1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/jump_label_ratelimit.h> 81 #include <net/busy_poll.h> 82 #include <net/mptcp.h> 83 84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 85 86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 92 #define FLAG_ECE 0x40 /* ECE in this ACK */ 93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 103 104 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 105 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 106 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 107 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 108 109 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 110 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 111 112 #define REXMIT_NONE 0 /* no loss recovery to do */ 113 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 114 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 115 116 #if IS_ENABLED(CONFIG_TLS_DEVICE) 117 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 118 119 void clean_acked_data_enable(struct inet_connection_sock *icsk, 120 void (*cad)(struct sock *sk, u32 ack_seq)) 121 { 122 icsk->icsk_clean_acked = cad; 123 static_branch_deferred_inc(&clean_acked_data_enabled); 124 } 125 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 126 127 void clean_acked_data_disable(struct inet_connection_sock *icsk) 128 { 129 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 130 icsk->icsk_clean_acked = NULL; 131 } 132 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 133 134 void clean_acked_data_flush(void) 135 { 136 static_key_deferred_flush(&clean_acked_data_enabled); 137 } 138 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 139 #endif 140 141 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 142 unsigned int len) 143 { 144 static bool __once __read_mostly; 145 146 if (!__once) { 147 struct net_device *dev; 148 149 __once = true; 150 151 rcu_read_lock(); 152 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 153 if (!dev || len >= dev->mtu) 154 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 155 dev ? dev->name : "Unknown driver"); 156 rcu_read_unlock(); 157 } 158 } 159 160 /* Adapt the MSS value used to make delayed ack decision to the 161 * real world. 162 */ 163 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 164 { 165 struct inet_connection_sock *icsk = inet_csk(sk); 166 const unsigned int lss = icsk->icsk_ack.last_seg_size; 167 unsigned int len; 168 169 icsk->icsk_ack.last_seg_size = 0; 170 171 /* skb->len may jitter because of SACKs, even if peer 172 * sends good full-sized frames. 173 */ 174 len = skb_shinfo(skb)->gso_size ? : skb->len; 175 if (len >= icsk->icsk_ack.rcv_mss) { 176 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 177 tcp_sk(sk)->advmss); 178 /* Account for possibly-removed options */ 179 if (unlikely(len > icsk->icsk_ack.rcv_mss + 180 MAX_TCP_OPTION_SPACE)) 181 tcp_gro_dev_warn(sk, skb, len); 182 } else { 183 /* Otherwise, we make more careful check taking into account, 184 * that SACKs block is variable. 185 * 186 * "len" is invariant segment length, including TCP header. 187 */ 188 len += skb->data - skb_transport_header(skb); 189 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 190 /* If PSH is not set, packet should be 191 * full sized, provided peer TCP is not badly broken. 192 * This observation (if it is correct 8)) allows 193 * to handle super-low mtu links fairly. 194 */ 195 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 196 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 197 /* Subtract also invariant (if peer is RFC compliant), 198 * tcp header plus fixed timestamp option length. 199 * Resulting "len" is MSS free of SACK jitter. 200 */ 201 len -= tcp_sk(sk)->tcp_header_len; 202 icsk->icsk_ack.last_seg_size = len; 203 if (len == lss) { 204 icsk->icsk_ack.rcv_mss = len; 205 return; 206 } 207 } 208 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 209 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 210 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 211 } 212 } 213 214 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 215 { 216 struct inet_connection_sock *icsk = inet_csk(sk); 217 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 218 219 if (quickacks == 0) 220 quickacks = 2; 221 quickacks = min(quickacks, max_quickacks); 222 if (quickacks > icsk->icsk_ack.quick) 223 icsk->icsk_ack.quick = quickacks; 224 } 225 226 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 227 { 228 struct inet_connection_sock *icsk = inet_csk(sk); 229 230 tcp_incr_quickack(sk, max_quickacks); 231 inet_csk_exit_pingpong_mode(sk); 232 icsk->icsk_ack.ato = TCP_ATO_MIN; 233 } 234 EXPORT_SYMBOL(tcp_enter_quickack_mode); 235 236 /* Send ACKs quickly, if "quick" count is not exhausted 237 * and the session is not interactive. 238 */ 239 240 static bool tcp_in_quickack_mode(struct sock *sk) 241 { 242 const struct inet_connection_sock *icsk = inet_csk(sk); 243 const struct dst_entry *dst = __sk_dst_get(sk); 244 245 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 246 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 247 } 248 249 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 250 { 251 if (tp->ecn_flags & TCP_ECN_OK) 252 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 253 } 254 255 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 256 { 257 if (tcp_hdr(skb)->cwr) { 258 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 259 260 /* If the sender is telling us it has entered CWR, then its 261 * cwnd may be very low (even just 1 packet), so we should ACK 262 * immediately. 263 */ 264 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) 265 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 266 } 267 } 268 269 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 270 { 271 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 272 } 273 274 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 275 { 276 struct tcp_sock *tp = tcp_sk(sk); 277 278 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 279 case INET_ECN_NOT_ECT: 280 /* Funny extension: if ECT is not set on a segment, 281 * and we already seen ECT on a previous segment, 282 * it is probably a retransmit. 283 */ 284 if (tp->ecn_flags & TCP_ECN_SEEN) 285 tcp_enter_quickack_mode(sk, 2); 286 break; 287 case INET_ECN_CE: 288 if (tcp_ca_needs_ecn(sk)) 289 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 290 291 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 292 /* Better not delay acks, sender can have a very low cwnd */ 293 tcp_enter_quickack_mode(sk, 2); 294 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 295 } 296 tp->ecn_flags |= TCP_ECN_SEEN; 297 break; 298 default: 299 if (tcp_ca_needs_ecn(sk)) 300 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 301 tp->ecn_flags |= TCP_ECN_SEEN; 302 break; 303 } 304 } 305 306 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 307 { 308 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 309 __tcp_ecn_check_ce(sk, skb); 310 } 311 312 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 313 { 314 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 315 tp->ecn_flags &= ~TCP_ECN_OK; 316 } 317 318 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 319 { 320 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 321 tp->ecn_flags &= ~TCP_ECN_OK; 322 } 323 324 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 325 { 326 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 327 return true; 328 return false; 329 } 330 331 /* Buffer size and advertised window tuning. 332 * 333 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 334 */ 335 336 static void tcp_sndbuf_expand(struct sock *sk) 337 { 338 const struct tcp_sock *tp = tcp_sk(sk); 339 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 340 int sndmem, per_mss; 341 u32 nr_segs; 342 343 /* Worst case is non GSO/TSO : each frame consumes one skb 344 * and skb->head is kmalloced using power of two area of memory 345 */ 346 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 347 MAX_TCP_HEADER + 348 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 349 350 per_mss = roundup_pow_of_two(per_mss) + 351 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 352 353 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 354 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 355 356 /* Fast Recovery (RFC 5681 3.2) : 357 * Cubic needs 1.7 factor, rounded to 2 to include 358 * extra cushion (application might react slowly to EPOLLOUT) 359 */ 360 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 361 sndmem *= nr_segs * per_mss; 362 363 if (sk->sk_sndbuf < sndmem) 364 WRITE_ONCE(sk->sk_sndbuf, 365 min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2])); 366 } 367 368 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 369 * 370 * All tcp_full_space() is split to two parts: "network" buffer, allocated 371 * forward and advertised in receiver window (tp->rcv_wnd) and 372 * "application buffer", required to isolate scheduling/application 373 * latencies from network. 374 * window_clamp is maximal advertised window. It can be less than 375 * tcp_full_space(), in this case tcp_full_space() - window_clamp 376 * is reserved for "application" buffer. The less window_clamp is 377 * the smoother our behaviour from viewpoint of network, but the lower 378 * throughput and the higher sensitivity of the connection to losses. 8) 379 * 380 * rcv_ssthresh is more strict window_clamp used at "slow start" 381 * phase to predict further behaviour of this connection. 382 * It is used for two goals: 383 * - to enforce header prediction at sender, even when application 384 * requires some significant "application buffer". It is check #1. 385 * - to prevent pruning of receive queue because of misprediction 386 * of receiver window. Check #2. 387 * 388 * The scheme does not work when sender sends good segments opening 389 * window and then starts to feed us spaghetti. But it should work 390 * in common situations. Otherwise, we have to rely on queue collapsing. 391 */ 392 393 /* Slow part of check#2. */ 394 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 395 { 396 struct tcp_sock *tp = tcp_sk(sk); 397 /* Optimize this! */ 398 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1; 399 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 400 401 while (tp->rcv_ssthresh <= window) { 402 if (truesize <= skb->len) 403 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 404 405 truesize >>= 1; 406 window >>= 1; 407 } 408 return 0; 409 } 410 411 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 412 { 413 struct tcp_sock *tp = tcp_sk(sk); 414 int room; 415 416 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 417 418 /* Check #1 */ 419 if (room > 0 && !tcp_under_memory_pressure(sk)) { 420 int incr; 421 422 /* Check #2. Increase window, if skb with such overhead 423 * will fit to rcvbuf in future. 424 */ 425 if (tcp_win_from_space(sk, skb->truesize) <= skb->len) 426 incr = 2 * tp->advmss; 427 else 428 incr = __tcp_grow_window(sk, skb); 429 430 if (incr) { 431 incr = max_t(int, incr, 2 * skb->len); 432 tp->rcv_ssthresh += min(room, incr); 433 inet_csk(sk)->icsk_ack.quick |= 1; 434 } 435 } 436 } 437 438 /* 3. Try to fixup all. It is made immediately after connection enters 439 * established state. 440 */ 441 static void tcp_init_buffer_space(struct sock *sk) 442 { 443 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win; 444 struct tcp_sock *tp = tcp_sk(sk); 445 int maxwin; 446 447 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 448 tcp_sndbuf_expand(sk); 449 450 tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss); 451 tcp_mstamp_refresh(tp); 452 tp->rcvq_space.time = tp->tcp_mstamp; 453 tp->rcvq_space.seq = tp->copied_seq; 454 455 maxwin = tcp_full_space(sk); 456 457 if (tp->window_clamp >= maxwin) { 458 tp->window_clamp = maxwin; 459 460 if (tcp_app_win && maxwin > 4 * tp->advmss) 461 tp->window_clamp = max(maxwin - 462 (maxwin >> tcp_app_win), 463 4 * tp->advmss); 464 } 465 466 /* Force reservation of one segment. */ 467 if (tcp_app_win && 468 tp->window_clamp > 2 * tp->advmss && 469 tp->window_clamp + tp->advmss > maxwin) 470 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 471 472 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 473 tp->snd_cwnd_stamp = tcp_jiffies32; 474 } 475 476 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 477 static void tcp_clamp_window(struct sock *sk) 478 { 479 struct tcp_sock *tp = tcp_sk(sk); 480 struct inet_connection_sock *icsk = inet_csk(sk); 481 struct net *net = sock_net(sk); 482 483 icsk->icsk_ack.quick = 0; 484 485 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] && 486 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 487 !tcp_under_memory_pressure(sk) && 488 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 489 WRITE_ONCE(sk->sk_rcvbuf, 490 min(atomic_read(&sk->sk_rmem_alloc), 491 net->ipv4.sysctl_tcp_rmem[2])); 492 } 493 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 494 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 495 } 496 497 /* Initialize RCV_MSS value. 498 * RCV_MSS is an our guess about MSS used by the peer. 499 * We haven't any direct information about the MSS. 500 * It's better to underestimate the RCV_MSS rather than overestimate. 501 * Overestimations make us ACKing less frequently than needed. 502 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 503 */ 504 void tcp_initialize_rcv_mss(struct sock *sk) 505 { 506 const struct tcp_sock *tp = tcp_sk(sk); 507 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 508 509 hint = min(hint, tp->rcv_wnd / 2); 510 hint = min(hint, TCP_MSS_DEFAULT); 511 hint = max(hint, TCP_MIN_MSS); 512 513 inet_csk(sk)->icsk_ack.rcv_mss = hint; 514 } 515 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 516 517 /* Receiver "autotuning" code. 518 * 519 * The algorithm for RTT estimation w/o timestamps is based on 520 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 521 * <https://public.lanl.gov/radiant/pubs.html#DRS> 522 * 523 * More detail on this code can be found at 524 * <http://staff.psc.edu/jheffner/>, 525 * though this reference is out of date. A new paper 526 * is pending. 527 */ 528 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 529 { 530 u32 new_sample = tp->rcv_rtt_est.rtt_us; 531 long m = sample; 532 533 if (new_sample != 0) { 534 /* If we sample in larger samples in the non-timestamp 535 * case, we could grossly overestimate the RTT especially 536 * with chatty applications or bulk transfer apps which 537 * are stalled on filesystem I/O. 538 * 539 * Also, since we are only going for a minimum in the 540 * non-timestamp case, we do not smooth things out 541 * else with timestamps disabled convergence takes too 542 * long. 543 */ 544 if (!win_dep) { 545 m -= (new_sample >> 3); 546 new_sample += m; 547 } else { 548 m <<= 3; 549 if (m < new_sample) 550 new_sample = m; 551 } 552 } else { 553 /* No previous measure. */ 554 new_sample = m << 3; 555 } 556 557 tp->rcv_rtt_est.rtt_us = new_sample; 558 } 559 560 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 561 { 562 u32 delta_us; 563 564 if (tp->rcv_rtt_est.time == 0) 565 goto new_measure; 566 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 567 return; 568 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 569 if (!delta_us) 570 delta_us = 1; 571 tcp_rcv_rtt_update(tp, delta_us, 1); 572 573 new_measure: 574 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 575 tp->rcv_rtt_est.time = tp->tcp_mstamp; 576 } 577 578 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 579 const struct sk_buff *skb) 580 { 581 struct tcp_sock *tp = tcp_sk(sk); 582 583 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 584 return; 585 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 586 587 if (TCP_SKB_CB(skb)->end_seq - 588 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 589 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 590 u32 delta_us; 591 592 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 593 if (!delta) 594 delta = 1; 595 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 596 tcp_rcv_rtt_update(tp, delta_us, 0); 597 } 598 } 599 } 600 601 /* 602 * This function should be called every time data is copied to user space. 603 * It calculates the appropriate TCP receive buffer space. 604 */ 605 void tcp_rcv_space_adjust(struct sock *sk) 606 { 607 struct tcp_sock *tp = tcp_sk(sk); 608 u32 copied; 609 int time; 610 611 trace_tcp_rcv_space_adjust(sk); 612 613 tcp_mstamp_refresh(tp); 614 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 615 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 616 return; 617 618 /* Number of bytes copied to user in last RTT */ 619 copied = tp->copied_seq - tp->rcvq_space.seq; 620 if (copied <= tp->rcvq_space.space) 621 goto new_measure; 622 623 /* A bit of theory : 624 * copied = bytes received in previous RTT, our base window 625 * To cope with packet losses, we need a 2x factor 626 * To cope with slow start, and sender growing its cwin by 100 % 627 * every RTT, we need a 4x factor, because the ACK we are sending 628 * now is for the next RTT, not the current one : 629 * <prev RTT . ><current RTT .. ><next RTT .... > 630 */ 631 632 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 633 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 634 int rcvmem, rcvbuf; 635 u64 rcvwin, grow; 636 637 /* minimal window to cope with packet losses, assuming 638 * steady state. Add some cushion because of small variations. 639 */ 640 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 641 642 /* Accommodate for sender rate increase (eg. slow start) */ 643 grow = rcvwin * (copied - tp->rcvq_space.space); 644 do_div(grow, tp->rcvq_space.space); 645 rcvwin += (grow << 1); 646 647 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 648 while (tcp_win_from_space(sk, rcvmem) < tp->advmss) 649 rcvmem += 128; 650 651 do_div(rcvwin, tp->advmss); 652 rcvbuf = min_t(u64, rcvwin * rcvmem, 653 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 654 if (rcvbuf > sk->sk_rcvbuf) { 655 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 656 657 /* Make the window clamp follow along. */ 658 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 659 } 660 } 661 tp->rcvq_space.space = copied; 662 663 new_measure: 664 tp->rcvq_space.seq = tp->copied_seq; 665 tp->rcvq_space.time = tp->tcp_mstamp; 666 } 667 668 /* There is something which you must keep in mind when you analyze the 669 * behavior of the tp->ato delayed ack timeout interval. When a 670 * connection starts up, we want to ack as quickly as possible. The 671 * problem is that "good" TCP's do slow start at the beginning of data 672 * transmission. The means that until we send the first few ACK's the 673 * sender will sit on his end and only queue most of his data, because 674 * he can only send snd_cwnd unacked packets at any given time. For 675 * each ACK we send, he increments snd_cwnd and transmits more of his 676 * queue. -DaveM 677 */ 678 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 679 { 680 struct tcp_sock *tp = tcp_sk(sk); 681 struct inet_connection_sock *icsk = inet_csk(sk); 682 u32 now; 683 684 inet_csk_schedule_ack(sk); 685 686 tcp_measure_rcv_mss(sk, skb); 687 688 tcp_rcv_rtt_measure(tp); 689 690 now = tcp_jiffies32; 691 692 if (!icsk->icsk_ack.ato) { 693 /* The _first_ data packet received, initialize 694 * delayed ACK engine. 695 */ 696 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 697 icsk->icsk_ack.ato = TCP_ATO_MIN; 698 } else { 699 int m = now - icsk->icsk_ack.lrcvtime; 700 701 if (m <= TCP_ATO_MIN / 2) { 702 /* The fastest case is the first. */ 703 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 704 } else if (m < icsk->icsk_ack.ato) { 705 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 706 if (icsk->icsk_ack.ato > icsk->icsk_rto) 707 icsk->icsk_ack.ato = icsk->icsk_rto; 708 } else if (m > icsk->icsk_rto) { 709 /* Too long gap. Apparently sender failed to 710 * restart window, so that we send ACKs quickly. 711 */ 712 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 713 sk_mem_reclaim(sk); 714 } 715 } 716 icsk->icsk_ack.lrcvtime = now; 717 718 tcp_ecn_check_ce(sk, skb); 719 720 if (skb->len >= 128) 721 tcp_grow_window(sk, skb); 722 } 723 724 /* Called to compute a smoothed rtt estimate. The data fed to this 725 * routine either comes from timestamps, or from segments that were 726 * known _not_ to have been retransmitted [see Karn/Partridge 727 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 728 * piece by Van Jacobson. 729 * NOTE: the next three routines used to be one big routine. 730 * To save cycles in the RFC 1323 implementation it was better to break 731 * it up into three procedures. -- erics 732 */ 733 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 734 { 735 struct tcp_sock *tp = tcp_sk(sk); 736 long m = mrtt_us; /* RTT */ 737 u32 srtt = tp->srtt_us; 738 739 /* The following amusing code comes from Jacobson's 740 * article in SIGCOMM '88. Note that rtt and mdev 741 * are scaled versions of rtt and mean deviation. 742 * This is designed to be as fast as possible 743 * m stands for "measurement". 744 * 745 * On a 1990 paper the rto value is changed to: 746 * RTO = rtt + 4 * mdev 747 * 748 * Funny. This algorithm seems to be very broken. 749 * These formulae increase RTO, when it should be decreased, increase 750 * too slowly, when it should be increased quickly, decrease too quickly 751 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 752 * does not matter how to _calculate_ it. Seems, it was trap 753 * that VJ failed to avoid. 8) 754 */ 755 if (srtt != 0) { 756 m -= (srtt >> 3); /* m is now error in rtt est */ 757 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 758 if (m < 0) { 759 m = -m; /* m is now abs(error) */ 760 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 761 /* This is similar to one of Eifel findings. 762 * Eifel blocks mdev updates when rtt decreases. 763 * This solution is a bit different: we use finer gain 764 * for mdev in this case (alpha*beta). 765 * Like Eifel it also prevents growth of rto, 766 * but also it limits too fast rto decreases, 767 * happening in pure Eifel. 768 */ 769 if (m > 0) 770 m >>= 3; 771 } else { 772 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 773 } 774 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 775 if (tp->mdev_us > tp->mdev_max_us) { 776 tp->mdev_max_us = tp->mdev_us; 777 if (tp->mdev_max_us > tp->rttvar_us) 778 tp->rttvar_us = tp->mdev_max_us; 779 } 780 if (after(tp->snd_una, tp->rtt_seq)) { 781 if (tp->mdev_max_us < tp->rttvar_us) 782 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 783 tp->rtt_seq = tp->snd_nxt; 784 tp->mdev_max_us = tcp_rto_min_us(sk); 785 786 tcp_bpf_rtt(sk); 787 } 788 } else { 789 /* no previous measure. */ 790 srtt = m << 3; /* take the measured time to be rtt */ 791 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 792 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 793 tp->mdev_max_us = tp->rttvar_us; 794 tp->rtt_seq = tp->snd_nxt; 795 796 tcp_bpf_rtt(sk); 797 } 798 tp->srtt_us = max(1U, srtt); 799 } 800 801 static void tcp_update_pacing_rate(struct sock *sk) 802 { 803 const struct tcp_sock *tp = tcp_sk(sk); 804 u64 rate; 805 806 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 807 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 808 809 /* current rate is (cwnd * mss) / srtt 810 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 811 * In Congestion Avoidance phase, set it to 120 % the current rate. 812 * 813 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 814 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 815 * end of slow start and should slow down. 816 */ 817 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 818 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio; 819 else 820 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio; 821 822 rate *= max(tp->snd_cwnd, tp->packets_out); 823 824 if (likely(tp->srtt_us)) 825 do_div(rate, tp->srtt_us); 826 827 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 828 * without any lock. We want to make sure compiler wont store 829 * intermediate values in this location. 830 */ 831 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 832 sk->sk_max_pacing_rate)); 833 } 834 835 /* Calculate rto without backoff. This is the second half of Van Jacobson's 836 * routine referred to above. 837 */ 838 static void tcp_set_rto(struct sock *sk) 839 { 840 const struct tcp_sock *tp = tcp_sk(sk); 841 /* Old crap is replaced with new one. 8) 842 * 843 * More seriously: 844 * 1. If rtt variance happened to be less 50msec, it is hallucination. 845 * It cannot be less due to utterly erratic ACK generation made 846 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 847 * to do with delayed acks, because at cwnd>2 true delack timeout 848 * is invisible. Actually, Linux-2.4 also generates erratic 849 * ACKs in some circumstances. 850 */ 851 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 852 853 /* 2. Fixups made earlier cannot be right. 854 * If we do not estimate RTO correctly without them, 855 * all the algo is pure shit and should be replaced 856 * with correct one. It is exactly, which we pretend to do. 857 */ 858 859 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 860 * guarantees that rto is higher. 861 */ 862 tcp_bound_rto(sk); 863 } 864 865 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 866 { 867 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 868 869 if (!cwnd) 870 cwnd = TCP_INIT_CWND; 871 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 872 } 873 874 struct tcp_sacktag_state { 875 /* Timestamps for earliest and latest never-retransmitted segment 876 * that was SACKed. RTO needs the earliest RTT to stay conservative, 877 * but congestion control should still get an accurate delay signal. 878 */ 879 u64 first_sackt; 880 u64 last_sackt; 881 u32 reord; 882 u32 sack_delivered; 883 int flag; 884 unsigned int mss_now; 885 struct rate_sample *rate; 886 }; 887 888 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery 889 * and spurious retransmission information if this DSACK is unlikely caused by 890 * sender's action: 891 * - DSACKed sequence range is larger than maximum receiver's window. 