xref: /openbmc/linux/net/ipv4/tcp_input.c (revision b24413180f5600bcb3bb70fbed5cf186b60864bd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 
80 int sysctl_tcp_fack __read_mostly;
81 int sysctl_tcp_max_reordering __read_mostly = 300;
82 int sysctl_tcp_dsack __read_mostly = 1;
83 int sysctl_tcp_app_win __read_mostly = 31;
84 int sysctl_tcp_adv_win_scale __read_mostly = 1;
85 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
86 
87 /* rfc5961 challenge ack rate limiting */
88 int sysctl_tcp_challenge_ack_limit = 1000;
89 
90 int sysctl_tcp_stdurg __read_mostly;
91 int sysctl_tcp_rfc1337 __read_mostly;
92 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
93 int sysctl_tcp_frto __read_mostly = 2;
94 int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
95 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
96 int sysctl_tcp_early_retrans __read_mostly = 3;
97 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
98 
99 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
100 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
101 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
102 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
103 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
104 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
105 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
106 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
107 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
108 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
109 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
110 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
111 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
112 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
113 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
114 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
115 
116 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
120 
121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
123 
124 #define REXMIT_NONE	0 /* no loss recovery to do */
125 #define REXMIT_LOST	1 /* retransmit packets marked lost */
126 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
127 
128 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
129 			     unsigned int len)
130 {
131 	static bool __once __read_mostly;
132 
133 	if (!__once) {
134 		struct net_device *dev;
135 
136 		__once = true;
137 
138 		rcu_read_lock();
139 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
140 		if (!dev || len >= dev->mtu)
141 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
142 				dev ? dev->name : "Unknown driver");
143 		rcu_read_unlock();
144 	}
145 }
146 
147 /* Adapt the MSS value used to make delayed ack decision to the
148  * real world.
149  */
150 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
151 {
152 	struct inet_connection_sock *icsk = inet_csk(sk);
153 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
154 	unsigned int len;
155 
156 	icsk->icsk_ack.last_seg_size = 0;
157 
158 	/* skb->len may jitter because of SACKs, even if peer
159 	 * sends good full-sized frames.
160 	 */
161 	len = skb_shinfo(skb)->gso_size ? : skb->len;
162 	if (len >= icsk->icsk_ack.rcv_mss) {
163 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
164 					       tcp_sk(sk)->advmss);
165 		/* Account for possibly-removed options */
166 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
167 				   MAX_TCP_OPTION_SPACE))
168 			tcp_gro_dev_warn(sk, skb, len);
169 	} else {
170 		/* Otherwise, we make more careful check taking into account,
171 		 * that SACKs block is variable.
172 		 *
173 		 * "len" is invariant segment length, including TCP header.
174 		 */
175 		len += skb->data - skb_transport_header(skb);
176 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
177 		    /* If PSH is not set, packet should be
178 		     * full sized, provided peer TCP is not badly broken.
179 		     * This observation (if it is correct 8)) allows
180 		     * to handle super-low mtu links fairly.
181 		     */
182 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
183 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
184 			/* Subtract also invariant (if peer is RFC compliant),
185 			 * tcp header plus fixed timestamp option length.
186 			 * Resulting "len" is MSS free of SACK jitter.
187 			 */
188 			len -= tcp_sk(sk)->tcp_header_len;
189 			icsk->icsk_ack.last_seg_size = len;
190 			if (len == lss) {
191 				icsk->icsk_ack.rcv_mss = len;
192 				return;
193 			}
194 		}
195 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
196 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
197 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
198 	}
199 }
200 
201 static void tcp_incr_quickack(struct sock *sk)
202 {
203 	struct inet_connection_sock *icsk = inet_csk(sk);
204 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
205 
206 	if (quickacks == 0)
207 		quickacks = 2;
208 	if (quickacks > icsk->icsk_ack.quick)
209 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
210 }
211 
212 static void tcp_enter_quickack_mode(struct sock *sk)
213 {
214 	struct inet_connection_sock *icsk = inet_csk(sk);
215 	tcp_incr_quickack(sk);
216 	icsk->icsk_ack.pingpong = 0;
217 	icsk->icsk_ack.ato = TCP_ATO_MIN;
218 }
219 
220 /* Send ACKs quickly, if "quick" count is not exhausted
221  * and the session is not interactive.
222  */
223 
224 static bool tcp_in_quickack_mode(struct sock *sk)
225 {
226 	const struct inet_connection_sock *icsk = inet_csk(sk);
227 	const struct dst_entry *dst = __sk_dst_get(sk);
228 
229 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
230 		(icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
231 }
232 
233 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
234 {
235 	if (tp->ecn_flags & TCP_ECN_OK)
236 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
237 }
238 
239 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
240 {
241 	if (tcp_hdr(skb)->cwr)
242 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
243 }
244 
245 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
246 {
247 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
248 }
249 
250 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
251 {
252 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
253 	case INET_ECN_NOT_ECT:
254 		/* Funny extension: if ECT is not set on a segment,
255 		 * and we already seen ECT on a previous segment,
256 		 * it is probably a retransmit.
257 		 */
258 		if (tp->ecn_flags & TCP_ECN_SEEN)
259 			tcp_enter_quickack_mode((struct sock *)tp);
260 		break;
261 	case INET_ECN_CE:
262 		if (tcp_ca_needs_ecn((struct sock *)tp))
263 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
264 
265 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
266 			/* Better not delay acks, sender can have a very low cwnd */
267 			tcp_enter_quickack_mode((struct sock *)tp);
268 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
269 		}
270 		tp->ecn_flags |= TCP_ECN_SEEN;
271 		break;
272 	default:
273 		if (tcp_ca_needs_ecn((struct sock *)tp))
274 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
275 		tp->ecn_flags |= TCP_ECN_SEEN;
276 		break;
277 	}
278 }
279 
280 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
281 {
282 	if (tp->ecn_flags & TCP_ECN_OK)
283 		__tcp_ecn_check_ce(tp, skb);
284 }
285 
286 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
287 {
288 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
289 		tp->ecn_flags &= ~TCP_ECN_OK;
290 }
291 
292 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
293 {
294 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
295 		tp->ecn_flags &= ~TCP_ECN_OK;
296 }
297 
298 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
299 {
300 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
301 		return true;
302 	return false;
303 }
304 
305 /* Buffer size and advertised window tuning.
306  *
307  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
308  */
309 
310 static void tcp_sndbuf_expand(struct sock *sk)
311 {
312 	const struct tcp_sock *tp = tcp_sk(sk);
313 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
314 	int sndmem, per_mss;
315 	u32 nr_segs;
316 
317 	/* Worst case is non GSO/TSO : each frame consumes one skb
318 	 * and skb->head is kmalloced using power of two area of memory
319 	 */
320 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
321 		  MAX_TCP_HEADER +
322 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
323 
324 	per_mss = roundup_pow_of_two(per_mss) +
325 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
326 
327 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
328 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
329 
330 	/* Fast Recovery (RFC 5681 3.2) :
331 	 * Cubic needs 1.7 factor, rounded to 2 to include
332 	 * extra cushion (application might react slowly to POLLOUT)
333 	 */
334 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
335 	sndmem *= nr_segs * per_mss;
336 
337 	if (sk->sk_sndbuf < sndmem)
338 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
339 }
340 
341 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
342  *
343  * All tcp_full_space() is split to two parts: "network" buffer, allocated
344  * forward and advertised in receiver window (tp->rcv_wnd) and
345  * "application buffer", required to isolate scheduling/application
346  * latencies from network.
347  * window_clamp is maximal advertised window. It can be less than
348  * tcp_full_space(), in this case tcp_full_space() - window_clamp
349  * is reserved for "application" buffer. The less window_clamp is
350  * the smoother our behaviour from viewpoint of network, but the lower
351  * throughput and the higher sensitivity of the connection to losses. 8)
352  *
353  * rcv_ssthresh is more strict window_clamp used at "slow start"
354  * phase to predict further behaviour of this connection.
355  * It is used for two goals:
356  * - to enforce header prediction at sender, even when application
357  *   requires some significant "application buffer". It is check #1.
358  * - to prevent pruning of receive queue because of misprediction
359  *   of receiver window. Check #2.
360  *
361  * The scheme does not work when sender sends good segments opening
362  * window and then starts to feed us spaghetti. But it should work
363  * in common situations. Otherwise, we have to rely on queue collapsing.
364  */
365 
366 /* Slow part of check#2. */
367 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
368 {
369 	struct tcp_sock *tp = tcp_sk(sk);
370 	/* Optimize this! */
371 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
372 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
373 
374 	while (tp->rcv_ssthresh <= window) {
375 		if (truesize <= skb->len)
376 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
377 
378 		truesize >>= 1;
379 		window >>= 1;
380 	}
381 	return 0;
382 }
383 
384 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
385 {
386 	struct tcp_sock *tp = tcp_sk(sk);
387 
388 	/* Check #1 */
389 	if (tp->rcv_ssthresh < tp->window_clamp &&
390 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
391 	    !tcp_under_memory_pressure(sk)) {
392 		int incr;
393 
394 		/* Check #2. Increase window, if skb with such overhead
395 		 * will fit to rcvbuf in future.
396 		 */
397 		if (tcp_win_from_space(skb->truesize) <= skb->len)
398 			incr = 2 * tp->advmss;
399 		else
400 			incr = __tcp_grow_window(sk, skb);
401 
402 		if (incr) {
403 			incr = max_t(int, incr, 2 * skb->len);
404 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
405 					       tp->window_clamp);
406 			inet_csk(sk)->icsk_ack.quick |= 1;
407 		}
408 	}
409 }
410 
411 /* 3. Tuning rcvbuf, when connection enters established state. */
412 static void tcp_fixup_rcvbuf(struct sock *sk)
413 {
414 	u32 mss = tcp_sk(sk)->advmss;
415 	int rcvmem;
416 
417 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
418 		 tcp_default_init_rwnd(mss);
419 
420 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
421 	 * Allow enough cushion so that sender is not limited by our window
422 	 */
423 	if (sysctl_tcp_moderate_rcvbuf)
424 		rcvmem <<= 2;
425 
426 	if (sk->sk_rcvbuf < rcvmem)
427 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
428 }
429 
430 /* 4. Try to fixup all. It is made immediately after connection enters
431  *    established state.
432  */
433 void tcp_init_buffer_space(struct sock *sk)
434 {
435 	struct tcp_sock *tp = tcp_sk(sk);
436 	int maxwin;
437 
438 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
439 		tcp_fixup_rcvbuf(sk);
440 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
441 		tcp_sndbuf_expand(sk);
442 
443 	tp->rcvq_space.space = tp->rcv_wnd;
444 	tcp_mstamp_refresh(tp);
445 	tp->rcvq_space.time = tp->tcp_mstamp;
446 	tp->rcvq_space.seq = tp->copied_seq;
447 
448 	maxwin = tcp_full_space(sk);
449 
450 	if (tp->window_clamp >= maxwin) {
451 		tp->window_clamp = maxwin;
452 
453 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
454 			tp->window_clamp = max(maxwin -
455 					       (maxwin >> sysctl_tcp_app_win),
456 					       4 * tp->advmss);
457 	}
458 
459 	/* Force reservation of one segment. */
460 	if (sysctl_tcp_app_win &&
461 	    tp->window_clamp > 2 * tp->advmss &&
462 	    tp->window_clamp + tp->advmss > maxwin)
463 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
464 
465 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
466 	tp->snd_cwnd_stamp = tcp_jiffies32;
467 }
468 
469 /* 5. Recalculate window clamp after socket hit its memory bounds. */
470 static void tcp_clamp_window(struct sock *sk)
471 {
472 	struct tcp_sock *tp = tcp_sk(sk);
473 	struct inet_connection_sock *icsk = inet_csk(sk);
474 
475 	icsk->icsk_ack.quick = 0;
476 
477 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
478 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
479 	    !tcp_under_memory_pressure(sk) &&
480 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
481 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
482 				    sysctl_tcp_rmem[2]);
483 	}
484 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
485 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
486 }
487 
488 /* Initialize RCV_MSS value.
489  * RCV_MSS is an our guess about MSS used by the peer.
490  * We haven't any direct information about the MSS.
491  * It's better to underestimate the RCV_MSS rather than overestimate.
492  * Overestimations make us ACKing less frequently than needed.
493  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
494  */
495 void tcp_initialize_rcv_mss(struct sock *sk)
496 {
497 	const struct tcp_sock *tp = tcp_sk(sk);
498 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
499 
500 	hint = min(hint, tp->rcv_wnd / 2);
501 	hint = min(hint, TCP_MSS_DEFAULT);
502 	hint = max(hint, TCP_MIN_MSS);
503 
504 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
505 }
506 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
507 
508 /* Receiver "autotuning" code.
509  *
510  * The algorithm for RTT estimation w/o timestamps is based on
511  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
512  * <http://public.lanl.gov/radiant/pubs.html#DRS>
513  *
514  * More detail on this code can be found at
515  * <http://staff.psc.edu/jheffner/>,
516  * though this reference is out of date.  A new paper
517  * is pending.
518  */
519 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
520 {
521 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
522 	long m = sample;
523 
524 	if (m == 0)
525 		m = 1;
526 
527 	if (new_sample != 0) {
528 		/* If we sample in larger samples in the non-timestamp
529 		 * case, we could grossly overestimate the RTT especially
530 		 * with chatty applications or bulk transfer apps which
531 		 * are stalled on filesystem I/O.
532 		 *
533 		 * Also, since we are only going for a minimum in the
534 		 * non-timestamp case, we do not smooth things out
535 		 * else with timestamps disabled convergence takes too
536 		 * long.
537 		 */
538 		if (!win_dep) {
539 			m -= (new_sample >> 3);
540 			new_sample += m;
541 		} else {
542 			m <<= 3;
543 			if (m < new_sample)
544 				new_sample = m;
545 		}
546 	} else {
547 		/* No previous measure. */
548 		new_sample = m << 3;
549 	}
550 
551 	tp->rcv_rtt_est.rtt_us = new_sample;
552 }
553 
554 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
555 {
556 	u32 delta_us;
557 
558 	if (tp->rcv_rtt_est.time == 0)
559 		goto new_measure;
560 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
561 		return;
562 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
563 	tcp_rcv_rtt_update(tp, delta_us, 1);
564 
565 new_measure:
566 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
567 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
568 }
569 
570 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
571 					  const struct sk_buff *skb)
572 {
573 	struct tcp_sock *tp = tcp_sk(sk);
574 
575 	if (tp->rx_opt.rcv_tsecr &&
576 	    (TCP_SKB_CB(skb)->end_seq -
577 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
578 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
579 		u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
580 
581 		tcp_rcv_rtt_update(tp, delta_us, 0);
582 	}
583 }
584 
585 /*
586  * This function should be called every time data is copied to user space.
587  * It calculates the appropriate TCP receive buffer space.
588  */
589 void tcp_rcv_space_adjust(struct sock *sk)
590 {
591 	struct tcp_sock *tp = tcp_sk(sk);
592 	int time;
593 	int copied;
594 
595 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
596 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
597 		return;
598 
599 	/* Number of bytes copied to user in last RTT */
600 	copied = tp->copied_seq - tp->rcvq_space.seq;
601 	if (copied <= tp->rcvq_space.space)
602 		goto new_measure;
603 
604 	/* A bit of theory :
605 	 * copied = bytes received in previous RTT, our base window
606 	 * To cope with packet losses, we need a 2x factor
607 	 * To cope with slow start, and sender growing its cwin by 100 %
608 	 * every RTT, we need a 4x factor, because the ACK we are sending
609 	 * now is for the next RTT, not the current one :
610 	 * <prev RTT . ><current RTT .. ><next RTT .... >
611 	 */
612 
613 	if (sysctl_tcp_moderate_rcvbuf &&
614 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
615 		int rcvwin, rcvmem, rcvbuf;
616 
617 		/* minimal window to cope with packet losses, assuming
618 		 * steady state. Add some cushion because of small variations.
619 		 */
620 		rcvwin = (copied << 1) + 16 * tp->advmss;
621 
622 		/* If rate increased by 25%,
623 		 *	assume slow start, rcvwin = 3 * copied
624 		 * If rate increased by 50%,
625 		 *	assume sender can use 2x growth, rcvwin = 4 * copied
626 		 */
627 		if (copied >=
628 		    tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
629 			if (copied >=
630 			    tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
631 				rcvwin <<= 1;
632 			else
633 				rcvwin += (rcvwin >> 1);
634 		}
635 
636 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
637 		while (tcp_win_from_space(rcvmem) < tp->advmss)
638 			rcvmem += 128;
639 
640 		rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
641 		if (rcvbuf > sk->sk_rcvbuf) {
642 			sk->sk_rcvbuf = rcvbuf;
643 
644 			/* Make the window clamp follow along.  */
645 			tp->window_clamp = rcvwin;
646 		}
647 	}
648 	tp->rcvq_space.space = copied;
649 
650 new_measure:
651 	tp->rcvq_space.seq = tp->copied_seq;
652 	tp->rcvq_space.time = tp->tcp_mstamp;
653 }
654 
655 /* There is something which you must keep in mind when you analyze the
656  * behavior of the tp->ato delayed ack timeout interval.  When a
657  * connection starts up, we want to ack as quickly as possible.  The
658  * problem is that "good" TCP's do slow start at the beginning of data
659  * transmission.  The means that until we send the first few ACK's the
660  * sender will sit on his end and only queue most of his data, because
661  * he can only send snd_cwnd unacked packets at any given time.  For
662  * each ACK we send, he increments snd_cwnd and transmits more of his
663  * queue.  -DaveM
664  */
665 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
666 {
667 	struct tcp_sock *tp = tcp_sk(sk);
668 	struct inet_connection_sock *icsk = inet_csk(sk);
669 	u32 now;
670 
671 	inet_csk_schedule_ack(sk);
672 
673 	tcp_measure_rcv_mss(sk, skb);
674 
675 	tcp_rcv_rtt_measure(tp);
676 
677 	now = tcp_jiffies32;
678 
679 	if (!icsk->icsk_ack.ato) {
680 		/* The _first_ data packet received, initialize
681 		 * delayed ACK engine.
682 		 */
683 		tcp_incr_quickack(sk);
684 		icsk->icsk_ack.ato = TCP_ATO_MIN;
685 	} else {
686 		int m = now - icsk->icsk_ack.lrcvtime;
687 
688 		if (m <= TCP_ATO_MIN / 2) {
689 			/* The fastest case is the first. */
690 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
691 		} else if (m < icsk->icsk_ack.ato) {
692 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
693 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
694 				icsk->icsk_ack.ato = icsk->icsk_rto;
695 		} else if (m > icsk->icsk_rto) {
696 			/* Too long gap. Apparently sender failed to
697 			 * restart window, so that we send ACKs quickly.
698 			 */
699 			tcp_incr_quickack(sk);
700 			sk_mem_reclaim(sk);
701 		}
702 	}
703 	icsk->icsk_ack.lrcvtime = now;
704 
705 	tcp_ecn_check_ce(tp, skb);
706 
707 	if (skb->len >= 128)
708 		tcp_grow_window(sk, skb);
709 }
710 
711 /* Called to compute a smoothed rtt estimate. The data fed to this
712  * routine either comes from timestamps, or from segments that were
713  * known _not_ to have been retransmitted [see Karn/Partridge
714  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
715  * piece by Van Jacobson.
716  * NOTE: the next three routines used to be one big routine.
717  * To save cycles in the RFC 1323 implementation it was better to break
718  * it up into three procedures. -- erics
719  */
720 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
721 {
722 	struct tcp_sock *tp = tcp_sk(sk);
723 	long m = mrtt_us; /* RTT */
724 	u32 srtt = tp->srtt_us;
725 
726 	/*	The following amusing code comes from Jacobson's
727 	 *	article in SIGCOMM '88.  Note that rtt and mdev
728 	 *	are scaled versions of rtt and mean deviation.
729 	 *	This is designed to be as fast as possible
730 	 *	m stands for "measurement".
731 	 *
732 	 *	On a 1990 paper the rto value is changed to:
733 	 *	RTO = rtt + 4 * mdev
734 	 *
735 	 * Funny. This algorithm seems to be very broken.
736 	 * These formulae increase RTO, when it should be decreased, increase
737 	 * too slowly, when it should be increased quickly, decrease too quickly
738 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
739 	 * does not matter how to _calculate_ it. Seems, it was trap
740 	 * that VJ failed to avoid. 8)
741 	 */
742 	if (srtt != 0) {
743 		m -= (srtt >> 3);	/* m is now error in rtt est */
744 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
745 		if (m < 0) {
746 			m = -m;		/* m is now abs(error) */
747 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
748 			/* This is similar to one of Eifel findings.
749 			 * Eifel blocks mdev updates when rtt decreases.
750 			 * This solution is a bit different: we use finer gain
751 			 * for mdev in this case (alpha*beta).
752 			 * Like Eifel it also prevents growth of rto,
753 			 * but also it limits too fast rto decreases,
754 			 * happening in pure Eifel.
755 			 */
756 			if (m > 0)
757 				m >>= 3;
758 		} else {
759 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
760 		}
761 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
762 		if (tp->mdev_us > tp->mdev_max_us) {
763 			tp->mdev_max_us = tp->mdev_us;
764 			if (tp->mdev_max_us > tp->rttvar_us)
765 				tp->rttvar_us = tp->mdev_max_us;
766 		}
767 		if (after(tp->snd_una, tp->rtt_seq)) {
768 			if (tp->mdev_max_us < tp->rttvar_us)
769 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
770 			tp->rtt_seq = tp->snd_nxt;
771 			tp->mdev_max_us = tcp_rto_min_us(sk);
772 		}
773 	} else {
774 		/* no previous measure. */
775 		srtt = m << 3;		/* take the measured time to be rtt */
776 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
777 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
778 		tp->mdev_max_us = tp->rttvar_us;
779 		tp->rtt_seq = tp->snd_nxt;
780 	}
781 	tp->srtt_us = max(1U, srtt);
782 }
783 
784 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
785  * Note: TCP stack does not yet implement pacing.
786  * FQ packet scheduler can be used to implement cheap but effective
787  * TCP pacing, to smooth the burst on large writes when packets
788  * in flight is significantly lower than cwnd (or rwin)
789  */
790 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
791 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
792 
793 static void tcp_update_pacing_rate(struct sock *sk)
794 {
795 	const struct tcp_sock *tp = tcp_sk(sk);
796 	u64 rate;
797 
798 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
799 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
800 
801 	/* current rate is (cwnd * mss) / srtt
802 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
803 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
804 	 *
805 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
806 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
807 	 *	 end of slow start and should slow down.
808 	 */
809 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
810 		rate *= sysctl_tcp_pacing_ss_ratio;
811 	else
812 		rate *= sysctl_tcp_pacing_ca_ratio;
813 
814 	rate *= max(tp->snd_cwnd, tp->packets_out);
815 
816 	if (likely(tp->srtt_us))
817 		do_div(rate, tp->srtt_us);
818 
819 	/* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
820 	 * without any lock. We want to make sure compiler wont store
821 	 * intermediate values in this location.
822 	 */
823 	ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
824 						sk->sk_max_pacing_rate);
825 }
826 
827 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
828  * routine referred to above.
829  */
830 static void tcp_set_rto(struct sock *sk)
831 {
832 	const struct tcp_sock *tp = tcp_sk(sk);
833 	/* Old crap is replaced with new one. 8)
834 	 *
835 	 * More seriously:
836 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
837 	 *    It cannot be less due to utterly erratic ACK generation made
838 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
839 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
840 	 *    is invisible. Actually, Linux-2.4 also generates erratic
841 	 *    ACKs in some circumstances.
842 	 */
843 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
844 
845 	/* 2. Fixups made earlier cannot be right.
846 	 *    If we do not estimate RTO correctly without them,
847 	 *    all the algo is pure shit and should be replaced
848 	 *    with correct one. It is exactly, which we pretend to do.
849 	 */
850 
851 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
852 	 * guarantees that rto is higher.
853 	 */
854 	tcp_bound_rto(sk);
855 }
856 
857 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
858 {
859 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
860 
861 	if (!cwnd)
862 		cwnd = TCP_INIT_CWND;
863 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
864 }
865 
866 /*
867  * Packet counting of FACK is based on in-order assumptions, therefore TCP
868  * disables it when reordering is detected
869  */
870 void tcp_disable_fack(struct tcp_sock *tp)
871 {
872 	/* RFC3517 uses different metric in lost marker => reset on change */
873 	if (tcp_is_fack(tp))
874 		tp->lost_skb_hint = NULL;
875 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
876 }
877 
878 /* Take a notice that peer is sending D-SACKs */
879 static void tcp_dsack_seen(struct tcp_sock *tp)
880 {
881 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
882 }
883 
884 static void tcp_update_reordering(struct sock *sk, const int metric,
885 				  const int ts)
886 {
887 	struct tcp_sock *tp = tcp_sk(sk);
888 	int mib_idx;
889 
890 	if (WARN_ON_ONCE(metric < 0))
891 		return;
892 
893 	if (metric > tp->reordering) {
894 		tp->reordering = min(sysctl_tcp_max_reordering, metric);
895 
896 #if FASTRETRANS_DEBUG > 1
897 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
898 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
899 			 tp->reordering,
900 			 tp->fackets_out,
901 			 tp->sacked_out,
902 			 tp->undo_marker ? tp->undo_retrans : 0);
903 #endif
904 		tcp_disable_fack(tp);
905 	}
906 
907 	tp->rack.reord = 1;
908 
909 	/* This exciting event is worth to be remembered. 8) */
910 	if (ts)
911 		mib_idx = LINUX_MIB_TCPTSREORDER;
912 	else if (tcp_is_reno(tp))
913 		mib_idx = LINUX_MIB_TCPRENOREORDER;
914 	else if (tcp_is_fack(tp))
915 		mib_idx = LINUX_MIB_TCPFACKREORDER;
916 	else
917 		mib_idx = LINUX_MIB_TCPSACKREORDER;
918 
919 	NET_INC_STATS(sock_net(sk), mib_idx);
920 }
921 
922 /* This must be called before lost_out is incremented */
923 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
924 {
925 	if (!tp->retransmit_skb_hint ||
926 	    before(TCP_SKB_CB(skb)->seq,
927 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
928 		tp->retransmit_skb_hint = skb;
929 }
930 
931 /* Sum the number of packets on the wire we have marked as lost.
