1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 80 int sysctl_tcp_fack __read_mostly; 81 int sysctl_tcp_max_reordering __read_mostly = 300; 82 int sysctl_tcp_dsack __read_mostly = 1; 83 int sysctl_tcp_app_win __read_mostly = 31; 84 int sysctl_tcp_adv_win_scale __read_mostly = 1; 85 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 86 87 /* rfc5961 challenge ack rate limiting */ 88 int sysctl_tcp_challenge_ack_limit = 1000; 89 90 int sysctl_tcp_stdurg __read_mostly; 91 int sysctl_tcp_rfc1337 __read_mostly; 92 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 93 int sysctl_tcp_frto __read_mostly = 2; 94 int sysctl_tcp_min_rtt_wlen __read_mostly = 300; 95 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 96 int sysctl_tcp_early_retrans __read_mostly = 3; 97 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2; 98 99 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 100 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 101 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 102 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 103 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 104 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 105 #define FLAG_ECE 0x40 /* ECE in this ACK */ 106 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 107 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 108 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 109 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 110 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 111 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 112 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 113 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 114 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 115 116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 120 121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 123 124 #define REXMIT_NONE 0 /* no loss recovery to do */ 125 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 126 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 127 128 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 129 unsigned int len) 130 { 131 static bool __once __read_mostly; 132 133 if (!__once) { 134 struct net_device *dev; 135 136 __once = true; 137 138 rcu_read_lock(); 139 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 140 if (!dev || len >= dev->mtu) 141 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 142 dev ? dev->name : "Unknown driver"); 143 rcu_read_unlock(); 144 } 145 } 146 147 /* Adapt the MSS value used to make delayed ack decision to the 148 * real world. 149 */ 150 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 151 { 152 struct inet_connection_sock *icsk = inet_csk(sk); 153 const unsigned int lss = icsk->icsk_ack.last_seg_size; 154 unsigned int len; 155 156 icsk->icsk_ack.last_seg_size = 0; 157 158 /* skb->len may jitter because of SACKs, even if peer 159 * sends good full-sized frames. 160 */ 161 len = skb_shinfo(skb)->gso_size ? : skb->len; 162 if (len >= icsk->icsk_ack.rcv_mss) { 163 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 164 tcp_sk(sk)->advmss); 165 /* Account for possibly-removed options */ 166 if (unlikely(len > icsk->icsk_ack.rcv_mss + 167 MAX_TCP_OPTION_SPACE)) 168 tcp_gro_dev_warn(sk, skb, len); 169 } else { 170 /* Otherwise, we make more careful check taking into account, 171 * that SACKs block is variable. 172 * 173 * "len" is invariant segment length, including TCP header. 174 */ 175 len += skb->data - skb_transport_header(skb); 176 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 177 /* If PSH is not set, packet should be 178 * full sized, provided peer TCP is not badly broken. 179 * This observation (if it is correct 8)) allows 180 * to handle super-low mtu links fairly. 181 */ 182 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 183 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 184 /* Subtract also invariant (if peer is RFC compliant), 185 * tcp header plus fixed timestamp option length. 186 * Resulting "len" is MSS free of SACK jitter. 187 */ 188 len -= tcp_sk(sk)->tcp_header_len; 189 icsk->icsk_ack.last_seg_size = len; 190 if (len == lss) { 191 icsk->icsk_ack.rcv_mss = len; 192 return; 193 } 194 } 195 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 196 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 197 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 198 } 199 } 200 201 static void tcp_incr_quickack(struct sock *sk) 202 { 203 struct inet_connection_sock *icsk = inet_csk(sk); 204 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 205 206 if (quickacks == 0) 207 quickacks = 2; 208 if (quickacks > icsk->icsk_ack.quick) 209 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 210 } 211 212 static void tcp_enter_quickack_mode(struct sock *sk) 213 { 214 struct inet_connection_sock *icsk = inet_csk(sk); 215 tcp_incr_quickack(sk); 216 icsk->icsk_ack.pingpong = 0; 217 icsk->icsk_ack.ato = TCP_ATO_MIN; 218 } 219 220 /* Send ACKs quickly, if "quick" count is not exhausted 221 * and the session is not interactive. 222 */ 223 224 static bool tcp_in_quickack_mode(struct sock *sk) 225 { 226 const struct inet_connection_sock *icsk = inet_csk(sk); 227 const struct dst_entry *dst = __sk_dst_get(sk); 228 229 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 230 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong); 231 } 232 233 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 234 { 235 if (tp->ecn_flags & TCP_ECN_OK) 236 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 237 } 238 239 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 240 { 241 if (tcp_hdr(skb)->cwr) 242 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 243 } 244 245 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 246 { 247 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 248 } 249 250 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 251 { 252 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 253 case INET_ECN_NOT_ECT: 254 /* Funny extension: if ECT is not set on a segment, 255 * and we already seen ECT on a previous segment, 256 * it is probably a retransmit. 257 */ 258 if (tp->ecn_flags & TCP_ECN_SEEN) 259 tcp_enter_quickack_mode((struct sock *)tp); 260 break; 261 case INET_ECN_CE: 262 if (tcp_ca_needs_ecn((struct sock *)tp)) 263 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE); 264 265 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 266 /* Better not delay acks, sender can have a very low cwnd */ 267 tcp_enter_quickack_mode((struct sock *)tp); 268 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 269 } 270 tp->ecn_flags |= TCP_ECN_SEEN; 271 break; 272 default: 273 if (tcp_ca_needs_ecn((struct sock *)tp)) 274 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE); 275 tp->ecn_flags |= TCP_ECN_SEEN; 276 break; 277 } 278 } 279 280 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 281 { 282 if (tp->ecn_flags & TCP_ECN_OK) 283 __tcp_ecn_check_ce(tp, skb); 284 } 285 286 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 287 { 288 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 289 tp->ecn_flags &= ~TCP_ECN_OK; 290 } 291 292 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 293 { 294 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 295 tp->ecn_flags &= ~TCP_ECN_OK; 296 } 297 298 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 299 { 300 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 301 return true; 302 return false; 303 } 304 305 /* Buffer size and advertised window tuning. 306 * 307 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 308 */ 309 310 static void tcp_sndbuf_expand(struct sock *sk) 311 { 312 const struct tcp_sock *tp = tcp_sk(sk); 313 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 314 int sndmem, per_mss; 315 u32 nr_segs; 316 317 /* Worst case is non GSO/TSO : each frame consumes one skb 318 * and skb->head is kmalloced using power of two area of memory 319 */ 320 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 321 MAX_TCP_HEADER + 322 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 323 324 per_mss = roundup_pow_of_two(per_mss) + 325 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 326 327 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 328 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 329 330 /* Fast Recovery (RFC 5681 3.2) : 331 * Cubic needs 1.7 factor, rounded to 2 to include 332 * extra cushion (application might react slowly to POLLOUT) 333 */ 334 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 335 sndmem *= nr_segs * per_mss; 336 337 if (sk->sk_sndbuf < sndmem) 338 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 339 } 340 341 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 342 * 343 * All tcp_full_space() is split to two parts: "network" buffer, allocated 344 * forward and advertised in receiver window (tp->rcv_wnd) and 345 * "application buffer", required to isolate scheduling/application 346 * latencies from network. 347 * window_clamp is maximal advertised window. It can be less than 348 * tcp_full_space(), in this case tcp_full_space() - window_clamp 349 * is reserved for "application" buffer. The less window_clamp is 350 * the smoother our behaviour from viewpoint of network, but the lower 351 * throughput and the higher sensitivity of the connection to losses. 8) 352 * 353 * rcv_ssthresh is more strict window_clamp used at "slow start" 354 * phase to predict further behaviour of this connection. 355 * It is used for two goals: 356 * - to enforce header prediction at sender, even when application 357 * requires some significant "application buffer". It is check #1. 358 * - to prevent pruning of receive queue because of misprediction 359 * of receiver window. Check #2. 360 * 361 * The scheme does not work when sender sends good segments opening 362 * window and then starts to feed us spaghetti. But it should work 363 * in common situations. Otherwise, we have to rely on queue collapsing. 364 */ 365 366 /* Slow part of check#2. */ 367 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 368 { 369 struct tcp_sock *tp = tcp_sk(sk); 370 /* Optimize this! */ 371 int truesize = tcp_win_from_space(skb->truesize) >> 1; 372 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 373 374 while (tp->rcv_ssthresh <= window) { 375 if (truesize <= skb->len) 376 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 377 378 truesize >>= 1; 379 window >>= 1; 380 } 381 return 0; 382 } 383 384 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 385 { 386 struct tcp_sock *tp = tcp_sk(sk); 387 388 /* Check #1 */ 389 if (tp->rcv_ssthresh < tp->window_clamp && 390 (int)tp->rcv_ssthresh < tcp_space(sk) && 391 !tcp_under_memory_pressure(sk)) { 392 int incr; 393 394 /* Check #2. Increase window, if skb with such overhead 395 * will fit to rcvbuf in future. 396 */ 397 if (tcp_win_from_space(skb->truesize) <= skb->len) 398 incr = 2 * tp->advmss; 399 else 400 incr = __tcp_grow_window(sk, skb); 401 402 if (incr) { 403 incr = max_t(int, incr, 2 * skb->len); 404 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 405 tp->window_clamp); 406 inet_csk(sk)->icsk_ack.quick |= 1; 407 } 408 } 409 } 410 411 /* 3. Tuning rcvbuf, when connection enters established state. */ 412 static void tcp_fixup_rcvbuf(struct sock *sk) 413 { 414 u32 mss = tcp_sk(sk)->advmss; 415 int rcvmem; 416 417 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 418 tcp_default_init_rwnd(mss); 419 420 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 421 * Allow enough cushion so that sender is not limited by our window 422 */ 423 if (sysctl_tcp_moderate_rcvbuf) 424 rcvmem <<= 2; 425 426 if (sk->sk_rcvbuf < rcvmem) 427 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); 428 } 429 430 /* 4. Try to fixup all. It is made immediately after connection enters 431 * established state. 432 */ 433 void tcp_init_buffer_space(struct sock *sk) 434 { 435 struct tcp_sock *tp = tcp_sk(sk); 436 int maxwin; 437 438 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 439 tcp_fixup_rcvbuf(sk); 440 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 441 tcp_sndbuf_expand(sk); 442 443 tp->rcvq_space.space = tp->rcv_wnd; 444 tcp_mstamp_refresh(tp); 445 tp->rcvq_space.time = tp->tcp_mstamp; 446 tp->rcvq_space.seq = tp->copied_seq; 447 448 maxwin = tcp_full_space(sk); 449 450 if (tp->window_clamp >= maxwin) { 451 tp->window_clamp = maxwin; 452 453 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 454 tp->window_clamp = max(maxwin - 455 (maxwin >> sysctl_tcp_app_win), 456 4 * tp->advmss); 457 } 458 459 /* Force reservation of one segment. */ 460 if (sysctl_tcp_app_win && 461 tp->window_clamp > 2 * tp->advmss && 462 tp->window_clamp + tp->advmss > maxwin) 463 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 464 465 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 466 tp->snd_cwnd_stamp = tcp_jiffies32; 467 } 468 469 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 470 static void tcp_clamp_window(struct sock *sk) 471 { 472 struct tcp_sock *tp = tcp_sk(sk); 473 struct inet_connection_sock *icsk = inet_csk(sk); 474 475 icsk->icsk_ack.quick = 0; 476 477 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 478 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 479 !tcp_under_memory_pressure(sk) && 480 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 481 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 482 sysctl_tcp_rmem[2]); 483 } 484 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 485 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 486 } 487 488 /* Initialize RCV_MSS value. 489 * RCV_MSS is an our guess about MSS used by the peer. 490 * We haven't any direct information about the MSS. 491 * It's better to underestimate the RCV_MSS rather than overestimate. 492 * Overestimations make us ACKing less frequently than needed. 493 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 494 */ 495 void tcp_initialize_rcv_mss(struct sock *sk) 496 { 497 const struct tcp_sock *tp = tcp_sk(sk); 498 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 499 500 hint = min(hint, tp->rcv_wnd / 2); 501 hint = min(hint, TCP_MSS_DEFAULT); 502 hint = max(hint, TCP_MIN_MSS); 503 504 inet_csk(sk)->icsk_ack.rcv_mss = hint; 505 } 506 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 507 508 /* Receiver "autotuning" code. 509 * 510 * The algorithm for RTT estimation w/o timestamps is based on 511 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 512 * <http://public.lanl.gov/radiant/pubs.html#DRS> 513 * 514 * More detail on this code can be found at 515 * <http://staff.psc.edu/jheffner/>, 516 * though this reference is out of date. A new paper 517 * is pending. 518 */ 519 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 520 { 521 u32 new_sample = tp->rcv_rtt_est.rtt_us; 522 long m = sample; 523 524 if (m == 0) 525 m = 1; 526 527 if (new_sample != 0) { 528 /* If we sample in larger samples in the non-timestamp 529 * case, we could grossly overestimate the RTT especially 530 * with chatty applications or bulk transfer apps which 531 * are stalled on filesystem I/O. 532 * 533 * Also, since we are only going for a minimum in the 534 * non-timestamp case, we do not smooth things out 535 * else with timestamps disabled convergence takes too 536 * long. 537 */ 538 if (!win_dep) { 539 m -= (new_sample >> 3); 540 new_sample += m; 541 } else { 542 m <<= 3; 543 if (m < new_sample) 544 new_sample = m; 545 } 546 } else { 547 /* No previous measure. */ 548 new_sample = m << 3; 549 } 550 551 tp->rcv_rtt_est.rtt_us = new_sample; 552 } 553 554 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 555 { 556 u32 delta_us; 557 558 if (tp->rcv_rtt_est.time == 0) 559 goto new_measure; 560 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 561 return; 562 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 563 tcp_rcv_rtt_update(tp, delta_us, 1); 564 565 new_measure: 566 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 567 tp->rcv_rtt_est.time = tp->tcp_mstamp; 568 } 569 570 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 571 const struct sk_buff *skb) 572 { 573 struct tcp_sock *tp = tcp_sk(sk); 574 575 if (tp->rx_opt.rcv_tsecr && 576 (TCP_SKB_CB(skb)->end_seq - 577 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) { 578 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 579 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 580 581 tcp_rcv_rtt_update(tp, delta_us, 0); 582 } 583 } 584 585 /* 586 * This function should be called every time data is copied to user space. 587 * It calculates the appropriate TCP receive buffer space. 588 */ 589 void tcp_rcv_space_adjust(struct sock *sk) 590 { 591 struct tcp_sock *tp = tcp_sk(sk); 592 int time; 593 int copied; 594 595 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 596 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 597 return; 598 599 /* Number of bytes copied to user in last RTT */ 600 copied = tp->copied_seq - tp->rcvq_space.seq; 601 if (copied <= tp->rcvq_space.space) 602 goto new_measure; 603 604 /* A bit of theory : 605 * copied = bytes received in previous RTT, our base window 606 * To cope with packet losses, we need a 2x factor 607 * To cope with slow start, and sender growing its cwin by 100 % 608 * every RTT, we need a 4x factor, because the ACK we are sending 609 * now is for the next RTT, not the current one : 610 * <prev RTT . ><current RTT .. ><next RTT .... > 611 */ 612 613 if (sysctl_tcp_moderate_rcvbuf && 614 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 615 int rcvwin, rcvmem, rcvbuf; 616 617 /* minimal window to cope with packet losses, assuming 618 * steady state. Add some cushion because of small variations. 619 */ 620 rcvwin = (copied << 1) + 16 * tp->advmss; 621 622 /* If rate increased by 25%, 623 * assume slow start, rcvwin = 3 * copied 624 * If rate increased by 50%, 625 * assume sender can use 2x growth, rcvwin = 4 * copied 626 */ 627 if (copied >= 628 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) { 629 if (copied >= 630 tp->rcvq_space.space + (tp->rcvq_space.space >> 1)) 631 rcvwin <<= 1; 632 else 633 rcvwin += (rcvwin >> 1); 634 } 635 636 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 637 while (tcp_win_from_space(rcvmem) < tp->advmss) 638 rcvmem += 128; 639 640 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]); 641 if (rcvbuf > sk->sk_rcvbuf) { 642 sk->sk_rcvbuf = rcvbuf; 643 644 /* Make the window clamp follow along. */ 645 tp->window_clamp = rcvwin; 646 } 647 } 648 tp->rcvq_space.space = copied; 649 650 new_measure: 651 tp->rcvq_space.seq = tp->copied_seq; 652 tp->rcvq_space.time = tp->tcp_mstamp; 653 } 654 655 /* There is something which you must keep in mind when you analyze the 656 * behavior of the tp->ato delayed ack timeout interval. When a 657 * connection starts up, we want to ack as quickly as possible. The 658 * problem is that "good" TCP's do slow start at the beginning of data 659 * transmission. The means that until we send the first few ACK's the 660 * sender will sit on his end and only queue most of his data, because 661 * he can only send snd_cwnd unacked packets at any given time. For 662 * each ACK we send, he increments snd_cwnd and transmits more of his 663 * queue. -DaveM 664 */ 665 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 666 { 667 struct tcp_sock *tp = tcp_sk(sk); 668 struct inet_connection_sock *icsk = inet_csk(sk); 669 u32 now; 670 671 inet_csk_schedule_ack(sk); 672 673 tcp_measure_rcv_mss(sk, skb); 674 675 tcp_rcv_rtt_measure(tp); 676 677 now = tcp_jiffies32; 678 679 if (!icsk->icsk_ack.ato) { 680 /* The _first_ data packet received, initialize 681 * delayed ACK engine. 682 */ 683 tcp_incr_quickack(sk); 684 icsk->icsk_ack.ato = TCP_ATO_MIN; 685 } else { 686 int m = now - icsk->icsk_ack.lrcvtime; 687 688 if (m <= TCP_ATO_MIN / 2) { 689 /* The fastest case is the first. */ 690 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 691 } else if (m < icsk->icsk_ack.ato) { 692 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 693 if (icsk->icsk_ack.ato > icsk->icsk_rto) 694 icsk->icsk_ack.ato = icsk->icsk_rto; 695 } else if (m > icsk->icsk_rto) { 696 /* Too long gap. Apparently sender failed to 697 * restart window, so that we send ACKs quickly. 698 */ 699 tcp_incr_quickack(sk); 700 sk_mem_reclaim(sk); 701 } 702 } 703 icsk->icsk_ack.lrcvtime = now; 704 705 tcp_ecn_check_ce(tp, skb); 706 707 if (skb->len >= 128) 708 tcp_grow_window(sk, skb); 709 } 710 711 /* Called to compute a smoothed rtt estimate. The data fed to this 712 * routine either comes from timestamps, or from segments that were 713 * known _not_ to have been retransmitted [see Karn/Partridge 714 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 715 * piece by Van Jacobson. 716 * NOTE: the next three routines used to be one big routine. 717 * To save cycles in the RFC 1323 implementation it was better to break 718 * it up into three procedures. -- erics 719 */ 720 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 721 { 722 struct tcp_sock *tp = tcp_sk(sk); 723 long m = mrtt_us; /* RTT */ 724 u32 srtt = tp->srtt_us; 725 726 /* The following amusing code comes from Jacobson's 727 * article in SIGCOMM '88. Note that rtt and mdev 728 * are scaled versions of rtt and mean deviation. 729 * This is designed to be as fast as possible 730 * m stands for "measurement". 731 * 732 * On a 1990 paper the rto value is changed to: 733 * RTO = rtt + 4 * mdev 734 * 735 * Funny. This algorithm seems to be very broken. 736 * These formulae increase RTO, when it should be decreased, increase 737 * too slowly, when it should be increased quickly, decrease too quickly 738 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 739 * does not matter how to _calculate_ it. Seems, it was trap 740 * that VJ failed to avoid. 8) 741 */ 742 if (srtt != 0) { 743 m -= (srtt >> 3); /* m is now error in rtt est */ 744 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 745 if (m < 0) { 746 m = -m; /* m is now abs(error) */ 747 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 748 /* This is similar to one of Eifel findings. 749 * Eifel blocks mdev updates when rtt decreases. 750 * This solution is a bit different: we use finer gain 751 * for mdev in this case (alpha*beta). 752 * Like Eifel it also prevents growth of rto, 753 * but also it limits too fast rto decreases, 754 * happening in pure Eifel. 755 */ 756 if (m > 0) 757 m >>= 3; 758 } else { 759 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 760 } 761 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 762 if (tp->mdev_us > tp->mdev_max_us) { 763 tp->mdev_max_us = tp->mdev_us; 764 if (tp->mdev_max_us > tp->rttvar_us) 765 tp->rttvar_us = tp->mdev_max_us; 766 } 767 if (after(tp->snd_una, tp->rtt_seq)) { 768 if (tp->mdev_max_us < tp->rttvar_us) 769 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 770 tp->rtt_seq = tp->snd_nxt; 771 tp->mdev_max_us = tcp_rto_min_us(sk); 772 } 773 } else { 774 /* no previous measure. */ 775 srtt = m << 3; /* take the measured time to be rtt */ 776 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 777 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 778 tp->mdev_max_us = tp->rttvar_us; 779 tp->rtt_seq = tp->snd_nxt; 780 } 781 tp->srtt_us = max(1U, srtt); 782 } 783 784 /* Set the sk_pacing_rate to allow proper sizing of TSO packets. 785 * Note: TCP stack does not yet implement pacing. 786 * FQ packet scheduler can be used to implement cheap but effective 787 * TCP pacing, to smooth the burst on large writes when packets 788 * in flight is significantly lower than cwnd (or rwin) 789 */ 790 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200; 791 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120; 792 793 static void tcp_update_pacing_rate(struct sock *sk) 794 { 795 const struct tcp_sock *tp = tcp_sk(sk); 796 u64 rate; 797 798 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 799 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 800 801 /* current rate is (cwnd * mss) / srtt 802 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 803 * In Congestion Avoidance phase, set it to 120 % the current rate. 804 * 805 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 806 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 807 * end of slow start and should slow down. 808 */ 809 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 810 rate *= sysctl_tcp_pacing_ss_ratio; 811 else 812 rate *= sysctl_tcp_pacing_ca_ratio; 813 814 rate *= max(tp->snd_cwnd, tp->packets_out); 815 816 if (likely(tp->srtt_us)) 817 do_div(rate, tp->srtt_us); 818 819 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate 820 * without any lock. We want to make sure compiler wont store 821 * intermediate values in this location. 822 */ 823 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate, 824 sk->sk_max_pacing_rate); 825 } 826 827 /* Calculate rto without backoff. This is the second half of Van Jacobson's 828 * routine referred to above. 