892 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs. 893 */ 894 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq, 895 u32 end_seq, struct tcp_sacktag_state *state) 896 { 897 u32 seq_len, dup_segs = 1; 898 899 if (!before(start_seq, end_seq)) 900 return 0; 901 902 seq_len = end_seq - start_seq; 903 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */ 904 if (seq_len > tp->max_window) 905 return 0; 906 if (seq_len > tp->mss_cache) 907 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache); 908 909 tp->dsack_dups += dup_segs; 910 /* Skip the DSACK if dup segs weren't retransmitted by sender */ 911 if (tp->dsack_dups > tp->total_retrans) 912 return 0; 913 914 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 915 tp->rack.dsack_seen = 1; 916 917 state->flag |= FLAG_DSACKING_ACK; 918 /* A spurious retransmission is delivered */ 919 state->sack_delivered += dup_segs; 920 921 return dup_segs; 922 } 923 924 /* It's reordering when higher sequence was delivered (i.e. sacked) before 925 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 926 * distance is approximated in full-mss packet distance ("reordering"). 927 */ 928 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 929 const int ts) 930 { 931 struct tcp_sock *tp = tcp_sk(sk); 932 const u32 mss = tp->mss_cache; 933 u32 fack, metric; 934 935 fack = tcp_highest_sack_seq(tp); 936 if (!before(low_seq, fack)) 937 return; 938 939 metric = fack - low_seq; 940 if ((metric > tp->reordering * mss) && mss) { 941 #if FASTRETRANS_DEBUG > 1 942 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 943 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 944 tp->reordering, 945 0, 946 tp->sacked_out, 947 tp->undo_marker ? tp->undo_retrans : 0); 948 #endif 949 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 950 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 951 } 952 953 /* This exciting event is worth to be remembered. 8) */ 954 tp->reord_seen++; 955 NET_INC_STATS(sock_net(sk), 956 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 957 } 958 959 /* This must be called before lost_out is incremented */ 960 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 961 { 962 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) || 963 (tp->retransmit_skb_hint && 964 before(TCP_SKB_CB(skb)->seq, 965 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))) 966 tp->retransmit_skb_hint = skb; 967 } 968 969 /* Sum the number of packets on the wire we have marked as lost. 970 * There are two cases we care about here: 971 * a) Packet hasn't been marked lost (nor retransmitted), 972 * and this is the first loss. 973 * b) Packet has been marked both lost and retransmitted, 974 * and this means we think it was lost again. 975 */ 976 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 977 { 978 __u8 sacked = TCP_SKB_CB(skb)->sacked; 979 980 if (!(sacked & TCPCB_LOST) || 981 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 982 tp->lost += tcp_skb_pcount(skb); 983 } 984 985 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 986 { 987 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 988 tcp_verify_retransmit_hint(tp, skb); 989 990 tp->lost_out += tcp_skb_pcount(skb); 991 tcp_sum_lost(tp, skb); 992 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 993 } 994 } 995 996 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 997 { 998 tcp_verify_retransmit_hint(tp, skb); 999 1000 tcp_sum_lost(tp, skb); 1001 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 1002 tp->lost_out += tcp_skb_pcount(skb); 1003 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1004 } 1005 } 1006 1007 /* Updates the delivered and delivered_ce counts */ 1008 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered, 1009 bool ece_ack) 1010 { 1011 tp->delivered += delivered; 1012 if (ece_ack) 1013 tp->delivered_ce += delivered; 1014 } 1015 1016 /* This procedure tags the retransmission queue when SACKs arrive. 1017 * 1018 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1019 * Packets in queue with these bits set are counted in variables 1020 * sacked_out, retrans_out and lost_out, correspondingly. 1021 * 1022 * Valid combinations are: 1023 * Tag InFlight Description 1024 * 0 1 - orig segment is in flight. 1025 * S 0 - nothing flies, orig reached receiver. 1026 * L 0 - nothing flies, orig lost by net. 1027 * R 2 - both orig and retransmit are in flight. 1028 * L|R 1 - orig is lost, retransmit is in flight. 1029 * S|R 1 - orig reached receiver, retrans is still in flight. 1030 * (L|S|R is logically valid, it could occur when L|R is sacked, 1031 * but it is equivalent to plain S and code short-curcuits it to S. 1032 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1033 * 1034 * These 6 states form finite state machine, controlled by the following events: 1035 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1036 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1037 * 3. Loss detection event of two flavors: 1038 * A. Scoreboard estimator decided the packet is lost. 1039 * A'. Reno "three dupacks" marks head of queue lost. 1040 * B. SACK arrives sacking SND.NXT at the moment, when the 1041 * segment was retransmitted. 1042 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1043 * 1044 * It is pleasant to note, that state diagram turns out to be commutative, 1045 * so that we are allowed not to be bothered by order of our actions, 1046 * when multiple events arrive simultaneously. (see the function below). 1047 * 1048 * Reordering detection. 1049 * -------------------- 1050 * Reordering metric is maximal distance, which a packet can be displaced 1051 * in packet stream. With SACKs we can estimate it: 1052 * 1053 * 1. SACK fills old hole and the corresponding segment was not 1054 * ever retransmitted -> reordering. Alas, we cannot use it 1055 * when segment was retransmitted. 1056 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1057 * for retransmitted and already SACKed segment -> reordering.. 1058 * Both of these heuristics are not used in Loss state, when we cannot 1059 * account for retransmits accurately. 1060 * 1061 * SACK block validation. 1062 * ---------------------- 1063 * 1064 * SACK block range validation checks that the received SACK block fits to 1065 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1066 * Note that SND.UNA is not included to the range though being valid because 1067 * it means that the receiver is rather inconsistent with itself reporting 1068 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1069 * perfectly valid, however, in light of RFC2018 which explicitly states 1070 * that "SACK block MUST reflect the newest segment. Even if the newest 1071 * segment is going to be discarded ...", not that it looks very clever 1072 * in case of head skb. Due to potentional receiver driven attacks, we 1073 * choose to avoid immediate execution of a walk in write queue due to 1074 * reneging and defer head skb's loss recovery to standard loss recovery 1075 * procedure that will eventually trigger (nothing forbids us doing this). 1076 * 1077 * Implements also blockage to start_seq wrap-around. Problem lies in the 1078 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1079 * there's no guarantee that it will be before snd_nxt (n). The problem 1080 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1081 * wrap (s_w): 1082 * 1083 * <- outs wnd -> <- wrapzone -> 1084 * u e n u_w e_w s n_w 1085 * | | | | | | | 1086 * |<------------+------+----- TCP seqno space --------------+---------->| 1087 * ...-- <2^31 ->| |<--------... 1088 * ...---- >2^31 ------>| |<--------... 1089 * 1090 * Current code wouldn't be vulnerable but it's better still to discard such 1091 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1092 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1093 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1094 * equal to the ideal case (infinite seqno space without wrap caused issues). 1095 * 1096 * With D-SACK the lower bound is extended to cover sequence space below 1097 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1098 * again, D-SACK block must not to go across snd_una (for the same reason as 1099 * for the normal SACK blocks, explained above). But there all simplicity 1100 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1101 * fully below undo_marker they do not affect behavior in anyway and can 1102 * therefore be safely ignored. In rare cases (which are more or less 1103 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1104 * fragmentation and packet reordering past skb's retransmission. To consider 1105 * them correctly, the acceptable range must be extended even more though 1106 * the exact amount is rather hard to quantify. However, tp->max_window can 1107 * be used as an exaggerated estimate. 1108 */ 1109 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1110 u32 start_seq, u32 end_seq) 1111 { 1112 /* Too far in future, or reversed (interpretation is ambiguous) */ 1113 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1114 return false; 1115 1116 /* Nasty start_seq wrap-around check (see comments above) */ 1117 if (!before(start_seq, tp->snd_nxt)) 1118 return false; 1119 1120 /* In outstanding window? ...This is valid exit for D-SACKs too. 1121 * start_seq == snd_una is non-sensical (see comments above) 1122 */ 1123 if (after(start_seq, tp->snd_una)) 1124 return true; 1125 1126 if (!is_dsack || !tp->undo_marker) 1127 return false; 1128 1129 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1130 if (after(end_seq, tp->snd_una)) 1131 return false; 1132 1133 if (!before(start_seq, tp->undo_marker)) 1134 return true; 1135 1136 /* Too old */ 1137 if (!after(end_seq, tp->undo_marker)) 1138 return false; 1139 1140 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1141 * start_seq < undo_marker and end_seq >= undo_marker. 1142 */ 1143 return !before(start_seq, end_seq - tp->max_window); 1144 } 1145 1146 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1147 struct tcp_sack_block_wire *sp, int num_sacks, 1148 u32 prior_snd_una, struct tcp_sacktag_state *state) 1149 { 1150 struct tcp_sock *tp = tcp_sk(sk); 1151 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1152 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1153 u32 dup_segs; 1154 1155 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1156 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1157 } else if (num_sacks > 1) { 1158 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1159 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1160 1161 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1)) 1162 return false; 1163 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV); 1164 } else { 1165 return false; 1166 } 1167 1168 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state); 1169 if (!dup_segs) { /* Skip dubious DSACK */ 1170 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS); 1171 return false; 1172 } 1173 1174 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs); 1175 1176 /* D-SACK for already forgotten data... Do dumb counting. */ 1177 if (tp->undo_marker && tp->undo_retrans > 0 && 1178 !after(end_seq_0, prior_snd_una) && 1179 after(end_seq_0, tp->undo_marker)) 1180 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs); 1181 1182 return true; 1183 } 1184 1185 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1186 * the incoming SACK may not exactly match but we can find smaller MSS 1187 * aligned portion of it that matches. Therefore we might need to fragment 1188 * which may fail and creates some hassle (caller must handle error case 1189 * returns). 1190 * 1191 * FIXME: this could be merged to shift decision code 1192 */ 1193 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1194 u32 start_seq, u32 end_seq) 1195 { 1196 int err; 1197 bool in_sack; 1198 unsigned int pkt_len; 1199 unsigned int mss; 1200 1201 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1202 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1203 1204 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1205 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1206 mss = tcp_skb_mss(skb); 1207 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1208 1209 if (!in_sack) { 1210 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1211 if (pkt_len < mss) 1212 pkt_len = mss; 1213 } else { 1214 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1215 if (pkt_len < mss) 1216 return -EINVAL; 1217 } 1218 1219 /* Round if necessary so that SACKs cover only full MSSes 1220 * and/or the remaining small portion (if present) 1221 */ 1222 if (pkt_len > mss) { 1223 unsigned int new_len = (pkt_len / mss) * mss; 1224 if (!in_sack && new_len < pkt_len) 1225 new_len += mss; 1226 pkt_len = new_len; 1227 } 1228 1229 if (pkt_len >= skb->len && !in_sack) 1230 return 0; 1231 1232 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1233 pkt_len, mss, GFP_ATOMIC); 1234 if (err < 0) 1235 return err; 1236 } 1237 1238 return in_sack; 1239 } 1240 1241 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1242 static u8 tcp_sacktag_one(struct sock *sk, 1243 struct tcp_sacktag_state *state, u8 sacked, 1244 u32 start_seq, u32 end_seq, 1245 int dup_sack, int pcount, 1246 u64 xmit_time) 1247 { 1248 struct tcp_sock *tp = tcp_sk(sk); 1249 1250 /* Account D-SACK for retransmitted packet. */ 1251 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1252 if (tp->undo_marker && tp->undo_retrans > 0 && 1253 after(end_seq, tp->undo_marker)) 1254 tp->undo_retrans--; 1255 if ((sacked & TCPCB_SACKED_ACKED) && 1256 before(start_seq, state->reord)) 1257 state->reord = start_seq; 1258 } 1259 1260 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1261 if (!after(end_seq, tp->snd_una)) 1262 return sacked; 1263 1264 if (!(sacked & TCPCB_SACKED_ACKED)) { 1265 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1266 1267 if (sacked & TCPCB_SACKED_RETRANS) { 1268 /* If the segment is not tagged as lost, 1269 * we do not clear RETRANS, believing 1270 * that retransmission is still in flight. 1271 */ 1272 if (sacked & TCPCB_LOST) { 1273 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1274 tp->lost_out -= pcount; 1275 tp->retrans_out -= pcount; 1276 } 1277 } else { 1278 if (!(sacked & TCPCB_RETRANS)) { 1279 /* New sack for not retransmitted frame, 1280 * which was in hole. It is reordering. 1281 */ 1282 if (before(start_seq, 1283 tcp_highest_sack_seq(tp)) && 1284 before(start_seq, state->reord)) 1285 state->reord = start_seq; 1286 1287 if (!after(end_seq, tp->high_seq)) 1288 state->flag |= FLAG_ORIG_SACK_ACKED; 1289 if (state->first_sackt == 0) 1290 state->first_sackt = xmit_time; 1291 state->last_sackt = xmit_time; 1292 } 1293 1294 if (sacked & TCPCB_LOST) { 1295 sacked &= ~TCPCB_LOST; 1296 tp->lost_out -= pcount; 1297 } 1298 } 1299 1300 sacked |= TCPCB_SACKED_ACKED; 1301 state->flag |= FLAG_DATA_SACKED; 1302 tp->sacked_out += pcount; 1303 /* Out-of-order packets delivered */ 1304 state->sack_delivered += pcount; 1305 1306 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1307 if (tp->lost_skb_hint && 1308 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1309 tp->lost_cnt_hint += pcount; 1310 } 1311 1312 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1313 * frames and clear it. undo_retrans is decreased above, L|R frames 1314 * are accounted above as well. 1315 */ 1316 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1317 sacked &= ~TCPCB_SACKED_RETRANS; 1318 tp->retrans_out -= pcount; 1319 } 1320 1321 return sacked; 1322 } 1323 1324 /* Shift newly-SACKed bytes from this skb to the immediately previous 1325 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1326 */ 1327 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1328 struct sk_buff *skb, 1329 struct tcp_sacktag_state *state, 1330 unsigned int pcount, int shifted, int mss, 1331 bool dup_sack) 1332 { 1333 struct tcp_sock *tp = tcp_sk(sk); 1334 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1335 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1336 1337 BUG_ON(!pcount); 1338 1339 /* Adjust counters and hints for the newly sacked sequence 1340 * range but discard the return value since prev is already 1341 * marked. We must tag the range first because the seq 1342 * advancement below implicitly advances 1343 * tcp_highest_sack_seq() when skb is highest_sack. 1344 */ 1345 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1346 start_seq, end_seq, dup_sack, pcount, 1347 tcp_skb_timestamp_us(skb)); 1348 tcp_rate_skb_delivered(sk, skb, state->rate); 1349 1350 if (skb == tp->lost_skb_hint) 1351 tp->lost_cnt_hint += pcount; 1352 1353 TCP_SKB_CB(prev)->end_seq += shifted; 1354 TCP_SKB_CB(skb)->seq += shifted; 1355 1356 tcp_skb_pcount_add(prev, pcount); 1357 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1358 tcp_skb_pcount_add(skb, -pcount); 1359 1360 /* When we're adding to gso_segs == 1, gso_size will be zero, 1361 * in theory this shouldn't be necessary but as long as DSACK 1362 * code can come after this skb later on it's better to keep 1363 * setting gso_size to something. 1364 */ 1365 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1366 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1367 1368 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1369 if (tcp_skb_pcount(skb) <= 1) 1370 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1371 1372 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1373 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1374 1375 if (skb->len > 0) { 1376 BUG_ON(!tcp_skb_pcount(skb)); 1377 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1378 return false; 1379 } 1380 1381 /* Whole SKB was eaten :-) */ 1382 1383 if (skb == tp->retransmit_skb_hint) 1384 tp->retransmit_skb_hint = prev; 1385 if (skb == tp->lost_skb_hint) { 1386 tp->lost_skb_hint = prev; 1387 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1388 } 1389 1390 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1391 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1392 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1393 TCP_SKB_CB(prev)->end_seq++; 1394 1395 if (skb == tcp_highest_sack(sk)) 1396 tcp_advance_highest_sack(sk, skb); 1397 1398 tcp_skb_collapse_tstamp(prev, skb); 1399 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1400 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1401 1402 tcp_rtx_queue_unlink_and_free(skb, sk); 1403 1404 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1405 1406 return true; 1407 } 1408 1409 /* I wish gso_size would have a bit more sane initialization than 1410 * something-or-zero which complicates things 1411 */ 1412 static int tcp_skb_seglen(const struct sk_buff *skb) 1413 { 1414 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1415 } 1416 1417 /* Shifting pages past head area doesn't work */ 1418 static int skb_can_shift(const struct sk_buff *skb) 1419 { 1420 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1421 } 1422 1423 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1424 int pcount, int shiftlen) 1425 { 1426 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1427 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1428 * to make sure not storing more than 65535 * 8 bytes per skb, 1429 * even if current MSS is bigger. 1430 */ 1431 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1432 return 0; 1433 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1434 return 0; 1435 return skb_shift(to, from, shiftlen); 1436 } 1437 1438 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1439 * skb. 1440 */ 1441 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1442 struct tcp_sacktag_state *state, 1443 u32 start_seq, u32 end_seq, 1444 bool dup_sack) 1445 { 1446 struct tcp_sock *tp = tcp_sk(sk); 1447 struct sk_buff *prev; 1448 int mss; 1449 int pcount = 0; 1450 int len; 1451 int in_sack; 1452 1453 /* Normally R but no L won't result in plain S */ 1454 if (!dup_sack && 1455 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1456 goto fallback; 1457 if (!skb_can_shift(skb)) 1458 goto fallback; 1459 /* This frame is about to be dropped (was ACKed). */ 1460 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1461 goto fallback; 1462 1463 /* Can only happen with delayed DSACK + discard craziness */ 1464 prev = skb_rb_prev(skb); 1465 if (!prev) 1466 goto fallback; 1467 1468 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1469 goto fallback; 1470 1471 if (!tcp_skb_can_collapse(prev, skb)) 1472 goto fallback; 1473 1474 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1475 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1476 1477 if (in_sack) { 1478 len = skb->len; 1479 pcount = tcp_skb_pcount(skb); 1480 mss = tcp_skb_seglen(skb); 1481 1482 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1483 * drop this restriction as unnecessary 1484 */ 1485 if (mss != tcp_skb_seglen(prev)) 1486 goto fallback; 1487 } else { 1488 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1489 goto noop; 1490 /* CHECKME: This is non-MSS split case only?, this will 1491 * cause skipped skbs due to advancing loop btw, original 1492 * has that feature too 1493 */ 1494 if (tcp_skb_pcount(skb) <= 1) 1495 goto noop; 1496 1497 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1498 if (!in_sack) { 1499 /* TODO: head merge to next could be attempted here 1500 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1501 * though it might not be worth of the additional hassle 1502 * 1503 * ...we can probably just fallback to what was done 1504 * previously. We could try merging non-SACKed ones 1505 * as well but it probably isn't going to buy off 1506 * because later SACKs might again split them, and 1507 * it would make skb timestamp tracking considerably 1508 * harder problem. 1509 */ 1510 goto fallback; 1511 } 1512 1513 len = end_seq - TCP_SKB_CB(skb)->seq; 1514 BUG_ON(len < 0); 1515 BUG_ON(len > skb->len); 1516 1517 /* MSS boundaries should be honoured or else pcount will 1518 * severely break even though it makes things bit trickier. 1519 * Optimize common case to avoid most of the divides 1520 */ 1521 mss = tcp_skb_mss(skb); 1522 1523 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1524 * drop this restriction as unnecessary 1525 */ 1526 if (mss != tcp_skb_seglen(prev)) 1527 goto fallback; 1528 1529 if (len == mss) { 1530 pcount = 1; 1531 } else if (len < mss) { 1532 goto noop; 1533 } else { 1534 pcount = len / mss; 1535 len = pcount * mss; 1536 } 1537 } 1538 1539 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1540 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1541 goto fallback; 1542 1543 if (!tcp_skb_shift(prev, skb, pcount, len)) 1544 goto fallback; 1545 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1546 goto out; 1547 1548 /* Hole filled allows collapsing with the next as well, this is very 1549 * useful when hole on every nth skb pattern happens 1550 */ 1551 skb = skb_rb_next(prev); 1552 if (!skb) 1553 goto out; 1554 1555 if (!skb_can_shift(skb) || 1556 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1557 (mss != tcp_skb_seglen(skb))) 1558 goto out; 1559 1560 len = skb->len; 1561 pcount = tcp_skb_pcount(skb); 1562 if (tcp_skb_shift(prev, skb, pcount, len)) 1563 tcp_shifted_skb(sk, prev, skb, state, pcount, 1564 len, mss, 0); 1565 1566 out: 1567 return prev; 1568 1569 noop: 1570 return skb; 1571 1572 fallback: 1573 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1574 return NULL; 1575 } 1576 1577 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1578 struct tcp_sack_block *next_dup, 1579 struct tcp_sacktag_state *state, 1580 u32 start_seq, u32 end_seq, 1581 bool dup_sack_in) 1582 { 1583 struct tcp_sock *tp = tcp_sk(sk); 1584 struct sk_buff *tmp; 1585 1586 skb_rbtree_walk_from(skb) { 1587 int in_sack = 0; 1588 bool dup_sack = dup_sack_in; 1589 1590 /* queue is in-order => we can short-circuit the walk early */ 1591 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1592 break; 1593 1594 if (next_dup && 1595 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1596 in_sack = tcp_match_skb_to_sack(sk, skb, 1597 next_dup->start_seq, 1598 next_dup->end_seq); 1599 if (in_sack > 0) 1600 dup_sack = true; 1601 } 1602 1603 /* skb reference here is a bit tricky to get right, since 1604 * shifting can eat and free both this skb and the next, 1605 * so not even _safe variant of the loop is enough. 