932  * There are two cases we care about here:
933  * a) Packet hasn't been marked lost (nor retransmitted),
934  *    and this is the first loss.
935  * b) Packet has been marked both lost and retransmitted,
936  *    and this means we think it was lost again.
937  */
938 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
939 {
940 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
941 
942 	if (!(sacked & TCPCB_LOST) ||
943 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
944 		tp->lost += tcp_skb_pcount(skb);
945 }
946 
947 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
948 {
949 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
950 		tcp_verify_retransmit_hint(tp, skb);
951 
952 		tp->lost_out += tcp_skb_pcount(skb);
953 		tcp_sum_lost(tp, skb);
954 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
955 	}
956 }
957 
958 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
959 {
960 	tcp_verify_retransmit_hint(tp, skb);
961 
962 	tcp_sum_lost(tp, skb);
963 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
964 		tp->lost_out += tcp_skb_pcount(skb);
965 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
966 	}
967 }
968 
969 /* This procedure tags the retransmission queue when SACKs arrive.
970  *
971  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
972  * Packets in queue with these bits set are counted in variables
973  * sacked_out, retrans_out and lost_out, correspondingly.
974  *
975  * Valid combinations are:
976  * Tag  InFlight	Description
977  * 0	1		- orig segment is in flight.
978  * S	0		- nothing flies, orig reached receiver.
979  * L	0		- nothing flies, orig lost by net.
980  * R	2		- both orig and retransmit are in flight.
981  * L|R	1		- orig is lost, retransmit is in flight.
982  * S|R  1		- orig reached receiver, retrans is still in flight.
983  * (L|S|R is logically valid, it could occur when L|R is sacked,
984  *  but it is equivalent to plain S and code short-curcuits it to S.
985  *  L|S is logically invalid, it would mean -1 packet in flight 8))
986  *
987  * These 6 states form finite state machine, controlled by the following events:
988  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
989  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
990  * 3. Loss detection event of two flavors:
991  *	A. Scoreboard estimator decided the packet is lost.
992  *	   A'. Reno "three dupacks" marks head of queue lost.
993  *	   A''. Its FACK modification, head until snd.fack is lost.
994  *	B. SACK arrives sacking SND.NXT at the moment, when the
995  *	   segment was retransmitted.
996  * 4. D-SACK added new rule: D-SACK changes any tag to S.
997  *
998  * It is pleasant to note, that state diagram turns out to be commutative,
999  * so that we are allowed not to be bothered by order of our actions,
1000  * when multiple events arrive simultaneously. (see the function below).
1001  *
1002  * Reordering detection.
1003  * --------------------
1004  * Reordering metric is maximal distance, which a packet can be displaced
1005  * in packet stream. With SACKs we can estimate it:
1006  *
1007  * 1. SACK fills old hole and the corresponding segment was not
1008  *    ever retransmitted -> reordering. Alas, we cannot use it
1009  *    when segment was retransmitted.
1010  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1011  *    for retransmitted and already SACKed segment -> reordering..
1012  * Both of these heuristics are not used in Loss state, when we cannot
1013  * account for retransmits accurately.
1014  *
1015  * SACK block validation.
1016  * ----------------------
1017  *
1018  * SACK block range validation checks that the received SACK block fits to
1019  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1020  * Note that SND.UNA is not included to the range though being valid because
1021  * it means that the receiver is rather inconsistent with itself reporting
1022  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1023  * perfectly valid, however, in light of RFC2018 which explicitly states
1024  * that "SACK block MUST reflect the newest segment.  Even if the newest
1025  * segment is going to be discarded ...", not that it looks very clever
1026  * in case of head skb. Due to potentional receiver driven attacks, we
1027  * choose to avoid immediate execution of a walk in write queue due to
1028  * reneging and defer head skb's loss recovery to standard loss recovery
1029  * procedure that will eventually trigger (nothing forbids us doing this).
1030  *
1031  * Implements also blockage to start_seq wrap-around. Problem lies in the
1032  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1033  * there's no guarantee that it will be before snd_nxt (n). The problem
1034  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1035  * wrap (s_w):
1036  *
1037  *         <- outs wnd ->                          <- wrapzone ->
1038  *         u     e      n                         u_w   e_w  s n_w
1039  *         |     |      |                          |     |   |  |
1040  * |<------------+------+----- TCP seqno space --------------+---------->|
1041  * ...-- <2^31 ->|                                           |<--------...
1042  * ...---- >2^31 ------>|                                    |<--------...
1043  *
1044  * Current code wouldn't be vulnerable but it's better still to discard such
1045  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1046  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1047  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1048  * equal to the ideal case (infinite seqno space without wrap caused issues).
1049  *
1050  * With D-SACK the lower bound is extended to cover sequence space below
1051  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1052  * again, D-SACK block must not to go across snd_una (for the same reason as
1053  * for the normal SACK blocks, explained above). But there all simplicity
1054  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1055  * fully below undo_marker they do not affect behavior in anyway and can
1056  * therefore be safely ignored. In rare cases (which are more or less
1057  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1058  * fragmentation and packet reordering past skb's retransmission. To consider
1059  * them correctly, the acceptable range must be extended even more though
1060  * the exact amount is rather hard to quantify. However, tp->max_window can
1061  * be used as an exaggerated estimate.
1062  */
1063 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1064 				   u32 start_seq, u32 end_seq)
1065 {
1066 	/* Too far in future, or reversed (interpretation is ambiguous) */
1067 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1068 		return false;
1069 
1070 	/* Nasty start_seq wrap-around check (see comments above) */
1071 	if (!before(start_seq, tp->snd_nxt))
1072 		return false;
1073 
1074 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1075 	 * start_seq == snd_una is non-sensical (see comments above)
1076 	 */
1077 	if (after(start_seq, tp->snd_una))
1078 		return true;
1079 
1080 	if (!is_dsack || !tp->undo_marker)
1081 		return false;
1082 
1083 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1084 	if (after(end_seq, tp->snd_una))
1085 		return false;
1086 
1087 	if (!before(start_seq, tp->undo_marker))
1088 		return true;
1089 
1090 	/* Too old */
1091 	if (!after(end_seq, tp->undo_marker))
1092 		return false;
1093 
1094 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1095 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1096 	 */
1097 	return !before(start_seq, end_seq - tp->max_window);
1098 }
1099 
1100 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1101 			    struct tcp_sack_block_wire *sp, int num_sacks,
1102 			    u32 prior_snd_una)
1103 {
1104 	struct tcp_sock *tp = tcp_sk(sk);
1105 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1106 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1107 	bool dup_sack = false;
1108 
1109 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1110 		dup_sack = true;
1111 		tcp_dsack_seen(tp);
1112 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1113 	} else if (num_sacks > 1) {
1114 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1115 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1116 
1117 		if (!after(end_seq_0, end_seq_1) &&
1118 		    !before(start_seq_0, start_seq_1)) {
1119 			dup_sack = true;
1120 			tcp_dsack_seen(tp);
1121 			NET_INC_STATS(sock_net(sk),
1122 					LINUX_MIB_TCPDSACKOFORECV);
1123 		}
1124 	}
1125 
1126 	/* D-SACK for already forgotten data... Do dumb counting. */
1127 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1128 	    !after(end_seq_0, prior_snd_una) &&
1129 	    after(end_seq_0, tp->undo_marker))
1130 		tp->undo_retrans--;
1131 
1132 	return dup_sack;
1133 }
1134 
1135 struct tcp_sacktag_state {
1136 	int	reord;
1137 	int	fack_count;
1138 	/* Timestamps for earliest and latest never-retransmitted segment
1139 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1140 	 * but congestion control should still get an accurate delay signal.
1141 	 */
1142 	u64	first_sackt;
1143 	u64	last_sackt;
1144 	struct rate_sample *rate;
1145 	int	flag;
1146 };
1147 
1148 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1149  * the incoming SACK may not exactly match but we can find smaller MSS
1150  * aligned portion of it that matches. Therefore we might need to fragment
1151  * which may fail and creates some hassle (caller must handle error case
1152  * returns).
1153  *
1154  * FIXME: this could be merged to shift decision code
1155  */
1156 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1157 				  u32 start_seq, u32 end_seq)
1158 {
1159 	int err;
1160 	bool in_sack;
1161 	unsigned int pkt_len;
1162 	unsigned int mss;
1163 
1164 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1165 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1166 
1167 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1168 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1169 		mss = tcp_skb_mss(skb);
1170 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1171 
1172 		if (!in_sack) {
1173 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1174 			if (pkt_len < mss)
1175 				pkt_len = mss;
1176 		} else {
1177 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1178 			if (pkt_len < mss)
1179 				return -EINVAL;
1180 		}
1181 
1182 		/* Round if necessary so that SACKs cover only full MSSes
1183 		 * and/or the remaining small portion (if present)
1184 		 */
1185 		if (pkt_len > mss) {
1186 			unsigned int new_len = (pkt_len / mss) * mss;
1187 			if (!in_sack && new_len < pkt_len)
1188 				new_len += mss;
1189 			pkt_len = new_len;
1190 		}
1191 
1192 		if (pkt_len >= skb->len && !in_sack)
1193 			return 0;
1194 
1195 		err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1196 		if (err < 0)
1197 			return err;
1198 	}
1199 
1200 	return in_sack;
1201 }
1202 
1203 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1204 static u8 tcp_sacktag_one(struct sock *sk,
1205 			  struct tcp_sacktag_state *state, u8 sacked,
1206 			  u32 start_seq, u32 end_seq,
1207 			  int dup_sack, int pcount,
1208 			  u64 xmit_time)
1209 {
1210 	struct tcp_sock *tp = tcp_sk(sk);
1211 	int fack_count = state->fack_count;
1212 
1213 	/* Account D-SACK for retransmitted packet. */
1214 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1215 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1216 		    after(end_seq, tp->undo_marker))
1217 			tp->undo_retrans--;
1218 		if (sacked & TCPCB_SACKED_ACKED)
1219 			state->reord = min(fack_count, state->reord);
1220 	}
1221 
1222 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1223 	if (!after(end_seq, tp->snd_una))
1224 		return sacked;
1225 
1226 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1227 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1228 
1229 		if (sacked & TCPCB_SACKED_RETRANS) {
1230 			/* If the segment is not tagged as lost,
1231 			 * we do not clear RETRANS, believing
1232 			 * that retransmission is still in flight.
1233 			 */
1234 			if (sacked & TCPCB_LOST) {
1235 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1236 				tp->lost_out -= pcount;
1237 				tp->retrans_out -= pcount;
1238 			}
1239 		} else {
1240 			if (!(sacked & TCPCB_RETRANS)) {
1241 				/* New sack for not retransmitted frame,
1242 				 * which was in hole. It is reordering.
1243 				 */
1244 				if (before(start_seq,
1245 					   tcp_highest_sack_seq(tp)))
1246 					state->reord = min(fack_count,
1247 							   state->reord);
1248 				if (!after(end_seq, tp->high_seq))
1249 					state->flag |= FLAG_ORIG_SACK_ACKED;
1250 				if (state->first_sackt == 0)
1251 					state->first_sackt = xmit_time;
1252 				state->last_sackt = xmit_time;
1253 			}
1254 
1255 			if (sacked & TCPCB_LOST) {
1256 				sacked &= ~TCPCB_LOST;
1257 				tp->lost_out -= pcount;
1258 			}
1259 		}
1260 
1261 		sacked |= TCPCB_SACKED_ACKED;
1262 		state->flag |= FLAG_DATA_SACKED;
1263 		tp->sacked_out += pcount;
1264 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1265 
1266 		fack_count += pcount;
1267 
1268 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1269 		if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1270 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1271 			tp->lost_cnt_hint += pcount;
1272 
1273 		if (fack_count > tp->fackets_out)
1274 			tp->fackets_out = fack_count;
1275 	}
1276 
1277 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1278 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1279 	 * are accounted above as well.
1280 	 */
1281 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1282 		sacked &= ~TCPCB_SACKED_RETRANS;
1283 		tp->retrans_out -= pcount;
1284 	}
1285 
1286 	return sacked;
1287 }
1288 
1289 /* Shift newly-SACKed bytes from this skb to the immediately previous
1290  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1291  */
1292 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1293 			    struct tcp_sacktag_state *state,
1294 			    unsigned int pcount, int shifted, int mss,
1295 			    bool dup_sack)
1296 {
1297 	struct tcp_sock *tp = tcp_sk(sk);
1298 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1299 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1300 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1301 
1302 	BUG_ON(!pcount);
1303 
1304 	/* Adjust counters and hints for the newly sacked sequence
1305 	 * range but discard the return value since prev is already
1306 	 * marked. We must tag the range first because the seq
1307 	 * advancement below implicitly advances
1308 	 * tcp_highest_sack_seq() when skb is highest_sack.
1309 	 */
1310 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1311 			start_seq, end_seq, dup_sack, pcount,
1312 			skb->skb_mstamp);
1313 	tcp_rate_skb_delivered(sk, skb, state->rate);
1314 
1315 	if (skb == tp->lost_skb_hint)
1316 		tp->lost_cnt_hint += pcount;
1317 
1318 	TCP_SKB_CB(prev)->end_seq += shifted;
1319 	TCP_SKB_CB(skb)->seq += shifted;
1320 
1321 	tcp_skb_pcount_add(prev, pcount);
1322 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1323 	tcp_skb_pcount_add(skb, -pcount);
1324 
1325 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1326 	 * in theory this shouldn't be necessary but as long as DSACK
1327 	 * code can come after this skb later on it's better to keep
1328 	 * setting gso_size to something.
1329 	 */
1330 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1331 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1332 
1333 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1334 	if (tcp_skb_pcount(skb) <= 1)
1335 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1336 
1337 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1338 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1339 
1340 	if (skb->len > 0) {
1341 		BUG_ON(!tcp_skb_pcount(skb));
1342 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1343 		return false;
1344 	}
1345 
1346 	/* Whole SKB was eaten :-) */
1347 
1348 	if (skb == tp->retransmit_skb_hint)
1349 		tp->retransmit_skb_hint = prev;
1350 	if (skb == tp->lost_skb_hint) {
1351 		tp->lost_skb_hint = prev;
1352 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1353 	}
1354 
1355 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1356 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1357 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1358 		TCP_SKB_CB(prev)->end_seq++;
1359 
1360 	if (skb == tcp_highest_sack(sk))
1361 		tcp_advance_highest_sack(sk, skb);
1362 
1363 	tcp_skb_collapse_tstamp(prev, skb);
1364 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1365 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1366 
1367 	tcp_unlink_write_queue(skb, sk);
1368 	sk_wmem_free_skb(sk, skb);
1369 
1370 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1371 
1372 	return true;
1373 }
1374 
1375 /* I wish gso_size would have a bit more sane initialization than
1376  * something-or-zero which complicates things
1377  */
1378 static int tcp_skb_seglen(const struct sk_buff *skb)
1379 {
1380 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1381 }
1382 
1383 /* Shifting pages past head area doesn't work */
1384 static int skb_can_shift(const struct sk_buff *skb)
1385 {
1386 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1387 }
1388 
1389 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1390  * skb.
1391  */
1392 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1393 					  struct tcp_sacktag_state *state,
1394 					  u32 start_seq, u32 end_seq,
1395 					  bool dup_sack)
1396 {
1397 	struct tcp_sock *tp = tcp_sk(sk);
1398 	struct sk_buff *prev;
1399 	int mss;
1400 	int pcount = 0;
1401 	int len;
1402 	int in_sack;
1403 
1404 	if (!sk_can_gso(sk))
1405 		goto fallback;
1406 
1407 	/* Normally R but no L won't result in plain S */
1408 	if (!dup_sack &&
1409 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1410 		goto fallback;
1411 	if (!skb_can_shift(skb))
1412 		goto fallback;
1413 	/* This frame is about to be dropped (was ACKed). */
1414 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1415 		goto fallback;
1416 
1417 	/* Can only happen with delayed DSACK + discard craziness */
1418 	if (unlikely(skb == tcp_write_queue_head(sk)))
1419 		goto fallback;
1420 	prev = tcp_write_queue_prev(sk, skb);
1421 
1422 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1423 		goto fallback;
1424 
1425 	if (!tcp_skb_can_collapse_to(prev))
1426 		goto fallback;
1427 
1428 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1429 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1430 
1431 	if (in_sack) {
1432 		len = skb->len;
1433 		pcount = tcp_skb_pcount(skb);
1434 		mss = tcp_skb_seglen(skb);
1435 
1436 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1437 		 * drop this restriction as unnecessary
1438 		 */
1439 		if (mss != tcp_skb_seglen(prev))
1440 			goto fallback;
1441 	} else {
1442 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1443 			goto noop;
1444 		/* CHECKME: This is non-MSS split case only?, this will
1445 		 * cause skipped skbs due to advancing loop btw, original
1446 		 * has that feature too
1447 		 */
1448 		if (tcp_skb_pcount(skb) <= 1)
1449 			goto noop;
1450 
1451 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1452 		if (!in_sack) {
1453 			/* TODO: head merge to next could be attempted here
1454 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1455 			 * though it might not be worth of the additional hassle
1456 			 *
1457 			 * ...we can probably just fallback to what was done
1458 			 * previously. We could try merging non-SACKed ones
1459 			 * as well but it probably isn't going to buy off
1460 			 * because later SACKs might again split them, and
1461 			 * it would make skb timestamp tracking considerably
1462 			 * harder problem.
1463 			 */
1464 			goto fallback;
1465 		}
1466 
1467 		len = end_seq - TCP_SKB_CB(skb)->seq;
1468 		BUG_ON(len < 0);
1469 		BUG_ON(len > skb->len);
1470 
1471 		/* MSS boundaries should be honoured or else pcount will
1472 		 * severely break even though it makes things bit trickier.
1473 		 * Optimize common case to avoid most of the divides
1474 		 */
1475 		mss = tcp_skb_mss(skb);
1476 
1477 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1478 		 * drop this restriction as unnecessary
1479 		 */
1480 		if (mss != tcp_skb_seglen(prev))
1481 			goto fallback;
1482 
1483 		if (len == mss) {
1484 			pcount = 1;
1485 		} else if (len < mss) {
1486 			goto noop;
1487 		} else {
1488 			pcount = len / mss;
1489 			len = pcount * mss;
1490 		}
1491 	}
1492 
1493 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1494 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1495 		goto fallback;
1496 
1497 	if (!skb_shift(prev, skb, len))
1498 		goto fallback;
1499 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1500 		goto out;
1501 
1502 	/* Hole filled allows collapsing with the next as well, this is very
1503 	 * useful when hole on every nth skb pattern happens
1504 	 */
1505 	if (prev == tcp_write_queue_tail(sk))
1506 		goto out;
1507 	skb = tcp_write_queue_next(sk, prev);
1508 
1509 	if (!skb_can_shift(skb) ||
1510 	    (skb == tcp_send_head(sk)) ||
1511 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1512 	    (mss != tcp_skb_seglen(skb)))
1513 		goto out;
1514 
1515 	len = skb->len;
1516 	if (skb_shift(prev, skb, len)) {
1517 		pcount += tcp_skb_pcount(skb);
1518 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1519 	}
1520 
1521 out:
1522 	state->fack_count += pcount;
1523 	return prev;
1524 
1525 noop:
1526 	return skb;
1527 
1528 fallback:
1529 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1530 	return NULL;
1531 }
1532 
1533 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1534 					struct tcp_sack_block *next_dup,
1535 					struct tcp_sacktag_state *state,
1536 					u32 start_seq, u32 end_seq,
1537 					bool dup_sack_in)
1538 {
1539 	struct tcp_sock *tp = tcp_sk(sk);
1540 	struct sk_buff *tmp;
1541 
1542 	tcp_for_write_queue_from(skb, sk) {
1543 		int in_sack = 0;
1544 		bool dup_sack = dup_sack_in;
1545 
1546 		if (skb == tcp_send_head(sk))
1547 			break;
1548 
1549 		/* queue is in-order => we can short-circuit the walk early */
1550 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1551 			break;
1552 
1553 		if (next_dup  &&
1554 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1555 			in_sack = tcp_match_skb_to_sack(sk, skb,
1556 							next_dup->start_seq,
1557 							next_dup->end_seq);
1558 			if (in_sack > 0)
1559 				dup_sack = true;
1560 		}
1561 
1562 		/* skb reference here is a bit tricky to get right, since
1563 		 * shifting can eat and free both this skb and the next,
1564 		 * so not even _safe variant of the loop is enough.
1565 		 */
1566 		if (in_sack <= 0) {
1567 			tmp = tcp_shift_skb_data(sk, skb, state,
1568 						 start_seq, end_seq, dup_sack);
1569 			if (tmp) {
1570 				if (tmp != skb) {
1571 					skb = tmp;
1572 					continue;
1573 				}
1574 
1575 				in_sack = 0;
1576 			} else {
1577 				in_sack = tcp_match_skb_to_sack(sk, skb,
1578 								start_seq,
1579 								end_seq);
1580 			}
1581 		}
1582 
1583 		if (unlikely(in_sack < 0))
1584 			break;
1585 
1586 		if (in_sack) {
1587 			TCP_SKB_CB(skb)->sacked =
1588 				tcp_sacktag_one(sk,
1589 						state,
1590 						TCP_SKB_CB(skb)->sacked,
1591 						TCP_SKB_CB(skb)->seq,
1592 						TCP_SKB_CB(skb)->end_seq,
1593 						dup_sack,
1594 						tcp_skb_pcount(skb),
1595 						skb->skb_mstamp);
1596 			tcp_rate_skb_delivered(sk, skb, state->rate);
1597 
1598 			if (!before(TCP_SKB_CB(skb)->seq,
1599 				    tcp_highest_sack_seq(tp)))
1600 				tcp_advance_highest_sack(sk, skb);
1601 		}
1602 
1603 		state->fack_count += tcp_skb_pcount(skb);
1604 	}
1605 	return skb;
1606 }
1607 
1608 /* Avoid all extra work that is being done by sacktag while walking in
1609  * a normal way
1610  */
1611 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1612 					struct tcp_sacktag_state *state,
1613 					u32 skip_to_seq)
1614 {
1615 	tcp_for_write_queue_from(skb, sk) {
1616 		if (skb == tcp_send_head(sk))
1617 			break;
1618 
1619 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1620 			break;
1621 
1622 		state->fack_count += tcp_skb_pcount(skb);
1623 	}
1624 	return skb;
1625 }
1626 
1627 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1628 						struct sock *sk,
1629 						struct tcp_sack_block *next_dup,
1630 						struct tcp_sacktag_state *state,
1631 						u32 skip_to_seq)
1632 {
1633 	if (!next_dup)
1634 		return skb;
1635 
1636 	if (before(next_dup->start_seq, skip_to_seq)) {
1637 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1638 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1639 				       next_dup->start_seq, next_dup->end_seq,
1640 				       1);
1641 	}
1642 
1643 	return skb;
1644 }
1645 
1646 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1647 {
1648 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1649 }
1650 
1651 static int
1652 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1653 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1654 {
1655 	struct tcp_sock *tp = tcp_sk(sk);
1656 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1657 				    TCP_SKB_CB(ack_skb)->sacked);
1658 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1659 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1660 	struct tcp_sack_block *cache;
1661 	struct sk_buff *skb;
1662 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1663 	int used_sacks;
1664 	bool found_dup_sack = false;
1665 	int i, j;
1666 	int first_sack_index;
1667 
1668 	state->flag = 0;
1669 	state->reord = tp->packets_out;
1670 
1671 	if (!tp->sacked_out) {
1672 		if (WARN_ON(tp->fackets_out))
1673 			tp->fackets_out = 0;
1674 		tcp_highest_sack_reset(sk);
1675 	}
1676 
1677 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1678 					 num_sacks, prior_snd_una);
1679 	if (found_dup_sack) {
1680 		state->flag |= FLAG_DSACKING_ACK;
1681 		tp->delivered++; /* A spurious retransmission is delivered */
1682 	}
1683 
1684 	/* Eliminate too old ACKs, but take into
1685 	 * account more or less fresh ones, they can
1686 	 * contain valid SACK info.