829 */ 830 static void tcp_set_rto(struct sock *sk) 831 { 832 const struct tcp_sock *tp = tcp_sk(sk); 833 /* Old crap is replaced with new one. 8) 834 * 835 * More seriously: 836 * 1. If rtt variance happened to be less 50msec, it is hallucination. 837 * It cannot be less due to utterly erratic ACK generation made 838 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 839 * to do with delayed acks, because at cwnd>2 true delack timeout 840 * is invisible. Actually, Linux-2.4 also generates erratic 841 * ACKs in some circumstances. 842 */ 843 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 844 845 /* 2. Fixups made earlier cannot be right. 846 * If we do not estimate RTO correctly without them, 847 * all the algo is pure shit and should be replaced 848 * with correct one. It is exactly, which we pretend to do. 849 */ 850 851 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 852 * guarantees that rto is higher. 853 */ 854 tcp_bound_rto(sk); 855 } 856 857 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 858 { 859 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 860 861 if (!cwnd) 862 cwnd = TCP_INIT_CWND; 863 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 864 } 865 866 /* 867 * Packet counting of FACK is based on in-order assumptions, therefore TCP 868 * disables it when reordering is detected 869 */ 870 void tcp_disable_fack(struct tcp_sock *tp) 871 { 872 /* RFC3517 uses different metric in lost marker => reset on change */ 873 if (tcp_is_fack(tp)) 874 tp->lost_skb_hint = NULL; 875 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; 876 } 877 878 /* Take a notice that peer is sending D-SACKs */ 879 static void tcp_dsack_seen(struct tcp_sock *tp) 880 { 881 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 882 } 883 884 static void tcp_update_reordering(struct sock *sk, const int metric, 885 const int ts) 886 { 887 struct tcp_sock *tp = tcp_sk(sk); 888 int mib_idx; 889 890 if (WARN_ON_ONCE(metric < 0)) 891 return; 892 893 if (metric > tp->reordering) { 894 tp->reordering = min(sysctl_tcp_max_reordering, metric); 895 896 #if FASTRETRANS_DEBUG > 1 897 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 898 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 899 tp->reordering, 900 tp->fackets_out, 901 tp->sacked_out, 902 tp->undo_marker ? tp->undo_retrans : 0); 903 #endif 904 tcp_disable_fack(tp); 905 } 906 907 tp->rack.reord = 1; 908 909 /* This exciting event is worth to be remembered. 8) */ 910 if (ts) 911 mib_idx = LINUX_MIB_TCPTSREORDER; 912 else if (tcp_is_reno(tp)) 913 mib_idx = LINUX_MIB_TCPRENOREORDER; 914 else if (tcp_is_fack(tp)) 915 mib_idx = LINUX_MIB_TCPFACKREORDER; 916 else 917 mib_idx = LINUX_MIB_TCPSACKREORDER; 918 919 NET_INC_STATS(sock_net(sk), mib_idx); 920 } 921 922 /* This must be called before lost_out is incremented */ 923 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 924 { 925 if (!tp->retransmit_skb_hint || 926 before(TCP_SKB_CB(skb)->seq, 927 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 928 tp->retransmit_skb_hint = skb; 929 } 930 931 /* Sum the number of packets on the wire we have marked as lost. 932 * There are two cases we care about here: 933 * a) Packet hasn't been marked lost (nor retransmitted), 934 * and this is the first loss. 935 * b) Packet has been marked both lost and retransmitted, 936 * and this means we think it was lost again. 937 */ 938 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 939 { 940 __u8 sacked = TCP_SKB_CB(skb)->sacked; 941 942 if (!(sacked & TCPCB_LOST) || 943 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 944 tp->lost += tcp_skb_pcount(skb); 945 } 946 947 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 948 { 949 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 950 tcp_verify_retransmit_hint(tp, skb); 951 952 tp->lost_out += tcp_skb_pcount(skb); 953 tcp_sum_lost(tp, skb); 954 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 955 } 956 } 957 958 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 959 { 960 tcp_verify_retransmit_hint(tp, skb); 961 962 tcp_sum_lost(tp, skb); 963 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 964 tp->lost_out += tcp_skb_pcount(skb); 965 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 966 } 967 } 968 969 /* This procedure tags the retransmission queue when SACKs arrive. 970 * 971 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 972 * Packets in queue with these bits set are counted in variables 973 * sacked_out, retrans_out and lost_out, correspondingly. 974 * 975 * Valid combinations are: 976 * Tag InFlight Description 977 * 0 1 - orig segment is in flight. 978 * S 0 - nothing flies, orig reached receiver. 979 * L 0 - nothing flies, orig lost by net. 980 * R 2 - both orig and retransmit are in flight. 981 * L|R 1 - orig is lost, retransmit is in flight. 982 * S|R 1 - orig reached receiver, retrans is still in flight. 983 * (L|S|R is logically valid, it could occur when L|R is sacked, 984 * but it is equivalent to plain S and code short-curcuits it to S. 985 * L|S is logically invalid, it would mean -1 packet in flight 8)) 986 * 987 * These 6 states form finite state machine, controlled by the following events: 988 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 989 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 990 * 3. Loss detection event of two flavors: 991 * A. Scoreboard estimator decided the packet is lost. 992 * A'. Reno "three dupacks" marks head of queue lost. 993 * A''. Its FACK modification, head until snd.fack is lost. 994 * B. SACK arrives sacking SND.NXT at the moment, when the 995 * segment was retransmitted. 996 * 4. D-SACK added new rule: D-SACK changes any tag to S. 997 * 998 * It is pleasant to note, that state diagram turns out to be commutative, 999 * so that we are allowed not to be bothered by order of our actions, 1000 * when multiple events arrive simultaneously. (see the function below). 1001 * 1002 * Reordering detection. 1003 * -------------------- 1004 * Reordering metric is maximal distance, which a packet can be displaced 1005 * in packet stream. With SACKs we can estimate it: 1006 * 1007 * 1. SACK fills old hole and the corresponding segment was not 1008 * ever retransmitted -> reordering. Alas, we cannot use it 1009 * when segment was retransmitted. 1010 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1011 * for retransmitted and already SACKed segment -> reordering.. 1012 * Both of these heuristics are not used in Loss state, when we cannot 1013 * account for retransmits accurately. 1014 * 1015 * SACK block validation. 1016 * ---------------------- 1017 * 1018 * SACK block range validation checks that the received SACK block fits to 1019 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1020 * Note that SND.UNA is not included to the range though being valid because 1021 * it means that the receiver is rather inconsistent with itself reporting 1022 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1023 * perfectly valid, however, in light of RFC2018 which explicitly states 1024 * that "SACK block MUST reflect the newest segment. Even if the newest 1025 * segment is going to be discarded ...", not that it looks very clever 1026 * in case of head skb. Due to potentional receiver driven attacks, we 1027 * choose to avoid immediate execution of a walk in write queue due to 1028 * reneging and defer head skb's loss recovery to standard loss recovery 1029 * procedure that will eventually trigger (nothing forbids us doing this). 1030 * 1031 * Implements also blockage to start_seq wrap-around. Problem lies in the 1032 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1033 * there's no guarantee that it will be before snd_nxt (n). The problem 1034 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1035 * wrap (s_w): 1036 * 1037 * <- outs wnd -> <- wrapzone -> 1038 * u e n u_w e_w s n_w 1039 * | | | | | | | 1040 * |<------------+------+----- TCP seqno space --------------+---------->| 1041 * ...-- <2^31 ->| |<--------... 1042 * ...---- >2^31 ------>| |<--------... 1043 * 1044 * Current code wouldn't be vulnerable but it's better still to discard such 1045 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1046 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1047 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1048 * equal to the ideal case (infinite seqno space without wrap caused issues). 1049 * 1050 * With D-SACK the lower bound is extended to cover sequence space below 1051 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1052 * again, D-SACK block must not to go across snd_una (for the same reason as 1053 * for the normal SACK blocks, explained above). But there all simplicity 1054 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1055 * fully below undo_marker they do not affect behavior in anyway and can 1056 * therefore be safely ignored. In rare cases (which are more or less 1057 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1058 * fragmentation and packet reordering past skb's retransmission. To consider 1059 * them correctly, the acceptable range must be extended even more though 1060 * the exact amount is rather hard to quantify. However, tp->max_window can 1061 * be used as an exaggerated estimate. 1062 */ 1063 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1064 u32 start_seq, u32 end_seq) 1065 { 1066 /* Too far in future, or reversed (interpretation is ambiguous) */ 1067 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1068 return false; 1069 1070 /* Nasty start_seq wrap-around check (see comments above) */ 1071 if (!before(start_seq, tp->snd_nxt)) 1072 return false; 1073 1074 /* In outstanding window? ...This is valid exit for D-SACKs too. 1075 * start_seq == snd_una is non-sensical (see comments above) 1076 */ 1077 if (after(start_seq, tp->snd_una)) 1078 return true; 1079 1080 if (!is_dsack || !tp->undo_marker) 1081 return false; 1082 1083 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1084 if (after(end_seq, tp->snd_una)) 1085 return false; 1086 1087 if (!before(start_seq, tp->undo_marker)) 1088 return true; 1089 1090 /* Too old */ 1091 if (!after(end_seq, tp->undo_marker)) 1092 return false; 1093 1094 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1095 * start_seq < undo_marker and end_seq >= undo_marker. 1096 */ 1097 return !before(start_seq, end_seq - tp->max_window); 1098 } 1099 1100 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1101 struct tcp_sack_block_wire *sp, int num_sacks, 1102 u32 prior_snd_una) 1103 { 1104 struct tcp_sock *tp = tcp_sk(sk); 1105 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1106 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1107 bool dup_sack = false; 1108 1109 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1110 dup_sack = true; 1111 tcp_dsack_seen(tp); 1112 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1113 } else if (num_sacks > 1) { 1114 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1115 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1116 1117 if (!after(end_seq_0, end_seq_1) && 1118 !before(start_seq_0, start_seq_1)) { 1119 dup_sack = true; 1120 tcp_dsack_seen(tp); 1121 NET_INC_STATS(sock_net(sk), 1122 LINUX_MIB_TCPDSACKOFORECV); 1123 } 1124 } 1125 1126 /* D-SACK for already forgotten data... Do dumb counting. */ 1127 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1128 !after(end_seq_0, prior_snd_una) && 1129 after(end_seq_0, tp->undo_marker)) 1130 tp->undo_retrans--; 1131 1132 return dup_sack; 1133 } 1134 1135 struct tcp_sacktag_state { 1136 int reord; 1137 int fack_count; 1138 /* Timestamps for earliest and latest never-retransmitted segment 1139 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1140 * but congestion control should still get an accurate delay signal. 1141 */ 1142 u64 first_sackt; 1143 u64 last_sackt; 1144 struct rate_sample *rate; 1145 int flag; 1146 }; 1147 1148 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1149 * the incoming SACK may not exactly match but we can find smaller MSS 1150 * aligned portion of it that matches. Therefore we might need to fragment 1151 * which may fail and creates some hassle (caller must handle error case 1152 * returns). 1153 * 1154 * FIXME: this could be merged to shift decision code 1155 */ 1156 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1157 u32 start_seq, u32 end_seq) 1158 { 1159 int err; 1160 bool in_sack; 1161 unsigned int pkt_len; 1162 unsigned int mss; 1163 1164 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1165 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1166 1167 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1168 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1169 mss = tcp_skb_mss(skb); 1170 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1171 1172 if (!in_sack) { 1173 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1174 if (pkt_len < mss) 1175 pkt_len = mss; 1176 } else { 1177 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1178 if (pkt_len < mss) 1179 return -EINVAL; 1180 } 1181 1182 /* Round if necessary so that SACKs cover only full MSSes 1183 * and/or the remaining small portion (if present) 1184 */ 1185 if (pkt_len > mss) { 1186 unsigned int new_len = (pkt_len / mss) * mss; 1187 if (!in_sack && new_len < pkt_len) 1188 new_len += mss; 1189 pkt_len = new_len; 1190 } 1191 1192 if (pkt_len >= skb->len && !in_sack) 1193 return 0; 1194 1195 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC); 1196 if (err < 0) 1197 return err; 1198 } 1199 1200 return in_sack; 1201 } 1202 1203 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1204 static u8 tcp_sacktag_one(struct sock *sk, 1205 struct tcp_sacktag_state *state, u8 sacked, 1206 u32 start_seq, u32 end_seq, 1207 int dup_sack, int pcount, 1208 u64 xmit_time) 1209 { 1210 struct tcp_sock *tp = tcp_sk(sk); 1211 int fack_count = state->fack_count; 1212 1213 /* Account D-SACK for retransmitted packet. */ 1214 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1215 if (tp->undo_marker && tp->undo_retrans > 0 && 1216 after(end_seq, tp->undo_marker)) 1217 tp->undo_retrans--; 1218 if (sacked & TCPCB_SACKED_ACKED) 1219 state->reord = min(fack_count, state->reord); 1220 } 1221 1222 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1223 if (!after(end_seq, tp->snd_una)) 1224 return sacked; 1225 1226 if (!(sacked & TCPCB_SACKED_ACKED)) { 1227 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1228 1229 if (sacked & TCPCB_SACKED_RETRANS) { 1230 /* If the segment is not tagged as lost, 1231 * we do not clear RETRANS, believing 1232 * that retransmission is still in flight. 1233 */ 1234 if (sacked & TCPCB_LOST) { 1235 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1236 tp->lost_out -= pcount; 1237 tp->retrans_out -= pcount; 1238 } 1239 } else { 1240 if (!(sacked & TCPCB_RETRANS)) { 1241 /* New sack for not retransmitted frame, 1242 * which was in hole. It is reordering. 1243 */ 1244 if (before(start_seq, 1245 tcp_highest_sack_seq(tp))) 1246 state->reord = min(fack_count, 1247 state->reord); 1248 if (!after(end_seq, tp->high_seq)) 1249 state->flag |= FLAG_ORIG_SACK_ACKED; 1250 if (state->first_sackt == 0) 1251 state->first_sackt = xmit_time; 1252 state->last_sackt = xmit_time; 1253 } 1254 1255 if (sacked & TCPCB_LOST) { 1256 sacked &= ~TCPCB_LOST; 1257 tp->lost_out -= pcount; 1258 } 1259 } 1260 1261 sacked |= TCPCB_SACKED_ACKED; 1262 state->flag |= FLAG_DATA_SACKED; 1263 tp->sacked_out += pcount; 1264 tp->delivered += pcount; /* Out-of-order packets delivered */ 1265 1266 fack_count += pcount; 1267 1268 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1269 if (!tcp_is_fack(tp) && tp->lost_skb_hint && 1270 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1271 tp->lost_cnt_hint += pcount; 1272 1273 if (fack_count > tp->fackets_out) 1274 tp->fackets_out = fack_count; 1275 } 1276 1277 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1278 * frames and clear it. undo_retrans is decreased above, L|R frames 1279 * are accounted above as well. 1280 */ 1281 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1282 sacked &= ~TCPCB_SACKED_RETRANS; 1283 tp->retrans_out -= pcount; 1284 } 1285 1286 return sacked; 1287 } 1288 1289 /* Shift newly-SACKed bytes from this skb to the immediately previous 1290 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1291 */ 1292 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1293 struct tcp_sacktag_state *state, 1294 unsigned int pcount, int shifted, int mss, 1295 bool dup_sack) 1296 { 1297 struct tcp_sock *tp = tcp_sk(sk); 1298 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1299 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1300 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1301 1302 BUG_ON(!pcount); 1303 1304 /* Adjust counters and hints for the newly sacked sequence 1305 * range but discard the return value since prev is already 1306 * marked. We must tag the range first because the seq 1307 * advancement below implicitly advances 1308 * tcp_highest_sack_seq() when skb is highest_sack. 1309 */ 1310 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1311 start_seq, end_seq, dup_sack, pcount, 1312 skb->skb_mstamp); 1313 tcp_rate_skb_delivered(sk, skb, state->rate); 1314 1315 if (skb == tp->lost_skb_hint) 1316 tp->lost_cnt_hint += pcount; 1317 1318 TCP_SKB_CB(prev)->end_seq += shifted; 1319 TCP_SKB_CB(skb)->seq += shifted; 1320 1321 tcp_skb_pcount_add(prev, pcount); 1322 BUG_ON(tcp_skb_pcount(skb) < pcount); 1323 tcp_skb_pcount_add(skb, -pcount); 1324 1325 /* When we're adding to gso_segs == 1, gso_size will be zero, 1326 * in theory this shouldn't be necessary but as long as DSACK 1327 * code can come after this skb later on it's better to keep 1328 * setting gso_size to something. 1329 */ 1330 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1331 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1332 1333 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1334 if (tcp_skb_pcount(skb) <= 1) 1335 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1336 1337 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1338 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1339 1340 if (skb->len > 0) { 1341 BUG_ON(!tcp_skb_pcount(skb)); 1342 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1343 return false; 1344 } 1345 1346 /* Whole SKB was eaten :-) */ 1347 1348 if (skb == tp->retransmit_skb_hint) 1349 tp->retransmit_skb_hint = prev; 1350 if (skb == tp->lost_skb_hint) { 1351 tp->lost_skb_hint = prev; 1352 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1353 } 1354 1355 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1356 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1357 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1358 TCP_SKB_CB(prev)->end_seq++; 1359 1360 if (skb == tcp_highest_sack(sk)) 1361 tcp_advance_highest_sack(sk, skb); 1362 1363 tcp_skb_collapse_tstamp(prev, skb); 1364 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1365 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1366 1367 tcp_unlink_write_queue(skb, sk); 1368 sk_wmem_free_skb(sk, skb); 1369 1370 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1371 1372 return true; 1373 } 1374 1375 /* I wish gso_size would have a bit more sane initialization than 1376 * something-or-zero which complicates things 1377 */ 1378 static int tcp_skb_seglen(const struct sk_buff *skb) 1379 { 1380 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1381 } 1382 1383 /* Shifting pages past head area doesn't work */ 1384 static int skb_can_shift(const struct sk_buff *skb) 1385 { 1386 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1387 } 1388 1389 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1390 * skb. 1391 */ 1392 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1393 struct tcp_sacktag_state *state, 1394 u32 start_seq, u32 end_seq, 1395 bool dup_sack) 1396 { 1397 struct tcp_sock *tp = tcp_sk(sk); 1398 struct sk_buff *prev; 1399 int mss; 1400 int pcount = 0; 1401 int len; 1402 int in_sack; 1403 1404 if (!sk_can_gso(sk)) 1405 goto fallback; 1406 1407 /* Normally R but no L won't result in plain S */ 1408 if (!dup_sack && 1409 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1410 goto fallback; 1411 if (!skb_can_shift(skb)) 1412 goto fallback; 1413 /* This frame is about to be dropped (was ACKed). */ 1414 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1415 goto fallback; 1416 1417 /* Can only happen with delayed DSACK + discard craziness */ 1418 if (unlikely(skb == tcp_write_queue_head(sk))) 1419 goto fallback; 1420 prev = tcp_write_queue_prev(sk, skb); 1421 1422 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1423 goto fallback; 1424 1425 if (!tcp_skb_can_collapse_to(prev)) 1426 goto fallback; 1427 1428 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1429 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1430 1431 if (in_sack) { 1432 len = skb->len; 1433 pcount = tcp_skb_pcount(skb); 1434 mss = tcp_skb_seglen(skb); 1435 1436 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1437 * drop this restriction as unnecessary 1438 */ 1439 if (mss != tcp_skb_seglen(prev)) 1440 goto fallback; 1441 } else { 1442 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1443 goto noop; 1444 /* CHECKME: This is non-MSS split case only?, this will 1445 * cause skipped skbs due to advancing loop btw, original 1446 * has that feature too 1447 */ 1448 if (tcp_skb_pcount(skb) <= 1) 1449 goto noop; 1450 1451 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1452 if (!in_sack) { 1453 /* TODO: head merge to next could be attempted here 1454 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1455 * though it might not be worth of the additional hassle 1456 * 1457 * ...we can probably just fallback to what was done 1458 * previously. We could try merging non-SACKed ones 1459 * as well but it probably isn't going to buy off 1460 * because later SACKs might again split them, and 1461 * it would make skb timestamp tracking considerably 1462 * harder problem. 1463 */ 1464 goto fallback; 1465 } 1466 1467 len = end_seq - TCP_SKB_CB(skb)->seq; 1468 BUG_ON(len < 0); 1469 BUG_ON(len > skb->len); 1470 1471 /* MSS boundaries should be honoured or else pcount will 1472 * severely break even though it makes things bit trickier. 1473 * Optimize common case to avoid most of the divides 1474 */ 1475 mss = tcp_skb_mss(skb); 1476 1477 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1478 * drop this restriction as unnecessary 1479 */ 1480 if (mss != tcp_skb_seglen(prev)) 1481 goto fallback; 1482 1483 if (len == mss) { 1484 pcount = 1; 1485 } else if (len < mss) { 1486 goto noop; 1487 } else { 1488 pcount = len / mss; 1489 len = pcount * mss; 1490 } 1491 } 1492 1493 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1494 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1495 goto fallback; 1496 1497 if (!skb_shift(prev, skb, len)) 1498 goto fallback; 1499 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1500 goto out; 1501 1502 /* Hole filled allows collapsing with the next as well, this is very 1503 * useful when hole on every nth skb pattern happens 1504 */ 1505 if (prev == tcp_write_queue_tail(sk)) 1506 goto out; 1507 skb = tcp_write_queue_next(sk, prev); 1508 1509 if (!skb_can_shift(skb) || 1510 (skb == tcp_send_head(sk)) || 1511 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1512 (mss != tcp_skb_seglen(skb))) 1513 goto out; 1514 1515 len = skb->len; 1516 if (skb_shift(prev, skb, len)) { 1517 pcount += tcp_skb_pcount(skb); 1518 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1519 } 1520 1521 out: 1522 state->fack_count += pcount; 1523 return prev; 1524 1525 noop: 1526 return skb; 1527 1528 fallback: 1529 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1530 return NULL; 1531 } 1532 1533 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1534 struct tcp_sack_block *next_dup, 1535 struct tcp_sacktag_state *state, 1536 u32 start_seq, u32 end_seq, 1537 bool dup_sack_in) 1538 { 1539 struct tcp_sock *tp = tcp_sk(sk); 1540 struct sk_buff *tmp; 1541 1542 tcp_for_write_queue_from(skb, sk) { 1543 int in_sack = 0; 1544 bool dup_sack = dup_sack_in; 1545 1546 if (skb == tcp_send_head(sk)) 1547 break; 1548 1549 /* queue is in-order => we can short-circuit the walk early */ 1550 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1551 break; 1552 1553 if (next_dup && 1554 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1555 in_sack = tcp_match_skb_to_sack(sk, skb, 1556 next_dup->start_seq, 1557 next_dup->end_seq); 1558 if (in_sack > 0) 1559 dup_sack = true; 1560 } 1561 1562 /* skb reference here is a bit tricky to get right, since 1563 * shifting can eat and free both this skb and the next, 1564 * so not even _safe variant of the loop is enough. 