1606 */ 1607 if (in_sack <= 0) { 1608 tmp = tcp_shift_skb_data(sk, skb, state, 1609 start_seq, end_seq, dup_sack); 1610 if (tmp) { 1611 if (tmp != skb) { 1612 skb = tmp; 1613 continue; 1614 } 1615 1616 in_sack = 0; 1617 } else { 1618 in_sack = tcp_match_skb_to_sack(sk, skb, 1619 start_seq, 1620 end_seq); 1621 } 1622 } 1623 1624 if (unlikely(in_sack < 0)) 1625 break; 1626 1627 if (in_sack) { 1628 TCP_SKB_CB(skb)->sacked = 1629 tcp_sacktag_one(sk, 1630 state, 1631 TCP_SKB_CB(skb)->sacked, 1632 TCP_SKB_CB(skb)->seq, 1633 TCP_SKB_CB(skb)->end_seq, 1634 dup_sack, 1635 tcp_skb_pcount(skb), 1636 tcp_skb_timestamp_us(skb)); 1637 tcp_rate_skb_delivered(sk, skb, state->rate); 1638 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1639 list_del_init(&skb->tcp_tsorted_anchor); 1640 1641 if (!before(TCP_SKB_CB(skb)->seq, 1642 tcp_highest_sack_seq(tp))) 1643 tcp_advance_highest_sack(sk, skb); 1644 } 1645 } 1646 return skb; 1647 } 1648 1649 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1650 { 1651 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1652 struct sk_buff *skb; 1653 1654 while (*p) { 1655 parent = *p; 1656 skb = rb_to_skb(parent); 1657 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1658 p = &parent->rb_left; 1659 continue; 1660 } 1661 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1662 p = &parent->rb_right; 1663 continue; 1664 } 1665 return skb; 1666 } 1667 return NULL; 1668 } 1669 1670 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1671 u32 skip_to_seq) 1672 { 1673 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1674 return skb; 1675 1676 return tcp_sacktag_bsearch(sk, skip_to_seq); 1677 } 1678 1679 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1680 struct sock *sk, 1681 struct tcp_sack_block *next_dup, 1682 struct tcp_sacktag_state *state, 1683 u32 skip_to_seq) 1684 { 1685 if (!next_dup) 1686 return skb; 1687 1688 if (before(next_dup->start_seq, skip_to_seq)) { 1689 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1690 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1691 next_dup->start_seq, next_dup->end_seq, 1692 1); 1693 } 1694 1695 return skb; 1696 } 1697 1698 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1699 { 1700 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1701 } 1702 1703 static int 1704 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1705 u32 prior_snd_una, struct tcp_sacktag_state *state) 1706 { 1707 struct tcp_sock *tp = tcp_sk(sk); 1708 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1709 TCP_SKB_CB(ack_skb)->sacked); 1710 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1711 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1712 struct tcp_sack_block *cache; 1713 struct sk_buff *skb; 1714 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1715 int used_sacks; 1716 bool found_dup_sack = false; 1717 int i, j; 1718 int first_sack_index; 1719 1720 state->flag = 0; 1721 state->reord = tp->snd_nxt; 1722 1723 if (!tp->sacked_out) 1724 tcp_highest_sack_reset(sk); 1725 1726 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1727 num_sacks, prior_snd_una, state); 1728 1729 /* Eliminate too old ACKs, but take into 1730 * account more or less fresh ones, they can 1731 * contain valid SACK info. 1732 */ 1733 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1734 return 0; 1735 1736 if (!tp->packets_out) 1737 goto out; 1738 1739 used_sacks = 0; 1740 first_sack_index = 0; 1741 for (i = 0; i < num_sacks; i++) { 1742 bool dup_sack = !i && found_dup_sack; 1743 1744 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1745 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1746 1747 if (!tcp_is_sackblock_valid(tp, dup_sack, 1748 sp[used_sacks].start_seq, 1749 sp[used_sacks].end_seq)) { 1750 int mib_idx; 1751 1752 if (dup_sack) { 1753 if (!tp->undo_marker) 1754 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1755 else 1756 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1757 } else { 1758 /* Don't count olds caused by ACK reordering */ 1759 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1760 !after(sp[used_sacks].end_seq, tp->snd_una)) 1761 continue; 1762 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1763 } 1764 1765 NET_INC_STATS(sock_net(sk), mib_idx); 1766 if (i == 0) 1767 first_sack_index = -1; 1768 continue; 1769 } 1770 1771 /* Ignore very old stuff early */ 1772 if (!after(sp[used_sacks].end_seq, prior_snd_una)) { 1773 if (i == 0) 1774 first_sack_index = -1; 1775 continue; 1776 } 1777 1778 used_sacks++; 1779 } 1780 1781 /* order SACK blocks to allow in order walk of the retrans queue */ 1782 for (i = used_sacks - 1; i > 0; i--) { 1783 for (j = 0; j < i; j++) { 1784 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1785 swap(sp[j], sp[j + 1]); 1786 1787 /* Track where the first SACK block goes to */ 1788 if (j == first_sack_index) 1789 first_sack_index = j + 1; 1790 } 1791 } 1792 } 1793 1794 state->mss_now = tcp_current_mss(sk); 1795 skb = NULL; 1796 i = 0; 1797 1798 if (!tp->sacked_out) { 1799 /* It's already past, so skip checking against it */ 1800 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1801 } else { 1802 cache = tp->recv_sack_cache; 1803 /* Skip empty blocks in at head of the cache */ 1804 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1805 !cache->end_seq) 1806 cache++; 1807 } 1808 1809 while (i < used_sacks) { 1810 u32 start_seq = sp[i].start_seq; 1811 u32 end_seq = sp[i].end_seq; 1812 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1813 struct tcp_sack_block *next_dup = NULL; 1814 1815 if (found_dup_sack && ((i + 1) == first_sack_index)) 1816 next_dup = &sp[i + 1]; 1817 1818 /* Skip too early cached blocks */ 1819 while (tcp_sack_cache_ok(tp, cache) && 1820 !before(start_seq, cache->end_seq)) 1821 cache++; 1822 1823 /* Can skip some work by looking recv_sack_cache? */ 1824 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1825 after(end_seq, cache->start_seq)) { 1826 1827 /* Head todo? */ 1828 if (before(start_seq, cache->start_seq)) { 1829 skb = tcp_sacktag_skip(skb, sk, start_seq); 1830 skb = tcp_sacktag_walk(skb, sk, next_dup, 1831 state, 1832 start_seq, 1833 cache->start_seq, 1834 dup_sack); 1835 } 1836 1837 /* Rest of the block already fully processed? */ 1838 if (!after(end_seq, cache->end_seq)) 1839 goto advance_sp; 1840 1841 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1842 state, 1843 cache->end_seq); 1844 1845 /* ...tail remains todo... */ 1846 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1847 /* ...but better entrypoint exists! */ 1848 skb = tcp_highest_sack(sk); 1849 if (!skb) 1850 break; 1851 cache++; 1852 goto walk; 1853 } 1854 1855 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 1856 /* Check overlap against next cached too (past this one already) */ 1857 cache++; 1858 continue; 1859 } 1860 1861 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1862 skb = tcp_highest_sack(sk); 1863 if (!skb) 1864 break; 1865 } 1866 skb = tcp_sacktag_skip(skb, sk, start_seq); 1867 1868 walk: 1869 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1870 start_seq, end_seq, dup_sack); 1871 1872 advance_sp: 1873 i++; 1874 } 1875 1876 /* Clear the head of the cache sack blocks so we can skip it next time */ 1877 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1878 tp->recv_sack_cache[i].start_seq = 0; 1879 tp->recv_sack_cache[i].end_seq = 0; 1880 } 1881 for (j = 0; j < used_sacks; j++) 1882 tp->recv_sack_cache[i++] = sp[j]; 1883 1884 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 1885 tcp_check_sack_reordering(sk, state->reord, 0); 1886 1887 tcp_verify_left_out(tp); 1888 out: 1889 1890 #if FASTRETRANS_DEBUG > 0 1891 WARN_ON((int)tp->sacked_out < 0); 1892 WARN_ON((int)tp->lost_out < 0); 1893 WARN_ON((int)tp->retrans_out < 0); 1894 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1895 #endif 1896 return state->flag; 1897 } 1898 1899 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1900 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1901 */ 1902 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1903 { 1904 u32 holes; 1905 1906 holes = max(tp->lost_out, 1U); 1907 holes = min(holes, tp->packets_out); 1908 1909 if ((tp->sacked_out + holes) > tp->packets_out) { 1910 tp->sacked_out = tp->packets_out - holes; 1911 return true; 1912 } 1913 return false; 1914 } 1915 1916 /* If we receive more dupacks than we expected counting segments 1917 * in assumption of absent reordering, interpret this as reordering. 1918 * The only another reason could be bug in receiver TCP. 1919 */ 1920 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1921 { 1922 struct tcp_sock *tp = tcp_sk(sk); 1923 1924 if (!tcp_limit_reno_sacked(tp)) 1925 return; 1926 1927 tp->reordering = min_t(u32, tp->packets_out + addend, 1928 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 1929 tp->reord_seen++; 1930 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 1931 } 1932 1933 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1934 1935 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack) 1936 { 1937 if (num_dupack) { 1938 struct tcp_sock *tp = tcp_sk(sk); 1939 u32 prior_sacked = tp->sacked_out; 1940 s32 delivered; 1941 1942 tp->sacked_out += num_dupack; 1943 tcp_check_reno_reordering(sk, 0); 1944 delivered = tp->sacked_out - prior_sacked; 1945 if (delivered > 0) 1946 tcp_count_delivered(tp, delivered, ece_ack); 1947 tcp_verify_left_out(tp); 1948 } 1949 } 1950 1951 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1952 1953 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack) 1954 { 1955 struct tcp_sock *tp = tcp_sk(sk); 1956 1957 if (acked > 0) { 1958 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1959 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1), 1960 ece_ack); 1961 if (acked - 1 >= tp->sacked_out) 1962 tp->sacked_out = 0; 1963 else 1964 tp->sacked_out -= acked - 1; 1965 } 1966 tcp_check_reno_reordering(sk, acked); 1967 tcp_verify_left_out(tp); 1968 } 1969 1970 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1971 { 1972 tp->sacked_out = 0; 1973 } 1974 1975 void tcp_clear_retrans(struct tcp_sock *tp) 1976 { 1977 tp->retrans_out = 0; 1978 tp->lost_out = 0; 1979 tp->undo_marker = 0; 1980 tp->undo_retrans = -1; 1981 tp->sacked_out = 0; 1982 } 1983 1984 static inline void tcp_init_undo(struct tcp_sock *tp) 1985 { 1986 tp->undo_marker = tp->snd_una; 1987 /* Retransmission still in flight may cause DSACKs later. */ 1988 tp->undo_retrans = tp->retrans_out ? : -1; 1989 } 1990 1991 static bool tcp_is_rack(const struct sock *sk) 1992 { 1993 return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION; 1994 } 1995 1996 /* If we detect SACK reneging, forget all SACK information 1997 * and reset tags completely, otherwise preserve SACKs. If receiver 1998 * dropped its ofo queue, we will know this due to reneging detection. 1999 */ 2000 static void tcp_timeout_mark_lost(struct sock *sk) 2001 { 2002 struct tcp_sock *tp = tcp_sk(sk); 2003 struct sk_buff *skb, *head; 2004 bool is_reneg; /* is receiver reneging on SACKs? */ 2005 2006 head = tcp_rtx_queue_head(sk); 2007 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 2008 if (is_reneg) { 2009 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2010 tp->sacked_out = 0; 2011 /* Mark SACK reneging until we recover from this loss event. */ 2012 tp->is_sack_reneg = 1; 2013 } else if (tcp_is_reno(tp)) { 2014 tcp_reset_reno_sack(tp); 2015 } 2016 2017 skb = head; 2018 skb_rbtree_walk_from(skb) { 2019 if (is_reneg) 2020 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2021 else if (tcp_is_rack(sk) && skb != head && 2022 tcp_rack_skb_timeout(tp, skb, 0) > 0) 2023 continue; /* Don't mark recently sent ones lost yet */ 2024 tcp_mark_skb_lost(sk, skb); 2025 } 2026 tcp_verify_left_out(tp); 2027 tcp_clear_all_retrans_hints(tp); 2028 } 2029 2030 /* Enter Loss state. */ 2031 void tcp_enter_loss(struct sock *sk) 2032 { 2033 const struct inet_connection_sock *icsk = inet_csk(sk); 2034 struct tcp_sock *tp = tcp_sk(sk); 2035 struct net *net = sock_net(sk); 2036 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 2037 2038 tcp_timeout_mark_lost(sk); 2039 2040 /* Reduce ssthresh if it has not yet been made inside this window. */ 2041 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 2042 !after(tp->high_seq, tp->snd_una) || 2043 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2044 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2045 tp->prior_cwnd = tp->snd_cwnd; 2046 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2047 tcp_ca_event(sk, CA_EVENT_LOSS); 2048 tcp_init_undo(tp); 2049 } 2050 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1; 2051 tp->snd_cwnd_cnt = 0; 2052 tp->snd_cwnd_stamp = tcp_jiffies32; 2053 2054 /* Timeout in disordered state after receiving substantial DUPACKs 2055 * suggests that the degree of reordering is over-estimated. 2056 */ 2057 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2058 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 2059 tp->reordering = min_t(unsigned int, tp->reordering, 2060 net->ipv4.sysctl_tcp_reordering); 2061 tcp_set_ca_state(sk, TCP_CA_Loss); 2062 tp->high_seq = tp->snd_nxt; 2063 tcp_ecn_queue_cwr(tp); 2064 2065 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2066 * loss recovery is underway except recurring timeout(s) on 2067 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2068 */ 2069 tp->frto = net->ipv4.sysctl_tcp_frto && 2070 (new_recovery || icsk->icsk_retransmits) && 2071 !inet_csk(sk)->icsk_mtup.probe_size; 2072 } 2073 2074 /* If ACK arrived pointing to a remembered SACK, it means that our 2075 * remembered SACKs do not reflect real state of receiver i.e. 2076 * receiver _host_ is heavily congested (or buggy). 2077 * 2078 * To avoid big spurious retransmission bursts due to transient SACK 2079 * scoreboard oddities that look like reneging, we give the receiver a 2080 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2081 * restore sanity to the SACK scoreboard. If the apparent reneging 2082 * persists until this RTO then we'll clear the SACK scoreboard. 2083 */ 2084 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2085 { 2086 if (flag & FLAG_SACK_RENEGING) { 2087 struct tcp_sock *tp = tcp_sk(sk); 2088 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2089 msecs_to_jiffies(10)); 2090 2091 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2092 delay, TCP_RTO_MAX); 2093 return true; 2094 } 2095 return false; 2096 } 2097 2098 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2099 * counter when SACK is enabled (without SACK, sacked_out is used for 2100 * that purpose). 2101 * 2102 * With reordering, holes may still be in flight, so RFC3517 recovery 2103 * uses pure sacked_out (total number of SACKed segments) even though 2104 * it violates the RFC that uses duplicate ACKs, often these are equal 2105 * but when e.g. out-of-window ACKs or packet duplication occurs, 2106 * they differ. Since neither occurs due to loss, TCP should really 2107 * ignore them. 2108 */ 2109 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2110 { 2111 return tp->sacked_out + 1; 2112 } 2113 2114 /* Linux NewReno/SACK/ECN state machine. 2115 * -------------------------------------- 2116 * 2117 * "Open" Normal state, no dubious events, fast path. 2118 * "Disorder" In all the respects it is "Open", 2119 * but requires a bit more attention. It is entered when 2120 * we see some SACKs or dupacks. It is split of "Open" 2121 * mainly to move some processing from fast path to slow one. 2122 * "CWR" CWND was reduced due to some Congestion Notification event. 2123 * It can be ECN, ICMP source quench, local device congestion. 2124 * "Recovery" CWND was reduced, we are fast-retransmitting. 2125 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2126 * 2127 * tcp_fastretrans_alert() is entered: 2128 * - each incoming ACK, if state is not "Open" 2129 * - when arrived ACK is unusual, namely: 2130 * * SACK 2131 * * Duplicate ACK. 2132 * * ECN ECE. 2133 * 2134 * Counting packets in flight is pretty simple. 2135 * 2136 * in_flight = packets_out - left_out + retrans_out 2137 * 2138 * packets_out is SND.NXT-SND.UNA counted in packets. 2139 * 2140 * retrans_out is number of retransmitted segments. 2141 * 2142 * left_out is number of segments left network, but not ACKed yet. 2143 * 2144 * left_out = sacked_out + lost_out 2145 * 2146 * sacked_out: Packets, which arrived to receiver out of order 2147 * and hence not ACKed. With SACKs this number is simply 2148 * amount of SACKed data. Even without SACKs 2149 * it is easy to give pretty reliable estimate of this number, 2150 * counting duplicate ACKs. 2151 * 2152 * lost_out: Packets lost by network. TCP has no explicit 2153 * "loss notification" feedback from network (for now). 2154 * It means that this number can be only _guessed_. 2155 * Actually, it is the heuristics to predict lossage that 2156 * distinguishes different algorithms. 2157 * 2158 * F.e. after RTO, when all the queue is considered as lost, 2159 * lost_out = packets_out and in_flight = retrans_out. 2160 * 2161 * Essentially, we have now a few algorithms detecting 2162 * lost packets. 2163 * 2164 * If the receiver supports SACK: 2165 * 2166 * RFC6675/3517: It is the conventional algorithm. A packet is 2167 * considered lost if the number of higher sequence packets 2168 * SACKed is greater than or equal the DUPACK thoreshold 2169 * (reordering). This is implemented in tcp_mark_head_lost and 2170 * tcp_update_scoreboard. 2171 * 2172 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2173 * (2017-) that checks timing instead of counting DUPACKs. 2174 * Essentially a packet is considered lost if it's not S/ACKed 2175 * after RTT + reordering_window, where both metrics are 2176 * dynamically measured and adjusted. This is implemented in 2177 * tcp_rack_mark_lost. 2178 * 2179 * If the receiver does not support SACK: 2180 * 2181 * NewReno (RFC6582): in Recovery we assume that one segment 2182 * is lost (classic Reno). While we are in Recovery and 2183 * a partial ACK arrives, we assume that one more packet 2184 * is lost (NewReno). This heuristics are the same in NewReno 2185 * and SACK. 2186 * 2187 * Really tricky (and requiring careful tuning) part of algorithm 2188 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2189 * The first determines the moment _when_ we should reduce CWND and, 2190 * hence, slow down forward transmission. In fact, it determines the moment 2191 * when we decide that hole is caused by loss, rather than by a reorder. 2192 * 2193 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2194 * holes, caused by lost packets. 2195 * 2196 * And the most logically complicated part of algorithm is undo 2197 * heuristics. We detect false retransmits due to both too early 2198 * fast retransmit (reordering) and underestimated RTO, analyzing 2199 * timestamps and D-SACKs. When we detect that some segments were 2200 * retransmitted by mistake and CWND reduction was wrong, we undo 2201 * window reduction and abort recovery phase. This logic is hidden 2202 * inside several functions named tcp_try_undo_<something>. 2203 */ 2204 2205 /* This function decides, when we should leave Disordered state 2206 * and enter Recovery phase, reducing congestion window. 2207 * 2208 * Main question: may we further continue forward transmission 2209 * with the same cwnd? 2210 */ 2211 static bool tcp_time_to_recover(struct sock *sk, int flag) 2212 { 2213 struct tcp_sock *tp = tcp_sk(sk); 2214 2215 /* Trick#1: The loss is proven. */ 2216 if (tp->lost_out) 2217 return true; 2218 2219 /* Not-A-Trick#2 : Classic rule... */ 2220 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2221 return true; 2222 2223 return false; 2224 } 2225 2226 /* Detect loss in event "A" above by marking head of queue up as lost. 2227 * For RFC3517 SACK, a segment is considered lost if it 2228 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2229 * the maximum SACKed segments to pass before reaching this limit. 2230 */ 2231 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2232 { 2233 struct tcp_sock *tp = tcp_sk(sk); 2234 struct sk_buff *skb; 2235 int cnt; 2236 /* Use SACK to deduce losses of new sequences sent during recovery */ 2237 const u32 loss_high = tp->snd_nxt; 2238 2239 WARN_ON(packets > tp->packets_out); 2240 skb = tp->lost_skb_hint; 2241 if (skb) { 2242 /* Head already handled? */ 2243 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2244 return; 2245 cnt = tp->lost_cnt_hint; 2246 } else { 2247 skb = tcp_rtx_queue_head(sk); 2248 cnt = 0; 2249 } 2250 2251 skb_rbtree_walk_from(skb) { 2252 /* TODO: do this better */ 2253 /* this is not the most efficient way to do this... */ 2254 tp->lost_skb_hint = skb; 2255 tp->lost_cnt_hint = cnt; 2256 2257 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2258 break; 2259 2260 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2261 cnt += tcp_skb_pcount(skb); 2262 2263 if (cnt > packets) 2264 break; 2265 2266 tcp_skb_mark_lost(tp, skb); 2267 2268 if (mark_head) 2269 break; 2270 } 2271 tcp_verify_left_out(tp); 2272 } 2273 2274 /* Account newly detected lost packet(s) */ 2275 2276 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2277 { 2278 struct tcp_sock *tp = tcp_sk(sk); 2279 2280 if (tcp_is_sack(tp)) { 2281 int sacked_upto = tp->sacked_out - tp->reordering; 2282 if (sacked_upto >= 0) 2283 tcp_mark_head_lost(sk, sacked_upto, 0); 2284 else if (fast_rexmit) 2285 tcp_mark_head_lost(sk, 1, 1); 2286 } 2287 } 2288 2289 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2290 { 2291 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2292 before(tp->rx_opt.rcv_tsecr, when); 2293 } 2294 2295 /* skb is spurious retransmitted if the returned timestamp echo 2296 * reply is prior to the skb transmission time 2297 */ 2298 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2299 const struct sk_buff *skb) 2300 { 2301 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2302 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2303 } 2304 2305 /* Nothing was retransmitted or returned timestamp is less 2306 * than timestamp of the first retransmission. 2307 */ 2308 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2309 { 2310 return tp->retrans_stamp && 2311 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2312 } 2313 2314 /* Undo procedures. */ 2315 2316 /* We can clear retrans_stamp when there are no retransmissions in the 2317 * window. It would seem that it is trivially available for us in 2318 * tp->retrans_out, however, that kind of assumptions doesn't consider 2319 * what will happen if errors occur when sending retransmission for the 2320 * second time. ...It could the that such segment has only 2321 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2322 * the head skb is enough except for some reneging corner cases that 2323 * are not worth the effort. 2324 * 2325 * Main reason for all this complexity is the fact that connection dying 2326 * time now depends on the validity of the retrans_stamp, in particular, 2327 * that successive retransmissions of a segment must not advance 2328 * retrans_stamp under any conditions. 2329 */ 2330 static bool tcp_any_retrans_done(const struct sock *sk) 2331 { 2332 const struct tcp_sock *tp = tcp_sk(sk); 2333 struct sk_buff *skb; 2334 2335 if (tp->retrans_out) 2336 return true; 2337 2338 skb = tcp_rtx_queue_head(sk); 2339 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2340 return true; 2341 2342 return false; 2343 } 2344 2345 static void DBGUNDO(struct sock *sk, const char *msg) 2346 { 2347 #if FASTRETRANS_DEBUG > 1 2348 struct tcp_sock *tp = tcp_sk(sk); 2349 struct inet_sock *inet = inet_sk(sk); 2350 2351 if (sk->sk_family == AF_INET) { 2352 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2353 msg, 2354 &inet->inet_daddr, ntohs(inet->inet_dport), 2355 tp->snd_cwnd, tcp_left_out(tp), 2356 tp->snd_ssthresh, tp->prior_ssthresh, 2357 tp->packets_out); 2358 } 2359 #if IS_ENABLED(CONFIG_IPV6) 2360 else if (sk->sk_family == AF_INET6) { 2361 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2362 msg, 2363 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2364 tp->snd_cwnd, tcp_left_out(tp), 2365 tp->snd_ssthresh, tp->prior_ssthresh, 2366 tp->packets_out); 2367 } 2368 #endif 2369 #endif 2370 } 2371 2372 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2373 { 2374 struct tcp_sock *tp = tcp_sk(sk); 2375 2376 if (unmark_loss) { 2377 struct sk_buff *skb; 2378 2379 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2380 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2381 } 2382 tp->lost_out = 0; 2383 tcp_clear_all_retrans_hints(tp); 2384 } 2385 2386 if (tp->prior_ssthresh) { 2387 const struct inet_connection_sock *icsk = inet_csk(sk); 2388 2389 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2390 2391 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2392 tp->snd_ssthresh = tp->prior_ssthresh; 2393 tcp_ecn_withdraw_cwr(tp); 2394 } 2395 } 2396 tp->snd_cwnd_stamp = tcp_jiffies32; 2397 tp->undo_marker = 0; 2398 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2399 } 2400 2401 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2402 { 2403 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2404 } 2405 2406 /* People celebrate: "We love our President!" */ 2407 static bool tcp_try_undo_recovery(struct sock *sk) 2408 { 2409 struct tcp_sock *tp = tcp_sk(sk); 2410 2411 if (tcp_may_undo(tp)) { 2412 int mib_idx; 2413 2414 /* Happy end! We did not retransmit anything 2415 * or our original transmission succeeded. 2416 */ 2417 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2418 tcp_undo_cwnd_reduction(sk, false); 2419 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2420 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2421 else 2422 mib_idx = LINUX_MIB_TCPFULLUNDO; 2423 2424 NET_INC_STATS(sock_net(sk), mib_idx); 2425 } else if (tp->rack.reo_wnd_persist) { 2426 tp->rack.reo_wnd_persist--; 2427 } 2428 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2429 /* Hold old state until something *above* high_seq 2430 * is ACKed. For Reno it is MUST to prevent false 2431 * fast retransmits (RFC2582). SACK TCP is safe. */ 2432 if (!tcp_any_retrans_done(sk)) 2433 tp->retrans_stamp = 0; 2434 return true; 2435 } 2436 tcp_set_ca_state(sk, TCP_CA_Open); 2437 tp->is_sack_reneg = 0; 2438 return false; 2439 } 2440 2441 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2442 static bool tcp_try_undo_dsack(struct sock *sk) 2443 { 2444 struct tcp_sock *tp = tcp_sk(sk); 2445 2446 if (tp->undo_marker && !tp->undo_retrans) { 2447 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2448 tp->rack.reo_wnd_persist + 1); 2449 DBGUNDO(sk, "D-SACK"); 2450 tcp_undo_cwnd_reduction(sk, false); 2451 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2452 return true; 2453 } 2454 return false; 2455 } 2456 2457 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2458 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2459 { 2460 struct tcp_sock *tp = tcp_sk(sk); 2461 2462 if (frto_undo || tcp_may_undo(tp)) { 2463 tcp_undo_cwnd_reduction(sk, true); 2464 2465 DBGUNDO(sk, "partial loss"); 2466 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2467 if (frto_undo) 2468 NET_INC_STATS(sock_net(sk), 2469 LINUX_MIB_TCPSPURIOUSRTOS); 2470 inet_csk(sk)->icsk_retransmits = 0; 2471 if (frto_undo || tcp_is_sack(tp)) { 2472 tcp_set_ca_state(sk, TCP_CA_Open); 2473 tp->is_sack_reneg = 0; 2474 } 2475 return true; 2476 } 2477 return false; 2478 } 2479 2480 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2481 * It computes the number of packets to send (sndcnt) based on packets newly 2482 * delivered: 2483 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2484 * cwnd reductions across a full RTT. 2485 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2486 * But when the retransmits are acked without further losses, PRR 2487 * slow starts cwnd up to ssthresh to speed up the recovery. 