1687 	 */
1688 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1689 		return 0;
1690 
1691 	if (!tp->packets_out)
1692 		goto out;
1693 
1694 	used_sacks = 0;
1695 	first_sack_index = 0;
1696 	for (i = 0; i < num_sacks; i++) {
1697 		bool dup_sack = !i && found_dup_sack;
1698 
1699 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1700 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1701 
1702 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1703 					    sp[used_sacks].start_seq,
1704 					    sp[used_sacks].end_seq)) {
1705 			int mib_idx;
1706 
1707 			if (dup_sack) {
1708 				if (!tp->undo_marker)
1709 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1710 				else
1711 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1712 			} else {
1713 				/* Don't count olds caused by ACK reordering */
1714 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1715 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1716 					continue;
1717 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1718 			}
1719 
1720 			NET_INC_STATS(sock_net(sk), mib_idx);
1721 			if (i == 0)
1722 				first_sack_index = -1;
1723 			continue;
1724 		}
1725 
1726 		/* Ignore very old stuff early */
1727 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1728 			continue;
1729 
1730 		used_sacks++;
1731 	}
1732 
1733 	/* order SACK blocks to allow in order walk of the retrans queue */
1734 	for (i = used_sacks - 1; i > 0; i--) {
1735 		for (j = 0; j < i; j++) {
1736 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1737 				swap(sp[j], sp[j + 1]);
1738 
1739 				/* Track where the first SACK block goes to */
1740 				if (j == first_sack_index)
1741 					first_sack_index = j + 1;
1742 			}
1743 		}
1744 	}
1745 
1746 	skb = tcp_write_queue_head(sk);
1747 	state->fack_count = 0;
1748 	i = 0;
1749 
1750 	if (!tp->sacked_out) {
1751 		/* It's already past, so skip checking against it */
1752 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1753 	} else {
1754 		cache = tp->recv_sack_cache;
1755 		/* Skip empty blocks in at head of the cache */
1756 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1757 		       !cache->end_seq)
1758 			cache++;
1759 	}
1760 
1761 	while (i < used_sacks) {
1762 		u32 start_seq = sp[i].start_seq;
1763 		u32 end_seq = sp[i].end_seq;
1764 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1765 		struct tcp_sack_block *next_dup = NULL;
1766 
1767 		if (found_dup_sack && ((i + 1) == first_sack_index))
1768 			next_dup = &sp[i + 1];
1769 
1770 		/* Skip too early cached blocks */
1771 		while (tcp_sack_cache_ok(tp, cache) &&
1772 		       !before(start_seq, cache->end_seq))
1773 			cache++;
1774 
1775 		/* Can skip some work by looking recv_sack_cache? */
1776 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1777 		    after(end_seq, cache->start_seq)) {
1778 
1779 			/* Head todo? */
1780 			if (before(start_seq, cache->start_seq)) {
1781 				skb = tcp_sacktag_skip(skb, sk, state,
1782 						       start_seq);
1783 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1784 						       state,
1785 						       start_seq,
1786 						       cache->start_seq,
1787 						       dup_sack);
1788 			}
1789 
1790 			/* Rest of the block already fully processed? */
1791 			if (!after(end_seq, cache->end_seq))
1792 				goto advance_sp;
1793 
1794 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1795 						       state,
1796 						       cache->end_seq);
1797 
1798 			/* ...tail remains todo... */
1799 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1800 				/* ...but better entrypoint exists! */
1801 				skb = tcp_highest_sack(sk);
1802 				if (!skb)
1803 					break;
1804 				state->fack_count = tp->fackets_out;
1805 				cache++;
1806 				goto walk;
1807 			}
1808 
1809 			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1810 			/* Check overlap against next cached too (past this one already) */
1811 			cache++;
1812 			continue;
1813 		}
1814 
1815 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1816 			skb = tcp_highest_sack(sk);
1817 			if (!skb)
1818 				break;
1819 			state->fack_count = tp->fackets_out;
1820 		}
1821 		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1822 
1823 walk:
1824 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1825 				       start_seq, end_seq, dup_sack);
1826 
1827 advance_sp:
1828 		i++;
1829 	}
1830 
1831 	/* Clear the head of the cache sack blocks so we can skip it next time */
1832 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1833 		tp->recv_sack_cache[i].start_seq = 0;
1834 		tp->recv_sack_cache[i].end_seq = 0;
1835 	}
1836 	for (j = 0; j < used_sacks; j++)
1837 		tp->recv_sack_cache[i++] = sp[j];
1838 
1839 	if ((state->reord < tp->fackets_out) &&
1840 	    ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1841 		tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1842 
1843 	tcp_verify_left_out(tp);
1844 out:
1845 
1846 #if FASTRETRANS_DEBUG > 0
1847 	WARN_ON((int)tp->sacked_out < 0);
1848 	WARN_ON((int)tp->lost_out < 0);
1849 	WARN_ON((int)tp->retrans_out < 0);
1850 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1851 #endif
1852 	return state->flag;
1853 }
1854 
1855 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1856  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1857  */
1858 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1859 {
1860 	u32 holes;
1861 
1862 	holes = max(tp->lost_out, 1U);
1863 	holes = min(holes, tp->packets_out);
1864 
1865 	if ((tp->sacked_out + holes) > tp->packets_out) {
1866 		tp->sacked_out = tp->packets_out - holes;
1867 		return true;
1868 	}
1869 	return false;
1870 }
1871 
1872 /* If we receive more dupacks than we expected counting segments
1873  * in assumption of absent reordering, interpret this as reordering.
1874  * The only another reason could be bug in receiver TCP.
1875  */
1876 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1877 {
1878 	struct tcp_sock *tp = tcp_sk(sk);
1879 	if (tcp_limit_reno_sacked(tp))
1880 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1881 }
1882 
1883 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1884 
1885 static void tcp_add_reno_sack(struct sock *sk)
1886 {
1887 	struct tcp_sock *tp = tcp_sk(sk);
1888 	u32 prior_sacked = tp->sacked_out;
1889 
1890 	tp->sacked_out++;
1891 	tcp_check_reno_reordering(sk, 0);
1892 	if (tp->sacked_out > prior_sacked)
1893 		tp->delivered++; /* Some out-of-order packet is delivered */
1894 	tcp_verify_left_out(tp);
1895 }
1896 
1897 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1898 
1899 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1900 {
1901 	struct tcp_sock *tp = tcp_sk(sk);
1902 
1903 	if (acked > 0) {
1904 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1905 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1906 		if (acked - 1 >= tp->sacked_out)
1907 			tp->sacked_out = 0;
1908 		else
1909 			tp->sacked_out -= acked - 1;
1910 	}
1911 	tcp_check_reno_reordering(sk, acked);
1912 	tcp_verify_left_out(tp);
1913 }
1914 
1915 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1916 {
1917 	tp->sacked_out = 0;
1918 }
1919 
1920 void tcp_clear_retrans(struct tcp_sock *tp)
1921 {
1922 	tp->retrans_out = 0;
1923 	tp->lost_out = 0;
1924 	tp->undo_marker = 0;
1925 	tp->undo_retrans = -1;
1926 	tp->fackets_out = 0;
1927 	tp->sacked_out = 0;
1928 }
1929 
1930 static inline void tcp_init_undo(struct tcp_sock *tp)
1931 {
1932 	tp->undo_marker = tp->snd_una;
1933 	/* Retransmission still in flight may cause DSACKs later. */
1934 	tp->undo_retrans = tp->retrans_out ? : -1;
1935 }
1936 
1937 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1938  * and reset tags completely, otherwise preserve SACKs. If receiver
1939  * dropped its ofo queue, we will know this due to reneging detection.
1940  */
1941 void tcp_enter_loss(struct sock *sk)
1942 {
1943 	const struct inet_connection_sock *icsk = inet_csk(sk);
1944 	struct tcp_sock *tp = tcp_sk(sk);
1945 	struct net *net = sock_net(sk);
1946 	struct sk_buff *skb;
1947 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1948 	bool is_reneg;			/* is receiver reneging on SACKs? */
1949 	bool mark_lost;
1950 
1951 	/* Reduce ssthresh if it has not yet been made inside this window. */
1952 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1953 	    !after(tp->high_seq, tp->snd_una) ||
1954 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1955 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1956 		tp->prior_cwnd = tp->snd_cwnd;
1957 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1958 		tcp_ca_event(sk, CA_EVENT_LOSS);
1959 		tcp_init_undo(tp);
1960 	}
1961 	tp->snd_cwnd	   = 1;
1962 	tp->snd_cwnd_cnt   = 0;
1963 	tp->snd_cwnd_stamp = tcp_jiffies32;
1964 
1965 	tp->retrans_out = 0;
1966 	tp->lost_out = 0;
1967 
1968 	if (tcp_is_reno(tp))
1969 		tcp_reset_reno_sack(tp);
1970 
1971 	skb = tcp_write_queue_head(sk);
1972 	is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1973 	if (is_reneg) {
1974 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1975 		tp->sacked_out = 0;
1976 		tp->fackets_out = 0;
1977 	}
1978 	tcp_clear_all_retrans_hints(tp);
1979 
1980 	tcp_for_write_queue(skb, sk) {
1981 		if (skb == tcp_send_head(sk))
1982 			break;
1983 
1984 		mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
1985 			     is_reneg);
1986 		if (mark_lost)
1987 			tcp_sum_lost(tp, skb);
1988 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1989 		if (mark_lost) {
1990 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1991 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1992 			tp->lost_out += tcp_skb_pcount(skb);
1993 		}
1994 	}
1995 	tcp_verify_left_out(tp);
1996 
1997 	/* Timeout in disordered state after receiving substantial DUPACKs
1998 	 * suggests that the degree of reordering is over-estimated.
1999 	 */
2000 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2001 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2002 		tp->reordering = min_t(unsigned int, tp->reordering,
2003 				       net->ipv4.sysctl_tcp_reordering);
2004 	tcp_set_ca_state(sk, TCP_CA_Loss);
2005 	tp->high_seq = tp->snd_nxt;
2006 	tcp_ecn_queue_cwr(tp);
2007 
2008 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2009 	 * loss recovery is underway except recurring timeout(s) on
2010 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2011 	 *
2012 	 * In theory F-RTO can be used repeatedly during loss recovery.
2013 	 * In practice this interacts badly with broken middle-boxes that
2014 	 * falsely raise the receive window, which results in repeated
2015 	 * timeouts and stop-and-go behavior.
2016 	 */
2017 	tp->frto = sysctl_tcp_frto &&
2018 		   (new_recovery || icsk->icsk_retransmits) &&
2019 		   !inet_csk(sk)->icsk_mtup.probe_size;
2020 }
2021 
2022 /* If ACK arrived pointing to a remembered SACK, it means that our
2023  * remembered SACKs do not reflect real state of receiver i.e.
2024  * receiver _host_ is heavily congested (or buggy).
2025  *
2026  * To avoid big spurious retransmission bursts due to transient SACK
2027  * scoreboard oddities that look like reneging, we give the receiver a
2028  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2029  * restore sanity to the SACK scoreboard. If the apparent reneging
2030  * persists until this RTO then we'll clear the SACK scoreboard.
2031  */
2032 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2033 {
2034 	if (flag & FLAG_SACK_RENEGING) {
2035 		struct tcp_sock *tp = tcp_sk(sk);
2036 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2037 					  msecs_to_jiffies(10));
2038 
2039 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2040 					  delay, TCP_RTO_MAX);
2041 		return true;
2042 	}
2043 	return false;
2044 }
2045 
2046 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2047 {
2048 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2049 }
2050 
2051 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2052  * counter when SACK is enabled (without SACK, sacked_out is used for
2053  * that purpose).
2054  *
2055  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2056  * segments up to the highest received SACK block so far and holes in
2057  * between them.
2058  *
2059  * With reordering, holes may still be in flight, so RFC3517 recovery
2060  * uses pure sacked_out (total number of SACKed segments) even though
2061  * it violates the RFC that uses duplicate ACKs, often these are equal
2062  * but when e.g. out-of-window ACKs or packet duplication occurs,
2063  * they differ. Since neither occurs due to loss, TCP should really
2064  * ignore them.
2065  */
2066 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2067 {
2068 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2069 }
2070 
2071 /* Linux NewReno/SACK/FACK/ECN state machine.
2072  * --------------------------------------
2073  *
2074  * "Open"	Normal state, no dubious events, fast path.
2075  * "Disorder"   In all the respects it is "Open",
2076  *		but requires a bit more attention. It is entered when
2077  *		we see some SACKs or dupacks. It is split of "Open"
2078  *		mainly to move some processing from fast path to slow one.
2079  * "CWR"	CWND was reduced due to some Congestion Notification event.
2080  *		It can be ECN, ICMP source quench, local device congestion.
2081  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2082  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2083  *
2084  * tcp_fastretrans_alert() is entered:
2085  * - each incoming ACK, if state is not "Open"
2086  * - when arrived ACK is unusual, namely:
2087  *	* SACK
2088  *	* Duplicate ACK.
2089  *	* ECN ECE.
2090  *
2091  * Counting packets in flight is pretty simple.
2092  *
2093  *	in_flight = packets_out - left_out + retrans_out
2094  *
2095  *	packets_out is SND.NXT-SND.UNA counted in packets.
2096  *
2097  *	retrans_out is number of retransmitted segments.
2098  *
2099  *	left_out is number of segments left network, but not ACKed yet.
2100  *
2101  *		left_out = sacked_out + lost_out
2102  *
2103  *     sacked_out: Packets, which arrived to receiver out of order
2104  *		   and hence not ACKed. With SACKs this number is simply
2105  *		   amount of SACKed data. Even without SACKs
2106  *		   it is easy to give pretty reliable estimate of this number,
2107  *		   counting duplicate ACKs.
2108  *
2109  *       lost_out: Packets lost by network. TCP has no explicit
2110  *		   "loss notification" feedback from network (for now).
2111  *		   It means that this number can be only _guessed_.
2112  *		   Actually, it is the heuristics to predict lossage that
2113  *		   distinguishes different algorithms.
2114  *
2115  *	F.e. after RTO, when all the queue is considered as lost,
2116  *	lost_out = packets_out and in_flight = retrans_out.
2117  *
2118  *		Essentially, we have now a few algorithms detecting
2119  *		lost packets.
2120  *
2121  *		If the receiver supports SACK:
2122  *
2123  *		RFC6675/3517: It is the conventional algorithm. A packet is
2124  *		considered lost if the number of higher sequence packets
2125  *		SACKed is greater than or equal the DUPACK thoreshold
2126  *		(reordering). This is implemented in tcp_mark_head_lost and
2127  *		tcp_update_scoreboard.
2128  *
2129  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2130  *		(2017-) that checks timing instead of counting DUPACKs.
2131  *		Essentially a packet is considered lost if it's not S/ACKed
2132  *		after RTT + reordering_window, where both metrics are
2133  *		dynamically measured and adjusted. This is implemented in
2134  *		tcp_rack_mark_lost.
2135  *
2136  *		FACK (Disabled by default. Subsumbed by RACK):
2137  *		It is the simplest heuristics. As soon as we decided
2138  *		that something is lost, we decide that _all_ not SACKed
2139  *		packets until the most forward SACK are lost. I.e.
2140  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2141  *		It is absolutely correct estimate, if network does not reorder
2142  *		packets. And it loses any connection to reality when reordering
2143  *		takes place. We use FACK by default until reordering
2144  *		is suspected on the path to this destination.
2145  *
2146  *		If the receiver does not support SACK:
2147  *
2148  *		NewReno (RFC6582): in Recovery we assume that one segment
2149  *		is lost (classic Reno). While we are in Recovery and
2150  *		a partial ACK arrives, we assume that one more packet
2151  *		is lost (NewReno). This heuristics are the same in NewReno
2152  *		and SACK.
2153  *
2154  * Really tricky (and requiring careful tuning) part of algorithm
2155  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2156  * The first determines the moment _when_ we should reduce CWND and,
2157  * hence, slow down forward transmission. In fact, it determines the moment
2158  * when we decide that hole is caused by loss, rather than by a reorder.
2159  *
2160  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2161  * holes, caused by lost packets.
2162  *
2163  * And the most logically complicated part of algorithm is undo
2164  * heuristics. We detect false retransmits due to both too early
2165  * fast retransmit (reordering) and underestimated RTO, analyzing
2166  * timestamps and D-SACKs. When we detect that some segments were
2167  * retransmitted by mistake and CWND reduction was wrong, we undo
2168  * window reduction and abort recovery phase. This logic is hidden
2169  * inside several functions named tcp_try_undo_<something>.
2170  */
2171 
2172 /* This function decides, when we should leave Disordered state
2173  * and enter Recovery phase, reducing congestion window.
2174  *
2175  * Main question: may we further continue forward transmission
2176  * with the same cwnd?
2177  */
2178 static bool tcp_time_to_recover(struct sock *sk, int flag)
2179 {
2180 	struct tcp_sock *tp = tcp_sk(sk);
2181 
2182 	/* Trick#1: The loss is proven. */
2183 	if (tp->lost_out)
2184 		return true;
2185 
2186 	/* Not-A-Trick#2 : Classic rule... */
2187 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2188 		return true;
2189 
2190 	return false;
2191 }
2192 
2193 /* Detect loss in event "A" above by marking head of queue up as lost.
2194  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2195  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2196  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2197  * the maximum SACKed segments to pass before reaching this limit.
2198  */
2199 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2200 {
2201 	struct tcp_sock *tp = tcp_sk(sk);
2202 	struct sk_buff *skb;
2203 	int cnt, oldcnt, lost;
2204 	unsigned int mss;
2205 	/* Use SACK to deduce losses of new sequences sent during recovery */
2206 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2207 
2208 	WARN_ON(packets > tp->packets_out);
2209 	if (tp->lost_skb_hint) {
2210 		skb = tp->lost_skb_hint;
2211 		cnt = tp->lost_cnt_hint;
2212 		/* Head already handled? */
2213 		if (mark_head && skb != tcp_write_queue_head(sk))
2214 			return;
2215 	} else {
2216 		skb = tcp_write_queue_head(sk);
2217 		cnt = 0;
2218 	}
2219 
2220 	tcp_for_write_queue_from(skb, sk) {
2221 		if (skb == tcp_send_head(sk))
2222 			break;
2223 		/* TODO: do this better */
2224 		/* this is not the most efficient way to do this... */
2225 		tp->lost_skb_hint = skb;
2226 		tp->lost_cnt_hint = cnt;
2227 
2228 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2229 			break;
2230 
2231 		oldcnt = cnt;
2232 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2233 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2234 			cnt += tcp_skb_pcount(skb);
2235 
2236 		if (cnt > packets) {
2237 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2238 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2239 			    (oldcnt >= packets))
2240 				break;
2241 
2242 			mss = tcp_skb_mss(skb);
2243 			/* If needed, chop off the prefix to mark as lost. */
2244 			lost = (packets - oldcnt) * mss;
2245 			if (lost < skb->len &&
2246 			    tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2247 				break;
2248 			cnt = packets;
2249 		}
2250 
2251 		tcp_skb_mark_lost(tp, skb);
2252 
2253 		if (mark_head)
2254 			break;
2255 	}
2256 	tcp_verify_left_out(tp);
2257 }
2258 
2259 /* Account newly detected lost packet(s) */
2260 
2261 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2262 {
2263 	struct tcp_sock *tp = tcp_sk(sk);
2264 
2265 	if (tcp_is_reno(tp)) {
2266 		tcp_mark_head_lost(sk, 1, 1);
2267 	} else if (tcp_is_fack(tp)) {
2268 		int lost = tp->fackets_out - tp->reordering;
2269 		if (lost <= 0)
2270 			lost = 1;
2271 		tcp_mark_head_lost(sk, lost, 0);
2272 	} else {
2273 		int sacked_upto = tp->sacked_out - tp->reordering;
2274 		if (sacked_upto >= 0)
2275 			tcp_mark_head_lost(sk, sacked_upto, 0);
2276 		else if (fast_rexmit)
2277 			tcp_mark_head_lost(sk, 1, 1);
2278 	}
2279 }
2280 
2281 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2282 {
2283 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2284 	       before(tp->rx_opt.rcv_tsecr, when);
2285 }
2286 
2287 /* skb is spurious retransmitted if the returned timestamp echo
2288  * reply is prior to the skb transmission time
2289  */
2290 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2291 				     const struct sk_buff *skb)
2292 {
2293 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2294 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2295 }
2296 
2297 /* Nothing was retransmitted or returned timestamp is less
2298  * than timestamp of the first retransmission.
2299  */
2300 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2301 {
2302 	return !tp->retrans_stamp ||
2303 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2304 }
2305 
2306 /* Undo procedures. */
2307 
2308 /* We can clear retrans_stamp when there are no retransmissions in the
2309  * window. It would seem that it is trivially available for us in
2310  * tp->retrans_out, however, that kind of assumptions doesn't consider
2311  * what will happen if errors occur when sending retransmission for the
2312  * second time. ...It could the that such segment has only
2313  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2314  * the head skb is enough except for some reneging corner cases that
2315  * are not worth the effort.
2316  *
2317  * Main reason for all this complexity is the fact that connection dying
2318  * time now depends on the validity of the retrans_stamp, in particular,
2319  * that successive retransmissions of a segment must not advance
2320  * retrans_stamp under any conditions.
2321  */
2322 static bool tcp_any_retrans_done(const struct sock *sk)
2323 {
2324 	const struct tcp_sock *tp = tcp_sk(sk);
2325 	struct sk_buff *skb;
2326 
2327 	if (tp->retrans_out)
2328 		return true;
2329 
2330 	skb = tcp_write_queue_head(sk);
2331 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2332 		return true;
2333 
2334 	return false;
2335 }
2336 
2337 #if FASTRETRANS_DEBUG > 1
2338 static void DBGUNDO(struct sock *sk, const char *msg)
2339 {
2340 	struct tcp_sock *tp = tcp_sk(sk);
2341 	struct inet_sock *inet = inet_sk(sk);
2342 
2343 	if (sk->sk_family == AF_INET) {
2344 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2345 			 msg,
2346 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2347 			 tp->snd_cwnd, tcp_left_out(tp),
2348 			 tp->snd_ssthresh, tp->prior_ssthresh,
2349 			 tp->packets_out);
2350 	}
2351 #if IS_ENABLED(CONFIG_IPV6)
2352 	else if (sk->sk_family == AF_INET6) {
2353 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2354 			 msg,
2355 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2356 			 tp->snd_cwnd, tcp_left_out(tp),
2357 			 tp->snd_ssthresh, tp->prior_ssthresh,
2358 			 tp->packets_out);
2359 	}
2360 #endif
2361 }
2362 #else
2363 #define DBGUNDO(x...) do { } while (0)
2364 #endif
2365 
2366 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2367 {
2368 	struct tcp_sock *tp = tcp_sk(sk);
2369 
2370 	if (unmark_loss) {
2371 		struct sk_buff *skb;
2372 
2373 		tcp_for_write_queue(skb, sk) {
2374 			if (skb == tcp_send_head(sk))
2375 				break;
2376 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2377 		}
2378 		tp->lost_out = 0;
2379 		tcp_clear_all_retrans_hints(tp);
2380 	}
2381 
2382 	if (tp->prior_ssthresh) {
2383 		const struct inet_connection_sock *icsk = inet_csk(sk);
2384 
2385 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2386 
2387 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2388 			tp->snd_ssthresh = tp->prior_ssthresh;
2389 			tcp_ecn_withdraw_cwr(tp);
2390 		}
2391 	}
2392 	tp->snd_cwnd_stamp = tcp_jiffies32;
2393 	tp->undo_marker = 0;
2394 }
2395 
2396 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2397 {
2398 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2399 }
2400 
2401 /* People celebrate: "We love our President!" */
2402 static bool tcp_try_undo_recovery(struct sock *sk)
2403 {
2404 	struct tcp_sock *tp = tcp_sk(sk);
2405 
2406 	if (tcp_may_undo(tp)) {
2407 		int mib_idx;
2408 
2409 		/* Happy end! We did not retransmit anything
2410 		 * or our original transmission succeeded.
2411 		 */
2412 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2413 		tcp_undo_cwnd_reduction(sk, false);
2414 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2415 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2416 		else
2417 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2418 
2419 		NET_INC_STATS(sock_net(sk), mib_idx);
2420 	}
2421 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2422 		/* Hold old state until something *above* high_seq
2423 		 * is ACKed. For Reno it is MUST to prevent false
2424 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2425 		if (!tcp_any_retrans_done(sk))
2426 			tp->retrans_stamp = 0;
2427 		return true;
2428 	}
2429 	tcp_set_ca_state(sk, TCP_CA_Open);
2430 	return false;
2431 }
2432 
2433 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2434 static bool tcp_try_undo_dsack(struct sock *sk)
2435 {
2436 	struct tcp_sock *tp = tcp_sk(sk);
2437 
2438 	if (tp->undo_marker && !tp->undo_retrans) {
2439 		DBGUNDO(sk, "D-SACK");
2440 		tcp_undo_cwnd_reduction(sk, false);
2441 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2442 		return true;
2443 	}
2444 	return false;
2445 }
2446 
2447 /* Undo during loss recovery after partial ACK or using F-RTO. */
2448 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2449 {
2450 	struct tcp_sock *tp = tcp_sk(sk);
2451 
2452 	if (frto_undo || tcp_may_undo(tp)) {
2453 		tcp_undo_cwnd_reduction(sk, true);
2454 
2455 		DBGUNDO(sk, "partial loss");
2456 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2457 		if (frto_undo)
2458 			NET_INC_STATS(sock_net(sk),
2459 					LINUX_MIB_TCPSPURIOUSRTOS);
2460 		inet_csk(sk)->icsk_retransmits = 0;
2461 		if (frto_undo || tcp_is_sack(tp))
2462 			tcp_set_ca_state(sk, TCP_CA_Open);
2463 		return true;
2464 	}
2465 	return false;
2466 }
2467 
2468 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2469  * It computes the number of packets to send (sndcnt) based on packets newly
2470  * delivered:
2471  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2472  *	cwnd reductions across a full RTT.
