
1579 					struct tcp_sacktag_state *state,
1580 					u32 start_seq, u32 end_seq,
1581 					bool dup_sack_in)
1582 {
1583 	struct tcp_sock *tp = tcp_sk(sk);
1584 	struct sk_buff *tmp;
1585 
1586 	skb_rbtree_walk_from(skb) {
1587 		int in_sack = 0;
1588 		bool dup_sack = dup_sack_in;
1589 
1590 		/* queue is in-order => we can short-circuit the walk early */
1591 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1592 			break;
1593 
1594 		if (next_dup  &&
1595 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1596 			in_sack = tcp_match_skb_to_sack(sk, skb,
1597 							next_dup->start_seq,
1598 							next_dup->end_seq);
1599 			if (in_sack > 0)
1600 				dup_sack = true;
1601 		}
1602 
1603 		/* skb reference here is a bit tricky to get right, since
1604 		 * shifting can eat and free both this skb and the next,
1605 		 * so not even _safe variant of the loop is enough.
1606 		 */
1607 		if (in_sack <= 0) {
1608 			tmp = tcp_shift_skb_data(sk, skb, state,
1609 						 start_seq, end_seq, dup_sack);
1610 			if (tmp) {
1611 				if (tmp != skb) {
1612 					skb = tmp;
1613 					continue;
1614 				}
1615 
1616 				in_sack = 0;
1617 			} else {
1618 				in_sack = tcp_match_skb_to_sack(sk, skb,
1619 								start_seq,
1620 								end_seq);
1621 			}
1622 		}
1623 
1624 		if (unlikely(in_sack < 0))
1625 			break;
1626 
1627 		if (in_sack) {
1628 			TCP_SKB_CB(skb)->sacked =
1629 				tcp_sacktag_one(sk,
1630 						state,
1631 						TCP_SKB_CB(skb)->sacked,
1632 						TCP_SKB_CB(skb)->seq,
1633 						TCP_SKB_CB(skb)->end_seq,
1634 						dup_sack,
1635 						tcp_skb_pcount(skb),
1636 						tcp_skb_timestamp_us(skb));
1637 			tcp_rate_skb_delivered(sk, skb, state->rate);
1638 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1639 				list_del_init(&skb->tcp_tsorted_anchor);
1640 
1641 			if (!before(TCP_SKB_CB(skb)->seq,
1642 				    tcp_highest_sack_seq(tp)))
1643 				tcp_advance_highest_sack(sk, skb);
1644 		}
1645 	}
1646 	return skb;
1647 }
1648 
1649 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1650 {
1651 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1652 	struct sk_buff *skb;
1653 
1654 	while (*p) {
1655 		parent = *p;
1656 		skb = rb_to_skb(parent);
1657 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1658 			p = &parent->rb_left;
1659 			continue;
1660 		}
1661 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1662 			p = &parent->rb_right;
1663 			continue;
1664 		}
1665 		return skb;
1666 	}
1667 	return NULL;
1668 }
1669 
1670 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1671 					u32 skip_to_seq)
1672 {
1673 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1674 		return skb;
1675 
1676 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1677 }
1678 
1679 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1680 						struct sock *sk,
1681 						struct tcp_sack_block *next_dup,
1682 						struct tcp_sacktag_state *state,
1683 						u32 skip_to_seq)
1684 {
1685 	if (!next_dup)
1686 		return skb;
1687 
1688 	if (before(next_dup->start_seq, skip_to_seq)) {
1689 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1690 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1691 				       next_dup->start_seq, next_dup->end_seq,
1692 				       1);
1693 	}
1694 
1695 	return skb;
1696 }
1697 
1698 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1699 {
1700 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1701 }
1702 
1703 static int
1704 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1705 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1706 {
1707 	struct tcp_sock *tp = tcp_sk(sk);
1708 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1709 				    TCP_SKB_CB(ack_skb)->sacked);
1710 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1711 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1712 	struct tcp_sack_block *cache;
1713 	struct sk_buff *skb;
1714 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1715 	int used_sacks;
1716 	bool found_dup_sack = false;
1717 	int i, j;
1718 	int first_sack_index;
1719 
1720 	state->flag = 0;
1721 	state->reord = tp->snd_nxt;
1722 
1723 	if (!tp->sacked_out)
1724 		tcp_highest_sack_reset(sk);
1725 
1726 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1727 					 num_sacks, prior_snd_una, state);
1728 
1729 	/* Eliminate too old ACKs, but take into
1730 	 * account more or less fresh ones, they can
1731 	 * contain valid SACK info.
1732 	 */
1733 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1734 		return 0;
1735 
1736 	if (!tp->packets_out)
1737 		goto out;
1738 
1739 	used_sacks = 0;
1740 	first_sack_index = 0;
1741 	for (i = 0; i < num_sacks; i++) {
1742 		bool dup_sack = !i && found_dup_sack;
1743 
1744 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1745 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1746 
1747 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1748 					    sp[used_sacks].start_seq,
1749 					    sp[used_sacks].end_seq)) {
1750 			int mib_idx;
1751 
1752 			if (dup_sack) {
1753 				if (!tp->undo_marker)
1754 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1755 				else
1756 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1757 			} else {
1758 				/* Don't count olds caused by ACK reordering */
1759 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1760 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1761 					continue;
1762 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1763 			}
1764 
1765 			NET_INC_STATS(sock_net(sk), mib_idx);
1766 			if (i == 0)
1767 				first_sack_index = -1;
1768 			continue;
1769 		}
1770 
1771 		/* Ignore very old stuff early */
1772 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1773 			if (i == 0)
1774 				first_sack_index = -1;
1775 			continue;
1776 		}
1777 
1778 		used_sacks++;
1779 	}
1780 
1781 	/* order SACK blocks to allow in order walk of the retrans queue */
1782 	for (i = used_sacks - 1; i > 0; i--) {
1783 		for (j = 0; j < i; j++) {
1784 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1785 				swap(sp[j], sp[j + 1]);
1786 
1787 				/* Track where the first SACK block goes to */
1788 				if (j == first_sack_index)
1789 					first_sack_index = j + 1;
1790 			}
1791 		}
1792 	}
1793 
1794 	state->mss_now = tcp_current_mss(sk);
1795 	skb = NULL;
1796 	i = 0;
1797 
1798 	if (!tp->sacked_out) {
1799 		/* It's already past, so skip checking against it */
1800 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1801 	} else {
1802 		cache = tp->recv_sack_cache;
1803 		/* Skip empty blocks in at head of the cache */
1804 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1805 		       !cache->end_seq)
1806 			cache++;
1807 	}
1808 
1809 	while (i < used_sacks) {
1810 		u32 start_seq = sp[i].start_seq;
1811 		u32 end_seq = sp[i].end_seq;
1812 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1813 		struct tcp_sack_block *next_dup = NULL;
1814 
1815 		if (found_dup_sack && ((i + 1) == first_sack_index))
1816 			next_dup = &sp[i + 1];
1817 
1818 		/* Skip too early cached blocks */
1819 		while (tcp_sack_cache_ok(tp, cache) &&
1820 		       !before(start_seq, cache->end_seq))
1821 			cache++;
1822 
1823 		/* Can skip some work by looking recv_sack_cache? */
1824 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1825 		    after(end_seq, cache->start_seq)) {
1826 
1827 			/* Head todo? */
1828 			if (before(start_seq, cache->start_seq)) {
1829 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1830 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1831 						       state,
1832 						       start_seq,
1833 						       cache->start_seq,
1834 						       dup_sack);
1835 			}
1836 
1837 			/* Rest of the block already fully processed? */
1838 			if (!after(end_seq, cache->end_seq))
1839 				goto advance_sp;
1840 
1841 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1842 						       state,
1843 						       cache->end_seq);
1844 
1845 			/* ...tail remains todo... */
1846 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1847 				/* ...but better entrypoint exists! */
1848 				skb = tcp_highest_sack(sk);
1849 				if (!skb)
1850 					break;
1851 				cache++;
1852 				goto walk;
1853 			}
1854 
1855 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1856 			/* Check overlap against next cached too (past this one already) */
1857 			cache++;
1858 			continue;
1859 		}
1860 
1861 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1862 			skb = tcp_highest_sack(sk);
1863 			if (!skb)
1864 				break;
1865 		}
1866 		skb = tcp_sacktag_skip(skb, sk, start_seq);
1867 
1868 walk:
1869 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1870 				       start_seq, end_seq, dup_sack);
1871 
1872 advance_sp:
1873 		i++;
1874 	}
1875 
1876 	/* Clear the head of the cache sack blocks so we can skip it next time */
1877 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1878 		tp->recv_sack_cache[i].start_seq = 0;
1879 		tp->recv_sack_cache[i].end_seq = 0;
1880 	}
1881 	for (j = 0; j < used_sacks; j++)
1882 		tp->recv_sack_cache[i++] = sp[j];
1883 
1884 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1885 		tcp_check_sack_reordering(sk, state->reord, 0);
1886 
1887 	tcp_verify_left_out(tp);
1888 out:
1889 
1890 #if FASTRETRANS_DEBUG > 0
1891 	WARN_ON((int)tp->sacked_out < 0);
1892 	WARN_ON((int)tp->lost_out < 0);
1893 	WARN_ON((int)tp->retrans_out < 0);
1894 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1895 #endif
1896 	return state->flag;
1897 }
1898 
1899 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1900  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1901  */
1902 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1903 {
1904 	u32 holes;
1905 
1906 	holes = max(tp->lost_out, 1U);
1907 	holes = min(holes, tp->packets_out);
1908 
1909 	if ((tp->sacked_out + holes) > tp->packets_out) {
1910 		tp->sacked_out = tp->packets_out - holes;
1911 		return true;
1912 	}
1913 	return false;
1914 }
1915 
1916 /* If we receive more dupacks than we expected counting segments
1917  * in assumption of absent reordering, interpret this as reordering.
1918  * The only another reason could be bug in receiver TCP.
1919  */
1920 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1921 {
1922 	struct tcp_sock *tp = tcp_sk(sk);
1923 
1924 	if (!tcp_limit_reno_sacked(tp))
1925 		return;
1926 
1927 	tp->reordering = min_t(u32, tp->packets_out + addend,
1928 			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1929 	tp->reord_seen++;
1930 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1931 }
1932 
1933 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1934 
1935 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
1936 {
1937 	if (num_dupack) {
1938 		struct tcp_sock *tp = tcp_sk(sk);
1939 		u32 prior_sacked = tp->sacked_out;
1940 		s32 delivered;
1941 
1942 		tp->sacked_out += num_dupack;
1943 		tcp_check_reno_reordering(sk, 0);
1944 		delivered = tp->sacked_out - prior_sacked;
1945 		if (delivered > 0)
1946 			tcp_count_delivered(tp, delivered, ece_ack);
1947 		tcp_verify_left_out(tp);
1948 	}
1949 }
1950 
1951 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1952 
1953 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
1954 {
1955 	struct tcp_sock *tp = tcp_sk(sk);
1956 
1957 	if (acked > 0) {
1958 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1959 		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
1960 				    ece_ack);
1961 		if (acked - 1 >= tp->sacked_out)
1962 			tp->sacked_out = 0;
1963 		else
1964 			tp->sacked_out -= acked - 1;
1965 	}
1966 	tcp_check_reno_reordering(sk, acked);
1967 	tcp_verify_left_out(tp);
1968 }
1969 
1970 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1971 {
1972 	tp->sacked_out = 0;
1973 }
1974 
1975 void tcp_clear_retrans(struct tcp_sock *tp)
1976 {
1977 	tp->retrans_out = 0;
1978 	tp->lost_out = 0;
1979 	tp->undo_marker = 0;
1980 	tp->undo_retrans = -1;
1981 	tp->sacked_out = 0;
1982 }
1983 
1984 static inline void tcp_init_undo(struct tcp_sock *tp)
1985 {
1986 	tp->undo_marker = tp->snd_una;
1987 	/* Retransmission still in flight may cause DSACKs later. */
1988 	tp->undo_retrans = tp->retrans_out ? : -1;
1989 }
1990 
1991 static bool tcp_is_rack(const struct sock *sk)
1992 {
1993 	return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
1994 }
1995 
1996 /* If we detect SACK reneging, forget all SACK information
1997  * and reset tags completely, otherwise preserve SACKs. If receiver
1998  * dropped its ofo queue, we will know this due to reneging detection.
1999  */
2000 static void tcp_timeout_mark_lost(struct sock *sk)
2001 {
2002 	struct tcp_sock *tp = tcp_sk(sk);
2003 	struct sk_buff *skb, *head;
2004 	bool is_reneg;			/* is receiver reneging on SACKs? */
2005 
2006 	head = tcp_rtx_queue_head(sk);
2007 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2008 	if (is_reneg) {
2009 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2010 		tp->sacked_out = 0;
2011 		/* Mark SACK reneging until we recover from this loss event. */
2012 		tp->is_sack_reneg = 1;
2013 	} else if (tcp_is_reno(tp)) {
2014 		tcp_reset_reno_sack(tp);
2015 	}
2016 
2017 	skb = head;
2018 	skb_rbtree_walk_from(skb) {
2019 		if (is_reneg)
2020 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2021 		else if (tcp_is_rack(sk) && skb != head &&
2022 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2023 			continue; /* Don't mark recently sent ones lost yet */
2024 		tcp_mark_skb_lost(sk, skb);
2025 	}
2026 	tcp_verify_left_out(tp);
2027 	tcp_clear_all_retrans_hints(tp);
2028 }
2029 
2030 /* Enter Loss state. */
2031 void tcp_enter_loss(struct sock *sk)
2032 {
2033 	const struct inet_connection_sock *icsk = inet_csk(sk);
2034 	struct tcp_sock *tp = tcp_sk(sk);
2035 	struct net *net = sock_net(sk);
2036 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2037 
2038 	tcp_timeout_mark_lost(sk);
2039 
2040 	/* Reduce ssthresh if it has not yet been made inside this window. */
2041 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2042 	    !after(tp->high_seq, tp->snd_una) ||
2043 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2044 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2045 		tp->prior_cwnd = tp->snd_cwnd;
2046 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2047 		tcp_ca_event(sk, CA_EVENT_LOSS);
2048 		tcp_init_undo(tp);
2049 	}
2050 	tp->snd_cwnd	   = tcp_packets_in_flight(tp) + 1;
2051 	tp->snd_cwnd_cnt   = 0;
2052 	tp->snd_cwnd_stamp = tcp_jiffies32;
2053 
2054 	/* Timeout in disordered state after receiving substantial DUPACKs
2055 	 * suggests that the degree of reordering is over-estimated.
2056 	 */
2057 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2058 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2059 		tp->reordering = min_t(unsigned int, tp->reordering,
2060 				       net->ipv4.sysctl_tcp_reordering);
2061 	tcp_set_ca_state(sk, TCP_CA_Loss);
2062 	tp->high_seq = tp->snd_nxt;
2063 	tcp_ecn_queue_cwr(tp);
2064 
2065 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2066 	 * loss recovery is underway except recurring timeout(s) on
2067 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2068 	 */
2069 	tp->frto = net->ipv4.sysctl_tcp_frto &&
2070 		   (new_recovery || icsk->icsk_retransmits) &&
2071 		   !inet_csk(sk)->icsk_mtup.probe_size;
2072 }
2073 
2074 /* If ACK arrived pointing to a remembered SACK, it means that our
2075  * remembered SACKs do not reflect real state of receiver i.e.
2076  * receiver _host_ is heavily congested (or buggy).
2077  *
2078  * To avoid big spurious retransmission bursts due to transient SACK
2079  * scoreboard oddities that look like reneging, we give the receiver a
2080  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2081  * restore sanity to the SACK scoreboard. If the apparent reneging
2082  * persists until this RTO then we'll clear the SACK scoreboard.
2083  */
2084 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2085 {
2086 	if (flag & FLAG_SACK_RENEGING) {
2087 		struct tcp_sock *tp = tcp_sk(sk);
2088 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2089 					  msecs_to_jiffies(10));
2090 
2091 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2092 					  delay, TCP_RTO_MAX);
2093 		return true;
2094 	}
2095 	return false;
2096 }
2097 
2098 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2099  * counter when SACK is enabled (without SACK, sacked_out is used for
2100  * that purpose).
2101  *
2102  * With reordering, holes may still be in flight, so RFC3517 recovery
2103  * uses pure sacked_out (total number of SACKed segments) even though
2104  * it violates the RFC that uses duplicate ACKs, often these are equal
2105  * but when e.g. out-of-window ACKs or packet duplication occurs,
2106  * they differ. Since neither occurs due to loss, TCP should really
2107  * ignore them.
2108  */
2109 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2110 {
2111 	return tp->sacked_out + 1;
2112 }
2113 
2114 /* Linux NewReno/SACK/ECN state machine.
2115  * --------------------------------------
2116  *
2117  * "Open"	Normal state, no dubious events, fast path.
2118  * "Disorder"   In all the respects it is "Open",
2119  *		but requires a bit more attention. It is entered when
2120  *		we see some SACKs or dupacks. It is split of "Open"
2121  *		mainly to move some processing from fast path to slow one.
2122  * "CWR"	CWND was reduced due to some Congestion Notification event.
2123  *		It can be ECN, ICMP source quench, local device congestion.
2124  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2125  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2126  *
2127  * tcp_fastretrans_alert() is entered:
2128  * - each incoming ACK, if state is not "Open"
2129  * - when arrived ACK is unusual, namely:
2130  *	* SACK
2131  *	* Duplicate ACK.
2132  *	* ECN ECE.
2133  *
2134  * Counting packets in flight is pretty simple.
2135  *
2136  *	in_flight = packets_out - left_out + retrans_out
2137  *
2138  *	packets_out is SND.NXT-SND.UNA counted in packets.
2139  *
2140  *	retrans_out is number of retransmitted segments.
2141  *
2142  *	left_out is number of segments left network, but not ACKed yet.
2143  *
2144  *		left_out = sacked_out + lost_out
2145  *
2146  *     sacked_out: Packets, which arrived to receiver out of order
2147  *		   and hence not ACKed. With SACKs this number is simply
2148  *		   amount of SACKed data. Even without SACKs
2149  *		   it is easy to give pretty reliable estimate of this number,
2150  *		   counting duplicate ACKs.
2151  *
2152  *       lost_out: Packets lost by network. TCP has no explicit
2153  *		   "loss notification" feedback from network (for now).
2154  *		   It means that this number can be only _guessed_.
2155  *		   Actually, it is the heuristics to predict lossage that
2156  *		   distinguishes different algorithms.
2157  *
2158  *	F.e. after RTO, when all the queue is considered as lost,
2159  *	lost_out = packets_out and in_flight = retrans_out.
2160  *
2161  *		Essentially, we have now a few algorithms detecting
2162  *		lost packets.
2163  *
2164  *		If the receiver supports SACK:
2165  *
2166  *		RFC6675/3517: It is the conventional algorithm. A packet is
2167  *		considered lost if the number of higher sequence packets
2168  *		SACKed is greater than or equal the DUPACK thoreshold
2169  *		(reordering). This is implemented in tcp_mark_head_lost and
2170  *		tcp_update_scoreboard.
2171  *
2172  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2173  *		(2017-) that checks timing instead of counting DUPACKs.
2174  *		Essentially a packet is considered lost if it's not S/ACKed
2175  *		after RTT + reordering_window, where both metrics are
2176  *		dynamically measured and adjusted. This is implemented in
2177  *		tcp_rack_mark_lost.
2178  *
2179  *		If the receiver does not support SACK:
2180  *
2181  *		NewReno (RFC6582): in Recovery we assume that one segment
2182  *		is lost (classic Reno). While we are in Recovery and
2183  *		a partial ACK arrives, we assume that one more packet
2184  *		is lost (NewReno). This heuristics are the same in NewReno
2185  *		and SACK.
2186  *
2187  * Really tricky (and requiring careful tuning) part of algorithm
2188  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2189  * The first determines the moment _when_ we should reduce CWND and,
2190  * hence, slow down forward transmission. In fact, it determines the moment
2191  * when we decide that hole is caused by loss, rather than by a reorder.
2192  *
2193  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2194  * holes, caused by lost packets.
2195  *
2196  * And the most logically complicated part of algorithm is undo
2197  * heuristics. We detect false retransmits due to both too early
2198  * fast retransmit (reordering) and underestimated RTO, analyzing
2199  * timestamps and D-SACKs. When we detect that some segments were
2200  * retransmitted by mistake and CWND reduction was wrong, we undo
2201  * window reduction and abort recovery phase. This logic is hidden
2202  * inside several functions named tcp_try_undo_<something>.
2203  */
2204 
2205 /* This function decides, when we should leave Disordered state
2206  * and enter Recovery phase, reducing congestion window.