2488 */ 2489 static void tcp_init_cwnd_reduction(struct sock *sk) 2490 { 2491 struct tcp_sock *tp = tcp_sk(sk); 2492 2493 tp->high_seq = tp->snd_nxt; 2494 tp->tlp_high_seq = 0; 2495 tp->snd_cwnd_cnt = 0; 2496 tp->prior_cwnd = tp->snd_cwnd; 2497 tp->prr_delivered = 0; 2498 tp->prr_out = 0; 2499 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2500 tcp_ecn_queue_cwr(tp); 2501 } 2502 2503 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2504 { 2505 struct tcp_sock *tp = tcp_sk(sk); 2506 int sndcnt = 0; 2507 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2508 2509 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2510 return; 2511 2512 tp->prr_delivered += newly_acked_sacked; 2513 if (delta < 0) { 2514 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2515 tp->prior_cwnd - 1; 2516 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2517 } else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) == 2518 FLAG_RETRANS_DATA_ACKED) { 2519 sndcnt = min_t(int, delta, 2520 max_t(int, tp->prr_delivered - tp->prr_out, 2521 newly_acked_sacked) + 1); 2522 } else { 2523 sndcnt = min(delta, newly_acked_sacked); 2524 } 2525 /* Force a fast retransmit upon entering fast recovery */ 2526 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2527 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2528 } 2529 2530 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2531 { 2532 struct tcp_sock *tp = tcp_sk(sk); 2533 2534 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2535 return; 2536 2537 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2538 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2539 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2540 tp->snd_cwnd = tp->snd_ssthresh; 2541 tp->snd_cwnd_stamp = tcp_jiffies32; 2542 } 2543 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2544 } 2545 2546 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2547 void tcp_enter_cwr(struct sock *sk) 2548 { 2549 struct tcp_sock *tp = tcp_sk(sk); 2550 2551 tp->prior_ssthresh = 0; 2552 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2553 tp->undo_marker = 0; 2554 tcp_init_cwnd_reduction(sk); 2555 tcp_set_ca_state(sk, TCP_CA_CWR); 2556 } 2557 } 2558 EXPORT_SYMBOL(tcp_enter_cwr); 2559 2560 static void tcp_try_keep_open(struct sock *sk) 2561 { 2562 struct tcp_sock *tp = tcp_sk(sk); 2563 int state = TCP_CA_Open; 2564 2565 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2566 state = TCP_CA_Disorder; 2567 2568 if (inet_csk(sk)->icsk_ca_state != state) { 2569 tcp_set_ca_state(sk, state); 2570 tp->high_seq = tp->snd_nxt; 2571 } 2572 } 2573 2574 static void tcp_try_to_open(struct sock *sk, int flag) 2575 { 2576 struct tcp_sock *tp = tcp_sk(sk); 2577 2578 tcp_verify_left_out(tp); 2579 2580 if (!tcp_any_retrans_done(sk)) 2581 tp->retrans_stamp = 0; 2582 2583 if (flag & FLAG_ECE) 2584 tcp_enter_cwr(sk); 2585 2586 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2587 tcp_try_keep_open(sk); 2588 } 2589 } 2590 2591 static void tcp_mtup_probe_failed(struct sock *sk) 2592 { 2593 struct inet_connection_sock *icsk = inet_csk(sk); 2594 2595 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2596 icsk->icsk_mtup.probe_size = 0; 2597 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2598 } 2599 2600 static void tcp_mtup_probe_success(struct sock *sk) 2601 { 2602 struct tcp_sock *tp = tcp_sk(sk); 2603 struct inet_connection_sock *icsk = inet_csk(sk); 2604 2605 /* FIXME: breaks with very large cwnd */ 2606 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2607 tp->snd_cwnd = tp->snd_cwnd * 2608 tcp_mss_to_mtu(sk, tp->mss_cache) / 2609 icsk->icsk_mtup.probe_size; 2610 tp->snd_cwnd_cnt = 0; 2611 tp->snd_cwnd_stamp = tcp_jiffies32; 2612 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2613 2614 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2615 icsk->icsk_mtup.probe_size = 0; 2616 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2617 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2618 } 2619 2620 /* Do a simple retransmit without using the backoff mechanisms in 2621 * tcp_timer. This is used for path mtu discovery. 2622 * The socket is already locked here. 2623 */ 2624 void tcp_simple_retransmit(struct sock *sk) 2625 { 2626 const struct inet_connection_sock *icsk = inet_csk(sk); 2627 struct tcp_sock *tp = tcp_sk(sk); 2628 struct sk_buff *skb; 2629 unsigned int mss = tcp_current_mss(sk); 2630 2631 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2632 if (tcp_skb_seglen(skb) > mss && 2633 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2634 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2635 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2636 tp->retrans_out -= tcp_skb_pcount(skb); 2637 } 2638 tcp_skb_mark_lost_uncond_verify(tp, skb); 2639 } 2640 } 2641 2642 tcp_clear_retrans_hints_partial(tp); 2643 2644 if (!tp->lost_out) 2645 return; 2646 2647 if (tcp_is_reno(tp)) 2648 tcp_limit_reno_sacked(tp); 2649 2650 tcp_verify_left_out(tp); 2651 2652 /* Don't muck with the congestion window here. 2653 * Reason is that we do not increase amount of _data_ 2654 * in network, but units changed and effective 2655 * cwnd/ssthresh really reduced now. 2656 */ 2657 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2658 tp->high_seq = tp->snd_nxt; 2659 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2660 tp->prior_ssthresh = 0; 2661 tp->undo_marker = 0; 2662 tcp_set_ca_state(sk, TCP_CA_Loss); 2663 } 2664 tcp_xmit_retransmit_queue(sk); 2665 } 2666 EXPORT_SYMBOL(tcp_simple_retransmit); 2667 2668 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2669 { 2670 struct tcp_sock *tp = tcp_sk(sk); 2671 int mib_idx; 2672 2673 if (tcp_is_reno(tp)) 2674 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2675 else 2676 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2677 2678 NET_INC_STATS(sock_net(sk), mib_idx); 2679 2680 tp->prior_ssthresh = 0; 2681 tcp_init_undo(tp); 2682 2683 if (!tcp_in_cwnd_reduction(sk)) { 2684 if (!ece_ack) 2685 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2686 tcp_init_cwnd_reduction(sk); 2687 } 2688 tcp_set_ca_state(sk, TCP_CA_Recovery); 2689 } 2690 2691 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2692 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2693 */ 2694 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2695 int *rexmit) 2696 { 2697 struct tcp_sock *tp = tcp_sk(sk); 2698 bool recovered = !before(tp->snd_una, tp->high_seq); 2699 2700 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 2701 tcp_try_undo_loss(sk, false)) 2702 return; 2703 2704 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2705 /* Step 3.b. A timeout is spurious if not all data are 2706 * lost, i.e., never-retransmitted data are (s)acked. 2707 */ 2708 if ((flag & FLAG_ORIG_SACK_ACKED) && 2709 tcp_try_undo_loss(sk, true)) 2710 return; 2711 2712 if (after(tp->snd_nxt, tp->high_seq)) { 2713 if (flag & FLAG_DATA_SACKED || num_dupack) 2714 tp->frto = 0; /* Step 3.a. loss was real */ 2715 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2716 tp->high_seq = tp->snd_nxt; 2717 /* Step 2.b. Try send new data (but deferred until cwnd 2718 * is updated in tcp_ack()). Otherwise fall back to 2719 * the conventional recovery. 2720 */ 2721 if (!tcp_write_queue_empty(sk) && 2722 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2723 *rexmit = REXMIT_NEW; 2724 return; 2725 } 2726 tp->frto = 0; 2727 } 2728 } 2729 2730 if (recovered) { 2731 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2732 tcp_try_undo_recovery(sk); 2733 return; 2734 } 2735 if (tcp_is_reno(tp)) { 2736 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2737 * delivered. Lower inflight to clock out (re)tranmissions. 2738 */ 2739 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2740 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE); 2741 else if (flag & FLAG_SND_UNA_ADVANCED) 2742 tcp_reset_reno_sack(tp); 2743 } 2744 *rexmit = REXMIT_LOST; 2745 } 2746 2747 /* Undo during fast recovery after partial ACK. */ 2748 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una) 2749 { 2750 struct tcp_sock *tp = tcp_sk(sk); 2751 2752 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2753 /* Plain luck! Hole if filled with delayed 2754 * packet, rather than with a retransmit. Check reordering. 2755 */ 2756 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2757 2758 /* We are getting evidence that the reordering degree is higher 2759 * than we realized. If there are no retransmits out then we 2760 * can undo. Otherwise we clock out new packets but do not 2761 * mark more packets lost or retransmit more. 2762 */ 2763 if (tp->retrans_out) 2764 return true; 2765 2766 if (!tcp_any_retrans_done(sk)) 2767 tp->retrans_stamp = 0; 2768 2769 DBGUNDO(sk, "partial recovery"); 2770 tcp_undo_cwnd_reduction(sk, true); 2771 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2772 tcp_try_keep_open(sk); 2773 return true; 2774 } 2775 return false; 2776 } 2777 2778 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2779 { 2780 struct tcp_sock *tp = tcp_sk(sk); 2781 2782 if (tcp_rtx_queue_empty(sk)) 2783 return; 2784 2785 if (unlikely(tcp_is_reno(tp))) { 2786 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2787 } else if (tcp_is_rack(sk)) { 2788 u32 prior_retrans = tp->retrans_out; 2789 2790 tcp_rack_mark_lost(sk); 2791 if (prior_retrans > tp->retrans_out) 2792 *ack_flag |= FLAG_LOST_RETRANS; 2793 } 2794 } 2795 2796 static bool tcp_force_fast_retransmit(struct sock *sk) 2797 { 2798 struct tcp_sock *tp = tcp_sk(sk); 2799 2800 return after(tcp_highest_sack_seq(tp), 2801 tp->snd_una + tp->reordering * tp->mss_cache); 2802 } 2803 2804 /* Process an event, which can update packets-in-flight not trivially. 2805 * Main goal of this function is to calculate new estimate for left_out, 2806 * taking into account both packets sitting in receiver's buffer and 2807 * packets lost by network. 2808 * 2809 * Besides that it updates the congestion state when packet loss or ECN 2810 * is detected. But it does not reduce the cwnd, it is done by the 2811 * congestion control later. 2812 * 2813 * It does _not_ decide what to send, it is made in function 2814 * tcp_xmit_retransmit_queue(). 2815 */ 2816 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2817 int num_dupack, int *ack_flag, int *rexmit) 2818 { 2819 struct inet_connection_sock *icsk = inet_csk(sk); 2820 struct tcp_sock *tp = tcp_sk(sk); 2821 int fast_rexmit = 0, flag = *ack_flag; 2822 bool ece_ack = flag & FLAG_ECE; 2823 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && 2824 tcp_force_fast_retransmit(sk)); 2825 2826 if (!tp->packets_out && tp->sacked_out) 2827 tp->sacked_out = 0; 2828 2829 /* Now state machine starts. 2830 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2831 if (ece_ack) 2832 tp->prior_ssthresh = 0; 2833 2834 /* B. In all the states check for reneging SACKs. */ 2835 if (tcp_check_sack_reneging(sk, flag)) 2836 return; 2837 2838 /* C. Check consistency of the current state. */ 2839 tcp_verify_left_out(tp); 2840 2841 /* D. Check state exit conditions. State can be terminated 2842 * when high_seq is ACKed. */ 2843 if (icsk->icsk_ca_state == TCP_CA_Open) { 2844 WARN_ON(tp->retrans_out != 0); 2845 tp->retrans_stamp = 0; 2846 } else if (!before(tp->snd_una, tp->high_seq)) { 2847 switch (icsk->icsk_ca_state) { 2848 case TCP_CA_CWR: 2849 /* CWR is to be held something *above* high_seq 2850 * is ACKed for CWR bit to reach receiver. */ 2851 if (tp->snd_una != tp->high_seq) { 2852 tcp_end_cwnd_reduction(sk); 2853 tcp_set_ca_state(sk, TCP_CA_Open); 2854 } 2855 break; 2856 2857 case TCP_CA_Recovery: 2858 if (tcp_is_reno(tp)) 2859 tcp_reset_reno_sack(tp); 2860 if (tcp_try_undo_recovery(sk)) 2861 return; 2862 tcp_end_cwnd_reduction(sk); 2863 break; 2864 } 2865 } 2866 2867 /* E. Process state. */ 2868 switch (icsk->icsk_ca_state) { 2869 case TCP_CA_Recovery: 2870 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2871 if (tcp_is_reno(tp)) 2872 tcp_add_reno_sack(sk, num_dupack, ece_ack); 2873 } else { 2874 if (tcp_try_undo_partial(sk, prior_snd_una)) 2875 return; 2876 /* Partial ACK arrived. Force fast retransmit. */ 2877 do_lost = tcp_force_fast_retransmit(sk); 2878 } 2879 if (tcp_try_undo_dsack(sk)) { 2880 tcp_try_keep_open(sk); 2881 return; 2882 } 2883 tcp_identify_packet_loss(sk, ack_flag); 2884 break; 2885 case TCP_CA_Loss: 2886 tcp_process_loss(sk, flag, num_dupack, rexmit); 2887 tcp_identify_packet_loss(sk, ack_flag); 2888 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2889 (*ack_flag & FLAG_LOST_RETRANS))) 2890 return; 2891 /* Change state if cwnd is undone or retransmits are lost */ 2892 fallthrough; 2893 default: 2894 if (tcp_is_reno(tp)) { 2895 if (flag & FLAG_SND_UNA_ADVANCED) 2896 tcp_reset_reno_sack(tp); 2897 tcp_add_reno_sack(sk, num_dupack, ece_ack); 2898 } 2899 2900 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2901 tcp_try_undo_dsack(sk); 2902 2903 tcp_identify_packet_loss(sk, ack_flag); 2904 if (!tcp_time_to_recover(sk, flag)) { 2905 tcp_try_to_open(sk, flag); 2906 return; 2907 } 2908 2909 /* MTU probe failure: don't reduce cwnd */ 2910 if (icsk->icsk_ca_state < TCP_CA_CWR && 2911 icsk->icsk_mtup.probe_size && 2912 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2913 tcp_mtup_probe_failed(sk); 2914 /* Restores the reduction we did in tcp_mtup_probe() */ 2915 tp->snd_cwnd++; 2916 tcp_simple_retransmit(sk); 2917 return; 2918 } 2919 2920 /* Otherwise enter Recovery state */ 2921 tcp_enter_recovery(sk, ece_ack); 2922 fast_rexmit = 1; 2923 } 2924 2925 if (!tcp_is_rack(sk) && do_lost) 2926 tcp_update_scoreboard(sk, fast_rexmit); 2927 *rexmit = REXMIT_LOST; 2928 } 2929 2930 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 2931 { 2932 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ; 2933 struct tcp_sock *tp = tcp_sk(sk); 2934 2935 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 2936 /* If the remote keeps returning delayed ACKs, eventually 2937 * the min filter would pick it up and overestimate the 2938 * prop. delay when it expires. Skip suspected delayed ACKs. 2939 */ 2940 return; 2941 } 2942 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 2943 rtt_us ? : jiffies_to_usecs(1)); 2944 } 2945 2946 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2947 long seq_rtt_us, long sack_rtt_us, 2948 long ca_rtt_us, struct rate_sample *rs) 2949 { 2950 const struct tcp_sock *tp = tcp_sk(sk); 2951 2952 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2953 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2954 * Karn's algorithm forbids taking RTT if some retransmitted data 2955 * is acked (RFC6298). 2956 */ 2957 if (seq_rtt_us < 0) 2958 seq_rtt_us = sack_rtt_us; 2959 2960 /* RTTM Rule: A TSecr value received in a segment is used to 2961 * update the averaged RTT measurement only if the segment 2962 * acknowledges some new data, i.e., only if it advances the 2963 * left edge of the send window. 2964 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2965 */ 2966 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2967 flag & FLAG_ACKED) { 2968 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 2969 2970 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 2971 if (!delta) 2972 delta = 1; 2973 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 2974 ca_rtt_us = seq_rtt_us; 2975 } 2976 } 2977 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 2978 if (seq_rtt_us < 0) 2979 return false; 2980 2981 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2982 * always taken together with ACK, SACK, or TS-opts. Any negative 2983 * values will be skipped with the seq_rtt_us < 0 check above. 2984 */ 2985 tcp_update_rtt_min(sk, ca_rtt_us, flag); 2986 tcp_rtt_estimator(sk, seq_rtt_us); 2987 tcp_set_rto(sk); 2988 2989 /* RFC6298: only reset backoff on valid RTT measurement. */ 2990 inet_csk(sk)->icsk_backoff = 0; 2991 return true; 2992 } 2993 2994 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2995 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2996 { 2997 struct rate_sample rs; 2998 long rtt_us = -1L; 2999 3000 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 3001 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 3002 3003 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 3004 } 3005 3006 3007 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 3008 { 3009 const struct inet_connection_sock *icsk = inet_csk(sk); 3010 3011 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 3012 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 3013 } 3014 3015 /* Restart timer after forward progress on connection. 3016 * RFC2988 recommends to restart timer to now+rto. 3017 */ 3018 void tcp_rearm_rto(struct sock *sk) 3019 { 3020 const struct inet_connection_sock *icsk = inet_csk(sk); 3021 struct tcp_sock *tp = tcp_sk(sk); 3022 3023 /* If the retrans timer is currently being used by Fast Open 3024 * for SYN-ACK retrans purpose, stay put. 3025 */ 3026 if (rcu_access_pointer(tp->fastopen_rsk)) 3027 return; 3028 3029 if (!tp->packets_out) { 3030 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3031 } else { 3032 u32 rto = inet_csk(sk)->icsk_rto; 3033 /* Offset the time elapsed after installing regular RTO */ 3034 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3035 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3036 s64 delta_us = tcp_rto_delta_us(sk); 3037 /* delta_us may not be positive if the socket is locked 3038 * when the retrans timer fires and is rescheduled. 3039 */ 3040 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3041 } 3042 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3043 TCP_RTO_MAX); 3044 } 3045 } 3046 3047 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3048 static void tcp_set_xmit_timer(struct sock *sk) 3049 { 3050 if (!tcp_schedule_loss_probe(sk, true)) 3051 tcp_rearm_rto(sk); 3052 } 3053 3054 /* If we get here, the whole TSO packet has not been acked. */ 3055 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3056 { 3057 struct tcp_sock *tp = tcp_sk(sk); 3058 u32 packets_acked; 3059 3060 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3061 3062 packets_acked = tcp_skb_pcount(skb); 3063 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3064 return 0; 3065 packets_acked -= tcp_skb_pcount(skb); 3066 3067 if (packets_acked) { 3068 BUG_ON(tcp_skb_pcount(skb) == 0); 3069 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3070 } 3071 3072 return packets_acked; 3073 } 3074 3075 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3076 u32 prior_snd_una) 3077 { 3078 const struct skb_shared_info *shinfo; 3079 3080 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3081 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3082 return; 3083 3084 shinfo = skb_shinfo(skb); 3085 if (!before(shinfo->tskey, prior_snd_una) && 3086 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3087 tcp_skb_tsorted_save(skb) { 3088 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3089 } tcp_skb_tsorted_restore(skb); 3090 } 3091 } 3092 3093 /* Remove acknowledged frames from the retransmission queue. If our packet 3094 * is before the ack sequence we can discard it as it's confirmed to have 3095 * arrived at the other end. 3096 */ 3097 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack, 3098 u32 prior_snd_una, 3099 struct tcp_sacktag_state *sack, bool ece_ack) 3100 { 3101 const struct inet_connection_sock *icsk = inet_csk(sk); 3102 u64 first_ackt, last_ackt; 3103 struct tcp_sock *tp = tcp_sk(sk); 3104 u32 prior_sacked = tp->sacked_out; 3105 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3106 struct sk_buff *skb, *next; 3107 bool fully_acked = true; 3108 long sack_rtt_us = -1L; 3109 long seq_rtt_us = -1L; 3110 long ca_rtt_us = -1L; 3111 u32 pkts_acked = 0; 3112 u32 last_in_flight = 0; 3113 bool rtt_update; 3114 int flag = 0; 3115 3116 first_ackt = 0; 3117 3118 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3119 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3120 const u32 start_seq = scb->seq; 3121 u8 sacked = scb->sacked; 3122 u32 acked_pcount; 3123 3124 /* Determine how many packets and what bytes were acked, tso and else */ 3125 if (after(scb->end_seq, tp->snd_una)) { 3126 if (tcp_skb_pcount(skb) == 1 || 3127 !after(tp->snd_una, scb->seq)) 3128 break; 3129 3130 acked_pcount = tcp_tso_acked(sk, skb); 3131 if (!acked_pcount) 3132 break; 3133 fully_acked = false; 3134 } else { 3135 acked_pcount = tcp_skb_pcount(skb); 3136 } 3137 3138 if (unlikely(sacked & TCPCB_RETRANS)) { 3139 if (sacked & TCPCB_SACKED_RETRANS) 3140 tp->retrans_out -= acked_pcount; 3141 flag |= FLAG_RETRANS_DATA_ACKED; 3142 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3143 last_ackt = tcp_skb_timestamp_us(skb); 3144 WARN_ON_ONCE(last_ackt == 0); 3145 if (!first_ackt) 3146 first_ackt = last_ackt; 3147 3148 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3149 if (before(start_seq, reord)) 3150 reord = start_seq; 3151 if (!after(scb->end_seq, tp->high_seq)) 3152 flag |= FLAG_ORIG_SACK_ACKED; 3153 } 3154 3155 if (sacked & TCPCB_SACKED_ACKED) { 3156 tp->sacked_out -= acked_pcount; 3157 } else if (tcp_is_sack(tp)) { 3158 tcp_count_delivered(tp, acked_pcount, ece_ack); 3159 if (!tcp_skb_spurious_retrans(tp, skb)) 3160 tcp_rack_advance(tp, sacked, scb->end_seq, 3161 tcp_skb_timestamp_us(skb)); 3162 } 3163 if (sacked & TCPCB_LOST) 3164 tp->lost_out -= acked_pcount; 3165 3166 tp->packets_out -= acked_pcount; 3167 pkts_acked += acked_pcount; 3168 tcp_rate_skb_delivered(sk, skb, sack->rate); 3169 3170 /* Initial outgoing SYN's get put onto the write_queue 3171 * just like anything else we transmit. It is not 3172 * true data, and if we misinform our callers that 3173 * this ACK acks real data, we will erroneously exit 3174 * connection startup slow start one packet too 3175 * quickly. This is severely frowned upon behavior. 3176 */ 3177 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3178 flag |= FLAG_DATA_ACKED; 3179 } else { 3180 flag |= FLAG_SYN_ACKED; 3181 tp->retrans_stamp = 0; 3182 } 3183 3184 if (!fully_acked) 3185 break; 3186 3187 tcp_ack_tstamp(sk, skb, prior_snd_una); 3188 3189 next = skb_rb_next(skb); 3190 if (unlikely(skb == tp->retransmit_skb_hint)) 3191 tp->retransmit_skb_hint = NULL; 3192 if (unlikely(skb == tp->lost_skb_hint)) 3193 tp->lost_skb_hint = NULL; 3194 tcp_highest_sack_replace(sk, skb, next); 3195 tcp_rtx_queue_unlink_and_free(skb, sk); 3196 } 3197 3198 if (!skb) 3199 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3200 3201 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3202 tp->snd_up = tp->snd_una; 3203 3204 if (skb) { 3205 tcp_ack_tstamp(sk, skb, prior_snd_una); 3206 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3207 flag |= FLAG_SACK_RENEGING; 3208 } 3209 3210 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3211 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3212 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3213 3214 if (pkts_acked == 1 && last_in_flight < tp->mss_cache && 3215 last_in_flight && !prior_sacked && fully_acked && 3216 sack->rate->prior_delivered + 1 == tp->delivered && 3217 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3218 /* Conservatively mark a delayed ACK. It's typically 3219 * from a lone runt packet over the round trip to 3220 * a receiver w/o out-of-order or CE events. 3221 */ 3222 flag |= FLAG_ACK_MAYBE_DELAYED; 3223 } 3224 } 3225 if (sack->first_sackt) { 3226 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3227 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3228 } 3229 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3230 ca_rtt_us, sack->rate); 3231 3232 if (flag & FLAG_ACKED) { 3233 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3234 if (unlikely(icsk->icsk_mtup.probe_size && 3235 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3236 tcp_mtup_probe_success(sk); 3237 } 3238 3239 if (tcp_is_reno(tp)) { 3240 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack); 3241 3242 /* If any of the cumulatively ACKed segments was 3243 * retransmitted, non-SACK case cannot confirm that 3244 * progress was due to original transmission due to 3245 * lack of TCPCB_SACKED_ACKED bits even if some of 3246 * the packets may have been never retransmitted. 3247 */ 3248 if (flag & FLAG_RETRANS_DATA_ACKED) 3249 flag &= ~FLAG_ORIG_SACK_ACKED; 3250 } else { 3251 int delta; 3252 3253 /* Non-retransmitted hole got filled? That's reordering */ 3254 if (before(reord, prior_fack)) 3255 tcp_check_sack_reordering(sk, reord, 0); 3256 3257 delta = prior_sacked - tp->sacked_out; 3258 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3259 } 3260 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3261 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3262 tcp_skb_timestamp_us(skb))) { 3263 /* Do not re-arm RTO if the sack RTT is measured from data sent 3264 * after when the head was last (re)transmitted. Otherwise the 3265 * timeout may continue to extend in loss recovery. 3266 */ 3267 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3268 } 3269 3270 if (icsk->icsk_ca_ops->pkts_acked) { 3271 struct ack_sample sample = { .pkts_acked = pkts_acked, 3272 .rtt_us = sack->rate->rtt_us, 3273 .in_flight = last_in_flight }; 3274 3275 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3276 } 3277 3278 #if FASTRETRANS_DEBUG > 0 3279 WARN_ON((int)tp->sacked_out < 0); 3280 WARN_ON((int)tp->lost_out < 0); 3281 WARN_ON((int)tp->retrans_out < 0); 3282 if (!tp->packets_out && tcp_is_sack(tp)) { 3283 icsk = inet_csk(sk); 3284 if (tp->lost_out) { 3285 pr_debug("Leak l=%u %d\n", 3286 tp->lost_out, icsk->icsk_ca_state); 3287 tp->lost_out = 0; 3288 } 3289 if (tp->sacked_out) { 3290 pr_debug("Leak s=%u %d\n", 3291 tp->sacked_out, icsk->icsk_ca_state); 3292 tp->sacked_out = 0; 3293 } 3294 if (tp->retrans_out) { 3295 pr_debug("Leak r=%u %d\n", 3296 tp->retrans_out, icsk->icsk_ca_state); 3297 tp->retrans_out = 0; 3298 } 3299 } 3300 #endif 3301 return flag; 3302 } 3303 3304 static void tcp_ack_probe(struct sock *sk) 3305 { 3306 struct inet_connection_sock *icsk = inet_csk(sk); 3307 struct sk_buff *head = tcp_send_head(sk); 3308 const struct tcp_sock *tp = tcp_sk(sk); 3309 3310 /* Was it a usable window open? */ 3311 if (!head) 3312 return; 3313 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3314 icsk->icsk_backoff = 0; 3315 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3316 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3317 * This function is not for random using! 3318 */ 3319 } else { 3320 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3321 3322 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3323 when, TCP_RTO_MAX); 3324 } 3325 } 3326 3327 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3328 { 3329 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3330 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3331 } 3332 3333 /* Decide wheather to run the increase function of congestion control. */ 3334 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3335 { 3336 /* If reordering is high then always grow cwnd whenever data is 3337 * delivered regardless of its ordering. Otherwise stay conservative 3338 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3339 * new SACK or ECE mark may first advance cwnd here and later reduce 3340 * cwnd in tcp_fastretrans_alert() based on more states. 