2473  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2474  *      But when the retransmits are acked without further losses, PRR
2475  *      slow starts cwnd up to ssthresh to speed up the recovery.
2476  */
2477 static void tcp_init_cwnd_reduction(struct sock *sk)
2478 {
2479 	struct tcp_sock *tp = tcp_sk(sk);
2480 
2481 	tp->high_seq = tp->snd_nxt;
2482 	tp->tlp_high_seq = 0;
2483 	tp->snd_cwnd_cnt = 0;
2484 	tp->prior_cwnd = tp->snd_cwnd;
2485 	tp->prr_delivered = 0;
2486 	tp->prr_out = 0;
2487 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2488 	tcp_ecn_queue_cwr(tp);
2489 }
2490 
2491 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2492 {
2493 	struct tcp_sock *tp = tcp_sk(sk);
2494 	int sndcnt = 0;
2495 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2496 
2497 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2498 		return;
2499 
2500 	tp->prr_delivered += newly_acked_sacked;
2501 	if (delta < 0) {
2502 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2503 			       tp->prior_cwnd - 1;
2504 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2505 	} else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2506 		   !(flag & FLAG_LOST_RETRANS)) {
2507 		sndcnt = min_t(int, delta,
2508 			       max_t(int, tp->prr_delivered - tp->prr_out,
2509 				     newly_acked_sacked) + 1);
2510 	} else {
2511 		sndcnt = min(delta, newly_acked_sacked);
2512 	}
2513 	/* Force a fast retransmit upon entering fast recovery */
2514 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2515 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2516 }
2517 
2518 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2519 {
2520 	struct tcp_sock *tp = tcp_sk(sk);
2521 
2522 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2523 		return;
2524 
2525 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2526 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2527 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2528 		tp->snd_cwnd = tp->snd_ssthresh;
2529 		tp->snd_cwnd_stamp = tcp_jiffies32;
2530 	}
2531 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2532 }
2533 
2534 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2535 void tcp_enter_cwr(struct sock *sk)
2536 {
2537 	struct tcp_sock *tp = tcp_sk(sk);
2538 
2539 	tp->prior_ssthresh = 0;
2540 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2541 		tp->undo_marker = 0;
2542 		tcp_init_cwnd_reduction(sk);
2543 		tcp_set_ca_state(sk, TCP_CA_CWR);
2544 	}
2545 }
2546 EXPORT_SYMBOL(tcp_enter_cwr);
2547 
2548 static void tcp_try_keep_open(struct sock *sk)
2549 {
2550 	struct tcp_sock *tp = tcp_sk(sk);
2551 	int state = TCP_CA_Open;
2552 
2553 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2554 		state = TCP_CA_Disorder;
2555 
2556 	if (inet_csk(sk)->icsk_ca_state != state) {
2557 		tcp_set_ca_state(sk, state);
2558 		tp->high_seq = tp->snd_nxt;
2559 	}
2560 }
2561 
2562 static void tcp_try_to_open(struct sock *sk, int flag)
2563 {
2564 	struct tcp_sock *tp = tcp_sk(sk);
2565 
2566 	tcp_verify_left_out(tp);
2567 
2568 	if (!tcp_any_retrans_done(sk))
2569 		tp->retrans_stamp = 0;
2570 
2571 	if (flag & FLAG_ECE)
2572 		tcp_enter_cwr(sk);
2573 
2574 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2575 		tcp_try_keep_open(sk);
2576 	}
2577 }
2578 
2579 static void tcp_mtup_probe_failed(struct sock *sk)
2580 {
2581 	struct inet_connection_sock *icsk = inet_csk(sk);
2582 
2583 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2584 	icsk->icsk_mtup.probe_size = 0;
2585 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2586 }
2587 
2588 static void tcp_mtup_probe_success(struct sock *sk)
2589 {
2590 	struct tcp_sock *tp = tcp_sk(sk);
2591 	struct inet_connection_sock *icsk = inet_csk(sk);
2592 
2593 	/* FIXME: breaks with very large cwnd */
2594 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2595 	tp->snd_cwnd = tp->snd_cwnd *
2596 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2597 		       icsk->icsk_mtup.probe_size;
2598 	tp->snd_cwnd_cnt = 0;
2599 	tp->snd_cwnd_stamp = tcp_jiffies32;
2600 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2601 
2602 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2603 	icsk->icsk_mtup.probe_size = 0;
2604 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2605 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2606 }
2607 
2608 /* Do a simple retransmit without using the backoff mechanisms in
2609  * tcp_timer. This is used for path mtu discovery.
2610  * The socket is already locked here.
2611  */
2612 void tcp_simple_retransmit(struct sock *sk)
2613 {
2614 	const struct inet_connection_sock *icsk = inet_csk(sk);
2615 	struct tcp_sock *tp = tcp_sk(sk);
2616 	struct sk_buff *skb;
2617 	unsigned int mss = tcp_current_mss(sk);
2618 	u32 prior_lost = tp->lost_out;
2619 
2620 	tcp_for_write_queue(skb, sk) {
2621 		if (skb == tcp_send_head(sk))
2622 			break;
2623 		if (tcp_skb_seglen(skb) > mss &&
2624 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2625 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2626 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2627 				tp->retrans_out -= tcp_skb_pcount(skb);
2628 			}
2629 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2630 		}
2631 	}
2632 
2633 	tcp_clear_retrans_hints_partial(tp);
2634 
2635 	if (prior_lost == tp->lost_out)
2636 		return;
2637 
2638 	if (tcp_is_reno(tp))
2639 		tcp_limit_reno_sacked(tp);
2640 
2641 	tcp_verify_left_out(tp);
2642 
2643 	/* Don't muck with the congestion window here.
2644 	 * Reason is that we do not increase amount of _data_
2645 	 * in network, but units changed and effective
2646 	 * cwnd/ssthresh really reduced now.
2647 	 */
2648 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2649 		tp->high_seq = tp->snd_nxt;
2650 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2651 		tp->prior_ssthresh = 0;
2652 		tp->undo_marker = 0;
2653 		tcp_set_ca_state(sk, TCP_CA_Loss);
2654 	}
2655 	tcp_xmit_retransmit_queue(sk);
2656 }
2657 EXPORT_SYMBOL(tcp_simple_retransmit);
2658 
2659 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2660 {
2661 	struct tcp_sock *tp = tcp_sk(sk);
2662 	int mib_idx;
2663 
2664 	if (tcp_is_reno(tp))
2665 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2666 	else
2667 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2668 
2669 	NET_INC_STATS(sock_net(sk), mib_idx);
2670 
2671 	tp->prior_ssthresh = 0;
2672 	tcp_init_undo(tp);
2673 
2674 	if (!tcp_in_cwnd_reduction(sk)) {
2675 		if (!ece_ack)
2676 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2677 		tcp_init_cwnd_reduction(sk);
2678 	}
2679 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2680 }
2681 
2682 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2683  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2684  */
2685 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2686 			     int *rexmit)
2687 {
2688 	struct tcp_sock *tp = tcp_sk(sk);
2689 	bool recovered = !before(tp->snd_una, tp->high_seq);
2690 
2691 	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2692 	    tcp_try_undo_loss(sk, false))
2693 		return;
2694 
2695 	/* The ACK (s)acks some never-retransmitted data meaning not all
2696 	 * the data packets before the timeout were lost. Therefore we
2697 	 * undo the congestion window and state. This is essentially
2698 	 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since
2699 	 * a retransmitted skb is permantly marked, we can apply such an
2700 	 * operation even if F-RTO was not used.
2701 	 */
2702 	if ((flag & FLAG_ORIG_SACK_ACKED) &&
2703 	    tcp_try_undo_loss(sk, tp->undo_marker))
2704 		return;
2705 
2706 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2707 		if (after(tp->snd_nxt, tp->high_seq)) {
2708 			if (flag & FLAG_DATA_SACKED || is_dupack)
2709 				tp->frto = 0; /* Step 3.a. loss was real */
2710 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2711 			tp->high_seq = tp->snd_nxt;
2712 			/* Step 2.b. Try send new data (but deferred until cwnd
2713 			 * is updated in tcp_ack()). Otherwise fall back to
2714 			 * the conventional recovery.
2715 			 */
2716 			if (tcp_send_head(sk) &&
2717 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2718 				*rexmit = REXMIT_NEW;
2719 				return;
2720 			}
2721 			tp->frto = 0;
2722 		}
2723 	}
2724 
2725 	if (recovered) {
2726 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2727 		tcp_try_undo_recovery(sk);
2728 		return;
2729 	}
2730 	if (tcp_is_reno(tp)) {
2731 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2732 		 * delivered. Lower inflight to clock out (re)tranmissions.
2733 		 */
2734 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2735 			tcp_add_reno_sack(sk);
2736 		else if (flag & FLAG_SND_UNA_ADVANCED)
2737 			tcp_reset_reno_sack(tp);
2738 	}
2739 	*rexmit = REXMIT_LOST;
2740 }
2741 
2742 /* Undo during fast recovery after partial ACK. */
2743 static bool tcp_try_undo_partial(struct sock *sk, const int acked)
2744 {
2745 	struct tcp_sock *tp = tcp_sk(sk);
2746 
2747 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2748 		/* Plain luck! Hole if filled with delayed
2749 		 * packet, rather than with a retransmit.
2750 		 */
2751 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2752 
2753 		/* We are getting evidence that the reordering degree is higher
2754 		 * than we realized. If there are no retransmits out then we
2755 		 * can undo. Otherwise we clock out new packets but do not
2756 		 * mark more packets lost or retransmit more.
2757 		 */
2758 		if (tp->retrans_out)
2759 			return true;
2760 
2761 		if (!tcp_any_retrans_done(sk))
2762 			tp->retrans_stamp = 0;
2763 
2764 		DBGUNDO(sk, "partial recovery");
2765 		tcp_undo_cwnd_reduction(sk, true);
2766 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2767 		tcp_try_keep_open(sk);
2768 		return true;
2769 	}
2770 	return false;
2771 }
2772 
2773 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag)
2774 {
2775 	struct tcp_sock *tp = tcp_sk(sk);
2776 
2777 	/* Use RACK to detect loss */
2778 	if (sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) {
2779 		u32 prior_retrans = tp->retrans_out;
2780 
2781 		tcp_rack_mark_lost(sk);
2782 		if (prior_retrans > tp->retrans_out)
2783 			*ack_flag |= FLAG_LOST_RETRANS;
2784 	}
2785 }
2786 
2787 /* Process an event, which can update packets-in-flight not trivially.
2788  * Main goal of this function is to calculate new estimate for left_out,
2789  * taking into account both packets sitting in receiver's buffer and
2790  * packets lost by network.
2791  *
2792  * Besides that it updates the congestion state when packet loss or ECN
2793  * is detected. But it does not reduce the cwnd, it is done by the
2794  * congestion control later.
2795  *
2796  * It does _not_ decide what to send, it is made in function
2797  * tcp_xmit_retransmit_queue().
2798  */
2799 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2800 				  bool is_dupack, int *ack_flag, int *rexmit)
2801 {
2802 	struct inet_connection_sock *icsk = inet_csk(sk);
2803 	struct tcp_sock *tp = tcp_sk(sk);
2804 	int fast_rexmit = 0, flag = *ack_flag;
2805 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2806 				    (tcp_fackets_out(tp) > tp->reordering));
2807 
2808 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2809 		tp->sacked_out = 0;
2810 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2811 		tp->fackets_out = 0;
2812 
2813 	/* Now state machine starts.
2814 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2815 	if (flag & FLAG_ECE)
2816 		tp->prior_ssthresh = 0;
2817 
2818 	/* B. In all the states check for reneging SACKs. */
2819 	if (tcp_check_sack_reneging(sk, flag))
2820 		return;
2821 
2822 	/* C. Check consistency of the current state. */
2823 	tcp_verify_left_out(tp);
2824 
2825 	/* D. Check state exit conditions. State can be terminated
2826 	 *    when high_seq is ACKed. */
2827 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2828 		WARN_ON(tp->retrans_out != 0);
2829 		tp->retrans_stamp = 0;
2830 	} else if (!before(tp->snd_una, tp->high_seq)) {
2831 		switch (icsk->icsk_ca_state) {
2832 		case TCP_CA_CWR:
2833 			/* CWR is to be held something *above* high_seq
2834 			 * is ACKed for CWR bit to reach receiver. */
2835 			if (tp->snd_una != tp->high_seq) {
2836 				tcp_end_cwnd_reduction(sk);
2837 				tcp_set_ca_state(sk, TCP_CA_Open);
2838 			}
2839 			break;
2840 
2841 		case TCP_CA_Recovery:
2842 			if (tcp_is_reno(tp))
2843 				tcp_reset_reno_sack(tp);
2844 			if (tcp_try_undo_recovery(sk))
2845 				return;
2846 			tcp_end_cwnd_reduction(sk);
2847 			break;
2848 		}
2849 	}
2850 
2851 	/* E. Process state. */
2852 	switch (icsk->icsk_ca_state) {
2853 	case TCP_CA_Recovery:
2854 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2855 			if (tcp_is_reno(tp) && is_dupack)
2856 				tcp_add_reno_sack(sk);
2857 		} else {
2858 			if (tcp_try_undo_partial(sk, acked))
2859 				return;
2860 			/* Partial ACK arrived. Force fast retransmit. */
2861 			do_lost = tcp_is_reno(tp) ||
2862 				  tcp_fackets_out(tp) > tp->reordering;
2863 		}
2864 		if (tcp_try_undo_dsack(sk)) {
2865 			tcp_try_keep_open(sk);
2866 			return;
2867 		}
2868 		tcp_rack_identify_loss(sk, ack_flag);
2869 		break;
2870 	case TCP_CA_Loss:
2871 		tcp_process_loss(sk, flag, is_dupack, rexmit);
2872 		tcp_rack_identify_loss(sk, ack_flag);
2873 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2874 		      (*ack_flag & FLAG_LOST_RETRANS)))
2875 			return;
2876 		/* Change state if cwnd is undone or retransmits are lost */
2877 	default:
2878 		if (tcp_is_reno(tp)) {
2879 			if (flag & FLAG_SND_UNA_ADVANCED)
2880 				tcp_reset_reno_sack(tp);
2881 			if (is_dupack)
2882 				tcp_add_reno_sack(sk);
2883 		}
2884 
2885 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2886 			tcp_try_undo_dsack(sk);
2887 
2888 		tcp_rack_identify_loss(sk, ack_flag);
2889 		if (!tcp_time_to_recover(sk, flag)) {
2890 			tcp_try_to_open(sk, flag);
2891 			return;
2892 		}
2893 
2894 		/* MTU probe failure: don't reduce cwnd */
2895 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2896 		    icsk->icsk_mtup.probe_size &&
2897 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2898 			tcp_mtup_probe_failed(sk);
2899 			/* Restores the reduction we did in tcp_mtup_probe() */
2900 			tp->snd_cwnd++;
2901 			tcp_simple_retransmit(sk);
2902 			return;
2903 		}
2904 
2905 		/* Otherwise enter Recovery state */
2906 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2907 		fast_rexmit = 1;
2908 	}
2909 
2910 	if (do_lost)
2911 		tcp_update_scoreboard(sk, fast_rexmit);
2912 	*rexmit = REXMIT_LOST;
2913 }
2914 
2915 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2916 {
2917 	struct tcp_sock *tp = tcp_sk(sk);
2918 	u32 wlen = sysctl_tcp_min_rtt_wlen * HZ;
2919 
2920 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2921 			   rtt_us ? : jiffies_to_usecs(1));
2922 }
2923 
2924 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2925 			       long seq_rtt_us, long sack_rtt_us,
2926 			       long ca_rtt_us, struct rate_sample *rs)
2927 {
2928 	const struct tcp_sock *tp = tcp_sk(sk);
2929 
2930 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2931 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2932 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2933 	 * is acked (RFC6298).
2934 	 */
2935 	if (seq_rtt_us < 0)
2936 		seq_rtt_us = sack_rtt_us;
2937 
2938 	/* RTTM Rule: A TSecr value received in a segment is used to
2939 	 * update the averaged RTT measurement only if the segment
2940 	 * acknowledges some new data, i.e., only if it advances the
2941 	 * left edge of the send window.
2942 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2943 	 */
2944 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2945 	    flag & FLAG_ACKED) {
2946 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2947 		u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2948 
2949 		seq_rtt_us = ca_rtt_us = delta_us;
2950 	}
2951 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2952 	if (seq_rtt_us < 0)
2953 		return false;
2954 
2955 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2956 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2957 	 * values will be skipped with the seq_rtt_us < 0 check above.
2958 	 */
2959 	tcp_update_rtt_min(sk, ca_rtt_us);
2960 	tcp_rtt_estimator(sk, seq_rtt_us);
2961 	tcp_set_rto(sk);
2962 
2963 	/* RFC6298: only reset backoff on valid RTT measurement. */
2964 	inet_csk(sk)->icsk_backoff = 0;
2965 	return true;
2966 }
2967 
2968 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2969 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2970 {
2971 	struct rate_sample rs;
2972 	long rtt_us = -1L;
2973 
2974 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2975 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2976 
2977 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2978 }
2979 
2980 
2981 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2982 {
2983 	const struct inet_connection_sock *icsk = inet_csk(sk);
2984 
2985 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2986 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2987 }
2988 
2989 /* Restart timer after forward progress on connection.
2990  * RFC2988 recommends to restart timer to now+rto.
2991  */
2992 void tcp_rearm_rto(struct sock *sk)
2993 {
2994 	const struct inet_connection_sock *icsk = inet_csk(sk);
2995 	struct tcp_sock *tp = tcp_sk(sk);
2996 
2997 	/* If the retrans timer is currently being used by Fast Open
2998 	 * for SYN-ACK retrans purpose, stay put.
2999 	 */
3000 	if (tp->fastopen_rsk)
3001 		return;
3002 
3003 	if (!tp->packets_out) {
3004 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3005 	} else {
3006 		u32 rto = inet_csk(sk)->icsk_rto;
3007 		/* Offset the time elapsed after installing regular RTO */
3008 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3009 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3010 			s64 delta_us = tcp_rto_delta_us(sk);
3011 			/* delta_us may not be positive if the socket is locked
3012 			 * when the retrans timer fires and is rescheduled.
3013 			 */
3014 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3015 		}
3016 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3017 					  TCP_RTO_MAX);
3018 	}
3019 }
3020 
3021 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3022 static void tcp_set_xmit_timer(struct sock *sk)
3023 {
3024 	if (!tcp_schedule_loss_probe(sk))
3025 		tcp_rearm_rto(sk);
3026 }
3027 
3028 /* If we get here, the whole TSO packet has not been acked. */
3029 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3030 {
3031 	struct tcp_sock *tp = tcp_sk(sk);
3032 	u32 packets_acked;
3033 
3034 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3035 
3036 	packets_acked = tcp_skb_pcount(skb);
3037 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3038 		return 0;
3039 	packets_acked -= tcp_skb_pcount(skb);
3040 
3041 	if (packets_acked) {
3042 		BUG_ON(tcp_skb_pcount(skb) == 0);
3043 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3044 	}
3045 
3046 	return packets_acked;
3047 }
3048 
3049 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3050 			   u32 prior_snd_una)
3051 {
3052 	const struct skb_shared_info *shinfo;
3053 
3054 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3055 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3056 		return;
3057 
3058 	shinfo = skb_shinfo(skb);
3059 	if (!before(shinfo->tskey, prior_snd_una) &&
3060 	    before(shinfo->tskey, tcp_sk(sk)->snd_una))
3061 		__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3062 }
3063 
3064 /* Remove acknowledged frames from the retransmission queue. If our packet
3065  * is before the ack sequence we can discard it as it's confirmed to have
3066  * arrived at the other end.
3067  */
3068 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3069 			       u32 prior_snd_una, int *acked,
3070 			       struct tcp_sacktag_state *sack)
3071 {
3072 	const struct inet_connection_sock *icsk = inet_csk(sk);
3073 	u64 first_ackt, last_ackt;
3074 	struct tcp_sock *tp = tcp_sk(sk);
3075 	u32 prior_sacked = tp->sacked_out;
3076 	u32 reord = tp->packets_out;
3077 	bool fully_acked = true;
3078 	long sack_rtt_us = -1L;
3079 	long seq_rtt_us = -1L;
3080 	long ca_rtt_us = -1L;
3081 	struct sk_buff *skb;
3082 	u32 pkts_acked = 0;
3083 	u32 last_in_flight = 0;
3084 	bool rtt_update;
3085 	int flag = 0;
3086 
3087 	first_ackt = 0;
3088 
3089 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3090 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3091 		u8 sacked = scb->sacked;
3092 		u32 acked_pcount;
3093 
3094 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3095 
3096 		/* Determine how many packets and what bytes were acked, tso and else */
3097 		if (after(scb->end_seq, tp->snd_una)) {
3098 			if (tcp_skb_pcount(skb) == 1 ||
3099 			    !after(tp->snd_una, scb->seq))
3100 				break;
3101 
3102 			acked_pcount = tcp_tso_acked(sk, skb);
3103 			if (!acked_pcount)
3104 				break;
3105 			fully_acked = false;
3106 		} else {
3107 			/* Speedup tcp_unlink_write_queue() and next loop */
3108 			prefetchw(skb->next);
3109 			acked_pcount = tcp_skb_pcount(skb);
3110 		}
3111 
3112 		if (unlikely(sacked & TCPCB_RETRANS)) {
3113 			if (sacked & TCPCB_SACKED_RETRANS)
3114 				tp->retrans_out -= acked_pcount;
3115 			flag |= FLAG_RETRANS_DATA_ACKED;
3116 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3117 			last_ackt = skb->skb_mstamp;
3118 			WARN_ON_ONCE(last_ackt == 0);
3119 			if (!first_ackt)
3120 				first_ackt = last_ackt;
3121 
3122 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3123 			reord = min(pkts_acked, reord);
3124 			if (!after(scb->end_seq, tp->high_seq))
3125 				flag |= FLAG_ORIG_SACK_ACKED;
3126 		}
3127 
3128 		if (sacked & TCPCB_SACKED_ACKED) {
3129 			tp->sacked_out -= acked_pcount;
3130 		} else if (tcp_is_sack(tp)) {
3131 			tp->delivered += acked_pcount;
3132 			if (!tcp_skb_spurious_retrans(tp, skb))
3133 				tcp_rack_advance(tp, sacked, scb->end_seq,
3134 						 skb->skb_mstamp);
3135 		}
3136 		if (sacked & TCPCB_LOST)
3137 			tp->lost_out -= acked_pcount;
3138 
3139 		tp->packets_out -= acked_pcount;
3140 		pkts_acked += acked_pcount;
3141 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3142 
3143 		/* Initial outgoing SYN's get put onto the write_queue
3144 		 * just like anything else we transmit.  It is not
3145 		 * true data, and if we misinform our callers that
3146 		 * this ACK acks real data, we will erroneously exit
3147 		 * connection startup slow start one packet too
3148 		 * quickly.  This is severely frowned upon behavior.
3149 		 */
3150 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3151 			flag |= FLAG_DATA_ACKED;
3152 		} else {
3153 			flag |= FLAG_SYN_ACKED;
3154 			tp->retrans_stamp = 0;
3155 		}
3156 
3157 		if (!fully_acked)
3158 			break;
3159 
3160 		tcp_unlink_write_queue(skb, sk);
3161 		sk_wmem_free_skb(sk, skb);
3162 		if (unlikely(skb == tp->retransmit_skb_hint))
3163 			tp->retransmit_skb_hint = NULL;
3164 		if (unlikely(skb == tp->lost_skb_hint))
3165 			tp->lost_skb_hint = NULL;
3166 	}
3167 
3168 	if (!skb)
3169 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3170 
3171 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3172 		tp->snd_up = tp->snd_una;
3173 
3174 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3175 		flag |= FLAG_SACK_RENEGING;
3176 
3177 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3178 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3179 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3180 	}
3181 	if (sack->first_sackt) {
3182 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3183 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3184 	}
3185 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3186 					ca_rtt_us, sack->rate);
3187 
3188 	if (flag & FLAG_ACKED) {
3189 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3190 		if (unlikely(icsk->icsk_mtup.probe_size &&
3191 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3192 			tcp_mtup_probe_success(sk);
3193 		}
3194 
3195 		if (tcp_is_reno(tp)) {
3196 			tcp_remove_reno_sacks(sk, pkts_acked);
3197 		} else {
3198 			int delta;
3199 
3200 			/* Non-retransmitted hole got filled? That's reordering */
3201 			if (reord < prior_fackets && reord <= tp->fackets_out)
3202 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3203 
3204 			delta = tcp_is_fack(tp) ? pkts_acked :
3205 						  prior_sacked - tp->sacked_out;
3206 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3207 		}
3208 
3209 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3210 
3211 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3212 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) {
3213 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3214 		 * after when the head was last (re)transmitted. Otherwise the
3215 		 * timeout may continue to extend in loss recovery.