1565 */ 1566 if (in_sack <= 0) { 1567 tmp = tcp_shift_skb_data(sk, skb, state, 1568 start_seq, end_seq, dup_sack); 1569 if (tmp) { 1570 if (tmp != skb) { 1571 skb = tmp; 1572 continue; 1573 } 1574 1575 in_sack = 0; 1576 } else { 1577 in_sack = tcp_match_skb_to_sack(sk, skb, 1578 start_seq, 1579 end_seq); 1580 } 1581 } 1582 1583 if (unlikely(in_sack < 0)) 1584 break; 1585 1586 if (in_sack) { 1587 TCP_SKB_CB(skb)->sacked = 1588 tcp_sacktag_one(sk, 1589 state, 1590 TCP_SKB_CB(skb)->sacked, 1591 TCP_SKB_CB(skb)->seq, 1592 TCP_SKB_CB(skb)->end_seq, 1593 dup_sack, 1594 tcp_skb_pcount(skb), 1595 skb->skb_mstamp); 1596 tcp_rate_skb_delivered(sk, skb, state->rate); 1597 1598 if (!before(TCP_SKB_CB(skb)->seq, 1599 tcp_highest_sack_seq(tp))) 1600 tcp_advance_highest_sack(sk, skb); 1601 } 1602 1603 state->fack_count += tcp_skb_pcount(skb); 1604 } 1605 return skb; 1606 } 1607 1608 /* Avoid all extra work that is being done by sacktag while walking in 1609 * a normal way 1610 */ 1611 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1612 struct tcp_sacktag_state *state, 1613 u32 skip_to_seq) 1614 { 1615 tcp_for_write_queue_from(skb, sk) { 1616 if (skb == tcp_send_head(sk)) 1617 break; 1618 1619 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1620 break; 1621 1622 state->fack_count += tcp_skb_pcount(skb); 1623 } 1624 return skb; 1625 } 1626 1627 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1628 struct sock *sk, 1629 struct tcp_sack_block *next_dup, 1630 struct tcp_sacktag_state *state, 1631 u32 skip_to_seq) 1632 { 1633 if (!next_dup) 1634 return skb; 1635 1636 if (before(next_dup->start_seq, skip_to_seq)) { 1637 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1638 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1639 next_dup->start_seq, next_dup->end_seq, 1640 1); 1641 } 1642 1643 return skb; 1644 } 1645 1646 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1647 { 1648 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1649 } 1650 1651 static int 1652 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1653 u32 prior_snd_una, struct tcp_sacktag_state *state) 1654 { 1655 struct tcp_sock *tp = tcp_sk(sk); 1656 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1657 TCP_SKB_CB(ack_skb)->sacked); 1658 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1659 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1660 struct tcp_sack_block *cache; 1661 struct sk_buff *skb; 1662 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1663 int used_sacks; 1664 bool found_dup_sack = false; 1665 int i, j; 1666 int first_sack_index; 1667 1668 state->flag = 0; 1669 state->reord = tp->packets_out; 1670 1671 if (!tp->sacked_out) { 1672 if (WARN_ON(tp->fackets_out)) 1673 tp->fackets_out = 0; 1674 tcp_highest_sack_reset(sk); 1675 } 1676 1677 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1678 num_sacks, prior_snd_una); 1679 if (found_dup_sack) { 1680 state->flag |= FLAG_DSACKING_ACK; 1681 tp->delivered++; /* A spurious retransmission is delivered */ 1682 } 1683 1684 /* Eliminate too old ACKs, but take into 1685 * account more or less fresh ones, they can 1686 * contain valid SACK info. 1687 */ 1688 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1689 return 0; 1690 1691 if (!tp->packets_out) 1692 goto out; 1693 1694 used_sacks = 0; 1695 first_sack_index = 0; 1696 for (i = 0; i < num_sacks; i++) { 1697 bool dup_sack = !i && found_dup_sack; 1698 1699 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1700 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1701 1702 if (!tcp_is_sackblock_valid(tp, dup_sack, 1703 sp[used_sacks].start_seq, 1704 sp[used_sacks].end_seq)) { 1705 int mib_idx; 1706 1707 if (dup_sack) { 1708 if (!tp->undo_marker) 1709 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1710 else 1711 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1712 } else { 1713 /* Don't count olds caused by ACK reordering */ 1714 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1715 !after(sp[used_sacks].end_seq, tp->snd_una)) 1716 continue; 1717 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1718 } 1719 1720 NET_INC_STATS(sock_net(sk), mib_idx); 1721 if (i == 0) 1722 first_sack_index = -1; 1723 continue; 1724 } 1725 1726 /* Ignore very old stuff early */ 1727 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1728 continue; 1729 1730 used_sacks++; 1731 } 1732 1733 /* order SACK blocks to allow in order walk of the retrans queue */ 1734 for (i = used_sacks - 1; i > 0; i--) { 1735 for (j = 0; j < i; j++) { 1736 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1737 swap(sp[j], sp[j + 1]); 1738 1739 /* Track where the first SACK block goes to */ 1740 if (j == first_sack_index) 1741 first_sack_index = j + 1; 1742 } 1743 } 1744 } 1745 1746 skb = tcp_write_queue_head(sk); 1747 state->fack_count = 0; 1748 i = 0; 1749 1750 if (!tp->sacked_out) { 1751 /* It's already past, so skip checking against it */ 1752 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1753 } else { 1754 cache = tp->recv_sack_cache; 1755 /* Skip empty blocks in at head of the cache */ 1756 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1757 !cache->end_seq) 1758 cache++; 1759 } 1760 1761 while (i < used_sacks) { 1762 u32 start_seq = sp[i].start_seq; 1763 u32 end_seq = sp[i].end_seq; 1764 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1765 struct tcp_sack_block *next_dup = NULL; 1766 1767 if (found_dup_sack && ((i + 1) == first_sack_index)) 1768 next_dup = &sp[i + 1]; 1769 1770 /* Skip too early cached blocks */ 1771 while (tcp_sack_cache_ok(tp, cache) && 1772 !before(start_seq, cache->end_seq)) 1773 cache++; 1774 1775 /* Can skip some work by looking recv_sack_cache? */ 1776 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1777 after(end_seq, cache->start_seq)) { 1778 1779 /* Head todo? */ 1780 if (before(start_seq, cache->start_seq)) { 1781 skb = tcp_sacktag_skip(skb, sk, state, 1782 start_seq); 1783 skb = tcp_sacktag_walk(skb, sk, next_dup, 1784 state, 1785 start_seq, 1786 cache->start_seq, 1787 dup_sack); 1788 } 1789 1790 /* Rest of the block already fully processed? */ 1791 if (!after(end_seq, cache->end_seq)) 1792 goto advance_sp; 1793 1794 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1795 state, 1796 cache->end_seq); 1797 1798 /* ...tail remains todo... */ 1799 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1800 /* ...but better entrypoint exists! */ 1801 skb = tcp_highest_sack(sk); 1802 if (!skb) 1803 break; 1804 state->fack_count = tp->fackets_out; 1805 cache++; 1806 goto walk; 1807 } 1808 1809 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq); 1810 /* Check overlap against next cached too (past this one already) */ 1811 cache++; 1812 continue; 1813 } 1814 1815 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1816 skb = tcp_highest_sack(sk); 1817 if (!skb) 1818 break; 1819 state->fack_count = tp->fackets_out; 1820 } 1821 skb = tcp_sacktag_skip(skb, sk, state, start_seq); 1822 1823 walk: 1824 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1825 start_seq, end_seq, dup_sack); 1826 1827 advance_sp: 1828 i++; 1829 } 1830 1831 /* Clear the head of the cache sack blocks so we can skip it next time */ 1832 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1833 tp->recv_sack_cache[i].start_seq = 0; 1834 tp->recv_sack_cache[i].end_seq = 0; 1835 } 1836 for (j = 0; j < used_sacks; j++) 1837 tp->recv_sack_cache[i++] = sp[j]; 1838 1839 if ((state->reord < tp->fackets_out) && 1840 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker)) 1841 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0); 1842 1843 tcp_verify_left_out(tp); 1844 out: 1845 1846 #if FASTRETRANS_DEBUG > 0 1847 WARN_ON((int)tp->sacked_out < 0); 1848 WARN_ON((int)tp->lost_out < 0); 1849 WARN_ON((int)tp->retrans_out < 0); 1850 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1851 #endif 1852 return state->flag; 1853 } 1854 1855 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1856 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1857 */ 1858 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1859 { 1860 u32 holes; 1861 1862 holes = max(tp->lost_out, 1U); 1863 holes = min(holes, tp->packets_out); 1864 1865 if ((tp->sacked_out + holes) > tp->packets_out) { 1866 tp->sacked_out = tp->packets_out - holes; 1867 return true; 1868 } 1869 return false; 1870 } 1871 1872 /* If we receive more dupacks than we expected counting segments 1873 * in assumption of absent reordering, interpret this as reordering. 1874 * The only another reason could be bug in receiver TCP. 1875 */ 1876 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1877 { 1878 struct tcp_sock *tp = tcp_sk(sk); 1879 if (tcp_limit_reno_sacked(tp)) 1880 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1881 } 1882 1883 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1884 1885 static void tcp_add_reno_sack(struct sock *sk) 1886 { 1887 struct tcp_sock *tp = tcp_sk(sk); 1888 u32 prior_sacked = tp->sacked_out; 1889 1890 tp->sacked_out++; 1891 tcp_check_reno_reordering(sk, 0); 1892 if (tp->sacked_out > prior_sacked) 1893 tp->delivered++; /* Some out-of-order packet is delivered */ 1894 tcp_verify_left_out(tp); 1895 } 1896 1897 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1898 1899 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1900 { 1901 struct tcp_sock *tp = tcp_sk(sk); 1902 1903 if (acked > 0) { 1904 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1905 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1906 if (acked - 1 >= tp->sacked_out) 1907 tp->sacked_out = 0; 1908 else 1909 tp->sacked_out -= acked - 1; 1910 } 1911 tcp_check_reno_reordering(sk, acked); 1912 tcp_verify_left_out(tp); 1913 } 1914 1915 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1916 { 1917 tp->sacked_out = 0; 1918 } 1919 1920 void tcp_clear_retrans(struct tcp_sock *tp) 1921 { 1922 tp->retrans_out = 0; 1923 tp->lost_out = 0; 1924 tp->undo_marker = 0; 1925 tp->undo_retrans = -1; 1926 tp->fackets_out = 0; 1927 tp->sacked_out = 0; 1928 } 1929 1930 static inline void tcp_init_undo(struct tcp_sock *tp) 1931 { 1932 tp->undo_marker = tp->snd_una; 1933 /* Retransmission still in flight may cause DSACKs later. */ 1934 tp->undo_retrans = tp->retrans_out ? : -1; 1935 } 1936 1937 /* Enter Loss state. If we detect SACK reneging, forget all SACK information 1938 * and reset tags completely, otherwise preserve SACKs. If receiver 1939 * dropped its ofo queue, we will know this due to reneging detection. 1940 */ 1941 void tcp_enter_loss(struct sock *sk) 1942 { 1943 const struct inet_connection_sock *icsk = inet_csk(sk); 1944 struct tcp_sock *tp = tcp_sk(sk); 1945 struct net *net = sock_net(sk); 1946 struct sk_buff *skb; 1947 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1948 bool is_reneg; /* is receiver reneging on SACKs? */ 1949 bool mark_lost; 1950 1951 /* Reduce ssthresh if it has not yet been made inside this window. */ 1952 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1953 !after(tp->high_seq, tp->snd_una) || 1954 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1955 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1956 tp->prior_cwnd = tp->snd_cwnd; 1957 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1958 tcp_ca_event(sk, CA_EVENT_LOSS); 1959 tcp_init_undo(tp); 1960 } 1961 tp->snd_cwnd = 1; 1962 tp->snd_cwnd_cnt = 0; 1963 tp->snd_cwnd_stamp = tcp_jiffies32; 1964 1965 tp->retrans_out = 0; 1966 tp->lost_out = 0; 1967 1968 if (tcp_is_reno(tp)) 1969 tcp_reset_reno_sack(tp); 1970 1971 skb = tcp_write_queue_head(sk); 1972 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED); 1973 if (is_reneg) { 1974 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1975 tp->sacked_out = 0; 1976 tp->fackets_out = 0; 1977 } 1978 tcp_clear_all_retrans_hints(tp); 1979 1980 tcp_for_write_queue(skb, sk) { 1981 if (skb == tcp_send_head(sk)) 1982 break; 1983 1984 mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 1985 is_reneg); 1986 if (mark_lost) 1987 tcp_sum_lost(tp, skb); 1988 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1989 if (mark_lost) { 1990 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1991 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1992 tp->lost_out += tcp_skb_pcount(skb); 1993 } 1994 } 1995 tcp_verify_left_out(tp); 1996 1997 /* Timeout in disordered state after receiving substantial DUPACKs 1998 * suggests that the degree of reordering is over-estimated. 1999 */ 2000 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2001 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 2002 tp->reordering = min_t(unsigned int, tp->reordering, 2003 net->ipv4.sysctl_tcp_reordering); 2004 tcp_set_ca_state(sk, TCP_CA_Loss); 2005 tp->high_seq = tp->snd_nxt; 2006 tcp_ecn_queue_cwr(tp); 2007 2008 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2009 * loss recovery is underway except recurring timeout(s) on 2010 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2011 * 2012 * In theory F-RTO can be used repeatedly during loss recovery. 2013 * In practice this interacts badly with broken middle-boxes that 2014 * falsely raise the receive window, which results in repeated 2015 * timeouts and stop-and-go behavior. 2016 */ 2017 tp->frto = sysctl_tcp_frto && 2018 (new_recovery || icsk->icsk_retransmits) && 2019 !inet_csk(sk)->icsk_mtup.probe_size; 2020 } 2021 2022 /* If ACK arrived pointing to a remembered SACK, it means that our 2023 * remembered SACKs do not reflect real state of receiver i.e. 2024 * receiver _host_ is heavily congested (or buggy). 2025 * 2026 * To avoid big spurious retransmission bursts due to transient SACK 2027 * scoreboard oddities that look like reneging, we give the receiver a 2028 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2029 * restore sanity to the SACK scoreboard. If the apparent reneging 2030 * persists until this RTO then we'll clear the SACK scoreboard. 2031 */ 2032 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2033 { 2034 if (flag & FLAG_SACK_RENEGING) { 2035 struct tcp_sock *tp = tcp_sk(sk); 2036 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2037 msecs_to_jiffies(10)); 2038 2039 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2040 delay, TCP_RTO_MAX); 2041 return true; 2042 } 2043 return false; 2044 } 2045 2046 static inline int tcp_fackets_out(const struct tcp_sock *tp) 2047 { 2048 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2049 } 2050 2051 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2052 * counter when SACK is enabled (without SACK, sacked_out is used for 2053 * that purpose). 2054 * 2055 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2056 * segments up to the highest received SACK block so far and holes in 2057 * between them. 2058 * 2059 * With reordering, holes may still be in flight, so RFC3517 recovery 2060 * uses pure sacked_out (total number of SACKed segments) even though 2061 * it violates the RFC that uses duplicate ACKs, often these are equal 2062 * but when e.g. out-of-window ACKs or packet duplication occurs, 2063 * they differ. Since neither occurs due to loss, TCP should really 2064 * ignore them. 2065 */ 2066 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2067 { 2068 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2069 } 2070 2071 /* Linux NewReno/SACK/FACK/ECN state machine. 2072 * -------------------------------------- 2073 * 2074 * "Open" Normal state, no dubious events, fast path. 2075 * "Disorder" In all the respects it is "Open", 2076 * but requires a bit more attention. It is entered when 2077 * we see some SACKs or dupacks. It is split of "Open" 2078 * mainly to move some processing from fast path to slow one. 2079 * "CWR" CWND was reduced due to some Congestion Notification event. 2080 * It can be ECN, ICMP source quench, local device congestion. 2081 * "Recovery" CWND was reduced, we are fast-retransmitting. 2082 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2083 * 2084 * tcp_fastretrans_alert() is entered: 2085 * - each incoming ACK, if state is not "Open" 2086 * - when arrived ACK is unusual, namely: 2087 * * SACK 2088 * * Duplicate ACK. 2089 * * ECN ECE. 2090 * 2091 * Counting packets in flight is pretty simple. 2092 * 2093 * in_flight = packets_out - left_out + retrans_out 2094 * 2095 * packets_out is SND.NXT-SND.UNA counted in packets. 2096 * 2097 * retrans_out is number of retransmitted segments. 2098 * 2099 * left_out is number of segments left network, but not ACKed yet. 2100 * 2101 * left_out = sacked_out + lost_out 2102 * 2103 * sacked_out: Packets, which arrived to receiver out of order 2104 * and hence not ACKed. With SACKs this number is simply 2105 * amount of SACKed data. Even without SACKs 2106 * it is easy to give pretty reliable estimate of this number, 2107 * counting duplicate ACKs. 2108 * 2109 * lost_out: Packets lost by network. TCP has no explicit 2110 * "loss notification" feedback from network (for now). 2111 * It means that this number can be only _guessed_. 2112 * Actually, it is the heuristics to predict lossage that 2113 * distinguishes different algorithms. 2114 * 2115 * F.e. after RTO, when all the queue is considered as lost, 2116 * lost_out = packets_out and in_flight = retrans_out. 2117 * 2118 * Essentially, we have now a few algorithms detecting 2119 * lost packets. 2120 * 2121 * If the receiver supports SACK: 2122 * 2123 * RFC6675/3517: It is the conventional algorithm. A packet is 2124 * considered lost if the number of higher sequence packets 2125 * SACKed is greater than or equal the DUPACK thoreshold 2126 * (reordering). This is implemented in tcp_mark_head_lost and 2127 * tcp_update_scoreboard. 2128 * 2129 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2130 * (2017-) that checks timing instead of counting DUPACKs. 2131 * Essentially a packet is considered lost if it's not S/ACKed 2132 * after RTT + reordering_window, where both metrics are 2133 * dynamically measured and adjusted. This is implemented in 2134 * tcp_rack_mark_lost. 2135 * 2136 * FACK (Disabled by default. Subsumbed by RACK): 2137 * It is the simplest heuristics. As soon as we decided 2138 * that something is lost, we decide that _all_ not SACKed 2139 * packets until the most forward SACK are lost. I.e. 2140 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2141 * It is absolutely correct estimate, if network does not reorder 2142 * packets. And it loses any connection to reality when reordering 2143 * takes place. We use FACK by default until reordering 2144 * is suspected on the path to this destination. 2145 * 2146 * If the receiver does not support SACK: 2147 * 2148 * NewReno (RFC6582): in Recovery we assume that one segment 2149 * is lost (classic Reno). While we are in Recovery and 2150 * a partial ACK arrives, we assume that one more packet 2151 * is lost (NewReno). This heuristics are the same in NewReno 2152 * and SACK. 2153 * 2154 * Really tricky (and requiring careful tuning) part of algorithm 2155 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2156 * The first determines the moment _when_ we should reduce CWND and, 2157 * hence, slow down forward transmission. In fact, it determines the moment 2158 * when we decide that hole is caused by loss, rather than by a reorder. 2159 * 2160 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2161 * holes, caused by lost packets. 2162 * 2163 * And the most logically complicated part of algorithm is undo 2164 * heuristics. We detect false retransmits due to both too early 2165 * fast retransmit (reordering) and underestimated RTO, analyzing 2166 * timestamps and D-SACKs. When we detect that some segments were 2167 * retransmitted by mistake and CWND reduction was wrong, we undo 2168 * window reduction and abort recovery phase. This logic is hidden 2169 * inside several functions named tcp_try_undo_<something>. 2170 */ 2171 2172 /* This function decides, when we should leave Disordered state 2173 * and enter Recovery phase, reducing congestion window. 2174 * 2175 * Main question: may we further continue forward transmission 2176 * with the same cwnd? 2177 */ 2178 static bool tcp_time_to_recover(struct sock *sk, int flag) 2179 { 2180 struct tcp_sock *tp = tcp_sk(sk); 2181 2182 /* Trick#1: The loss is proven. */ 2183 if (tp->lost_out) 2184 return true; 2185 2186 /* Not-A-Trick#2 : Classic rule... */ 2187 if (tcp_dupack_heuristics(tp) > tp->reordering) 2188 return true; 2189 2190 return false; 2191 } 2192 2193 /* Detect loss in event "A" above by marking head of queue up as lost. 2194 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments 2195 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2196 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2197 * the maximum SACKed segments to pass before reaching this limit. 2198 */ 2199 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2200 { 2201 struct tcp_sock *tp = tcp_sk(sk); 2202 struct sk_buff *skb; 2203 int cnt, oldcnt, lost; 2204 unsigned int mss; 2205 /* Use SACK to deduce losses of new sequences sent during recovery */ 2206 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2207 2208 WARN_ON(packets > tp->packets_out); 2209 if (tp->lost_skb_hint) { 2210 skb = tp->lost_skb_hint; 2211 cnt = tp->lost_cnt_hint; 2212 /* Head already handled? */ 2213 if (mark_head && skb != tcp_write_queue_head(sk)) 2214 return; 2215 } else { 2216 skb = tcp_write_queue_head(sk); 2217 cnt = 0; 2218 } 2219 2220 tcp_for_write_queue_from(skb, sk) { 2221 if (skb == tcp_send_head(sk)) 2222 break; 2223 /* TODO: do this better */ 2224 /* this is not the most efficient way to do this... */ 2225 tp->lost_skb_hint = skb; 2226 tp->lost_cnt_hint = cnt; 2227 2228 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2229 break; 2230 2231 oldcnt = cnt; 2232 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2233 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2234 cnt += tcp_skb_pcount(skb); 2235 2236 if (cnt > packets) { 2237 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2238 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2239 (oldcnt >= packets)) 2240 break; 2241 2242 mss = tcp_skb_mss(skb); 2243 /* If needed, chop off the prefix to mark as lost. */ 2244 lost = (packets - oldcnt) * mss; 2245 if (lost < skb->len && 2246 tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0) 2247 break; 2248 cnt = packets; 2249 } 2250 2251 tcp_skb_mark_lost(tp, skb); 2252 2253 if (mark_head) 2254 break; 2255 } 2256 tcp_verify_left_out(tp); 2257 } 2258 2259 /* Account newly detected lost packet(s) */ 2260 2261 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2262 { 2263 struct tcp_sock *tp = tcp_sk(sk); 2264 2265 if (tcp_is_reno(tp)) { 2266 tcp_mark_head_lost(sk, 1, 1); 2267 } else if (tcp_is_fack(tp)) { 2268 int lost = tp->fackets_out - tp->reordering; 2269 if (lost <= 0) 2270 lost = 1; 2271 tcp_mark_head_lost(sk, lost, 0); 2272 } else { 2273 int sacked_upto = tp->sacked_out - tp->reordering; 2274 if (sacked_upto >= 0) 2275 tcp_mark_head_lost(sk, sacked_upto, 0); 2276 else if (fast_rexmit) 2277 tcp_mark_head_lost(sk, 1, 1); 2278 } 2279 } 2280 2281 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2282 { 2283 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2284 before(tp->rx_opt.rcv_tsecr, when); 2285 } 2286 2287 /* skb is spurious retransmitted if the returned timestamp echo 2288 * reply is prior to the skb transmission time 2289 */ 2290 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2291 const struct sk_buff *skb) 2292 { 2293 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2294 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2295 } 2296 2297 /* Nothing was retransmitted or returned timestamp is less 2298 * than timestamp of the first retransmission. 2299 */ 2300 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2301 { 2302 return !tp->retrans_stamp || 2303 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2304 } 2305 2306 /* Undo procedures. */ 2307 2308 /* We can clear retrans_stamp when there are no retransmissions in the 2309 * window. It would seem that it is trivially available for us in 2310 * tp->retrans_out, however, that kind of assumptions doesn't consider 2311 * what will happen if errors occur when sending retransmission for the 2312 * second time. ...It could the that such segment has only 2313 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2314 * the head skb is enough except for some reneging corner cases that 2315 * are not worth the effort. 2316 * 2317 * Main reason for all this complexity is the fact that connection dying 2318 * time now depends on the validity of the retrans_stamp, in particular, 2319 * that successive retransmissions of a segment must not advance 2320 * retrans_stamp under any conditions. 