3341 */ 3342 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3343 return flag & FLAG_FORWARD_PROGRESS; 3344 3345 return flag & FLAG_DATA_ACKED; 3346 } 3347 3348 /* The "ultimate" congestion control function that aims to replace the rigid 3349 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3350 * It's called toward the end of processing an ACK with precise rate 3351 * information. All transmission or retransmission are delayed afterwards. 3352 */ 3353 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3354 int flag, const struct rate_sample *rs) 3355 { 3356 const struct inet_connection_sock *icsk = inet_csk(sk); 3357 3358 if (icsk->icsk_ca_ops->cong_control) { 3359 icsk->icsk_ca_ops->cong_control(sk, rs); 3360 return; 3361 } 3362 3363 if (tcp_in_cwnd_reduction(sk)) { 3364 /* Reduce cwnd if state mandates */ 3365 tcp_cwnd_reduction(sk, acked_sacked, flag); 3366 } else if (tcp_may_raise_cwnd(sk, flag)) { 3367 /* Advance cwnd if state allows */ 3368 tcp_cong_avoid(sk, ack, acked_sacked); 3369 } 3370 tcp_update_pacing_rate(sk); 3371 } 3372 3373 /* Check that window update is acceptable. 3374 * The function assumes that snd_una<=ack<=snd_next. 3375 */ 3376 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3377 const u32 ack, const u32 ack_seq, 3378 const u32 nwin) 3379 { 3380 return after(ack, tp->snd_una) || 3381 after(ack_seq, tp->snd_wl1) || 3382 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3383 } 3384 3385 /* If we update tp->snd_una, also update tp->bytes_acked */ 3386 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3387 { 3388 u32 delta = ack - tp->snd_una; 3389 3390 sock_owned_by_me((struct sock *)tp); 3391 tp->bytes_acked += delta; 3392 tp->snd_una = ack; 3393 } 3394 3395 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3396 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3397 { 3398 u32 delta = seq - tp->rcv_nxt; 3399 3400 sock_owned_by_me((struct sock *)tp); 3401 tp->bytes_received += delta; 3402 WRITE_ONCE(tp->rcv_nxt, seq); 3403 } 3404 3405 /* Update our send window. 3406 * 3407 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3408 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3409 */ 3410 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3411 u32 ack_seq) 3412 { 3413 struct tcp_sock *tp = tcp_sk(sk); 3414 int flag = 0; 3415 u32 nwin = ntohs(tcp_hdr(skb)->window); 3416 3417 if (likely(!tcp_hdr(skb)->syn)) 3418 nwin <<= tp->rx_opt.snd_wscale; 3419 3420 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3421 flag |= FLAG_WIN_UPDATE; 3422 tcp_update_wl(tp, ack_seq); 3423 3424 if (tp->snd_wnd != nwin) { 3425 tp->snd_wnd = nwin; 3426 3427 /* Note, it is the only place, where 3428 * fast path is recovered for sending TCP. 3429 */ 3430 tp->pred_flags = 0; 3431 tcp_fast_path_check(sk); 3432 3433 if (!tcp_write_queue_empty(sk)) 3434 tcp_slow_start_after_idle_check(sk); 3435 3436 if (nwin > tp->max_window) { 3437 tp->max_window = nwin; 3438 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3439 } 3440 } 3441 } 3442 3443 tcp_snd_una_update(tp, ack); 3444 3445 return flag; 3446 } 3447 3448 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3449 u32 *last_oow_ack_time) 3450 { 3451 if (*last_oow_ack_time) { 3452 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3453 3454 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) { 3455 NET_INC_STATS(net, mib_idx); 3456 return true; /* rate-limited: don't send yet! */ 3457 } 3458 } 3459 3460 *last_oow_ack_time = tcp_jiffies32; 3461 3462 return false; /* not rate-limited: go ahead, send dupack now! */ 3463 } 3464 3465 /* Return true if we're currently rate-limiting out-of-window ACKs and 3466 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3467 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3468 * attacks that send repeated SYNs or ACKs for the same connection. To 3469 * do this, we do not send a duplicate SYNACK or ACK if the remote 3470 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3471 */ 3472 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3473 int mib_idx, u32 *last_oow_ack_time) 3474 { 3475 /* Data packets without SYNs are not likely part of an ACK loop. */ 3476 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3477 !tcp_hdr(skb)->syn) 3478 return false; 3479 3480 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3481 } 3482 3483 /* RFC 5961 7 [ACK Throttling] */ 3484 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3485 { 3486 /* unprotected vars, we dont care of overwrites */ 3487 static u32 challenge_timestamp; 3488 static unsigned int challenge_count; 3489 struct tcp_sock *tp = tcp_sk(sk); 3490 struct net *net = sock_net(sk); 3491 u32 count, now; 3492 3493 /* First check our per-socket dupack rate limit. */ 3494 if (__tcp_oow_rate_limited(net, 3495 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3496 &tp->last_oow_ack_time)) 3497 return; 3498 3499 /* Then check host-wide RFC 5961 rate limit. */ 3500 now = jiffies / HZ; 3501 if (now != challenge_timestamp) { 3502 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit; 3503 u32 half = (ack_limit + 1) >> 1; 3504 3505 challenge_timestamp = now; 3506 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit)); 3507 } 3508 count = READ_ONCE(challenge_count); 3509 if (count > 0) { 3510 WRITE_ONCE(challenge_count, count - 1); 3511 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3512 tcp_send_ack(sk); 3513 } 3514 } 3515 3516 static void tcp_store_ts_recent(struct tcp_sock *tp) 3517 { 3518 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3519 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3520 } 3521 3522 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3523 { 3524 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3525 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3526 * extra check below makes sure this can only happen 3527 * for pure ACK frames. -DaveM 3528 * 3529 * Not only, also it occurs for expired timestamps. 3530 */ 3531 3532 if (tcp_paws_check(&tp->rx_opt, 0)) 3533 tcp_store_ts_recent(tp); 3534 } 3535 } 3536 3537 /* This routine deals with acks during a TLP episode and ends an episode by 3538 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack 3539 */ 3540 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3541 { 3542 struct tcp_sock *tp = tcp_sk(sk); 3543 3544 if (before(ack, tp->tlp_high_seq)) 3545 return; 3546 3547 if (!tp->tlp_retrans) { 3548 /* TLP of new data has been acknowledged */ 3549 tp->tlp_high_seq = 0; 3550 } else if (flag & FLAG_DSACKING_ACK) { 3551 /* This DSACK means original and TLP probe arrived; no loss */ 3552 tp->tlp_high_seq = 0; 3553 } else if (after(ack, tp->tlp_high_seq)) { 3554 /* ACK advances: there was a loss, so reduce cwnd. Reset 3555 * tlp_high_seq in tcp_init_cwnd_reduction() 3556 */ 3557 tcp_init_cwnd_reduction(sk); 3558 tcp_set_ca_state(sk, TCP_CA_CWR); 3559 tcp_end_cwnd_reduction(sk); 3560 tcp_try_keep_open(sk); 3561 NET_INC_STATS(sock_net(sk), 3562 LINUX_MIB_TCPLOSSPROBERECOVERY); 3563 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3564 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3565 /* Pure dupack: original and TLP probe arrived; no loss */ 3566 tp->tlp_high_seq = 0; 3567 } 3568 } 3569 3570 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3571 { 3572 const struct inet_connection_sock *icsk = inet_csk(sk); 3573 3574 if (icsk->icsk_ca_ops->in_ack_event) 3575 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3576 } 3577 3578 /* Congestion control has updated the cwnd already. So if we're in 3579 * loss recovery then now we do any new sends (for FRTO) or 3580 * retransmits (for CA_Loss or CA_recovery) that make sense. 3581 */ 3582 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3583 { 3584 struct tcp_sock *tp = tcp_sk(sk); 3585 3586 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3587 return; 3588 3589 if (unlikely(rexmit == REXMIT_NEW)) { 3590 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3591 TCP_NAGLE_OFF); 3592 if (after(tp->snd_nxt, tp->high_seq)) 3593 return; 3594 tp->frto = 0; 3595 } 3596 tcp_xmit_retransmit_queue(sk); 3597 } 3598 3599 /* Returns the number of packets newly acked or sacked by the current ACK */ 3600 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3601 { 3602 const struct net *net = sock_net(sk); 3603 struct tcp_sock *tp = tcp_sk(sk); 3604 u32 delivered; 3605 3606 delivered = tp->delivered - prior_delivered; 3607 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3608 if (flag & FLAG_ECE) 3609 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3610 3611 return delivered; 3612 } 3613 3614 /* This routine deals with incoming acks, but not outgoing ones. */ 3615 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3616 { 3617 struct inet_connection_sock *icsk = inet_csk(sk); 3618 struct tcp_sock *tp = tcp_sk(sk); 3619 struct tcp_sacktag_state sack_state; 3620 struct rate_sample rs = { .prior_delivered = 0 }; 3621 u32 prior_snd_una = tp->snd_una; 3622 bool is_sack_reneg = tp->is_sack_reneg; 3623 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3624 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3625 int num_dupack = 0; 3626 int prior_packets = tp->packets_out; 3627 u32 delivered = tp->delivered; 3628 u32 lost = tp->lost; 3629 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3630 u32 prior_fack; 3631 3632 sack_state.first_sackt = 0; 3633 sack_state.rate = &rs; 3634 sack_state.sack_delivered = 0; 3635 3636 /* We very likely will need to access rtx queue. */ 3637 prefetch(sk->tcp_rtx_queue.rb_node); 3638 3639 /* If the ack is older than previous acks 3640 * then we can probably ignore it. 3641 */ 3642 if (before(ack, prior_snd_una)) { 3643 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3644 if (before(ack, prior_snd_una - tp->max_window)) { 3645 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3646 tcp_send_challenge_ack(sk, skb); 3647 return -1; 3648 } 3649 goto old_ack; 3650 } 3651 3652 /* If the ack includes data we haven't sent yet, discard 3653 * this segment (RFC793 Section 3.9). 3654 */ 3655 if (after(ack, tp->snd_nxt)) 3656 return -1; 3657 3658 if (after(ack, prior_snd_una)) { 3659 flag |= FLAG_SND_UNA_ADVANCED; 3660 icsk->icsk_retransmits = 0; 3661 3662 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3663 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 3664 if (icsk->icsk_clean_acked) 3665 icsk->icsk_clean_acked(sk, ack); 3666 #endif 3667 } 3668 3669 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3670 rs.prior_in_flight = tcp_packets_in_flight(tp); 3671 3672 /* ts_recent update must be made after we are sure that the packet 3673 * is in window. 3674 */ 3675 if (flag & FLAG_UPDATE_TS_RECENT) 3676 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3677 3678 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 3679 FLAG_SND_UNA_ADVANCED) { 3680 /* Window is constant, pure forward advance. 3681 * No more checks are required. 3682 * Note, we use the fact that SND.UNA>=SND.WL2. 3683 */ 3684 tcp_update_wl(tp, ack_seq); 3685 tcp_snd_una_update(tp, ack); 3686 flag |= FLAG_WIN_UPDATE; 3687 3688 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3689 3690 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3691 } else { 3692 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3693 3694 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3695 flag |= FLAG_DATA; 3696 else 3697 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3698 3699 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3700 3701 if (TCP_SKB_CB(skb)->sacked) 3702 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3703 &sack_state); 3704 3705 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3706 flag |= FLAG_ECE; 3707 ack_ev_flags |= CA_ACK_ECE; 3708 } 3709 3710 if (sack_state.sack_delivered) 3711 tcp_count_delivered(tp, sack_state.sack_delivered, 3712 flag & FLAG_ECE); 3713 3714 if (flag & FLAG_WIN_UPDATE) 3715 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3716 3717 tcp_in_ack_event(sk, ack_ev_flags); 3718 } 3719 3720 /* This is a deviation from RFC3168 since it states that: 3721 * "When the TCP data sender is ready to set the CWR bit after reducing 3722 * the congestion window, it SHOULD set the CWR bit only on the first 3723 * new data packet that it transmits." 3724 * We accept CWR on pure ACKs to be more robust 3725 * with widely-deployed TCP implementations that do this. 3726 */ 3727 tcp_ecn_accept_cwr(sk, skb); 3728 3729 /* We passed data and got it acked, remove any soft error 3730 * log. Something worked... 3731 */ 3732 sk->sk_err_soft = 0; 3733 icsk->icsk_probes_out = 0; 3734 tp->rcv_tstamp = tcp_jiffies32; 3735 if (!prior_packets) 3736 goto no_queue; 3737 3738 /* See if we can take anything off of the retransmit queue. */ 3739 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state, 3740 flag & FLAG_ECE); 3741 3742 tcp_rack_update_reo_wnd(sk, &rs); 3743 3744 if (tp->tlp_high_seq) 3745 tcp_process_tlp_ack(sk, ack, flag); 3746 /* If needed, reset TLP/RTO timer; RACK may later override this. */ 3747 if (flag & FLAG_SET_XMIT_TIMER) 3748 tcp_set_xmit_timer(sk); 3749 3750 if (tcp_ack_is_dubious(sk, flag)) { 3751 if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) { 3752 num_dupack = 1; 3753 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 3754 if (!(flag & FLAG_DATA)) 3755 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 3756 } 3757 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3758 &rexmit); 3759 } 3760 3761 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3762 sk_dst_confirm(sk); 3763 3764 delivered = tcp_newly_delivered(sk, delivered, flag); 3765 lost = tp->lost - lost; /* freshly marked lost */ 3766 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3767 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3768 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3769 tcp_xmit_recovery(sk, rexmit); 3770 return 1; 3771 3772 no_queue: 3773 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3774 if (flag & FLAG_DSACKING_ACK) { 3775 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3776 &rexmit); 3777 tcp_newly_delivered(sk, delivered, flag); 3778 } 3779 /* If this ack opens up a zero window, clear backoff. It was 3780 * being used to time the probes, and is probably far higher than 3781 * it needs to be for normal retransmission. 3782 */ 3783 tcp_ack_probe(sk); 3784 3785 if (tp->tlp_high_seq) 3786 tcp_process_tlp_ack(sk, ack, flag); 3787 return 1; 3788 3789 old_ack: 3790 /* If data was SACKed, tag it and see if we should send more data. 3791 * If data was DSACKed, see if we can undo a cwnd reduction. 3792 */ 3793 if (TCP_SKB_CB(skb)->sacked) { 3794 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3795 &sack_state); 3796 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3797 &rexmit); 3798 tcp_newly_delivered(sk, delivered, flag); 3799 tcp_xmit_recovery(sk, rexmit); 3800 } 3801 3802 return 0; 3803 } 3804 3805 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3806 bool syn, struct tcp_fastopen_cookie *foc, 3807 bool exp_opt) 3808 { 3809 /* Valid only in SYN or SYN-ACK with an even length. */ 3810 if (!foc || !syn || len < 0 || (len & 1)) 3811 return; 3812 3813 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3814 len <= TCP_FASTOPEN_COOKIE_MAX) 3815 memcpy(foc->val, cookie, len); 3816 else if (len != 0) 3817 len = -1; 3818 foc->len = len; 3819 foc->exp = exp_opt; 3820 } 3821 3822 static void smc_parse_options(const struct tcphdr *th, 3823 struct tcp_options_received *opt_rx, 3824 const unsigned char *ptr, 3825 int opsize) 3826 { 3827 #if IS_ENABLED(CONFIG_SMC) 3828 if (static_branch_unlikely(&tcp_have_smc)) { 3829 if (th->syn && !(opsize & 1) && 3830 opsize >= TCPOLEN_EXP_SMC_BASE && 3831 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) 3832 opt_rx->smc_ok = 1; 3833 } 3834 #endif 3835 } 3836 3837 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 3838 * value on success. 3839 */ 3840 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 3841 { 3842 const unsigned char *ptr = (const unsigned char *)(th + 1); 3843 int length = (th->doff * 4) - sizeof(struct tcphdr); 3844 u16 mss = 0; 3845 3846 while (length > 0) { 3847 int opcode = *ptr++; 3848 int opsize; 3849 3850 switch (opcode) { 3851 case TCPOPT_EOL: 3852 return mss; 3853 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3854 length--; 3855 continue; 3856 default: 3857 if (length < 2) 3858 return mss; 3859 opsize = *ptr++; 3860 if (opsize < 2) /* "silly options" */ 3861 return mss; 3862 if (opsize > length) 3863 return mss; /* fail on partial options */ 3864 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 3865 u16 in_mss = get_unaligned_be16(ptr); 3866 3867 if (in_mss) { 3868 if (user_mss && user_mss < in_mss) 3869 in_mss = user_mss; 3870 mss = in_mss; 3871 } 3872 } 3873 ptr += opsize - 2; 3874 length -= opsize; 3875 } 3876 } 3877 return mss; 3878 } 3879 3880 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3881 * But, this can also be called on packets in the established flow when 3882 * the fast version below fails. 3883 */ 3884 void tcp_parse_options(const struct net *net, 3885 const struct sk_buff *skb, 3886 struct tcp_options_received *opt_rx, int estab, 3887 struct tcp_fastopen_cookie *foc) 3888 { 3889 const unsigned char *ptr; 3890 const struct tcphdr *th = tcp_hdr(skb); 3891 int length = (th->doff * 4) - sizeof(struct tcphdr); 3892 3893 ptr = (const unsigned char *)(th + 1); 3894 opt_rx->saw_tstamp = 0; 3895 3896 while (length > 0) { 3897 int opcode = *ptr++; 3898 int opsize; 3899 3900 switch (opcode) { 3901 case TCPOPT_EOL: 3902 return; 3903 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3904 length--; 3905 continue; 3906 default: 3907 if (length < 2) 3908 return; 3909 opsize = *ptr++; 3910 if (opsize < 2) /* "silly options" */ 3911 return; 3912 if (opsize > length) 3913 return; /* don't parse partial options */ 3914 switch (opcode) { 3915 case TCPOPT_MSS: 3916 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3917 u16 in_mss = get_unaligned_be16(ptr); 3918 if (in_mss) { 3919 if (opt_rx->user_mss && 3920 opt_rx->user_mss < in_mss) 3921 in_mss = opt_rx->user_mss; 3922 opt_rx->mss_clamp = in_mss; 3923 } 3924 } 3925 break; 3926 case TCPOPT_WINDOW: 3927 if (opsize == TCPOLEN_WINDOW && th->syn && 3928 !estab && net->ipv4.sysctl_tcp_window_scaling) { 3929 __u8 snd_wscale = *(__u8 *)ptr; 3930 opt_rx->wscale_ok = 1; 3931 if (snd_wscale > TCP_MAX_WSCALE) { 3932 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 3933 __func__, 3934 snd_wscale, 3935 TCP_MAX_WSCALE); 3936 snd_wscale = TCP_MAX_WSCALE; 3937 } 3938 opt_rx->snd_wscale = snd_wscale; 3939 } 3940 break; 3941 case TCPOPT_TIMESTAMP: 3942 if ((opsize == TCPOLEN_TIMESTAMP) && 3943 ((estab && opt_rx->tstamp_ok) || 3944 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 3945 opt_rx->saw_tstamp = 1; 3946 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3947 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3948 } 3949 break; 3950 case TCPOPT_SACK_PERM: 3951 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3952 !estab && net->ipv4.sysctl_tcp_sack) { 3953 opt_rx->sack_ok = TCP_SACK_SEEN; 3954 tcp_sack_reset(opt_rx); 3955 } 3956 break; 3957 3958 case TCPOPT_SACK: 3959 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3960 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3961 opt_rx->sack_ok) { 3962 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3963 } 3964 break; 3965 #ifdef CONFIG_TCP_MD5SIG 3966 case TCPOPT_MD5SIG: 3967 /* 3968 * The MD5 Hash has already been 3969 * checked (see tcp_v{4,6}_do_rcv()). 3970 */ 3971 break; 3972 #endif 3973 case TCPOPT_FASTOPEN: 3974 tcp_parse_fastopen_option( 3975 opsize - TCPOLEN_FASTOPEN_BASE, 3976 ptr, th->syn, foc, false); 3977 break; 3978 3979 case TCPOPT_EXP: 3980 /* Fast Open option shares code 254 using a 3981 * 16 bits magic number. 3982 */ 3983 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3984 get_unaligned_be16(ptr) == 3985 TCPOPT_FASTOPEN_MAGIC) 3986 tcp_parse_fastopen_option(opsize - 3987 TCPOLEN_EXP_FASTOPEN_BASE, 3988 ptr + 2, th->syn, foc, true); 3989 else 3990 smc_parse_options(th, opt_rx, ptr, 3991 opsize); 3992 break; 3993 3994 } 3995 ptr += opsize-2; 3996 length -= opsize; 3997 } 3998 } 3999 } 4000 EXPORT_SYMBOL(tcp_parse_options); 4001 4002 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 4003 { 4004 const __be32 *ptr = (const __be32 *)(th + 1); 4005 4006 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 4007 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 4008 tp->rx_opt.saw_tstamp = 1; 4009 ++ptr; 4010 tp->rx_opt.rcv_tsval = ntohl(*ptr); 4011 ++ptr; 4012 if (*ptr) 4013 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 4014 else 4015 tp->rx_opt.rcv_tsecr = 0; 4016 return true; 4017 } 4018 return false; 4019 } 4020 4021 /* Fast parse options. This hopes to only see timestamps. 4022 * If it is wrong it falls back on tcp_parse_options(). 4023 */ 4024 static bool tcp_fast_parse_options(const struct net *net, 4025 const struct sk_buff *skb, 4026 const struct tcphdr *th, struct tcp_sock *tp) 4027 { 4028 /* In the spirit of fast parsing, compare doff directly to constant 4029 * values. Because equality is used, short doff can be ignored here. 4030 */ 4031 if (th->doff == (sizeof(*th) / 4)) { 4032 tp->rx_opt.saw_tstamp = 0; 4033 return false; 4034 } else if (tp->rx_opt.tstamp_ok && 4035 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 4036 if (tcp_parse_aligned_timestamp(tp, th)) 4037 return true; 4038 } 4039 4040 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 4041 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 4042 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 4043 4044 return true; 4045 } 4046 4047 #ifdef CONFIG_TCP_MD5SIG 4048 /* 4049 * Parse MD5 Signature option 4050 */ 4051 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 4052 { 4053 int length = (th->doff << 2) - sizeof(*th); 4054 const u8 *ptr = (const u8 *)(th + 1); 4055 4056 /* If not enough data remaining, we can short cut */ 4057 while (length >= TCPOLEN_MD5SIG) { 4058 int opcode = *ptr++; 4059 int opsize; 4060 4061 switch (opcode) { 4062 case TCPOPT_EOL: 4063 return NULL; 4064 case TCPOPT_NOP: 4065 length--; 4066 continue; 4067 default: 4068 opsize = *ptr++; 4069 if (opsize < 2 || opsize > length) 4070 return NULL; 4071 if (opcode == TCPOPT_MD5SIG) 4072 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 4073 } 4074 ptr += opsize - 2; 4075 length -= opsize; 4076 } 4077 return NULL; 4078 } 4079 EXPORT_SYMBOL(tcp_parse_md5sig_option); 4080 #endif 4081 4082 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4083 * 4084 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4085 * it can pass through stack. So, the following predicate verifies that 4086 * this segment is not used for anything but congestion avoidance or 4087 * fast retransmit. Moreover, we even are able to eliminate most of such 4088 * second order effects, if we apply some small "replay" window (~RTO) 4089 * to timestamp space. 4090 * 4091 * All these measures still do not guarantee that we reject wrapped ACKs 4092 * on networks with high bandwidth, when sequence space is recycled fastly, 4093 * but it guarantees that such events will be very rare and do not affect 4094 * connection seriously. This doesn't look nice, but alas, PAWS is really 4095 * buggy extension. 4096 * 4097 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4098 * states that events when retransmit arrives after original data are rare. 4099 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4100 * the biggest problem on large power networks even with minor reordering. 4101 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4102 * up to bandwidth of 18Gigabit/sec. 8) ] 4103 */ 4104 4105 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 4106 { 4107 const struct tcp_sock *tp = tcp_sk(sk); 4108 const struct tcphdr *th = tcp_hdr(skb); 4109 u32 seq = TCP_SKB_CB(skb)->seq; 4110 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4111 4112 return (/* 1. Pure ACK with correct sequence number. */ 4113 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 4114 4115 /* 2. ... and duplicate ACK. */ 4116 ack == tp->snd_una && 4117 4118 /* 3. ... and does not update window. */ 4119 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4120 4121 /* 4. ... and sits in replay window. */ 4122 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4123 } 4124 4125 static inline bool tcp_paws_discard(const struct sock *sk, 4126 const struct sk_buff *skb) 4127 { 4128 const struct tcp_sock *tp = tcp_sk(sk); 4129 4130 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4131 !tcp_disordered_ack(sk, skb); 4132 } 4133 4134 /* Check segment sequence number for validity. 4135 * 4136 * Segment controls are considered valid, if the segment 4137 * fits to the window after truncation to the window. Acceptability 4138 * of data (and SYN, FIN, of course) is checked separately. 4139 * See tcp_data_queue(), for example. 4140 * 4141 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4142 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4143 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4144 * (borrowed from freebsd) 4145 */ 4146 4147 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4148 { 4149 return !before(end_seq, tp->rcv_wup) && 4150 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4151 } 4152 4153 /* When we get a reset we do this. */ 4154 void tcp_reset(struct sock *sk) 4155 { 4156 trace_tcp_receive_reset(sk); 4157 4158 /* We want the right error as BSD sees it (and indeed as we do). */ 4159 switch (sk->sk_state) { 4160 case TCP_SYN_SENT: 4161 sk->sk_err = ECONNREFUSED; 4162 break; 4163 case TCP_CLOSE_WAIT: 4164 sk->sk_err = EPIPE; 4165 break; 4166 case TCP_CLOSE: 4167 return; 4168 default: 4169 sk->sk_err = ECONNRESET; 4170 } 4171 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4172 smp_wmb(); 4173 4174 tcp_write_queue_purge(sk); 4175 tcp_done(sk); 4176 4177 if (!sock_flag(sk, SOCK_DEAD)) 4178 sk->sk_error_report(sk); 4179 } 4180 4181 /* 4182 * Process the FIN bit. This now behaves as it is supposed to work 4183 * and the FIN takes effect when it is validly part of sequence 4184 * space. Not before when we get holes. 