2207  *
2208  * Main question: may we further continue forward transmission
2209  * with the same cwnd?
2210  */
2211 static bool tcp_time_to_recover(struct sock *sk, int flag)
2212 {
2213 	struct tcp_sock *tp = tcp_sk(sk);
2214 
2215 	/* Trick#1: The loss is proven. */
2216 	if (tp->lost_out)
2217 		return true;
2218 
2219 	/* Not-A-Trick#2 : Classic rule... */
2220 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2221 		return true;
2222 
2223 	return false;
2224 }
2225 
2226 /* Detect loss in event "A" above by marking head of queue up as lost.
2227  * For RFC3517 SACK, a segment is considered lost if it
2228  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2229  * the maximum SACKed segments to pass before reaching this limit.
2230  */
2231 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2232 {
2233 	struct tcp_sock *tp = tcp_sk(sk);
2234 	struct sk_buff *skb;
2235 	int cnt;
2236 	/* Use SACK to deduce losses of new sequences sent during recovery */
2237 	const u32 loss_high = tp->snd_nxt;
2238 
2239 	WARN_ON(packets > tp->packets_out);
2240 	skb = tp->lost_skb_hint;
2241 	if (skb) {
2242 		/* Head already handled? */
2243 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2244 			return;
2245 		cnt = tp->lost_cnt_hint;
2246 	} else {
2247 		skb = tcp_rtx_queue_head(sk);
2248 		cnt = 0;
2249 	}
2250 
2251 	skb_rbtree_walk_from(skb) {
2252 		/* TODO: do this better */
2253 		/* this is not the most efficient way to do this... */
2254 		tp->lost_skb_hint = skb;
2255 		tp->lost_cnt_hint = cnt;
2256 
2257 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2258 			break;
2259 
2260 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2261 			cnt += tcp_skb_pcount(skb);
2262 
2263 		if (cnt > packets)
2264 			break;
2265 
2266 		tcp_skb_mark_lost(tp, skb);
2267 
2268 		if (mark_head)
2269 			break;
2270 	}
2271 	tcp_verify_left_out(tp);
2272 }
2273 
2274 /* Account newly detected lost packet(s) */
2275 
2276 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2277 {
2278 	struct tcp_sock *tp = tcp_sk(sk);
2279 
2280 	if (tcp_is_sack(tp)) {
2281 		int sacked_upto = tp->sacked_out - tp->reordering;
2282 		if (sacked_upto >= 0)
2283 			tcp_mark_head_lost(sk, sacked_upto, 0);
2284 		else if (fast_rexmit)
2285 			tcp_mark_head_lost(sk, 1, 1);
2286 	}
2287 }
2288 
2289 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2290 {
2291 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2292 	       before(tp->rx_opt.rcv_tsecr, when);
2293 }
2294 
2295 /* skb is spurious retransmitted if the returned timestamp echo
2296  * reply is prior to the skb transmission time
2297  */
2298 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2299 				     const struct sk_buff *skb)
2300 {
2301 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2302 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2303 }
2304 
2305 /* Nothing was retransmitted or returned timestamp is less
2306  * than timestamp of the first retransmission.
2307  */
2308 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2309 {
2310 	return tp->retrans_stamp &&
2311 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2312 }
2313 
2314 /* Undo procedures. */
2315 
2316 /* We can clear retrans_stamp when there are no retransmissions in the
2317  * window. It would seem that it is trivially available for us in
2318  * tp->retrans_out, however, that kind of assumptions doesn't consider
2319  * what will happen if errors occur when sending retransmission for the
2320  * second time. ...It could the that such segment has only
2321  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2322  * the head skb is enough except for some reneging corner cases that
2323  * are not worth the effort.
2324  *
2325  * Main reason for all this complexity is the fact that connection dying
2326  * time now depends on the validity of the retrans_stamp, in particular,
2327  * that successive retransmissions of a segment must not advance
2328  * retrans_stamp under any conditions.
2329  */
2330 static bool tcp_any_retrans_done(const struct sock *sk)
2331 {
2332 	const struct tcp_sock *tp = tcp_sk(sk);
2333 	struct sk_buff *skb;
2334 
2335 	if (tp->retrans_out)
2336 		return true;
2337 
2338 	skb = tcp_rtx_queue_head(sk);
2339 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2340 		return true;
2341 
2342 	return false;
2343 }
2344 
2345 static void DBGUNDO(struct sock *sk, const char *msg)
2346 {
2347 #if FASTRETRANS_DEBUG > 1
2348 	struct tcp_sock *tp = tcp_sk(sk);
2349 	struct inet_sock *inet = inet_sk(sk);
2350 
2351 	if (sk->sk_family == AF_INET) {
2352 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2353 			 msg,
2354 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2355 			 tp->snd_cwnd, tcp_left_out(tp),
2356 			 tp->snd_ssthresh, tp->prior_ssthresh,
2357 			 tp->packets_out);
2358 	}
2359 #if IS_ENABLED(CONFIG_IPV6)
2360 	else if (sk->sk_family == AF_INET6) {
2361 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2362 			 msg,
2363 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2364 			 tp->snd_cwnd, tcp_left_out(tp),
2365 			 tp->snd_ssthresh, tp->prior_ssthresh,
2366 			 tp->packets_out);
2367 	}
2368 #endif
2369 #endif
2370 }
2371 
2372 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2373 {
2374 	struct tcp_sock *tp = tcp_sk(sk);
2375 
2376 	if (unmark_loss) {
2377 		struct sk_buff *skb;
2378 
2379 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2380 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2381 		}
2382 		tp->lost_out = 0;
2383 		tcp_clear_all_retrans_hints(tp);
2384 	}
2385 
2386 	if (tp->prior_ssthresh) {
2387 		const struct inet_connection_sock *icsk = inet_csk(sk);
2388 
2389 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2390 
2391 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2392 			tp->snd_ssthresh = tp->prior_ssthresh;
2393 			tcp_ecn_withdraw_cwr(tp);
2394 		}
2395 	}
2396 	tp->snd_cwnd_stamp = tcp_jiffies32;
2397 	tp->undo_marker = 0;
2398 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2399 }
2400 
2401 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2402 {
2403 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2404 }
2405 
2406 /* People celebrate: "We love our President!" */
2407 static bool tcp_try_undo_recovery(struct sock *sk)
2408 {
2409 	struct tcp_sock *tp = tcp_sk(sk);
2410 
2411 	if (tcp_may_undo(tp)) {
2412 		int mib_idx;
2413 
2414 		/* Happy end! We did not retransmit anything
2415 		 * or our original transmission succeeded.
2416 		 */
2417 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2418 		tcp_undo_cwnd_reduction(sk, false);
2419 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2420 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2421 		else
2422 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2423 
2424 		NET_INC_STATS(sock_net(sk), mib_idx);
2425 	} else if (tp->rack.reo_wnd_persist) {
2426 		tp->rack.reo_wnd_persist--;
2427 	}
2428 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2429 		/* Hold old state until something *above* high_seq
2430 		 * is ACKed. For Reno it is MUST to prevent false
2431 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2432 		if (!tcp_any_retrans_done(sk))
2433 			tp->retrans_stamp = 0;
2434 		return true;
2435 	}
2436 	tcp_set_ca_state(sk, TCP_CA_Open);
2437 	tp->is_sack_reneg = 0;
2438 	return false;
2439 }
2440 
2441 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2442 static bool tcp_try_undo_dsack(struct sock *sk)
2443 {
2444 	struct tcp_sock *tp = tcp_sk(sk);
2445 
2446 	if (tp->undo_marker && !tp->undo_retrans) {
2447 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2448 					       tp->rack.reo_wnd_persist + 1);
2449 		DBGUNDO(sk, "D-SACK");
2450 		tcp_undo_cwnd_reduction(sk, false);
2451 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2452 		return true;
2453 	}
2454 	return false;
2455 }
2456 
2457 /* Undo during loss recovery after partial ACK or using F-RTO. */
2458 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2459 {
2460 	struct tcp_sock *tp = tcp_sk(sk);
2461 
2462 	if (frto_undo || tcp_may_undo(tp)) {
2463 		tcp_undo_cwnd_reduction(sk, true);
2464 
2465 		DBGUNDO(sk, "partial loss");
2466 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2467 		if (frto_undo)
2468 			NET_INC_STATS(sock_net(sk),
2469 					LINUX_MIB_TCPSPURIOUSRTOS);
2470 		inet_csk(sk)->icsk_retransmits = 0;
2471 		if (frto_undo || tcp_is_sack(tp)) {
2472 			tcp_set_ca_state(sk, TCP_CA_Open);
2473 			tp->is_sack_reneg = 0;
2474 		}
2475 		return true;
2476 	}
2477 	return false;
2478 }
2479 
2480 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2481  * It computes the number of packets to send (sndcnt) based on packets newly
2482  * delivered:
2483  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2484  *	cwnd reductions across a full RTT.
2485  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2486  *      But when the retransmits are acked without further losses, PRR
2487  *      slow starts cwnd up to ssthresh to speed up the recovery.
2488  */
2489 static void tcp_init_cwnd_reduction(struct sock *sk)
2490 {
2491 	struct tcp_sock *tp = tcp_sk(sk);
2492 
2493 	tp->high_seq = tp->snd_nxt;
2494 	tp->tlp_high_seq = 0;
2495 	tp->snd_cwnd_cnt = 0;
2496 	tp->prior_cwnd = tp->snd_cwnd;
2497 	tp->prr_delivered = 0;
2498 	tp->prr_out = 0;
2499 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2500 	tcp_ecn_queue_cwr(tp);
2501 }
2502 
2503 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2504 {
2505 	struct tcp_sock *tp = tcp_sk(sk);
2506 	int sndcnt = 0;
2507 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2508 
2509 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2510 		return;
2511 
2512 	tp->prr_delivered += newly_acked_sacked;
2513 	if (delta < 0) {
2514 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2515 			       tp->prior_cwnd - 1;
2516 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2517 	} else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) ==
2518 		   FLAG_RETRANS_DATA_ACKED) {
2519 		sndcnt = min_t(int, delta,
2520 			       max_t(int, tp->prr_delivered - tp->prr_out,
2521 				     newly_acked_sacked) + 1);
2522 	} else {
2523 		sndcnt = min(delta, newly_acked_sacked);
2524 	}
2525 	/* Force a fast retransmit upon entering fast recovery */
2526 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2527 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2528 }
2529 
2530 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2531 {
2532 	struct tcp_sock *tp = tcp_sk(sk);
2533 
2534 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2535 		return;
2536 
2537 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2538 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2539 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2540 		tp->snd_cwnd = tp->snd_ssthresh;
2541 		tp->snd_cwnd_stamp = tcp_jiffies32;
2542 	}
2543 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2544 }
2545 
2546 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2547 void tcp_enter_cwr(struct sock *sk)
2548 {
2549 	struct tcp_sock *tp = tcp_sk(sk);
2550 
2551 	tp->prior_ssthresh = 0;
2552 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2553 		tp->undo_marker = 0;
2554 		tcp_init_cwnd_reduction(sk);
2555 		tcp_set_ca_state(sk, TCP_CA_CWR);
2556 	}
2557 }
2558 EXPORT_SYMBOL(tcp_enter_cwr);
2559 
2560 static void tcp_try_keep_open(struct sock *sk)
2561 {
2562 	struct tcp_sock *tp = tcp_sk(sk);
2563 	int state = TCP_CA_Open;
2564 
2565 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2566 		state = TCP_CA_Disorder;
2567 
2568 	if (inet_csk(sk)->icsk_ca_state != state) {
2569 		tcp_set_ca_state(sk, state);
2570 		tp->high_seq = tp->snd_nxt;
2571 	}
2572 }
2573 
2574 static void tcp_try_to_open(struct sock *sk, int flag)
2575 {
2576 	struct tcp_sock *tp = tcp_sk(sk);
2577 
2578 	tcp_verify_left_out(tp);
2579 
2580 	if (!tcp_any_retrans_done(sk))
2581 		tp->retrans_stamp = 0;
2582 
2583 	if (flag & FLAG_ECE)
2584 		tcp_enter_cwr(sk);
2585 
2586 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2587 		tcp_try_keep_open(sk);
2588 	}
2589 }
2590 
2591 static void tcp_mtup_probe_failed(struct sock *sk)
2592 {
2593 	struct inet_connection_sock *icsk = inet_csk(sk);
2594 
2595 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2596 	icsk->icsk_mtup.probe_size = 0;
2597 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2598 }
2599 
2600 static void tcp_mtup_probe_success(struct sock *sk)
2601 {
2602 	struct tcp_sock *tp = tcp_sk(sk);
2603 	struct inet_connection_sock *icsk = inet_csk(sk);
2604 
2605 	/* FIXME: breaks with very large cwnd */
2606 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2607 	tp->snd_cwnd = tp->snd_cwnd *
2608 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2609 		       icsk->icsk_mtup.probe_size;
2610 	tp->snd_cwnd_cnt = 0;
2611 	tp->snd_cwnd_stamp = tcp_jiffies32;
2612 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2613 
2614 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2615 	icsk->icsk_mtup.probe_size = 0;
2616 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2617 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2618 }
2619 
2620 /* Do a simple retransmit without using the backoff mechanisms in
2621  * tcp_timer. This is used for path mtu discovery.
2622  * The socket is already locked here.
2623  */
2624 void tcp_simple_retransmit(struct sock *sk)
2625 {
2626 	const struct inet_connection_sock *icsk = inet_csk(sk);
2627 	struct tcp_sock *tp = tcp_sk(sk);
2628 	struct sk_buff *skb;
2629 	unsigned int mss = tcp_current_mss(sk);
2630 
2631 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2632 		if (tcp_skb_seglen(skb) > mss &&
2633 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2634 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2635 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2636 				tp->retrans_out -= tcp_skb_pcount(skb);
2637 			}
2638 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2639 		}
2640 	}
2641 
2642 	tcp_clear_retrans_hints_partial(tp);
2643 
2644 	if (!tp->lost_out)
2645 		return;
2646 
2647 	if (tcp_is_reno(tp))
2648 		tcp_limit_reno_sacked(tp);
2649 
2650 	tcp_verify_left_out(tp);
2651 
2652 	/* Don't muck with the congestion window here.
2653 	 * Reason is that we do not increase amount of _data_
2654 	 * in network, but units changed and effective
2655 	 * cwnd/ssthresh really reduced now.
2656 	 */
2657 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2658 		tp->high_seq = tp->snd_nxt;
2659 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2660 		tp->prior_ssthresh = 0;
2661 		tp->undo_marker = 0;
2662 		tcp_set_ca_state(sk, TCP_CA_Loss);
2663 	}
2664 	tcp_xmit_retransmit_queue(sk);
2665 }
2666 EXPORT_SYMBOL(tcp_simple_retransmit);
2667 
2668 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2669 {
2670 	struct tcp_sock *tp = tcp_sk(sk);
2671 	int mib_idx;
2672 
2673 	if (tcp_is_reno(tp))
2674 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2675 	else
2676 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2677 
2678 	NET_INC_STATS(sock_net(sk), mib_idx);
2679 
2680 	tp->prior_ssthresh = 0;
2681 	tcp_init_undo(tp);
2682 
2683 	if (!tcp_in_cwnd_reduction(sk)) {
2684 		if (!ece_ack)
2685 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2686 		tcp_init_cwnd_reduction(sk);
2687 	}
2688 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2689 }
2690 
2691 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2692  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2693  */
2694 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2695 			     int *rexmit)
2696 {
2697 	struct tcp_sock *tp = tcp_sk(sk);
2698 	bool recovered = !before(tp->snd_una, tp->high_seq);
2699 
2700 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2701 	    tcp_try_undo_loss(sk, false))
2702 		return;
2703 
2704 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2705 		/* Step 3.b. A timeout is spurious if not all data are
2706 		 * lost, i.e., never-retransmitted data are (s)acked.
2707 		 */
2708 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2709 		    tcp_try_undo_loss(sk, true))
2710 			return;
2711 
2712 		if (after(tp->snd_nxt, tp->high_seq)) {
2713 			if (flag & FLAG_DATA_SACKED || num_dupack)
2714 				tp->frto = 0; /* Step 3.a. loss was real */
2715 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2716 			tp->high_seq = tp->snd_nxt;
2717 			/* Step 2.b. Try send new data (but deferred until cwnd
2718 			 * is updated in tcp_ack()). Otherwise fall back to
2719 			 * the conventional recovery.
2720 			 */
2721 			if (!tcp_write_queue_empty(sk) &&
2722 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2723 				*rexmit = REXMIT_NEW;
2724 				return;
2725 			}
2726 			tp->frto = 0;
2727 		}
2728 	}
2729 
2730 	if (recovered) {
2731 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2732 		tcp_try_undo_recovery(sk);
2733 		return;
2734 	}
2735 	if (tcp_is_reno(tp)) {
2736 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2737 		 * delivered. Lower inflight to clock out (re)tranmissions.
2738 		 */
2739 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2740 			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2741 		else if (flag & FLAG_SND_UNA_ADVANCED)
2742 			tcp_reset_reno_sack(tp);
2743 	}
2744 	*rexmit = REXMIT_LOST;
2745 }
2746 
2747 /* Undo during fast recovery after partial ACK. */
2748 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2749 {
2750 	struct tcp_sock *tp = tcp_sk(sk);
2751 
2752 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2753 		/* Plain luck! Hole if filled with delayed
2754 		 * packet, rather than with a retransmit. Check reordering.
2755 		 */
2756 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2757 
2758 		/* We are getting evidence that the reordering degree is higher
2759 		 * than we realized. If there are no retransmits out then we
2760 		 * can undo. Otherwise we clock out new packets but do not
2761 		 * mark more packets lost or retransmit more.
2762 		 */
2763 		if (tp->retrans_out)
2764 			return true;
2765 
2766 		if (!tcp_any_retrans_done(sk))
2767 			tp->retrans_stamp = 0;
2768 
2769 		DBGUNDO(sk, "partial recovery");
2770 		tcp_undo_cwnd_reduction(sk, true);
2771 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2772 		tcp_try_keep_open(sk);
2773 		return true;
2774 	}
2775 	return false;
2776 }
2777 
2778 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2779 {
2780 	struct tcp_sock *tp = tcp_sk(sk);
2781 
2782 	if (tcp_rtx_queue_empty(sk))
2783 		return;
2784 
2785 	if (unlikely(tcp_is_reno(tp))) {
2786 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2787 	} else if (tcp_is_rack(sk)) {
2788 		u32 prior_retrans = tp->retrans_out;
2789 
2790 		tcp_rack_mark_lost(sk);
2791 		if (prior_retrans > tp->retrans_out)
2792 			*ack_flag |= FLAG_LOST_RETRANS;
2793 	}
2794 }
2795 
2796 static bool tcp_force_fast_retransmit(struct sock *sk)
2797 {
2798 	struct tcp_sock *tp = tcp_sk(sk);
2799 
2800 	return after(tcp_highest_sack_seq(tp),
2801 		     tp->snd_una + tp->reordering * tp->mss_cache);
2802 }
2803 
2804 /* Process an event, which can update packets-in-flight not trivially.
2805  * Main goal of this function is to calculate new estimate for left_out,
2806  * taking into account both packets sitting in receiver's buffer and
2807  * packets lost by network.
2808  *
2809  * Besides that it updates the congestion state when packet loss or ECN
2810  * is detected. But it does not reduce the cwnd, it is done by the
2811  * congestion control later.
2812  *
2813  * It does _not_ decide what to send, it is made in function
2814  * tcp_xmit_retransmit_queue().
2815  */
2816 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2817 				  int num_dupack, int *ack_flag, int *rexmit)
2818 {
2819 	struct inet_connection_sock *icsk = inet_csk(sk);
2820 	struct tcp_sock *tp = tcp_sk(sk);
2821 	int fast_rexmit = 0, flag = *ack_flag;
2822 	bool ece_ack = flag & FLAG_ECE;
2823 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2824 				      tcp_force_fast_retransmit(sk));
2825 
2826 	if (!tp->packets_out && tp->sacked_out)
2827 		tp->sacked_out = 0;
2828 
2829 	/* Now state machine starts.