2321 */ 2322 static bool tcp_any_retrans_done(const struct sock *sk) 2323 { 2324 const struct tcp_sock *tp = tcp_sk(sk); 2325 struct sk_buff *skb; 2326 2327 if (tp->retrans_out) 2328 return true; 2329 2330 skb = tcp_write_queue_head(sk); 2331 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2332 return true; 2333 2334 return false; 2335 } 2336 2337 #if FASTRETRANS_DEBUG > 1 2338 static void DBGUNDO(struct sock *sk, const char *msg) 2339 { 2340 struct tcp_sock *tp = tcp_sk(sk); 2341 struct inet_sock *inet = inet_sk(sk); 2342 2343 if (sk->sk_family == AF_INET) { 2344 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2345 msg, 2346 &inet->inet_daddr, ntohs(inet->inet_dport), 2347 tp->snd_cwnd, tcp_left_out(tp), 2348 tp->snd_ssthresh, tp->prior_ssthresh, 2349 tp->packets_out); 2350 } 2351 #if IS_ENABLED(CONFIG_IPV6) 2352 else if (sk->sk_family == AF_INET6) { 2353 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2354 msg, 2355 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2356 tp->snd_cwnd, tcp_left_out(tp), 2357 tp->snd_ssthresh, tp->prior_ssthresh, 2358 tp->packets_out); 2359 } 2360 #endif 2361 } 2362 #else 2363 #define DBGUNDO(x...) do { } while (0) 2364 #endif 2365 2366 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2367 { 2368 struct tcp_sock *tp = tcp_sk(sk); 2369 2370 if (unmark_loss) { 2371 struct sk_buff *skb; 2372 2373 tcp_for_write_queue(skb, sk) { 2374 if (skb == tcp_send_head(sk)) 2375 break; 2376 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2377 } 2378 tp->lost_out = 0; 2379 tcp_clear_all_retrans_hints(tp); 2380 } 2381 2382 if (tp->prior_ssthresh) { 2383 const struct inet_connection_sock *icsk = inet_csk(sk); 2384 2385 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2386 2387 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2388 tp->snd_ssthresh = tp->prior_ssthresh; 2389 tcp_ecn_withdraw_cwr(tp); 2390 } 2391 } 2392 tp->snd_cwnd_stamp = tcp_jiffies32; 2393 tp->undo_marker = 0; 2394 } 2395 2396 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2397 { 2398 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2399 } 2400 2401 /* People celebrate: "We love our President!" */ 2402 static bool tcp_try_undo_recovery(struct sock *sk) 2403 { 2404 struct tcp_sock *tp = tcp_sk(sk); 2405 2406 if (tcp_may_undo(tp)) { 2407 int mib_idx; 2408 2409 /* Happy end! We did not retransmit anything 2410 * or our original transmission succeeded. 2411 */ 2412 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2413 tcp_undo_cwnd_reduction(sk, false); 2414 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2415 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2416 else 2417 mib_idx = LINUX_MIB_TCPFULLUNDO; 2418 2419 NET_INC_STATS(sock_net(sk), mib_idx); 2420 } 2421 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2422 /* Hold old state until something *above* high_seq 2423 * is ACKed. For Reno it is MUST to prevent false 2424 * fast retransmits (RFC2582). SACK TCP is safe. */ 2425 if (!tcp_any_retrans_done(sk)) 2426 tp->retrans_stamp = 0; 2427 return true; 2428 } 2429 tcp_set_ca_state(sk, TCP_CA_Open); 2430 return false; 2431 } 2432 2433 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2434 static bool tcp_try_undo_dsack(struct sock *sk) 2435 { 2436 struct tcp_sock *tp = tcp_sk(sk); 2437 2438 if (tp->undo_marker && !tp->undo_retrans) { 2439 DBGUNDO(sk, "D-SACK"); 2440 tcp_undo_cwnd_reduction(sk, false); 2441 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2442 return true; 2443 } 2444 return false; 2445 } 2446 2447 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2448 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2449 { 2450 struct tcp_sock *tp = tcp_sk(sk); 2451 2452 if (frto_undo || tcp_may_undo(tp)) { 2453 tcp_undo_cwnd_reduction(sk, true); 2454 2455 DBGUNDO(sk, "partial loss"); 2456 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2457 if (frto_undo) 2458 NET_INC_STATS(sock_net(sk), 2459 LINUX_MIB_TCPSPURIOUSRTOS); 2460 inet_csk(sk)->icsk_retransmits = 0; 2461 if (frto_undo || tcp_is_sack(tp)) 2462 tcp_set_ca_state(sk, TCP_CA_Open); 2463 return true; 2464 } 2465 return false; 2466 } 2467 2468 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2469 * It computes the number of packets to send (sndcnt) based on packets newly 2470 * delivered: 2471 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2472 * cwnd reductions across a full RTT. 2473 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2474 * But when the retransmits are acked without further losses, PRR 2475 * slow starts cwnd up to ssthresh to speed up the recovery. 2476 */ 2477 static void tcp_init_cwnd_reduction(struct sock *sk) 2478 { 2479 struct tcp_sock *tp = tcp_sk(sk); 2480 2481 tp->high_seq = tp->snd_nxt; 2482 tp->tlp_high_seq = 0; 2483 tp->snd_cwnd_cnt = 0; 2484 tp->prior_cwnd = tp->snd_cwnd; 2485 tp->prr_delivered = 0; 2486 tp->prr_out = 0; 2487 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2488 tcp_ecn_queue_cwr(tp); 2489 } 2490 2491 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2492 { 2493 struct tcp_sock *tp = tcp_sk(sk); 2494 int sndcnt = 0; 2495 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2496 2497 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2498 return; 2499 2500 tp->prr_delivered += newly_acked_sacked; 2501 if (delta < 0) { 2502 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2503 tp->prior_cwnd - 1; 2504 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2505 } else if ((flag & FLAG_RETRANS_DATA_ACKED) && 2506 !(flag & FLAG_LOST_RETRANS)) { 2507 sndcnt = min_t(int, delta, 2508 max_t(int, tp->prr_delivered - tp->prr_out, 2509 newly_acked_sacked) + 1); 2510 } else { 2511 sndcnt = min(delta, newly_acked_sacked); 2512 } 2513 /* Force a fast retransmit upon entering fast recovery */ 2514 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2515 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2516 } 2517 2518 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2519 { 2520 struct tcp_sock *tp = tcp_sk(sk); 2521 2522 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2523 return; 2524 2525 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2526 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2527 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2528 tp->snd_cwnd = tp->snd_ssthresh; 2529 tp->snd_cwnd_stamp = tcp_jiffies32; 2530 } 2531 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2532 } 2533 2534 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2535 void tcp_enter_cwr(struct sock *sk) 2536 { 2537 struct tcp_sock *tp = tcp_sk(sk); 2538 2539 tp->prior_ssthresh = 0; 2540 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2541 tp->undo_marker = 0; 2542 tcp_init_cwnd_reduction(sk); 2543 tcp_set_ca_state(sk, TCP_CA_CWR); 2544 } 2545 } 2546 EXPORT_SYMBOL(tcp_enter_cwr); 2547 2548 static void tcp_try_keep_open(struct sock *sk) 2549 { 2550 struct tcp_sock *tp = tcp_sk(sk); 2551 int state = TCP_CA_Open; 2552 2553 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2554 state = TCP_CA_Disorder; 2555 2556 if (inet_csk(sk)->icsk_ca_state != state) { 2557 tcp_set_ca_state(sk, state); 2558 tp->high_seq = tp->snd_nxt; 2559 } 2560 } 2561 2562 static void tcp_try_to_open(struct sock *sk, int flag) 2563 { 2564 struct tcp_sock *tp = tcp_sk(sk); 2565 2566 tcp_verify_left_out(tp); 2567 2568 if (!tcp_any_retrans_done(sk)) 2569 tp->retrans_stamp = 0; 2570 2571 if (flag & FLAG_ECE) 2572 tcp_enter_cwr(sk); 2573 2574 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2575 tcp_try_keep_open(sk); 2576 } 2577 } 2578 2579 static void tcp_mtup_probe_failed(struct sock *sk) 2580 { 2581 struct inet_connection_sock *icsk = inet_csk(sk); 2582 2583 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2584 icsk->icsk_mtup.probe_size = 0; 2585 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2586 } 2587 2588 static void tcp_mtup_probe_success(struct sock *sk) 2589 { 2590 struct tcp_sock *tp = tcp_sk(sk); 2591 struct inet_connection_sock *icsk = inet_csk(sk); 2592 2593 /* FIXME: breaks with very large cwnd */ 2594 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2595 tp->snd_cwnd = tp->snd_cwnd * 2596 tcp_mss_to_mtu(sk, tp->mss_cache) / 2597 icsk->icsk_mtup.probe_size; 2598 tp->snd_cwnd_cnt = 0; 2599 tp->snd_cwnd_stamp = tcp_jiffies32; 2600 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2601 2602 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2603 icsk->icsk_mtup.probe_size = 0; 2604 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2605 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2606 } 2607 2608 /* Do a simple retransmit without using the backoff mechanisms in 2609 * tcp_timer. This is used for path mtu discovery. 2610 * The socket is already locked here. 2611 */ 2612 void tcp_simple_retransmit(struct sock *sk) 2613 { 2614 const struct inet_connection_sock *icsk = inet_csk(sk); 2615 struct tcp_sock *tp = tcp_sk(sk); 2616 struct sk_buff *skb; 2617 unsigned int mss = tcp_current_mss(sk); 2618 u32 prior_lost = tp->lost_out; 2619 2620 tcp_for_write_queue(skb, sk) { 2621 if (skb == tcp_send_head(sk)) 2622 break; 2623 if (tcp_skb_seglen(skb) > mss && 2624 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2625 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2626 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2627 tp->retrans_out -= tcp_skb_pcount(skb); 2628 } 2629 tcp_skb_mark_lost_uncond_verify(tp, skb); 2630 } 2631 } 2632 2633 tcp_clear_retrans_hints_partial(tp); 2634 2635 if (prior_lost == tp->lost_out) 2636 return; 2637 2638 if (tcp_is_reno(tp)) 2639 tcp_limit_reno_sacked(tp); 2640 2641 tcp_verify_left_out(tp); 2642 2643 /* Don't muck with the congestion window here. 2644 * Reason is that we do not increase amount of _data_ 2645 * in network, but units changed and effective 2646 * cwnd/ssthresh really reduced now. 2647 */ 2648 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2649 tp->high_seq = tp->snd_nxt; 2650 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2651 tp->prior_ssthresh = 0; 2652 tp->undo_marker = 0; 2653 tcp_set_ca_state(sk, TCP_CA_Loss); 2654 } 2655 tcp_xmit_retransmit_queue(sk); 2656 } 2657 EXPORT_SYMBOL(tcp_simple_retransmit); 2658 2659 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2660 { 2661 struct tcp_sock *tp = tcp_sk(sk); 2662 int mib_idx; 2663 2664 if (tcp_is_reno(tp)) 2665 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2666 else 2667 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2668 2669 NET_INC_STATS(sock_net(sk), mib_idx); 2670 2671 tp->prior_ssthresh = 0; 2672 tcp_init_undo(tp); 2673 2674 if (!tcp_in_cwnd_reduction(sk)) { 2675 if (!ece_ack) 2676 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2677 tcp_init_cwnd_reduction(sk); 2678 } 2679 tcp_set_ca_state(sk, TCP_CA_Recovery); 2680 } 2681 2682 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2683 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2684 */ 2685 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack, 2686 int *rexmit) 2687 { 2688 struct tcp_sock *tp = tcp_sk(sk); 2689 bool recovered = !before(tp->snd_una, tp->high_seq); 2690 2691 if ((flag & FLAG_SND_UNA_ADVANCED) && 2692 tcp_try_undo_loss(sk, false)) 2693 return; 2694 2695 /* The ACK (s)acks some never-retransmitted data meaning not all 2696 * the data packets before the timeout were lost. Therefore we 2697 * undo the congestion window and state. This is essentially 2698 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since 2699 * a retransmitted skb is permantly marked, we can apply such an 2700 * operation even if F-RTO was not used. 2701 */ 2702 if ((flag & FLAG_ORIG_SACK_ACKED) && 2703 tcp_try_undo_loss(sk, tp->undo_marker)) 2704 return; 2705 2706 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2707 if (after(tp->snd_nxt, tp->high_seq)) { 2708 if (flag & FLAG_DATA_SACKED || is_dupack) 2709 tp->frto = 0; /* Step 3.a. loss was real */ 2710 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2711 tp->high_seq = tp->snd_nxt; 2712 /* Step 2.b. Try send new data (but deferred until cwnd 2713 * is updated in tcp_ack()). Otherwise fall back to 2714 * the conventional recovery. 2715 */ 2716 if (tcp_send_head(sk) && 2717 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2718 *rexmit = REXMIT_NEW; 2719 return; 2720 } 2721 tp->frto = 0; 2722 } 2723 } 2724 2725 if (recovered) { 2726 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2727 tcp_try_undo_recovery(sk); 2728 return; 2729 } 2730 if (tcp_is_reno(tp)) { 2731 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2732 * delivered. Lower inflight to clock out (re)tranmissions. 2733 */ 2734 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2735 tcp_add_reno_sack(sk); 2736 else if (flag & FLAG_SND_UNA_ADVANCED) 2737 tcp_reset_reno_sack(tp); 2738 } 2739 *rexmit = REXMIT_LOST; 2740 } 2741 2742 /* Undo during fast recovery after partial ACK. */ 2743 static bool tcp_try_undo_partial(struct sock *sk, const int acked) 2744 { 2745 struct tcp_sock *tp = tcp_sk(sk); 2746 2747 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2748 /* Plain luck! Hole if filled with delayed 2749 * packet, rather than with a retransmit. 2750 */ 2751 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2752 2753 /* We are getting evidence that the reordering degree is higher 2754 * than we realized. If there are no retransmits out then we 2755 * can undo. Otherwise we clock out new packets but do not 2756 * mark more packets lost or retransmit more. 2757 */ 2758 if (tp->retrans_out) 2759 return true; 2760 2761 if (!tcp_any_retrans_done(sk)) 2762 tp->retrans_stamp = 0; 2763 2764 DBGUNDO(sk, "partial recovery"); 2765 tcp_undo_cwnd_reduction(sk, true); 2766 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2767 tcp_try_keep_open(sk); 2768 return true; 2769 } 2770 return false; 2771 } 2772 2773 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag) 2774 { 2775 struct tcp_sock *tp = tcp_sk(sk); 2776 2777 /* Use RACK to detect loss */ 2778 if (sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) { 2779 u32 prior_retrans = tp->retrans_out; 2780 2781 tcp_rack_mark_lost(sk); 2782 if (prior_retrans > tp->retrans_out) 2783 *ack_flag |= FLAG_LOST_RETRANS; 2784 } 2785 } 2786 2787 /* Process an event, which can update packets-in-flight not trivially. 2788 * Main goal of this function is to calculate new estimate for left_out, 2789 * taking into account both packets sitting in receiver's buffer and 2790 * packets lost by network. 2791 * 2792 * Besides that it updates the congestion state when packet loss or ECN 2793 * is detected. But it does not reduce the cwnd, it is done by the 2794 * congestion control later. 2795 * 2796 * It does _not_ decide what to send, it is made in function 2797 * tcp_xmit_retransmit_queue(). 2798 */ 2799 static void tcp_fastretrans_alert(struct sock *sk, const int acked, 2800 bool is_dupack, int *ack_flag, int *rexmit) 2801 { 2802 struct inet_connection_sock *icsk = inet_csk(sk); 2803 struct tcp_sock *tp = tcp_sk(sk); 2804 int fast_rexmit = 0, flag = *ack_flag; 2805 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2806 (tcp_fackets_out(tp) > tp->reordering)); 2807 2808 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2809 tp->sacked_out = 0; 2810 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2811 tp->fackets_out = 0; 2812 2813 /* Now state machine starts. 2814 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2815 if (flag & FLAG_ECE) 2816 tp->prior_ssthresh = 0; 2817 2818 /* B. In all the states check for reneging SACKs. */ 2819 if (tcp_check_sack_reneging(sk, flag)) 2820 return; 2821 2822 /* C. Check consistency of the current state. */ 2823 tcp_verify_left_out(tp); 2824 2825 /* D. Check state exit conditions. State can be terminated 2826 * when high_seq is ACKed. */ 2827 if (icsk->icsk_ca_state == TCP_CA_Open) { 2828 WARN_ON(tp->retrans_out != 0); 2829 tp->retrans_stamp = 0; 2830 } else if (!before(tp->snd_una, tp->high_seq)) { 2831 switch (icsk->icsk_ca_state) { 2832 case TCP_CA_CWR: 2833 /* CWR is to be held something *above* high_seq 2834 * is ACKed for CWR bit to reach receiver. */ 2835 if (tp->snd_una != tp->high_seq) { 2836 tcp_end_cwnd_reduction(sk); 2837 tcp_set_ca_state(sk, TCP_CA_Open); 2838 } 2839 break; 2840 2841 case TCP_CA_Recovery: 2842 if (tcp_is_reno(tp)) 2843 tcp_reset_reno_sack(tp); 2844 if (tcp_try_undo_recovery(sk)) 2845 return; 2846 tcp_end_cwnd_reduction(sk); 2847 break; 2848 } 2849 } 2850 2851 /* E. Process state. */ 2852 switch (icsk->icsk_ca_state) { 2853 case TCP_CA_Recovery: 2854 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2855 if (tcp_is_reno(tp) && is_dupack) 2856 tcp_add_reno_sack(sk); 2857 } else { 2858 if (tcp_try_undo_partial(sk, acked)) 2859 return; 2860 /* Partial ACK arrived. Force fast retransmit. */ 2861 do_lost = tcp_is_reno(tp) || 2862 tcp_fackets_out(tp) > tp->reordering; 2863 } 2864 if (tcp_try_undo_dsack(sk)) { 2865 tcp_try_keep_open(sk); 2866 return; 2867 } 2868 tcp_rack_identify_loss(sk, ack_flag); 2869 break; 2870 case TCP_CA_Loss: 2871 tcp_process_loss(sk, flag, is_dupack, rexmit); 2872 tcp_rack_identify_loss(sk, ack_flag); 2873 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2874 (*ack_flag & FLAG_LOST_RETRANS))) 2875 return; 2876 /* Change state if cwnd is undone or retransmits are lost */ 2877 default: 2878 if (tcp_is_reno(tp)) { 2879 if (flag & FLAG_SND_UNA_ADVANCED) 2880 tcp_reset_reno_sack(tp); 2881 if (is_dupack) 2882 tcp_add_reno_sack(sk); 2883 } 2884 2885 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2886 tcp_try_undo_dsack(sk); 2887 2888 tcp_rack_identify_loss(sk, ack_flag); 2889 if (!tcp_time_to_recover(sk, flag)) { 2890 tcp_try_to_open(sk, flag); 2891 return; 2892 } 2893 2894 /* MTU probe failure: don't reduce cwnd */ 2895 if (icsk->icsk_ca_state < TCP_CA_CWR && 2896 icsk->icsk_mtup.probe_size && 2897 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2898 tcp_mtup_probe_failed(sk); 2899 /* Restores the reduction we did in tcp_mtup_probe() */ 2900 tp->snd_cwnd++; 2901 tcp_simple_retransmit(sk); 2902 return; 2903 } 2904 2905 /* Otherwise enter Recovery state */ 2906 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2907 fast_rexmit = 1; 2908 } 2909 2910 if (do_lost) 2911 tcp_update_scoreboard(sk, fast_rexmit); 2912 *rexmit = REXMIT_LOST; 2913 } 2914 2915 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us) 2916 { 2917 struct tcp_sock *tp = tcp_sk(sk); 2918 u32 wlen = sysctl_tcp_min_rtt_wlen * HZ; 2919 2920 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 2921 rtt_us ? : jiffies_to_usecs(1)); 2922 } 2923 2924 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2925 long seq_rtt_us, long sack_rtt_us, 2926 long ca_rtt_us, struct rate_sample *rs) 2927 { 2928 const struct tcp_sock *tp = tcp_sk(sk); 2929 2930 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2931 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2932 * Karn's algorithm forbids taking RTT if some retransmitted data 2933 * is acked (RFC6298). 2934 */ 2935 if (seq_rtt_us < 0) 2936 seq_rtt_us = sack_rtt_us; 2937 2938 /* RTTM Rule: A TSecr value received in a segment is used to 2939 * update the averaged RTT measurement only if the segment 2940 * acknowledges some new data, i.e., only if it advances the 2941 * left edge of the send window. 2942 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2943 */ 2944 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2945 flag & FLAG_ACKED) { 2946 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 2947 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 2948 2949 seq_rtt_us = ca_rtt_us = delta_us; 2950 } 2951 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 2952 if (seq_rtt_us < 0) 2953 return false; 2954 2955 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2956 * always taken together with ACK, SACK, or TS-opts. Any negative 2957 * values will be skipped with the seq_rtt_us < 0 check above. 2958 */ 2959 tcp_update_rtt_min(sk, ca_rtt_us); 2960 tcp_rtt_estimator(sk, seq_rtt_us); 2961 tcp_set_rto(sk); 2962 2963 /* RFC6298: only reset backoff on valid RTT measurement. */ 2964 inet_csk(sk)->icsk_backoff = 0; 2965 return true; 2966 } 2967 2968 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2969 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2970 { 2971 struct rate_sample rs; 2972 long rtt_us = -1L; 2973 2974 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 2975 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 2976 2977 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 2978 } 2979 2980 2981 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2982 { 2983 const struct inet_connection_sock *icsk = inet_csk(sk); 2984 2985 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2986 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 2987 } 2988 2989 /* Restart timer after forward progress on connection. 2990 * RFC2988 recommends to restart timer to now+rto. 2991 */ 2992 void tcp_rearm_rto(struct sock *sk) 2993 { 2994 const struct inet_connection_sock *icsk = inet_csk(sk); 2995 struct tcp_sock *tp = tcp_sk(sk); 2996 2997 /* If the retrans timer is currently being used by Fast Open 2998 * for SYN-ACK retrans purpose, stay put. 2999 */ 3000 if (tp->fastopen_rsk) 3001 return; 3002 3003 if (!tp->packets_out) { 3004 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3005 } else { 3006 u32 rto = inet_csk(sk)->icsk_rto; 3007 /* Offset the time elapsed after installing regular RTO */ 3008 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3009 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3010 s64 delta_us = tcp_rto_delta_us(sk); 3011 /* delta_us may not be positive if the socket is locked 3012 * when the retrans timer fires and is rescheduled. 3013 */ 3014 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3015 } 3016 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3017 TCP_RTO_MAX); 3018 } 3019 } 3020 3021 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3022 static void tcp_set_xmit_timer(struct sock *sk) 3023 { 3024 if (!tcp_schedule_loss_probe(sk)) 3025 tcp_rearm_rto(sk); 3026 } 3027 3028 /* If we get here, the whole TSO packet has not been acked. */ 3029 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3030 { 3031 struct tcp_sock *tp = tcp_sk(sk); 3032 u32 packets_acked; 3033 3034 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3035 3036 packets_acked = tcp_skb_pcount(skb); 3037 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3038 return 0; 3039 packets_acked -= tcp_skb_pcount(skb); 3040 3041 if (packets_acked) { 3042 BUG_ON(tcp_skb_pcount(skb) == 0); 3043 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3044 } 3045 3046 return packets_acked; 3047 } 3048 3049 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3050 u32 prior_snd_una) 3051 { 3052 const struct skb_shared_info *shinfo; 3053 3054 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3055 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3056 return; 3057 3058 shinfo = skb_shinfo(skb); 3059 if (!before(shinfo->tskey, prior_snd_una) && 3060 before(shinfo->tskey, tcp_sk(sk)->snd_una)) 3061 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3062 } 3063 3064 /* Remove acknowledged frames from the retransmission queue. If our packet 3065 * is before the ack sequence we can discard it as it's confirmed to have 3066 * arrived at the other end. 3067 */ 3068 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3069 u32 prior_snd_una, int *acked, 3070 struct tcp_sacktag_state *sack) 3071 { 3072 const struct inet_connection_sock *icsk = inet_csk(sk); 3073 u64 first_ackt, last_ackt; 3074 struct tcp_sock *tp = tcp_sk(sk); 3075 u32 prior_sacked = tp->sacked_out; 3076 u32 reord = tp->packets_out; 3077 bool fully_acked = true; 3078 long sack_rtt_us = -1L; 3079 long seq_rtt_us = -1L; 3080 long ca_rtt_us = -1L; 3081 struct sk_buff *skb; 3082 u32 pkts_acked = 0; 3083 u32 last_in_flight = 0; 3084 bool rtt_update; 3085 int flag = 0; 3086 3087 first_ackt = 0; 3088 3089 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3090 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3091 u8 sacked = scb->sacked; 3092 u32 acked_pcount; 3093 3094 tcp_ack_tstamp(sk, skb, prior_snd_una); 3095 3096 /* Determine how many packets and what bytes were acked, tso and else */ 3097 if (after(scb->end_seq, tp->snd_una)) { 3098 if (tcp_skb_pcount(skb) == 1 || 3099 !after(tp->snd_una, scb->seq)) 3100 break; 3101 3102 acked_pcount = tcp_tso_acked(sk, skb); 3103 if (!acked_pcount) 3104 break; 3105 fully_acked = false; 3106 } else { 3107 /* Speedup tcp_unlink_write_queue() and next loop */ 3108 prefetchw(skb->next); 3109 acked_pcount = tcp_skb_pcount(skb); 3110 } 3111 3112 if (unlikely(sacked & TCPCB_RETRANS)) { 3113 if (sacked & TCPCB_SACKED_RETRANS) 3114 tp->retrans_out -= acked_pcount; 3115 flag |= FLAG_RETRANS_DATA_ACKED; 3116 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3117 last_ackt = skb->skb_mstamp; 3118 WARN_ON_ONCE(last_ackt == 0); 3119 if (!first_ackt) 3120 first_ackt = last_ackt; 3121 3122 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3123 reord = min(pkts_acked, reord); 3124 if (!after(scb->end_seq, tp->high_seq)) 3125 flag |= FLAG_ORIG_SACK_ACKED; 3126 } 3127 3128 if (sacked & TCPCB_SACKED_ACKED) { 3129 tp->sacked_out -= acked_pcount; 3130 } else if (tcp_is_sack(tp)) { 3131 tp->delivered += acked_pcount; 3132 if (!tcp_skb_spurious_retrans(tp, skb)) 3133 tcp_rack_advance(tp, sacked, scb->end_seq, 3134 skb->skb_mstamp); 3135 } 3136 if (sacked & TCPCB_LOST) 3137 tp->lost_out -= acked_pcount; 3138 3139 tp->packets_out -= acked_pcount; 3140 pkts_acked += acked_pcount; 3141 tcp_rate_skb_delivered(sk, skb, sack->rate); 3142 3143 /* Initial outgoing SYN's get put onto the write_queue 3144 * just like anything else we transmit. It is not 3145 * true data, and if we misinform our callers that 3146 * this ACK acks real data, we will erroneously exit 3147 * connection startup slow start one packet too 3148 * quickly. This is severely frowned upon behavior. 