4185 * 4186 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4187 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4188 * TIME-WAIT) 4189 * 4190 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4191 * close and we go into CLOSING (and later onto TIME-WAIT) 4192 * 4193 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4194 */ 4195 void tcp_fin(struct sock *sk) 4196 { 4197 struct tcp_sock *tp = tcp_sk(sk); 4198 4199 inet_csk_schedule_ack(sk); 4200 4201 sk->sk_shutdown |= RCV_SHUTDOWN; 4202 sock_set_flag(sk, SOCK_DONE); 4203 4204 switch (sk->sk_state) { 4205 case TCP_SYN_RECV: 4206 case TCP_ESTABLISHED: 4207 /* Move to CLOSE_WAIT */ 4208 tcp_set_state(sk, TCP_CLOSE_WAIT); 4209 inet_csk_enter_pingpong_mode(sk); 4210 break; 4211 4212 case TCP_CLOSE_WAIT: 4213 case TCP_CLOSING: 4214 /* Received a retransmission of the FIN, do 4215 * nothing. 4216 */ 4217 break; 4218 case TCP_LAST_ACK: 4219 /* RFC793: Remain in the LAST-ACK state. */ 4220 break; 4221 4222 case TCP_FIN_WAIT1: 4223 /* This case occurs when a simultaneous close 4224 * happens, we must ack the received FIN and 4225 * enter the CLOSING state. 4226 */ 4227 tcp_send_ack(sk); 4228 tcp_set_state(sk, TCP_CLOSING); 4229 break; 4230 case TCP_FIN_WAIT2: 4231 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4232 tcp_send_ack(sk); 4233 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4234 break; 4235 default: 4236 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4237 * cases we should never reach this piece of code. 4238 */ 4239 pr_err("%s: Impossible, sk->sk_state=%d\n", 4240 __func__, sk->sk_state); 4241 break; 4242 } 4243 4244 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4245 * Probably, we should reset in this case. For now drop them. 4246 */ 4247 skb_rbtree_purge(&tp->out_of_order_queue); 4248 if (tcp_is_sack(tp)) 4249 tcp_sack_reset(&tp->rx_opt); 4250 sk_mem_reclaim(sk); 4251 4252 if (!sock_flag(sk, SOCK_DEAD)) { 4253 sk->sk_state_change(sk); 4254 4255 /* Do not send POLL_HUP for half duplex close. */ 4256 if (sk->sk_shutdown == SHUTDOWN_MASK || 4257 sk->sk_state == TCP_CLOSE) 4258 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4259 else 4260 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4261 } 4262 } 4263 4264 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4265 u32 end_seq) 4266 { 4267 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4268 if (before(seq, sp->start_seq)) 4269 sp->start_seq = seq; 4270 if (after(end_seq, sp->end_seq)) 4271 sp->end_seq = end_seq; 4272 return true; 4273 } 4274 return false; 4275 } 4276 4277 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4278 { 4279 struct tcp_sock *tp = tcp_sk(sk); 4280 4281 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4282 int mib_idx; 4283 4284 if (before(seq, tp->rcv_nxt)) 4285 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4286 else 4287 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4288 4289 NET_INC_STATS(sock_net(sk), mib_idx); 4290 4291 tp->rx_opt.dsack = 1; 4292 tp->duplicate_sack[0].start_seq = seq; 4293 tp->duplicate_sack[0].end_seq = end_seq; 4294 } 4295 } 4296 4297 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4298 { 4299 struct tcp_sock *tp = tcp_sk(sk); 4300 4301 if (!tp->rx_opt.dsack) 4302 tcp_dsack_set(sk, seq, end_seq); 4303 else 4304 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4305 } 4306 4307 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4308 { 4309 /* When the ACK path fails or drops most ACKs, the sender would 4310 * timeout and spuriously retransmit the same segment repeatedly. 4311 * The receiver remembers and reflects via DSACKs. Leverage the 4312 * DSACK state and change the txhash to re-route speculatively. 4313 */ 4314 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq) { 4315 sk_rethink_txhash(sk); 4316 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH); 4317 } 4318 } 4319 4320 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4321 { 4322 struct tcp_sock *tp = tcp_sk(sk); 4323 4324 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4325 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4326 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4327 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4328 4329 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4330 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4331 4332 tcp_rcv_spurious_retrans(sk, skb); 4333 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4334 end_seq = tp->rcv_nxt; 4335 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4336 } 4337 } 4338 4339 tcp_send_ack(sk); 4340 } 4341 4342 /* These routines update the SACK block as out-of-order packets arrive or 4343 * in-order packets close up the sequence space. 4344 */ 4345 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4346 { 4347 int this_sack; 4348 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4349 struct tcp_sack_block *swalk = sp + 1; 4350 4351 /* See if the recent change to the first SACK eats into 4352 * or hits the sequence space of other SACK blocks, if so coalesce. 4353 */ 4354 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4355 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4356 int i; 4357 4358 /* Zap SWALK, by moving every further SACK up by one slot. 4359 * Decrease num_sacks. 4360 */ 4361 tp->rx_opt.num_sacks--; 4362 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4363 sp[i] = sp[i + 1]; 4364 continue; 4365 } 4366 this_sack++, swalk++; 4367 } 4368 } 4369 4370 static void tcp_sack_compress_send_ack(struct sock *sk) 4371 { 4372 struct tcp_sock *tp = tcp_sk(sk); 4373 4374 if (!tp->compressed_ack) 4375 return; 4376 4377 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 4378 __sock_put(sk); 4379 4380 /* Since we have to send one ack finally, 4381 * substract one from tp->compressed_ack to keep 4382 * LINUX_MIB_TCPACKCOMPRESSED accurate. 4383 */ 4384 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 4385 tp->compressed_ack - 1); 4386 4387 tp->compressed_ack = 0; 4388 tcp_send_ack(sk); 4389 } 4390 4391 /* Reasonable amount of sack blocks included in TCP SACK option 4392 * The max is 4, but this becomes 3 if TCP timestamps are there. 4393 * Given that SACK packets might be lost, be conservative and use 2. 4394 */ 4395 #define TCP_SACK_BLOCKS_EXPECTED 2 4396 4397 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4398 { 4399 struct tcp_sock *tp = tcp_sk(sk); 4400 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4401 int cur_sacks = tp->rx_opt.num_sacks; 4402 int this_sack; 4403 4404 if (!cur_sacks) 4405 goto new_sack; 4406 4407 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4408 if (tcp_sack_extend(sp, seq, end_seq)) { 4409 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4410 tcp_sack_compress_send_ack(sk); 4411 /* Rotate this_sack to the first one. */ 4412 for (; this_sack > 0; this_sack--, sp--) 4413 swap(*sp, *(sp - 1)); 4414 if (cur_sacks > 1) 4415 tcp_sack_maybe_coalesce(tp); 4416 return; 4417 } 4418 } 4419 4420 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4421 tcp_sack_compress_send_ack(sk); 4422 4423 /* Could not find an adjacent existing SACK, build a new one, 4424 * put it at the front, and shift everyone else down. We 4425 * always know there is at least one SACK present already here. 4426 * 4427 * If the sack array is full, forget about the last one. 4428 */ 4429 if (this_sack >= TCP_NUM_SACKS) { 4430 this_sack--; 4431 tp->rx_opt.num_sacks--; 4432 sp--; 4433 } 4434 for (; this_sack > 0; this_sack--, sp--) 4435 *sp = *(sp - 1); 4436 4437 new_sack: 4438 /* Build the new head SACK, and we're done. */ 4439 sp->start_seq = seq; 4440 sp->end_seq = end_seq; 4441 tp->rx_opt.num_sacks++; 4442 } 4443 4444 /* RCV.NXT advances, some SACKs should be eaten. */ 4445 4446 static void tcp_sack_remove(struct tcp_sock *tp) 4447 { 4448 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4449 int num_sacks = tp->rx_opt.num_sacks; 4450 int this_sack; 4451 4452 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4453 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4454 tp->rx_opt.num_sacks = 0; 4455 return; 4456 } 4457 4458 for (this_sack = 0; this_sack < num_sacks;) { 4459 /* Check if the start of the sack is covered by RCV.NXT. */ 4460 if (!before(tp->rcv_nxt, sp->start_seq)) { 4461 int i; 4462 4463 /* RCV.NXT must cover all the block! */ 4464 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4465 4466 /* Zap this SACK, by moving forward any other SACKS. */ 4467 for (i = this_sack+1; i < num_sacks; i++) 4468 tp->selective_acks[i-1] = tp->selective_acks[i]; 4469 num_sacks--; 4470 continue; 4471 } 4472 this_sack++; 4473 sp++; 4474 } 4475 tp->rx_opt.num_sacks = num_sacks; 4476 } 4477 4478 /** 4479 * tcp_try_coalesce - try to merge skb to prior one 4480 * @sk: socket 4481 * @to: prior buffer 4482 * @from: buffer to add in queue 4483 * @fragstolen: pointer to boolean 4484 * 4485 * Before queueing skb @from after @to, try to merge them 4486 * to reduce overall memory use and queue lengths, if cost is small. 4487 * Packets in ofo or receive queues can stay a long time. 4488 * Better try to coalesce them right now to avoid future collapses. 4489 * Returns true if caller should free @from instead of queueing it 4490 */ 4491 static bool tcp_try_coalesce(struct sock *sk, 4492 struct sk_buff *to, 4493 struct sk_buff *from, 4494 bool *fragstolen) 4495 { 4496 int delta; 4497 4498 *fragstolen = false; 4499 4500 /* Its possible this segment overlaps with prior segment in queue */ 4501 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4502 return false; 4503 4504 if (!mptcp_skb_can_collapse(to, from)) 4505 return false; 4506 4507 #ifdef CONFIG_TLS_DEVICE 4508 if (from->decrypted != to->decrypted) 4509 return false; 4510 #endif 4511 4512 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4513 return false; 4514 4515 atomic_add(delta, &sk->sk_rmem_alloc); 4516 sk_mem_charge(sk, delta); 4517 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4518 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4519 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4520 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4521 4522 if (TCP_SKB_CB(from)->has_rxtstamp) { 4523 TCP_SKB_CB(to)->has_rxtstamp = true; 4524 to->tstamp = from->tstamp; 4525 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4526 } 4527 4528 return true; 4529 } 4530 4531 static bool tcp_ooo_try_coalesce(struct sock *sk, 4532 struct sk_buff *to, 4533 struct sk_buff *from, 4534 bool *fragstolen) 4535 { 4536 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4537 4538 /* In case tcp_drop() is called later, update to->gso_segs */ 4539 if (res) { 4540 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4541 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4542 4543 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4544 } 4545 return res; 4546 } 4547 4548 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4549 { 4550 sk_drops_add(sk, skb); 4551 __kfree_skb(skb); 4552 } 4553 4554 /* This one checks to see if we can put data from the 4555 * out_of_order queue into the receive_queue. 4556 */ 4557 static void tcp_ofo_queue(struct sock *sk) 4558 { 4559 struct tcp_sock *tp = tcp_sk(sk); 4560 __u32 dsack_high = tp->rcv_nxt; 4561 bool fin, fragstolen, eaten; 4562 struct sk_buff *skb, *tail; 4563 struct rb_node *p; 4564 4565 p = rb_first(&tp->out_of_order_queue); 4566 while (p) { 4567 skb = rb_to_skb(p); 4568 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4569 break; 4570 4571 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4572 __u32 dsack = dsack_high; 4573 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4574 dsack_high = TCP_SKB_CB(skb)->end_seq; 4575 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4576 } 4577 p = rb_next(p); 4578 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4579 4580 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4581 tcp_drop(sk, skb); 4582 continue; 4583 } 4584 4585 tail = skb_peek_tail(&sk->sk_receive_queue); 4586 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4587 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4588 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4589 if (!eaten) 4590 __skb_queue_tail(&sk->sk_receive_queue, skb); 4591 else 4592 kfree_skb_partial(skb, fragstolen); 4593 4594 if (unlikely(fin)) { 4595 tcp_fin(sk); 4596 /* tcp_fin() purges tp->out_of_order_queue, 4597 * so we must end this loop right now. 4598 */ 4599 break; 4600 } 4601 } 4602 } 4603 4604 static bool tcp_prune_ofo_queue(struct sock *sk); 4605 static int tcp_prune_queue(struct sock *sk); 4606 4607 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4608 unsigned int size) 4609 { 4610 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4611 !sk_rmem_schedule(sk, skb, size)) { 4612 4613 if (tcp_prune_queue(sk) < 0) 4614 return -1; 4615 4616 while (!sk_rmem_schedule(sk, skb, size)) { 4617 if (!tcp_prune_ofo_queue(sk)) 4618 return -1; 4619 } 4620 } 4621 return 0; 4622 } 4623 4624 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4625 { 4626 struct tcp_sock *tp = tcp_sk(sk); 4627 struct rb_node **p, *parent; 4628 struct sk_buff *skb1; 4629 u32 seq, end_seq; 4630 bool fragstolen; 4631 4632 tcp_ecn_check_ce(sk, skb); 4633 4634 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4635 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4636 sk->sk_data_ready(sk); 4637 tcp_drop(sk, skb); 4638 return; 4639 } 4640 4641 /* Disable header prediction. */ 4642 tp->pred_flags = 0; 4643 inet_csk_schedule_ack(sk); 4644 4645 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4646 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4647 seq = TCP_SKB_CB(skb)->seq; 4648 end_seq = TCP_SKB_CB(skb)->end_seq; 4649 4650 p = &tp->out_of_order_queue.rb_node; 4651 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4652 /* Initial out of order segment, build 1 SACK. */ 4653 if (tcp_is_sack(tp)) { 4654 tp->rx_opt.num_sacks = 1; 4655 tp->selective_acks[0].start_seq = seq; 4656 tp->selective_acks[0].end_seq = end_seq; 4657 } 4658 rb_link_node(&skb->rbnode, NULL, p); 4659 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4660 tp->ooo_last_skb = skb; 4661 goto end; 4662 } 4663 4664 /* In the typical case, we are adding an skb to the end of the list. 4665 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4666 */ 4667 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 4668 skb, &fragstolen)) { 4669 coalesce_done: 4670 /* For non sack flows, do not grow window to force DUPACK 4671 * and trigger fast retransmit. 4672 */ 4673 if (tcp_is_sack(tp)) 4674 tcp_grow_window(sk, skb); 4675 kfree_skb_partial(skb, fragstolen); 4676 skb = NULL; 4677 goto add_sack; 4678 } 4679 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4680 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4681 parent = &tp->ooo_last_skb->rbnode; 4682 p = &parent->rb_right; 4683 goto insert; 4684 } 4685 4686 /* Find place to insert this segment. Handle overlaps on the way. */ 4687 parent = NULL; 4688 while (*p) { 4689 parent = *p; 4690 skb1 = rb_to_skb(parent); 4691 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4692 p = &parent->rb_left; 4693 continue; 4694 } 4695 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4696 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4697 /* All the bits are present. Drop. */ 4698 NET_INC_STATS(sock_net(sk), 4699 LINUX_MIB_TCPOFOMERGE); 4700 tcp_drop(sk, skb); 4701 skb = NULL; 4702 tcp_dsack_set(sk, seq, end_seq); 4703 goto add_sack; 4704 } 4705 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4706 /* Partial overlap. */ 4707 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4708 } else { 4709 /* skb's seq == skb1's seq and skb covers skb1. 4710 * Replace skb1 with skb. 4711 */ 4712 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4713 &tp->out_of_order_queue); 4714 tcp_dsack_extend(sk, 4715 TCP_SKB_CB(skb1)->seq, 4716 TCP_SKB_CB(skb1)->end_seq); 4717 NET_INC_STATS(sock_net(sk), 4718 LINUX_MIB_TCPOFOMERGE); 4719 tcp_drop(sk, skb1); 4720 goto merge_right; 4721 } 4722 } else if (tcp_ooo_try_coalesce(sk, skb1, 4723 skb, &fragstolen)) { 4724 goto coalesce_done; 4725 } 4726 p = &parent->rb_right; 4727 } 4728 insert: 4729 /* Insert segment into RB tree. */ 4730 rb_link_node(&skb->rbnode, parent, p); 4731 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4732 4733 merge_right: 4734 /* Remove other segments covered by skb. */ 4735 while ((skb1 = skb_rb_next(skb)) != NULL) { 4736 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4737 break; 4738 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4739 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4740 end_seq); 4741 break; 4742 } 4743 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4744 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4745 TCP_SKB_CB(skb1)->end_seq); 4746 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4747 tcp_drop(sk, skb1); 4748 } 4749 /* If there is no skb after us, we are the last_skb ! */ 4750 if (!skb1) 4751 tp->ooo_last_skb = skb; 4752 4753 add_sack: 4754 if (tcp_is_sack(tp)) 4755 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4756 end: 4757 if (skb) { 4758 /* For non sack flows, do not grow window to force DUPACK 4759 * and trigger fast retransmit. 4760 */ 4761 if (tcp_is_sack(tp)) 4762 tcp_grow_window(sk, skb); 4763 skb_condense(skb); 4764 skb_set_owner_r(skb, sk); 4765 } 4766 } 4767 4768 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 4769 bool *fragstolen) 4770 { 4771 int eaten; 4772 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4773 4774 eaten = (tail && 4775 tcp_try_coalesce(sk, tail, 4776 skb, fragstolen)) ? 1 : 0; 4777 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4778 if (!eaten) { 4779 __skb_queue_tail(&sk->sk_receive_queue, skb); 4780 skb_set_owner_r(skb, sk); 4781 } 4782 return eaten; 4783 } 4784 4785 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4786 { 4787 struct sk_buff *skb; 4788 int err = -ENOMEM; 4789 int data_len = 0; 4790 bool fragstolen; 4791 4792 if (size == 0) 4793 return 0; 4794 4795 if (size > PAGE_SIZE) { 4796 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4797 4798 data_len = npages << PAGE_SHIFT; 4799 size = data_len + (size & ~PAGE_MASK); 4800 } 4801 skb = alloc_skb_with_frags(size - data_len, data_len, 4802 PAGE_ALLOC_COSTLY_ORDER, 4803 &err, sk->sk_allocation); 4804 if (!skb) 4805 goto err; 4806 4807 skb_put(skb, size - data_len); 4808 skb->data_len = data_len; 4809 skb->len = size; 4810 4811 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 4812 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 4813 goto err_free; 4814 } 4815 4816 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4817 if (err) 4818 goto err_free; 4819 4820 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4821 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4822 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4823 4824 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 4825 WARN_ON_ONCE(fragstolen); /* should not happen */ 4826 __kfree_skb(skb); 4827 } 4828 return size; 4829 4830 err_free: 4831 kfree_skb(skb); 4832 err: 4833 return err; 4834 4835 } 4836 4837 void tcp_data_ready(struct sock *sk) 4838 { 4839 const struct tcp_sock *tp = tcp_sk(sk); 4840 int avail = tp->rcv_nxt - tp->copied_seq; 4841 4842 if (avail < sk->sk_rcvlowat && !tcp_rmem_pressure(sk) && 4843 !sock_flag(sk, SOCK_DONE)) 4844 return; 4845 4846 sk->sk_data_ready(sk); 4847 } 4848 4849 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4850 { 4851 struct tcp_sock *tp = tcp_sk(sk); 4852 bool fragstolen; 4853 int eaten; 4854 4855 if (sk_is_mptcp(sk)) 4856 mptcp_incoming_options(sk, skb, &tp->rx_opt); 4857 4858 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4859 __kfree_skb(skb); 4860 return; 4861 } 4862 skb_dst_drop(skb); 4863 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4864 4865 tp->rx_opt.dsack = 0; 4866 4867 /* Queue data for delivery to the user. 4868 * Packets in sequence go to the receive queue. 4869 * Out of sequence packets to the out_of_order_queue. 4870 */ 4871 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4872 if (tcp_receive_window(tp) == 0) { 4873 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 4874 goto out_of_window; 4875 } 4876 4877 /* Ok. In sequence. In window. */ 4878 queue_and_out: 4879 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4880 sk_forced_mem_schedule(sk, skb->truesize); 4881 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 4882 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 4883 sk->sk_data_ready(sk); 4884 goto drop; 4885 } 4886 4887 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 4888 if (skb->len) 4889 tcp_event_data_recv(sk, skb); 4890 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4891 tcp_fin(sk); 4892 4893 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4894 tcp_ofo_queue(sk); 4895 4896 /* RFC5681. 4.2. SHOULD send immediate ACK, when 4897 * gap in queue is filled. 4898 */ 4899 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4900 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 4901 } 4902 4903 if (tp->rx_opt.num_sacks) 4904 tcp_sack_remove(tp); 4905 4906 tcp_fast_path_check(sk); 4907 4908 if (eaten > 0) 4909 kfree_skb_partial(skb, fragstolen); 4910 if (!sock_flag(sk, SOCK_DEAD)) 4911 tcp_data_ready(sk); 4912 return; 4913 } 4914 4915 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4916 tcp_rcv_spurious_retrans(sk, skb); 4917 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4918 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4919 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4920 4921 out_of_window: 4922 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4923 inet_csk_schedule_ack(sk); 4924 drop: 4925 tcp_drop(sk, skb); 4926 return; 4927 } 4928 4929 /* Out of window. F.e. zero window probe. */ 4930 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4931 goto out_of_window; 4932 4933 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4934 /* Partial packet, seq < rcv_next < end_seq */ 4935 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4936 4937 /* If window is closed, drop tail of packet. But after 4938 * remembering D-SACK for its head made in previous line. 4939 */ 4940 if (!tcp_receive_window(tp)) { 4941 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 4942 goto out_of_window; 4943 } 4944 goto queue_and_out; 4945 } 4946 4947 tcp_data_queue_ofo(sk, skb); 4948 } 4949 4950 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4951 { 4952 if (list) 4953 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4954 4955 return skb_rb_next(skb); 4956 } 4957 4958 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4959 struct sk_buff_head *list, 4960 struct rb_root *root) 4961 { 4962 struct sk_buff *next = tcp_skb_next(skb, list); 4963 4964 if (list) 4965 __skb_unlink(skb, list); 4966 else 4967 rb_erase(&skb->rbnode, root); 4968 4969 __kfree_skb(skb); 4970 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4971 4972 return next; 4973 } 4974 4975 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4976 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4977 { 4978 struct rb_node **p = &root->rb_node; 4979 struct rb_node *parent = NULL; 4980 struct sk_buff *skb1; 4981 4982 while (*p) { 4983 parent = *p; 4984 skb1 = rb_to_skb(parent); 4985 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4986 p = &parent->rb_left; 4987 else 4988 p = &parent->rb_right; 4989 } 4990 rb_link_node(&skb->rbnode, parent, p); 4991 rb_insert_color(&skb->rbnode, root); 4992 } 4993 4994 /* Collapse contiguous sequence of skbs head..tail with 4995 * sequence numbers start..end. 4996 * 4997 * If tail is NULL, this means until the end of the queue. 4998 * 4999 * Segments with FIN/SYN are not collapsed (only because this 5000 * simplifies code) 5001 */ 5002 static void 5003 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 5004 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 5005 { 5006 struct sk_buff *skb = head, *n; 5007 struct sk_buff_head tmp; 5008 bool end_of_skbs; 5009 5010 /* First, check that queue is collapsible and find 5011 * the point where collapsing can be useful. 5012 */ 5013 restart: 5014 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 5015 n = tcp_skb_next(skb, list); 5016 5017 /* No new bits? It is possible on ofo queue. */ 5018 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5019 skb = tcp_collapse_one(sk, skb, list, root); 5020 if (!skb) 5021 break; 5022 goto restart; 5023 } 5024 5025 /* The first skb to collapse is: 5026 * - not SYN/FIN and 5027 * - bloated or contains data before "start" or 5028 * overlaps to the next one and mptcp allow collapsing. 5029 */ 5030 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 5031 (tcp_win_from_space(sk, skb->truesize) > skb->len || 5032 before(TCP_SKB_CB(skb)->seq, start))) { 5033 end_of_skbs = false; 5034 break; 5035 } 5036 5037 if (n && n != tail && mptcp_skb_can_collapse(skb, n) && 5038 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 5039 end_of_skbs = false; 5040 break; 5041 } 5042 5043 /* Decided to skip this, advance start seq. */ 5044 start = TCP_SKB_CB(skb)->end_seq; 5045 } 5046 if (end_of_skbs || 5047 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5048 return; 5049 5050 __skb_queue_head_init(&tmp); 5051 5052 while (before(start, end)) { 5053 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 5054 struct sk_buff *nskb; 5055 5056 nskb = alloc_skb(copy, GFP_ATOMIC); 5057 if (!nskb) 5058 break; 5059 5060 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 5061 #ifdef CONFIG_TLS_DEVICE 5062 nskb->decrypted = skb->decrypted; 5063 #endif 5064 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 5065 if (list) 5066 __skb_queue_before(list, skb, nskb); 5067 else 5068 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 5069 skb_set_owner_r(nskb, sk); 5070 mptcp_skb_ext_move(nskb, skb); 5071 5072 /* Copy data, releasing collapsed skbs. */ 5073 while (copy > 0) { 5074 int offset = start - TCP_SKB_CB(skb)->seq; 5075 int size = TCP_SKB_CB(skb)->end_seq - start; 5076 5077 BUG_ON(offset < 0); 5078 if (size > 0) { 5079 size = min(copy, size); 5080 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 5081 BUG(); 5082 TCP_SKB_CB(nskb)->end_seq += size; 5083 copy -= size; 5084 start += size; 5085 } 5086 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5087 skb = tcp_collapse_one(sk, skb, list, root); 5088 if (!skb || 5089 skb == tail || 5090 !mptcp_skb_can_collapse(nskb, skb) || 5091 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5092 goto end; 5093 #ifdef CONFIG_TLS_DEVICE 5094 if (skb->decrypted != nskb->decrypted) 5095 goto end; 5096 #endif 5097 } 5098 } 5099 } 5100 end: 5101 skb_queue_walk_safe(&tmp, skb, n) 5102 tcp_rbtree_insert(root, skb); 5103 } 5104 5105 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5106 * and tcp_collapse() them until all the queue is collapsed. 