2830 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2831 	if (ece_ack)
2832 		tp->prior_ssthresh = 0;
2833 
2834 	/* B. In all the states check for reneging SACKs. */
2835 	if (tcp_check_sack_reneging(sk, flag))
2836 		return;
2837 
2838 	/* C. Check consistency of the current state. */
2839 	tcp_verify_left_out(tp);
2840 
2841 	/* D. Check state exit conditions. State can be terminated
2842 	 *    when high_seq is ACKed. */
2843 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2844 		WARN_ON(tp->retrans_out != 0);
2845 		tp->retrans_stamp = 0;
2846 	} else if (!before(tp->snd_una, tp->high_seq)) {
2847 		switch (icsk->icsk_ca_state) {
2848 		case TCP_CA_CWR:
2849 			/* CWR is to be held something *above* high_seq
2850 			 * is ACKed for CWR bit to reach receiver. */
2851 			if (tp->snd_una != tp->high_seq) {
2852 				tcp_end_cwnd_reduction(sk);
2853 				tcp_set_ca_state(sk, TCP_CA_Open);
2854 			}
2855 			break;
2856 
2857 		case TCP_CA_Recovery:
2858 			if (tcp_is_reno(tp))
2859 				tcp_reset_reno_sack(tp);
2860 			if (tcp_try_undo_recovery(sk))
2861 				return;
2862 			tcp_end_cwnd_reduction(sk);
2863 			break;
2864 		}
2865 	}
2866 
2867 	/* E. Process state. */
2868 	switch (icsk->icsk_ca_state) {
2869 	case TCP_CA_Recovery:
2870 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2871 			if (tcp_is_reno(tp))
2872 				tcp_add_reno_sack(sk, num_dupack, ece_ack);
2873 		} else {
2874 			if (tcp_try_undo_partial(sk, prior_snd_una))
2875 				return;
2876 			/* Partial ACK arrived. Force fast retransmit. */
2877 			do_lost = tcp_force_fast_retransmit(sk);
2878 		}
2879 		if (tcp_try_undo_dsack(sk)) {
2880 			tcp_try_keep_open(sk);
2881 			return;
2882 		}
2883 		tcp_identify_packet_loss(sk, ack_flag);
2884 		break;
2885 	case TCP_CA_Loss:
2886 		tcp_process_loss(sk, flag, num_dupack, rexmit);
2887 		tcp_identify_packet_loss(sk, ack_flag);
2888 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2889 		      (*ack_flag & FLAG_LOST_RETRANS)))
2890 			return;
2891 		/* Change state if cwnd is undone or retransmits are lost */
2892 		fallthrough;
2893 	default:
2894 		if (tcp_is_reno(tp)) {
2895 			if (flag & FLAG_SND_UNA_ADVANCED)
2896 				tcp_reset_reno_sack(tp);
2897 			tcp_add_reno_sack(sk, num_dupack, ece_ack);
2898 		}
2899 
2900 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2901 			tcp_try_undo_dsack(sk);
2902 
2903 		tcp_identify_packet_loss(sk, ack_flag);
2904 		if (!tcp_time_to_recover(sk, flag)) {
2905 			tcp_try_to_open(sk, flag);
2906 			return;
2907 		}
2908 
2909 		/* MTU probe failure: don't reduce cwnd */
2910 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2911 		    icsk->icsk_mtup.probe_size &&
2912 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2913 			tcp_mtup_probe_failed(sk);
2914 			/* Restores the reduction we did in tcp_mtup_probe() */
2915 			tp->snd_cwnd++;
2916 			tcp_simple_retransmit(sk);
2917 			return;
2918 		}
2919 
2920 		/* Otherwise enter Recovery state */
2921 		tcp_enter_recovery(sk, ece_ack);
2922 		fast_rexmit = 1;
2923 	}
2924 
2925 	if (!tcp_is_rack(sk) && do_lost)
2926 		tcp_update_scoreboard(sk, fast_rexmit);
2927 	*rexmit = REXMIT_LOST;
2928 }
2929 
2930 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2931 {
2932 	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2933 	struct tcp_sock *tp = tcp_sk(sk);
2934 
2935 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2936 		/* If the remote keeps returning delayed ACKs, eventually
2937 		 * the min filter would pick it up and overestimate the
2938 		 * prop. delay when it expires. Skip suspected delayed ACKs.
2939 		 */
2940 		return;
2941 	}
2942 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2943 			   rtt_us ? : jiffies_to_usecs(1));
2944 }
2945 
2946 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2947 			       long seq_rtt_us, long sack_rtt_us,
2948 			       long ca_rtt_us, struct rate_sample *rs)
2949 {
2950 	const struct tcp_sock *tp = tcp_sk(sk);
2951 
2952 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2953 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2954 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2955 	 * is acked (RFC6298).
2956 	 */
2957 	if (seq_rtt_us < 0)
2958 		seq_rtt_us = sack_rtt_us;
2959 
2960 	/* RTTM Rule: A TSecr value received in a segment is used to
2961 	 * update the averaged RTT measurement only if the segment
2962 	 * acknowledges some new data, i.e., only if it advances the
2963 	 * left edge of the send window.
2964 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2965 	 */
2966 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2967 	    flag & FLAG_ACKED) {
2968 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2969 
2970 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
2971 			if (!delta)
2972 				delta = 1;
2973 			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2974 			ca_rtt_us = seq_rtt_us;
2975 		}
2976 	}
2977 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2978 	if (seq_rtt_us < 0)
2979 		return false;
2980 
2981 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2982 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2983 	 * values will be skipped with the seq_rtt_us < 0 check above.
2984 	 */
2985 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
2986 	tcp_rtt_estimator(sk, seq_rtt_us);
2987 	tcp_set_rto(sk);
2988 
2989 	/* RFC6298: only reset backoff on valid RTT measurement. */
2990 	inet_csk(sk)->icsk_backoff = 0;
2991 	return true;
2992 }
2993 
2994 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2995 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2996 {
2997 	struct rate_sample rs;
2998 	long rtt_us = -1L;
2999 
3000 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3001 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3002 
3003 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3004 }
3005 
3006 
3007 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3008 {
3009 	const struct inet_connection_sock *icsk = inet_csk(sk);
3010 
3011 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3012 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3013 }
3014 
3015 /* Restart timer after forward progress on connection.
3016  * RFC2988 recommends to restart timer to now+rto.
3017  */
3018 void tcp_rearm_rto(struct sock *sk)
3019 {
3020 	const struct inet_connection_sock *icsk = inet_csk(sk);
3021 	struct tcp_sock *tp = tcp_sk(sk);
3022 
3023 	/* If the retrans timer is currently being used by Fast Open
3024 	 * for SYN-ACK retrans purpose, stay put.
3025 	 */
3026 	if (rcu_access_pointer(tp->fastopen_rsk))
3027 		return;
3028 
3029 	if (!tp->packets_out) {
3030 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3031 	} else {
3032 		u32 rto = inet_csk(sk)->icsk_rto;
3033 		/* Offset the time elapsed after installing regular RTO */
3034 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3035 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3036 			s64 delta_us = tcp_rto_delta_us(sk);
3037 			/* delta_us may not be positive if the socket is locked
3038 			 * when the retrans timer fires and is rescheduled.
3039 			 */
3040 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3041 		}
3042 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3043 				     TCP_RTO_MAX);
3044 	}
3045 }
3046 
3047 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3048 static void tcp_set_xmit_timer(struct sock *sk)
3049 {
3050 	if (!tcp_schedule_loss_probe(sk, true))
3051 		tcp_rearm_rto(sk);
3052 }
3053 
3054 /* If we get here, the whole TSO packet has not been acked. */
3055 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3056 {
3057 	struct tcp_sock *tp = tcp_sk(sk);
3058 	u32 packets_acked;
3059 
3060 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3061 
3062 	packets_acked = tcp_skb_pcount(skb);
3063 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3064 		return 0;
3065 	packets_acked -= tcp_skb_pcount(skb);
3066 
3067 	if (packets_acked) {
3068 		BUG_ON(tcp_skb_pcount(skb) == 0);
3069 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3070 	}
3071 
3072 	return packets_acked;
3073 }
3074 
3075 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3076 			   u32 prior_snd_una)
3077 {
3078 	const struct skb_shared_info *shinfo;
3079 
3080 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3081 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3082 		return;
3083 
3084 	shinfo = skb_shinfo(skb);
3085 	if (!before(shinfo->tskey, prior_snd_una) &&
3086 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3087 		tcp_skb_tsorted_save(skb) {
3088 			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3089 		} tcp_skb_tsorted_restore(skb);
3090 	}
3091 }
3092 
3093 /* Remove acknowledged frames from the retransmission queue. If our packet
3094  * is before the ack sequence we can discard it as it's confirmed to have
3095  * arrived at the other end.
3096  */
3097 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3098 			       u32 prior_snd_una,
3099 			       struct tcp_sacktag_state *sack, bool ece_ack)
3100 {
3101 	const struct inet_connection_sock *icsk = inet_csk(sk);
3102 	u64 first_ackt, last_ackt;
3103 	struct tcp_sock *tp = tcp_sk(sk);
3104 	u32 prior_sacked = tp->sacked_out;
3105 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3106 	struct sk_buff *skb, *next;
3107 	bool fully_acked = true;
3108 	long sack_rtt_us = -1L;
3109 	long seq_rtt_us = -1L;
3110 	long ca_rtt_us = -1L;
3111 	u32 pkts_acked = 0;
3112 	u32 last_in_flight = 0;
3113 	bool rtt_update;
3114 	int flag = 0;
3115 
3116 	first_ackt = 0;
3117 
3118 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3119 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3120 		const u32 start_seq = scb->seq;
3121 		u8 sacked = scb->sacked;
3122 		u32 acked_pcount;
3123 
3124 		/* Determine how many packets and what bytes were acked, tso and else */
3125 		if (after(scb->end_seq, tp->snd_una)) {
3126 			if (tcp_skb_pcount(skb) == 1 ||
3127 			    !after(tp->snd_una, scb->seq))
3128 				break;
3129 
3130 			acked_pcount = tcp_tso_acked(sk, skb);
3131 			if (!acked_pcount)
3132 				break;
3133 			fully_acked = false;
3134 		} else {
3135 			acked_pcount = tcp_skb_pcount(skb);
3136 		}
3137 
3138 		if (unlikely(sacked & TCPCB_RETRANS)) {
3139 			if (sacked & TCPCB_SACKED_RETRANS)
3140 				tp->retrans_out -= acked_pcount;
3141 			flag |= FLAG_RETRANS_DATA_ACKED;
3142 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3143 			last_ackt = tcp_skb_timestamp_us(skb);
3144 			WARN_ON_ONCE(last_ackt == 0);
3145 			if (!first_ackt)
3146 				first_ackt = last_ackt;
3147 
3148 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3149 			if (before(start_seq, reord))
3150 				reord = start_seq;
3151 			if (!after(scb->end_seq, tp->high_seq))
3152 				flag |= FLAG_ORIG_SACK_ACKED;
3153 		}
3154 
3155 		if (sacked & TCPCB_SACKED_ACKED) {
3156 			tp->sacked_out -= acked_pcount;
3157 		} else if (tcp_is_sack(tp)) {
3158 			tcp_count_delivered(tp, acked_pcount, ece_ack);
3159 			if (!tcp_skb_spurious_retrans(tp, skb))
3160 				tcp_rack_advance(tp, sacked, scb->end_seq,
3161 						 tcp_skb_timestamp_us(skb));
3162 		}
3163 		if (sacked & TCPCB_LOST)
3164 			tp->lost_out -= acked_pcount;
3165 
3166 		tp->packets_out -= acked_pcount;
3167 		pkts_acked += acked_pcount;
3168 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3169 
3170 		/* Initial outgoing SYN's get put onto the write_queue
3171 		 * just like anything else we transmit.  It is not
3172 		 * true data, and if we misinform our callers that
3173 		 * this ACK acks real data, we will erroneously exit
3174 		 * connection startup slow start one packet too
3175 		 * quickly.  This is severely frowned upon behavior.
3176 		 */
3177 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3178 			flag |= FLAG_DATA_ACKED;
3179 		} else {
3180 			flag |= FLAG_SYN_ACKED;
3181 			tp->retrans_stamp = 0;
3182 		}
3183 
3184 		if (!fully_acked)
3185 			break;
3186 
3187 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3188 
3189 		next = skb_rb_next(skb);
3190 		if (unlikely(skb == tp->retransmit_skb_hint))
3191 			tp->retransmit_skb_hint = NULL;
3192 		if (unlikely(skb == tp->lost_skb_hint))
3193 			tp->lost_skb_hint = NULL;
3194 		tcp_highest_sack_replace(sk, skb, next);
3195 		tcp_rtx_queue_unlink_and_free(skb, sk);
3196 	}
3197 
3198 	if (!skb)
3199 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3200 
3201 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3202 		tp->snd_up = tp->snd_una;
3203 
3204 	if (skb) {
3205 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3206 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3207 			flag |= FLAG_SACK_RENEGING;
3208 	}
3209 
3210 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3211 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3212 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3213 
3214 		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3215 		    last_in_flight && !prior_sacked && fully_acked &&
3216 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3217 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3218 			/* Conservatively mark a delayed ACK. It's typically
3219 			 * from a lone runt packet over the round trip to
3220 			 * a receiver w/o out-of-order or CE events.
3221 			 */
3222 			flag |= FLAG_ACK_MAYBE_DELAYED;
3223 		}
3224 	}
3225 	if (sack->first_sackt) {
3226 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3227 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3228 	}
3229 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3230 					ca_rtt_us, sack->rate);
3231 
3232 	if (flag & FLAG_ACKED) {
3233 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3234 		if (unlikely(icsk->icsk_mtup.probe_size &&
3235 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3236 			tcp_mtup_probe_success(sk);
3237 		}
3238 
3239 		if (tcp_is_reno(tp)) {
3240 			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3241 
3242 			/* If any of the cumulatively ACKed segments was
3243 			 * retransmitted, non-SACK case cannot confirm that
3244 			 * progress was due to original transmission due to
3245 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3246 			 * the packets may have been never retransmitted.
3247 			 */
3248 			if (flag & FLAG_RETRANS_DATA_ACKED)
3249 				flag &= ~FLAG_ORIG_SACK_ACKED;
3250 		} else {
3251 			int delta;
3252 
3253 			/* Non-retransmitted hole got filled? That's reordering */
3254 			if (before(reord, prior_fack))
3255 				tcp_check_sack_reordering(sk, reord, 0);
3256 
3257 			delta = prior_sacked - tp->sacked_out;
3258 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3259 		}
3260 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3261 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3262 						    tcp_skb_timestamp_us(skb))) {
3263 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3264 		 * after when the head was last (re)transmitted. Otherwise the
3265 		 * timeout may continue to extend in loss recovery.
3266 		 */
3267 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3268 	}
3269 
3270 	if (icsk->icsk_ca_ops->pkts_acked) {
3271 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3272 					     .rtt_us = sack->rate->rtt_us,
3273 					     .in_flight = last_in_flight };
3274 
3275 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3276 	}
3277 
3278 #if FASTRETRANS_DEBUG > 0
3279 	WARN_ON((int)tp->sacked_out < 0);
3280 	WARN_ON((int)tp->lost_out < 0);
3281 	WARN_ON((int)tp->retrans_out < 0);
3282 	if (!tp->packets_out && tcp_is_sack(tp)) {
3283 		icsk = inet_csk(sk);
3284 		if (tp->lost_out) {
3285 			pr_debug("Leak l=%u %d\n",
3286 				 tp->lost_out, icsk->icsk_ca_state);
3287 			tp->lost_out = 0;
3288 		}
3289 		if (tp->sacked_out) {
3290 			pr_debug("Leak s=%u %d\n",
3291 				 tp->sacked_out, icsk->icsk_ca_state);
3292 			tp->sacked_out = 0;
3293 		}
3294 		if (tp->retrans_out) {
3295 			pr_debug("Leak r=%u %d\n",
3296 				 tp->retrans_out, icsk->icsk_ca_state);
3297 			tp->retrans_out = 0;
3298 		}
3299 	}
3300 #endif
3301 	return flag;
3302 }
3303 
3304 static void tcp_ack_probe(struct sock *sk)
3305 {
3306 	struct inet_connection_sock *icsk = inet_csk(sk);
3307 	struct sk_buff *head = tcp_send_head(sk);
3308 	const struct tcp_sock *tp = tcp_sk(sk);
3309 
3310 	/* Was it a usable window open? */
3311 	if (!head)
3312 		return;
3313 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3314 		icsk->icsk_backoff = 0;
3315 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3316 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3317 		 * This function is not for random using!
3318 		 */
3319 	} else {
3320 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3321 
3322 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3323 				     when, TCP_RTO_MAX);
3324 	}
3325 }
3326 
3327 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3328 {
3329 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3330 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3331 }
3332 
3333 /* Decide wheather to run the increase function of congestion control. */
3334 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3335 {
3336 	/* If reordering is high then always grow cwnd whenever data is
3337 	 * delivered regardless of its ordering. Otherwise stay conservative
3338 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3339 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3340 	 * cwnd in tcp_fastretrans_alert() based on more states.
3341 	 */
3342 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3343 		return flag & FLAG_FORWARD_PROGRESS;
3344 
3345 	return flag & FLAG_DATA_ACKED;
3346 }
3347 
3348 /* The "ultimate" congestion control function that aims to replace the rigid
3349  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3350  * It's called toward the end of processing an ACK with precise rate
3351  * information. All transmission or retransmission are delayed afterwards.
3352  */
3353 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3354 			     int flag, const struct rate_sample *rs)
3355 {
3356 	const struct inet_connection_sock *icsk = inet_csk(sk);
3357 
3358 	if (icsk->icsk_ca_ops->cong_control) {
3359 		icsk->icsk_ca_ops->cong_control(sk, rs);
3360 		return;
3361 	}
3362 
3363 	if (tcp_in_cwnd_reduction(sk)) {
3364 		/* Reduce cwnd if state mandates */
3365 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3366 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3367 		/* Advance cwnd if state allows */
3368 		tcp_cong_avoid(sk, ack, acked_sacked);
3369 	}
3370 	tcp_update_pacing_rate(sk);
3371 }
3372 
3373 /* Check that window update is acceptable.
3374  * The function assumes that snd_una<=ack<=snd_next.
3375  */
3376 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3377 					const u32 ack, const u32 ack_seq,
3378 					const u32 nwin)
3379 {
3380 	return	after(ack, tp->snd_una) ||
3381 		after(ack_seq, tp->snd_wl1) ||
3382 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3383 }
3384 
3385 /* If we update tp->snd_una, also update tp->bytes_acked */
3386 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3387 {
3388 	u32 delta = ack - tp->snd_una;
3389 
3390 	sock_owned_by_me((struct sock *)tp);
3391 	tp->bytes_acked += delta;
3392 	tp->snd_una = ack;
3393 }
3394 
3395 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3396 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3397 {
3398 	u32 delta = seq - tp->rcv_nxt;
3399 
3400 	sock_owned_by_me((struct sock *)tp);
3401 	tp->bytes_received += delta;
3402 	WRITE_ONCE(tp->rcv_nxt, seq);
3403 }
3404 
3405 /* Update our send window.
3406  *
3407  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3408  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3409  */
3410 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3411 				 u32 ack_seq)
3412 {
3413 	struct tcp_sock *tp = tcp_sk(sk);
3414 	int flag = 0;
3415 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3416 
3417 	if (likely(!tcp_hdr(skb)->syn))
3418 		nwin <<= tp->rx_opt.snd_wscale;
3419 
3420 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3421 		flag |= FLAG_WIN_UPDATE;
3422 		tcp_update_wl(tp, ack_seq);
3423 
3424 		if (tp->snd_wnd != nwin) {
3425 			tp->snd_wnd = nwin;
3426 
3427 			/* Note, it is the only place, where
3428 			 * fast path is recovered for sending TCP.
3429 			 */
3430 			tp->pred_flags = 0;
3431 			tcp_fast_path_check(sk);
3432 
3433 			if (!tcp_write_queue_empty(sk))
3434 				tcp_slow_start_after_idle_check(sk);
3435 
3436 			if (nwin > tp->max_window) {
3437 				tp->max_window = nwin;
3438 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3439 			}
3440 		}
3441 	}
3442 
3443 	tcp_snd_una_update(tp, ack);
3444 
3445 	return flag;
3446 }
3447 
3448 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3449 				   u32 *last_oow_ack_time)
3450 {
3451 	if (*last_oow_ack_time) {
3452 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3453 
3454 		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3455 			NET_INC_STATS(net, mib_idx);
3456 			return true;	/* rate-limited: don't send yet! */
3457 		}
3458 	}
3459 
3460 	*last_oow_ack_time = tcp_jiffies32;
3461 
3462 	return false;	/* not rate-limited: go ahead, send dupack now! */
3463 }
3464 
3465 /* Return true if we're currently rate-limiting out-of-window ACKs and
3466  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3467  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3468  * attacks that send repeated SYNs or ACKs for the same connection. To
3469  * do this, we do not send a duplicate SYNACK or ACK if the remote
3470  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3471  */
3472 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3473 			  int mib_idx, u32 *last_oow_ack_time)
3474 {
3475 	/* Data packets without SYNs are not likely part of an ACK loop. */
3476 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3477 	    !tcp_hdr(skb)->syn)
3478 		return false;
3479 
3480 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3481 }
3482 
3483 /* RFC 5961 7 [ACK Throttling] */
3484 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3485 {
3486 	/* unprotected vars, we dont care of overwrites */
3487 	static u32 challenge_timestamp;
3488 	static unsigned int challenge_count;
3489 	struct tcp_sock *tp = tcp_sk(sk);
3490 	struct net *net = sock_net(sk);
3491 	u32 count, now;
3492 
3493 	/* First check our per-socket dupack rate limit. */
3494 	if (__tcp_oow_rate_limited(net,
3495 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3496 				   &tp->last_oow_ack_time))
3497 		return;
3498 
3499 	/* Then check host-wide RFC 5961 rate limit. */
3500 	now = jiffies / HZ;
3501 	if (now != challenge_timestamp) {
3502 		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3503 		u32 half = (ack_limit + 1) >> 1;
3504 
3505 		challenge_timestamp = now;
3506 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3507 	}
3508 	count = READ_ONCE(challenge_count);
3509 	if (count > 0) {
3510 		WRITE_ONCE(challenge_count, count - 1);
3511 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3512 		tcp_send_ack(sk);
3513 	}
3514 }
3515 
3516 static void tcp_store_ts_recent(struct tcp_sock *tp)
3517 {
3518 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3519 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3520 }
3521 
3522 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3523 {
3524 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3525 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3526 		 * extra check below makes sure this can only happen
3527 		 * for pure ACK frames.  -DaveM
3528 		 *
3529 		 * Not only, also it occurs for expired timestamps.