3149 */ 3150 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3151 flag |= FLAG_DATA_ACKED; 3152 } else { 3153 flag |= FLAG_SYN_ACKED; 3154 tp->retrans_stamp = 0; 3155 } 3156 3157 if (!fully_acked) 3158 break; 3159 3160 tcp_unlink_write_queue(skb, sk); 3161 sk_wmem_free_skb(sk, skb); 3162 if (unlikely(skb == tp->retransmit_skb_hint)) 3163 tp->retransmit_skb_hint = NULL; 3164 if (unlikely(skb == tp->lost_skb_hint)) 3165 tp->lost_skb_hint = NULL; 3166 } 3167 3168 if (!skb) 3169 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3170 3171 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3172 tp->snd_up = tp->snd_una; 3173 3174 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3175 flag |= FLAG_SACK_RENEGING; 3176 3177 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3178 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3179 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3180 } 3181 if (sack->first_sackt) { 3182 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3183 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3184 } 3185 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3186 ca_rtt_us, sack->rate); 3187 3188 if (flag & FLAG_ACKED) { 3189 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3190 if (unlikely(icsk->icsk_mtup.probe_size && 3191 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3192 tcp_mtup_probe_success(sk); 3193 } 3194 3195 if (tcp_is_reno(tp)) { 3196 tcp_remove_reno_sacks(sk, pkts_acked); 3197 } else { 3198 int delta; 3199 3200 /* Non-retransmitted hole got filled? That's reordering */ 3201 if (reord < prior_fackets && reord <= tp->fackets_out) 3202 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3203 3204 delta = tcp_is_fack(tp) ? pkts_acked : 3205 prior_sacked - tp->sacked_out; 3206 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3207 } 3208 3209 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3210 3211 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3212 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) { 3213 /* Do not re-arm RTO if the sack RTT is measured from data sent 3214 * after when the head was last (re)transmitted. Otherwise the 3215 * timeout may continue to extend in loss recovery. 3216 */ 3217 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3218 } 3219 3220 if (icsk->icsk_ca_ops->pkts_acked) { 3221 struct ack_sample sample = { .pkts_acked = pkts_acked, 3222 .rtt_us = sack->rate->rtt_us, 3223 .in_flight = last_in_flight }; 3224 3225 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3226 } 3227 3228 #if FASTRETRANS_DEBUG > 0 3229 WARN_ON((int)tp->sacked_out < 0); 3230 WARN_ON((int)tp->lost_out < 0); 3231 WARN_ON((int)tp->retrans_out < 0); 3232 if (!tp->packets_out && tcp_is_sack(tp)) { 3233 icsk = inet_csk(sk); 3234 if (tp->lost_out) { 3235 pr_debug("Leak l=%u %d\n", 3236 tp->lost_out, icsk->icsk_ca_state); 3237 tp->lost_out = 0; 3238 } 3239 if (tp->sacked_out) { 3240 pr_debug("Leak s=%u %d\n", 3241 tp->sacked_out, icsk->icsk_ca_state); 3242 tp->sacked_out = 0; 3243 } 3244 if (tp->retrans_out) { 3245 pr_debug("Leak r=%u %d\n", 3246 tp->retrans_out, icsk->icsk_ca_state); 3247 tp->retrans_out = 0; 3248 } 3249 } 3250 #endif 3251 *acked = pkts_acked; 3252 return flag; 3253 } 3254 3255 static void tcp_ack_probe(struct sock *sk) 3256 { 3257 const struct tcp_sock *tp = tcp_sk(sk); 3258 struct inet_connection_sock *icsk = inet_csk(sk); 3259 3260 /* Was it a usable window open? */ 3261 3262 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3263 icsk->icsk_backoff = 0; 3264 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3265 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3266 * This function is not for random using! 3267 */ 3268 } else { 3269 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3270 3271 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3272 when, TCP_RTO_MAX); 3273 } 3274 } 3275 3276 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3277 { 3278 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3279 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3280 } 3281 3282 /* Decide wheather to run the increase function of congestion control. */ 3283 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3284 { 3285 /* If reordering is high then always grow cwnd whenever data is 3286 * delivered regardless of its ordering. Otherwise stay conservative 3287 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3288 * new SACK or ECE mark may first advance cwnd here and later reduce 3289 * cwnd in tcp_fastretrans_alert() based on more states. 3290 */ 3291 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3292 return flag & FLAG_FORWARD_PROGRESS; 3293 3294 return flag & FLAG_DATA_ACKED; 3295 } 3296 3297 /* The "ultimate" congestion control function that aims to replace the rigid 3298 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3299 * It's called toward the end of processing an ACK with precise rate 3300 * information. All transmission or retransmission are delayed afterwards. 3301 */ 3302 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3303 int flag, const struct rate_sample *rs) 3304 { 3305 const struct inet_connection_sock *icsk = inet_csk(sk); 3306 3307 if (icsk->icsk_ca_ops->cong_control) { 3308 icsk->icsk_ca_ops->cong_control(sk, rs); 3309 return; 3310 } 3311 3312 if (tcp_in_cwnd_reduction(sk)) { 3313 /* Reduce cwnd if state mandates */ 3314 tcp_cwnd_reduction(sk, acked_sacked, flag); 3315 } else if (tcp_may_raise_cwnd(sk, flag)) { 3316 /* Advance cwnd if state allows */ 3317 tcp_cong_avoid(sk, ack, acked_sacked); 3318 } 3319 tcp_update_pacing_rate(sk); 3320 } 3321 3322 /* Check that window update is acceptable. 3323 * The function assumes that snd_una<=ack<=snd_next. 3324 */ 3325 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3326 const u32 ack, const u32 ack_seq, 3327 const u32 nwin) 3328 { 3329 return after(ack, tp->snd_una) || 3330 after(ack_seq, tp->snd_wl1) || 3331 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3332 } 3333 3334 /* If we update tp->snd_una, also update tp->bytes_acked */ 3335 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3336 { 3337 u32 delta = ack - tp->snd_una; 3338 3339 sock_owned_by_me((struct sock *)tp); 3340 tp->bytes_acked += delta; 3341 tp->snd_una = ack; 3342 } 3343 3344 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3345 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3346 { 3347 u32 delta = seq - tp->rcv_nxt; 3348 3349 sock_owned_by_me((struct sock *)tp); 3350 tp->bytes_received += delta; 3351 tp->rcv_nxt = seq; 3352 } 3353 3354 /* Update our send window. 3355 * 3356 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3357 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3358 */ 3359 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3360 u32 ack_seq) 3361 { 3362 struct tcp_sock *tp = tcp_sk(sk); 3363 int flag = 0; 3364 u32 nwin = ntohs(tcp_hdr(skb)->window); 3365 3366 if (likely(!tcp_hdr(skb)->syn)) 3367 nwin <<= tp->rx_opt.snd_wscale; 3368 3369 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3370 flag |= FLAG_WIN_UPDATE; 3371 tcp_update_wl(tp, ack_seq); 3372 3373 if (tp->snd_wnd != nwin) { 3374 tp->snd_wnd = nwin; 3375 3376 /* Note, it is the only place, where 3377 * fast path is recovered for sending TCP. 3378 */ 3379 tp->pred_flags = 0; 3380 tcp_fast_path_check(sk); 3381 3382 if (tcp_send_head(sk)) 3383 tcp_slow_start_after_idle_check(sk); 3384 3385 if (nwin > tp->max_window) { 3386 tp->max_window = nwin; 3387 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3388 } 3389 } 3390 } 3391 3392 tcp_snd_una_update(tp, ack); 3393 3394 return flag; 3395 } 3396 3397 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3398 u32 *last_oow_ack_time) 3399 { 3400 if (*last_oow_ack_time) { 3401 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3402 3403 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) { 3404 NET_INC_STATS(net, mib_idx); 3405 return true; /* rate-limited: don't send yet! */ 3406 } 3407 } 3408 3409 *last_oow_ack_time = tcp_jiffies32; 3410 3411 return false; /* not rate-limited: go ahead, send dupack now! */ 3412 } 3413 3414 /* Return true if we're currently rate-limiting out-of-window ACKs and 3415 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3416 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3417 * attacks that send repeated SYNs or ACKs for the same connection. To 3418 * do this, we do not send a duplicate SYNACK or ACK if the remote 3419 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3420 */ 3421 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3422 int mib_idx, u32 *last_oow_ack_time) 3423 { 3424 /* Data packets without SYNs are not likely part of an ACK loop. */ 3425 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3426 !tcp_hdr(skb)->syn) 3427 return false; 3428 3429 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3430 } 3431 3432 /* RFC 5961 7 [ACK Throttling] */ 3433 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3434 { 3435 /* unprotected vars, we dont care of overwrites */ 3436 static u32 challenge_timestamp; 3437 static unsigned int challenge_count; 3438 struct tcp_sock *tp = tcp_sk(sk); 3439 u32 count, now; 3440 3441 /* First check our per-socket dupack rate limit. */ 3442 if (__tcp_oow_rate_limited(sock_net(sk), 3443 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3444 &tp->last_oow_ack_time)) 3445 return; 3446 3447 /* Then check host-wide RFC 5961 rate limit. */ 3448 now = jiffies / HZ; 3449 if (now != challenge_timestamp) { 3450 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1; 3451 3452 challenge_timestamp = now; 3453 WRITE_ONCE(challenge_count, half + 3454 prandom_u32_max(sysctl_tcp_challenge_ack_limit)); 3455 } 3456 count = READ_ONCE(challenge_count); 3457 if (count > 0) { 3458 WRITE_ONCE(challenge_count, count - 1); 3459 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK); 3460 tcp_send_ack(sk); 3461 } 3462 } 3463 3464 static void tcp_store_ts_recent(struct tcp_sock *tp) 3465 { 3466 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3467 tp->rx_opt.ts_recent_stamp = get_seconds(); 3468 } 3469 3470 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3471 { 3472 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3473 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3474 * extra check below makes sure this can only happen 3475 * for pure ACK frames. -DaveM 3476 * 3477 * Not only, also it occurs for expired timestamps. 3478 */ 3479 3480 if (tcp_paws_check(&tp->rx_opt, 0)) 3481 tcp_store_ts_recent(tp); 3482 } 3483 } 3484 3485 /* This routine deals with acks during a TLP episode. 3486 * We mark the end of a TLP episode on receiving TLP dupack or when 3487 * ack is after tlp_high_seq. 3488 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3489 */ 3490 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3491 { 3492 struct tcp_sock *tp = tcp_sk(sk); 3493 3494 if (before(ack, tp->tlp_high_seq)) 3495 return; 3496 3497 if (flag & FLAG_DSACKING_ACK) { 3498 /* This DSACK means original and TLP probe arrived; no loss */ 3499 tp->tlp_high_seq = 0; 3500 } else if (after(ack, tp->tlp_high_seq)) { 3501 /* ACK advances: there was a loss, so reduce cwnd. Reset 3502 * tlp_high_seq in tcp_init_cwnd_reduction() 3503 */ 3504 tcp_init_cwnd_reduction(sk); 3505 tcp_set_ca_state(sk, TCP_CA_CWR); 3506 tcp_end_cwnd_reduction(sk); 3507 tcp_try_keep_open(sk); 3508 NET_INC_STATS(sock_net(sk), 3509 LINUX_MIB_TCPLOSSPROBERECOVERY); 3510 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3511 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3512 /* Pure dupack: original and TLP probe arrived; no loss */ 3513 tp->tlp_high_seq = 0; 3514 } 3515 } 3516 3517 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3518 { 3519 const struct inet_connection_sock *icsk = inet_csk(sk); 3520 3521 if (icsk->icsk_ca_ops->in_ack_event) 3522 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3523 } 3524 3525 /* Congestion control has updated the cwnd already. So if we're in 3526 * loss recovery then now we do any new sends (for FRTO) or 3527 * retransmits (for CA_Loss or CA_recovery) that make sense. 3528 */ 3529 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3530 { 3531 struct tcp_sock *tp = tcp_sk(sk); 3532 3533 if (rexmit == REXMIT_NONE) 3534 return; 3535 3536 if (unlikely(rexmit == 2)) { 3537 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3538 TCP_NAGLE_OFF); 3539 if (after(tp->snd_nxt, tp->high_seq)) 3540 return; 3541 tp->frto = 0; 3542 } 3543 tcp_xmit_retransmit_queue(sk); 3544 } 3545 3546 /* This routine deals with incoming acks, but not outgoing ones. */ 3547 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3548 { 3549 struct inet_connection_sock *icsk = inet_csk(sk); 3550 struct tcp_sock *tp = tcp_sk(sk); 3551 struct tcp_sacktag_state sack_state; 3552 struct rate_sample rs = { .prior_delivered = 0 }; 3553 u32 prior_snd_una = tp->snd_una; 3554 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3555 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3556 bool is_dupack = false; 3557 u32 prior_fackets; 3558 int prior_packets = tp->packets_out; 3559 u32 delivered = tp->delivered; 3560 u32 lost = tp->lost; 3561 int acked = 0; /* Number of packets newly acked */ 3562 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3563 3564 sack_state.first_sackt = 0; 3565 sack_state.rate = &rs; 3566 3567 /* We very likely will need to access write queue head. */ 3568 prefetchw(sk->sk_write_queue.next); 3569 3570 /* If the ack is older than previous acks 3571 * then we can probably ignore it. 3572 */ 3573 if (before(ack, prior_snd_una)) { 3574 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3575 if (before(ack, prior_snd_una - tp->max_window)) { 3576 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3577 tcp_send_challenge_ack(sk, skb); 3578 return -1; 3579 } 3580 goto old_ack; 3581 } 3582 3583 /* If the ack includes data we haven't sent yet, discard 3584 * this segment (RFC793 Section 3.9). 3585 */ 3586 if (after(ack, tp->snd_nxt)) 3587 goto invalid_ack; 3588 3589 if (after(ack, prior_snd_una)) { 3590 flag |= FLAG_SND_UNA_ADVANCED; 3591 icsk->icsk_retransmits = 0; 3592 } 3593 3594 prior_fackets = tp->fackets_out; 3595 rs.prior_in_flight = tcp_packets_in_flight(tp); 3596 3597 /* ts_recent update must be made after we are sure that the packet 3598 * is in window. 3599 */ 3600 if (flag & FLAG_UPDATE_TS_RECENT) 3601 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3602 3603 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3604 /* Window is constant, pure forward advance. 3605 * No more checks are required. 3606 * Note, we use the fact that SND.UNA>=SND.WL2. 3607 */ 3608 tcp_update_wl(tp, ack_seq); 3609 tcp_snd_una_update(tp, ack); 3610 flag |= FLAG_WIN_UPDATE; 3611 3612 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3613 3614 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3615 } else { 3616 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3617 3618 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3619 flag |= FLAG_DATA; 3620 else 3621 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3622 3623 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3624 3625 if (TCP_SKB_CB(skb)->sacked) 3626 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3627 &sack_state); 3628 3629 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3630 flag |= FLAG_ECE; 3631 ack_ev_flags |= CA_ACK_ECE; 3632 } 3633 3634 if (flag & FLAG_WIN_UPDATE) 3635 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3636 3637 tcp_in_ack_event(sk, ack_ev_flags); 3638 } 3639 3640 /* We passed data and got it acked, remove any soft error 3641 * log. Something worked... 3642 */ 3643 sk->sk_err_soft = 0; 3644 icsk->icsk_probes_out = 0; 3645 tp->rcv_tstamp = tcp_jiffies32; 3646 if (!prior_packets) 3647 goto no_queue; 3648 3649 /* See if we can take anything off of the retransmit queue. */ 3650 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked, 3651 &sack_state); 3652 3653 if (tp->tlp_high_seq) 3654 tcp_process_tlp_ack(sk, ack, flag); 3655 /* If needed, reset TLP/RTO timer; RACK may later override this. */ 3656 if (flag & FLAG_SET_XMIT_TIMER) 3657 tcp_set_xmit_timer(sk); 3658 3659 if (tcp_ack_is_dubious(sk, flag)) { 3660 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3661 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3662 } 3663 3664 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3665 sk_dst_confirm(sk); 3666 3667 delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */ 3668 lost = tp->lost - lost; /* freshly marked lost */ 3669 tcp_rate_gen(sk, delivered, lost, sack_state.rate); 3670 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3671 tcp_xmit_recovery(sk, rexmit); 3672 return 1; 3673 3674 no_queue: 3675 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3676 if (flag & FLAG_DSACKING_ACK) 3677 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3678 /* If this ack opens up a zero window, clear backoff. It was 3679 * being used to time the probes, and is probably far higher than 3680 * it needs to be for normal retransmission. 3681 */ 3682 if (tcp_send_head(sk)) 3683 tcp_ack_probe(sk); 3684 3685 if (tp->tlp_high_seq) 3686 tcp_process_tlp_ack(sk, ack, flag); 3687 return 1; 3688 3689 invalid_ack: 3690 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3691 return -1; 3692 3693 old_ack: 3694 /* If data was SACKed, tag it and see if we should send more data. 3695 * If data was DSACKed, see if we can undo a cwnd reduction. 3696 */ 3697 if (TCP_SKB_CB(skb)->sacked) { 3698 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3699 &sack_state); 3700 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3701 tcp_xmit_recovery(sk, rexmit); 3702 } 3703 3704 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3705 return 0; 3706 } 3707 3708 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3709 bool syn, struct tcp_fastopen_cookie *foc, 3710 bool exp_opt) 3711 { 3712 /* Valid only in SYN or SYN-ACK with an even length. */ 3713 if (!foc || !syn || len < 0 || (len & 1)) 3714 return; 3715 3716 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3717 len <= TCP_FASTOPEN_COOKIE_MAX) 3718 memcpy(foc->val, cookie, len); 3719 else if (len != 0) 3720 len = -1; 3721 foc->len = len; 3722 foc->exp = exp_opt; 3723 } 3724 3725 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3726 * But, this can also be called on packets in the established flow when 3727 * the fast version below fails. 3728 */ 3729 void tcp_parse_options(const struct net *net, 3730 const struct sk_buff *skb, 3731 struct tcp_options_received *opt_rx, int estab, 3732 struct tcp_fastopen_cookie *foc) 3733 { 3734 const unsigned char *ptr; 3735 const struct tcphdr *th = tcp_hdr(skb); 3736 int length = (th->doff * 4) - sizeof(struct tcphdr); 3737 3738 ptr = (const unsigned char *)(th + 1); 3739 opt_rx->saw_tstamp = 0; 3740 3741 while (length > 0) { 3742 int opcode = *ptr++; 3743 int opsize; 3744 3745 switch (opcode) { 3746 case TCPOPT_EOL: 3747 return; 3748 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3749 length--; 3750 continue; 3751 default: 3752 opsize = *ptr++; 3753 if (opsize < 2) /* "silly options" */ 3754 return; 3755 if (opsize > length) 3756 return; /* don't parse partial options */ 3757 switch (opcode) { 3758 case TCPOPT_MSS: 3759 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3760 u16 in_mss = get_unaligned_be16(ptr); 3761 if (in_mss) { 3762 if (opt_rx->user_mss && 3763 opt_rx->user_mss < in_mss) 3764 in_mss = opt_rx->user_mss; 3765 opt_rx->mss_clamp = in_mss; 3766 } 3767 } 3768 break; 3769 case TCPOPT_WINDOW: 3770 if (opsize == TCPOLEN_WINDOW && th->syn && 3771 !estab && net->ipv4.sysctl_tcp_window_scaling) { 3772 __u8 snd_wscale = *(__u8 *)ptr; 3773 opt_rx->wscale_ok = 1; 3774 if (snd_wscale > TCP_MAX_WSCALE) { 3775 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 3776 __func__, 3777 snd_wscale, 3778 TCP_MAX_WSCALE); 3779 snd_wscale = TCP_MAX_WSCALE; 3780 } 3781 opt_rx->snd_wscale = snd_wscale; 3782 } 3783 break; 3784 case TCPOPT_TIMESTAMP: 3785 if ((opsize == TCPOLEN_TIMESTAMP) && 3786 ((estab && opt_rx->tstamp_ok) || 3787 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 3788 opt_rx->saw_tstamp = 1; 3789 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3790 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3791 } 3792 break; 3793 case TCPOPT_SACK_PERM: 3794 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3795 !estab && net->ipv4.sysctl_tcp_sack) { 3796 opt_rx->sack_ok = TCP_SACK_SEEN; 3797 tcp_sack_reset(opt_rx); 3798 } 3799 break; 3800 3801 case TCPOPT_SACK: 3802 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3803 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3804 opt_rx->sack_ok) { 3805 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3806 } 3807 break; 3808 #ifdef CONFIG_TCP_MD5SIG 3809 case TCPOPT_MD5SIG: 3810 /* 3811 * The MD5 Hash has already been 3812 * checked (see tcp_v{4,6}_do_rcv()). 3813 */ 3814 break; 3815 #endif 3816 case TCPOPT_FASTOPEN: 3817 tcp_parse_fastopen_option( 3818 opsize - TCPOLEN_FASTOPEN_BASE, 3819 ptr, th->syn, foc, false); 3820 break; 3821 3822 case TCPOPT_EXP: 3823 /* Fast Open option shares code 254 using a 3824 * 16 bits magic number. 3825 */ 3826 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3827 get_unaligned_be16(ptr) == 3828 TCPOPT_FASTOPEN_MAGIC) 3829 tcp_parse_fastopen_option(opsize - 3830 TCPOLEN_EXP_FASTOPEN_BASE, 3831 ptr + 2, th->syn, foc, true); 3832 break; 3833 3834 } 3835 ptr += opsize-2; 3836 length -= opsize; 3837 } 3838 } 3839 } 3840 EXPORT_SYMBOL(tcp_parse_options); 3841 3842 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3843 { 3844 const __be32 *ptr = (const __be32 *)(th + 1); 3845 3846 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3847 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3848 tp->rx_opt.saw_tstamp = 1; 3849 ++ptr; 3850 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3851 ++ptr; 3852 if (*ptr) 3853 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3854 else 3855 tp->rx_opt.rcv_tsecr = 0; 3856 return true; 3857 } 3858 return false; 3859 } 3860 3861 /* Fast parse options. This hopes to only see timestamps. 3862 * If it is wrong it falls back on tcp_parse_options(). 3863 */ 3864 static bool tcp_fast_parse_options(const struct net *net, 3865 const struct sk_buff *skb, 3866 const struct tcphdr *th, struct tcp_sock *tp) 3867 { 3868 /* In the spirit of fast parsing, compare doff directly to constant 3869 * values. Because equality is used, short doff can be ignored here. 3870 */ 3871 if (th->doff == (sizeof(*th) / 4)) { 3872 tp->rx_opt.saw_tstamp = 0; 3873 return false; 3874 } else if (tp->rx_opt.tstamp_ok && 3875 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3876 if (tcp_parse_aligned_timestamp(tp, th)) 3877 return true; 3878 } 3879 3880 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 3881 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3882 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3883 3884 return true; 3885 } 3886 3887 #ifdef CONFIG_TCP_MD5SIG 3888 /* 3889 * Parse MD5 Signature option 3890 */ 3891 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3892 { 3893 int length = (th->doff << 2) - sizeof(*th); 3894 const u8 *ptr = (const u8 *)(th + 1); 3895 3896 /* If the TCP option is too short, we can short cut */ 3897 if (length < TCPOLEN_MD5SIG) 3898 return NULL; 3899 3900 while (length > 0) { 3901 int opcode = *ptr++; 3902 int opsize; 3903 3904 switch (opcode) { 3905 case TCPOPT_EOL: 3906 return NULL; 3907 case TCPOPT_NOP: 3908 length--; 3909 continue; 3910 default: 3911 opsize = *ptr++; 3912 if (opsize < 2 || opsize > length) 3913 return NULL; 3914 if (opcode == TCPOPT_MD5SIG) 3915 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3916 } 3917 ptr += opsize - 2; 3918 length -= opsize; 3919 } 3920 return NULL; 3921 } 3922 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3923 #endif 3924 3925 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3926 * 3927 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3928 * it can pass through stack. So, the following predicate verifies that 3929 * this segment is not used for anything but congestion avoidance or 3930 * fast retransmit. Moreover, we even are able to eliminate most of such 3931 * second order effects, if we apply some small "replay" window (~RTO) 3932 * to timestamp space. 