5107 */ 5108 static void tcp_collapse_ofo_queue(struct sock *sk) 5109 { 5110 struct tcp_sock *tp = tcp_sk(sk); 5111 u32 range_truesize, sum_tiny = 0; 5112 struct sk_buff *skb, *head; 5113 u32 start, end; 5114 5115 skb = skb_rb_first(&tp->out_of_order_queue); 5116 new_range: 5117 if (!skb) { 5118 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5119 return; 5120 } 5121 start = TCP_SKB_CB(skb)->seq; 5122 end = TCP_SKB_CB(skb)->end_seq; 5123 range_truesize = skb->truesize; 5124 5125 for (head = skb;;) { 5126 skb = skb_rb_next(skb); 5127 5128 /* Range is terminated when we see a gap or when 5129 * we are at the queue end. 5130 */ 5131 if (!skb || 5132 after(TCP_SKB_CB(skb)->seq, end) || 5133 before(TCP_SKB_CB(skb)->end_seq, start)) { 5134 /* Do not attempt collapsing tiny skbs */ 5135 if (range_truesize != head->truesize || 5136 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) { 5137 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5138 head, skb, start, end); 5139 } else { 5140 sum_tiny += range_truesize; 5141 if (sum_tiny > sk->sk_rcvbuf >> 3) 5142 return; 5143 } 5144 goto new_range; 5145 } 5146 5147 range_truesize += skb->truesize; 5148 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5149 start = TCP_SKB_CB(skb)->seq; 5150 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5151 end = TCP_SKB_CB(skb)->end_seq; 5152 } 5153 } 5154 5155 /* 5156 * Clean the out-of-order queue to make room. 5157 * We drop high sequences packets to : 5158 * 1) Let a chance for holes to be filled. 5159 * 2) not add too big latencies if thousands of packets sit there. 5160 * (But if application shrinks SO_RCVBUF, we could still end up 5161 * freeing whole queue here) 5162 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5163 * 5164 * Return true if queue has shrunk. 5165 */ 5166 static bool tcp_prune_ofo_queue(struct sock *sk) 5167 { 5168 struct tcp_sock *tp = tcp_sk(sk); 5169 struct rb_node *node, *prev; 5170 int goal; 5171 5172 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5173 return false; 5174 5175 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5176 goal = sk->sk_rcvbuf >> 3; 5177 node = &tp->ooo_last_skb->rbnode; 5178 do { 5179 prev = rb_prev(node); 5180 rb_erase(node, &tp->out_of_order_queue); 5181 goal -= rb_to_skb(node)->truesize; 5182 tcp_drop(sk, rb_to_skb(node)); 5183 if (!prev || goal <= 0) { 5184 sk_mem_reclaim(sk); 5185 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5186 !tcp_under_memory_pressure(sk)) 5187 break; 5188 goal = sk->sk_rcvbuf >> 3; 5189 } 5190 node = prev; 5191 } while (node); 5192 tp->ooo_last_skb = rb_to_skb(prev); 5193 5194 /* Reset SACK state. A conforming SACK implementation will 5195 * do the same at a timeout based retransmit. When a connection 5196 * is in a sad state like this, we care only about integrity 5197 * of the connection not performance. 5198 */ 5199 if (tp->rx_opt.sack_ok) 5200 tcp_sack_reset(&tp->rx_opt); 5201 return true; 5202 } 5203 5204 /* Reduce allocated memory if we can, trying to get 5205 * the socket within its memory limits again. 5206 * 5207 * Return less than zero if we should start dropping frames 5208 * until the socket owning process reads some of the data 5209 * to stabilize the situation. 5210 */ 5211 static int tcp_prune_queue(struct sock *sk) 5212 { 5213 struct tcp_sock *tp = tcp_sk(sk); 5214 5215 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5216 5217 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5218 tcp_clamp_window(sk); 5219 else if (tcp_under_memory_pressure(sk)) 5220 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 5221 5222 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5223 return 0; 5224 5225 tcp_collapse_ofo_queue(sk); 5226 if (!skb_queue_empty(&sk->sk_receive_queue)) 5227 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5228 skb_peek(&sk->sk_receive_queue), 5229 NULL, 5230 tp->copied_seq, tp->rcv_nxt); 5231 sk_mem_reclaim(sk); 5232 5233 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5234 return 0; 5235 5236 /* Collapsing did not help, destructive actions follow. 5237 * This must not ever occur. */ 5238 5239 tcp_prune_ofo_queue(sk); 5240 5241 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5242 return 0; 5243 5244 /* If we are really being abused, tell the caller to silently 5245 * drop receive data on the floor. It will get retransmitted 5246 * and hopefully then we'll have sufficient space. 5247 */ 5248 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5249 5250 /* Massive buffer overcommit. */ 5251 tp->pred_flags = 0; 5252 return -1; 5253 } 5254 5255 static bool tcp_should_expand_sndbuf(const struct sock *sk) 5256 { 5257 const struct tcp_sock *tp = tcp_sk(sk); 5258 5259 /* If the user specified a specific send buffer setting, do 5260 * not modify it. 5261 */ 5262 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5263 return false; 5264 5265 /* If we are under global TCP memory pressure, do not expand. */ 5266 if (tcp_under_memory_pressure(sk)) 5267 return false; 5268 5269 /* If we are under soft global TCP memory pressure, do not expand. */ 5270 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5271 return false; 5272 5273 /* If we filled the congestion window, do not expand. */ 5274 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5275 return false; 5276 5277 return true; 5278 } 5279 5280 /* When incoming ACK allowed to free some skb from write_queue, 5281 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5282 * on the exit from tcp input handler. 5283 * 5284 * PROBLEM: sndbuf expansion does not work well with largesend. 5285 */ 5286 static void tcp_new_space(struct sock *sk) 5287 { 5288 struct tcp_sock *tp = tcp_sk(sk); 5289 5290 if (tcp_should_expand_sndbuf(sk)) { 5291 tcp_sndbuf_expand(sk); 5292 tp->snd_cwnd_stamp = tcp_jiffies32; 5293 } 5294 5295 sk->sk_write_space(sk); 5296 } 5297 5298 static void tcp_check_space(struct sock *sk) 5299 { 5300 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5301 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5302 /* pairs with tcp_poll() */ 5303 smp_mb(); 5304 if (sk->sk_socket && 5305 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5306 tcp_new_space(sk); 5307 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5308 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5309 } 5310 } 5311 } 5312 5313 static inline void tcp_data_snd_check(struct sock *sk) 5314 { 5315 tcp_push_pending_frames(sk); 5316 tcp_check_space(sk); 5317 } 5318 5319 /* 5320 * Check if sending an ack is needed. 5321 */ 5322 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5323 { 5324 struct tcp_sock *tp = tcp_sk(sk); 5325 unsigned long rtt, delay; 5326 5327 /* More than one full frame received... */ 5328 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5329 /* ... and right edge of window advances far enough. 5330 * (tcp_recvmsg() will send ACK otherwise). 5331 * If application uses SO_RCVLOWAT, we want send ack now if 5332 * we have not received enough bytes to satisfy the condition. 5333 */ 5334 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5335 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5336 /* We ACK each frame or... */ 5337 tcp_in_quickack_mode(sk) || 5338 /* Protocol state mandates a one-time immediate ACK */ 5339 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5340 send_now: 5341 tcp_send_ack(sk); 5342 return; 5343 } 5344 5345 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5346 tcp_send_delayed_ack(sk); 5347 return; 5348 } 5349 5350 if (!tcp_is_sack(tp) || 5351 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr) 5352 goto send_now; 5353 5354 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5355 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5356 tp->dup_ack_counter = 0; 5357 } 5358 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) { 5359 tp->dup_ack_counter++; 5360 goto send_now; 5361 } 5362 tp->compressed_ack++; 5363 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5364 return; 5365 5366 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5367 5368 rtt = tp->rcv_rtt_est.rtt_us; 5369 if (tp->srtt_us && tp->srtt_us < rtt) 5370 rtt = tp->srtt_us; 5371 5372 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns, 5373 rtt * (NSEC_PER_USEC >> 3)/20); 5374 sock_hold(sk); 5375 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay), 5376 sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns, 5377 HRTIMER_MODE_REL_PINNED_SOFT); 5378 } 5379 5380 static inline void tcp_ack_snd_check(struct sock *sk) 5381 { 5382 if (!inet_csk_ack_scheduled(sk)) { 5383 /* We sent a data segment already. */ 5384 return; 5385 } 5386 __tcp_ack_snd_check(sk, 1); 5387 } 5388 5389 /* 5390 * This routine is only called when we have urgent data 5391 * signaled. Its the 'slow' part of tcp_urg. It could be 5392 * moved inline now as tcp_urg is only called from one 5393 * place. We handle URGent data wrong. We have to - as 5394 * BSD still doesn't use the correction from RFC961. 5395 * For 1003.1g we should support a new option TCP_STDURG to permit 5396 * either form (or just set the sysctl tcp_stdurg). 5397 */ 5398 5399 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5400 { 5401 struct tcp_sock *tp = tcp_sk(sk); 5402 u32 ptr = ntohs(th->urg_ptr); 5403 5404 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg) 5405 ptr--; 5406 ptr += ntohl(th->seq); 5407 5408 /* Ignore urgent data that we've already seen and read. */ 5409 if (after(tp->copied_seq, ptr)) 5410 return; 5411 5412 /* Do not replay urg ptr. 5413 * 5414 * NOTE: interesting situation not covered by specs. 5415 * Misbehaving sender may send urg ptr, pointing to segment, 5416 * which we already have in ofo queue. We are not able to fetch 5417 * such data and will stay in TCP_URG_NOTYET until will be eaten 5418 * by recvmsg(). Seems, we are not obliged to handle such wicked 5419 * situations. But it is worth to think about possibility of some 5420 * DoSes using some hypothetical application level deadlock. 5421 */ 5422 if (before(ptr, tp->rcv_nxt)) 5423 return; 5424 5425 /* Do we already have a newer (or duplicate) urgent pointer? */ 5426 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5427 return; 5428 5429 /* Tell the world about our new urgent pointer. */ 5430 sk_send_sigurg(sk); 5431 5432 /* We may be adding urgent data when the last byte read was 5433 * urgent. To do this requires some care. We cannot just ignore 5434 * tp->copied_seq since we would read the last urgent byte again 5435 * as data, nor can we alter copied_seq until this data arrives 5436 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5437 * 5438 * NOTE. Double Dutch. Rendering to plain English: author of comment 5439 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5440 * and expect that both A and B disappear from stream. This is _wrong_. 5441 * Though this happens in BSD with high probability, this is occasional. 5442 * Any application relying on this is buggy. Note also, that fix "works" 5443 * only in this artificial test. Insert some normal data between A and B and we will 5444 * decline of BSD again. Verdict: it is better to remove to trap 5445 * buggy users. 5446 */ 5447 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5448 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5449 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5450 tp->copied_seq++; 5451 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5452 __skb_unlink(skb, &sk->sk_receive_queue); 5453 __kfree_skb(skb); 5454 } 5455 } 5456 5457 tp->urg_data = TCP_URG_NOTYET; 5458 WRITE_ONCE(tp->urg_seq, ptr); 5459 5460 /* Disable header prediction. */ 5461 tp->pred_flags = 0; 5462 } 5463 5464 /* This is the 'fast' part of urgent handling. */ 5465 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5466 { 5467 struct tcp_sock *tp = tcp_sk(sk); 5468 5469 /* Check if we get a new urgent pointer - normally not. */ 5470 if (th->urg) 5471 tcp_check_urg(sk, th); 5472 5473 /* Do we wait for any urgent data? - normally not... */ 5474 if (tp->urg_data == TCP_URG_NOTYET) { 5475 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5476 th->syn; 5477 5478 /* Is the urgent pointer pointing into this packet? */ 5479 if (ptr < skb->len) { 5480 u8 tmp; 5481 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5482 BUG(); 5483 tp->urg_data = TCP_URG_VALID | tmp; 5484 if (!sock_flag(sk, SOCK_DEAD)) 5485 sk->sk_data_ready(sk); 5486 } 5487 } 5488 } 5489 5490 /* Accept RST for rcv_nxt - 1 after a FIN. 5491 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5492 * FIN is sent followed by a RST packet. The RST is sent with the same 5493 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5494 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5495 * ACKs on the closed socket. In addition middleboxes can drop either the 5496 * challenge ACK or a subsequent RST. 5497 */ 5498 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5499 { 5500 struct tcp_sock *tp = tcp_sk(sk); 5501 5502 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5503 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5504 TCPF_CLOSING)); 5505 } 5506 5507 /* Does PAWS and seqno based validation of an incoming segment, flags will 5508 * play significant role here. 5509 */ 5510 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5511 const struct tcphdr *th, int syn_inerr) 5512 { 5513 struct tcp_sock *tp = tcp_sk(sk); 5514 bool rst_seq_match = false; 5515 5516 /* RFC1323: H1. Apply PAWS check first. */ 5517 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5518 tp->rx_opt.saw_tstamp && 5519 tcp_paws_discard(sk, skb)) { 5520 if (!th->rst) { 5521 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5522 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5523 LINUX_MIB_TCPACKSKIPPEDPAWS, 5524 &tp->last_oow_ack_time)) 5525 tcp_send_dupack(sk, skb); 5526 goto discard; 5527 } 5528 /* Reset is accepted even if it did not pass PAWS. */ 5529 } 5530 5531 /* Step 1: check sequence number */ 5532 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5533 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5534 * (RST) segments are validated by checking their SEQ-fields." 5535 * And page 69: "If an incoming segment is not acceptable, 5536 * an acknowledgment should be sent in reply (unless the RST 5537 * bit is set, if so drop the segment and return)". 5538 */ 5539 if (!th->rst) { 5540 if (th->syn) 5541 goto syn_challenge; 5542 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5543 LINUX_MIB_TCPACKSKIPPEDSEQ, 5544 &tp->last_oow_ack_time)) 5545 tcp_send_dupack(sk, skb); 5546 } else if (tcp_reset_check(sk, skb)) { 5547 tcp_reset(sk); 5548 } 5549 goto discard; 5550 } 5551 5552 /* Step 2: check RST bit */ 5553 if (th->rst) { 5554 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5555 * FIN and SACK too if available): 5556 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5557 * the right-most SACK block, 5558 * then 5559 * RESET the connection 5560 * else 5561 * Send a challenge ACK 5562 */ 5563 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5564 tcp_reset_check(sk, skb)) { 5565 rst_seq_match = true; 5566 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5567 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5568 int max_sack = sp[0].end_seq; 5569 int this_sack; 5570 5571 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5572 ++this_sack) { 5573 max_sack = after(sp[this_sack].end_seq, 5574 max_sack) ? 5575 sp[this_sack].end_seq : max_sack; 5576 } 5577 5578 if (TCP_SKB_CB(skb)->seq == max_sack) 5579 rst_seq_match = true; 5580 } 5581 5582 if (rst_seq_match) 5583 tcp_reset(sk); 5584 else { 5585 /* Disable TFO if RST is out-of-order 5586 * and no data has been received 5587 * for current active TFO socket 5588 */ 5589 if (tp->syn_fastopen && !tp->data_segs_in && 5590 sk->sk_state == TCP_ESTABLISHED) 5591 tcp_fastopen_active_disable(sk); 5592 tcp_send_challenge_ack(sk, skb); 5593 } 5594 goto discard; 5595 } 5596 5597 /* step 3: check security and precedence [ignored] */ 5598 5599 /* step 4: Check for a SYN 5600 * RFC 5961 4.2 : Send a challenge ack 5601 */ 5602 if (th->syn) { 5603 syn_challenge: 5604 if (syn_inerr) 5605 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5606 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5607 tcp_send_challenge_ack(sk, skb); 5608 goto discard; 5609 } 5610 5611 return true; 5612 5613 discard: 5614 tcp_drop(sk, skb); 5615 return false; 5616 } 5617 5618 /* 5619 * TCP receive function for the ESTABLISHED state. 5620 * 5621 * It is split into a fast path and a slow path. The fast path is 5622 * disabled when: 5623 * - A zero window was announced from us - zero window probing 5624 * is only handled properly in the slow path. 5625 * - Out of order segments arrived. 5626 * - Urgent data is expected. 5627 * - There is no buffer space left 5628 * - Unexpected TCP flags/window values/header lengths are received 5629 * (detected by checking the TCP header against pred_flags) 5630 * - Data is sent in both directions. Fast path only supports pure senders 5631 * or pure receivers (this means either the sequence number or the ack 5632 * value must stay constant) 5633 * - Unexpected TCP option. 5634 * 5635 * When these conditions are not satisfied it drops into a standard 5636 * receive procedure patterned after RFC793 to handle all cases. 5637 * The first three cases are guaranteed by proper pred_flags setting, 5638 * the rest is checked inline. Fast processing is turned on in 5639 * tcp_data_queue when everything is OK. 5640 */ 5641 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5642 { 5643 const struct tcphdr *th = (const struct tcphdr *)skb->data; 5644 struct tcp_sock *tp = tcp_sk(sk); 5645 unsigned int len = skb->len; 5646 5647 /* TCP congestion window tracking */ 5648 trace_tcp_probe(sk, skb); 5649 5650 tcp_mstamp_refresh(tp); 5651 if (unlikely(!sk->sk_rx_dst)) 5652 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5653 /* 5654 * Header prediction. 5655 * The code loosely follows the one in the famous 5656 * "30 instruction TCP receive" Van Jacobson mail. 5657 * 5658 * Van's trick is to deposit buffers into socket queue 5659 * on a device interrupt, to call tcp_recv function 5660 * on the receive process context and checksum and copy 5661 * the buffer to user space. smart... 5662 * 5663 * Our current scheme is not silly either but we take the 5664 * extra cost of the net_bh soft interrupt processing... 5665 * We do checksum and copy also but from device to kernel. 5666 */ 5667 5668 tp->rx_opt.saw_tstamp = 0; 5669 5670 /* pred_flags is 0xS?10 << 16 + snd_wnd 5671 * if header_prediction is to be made 5672 * 'S' will always be tp->tcp_header_len >> 2 5673 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5674 * turn it off (when there are holes in the receive 5675 * space for instance) 5676 * PSH flag is ignored. 5677 */ 5678 5679 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5680 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5681 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5682 int tcp_header_len = tp->tcp_header_len; 5683 5684 /* Timestamp header prediction: tcp_header_len 5685 * is automatically equal to th->doff*4 due to pred_flags 5686 * match. 5687 */ 5688 5689 /* Check timestamp */ 5690 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5691 /* No? Slow path! */ 5692 if (!tcp_parse_aligned_timestamp(tp, th)) 5693 goto slow_path; 5694 5695 /* If PAWS failed, check it more carefully in slow path */ 5696 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5697 goto slow_path; 5698 5699 /* DO NOT update ts_recent here, if checksum fails 5700 * and timestamp was corrupted part, it will result 5701 * in a hung connection since we will drop all 5702 * future packets due to the PAWS test. 5703 */ 5704 } 5705 5706 if (len <= tcp_header_len) { 5707 /* Bulk data transfer: sender */ 5708 if (len == tcp_header_len) { 5709 /* Predicted packet is in window by definition. 5710 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5711 * Hence, check seq<=rcv_wup reduces to: 5712 */ 5713 if (tcp_header_len == 5714 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5715 tp->rcv_nxt == tp->rcv_wup) 5716 tcp_store_ts_recent(tp); 5717 5718 /* We know that such packets are checksummed 5719 * on entry. 5720 */ 5721 tcp_ack(sk, skb, 0); 5722 __kfree_skb(skb); 5723 tcp_data_snd_check(sk); 5724 /* When receiving pure ack in fast path, update 5725 * last ts ecr directly instead of calling 5726 * tcp_rcv_rtt_measure_ts() 5727 */ 5728 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 5729 return; 5730 } else { /* Header too small */ 5731 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5732 goto discard; 5733 } 5734 } else { 5735 int eaten = 0; 5736 bool fragstolen = false; 5737 5738 if (tcp_checksum_complete(skb)) 5739 goto csum_error; 5740 5741 if ((int)skb->truesize > sk->sk_forward_alloc) 5742 goto step5; 5743 5744 /* Predicted packet is in window by definition. 5745 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5746 * Hence, check seq<=rcv_wup reduces to: 5747 */ 5748 if (tcp_header_len == 5749 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5750 tp->rcv_nxt == tp->rcv_wup) 5751 tcp_store_ts_recent(tp); 5752 5753 tcp_rcv_rtt_measure_ts(sk, skb); 5754 5755 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5756 5757 /* Bulk data transfer: receiver */ 5758 __skb_pull(skb, tcp_header_len); 5759 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5760 5761 tcp_event_data_recv(sk, skb); 5762 5763 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5764 /* Well, only one small jumplet in fast path... */ 5765 tcp_ack(sk, skb, FLAG_DATA); 5766 tcp_data_snd_check(sk); 5767 if (!inet_csk_ack_scheduled(sk)) 5768 goto no_ack; 5769 } 5770 5771 __tcp_ack_snd_check(sk, 0); 5772 no_ack: 5773 if (eaten) 5774 kfree_skb_partial(skb, fragstolen); 5775 tcp_data_ready(sk); 5776 return; 5777 } 5778 } 5779 5780 slow_path: 5781 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5782 goto csum_error; 5783 5784 if (!th->ack && !th->rst && !th->syn) 5785 goto discard; 5786 5787 /* 5788 * Standard slow path. 5789 */ 5790 5791 if (!tcp_validate_incoming(sk, skb, th, 1)) 5792 return; 5793 5794 step5: 5795 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5796 goto discard; 5797 5798 tcp_rcv_rtt_measure_ts(sk, skb); 5799 5800 /* Process urgent data. */ 5801 tcp_urg(sk, skb, th); 5802 5803 /* step 7: process the segment text */ 5804 tcp_data_queue(sk, skb); 5805 5806 tcp_data_snd_check(sk); 5807 tcp_ack_snd_check(sk); 5808 return; 5809 5810 csum_error: 5811 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5812 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5813 5814 discard: 5815 tcp_drop(sk, skb); 5816 } 5817 EXPORT_SYMBOL(tcp_rcv_established); 5818 5819 void tcp_init_transfer(struct sock *sk, int bpf_op) 5820 { 5821 struct inet_connection_sock *icsk = inet_csk(sk); 5822 struct tcp_sock *tp = tcp_sk(sk); 5823 5824 tcp_mtup_init(sk); 5825 icsk->icsk_af_ops->rebuild_header(sk); 5826 tcp_init_metrics(sk); 5827 5828 /* Initialize the congestion window to start the transfer. 5829 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 5830 * retransmitted. In light of RFC6298 more aggressive 1sec 5831 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 5832 * retransmission has occurred. 5833 */ 5834 if (tp->total_retrans > 1 && tp->undo_marker) 5835 tp->snd_cwnd = 1; 5836 else 5837 tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 5838 tp->snd_cwnd_stamp = tcp_jiffies32; 5839 5840 tcp_call_bpf(sk, bpf_op, 0, NULL); 5841 tcp_init_congestion_control(sk); 5842 tcp_init_buffer_space(sk); 5843 } 5844 5845 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5846 { 5847 struct tcp_sock *tp = tcp_sk(sk); 5848 struct inet_connection_sock *icsk = inet_csk(sk); 5849 5850 tcp_set_state(sk, TCP_ESTABLISHED); 5851 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5852 5853 if (skb) { 5854 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5855 security_inet_conn_established(sk, skb); 5856 sk_mark_napi_id(sk, skb); 5857 } 5858 5859 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB); 5860 5861 /* Prevent spurious tcp_cwnd_restart() on first data 5862 * packet. 5863 */ 5864 tp->lsndtime = tcp_jiffies32; 5865 5866 if (sock_flag(sk, SOCK_KEEPOPEN)) 5867 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5868 5869 if (!tp->rx_opt.snd_wscale) 5870 __tcp_fast_path_on(tp, tp->snd_wnd); 5871 else 5872 tp->pred_flags = 0; 5873 } 5874 5875 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5876 struct tcp_fastopen_cookie *cookie) 5877 { 5878 struct tcp_sock *tp = tcp_sk(sk); 5879 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 5880 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5881 bool syn_drop = false; 5882 5883 if (mss == tp->rx_opt.user_mss) { 5884 struct tcp_options_received opt; 5885 5886 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5887 tcp_clear_options(&opt); 5888 opt.user_mss = opt.mss_clamp = 0; 5889 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 5890 mss = opt.mss_clamp; 5891 } 5892 5893 if (!tp->syn_fastopen) { 5894 /* Ignore an unsolicited cookie */ 5895 cookie->len = -1; 5896 } else if (tp->total_retrans) { 5897 /* SYN timed out and the SYN-ACK neither has a cookie nor 5898 * acknowledges data. Presumably the remote received only 5899 * the retransmitted (regular) SYNs: either the original 5900 * SYN-data or the corresponding SYN-ACK was dropped. 5901 */ 5902 syn_drop = (cookie->len < 0 && data); 5903 } else if (cookie->len < 0 && !tp->syn_data) { 5904 /* We requested a cookie but didn't get it. If we did not use 5905 * the (old) exp opt format then try so next time (try_exp=1). 