3216 		 */
3217 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3218 	}
3219 
3220 	if (icsk->icsk_ca_ops->pkts_acked) {
3221 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3222 					     .rtt_us = sack->rate->rtt_us,
3223 					     .in_flight = last_in_flight };
3224 
3225 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3226 	}
3227 
3228 #if FASTRETRANS_DEBUG > 0
3229 	WARN_ON((int)tp->sacked_out < 0);
3230 	WARN_ON((int)tp->lost_out < 0);
3231 	WARN_ON((int)tp->retrans_out < 0);
3232 	if (!tp->packets_out && tcp_is_sack(tp)) {
3233 		icsk = inet_csk(sk);
3234 		if (tp->lost_out) {
3235 			pr_debug("Leak l=%u %d\n",
3236 				 tp->lost_out, icsk->icsk_ca_state);
3237 			tp->lost_out = 0;
3238 		}
3239 		if (tp->sacked_out) {
3240 			pr_debug("Leak s=%u %d\n",
3241 				 tp->sacked_out, icsk->icsk_ca_state);
3242 			tp->sacked_out = 0;
3243 		}
3244 		if (tp->retrans_out) {
3245 			pr_debug("Leak r=%u %d\n",
3246 				 tp->retrans_out, icsk->icsk_ca_state);
3247 			tp->retrans_out = 0;
3248 		}
3249 	}
3250 #endif
3251 	*acked = pkts_acked;
3252 	return flag;
3253 }
3254 
3255 static void tcp_ack_probe(struct sock *sk)
3256 {
3257 	const struct tcp_sock *tp = tcp_sk(sk);
3258 	struct inet_connection_sock *icsk = inet_csk(sk);
3259 
3260 	/* Was it a usable window open? */
3261 
3262 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3263 		icsk->icsk_backoff = 0;
3264 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3265 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3266 		 * This function is not for random using!
3267 		 */
3268 	} else {
3269 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3270 
3271 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3272 					  when, TCP_RTO_MAX);
3273 	}
3274 }
3275 
3276 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3277 {
3278 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3279 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3280 }
3281 
3282 /* Decide wheather to run the increase function of congestion control. */
3283 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3284 {
3285 	/* If reordering is high then always grow cwnd whenever data is
3286 	 * delivered regardless of its ordering. Otherwise stay conservative
3287 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3288 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3289 	 * cwnd in tcp_fastretrans_alert() based on more states.
3290 	 */
3291 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3292 		return flag & FLAG_FORWARD_PROGRESS;
3293 
3294 	return flag & FLAG_DATA_ACKED;
3295 }
3296 
3297 /* The "ultimate" congestion control function that aims to replace the rigid
3298  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3299  * It's called toward the end of processing an ACK with precise rate
3300  * information. All transmission or retransmission are delayed afterwards.
3301  */
3302 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3303 			     int flag, const struct rate_sample *rs)
3304 {
3305 	const struct inet_connection_sock *icsk = inet_csk(sk);
3306 
3307 	if (icsk->icsk_ca_ops->cong_control) {
3308 		icsk->icsk_ca_ops->cong_control(sk, rs);
3309 		return;
3310 	}
3311 
3312 	if (tcp_in_cwnd_reduction(sk)) {
3313 		/* Reduce cwnd if state mandates */
3314 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3315 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3316 		/* Advance cwnd if state allows */
3317 		tcp_cong_avoid(sk, ack, acked_sacked);
3318 	}
3319 	tcp_update_pacing_rate(sk);
3320 }
3321 
3322 /* Check that window update is acceptable.
3323  * The function assumes that snd_una<=ack<=snd_next.
3324  */
3325 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3326 					const u32 ack, const u32 ack_seq,
3327 					const u32 nwin)
3328 {
3329 	return	after(ack, tp->snd_una) ||
3330 		after(ack_seq, tp->snd_wl1) ||
3331 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3332 }
3333 
3334 /* If we update tp->snd_una, also update tp->bytes_acked */
3335 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3336 {
3337 	u32 delta = ack - tp->snd_una;
3338 
3339 	sock_owned_by_me((struct sock *)tp);
3340 	tp->bytes_acked += delta;
3341 	tp->snd_una = ack;
3342 }
3343 
3344 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3345 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3346 {
3347 	u32 delta = seq - tp->rcv_nxt;
3348 
3349 	sock_owned_by_me((struct sock *)tp);
3350 	tp->bytes_received += delta;
3351 	tp->rcv_nxt = seq;
3352 }
3353 
3354 /* Update our send window.
3355  *
3356  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3357  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3358  */
3359 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3360 				 u32 ack_seq)
3361 {
3362 	struct tcp_sock *tp = tcp_sk(sk);
3363 	int flag = 0;
3364 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3365 
3366 	if (likely(!tcp_hdr(skb)->syn))
3367 		nwin <<= tp->rx_opt.snd_wscale;
3368 
3369 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3370 		flag |= FLAG_WIN_UPDATE;
3371 		tcp_update_wl(tp, ack_seq);
3372 
3373 		if (tp->snd_wnd != nwin) {
3374 			tp->snd_wnd = nwin;
3375 
3376 			/* Note, it is the only place, where
3377 			 * fast path is recovered for sending TCP.
3378 			 */
3379 			tp->pred_flags = 0;
3380 			tcp_fast_path_check(sk);
3381 
3382 			if (tcp_send_head(sk))
3383 				tcp_slow_start_after_idle_check(sk);
3384 
3385 			if (nwin > tp->max_window) {
3386 				tp->max_window = nwin;
3387 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3388 			}
3389 		}
3390 	}
3391 
3392 	tcp_snd_una_update(tp, ack);
3393 
3394 	return flag;
3395 }
3396 
3397 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3398 				   u32 *last_oow_ack_time)
3399 {
3400 	if (*last_oow_ack_time) {
3401 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3402 
3403 		if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3404 			NET_INC_STATS(net, mib_idx);
3405 			return true;	/* rate-limited: don't send yet! */
3406 		}
3407 	}
3408 
3409 	*last_oow_ack_time = tcp_jiffies32;
3410 
3411 	return false;	/* not rate-limited: go ahead, send dupack now! */
3412 }
3413 
3414 /* Return true if we're currently rate-limiting out-of-window ACKs and
3415  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3416  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3417  * attacks that send repeated SYNs or ACKs for the same connection. To
3418  * do this, we do not send a duplicate SYNACK or ACK if the remote
3419  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3420  */
3421 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3422 			  int mib_idx, u32 *last_oow_ack_time)
3423 {
3424 	/* Data packets without SYNs are not likely part of an ACK loop. */
3425 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3426 	    !tcp_hdr(skb)->syn)
3427 		return false;
3428 
3429 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3430 }
3431 
3432 /* RFC 5961 7 [ACK Throttling] */
3433 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3434 {
3435 	/* unprotected vars, we dont care of overwrites */
3436 	static u32 challenge_timestamp;
3437 	static unsigned int challenge_count;
3438 	struct tcp_sock *tp = tcp_sk(sk);
3439 	u32 count, now;
3440 
3441 	/* First check our per-socket dupack rate limit. */
3442 	if (__tcp_oow_rate_limited(sock_net(sk),
3443 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3444 				   &tp->last_oow_ack_time))
3445 		return;
3446 
3447 	/* Then check host-wide RFC 5961 rate limit. */
3448 	now = jiffies / HZ;
3449 	if (now != challenge_timestamp) {
3450 		u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
3451 
3452 		challenge_timestamp = now;
3453 		WRITE_ONCE(challenge_count, half +
3454 			   prandom_u32_max(sysctl_tcp_challenge_ack_limit));
3455 	}
3456 	count = READ_ONCE(challenge_count);
3457 	if (count > 0) {
3458 		WRITE_ONCE(challenge_count, count - 1);
3459 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3460 		tcp_send_ack(sk);
3461 	}
3462 }
3463 
3464 static void tcp_store_ts_recent(struct tcp_sock *tp)
3465 {
3466 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3467 	tp->rx_opt.ts_recent_stamp = get_seconds();
3468 }
3469 
3470 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3471 {
3472 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3473 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3474 		 * extra check below makes sure this can only happen
3475 		 * for pure ACK frames.  -DaveM
3476 		 *
3477 		 * Not only, also it occurs for expired timestamps.
3478 		 */
3479 
3480 		if (tcp_paws_check(&tp->rx_opt, 0))
3481 			tcp_store_ts_recent(tp);
3482 	}
3483 }
3484 
3485 /* This routine deals with acks during a TLP episode.
3486  * We mark the end of a TLP episode on receiving TLP dupack or when
3487  * ack is after tlp_high_seq.
3488  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3489  */
3490 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3491 {
3492 	struct tcp_sock *tp = tcp_sk(sk);
3493 
3494 	if (before(ack, tp->tlp_high_seq))
3495 		return;
3496 
3497 	if (flag & FLAG_DSACKING_ACK) {
3498 		/* This DSACK means original and TLP probe arrived; no loss */
3499 		tp->tlp_high_seq = 0;
3500 	} else if (after(ack, tp->tlp_high_seq)) {
3501 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3502 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3503 		 */
3504 		tcp_init_cwnd_reduction(sk);
3505 		tcp_set_ca_state(sk, TCP_CA_CWR);
3506 		tcp_end_cwnd_reduction(sk);
3507 		tcp_try_keep_open(sk);
3508 		NET_INC_STATS(sock_net(sk),
3509 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3510 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3511 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3512 		/* Pure dupack: original and TLP probe arrived; no loss */
3513 		tp->tlp_high_seq = 0;
3514 	}
3515 }
3516 
3517 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3518 {
3519 	const struct inet_connection_sock *icsk = inet_csk(sk);
3520 
3521 	if (icsk->icsk_ca_ops->in_ack_event)
3522 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3523 }
3524 
3525 /* Congestion control has updated the cwnd already. So if we're in
3526  * loss recovery then now we do any new sends (for FRTO) or
3527  * retransmits (for CA_Loss or CA_recovery) that make sense.
3528  */
3529 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3530 {
3531 	struct tcp_sock *tp = tcp_sk(sk);
3532 
3533 	if (rexmit == REXMIT_NONE)
3534 		return;
3535 
3536 	if (unlikely(rexmit == 2)) {
3537 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3538 					  TCP_NAGLE_OFF);
3539 		if (after(tp->snd_nxt, tp->high_seq))
3540 			return;
3541 		tp->frto = 0;
3542 	}
3543 	tcp_xmit_retransmit_queue(sk);
3544 }
3545 
3546 /* This routine deals with incoming acks, but not outgoing ones. */
3547 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3548 {
3549 	struct inet_connection_sock *icsk = inet_csk(sk);
3550 	struct tcp_sock *tp = tcp_sk(sk);
3551 	struct tcp_sacktag_state sack_state;
3552 	struct rate_sample rs = { .prior_delivered = 0 };
3553 	u32 prior_snd_una = tp->snd_una;
3554 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3555 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3556 	bool is_dupack = false;
3557 	u32 prior_fackets;
3558 	int prior_packets = tp->packets_out;
3559 	u32 delivered = tp->delivered;
3560 	u32 lost = tp->lost;
3561 	int acked = 0; /* Number of packets newly acked */
3562 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3563 
3564 	sack_state.first_sackt = 0;
3565 	sack_state.rate = &rs;
3566 
3567 	/* We very likely will need to access write queue head. */
3568 	prefetchw(sk->sk_write_queue.next);
3569 
3570 	/* If the ack is older than previous acks
3571 	 * then we can probably ignore it.
3572 	 */
3573 	if (before(ack, prior_snd_una)) {
3574 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3575 		if (before(ack, prior_snd_una - tp->max_window)) {
3576 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3577 				tcp_send_challenge_ack(sk, skb);
3578 			return -1;
3579 		}
3580 		goto old_ack;
3581 	}
3582 
3583 	/* If the ack includes data we haven't sent yet, discard
3584 	 * this segment (RFC793 Section 3.9).
3585 	 */
3586 	if (after(ack, tp->snd_nxt))
3587 		goto invalid_ack;
3588 
3589 	if (after(ack, prior_snd_una)) {
3590 		flag |= FLAG_SND_UNA_ADVANCED;
3591 		icsk->icsk_retransmits = 0;
3592 	}
3593 
3594 	prior_fackets = tp->fackets_out;
3595 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3596 
3597 	/* ts_recent update must be made after we are sure that the packet
3598 	 * is in window.
3599 	 */
3600 	if (flag & FLAG_UPDATE_TS_RECENT)
3601 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3602 
3603 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3604 		/* Window is constant, pure forward advance.
3605 		 * No more checks are required.
3606 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3607 		 */
3608 		tcp_update_wl(tp, ack_seq);
3609 		tcp_snd_una_update(tp, ack);
3610 		flag |= FLAG_WIN_UPDATE;
3611 
3612 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3613 
3614 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3615 	} else {
3616 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3617 
3618 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3619 			flag |= FLAG_DATA;
3620 		else
3621 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3622 
3623 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3624 
3625 		if (TCP_SKB_CB(skb)->sacked)
3626 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3627 							&sack_state);
3628 
3629 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3630 			flag |= FLAG_ECE;
3631 			ack_ev_flags |= CA_ACK_ECE;
3632 		}
3633 
3634 		if (flag & FLAG_WIN_UPDATE)
3635 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3636 
3637 		tcp_in_ack_event(sk, ack_ev_flags);
3638 	}
3639 
3640 	/* We passed data and got it acked, remove any soft error
3641 	 * log. Something worked...
3642 	 */
3643 	sk->sk_err_soft = 0;
3644 	icsk->icsk_probes_out = 0;
3645 	tp->rcv_tstamp = tcp_jiffies32;
3646 	if (!prior_packets)
3647 		goto no_queue;
3648 
3649 	/* See if we can take anything off of the retransmit queue. */
3650 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
3651 				    &sack_state);
3652 
3653 	if (tp->tlp_high_seq)
3654 		tcp_process_tlp_ack(sk, ack, flag);
3655 	/* If needed, reset TLP/RTO timer; RACK may later override this. */
3656 	if (flag & FLAG_SET_XMIT_TIMER)
3657 		tcp_set_xmit_timer(sk);
3658 
3659 	if (tcp_ack_is_dubious(sk, flag)) {
3660 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3661 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3662 	}
3663 
3664 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3665 		sk_dst_confirm(sk);
3666 
3667 	delivered = tp->delivered - delivered;	/* freshly ACKed or SACKed */
3668 	lost = tp->lost - lost;			/* freshly marked lost */
3669 	tcp_rate_gen(sk, delivered, lost, sack_state.rate);
3670 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3671 	tcp_xmit_recovery(sk, rexmit);
3672 	return 1;
3673 
3674 no_queue:
3675 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3676 	if (flag & FLAG_DSACKING_ACK)
3677 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3678 	/* If this ack opens up a zero window, clear backoff.  It was
3679 	 * being used to time the probes, and is probably far higher than
3680 	 * it needs to be for normal retransmission.
3681 	 */
3682 	if (tcp_send_head(sk))
3683 		tcp_ack_probe(sk);
3684 
3685 	if (tp->tlp_high_seq)
3686 		tcp_process_tlp_ack(sk, ack, flag);
3687 	return 1;
3688 
3689 invalid_ack:
3690 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3691 	return -1;
3692 
3693 old_ack:
3694 	/* If data was SACKed, tag it and see if we should send more data.
3695 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3696 	 */
3697 	if (TCP_SKB_CB(skb)->sacked) {
3698 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3699 						&sack_state);
3700 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3701 		tcp_xmit_recovery(sk, rexmit);
3702 	}
3703 
3704 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3705 	return 0;
3706 }
3707 
3708 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3709 				      bool syn, struct tcp_fastopen_cookie *foc,
3710 				      bool exp_opt)
3711 {
3712 	/* Valid only in SYN or SYN-ACK with an even length.  */
3713 	if (!foc || !syn || len < 0 || (len & 1))
3714 		return;
3715 
3716 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3717 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3718 		memcpy(foc->val, cookie, len);
3719 	else if (len != 0)
3720 		len = -1;
3721 	foc->len = len;
3722 	foc->exp = exp_opt;
3723 }
3724 
3725 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3726  * But, this can also be called on packets in the established flow when
3727  * the fast version below fails.
3728  */
3729 void tcp_parse_options(const struct net *net,
3730 		       const struct sk_buff *skb,
3731 		       struct tcp_options_received *opt_rx, int estab,
3732 		       struct tcp_fastopen_cookie *foc)
3733 {
3734 	const unsigned char *ptr;
3735 	const struct tcphdr *th = tcp_hdr(skb);
3736 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3737 
3738 	ptr = (const unsigned char *)(th + 1);
3739 	opt_rx->saw_tstamp = 0;
3740 
3741 	while (length > 0) {
3742 		int opcode = *ptr++;
3743 		int opsize;
3744 
3745 		switch (opcode) {
3746 		case TCPOPT_EOL:
3747 			return;
3748 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3749 			length--;
3750 			continue;
3751 		default:
3752 			opsize = *ptr++;
3753 			if (opsize < 2) /* "silly options" */
3754 				return;
3755 			if (opsize > length)
3756 				return;	/* don't parse partial options */
3757 			switch (opcode) {
3758 			case TCPOPT_MSS:
3759 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3760 					u16 in_mss = get_unaligned_be16(ptr);
3761 					if (in_mss) {
3762 						if (opt_rx->user_mss &&
3763 						    opt_rx->user_mss < in_mss)
3764 							in_mss = opt_rx->user_mss;
3765 						opt_rx->mss_clamp = in_mss;
3766 					}
3767 				}
3768 				break;
3769 			case TCPOPT_WINDOW:
3770 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3771 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3772 					__u8 snd_wscale = *(__u8 *)ptr;
3773 					opt_rx->wscale_ok = 1;
3774 					if (snd_wscale > TCP_MAX_WSCALE) {
3775 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3776 								     __func__,
3777 								     snd_wscale,
3778 								     TCP_MAX_WSCALE);
3779 						snd_wscale = TCP_MAX_WSCALE;
3780 					}
3781 					opt_rx->snd_wscale = snd_wscale;
3782 				}
3783 				break;
3784 			case TCPOPT_TIMESTAMP:
3785 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3786 				    ((estab && opt_rx->tstamp_ok) ||
3787 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3788 					opt_rx->saw_tstamp = 1;
3789 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3790 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3791 				}
3792 				break;
3793 			case TCPOPT_SACK_PERM:
3794 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3795 				    !estab && net->ipv4.sysctl_tcp_sack) {
3796 					opt_rx->sack_ok = TCP_SACK_SEEN;
3797 					tcp_sack_reset(opt_rx);
3798 				}
3799 				break;
3800 
3801 			case TCPOPT_SACK:
3802 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3803 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3804 				   opt_rx->sack_ok) {
3805 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3806 				}
3807 				break;
3808 #ifdef CONFIG_TCP_MD5SIG
3809 			case TCPOPT_MD5SIG:
3810 				/*
3811 				 * The MD5 Hash has already been
3812 				 * checked (see tcp_v{4,6}_do_rcv()).
3813 				 */
3814 				break;
3815 #endif
3816 			case TCPOPT_FASTOPEN:
3817 				tcp_parse_fastopen_option(
3818 					opsize - TCPOLEN_FASTOPEN_BASE,
3819 					ptr, th->syn, foc, false);
3820 				break;
3821 
3822 			case TCPOPT_EXP:
3823 				/* Fast Open option shares code 254 using a
3824 				 * 16 bits magic number.
3825 				 */
3826 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3827 				    get_unaligned_be16(ptr) ==
3828 				    TCPOPT_FASTOPEN_MAGIC)
3829 					tcp_parse_fastopen_option(opsize -
3830 						TCPOLEN_EXP_FASTOPEN_BASE,
3831 						ptr + 2, th->syn, foc, true);
3832 				break;
3833 
3834 			}
3835 			ptr += opsize-2;
3836 			length -= opsize;
3837 		}
3838 	}
3839 }
3840 EXPORT_SYMBOL(tcp_parse_options);
3841 
3842 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3843 {
3844 	const __be32 *ptr = (const __be32 *)(th + 1);
3845 
3846 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3847 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3848 		tp->rx_opt.saw_tstamp = 1;
3849 		++ptr;
3850 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3851 		++ptr;
3852 		if (*ptr)
3853 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3854 		else
3855 			tp->rx_opt.rcv_tsecr = 0;
3856 		return true;
3857 	}
3858 	return false;
3859 }
3860 
3861 /* Fast parse options. This hopes to only see timestamps.
3862  * If it is wrong it falls back on tcp_parse_options().
3863  */
3864 static bool tcp_fast_parse_options(const struct net *net,
3865 				   const struct sk_buff *skb,
3866 				   const struct tcphdr *th, struct tcp_sock *tp)
3867 {
3868 	/* In the spirit of fast parsing, compare doff directly to constant
3869 	 * values.  Because equality is used, short doff can be ignored here.
3870 	 */
3871 	if (th->doff == (sizeof(*th) / 4)) {
3872 		tp->rx_opt.saw_tstamp = 0;
3873 		return false;
3874 	} else if (tp->rx_opt.tstamp_ok &&
3875 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3876 		if (tcp_parse_aligned_timestamp(tp, th))
3877 			return true;
3878 	}
3879 
3880 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3881 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3882 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3883 
3884 	return true;
3885 }
3886 
3887 #ifdef CONFIG_TCP_MD5SIG
3888 /*
3889  * Parse MD5 Signature option
3890  */
3891 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3892 {
3893 	int length = (th->doff << 2) - sizeof(*th);
3894 	const u8 *ptr = (const u8 *)(th + 1);
3895 
3896 	/* If the TCP option is too short, we can short cut */
3897 	if (length < TCPOLEN_MD5SIG)
3898 		return NULL;
3899 
3900 	while (length > 0) {
3901 		int opcode = *ptr++;
3902 		int opsize;
3903 
3904 		switch (opcode) {
3905 		case TCPOPT_EOL:
3906 			return NULL;
3907 		case TCPOPT_NOP:
3908 			length--;
3909 			continue;
3910 		default:
3911 			opsize = *ptr++;
3912 			if (opsize < 2 || opsize > length)
3913 				return NULL;
3914 			if (opcode == TCPOPT_MD5SIG)
3915 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3916 		}
3917 		ptr += opsize - 2;
3918 		length -= opsize;
3919 	}
3920 	return NULL;
3921 }
3922 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3923 #endif
3924 
3925 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3926  *
3927  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3928  * it can pass through stack. So, the following predicate verifies that
3929  * this segment is not used for anything but congestion avoidance or
3930  * fast retransmit. Moreover, we even are able to eliminate most of such
3931  * second order effects, if we apply some small "replay" window (~RTO)
3932  * to timestamp space.
3933  *
3934  * All these measures still do not guarantee that we reject wrapped ACKs
3935  * on networks with high bandwidth, when sequence space is recycled fastly,
3936  * but it guarantees that such events will be very rare and do not affect
3937  * connection seriously. This doesn't look nice, but alas, PAWS is really
3938  * buggy extension.
3939  *
3940  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3941  * states that events when retransmit arrives after original data are rare.
3942  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3943  * the biggest problem on large power networks even with minor reordering.
3944  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3945  * up to bandwidth of 18Gigabit/sec. 8) ]
3946  */
3947 
3948 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3949 {
3950 	const struct tcp_sock *tp = tcp_sk(sk);
3951 	const struct tcphdr *th = tcp_hdr(skb);
3952 	u32 seq = TCP_SKB_CB(skb)->seq;
3953 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3954 
3955 	return (/* 1. Pure ACK with correct sequence number. */
3956 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3957 
3958 		/* 2. ... and duplicate ACK. */
3959 		ack == tp->snd_una &&
3960 
3961 		/* 3. ... and does not update window. */
3962 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3963 
3964 		/* 4. ... and sits in replay window. */
3965 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3966 }
3967 
3968 static inline bool tcp_paws_discard(const struct sock *sk,
3969 				   const struct sk_buff *skb)
3970 {
3971 	const struct tcp_sock *tp = tcp_sk(sk);
3972 
3973 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3974 	       !tcp_disordered_ack(sk, skb);
3975 }
3976 
3977 /* Check segment sequence number for validity.
3978  *
3979  * Segment controls are considered valid, if the segment
3980  * fits to the window after truncation to the window. Acceptability
3981  * of data (and SYN, FIN, of course) is checked separately.
3982  * See tcp_data_queue(), for example.