3530 		 */
3531 
3532 		if (tcp_paws_check(&tp->rx_opt, 0))
3533 			tcp_store_ts_recent(tp);
3534 	}
3535 }
3536 
3537 /* This routine deals with acks during a TLP episode and ends an episode by
3538  * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3539  */
3540 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3541 {
3542 	struct tcp_sock *tp = tcp_sk(sk);
3543 
3544 	if (before(ack, tp->tlp_high_seq))
3545 		return;
3546 
3547 	if (!tp->tlp_retrans) {
3548 		/* TLP of new data has been acknowledged */
3549 		tp->tlp_high_seq = 0;
3550 	} else if (flag & FLAG_DSACKING_ACK) {
3551 		/* This DSACK means original and TLP probe arrived; no loss */
3552 		tp->tlp_high_seq = 0;
3553 	} else if (after(ack, tp->tlp_high_seq)) {
3554 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3555 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3556 		 */
3557 		tcp_init_cwnd_reduction(sk);
3558 		tcp_set_ca_state(sk, TCP_CA_CWR);
3559 		tcp_end_cwnd_reduction(sk);
3560 		tcp_try_keep_open(sk);
3561 		NET_INC_STATS(sock_net(sk),
3562 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3563 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3564 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3565 		/* Pure dupack: original and TLP probe arrived; no loss */
3566 		tp->tlp_high_seq = 0;
3567 	}
3568 }
3569 
3570 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3571 {
3572 	const struct inet_connection_sock *icsk = inet_csk(sk);
3573 
3574 	if (icsk->icsk_ca_ops->in_ack_event)
3575 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3576 }
3577 
3578 /* Congestion control has updated the cwnd already. So if we're in
3579  * loss recovery then now we do any new sends (for FRTO) or
3580  * retransmits (for CA_Loss or CA_recovery) that make sense.
3581  */
3582 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3583 {
3584 	struct tcp_sock *tp = tcp_sk(sk);
3585 
3586 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3587 		return;
3588 
3589 	if (unlikely(rexmit == REXMIT_NEW)) {
3590 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3591 					  TCP_NAGLE_OFF);
3592 		if (after(tp->snd_nxt, tp->high_seq))
3593 			return;
3594 		tp->frto = 0;
3595 	}
3596 	tcp_xmit_retransmit_queue(sk);
3597 }
3598 
3599 /* Returns the number of packets newly acked or sacked by the current ACK */
3600 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3601 {
3602 	const struct net *net = sock_net(sk);
3603 	struct tcp_sock *tp = tcp_sk(sk);
3604 	u32 delivered;
3605 
3606 	delivered = tp->delivered - prior_delivered;
3607 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3608 	if (flag & FLAG_ECE)
3609 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3610 
3611 	return delivered;
3612 }
3613 
3614 /* This routine deals with incoming acks, but not outgoing ones. */
3615 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3616 {
3617 	struct inet_connection_sock *icsk = inet_csk(sk);
3618 	struct tcp_sock *tp = tcp_sk(sk);
3619 	struct tcp_sacktag_state sack_state;
3620 	struct rate_sample rs = { .prior_delivered = 0 };
3621 	u32 prior_snd_una = tp->snd_una;
3622 	bool is_sack_reneg = tp->is_sack_reneg;
3623 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3624 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3625 	int num_dupack = 0;
3626 	int prior_packets = tp->packets_out;
3627 	u32 delivered = tp->delivered;
3628 	u32 lost = tp->lost;
3629 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3630 	u32 prior_fack;
3631 
3632 	sack_state.first_sackt = 0;
3633 	sack_state.rate = &rs;
3634 	sack_state.sack_delivered = 0;
3635 
3636 	/* We very likely will need to access rtx queue. */
3637 	prefetch(sk->tcp_rtx_queue.rb_node);
3638 
3639 	/* If the ack is older than previous acks
3640 	 * then we can probably ignore it.
3641 	 */
3642 	if (before(ack, prior_snd_una)) {
3643 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3644 		if (before(ack, prior_snd_una - tp->max_window)) {
3645 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3646 				tcp_send_challenge_ack(sk, skb);
3647 			return -1;
3648 		}
3649 		goto old_ack;
3650 	}
3651 
3652 	/* If the ack includes data we haven't sent yet, discard
3653 	 * this segment (RFC793 Section 3.9).
3654 	 */
3655 	if (after(ack, tp->snd_nxt))
3656 		return -1;
3657 
3658 	if (after(ack, prior_snd_una)) {
3659 		flag |= FLAG_SND_UNA_ADVANCED;
3660 		icsk->icsk_retransmits = 0;
3661 
3662 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3663 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3664 			if (icsk->icsk_clean_acked)
3665 				icsk->icsk_clean_acked(sk, ack);
3666 #endif
3667 	}
3668 
3669 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3670 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3671 
3672 	/* ts_recent update must be made after we are sure that the packet
3673 	 * is in window.
3674 	 */
3675 	if (flag & FLAG_UPDATE_TS_RECENT)
3676 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3677 
3678 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3679 	    FLAG_SND_UNA_ADVANCED) {
3680 		/* Window is constant, pure forward advance.
3681 		 * No more checks are required.
3682 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3683 		 */
3684 		tcp_update_wl(tp, ack_seq);
3685 		tcp_snd_una_update(tp, ack);
3686 		flag |= FLAG_WIN_UPDATE;
3687 
3688 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3689 
3690 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3691 	} else {
3692 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3693 
3694 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3695 			flag |= FLAG_DATA;
3696 		else
3697 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3698 
3699 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3700 
3701 		if (TCP_SKB_CB(skb)->sacked)
3702 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3703 							&sack_state);
3704 
3705 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3706 			flag |= FLAG_ECE;
3707 			ack_ev_flags |= CA_ACK_ECE;
3708 		}
3709 
3710 		if (sack_state.sack_delivered)
3711 			tcp_count_delivered(tp, sack_state.sack_delivered,
3712 					    flag & FLAG_ECE);
3713 
3714 		if (flag & FLAG_WIN_UPDATE)
3715 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3716 
3717 		tcp_in_ack_event(sk, ack_ev_flags);
3718 	}
3719 
3720 	/* This is a deviation from RFC3168 since it states that:
3721 	 * "When the TCP data sender is ready to set the CWR bit after reducing
3722 	 * the congestion window, it SHOULD set the CWR bit only on the first
3723 	 * new data packet that it transmits."
3724 	 * We accept CWR on pure ACKs to be more robust
3725 	 * with widely-deployed TCP implementations that do this.
3726 	 */
3727 	tcp_ecn_accept_cwr(sk, skb);
3728 
3729 	/* We passed data and got it acked, remove any soft error
3730 	 * log. Something worked...
3731 	 */
3732 	sk->sk_err_soft = 0;
3733 	icsk->icsk_probes_out = 0;
3734 	tp->rcv_tstamp = tcp_jiffies32;
3735 	if (!prior_packets)
3736 		goto no_queue;
3737 
3738 	/* See if we can take anything off of the retransmit queue. */
3739 	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state,
3740 				    flag & FLAG_ECE);
3741 
3742 	tcp_rack_update_reo_wnd(sk, &rs);
3743 
3744 	if (tp->tlp_high_seq)
3745 		tcp_process_tlp_ack(sk, ack, flag);
3746 	/* If needed, reset TLP/RTO timer; RACK may later override this. */
3747 	if (flag & FLAG_SET_XMIT_TIMER)
3748 		tcp_set_xmit_timer(sk);
3749 
3750 	if (tcp_ack_is_dubious(sk, flag)) {
3751 		if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) {
3752 			num_dupack = 1;
3753 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3754 			if (!(flag & FLAG_DATA))
3755 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3756 		}
3757 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3758 				      &rexmit);
3759 	}
3760 
3761 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3762 		sk_dst_confirm(sk);
3763 
3764 	delivered = tcp_newly_delivered(sk, delivered, flag);
3765 	lost = tp->lost - lost;			/* freshly marked lost */
3766 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3767 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3768 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3769 	tcp_xmit_recovery(sk, rexmit);
3770 	return 1;
3771 
3772 no_queue:
3773 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3774 	if (flag & FLAG_DSACKING_ACK) {
3775 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3776 				      &rexmit);
3777 		tcp_newly_delivered(sk, delivered, flag);
3778 	}
3779 	/* If this ack opens up a zero window, clear backoff.  It was
3780 	 * being used to time the probes, and is probably far higher than
3781 	 * it needs to be for normal retransmission.
3782 	 */
3783 	tcp_ack_probe(sk);
3784 
3785 	if (tp->tlp_high_seq)
3786 		tcp_process_tlp_ack(sk, ack, flag);
3787 	return 1;
3788 
3789 old_ack:
3790 	/* If data was SACKed, tag it and see if we should send more data.
3791 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3792 	 */
3793 	if (TCP_SKB_CB(skb)->sacked) {
3794 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3795 						&sack_state);
3796 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3797 				      &rexmit);
3798 		tcp_newly_delivered(sk, delivered, flag);
3799 		tcp_xmit_recovery(sk, rexmit);
3800 	}
3801 
3802 	return 0;
3803 }
3804 
3805 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3806 				      bool syn, struct tcp_fastopen_cookie *foc,
3807 				      bool exp_opt)
3808 {
3809 	/* Valid only in SYN or SYN-ACK with an even length.  */
3810 	if (!foc || !syn || len < 0 || (len & 1))
3811 		return;
3812 
3813 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3814 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3815 		memcpy(foc->val, cookie, len);
3816 	else if (len != 0)
3817 		len = -1;
3818 	foc->len = len;
3819 	foc->exp = exp_opt;
3820 }
3821 
3822 static void smc_parse_options(const struct tcphdr *th,
3823 			      struct tcp_options_received *opt_rx,
3824 			      const unsigned char *ptr,
3825 			      int opsize)
3826 {
3827 #if IS_ENABLED(CONFIG_SMC)
3828 	if (static_branch_unlikely(&tcp_have_smc)) {
3829 		if (th->syn && !(opsize & 1) &&
3830 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3831 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3832 			opt_rx->smc_ok = 1;
3833 	}
3834 #endif
3835 }
3836 
3837 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3838  * value on success.
3839  */
3840 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3841 {
3842 	const unsigned char *ptr = (const unsigned char *)(th + 1);
3843 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3844 	u16 mss = 0;
3845 
3846 	while (length > 0) {
3847 		int opcode = *ptr++;
3848 		int opsize;
3849 
3850 		switch (opcode) {
3851 		case TCPOPT_EOL:
3852 			return mss;
3853 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3854 			length--;
3855 			continue;
3856 		default:
3857 			if (length < 2)
3858 				return mss;
3859 			opsize = *ptr++;
3860 			if (opsize < 2) /* "silly options" */
3861 				return mss;
3862 			if (opsize > length)
3863 				return mss;	/* fail on partial options */
3864 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3865 				u16 in_mss = get_unaligned_be16(ptr);
3866 
3867 				if (in_mss) {
3868 					if (user_mss && user_mss < in_mss)
3869 						in_mss = user_mss;
3870 					mss = in_mss;
3871 				}
3872 			}
3873 			ptr += opsize - 2;
3874 			length -= opsize;
3875 		}
3876 	}
3877 	return mss;
3878 }
3879 
3880 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3881  * But, this can also be called on packets in the established flow when
3882  * the fast version below fails.
3883  */
3884 void tcp_parse_options(const struct net *net,
3885 		       const struct sk_buff *skb,
3886 		       struct tcp_options_received *opt_rx, int estab,
3887 		       struct tcp_fastopen_cookie *foc)
3888 {
3889 	const unsigned char *ptr;
3890 	const struct tcphdr *th = tcp_hdr(skb);
3891 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3892 
3893 	ptr = (const unsigned char *)(th + 1);
3894 	opt_rx->saw_tstamp = 0;
3895 
3896 	while (length > 0) {
3897 		int opcode = *ptr++;
3898 		int opsize;
3899 
3900 		switch (opcode) {
3901 		case TCPOPT_EOL:
3902 			return;
3903 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3904 			length--;
3905 			continue;
3906 		default:
3907 			if (length < 2)
3908 				return;
3909 			opsize = *ptr++;
3910 			if (opsize < 2) /* "silly options" */
3911 				return;
3912 			if (opsize > length)
3913 				return;	/* don't parse partial options */
3914 			switch (opcode) {
3915 			case TCPOPT_MSS:
3916 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3917 					u16 in_mss = get_unaligned_be16(ptr);
3918 					if (in_mss) {
3919 						if (opt_rx->user_mss &&
3920 						    opt_rx->user_mss < in_mss)
3921 							in_mss = opt_rx->user_mss;
3922 						opt_rx->mss_clamp = in_mss;
3923 					}
3924 				}
3925 				break;
3926 			case TCPOPT_WINDOW:
3927 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3928 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3929 					__u8 snd_wscale = *(__u8 *)ptr;
3930 					opt_rx->wscale_ok = 1;
3931 					if (snd_wscale > TCP_MAX_WSCALE) {
3932 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3933 								     __func__,
3934 								     snd_wscale,
3935 								     TCP_MAX_WSCALE);
3936 						snd_wscale = TCP_MAX_WSCALE;
3937 					}
3938 					opt_rx->snd_wscale = snd_wscale;
3939 				}
3940 				break;
3941 			case TCPOPT_TIMESTAMP:
3942 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3943 				    ((estab && opt_rx->tstamp_ok) ||
3944 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3945 					opt_rx->saw_tstamp = 1;
3946 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3947 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3948 				}
3949 				break;
3950 			case TCPOPT_SACK_PERM:
3951 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3952 				    !estab && net->ipv4.sysctl_tcp_sack) {
3953 					opt_rx->sack_ok = TCP_SACK_SEEN;
3954 					tcp_sack_reset(opt_rx);
3955 				}
3956 				break;
3957 
3958 			case TCPOPT_SACK:
3959 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3960 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3961 				   opt_rx->sack_ok) {
3962 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3963 				}
3964 				break;
3965 #ifdef CONFIG_TCP_MD5SIG
3966 			case TCPOPT_MD5SIG:
3967 				/*
3968 				 * The MD5 Hash has already been
3969 				 * checked (see tcp_v{4,6}_do_rcv()).
3970 				 */
3971 				break;
3972 #endif
3973 			case TCPOPT_FASTOPEN:
3974 				tcp_parse_fastopen_option(
3975 					opsize - TCPOLEN_FASTOPEN_BASE,
3976 					ptr, th->syn, foc, false);
3977 				break;
3978 
3979 			case TCPOPT_EXP:
3980 				/* Fast Open option shares code 254 using a
3981 				 * 16 bits magic number.
3982 				 */
3983 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3984 				    get_unaligned_be16(ptr) ==
3985 				    TCPOPT_FASTOPEN_MAGIC)
3986 					tcp_parse_fastopen_option(opsize -
3987 						TCPOLEN_EXP_FASTOPEN_BASE,
3988 						ptr + 2, th->syn, foc, true);
3989 				else
3990 					smc_parse_options(th, opt_rx, ptr,
3991 							  opsize);
3992 				break;
3993 
3994 			}
3995 			ptr += opsize-2;
3996 			length -= opsize;
3997 		}
3998 	}
3999 }
4000 EXPORT_SYMBOL(tcp_parse_options);
4001 
4002 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4003 {
4004 	const __be32 *ptr = (const __be32 *)(th + 1);
4005 
4006 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4007 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4008 		tp->rx_opt.saw_tstamp = 1;
4009 		++ptr;
4010 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4011 		++ptr;
4012 		if (*ptr)
4013 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4014 		else
4015 			tp->rx_opt.rcv_tsecr = 0;
4016 		return true;
4017 	}
4018 	return false;
4019 }
4020 
4021 /* Fast parse options. This hopes to only see timestamps.
4022  * If it is wrong it falls back on tcp_parse_options().
4023  */
4024 static bool tcp_fast_parse_options(const struct net *net,
4025 				   const struct sk_buff *skb,
4026 				   const struct tcphdr *th, struct tcp_sock *tp)
4027 {
4028 	/* In the spirit of fast parsing, compare doff directly to constant
4029 	 * values.  Because equality is used, short doff can be ignored here.
4030 	 */
4031 	if (th->doff == (sizeof(*th) / 4)) {
4032 		tp->rx_opt.saw_tstamp = 0;
4033 		return false;
4034 	} else if (tp->rx_opt.tstamp_ok &&
4035 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4036 		if (tcp_parse_aligned_timestamp(tp, th))
4037 			return true;
4038 	}
4039 
4040 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4041 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4042 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4043 
4044 	return true;
4045 }
4046 
4047 #ifdef CONFIG_TCP_MD5SIG
4048 /*
4049  * Parse MD5 Signature option
4050  */
4051 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4052 {
4053 	int length = (th->doff << 2) - sizeof(*th);
4054 	const u8 *ptr = (const u8 *)(th + 1);
4055 
4056 	/* If not enough data remaining, we can short cut */
4057 	while (length >= TCPOLEN_MD5SIG) {
4058 		int opcode = *ptr++;
4059 		int opsize;
4060 
4061 		switch (opcode) {
4062 		case TCPOPT_EOL:
4063 			return NULL;
4064 		case TCPOPT_NOP:
4065 			length--;
4066 			continue;
4067 		default:
4068 			opsize = *ptr++;
4069 			if (opsize < 2 || opsize > length)
4070 				return NULL;
4071 			if (opcode == TCPOPT_MD5SIG)
4072 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4073 		}
4074 		ptr += opsize - 2;
4075 		length -= opsize;
4076 	}
4077 	return NULL;
4078 }
4079 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4080 #endif
4081 
4082 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4083  *
4084  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4085  * it can pass through stack. So, the following predicate verifies that
4086  * this segment is not used for anything but congestion avoidance or
4087  * fast retransmit. Moreover, we even are able to eliminate most of such
4088  * second order effects, if we apply some small "replay" window (~RTO)
4089  * to timestamp space.
4090  *
4091  * All these measures still do not guarantee that we reject wrapped ACKs
4092  * on networks with high bandwidth, when sequence space is recycled fastly,
4093  * but it guarantees that such events will be very rare and do not affect
4094  * connection seriously. This doesn't look nice, but alas, PAWS is really
4095  * buggy extension.
4096  *
4097  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4098  * states that events when retransmit arrives after original data are rare.
4099  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4100  * the biggest problem on large power networks even with minor reordering.
4101  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4102  * up to bandwidth of 18Gigabit/sec. 8) ]
4103  */
4104 
4105 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4106 {
4107 	const struct tcp_sock *tp = tcp_sk(sk);
4108 	const struct tcphdr *th = tcp_hdr(skb);
4109 	u32 seq = TCP_SKB_CB(skb)->seq;
4110 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4111 
4112 	return (/* 1. Pure ACK with correct sequence number. */
4113 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4114 
4115 		/* 2. ... and duplicate ACK. */
4116 		ack == tp->snd_una &&
4117 
4118 		/* 3. ... and does not update window. */
4119 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4120 
4121 		/* 4. ... and sits in replay window. */
4122 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4123 }
4124 
4125 static inline bool tcp_paws_discard(const struct sock *sk,
4126 				   const struct sk_buff *skb)
4127 {
4128 	const struct tcp_sock *tp = tcp_sk(sk);
4129 
4130 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4131 	       !tcp_disordered_ack(sk, skb);
4132 }
4133 
4134 /* Check segment sequence number for validity.