3933 * 3934 * All these measures still do not guarantee that we reject wrapped ACKs 3935 * on networks with high bandwidth, when sequence space is recycled fastly, 3936 * but it guarantees that such events will be very rare and do not affect 3937 * connection seriously. This doesn't look nice, but alas, PAWS is really 3938 * buggy extension. 3939 * 3940 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3941 * states that events when retransmit arrives after original data are rare. 3942 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3943 * the biggest problem on large power networks even with minor reordering. 3944 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3945 * up to bandwidth of 18Gigabit/sec. 8) ] 3946 */ 3947 3948 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3949 { 3950 const struct tcp_sock *tp = tcp_sk(sk); 3951 const struct tcphdr *th = tcp_hdr(skb); 3952 u32 seq = TCP_SKB_CB(skb)->seq; 3953 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3954 3955 return (/* 1. Pure ACK with correct sequence number. */ 3956 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3957 3958 /* 2. ... and duplicate ACK. */ 3959 ack == tp->snd_una && 3960 3961 /* 3. ... and does not update window. */ 3962 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3963 3964 /* 4. ... and sits in replay window. */ 3965 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3966 } 3967 3968 static inline bool tcp_paws_discard(const struct sock *sk, 3969 const struct sk_buff *skb) 3970 { 3971 const struct tcp_sock *tp = tcp_sk(sk); 3972 3973 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3974 !tcp_disordered_ack(sk, skb); 3975 } 3976 3977 /* Check segment sequence number for validity. 3978 * 3979 * Segment controls are considered valid, if the segment 3980 * fits to the window after truncation to the window. Acceptability 3981 * of data (and SYN, FIN, of course) is checked separately. 3982 * See tcp_data_queue(), for example. 3983 * 3984 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3985 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3986 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3987 * (borrowed from freebsd) 3988 */ 3989 3990 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 3991 { 3992 return !before(end_seq, tp->rcv_wup) && 3993 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3994 } 3995 3996 /* When we get a reset we do this. */ 3997 void tcp_reset(struct sock *sk) 3998 { 3999 /* We want the right error as BSD sees it (and indeed as we do). */ 4000 switch (sk->sk_state) { 4001 case TCP_SYN_SENT: 4002 sk->sk_err = ECONNREFUSED; 4003 break; 4004 case TCP_CLOSE_WAIT: 4005 sk->sk_err = EPIPE; 4006 break; 4007 case TCP_CLOSE: 4008 return; 4009 default: 4010 sk->sk_err = ECONNRESET; 4011 } 4012 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4013 smp_wmb(); 4014 4015 tcp_done(sk); 4016 4017 if (!sock_flag(sk, SOCK_DEAD)) 4018 sk->sk_error_report(sk); 4019 } 4020 4021 /* 4022 * Process the FIN bit. This now behaves as it is supposed to work 4023 * and the FIN takes effect when it is validly part of sequence 4024 * space. Not before when we get holes. 4025 * 4026 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4027 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4028 * TIME-WAIT) 4029 * 4030 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4031 * close and we go into CLOSING (and later onto TIME-WAIT) 4032 * 4033 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4034 */ 4035 void tcp_fin(struct sock *sk) 4036 { 4037 struct tcp_sock *tp = tcp_sk(sk); 4038 4039 inet_csk_schedule_ack(sk); 4040 4041 sk->sk_shutdown |= RCV_SHUTDOWN; 4042 sock_set_flag(sk, SOCK_DONE); 4043 4044 switch (sk->sk_state) { 4045 case TCP_SYN_RECV: 4046 case TCP_ESTABLISHED: 4047 /* Move to CLOSE_WAIT */ 4048 tcp_set_state(sk, TCP_CLOSE_WAIT); 4049 inet_csk(sk)->icsk_ack.pingpong = 1; 4050 break; 4051 4052 case TCP_CLOSE_WAIT: 4053 case TCP_CLOSING: 4054 /* Received a retransmission of the FIN, do 4055 * nothing. 4056 */ 4057 break; 4058 case TCP_LAST_ACK: 4059 /* RFC793: Remain in the LAST-ACK state. */ 4060 break; 4061 4062 case TCP_FIN_WAIT1: 4063 /* This case occurs when a simultaneous close 4064 * happens, we must ack the received FIN and 4065 * enter the CLOSING state. 4066 */ 4067 tcp_send_ack(sk); 4068 tcp_set_state(sk, TCP_CLOSING); 4069 break; 4070 case TCP_FIN_WAIT2: 4071 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4072 tcp_send_ack(sk); 4073 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4074 break; 4075 default: 4076 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4077 * cases we should never reach this piece of code. 4078 */ 4079 pr_err("%s: Impossible, sk->sk_state=%d\n", 4080 __func__, sk->sk_state); 4081 break; 4082 } 4083 4084 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4085 * Probably, we should reset in this case. For now drop them. 4086 */ 4087 skb_rbtree_purge(&tp->out_of_order_queue); 4088 if (tcp_is_sack(tp)) 4089 tcp_sack_reset(&tp->rx_opt); 4090 sk_mem_reclaim(sk); 4091 4092 if (!sock_flag(sk, SOCK_DEAD)) { 4093 sk->sk_state_change(sk); 4094 4095 /* Do not send POLL_HUP for half duplex close. */ 4096 if (sk->sk_shutdown == SHUTDOWN_MASK || 4097 sk->sk_state == TCP_CLOSE) 4098 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4099 else 4100 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4101 } 4102 } 4103 4104 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4105 u32 end_seq) 4106 { 4107 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4108 if (before(seq, sp->start_seq)) 4109 sp->start_seq = seq; 4110 if (after(end_seq, sp->end_seq)) 4111 sp->end_seq = end_seq; 4112 return true; 4113 } 4114 return false; 4115 } 4116 4117 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4118 { 4119 struct tcp_sock *tp = tcp_sk(sk); 4120 4121 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4122 int mib_idx; 4123 4124 if (before(seq, tp->rcv_nxt)) 4125 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4126 else 4127 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4128 4129 NET_INC_STATS(sock_net(sk), mib_idx); 4130 4131 tp->rx_opt.dsack = 1; 4132 tp->duplicate_sack[0].start_seq = seq; 4133 tp->duplicate_sack[0].end_seq = end_seq; 4134 } 4135 } 4136 4137 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4138 { 4139 struct tcp_sock *tp = tcp_sk(sk); 4140 4141 if (!tp->rx_opt.dsack) 4142 tcp_dsack_set(sk, seq, end_seq); 4143 else 4144 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4145 } 4146 4147 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4148 { 4149 struct tcp_sock *tp = tcp_sk(sk); 4150 4151 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4152 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4153 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4154 tcp_enter_quickack_mode(sk); 4155 4156 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4157 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4158 4159 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4160 end_seq = tp->rcv_nxt; 4161 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4162 } 4163 } 4164 4165 tcp_send_ack(sk); 4166 } 4167 4168 /* These routines update the SACK block as out-of-order packets arrive or 4169 * in-order packets close up the sequence space. 4170 */ 4171 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4172 { 4173 int this_sack; 4174 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4175 struct tcp_sack_block *swalk = sp + 1; 4176 4177 /* See if the recent change to the first SACK eats into 4178 * or hits the sequence space of other SACK blocks, if so coalesce. 4179 */ 4180 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4181 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4182 int i; 4183 4184 /* Zap SWALK, by moving every further SACK up by one slot. 4185 * Decrease num_sacks. 4186 */ 4187 tp->rx_opt.num_sacks--; 4188 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4189 sp[i] = sp[i + 1]; 4190 continue; 4191 } 4192 this_sack++, swalk++; 4193 } 4194 } 4195 4196 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4197 { 4198 struct tcp_sock *tp = tcp_sk(sk); 4199 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4200 int cur_sacks = tp->rx_opt.num_sacks; 4201 int this_sack; 4202 4203 if (!cur_sacks) 4204 goto new_sack; 4205 4206 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4207 if (tcp_sack_extend(sp, seq, end_seq)) { 4208 /* Rotate this_sack to the first one. */ 4209 for (; this_sack > 0; this_sack--, sp--) 4210 swap(*sp, *(sp - 1)); 4211 if (cur_sacks > 1) 4212 tcp_sack_maybe_coalesce(tp); 4213 return; 4214 } 4215 } 4216 4217 /* Could not find an adjacent existing SACK, build a new one, 4218 * put it at the front, and shift everyone else down. We 4219 * always know there is at least one SACK present already here. 4220 * 4221 * If the sack array is full, forget about the last one. 4222 */ 4223 if (this_sack >= TCP_NUM_SACKS) { 4224 this_sack--; 4225 tp->rx_opt.num_sacks--; 4226 sp--; 4227 } 4228 for (; this_sack > 0; this_sack--, sp--) 4229 *sp = *(sp - 1); 4230 4231 new_sack: 4232 /* Build the new head SACK, and we're done. */ 4233 sp->start_seq = seq; 4234 sp->end_seq = end_seq; 4235 tp->rx_opt.num_sacks++; 4236 } 4237 4238 /* RCV.NXT advances, some SACKs should be eaten. */ 4239 4240 static void tcp_sack_remove(struct tcp_sock *tp) 4241 { 4242 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4243 int num_sacks = tp->rx_opt.num_sacks; 4244 int this_sack; 4245 4246 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4247 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4248 tp->rx_opt.num_sacks = 0; 4249 return; 4250 } 4251 4252 for (this_sack = 0; this_sack < num_sacks;) { 4253 /* Check if the start of the sack is covered by RCV.NXT. */ 4254 if (!before(tp->rcv_nxt, sp->start_seq)) { 4255 int i; 4256 4257 /* RCV.NXT must cover all the block! */ 4258 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4259 4260 /* Zap this SACK, by moving forward any other SACKS. */ 4261 for (i = this_sack+1; i < num_sacks; i++) 4262 tp->selective_acks[i-1] = tp->selective_acks[i]; 4263 num_sacks--; 4264 continue; 4265 } 4266 this_sack++; 4267 sp++; 4268 } 4269 tp->rx_opt.num_sacks = num_sacks; 4270 } 4271 4272 enum tcp_queue { 4273 OOO_QUEUE, 4274 RCV_QUEUE, 4275 }; 4276 4277 /** 4278 * tcp_try_coalesce - try to merge skb to prior one 4279 * @sk: socket 4280 * @dest: destination queue 4281 * @to: prior buffer 4282 * @from: buffer to add in queue 4283 * @fragstolen: pointer to boolean 4284 * 4285 * Before queueing skb @from after @to, try to merge them 4286 * to reduce overall memory use and queue lengths, if cost is small. 4287 * Packets in ofo or receive queues can stay a long time. 4288 * Better try to coalesce them right now to avoid future collapses. 4289 * Returns true if caller should free @from instead of queueing it 4290 */ 4291 static bool tcp_try_coalesce(struct sock *sk, 4292 enum tcp_queue dest, 4293 struct sk_buff *to, 4294 struct sk_buff *from, 4295 bool *fragstolen) 4296 { 4297 int delta; 4298 4299 *fragstolen = false; 4300 4301 /* Its possible this segment overlaps with prior segment in queue */ 4302 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4303 return false; 4304 4305 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4306 return false; 4307 4308 atomic_add(delta, &sk->sk_rmem_alloc); 4309 sk_mem_charge(sk, delta); 4310 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4311 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4312 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4313 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4314 4315 if (TCP_SKB_CB(from)->has_rxtstamp) { 4316 TCP_SKB_CB(to)->has_rxtstamp = true; 4317 if (dest == OOO_QUEUE) 4318 TCP_SKB_CB(to)->swtstamp = TCP_SKB_CB(from)->swtstamp; 4319 else 4320 to->tstamp = from->tstamp; 4321 } 4322 4323 return true; 4324 } 4325 4326 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4327 { 4328 sk_drops_add(sk, skb); 4329 __kfree_skb(skb); 4330 } 4331 4332 /* This one checks to see if we can put data from the 4333 * out_of_order queue into the receive_queue. 4334 */ 4335 static void tcp_ofo_queue(struct sock *sk) 4336 { 4337 struct tcp_sock *tp = tcp_sk(sk); 4338 __u32 dsack_high = tp->rcv_nxt; 4339 bool fin, fragstolen, eaten; 4340 struct sk_buff *skb, *tail; 4341 struct rb_node *p; 4342 4343 p = rb_first(&tp->out_of_order_queue); 4344 while (p) { 4345 skb = rb_entry(p, struct sk_buff, rbnode); 4346 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4347 break; 4348 4349 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4350 __u32 dsack = dsack_high; 4351 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4352 dsack_high = TCP_SKB_CB(skb)->end_seq; 4353 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4354 } 4355 p = rb_next(p); 4356 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4357 /* Replace tstamp which was stomped by rbnode */ 4358 if (TCP_SKB_CB(skb)->has_rxtstamp) 4359 skb->tstamp = TCP_SKB_CB(skb)->swtstamp; 4360 4361 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4362 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4363 tcp_drop(sk, skb); 4364 continue; 4365 } 4366 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4367 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4368 TCP_SKB_CB(skb)->end_seq); 4369 4370 tail = skb_peek_tail(&sk->sk_receive_queue); 4371 eaten = tail && tcp_try_coalesce(sk, RCV_QUEUE, 4372 tail, skb, &fragstolen); 4373 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4374 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4375 if (!eaten) 4376 __skb_queue_tail(&sk->sk_receive_queue, skb); 4377 else 4378 kfree_skb_partial(skb, fragstolen); 4379 4380 if (unlikely(fin)) { 4381 tcp_fin(sk); 4382 /* tcp_fin() purges tp->out_of_order_queue, 4383 * so we must end this loop right now. 4384 */ 4385 break; 4386 } 4387 } 4388 } 4389 4390 static bool tcp_prune_ofo_queue(struct sock *sk); 4391 static int tcp_prune_queue(struct sock *sk); 4392 4393 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4394 unsigned int size) 4395 { 4396 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4397 !sk_rmem_schedule(sk, skb, size)) { 4398 4399 if (tcp_prune_queue(sk) < 0) 4400 return -1; 4401 4402 while (!sk_rmem_schedule(sk, skb, size)) { 4403 if (!tcp_prune_ofo_queue(sk)) 4404 return -1; 4405 } 4406 } 4407 return 0; 4408 } 4409 4410 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4411 { 4412 struct tcp_sock *tp = tcp_sk(sk); 4413 struct rb_node **p, *q, *parent; 4414 struct sk_buff *skb1; 4415 u32 seq, end_seq; 4416 bool fragstolen; 4417 4418 tcp_ecn_check_ce(tp, skb); 4419 4420 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4421 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4422 tcp_drop(sk, skb); 4423 return; 4424 } 4425 4426 /* Stash tstamp to avoid being stomped on by rbnode */ 4427 if (TCP_SKB_CB(skb)->has_rxtstamp) 4428 TCP_SKB_CB(skb)->swtstamp = skb->tstamp; 4429 4430 /* Disable header prediction. */ 4431 tp->pred_flags = 0; 4432 inet_csk_schedule_ack(sk); 4433 4434 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4435 seq = TCP_SKB_CB(skb)->seq; 4436 end_seq = TCP_SKB_CB(skb)->end_seq; 4437 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4438 tp->rcv_nxt, seq, end_seq); 4439 4440 p = &tp->out_of_order_queue.rb_node; 4441 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4442 /* Initial out of order segment, build 1 SACK. */ 4443 if (tcp_is_sack(tp)) { 4444 tp->rx_opt.num_sacks = 1; 4445 tp->selective_acks[0].start_seq = seq; 4446 tp->selective_acks[0].end_seq = end_seq; 4447 } 4448 rb_link_node(&skb->rbnode, NULL, p); 4449 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4450 tp->ooo_last_skb = skb; 4451 goto end; 4452 } 4453 4454 /* In the typical case, we are adding an skb to the end of the list. 4455 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4456 */ 4457 if (tcp_try_coalesce(sk, OOO_QUEUE, tp->ooo_last_skb, 4458 skb, &fragstolen)) { 4459 coalesce_done: 4460 tcp_grow_window(sk, skb); 4461 kfree_skb_partial(skb, fragstolen); 4462 skb = NULL; 4463 goto add_sack; 4464 } 4465 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4466 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4467 parent = &tp->ooo_last_skb->rbnode; 4468 p = &parent->rb_right; 4469 goto insert; 4470 } 4471 4472 /* Find place to insert this segment. Handle overlaps on the way. */ 4473 parent = NULL; 4474 while (*p) { 4475 parent = *p; 4476 skb1 = rb_entry(parent, struct sk_buff, rbnode); 4477 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4478 p = &parent->rb_left; 4479 continue; 4480 } 4481 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4482 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4483 /* All the bits are present. Drop. */ 4484 NET_INC_STATS(sock_net(sk), 4485 LINUX_MIB_TCPOFOMERGE); 4486 __kfree_skb(skb); 4487 skb = NULL; 4488 tcp_dsack_set(sk, seq, end_seq); 4489 goto add_sack; 4490 } 4491 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4492 /* Partial overlap. */ 4493 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4494 } else { 4495 /* skb's seq == skb1's seq and skb covers skb1. 4496 * Replace skb1 with skb. 4497 */ 4498 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4499 &tp->out_of_order_queue); 4500 tcp_dsack_extend(sk, 4501 TCP_SKB_CB(skb1)->seq, 4502 TCP_SKB_CB(skb1)->end_seq); 4503 NET_INC_STATS(sock_net(sk), 4504 LINUX_MIB_TCPOFOMERGE); 4505 __kfree_skb(skb1); 4506 goto merge_right; 4507 } 4508 } else if (tcp_try_coalesce(sk, OOO_QUEUE, skb1, 4509 skb, &fragstolen)) { 4510 goto coalesce_done; 4511 } 4512 p = &parent->rb_right; 4513 } 4514 insert: 4515 /* Insert segment into RB tree. */ 4516 rb_link_node(&skb->rbnode, parent, p); 4517 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4518 4519 merge_right: 4520 /* Remove other segments covered by skb. */ 4521 while ((q = rb_next(&skb->rbnode)) != NULL) { 4522 skb1 = rb_entry(q, struct sk_buff, rbnode); 4523 4524 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4525 break; 4526 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4527 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4528 end_seq); 4529 break; 4530 } 4531 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4532 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4533 TCP_SKB_CB(skb1)->end_seq); 4534 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4535 tcp_drop(sk, skb1); 4536 } 4537 /* If there is no skb after us, we are the last_skb ! */ 4538 if (!q) 4539 tp->ooo_last_skb = skb; 4540 4541 add_sack: 4542 if (tcp_is_sack(tp)) 4543 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4544 end: 4545 if (skb) { 4546 tcp_grow_window(sk, skb); 4547 skb_condense(skb); 4548 skb_set_owner_r(skb, sk); 4549 } 4550 } 4551 4552 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4553 bool *fragstolen) 4554 { 4555 int eaten; 4556 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4557 4558 __skb_pull(skb, hdrlen); 4559 eaten = (tail && 4560 tcp_try_coalesce(sk, RCV_QUEUE, tail, 4561 skb, fragstolen)) ? 1 : 0; 4562 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4563 if (!eaten) { 4564 __skb_queue_tail(&sk->sk_receive_queue, skb); 4565 skb_set_owner_r(skb, sk); 4566 } 4567 return eaten; 4568 } 4569 4570 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4571 { 4572 struct sk_buff *skb; 4573 int err = -ENOMEM; 4574 int data_len = 0; 4575 bool fragstolen; 4576 4577 if (size == 0) 4578 return 0; 4579 4580 if (size > PAGE_SIZE) { 4581 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4582 4583 data_len = npages << PAGE_SHIFT; 4584 size = data_len + (size & ~PAGE_MASK); 4585 } 4586 skb = alloc_skb_with_frags(size - data_len, data_len, 4587 PAGE_ALLOC_COSTLY_ORDER, 4588 &err, sk->sk_allocation); 4589 if (!skb) 4590 goto err; 4591 4592 skb_put(skb, size - data_len); 4593 skb->data_len = data_len; 4594 skb->len = size; 4595 4596 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4597 goto err_free; 4598 4599 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4600 if (err) 4601 goto err_free; 4602 4603 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4604 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4605 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4606 4607 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4608 WARN_ON_ONCE(fragstolen); /* should not happen */ 4609 __kfree_skb(skb); 4610 } 4611 return size; 4612 4613 err_free: 4614 kfree_skb(skb); 4615 err: 4616 return err; 4617 4618 } 4619 4620 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4621 { 4622 struct tcp_sock *tp = tcp_sk(sk); 4623 bool fragstolen; 4624 int eaten; 4625 4626 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4627 __kfree_skb(skb); 4628 return; 4629 } 4630 skb_dst_drop(skb); 4631 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4632 4633 tcp_ecn_accept_cwr(tp, skb); 4634 4635 tp->rx_opt.dsack = 0; 4636 4637 /* Queue data for delivery to the user. 4638 * Packets in sequence go to the receive queue. 4639 * Out of sequence packets to the out_of_order_queue. 4640 */ 4641 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4642 if (tcp_receive_window(tp) == 0) 4643 goto out_of_window; 4644 4645 /* Ok. In sequence. In window. */ 4646 queue_and_out: 4647 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4648 sk_forced_mem_schedule(sk, skb->truesize); 4649 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4650 goto drop; 4651 4652 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4653 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4654 if (skb->len) 4655 tcp_event_data_recv(sk, skb); 4656 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4657 tcp_fin(sk); 4658 4659 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4660 tcp_ofo_queue(sk); 4661 4662 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4663 * gap in queue is filled. 4664 */ 4665 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4666 inet_csk(sk)->icsk_ack.pingpong = 0; 4667 } 4668 4669 if (tp->rx_opt.num_sacks) 4670 tcp_sack_remove(tp); 4671 4672 tcp_fast_path_check(sk); 4673 4674 if (eaten > 0) 4675 kfree_skb_partial(skb, fragstolen); 4676 if (!sock_flag(sk, SOCK_DEAD)) 4677 sk->sk_data_ready(sk); 4678 return; 4679 } 4680 4681 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4682 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4683 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4684 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4685 4686 out_of_window: 4687 tcp_enter_quickack_mode(sk); 4688 inet_csk_schedule_ack(sk); 4689 drop: 4690 tcp_drop(sk, skb); 4691 return; 4692 } 4693 4694 /* Out of window. F.e. zero window probe. */ 4695 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4696 goto out_of_window; 4697 4698 tcp_enter_quickack_mode(sk); 4699 4700 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4701 /* Partial packet, seq < rcv_next < end_seq */ 4702 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4703 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4704 TCP_SKB_CB(skb)->end_seq); 4705 4706 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4707 4708 /* If window is closed, drop tail of packet. But after 4709 * remembering D-SACK for its head made in previous line. 4710 */ 4711 if (!tcp_receive_window(tp)) 4712 goto out_of_window; 4713 goto queue_and_out; 4714 } 4715 4716 tcp_data_queue_ofo(sk, skb); 4717 } 4718 4719 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4720 { 4721 if (list) 4722 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4723 4724 return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode); 4725 } 4726 4727 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4728 struct sk_buff_head *list, 4729 struct rb_root *root) 4730 { 4731 struct sk_buff *next = tcp_skb_next(skb, list); 4732 4733 if (list) 4734 __skb_unlink(skb, list); 4735 else 4736 rb_erase(&skb->rbnode, root); 4737 4738 __kfree_skb(skb); 4739 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4740 4741 return next; 4742 } 4743 4744 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4745 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4746 { 4747 struct rb_node **p = &root->rb_node; 4748 struct rb_node *parent = NULL; 4749 struct sk_buff *skb1; 4750 4751 while (*p) { 4752 parent = *p; 4753 skb1 = rb_entry(parent, struct sk_buff, rbnode); 4754 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4755 p = &parent->rb_left; 4756 else 4757 p = &parent->rb_right; 4758 } 4759 rb_link_node(&skb->rbnode, parent, p); 4760 rb_insert_color(&skb->rbnode, root); 4761 } 4762 4763 /* Collapse contiguous sequence of skbs head..tail with 4764 * sequence numbers start..end. 4765 * 4766 * If tail is NULL, this means until the end of the queue. 