3983  *
3984  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3985  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3986  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3987  * (borrowed from freebsd)
3988  */
3989 
3990 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3991 {
3992 	return	!before(end_seq, tp->rcv_wup) &&
3993 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3994 }
3995 
3996 /* When we get a reset we do this. */
3997 void tcp_reset(struct sock *sk)
3998 {
3999 	/* We want the right error as BSD sees it (and indeed as we do). */
4000 	switch (sk->sk_state) {
4001 	case TCP_SYN_SENT:
4002 		sk->sk_err = ECONNREFUSED;
4003 		break;
4004 	case TCP_CLOSE_WAIT:
4005 		sk->sk_err = EPIPE;
4006 		break;
4007 	case TCP_CLOSE:
4008 		return;
4009 	default:
4010 		sk->sk_err = ECONNRESET;
4011 	}
4012 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4013 	smp_wmb();
4014 
4015 	tcp_done(sk);
4016 
4017 	if (!sock_flag(sk, SOCK_DEAD))
4018 		sk->sk_error_report(sk);
4019 }
4020 
4021 /*
4022  * 	Process the FIN bit. This now behaves as it is supposed to work
4023  *	and the FIN takes effect when it is validly part of sequence
4024  *	space. Not before when we get holes.
4025  *
4026  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4027  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4028  *	TIME-WAIT)
4029  *
4030  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4031  *	close and we go into CLOSING (and later onto TIME-WAIT)
4032  *
4033  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4034  */
4035 void tcp_fin(struct sock *sk)
4036 {
4037 	struct tcp_sock *tp = tcp_sk(sk);
4038 
4039 	inet_csk_schedule_ack(sk);
4040 
4041 	sk->sk_shutdown |= RCV_SHUTDOWN;
4042 	sock_set_flag(sk, SOCK_DONE);
4043 
4044 	switch (sk->sk_state) {
4045 	case TCP_SYN_RECV:
4046 	case TCP_ESTABLISHED:
4047 		/* Move to CLOSE_WAIT */
4048 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4049 		inet_csk(sk)->icsk_ack.pingpong = 1;
4050 		break;
4051 
4052 	case TCP_CLOSE_WAIT:
4053 	case TCP_CLOSING:
4054 		/* Received a retransmission of the FIN, do
4055 		 * nothing.
4056 		 */
4057 		break;
4058 	case TCP_LAST_ACK:
4059 		/* RFC793: Remain in the LAST-ACK state. */
4060 		break;
4061 
4062 	case TCP_FIN_WAIT1:
4063 		/* This case occurs when a simultaneous close
4064 		 * happens, we must ack the received FIN and
4065 		 * enter the CLOSING state.
4066 		 */
4067 		tcp_send_ack(sk);
4068 		tcp_set_state(sk, TCP_CLOSING);
4069 		break;
4070 	case TCP_FIN_WAIT2:
4071 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4072 		tcp_send_ack(sk);
4073 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4074 		break;
4075 	default:
4076 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4077 		 * cases we should never reach this piece of code.
4078 		 */
4079 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4080 		       __func__, sk->sk_state);
4081 		break;
4082 	}
4083 
4084 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4085 	 * Probably, we should reset in this case. For now drop them.
4086 	 */
4087 	skb_rbtree_purge(&tp->out_of_order_queue);
4088 	if (tcp_is_sack(tp))
4089 		tcp_sack_reset(&tp->rx_opt);
4090 	sk_mem_reclaim(sk);
4091 
4092 	if (!sock_flag(sk, SOCK_DEAD)) {
4093 		sk->sk_state_change(sk);
4094 
4095 		/* Do not send POLL_HUP for half duplex close. */
4096 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4097 		    sk->sk_state == TCP_CLOSE)
4098 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4099 		else
4100 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4101 	}
4102 }
4103 
4104 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4105 				  u32 end_seq)
4106 {
4107 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4108 		if (before(seq, sp->start_seq))
4109 			sp->start_seq = seq;
4110 		if (after(end_seq, sp->end_seq))
4111 			sp->end_seq = end_seq;
4112 		return true;
4113 	}
4114 	return false;
4115 }
4116 
4117 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4118 {
4119 	struct tcp_sock *tp = tcp_sk(sk);
4120 
4121 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4122 		int mib_idx;
4123 
4124 		if (before(seq, tp->rcv_nxt))
4125 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4126 		else
4127 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4128 
4129 		NET_INC_STATS(sock_net(sk), mib_idx);
4130 
4131 		tp->rx_opt.dsack = 1;
4132 		tp->duplicate_sack[0].start_seq = seq;
4133 		tp->duplicate_sack[0].end_seq = end_seq;
4134 	}
4135 }
4136 
4137 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4138 {
4139 	struct tcp_sock *tp = tcp_sk(sk);
4140 
4141 	if (!tp->rx_opt.dsack)
4142 		tcp_dsack_set(sk, seq, end_seq);
4143 	else
4144 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4145 }
4146 
4147 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4148 {
4149 	struct tcp_sock *tp = tcp_sk(sk);
4150 
4151 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4152 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4153 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4154 		tcp_enter_quickack_mode(sk);
4155 
4156 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4157 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4158 
4159 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4160 				end_seq = tp->rcv_nxt;
4161 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4162 		}
4163 	}
4164 
4165 	tcp_send_ack(sk);
4166 }
4167 
4168 /* These routines update the SACK block as out-of-order packets arrive or
4169  * in-order packets close up the sequence space.
4170  */
4171 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4172 {
4173 	int this_sack;
4174 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4175 	struct tcp_sack_block *swalk = sp + 1;
4176 
4177 	/* See if the recent change to the first SACK eats into
4178 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4179 	 */
4180 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4181 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4182 			int i;
4183 
4184 			/* Zap SWALK, by moving every further SACK up by one slot.
4185 			 * Decrease num_sacks.
4186 			 */
4187 			tp->rx_opt.num_sacks--;
4188 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4189 				sp[i] = sp[i + 1];
4190 			continue;
4191 		}
4192 		this_sack++, swalk++;
4193 	}
4194 }
4195 
4196 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4197 {
4198 	struct tcp_sock *tp = tcp_sk(sk);
4199 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4200 	int cur_sacks = tp->rx_opt.num_sacks;
4201 	int this_sack;
4202 
4203 	if (!cur_sacks)
4204 		goto new_sack;
4205 
4206 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4207 		if (tcp_sack_extend(sp, seq, end_seq)) {
4208 			/* Rotate this_sack to the first one. */
4209 			for (; this_sack > 0; this_sack--, sp--)
4210 				swap(*sp, *(sp - 1));
4211 			if (cur_sacks > 1)
4212 				tcp_sack_maybe_coalesce(tp);
4213 			return;
4214 		}
4215 	}
4216 
4217 	/* Could not find an adjacent existing SACK, build a new one,
4218 	 * put it at the front, and shift everyone else down.  We
4219 	 * always know there is at least one SACK present already here.
4220 	 *
4221 	 * If the sack array is full, forget about the last one.
4222 	 */
4223 	if (this_sack >= TCP_NUM_SACKS) {
4224 		this_sack--;
4225 		tp->rx_opt.num_sacks--;
4226 		sp--;
4227 	}
4228 	for (; this_sack > 0; this_sack--, sp--)
4229 		*sp = *(sp - 1);
4230 
4231 new_sack:
4232 	/* Build the new head SACK, and we're done. */
4233 	sp->start_seq = seq;
4234 	sp->end_seq = end_seq;
4235 	tp->rx_opt.num_sacks++;
4236 }
4237 
4238 /* RCV.NXT advances, some SACKs should be eaten. */
4239 
4240 static void tcp_sack_remove(struct tcp_sock *tp)
4241 {
4242 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4243 	int num_sacks = tp->rx_opt.num_sacks;
4244 	int this_sack;
4245 
4246 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4247 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4248 		tp->rx_opt.num_sacks = 0;
4249 		return;
4250 	}
4251 
4252 	for (this_sack = 0; this_sack < num_sacks;) {
4253 		/* Check if the start of the sack is covered by RCV.NXT. */
4254 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4255 			int i;
4256 
4257 			/* RCV.NXT must cover all the block! */
4258 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4259 
4260 			/* Zap this SACK, by moving forward any other SACKS. */
4261 			for (i = this_sack+1; i < num_sacks; i++)
4262 				tp->selective_acks[i-1] = tp->selective_acks[i];
4263 			num_sacks--;
4264 			continue;
4265 		}
4266 		this_sack++;
4267 		sp++;
4268 	}
4269 	tp->rx_opt.num_sacks = num_sacks;
4270 }
4271 
4272 enum tcp_queue {
4273 	OOO_QUEUE,
4274 	RCV_QUEUE,
4275 };
4276 
4277 /**
4278  * tcp_try_coalesce - try to merge skb to prior one
4279  * @sk: socket
4280  * @dest: destination queue
4281  * @to: prior buffer
4282  * @from: buffer to add in queue
4283  * @fragstolen: pointer to boolean
4284  *
4285  * Before queueing skb @from after @to, try to merge them
4286  * to reduce overall memory use and queue lengths, if cost is small.
4287  * Packets in ofo or receive queues can stay a long time.
4288  * Better try to coalesce them right now to avoid future collapses.
4289  * Returns true if caller should free @from instead of queueing it
4290  */
4291 static bool tcp_try_coalesce(struct sock *sk,
4292 			     enum tcp_queue dest,
4293 			     struct sk_buff *to,
4294 			     struct sk_buff *from,
4295 			     bool *fragstolen)
4296 {
4297 	int delta;
4298 
4299 	*fragstolen = false;
4300 
4301 	/* Its possible this segment overlaps with prior segment in queue */
4302 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4303 		return false;
4304 
4305 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4306 		return false;
4307 
4308 	atomic_add(delta, &sk->sk_rmem_alloc);
4309 	sk_mem_charge(sk, delta);
4310 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4311 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4312 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4313 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4314 
4315 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4316 		TCP_SKB_CB(to)->has_rxtstamp = true;
4317 		if (dest == OOO_QUEUE)
4318 			TCP_SKB_CB(to)->swtstamp = TCP_SKB_CB(from)->swtstamp;
4319 		else
4320 			to->tstamp = from->tstamp;
4321 	}
4322 
4323 	return true;
4324 }
4325 
4326 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4327 {
4328 	sk_drops_add(sk, skb);
4329 	__kfree_skb(skb);
4330 }
4331 
4332 /* This one checks to see if we can put data from the
4333  * out_of_order queue into the receive_queue.
4334  */
4335 static void tcp_ofo_queue(struct sock *sk)
4336 {
4337 	struct tcp_sock *tp = tcp_sk(sk);
4338 	__u32 dsack_high = tp->rcv_nxt;
4339 	bool fin, fragstolen, eaten;
4340 	struct sk_buff *skb, *tail;
4341 	struct rb_node *p;
4342 
4343 	p = rb_first(&tp->out_of_order_queue);
4344 	while (p) {
4345 		skb = rb_entry(p, struct sk_buff, rbnode);
4346 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4347 			break;
4348 
4349 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4350 			__u32 dsack = dsack_high;
4351 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4352 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4353 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4354 		}
4355 		p = rb_next(p);
4356 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4357 		/* Replace tstamp which was stomped by rbnode */
4358 		if (TCP_SKB_CB(skb)->has_rxtstamp)
4359 			skb->tstamp = TCP_SKB_CB(skb)->swtstamp;
4360 
4361 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4362 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4363 			tcp_drop(sk, skb);
4364 			continue;
4365 		}
4366 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4367 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4368 			   TCP_SKB_CB(skb)->end_seq);
4369 
4370 		tail = skb_peek_tail(&sk->sk_receive_queue);
4371 		eaten = tail && tcp_try_coalesce(sk, RCV_QUEUE,
4372 						 tail, skb, &fragstolen);
4373 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4374 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4375 		if (!eaten)
4376 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4377 		else
4378 			kfree_skb_partial(skb, fragstolen);
4379 
4380 		if (unlikely(fin)) {
4381 			tcp_fin(sk);
4382 			/* tcp_fin() purges tp->out_of_order_queue,
4383 			 * so we must end this loop right now.
4384 			 */
4385 			break;
4386 		}
4387 	}
4388 }
4389 
4390 static bool tcp_prune_ofo_queue(struct sock *sk);
4391 static int tcp_prune_queue(struct sock *sk);
4392 
4393 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4394 				 unsigned int size)
4395 {
4396 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4397 	    !sk_rmem_schedule(sk, skb, size)) {
4398 
4399 		if (tcp_prune_queue(sk) < 0)
4400 			return -1;
4401 
4402 		while (!sk_rmem_schedule(sk, skb, size)) {
4403 			if (!tcp_prune_ofo_queue(sk))
4404 				return -1;
4405 		}
4406 	}
4407 	return 0;
4408 }
4409 
4410 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4411 {
4412 	struct tcp_sock *tp = tcp_sk(sk);
4413 	struct rb_node **p, *q, *parent;
4414 	struct sk_buff *skb1;
4415 	u32 seq, end_seq;
4416 	bool fragstolen;
4417 
4418 	tcp_ecn_check_ce(tp, skb);
4419 
4420 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4421 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4422 		tcp_drop(sk, skb);
4423 		return;
4424 	}
4425 
4426 	/* Stash tstamp to avoid being stomped on by rbnode */
4427 	if (TCP_SKB_CB(skb)->has_rxtstamp)
4428 		TCP_SKB_CB(skb)->swtstamp = skb->tstamp;
4429 
4430 	/* Disable header prediction. */
4431 	tp->pred_flags = 0;
4432 	inet_csk_schedule_ack(sk);
4433 
4434 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4435 	seq = TCP_SKB_CB(skb)->seq;
4436 	end_seq = TCP_SKB_CB(skb)->end_seq;
4437 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4438 		   tp->rcv_nxt, seq, end_seq);
4439 
4440 	p = &tp->out_of_order_queue.rb_node;
4441 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4442 		/* Initial out of order segment, build 1 SACK. */
4443 		if (tcp_is_sack(tp)) {
4444 			tp->rx_opt.num_sacks = 1;
4445 			tp->selective_acks[0].start_seq = seq;
4446 			tp->selective_acks[0].end_seq = end_seq;
4447 		}
4448 		rb_link_node(&skb->rbnode, NULL, p);
4449 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4450 		tp->ooo_last_skb = skb;
4451 		goto end;
4452 	}
4453 
4454 	/* In the typical case, we are adding an skb to the end of the list.
4455 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4456 	 */
4457 	if (tcp_try_coalesce(sk, OOO_QUEUE, tp->ooo_last_skb,
4458 			     skb, &fragstolen)) {
4459 coalesce_done:
4460 		tcp_grow_window(sk, skb);
4461 		kfree_skb_partial(skb, fragstolen);
4462 		skb = NULL;
4463 		goto add_sack;
4464 	}
4465 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4466 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4467 		parent = &tp->ooo_last_skb->rbnode;
4468 		p = &parent->rb_right;
4469 		goto insert;
4470 	}
4471 
4472 	/* Find place to insert this segment. Handle overlaps on the way. */
4473 	parent = NULL;
4474 	while (*p) {
4475 		parent = *p;
4476 		skb1 = rb_entry(parent, struct sk_buff, rbnode);
4477 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4478 			p = &parent->rb_left;
4479 			continue;
4480 		}
4481 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4482 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4483 				/* All the bits are present. Drop. */
4484 				NET_INC_STATS(sock_net(sk),
4485 					      LINUX_MIB_TCPOFOMERGE);
4486 				__kfree_skb(skb);
4487 				skb = NULL;
4488 				tcp_dsack_set(sk, seq, end_seq);
4489 				goto add_sack;
4490 			}
4491 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4492 				/* Partial overlap. */
4493 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4494 			} else {
4495 				/* skb's seq == skb1's seq and skb covers skb1.
4496 				 * Replace skb1 with skb.
4497 				 */
4498 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4499 						&tp->out_of_order_queue);
4500 				tcp_dsack_extend(sk,
4501 						 TCP_SKB_CB(skb1)->seq,
4502 						 TCP_SKB_CB(skb1)->end_seq);
4503 				NET_INC_STATS(sock_net(sk),
4504 					      LINUX_MIB_TCPOFOMERGE);
4505 				__kfree_skb(skb1);
4506 				goto merge_right;
4507 			}
4508 		} else if (tcp_try_coalesce(sk, OOO_QUEUE, skb1,
4509 					    skb, &fragstolen)) {
4510 			goto coalesce_done;
4511 		}
4512 		p = &parent->rb_right;
4513 	}
4514 insert:
4515 	/* Insert segment into RB tree. */
4516 	rb_link_node(&skb->rbnode, parent, p);
4517 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4518 
4519 merge_right:
4520 	/* Remove other segments covered by skb. */
4521 	while ((q = rb_next(&skb->rbnode)) != NULL) {
4522 		skb1 = rb_entry(q, struct sk_buff, rbnode);
4523 
4524 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4525 			break;
4526 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4527 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4528 					 end_seq);
4529 			break;
4530 		}
4531 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4532 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4533 				 TCP_SKB_CB(skb1)->end_seq);
4534 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4535 		tcp_drop(sk, skb1);
4536 	}
4537 	/* If there is no skb after us, we are the last_skb ! */
4538 	if (!q)
4539 		tp->ooo_last_skb = skb;
4540 
4541 add_sack:
4542 	if (tcp_is_sack(tp))
4543 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4544 end:
4545 	if (skb) {
4546 		tcp_grow_window(sk, skb);
4547 		skb_condense(skb);
4548 		skb_set_owner_r(skb, sk);
4549 	}
4550 }
4551 
4552 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4553 		  bool *fragstolen)
4554 {
4555 	int eaten;
4556 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4557 
4558 	__skb_pull(skb, hdrlen);
4559 	eaten = (tail &&
4560 		 tcp_try_coalesce(sk, RCV_QUEUE, tail,
4561 				  skb, fragstolen)) ? 1 : 0;
4562 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4563 	if (!eaten) {
4564 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4565 		skb_set_owner_r(skb, sk);
4566 	}
4567 	return eaten;
4568 }
4569 
4570 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4571 {
4572 	struct sk_buff *skb;
4573 	int err = -ENOMEM;
4574 	int data_len = 0;
4575 	bool fragstolen;
4576 
4577 	if (size == 0)
4578 		return 0;
4579 
4580 	if (size > PAGE_SIZE) {
4581 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4582 
4583 		data_len = npages << PAGE_SHIFT;
4584 		size = data_len + (size & ~PAGE_MASK);
4585 	}
4586 	skb = alloc_skb_with_frags(size - data_len, data_len,
4587 				   PAGE_ALLOC_COSTLY_ORDER,
4588 				   &err, sk->sk_allocation);
4589 	if (!skb)
4590 		goto err;
4591 
4592 	skb_put(skb, size - data_len);
4593 	skb->data_len = data_len;
4594 	skb->len = size;
4595 
4596 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4597 		goto err_free;
4598 
4599 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4600 	if (err)
4601 		goto err_free;
4602 
4603 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4604 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4605 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4606 
4607 	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4608 		WARN_ON_ONCE(fragstolen); /* should not happen */
4609 		__kfree_skb(skb);
4610 	}
4611 	return size;
4612 
4613 err_free:
4614 	kfree_skb(skb);
4615 err:
4616 	return err;
4617 
4618 }
4619 
4620 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4621 {
4622 	struct tcp_sock *tp = tcp_sk(sk);
4623 	bool fragstolen;
4624 	int eaten;
4625 
4626 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4627 		__kfree_skb(skb);
4628 		return;
4629 	}
4630 	skb_dst_drop(skb);
4631 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4632 
4633 	tcp_ecn_accept_cwr(tp, skb);
4634 
4635 	tp->rx_opt.dsack = 0;
4636 
4637 	/*  Queue data for delivery to the user.
4638 	 *  Packets in sequence go to the receive queue.
4639 	 *  Out of sequence packets to the out_of_order_queue.
4640 	 */
4641 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4642 		if (tcp_receive_window(tp) == 0)
4643 			goto out_of_window;
4644 
4645 		/* Ok. In sequence. In window. */
4646 queue_and_out:
4647 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4648 			sk_forced_mem_schedule(sk, skb->truesize);
4649 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4650 			goto drop;
4651 
4652 		eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4653 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4654 		if (skb->len)
4655 			tcp_event_data_recv(sk, skb);
4656 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4657 			tcp_fin(sk);
4658 
4659 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4660 			tcp_ofo_queue(sk);
4661 
4662 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4663 			 * gap in queue is filled.
4664 			 */
4665 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4666 				inet_csk(sk)->icsk_ack.pingpong = 0;
4667 		}
4668 
4669 		if (tp->rx_opt.num_sacks)
4670 			tcp_sack_remove(tp);
4671 
4672 		tcp_fast_path_check(sk);
4673 
4674 		if (eaten > 0)
4675 			kfree_skb_partial(skb, fragstolen);
4676 		if (!sock_flag(sk, SOCK_DEAD))
4677 			sk->sk_data_ready(sk);
4678 		return;
4679 	}
4680 
4681 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4682 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4683 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4684 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4685 
4686 out_of_window:
4687 		tcp_enter_quickack_mode(sk);
4688 		inet_csk_schedule_ack(sk);
4689 drop:
4690 		tcp_drop(sk, skb);
4691 		return;
4692 	}
4693 
4694 	/* Out of window. F.e. zero window probe. */
4695 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4696 		goto out_of_window;
4697 
4698 	tcp_enter_quickack_mode(sk);
4699 
4700 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4701 		/* Partial packet, seq < rcv_next < end_seq */
4702 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4703 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4704 			   TCP_SKB_CB(skb)->end_seq);
4705 
4706 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4707 
4708 		/* If window is closed, drop tail of packet. But after
4709 		 * remembering D-SACK for its head made in previous line.
4710 		 */
4711 		if (!tcp_receive_window(tp))
4712 			goto out_of_window;
4713 		goto queue_and_out;
4714 	}
4715 
4716 	tcp_data_queue_ofo(sk, skb);
4717 }
4718 
4719 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4720 {
4721 	if (list)
4722 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4723 
4724 	return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode);
4725 }
4726 
4727 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4728 					struct sk_buff_head *list,
4729 					struct rb_root *root)
4730 {
4731 	struct sk_buff *next = tcp_skb_next(skb, list);
4732 
4733 	if (list)
4734 		__skb_unlink(skb, list);
4735 	else
4736 		rb_erase(&skb->rbnode, root);
4737 
4738 	__kfree_skb(skb);
4739 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4740 
4741 	return next;
4742 }
4743 
4744 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4745 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4746 {
4747 	struct rb_node **p = &root->rb_node;
4748 	struct rb_node *parent = NULL;
4749 	struct sk_buff *skb1;
4750 
4751 	while (*p) {
4752 		parent = *p;
4753 		skb1 = rb_entry(parent, struct sk_buff, rbnode);
4754 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4755 			p = &parent->rb_left;
4756 		else
4757 			p = &parent->rb_right;
4758 	}
4759 	rb_link_node(&skb->rbnode, parent, p);
4760 	rb_insert_color(&skb->rbnode, root);
4761 }
4762 
4763 /* Collapse contiguous sequence of skbs head..tail with
4764  * sequence numbers start..end.
4765  *
4766  * If tail is NULL, this means until the end of the queue.
4767  *
4768  * Segments with FIN/SYN are not collapsed (only because this
4769  * simplifies code)
4770  */
4771 static void
4772 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4773 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4774 {
4775 	struct sk_buff *skb = head, *n;
4776 	struct sk_buff_head tmp;
4777 	bool end_of_skbs;
4778 
4779 	/* First, check that queue is collapsible and find
4780 	 * the point where collapsing can be useful.
4781 	 */
4782 restart:
4783 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4784 		n = tcp_skb_next(skb, list);
4785 
4786 		/* No new bits? It is possible on ofo queue. */
4787 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4788 			skb = tcp_collapse_one(sk, skb, list, root);
4789 			if (!skb)
4790 				break;
4791 			goto restart;
4792 		}
4793 
4794 		/* The first skb to collapse is:
4795 		 * - not SYN/FIN and
4796 		 * - bloated or contains data before "start" or
4797 		 *   overlaps to the next one.
4798 		 */
4799 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4800 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4801 		     before(TCP_SKB_CB(skb)->seq, start))) {
4802 			end_of_skbs = false;
4803 			break;
4804 		}
4805 
4806 		if (n && n != tail &&
4807 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4808 			end_of_skbs = false;
4809 			break;
4810 		}
4811 
4812 		/* Decided to skip this, advance start seq. */
4813 		start = TCP_SKB_CB(skb)->end_seq;
4814 	}
4815 	if (end_of_skbs ||
4816 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4817 		return;
4818 
4819 	__skb_queue_head_init(&tmp);
4820 
4821 	while (before(start, end)) {
4822 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4823 		struct sk_buff *nskb;
4824 
4825 		nskb = alloc_skb(copy, GFP_ATOMIC);
4826 		if (!nskb)
4827 			break;
4828 
4829 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4830 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4831 		if (list)
4832 			__skb_queue_before(list, skb, nskb);
4833 		else
4834 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4835 		skb_set_owner_r(nskb, sk);
4836 
4837 		/* Copy data, releasing collapsed skbs. */
4838 		while (copy > 0) {
4839 			int offset = start - TCP_SKB_CB(skb)->seq;
4840 			int size = TCP_SKB_CB(skb)->end_seq - start;
4841 
4842 			BUG_ON(offset < 0);
4843 			if (size > 0) {
4844 				size = min(copy, size);
4845 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4846 					BUG();
4847 				TCP_SKB_CB(nskb)->end_seq += size;
4848 				copy -= size;
4849 				start += size;
4850 			}
4851 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4852 				skb = tcp_collapse_one(sk, skb, list, root);
4853 				if (!skb ||
4854 				    skb == tail ||
4855 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4856 					goto end;
4857 			}
4858 		}
4859 	}
4860 end:
4861 	skb_queue_walk_safe(&tmp, skb, n)
4862 		tcp_rbtree_insert(root, skb);
4863 }
4864 
4865 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4866  * and tcp_collapse() them until all the queue is collapsed.