5906 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5907 */ 5908 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5909 } 5910 5911 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5912 5913 if (data) { /* Retransmit unacked data in SYN */ 5914 if (tp->total_retrans) 5915 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 5916 else 5917 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 5918 skb_rbtree_walk_from(data) { 5919 if (__tcp_retransmit_skb(sk, data, 1)) 5920 break; 5921 } 5922 tcp_rearm_rto(sk); 5923 NET_INC_STATS(sock_net(sk), 5924 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5925 return true; 5926 } 5927 tp->syn_data_acked = tp->syn_data; 5928 if (tp->syn_data_acked) { 5929 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 5930 /* SYN-data is counted as two separate packets in tcp_ack() */ 5931 if (tp->delivered > 1) 5932 --tp->delivered; 5933 } 5934 5935 tcp_fastopen_add_skb(sk, synack); 5936 5937 return false; 5938 } 5939 5940 static void smc_check_reset_syn(struct tcp_sock *tp) 5941 { 5942 #if IS_ENABLED(CONFIG_SMC) 5943 if (static_branch_unlikely(&tcp_have_smc)) { 5944 if (tp->syn_smc && !tp->rx_opt.smc_ok) 5945 tp->syn_smc = 0; 5946 } 5947 #endif 5948 } 5949 5950 static void tcp_try_undo_spurious_syn(struct sock *sk) 5951 { 5952 struct tcp_sock *tp = tcp_sk(sk); 5953 u32 syn_stamp; 5954 5955 /* undo_marker is set when SYN or SYNACK times out. The timeout is 5956 * spurious if the ACK's timestamp option echo value matches the 5957 * original SYN timestamp. 5958 */ 5959 syn_stamp = tp->retrans_stamp; 5960 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 5961 syn_stamp == tp->rx_opt.rcv_tsecr) 5962 tp->undo_marker = 0; 5963 } 5964 5965 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5966 const struct tcphdr *th) 5967 { 5968 struct inet_connection_sock *icsk = inet_csk(sk); 5969 struct tcp_sock *tp = tcp_sk(sk); 5970 struct tcp_fastopen_cookie foc = { .len = -1 }; 5971 int saved_clamp = tp->rx_opt.mss_clamp; 5972 bool fastopen_fail; 5973 5974 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 5975 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5976 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5977 5978 if (th->ack) { 5979 /* rfc793: 5980 * "If the state is SYN-SENT then 5981 * first check the ACK bit 5982 * If the ACK bit is set 5983 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5984 * a reset (unless the RST bit is set, if so drop 5985 * the segment and return)" 5986 */ 5987 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5988 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5989 /* Previous FIN/ACK or RST/ACK might be ignored. */ 5990 if (icsk->icsk_retransmits == 0) 5991 inet_csk_reset_xmit_timer(sk, 5992 ICSK_TIME_RETRANS, 5993 TCP_TIMEOUT_MIN, TCP_RTO_MAX); 5994 goto reset_and_undo; 5995 } 5996 5997 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5998 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5999 tcp_time_stamp(tp))) { 6000 NET_INC_STATS(sock_net(sk), 6001 LINUX_MIB_PAWSACTIVEREJECTED); 6002 goto reset_and_undo; 6003 } 6004 6005 /* Now ACK is acceptable. 6006 * 6007 * "If the RST bit is set 6008 * If the ACK was acceptable then signal the user "error: 6009 * connection reset", drop the segment, enter CLOSED state, 6010 * delete TCB, and return." 6011 */ 6012 6013 if (th->rst) { 6014 tcp_reset(sk); 6015 goto discard; 6016 } 6017 6018 /* rfc793: 6019 * "fifth, if neither of the SYN or RST bits is set then 6020 * drop the segment and return." 6021 * 6022 * See note below! 6023 * --ANK(990513) 6024 */ 6025 if (!th->syn) 6026 goto discard_and_undo; 6027 6028 /* rfc793: 6029 * "If the SYN bit is on ... 6030 * are acceptable then ... 6031 * (our SYN has been ACKed), change the connection 6032 * state to ESTABLISHED..." 6033 */ 6034 6035 tcp_ecn_rcv_synack(tp, th); 6036 6037 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6038 tcp_try_undo_spurious_syn(sk); 6039 tcp_ack(sk, skb, FLAG_SLOWPATH); 6040 6041 /* Ok.. it's good. Set up sequence numbers and 6042 * move to established. 6043 */ 6044 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6045 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6046 6047 /* RFC1323: The window in SYN & SYN/ACK segments is 6048 * never scaled. 6049 */ 6050 tp->snd_wnd = ntohs(th->window); 6051 6052 if (!tp->rx_opt.wscale_ok) { 6053 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 6054 tp->window_clamp = min(tp->window_clamp, 65535U); 6055 } 6056 6057 if (tp->rx_opt.saw_tstamp) { 6058 tp->rx_opt.tstamp_ok = 1; 6059 tp->tcp_header_len = 6060 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6061 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6062 tcp_store_ts_recent(tp); 6063 } else { 6064 tp->tcp_header_len = sizeof(struct tcphdr); 6065 } 6066 6067 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6068 tcp_initialize_rcv_mss(sk); 6069 6070 /* Remember, tcp_poll() does not lock socket! 6071 * Change state from SYN-SENT only after copied_seq 6072 * is initialized. */ 6073 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6074 6075 smc_check_reset_syn(tp); 6076 6077 smp_mb(); 6078 6079 tcp_finish_connect(sk, skb); 6080 6081 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 6082 tcp_rcv_fastopen_synack(sk, skb, &foc); 6083 6084 if (!sock_flag(sk, SOCK_DEAD)) { 6085 sk->sk_state_change(sk); 6086 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6087 } 6088 if (fastopen_fail) 6089 return -1; 6090 if (sk->sk_write_pending || 6091 icsk->icsk_accept_queue.rskq_defer_accept || 6092 inet_csk_in_pingpong_mode(sk)) { 6093 /* Save one ACK. Data will be ready after 6094 * several ticks, if write_pending is set. 6095 * 6096 * It may be deleted, but with this feature tcpdumps 6097 * look so _wonderfully_ clever, that I was not able 6098 * to stand against the temptation 8) --ANK 6099 */ 6100 inet_csk_schedule_ack(sk); 6101 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 6102 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 6103 TCP_DELACK_MAX, TCP_RTO_MAX); 6104 6105 discard: 6106 tcp_drop(sk, skb); 6107 return 0; 6108 } else { 6109 tcp_send_ack(sk); 6110 } 6111 return -1; 6112 } 6113 6114 /* No ACK in the segment */ 6115 6116 if (th->rst) { 6117 /* rfc793: 6118 * "If the RST bit is set 6119 * 6120 * Otherwise (no ACK) drop the segment and return." 6121 */ 6122 6123 goto discard_and_undo; 6124 } 6125 6126 /* PAWS check. */ 6127 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 6128 tcp_paws_reject(&tp->rx_opt, 0)) 6129 goto discard_and_undo; 6130 6131 if (th->syn) { 6132 /* We see SYN without ACK. It is attempt of 6133 * simultaneous connect with crossed SYNs. 6134 * Particularly, it can be connect to self. 6135 */ 6136 tcp_set_state(sk, TCP_SYN_RECV); 6137 6138 if (tp->rx_opt.saw_tstamp) { 6139 tp->rx_opt.tstamp_ok = 1; 6140 tcp_store_ts_recent(tp); 6141 tp->tcp_header_len = 6142 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6143 } else { 6144 tp->tcp_header_len = sizeof(struct tcphdr); 6145 } 6146 6147 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6148 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6149 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6150 6151 /* RFC1323: The window in SYN & SYN/ACK segments is 6152 * never scaled. 6153 */ 6154 tp->snd_wnd = ntohs(th->window); 6155 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6156 tp->max_window = tp->snd_wnd; 6157 6158 tcp_ecn_rcv_syn(tp, th); 6159 6160 tcp_mtup_init(sk); 6161 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6162 tcp_initialize_rcv_mss(sk); 6163 6164 tcp_send_synack(sk); 6165 #if 0 6166 /* Note, we could accept data and URG from this segment. 6167 * There are no obstacles to make this (except that we must 6168 * either change tcp_recvmsg() to prevent it from returning data 6169 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6170 * 6171 * However, if we ignore data in ACKless segments sometimes, 6172 * we have no reasons to accept it sometimes. 6173 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6174 * is not flawless. So, discard packet for sanity. 6175 * Uncomment this return to process the data. 6176 */ 6177 return -1; 6178 #else 6179 goto discard; 6180 #endif 6181 } 6182 /* "fifth, if neither of the SYN or RST bits is set then 6183 * drop the segment and return." 6184 */ 6185 6186 discard_and_undo: 6187 tcp_clear_options(&tp->rx_opt); 6188 tp->rx_opt.mss_clamp = saved_clamp; 6189 goto discard; 6190 6191 reset_and_undo: 6192 tcp_clear_options(&tp->rx_opt); 6193 tp->rx_opt.mss_clamp = saved_clamp; 6194 return 1; 6195 } 6196 6197 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6198 { 6199 struct request_sock *req; 6200 6201 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows 6202 * undo. If peer SACKs triggered fast recovery, we can't undo here. 6203 */ 6204 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 6205 tcp_try_undo_loss(sk, false); 6206 6207 /* Reset rtx states to prevent spurious retransmits_timed_out() */ 6208 tcp_sk(sk)->retrans_stamp = 0; 6209 inet_csk(sk)->icsk_retransmits = 0; 6210 6211 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6212 * we no longer need req so release it. 6213 */ 6214 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 6215 lockdep_sock_is_held(sk)); 6216 reqsk_fastopen_remove(sk, req, false); 6217 6218 /* Re-arm the timer because data may have been sent out. 6219 * This is similar to the regular data transmission case 6220 * when new data has just been ack'ed. 6221 * 6222 * (TFO) - we could try to be more aggressive and 6223 * retransmitting any data sooner based on when they 6224 * are sent out. 6225 */ 6226 tcp_rearm_rto(sk); 6227 } 6228 6229 /* 6230 * This function implements the receiving procedure of RFC 793 for 6231 * all states except ESTABLISHED and TIME_WAIT. 6232 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6233 * address independent. 6234 */ 6235 6236 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6237 { 6238 struct tcp_sock *tp = tcp_sk(sk); 6239 struct inet_connection_sock *icsk = inet_csk(sk); 6240 const struct tcphdr *th = tcp_hdr(skb); 6241 struct request_sock *req; 6242 int queued = 0; 6243 bool acceptable; 6244 6245 switch (sk->sk_state) { 6246 case TCP_CLOSE: 6247 goto discard; 6248 6249 case TCP_LISTEN: 6250 if (th->ack) 6251 return 1; 6252 6253 if (th->rst) 6254 goto discard; 6255 6256 if (th->syn) { 6257 if (th->fin) 6258 goto discard; 6259 /* It is possible that we process SYN packets from backlog, 6260 * so we need to make sure to disable BH and RCU right there. 6261 */ 6262 rcu_read_lock(); 6263 local_bh_disable(); 6264 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 6265 local_bh_enable(); 6266 rcu_read_unlock(); 6267 6268 if (!acceptable) 6269 return 1; 6270 consume_skb(skb); 6271 return 0; 6272 } 6273 goto discard; 6274 6275 case TCP_SYN_SENT: 6276 tp->rx_opt.saw_tstamp = 0; 6277 tcp_mstamp_refresh(tp); 6278 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6279 if (queued >= 0) 6280 return queued; 6281 6282 /* Do step6 onward by hand. */ 6283 tcp_urg(sk, skb, th); 6284 __kfree_skb(skb); 6285 tcp_data_snd_check(sk); 6286 return 0; 6287 } 6288 6289 tcp_mstamp_refresh(tp); 6290 tp->rx_opt.saw_tstamp = 0; 6291 req = rcu_dereference_protected(tp->fastopen_rsk, 6292 lockdep_sock_is_held(sk)); 6293 if (req) { 6294 bool req_stolen; 6295 6296 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6297 sk->sk_state != TCP_FIN_WAIT1); 6298 6299 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) 6300 goto discard; 6301 } 6302 6303 if (!th->ack && !th->rst && !th->syn) 6304 goto discard; 6305 6306 if (!tcp_validate_incoming(sk, skb, th, 0)) 6307 return 0; 6308 6309 /* step 5: check the ACK field */ 6310 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 6311 FLAG_UPDATE_TS_RECENT | 6312 FLAG_NO_CHALLENGE_ACK) > 0; 6313 6314 if (!acceptable) { 6315 if (sk->sk_state == TCP_SYN_RECV) 6316 return 1; /* send one RST */ 6317 tcp_send_challenge_ack(sk, skb); 6318 goto discard; 6319 } 6320 switch (sk->sk_state) { 6321 case TCP_SYN_RECV: 6322 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6323 if (!tp->srtt_us) 6324 tcp_synack_rtt_meas(sk, req); 6325 6326 if (req) { 6327 tcp_rcv_synrecv_state_fastopen(sk); 6328 } else { 6329 tcp_try_undo_spurious_syn(sk); 6330 tp->retrans_stamp = 0; 6331 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB); 6332 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6333 } 6334 smp_mb(); 6335 tcp_set_state(sk, TCP_ESTABLISHED); 6336 sk->sk_state_change(sk); 6337 6338 /* Note, that this wakeup is only for marginal crossed SYN case. 6339 * Passively open sockets are not waked up, because 6340 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6341 */ 6342 if (sk->sk_socket) 6343 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6344 6345 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6346 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6347 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6348 6349 if (tp->rx_opt.tstamp_ok) 6350 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6351 6352 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6353 tcp_update_pacing_rate(sk); 6354 6355 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6356 tp->lsndtime = tcp_jiffies32; 6357 6358 tcp_initialize_rcv_mss(sk); 6359 tcp_fast_path_on(tp); 6360 break; 6361 6362 case TCP_FIN_WAIT1: { 6363 int tmo; 6364 6365 if (req) 6366 tcp_rcv_synrecv_state_fastopen(sk); 6367 6368 if (tp->snd_una != tp->write_seq) 6369 break; 6370 6371 tcp_set_state(sk, TCP_FIN_WAIT2); 6372 sk->sk_shutdown |= SEND_SHUTDOWN; 6373 6374 sk_dst_confirm(sk); 6375 6376 if (!sock_flag(sk, SOCK_DEAD)) { 6377 /* Wake up lingering close() */ 6378 sk->sk_state_change(sk); 6379 break; 6380 } 6381 6382 if (tp->linger2 < 0) { 6383 tcp_done(sk); 6384 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6385 return 1; 6386 } 6387 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6388 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6389 /* Receive out of order FIN after close() */ 6390 if (tp->syn_fastopen && th->fin) 6391 tcp_fastopen_active_disable(sk); 6392 tcp_done(sk); 6393 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6394 return 1; 6395 } 6396 6397 tmo = tcp_fin_time(sk); 6398 if (tmo > TCP_TIMEWAIT_LEN) { 6399 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6400 } else if (th->fin || sock_owned_by_user(sk)) { 6401 /* Bad case. We could lose such FIN otherwise. 6402 * It is not a big problem, but it looks confusing 6403 * and not so rare event. We still can lose it now, 6404 * if it spins in bh_lock_sock(), but it is really 6405 * marginal case. 6406 */ 6407 inet_csk_reset_keepalive_timer(sk, tmo); 6408 } else { 6409 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6410 goto discard; 6411 } 6412 break; 6413 } 6414 6415 case TCP_CLOSING: 6416 if (tp->snd_una == tp->write_seq) { 6417 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6418 goto discard; 6419 } 6420 break; 6421 6422 case TCP_LAST_ACK: 6423 if (tp->snd_una == tp->write_seq) { 6424 tcp_update_metrics(sk); 6425 tcp_done(sk); 6426 goto discard; 6427 } 6428 break; 6429 } 6430 6431 /* step 6: check the URG bit */ 6432 tcp_urg(sk, skb, th); 6433 6434 /* step 7: process the segment text */ 6435 switch (sk->sk_state) { 6436 case TCP_CLOSE_WAIT: 6437 case TCP_CLOSING: 6438 case TCP_LAST_ACK: 6439 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 6440 if (sk_is_mptcp(sk)) 6441 mptcp_incoming_options(sk, skb, &tp->rx_opt); 6442 break; 6443 } 6444 fallthrough; 6445 case TCP_FIN_WAIT1: 6446 case TCP_FIN_WAIT2: 6447 /* RFC 793 says to queue data in these states, 6448 * RFC 1122 says we MUST send a reset. 6449 * BSD 4.4 also does reset. 6450 */ 6451 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6452 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6453 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6454 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6455 tcp_reset(sk); 6456 return 1; 6457 } 6458 } 6459 fallthrough; 6460 case TCP_ESTABLISHED: 6461 tcp_data_queue(sk, skb); 6462 queued = 1; 6463 break; 6464 } 6465 6466 /* tcp_data could move socket to TIME-WAIT */ 6467 if (sk->sk_state != TCP_CLOSE) { 6468 tcp_data_snd_check(sk); 6469 tcp_ack_snd_check(sk); 6470 } 6471 6472 if (!queued) { 6473 discard: 6474 tcp_drop(sk, skb); 6475 } 6476 return 0; 6477 } 6478 EXPORT_SYMBOL(tcp_rcv_state_process); 6479 6480 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6481 { 6482 struct inet_request_sock *ireq = inet_rsk(req); 6483 6484 if (family == AF_INET) 6485 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6486 &ireq->ir_rmt_addr, port); 6487 #if IS_ENABLED(CONFIG_IPV6) 6488 else if (family == AF_INET6) 6489 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6490 &ireq->ir_v6_rmt_addr, port); 6491 #endif 6492 } 6493 6494 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6495 * 6496 * If we receive a SYN packet with these bits set, it means a 6497 * network is playing bad games with TOS bits. In order to 6498 * avoid possible false congestion notifications, we disable 6499 * TCP ECN negotiation. 6500 * 6501 * Exception: tcp_ca wants ECN. This is required for DCTCP 6502 * congestion control: Linux DCTCP asserts ECT on all packets, 6503 * including SYN, which is most optimal solution; however, 6504 * others, such as FreeBSD do not. 6505 * 6506 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 6507 * set, indicating the use of a future TCP extension (such as AccECN). See 6508 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 6509 * extensions. 6510 */ 6511 static void tcp_ecn_create_request(struct request_sock *req, 6512 const struct sk_buff *skb, 6513 const struct sock *listen_sk, 6514 const struct dst_entry *dst) 6515 { 6516 const struct tcphdr *th = tcp_hdr(skb); 6517 const struct net *net = sock_net(listen_sk); 6518 bool th_ecn = th->ece && th->cwr; 6519 bool ect, ecn_ok; 6520 u32 ecn_ok_dst; 6521 6522 if (!th_ecn) 6523 return; 6524 6525 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6526 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6527 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6528 6529 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6530 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6531 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6532 inet_rsk(req)->ecn_ok = 1; 6533 } 6534 6535 static void tcp_openreq_init(struct request_sock *req, 6536 const struct tcp_options_received *rx_opt, 6537 struct sk_buff *skb, const struct sock *sk) 6538 { 6539 struct inet_request_sock *ireq = inet_rsk(req); 6540 6541 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6542 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6543 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6544 tcp_rsk(req)->snt_synack = 0; 6545 tcp_rsk(req)->last_oow_ack_time = 0; 6546 req->mss = rx_opt->mss_clamp; 6547 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6548 ireq->tstamp_ok = rx_opt->tstamp_ok; 6549 ireq->sack_ok = rx_opt->sack_ok; 6550 ireq->snd_wscale = rx_opt->snd_wscale; 6551 ireq->wscale_ok = rx_opt->wscale_ok; 6552 ireq->acked = 0; 6553 ireq->ecn_ok = 0; 6554 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6555 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6556 ireq->ir_mark = inet_request_mark(sk, skb); 6557 #if IS_ENABLED(CONFIG_SMC) 6558 ireq->smc_ok = rx_opt->smc_ok; 6559 #endif 6560 } 6561 6562 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6563 struct sock *sk_listener, 6564 bool attach_listener) 6565 { 6566 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6567 attach_listener); 6568 6569 if (req) { 6570 struct inet_request_sock *ireq = inet_rsk(req); 6571 6572 ireq->ireq_opt = NULL; 6573 #if IS_ENABLED(CONFIG_IPV6) 6574 ireq->pktopts = NULL; 6575 #endif 6576 atomic64_set(&ireq->ir_cookie, 0); 6577 ireq->ireq_state = TCP_NEW_SYN_RECV; 6578 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6579 ireq->ireq_family = sk_listener->sk_family; 6580 } 6581 6582 return req; 6583 } 6584 EXPORT_SYMBOL(inet_reqsk_alloc); 6585 6586 /* 6587 * Return true if a syncookie should be sent 6588 */ 6589 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto) 6590 { 6591 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6592 const char *msg = "Dropping request"; 6593 bool want_cookie = false; 6594 struct net *net = sock_net(sk); 6595 6596 #ifdef CONFIG_SYN_COOKIES 6597 if (net->ipv4.sysctl_tcp_syncookies) { 6598 msg = "Sending cookies"; 6599 want_cookie = true; 6600 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6601 } else 6602 #endif 6603 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6604 6605 if (!queue->synflood_warned && 6606 net->ipv4.sysctl_tcp_syncookies != 2 && 6607 xchg(&queue->synflood_warned, 1) == 0) 6608 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6609 proto, sk->sk_num, msg); 6610 6611 return want_cookie; 6612 } 6613 6614 static void tcp_reqsk_record_syn(const struct sock *sk, 6615 struct request_sock *req, 6616 const struct sk_buff *skb) 6617 { 6618 if (tcp_sk(sk)->save_syn) { 6619 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6620 u32 *copy; 6621 6622 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6623 if (copy) { 6624 copy[0] = len; 6625 memcpy(©[1], skb_network_header(skb), len); 6626 req->saved_syn = copy; 6627 } 6628 } 6629 } 6630 6631 /* If a SYN cookie is required and supported, returns a clamped MSS value to be 6632 * used for SYN cookie generation. 6633 */ 6634 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 6635 const struct tcp_request_sock_ops *af_ops, 6636 struct sock *sk, struct tcphdr *th) 6637 { 6638 struct tcp_sock *tp = tcp_sk(sk); 6639 u16 mss; 6640 6641 if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 && 6642 !inet_csk_reqsk_queue_is_full(sk)) 6643 return 0; 6644 6645 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 6646 return 0; 6647 6648 if (sk_acceptq_is_full(sk)) { 6649 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6650 return 0; 6651 } 6652 6653 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss); 6654 if (!mss) 6655 mss = af_ops->mss_clamp; 6656 6657 return mss; 6658 } 6659 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss); 6660 6661 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6662 const struct tcp_request_sock_ops *af_ops, 6663 struct sock *sk, struct sk_buff *skb) 6664 { 6665 struct tcp_fastopen_cookie foc = { .len = -1 }; 6666 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6667 struct tcp_options_received tmp_opt; 6668 struct tcp_sock *tp = tcp_sk(sk); 6669 struct net *net = sock_net(sk); 6670 struct sock *fastopen_sk = NULL; 6671 struct request_sock *req; 6672 bool want_cookie = false; 6673 struct dst_entry *dst; 6674 struct flowi fl; 6675 6676 /* TW buckets are converted to open requests without 6677 * limitations, they conserve resources and peer is 6678 * evidently real one. 6679 */ 6680 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6681 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6682 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name); 6683 if (!want_cookie) 6684 goto drop; 6685 } 6686 6687 if (sk_acceptq_is_full(sk)) { 6688 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6689 goto drop; 6690 } 6691 6692 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6693 if (!req) 6694 goto drop; 6695 6696 req->syncookie = want_cookie; 6697 tcp_rsk(req)->af_specific = af_ops; 6698 tcp_rsk(req)->ts_off = 0; 6699 #if IS_ENABLED(CONFIG_MPTCP) 6700 tcp_rsk(req)->is_mptcp = 0; 6701 #endif 6702 6703 tcp_clear_options(&tmp_opt); 6704 tmp_opt.mss_clamp = af_ops->mss_clamp; 6705 tmp_opt.user_mss = tp->rx_opt.user_mss; 6706 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6707 want_cookie ? NULL : &foc); 6708 6709 if (want_cookie && !tmp_opt.saw_tstamp) 6710 tcp_clear_options(&tmp_opt); 6711 6712 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 6713 tmp_opt.smc_ok = 0; 6714 6715 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6716 tcp_openreq_init(req, &tmp_opt, skb, sk); 6717 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6718 6719 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6720 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6721 6722 af_ops->init_req(req, sk, skb); 6723 6724 if (security_inet_conn_request(sk, skb, req)) 6725 goto drop_and_free; 6726 6727 if (tmp_opt.tstamp_ok) 6728 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6729 6730 dst = af_ops->route_req(sk, &fl, req); 6731 if (!dst) 6732 goto drop_and_free; 6733 6734 if (!want_cookie && !isn) { 6735 /* Kill the following clause, if you dislike this way. */ 6736 if (!net->ipv4.sysctl_tcp_syncookies && 6737 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6738 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6739 !tcp_peer_is_proven(req, dst)) { 6740 /* Without syncookies last quarter of 6741 * backlog is filled with destinations, 6742 * proven to be alive. 6743 * It means that we continue to communicate 6744 * to destinations, already remembered 6745 * to the moment of synflood. 6746 */ 6747 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6748 rsk_ops->family); 6749 goto drop_and_release; 6750 } 6751 6752 isn = af_ops->init_seq(skb); 6753 } 6754 6755 tcp_ecn_create_request(req, skb, sk, dst); 6756 6757 if (want_cookie) { 6758 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6759 if (!tmp_opt.tstamp_ok) 6760 inet_rsk(req)->ecn_ok = 0; 6761 } 6762 6763 tcp_rsk(req)->snt_isn = isn; 6764 tcp_rsk(req)->txhash = net_tx_rndhash(); 6765 tcp_openreq_init_rwin(req, sk, dst); 6766 sk_rx_queue_set(req_to_sk(req), skb); 6767 if (!want_cookie) { 6768 tcp_reqsk_record_syn(sk, req, skb); 6769 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6770 } 6771 if (fastopen_sk) { 6772 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6773 &foc, TCP_SYNACK_FASTOPEN); 6774 /* Add the child socket directly into the accept queue */ 6775 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 6776 reqsk_fastopen_remove(fastopen_sk, req, false); 6777 bh_unlock_sock(fastopen_sk); 6778 sock_put(fastopen_sk); 6779 goto drop_and_free; 6780 } 6781 sk->sk_data_ready(sk); 6782 bh_unlock_sock(fastopen_sk); 6783 sock_put(fastopen_sk); 6784 } else { 6785 tcp_rsk(req)->tfo_listener = false; 6786 if (!want_cookie) 6787 inet_csk_reqsk_queue_hash_add(sk, req, 6788 tcp_timeout_init((struct sock *)req)); 6789 af_ops->send_synack(sk, dst, &fl, req, &foc, 6790 !want_cookie ? TCP_SYNACK_NORMAL : 6791 TCP_SYNACK_COOKIE); 6792 if (want_cookie) { 6793 reqsk_free(req); 6794 return 0; 6795 } 6796 } 6797 reqsk_put(req); 6798 return 0; 6799 6800 drop_and_release: 6801 dst_release(dst); 6802 drop_and_free: 6803 __reqsk_free(req); 6804 drop: 6805 tcp_listendrop(sk); 6806 return 0; 6807 } 6808 EXPORT_SYMBOL(tcp_conn_request); 6809