4767 * 4768 * Segments with FIN/SYN are not collapsed (only because this 4769 * simplifies code) 4770 */ 4771 static void 4772 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4773 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4774 { 4775 struct sk_buff *skb = head, *n; 4776 struct sk_buff_head tmp; 4777 bool end_of_skbs; 4778 4779 /* First, check that queue is collapsible and find 4780 * the point where collapsing can be useful. 4781 */ 4782 restart: 4783 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4784 n = tcp_skb_next(skb, list); 4785 4786 /* No new bits? It is possible on ofo queue. */ 4787 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4788 skb = tcp_collapse_one(sk, skb, list, root); 4789 if (!skb) 4790 break; 4791 goto restart; 4792 } 4793 4794 /* The first skb to collapse is: 4795 * - not SYN/FIN and 4796 * - bloated or contains data before "start" or 4797 * overlaps to the next one. 4798 */ 4799 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4800 (tcp_win_from_space(skb->truesize) > skb->len || 4801 before(TCP_SKB_CB(skb)->seq, start))) { 4802 end_of_skbs = false; 4803 break; 4804 } 4805 4806 if (n && n != tail && 4807 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4808 end_of_skbs = false; 4809 break; 4810 } 4811 4812 /* Decided to skip this, advance start seq. */ 4813 start = TCP_SKB_CB(skb)->end_seq; 4814 } 4815 if (end_of_skbs || 4816 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4817 return; 4818 4819 __skb_queue_head_init(&tmp); 4820 4821 while (before(start, end)) { 4822 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4823 struct sk_buff *nskb; 4824 4825 nskb = alloc_skb(copy, GFP_ATOMIC); 4826 if (!nskb) 4827 break; 4828 4829 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4830 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4831 if (list) 4832 __skb_queue_before(list, skb, nskb); 4833 else 4834 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 4835 skb_set_owner_r(nskb, sk); 4836 4837 /* Copy data, releasing collapsed skbs. */ 4838 while (copy > 0) { 4839 int offset = start - TCP_SKB_CB(skb)->seq; 4840 int size = TCP_SKB_CB(skb)->end_seq - start; 4841 4842 BUG_ON(offset < 0); 4843 if (size > 0) { 4844 size = min(copy, size); 4845 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4846 BUG(); 4847 TCP_SKB_CB(nskb)->end_seq += size; 4848 copy -= size; 4849 start += size; 4850 } 4851 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4852 skb = tcp_collapse_one(sk, skb, list, root); 4853 if (!skb || 4854 skb == tail || 4855 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4856 goto end; 4857 } 4858 } 4859 } 4860 end: 4861 skb_queue_walk_safe(&tmp, skb, n) 4862 tcp_rbtree_insert(root, skb); 4863 } 4864 4865 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4866 * and tcp_collapse() them until all the queue is collapsed. 4867 */ 4868 static void tcp_collapse_ofo_queue(struct sock *sk) 4869 { 4870 struct tcp_sock *tp = tcp_sk(sk); 4871 struct sk_buff *skb, *head; 4872 struct rb_node *p; 4873 u32 start, end; 4874 4875 p = rb_first(&tp->out_of_order_queue); 4876 skb = rb_entry_safe(p, struct sk_buff, rbnode); 4877 new_range: 4878 if (!skb) { 4879 p = rb_last(&tp->out_of_order_queue); 4880 /* Note: This is possible p is NULL here. We do not 4881 * use rb_entry_safe(), as ooo_last_skb is valid only 4882 * if rbtree is not empty. 4883 */ 4884 tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode); 4885 return; 4886 } 4887 start = TCP_SKB_CB(skb)->seq; 4888 end = TCP_SKB_CB(skb)->end_seq; 4889 4890 for (head = skb;;) { 4891 skb = tcp_skb_next(skb, NULL); 4892 4893 /* Range is terminated when we see a gap or when 4894 * we are at the queue end. 4895 */ 4896 if (!skb || 4897 after(TCP_SKB_CB(skb)->seq, end) || 4898 before(TCP_SKB_CB(skb)->end_seq, start)) { 4899 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 4900 head, skb, start, end); 4901 goto new_range; 4902 } 4903 4904 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 4905 start = TCP_SKB_CB(skb)->seq; 4906 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4907 end = TCP_SKB_CB(skb)->end_seq; 4908 } 4909 } 4910 4911 /* 4912 * Clean the out-of-order queue to make room. 4913 * We drop high sequences packets to : 4914 * 1) Let a chance for holes to be filled. 4915 * 2) not add too big latencies if thousands of packets sit there. 4916 * (But if application shrinks SO_RCVBUF, we could still end up 4917 * freeing whole queue here) 4918 * 4919 * Return true if queue has shrunk. 4920 */ 4921 static bool tcp_prune_ofo_queue(struct sock *sk) 4922 { 4923 struct tcp_sock *tp = tcp_sk(sk); 4924 struct rb_node *node, *prev; 4925 4926 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4927 return false; 4928 4929 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 4930 node = &tp->ooo_last_skb->rbnode; 4931 do { 4932 prev = rb_prev(node); 4933 rb_erase(node, &tp->out_of_order_queue); 4934 tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode)); 4935 sk_mem_reclaim(sk); 4936 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 4937 !tcp_under_memory_pressure(sk)) 4938 break; 4939 node = prev; 4940 } while (node); 4941 tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode); 4942 4943 /* Reset SACK state. A conforming SACK implementation will 4944 * do the same at a timeout based retransmit. When a connection 4945 * is in a sad state like this, we care only about integrity 4946 * of the connection not performance. 4947 */ 4948 if (tp->rx_opt.sack_ok) 4949 tcp_sack_reset(&tp->rx_opt); 4950 return true; 4951 } 4952 4953 /* Reduce allocated memory if we can, trying to get 4954 * the socket within its memory limits again. 4955 * 4956 * Return less than zero if we should start dropping frames 4957 * until the socket owning process reads some of the data 4958 * to stabilize the situation. 4959 */ 4960 static int tcp_prune_queue(struct sock *sk) 4961 { 4962 struct tcp_sock *tp = tcp_sk(sk); 4963 4964 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4965 4966 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 4967 4968 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4969 tcp_clamp_window(sk); 4970 else if (tcp_under_memory_pressure(sk)) 4971 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4972 4973 tcp_collapse_ofo_queue(sk); 4974 if (!skb_queue_empty(&sk->sk_receive_queue)) 4975 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 4976 skb_peek(&sk->sk_receive_queue), 4977 NULL, 4978 tp->copied_seq, tp->rcv_nxt); 4979 sk_mem_reclaim(sk); 4980 4981 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4982 return 0; 4983 4984 /* Collapsing did not help, destructive actions follow. 4985 * This must not ever occur. */ 4986 4987 tcp_prune_ofo_queue(sk); 4988 4989 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4990 return 0; 4991 4992 /* If we are really being abused, tell the caller to silently 4993 * drop receive data on the floor. It will get retransmitted 4994 * and hopefully then we'll have sufficient space. 4995 */ 4996 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 4997 4998 /* Massive buffer overcommit. */ 4999 tp->pred_flags = 0; 5000 return -1; 5001 } 5002 5003 static bool tcp_should_expand_sndbuf(const struct sock *sk) 5004 { 5005 const struct tcp_sock *tp = tcp_sk(sk); 5006 5007 /* If the user specified a specific send buffer setting, do 5008 * not modify it. 5009 */ 5010 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5011 return false; 5012 5013 /* If we are under global TCP memory pressure, do not expand. */ 5014 if (tcp_under_memory_pressure(sk)) 5015 return false; 5016 5017 /* If we are under soft global TCP memory pressure, do not expand. */ 5018 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5019 return false; 5020 5021 /* If we filled the congestion window, do not expand. */ 5022 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5023 return false; 5024 5025 return true; 5026 } 5027 5028 /* When incoming ACK allowed to free some skb from write_queue, 5029 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5030 * on the exit from tcp input handler. 5031 * 5032 * PROBLEM: sndbuf expansion does not work well with largesend. 5033 */ 5034 static void tcp_new_space(struct sock *sk) 5035 { 5036 struct tcp_sock *tp = tcp_sk(sk); 5037 5038 if (tcp_should_expand_sndbuf(sk)) { 5039 tcp_sndbuf_expand(sk); 5040 tp->snd_cwnd_stamp = tcp_jiffies32; 5041 } 5042 5043 sk->sk_write_space(sk); 5044 } 5045 5046 static void tcp_check_space(struct sock *sk) 5047 { 5048 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5049 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5050 /* pairs with tcp_poll() */ 5051 smp_mb(); 5052 if (sk->sk_socket && 5053 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5054 tcp_new_space(sk); 5055 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5056 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5057 } 5058 } 5059 } 5060 5061 static inline void tcp_data_snd_check(struct sock *sk) 5062 { 5063 tcp_push_pending_frames(sk); 5064 tcp_check_space(sk); 5065 } 5066 5067 /* 5068 * Check if sending an ack is needed. 5069 */ 5070 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5071 { 5072 struct tcp_sock *tp = tcp_sk(sk); 5073 5074 /* More than one full frame received... */ 5075 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5076 /* ... and right edge of window advances far enough. 5077 * (tcp_recvmsg() will send ACK otherwise). Or... 5078 */ 5079 __tcp_select_window(sk) >= tp->rcv_wnd) || 5080 /* We ACK each frame or... */ 5081 tcp_in_quickack_mode(sk) || 5082 /* We have out of order data. */ 5083 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) { 5084 /* Then ack it now */ 5085 tcp_send_ack(sk); 5086 } else { 5087 /* Else, send delayed ack. */ 5088 tcp_send_delayed_ack(sk); 5089 } 5090 } 5091 5092 static inline void tcp_ack_snd_check(struct sock *sk) 5093 { 5094 if (!inet_csk_ack_scheduled(sk)) { 5095 /* We sent a data segment already. */ 5096 return; 5097 } 5098 __tcp_ack_snd_check(sk, 1); 5099 } 5100 5101 /* 5102 * This routine is only called when we have urgent data 5103 * signaled. Its the 'slow' part of tcp_urg. It could be 5104 * moved inline now as tcp_urg is only called from one 5105 * place. We handle URGent data wrong. We have to - as 5106 * BSD still doesn't use the correction from RFC961. 5107 * For 1003.1g we should support a new option TCP_STDURG to permit 5108 * either form (or just set the sysctl tcp_stdurg). 5109 */ 5110 5111 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5112 { 5113 struct tcp_sock *tp = tcp_sk(sk); 5114 u32 ptr = ntohs(th->urg_ptr); 5115 5116 if (ptr && !sysctl_tcp_stdurg) 5117 ptr--; 5118 ptr += ntohl(th->seq); 5119 5120 /* Ignore urgent data that we've already seen and read. */ 5121 if (after(tp->copied_seq, ptr)) 5122 return; 5123 5124 /* Do not replay urg ptr. 5125 * 5126 * NOTE: interesting situation not covered by specs. 5127 * Misbehaving sender may send urg ptr, pointing to segment, 5128 * which we already have in ofo queue. We are not able to fetch 5129 * such data and will stay in TCP_URG_NOTYET until will be eaten 5130 * by recvmsg(). Seems, we are not obliged to handle such wicked 5131 * situations. But it is worth to think about possibility of some 5132 * DoSes using some hypothetical application level deadlock. 5133 */ 5134 if (before(ptr, tp->rcv_nxt)) 5135 return; 5136 5137 /* Do we already have a newer (or duplicate) urgent pointer? */ 5138 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5139 return; 5140 5141 /* Tell the world about our new urgent pointer. */ 5142 sk_send_sigurg(sk); 5143 5144 /* We may be adding urgent data when the last byte read was 5145 * urgent. To do this requires some care. We cannot just ignore 5146 * tp->copied_seq since we would read the last urgent byte again 5147 * as data, nor can we alter copied_seq until this data arrives 5148 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5149 * 5150 * NOTE. Double Dutch. Rendering to plain English: author of comment 5151 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5152 * and expect that both A and B disappear from stream. This is _wrong_. 5153 * Though this happens in BSD with high probability, this is occasional. 5154 * Any application relying on this is buggy. Note also, that fix "works" 5155 * only in this artificial test. Insert some normal data between A and B and we will 5156 * decline of BSD again. Verdict: it is better to remove to trap 5157 * buggy users. 5158 */ 5159 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5160 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5161 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5162 tp->copied_seq++; 5163 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5164 __skb_unlink(skb, &sk->sk_receive_queue); 5165 __kfree_skb(skb); 5166 } 5167 } 5168 5169 tp->urg_data = TCP_URG_NOTYET; 5170 tp->urg_seq = ptr; 5171 5172 /* Disable header prediction. */ 5173 tp->pred_flags = 0; 5174 } 5175 5176 /* This is the 'fast' part of urgent handling. */ 5177 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5178 { 5179 struct tcp_sock *tp = tcp_sk(sk); 5180 5181 /* Check if we get a new urgent pointer - normally not. */ 5182 if (th->urg) 5183 tcp_check_urg(sk, th); 5184 5185 /* Do we wait for any urgent data? - normally not... */ 5186 if (tp->urg_data == TCP_URG_NOTYET) { 5187 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5188 th->syn; 5189 5190 /* Is the urgent pointer pointing into this packet? */ 5191 if (ptr < skb->len) { 5192 u8 tmp; 5193 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5194 BUG(); 5195 tp->urg_data = TCP_URG_VALID | tmp; 5196 if (!sock_flag(sk, SOCK_DEAD)) 5197 sk->sk_data_ready(sk); 5198 } 5199 } 5200 } 5201 5202 /* Accept RST for rcv_nxt - 1 after a FIN. 5203 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5204 * FIN is sent followed by a RST packet. The RST is sent with the same 5205 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5206 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5207 * ACKs on the closed socket. In addition middleboxes can drop either the 5208 * challenge ACK or a subsequent RST. 5209 */ 5210 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5211 { 5212 struct tcp_sock *tp = tcp_sk(sk); 5213 5214 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5215 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5216 TCPF_CLOSING)); 5217 } 5218 5219 /* Does PAWS and seqno based validation of an incoming segment, flags will 5220 * play significant role here. 5221 */ 5222 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5223 const struct tcphdr *th, int syn_inerr) 5224 { 5225 struct tcp_sock *tp = tcp_sk(sk); 5226 bool rst_seq_match = false; 5227 5228 /* RFC1323: H1. Apply PAWS check first. */ 5229 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5230 tp->rx_opt.saw_tstamp && 5231 tcp_paws_discard(sk, skb)) { 5232 if (!th->rst) { 5233 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5234 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5235 LINUX_MIB_TCPACKSKIPPEDPAWS, 5236 &tp->last_oow_ack_time)) 5237 tcp_send_dupack(sk, skb); 5238 goto discard; 5239 } 5240 /* Reset is accepted even if it did not pass PAWS. */ 5241 } 5242 5243 /* Step 1: check sequence number */ 5244 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5245 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5246 * (RST) segments are validated by checking their SEQ-fields." 5247 * And page 69: "If an incoming segment is not acceptable, 5248 * an acknowledgment should be sent in reply (unless the RST 5249 * bit is set, if so drop the segment and return)". 5250 */ 5251 if (!th->rst) { 5252 if (th->syn) 5253 goto syn_challenge; 5254 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5255 LINUX_MIB_TCPACKSKIPPEDSEQ, 5256 &tp->last_oow_ack_time)) 5257 tcp_send_dupack(sk, skb); 5258 } else if (tcp_reset_check(sk, skb)) { 5259 tcp_reset(sk); 5260 } 5261 goto discard; 5262 } 5263 5264 /* Step 2: check RST bit */ 5265 if (th->rst) { 5266 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5267 * FIN and SACK too if available): 5268 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5269 * the right-most SACK block, 5270 * then 5271 * RESET the connection 5272 * else 5273 * Send a challenge ACK 5274 */ 5275 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5276 tcp_reset_check(sk, skb)) { 5277 rst_seq_match = true; 5278 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5279 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5280 int max_sack = sp[0].end_seq; 5281 int this_sack; 5282 5283 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5284 ++this_sack) { 5285 max_sack = after(sp[this_sack].end_seq, 5286 max_sack) ? 5287 sp[this_sack].end_seq : max_sack; 5288 } 5289 5290 if (TCP_SKB_CB(skb)->seq == max_sack) 5291 rst_seq_match = true; 5292 } 5293 5294 if (rst_seq_match) 5295 tcp_reset(sk); 5296 else { 5297 /* Disable TFO if RST is out-of-order 5298 * and no data has been received 5299 * for current active TFO socket 5300 */ 5301 if (tp->syn_fastopen && !tp->data_segs_in && 5302 sk->sk_state == TCP_ESTABLISHED) 5303 tcp_fastopen_active_disable(sk); 5304 tcp_send_challenge_ack(sk, skb); 5305 } 5306 goto discard; 5307 } 5308 5309 /* step 3: check security and precedence [ignored] */ 5310 5311 /* step 4: Check for a SYN 5312 * RFC 5961 4.2 : Send a challenge ack 5313 */ 5314 if (th->syn) { 5315 syn_challenge: 5316 if (syn_inerr) 5317 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5318 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5319 tcp_send_challenge_ack(sk, skb); 5320 goto discard; 5321 } 5322 5323 return true; 5324 5325 discard: 5326 tcp_drop(sk, skb); 5327 return false; 5328 } 5329 5330 /* 5331 * TCP receive function for the ESTABLISHED state. 5332 * 5333 * It is split into a fast path and a slow path. The fast path is 5334 * disabled when: 5335 * - A zero window was announced from us - zero window probing 5336 * is only handled properly in the slow path. 5337 * - Out of order segments arrived. 5338 * - Urgent data is expected. 5339 * - There is no buffer space left 5340 * - Unexpected TCP flags/window values/header lengths are received 5341 * (detected by checking the TCP header against pred_flags) 5342 * - Data is sent in both directions. Fast path only supports pure senders 5343 * or pure receivers (this means either the sequence number or the ack 5344 * value must stay constant) 5345 * - Unexpected TCP option. 5346 * 5347 * When these conditions are not satisfied it drops into a standard 5348 * receive procedure patterned after RFC793 to handle all cases. 5349 * The first three cases are guaranteed by proper pred_flags setting, 5350 * the rest is checked inline. Fast processing is turned on in 5351 * tcp_data_queue when everything is OK. 5352 */ 5353 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5354 const struct tcphdr *th) 5355 { 5356 unsigned int len = skb->len; 5357 struct tcp_sock *tp = tcp_sk(sk); 5358 5359 tcp_mstamp_refresh(tp); 5360 if (unlikely(!sk->sk_rx_dst)) 5361 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5362 /* 5363 * Header prediction. 5364 * The code loosely follows the one in the famous 5365 * "30 instruction TCP receive" Van Jacobson mail. 5366 * 5367 * Van's trick is to deposit buffers into socket queue 5368 * on a device interrupt, to call tcp_recv function 5369 * on the receive process context and checksum and copy 5370 * the buffer to user space. smart... 5371 * 5372 * Our current scheme is not silly either but we take the 5373 * extra cost of the net_bh soft interrupt processing... 5374 * We do checksum and copy also but from device to kernel. 5375 */ 5376 5377 tp->rx_opt.saw_tstamp = 0; 5378 5379 /* pred_flags is 0xS?10 << 16 + snd_wnd 5380 * if header_prediction is to be made 5381 * 'S' will always be tp->tcp_header_len >> 2 5382 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5383 * turn it off (when there are holes in the receive 5384 * space for instance) 5385 * PSH flag is ignored. 5386 */ 5387 5388 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5389 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5390 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5391 int tcp_header_len = tp->tcp_header_len; 5392 5393 /* Timestamp header prediction: tcp_header_len 5394 * is automatically equal to th->doff*4 due to pred_flags 5395 * match. 5396 */ 5397 5398 /* Check timestamp */ 5399 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5400 /* No? Slow path! */ 5401 if (!tcp_parse_aligned_timestamp(tp, th)) 5402 goto slow_path; 5403 5404 /* If PAWS failed, check it more carefully in slow path */ 5405 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5406 goto slow_path; 5407 5408 /* DO NOT update ts_recent here, if checksum fails 5409 * and timestamp was corrupted part, it will result 5410 * in a hung connection since we will drop all 5411 * future packets due to the PAWS test. 5412 */ 5413 } 5414 5415 if (len <= tcp_header_len) { 5416 /* Bulk data transfer: sender */ 5417 if (len == tcp_header_len) { 5418 /* Predicted packet is in window by definition. 5419 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5420 * Hence, check seq<=rcv_wup reduces to: 5421 */ 5422 if (tcp_header_len == 5423 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5424 tp->rcv_nxt == tp->rcv_wup) 5425 tcp_store_ts_recent(tp); 5426 5427 /* We know that such packets are checksummed 5428 * on entry. 5429 */ 5430 tcp_ack(sk, skb, 0); 5431 __kfree_skb(skb); 5432 tcp_data_snd_check(sk); 5433 return; 5434 } else { /* Header too small */ 5435 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5436 goto discard; 5437 } 5438 } else { 5439 int eaten = 0; 5440 bool fragstolen = false; 5441 5442 if (tcp_checksum_complete(skb)) 5443 goto csum_error; 5444 5445 if ((int)skb->truesize > sk->sk_forward_alloc) 5446 goto step5; 5447 5448 /* Predicted packet is in window by definition. 5449 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5450 * Hence, check seq<=rcv_wup reduces to: 5451 */ 5452 if (tcp_header_len == 5453 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5454 tp->rcv_nxt == tp->rcv_wup) 5455 tcp_store_ts_recent(tp); 5456 5457 tcp_rcv_rtt_measure_ts(sk, skb); 5458 5459 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5460 5461 /* Bulk data transfer: receiver */ 5462 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5463 &fragstolen); 5464 5465 tcp_event_data_recv(sk, skb); 5466 5467 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5468 /* Well, only one small jumplet in fast path... */ 5469 tcp_ack(sk, skb, FLAG_DATA); 5470 tcp_data_snd_check(sk); 5471 if (!inet_csk_ack_scheduled(sk)) 5472 goto no_ack; 5473 } 5474 5475 __tcp_ack_snd_check(sk, 0); 5476 no_ack: 5477 if (eaten) 5478 kfree_skb_partial(skb, fragstolen); 5479 sk->sk_data_ready(sk); 5480 return; 5481 } 5482 } 5483 5484 slow_path: 5485 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5486 goto csum_error; 5487 5488 if (!th->ack && !th->rst && !th->syn) 5489 goto discard; 5490 5491 /* 5492 * Standard slow path. 5493 */ 5494 5495 if (!tcp_validate_incoming(sk, skb, th, 1)) 5496 return; 5497 5498 step5: 5499 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5500 goto discard; 5501 5502 tcp_rcv_rtt_measure_ts(sk, skb); 5503 5504 /* Process urgent data. */ 5505 tcp_urg(sk, skb, th); 5506 5507 /* step 7: process the segment text */ 5508 tcp_data_queue(sk, skb); 5509 5510 tcp_data_snd_check(sk); 5511 tcp_ack_snd_check(sk); 5512 return; 5513 5514 csum_error: 5515 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5516 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5517 5518 discard: 5519 tcp_drop(sk, skb); 5520 } 5521 EXPORT_SYMBOL(tcp_rcv_established); 5522 5523 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5524 { 5525 struct tcp_sock *tp = tcp_sk(sk); 5526 struct inet_connection_sock *icsk = inet_csk(sk); 5527 5528 tcp_set_state(sk, TCP_ESTABLISHED); 5529 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5530 5531 if (skb) { 5532 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5533 security_inet_conn_established(sk, skb); 5534 } 5535 5536 /* Make sure socket is routed, for correct metrics. */ 5537 icsk->icsk_af_ops->rebuild_header(sk); 5538 5539 tcp_init_metrics(sk); 5540 tcp_call_bpf(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB); 5541 tcp_init_congestion_control(sk); 5542 5543 /* Prevent spurious tcp_cwnd_restart() on first data 5544 * packet. 