4867  */
4868 static void tcp_collapse_ofo_queue(struct sock *sk)
4869 {
4870 	struct tcp_sock *tp = tcp_sk(sk);
4871 	struct sk_buff *skb, *head;
4872 	struct rb_node *p;
4873 	u32 start, end;
4874 
4875 	p = rb_first(&tp->out_of_order_queue);
4876 	skb = rb_entry_safe(p, struct sk_buff, rbnode);
4877 new_range:
4878 	if (!skb) {
4879 		p = rb_last(&tp->out_of_order_queue);
4880 		/* Note: This is possible p is NULL here. We do not
4881 		 * use rb_entry_safe(), as ooo_last_skb is valid only
4882 		 * if rbtree is not empty.
4883 		 */
4884 		tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode);
4885 		return;
4886 	}
4887 	start = TCP_SKB_CB(skb)->seq;
4888 	end = TCP_SKB_CB(skb)->end_seq;
4889 
4890 	for (head = skb;;) {
4891 		skb = tcp_skb_next(skb, NULL);
4892 
4893 		/* Range is terminated when we see a gap or when
4894 		 * we are at the queue end.
4895 		 */
4896 		if (!skb ||
4897 		    after(TCP_SKB_CB(skb)->seq, end) ||
4898 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4899 			tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4900 				     head, skb, start, end);
4901 			goto new_range;
4902 		}
4903 
4904 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4905 			start = TCP_SKB_CB(skb)->seq;
4906 		if (after(TCP_SKB_CB(skb)->end_seq, end))
4907 			end = TCP_SKB_CB(skb)->end_seq;
4908 	}
4909 }
4910 
4911 /*
4912  * Clean the out-of-order queue to make room.
4913  * We drop high sequences packets to :
4914  * 1) Let a chance for holes to be filled.
4915  * 2) not add too big latencies if thousands of packets sit there.
4916  *    (But if application shrinks SO_RCVBUF, we could still end up
4917  *     freeing whole queue here)
4918  *
4919  * Return true if queue has shrunk.
4920  */
4921 static bool tcp_prune_ofo_queue(struct sock *sk)
4922 {
4923 	struct tcp_sock *tp = tcp_sk(sk);
4924 	struct rb_node *node, *prev;
4925 
4926 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4927 		return false;
4928 
4929 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4930 	node = &tp->ooo_last_skb->rbnode;
4931 	do {
4932 		prev = rb_prev(node);
4933 		rb_erase(node, &tp->out_of_order_queue);
4934 		tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode));
4935 		sk_mem_reclaim(sk);
4936 		if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4937 		    !tcp_under_memory_pressure(sk))
4938 			break;
4939 		node = prev;
4940 	} while (node);
4941 	tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode);
4942 
4943 	/* Reset SACK state.  A conforming SACK implementation will
4944 	 * do the same at a timeout based retransmit.  When a connection
4945 	 * is in a sad state like this, we care only about integrity
4946 	 * of the connection not performance.
4947 	 */
4948 	if (tp->rx_opt.sack_ok)
4949 		tcp_sack_reset(&tp->rx_opt);
4950 	return true;
4951 }
4952 
4953 /* Reduce allocated memory if we can, trying to get
4954  * the socket within its memory limits again.
4955  *
4956  * Return less than zero if we should start dropping frames
4957  * until the socket owning process reads some of the data
4958  * to stabilize the situation.
4959  */
4960 static int tcp_prune_queue(struct sock *sk)
4961 {
4962 	struct tcp_sock *tp = tcp_sk(sk);
4963 
4964 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4965 
4966 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4967 
4968 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4969 		tcp_clamp_window(sk);
4970 	else if (tcp_under_memory_pressure(sk))
4971 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4972 
4973 	tcp_collapse_ofo_queue(sk);
4974 	if (!skb_queue_empty(&sk->sk_receive_queue))
4975 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
4976 			     skb_peek(&sk->sk_receive_queue),
4977 			     NULL,
4978 			     tp->copied_seq, tp->rcv_nxt);
4979 	sk_mem_reclaim(sk);
4980 
4981 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4982 		return 0;
4983 
4984 	/* Collapsing did not help, destructive actions follow.
4985 	 * This must not ever occur. */
4986 
4987 	tcp_prune_ofo_queue(sk);
4988 
4989 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4990 		return 0;
4991 
4992 	/* If we are really being abused, tell the caller to silently
4993 	 * drop receive data on the floor.  It will get retransmitted
4994 	 * and hopefully then we'll have sufficient space.
4995 	 */
4996 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
4997 
4998 	/* Massive buffer overcommit. */
4999 	tp->pred_flags = 0;
5000 	return -1;
5001 }
5002 
5003 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5004 {
5005 	const struct tcp_sock *tp = tcp_sk(sk);
5006 
5007 	/* If the user specified a specific send buffer setting, do
5008 	 * not modify it.
5009 	 */
5010 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5011 		return false;
5012 
5013 	/* If we are under global TCP memory pressure, do not expand.  */
5014 	if (tcp_under_memory_pressure(sk))
5015 		return false;
5016 
5017 	/* If we are under soft global TCP memory pressure, do not expand.  */
5018 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5019 		return false;
5020 
5021 	/* If we filled the congestion window, do not expand.  */
5022 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5023 		return false;
5024 
5025 	return true;
5026 }
5027 
5028 /* When incoming ACK allowed to free some skb from write_queue,
5029  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5030  * on the exit from tcp input handler.
5031  *
5032  * PROBLEM: sndbuf expansion does not work well with largesend.
5033  */
5034 static void tcp_new_space(struct sock *sk)
5035 {
5036 	struct tcp_sock *tp = tcp_sk(sk);
5037 
5038 	if (tcp_should_expand_sndbuf(sk)) {
5039 		tcp_sndbuf_expand(sk);
5040 		tp->snd_cwnd_stamp = tcp_jiffies32;
5041 	}
5042 
5043 	sk->sk_write_space(sk);
5044 }
5045 
5046 static void tcp_check_space(struct sock *sk)
5047 {
5048 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5049 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5050 		/* pairs with tcp_poll() */
5051 		smp_mb();
5052 		if (sk->sk_socket &&
5053 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5054 			tcp_new_space(sk);
5055 			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5056 				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5057 		}
5058 	}
5059 }
5060 
5061 static inline void tcp_data_snd_check(struct sock *sk)
5062 {
5063 	tcp_push_pending_frames(sk);
5064 	tcp_check_space(sk);
5065 }
5066 
5067 /*
5068  * Check if sending an ack is needed.
5069  */
5070 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5071 {
5072 	struct tcp_sock *tp = tcp_sk(sk);
5073 
5074 	    /* More than one full frame received... */
5075 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5076 	     /* ... and right edge of window advances far enough.
5077 	      * (tcp_recvmsg() will send ACK otherwise). Or...
5078 	      */
5079 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
5080 	    /* We ACK each frame or... */
5081 	    tcp_in_quickack_mode(sk) ||
5082 	    /* We have out of order data. */
5083 	    (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
5084 		/* Then ack it now */
5085 		tcp_send_ack(sk);
5086 	} else {
5087 		/* Else, send delayed ack. */
5088 		tcp_send_delayed_ack(sk);
5089 	}
5090 }
5091 
5092 static inline void tcp_ack_snd_check(struct sock *sk)
5093 {
5094 	if (!inet_csk_ack_scheduled(sk)) {
5095 		/* We sent a data segment already. */
5096 		return;
5097 	}
5098 	__tcp_ack_snd_check(sk, 1);
5099 }
5100 
5101 /*
5102  *	This routine is only called when we have urgent data
5103  *	signaled. Its the 'slow' part of tcp_urg. It could be
5104  *	moved inline now as tcp_urg is only called from one
5105  *	place. We handle URGent data wrong. We have to - as
5106  *	BSD still doesn't use the correction from RFC961.
5107  *	For 1003.1g we should support a new option TCP_STDURG to permit
5108  *	either form (or just set the sysctl tcp_stdurg).
5109  */
5110 
5111 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5112 {
5113 	struct tcp_sock *tp = tcp_sk(sk);
5114 	u32 ptr = ntohs(th->urg_ptr);
5115 
5116 	if (ptr && !sysctl_tcp_stdurg)
5117 		ptr--;
5118 	ptr += ntohl(th->seq);
5119 
5120 	/* Ignore urgent data that we've already seen and read. */
5121 	if (after(tp->copied_seq, ptr))
5122 		return;
5123 
5124 	/* Do not replay urg ptr.
5125 	 *
5126 	 * NOTE: interesting situation not covered by specs.
5127 	 * Misbehaving sender may send urg ptr, pointing to segment,
5128 	 * which we already have in ofo queue. We are not able to fetch
5129 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5130 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5131 	 * situations. But it is worth to think about possibility of some
5132 	 * DoSes using some hypothetical application level deadlock.
5133 	 */
5134 	if (before(ptr, tp->rcv_nxt))
5135 		return;
5136 
5137 	/* Do we already have a newer (or duplicate) urgent pointer? */
5138 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5139 		return;
5140 
5141 	/* Tell the world about our new urgent pointer. */
5142 	sk_send_sigurg(sk);
5143 
5144 	/* We may be adding urgent data when the last byte read was
5145 	 * urgent. To do this requires some care. We cannot just ignore
5146 	 * tp->copied_seq since we would read the last urgent byte again
5147 	 * as data, nor can we alter copied_seq until this data arrives
5148 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5149 	 *
5150 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5151 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5152 	 * and expect that both A and B disappear from stream. This is _wrong_.
5153 	 * Though this happens in BSD with high probability, this is occasional.
5154 	 * Any application relying on this is buggy. Note also, that fix "works"
5155 	 * only in this artificial test. Insert some normal data between A and B and we will
5156 	 * decline of BSD again. Verdict: it is better to remove to trap
5157 	 * buggy users.
5158 	 */
5159 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5160 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5161 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5162 		tp->copied_seq++;
5163 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5164 			__skb_unlink(skb, &sk->sk_receive_queue);
5165 			__kfree_skb(skb);
5166 		}
5167 	}
5168 
5169 	tp->urg_data = TCP_URG_NOTYET;
5170 	tp->urg_seq = ptr;
5171 
5172 	/* Disable header prediction. */
5173 	tp->pred_flags = 0;
5174 }
5175 
5176 /* This is the 'fast' part of urgent handling. */
5177 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5178 {
5179 	struct tcp_sock *tp = tcp_sk(sk);
5180 
5181 	/* Check if we get a new urgent pointer - normally not. */
5182 	if (th->urg)
5183 		tcp_check_urg(sk, th);
5184 
5185 	/* Do we wait for any urgent data? - normally not... */
5186 	if (tp->urg_data == TCP_URG_NOTYET) {
5187 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5188 			  th->syn;
5189 
5190 		/* Is the urgent pointer pointing into this packet? */
5191 		if (ptr < skb->len) {
5192 			u8 tmp;
5193 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5194 				BUG();
5195 			tp->urg_data = TCP_URG_VALID | tmp;
5196 			if (!sock_flag(sk, SOCK_DEAD))
5197 				sk->sk_data_ready(sk);
5198 		}
5199 	}
5200 }
5201 
5202 /* Accept RST for rcv_nxt - 1 after a FIN.
5203  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5204  * FIN is sent followed by a RST packet. The RST is sent with the same
5205  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5206  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5207  * ACKs on the closed socket. In addition middleboxes can drop either the
5208  * challenge ACK or a subsequent RST.
5209  */
5210 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5211 {
5212 	struct tcp_sock *tp = tcp_sk(sk);
5213 
5214 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5215 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5216 					       TCPF_CLOSING));
5217 }
5218 
5219 /* Does PAWS and seqno based validation of an incoming segment, flags will
5220  * play significant role here.
5221  */
5222 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5223 				  const struct tcphdr *th, int syn_inerr)
5224 {
5225 	struct tcp_sock *tp = tcp_sk(sk);
5226 	bool rst_seq_match = false;
5227 
5228 	/* RFC1323: H1. Apply PAWS check first. */
5229 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5230 	    tp->rx_opt.saw_tstamp &&
5231 	    tcp_paws_discard(sk, skb)) {
5232 		if (!th->rst) {
5233 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5234 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5235 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5236 						  &tp->last_oow_ack_time))
5237 				tcp_send_dupack(sk, skb);
5238 			goto discard;
5239 		}
5240 		/* Reset is accepted even if it did not pass PAWS. */
5241 	}
5242 
5243 	/* Step 1: check sequence number */
5244 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5245 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5246 		 * (RST) segments are validated by checking their SEQ-fields."
5247 		 * And page 69: "If an incoming segment is not acceptable,
5248 		 * an acknowledgment should be sent in reply (unless the RST
5249 		 * bit is set, if so drop the segment and return)".
5250 		 */
5251 		if (!th->rst) {
5252 			if (th->syn)
5253 				goto syn_challenge;
5254 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5255 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5256 						  &tp->last_oow_ack_time))
5257 				tcp_send_dupack(sk, skb);
5258 		} else if (tcp_reset_check(sk, skb)) {
5259 			tcp_reset(sk);
5260 		}
5261 		goto discard;
5262 	}
5263 
5264 	/* Step 2: check RST bit */
5265 	if (th->rst) {
5266 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5267 		 * FIN and SACK too if available):
5268 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5269 		 * the right-most SACK block,
5270 		 * then
5271 		 *     RESET the connection
5272 		 * else
5273 		 *     Send a challenge ACK
5274 		 */
5275 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5276 		    tcp_reset_check(sk, skb)) {
5277 			rst_seq_match = true;
5278 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5279 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5280 			int max_sack = sp[0].end_seq;
5281 			int this_sack;
5282 
5283 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5284 			     ++this_sack) {
5285 				max_sack = after(sp[this_sack].end_seq,
5286 						 max_sack) ?
5287 					sp[this_sack].end_seq : max_sack;
5288 			}
5289 
5290 			if (TCP_SKB_CB(skb)->seq == max_sack)
5291 				rst_seq_match = true;
5292 		}
5293 
5294 		if (rst_seq_match)
5295 			tcp_reset(sk);
5296 		else {
5297 			/* Disable TFO if RST is out-of-order
5298 			 * and no data has been received
5299 			 * for current active TFO socket
5300 			 */
5301 			if (tp->syn_fastopen && !tp->data_segs_in &&
5302 			    sk->sk_state == TCP_ESTABLISHED)
5303 				tcp_fastopen_active_disable(sk);
5304 			tcp_send_challenge_ack(sk, skb);
5305 		}
5306 		goto discard;
5307 	}
5308 
5309 	/* step 3: check security and precedence [ignored] */
5310 
5311 	/* step 4: Check for a SYN
5312 	 * RFC 5961 4.2 : Send a challenge ack
5313 	 */
5314 	if (th->syn) {
5315 syn_challenge:
5316 		if (syn_inerr)
5317 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5318 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5319 		tcp_send_challenge_ack(sk, skb);
5320 		goto discard;
5321 	}
5322 
5323 	return true;
5324 
5325 discard:
5326 	tcp_drop(sk, skb);
5327 	return false;
5328 }
5329 
5330 /*
5331  *	TCP receive function for the ESTABLISHED state.
5332  *
5333  *	It is split into a fast path and a slow path. The fast path is
5334  * 	disabled when:
5335  *	- A zero window was announced from us - zero window probing
5336  *        is only handled properly in the slow path.
5337  *	- Out of order segments arrived.
5338  *	- Urgent data is expected.
5339  *	- There is no buffer space left
5340  *	- Unexpected TCP flags/window values/header lengths are received
5341  *	  (detected by checking the TCP header against pred_flags)
5342  *	- Data is sent in both directions. Fast path only supports pure senders
5343  *	  or pure receivers (this means either the sequence number or the ack
5344  *	  value must stay constant)
5345  *	- Unexpected TCP option.
5346  *
5347  *	When these conditions are not satisfied it drops into a standard
5348  *	receive procedure patterned after RFC793 to handle all cases.
5349  *	The first three cases are guaranteed by proper pred_flags setting,
5350  *	the rest is checked inline. Fast processing is turned on in
5351  *	tcp_data_queue when everything is OK.
5352  */
5353 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5354 			 const struct tcphdr *th)
5355 {
5356 	unsigned int len = skb->len;
5357 	struct tcp_sock *tp = tcp_sk(sk);
5358 
5359 	tcp_mstamp_refresh(tp);
5360 	if (unlikely(!sk->sk_rx_dst))
5361 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5362 	/*
5363 	 *	Header prediction.
5364 	 *	The code loosely follows the one in the famous
5365 	 *	"30 instruction TCP receive" Van Jacobson mail.
5366 	 *
5367 	 *	Van's trick is to deposit buffers into socket queue
5368 	 *	on a device interrupt, to call tcp_recv function
5369 	 *	on the receive process context and checksum and copy
5370 	 *	the buffer to user space. smart...
5371 	 *
5372 	 *	Our current scheme is not silly either but we take the
5373 	 *	extra cost of the net_bh soft interrupt processing...
5374 	 *	We do checksum and copy also but from device to kernel.
5375 	 */
5376 
5377 	tp->rx_opt.saw_tstamp = 0;
5378 
5379 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5380 	 *	if header_prediction is to be made
5381 	 *	'S' will always be tp->tcp_header_len >> 2
5382 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5383 	 *  turn it off	(when there are holes in the receive
5384 	 *	 space for instance)
5385 	 *	PSH flag is ignored.
5386 	 */
5387 
5388 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5389 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5390 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5391 		int tcp_header_len = tp->tcp_header_len;
5392 
5393 		/* Timestamp header prediction: tcp_header_len
5394 		 * is automatically equal to th->doff*4 due to pred_flags
5395 		 * match.
5396 		 */
5397 
5398 		/* Check timestamp */
5399 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5400 			/* No? Slow path! */
5401 			if (!tcp_parse_aligned_timestamp(tp, th))
5402 				goto slow_path;
5403 
5404 			/* If PAWS failed, check it more carefully in slow path */
5405 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5406 				goto slow_path;
5407 
5408 			/* DO NOT update ts_recent here, if checksum fails
5409 			 * and timestamp was corrupted part, it will result
5410 			 * in a hung connection since we will drop all
5411 			 * future packets due to the PAWS test.
5412 			 */
5413 		}
5414 
5415 		if (len <= tcp_header_len) {
5416 			/* Bulk data transfer: sender */
5417 			if (len == tcp_header_len) {
5418 				/* Predicted packet is in window by definition.
5419 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5420 				 * Hence, check seq<=rcv_wup reduces to:
5421 				 */
5422 				if (tcp_header_len ==
5423 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5424 				    tp->rcv_nxt == tp->rcv_wup)
5425 					tcp_store_ts_recent(tp);
5426 
5427 				/* We know that such packets are checksummed
5428 				 * on entry.
5429 				 */
5430 				tcp_ack(sk, skb, 0);
5431 				__kfree_skb(skb);
5432 				tcp_data_snd_check(sk);
5433 				return;
5434 			} else { /* Header too small */
5435 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5436 				goto discard;
5437 			}
5438 		} else {
5439 			int eaten = 0;
5440 			bool fragstolen = false;
5441 
5442 			if (tcp_checksum_complete(skb))
5443 				goto csum_error;
5444 
5445 			if ((int)skb->truesize > sk->sk_forward_alloc)
5446 				goto step5;
5447 
5448 			/* Predicted packet is in window by definition.
5449 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5450 			 * Hence, check seq<=rcv_wup reduces to:
5451 			 */
5452 			if (tcp_header_len ==
5453 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5454 			    tp->rcv_nxt == tp->rcv_wup)
5455 				tcp_store_ts_recent(tp);
5456 
5457 			tcp_rcv_rtt_measure_ts(sk, skb);
5458 
5459 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5460 
5461 			/* Bulk data transfer: receiver */
5462 			eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5463 					      &fragstolen);
5464 
5465 			tcp_event_data_recv(sk, skb);
5466 
5467 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5468 				/* Well, only one small jumplet in fast path... */
5469 				tcp_ack(sk, skb, FLAG_DATA);
5470 				tcp_data_snd_check(sk);
5471 				if (!inet_csk_ack_scheduled(sk))
5472 					goto no_ack;
5473 			}
5474 
5475 			__tcp_ack_snd_check(sk, 0);
5476 no_ack:
5477 			if (eaten)
5478 				kfree_skb_partial(skb, fragstolen);
5479 			sk->sk_data_ready(sk);
5480 			return;
5481 		}
5482 	}
5483 
5484 slow_path:
5485 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5486 		goto csum_error;
5487 
5488 	if (!th->ack && !th->rst && !th->syn)
5489 		goto discard;
5490 
5491 	/*
5492 	 *	Standard slow path.
5493 	 */
5494 
5495 	if (!tcp_validate_incoming(sk, skb, th, 1))
5496 		return;
5497 
5498 step5:
5499 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5500 		goto discard;
5501 
5502 	tcp_rcv_rtt_measure_ts(sk, skb);
5503 
5504 	/* Process urgent data. */
5505 	tcp_urg(sk, skb, th);
5506 
5507 	/* step 7: process the segment text */
5508 	tcp_data_queue(sk, skb);
5509 
5510 	tcp_data_snd_check(sk);
5511 	tcp_ack_snd_check(sk);
5512 	return;
5513 
5514 csum_error:
5515 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5516 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5517 
5518 discard:
5519 	tcp_drop(sk, skb);
5520 }
5521 EXPORT_SYMBOL(tcp_rcv_established);
5522 
5523 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5524 {
5525 	struct tcp_sock *tp = tcp_sk(sk);
5526 	struct inet_connection_sock *icsk = inet_csk(sk);
5527 
5528 	tcp_set_state(sk, TCP_ESTABLISHED);
5529 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5530 
5531 	if (skb) {
5532 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5533 		security_inet_conn_established(sk, skb);
5534 	}
5535 
5536 	/* Make sure socket is routed, for correct metrics.  */
5537 	icsk->icsk_af_ops->rebuild_header(sk);
5538 
5539 	tcp_init_metrics(sk);
5540 	tcp_call_bpf(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5541 	tcp_init_congestion_control(sk);
5542 
5543 	/* Prevent spurious tcp_cwnd_restart() on first data
5544 	 * packet.
5545 	 */
5546 	tp->lsndtime = tcp_jiffies32;
5547 
5548 	tcp_init_buffer_space(sk);
5549 
5550 	if (sock_flag(sk, SOCK_KEEPOPEN))
5551 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5552 
5553 	if (!tp->rx_opt.snd_wscale)
5554 		__tcp_fast_path_on(tp, tp->snd_wnd);
5555 	else
5556 		tp->pred_flags = 0;
5557 }
5558 
5559 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5560 				    struct tcp_fastopen_cookie *cookie)
5561 {
5562 	struct tcp_sock *tp = tcp_sk(sk);
5563 	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5564 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5565 	bool syn_drop = false;
5566 
5567 	if (mss == tp->rx_opt.user_mss) {
5568 		struct tcp_options_received opt;
5569 
5570 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5571 		tcp_clear_options(&opt);
5572 		opt.user_mss = opt.mss_clamp = 0;
5573 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5574 		mss = opt.mss_clamp;
5575 	}
5576 
5577 	if (!tp->syn_fastopen) {
5578 		/* Ignore an unsolicited cookie */
5579 		cookie->len = -1;
5580 	} else if (tp->total_retrans) {
5581 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5582 		 * acknowledges data. Presumably the remote received only
5583 		 * the retransmitted (regular) SYNs: either the original
5584 		 * SYN-data or the corresponding SYN-ACK was dropped.
5585 		 */
5586 		syn_drop = (cookie->len < 0 && data);
5587 	} else if (cookie->len < 0 && !tp->syn_data) {
5588 		/* We requested a cookie but didn't get it. If we did not use
5589 		 * the (old) exp opt format then try so next time (try_exp=1).