4135  *
4136  * Segment controls are considered valid, if the segment
4137  * fits to the window after truncation to the window. Acceptability
4138  * of data (and SYN, FIN, of course) is checked separately.
4139  * See tcp_data_queue(), for example.
4140  *
4141  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4142  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4143  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4144  * (borrowed from freebsd)
4145  */
4146 
4147 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4148 {
4149 	return	!before(end_seq, tp->rcv_wup) &&
4150 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4151 }
4152 
4153 /* When we get a reset we do this. */
4154 void tcp_reset(struct sock *sk)
4155 {
4156 	trace_tcp_receive_reset(sk);
4157 
4158 	/* We want the right error as BSD sees it (and indeed as we do). */
4159 	switch (sk->sk_state) {
4160 	case TCP_SYN_SENT:
4161 		sk->sk_err = ECONNREFUSED;
4162 		break;
4163 	case TCP_CLOSE_WAIT:
4164 		sk->sk_err = EPIPE;
4165 		break;
4166 	case TCP_CLOSE:
4167 		return;
4168 	default:
4169 		sk->sk_err = ECONNRESET;
4170 	}
4171 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4172 	smp_wmb();
4173 
4174 	tcp_write_queue_purge(sk);
4175 	tcp_done(sk);
4176 
4177 	if (!sock_flag(sk, SOCK_DEAD))
4178 		sk->sk_error_report(sk);
4179 }
4180 
4181 /*
4182  * 	Process the FIN bit. This now behaves as it is supposed to work
4183  *	and the FIN takes effect when it is validly part of sequence
4184  *	space. Not before when we get holes.
4185  *
4186  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4187  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4188  *	TIME-WAIT)
4189  *
4190  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4191  *	close and we go into CLOSING (and later onto TIME-WAIT)
4192  *
4193  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4194  */
4195 void tcp_fin(struct sock *sk)
4196 {
4197 	struct tcp_sock *tp = tcp_sk(sk);
4198 
4199 	inet_csk_schedule_ack(sk);
4200 
4201 	sk->sk_shutdown |= RCV_SHUTDOWN;
4202 	sock_set_flag(sk, SOCK_DONE);
4203 
4204 	switch (sk->sk_state) {
4205 	case TCP_SYN_RECV:
4206 	case TCP_ESTABLISHED:
4207 		/* Move to CLOSE_WAIT */
4208 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4209 		inet_csk_enter_pingpong_mode(sk);
4210 		break;
4211 
4212 	case TCP_CLOSE_WAIT:
4213 	case TCP_CLOSING:
4214 		/* Received a retransmission of the FIN, do
4215 		 * nothing.
4216 		 */
4217 		break;
4218 	case TCP_LAST_ACK:
4219 		/* RFC793: Remain in the LAST-ACK state. */
4220 		break;
4221 
4222 	case TCP_FIN_WAIT1:
4223 		/* This case occurs when a simultaneous close
4224 		 * happens, we must ack the received FIN and
4225 		 * enter the CLOSING state.
4226 		 */
4227 		tcp_send_ack(sk);
4228 		tcp_set_state(sk, TCP_CLOSING);
4229 		break;
4230 	case TCP_FIN_WAIT2:
4231 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4232 		tcp_send_ack(sk);
4233 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4234 		break;
4235 	default:
4236 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4237 		 * cases we should never reach this piece of code.
4238 		 */
4239 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4240 		       __func__, sk->sk_state);
4241 		break;
4242 	}
4243 
4244 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4245 	 * Probably, we should reset in this case. For now drop them.
4246 	 */
4247 	skb_rbtree_purge(&tp->out_of_order_queue);
4248 	if (tcp_is_sack(tp))
4249 		tcp_sack_reset(&tp->rx_opt);
4250 	sk_mem_reclaim(sk);
4251 
4252 	if (!sock_flag(sk, SOCK_DEAD)) {
4253 		sk->sk_state_change(sk);
4254 
4255 		/* Do not send POLL_HUP for half duplex close. */
4256 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4257 		    sk->sk_state == TCP_CLOSE)
4258 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4259 		else
4260 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4261 	}
4262 }
4263 
4264 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4265 				  u32 end_seq)
4266 {
4267 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4268 		if (before(seq, sp->start_seq))
4269 			sp->start_seq = seq;
4270 		if (after(end_seq, sp->end_seq))
4271 			sp->end_seq = end_seq;
4272 		return true;
4273 	}
4274 	return false;
4275 }
4276 
4277 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4278 {
4279 	struct tcp_sock *tp = tcp_sk(sk);
4280 
4281 	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4282 		int mib_idx;
4283 
4284 		if (before(seq, tp->rcv_nxt))
4285 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4286 		else
4287 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4288 
4289 		NET_INC_STATS(sock_net(sk), mib_idx);
4290 
4291 		tp->rx_opt.dsack = 1;
4292 		tp->duplicate_sack[0].start_seq = seq;
4293 		tp->duplicate_sack[0].end_seq = end_seq;
4294 	}
4295 }
4296 
4297 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4298 {
4299 	struct tcp_sock *tp = tcp_sk(sk);
4300 
4301 	if (!tp->rx_opt.dsack)
4302 		tcp_dsack_set(sk, seq, end_seq);
4303 	else
4304 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4305 }
4306 
4307 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4308 {
4309 	/* When the ACK path fails or drops most ACKs, the sender would
4310 	 * timeout and spuriously retransmit the same segment repeatedly.
4311 	 * The receiver remembers and reflects via DSACKs. Leverage the
4312 	 * DSACK state and change the txhash to re-route speculatively.
4313 	 */
4314 	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq) {
4315 		sk_rethink_txhash(sk);
4316 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4317 	}
4318 }
4319 
4320 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4321 {
4322 	struct tcp_sock *tp = tcp_sk(sk);
4323 
4324 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4325 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4326 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4327 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4328 
4329 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4330 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4331 
4332 			tcp_rcv_spurious_retrans(sk, skb);
4333 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4334 				end_seq = tp->rcv_nxt;
4335 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4336 		}
4337 	}
4338 
4339 	tcp_send_ack(sk);
4340 }
4341 
4342 /* These routines update the SACK block as out-of-order packets arrive or
4343  * in-order packets close up the sequence space.
4344  */
4345 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4346 {
4347 	int this_sack;
4348 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4349 	struct tcp_sack_block *swalk = sp + 1;
4350 
4351 	/* See if the recent change to the first SACK eats into
4352 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4353 	 */
4354 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4355 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4356 			int i;
4357 
4358 			/* Zap SWALK, by moving every further SACK up by one slot.
4359 			 * Decrease num_sacks.
4360 			 */
4361 			tp->rx_opt.num_sacks--;
4362 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4363 				sp[i] = sp[i + 1];
4364 			continue;
4365 		}
4366 		this_sack++, swalk++;
4367 	}
4368 }
4369 
4370 static void tcp_sack_compress_send_ack(struct sock *sk)
4371 {
4372 	struct tcp_sock *tp = tcp_sk(sk);
4373 
4374 	if (!tp->compressed_ack)
4375 		return;
4376 
4377 	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4378 		__sock_put(sk);
4379 
4380 	/* Since we have to send one ack finally,
4381 	 * substract one from tp->compressed_ack to keep
4382 	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4383 	 */
4384 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4385 		      tp->compressed_ack - 1);
4386 
4387 	tp->compressed_ack = 0;
4388 	tcp_send_ack(sk);
4389 }
4390 
4391 /* Reasonable amount of sack blocks included in TCP SACK option
4392  * The max is 4, but this becomes 3 if TCP timestamps are there.
4393  * Given that SACK packets might be lost, be conservative and use 2.
4394  */
4395 #define TCP_SACK_BLOCKS_EXPECTED 2
4396 
4397 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4398 {
4399 	struct tcp_sock *tp = tcp_sk(sk);
4400 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4401 	int cur_sacks = tp->rx_opt.num_sacks;
4402 	int this_sack;
4403 
4404 	if (!cur_sacks)
4405 		goto new_sack;
4406 
4407 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4408 		if (tcp_sack_extend(sp, seq, end_seq)) {
4409 			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4410 				tcp_sack_compress_send_ack(sk);
4411 			/* Rotate this_sack to the first one. */
4412 			for (; this_sack > 0; this_sack--, sp--)
4413 				swap(*sp, *(sp - 1));
4414 			if (cur_sacks > 1)
4415 				tcp_sack_maybe_coalesce(tp);
4416 			return;
4417 		}
4418 	}
4419 
4420 	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4421 		tcp_sack_compress_send_ack(sk);
4422 
4423 	/* Could not find an adjacent existing SACK, build a new one,
4424 	 * put it at the front, and shift everyone else down.  We
4425 	 * always know there is at least one SACK present already here.
4426 	 *
4427 	 * If the sack array is full, forget about the last one.
4428 	 */
4429 	if (this_sack >= TCP_NUM_SACKS) {
4430 		this_sack--;
4431 		tp->rx_opt.num_sacks--;
4432 		sp--;
4433 	}
4434 	for (; this_sack > 0; this_sack--, sp--)
4435 		*sp = *(sp - 1);
4436 
4437 new_sack:
4438 	/* Build the new head SACK, and we're done. */
4439 	sp->start_seq = seq;
4440 	sp->end_seq = end_seq;
4441 	tp->rx_opt.num_sacks++;
4442 }
4443 
4444 /* RCV.NXT advances, some SACKs should be eaten. */
4445 
4446 static void tcp_sack_remove(struct tcp_sock *tp)
4447 {
4448 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4449 	int num_sacks = tp->rx_opt.num_sacks;
4450 	int this_sack;
4451 
4452 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4453 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4454 		tp->rx_opt.num_sacks = 0;
4455 		return;
4456 	}
4457 
4458 	for (this_sack = 0; this_sack < num_sacks;) {
4459 		/* Check if the start of the sack is covered by RCV.NXT. */
4460 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4461 			int i;
4462 
4463 			/* RCV.NXT must cover all the block! */
4464 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4465 
4466 			/* Zap this SACK, by moving forward any other SACKS. */
4467 			for (i = this_sack+1; i < num_sacks; i++)
4468 				tp->selective_acks[i-1] = tp->selective_acks[i];
4469 			num_sacks--;
4470 			continue;
4471 		}
4472 		this_sack++;
4473 		sp++;
4474 	}
4475 	tp->rx_opt.num_sacks = num_sacks;
4476 }
4477 
4478 /**
4479  * tcp_try_coalesce - try to merge skb to prior one
4480  * @sk: socket
4481  * @to: prior buffer
4482  * @from: buffer to add in queue
4483  * @fragstolen: pointer to boolean
4484  *
4485  * Before queueing skb @from after @to, try to merge them
4486  * to reduce overall memory use and queue lengths, if cost is small.
4487  * Packets in ofo or receive queues can stay a long time.
4488  * Better try to coalesce them right now to avoid future collapses.
4489  * Returns true if caller should free @from instead of queueing it
4490  */
4491 static bool tcp_try_coalesce(struct sock *sk,
4492 			     struct sk_buff *to,
4493 			     struct sk_buff *from,
4494 			     bool *fragstolen)
4495 {
4496 	int delta;
4497 
4498 	*fragstolen = false;
4499 
4500 	/* Its possible this segment overlaps with prior segment in queue */
4501 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4502 		return false;
4503 
4504 	if (!mptcp_skb_can_collapse(to, from))
4505 		return false;
4506 
4507 #ifdef CONFIG_TLS_DEVICE
4508 	if (from->decrypted != to->decrypted)
4509 		return false;
4510 #endif
4511 
4512 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4513 		return false;
4514 
4515 	atomic_add(delta, &sk->sk_rmem_alloc);
4516 	sk_mem_charge(sk, delta);
4517 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4518 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4519 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4520 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4521 
4522 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4523 		TCP_SKB_CB(to)->has_rxtstamp = true;
4524 		to->tstamp = from->tstamp;
4525 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4526 	}
4527 
4528 	return true;
4529 }
4530 
4531 static bool tcp_ooo_try_coalesce(struct sock *sk,
4532 			     struct sk_buff *to,
4533 			     struct sk_buff *from,
4534 			     bool *fragstolen)
4535 {
4536 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4537 
4538 	/* In case tcp_drop() is called later, update to->gso_segs */
4539 	if (res) {
4540 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4541 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4542 
4543 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4544 	}
4545 	return res;
4546 }
4547 
4548 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4549 {
4550 	sk_drops_add(sk, skb);
4551 	__kfree_skb(skb);
4552 }
4553 
4554 /* This one checks to see if we can put data from the
4555  * out_of_order queue into the receive_queue.
4556  */
4557 static void tcp_ofo_queue(struct sock *sk)
4558 {
4559 	struct tcp_sock *tp = tcp_sk(sk);
4560 	__u32 dsack_high = tp->rcv_nxt;
4561 	bool fin, fragstolen, eaten;
4562 	struct sk_buff *skb, *tail;
4563 	struct rb_node *p;
4564 
4565 	p = rb_first(&tp->out_of_order_queue);
4566 	while (p) {
4567 		skb = rb_to_skb(p);
4568 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4569 			break;
4570 
4571 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4572 			__u32 dsack = dsack_high;
4573 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4574 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4575 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4576 		}
4577 		p = rb_next(p);
4578 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4579 
4580 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4581 			tcp_drop(sk, skb);
4582 			continue;
4583 		}
4584 
4585 		tail = skb_peek_tail(&sk->sk_receive_queue);
4586 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4587 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4588 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4589 		if (!eaten)
4590 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4591 		else
4592 			kfree_skb_partial(skb, fragstolen);
4593 
4594 		if (unlikely(fin)) {
4595 			tcp_fin(sk);
4596 			/* tcp_fin() purges tp->out_of_order_queue,
4597 			 * so we must end this loop right now.
4598 			 */
4599 			break;
4600 		}
4601 	}
4602 }
4603 
4604 static bool tcp_prune_ofo_queue(struct sock *sk);
4605 static int tcp_prune_queue(struct sock *sk);
4606 
4607 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4608 				 unsigned int size)
4609 {
4610 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4611 	    !sk_rmem_schedule(sk, skb, size)) {
4612 
4613 		if (tcp_prune_queue(sk) < 0)
4614 			return -1;
4615 
4616 		while (!sk_rmem_schedule(sk, skb, size)) {
4617 			if (!tcp_prune_ofo_queue(sk))
4618 				return -1;
4619 		}
4620 	}
4621 	return 0;
4622 }
4623 
4624 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4625 {
4626 	struct tcp_sock *tp = tcp_sk(sk);
4627 	struct rb_node **p, *parent;
4628 	struct sk_buff *skb1;
4629 	u32 seq, end_seq;
4630 	bool fragstolen;
4631 
4632 	tcp_ecn_check_ce(sk, skb);
4633 
4634 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4635 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4636 		sk->sk_data_ready(sk);
4637 		tcp_drop(sk, skb);
4638 		return;
4639 	}
4640 
4641 	/* Disable header prediction. */
4642 	tp->pred_flags = 0;
4643 	inet_csk_schedule_ack(sk);
4644 
4645 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4646 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4647 	seq = TCP_SKB_CB(skb)->seq;
4648 	end_seq = TCP_SKB_CB(skb)->end_seq;
4649 
4650 	p = &tp->out_of_order_queue.rb_node;
4651 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4652 		/* Initial out of order segment, build 1 SACK. */
4653 		if (tcp_is_sack(tp)) {
4654 			tp->rx_opt.num_sacks = 1;
4655 			tp->selective_acks[0].start_seq = seq;
4656 			tp->selective_acks[0].end_seq = end_seq;
4657 		}
4658 		rb_link_node(&skb->rbnode, NULL, p);
4659 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4660 		tp->ooo_last_skb = skb;
4661 		goto end;
4662 	}
4663 
4664 	/* In the typical case, we are adding an skb to the end of the list.
4665 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4666 	 */
4667 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4668 				 skb, &fragstolen)) {
4669 coalesce_done:
4670 		/* For non sack flows, do not grow window to force DUPACK
4671 		 * and trigger fast retransmit.
4672 		 */
4673 		if (tcp_is_sack(tp))
4674 			tcp_grow_window(sk, skb);
4675 		kfree_skb_partial(skb, fragstolen);
4676 		skb = NULL;
4677 		goto add_sack;
4678 	}
4679 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4680 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4681 		parent = &tp->ooo_last_skb->rbnode;
4682 		p = &parent->rb_right;
4683 		goto insert;
4684 	}
4685 
4686 	/* Find place to insert this segment. Handle overlaps on the way. */
4687 	parent = NULL;
4688 	while (*p) {
4689 		parent = *p;
4690 		skb1 = rb_to_skb(parent);
4691 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4692 			p = &parent->rb_left;
4693 			continue;
4694 		}
4695 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4696 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4697 				/* All the bits are present. Drop. */
4698 				NET_INC_STATS(sock_net(sk),
4699 					      LINUX_MIB_TCPOFOMERGE);
4700 				tcp_drop(sk, skb);
4701 				skb = NULL;
4702 				tcp_dsack_set(sk, seq, end_seq);
4703 				goto add_sack;
4704 			}
4705 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4706 				/* Partial overlap. */
4707 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4708 			} else {
4709 				/* skb's seq == skb1's seq and skb covers skb1.
4710 				 * Replace skb1 with skb.
4711 				 */
4712 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4713 						&tp->out_of_order_queue);
4714 				tcp_dsack_extend(sk,
4715 						 TCP_SKB_CB(skb1)->seq,
4716 						 TCP_SKB_CB(skb1)->end_seq);
4717 				NET_INC_STATS(sock_net(sk),
4718 					      LINUX_MIB_TCPOFOMERGE);
4719 				tcp_drop(sk, skb1);
4720 				goto merge_right;
4721 			}
4722 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4723 						skb, &fragstolen)) {
4724 			goto coalesce_done;
4725 		}
4726 		p = &parent->rb_right;
4727 	}
4728 insert:
4729 	/* Insert segment into RB tree. */
4730 	rb_link_node(&skb->rbnode, parent, p);
4731 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4732 
4733 merge_right:
4734 	/* Remove other segments covered by skb. */
4735 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4736 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4737 			break;
4738 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4739 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4740 					 end_seq);
4741 			break;
4742 		}
4743 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4744 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4745 				 TCP_SKB_CB(skb1)->end_seq);
4746 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4747 		tcp_drop(sk, skb1);
4748 	}
4749 	/* If there is no skb after us, we are the last_skb ! */
4750 	if (!skb1)
4751 		tp->ooo_last_skb = skb;
4752 
4753 add_sack:
4754 	if (tcp_is_sack(tp))
4755 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4756 end:
4757 	if (skb) {
4758 		/* For non sack flows, do not grow window to force DUPACK
4759 		 * and trigger fast retransmit.
4760 		 */
4761 		if (tcp_is_sack(tp))
4762 			tcp_grow_window(sk, skb);
4763 		skb_condense(skb);
4764 		skb_set_owner_r(skb, sk);
4765 	}
4766 }
4767 
4768 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4769 				      bool *fragstolen)
4770 {
4771 	int eaten;
4772 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4773 
4774 	eaten = (tail &&
4775 		 tcp_try_coalesce(sk, tail,
4776 				  skb, fragstolen)) ? 1 : 0;
4777 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4778 	if (!eaten) {
4779 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4780 		skb_set_owner_r(skb, sk);
4781 	}
4782 	return eaten;
4783 }
4784 
4785 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4786 {
4787 	struct sk_buff *skb;
4788 	int err = -ENOMEM;
4789 	int data_len = 0;
4790 	bool fragstolen;
4791 
4792 	if (size == 0)
4793 		return 0;
4794 
4795 	if (size > PAGE_SIZE) {
4796 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4797 
4798 		data_len = npages << PAGE_SHIFT;
4799 		size = data_len + (size & ~PAGE_MASK);
4800 	}
4801 	skb = alloc_skb_with_frags(size - data_len, data_len,
4802 				   PAGE_ALLOC_COSTLY_ORDER,
4803 				   &err, sk->sk_allocation);
4804 	if (!skb)
4805 		goto err;
4806 
4807 	skb_put(skb, size - data_len);
4808 	skb->data_len = data_len;
4809 	skb->len = size;
4810 
4811 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4812 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4813 		goto err_free;
4814 	}
4815 
4816 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4817 	if (err)
4818 		goto err_free;
4819 
4820 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4821 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4822 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4823 
4824 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4825 		WARN_ON_ONCE(fragstolen); /* should not happen */
4826 		__kfree_skb(skb);
4827 	}
4828 	return size;
4829 
4830 err_free:
4831 	kfree_skb(skb);
4832 err:
4833 	return err;
4834 
4835 }
4836 
4837 void tcp_data_ready(struct sock *sk)
4838 {
4839 	const struct tcp_sock *tp = tcp_sk(sk);
4840 	int avail = tp->rcv_nxt - tp->copied_seq;
4841 
4842 	if (avail < sk->sk_rcvlowat && !tcp_rmem_pressure(sk) &&
4843 	    !sock_flag(sk, SOCK_DONE))
4844 		return;
4845 
4846 	sk->sk_data_ready(sk);
4847 }
4848 
4849 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4850 {
4851 	struct tcp_sock *tp = tcp_sk(sk);
4852 	bool fragstolen;
4853 	int eaten;
4854 
4855 	if (sk_is_mptcp(sk))
4856 		mptcp_incoming_options(sk, skb, &tp->rx_opt);
4857 
4858 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4859 		__kfree_skb(skb);
4860 		return;
4861 	}
4862 	skb_dst_drop(skb);
4863 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4864 
4865 	tp->rx_opt.dsack = 0;
4866 
4867 	/*  Queue data for delivery to the user.