5545 */ 5546 tp->lsndtime = tcp_jiffies32; 5547 5548 tcp_init_buffer_space(sk); 5549 5550 if (sock_flag(sk, SOCK_KEEPOPEN)) 5551 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5552 5553 if (!tp->rx_opt.snd_wscale) 5554 __tcp_fast_path_on(tp, tp->snd_wnd); 5555 else 5556 tp->pred_flags = 0; 5557 } 5558 5559 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5560 struct tcp_fastopen_cookie *cookie) 5561 { 5562 struct tcp_sock *tp = tcp_sk(sk); 5563 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL; 5564 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5565 bool syn_drop = false; 5566 5567 if (mss == tp->rx_opt.user_mss) { 5568 struct tcp_options_received opt; 5569 5570 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5571 tcp_clear_options(&opt); 5572 opt.user_mss = opt.mss_clamp = 0; 5573 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 5574 mss = opt.mss_clamp; 5575 } 5576 5577 if (!tp->syn_fastopen) { 5578 /* Ignore an unsolicited cookie */ 5579 cookie->len = -1; 5580 } else if (tp->total_retrans) { 5581 /* SYN timed out and the SYN-ACK neither has a cookie nor 5582 * acknowledges data. Presumably the remote received only 5583 * the retransmitted (regular) SYNs: either the original 5584 * SYN-data or the corresponding SYN-ACK was dropped. 5585 */ 5586 syn_drop = (cookie->len < 0 && data); 5587 } else if (cookie->len < 0 && !tp->syn_data) { 5588 /* We requested a cookie but didn't get it. If we did not use 5589 * the (old) exp opt format then try so next time (try_exp=1). 5590 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5591 */ 5592 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5593 } 5594 5595 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5596 5597 if (data) { /* Retransmit unacked data in SYN */ 5598 tcp_for_write_queue_from(data, sk) { 5599 if (data == tcp_send_head(sk) || 5600 __tcp_retransmit_skb(sk, data, 1)) 5601 break; 5602 } 5603 tcp_rearm_rto(sk); 5604 NET_INC_STATS(sock_net(sk), 5605 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5606 return true; 5607 } 5608 tp->syn_data_acked = tp->syn_data; 5609 if (tp->syn_data_acked) 5610 NET_INC_STATS(sock_net(sk), 5611 LINUX_MIB_TCPFASTOPENACTIVE); 5612 5613 tcp_fastopen_add_skb(sk, synack); 5614 5615 return false; 5616 } 5617 5618 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5619 const struct tcphdr *th) 5620 { 5621 struct inet_connection_sock *icsk = inet_csk(sk); 5622 struct tcp_sock *tp = tcp_sk(sk); 5623 struct tcp_fastopen_cookie foc = { .len = -1 }; 5624 int saved_clamp = tp->rx_opt.mss_clamp; 5625 bool fastopen_fail; 5626 5627 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 5628 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5629 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5630 5631 if (th->ack) { 5632 /* rfc793: 5633 * "If the state is SYN-SENT then 5634 * first check the ACK bit 5635 * If the ACK bit is set 5636 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5637 * a reset (unless the RST bit is set, if so drop 5638 * the segment and return)" 5639 */ 5640 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5641 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5642 goto reset_and_undo; 5643 5644 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5645 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5646 tcp_time_stamp(tp))) { 5647 NET_INC_STATS(sock_net(sk), 5648 LINUX_MIB_PAWSACTIVEREJECTED); 5649 goto reset_and_undo; 5650 } 5651 5652 /* Now ACK is acceptable. 5653 * 5654 * "If the RST bit is set 5655 * If the ACK was acceptable then signal the user "error: 5656 * connection reset", drop the segment, enter CLOSED state, 5657 * delete TCB, and return." 5658 */ 5659 5660 if (th->rst) { 5661 tcp_reset(sk); 5662 goto discard; 5663 } 5664 5665 /* rfc793: 5666 * "fifth, if neither of the SYN or RST bits is set then 5667 * drop the segment and return." 5668 * 5669 * See note below! 5670 * --ANK(990513) 5671 */ 5672 if (!th->syn) 5673 goto discard_and_undo; 5674 5675 /* rfc793: 5676 * "If the SYN bit is on ... 5677 * are acceptable then ... 5678 * (our SYN has been ACKed), change the connection 5679 * state to ESTABLISHED..." 5680 */ 5681 5682 tcp_ecn_rcv_synack(tp, th); 5683 5684 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5685 tcp_ack(sk, skb, FLAG_SLOWPATH); 5686 5687 /* Ok.. it's good. Set up sequence numbers and 5688 * move to established. 5689 */ 5690 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5691 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5692 5693 /* RFC1323: The window in SYN & SYN/ACK segments is 5694 * never scaled. 5695 */ 5696 tp->snd_wnd = ntohs(th->window); 5697 5698 if (!tp->rx_opt.wscale_ok) { 5699 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5700 tp->window_clamp = min(tp->window_clamp, 65535U); 5701 } 5702 5703 if (tp->rx_opt.saw_tstamp) { 5704 tp->rx_opt.tstamp_ok = 1; 5705 tp->tcp_header_len = 5706 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5707 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5708 tcp_store_ts_recent(tp); 5709 } else { 5710 tp->tcp_header_len = sizeof(struct tcphdr); 5711 } 5712 5713 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5714 tcp_enable_fack(tp); 5715 5716 tcp_mtup_init(sk); 5717 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5718 tcp_initialize_rcv_mss(sk); 5719 5720 /* Remember, tcp_poll() does not lock socket! 5721 * Change state from SYN-SENT only after copied_seq 5722 * is initialized. */ 5723 tp->copied_seq = tp->rcv_nxt; 5724 5725 smp_mb(); 5726 5727 tcp_finish_connect(sk, skb); 5728 5729 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 5730 tcp_rcv_fastopen_synack(sk, skb, &foc); 5731 5732 if (!sock_flag(sk, SOCK_DEAD)) { 5733 sk->sk_state_change(sk); 5734 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5735 } 5736 if (fastopen_fail) 5737 return -1; 5738 if (sk->sk_write_pending || 5739 icsk->icsk_accept_queue.rskq_defer_accept || 5740 icsk->icsk_ack.pingpong) { 5741 /* Save one ACK. Data will be ready after 5742 * several ticks, if write_pending is set. 5743 * 5744 * It may be deleted, but with this feature tcpdumps 5745 * look so _wonderfully_ clever, that I was not able 5746 * to stand against the temptation 8) --ANK 5747 */ 5748 inet_csk_schedule_ack(sk); 5749 tcp_enter_quickack_mode(sk); 5750 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5751 TCP_DELACK_MAX, TCP_RTO_MAX); 5752 5753 discard: 5754 tcp_drop(sk, skb); 5755 return 0; 5756 } else { 5757 tcp_send_ack(sk); 5758 } 5759 return -1; 5760 } 5761 5762 /* No ACK in the segment */ 5763 5764 if (th->rst) { 5765 /* rfc793: 5766 * "If the RST bit is set 5767 * 5768 * Otherwise (no ACK) drop the segment and return." 5769 */ 5770 5771 goto discard_and_undo; 5772 } 5773 5774 /* PAWS check. */ 5775 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5776 tcp_paws_reject(&tp->rx_opt, 0)) 5777 goto discard_and_undo; 5778 5779 if (th->syn) { 5780 /* We see SYN without ACK. It is attempt of 5781 * simultaneous connect with crossed SYNs. 5782 * Particularly, it can be connect to self. 5783 */ 5784 tcp_set_state(sk, TCP_SYN_RECV); 5785 5786 if (tp->rx_opt.saw_tstamp) { 5787 tp->rx_opt.tstamp_ok = 1; 5788 tcp_store_ts_recent(tp); 5789 tp->tcp_header_len = 5790 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5791 } else { 5792 tp->tcp_header_len = sizeof(struct tcphdr); 5793 } 5794 5795 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5796 tp->copied_seq = tp->rcv_nxt; 5797 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5798 5799 /* RFC1323: The window in SYN & SYN/ACK segments is 5800 * never scaled. 5801 */ 5802 tp->snd_wnd = ntohs(th->window); 5803 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5804 tp->max_window = tp->snd_wnd; 5805 5806 tcp_ecn_rcv_syn(tp, th); 5807 5808 tcp_mtup_init(sk); 5809 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5810 tcp_initialize_rcv_mss(sk); 5811 5812 tcp_send_synack(sk); 5813 #if 0 5814 /* Note, we could accept data and URG from this segment. 5815 * There are no obstacles to make this (except that we must 5816 * either change tcp_recvmsg() to prevent it from returning data 5817 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5818 * 5819 * However, if we ignore data in ACKless segments sometimes, 5820 * we have no reasons to accept it sometimes. 5821 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5822 * is not flawless. So, discard packet for sanity. 5823 * Uncomment this return to process the data. 5824 */ 5825 return -1; 5826 #else 5827 goto discard; 5828 #endif 5829 } 5830 /* "fifth, if neither of the SYN or RST bits is set then 5831 * drop the segment and return." 5832 */ 5833 5834 discard_and_undo: 5835 tcp_clear_options(&tp->rx_opt); 5836 tp->rx_opt.mss_clamp = saved_clamp; 5837 goto discard; 5838 5839 reset_and_undo: 5840 tcp_clear_options(&tp->rx_opt); 5841 tp->rx_opt.mss_clamp = saved_clamp; 5842 return 1; 5843 } 5844 5845 /* 5846 * This function implements the receiving procedure of RFC 793 for 5847 * all states except ESTABLISHED and TIME_WAIT. 5848 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5849 * address independent. 5850 */ 5851 5852 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 5853 { 5854 struct tcp_sock *tp = tcp_sk(sk); 5855 struct inet_connection_sock *icsk = inet_csk(sk); 5856 const struct tcphdr *th = tcp_hdr(skb); 5857 struct request_sock *req; 5858 int queued = 0; 5859 bool acceptable; 5860 5861 switch (sk->sk_state) { 5862 case TCP_CLOSE: 5863 goto discard; 5864 5865 case TCP_LISTEN: 5866 if (th->ack) 5867 return 1; 5868 5869 if (th->rst) 5870 goto discard; 5871 5872 if (th->syn) { 5873 if (th->fin) 5874 goto discard; 5875 /* It is possible that we process SYN packets from backlog, 5876 * so we need to make sure to disable BH right there. 5877 */ 5878 local_bh_disable(); 5879 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 5880 local_bh_enable(); 5881 5882 if (!acceptable) 5883 return 1; 5884 consume_skb(skb); 5885 return 0; 5886 } 5887 goto discard; 5888 5889 case TCP_SYN_SENT: 5890 tp->rx_opt.saw_tstamp = 0; 5891 tcp_mstamp_refresh(tp); 5892 queued = tcp_rcv_synsent_state_process(sk, skb, th); 5893 if (queued >= 0) 5894 return queued; 5895 5896 /* Do step6 onward by hand. */ 5897 tcp_urg(sk, skb, th); 5898 __kfree_skb(skb); 5899 tcp_data_snd_check(sk); 5900 return 0; 5901 } 5902 5903 tcp_mstamp_refresh(tp); 5904 tp->rx_opt.saw_tstamp = 0; 5905 req = tp->fastopen_rsk; 5906 if (req) { 5907 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5908 sk->sk_state != TCP_FIN_WAIT1); 5909 5910 if (!tcp_check_req(sk, skb, req, true)) 5911 goto discard; 5912 } 5913 5914 if (!th->ack && !th->rst && !th->syn) 5915 goto discard; 5916 5917 if (!tcp_validate_incoming(sk, skb, th, 0)) 5918 return 0; 5919 5920 /* step 5: check the ACK field */ 5921 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5922 FLAG_UPDATE_TS_RECENT | 5923 FLAG_NO_CHALLENGE_ACK) > 0; 5924 5925 if (!acceptable) { 5926 if (sk->sk_state == TCP_SYN_RECV) 5927 return 1; /* send one RST */ 5928 tcp_send_challenge_ack(sk, skb); 5929 goto discard; 5930 } 5931 switch (sk->sk_state) { 5932 case TCP_SYN_RECV: 5933 if (!tp->srtt_us) 5934 tcp_synack_rtt_meas(sk, req); 5935 5936 /* Once we leave TCP_SYN_RECV, we no longer need req 5937 * so release it. 5938 */ 5939 if (req) { 5940 inet_csk(sk)->icsk_retransmits = 0; 5941 reqsk_fastopen_remove(sk, req, false); 5942 } else { 5943 /* Make sure socket is routed, for correct metrics. */ 5944 icsk->icsk_af_ops->rebuild_header(sk); 5945 tcp_call_bpf(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB); 5946 tcp_init_congestion_control(sk); 5947 5948 tcp_mtup_init(sk); 5949 tp->copied_seq = tp->rcv_nxt; 5950 tcp_init_buffer_space(sk); 5951 } 5952 smp_mb(); 5953 tcp_set_state(sk, TCP_ESTABLISHED); 5954 sk->sk_state_change(sk); 5955 5956 /* Note, that this wakeup is only for marginal crossed SYN case. 5957 * Passively open sockets are not waked up, because 5958 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 5959 */ 5960 if (sk->sk_socket) 5961 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5962 5963 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5964 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 5965 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5966 5967 if (tp->rx_opt.tstamp_ok) 5968 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5969 5970 if (req) { 5971 /* Re-arm the timer because data may have been sent out. 5972 * This is similar to the regular data transmission case 5973 * when new data has just been ack'ed. 5974 * 5975 * (TFO) - we could try to be more aggressive and 5976 * retransmitting any data sooner based on when they 5977 * are sent out. 5978 */ 5979 tcp_rearm_rto(sk); 5980 } else 5981 tcp_init_metrics(sk); 5982 5983 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 5984 tcp_update_pacing_rate(sk); 5985 5986 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 5987 tp->lsndtime = tcp_jiffies32; 5988 5989 tcp_initialize_rcv_mss(sk); 5990 tcp_fast_path_on(tp); 5991 break; 5992 5993 case TCP_FIN_WAIT1: { 5994 int tmo; 5995 5996 /* If we enter the TCP_FIN_WAIT1 state and we are a 5997 * Fast Open socket and this is the first acceptable 5998 * ACK we have received, this would have acknowledged 5999 * our SYNACK so stop the SYNACK timer. 6000 */ 6001 if (req) { 6002 /* We no longer need the request sock. */ 6003 reqsk_fastopen_remove(sk, req, false); 6004 tcp_rearm_rto(sk); 6005 } 6006 if (tp->snd_una != tp->write_seq) 6007 break; 6008 6009 tcp_set_state(sk, TCP_FIN_WAIT2); 6010 sk->sk_shutdown |= SEND_SHUTDOWN; 6011 6012 sk_dst_confirm(sk); 6013 6014 if (!sock_flag(sk, SOCK_DEAD)) { 6015 /* Wake up lingering close() */ 6016 sk->sk_state_change(sk); 6017 break; 6018 } 6019 6020 if (tp->linger2 < 0) { 6021 tcp_done(sk); 6022 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6023 return 1; 6024 } 6025 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6026 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6027 /* Receive out of order FIN after close() */ 6028 if (tp->syn_fastopen && th->fin) 6029 tcp_fastopen_active_disable(sk); 6030 tcp_done(sk); 6031 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6032 return 1; 6033 } 6034 6035 tmo = tcp_fin_time(sk); 6036 if (tmo > TCP_TIMEWAIT_LEN) { 6037 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6038 } else if (th->fin || sock_owned_by_user(sk)) { 6039 /* Bad case. We could lose such FIN otherwise. 6040 * It is not a big problem, but it looks confusing 6041 * and not so rare event. We still can lose it now, 6042 * if it spins in bh_lock_sock(), but it is really 6043 * marginal case. 6044 */ 6045 inet_csk_reset_keepalive_timer(sk, tmo); 6046 } else { 6047 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6048 goto discard; 6049 } 6050 break; 6051 } 6052 6053 case TCP_CLOSING: 6054 if (tp->snd_una == tp->write_seq) { 6055 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6056 goto discard; 6057 } 6058 break; 6059 6060 case TCP_LAST_ACK: 6061 if (tp->snd_una == tp->write_seq) { 6062 tcp_update_metrics(sk); 6063 tcp_done(sk); 6064 goto discard; 6065 } 6066 break; 6067 } 6068 6069 /* step 6: check the URG bit */ 6070 tcp_urg(sk, skb, th); 6071 6072 /* step 7: process the segment text */ 6073 switch (sk->sk_state) { 6074 case TCP_CLOSE_WAIT: 6075 case TCP_CLOSING: 6076 case TCP_LAST_ACK: 6077 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6078 break; 6079 case TCP_FIN_WAIT1: 6080 case TCP_FIN_WAIT2: 6081 /* RFC 793 says to queue data in these states, 6082 * RFC 1122 says we MUST send a reset. 6083 * BSD 4.4 also does reset. 6084 */ 6085 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6086 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6087 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6088 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6089 tcp_reset(sk); 6090 return 1; 6091 } 6092 } 6093 /* Fall through */ 6094 case TCP_ESTABLISHED: 6095 tcp_data_queue(sk, skb); 6096 queued = 1; 6097 break; 6098 } 6099 6100 /* tcp_data could move socket to TIME-WAIT */ 6101 if (sk->sk_state != TCP_CLOSE) { 6102 tcp_data_snd_check(sk); 6103 tcp_ack_snd_check(sk); 6104 } 6105 6106 if (!queued) { 6107 discard: 6108 tcp_drop(sk, skb); 6109 } 6110 return 0; 6111 } 6112 EXPORT_SYMBOL(tcp_rcv_state_process); 6113 6114 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6115 { 6116 struct inet_request_sock *ireq = inet_rsk(req); 6117 6118 if (family == AF_INET) 6119 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6120 &ireq->ir_rmt_addr, port); 6121 #if IS_ENABLED(CONFIG_IPV6) 6122 else if (family == AF_INET6) 6123 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6124 &ireq->ir_v6_rmt_addr, port); 6125 #endif 6126 } 6127 6128 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6129 * 6130 * If we receive a SYN packet with these bits set, it means a 6131 * network is playing bad games with TOS bits. In order to 6132 * avoid possible false congestion notifications, we disable 6133 * TCP ECN negotiation. 6134 * 6135 * Exception: tcp_ca wants ECN. This is required for DCTCP 6136 * congestion control: Linux DCTCP asserts ECT on all packets, 6137 * including SYN, which is most optimal solution; however, 6138 * others, such as FreeBSD do not. 6139 */ 6140 static void tcp_ecn_create_request(struct request_sock *req, 6141 const struct sk_buff *skb, 6142 const struct sock *listen_sk, 6143 const struct dst_entry *dst) 6144 { 6145 const struct tcphdr *th = tcp_hdr(skb); 6146 const struct net *net = sock_net(listen_sk); 6147 bool th_ecn = th->ece && th->cwr; 6148 bool ect, ecn_ok; 6149 u32 ecn_ok_dst; 6150 6151 if (!th_ecn) 6152 return; 6153 6154 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6155 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6156 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6157 6158 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6159 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6160 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6161 inet_rsk(req)->ecn_ok = 1; 6162 } 6163 6164 static void tcp_openreq_init(struct request_sock *req, 6165 const struct tcp_options_received *rx_opt, 6166 struct sk_buff *skb, const struct sock *sk) 6167 { 6168 struct inet_request_sock *ireq = inet_rsk(req); 6169 6170 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6171 req->cookie_ts = 0; 6172 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6173 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6174 tcp_rsk(req)->snt_synack = tcp_clock_us(); 6175 tcp_rsk(req)->last_oow_ack_time = 0; 6176 req->mss = rx_opt->mss_clamp; 6177 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6178 ireq->tstamp_ok = rx_opt->tstamp_ok; 6179 ireq->sack_ok = rx_opt->sack_ok; 6180 ireq->snd_wscale = rx_opt->snd_wscale; 6181 ireq->wscale_ok = rx_opt->wscale_ok; 6182 ireq->acked = 0; 6183 ireq->ecn_ok = 0; 6184 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6185 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6186 ireq->ir_mark = inet_request_mark(sk, skb); 6187 } 6188 6189 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6190 struct sock *sk_listener, 6191 bool attach_listener) 6192 { 6193 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6194 attach_listener); 6195 6196 if (req) { 6197 struct inet_request_sock *ireq = inet_rsk(req); 6198 6199 kmemcheck_annotate_bitfield(ireq, flags); 6200 ireq->ireq_opt = NULL; 6201 #if IS_ENABLED(CONFIG_IPV6) 6202 ireq->pktopts = NULL; 6203 #endif 6204 atomic64_set(&ireq->ir_cookie, 0); 6205 ireq->ireq_state = TCP_NEW_SYN_RECV; 6206 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6207 ireq->ireq_family = sk_listener->sk_family; 6208 } 6209 6210 return req; 6211 } 6212 EXPORT_SYMBOL(inet_reqsk_alloc); 6213 6214 /* 6215 * Return true if a syncookie should be sent 6216 */ 6217 static bool tcp_syn_flood_action(const struct sock *sk, 6218 const struct sk_buff *skb, 6219 const char *proto) 6220 { 6221 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6222 const char *msg = "Dropping request"; 6223 bool want_cookie = false; 6224 struct net *net = sock_net(sk); 6225 6226 #ifdef CONFIG_SYN_COOKIES 6227 if (net->ipv4.sysctl_tcp_syncookies) { 6228 msg = "Sending cookies"; 6229 want_cookie = true; 6230 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6231 } else 6232 #endif 6233 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6234 6235 if (!queue->synflood_warned && 6236 net->ipv4.sysctl_tcp_syncookies != 2 && 6237 xchg(&queue->synflood_warned, 1) == 0) 6238 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6239 proto, ntohs(tcp_hdr(skb)->dest), msg); 6240 6241 return want_cookie; 6242 } 6243 6244 static void tcp_reqsk_record_syn(const struct sock *sk, 6245 struct request_sock *req, 6246 const struct sk_buff *skb) 6247 { 6248 if (tcp_sk(sk)->save_syn) { 6249 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6250 u32 *copy; 6251 6252 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6253 if (copy) { 6254 copy[0] = len; 6255 memcpy(©[1], skb_network_header(skb), len); 6256 req->saved_syn = copy; 6257 } 6258 } 6259 } 6260 6261 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6262 const struct tcp_request_sock_ops *af_ops, 6263 struct sock *sk, struct sk_buff *skb) 6264 { 6265 struct tcp_fastopen_cookie foc = { .len = -1 }; 6266 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6267 struct tcp_options_received tmp_opt; 6268 struct tcp_sock *tp = tcp_sk(sk); 6269 struct net *net = sock_net(sk); 6270 struct sock *fastopen_sk = NULL; 6271 struct request_sock *req; 6272 bool want_cookie = false; 6273 struct dst_entry *dst; 6274 struct flowi fl; 6275 6276 /* TW buckets are converted to open requests without 6277 * limitations, they conserve resources and peer is 6278 * evidently real one. 6279 */ 6280 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6281 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6282 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6283 if (!want_cookie) 6284 goto drop; 6285 } 6286 6287 if (sk_acceptq_is_full(sk)) { 6288 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6289 goto drop; 6290 } 6291 6292 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6293 if (!req) 6294 goto drop; 6295 6296 tcp_rsk(req)->af_specific = af_ops; 6297 tcp_rsk(req)->ts_off = 0; 6298 6299 tcp_clear_options(&tmp_opt); 6300 tmp_opt.mss_clamp = af_ops->mss_clamp; 6301 tmp_opt.user_mss = tp->rx_opt.user_mss; 6302 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6303 want_cookie ? NULL : &foc); 6304 6305 if (want_cookie && !tmp_opt.saw_tstamp) 6306 tcp_clear_options(&tmp_opt); 6307 6308 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6309 tcp_openreq_init(req, &tmp_opt, skb, sk); 6310 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6311 6312 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6313 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6314 6315 af_ops->init_req(req, sk, skb); 6316 6317 if (security_inet_conn_request(sk, skb, req)) 6318 goto drop_and_free; 6319 6320 if (tmp_opt.tstamp_ok) 6321 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6322 6323 dst = af_ops->route_req(sk, &fl, req); 6324 if (!dst) 6325 goto drop_and_free; 6326 6327 if (!want_cookie && !isn) { 6328 /* Kill the following clause, if you dislike this way. */ 6329 if (!net->ipv4.sysctl_tcp_syncookies && 6330 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6331 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6332 !tcp_peer_is_proven(req, dst)) { 6333 /* Without syncookies last quarter of 6334 * backlog is filled with destinations, 6335 * proven to be alive. 6336 * It means that we continue to communicate 6337 * to destinations, already remembered 6338 * to the moment of synflood. 6339 */ 6340 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6341 rsk_ops->family); 6342 goto drop_and_release; 6343 } 6344 6345 isn = af_ops->init_seq(skb); 6346 } 6347 6348 tcp_ecn_create_request(req, skb, sk, dst); 6349 6350 if (want_cookie) { 6351 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6352 req->cookie_ts = tmp_opt.tstamp_ok; 6353 if (!tmp_opt.tstamp_ok) 6354 inet_rsk(req)->ecn_ok = 0; 6355 } 6356 6357 tcp_rsk(req)->snt_isn = isn; 6358 tcp_rsk(req)->txhash = net_tx_rndhash(); 6359 tcp_openreq_init_rwin(req, sk, dst); 6360 if (!want_cookie) { 6361 tcp_reqsk_record_syn(sk, req, skb); 6362 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc); 6363 } 6364 if (fastopen_sk) { 6365 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6366 &foc, TCP_SYNACK_FASTOPEN); 6367 /* Add the child socket directly into the accept queue */ 6368 inet_csk_reqsk_queue_add(sk, req, fastopen_sk); 6369 sk->sk_data_ready(sk); 6370 bh_unlock_sock(fastopen_sk); 6371 sock_put(fastopen_sk); 6372 } else { 6373 tcp_rsk(req)->tfo_listener = false; 6374 if (!want_cookie) 6375 inet_csk_reqsk_queue_hash_add(sk, req, 6376 tcp_timeout_init((struct sock *)req)); 6377 af_ops->send_synack(sk, dst, &fl, req, &foc, 6378 !want_cookie ? TCP_SYNACK_NORMAL : 6379 TCP_SYNACK_COOKIE); 6380 if (want_cookie) { 6381 reqsk_free(req); 6382 return 0; 6383 } 6384 } 6385 reqsk_put(req); 6386 return 0; 6387 6388 drop_and_release: 6389 dst_release(dst); 6390 drop_and_free: 6391 reqsk_free(req); 6392 drop: 6393 tcp_listendrop(sk); 6394 return 0; 6395 } 6396 EXPORT_SYMBOL(tcp_conn_request); 6397