5590 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5591 		 */
5592 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5593 	}
5594 
5595 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5596 
5597 	if (data) { /* Retransmit unacked data in SYN */
5598 		tcp_for_write_queue_from(data, sk) {
5599 			if (data == tcp_send_head(sk) ||
5600 			    __tcp_retransmit_skb(sk, data, 1))
5601 				break;
5602 		}
5603 		tcp_rearm_rto(sk);
5604 		NET_INC_STATS(sock_net(sk),
5605 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5606 		return true;
5607 	}
5608 	tp->syn_data_acked = tp->syn_data;
5609 	if (tp->syn_data_acked)
5610 		NET_INC_STATS(sock_net(sk),
5611 				LINUX_MIB_TCPFASTOPENACTIVE);
5612 
5613 	tcp_fastopen_add_skb(sk, synack);
5614 
5615 	return false;
5616 }
5617 
5618 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5619 					 const struct tcphdr *th)
5620 {
5621 	struct inet_connection_sock *icsk = inet_csk(sk);
5622 	struct tcp_sock *tp = tcp_sk(sk);
5623 	struct tcp_fastopen_cookie foc = { .len = -1 };
5624 	int saved_clamp = tp->rx_opt.mss_clamp;
5625 	bool fastopen_fail;
5626 
5627 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5628 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5629 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5630 
5631 	if (th->ack) {
5632 		/* rfc793:
5633 		 * "If the state is SYN-SENT then
5634 		 *    first check the ACK bit
5635 		 *      If the ACK bit is set
5636 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5637 		 *        a reset (unless the RST bit is set, if so drop
5638 		 *        the segment and return)"
5639 		 */
5640 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5641 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5642 			goto reset_and_undo;
5643 
5644 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5645 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5646 			     tcp_time_stamp(tp))) {
5647 			NET_INC_STATS(sock_net(sk),
5648 					LINUX_MIB_PAWSACTIVEREJECTED);
5649 			goto reset_and_undo;
5650 		}
5651 
5652 		/* Now ACK is acceptable.
5653 		 *
5654 		 * "If the RST bit is set
5655 		 *    If the ACK was acceptable then signal the user "error:
5656 		 *    connection reset", drop the segment, enter CLOSED state,
5657 		 *    delete TCB, and return."
5658 		 */
5659 
5660 		if (th->rst) {
5661 			tcp_reset(sk);
5662 			goto discard;
5663 		}
5664 
5665 		/* rfc793:
5666 		 *   "fifth, if neither of the SYN or RST bits is set then
5667 		 *    drop the segment and return."
5668 		 *
5669 		 *    See note below!
5670 		 *                                        --ANK(990513)
5671 		 */
5672 		if (!th->syn)
5673 			goto discard_and_undo;
5674 
5675 		/* rfc793:
5676 		 *   "If the SYN bit is on ...
5677 		 *    are acceptable then ...
5678 		 *    (our SYN has been ACKed), change the connection
5679 		 *    state to ESTABLISHED..."
5680 		 */
5681 
5682 		tcp_ecn_rcv_synack(tp, th);
5683 
5684 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5685 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5686 
5687 		/* Ok.. it's good. Set up sequence numbers and
5688 		 * move to established.
5689 		 */
5690 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5691 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5692 
5693 		/* RFC1323: The window in SYN & SYN/ACK segments is
5694 		 * never scaled.
5695 		 */
5696 		tp->snd_wnd = ntohs(th->window);
5697 
5698 		if (!tp->rx_opt.wscale_ok) {
5699 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5700 			tp->window_clamp = min(tp->window_clamp, 65535U);
5701 		}
5702 
5703 		if (tp->rx_opt.saw_tstamp) {
5704 			tp->rx_opt.tstamp_ok	   = 1;
5705 			tp->tcp_header_len =
5706 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5707 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5708 			tcp_store_ts_recent(tp);
5709 		} else {
5710 			tp->tcp_header_len = sizeof(struct tcphdr);
5711 		}
5712 
5713 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5714 			tcp_enable_fack(tp);
5715 
5716 		tcp_mtup_init(sk);
5717 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5718 		tcp_initialize_rcv_mss(sk);
5719 
5720 		/* Remember, tcp_poll() does not lock socket!
5721 		 * Change state from SYN-SENT only after copied_seq
5722 		 * is initialized. */
5723 		tp->copied_seq = tp->rcv_nxt;
5724 
5725 		smp_mb();
5726 
5727 		tcp_finish_connect(sk, skb);
5728 
5729 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5730 				tcp_rcv_fastopen_synack(sk, skb, &foc);
5731 
5732 		if (!sock_flag(sk, SOCK_DEAD)) {
5733 			sk->sk_state_change(sk);
5734 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5735 		}
5736 		if (fastopen_fail)
5737 			return -1;
5738 		if (sk->sk_write_pending ||
5739 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5740 		    icsk->icsk_ack.pingpong) {
5741 			/* Save one ACK. Data will be ready after
5742 			 * several ticks, if write_pending is set.
5743 			 *
5744 			 * It may be deleted, but with this feature tcpdumps
5745 			 * look so _wonderfully_ clever, that I was not able
5746 			 * to stand against the temptation 8)     --ANK
5747 			 */
5748 			inet_csk_schedule_ack(sk);
5749 			tcp_enter_quickack_mode(sk);
5750 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5751 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5752 
5753 discard:
5754 			tcp_drop(sk, skb);
5755 			return 0;
5756 		} else {
5757 			tcp_send_ack(sk);
5758 		}
5759 		return -1;
5760 	}
5761 
5762 	/* No ACK in the segment */
5763 
5764 	if (th->rst) {
5765 		/* rfc793:
5766 		 * "If the RST bit is set
5767 		 *
5768 		 *      Otherwise (no ACK) drop the segment and return."
5769 		 */
5770 
5771 		goto discard_and_undo;
5772 	}
5773 
5774 	/* PAWS check. */
5775 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5776 	    tcp_paws_reject(&tp->rx_opt, 0))
5777 		goto discard_and_undo;
5778 
5779 	if (th->syn) {
5780 		/* We see SYN without ACK. It is attempt of
5781 		 * simultaneous connect with crossed SYNs.
5782 		 * Particularly, it can be connect to self.
5783 		 */
5784 		tcp_set_state(sk, TCP_SYN_RECV);
5785 
5786 		if (tp->rx_opt.saw_tstamp) {
5787 			tp->rx_opt.tstamp_ok = 1;
5788 			tcp_store_ts_recent(tp);
5789 			tp->tcp_header_len =
5790 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5791 		} else {
5792 			tp->tcp_header_len = sizeof(struct tcphdr);
5793 		}
5794 
5795 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5796 		tp->copied_seq = tp->rcv_nxt;
5797 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5798 
5799 		/* RFC1323: The window in SYN & SYN/ACK segments is
5800 		 * never scaled.
5801 		 */
5802 		tp->snd_wnd    = ntohs(th->window);
5803 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5804 		tp->max_window = tp->snd_wnd;
5805 
5806 		tcp_ecn_rcv_syn(tp, th);
5807 
5808 		tcp_mtup_init(sk);
5809 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5810 		tcp_initialize_rcv_mss(sk);
5811 
5812 		tcp_send_synack(sk);
5813 #if 0
5814 		/* Note, we could accept data and URG from this segment.
5815 		 * There are no obstacles to make this (except that we must
5816 		 * either change tcp_recvmsg() to prevent it from returning data
5817 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5818 		 *
5819 		 * However, if we ignore data in ACKless segments sometimes,
5820 		 * we have no reasons to accept it sometimes.
5821 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5822 		 * is not flawless. So, discard packet for sanity.
5823 		 * Uncomment this return to process the data.
5824 		 */
5825 		return -1;
5826 #else
5827 		goto discard;
5828 #endif
5829 	}
5830 	/* "fifth, if neither of the SYN or RST bits is set then
5831 	 * drop the segment and return."
5832 	 */
5833 
5834 discard_and_undo:
5835 	tcp_clear_options(&tp->rx_opt);
5836 	tp->rx_opt.mss_clamp = saved_clamp;
5837 	goto discard;
5838 
5839 reset_and_undo:
5840 	tcp_clear_options(&tp->rx_opt);
5841 	tp->rx_opt.mss_clamp = saved_clamp;
5842 	return 1;
5843 }
5844 
5845 /*
5846  *	This function implements the receiving procedure of RFC 793 for
5847  *	all states except ESTABLISHED and TIME_WAIT.
5848  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5849  *	address independent.
5850  */
5851 
5852 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5853 {
5854 	struct tcp_sock *tp = tcp_sk(sk);
5855 	struct inet_connection_sock *icsk = inet_csk(sk);
5856 	const struct tcphdr *th = tcp_hdr(skb);
5857 	struct request_sock *req;
5858 	int queued = 0;
5859 	bool acceptable;
5860 
5861 	switch (sk->sk_state) {
5862 	case TCP_CLOSE:
5863 		goto discard;
5864 
5865 	case TCP_LISTEN:
5866 		if (th->ack)
5867 			return 1;
5868 
5869 		if (th->rst)
5870 			goto discard;
5871 
5872 		if (th->syn) {
5873 			if (th->fin)
5874 				goto discard;
5875 			/* It is possible that we process SYN packets from backlog,
5876 			 * so we need to make sure to disable BH right there.
5877 			 */
5878 			local_bh_disable();
5879 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
5880 			local_bh_enable();
5881 
5882 			if (!acceptable)
5883 				return 1;
5884 			consume_skb(skb);
5885 			return 0;
5886 		}
5887 		goto discard;
5888 
5889 	case TCP_SYN_SENT:
5890 		tp->rx_opt.saw_tstamp = 0;
5891 		tcp_mstamp_refresh(tp);
5892 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
5893 		if (queued >= 0)
5894 			return queued;
5895 
5896 		/* Do step6 onward by hand. */
5897 		tcp_urg(sk, skb, th);
5898 		__kfree_skb(skb);
5899 		tcp_data_snd_check(sk);
5900 		return 0;
5901 	}
5902 
5903 	tcp_mstamp_refresh(tp);
5904 	tp->rx_opt.saw_tstamp = 0;
5905 	req = tp->fastopen_rsk;
5906 	if (req) {
5907 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5908 		    sk->sk_state != TCP_FIN_WAIT1);
5909 
5910 		if (!tcp_check_req(sk, skb, req, true))
5911 			goto discard;
5912 	}
5913 
5914 	if (!th->ack && !th->rst && !th->syn)
5915 		goto discard;
5916 
5917 	if (!tcp_validate_incoming(sk, skb, th, 0))
5918 		return 0;
5919 
5920 	/* step 5: check the ACK field */
5921 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5922 				      FLAG_UPDATE_TS_RECENT |
5923 				      FLAG_NO_CHALLENGE_ACK) > 0;
5924 
5925 	if (!acceptable) {
5926 		if (sk->sk_state == TCP_SYN_RECV)
5927 			return 1;	/* send one RST */
5928 		tcp_send_challenge_ack(sk, skb);
5929 		goto discard;
5930 	}
5931 	switch (sk->sk_state) {
5932 	case TCP_SYN_RECV:
5933 		if (!tp->srtt_us)
5934 			tcp_synack_rtt_meas(sk, req);
5935 
5936 		/* Once we leave TCP_SYN_RECV, we no longer need req
5937 		 * so release it.
5938 		 */
5939 		if (req) {
5940 			inet_csk(sk)->icsk_retransmits = 0;
5941 			reqsk_fastopen_remove(sk, req, false);
5942 		} else {
5943 			/* Make sure socket is routed, for correct metrics. */
5944 			icsk->icsk_af_ops->rebuild_header(sk);
5945 			tcp_call_bpf(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
5946 			tcp_init_congestion_control(sk);
5947 
5948 			tcp_mtup_init(sk);
5949 			tp->copied_seq = tp->rcv_nxt;
5950 			tcp_init_buffer_space(sk);
5951 		}
5952 		smp_mb();
5953 		tcp_set_state(sk, TCP_ESTABLISHED);
5954 		sk->sk_state_change(sk);
5955 
5956 		/* Note, that this wakeup is only for marginal crossed SYN case.
5957 		 * Passively open sockets are not waked up, because
5958 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5959 		 */
5960 		if (sk->sk_socket)
5961 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5962 
5963 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5964 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5965 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5966 
5967 		if (tp->rx_opt.tstamp_ok)
5968 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5969 
5970 		if (req) {
5971 			/* Re-arm the timer because data may have been sent out.
5972 			 * This is similar to the regular data transmission case
5973 			 * when new data has just been ack'ed.
5974 			 *
5975 			 * (TFO) - we could try to be more aggressive and
5976 			 * retransmitting any data sooner based on when they
5977 			 * are sent out.
5978 			 */
5979 			tcp_rearm_rto(sk);
5980 		} else
5981 			tcp_init_metrics(sk);
5982 
5983 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
5984 			tcp_update_pacing_rate(sk);
5985 
5986 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5987 		tp->lsndtime = tcp_jiffies32;
5988 
5989 		tcp_initialize_rcv_mss(sk);
5990 		tcp_fast_path_on(tp);
5991 		break;
5992 
5993 	case TCP_FIN_WAIT1: {
5994 		int tmo;
5995 
5996 		/* If we enter the TCP_FIN_WAIT1 state and we are a
5997 		 * Fast Open socket and this is the first acceptable
5998 		 * ACK we have received, this would have acknowledged
5999 		 * our SYNACK so stop the SYNACK timer.
6000 		 */
6001 		if (req) {
6002 			/* We no longer need the request sock. */
6003 			reqsk_fastopen_remove(sk, req, false);
6004 			tcp_rearm_rto(sk);
6005 		}
6006 		if (tp->snd_una != tp->write_seq)
6007 			break;
6008 
6009 		tcp_set_state(sk, TCP_FIN_WAIT2);
6010 		sk->sk_shutdown |= SEND_SHUTDOWN;
6011 
6012 		sk_dst_confirm(sk);
6013 
6014 		if (!sock_flag(sk, SOCK_DEAD)) {
6015 			/* Wake up lingering close() */
6016 			sk->sk_state_change(sk);
6017 			break;
6018 		}
6019 
6020 		if (tp->linger2 < 0) {
6021 			tcp_done(sk);
6022 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6023 			return 1;
6024 		}
6025 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6026 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6027 			/* Receive out of order FIN after close() */
6028 			if (tp->syn_fastopen && th->fin)
6029 				tcp_fastopen_active_disable(sk);
6030 			tcp_done(sk);
6031 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6032 			return 1;
6033 		}
6034 
6035 		tmo = tcp_fin_time(sk);
6036 		if (tmo > TCP_TIMEWAIT_LEN) {
6037 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6038 		} else if (th->fin || sock_owned_by_user(sk)) {
6039 			/* Bad case. We could lose such FIN otherwise.
6040 			 * It is not a big problem, but it looks confusing
6041 			 * and not so rare event. We still can lose it now,
6042 			 * if it spins in bh_lock_sock(), but it is really
6043 			 * marginal case.
6044 			 */
6045 			inet_csk_reset_keepalive_timer(sk, tmo);
6046 		} else {
6047 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6048 			goto discard;
6049 		}
6050 		break;
6051 	}
6052 
6053 	case TCP_CLOSING:
6054 		if (tp->snd_una == tp->write_seq) {
6055 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6056 			goto discard;
6057 		}
6058 		break;
6059 
6060 	case TCP_LAST_ACK:
6061 		if (tp->snd_una == tp->write_seq) {
6062 			tcp_update_metrics(sk);
6063 			tcp_done(sk);
6064 			goto discard;
6065 		}
6066 		break;
6067 	}
6068 
6069 	/* step 6: check the URG bit */
6070 	tcp_urg(sk, skb, th);
6071 
6072 	/* step 7: process the segment text */
6073 	switch (sk->sk_state) {
6074 	case TCP_CLOSE_WAIT:
6075 	case TCP_CLOSING:
6076 	case TCP_LAST_ACK:
6077 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6078 			break;
6079 	case TCP_FIN_WAIT1:
6080 	case TCP_FIN_WAIT2:
6081 		/* RFC 793 says to queue data in these states,
6082 		 * RFC 1122 says we MUST send a reset.
6083 		 * BSD 4.4 also does reset.
6084 		 */
6085 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6086 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6087 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6088 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6089 				tcp_reset(sk);
6090 				return 1;
6091 			}
6092 		}
6093 		/* Fall through */
6094 	case TCP_ESTABLISHED:
6095 		tcp_data_queue(sk, skb);
6096 		queued = 1;
6097 		break;
6098 	}
6099 
6100 	/* tcp_data could move socket to TIME-WAIT */
6101 	if (sk->sk_state != TCP_CLOSE) {
6102 		tcp_data_snd_check(sk);
6103 		tcp_ack_snd_check(sk);
6104 	}
6105 
6106 	if (!queued) {
6107 discard:
6108 		tcp_drop(sk, skb);
6109 	}
6110 	return 0;
6111 }
6112 EXPORT_SYMBOL(tcp_rcv_state_process);
6113 
6114 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6115 {
6116 	struct inet_request_sock *ireq = inet_rsk(req);
6117 
6118 	if (family == AF_INET)
6119 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6120 				    &ireq->ir_rmt_addr, port);
6121 #if IS_ENABLED(CONFIG_IPV6)
6122 	else if (family == AF_INET6)
6123 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6124 				    &ireq->ir_v6_rmt_addr, port);
6125 #endif
6126 }
6127 
6128 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6129  *
6130  * If we receive a SYN packet with these bits set, it means a
6131  * network is playing bad games with TOS bits. In order to
6132  * avoid possible false congestion notifications, we disable
6133  * TCP ECN negotiation.
6134  *
6135  * Exception: tcp_ca wants ECN. This is required for DCTCP
6136  * congestion control: Linux DCTCP asserts ECT on all packets,
6137  * including SYN, which is most optimal solution; however,
6138  * others, such as FreeBSD do not.
6139  */
6140 static void tcp_ecn_create_request(struct request_sock *req,
6141 				   const struct sk_buff *skb,
6142 				   const struct sock *listen_sk,
6143 				   const struct dst_entry *dst)
6144 {
6145 	const struct tcphdr *th = tcp_hdr(skb);
6146 	const struct net *net = sock_net(listen_sk);
6147 	bool th_ecn = th->ece && th->cwr;
6148 	bool ect, ecn_ok;
6149 	u32 ecn_ok_dst;
6150 
6151 	if (!th_ecn)
6152 		return;
6153 
6154 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6155 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6156 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6157 
6158 	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6159 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6160 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6161 		inet_rsk(req)->ecn_ok = 1;
6162 }
6163 
6164 static void tcp_openreq_init(struct request_sock *req,
6165 			     const struct tcp_options_received *rx_opt,
6166 			     struct sk_buff *skb, const struct sock *sk)
6167 {
6168 	struct inet_request_sock *ireq = inet_rsk(req);
6169 
6170 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6171 	req->cookie_ts = 0;
6172 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6173 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6174 	tcp_rsk(req)->snt_synack = tcp_clock_us();
6175 	tcp_rsk(req)->last_oow_ack_time = 0;
6176 	req->mss = rx_opt->mss_clamp;
6177 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6178 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6179 	ireq->sack_ok = rx_opt->sack_ok;
6180 	ireq->snd_wscale = rx_opt->snd_wscale;
6181 	ireq->wscale_ok = rx_opt->wscale_ok;
6182 	ireq->acked = 0;
6183 	ireq->ecn_ok = 0;
6184 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6185 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6186 	ireq->ir_mark = inet_request_mark(sk, skb);
6187 }
6188 
6189 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6190 				      struct sock *sk_listener,
6191 				      bool attach_listener)
6192 {
6193 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6194 					       attach_listener);
6195 
6196 	if (req) {
6197 		struct inet_request_sock *ireq = inet_rsk(req);
6198 
6199 		kmemcheck_annotate_bitfield(ireq, flags);
6200 		ireq->ireq_opt = NULL;
6201 #if IS_ENABLED(CONFIG_IPV6)
6202 		ireq->pktopts = NULL;
6203 #endif
6204 		atomic64_set(&ireq->ir_cookie, 0);
6205 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6206 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6207 		ireq->ireq_family = sk_listener->sk_family;
6208 	}
6209 
6210 	return req;
6211 }
6212 EXPORT_SYMBOL(inet_reqsk_alloc);
6213 
6214 /*
6215  * Return true if a syncookie should be sent
6216  */
6217 static bool tcp_syn_flood_action(const struct sock *sk,
6218 				 const struct sk_buff *skb,
6219 				 const char *proto)
6220 {
6221 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6222 	const char *msg = "Dropping request";
6223 	bool want_cookie = false;
6224 	struct net *net = sock_net(sk);
6225 
6226 #ifdef CONFIG_SYN_COOKIES
6227 	if (net->ipv4.sysctl_tcp_syncookies) {
6228 		msg = "Sending cookies";
6229 		want_cookie = true;
6230 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6231 	} else
6232 #endif
6233 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6234 
6235 	if (!queue->synflood_warned &&
6236 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6237 	    xchg(&queue->synflood_warned, 1) == 0)
6238 		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6239 			proto, ntohs(tcp_hdr(skb)->dest), msg);
6240 
6241 	return want_cookie;
6242 }
6243 
6244 static void tcp_reqsk_record_syn(const struct sock *sk,
6245 				 struct request_sock *req,
6246 				 const struct sk_buff *skb)
6247 {
6248 	if (tcp_sk(sk)->save_syn) {
6249 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6250 		u32 *copy;
6251 
6252 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6253 		if (copy) {
6254 			copy[0] = len;
6255 			memcpy(&copy[1], skb_network_header(skb), len);
6256 			req->saved_syn = copy;
6257 		}
6258 	}
6259 }
6260 
6261 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6262 		     const struct tcp_request_sock_ops *af_ops,
6263 		     struct sock *sk, struct sk_buff *skb)
6264 {
6265 	struct tcp_fastopen_cookie foc = { .len = -1 };
6266 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6267 	struct tcp_options_received tmp_opt;
6268 	struct tcp_sock *tp = tcp_sk(sk);
6269 	struct net *net = sock_net(sk);
6270 	struct sock *fastopen_sk = NULL;
6271 	struct request_sock *req;
6272 	bool want_cookie = false;
6273 	struct dst_entry *dst;
6274 	struct flowi fl;
6275 
6276 	/* TW buckets are converted to open requests without
6277 	 * limitations, they conserve resources and peer is
6278 	 * evidently real one.
6279 	 */
6280 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6281 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6282 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6283 		if (!want_cookie)
6284 			goto drop;
6285 	}
6286 
6287 	if (sk_acceptq_is_full(sk)) {
6288 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6289 		goto drop;
6290 	}
6291 
6292 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6293 	if (!req)
6294 		goto drop;
6295 
6296 	tcp_rsk(req)->af_specific = af_ops;
6297 	tcp_rsk(req)->ts_off = 0;
6298 
6299 	tcp_clear_options(&tmp_opt);
6300 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6301 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6302 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6303 			  want_cookie ? NULL : &foc);
6304 
6305 	if (want_cookie && !tmp_opt.saw_tstamp)
6306 		tcp_clear_options(&tmp_opt);
6307 
6308 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6309 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6310 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6311 
6312 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6313 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6314 
6315 	af_ops->init_req(req, sk, skb);
6316 
6317 	if (security_inet_conn_request(sk, skb, req))
6318 		goto drop_and_free;
6319 
6320 	if (tmp_opt.tstamp_ok)
6321 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6322 
6323 	dst = af_ops->route_req(sk, &fl, req);
6324 	if (!dst)
6325 		goto drop_and_free;
6326 
6327 	if (!want_cookie && !isn) {
6328 		/* Kill the following clause, if you dislike this way. */
6329 		if (!net->ipv4.sysctl_tcp_syncookies &&
6330 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6331 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6332 		    !tcp_peer_is_proven(req, dst)) {
6333 			/* Without syncookies last quarter of
6334 			 * backlog is filled with destinations,
6335 			 * proven to be alive.
6336 			 * It means that we continue to communicate
6337 			 * to destinations, already remembered
6338 			 * to the moment of synflood.
6339 			 */
6340 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6341 				    rsk_ops->family);
6342 			goto drop_and_release;
6343 		}
6344 
6345 		isn = af_ops->init_seq(skb);
6346 	}
6347 
6348 	tcp_ecn_create_request(req, skb, sk, dst);
6349 
6350 	if (want_cookie) {
6351 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6352 		req->cookie_ts = tmp_opt.tstamp_ok;
6353 		if (!tmp_opt.tstamp_ok)
6354 			inet_rsk(req)->ecn_ok = 0;
6355 	}
6356 
6357 	tcp_rsk(req)->snt_isn = isn;
6358 	tcp_rsk(req)->txhash = net_tx_rndhash();
6359 	tcp_openreq_init_rwin(req, sk, dst);
6360 	if (!want_cookie) {
6361 		tcp_reqsk_record_syn(sk, req, skb);
6362 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc);
6363 	}
6364 	if (fastopen_sk) {
6365 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6366 				    &foc, TCP_SYNACK_FASTOPEN);
6367 		/* Add the child socket directly into the accept queue */
6368 		inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6369 		sk->sk_data_ready(sk);
6370 		bh_unlock_sock(fastopen_sk);
6371 		sock_put(fastopen_sk);
6372 	} else {
6373 		tcp_rsk(req)->tfo_listener = false;
6374 		if (!want_cookie)
6375 			inet_csk_reqsk_queue_hash_add(sk, req,
6376 				tcp_timeout_init((struct sock *)req));
6377 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6378 				    !want_cookie ? TCP_SYNACK_NORMAL :
6379 						   TCP_SYNACK_COOKIE);
6380 		if (want_cookie) {
6381 			reqsk_free(req);
6382 			return 0;
6383 		}
6384 	}
6385 	reqsk_put(req);
6386 	return 0;
6387 
6388 drop_and_release:
6389 	dst_release(dst);
6390 drop_and_free:
6391 	reqsk_free(req);
6392 drop:
6393 	tcp_listendrop(sk);
6394 	return 0;
6395 }
6396 EXPORT_SYMBOL(tcp_conn_request);
6397