4868 	 *  Packets in sequence go to the receive queue.
4869 	 *  Out of sequence packets to the out_of_order_queue.
4870 	 */
4871 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4872 		if (tcp_receive_window(tp) == 0) {
4873 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4874 			goto out_of_window;
4875 		}
4876 
4877 		/* Ok. In sequence. In window. */
4878 queue_and_out:
4879 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4880 			sk_forced_mem_schedule(sk, skb->truesize);
4881 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4882 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4883 			sk->sk_data_ready(sk);
4884 			goto drop;
4885 		}
4886 
4887 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
4888 		if (skb->len)
4889 			tcp_event_data_recv(sk, skb);
4890 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4891 			tcp_fin(sk);
4892 
4893 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4894 			tcp_ofo_queue(sk);
4895 
4896 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
4897 			 * gap in queue is filled.
4898 			 */
4899 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4900 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4901 		}
4902 
4903 		if (tp->rx_opt.num_sacks)
4904 			tcp_sack_remove(tp);
4905 
4906 		tcp_fast_path_check(sk);
4907 
4908 		if (eaten > 0)
4909 			kfree_skb_partial(skb, fragstolen);
4910 		if (!sock_flag(sk, SOCK_DEAD))
4911 			tcp_data_ready(sk);
4912 		return;
4913 	}
4914 
4915 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4916 		tcp_rcv_spurious_retrans(sk, skb);
4917 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4918 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4919 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4920 
4921 out_of_window:
4922 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4923 		inet_csk_schedule_ack(sk);
4924 drop:
4925 		tcp_drop(sk, skb);
4926 		return;
4927 	}
4928 
4929 	/* Out of window. F.e. zero window probe. */
4930 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4931 		goto out_of_window;
4932 
4933 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4934 		/* Partial packet, seq < rcv_next < end_seq */
4935 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4936 
4937 		/* If window is closed, drop tail of packet. But after
4938 		 * remembering D-SACK for its head made in previous line.
4939 		 */
4940 		if (!tcp_receive_window(tp)) {
4941 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4942 			goto out_of_window;
4943 		}
4944 		goto queue_and_out;
4945 	}
4946 
4947 	tcp_data_queue_ofo(sk, skb);
4948 }
4949 
4950 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4951 {
4952 	if (list)
4953 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4954 
4955 	return skb_rb_next(skb);
4956 }
4957 
4958 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4959 					struct sk_buff_head *list,
4960 					struct rb_root *root)
4961 {
4962 	struct sk_buff *next = tcp_skb_next(skb, list);
4963 
4964 	if (list)
4965 		__skb_unlink(skb, list);
4966 	else
4967 		rb_erase(&skb->rbnode, root);
4968 
4969 	__kfree_skb(skb);
4970 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4971 
4972 	return next;
4973 }
4974 
4975 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4976 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4977 {
4978 	struct rb_node **p = &root->rb_node;
4979 	struct rb_node *parent = NULL;
4980 	struct sk_buff *skb1;
4981 
4982 	while (*p) {
4983 		parent = *p;
4984 		skb1 = rb_to_skb(parent);
4985 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4986 			p = &parent->rb_left;
4987 		else
4988 			p = &parent->rb_right;
4989 	}
4990 	rb_link_node(&skb->rbnode, parent, p);
4991 	rb_insert_color(&skb->rbnode, root);
4992 }
4993 
4994 /* Collapse contiguous sequence of skbs head..tail with
4995  * sequence numbers start..end.
4996  *
4997  * If tail is NULL, this means until the end of the queue.
4998  *
4999  * Segments with FIN/SYN are not collapsed (only because this
5000  * simplifies code)
5001  */
5002 static void
5003 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5004 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5005 {
5006 	struct sk_buff *skb = head, *n;
5007 	struct sk_buff_head tmp;
5008 	bool end_of_skbs;
5009 
5010 	/* First, check that queue is collapsible and find
5011 	 * the point where collapsing can be useful.
5012 	 */
5013 restart:
5014 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5015 		n = tcp_skb_next(skb, list);
5016 
5017 		/* No new bits? It is possible on ofo queue. */
5018 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5019 			skb = tcp_collapse_one(sk, skb, list, root);
5020 			if (!skb)
5021 				break;
5022 			goto restart;
5023 		}
5024 
5025 		/* The first skb to collapse is:
5026 		 * - not SYN/FIN and
5027 		 * - bloated or contains data before "start" or
5028 		 *   overlaps to the next one and mptcp allow collapsing.
5029 		 */
5030 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5031 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5032 		     before(TCP_SKB_CB(skb)->seq, start))) {
5033 			end_of_skbs = false;
5034 			break;
5035 		}
5036 
5037 		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5038 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5039 			end_of_skbs = false;
5040 			break;
5041 		}
5042 
5043 		/* Decided to skip this, advance start seq. */
5044 		start = TCP_SKB_CB(skb)->end_seq;
5045 	}
5046 	if (end_of_skbs ||
5047 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5048 		return;
5049 
5050 	__skb_queue_head_init(&tmp);
5051 
5052 	while (before(start, end)) {
5053 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5054 		struct sk_buff *nskb;
5055 
5056 		nskb = alloc_skb(copy, GFP_ATOMIC);
5057 		if (!nskb)
5058 			break;
5059 
5060 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5061 #ifdef CONFIG_TLS_DEVICE
5062 		nskb->decrypted = skb->decrypted;
5063 #endif
5064 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5065 		if (list)
5066 			__skb_queue_before(list, skb, nskb);
5067 		else
5068 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5069 		skb_set_owner_r(nskb, sk);
5070 		mptcp_skb_ext_move(nskb, skb);
5071 
5072 		/* Copy data, releasing collapsed skbs. */
5073 		while (copy > 0) {
5074 			int offset = start - TCP_SKB_CB(skb)->seq;
5075 			int size = TCP_SKB_CB(skb)->end_seq - start;
5076 
5077 			BUG_ON(offset < 0);
5078 			if (size > 0) {
5079 				size = min(copy, size);
5080 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5081 					BUG();
5082 				TCP_SKB_CB(nskb)->end_seq += size;
5083 				copy -= size;
5084 				start += size;
5085 			}
5086 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5087 				skb = tcp_collapse_one(sk, skb, list, root);
5088 				if (!skb ||
5089 				    skb == tail ||
5090 				    !mptcp_skb_can_collapse(nskb, skb) ||
5091 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5092 					goto end;
5093 #ifdef CONFIG_TLS_DEVICE
5094 				if (skb->decrypted != nskb->decrypted)
5095 					goto end;
5096 #endif
5097 			}
5098 		}
5099 	}
5100 end:
5101 	skb_queue_walk_safe(&tmp, skb, n)
5102 		tcp_rbtree_insert(root, skb);
5103 }
5104 
5105 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5106  * and tcp_collapse() them until all the queue is collapsed.
5107  */
5108 static void tcp_collapse_ofo_queue(struct sock *sk)
5109 {
5110 	struct tcp_sock *tp = tcp_sk(sk);
5111 	u32 range_truesize, sum_tiny = 0;
5112 	struct sk_buff *skb, *head;
5113 	u32 start, end;
5114 
5115 	skb = skb_rb_first(&tp->out_of_order_queue);
5116 new_range:
5117 	if (!skb) {
5118 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5119 		return;
5120 	}
5121 	start = TCP_SKB_CB(skb)->seq;
5122 	end = TCP_SKB_CB(skb)->end_seq;
5123 	range_truesize = skb->truesize;
5124 
5125 	for (head = skb;;) {
5126 		skb = skb_rb_next(skb);
5127 
5128 		/* Range is terminated when we see a gap or when
5129 		 * we are at the queue end.
5130 		 */
5131 		if (!skb ||
5132 		    after(TCP_SKB_CB(skb)->seq, end) ||
5133 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5134 			/* Do not attempt collapsing tiny skbs */
5135 			if (range_truesize != head->truesize ||
5136 			    end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5137 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5138 					     head, skb, start, end);
5139 			} else {
5140 				sum_tiny += range_truesize;
5141 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5142 					return;
5143 			}
5144 			goto new_range;
5145 		}
5146 
5147 		range_truesize += skb->truesize;
5148 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5149 			start = TCP_SKB_CB(skb)->seq;
5150 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5151 			end = TCP_SKB_CB(skb)->end_seq;
5152 	}
5153 }
5154 
5155 /*
5156  * Clean the out-of-order queue to make room.
5157  * We drop high sequences packets to :
5158  * 1) Let a chance for holes to be filled.
5159  * 2) not add too big latencies if thousands of packets sit there.
5160  *    (But if application shrinks SO_RCVBUF, we could still end up
5161  *     freeing whole queue here)
5162  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5163  *
5164  * Return true if queue has shrunk.
5165  */
5166 static bool tcp_prune_ofo_queue(struct sock *sk)
5167 {
5168 	struct tcp_sock *tp = tcp_sk(sk);
5169 	struct rb_node *node, *prev;
5170 	int goal;
5171 
5172 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5173 		return false;
5174 
5175 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5176 	goal = sk->sk_rcvbuf >> 3;
5177 	node = &tp->ooo_last_skb->rbnode;
5178 	do {
5179 		prev = rb_prev(node);
5180 		rb_erase(node, &tp->out_of_order_queue);
5181 		goal -= rb_to_skb(node)->truesize;
5182 		tcp_drop(sk, rb_to_skb(node));
5183 		if (!prev || goal <= 0) {
5184 			sk_mem_reclaim(sk);
5185 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5186 			    !tcp_under_memory_pressure(sk))
5187 				break;
5188 			goal = sk->sk_rcvbuf >> 3;
5189 		}
5190 		node = prev;
5191 	} while (node);
5192 	tp->ooo_last_skb = rb_to_skb(prev);
5193 
5194 	/* Reset SACK state.  A conforming SACK implementation will
5195 	 * do the same at a timeout based retransmit.  When a connection
5196 	 * is in a sad state like this, we care only about integrity
5197 	 * of the connection not performance.
5198 	 */
5199 	if (tp->rx_opt.sack_ok)
5200 		tcp_sack_reset(&tp->rx_opt);
5201 	return true;
5202 }
5203 
5204 /* Reduce allocated memory if we can, trying to get
5205  * the socket within its memory limits again.
5206  *
5207  * Return less than zero if we should start dropping frames
5208  * until the socket owning process reads some of the data
5209  * to stabilize the situation.
5210  */
5211 static int tcp_prune_queue(struct sock *sk)
5212 {
5213 	struct tcp_sock *tp = tcp_sk(sk);
5214 
5215 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5216 
5217 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5218 		tcp_clamp_window(sk);
5219 	else if (tcp_under_memory_pressure(sk))
5220 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5221 
5222 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5223 		return 0;
5224 
5225 	tcp_collapse_ofo_queue(sk);
5226 	if (!skb_queue_empty(&sk->sk_receive_queue))
5227 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5228 			     skb_peek(&sk->sk_receive_queue),
5229 			     NULL,
5230 			     tp->copied_seq, tp->rcv_nxt);
5231 	sk_mem_reclaim(sk);
5232 
5233 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5234 		return 0;
5235 
5236 	/* Collapsing did not help, destructive actions follow.
5237 	 * This must not ever occur. */
5238 
5239 	tcp_prune_ofo_queue(sk);
5240 
5241 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5242 		return 0;
5243 
5244 	/* If we are really being abused, tell the caller to silently
5245 	 * drop receive data on the floor.  It will get retransmitted
5246 	 * and hopefully then we'll have sufficient space.
5247 	 */
5248 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5249 
5250 	/* Massive buffer overcommit. */
5251 	tp->pred_flags = 0;
5252 	return -1;
5253 }
5254 
5255 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5256 {
5257 	const struct tcp_sock *tp = tcp_sk(sk);
5258 
5259 	/* If the user specified a specific send buffer setting, do
5260 	 * not modify it.
5261 	 */
5262 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5263 		return false;
5264 
5265 	/* If we are under global TCP memory pressure, do not expand.  */
5266 	if (tcp_under_memory_pressure(sk))
5267 		return false;
5268 
5269 	/* If we are under soft global TCP memory pressure, do not expand.  */
5270 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5271 		return false;
5272 
5273 	/* If we filled the congestion window, do not expand.  */
5274 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5275 		return false;
5276 
5277 	return true;
5278 }
5279 
5280 /* When incoming ACK allowed to free some skb from write_queue,
5281  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5282  * on the exit from tcp input handler.
5283  *
5284  * PROBLEM: sndbuf expansion does not work well with largesend.
5285  */
5286 static void tcp_new_space(struct sock *sk)
5287 {
5288 	struct tcp_sock *tp = tcp_sk(sk);
5289 
5290 	if (tcp_should_expand_sndbuf(sk)) {
5291 		tcp_sndbuf_expand(sk);
5292 		tp->snd_cwnd_stamp = tcp_jiffies32;
5293 	}
5294 
5295 	sk->sk_write_space(sk);
5296 }
5297 
5298 static void tcp_check_space(struct sock *sk)
5299 {
5300 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5301 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5302 		/* pairs with tcp_poll() */
5303 		smp_mb();
5304 		if (sk->sk_socket &&
5305 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5306 			tcp_new_space(sk);
5307 			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5308 				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5309 		}
5310 	}
5311 }
5312 
5313 static inline void tcp_data_snd_check(struct sock *sk)
5314 {
5315 	tcp_push_pending_frames(sk);
5316 	tcp_check_space(sk);
5317 }
5318 
5319 /*
5320  * Check if sending an ack is needed.
5321  */
5322 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5323 {
5324 	struct tcp_sock *tp = tcp_sk(sk);
5325 	unsigned long rtt, delay;
5326 
5327 	    /* More than one full frame received... */
5328 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5329 	     /* ... and right edge of window advances far enough.
5330 	      * (tcp_recvmsg() will send ACK otherwise).
5331 	      * If application uses SO_RCVLOWAT, we want send ack now if
5332 	      * we have not received enough bytes to satisfy the condition.
5333 	      */
5334 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5335 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5336 	    /* We ACK each frame or... */
5337 	    tcp_in_quickack_mode(sk) ||
5338 	    /* Protocol state mandates a one-time immediate ACK */
5339 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5340 send_now:
5341 		tcp_send_ack(sk);
5342 		return;
5343 	}
5344 
5345 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5346 		tcp_send_delayed_ack(sk);
5347 		return;
5348 	}
5349 
5350 	if (!tcp_is_sack(tp) ||
5351 	    tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5352 		goto send_now;
5353 
5354 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5355 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5356 		tp->dup_ack_counter = 0;
5357 	}
5358 	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5359 		tp->dup_ack_counter++;
5360 		goto send_now;
5361 	}
5362 	tp->compressed_ack++;
5363 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5364 		return;
5365 
5366 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5367 
5368 	rtt = tp->rcv_rtt_est.rtt_us;
5369 	if (tp->srtt_us && tp->srtt_us < rtt)
5370 		rtt = tp->srtt_us;
5371 
5372 	delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5373 		      rtt * (NSEC_PER_USEC >> 3)/20);
5374 	sock_hold(sk);
5375 	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5376 			       sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns,
5377 			       HRTIMER_MODE_REL_PINNED_SOFT);
5378 }
5379 
5380 static inline void tcp_ack_snd_check(struct sock *sk)
5381 {
5382 	if (!inet_csk_ack_scheduled(sk)) {
5383 		/* We sent a data segment already. */
5384 		return;
5385 	}
5386 	__tcp_ack_snd_check(sk, 1);
5387 }
5388 
5389 /*
5390  *	This routine is only called when we have urgent data
5391  *	signaled. Its the 'slow' part of tcp_urg. It could be
5392  *	moved inline now as tcp_urg is only called from one
5393  *	place. We handle URGent data wrong. We have to - as
5394  *	BSD still doesn't use the correction from RFC961.
5395  *	For 1003.1g we should support a new option TCP_STDURG to permit
5396  *	either form (or just set the sysctl tcp_stdurg).
5397  */
5398 
5399 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5400 {
5401 	struct tcp_sock *tp = tcp_sk(sk);
5402 	u32 ptr = ntohs(th->urg_ptr);
5403 
5404 	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5405 		ptr--;
5406 	ptr += ntohl(th->seq);
5407 
5408 	/* Ignore urgent data that we've already seen and read. */
5409 	if (after(tp->copied_seq, ptr))
5410 		return;
5411 
5412 	/* Do not replay urg ptr.
5413 	 *
5414 	 * NOTE: interesting situation not covered by specs.
5415 	 * Misbehaving sender may send urg ptr, pointing to segment,
5416 	 * which we already have in ofo queue. We are not able to fetch
5417 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5418 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5419 	 * situations. But it is worth to think about possibility of some
5420 	 * DoSes using some hypothetical application level deadlock.
5421 	 */
5422 	if (before(ptr, tp->rcv_nxt))
5423 		return;
5424 
5425 	/* Do we already have a newer (or duplicate) urgent pointer? */
5426 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5427 		return;
5428 
5429 	/* Tell the world about our new urgent pointer. */
5430 	sk_send_sigurg(sk);
5431 
5432 	/* We may be adding urgent data when the last byte read was
5433 	 * urgent. To do this requires some care. We cannot just ignore
5434 	 * tp->copied_seq since we would read the last urgent byte again
5435 	 * as data, nor can we alter copied_seq until this data arrives
5436 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5437 	 *
5438 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5439 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5440 	 * and expect that both A and B disappear from stream. This is _wrong_.
5441 	 * Though this happens in BSD with high probability, this is occasional.
5442 	 * Any application relying on this is buggy. Note also, that fix "works"
5443 	 * only in this artificial test. Insert some normal data between A and B and we will
5444 	 * decline of BSD again. Verdict: it is better to remove to trap
5445 	 * buggy users.
5446 	 */
5447 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5448 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5449 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5450 		tp->copied_seq++;
5451 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5452 			__skb_unlink(skb, &sk->sk_receive_queue);
5453 			__kfree_skb(skb);
5454 		}
5455 	}
5456 
5457 	tp->urg_data = TCP_URG_NOTYET;
5458 	WRITE_ONCE(tp->urg_seq, ptr);
5459 
5460 	/* Disable header prediction. */
5461 	tp->pred_flags = 0;
5462 }
5463 
5464 /* This is the 'fast' part of urgent handling. */
5465 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5466 {
5467 	struct tcp_sock *tp = tcp_sk(sk);
5468 
5469 	/* Check if we get a new urgent pointer - normally not. */
5470 	if (th->urg)
5471 		tcp_check_urg(sk, th);
5472 
5473 	/* Do we wait for any urgent data? - normally not... */
5474 	if (tp->urg_data == TCP_URG_NOTYET) {
5475 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5476 			  th->syn;
5477 
5478 		/* Is the urgent pointer pointing into this packet? */
5479 		if (ptr < skb->len) {
5480 			u8 tmp;
5481 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5482 				BUG();
5483 			tp->urg_data = TCP_URG_VALID | tmp;
5484 			if (!sock_flag(sk, SOCK_DEAD))
5485 				sk->sk_data_ready(sk);
5486 		}
5487 	}
5488 }
5489 
5490 /* Accept RST for rcv_nxt - 1 after a FIN.
5491  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5492  * FIN is sent followed by a RST packet. The RST is sent with the same
5493  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5494  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5495  * ACKs on the closed socket. In addition middleboxes can drop either the
5496  * challenge ACK or a subsequent RST.
5497  */
5498 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5499 {
5500 	struct tcp_sock *tp = tcp_sk(sk);
5501 
5502 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5503 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5504 					       TCPF_CLOSING));
5505 }
5506 
5507 /* Does PAWS and seqno based validation of an incoming segment, flags will
5508  * play significant role here.
5509  */
5510 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5511 				  const struct tcphdr *th, int syn_inerr)
5512 {
5513 	struct tcp_sock *tp = tcp_sk(sk);
5514 	bool rst_seq_match = false;
5515 
5516 	/* RFC1323: H1. Apply PAWS check first. */
5517 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5518 	    tp->rx_opt.saw_tstamp &&
5519 	    tcp_paws_discard(sk, skb)) {
5520 		if (!th->rst) {
5521 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5522 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5523 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5524 						  &tp->last_oow_ack_time))
5525 				tcp_send_dupack(sk, skb);
5526 			goto discard;
5527 		}
5528 		/* Reset is accepted even if it did not pass PAWS. */
5529 	}
5530 
5531 	/* Step 1: check sequence number */
5532 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5533 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5534 		 * (RST) segments are validated by checking their SEQ-fields."
5535 		 * And page 69: "If an incoming segment is not acceptable,
5536 		 * an acknowledgment should be sent in reply (unless the RST
5537 		 * bit is set, if so drop the segment and return)".
5538 		 */
5539 		if (!th->rst) {
5540 			if (th->syn)
5541 				goto syn_challenge;
5542 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5543 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5544 						  &tp->last_oow_ack_time))
5545 				tcp_send_dupack(sk, skb);
5546 		} else if (tcp_reset_check(sk, skb)) {
5547 			tcp_reset(sk);
5548 		}
5549 		goto discard;
5550 	}
5551 
5552 	/* Step 2: check RST bit */
5553 	if (th->rst) {
5554 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5555 		 * FIN and SACK too if available):
5556 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5557 		 * the right-most SACK block,
5558 		 * then
5559 		 *     RESET the connection
5560 		 * else
5561 		 *     Send a challenge ACK
5562 		 */
5563 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5564 		    tcp_reset_check(sk, skb)) {
5565 			rst_seq_match = true;
5566 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5567 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5568 			int max_sack = sp[0].end_seq;
5569 			int this_sack;
5570 
5571 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5572 			     ++this_sack) {
5573 				max_sack = after(sp[this_sack].end_seq,
5574 						 max_sack) ?
5575 					sp[this_sack].end_seq : max_sack;
5576 			}
5577 
5578 			if (TCP_SKB_CB(skb)->seq == max_sack)
5579 				rst_seq_match = true;
5580 		}
5581 
5582 		if (rst_seq_match)
5583 			tcp_reset(sk);
5584 		else {
5585 			/* Disable TFO if RST is out-of-order
5586 			 * and no data has been received
5587 			 * for current active TFO socket
5588 			 */
5589 			if (tp->syn_fastopen && !tp->data_segs_in &&
5590 			    sk->sk_state == TCP_ESTABLISHED)
5591 				tcp_fastopen_active_disable(sk);
5592 			tcp_send_challenge_ack(sk, skb);
5593 		}
5594 		goto discard;
5595 	}
5596 
5597 	/* step 3: check security and precedence [ignored] */
5598 
5599 	/* step 4: Check for a SYN
5600 	 * RFC 5961 4.2 : Send a challenge ack
5601 	 */
5602 	if (th->syn) {
5603 syn_challenge:
5604 		if (syn_inerr)
5605 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5606 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5607 		tcp_send_challenge_ack(sk, skb);
5608 		goto discard;
5609 	}
5610 
5611 	return true;
5612 
5613 discard:
5614 	tcp_drop(sk, skb);
5615 	return false;
5616 }
5617 
5618 /*
5619  *	TCP receive function for the ESTABLISHED state.
5620  *
5621  *	It is split into a fast path and a slow path. The fast path is
5622  * 	disabled when:
5623  *	- A zero window was announced from us - zero window probing
5624  *        is only handled properly in the slow path.
5625  *	- Out of order segments arrived.
5626  *	- Urgent data is expected.
5627  *	- There is no buffer space left
5628  *	- Unexpected TCP flags/window values/header lengths are received
5629  *	  (detected by checking the TCP header against pred_flags)
5630  *	- Data is sent in both directions. Fast path only supports pure senders
5631  *	  or pure receivers (this means either the sequence number or the ack
5632  *	  value must stay constant)
5633  *	- Unexpected TCP option.
5634  *
5635  *	When these conditions are not satisfied it drops into a standard
5636  *	receive procedure patterned after RFC793 to handle all cases.
5637  *	The first three cases are guaranteed by proper pred_flags setting,
5638  *	the rest is checked inline. Fast processing is turned on in
5639  *	tcp_data_queue when everything is OK.
5640  */
5641 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5642 {
5643 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5644 	struct tcp_sock *tp = tcp_sk(sk);
5645 	unsigned int len = skb->len;
5646 
5647 	/* TCP congestion window tracking */
5648 	trace_tcp_probe(sk, skb);
5649 
5650 	tcp_mstamp_refresh(tp);
5651 	if (unlikely(!sk->sk_rx_dst))
5652 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5653 	/*
5654 	 *	Header prediction.
5655 	 *	The code loosely follows the one in the famous
5656 	 *	"30 instruction TCP receive" Van Jacobson mail.
5657 	 *
5658 	 *	Van's trick is to deposit buffers into socket queue
5659 	 *	on a device interrupt, to call tcp_recv function
5660 	 *	on the receive process context and checksum and copy
5661 	 *	the buffer to user space. smart...
5662 	 *
5663 	 *	Our current scheme is not silly either but we take the
5664 	 *	extra cost of the net_bh soft interrupt processing...
5665 	 *	We do checksum and copy also but from device to kernel.
5666 	 */
5667 
5668 	tp->rx_opt.saw_tstamp = 0;
5669 
5670 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5671 	 *	if header_prediction is to be made
5672 	 *	'S' will always be tp->tcp_header_len >> 2
5673 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5674 	 *  turn it off	(when there are holes in the receive
5675 	 *	 space for instance)
5676 	 *	PSH flag is ignored.
5677 	 */
5678 
5679 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5680 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5681 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5682 		int tcp_header_len = tp->tcp_header_len;
5683 
5684 		/* Timestamp header prediction: tcp_header_len
5685 		 * is automatically equal to th->doff*4 due to pred_flags
5686 		 * match.
5687 		 */
5688 
5689 		/* Check timestamp */
5690 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5691 			/* No? Slow path! */
5692 			if (!tcp_parse_aligned_timestamp(tp, th))
5693 				goto slow_path;
5694 
5695 			/* If PAWS failed, check it more carefully in slow path */
5696 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5697 				goto slow_path;
5698 
5699 			/* DO NOT update ts_recent here, if checksum fails
5700 			 * and timestamp was corrupted part, it will result
5701 			 * in a hung connection since we will drop all
5702 			 * future packets due to the PAWS test.
5703 			 */
5704 		}
5705 
5706 		if (len <= tcp_header_len) {
5707 			/* Bulk data transfer: sender */
5708 			if (len == tcp_header_len) {
5709 				/* Predicted packet is in window by definition.
5710 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5711 				 * Hence, check seq<=rcv_wup reduces to:
5712 				 */
5713 				if (tcp_header_len ==
5714 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5715 				    tp->rcv_nxt == tp->rcv_wup)
5716 					tcp_store_ts_recent(tp);
5717 
5718 				/* We know that such packets are checksummed
5719 				 * on entry.
5720 				 */
5721 				tcp_ack(sk, skb, 0);
5722 				__kfree_skb(skb);
5723 				tcp_data_snd_check(sk);
5724 				/* When receiving pure ack in fast path, update
5725 				 * last ts ecr directly instead of calling
5726 				 * tcp_rcv_rtt_measure_ts()
5727 				 */
5728 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5729 				return;
5730 			} else { /* Header too small */
5731 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5732 				goto discard;
5733 			}
5734 		} else {
5735 			int eaten = 0;
5736 			bool fragstolen = false;
5737 
5738 			if (tcp_checksum_complete(skb))
5739 				goto csum_error;
5740 
5741 			if ((int)skb->truesize > sk->sk_forward_alloc)
5742 				goto step5;
5743 
5744 			/* Predicted packet is in window by definition.
5745 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5746 			 * Hence, check seq<=rcv_wup reduces to:
5747 			 */
5748 			if (tcp_header_len ==
5749 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5750 			    tp->rcv_nxt == tp->rcv_wup)
5751 				tcp_store_ts_recent(tp);
5752 
5753 			tcp_rcv_rtt_measure_ts(sk, skb);
5754 
5755 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5756 
5757 			/* Bulk data transfer: receiver */
5758 			__skb_pull(skb, tcp_header_len);
5759 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5760 
5761 			tcp_event_data_recv(sk, skb);
5762 
5763 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5764 				/* Well, only one small jumplet in fast path... */
5765 				tcp_ack(sk, skb, FLAG_DATA);
5766 				tcp_data_snd_check(sk);
5767 				if (!inet_csk_ack_scheduled(sk))
5768 					goto no_ack;
5769 			}
5770 
5771 			__tcp_ack_snd_check(sk, 0);
5772 no_ack:
5773 			if (eaten)
5774 				kfree_skb_partial(skb, fragstolen);
5775 			tcp_data_ready(sk);
5776 			return;
5777 		}
5778 	}
5779 
5780 slow_path:
5781 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5782 		goto csum_error;
5783 
5784 	if (!th->ack && !th->rst && !th->syn)
5785 		goto discard;
5786 
5787 	/*
5788 	 *	Standard slow path.
5789 	 */
5790 
5791 	if (!tcp_validate_incoming(sk, skb, th, 1))
5792 		return;
5793 
5794 step5:
5795 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5796 		goto discard;
5797 
5798 	tcp_rcv_rtt_measure_ts(sk, skb);
5799 
5800 	/* Process urgent data. */
5801 	tcp_urg(sk, skb, th);
5802 
5803 	/* step 7: process the segment text */
5804 	tcp_data_queue(sk, skb);
5805 
5806 	tcp_data_snd_check(sk);
5807 	tcp_ack_snd_check(sk);
5808 	return;
5809 
5810 csum_error:
5811 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5812 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5813 
5814 discard:
5815 	tcp_drop(sk, skb);
5816 }
5817 EXPORT_SYMBOL(tcp_rcv_established);
5818 
5819 void tcp_init_transfer(struct sock *sk, int bpf_op)
5820 {
5821 	struct inet_connection_sock *icsk = inet_csk(sk);
5822 	struct tcp_sock *tp = tcp_sk(sk);
5823 
5824 	tcp_mtup_init(sk);
5825 	icsk->icsk_af_ops->rebuild_header(sk);
5826 	tcp_init_metrics(sk);
5827 
5828 	/* Initialize the congestion window to start the transfer.
5829 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5830 	 * retransmitted. In light of RFC6298 more aggressive 1sec
5831 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5832 	 * retransmission has occurred.
5833 	 */
5834 	if (tp->total_retrans > 1 && tp->undo_marker)
5835 		tp->snd_cwnd = 1;
5836 	else
5837 		tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5838 	tp->snd_cwnd_stamp = tcp_jiffies32;
5839 
5840 	tcp_call_bpf(sk, bpf_op, 0, NULL);
5841 	tcp_init_congestion_control(sk);
5842 	tcp_init_buffer_space(sk);
5843 }
5844 
5845 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5846 {
5847 	struct tcp_sock *tp = tcp_sk(sk);
5848 	struct inet_connection_sock *icsk = inet_csk(sk);
5849 
5850 	tcp_set_state(sk, TCP_ESTABLISHED);
5851 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5852 
5853 	if (skb) {
5854 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5855 		security_inet_conn_established(sk, skb);
5856 		sk_mark_napi_id(sk, skb);
5857 	}
5858 
5859 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5860 
5861 	/* Prevent spurious tcp_cwnd_restart() on first data
5862 	 * packet.
5863 	 */
5864 	tp->lsndtime = tcp_jiffies32;
5865 
5866 	if (sock_flag(sk, SOCK_KEEPOPEN))
5867 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5868 
5869 	if (!tp->rx_opt.snd_wscale)
5870 		__tcp_fast_path_on(tp, tp->snd_wnd);
5871 	else
5872 		tp->pred_flags = 0;
5873 }
5874 
5875 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5876 				    struct tcp_fastopen_cookie *cookie)
5877 {
5878 	struct tcp_sock *tp = tcp_sk(sk);
5879 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5880 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5881 	bool syn_drop = false;
5882 
5883 	if (mss == tp->rx_opt.user_mss) {
5884 		struct tcp_options_received opt;
5885 
5886 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5887 		tcp_clear_options(&opt);
5888 		opt.user_mss = opt.mss_clamp = 0;
5889 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5890 		mss = opt.mss_clamp;
5891 	}
5892 
5893 	if (!tp->syn_fastopen) {
5894 		/* Ignore an unsolicited cookie */
5895 		cookie->len = -1;
5896 	} else if (tp->total_retrans) {
5897 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5898 		 * acknowledges data. Presumably the remote received only
5899 		 * the retransmitted (regular) SYNs: either the original
5900 		 * SYN-data or the corresponding SYN-ACK was dropped.
5901 		 */
5902 		syn_drop = (cookie->len < 0 && data);
5903 	} else if (cookie->len < 0 && !tp->syn_data) {
5904 		/* We requested a cookie but didn't get it. If we did not use
5905 		 * the (old) exp opt format then try so next time (try_exp=1).
5906 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5907 		 */
5908 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5909 	}
5910 
5911 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5912 
5913 	if (data) { /* Retransmit unacked data in SYN */
5914 		if (tp->total_retrans)
5915 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
5916 		else
5917 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
5918 		skb_rbtree_walk_from(data) {
5919 			if (__tcp_retransmit_skb(sk, data, 1))
5920 				break;
5921 		}
5922 		tcp_rearm_rto(sk);
5923 		NET_INC_STATS(sock_net(sk),
5924 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5925 		return true;
5926 	}
5927 	tp->syn_data_acked = tp->syn_data;
5928 	if (tp->syn_data_acked) {
5929 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5930 		/* SYN-data is counted as two separate packets in tcp_ack() */
5931 		if (tp->delivered > 1)
5932 			--tp->delivered;
5933 	}
5934 
5935 	tcp_fastopen_add_skb(sk, synack);
5936 
5937 	return false;
5938 }
5939 
5940 static void smc_check_reset_syn(struct tcp_sock *tp)
5941 {
5942 #if IS_ENABLED(CONFIG_SMC)
5943 	if (static_branch_unlikely(&tcp_have_smc)) {
5944 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
5945 			tp->syn_smc = 0;
5946 	}
5947 #endif
5948 }
5949 
5950 static void tcp_try_undo_spurious_syn(struct sock *sk)
5951 {
5952 	struct tcp_sock *tp = tcp_sk(sk);
5953 	u32 syn_stamp;
5954 
5955 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
5956 	 * spurious if the ACK's timestamp option echo value matches the
5957 	 * original SYN timestamp.
5958 	 */
5959 	syn_stamp = tp->retrans_stamp;
5960 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
5961 	    syn_stamp == tp->rx_opt.rcv_tsecr)
5962 		tp->undo_marker = 0;
5963 }
5964 
5965 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5966 					 const struct tcphdr *th)
5967 {
5968 	struct inet_connection_sock *icsk = inet_csk(sk);
5969 	struct tcp_sock *tp = tcp_sk(sk);
5970 	struct tcp_fastopen_cookie foc = { .len = -1 };
5971 	int saved_clamp = tp->rx_opt.mss_clamp;
5972 	bool fastopen_fail;
5973 
5974 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5975 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5976 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5977 
5978 	if (th->ack) {
5979 		/* rfc793:
5980 		 * "If the state is SYN-SENT then
5981 		 *    first check the ACK bit
5982 		 *      If the ACK bit is set
5983 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5984 		 *        a reset (unless the RST bit is set, if so drop
5985 		 *        the segment and return)"
5986 		 */
5987 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5988 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5989 			/* Previous FIN/ACK or RST/ACK might be ignored. */
5990 			if (icsk->icsk_retransmits == 0)
5991 				inet_csk_reset_xmit_timer(sk,
5992 						ICSK_TIME_RETRANS,
5993 						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
5994 			goto reset_and_undo;
5995 		}
5996 
5997 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5998 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5999 			     tcp_time_stamp(tp))) {
6000 			NET_INC_STATS(sock_net(sk),
6001 					LINUX_MIB_PAWSACTIVEREJECTED);
6002 			goto reset_and_undo;
6003 		}
6004 
6005 		/* Now ACK is acceptable.
6006 		 *
6007 		 * "If the RST bit is set
6008 		 *    If the ACK was acceptable then signal the user "error:
6009 		 *    connection reset", drop the segment, enter CLOSED state,
6010 		 *    delete TCB, and return."
6011 		 */
6012 
6013 		if (th->rst) {
6014 			tcp_reset(sk);
6015 			goto discard;
6016 		}
6017 
6018 		/* rfc793:
6019 		 *   "fifth, if neither of the SYN or RST bits is set then
6020 		 *    drop the segment and return."
6021 		 *
6022 		 *    See note below!
6023 		 *                                        --ANK(990513)
6024 		 */
6025 		if (!th->syn)
6026 			goto discard_and_undo;
6027 
6028 		/* rfc793:
6029 		 *   "If the SYN bit is on ...
6030 		 *    are acceptable then ...
6031 		 *    (our SYN has been ACKed), change the connection
6032 		 *    state to ESTABLISHED..."
6033 		 */
6034 
6035 		tcp_ecn_rcv_synack(tp, th);
6036 
6037 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6038 		tcp_try_undo_spurious_syn(sk);
6039 		tcp_ack(sk, skb, FLAG_SLOWPATH);
6040 
6041 		/* Ok.. it's good. Set up sequence numbers and
6042 		 * move to established.
6043 		 */
6044 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6045 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6046 
6047 		/* RFC1323: The window in SYN & SYN/ACK segments is
6048 		 * never scaled.
6049 		 */
6050 		tp->snd_wnd = ntohs(th->window);
6051 
6052 		if (!tp->rx_opt.wscale_ok) {
6053 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6054 			tp->window_clamp = min(tp->window_clamp, 65535U);
6055 		}
6056 
6057 		if (tp->rx_opt.saw_tstamp) {
6058 			tp->rx_opt.tstamp_ok	   = 1;
6059 			tp->tcp_header_len =
6060 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6061 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6062 			tcp_store_ts_recent(tp);
6063 		} else {
6064 			tp->tcp_header_len = sizeof(struct tcphdr);
6065 		}
6066 
6067 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6068 		tcp_initialize_rcv_mss(sk);
6069 
6070 		/* Remember, tcp_poll() does not lock socket!
6071 		 * Change state from SYN-SENT only after copied_seq
6072 		 * is initialized. */
6073 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6074 
6075 		smc_check_reset_syn(tp);
6076 
6077 		smp_mb();
6078 
6079 		tcp_finish_connect(sk, skb);
6080 
6081 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6082 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6083 
6084 		if (!sock_flag(sk, SOCK_DEAD)) {
6085 			sk->sk_state_change(sk);
6086 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6087 		}
6088 		if (fastopen_fail)
6089 			return -1;
6090 		if (sk->sk_write_pending ||
6091 		    icsk->icsk_accept_queue.rskq_defer_accept ||
6092 		    inet_csk_in_pingpong_mode(sk)) {
6093 			/* Save one ACK. Data will be ready after
6094 			 * several ticks, if write_pending is set.
6095 			 *
6096 			 * It may be deleted, but with this feature tcpdumps
6097 			 * look so _wonderfully_ clever, that I was not able
6098 			 * to stand against the temptation 8)     --ANK
6099 			 */
6100 			inet_csk_schedule_ack(sk);
6101 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6102 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6103 						  TCP_DELACK_MAX, TCP_RTO_MAX);
6104 
6105 discard:
6106 			tcp_drop(sk, skb);
6107 			return 0;
6108 		} else {
6109 			tcp_send_ack(sk);
6110 		}
6111 		return -1;
6112 	}
6113 
6114 	/* No ACK in the segment */
6115 
6116 	if (th->rst) {
6117 		/* rfc793:
6118 		 * "If the RST bit is set
6119 		 *
6120 		 *      Otherwise (no ACK) drop the segment and return."
6121 		 */
6122 
6123 		goto discard_and_undo;
6124 	}
6125 
6126 	/* PAWS check. */
6127 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6128 	    tcp_paws_reject(&tp->rx_opt, 0))
6129 		goto discard_and_undo;
6130 
6131 	if (th->syn) {
6132 		/* We see SYN without ACK. It is attempt of
6133 		 * simultaneous connect with crossed SYNs.
6134 		 * Particularly, it can be connect to self.
6135 		 */
6136 		tcp_set_state(sk, TCP_SYN_RECV);
6137 
6138 		if (tp->rx_opt.saw_tstamp) {
6139 			tp->rx_opt.tstamp_ok = 1;
6140 			tcp_store_ts_recent(tp);
6141 			tp->tcp_header_len =
6142 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6143 		} else {
6144 			tp->tcp_header_len = sizeof(struct tcphdr);
6145 		}
6146 
6147 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6148 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6149 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6150 
6151 		/* RFC1323: The window in SYN & SYN/ACK segments is
6152 		 * never scaled.
6153 		 */
6154 		tp->snd_wnd    = ntohs(th->window);
6155 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6156 		tp->max_window = tp->snd_wnd;
6157 
6158 		tcp_ecn_rcv_syn(tp, th);
6159 
6160 		tcp_mtup_init(sk);
6161 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6162 		tcp_initialize_rcv_mss(sk);
6163 
6164 		tcp_send_synack(sk);
6165 #if 0
6166 		/* Note, we could accept data and URG from this segment.
6167 		 * There are no obstacles to make this (except that we must
6168 		 * either change tcp_recvmsg() to prevent it from returning data
6169 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6170 		 *
6171 		 * However, if we ignore data in ACKless segments sometimes,
6172 		 * we have no reasons to accept it sometimes.
6173 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6174 		 * is not flawless. So, discard packet for sanity.
6175 		 * Uncomment this return to process the data.
6176 		 */
6177 		return -1;
6178 #else
6179 		goto discard;
6180 #endif
6181 	}
6182 	/* "fifth, if neither of the SYN or RST bits is set then
6183 	 * drop the segment and return."
6184 	 */
6185 
6186 discard_and_undo:
6187 	tcp_clear_options(&tp->rx_opt);
6188 	tp->rx_opt.mss_clamp = saved_clamp;
6189 	goto discard;
6190 
6191 reset_and_undo:
6192 	tcp_clear_options(&tp->rx_opt);
6193 	tp->rx_opt.mss_clamp = saved_clamp;
6194 	return 1;
6195 }
6196 
6197 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6198 {
6199 	struct request_sock *req;
6200 
6201 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6202 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6203 	 */
6204 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
6205 		tcp_try_undo_loss(sk, false);
6206 
6207 	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6208 	tcp_sk(sk)->retrans_stamp = 0;
6209 	inet_csk(sk)->icsk_retransmits = 0;
6210 
6211 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6212 	 * we no longer need req so release it.
6213 	 */
6214 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6215 					lockdep_sock_is_held(sk));
6216 	reqsk_fastopen_remove(sk, req, false);
6217 
6218 	/* Re-arm the timer because data may have been sent out.
6219 	 * This is similar to the regular data transmission case
6220 	 * when new data has just been ack'ed.
6221 	 *
6222 	 * (TFO) - we could try to be more aggressive and
6223 	 * retransmitting any data sooner based on when they
6224 	 * are sent out.
6225 	 */
6226 	tcp_rearm_rto(sk);
6227 }
6228 
6229 /*
6230  *	This function implements the receiving procedure of RFC 793 for
6231  *	all states except ESTABLISHED and TIME_WAIT.
6232  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6233  *	address independent.
6234  */
6235 
6236 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6237 {
6238 	struct tcp_sock *tp = tcp_sk(sk);
6239 	struct inet_connection_sock *icsk = inet_csk(sk);
6240 	const struct tcphdr *th = tcp_hdr(skb);
6241 	struct request_sock *req;
6242 	int queued = 0;
6243 	bool acceptable;
6244 
6245 	switch (sk->sk_state) {
6246 	case TCP_CLOSE:
6247 		goto discard;
6248 
6249 	case TCP_LISTEN:
6250 		if (th->ack)
6251 			return 1;
6252 
6253 		if (th->rst)
6254 			goto discard;
6255 
6256 		if (th->syn) {
6257 			if (th->fin)
6258 				goto discard;
6259 			/* It is possible that we process SYN packets from backlog,
6260 			 * so we need to make sure to disable BH and RCU right there.
6261 			 */
6262 			rcu_read_lock();
6263 			local_bh_disable();
6264 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6265 			local_bh_enable();
6266 			rcu_read_unlock();
6267 
6268 			if (!acceptable)
6269 				return 1;
6270 			consume_skb(skb);
6271 			return 0;
6272 		}
6273 		goto discard;
6274 
6275 	case TCP_SYN_SENT:
6276 		tp->rx_opt.saw_tstamp = 0;
6277 		tcp_mstamp_refresh(tp);
6278 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6279 		if (queued >= 0)
6280 			return queued;
6281 
6282 		/* Do step6 onward by hand. */
6283 		tcp_urg(sk, skb, th);
6284 		__kfree_skb(skb);
6285 		tcp_data_snd_check(sk);
6286 		return 0;
6287 	}
6288 
6289 	tcp_mstamp_refresh(tp);
6290 	tp->rx_opt.saw_tstamp = 0;
6291 	req = rcu_dereference_protected(tp->fastopen_rsk,
6292 					lockdep_sock_is_held(sk));
6293 	if (req) {
6294 		bool req_stolen;
6295 
6296 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6297 		    sk->sk_state != TCP_FIN_WAIT1);
6298 
6299 		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6300 			goto discard;
6301 	}
6302 
6303 	if (!th->ack && !th->rst && !th->syn)
6304 		goto discard;
6305 
6306 	if (!tcp_validate_incoming(sk, skb, th, 0))
6307 		return 0;
6308 
6309 	/* step 5: check the ACK field */
6310 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6311 				      FLAG_UPDATE_TS_RECENT |
6312 				      FLAG_NO_CHALLENGE_ACK) > 0;
6313 
6314 	if (!acceptable) {
6315 		if (sk->sk_state == TCP_SYN_RECV)
6316 			return 1;	/* send one RST */
6317 		tcp_send_challenge_ack(sk, skb);
6318 		goto discard;
6319 	}
6320 	switch (sk->sk_state) {
6321 	case TCP_SYN_RECV:
6322 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6323 		if (!tp->srtt_us)
6324 			tcp_synack_rtt_meas(sk, req);
6325 
6326 		if (req) {
6327 			tcp_rcv_synrecv_state_fastopen(sk);
6328 		} else {
6329 			tcp_try_undo_spurious_syn(sk);
6330 			tp->retrans_stamp = 0;
6331 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
6332 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6333 		}
6334 		smp_mb();
6335 		tcp_set_state(sk, TCP_ESTABLISHED);
6336 		sk->sk_state_change(sk);
6337 
6338 		/* Note, that this wakeup is only for marginal crossed SYN case.
6339 		 * Passively open sockets are not waked up, because
6340 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6341 		 */
6342 		if (sk->sk_socket)
6343 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6344 
6345 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6346 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6347 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6348 
6349 		if (tp->rx_opt.tstamp_ok)
6350 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6351 
6352 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6353 			tcp_update_pacing_rate(sk);
6354 
6355 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6356 		tp->lsndtime = tcp_jiffies32;
6357 
6358 		tcp_initialize_rcv_mss(sk);
6359 		tcp_fast_path_on(tp);
6360 		break;
6361 
6362 	case TCP_FIN_WAIT1: {
6363 		int tmo;
6364 
6365 		if (req)
6366 			tcp_rcv_synrecv_state_fastopen(sk);
6367 
6368 		if (tp->snd_una != tp->write_seq)
6369 			break;
6370 
6371 		tcp_set_state(sk, TCP_FIN_WAIT2);
6372 		sk->sk_shutdown |= SEND_SHUTDOWN;
6373 
6374 		sk_dst_confirm(sk);
6375 
6376 		if (!sock_flag(sk, SOCK_DEAD)) {
6377 			/* Wake up lingering close() */
6378 			sk->sk_state_change(sk);
6379 			break;
6380 		}
6381 
6382 		if (tp->linger2 < 0) {
6383 			tcp_done(sk);
6384 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6385 			return 1;
6386 		}
6387 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6388 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6389 			/* Receive out of order FIN after close() */
6390 			if (tp->syn_fastopen && th->fin)
6391 				tcp_fastopen_active_disable(sk);
6392 			tcp_done(sk);
6393 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6394 			return 1;
6395 		}
6396 
6397 		tmo = tcp_fin_time(sk);
6398 		if (tmo > TCP_TIMEWAIT_LEN) {
6399 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6400 		} else if (th->fin || sock_owned_by_user(sk)) {
6401 			/* Bad case. We could lose such FIN otherwise.
6402 			 * It is not a big problem, but it looks confusing
6403 			 * and not so rare event. We still can lose it now,
6404 			 * if it spins in bh_lock_sock(), but it is really
6405 			 * marginal case.
6406 			 */
6407 			inet_csk_reset_keepalive_timer(sk, tmo);
6408 		} else {
6409 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6410 			goto discard;
6411 		}
6412 		break;
6413 	}
6414 
6415 	case TCP_CLOSING:
6416 		if (tp->snd_una == tp->write_seq) {
6417 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6418 			goto discard;
6419 		}
6420 		break;
6421 
6422 	case TCP_LAST_ACK:
6423 		if (tp->snd_una == tp->write_seq) {
6424 			tcp_update_metrics(sk);
6425 			tcp_done(sk);
6426 			goto discard;
6427 		}
6428 		break;
6429 	}
6430 
6431 	/* step 6: check the URG bit */
6432 	tcp_urg(sk, skb, th);
6433 
6434 	/* step 7: process the segment text */
6435 	switch (sk->sk_state) {
6436 	case TCP_CLOSE_WAIT:
6437 	case TCP_CLOSING:
6438 	case TCP_LAST_ACK:
6439 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6440 			if (sk_is_mptcp(sk))
6441 				mptcp_incoming_options(sk, skb, &tp->rx_opt);
6442 			break;
6443 		}
6444 		fallthrough;
6445 	case TCP_FIN_WAIT1:
6446 	case TCP_FIN_WAIT2:
6447 		/* RFC 793 says to queue data in these states,
6448 		 * RFC 1122 says we MUST send a reset.
6449 		 * BSD 4.4 also does reset.
6450 		 */
6451 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6452 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6453 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6454 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6455 				tcp_reset(sk);
6456 				return 1;
6457 			}
6458 		}
6459 		fallthrough;
6460 	case TCP_ESTABLISHED:
6461 		tcp_data_queue(sk, skb);
6462 		queued = 1;
6463 		break;
6464 	}
6465 
6466 	/* tcp_data could move socket to TIME-WAIT */
6467 	if (sk->sk_state != TCP_CLOSE) {
6468 		tcp_data_snd_check(sk);
6469 		tcp_ack_snd_check(sk);
6470 	}
6471 
6472 	if (!queued) {
6473 discard:
6474 		tcp_drop(sk, skb);
6475 	}
6476 	return 0;
6477 }
6478 EXPORT_SYMBOL(tcp_rcv_state_process);
6479 
6480 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6481 {
6482 	struct inet_request_sock *ireq = inet_rsk(req);
6483 
6484 	if (family == AF_INET)
6485 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6486 				    &ireq->ir_rmt_addr, port);
6487 #if IS_ENABLED(CONFIG_IPV6)
6488 	else if (family == AF_INET6)
6489 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6490 				    &ireq->ir_v6_rmt_addr, port);
6491 #endif
6492 }
6493 
6494 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6495  *
6496  * If we receive a SYN packet with these bits set, it means a
6497  * network is playing bad games with TOS bits. In order to
6498  * avoid possible false congestion notifications, we disable
6499  * TCP ECN negotiation.
6500  *
6501  * Exception: tcp_ca wants ECN. This is required for DCTCP
6502  * congestion control: Linux DCTCP asserts ECT on all packets,
6503  * including SYN, which is most optimal solution; however,
6504  * others, such as FreeBSD do not.
6505  *
6506  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6507  * set, indicating the use of a future TCP extension (such as AccECN). See
6508  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6509  * extensions.
6510  */
6511 static void tcp_ecn_create_request(struct request_sock *req,
6512 				   const struct sk_buff *skb,
6513 				   const struct sock *listen_sk,
6514 				   const struct dst_entry *dst)
6515 {
6516 	const struct tcphdr *th = tcp_hdr(skb);
6517 	const struct net *net = sock_net(listen_sk);
6518 	bool th_ecn = th->ece && th->cwr;
6519 	bool ect, ecn_ok;
6520 	u32 ecn_ok_dst;
6521 
6522 	if (!th_ecn)
6523 		return;
6524 
6525 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6526 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6527 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6528 
6529 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6530 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6531 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6532 		inet_rsk(req)->ecn_ok = 1;
6533 }
6534 
6535 static void tcp_openreq_init(struct request_sock *req,
6536 			     const struct tcp_options_received *rx_opt,
6537 			     struct sk_buff *skb, const struct sock *sk)
6538 {
6539 	struct inet_request_sock *ireq = inet_rsk(req);
6540 
6541 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6542 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6543 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6544 	tcp_rsk(req)->snt_synack = 0;
6545 	tcp_rsk(req)->last_oow_ack_time = 0;
6546 	req->mss = rx_opt->mss_clamp;
6547 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6548 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6549 	ireq->sack_ok = rx_opt->sack_ok;
6550 	ireq->snd_wscale = rx_opt->snd_wscale;
6551 	ireq->wscale_ok = rx_opt->wscale_ok;
6552 	ireq->acked = 0;
6553 	ireq->ecn_ok = 0;
6554 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6555 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6556 	ireq->ir_mark = inet_request_mark(sk, skb);
6557 #if IS_ENABLED(CONFIG_SMC)
6558 	ireq->smc_ok = rx_opt->smc_ok;
6559 #endif
6560 }
6561 
6562 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6563 				      struct sock *sk_listener,
6564 				      bool attach_listener)
6565 {
6566 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6567 					       attach_listener);
6568 
6569 	if (req) {
6570 		struct inet_request_sock *ireq = inet_rsk(req);
6571 
6572 		ireq->ireq_opt = NULL;
6573 #if IS_ENABLED(CONFIG_IPV6)
6574 		ireq->pktopts = NULL;
6575 #endif
6576 		atomic64_set(&ireq->ir_cookie, 0);
6577 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6578 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6579 		ireq->ireq_family = sk_listener->sk_family;
6580 	}
6581 
6582 	return req;
6583 }
6584 EXPORT_SYMBOL(inet_reqsk_alloc);
6585 
6586 /*
6587  * Return true if a syncookie should be sent
6588  */
6589 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6590 {
6591 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6592 	const char *msg = "Dropping request";
6593 	bool want_cookie = false;
6594 	struct net *net = sock_net(sk);
6595 
6596 #ifdef CONFIG_SYN_COOKIES
6597 	if (net->ipv4.sysctl_tcp_syncookies) {
6598 		msg = "Sending cookies";
6599 		want_cookie = true;
6600 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6601 	} else
6602 #endif
6603 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6604 
6605 	if (!queue->synflood_warned &&
6606 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6607 	    xchg(&queue->synflood_warned, 1) == 0)
6608 		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6609 				     proto, sk->sk_num, msg);
6610 
6611 	return want_cookie;
6612 }
6613 
6614 static void tcp_reqsk_record_syn(const struct sock *sk,
6615 				 struct request_sock *req,
6616 				 const struct sk_buff *skb)
6617 {
6618 	if (tcp_sk(sk)->save_syn) {
6619 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6620 		u32 *copy;
6621 
6622 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6623 		if (copy) {
6624 			copy[0] = len;
6625 			memcpy(&copy[1], skb_network_header(skb), len);
6626 			req->saved_syn = copy;
6627 		}
6628 	}
6629 }
6630 
6631 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6632  * used for SYN cookie generation.
6633  */
6634 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6635 			  const struct tcp_request_sock_ops *af_ops,
6636 			  struct sock *sk, struct tcphdr *th)
6637 {
6638 	struct tcp_sock *tp = tcp_sk(sk);
6639 	u16 mss;
6640 
6641 	if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 &&
6642 	    !inet_csk_reqsk_queue_is_full(sk))
6643 		return 0;
6644 
6645 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6646 		return 0;
6647 
6648 	if (sk_acceptq_is_full(sk)) {
6649 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6650 		return 0;
6651 	}
6652 
6653 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6654 	if (!mss)
6655 		mss = af_ops->mss_clamp;
6656 
6657 	return mss;
6658 }
6659 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6660 
6661 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6662 		     const struct tcp_request_sock_ops *af_ops,
6663 		     struct sock *sk, struct sk_buff *skb)
6664 {
6665 	struct tcp_fastopen_cookie foc = { .len = -1 };
6666 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6667 	struct tcp_options_received tmp_opt;
6668 	struct tcp_sock *tp = tcp_sk(sk);
6669 	struct net *net = sock_net(sk);
6670 	struct sock *fastopen_sk = NULL;
6671 	struct request_sock *req;
6672 	bool want_cookie = false;
6673 	struct dst_entry *dst;
6674 	struct flowi fl;
6675 
6676 	/* TW buckets are converted to open requests without
6677 	 * limitations, they conserve resources and peer is
6678 	 * evidently real one.
6679 	 */
6680 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6681 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6682 		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6683 		if (!want_cookie)
6684 			goto drop;
6685 	}
6686 
6687 	if (sk_acceptq_is_full(sk)) {
6688 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6689 		goto drop;
6690 	}
6691 
6692 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6693 	if (!req)
6694 		goto drop;
6695 
6696 	req->syncookie = want_cookie;
6697 	tcp_rsk(req)->af_specific = af_ops;
6698 	tcp_rsk(req)->ts_off = 0;
6699 #if IS_ENABLED(CONFIG_MPTCP)
6700 	tcp_rsk(req)->is_mptcp = 0;
6701 #endif
6702 
6703 	tcp_clear_options(&tmp_opt);
6704 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6705 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6706 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6707 			  want_cookie ? NULL : &foc);
6708 
6709 	if (want_cookie && !tmp_opt.saw_tstamp)
6710 		tcp_clear_options(&tmp_opt);
6711 
6712 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6713 		tmp_opt.smc_ok = 0;
6714 
6715 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6716 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6717 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6718 
6719 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6720 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6721 
6722 	af_ops->init_req(req, sk, skb);
6723 
6724 	if (security_inet_conn_request(sk, skb, req))
6725 		goto drop_and_free;
6726 
6727 	if (tmp_opt.tstamp_ok)
6728 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6729 
6730 	dst = af_ops->route_req(sk, &fl, req);
6731 	if (!dst)
6732 		goto drop_and_free;
6733 
6734 	if (!want_cookie && !isn) {
6735 		/* Kill the following clause, if you dislike this way. */
6736 		if (!net->ipv4.sysctl_tcp_syncookies &&
6737 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6738 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6739 		    !tcp_peer_is_proven(req, dst)) {
6740 			/* Without syncookies last quarter of
6741 			 * backlog is filled with destinations,
6742 			 * proven to be alive.
6743 			 * It means that we continue to communicate
6744 			 * to destinations, already remembered
6745 			 * to the moment of synflood.
6746 			 */
6747 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6748 				    rsk_ops->family);
6749 			goto drop_and_release;
6750 		}
6751 
6752 		isn = af_ops->init_seq(skb);
6753 	}
6754 
6755 	tcp_ecn_create_request(req, skb, sk, dst);
6756 
6757 	if (want_cookie) {
6758 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6759 		if (!tmp_opt.tstamp_ok)
6760 			inet_rsk(req)->ecn_ok = 0;
6761 	}
6762 
6763 	tcp_rsk(req)->snt_isn = isn;
6764 	tcp_rsk(req)->txhash = net_tx_rndhash();
6765 	tcp_openreq_init_rwin(req, sk, dst);
6766 	sk_rx_queue_set(req_to_sk(req), skb);
6767 	if (!want_cookie) {
6768 		tcp_reqsk_record_syn(sk, req, skb);
6769 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6770 	}
6771 	if (fastopen_sk) {
6772 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6773 				    &foc, TCP_SYNACK_FASTOPEN);
6774 		/* Add the child socket directly into the accept queue */
6775 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6776 			reqsk_fastopen_remove(fastopen_sk, req, false);
6777 			bh_unlock_sock(fastopen_sk);
6778 			sock_put(fastopen_sk);
6779 			goto drop_and_free;
6780 		}
6781 		sk->sk_data_ready(sk);
6782 		bh_unlock_sock(fastopen_sk);
6783 		sock_put(fastopen_sk);
6784 	} else {
6785 		tcp_rsk(req)->tfo_listener = false;
6786 		if (!want_cookie)
6787 			inet_csk_reqsk_queue_hash_add(sk, req,
6788 				tcp_timeout_init((struct sock *)req));
6789 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6790 				    !want_cookie ? TCP_SYNACK_NORMAL :
6791 						   TCP_SYNACK_COOKIE);
6792 		if (want_cookie) {
6793 			reqsk_free(req);
6794 			return 0;
6795 		}
6796 	}
6797 	reqsk_put(req);
6798 	return 0;
6799 
6800 drop_and_release:
6801 	dst_release(dst);
6802 drop_and_free:
6803 	__reqsk_free(req);
6804 drop:
6805 	tcp_listendrop(sk);
6806 	return 0;
6807 }
6808 EXPORT_SYMBOL(tcp_conn_request);
6809